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Abstract

The aim of this dissertation is to develop mathematical/numerical approaches to pa-

rameter estimation in nonlinear dynamical systems that are modeled by ordinary

differential equations or differential algebraic equations. Parameters in mathematical

models often cannot be calculated by applying existing laws of nature or measured

directly and therefore they need being obtained from experimental data through an

estimation step. Numerical methods to parameter estimation are challenges due to

undesirable characteristics, such as stiffness, ill-conditioning and correlations among

parameters of model equations that cause computational intensiveness, convergence

problems as well as non-uniqueness of the solution of the parameters. The goal of

this dissertation is therefore two-fold: first to develop efficient estimation strategies

and numerical algorithms which should be able to efficiently solve such challenging

estimation problems, including multiple data profiles and large parameter sets, and

second to develop a method for identifiability analysis to identify the correlations

among parameters in complex model equations.

Direct strategies to solve parameter estimation problem, dynamic optimization prob-

lems, include direct sequential, direct simultaneous, direct multiple shooting, quasi-

sequential, and combined multiple shooting and collocation strategy. This dissertation

especially focuses on quasi-sequential strategy and combined multiple shooting and

collocation strategy. This study couples the interior point method with the quasi-

sequential strategy to solve dynamic optimization problems, particularly parameter

estimation problems. Furthermore, an improvement of this method is developed to

solve parameter estimation problems in that the reduced-space method of interior

point strategy is used. In the previous work, combined multiple shooting and col-

location strategy method was proved to be efficient to solve dynamic optimization

problems with all constraints of states imposed only at the nodes of the discretization
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grids. In this study, an improvement to combined multiple shooting and collocation

strategy is made to impose all state values on constraints at all collocation points in

order to improve the quality of the dynamic optimization problems.

To improve the quality of the parameter estimation solutions, multiple data-sets of

measurement data usually are used. In this study, an extension to a dynamic three-

stage estimation framework is made to the parameter estimation problem with a

derivation to the quasi-sequential strategy algorithm. Due to the decomposition of

the optimization variables, the proposed approach can efficiently solve time-dependent

parameter estimation problems with multiple data profiles. A parallel computing strat-

egy using the message passing interface (MPI) method is also applied successfully to

boost computation efficiency.

The second challenging task in parameter estimation of nonlinear dynamic models is

the identifiability of the parameters. The identifiability property of a model is used

to answer the question whether the estimated parameters are unique. In this thesis, a

systematic approach to identify both pairwise parameter correlations and higher order

interrelationships among parameters in nonlinear dynamic models is developed. The

correlation information obtained in this way clarifies both structural and practical non-

identifiability. Moreover, this correlation analysis also shows that a minimum number

of data sets, which corresponds to the maximum number of correlated parameters

among the correlation groups, with different inputs for experimental design are needed

to relieve the parameter correlations. The result of this correlation analysis provides a

necessary condition for experimental design in order to collect suitable measurement

data for unique parameter estimation.



Zusammenfassung

Ziel der vorliegenden Dissertationsschrift ist es, mathematische bzw. numerische Ver-

fahren zur Parameterschätzung für nichtlineare dynamische Systeme zu entwickeln,

deren Modelle in Form von gewöhnlichen Differentialgleichungen oder differential-

algebraischen Gleichungen vorliegen. Derartige Modelle zu validieren gelingt in der

Regel nicht, indem Naturgesetze ausgenutzt werden können, vielmehr sind häufig

aufwendige Messungen erforderlich, deren Datensätze dann auszuwerten sind. Nu-

merische Verfahren zur Parameterschätzung unterliegen solchen Herausforderungen

und unerwünschten Effekten wie Steifheit, schlechter Konditionierung oder Korrelatio-

nen zwischen zu schätzenden Parametern von Modellgleichungen, die rechenaufwendig

sein, aber die auch schlechte Konvergenz bzw. keine Eindeutigkeit der Schätzung

aufweisen können. Die Arbeit verfolgt daher zwei Ziele: erstens effektive Schätzstrategien

und numerische Algorithmen zu entwickeln, die komplexe Parameter-Schätzprobleme

lösen und dazu mit multiplen Datenprofilen bzw. mit großen Datensätzen umgehen

können. Zweites Ziel ist es, eine Methode zur Identifizierbarkeit für korrelierte Pa-

rameter in komplexen Modellgleichungen zu entwickeln.

Eine leistungsfähige direkte Strategie zur Lösung von Parameter-Schätzaufgaben ist

die Umwandlung in ein Problem der optimalen Steuerung. Dies schließt folgende

Methoden ein: direkte sequentielle und quasi-sequentielle Verfahren, direkte simultane

Strategien, direkte Mehrfach-Schießverfahren und kombinierte Mehrfach-Schießverfahren

mit Kollokationsmethoden. Diese Arbeit orientiert besonders auf quasi-sequentielle

Verfahren und kombinierte Mehrfach-Schießverfahren mit Kollokationsmethoden. Speziell

zur Lösung von Parameterschätzproblemen wurde die Innere-Punkte-Verfahren mit

dem quasi-sequentielle Verfahren gekoppelt. Eine weitere Verbesserung zur Lösung

von Parameterschätzproblemen konnte erreicht werden, indem die „reduced-space“

Technik der Innere-Punkte-Verfahren benutzt wurde. Die Leistungsfähigkeit der kom-
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binierte Mehrfach-Schießverfahren mit Kollokationsmethoden zur Lösung von Dy-

namischen Optimierungsproblemen war bisher damit verbunden, dass die Zustands-

beschränkungen nur in den Knoten des Diskretisierungsgitters eingehalten werden

konnten. Mit dieser Arbeit konnte die kombinierte Mehrfach-Schießverfahren mit

Kollokationsmethoden verbessert werden, so dass alle Zustandsgrößen die vorgegebe-

nen Beschränkungen in allen Kollokationspunkten einhalten, was zu einer deutlichen

Verbesserung des letztlich zu lösenden Optimalsteuerungsproblems zur Parameter-

schätzung führt.

Um die Qualität Parameterschätzung zu verbessern, werden üblicherweise mehrfache

Messdatensätze benutzt. In der vorgelegten Dissertation wurde zur Parameterschätzung

eine dynamische Drei-Stufen-Strategie mit einem eingebauten quasi-sequenziellen Ver-

fahren entwickelt. Durch die Zerlegung der Optimierungsvariablen kann das vorgeschla-

gene Verfahren sehr effizient zeitabhängige Parameter–Schätzaufgaben mit mehrfachen

Datenprofilen lösen. Zur Steigerung der Recheneffizienz wurde darüber hinaus erfol-

greich eine Parallel-Rechner Strategie eingebaut, die das sog. „message passing inter-

face“ (MPI) nutzt.

Eine zweite Herausforderung für die Parameterschätzung nichtlinearer dynamischer

Modelle betrifft die Indentifizierbarkeit der Parameter. Damit verbunden ist die Frage

nach der Eindeutigkeit der geschätzten Parameter. In dieser Arbeit wird auch ein

systematisches Vorgehen zur Identifizierung paarweiser Korrelationen als auch zum

Erkennen von Wechselwirkungen höherer Ordnung zwischen Parametern in nicht-

linearen dynamischen Systemen vorgeschlagen. Damit lässt sich sowohl die struk-

turelle als auch eine praktische „Nichtidentifizierbarkeit“ klären. Darüber hinaus

lässt sich durch eine Korrelationsanalyse darauf schließen, welche minimale Zahl von

Datensätzen mit unterschiedlichen Eingängen zum Entwurf benötigt wird, um Param-

eterkorrelationen auszuschließen. Dies wiederum entspricht einer maximalen Zahl von

korrelierten Parametern innerhalb der Korrelations–Gruppen. Im Ergebnis der Kor-

relationsanalyse erhält man eine notwendige Bedingung wie viele Messdaten für eine

eindeutige Parameterschätzung benötigt werden.
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Chapter 1

Introduction

1.1 Research Motivation

Mathematical models have been used to describe real world systems in a vast range

of engineerings, such as chemical engineering, electrical engineering, mechanical engi-

neering, and aerospace engineering, as well as in non-technical areas of natural sciences

such as chemistry, physics, biology, medicine, and geo-sciences and economics, etc. De-

veloping compact and accurate mathematical models for dynamic systems is essential

in these fields for analyzing and simulating the system dynamics and implementation

of optimization and control strategies [Gevers, 2006; Ljung, 2010; Nieman et al., 1971;

Äström and Eykhoff, 1971].

By applying a priori knowledge and existing laws of nature, mathematical models can

be built in the form of ordinary differential equations or differential algebraic equations

with many unknown coefficients or parameters that cannot be computed or measured

directly. As a consequence, a complex DAEs or ordinary differential equations (ODEs)

constrained optimization problem needs to be solved to estimate these parameters

based on experimental data, leading to a parameter estimation problem.

With a popular objective function of least squares types, the PE of a DAEs system

poses a dynamic optimization problem that can be solved by sophisticated numerical

methods. Numerical methods to dynamic optimization problem (DOP) are challenges

due to computational intensiveness and numerical difficulties that are caused by unde-
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sirable characteristics of the models, such as stiffness, ill-conditioning and correlations

among parameters of model equations (in the case of PE problem).

Direct numerical strategies to solve dynamic optimization problems (DOPs) use a dis-

cretization of the variables to transform the infinite-dimensional optimization problem

to a finite dimensional nonlinear programming problem. In a control parameterization

method, known as direct sequential strategy, only the control variables are discretized

and the model equations are solved by using an appropriate integration method. In

a complete discretization method, known as direct simultaneous strategy, both the

state and the control variables are discretized. Some hybrid strategies utilize the ad-

vantages of both the direct sequential strategy and the direct simultaneous strategy.

Modern direct numerical strategies include direct sequential strategy [Barton et al.,

1998; Binder et al., 2001; Goh and Teo, 1988; Vassiliadis et al., 1994a,b], direct si-

multaneous strategy [Biegler, 2007; Biegler et al., 2002; Jockenhövel, 2004a], direct

multiple shooting strategy [Bock and Plit, 1984; Plitt, 1981], direct quasi-sequential

strategy [Hong et al., 2006], and combined multiple shooting with collocation strategy

[Tamimi and Li, 2010].

In the study of Hong et al. [2006] the direct quasi-sequential strategy that coupled

direct sequential with the collocation method was developed and applied successfully

to a large-scale optimal control of a dynamic system. In that development, the method

of sequential quadratic programming was applied to solve the resulting nonlinear pro-

gramming (NLP) problems after the discretization. Recently the interior-point meth-

ods in both full-space and reduced-space modes have been well developed and widely

used to solve NLP problems in mathematic as well as engineering areas due to its high

efficiency [Bartlett et al., 2000; Byrd et al., 2000, 2006; Cervantes et al., 2000; Lau

et al., 2009; Wächter and Biegler, 2005, 2006]. In those researches, the interior-point

(IP) methods were applied to solve the DOPs in the direct simultaneous strategy. A

further research on the application of the IP methods to other strategies to solve the

PE problems, such as the direct quasi-sequential strategy, can be a promising task.

In [Tamimi and Li, 2010] a combined multiple shooting with collocation strategy was

proved to be highly efficient to solve DOPs. In that approach, all constraints of state

variables were imposed only at the nodes of the discretization grids while all their

values between nodes were unconstrained. This fact can let the states violate the

constraints. Therefore, a further study needs to be carried out in order to improve



1.1 Research Motivation 3

the quality of the solution of the combined multiple shooting with collocation strategy

strategy.

To achieve better results for parameter estimation, multiple data-sets of measurement

data are usually used. In [Faber et al., 2003] a sequential approach was proposed to

solve the large-scale parameter estimation problem of nonlinear steady-state models

with multiple data-sets, where a nested three-stage computation was presented to

decompose the problem. An extension of that approach to dynamic systems described

by DAEs can be taken into account to utilize its advantages.

With an adequate discretization strategy and an appropriate NLP solver, the PE

problem can be solved successfully. The next question that arises naturally is whether

the estimated parameters are unique. A model with an infinite number of set of

parameter solutions that give a good fit to the experimental data cannot be used. The

uniqueness of the estimated parameters, which is termed as identifiability, depends

on: (i) the characteristic of the model itself (structural identifiability), and (ii) the

informativeness of the experimental data (practical identifiability).

Several approaches have been developed to assess the structural identifiability of non-

linear dynamic systems. Critical reviews of these approaches can be seen in [Chis,

2011; McLean and McAuley, 2012; Miao et al., 2011]. Structural identifiability prob-

lems may be due to insensitivities of the measured outputs to parameter changes,

and/or in particular implicit functional relations between the parameters, which are

termed as parameter correlations. Although several approaches have been developed

to address structural identifiability problems, there is no approach applicable to ev-

ery model [Chis, 2011]. By using these methods, the non-identifiable parameters can

be shown but the cause and the type of the non-identifiability problem are still un-

known. Moreover, these methods usually require strong mathematic background and

expertize that can be difficult for modelers to handle. Due to their disadvantages, the

application of existing approaches to high dimensional complex models can be limited

[McLean and McAuley, 2012].

Practical identifiability properties can be found by results from fitting parameters to

available data sets. In most previous studies, parameter correlations were detected by

analyzing the sensitivity matrix and the Fischer information matrix (Fisher informa-

tion matrix (FIM) ) [McLean and McAuley, 2012] in order to obtain local confidence

regions of parameter solutions. Sensitivity analysis is well suitable to linear models but
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it has limitations for highly nonlinear models [Dobre et al., 2012; Raue et al., 2011].

Yao et al. [2003] used the rank of the sensitivity matrix to determine the number of

estimable parameters. However, the subsets of correlated parameters cannot be identi-

fied based on this result. Chu and Hahn [2007] proposed to check the parallel columns

in the sensitivity matrix to determine parameter subsets in which the parameters are

pairwise correlated. Quaiser and Mönnigmann [2009] proposed a method to rank the

parameters from least estimable to most estimable. These methods, however, cannot

identify parameter groups in which more than two parameters are correlated together,

i.e., the corresponding columns in the sensitivity matrix are linearly dependent but not

parallel. Such correlations present higher order interrelationships among parameters

[McLean and McAuley, 2012].

Recently, Raue et al. [2009] used profile likelihood to detect non-identifiability for

partially observable models. The parameter space is explored for each parameter by

repeatedly fitting the model to a given data set, which then provides a likelihood-based

confidence region for each parameter. The profile likelihood approach can also offer

information on the correlated relations among the parameters [Bachmann et al., 2011;

Hengl et al., 2007; Raue et al., 2009; Steiert et al., 2012] but it cannot show the exact

types of these relations.

In summary, through the above analysis it can be seen that further studies still need

to be done in order to find new methods that can easily address the identifiability

problem of complex dynamic models, especially mathematically to figure out the type

of the correlation among parameters in a non-identifiability model.

1.2 Structure and Contribution of the Thesis

Chapter 2: Parameter Estimation Theory: A review

Chapter 2 gives a review over system identification problems and its sub-area PE

problem of ordinary differential equation (ODE) or, for more complicated, differential

algebraic equation (DAE) systems. The problem formulation for parameter estimation

is presented, i.e., explains how to form PE problems with equation systems described

by ODEs or DAEs, objective function and constraints.
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Chapter 3: Direct methods to Dynamic Optimization Problems

In this Chapter, direct methods to solve DOPs will be introduced. A brief review on

numerical direct methods that have been developed to solve DOPs are introduced.

Each method was briefly explained with its strength and weakness. Methods to solve

the ODE and DAE systems, especially the orthogonal collocation method on finite

elements, are presented. Two common used numerical methods, sequential quadratic

programming (SQP) and interior-point (IP), to solve the resulting Nonlinear Program-

ming Problems (NLPs) are also described.

Chapter 4: Improved methods to Dynamic Optimization Problems

This dissertation focuses on two methods used to solve DOPs for parameter estimation:

direct sequential strategy (DSQ) coupled with the collocation method that developed

by Hong et al. [2006] and CMSC that developed by Tamimi and Li [2010]. In [Hong

et al., 2006], the DSQ with the collocation method was developed and applied success-

fully to optimal control of a large-scale dynamic system. In that development, numer-

ical method SQP was applied to solve the resulted NLP problems after discretization

task. Thanks to the development of the numerical methods to NLP problems, the

IP methods are more and more widely used in mathematic as well as engineering ar-

eas due to its high efficiency to solve appropriate problems. In this dissertation, the

IP method will be coupled with the quasi-sequential strategy (QSQ) to solve DOPs,

particularly PE problems. Mathematical derivations are made and the strengths of

the method are explained in [Hong et al., 2009]. Furthermore, an improvement of

this method is developed to solve PE problems in [Vu and Li, 2010] in which the

reduced-space (RS) method of IP strategy is used.

The CMSC method [Tamimi and Li, 2010] was proved to be efficient to solve DOPs.

In [Tamimi and Li, 2010], all constraints of states of the DAE model were imposed

only at the nodes of the discretization grids while all their values between nodes were

let free. This can lead to state constraints violations inside the time intervals. In

this thesis, an improvement is made to impose constraints for all state values at all

collocation points in order to improve the quality of the DOPs. A parallel computation

strategy that utilizes MPI programming is also applied to decrease the computation

time.

To improve the quality of the PE problems, multiple data-sets of measurement data
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usually need to be used. Faber et al. [2003] studied a three-stage framework for the

estimation of nonlinear steady-state systems with multiple data-sets by making use of

the optimality condition of the sub-NLP problems. In this study, an extension of the

work in [Faber et al., 2003] is made to the PE problem of dynamic systems described by

DAEs with a derivation to the DSQ algorithm for dynamic PE problems. As a result,

a dynamic three-stage estimation framework is developed. Due to the decomposition

of the optimization variables, the proposed approach can solve time-dependent PE

problems with multiple data profiles by IP solvers and parallel computation strategy.

Contributions:

The main contributions in Chapter 4 of this thesis can be summarized as follows:

1. interior-point (IP) coupled with quasi-sequential strategy (QSQ) method

(a) IP coupled with QSQ method in full space mode in Section 4.1, which was

published in [Hong et al., 2009].

(b) IP coupled with QSQ method in reduced-space (RS) mode in Section 4.2,

which was published in [Vu and Li, 2010].

2. Parameter Estimation Problems framework with Multiple Datasets

(a) A dynamic three-stage decomposition of the optimization variables frame-

work is developed in Section 4.3 which was partially published in [Vu et al.,

2010; Zhao et al., 2013].

3. Improvement of combined multiple shooting and collocation strategy (CMSC)

(a) Improvement of CMSC in that all collocation points are imposed by con-

straints with parallel computation strategy in Section 4.4. 1

Chapter 5: Identification of parameter correlations

One of the challenging tasks in PE of nonlinear dynamic models is the identifiability

of the parameters in the relevant problem. The identifiability property of a model is

1Vu, Q. D. and Li, P. (2012), An improved direct multiple shooting approach combined with
collocation and parallel computing to handle path constraints in dynamic nonlinear optimization,
5th International Conference on High Performance Scientific Computing, March 5-9, 2012, Hanoi,
Vietnam.



1.2 Structure and Contribution of the Thesis 7

used to answer the question whether or not the estimated parameters are unique. For

example, a biological model usually contains a large number of correlated parameters

leading to non-identifiability problems. Although many approaches have been devel-

oped to address both structural and practical non-identifiability problems, very few

studies have been made to systematically investigate parameter correlations.

In this thesis, an approach to identify both pairwise parameter correlations and higher

order interrelationships among parameters in nonlinear dynamic models is developed

[Li and Vu, 2013]. The correlation information obtained in this way clarifies both

structural and practical non-identifiability. Moreover, this correlation analysis also

shows that a minimum number of data sets, which corresponds to the maximum

number of correlated parameters among the correlation groups, with different inputs

for experimental design are needed to relieve the parameter correlations.

The information of this identifiability analysis in biological models gives a deeper

insight into the cause of non-identifiability problems. The result of this correlation

analysis provides a necessary condition for optimal experimental design in order to

collect suitable measurement data for unique parameter estimation.

Contributions:

The main contributions of Chapter 5 of this thesis can be summarized as follows:

1. An approach to identify both pairwise parameter correlations and higher order

interrelationships among parameters in nonlinear dynamic models in Chapter 5

(a) The information of pairwise and higher order interrelationships among pa-

rameters in biological models gives a deeper insight into the cause of non-

identifiability problems, which was published in [Li and Vu, 2013].

(b) The result of correlation analysis provides a necessary condition for exper-

imental design in order to acquire suitable measurement data for unique

parameter estimation, which was published in [Li and Vu, 2013].

Chapter 6: Conclusions and future work

Finally, Chapter 6 draws the conclusions of this dissertation and highlights some rec-

ommendations for future developments.
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Chapter 4: Improved approaches to Dynamic Optimization
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Chapter 1: Introduction

Chapter 6: Conclusions and Future research

Chapter 3: Fundamentals of Direct Methods to Dynamic Optimization Problems

Fig. 1.1 Structure and Contribution of the Thesis1.

1The parts with contribution are highlighted in red color.
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Chapter 2

Parameter Estimation Theory: A

review

The use of mathematical models for process analysis, optimal process design, moni-

toring and control has become increasingly attractive in recent years. Mathematical

models can be used to describe diverse systems ranging from technical areas of process

engineering, electrical engineering, mechanical engineering, aerospace engineering and

chemical engineering, to non-technical areas of natural sciences as chemistry, physics,

biology, medicine, as well as geo-sciences and economics, etc. Developing rigorous

dynamic process models with a highly predictive quality is essential for successful

implementation of optimization and advanced process control techniques since these

applications depend heavily on model parameter values estimated based on experi-

mental data [Abdellatif et al., 2013; Gauss, 1809; Gauss and Stewart, 1995; Isermann

and Münchhof, 2010; Walter and Pronzato, 1997]. Therefore, parameter estimation

is a critical step in the development and update of a process model. Rigorous para-

metric modeling of a dynamic process usually leads to a nonlinear DAEs system with

up to thousands of variables and unknown parameters. As a consequence, a com-

plex DAEs constrained optimization problem needs to be solved for carrying out a

parameter estimation task. Correlations among unknown parameters usually result in

ill-posed optimization problems. Therefore, it is desirable to develop efficient estima-

tion strategies and numerical algorithms which should be able to solve such challenging

estimation problems, including multiple data profiles and large parameter sets.
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2.1 System Identification Problems

System identification, i.e., obtaining a satisfactory mathematical model within a suit-

able model structure from measured time series data of the inputs and outputs of

a dynamical system, plays an important role in many branches of engineering and

science. In a mathematical model the relationships between quantities, such as con-

centrations of a chemical reaction, distances of a motion, currents in electrical systems,

flows in a dynamic fluid, and so forth, that can be observed in the physical (chemical)

system are described as mathematical relations. Significant developments have been

made in the past decades by researchers and engineers from such diverse fields based

on system and control theory [Isermann and Münchhof, 2010; Ljung, 1999, 2010; Ljung

and Glad, 1994a; Maine et al., 1985; Äström and Eykhoff, 1971; Walter and Pronzato,

1997; Wiener, 1965], system biology [Villaverde and Banga, 2013], signal processing,

communications and information theory [Giannakis and Serpedin, 2001]. Depend on

the a priori knowledge and physical insight about the system, the models can be dis-

tinguished between three color-coded levels: White-box, Grey-box and Black-box as

depicted in Fig. 2.1.
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Fig. 2.1 Block diagram of transition of system identification levels
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White-box model

Mathematical models describing the dynamical system of interest can be built using

the first principle laws of physics, chemistry, biology, etc. In this case, the model is

perfectly known, i.e., the mathematical equations that describe relations between the

states of physical systems are explicit and their parameters are totally known. This

type of modeling requires specialist a priori knowledge and physical insight which

might be lacking. Therefore, developing such models can be very difficult, time-

consuming and, in the case of large-scale systems, impossible. This means that a pure

white-box model does not exist in reality.

Black-box model

In contrast to the first type of models, in Black-box models there is no a priori physical

insight available. The model is only a transportation mean to transfer information from

inputs to outputs of the considered system. The model structure can be chosen among

well-known types depending on the purpose of the identification task. One system can

be described in several structures which do not reflect any internal physical relations

that happen inside the model. In general, black-box models have disadvantages in

the extrapolation due to its lack of flexibility. Black-box models are suitable for

specific purpose of identification of systems of interest. More information is available

in [Juditsky et al., 1995; Sjöberg et al., 1995] and references therein.

Grey-box model

Lying between the two above extreme cases, grey-box models provide (internal) phys-

ical representation of system but several parameters are missing and need to be deter-

mined from measured data. Grey-box (in some literatures, gray-box is used instead)

models therefore inherit both advantages and disadvantages of the two extreme cases.

In grey-box modeling, a priori knowledge concerning the system is used to set up a

structure of the model and then the physical insight of the system can be manifested

by a system of differential and/or algebraic equations, e.g., ODEs, partial differential

equations (PDEs) and DAEs. Grey-box provides a higher flexibility, which means

grey-box is a more generic model that can be used to do simulation and extract rules

that describe the behavior of the system. Even grey-box can be used to form a unique

black-box presentation of the system of interest but the vice versa is not necessarily

true. A grey-box model therefore is widely used, e.g., model-based control and simu-
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lation, and thus grey-box modeling becomes natural framework for modeling dynamic

systems. Reviews of system identification are given in [Gevers, 2006; Ljung, 2010].

Typical representatives for grey-box models are continuous-time nonlinear state-space

models which are main objects of this thesis.
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Fig. 2.2 A simple diagram of grey-box system modeling
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2.2 Parameter Estimation of DAEs systems

Parameter Estimation of DAEs systems is an interesting and most widely used sub-

area of system identification field. In the context of physical (and chemical) modeling

and simulation, the DAEs (or ODEs) that express the process dynamic phenomena

usually contain unknown coefficients that need to be estimated by using numerical

optimization to fit the mathematic model to observed data sets [Schittkowski, 2013].

Figure 2.3 shows the block diagram of the parameter estimation of a DAEs system.

This fitting can be done by the Bayesian statistical framework [Efron, 2013; Girolami,

2008; Klein and Morelli, 2006] and the Frequentist approach. Until now Frequentist is

still the approach most used and thus from now on we only focus on this method. For

further reading, comparisons of the Frequentist and Bayesian approaches to estimation

can be seen in [Aguilar, 2013; Efron, 2012; Raue et al., 2012; Samaniego, 2010]. Fig.

2.2 show the main four steps in the parameter estimation task. Those are:

1. The Model (re)formulation step in that a mathematical model is built from

a priori physical knowledge with unknown parameters.

2. The Parameter estimation step in that the unknown parameters are estimated

by utilizing optimization methods that can minimize the residuals between the

measurement data (obtained from real process) and the corresponding outputs

of the mathematic model. This step can be done in silico before the real exper-

imental process are conducted. Suppose that the optimization solver converges

at the end of this step, one or several sets of parameters are obtained.

3. The Model validation step is then used to check the quality of the estimation

step. The validation data must be independently measured from the data that

are used in the estimation step. The most important question raised here is that

whether the estimated parameter set is unique. This question forms the iden-

tifiability problem. A model is said to be identifiable if there exists an unique

solution of the parameter estimation problem, otherwise it is non-identifiable.

Certainly a non-identifiable model is not reliable and useless. The identifiability

of a model can be classified into two levels: structural identifiability and practical

identifiability. Structural identifiability means that the model is identifiable with

ideal continuous noise free observations that can be in silico done by producing
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simulated data. Structural identifiability expresses that it is a property of the

model itself and this property of course depends on how the model is constructed.

Structural identifiability should be checked before conducting real experiments.

Obviously, structural identifiability is necessary but not sufficient to affirm an

accurate estimation of the model parameters from experimental data. In con-

trast, practical identifiability associates with real sparse noisy measurements and

it certainly depends on how the practical experiments are conducted. Practi-

cal identifiability in principle can be solved by means of suitable experimental

design.

4. The Experimental design is an important step in which real measured data

sets are produced. The quality of the measured data is usually affected by many

factors, such as the type of input signals, experiment conditions, quality and

quantity of sensors, etc. The data sets should be pretreated before being passed

to the estimation step. Due to the practical identifiability problem, this step

may be repeated until a suitable parameter set of the model is obtained.

Until now these main four steps in PE problem still challenge researchers in many

aspects. The first and last steps require the modelers to have deep knowledge in

the field of modeling, measurement techniques, etc., which are out of the scope of

this dissertation. The second and third steps are conducted in this thesis and new

contributions are presented in Chapter 4 and Chapter 5, respectively.

The model equation

DAEs represent a powerful way of modeling dynamical systems [Biegler et al., 2012].

DAEs model can be used to describe a first principle lumped parameter system, whose

state variables are described by ODEs together with supplementary algebraic equations

(AEs) to express dynamic phenomena such as thermodynamic equilibriums, mass and

energy transfers and reaction kinetics. A general explicit index-1 DAEs model can be

described as follows:

ż(t) = f(z(t), ỹ(t),u(t),θ(t),Π) (2.1a)

0 = g(z(t), ỹ(t),u(t),θ(t),Π) (2.1b)

ȳ(t) = h(z(t), ỹ(t),u(t),β) (2.1c)

z(t0) = z0 (2.1d)
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where

(2.1a) are differential equations

(2.1b) are algebraic equations

(2.1c) are output equations

z(t) ∈ Rnz is a vector of differential state variables

ỹ(t) ∈ Rnỹ is a vector of algebraic state variables

u(t) ∈ Rnu is a vector of system input or control variables

θ(t) ∈ Rnθ is a vector of unknown time-dependent parameters

Π ∈ RnΠ is a vector of unknown time-independent parameters

β ∈ Rnβ is a vector of additional unknown time-independent parameters

ȳ(t) ∈ Rnȳ is a vector of output (measured) variables

z0 is a vector of initial values of differential states. These values can

be known a priori; otherwise they need to be estimated together

with parameters

The model equations (2.1) are assumed to accurately describe input-output relations

and the interaction between internal states of the system of interest. Equations (2.1)

describe a system in continuous time State-space form as a standard model for dynamic

systems. In the observation equations (2.1c), the output vector ȳ(t) can be some

internal states if so desired or even be pools of several states with additional parameters

such as scaling or offset parameters q. During an experiment within a time horizon

[t0, tf ] , the output vector is measured at discrete time point ti such that t0 ≤ ti ≤ tf ,

ȳm
i = ȳ(ti) + εi

where

ȳm
i denotes the measured output vector of the ith measurement points,
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i = 1, · · · , NL;NL is the number of measurement points,

ȳ(ti) is a vector of system outputs,

εi is a vector of measurement noises associated with the ith measurement value.

In addition, the input vector u(t) in each experiment can be measured at time point

ti,

um
i = u(ti) + υi

where

um
i denotes the measured input vector of the ith measurement points,

υi is a vector of the random measurement noises.

The input vector u(t) can be set at a priori known values, or fixed to the measurements

um
i (t) or, in the case that it is not precisely known, should be estimated together with

unknown parameters. In order to make all the input and output measurements to be

unique we define:

Ø =

 ȳ

u

 ; χm =

 ȳm

um

 and ς =

 ε

υ


so that we have:

χm(ti) = χ(ti) + ς i, or for shot χm
i = χi + ς i

In order to compact Eqs. (2.1a), (2.1b) and (2.1c) to be in more general form, we can

define y = [ỹ ȳ]T as a vector of algebraic variables, where y ∈ Rny and ny = nỹ +nȳ;

p = [Π β]T as a vector of parameters, where p ∈ Rnp and np = nΠ + nβ.

Then Eq. (2.1) can be rewritten as follow

ż(t) = F (z(t),y(t),u(t),θ(t),p) (2.2a)

0 = G(z(t),y(t),u(t),θ(t),p) (2.2b)

z(t0) = z0 (2.2c)
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The objective function

Parameter estimation tackles the task of estimating the parameter vector that makes

the mathematical model best fit to the measurement vector. This task is usually done

by minimizing a scalar function called objective function that includes the differences

or residuals ei between input-output of the model calculated and the measured values:

ei = [χm
i − χi]

where χ = [ȳ u]T in that ȳ is calculated using the estimated parameters, u denotes

the vector of estimated inputs (in the case that it is unknown).

The type of the objective function plays an important role in parameter estimation due

to the fact that it relates not only to the parameter values but also to the statistical

properties of the parameters. The form of least squares [Englezos and Kalogerakis,

2000; Johnson and Faont, 1992; Strejc, 1977; van de Geer, 2005; Walter and Pronzato,

1997] is commonly used, which estimates parameter values by minimizing the weighted

sum of squares of the errors ei:

JLS(p,u) =
NL∑
1

eTi Wiei

where p = [θ β]T ; ei is the residual vector and Wi is the weighting matrix. It should

be noted that u variables can be wiped off from the formulation if they are known a

priori.

In many cases, a series of runs should be conducted in order to make a better estimation

and the parameters can be estimated using all data sets simultaneously. In that

situation the objective function is expressed as follows:

JLS(p,u) =
NS∑
k=1

[
NL∑
i=1

eTi Wiei

]
k

(2.3)

where NS is the number of data sets.

The weighting matrix Wi can be chosen by the user in accordance with the criterion of

statistical properties of the measurement data. In the simplest case called unweighted

least squares, the user can use Wi = W. With Weighted Least Squares (WLS) one
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can use constant weights Wi = I for all i = 1, · · · , NL and keep Wi the same for all

data sets. In generalized least squares estimation (GLS) the user-supplied weighting

matrices Wi are non-constant and differ from measurement point to measurement

point. From the statistical point of view, in many fields measurement errors can be

assumed to be normally distributed with zero mean and with a known covariance

matrix, then Wi is chosen as the inverse of the covariance matrix:

Wi = [COV (ς i)]
−1 =

∑−1

i

As a consequence, the objective function in maximum likelihood estimation (ML) [Box

and Tiao, 1992; Gauss, 1809; Gauss and Stewart, 1995] can be written as:

JML(p,u) =
NS∑
k=1

[
NL∑
i=1

eTi
∑−1

i
ei

]
k

However, to known the exact values of covariance matrices
∑

i is unrealistic in practical

engineering. Some reasonable assumptions about the statistical properties of
∑

i can

be made to define the ML objective function [Box and Tiao, 1992; Johnson and Faont,

1992].

For example, with the assumption that the variance of the measurement errors are

constant and differ from measurement point to measurement point, we have

∑
i
=


σ2
e1 0 · · · 0

0 σ2
e2 · · · 0

...
...

. . .
...

0 0 · · · σ2
e(nu+nȳ)

 ; i = 1, 2, . . . , NL (2.4)

Often in engineering practice σeij can be parameterized as follow [Walter and Pronzato,

1997]:

σ2
eik(a, b) = a|Øk(ti)|b

where a > 0 is unknown scaling factor; and 0 ≤ b ≤ 2 . Note that a = 0 corresponds

to WLS estimation. If b = 2, then we have

σ2
eij = a|Øj(ti)|2
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The weighting matrices Wi can be written as follow:

Wi = diag(Ø−2
i,1 ,Ø

−2
i,2 , . . . ,Ø

−2
i,(nu+nȳ)

)

The above chosen weighting matrices Wi have the disadvantage that the weights are

still unknown. In engineering practice, if the magnitude of the measurement errors ς i

is not too exaggerated, one can choose the measurement values χm
i instead of χi with

equivalent results, i.e.,

Wi = diag
(
(Øm

i,1)
−2, (Øm

i,2)
−2, . . . , (Øm

i,(nu+nȳ))
−2
)

(2.5)

At the end for this Section, in order to make the objective function to be more general

as in a dynamic optimization problem, one can extend the dimension of the weight-

ing matrices Wi to (nu + ny) with the assumption that any unmeasured variable in

variables y takes its weighting value equal to zero.

The constraints

Besides the governing DAEs, the physical system described by a mathematical model is

usually accompanied with some physical constraints of the model parameters, states

variables and control inputs. These constraints are introduced to ensure physical

meaning of the relevant elements and system safety requirements. For example, con-

trol valves in chemical processes have the maximum open and minimum close positions.

The temperature of a chemical reaction should not be exceed a maximum value. Re-

action rate coefficients are always positive. Concentrations of all chemical components

must be non-negative. In automobile systems, acceleration and deceleration are asso-

ciated with limitations of the throttle minimum and maximum displacement as well

as the braking capacity, etc. Furthermore the system of interest may has more com-

plicated constraints that reflect the bounds of the relation between its inputs, states

and output. Such restrictions are mathematically formulated as inequality constraints.

For a DAEs model they can be written in a general way as follows:

0 ≤ H(z(t),y(t),u(t),θ(t),p, t) (2.6)
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Bound constraints also can be explicitly expressed in the form:

zL ≤ z(t) ≤ zU

yL ≤ y(t) ≤ yU

uL ≤ u(t) ≤ uU

θL ≤ θ(t) ≤ θU

pL ≤ p ≤ pU

(2.7)

where zL,yL,uL,θL,pL and zU ,yU ,uU ,θU ,pU are the lower and upper bound of the

differential variables, algebraic variables, inputs, time-dependent parameters and time-

independent parameters, respectively. These constraints play an important role in the

solution of the parameter estimation problem.

2.3 Parameter estimation - Optimization of

Dynamic Systems

Based on the above definitions, a general parameter estimation problem of DAEs can

be formulated as:

min
u(t),z(t),y(t),θ(t),p,(z0)

F =
NS∑
k=1

NL∑
i=1

[
(um

k,i − uk,i)
TWu

k,i(u
m
k,i − uk,i)

+ (ym
k,i − yk,i)

TWy
k,i(y

m
k,i − yk,i)

]
(2.8a)

s.t. ż(t) = F (z(t),y(t),u(t),θ(t),p, t), t ∈ [t0, tf ], (2.8b)

0 = G(z(t),y(t),u(t),θ(t),p, t), t ∈ [t0, tf ], (2.8c)

z(0) = z0, (2.8d)

0 ≤ H(z(t),y(t),u(t),θ(t),p) (2.8e)

pL ≤ p ≤ pU (2.8f)
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where Wu and Wy are the weighting matrices of the inputs and measured outputs,

respectively.

In this dynamic optimization problem, the unknown variables are the inputs u(t) ∈
Rnu , the differential states z(t) ∈ Rnz , the algebraic variable y(t) ∈ Rny , the time-

dependent parameters θ(t) ∈ Rnθ , as well as the time-independent parameters p ∈ Rnp

(sometimes z0 ∈ Rnz if it is unknown). In the case that the inputs are known a priori,

Wu will be set at zero. NS is the number of measured data sets.

Obviously (2.8) is a constrained DOP with discrete time points in the objective func-

tion but continuous time in the constraints. This type of optimization problem appears

not only in parameter estimation but also in (open loop) Optimal control [Betts, 1998]

and integrated process design [Banga et al., 2003]. This dynamic optimization problem

can be solved by an appropriate method among dynamic programming [Bellman, 1957;

Luus, 1990], indirect [Betts, 2010; Bryson, 1975], and direct methods [Biegler, 2010;

Binder et al., 2001; Diehl et al., 2006; Hull, 1997; Papamichail and Adjiman, 2002;

Rao, 2009]. The first two methods deal with only small problems and have difficulties

in solving problems with bound constraints on state variables [Betts, 2010; Biegler

and Grossmann, 2004; Chachuat, 2009] and therefore they get less and less attention.

Thus in this thesis, only the direct methods are used and more details on them are

explained in the following sections.

2.3.1 Numerical methods to DOPs

Direct Sequential Strategy

In the direct sequential strategy (DSQ), only the inputs of problem (2.8) are discretized

by a set of control elements which then be treated as optimization variables of the

NLP solver in an optimization layer; the model equations (2.8b-2.8d) are solved by

appropriate numerical integration methods in a simulation layer [Barton et al., 1998;

Binder et al., 2001; Hicks and Ray, 1971; Logsdon and Biegler, 1992; Morison and

Sargent, 1986; Sargent and Sullivan, 1978; Vassiliadis, 1993; Vassiliadis et al., 1994a,b].

This method is known also as direct single shooting or control parameterization or the

sequential method. The dimension of the resulted NLP in the sequential method is

the smallest one in comparison with other methods and does not depend on the size

of the model equations.
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This method is a feasible path strategy because the model equations are satisfied at

each iteration of the NLP algorithm, i.e., the results can still be usable in the case that

the NLP solver cannot converge. In this method, the sensitivities of the state variables

with respect to the inputs, required in the NLP layer, are expensive to calculate in the

simulation layer by appropriate methods. Therefore, DSQ could be time consuming

for large-scale DAEs systems [Diehl, 2001; Jockenhövel, 2004a; Oldenburg et al., 2003].

Besides that, it also inherits some other drawbacks or difficulties in the integration

step with arbitrary initial values of the control variables for stiff and unstable problems

due to the fact that intermediate inputs in the early time have usually a strong effect

on the later parts of the trajectories [Ascher et al., 1995; Biegler, 2000; Diehl, 2001].

Furthermore, state variables path constraints can be only handled approximately in

this method [Vassiliadis et al., 1994b; Zavala et al., 2008a].

Direct Simultaneous Strategy

In the direct simultaneous strategy (DSM), also referred as direct collocation approach,

both the input and the state variables of problem (2.8) are discretized at the same

time by using various discretization methods [Biegler, 2007; Biegler et al., 2002; Jock-

enhövel, 2004a]. Then all of these discretized control and state variables are put into

the NLP solver as optimization variables. In these methods, DAE model Eqs. (2.8b-

2.8d) are transformed into algebraic equations which then are treated as equalities in

the resulted NLP problem.

Among other methods, this method leads to the largest dimension of a NLP problem

that usually requires a special solution strategies, especially with the case of large-

scale DAEs systems [Jockenhövel, 2004a]. In spite of this fact, direct simultaneous

strategy (DSM) can easily solve DOPs problems with path constraints on the state

variables by imposing these constraints on each discrete points. Due to the fact that

the DSM solves the DAEs system only once at the convergence where all the equality

constraints are satisfied, this method can avoid solving intermediate instable systems

which may have no solution or require much computation effort.

Contrary to the sequential strategy, DSM is an infeasible path method meaning that

intermediate non-convergence results will be useless. The accuracies of this method

depend much on the level of the discretization intervals which can lead to very large

and sparse NLP problems. In general, the result of the DSM is assessed as less accurate

than that of the sequential strategy. However, the DSM usually is less time consuming
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than the sequential strategy [Jockenhövel, 2004a].

Direct multiple shooting strategy

Direct multiple shooting strategy can be considered as a hybrid method that was

developed by Bock and Plitt [Bock and Plit, 1984; Plitt, 1981]. In this method, the

time horizon is divided into time intervals in which control variables are discretized

as the same manner in DSQ whereas model Eqs. (2.8b-2.8d) are exactly solved in

each time interval by appropriate ODE or DAE solvers. In order to keep continuity

between the subintervals, additional interconnections, which enforce the last values

of the previous interval to be equal to the initials of the next one, are introduced as

equality constraints in the NLP problem. This makes the dimension of the outer NLP

problem slightly larger than that of the DSQ but smaller than that of DSM. This

method also allows advanced DAE solvers to be applied to calculate the function and

derivative values.

Furthermore the DAE solvers are decoupled on separate multiple shooting intervals,

therefore, the direct multiple shooting strategy (DMS) method is suitable for parallel

computing which can speed up the solution process. This approach also can deal with

multistage problems, control and path constraints as well as multi-point boundary

conditions. For the optimization of boundary value problems, DMS is considered to

be more stable and efficient than the DSQ [Bock et al., 2000]. Beside that, this method

also has some drawbacks, e.g., the sensitivity information is too expensive to calculate

and the state constraints are difficult to implement, especially ones which are inside

each time interval [Jockenhövel, 2004b].

The above three strategies have been widely used in solving DOPs. As we can see,

each one has its own pros and cons that nearly compensate each other. For this reason,

developing new methods to overcome these disadvantages has attracted researchers.

Following this trend, two hybrid methods have been developed, which will be presented

in the following.

Quasi-sequential strategy

In quasi-sequential strategy (QSQ), the DSQ using collocation on finite elements was

developed and applied successfully to a large-scale optimal control of dynamic system

[Hong et al., 2006]. The QSQ is considered as a hybrid method since it inherits

features from both DSM and DSQ methods. In this method, the control variables
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are discretized in each time interval as the same manner in DSQ while the state

variables are discretized using collocation on finite elements in the same interval as

in the DSM method. A simulation layer is used to deal with the nonlinear equation

systems resulted from the discretized DAEs model. Using a nonlinear solver, the model

equation is solved sequentially from the first interval to the last one to get the state

values and appropriate sensitivity information. The continuity of the states between

the intervals are forced by using the last collocation point of the previous interval as

the initial point of the next interval.

In comparison with the DSM method, the state variables are eliminated from the NLP

leading to a smaller problem like in the DSQ method. The inequalities (2.8e) are forced

to be held in NLP at each collocation point. This method has advantages of a small

NLP problem and easy handling of the sensitivities and inequalities. The method of

active-set SQP is usually applied to solve the NLP problem. As mentioned before,

the SQP method can be computationally expensive to deal with active constraints in

large NLP problems. To overcome this drawback, more efficient NLP solvers need to

be developed.

Combined multiple shooting and collocation strategy

Combined multiple shooting and collocation strategy can be considered as a combi-

nation of the DMS and the DSM strategy [Tamimi and Li, 2010]. This method is

based on the DMS strategy with a modification in solving the DAEs. In the CMSC

formulation, the model equations in each time interval are discretized using collocation

on finite elements to produce a system of nonlinear equations as in the DSM and the

QSQ methods. This system of nonlinear equations then is solved by a nonlinear solver.

This makes it easier to get state values and the sensitivity information. However, in

this method the system constraints (2.8e) are only imposed at the grid points, and

thus there can be violations in the time period between grid points. An improvement

needs to be considered to surmount this shortcoming.

2.3.2 Identifiability analysis

Identifiability analysis is a critical first step in a parameter estimation problem due

to the fact that a model is only valid and useful when all of its parameter can be

uniquely estimated from the experimental data. In addition, it will be difficult for the
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optimization solvers to converge if the postulated model is non-identifiable. Despite its

importance, theoretical identifiability analysis in modeling studies has been overlooked

for a long time [Berthoumieux, 2012; Villaverde and Banga, 2013] since the first study

in [Bellman and Ȧström, 1970]. In recent years, identifiability analysis has gained great

interest in the field of chemical process and systems biology, e.g., see [Berthoumieux,

2012; Chis, 2011; McLean and McAuley, 2012; Miao et al., 2011; Raue et al., 2014] and

references therein. As a result, a number of specialized commerce and open software

packages, which utilize several different approaches, have been built to support the

modeler, e.g., DAISY [Bellu et al., 2007; Saccomani et al., 2010], GenSSI [Chis et al.,

2011a], PottersWheel [Hengl et al., 2007; Maiwald and Timmer, 2008; Raue et al.,

2009].

Identifiability of a model can be classified into Structural (or a priori) identifiabil-

ity [Bellman and Ȧström, 1970] and Practical (or a posteriori) identifiability [Cobelli

and DiStefano, 1980]. Structural identifiability means that the model is identifiable

with ideal continuous noise free observations [Walter and Pronzato, 1997]. Structural

identifiability expresses that it is a property of the model itself and this property de-

pends on how the model is constructed. Structural identifiability should be checked

before conducting experiments. Obviously, structural identifiability is necessary but

not sufficient to affirm an accurate estimation of the model parameters from exper-

imental data. In contrast, practical identifiability associates with real sparse noisy
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measurements and it thus depends on how the experiments are conducted. Practical

identifiability in principle can be solved by means of suitable experimental design.

Methods for checking the structural identifiability of nonlinear models are among

power series based approaches including Taylor series approach [Dochain et al., 1995;

Petersen et al., 2003; Pohjanpalo, 1978] and generating series approach [Jayasankar

et al., 2009; Walter and Lecourtier, 1982] with possible combination of identifiability

tableaus [Balsa-Canto et al., 2010; Chis et al., 2011a], the similarity transformation

approach [Vajda et al., 1989a], the differential algebra based method [Bellu et al., 2007;

Ljung and Glad, 1994b; Saccomani et al., 2010], the direct test method [Denis-Vidal

et al., 2001; Walter et al., 2004], the implicit function theorem approach [Xia and

Moog, 2003] and the profile likelihood approach using simulated data [Flassig et al.,

2015; Hengl et al., 2007; Kreutz et al., 2012; Maiwald and Timmer, 2008; Raue et al.,

2010, 2009; Schaber, 2012].

The Taylor series approach requires high order derivatives of the system outputs with

respect to time by using the Taylor series expansion of the outputs in the vicinity of the

initial state. The Taylor series coefficients are calculated to form a system of nonlinear

algebraic equations in the parameters. The uniqueness of the solution of this resulting

system guarantees the structural identifiability of the original system. This method

is conceptually simple but the number of required derivatives is generally unknown.

Moreover, the resulting system of algebraic equations may be too complicated to solve.

Thus this method is not popularly used in practice [Chis, 2011; Miao et al., 2011].

The generating series approach uses the same concept as the Taylor series approach.

This method also uses the expansion of the outputs of the postulated system with

respect to inputs and time. The exhaustive summary that contains the coefficients of

the output functions and Lie derivatives is then used to examine the structural iden-

tifiability of the original system as the same manner as in the Taylor series approach.

Again, the generating series approach presents a challenge due to the unknownness of

the minimum number of the required Lie derivatives and the solution of the resulting

system of the algebraic equations [Chis, 2011; Miao et al., 2011]. Although the diffi-

culty in handling the resulting system of algebraic equations can be partially solved by

using the identifiability tableaus in [Balsa-Canto et al., 2010; Chis et al., 2011a], power

series based approaches may be not able to assess the identifiability of the parameters

for some particular cases [Chis, 2011].
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The similarity transformation approach, which is based on the local state isomor-

phism theorem, is only suitable to solve the identifiability problem for single-input

single-output (SISO) models. With multi-input multi-output (MIMO) models, it has

difficulties in solving partial differential equations and checking the prerequisite for

the controllability and observability conditions [McLean and McAuley, 2012].

In the differential algebra based method, the non-observable differential states are

eliminated to produce differential relations between inputs, outputs and parameters.

The exhaustive summary then are obtained and can be solved by algebraic methods.

The solution of the resulting algebraic equations can precisely give the identifiability

information of the parameters. The disadvantage of this method is that it needs large

computational efforts when dealing with complex models [Chis, 2011].

The direct test method uses directly the identifiability definition to analytically or

numerically assess the parameter identifiability. This method can be only applied to

uncontrolled and autonomous system model and not suitable for large-scale problems

[Miao et al., 2011].

The implicit function theorem approach tries to eliminates the unobservable states

by computing the derivatives of the observable outputs with respect to time of a

differential system, which depends on known inputs, outputs and parameters. The

partial derivatives of these differential equations with respect to parameters then are

computed to define an identification matrix. If this matrix is not singular then the

original system is identifiable. This method also requires high-order derivatives and

then the identification matrix may be very complicated to verify its singularity [Chis,

2011; Miao et al., 2011; Xia and Moog, 2003].

In summary, many approaches have been developed for identifiability analysis of pa-

rameters in nonlinear dynamic models. Approaches for assessing global identifiability

are usually difficult to implement and restricted to moderate dimension systems. It

can be concluded that further studies still need to be done in order to find new meth-

ods that can easily address the identifiability problem of complex dynamic models,

especially mathematically to figure out the type of the functional relations among the

parameters in a non-identifiability model.



Chapter 3

Fundamentals of Direct Methods to

Dynamic Optimization Problems

The main idea of direct methods to dynamic optimization is to transform original

infinite DOPs into finite nonlinear programming problems (NLPs). Thanks to the in-

creasing efficiency of numerical methods for solving large-scale initial value problems

(IVPs) in the form of differential equations, the development of methods for dis-

cretizing the input and/or the state space with a finite dimension, and the advent of

powerful computation techniques for solving large-scale NLP problems in accordance

with high performance computation, the direct methods that employ finite dimension

approximations of infinite DOPs have gained significant achievements and widely ap-

plied in technique as well as non-technique areas [Conway, 2012; Maurer and Pesch,

2008; Rao, 2009]. Direct methods transform the continuous DOPs into parameterized

optimization problems by discretizing the inputs (independent or control variables)

and/or state (dependent) variables. The resulting problems then can be solved by an

appropriate existing NLP solver.

Based on the methods used for discretization, direct methods can be divided into three

main approaches and two other derivations as depicted in Fig 2.4. The method termed

as differential inclusion, in which only the state variables are discretized, is limited

in some optimal control problems, therefore it will not be discussed in this Chapter.

Readers with interest can refer to [Aseev, 2001; Conway and Larson, 1998; Lobo Pereira

and Borges de Sousa, 1992; Loewen and Rockafellar, 1994; Seywald, 1993] for more

information. The major aspects of direct methods lie in the numerical methods to
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solve NLP problems as well as methods to solve (discretized) IVPs for DAEs systems.

In this Chapter, the fundamental elements of direct methods to dynamic optimization

will be presented.

3.1 Discretization of Independent Variables

In direct methods for solving DOP problems (2.8), the optimization horizon [t0, tf ]

will be subdivided into NL ≥ 1 time intervals,

t0 < t1 < t2 < · · · < ti−1 < ti < ti+1 < · · · < tNL = tf

On each interval the independent (control) variables including inputs and/or time-

dependent parameters v = [u,θ]T will be parameterized by using M -order polynomi-

als:

v(t) = V i(t, ṽi), ti−1 ≤ t ≤ ti (3.1)

where ṽi ∈ R(nu+nθ)M . Certainly, different variables in different intervals can share

the same or even different order M . In this Chapter, the same order M is assumed

to be used for every variable in every time interval for the a simple discreption. A

polynomial representation of Eq. (3.1) of qth independent variable in time interval i

is given as:

vq(t) = V i
q(t, ṽ

i) =
M∑
l=0

viq,lφ
(M)
l (τ (i)), ti−1 ≤ t ≤ ti (3.2)

where

τ (i) =
t− ti−1

∆ti
∈ [0, 1] is normalized time in time interval i

and ∆ti = ti − ti−1

(3.3)

The M -order Lagrange polynomial, which is particularly useful to approximate the

independent variable schemes, φ
(M)
l (.) is expressed as:

φ
(M)
l (τ) =


1, if M = 0 (3.4a)
M∏
j=0
j ̸=l

τ − τj
τl − τj

, if M ≥ 1 (3.4b)
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with points 0 ≤ τ0 < τ1 < · · · < τM ≤ 1 called collocation points. The term of colloca-

tion means that the approximate profile V i
q(t, ṽ

i) is collocated or accommodated so as

to exactly fit the true profile at a set of points τk, k = 0, 1, . . . ,M . From Eq. (3.4b)

it is the property of Lagrange polynomials that

φ
(M)
l (τk) =

M∏
j=0
j ̸=l

τ − τj
τl − τj

=

{
1, if k = l (3.5a)

0, if k ̸= l (3.5b)

then, from Eqs. (3.2), (3.3) and (3.5), at each collocation point τk, k = 0, 1, . . . ,M of

time interval i we get:

vq(t) = vq(ti−1 + τk∆t) = viq,k

With M = 0 we have a special case of piecewise constant parameterization which is

usually used; M = 1 corresponds to apiecewise linear case, etc. The bound constraints

of variables in this parameterization can be enforced as:

vLq ≤ viq,k ≤ vUq , k = 0, 1, . . . , NC

If the continuity of the independent variables is desired, we can set the following linear

equality constraint:

vi+1
q,0 = viq,NC

Different degrees of parameterization of independent variables are depicted as in Fig.

3.1.

3.2 Numerical methods for solving DAEs Systems

Numerical methods of direct approaches to DOPs require calculating the values of

variables of model equations described by an initial value DAE as in Eqs. (2.8b)-

(2.8d) in each time interval [ti, ti+1]. Furthermore, these dependent variables depend

on the independent variables such as control inputs u, parameters θ and p. In addition,

there exists requirements to compute their sensitivities with respect to such variables.

Hereafter some numerical methods for semi-explicit index-1 DAE (3.6) system shall
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be discussed:

żi(t) = F (zi(t),yi(t),ui,θi,p, t), t ∈ [ti, ti+1], (3.6a)

0 = G(zi(t),yi(t),ui,θi,p, t), t ∈ [ti, ti+1], (3.6b)

z(ti) = zi,0 (3.6c)

where
∂G

∂y
is nonsingular in a neighborhood of the exact solution. Theoretically, by

the implicit function theorem, from Eq. (3.6b) we have:

∂G

dt
+

∂G

dz

∂z

dt
+

∂G

dy

∂y

dt
= 0 ⇒ ∂y

dt
= −

(
∂G

dy

)−1
∂G

dz

(
∂z

dt

)
−
(
∂G

dy

)−1
∂G

dt

One differentiation step yields the differential equation:

∂y

dt
= −

(
∂G

dy

)−1
∂G

dz
F (z, y, u, θ, p, t)−

(
∂G

dy

)−1
∂G

dt
(3.7a)

= Ĝ(zi(t), yi(t), ui(t), θi(t), p, t) (3.7b)
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The values of independent variables ui(t), θi(t), p are given in this case. For a consistent

representation we can couple the variables:

xi(t) =

 zi(t)

yi(t)

 ; xi(t) ∈ Rnx ; nx = (nz + ny)

then Eq. (3.6) becomes:

ẋ = F̂ (xi(t), ui(t), θi(t), p, t),

xi(ti.0) = xi,0,

where ti,0 = ti, xi,0 ∈ Rnx

(3.8)

The ODE form of Eq. (3.8) can be solved by various methods which can be found in

rich of literatures written in mature field of numerical solution for ODEs, and therefore

will not be discussed any further in this thesis.

The initial value DAEs are not easy to transform and underlying ODE may be stiff,

and thus direct discretization methods are usually preferred. Collocation methods and

backward differentiation formula (BDF) are most widely used for numerical solution

of explicit index-1 DAEs [Ascher and Petzold, 1998; Brenan et al., 1995].

3.2.1 Backward Differentiation Formulas Methods

For a consistent representation, we consider the following initial value DAE problem:

ż = f(t, z, y, p̄) (3.9a)

0 = g(t, z, y, p̄) (3.9b)

z(t0) = z0 (3.9c)

where p̄ = (u, θ, p)T ∈ Rnp̄ , np̄ = nu + nθ + np are known values of the independent

variables, z ∈ Rnz , y ∈ Rny , t ∈ [t0, tf ].

Given zi = z(ti) and yi = y(ti) and let h = ti+1 − ti be the step-size, the basic idea of

BDF methods is simply to approximate z and ż by a discretization formula like linear

multi-step methods:

żi+1 = (linear combination of zi+1, zi, zi−1, · · · , zi−m+1),
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in the mean time simultaneously compute yi+1 = y(ti+1). There exists a unique m−th

degree polynomial P that interpolates the m− 1 points:

(ti+1, zi+1), (ti, zi), (ti−1, zi−1), . . . , (ti−m+1, zi−m+1)

In general, polynomial P can be written as:

P (t) =
m∑
j=0

zi−j+1Lj(t) (3.10)

with the Lagrange polynomial Lj(t) is expressed as:

Lj(t) =
m∏
l=0
l̸=j

(
t− ti−l+1

ti−j+1 − ti−l+1

)
, j = 0, 1, . . . ,m. (3.11)

One can observe that the Lagrange polynomial (3.11) has the property of:

P (ti−j+1) = zi−j+1, j = 0, 1, . . . ,m.

Replacing żi+1 by Ṗ (ti+1) we obtain:

Ṗ (ti+1) = f(ti+1, zi+1) (3.12)

From Eq. (3.10) at time t = ti+1 we have:

Ṗ (ti+1) =
m∑
j=0

zi−j+1L̇j(ti+1) = zi+1L̇0(ti+1) +
m∑
j=1

zi−j+1L̇j(t) (3.13)

From Eq. (3.13) and Eq. (3.12) with some transformations we have:

zi+1 = −
m∑
j=1

zi−j+1
L̇j(ti+1)

L̇0(ti+1)
+

1

L̇0(ti+1)
f(ti+1, zi+1) (3.14)

We can define:

aj =
L̇j(ti+1)

L̇0(ti+1)
, j = 1, . . . ,m

bm =
1

hL̇0(ti+1)
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These values aj and bm can be read from lookup tables which are usually calculated

by applying quadrature rules [Ascher and Petzold, 1998]. Then for a DAE in explicit

form, the m-step BDF algorithm (BDF m) gives zi+1 and yi+1 as the solution of:

zi+1 = −
m∑
j=1

ajzi−j+1 + bmhf(ti+1, zi+1, yi+1) (3.15a)

0 = g(ti+1, zi+1, yi+1) (3.15b)

In BDF methods, Eq. (3.15) leads to a system of nonlinear equations that needs to

be solved by iteration methods, e.g., (modified) Newton, and thus it requires the well-

conditioned property of the Jacobian
∂g

∂ω
, where ω = (t, z, y). The algebraic variables

y(t) are determined by the consistent conditions including initials. Given z0 = z(t0),

BDF requires consistent initial values that can be obtained by solving:

g(t0, z0, y0) = 0

to determine y0 = y(t0).

This m-step BDF algorithm converges if m ≤ 6, i.e.,

zi − z(ti) ≤ O(hm), yi − y(ti) ≤ O(hm)

for consistent initial conditions [Ascher and Petzold, 1998; Brenan et al., 1995].

At the end of this Section, it would be of importance to mention some software tools

that utilize BDF for DAEs. In the MATLAB environment, ode15i uses the BDF

method to solve ODEs and index-1 DAEs in a fully implicit form. Beside that, ode15s

is a solver based on the numerical differentiation formulas (NDFs) which is a variant of

the BDF method. Optionally it uses the exact BDF method [Shampine et al., 1999].

There are also some open source codes, such as DASSL [Brenan et al., 1995], IDA

(under Sundials), ODEPACK, etc.

3.2.2 Collocation on Finite Elements

z(t) and y(t) in Eq. (3.9) are continuous functions (of time t) with unknown prop-

erties. The idea of collocation methods is that we collocate the state functions

x(t) = [z(t) y(t)]T through simpler functions, e.g., polynomials P (t), in order to
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capture the properties of x(t) by using P (t). This can be done by applying the Weier-

strass approximation theorem [Antia, 2002]:

Theorem 3.2.1 (Weierstrass Approximation Theorem (1885))

Consider a real value space C[a, b] as the set of all continuous functions over a real

interval [a, b], together with ∞− norm defined on it as ∥x(t)∥ = max
t∈[a, b]

|x(t)|

If x(t) is a continuous real-valued function on the real interval t ∈ [a, b], then for any

given ε > 0, for every x(t) ∈ C[a, b] there exists a polynomial function p(t) such that

for all t ∈ [a, b], we have |x(t)− p(t)| < ε, or equivalently, ∥x− p∥ < ε.

Proof. There are several proofs of this theorem. A constructive proof of this theorem

using Bernstein polynomials can be found in [Bartle and Sherbert, 2011].

This fundamental result has been used to form the basis of various numerical tech-

niques. However, this theorem does not specify how to construct the approximating

polynomial p(t).

An approximating polynomial p(t) is required to have a given property:

p(ti) = x(ti) = xi, i = 1, . . . , n. (3.16)

A polynomial that satisfies the conditions in Eq. (3.16) is called interpolating polyno-

mial. The points ti are called interpolation points or interpolation nodes. This relating

property is known as interpolatory property based on the following theorem [Antia,

2002]:

Theorem 3.2.2 (Uniqueness of the Interpolating Polynomial)

Given n+1 unequal points t0, t1, t2, · · · , tn and arbitrary values x0, x1, x2, · · · , xn there

exists a unique polynomial p(t) of degree less or equal to n such that

p(ti) = xi, i = 0, 1, . . . , n.

Proof. The proof of Theorem 3.2.2 can be referred to [Antia, 2002].

To construct the interpolating polynomial, at first a basic p0, p1, · · · , pn of the space

of polynomials of degree less or equal to n+ 1 are given, then we can write:

p(t) = a0p0(t) + a1p1(t) + · · ·+ anpn(t)
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where ai, i = 0, 1, . . . , n are coefficients of polynomials.

From Eq. (3.16) the coefficients ai can be found by sequent of values:

p(t0) = a0p0(t0) + a1p1(t0) + · · ·+ anpn(t0) = x0

p(t1) = a0p0(t1) + a1p1(t1) + · · ·+ anpn(t1) = x1

...

p(tn) = a0p0(tn) + a1p1(tn) + · · ·+ anpn(tn) = xn

(3.17)

Eq. (3.17) leads to the linear system written in the following way:
p0(t0) p1(t0) · · · pn(t0)

p0(t1) p1(t1) · · · pn(t1)
...

...
...

p0(tn) p1(tn) · · · pn(tn)




a0

a1
...

an

 =


x0

x1

...

xn

 (3.18)

with assumption that ti ̸= tj for i ̸= j. Thus, we can compute [a0 a1 · · · an]
T if we

know [x0 x1 · · · xn]
T and vice-versa. But x0, x1, · · · , xn are unknown because x(t)

is not yet known. This means that both [a0 a1 · · · an]
T and [x0 x1 · · · xn]

T

in Eq. (3.18) are unknown. In order to avoid working with these two unknown vectors,

we can define the basic polynomials p0, p1, · · · , pn in a better way that makes Eq.

(3.18) can be easily solved. Given n + 1 unequal points t0, t1, ..., tn, the ith Lagrange

polynomial is written as:

Li(t) =
n∏

j=0
j ̸=i

t− tj
ti − tj

.

The Lagrange polynomials Li are polynomials of degree n and has a given property:

L(tk) =

{
1, if k = i (3.19a)

0, if k ̸= i (3.19b)
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With the basis functions pi(t) = Li(t), the linear system (3.18) associated with the

polynomial interpolation problem become:
1 0 0 · · · 0

0 1 0 · · · 0
...

...

0 0 0 · · · 1




a0

a1
...

an

 =


x0

x1

...

xn


Then the interpolating polynomial is given by:

p(x|t0,...,tn)(t) =
n∑

i=0

xiLi(t) (3.20)

The polynomial p(t) in Eq. (3.20) can be made to satisfy the Weierstrass’ theorem

by taking sufficiently large number of time instants t0, t1, · · · , tn from [a, b]. The most

important thing is how to chose these time points. A good idea is to select the same

set of values τ1, τ2, . . . , τn within the interval [0, 1] and define the t′is collocation points

on various intervals [a, b] as follows:

ti = a+ τi∆t, i = 1, . . . , n

where ∆t = (b− a).

Numerical methods for one-dimensional integrals can provide information on how to

select τ1, τ2, . . . , τn. Gauss quadrature rules are one of the best numerical integration

methods [Ascher and Petzold, 1998; Brenan et al., 1995].

Suppose that we would like to evaluate an integral:

I[f ] =

1∫
0

f(τ)dτ,

for some function f(τ) on an interval [0, 1] by a basic quadrature rule:

Qn[f ] =
n∑

k=1

ωkf(τk)
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where the integration nodes τ1, τ2, . . . , τn ∈ [0, 1] and ω1, ω2, . . . , ωn are weights that

are constructed based on the interval [0, 1].

Our aim at this point is to use an approximation:

I(f) =

1∫
0

f(τ)dτ ≈Qn[f ] =
n∑

k=1

ωkf(τk).

Once the quadrature rule Qn[·] is constructed it can be used to approximate integrals

of various functions.

Definition 3.2.1 (Scalar product)

The scalar product of functions pj and pl with respect to the interval [0, 1] is written

as

⟨pj, pl⟩ =
1∫

0

pj(τ)pl(τ)dτ .

Definition 3.2.2 (Orthogonal functions)

Two functions pj and pl are orthogonal on the interval [0, 1] if

⟨pj, pl⟩ =
1∫

0

pj(τ)pl(τ)dτ = 0.

Orthogonal polynomials on [0, 1] (as defined in Def. 3.2.2) often used are known

as shifted Lagrange polynomials. The Lagrange polynomials satisfy the Three-term

recurrence relation as theorem below [Shen et al., 2011]:

Theorem 3.2.3 (Three-term recurrence relation)

Suppose p0, p1, . . . is the set of shifted Lagrange orthogonal polynomials on [0, 1] with

degree deg(pn) = n and leading coefficient equal to 1. The shifted Lagrange polynomials

are generated by the relation

pn+1(τ) = (τ − an)pn(τ)− bnpn−1(τ)

with p0(τ) = 1 and p−1(τ) = 0, where the recurrence coefficients are given as

an =
1

2
, n = 0, 1, 2, . . .

bn =
n2

4(4n2 − 1)
, n = 0, 1, 2, . . .
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The first few shifted Lagrange orthogonal polynomials are shown in Table 3.1:

Table 3.1 Shifted Lagrange orthogonal polynomials

Order p(τ)

0 1

1 2τ − 1

2 6τ 2 − 6τ + 1

3 20τ 3 − 30τ 2 + 12τ − 1

4 70τ 4 − 140τ 3 + 90τ 2 − 20τ + 1

Given any set of orthogonal polynomials p0, p1, p2, . . ., their following properties hold

true:

• Any finite set of orthogonal polynomials p0, p1, . . . , pN−1 is linearly independent.

• The polynomial PN is orthogonal to each of p0, p1, . . . , pN−1.

• Any non-zero polynomial q with degree deg(q) ≤ N − 1 can be written as a

linear combination:

q(τ) = c0p0(τ) + c1p1(τ) + · · ·+ cN−1pN−1(τ)

where at least one of the scalars c0, c1, . . . , cN−1 is non-zero.

A quadrature rule here is required to be exact for polynomials up to degree 2N − 1.

Let P (τ) be any polynomial of degree 2N − 1 then:

I(P ) = QN [P ]⇒
1∫

0

P (τ)dτ =
N∑
1

ωiP (τi) (3.21)

Given the N − th degree orthogonal polynomial pN , the polynomial P can be written

as:

P (τ) = pN(τ)q(τ) + r(τ)
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where q(τ) and r(τ) are polynomials such that 0 < deg(r) ≤ N−1 and deg(q) = N−1
since 2N − 1 = deg(P ) = deg(pN)+ deg(q) = N + deg(q). From (3.21) it follows that:

b∫
a

(pN(τ)q(τ) + r(τ))dτ =
N∑
i=1

ωi(pN(τi)q(τi) + r(τi))

⇒
b∫

a

pN(τ)q(τ)dτ +

b∫
a

r(τ)dτ =
N∑
i=1

ωipN(τi)q(τi) +
N∑
i=1

ωir(τi) (3.22)

Orthogonality implies:
b∫

a

pN(τ)q(τ)dτ = 0. (3.23)

Using polynomial exactness, we have:

b∫
a

r(τ)dτ =
N∑
i=1

ωir(τi). (3.24)

From Eqs. (3.22)-(3.24), it follows that:

N∑
i=1

ωipN(τi)q(τi) = 0. (3.25)

It can be seen that if the quadrature nodes τ1, τ2, . . . , τN are zeros of the N− th degree

shifted Lagrange polynomial pN(τ), then:

• all the roots τ1, τ2, . . . , τN lie inside (0, 1);

• the quadrature weights are determined from:

ωi =

1∫
0

Li(τ)dτ ,

where Li(τ), i = 1, . . . , N is the Lagrange function defined by using τ1, τ2, . . . , τN

and ωi > 0, i = 1, . . . , N .

• the quadrature rule QN [·] integrates polynomials degree up to 2N − 1 exactly.
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Hence, equation (3.25) holds true if pN(τ1) = pN(τ2) = · · · = pN(τN) = 0. Therefore,

the quadrature nodes τ1, τ2, . . . , τN are chosen as the zeros of the N− th degree shifted

Lagrange orthogonal polynomial.

Table 3.2 Orthogonal collocation points at the roots of shifted Lagrange polynomials

Order Roots

1 0.5000000

2 0.2113249, 0.7886751

3 0.1127017, 0.5000000, 0.8872983

4 0.0694318, 0.3300095, 0.6699905, 0.9305682

5 0.0469101, 0.2307653, 0.5000000, 0.7692347, 0.9530899

Table 3.2 lists values of τi for shifted Lagrange polynomials for orders up to 5. Using

these values we can construct collocation equations by first determining the collocation

points t0, t1, t2, . . . , tN ∈ [a, b]. Note that in Table 3.2 we have 0 < τi < 1; i =

1, 2, . . . , N . In order to do transform the time interval from [a, b] into [0, 1] with a

requirement that t0 = a and tN = b , we add τ0 = 0 and form the following relation:

ti = a+
τi
τN

∆t (3.26)

where ∆t = b− a; i = 0, 1, . . . , N.

Then corresponding to each differential and algebraic variable in Eq. (3.9) we define

the collocation polynomials:

zk(t) =
N∑
i=0

z
(k)
i Li(t), k = 1, . . . , nz; (3.27)

yj(t) =
N∑
i=0

y
(j)
i Li(t), j = 1, . . . , ny; (3.28)

where

Li(t) =
N∏
l=0
l ̸=i

t− tl
ti − tl



3.2 Numerical methods for solving DAEs Systems 45

By discretizing the system above using t0, t1, . . . , tN we obtain:

żk(tl) =
N∑
i=0

dLi(tl)

dt
z
(k)
i , k = 1, . . . , nz; l = 0, 1, . . . , N ; (3.29)

Here we represent the state in the given element ∆t as:

N∑
i=0

dLi(τl)

dτ
z
(k)
i =

∆t

τN
fk

(
tl, (z

(1)
l , z

(2)
l , . . . , z

(nz)
l ), (y

(1)
l , y

(2)
l , . . . , y

(ny)
l ), p̄

)
; (3.30a)

0 = gj

(
tl, (z

(1)
l , z

(2)
l , . . . , z

(nz)
l ), (y

(1)
l , y

(2)
l , . . . , y

(ny)
l ), p̄

)
; (3.30b)

k = 1, . . . , nz; j = 1, . . . , ny; l = 0, 1, . . . , N ;

where

Li(τ) =
N∏
l=0
l ̸=i

τ − τl
τi − τl

We consider the case at τ0 = 0 (when l = 0). It can be seen that Eq. (3.30a) becomes

trivial and thus can be neglected. Eq. (3.30b) can be explicitly written as:

0 = gj

(
t0, (z

(1)
0 , z

(2)
0 , . . . , z

(nz)
0 ), (y

(1)
0 , y

(2)
0 , . . . , y

(ny)
0 ), p̄

)
; j = 1, . . . , ny; (3.31)

These ny equations can be solved to get initial values y
(j)
0 of algebraic states in order

to meet the consistent requirement of DAEs Eqs. (3.9).

Let x = [z y]T ∈ Rnx ; nx = nz + ny, Eqs. (3.30) can be rewritten in the compact

form as:

F
(k)
l

(
tl, (x

(1)
l , x

(2)
l , . . . , x

(nx)
l ), z

(1)
0 , z

(2)
0 , . . . , z

(nz)
0 ,∆t, p̄

)
= 0;

k = 1, 2, . . . , nx; l = 1, 2, . . . , N ;
(3.32)

where: x
(1)
l , x

(2)
l , . . . , x

(nx)
l are unknown variables;

z
(1)
0 , z

(2)
0 , . . . , z

(nz)
0 are known initial values of the differential states;

∆t is the length of time interval,

p̄ are parameters.

These nx × N (nonlinear) equations can be solved by the Newton-Raphson method

and its variants [Kelley, 2003]. Figure 3.2 shows the collocation method with the
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number of collocation points N = 3. There are some others collocation methods that

use different quadrature rules, such as Radau and Lobatto collocation [Ascher and

Petzold, 1998; Biegler, 2010; Brenan et al., 1995]. Collocation methods have some

advantages that they are efficient for both initial value as well as boundary value

DAEs, numerically accurate, and can be used for higher index DAEs. Beside that,

they also inherit some disadvantages, e.g., they are computationally expensive, the

approximating polynomials may display oscillatory properties. In this dissertation,

collocation on finite elements using shifted Lagrange polynomials is used due to the

fact that the error, |xexact(t)− x(t)|, absolutely being evenly distributed in the whole

(time) t domain [Gupta, 1995].
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Fig. 3.2 Collocation on finite elements (NC=3)

3.2.3 Sensitivity Calculations

Accurate and efficient gradient calculations are needed for the NLP solver. To carry

out this task, the derivatives of the dependent variables z, y with respect to the in-

dependent variables p̄ need to be computed implicitly and simultaneously with the
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solution of the DAEs.

Sensitivity analysis of DAE models can be done using three methods: perturbation,

direct sensitivity, and adjoint sensitivity [Biegler et al., 2012]. Perturbation is straight-

forward but inefficient and unreliable due to its truncation and roundoff errors. There-

fore this method is not commonly used. The last two approaches which can provide

sensitivity information with the desired level of accuracy are briefly described below.

3.2.3.1 Direct Sensitivity Computation

We take into account a DAE model (3.9) in one time interval t ∈ [0, tf ] with an

assumption that f(·) and g(·) are continuously differentiable with respect to all their

arguments. Sensitivity analysis requires finding the derivative of the model (3.9) with

respect to each independent variable so that an additional ns = np̄×(nz+ny) sensitivity

equations are yielded:

ṡi(t) =
∂f

∂z
si(t) +

∂f

∂y
ri(t) +

∂f

∂p̄i
, si(0) =

dz0
dp̄i

0 =
∂g

∂z
si(t) +

∂g

∂y
ri(t) +

∂g

∂p̄i
, i = 1, . . . , np̄

(3.33)

where si(t) =
dz
dp̄i

and ri(t) =
dy
dp̄i

.

Eqs. (3.33) are index-1 DAEs with the linearity characteristic and require the values

of state variables in their right-hand sides. The DAEs (3.9) and sensitivity systems

(3.33) can be solved by staggered direct, simultaneous corrector, and staggered cor-

rector methods [Biegler et al., 2012; Feehery et al., 1997; Li and Petzold, 2000; Li

et al., 2000]. BDF methods in Section 3.2.1 are often used to solve the combined

state-sensitivity system due to their desirable stability properties. For these methods,

several Automatic Differentiation (AD) tools, such as ADIFOR [Bischof et al., 1992],

ADOL-C [Griewank et al., 1996; Walther and Griewank, 2012], are available to calcu-

late the partial derivatives.

Considering large-scale DAE systems with a large number of state variables and sensi-

tivities with respect to a large number of parameters, the forward sensitivity approach

can become intractable. Therefore, these problems can often be more efficiently solved

by the method of Adjoint Sensitivity Analysis [Cao et al., 2002, 2003].

There are a number of good IVP, ODE and DAE codes, including SUNDIALS [Hind-
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marsh et al., 2005] in that CVODES for ODEs [Hindmarsh and Serban, 2002] and

IDAS for DAEs with Direct Sensitivity Analysis and Adjoint Sensitivity Analysis ca-

pabilities [Radu Serban and Hindmarsh, 2012], etc.

3.2.3.2 Collocation-based Sensitivity Computation

Using collocation methods, at the convergence of solving Eq. (3.32), the implicit

function theorem gives:

dx

dp̄
= −

(
∂F

∂x

)−1
∂F

∂p̄
(3.34)

where

dx

dp̄
=



dx1

dp̄1

dx1

dp̄2
· · · dx1

dp̄np̄

dx2

dp̄1

dx2

dp̄2
· · · dx2

dp̄np̄

...
... · · · ...

dx(N×nx)

dp̄1

dx(N×nx)

dp̄2
· · · dx(N×nx)

dp̄np̄


(N×nx)×np̄

(3.35)

∂F

∂p̄
=



dF1

dp̄1

dF1

dp̄2
· · · dF1

dp̄np̄

dF2

dp̄1

dF2

dp̄2
· · · dF2

dp̄np̄

...
... · · · ...

dF(N×nx)

dp̄1

dF(N×nx)

dp̄2
· · · dF(N×nx)

dp̄np̄


(N×nx)×np̄

(3.36)

∂F

∂x
=



dF1

dx1

dF1

dx2
· · · dF1

dx(N×nx)

dF2

dx1

dF2

dx2
· · · dF2

dx(N×nx)

...
... · · · ...

dF(N×nx)

dx1

dF(N×nx)

dx2
· · · dF(N×nx)

dx(N×nx)


(N×nx)×(N×nx)

(3.37)

The partial derivatives in Eqs. (3.36) and (3.37) can be computed by analytical meth-

ods for simple problems or by automatic differentiation (AD) tools, such as ADIFOR

[Bischof et al., 1992], ADOL-C [Griewank et al., 1996; Walther and Griewank, 2012]

and CppAD [Bell, 2012] for large complicated problems. In this thesis, CppAD code
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is used due to its much smaller run times as compared to ADOL-C, which might be

due to the fact that ADOL-C uses the hard disk to store its temporary values with

large problems [Bell and Burke, 2008].

A similar way can be applied to compute the other sensitivity values:

dx

dx0

= −
(
∂F

∂x

)−1
∂F

∂x0

(3.38)

dx

d∆t
= −

(
∂F

∂x

)−1
∂F

∂∆t
(3.39)

3.3 Methods for Solving Nonlinear Optimization

Problems

The NLP problems resulted in direct methods to DOPs can be expressed as follows:

min
x∈Rn

f(x) (3.40a)

s.t. h(x) = 0 (3.40b)

g(x) ≤ 0 (3.40c)

where f : Rn → R is the objective function, h : Rn → Rm and g : Rn → Rp are the

equality and inequality constraints, respectively. f(x), h(x) and g(x) are assumed to

be twice continuously differentiable. Some basic definitions and theorems, which are

extracted from [Nocedal and Wright, 2006] in which all the proofs and details can be

found, are given in the following.
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3.3.1 Basic definitions and theorems

Definition 3.3.1 (Feasible set)

The set of points that satisfy the equality (3.40b) and inequality (3.40c) constraints of

the NLP problem (3.40), i.e.,

S = {x ∈ Rn|h(x) = 0, g(x) ≤ 0} (3.41)

is called the feasible set of the NLP (3.40). Each element of this set is referred to

as feasible point.

Definition 3.3.2 (Local minimizers)

A point x∗ ∈ Rn is called a local minimizer of the NLP problem (3.40) if x∗ ∈ S and

there exits a neighborhood Ω(x∗) ⊂ Rn such that f(x) ≥ f(x∗) for all x ∈ Ω(x∗) ∩ S.

A Lagrangian function L : Rn × Rm × Rp → R associated with the NLP (3.40) to

investigate its local optimality is defined as:

L(x, λ, µ) = f(x) + λTh(x) + µTg(x) (3.42)

Definition 3.3.3 (Active set)

Consider x ∈ S, then the set of indexes:

Iac(x) = {1 ≤ i ≤ p | gi(x) = 0} (3.43)

is the set of active inequality constraints at x.

Its complement Iic(x) = {1, . . . , p}\Iac(x) is referred to as the set of inactive inequality

constraints.

The vectors ∇f(x) are called the gradients of the objective function f(x), i.e,

∇f(x) =
(
∂f(x)

∂x1

,
∂f(x)

∂x1

, · · · , ∂f(x)
∂xn

)T
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The vectors ∇2
xxf(x) are referred as the Hessian of the objective function f(x), i.e,

∇2
xxf(x) =



∂2f(x)

∂x2
1

∂2f(x)
∂x1∂x2

· · · ∂2f(x)
∂x1∂xn

∂2f(x)
∂x2∂x1

∂2f(x)

∂x2
2
· · · ...

· · · · · · · · · · · ·
∂2f(x)
∂xn∂x1

· · · · · · ∂2f(x)
∂x2

n


The vectors ∇hi(x), i = 1, . . . ,m, and ∇gj(x), j = 1, . . . , p are called the gradients of

the equalities hi(x) and inequalities gj(x) at x.

The vector B(x) called Jacobian matrix denotes the group of gradients of constraints,

i.e.,

B(x) = (∇hi(x), i = 1, . . . ,m;∇gj(x), j = 1, . . . , p)T

Definition 3.3.4 (Linear Independence Constraint Qualification)

Consider the set of active inequality constraints Iac(x∗), x∗ ∈ S, the Linear Inde-

pendence Constraint Qualification (LICQ) is satisfied at x∗ if the active constraint

gradients

G(x) = {∇hi(x
∗), i = 1, . . . ,m;∇gj(x∗), j ∈ Iac(x∗)} (3.44)

are linearly independent.

Theorem 3.3.1 (Karush-Kuhn-Tucker conditions)

Assume that x∗ ∈ S is a local solution of the NLP problem (3.40) and that the LICQ

is satisfied at x∗. Then, there exist Lagrange multipliers λ∗ ∈ Rm and µ∗ ∈ Rp
+ such

that the following conditions hold true at the triple (x∗, λ∗, µ∗):

∇xL(x∗, λ∗, µ∗) = 0 (3.45a)

hi(x
∗) = 0, i = 1, . . . ,m (3.45b)

gj(x
∗) ≤ 0, j = 1, . . . , p (3.45c)

µ∗
k ≥ 0, k = 1, . . . , p (3.45d)

µ∗
l gl(x

∗) = 0, l = 1, . . . , p (3.45e)

where Eq. (3.45a) is Stationarity condition, Eqs. (3.45b) and (3.45c) are Primal

feasibility conditions, Eq. (3.45d) is Dual feasibility condition and Eq. (3.45e) is Com-

plementary condition. The triple (x∗, λ∗, µ∗) is called a Karush-Kuhn-Tucker (KKT)
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point.

The first order optimality conditions (KKT-conditions) are only necessary conditions.

They give information about the behavior of the first derivatives of the objective func-

tion f(x) and the constraints h(x) and g(x) at a local solution x∗ ∈ S of the NLP

problem (3.40).

Definition 3.3.5 (Strict complementarity)

Consider a local solution x∗ ∈ S of the NLP problem (3.40) and Lagrange multipliers

λ∗, µ∗ that satisfy the KKT conditions Eq. (3.45), then strict complementarity holds

true if

µ∗
i > 0, i ∈ Iac(x∗) (3.46)

Theorem 3.3.2 (Second order sufficient optimality conditions)

Assume that x∗ ∈ S is a feasible point and there exist Lagrange multipliers λ∗ ∈ Rm

and µ∗ ∈ Rp are satisfying the KKT conditions (3.45). Furthermore, suppose that the

strict complementarity holds at x∗ and that the Hessian of the Lagrangian with respect

to x is positive definite on the null space of active constraint gradients G(x∗)T , i.e.,

ωT∇2
xxL(x∗, λ∗, µ∗)ω > 0 for all ω ̸= 0 such that G(x∗)Tω = 0 (3.47)

Then, x∗ is a strict local solution of NLP problem (3.40).

3.3.2 Quadratic Programming

An important case of a NLP problem (3.40) arises when the objective function is

quadratic and the constraints are linear. This type of NLP problems is called quadratic

programming (QP) problem [Nocedal and Wright, 2006] and is usually treated as a

subproblem in a sequence method for general constrained NLP. Its general form can

be expressed as follows:

min
x∈Rn

f(x) =
1

2
xTAx− xTa (3.48a)

s.t. B1x− c = 0 (3.48b)

B2x− d ≤ 0 (3.48c)
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where A ∈ Rn×n is symmetric, B1 ∈ Rm×n, B2 ∈ Rp×n and logically, a ∈ Rn, c ∈ Rm,

d ∈ Rp. The QP problem (3.48) is usually solved iteratively by active set or interior

point strategies in that an equality constrained QP problem is executed. Therefore,

in the next Section, methods for a QP problem with only equality constraints are

discussed.

3.3.2.1 Equality constrained quadratic programming

Consider a QP problem (3.48) with only equality constraints:

min
x∈Rn

f(x) =
1

2
xTAx− xTa (3.49a)

s.t. Bx− c = 0 (3.49b)

where B ∈ Rm×n is assumed to have full row rank m, m ≤ n.

The KKT conditions for problem (3.49) at the solution x∗ ∈ Rn can be derived as:

Ax∗ +BTλ∗ − a = 0

Bx∗ − c = 0
(3.50)

where λ∗ ∈ Rm is the associated Lagrange multiplier.

Eq. (3.50) can be rewritten in matrix form as: A BT

B 0

 x∗

λ∗

 =

 a

c

 (3.51)

Set K =

 A BT

B 0

 and define here a matrix Z for which the columns span ker A,

and consequently for which AZ = 0, then matrix K is call the KKT matrix and the

matrix ZTAZ is called the reduced Hessian.

Lemma 3.3.3 (Existence, uniqueness and global of solution of KKT system)

Suppose that B ∈ Rm×n has full row rank m ≤ n and that the reduced Hessian ZTAZ is

positive definite. Then, consequently the KKT matrix K is nonsingular. Therefore,

the KKT system (3.51) provides the unique and global solution (x∗, λ∗). x∗ is the

global minimizer of the QP problem (3.49).
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Then the solution of the QP equality problem (3.49) can be achieved by solving the

KKT system (3.51). There exits several methods to solve this linear KKT system,

such as Direct methods including symmetric factorization, the range-space and null-

space approach, or Iterative methods which can be further referred to [Nocedal and

Wright, 2006].

3.3.2.2 Inequality constrained quadratic programming

We now consider the QP problem (3.48) with more strict assumption that A ∈ Rn×n

is symmetric positive (semi)definite so accordingly that problem (3.48) now becomes a

convex QP problem. Two efficient groups of methods are widely used to solve convex

QP problems. The first group are called Active-set methods which are effective for

small and medium sized problems. The second group are Interior-point methods

that are well suited for large-scale problems. There exits a special type of active-set

methods, which is called a gradient projection method. This third one is most effective

when the constraints in the problem are only simple bounds on the variables [Nocedal

and Wright, 2006]. In the following, the first group of methods are described briefly.

Active set strategies

Active-set methods for inequality constrained QP can be divided into three sub-

method: primal, dual, and primal-dual. In the following, primal method will be

discussed.

Primal active-set method generates iterations that are kept feasible with respect to

the primal problem (3.48) and simultaneously the objective function f(x) is steadily

decreased . For the ease of analysis, we rewrite the matrices B1 and B2 in the following

form

B1 =


b11
...

b1m

 , b1i ∈ Rn, B2 =


b21
...

b2p

 , b2i ∈ Rn, (3.52)

Then the inequality constraints (3.48c) can be rewritten as

bT2ix ≤ di, 1 ≤ i ≤ p (3.53)



3.3 Methods for Solving Nonlinear Optimization Problems 55

The primal active-set method executes an iterative procedure:

Given a feasible iterate x(ν), ν ≥ 0, an active-set is determined

Iac(x(ν)) ⊂ {1, . . . , p} (3.54)

and the corresponding constraints are considered as equality constraints, while the

remaining inequality constraints are disregarded. Defining

q = x(ν) − x, a(ν) = Ax(ν) − a, (3.55)

and substituting (3.55) into the objective function (3.48a) we get

f(x) = f(x(ν) − q) =
1

2
qTAq − (a(ν))T q +

1

2
(x(ν))TAx(ν) − aTx(ν)

=
1

2
qTAq − (a(ν))T q + gcons

(3.56)

where gcons =
1
2
(x(ν))TAx(ν) − aTx(ν) is not dependent on q so that it can be dropped

out of the objective function (3.56).

The new equality constrained QP problem to be solved at the (ν + 1) − st iteration

step is then written as:

min
q∈Rn

1

2
qTAq − (a(ν))T q (3.57a)

s.t. B1q = 0 (3.57b)

bT2iq = 0, i ∈ Iac(x
(ν)) (3.57c)

After solving the QP problem (3.57) by the methods described in Section 3.3.2.1 we

get q(ν). Then the new iteration x(ν+1) can be obtained by setting

x(ν+1) = x(ν) − ανq
(ν), αν ∈ [0, 1] (3.58)

where αν is chosen such a way that x(ν+1) stays feasible.

Suppose that q(ν) = 0 is the solution of the QP problem (3.57). According to the

KKT conditions associated with that QP problem, there exist Lagrange multipliers
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λ(ν) ∈ Rm and µ
(ν)
i , i ∈ Iac(x(ν)), such that Stationarity condition is satisfied

a(ν) = Ax(ν) − a =
m∑
i=1

λ
(ν)
i b1i +

∑
i∈Iac(x(ν))

µ
(ν)
i b2i (3.59)

If we set

µ
(ν)
i = 0, i ∈ {1, . . . , p} \ Iac(x(ν))

it is obvious that the triple (x(ν), λ(ν), µ(ν)) satisfy the first KKT condition with respect

to the original QP problem (3.48). Also the second and the third KKT conditions hold

true because x(ν) is kept feasible. Moreover, the fourth KKT condition holds true if:

µ
(ν)
i ≥ 0, i ∈ Iac(x(ν))

Recalling that A is symmetric positive semidefinite matrix, the four KKT conditions

hold means x(ν) is a global solution of the QP problem (3.48). In the other case that

µ
(ν)
j < 0, j ∈ Iac(x

(ν)), the removal of such constraints from the active-set needs to

carry out. For more details, one can refer to [Nocedal and Wright, 2006].

3.3.3 Active-Set Sequential Quadratic Programming

Methods

Sequential Quadratic Programming is considered as one of the most successful meth-

ods for the solution of general NLP problems owing to their reliability and efficiency

[Gould and Toint, 2000; Nocedal and Wright, 2006]. SQP methods have been par-

ticularly used successfully to solve associated NLPs arising from optimal trajectory

problems [Hargraves and Paris, 1987].

SQP methods are iterative procedures which obtain search directions by a sequence

of sub-QP problems. In these methods, at each current iteration xk of the original

problem (3.40), the constraints of each sub-QP problem are approximated by lineariz-

ing the constraints in the original problem, while the objective function of the sub-QP

problem is approximated by a local quadratic function of the Lagrangian L(x, λ, µ)
(3.42).

To illustrate the sub-QP problem, the special case of problem (3.40) without inequal-

ity constraints is taken into account. A local minimizer of this problem is calculated
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by solving the KKT system:

Ψ(x, λ) =

 ∇xL(x, λ)

h(x)

 =

 ∇f(x) +B(x)Tλ

h(x)

 = 0 (3.60)

where B(x) is the Jacobian of the equality constraints (3.40b).

Then the Jacobian that couples ∇Ψx(x, λ) and ∇Ψλ(x, λ) is given as:

Ψ′(x, λ) =

 ∇2
xxL(x, λ) B(x)T

B(x) 0

 (3.61)

Assuming that the Newton method is applied to solve the nonlinear system (3.60),

from the current point (xk, λk) a search direction (dx, dλ) is obtained by solving: ∇2
xxL(xk, λk) B(xk)

T

B(xk) 0

 dx

dλ

 = −

 ∇f(xk) +B(xk)
Tλk

h(xk)

 (3.62)

In each Newton step at the current point (xk, λk) the following update is made:

xk+1 = xk + dx

λk+1 = λk + dλ
(3.63)

By substituting Eq. (3.63) into Eq. (3.62) and doing elimination of (B(xk)
Tλk) term

we get:  A(xk) B(xk)
T

B(xk) 0

 dx

λk+1

 =

 −∇f(xk)

−h(xk)

 (3.64)

where A(xk) = ∇2
xxL(xk, λk).

Explicitly rewrite Eq. (3.64) we have:

A(xk)dx +B(xk)
Tλk+1 +∇f(xk) = 0

B(xk)dx + h(xk) = 0
(3.65)

By comparing Eq. (3.64) to Eq. (3.50) and Eq. (3.65) to Eq. (3.51) together with

considering Lemma (3.3.3) with its assumptions, we go to the conclusion that Eq.

(3.65) is exactly the necessary condition associated with the following QP subproblem:
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min
dx

f(dx) = 1
2
dTxA(xk)dx +∇f(xk)

Tdx

s.t. B(xk)dx + h(xk) = 0
(3.66)

Therefore, instead of solving the KKT system (3.60) by the Newton method, we can

solve a sequence of QP subproblems (3.66). This strategy motivates the SQP methods

for solving NLP general problem (3.40).

For general NLP problems (3.40), we do linearization of both equality and inequality

constraints to get:

min
dx

1
2
dTx∇2

xxL(xk, λk, µk)dk +∇f(xk)
Tdk

s.t. ∇h(xk)dk + h(xk) = 0

∇g(xk)dk + g(xk) ≤ 0

(3.67)

This QP subproblem can be solved by using methods for general QP problems, such

as active-set methods, which are briefly described above. The solution of this QP

subproblem (dk, λk+1, µk+1) forms the new iteration value (xk + dk, λk+1, µk+1).

A simplest form of the active SQP method is stated in the following Algorithm (3.3.1).

Algorithm 3.3.1: a basic local SQP Algorithm for solving Eq. (3.40)

Choose an initial triple (x0, λ0, µ0), set k ← 0;

repeat/* Outer iteration */

1. Evaluate ∇f(xk),∇2
xxL(xk, λk, µk), h(xk), g(xk),∇h(xk),∇g(xk) ;

2. Solve QP problem (3.67) to get dk, λk+1, µk+1 /* Inner iteration */ ;

3. Set xk+1 ← xk + dk together with λk+1, µk+1; k ← k + 1;

until convergence criteria are satisfied ;

When the sub-QP problem in Algorithm (3.3.1) is solved by an active-set strategy,

the active-set Iac(xk) of this problem at the solution will be used as a guess of the

active set Iac(x∗) at the optimal solution of the NLP (3.40) according to the following

Theorem that was first stated in [Robinson, 1974] and then was rewritten in [Nocedal

and Wright, 2006]:

Theorem 3.3.4

Suppose that x∗ is a local solution of (3.40) at which the KKT conditions are satisfied

for some (λ∗, µ∗). Suppose, too, that the linear independence constraint qualification

(LICQ) (Definition (3.3.4)), the strict complementarity condition (Definition (3.3.5)),
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and the second order sufficient conditions (Theorem (3.3.2)) hold at (x∗, λ∗). Then if

(xk, λk, µk) is sufficiently close to (x∗, λ∗, µ∗), there is a local solution of the subproblem

(3.67) whose active-set Iac(xk) is the same as the active-set Iac(x∗) of the nonlinear

program (3.40) at x∗.

The main disadvantage of this inequality constrained QP (IQP) method arises from

the expense of solving each QP subproblem in that the active-set Iac(xk) needs to be

recalculated. This concern can be raised when the size of NLP problem increases.

To avoid this disadvantage, an equality QP (EQP) method can be used. In the EQP

strategy, a working set that contains only a subset of the constraints at each outer

iteration is selected such that all the constraints in this working set are imposed as

equalities and the rest of the constraint space are ignored. The sub-QP problem is

then solved within this working set as an equality QP problem (3.49). This working

set is updated at every outer iteration by some rules [Nocedal and Wright, 2006]. The

main advantage of this EQP method in the case of large-scale NLP problem is that

the equality sub-QP problems (3.49) are less expensive to be solved than the general

QP problems (3.67).

A very brief discreption to the principles of SQP methods is described above, while

there still remain many important issues to put the methods into practice. More details

on these important topics can be referred to [Biegler, 2010; Nocedal and Wright, 2006].

Research on (active-set) SQP methods was declined in between the late 1980s and

early 1990s due to some reasons: the rise of interior point (IP) methods (which will be

discussed in the next Section), the rapid development of computer architecture and

the development of automatic differentiation (AD) methods which can provide first

and second derivatives automatically. However, SQP methods attract the interest of

researchers again with more development in ODE and PDE-based optimization with

mesh refinement and mixed-integer nonlinear programming [Gill and Wong, 2012;

Morales et al., 2011].

3.3.4 Interior-Point Methods

Together with above active-set SQP methods, interior-point (IP)(also known as Bar-

rier) methods have been used successfully to solve nonlinear optimization problems.

These two groups of methods with their variants form the most powerful algorithms
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for large.scale NLPs [Nocedal and Wright, 2006]. In this Section, some basic knowl-

edge of IP methods is described. The general NLP problem (3.40) can be rewritten in

the following form:

min
x∈Rn

f(x) (3.68a)

s.t. h(x) = 0 (3.68b)

g(x) + s = 0 (3.68c)

s ≥ 0 (3.68d)

where f : Rn → R is the objective function, h : Rn → Rm and g : Rn → Rp are the

equality and inequality constraints, respectively. f(x), h(x) and g(x) are assumed to

be twice continuously differentiable. The inequality constraints g(x) are transformed

into equalities by adding a vector of positive slack variables s (3.68d). In order to keep

the slack variables s positive and prevent them from being too close to zero, a positive

parameter υ and a logarithm function ln(·) are introduced to form a barrier problem:

min
x∈Rn

f(x)− υ

p∑
i=1

ln (si) (3.69a)

s.t. h(x) = 0 (3.69b)

g(x) + s = 0 (3.69c)

The solution of the barrier problem (3.69) with a sequence of parameter υk that is

monotonically decreased to zero approaches that of problem (3.68) as well as problem

(3.40).

The Lagrangian function for problem (3.69) is written as:

L(x, s, λ, µ) = f(x)− υ

p∑
i=1

ln(si) + λTh(x) + µT (g(x) + s) (3.70)



3.3 Methods for Solving Nonlinear Optimization Problems 61

The KKT conditions for (3.69) can be written as follows:

∇f(x) +BT
h (x)λ+BT

g (x)µ = 0 (3.71a)

−υS−1e+ µ = 0 (3.71b)

h(x) = 0 (3.71c)

g(x) + s = 0 (3.71d)

where Bh(x) and Bg(x) are the Jacobian matrices of the functions h(x) and g(x),

respectively, and λ and µ are their Lagrange multipliers. S and M are defined to

be the diagonal matrices whose diagonal entries are given by the vectors s and µ,

respectively, and e = (1, 1, . . . , 1)T . Because the diagonal elements s of S are all

positive, we can multiply equation (3.71b) by S to yield:

∇f(x) +BT
h (x)λ+BT

g (x)µ = 0 (3.72a)

Sµ− υe = 0 (3.72b)

h(x) = 0 (3.72c)

g(x) + s = 0 (3.72d)

In order to solve the KKT system (3.72) with the variables x, s, λ, µ, the Newton

method is applied to obtain:
∇2

xxL 0 BT
h (x) BT

g (x)

0 M 0 S

Bh(x) 0 0 0

Bg(x) I 0 0




dx

ds

dλ

dµ

 = −


∇f(x) +BT

h (x)λ+BT
g (x)µ

Sµ− υe

h(x)

g(x) + s

 (3.73)

After having computed the step dk = [dkx, d
k
s , d

k
λ, d

k
µ]

T of the current iterate k, the new

iterate values [xk+1, sk+1, λk+1, µk+1]T can be computed as:

xk+1 = xk + αmax
x dkx

sk+1 = sk + αmax
s dks

λk+1 = λk + αmax
λ dkλ

µk+1 = µk + αmax
µ dkµ

(3.74)
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where α ∈ (0, 1] is the step length that can be obtained by the line search or trust

region methods, e.g.,

αmax
s = max{α ∈ (0, 1] : s+ αds ≥ (1− τ)s}

αmax
µ = max{α ∈ (0, 1] : µ+ αdµ ≥ (1− τ)µ}

(3.75)

with τ ∈ (0, 1), typically τ = 0.995.

Another important task in the IP method is to choose the sequence to decrease the

value of the barrier parameter υk. The υk can be held constant for a number of

iterations until the Newton method (3.73) for the KKT conditions (3.72) converges to

a certain tolerance. Another strategy can also be applied to update υk value in each

iteration.

To build a basic algorithm for the IP method, an error function is introduced to set

the convergence criteria for solution of KKT conditions (3.72):

E(x, s, λ, µ; υ) = max
{∥∥∇f(x) +BT

h (x)λ+BT
g (x)µ

∥∥ , ∥Sµ− υe∥ , ∥h(x)∥ , ∥g(x) + s∥
}

(3.76)

The basic algorithm for the IP method is stated by the following Algorithm (3.3.2):

Algorithm 3.3.2: Basic Interior-Point Algorithm for solving NLP problem Eq.

(3.40) [Nocedal and Wright, 2006]

Choose initial values x0 and s0 > 0, compute initial values f(λ0, µ0). Select a

value for initial barrier parameter υ0 > 0 and parameters σ, τ ∈ (0, 1). Set

k ← 0;

repeat/* Outer iteration */

repeat/* Inner iteration */

1. Solve (3.73) to obtain the search direction d = (dx, ds, dλ, dµ);

2. Compute (αmax
s , αmax

µ ) using (3.75);

3. Compute (xk+1, sk+1, λk+1, µk+1) using (3.74);

3. Set υk+1 ← υk and k ← k + 1;

until E(x, s, λ, µ; υ) ≤ υk;

Choose υk ∈ (0, συk);

until convergence criteria are satisfied ;

For more details on IP methods, one can see [Biegler et al., 2012; Byrd et al., 2000,
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1999, 1998, 2006; Nocedal and Wright, 2006]. There exists several software packages

that utilize IP methods. KNITRO [Byrd et al., 2000, 1999, 1998, 2006; Nocedal and

Wright, 2006] is a commercial package that is written in FORTRAN77 for solving

general NLP problems. KNITRO combines two IP methods together with an AS-

SQP methods to provides flexible solvers. Its interfaces include C/C++, FORTRAN,

JAVA, AMPL, GAMS, Mathematica, MATLAB and even in MS EXCEL environment.

IPOPT [Wächter and Biegler, 2006] is an open source package that is written in

both FORTRAN (old version) and C/C++ for large, sparse and many degrees of

freedom NLP problems [Poku et al., 2004]. The NLP problems can be directly coded in

FORTRAN, C/C++. Beside that, IPOPT has been integrated into various modeling

environment, such as AMPL, GAMS, MATLAB. For other IP codes, readers can refer

to [Biegler et al., 2012; Nocedal and Wright, 2006].

3.3.5 Summary of Numerical Method for NLPs

In the sections above, two group of methods for solving NLP problems, active-set

SQP and interior-point, are briefly introduced. Each group has its advantages and

disadvantages and is only suitable for a certain class of NLP problems. As for the size

of NLP problems, IP methods are shown to be more efficient in dealing with large

and very large problems, while AS-SQP methods are suitable for small and medium

problems. Problems with a number of linear constraints should be better solved by

AS-SQP methods because IP methods do not distinguish between linear and nonlinear

constraints. In the case of a good initial vector available that is feasible and near the

solution, AS-SQP methods will work better due to their fast convergence, while IP

methods can deal with any initials, even with infeasible ones. IP methods are fast

in dealing with one-off problems in that the structure of the KKT matrix does not

change at each iteration so that they can inherit advantage of sparsity of the Hessian,

Jacobian in (3.73). Problems with many inequality constraints can be solved faster

with IP methods due to the avoidance of the combinatorial problem in selecting the

active-set, which happens in AS-SQP methods [Jockenhövel, 2004a].

For the aim of solving dynamic optimization problems, the characteristics of the re-

sulted NLP problem depend on the method of discretization that will be discussed in

the next Section. It means that each of discretization methods produces a different

type of NLP problem. Therefore one should carefully chose an appropriate solver for
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solving resulted NLP problem.

3.4 Sequential approach

In a sequential approach, also known as direct single shooting or control parameteri-

zation method, only the inputs u(t) of the problem (2.8) are discretized as piecewise

polynomials or piecewise constants and their coefficients û become optimization vari-

ables of the NLP solver in the optimization layer. The model equations (2.8b-2.8d)

will be solved by appropriate numerical integration methods in a simulation layer to

get the values x̃ = (z, y)T and their sensitivities with respect to û and p [Barton et al.,

1998; Binder et al., 2001; Logsdon and Biegler, 1992; Vassiliadis, 1993; Vassiliadis

et al., 1994a]. All of this information then is used to compute the value of the objec-

tive function f and its gradients with respect to û and p. The general constraints c

excluding the model equations are then calculated and transfered to the optimization

layer. In the control and parameter space, the NLP solver solves the problem with

updated control values û and p and gives the results back to the simulation layer. The

dimension of the resulting NLP in a sequential method is the smallest one in compari-

son with other methods and does not depend on the size of the model equations. This

method is a feasible path strategy because the model equations are satisfied at each

iteration of the NLP algorithm, which can be still usable in the case that the NLP

solver cannot converge to the final solution. Sequential methods could be time con-

suming for large-scale DAE systems. Besides that, it also inherits other disadvantages

of difficulties in the integration step with stiff and unstable problems due to the fact

that intermediate inputs in early time may usually have a strong effect on the later

parts of the trajectories. Furthermore, state path constraints can be only handled

approximately in this method [Zavala et al., 2008a].

3.5 Simultaneous approach

In the simultaneous approach, both input and state variables of the problem (2.8) are

discretized by using a discretization method at the same time (e.g., methods described

in Section 3.1 for the inputs and Section 3.2.2 for the states variables). Then all of

these discretized control and state variables are put into the NLP solver [Biegler, 2007;
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Biegler et al., 2002; Jockenhövel, 2004a]. In this methods, DAE model Eqs. (2.8b-

2.8d) are reformulated into algebraic equations that then are treated as equalities in

the resulted NLP problem. Without loss of generality, here controls u are assumed to

be discretized in the same manner as states z and y, and p are assumed to be constant

all over the time. The DOP problem (2.8) then can be formulated as follows:

min
ẑl,j ,ŷl,j ,ûl,j ,p

f(ẑl,j, ŷl,j, ûl,j, p) (3.77a)

s.t. L̇0(τj)ẑ(l−1),NC +
NC∑
k=1

L̇k(τj)ẑl,k −
∆tl
τNC

F (ẑl,j, ŷl,j, ûl,j, p) = 0 (3.77b)

G(ẑl,j, ŷl,j, ûl,j, p) = 0, (3.77c)

ẑL ≤ ẑl,j ≤ ẑU , yL ≤ ŷl,j ≤ yU , uL ≤ ûl,j ≤ uU , pL ≤ p ≤ pU , (3.77d)

l = 1, . . . , NL; j = 1, . . . , NC (3.77e)

z0,NC = z(t0) = z0 (3.77f)

where NL and NC are the number of time intervals and inner collocation points,

respectively. The continuity of the differential states is enforced in Eq. (3.77b), in

that the initials of the next interval are treated as the last values of the previous

interval.

For ease of use, NLP problem (3.77) can be rewritten in compact form as following:

min
ẑl,j ,ŷl,j ,ûl,j ,p

f(ẑl,j, ŷl,j, ûl,j, p) (3.78a)

s.t. 0 = Ĝ(ẑl,j, ŷl,j, ûl,j, p), (3.78b)

0 ≤ Ĥ(ẑl,j, ŷl,j, ûl,j, p), (3.78c)

l = 1, . . . , NL; j = 1, . . . , NC (3.78d)

z0,NC = z(t0) = z0 (3.78e)

In order to rewrite the NLP problem (3.77) into a compact form, let ẑ, ŷ and û denote

the elements of the corresponding discretized variables ẑl,j, ŷl,j and ûl,j, respectively.

The equalities (3.77b) and (3.77c) can be combined as vector functions denoted as h.

The NLP problem (3.77) then can be reformulated as:
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min
x∈Rn

f(x) (3.79a)

s.t. g(x) = 0 (3.79b)

h(x) ≥ 0 (3.79c)

where x = (ẑ, ŷ, û, p)T ; ẑ ∈ Rnz×NL×NC ; ŷ ∈ Rny×NL×NC ; û ∈ Rnu×NL×NC ; p ∈ Rnp ;

and x ∈ Rn with n = ((nz + ny + nu)×NL×NC + np).

Due to the discretization of both state and control variables, this method leads to the

largest dimension for the NLP problem that usually requires special solution strategies

for the NLP problem (3.79), especially in the case of large-scale DAE systems [Jock-

enhövel, 2004a]. In spite of this fact, DSM can easily solve DOPs problems with path

constraints on state variables by imposing each discretized variable at each collocation

point, see Eq. (3.77d). Due to the fact that the DSM solves the DAEs system only once

at the convergence point where all the equality constraints are satisfied, this method

can avoid solving intermediate instable systems that may have no solution or require

much computation effort. Contrary to the sequential strategy, DSM is an infeasible

path method, meaning that intermediate non-convergence results will be useless. The

accuracy of this method depends heavily on the fine level of the discretization intervals

∆tl which can lead to very large and sparse NLP problems. In general, the result of

the DSM is assessed as less accurate than that of the sequential strategy. However, the

DSM usually is less time consuming than the sequential strategy [Jockenhövel, 2004a].

The article [Biegler, 2007] and references therein gives more details about this method.

3.6 Quasi-sequential approach

In quasi-sequential strategy (QSQ), the DSQ using the collocation method was devel-

oped and applied successfully to optimal control of a large-scale dynamic system [Hong

et al., 2006]. The QSQ is considered as a hybrid method that inherits features from

both DSM and DSQ methods. In this method, the control variables are discretized

in each time interval in the same manner as DSQ while the state variables are dis-
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cretized using collocation on finite elements in the same interval as in DSM method.

A simulation layer is used to deal with the nonlinear equation systems resulted from

discretized DAE model. Using a nonlinear solver, the model equation is solved se-

quentially from the first interval to the last to get the state values and appropriate

sensitivity information. The continuity of the states between the intervals are forced

by using the last collocation point of the previous interval as the initial of the next

interval. In comparison to the DSM method, the state variables are eliminated from

the NLP leading to a smaller NLP problem like in the DSQ method. The inequalities

(2.8e) are forced to become inequality constraints of the NLP at each collocation point

of the model equations. For the ease in discussion, let x̂ = (ẑ, ŷ)T and c denote the

model Eqs. (2.8b-2.8d). The DOP problem (2.8) then can be formulated as follows:

min
x̂,û,p

f(x̂, û, p) (3.80a)

s.t. c(x̂, û, p) = 0 (3.80b)

x̂L ≤ x̂ ≤ x̂U (3.80c)

ûL ≤ û ≤ ûU (3.80d)

pL ≤ p ≤ pU (3.80e)

At iteration k in the optimization layer, the Newton-Raphson method is used to solve

Eq. (3.80b) for x̂, i.e., there exists an implicit relation:

x̂ = x̂(û, p) or x̂ = x̂(ũ) with ũ = (û, p)T (3.81)

The problem (3.80) is then reduced to the form:

min
ũ

f(x̂(ũ), ũ) (3.82a)

s.t. 0 ≤ Ĥ(ũ) (3.82b)

ũL ≤ ũ ≤ ũU (3.82c)
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In this method, the model Eqs. (3.80b) are solved successively from element to element

at each NLP iteration, so that sensitivities of states with respect to controls can be

computed simultaneously. Here by considering the discretized model Eqs. (3.80b) in

the kth iteration of NLP problem with the lth element, the model equations at the

collocation points can be written as:

cl
(
ẑkl,0, ũ

k
l , ẑ

k
l

)
= 0; l = 1, ..., NL (3.83)

where ẑkl,0 is the initial value of ẑkl of the element, NL is the number of elements,

respectively. According to the theorem of implicit functions, one obtains:

dẑl
dũl

= −∇ẑlc
−T
l ∇ũl

cl and
dẑl
dẑl,0

= −∇ẑlc
−T
l ∇ẑl,0cl (3.84)

For the state profile continuity, the last collocation point of element l is taken as the

initial point of the next element l + 1, so that the sensitivities can be transferred by

the chain rule. The Jacobian of the NLP problem (3.82) has the following structure:

dẑ
dũ

=



a1

a2,1 a2 0
...

. . . . . .

a2,l
. . . . . . al

...
. . . ai,j

. . . . . .

aNL,1 aNL,2 · · · aNL,l · · · aNL



ẑ1, interval 1

ẑ2, interval 2

ẑl, interval l

ẑNL, interval NL

ũ1 ũ2 ũl ũNL

interval 1 interval l interval NL

(3.85)

where intervals mean the time elements of discretization of model Eqs. (3.80b) and

the elements of the Jacobian of NLP problem (3.82) can be calculated as:

al =
(

dẑkl
dũk

l

)T
l = 1, . . . , NL

ai,j =
(

dẑki
dũk

j

)T
=
(

dẑki
dẑk0,i

)T( dẑki−1

dũk
0,i−1

)T
· · ·
(

dẑkj
dũk

j

)T
i, j = 1, ..., NL; i > j

(3.86)
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This problem consists only of control variables and parameters as well as inequality

constraints which are enforced at each collocation point. This method has advantages

of a small NLP problem and easy handling of sensitivity computation and of inequal-

ities. The active-set SQP was applied to solve the NLP problems (3.82). As pointed

out, the SQP method can be computationally expensive to deal with many active

constraints in a NLP problem.

Algorithm 3.6.1: Algorithm of active-set SQP quasi-sequential approach

Given a number of elements, discretize the control variables, and state variables
with the collocation method, provide initial values of control variables and
bounds for all variables, set k = 0;
repeat/* Outer iteration */

1. for j = 1 to NL do
1. Solve nonlinear model Eqs. (3.80b) using the (variation of)
Newton-Raphson method;

2. Evaluate the sensitivities
dx̂

dũk
,
dx̂

dx̃k
0

;

end
; /* Simulation layer */

2. Evaluate the values of the object function and constraints:
f(x̂(ũk), ũk), Ĥ(ũk), as well as their gradients with respect to ũk:
∇ũf(x̂(ũ

k), ũk),∇ũĤ(ũk) as following:

∇ũf =
∂f

∂xk

∂x̂k

∂ũk
+

∂f

∂ũk

and ∇ũĤ =
∂Ĥ

∂x̂k

∂x̂k

∂ũk
+

∂Ĥ

∂ũk

3. Call the active-set SQP solver to solve the NLP to get the search
direction dũk;
4. Set ũk+1 ← ũk + dũk; k ← k + 1;

until convergence criteria are satisfied ;

3.7 Multiple shooting

Direct multiple shooting can be considered as a hybrid method that was developed by

Bock and Plit [1984]; Plitt [1981]. In this method, the time horizon was divided into

discrete time intervals in which control variables are discretized in the same manner
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as DSQ. The initial conditions of the states are separately parameterized in each

subinterval l.

zl,0(tl,0) = zl,0 (3.87a)

yl,0(tl,0) = yl,0 (3.87b)

The discretized values û, p and the initials zl,0, yl,0 become optimization variables

of the NLP solver in the optimization layer. Model Eqs. (2.8b-2.8d) are solved on

each time interval by appropriate ODE or DAE solvers to get all the information in

the same manner as DSQ method. In order to keep the differential state continuity

between the subintervals, additional interconnections, which enforce the last values of

previous interval to be equal to the initials of the next one, are introduced as equality

constraints in the optimization NLP problem. Together with the algebraic states, the

consistency initials must be satisfied at the grid-points.

z(l+1),0 = zl(zl,0, yl,0, ûl, p, tl) (3.88a)

0 = G(zl,0, yl,0, ûl, p, tl) (3.88b)

This fact makes the dimension of the NLP problem slightly larger than that of the DSQ

but smaller than that of DSM. This method also allows advanced DAE solvers to be

applied to calculate the function and derivative values. Furthermore the DAE solvers

are decoupled on separate multiple shooting intervals, and therefore the DMS method

is suitable for parallel computation. This approach also can deal with multistage

problems, control and path constraints as well as multi-point boundary conditions.

For the optimization of boundary value problems, DMS is considered to be more stable

and efficient than the DSQ [Bock et al., 2000]. Beside that, this method also has some

inherent drawbacks, e.g., the sensitivity information is too expensive to achieve and

state constraints are difficult to implement, especially those which are inside each time

interval [Jockenhövel, 2004b].
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3.8 Combined multiple shooting and collocation

strategy

The combined multiple shooting and collocation strategy can be considered as a com-

bination of the DMS and the DSM strategy [Tamimi and Li, 2010]. This method

is based on the DMS strategy with a modification in solving the DAEs model equa-

tions. In the CMSC formulation, the DAEs model equations in each time interval

are discretized using collocation on finite elements to formulate a system of nonlinear

equations as in the DSM and the QSQ methods. The inequalities (2.8e) are forced to

become inequality constraints of the NLP at the grid points of the model equation.

Let x̂ = (ẑ, ŷ)T and c denote the model Eqs. (2.8b-2.8d). The DOP problem (2.8)

then can be formulated as follows:

min
zl,0,ûl,p

f(x̂l, ûl, p) (3.89a)

s.t. cl(x̂l,i, ûl, zl,0, p) = 0 (3.89b)

zl+1,0 = ẑl,NC (3.89c)

x̂L ≤ x̂l,NC ≤ x̂U (3.89d)

ûL ≤ ûl ≤ ûU (3.89e)

pL ≤ p ≤ pU (3.89f)

l = 1, . . . , NL; i = 1, . . . , NC (3.89g)

At iteration k in the optimization layer, the Newton-Raphson method is used to solve

Eq. (3.89b) for x̂, i.e., there exists an implicit relation:

x̂l = x̂(ûl, p, zl,0) or x̂l = x̂(ũl, zl,0) with ũ = (û, p)T (3.90)

The problem (3.80) is then reduced to the following form:
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min
ũl,zl,0

f(x̂(ũl, zl,0), ũl) (3.91a)

s.t. zl+1,0 = ẑl,NC (3.91b)

0 ≤ Ĥ(x̂l,NC , ũ, zl,0) (3.91c)

ũL ≤ ũl ≤ ũU (3.91d)

l = 1, . . . , NL (3.91e)

This replacement makes it easier to get model state values and the sensitivities. How-

ever, in this method the system constraints (2.8e) are only imposed at the grid points

(i = NC) in (3.91c), and thus there can be violations inside the time intervals between

the grid points.
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Algorithm 3.8.1: Algorithm of combined multiple shooting and collocation
strategy

Given a number of elements, discretize the control variables, and state variables
with the collocation method, provide initial values of control variables and
bounds for all variables, set k = 0;
repeat/* Outer iteration */

1. for l = 1 to NL do
1. Solve nonlinear model Eqs. (3.89b) using the (variation of)
Newton-Raphson method;

2. Evaluate the sensitivities
dx̂

dũk
,
dx̂

dz̃k0
;

end
; /* Simulation layer */

2. Evaluate the values of the object function and constraints:
f(x̂(ũk, zk0 ), ũ

k), Ĥ(x̂NC(ũ
k, zk0 ), ũ

k, zk0 ), as well as their gradients with
respect to ũk and zk0 :
∇ũf(x̂(ũ

k, zk0 ), ũ
k),∇zk0

f(x̂(ũk, zk0 ), ũ
k),∇ũĤ(x̂NC(ũ

k, zk0 ), ũ
k, zk0 ),

∇zk0
Ĥ(x̂NC(ũ

k, zk0 ), ũ
k, zk0 ) as following:

∇ũf =
∂f

∂xk

∂x̂k

∂ũk
+

∂f

∂ũk

∇zk0
f =

∂f

∂xk

∂x̂k

∂zk0
k
+

∂f

∂zk0
k

∇ûĤ =
∂Ĥ

∂x̂k
NC

∂x̂k
NC

∂ũk
+

∂Ĥ

∂ũk

∇zk0
Ĥ =

∂Ĥ

∂x̂k
NC

∂x̂k
NC

∂zk0
+

∂Ĥ

∂zk0

3. Call the active-set SQP solver to solve the NLP to get the search
direction dũk;
4. Set ũk+1 ← ũk + dũk; k ← k + 1;

until convergence criteria are satisfied ;





Chapter 4

Improved Approaches to Dynamic

Optimization

In the previous Chapter, direct methods are introduced to transform the infinite DOPs

into finite NLPs. Each discretization strategy leads to a different type of resulting

NLP problem with particular characteristics. Then each of these NLP problems need

to be solved by a suitable NLP solver. In [Hong et al., 2006] the active-set SQP

solver was applied to solve the NLP problem in the quasi-sequential approach. In

the quasi-sequential approach, at each collocation point, state variables are treated as

implicit-functional inequality constraints. This fact makes it difficult for a active-set

SQP solver to solve the resulting NLP problem when there are a large number of

active constraints. To over come this drawback, in this Chapter, an interior point

based method are developed in Section 4.1 to solve the NLP problem resulted in the

quasi-sequential approach in a full space form. Then in Section 4.2, a reduced-space

interior point method are proposed to further improve the computational results.

Each discretization strategy applied to the DOP has its pros and cons and each is

suitable for a particular class of DOPs. In [Tamimi and Li, 2010] the CMSC method

was developed in a manner that the constraints of state variables were only imposed at

grid points of each collocation interval. In Section 4.4 of this Chapter an improvement

is made to the CMSC method to impose the state constraints at all collocation points

in order to prevent possible constraint violations.

Section 4.3 illustrates a new strategy to deal with the PE problem with multiple data
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sets in the error-in-variables (EIV) formulation in which the inputs of PE problem

are assumed to be unknown and need to be estimated based on measurement data.

Parallel strategies are developed and implemented in Section 4.3 to speed up the

computation for PE with multiple data sets as well as in improved CMSC strategy.

4.1 Interior Point Quasi-sequential approach

In this Section, the quasi-sequential approach in Section 3.6 is extended by using the

interior-point method, see Section 3.3.4, to handle the NLP problem inside the solu-

tion framework. This is due to the fact that the IP method can efficiently handle a

large number of inequality constraints. In this new approach, termed as interior-point

quasi-sequential approach, both the state and control variables are first discretized

completely as in the simultaneous approach with collocation on finite elements, so

as to overcome the difficulty in the sequential approach with satisfying state path

constraints. Second, model equations and state variables are eliminated in the same

manner as in the sequential approach by a simulation step, so that the optimiza-

tion problem is reduced to a small NLP only with inequality constraints and control

variables. Finally, the primal-dual interior-point method is employed to handle the in-

equality constraints. In this way the final optimization problem to be solved becomes

a NLP with equality constraints by adding slack variables to the inequalities. Math-

ematical derivations and computation schemes for the interior-point quasi-sequential

approach will be developed.

Taking a two-dimensional equality constrained optimization problem as an example

the resulting approach is compared with the simultaneous and the quasi-sequential ap-

proach in terms of the path solution with a graphical interpretation. A highly nonlinear

reactor optimal control problem is also considered to demonstrate the effectiveness of

this approach. It can be concluded from the results that the interior-point quasi-

sequential approach is more efficient than the quasi-sequential approach for solving

highly nonlinear large-scale dynamic optimization problems with multiple inequality

path constraints. Therefore it provides a promising solution to parameter estima-

tion of large-scale nonlinear dynamic models and real-time dynamic optimization of

engineering processes.
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4.1.1 The nonlinear programing problem formulation

In a framework of interior-point methods to solve dynamic optimization problems, the

inequality constrained functions will be reformulated through the addition of slack

variables with lower bounds of zero. These slack variables are included to the state

variable vector. Correspondingly, the reformulated inequality constraints which are

now equalities are added to the system of DAEs. The quasi-sequential approach

[Hong et al., 2006] possesses advantages of both the simultaneous and the sequential

approach. It is based on a completely discretization of the state and control variables

with collocation on finite elements like the simultaneous approach, and also it elim-

inates the state variables and the DAEs in the manner as the sequential approach.

Only control variables and inequalities will be handled in the NLP solver. By using

the collocation method in Section 3.2.2, the differential equations of the DAE system

are converted to a set of algebraic equations. The DAE model is solved successively

from element to element at each NLP iterate, and the sensitivities of the state vari-

ables with respect to control variables are computed in parallel with the DAE solution.

The interior-point quasi-sequential approach is derived in more detail as follows. After

discretization with the collocation method, problem (2.8) can be represented as the

following NLP problem:

min
ẑ∈Rm,û∈Rn−m

f(ẑ, û)

s.t. c(ẑ, û) = 0

zL ≤ ẑ ≤ zU

uL ≤ û ≤ uU

(4.1)

After the solution of the model equations in the quasi-sequential framework, the prob-

lem is reduced to the form:

min
û∈Rn−m

f(ẑ(û), û) (4.2a)

s.t. zL ≤ ẑ(û) ≤ zU (4.2b)

uL ≤ û ≤ uU (4.2c)

This problem consists only of control variables as well as inequality constraints which

are enforced at each collocation point. Without loss of generality, the problem formu-
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lated in Eq. (4.2) can be rewritten as following:

min
û∈Rn−m

f(ẑ(û), û)

s.t. 0 ≤ ẑ(û)

0 ≤ û

(4.3)

Now the inequalities are replaced by a logarithmic barrier term that is added to the

objective function to yield:

min
û∈Rn−m

φµ(û) = f(ẑ(û), û)− µ

(
m∑
i=1

ln(ẑ(û)(i))−
n−m∑
i=1

ln(û(i))

)
(4.4)

with the barrier parameter µ > 0. Now the problem 4.3 is converted to an uncon-

strained NLP problem. For a given µ, multiplier estimates, ν1 and ν2, are introduced

and the optimality conditions for NLP (4.4) can be written in the primal-dual form:

∇f − (
dẑ

dû
)Tν1 − ν2 = 0

V1Ze− µe = 0

V2Ue− µe = 0

(4.5)

where e = [1, . . . , 1]T , ν1 = µZe and ν2 = µUe, Z and U are diagonal matrices with ẑ

and û on their diagonals, respectively. The Newton method can be used to solve the

system of nonlinear Eqs. (4.5). Then the search direction (dûk , d
ν1
k , dν2k ) at iterate k

(ûk, v1,k, v2,k) can be obtained as a solution of the linearization of (4.5), that is:
Wk ( dẑ

dû
)Tk −I

V1k(
dẑ
dû
)k Zke 0

V2ke 0 Uke




dûk

dv1k

dv2k

 = −


∇fk − ( dẑ

dû
)Tk v1k − v2k

V1kZke− µke

V2kUke− µke

 (4.6)

where Wk = ∇2
ûûL(ûk, ν1,k, ν2,k) . Eliminating the dν1k and dν2k in Eq. 4.6 yields the

search direction:

(Wk + Σk)d
û
k = −∇µφ(û, v1, v2) (4.7)

where: ∑
k

= ( dẑ
dû
)Tk V1kZ

−1
k ( dẑ

dû
)k + V2kU

−1
k
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dv1k = −v1k + Z−1
k µke− Z−1

k V1k(
dẑ
dû
)k d

û
k

dv2k = −v2k + U−1
k µke− U−1

k V2k d
û
k

4.1.2 Case studies

4.1.2.1 The Rosenbrock two-dimensional optimization problem

The solution path of the quasi-sequential, the interior-point quasi-sequential and the

simultaneous approach is illustrated with the following example. The Rosenbrock

two-dimensional constrained optimization problem is written as:

min
x,y

10(y − x2 + 0.5)2 + (x− 1)2

s.t. y = 1.2x2 − 0.5

0 ≤ y ≤ 5

(4.8)

In the sequential approach, the variable x is regarded as the control variable. The NLP

problem is solved by the simultaneous, the quasi-sequential approach, and interior-

point quasi-sequential approach, respectively. The initial point is set at (1.5, 2.2)

and (-1.5, 2.2). The optimal point should be at (0.7117, 0.1078) with the minimum

objective function value 0.18574. The solution paths of the three approaches are

presented in Fig. 4.1 where the interior-point quasi-sequential approach is called IP

quasi-sequential for short. And the program package IPOPT [Wächter, 2002] is used

for the simultaneous approach. As shown in Fig. 4.1a, when the initial point is set

at (1.5, 2.2), all three approaches can converge to the optimal point. Moreover, the

solution paths are almost the same. But if the initial point is changed to (-1.5, 2.2) as

shown in Fig. 4.1b, only the IP quasi-sequential approach can converge to the optimal

point. The IPOPT and quasi-sequential approaches fail, and terminate at the bound

of y = 0. The IP quasi-sequential approach gives a different solution path and a better

convergence performance.
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(a) the initial point from (1.5, 2.2) (b) the initial point from (-1.5, 2.2)

Fig. 4.1 Solution path with respect to different initial point

4.1.2.2 Optimal control of a CSTR

A continuous stirred tank reactor (CSTR), in which an exothermic, irreversible, first

order reaction A → B occurs in the liquid phase and the temperature is regulated

with external cooling, is considered for optimal control. This example is taken from

[Henson and Seborg, 1997; Pannocchia and Rawlings, 2003] with the consideration

that the liquid level is also a state variable. The mass and energy balances lead to the

following highly nonlinear model equations:

dh

dt
=

F0 − F

πr2

dc

dt
=

F0(c0 − c)

πr2h
− k0c exp(−

E

RT
)

dT

dt
=

F0(T0 − T )

πr2h
+
−∆H

ρCp

k0c exp(−
E

RT
) +

2U

rρCp

(Tc − T )

(4.9)

The state (controlled) variables are the level of the tank, h, and the mole fraction c.

The third state variable is the reactor temperature, T . The control (manipulated)

variables are the outlet flow rate F and the coolant liquid temperature Tc. Moreover,

it is considered that the inlet flow acts as a disturbance.

An operation situation is considered in that, at time t = 10min a disturbance enters

the plant, which is an increment of 10% on the inlet flow F0. Here the objective is

defined as to minimize the offset caused by the disturbance by controlling the outlet
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flow rate F and the coolant liquid temperature Tc over a time horizon of tf = 50min.

Thus the optimal control problem is formulated as follows:

min

tf∫
0

[
(h− hs)2 + 100(c− cs)2 + 0.1(F − F s)2 + 0.1(Tc − T s

c )
2] dt (4.10a)

s.t. DAEs model (4.9) (4.10b)

85 ≤ F ≤ 115 (l/min) (4.10c)

299 ≤ Tc ≤ 301 (K) (4.10d)

In order to make it easier to treat the integral (4.10a), a transformation is applied

here, let:

dxtemp

dt
=
[
(h− hs)2 + 100(c− cs)2 + 0.1(F − F s)2 + 0.1(Tc − T s

c )
2] (4.11)

with xtemp(0) = 0. Then the DOP (4.10) can be rewritten as:

min xtemp(tf ) (4.12a)

s.t.
dh

dt
=

F0 − F

πr2
(4.12b)

dc

dt
=

F0(c0 − c)

πr2h
− k0c exp(−

E

RT
) (4.12c)

dT

dt
=

F0(T0 − T )

πr2h
+
−∆H

ρCp

k0c exp(−
E

RT
) +

2U

rρCp

(Tc − T ) (4.12d)

dxtemp

dt
=
[
(h− hs)2 + 100(c− cs)2 + 0.1(F − F s)2 + 0.1(Tc − T s

c )
2] (4.12e)

85 ≤ F ≤ 115 (l/min) (4.12f)

299 ≤ Tc ≤ 301 (K) (4.12g)

[hs, cs, F s, T s
c ]

T = [0.659, 0.877, 100.0, 300.0]T

[h0, c0, T0, x
temp
0 ]T = [0.659, 0.877, 324.5, 0.0]T

where hs, cs, F s, T s
c are the values at the desired steady-state operating point. This
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leads to a typical constrained dynamic optimization problem. For the numerical solu-

tion, the time horizon tf is divided into 50 subintervals, and the problem is discretized

with the 3-point-collocation in each time interval. The two control variables are rep-

resented as piecewise constant. Consequently, there are 2× 50 = 100 control variables

and 3× 3× 50 = 450 state variables after the discretization. In implementing the

three approaches for comparison, the bounds are imposed only on control constraints.

All three approaches, the simultaneous, quasi-sequential and IP quasi-sequential, are

coded in FORTRAN (the simultaneous approach directly using the IPOPT Fortran

package). At the optimal solution, the three approaches provide the same profiles for

control variables as shown in Fig. 4.2. The iterations and CPU time are given in Ta-

ble 4.1. The results show that the IP quasi-sequential approach requires less iteration

numbers, but much computational cost compared with the quasi-sequential approach.

It should be pointed out, however, that the comparison is affected by a number of im-

plementation details. In the quasi-sequential approach, the SQP subroutine DNCONG

in the IMSL Library is used as the NLP solver. The IP quasi-sequential approach is

coded ourself, where a lot of implementation parameters should be refined. Moreover,

the IPOPT used here is an old version; it is being developed or renewed constantly.
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4.1.3 Conclusions

The active-set SQP quasi-sequential approach would be not very effective for prob-

lems with many active constraints, like the most active-set methods for inequality

constrained optimization. Here an improved quasi-sequential approach, the IP quasi-

sequential approach, is presented and analyzed to utilize the ability of IP methods

for efficient handling a large number of inequalities. The results of the taken exam-

ples show that the new approach has advantages of the solution path and a higher

convergence rate compared with the active-set SQP quasi-sequential approach. But

its implementation parameters, such as the update of barrier parameters, should be

improved. Finally, the IP quasi-sequential approach to handle very large optimization

problems with more inequality constraints needs to be studied in the further research.

Table 4.1 Comparison of different approaches to the CSTR problem

Disturbance F0
(l/min)

IP
Quasi-Sequential
(Iter/CPU(s))

Active-set SQP
Quasi-Sequential
(Iter/CPU(s))

IPOPT
(Iter/CPU(s))

100-110 10/0.7031 17/0.5513 44/1.4219

4.2 Reduced-Space Interior Point Quasi-sequential

approach

In this Section, a reduced-space IP approach is proposed to DOPs with general in-

equality constraints. It is an extension of the IP quasi-sequential approach to dynamic

optimization of large-scale systems. Inequality constraints are formed by adding slack

variables to an equality constrained barrier IP problem which is solved by a range

space step and a null space step in every iteration. Mathematical derivations and

computation schemes are presented. A highly nonlinear parameter estimation prob-

lem is taken as an example to demonstrate the effectiveness of this approach. The

result is compared with the full space approach in terms of overall CPU time and the

number of iterations.
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4.2.1 NLP Problem formulation

Back to Section (4.1), Eqs. (4.2) contains only controls and inequality constraints

which are enforced at each collocation point. Adding slack variables s to inequalities

(4.2b), one gets:

min
û∈Rn−m

f (ẑ(û), û) f : Rn → R

s.t. ẑ(û)− s = 0

zL ≤ s ≤ zU s ∈ Rm

uL ≤ û ≤ uU û ∈ Rn−m

(4.13)

Without loss of generality, problem (4.13) can be rewritten as:

min
x∈Rn−m

f(x) f : Rn → R

s.t. h(x) = 0 h : Rn → Rm

0 ≤ x s ∈ Rm

(4.14)

where

x = (s û)T , h(x) = ẑ(û)− s (4.15)

4.2.2 Interior-point approach

The inequalities now can be replaced by a logarithmic barrier term added to the

objective function to yield:

min
x∈Rn

ϕµ (x) = f (x)− µ
n∑

i=1

ln
(
xi
)

s.t. h(x) = 0

(4.16)

where the barrier parameter µ ≥ 0. The Lagrangian of problem (4.16) will be:

L (x, λ) = f (x) − µ

n∑
i=1

ln
(
xi
)
+ h(x)Tλ (4.17)
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For a given µ, multiplier estimates, λ, are introduced and the optimality conditions

for (4.16) can be written in the primal-dual form:

∇xL = ∇xf(x) +∇h(x)λ− ν = 0

XV e− µe = 0

h(x) = 0

(4.18)

where V = diag(v), X = diag(x), e = (1, 1, . . . , 1)T . The search direction
(
dxk, d

λ
k , d

ν
k

)
at iterate k (xk, λk, vk) can be obtained as a solution of the linearization of (4.18), that

is:
Wkd

x
k +∇h (xk) d

λ
k − dvk = −∇L (xk)

∇h (xk) d
x
k = −h (xk)

Vkd
x
k +Xkd

v
k = − (XkV e− µe)

(4.19)

Eq. (4.19) is rewritten into matrix form:
Wk AT

k −I

Ak 0 0

Vk 0 Xk




dxk

dλk

dvk

 = −


∇f (xk) + Ak − vk

h (xk)

XkVke− µe

 (4.20)

where Wk = ∇2
xxL(xk, λk, νk) and Ak = ∇h(xk)

T . A solution to (4.20) can be obtained

by first solving:  Hk Ak

AT
k 0

 dxk

λ+
k

 = −

 ∇ϕµ (xk)

h (xk)

 (4.21)

where Hk = Wk +X−1
k Vk and then computing dλk and dvk as follows:

dλk = λ+
k − λk

dvk = µX−1
k e− vk − Σkd

x
k

(4.22)
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4.2.3 Reduced-space interior-point approach formulation

The search direction dxk obtained from the linear system (4.21) comes from the solution

of the following QP problem:

min
d∈Rn

∇ϕµ(xk)
Td+

1

2
dTHkd

s.t. AT
k d+ h (xk) = 0

(4.23)

The matrix Hk is assumed to be positive definite in the null space of AT
k . Here the

coordinate decomposition applied for the IP method can be used to partition the

primal variables x =
(
xI xD

)T
= (s û)T into dependent variables xD ∈ Rm that

occupies the whole slack variables space s and independent variables xI ∈ Rn−m that

occupies the whole control variables space û (see (4.15) above). As the consequence

of this decomposition, the constraint Jacobian is formed as:

AT =
[
C
(
xI
)

N
(
xD
)]

= [C (s) N (û)] (4.24)

Obviously, one gets C (s) = −Im. Then the basis matrix can be defined as:

Rk =

 Im

0

 and Qk =

 −C−1
k Nk

In−m

 =

 Nk

In−m

 (4.25)

where Ck = C
(
xD
k

)
= C (sk) = −Im and Nk = N

(
xI
k

)
= N (ûk). The primal search

direction dxk then can be written as:

dxk = RkdR +QkdQ (4.26)

The range-space direction can be computed as:

dR = −
[
AT

kRk

]−1
hk = −hk (4.27)

The null-space direction dQ is the solution of the following reduced QP sub-problem:

min
dQ∈Rn−m

(
QT

k∇ϕµ (xk) + ζkωk

)T
dQ +

1

2
dTQQ

T
kHkQkdQ (4.28)
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It can be obtained by directly solving the dense symmetric linear system:

dQ = −B̃−1
k

(
QT

k∇ϕµ (xk) + ζkωk

)
(4.29)

where B̃k is the overall reduced Hessian; ζk is damping parameter ζk ∈ (0, 1] and ωk

is the cross term that can be approximated as ωk = QT
kΣkdR, respectively.

4.2.4 Jacobian computation

Back to (4.24), the next task is to calculate the Jacobian part N(û) of the constraint

with respect to the independent variables xI = û ∈ Rn−m. In our method, the

DAEs are solved successively from element to element at each NLP iteration, so that

sensitivities of the states with respect to controls can be computed simultaneously.

Here by considering the discretized DAE system in the kth iteration of NLP with the

lth element, the model equations at the collocation points can be written as:

cℓ
(
ẑkℓ,0, û

k
ℓ , ẑ

k
ℓ

)
= 0; ℓ = 1, ..., NL (4.30)

where ẑkℓ,0 is the initial value of ẑkℓ of the element, NL is the number of elements,

respectively. According to the theorem of implicit functions, one obtains:

dẑℓ
dûℓ

= −∇ẑℓc
−T
ℓ ∇ûℓ

cℓ (4.31a)

dẑℓ
dẑℓ,0

= −∇ẑℓc
−T
ℓ ∇ẑℓ,0cℓ (4.31b)

For the state profile continuity, the last collocation point of element ℓ is taken as the

initial point of the next element ℓ + 1, so that the sensitivities can be transferred by
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the chain rule. The Jacobian of part N(û) has the following structure:

N(û) =



a1

a2,1 a2 0
...

. . . . . .

a2,ℓ
. . . . . . aℓ

...
. . . ai,j

. . . . . .

aNL,1 aNL,2 · · · aNL,ℓ · · · aNL



ẑ1, interval 1

ẑ2, interval 2

ẑℓ, interval ℓ

ẑNL, interval NL

û1 û2 ûℓ ûNL

interval 1 interval ℓ interval NL

(4.32)

where the intervals mean the time elements of discretization of DAEs and the elements

of (4.32) can be calculated as:

aℓ =

(
dẑkℓ
dûk

ℓ

)T

; ℓ = 1, ..., NL (4.33a)

ai,j =

(
dẑki
dûk

j

)T

=

(
dẑki
dẑk0,i

)T(
dẑki−1

dûk
0,i−1

)T

· · ·

(
dẑkj
dûk

j

)T

(4.33b)

i, j = 1, . . . , NL; i > j

4.3 Parameter Estimation Problems framework with

Multiple Datasets

Mathematical models are increasingly used in process control and optimization. Based

on chemical, physical and thermodynamic principles, mathematical models are usually

described with a large number of nonlinear DAEs in which model parameters must be

identified based on measured data-sets. The quality of the parameter identification

plays an essential role in the on-line model utilization, such as model predictive control

(MPC). Thus, multiple data-sets from a series of dynamic curves are needed to improve

the accuracy of the parameter identification. For dynamic systems there may be time-

dependent parameters to be estimated from available plant data. Therefore, it is

desirable to develop efficient estimation strategies and numerical algorithms which
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should be able to solve such challenging estimation problems, including multiple data

profiles and large parameter sets.

The approach proposed in this work is an extension of the work by Faber et al. [2003] to

address parameter estimation problems for dynamic systems. A novel three-stage com-

putation framework, whose core is based on a quasi-sequential interior-point method,

takes advantages of space decomposition in the interior-point method and parallel

computing in order to reduce the computation time.

First, the dynamic parameter estimation problem is transformed into a large NLP

problem using collocation on finite elements. Then the model parameters to be esti-

mated are treated in the upper stage by solving a NLP problem with only boundary on

variables. The middle stage consists of multiple parallel nested NLPs which represents

the data reconciliation step for each data set. By dividing the discretized variables

space into a dependent (state) and an independent (control) space, only independent

variables are treated by the IP solver. In the lower stage (or simulation layer), the

model equations are solved by using the Newton method to compute the dependent

variables. The sensitivities of the dependent variables with respect to the independent

variables as well as estimated parameters of each time interval, which are required from

the middle and upper stage, will be transmitted through the continuity relation from

element to element according to the chain rule. Mathematical derivations and compu-

tation schemes are introduced together with an example of parameter estimation of a

CSTR to demonstrate the effectiveness of the proposed approach.

4.3.1 Error-In-Variables formulation of parameter estimation

problem

Over the past years, many efforts have been made to solve different parameter es-

timation problems, and a number of decomposition algorithms have been proposed

to improve the performance of estimation problems with EIV formulation. By em-

ploying a two-level strategy for estimation and simulation, Doví and Paladino [1989]

presented a constrained variation approach to decouple the parameter estimation prob-

lem where the dependent variables are eliminated by solving model equations through

a simulation step. Kim et al. [1990] developed a slightly different approach using

a two-stage NLP procedure to address data reconciliation and parameter estimation
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step separately. Tjoa and Biegler [1991] proposed a similar approach based on SQP

for parameter estimation problem with implicit models.

Due to the differential constraints usually present in the dynamic process model, non-

linear dynamic estimation problems with EIV formulation are more challenging. Albu-

querque and Biegler [1995] proposed an estimation approach based on an efficient de-

composition strategy to estimate the process states and parameters simultaneously. In

[Arora and Biegler, 2004] a nonlinear trust-region SQP approach using a full discretiza-

tion method was developed to the parameter estimation for a polymerization reactor.

Zavala et al. [2008b] extended this simultaneous approach to solve the multiple data,

large-scale, DAE constrained parameter estimation problems. Further development

of this approach was presented in [Zavala and Biegler, 2006], in which the associated

large-scale parameter estimation problem is solved using IP algorithm (IPOPT) and

parallel computing strategy. Due to the nonlinear nature of the process models, the

resulting parameter estimation optimization problem is non-convex and may contain

multiple local optima. To obtain global optimum of the parameter estimation prob-

lems, a global optimization procedure based on the deterministic branch and bound

global optimization algorithm (αBB) was presented to solve the EIV formulation [Es-

posito and Floudas, 2000]. More recently, some heuristic optimization methods, such

as genetic algorithm (GA) [Wongrat et al., 2005] and particle swarm optimization

(PSO) [Prata et al., 2010], have been used to solve complex parameter estimation and

data reconciliation problems.

Although there has been considerable interest in parameter estimation in the pro-

cess industry, very few studies have been made on exploiting the structure of the

EIV formulation and multiple data profiles. All the aforementioned approaches need

large mathematical manipulations to obtain the second-order derivatives of the model

equations, which will become extremely expensive for the solution of large-scale DAE

constrained parameter estimation problems and, therefore, have not been easily im-

plemented with standard NLP software. Making use of the optimality condition of

the sub-NLP problem, Faber et al. [2003] proposed a three-stage framework for the

estimation of nonlinear steady-state systems with multiple data-sets. In this study

the method of [Faber et al., 2003] is extended to the PE of dynamic systems described

by DAEs and derive a quasi-sequential algorithm for dynamic parameter estimation

problems. It means that in this study a dynamic three-stage estimation framework

is developed. Due to the decomposition of the optimization variables, the proposed
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approach can also solve time-dependent parameter estimation problems with multiple

data profiles by a standard NLP solver. Further, case studies are used to demonstrate

the performance of this approach.

4.3.2 Three-layer Quasi-Sequential Approach

Using the collocation method, a polynomial approximation of state variables is ap-

plied to the differential Eq. (2.8b). The input variables and parameters are assumed

to be piecewise constants in each element. The optimization problem (2.8) is then

reformulated as the following large NLP problem:

min
p̂l,ûj,l,ẑj,l,i,ŷj,l,i

F =
NS∑
j=1

fj =
NS∑
j=1

NL∑
l=1

[(
ŷj,l,NC − yMj,l

)T
V −1
y

(
ŷj,l,NC − yMj,l

)
+
(
ûj,l − uM

j,l

)T
V −1
u

(
ûj,l − uM

j,l

)]
(4.34a)

s.t.

0 = Ĝj(ẑj,l,i, ŷj,l,i, ûj,l, p̂l), (4.34b)

0 ≤ Ĥj(ẑj,l,i, ŷj,l,i, ûj,l, p̂l), (4.34c)

pL ≤ p̂l ≤ pU (4.34d)

where Ĝj ≡
[
Fj Gj

]T
and i = 1, . . . , NC; NC is number of collocation point

(in each time interval). The number of (discretized) variables of this NLP problem is

NS ×NL× (NC × (nz + ny) + nu) +NL× np.

For the parameter estimation of nonlinear steady-state models, Faber et al. [2003]

proposed a sequential approach to solving large scale parameter estimation problems

with multiple data-sets, where a nested three-stage computation was presented to de-

compose the problem. This idea is extended in this thesis to develop a new decompo-

sition approach for dynamic parameter estimation problems. Based on the collocation

method and the quasi-sequential dynamic optimization approach, a novel three-stage



92 Improved Approaches to Dynamic Optimization

 

 
                                         

ˆ
1

 min

ˆ ˆ ˆ. . 

l

NS

j
p

j

L U

l

F F

s t p p p





 



ˆ
lp 1

1;
ˆ

l

F
F

p





 
1,

1
ˆ

1 1, , 1,

 min

ˆ ˆ ˆ. .  , , 0

1, ,
1, ,

ˆ
lu

l i l l

F

s t H u p

l NL

x

i NC






1,
ˆ ˆ,l lu p

 1, 1, ,0 1, , 1,
ˆ ˆ ˆ, , , 0

1, ,
1, ,

ˆ ˆ
l l l i l lG u p

l NL
i

x

N

x

C






Sensitivities
1

1

ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

d G G

du x u

d

x

x G G

dp px





  
     

  
     

Simulation 1

Newton-Raphson

x̂

Upper stage

ˆ
lp ;

ˆ
NS

NS

l

F
F

p





 
NS,ˆ

NS, , NS,

 min

ˆ ˆ ˆ. .  , , 0

1, ,
1, ,

ˆ
l

NS
u

NS l i l l

F

s t H u p

l NL
i NC

x 




NS,
ˆ ˆ,l lu p NS, NS,

NS,

;
ˆ

ˆ ˆ

ˆ

l l

l l

d d

d

x

d

x

u p

 NS, NS, ,0 NS, , NS,
ˆ ˆ ˆ, , , 0

1, ,
1, ,

ˆ ˆ
l l l i l lG u p

l NL
i C

x

N

x 




SensitivitiesSimulation NS

Newton-Raphson

x̂

M
id

d
le

 s
ta

g
e

L
o

w
er

 s
ta

g
e

1, 1,

1,

ˆ ˆ
;

ˆ ˆ

l l

l l

d d

du d

x

p

x

1

1

ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

ˆ ˆ

d G G

du x u

d

x

x G G

dp px





  
     

  
     

Fig. 4.3 Diagram of the three-stage computation framework

computation framework for parameter estimation problem to dynamic systems is de-

rived in this Section. In particular, estimation problems with time-dependent param-

eters can be addressed with this method. The scheme of the proposed estimation

framework is shown in Fig. 4.3.

In this work, it is assumed that the measurement points coincide with the collocation

grids. For large-scale DAE systems, problem (4.34) may be too large for a standard

NLP solver to deal with. Wächter and Biegler [2006] developed the IPOPT source

code based on the IP method coupled with the simultaneous approach to NLP prob-

lems. Hong et al. [2006] proposed a quasi-sequential approach to large-scale dynamic

optimization problems. In this study, in order to take advantages from both of them,

the quasi-sequential approach is coupled with the IP method to solve the parameter

identification problem (4.34).



4.3 Parameter Estimation Problems framework with Multiple Datasets 93

4.3.2.1 The upper stage

The upper stage as shown in Fig. 4.3 solves the parameter estimation problem in

which the variables u and y are considered as functions of p:

min
p̂l

F =
NS∑
j=1

fj =
NS∑
j=1

NL∑
l=1

[(
ŷj,l − ymj,l

)T
V −1
y

(
ŷj,l − ymj,l

)
+
(
ûj,l − um

j,l

)T
V −1
u

(
ûj,l − um

j,l

)]
(4.35a)

s.t.

pL ≤ p̂l ≤ pU (4.35b)

Since only p̂l are treated as optimization variables with only bound constraints (4.35b),

the size of this optimization problem is NL×np. The objective function value (4.35a)

and its gradient will be supplied from middle stage.

4.3.2.2 The middle stage

The middle stage consists of multiple NLPs nested in the upper stage, representing a

data reconciliation step for each data profile, which can be considered as a dynamic

optimization problem. With given values of the parameters from the upper stage, the

sub-NLP problem for each data profile has the following form:

min
ûj,l,ẑj,l,i,ŷj,l,i

fj =
NL∑
l=1

[(
ŷj,l,NC − ymj,l

)T
V −1
y

(
ŷj,l,NC − ymj,l

)
+
(
ûj,l − um

j,l

)T
V −1
u

(
ûj,l − um

j,l

)]
(4.36a)

s. t.

0 = Ĝj(ẑj,l,i, ŷj,l,i, ûj,l, p̂l), (4.36b)

0 ≤ Ĥj(ẑj,l,i, ŷj,l,i, ûj,l, p̂l), (4.36c)

The dimension of this problem is (NL × NC × (nz + ny) + NL × nu). This number

may be still too large for a standard NLP solver to deal with. To solve this large-

scale NLP problem with available software, the efficient quasi-sequential optimization

method proposed in Section 3.6 is used. The quasi-sequential approach uses a two-
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layer optimization strategy for solving dynamic optimization problems, as shown in

Fig. 4.5.

Let x̂ = [ẑ, ŷ]T , in the quasi-sequential method, (4.36) can be rewritten as follows:

min
ûj,l

fj =
NL∑
l=1

[(
ŷj,l,NC − ymj,l

)T
V −1
y

(
ŷj,l,NC − ymj,l

)
+
(
ûj,l − um

j,l

)T
V −1
u

(
ûj,l − um

j,l

)]
(4.37a)

s. t.

0 = Ĝj(x̂j,l,i, ûj,l, p̂
∗
l ) (4.37b)

0 ≤ Ĥj(x̂j,l,i, ûj,l, p̂
∗
l ) (4.37c)

4.3.2.3 The lower stage

In this stage, the following nonlinear equation system Eq. (4.37b) at the temporary

point p̂∗l will be solved:

0 = Ĝj,l(ẑj,l,0, x̂j,l,i, ûj,l, p̂
∗
l ) (4.38)

where j = 1, . . . , NS; l = 1, . . . , NL; i = 1, . . . , NC; and k denotes the kth iteration of

NLP. The Newton steps are generated by:

∆x̂kk = −

(
∂Ĝj

∂x̂

)−1

z̃kk

Ĝj (x̂kk, ûk, p̂
∗) = −C−1 (x̂kk, ûk, p̂

∗) Ĝj (x̂kk, ûk, p̂
∗) (4.39a)

x̂kk+1 = x̂kk +∆x̂kk (4.39b)

where kk denotes the Newton iterations.
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Fig. 4.4 Flowchart of the three-stage serial computation framework
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Fig. 4.5 Structure of two-layer optimization
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4.3.2.4 Calculation of the gradient and sensitivity matrix

The gradient of the objective function in the upper stage can be formulated as:

dF

dp̂
=

NS∑
j=1

[
∂fj
∂ûj

∂ûj

∂p̂
+

∂fj
∂ŷj

(
∂ŷj
∂ûj

∂ûj

∂p̂
+

∂ŷj
∂p̂

)]
=

NS∑
j=1

[(
∂fj
∂ûj

+
∂Fj

∂ŷj

∂ŷj
∂ûj

)
∂ûj

∂p̂
+

∂fj
∂ŷj

∂ŷj
∂p̂

]
(4.40)

According to the optimality condition of the sub-NLP problem in the middle stage,

one gets:

Φj

(
û∗
j , p̂
)
=

∂fj
∂ûj

+
∂fj
∂ŷj

∂ŷj
∂ûj

= 0 (4.41)

Then, the required gradient for the upper stage will be:

dF

dp̂
=

NS∑
j=1

[(
∂fj
∂ûj

+
∂fj
∂ŷj

∂ŷj
∂ûj

)
∂ûj

∂p̂
+

∂fj
∂ŷj

∂ŷj
∂p̂

]
⇒ dF

dp̂
=

NS∑
j=1

[
∂fj
∂ŷj

∂ŷj
∂p̂

]
(4.42)

Therefore, the values of
∂ûj

∂p̂
, which are related to second derivatives [Faber et al.,

2003], are not required. In this way the computation expense will be significantly

reduced. For the middle stage, the method IP quasi-sequential optimization in Section

3.6 is applied.

For the middle stage, considering the model equation system at the convergence of the

sub-NLPs, the sensitivity matrix can be obtained by linearization of model equations

Eq. (4.38) as:

∇ẑl,0Ĝ
T
j,l∆ẑj,l,0 +∇x̂j,l

ĜT
j,l∆x̂j,l +∇ûj,l

ĜT
j,l∆ûj,l = 0 (4.43)

For the sensitivity of the state variables with respect to the input variables as well as

the estimated parameters, according to the theorem of implicit functions, one obtains:

dx̂j,l

dûj,l

= −

(
∂Ĝj,l

∂x̂j,l

)−1
∂Ĝj,l

∂ûj,l

(4.44a)

dx̂j,l

dẑj,l,0
= −

(
∂Ĝj,l

∂x̂j,l

)−1
∂Ĝj,l

∂ẑj,l,0
(4.44b)
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Algorithm 4.3.1: Algorithm of three-layer IP quasi-sequential approach

Provide initial values p0 and bounds of parameter variables, set q = 0;

repeat// Outer iteration

1. Input p values into sub-NLP problems;

2. for j = 1 to NS do
3. Given a number of elements, discretize the control variables, and state

variables with the collocation method, provide initial values of control

variables and bounds for all variables, set k = 0 for the jth sub-NLP;

4. repeat// Inner iteration

5. Solve nonlinear model Eqs. (4.34b) using Newton-Raphson

method in the Simulation layer;

6. Compute the sensitivities
dx̂j,l

dûj,l

and
dx̂j,l

dẑj,l,0
by Eq. (4.44);

7. Compute the values of the object function and constraints:

fj(·), Ĥj(·), as well as their gradients with respect to ûk: ∇ûfj(·) and

∇ûHj(·) as following:

∇ûf =
∂f

∂ŷk
∂ŷk

∂ûk
+

∂f

∂ûk

and ∇ûĤ(ẑ) =
∂Ĥ

∂ẑk
∂ẑk

∂ûk
+

∂Ĥ

∂ûk
, ∇ûĤ(ŷ) =

∂Ĥ

∂ŷk
∂ŷk

∂ûk
+

∂Ĥ

∂ûk
;

8. Call an (IP) solver to get the search direction dûk;

9. Set ûk+1 ← ûk + dûk; k ← k + 1;

until convergence criteria the inner NLP are satisfied ;

10. Compute the sensitivities
dx̂j,l

dpl
= −

(
∂Ĝj,l

∂x̂j,l

)−1
∂Ĝj,l

∂p∗l
;

end

11. Compute the objective function value F =
NS∑
j

fj, and the gradient

dF

dp̂
=

NS∑
j=1

[
∂fj
∂ŷj

∂ŷj
∂p̂

]
;

12. Call an (IP) solver to get the search direction dpq;

13. Set pq+1 ← pq + dpq; q ← q + 1;

until convergence criteria of the outer NLP are satisfied ;
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4.3.3 Parallel computing
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Fig. 4.6 Parallel timing diagram

Thanks to the significant development of multi-core architectures, high performance

computing (HPC) currently enables parallel processing for the solution of large-scale

and complex problems. Two structures are usually used for parallel programing: mes-

sage passing interface (MPI) and Open Multi-Processing (OpenMP).

Open Multi-Processing (OpenMP) [Chapman et al., 2007] uses a set of compiler di-

rectives to influence the runtime behavior of threads. It can simply inserts compiler

directives into a serial program to make it be a parallel one. These directives can

be incrementally added, so that the existing serial program can be parallelized one

portion after another. This means that there is no need to dramatically change the

code. OpenMP can be treated as comments if sequential compilers are used, so that a

unified code may be used for both serial and parallel applications. OpenMP is consid-

ered to be easier to program and debug in comparison to MPI. The most important

drawback of the OpenMP is that it can only run in shared memory computers that
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are usually more expensive than distributed memory ones. OpenMP is mostly used

for paralleling loop operations. It also needs a compiler that can support OpenMP

structure [Chandra et al., 2000; Chapman et al., 2007].

MPI uses method of message passing to send and receive data as well as revoke the

actual code in different processes to run [Gropp et al., 2014a,b]. MPI can runs on both

shared and distributed memory architectures and exploits both task parallelism and

data parallelism. These facts make it be widely used in a vast range of problems. In

MPI routines it is much easier to maintain the values of variables because each process

controls its own local variables. MPI is preferred to distributed memory architectures

which are much cheaper than shared memory architectures. Since MPI does the

real parallel task, it requires more programming efforts to change from a serial to a

parallel version. Therefore MPI can be harder to debug. More details are given in the

literature, e.g., [Chapman et al., 2007] for OpenMP and [Gropp et al., 2014a,b; Keller

et al., 2010] for MPI. Hybrid methods that couple OpenMP and MPI can be found

in [Drosinos and Koziris, 2004; Jost et al., 2003; Nakajima, 2012; Rabenseifner et al.,

2009; Weiss, 2012].

4.3.4 A case study: parameter estimation of the CSTR model

4.3.4.1 The interior point quasi-sequential approach

The CSTR model Eqs. (4.9) is used here as an example of the PE problem. Fol-

lowing [Kim et al., 1990], to avoid the collinearity between parameters, a parameter

transformation is used, resulting in the following rate equations:

k1 = p1 exp

[
−p2

(
Tr

T
− 1

)]
(4.45a)

p1 = k0 exp

(
−E
RTr

)
; (4.45b)

p2 =

(
E

RTr

)
; (4.45c)

where Tr = 350(K) is reference temperature.
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where k1 is the Arrhenius rate expression and k0 and E are the Arrhenius constants.

These parameters will be estimated based on measurement data profiles.

Here, two parameters p1 and p2 need to be estimated. The state variables are the level

of the tank h, the molar concentration c, and the reactor temperature T . Control

variables are the outlet flow rate F and the coolant liquid temperature Tc. F0, c0, T0

are the known constant inlet flow, inlet concentration and coolant liquid temperature.

Data sets are generated by adding Gaussian distributed error of 5% to 10% noises

to the signals of the model. In addition, step changes to input and control variables

F0, c0, T0, F, Tc are introduced to the system and 10 data sets are produced in the

case that parameter p1 is assumed to start to decrease from p1,0 = 1.0(min−l) to

0.8(min−l) at t = 15min with a first-order filter (time constant 15min.) due to some

strong disturbances in the operation condition and p2 keeps constant at the value of

p2 = 25.0 over the time horizon of tf = 50min. The data sets are generated at the

sampled time of 1 minute so that there are 50 subintervals NC = 50 (see Fig. 4.2).

The PE problem is formulated as follows:

min
pl,uj,l,xj,l,yj,l

F =
10∑
j=1

Fj =
10∑
j=1

50∑
l=1

[(
yj,l − yMj,l

)T
V −1
y

(
yj,l − yMj,l

)
+
(
uj,l − uM

j,l

)T
V −1
u

(
uj,l − uM

j,l

)]
(4.46a)

s.t.
dh

dt
=

F0 − F

πr2
(4.46b)

dc

dt
=

F0(c0 − c)

πr2h
− p1 exp

[
−p2

(
Tr

T
− 1

)]
c (4.46c)

dT

dt
=

F0(T0 − T )

πr2h
+
−∆H

ρCp

p1 exp

[
−p2

(
Tr

T
− 1

)]
c+

2U

rρCp

(Tc − T ) (4.46d)

0.5 ≤ h ≤ 2.5 (m) (4.46e)

0.87 ≤ c ≤ 1.0 (mol/l) (4.46f)

290 ≤ T ≤ 350 (K) (4.46g)

85 ≤ F ≤ 115 (l/min) (4.46h)

290 ≤ Tc ≤ 310 (K) (4.46i)

pL ≤ p ≤ pU (4.46j)
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where : p = [p1, p2]
T ; u = [F, Tc]

T ; y = [h, c, T ]T ; x = ∅.

The middle layer sub-NLP problems are solved by the IPOPT Fortran coded by A.

Wächter [Wächter, 2002] in two manners: the reduced-space and the full space type in

three cases, the 1st case (start value [p1,0, p2,0] = [0.9, 24.0]) and 2nd case (start value

[p1,0, p2,0] = [0.8, 26.0]) with the assumption that both p1 and p2 are free variables,

and the 3rd case (start value p1,0 = 0.8) with the assumption that p1 is free and p2 is

kept constant at the true value p2 = 25.0. Results computed by a desktop CPU Intel

D830 3.0GHz and 1GB RAM are shown in Table 4.2, Fig. 4.7 to Fig. 4.11.

As shown clearly in Table 4.2, the reduced-space method with the basic matrix formed

by slack variables is generally 2.38 times to 4.58 times faster than the full space method

whereas the number of iterations are nearly the same. Fig. 4.8a and Fig. 4.8b show

that, in the 1st and 2nd case, both p1 and p2 are kept at their shapes but cannot converge

to their real values. This result may be due to the strong correlations between the two

estimated parameters p1 and p2 because the results in Fig. 4.10a and Fig. 4.10b show

that the state variables in the two cases nearly fit their originals (with different values

of p1 and p2). In the 3rd case, we keep the parameter p2 constant as its real value.

Then we obtain the result as shown in Fig. 4.9a. It can be seen that p1 fits its real

value in an acceptable manner. This means there is an identifiability problem. This

is maybe due to the fact that the sensitivities of parameter p2 to the output variables

are too small. Fig. 4.9a also shows that when we increase the number of measurement

data sets, the parameter estimation will have better results.

As for the data reconciliation, Figs. 4.10 and 4.11 show that the EIV method gives

acceptable results. Fig. 4.8 also shows that if the number of measurement data sets

are increased from 1 to 5 and 10, the parameter estimation will provide better results.

Moreover, in order to test the case in that the measure of all the state and control

variables is sparse and incomplete (that is usually the real situation), it is assumed

that the concentration cannot be measured during the experiment. It means that the

y variables in Eq. (4.46) now changed to y = [h, T ]T and x = [c]T . Results shown in

Table 4.2, Figs. 4.8 to 4.11 lead to the conclusion that in this situation, the proposed

method still can work well despite of the fact that it takes larger CPU time to solve

the optimization problem.
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(a) Measurement of molar concentration (b) Measurement of reactor temperature

Fig. 4.7 Measurement of 10 data sets

(a) Parameter p1 profile (b) Parameter p2 profile

Fig. 4.8 Parameter identification results with 10 data sets in three cases

Table 4.2 CPU time and number of iterations

Description 1st case 2nd case 3rd case

Num. of data sets 1 5 10 1 5 10 1 5 10

CPU time rIP 4.4 12.1 33.5 4.2 27.6 71.4 2.4 22.4 71.5

(s) Full 10.5 55.4 82.8 7.1 43.5 163.8 8.1 56.8 218.5

Iterations
rIP 6 5 7 7 8 8 5 6 6

Full 6 6 7 7 8 7 5 6 6
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(a) Parameter p1 with full measurement (b) Parameter p1 without measurement of c

Fig. 4.9 Parameter p1 identification results with full and lack of measurement of vari-
ables

(a) Estimation of c with full measurement (b) Estimation of T with full measurement

Fig. 4.10 Estimation of variables c and T with full measurement of variables
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(a) Estimation of c (b) Estimation of T

Fig. 4.11 Estimation of variables c and T with lack of measurement of c variable

4.3.4.2 The parallel computation approach

In the three layer quasi-sequential approach, the sub-NLPs are independent of each

other. Therefore this method is suitable to be impelemented for parallel computation.

In this study, a parallel strategy using the MPI structure (in the MPICH2 environ-

ment) is applied as in the following algorithm 4.3.2 and flowchart 4.12:

Algorithm 4.3.2: Algorithm of three-layer IP quasi-sequential approach in par-
allel mode

1. MPI Init;
2. pid ← id of process;
3. if pid = 0 then

master() ; /* Procedure (4.3.1) */

else
slave() ; /* Procedure (4.3.2) */

end
4. MPI_Finalize();

In the MPICH2 environment, the number of nodes NMPI is depicted in the first column

of Table 4.3. The reduction of the total CPU time tT in the parallel computation

framework of the three-stage EIV problem depends much on the time of the function

evaluation tF because this stage is to solve the sub-NLPs. The IPOPT CPU time

tIPOPT of the upper layer NLP takes a smaller portion in the total CPU time tT and

does not change much. The CPU time of the function evaluation tF relates to the
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number of the data sets (associated with the sub-NLPs) in that the sub-NLPs are

solved separately by each node in the MPI parallel mode. As we can see in Table 4.3

and Fig. 4.14, tF is reduced when the number of nodes are increased from 2 to 6.

At the number of node NMPI = 6, the total CPU time tF is reduced approximately

3 times in comparison with the case of 2 nodes (meaning there is no parallel node

at all). In fact, the time reduction in the parallel mode depends on many factors as

shown in Fig. 4.6, e.g., the hard level of tasks, the communication time between nodes,

the load unbalance between tasks, and so on. When the number of nodes NMPI is

increased from 6 to 10 nodes, the total CPU time does not change. This maybe is due

to the hard task of some sub-NLPs that take most of the time tF . When the NMPI

is increased to 11, the total CPU time is increased too. This fact can be explained

by the computation capacity of the computer system. The PC used in this study has

only 4 physical cores that can handle only 8 threads. As shown in Fig. 4.13, when

the number of nodes NMPI is larger than 10, the CPU of the dedicated PC is alway

consumed at 100% capacity.

4.3.5 Summary

Parameter estimation for nonlinear dynamic systems remains as a challenging task

both methodologically and computationally. In this Section, a three-stage computa-

tion framework is developed for solving parameter estimation problems for dynamic

systems based on multiple data profiles. First, the dynamic parameter estimation

problem is transformed to an NLP problem by using collocation on finite elements.

The model parameters to be estimated are treated in the upper stage by solving an

NLP problem. The middle stage consists of multiple NLPs nested in the upper stage,

representing the data reconciliation step for each data profile. The dynamic opti-

mization problems in the middle stage are solved by an efficient IP QSQ dynamic

optimization method. Since the second-order derivatives of the model equations are

avoided, the computation expense is significantly reduced. In addition, the decoupled

sub-NLPs allow parallel computing that can make use of the HPC to improve CPU

time consumption. The computational results obtained from parameter estimation for

the case study demonstrate the effectiveness of the proposed approach.
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Start

Set initial values for p

Upper stage NLP

Calculate function and 

gradient values for upper NLP

Synchronize and initiallize threads

Solve sub-NLP 1

Convergence?

Solve model 

equations through 

simulation
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Fig. 4.12 Flowchart of the three-stage parallel computation framework
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Fig. 4.13 CPU performance of the CSTR PE problem in parallel mode

Fig. 4.14 Parallel computation of the CSTR parameter estimation
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Procedure 4.3.1: master for the three-stage parallel computation framework

Provide initial values p0 and bounds of parameter variables, set q = 0;
repeat// Outer iteration

1. ntasks ← number of process;
2. work ← NS ; /* NS is number of data sets, ntasks ≤ NS */

3. for j = 1 to ntasks do
4. Send a Message containing kind of work to every slave;

end
5. for j = 1 to ntasks do

6. Send data (values of p) to every slave;
end
7. while work != NULL do

8. Receive the results (values of objective function f and the

sensitivities
dŷj
dp̂qj

) from the slave that has finished its work;

9. Send the free slave a new data;
10. work ← work-1;

end
; /* There is no more data set available */

11. for j = 1 to ntasks do
12. Receive all the outstanding results from the slaves;

end

13. Compute the objective function value F =
NS∑
j

fj, the gradient

dF

dp̂
=

NS∑
j=1

[
∂fj
∂ŷj

∂ŷj
∂p̂

]
;

14. Call an (IP) solver to get the search direction dpq;
15. Set p̂q+1 ← p̂q + dp̂q; q ← q + 1;

until convergence criteria of the outer NLP are satisfied ;
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Procedure 4.3.2: slave for the three-stage parallel computation framework

1. while True do
2. Receive Message from the Master ; /* kind of work */

3. if Message = Problem solved then
break ; /* get out of current loop! */

else
4. while True do

5. Receive Message containing p value from the Master;
6. if Message = No more data set available then

break ; /* get out of current loop! */

else
7. Given a number of elements, discretize the control variables,
and state variables with the collocation method, provide initial
values of control variables and bounds for all variables, set k = 0
for the jth sub-NLP;
8. repeat// Inner iteration

9. Solve nonlinear model Eqs. (4.34b) using Newton-Raphson
method in the Simulation layer;

10. Compute the sensitivities
dẑj
dûk

j

and
dŷj
dûk

j

;

11. Compute the values of the object function and
constraints: fj(·), Ĥj(·), as well as their gradients with respect
to ûk: ∇ûfj(·) and ∇ûHj(·) as following:

∇ûf =
∂f

∂ŷk
∂ŷk

∂ûk
+

∂f

∂ûk

and ∇ûĤ(ẑ) =
∂Ĥ

∂ẑk
∂ẑk

∂ûk
+

∂Ĥ

∂ûk
, ∇ûĤ(ŷ) =

∂Ĥ

∂ŷk
∂ŷk

∂ûk
+

∂Ĥ

∂ûk
;

12. Call an (IP) solver to get the search direction dûk;
13. Set ûk+1 ← ûk + dûk; k ← k + 1;

until convergence criteria the inner NLP are satisfied ;

14. Compute the sensitivities
dŷj
dp̂qj

;

15. Send the objective function value fj and the sensitivities
dŷj
dp̂qj

to the Master;

end

end

end

end
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Table 4.3 Parallel computation of the CSTR parameter estimation

Number of
Nodes NMPI

IPOPT time
(w/o function)

tI

Function
evaluation tF

Total CPU time
tT

2 4.524 26.624 31.148

3 2.814 16.011 18.825

4 1.868 11.125 12.993

5 1.744 10.396 12.14

6 1.542 8.916 10.458

7 1.409 9.114 10.523

8 1.404 9.029 10.433

9 1.466 9.14 10.606

10 1.355 9.135 10.49

11 1.429 10.789 12.218

4.4 An improved Multiple-Shooting Approach

In Section 3.8 of Chapter 3, the CMSC approach is described. In that development

[Tamimi and Li, 2010] the inequalities (2.8e) are forced to become inequality con-

straints of the NLP only at the grid points of the model equation. This fact can let

the state variables to violate the constraints (2.8e) at the collocation points inside

the time intervals between the grid points. In order to overcome this drawback, an

improvement is applied to the previous CMSC approach by applying constraints to

all collocation points in each time interval. In the improvement approach, the NLP

problem (3.91) can be rewritten as:

min
ũl,zl,0

f(x̂(ũl, zl,0), ũl) (4.47a)

s.t. zl+1,0 = ẑl,NC (4.47b)

0 ≤ Ĥ(x̂l,i, ũ, zl,0) (4.47c)

ũL ≤ ũl ≤ ũU (4.47d)

l = 1, . . . , NL; i = 1, . . . , NC (4.47e)
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together with the model equation discretized by the collocation method:

cl(x̂l,i, ûl, zl,0, p) = 0 (4.48)

4.4.1 Sequential simulation layer

As mentioned in 3.8, in the simulation layer, a (variation of) Newton-Raphson method

is applied to solved the nonlinear systems (4.48) formed by the collocation method. A

normal sequential solution of these nonlinear systems was applied in [Tamimi and Li,

2010] as depicted in the following Algorithm 4.4.1:

4.4.2 Parallel simulation layer

In the multiple shooting method, the initial value problem (IVP) solutions and deriva-

tive computations in all time intervals are independent of each other. Therefore this

method is also suitable for parallel computation. In this Section, a parallel strategy

using MPI environment is applied as in the following algorithm 4.4.2:

Algorithm 4.4.2: Algorithm of CMSC approach in parallel mode

1. MPI Init;

2. pid ← id of process;

3. if pid = 0 then

master() ; /* Procedure (4.3.1) */

else

slave() ; /* Procedure (4.3.2) */

end

4. MPI_Finalize();
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Algorithm 4.4.1: Algorithm of the improved combined multiple shooting and
collocation strategy with sequential simulation layer

Given a number of elements, discretize the control variables, and state variables
with the collocation method, provide initial values of control variables and
bounds for all variables, set k = 0;
repeat/* Outer iteration */

1. for l = 1 to NL do
1. Solve nonlinear model Eqs. (3.89b) using the (variation of)
Newton-Raphson method;

2. Evaluate the sensitivities
dx̂

dũk
,
dx̂

dz̃k0
;

end
; /* Sequential simulation layer */

2. Evaluate the values of the object function and constraints:
f(x̂(ũk, zk0 ), ũ

k), Ĥ(x̂(ũk, zk0 ), ũ
k, zk0 ), as well as their gradients with respect

to ũk and zk0 : ∇ũf(x̂(ũ
k, zk0 ), ũ

k),∇zk0
f(x̂(ũk, zk0 ), ũ

k),∇ũĤ(x̂i(ũ
k, zk0 ), ũ

k, zk0 ),

∇zk0
Ĥ(x̂i(ũ

k, zk0 ), ũ
k, zk0 ) (with i = 1, . . . , NC) as following :

∇ũf =
∂f

∂xk

∂x̂k

∂ũk
+

∂f

∂ũk

∇zk0
f =

∂f

∂xk

∂x̂k

∂zk0
+

∂f

∂zk0

∇ûĤ =
∂Ĥ

∂x̂k
i

∂x̂k
i

∂ũk
+

∂Ĥ

∂ũk

∇zk0
Ĥ =

∂Ĥ

∂x̂k
i

∂x̂k
i

∂zk0
+

∂Ĥ

∂zk0

3. Call the active-set SQP solver to solve the NLP to get the search
direction dũk;
4. Set ũk+1 ← ũk + dũk; k ← k + 1;

until convergence criteria are satisfied ;
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Procedure 4.4.3: Master for the CMSC
Provide initial values ul,0, p0, zl,0 and bounds of all variables, set q = 0;
repeat// Outer iteration

1. ntasks ← number of process;
2. work ← NL ; /* NL is number of time intervals, ntasks ≤ NL
*/

3. for j = 1 to ntasks do
4. Send a Message containing kind of work to every slave;

end
4. for j = 1 to ntasks do

5. Send data (values of p) to every slave;
end
6. while work != NULL do

7. Receive the results (values of x̂j and the sensitivities
dx̂j

dũq
j

,
dx̂j

dẑq0
) from

the slave that has finished its work;
2. Send the free slave a new data;
3. work ← work-1;

end
; /* There is no more time interval available */

6. for j = 1 to ntasks do
1. Receive all the outstanding results from the slaves;

end
2. Evaluate the values of the object function and constraints:
f(x̂(ũk, zk0 ), ũ

k), Ĥ(x̂(ũk, zk0 ), ũ
k, zk0 ), as well as their gradients with respect

to ũk and zk0 : ∇ũf(x̂(ũ
k, zk0 ), ũ

k),∇zk0
f(x̂(ũk, zk0 ), ũ

k),∇ũĤ(x̂i(ũ
k, zk0 ), ũ

k, zk0 ),

∇zk0
Ĥ(x̂i(ũ

k, zk0 ), ũ
k, zk0 ) (with i = 1, . . . , NC) as following :

∇ũf =
∂f

∂xk

∂x̂k

∂ũk
+

∂f

∂ũk

∇zk0
f =

∂f

∂xk

∂x̂k

∂zk0
+

∂f

∂zk0

∇ûĤ =
∂Ĥ

∂x̂k
i

∂x̂k
i

∂ũk
+

∂Ĥ

∂ũk

∇zk0
Ĥ =

∂Ĥ

∂x̂k
i

∂x̂k
i

∂zk0
+

∂Ĥ

∂zk0

8. Call an (IP) solver to get the search direction dpq;
9. Set ũq+1 ← ũq + dũq, pq+1 ← pq + dpq; q ← q + 1;

until convergence criteria of the outer NLP are satisfied ;
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Procedure 4.4.4: Slave for the CMSC
1. while True do

2. Receive Message from the Master ; /* kind of work */

3. if Message = Do the computing then
4. while True do

5. Receive Message containing z0, u, p value from the Master;
6. if Message = No more work then

goto step 2 ; /* get out of current loop! */

else
7. Solve the nonlinear system Eqs. (4.48);

8. Compute the sensitivities
dx̂j

dũq
j

,
dx̂j

dẑq0
;

9. Send the objective function value x̂j and the sensitivities to
the Master;

end

end

else
break ; /* get out of current loop! */

end

end

4.4.3 Case studies

4.4.3.1 Control of a van der Pol oscillator

This van der Pol model is taken from [Canto et al., 2002] with a modification that

constrains the first state with a lower boundary (4.49e). The modified problem is

expressed as:
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min
u

x3(tf ) (4.49a)

s.t. ẋ1 = (1− x2
2)x1 − x2 + u (4.49b)

ẋ2 = x1 (4.49c)

ẋ3 = x2
1 + x2

2 + u2 (4.49d)

− 0.5 ≤ x1(t) (4.49e)

− 0.3 ≤ u(t) ≤ 1.0 (4.49f)

x(0) = [0, 1, 0]T (4.49g)

tf = 5.0 (4.49h)

This parameter problem is now solved using three methods: IP QSQ, pure CMSC

and modified CMSC with the number of time interval NL=[25,50,100,200,500] and

random initials within the constraints (4.49f) with and without the constraint (4.49e)

applied to the state x1. The IP code IPOPT [Wächter and Biegler, 2006] is used to

solve the NLP problem. The resulting nonlinear equation systems are solved by using

subroutines in the NAG library [NAG, 2012]. The whole problem is coded in C/C++

and run on a one core of a desktop PC Core i7-2600 CPU 3.4GHz and 16GB RAM.

Results with CPU time including the time for solving the NLP without (w/o) function

evaluation (IPOPT time), the time for solving model Eqs. (4.49b)-(4.49d) (function

evaluation) and the total time, and the objective function value (OBJ) are shown in

Table4.4.

In comparison to the function evaluation CPU time reported in Table 4.4 and Fig.

4.15a in the three cases, i.e., the IP QSQ with constraints at all collocation points,

the pure CMSC with constraints at only grid points, the modified CMSC with con-

straints at all collocation points. It can be seen that IP QSQ takes the longest time

which increases fast when the number of time intervals is increased. There are also

instabilities in the function evaluation, which may be due to the sequential solution

of the equation system Eqs. (4.49b)-(4.49d).

The CPU time of the two approaches, the pure CMSC and the modified CMSC,

increases linearly with the number of time intervals. The CPU time of the modified

CMSC is little bit higher than that one of the pure CMSC due to the increasing
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number of constraints.

The most important advantage of the modified CMSC over the pure CMSC is shown in

Fig. 4.16b. The pure CMSC lets the state x1 variable violate the constraint conditions

inside the time interval whereas the modified CMSC force the state x1 to meet the

constraint at all collocation points (−0.5 ≤ x1(t)). The different control u(t) profiles

that make the different x(t) profiles are shown in Fig. 4.17.

(a) Function evaluation CPU time (b) IPOPT CPU time

Fig. 4.15 CPU time of the van der Pol control problem with x1 constraint

(a) x(t) profile with x1 constraint
(−0.5 ≤ x1(t))

(b) State variable x1(t) profile with different
constraint levels

Fig. 4.16 x(t) profile with x1 constraint of the van der Pol control problem
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Table 4.4 Results of the van der Pol Control problem

Number of
time

intervals

IPOPT
time (w/o
function)

(s)

Function
evaluation

(s)

Total CPU
time (s)

OBJ value
x1

constraint

quasi-sequential

25 0.057 0.019 0.076 2.876324 no

50 0.12 0.044 0.164 2.869367 no

100 0.835 0.107 0.942 2.867781 no

200 4.762 0.205 4.967 2.867391 no

500 36.632 0.394 37.026 2.867282 no

25 0.097 0.055 0.152 2.877997 yes all

50 0.186 0.05 0.236 2.870763 yes all

100 1.42 0.381 1.801 2.869039 yes all

200 3.18 0.177 4.95 2.868635 yes all

500 42.686 0.524 43.21 2.868522 yes all

multiple shooting and collocation

25 0.015 0.01 0.025 2.876324 no

50 0.02 0.018 0.038 2.869367 no

100 0.027 0.031 0.058 2.867781 no

200 0.038 0.063 0.101 2.867391 no

500 0.085 0.157 0.242 2.867282 no

25 0.018 0.009 0.027 2.877546 yes grid

50 0.018 0.015 0.033 2.870631 yes grid

100 0.033 0.034 0.067 2.869019 yes grid

200 0.039 0.067 0.106 2.868627 yes grid

500 0.084 0.157 0.241 2.868517 yes grid

25 0.026 0.008 0.034 2.877637 yes all

50 0.029 0.022 0.051 2.870657 yes all

100 0.048 0.037 0.085 2.869027 yes all

200 0.106 0.085 0.191 2.868629 yes all

500 0.226 0.208 0.434 2.868517 yes all
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(a) u(t) profile (b) u(t) profile in the time between [0.5 1.5] s

Fig. 4.17 u(t) profile with x1 constraint of the van der Pol control problem

4.4.3.2 Control of the nonlinear CSTR system

The DOP problem (4.12) is reconsidered here. This problem is solved by using three

strategies, i.e., the IP QSQ, the pure CMSC and the modified CMSC with the number

of time interval NL=50 and random initials of control variables within the constraints

(4.12f)-(4.12g). The whole problem is coded in C/C++ with the MPI parallel envi-

ronment MPICH2 and run on a desktop PC Core i7-2600 4-cores (8 threads) CPU

3.4GHz and 16GB RAM.

Results are reported in Table 4.5 and Fig. 4.18. As we can see, IP QSQ and the

pure CMSC can converge to the objective function value of xtemp∗ = 0.901581 after

653ms and 133ms CPU time, respectively. The modified CMSC is used here with

parallel computation. In the MPICH2 environment, the number of nodes NMPI is

depicted in the first column of Table 4.5. The reduction of the total CPU time tT in

the parallel computation mode depends much on the time of the function evaluation

tF because the IPOPT CPU time tIPOPT does not change. The CPU time of function

evaluation, which relates to the number of time intervals in which the model equations

are solved separately by each node in the MPI parallel mode, is reduced when the

number of nodes are increased from 2 to 5. At the number of node NMPI = 5, the

total CPU time tT is reduced approximately 2.46 times in comparison to the pure

CMSC method. In fact, the time reduction in the parallel mode in comparison to

the serial mode depends on many factors as depicted in Fig. 4.6, e.g., the hard level
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of tasks, the communication time between nodes, the load unbalance between tasks,

and so on. When the number of nodes NMPI is increased to over 5 nodes, the total

CPU time is increased significantly. This issue can be explained by the computation

capacity of the computer system. The PC used in this study has only 4 physical cores

with 8 threads. As shown in Fig. 4.19, when the number of nodes NMPI is larger than

5, the CPU of the dedicated PC is alway consumed at 100%.

Fig. 4.18 Parallel computation performance of the CSTR control in MPI mode

4.4.3.3 Parameter estimation of a three-step pathway model

A three-step pathway [Mendes, 2001; Moles et al., 2003; Rodriguez-Fernandez et al.,

2006] is modeled by 8 nonlinear ODEs that describe 8 metabolic concentrations (state

variables) with 36 parameters, as given in Eq. (4.50). The P and S values in the ODEs

are considered as two control inputs specified by experimental design. To do the PE

problem, it is assumed that all the states can be measured with different inputs that

is used to produced 16 data sets. Each state is sampled with 20 measurement points

during the time horizon tf = 120(s).
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Table 4.5 CPU time (second) and OBJ value of the CSTR control problem

Number of
Nodes
NMPI

IPOPT
time (w/o
function)
tIPOPT (s)

Function
evaluation

tF (s)

Total CPU
time tT (s)

OBJ value
xtemp
∗

IP Quasi-sequential

1 0.555 0.098 0.653 0.901581

Multiple shooting with collocation [Tamimi and Li, 2010]

1 0.081 0.052 0.133 0.901581

MPI parallel

2 0.036 0.048 0.084 0.901581

3 0.038 0.028 0.066 0.901581

4 0.038 0.018 0.056 0.901581

5 0.037 0.017 0.054 0.901581

6 0.051 0.027 0.078 0.901581

7 0.048 0.032 0.08 0.901581

8 0.048 0.051 0.099 0.901581

9 0.048 0.054 0.102 0.901581

10 0.055 0.055 0.11 0.901581

11 0.061 0.069 0.13 0.901581

21 0.06 0.087 0.147 0.901581

26 0.06 0.151 0.211 0.901581

31 0.067 0.157 0.224 0.901581

41 0.075 0.407 0.482 0.901581

51 0.078 0.467 0.545 0.901581
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Fig. 4.19 Performance of the PC in parallel computation with over 5 nodes

Ġ1 =
V1

1 +
(

P
Ki1

)ni1
+
(
Ka1
S

)na1 − k1G1 (4.50a)

Ġ2 =
V2

1 +
(

P
Ki2

)ni2
+
(

Ka2
M1

)na2 − k2G2 (4.50b)

Ġ3 =
V3

1 +
(

P
Ki3

)ni3
+
(

Ka3
M2

)na3 − k3G3 (4.50c)

Ė1 =
V4G1

K4 +G1

− k4E1 (4.50d)

Ė2 =
V5G2

K5 +G2

− k5E2 (4.50e)

Ė3 =
V6G3

K5 +G3

− k6E3 (4.50f)

Ṁ1 =
kcat1E1(

1
Km1

)(S −M1)

1 + S
Km1

+ M1

Km2

−
kcat2E2(

1
Km3

)(M1 −M2)

1 + M1

Km3
+ M2

Km4

(4.50g)

Ṁ2 =
kcat2E2(

1
Km3

)(M1 −M2)

1 + M1

Km3
+ M2

Km4

−
kcat3E3(

1
Km5

)(M2 − P )

1 + M2

Km5
+ P

Km6

(4.50h)

The PE problem can be briefly expressed as:
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min
pl,yj,l

F =
NS∑
j=1

Fj =
NS∑
j=1

NL∑
l=1

[(
yj,l − yMj,l

)T
V −1
y

(
yj,l − yMj,l

)]
(4.51a)

s.t. the model Eqs.(4.50) (4.51b)

yL ≤ y ≤ yU (4.51c)

pL ≤ p ≤ pU (4.51d)

y(0) = y0 (4.51e)

tf = 120.0(s)

where y = [G1, G2, G3, E1, E2, E3,M1,M2]
T , NS = 16, NL = 20, p is a vector of 36

parameters named in the first column of Tables 4.7 and 4.8.

This DOP problem is formulate in two approaches, i.e., the sequential simulation layer

(serial) with the algorithm 4.4.1 and the parallel simulation layer with the algorithm

4.4.2 coupled with Procedures 4.4.3 and 4.4.4. The program is coded in C/C++

and run on a PC with Intel Core i7-980, 6 physical cores at 3.33GHz (12 threads),

4GB RAM, Windows XP. The IP code IPOPT [Wächter and Biegler, 2006] is used to

solve the NLP problem. The resulting nonlinear equation systems are solved by using

subroutines in the NAG library [NAG, 2012]. The MPICH2 environment is used to

utilize parallel computing.

In order to make a comparison, the Advanced Model Identification using Global Opti-

mization (AMIGO) package [Balsa-Canto et al., 2010; Balsa-Canto and Banga, 2011;

E Balsa-Canto, 2010a,b] is used as a competitor. All the required data for the PE

problem, i.e., boundaries for unknown parameters pL, pU , initial values p0, experimen-

tal data sets, are suggested by AMIGO. This problem is solved in two extreme cases

with two different initial values of the parameter, one with small values near the lower

boundaries and the other with large values near the upper boundaries, as depicted in

Tables 4.7 and 4.8. Results are reported in Table 4.6 (for CPU time consumption),

and Tables 4.7 and 4.8 (for the estimated parameters values). Figs. 4.20-4.23 show the

state profile associated with estimated parameter values in the high initials case. As

depicted in Tables 4.7 and 4.8, in these two extreme cases, AMIGO cannot converge to

the true values of the parameters p whereas the proposed approach (modified CMSC)

does. Table 4.6 shows the CPU time in which the modified CMSC in the parallel

mode is nearly 3.6 and 2.48 times faster than using the serial mode in the low and
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high initials case, respectively. In the parallel mode, the modified CMSC is also 5.23

and 1.85 times faster than using the AMIGO package, respectively.

Table 4.6 CPU time comparison between AMIGO and modified CMSC

CPU time (s)

AMIGO modified CMSC

Low High Low High

Serial Parallel Serial Parallel

20.9 19.3 51.6 44.5 IPOPT

48.7 8.8 196.8 24.7 Func.

147 128 69.6 28.1 248.4 69.2 Total
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Table 4.7 Result of parameter estimation problem of three path-way

Para LB UB
Initials

True
AMIGO Results mod. CMSC results

Low High Low
High (with confidence

interval)
Low High

V1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 2.72e+02 3.5427e+0 +− 1.9137e+2 7.09e−01 7.09e−01

Ki1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 1.93e+02 1.0049e+0 +− 3.4310e−1 9.97e−01 9.97e−01

ni1 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 7.36e+00 1.9968e+0 +− 1.9592e+0 2.00e+00 2.00e+00

Ka1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 4.17e+02 9.9758e−1 +− 4.1384e−1 9.97e−01 9.97e−01

na1 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 4.75e−01 1.9950e+0 +− 7.9737e−1 2.03e+00 2.03e+00

k1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 4.62e+01 3.5470e+0 +− 1.9162e+2 7.10e−01 7.10e−01

V2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 3.17e+02 1.0906e+0 +− 9.9678e+0 9.04e−01 9.04e−01

Ki2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 7.47e+01 1.0055e+0 +− 3.7916e−1 9.99e−01 9.99e−01

ni2 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 8.40e+00 2.0358e+0 +− 2.6171e+0 2.00e+00 2.00e+00

Ka2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 2.40e+02 9.9402e−1 +− 4.1269e−1 1.00e+00 1.00e+00

na2 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 4.60e-01 1.9927e+0 +− 9.2647e−1 2.00e+00 2.00e+00

k2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 6.29e+01 1.0954e+0 +− 1.0024e+1 9.04e−01 9.04e−01

V3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 4.51e+02 1.4751e+0 +− 1.7430e+1 9.58e−01 9.57e−01

Ki3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 4.47e+02 7.7397e−1 +− 1.5451e+0 9.99e−01 9.99e−01

ni3 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 1.74e+00 1.4950e+0 +− 3.1014e+0 2.00e+00 2.00e+00

Ka3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 5.23e+01 1.2700e+0 +− 2.2474e+0 9.99e−01 9.99e−01

na3 1.00e-1 1.00e+1 1.00e-1 3.00e+0 2.00e+0 6.87e−01 1.8456e+0 +− 1.5074e+0 2.00e+00 2.00e+00

k3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 7.98e+01 1.1228e+0 +− 1.3148e+1 9.58e−01 9.57e−01
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Table 4.8 Result of parameter estimation problem of three path-way (continued)

Para LB UB
Initials

True
AMIGO Results mod. CMSC results

Low High Low
High (with confidence

interval)
Low High

V4 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 1.92e+02 9.2291e−2 +- 1.6956e−1 1.01e−01 1.01e−01

K4 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 5.34e−01 1.0521e+0 +- 2.1861e+0 9.63e−01 9.63e−01

k4 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 2.71e+02 8.9625e−2 +- 1.3832e−1 1.04e−01 1.04e−01

V5 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 3.24e+02 1.0281e−1 +- 2.0309e−1 1.00e−01 1.00e−01

K5 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 5.54e+00 1.0502e+0 +- 2.4784e+0 9.98e−01 9.98e−01

k5 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 8.10e+01 9.9780e−2 +- 1.8010e−1 1.01e−01 1.01e−01

V6 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 4.23e+02 9.1005e−2 +- 2.3789e−1 1.00e−01 1.00e−01

K6 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 1.46e+00 7.9651e−1 +- 2.2426e+0 9.99e−01 9.99e−01

k6 1.00e-6 5.00e+2 1.00e-2 3.00e−1 1.00e−1 3.13e+02 1.0598e−1 +- 2.4081e−1 1.00e−01 1.00e−01

kcat1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 1.28e+02 9.2281e−1 +- 4.7910e−1 1.01e+00 1.01e+00

Km1 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 2.32e+02 1.1794e+0 +- 2.2996e+0 1.00e+00 1.00e+00

Km2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 4.94e+02 2.2439e+0 +- 1.9350e+1 1.08e+00 1.08e+00

kcat2 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 2.13e+02 9.4993e−1 +- 1.5644e+0 9.88e−01 9.88e−01

Km3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 1.95e+02 1.0784e+0 +- 2.8363e+0 1.01e+00 1.01e+00

Km4 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 3.55e+02 1.8148e+0 +- 1.6904e+1 1.00e+00 1.00e+00

kcat3 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 2.28e+02 1.2107e+0 +- 2.9047e+0 9.86e−01 9.86e−01

Km5 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 6.84e+01 1.3336e+0 +- 4.6697e+0 1.01e+00 1.01e+00

Km6 1.00e-6 5.00e+2 1.00e-2 2.00e+0 1.00e+0 6.94e−01 1.1271e+0 +- 2.5395e+0 1.01e+00 1.01e+00
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Fig. 4.20 State profiles of the AMIGO package in the high initials case

4.4.4 Summary

The pure CMSC has been shown to be efficient to solve DOPs. However, it has

a drawback of chance of letting the state variables violate the constraint conditions

inside each time interval of the discretization grids. The modified CMSC is proposed
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Fig. 4.21 State profiles of the AMIGO package in the high initials case (continued)
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Fig. 4.22 State profiles of the modified CMSC in the high initials case
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Fig. 4.23 State profiles of the modified CMSC in the high initials case (continued)
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here to overcome this issue. The results of the two illustration examples show the

efficiency of the modified method. In combination with the algorithm to parallelize

the solution of the model equations, the proposed method has advantage of less CPU

time taken to solve the DOPs.





Chapter 5

Identifiability analysis based on

identification of parameter

correlations

One of the challenging tasks in the grey-box mathematical modeling of nonlinear

dynamic models is parameter estimation. A nonlinear dynamic model usually contains

a large number of parameters among which there may exist implicit functional relations

(meaning parameter correlations) that lead to non-identifiability problems. Although

many approaches have been developed to address both structural and practical non-

identifiability problems, very few studies have been made to systematically investigate

parameter correlations.

In this Chapter a new approach that is able to identify both pairwise parameter cor-

relations and higher order interrelationships among parameters in nonlinear dynamic

models is presented. Based on the correlation information obtained in this way both

structural and practical non-identifiability can be clarified. Moreover, it can be con-

cluded from the correlation analysis that a minimum number of data sets, which

corresponds to the maximum number of correlated parameters among the correlation

groups, with different inputs for experimental design are needed to relieve the pa-

rameter correlations. The information of pairwise and higher order interrelationships

among parameters in nonlinear dynamic models gives a deeper insight into the cause

of non-identifiability problems. The result of this correlation analysis provides a neces-
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sary condition for experimental design in order to acquire suitable measurement data

for unique parameter estimation.

5.1 Introduction

In the grey-box modeling of nonlinear dynamic models, a question naturally arises,

whether unknown parameters of the chosen model structure can be uniquely estimated

from the given data? If not, what is the reason, due to the model structure itself or the

experimental data? To answer these questions, modelers need to do the identifiability

analysis step. An aim of identifiability analysis is to determine if the parameters of a

model are identifiable or not, i.e., whether its parameters can be uniquely estimated.

Therefore, identifiability analysis is a critical first step for parameter estimation due

to the fact that a model is only valid and useful when all of its parameter can be

uniquely estimated from the experimental data. In addition, it will be difficult for the

optimization solvers to converge if the postulated model is non-identifiable.

Identifiability of a model can be classified into structural (or a priori) identifiabil-

ity [Bellman and Ȧström, 1970] and practical (or a posteriori) identifiability [Cobelli

and DiStefano, 1980]. Structural identifiability studies the model with ideal continu-

ous noise free observations of the input and output variables [Walter and Pronzato,

1997]. Structural identifiability is a property of the model itself and this property

depends on how the model is constructed. Structural identifiability should be checked

before conducting experiments. Obviously, structural identifiability is necessary but

not sufficient to affirm an accurate estimation of the model parameters from exper-

imental data. In contrast, practical identifiability associates with real sparse noisy

measurements and it thus depends on how the experiments are conducted. Practical

identifiability in principle can be solved by means of suitable experimental design.

5.2 Definitions

A general nonlinear dynamic system can be described as follows:
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ẋ(t) = f(x(t),u(t),p) (5.1a)

y(t) = h(x(t),u(t),q) (5.1b)

x(t0) = x0

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm the control vector, and y(t) ∈ Rr

the output vector, respectively. In this study, two different sets of parameters, i.e.,

p ∈ RNP in the state equations and q ∈ RNQ in the output equations, are considered.

In most cases the number of parameters in the state equations is much larger than

that in the output equations.

Let θ = [p,q]T ,θ ∈ Ω, where Ω ∈ RNθ, Nθ = NP + NQ, some essential definitions

from [Miao et al., 2011] are expressed as follows:

Definition 5.2.1 (Identifiability)

The dynamic system described by Eq. (5.1) is identifiable if the parameter θ can

be uniquely determined from the given system input u(t) and the measurable system

output y(t); otherwise it is said to be unidentifiable.

As a results, the parameter θ is also said to be identifiable and unidentifiable, respec-

tively.

Definition 5.2.2 (Global identifiability)

A system structure is said to be globally identifiable if for any admissible input u(t) and

any two parameters vector θ1 and θ2 in the parameter space Ω, y(u,θ1) = y(u,θ2)

holds if and only if θ1 = θ2.

Definition 5.2.3 (Local identifiability)

A system structure is said to be locally identifiable if for any θ within an open neigh-

borhood of some point θ∗ in the parameter space, y(u,θ1) = y(u,θ2) holds if and only

if θ1 = θ2.

Definition 5.2.4 (Local strong identifiability (x0-identifiability))

For an admissible input u(t) in the time range of interest [t0, t1] and a given initial

state x0 = x(t0), which is independent of θ and not an equilibrium point, if there exists
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an open set Ω0 within the parameter space Ω such that, for any two different parameter

vectors θ1,θ2 ∈ Ω0, the solutions x(t,θ,u) exist on [t0, t1 + ε](t0 < ε ≤ t1 − t0) for

both θ1,θ2, and y(u(t),x0,θ1) = y(u(t),x0,θ2) on [t0, t0 + ε], the system structure is

said to be locally strongly identifiable (x0-identifiability).

Definition 5.2.5 (Structural identifiability)

Let CN
u [t0, t1] denote the function space expanded by all input functions on [t0, t1] which

are differentiable up to the order N, and let M denote an open set of initial system

states. The system structure is said to be structurally identifiable if there exist open

and dense subsets M0 ⊂M,Ω0 ⊂ Ω and U0 ⊂ CN
u [t0, t1] such that the system is locally

strongly identifiable at θ given u for any x0 ∈M0,θ ∈ Ω0 and u ∈ U0.

Definition 5.2.6 (Algebraic identifiability)

Based on algebraic equations of system state, input, and output, if a meromorphic

function

Φ = Φ(θ,u, u̇, · · · ,u(k),y, ẏ, · · · ,y(k)),Φ ∈ Rm,

can be constructed after a finite number of steps of algebraic calculation or differen-

tiation such that Φ = 0 and det
∂Φ

∂θ
̸= 0 hold in the time range of interest [t0, t1]

for any (θ,x0,u) in an open and dense subset of Ω ×M × CN
u [t0, t1], where k is a

positive integer, u̇, . . . ,u(k) the derivatives of u, and ẏ, . . . ,y(k) the derivatives of y,

the system structure is said to be algebraically identifiable.

The Definition 5.2.6 is used directly in system identifiability analysis techniques called

implicit function theorem in [Ljung and Glad, 1994b; Xia, 2003; Xia and Moog, 2003].

5.3 Structural identifiability analysis

Structural identifiability can be determined by a priori methods that use the perfect

data set without noise and continuous in time. [Chappell et al., 1990; Chis et al.,

2011b; Meshkat et al., 2009]. Methods for checking the structural identifiability of

nonlinear models are among power series based approaches including Taylor series

approach [Dochain et al., 1995; Petersen et al., 2003; Pohjanpalo, 1978] and generating

series approach [Jayasankar et al., 2009; Walter and Lecourtier, 1982] with possible

combination of identifiability tableaus [Balsa-Canto et al., 2010; Chis et al., 2011a],

the similarity transformation approach [Vajda et al., 1989a], the differential algebra
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based method [Bellu et al., 2007; Ljung and Glad, 1994b; Saccomani et al., 2010],

the direct test method [Denis-Vidal et al., 2001; Walter et al., 2004], the implicit

function theorem approach [Ljung and Glad, 1994b; Xia, 2003; Xia and Moog, 2003]

and the profile likelihood approach using simulated data [Flassig et al., 2015; Hengl

et al., 2007; Kreutz et al., 2012; Maiwald and Timmer, 2008; Raue et al., 2010, 2009;

Schaber, 2012].

The Taylor series approach requires high order derivatives of the system outputs with

respect to time by using the Taylor series expansion of the outputs in the vicinity of the

initial state. The Taylor series coefficients are calculated to form a system of nonlinear

algebraic equations in the parameters. The uniqueness of the solution of this resulting

system guarantees the structural identifiability of the original system. This method

is conceptually simple but the number of required derivatives is generally unknown.

Moreover, the resulting system of algebraic equations may be too complicated to solve.

Thus this method is not popularly used in practice [Chis, 2011; Miao et al., 2011].

The generating series approach uses the same concept as the Taylor series approach.

This method also uses the expansion of the outputs of the postulated system with

respect to inputs and time. The exhaustive summary that contains the coefficients of

the output functions and Lie derivatives is then used to examine the structural iden-

tifiability of the original system as the same manner as in the Taylor series approach.

Again, the generating series approach presents a challenge due to the unknownness of

the minimum number of the required Lie derivatives and the solution of the resulting

system of the algebraic equations [Chis, 2011; Miao et al., 2011]. Although the diffi-

culty in handling the resulting system of algebraic equations can be partially solved by

using the identifiability tableaus in [Balsa-Canto et al., 2010; Chis et al., 2011a], power

series based approaches may be not able to assess the identifiability of the parame-

ters for some particular cases [Chis, 2011]. The generating series approach has been

applied in the GenSSI code [Chis et al., 2011a] to test the structural identifiability of

biological models.

The similarity transformation approach, which is based on the local state isomor-

phism theorem, is only suitable to solve the identifiability problem for single-input

single-output (SISO) models. For multi-input multi-output (MIMO) models, it has

difficulties in solving partial differential equations and checking the prerequisite for

the controllability and observability conditions [McLean and McAuley, 2012].
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In the differential algebra based method, the non-observable differential states are

eliminated to produce differential relations between inputs, outputs and parameters.

The exhaustive summary then is obtained and can be solved by algebraic methods.

The solution of the resulting algebraic equations can precisely give the identifiability

information of the parameters. The disadvantage of this method is that it needs large

computational efforts when dealing with complex models [Chis, 2011]. The DAISY

program that uses the differential algebra based method has been built[Bellu et al.,

2007; Saccomani et al., 2010] to support the modelers in biological and physiological

areas.

The implicit function theorem approach tries to eliminates the unobservable states

by computing the derivatives of the observable outputs with respect to time of a

differential system, which depends on known inputs, outputs and parameters. The

partial derivatives of these differential equations with respect to parameters then are

computed to define an identification matrix. If this matrix is not singular then the

original system is identifiable. This method also requires high-order derivatives and

then the identification matrix may be very complicated to verify its singularity [Chis,

2011; Miao et al., 2011; Xia and Moog, 2003].

The direct test method uses directly the identifiability definition 5.2.2 or 5.2.3 to

analytically or numerically assess the parameter identifiability. This method utilizes

the sufficient condition of those definitions to check whether or not a system model is

identifiable. If a general dynamical system is identifiable then one gets:

y(u,θ1) = y(u,θ2)⇒ θ1 = θ2 (5.2)

In [Denis-Vidal and Joly-Blanchard, 2000; Denis-Vidal et al., 2001], this method was

applied to uncontrolled and autonomous system models, that is:

f(x,θ1) = f(x,θ2)⇒ θ1 = θ2 (5.3)

This method is not suitable for large-scale problems [Miao et al., 2011].

Recently, Raue et al. [2009] proposed to use profile likelihood to detect non-identifiability

for partially observable models. The parameter space is explored for each parameter by

repeatedly fitting the model to a given data set, which then provides a likelihood-based

confidence region for each parameter. Results from this method show that the number
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of practically non-identifiable parameters will decrease when more data sets are used

[Steiert et al., 2012]. The profile likelihood approach can also offer information on the

correlated relations among the parameters [Bachmann et al., 2011; Hengl et al., 2007;

Raue et al., 2009; Steiert et al., 2012]. The information on parameter correlations (e.g.,

correlated groups, correlated forms in a group, etc.,) is important for experimental de-

sign, so that a series of experimental runs with determined conditions can be carried

out to acquire proper measurement data sets for improving the quality of parameter

estimation. If the non-identifiability does not change for any data, these parameters

are called structurally non-identifiable. On the contrary, if the non-identifiability can

be remedied by data improvement, they are practically non-identifiable [Raue et al.,

2009, 2011]. The disadvantage of the profile likelihood approach is that it cannot show

the real type of the functional relation between correlated parameters. The MATLAB

toolbox PottersWheel has been developed to utilize the profile likelihood approach in

both structural and practical identifiability analysis [Hengl et al., 2007; Maiwald and

Timmer, 2008; Raue et al., 2009].

In summary, in recent years, structural identifiability analysis has gained great inter-

est in the field of chemical process and systems biology, e.g., see [Berthoumieux, 2012;

Chis, 2011; McLean and McAuley, 2012; Miao et al., 2011; Raue et al., 2014] and

references therein. Approaches for assessing global identifiability are usually difficult

to implement and restricted to moderate dimensional systems. It can be concluded

that further studies still need to be done in order to find new methods that can easily

address the identifiability problem of complex dynamic models, especially mathemat-

ically to figure out the type of the functional relations among the parameters in a

non-identifiability model.

5.4 Practical identifiability analysis

The a posteriori methods reveal practical identifiability properties based on results

from fitting parameters to available data sets. In most previous studies, correlations

are detected by analyzing the sensitivity matrix and the Fisher information matrix

(FIM) [Ashyraliyev et al., 2009; Chu et al., 2007; Cintrón-Arias et al., 2009; McLean

and McAuley, 2012; Vajda et al., 1989b; Yao et al., 2003], from which local confidence

regions of parameter solutions can be obtained. Sensitivity analysis is well suitable



140 Identifiability analysis based on identification of parameter correlations

to linear models but will have limitations for highly nonlinear models [Dobre et al.,

2012; Raue et al., 2011]. The code DecTrees has been written in C ++ to assess the

practical identifiability of biochemical models [Elsheikh, 2013].

In general, the quality of estimation results depends on the quality of data acquisi-

tion, the quality of the fitting method, and the quality of the model. Good experiment

design can lead to highly informative data which will enhance the accuracy and iden-

tifiability of model parameters. Therefore, the task of parameter estimation demands

an interactive endeavor of experiment and computation [Jacquez, 1998; Kreutz and

Timmer, 2009].

5.5 A new approach to detect parameter

correlations

Correlated parameters are non-identifiable. Very few studies have been jet made to

investigate parameter correlations. Yao et al. [2003] used the rank of the sensitivity

matrix to determine the number of estimable parameters. However, the subsets of

correlated parameters cannot be identified based on this result. Chu and Hahn [2007]

proposed to check the parallel columns in the sensitivity matrix to determine parame-

ter subsets in which the parameters are pairwise correlated. Quaiser and Mönnigmann

[2009] proposed a method to rank the parameters from least estimable to most es-

timable. These methods, however, cannot identify parameter groups in which more

than two parameters are correlated together but not in pairwise, i.e., the correspond-

ing columns in the sensitivity matrix are linearly dependent but not parallel. Such

correlations are called higher order interrelationships among parameters [McLean and

McAuley, 2012].

In system biology, the correlation phenomenon can be explained by the biological

background, e.g., genes or proteins which are expressed in a correlated manner, cor-

relations of expression levels between cells. As a consequence, certain regions in the

parameter space correspond to good model predictions. It means that the residual

value (quadratic error) remains low even if the parameters vary in certain regions. By

testing 17 biological models, Gutenkunst et al. [2007] concluded that collective fits

to large amounts of ideal time-series data lead to the fact that some eigenvectors are
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orders of magnitudes better constrained than others.

5.5.1 Identification of parameter correlations

The equation of the state sensitivity matrix can be derived by taking the first order

partial derivative of Eq. (5.1a) with respect to parameters p:

Ṡ =

(
∂f

∂x

)
S+

(
∂f

∂p

)
(5.4)

where S =
∂x

∂p
is the state sensitivity matrix. By solving this equation (see Section

A.1 of Appendix A for details) the state sensitivity matrix can be written as:

S =

t∫
t0

(
V(τ)

(
∂f

∂p

))
dτ (5.5)

where V(τ) is a matrix computed at time τ . It means that S has a linear integral re-

lation with the matrix

(
∂f

∂p

)
from t0 to t . If at any time

(
∂f

∂p

)
has the same linearly

dependent columns, the corresponding columns in S will also be linearly dependent,

i.e., the corresponding parameters are correlated. Therefore, parameter correlations

can be identified by checking the linear dependences of the column in the matrix(
∂f

∂p

)
which is composed of the first order partial derivatives of the right-hand side

of the ODEs. Based on Eq. (5.1b), the output sensitivity matrices are, respectively,

given by

∂y

∂p
=

∂h

∂x

∂x

∂p
= −∂h

∂x

(
∂f

∂x

)−1
∂f

∂p
(5.6a)

∂y

∂q
=

∂h

∂q
(5.6b)

To ensure unique estimation of the parameters (i.e., all parameters to be identifiable),

based on the measured data of y, it is necessary that the columns in the output

sensitivity matrices
∂y

∂p
,
∂y

∂q
are linearly independent. From Eq. (5.6b), relations of

the columns in
∂y

∂q
can be easily detected. The difficulty comes from Eq. (5.6a), since
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the sensitivity functions in
∂y

∂p
cannot be analytically expressed. However, from Eq.

(5.6a), the output sensitivity matrix is a linear transformation of
∂f

∂p
. Consequently,

there will be linearly dependent columns in
∂y

∂p
, if there are linearly dependent columns

in
∂f

∂p
. It means the necessary condition for unique estimation of p is that, at least,

the matrix
∂f

∂p
must have a full rank. Based on Eq. (5.1a),

∂f

∂p
is expressed as vectors

of the first order partial derivative functions:

∂f

∂p
=

[
∂f

∂p1
,
∂f

∂p2
, · · · , ∂f

∂pNP

]
(5.7)

Now relations between the partial derivative functions in Eq. (5.7) are analyzed. If

there is no correlation among the parameters, the columns in Eq. (5.7) will be linearly

independent, i.e., if

α1
∂f

∂p1
+ α2

∂f

∂p2
+ · · ·+ αNP

∂f

∂pNP

= 0 (5.8)

there must be αi = 0, i = 1, . . . , NP . Otherwise, there will be some groups of

vectors in
∂f

∂p
which lead to the following cases of linear dependences due to parameter

correlations. Let us consider a subset of the parameters with k correlated parameters

denoted as psub = [ps+1, ps+2, · · · , ps+k]
T with s+ k ≤ NP .

Case 1

α1
∂f

∂ps+1

= α2
∂f

∂ps+2

= · · · = αk
∂f

∂ps+k

(5.9)

where αi ̸= 0, i = 1, . . . , k. Notice that the coefficient αi may be a function of the

parameters (i.e., αi(p)) and/or of control inputs (i.e., αi(u(t),p)). It should be also

noted that the control inputs u(t) are considered as constants in these coefficients,

since they will be specified in experimental design. The linear dependences described

by Eq. (5.9) lead to pairwise correlations among the k parameters, i.e., any pair of

the parameters in psub are correlated. Moreover, the correlations mean a functional

relationship between the parameters, i.e., the relationship between the parameters can
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be expressed by an algebraic equation:

φsub(γ(ps+1, ps+2, · · · , ps+k)) = 0 (5.10)

where γ(ps+1, ps+2, · · · , ps+k) denotes a function of the parameters with one set of

pairwise correlated parameters. The parameters in this function are compensated each

other in an algebraic relationship, e.g., γ(ps+1+ps+2+· · ·+ps+k) or γ(ps+1ps+2 · · · ps+k).

Eq. (5.10) describes the functional relationship between the parameters, e.g., φsub(γ(·)) =
1 + γ(·)− (γ(·))2 = 0. Due to the complexity of biological models, an explicit expres-

sion of this equation is not available in most cases. If the coefficients in Eq. (5.9)

are functions of only the parameters, i.e., αi(p), the parameters are structurally non-

identifiable. In this case, the correlation relations in Eq. (5.9) will remain unchanged

by specifying any values of control inputs. It means that the non-identifiability cannot

be remedied through experimental design. If the coefficients in Eq. (5.9) are functions

of both the parameters and control inputs, i.e., αi(u,p), the parameters are practi-

cally non-identifiable. Different values for u can be specified which lead to different

αi(u,p), such that Eq. (5.9) will not hold and therefore the parameter correlations

will be relieved. Since k parameters are correlated, k different values of the control

inputs u(j), (j = 1, . . . , k) are required, such that the matrix:

∂f

∂psub

=


∂f (1)

∂ps+1

∂f (1)

∂ps+2
· · · ∂f (1)

∂ps+k

∂f (2)

∂ps+1

∂f (2)

∂ps+2
· · · ∂f (2)

∂ps+k

...
... · · · ...

∂f (k)

∂ps+1

∂f (k)

∂ps+2
· · · ∂f (k)

∂ps+k

 (5.11)

has a full rank. Notice that the columns in Eq. (5.11) are only linearly dependent

for the same input, but the columns of the whole matrix are linearly independent. In

this way, the non-identifiability is remedied. Moreover, a suggestion for experimental

design is provided for the specification of u(j), (j = 1, . . . , k) to obtain k distinct data

sets which will be used for parameter estimation.

If all state variables are measurable, according to Eq. (5.5), this subset of parameters

can be uniquely estimated based on the k data sets. If the outputs y are measured

and used for the parameter estimation, it can be concluded from Eq. (5.6a) that at

least k data sets are required for unique parameter estimation.
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Case 2

α1
∂f

∂ps+1

= · · · = αs+l1

∂f

∂ps+l1

, · · · , αs+ld−1+1
∂f

∂ps+ld−1+1

= · · · = αs+k
∂f

∂ps+k

(5.12a)

and αs+k+1
∂f

∂ps+1

+ αs+k+2
∂f

∂ps+l1+1

+ · · ·+ αs+k+d
∂f

∂ps+ld−1+1

= 0

and αs+k+1
∂f

∂ps+1

+ αs+k+2
∂f

∂ps+l1+1

+ · · ·+ αs+k+d
∂f

∂ps+ld−1+1

= 0 (5.12b)

where αi ̸= 0, i = 1, . . . , s + k + d. Similarly, the coefficients may be functions of

the parameters and/or of the control inputs. In this case, there are d sets of pairwise

correlated parameters (Eq. (5.12a)). A set is not correlated with another set, but all

sets are correlated together (Eq. (5.12b)). The functional relationship in this case can

be expressed by:

φsub(γ1(ps+1, · · · , ps+l1), · · · , γd(ps+ld−1+1, · · · , ps+k)) = 0 (5.13)

Based upon on Eq. (5.12a), the group with the maximum number of parameters

max(l1, l2, · · · , ld) is of importance for data acquisition. From Eq. (5.12b), in the case

of practical non-identifiability, data for at least d different inputs is required. The

combination of Eqs. (5.12a) and (5.12b) leads to the conclusion that one needs a

number of max(l1, l2, · · · , ld, d) data sets with different inputs to eliminate parameter

correlations in this case.

Case 3

α1
∂f

∂ps+1

+ α2
∂f

∂ps+2

+ α3
∂f

∂ps+3

+ · · ·+ αk
∂f

∂ps+k

= 0 (5.14)

where αi ̸= 0, i = 1, . . . , k. In this case, all k parameters are not pairwise correlated

but they are correlated together in one group. The correlation equation in this case

is expressed by:

φs(ps+1, ps+1, · · · , ps+k) = 0 (5.15)

which means there is no set of correlated parameters in this case. The approach

described above is able to identify pairwise and higher order parameter correlations in
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the state equations (Eq. (5.1a)). In the same way, correlations among parameters in

q in the output equations (Eq. (5.1b)) can also be detected based on the first order

partial derivative functions in Eq. (5.6b).

From the results of this correlation analysis, the maximum number of correlated pa-

rameters of the correlation groups can be detected. This corresponds to the minimum

number of data sets required for unique estimation of all parameters in the model. Fur-

thermore, it is noted that the initial state of the model has no impact on the parameter

correlations, which means that any initial state can be used for the experimental runs

for the data acquisition.

For complex models, the correlation equations (Eqs. (5.10),(5.13),(5.15)) cannot be

analytically expressed. A numerical method has to be used to illustrate the rela-

tionships of correlated parameters of a given model, which is discussed in the next

Section.

5.5.2 Interpretation of parameter correlations

Here an interpretation of parameter correlations in a biological model is given. Geo-

metrically, for NP parameters, i.e., p = [p1, p2, · · · , pNP ]
T , the estimation task can be

considered as searching for true parameter values p∗ in the NP -dimensional parame-

ter space. To do this, one needs NP linearly independent surfaces in the parameter

space which should pass through p∗. Mathematically, such surfaces are described by

linearly independent equations with the unknown parameters. Such equations are

defined based on the results of fitting model equations (5.1) to a data set (j) by

minimizing the following cost function:

min
p

F (j)(p) =
M∑
l=1

n∑
i=1

wi,l(x
(j)
i,l (p)− x̂

(j)
i,l )

2
(5.16)

where M is the number of sampling points, n is the number of state variables and

denotes the measured data while x(p) the state variables predicted by the model. wi,l

are weighting factors. The fitting results will depend on the data set resulted from

the control inputs u(j), the values of wi,l, and the noise level of the measured data.

For a geometric interpretation of parameter correlations, idealized measurement data

is assumed to be used, i.e., data without any noises. Based on this assumption, the
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residual function (5.16) should be zero, when the true parameter set x(p) is applied,

i.e.,

x
(j)
i,l (p

∗)− x̂
(j)
i,l = 0, i = 1, . . . , n, l = 1, . . . ,M (5.17)

It is noted that Eq. (5.17) is true for any noise-free data set employed for the fitting

and independent of wi,q. Now a zero residual equation (ZRE) can be defined as

ϕ
(j)
i,l (p) = x

(j)
i,l (p)− x̂

(j)
i,l = 0 (5.18)

This equation contains the parameters as unknowns and corresponds to a zero residual

surface passing through the true parameter point p∗. It means that a zero residual

surface is built by parameter values which lead to a zero residual value. This suggests

that one can find p∗ by solving NP linearly independent ZREs. From the first order

Taylor expansion of Eq. (5.18), the linear dependences of ZREs can be detected by

the columns in the following matrix

∂x(j)

∂p
=

[
∂x(j)

∂p1
,
∂x(j)

∂p2
, · · · , ∂x

(j)

∂pNP

]
(5.19)

where x(j) =
[
x
(j)
1,1, x

(j)
1,2, · · · , x

(j)
1,M , · · · , x(j)

n,1, x
(j)
n,2, · · · , x

(j)
n,M

]T
. Eq. (5.19) is exactly the

state sensitivity matrix calculated by fitting to the given data set (j). This means,

under the idealized data assumption, a zero residual value delivered after the fitting is

associated to surfaces passing through the true parameter point. When there are no

parameter correlations, the number of linearly independent ZREs will be greater than

NP and thus the true parameter point can be found by fitting the current data set.

If there are parameter correlations, the fitting will lead to zero residual surfaces in

the subspace of the correlated parameters. For instance, for a group of k correlated

parameters, the zero residual surfaces (Eq. (5.18)) will be reduced to a single ZRE

represented by Eq. (5.10), Eq. (5.13), or Eq. (5.15). Therefore, in the case of

practical non-identifiability, k data sets are needed to generate k linearly independent

ZREs so that the k parameters can be uniquely estimated. In the case of structural

non-identifiability, the correlated relations are independent of data sets. It means

fitting different data sets will lead to the same ZRE and thus the same surfaces in the

parameter subspace. If the measured data are with noises, the fitting results will lead
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to a nonzero residual value and nonzero residual surfaces, i.e.,

ϕ
(j)
i,l (p) = x

(j)
i,l (p)− x̂

(j)
i,l = εi,l (5.20)

where εi,l ̸= 0. Thus the nonzero residual surfaces will not pass through the true

parameter point. However, based on Eq. (5.19) and Eq. (5.20) the first order partial

derivatives remain unchanged. It means that parameter correlations do not depend

on the quality of the measured data. Moreover, it can be seen from Eq. (5.18) and

Eq. (5.20) that the zero residual surfaces and the nonzero residual surfaces will be

parallel in the subspace of the correlated parameters.

5.6 Case studies

5.6.1 A generic branched pathway as S-system

The first model is a generic branched pathway [Gonzalez et al., 2006; Jia et al., 2011;

Voit and Almeida, 2004] with 4 state variables and 18 parameters described as following

ODEs:

ẋ1 = p1x
p2
3 xp3

5 − p4x
p5
1 , x1(0) = a1 (5.21a)

ẋ2 = p6x
p7
1 − p8x

p9
2 , x2(0) = a2 (5.21b)

ẋ3 = p10x
p11
2 − p12x

p13
3 xp14

4 , x3(0) = a3 (5.21c)

ẋ4 = p15x
p16
1 − p17x

p18
4 , x4(0) = a4 (5.21d)

x5 = a5 (5.21e)

By defining the values a = [a1, a2, a3, a4, a5]
T (see the footnote of Table 5.1), two

datasets are generated in silico for 60 noise-free sampling points. For fitting the model

random values for all 18 parameters are used to initialize the computation and all

weights in (5.16) are set to 1. The results are taken by a threshold of the total

residual value in the order of 10−5 (Table 5.1). Fig. 5.1a shows the angles between

the columns of the sensitivity matrix after fitting to the 1st dataset, indicating a
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correlation between p1 and p3 by red dashed lines. The other angles shown in Fig.

5.1 not equal to zero mean that the other parameters are uncorrelated. Thus (5.18)

reduces to a single ZRE with p1 and p3 as unknowns. The parameter values identified

based on the 1st dataset are given in Table 5.1 (P(1)), indicating large discrepancies

of p1 and p3 to their true values. As expected, the uncorrelated parameters are found

almost at their true values.

To plot the correlated relation between p1 and p3, two zero residual surfaces are con-

structed by fitting the model to the two datasets separately. Repeated fittings are

made with fixed values of p1. As shown in Fig. 5.2, as expected, the zero residual

surfaces cross the solution point in the parameter space. Since the maximum number

of correlated parameters is 2, based on the our approach, 2 datasets are needed to

find the parameter solution. The 5th column P(1)+(2) in Table 5.1 gives the parameter

results by fitting the model to the two datasets together, indicating that p1 and p3

are now correctly identified. And the other parameter values in P(1)+(2) are improved

compared with those based on the single dataset (P(1)). Fig. 5.1b (red dashed line,

lower panel) shows that the angle between the two columns corresponding to p1 and

p3 is raised to about 8 degree, i.e., the correlation of p1 and p3 is remedied by fitting

to the two datasets together.

The computed results show that p1 and p3 are practically non-identifiable, since dif-

ferent values of a5 in the two datasets are used (see footnote of Table 5.1). In fact,

the non-identifiability of p1 and p3 can be easily figured out in the first equation in

Eq. (5.18) from which the effect of experimental design can be elucidated. According

to Eqs. (5.21) the first function to be partially derived are:

f1 = p1x
p2
3 xp3

5 − p4x
p5
1 (5.22)

Take the first partially derivative of f1 in Eq. 5.22 with respect to p1 and p3, one gets:

∂f1
∂p1

= x3
p2x5

p3 (5.23a)

∂f1
∂p3

= p1x3
p2x5

p3ln(x5) (5.23b)
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From Eq. (5.23) and (5.21e), it is easy to derive:

∂f1
∂p3

= ln(a5)p1

(
∂f1
∂p31

)
(5.24)

When the concentration of the 5th state a5 is not changed from different experimental

runs, fitting to the corresponding datasets will lead to a same ZRE. Then p1 and p3 are

structurally non-identifiable. If, due to experimental design, a5 is different in different

experiments, as shown in Fig. 5.2, they are practically non-identifiable and thus can

be remedied.

(a) results from fitting to the 1st dataset

(b) results from fitting to the 1st and 2nd datasets together

Fig. 5.1 Dendrogram of the generic branched pathway

To see the impact of measurement errors on the parameter values, the two datasets

are regenerated by introducing 3% Gaussian distributed noises to the simulated data

and the computations are carried out once again. The fitting results show residual

values in the order of 10−1 due to the 3% noise level (Table 5.1). It is shown in Table

5.1 (P(1)(w) and P(1)+(2)(w)) the parameter values identified based on datasets with

noises are less precise than those based on datasets without noises (P(1) and P(1)+(2)).
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Table 5.1 Parameter values of model Eqs. (5.21) based on one and two datasets

No. P∗ P(1) P(1)(w) P(1)+(2) P(1)+(2)(w)

1 (G1) 20 5.84348 5.7995 19.9941 20.1166

2 -0.8 -0.80119 -0.84939 -0.80163 -0.79172

3 (G1) 1 -1.41006 -1.38822 1.0018 0.99677

4 10 10.0014 9.66783 9.98661 10.1586

5 0.5 0.50048 0.51568 0.50111 0.49264

6 8 7.99022 7.97423 7.9984 8.0104

7 0.5 0.50081 0.50077 0.5004 0.49898

8 3 2.99164 2.95063 2.99661 2.99064

9 0.75 0.75122 0.75425 0.75066 0.74893

10 3 2.99373 2.14109 3.00075 2.15021

11 0.75 0.75123 0.91648 0.74988 0.91182

12 5 4.99328 4.16577 5.00094 3.96944

13 0.5 0.50108 0.5689 0.49994 0.61316

14 0.2 0.20042 0.2307 0.2 0.2331

15 2 1.99914 1.49493 2.00129 1.94233

16 0.5 0.50026 0.42521 0.49983 0.54046

17 6 5.99908 5.26185 6.00172 5.89148

18 0.8 0.80027 0.794 0.79984 0.81321

Residual 1.23E-05 3.59E-01 1.87E-05 6.53E-01

P∗ are the nominal (true) values, P(1) the values based on the 1st data set,
P(1)(2) based on the 1st, 2nd data sets together, respectively. (w) means re-
sults from 3% noises on the data. The two datasets are generated with a(1) =
[5.6, 3.1, 2.9, 3.1, 0.6]T and a(2) = [2.9, 3.1, 3.1, 5.6, 0.5]T . Correlated parameter
group (G1) is highlighted separately.
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Fig. 5.2 Correlated relations between p1 and p3

The reason is that the parameters are on a contour with nonzero residual values.

The non-identifiability issue was not investigated in previous studies on this pathway

model. Six noise-free datasets were used in [Voit and Almeida, 2004] to fit the param-

eters by using neural network techniques, leading to more imprecise parameter values

compared with our results based on two datasets, as given in Table 5.1. Using one

noise-free dataset, simulated annealing was employed by Gonzalez et al. [Gonzalez

et al., 2006] to fit the parameters of this model. Although the total residual value was

small (about 10−5), their results also showed relatively larger deviations to the true

parameter values in comparison to those shown in Table 5.1. Very likely, these devi-

ations are due to the inherent non-identifiability of the model. Also large deviations

were reported in [Jia et al., 2011] by a two-phase decoupling method.

5.6.2 A three-step pathway model

A three-step pathway is considered here consisting of 8 nonlinear ordinary differen-

tial equations (ODEs) containing 8 metabolic concentrations (state variables) and 36

parameters [Mendes, 2001; Moles et al., 2003; Rodriguez-Fernandez et al., 2006], as

given in Eq. (5.25). The P and S values in the ODEs are considered as two control

inputs specified by experimental design. No output equations were considered for this
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model in the previous studies.

ẋ1 =
p1

1 +
(

P
p2

)p3
+
(
p4
S

)p5 − p6x1 (5.25a)

ẋ2 =
p7

1 +
(

P
p8

)p9
+
(

p10
x7

)p11 − p12x2 (5.25b)

ẋ3 =
p13

1 +
(

P
p14

)p15
+
(

p16
x8

)p17 − p18x3 (5.25c)

ẋ4 =
p19x1

p20 + x1

− p21x4 (5.25d)

ẋ5 =
p22x2

p23 + x2

− p24x5 (5.25e)

ẋ6 =
p25x3

p26 + x3

− p27x6 (5.25f)

ẋ7 =
p28x4(S − x7)

p29

(
1 + S

p29
+ x7

p30

) − p31x5(x7 − x8)

p32

(
1 + x7

p32
+ x8

p33

) (5.25g)

ẋ8 =
p31x5(x7 − x8)

p32

(
1 + x7

p32
+ x8

p33

) − p34x6(x8 − P )

p35

(
1 + x8

p35
+ P

p36

) (5.25h)

This pathway model was studied by Moles et al. [2003] using 16 noise-free data sets and

Rodriguez-Fernandez et al. [2006] using 16 both noise-free and noisy data sets, respec-

tively. They showed some strong parameter correlations in several groups. Accurate

parameter values were identified in [Rodriguez-Fernandez et al., 2006]. However, a

clear correlation analysis of the parameters and the relationship between the param-

eter correlations and the numbers of data sets with different inputs required for the

parameter estimation were not given in the previous studies.

5.6.2.1 Identification of correlations

Now parameter correlations in this model are identified using the new approach. Given

the model represented by Eq. (5.25), the first order partial derivative functions can

be readily derived leading to the following linear dependences (see Section A.2 of

Appendix A for detailed derivation).

From Eq. (5.25a), α1
∂f1
∂p1

= α2
∂f1
∂p2

= · · · = α5
∂f1
∂p5

(5.26)
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From Eq. (5.25b), α6
∂f2
∂p8

=
∂f2
∂p9

and α7
∂f2
∂p7

+ α8
∂f2
∂p10

=
∂f2
∂p8

(5.27)

From Eq. (5.25c), α9
∂f3
∂p14

=
∂f3
∂p15

and α10
∂f3
∂p13

+ α11
∂f3
∂p16

=
∂f3
∂p14

(5.28)

From Eq. (5.25g), α12
∂f7
∂p28

+ α13
∂f7
∂p29

=
∂f7
∂p30

(5.29)

From Eq. (5.25h), α14
∂f8
∂p35

=
∂f8
∂p36

(5.30)

The coefficients in Eqs. (5.26 - 5.30), αi, (i = 1, . . . , 14), are functions of the corre-

sponding parameters and controls in the individual state equations (see Section A.2

of Appendix A). Based on these results, correlated parameters in this model can be

described in 5 groups:

Group 1: G1(p1, p2, p3, p4, p5) , among which any pair of parameters are pairwise cor-

related;

Group 2: G2(p7, p8, p9, p10) , among which p8, p9 are pairwise correlated and p7, p8, p10

as well as p7, p9, p10 are correlated, respectively.

Group 3: G3(p13, p14, p15, p16) , among which p14, p15 are pairwise correlated and

p13, p14, p16 as well as p13, p15, p16 are correlated, respectively.

Group 4: G4(p28, p29, p30), the parameters are correlated together but not pairwise.

Group 5: G5(p35, p36), they are pairwise correlated.

Since the coefficients are functions of both of the parameters and the control inputs,

these correlated parameters are practically non-identifiable for a single set of data.

It is noted that, in G2 and G3, the maximum number of correlated parameters is

three. Among the 5 correlated parameter groups the maximum number of correlated

parameters is 5 (from G1). It means at least 5 data sets with different control values

are required to uniquely estimate the 36 parameters of this model.
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5.6.2.2 Verification of the correlations by fitting the model

To verify the proposed approach and check the correlations in this model, numerical

experiments are carried out by fitting the parameters to a certain number of simulated

data sets with different inputs. The fitting method used is a modified sequential

approach suitable for handling multiple data sets [Faber et al., 2003; Zhao et al.,

2013].

The nominal parameter values given in [Moles et al., 2003] are used together with initial

state values as well as P and S values (see Table 5.2) given in [Rodriguez-Fernandez

et al., 2006] to generate 5 noise-free data sets with different inputs containing the time

courses of the 8 state variables. For each data set 120 data points were taken with 1

minute as sampling time.

Table 5.2 P and S values for generating 5 datasets

Dataset 1 2 3 4 5

P 0.05000 0.36840 1.00000 0.09286 0.13572

S 10.00000 2.15440 0.10000 2.15440 2.15440

For fitting the parameters random values are used for all 36 parameters to initialize

the computation and all weights in Eq. (5.16) were set to 1.0. The results were taken

by a threshold of the total residual value in the order of 10−9 when using noise-free

data sets (see Table 5.3).

Fig. 5.3a shows the angles between the columns of the state sensitivity matrix by

fitting to the 1st data set. The zero angles (red lines) mean that the corresponding

columns are pairwise parallel. According to Fig. 5.3a, 4 pairwise correlated parameter

groups (i.e., (p1, p2, p3, p4, p5), (p8, p9), (p14, p15), (p35, p36)) can be detected. However,

these are not the same results as identified by the analysis of the model equations.

This is because a dendrogram only shows pairwise correlations; it cannot detect higher

order interrelationships among the parameters.

To illustrate the geometric interpretation, the group of G5(p35, p36) is first taken as

an example to construct ZREs, i.e., to plot the correlated relations between p35 and

p36. This was done by repeatedly fitting the model to the 5 individual data sets with

different inputs, respectively, with fixed values of p35. The resulting 5 zero residual
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Table 5.3 Fitted parameter values based on different data sets

No. P∗ P(1) P(1)(2) P(1)(2)(3) P(1)···(4) P(1)···(5) P(1)···(5)(w)

1(G1) 1.0 1.06763 1.07763 1.60486 1.73180 1.00000 0.97145
2(G1) 1.0 1.40146 0.91495 0.82116 0.75989 0.99998 1.05917
3(G1) 2.0 1.47116 1.16323 2.39189 2.00001 2.00006 1.86755
4(G1) 1.0 1.55173 1.01042 2.30123 3.19504 1.00000 0.98664
5(G1) 2.0 1.40069 1.24912 0.32136 0.25317 2.00000 2.01339

6 1.0 1.00000 1.00002 1.00000 1.00000 1.00000 0.98154

7(G2) 1.0 1.00927 1.02815 1.00000 1.00000 1.00000 0.99124
8(G2) 1.0 1.32173 0.95504 1.00000 1.00000 1.00000 0.99919
9(G2) 2.0 1.34185 1.18286 2.00000 2.00000 2.00000 1.93527
10(G2) 1.0 1.00477 1.01393 1.00000 1.00000 1.00000 0.98693

11 2.0 1.99973 2.00007 2.00000 2.00000 2.00000 2.03582
12 1.0 0.99944 1.00019 1.00000 1.00000 1.00000 1.00435

13(G3) 1.0 1.00572 1.05126 1.00001 1.00001 1.00001 1.03448
14(G3) 1.0 1.39147 0.90768 1.00000 1.00000 1.00000 0.99558
15(G3) 2.0 1.45117 1.00760 2.00003 2.00002 2.00001 1.98699
16(G3) 1.0 1.00280 1.02531 1.00001 1.00000 1.00001 0.99786

17 2.0 1.99987 1.99999 1.99999 1.99999 1.99999 1.99586
18 1.0 1.00016 1.00000 1.00000 1.00000 1.00000 1.03924
19 0.1 0.10016 0.10000 0.10000 0.10000 0.10000 0.10000
20 1.0 1.00263 1.00000 1.00000 1.00000 1.00001 0.99469
21 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10007
22 0.1 0.10010 0.10000 0.10000 0.10000 0.10000 0.10000
23 1.0 1.00127 1.00000 1.00000 1.00000 1.00000 0.99581
24 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10025
25 0.1 0.10003 0.10000 0.10000 0.10000 0.10000 0.10492
26 1.0 1.00023 1.00002 1.00001 1.00000 1.00001 1.05077
27 0.1 0.10001 0.10000 0.10000 0.10000 0.10000 0.10120

28(G4) 1.0 0.96519 0.99594 1.00000 1.00000 1.00000 1.01865
29(G4) 1.0 1.62390 1.04672 1.00000 1.00000 1.00001 0.90507
30(G4) 1.0 1.56817 1.04245 1.00000 0.99999 1.00000 0.85521

31 1.0 0.99997 1.00000 1.00000 1.00000 1.00000 1.11984
32 1.0 1.00110 1.00000 1.00000 1.00000 1.00000 0.97161
33 1.0 1.00207 0.99998 1.00000 0.99998 0.99998 1.33808
34 1.0 0.99956 1.00000 1.00000 1.00000 1.00000 1.01811

35(G5) 1.0 1.05000 1.00001 1.00000 1.00000 1.00000 1.05077
36(G5) 1.0 2.03075 0.99999 1.00000 1.00000 1.00000 1.20947

Residual value 3.62E-9 4.26E-9 5.31E-9 6.49E-9 5.35E-9 1.12E-0

P∗ are the nominal (true) values, P(1) the values based on the 1st data set, P(1)(2) based on the
1st, 2nd data sets together, P(1)(2)(3) based on the 1st, 2nd and 3rd data sets, P(1)···(4) based on
the 1st to 4th data sets, and P(1)···(5) based on the 5 data sets, respectively. (w) means results
from 10% noises on the data. Correlated parameter groups are highlighted separately.
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(a) Results from fitting to the 1st data set, where pairwise correlations in different groups
exist (red dash lines)

(b) Results from fitting to the 5 data sets together, where the pairwise correlations disappear

Fig. 5.3 Dendrogram of the three-step pathway model

(a) Fitting to noise-free data sets (b) Fitting to the data sets with 10% noise

Fig. 5.4 Correlated relations between p35 and p36 based on fitting the model to 5
individual data sets with different inputs
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surfaces (lines) in the subspace of p35 and p36 are shown in Fig. 5.4a. The 5 individual

zero residual surfaces cross exactly at the true parameter point. It demonstrates that

a zero residual surface from any data set will pass through the true parameter point

and two data sets will be enough to determine p35 and p36. As expected, the zero

residual surfaces resulted from different data sets cross indeed at the true parameter

point in the parameter subspace. Fig. 5.4b shows the relations between p35 and p36

by fitting the parameters separately to the same 5 data sets on which a Gaussian

distributed error of 10% was added. It can be seen that, due to the measurement

noises, the crossing points of the nonzero residual surfaces are at different positions

but near the true parameter point. Moreover, by comparing the lines in Fig. 5.4a and

Fig. 5.4b, it can be seen that the corresponding zero residual surfaces and nonzero

residual surfaces are indeed parallel, when fitting the same data set without noises or

with noises, respectively.

Fig. 5.5 shows the residual surfaces based on fitting to 2 individual noise-free data sets

(Fig. 5.5a) and to the same 2 data sets together (Fig. 5.5b). It is shown from Fig. 5.5a

that, due to the correlation, two hyperbolic cylinders are built by separately fitting to

individual data sets. The bottom minimum lines of the two cylinders corresponding to

the zero residual value cross at the true parameter point. Fitting to the two data sets

together leads to an elliptic paraboloid (Fig. 5.5b) which has only one minimum point

with the zero residual value. This point is the true parameter point, which means the

remedy of the correlation between p35 and p36.

(a) Fitting to 2 individual noise-free data sets (b) Fitting to the data sets with 10% noise

Fig. 5.5 Fitting to the same 2 data sets together

Since the maximum number of parameters among the correlation groups is 5, accord-

ing to our approach, at least 5 data sets with different inputs are needed to uniquely
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(a) Fitting to the 1st data
set

(b) Fitting to 1st and 2nd

data sets together
(c) Fitting to 5 data sets to-
gether

Fig. 5.6 Relationships of p35 with other parameters by fitting to different numbers of
noise-free data sets with different inputs

Fig. 5.7 Relations between p28, p29, and p30 based on fitting the model to 3 individual
noise-free data sets with different inputs



5.6 Case studies 159

determine the parameter set. The last column in Table 5.3 (P(1)···(5)) shows the pa-

rameter values from fitting the model to the 5 data sets together. It can be seen that

all of the 36 parameter values fitted are almost at their true values. According our

geometric interpretation, this means that the 5 zero residual surfaces expanded by

together fitting to the 5 data sets cross at the true parameter point in the parameter

subspace. Fig. 5.3b shows these correlated relations indeed disappear based on the

results of fitting to the 5 data sets together.

Moreover, it is shown in Table 5.3 (P(1)(2)) that the correlation between p35 and p36

can be remedied by fitting two data sets together. As expected, it can be seen that in

(P(1)(2)) the parameters in G1 are not well fitted (i.e., 5 correlated parameters cannot

be uniquely determined by two data sets). It is also interesting to see in (P(1)(2)) the

parameter values in G2, G3 and G4 are also not well estimated. This is because the

degree of freedom of G2(p7, p8, p9, p10), G3(p13, p14, p15, p16), and G4(p28, p29, p30) is 3.

Indeed, as shown in Table 2 (P(1)(2)(3)), these parameters are exactly determined based

on fitting the model to 3 data sets together. However, it is shown in Table 2 from the

parameter values of (P(1)(2)(3)) and (P(1)···(4)) that a number of data sets less than 5 is

not enough to remedy the correlations of the parameters in G1.

To test the sensitivity of the parameter results to measurement errors, the model is

also fitted to the same 5 data sets with different inputs and with 10% noise level

together. As shown in the last column in Table 5.3 (P(1)···(5)(w)), to some extent,

the parameter values identified are deviated from the true values due to an increased

residual value. But the overall parameter quality is quite good. It means the crossing

points of the 5 nonzero residual surfaces expanded by the 5 noisy data sets are quite

close to the true parameter point.

Fig. 5.6 shows profiles of all parameters as a function of p35, based on different number

of data sets used for fitting. It is seen from Fig. 5.6a that only p36 is correlated with

p35 (red dash line). Moreover, it can be seen that, by fitting to one data set, the other

parameters which have higher order interrelationships in other groups cannot be well

determined. As shown in Fig. 5.6b, the correlation between p35 and p36 is remedied by

fitting to two data sets together and, moreover, the parameters tend to approach their

true values (i.e., 0.1, 1.0 and 2.0, see Table 5.3). Finally, all parameters are uniquely

determined (i.e., clearly at the three true values), when 5 data sets were used together

for fitting the model, as shown in Fig. 5.6c.
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These results clearly demonstrate the scope of our approach to identifying parameter

correlations. Moreover, it is clearly seen that adding more data sets with different

inputs can remedy the parameter non-identifiability problem in some complex models,

but a necessary number of data sets with different inputs (5 for this example) is enough.

To illustrate a higher order interrelationship among parameters, estimations were made

by separately fitting the model to 3 individual data sets to plot the relations of the

parameters in G4(p28, p29, p30), as shown in Fig. 5.7. The fittings for p30 to each data

set were made by fixed p28 and p29 with different values. Three zero residual surfaces

are shown: the green plane is based on 1st data set, the red plane 2nd data set, and the

blue plane 3rd data set. It can be seen that the three zero residual surfaces (planes)

resulted from the three individual data sets cross exactly at the true parameter point

in the subspace of the 3 parameters. This demonstrates our geometric interpretation

of parameter correlations, i.e., to estimate a group of three correlated parameters at

least three distinct data sets with different inputs are needed.

Since parameter correlations determined from the proposed approach are based on the

structure of the state equations, our result provides a minimum number of different

data sets with different inputs necessary for unique parameter estimation (5 in this ex-

ample). This is definitely true, if all state variables (8 in this example) are measurable

and included in the 5 data sets.

The results shown above are from the solutions of the parameter estimation problem

based on the data sets composed of all 8 state variables. It is demonstrated that

at least 5 data sets with different inputs will be needed to uniquely estimate the

36 parameters. However, our method does not give information on how many state

variables which may be fewer than 8 but sufficient to identify the 36 parameters. To

achieve this information, an estimation of the parameters based on the generated 5

data sets which include fewer measured state variables (as output variables) is carried

out. The identifiability is checked when the 5 data sets consist of data profiles of only

a part of the state variables. Computational tests were carried out based on different

combinations of the state variables included in the data sets. Table 5.4 shows the

minimum sets of state variables which should be included in the data sets so as to

achieve a successful fitting. It can be seen, for instance, the 36 parameters can be

uniquely estimated in the case that only the first three state variables (i.e., x1, x2, x3)

are included in the 5 data sets. Moreover, the generated data profiles of x7 and x8
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are also enough for identifying the 36 parameters. Due to insufficient data, estimation

runs with fewer numbers of the state variables than listed in Table 5.4 could not

converge, i.e., the parameters will be non-identifiable.

Table 5.4 Measurable variable sets for a successful fitting

No. Measured variables

y1 (x1, x2, x3)

y2 (x1, x2, x6)

y3 (x1, x3, x5)

y4 (x1, x5, x6)

y5 (x2, x4, x6)

y6 (x4, x5, x6)

y7 (x7, x8)

5.7 Conclusions

In this Chapter, a new approach, which is able to identify both pairwise and higher

order parameter correlations, is presented. This approach is based on analysis of lin-

ear dependences of the first order partial derivative functions of model equations. In

a given model there may be a number of groups with different number of correlated

parameters. This method is proposed to identify these groups by analyzing the cor-

relations of the columns of the state sensitivity matrix which can be derived directly

from the right-hand side of the ODEs. Therefore, the method proposed in this research

is a priori in nature, which means that the parameter correlations considered in this

research are not from the results of data-based estimation. A geometric interpretation

of parameter correlations is also presented. Using this approach, groups of correlated

parameters and the types of correlations can be identified and, hence, the parameter

identifiability issue can be addressed. Moreover, the relationship between parameter

correlations and the control inputs can be derived. As a result, both structural and

practical non-identifiability can be identified by the proposed approach.

In the case of practical non-identifiability, the parameter correlations can be relieved

by specifying the values of control inputs for experimental design. Based on the

correlation analysis, the maximum number of parameters among the correlation groups
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can be determined, which corresponds to the minimum number of data sets with

different inputs required for uniquely estimating the parameters of the model under

consideration. Numerical results of parameter estimation of a three-step-pathway

model clearly demonstrate the efficacy of the proposed approach.

It is well recognized that parameters in many biological models are correlated. Finding

the true parameter point remains as a challenge since it is hidden in these correlated

relations. In many cases, a direct analysis of parameter correlations based on the out-

put sensitivity matrix depends on experimental design, and the analytical relationship

cannot be seen. Instead, this approach presents a new method to analyze parameter

correlations based on the matrix of the first order partial derivative functions of state

equations which can be analytically derived. In this way, pairwise correlations and

higher order interrelationships among the parameters can be detected. The result

gives the information about parameter correlations and thus about the identifiability

of parameters when all state variables are measurable for fitting the parameters. Since

the output sensitivity matrix is a linear transformation of the matrix of first order par-

tial derivative functions, our correlation analysis approach provides a necessary (but

not sufficient) condition of parameter identifiability. That is, if there exist parameter

correlations, the corresponding parameters are non-identifiable.

In addition, residual surfaces in the parameter subspace are introduced to interpret pa-

rameter correlations. Any point on a zero residual surface will result in a zero residual

value. The crossing point of multiple zero residual surfaces leads to the true parameter

point. Zero residual surfaces correspond to ZREs resulted from noise-free data sets

used for fitting the parameters. If the ZREs are linearly independent (i.e., there are

no correlations), the model parameters are identifiable, and otherwise they are non-

identifiable. If more linearly independent ZREs can be constructed by adding new

data sets with different inputs, the parameters are practically non-identifiable, other-

wise they are structurally non-identifiable. In the case of practical non-identifiability

the true parameter values can be found by together fitting the model to a necessary

number of data sets which is the maximum number of parameters among the corre-

lation groups. If the available measured data are from output variables, this should

be regarded as the minimum number of data sets with different inputs required for

unique parameter estimation. The results of the case study demonstrate the feasibility

of our approach.
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Moreover, an interesting result of this approach is that parameter correlations are not

affected by the initial state. This means that, experimental runs can be conducted

with any initial state to obtain the required data sets with different inputs. More

interestingly, according to this result, different data sets with different inputs can be

gained in one experimental run by changing the values of the control inputs. It is

noted that the proposed approach does not address the identifiability issue of the

initial states which would be a future research aspect.

The result of identifiable parameters determined by the proposed approach is theoret-

ical. This means that the quality of the available data (the noise level, the length of

sampling time, etc.,) has an important impact on the identifiability issue. Parameters

which are theoretically identifiable may not be identifiable by an estimator due to low

quality of the data. Non-identifiability issues caused by relative data are not consid-

ered in this research. In addition, the identification of parameter correlations based

on the output equations is not considered in this research.





Chapter 6

Conclusions and Future research

This dissertation is set out to deal with the problem of parameter estimation of large-

scale dynamical systems that are challenges due to computational intensiveness and

numerical difficulties caused by undesirable characteristics of the models. In this

final Chapter, the research contributions are briefly reviewed and directions for future

research are also discussed.

6.1 Conclusions

Parameter estimation of large-scale dynamical systems plays an important role in the

development of process models in technical as well as non-technical areas. Although

PE problem have currently received substantial attention in the literature, they remain

challenging because of the vast increase in the size of systems, undesirable character-

istics of the models, such as stiffness, ill-conditioning and correlations among parame-

ters of model equations. These main challenges include: building a well-posed system

model that is usually described by a ODE or DAE system, conducting experiments to

get measurement data and solving a PE problem that is usually a DOP with a least

squares objective function minimizing the difference between estimated outputs and

measurement data.

This dissertation is set out to participate in two aspects of above challenges: devel-

oping efficient estimation strategies and numerical algorithms which should be able
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to efficiently solve such challenging estimation problems, including multiple data pro-

files and large parameter sets, and developing a method for identifiability analysis to

identify the correlations among parameters in complex model equations.

Dealing with the first aspect, this dissertation especially focuses on the QSQ and

CMSC that were currently shown to be efficient to solve DOPs. This study couples

the interior point method with the QSQ to solve dynamic optimization problems, par-

ticularly parameter estimation problems. This IP QSQ method shows some advantages

over the active-set QSQ method in solving the PE problem with many constraints on

control, state and parameter variables, e.g. advantages of the solution path, better

convergence performance and less number of iterations.

Furthermore, an improvement of IP QSQ method is developed to solve parameter

estimation problems in that the reduced-space method of IP strategy is used. This

reduced-space version is shown to be less time consuming than the full space one.

In further development, an improvement to the existing CMSC is developed. In this

improvement, all state constraints are imposed at all collocation points in order to

prevent them from violating the constraint rule which maybe happen to the CMSC. A

parallel computing algorithm using the MPI method is also applied to parallely solve

each portion of the model equation in each time interval. This parallel strategy shows

the improvement in reducing the time consumption of the PE problem.

In PE problem, multiple data-sets of measurement data usually are used to improve

the quality of the parameter estimation solutions. In this dissertation, an exten-

sion to a dynamic three-stage estimation framework is made with a derivation to the

quasi-sequential strategy algorithm. Thanks to the decomposition of the optimization

variables, the proposed approach can efficiently solve time-dependent parameter esti-

mation problems with multiple data profiles. A parallel computing strategy using the

MPI method is also applied successfully to boost computation efficiency.

In the second aspect, this thesis proposes a systematic approach to identify both pair-

wise parameter correlations and higher order interrelationships among parameters that

has not been solved recently. The correlation information obtained in this way clarifies

both structural and practical non-identifiability. Moreover, this correlation analysis

also shows that a minimum number of data sets, which corresponds to the maximum

number of correlated parameters among the correlation groups, with different inputs
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for experimental design are needed to remedy the parameter correlations. The result

of correlation analysis provides a necessary condition for experimental design in order

to collect suitable measurement data for unique parameter estimation.

6.2 Future research

Some remaining aspects that arise during the methodology development of this dis-

sertation can be supposed to the future research as follows:

1. In the field of numerical methods to the DOPs, there are still some issues that

are worthy to be considered for the future research.

(a) In the modified CMSC approach, when multiple data sets are used, parallel

computation in both level of multiple data sets and collocation intervals

can be applied. The three-layer optimization method leads to two levels

parallelization, one for optimizing each independent NLP corresponding

to each data set, one for solving model equation in each shooting time

interval. Hybrid parallel computing that couples both MPI and OpenMP

can be used to utilize advantages of each method. Graphics processing unit

(GPU) together with multiple-core CPUs are proposed to accelerate the

computation of DOPs, especially the PE problems.

(b) In this dissertation, only local gradient-based methods are used for solving

the NLPs. In order to get better results, global methods need to be taken

into account.

2. In the field of identifiability analysis, the remaining tasks can be:

(a) considering stochastic PE problems;

(b) considering the parameter correlation between rows of the sensitivity ma-

trix;

(c) considering chance parameter correlations due to the temporary values of

parameters that can make the sensitivity matrix be rank deficient; and

(d) PE problems from in vitro to in vivo;
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bases. Mathematical Biosciences, 222(2):61 – 72.

Miao, H., Xia, X., Perelson, A. S., and Wu, H. (2011). On identifiability of nonlinear
ODE models and applications in viral dynamics. SIAM Rev., 53(1):3–39.

Moles, C. G., Mendes, P., and Banga, J. R. (2003). Parameter estimation in biochem-
ical pathways: A comparison of global optimization methods. Genome Research,
13(11):2467–2474.



References 179

Morales, J. L., Nocedal, J., and Wu, Y. (2011). A sequential quadratic programming
algorithm with an additional equality constrained phase. IMA Journal of Numerical
Analysis.

Morison, K. R. and Sargent, R. W. H. (1986). Optimization of multistage processes
described by differential-algebraic equations. In Hennart, J.-P., editor, Numerical
Analysis, volume 1230 of Lecture Notes in Mathematics, pages 86–102. Springer
Berlin Heidelberg.

NAG (2012). NAG Library Manual, Mark 23. Numerical Algorithms Group, Oxford
UK.

Nakajima, K. (2012). OpenMP/MPI hybrid parallel multigrid method on fujitsu FX10
supercomputer system. In 2012 IEEE International Conference on Cluster Com-
puting Workshops. Institute of Electrical & Electronics Engineers (IEEE).

Nieman, R. E., Fisher, D. G., and Seborg, D. E. (1971). A review of process iden-
tification and parameter estimation techniques. International Journal of Control,
13(2):209–264.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer series in opera-
tions research and financial engineering. Springer, 2nd edition.

Oldenburg, J., Marquardt, W., Heinz, D., and Leineweber, D. B. (2003). Mixed-logic
dynamic optimization applied to batch distillation process design. AIChE Journal,
49(11):2900–2917.

Pannocchia, G. and Rawlings, J. B. (2003). Disturbance models for offset-free model-
predictive control. AIChE Journal, 49(2):426–437.

Papamichail, I. and Adjiman, C. (2002). A rigorous global optimization algorithm
for problems with ordinary differential equations. Journal of Global Optimization,
24(1):1–33.

Petersen, B., Gernaey, K., Devisscher, M., Dochain, D., and Vanrolleghem, P. A.
(2003). A simplified method to assess structurally identifiable parameters in monod-
based activated sludge models. Water Research, 37(12):2893 – 2904.

Plitt, K. J. (1981). Ein superlinear konvergentes mehrzielverfahren zur direkten
berechnung beschränkter optimaler steuerungen. Master’s thesis, University of
Bonn.

Pohjanpalo, H. (1978). System identifiability based on the power series expansion of
the solution. Mathematical Biosciences, 41(1-2):21 – 33.

Poku, M. Y. B., Biegler, L. T., and Kelly, J. D. (2004). Nonlinear optimization with
many degrees of freedom in process engineering. Industrial &amp; Engineering
Chemistry Research, 43(21):6803–6812.

Prata, D. M., Schwaab, M., Lima, E. L., and Pinto, J. C. (2010). Simultaneous robust
data reconciliation and gross error detection through particle swarm optimization
for an industrial polypropylene reactor. Chemical Engineering Science, 65(17):4943
– 4954.



180 References
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Supplementary Material

A.1 The sensitivity matrix derivation

Consider the sensitivity equation

Ṡ =

(
∂f

∂x

)
S +

(
∂f

∂p

)
(A.1)

Using the explicit Euler method at time point with a small time interval, we can write

Eq. (A.1) in the discrete form:

Sk − Sk−1

∆t
=

(
∂f

∂x

)
k−1

Sk−1 +

(
∂f

∂p

)
k−1

(A.2)

It leads to:

Sk = Sk−1 +∆t

(
∂f

∂x

)
k−1

Sk−1 +∆t

(
∂f

∂p

)
k−1

=

(
I +∆t

(
∂f

∂x

)
k−1

)
Sk−1 +∆t

(
∂f

∂p

)
k−1

(A.3)

where I is a unit matrix. By expanding Eq. (A.3) we get:

Sk =

(
k−1∏
i=0

(
I +∆t

(
∂f

∂x

)
i

))
S0 +∆t

(
k−1∏
i=1

(
I +∆t

(
∂f

∂x

)
i

))(
∂f

∂p

)
0

+∆t

(
k−1∏
i=2

(
I +∆t

(
∂f

∂x

)
i

))(
∂f

∂p

)
1

+ · · ·+∆t

(
∂f

∂p

)
k−1

(A.4)
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It can be reformulated as:

Sk =

(
k−1∏
i=0

(
I +∆t

(
∂f

∂x

)
i

))
S0 +W0

(
∂f

∂p

)
0

+W1

(
∂f

∂p

)
1

+ · · ·+Wk−1

(
∂f

∂p

)
k−1

=

(
k−1∏
i=0

(
I +∆t

(
∂f

∂x

)
i

))
S0 +

k−1∑
j=0

Wj

(
∂f

∂p

)
j

(A.5)

Since S0 =

(
∂x

∂p

)
0

is the sensitivity at the initial state x(t0) = x0 , there are two

possible cases:

A.1.0.3 Case 1

x(t0) = x0 is a steady state. Then:

S0 =

(
∂x

∂p

)
0

=

((
∂f

∂x

)
0

)−1(
∂f

∂p

)
0

(A.6)

A.1.0.4 Case 2

x(t0) = x0 is not a steady state. Then we can consider that x(t0) = x0 is evolved from

a steady state x(−l) = x−l at time point t = −l. According to Eq. (A.5)

S0 =

(
−1∏
i=−l

(
I +∆t

(
∂f

∂x

)
i

))
S−l +
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)
j

=
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)
i
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∂x
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)−1(
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∂p

)
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+
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Wj

(
∂f
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)
j

= W̃−l

(
∂f
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)
−l

+
−1∑

j=−l

Wj

(
∂f

∂p

)
j

(A.7)

In both cases, S0 has a linear relation with

(
∂f

∂p

)
j

. Then from Eq. (A.5) there is:

Sk =

(
∂x

∂p

)
k

=
k−1∑
j=0

Vj∆t

(
∂f

∂p

)
j

(A.8)
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where Vj is a matrix computed at the discrete time point j. From Eq. (A.8), for

∆t→ 0, the sensitivity matrix can be expressed as:

S =

t∫
t0

(
V (τ)

(
∂f

∂p

))
dτ (A.9)

A.2 The partial derivative functions of the three-

step-pathway model

According to Eqs. (5.25) the functions to be partially derived are:

f1 =
p1

1 +
(

P
p2

)p3
+
(
p4
S

)p5 − p6x1 (A.10a)

f2 =
p7

1 +
(

P
p8

)p9
+
(

p10
x7

)p11 − p12x2 (A.10b)

f3 =
p13

1 +
(

P
p14

)p15
+
(

p16
x8

)p17 − p18x3 (A.10c)

f4 =
p19x1

p20 + x1

− p21x4 (A.10d)

f5 =
p22x2

p23 + x2

− p24x5 (A.10e)

f6 =
p25x3

p26 + x3

− p27x6 (A.10f)

f7 =
p28x4(S − x7)

p29

(
1 + S

p29
+ x7

p30

) − p31x5(x7 − x8)

p32

(
1 + x7

p32
+ x8

p33

) (A.10g)

f8 =
p31x5(x7 − x8)

p32

(
1 + x7

p32
+ x8

p33

) − p34x6(x8 − P )

p35

(
1 + x8

p35
+ P

p36

) (A.10h)
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From Eq. (A.10a):

∂f1
∂p1

=
1 +

(
P
p2

)p3
+
(
p4
S

)p5[
1 +

(
P
p2

)p3
+
(
p4
S

)p5]2 (A.11a)

∂f1
∂p2

=

p1p3
p2

(
P
p2

)p3
[
1 +

(
P
p2

)p3
+
(
p4
S

)p5]2 (A.11b)

∂f1
∂p3

=
−p1

(
P
p2

)p3
ln
(

P
p2

)
[
1 +

(
P
p2

)p3
+
(
p4
S

)p5]2 (A.11c)

∂f1
∂p4

=
−p1p5

p4

(
p4
S

)p5[
1 +

(
P
p2

)p3
+
(
p4
S

)p5]2 (A.11d)

∂f1
∂p5

=
−p1

(
p4
S

)p5 ln (p4
S

)[
1 +

(
P
p2

)p3
+
(
p4
S

)p5]2 (A.11e)

∂f1
∂p6

= −x1 (A.11f)

It can be clearly seen from Eqs. (A.11a-A.11e) that these partial derivative functions

depend only on the parameters and controls. Thus
∂f1
∂p1

,
∂f1
∂p2

, · · · , ∂f1
∂p5

are pairwise

linearly dependent. From Eq. (A.11f), depends on a state variable which will be a time-

dependent profile and thus is linearly independent with the other partial derivative

functions.
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From Eq. (A.10b):

∂f2
∂p7

=
1 +
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P
p8

)p9
+
(

p10
x7

)p11
[
1 +

(
P
p8

)p9
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p10
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)p11]2 (A.12a)
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ln
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∂f2
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=
−p7p11

p10

(
p10
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)p11
[
1 +

(
P
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+
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x7
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ln
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)
[
1 +

(
P
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)p9
+
(
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)p11]2 (A.12e)

∂f2
∂p12

= −x2 (A.12f)

Based on Eqs. (A.12b-A.12c), we have:

∂f2
∂p8

=

 −p9
p8

ln
(

P
p8

)
 ∂f2
∂p9

(A.13)

Since the coefficient in Eq. (A.13) only depends on parameters and a control variable

P,
∂f2
∂p8

,
∂f2
∂p9

are linearly dependent. From Eqs. (A.12a-A.12d) it can be seen that:

∂f2
∂p7
−

1 +
(

P
p8

)p9
p7p9
p8

(
P
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)p9
 ∂f2
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+
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p10p11
p7

)
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∂p10

= 0 (A.14)

∂f2
∂p7

+

 1 +
(

P
p8

)p9
p7

(
P
p8

)p9
ln
(

P
p8

)
 ∂f2
∂p9

+

(
p10p11
p7

)
∂f2
∂p10

= 0 (A.15)

Again, the coefficients in Eqs. (A.14-A.15) only depend on the parameters and the
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control variable P , therefore, two different groups,
∂f2
∂p7

,
∂f2
∂p8

,
∂f2
∂p10

and
∂f2
∂p7

,
∂f2
∂p9

,
∂f2
∂p10

are linearly dependent, respectively. Similarly, according to Eqs. (A.12e-A.12f),
∂f2
∂p11

,
∂f2
∂p12

are different from the other partial derivative functions and thus linearly

independent with each other and also with other partial derivative functions.

Similar results can be obtained by comparing the partial derivative functions of Eq.

(A.10c), since Eq. (A.10c) has the similar structure as Eq. (A.10b). Therefore,
∂f3
∂p14

,
∂f3
∂p15

are linearly dependent in pair,
∂f3
∂p13

,
∂f3
∂p14

,
∂f3
∂p16

and
∂f3
∂p13

,
∂f3
∂p15

,
∂f3
∂p16

are

linearly dependent in two groups, respectively.

From Eq. (A.10d):

∂f4
∂p19

=
x1

p20 + x1

(A.16a)

∂f4
∂p20

=
−p19x1

(p20 + x1)
2 (A.16b)

∂f4
∂p20

= −x4 (A.16c)

It can be clearly seen that
∂f4
∂p19

,
∂f4
∂p20

,
∂f4
∂p21

are linearly independent. Similarly, ac-

cording to Eqs. (A.10e-A.10f), there are no linear dependences among
∂f5
∂p22

,
∂f5
∂p23

,
∂f5
∂p24

and
∂f6
∂p25

,
∂f6
∂p26

,
∂f6
∂p27

.
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From Eq. (A.10g):

∂f7
∂p28

=
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p29
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1 + S

p29
+ x7
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p29p30

(
x7

p30

)
(
1 + S

p29
+ x7

p30

)2 (A.17c)

∂f7
∂p31

=
−x5(x7−x8)

p32

(
1 + x7

p32
+ x8

p33

)
(
1 + x7

p32
+ x8

p33

)2 (A.17d)

∂f7
∂p32

=

p31x5(x7−x8)
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(
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p32
+ x8

p33

)2 (A.17e)

∂f7
∂p33

= −
p31x5(x7−x8)

p32p33

(
x8

p33

)
(
1 + x7

p32
+ x8

p33

)2 (A.17f)

From Eqs. (A.17a-A.17c),
∂f7
∂p28

,
∂f7
∂p29

,
∂f7
∂p30

are linearly dependent in one group. But

∂f7
∂p31

,
∂f7
∂p32

,
∂f7
∂p33

are linearly independent, based on Eqs. (A.17d-A.17f). From Eq.

(A.10h):

∂f8
∂p34

=
−x6(x8−P )

p35

(
1 + x8

p35
+ P

p36

)
(
1 + x8

p35
+ P

p36

)2 (A.18a)

∂f8
∂p35

=

p34x6(x8−P )
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(
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p36
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(
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p35
+ P

p36

)2 (A.18b)

∂f8
∂p36

=
−p34x6(x8−P )

p35p36

(
P
p36

)
(
1 + x8

p35
+ P

p36

)2 (A.18c)

It can be seen from Eqs. (A.18a-A.18a) that
∂f8
∂p35

,
∂f8
∂p36

are linearly dependent, but
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∂f8
∂p34

is linearly independent with
∂f8
∂p35

,
∂f8
∂p36

.
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