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Abstract

Ground subsidence is a common phenomenon which causes disturbances and damages on
the Earth’s surface. Especially in urban areas, it poses risk to life and property. Establishing
solutions for damage prevention requires knowledge of subsidence behavior over time and
space, which entails the collection of geospatial information. The present work investigates
the ground surface dynamics over a field of deep mining in Sondershausen, Germany
based on multi-temporal Synthetic Aperture Radar (SAR) images. Deformation patterns
are extracted by means of Persistent Scatterer Interferometry (PSI), a technique that exploits
the spatio-temporal characteristics of interferometric signatures from persistent scatterers.
Since the impact of subsidence on surface structures varies spatially, high-risk areas can
only be identified when the subsidence profile is known. To model the geometry of the
subsidence bowl, the present study extends the extracted point information to a surface of
estimations by interpolation. Furthermore, by the synergistic usage of PS estimations from
different satellite sensors, this research addresses the problem of undersampling in critical
areas, which is a common limitation of the PSI approach. The methodology developed
here estimates missing information, i.e. refines the initial model, by deformation map of a
different sensor covering a different time interval.

In order to extend the period of monitoring as well as to improve the spatial and
temporal sampling, the ground subsidence in Sondershausen is monitored with a multi-
sensor SAR dataset. The C- and L-band acquisitions of the sensors ERS-1/2 (1995–2005),
Envisat-ASAR (2004–2010) and ALOS-PALSAR (2007–2010) are used to derive 15 years
of subsidence information at the location of persistent scatterers. From a temporal view-
point, the obtained deformation maps indicate a non-linearly decreasing trend of ground
subsidence, which is consistent with the backfilling history of the mine. From a spatial
viewpoint, the results suggest one major subsidence trough located in the urban area
of Sondershausen and a minor one found in the nearby village of Großfurra. The PSI
deformation maps and models are validated in reference to the available leveling measure-
ments covering the site in Sondershausen. In general, the validation results suggest a good
agreement between the PSI and surveying models with the normalized root-mean-square
error (RMSE) lower than 0.11. However, some significant deviations of ERS estimations are
also found for a critical region. In this area the absence of persistent scatterers contributes
largely to the observed differences. Consequently, the spatial refinement by synergy is
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applied to this region. The integration of points from ASAR or PALSAR deformation maps
result in an improvement in the modeled geometry of the subsidence trough. With this
improvement the RMSE calculated for the ERS model is decreased from 0.061 to 0.054.
The application demonstrates the synergistic potential of multi-sensor PSI analysis to
improve the interpretation of ground subsidence characteristics and, thus, to increase the
confidence of risk assessment.
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Zusammenfassung

Absenkungen des Bodens stellen ein häufig auftretendes Phänomen dar. Diese Bo-
densenkungen verursachen Störungen und Schäden an der Erdoberfläche, die, insbeson-
dere in urbanen Gebieten, Menschenleben gefährden und die bestehende Infrastruk-
tur beschädigen können. Die Entwicklung von Lösungsansätzen zur Vermeidung von
Schäden erfordert fundierte Kenntnisse über die räumliche und zeitliche Verteilung der
Absenkungsbewegungen. Im Rahmen der vorliegenden Studie wurde die Dynamik der
Bodenbewegungen über dem Salzabbaugebiet Sondershausen in Deutschland mittels
Zeitserien von Synthetic Aperture Radar (SAR)-Aufnahmen untersucht. Zur Analyse der
Zeitserien wurde das Verfahren der Persistent Scatterer Interferometry (PSI) eingesetzt.
Diese Methode zur Extraktion der Bodendeformation basiert auf der Auswertung räum-
licher und zeitlicher Charakteristika der interferometrischen Signaturen zeitlich stabiler
Punktstreuer. Zur Bestimmung von Gebieten, die von den Bodensenkungen besonders
stark betroffen sind, ist eine detailliertere Ermittlung der geometrischen Eigenschaften
der Absenkung nötig, da die Oberflächenstrukturen entlang des Absenkungsprofiles
variieren. Aufgrund dessen wurde in der vorliegenden Studie die punktweise gewonnene
Information in die Fläche extrapoliert, um eine räumliche Modellierung des Absenkungs-
beckens zu ermöglichen. Zur genauen Vermessung von Absenkungen mittels PSI ist
eine möglichst hohe räumliche und zeitliche Abtastrate anzustreben. Diese sind bei
der Untersuchung eines Gebietes mithilfe eines einzelnen Radarsensors häufig nicht
gewährleistet. Im Rahmen der vorliegenden Arbeit wird ein Lösungsansatz für diese Limi-
tation vorgestellt, welcher auf der synergetischen Verschneidung von Deformationskarten
mehrerer Radarsensoren basiert. Fehlende Messwerte in der ERS-Zeitreihe werden anhand
von Punktstreuern in ASAR- und PALSAR-Szenen geschätzt.

Die Bodenbewegungen im Gebiet Sondershausen wurden mithilfe von Daten ver-
schiedener Radarsensoren beobachtet, um eine verbesserte räumliche und zeitliche Ab-
tastrate zu erzielen. Hierzu wurden Aufnahmen der C- bzw. L-Band Sensoren ERS-1/2
(1995–2005), Envisat-ASAR (2004–2010) und ALOS-PALSAR (2007–2010) auf zeitlich stabile
Punktstreuer untersucht. Die zeitliche Analyse der resultierenden Deformationskarten
zeigen eine nicht-lineare Abnahme der Bodenabsenkungen. Dieses Verhalten steht im
Einklang mit den rezenten Verfüllungsaktivitäten in der stillgelegten Mine. Die räumliche
Auswertung der Daten deutet auf ein Absenkungsbecken im Stadtgebiet von Sonder-
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shausen hin. Ein weiteres, kleineres Becken konnte um die Siedlung Großfurra identifiziert
werden. Sowohl die Deformationskarten als auch die abgeleiteten Modelle wurden einer
umfangreichen Validierung anhand von Nivellement-Messungen unterzogen. Die Ergeb-
nisse zeigen generell eine gute Übereinstimmung zwischen den PSI- und Bodenmessungen
mit einem root-mean-square error (RMSE) von weniger als 0,11. Nur vereinzelt kommt es
zu signifikanten Abweichungen, was insbesondere auf die ERS-Ergebnisse zutrifft. Dies
lässt sich durch fehlende Punktstreuer in den aktiven Absenkungsbereichen während
der ERS-Messungen begründen. Durch die Integration von Punkten aus den ASAR-
oder PALSAR-basierenden Deformationskarten konnte die Geometrie der Absenkungen
verbessert werden. Der für das ERS-Modell ermittelte RMSE verringert sich auf diese
Weise von 0,061 auf 0,054. Die vorliegende Anwendung zeigt das Synergiepotential multi-
sensoraler Daten und Methoden verbesserten Interpretation von Bodenabsenkungen sowie
zur genaueren Abschätzung und Bewertung von daraus resultierenden Risiken.
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Chapter 1

Introduction

1.1 Research context

Ground subsidence, originated from human activity including mining and groundwater
withdrawal or occurring naturally due to, for example, volcanic activities or earthquakes,
is a phenomenon that occurs prevalently on the surface of the Earth. It is a geological
hazard (geohazard) which has the potential to pose risk to life and surface structures,
as well as to damage the environment. Consequently, the assessment of the risk is an
important objective in land-use planing and providing appropriate engineering design for
the surface structures [Bell 2002].

In order to assess the risk and reduce the impact of subsidence, the behavior of the
phenomenon needs to be understood [Bell 2002]. For describing the behavior, collection
of deformation information is required. Conventional ground-based measurements by
leveling or Global Positioning Systems (GPS) are well established and frequently applied
techniques for the collection of subsidence information. However, monitoring of large
areas with dense networks and frequent time intervals is expensive and time-consuming.
In contrast, spaceborne radar remote sensing is capable of providing precise measurements
of deformation over a large area with moderate to low cost. Furthermore, this technique
provides the option for retrieving deformation information by the SAR images acquired in
the past [Hooper et al. 2012], [Samsonov et al. 2014].

With the development of the interferometric SAR technique, the displacement occur-
ring in the line-of-sight of the radar can be estimated by interfering two or more SAR
images [Massonnet and Feigl 1998]. However, changes in imaging geometry and surface
scattering properties from one image to another limit the applicability of this method.
Furthermore, even if the measurement is possible, the deformation signal is affected by
variations in the atmosphere and errors in satellite orbit information. These limitations
challenge in particular the detection of slow deformation processes by standard SAR
interferometry [Hooper et al. 2012].

To overcome these shortcomings, techniques for processing multiple acquisitions are
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Chapter 1 Introduction

developed by the end of 1990s. One approach of time series analysis involves identifying
“persistent scatterers” pixels, whose scattering properties remain stable throughout the
monitoring period. Temporal stability of scattering properties enables the computation of
reliable deformation estimations in millimeter scale, since the atmospheric contributions
as well as the orbit and DEM errors can be estimated and removed [Ferretti et al. 2001].

Persistent scatterer interferometry is a widely used technique to obtain deformation
estimations and is regarded as a powerful tool contributing to the studies dedicated to
the initial assessment of the risks posed by the deformation. In this regard, this research
utilizes the PSI technique for retrieving the temporal and spatial characteristics of the
investigated ground subsidence.

The present work is conducted in the framework of the multi-disciplinary project
INFLUINS, whose major objective is to examine the movements and the interactions
between shallow and deep fluids in the Thuringian Basin in Germany. To achieve its goals,
INFLUINS links diverse fields spanning geology, hydrogeology, mineralogy, geochemistry,
geophysics, climatology and remote sensing in an innovative research focus. In INFLUINS
the remote sensing data is used to study ground movements occurring in Thuringian
Basin, with the main objective of deriving the groundwater related surface dynamics.
Additionally, the parts of the basin affected by ground displacements due to subrosion
or mining are investigated for the purpose of retrieving general information on surface
dynamics, i.e. gaining knowledge on the active processes taking place in the basin. In this
regard, the research documented in this thesis addresses the derivation of mining induced
subsidence characteristics in Sondershausen by remote sensing techniques.

Ground subsidence affecting the town of Sondershausen in the form of a subsidence
trough is induced by the intensive mining activities from 1898 to 1991. During this period,
the rate of subsidence has increased gradually reaching to a critical deformation rate
accompanied by seismic events [Fliß et al. 2011]. After the termination of salt extraction
in 1991, the corresponding part of the mine is backfilled, as a consequence, the subsidence
rates are gradually decreasing.

In spite of decreasing subsidence rates in Sondershausen, the demand for monitoring of
the subsidence still exists, both for assessing the risk and verifying the effect of backfilling.
Furthermore, regular collection of deformation information is required in Germany by the
mining authorities [Walter et al. 2009]. For this reason, the present work investigates the
potentials of PSI technique for monitoring the ground subsidence in Sondershausen as an
alternative or a complimentary method to the ground measurements.

The effect of subsidence on the surface structures depends on the component of the
displacement, which varies along the subsidence profile. In other words, different compo-
nents of subsidence affect different structures in different ways [Bell 2002]. For instance,
the vertical subsidence may seriously damage the drainage system, whereas tilt may
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1.2 Thesis outline

seriously affect tall chimneys or railroads. However, the most damage is generally caused
by differential horizontal movements [Bell 2002]. Since the influence of these movements
depends on the subsidence profile, it is beneficial to determine the geometry of the sub-
sidence for initial identification of the areas with highest risk. Therefore, this research
deals with geometrical modeling of the subsidence by the rates measured at persistent
scatterers.

Considering the long history of subsidence in Sondershausen, multiple sets of SAR data
from different sensors are utilized. The combination of information from different sources
offers promising perspectives for subsidence monitoring. In particular, an extension of the
monitoring period and the availability of various spatial resolutions and sensibilities to
displacements will allow for a retrieval of more detailed information on the characteristics
of the subsidence. For this reason, this research exploits the SAR images of ERS-1/2
(C-band, 1995–2005), Envisat-ASAR (C-band, 2004–2010) and ALOS-PALSAR (L-band,
2007–2010) for 15 years of monitoring of subsidence in Sondershausen.

Promoted by the upcoming SAR data acquisitions from various missions, the need for
development of new methodologies to explore the synergy between multi-sensor data
grows. Motivated by this growth, the present work proposes a novel methodology for
the synergistic usage of the observations from multiple sensors to tackle the common
problems of spatial gaps at critical areas in the single sensor PSI results. The approach
estimates missing information by deformation map of a different sensor covering a
different time span. Thereby, the initially generated geometric model of the subsidence
trough is improved.

1.2 Thesis outline

The thesis documenting the present study is structured upon the steps of

– introducing the general concept of the investigated phenomenon and the tool to
observe it. For this purpose, the background section of Chapter 2 describes the
fundamentals of the relevant ground subsidence with its characteristic effects on
the surface. Furthermore, an effective tool of Earth observation for monitoring
the motion, i.e. persistent scatterer interferometry, and its characteristics are also
introduced in this chapter. Following the background information, the state of the
art of SAR interferometry in ground subsidence monitoring is described in the later
stage of this chapter.

– summarizing the research needs and study objectives. Implications of the develop-
ments, described in the state of the art, on the present work are explained in the
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Chapter 1 Introduction

context of research needs. Based on the needs, the aims and objectives of the study
are also formulated in Chapter 3.

– explaining the research site and dataset characteristics. The phenomenon occurring in
the study area is observed by the available data. Consequently, the characteristics of
both research site and dataset have implications on the processes of methodology de-
velopments and interpretations. Therefore, a brief description of such characteristics
is provided in Chapter 4.

– introducing the methodologies utilized to meet the research objectives. The opera-
tions including extraction of the information about the phenomenon, validation of
the processing results, as well as generation of geometrical models and refinement
of an initial model by synergy are described in Chapter 5.

– analyzing the results based on the research objectives. The products of the opera-
tions including PSI deformation maps, validation maps and surfaces modeling the
subsidence rates are examined and interpreted with regard to the objectives of the
study. Thereby, the results and their implications are presented in Chapter 6.

– discussing the implications of the results with regard to the methodology and
outcome. The related considerations are provided in Chapter 7.

– drawing conclusions in the framework of the present study and providing an outlook.
This part of the documentation, presented in Chapter 8, includes the summary of
the context of the thesis, the conclusions relevant to the research objectives and the
directions for possible future research.
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Chapter 2

Background and State Of the Art

This chapter provides a background on the basic aspects of the investigated ground
subsidence type and deformation mapping by means of radar remote sensing. Furthermore,
the current state of the developments in this field is described. For this purpose, Section 2.1
is dedicated to the general definition and basic characteristics of mining induced ground
subsidence and its impact on the surface, furthermore, to the fundamentals of subsidence
monitoring and modeling by persistent scatterer interferometry. Section 2.2 presents the
state of the art of SAR interferometry in ground subsidence monitoring.

2.1 Ground subsidence monitoring and modeling

Ground subsidence can be defined as rapid or gradual sinking of the ground surface with
respect to the surrounding terrain or sea level. Natural causes such as earthquakes and
volcanoes, as well as anthropogenic causes like withdrawal of groundwater, exploitation
of oil and gas, extraction of coal and ores, and excavation of tunnels can result in ground
subsidence.

Particularly in densely populated areas, ground subsidence can be responsible for
significant damages to houses and urban infrastructure, thereby presenting risk to life.
Aiming at reducing the impact of subsidence, the risk should be appropriately estimated
with the collection of deformation information by monitoring. Furthermore, the acquired
information can be used to model the subsidence geometry so that the mitigation of the
risk can be addressed by providing related solutions.

In this study, ground subsidence due to underground mining is addressed. In this
regard, this section describes the general characteristics of the ground subsidence induced
by mining activities. Following the description of the phenomenon, the technique utilized
in the present work, i.e. spaceborne radar remote sensing, for monitoring the ground
subsidence is briefly explained. Finally, the employed strategy for modeling based on the
estimations obtained by radar remote sensing is introduced.
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Chapter 2 Background and State Of the Art

2.1.1 Ground subsidence induced by underground mining

Mining subsidence is described as the sinking or collapse of the Earth’s surface caused by
underground mining activity [Ge et al. 2007]. During or long after mining, the rocks above
the mine working may settle into the carved area because of the overburden pressure of
the top and side rock mass layers. Settlements of the roof above the mine opening may
vary in magnitude from lowering to complete collapse. The subsidence of the roof strata
usually results in movements at the Earth’s surface.

The surface above mine workings commonly subsides in the form of a subsidence
trough [NSW 2008]. Troughs occur from sagging of overburden into soft rock at the mine
floor or the mine roof due to failure of the mine pillars or the punching of the pillars into
soft rock. As sketched in Figure 2–1, the resultant form at the surface is a shallow but
broad depression, which is usually in circular or elliptical shape [Ge et al. 2004], [Dunrud
and Osterwald 1980].

2.1.1.1 Factors influencing mine subsidence

The magnitude, extent as well as timing and duration of subsidence depend on different
factors of geological and mining settings [BLM 2009], [Bauer 2008].

Geological factors controlling subsidence characteristics include the structure, lithology,
strength of the overlying and underlying strata, topography and fault orientations. Massive,
strong strata in the overburden is capable of sagging without failing [NSW 2008], whereas
soft overburden tends to fail, suggesting that the characteristics of the strata has an impact
on the magnitude and extent of the subsidence. Heavy overburden in the areas of steep
topography can result in higher amounts of ground movement than the areas with less
overburden. Faults control the transmission of stresses within the rock mass in a way that
they can change the stress concentration and directionality. As a result, the spanning and
caving behavior of undermined strata will be changed [NSW 2008].

Mining settings shaping the subsidence trough refer to depth, geometry, method and
rate of mining. The height and width of the mining opening with respect to the depth of
the mining and thickness of the overburden control the maximum subsidence [BLM 2009].
The shape of the subsidence basin gets shallower and wider as the depth of the mine
opening increases [Kratzsch 1997] in [Walter et al. 2004]. An example of the influence
of mining depth is reported in the work of Dunrud and Osterwald [1980] that in the
areas with less than 15 m thick overburden in the Sheridan, Wyoming mine field, the
depressions are usually square or rectangular. In overburden thicker than this value the
corners of the depression become rounded resulting in more circular or elliptical shape.
Similarly, the thickness and width of the excavations has a direct impact on the depth of
the subsidence trough because as the excavation becomes wider, the sag of the overlying
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strata increases and hence the subsidence trough gets deeper [NSW 2008].

Underground mining methods are generally classified by the type of support used
to carry the roof and the overburden. For instance, in room-and-pillar mining, the roof
is supported primarily by pillars, which are the parts left between excavated areas and
arranged in a regular pattern whereas in longwall mining a long wall of material is
extracted [BLM 2009]. The mine geometry determines the configuration of the excavated
areas and the supports. For the room-and-pillar method this implies the arrangement of
rooms and pillars, including size, shape and distribution, and for longwall it refers to, for
example, height and width of the excavation [BLM 2009].

The method of mining influences the extraction amount in a way that in longwall mines
the amount is usually higher than room-and-pillar mines, similarly it also affects the
degree of subsidence. Longwall mining usually results in more subsidence, partly because
of a larger extraction, but the effect is more uniform and anticipated. Room-and-pillar
operations, on the other hand, are less predictable in the amount and surface form of the
subsidence due to varying room and pillar designs [Bauer 2008].

The characteristics of the subsidence are also influenced by the rate of mining. Even and
rapid extractions yield to a smooth subsidence profile whereas more differential motion
occurs with an uneven rate [BLM 2009].

2.1.1.2 Subsidence parameters

Although subsidence usually refers to the vertical displacement, the actual movement of
the ground surface also includes tilt, horizontal displacement, curvature and strain. These
components of subsidence are the main causes of surface damage due to mining induced
ground displacements, consequently, the estimation of these parameters generally forms
the basis of the assessment of the surface effects and their impact on the infrastructure
[MSE 2007].

The maximum of the vertical movement, marked by Smax in Figure 2–1, occurs in the
center of the subsidence trough for a symmetrical basin. The amplitude of subsidence, the
vertical displacement, is given in units of length (millimeter) [MSE 2007].

Tilt is the first derivative of the subsidence profile and it is calculated by the change
in rate between two points. Tilt reaches its maximum at the steepest portion of the
subsidence profile which occurs at the inflection point, where the curvature changes from
convex to concave (green curve in Figure 2–1). It is usually given in length over length
(millimeter/meter) [NSW 2008], [Puertas 2010].

The horizontal component of the subsidence reaches its maximum at the inflection
point, where the tilt is maximum. From the inflection point to the limit and to the point
of maximum subsidence, the horizontal displacement declines to zero (orange curve in
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Figure 2–1: The upper plot sketches a subsidence trough occurring above an underground mine.
The lower plot is a graphical representation of the behavior of subsidence components
in flat topography (drawn based on NSW [2008]). The behavior of individual com-
ponents are depicted only for the half of the subsidence profile. Smax stands for the
maximum subsidence.

Figure 2–1). It is usually expressed in units of length (millimeter) [MSE 2007].

The rate of change of tilt, i.e. the second derivative, gives the curvature. From the
inflection point to the edge of subsidence trough the curvature is convex, whereas to the
bottom of the trough it is concave (magenta curve in Figure 2–1). The unit for curvature is
in 1 over length (usually in km−1) [NSW 2008], [MSE 2007].

The amount of horizontal extension or compression on the surface is expressed as strain

8



2.1 Ground subsidence monitoring and modeling

[NSW 2008]. It is derived from the first derivative of horizontal displacement and caused
by bending and differential horizontal movements. The maximum strain coincide with
the maximum curvature. Towards to the sides of the panel maximum tensile strain occurs
whereas the maximum compressive strain happens towards the bottom of the subsidence
trough (indigo curve in Figure 2–1). The unit of strain measurement is length over length
(millimeter/meter) [MSE 2007].

2.1.1.3 Impact of subsidence on the surface

The individual components of subsidence have different effects on surface structures,
furthermore, the impact differs depending on the type of structure [Whittaker and
Reddish 1989], [Bell 2002]. For example, in general terms the vertical subsidence does
not affect the surface structures since it represents a rigid body movement [MSB 2007],
however, it is a major aspect in the low lying areas prone to flooding and in the areas with
drainage problem [Whittaker and Reddish 1989], [Bell 2002].

Tilt damage is also small, however, it can be of importance to tall buildings, drainage
schemes, sewerage networks, highways and rail tracks [Whittaker and Reddish 1989],
[Bell 2002]. Horizontal movements in the subsidence trough are overall small and do not
cause strong structural damage [MSB 2007].

In general, the differential horizontal movements (strain) and the differential settlement
across the surface (curvature) mostly damage the surface structures [MSB 2007], [Whit-
taker and Reddish 1989]. Furthermore, most buildings experience stronger damage in the
tensile strain than compressional, since the building material is usually weaker in tension.
In practice, the major damage of subsidence is a result of combination of both strain and
curvature [MSB 2007].

Due to the differing impact of the subsidence parameters, reducing the risk of sub-
sidence damage and compensating for the effects on surface structures require design
considerations based on the surface movements. Therefore, it is important to determine
the trend of different parameters.

2.1.2 Monitoring ground subsidence by radar remote sensing

In order to provide a better knowledge of ground subsidence phenomena, and hence,
an effective risk management, monitoring techniques by means of data collection are
required [Raucoules et al. 2007]. Beside risk management, the need for subsidence
monitoring includes legislative requirements, subsidence prediction, maximizing the
amount of extraction, structural design and environmental monitoring [Ge et al. 2004].

The crucial tasks of monitoring include the detection of spatial pattern and temporal
evolution of the subsidence as well as an accurate assessment of the magnitude of the
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displacements. Techniques based on ground benchmarks such as geodetic leveling and
GPS generally provide precise measurements. However, they are limited to the accessibility
of the area of interest and high costs of wide-area monitoring [Raucoules et al. 2007]. As a
result, measurements are taken only at limited locations with low frequency. Furthermore,
in case of sudden or unpredicted deformations, ground networks are implemented only
after the deformation phenomena [Colesanti et al. 2005].

Remote sensing techniques, where the observations of surface movements are taken
from a certain distance, e.g. at satellite altitude, can be a complimentary method and
in certain cases can replace the ground-based measurements [Colesanti et al. 2005]. In
particular with the recent advancements in radar imaging capabilities, e.g. high spatial
resolution and frequency of acquisitions, as well as the development of new techniques
based on interferometric analysis of radar images, the potential of radar remote sensing
for ground subsidence monitoring has been increased [Ferretti et al. 2005].

In this section, fundamental principles of radar remote sensing techniques for ground
deformation monitoring, i.e. synthetic aperture radar interferometry, are explained briefly.
Subsequently, the details of deformation mapping by means of persistent scatterer inter-
ferometry with its strengths and limitations are discussed.

2.1.2.1 Radar imaging and SAR systems

Radar imaging

Radar refers to an active sensor system which emits electromagnetic pulses in the radio
and microwave range and detects the reflections of these pulses from objects in its line-
of-sight (LOS). Based upon the time delay between the transmission and reception of the
pulse, the radar system determines the range to the detected object, as the pulse travels
at speed of light. Like the distance of the object by the time delay of the backscatter, the
physical quantities of the object such as size or surface roughness can be inferred by
backscatter intensity [Hanssen 2001].

Sharing the same principles, different forms of radar systems exist providing different
types of information. One specific class of radar system is called imaging radar. Rather
than the role of traditional radar, used for detecting the position and the speed of an object,
a imaging radar aims to generate a two dimensional map of the electromagnetic scattering
of a scene. Since radar imaging is an active remote sensing system, data can be acquired
at day and night. Furthermore, due to the specific wavelength of radar (in the range 1 cm
to 1 m), cloud cover can be penetrated [Ferretti et al. 2007].

Unlike optical systems that obtain information as a function of look direction, a radar
image principally acquires information as a function of distance from the object [Wood-
house 2006]. Since the information of look direction is missing, i.e. poor angular resolving
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power, the echos from two objects with same distance to the instrument but on opposite
sides of nadir can not be distinguished. Therefore, the strategy of constructing an image
with radar differs from that of optical sensors [Woodhouse 2006].

First part of the approach for radar imaging is to exploit the radar’s distance detection
abilities to compensate for the poor angular resolving power. This is achieved by pointing
the radar sideways [Woodhouse 2006] rather than orthogonal to the surface like the
optical systems. The second part of the approach is to use the motion of the instrument to
scan the ground along the flight path to construct 2D radar images subsequently.

Radar imaging was originally developed in the 1950s, leading to first airborne system
called Real Aperture Radar (RAR). However, the resolution of a radar image depends on
the length of the antenna such that the longer the antenna, the better the resolution [Fer-
retti et al. 2007]. For this reason achieving a reasonable along-track (azimuth) resolution
at spacecraft altitudes with RAR requires very long antennas. An approach to compensate
for this requirement is Synthetic Aperture Radar (SAR). Rather than depending on the
resolution determined by the actual antenna as in the case of real aperture systems, syn-
thetic apertures depend upon signal processing to achieve much finer resolution in the
along-track direction than that attainable with the real antenna. This way high resolutions
at satellite altitude can be achieved. The details of SAR systems and imaging characteristics
are explained in the following sections.

SAR systems

The key factor that is utilized in SAR is to synthesize a much longer antenna by making use
of forward motion of the spacecraft. Due to this motion, the objects are viewed multiple
times. The echoes returning from objects which are in front, are Doppler shifted to higher
frequencies and the ones behind are shifted to lower frequencies so that the echo can
be located in the beam. Using this information, a fine resolution image is assembled
from multiple echoes of the same object at different sensor positions [Woodhouse 2006].
The geometry of a SAR system is shown in Figure 2–2. On this representation, the key
geometric variables are identified. On the side view, the synthetic aperture, used for
enlarging the aperture by processing, is marked.

SAR images

A digital SAR image, acquired by the geometry depicted in Figure 2–2, is composed of
pixels, each of which are associated with an area of the Earth’s surface. The fundamental
dimensions of a SAR image are slant range and azimuth, in other words, every pixel has a
time delay and a flight path distance dimension (see Figure 2–2). Each pixel represents
the backscatter echo of all the scatterers within a resolution cell. The recorded response
of the microwave signal of a particular area on the ground gives a complex number that
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Figure 2–2: Imaging geometry of SAR systems. The antenna looks oblique to the ground with
a look angle, θl , scanning an area with width of swath while moving in azimuth
direction. The multiple echos of an object recorded during satellite pass through
synthetic aperture, marked on the side view, are used to assemble a high resolution
image.

carries amplitude and phase information. The real part represents the amplitude being the
backscatter intensity of the echo. The imaginary part of the complex number is the phase,
which is the shift angle between the phase of the pulse sent and the echo, and relates to
the object distance.

On one image the phase from one pixel to another looks random due to contributions
from different scatterers in the resolution cell. On the other hand, range difference esti-
mated by taking more images of the same area from different sensor positions cancels out
the phase contribution introduced by individual scatterers. Furthermore, the relative path
length can be geometrically related to the terrain height since the positions of the sensors
are known. The technique exploiting the information supplied by such measurements is
known as SAR interferometry.

2.1.2.2 Sensing of topography: SAR interferometry

The derivation of the information about relative distances from the spacecraft to the objects
in a fraction of the sensor’s wavelength by SAR interferometry (InSAR) allows determina-
tion of terrain heights, thereby, is used for topographical mapping. For interferometry, a
second SAR image of the same area from a slightly different viewing angle is interfered
with the first image. This interference is used to generate a SAR interferogram which is
computed by pixel-by-pixel cross-multiplication of the first image by the complex conju-
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Figure 2–3: Imaging geometry of SAR interferometry. The flight paths of the sensors are perpen-
dicular to the plane of the paper. r1 and r2 are the range of the sensors. Δr stands for
the range difference between r1 and r2 . B is the baseline separation of the sensors with
perpendicular component B⊥. θl represents the look angle, and h is the height of the
target.

gate of the second one [Hanssen 2001]. Thus, the amplitude of the resulting interferogram
is the amplitude of the first image multiplied by the second one, whereas its phase, the
so-called interferometric phase, is the phase difference between two images [Ferretti et al.
2007]. Equation 2.1 shows the complex conjugate multiplication of two SAR images.

S1 ∗ S∗2 = ρ1ρ2.e(i(φ1−φ2)) (2.1)

where S1 is the first image, and S∗2 is the complex conjugate of the second image, ρ1 and
ρ2 are the amplitudes, φ1 and φ2 are the phase of the images. Ignoring the decorrelation
effects and phase contributions from other sources, the difference in phase (φ1 − φ2

), i.e. interferometric phase, depends only on the change in path length. If Δφ is the
interferometric phase, λ is the transmitted wavelength and Δr is the range difference then,

Δφi =
4π

λ
Δr (2.2)

If there is no deformation, the range difference Δr depends only on the geometry
depicted in Figure 2–3. The interferometric phase then can be written as,

Δφi ≈ 4π

λ

B⊥Δh
sinθl

(2.3)

where B⊥ is the perpendicular baseline, θl is look angle and Δh is the topographic height
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difference. With this relation InSAR provides a means to estimate terrain topography.
However, in addition to the topographic phase, the interferometric phase also includes a
phase contribution due to Earth’s curvature which causes a periodic fringe pattern on the
interferograms in range direction. Therefore, Equation 2.3 is extended to

Δφi = Δφtopo + Δφ f lat

≈ 4π

λr
B⊥Δh
sinθl

+
4π

λr
B⊥Δr
tanθl

(2.4)

where Δφtopo denotes the interferometric phase caused by topography, Δφ f lat is the
so-called flat-earth phase. Since the aim of InSAR processing is to obtain topographic
phase, the flat-earth term is computed by the perpendicular baseline from precise orbit
data and an elliptical or spherical model for the Earth’s surface and subtracted from the
interferometric phase.

However, the flattened interferogram provides an ambiguous measurement of the
relative terrain altitude because the interferometric phase is wrapped, i.e. it can only be
measured as modulo 2π,

φ = φInSAR + N ∗ 2π (2.5)

where N is the ambiguous number of cycles. In order to compute the absolute phase
differences (φ), i.e. terrain heights, the interferogram fringes have to be unwrapped. The
phase unwrapping algorithms try to estimate the ambiguity number N for each pixel, and
add this integer number to the interferometric fringes to estimate the terrain heights as
shown in Equation 2.5.

2.1.2.3 Sensing of displacement: differential SAR interferometry

Some of the point scatterers might change their relative position between two SAR
acquisitions due to, for example, a landslide, subsidence or an earthquake. This change
in path length introduces an additive phase term in the interferometric phase equation,
which is independent of the baseline [Ferretti et al. 2007] (the third term in Equation
2.6 where Δrde f stands for the relative scatterer displacement on LOS). This implies that
the interferometric phase contains the phase contribution from topographic height, the
flat-earth-effect and the displacement as shown by Equation 2.6.

Δφi = Δφtopo + Δφ f lat + Δφde f

≈ 4π

λr
B⊥Δh
sinθl

+
4π

λr
B⊥Δr
tanθl

+
4π

λ
Δrde f (2.6)

The topographical phase, Δφtopo, can be estimated by a DEM of the area and subtracted
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from the interferometric phase. Similarly, with interferogram flattening, the second term,
Δφ f lat, can be removed, so that the amount of displacement can be measured. This proce-
dure of deriving surface movements is called Differential SAR Interferometry (DInSAR).
Since the differential phase does not depend on the perpendicular baseline but depends
only on the wavelength and the amount of change (see Equation 2.6), the sensitivity of
SAR interferometry to terrain motion is significantly higher than to the topography [Rosen
et al. 2000]. Thus, with this method it is possible to generate large scale deformation maps
with centimeter to millimeter accuracy.

2.1.2.4 Decorrelations and limitations associated with DInSAR

Despite the advantages of DInSAR technique for surface deformation measurement, var-
ious limitations are also inherent. So far it is assumed that there is only one dominant
scatterer in a pixel which is stable between two acquisitions. However, usually a pixel
consists of many different scatterers each of which may change during this period, intro-
ducing phase noise. Furthermore, changing weather conditions cause different path delays
in the signal. Those influences are not considered in Equation 2.6, however, additional
phase terms stemming from decorrelation and noise factors should be included in the
interferometric phase equation.

Change in backscatter properties with time decorrelates the measurements significantly,
leading to loss of useful phase information. Furthermore, variations in target backscattering
as a function of the incidence angle of the signal introduces decorrelation [Prati et al.
2010]. The phase decorrelation effects due to such temporal and geometrical sources are
described as the most limiting factors of differential SAR interferometry [Prati et al. 2010].

Temporal decorrelation usually stems from change in the backscatter coefficient or
dielectric characteristics between two acquisitions due to variations in the moisture content,
changes in state of the vegetation in different seasons, vegetation growth or erosion. This
implies that the decorrelation occurs when the backscatter differs from one image to
another due to changes in the scatterer position as well as the scatterer characteristics
[Massonnet and Feigl 1998]. The time difference between two acquisitions is known as
the temporal baseline. The period of decorrelation, i.e. maximum temporal separation, can
be months to years for arid regions but it can also be hours to days for vegetated surfaces
and it depends on the characteristics of the ground surface as well as the wavelength of
the sensor [Massonnet and Feigl 1998].

The change in position of scatterers with respect to each other between satellite passes
is common for vegetated areas [Hooper et al. 2007]. For instance, random movement of
leaves implies a phase change in a pixel leading to temporal incoherence. Similarly, the
dynamics of agricultural areas, considering ploughing, crop growth and harvesting cycle,

15



Chapter 2 Background and State Of the Art

contribute to the incoherence between two acquisitions. Therefore, temporal decorrelation
degrades the usage of differential SAR interferometry in vegetated areas significantly.

In addition to land cover types, such as vegetation or urban areas, the wavelength of
the radar is also an important factor defining the degree of temporal decorrelation. For
example, if the radar wavelength is larger than the plant components, e.g. leaves, branches
and stems, the signal penetrates through the vegetation and is backscattered from the
ground surface. In this case, the temporal decorrelation is less pronounced since there is
less interaction with the dynamic scatterer components.

Geometrical decorrelation occurs with different viewing angles since the relative lo-
cations of the scatterers depend on the viewing position. Two sources of geometrical
decorrelation can be addressed. The variation in baseline separation causes a variation
in phase between the corresponding pixels of the image pair. This kind of geometrical
decorrelation increases as the baseline separation between two acquisitions becomes larger,
leading to a maximum baseline separation between two sensor locations, thus, it limits
the amount of usable images for InSAR analysis [Ferretti et al. 2001]. Interferogram
generation is only possible for the baseline values below this critical value that depends
on the radar wavelength, sensor-target distance, range resolution, incidence angle and
topography.

The second source of geometrical decorrelation is known as the Doppler centroid
decorrelation, which is equivalent to the baseline decorrelation in azimuth and it is caused
by the changes in squint angle, the angle with which the sensor looks backward or forward.
Since the satellite transmitting the radar signal is in motion, the return signal reflects a
change in frequency relative to the transmitted signal, known as Doppler effect. Therefore,
changes in squint angle, altitude or velocity of the satellite implies a variation in frequency
shift along the LOS. The estimate of the center frequency in this spectrum is called Doppler
centroid and the Doppler baseline corresponds to the Doppler centroid difference of two
SAR image pairs in hertz (Hz). An increase in Doppler baseline results in decrease in
the common bandwidth and hence, degradation of the correlation between the images
[Rosich et al. 2000]. Similar to baseline decorrelation, there is a critical Doppler baseline
value, above which no common frequency in the bandwidth is found between two image
pairs, therefore, a total decorrelation occurs [Rosich et al. 2000]. Although the impact
of geometrical decorrelation effects can be minimized by filtering, no interferometric
information can be retrieved above the critical values. This limits the number of usable
interferogram pairs, thereby, reduces the temporal resolution of the monitoring with SAR
data.

Although radar waves can penetrate clouds, they are not entirely unaffected by them.
Similarly, change in atmospheric conditions between the SAR image acquisitions can cause
an increase or decrease in the measured path length. Phase shift due to atmosphere can be
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homogenous (ionospheric path delay) or heterogeneous (tropospheric path delay) depend-
ing on the atmospheric layers. The ionospheric delay is caused by the variations in the total
electron content, which depends on the time of day, geographical latitude, sun activity and
radar wavelength. The tropospheric influence is characterized by heterogeneous phase
shifts, which is related to the physical parameters, e.g. water content of the air, affecting
the speed of the signal [Ferretti et al. 2007].

As shown in Equation 2.6, the estimation of flat-earth-phase depends on the baseline
between two acquisitions. The accurate determination of the baseline relies on the precise
orbital information. Therefore, errors in the baseline estimation causes errors in the flat-
earth-phase and introduce an additional phase component in the interferometric phase
equation.

Similarly, any inaccuracies in the DEM used for the simulation of the topographical phase
cause errors in the deformation measurement. Furthermore, there is also an additional
phase term stemming from thermal noise caused by the radar system noise and from
coregistration noise by inaccuracies in the coregistration of the images.

Considering all these decorrelation effects and error sources, the differential interfero-
gram phase, Δφi, can be written as a sum of five phase terms:

Δφi = Δφde f + Δφatm + Δφorb + ΔφDEM + Δφn (2.7)

where Δφde f is the phase change due to deformation in LOS, Δφatm is the phase difference
due to differential atmospheric delay between two acquisitions, Δφorb is the residual
phase due to orbit inaccuracies, ΔφDEM stands for the residual DEM errors and baseline
decorrelation, and Δφn is the phase noise.

Additional limitations of differential SAR interferometry are related to spatial gradient
of the deformation, image pixel limitations and surface characteristics [Massonnet and
Feigl 1998]. The maximum detectable deformation gradient is one fringe per pixel or
the dimensionless ratio of the pixel size to the wavelength [Massonnet and Feigl 1998],
[Zhou et al. 2009]. If the relative displacement between two neighboring pixels exceeds
this limit, the displacement is not detectable by InSAR. The limiting value depends on
the sensor since the phase difference in a wrapped interferogram is between 0 to 2π, i.e.
maximum phase difference between two neighboring pixels is 2π, and this corresponds to
one fringe, λ/2. For a C-band sensor with the wavelength of 5.6 cm and 10 meter pixel
size the displacement can not exceed 2.8 cm for 10 meters, whereas for L-band sensor
with wavelength of 23.62 cm the limit is 11.5 cm per pixel. This relation also translates to
the maximum detectable deformation rate of one fringe per time difference between two
acquisitions [Zhou et al. 2009]. With the temporal baseline of N days, the deformation
rate should not exceed the value λ/2N [Zhou et al. 2009].
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A further limit is related to the size of the pixel. Estimation of the phase change on a
pixel is unfeasible since it can include unpredictable noise [Massonnet and Feigl 1998].
Therefore, successful interpretation depends on the agreement of several neighboring
pixels, consequently, it is not possible to recognize a small scale (smaller than 10 pixel)
displacement by conventional InSAR [Massonnet and Feigl 1998].

Surface characteristics, such as roughness, affect the sensitivity to baseline decorrelation.
With increasing topographic relief the sensitivity also increases, therefore, rough topogra-
phy in mountains areas can restrict the useability of an interferogram due to decorrelation
[Massonnet and Feigl 1998].

Reducing the impact of decorrelation effects

Although decorrelation effects and phase artifacts are restricting the useability of InSAR
depending on surface characteristics, and weather conditions, their impact can be partially
minimized by careful selection of the radar dataset.

In order to reduce the influence of atmospheric artifacts, the selection should consider
the weather conditions at the time of acquisitions, i.e. the images with comparable weather
conditions should be used for interferometry. Similarly, seasons can be taken into account
to exclude high temporal decorrelation for instance in the growing season.

Considering the spatial gradient of the deformation, the selection of temporal baseline
can also be optimized in order to eliminate the ambiguities stemming from the deformation
gradient. In order to minimize the impact of temporal decorrelation, a careful selection
of the wavelength, i.e. the sensor, is also important. The signal transmitted from a short
wavelength sensor (X-band) interacts with the top of the tree canopies. On the other hand,
the signal from C-band sensor partially penetrates the vegetation and is also scattered
by leaves, stems and branches, whereas longer wavelengths (L-band) can penetrate the
canopies so that the signal can be backscattered from the ground surface [Bamler and
Hartl 1998]. Consequently, the impact of vegetation on the temporal decorrelation can
be minimized by using longer wavelength of L-band sensors [Raucoules et al. 2007],
[Massonnet and Feigl 1998].

Also the incidence angle determines the scattering response of the radar signal. The
range increases with incidence angle, hence in most cases the backscattered power de-
creases [Bamler and Hartl 1998]. For interferometry, the incidence angle should be
chosen to balance the lay-over and shadow areas [Bamler and Hartl 1998].

Despite the possibility to reduce decorrelation effects and their impact by the best
possible selection of datasets, limitations associated with DInSAR are still prominent in
many cases. In order to address those limitations of conventional DInSAR, advanced
DInSAR techniques based on time series analysis are developed [Hooper et al. 2012].
The time series algorithms classified into two broad categories, being Small Baseline
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Subset (SBAS) [Berardino et al. 2002] and Persistent Scatterer (PS) [Ferretti et al. 2001]
approaches.

The SBAS approach aims to minimize the baseline decorrelation and the inaccuracies in
the DEM by employing only the appropriate combination of differential interferograms
characterized by a small baseline separation.

The PS technique relies on the selection of pixels demonstrating stable behavior, i.e.
least affected by decorrelation effects, and generates the interferograms with respect to
a common master image. All combinations of interferograms between the master and
every other image are employed regardless of the baseline values. However, only the
coherent pixels (persistent scatterer pixels) are used for further analysis. In this study,
the PS technique is utilized in order to estimate the deformation due to mining activity,
therefore, the approach is explained in detail in the following section.

2.1.2.5 Persistent scatterer interferometry

Temporal and geometrical decorrelation often prevents conventional differential SAR
interferometry from being an operational tool for deformation monitoring, moreover,
atmospheric disturbances degrades the accuracy of estimations [Ferretti et al. 2001].
Furthermore, the measurement of slow motion and derivation of its temporal evolution
requires a time series analysis, i.e. an advanced interferometric processing [Berardino
et al. 2002].

In order to address the problems caused by decorrelation and atmospheric delay, the
technique of identification and exploitation of pixels that are coherent over long time
intervals is introduced by Ferretti et al. [2001]. With the development of the persistent
scatterer interferometry technique the applicability of SAR interferometry has significantly
extended [Van Leijen et al. 2005].

The phase of a pixel is the coherent of sum all the individual backscatterers in the
resolution cell on the ground. If these scatterers move with respect to each other from
one acquisition to another, which is commonly the case for vegetation, the phase of the
corresponding pixel will vary randomly [Hooper et al. 2007] as depicted in Figure 2–4
for distributed targets. On the other hand, if the pixel is dominated by a stable scatterer,
brighter than the others, the interference from background scatterers will be reduced,
yielding in a stable phase measurement (as shown in Figure 2–4 for persistent scatterer
pixel), and hence enabling the extraction of the underlying deformational signal [Hooper
et al. 2007], [Ferretti et al. 2001]. Persistent scatterers are stable natural reflectors and
physically associated with trunk of a tree or a large rock in vegetated areas [Hooper et al.
2007], or found mostly on the urban structures like buildings, roads, train rails etc.

In PSI analysis, a time series of images is used to generate differential interferograms for

19



Chapter 2 Background and State Of the Art

distributed scatterer pixel persistent scatterer pixel 

0 

2π 
pixel  
phase 

acquisitions 
0 

2π 

acquisitions 

Figure 2–4: Sketch of scatterer mechanisms for distributed and persistent scatterer pixels. The
upper drawings represent the scatterers contributing to the phase of a pixel, and the
lower ones show the phase values for each acquisition. The persistent scatterer pixel
exhibit more stable phase values, i.e. smaller phase variation, through the monitoring
time compared to the distributed targets. The image is drawn based on Hooper et al.
[2012].

each available acquisition with respect to a common master, even if the pair is characterized
by a baseline larger than the critical value [Ferretti et al. 2001], [Berardino et al.
2002]. This has the advantage that all the available data can be successfully exploited for
interferometric application [Ferretti et al. 2001]. Since the PSI processing relies on the
coherent pixels, the algorithm first searches for the pixels that stay stable for the entire
stack of interferograms. Several methods are developed for the identification of persistent
scatterers, e.g. Ferretti et al. [2001], Werner et al. [2003], Kampes [2006], Hooper et
al. [2007]. The procedures for selection of initial PS pixels usually follows a statistical
analysis in which the pixels with high signal-to-noise ratio are identified by analyzing the
amplitude variation pixel-by-pixel throughout the interferogram stack. Furthermore, the
phase stability of the pixel is examined with regard to the neighboring pixels and included
in the selection criteria [Prati et al. 2010], [Ferretti et al. 2001].

The different phase terms from atmosphere, topography and displacement in Equation
2.7 can be isolated by exploiting their different behavior in spatial and temporal dimension
[Prati et al. 2010], [Werner et al. 2003]. For instance, the linear component of displacement
and the topographic phase associated with DEM errors show a linear dependence to the
phase change of the pixel through the time series and can be estimated by utilizing a
linear model [Werner et al. 2003]. The atmospheric phase contribution is low-pass in the
spatial dimension, i.e. correlated in space, but uncorrelated from pass to pass, therefore,
this phase term can be estimated and eliminated by applying spatio-temporal filtering
[Prati et al. 2010], [Werner et al. 2003].

With the PS technique, sub-meter DEM accuracy and millimetric ground deformation
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estimation can be achieved, since the atmospheric effect is removed [Ferretti et al. 2001].
In addition to its precision and reliability, the advantages of PS interferometry over the
conventional DInSAR processing include estimation of deformation even at the areas
where no fringe can be observed on individual interferograms, exploitation of all the
available data even with large baselines, estimation of slow displacements, as well as
determination of small scale motions of a building or a bridge [Prati et al. 2010], [Ferretti
et al. 2001].

The absolute precision of PSI deformation estimates is difficult to asses, for instance, the
comparison with leveling data is not always guaranteed that the same object is observed
both by leveling and by PSI [Adam et al. 2009]. The accuracy of the PSI technique depends
on several factors including the sensor, the number of images, time of acquisitions, the
distance from the reference point and the coherence of the persistent scatterers [Hooper
et al. 2012]. With PSI, a centimeter to millimeter accuracy can be achieved for deformation
estimations, and even in the case where deformation is linear in time, accuracy can be
better than 1 mm/year [Adam et al. 2009], ([Hooper et al. 2012]). Due to the achievable
precision, persistent scatterer interferometry is regarded as a powerful tool for deformation
measurement [Prati et al. 2010], [Ketelaar 2009], [Raucoules et al. 2007], however,
various limitations and requirements associated with this technique are also described
[Crosetto et al. 2010].

One of the limitations is related to the density of persistent scatterers. As a prerequisite of
sufficient spatial sampling to exploit spatial correlation and isolate orbital and atmospheric
phase contributions, a minimum PS density 3-4 PS/km2 is required [Raucoules et al.
2007]. This requirement is usually fulfilled in urban areas, however, in vegetated and
forested regions a sufficient density of PS is not reached frequently [Crosetto et al. 2010].
This applies especially to C-band and X-band data. Since the L-band signal can penetrate
the vegetation, usage of this wavelength can provide sufficient density of PS even in
natural areas. Being a necessary condition for PSI, PS spatial sampling has to be properly
considered for assessing the PSI feasibility [Crosetto et al. 2010].

Similarly, the temporal sampling of the PS dataset is an important factor for the reliability
of PSI analysis . The distribution of the acquisitions in time should be as uniform as possible
for a higher precision [Ferretti et al. 2001]. Moreover, due to statistical analysis employed
in PSI processing, a large number of the images, ideally more than 30, is required.

Another limitation is associated with the observable deformation magnitude and aliasing
[Crosetto et al. 2010]. Due to the wrapped phase observations, the capacity of PSI for
measuring fast movements is restricted. The critical limit of phase gradient, i.e. maximum
rate, in PSI estimation depends on the spatial pattern of the deformation, on its PS
sampling density, on the wavelength and on the temporal SAR sampling [Crosetto et al.
2010].
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The linear model assumption used in PSI analysis can have a negative influence for
areas characterized by non-linear deformation. Especially in the main deformational areas
showing significantly non-linear motion, the final PSI maps may lack PSs, due to the fact
that the observed PS phases do not fit to the linear phase model [Crosetto et al. 2010]. In
such cases, the linear model assumption can be a critical limitation, because PSI may be
unable to provide estimations over the most interesting area with large deformation rate
[Crosetto et al. 2010].

2.1.3 Modeling ground subsidence by radar remote sensing observations

Ground subsidence models are simplified representations of the surface movements and
can be used for acknowledging the essential aspects of subsidence, as well as for predicting
its behavior. In the understanding and anticipating of ground subsidence, different types
of models from diverse perspectives can be utilized.

Depending on the objectives, the input and output of modeling may vary. In geology,
a model can represent the tectonic interactions and processes triggered by subsidence.
In subsidence engineering, a model may focus on the calculation of the impact of forces,
generating the geometry to ascertain the effect of subsidence on the underground mine,
the buildings, the infrastructures and to provide mining improvements. In remote sensing,
the temporal and spatial evolution of subsidence can be modeled for initial assessment of
potentially hazardous areas.

Since the estimations derived by PSI analysis form a set of spatial data, composed of
points with geographic location and vertical values, the concept of descriptive modeling in
spatial data handling described in Falcidieno et al. [1992] forms the framework of ground
subsidence modeling in this study. In their work, descriptive modeling is proposed to
extent the role of spatial data in the understanding of a natural phenomena by extraction
of the implicit information available in the initial set of data. A typical flow of operations
of descriptive modeling includes the collection of a set of estimations and the derivation
of a geometrical model. At the final stage the geometric models can be further interpreted
to generate secondary models [Falcidieno et al. 1992].

Geometric models are derived by the generation of relationships between individual
observations. By using continuity and coherence as two characteristics of spatial data, the
values in between observations can be synthesized [Falcidieno et al. 1992]. In the case of
ground subsidence, the aim of a geometrical model is to generate a continuous surface
of the deformation by considering the tendency for nearby locations to influence each
other, since the subsidence trough is a continuous surface observed by PSI estimation
in point locations. In order to produce a geometrical model from PSI point estimations,
i.e. predicting the values at unobserved locations, interpolation techniques, especially the
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ones designed for spatial relationships, can be utilized as in the work of Yaseen et al.
[2013], Hung et al. [2011], Kircher et al. [2003]. With a geometrical model, specific spatial
questions can be answered [Falcidieno et al. 1992]. For instance, “what is the amount or
rate of deformation in a particular location where no observation is available?”.

In order to derive the characteristics of subsidence, a single set of SAR data can be used
or different sources of information, e.g. multiple sets of SAR images from different sensors,
can be combined. Such multi-sensor integrations can extent the temporal coverage of the
ground displacement monitoring by InSAR to a longer period as demonstrated in the
work of Nitti et al. [2010] and Walter et al. [2009]. Furthermore, Lan et al. [2013], Nitti
et al. [2010] and Walter et al. [2009] report an increase in spatial sampling of subsidence
by using different wavelengths. The studies applying integration of information stemming
from different datasets suggest that the model of the subsidence based on only one dataset
can be improved by the additional sets of observations.

The geometric model of the subsidence can further be used for the derivation of
interpreted models such as risk zoning. In case of mining subsidence modeling with
PSI observations, the interpreted model may indicate the risk zones depending on the
subsidence components, e.g. strain, curvature and tilt. With the availability of a subsidence
profile (a geometric model), it is possible to extract the subsidence components, since they
are derived from the profile as already explained in Section 2.1.1.2. These interpretations
may allow the reduction of the impact of subsidence by assessing the type of damage
and providing associated improvements for the buildings and infrastructures. However,
deriving an interpreted model is not in the scope of this thesis. The present study aims to
derive an initial model describing the subsidence, which can be further used for generation
of interpreted models.

2.2 State of the art

With the availability of vast SAR data from various missions, SAR interferometry has
been used extensively to delineate the areas affected by ground deformations as well
as to estimate the magnitude of the displacement. Numerous studies in the literature
utilize SAR interferometry for mapping ground surface displacements. The phenomena
explored by this technique range from natural causes like earthquakes (Yaseen et al. [2013],
Massonnet et al. [1993]) and volcanoes (Samsonov and d’Oreye [2012], Froger et al.
[2007], Hooper et al. [2007], Hooper [2006], Massonnet et al. [1995]) to anthropogenic
causes including groundwater withdrawal (Cigna et al. [2012], Heleno et al. [2011], Hung
et al. [2011], Liu et al. [2011], Osmanoglu et al. [2011], Ng and Ge [2007]), oil and gas
extraction (Ketelaar [2009]), and mining (Abdikan et al. [2013], Samsonov et al. [2013],
Nitti et al. [2010], Ng et al. [2010], Wegmüller et al. [2010], Guéguen et al. [2009], Perski

23



Chapter 2 Background and State Of the Art

et al. [2009], Walter et al. [2009], Jung et al. [2007], Ge et al. [2007], Wegmüller et al.
[2007a], Wegmüller et al. [2007b], Colesanti et al. [2005], Walter et al. [2004], Kircher
et al. [2003], Raucoules et al. [2003]).

Rich SAR data archives providing deformation information since 1991 contribute to the
increasing applications of SAR interferometry for mapping ground deformations. The
SAR data required for interferometry is available from numerous of spaceborne SAR
sensors including X-band COSMO-SkyMed and TerraSAR-X sensors, C-band ERS-1/2,
Envisat-ASAR, RADARSAT-1/2 sensors and L-band ALOS-PALSAR and JERS-1 sensors.
Due to their different characteristics, such as wavelength, spatial and temporal resolution
and incidence angle, SAR data from different sensors provide information with different
sensitivities and perspectives to the geohazard.

The exploration of SAR data through years led to the development of various methods
and approaches for observing the deformation, for example, in time series. Based on the
pixels persistent trough the time series, PSI technique has become a proven technology
for the analysis of ground deformations. The PSI method was first introduced by the
authors Ferretti et al. [2001] with the aim of overcoming the limitation of conventional
SAR interferometry, such as temporal and geometrical decorrelation and atmospheric
artifacts. Following this advancement, several modified techniques are also developed,
enhancing the application of PSI, such as Interferometric Point Target Analysis (IPTA)
[Werner et al. 2003], Spatio-Temporal Unwrapping Network (STUN) [Kampes 2006] and
Stanford Method for Persistent Scatterers (StaMPS) [Hooper et al. 2007]. To sum up, with
the improvements in recent years PSI approach is developed into a fully operational tool
providing high precision, wide area monitoring and unique ability to offer retroactive
analysis of geohazard behavior [Hooper et al. 2012], [Ferretti et al. 2005].

Due to achievable precision with PSI analysis, the method is used in several studies for
the detection of ground subsidence and it is demonstrated that PSI is capable of providing
precise estimations of deformation for a variety of study sites with different characteristics.
Furthermore, several advantages of using PSI for monitoring of ground deformation
are reported by many authors. For instance, the deformation hazards due to mining in
Roncourt, France occurring between 1995 and 2000 is monitored by ERS-1/2 in the work
of Colesanti et al. [2005], where collapse precursor signs have been clearly detected by
the PSI time series analysis when no leveling data was recorded. This implies that SAR
interferometry is the only source of information about the dynamics of the deformation
before the major collapse itself.

Considering the capability of PSI for subsidence monitoring, Wegmüller et al. [2007a]
present several IPTA analysis with C-band sensors (ERS and ASAR) on mine related surface
deformation with an aim to achieve market awareness and acceptance of SAR based land
surface deformation monitoring. The studies include, among others, monitoring of surface
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movements for open-pit mining, above underground gas caverns, solution mining site and
active and abandoned lignite mining sites.

Depending on the availability of the data and the settings of the study area, SAR
data from different sensors are exploited by different studies. In particular, based on the
rich archives of ERS-1/2 and ASAR data, an immense experience on ground subsidence
monitoring with C-band (5,6 cm wavelength) interferometry is collected by numerous
applications including Raspini et al. [2014], Sadeghi et al. [2013], Cigna et al. [2012],
Teatini et al. [2012], Hung et al. [2011], Ng et al. [2011], Osmanoglu et al. [2011], Zhang
et al. [2011], Wegmüller et al. [2010], Nitti et al. [2010], Guéguen et al. [2009], Perski
et al. [2009], Walter et al. [2009], Zhao et al. [2009], Ng and Ge [2007], Raucoules et al.
[2007], Wegmüller et al. [2007a], Wegmüller et al. [2006], Colesanti et al. [2005] and
Walter et al. [2004]. In Figure 2–5, SAR dataset used for each study can be investigated.
However, limitations of C-band data in vegetated areas due to temporal decorrelation
is also reported. Furthermore, the investigations has shown that the use of C-band is
problematic in the areas of high phase gradient [Wegmüller et al. 2006].

In order to overcome the temporal decorrelation effect in vegetated areas, several studies
exploit L-band data. For instance, Nitti et al. [2010] has applied PSI analysis to Wieliczka
Salt Mine area, Poland by using longer wavelength of L-band PALSAR data. The work
aims to extend the previous C-band analysis especially for the rural areas, neighboring the
mine but lacking PS in C-band. Similarly, Wegmüller et al. [2007b] presents several L-band
studies for monitoring of mining induced deformation and reports that in vegetated areas
the PSI results are enhanced in comparison to C-band monitoring. Other examples can
be found in the work of Abdikan et al. [2013] and Jung et al. [2007], who have exploited
L-band data for the investigation of mining induced ground subsidence. With the available
PALSAR data Abdikan et al. [2013] has identified the mining related subsidence in rural
and densely vegetated area located in Zonguldak Province of Turkey. Authors note that
the estimations derived from the previous C-band analysis have been improved with
denser PS points by the usage of L-band data. On the other hand, Jung et al. [2007] has
employed JERS-1 data in order to estimate the ground subsidence in Gaeun coal mining
area in Korea.

The difficulties stemming from high gradient deformations can also be overcome by the
usage of a longer wavelength. For instance, Wegmüller et al. [2007b] has applied L-band
PALSAR data to various mining and land slide areas with high deformation rates. On
the other hand, shorter wavelength can also be employed successfully as in the work of
Walter et al. [2009], who has exploited the potential of TerraSAR-X for monitoring of
high gradient surface deformations above an active and an abandoned mine, where the
previous C-band data showed limitations. It is reported that the higher spatial resolution
and shorter revisit time of the TerraSAR-X sensor lead to easier phase unwrapping with the
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possibility to measure high deformation rate. Similarly, Liu et al. [2011] uses TerraSAR-X
images in order to estimate the ground subsidence in the urban area of Tianjin, China. The
authors report that high resolution TerraSAR-X images can dramatically increase the PS
density especially in the build-up areas, furthermore, the estimations are quite sensitive
to the displacements due to its shorter wavelength. The high resolution TerraSAR-X data
is also used in the work of Luo et al. [2014] and Ao et al. [2015], in order to estimate the
ground subsidence in the urban areas of Tianjin suburbs and Nansha district in China,
respectively.

In this regard, the studies indicate that the different limitations associated with PSI
can be compensated by selection of an appropriate dataset. In addition to the selection
of a suitable dataset, the importance of the adaptation of the PSI methodology to the
specific conditions of study site is also implied by the studies. For instance, the mapping
of subsidence with high rate at the Prosper-Haniel mine in Ruhr region, Germany, is
successfully addressed in Walter et al. [2004] by integrating subsidence model to the PSI
analysis. Similarly, the ground motion with relatively a fast and non-linear subsidence rate
is estimated by PSI analysis of TerraSAR-X images in the work of Wegmüller et al. [2010].
The authors suggest that the availability of appropriate data and adaptation of the PSI
methodology are the key factors in the study of fast and non-uniform deformations. In
their work, it is reported that the high resolution and short revisit time of these acquisitions
provide a higher spatial sampling of high gradient subsidence and less deformation phase
per period, assisting phase unwrapping. Furthermore, the PSI methodology adapted to
the study site provided the non-linear characteristics of the observed mine subsidence.
The methodology is essentially a PS approach but the interferograms with small temporal
baselines are generated with multiple masters to aid in phase-unwrapping in the case of
high deformation rates (>50 cm/year) [Hooper et al. 2012], [Wegmüller et al. 2010].

Not only the data selection but also the combination of information from different
sensors enhances the revisiting frequency and spatial sampling of the displacement, hence
offers very promising perspectives for interferometric monitoring of ground deformations.
In particular, with the combination of data from different sensors with various spatial res-
olutions and sensitivities to the displacement, a more accurate and detailed determination
of the displacement characteristics can be achieved [Froger et al. 2007]. Therefore, several
studies utilize multi-sensor data. For example, Nitti et al. [2010] extends the previous
C-band analysis, by exploiting L-band PALSAR data to increase the spatial sampling of
the mine subsidence. Another example of combining C- and L- band data can be found in
the work of Ng et al. [2011], who has investigated the long term ground subsidence in
Beijing, China by the ASAR and PALSAR images. The authors suggest that usage of these
two dataset increases the spatial sampling and the detection of high gradient subsidence.

A multi-sensor dataset composed of TerraSAR-X, Envisat-ASAR and ALOS-PALSAR
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TerraSAR-X (X-band) ASAR (C-band) ERS 1/2 (C-band) JERS-1 (L-band) PALSAR (L-band)

Figure 2–5: A selection of studies utilizing PSI for the investigation of ground subsidence phenom-
ena. The bars in the graph stand for the SAR data used for each application. Asterisk
(*) is used to mark the studies investigating mining induced ground subsidence.

is exploited in the work of Walter et al. [2009]. Furthermore, DInSAR and PSI analysis
depending on the availability of the SAR data are utilized for the determination of high
gradient surface deformations above an active and an abandoned mine. In other words,
results from different datasets and techniques are integrated for a more precise description
of the observed deformations.

Another example of integration of multi-sensor PSI results is presented in Lan et al.
[2013]. In this work, the PSI analysis of Terrasar-X and ALOS-PALSAR are carried out for
the estimation of ground subsidence in Tianjin Binhai New Area, China. The authors report
that the integration of PSI subsidence models from these two sensors has a significant
contribution for solving the problems related to common spatial and temporal gaps of
single sensor models.

In addition to the SAR data from already existing sensors, the forthcoming SAR missions,
ensuring data continuity, contribute to an increase in PSI applications for deformation
monitoring. With the developing technology, noise and other error sources will be ad-
dressed by the new generation missions [Hooper et al. 2012]. For instance, the temporal
decorrelation noise will be reduced by more frequent acquisitions. Additionally, with
the improvements in the accuracy of precise orbits, as well as elevation models, residual
geometrical errors will also be reduced [Hooper et al. 2012].

One of the most promising forthcoming mission is the Sentinel-1 satellites from Euro-
pean Space Agency (ESA). Based on a constellation of two satellites, the Sentinel-1 mission
is developed for continuation of the C-band SAR data flow provided by its predeces-
sor ERS and Envisat. The system has been designed to reduce the limitations of InSAR
applications by guaranteeing a revisit cycle of six days and a small orbital tube [Salvi
et al. 2012]. Contrary to the new X-band sensors Cosmo-Skymed and TerraSAR-X, having
also a short revisit time from 4 to 11 days, however, with limited coverage for high costs,
Sentinel-1 will provide global and freely accessible observations providing present and
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past ground motion information for any target [Rucci et al. 2012]. With the high frequency
of observations and the regularity of data acquisitions more accurate estimation of ground
deformations will be possible for both conventional and multi-temporal InSAR techniques.
Furthermore, due to lower impact of temporal decorrelation, hence more effective filtering
for atmospheric phase components, a higher spatial density of measurement points is also
expected by Sentinel-1 data [Salvi et al. 2012].

The launch of ALOS-2 by the Japan Aerospace and Exploration Agency (JAXA),
equipped with L-band SAR sensor PALSAR-2, assures the continuity of the L-band
SAR archive created by ALOS-PALSAR [Rosenqvist et al. 2014]. Similar to Sentinel-1,
small orbital tube and a high revisiting frequency of 14 days is used for ALOS-2 in order
to accommodate short interferometric baselines and minimize the acquisitions access time
[Rosenqvist et al. 2014].

Continued advances in methodologies and growing collection of SAR data by new
generation sensors open new possibilities for sensing of geohazards. Different sensibilities
of sensors to the ground deformation, atmosphere and vegetation can be explored by multi-
sensor observations. Moreover, the deformation information from different sensors can be
integrated, for example, to increase the spatial and temporal sampling of the phenomenon.
There is a versatile potential in combining information from different sources. Therefore,
especially with the forthcoming satellites, there is a need to develop methods for synergistic
usage of sensors to improve the interpretation of ground deformation characteristics. As
a consequence of this improvement, the confidence of hazard assessment also increases
[Lan et al. 2013].
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Research Needs and Study Objectives

Based on the insights acquired from the current state of the art in the field of radar remote
sensing for deformation monitoring and from the review of SAR data archives and future
acquisitions, in this chapter the research needs are summarized to formulate the main
aims and objectives of the present study.

The need for geohazard observation can clearly be seen in the form of assessing the risk
posed by the phenomenon. SAR interferometry techniques are described in the state of the
art as a powerful tool for monitoring geohazards by providing precise descriptions of the
displacements and valuable information for risk assessments. Furthermore, in the current
state, the immense knowledge acquired and the availability of vast SAR data archives
promote further progresses in this field of analysis. Therefore, this research aims, first to
evaluate persistent scatterer interferometry for the specific application of Sondershausen
mine subsidence.

For the purpose of describing the behavior of deformation in more detail, collection of
data from various sources and integration of the acquired information through different
datasets is also encouraged in the current state of the art. In this regard, this research
secondly aims to explore different sources of information with a multi-sensor approach as
well as to derive synergistic information implicit in the multi-sensor dataset.

Following these aims the first main objective is to evaluate the application of PSI
technique for ground subsidence monitoring, and hence to asses the spatial and temporal
behavior of the subsidence. This also addresses the question “can PSI technique be
employed to study the subsidence phenomenon in Sondershausen?”. This question is
tackled by

– evaluating reliability and precision of PSI estimations in comparison to the available
ground data

– investigating the strengths and limitations of PSI for this specific application

– exploiting a multi-sensor dataset for extending the monitoring period
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– investigating the influence of the dataset, hence sensor characteristics on the applica-
tion of PSI analysis

The second main objective is to extract the implicit information available in the multi-
sensor estimations of the PSI analysis. This corresponds to the modeling concept in the
thesis. There are two main aspects.

The extension of the information from point to surface, in other words derivation of
continuous estimations (geometric models) by using the spatial neighborhood constraints,
is the first aspect. The aim here is to provide a tool to answer the question “what is the
temporal evolution of the rate of subsidence at any point on the surface?”. Since addressing
this question provides estimations also at unobserved locations, the interpretation of
subsidence characteristics can be improved, which in turn enhances the understanding of
its effect on the surface structures.

With the aim of compensating for a specific limitation of monitoring, the second aspect
is the investigation of synergistic potential of a multi-sensor dataset. Considering the
specific constellation of dataset used here, it is aimed to propose a method to increase the
spatial density of PS estimations at critical areas with undersampling in a certain part of
the monitoring period. This correlates to “model refinement” in the modeling concept of
the thesis.
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Chapter 4

Research Site and Dataset Characteristics

This chapter is devoted to the description of the research area and the data used for
the analysis. The first part of the chapter (Section 4.1) introduces the geographical and
geological settings of the area and provides brief information on the mining activities in
the study site and on the geohazard due to the mining.

For the analysis of subsidence, SAR data from multiple sensors are employed. Further-
more, in order to verify the SAR interferometry estimations and to assist the processing
of SAR images, leveling data, weather observations and DEM of the study site are also
collected. Consequently, the second part of the chapter (Section 4.2) briefly describes the
available SAR and supplementary datasets.

4.1 Glückauf potash mine field in Sondershausen

The Glückauf potash mine in Sondershausen, being the oldest and deepest operational
potash mine in the world, is situated in north Thuringia, Germany. Currently the mine is
partly transformed to an adventure mine, i.e. opened for touristic mine experience, and
also used for extraction of rock salt to some extent.

The research area is located in the city center of Sondershausen. The SAR scenes also
cover its villages Großfurra and Berka as shown in Figure 4–1. The area is situated in low
mountain range between the Hainleite in the south and the Windleite in the north and is
mainly surrounded by mixed forests and agricultural fields.

4.1.1 Geological setting of the area

The Glückauf mine is situated in the north margin of the Thuringian Basin, a depression
in the central and northwestern part of Thuringia, Germany. The basin is bordered by the
Harz mountains in the north, by the Thuringian Forest in the south and by the Thuringian
slate belt in the east.

The depression is filled with sedimentary rocks of Zechstein and Germanic Trias with
almost horizontal bedding [Seidel 2003]. The largest deposits are of Triassic age being the
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Figure 4–1: Research site: Glückauf potash mine field in Sondershausen. The area marked by the
blue line on the map of Germany represents the border of the Free State of Thuringia,
and by star shows the location of Sondershausen (image source: Google Maps).

Bundsandstein, Muschelkalk and Keuper, a characteristic sequence of rock strata forming
the Germanic Trias Group. Below this sequence lie the gypsum and salt layers of Zechstein
deposited during middle to late Permian [Seidel 2003].

In Tertiary, the present day basin geometry is developed as the African and European
tectonic plates collided with one another. The Thuringian basin forms a regional syncline,
Thuringian Syncline, whose recent structural configuration is characterized by several
NW-SE-trending fault zones [Malz et al. 2014]. Sondershausen is situated in the south of
northwest end of Kyffhäuser-Crimmitschau-fault zone where the layers are uplifted and
the upper layers are eroded to the Buntsandstein.

Under these sandstone layers, the Permian salt, i.e. the Zechstein cycle, is accumulated.
This sequence consists of huge white and gray layers of Leinesteinsalz and Staßfurtsteinsalz,
and in between strata of bright and dark red potassium salt [Hoppe 1959]. The geological
columnar section can be found in Figure A–1 for detailed inspection of the stratigraphic
sequence at the study site.

4.1.2 The Glückauf mine

Since 1898 mainly potassium salt in the form of Carnallite, Sylvinite and rock salt from
the Zechstein sequence are produced from the Glückauf mine of Sondershausen [Fliß
et al. 2011]. The room and pillar method is used for the mining, with the central part of
the mine field covering an area of 6x10 km2, partially beneath the settlements of the town
of Sondershausen with a population around 25.000 [Fliß et al. 2011].
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Until the termination of production in 1991, a total amount of 110 million tons of salt
(with a maximum annual production of 2.5 million tons) were extracted from depths
varying between 600 m to 1000 m beneath the ground surface [TLUG 2005]. Through
decades of intensive mining the ground surface was subjected to subsidence, consequently
around 1991 critical deformation and instabilities occurred in a mine field located directly
beneath the city of Sondershausen. The subsidence rates measured at the ground surface
reached up to 25 cm/year and were accompanied by seismic events with magnitudes up
to 1.8 in Richter local magnitude scale [Fliß et al. 2011].

From 1991 to 1997 the corresponding section of the mine was stabilized by backfilling
of the cavities with rock salt that was excavated for that purpose from a different part
of the mine. Following the start of backfilling activities the subsidence rates constantly
decreased and by 1997, the number and magnitude of seismic events are also gradually
reduced, so that presently only very weak activity is recorded [Fliß et al. 2011].

The mine was reopened for touristic visits in 1996 and since then it is further backfilled
with industrial material [Marx et al. 2005]. In 2006 halite production from Staßfurtsteinsalz
layers is started in certain parts of the Glückauf mine.

4.2 Dataset

4.2.1 SAR image datasets

In order to derive the spatio-temporal characteristics of the ground surface displacement
in Sondershausen, SAR data from ERS-1/2, Envisat-ASAR and ALOS-PALSAR sensors
were collected. The Single Look Complex (SLC) images were provided by ESA in the
framework of a CAT-1 proposal. Table 4–1 shows the details of the acquisition parameters
for those three sensors.

Table 4–1: Acquisition parameters of the SAR datasets. The columns marked by Num provides the
number of images in each stack and θi gives the incidence angles at the mid-range.

Sensor Track Frame Start End Num θi Orbit
ERS-1/2 480 2565 08.04.1995 23.10.2005 74 23o Descending
ASAR 480 2565 11.04.2004 12.09.2010 21 23o Descending
PALSAR 639 1020 02.03.2007 26.07.2010 15 38o Ascending

The plot of distribution of the scenes in temporal and baseline plane, i.e. baseline graphs,
can be found in Figure 4–2. For three set of SAR data, the graphs show the distribution
of images in time depending on the perpendicular baseline values. Additionally, for ERS
stack a graph of Doppler baseline is provided, because of the large Doppler centroid
deviations that ERS scenes exhibit after 2000. The details of this point are explained in the
following section.
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Figure 4–2: Baseline graphs of the ERS, ASAR and PALSAR stacks. The Graphs (a), (c) and (d)
show the distribution of SAR scenes in temporal baseline (Bt) versus perpendicular
baseline (B⊥) plane and (b) temporal baseline versus Doppler baseline (BD) plane. The
images marked by light blue frame represent the selected master images.

The period of monitoring based on the available SAR data covers the years between 1995
and 2010. During this time the Glückauf mine was subjected to backfilling activities to
stabilize the displacement, corresponding to the period of gradual decrease of subsidence
rate in the deformation history of the study area.

4.2.1.1 The ERS stack

As the baseline graphs in Figure 4–2 indicate, the period from 1995 to 2005 is monitored by
the SLCs acquired with the sensors ERS-1 and ERS-2. The ERS sensors operate in C-band,
corresponding a wavelength of 5.66 cm. The satellites revisit the study area every 35 days.

All the available ERS-1/2 data until 2000 is included in the analysis. However, the ERS-2
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mission suffered from failures of the onboard gyroscopes occurring in early 2000. This
affected the Doppler values of SAR images [Miranda et al. 2003]. In Figure 4–2 it can be
seen clearly that the Doppler values of the acquisitions after 2000 show large variations.
The differences in Doppler values before the gyro failure are around few hundred Hz
at maximum, whereas after 2000 they reach to 1000 Hz. This high deviation makes the
interferometry analysis difficult, because deviations in Doppler values cause decorrelation
and with the value being above the critical baseline (1380 Hz for ERS), no information can
be extracted from the interferogram.

In order to achieve that the entire period from 1995 to 2010 is covered without any gap,
the ERS-2 data between 2000 to 2005 (till start of ASAR acquisitions) is also collected and
analyzed for usability in interferometry. The images whose Doppler value differ from
the master image more than the critical value are excluded from interferometric analysis.
Therefore, only few radar scenes could be used for this period, yielding large gaps between
data acquisitions. From 1995 to 2000 the time difference between successive acquisitions
are usually around 1 day (due to tandem constellation of ERS-1 and ERS-2), 35 days (one
cycle) or 70 days (two cycles). However after 2000, the difference for some scenes reaches
up to 525 days (15 cycles) (see Figure 4–2-a). Despite the sparse distribution of acquisitions
after 2000, with 74 images the ERS stack has a potential for the derivation of deformation
estimations for the period spanning from 1995 to 2005.

4.2.1.2 The ASAR stack

The next period from 2004 to 2010 is investigated by 21 ASAR acquisitions. Similar to the
ERS sensors, ASAR operates in C-band, with 35 days revisit time.

The distribution of the scenes is relatively good at the first year of the acquisition period
of ASAR with 1 to 3 cycle differences (35 to 105 days), however, between 2006 to 2009 the
difference between consecutive recordings reaches up to 12 cycles (see Figure 4–2-c).

4.2.1.3 The PALSAR stack

In addition to ASAR, the years from 2007 to 2010 are covered by 15 PALSAR scenes.
PALSAR operates with a longer wavelength of 23.62 cm, with 46 days of revisit time. The
L-band dataset from PALSAR is composed of single (FBS) and dual (FBD) polarization
modes. The FBD data has only half of the range bandwidth of FBS, nevertheless with
oversampling of FBD they can be combined for interferometry [Werner et al. 2007].

The differences of the acquisition times vary from 46 days (1 cycle) to 184 days (4 cycles),
which can be seen in Figure 4–2-d. Having only 15 images in this dataset, it is expected
that the accuracy of PSI processing will be affected to some degree, since it is a statistical
based approach. The details of the processing are discussed in Section 5.2.1.4.
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4.2.2 Supplementary datasets

In addition to SAR images, supplementary datasets including a DEM of the area, weather
and surveying measurements are used in the analysis.

– DEM: a LIDAR DEM with 5m resolution, provided by Thuringian Authority of
Environment and Geology (TLUG).
Used for : Coregistration and PSI processing

– Weather data: Time series of meteorological parameters of each selected station,
covering the period 1995–2011. The data is provided by German Meteorological
Service (DWD)
Used for : Master selection

– Surveying data: Time series of height change and map coordinates of 137 surveying
points. The measurements are taken annually with leveling network providing 1 mm
height accuracy. The time series covers the entire period of monitoring with SAR
data from 1995 to 2011.

The surveying data is provided by the Glückauf mine management companies
GSES mbH and GVV mbH. The surveying network covers only the central part
of Sondershausen (see Figure 5–3 in the next chapter for the location of surveying
benchmarks).
Used for : validation of PSI deformation maps and models.
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Methodology

Dedicated to the methodology, this chapter describes the strategy of data processing in
detail following the flow chart presented in Figure 5–1.

In the first part (Section 5.1) the procedure of supplementary data processing is ex-
plained. The following section (Section 5.2) describes the operations used for ground
subsidence monitoring, starting with the details of SAR processing strategy from SLC data
to the end product of PSI processing (Section 5.2.1).

Following the objective of validation, the PSI deformation maps are compared to the ones
derived from available surveying data. However, direct comparison is not applicable before
translating LOS deformation rates into the vertical component. Furthermore, removal of
unreliable estimations from the results is required in particular for the PALSAR output.
The details of these steps are explained in the post-processing section (Section 5.2.2)
following the PSI analysis of SAR data. After post-processing, the methodologies used for
the validation of the PSI results are presented under validation strategies (Section 5.2.3).

The final stage of the research consists of descriptive modeling. For this purpose,
the validated PSI estimations are interpolated to generate the geometric models of the
subsidence rates. Subsequently, the single-sensor model is refined by synergistic usage
of multi-sensor datasets. The method of modeling (Section 5.3) including the generation
of geometric models (Section 5.3.1) and refinement of the initial model (Section 5.3.2) is
described in detail in the final part of this chapter.

5.1 Supplementary data processing

In order to assist and validate the PSI analysis, time series of atmospheric parameters
measured at several weather stations and precise ground measurements of displacement
parameters are collected in addition to the SAR data. In this section, the details of
processing strategy for both, weather and surveying data are explained. The information
related to the DEM processing, i.e. generating DEM heights in SAR geometry, is provided
in Section 5.2.1.3.
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Figure 5–1: Flow chart of the methodology.

5.1.1 Weather data processing

The weather data is used for selecting the master scene and also assisting the interpretation
of atmospheric influences on the interferograms during PSI processing.

One factor to consider for minimizing the atmospheric artifacts in a stack of interfero-
grams is the influence of weather conditions on the master scene. Since the differential
interferograms are generated between the master image and all the slave images during
PSI analysis, the image with least atmospheric artifacts should be selected as the reference
scene to minimize the atmospheric influence. To achieve this, the weather condition for
each acquisition is investigated by structuring and processing of the initial weather data,
i.e. by generating weather parameter maps for each acquisition. Furthermore, a scoring
system is used to assess the quality of the images based on the weather parameters [Kuehl
et al. 2013].

38



5.1 Supplementary data processing

For this purpose, at first, a time series of meteorological parameters from selected
stations are downloaded from the DWD database (one file with daily measurements per
station). Estimating the weather situation at the time of the SAR image acquisition requires
choosing the right set of data, which eventually depends on the availability and dynamics
of the parameters [Kuehl et al. 2013]. Among the parameters provided in the time series,
atmospheric pressure, air temperature, relative and absolute humidity, cloud coverage,
snow height and precipitation are chosen as relevant indicators. The details of the selection
criteria are explained in Section 5.2.1.2 dedicated to the master scene selection strategy.

The values of those selected parameters are given in the time series as daily mean, being
sufficient for some parameters such as snow coverage, and temperature to estimate the
condition at the time of acquisition. However, some other parameters like cloud coverage
and precipitation should be recorded as close as possible to the time of collecting SAR
scenes for reliable estimation, since these parameters can be very dynamic during the
course of a day [Kuehl et al. 2013].

After selecting the relevant weather stations and parameters, new files per date with the
values from all the stations are generated by a Java script (one file per acquisition date
with values from all the stations). Those files are then used to generate maps for each
parameter by interpolating the station values. The weather parameter maps are exploited
for the interpretation of atmospheric influences on each acquisition. An example of such
maps for the ERS master scene is provided in Figure A–2.

For the calculation of the scores, interpolated values above the study area are averaged.
Additional consideration is made here for atmospheric pressure, since this value depends
on the station height. Therefore, the values from different stations are first reduced to
mean sea level for the sake of unified estimation of air pressure [Kuehl et al. 2013]. The
mean of each parameter, as well as minimum and maximum values are used to assign
a grade ranging from 0-bad to 1-good to that parameter. To scale the values within this
range, a function, selected depending on the characteristics of the weather parameter
as linear or non-linear, is fitted to the mean, minimum and maximum values of each
parameter [Kuehl et al. 2013].

At this stage the direct or inverse contribution of the parameters to the total score is
also considered, the details of which are provided also in Section 5.2.1.2. Following the
estimation of a single score for each parameter in the set, the last step is to sum those
values for an overall score.

An example of weather scoring result calculated by a MATLAB script can be found
in Figure 5–4. In this figure, the upper right plot, titled as weather ranking, shows the
scores computed for each acquisition in the ERS stack. The color of the bars (as well as the
height) is related to the assigned score. Consequently, the green bars indicate the scenes
with relatively good weather conditions, suggesting a candidate list for the master scene.
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Figure 5–2: Surveying measurements on two selected points. Red dots represents the annual
ground measurements and green line stands for the fitted function. The starting and
ending dates at the graphs correspond to 1995 and 2011, respectively. The left point has
measurements every year with a high deformation rate, whereas the measurements in
the right one starts at year 2000 (around 2000. day on the graph). The location of point
83 is marked by black square and point 68 is by black circle around the point in Figure
5–3.

5.1.2 Surveying data processing

Significant effort is made to evaluate the accuracy of PSI results from different sensors by
comparing them with the leveling measurements.

The height measurements at Sondershausen were performed annually by high-precision
leveling techniques with point height accuracy of about 1 mm per measurement. In
total, 137 surveying points were used for monitoring. The data includes the point map
coordinates and the height measurements in millimeter for each point. Most of the leveling
points cover the period of 1995 to 2011, however, measurement at some points starts after
1995. Moreover, some of them have gaps for some years. Therefore, for direct comparison
of surveying measurements with PSI results, a function is fitted to the time series of
measurements for each surveying benchmark.

Because of the non-linear nature of the subsidence observed, an exponential model is
used for the fitting. The functional model, g(t) is written with vertical scale a, horizontal
scale c, vertical shift v, starting time t0 and end time t1 as,

g(t) = a× exp(− t1 − t0

c
) + v (5.1)

With this fitting, the missing values can be predicted, enabling the extraction of the
deformation rate of every point for any time frame between 1995 and 2011. Two examples
of surveying point measurements and the function fitted to those observations can be
found in Figure 5–2.
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ERS ASAR 

PALSAR 

Figure 5–3: Linear deformation rates in mm/year derived by surveying data processing for the
ERS (1995–2010), ASAR (2004–2010) and PALSAR (2007–2010) stacks. The points are
plotted on a PALSAR MLI image. The black square and circle frames on the ERS output
mark the points 83 and 68 in Figure 5–2, respectively.

After fitting, the displacement rate dr of a surveying point for the desired period is
estimated by

dr =
g(t1)− g(t0)

t1 − t0
(5.2)

where g(t) is the function fitted to the surveying measurements, t0 and t1 denote for
start and end of the period of monitoring by SAR data. Note that by this equation linear
rates are calculated because PSI results provide only the linear displacement rates. For
each point and stack linear subsidence rates are calculated with this procedure by the
script written in MATLAB. The results are shown in Figure 5–3, where the color assigned
to each point represents the rate calculated by the surveying data processing.
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5.2 Monitoring

5.2.1 PSI analysis of SAR data

In this section, the details of SAR data analysis are presented. The spaceborne radar
data is collected as SLC from data providing facilities. Therefore, the analysis starts with
preparation of SLCs for PS interferometry including steps like precise orbit determination
and radiometric calibration. Since PSI demands accurate coregistration based on a reference
scene, the details of master image selection is explained in this section. After coregistration,
the stack of SAR scenes is ready for PSI analysis. The strategy applied here for the PSI
processing is also described at the final stage of SAR data processing.

5.2.1.1 Pre-Processing

Pre-processing of SLCs for interferometric analysis consists of refinement of the orbital
state vectors, radiometric calibration, oversampling and multi-looking. The processing is
performed by the functions in the ISP package of GAMMA Remote Sensing Software.

Typically, the orbital data provided by the processing facilities are not fully accurate
for precise interferometric analysis. The inaccuracies in orbit information cause baseline
errors which reflect to phase measurement as phase noise [Hanssen 2004]. Therefore, the
manipulation of orbital state vectors is included in the processing strategy to improve
the accuracy of the position and the velocity information contained in the metadata
accompanying the SAR SLC. State vector data for some sensors like ERS-1/2 and ASAR
can be updated by external sources, whereas, some sensors, including PALSAR, require no
update. In this study, DELFT orbits provided by DEOS are preferred for the generation of
precise orbits. In case of absence of a DELFT orbit file of a certain image, PRC (provided
by DLR), and DORIS (by ESA) files are used for the ERS and ASAR stacks, respectively.

The signal received by the antenna is not limited to the interaction between the transmit-
ted signal and the target on the surface, but also accounts for other factors such as range
spreading loss and antenna gain. These factors introduce fluctuations in the radiometric
values throughout the stack, which renders the useability of those values for generation of
a point target (persistence scatterer) list for PSI processing. Since the selection of point
targets is based on detecting low intensity variability, it requires accurate radiometric
calibration. With the consideration of sensor specifications, the ERS, ASAR and PALSAR
stacks are successfully calibrated for further processing.

For PALSAR FBD scenes an oversampling factor of 2 is applied additionally in order to
compensate for the bandwidth differences of FBS and FBD data. By this way, the same
sample spacing as the FBS can be achieved and interferograms between FBS and FBD can
be generated [Werner et al. 2007].
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In the pre-processing step, multi-look images are also generated by the multi-looking
factors selected for each sensor in such a way that the finest possible resolution with
square pixels is achieved. This is done for ERS and ASAR by factor 1*5 (range, azimuth),
resulting square pixels with 20 m resolution and for PALSAR, factor of 1*3 is used, which
gives 10 m resolution. The multi-look images (MLI) are used to assist SLC processing in a
variety of processing steps and for visual representations.

5.2.1.2 Master scene selection

Coregistration of SLCs in a common geometry requires a reference geometry such that all
the remaining data are resampled accordingly. Furthermore, PSI processing uses a master
scene in order to estimate the displacement rates in reference to that acquisition. Thereby,
a reference acquisition should be selected before proceeding to the next steps.

The strategy to optimize the selection of a master scene relies on certain criteria, which
can be categorized in two groups. The first set of parameters consists of perpendicular,
temporal and Doppler baseline values of the scenes in the stack. The configuration of
baseline values affects the impact of decorrelation in the interferogram. The magnitude of
impact defines the useability of an interferogram by inverse proportionality, i.e. the bigger
the impact, the less information to be extracted. Therefore, higher correlation is sought in
the search of a master scene.

In order to find the image with the highest correlation, an image near to centroid of 3D
baseline space is usually taken, either by visual or numerical analysis. For a large stack
like ERS, with 74 images, visual analysis is overwhelming. Therefore, a numerical ranking
of each image according to baseline values is calculated. A point, representing an image
in the 3D baseline space, is ranked by the sum of distances to every other points. For this
calculation, Equation 5.3 proposed by Hooper et al. [2007] is used, which computes the
sum of the coherence value for each image. According to their model, total coherence is
described as multiplication of different coherence terms (ρ) that are depending on Doppler,
perpendicular and temporal baselines and thermal noise as shown in Equation 5.3.

ρtotal = ρDoppler · ρperpendicular · ρtemporal · ρthermal

≈
[

1− f
BD

Bc
D

]
·
[

1− f
B⊥
Bc
⊥

]
·
[

1− f
Bt

Bc
t

]
· ρthermal (5.3)

where,

f (x) =

⎧⎨
⎩

x for x ≤ 1,

1 for x > 1

the subscript c indicates the critical parameter values beyond which the interferogram
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exhibits almost complete decorrelation [Hooper et al. 2007]. Neglecting the thermal noise
term (no available information), and using critical values of relevant sensor, e.g. Bc

t = 5
years, Bc

⊥ = 1100 m, Bc
D = 1380 Hz for ERS, the sum of total coherence is computed and

used in ranking of each image in the stack.

The second group of parameters includes weather, season, snow conditions and cloud
cover. All these parameters directly or indirectly affect either the impact of temporal
decorrelation or the noise in the phase of an image. In order to select the master, supposed
to be least affected by any of these parameters, those conditions are evaluated for each
image.

Weather conditions as well as the presence of clouds and their characteristics have an
impact on changes in the refractive index of the medium, and consequently, on the quality
of the phase measurements. For that reason, weather data are collected for the entire
period of monitoring and relevant parameters are analyzed for the selection of a master
scene.

Atmospheric artifacts are mainly correlated to the water vapor content along with
atmospheric pressure and temperature. Good weather conditions for low atmospheric
distortions can be characterized as low precipitation, low humidity, no cloud cover and
with a stable high pressure field over the area [Zebker et al. 1997]. The weather ranking
strategy is developed according to these correlations between atmospheric artifacts and
weather parameters.

Similarly, the nature of clouds has an influence on the distortions. Clouds are divided
into two general categories as stratus and cumulus clouds. The water content in the
stratus clouds is usually low compared to cumulus [Ding et al. 2008], thus, stratus clouds
are generally preferred over cumulus in the selection of a master scene. However, the
distribution of clouds should also be taken into consideration. Uneven distribution of
stratus clouds can cause differential change in path length over the image, thus, it can be
more difficult to isolate the atmospheric influence compared to cumulus clouds with even
distribution.

The weather data includes the percentage of cloud cover during day, which provides
an overview about the cloud coverage. However, if these values are not close to zero or
hundred percentage it can be misleading to assume a certain distribution of clouds in
time and space. Therefore, in order to understand the cloud cover and type of cloud at the
time of acquisition better, optical weather satellite images (e.g. EUMETSAT, NOAA and
MODIS) are also taken into consideration. In this case the challenge is to find images at
the time of SAR acquisition. This challenge is valid especially for the ERS and PALSAR
stacks. On the other hand, there is a chance to find simultaneous acquisition of radar by
ASAR and optical images by MERIS (an optical sensor on board of Envisat), which allows
for a good estimate of cloud conditions at the time of recording.
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Figure 5–4: Master Scene Selection Strategy. An example from the ERS stack. Since no optical
image is found for the selected date, a random image is used for the representation.

Season and snow conditions are also relevant to the master scene selection. Temporal
decorrelation is usually lower in winter scenes (in the absence of snow) than in summer
scenes. Therefore, a winter scene without snow is preferred over summer scenes. Snow
cover can be assessed by the weather data time series from nearby weather stations and
also by optical images, if available.

A review of the master scene selection strategy based on these criteria is provided in
Figure 5–4. Accordingly, in the first step, the baseline ranking is calculated by Equation 5.3.
Alongside, a score is assigned to each image calculated from weather parameters. Based on
these two scores, a list of candidates is generated. In the next step, the snow information
and, if available, optical images are analyzed for the candidates to eliminate the ones
with snow and cloud coverage. At the final stage, one scene out of the candidate list is
selected as the master. Applying same strategy to different stacks, the images acquired
in 09.03.1997 by ERS, 12.10.2008 by ASAR and 07.09.2009 by PALSAR are selected as the
reference scenes. The acquisitions are marked by a light blue frame on the baseline graphs
in Figure 4–2.
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Figure 5–5: Topographic height values from DEM in SAR geometry with the color cycle of 160 m,
overlaying ERS MLI image.

5.2.1.3 Coregistration

PSI processing combines a set of SLC images, thus, requires coregistration of all the
scenes to a common reference at sub-pixel accuracy in order to prevent reduction of
interferometric correlation. Coregistration includes computing of offsets in range and
azimuth directions between two images (slave and master), and resampling of the slave to
match with the master image. The approach used in this study to calculate offsets exploits
the lookup-table linking the geometries of two SLCs based on a DEM of the area. This has
the advantage that offsets due to topography are also considered in the estimations.

The lookup-table approach is also applied for transforming the DEM from map geometry
to SAR geometry. The height values in SAR geometry are then used for both, coregistration
and PSI processing. Topographic height values in SAR geometry can be seen in Figure 5–5.

Both, DEM processing and coregistration are implemented with the Diff/Geo and ISP
packages of the GAMMA software. The coregistration of the ERS, ASAR and PALSAR
stacks are successfully performed by this approach using the respective master image as
reference geometry for each stack. The quality of registration is assessed by the estimated
standard deviation of the offsets in range and azimuth and satisfies the condition of
sub-pixel accuracy by values being mostly better than 0.1 pixels.

5.2.1.4 PSI processing

The Interferometric Point Target Analysis (IPTA) software package developed by GAMMA
Remote Sensing is used for the PSI analysis. The phase model used for IPTA is the same
as in conventional interferometry, i.e. the unwrapped interferometric phase is expressed as
sum of different phase terms as explained with Equation 2.7. However, the interferograms
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are only interpreted for the selected point targets. Therefore, based on the registered
SLCs, first of all, a candidate list of persistent scatterers is determined. Two criteria are
considered in the selection, yielding two sets of PS candidates for every PSI analysis.

The generation of the first set relies on low temporal variability of the backscattering
coefficient. By definition, point targets are the resolution elements where a single coherent
scatterer dominates the echo [Ferretti et al. 2001], [Hooper et al. 2007]. As a consequence,
significantly lower temporal variability than distributed targets is observed for point tar-
gets, and hence they do not show speckle behavior [Werner et al. 2003]. This characteristic
is used to derive the first candidate list for each sensor. However, precise determination
of this characteristic depends on the number of images in the stack. For small stacks the
selection can be unreliable for statistical reasons.

Alternatively, a second set is selected based on spectral characteristics of the point
targets. Different than distributed targets the persistent scatterers show high backscattering
and low spectral phase diversity [Ferretti et al. 2001] [Werner et al. 2003]. This is
determined spatially for individual SLCs and therefore, it might work better with small
stacks depending on the thresholds.

The quality of the candidate PS list depends on the number of SLCs, the quality of
processing and the thresholds applied. Considering the first criterion, reliability of the
candidate list increases with the growing number of SLCs. In case of ERS, with 74 images,
the stack is large enough to produce a reliable candidate list. However, as it covers a long
period (10 years) the number of candidates might be reduced, if some point targets are not
available for the whole period. With regard to the number and distribution, the candidates
of ASAR stack are consistent with the ones found in the ERS time series. For both of these
stacks, the two lists of candidates are merged to one for a final list. On the other side,
based on the first criteria the selection of PALSAR candidates is unreliable, because, the
size of the stack is very small. Therefore, only the list based on spectral characteristics of
the points targets, is used as a final set of candidates.

Due to larger wavelength of PALSAR, the signal can penetrate through tree canopies,
moreover, the spatial resolution of PALSAR is finer. Therefore, the number of candidates
can be significantly larger than for C-band sensors. However, the impact of the small
number of images and the thresholds used for the PS candidate search also influences the
outcome. In the final PS candidate list 2795, 3119 and 12842 points are registered for ERS,
ASAR and PALSAR, respectively.

In the next step, for the candidate points the SLC values are extracted and initial esti-
mates of the interferometric baselines are calculated from the available orbital data. In this
study, a single master approach is used, meaning that the interferograms are generated
between master and slave images. If the stack includes N number of scenes, N-1 interfero-
grams are generated. The extraction of point SLC data is followed by the calculation of N-1
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differential interferograms by simulation and subtraction of the unwrapped interferometric
phase based on the DEM and initial baselines.

The stack of differential interferograms is analyzed in the following steps. This is
done by examining the baseline and time dependence of the spatial difference in the
differential phase for pairs of points [Werner et al. 2003]. In order to reduce the influence of
atmospheric signals and orbital inaccuracies, thereby, to estimate displacement parameters
and DEM errors, spatial and temporal phase differences are calculated in a phase regression
analysis. Therefore, a spatial and temporal reference are required for the phase regression.

The selection procedure of a reference scene (temporal) is explained in detail in Section
5.2.1.2. The strategy of selecting a reference point (spatial) relies on the criteria that the
point should be a high quality point, lying in the stable area (showing no displacement)
but not far from the main area of interest. Based on these criteria, a location for a reference
point is determined for each stack (see Figure 6–1 in Chapter 6).

With the selection of a reference point, a two dimensional phase regression analysis
is done with the dimensions being the perpendicular and temporal baseline of the in-
terferometric pairs and by considering that the interferometric phase model indicates:

– a linear dependence of the topographic phase on the perpendicular baseline compo-
nent with the slope indicating relative height corrections,

– a linear dependence of the deformation rates on the temporal baseline component
with the slope indicating relative deformation rate corrections [Werner et al. 2003].

The results of the phase regression analysis are the height corrections, linear deformation
rates, point quality measures (phase standard deviation from regression fit), residual
phases and unwrapped interferometric phase. At this point, the residual phase contains
an atmospheric phase component, non-linear deformation and error terms. Different
phase terms are distinguished based on their different temporal and spatial dependencies.
Baseline errors are low-pass in the spatial dimension but uncorrelated between pairs.
Similarly, the atmospheric phase term is low-pass in spatial dimension but it is uncorrelated
between different images. The non-linear component is generally low-pass in both spatial
and temporal dimension. Finally, the phase noise is random in both dimensions [Werner
et al. 2003]. For differentiation of the different phase terms temporal and spatial filters
are applied. Repeating several times in an iterative process, these terms are estimated and
removed from the phase model resulting in the extraction of deformation rates for each
PS point, which has a higher quality measure than the thresholds applied. The number of
point targets in the final deformation rates list amounts to 1465, 1527, and 7237 for the
ERS, ASAR and PALSAR stacks, respectively.
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Figure 5–6: Principle and flow chart of the outlier removal processing.

5.2.2 Post-Processing

Post-processing implies the operations required before the validation of the PSI results.
This includes removal of inconsistent estimations and derivation of vertical displacement
rates. The details of these steps are explained in the following sections.

5.2.2.1 Removal of outliers and isolated points

An outlier can be defined as a PS point which has a significantly different estimation
of displacement in comparison to the surrounding points. Figure 5–6 includes a sketch
of outliers on a deformational surface in a map view. As depicted in this figure, the
measurements at outliers are inconsistent with the surrounding ones, therefore, developing
a strategy for filtering out the imprecise estimations is required.

Different strategies can be implemented for the removal of outliers, depending on
the settings in the study area and available input information. An example strategy
is explained in Ketelaar [2009], where the PS points grouped into cells by quadtree
decomposition. The points deviating more than a threshold from the mean of all the points
in the cell are removed.

Sharing the principle of the alternative explained, i.e. clustering the points, a slightly
different strategy is implemented in this work. The approach clusters the points, by con-
necting the ones having similar values and being close to each other, other than grouping
them into cells. This has an advantage that the clustering of points into homogenous
areas is not restricted to square shape cells, however it can lead to removal of isolated
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Figure 5–7: Deformation maps of PALSAR PSI processing before and after the removal of outliers
and isolated points. The left map includes 7237 points and after the removal process
(right map) the number corresponds to 6295.

measurements that are far from any major cluster and too small to form a new cluster.

For clustering, the first step is the sorting of points into equal size bins depending
on deformation rate values. One parameter is defined to control the bin size, hence the
number of clusters. Further consideration made concerning the clustering methodology is
the spatial distribution of points. Therefore, a threshold to limit the maximum distance for
connecting points is also introduced. After linking the PS points that are close enough to
each other in the sense of spatial neighborhood and of deformation rate, the ones which
are not connected to any cluster are labeled as outliers. One final threshold as minimum
cluster size is used additionally in order to prevent the inclusion of small clusters of
outliers in the final version of the deformation maps. The implementation of this approach
is summarized in Figure 5–6.

In particular, the PALSAR deformation map is degraded by the presence of unreliable
estimations. The reason for that is mainly associated to the low number of images in the
stack and low sensitivity of the PALSAR measurements to the observed phenomenon. Time
series observation of deformation by 15 images results in lower quality in the selection
of PS candidates and less reliable statistics in the estimation of displacement rates and
hence, wrong estimations are likely. Furthermore, due to the relatively large wavelength
of the sensor (23.62 cm), and small deformation rates (maximum 1 cm per year), the
measurements are less sensitive compared to C-band sensors.

As it can be seen in Figure 5–7, the deformation rates of PALSAR before outlier removal
ranges between +20 mm/year and −60 mm/year. For instance, the high positive values
present in the PALSAR results are not expected, furthermore, they are not observed in
the output of C-band sensors. Therefore, the script written in MATLAB for removing the
inconsistent estimations is run for this stack. With the bin size threshold of 17 mm/year,
the range is divided into 5 groups. A maximum distance threshold of 100 m was efficient
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for connecting the points to clusters but excluding the outliers distributed over the
image without any neighboring point from the same group. Additionally, by defining a
minimum cluster size of 8 points, the small clusters of outliers, as well as the isolated
points distributed especially in the vegetated areas are removed. With this processing 242
points in the urban areas and 943 points in the vegetated terrain, where the measurements
are sparse and often inconsistent, are removed leaving 6295 points for the final list of
PALSAR processing. Due to the high number of isolated points distributed mainly in the
vegetational area around the urban settlements, i.e. outside of main deformation area,
the number of removed points adds up to a large number. During this processing, some
reliable isolated measurements in the vegetated terrain might have been removed which
contributes to the large number of eliminated points. Since those points are outside of
the main area of interest, the result in Figure 5–7 is accepted as the final version of the
PALSAR PSI map. For the cases that the isolated points should be preserved, the minimum
cluster size can be set to 1 or the algorithm can be applied separately to the high and low
density areas with different thresholds.

5.2.2.2 Derivation of vertical displacement rates

SAR interferometry measures the phase change in the LOS, in other words, estimated
deformation rates are the projection of real 3D deformation on the radar’s sight. Decompo-
sition of InSAR LOS measurements into vertical, easting and northing components is only
possible by the combination of InSAR measurements from different imaging geometries,
e.g. ascending and descending orbits. However, in this study only one imaging geometry
is available for each sensor, i.e. decomposition is not possible. The available leveling data,
on the other hand, provides only the vertical component of the deformation. Therefore,
validation of PSI measurements by surveying data requires deriving vertical component
of the LOS displacement.

Underground mining subsidence is characterized predominately by vertical motion
with much smaller horizontal displacement [Peng 1986]. Therefore, for the purpose of this
study the horizontal component is assumed to be negligible similar to the work of Yerro
et al. [2014], Raucoules et al. [2013], Ng et al. [2010], Perski et al. [2009] and Walter et al.
[2004]. Under this assumption, the vertical components (dv) is derived from LOS rates
(dLOS) by knowing the incidence angle (φi) with the equation,

dv = dLOS / cosφi (5.4)

Based on this equation, the vertical displacement rate of each point is calculated and a
new map of PS displacement rates is generated for every sensor. The histograms generated
for LOS and vertical rates can be seen in Figure A–3.
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5.2.3 Validation strategies

The verification of PS displacement rates with ground measurements can be performed in
different ways. One alternative is to compare the point value at a surveying benchmark
(or a PS location). The pointwise method uses spatial neighborhood constrains to calculate
the differences. Thereby, it provides an overview of how well the deformation regimes are
represented by the PS estimations.

Another alternative is to compare interpolated surfaces of PS and surveying point mea-
surements. The differences can be investigated as a continuous surface by the surfacewise
method, which provides further insight into the correlation of those datasets.

Similar to the work flow used in Ketelaar [2009] and Kircher et al. [2003], both, point-
wise and surfacewise validation strategies are implemented and used for interpretation of
the differences between PS and surveying. In the following sections, the details of these
implementations are provided.

5.2.3.1 Pointwise comparison

The challenge of pointwise comparison is that the neighboring PS and leveling points
may not represent the same deformation regime due to their spatial separation [Ketelaar
2009]. If the neighboring points are not located in the same gradient, the differences can
be large. In this study, an approach based on an adaptive search radius is developed for
the selection of neighboring PS points to address this challenge.

The algorithm implemented in this work for pointwise comparison calculates the
differences between the surveying benchmark and the mean of the neighboring PS mea-
surements, which are located inside the area defined by a search radius. As an output, a
pointwise difference map, showing the differences at surveying benchmark locations, is
generated for the interpretations.

Alternative approaches like a fixed search radius or a fixed number of neighboring PS
are also evaluated. However, due to different gradients and non-uniform distributions
of points these methods are not as efficient as the adaptive approach to handle different
situations, e.g. as depicted in Figure 5–8 around benchmark A, B and C.

Figure 5–8 also summarizes the work flow of the algorithm. As a first step, PS points
in the vicinity of a surveying benchmark are located, where the initial search radius is
defined by the user. Next, the mean and standard deviation of those points are computed.
Depending on the standard deviation threshold, the mean of those points are either
compared directly or the search radius is changed. Three cases are considered,

– no point is found in the initial search radius (benchmark A),

– standard deviation of the PS points in the initial search radius is smaller than the
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Figure 5–8: Principle and flow chart of pointwise validation.

threshold (benchmark B),

– standard deviation of the PS points in the initial search radius is bigger than the
threshold (benchmark C).

In order to cope with the first case, a second radius which is larger than the initial one is
used for the PS search. The PS points found in the final search radius are then used to
calculate the mean and standard deviation. For the points lying in the same deformation
regime, the standard deviation should be low. Therefore, if the deviation is higher than
the threshold, the benchmark gets no value on the difference map.

The second case requires no further change in the search radius since the PS measure-
ments represent the same gradient. Consequently, the mean PS value is directly calculated
and subtracted from the surveying measurement.

The third case treated in the algorithm in a way that a second radius, smaller than the
initial one, is used for PS search. Similarly, the standard deviation is checked and if the
condition is satisfied, the difference is calculated or the benchmark gets no comparison. At
the final stage, the degree of error between the surveying and mean PS values is evaluated
statistically by the normalized RMSE.

5.2.3.2 Surfacewise comparison

Since pointwise comparison is affected by the point density differences between PSI and
surveying dataset, the PSI results are additionally evaluated based on the differences
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Figure 5–9: Principle and flow chart of surfacewise validation.

between the surfaces of those point datasets.

The quality of the surfaces depends on many factors, including the number and dis-
tribution of points as well as the algorithm and parameters used for the interpolation.
Therefore, the challenge in this method does not lie in finding the neighboring PS, like
pointwise comparison, but in generating the best representations of the real surfaces.

As depicted and summarized in Figure 5–9, after the generation of surfaces (see Section
5.3) the surfacewise difference maps are produced by simple subtraction of the two
surfaces. Similar to the pointwise, the degree of error is estimated with the normalized
RMSE.

5.3 Modeling

The PSI displacement maps provide subsidence information only at the location of per-
sistent scatterers, however, in real world the subsidence trough is a continuous surface.
Consequently, surface representations improve the understanding of the deformation
behavior gained by the point measurements. In order to generate the surface models from
PSI maps, the displacement values at arbitrary positions are estimated.

The accuracy of the surfaces derived by interpolation mainly depends on the point
density and distribution. In particular, the areas with high gradients require a sufficient
number of points so that the interpolation algorithms can estimate the surface gradient
effectively. However, due to different factors, spatial gaps are often present in PSI maps.
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Figure 5–10: Flow chart of modeling. The point estimation at PS locations are interpolated to
generate geometric models. The initial geometric model of ERS dataset is then refined
by synergy with ASAR and PALSAR providing two alternatives for the final geometric
model of the ERS stack.

The problem of spatial undersampling is addressed by the methodology used for model
refinement. The flow of operations for modeling is outlined in Figure 5–10 and the details
are provided in the following sections.

5.3.1 Generation of geometric models from PSI estimations

With the objective of providing subsidence values at unobserved locations in the subsidence
trough, geometric models for every stack are generated by a spatial interpolation of the
point values.

In order to make predictions at unobserved locations, kriging interpolation is used. The
basic idea of kriging is to predict the value at a given point by computing a weighted
average of the observed values in the neighborhood. Most of the alternatives for kriging
assign weights according to functions that give decreasing weights with increasing spatial
distance. Kriging, on the other hand, assigns weights according to data-driven weighting
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function [Isaaks and Srivastava 1989].

In many cases, like fairly dense and uniformly distributed data points, kriging will
give very similar results to other interpolation methods, however, in general it has several
advantages considering the accuracy and lack of bias of the resulting surface [Isaaks and
Srivastava 1989]. For that reason, kriging is selected as interpolation method among others
for the generation of surfaces from PSI points similar to the work of Hung et al. [2011]
and Yaseen et al. [2013]. Specifically, in this study the observations are interpolated onto a
regular grid by ordinary point kriging, which is implemented based on the description
provided in Trauth [2010].

Kriging measures distances and directions between all possible pairs of sample points
and uses these values to compute variability and probability. The method uses a variogram
to express the spatial variation and it minimizes the error of predicted values, which are
estimated by the spatial distribution of those values. The variogram is approximated by a
model function, i.e. an exponential function in this study since it provides more realistic
solutions. Accordingly, three parameters (nugget, sill and range) are used to describe
the model function for kriging. Examples of variograms can be found in Figure A–4. On
these variograms, the model function is represented by the blue line drawn based on the
parameters printed on the graphs.

5.3.2 Model refinement: synergy of PSI estimations

The insufficient sampling of critical areas, which is a common limitation of the PSI
technique, is addressed by the methodology developed for the synergistic usage of PS
estimations from different sensors. The objective of the model refinement proposed here is
to increase the spatial sampling at the main deformational area for the period 1995–2005
(the ERS stack), by using the implicit information available in the other datasets.

The center of the subsidence trough in ERS PSI map is intended to be filled with the
points that are available in the ASAR and PALSAR maps (the reference maps). However,
direct transference of the points from the reference to the ERS map is not applicable since
they represent different temporal regimes of subsidence, i.e. the depth of the geometric
model is not constant for the ERS, ASAR and PALSAR stacks. In the years from 1995 to
2005 the rates are much higher than the following period, therefore, the point values from
the reference stack must be scaled before the integration into the ERS based PSI map.

In case of Sondershausen, the PSI deformation maps indicate a constant pattern of
the subsidence with varying depths due to changes in the subsidence rates in time. This
behavior is also validated by surveying deformation maps (see Chapter 6 for details),
implying that the geometry of the subsidence bowl is not distorted during the monitoring
period. Therefore, the strategy to integrate PSI results for model refinement is based on
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at the bottom represent the grids for the first cluster. The dash line is the expected
shape of ERS surface and also represents the area defined as gap, in other words, the
surface aimed to be predicted after the integration.

the assumption that the spatial pattern of the subsidence bowl is not changing for the
entire period of PSI monitoring.

Under this assumption, the scale factors are derived by the ratio of the geometric models.
In the strategy summarized in Figure 5–11, instead of one global factor, local scale factors
are calculated by clustering, in order to account for the variations in surface tangent
slopes, i.e. different gradients on the surface. For the calculation of the scale factors, each
geometric model are divided into equal number of clusters defined by the user, as shown
in the sketch presented in Figure 5–11. With the calculation of cluster means for each
cluster of the surfaces, the scale factors assigned to every cluster are computed by,

Sk =
Ck−ERS

Ck−Re f
k = (1, ..., n) (5.5)

where S is the scale factor of the cluster k, n indicates the total number of clusters,
Ck−ERS represents the cluster mean of the ERS surface and Ck−Re f is the cluster mean of
the reference surface. After obtaining the scale factors, the value of PS point (i) in the
reference surface (Pti−Re f ) is scaled with the factor of corresponding cluster (k) to derive
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the point value for ERS (Pti−ERS) with Equation 5.6,

Pti−ERS = Pti−Re f ∗ Sk (5.6)

For the search of points to be transferred from the reference to the ERS map, the surfaces
are additionally divided into grids so that a local investigation can be made. Aiming at
keeping the originality of the ERS surface as much as possible by filling only the gap,
grid-wise search of points is used to control the inclusion of unnecessary points. Following
this objective, the number of ERS points is calculated for each grid and cluster. If the
number is smaller than the user defined threshold, PS points found in the reference stack
are transferred to the ERS point list with the values being multiplied by the scale factor
belonging to that cluster (Equation 5.6).

One important point to consider at this stage is that the multiplication of a value means
also the multiplication of the uncertainty. In particular, the accuracy of PALSAR estimates
are low, mainly due to the small number of SAR scenes in the stack and low sensibility of
the measurements due to long wavelength. If every point from PALSAR is included in the
transfer list for the new map of ERS PS points, the filled area looks noisy. In order to cope
with that, a filtering is applied and the points fail to satisfy the condition are not included
in the new ERS map. The upper and lower thresholds for filtering are set to the numbers
calculated by multiplication of scale factor with the cluster minimum and maximum of
the reference stack. In this case the points which have larger distance to the interpolated
surface are filtered out.

Assessing the accuracy of the new ERS surfaces relies on the procedure explained in
the validation strategies in Section 5.2.3. To sum up, the validation strategy interprets
the difference maps and evaluates the degree of error statistically by computing the
normalized RMSE.
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Results

Dedicated to the study results, this chapter presents the resulting maps and models of
the observed ground subsidence. The gradual surface deformation process induced by
mining activities in Sondershausen is investigated by interferometric SAR data analysis.
Utilizing the PSI technique, the subsidence is estimated at persistent scatterer locations.
The PSI deformation maps (Section 6.1) generated by this way are validated in reference
to the ground measurements with the help of validation maps (Section 6.2). The point
estimations of the PSI results are then interpolated to model the subsidence trough as
a continuous surface (Section 6.3). Finally, a critical area in the geometrical model with
insufficient estimations is refined by the synergy of different sensors (Section 6.4).

6.1 The PSI deformation maps

The output of the PSI analysis is a dataset consisting of PS point coordinates, point heights,
displacement values for each acquisition in reference to the master scene and the model
parameters for each PS. In PSI processing a linear subsidence model is used as explained
in Section 5.2.1.4. Therefore, the model parameters indicate linear deformation rates. The
results of PSI analysis are processed further to remove outliers and derive the vertical
component of the deformation rates. The vertical rates assigned to each PS after post-
processing are taken as the basis of the subsidence monitoring, as well as the modeling in
the further steps.

The deformation maps generated from the ERS, ASAR and PALSAR stacks are presented
in Figure 6–1, with the color of the points indicating the vertical subsidence rates in
millimeter per year. In order to assist the interpretation of the PSI results, depending
on point value distributions, the histograms are additionally provided in Figure A–3.
Following the first main objective of the study explained in Chapter 3, the implications of
the monitoring results by PSI are summarized for two aspects.

One is the analysis of the results based on the point density and distribution to asses the
efficiency of the PSI analysis with regard to the spatial sampling of the subsidence trough.
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As indicated by the maps in Figure 6–1, the PSs are located mainly in the urban area. There
are only few points on the vegetated terrain mainly because of temporal decorrelation and
partly due to removal of the isolated points. To conclude, information that PSI captured in
rural regions is insufficient for subsidence monitoring in the vegetated areas.

In contrast, urban areas are mapped with a dense network of 1465 ERS, 1527 ASAR
and 6295 PALSAR points covering approximately 20 km2 including the settlements of
Sondershausen and the village Großfurra. However, it should also be considered that the
distribution of points is not uniform. For instance, few points are available at the center of
the subsidence bowl in Sondershausen due to a lack of urban structures, in particular on
the ERS and ASAR deformation maps (see Figure 6–1).

In addition to the absence of man-made structures, the long-term monitoring period of
ERS stack and the non-linear component of the subsidence contribute to the poor sampling
of fast moving areas. The non-linear component of the subsidence is particularly large in
the period of ERS acquisitions, since the deformation rates are much higher compared
to the monitoring period of ASAR and PALSAR. Furthermore, the temporal coverage is
much longer. Therefore, the limitation of PSI stemming from a linear model assumption
(as explained in Section 2.1.2.5) is more prominent in the ERS map. Furthermore, the
quality of the scenes, concerning the Doppler values, as well as the sparse distribution of
acquisitions in temporal dimension after the gyro-failure in 2000 (see Section 4.2.1) are the
other factors affecting the performance of PSI analysis for this stack.

The contribution of such factors to the loss of information is smaller in the ASAR dataset,
hence, the point density is higher especially in the high gradient area. Several points are
found sparsely distributed at the center of the subsidence, where there is a lack of PS
in the ERS estimations. However, the density of points in this region is still low mainly
because of absence of urban structures as mentioned.

On the other hand, there are notably more estimations in the PALSAR result providing
finer spatial sampling of the subsidence. As a consequence of its longer wavelength and
higher resolution, finding more PS in the PALSAR result was expected. However, the
small size of the PALSAR stack can also contribute to the large number of PS points. Low
number of acquisitions affect the statistical measure of the point quality, therefore, the
inclusion of low quality points is more likely. The confidence interval of the PALSAR
measurements is lowered further by the fact that the sensitivity to the observed subsidence
is low. This is due to its high wavelength/deformation rate ratio (approximately 23 cm/1
cm). Although the subsidence is mapped with a high density, the deformation maps are
degraded by these factors resulting in a noisy appearance.

Another aspect relies on the PS values and its implications about the spatio-temporal
characteristics of the subsidence. Two main regions of deformation are identified in all
three PSI maps. The larger subsiding area is situated in the city center of Sondershausen
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6.1 The PSI deformation maps

Figure 6–1: PSI deformation maps derived from the ERS (1995-2005), ASAR (2004-2010) and
PALSAR (2007-2010) stacks. The PS points are plotted on the geocoded master image of
the respective stack. The color of the points indicates the rate of vertical displacement
in mm/year. The plus sign shows the location of the reference point.
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and the smaller site is located in Großfurra. The spatial patterns of subsidence occurring
in these sites are clearly represented in each PSI output. Furthermore, the patterns are
consistent with each other. This implies that there is no major change considering the
shape of the subsidence bowls. As explained in Section 2.1.1, the subsidence trough is
usually of circular or elliptical shape for deep lying mining openings. Confirming this, the
PSI estimations of subsidence in the Glückauf mine field also indicate an elliptical pattern.

In addition to the spatial behavior, the temporal evolution of the subsidence can also
be assessed by combining the information from different time spans, i.e. from different
sensors. The ERS estimations suggest that during 1995 to 2005, the rate of displacement is
approximately 35 mm/year in Sondershausen and 50 mm/year in Großfurra. Following
this period, during ASAR acquisitions from 2004 to 2010, the estimated rates indicate
around 14 mm/year and 30 mm/year of maximum subsidence in those areas. Providing
additional information from 2007 to 2010, the rates measured by the PALSAR stack are
around 13 mm/year at the fast moving areas in Sondershausen, and around 30 mm/year
in Großfurra. To sum up, the subsidence rates are decreasing in both locations confirming
the effect of mine backfilling on the subsidence. Furthermore, the change in subsidence
rate indicates a non-linear trend of the observed phenomenon.

As shown in the histograms presented in Figure A–3, there are some subsidence
values with few millimeter above zero. The deviation of the values is mostly related to
the accuracy of the point measurements, which depends on the quality of selected PS
candidates and the statistical estimations made during PSI analysis. In order to confirm
that the estimations do not indicate any uplifting area, these points are further analyzed
spatially. Since the positive values are distributed around the non-deformational area, i.e.
no grouping of points in certain regions, no uplift is detected.

6.2 Validation of the PSI deformation maps

6.2.1 Pointwise validation

For the verification of PS displacement rates, pointwise difference maps are plotted and
presented in the upper row of Figure 6–2.

On these plots the contours derived from corresponding surveying surfaces are also
drawn so that differences can be interpreted depending on their location in the subsidence
trough. The second row of graphs in the same figure plot the surveying rates versus the
mean PS rates with the color of the points indicating number of PS points used for the
calculation of the mean. Furthermore, the relative distribution of surveying and PS points,
as well as the number of PSs used for averaging at the surveying benchmarks can be
investigated by the graphs presented in Figure A–5.
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6.2 Validation of the PSI deformation maps

Additionally, the thresholds used for the comparison are printed on the difference maps
in Figure 6–2. The required parameters for pointwise validation, i.e. search radii and
standard deviation, are chosen based on certain considerations. One aim is to maximize
the number of points receiving a value on the pointwise difference maps. Another aim
is to minimize the differences by adjusting the radii and standard deviation. Using
bigger search distances can cause larger differences, because as the radii increases, the
possibility to include PS points which are not located at the same displacement regime
also increases. Therefore, in order to avoid including PS points from different regimes a
standard deviation threshold is applied as printed on the difference maps. Based on these
considerations, in the search of ASAR and PALSAR points, 200 m for initial search, 250 m
for maximum and 120 m for minimum are used. These values can be lower for PALSAR
because of its high point density. Therefore, for PALSAR initial, maximum and minimum
radius are selected as 120 m, 180 m and 80 m, respectively.

The upper left graph in Figure 6–2 shows the differences between surveying and PS
measurements at leveling benchmarks for the acquisition period of the ERS stack. Five
points (in black) at the center of subsidence trough have no comparison value, since no
PS point is found inside the search radius (see Figure A–5 for relative distribution of the
PS and surveying points). The RMSE for the rest of the points is calculated as 0.159. The
residual variances in the stable and relatively stable areas are very low, i.e. around zero.
On the other hand, in areas with high deformation rates (inside the contour -21) locally
high variance is observed. This can also be seen in the corresponding scatter plot. The fast
moving points are more scattered around the 1:1 line and up to 15 mm/year deviation
can be observed.

Two main regions of under- and overestimation by PSI are observed on the ERS dif-
ference map corresponding to the east-northeast and west-southwest of the contour -28,
respectively. The first region marked by the yellow points in the plot indicates a difference
of -15 mm/year. Since the mean PS rate is subtracted from the surveying rate to calculate
the difference, the minus sign indicates that the PS measurements underestimate the rate
of subsidence in this area. On the other hand, in the second region values are between
+5 and +10 mm/year, suggesting an overestimation of displacement by PSI analysis. For
lower subsidence rates the values are very close to each other, furthermore, the number of
PS used for averaging is much higher (see the scatter plot in Figure 6–2). However, as the
rates increase, the deviations also increase. The reason for these high deviations is mainly
associated to the low point density in those regions. Therefore, large search radii are used,
which contributes to the large residuals.
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Pointwise difference maps 
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6.2 Validation of the PSI deformation maps

The ASAR difference map suggests that the maximum difference is around 3 mm/year.
Only two points at the outer regions have no comparison due to absence of PS in the
vicinity (see Figure A–5). The RMSE calculated for the rest of the points is 0.095, indicating
a lower deviation compared to the ERS stack. This is related to the higher point density of
ASAR in the fast moving areas, furthermore, to lower subsidence rates compared to the
preceding years.

For PALSAR the differences mostly range between 2-3 mm/year. There are few points
with higher differences (yellow points at the northwest part of the subsidence bowl in
the validation map in Figure 6–2) with an underestimation of about 5 mm/year. This is
mainly caused by the low density of PS points in the close range representing the same
regime (see Figure A–5 for relative distribution). In the scatter plot of PALSAR points, it
can be clearly seen that the benchmarks with low number of neighboring PS estimations
show larger differences. Due to such deviations as well as the fluctuations in the PALSAR
estimations, the RMSE is 0.156.

In spite of the local differences, the overall pointwise validation indicates that the PS
estimations are consistent with the surveying measurements. The comparisons suggest that
fast moving areas are monitored with higher accuracy by ASAR and PALSAR compared
to ERS mainly due to higher point densities of the recent stacks.

6.2.2 Surfacewise validation

Surfacewise validation is performed based on the surface difference maps derived from
pixelwise subtraction of the PS surfaces from the respective surveying surfaces (see Figure
6–4 for interpolated surfaces). The surface difference maps of the ERS, ASAR and PALSAR
stacks are presented in Figure 6–3.

The difference map of ERS in Figure 6–3 shows a very similar pattern to the correspond-
ing pointwise map. A RMSE of 0.061 is calculated for the difference, suggesting a good
correlation between these two surfaces. However, locally the areas with large differences
are also present similar to the pointwise comparison. In the southwest part of the central
area between the contours -14 and -28, the PS surface is deeper than the surveying surface
between 10-15 mm/year. In contrast, in the northeast part between these contours, the PS
surface is higher (underestimation by PSI) around 5 mm/year.

The surface difference map of ASAR is also very similar to the pointwise map in a way
that the areas with deviations (under- and overestimation with PSI) coincide. Moreover, the
range of differences around -2 to +3 mm/year also matches to the pointwise estimations.
The RMSE estimated for this validation is 0.055.

Similar to ERS and ASAR, the regions of under- and overestimation observed in the
PALSAR surface map is consistent with the pointwise map, with a maximum of 3 mm/year
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Chapter 6 Results

Figure 6–3: Surfacewise validation of the PSI results. The graphs show the difference maps of the
ERS, ASAR and PALSAR stacks derived from subtraction of the PS surfaces from the
surveying surfaces. The contour lines stem from the corresponding surveying surfaces.

66



6.3 The geometric models

over- and underestimation. Although the magnitude of maximum deviations is smaller
compared to ERS, a higher RMSE of 0.112, is calculated. One reason for this is that the
PALSAR PS surface is rougher compared to other surfaces because of the deviations
in the estimations. Furthermore, due to a lack of PSs, the interpolation algorithm has
underestimated the northwest part of the surface (dark red-black region in the difference
map), which degrades the correlation between PS and surveying surfaces.

Table 6–1 summarizes the validation results. The degree of error for surfacewise valida-
tion is lower compared to pointwise for every stack. The number of difference observations
is much higher for surfacewise map than pointwise (number of pixels versus number of
surveying benchmarks), therefore, the RMSE is less affected by the large deviations occur-
ring in small areas. In addition, with the surfacewise approach only the corresponding
pixels are compared, minimizing the impact of search radius, hence, the differences are
lower. For instance, the maximum deviation in the PALSAR pointwise map is reduced
from 5 to 3 mm/year in surfacewise comparison as shown in Table 6–1. Similarly, the
underestimation of up to 15 mm/year indicated by the ERS pointwise map is decreased
to maximum of 5 mm/year.

Table 6–1: The table provides the summary of the validation estimates for the PSI deformation
maps. Minus sign of maximum difference value represents the underestimated areas
and plus sign stands for an overestimation by PSI.

ERS ASAR PALSAR
Pointwise RMSE 0.159 0.095 0.156
Surfacewise RMSE 0.061 0.055 0.112
Pointwise max. difference (mm/yr) -15/+10 -3/+3 -5/+5
Surfacewise max. difference (mm/yr) -5/+15 -2/+3 -3/+3

However, the difference in the overestimated area by ERS increases from 10 to 15
mm/year. The reason is that the interpolation algorithm overestimates the maximum
depth during generation of the surface due to a lack of information in the vicinity, which
gives an appearance of the deep narrow depression in the 3D representation in Figure 6–4.

The overall validation suggest that millimeter scale subsidence rates are estimated
with high accuracy by the PSI analysis, supporting the reliability of the PSI estimations.
However, the accuracy at a high gradient area in the ERS map is degraded significantly. The
comparisons at point locations and as surface differences confirm that the undersampling
of a high gradient area in the ERS map contributes largely to this deviation.

6.3 The geometric models

Referring to the second objective of the study explained in Chapter 3, the continuous spatial
information is derived by interpolation of PS point values. In order to verify the geometric
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models, the linear rates computed by surveying data processing are used to generate
the reference surfaces. Note that only the subsidence area located in Sondershausen is
used for modeling since there is no available ground data in Großfurra for the purpose of
comparison. Furthermore, the linear subsidence rates are used to represent the geometry
of the subsidence trough.

For kriging interpolation, the parameters are optimized for the generation of a smooth
surface with a minimum deviation from the original point values. The variograms gener-
ated for each surface are presented in Figure A–4, on which the chosen variogram model
parameters and the model derived from those variables are plotted. For an exponential
model fit, the nugget is used in order to avoid vertical jumps caused by sampling errors
and short scale variability. The parameters sill (defines where the model curve becomes
horizontal and constant) and range (the zone of influence) affect the smoothness of the
interpolated surface such that the higher the values, the smoother the surface. Therefore,
in the selection of sill and range values, this relation is taken into consideration. After the
generation of variograms, kriging is performed with a final resolution of 10 m, so that
there is only one point per cell, i.e. avoiding averaging of point values falling into same
cell.

The resultant geometric models are presented in Figure 6–4. The first column of plots in
this figure provides the surfaces for each stack and in the second column the corresponding
surveying surfaces (see Figure 5–3 for surveying point values) are presented. The third
and fourth columns show those surfaces in three dimensions.

The validation of the PS models in reference to the surveying surface and the details of
differences are already discussed in parallel to the surfacewise validation of PSI results in
Section 6.2.2. Therefore, in this section only the geometrical characteristics of the models
are discussed.

The PSI models are evaluated in comparison to the surveying surfaces based on the
depth and spatial pattern of the subsidence bowl. In these models, the depth describes
the subsidence rates, which is the averaging of the real subsidence values over the total
number of years. Therefore, it is directly linked to the dimensions of real subsidence bowl
in millimeters. For the ASAR and PALSAR stacks, the maximum depth is consistent with
the corresponding surveying model with less than 2 mm/year difference, implying a good
estimation of the maximum subsidence by the PSI models. However, with 6 mm/year the
difference is larger in ERS because the quality of the surface is degraded by the absence of
PS points, thereby, the interpolation algorithm overestimates the maximum values.
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Chapter 6 Results

In all the PS and surveying surfaces in Figure 6–4 a common spatial pattern (the
southeast-northwest extending elliptical bowl) is clearly represented. However, there are
also minor differences. For instance, the location of maximum values in the ERS model, i.e.
the deepest part of the bowl, differs slightly from the related surveying model. Moreover,
due to a lack of PS points at the center of main deformational area, the width of the bowl
is narrower compared to the surveying surface.

The ASAR surfaces have a better agreement on the location of the deepest regions and
the width of the bowl. In the PALSAR case, the deepest part of the PS model coincides with
the surveying surface, however, the pattern is slightly different. Moreover, the difference
in surface roughness is prominent in the PALSAR model because of the high PS density
and deviations between estimations of the PALSAR stack. In spite of the noisy appearance
of the PALSAR surface, the general outline of the subsidence bowl is also well represented
by the PALSAR model.

6.4 The refined model

The primary output of the model refinement is a new ERS PS list with point coordinates
and linear subsidence rates of original and transferred ERS points. Dividing the original
PS surfaces into 10 clusters, and performing the algorithm explained in Section 5.3.2, 83
ASAR and 97 PALSAR points are added separately to the original ERS point list, yielding
two new maps for the period of 1995 to 2005. The resultant maps are presented in the left
column in Figure 6–5. The scale factors are calculated around 2.8 for ASAR and 3.1 for
PALSAR. Considering the fact that subsidence rates decrease by time due to backfilling, a
slightly higher scale factor for PALSAR can be expected.

The variables of the integration algorithm are grid size, point number threshold and
number of clusters. The grid size has to be selected considering the area to be treated.
In this application a grid size of 12*12 pixels (120*120 m) was effective to fill the region
of interest. Point number threshold was set to 1, meaning that points are transferred if
there is no original point available for the selected cluster and grid. This way only the
grids being empty are filled, so that the originality of the ERS surface can be preserved.
The number of clusters has an impact on the scale factors as well as the filtering, since
the factors and the thresholds for filtering are derived from cluster mean, minimum and
maximum.

Referring to the objective of integration, the region inside the -21 contour line is suc-
cessfully filled, furthermore, both solutions are in good agreement considering the spatial
pattern and the rate of subsidence. Although several PALSAR PS points are filtered out, a
sufficient number of points with good distribution is transferred to the new map.

Finer clustering is preferable considering the fact that especially high gradient areas
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Figure 6–5: ERS original and new deformation maps and models after refinement with ASAR and
PALSAR points.

require local treatment. Otherwise the points from different regimes are averaged out.
Therefore, cluster number of 10 is selected for the final results in this application. For the
purpose of comparison, the results derived by 3 clusters are also presented in Figure A–6
and A–7. The main difference between 10 and 3 cluster solutions appears in the PALSAR
integration in such a way that the point values show higher deviations, i.e. a relatively
noisy appearance, because the thresholds are less restricting in the filtering due to the
larger interval of values in the cluster.

The refined models of ERS generated by interpolation of a new point list are also
presented in Figure 6–5. Both of the refined models indicate a decline in the maximum
rate, from 39 mm/year to around 34 mm/year, i.e. approximately 5 mm/year decrease in
the difference between the PS and surveying surface. Moreover, the width of the bowls is
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larger providing a better representation of the geometry.
The results of the integration are validated by the same procedures applied to the

original PSI results. The pointwise difference maps are generated for a smaller search
radius compared to validation before integration, because many more points are now
found at the center of the subsidence bowl. Thereby, search radii of 100, 200 and 220 m
were used for the search of PS points around a benchmark.

In Figure 6–6 and 6–7 the pointwise difference maps for the refined ERS models are
presented. Both figures suggest that the range of differences is significantly reduced.
Before refinement up to -15 mm/year difference is observed, whereas after, the maximum
absolute difference is smaller than 8 mm/year for both solutions. Confirming that, the
scatter plots in Figure 6–6 and 6–7 also show less deviations from the 1:1 line.

The improvement gained by the refinement is also reflected to the RMSE calculations.
The degree of error for original ERS is calculated as 0.159, whereas after refinement, the
value is decreased to 0.095 and 0.108 with the synergy of ASAR and PALSAR, respectively.

The surface difference maps are also generated in order to verify the new surfaces
derived from the new point lists. The results presented in Figure 6–6 and 6–7 confirm
the improvement indicated by pointwise validation, i.e. the differences between surfaces
are also reduced. For instance, the underestimated area in the original difference map,
i.e. the black region in the northeast of contour -28, shows no more significant deviation.
Being consistent with the pointwise validation, the difference in the region southwest of
contour -28 in the original difference map (the overestimated area marked by yellow) is
also reduced. Consequently, the RMSE for the surface model are also decreased from 0.061
to 0.054 for ASAR and to 0.055 for PALSAR integration.

Table 6–2: The table provides the summary of the validation estimates for the PSI models including
the original and refined models by ERS-ASAR and ERS-PALSAR synergy. Under- and
overestimated areas by PSI are represented by minus and plus signs, respectively.

ERS original ERS-ASAR ERS-PALSAR
Pointwise RMSE 0.159 0.095 0.108
Surfacewise RMSE 0.061 0.054 0.055
Pointwise max. difference (mm/yr) -15/+10 -8/+8 -8/+8
Surfacewise max. difference (mm/yr) -5/+15 -1/+10 -2/+10

The improvement is also visible in Table 6–2 that the higher correlations and lower
deviations are achieved by the model refinement. However, up to 8-10 mm/year of
overestimation still persist. Due to the improvement gained by the integration the area of
maximum deviation is smaller as well as the magnitude. Nevertheless, the success attained
in the underestimated area is not valid for the overestimated region. Since few original PS
points are already present where the deviation is at maximum, this area is not treated by
the refinement process due to the objective of preserving the originality of the model. This
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indicates that the accuracy of those PS estimations is low, i.e. overestimation of the rate by
PSI statistics.

As the RMSE imply the refinement with ASAR gives a better estimation of the missing
information. Although PALSAR has a higher point density, the improvement by PALSAR
refinement is smaller due to the lower accuracy of PALSAR estimations.
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(a) Pointwise difference map of the new PS
list.

(b) Scatter plot of the new PS list
.

(c) Surface difference map of the original
ERS surface.

(d) Surface difference map of the refined ERS
surface.

Figure 6–6: Validation of the refinement by ASAR.
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(a) Pointwise difference map of the new PS
list.

(b) Scatter plot of the new PS list
.

(c) Surface difference map of the original
ERS surface.

(d) Surface difference map of the refined ERS
surface.

Figure 6–7: Validation of the refinement by PALSAR.
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Chapter 7

Discussion

Understanding the dynamics of ground deformation entails the collection of observations
at the Earth’s surface. In this research, radar remote sensing technique is utilized for the
investigation of the subsidence phenomenon affecting the settlements of Sondershausen. A
synoptic view of ground deformation with centimeter to millimeter vertical precision can
be achieved by spaceborne radar interferometry [Colesanti et al. 2005]. Furthermore, the
interpretations of the characteristics of the deformation can be improved by the extraction
of information implicit in the PSI result. Based on these insights, in the present work the
PSI measurements are modeled to derive a geometric representation of the subsidence
trough. However, the common problem of spatial gaps in the PSI results degrades the
precision of the geometric model. In order to tackle this problem, this study investigates
the potentials of synergy between multi-sensor data and estimates the missing information
by a novel methodology. In this chapter the potential improvements and capabilities of
the methodology, as well as the implications of the study results are discussed. For this
purpose, Section 7.1 provides remarks on the processing strategy, which includes the
aspects of premises and transferability of the methodology. Secondly, Section 7.2 interprets
the study results in reference to the study objectives.

7.1 Remarks on the methodology

The applicability of PSI can be degraded by certain limiting factors which are specific
to the study site and dataset. In case of Sondershausen, the main restrictions include
temporal decorrelation in vegetated areas, non-linear components of the subsidence,
irregular distributions of acquisitions in time and low numbers of SAR scenes in the time
series.

In this research it is demonstrated that, in spite of these limitations, the PSI deformation
maps provide precise measurements of the millimeter scale ground subsidence in Son-
dershausen. However, the validation of the PSI results in comparison to surveying data
also indicates local differences between these two sets of observations. The inaccuracies
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in the surveying measurements, as well as the error contributions due to the surveying
data processing, have an influence on the deviations. Moreover, the limitations associated
with the PSI analysis and the restrictions in the methodologies used in this research
contribute to the differences. The potential source of such contributions is discussed based
on the premises of the methodology. Furthermore, the alternatives of application areas are
discussed from the perspective of transferability of the methodology.

7.1.1 Premises of the methodology

The assumptions made during the analysis introduce uncertainties in the application in
case the condition is not entirely satisfied. One assumption refers to the negligence of
horizontal subsidence components in the translation of the LOS rates to vertical values. Al-
though the horizontal component is small and its surface effects are much less pronounced
compared to strain and curvature, accounting for this component would improve the
precision. The influence of this assumption is expected to be more prominent in the areas
where the horizontal movement is at its maximum, i.e. at inflection points of the subsi-
dence trough. In order to eliminate the error contribution stemming from this assumption,
acquisitions from different viewing geometries, e.g. ascending and descending orbits, can
be combined to derive the vertical and horizontal components of the LOS estimations.

Another assumption refers to the usage of a linear subsidence model in PSI processing.
A 2D regression analysis is performed with the dimensions being the perpendicular and
temporal baseline of the interferometric pairs. The analysis is based on the linear depen-
dencies of the temporal and spatial baselines, on the deformation rates and topographic
phase, respectively. However, the annual estimations of surveying in Sondershausen clearly
indicate a non-linear trend, especially for the fast moving areas. Therefore, ignoring this
component degrades the precision of the PSI measurements in both, spatial and tempo-
ral dimension. In the case of a large non-linear component, the estimations show high
deviations from the linear model. Therefore, these points are eliminated due to their low
quality measure (high deviation from the linear fit). Since the non-linear component of the
subsidence is especially prominent during ERS acquisitions, the impact of this component
on the ERS PSI result is also larger. Therefore, from a spatial viewpoint, the assumption of
a linear subsidence model might cause spatial gaps in the resulting deformation maps. The
loss can be reduced by the efforts dedicated to the usage of multi-master approach similar
to the work of Wegmüller et al. [2010]. Thereby, the need for model refinement can be
reduced. From a temporal perspective, the description of the non-linear characteristic of
the subsidence for a single stack is limited to a linear model due to this assumption. With
a multi-master approach this can also be improved to the extend of defining the trend
with a piecewise linear function.
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7.1 Remarks on the methodology

The methodology of integration to overcome the common problem of spatial gaps in the
PSI estimations, i.e. synergistic usage of multi-sensor data, relies on the assumption that
the spatial pattern of the subsidence is not changing. Therefore, the area of application
of this method is restricted to study sites where the subsidence is not affected by, e.g.
any major tectonic event or fault which alters the shape of the subsidence. Alternatively,
the necessary modifications have to be made for adaption of the methodology to the site
specific conditions.

Furthermore, the method of model refinement is also restricted to the case that the range
of deformation values should be known so that the surfaces can be divided into the same
number of clusters. In the application of the Sondershausen subsidence, the maximum
subsidence values could be approximated by the initial model, therefore, the same number
of clusters is used to obtain the scale factors. However, in case of missing clusters (if the
initial surface does not represent the range of subsidence values due to the spatial gaps),
the maximum rates should be first approximated. For instance, by extrapolation of the
mean values of each cluster, the larger values can be predicted. However, the number of
missing clusters is a priori knowledge for this approach, too.

7.1.2 Transferability of the synergistic modeling

The primary aim of the model refinement is the filling of the voids in the spatial sampling
of a deformational surface. To pursue the refinement process, a strategy for the extrac-
tion of synergistic information is developed based on the relevant characteristics of the
observed phenomenon and the dataset. The deformation observed at the study site can
be characterized by (1) gradual - long term deformation (2) subsidence in the form of a
subsidence trough, (3) constant spatial pattern throughout its evolution. The important
aspect of the data configuration can be described as multi-sensor data covering different
time spans. However, the application of the synergistic algorithm is not limited to each of
these characteristics. The algorithm designed for synergy uses the geometric proportion of
the surfaces to estimate the missing values at one surface. Therefore, the essential aspects
are (1) multi-source datasets (at least two, otherwise synergy is not possible) and (2) a
constant shape (so that geometries can be scaled). It is, nevertheless, possible to adapt
and improve the algorithm to the conditions where the geometry also changes. For this
purpose, a different equation for the calculation of the scaling factor can be developed.
Such implementations should derive the mathematical relation between two surfaces with
different spatial patterns.

The synergistic methodology developed here can be applied to deformations with
different origins. Mining induced subsidence is the focus of this study, however, it can also
be utilized for the deformations originated from different mechanisms such as volcanoes,
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earthquakes and landslides. Since the origin of the displacement defines its characteristics,
the varieties of deformation characteristics should be considered in such applications.
On volcanoes uplift and subsidence can be observed, earthquakes can produce lateral
or rapid motions, landslides may also vary in geometry and speed. The important point
in the adaption of the synergistic methodology is that the relationship between the two
surfaces is described mathematically in the form of a scaling factor. If this is achieved,
the transferability will also inherently cover the topic of sensor-based characteristics. This
implies that the algorithm can be used between different sensors, from X-band to L-band
as well as back and forth in time.

7.2 Interpretation of the study results

Does PSI work for Sondershausen?

Providing insight into the question of “can PSI be an alternative or complimentary method
in the application to Sondershausen mine subsidence monitoring?” requires description
of the limitations and strengths of the PSI deformation maps. In this application the
results are restricted to the measurements in urban areas and only the linear rates are
estimated. Furthermore, a spatial gap in a high-risk area is observed. On the other hand,
PSI maps provide precise estimations over a large area. The coverage is not restricted to
the main deformational region like in surveying data, hence a secondary subsidence area
in Großfurra could also be investigated without any additional effort. Although there are
not enough estimations over rural areas, high spatial sampling is achieved in regions with
settlements, where the risk to life is much higher. Despite the fact that the precision of
surveying data of 1 mm per measurement and the availability of estimations at a critical
location could not be achieved by PSI, the strengths described above suggest that PSI
can provide valuable insight into the characteristics of the subsidence. Moreover, it can
improve the information gained by ground-based measurements.

The actual accuracy of the PSI deformation estimates in comparison to the surveying
data is difficult to evaluate, because of the spatial separation between the PSI and surveying
measurements, i.e. they may not represent the same regime of the subsidence [Adam et al.
2009]. The subsidence rate of up to 35 mm/yr is estimated by PSI analysis on the field of
Sondershausen mine with maximum difference of 15 mm/yr at the high gradient area
where the impact of the distance between PS and surveying benchmark to the deviation
is at maximum. Such difficulties are also reported by several authors including Ng et al.
[2012] and Wegmüller et al. [2010], who suggest that the high deviations observed in
their study are influenced by the mismatch in target points between PSI and ground-based
techniques. Despite the fact that large differences are observed at few locations, in this
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application the overall match between PSI and surveying measurements are fairly good as
indicated by the normalized RMSE values, which are higher than 0.159 for each dataset.

Similar to the assessment of the accuracy, the comparison of the achieved accuracy by
PSI in the present work and the previous studies in the literature is also difficult since the
deformation and dataset characteristics, as well as the validation strategies (if applied)
differ from one application to another. Table 7–1 summarizes the validation assessments
for some selected studies that are dedicated to the ground subsidence monitoring by the
PSI technique. As it can be seen in this table the comparison is further challenged by the
fact that the validation statistics are not equally expressed for each study. Nevertheless,
as indicated by the statistical evaluation, it can be concluded that as an alternative or
complimentary method, PSI offers precise estimations for ground subsidence studies in
Sondershausen. Moreover, the new generation satellites with high spatial resolution, more
frequent acquisitions and more stable observations offer promising enhancements in the
study of subsidence in Sondershausen.

Table 7–1: Validation measures for some selected PSI studies. In the table, max. difference refers
to the difference between PS and ground-based measurements and std. dev. stands for
standard deviation.

max. subsidence rate max. difference std. dev. RMSE
(mm/yr) (mm/yr) (mm/yr) %

Current study 35 15 0.159
Ao et al. [2015] 40 3,61
Raspini et al. [2014] 46 4
Lan et al. [2013] 17 2
Sadeghi et al. [2013] 160 2
Ng et al. [2012] 260 29 9
Heleno et al. [2011] 13 3
Hung et al. [2011] 13 3
Liu et al. [2011] 117 5.6
Osmanoglu et al. [2011] 300 7
Zhang et al. [2011] 30 2.7
Wegmüller et al. [2010] 50 20

What is gained from the synergistic approach?

Integration of information from different data sources can provide improvements in
the understanding of surface dynamics both, in temporal and spatial dimension. In the
temporal framework, the synergistic approach combines the multi-source information
to derive the temporal evolution of the deformation. A non-linearly decreasing trend
was determined in Sondershausen by combining the information from three different
measurements in time. Although, the curve was modeled to a certain extend by a piecewise
linear function with three lines, the essential temporal characteristics of the deformation
was successfully derived. In the spatial framework, the synergistic approach improves
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the initially modeled geometry from single sensor estimations. The improvement gained
by the refinement in the area of spatial gaps (the underestimated area by the PS model)
provides a precision of maximum 1 mm/year deviation from the values modeled by the
surveying dataset. Furthermore, the deviation in the overestimated area is reduced to
a certain extend by the synergistic approach, although, this area is not inside the gap,
i.e. there are original PS points. With the objective of filling only the gap and preserving
the already existing information, this area is not directly addressed by the refinement
algorithm. Therefore, the improvement in this area is restricted to the refinement in another
region. However, a further refinement can be easily employed for this area by using a
point number threshold larger than 1 in the integration algorithm. Thereby, new points
can be transferred to the grid cells where the original PS points overestimate the surface.

Based on these insights, it is demonstrated that the synergistic approach has a potential
to improve the spatio-temporal description of the subsidence. The improvement gained
by the refinement can be significant in cases where the subsidence behavior, hence the
risk, is unknown. In case of Sondershausen, the development of subsidence on the surface
is observed by ground measurements for decades. Therefore, the risk is well known and
precautions like backfilling have already been taken. However, for the studies of unknown
ground deformations, especially with high deformation rates, such improvements in the
model of the subsidence characteristics can increase the confidence of risk assessment.
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Chapter 8

Conclusions and Outlook

The scope of the work presented in this thesis was designed to address two main objectives.
These are (1) the detection of spatio-temporal dynamics of the ground deformation by
PSI analysis and evaluation of the feasibility of monitoring with PSI techniques, (2) the
derivation of synergistic information implicit in the multi-sensor datasets in order to
improve the initially detected characteristics of the displacement. The conclusions that
were derived from addressing each of the objectives and an outlook are presented in
this chapter. For this purpose, Section 8.1 provides an overview on the different aspects,
the key findings and the conclusions drawn based on the study objectives. Finally, the
directions for future studies are summarized in Section 8.2.

8.1 Summary and conclusions

In this study, the spatial and temporal characteristics of the subsidence induced by mining
activities in Sondershausen are investigated by utilizing persistent scatterer interferometry.
One of the key elements of this research is the exploitation of multi-sensor SAR data,
including ERS-1/2 (1995–2005), ASAR (2004–2010) and PALSAR (2007–2010) acquisitions.
The usage of multi-sensor data providing opportunities for synergistic analysis has an
impact in both, temporal and spatial dimension. Deriving subsidence rates for multiple
time spans enables the extension of the monitoring period as well as the derivation of a
more detailed model of temporal evolution. In case of the Sondershausen subsidence, 15
years of continuous monitoring with millimeter accuracy is achieved by PSI analysis of
ERS, ASAR and PALSAR data. The estimated rates for the first 10 years by ERS indicate 35
mm/year subsidence. In the following years this value drops to approximately 14 mm/year
in ASAR, and 13 mm/year in PALSAR estimations. These values have two implications,
(i) the rate of subsidence is decreasing over time, which confirms the effectiveness of
backfilling of the mine, (ii) the trend of subsidence is non-linear. Although the PSI analysis
is restricted to the estimation of linear deformation rates, the combination of information
from different sensors reveals the non-linear nature of the subsidence, which is common

83



Chapter 8 Conclusions and Outlook

for mining induced subsidence. The spatial distribution of displacement estimations in
all sets of PSI results corresponds to an ellipsoidal shape extending from northwest to
southeast over the urban areas of Sondershausen with a major axis around 3 km. The
spatial patterns observed in the ERS, ASAR and PALSAR deformation maps indicate no
major change, which suggests that the subsidence is not affected by a significant geological
structure altering the geometry of the subsidence trough.

Also confirmed by the study results, PSI is an effective technique for measuring ground
surface movements, however, the accuracy is often degraded due to various reasons. The
factors identified in this application contain dependencies on the data configuration, the
study site characteristics and the processing methodology. The number and distribution of
images in the time series strongly influences the attainable precision of the PSI estimations.
The more acquisitions with even distribution are used for the processing, the higher the
precision of PSI estimations due to statistical reasons. In this application, the impact of a
small number of SAR scenes is especially prominent for the PALSAR stack. Since only 15
images are available, the PSI estimations show lower precision, i.e. the PSI deformation
map looks noisy. The ERS and ASAR results are influenced by disfavored distribution of
the scenes in time to a lesser extend, i.e. low frequent and irregular acquisitions. One of
the important factors dependent of study site characteristics is temporal decorrelation.
Due to high decorrelation in vegetated areas, the PSI estimations are mainly limited to
urban areas. Owing to its longer wavelength, PALSAR provides higher spatial sampling
in vegetated terrain, however, the individual estimations are unreliable due to the low
number of images. An important study site and processing methodology dependent factor
is the application of a linear subsidence model in the PS analysis. The linear model is
not entirely appropriate to describe the subsidence behavior in the study site because the
subsidence is non-linear. Since the non-linear component is especially prominent in the
period of ERS acquisitions, the impact of this factor is also larger for the ERS result.

The mentioned factors affect the output of PSI analysis with regard to the PS density
and distribution as well as the accuracy of the individual measurements. In case of
Sondershausen, the validation of the PSI deformation maps and models in reference
to the available ground-based measurements indicates a high correlation between these
sets of estimations (normalized RMSE values are below 0.112 for the geometric models).
However, due to the impact of such factors, the individual PS estimations by PALSAR are
unreliable. Furthermore, the ERS result suffers from a lack of PS measurements. Inherently,
the models generated for those results are also affected. Therefore, the lowest RMSE is
obtained by the ASAR model (0.055) due to its high precision estimations and favorable
distribution of the PS measurements. On the other hand, the highest RMSE is calculated
(0.112) for PALSAR model due to the deviations in the estimations, although, the general
outline of the subsidence trough is estimated efficiently. A lower RMSE value is obtained
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with the ERS surface (0.061), however, more critical deviations in the high gradient area
are observed.

In order to overcome the limitation of low PS density at the critical areas, a methodology
for synergistic utilization of multi-sensor PSI estimations is developed. The strategy
implemented here for synergy is designed to increase the number of ERS estimations at
the center of the subsidence bowl in order to improve the geometrical representation of
the subsidence trough. The method relies on the transfer of points found in the recent
acquisitions (ASAR or PALSAR) by scaling their values. Since the observed spatial pattern
is constant, in Sondershausen the scaling correlates to the ratio of the geometrical models
in the same area belonging to different time intervals. The validation of the refined model
suggests an improvement in the correlation of two datasets. The deviation of 5 mm/year
in the underestimated area is diminished. The maximum deviation in the overestimated
area is also decreased from 15 mm/year to 10 mm/year, implying a correction for the
overestimation of the interpolation algorithm due to absence of PS estimations in the
vicinity. With these improvements, the RMSE calculated for the ERS surface is increased
from 0.061 to 0.054. However, 10 mm/year of difference is still observed. The high deviation
persisting after the refinement is caused by the overestimation of the original persistent
scatterers found in this region. Due to the presence of the original ERS points, this area is
not addressed by the synergy.

Based on these insights, the study indicates that PSI is a powerful technique to study
the surface dynamics in Sondershausen, although the analysis is restricted by certain
factors. Furthermore, the application demonstrates the potential of synergistic approaches
to overcome the common problem of gaps in the PSI results, thereby, to improve the PSI
based description of the spatio-temporal behavior of the deformation. Since the effect
of subsidence on the surface structures varies spatially along the subsidence profile, the
improvements gained by synergy in the estimated subsidence profile will also increase
the confidence of risk assessment. Especially the new generation satellites with better
resolutions and more frequent acquisitions, furthermore, the new advances in the PSI
methodologies and SAR technologies promise developments in the field of deformation
monitoring and modeling. Relying on the growing SAR archives and upcoming missions,
synergy offers further advancements in the ground subsidence studies.

8.2 Future directions

In the coming years, several new space borne SAR sensors will be operating in addition
to the new generation satellites already in the orbit. The advanced capabilities of these
sensors, e.g. TerraSAR-X, Radarsat-2, Sentinel-1, ALOS-2/PALSAR-2 will increase the
reliability of the methods developed in this research. The opportunities of future acqui-
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sitions will contribute immensely to the application of ground subsidence monitoring.
The contribution includes exploiting the range of radar wavelengths from X-band to
L-band and even P-band, deriving more precise estimations by more frequent and stable
observations as well as mapping the deformation with more measurements owing to their
high resolution. The possibilities of synergistic usage will also increase with every new
dataset. Furthermore, the availability of a large number of images and longer wavelengths
from new sensors, e.g. L-band ALOS-2/PALSAR-2, stable observations can be collected
also in the vegetated areas.

In addition to the opportunities of future acquisitions, the improvements in the PSI
analysis can contribute to the precision of subsidence monitoring. For instance, the accuracy
of the PSI estimations can be improved by usage of a non-linear model in the PSI analysis.
Further effort can be committed to the development of a refinement strategy in temporal
dimension. For instance, the temporal evolution of the subsidence can be further studied
by fitting a curve to the piecewise linear functions provided by the different sensors.
Thereby, the non-linear component can be estimated better. Beside such improvements, the
understanding of the surface dynamics can be enhanced by additional information such as
geological structures, rock properties, mine geometry and depth. Inclusion of any new data
will contribute to the understanding of the deformation characteristics. With the growing
potentials of PSI analysis and synergy between multi-sensor datasets in deformation
monitoring and modeling, the need for the development of new methodologies also
increases. Future researches, therefore, can be devoted to the development of synergistic
methods to improve the knowledge of deformation behavior both, in spatial and temporal
dimensions.
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Figure A–1: Geological columnar section at the research site drawn based on the illustration by
Erlebnisbergwerk-Betreibergesellschaft-mbH [2013].
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Figure A–2: Weather parameter maps of the master scene of the ERS stack acquired in 09.03.1997.
The dots represent the weather stations and the rectangle indicates the study site. The
units are provided in the title of each plot. The maps are generated by interpolation of
the values acquired at that day by the weather stations.
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(a) Histogram of ERS LOS deformation
rates.
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(b) Histogram of ERS vertical deforma-
tion rates.
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(c) Histogram of ASAR LOS deformation
rates.
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(d) Histogram of ASAR vertical deforma-
tion rates.
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(e) Histogram of PALSAR LOS deforma-
tion rates.
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Figure A–3: Histograms of the ERS, ASAR and PALSAR stacks for LOS and vertical deformation
rates.
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(a) Variogram of ERS PS surface
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(b) Variogram of ERS surveying surface
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(c) Variogram of ASAR PS surface
.
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(d) Variogram of ASAR surveying sur-
face.

0 500 1000 1500 2000
0

5

10

15

20

25

30

35

Distance between observations [m]

S
em

iv
ar

ia
n

ce

Variogram−PS−PALSAR

variomodel: exponential

varioparams:[nugget, sill, range]

varioparams: [15,17,2000]

population variance

(e) Variogram of PALSAR PS surface
.
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(f) Variogram of PALSAR surveying sur-
face.

Figure A–4: Variograms of PS and surveying surfaces for the ERS, ASAR and PALSAR stacks. The
blue curve is the model function with the parameters printed on the plots.
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(b) Plot of number of ERS PS points used for
comparison.
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(c) Plot of ASAR PS and surveying points
.
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(d) Plot of number of ASAR PS points used
for comparison.
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Figure A–5: Plots on the right column show the relative distribution of PS and surveying points
(with black frame). The left column of plots indicate the number of PS points used for
the calculation of the mean at surveying benchmarks .
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(a) New ERS deformation map. (b) Refined ERS surface in 2D.

(c) Refined ERS surface in 3D
.

(d) Surface difference map of refined ERS sur-
face.

Figure A–6: Results of ERS-ASAR integration for three clusters.
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(a) New ERS deformation map. (b) Refined ERS surface in 2D.

(c) Refined ERS surface in 3D
.

(d) Surface difference map of refined ERS sur-
face.

Figure A–7: Results of ERS-PALSAR integration for three clusters.
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