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Preface

Nature has always been inspiration and resource for new technical developments that
otherwise would not have been possible. Taking a close look at almost every aspect of
daily life and technology it is obvious that, even nowadays, most of the materials are based
on natural occurring raw materials and concepts. The rise of quantum mechanics, which is
the theory of objects compared to the size of atoms, allowed an in-depth understanding of
the physical properties of materials, and also paved the way for optimized or even tailored
properties of specific technological applications.

The naturally occurring graphite is a highly anisotropic allotrope of carbon. It is built from
stratified atomically thin layers of carbon atoms, which are strongly bonded in a honeycomb
lattice within each layer. In contrast, the bonding between the layers is only weak due to
van der Waals interactions. The theoretical study of the electronic properties of graphite
was initiated by Wallace back in the 1940s [1]. Surprisingly, the calculations also revealed
remarkable electronic properties of single layer graphite, which was later called graphene.
In particular, it was shown that due to the hexagonal symmetry of the carbon atoms
within the layer the valence electrons resemble the linear dispersion of massless particles,
which led to a strong interest in this material. The first known extraction of a graphene
layer has been achieved in 1962 by Boehm [2], but the reliable production is possible
only since 2004 due to Geim and coworkers [3–6]. For this achievement, Andre Geim and
Konstantin Novoselov have been granted the Nobel prize of physics in 2010. Indeed, very
recently the large-scale production of graphene by shear-exfoliation has begun [7].

Since graphene is broadly available, manifold developments and predictions have been
made for this new "wonder material". It is well known that the massless valence electrons
propagate with a finite (Fermi-) velocity of about 300 times smaller than the speed of
light [8–10]. The electronic bandgap between electrons and holes as well as the density
of states vanishes at the Fermi level, which makes graphene a zero-gap semiconductor.
Consequently, graphene can be considered as an analog to ultrafast spin-1/2-particles
observed in a solid-state system. Since the speed of the electrons is comparably low,
predictions of high-energy physics can be studied in a material that is now easily accessible.
Among them are, e.g., minimal conductivity [4], Zitterbewegung [11], universal optical
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Preface

absorbance [12–16], and perfect transmission of carriers at normal incidence through a
potential barrier, called the Klein paradox [17–19]. For graphene a very high electron
mobility of about 200 times higher than in bulk-diamond structure silicon has been
predicted [6] and consequently, its usefulness as a very fast switch in a transistor has
been demonstrated [20], which is about three orders of magnitude higher than currently
available switches based on bulk silicon. Recently, the research on graphene has been
heavily supported by one of the flagships of European research, funded with one billion
euro for the next ten years [21], which shows the huge interest in this new material.

By all advantages of graphene mentioned so far, there are of course also fundamental
problems [22]. Even if graphene can be produced on the large scale, all common technology
today is based on silicon. The integration of carbon-based electronics into silicon-based
circuits is challenging due to deviations of the lattice constants and electronegativities [17].
For that reason silicene, the silicon-based analog of graphene, which does not exist in
nature, has been suggested theoretically [23, 24] and experimentally realized as adsorbate
layer [25,26]. It has been shown that the structural and electronic properties of silicene are
very similar to that of graphene, in particular the appearance of massless electrons. The
first experimental realization of silicene or at least a monolayer of silicon with hexagonal
symmetry on Ag(111) has been achieved by Vogt and coworkers in 2012 [25]. However, the
strong interaction with the silver surface results in structural distortions of the honeycomb
lattice and consequently, the disappearance of massless Dirac fermions in the silicon layer.
The fabrication of freestanding silicene or at least silicene with weak substrate interactions
is still an open quest and subject of intense research.

The experimental realization of graphene and silicene has initiated work on the entire field
of two-dimensional (2D) crystals like the elemental crystals germanene and stanene (also
called tinene) as well as many compounds like boron nitride (BN), molybdenum disulfide
(MoS2) or SiGe alloys. In particular stanene, the tin-based analog to graphene and silicene,
has attracted attention due to the predicted appearance of a new state of matter at its
one-dimensional edges, called topological edge states [27]. These edge states are relevant
for the realization of the quantum spin Hall effect [28–30].

In this work we mainly focus on the elemental 2D group-IV honeycomb crystals graphene,
silicene, germanene and stanene (or tinene). Starting from a general treatment based
on parameter-free first-principles methods in the framework of density functional theory
(DFT) [31–34] the structural properties for all freestanding group-IV honeycomb crystals
are determined on equal footing. Under ambient conditions, silicon, germanium and tin
tend to form sp3 bonds in crystals instead of planar sp2 bonds as carbon atoms in graphite.
Hence, we study the formation of covalent bonds in the associated 2D honeycomb crystals
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and their impact on lattice constants and bond angles, which give rise to buckled structures
with a broken sp2 hybridization.

The electronic ground-state properties are investigated by means of the electronic band
structure and compared to available experiments on graphene and silicene. A reliable
description of the electronic band structure in agreement with experiments also requires
an improved description of the complex many-body electron-electron interaction. Hence,
quasiparticle effects are approximately taken into account by means of the nonlocal
exchange-correlation hybrid functional HSE06 [35–39]. In particular for the heavier
elements Si, Ge and Sn the increasing impact of spin-orbit coupling (SOC) on the electronic
band structure is incorporated into the theory. Without SOC all group-IV honeycomb
crystals are rendered as zero-gap semiconductors like graphene, however, SOC opens a
bandgap turning these crystals into insulators.

According to Fu and Kane all insulators in two and three dimensions can be classified into
trivial and topological ones by means of a Z2 topological index [40,41]. The 2D group-IV
honeycomb crystals silicene, germanene and stanene are also examined with regard to
their topological character and identified as topological insulators within the DFT. We
investigate the topological phase transition to a trivial insulator due to an applied external
electric field perpendicular to the sheet plane as predicted by simpler model calculations [42].
Since theory predicts topologically nontrivial edge states in topological insulators [42, 43],
we further investigate exemplarily the edge states of germanene nanoribbons.

Particularly interesting is also the optical absorption of the two-dimensional group-IV
honeycomb crystals. Experiments by the group of Geim revealed a comparable high
absorbance of A = 2.3 % of graphene in a broad frequency range up to infrared light [44].
Based on a model, this value has also been determined theoretically and revealed a
surprising connection to the Sommerfeld fine-structure constant α via the formula A = πα.
The main focus of this work is the accurate description of the frequency-dependent reflection,
transmission and absorption of the 2D group-IV honeycomb crystals in order to explain
and extend the observations of the universal infrared absorbance in graphene over the
entire optical spectra. For that reason, the complex optical conductivity of the sheet crystal
over the entire frequency axis is computed beyond the common Dirac cone approximation.
As a benchmark the infrared absorption of graphene is determined numerically with
remarkable accuracy and compared to experiments and analytical calculations. Besides the
optical infrared absorption, the numerical treatment also allows an accurate description of
the frequency dependent reflection, transmission and absorption of such 2D crystals at
arbitrary angles of incidence and polarization of the incident light. We address the question
how atomically thin 2D crystals are incorporated in the theory of classical electrodynamics.

v



Preface

Thereby, we also explore in detail the limit beyond the description as infinitely thin 2D
sheet crystals commonly applied in literature and support our findings with numerical and
analytical calculations.

The problem of the 2D group-IV honeycomb crystals is their preparation, which is usually
achieved by deposition on a substrate [25, 45–47]. While the majority of results are
presented for freestanding 2D sheet crystals we also address the possible impact of metallic
and insulating substrates. Therefore, we provide detailed insights in the interaction
between the substrate and the overlayer, for which we consider silicene due to recent
experimental progress. Based on these findings, we also investigate several new substrates
for the growth of silicene with the goal, that even in the presence of a substrate the 2D
sheet crystal may be treated as basically freestanding. The calculations are based on
total-energy DFT calculations including van der Waals interactions.
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Chapter 1

Many-body theory

1.1 Many-electron problem

Solids are composed of electrons and ions interacting with each other. Neglecting relativistic
effects, the full many-body Hamiltonian of electrons and ions mutually interacting can be
written as [32,48]

Ĥ =
∑

i

p2
i

2m
+
∑

I

P 2
I

2MI

−
∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i6=j

e2

|ri − rj|
+

1

2

∑

I 6=J

ZIZJe
2

|RI −RJ |
, (1.1)

where the cgs system of units (e.g. 4πε0 ≡ 1 to characterize charges) is used here and
throughout this work. In this equation ions at positions RI carry momenta PI and charge
+ZIe whereas electrons at coordinates ri carry momenta pi and charge −e. The first two
terms refer to the kinetic energy of the electrons and ions, respectively. The third, fourth
end fifth term denotes the electron-ion, electron-electron and ion-ion interactions. The
ground state of the system can be obtained by minimizing the total energy given by the
expectation value of Hamiltonian (1.1) with respect to the electronic and ionic degrees of
freedom. However, the practical computation is not possible for realistic systems.

The first obvious fact that can be exploited for the simplification of the problem is suggested
by the large difference between electron and ion masses of about three orders of magnitude.
It can be assumed, that the electrons are moving much faster than the ions and follow their
movement more or less instantaneously. This so-called Born-Oppenheimer approximation
effectively decouples the ionic and electronic degrees of freedom. The ionic positions RI

become classical variables and can be considered fixed. Consequently, the kinetic energy of
the ions in Eq. (1.1) can be safely neglected. In this regard the last term in Eq. (1.1) is a
constant for any fixed configuration of ions and does not influence the electronic states and
can be neglected as well. It is, however, needed to determine the correct total energy of
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Chapter 1 Many-body theory

moving electrons and fixed ions. The many-body Hamiltonian of N interacting electrons
in a solid can finally be written in the form

Ĥ =
∑

i

p2
i

2m
−
∑

i,I

ZIe
2

|ri −RI |
+

1

2

∑

i6=j

e2

|ri − rj|
= T +

∑

i

Vnucl(ri) + Ve-e , (1.2)

T =
∑

i

p2
i

2m
, Vnucl(ri) = −

∑

I

ZIe
2

|ri −RI |
, Ve-e =

1

2

∑

i6=j

e2

|ri − rj|
. (1.3)

The solution of this problem is still a demanding task. An approach to solve the eigenvalue
problem for the Hamiltonian (1.2) for the ground-state of the electrons is the Hartree
theory, where the N -electron ground-state wave function is represented by the best product
of N one-electron spin-orbitals. However, the product wave functions do not take into
account the correct antisymmetry character of space and spin coordinates and neglects
any correlation of the electrons [48]. A better approach is discussed in the next section.

1.2 Hartree-Fock theory

In the Hartree-Fock theory the ground state Ψ0 of a non-relativistic N -electron system
described by Hamiltonian (1.2) is approximated by the best single determinantal state
(Slater determinant)

Ψ0(r1σ1 . . . rNσN) =
1√
N !

∣∣∣∣∣∣∣∣

ψ1(r1σ1) · · · ψ1(rNσN)
... . . . ...

ψN(r1σ1) · · · ψN(rNσN)

∣∣∣∣∣∣∣∣
. (1.4)

According to a variational principle, the "best" N -electron wave function is obtained by
minimizing the total energy E0 = 〈Ψ0|Ĥ|Ψ0〉 at the ground state with respect to the
contributing single-particle Pauli spinors ψi (i = 1, . . . , N) and under the constraint, that
the Pauli-spinors ψi are orthonormal 〈ψi|ψj〉 = δij. The constraint introduces Lagrange
multipliers εi into the functional that has to be minimized. The resulting system of
non-linear integro-differential equations to determine ψi are the canonical Hartree-Fock
equations [

p2

2m
+ Vnucl(r) + Vcoul(r) + Vexch

]
ψi = εiψi (1.5)

with the Coulomb term

Vcoulψi(rσ) =

(occ)∑

j

ψi(rσ)

∫
ψ∗j (r2σ2)

e2

|r − r2|
ψj(r2σ2) d(r2σ2) (1.6)
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1.3 Density functional theory

and exchange contribution

Vexchψi(rσ) = −
(occ)∑

j

ψj(rσ)

∫
ψ∗j (r2σ2)

e2

|r − r2|
ψi(r2σ2) d(r2σ2) . (1.7)

In the latter term the exchange potential is a non-local integral operator since the wave
function on which it acts appears under the integral. The solutions ψi and corresponding
eigenvalues εi of Eq. (1.5) must be determined self-consistently. Most importantly, the
many-body ground state problem has been traced back to a single-particle problem. How-
ever, although Eq. (1.5) appears as a classical Schrödinger equation, special care must be
taken about the connection between the eigenstates and eigenenergies of the many-electron
system under investigation and the auxiliary wave functions and energies (=Lagrange
multipliers) incorporated in the Hartree-Fock equations (1.5). Koopmans’ theorem [49] at
least reveals the connection between the physical meaning of the single-particle excitation
energies of the many-electron system and the Hartree-Fock eigenenergies.

In agreement with the variational principle it is clear, that the Hartree-Fock energy E0 is
always higher than the exact ground-state energy of the system. The difference is due to
correlation effects. The representation of the many-body wave function (1.4) as a single
Slater determinantal state is only a poor representation of the complex many-body wave
function. The correlation energy can be calculated essentially exactly by configuration
interaction methods where the exact ground state is expanded in a weighted sum of Slater
determinants built from spin orbitals [50]. However, in practice the computational effort is
very high even for atoms or small molecules. Another drawback becomes apparent if the
integration over the spin degrees of freedom is taken in the exchange operator. The only
contributions to the exchange energy are due to spin orientation parallel to ψi(rσ). It can
be concluded, that in the Hartree-Fock equations the depletion of parallel spin particles is
nearly correctly taken into account. The main issue of the Hartree-Fock approach is that
electrons with opposite spin remain uncorrelated.

In the next section we will see, that density functional theory allows us or the ground
state to take into account also correlation effects in principle exactly.

1.3 Density functional theory

It has been shown in the previous section that the ground state of a many-electron system
can be tackled by means of a Slater determinant. If the ground state wave function is
known for a given atomic configuration the ground state properties are easily derived as
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Chapter 1 Many-body theory

expectation values of the corresponding quantum mechanical operators representing an
observable. The main aspect of density functional theory (DFT) is a dramatic change of
view. It is stated, that the ground state energy of the many-body system is a functional
of the ground state density of the system. Since the density is a scalar function of the
position in principle a tremendous simplification of the many-electron problem can be
achieved. However, the construction of the appropriate exchange-correlation functional
is still part of ongoing research and only approximations are known up to date. Despite
some seemingly rough assumptions in its derivation, the success of DFT in predicting
ground-state properties such as atomic geometries is remarkable and for many molecular
and solid-state systems it has been proven to be in good agreement with experiments.
Thus, nowadays DFT is the state-of-the-art method for the prediction of structural, elastic
and thermodynamic properties of materials.

1.3.1 Hohenberg-Kohn theorem

The Hohenberg-Kohn theorem (HKT) is the core statement of the DFT. For its formulation
it is useful to decompose the many-body Hamiltonian (1.2) in internal and external
contributions

Ĥ = Ĥint + V̂ext (1.8)

where
Ĥint = T̂ + V̂e-e and V̂ext(r) =

∑

i

vext(ri), vext(r) ≡ Vnucl(r) . (1.9)

In the work of Hohenberg and Kohn [51] it was shown that the knowledge of the external
potential Vext determines exactly the ground-state density n(r) of the system. Here
’external’ means that the potential does not depend on electron coordinates but, e.g., may
depend on atomic coordinates. For that reason V̂nucl can be replaced by vext. The proof of
this rather trivial statement can be found in the original paper or in standard literature
about DFT [32,48, 52]. More precisely, there exists a functional that links the external
potential to the ground-state density of the system. Surprisingly, in the same work it
was also claimed that the knowledge of the ground-state density determines uniquely (to
within a constant) the external potential vext, and consequently, the full Hamiltonian of
the system. If the Hamiltonian was known, its eigenenergies and eigenfunctions are the
solutions of the many-electron problem. Of course, the ground-state density is not known
a-priori, but a variational principle can be formulated which allows for the self-consistent
calculation of the ground-state density. It is important to note, that e.g. the total energy
of the system in its ground state is determined by the external potential mediated by a
functional. Due to the HKT, this functional depends on the ground-state density of the
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1.3 Density functional theory

system. Thus, the Hohenberg-Kohn functional of the ground-state energy in general has
the following form

E(HK)[n(r), vext(r)] = 〈Ψ0[n]|T̂ + V̂e-e + V̂ext|Ψ0[n]〉 , (1.10)

which can be rewritten in the form

E(HK)[n(r), vext(r)] = T [n(r)] + Ve-e[n(r)] +

∫
vext(r)n(r)dr . (1.11)

This functional exists and is unique thanks to the HKT and takes its minimum at the
exact ground-state density n(r) leading to the ground-state energy. The ansatz of Kohn
and Sham [53] assumes that the ground-state density of the original interacting system
is equal to that of some chosen system of non-interacting particles. This leads to inde-
pendent-particle equations for the non-interacting system that can be considered exactly
soluble with all the difficult many-body terms incorporated into an exchange-correlation
functional of the density.

Following the idea of Kohn and Sham the electron density can be decomposed in a complete
system of orthonormal orbitals |φi〉

n(r) =
∑

i

fiφ
∗
i (r)φi(r) , (1.12)

where fi is the occupation number of the corresponding state (the spin degree of freedom
is not yet included). The first two terms depend on the ground-state density of the
interacting system. It is reasonable to assume that the kinetic energy of a noninteracting
electron gas is already a good approximation for that of the fully interacting system. And
it is also reasonable to to assume that Ve-e is already well represented by the classical
Coulomb interaction. It is therefore common to rewrite Eq. (1.11) into the form

E(HK)[n(r), vext(r)] = T0[n(r)] + EH[n(r)] +

∫
vext(r)n(r)dr + EXC[n(r)] . (1.13)

with the functional of the kinetic energy of a non-interacting electron system of the same
density n(r)

T0[n(r)] =
∑

i

〈φi| −
~2∇2

2m
|φi〉 (1.14)

and the classical long-range Hartree-energy

EH[n(r)] =
1

2

∫
n(r)

e2

|r − r′|n(r′)drdr′ =
1

2

∑

ij

〈φiφj|
e2

|ri − rj|
|φiφj〉 . (1.15)
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Chapter 1 Many-body theory

The last remaining term in Eq. (1.13) includes all interaction terms between the electrons
of the fully interacting system and is called the exchange-correlation functional

EXC[n(r)] = T [n(r)]− T0[n(r)] + Ve-e[n(r)]− EH[n(r)]. (1.16)

While T0 and EH are given by exact expressions, EXC is unknown and may be understood
as the error made by approximating the fully interacting system as a Hartree-Fock system
as mentioned before. Moreover, EXC becomes a relatively small part of the total energy.
Since the long-range Hartree potential is already separated out from the XC potential,
it can mostly be well approximated as local or nearly-local functional. If the standard
variational procedure is applied to Eq. (1.13) with respect to the orbitals φi the Kohn-Sham
equations [53] are obtained

[
−~2∇2

2m
+ Vnucl(r) + Vcoul(r) + VXC(r)

]
φi(r) = εiφi(r) (1.17)

where VXC is the functional derivative of EXC[n(r)] with respect to the density

δEXC[n(r)] =

∫
VXC(r)δn(r)dr . (1.18)

The equation reveals that instead of dealing with the fully interacting system, the electrons
can be viewed as independent particles moving in an effective potential

Veff(r) = Vnucl(r) + Vcoul(r) + VXC(r) . (1.19)

The original many-electron problem has been replaced by an auxiliary single-particle prob-
lem. All issues related to the complex many-electron problem are left to the determination
of a reasonable XC potential VXC or finding EXC. The next section gives an overview over
some of the most common approaches for the approximation of VXC or EXC.

1.3.2 Local (spin) density approximation (L(S)DA) and

generalized gradient approximation (GGA)

In general the XC energy functional in nonlocal, however, it is reasonable to approximate it
as a local functional, since the long-range Hartree potential has been separated. Therefore,
the easiest approach is to assume that the XC-energy density at each point is the same as
for the homogeneous electron gas of the same density, which is famous the local density
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1.3 Density functional theory

approximation (LDA)

ELDA
XC [n(r)] =

∫
εhomXC [n(r)]n(r)dr , (1.20)

where εhomXC [n(r)] is the XC energy density per particle for an electron density n. The
exchange-correlation energy for the homogeneous electron gas at various densities can be
obtained with very high precision by numerical Monte-Carlo simulations (see Ceperly and
Alder [54]). Their results have been parametrized by e.g. Perdew and Zunger [55] and are
widely used in numerical DFT programs. It must be noted, that in LDA the XC-energy
density is split into a sum of contributions of exchange and correlation εXC = εX + εC. In
the previous discussion spin has not been considered. In a collinearly spin-polarized system
the XC energy is a functional of spin-up and spin-down densities, i.e., EXC(n↑(r), n↓(r)).
Within the local spin-density approximation (LSDA) the XC energy density is taken from
the polarized homogeneous electron gas. The Kohn-Sham equations (1.17) become a pair
of equations

[
−~2∇2

2m
+ Vnucl(r) + Vcoul(r) + V σ

XC(r)

]
φiσ(r) = εiσφiσ(r) (1.21)

for each spin polarization σ =↑, ↓. Although its rather crude approximations, the usefulness
of L(S)DA has been proven in particular for systems with slowly varying density. Therefore,
there has been much effort spent in the improvement of the LDA functional.

The first obvious approach is the inclusion of powers of the gradient of the density by means
of an expansion of the XC functional of the homogeneous electron gas and by fulfilling
certain sum rules. The generalized-gradient approximation (GGA) denotes a variety of
such functionals, which are also called semilocal approximations due to the inclusion of
gradients. The most widely used functional is the one proposed by Perdew, Burke and
Ernzerhof [56] known as the PBE functional, which will also be used in this work and
which has further importance for the development of functionals including quasi-particle
corrections. The functional form of the XC energy functional incorporates dimensionless
enhancement factors FX(n(r),∇n(r)) and FC(n(r),∇n(r))

EGGA
XC [n(r)] =

∫ (
εhomX [n(r)]FX[n(r),∇n(r)] + εhomC [n(r)]FC[n(r),∇n(r)]

)
dr . (1.22)

It is well known that binding energies in LDA are typically too large and bond lengths
are 1-2% too short compared to experimental values. On the other hand, GGA corrects
this error but predicts binding energies which are smaller and, thus, bond lengths are
slightly too large compared to experiments, but the overall agreement is much better than
for LDA. Electronic properties like the band dispersion and bandgaps are very similar,
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Chapter 1 Many-body theory

however not described correctly within both approximations. The apparent reason is
that in particular bandgaps are not ground-state properties of the system. It can be only
measured by exciting the electron system. Compared to the Hartree-Fock approach LDA
and GGA in general yield a good description of chemical bonds, where GGA works even
better for e.g. ionic systems, surfaces, interfaces and whenever large density gradients
appear or are expected. Further improvement based on the optimization of parameters
used in the PBE functional has been given by Zhang et al. [57], known as the revPBE
functional, where "rev" simply stands for "revised". Systems which are only kept together
by intermediate-range interactions like water (hydrogen-bridge bonds), graphite (interlayer
van der Waals bonding) or rare gas dimers (van der Waals bonding) are only poorly
described.

1.3.3 Non-collinear magnetization and spin-orbit interaction

The Kohn-Sham equations can be generalized to include the effect of non-collinear magne-
tization and the coupling between spin and orbital moments starting from the Dirac-e-
quation [58]. Spin-orbit coupling (SOC) effectively couples the spin to the gradient
of the crystal potential leading to new understanding of magnetism in solids, like the
magnetocrystalline anisotropy [59, 60].

Density functional theory including non-collinear magnetism is expressed in terms of a 2×2

density matrix (cf. the density introduced in (1.12)) with elements nαβ(r) (α, β = 1, 2)
defined as [61–63]

nαβ(r) =
∑

i

fiφ
∗
αi(r)φβi(r) , (1.23)

where the two φαi(r) correspond to the components of the spinor Φi(r) = (φ1i(r), φ2i(r))

of the i-th state with occupation number fi. The electron density n(r) determined from
the diagonal elements of the density matrix by means of

Tr[nαβ(r)] ≡ n(r) =
∑

α

nαα(r) , (1.24)

whereas the magnetization density m(r) can be obtained from the off-diagonal elements
of the density matrix. In terms of the Pauli spin matrices σ = (σx, σy, σz) the density
matrix (1.23) reads

nαβ(r) = [n(r)δαβ +m(r) · σαβ] /2 . (1.25)
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1.3 Density functional theory

The exact Kohn-Sham energy functional becomes

E =
∑

α

∑

i

fi 〈φαi|
p2

2m
|φαi〉+ EH[n(r)] + EXC[n(r), |m(r)|] . (1.26)

The spin-orbit coupling stemming from the Dirac equation is added to the energy func-
tional 1.26 according to Hobbs et al. [63]. Since SOC mostly affects the inner core electrons,
it is evaluated only for the all-electron part of the wave functions within the PAW spheres
(see Sec. 1.5) of the atoms.

1.3.4 Van der Waals corrections

The van der Waals interaction actually is an intermediate-range correlation effect, which
is not captured in the short-range XC functionals discussed before. An improvement over
the LDA and GGA approximations of XC in order to include also long-range correlation
effects has been derived by Dion et al. [64], which nowadays belong to an entire group
of van der Waals density functionals (vdW-DF). The key ingredient is the computation
of a non-local long-range correlation-energy extension Enl

c . It can be traced back to the
random-phase approximation (RPA) of the correlation energy of the form

Enl
c =

1

2

∫
d3rd3r′n(r)Φ(r, r′)n(r′) (1.27)

and is added to the aforementioned DFT functionals, where Φ(r, r′) is some functional (or
kernel) depending on r−r′. It is possible to show that the remaining local-correlation part
of the full XC functional is reasonable approximated within the LDA. The exchange-energy
functional is approximated by that of the revPBE [57] functional. According to Dion et al.
this choice is motivated by the observation, that a more standard GGA predicts substantial
binding in rare gas dimers from exchange alone, a feature absent for exact Hartree-Fock
exchange. It was shown that the optimization of the correlation part substantial improves
the description of weakly-bonded systems. The numerical implementation of several
vdW-DF functionals has become accessible due to the works of Soler et al. [65] and Klimes̆
et al. [66,67]. In this work the vdW interaction will be included for the computation of
silicene monolayers on metallic and nonmetallic substrates.

1.3.5 Hellmann-Feynman forces

Due to the Born-Oppenheimer approximation the ionic degrees of freedom in the many-body
Hamiltonian are considered as classical variables. For a given atomic structure the
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Chapter 1 Many-body theory

ground-state density and all properties can be calculated thanks to the Hohenberg-Kohn
theorem and the methods introduced in the last sections. The lattice constant, atomic
structure and symmetry of a crystal therefore has to be taken from experiments, which is
of course a source of error in subsequent computations. Naturally the question arises if it
is possible to determine also the exact atomic positions of a certain atomic geometry if
only e.g. the composition of the crystal is known, or only approximate lattice constants
are available?

It is obvious that the force on each ion in an arbitrary crystal in its ground state (at zero
temperature) must vanish. If the force on an ion does not vanish, the ion will move until
all acting forces disappear. The Hellmann-Feynman theorem allows the calculation of
the forces acting on the ions if the ground-state electron density is known for this atomic
(non-equilibrium) configuration. If the forces are known, the ions are slightly moved along
the direction of the acting forces and the electronic ground state is determined again.
The procedure is repeated until the forces vanish, which is equivalent to the equilibrium
structure of the crystal. The force acting on an the ions is defined as the gradient of the
total energy with respect to the ionic coordinates

FI = −∇RI
(E + EII) . (1.28)

It follows from the total energy E = 〈Ψ|Ĥ|Ψ〉 (with Hamiltonian (1.2) and adding the
ion-ion repulsion energy EII) that the forces can be calculated by means of [52]

FI = −
∫
d3rn(r)∇RI

vext(r)−∇RI
EII(r), (1.29)

where the last term is the classical contribution of the ion-ion interaction to the energy,
which has been taken into account. The forces are given in terms of the charge density
and thus, particularly useful in DFT calculations. Expression (1.29) goes back to the
Hellmann-Feynman theorem, in practice, an additional term is taken into account, the
so-called variational forces, which appear as long as the energetic minimum with respect
to the electron density is not reached.

1.3.6 Hybrid functionals

For the solution of the many-electron problem two approaches have been presented,
namely the Hartree-Fock approach and the DFT in local or semilocal approximation
for XC or even including van der Waals interaction. Both of them have advantages
and disadvantages which can be traced back to the different treatment of exchange and
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1.3 Density functional theory

correlation. Hartree-Fock theory provides an exact treatment of exchange, it scales well
with molecular size and scales well even for large chemical systems [68]. On the other
hand chemical bonding is not well described and correlation effects are not included.
On the other hand, density functional theory takes also into account correlation effects
which is moreover easily to calculate. Bonding of atoms is described very reliably in DFT.
Therefore, there has been a strong interest in mixing Hartree-Fock with DFT for non-local
correlation and, in the end, a more accurate description of atoms, molecules and solids.

The approach proposed by Becke [68] mixes the exact exchange of HF theory with the XC
contribution of LSDA in the ratio 1:1, therefore it became popular as the half-and-half
hybrid. However, the choice of the mixing ratio is arbitrary and not motivated by physical
means. Perdew, Ernzerhof and Burke further investigated the mixing ratio by exploiting
the coupling-constant method [35]. The mixing has been optimized with respect to the
exchange part of the PBE functional. A mixing ratio of 1:3 as the most reasonable choice
has been found:

EPBE0
XC =

1

4
EHF

X +
3

4
EPBE

X + EPBE
C . (1.30)

The functional is known as PBE0 [36]. It has been used for the calculation of atomization
energies of various molecules and led to a significant improvement towards the experimental
values. Furthermore, even electronic bandgaps and widths are well described [35,36,69,70].
The bottleneck of the calculation is the slow convergence of the long-range nature of the
HF exact exchange contribution in periodic systems in particular for metals due to the
large number of k points required for the sampling of the Fermi surface.

Heyd et al. [37,39] proposed the decomposition of the exchange contribution into short
and long-range components

EHSE06
XC =

1

4
EHF,sr

X (µ) +
3

4
EPBE,sr

X (µ) + EPBE,lr
X (µ) + EPBE

C (1.31)

where a screened Coulomb potential is applied only to the exchange interaction in order
to screen the long-range part of the HF exchange. Therefore, the division of the Coulomb
potential in long- and short-range contributions is achieved by means of

1

r
=

1− erf(µr)
r︸ ︷︷ ︸

short range

+
erf(µr)
r︸ ︷︷ ︸

long range

(1.32)

where erf(x) denotes the Gaussian error function and µ is an adjustable parameter which
can be interpreted as a Thomas-Fermi screening parameter. All other Coulomb interactions
remain unscreened. The short-range part of HF is treated exactly based on the DFT
wave functions, while the long-range part is treated by approximate DFT. The For µ = 0
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Chapter 1 Many-body theory

the PBE0 functional is recovered, whereas the PBE functional is recovered in the limit
µ→∞. An extensive study of the µ dependence of various properties showed only a slight
dependence in a certain range [37]. In the original published work in 2003 the parameter
µ = 0.15a−1

B (aB denotes the Bohr radius) was suggested and the functional was named
HSE03 for obvious reasons. This parameter has been used in many publications and many
groups. However, in 2006 an erratum was published concerning this value. It was stated,
that the original parameter used in the work of 2003 was µ = 0.15/

√
2 a−1

B instead. In
order to account for the correction the functional today is known as HSE06 [39]. Although
the choice of µ does not change the results obtained by Heyd et al., any publication that
used one of the HSE functionals has to be checked precisely for which variant was used in
order to reproduce their results.

Compared to the L(S)DA and GGA the HSE functional offers improved lattice constants
and fundamental bandgaps toward experimental values [38, 71] for many mid-gap and
some large gap insulators as displayed in Fig. 1.1. Although there is no reason why density
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Figure 1.1: Comparison of experimental energy bandgaps of several semiconductors (SC40
solid test set [38]) within the LSDA and the hybrid functional HSE06 [71].

functional theory should provide accurate fundamental bandgaps the hybrid functionals
are remarkably successful. It is stated that the non-locality of exchange and correlation
present in the exact XC potential offers an improved description of the many-body
wave function compared to (semi-)local DFT functionals, in particular in terms of their
spatial localization. Fundamental bandgaps are determined experimentally based on a
combination of angle-resolved photoemission spectroscopy (ARPES) and k-resolved inverse
photoemission spectroscopy (KRIPES [72]). However, electron removal leaves oppositely
charged holes in the material which attract electrons and form quasiparticles. These charged
excitations are obviously not a ground-state property. Typically, many-body perturbation
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1.4 Optical properties

theory, e.g., within the GW approximation, take into account such quasiparticle effects,
where the HSE06 wave functions and energies serve as a good starting point. However,
since the HSE functional already performs well in the prediction of fundamental bandgaps
it is claimed, that HSE partially covers such quasiparticle effects as well.

Optical absorption experiments create interacting electron-hole pairs, called excitons. Con-
sequently, optical bandgaps are usually even smaller by about the exciton binding energies
than the fundamental quasiparticle bandgaps. Excitons are well-described theoretically
through the solution of the Bethe-Salpeter equations (BSE), which couples the electron and
the hole. Excitons are particularly important in insulators. However, according to Louie
et al. [73] and Pulci [74] excitonic effects give rise to a redshift of the optical absorption
peaks, but the low-energy part of the spectrum is not affected. Therefore, excitonic effects
are not taken into account.

A nice review and outlook of historical and recent developments of DFT can be found in
the literature [33,34].

1.4 Optical properties

The optical properties of matter are determined by the strength of the coupling of
electromagnetic fields, e.g. light, to some kind of excitations in the material. Possible
excitations are e.g. atomic vibrations, rotations or transitions between electronic states.
The strength of the coupling strongly depends on the energy or wavelength of the photons.
In this work we are mainly interested in the optical properties related to the infrared,
visible, and ultraviolet electromagnetic spectrum and above, starting from the mid-infrared
with an energy of about 25 meV up to 30 eV (strong ultra-violet). Usually low temperatures
are investigated. Therefore, the complicated coupling to lattice vibrations will not be
considered and the main focus lies on the transition between electronic states ruled by
quantum mechanics.

In order to investigate the response of an electronic system to en external electromagnetic
field one starts with a Hamiltonian of the underlying system and replace the momentum
operator p̂ by the generalized momentum operator p̂ + e

c
Â(r, t), where Â(r, t) is the

vector potential of the electromagnetic field in the Coulomb gauge divA = 0, which is
related to the electric field by means of E = −1

c
∂tA. The probability, that an electron is

transferred between two quantum mechanical states can be calculated by Fermi’s golden
rule (known from time-dependent perturbation theory) [48]. The electromagnetic field
induces currents in the medium, thus, leading to energy dissipation. If we assume a linear
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Chapter 1 Many-body theory

response of the medium to the applied field, the induced current j(r, t) depends linearly
on the electric field (Ohm’s law)

j(r, t) =

∫
dr′d t′ σ(r − r′, t− t′)E(r′, t′) (1.33)

by means of the conductivity function assumed to be σ(q, ω) for a homogeneous system.
Local-field effects are neglected. Its Fourier transform only depends on the frequency ω
and momentum q of the incident light. In general, the conductivity is a complex quantity,
its real part describes dissipation due to transitions in the material and is connected to
the transitions between electronic states. Therefore, only the real part of the conductivity
can be calculated directly if the corresponding transition matrix elements are known.

From Maxwells equations a linear dependence between the displacement field D and the
electric field E is assumed by means of D = εE. From Ampere’s law and Ohm’s law the
conductivity σ is related to the dimensionless dielectric function ε

ε(q, ω) = 1 + 4πi
σ(q, ω)

ω
, (1.34)

where a harmonic time dependence ∼ exp(−iωt) of the fields is assumed. Therefore, the
imaginary part of the dielectric function is determined by the real part of the conductivity
function. A very early approach for the determination of the dielectric constant in solids
goes back to Ehrenreich and Cohen [75], Adler [76], Wiser [77] and Baroni [78]. In this
work, the description of the optical response of the interacting many-body system to an
external electromagnetic field is based on the independent-quasiparticle approximation
(often called random-phase approximation) and the description of the electronic and atomic
structure within the (semi-)local DFT as well as nonlocal functionals like HSE06 introduced
before. In practice, already the effective potential in the Kohn-Sham equations contains
nonlocal contributions attributed to the use of pseudopotentials in the description of the
electron-electron interaction, that requires a careful treatment of the optical transition
operators [79].

In general, the density response of a solid may be derived by means of an applied external
longitudinal microscopic perturbation. Neglecting local-field effects it can be shown that
the dielectric function in the longitudinal approach for q̂ → 0 (q̂ = q/|q̂|)is given by [79]

ε(q̂, ω) = 1 +
4πe2

V

∑

c,v

∑

k

|Mcv(k, q)|2
∑

β=±

1

εc(k)− εv(k)− β(~ω + iη)
(1.35)
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with the optical matrix elements

Mcv(k, q) = lim
q→0

1

|q| 〈ck|e
iqr|v k + q〉 . (1.36)

A semiconductor with fully occupied (unoccupied) valence (conduction) bands at zero tem-
perature is assumed. The dielectric function depends on the volume V of the primitive cell
in a periodic crystal and the sign β accounts for resonant and antiresonant contributions
to positive and negative energies ~ω. The parameter η is a small broadening parameter.
In general, the wave functions in Eq. (1.36) are two-component spinors. Consequently, if
the system is described within a non-spin polarized approximation the wave functions are
scalars and an additional factor of 2 in Eq. (1.35) in front of the sum over conduction and
valence bands might be introduced for convenience to account for the spin degeneracy of
the electronic bands εν(k). If the corresponding wave functions |ν k〉 of the many-elec-
tron problem are known, basically the optical transition matrix elements (1.36) can be
computed.

The result in the limit q → 0 can be related to matrix elements of the components of
the velocity operator vα (α = x, y, z) in a certain cartesian direction α by means of the
relation

v =
i

~
[H, r] (1.37)

with the governing Hamiltonian H of the system under consideration. In the DFT the
wave functions are determined as the solution of an effective single particle Kohn-Sham
equation (1.17) within a local, semilocal or nonlocal approximation of the XC functional.
As will be discussed later, in practice the core electrons of the many-body system are
treated within a pseudopotential approach, that introduces non-local contributions to
the effective Kohn-Sham potential (1.19) into the Hamiltonian. In general, non-local
contributions Vnl have to be taken into account in the commutator (1.37). Thus, the
velocity operator v is related to the momentum operator p by [79]

v =
p

m
+
i

~
[Vnl, r] . (1.38)

However, within the projector-augmented wave methodology (PAW), that is used for
the construction of the pseudopotentials of the valence electrons, their wave functions
are all-electron-like and thus, can be treated as based on a local Hamiltonian [80]. Fur-
thermore, the explicit non-local HSE06 functional introduces non-local contributions to
the Hamiltonian only very close to the cores of the atoms and thus, is practically local.
Therefore, it is allowed not to consider the non-local contribution to the Hamiltonian and
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the relation v = p/m holds. Exploiting the relation

〈ck|eiqr|v k′〉 =
〈ck|[H, eiqr]|v k′〉
εc(k′)− εv(k)

(1.39)

from Eq. (1.36) and expanding the exponential for q → 0, for local potentials one obtains

Mcv(k, q) =
~
m

∑

α=x,y,z

qα
q

〈ck|pα|v k〉
εc(k)− εv(k)

. (1.40)

The appearance of the momentum operator in the matrix elements can also be interpreted
as using the transversal gauge of the electromagnetic field. Thus, in the limit q → 0 the
longitudinal and the transversal description of the optical response of the charge density
to an external perturbation are equivalent. It is also convenient to rewrite the longitudinal
expression of the dielectric function (1.35) which yields

ε(q, ω) =
∑

α,β=x,y,z

qαqβ
q2

εαβ(ω) (1.41)

where we introduced the dielectric tensor

εαα′(ω) = δαα′ +
4πe2~2

m2V

∑

c,v

∑

k

〈ck|pα|v k〉 〈v k|pα′|ck〉
[εc(k)− εv(k)]2

∑

β=±

1

εc(k)− εv(k)− β(~ω + iη)
.

(1.42)
The dielectric function ε(q̂, ω) and also the dielectric tensor derived within the afore-
mentioned approximations obey the symmetry relation ε(−ω) = ε(ω)∗. Equations (1.35)
and (1.42) can be understood as a sum of independent Lorentz oscillators with resonant
(β = +) and anti-resonant (β = −) contributions. In this work only hexagonal lattices are
considered, for which the dielectric tensor is diagonal and optical isotropic in the x-y-plane,
i.e., εxx = εyy 6= εzz.

The complex dielectric function (1.35) can be separated in real and imaginary parts by
means of the known relation

1

x− x0 + iη

η→0+

=
1

x− x0

− iπδ(x− x0) , (1.43)

where the imaginary part is readily obtained

Im ε(q, ω) =
4π2e2

V

∑

c,v

∑

k

|Mcv(k, q)|2
∑

β=±

β δ(εc(k)− εv(k)− β~ω)) . (1.44)

For ω > 0 only the resonant contributions β = + contribute and the anti-resonant
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contributions to the imaginary part of the dielectric function can be neglected.

In this work of particular interest is the (optical) conductivity given in Eq. (1.34). For
reasons that become clear in the corresponding chapter, the simultaneous evaluation of
real and imaginary part of the conductivity is not always useful. If the optical transition
matrix elements Mcv are known the direct evaluation of

Reσ(q, ω) =
ω

4π
Im ε(q, ω) (1.45)

is easily possible due to the appearance of the Dirac delta function in (1.44). The imaginary
part of the optical conductivity is then obtained by a Kramers-Kronig transformation

Imσ(q, ω) = − 1

π
P
∫ ∞

−∞

Reσ(q, ω′)

ω′ − ω dω′ . (1.46)

It will be necessary to compute the Kramers-Kronig transformation numerically. Therefore,
in the next section a short overview is given on the method.

1.4.1 Numerical Kramers-Kronig transformation

For a complex function σ(ω) = Reσ(ω) + i Imσ(ω) (for simplicity the wave-vector
dependence is dropped) that is analytic in the upper half-plane and on the real axis and if
lim|ω|→∞ |σ(ω)| then the real and imaginary part of σ are related to each other by means
of the Hilbert (or Kramers-Kronig) transformation [81]

Imσ(ω) = − 1

π
P
∫ ∞

−∞

Reσ(ω′)

ω′ − ω dω′

Reσ(ω) =
1

π
P
∫ ∞

−∞

Imσ(ω′)

ω′ − ω dω′
(1.47)

with P as the Cauchy principal value. The numerical treatment of the Hilbert transforma-
tion is rather difficult due to the singular integrand and the appearance of P . Furthermore,
σ(ω) is given numerically on a not necessarily equidistant mesh and thus, in general not
known for arbitrary frequencies.

The basic idea for the numerical treatment of the Hilbert transform is taken from Wein-
berg [82]. First, the pole in the integrand is removed

Imσ(ω) = − 1

π

∫ ∞

−∞

Reσ(ω′)−Reσ(ω)

ω′ − ω dω′ . (1.48)
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This is possible since the integral over the principal value of 1/(ω′ − ω) vanishes. Thus,
the pole of the integrand at ω′ = ω has been turned into a removable singularity and also
the calculation of the principal value P is avoided. Second, since Reσ(ω) is symmetric in
the sense that Reσ(−ω) = Reσ(ω) and is assumed to vanish outside the range of interest
|ω| > ωc, the integral further reduces to

Imσ(ω) = − 2

π

∫ ωc

0

ωReσ(ω′)− ωReσ(ω)

ω′2 − ω2
dω′ +

Reσ(ω)

π
log

ωc + ω

ωc − ω
. (1.49)

In a last step for each frequency of interest ω the integrand is interpolated using e.g. linear
interpolation, cubic splines or Akima splines (depending somewhat on the smoothness of
the integrand) while of course respecting the symmetry. This procedure allows for an easy
performance of the integral.

1.5 Numerical methods - VASP

Even after all the approximations and simplifications presented above, the solution of
the many-electron problems remains a difficult task which for real materials can only be
achieved numerically. We use the DFT implementation in the Vienna ab-initio simulation
package (VASP) [83,84]. Some details about the implementation will be discussed in the
following paragraphs.

VASP is a highly efficient numerical DFT tool written in FORTRAN language that allows
the computation of structural, electronic, and optical properties of almost arbitrary materi-
als ranging from single atoms, molecules, quasi one-dimensional nanowires, two-dimensional
sheet crystals to three-dimensional bulk materials. The atoms are usually separated in core
and valence electrons, since core electrons are not contributing to chemical bonds. They
are treated within a pseudopotential (PP) approach [85]. Details on the pseudopotentials
that are used in this work are summarized in Tab. 1.1.

VASP is based on the description of systems with periodic boundary conditions in all
three spatial dimensions which suggests an expansion of the wave functions in terms of
plane waves in-between the PAW spheres. The corresponding plane-wave cutoff energy for
the truncation of the expansion coefficients mainly depend on the used pseudopotentials
and are given in Tab. 1.1. If different types of atoms are present in the calculation, the
largest energetic plane-wave cutoff of all contributing atoms is usually sufficient for fully
converged results. However, the convergence of all properties of the system with respect to
the energy cutoff has been confirmed in all computations. The ionic relaxation has been
performed until the Hellmann-Feynman forces are smaller than 0.001 eV/Å.
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element atomic electrons included in PP valence energy
number electrons cutoff

H 1 - 1s1 250 eV
C 6 1s2 2s22p2 400 eV
F 9 1s2 2s22p5 400 eV
Si 14 1s22s22p6 3s23p2 245 eV
Cl 17 1s22s22p6 3s23p5 280 eV
Ca 20 1s22s22p63s23p6 3d2 103 eV
Ge 32 1s22s22p63s23p63d10 4s24p2 174 eV
Ag 47 1s22s22p63s23p63d104s24p6 4d105s1 250 eV
Sn 50 1s22s22p63s23p63d104s24p64d10 5s25p2 103 eV
I 53 1s22s22p63s23p63d104s24p64d10 5s25p5 176 eV

Table 1.1: Core electrons included in the pseudopotentials, electrons treated as valence and
plane-wave cutoff used throughout this work.

In this work two-dimensional systems are of great importance. In order to deal with them
in VASP a superlattice arrangement of infinitely many sheets separated by an artificial
vacuum is studied, which is commonly known as the supercell approach. Convergence of
the desired properties with respect to this vacuum must be checked carefully, in particular
in the presence of electric dipoles in the sheet which give rise to long-range Coulomb
potentials. Numerically the long-range electric fields can be compensated by introducing a
sufficiently large layer of artificial dipoles in the vacuum region.

Another important part of this work is the investigation of surfaces and edges of three-
and two-dimensional crystals, respectively. A method similar to the superlattice method
is applied. In the actual 3D calculation a slab of atoms corresponding to a crystal with
finite thickness in z-direction and a periodic arrangement in x-y-direction is placed in a
unit cell. A large vacuum region, sometimes of the order of 10-20 Å is introduced in the
calculation for the separation of periodic images of the slab in z-direction. The size of the
vacuum is dictated by the requirement that there is no interaction between adjacent slabs.
A slab of finite thickness consists of two surfaces which are both present in the actual
numerical calculations. Thus, both sides of the slab must be constructed symmetrically,
otherwise two distinct surfaces may lead to a wrong description and interpretation of the
electronic properties of the slab. It is also necessary to use slabs big enough so that any
finite size effects ("particle in a box") and any interaction between the surfaces mediated
by the interior of the crystal is excluded. At last, the surfaces of the slab are typically
passivated by hydrogen atoms, where the bond angles and distances are optimized within
the DFT scheme.

For the calculation of electronic properties integrals over the Brillouin zone must be
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Chapter 1 Many-body theory

performed. Numerically a regular Γ-centered Monkhorst-Pack [86] k-point grid is used. In
VASP, only symmetry-reduced k points belonging to the irreducible BZ (IBZ) are used in
the actual calculation, which tremendously increases the performance of the code. Each k
point in the IBZ is associated with a weight corresponding to the number of equivalent k
points in the full BZ. The convergence to the ground state with respect to the number
of k points is crucial, in particular for metallic systems. The convergence of the optical
spectra also depends strongly on the number of k point, hence, details will be discussed in
the corresponding sections.

1.5.1 HSE06 calculations

Calculations with hybrid functionals are in general very demanding. In principle, it is
possible to start calculations from atomic orbitals and obtain the correct ground state
self-consistently, as it is done in DFT calculations with local or semilocal XC functionals.
However, since DFT calculations are very fast it is apparently more efficient to start already
from the converged Kohn-Sham wave functions obtained within the DFT-GGA framework,
since the HSE functional is based on GGA. Furthermore, besides the total energy of the
system the Fock exchange potential needs to be computed on a grid of q points. It has
been shown that the Fock exchange energy converges more rapidly with the number of q
points than the total energy [69,70]. Therefore, in the calculations the sampling density of
the q points can be reduced compared to the number of k points. For graphene, 24×24×1

k points and 9× 9× 1 q points are sufficient in order to converge the total energy and the
Fock exchange energy below 1 meV. For well-converged ground-state properties we use
32× 32× 1 k points for all 2D honeycomb crystals. The number of k points is comparable
large to guarantee convergence while it is also circumventing numerical issues related to
SOC. For numerical reasons that will be addressed in the corresponding section, it is not
always possible to use a reduced q-point mesh in the calculations, thus, k and q lattices
are usually chosen identical.

It is important to note that due to the mixing with exact exchange the functional not
only depends on the electron density, but also on the wave functions itself. Therefore, the
ground-state density alone is not sufficient for the description of the system. Thus, it is not
possible to calculate the energy eigenvalues of the Hamiltonian at an arbitrary momentum
within the BZ starting from the charge density. However, it is possible to obtain these
eigenvalues and also the full band structure using the following approach: First of all a
regular N ×N × 1 k-point mesh according to Monkhorst and Pack is generated, where
only the k points in the IBZ are considered. The weights at each k point in the IBZ
are determined according to the symmetries of the system. In the actual computation

20



1.6 Light propagation in multilayer thin films

arbitrary k points may be included, e.g. along high-symmetry lines , if their k-point weight
is set to zero such that they do not contribute to the calculation of the density of states
and thus, do not contribute to the self-consistent calculation of the ground-state density.
The major drawback of this method is the fact that the number of q points is always
identical to the number of k points in the IBZ. However, the method is very accurate in
determining band energies, but very time consuming.

1.6 Light propagation in multilayer thin films

In this work of special interest are 2D sheet crystals with thickness much smaller than the
wavelength of visible light. Thus, from the point of view of macroscopic electrodynamics
they are infinitely thin. However, impinging light may lead to surface currents within the
2D sheet dictated by Ohm’s law (1.33) in two dimensions. The corresponding continuity
equation

div j2D(r, t) +
∂

∂t
ρ2D(r, t) = 0 (1.50)

also requires an induced time-dependent surface charge density ρ2D(r, t). Here we address
the question of reflection, transmission and absorption of multilayer thin films according
to Berning [87], however, including also conducting interfaces.

Assuming a multilayer system composed of layers with (relative) dielectric constant
ε̃j = Re ε̃j + i Im ε̃j and layer thickness dj (j = 1, . . . ,m), where the index j = 0

corresponds to the medium of incident light and j = m+ 1 to the substrate. The layers are
separated by, in general, conducting interfaces with a 2D surface (or interface) conductivity
σ2D,j = Reσ2D,j + i Imσ2D,j (j = 0, . . . ,m). Of course, an implicit frequency dependency
σ2D,j(ω) is assumed.

The in-plane 2D conductivity of a very thin conducting sheet crystal within the DFT and
a supercell approach is related to the 3D one (Eq. (1.34)), that is computed within the
supercell approach, by means of

σ2D(q, ω) = L · σ(q, ω) , (1.51)

where L is the size of the artificial superlattice dimension, the lattice constant, introduced
in the supercell approach.

At the conducting interface between two media with distinct dielectric constants the
tangential components of the electric field E and the normal components of the magnetic
induction B are continuous. In contrast, for the tangential components of the magnetic

21



Chapter 1 Many-body theory

field H according to Ohm’s law (1.33) and the normal components of the displacement
field D according to the continuity equation (1.50) it holds

n× (Hj+1 −Hj) =
4π

c
n× (σ2D,jEj × n)

(
≡ 4π

c
j2D,j

)
(1.52)

n · (Dj+1 −Dj) = 4πρ2D,j , (1.53)

where the normal vector n of the interface points in the direction of propagation of the
incident wave and the electric field n× (Ej × n) describes the component of the electric
field tangential to the interface. For plane waves at the interfaces between isotropic media
the boundary condition (1.53) is always satisfied if (1.52) is satisfied due to the continuity
equation (1.50). The method developed in [87] has been modified and extended in order
to conserve the correct analytical properties of the dielectric function, which in turn is
related to the sign convention of the dielectric constants and conductivities. Furthermore,
conducting interfaces have been included as mentioned before. An y-z-coordinate system
has been chosen, where the (positive) z direction corresponds to the direction of the
incident light.

In each medium and interface several quantities are defined depending on the wavelength λ
(or frequency ω) and angle of incidence θ0 of the incident light, which are all dimensionless:

k̃2
j = ε̃j square of normalized wave number k̃j (1.54)

k̃j,y =
√
ε̃0 sin θ0 ≡ k̃0,y y-component of k̃j (1.55)

k̃j,z =
√
ε̃j − ε̃0 sin2 θ0 z-component of k̃j (1.56)

Φ̃j =
2π

λ
k̃j,zdj =

ω

c
k̃j,zdj complex phase thickness (1.57)

σ̃2D,j =
4π

c
σ2D,j normalized 2D surface conductivity. (1.58)

It is important to note that the root in the calculation of k̃j,z must be chosen in such a
way that Im k̃j,z > 0 in order to describe evanescent waves within the media. The incident
light is polarized either within the plane of incidence (p) or perpendicular (s) taken into
account by means of the expression

η̃j =




k̃j,z (s-pol)

ε̃j/k̃j,z (p-pol)
. (1.59)

For s and p polarized light the electric field on either side of the jth interface boundary can
be divided transmitted (t) and reflected (r) portions leading to the shorthand notations
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1.6 Light propagation in multilayer thin films

E
(t)
j−, E

(t)
j+, E

(r)
j− , and E

(r)
j+ , where the "+" and "−" designations serve to denote the fact that

the individual wave functions are in general discontinuous at a boundary. The reflected
and transmitted electric fields on either side of the interface are related to each other by
means of the transfer matrix Dj

[
E

(t)

j−

E
(r)

j−

]
= Dj

[
E

(t)

j+

E
(r)

j+

]
, Dj =




1
2

(
1 +

η̃j+1+σ̃2D,j

η̃j

)
1
2

(
1− η̃j+1−σ̃2D,j

η̃j

)

1
2

(
1− η̃j+1+σ̃2D,j

η̃j

)
1
2

(
1 +

η̃j+1−σ̃2D,j

η̃j

)

 . (1.60)

The propagation matrix Pj
[
E

(t)

(j−1)+

E
(r)

(j−1)−

]
= Pj

[
E

(t)

j−

E
(r)

j−

]
, Pj =

[
e−iΦ̃j 0

0 eiΦ̃j

]
(1.61)

mediates the free propagation of the electric field through a given material with dielectric
constant εj. The optical properties of the multilayer system depend only on the ratio of
the electric fields on either side of the entire slab system, where on the transmitted side
only the transmitted wave E(t)

m+ is present, thus, one may choose the initial values for the
propagation simply as [

E
(t)

m+

E
(r)

m+

]
=

[
1

0

]
. (1.62)

The Poynting vector finally yields reflection R, transmission T and absorption A of the
multilayer system

R =

∣∣∣E(r)

0−

∣∣∣
2

∣∣∣E(t)

0−

∣∣∣
2 , T =

Re η̃m+1

Re η̃0

1∣∣∣E(t)

0−

∣∣∣
2 , A = 1−R− T . (1.63)

The above equations will be used to determine the reflection, transmission and absorption
of (atomically thin) two-dimensional honeycomb crystals surrounded by air, but they may
also be used for deposited sheet crystals on arbitrary substrates with a frequency-dependent
dielectric function. In general, the framework of the transfer matrix approach [88] also
allows calculations on (noninteracting) multilayers of e.g. graphene and the investigation
of their photonic bandgaps and plasmon dispersion [89].
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Chapter 1 Many-body theory

1.7 Topological insulators

1.7.1 Quantum (spin-) Hall effect and topological Z2 invariants

In the last decades topological invariants became increasingly important for the character-
ization of insulating crystals. They are strongly connected to the Berry phase, which has
been used for the investigation of the quantum Hall effect (QHE) present in 2D electron
gases subjected to strong magnetic fields [90–94]. The magnetic field is needed in order
to break time-reversal symmetry. Nevertheless, even without an external magnetic field
and in presence of time-reversal symmetry another quantum Hall-like effect has been
measured [29]. In contrast to the QHE the latter one describes spin instead of charge
currents and, consequently, is named the quantum spin Hall effect. The QSHE is driven
by internal magnetic fields mediated by spin-orbit coupling. The quantum spin Hall
phase is further associated with a Z2 topological invariant, which distinguishes it from an
ordinary insulator [28]. In two-dimensional electron systems a single Z2 invariant governs
the effect.

However, in contrast to the QHE, the QSHE also has a generalization in three dimensions.
In general, there are two classes: the weak (WTI) and strong (STI) topological insulator.
In two dimensions there may exist only the STI characterized by a single Z2 invariant. In
three dimensions WTI and STI may exist, characterized by four Z2 invariants. The WTI
in 3D are like layered 2D QSH states, but they may be destroyed by disorder. The STI are
robust against weak disorder and passivation and lead to metallic states at the boundary
to trivial insulators (including of course the vacuum) [41]. The surface or interface states
possess peculiar properties which have potential applications in spintronics. The surface
states resemble the dispersion of massless Dirac particles. Each momentum related to
the surface state has only one single spin state, more precisely, the spin direction rotates
as momentum moves around the Fermi surface [95,96]. Therefore, they are called chiral
states. The scattering between these states is forbidden by the selection rule leading to
perfect transport. Adding defects or small disorder may allow scattering, however, due to
the topological properties of the bulk the metallic surface state is not allowed to vanish.
The bulk properties protect the surface state from disappearance [95]. The topological
invariant of a system cannot change by an adiabatic change in the Hamiltonian (e.g.
strain or electric fields) as long as the bulk remains insulating. Therefore, any adiabatic
mechanism that closes and reopens the electronic bandgap may change the topological
invariant of system and characterizes a possible phase transition.

Based on tight-binding calculations, one of the first systems that has been proposed
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1.7 Topological insulators

to exhibit a non-trivial topology was a 2D honeycomb structure with π orbitals like
graphene [28]. In reality, the SOC in graphene is not strong enough leading to a zero-gap
semiconductor and thus, violates the assumption of an insulating material. However,
SOC opens a sizable electronic bandgap for honeycomb crystals based on the heavier
atoms Si, Ge, and Sn (see Sec. 2.4.3). Therefore, in this work we apply a method that
allows the computation of the Z2 invariant of arbitrary crystals, in particular the 2D
group-IV honeycomb crystals. The method is based on the electronic band structure
and the associated Bloch wave functions expressed as Pauli spinors obtained within the
framework of the DFT.

In general, the calculation of the Z2 invariant as presented in the work of Fu and Kane [40]
requires a fixed phase relation (gauge) between the wave functions throughout the entire
Brillouin zone. The gauge is naturally fixed in e.g. calculations based on the tight-binding
method. However, the DFT solves the Kohn-Sham equations at distinct k points inde-
pendently. Fixing the gauge in the DFT is in general a complicated problem. Recently,
equivalent approaches for the determination of the Z2 invariant based on the idea of
Wannier charge centers have been proposed [97–100], which are completely gauge invariant.
In the subsequent sections we present two methods used in this work for two-dimensional
systems. The first method is restricted to systems possessing a spatial inversion center, the
second one is applicable to arbitrary insulators. Finally, the extension to three dimensions
is briefly discussed in each section, which finally completes the introduction on topological
insulators.

A code has been developed that allows the usage of both methods based on VASP. In
particular the general method for crystals without inversion symmetry required some
modifications to the VASP code itself, since it implies the calculation of the overlap
between wave functions within the PAW framework.

1.7.2 Insulators with inversion symmetry

For insulators with time-reversal symmetry the presence of inversion symmetry greatly
simplifies the problem of evaluating the Z2 invariant. There exist special momenta k = Γi

in the BZ which are time-reversal invariant (TRIM) that satisfy the relation

− Γi = Γi +G (1.64)

for a reciprocal-lattice vector G. Each point Γi is represented as a linear combination of
basis vectors of the reciprocal lattice bi according to Γi =

∑
i µibi, where the coefficients
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µi ∈ (−0.5, 0.5] are within the first BZ. Any G vector is represented by G =
∑

i nibi with
arbitrary integers ni. Eq. (1.64) can easily be solved for the TRIM points, since ni = 0

requires µi = 0, and ni = −1 requires µi = 1/2. Other solutions do not exist within
the aforementioned restrictions on ni and µi. Therefore, for any reciprocal lattice in two
dimensions there exist four TRIM points as displayed in Table 1.2, and likewise there exist
eight TRIM points in three dimensions. It can be shown [101] that for an insulator with

Table 1.2: Relative coordinates of the four TRIM
points for arbitrary crystals in two dimensions.
The denotation of the TRIM points in a hexagonal
lattice is given in brackets.

µ1 µ2 label

0 0 Γ (Γ)
1/2 0 M1 (M)
0 1/2 M2 (M)
1/2 1/2 M3 (M)

2N occupied bands all bands come in Kramers-degenerate pairs, which means, for each
energy εν(k) obtained as solution of the Schrödinger (or Kohn-Sham) equation there exists
a solution with the same energy but with opposite momentum εν′(−k). Furthermore, at
each TRIM point the energy bands εν(Γi) are degenerate. According to Ref. [101] the
Z2 invariant can be deduced from the knowledge of the parity of each pair of Kramers
degenerate occupied energy bands at the time-reversal and inversion invariant points. The
parity of any band at these points is calculated as the expectation value of the parity
operator P

ξi(Γi) = 〈uΓi,n|P |uΓi,n〉 =

∫

BZ

(
u↑∗Γi,n

(r) u↓∗Γi,n
(r)
)(u↑Γi,n

(−r)

u↓Γi,n
(−r)

)
d3r , (1.65)

where the Bloch functions |uΓi,n〉 are of course two-component spinors. In two dimensions
the Z2 invariant ν0 is then given by

(−1)ν0 =
N∏

i=1

δi (1.66)

where each δi is the product of the parities of all occupied Kramers degenerate bands

δi =
N∏

m=1

ξ2m(Γi) . (1.67)

The method is easily generalized to three-dimensional systems [41,101]. The parities at all
eight TRIM points according to Eq. (1.65) are needed for the calculation of the δi’s as
in two dimensions, which lead to four independent Z2 invariants labeled νi (i = 0, 1, 2, 3).
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1.7 Topological insulators

One of these invariants is the product over all eight points. The other three invariants are
given as the product over four δi’s, for which all contributing momenta Γi reside in the
same plane:

(−1)ν0 =
8∏

i=1

δi (1.68)

(−1)νk =
∏

nk=1;nj 6=k=0,1

δi=(n1n2n3) . (1.69)

The topological index ν0 is robust against disorder and is thus named the strong topological
index. In three dimensions the νk (k = 1, 2, 3) depend on the choice of the reciprocal
lattice vectors and thus, indicate possible topological nontrivial surface states in certain
crystal orientations. They are weak topological invariants, since they are not robust in the
presence of disorder.

1.7.3 Insulators without inversion symmetry

For insulators without inversion symmetry the parity of states is not well defined and
the method described in Sec. 1.7.2 fails. The method we use in this work is based on
the approach presented by Yu et al. [97], although many similar proposals exist [98, 99].
The advantage of all the aforementioned methods is their gauge invariance, since they do
not rely on a fixed gauge between the wave functions at distinct k points in the BZ. As
already stated by Fu and Kane [40] the virtual spin pumping that defines a quantum spin
Hall state is strongly related the evolution of the charge center of the Wannier functions
(WCC) constructed from the subspace of the 2N occupied states. The information on
the WCC is encoded in the position operator projected on this occupied subspace, which
in turn is related to the Bloch eigenstates of the associated Hamiltonian (for details see
Ref. [97]). In two dimensions the eigenvalue problem of the position operator of the WCC
can be solved by introducing the 2N × 2N matrix product

D(ky) = F0,1F1,2 . . . FNx−2,Nx−1FNx−1,0 , (1.70)

where the 2N × 2N overlap matrices between the Bloch states Fj,j+1 are defined as

Fmn
j,j+1(ky) = 〈m, kx,j, ky|n, kx,j+1, ky〉 . (1.71)

In an arbitrary 2D lattice the momentum kx,j = j/Nx (j = 0, . . . , Nx − 1) is the fraction
of the reciprocal lattice vector b1 in the interval [0, 1) (entire length of the BZ excluding
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the right boundary) with discrete spacing ∆x = 1/Nx. The momentum ky is equivalently
the fraction of the reciprocal lattice vector b2. The method seems to favor one direction
in the BZ over another, however, in the end the wave functions in the entire 2D BZ are
taken into account and thus, the method can be formulated with b1 and b2 exchanged. It
has to be stressed, that kx and ky are not Cartesian coordinates but relative coordinates
in a (not necessarily orthogonal) coordinate system spanned by b1 and b2.

For any given ky the matrix D(ky) is unitary and thus, all its 2N complex eigenvalues

λDm(ky) =
∣∣λDm
∣∣ eiθDm(ky), (m = 1, . . . , 2N) (1.72)

are on the unit circle
∣∣λDm
∣∣ = 1. Following the procedure of Yu et al. [97], the phase of the

eigenvalues
θDm(ky) = Im

[
lnλDm(ky)

]
(1.73)

is computed as a function of ky along the BZ starting at ky = 0 and ending at the BZ
boundary ky = 0.5 (in terms of b2). At ky = 0 the eigenvalues of the D matrix appear
in degenerate pairs due to time-reversal symmetry, which results in pairs of Wannier
centers sitting at ky = 0. However, when ky is varied between the endpoints of the interval
the Wannier centers may split and recombine at ky = 0.5. The Z2 topological index is
related to the number of intersections of an arbitrary reference line θR = const. with
the lines θDm(ky). An odd number of intersections immediately identifies a topological
insulator, while an even number of intersections defines a trivial one. An odd number
of intersections can only occur, if the WCCs switch partners when their phase is traced
between ky = 0 and ky = 0.5, which is related to a non-trivial topology of the insulating
system. An example for the two-band first-nearest neighbor tight-binding Hamiltonian
with one transfer integral representing the symmetry of hexagonal systems is depicted in
Fig. 1.2. The reference line θR/(2π) = −0.3 crosses the line one (zero) times indicating a
topological (trivial) insulator in Fig. 1.2(a) (Fig. 1.2(b)).

The generalization of the method to three dimensions is straightforward and very similar
to systems with inversion symmetry. A good description can be found in Ref. [98]. In 3D
there are eight TRIM points which might be thought of as the vertices of a parallelepiped
in reciprocal space having six faces. At each face the Bloch Hamiltonian H(k) can be
regarded as a fictitious 2D system function of two k variables, whereas the third one is
fixed. The method described above is then applied to each of the six faces separately.
The three weak indices νi=(1,2,3) are associated with the Z2 invariant in the three outer
faces that do not contain the Γ point. The strong index ν0 is the sum (mod 2) of the Z2

invariants of all phases.
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FIG. 5. (Color online) The evolution lines of Wannier centers for
the 1QL and 2QL Bi2Te3 slabs. (a) The 1QL Bi2Te3 slab is in normal
insulator phase. (b) The 2QL Bi2Te3 slab is in topological insulator
phase.

term, λso is the strength of SOC between second neighbors,
with νij = (2/

√
3)[d̂1 × d̂2]z = ±1 depending on the relative

orientation of the first-neighbor bond vectors d̂1 and d̂2
encountered by an electron hopping from site j to site i, and sz
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FIG. 6. (Color online) The evolution lines of Wannier centers
for 2D bilayer Bi (a) and Sb (b) systems, indicating the bilayer Bi is
topologically nontrivial but Sb is topologically trivial.
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FIG. 7. (Color online) The evolution lines of Wannier centers for
graphene in the (a) QSH phase λυ = 0.1t and (b) the normal insulating
phase λυ = 0.4t . In both cases λso = 0.06t and λR = 0.05t .

is the z Pauli spin matrix. The third term is a nearest-neighbor
Rashba term, which breaks the z → −z mirror symmetry, and
can be generated by a perpendicular electric field or interaction
with the substrate. The fourth term is a staggered sublattice
potential, where ξi equals +1 and −1 on the A and B sites,
respectively. In what follows we use t as the energy scale
and fix λso = 0.06t and λR = 0.05t . Varying the parameter
λv allows us to switch from normal insulator to QSH phase.
In the present study, we choose λv = 0.1t for the QSH phase
and λv = 0.4t for the normal insulating phase. The calculated
Wannier centers evolution patterns are shown in Fig. 7. It can
be easily found that the evolution lines cut the reference line
only once in Fig. 7(a) but not in Fig. 7(b), indicating the former
is topologically nontrivial and the latter is trivial.

In conclusion, we have proposed an equivalent expression
for the Z2 topological invariance using the U(2N ) non-Abelian
Berry connection. Based on this expression we calculated the
evolution of the Wannier function center for several topological
and normal insulating systems with or without inversion
symmetry. We showed that for the nontrivial topological
insulators, the Wannier function centers have partner switching
patterns, topologically different from the normal (trivial)
insulating systems. Additionally, we gave a proof that our
method is equivalent to the Z2 number proposed by Fu and
Kane.

Note added in proof. Recently, we noticed the paper
by Soluyanov and Vanderbilt,52 where the construction of
Wannier functions for Z2 topological insulators are discussed
from a different point of view. In this paper we addressed that
the real construction of Wannier functions is not necessary,
while only the “Wannier representation” and corresponding
Berry connection evaluated along the “Wilson loop” are

075119-7

Figure 1.2: Evolution of Wannier
charge centers for hexagonal systems in
(a) the QSH phase and (b) the normal in-
sulating phase. (Image taken from [97]).

1.8 Coincidence lattices

The investigation of surfaces of solids is a very interesting task from the theoretical and
experimental point of view since it can strongly alter properties of the bulk [102]. The
crystal surface also represents the interface between the environment as well as measuring
devices, typically positioned outside the crystal, and the interior of the crystal. In this work
of particular interest are group-IV honeycomb crystals grown on top of metals [103–105]
and insulators [106,107]. A lattice that describes the primitive cell of the substrate and
the overlayer is called the coincidence lattice which provides the corresponding lattice
vectors of the 2D surface cell. The surface of a crystal corresponds to a well-defined crystal
plane in the bulk, where the plane is characterized by a normal vector n. Energetically
favorable cleavage faces are typically known from experiment and often correspond to
highly symmetric surfaces. In this work silicene on the (111) surface of Ag is studied. Ag
bulk crystallizes in an cubic face-centered lattice. The normal vector n = [111] corresponds
to the direction along the space diagonal in a cube. Consequently, a proper primitive cell
for the description of the surface should consist of two lattice vectors perpendicular to n
and a third vector parallel to n. It is common to choose the z-axis of the surface lattice
parallel to the direction of n.

If the surface of a bulk crystal is known and another crystal is, e.g., grown epitaxially
on top, the question arises, what are possible coincidence lattices. In order to find the
coincidence lattice between honeycomb crystals and an arbitrary substrate a two-step
procedure is applied. First, the proper surface cell of the bulk crystal is constructed.
Second, the lattice vectors of this cell and the overlayer are matched to each other in terms
of shape and size. Both steps are explained in more detail below.
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Chapter 1 Many-body theory

1.8.1 Smallest irreducible slab cell

Any 3D bulk crystal is described by the three primitive basis vectors a1, a2, and a3 of its
Bravais lattice. The three vectors span the smallest cell (primitive cell) of the periodic
crystal. However, an necessarily non-primitive cell S1 may be generated by any possible
linear combinations of the three lattice vectors a1, a2, and a3. The smallest irreducible
slab cell S2 is defined as the smallest primitive cell consisting of lattice vectors a′1, a′2,
and a′3 with the requirement that it is another representation of the lattice S1 and it
additionally holds a′3 ‖ n and a′1,a′2 ⊥ n.

If there exists at least one crystal cell S2 with the aforementioned properties, there also
exist cells S3, S4, . . . with lattice vectors of double, triple, ... the length in each direction
leading to infinitely many possible lattices. Furthermore, S2 may be described equally well
by different Bravais lattices with the same volume, though. We are thus interested in the
lattice S2 with the smallest possible volume and the highest symmetry with regard to its
describing 2D Bravais lattice. If a 2D Bravais lattice is found, the length of vector a3 to
describe the full bulk in the new cell is to be determined.

Numerical implementation

An algorithm has been implemented that can handle arbitrary lattices while it requires
only a minimal input. Here we give an overview over the basic ideas. In order to satisfy the
restrictions given above we need to construct all possible lattice vectors a′ = λa1+µa2+νa3

(λ, µ, ν ∈ Z) and collect only those perpendicular to n. For numerical reasons we are forced
to introduce a cutoff parameter to restrict the number of possible triples {λ, µ, ν} to a finite
number. Thus, the cutoff parameter is defined as the maximum length Lmax of the vector a′.
That means, we restrict ourselves to cells with the longest edge smaller than Lmax, which is
motivated physically. The algorithm extends the search space automatically until all proper
vectors a′ ⊥ n are constructed. At the end, all pairs of linearly independent vectors (a′1,a

′
2)

are gathered and classified into 2D Bravais lattices with their corresponding dimensions.
The smallest 2D lattice with the highest symmetry is taken for further investigation.

The last step concerns the length of the vector a′3 which of course must end at a lattice
point that belongs to S1. The problem reduces to the question, if there exists a solution
to the equation

t1a1 + t2a2 + t3a3 = γ
n

|n| (1.74)

within the space ti ∈ N and γ ∈ R? Since S1 is periodic in all directions the solution
cannot be unique. There may exist a smallest γ0 and corresponding ti, which lead to
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1.8 Coincidence lattices

multiple solutions of the equation. Numerically the equation is solved by starting with
a small positive value γ and increasing it in small steps, where small means typically a
fraction of the dimension of atomic distances (e.g. 0.1 Å). For each γ Eq. (1.74) is solved
for all ti and rounded to the next nearest integer. Then the left-hand side of (1.74) is
evaluated again using the rounded values. If the vector is parallel to n it is considered
as the missing third lattice vector a′3. After the crystal lattice S2 is fully determined the
atomic basis is transformed from S1 to S2.

1.8.2 Coincidence lattice

Finally, the coincidence lattice between the smallest irreducible slab cell and the overlayer
can be constructed along the common axis n. However, most often it is not possible to
find a perfectly matching common lattice. Instead, we allow strain or stress to occur solely
in the overlayer in order to fulfill the matching conditions approximately as it can be
found in experiments. There may exist no or infinitely many coincidence lattices, hence,
we introduce another cutoff parameter Rmax which restricts the maximum size of the
primitive cell (it may also act as a stopping criterion for the algorithm, if no coincidence
lattice is found). All linear combinations of in-plane lattice vectors of each crystal are
constructed and grouped in tuples. Tuples describing the same Bravais lattice are removed,
the remaining 2D lattices of the substrate are compared with those of the overlayer. If
they are identical they are considered as coincidence lattices.
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Chapter 2

Group-IV honeycomb crystals

2.1 Crystal structure

Graphene, silicene, germanene and stanene can be described as a two-dimensional hexagonal
Bravais lattice with two basis atoms. Within the supercell approach described in Sec. 1.5
the 2D crystal is placed in a 3D simulation box with periodic boundary conditions in all
three spatial dimensions. The lattice vectors are defined as

a1 =
a

2
(3,−

√
3, 0), a2 =

a

2
(3,
√

3, 0), and a3 = a(0, 0, L/a) . (2.1)

The factor a describes the in-plane nearest-neighbor distance between two adjacent basis
atoms, which is a = 1.42 Å for graphene [108]. The lattice constant a0 of the hexagonal
crystal is related to a by means of a0 =

√
3a. L is the distance between adjacent sheets

in the artificial supercell direction ez. The distance L must be chosen such that any
interaction between neighboring sheets is negligible. Hence, we increased the distance L
until the electrostatic potential as a function of the z coordinate exhibits a flat plateau in
the vacuum region between the sheets. Typically L = 20 Å is a very safe choice for all
2D crystals under investigation. In general the positions of the basis atoms are fixed up
to an arbitrary translation within the unit cell. However, a symmetric arrangement is
advantageous with respect to theoretical calculations and visualization, thus, the basis
atoms are kept fixed at the positions

c1 =
1

3
(a1 + a2) +

1

2
(a3 + ∆ · ez) and c2 =

2

3
(a1 + a2) +

1

2
(a3 −∆ · ez) . (2.2)

as depicted in Fig. 2.1(a). The buckling height ∆ accounts for the out-of-plane shift of the
basis atoms.
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a1
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(a) (b)
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Γ
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Figure 2.1: (a) Top and side view of the crystal structure of group-IV honeycomb crystals.
The atomic basis of the crystal is depicted as blue an yellow spheres. The unit cell is shaded
red. (b) Reciprocal lattice of the 2D hexagonal Bravais lattice. The first Brillouin zone
(hexagon) and the irreducible part of the Brillouin zone for the space group p3m1 [102,109]
are shaded in red.

The reciprocal lattice vectors

b1 =
2π

a0

(
1√
3
,−1, 0

)
, b2 =

2π

a0

(
1√
3
, 1, 0

)
, and b3 =

2π

L
(0, 0, 1) (2.3)

describe a hexagonal lattice as well (cf. Fig. 2.1(b)). Thus, the first Brillouin zone (BZ)
is a hexagon which is, however, rotated through 30◦ against the real-space hexagons of
the honeycomb lattice. Since the sheet distance L is large, no dispersion is expected in
b3 direction. Hence, in the numerical calculations a N ×N × 1 Monkhorst-Pack k-point
mesh is used and, consequently samples the 3D BZ with N ×N points in the kx-ky-plane,
whereas kz = 0. Effectively, only a 2D BZ is considered. Of superior importance are
the six corners of the 2D BZ, representing Dirac points. Although these six point are
equivalent from the energetic point of view it can be shown that there is indeed a difference
in the determining Hamiltonian [108]. Thus, the wave functions between neighboring Dirac
points differ although the energy eigenvalues are equal. For this reason, the Dirac points
are classified into K and K ′ located at e.g.

K =
1

3
b1 +

2

3
b2 and K ′ =

2

3
b1 +

1

3
b2 (2.4)

alternating at the corner points of the hexagonal Brillouin zone. The mid-edge point M is
located at

M =
1

2
(b1 + b2) . (2.5)
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2.2 Electronic structure from tight-binding model

The group-IV honeycomb crystals share similar electronic properties of their atomic
building blocks and thus, also similar electronic properties. In particular the valence
electrons mainly fill one s and three p orbitals with the possibility of building hybrid
orbitals when composed to crystals. It will be shown from first principles, that the
atomic arrangements in silicene, germanene and stanene possess a non-vanishing buckling
height Δ, whereas graphene remains atomically flat. In the nearest-neighbor tight-binding
description for buckled structures the π (built from atomic pz orbitals) and σ orbitals
(build from atomic s and px,y orbitals) are coupled. Here we neglect the coupling, which
in turn decouples π orbitals and σ orbitals and one may treat both problems separately.
The decoupling is naturally present in graphene due to its vanishing buckling. For silicene,
germanene and stanene the description of the energy bands is still valid at least close to
the Dirac points K and K ′. Energetically, the σ orbitals correspond to strongly bound
electrons with deep-lying energy bands, whereas the π orbitals correspond to electrons
with energies close to the Fermi level. Therefore, the tight-binding model can be restricted
to one pz orbital per lattice site [1, 108,110–115].

As stated, the buckling of the atoms is neglected and a truly 2D system is obtained.
Each atom has three nearest and six next-nearest neighbors (cf. Fig. 2.1). Following the
procedure presented in the book of Saito et al. [110] the eigenvalues of the Hamiltonian as
a function of k become [111,115]

ε(k) = εp ± t
√
3 + f(k) + t′f(k)

f(k) = 2 cos
(√

3kya
)
+ 4 cos

(
3

2
kxa

)
cos

(√
3

2
kya

)
(2.6)

where t (t′) is the nearest-neighbor (next-nearest neighbor) hopping energy and εp is the
on-site energy. The full dispersion of the π bands is depicted in Fig. 2.2. Since εp only

ky

kx

ε(k) Figure 2.2: Example of the π-band struc-
ture of the group-IV honeycomb crystals set-
ting εp = 0, t = −2.7 eV, t′ = −0.2t. The
region around one K point is enlarged and
shows conical conduction and valence bands
corresponding to massless Dirac fermions.
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Chapter 2 Group-IV honeycomb crystals

describes an energy shift it is usually neglected. The valence and conduction bands are
touching each other exactly at the Dirac points in the 2D hexagonal BZ. The parameter
t′ originating from the next-nearest interaction terms breaks the electron-hole symmetry.
Its exact value depends strongly on the system, but it is usually much smaller than the
nearest-neighbor parameter t.

In the vicinity of a Dirac point K the band dispersion can be expanded in a series, leading
to a linear dispersion

ε(q) = ±~vF |q|, q = k −K, (2.7)

which resembles the dispersion of massless (Dirac) particles, either electrons or holes,
traveling with the Fermi velocity vF = −3/2ta/~. As will be shown later, vF is in general
two orders of magnitude smaller than the speed of light.

The tight-binding model describes very well the π bands of the group-IV honeycomb
crystals. Since the buckling and also spin-orbit coupling has been neglected it is best
suited for the description of graphene. Taking into account also the buckling results in a
complicated coupling between the σ and π bands [112,116]. The increasing mass of the
atoms along the group-IV increases the importance of spin-orbit coupling, which has been
taken into account in the tight-binding model as well [43, 116, 117]. However, SOC is only
considered approximately by either neglecting again the buckling or by constructing an
approximate Hamiltonian around the Dirac points. These drawbacks can be overcome by
first-principles methods presented in the next section.

2.3 Structural properties from first principles

In this section we employ density functional theory as implemented in the VASP package.
Exchange and correlation (XC) are described within the GGA-PBE approximation [56].
32× 32× 1 Γ-centered Monkhorst-Pack k points and numerical parameters as presented
in Tab 1.1 are used for the computation of the ground state. It has been confirmed, that
the structural properties do not further improve if the plane-wave energy cutoff or the
number of k points is increased, or the threshold for the Hellmann-Feynman forces is
decreased. The approach is described in detail for germanene, however, the results are
also mentioned for the remaining crystals. The impact of SOC is most important for the
electronic properties, but can be safely neglected for the structural optimization.

The structure of the group-IV honeycomb crystals are determined by two parameters,
the in-plane nearest-neighbor distance a (or the lattice constant a0) and the buckling
height ∆. The optimized geometries are obtained by minimizing the total energy as a
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2.3 Structural properties from first principles

function of the lateral lattice parameter a. At each value of a, the atomic positions,
for symmetry reasons, essentially the sheet buckling Δ, were fully relaxed to reduce the
Hellmann-Feynman forces below 0.001 eV Å−1. The energy of the crystal as a function of
a is shown in Fig. 2.3 The energy as a function of the nearest-neighbor distance exhibits
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Figure 2.3: Energy as a function of the in-plane nearest-neighbor distance of 2D Ge in
GGA-PBE. The inset shows the geometries of the high-buckled and low-buckled phase of
germanene in top and side view.

two distinct minima at a = 1.726 Å and a = 2.344 Å. The corresponding buckling heights
are Δ = 2.24 Å (high-buckled (HB) phase) and Δ = 0.689 Å (low-buckled (LB) phase),
respectively. The HB phase is energetically favored, however, the important question
is whether these geometries correspond to real local minima on the Born-Oppenheimer
surface. Using the Parlinski-Li-Kawazoe method [118] as implemented in the phonopy

code [119] based on the frozen-phonon approach as implemented in VASP the phonon
dispersion can be investigated. It turns out, that the energetically favorable HB phase has
imaginary frequencies and must be regarded unstable. Indeed, structural optimization of
the HB structure on the (2× 2) supercell tends to clustering (favored sp3 bonding) of the
system. Therefore, the HB structure does not correspond to a real local minimum, since it
occurs only under the constraint of the (1× 1) hexagonal unit cell with two atoms in the
basis.

The LB structure of germanene also exhibits imaginary frequencies, but only at the Γ

point of the BZ. However, these frequencies seemingly belong to particularly soft phonon
modes and thus, only appear due to numerical reasons. The structural relaxation of a
7 × 7 supercell also does not lead to any distortions of the LB structure of germanene.
Consequently, the LB structure is considered at least metastable, since it belongs to a
real local minimum on the total-energy surface. The computed phonon dispersion and
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Chapter 2 Group-IV honeycomb crystals

conclusions agree with the literature [23].

In contrast to germanene, the same approach for graphene yields an atomically flat
structure (∆ = 0) with only one distinct energy minimum. Silicene and stanene also
possess two distinct minima. Stability analysis by means of phonons yields unstable HB
structures as in the case of germanene. For silicene, the LB structure is stable since no
imaginary frequencies occur in the phonon dispersion. The stability of stanene is discussed
controversially, some references suggest a stable LB phase [120], whereas others suggest a
stable HB phase [121]. In this work only the LB phase is considered to be able to discuss
chemical trends along the group-IV column of the periodic table of the elements.

The structural properties of all group-IV honeycomb crystals are summarized in Table 2.1.
They are in agreement with previous findings [23, 122–126]. There are clear chemical

C Si Ge Sn

a0 (Å) 2.468 3.868 4.060 4.673
a (Å) 1.425 2.233 2.344 2.698
∆ (Å) 0.00 0.45 0.69 0.85

vF (106 ms−1) 1.01 (0.83) 0.65 (0.53) 0.62 (0.52) 0.55 (0.48)
m∗ (m0) 0.000 (0.000) 0.001 (0.001) 0.007 (0.008) 0.029 (0.028)
Eg (meV) 0.0 (0.0) 1.9 (1.5) 33 (24) 101 (73)

Table 2.1: Structural and electronic parameters. Electronic quantities are derived from
hybrid HSE06 calculations. The GGA results are given in parentheses. Eg and m∗ are
calculated with inclusion of SOC (without SOC, Eg = m∗ = 0).

trends. The characteristic lateral geometry parameters a and a0 and the buckling height
∆ increase along the row C, Si, Ge, Sn. The increasing buckling amplitude indicates
deviation from the pure sp2 bonding and the formation of mixed sp2 − sp3 bonding. The
sp3 character also increases along the row C, Si, Ge, Sn. Indeed, the buckling amplitude
∆ approaches more and more the value ∆sp3 = a/(2

√
6) for complete sp3 bonding.

2.4 Electronic properties from first principles

2.4.1 GGA-PBE approach

The Kohn-Sham equations (1.17) for graphene, silicene, germanene, and stanene are solved.
The corresponding band structures along high-symmetry lines of the 2D BZ are shown
in Fig. 2.4. Additionally, the density of states (DOS) obtained within the tetrahedron
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method [127] on a refined regular k-point mesh with size 128× 128× 2 (two k points in z

direction for numerical reasons) is shown besides the band structures.
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Figure 2.4: Band structure and density of states for (a) graphene, (b) silicene, (c) germanene
and (d) stanene calculated within a DFT-GGA approach. The Fermi level is located at zero
energy.

Within the DFT-GGA framework graphene, silicene, germanene and stanene represent a
multi-valley zero-gap semiconducting character. Conical linear bands appear at the K and
K ′ point independent of the group-IV crystal, which can also be seen from the linear DOS
around the Fermi level (see e.g. [48]). The term zero-gap semiconductor is justified since, in
contrast to metals, the DOS vanishes at the Fermi level. The approximation of linear bands
in graphene is valid up to several eV away from the Fermi level, as displayed in Fig. 2.4(a).
Although silicene, germanene and stanene are not perfectly sp2 bonded systems, still
conical linear bands appear at the K point which is due to the decoupling of the σ and
π bands according to symmetry considerations [128]. In the DFT calculations also the
atomic s and px,y electrons are taken into account. These electrons mainly contribute
to energetically low-lying bands, e.g., in graphene about 3 eV away from the Fermi level
visible at the Γ point. For silicene, germanene and stanene these σ-derived bands shift
more and more towards the Fermi level, however, the bandgap at Γ remains finite. Thus,
the apex of the valence band Dirac cone around K and K ′ points still fixes the Fermi
energy for undoped group-IV crystals. As an example, the orbitals contributing to the
four (spin-degenerate) occupied bands in germanene are shown in Fig. 2.5.
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Figure 2.5: The orbital character of the bands in germanene: s (red), px,y (green) and pz
(blue). Wave function squared (right) of the orbitals contributing to the four occupied bands
at the k points indicated by the arrows.

The slope of the (isotropic) Dirac cone determines the Fermi velocity vF = �
−1∂ε(k)/∂k|k≈K

of the charge carriers. The calculated values for all 2D group-IV crystals are given in Ta-
ble 2.1. The Fermi velocity for freestanding graphene has been determined experimentally.
Its value is about 1.1× 106 m s−1 [8]. The discrepancy between the experimental value
and the DFT-GGA calculation is about 25%. The result is not surprising, since DFT is
a ground-state theory and typically underestimates the valence-conduction-band energy
distances.

2.4.2 Approximate quasiparticle corrections

Here the impact of quasiparticle corrections on the electronic band structure based on
the HSE06 functional [37, 39] are studied. As stated in Sec. 1.3.6, the HSE functional
simulates important features of the true quasiparticle band structure. The modification of
structural properties of the crystals due to the HSE06 functional is neglected, although we
may expect a small change of the lattice constant and buckling. However, usually small
structural changes only marginally influence the electronic properties. Therefore, the lattice
constants and buckling heights determined by DFT-GGA are kept fixed. The electronic
band structure is obtained as explained in detail in Sec. 1.5.1. The band structures of all
2D honeycomb crystals are shown in Fig. 2.6.
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Figure 2.6: Comparison of the band structures along high symmetry lines in the 2D BZ
of (a) graphene, (b) silicene, (c) germanene and (d) stanene in the DFT-GGA approach
(black curves) and with quasiparticle corrections (red curves). The Fermi level is fixed at
zero energy. SOC is not taken into account.

The approximate quasiparticle corrections by means of the HSE06 functional are zero at
the Fermi level, thus, no bandgap is opened at the Dirac points. However, the valence
band energies away from the Fermi level are shifted downwards, while the conduction
band energies are shifted upwards compared to DFT-GGA band positions. The trend
is clearly expected when starting a quasiparticle computation from a local or semilocal
approach to XC. Consequently, the energy gaps outside K or K ′ are significantly opened
while the wavevector dispersion, and thus the Fermi velocity, near K or K ′ is increased
with respect to standard semilocal DFT calculations. The Fermi velocities are given in
Table 2.1. As before the computed value of 1.01× 106 m s−1 for graphene is compared to
the experimental value of 1.1× 106 m s−1 [8]. It clearly shows an improvement over the
GGA result when quasiparticle effects are taken into account. The quasiparticle (QP)
value 1.15× 106 m s−1 using the GW approximation is slightly larger [73]. Larger values
measured by means of angle-resolved photoemission spectroscopy (ARPES) for silicene [25]
than those in Table 2.1 are very likely a consequence of the substrate influence. We
conclude that the HSE functional simulates important features of the full QP theory.
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2.4.3 Influence of spin-orbit interaction

We investigate the influence of SOC on the quasiparticle band structure, in particular
close to the Dirac points. This requires much numerical effort. The convergence of the
fundamental bandgap induced by SOC as a function of the number of k points is very slow
when using hybrid functionals. The regular 2D k-point meshes have to be carefully chosen
since the convergence is strongly enhanced if the K and K ′ points are excluded from the
regular k-point mesh [129] as displayed in Fig. 2.7. k point meshes that can be represented
as 3n× 3n× 1 (n ∈ N) (red line) include the Dirac points and converge remarkably slower
than k meshes that exclude them (blue and green lines). Anyway, they converge against

Figure 2.7: Electronic bandgap of
germanene using the HSE06 func-
tional at the Dirac point as a func-
tion of the number of k points
in each reciprocal lattice direction.
Colored lines are meant as guides
to the eye. Details see text.
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the same value if enough k points are used in the computation. Consequently, we apply a
32× 32× 1 Γ-centered Monkhorst-Pack k-point mesh [86] for all group-IV materials to
compute their electronic properties. The HSE06 band structures of the four 2D honeycomb
crystals along high-symmetry lines in the hexagonal BZ are plotted in Fig. 2.8. For silicene,
germanene and stanene the inset also shows the linear dispersion around the K and K ′

point obtained without SOC in comparison to the dispersion with SOC. It can be seen that
SOC induces a fundamental gap Egap and, hence, massive Dirac particles with effective
masses m∗ close to the valence and conduction band edges near K (or K ′) points. We do
not find a k-induced splitting of the twofold degeneracy due to SOC, i.e., away from Γ. At
least along high-symmetry lines we do not observe Rashba [130] or Dresselhaus [131, 132]
components in the band structure, in agreement with other studies [133, 134]. At the
Γ point a similar splitting of the fourfold degenerate uppermost valence band into two
twofold degenerate valence bands occurs as in the germanium bulk. For graphene, the
smallness of the SOC-induced Eg makes its precise HSE06 computation difficult. Since
the size of the estimated bandgap Eg is about 0.02 meV, we only discuss the effect of SOC
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Figure 2.8: Approximate quasiparticle band structures of (a) graphene, (b) silicene, (c)
germanene, and (d) stanene along high-symmetry lines of the 2D hexagonal BZ using the
HSE06 functional including spin-orbit interaction. For silicene, germanene and stanene, the
inset shows a magnification of the electronic bandgap around the Dirac point together with
the band structure obtained without SOC (solid black lines).

for the other group-IV materials.

The electrons (+) and holes (−) in silicene, germanene and stanene in the vicinity of
K or K ′ can be approximated by a dispersion relation of massive relativistic Dirac
particles [116]

ε(k) = ±
√(

Eg

2

)2

+ (�vFΔk)2 (2.8)

with Δk as the deviation of the 2D wavevector from its value at a K or K ′ point. The
SOC-induced gaps Eg are also listed in Table 2.1. They follow the same clear chemical
trend as the spin-orbit splittings ΔSO in the 3D diamond structures of the group-IV
materials mentioned above. The Eg values are, however, by one order of magnitude smaller.
Thereby, the spin-orbit effects using non-local HSE06 XC potentials are significantly larger
than those obtained within DFT-GGA as a consequence of the more localized quasiparticle
states. Our findings in Table 2.1 are in agreement with Eg values in other recent DFT
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computations with deviations less than 1 meV. Values Eg = 1.55 (Si), 23.0 (Ge), and
73.5 (Sn) meV have been given in the literature [30, 116,135]. The finite gap gives rise to
massive Dirac (electrons or holes) particles near a K or K ′ point with the effective mass

m∗ =
Eg

2v2
F

. (2.9)

Its values in Table 2.1 also show a clear increase with the atomic number of the group-IV
element.

2.5 Optical conductivity and absorbance

Here we study if the direct relation of the absorbance to the fine-structure constant remains
conserved in the presence of real-structure effects such as the actual Fermi velocity of the
Dirac fermions and anisotropic deviations from the linear wave-vector dispersion around
the K and K ′ Dirac points. The influence of the incomplete sp2 hybridization and hence
of the buckling of the honeycomb lattice is investigated in the case of silicene, germanene
and stanene. The effect of the gauge of the electromagnetic field is discussed for vanishing
photon wave vectors. All issues are investigated using ab-initio calculations of the dielectric
function and the optical conductivity, respectively. For better insight into some aspects of
the numerically results, tight-binding calculations are supplied as well.

Taking into account classical electrodynamics it is shown, how reflection, transmission and
absorption of multilayer thin films are related to the optical conductivity of 2D crystals.

2.5.1 Numerical methods

The starting point for the calculation of the dielectric function or optical conductivity
according to Eqs. (1.34) and (1.35) are the lattice parameters in Table 2.1 and basically
exactly the same numerical set up in terms of the energetic cutoff, vacuum and k-point
mesh for the electronic ground state.

The frequency-dependent conductivity requires the calculation of optical transition matrix
elementsMcv(k, q) according to Eq. (1.36) between occupied valence and empty conduction
bands in the irreducible part of the Brillouin zone. Therefore, also a large number of
conduction bands in addition to the four valence bands are needed. Without SOC, 16 bands
in total are needed for converged optical spectra below photon energies of ~ω = 10 eV,
whereas with SOC twice the number of bands are needed. In general, a 400 × 400 × 1
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(128× 128× 1) Γ-centered k-point grid is used for the optical calculations in GGA-PBE
(HSE06). For the calculation of the screened Fock exchange interaction in the HSE06
XC the grid can be reduced to 32 × 32 × 1 k points. Two additional refined grids are
applied, each including about 13700 (869) k points within a circle of radius 0.05× 2π/a

and 0.005× 2π/a in the IBZ, respectively, around one single K point in GGA (HSE06).
The numerical parameters are summarized in Table 2.2.

bands coarse k mesh refined k mesh

GGA-PBE 16 (32) 400× 400× 1 13700
HSE06 16 (32) 128× 128× 1 869

Table 2.2: Numerical parameters used in the calculation of the frequency-dependent optical
conductivity σ(ω) within the PBE and HSE06 functional, respectively. Details can be found
in the text.

Within the semilocal GGA the ground state is determined by the electron density. Thus,
the ground-state density is calculated self-consistently using 32× 32× 1 k points, whereas
the optical properties are calculated non-self-consistently at arbitrary k points. In contrast,
the approach with the HSE06 functional is more complicated. Every HSE calculation is
necessarily self-consistent, since due to the non-locality the electronic ground state is a
functional of the wave functions. Therefore, the same zero-weight k-points trick is applied
as already discussed for the calculation of the band structure (Sec. 1.5.1). Here, for exact
calculations of the optical conductivity, also the k-point weights in the irreducible BZ have
to be restored and taken into account after the calculation is done.

Another issue is related to the Fermi level if the HSE06 functional is used. It has been
pointed out earlier, that the Dirac point should be excluded from the k point mesh for
better convergence of the Fock exchange energy and consequently, also the SOC-induced
bandgap. However, the inclusion of the Dirac point is no source of error only if the k-point
weight is zero, since such points do not contribute to the calculation of the Fock exchange
energy. Of course, in a calculation where some k points have zero weights while others
have nonzero weights, the Fermi level may lie below the apex of the Dirac cone. Therefore,
the Fermi level must also be adjusted accordingly. We have modified the VASP code in
such a way, that all transition matrix elements are written to a file, which allows the
change of occupation numbers afterwards and a calculation of the optical conductivity
directly by means of Eqs. (1.34) and (1.35).

The optical conductivity σ(ω) of the 3D supercell arrangement of the 2D group-IV
honeycomb crystals is calculated in the supercell approximation and given by Eq. (1.34)
and (1.45). The 3D conductivity can be related to the 2D one σ2D(ω) by changing from
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Chapter 2 Group-IV honeycomb crystals

a 3D to a 2D sample. For the superlattice arrangement the relation is mediated by the
superlattice dimension L (distance of adjacent crystal sheets in the supercell)

σ2D(ω) = Lσ(ω). (2.10)

The real part of the 2D optical conductivity is attributed to losses in the atomically thin
sheet. It will be shown in Sec 2.6.2 that the (thickness-independent) optical absorption (or
absorbance) A(ω) of such a sheet for normal incidence is directly related to σ2D(ω) and
well approximated by means of

A(ω) ' Re σ̃2D (2.11)

where the dimensionless normalized quantity σ̃2D(ω) is introduced according to (1.58).
Hence, it now appears that there is an approximate relation between the imaginary part
of the dielectric function of the 3D cell and the absorption, at least in the limit of zero
reflectivity,

A(ω) ' ω

c
L Im ε(ω) . (2.12)

2.5.2 Independent-particle results in DFT-GGA

Using GGA-PBE without SOC the resulting electronic band structure is conical around
the K and K ′ points of the 2D hexagonal BZ as displayed in Fig. 2.6. The eigenvalues
εν(k) of the Kohn-Sham equation (1.17) are used to illustrate the optical interband
transition energies ∆εcv(k) = εc(k)− εv(k) and the joint density of states JDOS(~ω) =∑

c,v,k δ(~ω−∆εcv(k)). Results for the four honeycomb sheet materials graphene, silicene,
germanene and stanene are given in Fig. 2.9. They illustrate how and with which JDOS
the energy conservation is fulfilled in the optical absorption for a given photon energy
~ω. In the range of very low photon energies, whose limit decreases along the row C,
Si, Ge, and Sn, the isotropic Dirac cones are also visible in the joint band structure at
K for small energies. The Dirac cones give rise to a linear increase of JDOS(ω) in the
low-energy region ~ω. For higher interband energies, the critical points k0 and van Hove
singularities ∇[εc(k)− εv(k)]|k=k0 = 0 appear. Their energies are indicated by horizontal
lines. They indeed give rise to spectral features in the JDOS beginning near 4.0 eV
(graphene), 1.6 eV(silicene), 0.9 eV (germanene), and 0.5 eV (stanene). The weak intensity
of the lowest van Hove singularity for germanene at 0.9 eV related to the lowest interband
transition at Γ is due to its small effective interband mass of the σ bands and the M0

character of the singularity. Division of JDOS(ω) by ~ω makes this singularity visible
in the absorbance spectrum of germanene (Fig. 2.10), which is approximately described
by (2.11). In general quasiparticle and excitonic effects are supposed to have an impact on
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Figure 2.9: Interband transition energies along high-symmetry lines in the BZ for (a)
graphene, (b) silicene, (c) germanene, and (d) stanene. The red horizontal lines indicate
energies of van Hove singularities which give peak structures in the absorbance in Fig. 2.10.
The resulting joint density of states JDOS(ω) are displayed in addition [in units eV−1/cell]

the computed optical properties of the sheet crystals. However, quasiparticle and excitonic
effects tend to compensate each other [136], thus, the approximations presented so far are
reasonable in particular for low photon energies. In reality, there is still the open question
if the group-IV honeycomb crystals eventually are excitonic insulators [137], which will
not be addressed here. An influence on the spectra is expected for very small photon
energies.

Low-frequency absorbance

The frequency dependence of the absorbance (2.11) is calculated numerically from Eq. (1.44)
for the optical conductivity using the ab-initio electronic structure, more precisely the
band structure εν(k) and Bloch functions |ν k〉. The obtained interband structures are
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Chapter 2 Group-IV honeycomb crystals

Figure 2.10: Optical absorption spectrum
A(ω) calculated within the approximation of
independent Kohn-Sham particles with the
GGA-PBE XC functional for graphene (black
solid line), silicene (red dashed line), ger-
manene (blue dotted line), and stanene (green
dash-dotted line) vs. photon energy.
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plotted in Fig. 2.9 in a small range of photon energies for the four studied 2D crystals.
The longitudinal representation of the optical transition matrix elements (1.36) has been
used. First, we investigate the resulting infrared absorbance as displayed in Fig. 2.10.
Indeed, for graphene, we observe the result known from measurements [44, 138] and from
the theoretical prediction assuming massless Dirac fermions and the vector-potential
(transverse) gauge [44], that in the limit �ω → 0, the absorbance approaches to A(0) = πα

(=0.022925) with α = e2/�c in excellent agreement with the predicted value and also in
good agreement with the experimental findings for practically undoped graphene [73, 138].
We find that this holds also for silicene and germanene and that the numerical values are
A(0) = 0.02293 (graphene), 0.02290 (silicene), 0.02292 (germanene), and 0.02293 (stanene).
Hence, the absorbance A(0) is independent of the sheet buckling, i.e., of the strong
deviations from the sp2 hybridization in silicene, germanene and stanene. The reason is
that the point-group symmetry of a 2D honeycomb lattice is conserved independent of the
buckling.

The result in Fig. 2.10 has been found within a (normal) Fermi-liquid approximation taking
into account the full band structure εν(k) and all interband transition matrix elements
between occupied and empty Bloch states in the entire 2D hexagonal BZ. The result thus
holds for all group-IV honeycomb crystals for low frequencies. Important ingredients are of
course the linear k dispersion of the interband energies Δεcv(k) (see Fig. 2.9) for extremely
small photon energies and precise values of the optical matrix elements between π and π∗

bands at the corner points of the BZ, k = K or K ′, independent of the 2D material.

Matrix elements

The matrix elements for the lowest interband transitions between the highest valence band
v and the lowest conduction band c are plotted in Fig. 2.11(a) along three high-symmetry
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lines including the BZ boundary KM (or K ′M). For comparison, the corresponding π
and π∗ bands, that are involved in the optical transitions, are shown in Fig. 2.11(b). Of
course, away from the BZ boundary near K or K ′ the first σ and σ∗ bands along the ΓM

line and in its vicinity appear for silicene, germanene and stanene close to the π and π∗

bands. In Fig. 2.11, the band energies and the momentum matrix elements are normalized
to their characteristic values ~vFπ/a and m2v2

F , respectively, in the Dirac-Weyl theory,
i.e., near K (or (K ′)), in order to demonstrate that in the studied energy and wave-vector
regions they are rather independent of the material.

Most important for the result A(0) = πα, obtained within the independent-particle
approximation and the ab-initio electronic structure, are the finite interband transition
matrix elements around K (or K ′) in Fig. 2.11(a). For their explicit computation, the
longitudinal representation (1.36) has been used. The results presented in Fig. 2.11(a) are,
however, rewritten as the momentum matrix elements according to the relation between
Eqs. (1.36) and (1.40). They indicate that for low photon energies the optical properties,
which according to the interband structure and the joint density of states are due to
π → π∗ transitions, are dominated by contributions from k points near the BZ boundary
along the MK (or MK ′) lines. The matrix elements possess a maximum at an M point
where, however, the underlying atomic symmetry of the wave functions is modified with
respect to that at a K or K ′ point. The effects of the group-IV material and the sheet
buckling are small. More precisely, at K or K ′ points the momentum matrix-element
squares are the same in units of m2v2

F . Indeed, the numerical treatments yield values 0.995
(graphene), 0.995 (silicene), 1.004 (germanene) and 0.990(stanene) very close to the value
1 (see below) as expected. The numbers also illustrate the quality of the PAW functions
used for the calculation of optical properties [139]. In general, the normalized momentum
matrix element appearing in Fig. 2.11(a) only exhibits a weak wave-vector dispersion.
At M , a minor reduction occurs along the row C→Si→Ge→Sn, whereas along KΓ and
MΓ an opposite tendency is observed. The chemical trends are in rough agreement with
the energy differences of the π and π∗ bands in Fig. 2.11(b). Along KM , the interband
energies are increased, while they are slightly reduced from K toward Γ.

Analytical approach

The result A(0) = πα can be also analytically derived, using the tight-binding method
[140, 141], but restricting only to the pz-orbitals and their nearest-neighbor interaction.
Inserting Eq. (1.35) into Eq. (2.11), for normal incidence, and, thus, in-plane polarization
of the light, the optical absorbance of a two-dimensional crystal for ω > 0 is described by
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Figure 2.11: (a) Transition matrix elements of the pure π → π∗ transitions along high-
symmetry lines in the BZ for graphene (black solid line), silicene (red dashed line), germanene
(blue dotted line), and stanene (green dot dashed line). The longitudinal representation of the
matrix elements (1.36) has been used in the numerical calculations. (b) For illustration, the
π and π∗ bands that are involved in the optical transitions are also shown. The transitions
are indicated by vertical arrows.

50



2.5 Optical conductivity and absorbance

(spin-degeneracy not yet taken into account)

A(ω) =
4π2e2ω

cA

∑

c,v

∑

k

|Mcv(k, q)|2δ(εc(k)− εv(k)− ~ω), (2.13)

where the area A = V/L of the primitive cell of the 2D crystal has been introduced. All
interband transitions between Bloch states |v k〉 with energy εv(k) and |ck〉 with energy
εc(k) are taken into account. Within the transversal gauge, the transition matrix elements
Mcv(k) (1.40) are directly related to the momentum matrix elements 〈ck|px|v k〉 and
〈ck|py|v k〉 of the in-plane momentum operator.

In the limit of vanishing frequencies ω → 0, only the lowest π∗-like conduction band
c = + and the highest valence band v = − near K and K ′ points contribute to the
interband absorption (cf. with Fig. 2.9). For symmetry reasons, honeycomb crystals
are optically isotropic for in-plane polarization, which is accounted for by choosing e.g.
q = q(ex + ey)/

√
2 in the matrix element (1.40). Together with the replacement of the

wave-vector sum in Eq. (2.13) by an integral over the BZ one finds

A(ω) = 2
4π2e2ω

cA

~2

m2(~ω)2

A

(2π)2

1

2

∑

j=x,y

∫

BZ
d2k| 〈+;k|pj|−;k〉 |2

×δ(ε+(k)− ε−(k)− ~ω) ,

(2.14)

where the spin degeneracy of the bands is accounted for by an additional factor of 2. The
two bands of the lowest interband pair of the studied 2D zero-gap semiconductor form
Dirac cones at the three K and K ′ points koi (i = 1 − 6) (see Fig. 2.9). Because of the
energy conservation in Eq. (2.13) we restrict the k integral to the six important regions
in the BZ from which the principal contributions to the optical absorption are expected
for low photon energies. Thereby, we have to take in mind that groups of three K (K ′)
points are equivalent and only one third of each environment of a K (K ′) point belongs
to the BZ. So we have in total to study only two nonequivalent koi (one K and one K ′)
points with their full environment. Because of the convergence of all integrals we extend
these environments to infinite.

The bands in Fig. 2.11(b) forming the Dirac cones at each koi are

ε±(koi + ∆k) = ±~vF |∆k| (2.15)

with ∆k = k − koi. The Fermi velocity vF in Table 2.1 characterizes the linear band
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dispersion. Then, Eqs. (2.13) and (2.14) give rise to

A(ω) =
α~
m2ω

2∑

i=1

∑

j=x,y

∫

BZ
d2k| 〈+;koi + ∆k|pj|−;koi + ∆k〉 |2

×δ(2~vF |∆k| − ~ω),

(2.16)

where the Sommerfeld fine-structure constant α = e2/(~c) ' 1/137.036 has been introduced.
The strength of the optical transitions between the Dirac cones of electrons and holes is
determined by the squares of the momentum matrix elements between the valence band
v = − and the conduction band c = + [see Fig. 2.11(a)]. We investigate them near a
K (or K ′) point koi. We assume [and indeed numerically found in Fig. 2.11(a)] that
the transitions, despite their vanishing excitation energy, are dipole-allowed at k = koi.
Their strength is given by D =

∑
j=x,y 〈+;koi + ∆k|pj|−;koi + ∆k〉 |2. At such a Dirac

point koi, in the limit ∆k → 0, the two Bloch functions |+;koi〉 and |−;koi〉 approach
each other (apart from a phase factor). This is shown in Fig. 2.12 where the square
moduli of the eigenstates are depicted for silicene. The squares are identical for the

Figure 2.12: Wave-function squares of sil-
icene for the highest occupied π state (a) and
the lowest unoccupied π∗ state (b) at K. The
atomic positions in the isolated Si sheet indi-
cate the buckled honeycomb geometry [14].

lowest unoccupied state and the highest occupied state at K and K ′ (not shown). Their
symmetry and the maxima to find an electron or hole are identical. This can also be
immediately seen using a tight-binding approximation with pz orbitals localized at A and
B atoms [140]. Consequently, at K or K ′, the strength can be approximately replaced
by D =

∑
j=x,y 〈±;koi|pj|±;koi〉 |2, i.e., formally by intraband transition matrix elements.

For intraband matrix elements, it however holds 〈ν;k|p|ν;k〉 = m
~∇kεν(k). Together with
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Eq. (2.15) then the total strength is found to be

D = (mvF )2 (2.17)

in complete agreement with the ab-initio calculations in Fig. 2.11(a)]. This result determines
the empirical parameter M in the nearest-neighbor tight-binding description of Grüneis et
al. [140] by relating the Fermi velocity to M by means of |M | =

√
8
3
mvF .

With the value (2.17) of the momentum matrix element at a K or K ′ point it follows from
Eq. (2.16) in the vanishing frequency limit,

A(ω) = 2
~v2

F

ω
α

∫
d2(∆k)δ(2~vF |∆k| − ~ω) . (2.18)

Interestingly, similar integrals appear in a time-dependent formulation of the response of
Dirac-Weyl particles [142]. Finally, we obtain

A(ω) = 2
~v2

F

ω
α

2π~ω
(2~vF )2

= πα . (2.19)

In the limit of vanishing optical transition energies, the crystal-material dependence in the
matrix elements and that in the interband energies compensate each other. Indeed, the
infrared absorbance is determined by a universal constant, the Sommerfeld fine-structure
constant for all honeycomb crystals formed by only one group-IV element.

Region of van Hove singularities

In contrast to the behavior in the infrared spectral region in Fig. 2.10, the absorbance
shows completely different frequency variations for the four 2D honeycomb materials
graphene, silicene, germanene, and stanene in the visible and ultraviolet spectral regions,
as shown in Fig. 2.13. The main reason is related to the different band structures [see
Fig. 2.11(b)], especially the interband ones in Fig. 2.9. The van Hove singularities in the
joint density of states in Fig. 2.9 and the energy dependence of the optical matrix elements
determine the lineshape of the absorbance. The peaks and shoulders in A(ω) can be almost
related to minima (M0), maxima (M2) or saddle points (M1) in the 2D interband band
structure and JDOS [48] (as indicated by dotted horizontal lines in Fig. 2.9), respectively.
Because of the strong transition strength at theM point in the 2D BZ [see matrix elements
in Fig. 2.11(a)] the saddle point in the difference εc(k)− εv(k) of the lowest conduction
band (π∗-like) and highest valence band (π-like) gives rise to a pronounced peak at 4 eV
(graphene), 1.6 eV (silicene), 1.7 eV (germanene), or 1.5 eV (stanene). Of course, the true
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Figure 2.13: Spectral absorbance
(in units of πα) for graphene (black
solid line), silicene (red dashed line),
germanene (blue dotted line), and
stanene (green dash dotted line).
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position should be somewhat shifted to higher energies due to quasiparticle and excitonic
effects, e.g., by 0.5 eV as shown for graphene [73]. The other spectral features appearing
for silicene, germanene and stanene can also be explained in terms of the joint band
structure and density of states in Fig. 2.9. The right-handed step [48] at �ω = 0.9 eV
for germanene is in agreement with the 2D nature and the minimum character of the
lowest interband transition at Γ. The absorbance feature near �ω = 3.1 eV is related to
manifold contributions from M0, M1, and M2 at the ΓM and MK lines (see Fig. 2.9),
enforced by high JDOS due to several band crossings. The most pronounced structure
in the spectrum for silicene at �ω = 3.9 eV is mainly related to the M2 maximum of the
interband transition energy at the ΓM line. However, there are also contributions from M0

singularities at Γ, M , and K points as well as M1 on the MK lines. Also the remaining
features in the spectra of Fig. 2.13 can be approximately related to critical points and van
Hove singularities in Fig. 2.9.

Gauge invariance of the absorbance

The absorbance of the four crystals graphene, silicene, germanene, and stanene is displayed
in Fig 2.14 versus a wide frequency range of photon energies. The two different gauges of
the electromagnetic field expressed by the two types transition matrix elements (1.36) and
(1.40) have been applied, where the implementation within the PAW method of Gajdoš
et al. [80] is used. The figure clearly demonstrates that within the PAW approach the
longitudinal and transversal expressions for the frequency-dependent absorbance yield
identical results for the energy positions of the spectral features as peaks and shoulders.
This is a consequence of the identical joint density of states used. However, also the
peak heights are more or less independent of the used description of the transition matrix
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Figure 2.14: The frequency-dependent absorbance for (a) graphene, (b) silicene, (c) ger-
manene, and (d) stanene. Besides the longitudinal gauge (1.36) (black solid line) also the
transversal gauge (1.40) (red dashed line) has been used.

elements, at least for C-, Ge- and Sn-based sheets. This fact numerically confirms the
assumption that the PAW approach generates all-electron wave functions and eigenvalues
for the valence and conduction states [139]. The fictitious all-electron potential is local in
space and hence leads to the strict relation between the matrix elements in Eqs. (1.36)
and (1.40). Only for Si the peak intensities are slightly reduced when the longitudinal
expression is applied for A(ω). The same effect has been observed for the absorption
spectra of bulk silicon [80]. The deviation is mainly a consequence of the numerical
description. The authors [80] argued that the discrepancies between the two gauges may
be compensated by the inclusion of d state projectors and d one-center terms within the
PAW spheres.

2.5.3 Quasiparticle effects and SOC

The absorbance of group-IV honeycomb crystals exhibits the peculiarity that the optical
absorption is related to the fine-structure constant independent of the group-IV atom, the
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sheet buckling, and the orbital hybridization in the limit of vanishing photon frequencies.
On the other hand, one knows that semilocal DFT functionals rather accurately predict
ground-state properties, but fail to predict excited state properties such as the optical
bandgap in non-metals and the correct frequency dependence of the dielectric function.
However, here we deal with zero-gap semiconductors (at least without SOC). Since in
zero-gap semiconductors with Dirac cones only the Fermi velocity in the vicinity of the
Dirac points changes due to quasiparticle effects, it should be possible to determine the
optical conductivity (or absorbance) in the low-frequency regime without applying more
sophisticated approaches to the electron-electron interaction, such as the many-body per-
turbation theory within the GW approximation, or the Bethe-Salpeter equation to account
for excitonic effects. Consequently, we consider quasiparticle effects only approximately by
means of the HSE06 functional, which yields a reasonable description of the quasiparticle
band structure and wave functions, even including SOC.

In contrast, the increasing importance of SOC on the electronic properties for heavy
group-IV atoms and the deformation of the Dirac cones near the K and K ′ points ask for
a more detailed investigation of the impact of the SOC on the optical properties, therefore,
we studied the optical absorbance by means of Eq. (2.11). The optical absorbance resulting
from the independent-quasiparticle computations for all group-IV honeycomb crystals as
a function of the photon energy is shown in Fig. 2.15. Without SOC the low-frequency
absorbance approaches the well-known limit A(ω → 0) = πα as demonstrated earlier
for independent Kohn-Sham electrons. However, using the HSE approach, the optical
absorption peaks are blueshifted due to quasiparticle corrections. In a wide frequency
range the optical absorbance taking into account SOC shows a very good overall agreement
with the absorbance obtained without SOC. However, a more detailed analysis reveals a
remarkable modification of the optical absorbance close to the fundamental absorption
edge. For ~ω < Eg the absorption vanishes, while for ~ω > Eg the absorbance is signifi-
cantly increased for ~ω → Eg. This behavior is particularly pronounced for germanene
(Fig. 2.15(c)) and stanene (Fig. 2.15(d)). Within our numerical accuracy we estimate the
absorbance is enhanced by a factor of two at ~ω = Eg due to SOC.

This peculiar lineshape of the absorbance in the vicinity of the fundamental absorption
edge asks for a detailed explanation. In general, it is a consequence of the relativistic band
dispersions (2.8) and the optical matrix elements (2.16) modified due to the inclusion
of SOC when calculating the imaginary part of the dielectric function. The modified
band dispersion is illustrated in Fig. 2.8. The strength of the corresponding interband
transitions is displayed in Fig. 2.16. As an example we study the optical matrix elements
between the highest occupied and the lowest unoccupied Bloch bands of germanene along
the two high-symmetry directions KΓ and KM . The optical transition matrix elements
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Figure 2.15: Optical absorbance in units of πα as a function of the photon energy for (a)
graphene, (b) silicene, (c) germanene, and (d) stanene without (black solid lines) and with
(red solid lines) spin-orbit coupling. The inset in (c) and (d) depicts the region around their
respective fundamental absorption edges.
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Figure 2.16: A normalized optical matrix element of germanene without (black solid line)
and with (red solid line) spin-orbit interaction between the highest occupied and lowest
unoccupied Bloch bands in the vicinity of K. At K, without SOC, the normalized optical
matrix element approaches the ideal value 1.

57



Chapter 2 Group-IV honeycomb crystals

resulting within the longitudinal approximation for Pauli spinors and germanene near a K
or K ′ point are displayed in Fig. 2.16 for in-plane light polarization.

Without SOC , the squares of the momentum matrix elementsD(k) =
∑

j=x,y | 〈c;k|pj|v;k〉 |2
reduce to m2v2

F at a Dirac point ko ' K,K ′ with a weak, almost linear, ∆k dependence,
whereas the matrix elements D(k) including SOC are significantly enhanced by a factor
of two near ko ' K,K ′ with a pronounced k dependence. Further away from the Dirac
point the matrix elements with and without SOC are practically identical.

With SOC the matrix elements display an additional Lorentzian ∆k dependence near a
Dirac point. This can be represented analytically by

D(ko + ∆k) = m2v2
F

(
1 +

1

1 + b|∆k|2
)
, b =

2~2

Egm∗
=

(
2~vF
Eg

)2

. (2.20)

The quantity b is determined by exhausting the oscillator strength sum rule on the
dielectric function in the low-frequency regime. We have to stress that the agreement
of Eq. (2.20) with the numerical curve in Fig. 2.16 is excellent. The same holds also for
silicene and stanene (not shown). Including the corrected matrix elements (2.20) the
optical absorbance is readily computed by means of Eq. (2.14). Taking into account the
modified band dispersion (2.8) due to the massive Dirac particles in the presence of SOC
we derive

A(ω) = πα

[
1 +

(
Eg
~ω

)2
]

Θ(|~ω| − Eg) . (2.21)

Since the joint density of states near the Dirac points ∼ ~ωΘ(~ω − Eg) is still linear in
the photon energy, the strong modification of the absorbance is mainly a consequence of
the modified transition matrix elements (2.20). The result recovers important features
encountered in the numerical calculations. First of all, for photon energies that are
large (but much below the optical interband transitions near critical points in the band
structure in Fig. 2.15) compared to the electronic bandgap, the absorbance reduces to the
well-known limit A(ω � Eg/~) = πα Furthermore, for photon energies in the vicinity of
the fundamental absorption edge the absorbance increases to A(ω ≈ Eg/~) = 2πα. In
between these two limits the absorbance follows the power law as predicted by Eq. (2.21).
For vanishing SOC, i.e. Eg → 0, the previous analytical description is recovered.

The above findings, in particular Eqs. (2.20) and (2.21) also hold for GGA calculations, if
the proper bandgaps Eg and Fermi velocities vF are taken from Table 2.1.

The optical absorbance is related to the real part of the 2D conductivity according to
Eq. (2.11), which has been determined very precisely numerically with the HSE06 functional
including SOC by means of a hybrid mesh strategy [cf. Fig. 2.15]. The imaginary part
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is readily obtained by a numerical Kramers-Kronig transformation explained in detail in
Sec. 1.4.1. The resulting real and imaginary part of the conductivity function σ2D(ω) are
shown in Fig. 2.17. Compared to the results obtained within the GGA-PBE approach

0 5 10 15 20
-5

0

5

10

15

0 2 4 6 8 10
-4

-2

0

2

4

6

8

0 5 10 15
-10

-5

0

5

10

15

20

0 5 10 15
-4

-2

0

2

4

6

8

Photon energy �ω (eV) Photon energy �ω (eV)

(a)

(b) (c)

(d)

O
p
ti
ca
l
co
n
d
u
ct
iv
it
y
σ
2
D
(ω

)/
σ
0

Figure 2.17: Optical conductivity in units of the ac conductivity σ0 = πα = 0.023 of (a)
graphene, (b) silicene, (c) germanene, and (d) stanene. Real part: black line, imaginary part:
red line.

(displayed in Figs. 2.13 and 2.13), the absorption peaks are blue shifted as expected. The
blue shift of the first absorption peak amounts to 1 eV (graphene), 0.4 eV (silicene), 0.4 eV
(germanene), and 0.3 eV (stanene). Apart from the blue shift further minor differences
between the PBE and HSE06 appear in the heights and widths of the peaks. However,
most of the differences are attributed to a larger broadening that has to be used to account
for the smaller number of k points that were used for the HSE calculations.
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Chapter 2 Group-IV honeycomb crystals

2.6 Reflection, transmission and absorption

2.6.1 Influence of a conducting atomically thin layer

In the last section the absorbance A(ω) of 2D honeycomb crystals for normal incidence
related to the real part of the 2D conductivity σ2D(ω) by means of Eq. (2.11) has been
investigated. However, a rigorous proof of the connection between optical absorption
and the real part of the 2D conductivity is yet missing. In this section the reflection,
transmission and absorption of 2D crystal sheets which are characterized by a 2D (complex)
conductivity function σ2D(ω) is investigated for arbitrary angles of incidence and light
polarization. It is shown, how the special case of Eq. (2.11) is determined from the general
formulas.

We study a single graphene, silicene, germanene, or stanene layer surrounded by two
optical isotropic media j = 0, 1 which are characterized by complex dielectric functions
εj(ω) [cf. Fig. 2.18]. The sheet crystal itself is characterized by the frequency-dependent 2D

Figure 2.18: Light propagation in a
system consisting of a 2D sheet char-
acterized by the conductivity σ2D and
isotropic dielectrics j = 0, 1 with com-
plex dielectric constants εj . The direc-
tion of the arrows illustrates incoming
and outgoing light.

incident medium

substrate

σ2D

θ0 θ0
k+0 k−

0

k+1

z

ε̃0

ε̃1

conductivity σ2D(ω). Furthermore, we assume that the permeability of the incident medium
and the substrate is equal to the vacuum permeability, embodying the assumption that the
materials are nonmagnetic. We also require an incident medium without extinction, i.e.,
a dielectric function with zero imaginary part. This situation corresponds to a possible
experimental situation, where such a group-IV sheet is deposited on top of a substrate.
This sample is illuminated by light polarized parallel to the substrate surface from above,
i.e., from the vacuum. For graphene such experimental arrangements [44,138,143,144] have
been used with exfoliated graphene sheets on top of an insulator or even air. Following the
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2.6 Reflection, transmission and absorption

idea of Berning [87] (cf. Sec. 1.6) the optical response of the layer in this special case is
described by Eq. (1.62) and (1.63). For the reflection and transmission at arbitrary angles
of incidence and light polarization with abbreviations introduced in Eqs. (1.58) and (1.59)
it holds

R =

∣∣∣∣
η̃0 − η̃1 − σ̃2D
η̃0 + η̃1 + σ̃2D

∣∣∣∣
2

,

T =
Re(η̃1)

η̃0

∣∣∣∣
2η̃0

η̃0 + η̃1 + σ̃2D

∣∣∣∣
2

.

(2.22)

In the limit of non-conducting surfaces σ2D(ω) = 0 from Eqs. (2.22) the known Fresnel
relations [145] are obtained. If the dielectric functions of the incident medium and the
substrate are known, only the conductivity function of the 2D sheet crystal as displayed
in Fig. (2.17) is required.

2.6.2 Freestanding 2D sheets at normal incidence

The case of normal incidence is particularly interesting du to the experiments by Nair et
al. [44] performed on graphene surrounded by air. Assuming ε̃0 = ε̃1 = 1 and θ0 = 0 the
general expressions (2.22) further reduce to

R =

∣∣∣∣
σ̃2D/2

1 + σ̃2D/2

∣∣∣∣
2

T =
1

|1 + σ̃2D/2|2

A =
Re σ̃2D

|1 + σ̃2D/2|2
(= 1−R− T ) .

(2.23)

These expressions show how the frequency-dependent conductivity of the atomically thin
sheet influences the optical properties. In general, real and imaginary part of σ̃(ω) can
be considered as small quantities compared to 1 according to the numerical results. The
leading terms of the expansion of A with respect to the real and imaginary part of σ̃
yields

A ≈ Re σ̃2D · (1−Re σ̃2D −
1

4
((Re σ̃2D)2 + (Im σ̃2D)2)) ≈ Re σ̃2D (2.24)

which has been used in Eq. (2.11).

According to the monoatomic character of the sheet crystal the transmission is only weakly
influenced by an isolated layer. This can be easily underlined in the long-wavelength limit
ω → 0. Neglecting SOC the optical conductivity according to Eqs. (2.11) and (2.19) is
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given by σ̃(0) = πα. It follows

R =
(πα/2)2

(1 + πα/2)2
≈ π2α2

4

T =
1

(1 + πα/2)2
≈ 1− πα +

3

4
π2α2

A =
πα

(1 + πα/2)2
≈ πα− π2α2 .

(2.25)

Indeed, neglecting second-order effects of the layer, i.e., the reflection, the zero-frequency
absorbance is A = πα.

The frequency dependence of the optical quantities R, T , and A of a freestanding group-IV
honeycomb layer is displayed in Fig. 2.19. For the purpose of comparison Re σ̃(ω) =
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Figure 2.19: Frequency dependence of the optical properties R (black line), T−1 (green line),
and A (red line) for the four honeycomb crystals (a) graphene, (b) silicene, (c) germanene,
and (d) stanene. Normal incidence and hence in-plane light polarization are assumed. For
the purpose of comparison with the absorbance A(ω) the real part of the normalized optical
conductivity σ̃(ω) (blue line) is also displayed.

4π
c
Reσ2D(ω), the normalized real part of the optical conductivity, is also plotted in this

figure. The optical properties exhibit several common features independent of the group-IV
material. The reflectance of all layers is extremely small. It may only be measurable in the
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frequency region of the resonances discussed in Fig. 2.17 for the real part of the normalized
conductivity. As a consequence the absorbance and the real part of the normalized
conductivity agree rather well. Deviations only appear for photon energies corresponding
to the discussed resonances. The absorbance A(ω) and deviation 1 − T (ω) from 100%
transmittivity of a group-IV layer exhibit similar lineshapes and magnitudes. The strength
of the absorbance is remarkable for one-atom-thick layers. This especially holds for the
photon energies in the range of strong interband transitions. The absorbance approaches
extremely large values up to 0.25 (graphene, silicene) or 0.15 (germanene, stanene) in
these frequency regions. These values are much higher than the value πα = 0.023 for
vanishing frequencies. The major influence of the group-IV material concerns the lineshape,
essentially the number and positions of the optical resonances. They however agree widely
with the findings for Reσ2D(ω) discussed in Fig. 2.17.

2.6.3 Optical properties beyond strictly 2D sheet crystals

The group-IV honeycomb crystals are usually treated as infinitely thin conducting layers
within the framework of classical electrodynamics. Thus, the optical properties are
exclusively determined by the isotropic optical conductivity σ2D(ω) in the plane of the
2D sheet crystal, accounted for by means of the boundary conditions of electric (1.53)
and magnetic fields (1.52). However, ab-initio calculations within the framework of the
superlattice approach reveal also a non vanishing out-of-plane component of the dielectric
tensor, which is impossible to include in the theory of a strictly infinitely thin layer.

In the ab-initio calculations the 2D sheet crystal is simulated within an arrangement of 3D
unit cells with a large vacuum [cf. Eq. (2.1)]. We obtain the dielectric tensor of the system
by means of Eq. (1.42). Due to the hexagonal symmetry of the system the dielectric
tensor possesses only diagonal components and vanishing off-diagonal components, where
we want to introduce the notation ε̃‖ ≡ ε̃xx = ε̃yy (isotropic in-plane component) and
ε̃⊥ ≡ ε̃zz (out-of-plane component). Thus, 2D sheet crystals can be considered as a
strongly anisotropic (uniaxial) crystal. Light propagating in an uniaxial crystal in general
experiences birefringence, where the s- and p-polarized electromagnetic waves obey different
dispersion relations:

(koz)
2

ε̃‖
+
k2
x + k2

y

ε̃‖
=
ω2

c2
(ordinary wave / s-pol.) (2.26)

(kez)
2

ε̃‖
+
k2
x + k2

y

ε̃⊥
=
ω2

c2
(extraordinary wave / p-pol.) . (2.27)
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We introduced the index o (e) for the ordinary (extraordinary) wave, corresponding to s-
(p-) polarized light. The theory of light propagating in multilayer thin films (Sec. 1.6) can
be readily extended to anisotropic media. The anisotropy requires to replace Eqs. (1.56)
and (1.59) by their anisotropic counterparts

k̃j,z =




k̃oj,z =

√
ε̃j,‖ − k̃2

0,y (s-pol)

k̃ej,z =
√
ε̃j,‖ − ε̃j,‖

ε̃j,⊥
k̃2

0,y (p-pol)
(2.28)

and

η̃j =




k̃oj,z (s-pol)

ε̃j,‖/k̃
e
j,z (p-pol)

. (2.29)

The components of the dielectric tensor obtained by ab-initio methods are of course
quantities related to the sheet crystal surrounded by vacuum. The question arises, how
they can be related to the dielectric properties of the sheet crystal alone? Therefore we
introduce an artificial thickness d of the 2D crystal. Consequently, the 3D superlattice
arrangement with lattice constant L (according to Eq. (2.1)) can be considered as composed
of a sheet layer of thickness d and a vacuum layer of thickness L− d. With the help of the
transfer matrix approach or within a microscopic treatment [146] it can be shown, that the
components of the dielectric tensor of the composite structure (ε̃‖, ε̃⊥) are related to the
components of the sheet crystal (ε̃s,‖, ε̃s,⊥) and the vacuum (ε̃vac,‖, ε̃vac,⊥) by means of

L ε̃‖ = d ε̃s,‖ + (L− d) ε̃vac,‖ (2.30)
L

ε̃⊥
=

d

ε̃s,⊥
+
L− d
ε̃vac,⊥

. (2.31)

Since the dielectric tensor of the vacuum is known, the dielectric tensor ε̃s of the 2D sheet
crystal as a function of d and L and in relation to ε̃‖ and ε̃⊥ can be derived.

The optical properties of a sheet crystal with dielectric tensor components (ε̃s,‖, ε̃s,⊥)
surrounded by two arbitrary bulk materials are determined by means of the transfer
matrix, which is a product of one transfer matrix for each (nonconducting) interface and
the propagation matrix within the sheet. It can be shown, that the transfer matrix T sj for
s-polarization in the limit of d� λ is given by

T sj =
1

2η̃j

[
η̃j + η̃j+1 + σ̃2D,j,‖ η̃j − η̃j+1 + σ̃2D,j,‖

η̃j + η̃j+1 − σ̃2D,j,‖ η̃j + η̃j+1 − σ̃2D,j,‖

]
. (2.32)

Here, the normalized dimensionless 2D in-plane conductivity σ̃2D,j,‖ = −iω
c
L(εj,‖ − 1)

has been defined equivalently to the definition given in (1.58). For very large supercells
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(L→∞ but still L� λ) the quantity σ̃2D,j,‖ converges and becomes independent of L due
to the definition of the microscopic dielectric function calculated within the superlattice
arrangement (1.42). Indeed, T sj corresponds to the transfer matrix derived within the
approximation of an infinitely thin conducting interface (1.60).

However, the calculation of the transfer matrix T pj for p-polarized light is more complicated
and yields

T pj =
1

2

[
(η̃j + η̃j+1)ch + (σ̃2D,j,‖ + ag)sh (η̃j − η̃j+1)ch + (σ̃2D,j,‖ − ag)sh
(η̃j − η̃j+1)ch− (σ̃2D,j,‖ − ag)sh (η̃j + η̃j+1)ch− (σ̃2D,j,‖ + ag)sh

]
(2.33)

ch = cosh(k̃0,y

√
σ̃2D,j,‖ σ̃2D,j,⊥) , sh =

sinh(k̃0,y

√
σ̃2D,j,‖ σ̃2D,j,⊥)

k̃0,y

√
σ̃2D,j,‖ σ̃2D,j,⊥

(2.34)

ag = k̃2
0,yη̃j η̃j+1σ̃2D,j,⊥ , (2.35)

where we introduced the normalized dimensionless 2D out-of-plane conductivity σ̃2D,j,⊥ =

−iLω
c
(1− 1

εj,⊥
). Although there exists a formal difference in the relations of the in-plane and

out-of-plane conductivities to the components of the dielectric tensor of the superlattice it
can easily be shown by means of Eq. (1.42) that in the limit L→∞ it holds L(1− 1

εj,⊥
) ≈

L(εj,⊥ − 1), thus, the definitions become equivalent. Consequently, neither the transfer
matrix for s- nor p-polarization explicitly depend on the (artificial) thickness of the sheet
crystal and the superlattice distance L in the numerical computations.

The transfer matrix T pj asks for further discussion in particular in regard to the s-polarized
case T sj . For normal incidence (k̃0,y = 0) both transfer matrixes are equivalent as expected.
For oblique incidence (k̃0,y > 0) there is an additional impact of the out-of-plane conductiv-
ity. Typically, in literature two approaches are discussed. The first approach assumes an
infinitely thin sheet crystal and only in-plane components of the conductivity (σ̃2D,j,‖ 6= 0

and σ̃2D,j,⊥ = 0). In this case the transfer matrices for s- and p-polarization are formally
identical. The anisotropy of the crystal does not enter the computation. However, the
dependence on the polarization is still hidden in the definition of η̃j as common. This is also
the approach that was chosen in this work. The second approach assumes a sheet crystal
with finite width d of about 3.35 Å (corresponds to the sheet distance in graphite) [147],
but an isotropic dielectric constant ε̃s,j. However, in this case the impact on the optical
properties for oblique incidence is overestimated, as it will be shown below.

For the calculation of the conductivity tensor 128 bands have been used, which guarantees
that all optical transitions up to ~ω = 40 eV are taken into account. Here we are only
interested in qualitative properties of the components of the conductivity tensor. Thus,
a single 128 × 128 × 1 k-point mesh is sufficient to gather the main features of the
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spectra. In Fig. 2.20 we show the normalized in- and out-of-plane conductivities for
graphene obtained with the GGA-PBE functional over a wide frequency range. It is
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Figure 2.20: Frequency dependence of the real part out-of-plane component σ̃2D,⊥ of
the conductivity tensor of graphene for a vacuum thickness of L = 20Å (black solid line),
L = 30Å (red solid line), and L = 40Å (green solid line). For comparison, the blue solid line
shows the real part of the in-plane component σ̃2D,‖.

clearly visible that the out-of-plane component of the conductivity tensor converges with
increasing size L of the vacuum layer. However, it also shows the strong anisotropy. For
energies below �ω = 10 eV the real part of the out-of-plane component is extremely small
compared to the in-plane component. Consequently, the transfer matrices T p

j and T s
j are

equivalent in this frequency region. Thus, even for oblique incidence the approximation of
an infinitely thin conducting sheet with vanishing σ̃2D,j,⊥ almost perfectly holds. For very
high photon energies �ω � 20 eV the in- and out-of-plane components are of the same
order of magnitude. In principle the out-of plane component should be present in the
optical properties for oblique incidence of p-polarized light.

We argue, that the out-of-plane conductivity σ2D,⊥(ω) and thus, the finite size of the 2D
sheet crystal, can be safely neglected if the wavelength λ of the incident light is large
compared to the thickness d, or if the angle of incidence is small. This is particularly
true for all optical properties presented so far. For higher photon energies, however,
σ2D,⊥(ω) becomes more important and should essentially impact the optical properties
of p-polarized light. However, in this case one may also argue that the wave vector q

becomes also comparable to the length of the reciprocal lattice vectors and hence, it is
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beyond the long-wavelength limit q → 0 used for the derivation of the optical matrix
elements (1.36). There is also another argument. Above the ionization potential/electron
affinity I = A = 4.2 eV of graphene [148,149], in particular for UV light of photon energies
~ω & 20 eV, the real part of the optical conductivity is governed by the photoemission
process. Hence, it makes less sense to speak about optical properties.
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Topological insulator character

3.1 2D group-IV honeycomb crystals

It has been stated in the previous sections that due to SOC the group-IV honeycomb
crystals are insulators rather than zero-gap semiconductors. In this section the theory
of topological insulators will be applied to the characterization of group-IV honeycomb
crystals. One of the main necessary ingredients is a small-gap insulator, where the bandgap
is governed mostly by SOC. The spin-orbit-induced bandgap at the Dirac points increases
as the weight of the atom increases. Consequently, for the investigation of effects related
to nontrivial topologies we will use germanene, which has a numerically advantageous
bandgap compared to graphene and silicene. However, all results based on germanene are
also applicable to the other group-IV honeycomb crystals aforementioned.

Freestanding germanene exhibits an inversion center in the origin of the unit cell if the
atoms are arranged as in 2.1. Therefore, the parities of the bands at all four TRIM points
are sufficient for the determination of the Z2 invariant ν0. Numerically, the parities are
obtained by means of Eq. (1.65). The wave functions obtained by ab-initio methods
are composed of two parts, the plane-wave part in the region outside the atoms, and
the augmentation part inside the atoms within the PAW methodology. However, the
symmetry (in particular the parity) of the states is of course maintained in either of
these parts, although the orthonormalization is slightly violated. For that reason we
restrict ourselves to the plane-wave expansion of the (Pauli spinor) wave functions, whose
expansion coefficients Cσ

n,k,G in

〈r|un,k〉 = un,k(r) =
1√
Ω

∑

G

(
C↑n,k,G
C↓n,k,G

)
eiGr (3.1)
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are easily accessible in VASP. The wave functions obtained in this way are also normalized
to account for the neglected augmentation part. Germanene has eight valence electrons
and thus, eight occupied bands. In Tab. 3.1 we show the parity eigenvalues at the Γ point
and the three M points for the four Kramers degenerate bands. For symmetry reasons
the parities for all bands at each distinct M point are equal. Consequently, the (strong)

Γ + − + + (−)
3M − + − + (+)

Table 3.1: Parities ξi of all four Kramers-degenerate occupied bands at Γ and the three
M points (cf. Fig. 2.8(c)) . The last column denotes the product δi of all parities at the
corresponding momentum.

topological index ν0 = −1 according to Eq. (1.66) is obtained. Therefore, the pristine 2D
sheet crystal germanene as well as graphene, silicene, and stanene are two-dimensional
topological insulators.

Although the parity method is sufficient due to the presence of an inversion center, only the
method of the evolution of Wannier charge centers (WCC) as presented in Sec. 1.7.3 allows
a generalization to systems without an inversion center. Such a system is presented later,
hence, for comparison we already want to apply the method of WCCs on germanene. The
evaluation of Eq. (1.70) requires Nx discrete points along the kx direction. Convergence
with respect to Nx has been checked carefully and it turned out that the computation of
the topological invariant requires only a comparable low number. However, the details
of the curves require a sufficiently large number of kx points. The calculation of the
phase of the WCC according to Eq. (1.73) as a function of ky with Nx = 100 is shown in
Fig. 3.1. The partner switching of the WCC occurs around ky = 1/3 (which corresponds
to k = 1/3 b2 according to Sec. 1.7.3). The result is not surprising, since the Dirac
point K is located there and thus, valence and conduction bands are closest at this point.
The resolution around that point has been increased in order to emphasize the partner
switching in more detail. For ky further away from the Dirac point the WCC are only
slightly moving. An arbitrary reference line crosses the evolution lines an odd number of
times indicating a topological insulator. A reduction of the number Nx to Nx = 10 lead to
the same conclusion (topological insulator or not), however, for larger Nx the curves in
Fig. 3.1 are smoother.

As expected, both the simple parity method and the more sophisticated and general
WCC method successfully render pristine freestanding germanene as a 2D topological
insulator. Although not presented here, also graphene, silicene and stanene possess the
same classification. Graphene, however, is somewhat difficult. The spin-orbit induced
bandgap is extremely small and thus, is metallic from the numerical point of view.
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Figure 3.1: Evolution of Wannier charge centers (blue) constructed from the eight valence
bands of germanene. The (arbitrary) reference line (red) crosses the evolution curves an odd
number of times, indicating a topological insulator. The red arrow indicates the crossing
point.

3.2 Impact of external electric fields on the

topological invariant

3.2.1 Influence of transverse electric field

Here we investigate the impact of an external electric field Ez on germanene that is
considered as a prototypical example. In the field-free case its nontrivial topological
invariant has been verified already in the last section. The applied electric field has
been varied up to Ez = 10 × 106 V/cm. The electronic bandgap as a function of the
applied electric field is displayed in Fig. 3.2. We observe the same trend as predicted
analytically using a toy model based on only one orbital per atom and a simplified effective
nearest-neighbor description of SOC [116, 117]. The bandgap closes at the critical field
strength Ec = 3.4 × 106 V/cm. Above Ec the bandgap opens again, which indicates a
possible topological phase transition according to the general theory presented in 1.7.1.
Extending Fig. 3.2 to negative Ez, the bandgap Eg shows a W shape as a function of the
external electric field. The electronic bandgap as a function of the external electric field
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Figure 3.2: Electronic bandgap of germanene at the Dirac point as a function of the strength
of an external homogenous electric field perpendicular to the 2D sheet crystal. The black
dots represent numerical results, the red line is a (double linear) interpolation.

follows the general expression

Egap(Ez) = Egap

∣∣∣∣1− |Ez|
Ec

∣∣∣∣ (3.2)

For completeness the critical field strengths for silicene and stanene are also given in
Table 3.2. It is clearly visible that Ec increases if the mass of the atoms is increased, since
for heavier atoms the SOC-induced bandgap is larger (cf. Tab. 2.1). Anyway, the general
equation (3.2) holds.

crystal Ec (10
6 V/cm)

silicene 0.26
germanene 3.41

stanene 9.3

Table 3.2: Critical field strengths Ec for the 2D group-IV honeycomb crystals silicene,
germanene and stanene.

3.2.2 Topological invariant

We want to determine the topological index above the critical field strength Ec. Since the
external electric field breaks the inversion symmetry of the system the parity method is
not applicable anymore and hence, it is essential to use the phase evolution of the WCC.
We restrict ourselves to field strengths Ez close to Ec. Independent of the strength of the
electric field the phase evolution of the WCC further away from ky = 1/3 (corresponds to
the Dirac point located at k = 1/3 b2) is very similar and comparable to the evolution
lines already presented in Fig. 3.1. The reason is that the valence and conduction bands
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3.2 Impact of external electric fields on the topological invariant

do not interact due to their large energetic distance. In the vicinity of the Dirac point the
situation is, however, different. The valence and conduction bands become very close to
each other allowing some interaction between them and also the WCC to switch partners.
In Fig. 3.3 we therefore only show a small interval around the Dirac point in the direction
ΓM in the 2D BZ which is sufficient to distinguish the trivial from the topological state
regardless. The number of sampling points in ky direction has been increased tremendously
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Figure 3.3: Phase evolution of the WCC (blue curves) constructed from the eight valence
bands with increasing electric field strength Ez = (a) 3.0, (b) 3.4, (c) 3.5 and (d) 4.0×106 V/cm.
The reference line is plotted in red.

in order to clarify the exact phase evolution. In Figs. 3.3(a) and (b) the field strength is
slightly below Ec. The reference line crosses the evolution lines an odd number of times,
indicating a topological phase as in the case without electric field. The slope of one of
the evolution lines becomes larger, the closer the electric field strength is to the critical
value Ec. If the critical field strength is slightly passed, as displayed in Figs. 3.3(c) and
(d), basically one evolution line in the interval θ < 0 disappears and instead an evolution
line appears in the interval θ > 0. Counting the number of intersections with the reference
line indeed identifies a trivial insulator phase for Ez > Ec, and thus, a topological phase
transition at Ez = Ec.

The methods described above have been successfully applied by other groups to identify
further systems as topological insulators, e.g., TiTe2 under strain [150], silicene [151],
HgSe [152], functionalized tin films [27], germanene [153], functionalized germanene [154]
and dumbbell stanene [155].
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Chapter 3 Topological insulator character

3.3 Edge states in germanene nanoribbons

Formally, the 2D bulk insulators silicene, germanene and stanene are topological insulators
and exhibit a topological phase transition into a trivial insulator in a strong transverse
electric field above a critical field strength. In order to study explicitly the consequences
for the possible helical edge states of the crystal as predicted for topological insulators,
the crystals must be truncated to a finite size. Here we use germanene as a prototype for
the group-IV honeycomb crystals.

3.3.1 Modeling of nanoribbons and their edges

The one-dimensional (1D) nanoribbons are simulated within a supercell approach with
L = 20 Å (L = 15 Å) of vacuum in the direction perpendicular (parallel) to the crystal plane
in order to avoid artificial interactions between the periodic images of the 1D structures.
The edges of the ribbons are passivated by hydrogen atoms in order to exclude chemical
edge states. Thus, Ge dangling bonds are removed as Ge-H bonding and anti-bonding
states from the energy region around the Fermi level and the possible topological surface
states are revealed. For silicene nanoribbons the deviation of the Si-Si bond lengths at the
ribbon boundaries compared to the bulk values is very small [156]. For germanene the
effect of structural modifications is also comparably small and has only a minor influence
on the electronic properties. For that reason, since we are focused on the topological
character of electronic properties, which should not depend on the details of the atomic
structure of the edges, we disregard the small atomic relaxation of the edges and study the
geometry of ideal, nonrelaxed germanene nanoribbons. We also confirmed the negligible
influence of the relaxed edge geometry on the electronic properties by test calculations.
More in detail, we fix the Ge atoms in the ribbon arrangement and relax only the position
of the hydrogen atoms at the boundaries. This procedure allows to keep the high symmetry
of the bulk locally. The neglect of such atomic modifications allows for a better comparison
with the desired features of the edge states of the topological insulator as predicted by
model studies [43, 117].

Nanoribbons made by 2D honeycomb crystals are characterized by two parameters, the
edge orientation and the width of the ribbon. Typically, only two types of edges are
studied, the zigzag edge (parallel to bonds, [112̄0] facet) and the armchair one (cutting
parallel bonds in a hexagon, [11̄00] facet) [157,158]. The smallest nanoribbon contains four
germanium atoms and two (four) hydrogen atoms if terminated with zigzag (armchair)
edges. Nanoribbons with higher index edges are in principle also possible, e.g. the facets
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3.3 Edge states in germanene nanoribbons

[32̄1̄0] and [54̄1̄0], whose smallest ribbon already contains 28 germanium atoms, but they
are less likely present in experiments due to the low symmetry and, therefore, not considered
here. The aforementioned low-index crystal orientations are displayed in Fig. 3.4. Another
common termination of nanoribbons is of the bearded edge type [159–161], which is very
similar to armchair edges. However, they are less common and, thus, also not considered
here.

[1
1
2̄
0
]

[11̄00]

[3
2̄1̄
0]

[54̄1̄0]

Figure 3.4: Possible low-index crystal
orientations for finite nanoribbons. The
primitive unit cell of the hexagonal 2D
crystal (shaded in red) and the unit cells
of the corresponding nanoribbons are
indicated.

3.3.2 Zigzag germanene nanoribbons

The lattice vectors of the smallest irreducible slab cell of germanene for the description of
either zigzag or armchair ribbons is related to the lattice vectors of the unit cell (2.1) by

arec
1 = a1 + a2

arec
2 = −a1 + a2 .

(3.3)

The corresponding primitive cell is rectangular and contains four Ge atoms. The nanoribbon
with zigzag edges is obtained by repeating the primitive cell several times in arec

1 direction,
add a vacuum of 15 Å in the same direction while cutting the respective bonds, and add
hydrogen atoms for passivation. The width W of the nanoribbon is best represented by
the number N of hexagonal group-IV atom rings in the direction of the lattice vector
arec
1 of the 2D Bravais lattice of the honeycomb structure [43] . A total of 2(N + 1)

group-IV atoms belongs to the atomic basis in the rectangular unit cell of the nanoribbon
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Chapter 3 Topological insulator character

arrangement. We restrict ourselves to a ribbon width of N = 16, which is large enough
to exclude any interactions between the two sides of the ribbon. The overlap of the edge
states decaying from both sides of the ribbon is therefore negligible. The resulting atomic
geometry of the edges is displayed in Fig. 3.5. The bond length between Ge and H is
1.58 Å. The bond angle against the 2D crystal plane is 22.5◦.

Figure 3.5: (a) Top and (b) perspec-
tive view on the atomic structure of the
hydrogen-passivated edge of a zigzag ger-
manene nanoribbon.

(a)

(b)

Figure 3.6: Band structure of nonmagnetic
N = 16 zigzag germanene nanoribbon (red
curves) and the projected bulk band structure
(gray shading) in the background. Inset: Spin
polarization of particles in spin-degenerate
topological states close to the Fermi level and
their corresponding spin orientation (in red
and blue) near the edges of the nanoribbon.
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In Fig. 3.6 we display the calculated band structure of the nonmagnetic nanoribbon and
the projected bulk band structure, which makes it easy to distinguish between bulk and
edge states in the 1D BZ. Although SOC is included, the spin polarization and hence edge
magnetism is not yet taken into account. Two Dirac points of the hexagonal bulk BZ are
folded onto ±2/3ΓX of the 1D BZ of the nanoribbon. The bandgap of the nanoribbon
at the Dirac points is slightly larger than in the bulk due to finite-size effects despite the
large ribbon width N = 16. However, one clearly sees the appearance of edge states in the
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3.3 Edge states in germanene nanoribbons

pockets of the projected bulk band structure at the X point of the 1D BZ. In the case
without any edge magnetization each edge state is twofold degenerate due to the existence
of two equivalent ribbon edges. The upper and the lower bands cross each other exactly
at the X point.

Detailed analysis of the bands reveals the spin texture of the bands, which is determined
as the expectation value of the three Pauli matrices in the vicinity of the X point in the
1D BZ. They are distinguished by red and blue in the inset. Blue bands refer to spin-up
states, which are localized preferably on one edge and where the spin points in a direction
perpendicular to the plane of the nanoribbon, and spin-down states, localized on the
opposite edge. The real-space localization of the spin-up states in red bands is opposite to
that of blue bands such that the ribbon remains nonmagnetic. These bands also appear in
Kramers pairs, which means they are symmetric with respect to each other around the
X point. The edge character of the states with energies near the Fermi energy at X is
illustrated in Fig. 3.7.

Figure 3.7: Wave-function square of the edge states with vanishing energy at X. Ge and H
atoms are shown as small purple and white spheres. The center of the ribbon is omitted.

Relatively flat gapless bands appear in the fundamental gap region around a boundary of
the 1D BZ. However, in contrast to the tight-binding predictions [117], their dispersion
is strongly nonlinear and hence totally different from the predicted linear dispersion.
The reason is that the tight-binding model is lacking several aspects of the real ribbon
system not included in such a toy model. First, the tight-binding model incorporates only
one atomic orbital per atom for the description of the system, which leads to missing
bands of the px- and py-folded bulk states at the Γ point. Furthermore, the buckling and,
consequently, also the mixing of different orbitals are not considered. It is clearly shown
that, in contrast to the tight-binding predictions, the dispersion of the edge-state bands is
rather parabolic (at least that of the upper one) or shows a Mexican-hat behavior (the
lower one), rather than a linear dispersion. Very close to X (0.15 XΓ) these bands can
be interpreted as two occupied parabolas which are slightly displaced against each other.
The spin polarization of the bands near X or −X seems to be however independent of the
electronic structure description.
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Chapter 3 Topological insulator character

In our non-collinear simulation of the spin polarization the complete, self-consistently ar-
ranged coupling between orbital and spin motion of the electrons is considered. In contrast,
in the tight-binding model the Rashba contribution to SOC is either neglected [43] or taken
into account with a coupling constant that is too small [117] due to the nearest-neighbor
SOC, which may be interpreted as the action of an effective magnetic field due to the
orbital motion in normal direction. The Rashba splitting of the spin-decomposed states
leads to the typical Mexican-hat-like crossing of the bands as shown in Fig. 3.6. We point
out that very recently a similar band behavior has been observed by means of a similar
electronic structure approach for germanene nanoroads [153].

We believe that the disagreement is mostly due to the rather small SOC in the real
system compared to the oversimplified tight-binding Hamiltonian. In order to support
our idea we have plotted the N = 16 nanoribbon bands again in Fig. 3.8, but with
increasing strength of the SOC, by varying the prefactor βSOC of the corresponding term
in the Kohn-Sham equations within the DFT-GGA approach with SOC up to one order
of magnitude. Indeed, with increasing SOC strength βSOC the uppermost edge-state

Figure 3.8: Band structure of a
nonmagnetic N = 16 zigzag ger-
manene nanoribbon with varying
SOC enhanced by a factor βSOC = 1
(black curves), 3 (red curves), 5
(green curves) or 10 (blue curves). -1.0
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band becomes more linear, while the lower one loses the relative influence of the Rashba
effect. The turning point is SOC that is about five times stronger, i.e., βSOC = 5, which
approaches values relevant for stanene. Indeed, recent theoretical investigations about
stanene and fluorinated stanene [27] also showed promising results of helical edge states in
the corresponding nanoribbons. For a factor of 10, i.e., completely unrealistic SOC values,
the linear bands predicted by toy models appear. On the other hand, the σ-derived gap
at the Γ point is closed, so that the system becomes metallic due to non-topological (i.e.
trivial) states.
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3.3 Edge states in germanene nanoribbons

3.3.3 Edge magnetism

We also take into account the possibility of magnetic edges of which we consider ferro- and
antiferromagnetic configurations. It is well known that taking into account magnetic edges
may further reduce the energy of the system toward the correct ground state of graphene
and silicene nanoribbons [162,163]. The ground states are predicted to be antiferromagnetic
at half-filling. For graphene, in addition to total-energy optimization by means of DFT,
such zigzag edge magnetization has been confirmed experimentally by means of transport
measurements [164]. In fact, in our calculations antiferromagnetic ordering of the spins is
energetically favored over the nonmagnetic and ferromagnetic state. In Fig. 3.9 it is clearly
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Figure 3.9: Band structure of the (a) antiferromagnetic and (b) ferromagnetic N = 16 zigzag
germanene nanoribbon (red urves) and the projected bulk band structure (gray shading) in
the background.

shown that edge magnetization strongly modifies the dispersion of the edge states at the
boundary of the BZ. The spin magnetic moment is about 0.15μB per surface atom. For

Figure 3.10: Real-space localization of the spin density of the antiferromagnetic germanene
nanoribbon at one of the edges.

the antiferromagnetic ground states the spin moments at each edge atom are oriented in
opposite directions depending on the edge. In Fig. 3.10 the real-space spin orientation for
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an edge state is shown in the vicinity of one edge. It supports the simplified illustration
used in Figs. 3.6 and 3.11. Thereby, the total energies of the (anti-)ferromagnetic ribbons
depend only slightly on the exact orientation of the spin relative to the plane of the
ribbon. The most intriguing result of the energetically favored antiferromagnetic ordering
in Fig. 3.9(a) is the opening of a bandgap between them, turning the nanoribbon system
into a trivial insulator. The electrons of these states are still localized at the surface of
the ribbon but do not lead to metallic surface states. In this case, the system can, in
general, not be regarded as a TI. The opening of a bandgap between the surface states
already emerges if only spin polarization, and not SOC, is taken into account as it has
been demonstrated in previous works on group-IV nanoribbons [165].

We also found a metastable ferromagnetic configuration with spin magnetic moments
localized mainly at the edges of the ribbon, which is energetically slightly less favored than
the antiferromagnetic one. The energy gain of the antiferromagnetic ground state is about
1 meV (13 meV) per surface atom compared to the ferromagnetic (nonmagnetic) ground
state. The small energy difference might give rise to an antiferromagnetic-ferromagnetic
transition for larger ribbon widths as predicted for silicene nanoribbons [166]. Because
of the magnetic field in the normal direction the degeneracy of all band states shown
in Fig. 3.9(a) is lifted in Fig. 3.9(b). The energy regions of the Dirac cones appearing
in infinite germanene honeycomb crystals become very interesting. Gapless edge states
appear in the "fundamental gap" of the nanoribbon. Linear bands of different spins cross
each other near the position of the "bulk" K of K ′ states. However, they are slightly
displaced in k space along the ΓX high-symmetry line toward the X point. We have to
mention that defects of the edges may significantly modify the magnetic properties. This
also has been shown very recently for silicene nanoribbons [166].

3.3.4 Transverse electric field

Not only magnetic fields but also electric fields influence the edge states and their topological
character. Electrically tunable bandgaps have been predicted by calculations for external
electric fields oriented parallel to the buckled monolayer of Si or Ge atoms, a silicene or
germanene sheet [162,167]. The impact of such in-plane electric fields on the edge states
is much stronger since they break the symmetry of the system. The degeneracy due to the
two equivalent edges is lifted. Additional splittings appear. Recently, it has even been
shown that field-gated silicene possesses two gapped Dirac cones exhibiting 100% spin
polarization and, hence, is a promising source for spin-polarized electrons [168].

In order to study the influence on the topological character, we focus on electric fields,
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3.3 Edge states in germanene nanoribbons

which leave the ribbon edges equivalent. Consequently, we do not consider the effect of
in-plane electric fields. Here, we investigate the influence of vertical homogeneous electric
fields Ez. We have to stress that for Ez = 0 the antiferromagnetic ribbon is the electronic
ground state, however, in this section we focus only on the impact of an external electric
field on the nonmagnetic ribbon for reasons that are explained below. Therefore, we study
the electronic band structure of germanene and the nonmagneticW = 16 nanoribbon under
the action of transverse homogeneous electric fields of various strengths perpendicular to
the sheet plane as in Sec. 3.2.2.

The situation in germanene N = 16 nanoribbons is different from the behavior of the
infinite germanene crystal. Only the nonmagnetic ribbon possesses metallic edge states,
whereas a bandgap is present in the antiferromagnetic ground state. In order to study a
possible phase transition into a trivial insulator we therefore omit the edge magnetism.
Most interesting is the field influence on the electronic structure due to the edge states
around the Fermi level and the X point at the BZ boundary as indicated by the electronic
structure displayed in Fig. 3.6. We only investigate an energy interval of the order of a
few tenths of milli-electron volts and wave vectors around X about ±0.2 of the entire ΓX

distance. Field strengths similar to those in Fig. 3.2 are applied. The development of the
bands near X in Fig. 3.11 with increasing field strength Ez is totally different to the "bulk"
W-shape in Fig. 3.2. Our results considerably differ from the predictions obtained using
a simple four-band second-nearest neighbor tight-binding Hamiltonian [117]. A proof of
the reasons has been already discussed in Fig. 3.6. The dispersion of the gapless edge
state bands is significantly deformed compared to the tight-binding predictions. Instead
of two linear bands, which cross the Fermi level at X, the ab-initio calculated bands
exhibit a dispersion well known for the Rashba effect in two dimensions [130]. This is
again displayed in Fig. 3.11(a), which also clearly shows the metallic character of the
ribbons instead of a zero-gap semiconductor behavior [117]. Figures 3.11(b), 3.11(c), and
3.11(d) show the main consequences of a vertical electric field, the symmetry lowering,
and the accompanying splitting Esplit of the edge-state-derived energy bands at X and
its surroundings. The dependence of the splitting on the field strengths at or around the
critical one Ec are studied. For finite field strength the spin polarization of each edge
state is conserved but each band is now only built by states localized at one edge with a
defined spin orientation. The inversion symmetry is destroyed [168]. The corresponding
degeneracy is lifted. Instead parabolas of different spin polarizations appear, which are,
however, energetically separated slightly and shifted against each other around X by
∆kRashba. The field free value ∆kRashba = 0.02 Å−1 practically does not vary for increasing
field strength. At X this energy splitting Esplit = ΞEz increases almost perfectly linearly
with the external electric field Ez. Its coefficient amounts to Ξ = 0.765 eÅ. The band
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Γ← X → ΓΓ← X → Γ

Figure 3.11: One-dimensional energy bands mainly derived from edge states for germanene
nanoribbons with N = 16 near the boundary of the 1D BZ. Only states around the Fermi
level, used as energy zero, and the X point of the BZ boundary are plotted. The two colors
(red and blue) of the bands indicate different spin orientations. The field strength varies: (a)
Ez = 0, (b) Ez = 1× 106 V/cm, (c) Ez = Ec = 3.4× 106 V/cm, and (d) Ez = 5× 106 V/cm
(d). The spatial localization of the wave functions at the edges and their spin orientation are
illustrated by arrows.

splitting Esplit at X can be interpreted in first-order perturbation theory by a shift

〈ψL/Rσ|eEzz|ψL/Rσ〉

of each edge state |ψL/Rσ〉 with spin orientation σ =↑, ↓ localized at the left/right edge.
Thereby eEzz describes the coupling of the electrons to the electric field. Due to the
presence of the transverse field the symmetry equivalence of the two ribbon edges is
destroyed. Consequently from left to right changes the sign of the shift because of the
spinor character of the states, while its magnitude is conserved. Twice the absolute value
of such a shift defines the splitting energy. We also investigated the impact of a transverse
electric field on the electronic structure of the antiferromagnetic ground state. Even strong
electric fields only slightly lift the degeneracy of the occupied and unoccupied surface
bands (not shown). The general influence of the electric field remains small.

The field influence on the electronic structure presented in Fig. 3.11 is totally different
from the predictions of toy models of the kind used in Ref. [117]. Apart from the fact that
all bands are taken into account, the properties of a real electron system are described.
They contain the atomic edge geometry and, in particular, the self-consistency of the
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inhomogeneous electron gas with non-collinear spins. They drastically change the response
to the field compared to a system with fixed band and SOC parameters as used in the
empirical tight-binding method. Consequently the electron redistribution due to the
external electric field is screened and hence weakened [17]. Furthermore, the orbital
motion of the electrons is modified via the coupling of angular momentum and spin in the
SOC operator. In any case the topological transition between a TI and a band insulator
predicted by toy models does not occur. Rather, independent of the field strength the edge
states form a metallic system with a Fermi surface around an X point. The band splitting
due to the field however makes this Fermi surface more complex. For unrealistically high
fields above Ez = 0.2 V/Å= 2× 107 V/cm (not shown in Fig. 3.11) a gap opening becomes
visible. However, even for stanene with a much stronger SOC the field strength has to be
unrealistic strong to approach a band insulator. In a more realistic system the topological
character of the electronic structure related to the edge states is difficult to destroy.

3.3.5 Armchair germanene nanoribbons

The armchair termination of the germanene nanoribbon is obtained by repeating the
primitive cell defined in Eq. (3.3) in arec

2 direction (cf. Fig. 3.4), add a vacuum of 15 Å
in the same direction while cutting the respective bonds. A total of 2(N + 2) Ge atoms
belong to the atomic basis of the nanoribbon cell. Two additional hydrogen atoms per edge
are needed for full passivation of the dangling bonds. As in the case of zigzag germanene
nanoribbons only the hydrogen atoms are optimized with respect to their bond angles and
lengths. Although the bond length between Ge and H atoms remains the same as at the
zigzag edges, the bond angle against the sheet plane slightly decreases to 17.4◦.

The band structure for the N = 16 armchair nanoribbon as well as the projected bulk
band structure is plotted in Fig. 3.12. In contrast to the zigzag-terminated edges the
two Dirac cones of germanene bulk are folded onto the Γ point of the 1D BZ of the
nanoribbon. The bandgap of the nanoribbon indicates a 1D insulator rather than a
metal. The bandgap of the N = 16 nanoribbon is larger than the bulk bandgap due
to finite-size effects. Furthermore, the bandgap is expected to vary as a function of
the ribbon width N as depicted in Fig. 3.13. From the numerical calculations we may
conclude, that the nanoribbon can be divided into three distinct classes with ribbon widths
N = {3M + 1, 3M + 2, 3M + 3} (M = 0, 1, 2, . . .) [165]. Within each class the bandgap
decreases monotonically with increasing ribbon width. More importantly, for fixed M the
bandgaps of class N = 3M + 3 are substantial smaller compared to the other two classes.
The bandgap is even smaller than the bulk bandgap if N ≥ 9 (M ≥ 2), indicating the
appearance of edge states within the fundamental bulk bandgap. The same trend has also
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Figure 3.12: Band structure of the N = 16 armchair germanene nanoribbon (red curves)
and the projected bulk band structure (gray shading) in the background.
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Figure 3.13: Electronic bandgap of armchair germanene nanoribbons as a function of the
ribbon width N . Numerical results are shown as red filled dots. Blue lines correspond to
interpolated values for the three distinct classes described in the text and are used as a guide
to the eye. The energy range that is smaller than the bulk bandgap is also shown (green
shaded area).

been observed in earlier works for graphene [158, 162] and silicene nanoribbons [156]. For
ribbon widths up to N = 24 the bandgap of the nanoribbon remains finite, in contrast to
the expected zero-gap helical edge states proposed by the theory of topological insulators.
We could not further increase the size of the nanoribbon for numerical reasons.

The edge states of armchair germanene nanoribbons appear at the center of the 1D BZ
where also the bandgap of the folded bulk band structure is present. Therefore, edge
states and bulk states are interfering leading to a an increase of the delocalization of the
edge states into the bulk and thus, a coupling between both edges of the ribbon even
if the ribbon is comparably large. However, in the limit of very large nanoribbons the
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exact termination on either side of the ribbon and thus, the belonging to one of the three
ribbon classes, should not matter. Consequently, in this limit the electronic bandgap of all
classes should converge to zero, indicating indeed the presence of gapless edge states. We
conclude, that the germanene armchair ribbons up to N = 24 are not yet large enough
to fully decouple the edge states on both edges of the ribbon. Increasing the SOC by
a prefactor βSOC > 1 (not shown) increases the bulk bandgap of germanene, which also
leads to the decoupling between bulk and surface bands at Γ of the 1D BZ, however, for
unrealistic high values βSOC.

Utilizing a tight-binding model for group-IV honeycomb crystals [43] it can be shown that
the decoupling of bulk and edge states, and thus the appearance of helical edge states, can
be indeed achieved by further increasing the ribbon width or the SOC in accordance to
our findings presented in Fig. 3.13. However, the proposed nanoribbon sizes for germanene
are far beyond the size that can be treated by first-principle methods.

Similarly to zigzag nanoribbons, the possibility of magnetic edges has to be taken into
account. However, we have performed test calculations which suggest that the ground state
of armchair ribbons always remains nonmagnetic, even if the starting configuration of the
ribbon before the self-consistent cycle is magnetic. Our findings in germanene nanoribbons
are in agreement with previous works on graphene and silicene nanoribbons [156,158,162].

3.4 Functionalized germanene

In the last sections it has been shown that pristine germanene possesses a nontrivial
topology, although the linear helical surface states are strongly modified. However, the
bulk bandgap is comparable small and thus, linear surface bands are absent in the finite
nanoribbon system. Therefore, opening the bandgap by chemical functionalization might
lead to decoupling of the bulk and edge states. The states around the Fermi level in
pristine germanene are dominated by π orbitals. Consequently, due to functionalization
these π bonds turn into σ bonds which opens a huge gap at the Dirac points.

Si et al. [154] suggested halogenation with iodine of a single layer of germanene, in
the following abbreviated as GeI, as a promising TI material. Hydrogenation as well
as halogenation leads to a noble gas configuration when bonding to a pz orbital of Ge.
However, only halogenation with iodine leads to the opening of a sizable bandgap of 0.3 eV
at the Γ point of the 2D hexagonal BZ. In contrast, hydrogenation or halogenation with
e.g. fluorine atoms opens a too large bandgap and the formation of a trivial insulator.
The strong SOC within the σ orbitals and the coupling of pxy orbitals of Ge and heavy
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halogens plays a key role in the enlargement of the gaps in halogenated germanene. The
nontrivial Z2 topological order is due to s-p band inversion at the Γ point.

In GeI the upwards (downwards) buckled Ge atom covalently bonds to one iodine atom
above (below) the 2D crystal plane leading to the same symmetry as pristine germanene.
We again use the HSE06 functional in order to generate trustable approximate quasiparticle
bandgaps. Without SOC GeI is gapless with valence and conduction bands touching each
other at the Γ point. Including SOC an indirect bandgap of about 0.3 eV (direct bandgap
of 0.4 eV) is opened in the vicinity to the Γ point, leading to a mexican-hat-like band
structure of the highest valence band around Γ. The corresponding band structure can be
found in Fig. 3.14.

Figure 3.14: Band structure of halo-
genated germanene along the high-
symmetry directions of the 2D hexagonal
BZ. The Fermi energy is chosen as the
energy zero. -15
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GeI possesses inversion symmetry, consequently, the Z2 invariant is determined by means of
the parities of the occupied bands at Γ and the three M points of each Kramers degenerate
pair of eigenstates. The parities can be found in Tab. 3.3. It clearly shows the nontrivial

Γ + − + − + + + − − − + (−)
3M − + − + + − − + − + − (+)

Table 3.3: Parities of all eleven occupied bands at Γ and the three M points. The last
column denotes the product δi of all parities at the corresponding momentum.

topology corresponding to Z2 = 1, which is due to the band inversion at the Γ point.

The appearance of chiral gapless edge states for GeI nanoribbons has been confirmed by
other theoretical groups using DFT [154].
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Chapter 4

Influence of substrates

It was proven by first-principles studies that free standing graphene, silicene, germanene
and stanene are (meta)stable materials and exhibit Dirac cones with linear band dispersion
near K or K ′ despite the partial sp3 bonding. The major problem of the application of the
group-IV honeycomb crystals is their preparation, which usually results in 2D structures on
substrates. Here we investigate exclusively the deposition of silicene on metallic [103, 104]
and nonmetallic [106,107] substrates by means of DFT calculations.

An appropriate substrate for the epitaxial deposition of silicene should fulfill several
conditions:
(i) A metallic substrate should be immiscible or not form a silicide with silicon.
(ii) The silicene lattice and the surface lattice should be nearly commensurable. A small
biaxial strain of silicene is allowed.
(iii) The chemical interaction with the substrate should be weak, so that neither symmetry
breaking nor the opening of large gaps occur due to the formation of covalent, ionic or
vdW bonds.

4.1 Silicene on Ag(111)

The Ag(111) substrate is simulated using symmetric slabs with nine atomic layers. The
irreducible (111) crystal slab contains three atomic layers [102] with a lateral (surface)
lattice constant of a = 2.89Å including vdW interaction (a = 2.85Å in DFT-LDA), which
agrees very well with the value of a = 2.892Å, which is the experimental cubic lattice
constant of Ag. The extent of the vacuum region between the overlayers of two neighbored
slabs is fixed at 15Å. The starting atomic configurations are constructed by adding slightly
biaxially strained silicene on both sides of the Ag slabs in agreement with the chosen
translational symmetries of the substrate and overlayer to obtain a coincidence lattice
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Chapter 4 Influence of substrates

(see 1.8). The Si atoms and two Ag layers on both sides of a slab are allowed to relax.
Thereby, the BZ of a given repeated slab system is sampled by a Γ-centered 8×8×1 k-point
mesh.

We find the coincidence of four silicene-overlayer structures on the Ag(111) substrate,
so that the hexagonal unit cells of the slightly biaxially strained silicene sheet and
the silver substrate fit to each other roughly. The sheet structures of silicene and the
possibility of rotations around the surface normal predict several coincidentally matched
adsorbates, which yields five geometries: two structures (i/ii) for (

√
7×√7)R19.1◦ silicene

on a Ag(111)(
√
13 × √13)R13.9◦ substrate and one structure for each of the following

coincidence lattice arrangements: (iii) 3×3 on 4×4, (iv) 2×2 on (
√
7×√7)R19.1◦, and (v)

(
√
7×√7)R19.1◦ on (2

√
3× 2

√
3)R30◦ where the Wood notation is applied [102]. All the

five overlayer structures give rise to local minima on the total-energy surface. When taking
the translational symmetry constraints into account, they represent an, at least, metastable
silicene-derived adsorbate structure on the Ag(111) substrate. The atomic geometries
resulting after atomic relaxation are displayed in Fig. 4.1 The Cartesian coordinate system

[ 1 4 3 ]

[ 4 3 1 ]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a)

10.5 Å

[ 4 3 1 ]

[ 1 1 1 ]
● ●●

● ●●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
●●

● ●
●● ●

● ●

● ●

● ●●
● ●

●●
●●

●
● ●

● ●
● ●●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
● ●●

●● ●
●●

● ●
●●

● ●
●● ●

● ●

● ●

●● ●
● ●

●●
●●

●
● ●

● ●
●● ●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
2.15 Å
0.78 Å

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
● ●

●
●

●
● ●

● ●●
●

●

●●
●● ●

●●
● ●

●
●●

● ●●
●●

●●
●

●
●

●
●●

● ●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●●
● ●●

●●
● ●

●
●●

●● ●
●●

●●
●

●
●

●
●●

● ●●
●

●●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

● ●
●

●●● ●
● ●●● ●●

● ●●●
● ●

●
●

●
●●

●●● ●●
●● ●●● ●

●● ●● ●
●

● ●
● ●

● ●
●

●● ●●
●● ● ●● ●

● ●●●
●●

●
●

●
●●

● ●●● ●
●● ●●● ●

●● ●●●
●

● ●
● ●

● ●
●

●●● ●
●● ● ●● ●

●● ●●
●●

●
●

●
●●

●● ●● ●
● ●● ● ●●

●● ●●●
●

●●
● ●

● ●
●

●● ●●
●● ●● ●●

●● ●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ● ●

● ●●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●●●

●● ●● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●● ●●

● ●● ● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
● ●● ●●● ●

●● ● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
●●

● ●
●● ●

● ●

● ●

● ●●
● ●

●●
●●

●
● ●

● ●
● ●●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
● ●●

●● ●
●●

● ●
●●

● ●
●● ●

● ●

● ●

●● ●
● ●

●●
●●

●
● ●

● ●
●● ●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●

[ 1 4 3 ]

[ 4 3 1 ]

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

(b)
18.19 Å

10.5 Å
[ 4 3 1 ]

[ 1 1 1 ]

●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
● ●

●
●

●
● ●

● ●●
●

●

●●
●● ●

●●
● ●

●
●●

● ●●
●●

●●
●

●
●

●
●●

● ●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●●
● ●●

●●
● ●

●
●●

●● ●
●●

●●
●

●
●

●
●●

● ●●
●

●●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●
2.33 Å
1.14 Å

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

● ●
●

●●● ●
● ●●● ●●

● ●●●
● ●

●
●

●
●●

●●● ●●
●● ●●● ●

●● ●● ●
●

● ●
● ●

● ●
●

●● ●●
●● ● ●● ●

● ●●●
●●

●
●

●
●●

● ●●● ●
●● ●●● ●

●● ●●●
●

● ●
● ●

● ●
●

●●● ●
●● ● ●● ●

●● ●●
●●

●
●

●
●●

●● ●● ●
● ●● ● ●●

●● ●●●
●

●●
● ●

● ●
●

●● ●●
●● ●● ●●

●● ●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ● ●

● ●●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●●●

●● ●● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●● ●●

● ●● ● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
● ●● ●●● ●

●● ● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
●●

● ●
●● ●

● ●

● ●

● ●●
● ●

●●
●●

●
● ●

● ●
● ●●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
● ●●

●● ●
●●

● ●
●●

● ●
●● ●

● ●

● ●

●● ●
● ●

●●
●●

●
● ●

● ●
●● ●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
● ●

●
●

●
● ●

● ●●
●

●

●●
●● ●

●●
● ●

●
●●

● ●●
●●

●●
●

●
●

●
●●

● ●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●●
● ●●

●●
● ●

●
●●

●● ●
●●

●●
●

●
●

●
●●

● ●●
●

●●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●

[ 0 1 1 ]

[ 1 1 0 ]
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)

11.65 Å
[ 1 1 0 ]

[ 1 1 1 ]
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
2.17 Å
0.8 Å

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

● ●
●

●●● ●
● ●●● ●●

● ●●●
● ●

●
●

●
●●

●●● ●●
●● ●●● ●

●● ●● ●
●

● ●
● ●

● ●
●

●● ●●
●● ● ●● ●

● ●●●
●●

●
●

●
●●

● ●●● ●
●● ●●● ●

●● ●●●
●

● ●
● ●

● ●
●

●●● ●
●● ● ●● ●

●● ●●
●●

●
●

●
●●

●● ●● ●
● ●● ● ●●

●● ●●●
●

●●
● ●

● ●
●

●● ●●
●● ●● ●●

●● ●●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ● ●

● ●●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●●●

●● ●● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●● ●●

● ●● ● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
● ●● ●●● ●

●● ● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
●●

● ●
●● ●

● ●

● ●

● ●●
● ●

●●
●●

●
● ●

● ●
● ●●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
● ●●

●● ●
●●

● ●
●●

● ●
●● ●

● ●

● ●

●● ●
● ●

●●
●●

●
● ●

● ●
●● ●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
● ●

●
●

●
● ●

● ●●
●

●

●●
●● ●

●●
● ●

●
●●

● ●●
●●

●●
●

●
●

●
●●

● ●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●●
● ●●

●●
● ●

●
●●

●● ●
●●

●●
●

●
●

●
●●

● ●●
●

●●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●

[ 1 3 2 ]

[ 3 2 1 ]

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(d)

13.35 Å

7.71 Å

[ 3 2 1 ]

[ 1 1 1 ]
●

● ●
● ●

● ●
●

●●● ●
● ●●● ●●

● ●●●
● ●

●
●

●
●●

●●● ●●
●● ●●● ●

●● ●● ●
●

● ●
● ●

● ●
●

●● ●●
●● ● ●● ●

● ●●●
●●

●
●

●
●●

● ●●● ●
●● ●●● ●

●● ●●●
●

● ●
● ●

● ●
●

●●● ●
●● ● ●● ●

●● ●●
●●

●
●

●
●●

●● ●● ●
● ●● ● ●●

●● ●●●
●

●●
● ●

● ●
●

●● ●●
●● ●● ●●

●● ●●
● ●

2.28 Å
1.23 Å

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●● ●● ● ●

● ●●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●●●

●● ●● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
●● ● ●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●● ●●

● ●● ● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
● ●● ●●● ●

●● ● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●
●●

● ●
●● ●

● ●

● ●

● ●●
● ●

●●
●●

●
● ●

● ●
● ●●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
● ●●

●● ●
●●

● ●
●●

● ●
●● ●

● ●

● ●

●● ●
● ●

●●
●●

●
● ●

● ●
●● ●

●● ●
● ●

●●
●●

●●

●●

● ●
● ●

● ●
● ●

●
●● ●

● ●●
●●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
● ●

●
●

●
● ●

● ●●
●

●

●●
●● ●

●●
● ●

●
●●

● ●●
●●

●●
●

●
●

●
●●

● ●●
●

● ●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●●
● ●●

●●
● ●

●
●●

●● ●
●●

●●
●

●
●

●
●●

● ●●
●

●●

● ●
● ●

● ●
●●

●
●●

● ●
● ●

● ●
●●

●
●

●
● ●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●
● ●

●●
● ●

● ●● ●
●●

●
●

●

●
●

● ●● ●● ●●
●●

● ●
●●

● ●● ●
● ●

●●
●●

● ● ● ●
● ●

●
●

●

●
●

● ● ● ●●●●
● ●

● ●
●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

● ●
●

●●● ●
● ●●● ●●

● ●●●
● ●

●
●

●
●●

●●● ●●
●● ●●● ●

●● ●● ●
●

● ●
● ●

● ●
●

●● ●●
●● ● ●● ●

● ●●●
●●

●
●

●
●●

● ●●● ●
●● ●●● ●

●● ●●●
●

● ●
● ●

● ●
●

●●● ●
●● ● ●● ●

●● ●●
●●

●
●

●
●●

●● ●● ●
● ●● ● ●●

●● ●●●
●

●●
● ●

● ●
●

●● ●●
●● ●● ●●

●● ●●
● ●

[ 1 2 1 ]

[ 2 1 1 ]

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(e)
5.81 Å

11.65 Å

[ 2 1 1 ]

[ 1 1 1 ]

● ●● ●● ● ●

● ●●
●● ● ●●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●●● ●●●

●● ●● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
●● ● ●●●● ●

● ●● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●● ●●

● ●● ● ●● ●
● ●●● ●●

● ●● ●● ● ●

●● ●
● ●● ●●●● ●

●● ● ●● ●●
● ●● ●● ●●

●● ● ●● ●●

● ●
●● ●● ●●

2.18 Å
1.12 Å

Figure 4.1: Top (left) and side (right) view of the relaxed silicene and first Ag(111) layer for
the five geometries (a)

√
7×√7 on

√
13×√13 I, (b)

√
7×√7 on

√
13×√13 II, (c) 3× 3 on

4×4, (d) 2×2 on
√
7×√7, and (e)

√
7×√7 on 2

√
3×2

√
3. The uppermost (lower) Si atoms

are indicated by red (blue) circles while the first-layer Ag atoms are indicated by gray dots. Si
atoms at intermediate positions are indicatd by yellow circles. The crystallographic directions
are related to the [111]-oriented cubic silver substrate. The unit cell of the adsorbate is
displayed by dashed lines. Characteristic lateral and vertical distances are also given.

applied is x ‖ [011̄], y ‖ [2̄11], and z ‖ [111]. At first glance, all the structures seem to keep
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4.2 Silicene on hydrogen-passivated Si(111) and Ge(111) substrates

essentially honeycomb symmetry as indicated by the hexagonal arrangement of the Si
atoms in top view. However, in contrast to ideal freestanding silicene, in which neighboring
Si atoms are displaced alternately perpendicular to the sheet plane, the number and the
arrangement of the outward buckled Si atoms vary. The threefold honeycomb symmetry is
broken for the buckled silicene-derived geometries on Ag(111), as shown by the side views
in Fig. 4.1. The optimized geometries agree qualitatively with the structures computed
in other DFT calculations [169] using an XC functional within the DFT-GGA and a
smaller plane-wave cutoff. A dependence of the actual atomic geometry on the used
exchange-correlation functional is only found for the

√
7×
√

7 on 2
√

3× 2
√

3 [Fig. 4.1(e)]
coincidence system. In this system, the usage of the LDA approximation results in the
disappearance of the in-between silicene layer. Two atoms per unit cell move into the
top layer. Within the GGA approximation or with applied tensile strain within the LDA,
the three atoms leave the in-between layer into the lower silicene layer. Only the vdW
approach yields an arrangement of outward buckled Si atoms in agreement with STM
findings.

The strong deviations of the silicene overlayer from the ideal hexagonal silicene are due to
the strong chemical interactions with the substrate. We have shown that, as a consequence,
a strong hybridization of Si and Ag states occurs which completely destroys the Dirac
cones of freestanding silicene [103]. In order to observe structural and electronic properties
related to freestanding silicene despite adsorption on a substrate it is necessary to reduce
the adsorbate-substrate interaction. There are three possibilities: (i) an intercalation of the
two systems, (ii) search for a substrate with reduced interaction with silicene, and (iii) the
attempt to grow a van der Waals-bonded silicene sheet on top of one of the five adsorbate
systems. In such a case, the adsorbate system may serve as a new substrate. In the
following we will focus on new substrates with reduced substrate-adsorbate interaction.

4.2 Silicene on hydrogen-passivated Si(111) and

Ge(111) substrates

The adsorption of hydrogen converts the Si(111)2×1 or Ge(111)2×8 reconstructed surfaces
into Si(111):H-1×1 surfaces [170]. Strong group-IV-H-bonds are formed. The hydrogen
atoms saturate completely all dangling bonds of the top substrate atoms, while the 2D
hexagonal symmetry of the uppermost group-IV layer is conserved. The Si(111)1×1 surface
is perfectly lattice-matched to the Bravais lattice of 1×1 silicene. Despite the two Si atoms
in a (1×1) unit cell of silicene their remarkable buckling leads to a lattice constant that
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Chapter 4 Influence of substrates

deviates less than 1% from the 2D lattice constant of the surface (cf. Table 4.1). The

parameter freestanding Si(111):H Ge(111):H Cl/Si(111)1×1 CaF2(111)1×1
a (Å) 3.86 3.86 4.08 3.86 3.88
∆ (Å) 0.48 0.48 0.39 0.49 0.43
D (Å) – 2.68 2.01 3.12 2.70

vF (106 m/s) 0.48 0.46 0.42 0.48 0.49
Eg (meV) 0 56 66 3 52

Table 4.1: Lattice constant a and buckling parameter ∆ of freestanding and adsorbed
silicene from total-energy DFT calculations including vdW interactions. The distance D of
the bottom silicene atom and the hydrogen characterizes the adsorbate-substrate interaction.
In addition the most important parameters of the electronic structure near the K or K ′ point
of the BZ, the Fermi velocity vF and the energy gap Eg are listed.

deviation increases for the Ge(111)1×1 substrate to about 4%. Test calculations show,
however, that the Dirac cones of freestanding silicene remain up to a tensile strain of this
order of magnitude.

The structural optimization and total-energy calculations are performed within the DFT,
where the van der Waals (vdW) interaction is included according to Sec. 1.3.4. The
H-passivated-IV(111)1×1 and silicene-covered IV(111):H-1×1 surfaces are simulated by
repeated symmetric slabs (cf. 1.5) of 18 Si layers covered on both sides by hydrogen. On
each surface one silicene sheet is adsorbed. The vacuum between two slabs is increased to
20 Å. The BZ of the superlattice is sampled with a 16× 16× 1 k-point grid.

4.2.1 Structure and energetics

The structural parameters of the silicene overlayers are summarized in Table 4.1. The
vdW interaction slightly increases the buckling ∆ compared to the case without vdW (see
Table 2.1), while the lattice constant a decreases. Because of the slightly larger lattice
constant of the hexagonal Si(111)1×1 and Ge(111)1×1 lattice, the lattice constant of
the deposited silicene slightly increases while the buckling is reduced. These structural
changes are in qualitative agreement with a minor reduction of the sp3 hybridization in
the silicene overlayer.

One important question for the growth of silicene on top of the passivated IV(111):H-1×1
surfaces is the arrangement of Si atoms in silicene with respect to the H atoms and the
group-IV atoms in the uppermost atomic layers. The resulting atomic geometries in top,
side, and perspective view are displayed in Fig. 4.2(a), (b), and (c). The corresponding
energy landscape exhibits a pronounced minimum. Rotation of the Bravais lattice of silicene
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Figure 4.2: (a) Side view, (b) top view, and (c) perspective view on the relaxed silicene
adsorbate on the Si(111):H-1×1 surface. The Si (H) atoms are displayed as blue (red) spheres.
The distance D between adsorbate and surface and the lateral unit cell are indicated. (d)
Total energy per silicene atom of the silicene−Si(111):H-1×1 adsorbate system versus distance
D using the GGA-PBE and vdW functional.

and of the surface against each other are energetically less favorable. As a consequence
laterally two Si atoms in a silicene unit cell occupy symmetric positions at the long diagonal
of the rhombus representing a primitive 1×1 unit cell.

The stability of the silicene overlayer on the passivated substrates is ruled by the energy
gain due to adsorption. This energy is characterized in Fig. 4.2(d) as a function of the
silicene−substrate distance D, which is defined as vertical distance between the lowest Si
atoms in silicene and the H atoms of the substrate. Figure 4.2(d) clearly shows that the
silicene adsorbed on a passivated IV(111)1×1 surface is a vdW bonded system. Covalent
and ionic bonding to the substrate are negligible. The adsorption of the slightly strained
2D silicene crystal on a passivated Si(111) [Ge(111)] surface gains energy of 91 (93) meV per
silicon atom in the silicene overlayer. This value is large compared to the thermal energy
kBT = 25 meV at room temperature. Hence, the systems should be stable against thermal
fluctuations. To give each silicene atom more degrees of freedom when relaxing, also larger
unit cells, e.g. a 3× 3 reconstruction, are investigated. Even for small displacements of
some atoms from the pre-relaxed positions, all atoms move back into their equilibrium
positions obtained for the corresponding 1×1 unit cells. So the silicene overlayer keeps
intact despite more structural degrees of freedom.

Another important point concerns the stability of the silicene-covered IV(111):H surface
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Chapter 4 Influence of substrates

against the formation of a growing but still H-passivated (111) surface. The presence
of adatoms reduces the stability of the H-passivated surface. For that reason we have
performed additional total-energy calculations. Indeed, the H-passivated Si(111) surface
is the energetically most favorable state of the system. However, there exists an energy
barrier between the silicene-adsorbate and the passivated bulk-like system. In order to
approximate this barrier we simulate the breaking of single Si(ad)-H-Si(bulk) bonds into
[Si(ad)-H] and [Si(bulk)] subsystems on a 2×2 reconstructed Si(111):H surface. We obtain
an energy barrier of about 1 eV. Of course, it can only serve as a crude approximation.
Nevertheless, this result is supported by recent adsorption experiments. Hauch et al. [171]
showed experimentally that deposition of Co atoms on Si(111):H is possible without
replacing the H atoms.

4.2.2 Electronic properties

The band structure of the silicene-covered H-passivated Si(111)1×1 surface is displayed
in Fig. 4.3(a). The regions of the dense slab bands mainly indicate the projected bulk Si
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Figure 4.3: (a) Band structure of silicene adsorbed on Si(111):H-1×1 substrate. The silicene
character obtained by projections onto the silicene atoms is indicated by black dots with
varying intensity of the color. (b) Dirac cone-derived bands near the Fermi level and around
a K point. The red-dashed horizontal lines represent the Fermi level.

band structure. A Si-H-derived surface band only appears in the pocket of the projected
bulk Si band structure around a K point in the BZ in the valence bands near -8 eV.
The silicene-derived bands agree well with the band structure of freestanding silicene in
Fig. 2.4(b). This fact indicates the weak interaction between adsorbate and substrate,
which is mainly due to vdW interaction, and its associated structural changes. This weak
interaction is also visible in the band structure around K and the Fermi level in Fig. 4.3(b).
The Dirac cones are almost conserved but slightly deformed near K due to a gap opening
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4.3 Nonmetallic substrates for growth of silicene

of 56 meV or a somewhat larger value for the Ge(111):H-1×1 substrate (see Table 4.1). A
similar gap opening has been described for graphene on a substrate [172]. It is mainly due to
the interaction of the pz orbitals with the substrate which depends on the distance between
lower silicon atoms and surface. Together with the Fermi velocity vF it approximately
determines the conduction- and valence-band dispersion by

√
(Eg/2)2 + (~vF∆k)2. The

Fermi velocity also decreases with increasing gap size (cf. Table 4.1). We point out that the
Dirac cones still appear in the fundamental gap of the projected bulk band structure as a
consequence of the weak adsorbate-substrate interaction. The corresponding silicene states
are non-resonant or bound states compared to the electronic structure of the substrate.

In order to understand better the weak adsorbate-substrate interaction, in Fig. 4.4 we
display the difference of the adsorbate system and the sum of the densities computed
for the isolated silicene and substrate but keeping their atomic geometries. First of all,
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Figure 4.4: Difference of electron densities between
the adsorbate system and the isolated silicene and
substrate are displayed in a (110) plane of the cubic
substrate lattice. Electron accumulation (depletion)
is indicated by red (blue) regions. Si atoms are indi-
cated by large circles, while H atoms are represented
by black dots. The modifications are given in units
of 10−7 elementary charges/Å3. Chemical bonds are
highlighted with green solid lines.

the redistribution of electrons is extremely small in agreement with the finding that the
silicene overlayer is only vdW-bonded at the IV(111):H-1×1 substrates. The passivated
substrate looses electrons in the uppermost bonds. They mainly appear in front of the
H atoms. Extremely weak hydrogen-bridge bonds to the silicene may be also formed,
especially to the lower Si atoms in the buckled silicene. In addition, the silicene overlayer
is somewhat electrically polarized. A weak dipole layer is formed between the outward
and inward buckled silicene atoms. The corresponding electric field is mainly responsible
for the opening of the small gaps at the K points (cf. Table 4.1).

4.3 Nonmetallic substrates for growth of silicene

Here we investigate the growth of silicene on two novel substrates, Cl-passivated Si(111)1×1
and clean CaF2(111)1×1 surfaces as indicated in Fig. 4.5. Both substrates possess a
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(a) (b)

Figure 4.5: Silicene adsorbed on (a) Cl-passivated Si(111)1×1 and (b) clean CaF2(111)1×1
surface. Si atoms: blue, Cl: green, Ca: yellow, F: red.

fundamental bandgap which is advantageous for the possible observation of Dirac cones
of silicene overlayer. The Cl-passivated Si(111)1×1 and the CaF2(111)1×1 surfaces are
simulated by repeated symmetric slabs of 18 and 24 atomic layers respectively. In the Si
case both sides are covered by chlorine. In the CaF2(111) slabs, fluorine layers form the
surfaces. Additionally, on each slab surface one silicene sheet is adsorbed. The vacuum
between two slabs is chosen to be 20 Å. The slightly biaxially strained silicene, the chlorine
layer, and the uppermost atomic layers in the slab are allowed to relax. The BZ is
sampled with a 16× 16× 1 k-point grid. Many different starting geometries with different
displacements of the strained silicene overlayer relative to the positions of the Cl or F
surface atoms are investigated.

4.3.1 The substrates

Upon reaction of Cl atoms with the cleavage Si(111)7×7 surface and subsequent repeated
annealing, the favorable bulk like 1 × 1 surface appears [173]. A stable monolayer of
Cl− ions covers the Si(111)1×1 surface with almost Si+ ions in the topmost atomic layer.
The projected fundamental gap with a minimum of 1.1 eV is free of surface states. The
Cl/Si(111)1×1 surface is indeed passivated, while the 2D hexagonal symmetry of the
uppermost Si layer is conserved. The Si(111)1×1 surface is perfectly lattice-matched to the
Bravais lattice of the 1×1 silicene sheet with a deviation of only 0.1% (see Table 4.1).

The natural cleavage CaF2(111)1×1 surface is terminated by a complete triple layer of
F−-Ca2+-F− monoatomic layers with a topmost F− layer for electrostatic reasons [174]. The
latter one consists of a trigonal arrangement of F− ions spaced by 3.88 Å (see Table 4.1),
that leads to a lattice mismatch to silicene of 0.5%. Because of the inertness of the
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CaF2(111)1×1 surface it is suggested as a convenient substrate for a vdW epitaxy of
almost strain-free overlayers [175]. The completely filled outermost electron shell of the
F− ions makes the uppermost surface triple layer inert. The silicene atoms should not
chemically react with an intact triple layer surface, similar to the behavior of oxygen
atoms [176].

4.3.2 Structure and energetics

In the resulting minimum-energy structure of silicene on Cl/Si(111)1×1 the two silicene
atoms in the unit cell occupy high-symmetric positions at the long diagonal of the rhombus
but representing the primitive 1×1 surface cell. The bucking amplitude ∆ of the silicene
sheet is little influenced. The stable position of the sheet in a distance of D = 3.12 Å (see
Table 4.1) is mainly caused by the vdW dispersion forces. Despite the large distance, the
binding energy EB = 215meV/cell is larger than for silicene on Si(111):H-1×1 because
of the increased dipole moment of the Cl−-Si+ bonds. This value is large compared to
the thermal energy kBT = 25meV at room temperature. There is an energy barrier
between the silicene adsorbate system (configuration 0) compared to the Cl-passivated
Si(111)1×1 substrate with two more Si layers (configuration 1) of about 4.1 eV/1×1 cell.
To approximate this barrier we displace the two Si atoms of silicene and the Cl atom in
18 steps toward configuration 1 on condition that the distance of two atoms never comes
below the sum of the covalent radii. Of course, the calculated energy barrier is very high
due to the constraint of a 1×1, but it clearly shows that the silicene configuration on an
intact Cl-passivated Si(111) surface represents a true local minimum on the total-energy
surface, and that this configuration should be stable against thermal fluctuations.

The results for a F−-terminated CaF2(111)1×1 substrate are rather similar. However, as
a consequence of the slightly increased biaxial strain, the buckling amplitude of silicene
is reduced (see Table 4.1). The distance D = 2.70 Å between overlayer and substrate is
somewhat smaller than in the Cl/Si(111)1×1 case but still indicates an influence of the
vdW bonding.

To investigate the influence of the 1×1 unit-cell constraint, we have also studied 3×3
lateral unit cells for both substrates, Cl/Si(111) and CaF2(111). Despite significant initial
displacements, the silicon overlayers relax back into the silicene geometry optimized within
1×1 cells. This result supports the statement of a stable configuration.

The band structures of the silicene-covered (a) Cl-passivated Si(111) surface and (b)
CaF2(111) substrate are displayed in Fig. 4.6. The regions of the dense slab bands mainly
indicate the projected bulk (a) Si or (b) CaF2 band structures. The striking difference
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Figure 4.6: Band structures of silicene adsorbed on (a) Cl/Si(111)1×1 and (b)
CaF2(111)1×1, respectively. The silicene character obtained by projection onto corresponding
Si atoms is indicated by black dots with varying intensity of color. The red-dashed horizontal
line represents the Fermi level.

in the chemical bonding of the substrates are indicated by the completely different band
widths and energy gaps. The gaps are free of surface states. Such states associated with
Cl-Si bonds near K and M only appear in the pockets of the projected valence bands. The
electronic-structure modifications due to the silicene overlayer are indicated by additional
bands whose chemical nature has been determined by projections onto the silicene atoms.
As a consequence of the weak vdW bonding one observes the almost unchanged band
structure of freestanding silicene. This is especially true for the Dirac cones around K

within the fundamental gaps. The corresponding band states are still derived mainly from
Si pz orbitals.

The weak vdW bonding only slightly modifies the bands near the K point. The Fermi
velocities of the Dirac cones are conserved (see Table 4.1). In the case of the Cl/Si(111)
substrate, practically no gap is opened. Only the Fermi level is shifted by 0.2 eV toward
lower energies, i.e., holes are created in the π-state-derived cone. The projected bulk
conduction band minima near M indicate a small electron transfer into the substrate. On
CaF2(111) the silicene overlayer opens a small gap between the π∗ and π cones. The Fermi
energy remains in the gap center.

The outstanding properties known from freestanding silicene are preserved for the slab
system, because of the weak bonding. We suggest intensive experimental studies of
the deposition of silicene on the investigated nonmetallic substrates. In contrast to the
silicene/Ag(111) adsorbate system with strong chemical bonds, the electronic structure of
silicene should be detectable within the fundamental gaps of the studied substrates.
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We have studied the structural, electronic and optical properties of the 2D group-IV
honeycomb crystals graphene, silicene, germanene and stanene by ab-initio calculations
based on DFT within the independent (quasi-)particle approach. The calculations of
the atomic structure of silicene, germanene and stanene reveals a tendency to partly sp3

hybridization leading to slightly buckled structures, whereas graphene remains atomically
flat due to sp2 hybridization. We determined the full electronic structure of the crystal
sheets by means of semilocal and nonlocal exchange-correlation functionals. Surprisingly,
despite buckling all crystals share very similar electronic properties around the Fermi
level. In particular, without spin-orbit coupling (SOC), they can be considered as zero-gap
semiconductors with massless Dirac fermions appearing in the vicinity of the K and
K ′ points in the electronic band structure. Taking also into account (approximate)
quasiparticle effects by means of the HSE06 functional we obtained the Fermi velocity
of the isotropic Dirac cones in good agreement with experimental data. For silicene,
germanene and stanene the increasing importance of spin-orbit coupling was pointed out,
which introduces an electronic bandgap at the Dirac points and consequently, effectively
turns these crystals into insulators. The bandgap increases along the row C→Si→Ge→Sn
and is larger in HSE than that obtained with standard DFT functionals.

We have studied the real and imaginary part of the frequency-dependent optical conduc-
tivity of the 2D honeycomb crystals. Special care was taken to compute converged spectra,
in particular in the long-wavelength limit, with respect to the sampling of the Brillouin
zone. In this limit we found an optical absorbance of πα as predicted for massless Dirac
fermions in graphene. This result, assuming no SOC, is explained analytically by the
isotropic linear band structure around the K (or K ′) points and optical interband matrix
elements at these points which can be universally related to the Fermi velocity vF of the
2D material. This result is universal for all group-IV crystals independent of vF, the
hybridization, the sheet buckling, the applied gauge of the electromagnetic field, and the
exchange-correlation functional. For higher frequencies the absorbance spectra start to
deviate significantly with the group-IV material. While both many-body and relativistic
effects modify the electronic structure near the Dirac points, the modification of the optical
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absorbance is restricted to a narrow frequency region near the SOC-induced fundamental
bandgap. The finiteness of the bandgap gives rise to a drastic modification of the optical
transition matrix elements for small photon energies and, hence, close to a Dirac point. No
absorption happens for ~ω < Eg, while the absorbance A(ω = Eg/~ + 0+) = 2πα near the
gap is increased. In the frequency region between the gap and optical interband energies
the absorbance value A(ω) = πα is recovered. The results are independent of the group-IV
honeycomb structure, but more pronounced for heavier elements.

The influence of an infinitely thin 2D crystal on the frequency-dependent optical reflectance,
transmittance, and absorbance was investigated by means of the 2D sheet conductivity. For
freestanding honeycomb crystals the reflectance is vanishingly small outside the resonance
frequencies. Despite the small layer thickness the absorption of such a 2D crystal is
not vanishing. Rather, near the optical resonances the absorbance A(ω) approaches
large values, one order of magnitude larger than the approximate zero-frequency value
A(ω) = πα. The impact of a finite width by means of the full 3D conductivity tensor is
discussed. It is shown to which extend the approximation of an infinitely thin conducting
sheet holds for the description of the optical properties of the 2D sheet crystals in terms
of the wavelength of the incident light and the thickness of the sheet.

We implemented two methods based on the wave functions obtained within the DFT
scheme that allowes the classification of arbitrary 2D and 3D insulators into trivial and
topological insulators, where the latter one give rise to the quantum spin-Hall effect. We
have shown, that the group-IV honeycomb crystals silicene, germanene and stanene are
indeed topological insulators. By applying an external electric field perpendicular to the
2D sheet plane we have shown, that a topological phase transition into a trivial insulator
occurs above a critical field strength, that depends on the 2D crystal.

We have studied the edge states of germanene nanoribbons with zigzag and armchair
edges. We have discussed the spin texture and the band dispersions of the resulting band
states, especially those of the edge states. It has been shown that there exist gapless
parabolic bands with opposite spin texture near the Fermi level and the X points of the
Brillouin zone boundary. The corresponding wave functions are localized at the edges of
the nonmagnetic nanoribbon. The spin-polarized parabolas undergo a Rashba-like band
splitting. In contrast to the insulating germanene sheet, the nonmagnetic nanoribbon
is metallic. However, the energetically favored ground-state is antiferromagnetic due to
an opening of a bandgap between the surface states. Consequently, the ground state of
the nanoribbon becomes insulating. Our results clearly demonstrate that the picture of
the topological character of such nanoribbons predicted by simpler tight-binding models
has to be modified. Similar discrepancies between the model and the self-consistent
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ab-initio approach are also found for the influence of an external vertical electric field on
the topological character. Whereas for infinite 2D germanene sheets we state agreement
concerning the phase transition between a TI and a trivial band insulator, this is not the
case for the ribbons. Therefore, we also studied halogenated germanene, which exhibits a
increased SOC-induced bandgap compared to pristine germanene. Halogenated germanene
was identified as a topological insulator with promising edge states, which may give rise to
possible applications in spintronics.

In order to simulate a more realistic experimental situation, also silicene on Ag(111)
substrates has been systematically investigated by DFT with van der Waals interaction
for various Si coverages, biaxial strains, and translational symmetries resulting in five
different adsorbates. The atomic structure and the band structures for the silicene-silver
adsorbate systems generally indicate a strong chemical interaction between silicene atom
and the atoms in the silver surface. Therefore, we focused our attention on the insulating
substrates Si(111) passivated with hydrogen and chlorine, as well as CaF2 with strongly
reduced adsorbate-substrate interaction. These systems are stabilized by van der Waals
interactions. The associated weak bonding has only a minor influence on the electronic
structure of the adsorbed silicene. Only very small gaps are opened which even slightly
deform the Dirac cones at the corner points of the Brillouin zone. In contrast to the
Si/Ag(111) adsorbate system with strong chemical bonds, here the overlayers represent
silicene also from the point of their electronic properties.

Concluding, the two-dimensional sheet crystals that once began with the exfoliation of a
single graphene sheet, opened an entirely new field of physics about the two-dimensional
electron gases in solid state systems. The peculiar electronic properties in these ultra thin
crystals give rise to a further miniaturization of electronic circuits to the nanoscale, while
increasing the efficiency and speed of electronic components. The topological character of
the helical edge states of some 2D crystals may lead also to potential applications in the
strongly developing field of spintronics.

The optical properties of 2D sheet crystals are not yet fully understood and offer a huge
potential for further improvement. An increase of the optical absorption of germanene
and stanene due to the impact of the SOC is not confirmed experimentally since both
crystals have not been synthesized so far. We hope, that the increasing interest in stanene
will lead to its realization within the next few years. In particular the question arises, if
the tensorial character of the conductivity does affect the optical properties in an optical
ellipsometry experiment. Therefore, we suggest the experimental investigation of reflection,
transmission and absorption at oblique incidence with polarized light at high photon
energies for investigating this effect.
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Another interesting question concerns the impact of the topological character of the 2D
sheet crystal on its optical conductivity. If the strength of an external electric field
applied perpendicular to the sheet plane is tuned in such a way, that the SOC-induced
electronic bandgap is equivalent to the field-free case, is there any signature in the optical
conductivity in the vicinity of the fundamental bandgap? Calculations on e.g. germanene
could probably answer the question and lead to an in-depth understanding based on the
optical matrix elements and the symmetry of the contributing wave functions.

We also hope, that our suggestions of substrates for the growth of silicene and germanene
by means of van der Waals epitaxy will help also to find proper substrates for the growth
of other 2D crystals. Combined with first-principles calculations it will be possible to
determine precisely the atomic structure and the corresponding electronic properties.
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Thesen

1. Die Ladungsträger der zweidimensionalen (2D) Gruppe-IV-Honigwabenkristalle Graphene,
Silicene, Germanene und Stanene verhalten sich näherungsweise wie masselose Spin-1/2
Teilchen in Dirac Bändern nahe der K- und K ′-Punkte der hexagonalen Brillouin-Zone.

2. Die strukturellen, elektronischen und optischen Eigenschaften lassen sich mit Hilfe der
Dichtefunktionaltheorie (DFT) sehr gut beschreiben und liefern im Vergleich mit Experi-
menten erstaunlich genaue Vorhersagen. Quasiteilchenkorrekturen können näherungsweise
mit Hilfe eines Hybridfunktionals simuliert werden.

3. Die optische Reflexion, Transmission und Absorption zweidimensionaler Kristalle hängt
allein von den Komponenten des i.A. anisotropen, frequenzabhängigen Leitfähigkeitsten-
sors ab. Dieser kann im Rahmen der unabhängigen Quasiteilchenapproximation sehr
genau bestimmt werden.

4. Ohne Berücksichtigung der Spin-Bahn-Kopplung zeigt sich für alle Gruppe-IV-Honig-
wabenkristalle eine universelle Infrarotabsorption von 2.3% völlig unabhängig von dem
Buckling der 2D Kristalle, ihrer sp2/sp3-Bindung, der elektronischen Struktur, und dem
verwendeten Austausch-Korrelations-Potential. Das Resultat ist gültig über einen weiten
Frequenzbereich, der aber entlang der Reihe C→Si→Ge→Sn reduziert wird.

5. Unter Berücksichtigung der Spin-Bahn-Kopplung kann sowohl numerisch als auch ana-
lytisch gezeigt werden, dass eine Absorption von 4.6% in der Nähe der fundamentalen
Absorptionskante erreicht werden kann.

6. Silicene, Germanene und Stanene gehören zur Gruppe der topologischen Isolatoren. Die
zugehörige topologische Invariante (Z2 Index) kann direkt aus der mit Spin-Bahn Wech-
selwirkung berechneten Bandstrukturen über die Methode der Evolution von Wannier
Ladungszentren bestimmt werden. Unter dem Einfluss eines homogenen elektrischen
Feldes zeigt sich ein Phasenübergang zu einem trivialen Isolator.

7. An der Oberfläche der entsprechenden Nanoribbons entstehen metallische Oberflächen-
zustände, die allerdings nicht die erwartete lineare Dispersion eines topologischen Zus-
tandes zeigen, sondern durch den Rashba-Effekt modifiziert sind.

8. Die Funktionalisierung der 2D-Honigwabenkristalle mit Halogeniden führt zu idealen
topologischen Isolatoren, sofern die entstehende Bandlücke klein ist.

9. Im Gegensatz zu Graphit existiert in der Natur kein vergleichbarer geschichteter Kristall
auf Siliziumbasis. Die Herstellung von Silicene ist daher eine Herausforderung. Epitaktis-
ches Wachstum von Silicene auf Ag(111) zerstört die Symmetrie des Honigwabenkristalls
und damit auch dessen einzigartige Eigenschaften. Neue gitterangepasste isolierende
Substrate mit schwacher van der Waals Bindung bieten eine alternative Möglichkeit des
epitaktischen Wachstums von Silicene.
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