
Technische Universität Ilmenau

Fakultät für Mathematik und Naturwissenschaften
Arbeitsgruppe Numerische Mathematik und Infor-

mationsverarbeitung

Classification of Lattice Group Models, High Order

Discretizations of Boltzmann’s Collision Operator

and Parallelization

Dissertation zur Erlangung des akademischen Grades Dr. rer. nat.

Stefan Brechtken

betreut von
Prof. Dr. Hans Babovsky

Ilmenau, 21.11.2014

urn:nbn:de:gbv:ilm1-2015000223





i

Danksagung

An dieser Stelle möchte ich mich bei allen bedanken, die mich während der Anfer-
tigung dieser Arbeit unterstützt haben. Insbesondere möchte ich Prof. Dr. Hans
Babovsky für die Ermöglichung dieser Arbeit sowie viele hilfreiche Diskussionen und
Anmerkungen danken.

Weiterhin danke ich allen, die sich in den letzten Jahren an einer wissenschaftlichen
Diskussion mit mir beteiligten, sei es auf einer Tagung oder einer entspannenden Tasse
Kaffee gewesen. Besonders erwähnen möchte ich dabei meine Freunde und Kollegen
Thomas Berger, Leslie Leben, Thomas Schröder und Lars Winterfeld.

Außerdem bedanke ich mich bei der Deutschen Forschungsgemeinschaft für die
Ermöglichung dieser Arbeit durch die Finanzierung meiner Stelle.

Schließlich möchte ich meiner Mutter danken, die mich, so lange ich denken kann, bei
all meinen Zielsetzungen unterstützt hat.





iii

Abstract

In this thesis we are interested in so called lattice group models (LGpMs). This is a
class of deterministic schemes which seem to be somehow linked to discrete velocity
models (DVMs). Unfortunately there exists no convergence proof for the discretiza-
tion of the collision operator through the LGpM. Additionally it is not clear if the
convergence proofs for discrete velocity models (DVMs) apply to LGpMs, because
there exists no exact classification of the LGpMs within the DVM framework. This
work addresses these issues and gives a scheme for constructing discretizations that
reach arbitrary high convergence orders (asymptotically) as well as a classification of
the LGpMs within the DVM framework. The logically following step is a look at a
practical implementation and numerical test of the resulting discretizations in order to
numerically verify the theoretic convergence results as well as a closer look at the com-
putational complexity. Finally we investigate the parallelization of a general LGpM
solver. Here we pay special attention to the question whether it is possible to obtain
a significantly better price to performance ratio when using graphics processing units
(GPUs).





Contents v

Contents

1 Introduction 1

2 The Lattice Group Model 5

2.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 The Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Discrete Velocity Models . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Lattice Group Models . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Consistency 31

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Two dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Three dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 High order schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4 Numerical analysis 115

4.1 Minimal velocity space sizes . . . . . . . . . . . . . . . . . . . . . . . . 115
4.2 Implementation and test of the discretization . . . . . . . . . . . . . . . 120

4.2.1 Adjustments of the discretization . . . . . . . . . . . . . . . . . 120
4.2.2 Numerical validation . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Implementation and high performance computing 133

5.1 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Technical basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 Algorithm - an overview . . . . . . . . . . . . . . . . . . . . . . 136
5.2.2 Processor Architecture . . . . . . . . . . . . . . . . . . . . . . . 137
5.2.3 Additional Optimizations . . . . . . . . . . . . . . . . . . . . . 140

5.3 Parallelization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A Appendix 145

A.1 Algorithms belonging to chapter 2 . . . . . . . . . . . . . . . . . . . . . 145
A.2 Wall-times for benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 147
A.3 Methods used for performance analysis . . . . . . . . . . . . . . . . . . 147

References 149

List of Symbols 153





1

1 Introduction

The Boltzmann equation is a basic integro-differential equation in the kinetic gas
theory. It mainly describes the statistic distribution of particles in a medium. This
equation is primarily used if the mean free path of the particles becomes large compared
to the characteristic length of the system under consideration. Or in other words when
we look at the dynamic of rarefied gases. One typically uses the simpler equations
of continuum mechanics if this condition is not met, for example the Navier-Stokes
equations. On the other hand there needs to be a sufficient amount of particles in
a given volume in order to do the statistics which give the Boltzmann equation its
validity. If this condition is not met one comes into the field of molecular dynamics
where one begins to describe every single particle and their interactions. Due to
the position of the Boltzmann equation in between the macroscopic (Navier Stokes)
and the microscopic (molecular dynamics) regime this equation is called a mesoscopic
equation. In the case of a mono atomic gas this partial integro-differential equation is
given by

(∂t+v·∇x)f(x, v, t) = α

∫

Rn

∫

Sn−1

[
f
(
v′
)
f
(
w′)− f

(
v
)
f
(
w
)]
k (v,w, η) dηdw, n = 2, 3 .

The right hand side is generally called Boltzmann collision operator, collision integral,
collision operator or simply integral operator and we are mainly interested in the ap-
proximation of this operator.

The two main categories for numerical approaches aiming at solving the Boltzmann
equation are probabilistic and deterministic schemes. The most successful approach
(measured by the number of scientists and engineers using it) seems to be based on
probabilistic Monte Carlo techniques for the approximation of the integral operator
leading to direct simulation Monte Carlo methods (DSMC). We on the other hand
are only interested in deterministic schemes. On the deterministic side of things are
at least three approaches that can be considered as deterministic approximations of
the Boltzmann equation. The first one is based on special collision models such as
Bhatnagar-Gross-Krook (BGK) together with the discretization of the velocity space,
which lead to lattice Boltzmann methods (LBM). These ones can hardly be consid-
ered as competitors to the other methods, because here it is typically assumed that
the liquid is sufficiently dense and in equilibrium so that these discretizations aim
at an approximation of the Navier-Stokes equations putting them more in the region
of continuum mechanics. Due to the low computational costs and the wide field of
applications these approaches have proven their potential in computational physics,
for example see [SBH91,PDCD93,TR04,Raa04]. The second one relies on a Fourier
transform (also called spectral methods) of the collision integral (or parts of it) in order
to approximate the collision operator in a deterministic way with high accuracy and



2 1 Introduction

speed, see [BR97,BR00,IR02,FR03,FMP06]. The third one seems to be the most pop-
ular deterministic scheme and is called discrete velocity scheme (DVM). Schemes that
are classified as DVMs do not have a common approach to the discretization problem,
but they have the property that the discretization result can be represented as a stan-
dard DVM as given in a corresponding survey article [PI88]. And due to a substantial
theory developed around DVMs one has a number of tools to verify if a discretization
in DVM form possesses specific properties. A non exhaustive list of publications in this
field (often coupled with specific discretization approaches and convergence proofs) is
[CGL03,BG03,PSB97,FKW06,BV12,RS94,Wag95,Bue96,PS98,PH99,MS00]. There
also exist hybrid schemes between the probabilistic and the deterministic schemes
where the randomness can be freely chosen [IW93] which also led to developments in
stochastic particle schemes [RW98,RSW98,RW07].

The main advantage of probabilistic schemes is the low computational complexity
(probably the reason for its domination in the field of rarefied gases), the main disad-
vantage are solution fluctuations and accurate error estimations which originate in the
use of random sequences. The deterministic schemes on the other hand have typically
a high computational complexity and mixed results concerning the convergence order
of specific discretizations. Until now there seem to be proofs for convergence orders
between 1

14
in [BPS95] (proofs in [PSB97]) and 3 in [FMP06] for approximations of

the collision integral. To the best of our knowledge no one tried to construct a class
of discretizations of the collision integral that can theoretically reach arbitrary high
convergence orders. This is possibly linked to a number of additional properties a
discretization must possess in order to reflect the basic properties of the continuous
collision integral. The main drawback of the spectral methods are typically problems
related to the non conservation of quantities which should be conserved according to
the continuous problem. Even the newest publications in this field [FMP06] state that
a trade-off between computational complexity and exactness in the conservation laws
seems to be non-avoidable, at least when looking at very fast spectral algorithms for the
calculation of the collision integral. When looking at spectral algorithms with a mod-
erate computational complexity Bobylev and Rjasanov were able to construct a cor-
rection in order to achieve the correct conservation of macroscopic quantities [BR00].

In this work we are interested in so called lattice group models (LGpM) which were
introduced by Babovsky in [Bab08,Bab09]. This is a class of deterministic schemes
which seem to be somehow linked to DVMs. Further development of these LGpMs
was done by Babovsky in [Bab11a,Bab11b,Bab12,Bab14]. Unfortunately there exists
no convergence proof for the discretization of the collision operator through the LGpM
(via kinetic models on integer lattices derived from the automorphism group of the lat-
tice). Additionally it is not clear if the convergence proofs for discrete velocity models
(DVMs) apply to LGpMs, because there exists no exact classification of the LGpMs
within the DVM framework. This work addresses these issues and gives a scheme for
constructing discretizations that reach arbitrary high convergence orders (asymptoti-



3

cally). In chapter 2 we aim at giving a short introduction or repetition of the basics
around DVMs and LGpMs as well as a classification of the LGpMs within the DVM
framework. In chapter 3 we begin with the construction of basic discretizations in two
and three dimensions together with convergence proofs and their representation in the
DVM and the LGpM framework. The last part of chapter 3 is devoted to a gener-
alization of this discretization approach in order to reach arbitrary high convergence
orders (at least asymptotically). The following chapter 4 aims at a practical imple-
mentation and numerical test of the resulting discretizations in order to numerically
verify the theoretic convergence results. Here we apply and justify some final tweaks of
the discretization in order to simplify the implementation and increase the numerical
stability of the discretizations. Moreover we take a closer look at the computational
complexity and the minimal size of the velocity space in order to be able to apply
our discretization schemes. Finally we devote chapter 5 to our approach of a paral-
lelization of a general LGpM solver, general in the sense that simple modifications
lead to a solver that can apply any discretization fitting into the scheme of DVMs, as
LGpMs generally do - see chapter 2.2. Here we pay special attention to the question
whether it is possible to obtain a significantly better price to performance ratio when
using graphics processing units (GPUs) that justifies the additional time expenditure
needed for a GPU implementation.



4 1 Introduction



5

2 The Lattice Group Model

The first part of this chapter is focused on giving a short repetition of the basic concepts
around the Boltzmann equation, DVMs and LGpMs. The second part aims at creating
a bridge between the LGpM developed by Babovsky, first published in [Bab08,Bab09],
and the general DVM in which the models and discretizations of most scientists in
the field of deterministic discretizations fit (for example [PI88, RS94, Bue96, BPS95,
PS98,PH99,MS00]). At this point we strongly point at the necessity to suppress the
majority of the dependencies in the formulas for the sake of readability. So at every
point (especially in section 3) the reader is encouraged to take a break and think about
the dependencies or to create a record about the dependency structure.

2.1 Basics

This section restates some well known facts about the Boltzmann equation, DVMs
and LGpMs with corresponding references. Whenever the dimension n of the spaces
and objects occurs it can be treated as 2 or 3, if not specified otherwise.

2.1.1 The Boltzmann equation

The definitions and results given here are well known and can be found in [CIP94,
chapter 2,3]. The Boltzmann equation reads as:

(∂t + v · ∇x)f(x, v, t) = I[f ](x, v, t), (x, v, t) ∈ D ⊂ Rn
x × Rn

v × Rt , (2.1.1)

where f = f(x, v, t) is the distribution function of a gas and depends on the velocity v,
space x and time t variables. I[f ] is the collision operator and in the case of a rarefied
mono-atomic gas it can be written as

I[f ](x, v, t) := α

∫

Rn

∫

Sn−1

[
f
(
x, v′, t

)
f
(
x,w′, t

)
− f

(
x, v, t

)
f
(
x,w, t

)]
k (v,w, η) dη dw .

Here v,w denote the pre-collision, v′,w′ the post-collision velocities. The conservation
of momentum (v′ + w′ = v + w) and energy (v′2 + w′2 = v2 + w2) in an elastic two
particle collision give the following formulas for v′,w′:

v′(v,w, η) = v+ 〈−→vw, η〉η, w′(v,w, η) = w− 〈−→vw, η〉η .

Definition 2.1.1.1 (Collision invariant)
We call a local integrable function Φ : Rn

v → R collision invariant of the operator I iff

∀f ∈ L1(Rn
v → R) ∧ Φ · f is integrable :

∫

Rn
Φ(v)I[f ](v) dv = 0 .



6 2 The Lattice Group Model

Lemma 2.1.1.2 (Collision invariant)
An integrable function Φ ∈ L1

loc is a collision invariant, iff

∀v,w ∈ Rn
v ∧ ∀η ∈ Sn−1 : Φ(v) + Φ(w) = Φ

(
v′
)
+ Φ

(
w′) .

Remark 2.1.1.3 (Conserved quantities)
If we multiply the Boltzmann equation with a collision invariant and integrate over
the velocity space we get

∂t

∫

Rn
Φ(v)f(x, v, t) dv +∇x

∫

Rn
vΦ(v)f(x, v, t) dv = 0 .

Looking at a solution of the Boltzmann equation that does not depend on the space
variable, we get a time independent operator

g : L1
loc(R

n
v → R)× Rn

x × R+
t ∪{0} → R, (Φ, x, t) 7→

∫

Rn
Φ(v)f(x, v, t) dv = const .

This operator maps every collision invariant to a corresponding conserved physical
quantity.

Theorem 2.1.1.4 (Collision invariant)
A function Φ ∈ C0(Rn

v → R) is a collision invariant iff it can be written as

Φ(v) = a + 〈b, v〉+ c‖v‖2 , a, c ∈ R, b ∈ Rn.

Remark 2.1.1.5 (Space of collision invariants)
It follows from the last theorem that the functions

Φ0 : v 7→ 1,Φi : v 7→ vi,Φn+1 : v 7→ 1

2
‖v‖2, v ∈ Rn

v , i ∈ {1, . . . , n} ,

are the base vectors of the space of all collision invariants. They correspond to the
conserved quantities mass, momentum components and kinetic energy.

Now we take a brief look at the equilibrium solutions of the Boltzmann equation and
their connection to collision invariants.

Definition 2.1.1.6 (Equilibrium solution, H-operator)

(i) Let f be a function with

f ∈ C := {f |f ∈ L1(Rn
v → R) ∩ C0(Rn

v → R)} .

Such a function is an equilibrium solution iff

f > 0 and I[f ] ≡ 0 .



2.1 Basics 7

(ii) The H-functional is defined as

H : C → R, f 7→
∫

Rn
ln
(
f(v)

)
f(v) dv .

Theorem 2.1.1.7 (Equilibrium solution)
f : Rn

v → R+∪{0} is an equilibrium solution iff there exist a, c ∈ R, b ∈ Rn with

∀ v ∈ Rn
v : f(v) = exp(a + 〈b, v〉+ c‖v‖2) .

Remark 2.1.1.8

(i) Looking at 2.1.1.4 we see, that every equilibrium solution can be written as
f(v) = exp(Φ(v)) with the corresponding collision invariant Φ.

(ii) The above theorem implies that every equilibrium solution can be written as

f(v) =M [ρ, v, T ](v) :=
ρ

(2πT )
n
2

exp

(
(v− v)2

2T

)

.

These functions are called Maxwell functions and the values ρ, v, T can be cal-
culated through

ρ =

∫

Rn
M [ρ, v, T ](v)dnv

ρ · v =

∫

Rn
v ·M [ρ, v, T ](v)dnv

ρ · T =
1

n

∫

Rn
‖v− v‖22 ·M [ρ, v, T ](v)dnv ,

Here ρ can be understood as the (mass) density, v as the flow velocity, and T
as the temperature of the maxwell distribution. The following theorem shows
that solutions of the Boltzmann equation can’t increase their distance to the
equilibrium (Maxwell) solution.

Theorem 2.1.1.9 (H - theorem)
Looking at the space homogeneous case and assuming that the collision kernel satisfies
k > 0 almost everywhere we get

∂H[f ]

∂t
≤ 0,

∂H[f ]

∂t
≡ 0 ⇐⇒ f is a Maxwell function .

The last thing we want to state is the calculation of the macroscopic values through
the use of the density function f .



8 2 The Lattice Group Model

Definition 2.1.1.10 (Macroscopic Values)
Let f ∈ L1(Rn

v → R+) be a nonnegative function. We can calculate the following
macroscopic values :

• the mass ρ, the momentum m = (mi)
n
i=1, the kinetic energy E

ρ :=

∫

Rn
f(v) dv, mi :=

∫

Rn
vif(v) dv, E :=

1

2

∫

Rn
‖v‖22f(v) dv ,

• the stress tensor S = (sij)
n
i,j=1

sij :=

∫

Rn
vivjf(v) dv−

1

ρ
mimj ,

• the hydrostatic pressure p

p :=
1

n
· tr(S) = 1

n
·

n∑

i=1

sii ,

• and the temperature T

T :=
p

ρ
.

The first three macroscopic values correspond to the basic conserved quantities /
collision invariants, compare 2.1.1.3, 2.1.1.5 .

2.1.2 Discrete Velocity Models

Discrete velocity models typically aim at a classical deterministic discretization of the
collision operator through the discretization of the velocity space by using transforma-
tions and Newton-Cotes formulas or similar integral approximations. So in any case a
discretization of the velocity space is needed, in the following thesis we will only look
at a uniform discretization of the form

V := {v ∈ Rn
v |vj ∈ ∆v · Z, j = 1, ..., n, }, ∆v ∈ R+ .

To avoid the problems that are associated with an infinite velocity space (and not
topic of this work), we will restrict ourselves to the finite subset

V := V ∩Br(0), r ∈ R+ .

We also need the corresponding index set MV to address single velocities. Now almost
all discrete velocity discretizations of the Boltzmann equation 2.1.1 can be rewritten
in the form of general DVMs (cp. [PI88]).



2.1 Basics 9

(∂t + vi · ∇x)fi(x, t) =
∑

j,k,l∈MV

Ak,li,j
(
fk(x, t)fl(x, t)− fi(x, t)fj(x, t)

)
(2.1.2)

=: Ji[f ](x, t), i ∈ {1, . . . , |V|} .

The standard way in referring to a specific class of DVMs is to give the dimensionality
n and the number of velocities m in the form nDm. To name the minimal requirements
a DVM should fulfill we need some more definitions, in fact the discrete versions of
2.1.1.1, 2.1.1.6, 2.1.1.9, 2.1.1.10.

Definition 2.1.2.1 (Collision invariant, equilibrium, macroscopic values)

(i) We call a function Φ : V 7→ R a collision invariant iff
∑

v∈V
Φ(v)J [f ](v) = 0. We

denote the space of collision invariants with I.

(ii) An equilibrium solution can be characterized through J[f ] =






J1[f ]
...

J|V|[f ]




 = 0

(iii) The macroscopic values can be obtained through

– mass ρ, momentum m = (mi)
2
i=1, kinetic energy E

ρ :=
∑

v∈V
f(v), mi :=

∑

v∈V
vif(v), E :=

1

2

∑

v∈V
‖v‖22f(v),

– stress tensor S = (sij)
2
i,j=1, with

sij :=
∑

v∈V
vivjf(v)−

1

ρ
mimj ,

– hydrostatic pressure

p :=
1

2
· tr(S) = 1

2
·

2∑

i=1

sii ,

– temperature

T :=
p

ρ
.

Definition 2.1.2.2 (H - operator)
The discrete H - functional is defined as

H : {f : V → R+
{0}} → R, f 7→

∑

v∈V
f(v) ln(f(v)) .



10 2 The Lattice Group Model

Remark 2.1.2.3 (H - theorem)
Let f : V → R+

{0}, then the discrete H - theorem is

∂H [f ]

∂t
≤ 0 ,

and
∂H [f ]

∂t
≡ 0 ⇐⇒ f is an equilibrium solution.

Remark 2.1.2.4 (Minimal requirements for DVMs)
It is well known that DVMs should obey some minimal requirements before they can
be considered for serious applications. The most common requirements are :

(i) Properties of the Operator A :

a) All allowed particle interactions obey the momentum and energy conserva-
tion: vi + vj 6= vk + vl ∨ v2i + v2j 6= v2k + v2l =⇒ Ak,li,j = 0. And Ak,li,j ≥ 0.

b) Ak,li,j = Al,kj,i = Ai,jk,l, from these symmetries follows the alternative character-
ization of collisional invariants:

Φ is collisional invariant

⇐⇒∀(i, j, k, l) : Ak,li,j 6= 0 ⇒ Φ(vi) + Φ(vj) = Φ(vk) + Φ(vl) .

From this follows that the space of collisional invariants I contains at least
the discrete versions of Φ0, . . . ,Φn+1 from 2.1.1.5, and finally we obtain the
alternative characterization of the equilibrium solutions:

ϕ is equilibrium solution

⇐⇒∀(i, j, k, l) : Ak,li,j 6= 0 ⇒ ϕ(vi)ϕ(vj) = ϕ(vk)ϕ(vl)

⇐⇒∃Φ ∈ I : Φ = ln(ϕ) ,

as well as the discrete H - theorem.

(ii) Φ0, . . . ,Φn+1 (as in 2.1.1.5) should be a basis of the space of collisional invariants,
leading to equilibrium solutions of Maxwell type.

Proof of i) b):
In the literature one can often find the additional symmetries Ak,li,j = Ak,lj,i = Al,ki,j .
These are not necessary to obtain the result i) b), we recall the corresponding proofs
to reassure the reader of this fact. We start with the alternative characterization of
collisional invariants:

∑

i∈MV

Φ(vi)Ji[f ] =
∑

i∈MV

Φ(vi) ·
(
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj)

)



2.1 Basics 11

=
∑

i,j,k,l∈MV

Φ(vi)A
k,l
i,j (fkfl − fifj) =

∑

j,i,l,k∈MV

Φ(vj)

=Al,kj,i
︷︸︸︷

Ak,li,j (flfk − fjfi)

=
∑

k,l,i,j∈MV

Φ(vk)

=Ai,j
k,l

︷︸︸︷

Ak,li,j (fifj − fkfl) =
∑

l,k,j,i∈MV

Φ(vl)

=Aj,i
l,k

︷︸︸︷

Ak,li,j (fjfi − flfk) .

Summation over the last 4 equivalent sums gives

4
∑

i∈MV

Φ(vi)Ji[f ] =
∑

i,j,k,l∈MV

Ak,li,j
(
Φ(vi) + Φ(vj)− Φ(vk)− Φ(vl)

)
(fkfl − fifj) .

(2.1.3)

Now we assume that Φ is a collisional invariant and

∃ (i, j, k, l) ∈
{

(i, j, k, l)|Ak,li,j 6= 0
}

: Φ(vi) + Φ(vj) 6= Φ(vk) + Φ(vl) .

Let (i, j, k, l) be the multi index with Φ(vi) + Φ(vj) 6= Φ(vk) + Φ(vl) and r ∈ R. Then
by using

fn :=

{

1, if n = i ∨ n = j

ε ∈ R+, otherwise

we obtain

∑

a,b,c,d∈MV

Ac,da,b
(
Φ(va) + Φ(vb)− Φ(vc)− Φ(vd)

)
(fcfd − fafb)

= 2
(
Φ(vi) + Φ(vj)− Φ(vk)− Φ(vl)

)
(−fifj)

+ 2
(
Φ(vk) + Φ(vl)− Φ(vi)− Φ(vj)

)
(fifj) + ε · r

= 4
(
Φ(vk) + Φ(vl)− Φ(vi)− Φ(vj)

)
+ ε · r

6= 0, if ε sufficiently small,

which is a contradiction to the assumption that Φ is a collisional invariant. The
minimal set of collisional invariants the DVM possesses can now be calculated by:

Φ0(vi) + Φ0(vj)
2.1.1.5

= 1 + 1 = Φ0(vk) + Φ0(vl)

Φa(vi) + Φa(vj)
2.1.1.5

= vi,a + vj,a
(i)a)
= vk,a + vl,a = Φa(vk) + Φa(vl), a = 1, . . . , n

Φn+1(vi) + Φn+1(vj)
2.1.1.5

=
1

2
‖vi‖2 +

1

2
‖vj‖2

(i)a)
=

1

2
‖vl‖2 +

1

2
‖vk‖2

= Φn+1(vk) + Φn+1(vl) .



12 2 The Lattice Group Model

We need some preliminary considerations to prove the alternative characterization of
the equilibrium solutions and the correspondence of collisional invariants:
∑

v∈V
ln
(
f(v)

)
J [f ](v)

(2.1.3)
=

1

4

∑

i,j,k,l∈MV

Ak,li,j [ln(fi) + ln(fj)− ln(fk)− ln(fl)] (fkfl − fifj)

(2.1.4)

=
1

4

∑

i,j,k,l∈MV

Ak,li,j

ln(λ)(1−λ)
︷ ︸︸ ︷

ln

(
fifj
fkfl

)(

1− fifj
fkfl

)

fkfl, and we know

(2.1.5)

∀λ ∈ R+ \ {1} : ln(λ)(1− λ) < 0 ∧ ln(λ)(1− λ) = 0 ⇐⇒ λ = 1 . (2.1.6)

At this point we need to explain why λ > 0. This comes from the positivity of f . The
positivity can be obtained by looking at the space homogeneous initial value problem

∂tfi(t) = Ji[f ](t), fi(0) = f0(vi) > 0 , (2.1.7)

and the helper function gi : t 7→ fi(t)e
ρt, ρ := c

∑

j,k,l∈MV

fj :

∂tgi(t) = ∂tfie
ρt + fiρe

ρt =
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj)e
ρt + cfi

∑

j,k,l∈MV

fje
ρt

= eρt

(
∑

j,k,l∈MV

Ak,li,jfkfl +
∑

j,k,l∈MV

(

c− Ak,li,j

)

fifj

)

.

By knowing (i)a) Ak,li,j ≥ 0, f(0) > 0 and by choosing c sufficiently large (c ≥
maxi,j,k,l∈MV

Ak,li,j ) we obtain the positivity of the derivative of g. This leads to the
positivity of f . Now we can go back to topic: the equilibrium solutions. Using their
definition we get:

J [f ] = 0 =⇒ ln(f)J [f ] = 0 =⇒
∑

i∈MV

ln(fi)Ji[f ] = 0

⇐⇒
(

∀(i, j, k, l) : Ak,li,j 6= 0 ⇒ fifj = fkfl

)

, by (2.1.4)− (2.1.6)

⇐⇒
(

∀(i, j, k, l) : Ak,li,j 6= 0 ⇒ ln(fi) + ln(fj) = ln(fk) + ln(fl)
)

.

If we follow the argumentation in the opposite direction we obtain ln(f)J [f ] = 0 ⇐=
∑

i∈MV
ln(fi)Ji[f ] = 0 by (2.1.4) - (2.1.6) and the positivity of f, A. Assuming f 6≡ 1

we also get J [f ] = 0 ⇐= ln(f)J [f ] = 0, where the case f ≡ 1 is already covered by
the knowledge that Ji[f ] =

∑

j,k,l∈MV

Ak,li,j (1 − 1) = 0. The last thing remaining is the

proof of the H-theorem:

∂tH [f ] =
∑

v∈V
ḟ(v) ln(f(v)) + f(v)

1

f(v)
ḟ(v)



2.1 Basics 13

=
∑

v∈V
ḟ(v)

(
ln(f(v)) + 1

) (2.1.7)
=

∑

v∈V
J [f ](v)(ln(f(v)) + 1)

=
∑

v∈V
J [f ](v)(ln(f(v)) + Φ0(v)) =

∑

v∈V
J [f ](v) ln(f(v))

=
∑

i∈MV

ln(fi)
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj) =
∑

i,j,k,l∈MV

Ak,li,j ln(fi)(fkfl − fifj)

=
1

2






∑

i,j,k,l∈MV

ln(fi)A
k,l
i,j (fkfl − fifj)

+
∑

j,i,l,k∈MV

ln(fj)A
l,k
j,i(flfk − fjfi)




 =

1

2

∑

i,j,k,l∈MV

ln(fifj)A
kl
ij (fkfl − fifj)

=
1

4






∑

i,j,k,l∈MV

ln(fifj)A
k,l
i,j (fkfl − fifj)

− ∑

k,l,i,j∈MV

ln(fkfl)A
i,j
k,l(fkfl − fifj)






=
1

4

∑

i,j,k,l∈MV

(ln(fifj)− ln(fkfl))A
kl
ij (fkfl − fifj) ≤ 0, because

∀x, y ∈ R+ : (ln(x)− ln(y))(y − x) ≤ 0

∧ (ln(x)− ln(y))(y − x) = 0 ⇐⇒ x = y ∧ Ak,li,j ≥ 0 .

The second part of the H-theorem can be obtained by

∂tH [f ] =
∑

v∈V
ln(f(v))J [f ](v), ( see above)

(2.1.3)
=

1

4

∑

i,j,k,l∈MV

(ln(fi) + ln(fj)− ln(fk)− ln(fl))A
kl
ij (fkfl − fjfi) = 0

⇐⇒ ln(fi) + ln(fj)− ln(fk)− ln(fl) = 0

(i)b⇐⇒ ln(f) is collisional invariant

(i)b⇐⇒ f is equilibrium solution.

Remark 2.1.2.5
Many authors also consider the additional symmetries Ak,li,j = Ak,lj,i = Al,ki,j . These sym-
metries seem to be a consequence of the interpretation of the A•,•

•,• as transition proba-
bilities from pre- to post collisional velocity pairs. But it seems that these symmetries
have no impact on any discretization property considered throughout this work. So we
neglect these symmetries when it comes to the derivation of different discretizations
and their transformation into DVMs, but we give remarks whether these symmetries
exist or can be artificially created.



14 2 The Lattice Group Model

Lemma 2.1.2.6 (Collision spheres)
The Operator A of a DVM satisfying the minimal requirements possesses the properties

Ak,li,j 6= 0 =⇒ {vi, vj , vk, vl} ∈ SV
ij :=

{

v ∈ V

∣
∣
∣
∣

∥
∥
∥
∥
v− vi + vj

2

∥
∥
∥
∥
=

∥
∥
∥
∥

vi − vj

2

∥
∥
∥
∥

}

,

Ak,li,j 6= 0 =⇒ vl = vi + vj − vk =⇒ Ak,li,j = A
k,l(i,j,k)
i,j =: Aki,j .

Proof: By using 2.1.2.4, (i)a a commonly known proof is

Ak,li,j 6= 0 =⇒ vi + vj = vk + vl ∧ v2i + v2j = v2k + v2l

=⇒ (vi + vj)
2 = (vk + vl)

2 ∧ v2i + v2j = v2k + v2l

=⇒ 〈vi, vj〉 = 〈vk, vl〉
=⇒ (vi − vj)

2 = (vk − vl)
2

=⇒ ‖vi − vj‖ = ‖vk − vl‖ .

This together with
vi+vj

2
= vk+vl

2
gives the result. The second claim follows directly

from vi + vj = vk + vl.

The next theorem restates the common ways of checking 2.1.2.4 (ii) .

Theorem 2.1.2.7 (Calculating artificial collision invariants)
Let V be a uniform (equidistant) velocity space and M be the set of all collision pairs
used by the DVM. For classical DVMs this means

M :=
{

(i, j, k, l) ∈M4
V

∣
∣
∣A

k,l
i,j 6= 0

}

.

Assuming that the DVM satisfies the minimal requirements 2.1.2.4 (i) the space of
collisional invariants I is a equal to

ker






(ek1 + el1 − ei1 − ej1)
T

...
(ek|M|

+ el|M|
− ei|M|

− ej|M|
)T




 = ker

(
D−1
ϕ ∇ϕJ [ϕ]Dϕ

)
,

where (i•, j•, k•, l•) ∈ M, Dϕ := diag(ϕ(v1), . . . , ϕ(v|V|)) and ϕ represents an arbi-
trary equilibrium solution.

Proof:
We divide the proof into two sections, that correspond to the two kernels.

(i) Due to the compliance with the minimal requirements 2.1.2.4 (i) we obtain the
alternative characterization of the collision invariants

Φ ∈ I ⇐⇒ ∀(i, j, k, l) ∈M : Φ(vi) + Φ(vj) = Φ(vk) + Φ(vl) .



2.1 Basics 15

From this follows (by using the shortcut Φi := Φ(vi)) that the space of collision
invariants is equal to the solution space of the system of equations

Φk1 + Φl1 − Φi1 − Φj1 = 0

Φk2 + Φl2 − Φi2 − Φj2 = 0

... =
...

Φk|M|
+ Φl|M|

− Φi|M|
− Φj|M|

= 0 ,

which can be rewritten by using the corresponding matrix

M̂ :=
︷ ︸︸ ︷





(ek1 + el1 − ei1 − ej1)
T

...
(ek|M|

+ el|M|
− ei|M|

− ej|M|
)T











Φ1

...
Φ|M |




 =






0
...
0




 .

The solution of this is (by definition) the kernel of the matrix. Due to this we
get I = ker(M̂).

(ii) Starting at

J [ϕ] =

(
∑

j,k,l∈MV

Ak,li,j
(
ϕkϕl − ϕiϕj

)

)|V|

i=1

,

we can simply derive

∇ϕJ [ϕ] =




∂

∂ϕm

(
∑

j,k,l∈MV

Ak,li,j
(
ϕkϕl − ϕiϕj

)

)|V|

i=1





|V|

m=1

=

(
∑

j,k,l∈MV

Ak,li,j
(
ϕkel + ϕlek + ϕiej + ϕjei

)T

)|V|

i=1

.

Now we choose an arbitrary f ∈ ker(∇ϕJ [ϕ]). This f can always be represented
as f = (ϕ, f̃), by using the element-wise multiplication (•, •). Now we get

∇ϕJ [ϕ]f =

(
∑

j,k,l∈MV

Ak,li,j
(
ϕkfl + ϕlfk + ϕifj + ϕjfi

)T

)|V|

i=1

=

(
∑

j,k,l∈MV

Ak,li,j
(
ϕkf̃lϕl + ϕlf̃kϕk + ϕif̃jϕj + ϕj f̃iϕi

)T

)|V|

i=1



16 2 The Lattice Group Model

=

(

ϕi
∑

j,k,l∈MV

Ak,li,jϕj
(
f̃l + f̃k + f̃j + f̃i

)T

)|V|

i=1

, by using 2.1.2.4(i)b

!
= 0 ⇐⇒ ∀(i, j, k, l) ∈M4

V : Ak,li,j 6= 0 ⇒ f̃i + f̃j = f̃k + f̃l ⇐⇒ f̃ ∈ I

We get the last conclusion by the fact that the above calculation holds true for
linear independent ϕ. At this point we have proved

ker (∇ϕJ [ϕ]) = span((ϕ, f̃1), . . . , (ϕ, f̃m)) ,

where f̃i are the basis vectors of I. Due to

∇ϕJ [ϕ]f = ∇ϕJ [ϕ](ϕ, f̃) = ∇ϕJ [ϕ]Dϕf̃

it becomes clear that

I = ker(∇ϕJ [ϕ]Dϕ) = ker(D−1
ϕ ∇ϕJ [ϕ]Dϕ) .

Due to the fact that the number of collision pairs |M | typically grows at least quadrat-
ically (in two and three dimensions) with the number of velocities |V| it is desirable
to get less (computational) complex tools to rule artificial collision invariants out.

Corollary 2.1.2.8 (Ruling artificial collision invariants out)
Let V be a uniform (equidistant) velocity space and M be the set of all collision pairs
used by the DVM. Let the set M̃ ⊂ M contain exactly all collision pairs represent-
ing squares with a diagonal of 2∆v or

√
2∆v and let the DVM satisfy the minimal

requirements 2.1.2.4 (i).

(i) The space of collisional invariants I is a linear subspace of

ker






(ek1 + el1 − ei1 − ej1)
T

...
(ek|M̃|

+ el|M̃ |
− ei|M̃|

− ej|M̃|
)T




 = ker

(

D−1
ϕ ∇ϕJ̃ [ϕ]Dϕ

)

,

where (i•, j•, k•, l•) ∈ M̃, Dϕ := diag(ϕ(v1), . . . , ϕ(v|V|)) , ϕ represents an
arbitrary equilibrium solution and

J̃ [ϕ] :=

(
∑

j,k,l∈MV

Ak,li,j

{(
ϕkϕl − ϕiϕj

)
, if (i, j, k, l) ∈ M̃

0 , else

})|V|

i=1

is the collision operator induced by M̃ . If the dimension of these kernels is equal
to n+ 2 the model possesses no artificial collision invariants.



2.1 Basics 17

(ii) Let V contain at least the origin and all neighboring points (9 in 2D and 27 in
3D). Assuming A ⊂ ∆vZn, a ∈ ∆vZn and using the definitions

NB(A) := {a ∈ ∆vZn |a /∈ A ∧ ∃b ∈ A : ‖a− b‖ ∈ ∆vB } ,
Ni,j(A, a) := A ∩N{1,

√
2}({a}) ∩ {b ∈ ∆vZn|b = a+ λ1ei + λ2ej ;λ1, λ2 ∈ ∆vZ} ,

N̂(A) :=






a ∈ ∆vZn

∣
∣
∣
∣
∣
∣

∃b ∈ N1,2(A, a) : |N1,2(A, a) ∩N{1}({b})| = 2 ∨
∃b ∈ N1,3(A, a) : |N1,3(A, a) ∩N{1}({b})| = 2 ∨
∃b ∈ N2,3(A, a) : |N2,3(A, a) ∩N{1}({b})| = 2






,

0 := (0, . . . , 0)T ,

the following algorithm can be used to falsify the existence of artificial collision
invariants:

S1 V̂ := {v ∈ ∆vZn|v ∈ N{1,
√
2}(0) ∪ 0}

S2 A := N̂(V̂) ∩V

S3 • if A = ∅
⇒ if V = V̂

output: no artificial collision invariants [END]

⇒ else
output: artificial collision invariants possible [END]

• else
V̂ := V̂ ∪ A, goto S2

This algorithm holds true in two and three dimensions, but in two dimensions
we can simply disregard N1,3, N2,3.

Proof:

(i) The proof of the first part is equal to the proof of the last theorem adding that
the introduction of additional collision pairs can only shrink the space of collision
invariants and that I must contain at least the linear independent Φ0, . . . ,Φn+1

as described in 2.1.2.4 (i)b.

(ii) We start with the finite velocity space V̂ that contains only zero and the neigh-
boring points (in total 9 points in two dimensions and 27 in three dimensions)
and we assume that the set of collision pairs M̃ contains all squares (in the ve-
locity space) with diameter

√
2∆v and 2∆v. This leads to 5 resp. 45 collision

pairs resulting in M̂2D9 ∈ {0, 1,−1}5×9, M̂3D27 ∈ {0, 1,−1}45×27. Here M̂ is the
representing matrix of the collision pair equations (fk+fl = fi+fj). Calculating

the rank of these matrices gives rank(M̂2D9) = 5, rank(M̂3D27) = 22 resulting
in a kernel dimension of 4 resp. 5. Due to the size of these matrices an Oc-
tave (MATLAB) function to calculate these matrices and the dimension of the
kernels can be found in appendix A.1.1. This can be seen as the begin of our



18 2 The Lattice Group Model

mathematical induction. Now we conduct the inductive step by introducing a
new point v̂ to the velocity space set V̂ that has the property of possessing three
direct neighbors in V̂ that are neighbors to each other and are lying in the same
axis parallel plane:





∃w ∈ N1,2(V̂, v̂) : |N1,2(V̂, v̂) ∩N{1}({w})| = 2 ∨
∃w ∈ N1,3(V̂, v̂) : |N1,3(V̂, v̂) ∩N{1}({w})| = 2 ∨
∃w ∈ N2,3(V̂, v̂) : |N2,3(V̂, v̂) ∩N{1}({w})| = 2



 .

Due to the position in axis parallel planes we can reduce our consideration to
the two dimensional case and because of the symmetries we have only too look
at exactly two different cases.b bbb

bb b

b v

w

(a) Case i)

bb

b b v

w

(b) Case ii)

Figure 2.1: Possible cases of grid expansion

i) Figure 2.1a illustrates the first case where all 3 neighbors of v that lie within
V̂ are on a straight line. Every of these three points must have another
three neighbors that are neighbors to each other, because this holds true
for the begin of the induction and for every point that was introduced since
then. From this comes the fact that either the red or the green dots are
the neighbors of w in V̂ resulting in the existence of the dashed collision
pair ruling out the introduction of a new collision invariant (because Φ(v)
is determined by the three points in V̂ belonging to the collision pair).

ii) Figure 2.1b illustrates the second case where v is “surrounded” by three
points from V̂ in such a way that we can directly see the existence of a
collision pair ruling out the introduction of a new collision invariant.

Definition 2.1.2.9 (Normal grid)
Let V be a uniform (equidistant) velocity space and M the set of all collision pairs
representing squares with a diagonal of 2∆v or

√
2∆v. We call such a grid in n

dimensions normal iff

ker






(ek1 + el1 − ei1 − ej1)
T

...
(ek|M|

+ el|M|
− ei|M|

− ej|M|
)T




 = n+ 2, (i•, j•, k•, l•) ∈M .



2.1 Basics 19

Remark 2.1.2.10 (Computational complexity and conclusions)

(i) It is interesting to notice that 2.1.2.8 (i) leads to the calculation of the kernel
of a matrix that can not grow larger than {−1, 0, 1}8|V|×|V| where only 4 ele-
ments per row are non zero. Using Givens rotations to determine the kernel the
computational complexity becomes O(|V|).

(ii) An interesting implication from algorithm 2.1.2.8 (ii) is that every velocity grid
V that fulfills the requirements of 2.1.2.8 and has the property that every point
of the grid can be reached from the origin through a “three point wide way” is
normal. (v0, . . . , vm) is such a way iff

∀i ∈ {0, . . . , m− 1} :







∣
∣N1,2(V, vi+1) ∩N{1}({vi})

∣
∣ = 2 ∨

∣
∣N1,3(V, vi+1) ∩N{1}({vi})

∣
∣ = 2 ∨

∣
∣N2,3(V, vi+1) ∩N{1}({vi})

∣
∣ = 2

.

(iii) From the above follows that every velocity grid that is used throughout this work
(only uniform, equidistant discretizations of origin centered balls and cubes) are
normal resp. artificial collision invariant free as long as our numerical schemes
include all collision pairs representing squares with a diameter of 2∆v or

√
2∆v.

2.1.3 Lattice Group Models

The LGpM framework was established by Babovsky in [Bab09]. Throughout this work
we will restrict this (very general) approach to binary collisions and the definitions that
we give in this section.

Definition 2.1.3.1 (Orthonormal group, relation)
The orthonormal group G (a finite subset of the orthogonal group O(n)) of V is the
group which is generated by all reflections and rotations around zero that map the grid
V onto itself. The automorphism groups of the most common integer lattices may be
found in [CSB87]. In this work we denote the automorphism group of the lattice
under consideration by simply saying “automorphism group”. In two dimensions and
for Cartesian grids this group contains the identity, negative identity, 90◦ rotation
as well as the reflection around the x-axis and around the identity. A corresponding
relation is given by

v ∼a w ⇐⇒ ∃ϕ ∈ G : v− a = ϕ(w− a) .

And let H be the subgroup of G that contains only id,−id.
Remark 2.1.3.2 (Right coset class)
Using the relation

ϕ, ϕ′ ∈ G, ϕ ∼H ϕ′ ⇐⇒ ϕϕ′−1 ∈ H ,



20 2 The Lattice Group Model

the group G decomposes in the right coset classes G� ∼H and the order of this is

|G� ∼H | = idxGH =
|G|
|H| =

|G|
2

.

Definition 2.1.3.3 (Some necessary mappings)
These definitions were originally introduced in [Bab09, section 2.1, 3.2].

(i) Let α̂ : G� ∼H ×G� ∼H→ R+ be some coefficients satisfying

a) group invariance: There is a mapping α̃ : G� ∼H→ R+ such that

α̂[ϕ],[ϕ′] = α̃[ϕϕ′−1]

b) micro-reversibility: For all ϕ ∈ G

α̃[ϕ] = α̃[ϕ−1] .

(ii) Let c ∈ C, v ∈ V ⊂ C, ψc,v : G → V be the mapping that is defined by ϕ 7→
c + ϕ(v − c). This mapping can be used to determine the points that are used
to approximate the spherical integral in J [f ](v) above a sphere with the center
in c. The inverse of this mapping gives all operators that map from a point v on
a sphere with center in c to another given point on the sphere, ψ−1(w) = {ϕ ∈
G|w = c+ ϕ(v− c)}.

(iii) Let α : V×V → R+ be a mapping defined by

αw,v :=
1

2

∑

ϕ∈ψ−1(v)

∑

ϕ′∈ψ−1(w)

α̂[ϕ′],[ϕ]

(iv) Let γ : V× R+ → R+
0 be some nonnegative coefficients and let

αϕc,v := γ(c, |v− c|) · αc+ϕ(v−c),v

be an abbreviation to handle these constants in a more convenient way.

Definition 2.1.3.4 (Lattice group model, LGpM)
By introducing a set of potential center points C, we get a LGpM above C,V as

J [f ](v) =
∑

c∈C

∑

[ϕ]∈G�∼H

αϕc,v




∏

ϕ′∈[ϕ]
f (c+ ϕ′(v− c))−

∏

ϕ′′∈H
f (c+ ϕ′′(v− c))



 .

In the following work we will call this LGpM the “original” LGpM.



2.1 Basics 21

Remark 2.1.3.5
The above definitions summarize the result and the ingredients of the LGpM, due to
the aim to develop some theory on top of this we simply use it as a definition of the
model - concealing the basics of this concept. These basics can be found in [Bab09],
and the above definition can be obtained by using [Bab09, section 3.2, formula 3.20]
and recursively replacing the objects in this formula with the precedent definitions.
A simple question that instantly arises is: “are the points c + ϕ(v − c) points of the
used grid V ?” To answer this question we have to specify V,C and we need to take
a closer look at the associated discrete spheres.

Lemma 2.1.3.6 (Sphere decomposition)
Let v,w ∈ V, V̂ := V + ∆v

2
1, 1 := (1, . . . , 1)T , a := v+w

2
and r :=

∥
∥v−w

2

∥
∥ and let us

call a point b

• “on the grid” iff b ∈ V

• “partially off grid” iff ∃bi ∈ ∆vZn ∧ ∃bj /∈ ∆vZn, i, j ∈ {1, . . . , n} and

• “completely off grid” iff ∄bi ∈ ∆vZn.

With these ingredients we get

(i) a sphere with the endpoints of a diagonal on the grid (v,w,∈ V) and the center

a on the grid or completely off grid
(

a ∈ V ∪ V̂
)

decomposes in equivalence

classes over V:
SV
r (a) =

⋃

[v]∈SV
r (a)�∼a

[v] .

(ii) a sphere with a diagonal on the grid (v,w ∈ V) and a center partially off the
grid (a ∈ 1

2
V \ (V ∪ V̂)) generally does not decompose in equivalence classes

above V.

Proof:

At first we simplify the problem by transforming the prerequisites into a simpler set-
ting. Without loss of generality we look at the integer lattice 2Zn and the finer grid
Zn instead of V and 1

2
V. We assume v,w ∈ 2Zn.

(i) We split this part of the proof in two additional parts. In the first one the center
of the circle is on the grid and in the second one the center is completely off grid.

a) The operators in G are isometric mappings, and they map the grid onto
itself. So it is clear, that

∀b ∈ 2Zn : [b] ⊂ S2Zn
‖b‖ (0) , this together with a, a− v ∈ 2Zn



22 2 The Lattice Group Model

gives the desired result:

∀a, v ∈ 2Zn : a+ [a− v] ⊂ S2Zn
‖a−v‖ (a) .

Now it is clear that the discrete spheres SV
r (a) can be decomposed in (dis-

joint) sets corresponding to equivalence classes of the above relation.

b) Now we consider completely off lattice center points (a ∈ 2Zn + 1). From
this follows, that a−v ∈ 2Zn+1. All operators ϕ ∈ G can be interpreted as
permutations with sign changes. This implies ∀ϕ ∈ G : ϕ(a− v) ∈ 2Zn+ 1.
These considerations give the result

∀a ∈ 2Zn + 1∀v ∈ 2Zn∀ϕ ∈ G : a+ ϕ(a− v) ∈ 2Zn + 2 = 2Zn

=⇒ ∀a ∈ 2Zn + 1∀v ∈ 2Zn : a+ [a− v] ⊂ S2Zn
‖a−v‖(a)

(ii) We only look at the three dimensional case, because it includes the two dimen-
sional one. The center of the considered sphere a lies on Z3 \ 2Z3 ∪ 2Z3 + 1 and
the ends of the diagonal (v,w) lie on 2Z3. We know from (i) that the correspond-
ing sphere on Z3 decomposes into disjoint equivalence classes. Now we prove a
little bit more than the necessary counter example. We do this to understand
the underlying problem better. We prove, that in all except one case off grid
equivalence classes possess at least one representative on the grid:

[b] ∈
(

SZ3

r (a)� ∼a

)

∃c ∈ [b] : c ∈ S2Z3

r (a) .

From this fact follows instantly (ii).
Let b be an arbitrary representative of [b] that lies on Z3 \ 2Z3, so at least one
component of b must be odd. In this proof we denote odd scalars with a ∼ and
even without a ∼ above.

a) c = b− a contains exactly one odd element
Wlog we assume c = (c1, c̃2, c3)

T .

i. a contains exactly one odd element
Wlog a = (ã1, a2, a3)

T , because we can generate every permutation of
the elements in c through operators in G, it is obvious that : ∃ϕ ∈ G :
ϕ(c) = (d̃1, d2, d3)

T and therefore a+ ϕ(c) ∈ 2Z3 ∧ a+ ϕ(c) ∈ [b]

ii. a contains exactly two odd elements
Wlog we assume a = (ã1, ã2, a3)

T , c = (c1, c̃2, c3)
T . There exists no such

sphere on 2Z3 in other words:
∣
∣
∣S2Z3

r (a)
∣
∣
∣ = ∅, because the equation

∈2Z
︷ ︸︸ ︷

∈2Z+1
︷ ︸︸ ︷

(x− ã1)
2 +

∈2Z+1
︷ ︸︸ ︷

(y − ã2)
2 +

∈2Z
︷ ︸︸ ︷

(z − a3)
2=

/∈2Z
︷ ︸︸ ︷

∈2Z+1
︷ ︸︸ ︷

c21 + c̃22 + c23

contains no solution (x, y, z)T ∈ 2Z2.



2.2 Classification 23

b) c = b− a contains exactly two odd elements

i. a contains exactly one odd element
analogical to (ii)(a)ii - there exists no such sphere on 2Z3.

ii. a contains exactly two odd elements
analogical to (ii)(a)i - permutations.

c) c = b− a contains exactly three odd elements

i. a contains exactly one odd element
Such spheres exist and they possess completely off lattice equivalence
classes.

ii. a contains exactly two odd elements
analogical to (ii)(a)ii - there exists no such sphere on 2Z3.

Remark 2.1.3.7
In two dimensions spheres with partially off grid centers decompose into equivalence
classes giving the sphere on the finer grid:

S
1
2
V

r (a) =
⋃

[v]∈SV
r (a)�∼a

[v] .

The proof can be taken from the last proof (ii)a,(ii)b. But that does not hold true in
three dimensions (due to the existence of completely off lattice equivalence classes, see
(ii)(c)i).

2.2 Classification

In this section we try to give an idea about the relations between DVMs and LGpMs.
The aim is to classify the LGpM in the context of the well established DVM framework.
As far as the author knows this is the first attempt to create a rigorous bridge between
these approaches.



24 2 The Lattice Group Model

Theorem 2.2.1 (LGpM as a DVM)
The standard LGpM 2.1.3.4 can be directly transformed into a DVM. With the defi-
nitions from 2.1.3.3 and the additional definitions

Mi :=







(i, j, k, l)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(vi, vj, vk, vk) ∈ V4

vj = c− (vi − c),
vk = c+ ϕ(vi − c),
vl = c− ϕ(vi − c),
c ∈ C, ϕ ∈ G







, αki,j := γ

(
vi + vj

2
,

∣
∣
∣
∣
vi −

vi + vj

2

∣
∣
∣
∣

)

· αvk,vi,

A :M4
V → R, Ak,li,j =

1

2
1Mi

(i, j, k, l)αki,j ,

we get

J [f ](vi) =
∑

c∈C

∑

[ϕ]∈G�∼H

αϕc,vi




∏

ϕ′∈[ϕ]
f (c+ ϕ′(vi − c))−

∏

ϕ′′∈H
f (c+ ϕ′′(vi − c))





=
∑

j,k,l∈MV

Ak,li,j (f(vk)f(vl)− f(vi)f(vj)) .

Proof:

J [f ](vi) =
∑

c∈C

∑

[ϕ]∈G�∼H

αϕc,vi




∏

ϕ′∈[ϕ]
f (c+ ϕ′(vi − c))−

∏

ϕ′′∈H
f (c+ ϕ′′(vi − c))





=
∑

c∈C

∑

[ϕ]∈G�∼H

αϕc,vi

[
f (c+ ϕ(vi − c)) f (c− ϕ(vi − c))−
f (c+ vi − c) f (c− (vi − c))

]

by
2.1.3.1
2.1.3.2

=
∑

c∈C

∑

[ϕ]∈G�∼H

αϕc,vi(f(

vk:=
︷ ︸︸ ︷

c+ ϕ(vi − c))f(

vl:=
︷ ︸︸ ︷

c− ϕ(vi − c))− f(vi)f(

vj :=
︷ ︸︸ ︷

2c− vi))

=
∑

c∈C

∑

[ϕ]∈G�∼H

γ(c, |vi − c|) · αc+ϕ(vi−c),vi(f(vk)f(vl)− f(vi)f(vj)) by 2.1.3.3

=
∑

c∈C

∑

[ϕ]∈G�∼H

αki,j :=
︷ ︸︸ ︷

γ

(
vi + vj

2
,

∣
∣
∣
∣
vi −

vi + vj

2

∣
∣
∣
∣

)

· αvk,vi (f(vk)f(vl)− f(vi)f(vj))

=
∑

(i,j,k,l)∈Mi

Ak,li,j (f(vk)f(vl)− f(vi)f(vj))

=
∑

j,k,l∈MV

Ak,li,j (f(vk)f(vl)− f(vi)f(vj))



2.2 Classification 25

Theorem 2.2.2 (DVM as a LGpM)
The standard DVM with the minimal requirements 2.1.2.4 (i) and

vi + vj

2
/∈ V ∪V 1

2
=⇒ Ak,li,j = 0 , (2.2.1)

can be transformed into the LGpM framework. With the definitions

C := V ∪V 1
2
, V 1

2
:=

{

a

∣
∣
∣
∣
∃v,w ∈ V : ‖−→vw‖ =

√
n∆v ∧ a =

v+w

2

}

,

G̃ := G� ∼H , α
ϕ,v
c,vi

:=
2Aki,j

|{ϕ′ ∈ G|c+ ϕ(v− c) = c + ϕ′(v− c)}| , with

k = k̃ ⇐⇒ ∃k̃ ∈MV : vk̃ = c+ ϕ(v− c) ,

j = j̃ ⇐⇒ ∃j̃ ∈MV : vj̃ = 2c− vi, S̃V
i,c := SV

ij� ∼c ,

and the knowledge that the existence of k̃, j̃ is guaranteed by (2.2.1) and 2.1.3.6, we
get

J [f ](vi) =
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj)

=
∑

c∈C

∑

[v]∈S̃V
i,c

∑

[ϕ]∈G̃

αϕ,vc,vi




∏

ϕ′∈[ϕ]
f(c+ ϕ′(v− c))−

∏

ϕ′∈H
f(c+ ϕ′(vi − c))



 .

Proof:
Using the abbreviation cij :=

vi+vj
2

and the identities

Aki,j = Avk
vi,vj

= Avk
vi,cij−(vi−cij)

=: Aki,cij

SV
ij = SV

vi,vj
= SV

vi,cij−(vi−cij)
=: SV

icij
, S̃V

ic := SV
ic� ∼c

we can calculate:

J [f ](vi) =
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj) =
∑

j∈MV

∑

k,l∈MV

Ak,li,j (fkfl − fifj)

=
∑

j∈MV

∑

vk,vl∈SV
ij

Ak,li,j (fkfl − fifj) by 2.1.2.6

=
∑

vj∈V

∑

vk∈SV
ij

Aki,j(f(vk)f(vi + vj − vk)− f(vi)f(vj)) by 2.1.2.6

=
∑

vj∈V

∑

vk∈SV
ij

Aki,j (f(vk)f(cij − (vk − cij))− f(vi)f(cij − (vi − cij)))

=
∑

c∈C

∑

vk∈SV
ic

Aki,c (f(vk)f(c− (vk − c))− f(vi)f(c− (vi − c))) by (2.2.1)



26 2 The Lattice Group Model

=
∑

c∈C




∑

[v]∈SV
ic�∼c




∑

vk∈[v]
Aki,c

[
f(vk)f(c− (vk − c))−
f(vi)f(c− (vi − c))

]






 by 2.1.3.6

=
∑

c∈C

∑

[v]∈S̃V
ic

∑

ϕ∈G

1

2
αϕ,vc,vi

[
f(c+ ϕ(v− c))f(c− ϕ(v− c))−
f(c+ (vi − c))f(c− (vi − c))

]

by 2.1.3.1

=
∑

c∈C

∑

[v]∈S̃V
ic

∑

[ϕ]∈G�∼H

αϕ,vc,vi

[ ∏

ϕ′∈[ϕ] f(c+ ϕ′(v− c))−
∏

ϕ′∈H f(c+ ϕ′(vi − c))

]

by 2.1.3.2

=
∑

c∈C

∑

[v]∈S̃V
ic

∑

[ϕ]∈G̃

αϕ,vc,vi




∏

ϕ′∈[ϕ]
f(c+ ϕ′(v− c))−

∏

ϕ′∈H
f(c+ ϕ′(vi − c))





Corollary 2.2.3 (Relation between DVMs and LGpMs)

(i) From the above theorems comes the fact, that the LGpMs are a subclass of the
DVMs (LGpM( DVM).

(ii) The LGpMs transformed into a DVM satisfy the minimal requirements
2.1.2.4 (i).

(iii) For LGpMs the common ways of checking property 2.1.2.4 (ii) (artificial collision
invariants) can be used. That means that 2.1.2.7 and 2.1.2.8 also hold true for
LGpMs, where the set of collision pairs is equal to

M =
⋃

i∈MV

Mi .

Proof: The first claim follows directly from the two preceding theorems. For the
second claim we have to check the three statements from 2.1.2.4 (i).

a) We want to show vi + vj 6= vk + vl ∨ v2i + v2j 6= v2k + v2l =⇒ Aklij = 0. To do this we
prove ∀(i, j, k, l) : vi + vj = vk + vl ∧ v2i + v2j = v2k + v2l ⇐= (i, j, k, l) ∈Mi. This is

sufficient, because Ak,li,j =
1
2
1Mi

(i, j, k, l)αki,j.

(i, j, k, l) ∈ Mi ⇐⇒ ∃c ∈ C∃ϕ ∈ G :







vi = c+ (vi − c)

vj = c− (vi − c)

vk = c+ ϕ(vi − c)

vl = c− ϕ(vi − c)

=⇒ vi + vj = c+ (vi − c) + c− (vi − c) = 2c

= c+ ϕ(vi − c) + c− ϕ(vi − c) = vk + vl

=⇒ v2i + v2j = (c+ (vi − c))2 + (c− (vi − c))2 = 2c2 + 2(vi − c)2

ϕ is an isometry
= 2c2 + 2ϕ2(vi − c) = (c+ ϕ(vi − c))2 + (c− ϕ(vi − c))2

= v2k + v2l



2.2 Classification 27

b) Prerequisite:

(∗) ψ−1(vi(k)) =

{

ϕ ∈ G

∣
∣
∣
∣
vi(k) =

vi(k) + vj(l)

2
+ ϕ

(
vi(k) − vj(l)

2

)}

=

{

ϕ ∈ G

∣
∣
∣
∣
vj(l) =

vi(k) + vj(l)

2
− ϕ

(
vi(k) − vj(l)

2

)}

=

{

ϕ ∈ G

∣
∣
∣
∣
vj(l) =

vj(l) + vi(k)

2
+ ϕ

(
vj(l) − vi(k)

2

)}

because ϕ
is a linear map

= ψ−1(vj(l))

I) We want to prove Ak,li,j = Ak,lj,i . Due to Ak,li,j = 1Mi
(i, j, k, l)αkij we have to prove

the corresponding symmetry for Mi as well as α.

(i, j, k, l) ∈ Mi ⇐⇒ ∃c ∈ C ∃ϕ ∈ G :







vi = c+ (vi − c) = c− (vj − c)

vj = c− (vi − c) = c+ (vj − c)

vk = c+ ϕ(vi − c) = c+ ϕ(c− vj)

vl = c− ϕ(vi − c) = c− ϕ(c− vj)

⇐⇒∃c ∈ C ∃ϕ′ = −ϕ ∈ G :







vj = c+ (vj − c)

vi = c− (vj − c)

vk = c+ ϕ′(vj − c)

vl = c− ϕ′(vj − c)

because ϕ
is a linear map

⇐⇒ (j, i, k, l) ∈Mj

αkij = γ

(
vi + vj

2
,

∣
∣
∣
∣

vi − vj

2

∣
∣
∣
∣

)

αvkvi

= γ

(
vi + vj

2
,

∣
∣
∣
∣

vi − vj

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vi)

∑

ϕ′∈ψ−1(vk)

α̂[ϕ′],[ϕ]

= γ

(
vj + vi

2
,

∣
∣
∣
∣

vj − vi

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vj)

∑

ϕ′∈ψ−1(vk)

α̂[ϕ′],[ϕ] by (∗)

= αkji

II) We want to prove Ak,li,j = Al,ki,j . As above we have to prove the corresponding
symmetry for Mi as well as α.

(i, j, k, l) ∈Mi ⇐⇒ ∃c ∈ C ∃ϕ ∈ G :







vi = c+ (vi − c)

vj = c− (vi − c)

vk = c+ ϕ(vi − c)

vl = c− ϕ(vi − c)



28 2 The Lattice Group Model

⇐⇒ ∃c ∈ C ∃ϕ′ = −ϕ ∈ G :







vi = c+ (vi − c)

vj = c− (vi − c)

vl = c+ ϕ′(vi − c)

vk = c− ϕ′(vi − c)

⇐⇒ (i, j, l, k) ∈Mi

αkij = γ

(
vi + vj

2
,

∣
∣
∣
∣

vi − vj

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vi)

∑

ϕ′∈ψ−1(vk)

α̂[ϕ′],[ϕ]

= γ

(
vi + vj

2
,

∣
∣
∣
∣

vi − vj

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vi)

∑

ϕ′∈ψ−1(vl)

α̂[ϕ′],[ϕ] by (∗)

= αlij

c) Now we prove Ak,li,j = Ai,jk,l. Same procedure as above.

(i, j, k, l) ∈Mi ⇐⇒ ∃c ∈ C ∃ϕ ∈ G :







vi = c+ (vi − c) = c+ ϕ−1(vk − c)

vj = c− (vi − c) = c− ϕ−1(vk − c)

vk = c+ ϕ(vi − c) = c+ (vk − c)

vl = c− ϕ(vi − c) = c− (vk − c)

⇐⇒ ∃c ∈ C ∃ϕ′ = ϕ−1 ∈ G :







vk = c+ (vk − c)

vl = c− (vk − c)

vi = c+ ϕ′(vk − c)

vj = c− ϕ′(vk − c)

⇐⇒ (k, l, i, j) ∈Mk

αkij = γ

(
vi + vj

2
,

∣
∣
∣
∣

vi − vj

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vi)

∑

ϕ′∈ψ−1(vk)

α̂[ϕ′],[ϕ]

= γ

(
vk + vl

2
,

∣
∣
∣
∣

vk − vl

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vi)

∑

ϕ′∈ψ−1(vk)

α̂[ϕ′],[ϕ] by a)

= γ

(
vk + vl

2
,

∣
∣
∣
∣

vk − vl

2

∣
∣
∣
∣

)
1

2

∑

ϕ∈ψ−1(vk)

∑

ϕ′∈ψ−1(vi)

α̂[ϕ′],[ϕ] by 2.1.3.3 (i)

= αikl

The last claim follows from the fact, that LGpMs transformed into DVMs satisfy the
minimal requirements 2.1.2.4 (i).



2.2 Classification 29

Remark 2.2.4 (Difference to the original LGpM)

(i) The additional requirement for the DVM comes from the way in which discrete
spheres decompose into equivalence classes 2.1.3.6 . This requirement is equiva-
lent to the assumption, that the DVM discretizes the velocity space with V, but
uses only spheres with centers in V∪V 1

2
. This can be interpreted as a standard

DVM where the approximation of the spherical integral (compare (2.1.1)) gets
improved without improving the approximation of the outer integral.

(ii) There are two differences in the original LGpM and the one obtained from a
DVM transformation:

∑

c∈C

(∗)
︷ ︸︸ ︷
∑

[v]∈S̃V
i,c

∑

[ϕ]∈G�∼H

(∗∗)
︷︸︸︷

αϕ,vc,vi




∏

ϕ′∈[ϕ]
f(c+ ϕ′(v− c))−

∏

ϕ′′∈H
f(c+ ϕ′′(vi − c))



 ,

the sum (∗) is non-existent in the original LGpM 2.1.3.4 (compare [Bab09, chap-
ter 2,3], [Bab11a, introduction]). The LGpM was not designed by Babovsky to be
consistent with the Boltzmann equation, but to give an easy to calculate model
that possesses and reflects the main properties of the Boltzmann equation. This
“missing” sum (∗) is necessary to realize the convergence of the spherical integral
in the Boltzmann equation, because without it every sphere is approximated by
a maximum of eight points (at least in two dimensions). The second difference
(∗∗) can be found in αϕ,•c,vi, which now depends on the equivalence classes [v] in
which the discrete spheres decompose. For every fixed [v] the coefficient αϕ,vc,vi

should possess the same general properties as the original αϕc,vi. Due to the mod-
ifications (with partially unknown consequences) of the original LGpM we call
this modified version eLGpM (extended lattice group model). We will investi-
gate the theoretic implications of this modified LGpM in another work, because
in this thesis we aim at consistency and convergence results.



30 2 The Lattice Group Model



31

3 Consistency

In this section we aim at large models for rarefied gases, where the convergence of
the discretization becomes important. To that aim we give a specific discretization
of the collision operator through Farey angles and transform the resulting scheme
into a DVM and an eLGpM. This allows us to use the simple representation as a
DVM for calculations as well as the eLGpM representation of this discretization to
obtain theoretical results about this discretization through the LGpM approach in the
future. The underlying approach is not new, but we refine the approaches of other
authors, like [RS94, PH99, MS00] and use an interpretation through automorphism
groups to reach the point at which we can generalize our discretization to obtain
arbitrary convergence orders without the loss of the correct collisional invariants, exact
conservation of the associated quantities, the correct equilibrium solutions and the H-
Theorem. Throughout this section we restrict ourselves to look on “inner” points of
the velocity space. This typically means that the point v has at least a distance of
L ∈ R+ to the next boundary point.

3.1 Preliminaries

Because we want to use Farey angles for a discretization of the Boltzmann equation
we shortly state the idea and some facts around this approach. The first application
of this approach in the case of the Boltzmann equation was introduced by Rogier and
Schneider in [RS94]. We will use a similar approach, but with other transformations
of the Boltzmann equation. Basics about the Farey sequence can be found in [HW60,
chapter 3].

Definition 3.1.1 (Farey sequences)
Let the Farey sequence F̃n of order n be a vector of ascending elements

F̃n := (F1, . . . , FN)
T ∈ ([0, 1] ∩Q)N , Fi :=

pi
qi
; pi, qi ∈ N0 ,

with

{F1, . . . , FN} =

{
pi
qi

∣
∣
∣
∣

i ∈ {1, . . . , N}; pi, qi, p̃i, q̃i ∈ N0; 0 ≤ p̃i ≤ q̃i ≤ n
∧pi
qi
= p̃i

q̃i
∧ gcd(pi, qi) = 1 ∧ pj−1

qj−1
<

pj
qj
, j > 1

}

.

The elements of the Farey sequence Fi =
pi
qi

are maximal reduced fractions and can be

seen as equivalence classes for the non reduced fractions p̃i
q̃i
. In the following work we

will put letters in the second lower right index of numbers in the context of Farey se-
quences to specify the sequence to which these numbers belong. For example F1,n, F1,m

is the first element of the Farey sequence F̃n resp. F̃m. We suppress this index if there
is no risk of confusion.



32 3 Consistency

Remark 3.1.2 (Geometric interpretation of Farey sequences)
This sequence is of special interest, because the elements of the Farey sequences cor-
respond to all possible growth rates of lines that fit onto a uniform discretization of
the velocity space and go through zero, at least to the lower half of the first quadrant,
see figure 3.1. The first Farey sequences are given by

F̃1 = {0, 1} , F̃4 =

{

0,
1

4
,
1

3
,
1

2
,
2

3
,
3

4
, 1

}

,

F̃2 =

{

0,
1

2
, 1

}

, F̃5 =

{

0,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
, 1

}

,

F̃3 =

{

0,
1

3
,
1

2
,
2

3
, 1

}

, F̃6 =

{

0,
1

6
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
5

6
, 1

}

b b b b b

b b b b b

b b b b b

b b b b b

0

F2,1

F1,1

F3,2

F2,2

F1,2

F5,3

F4,3F3,3

F2,3

F1,3

F7,4

F6,4

F5,4

F4,4

F3,4

F2,4

F1,4

1

1

Figure 3.1: Correspondence between the first four Farey sequences and lines on the grid

This correspondence can be used to approximate integrals over spheres.

Definition 3.1.3 (Farey angles)
We get the ascending sequence of Farey angles by

Fn := arctan
(

F̃n

)

= (arctan(F1), . . . , arctan(FN))
T = (θ1, . . . , θN)

T .

And the last ingredient are the circle arcs corresponding to the so called Farey arcs:

αi := µi+1 − µi, µ1 := arctan(0), µN+1 := arctan(1), µi := arctan

(
pi + pi−1

qi + qi−1

)

.

The fractions pi+pi−1

qi+qi−1
are so called mediants, as we can see in the next proof they have

the property
pi−1

qi−1
<
pi + pi−1

qi + qi−1
<
pi
qi
<
pi+1 + pi
qi+1 + qi

.



3.1 Preliminaries 33

The µi are simply the associated angles and we use the αi as the step sizes for the
approximation of the integral in spherical coordinates. We use this detour to calculate
the step sizes, because there is a result for the αi ((iii) of the next lemma) that is
necessary to get a convergence result for the following approximation.

Lemma 3.1.4 (Basic properties of Farey arcs)
A similar version of this lemma can be found in [RS94, section 1.2].

(i) 0 ≤ µi < θi < µi+1 ≤ π
4

(ii) α2
i > (θi − µi)

2 ∧ α2
i > (µi+1 − θi)

2

(iii) 0 ≤ αi <
2
nqi

(iv)
N∑

i=1

αi,n = π
4

Proof:

(i) Due to the monotonicity of arctan it is sufficient to take a look at the fractions
associated to µ, θ:

pi−1

qi−1
<
pi
qi

⇐⇒ pi−1qi < piqi−1 ⇐⇒ qipi + qipi−1 < piqi + piqi−1

⇐⇒ qi(pi + pi−1) < pi(qi + qi−1) ⇐⇒ pi + pi−1

qi + qi−1

<
pi
qi

⇐⇒ µi < θi

and analogical

pi+1

qi+1
>
pi
qi

⇐⇒ pi+1qi > piqi+1 ⇐⇒ qipi + qipi+1 > piqi + piqi+1

⇐⇒ qi(pi + pi+1) > pi(qi + qi+1) ⇐⇒ pi + pi+1

qi + qi+1
>
pi
qi

⇐⇒ µi+1 > θi .

(ii) From (i) follows:

αi = µi+1 − µi > µi+1 − θi =⇒ α2
i = (µi+1 − µi)

2 > (µi+1 − θi)
2 ,

αi = µi+1 − µi > θi − µi =⇒ α2
i = (µi+1 − µi)

2 > (θi − µi)
2 ,

(iii) [HW60, Chapter 3, Theorem 35]

(iv)
N∑

i=1

αi =
N∑

i=1

µi+1 − µi = µN+1 − µ1 = arctan(1)− arctan(0) = π
4



34 3 Consistency

The following proposition as well as the main steps of the proof can be extracted
from [RS94, Theorem 3]. This proposition corresponds to a part of this theorem, is
adapted to fit into this work and we give a more detailed proof.

Proposition 3.1.5 (Farey approximation)
Let H ∈ C1(R → R). Using the Farey angles Fn, the approximation

N∑

i=1

αi,nH(θi) ≈
∫ π

4

0

H(θ)dθ

has the following order of convergence:

O
(
ln(n)

n2

)

.

An upper bound of the error is

e :=

∣
∣
∣
∣
∣

∫ π
4

0

H(θ)dθ −
N∑

i=1

αi,nH(θi)

∣
∣
∣
∣
∣
< sup

θ∈[0,π4 ]
|H ′(θ)| 4 ln(n) + 4

n2
.

Proof:

e =

∣
∣
∣
∣
∣

∫ π
4

0

H(θ)dθ −
N∑

i=1

αi,nH(θi)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ π
4

0

H(θ)dθ −
N∑

i=1

(µi+1 − µi)H(θi)

∣
∣
∣
∣
∣

by 3.1.3

=

∣
∣
∣
∣
∣

N∑

i=1

∫ µi+1

µi

H(θ)−H(θi)dθ

∣
∣
∣
∣
∣

by 3.1.4 (i)

=

∣
∣
∣
∣
∣

N∑

i=1

∫ θi

µi

H(θ)−H(θi)dθ −
∫ µi+1

θi

H(θi)−H(θ)dθ

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

i=1

∫ θi

µi

H(θ)−H(θi)

θ − θi
(θ − θi)dθ −

∫ µi+1

θi

H(θi)−H(θ)

θi − θ
(θi − θ)dθ

∣
∣
∣
∣

=

∣
∣
∣
∣
∣

N∑

i=1

∫ θi

µi

H ′(ξ(θ))(θ − θi)dθ −
∫ µi+1

θi

H ′(ξ̃(θ)(θi − θ)dθ

∣
∣
∣
∣
∣

by MVT

≤
N∑

i=1

∣
∣
∣
∣

∫ θi

µi

H ′(ξ(θ))(θ − θi)dθ

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ µi+1

θi

H ′(ξ̃(θ)(θ − θi)dθ

∣
∣
∣
∣



3.2 Two dimensions 35

≤
N∑

i=1

∣
∣
∣
∣
∣

sup
ϕ∈[µi,θi]

|H ′(ϕ)|
∫ θi

µi

(θ − θi)dθ

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

sup
ϕ̂∈[θi,µi+1]

|H ′(ϕ̂)|
∫ µi+1

θi

(θ − θi)dθ

∣
∣
∣
∣
∣

≤ sup
ϕ∈[0,π4 ]

|H ′(ϕ)|
N∑

i=1

∣
∣
∣
∣

θ2i
2

− µ2
i

2
− θ2i + θiµi

∣
∣
∣
∣
+

∣
∣
∣
∣

µ2
i+1

2
− θ2i

2
− θiµi+1 + θ2i

∣
∣
∣
∣

= sup
ϕ∈[0,π4 ]

|H ′(ϕ)|
N∑

i=1

1

2
(θi − µi)

2 +
1

2
(µi+1 − θi)

2

< sup
ϕ∈[0,π4 ]

|H ′(ϕ)|
N∑

i=1

α2
i,n by 3.1.4 (ii)

< sup
ϕ∈[0,π4 ]

|H ′(ϕ)|
N∑

i=1

(
2

nqi

)2

by 3.1.4 (iii)

= sup
ϕ∈[0,π4 ]

|H ′(ϕ)| 2
2

n2

N∑

i=1

(
1

qi

)2

≤ sup
ϕ∈[0,π4 ]

|H ′(ϕ)| 2
2

n2

n∑

q=1

q
∑

p=1

1

q2

= sup
ϕ∈[0,π4 ]

|H ′(ϕ)| 2
2

n2

n∑

q=1

1

q
≤ sup

ϕ∈[0,π4 ]
|H ′(ϕ)| 4 ln(n) + 4

n2

Remark 3.1.6

(i) The above discretization can be interpreted as

N∑

i=1

αi,nH̃(ω(θi)) ≈
∫

S1
1
8

H̃(w)dw, ω(θ) =

(
cos(θ)
sin(θ)

)

with H(θ) = H̃(ω(θ)) and S1
1
8

being 1
8
of the unit sphere in two dimensions. We

use the representation in the above proposition, because in the next subsection
we first simplify the transformation of the collision operator before we use the
Farey approximation.

(ii) At a first glance this discretization looks uninteresting. The nice thing about
this discretization is that it only uses angles that have the important property to
correspond to the gradient of lines that fit onto our uniform grid. This makes this
discretization especially suited for integration in polar or spherical coordinates.

3.2 Two dimensions

Now we start to derive a specific discretization of the collision operator by using
the Farey approximation. For this we need to transform the collision operator in a
convenient way for the following discretization.



36 3 Consistency

Lemma 3.2.1 (Transformation of the collision operator)
Let us assume that the density f has the property supp(f) ⊂ BL

2
(0), L ∈ R+ and let

v ∈ BL
2
(0), ω(θ) :=

(
cos(θ)
sin(θ)

)

, ω⊥(θ) := ω(θ + π
2
), then the following holds true:

I[f ](v) =

∫

R2

∫

S1

[
f
(
v′1
)
f
(
w′

1

)
− f

(
v
)
f
(
w
)]
k (v,w, η) dη dw

=

∫ 2π

0

∫ 2π

0

∫ L

0

[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2)
)]
lk (v,w2, ω(θ)) dl dλ dθ ,

with

v′1 := v+ 〈−→vw, η〉η, w′
1 := w− 〈−→vw, η〉η ,

v′2 := v+ l〈ω(θ + λ), ω(θ)〉ω(θ), w′
2 := v + l〈ω(θ + λ), ω⊥(θ)〉ω⊥(θ) ,

w2 := v+ lω(θ + λ) .

Proof:

(i) start

I[f ](v) =

∫

R2

∫

S1

[
f
(
v′
)
f
(
w′)− f

(
v
)
f
(
w
)]
k (v,w, η) dη dw,

v′ = v+ 〈−→vw, η〉η, w′ = w− 〈−→vw, η〉η

(ii) transformation 1 (compare figure 3.2a):

Φ({1} × [0, 2π]) = S1, Φ

(
1
θ

)

= ω(θ) := 1

(
cos(θ)
sin(θ)

)

(= η), det(DΦ) = 1

=⇒ I[f ](v) =

∫

R2

∫ 2π

0

[
f
(
v′
)
f
(
w′)− f

(
v
)
f
(
w)
]
k (v,w, ω(θ)) dθ dw ,

v′ = v+ 〈−→vw, ω(θ)〉ω(θ), w′ = w− 〈−→vw, ω(θ)〉ω(θ) = v+
−→
vw− 〈−→vw, ω(θ)〉ω(θ)

(iii) transformation 2 (compare figure 3.2b):

Φ(R+
{0} × [0, 2π]) = R2, Φ

(
l
λ

)

= lω(θ + λ)(=
−→
vw), det(DΦ) = l

=⇒ I[f ](v) =

∫ 2π

0

∫

R2

[
f
(
v′
)
f
(
w′)− f

(
v
)
f
(
v+

−→
vw
)]
lk (v,w, ω(θ)) dw dθ

=

∫ 2π

0

∫ 2π

0

∫ L

0

[

f
(
v′
)
f
(
w′)− f

(
v
)
f
(

w2:=
︷ ︸︸ ︷

v+ lω(θ + λ)
)]

lk (v,w2, ω(θ)) dl dλ dθ ,



3.2 Two dimensions 37

b w

bw′

b

v′
b

v

b

ω⊥(θ)

ω(θ)

θ

θ

b

b

(a) Transformation 1

b w
ω(θ + λ)

bw′

b

v′
b

v

b

ω⊥(θ)

ω(θ)λ

θ

θ

b

b

(b) Transformation 2

Figure 3.2: Visualization of the transformations

because supp(f) ⊂ BL
2
(0) and with

v′ = v+ 〈lω(θ + λ), ω(θ)〉ω(θ) =: v′2

w′ = v+
−→
vw− 〈−→vw, ω(θ)〉ω(θ) = v + lω(θ + λ)− 〈lω(θ + λ), ω(θ)〉ω(θ)

(∗)
= v+ l cos(λ)ω(θ) + l sin(λ)ω

(

θ +
π

2

)

− l
(

cos(λ)〈ω(θ), ω(θ)〉
︸ ︷︷ ︸

=1

+ sin(λ)
〈

ω
(

θ +
π

2

)

, ω(θ)
〉

︸ ︷︷ ︸

=0

)

ω(θ)

= v+ l sin(λ)ω
(

θ +
π

2

)

= v + l cos
(

λ− π

2

)

ω
(

θ +
π

2

)

= v+ l
〈

ω
(

λ− π

2
+ θ
)

, ω(θ)
〉

ω
(

θ +
π

2

)

= v+ l

〈

ω (λ+ θ) ,

ω⊥(θ):=
︷ ︸︸ ︷

ω
(

θ +
π

2

)
〉

ω
(

θ +
π

2

)

= v+ 〈lω(θ + λ), ω⊥(θ)〉ω⊥(θ) =: w′
2 , here we used

(∗) :ω(a+ b) =

(
cos(a + b)
sin(a+ b)

)

=

(
cos(a) cos(b)− sin(a) sin(b)
sin(a) cos(b) + cos(a) sin(b)

)

= cos(b)ω(a) + sin(b)ω
(

a +
π

2

)

(iv) simplification: There are 4 symmetries that can be used to reduce the domain
of the second integral to a quarter of the original one. We do not use these
symmetries at this point, but we want to point out, that this fact causes no
harm. We simply get the integrals multiplied by a factor of 4. We justify this



38 3 Consistency

with the following calculation:
Assuming that

θ − 3

2
π = θ1 − π = θ2 −

π

2
= θ3

and knowing that

−ω(θ) = −
(
cos(θ)
sin(θ)

)

= ω(θ + π) = ω⊥
(

θ +
π

2

)

we get

w2(λ, θ) = w2

([

λ+
π

2

]

+ θ1

)

= w2 ([λ+ π] + θ2) = w2

([

λ+
3π

2

]

+ θ3

)

,

w′
2(λ, θ) = v+ l〈ω(λ+ θ), ω⊥(θ)〉ω⊥(θ)

= v+ l
〈

ω
([

λ+
π

2

]

+ θ1

)

, ω⊥
(

θ1 +
π

2

)〉

ω⊥
(

θ1 +
π

2

)

= v+ l
〈

ω
([

λ+
π

2

]

+ θ1

)

, ω (θ1)
〉

ω (θ1)

= v′2

(

λ+
π

2
, θ1

)

= v+ l〈ω ([λ+ π] + θ2) , ω
⊥ (θ2 + π)〉ω⊥ (θ2 + π)

= v+ l〈ω ([λ+ π] + θ2) , ω
⊥ (θ2)〉ω⊥ (θ2)

= w′
2(λ+ π, θ2)

= v+ l

〈

ω

([

λ+
3π

2

]

+ θ3

)

, ω⊥
(

θ3 +
3π

2

)〉

ω⊥
(

θ3 +
3π

2

)

= v+ l

〈

ω

([

λ+
3π

2

]

+ θ3

)

, ω (θ3 + π)

〉

ω (θ3 + π)

= v+ l

〈

ω

([

λ+
3π

2

]

+ θ3

)

, ω (θ3)

〉

ω (θ3)

= v′2

(

λ+
3π

2
, θ3

)

, and analog:

v′2(λ, θ) = w′
2

(

λ+
π

2
, θ1

)

= v′2 (λ+ π, θ2) = w′
2

(

λ+
3π

2
, θ3

)

.

Remark 3.2.2
The condition supp(f) ⊂ BL

2
(0), L ∈ R+ is obviously not met, because f is typically a

distorted normal distribution. Nevertheless the exponential decline of f(v) for growing
‖v‖ justifies this assumption, especially because nearly every numerical scheme using
a finite grid is forced to this truncation. Due to the exponential decline it is possible
to hold the corresponding error into check by calculating a compact region where a



3.2 Two dimensions 39

specific (large) percentage of the integral is situated and set f to zero outside of this
domain. This approach seems to be the standard in this field of research and the
corresponding assumption on f or the asymptotic exponential decline and truncation
is generally used in convergence proofs, for example in [RS94,PSB97]. From now on
we will always assume

supp(f) ⊂ BL
2
(0), L ∈ R+ .

The following theorem can be seen as an extension of the discretization obtained by
Rogier and Schneider in [RS94]. In contrast to them we use another transformation
of the collision integral (they only transform the inner integral into polar coordinates
and thus have only one angle) and we look at general Newton-Cotes formula for the
approximation of the innermost integral.

Theorem 3.2.3 (Farey discretization of the collision operator)
Defining

h(l, λ, θ) :=
[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2

)]
lk (v,w2, ω(θ)) ,

and assuming f ∈ Cr(R2 → R), k ∈ Cr(R2×R2×S1 → R), the transformed collision
operator

I[f ](v) =

∫ π
4

0

∫ π
4

0

∫ L

0

h(l, λ, θ) dl dλ dθ

can be approximated by

Ĩ[f ](v) :=
N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

g(k)h(lk, λj, θi) ,

where g represents the weight function corresponding to the Newton-Cotes formula
used to approximate the innermost integral and

∆vij := ∆v
√

p2i,n + q2i,n

√

p2j,m + q2j,m, lk = k ·∆vij .

This approach yields an upper error bound of

∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ < 4Kθ

ln(n) + 1

n2
+ πKλ

ln(m) + 1

m2
+ 3 · 2r+1cLKl(∆v)

rnrmr ,

where Kl, Kλ, Kθ are some constants depending only on f, k and r, c correspond to the
used Newton-Cotes formula, r being the error order and c corresponding to some error
constants. A simplification in the calculation of

h(lk, λj , θi) = [f(v′2(i, j, k))f(w
′
2(i, j, k))− f(v)f(w2(i, j, k))] lk(v,w2(i, j, k), ω(θi))

is given through:

w2(lk, λj, θi) = v + lkω(θi + λj) = v+ k∆v

(
qiqj − pipj
piqj + pjqi

)

,



40 3 Consistency

v′2(lk, λj, θi) = v + lk〈ω(θi + λj), ω(θi)〉ω(θi) = v+ k∆vqj

(
qi
pi

)

,

w′
2(lk, λj, θi) = v + lk〈ω(θi + λj), ω

⊥(θi)〉ω⊥(θi) = v+ k∆vpj

(
−pi
qi

)

.

Proof:
In the above theorem and throughout this proof we use the Farey sequences Fn,Fm
with the corresponding sequence lengths N,M . To prove the error bound we define

H1(λ, θ) :=

∫ L

0

h(l, λ, θ)dl, H2(θ) :=

∫ π
4

0

H1(λ, θ)dλ ,

and with this we will take a closer look at the three occurring approximation errors:

e3 :=

∫ π
4

0

H2(θ)dθ −
N∑

i=1

αi,nH2(θi) ,

e2(i) := H2(θi)−
M∑

j=1

αj,mH1(λj, θi), e2 :=
N∑

i=1

αi,ne2(i) ,

we want to use a closed Newton-Cotes formula for the innermost integration, so we
bloat the innermost integral by adding a zero:

e1(i, j) := H1(λj, θi)− ⌈L�∆vij⌉∆vij
⌊L�∆vij⌋∑

k=1

g(k)h(lk, λj , θi)

=

∫ L

0

h(l, λ, θ)dl − ⌈L�∆vij⌉∆vij
⌊L�∆vij⌋∑

k=1

g(k)h(lk, λj, θi)

− ⌈L�∆vij⌉∆vij
[
g(⌈L�∆vij⌉)

0=
︷ ︸︸ ︷

h(l⌈L�∆vij⌉, λj , θi)− g(0)

0=
︷ ︸︸ ︷

h(0, λj, θi)
]

=

∫ ⌈L�∆vij⌉∆vij

0

h(l, λ, θ)dl − ⌈L�∆vij⌉∆vij
⌈L�∆vij⌉∑

k=0

g(k)h(lk, λj, θi),

e1 :=

N∑

i=1

αi,n

M∑

j=1

αj,me1(i, j) .

Here g(k) is the weight function corresponding to the used Newton-Cotes formula.
To understand the step size of the Newton-Cotes formula we calculate the grid point
corresponding to ω(θi + λj) by using the underlying Farey sequences:

tan(θi + λj) =
tan(θi) + tan(λj)

1− tan(θi) tan(λj)
=

(
pi
qi
+

pj
qj

)

1− pipj
qiqj

=
piqj + pjqi
qiqj − pipj



3.2 Two dimensions 41

=⇒
(
qiqj − pipj
piqj + pjqi

)

=

∣
∣
∣
∣

(
qiqj − pipj
piqj + pjqi

)∣
∣
∣
∣
· ω(θi + λj)

=
√

(qiqj − pipj)2 + (piqj + pjqi)2 · ω(θi + λj)

=
√

(p2i + q2i )(p
2
j + q2j ) · ω(θi + λj) .

For the next step we need the abbreviations

Pi :=

(
qi
pi

)

= |Pi|ω(θi), ri := |Pi| =
√

q2i + p2i ,

Pij :=

(
qiqj − pipj
piqj + pjqi

)

= |Pij|ω(θi + λj), rij := |Pij| =
√

(p2i + q2i )(p
2
j + q2j ) .

Using this we can take a closer look at w2, v
′
2,w

′
2. These velocities are given by

w2 := v+ lkω(θi + λj) ,

v′2 := v+ 〈lkω(θi + λj), ω(θi)〉ω(θi), w′
2 := v+ 〈lkω(θi + λj), ω

⊥(θi)〉ω⊥(θi) ,

and now we want to calculate the occurring scalar products as well as lk. At first we
want that these velocities lie on our grid. So a first guess for lk is (according to w2)

lk := k ·
∆vij :=
︷ ︸︸ ︷

∆v · rij = k ·∆vij .

Now let us see if this results in v′2,w
′
2 lying on the grid:

〈ω(θi + λj), ω(θi)〉 = x ⇐⇒ x =
〈rijω(θi + λj), riω(θi)〉

rijri

⇐⇒x =
〈Pi,j, Pi〉
rijri

⇐⇒ x =
q2i qj − qipipj + p2i qj + piqipj

rijri
=
qjr

2
i

rijri

⇐⇒x =
qjri
rij

=⇒v′2 = v+ k∆vij
qjri
rij

ω(θi) = v+ k∆vqjriω(θi) = v+ k∆vqjPi ∈ V

and

x =
〈
ω(θi + λj), ω

⊥(θi)
〉
=
〈

ω(θi + λj), ω
(

θi +
π

2

)〉

=

〈

ω(θi + λj),

(
0 −1
1 0

)

ω(θi)

〉

=

〈

Pij,

(
0 −1
1 0

)

Pi

〉

rijri

=
pjr

2
i

rijri
=
pjri
rij



42 3 Consistency

=⇒w′
2 = v+ k∆vij

pjri
rij

(
0 −1
1 0

)

ω(θi) = v+ k∆vpj

(
0 −1
1 0

)

Pi ∈ V .

As we see the resulting v′2,w
′
2 lie on the grid, so w2 is given by

w2 = v+ k∆vijω(θi + λj) = v + k∆vPij .

Figure 3.3 illustrates the preceding argumentation. Here we can see that the Farey

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b

b

w

w

ω(θi + λj)

b

b

w′

w′

b

b

v′
v′

b
v

ω⊥(θi)

ω(θi)

∆vij

λj
θi

θi

b

b

b

b

θi = arctan
(
pi,n
qi,n

)

λj = arctan
(
pj,m
qj,m

)

∆vij = ∆v
√

p2i,n + q2i,n

√

p2j,m + q2j,m

Figure 3.3: Scheme for determining w, v′,w′ and line of integration, in this example
we have chosen pi = 1, qi = 5, pj = 1, qj = 1

approximation can be interpreted as a rotation of the coordinate system around zero
by the Farey angle θi. Then we conduct the integration on a line that is determined
by an additional rotation around zero by the Farey angle λj . This results in the
aforementioned step size of

∆vij = ∆v
√

p2i,n + q2i,n

√

p2j,m + q2j,m

for the innermost integration. Now we use a composite Newton-Cotes formula with
an error order of r to approximate the innermost integral resulting in

|e1(i, j)| ≤ ⌈L�∆vij⌉∆vijc∆vrij max
l∈[0,L]

∣
∣
∣
∣

∂rh(l, λj, θi)

∂lr

∣
∣
∣
∣

<
3

2
Lc∆vrij max

l∈[0,L]

∣
∣
∣
∣

∂rh(l, λj, θi)

∂lr

∣
∣
∣
∣

=
3

2
Lc(∆v)r(pi,n

2 + qi,n
2)

r
2 (pj,m

2 + qj,m
2)

r
2 sup
l∈[0,L]

∣
∣
∣
∣

∂rh(l, λj, θi)

∂lr

∣
∣
∣
∣

=⇒ |e1| ≤
N∑

i=1

M∑

j=1

αi,nαj,me1(i, j)



3.2 Two dimensions 43

=

N∑

i=1

M∑

j=1

αi,nαj,mc
3

2
L(∆v)r(p2i,n + q2i,n)

r
2 (p2j,m + q2j,m)

r
2 sup
l∈[0,L]

∣
∣
∣
∣

∂rh(l, λj , θi)

∂lr

∣
∣
∣
∣

≤ 3

2
cL(∆v)r

=:Kl
︷ ︸︸ ︷

sup
l∈[0,L]

θ,λ∈[0,π4 ]

∣
∣
∣
∣

∂rh(l, λ, θ)

∂lr

∣
∣
∣
∣

N∑

i=1

M∑

j=1

αi,nαj,m(p
2
i,n + q2i,n)

r
2 (p2j,m + q2j,m)

r
2

<
3

2
cL(∆v)rKl

N∑

i=1

M∑

j=1

2

nqi,n

2

mqj,m
(p2i,n + q2i,n)

r
2 (p2j,m + q2j,m)

r
2 by 3.1.4 (iii)

<
3

2
cL(∆v)rKl

4

mn

N∑

i=1

M∑

j=1

(2q2i,n)
r
2

qi,n

(2q2j,m)
r
2

qj,m

=
6cL(∆v)r

nm
Kl2

r
N∑

i=1

qr−1
i,n

M∑

j=1

qr−1
j,m

≤ 3 · 2r+1cL(∆v)r

nm
Kl

n∑

q=1

q
∑

p=1

qr−1

m∑

Q=1

Q
∑

P=1

Qr−1

=
3 · 2r+1cL(∆v)r

nm
Kl

n∑

q=1

qr
m∑

Q=1

Qr

<
3 · 2r+1cL(∆v)r

nm
Kln

r+1mr+1 = 3 · 2r+1cLKl(∆v)
rnrmr .

For the second error we get

|e2(i)| < sup
λ∈[0,π4 ]

∣
∣
∣
∣

∂H1(λ, θi)

∂λ

∣
∣
∣
∣

4 ln(m) + 4

m2
by 3.1.5

=⇒ |e2| <
N∑

j=0

αi,n sup
λ∈[0,π4 ]

∣
∣
∣
∣

∂H1(λ, θi)

∂λ

∣
∣
∣
∣

4 ln(m) + 4

m2

≤

=:Kλ
︷ ︸︸ ︷

sup
θ,λ∈[0,π4 ]

∣
∣
∣
∣

∂H1(λ, θi)

∂λ

∣
∣
∣
∣

N∑

i=0

αi,n
4 ln(m) + 4

m2

=
π

4
Kλ

4 ln(m) + 4

m2
. by 3.1.4 (iv)



44 3 Consistency

And analogously the last error results in

|e3|
3.1.5
<

=:Kθ
︷ ︸︸ ︷

sup
θ∈[0,π4 ]

∣
∣
∣
∣

∂H2(θ)

∂θ

∣
∣
∣
∣

4 ln(n) + 4

n2
= Kθ

4 ln(n) + 4

n2
.

The sum of these three errors gives the claim of this theorem. The last thing we have
to look at is the differentiability of h:

h(l, λ, θ) =
[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2

)]
lk (v,w2, ω(θ)) ,

we know that products and sums of total differentiable functions (f, k by assumption)
are total differentiable. We also know that the composition of total differentiable
functions is total differentiable. Knowing that

v′2(l, λ, θ) := v+ 〈lω(θ + λ), ω(θ)〉ω(θ), w′
2(l, λ, θ) := v+ 〈lω(θ + λ), ω⊥(θ)〉ω⊥(θ) ,

w2(l, λ, θ) := v+ lω(θ + λ) ,

are elements of C∞([0,∞)× [0, 2π]2 → R3) and using the assumptions on f we arrive
at

[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2

)]
∈ Cr

(
(0,∞)× (0, 2π)2 → R

)
.

We also know that the first r total derivatives of k exist. Plugging in the r times total
differentiable function

Φ(l, λ, θ) :=





v

w2

ω



 (l, λ, θ) =





v

w2(l, λ, θ)
ω(θ)



 =





v

v+ lω(θ + λ)
ω(θ)





∈ Cr
(
(0,∞)× (0, 2π)2 → R3 × R3 × S2

)

results into k(Φ(l, λ, θ)) = k(v,w2, ω(θ)) ∈ Cr
(
(0,∞)× (0, 2π)2 → R

)
. This leads to

the conclusion that the product h(l, λ, θ) also lies in Cr
(
(0,∞)× (0, 2π)2 → R

)
. The

last thing we want to remark is that k normally only depends on |v−w| and θ, so it
only depends on two scalars. In the above argumentation we treat k as a black box
and do not use this structure. Nevertheless the results hold true for k being r times
differentiable in these two scalar variables.

Now we do a detailed derivation of the associated convergence order in terms of ∆v
for the above discretization. Similar considerations were done in [MS00,PH99]. Our
result gives a convergence order up to one, which is in agreement with [MS00,PH99].



3.2 Two dimensions 45

Theorem 3.2.4 (Convergence order in terms of ∆v)
Assuming that ∆v ∈ R+, r ∈ N are given constants satisfying

L

2∆vñ(∆v, r)m̃(∆v, r)
> r ,

with

ñ(∆v, r) =




W
(

−e−2r−2(2r + 2)(∆v)r3 · 2r−1cL
(
π
4

) r
2

)

−(2r + 2)(∆v)r3 · 2r−1cL
(
π
4

) r
2





1
2r+2

,

m̃(∆v, r) =

√
π

4
n(∆v, r) ,

and choosing n,m according to n = ⌈ñ(∆v, r)⌉, m = ⌈m̃(∆v, r)⌉, the convergence
order of the Farey discretization 3.2.3 is

∀δ > 0 : |I[f ](v)− Ĩ[f ](v)| < e(∆v) ∈O
(

(∆v)
r
r+1

−δ
)

.

Here W (•) is the minus first branch W−1 or Wm of the Lambert W function, see
[OLBC10, 4.13]. We have to remark that W (x) for x→ −0 asymptotically grows like
the logarithm, implying that

∀ε > 0 : n,m ∈ O
(

(∆v)−
r

2r+2
+ε
)

.

So the main conclusion is that if n,m grow sufficiently slow with 1
∆v

and in comparison
to 1

∆v
than the whole approximation converges with the order given above. The first

requirement ensures that at least r points lie on every line that is used for the innermost
integration, a condition that is necessary for the application of a Newton-Cotes formula
of order r. The minimal number of points r̃ on any given line associated with the
approximation of the innermost integral grows asymptotically as is given by

∀ε > 0 : r̃(∆v) ∈ O
(

(∆v)−
1
r+1

+2ε
)

.

Proof:
Let K ≥ max{Kl, Kλ, Kθ} , n > 2 and cl := 3 ·2r+1cL, cλ := π, cθ := 4. Then the error
formula

∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ < 4Kθ

ln(n) + 1

n2
+ πKλ

ln(m) + 1

m2
+ 3 · 2r+2cLKl(∆v)

rnrmr ,

holds true even when Kl, Kλ, Kθ get substituted by K. This leads to the ansatz

Kcθ
ln(n) + 1

n2
= Kcλ

ln(m) + 1

m2
= Kcl(∆v)

rnrmr , (3.2.1)



46 3 Consistency

this ansatz forces the three integrations to deliver approximately the same error, only
disturbed by the differences between Kλ, Kθ, Kl. The most simple ansatz would be to
do the following upward estimation

ln(n) + 1

n2
<

1

n
∧ ln(m) + 1

m2
<

1

m

=⇒
∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ < Kcθ

1

n
+Kcλ

1

m
+Kcl(∆v)

rnrmr ,

Kcθ
1

n
= Kcλ

1

m
= Kcl(∆v)

rnrmr =⇒ n = const ·m,n ∈ O((∆v)−
r

2r+1 )

=⇒
∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ ∈ O((∆v)

r
2r+1 ) ≈ O((∆v)

1
2 ) ,

which essentially leads to a convergence order around 1
2
. But we want to do it in a more

precise way where the correct handling of the logarithm results into some complicated
expressions involving the Lambert W function. So let us start, at first we derive m in
terms of n.

cθ
ln(n) + 1

n2
= cλ

ln(m) + 1

m2
⇐⇒ ln(m) =

cθ
cλ

ln(n) + 1

n2
m2 − 1

⇐⇒1

2
ln(m2) =

cθ
cλ

ln(n) + 1

n2
m2 − 1 ⇐⇒ m2 = e

2cθ
cλ

ln(n)+1

n2
m2−2

⇐⇒1 =
m2

e
2cθ
cλ

ln(n)+1

n2
m2−2

⇐⇒ (∗)

At this point we want to use the Lambert W function, for this we introduce the
abbreviation a := 2cθ

cλ

ln(n)+1
n2 and the substitution m̃ = m2 leading to

(∗) ⇐⇒ 1 = m̃ · e−am̃+2 = m̃e2 · e−am̃

⇐⇒ −ae−2 = −ae−2m̃e2e−am̃ = −am̃e−am̃

⇐⇒W (−ae−2) = −am̃ ⇐⇒ m =

√

−W (−ae−2)

a
.

From (3.2.1) follows that m has to grow proportionally to n. This together with the
demand that m should be real and the fact that ∀n ∈ N : ae−2 ∈

(
0, 1

e

)
leads to the

conclusion that we have to choose the branch W−1 of the Lambert W function. We
will plainly call it W , because we do not need other branches. Now we search for an
upper bound and approximation of m(n). For this we investigate the monotonicity

and limit of −W (−a(n)e−2)
2cθ
cλ

(ln(n)+1)
.

(i) Monotonicity: The derivative is given by

−
1

−a(n)e−2

W (−a(n)e−2)
1+W (−a(n)e−2)

· (−a′(n)e−2)(ln(n) + 1) + 1
n(ln(n)+1)2

W (−a(n)e−2)

(ln(n) + 1)2



3.2 Two dimensions 47

= −
a′(n)
a(n)

W (−a(n)e−2)
1+W (−a(n)e−2)

(ln(n) + 1) + W (−a(n)e−2)
n(ln(n)+1)2

(ln(n) + 1)2
.

We know

• cθ > 0, cλ > 0, 2 cθ
cλ
< e ,

• a : N →
(

0, 2 cθ
cλ

)

, n 7→ 2cθ
cλ

ln(n)+1
n2 ,

• ∀b ∈
(
−1
e
, 0
)
: W (b) < −1, lim

b→−0
W (b) = −∞ ,

and W is strict monotonically decreasing in
(
−1
e
, 0
)
. This can be used to get

• −a(n)e−2 ∈
(

− 2cθ
cλe2

, 0
)

⊂
(
−1
e
, 0
)
=⇒W (−a(n)e−2) < −1 ,

• a(n) > 0, ∂a(n)
∂n

= −2cθ
2 ln(n)+1
cλn3 < 0 .

This implies the positivity of the derivative:

−

<0
︷ ︸︸ ︷
<0
︷ ︸︸ ︷

a′(n)

a(n)

>0
︷ ︸︸ ︷

W (−a(n)e−2)

1 +W (−a(n)e−2)
(ln(n) + 1) +

<0
︷ ︸︸ ︷

W (−a(n)e−2)

n(ln(n) + 1)2

(ln(n) + 1)2
> 0 .

(ii) Limit: The limit can be calculated by using L’Hôpital:

lim
n→∞

cλ
2cθ

−W
(

−b(n):=
︷ ︸︸ ︷

−2
cθ
cλ

ln(n) + 1

n2
e−2

)

ln(n) + 1

= lim
n→∞

cλ
2cθ

−W (−b(n))
1+W (−b(n))

1
−b(n)

(

−2 cθ
cλ
e−2
(

−2 ln(n)+1
n3

))

1
n

= lim
n→∞

W (−b(n))
1 +W (−b(n))

e−2

b(n)

(
2 ln(n) + 1

n2

)

= lim
n→∞

W (−b(n))
1 +W (−b(n))

e−2

2 cθ
cλ

ln(n)+1
n2 e−2

(
2 ln(n) + 1

n2

)

= lim
n→∞

W (−b(n))
1 +W (−b(n))

n2cλ
2cθ(ln(n) + 1)

(
2 ln(n) + 1

n2

)

=
cλ
cθ

lim
n→∞

W (−b(n))
1 +W (−b(n)) =

cλ
cθ

lim
n→∞

W (−a(n)e−2)

1 +W (−a(n)e−2)
=
cλ
cθ

lim
z→−0

W (z)

1 +W (z)

=
cλ
cθ
.



48 3 Consistency

The upper bound (as well as an approximation) of m(n) is now given by

m(n) =

√

−W (−a(n)e−2)

a(n)
=

√

−W (−a(n)e−2)
2cθ
cλ

ln(n)+1
n2

=

√

−W (−a(n)e−2)
2cθ
cλ
(ln(n) + 1)

n

<

√
cλ
cθ
n, with ∀ε > 0∃n0 ∈ N∀n > n0 :

√
cλ
cθ
n− ε ≤ m(n) (3.2.2)

and we can use it to derive n(∆v). By using m(n) in (3.2.1) we get

cθ
ln(n) + 1

n2
= cl(∆v)

rnrmr < cl(∆v)
rnr
(√

cλ
cθ
n

)r

,

and now we can calculate a n(∆v) that condemns the above inequality to be true:

cθ
ln(n) + 1

n2
= cl(∆v)

rnr
(√

cλ
cθ
n

)r

= cl(∆v)
rn2r

(
cλ
cθ

)r/2

⇐⇒ ln(n) =
cl
cθ
(∆v)rn2r+2

(
cλ
cθ

)r/2

− 1

⇐⇒ 1

2r + 2
ln
(
n2r+2

)
=
cl
cθ
(∆v)rn2r+2

(
cλ
cθ

)r/2

− 1

⇐⇒ ln
(
n2r+2

)
=

d(n,∆v):=
︷ ︸︸ ︷

(2r + 2)
cl
cθ
(∆v)rn2r+2

(
cλ
cθ

) r
2

− 2r − 2

⇐⇒n2r+2 = ed(n,∆v)−2r−2 ⇐⇒ n2r+2e−d(n,∆v)+2r+2 = 1

⇐⇒− (2r + 2)
cl
cθ
(∆v)rn2r+2

(
cλ
cθ

) r
2

e−d(n,∆v) = −e−2r−2(2r + 2)(∆v)r
cl
cθ

(
cλ
cθ

) r
2

⇐⇒− d(n,∆v)e−d(n,∆v) = −e−2r−2(2r + 2)(∆v)r
cl
cθ

(
cλ
cθ

) r
2

⇐⇒W

(

−e−2r−2(2r + 2)(∆v)r
cl
cθ

(
cλ
cθ

) r
2

)

= −d(n,∆v)

⇐⇒n2r+2 =

W

(

−e−2r−2(2r + 2)(∆v)r cl
cθ

(
cλ
cθ

) r
2

)

−(2r + 2) cl
cθ
(∆v)r

(
cλ
cθ

) r
2

⇐⇒n(∆v) =







W

(

−e−2r−2(2r + 2)(∆v)r cl
cθ

(
cλ
cθ

) r
2

)

−(2r + 2) cl
cθ
(∆v)r

(
cλ
cθ

) r
2







1
2r+2

.



3.2 Two dimensions 49

Now that we know sufficient criteria for m(n) and n(∆v) we start to derive the error
in terms of ∆v. For that we have to get upper and lower boundaries of n(∆v) in terms
of ∆v. To get a lower bound let’s start again at (3.2.1):

cθ
ln(n) + 1

n2
= cl(∆v)

rnrmr < cl(∆v)
rnr
(√

cλ
cθ
n

)r

= cl(∆v)
rn2r

(
cλ
cθ

) r
2

⇐⇒ cθ
n2

< cl(∆v)
rn2r

(
cλ
cθ

) r
2

⇐⇒ n2r+2 >
cθ
cl

(
cθ
cλ

) r
2

(∆v)−r

⇐⇒n >

(

cθ
cl

(
cθ
cλ

) r
2

) 1
2r+2

· (∆v)− r
2r+2 =⇒ n ∈ Ω

(

(∆v)−
r

2r+2

)

=⇒ 1

n2
∈ O

(

(∆v)
2r

2r+2

)

. (3.2.3)

For the upper bound we use (3.2.1), (3.2.2) and we choose an arbitrary ε ∈ R+ with

ε <
√

cλ
cθ
. This leads to

∃n0 ∈ N∀n > n0 : cθ
ln(n) + 1

n2
> cl(∆v)

rnr
(√

cλ
cθ
n− ε

)r

= cl(∆v)
rn2r

(√
cλ
cθ

− ε

n

)r

> cl(∆v)
rn2r

(√
cλ
cθ

− ε

)r

⇐⇒ ∃n0 ∈ N∀n > n0 :
n2r+2

ln(n) + 1
<
cθ
cl

(√
cλ
cθ

− ε

)−r
(∆v)−r

⇐⇒ ∀δ > 0∃n0 ∈ N∀n > n0 : n
2r+2−δ <

cθ
cl

(√
cλ
cθ

− ε

)−r
(∆v)−r

⇐⇒ ∀δ > 0∃n0 ∈ N∀n > n0 : n <

(
cθ
cl

) 1
2r+2−δ

(√
cλ
cθ

− ε

)− r
2r+2−δ

(∆v)−
r

2r+2−δ

=⇒ n ∈ O
(

(∆v)−
r

2r+2−δ

)

=⇒ ln(n) ∈ O (ln(∆v)) (3.2.4)

Now we come to the convergence order. By choosing n,m according to

n =
















W

(

−e−2r−2(2r + 2)(∆v)r cl
cθ

(
cλ
cθ

) r
2

)

−(2r + 2) cl
cθ
(∆v)r

(
cλ
cθ

) r
2







1
2r+2










, m =

⌈√
cλ
cθ
n

⌉

(3.2.5)

we can “simplify” the error bound:

|I[f ](v)− Ĩ[f ](v)| < K

(

cθ
ln(n) + 1

n2
+ cλ

ln(m) + 1

m2
+ cl(∆v)

rnrmr

)



50 3 Consistency

= K




cθ

ln(n) + 1

n2
+ cλ

ln
(⌈√

cλ
cθ
n
⌉)

+ 1
(⌈√

cλ
cθ
n
⌉)2 + cl(∆v)

rnr
(⌈√

cλ
cθ
n

⌉)r




 .

The usage of (3.2.3) and (3.2.4) implies:

cθ(ln(n) + 1)
︸ ︷︷ ︸

∈O(ln(∆v))

· 1

n2
︸︷︷︸

∈O
(

(∆v)
2r

2r+2

)

+ cλ

ln
(⌈√

cλ
cθ
n
⌉)

+ 1
(⌈√

cλ
cθ
n
⌉)2

︸ ︷︷ ︸

∈O
(

ln(∆v)(∆v)
2r

2r+2

)

+ cl(∆v)
rnr
(⌈√

cλ
cθ
n

⌉)r

︸ ︷︷ ︸

∈O
(

(∆v)r(∆v)
− 2r2

2r+2−δ

)

,

where the last term can be simplified

(∆v)r(∆v)−
2r2

2r+2−δ = (∆v)−
2r2

2r+2−δ
+r = (∆v)

2r2+2r−δr−2r2

2r+2−δ = (∆v)
2r−δr
2r+2−δ

= (∆v)
2r

2r+2−δ
−δ̃ ∈ O

(

(∆v)
2r

2r+2−δ
−δ̃
)

⊂ O
(

(∆v)
2r

2r+2
−δ̃
)

,

and reveals a final result:

|I[f ](v)− Ĩ[f ](v)| < e(∆v) ∈ O
(

(∆v)
2r

2r+2
−δ
)

.

The last question that remains is: how many points are at least on any line for the
innermost integration, because this determines what the largest r (order of the Newton-
Cotes formula) can be. We know that the number of points corresponds to

∀i, j : L

∆vij
=

L

∆v
√

(p2i + q2i )(p
2
j + q2j )

>
L

2∆vnm
.

We also know that the number of points necessary to achieve an convergence order of
r in the Newton-Cotes formulas is given by r̂ ≤ r (2 points for the trapezoid method,
3 points for the Simpson’s rule etc.). So

L

2∆vnm
≥ r ≥ r̂

has to be true for the chosen ∆v, r. To verify this we can put n(∆v, r) and m(∆v, r)
from (3.2.5) into this inequality. Unfortunately the equations become so complex
that we surrender the task to calculate this to numerical algorithms on computers.
Nevertheless we can derive the asymptotic behavior of the minimal number of points
on any given line associated with the innermost integral by taking a closer look at

r̃ =
L

2∆vnm
.



3.2 Two dimensions 51

We know that W (x) grows as the logarithm for x→ −0:

lim
x→−0

W (x)

ln(x)
, using L’Hôpital gives

= lim
x→−0

W (x)
x(1+W (x))

1
x

= lim
x→−0

W (x)

1 +W (x)
= 1 ,

resulting into

∀ε > 0 : n ∈ O
(

(∆v)−
r

2r+2
+ε
)

, m ∈ O
(

(∆v)−
r

2r+2
+ε
)

.

Using this knowledge for the calculation of the asymptotic behavior of the minimal
number of points on lines results into

∀ε > 0 : r̃ =
L

2∆vnm
∈ O

(

(∆v)
−2r−2+2r

2r+2
+2ε
)

= O
(

(∆v)−
1
r+1

+2ε
)

.

Corollary 3.2.5 (Completion of the approximation)
Using the same assumptions as in 3.2.3 the full Boltzmann collision operator

I[f ](v) =

∫ 2π

0

∫ 2π

0

∫ L

0

h(l, λ, θ) dl dλ dθ

can be approximated by the discretization

Î[f ](v) =

N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

∑

α,β∈A
g(k) (h(lk, β ± λj, α± θi))

with A :=
{
0, π

2
, π, 3π

2

}
. This approximation yields an upper error bound of

∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ < 64

(

4K̂θ
ln(n) + 1

n2
+ πK̂λ

ln(m) + 1

m2
+ 2r+23cLK̂l(∆v)

rnrmr

)

,

where K̂l, K̂λ, K̂θ are some constants depending only on f . By choosing n,m according
to theorem 3.2.4 we get the same convergence order for the above Discretization:

∀δ > 0 : |I[f ](v)− Ĩ[f ](v)| < e(∆v) ∈ O
(

(∆v)
r
r+1

−δ
)

.

Proof:
At first we have to take a look at an approximation of a spherical integral using the
Farey approximation, that needs to take more than

(
0, π

4

)
into consideration. One

could think that the following approach does the trick:

∫ π
2

0

H(θ)dθ =

∫ π
4

0

H(θ)dθ +

∫ π
2

π
4

H(θ)dθ =

∫ π
4

0

H(θ)dθ +

∫ π
4

0

H
(

θ +
π

4

)

dθ



52 3 Consistency

≈
N∑

i=1

αi,nH(θi) +

N∑

i=1

αi,nH
(

θi +
π

4

)

=

N∑

i=1

αi,n

(

H(θi) +H
(

θi +
π

4

))

.

But this approach has the nasty feature of increasing the necessary number of points
in the velocity space (in one direction) by a factor up to 2. Or in other words: this
approach creates step sizes for the innermost integration that are twice as long as
necessary.
To give an example: the approximation using a Farey sequence of order 3 results in
F4,3 = p4

q4
= 2

3
being the largest gradient of a line of integration for the innermost

integration, hitting the first grid point in (3, 2)T . The given approach results in the
usage of the Farey angle arctan

(
2
3

)
+ π

4
. Now we can simply calculate the gradient

of the corresponding line of integration by tan
(
arctan

(
2
3

)
+ π

4

)
= 5 and we realize

that we have to have at least 5 points in the direction of the ordinate to get one point
for the innermost integration. This would lead to an unnecessary degradation of the
efficiency and error rate. A more sophisticated approach is to transform the second
integral in such a way that we can use the “inverse” Farey sequence

{
1

FN,n
= tan

(π

2
− arctan(FN,n)

)

, . . . ,
1

F1,n
= tan

(π

2
− arctan(FN,1)

)}

,

for the approximation. This can be achieved by backward integration:

∫ π
2

0

H(θ)dθ =

∫ π
4

0

H(θ)dθ +

∫ π
2

π
4

H(θ)dθ =

∫ π
4

0

H(θ)dθ +

∫ 0

−π
4

H
(

θ +
π

2

)

dθ

=

∫ π
4

0

H(θ)dθ −
∫ −π

4

0

H
(

θ +
π

2

)

dθ =

∫ π
4

0

H(θ)dθ +

∫ π
4

0

H
(π

2
− θ
)

dθ

≈
N∑

i=1

αi,nH(θi) +

N∑

i=1

αi,nH
(π

2
− θi

)

=

N∑

i=1

αi,n

(

H(θi) +H
(π

2
− θi

))

.

The successive application of this approach to all four quadrants for the outer and
middle integral results in the approximation of 64 integrals and gives the approximation
formula

Î[f ](v) =
N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

∑

α,β∈A
g(k) (h(lk, β ± λj, α± θi))

with A :=
{
0, π

2
, π, 3π

2

}
. Due to the fact that this corresponds to 64 Farey approxima-

tions we get a 64 times larger bound for the error:

∣
∣
∣I[f ](v)− Î[f ](v)

∣
∣
∣ < 64

(

4K̂θ
ln(n) + 1

n2
+ πK̂λ

ln(m) + 1

m2
+ 2r+23cLK̂l(∆v)

rnrmr

)

,



3.2 Two dimensions 53

with

K̂l := sup
l ∈ [0, L]
θ, λ ∈ [0, 2π]

∣
∣
∣
∣

∂rh(l, λ, θ)

∂lr

∣
∣
∣
∣
, K̂λ := sup

θ,λ∈[0,2π]

∣
∣
∣
∣

∂H1(λ, θ)

∂λ

∣
∣
∣
∣
,

K̂θ := sup
θ∈[0,2π]

∣
∣
∣
∣

∂H2(θ)

∂θ

∣
∣
∣
∣
.

The approximation of every single integral has an order of convergence corresponding
to 3.2.4, and consequently the sum of these 64 approximations has the same order of
convergence.

Remark 3.2.6
It would be more precise to define

A :=

{

α : x 7→ a+ x

∣
∣
∣
∣
a ∈

{

0,
π

2
, π,

3π

2

}}

∪
{

α : x 7→ a− x

∣
∣
∣
∣
a ∈

{

0,
π

2
, π,

3π

2

}}

and to use this to write

Î[f ](v) =

N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

∑

α,β∈A
g(k)h(lk, β(λj), α(θi)) ,

but in the following proofs and argumentations we will use different descriptions of
these operators as functions (like above), as angles and as elements of the automor-
phism group (next corollary) interchangeably. So we give the hint to remember the
more precise definition above if some argumentation results into confusion.

Corollary 3.2.7 (Completion of the approximation using the automorphism group)
Due to the grid symmetries being represented through the operators in the automor-
phism group G the above approximation can be rewritten using this group:

Î[f ](v) =

N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

∑

α,β∈A
g(k) (h(lk, β ± λj , α± θi))

=

N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

∑

ϕα,ϕβ∈G
g(k)

(

h̃ (lk, λj, θi, ϕα, ϕβ))
)

.

Here we use a reinterpretation of h through rotations:

h̃(l, λ, θ, ϕα, ϕβ) :=
[
f
(
v′3
)
f
(
w′

3

)
− f

(
v
)
f
(
w3

)]
lk (v,w3, ϕαω(θ)) ,

w3(l, λ, θ, ϕα, ϕβ) := v+ lϕαRθϕβRλx ,

v′3(l, λ, θ, ϕα, ϕβ) := v+ l 〈ϕαRθϕβRλx, ϕαω(θ)〉ϕαω(θ) ,
w′

3(l, λ, θ, ϕα, ϕβ) := v+ l〈ϕαRθϕβRλx, Rπ
2
ϕαω(θ)〉Rπ

2
ϕαω(θ) ,

R• :=

(
cos(•) − sin(•)
sin(•) cos(•)

)

, x :=

(
1
0

)

.



54 3 Consistency

Proof:
We start with the reinterpretation of the velocities w, v′,w′ through rotations. For this

we only look at the vectors
−→
vw,

−→
vv′ and

−→
vw′. As explained in 3.2.1, 3.2.3 and figure 3.2,

we can understand
−→
vv′ as a rotation of the x-axis x = (1, 0)T by an angle of θ. Now the

operators ϕα map
−→
vv′ into one of the 8 quadrant halves. Then an additional rotation

by λ results into
−→
vw which gets also mapped into one of the 8 quadrant halves (of the

system rotated by θ) by ϕβ. This leads to the diagram

x
Rθ−−−−−→

x1
ϕα−−−−−→

x2 = ϕαω(θ) =

−→
vv′3

‖−→vv′3‖

ϕαRθRλ(ϕαRθ)
−1

−−−−−−−−−−−−−−−−→
x3

ϕαRθϕβ(ϕαRθ)
−1

−−−−−−−−−−−−−−−→
x4

=⇒ x4 = ϕαRθϕβ(ϕαRθ)
−1ϕαRθRλ(ϕαRθ)

−1ϕαRθx

= ϕαRθϕβRλx =
−−→
vw3

‖−−→vw3‖
.

Now
−→
vw′ is simply given by a 90◦ rotation of

−→
vv′.

Using this knowledge and the resulting reinterpretation through the usage of a rotation
matrix R as well as the geometric interpretation of the automorphism group the proof
of the above remark becomes easy, so let us take a look at the main idea. The
automorphism group for a two dimensional uniform grid consists of 8 elements

ϕ1 :=

(
1 0
0 1

)

, ϕ2 :=

(
1 0
0 −1

)

, ϕ3 :=

(
0 −1
1 0

)

, ϕ4 :=

(
0 1
1 0

)

ϕ5 :=

(
−1 0
0 −1

)

, ϕ6 :=

(
−1 0
0 1

)

, ϕ7 :=

(
0 1
−1 0

)

, ϕ8 :=

(
0 −1
−1 0

)

.

Let A :=
(
0, π

2
, π, 3π

2

)
= (α1, . . . , α4), α ∈ A, x := (1, 0)T , then the following holds

true:

ω(αk + θi) = Rαkω(θi) = RαkRθix = ϕ2k−1 ·Rθix ,
ω(αk − θi) = Rαkω(−θi) = RαkR−θix = ϕ2k · Rθix .

(3.2.6)

Now we can write the sum
∑

α∈A h(•, •, α± θi) out and begin to identify the angles in
A with the corresponding rotation or reflection in G through the reinterpretation of h:

ĥ(l, λ, ω(θ)) :=
[
f
(
v̂′3
)
f
(
ŵ′

3

)
− f

(
v
)
f
(
ŵ3

)]
lk (v, ŵ3, ω(θ)) = h(l, λ, θ) ,

ŵ3(l, λ, ω(θ)) := v + lRλω(θ),

v̂′3(l, λ, ω(θ)) := v + l 〈Rλω(θ), Rθx〉ω(θ),
ŵ′

3(l, λ, ω(θ)) := v + l
〈
Rλω(θ), Rπ

2
ω(θ)

〉
Rπ

2
ω(θ),

∑

α∈A
h(•, •, α± θ) =

∑

α∈A
ĥ(•, •, ω(α± θ)) =

∑

α∈A
ĥ(•, •, Rαω(±θ))

= ĥ(

ϕ1=
︷︸︸︷

R0 ω(θ)) + ĥ(

ϕ2(ω(θ))=
︷ ︸︸ ︷

R0ω(−θ)) + ĥ(

ϕ3(ω(θ))=
︷ ︸︸ ︷

Rπ
2
ω(θ)) + ĥ(

ϕ4(ω(θ))=
︷ ︸︸ ︷

Rπ
2
ω(−θ))



3.2 Two dimensions 55

+ ĥ(Rπω(θ)
︸ ︷︷ ︸

=ϕ5(ω(θ))

) + ĥ(Rπω(−θ)
︸ ︷︷ ︸

=ϕ6(ω(θ))

) + ĥ(R 3π
2
ω(θ)

︸ ︷︷ ︸

=ϕ7(ω(θ))

) + ĥ(R 3π
2
ω(−θ)

︸ ︷︷ ︸

=ϕ8(ω(θ))

)

=
∑

ϕα∈G
h̃(•, •, θ, ϕα, identity) .

Analog considerations for λ give the final result. In the end we see that the automor-
phism group can be used to map a point in the first half of the first quadrant into
every half of every quadrant in such a way that it seems natural to use this group for
the completion of the Farey approximation.

Lemma 3.2.8 (Simplification)
The last corollary can be used to obtain a simplification of the discretization:

w3(lk, λj, θi, ϕα, ϕβ) = v+ k∆v
(
ϕα
[
Pi, P

⊥
i

])
ϕβPj ,

v′3(lk, λj, θi, ϕα, ϕβ) = v+ k∆v(ϕβPj)1ϕαPi ,

w′
3(lk, λj, θi, ϕα, ϕβ) = v+w3 − v′3 ,

Pi :=

(
qi
pi

)

, P⊥
i :=

(
−pi
qi

)

.

Proof:
We know from 3.2.7 and 3.2.3 that

w3(lk, λj, θi, ϕα, ϕβ) := v+ lkϕαRθiϕβRλjx ,

v′3(lk, λj, θi, ϕα, ϕβ) := v+ lk
〈
ϕαRθiϕβRλjx, ϕαω(θi)

〉
ϕαω(θi) ,

w′
3(lk, λj, θi, ϕα, ϕβ) := v+ lk

〈
ϕαRθiϕβRλjx, Rπ

2
ϕαω(θi)

〉
Rπ

2
ϕαω(θi) ,

Pi, P
⊥
i as above and Pij :=

(
qiqj − pipj
piqj + pjqi

)

, ri := ‖Pi‖, rij = ‖Pij‖ ,

and with the knowledge Rθi = [ω(θi), ω
⊥(θi)] we obtain

w3 = v + lkϕαRθiϕβRλjx = v + k∆vrirjϕα[ω(θi), ω
⊥(θi)]ϕβω(λj)

= v + k∆v
(
ϕα
[
Pi, P

⊥
i

])
ϕβPj ,

v′3 = v + lk
〈
ϕαRθiϕβRλjx, ϕαω(θi)

〉
ϕαω(θi)

= v + k∆vri
〈(
ϕα
[
ω(θi), ω

⊥(θi)
])
ϕβPj, ϕαω(θi)

〉

︸ ︷︷ ︸
ϕαω(θi)

= v + k∆v (ϕβPj)1 ϕαPi ,

w′
3 = v +w3 − v′3 .



56 3 Consistency

Lemma 3.2.9 (Discretization as a DVM and its properties)
Assuming that

k(vi,w2, ω(θ)) = k̃(‖vi −w2‖,∠(ω(θ), Rλω(θ))) = k̃(l, λ) ,

possesses the same symmetries as the grid (which means k̃(l, λ) = k̃(l, β ± λ)) and by
using 3.2.5 or 3.2.7 for the calculation of the Operator A•,•

•,• we obtain

IDVM[f ](vi) =
N∑

x=1

αx,n

M∑

j=1

αj,mLxj

⌊L�∆vxj⌋∑

k=0

∑

α,β∈A
g(k)h(lk, β ± λj, α± θx)

=
N∑

x=1

αx,n

M∑

j=1

αj,mLxj

⌊L�∆vxj⌋∑

k=0

∑

ϕα,ϕβ∈G
g(k)h̃ (lk, λj, θx, ϕα, ϕβ)

=
∑

j,k,l

Ak,li,j (f(vk)f(vl)− f(vi)f(vj)) ,

with

Ak,li,j =







labcαa,nsabc

·αb,mLabg(c)
·k(a, b, c)

, if
∃a, b ∈ N, c ∈ Nab, α, β ∈ A :

(vi, vj , vk, vl) = (vi,w2, v
′
2,w

′
2)(a, b, c, α, β)

0, else

,

=







labcαa,nsabc

·αb,mLabg(c)
·k(a, b, c)

, if
∃a, b ∈ N, c ∈ Nab, ϕα, ϕβ ∈ G :

(vi, vj , vk, vl) = (vi,w3, v
′
3,w

′
3)(a, b, c, ϕα, ϕβ)

0, else

,

N := {1, . . . , N} × {1, . . . ,M}, Nab := {0, . . . , ⌊L/∆vab⌋} ,
sabc := |{(α, β) |(vi, vj, vk, vl) = (vi,w2, v

′
2,w

′
2)(a, b, c, α, β)}|

w2 = w2(lc, β ± λb, α± θa), v
′
2 = v′2(lc, β ± λb, α± θa), w

′
2 = w′

2(lc, β ± λb, α± θa) ,

w3 = w3(lc, λb, θa, ϕα, ϕβ), v
′
3 = v′3(lc, λb, θa, ϕα, ϕβ), w

′
3 = w′

3(lc, λb, θa, ϕα, ϕβ) ,

w3, v
′
3,w

′
3 as in 3.2.8, w2, v

′
2,w

′
2 as in 3.2.1, assuming v = vi ,

∆vab, g(c), Lab as in 3.2.3, labc = c∆vab k(a, b, c) = k(vi,w2, ω(θa)) .

This DVM fulfills the minimal requirements 2.1.2.4 and possesses no artificial collision
invariants on normal grids.

Proof:
We prove the transformation by using the explicit form of Ak,li,j and the knowledge,
that the sum

∑

j,k,l goes through all possible point combinations vj, vk, vl. This can



3.2 Two dimensions 57

be used for the following calculation:

∑

j,k,l

Ak,li,j (f(vi)f(vj)− f(vk)f(vl))

=
∑

(a,b,c)∈N×Nab

∑

ϕα,ϕβ∈G
labcαa,nαb,mLabg(c)k(a, b, c) (f(v

′
3)f(w

′
3)− f(vi)f(w3))

=
∑

(a,b,c)∈N×Nab

∑

ϕα,ϕβ∈G
αa,nαb,mLabg(c)h̃(labc, λb, θa, ϕα, ϕβ) .

The transformation using the angles α instead of the operators ϕ is analog to the
above. Now we show that Ak,li,j possesses the symmetry properties

Ak,li,j = Ai,jk,l = Al,kj,i ,

and that there exists a one to one correspondence between the nonzero elements Ak,li,j
and the points used by the discretization, except for some special points for which sijkl
takes care of (later we will take a closer look at sijkl). This finally justifies the above
calculation. Now we need some additional assumptions about the structure of k:

k(vi,w2, ω(θa)) = k̃(‖vi −w2‖,∠(vi −w2, ω(θa))) = k̂(labc, λb) ,

and we assume that k possesses at least the grid symmetries - making it independent
of β± or ϕβ. Due to the definition of Ak,li,j and the additional knowledge about the
structure of k we see, that A only depends on a, b, c. So we can restate the task of
proving the above symmetry by proving that a, b, c is independent of the ordering of
vi, vj, vk, vl resp. vi,w2/3, v

′
2/3,w

′
2/3. This is the case iff order changes in these four

velocities only lead to changes of ϕα, ϕβ and not in a, b, c. So let us prove this by
calculating through the necessary permutations. We start with some results given
by the reinterpretation in 3.2.7 and 3.2.8. Here the main one is given by the fact

that a reflection of
−→
vw on ω(θ) gives

−−→
w′v′, see figure 3.2. This reflection is given by

ϕαRθϕγ(ϕαRθ)
−1 with ϕγ :=

(
1 0
0 −1

)

and results into:

−−→
w′

3v
′
3(ϕα, ϕβ) =

−−→
vw3(ϕα, ϕγϕβ) = k∆v(ϕα[Pi, P

⊥
i ])ϕγϕβPj =

−−→
w′

3v
′
3(ϕα, ϕ

2
γϕβ) ,

−−→
vw3(ϕα, ϕβ) = −−−→

vw3(−ϕα, ϕβ) = −−−→
vw3(ϕα,−ϕβ) = −−→

vw3(−ϕα,−ϕβ) ,
−→
vv′3(ϕα, ϕβ) = k∆v(ϕβPj)1ϕαPi = −

−→
vv′3(−ϕα, ϕβ) = −

−→
vv′3(ϕα,−ϕβ)

=
−→
vv′3(−ϕα,−ϕβ) =

−→
vv′3(ϕα, ϕγϕβ) ,

=
−−−→
w′

3w3 =⇒
−−→
w′

3v
′
3 =

−−−→
w′

3w3 −−−→
vw3 +

−→
vv′3 = 2

−→
vv′3 −

−−→
vw3 .

Now we prove that the different orderings of vi, vj, vk, vl can be realized by using
different elements of the automorphism group ϕα, ϕβ resulting into the same coefficients



58 3 Consistency

Ak,li,j for the permutations of these velocities (because A does not depend on ϕα, ϕβ).
So let us calculate through the necessary permutations:







vi
vj
vk
vl







=








vi
vi +

−−→
vw3

vi +
−→
vv′3

vi +
−−→
vw3 −

−→
vv′3








=⇒







vk
vl
vi
vj







=








vk

vk −
−→
vv′3 +

−−→
vw3 −

−→
vv′3

vk −
−→
vv′3

vk −
−→
vv′3 +

−−→
vw3








=








vk

vk − 2
−→
vv′3(ϕα, ϕβ) +

−−→
vw3(ϕα, ϕβ)

vk −
−→
vv′3(ϕα, ϕβ)

vk − 2
−→
vv′3(ϕα, ϕβ) +

−−→
vw3(ϕα, ϕβ) +

−→
vv′3(ϕα, ϕβ)








=








vk

vk −
−−→
w′

3v
′
3(ϕα, ϕβ)

vk −
−→
vv′3(ϕα, ϕβ)

vk −
−−→
w′

3v
′
3(ϕα, ϕβ) +

−→
vv′3(ϕα, ϕβ)








=








vk
vk +

−−→
vw3(−ϕα, ϕγϕβ)

vk +
−→
vv′3(−ϕα, ϕγϕβ)

vk +
−−→
vw3(−ϕα, ϕγϕβ)−

−→
vv′3(−ϕα, ϕγϕβ)








=⇒







vj
vi
vl
vk







=








vj
vj −−−→

vw3

vj −−−→
vw3 +

−−→
vw3 −

−→
vv′3

vj −−−→
vw3 +

−→
vv′3








=








vj
vj +

−−→
vw3(−ϕα, ϕβ)

vj +
−→
vv′3(−ϕα, ϕβ)

vj +
−−→
vw3(−ϕα, ϕβ)−

−→
vv′3(−ϕα, ϕβ)







.

Now we have to think about the one to one correspondence between the nonzero
elements of Ak,li,j and the points used by the discretization. For this we take a look at
w2, v

′
2 :

w2 = v + lcω(θa + λb), v′2 = v+ lc〈ω(θa + λb), ω(θa)〉ω(θa) ,



3.2 Two dimensions 59

here we see that (by construction - 3.2.3) we have the property

∀(a, b, c) 6= (ã, b̃, c̃) : (w2, v
′
2)(a, b, c) 6= (w2, v

′
2)(ã, b̃, c̃) .

So we see that we have at most one (a, b, c) corresponding to a (i, j, k, l) (mapping
from (a, b, c) to (i, j, k, l) is injective). We can use a similar argumentation for the
reflections and rotations α±, β±:

w2 = v+ lcω(α± θa + β ± λb), v′2 = v+ lc〈ω(α± θa + β ± λb), ω(α± θa)〉ω(α± θa) ,

here one can realize that α±, β± correspond to 90◦ rotations and reflections around
symmetry axes of the grid which have the property of being mappings between the 8
regions

Si :=

{

r

(
cos(a)
sin(a)

)∣
∣
∣
∣
r ∈ R+

0 , a ∈
[
iπ

4
,
(i+ 1)π

4

]}

, i = 0, . . . , 7 .

These mappings correspond to the 8 elements of the automorphism group ϕ ∈ G (see
3.2.7). Using the alternative representation w3, v

′
3,w

′
3 it becomes easy to see that for

every ϕ (or α± ) v′3 − v = v′2 − v gets mapped into another Si whereas β± only
changes the length of v′3 − v and that for every β±, w2 − v moves into another Si.
The last thing that can happen in this context is the case where θ ∈

{
0, π

4

}
∨ λ = π

4

(the case λ = 0 is irrelevant because then v = w′, v′ = w =⇒ j = k, i = l =⇒
fkfl − fifj = 0). In such a case we have for example ω(θ) = ω(0) = (x, 0)T and a
reflection on the x-axis would result into the same point ω(0) = ω(−0). In such a case
we need the additional argument that our automorphism group gets partitioned into
4 equivalence classes each having 2 elements. In the given example θ = 0 these would
correspond to the sets 0± := {0+, 0−} , π

2
±, π±, 3π

2
±, in the other possible situation

θ = π
4
it would be

{
0+, π

2
−
}
,
{
π
2
+, π−

}
,
{
π+, 3π

2
−
}
,
{

3π
2
+, 0−

}
. So we realize that

the case θ ∈
{
0, π

4

}
, λ 6= π

4
results into a two to one correspondence (two multi indexes

(a, b, c, α, β) for one (i, j, k, l)) and that the case θ ∈
{
0, π

4

}
, λ = π

4
results into a

four to one correspondence. Fortunately these two resp. four indexes only differ in
α, β. So the same coefficient labcαa,n · αb,mLabg(c) · k(a, b, c) corresponds to the multi

indexes and we can simply merge the multiple occurrences of this coefficient into Ak,li,j
by multiplying Ak,li,j with

sijkl := |{(a, b, c, α, β) |(vi, vj , vk, vl) = (vi,w2, v
′
2,w

′
2)(a, b, c, α, β)}| ,

giving the final form of Ak,li,j as in the lemma. Due to the fact that the mapping from
(a, b, c) to (i, j, k, l) is injective (when taking α±, β± into account) we can write

sijkl = sabc := |{(α, β) |(vi, vj , vk, vl) = (vi,w2, v
′
2,w

′
2)(a, b, c, α, β)}| .

This eliminates the necessity of looking at the symmetries of sijkl, because these sym-
metries are created by the α, β. One of the last things to look at is the non negativity



60 3 Consistency

b b b b

b b b b

b b b b

bb b

bbb

b

v
v

wv′w′

v′

w

w′

θ = 0 ∈ F1

λ = π
4
∈ F1

λ = π
4
∈ F1

θ = π
4
∈ F1

b

∆v

{

︸ ︷︷ ︸

∆v

Figure 3.4: Visualization of the fact that using n ≥ 1,m ≥ 1 results into having all
squares with a diameter of 2∆v,

√
2∆v

of Ak,li,j . This is given by the fact that all factors Ak,li,j consists of are non negative.
Claiming that a Farey discretization with n ≥ 1, m ≥ 1 results into a set of collision
pairs M that contains all squares in the velocity space with a diagonal of 2∆v,

√
2∆v

together with remark 2.1.2.10(iii) implies that a uniform discretization of a origin cen-
tered sphere or a cube with at least 9 points possesses no artificial collision invariants.
So the last thing to do is to justify this claim. For this we take a look at figure 3.4
and savor the self explaining picture.

Remark 3.2.10

(i) The above DVM may not possess the symmetries Ak,li,j = Ak,lj,i = Al,ki,j as can be
seen in the corresponding proof. Nonetheless these symmetries can be created
by setting

Ãk,li,j :=
Ak,li,j + Ak,lj,i + Al,ki,j

3
,

and using Ãk,li,j instead of Ak,li,j , A
k,l
j,i , A

l,k
i,j . Taking a look at the actual calculation

of this discretization one realizes that this adaptation does not change the dis-
cretization (the result remains exactly the same), except that it creates these
symmetries.

(ii) Unfortunately it is not possible to transform this DVM into an eLGpM, because
in general it does not possess the necessary property (2.2.1) that is needed for
theorem 2.2.2 . This condition is violated as soon as the order of the Farey
sequences n,m gets larger than one. Due to this we need an according adjustment
of the discretization to make it compatible with the eLGpMs.



3.2 Two dimensions 61

Lemma 3.2.11 (Farey approximation as an eLGpM)
An eLGpM based on the Farey approximation (using Fn,Fm) can be written as

ILGpM[f ](vi) =
∑

c∈C

∑

[v]∈S̃V
i,c

∑

[ϕ]∈G̃

αϕ,vc,vi




∏

ϕ′∈[ϕ]
f(c+ ϕ′(v− c))−

∏

ϕ′∈H
f(c+ ϕ′(vi − c))





with

C := V ∪V 1
2
, vk(c, v, ϕ) := c+ ϕ(v− c), vj(c, i) := 2c− vi ,

S̃V
i,c := SV

ij� ∼c, G̃ := G� ∼H , α
ϕ,v
c,vi

:=
2Aki,j

|{ϕ′ ∈ G|c+ ϕ(v− c) = c+ ϕ′(v− c)}| ,

Ak,li,j := Ak,li,j ·∆vij, ∆vij :=

{

1, if
−−→
vivj
2c

∈ C

2, else
, c = max

{

c̃ ∈ N

∣
∣
∣
∣

−−→
vivj

c̃
∈ V

}

where Ak,li,j comes from 3.2.9. The convergence order is the same as in corollary 3.2.5,
the error boundary is increased by a factor of 2r and this LGpM has no artificial
collision invariants.

Proof:
It is not possible to transform the DVM 3.2.9 directly into an eLGpM. So we introduce
a little adaption of the Farey approximation that results into a DVM that can be trans-
formed into an eLGpM (see theorem 2.2.2). Beginning at the Farey approximation
3.2.3,

Ĩ[f ](v) :=
N∑

i=1

αi,n

M∑

j=1

αj,m∆vij

⌊L�∆vij⌋∑

k=0

g(k)h(lk, λj, θi) ,

h(l, λ, θ) :=
[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2

)]
lk (v,w2, ω(θ)) ,

we want to realize that we only use such w, which have the property that v+w
2

∈ V∪V 1
2
.

This can be achieved by an adaption of the innermost integral approximation. By
doubling the step size of the innermost integration for “problematic” integration lines
we force the corresponding centers to lie on V. The only problem that remains is to
identify these “problematic” lines. We know w−v

c
corresponds to the first point that is

used by the innermost integration (c corresponds to the step number) in the direction−→
vw. Let us call a direction problematic iff the first step in this direction (of length
∆vij) leads to a corresponding center that is not in C

1

2

−→
vw

c
/∈ C .



62 3 Consistency

Now we have to adjust the integration step size to avoid centers that are not in C

leading to a an adaption of the step size by

∆vij :=

{

1, if 1
2

−→
vw
c
∈ C

2, else
.

Knowing this little tweak to tune the Farey approximation for use in the LGpM context
we can simply use the DVM derived in 3.2.9 with ∆vij (also resulting in Lij, lk) and
transform it via 2.2.2 into an eLGpM. The doubled step size directly translates into a
2r increase for the error in the innermost integral (see proof of 3.2.3) . But this is not
as bad as it looks, because this directly results into a relaxation of the necessary order
of the Farey sequences, as can be seen in equation (3.2.5) in the proof of theorem 3.2.4
(cl becomes 22r+2cL). Due to the fact that the error only changes by a constant the
convergence order remains. The lack of artificial collision invariants comes from the
intermediate step of transforming the Farey approximation in a DVM and 3.2.9.

3.3 Three dimensions

At this point we repeat the procedure of the last subsection in three dimensions.
To avoid the danger of being repetitive we reduce all necessary proofs to the point
where they are understandable and mainly new ideas remain. For parts of the proof
being analog to the 2 dimensional case we point to the corresponding region in the
last subsection. In [MS00] the authors generalized the Farey sequence approach by
[RS94] to three dimensions and obtained a convergence order of 6

7
. The approach

in [MS00] is more sophisticated, more complex, involves more number theory and
probably yields a superior convergence when compared against first order quadratures
within our scheme. But it becomes significantly harder to apply any kind of regular
quadrature and to partition the domain of integration into separate regions which
eases the inspection and handling of grid and operator symmetries. Beside this we
learned about the existence of this publication after we developed our own approach.
The reason for this seems to be that [MS00] was published in French. We use another
approach for three dimensions in order to obtain higher convergence orders by the
application of quadrature formulas on specific symmetry regions.

Remark 3.3.1
In the last subsection we have seen that the velocity space gets divided into smallest
“symmetry regions” Si, i = 1, . . . , 8 which can be mapped onto each other by the
operators in the automorphism group. In 2 dimensions such a smallest region is given
by one half of one of the quadrants, see figure 3.5. In 3 dimensions the space is divided
into 48 of these regions, figure 3.5 shows all 6 of these regions lying in the positive



3.3 Three dimensions 63

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

S1

S2S3

S4

S5

S6 S7

S8

x
y

z

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

S1 S2

S3

S4S5

S6

Figure 3.5: Symmetry regions created by the automorphism group in two and three
dimensions

quadrant. In spherical coordinates these regions can be represented by

S1 =






r





cos(θ) cos(ϕ)
sin(θ) cos(ϕ)

sin(ϕ)





∣
∣
∣
∣
∣
∣

r ∈ R+
0 , θ ∈

[

0,
π

4

]

, ϕ ∈ [0, arctan(sin(θ))]






,

S1 ∪ S6 =






r





cos(θ) cos(ϕ)
sin(θ) cos(ϕ)

sin(ϕ)





∣
∣
∣
∣
∣
∣

r ∈ R+
0 , θ ∈

[

0,
π

4

]

, ϕ ∈ [0, arctan(cos(θ))]






.

The image of one such region Si under the automorphism group results into a set of
regions (the sets of inner points Ŝi of these regions are pairwise disjunct) equaling the
complete space:

∀i ∈ {1, . . . , 48} :
(

∀α 6= β ∈ G : α(Ŝi) ∩ β(Ŝi) = ∅
)

∧
( ⋃

α∈G
α(Si) = Rn

)

.

Now one of the main messages of the last subsection is that it is sufficient to discretize
one of these smallest symmetry regions, because we can then apply the automorphism
group (or simply the corresponding rotations and reflections) to obtain a discretization
of the whole space. We use this insight to create a Farey-based discretization in 3
dimensions of one such symmetry region and then prove that this discretization can
be extended to the whole space by applying the necessary coordinate transformations
and taking a closer look at the occurring functional determinants. The desired side
effect of this approach is that the resulting discretization possesses all grid related
symmetries by design, because these symmetries are reflected by the automorphism
group. This together with a goal oriented transformation of the collision integral finally
leads to the situation that the minimal requirements 2.1.2.4 of a DVM are fulfilled,
giving all the properties we want.



64 3 Consistency

So let us start with the discretization of one symmetry region (S1):

Proposition 3.3.2 (Farey approximation in spherical coordinates)

Let H ∈ C1
([

0, π
4

]2 → R
)

. Using the Farey sequence F̃n, the approximation

∫ π
4

0

∫ arctan(sin(θ))

0

H(θ, ϕ)dϕdθ ≈
N∑

i=1

αi,n

Ni∑

j=1

αi,jH(θi, ϕi,j) ,

yields an upper error bound of

∣
∣
∣
∣
∣

∫ π
4

0

∫ arctan(sin(θ))

0

H(θ, ϕ)dϕdθ −
N∑

i=1

αi,n

Ni∑

j=1

αi,jH(θi, ϕi,j)

∣
∣
∣
∣
∣

< 8Kθ,ϕ ·
1

n
+ 4Kθ ·

ln(n) + 1

n2
,

where Kθ,ϕ, Kθ are some constants depending only on H and its derivative. The
approximation uses the definitions

F̃i,n :=









(
pi,j
qi,j

, ti,j

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

pi,j ≤ qi,j, p ∈ N0, t ∈
{

1, . . . ,
⌊
n
qi

⌋}

, q = t · qi :
0 ≤ p ≤ t · pi ∧ gcd(pi,j, qi,j) = 1 ∧
(
pi,j
qi,j
, ti,j

)

=
(
p
q
, t
)

∧ ∀j > 1 :
pi,j−1

qi,j−1
<

pi,j
qi,j

∧ when multiple t s are possible choose the smallest one









=

((
pi,1
qi,1

, ti,1

)

, . . . ,

(
pi,Ni
qi,Ni

, ti,Ni

))

= ((Fi,1, ti,1) , . . . , (Fi,Ni, ti,Ni)) , Ni := |F̃i,n| ,

αi,j :=
ϕi,j+1 − ϕi,j−1

2
, ϕi,j = arctan

(

Fi,j
qi

√

q2i + p2i

)

, ϕi,0 := ϕi,1, ϕi,Ni+1 := ϕi,Ni .

At this point the reader should not try to understand the meaning of F̃i,n. Geometri-
cally this set corresponds to the angles ϕi,j (which can be used for the approximation
in the 3rd dimension) over the lines corresponding to the angles θi (which are respon-
sible for the approximation in the x-y plane). The construction and explanation of
this set can be found in the following proof.

Proof:
Our aim is to discretize an integral with the structure

∫ π
4

0

∫ arctan(sin(θ))

0

H(θ, ϕ)dϕdθ

over the symmetry region S1. We start with a look at the approximation for the
outermost integral over θ using the Farey approximation in two dimensions, assuming



3.3 Three dimensions 65

that θ corresponds to the Cartesian coordinates in the x-y plane. For this we need to
find out how we can extract the correct angles in spherical coordinates from a given
point in R3. To avoid index confusion we define (only for this proof) that all objects
containing only the index i correspond to F̃n. To get the angles we use the following
parametrization of a sphere

ω(θ, ϕ) :=





cos(ϕ) cos(θ)
cos(ϕ) sin(θ)

sin(ϕ)



 .

Now we calculate the Cartesian coordinates corresponding to the elements in the Farey
sequence for the approximation of the integral over θ. That means the coordinates of
the first point in which a line from the origin in the x-y plane with the gradient pi

qi

would cross a point on the uniform grid Z3. As described in 3.1.2 we can use pi
qi

to

obtain the point in the x− y plane by a :=





qi,n
pi,n
0



. Transforming this into spherical

coordinates yields

ri,j =
√

q2i + p2i , θi = arctan

(
pi
qi

)

, ϕi,j = arcsin (0) .

Now we can define (assuming that the domain of integration for ϕ depends on θ)

H(θ) :=

∫ arctan(sin(θ))

0

H(ϕ, θ)dϕ ,

and by 3.1.5 we instantly get

e1 :=

∣
∣
∣
∣
∣

N∑

i=1

αiH(θi)−
∫ π

4

0

H(θ)dθ

∣
∣
∣
∣
∣
≤ 4 sup

θ∈[0,π4 ]
|H ′(θ)| ln(n) + 1

n2
.

Now we need to take a closer look at the expansion into 3 dimensions. For this we
take a look at figure 3.6 (left), the solid lines correspond to the discretization in the
x-y plane and the dashed lines to the usable gradients that correspond to a specific
Fi. Here we see that we have the same situation (number of points and position) as in
the x-y plane. Unfortunately this case is the best case scenario. In the worst case we
can only use the points directly above the point (qi, pi, 0)

T , because there are no other
grid points above the line associated with Fi, an example for this is given in figure
3.6 (right). With this knowledge we can collect all usable gradients corresponding
to a specific Fi. At this point we have to consider the requirement that we want to
discretize the region S1 (see figure 3.5), resulting in the (possibly) arbitrarily looking
borders and corresponding inequalities.



66 3 Consistency

x

y

z

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

x

y

z

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

Figure 3.6: Visualization of the Farey sequence in the x-y plane and a best / worst
case expansion into 3 dimensions above FN , FN−1, compare figure 3.1

Looking at one line in the x-y plane (corresponding to Fi =
pi
qi
) we can generally use

all points above the last point on this line for our discretization (see 3.6, right). So let
us assume that one such point is (qi, pi, pi,j)

T . Now pi,j equals the z-component of our
discretization point. But we are generally interested in the angle ϕ corresponding to
this point. To systematically obtain these angles we need to calculate the gradient of
the line through 



qi
pi
pi,j





in the z-direction. This gradient is given by
pi,j√
q2i+p

2
i

. And all gradients above (qi, pi, 0)
T

in S1 are given by

Ãi,1 :=

{
p

q

∣
∣
∣
∣
p ∈ N0, 0 ≤ p ≤ 1 · pi, q = 1 ·

√

q2i + p2i

}

.

Before we can proceed we need to take a closer look at the obtained gradients p
q
.

The fact that q /∈ N will become a constant pain due to fraction reductions necessary
to obtain the final gradient set. Without proper fraction reductions the following
argumentation would become way more complex. So we introduce a little trick to
obtain more suitable fractions characterizing our gradients:

p
√

p2i + q2i
=
p

qi

qi
√

p2i + q2i
.

From now on we interpret qi√
p2i+q

2
i

as a constant relating to our new gradient set

Ãi,1 :=

{
p

q

∣
∣
∣
∣
p ∈ N0, 0 ≤ p ≤ 1 · pi, q = 1 · qi

}

.



3.3 Three dimensions 67

The next step results from the case that there lie more than one point of the uniform
grid on our discretization line through (qi, pi, 0)

T (see 3.6, left), which is the case when
⌊
n
qi

⌋

> 1. In such a case we want to use the additional points above t · (qi, pi, 0)T . This
results into the discretization points




t ·
(
qi
pi

)

pi,j



 ,

with the corresponding gradient being
pi,j
tqi

and the relating constant qi√
q2i+p

2
i

. All gra-

dients above t · (qi, pi, 0)T are now given by

Ãi,t :=

{(
p

q
, t

)∣
∣
∣
∣
p ∈ N0, 0 ≤ p ≤ t · pi, q = t · qi

}

.

So in the end all usable gradients corresponding to one Fi =
pi
qi

are given by

Ãi :=
⋃

t=1,...,
⌊

n
qi

⌋

Ãi,t .

By neglecting multiples of maximal reduced fractions and using only the points with
the smallest distances from zero for the gradients (minimization of ti,j) we obtain the
set F̃i,n that corresponds to all gradients that can be used to calculate all ϕi,j (angle
in z - (qi, pi, 0)

T plane) corresponding to one θi (angle in x-y plane):

F̃i,n :=







(
pi,j
qi,j

, ti,j

)

∣
∣
∣
∣
∣
∣
∣
∣

pi,j ≤ qi,j , ti,j ∈ N0 ∧ gcd(pi,j, qi,j) = 1

∧∃a ∈ Ãi :
(
pi,j
qi,j
, ti,j

)

= a ∧ ∀j > 1 :
pi,j−1

qi,j−1
<

pi,j
qi,j

∧ti,j = min
{

t ∈ N
∣
∣
∣∃a ∈ Ãi :

(
pi,j
qi,j
, t
)

= a
}







=

((
pi,1
qi,1

, ti,1

)

, . . . ,

(
pi,Ni
qi,Ni

, ti,Ni

))

= ((Fi,1, ti,1) , . . . , (Fi,Ni, ti,Ni)) ,

Ni :=
∣
∣
∣F̃i,n

∣
∣
∣ ≤ N , (≤ N by construction) .

Here we used the fraction reduction gcd(pi,j , qi,j) = 1 only to neglect multiple appear-
ances of gradients. But by doing so we introduced a new problem where fractions

pi,j
qi,j

get reduced (by c ∈ N) in the set F̃i,n to the point where




1
c
ti,j ·

(
qi
pi

)

pi,j



 ,



68 3 Consistency

does not lie on our grid. So we need to to compensate the reduction. Such a fraction
reduction fulfills the equation qi,j · c = qi · ti,j (because qi,j · c is a q from Ãi,ti,j ). This
equation directly leads to the conclusion that we have to use the discretization points




ti,j ·

(
qi
pi

)

cpi,j



 =




ti,j ·

(
qi
pi

)

ti,jqi
qi,j

pi,j



 .

For the following convergence prove we need some preliminary considerations. At first
we recall how we can extract the angles in spherical coordinates from a given point
(x, y, z)T ∈ R3. In this work we use the following parametrization of a sphere

ω(θ, ϕ) :=





cos(ϕ) cos(θ)
cos(ϕ) sin(θ)

sin(ϕ)



 .

and the associated spherical coordinates (so we do not use the “standard” spherical
coordinates). Transforming (x, y, z)T into our spherical coordinates yields

r =
√

x2 + y2 + z2, θ = arctan
(y

x

)

, ϕ = arcsin
(z

r

)

. (3.3.1)

Thinking about the fact that r,
√

x2 + y2, z form a right triangle with r being the
hypotenuse we get

ϕ = arcsin
(z

r

)

= arctan

(

z
√

x2 + y2

)

. (3.3.2)

More considerations:

(a) Let A ⊂ B ⊂ R+
0 , |A| < |B| < ∞, where A = (a1, . . . , a|A|) and B = (b1, . . . , b|B|)

are increasing sequences with a1 = b1, a|A| = b|B|. In this case we instantly get

(ai+1 − ai) =
∑

j:bj∈[ai,ai+1)

(bj+1 − bj) ∧

|A|−1
∑

i=1

(ai+1 − ai) =

|A|−1
∑

i=1




∑

j:bj∈[ai,ai+1)

(bj+1 − bj)



 =

|B|−1
∑

j=1

(bj+1 − bj) .

We use this to prove an inequality of the form

|A|−1
∑

i=2

(ai+1 − ai−1)
2 >

1

4

|B|−1
∑

j=2

(bi+1 − bi−1)
2 :



3.3 Three dimensions 69

ai+1 − ai−1 = ai+1 − ai + ai − ai−1 =
∑

bj∈[ai,ai+1)

(bj+1 − bj) +
∑

bj∈[ai−1,ai)

(bj+1 − bj)

=
1

2






∑

bj∈[ai,ai+1)

(bj+1 − bj) +
∑

bj∈[ai−1,ai)

(bj+1 − bj)

+
∑

bj∈(ai,ai+1]

(bj − bj−1) +
∑

bj∈(ai−1,ai]

(bj − bj−1)






>
1

2




∑

bj∈(ai−1,ai+1)

(bj+1 − bj) +
∑

bj∈(ai−1,ai+1)

(bj − bj−1)





=
1

2

∑

bj∈(ai−1,ai+1)

(bj+1 − bj−1)

=⇒
|A|−1
∑

i=2

(ai+1 − ai−1)
2 >

|A|−1
∑

i=2




1

2

∑

bj∈(ai−1,ai+1)

(bj+1 − bj−1)





2

>
1

4

|A|−1
∑

i=2

∑

bj∈(ai−1,ai+1)

(bj+1 − bj−1)
2 >

1

4

∑

bj∈(a1,a|A|)

(bj+1 − bj−1)
2

=
1

4

|B|−1
∑

j=2

(bi+1 − bi−1)
2 .

Here we have used some very rough estimates to simplify the above and the follow-
ing argumentation. A more precise evaluation would only change the constant 1

4
to

1
2
in exchange for a more complicated formula and higher order error terms in the

following argumentation due to the necessary special treatment of the sequence
start and ending.

(b) Let a < b; a, b ∈ R. We know that d
dx

arctan(x) = 1
1+x2

≤ 1, from this follows

arctan(b)− arctan(a) < b− a . (3.3.3)

Now we need the point on the grid corresponding to Fi, Fi,j. It is clear that (qi, pi, 0)
T

corresponds to Fi. And we have seen that the additional points that are associated
with Fi,j are given by

Pij :=




ti,j

(
qi
pi

)

ti,jqi
qi,j

pi,j



 .

Here ti,j corresponds to the case where multiple grid points lie on the line corresponding
to Fi and

ti,jqi
qi,j

∈ N corresponds to the possible reduction of the fractions that can occur

in the set F̃i,n. So if there was a fraction reduction by c ∈ N then ti,jqi = cqi,j . From



70 3 Consistency

this and (3.3.1), (3.3.2) follows

ri,j = ti,j

√

q2i + p2i +

(
pi,j
qi,j

qi

)2

, θi = arctan

(
pi
qi

)

, ϕi,j = arctan

(

pi,j
qi,j

qi
√

q2i + p2i

)

.

The set of usable angles for our approximation is now given by

Fi,n :=

(

arctan

(

Fi,1qi
√

q2i + p2i

)

, . . . , arctan

(

Fi,Niqi
√

q2i + p2i

))

= (ϕi,1, . . . , ϕi,Ni) ,

which corresponds to the following circle arcs that can be used for the approximation:

αi,j :=
ϕi,j+1 − ϕi,j−1

2
, ϕi,0 := 0, ϕi,Ni+1 := ϕi,Ni .

Here we know that
ϕi,1 = 0, ϕi,Ni = arctan(sin(θi)) .

The last one ϕi,Ni needs some clarification. Assuming that we look at the line in the
x− y plane that is given through pi

qi
, the largest ϕ is given by pi,j = pi, qi,j = qi. This

results into Pi,j = (qi, pi, pi,j)
T = (qi, pi, pi)

T and gives (by (3.3.2))

ϕmax = arctan

(

pi
√

p2i + q2i

)

= arctan




1

√
q2i
p2i

+ 1





= arctan

(

cos

(

arctan

(
qi
pi

)))

= arctan

(

cos

(

arctan

(

tan

(
π

2
− arctan

(
pi
qi

)))))

= arctan(sin(θi)) .

At this point we use a little trick to get to the point where we can prove convergence.
We look at the set Ã

i,
⌊

n
qi

⌋ given by

Ã
i,
⌊

n
qi

⌋ =







0
⌊
n
qi

⌋

qi
,

1
⌊
n
qi

⌋

qi
, . . . ,

pi

⌊
n
qi

⌋

⌊
n
qi

⌋

qi






×
{⌊

n

qi

⌋}

,

and we know from the definition of F̃i,n that Ã
i,
⌊

n
qi

⌋ ⊂ F̃i,n (ignoring possible fraction

reductions). This leads to the conclusion that the increasing sequence

A
i,
⌊

n
qi

⌋ :=



arctan




0

⌊
n
qi

⌋

qi

qi
√

q2i + p2i



 , . . . , arctan




pi

⌊
n
qi

⌋

⌊
n
qi

⌋

qi

qi
√

q2i + p2i











3.3 Three dimensions 71

=:

(

ϕ̃i,1, . . . , ϕ̃i,pi
⌊

n
qi

⌋

+1

)

,

is a subsequence of Fi,n with

(∗)
︷ ︸︸ ︷

ϕi,1 = ϕ̃i,1 ∧ ϕmax = ϕi,Ni = ϕ̃
i,pi
⌊

n
qi

⌋

+1
. With the above

arguments we can use consideration (b) to obtain an upper bound for the differences
of successive ϕi,•:

∀j ∈
{

1, . . . , qi

⌊
n

qi

⌋}

:

ϕ̃i,j+1 − ϕ̃i,j
(b)
<

j + 1
⌊
n
qi

⌋

qi

qi
√

q2i + p2i
− j
⌊
n
qi

⌋

qi

qi
√

q2i + p2i
=

1
⌊
n
qi

⌋

qi

qi
√

q2i + p2i
(3.3.4)

Ã
i,
⌊

n
qi

⌋ ⊂ F̃i,n
(∗)
=⇒ ∀j ∈ {1, . . . , Ni} : ϕi,j+1 − ϕi,j <

1
⌊
n
qi

⌋

qi

qi
√

q2i + p2i
. (3.3.5)

This together with the following equivalent of the first part of lemma 3.1.4 can be used
to calculate the error.

Lemma 3.3.3

(i) 0 ≤ µi,j :=
ϕi,j+ϕi,j−1

2
≤ ϕi,j ≤ µi,j+1 ≤ arctan(sin(θi))

(ii) α2
i,j ≥ (ϕi,j − µi,j)

2 ∧ α2
i,j ≥ (µi,j+1 − ϕi,j)

2

(iii) 0 ≤ αi,j = µi,j+1 − µi,j ≤ 1
⌊

n
qi

⌋√
q2i+p

2
i

(iv)
Ni∑

i=1

αi,j = arctan(sin(θi)) ≤ π
4

Proof: The first one is obvious, because ϕi,j is an increasing sequence in j and due to
the definition of µi,j. The second one is a consequence of the first one as can be seen
in the proof of 3.1.4. The third follows from

αi,j =
ϕi,j+1 − ϕi,j−1

2
=
ϕi,j+1 − ϕi,j + ϕi,j − ϕi,j−1

2

together with result (3.3.5) and the last one follows from

Ni∑

i=1

αi,j =
ϕi,Ni+1 + ϕi,Ni

2
− ϕi,1 + ϕi,0

2
=

2 · arctan(sin(θi))− 2 · 0
2

.



72 3 Consistency

We apply this to reuse the main part of the proof of proposition 3.1.5:

a(θ) := ϕmax(θ) = arctan(sin(θ))

e2,i :=

∣
∣
∣
∣
∣

∫ a(θi)

0

H(θi, ϕ)dϕ−
Ni∑

j=1

αi,jH(θi, ϕj)

∣
∣
∣
∣
∣

= . . . see proof of 3.1.5 . . .

<

c:=
︷ ︸︸ ︷

sup
ϕ∈[0,a(θi)]

∣
∣
∣
∣

∂H(θi, ϕ)

∂ϕ

∣
∣
∣
∣

Ni∑

j=1

α2
i,j = c

1

4

Ni∑

j=1

(ϕi,j+1 − ϕi,j−1)
2

(a)
< c

pi

⌊

n
qi

⌋

∑

j=1

(ϕ̃i,j+1 − ϕ̃i,j−1)
2

(3.3.4)
< c

pi
⌊

n
qi

⌋

∑

j=1




j + 1
⌊
n
qi

⌋

qi

qi
√

q2i + p2i
− j − 1
⌊
n
qi

⌋

qi

qi
√

q2i + p2i





2

= 2c

pi
⌊

n
qi

⌋

∑

j=1




1
⌊
n
qi

⌋
1

√

q2i + p2i





2

= 2cpi

⌊
n

qi

⌋



1

⌊
n
qi

⌋

·
√

q2i + p2i





2

≤ 2c
pi

⌊
n
qi

⌋

· (q2i + p2i )
.

We have to take another sum over this error to get the final result:

e2 :=

N∑

i=1

αie2,i <

N∑

i=1

αi2 sup
ϕ∈[0,a(θi)]

∣
∣
∣
∣

∂H(θi, ϕ)

∂ϕ

∣
∣
∣
∣

pi
⌊
n
qi

⌋

· (q2i + p2i )

<
N∑

i=1

2

nqi
2 sup
ϕ∈[0,a(θi)]

∣
∣
∣
∣

∂H(θi, ϕ)

∂ϕ

∣
∣
∣
∣

pi
⌊
n
qi

⌋

· (q2i + p2i )
, by 3.1.4(iii)

≤ 4

c̃
︷ ︸︸ ︷

sup
ϕ ∈ [0, a(θ)]
θ ∈

[

0, π
4

]

∣
∣
∣
∣

∂H(θ, ϕ)

∂ϕ

∣
∣
∣
∣

N∑

i=1

1

n ·
⌊
n
qi

⌋

· (q2i + p2i )

< 4c̃
n∑

q=1

q∑

p=1

1

n ·
⌊
n
q

⌋

· q2
= 4c̃

n∑

q=1

1

n
(⌊

n
q

⌋

q
)

< 4c̃

n∑

q=1

2

n2
, because

⌊
n

q

⌋

q >
n

2



3.3 Three dimensions 73

= 8c̃
1

n
.

Finally we get the approximation and the upper bound for the total error through

N∑

i=1

αi,n

Ni∑

j=1

αi,jH(θi, ϕi,j) ≈
∫ π

4

0

∫ a(θ)

0

H(θ, ϕ)dϕdθ ,

e2 + e1 < 8 ·

Kθ,ϕ:=
︷ ︸︸ ︷

sup
ϕ ∈ [0, a(θ)]

θ ∈
[

0, π

4

]

∣
∣
∣
∣

∂H(θ, ϕ)

∂ϕ

∣
∣
∣
∣
· 1
n
+ 4 ·

Kθ
︷ ︸︸ ︷

sup
θ∈[0,π4 ]

|H ′(θ)| · ln(n) + 1

n2
.

Lemma 3.3.4 (Completion of the approximation)
Let H ∈ C1

(
[0, 2π]×

[
−π

2
, π
2

]
→ R

)
and G be the automorphism group corresponding

to the uniform grid. G consists of 48 elements in 3 dimensions. Now let Φk be the
transformation from the spherical coordinates we used in the last proposition into
the spherical coordinates that are given by the following discretization of the sphere:

ϕk





cos(θ̂) cos(ϕ̂)

sin(θ̂) cos(ϕ̂)
sin(ϕ̂)



 , ϕk ∈ G with pairwise distinct ϕk. Using the Farey sequence F̃n,

the approximation

∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ)dϕdθ ≈
N∑

i=1

αi,n

Ni∑

j=1

αi,j
∑

k=1,...,48

H(Φk(θi, ϕi,j)) cos(ϕi,j) ,

yields an upper error bound of
∣
∣
∣
∣
∣

∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ)dϕdθ −
N∑

i=1

αi,n

Ni∑

j=1

αi,j
∑

k=1,...,48

H(Φk(θi, ϕi,j)) cos(ϕi,j)

∣
∣
∣
∣
∣

< 192 ·
(

2Kθ,ϕ ·
1

n
+Kθ ·

ln(n) + 1

n2

)

,

where Kθ,ϕ, Kθ are some constants depending only on H and its derivative.

Proof:
The idea of this proof is that we divide the domain of integration into 48 regions and
then use coordinate transformations to reduce these 48 integrals to the point where we
can use 3.3.2 to approximate them. Then we realize that the 48 necessary coordinate
transformations correspond to the 48 elements of the automorphism group and that
the functional determinants of these transformations in combination with cos(ϕi,j)
essentially vanish. So let us begin with the splitting of the domain, let ai :=

i−1
4
π,

a(x) := arctan(sin(x)), b(x) := arctan(cos(x)), then
∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ) dϕdθ =



74 3 Consistency

4∑

i=1

∫ a2i

a2i−1

∫ a(θ−a2i−1)

0

H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i

a2i−1

∫ b(θ−a2i−1)

a(θ−a2i−1)

H(θ, ϕ) cos(ϕ) dϕdθ

+

∫ a2i+1

a2i

∫ a(a2i+1−θ)

0

H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i+1

a2i

∫ b(a2i+1−θ)

a(a2i+1−θ)
H(θ, ϕ) cos(ϕ) dϕdθ

+

∫ a2i

a2i−1

∫ π
2

b(θ−a2i−1)

H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i+1

a2i

∫ π
2

b(a2i+1−θ)
H(θ, ϕ) cos(ϕ) dϕdθ

+

∫ a2i

a2i−1

∫ 0

−a(θ−a2i−1)

H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i

a2i−1

∫ −a(θ−a2i−1)

−b(θ−a2i−1)

H(θ, ϕ) cos(ϕ) dϕdθ

+

∫ a2i+1

a2i

∫ 0

−a(a2i+1−θ)
H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i+1

a2i

∫ −a(a2i+1−θ)

−b(a2i+1−θ)
H(θ, ϕ) cos(ϕ) dϕdθ

+

∫ a2i

a2i−1

∫ −b(θ−a2i−1)

−π
2

H(θ, ϕ) cos(ϕ) dϕdθ +

∫ a2i+1

a2i

∫ −b(a2i+1−θ)

−π
2

H(θ, ϕ) cos(ϕ) dϕdθ .

Here we see the 48 integrals corresponding to the 48 symmetry regions. To get a
better grip of the problem we take a look at the 6 integrals corresponding to the
positive quadrant (see figure 3.5, angle θ lying in the x− y plane)

Q1 :=

S1∼
︷ ︸︸ ︷
∫ π

4

0

∫ a(θ)

0

H(θ, ϕ) cos(ϕ) dϕdθ +

S6∼
︷ ︸︸ ︷
∫ π

4

0

∫ b(θ)

a(θ)

H(θ, ϕ) cos(ϕ) dϕdθ

+

S2∼
︷ ︸︸ ︷
∫ π

2

π
4

∫ a(π
2
−θ)

0

H(θ, ϕ) cos(ϕ) dϕdθ +

S3∼
︷ ︸︸ ︷
∫ π

2

π
4

∫ b(π
2
−θ)

a(π
2
−θ)

H(θ, ϕ) cos(ϕ) dϕdθ

+

S5∼
︷ ︸︸ ︷
∫ π

4

0

∫ π
2

b(θ)

H(θ, ϕ) cos(ϕ) dϕdθ +

S4∼
︷ ︸︸ ︷
∫ π

2

π
4

∫ π
2

b(π
2
−θ)

H(θ, ϕ) cos(ϕ) dϕdθ .

Now we exemplarily prove that we can transform the integrals corresponding to S6, S5

into S1, where the only difference occurs to be the transformation of the variables in
H (no change in cos). The transformation of all other (46) integrals is then analog
to this one. Starting with S6 we see that S6 is essentially the same as S1 the only
difference being a change of coordinates from x, y to x, z. So we want to apply the
Farey approach in the x − z plane and the extension of the approximation in the y
direction. This corresponds to using another set of spherical coordinates based on
another parametrization of the sphere:

old :





cos(θ) cos(ϕ)
sin(θ) cos(ϕ)

sin(ϕ)



 =





x
y
z



 =





cos(θ̂) cos(ϕ̂)
sin(ϕ̂)

sin(θ̂) cos(ϕ̂)



 : new . (3.3.6)



3.3 Three dimensions 75

The transformation from Cartesian (x, y, z)T to the new spherical coordinates is given
by

r̂ =
√

x2 + y2 + z2, θ̂ = arctan
(z

x

)

, ϕ̂ = arctan

(
y√

x2 + z2

)

.

The self inverse coordinate transformation Φ6 between the new and the old spherical
coordinates is given by





r
θ
ϕ



 = Φ6





r̂

θ̂
ϕ̂



 =








r̂

arctan
(

tan(ϕ̂)

cos(θ̂)

)

arctan

(

sin(θ̂)√
tan2(ϕ̂)+cos2(θ̂)

)







,

| det(DΦ)| = cos(ϕ̂)
√

1− cos2(ϕ̂) + cos2(ϕ̂) cos2(θ̂)
.

The transformation of the domain of integration becomes a bit problematic, because
the new coordinates depend on both ϕ, θ. Fortunately it is geometrically clear (see
figure 3.5) that the domain remains the same. So we get

S6 ∼
∫ π

4

0

∫ b(θ)

a(θ)

H(θ, ϕ) cos(ϕ) dϕdθ

=

∫ π
4

0

∫ a(θ̂)

0

H(Φ6(θ̂, ϕ̂))






cos

(

arctan

(

sin(θ̂)√
tan2(ϕ̂)+cos2(θ̂)

))

·
cos(ϕ̂)√

1−cos2(ϕ̂)+cos2(ϕ̂) cos2(θ̂)




 dϕ̂dθ̂

=

∫ π
4

0

∫ a(θ̂)

0

H(Φ6(θ̂, ϕ̂)) cos(ϕ̂)

√

1− cos2(ϕ̂) + cos2(ϕ̂) cos2(θ̂)
√

1− cos2(ϕ̂) + cos2(ϕ̂) cos2(θ̂)
dϕ̂dθ̂

=

∫ π
4

0

∫ a(θ̂)

0

H(Φ6(θ̂, ϕ̂)) cos(ϕ̂) dϕ̂dθ̂ ∼ S1(Φ6) .

And this last integral can be approximated in the same way we used for S1, see
3.3.2. We can see that this transformation corresponds to a simple permutation of
the Cartesian coordinates, see (3.3.6), and we see that the functional determinant of
the transformation “magically” vanishes when we multiply it with the cosine of the
transformed ϕ.

Remark:
This is obvious because this transformation can be interpreted as a two step transfor-
mation, from spherical coordinates back to Cartesian coordinates and then into the
new spherical coordinates. Another interpretation is given by applying different spher-
ical transformations to the Cartesian integrals and seeing afterwards that the proper



76 3 Consistency

choice of transformations leads to integrals with the same domain of integration, dis-
tinguishable only by the permutation of the Cartesian coordinates.

This (the vanishing of the functional determinant) happens every time we use a per-
mutation of the Cartesian coordinates to obtain another set of spherical coordinates.
Now it is easy to see that we can transform all 6 integrals in Q1 by using all 6 possible
permutations of the Cartesian coordinates in the way described above. This finally
leads to

Q1 =

6∑

i=1

∫ π
4

0

∫ a(θ)

0

H(Φi(θ, ϕ)) cos(ϕ) dϕdθ .

Interestingly these transformations correspond to the following operators of the auto-
morphism group which happen to be permutation matrices

Φ1 ∼





1 0 0
0 1 0
0 0 1



 =:M1, Φ2 ∼





0 1 0
1 0 0
0 0 1



 =:M2, Φ3 ∼





0 0 1
1 0 0
0 1 0



 =:M3,

Φ4 ∼





0 0 1
0 1 0
1 0 0



 =:M4, Φ5 ∼





0 1 0
0 0 1
1 0 0



 =:M5, Φ6 ∼





1 0 0
0 0 1
0 1 0



 =:M6 .

Now it is easy to see that all possible sign changes inside of these matrices give in total
8 operators per transformation Φ1, . . . ,Φ6. These 48 operators correspond to the 48
coordinate transformations, and all these operators together form the automorphism
group. The successive application of these 48 coordinate transformations lead to

∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ) dϕdθ =
48∑

k=1

∫ π
4

0

∫ a(θ)

0

H(Φk(θ, ϕ)) cos(ϕ) dϕdθ .

Now we can apply 3.3.2 on these 48 integrals giving

∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ)dϕdθ ≈
N∑

i=1

αi,n

Ni∑

j=1

αi,j
∑

k=1,...,48

H(Φk(θi, ϕi,j)) cos(ϕi,j) ,

with an upper error bound of
∣
∣
∣
∣
∣

∫ 2π

0

∫ π
2

−π
2

H(θ, ϕ) cos(ϕ)dϕdθ −
N∑

i=1

αi,n

Ni∑

j=1

αi,j
∑

k=1,...,48

H(Φk(θi, ϕi,j)) cos(ϕi,j)

∣
∣
∣
∣
∣

< 48 ·
(

8Kθ,ϕ ·
1

n
+ 4Kθ ·

ln(n) + 1

n2

)

,

with Kθ,ϕ := sup
ϕ ∈

[

−π

2
, π

2

]

θ ∈ [0, 2π]

∣
∣
∣
∣

∂H(θ, ϕ) cos(ϕ)

∂ϕ

∣
∣
∣
∣
, Kθ := sup

θ∈[0,2π]

∣
∣
∣
∣
∣
∣

∂
∫ π

2

−π
2
H(ϕ, θ) cos(ϕ)dϕ

∂θ

∣
∣
∣
∣
∣
∣

.



3.3 Three dimensions 77

Remark 3.3.5
Comparable to 3.1.6 we have to remark that

(i) the above discretization corresponds to

N∑

i=1

αi,n

Ni∑

j=1

αi,j
∑

k=1,...,48

H̃(ω(Φk(θi, ϕi,j))) cos(ϕi,j) ≈
∫

S2

H̃(w)dw

with H(θ, ϕ) = H̃(ω(θ, ϕ)). We use the representation in the above proposition,
because simplifications of the transformed collision operator are possible. And
they should be done before the application of the Farey approximation.

(ii) The main properties of this discretization are that the used angles correspond to
the gradient of lines that fit onto our uniform grid and that we have the freedom
to handle the different symmetry regions independently. The last one finally
leads to the point where we can choose which grid symmetries get preserved
during the discretization.

Definition 3.3.6 (Rotations)
Let x = (1, 0, 0)T , y = (0, 1, 0)T , z = (0, 0, 1)T and Rw(α) be the rotation around a
vector w with an angle of α. We call a rotation

(i) Rw(α) extrinsic if it is a rotation around one of the “global” axis, w ∈ {x, y, z},

(ii) Rw(α) intrinsic if it is a rotation around one of the axis after an arbitrary rotation
R̃ that rotated the coordinate system and anything inside it, w ∈ {R̃x, R̃y, R̃z}.

Lemma 3.3.7 (Simplification of intrinsic rotations)
An intrinsic rotation can be expressed by an extrinsic rotation :

RR̃a(α)R̃b = R̃Ra(α)b, a ∈ {x, y, z}, b ∈ R3α ∈ [0, 2π) .

Proof:
Looking at the diagram

b
R̃−−−−→

b̃
R̃Ra(α)R̃−1

−−−−−−−−→ ˜̃
b ,

and knowing that a rotation RR̃a(α) corresponds to a rotation within another basis
given by the basis transformation R̃Ra(α)R̃

−1 we get

RR̃a(α)R̃b =
˜̃
b = R̃Ra(α)R̃

−1b̃ = R̃Ra(α)R̃
−1R̃b = R̃Ra(α)b .

Remark 3.3.8
The last definition and lemma 3.3.6,3.3.7 can be used to understand and substantially
simplify the following rotation sequences, because these rotations can be expressed by
a product of two dimensional rotations in three dimensions. Two dimensional in the
sense that Rx, Ry, Rz rotate only within the corresponding planes and correspond to
the simplest 3D rotations.



78 3 Consistency

Lemma 3.3.9 (Transformation of the collision operator)
Let us assume that the density f has the property supp(f) ⊂ BL

2
(0), L ∈ R+ and let

v ∈ BL
2
(0), then the following holds true:

I[f ](v) =

∫

R3

∫

S2

[f(v′1)f(w
′
1)− f(v)f(w)]k(v−w, η)dηdw =

∫ 2π

0

∫ π
2

−π
2

∫ 2π

0

∫ π
2

−π
2

∫ L

0

[f(v′2)f(w
′
2)− f(v)f(w2)]k(rω2, ω)D

[
r, θ,
ϕ, ψ

]

drdψdλdϕdθ ,

with

v′1 := v+ 〈−→vw, η〉η, v′2 := v+ r〈ω2(θ, ϕ, λ, ψ), ω(θ, ϕ)〉ω(θ, ϕ) ,
w′

1 := w− 〈−→vw, η〉η, w′
2 := w2 − r〈ω2(θ, ϕ, λ, ψ), ω(θ, ϕ)〉ω(θ, ϕ) ,

w2 := v+ rω2(θ, ϕ, λ, ψ), ω(θ, ϕ) :=





cos(ϕ) cos(θ)
cos(ϕ) sin(θ)

sin(ϕ)



 = x′ ,

x :=





1
0
0



 , y :=





0
1
0



 , z :=





0
0
1



 ,

y′ := Rz(θ)y, x′ := Ry′(−ϕ)Rz(θ)x, z′ = Ry′(−ϕ)z, y′′ = Rz′(λ)y
′ ,

ω2(θ, ϕ, λ, ψ) := Ry′′(θ,ϕ,λ)(−ψ)Rz′(θ,ϕ)(λ)diag(rx(θ, ϕ), ry(θ, ϕ), rz(θ, ϕ))x
′(θ, ϕ)

=





rx cos(θ) cos(ϕ) cos(λ) cos(ψ)− ry sin(λ) cos(ψ) sin(θ)− rz sin(ϕ) sin(ψ) cos(θ)
rx sin(θ) cos(ϕ) cos(λ) cos(ψ) + ry sin(λ) cos(ψ) cos(θ)− rz sin(ϕ) sin(ψ) sin(θ)

rx sin(ϕ) cos(λ) cos(ψ) + rz cos(ϕ) sin(ψ)



 ,

D(r, θ, ϕ, ψ) := r2rx(θ, ϕ)ry(θ, ϕ)rz(θ, ϕ) cos(ϕ) cos(ψ) .

Proof:
Our aim is to apply the same approach as in the 2 dimensional case, so we want to
identify the inner integration with a rotation of the coordinate system. We then use this
analogy to conduct the outer integration within these new coordinates. This directly
corresponds to the integral transformation in 2 dimensions using ω(θ+λ). This ansatz
is essential to obtain the interchangeability of the pre- and post collisional velocities.
To obtain a deeper understanding of this approach we look at the transformation into
spherical coordinates using rotations. Defining

x :=





1
0
0



 , y :=





0
1
0



 , z :=





0
0
1





and using the knowledge

Ra(α)b = a〈a, b〉+ cos(α)(a× b)× a+ sin(α)(a× b),



3.3 Three dimensions 79

we get spherical coordinates by

y′ := Rz(θ)y, ω(θ, ϕ) =





cos(θ) cos(ϕ)
sin(θ) cos(ϕ)

sin(ϕ)



 = Ry′(−ϕ)Rz(θ)x .

So we can understand the spherical coordinates ω(θ, ϕ) as two successive rotations.
The first one around z and the second around the rotated y-axis Rz(θ)y. Now we use
the resulting rotated coordinate system

x′ = ω(θ, ϕ), z′ = Ry′(−ϕ)z, y′′ = Rz′(λ)y
′

to transform the outer integral into ellipsoidal coordinates within this rotated coordi-
nate system:

ω2(λ, ψ) := Ry′′(θ,ϕ,λ)(−ψ)Rz′(θ,ϕ)(λ)diag(rx(θ, ϕ), ry(θ, ϕ), rz(θ, ϕ))x
′(θ, ϕ)

=





rx cos(θ) cos(ϕ) cos(λ) cos(ψ)− ry sin(λ) cos(ψ) sin(θ)− rz sin(ϕ) sin(ψ) cos(θ)
rx sin(θ) cos(ϕ) cos(λ) cos(ψ) + ry sin(λ) cos(ψ) cos(θ)− rz sin(ϕ) sin(ψ) sin(θ)

rx sin(ϕ) cos(λ) cos(ψ) + rz cos(ϕ) sin(ψ)





=: ω2(θ, ϕ, λ, ψ) .

Here rx(θ, ϕ), ry(θ, ϕ), rz(θ, ϕ) are piecewise constant functions. An extensive explana-
tion of this coordinate rescaling can be found in the next theorem. The short version
is: these scalar functions correspond to the new length of the unit vectors x′, y′, z′ which
are necessary to guarantee that the unit vectors end on a grid point. This results into
the second transformation corresponding to spherical coordinates on a sub-grid of V.
This is similar to the 2D case, see figure 3.5.

a) Now we start at

I[f ](v) =

∫

R3

∫

S2

[f(v′)f(w′)− f(v)f(w)]k(v−w, η)dηdw ,

v′ := v+ 〈−→vw, η〉η, w′ := w− 〈−→vw, η〉η ,

b) and the first Transformation remains simple:

Φ
(

{1} × [0, 2π]×
[

−π
2
,
π

2

])

= S2, Φ





1
θ
ϕ



 = ω(θ, ϕ)

= 1





cos(ϕ) cos(θ)
cos(ϕ) sin(θ)

sin(ϕ)



 (= η), det(DΦ) = cos(ϕ) ,

=⇒ v′ = v+ 〈−→vw, ω(θ, ϕ)〉ω(θ, ϕ), w′ = w− 〈−→vw, ω(θ, ϕ)〉ω(θ, ϕ)

=⇒I[f ](v) =

∫

R3

∫ 2π

0

∫ π
2

−π
2

[f(v′)f(w′)− f(v)f(w)] cos(ϕ)k(v−w, ω(θ, ϕ))dϕdθdw.



80 3 Consistency

c) Whereas the second transformation becomes a bit painful due to the necessary
extra rotations depending on θ, ϕ:

Φ
(

R+
{0} × [0, 2π]×

[

−π
2
,
π

2

])

= R3, Φ





r
λ
ψ



 = rω2(θ, ϕ, λ, ψ) =
−→
vw,

det(DΦ) = r2rx(θ, ϕ)ry(θ, ϕ)rz(θ, ϕ) cos(ψ) ,

D(r, θ, ϕ, ψ) := r2rx(θ, ϕ)ry(θ, ϕ)rz(θ, ϕ) cos(ψ) cos(ϕ) ,

=⇒ w =

w2:=
︷ ︸︸ ︷

v+ rω2(θ, ϕ, λ, ψ), v′ =

v′2:=
︷ ︸︸ ︷

v+ r〈ω2(θ, ϕ, λ, ψ), ω(θ, ϕ)〉ω(θ, ϕ)

=⇒ w′ =

w′
2:=

︷ ︸︸ ︷

w2 − r〈ω2(θ, ϕ, λ, ψ), ω(θ, ϕ)〉ω(θ, ϕ)
=⇒ I[f ](v) =
∫ 2π

0

∫ π
2

−π
2

∫ 2π

0

∫ π
2

−π
2

∫ L

0

[f(v′2)f(w
′
2)− f(v)f(w2)]k(rω2, ω)D(· · · ) drdψdλdϕdθ

Remark 3.3.10
The applied transformations and the usage of the rotation matrices may look artificially
complicated. In the following lemmas and theorems we can see that the rotation matrix
representation can be used to apply a simplification similar to Euler, Tait-Bryan angles
respectively extrinsic and intrinsic two dimensional rotations. This simplification pans
out to be very helpful to apply an elegant automorphism group based completion of
the following discretization. The last transformation within the rotated coordinate
system seems to be essential to obtain the minimal symmetry properties of the DVM
operator A•,•

•,• in the end of this section. Moreover this Ansatz can be seen as a direct
generalization of the two dimensional case.

Theorem 3.3.11 (Farey discretization of the collision operator)
Let f ∈ Cs(R3 → R), k ∈ Cs(R3 × S2 → R) and G be the automorphism group
corresponding to the uniform grid. The transformed collision operator

I[f ](v) =

∫ 2π

0

∫ π
2

−π
2

∫ 2π

0

∫ π
2

−π
2

∫ L

0

h(θ, ϕ, λ, ψ, r)D(r, θ, ϕ, ψ) drdϕdθdψdλ

with

h(θ, ϕ, λ, ψ, r) := [f(v′2)f(w
′
2)− f(v)f(w2)]k(rω2, ω)

D(r, θ, ϕ, ψ) := r2rx(θ, ϕ)ry(θ, ϕ)rz(θ, ϕ) cos(ϕ) cos(ψ) ,

can be approximated by

Ĩ[f ](v) =
∑

(i,k)∈B

∑

(j,l)∈Ci,k

αijkl∆vijkl

⌊L/∆vijkl⌋∑

q=0

∑

α,β∈G

[
g(q)h(θi, ϕi,j, λk, ψk,l, rq, α, β)

·D(rq, θi, ϕi,j, ψk,l)

]



3.3 Three dimensions 81

with

w2(i, j, k, l, q, α, β) := v+ q∆v
(
α[x′, y′, z′]

)
βPk,l ,

v′2(i, j, k, l, q, α, β) := v+ q∆v(βPk,l)1αPi,j ,

w′
2(i, j, k, l, q, α, β) := v+w2 − v′2 ,

Pa,b := ta,b





qa
pa

pa,b
qa,b

qa



 = ra,bω(θa, ϕa,b), ra,b = ‖Pa,b‖, for ta,b see 3.3.2 ,

x′ := Pi,j, y
′ := ti,j





−pi
qi
0



 , z′ := ti,j





−q2i pi,jqi,j

−piqi pi,jqi,j

q2i + p2i



 ,

rx := ‖x′‖, ry := ‖y′‖, rz := ‖z′‖ ,
B := N ×M, Ci,k := Ni ×Mk, αijkl := αiαkαi,jαk,l ,

∆vijkl := ∆v‖[x′, y′, z′]Pk,l‖, rq := q ·∆vk,l = q∆vrk,l .

This approximation yields an error bound of

e < 2s+13
s
2
+1Lc(∆v)sn2smsKr

+ 576π2

(

Kθ,ϕ,λ
ln(m) + 1

m2
+ 2Kθ,ϕ,λ,ψ

1

m

)

+ 192

(

Kθ
ln(n) + 1

n2
+ 2Kθ,ϕ

1

n

)

,

where Kθ, Kθ,ϕ, Kθ,ϕ,λ, Kθ,ϕ,λ,ψ, Kr are some constants depending only on f and its
derivatives and s, c correspond to the used Newton-Cotes formula, s being the error
order and c corresponding to some error constants.

Proof:
Analog to the proof of theorem 3.2.3 we define the occurring integrals

H1(θ, ϕ, λ, ψ) :=

∫ L

0

h(θ, ϕ, λ, ψ, r)r2dr

H2(θ, ϕ) :=

∫ 2π

0

∫ π
2

−π
2

H1(θ, ϕ, λ, ψ)

D̃(θ,ϕ,ψ):=
︷ ︸︸ ︷

rx(θ, ϕ)ry(θ, ϕ)rz(θ, ϕ) cos(ψ)dψdλ ,

and throughout this proof we define that objects possessing one index •i correspond to
the Farey sequence F̃n, objects possessing two subscripts •ij correspond to the Farey
sequence F̃i,n (see 3.3.2). Now we take a closer look at the associated approximation
errors:

e3 :=

∣
∣
∣
∣
∣

∫ 2π

0

∫ π
2

−π
2

H2(θ, ϕ) cos(ϕ)dθdϕ−
N∑

i=1

Ni∑

j=1

48∑

x=1

αiαi,jH2(Φx(θi, ϕi,j)) cos(ϕi,j)

∣
∣
∣
∣
∣
,



82 3 Consistency

Di,j,k,l := D(1, θi, ϕi,j, ψk,l) ,

e2(i, j, x) :=

∣
∣
∣
∣
∣
H2(θi, ϕi,j)−

M∑

k=1

Mi∑

l=1

48∑

y=1

αkαk,lH1(Φx(θi, ϕi,j),Φy(λk, ψk,l))Di,j,k,l

∣
∣
∣
∣
∣
,

e2 :=

N∑

i=1

Ni∑

j=1

48∑

x=1

αiαi,je2(i, j, x) ,

e1

(
i, j, k,
l, x, y

)

:=

∣
∣
∣
∣
∣
∣
∣

H1

(
Φx(θi, ϕi,j),
Φy(λk, ψk,l)

)

−∆vijkl

⌊L/∆vijkl⌋
∑

q=1

(

h

(
Φx(θi, ϕi,j) ,

Φy(λk, ψk,l), rq

)

g(q)r2q

)

∣
∣
∣
∣
∣
∣
∣

,

e1 :=
N∑

i=1

Ni∑

j=1

M∑

k=1

Mi∑

l=1

48∑

x,y=1

αiαi,jαkαk,le1(i, j, k, l, x, y) .

Using 3.3.4 for e3, e2(i, j, x) we get

e3 ≤192

(

2Kθ,ϕ
1

n
+Kθ

ln(n) + 1

n2

)

,

e2(i, j, x) ≤192

(

2Kθ,ϕ,λ,ψ
1

m
+Kθ,ϕ,λ

ln(m) + 1

m2

)

=⇒

e2 =
N∑

i=1

Ni∑

j=1

48∑

x=1

αiαi,je2(i, j, x)

≤
N∑

i=1

Ni∑

j=1

αiαi,j48 · 192
(

2Kθ,ϕ,λ,ψ
1

m
+Kθ,ϕ,λ

ln(m) + 1

m2

)

3.1.4
3.3.3

≤ π

4

π

4
48 · 192

(

2Kθ,ϕ,λ,ψ
1

m
+Kθ,ϕ,λ

ln(m) + 1

m2

)

= 576π2

(

2Kθ,ϕ,λ,ψ
1

m
+Kθ,ϕ,λ

ln(m) + 1

m2

)

,

with Kθ := sup
θ∈[0,2π]

∣
∣
∣
∣
∣
∣

∂
∫ π

2

−π
2
H2(θ, ϕ)dϕ

∂θ

∣
∣
∣
∣
∣
∣

,

Kθ,ϕ := sup
ϕ ∈

[

−π

2
, π

2

]

θ ∈ [0, 2π]

∣
∣
∣
∣

∂H2(θ, ϕ)

∂ϕ

∣
∣
∣
∣
,

Kθ,ϕ,λ := sup
ϕ ∈

[

−π

2
, π

2

]

θ, λ ∈ [0, 2π]

∣
∣
∣
∣
∣
∣

∂
∫ π

2

−π
2
H1(θ, ϕ, λ, ψ) cos(ϕ)D(ϕ, λ, ψ)dψ

∂λ

∣
∣
∣
∣
∣
∣

,



3.3 Three dimensions 83

Kθ,ϕ,λ,ψ := sup
ϕ, ψ ∈

[

−π

2
, π

2

]

θ, λ ∈ [0, 2π]

∣
∣
∣
∣

∂H1(θ, ϕ, λ, ψ) cos(ϕ)D(ϕ, λ, ψ)

∂ψ

∣
∣
∣
∣
.

And to get a grip on the remaining error we need to take a closer look at the step
size for the innermost integration. For this we need some identities following from the
proof of 3.3.2 and the transformation 3.3.9 :

w2 = v+ rqω(λk, ψk,l), v′2 = v+ rq〈ω2(θi, ϕi,j, λk, ψk,l), ω(θi, ϕi,j)〉ω(θi, ϕi,j) ,
w′

2 = w2 − rq〈ω2(θi, ϕi,j, λk, ψk,l), ω(θi, ϕi,j)〉ω(θi, ϕi,j) ,

Pi,j :=




ti,j

(
qi
pi

)

ti,jqi
qi,j

pi,j



 = ‖Pi,j‖ω(θi, ϕi,j), ri,j := ‖Pi,j‖ = ti,j

√

q2i + p2i +
q2i
q2i,j

p2i,j ,

ci,j :=
ti,jqi
qi,j

∈ N .

As we can see Pi,j is the grid point corresponding to ω(θi, ϕi,j). It is a bit more
complicated to obtain the gridpoint corresponding to ω2. To simplify this we look at
ω2 as spherical coordinates within the rotated and rescaled coordinate system with the
axis

x′ := rx(θi, ϕi,j)ω(θi, ϕi,j) =ti,j





qi
pi

pi,j
qi,j
qi



 , rx(θi, ϕi,j) := ‖x′‖ ,

y′ := ry(θi, ϕi,j)Rz(θi)y =ti,j





−pi
qi
0



 , ry(θi, ϕi,j) := ‖y′‖ ,

z′ := rz(θi, ϕi,j)Ry′(−ϕi,j)z =ti,j





−q2i pi,jqi,j

−piqi pi,jqi,j

q2i + p2i



 , rz(θi, ϕi,j) := ‖z′‖ ,

where x := (1, 0, 0)T , y := (0, 1, 0)T , z := (0, 0, 1)T , for comparison see 3.3.9 .

These axis-vectors have the important feature that they end on grid points. The
explicit representation of these vectors (explicit in the sense that we get a direct
representation without angles θ, ϕ) can be obtained by a direct calculation of the
rotations (using 3.3.7) and subsequent trigonometric transformations. Now we can
“simply” write

ω2(θi, ϕi,j, λk, ψk,l) = [x′, y′, z′]ω(λk, ψk,l)

=⇒ Pi,j,k,l := rk,lω2(θi, ϕi,j, λk, ψk,l) = [x′, y′, z′] rk,lω(λk, ψk,l) = [x′, y′, z′]Pk,l
(3.3.7)



84 3 Consistency

= ti,jtk,l






qkqi − pipk − pi,jpk,l
qi,jqk,l

qkq
2
i

qkpi + pkqi − pi,jpk,l
qi,jqk,l

qkqipi
pi,j
qi,j
qiqk +

pk,l
qk,l
qk(q

2
i + p2i )






=⇒ ri,j,k,l := ti,jtk,l

√
√
√
√
√





p2i,j
q2i,j
q2i q

2
k +

p2k,l
q2k,l
p4i q

2
k + 2

p2k,l
q2k,l
p2i q

2
i q

2
k +

p2k,l
q2k,l
q2kq

4
i + q2kp

2
i+

p2kq
2
i +

p2
k,l
p2i,j

q2
k,l
q2i,j
p2i q

2
i q

2
k + q2kq

2
i + p2i p

2
k +

p2i,jp
2
k,l

q2i,jq
2
k,l

q4i q
2
k





=⇒〈ω(θi, ϕi,j), Pi,j,k,l〉 = 〈ω(θi, ϕi,j), tk,lqkx′〉 = tk,lqk‖x′‖ = tk,lqkri,j,
(3.3.8)

because x′⊥y′⊥z′ ∧ x′ ‖ ω(θi, ϕi,j) .

Additionally we want that the velocities w2, v
′
2,w

′
2 lie on our grid, so our first guess

for rq is:

rq := q ·∆v · rk,l = q∆vk,l.

So let us take a look if this results into w2, v
′
2,w

′
2 lying on the grid:

w2 = v+ rqω2(θi, ϕi,j, λk, ψk,l) = v+ q∆vrk,lω2(θi, ϕi,j, λk, ψk,l) (3.3.9)

= v+ q∆vPi,j,k,l ∈ V, by (3.3.7) , (3.3.10)

=⇒ v′2 = v+ q∆vrk,l〈ω(θi, ϕi,j), ω2(θi, ϕi,j, λk, ψk,l)〉ω(θi, ϕi,j) (3.3.11)

= v+ q∆vtk,lqkPi,j ∈ V by (3.3.8) (3.3.12)

=⇒ w′
2 = v+ rqω2(θi, ϕi,j, λk, ψk,l)− rq〈ω2(θi, ϕi,j, λk, ψk,l), ω(θi, ϕi,j)〉ω(θi, ϕi,j)

(3.3.13)

= v+ q∆vPi,j,k,l − q∆vtk,lqkPi,j ∈ V . (3.3.14)

To obtain the step size for the Newton-Cotes formula we have to remember that the
step size corresponds to

∆vijkl = ‖w2 − v‖ = ∆v‖Pi,j,k,l‖ = ∆vri,j,k,l .

Now we define

K̃r(i, j, k, l) := max
‖w2−v‖∈[0,L]

∣
∣
∣
∣

∂sh(θi, ϕi,j, λk, ψk,l, r)r
2rxryrz cos(ϕi,j) cos(ψk,l)

∂‖w2 − v‖s
∣
∣
∣
∣
,

and here we can see that the actual calculation of this derivative becomes very com-
plicated, because the step length ri,j,k,l = w−v is only implicitly given due to |ω2| 6= 1
in most cases. Nonetheless this problem can be easily tackled by calculating λk, ψk,l
according to Pi,j,k,l, (3.3.1), (3.3.2) and replacing ω2(θi, ϕi,j, λk, ψk,l) by ω(λi,j,k,l, ψi,j,k,l)
as well as replacing the last transformation in 3.3.9 with a transformation into spheri-
cal coordinates. This would result in an explicit representation of the step size within



3.3 Three dimensions 85

w2, v
′
2,w

′
2 allowing the calculation of the above derivative. We suppress this calcu-

lation and alternative representations, because this approach results into even more
trigonometric calculations without further insight and we do not need this representa-
tion nor do we “really” calculate this derivative in the following work. An interested
reader can do this by using a CAS. Using a composite, closed Newton-Cotes formula
with an error order of s leads (analog to 3.2.3) to

e1(i, j, k, l) = ⌈L�∆vijkl⌉∆vijklc∆vsijklK̃r(i, j, k, l)

<
3

2
Lc(∆v)srsi,j,k,lK̃r

=
3

2
Lc(∆v)stsi,jt

s
k,l








p2i,j
q2i,j
q2i q

2
k +

p2k,l
q2k,l
p4i q

2
k + 2

p2k,l
q2k,l
p2i q

2
i q

2
k+

p2k,l
q2
k,l

q2kq
4
i + q2kp

2
i + p2kq

2
i +

p2k,lp
2
i,j

q2
k,l
q2i,j
p2i q

2
i q

2
k+

q2kq
2
i + p2i p

2
k +

p2i,jp
2
k,l

q2i,jq
2
k,l

q4i q
2
k








s
2

K̃r

≤ 3

2
Lc(∆v)s

⌊
n

qi

⌋s ⌊
m

qk

⌋s




q2i q
2
k + q4i q

2
k + 2q4i q

2
k+

q2kq
4
i + q2kq

2
i + q2kq

2
i + q4i q

2
k+

q2kq
2
i + q2i q

2
k + q4i q

2
k





s
2

K̃r

=
3

2
Lc(∆v)s

⌊
n

qi

⌋s ⌊
m

qk

⌋s
(
5q2i q

2
k + 6q4i q

2
k

) s
2 K̃r

=⇒ e1 =
∑

(i, k) ∈ B
(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s

⌊
n

qi

⌋s ⌊
m

qk

⌋s
(
5q2i q

2
k + 6q4i q

2
k

) s
2 K̃r

3.1.4(iii)
3.3.3

<
∑

(i, k) ∈ B
(j, l) ∈ Cik

4
(

mqk

⌊
m
qk

⌋√

q2k + p2k

)−1

nqi

⌊
n
qi

⌋√

q2i + p2i

3

2
Lc(∆v)s

⌊
n

qi

⌋s ⌊
m

qk

⌋s(
5q2i q

2
k+

6q4i q
2
k

) s
2

K̃r

≤
∑

(i, k) ∈ B
(j, l) ∈ Cik

6
1

nq2i

⌊
n
qi

⌋ ⌊
m
qk

⌋

mq2k

Lc(∆v)s
⌊
n

qi

⌋s ⌊
m

qk

⌋s(
5q2i q

2
k+

6q4i q
2
k

) s
2

K̃r

=
∑

(i, k) ∈ B
(j, l) ∈ Cik

6
(5 + 6q2i )

s
2

nqimqk
Lc(∆v)s

(

qs−1
i

⌊
n

qi

⌋s−1
)(

qs−1
k

⌊
m

qk

⌋s−1
)

K̃r

≤
∑

(i, k) ∈ B
(j, l) ∈ Cik

6
(5 + 6q2i )

s
2

qiqk
Lc(∆v)sns−2ms−2K̃r

≤
∑

(i,k)∈B
6
(5 + 6q2i )

s
2

qiqk
Lc(∆v)sns−1ms−1

Kr:=
︷ ︸︸ ︷

max
(i, k) ∈ B
(j, l) ∈ Cik

(K̃r(i, j, k, l))



86 3 Consistency

= 6Lc(∆v)sns−1ms−1Kr

N∑

i=1

(5 + 6q2i )
s
2

qi

M∑

k=1

1

qk

= 6Lc(∆v)sns−1ms−1Kr

n∑

q=1

q
∑

p=1

(5 + 6q2)
s
2

q

m∑

q̃=1

q̃
∑

p̃=1

1

q̃

=

c̃:=
︷ ︸︸ ︷

6Lc(∆v)sns−1msKr

n∑

q=1

(5 + 6q2)
s
2 < 6

s
2 c̃

n∑

q=1

√

(q2 + 1)s

= 6
s
2 c̃

n∑

q=1

√
√
√
√

s∑

k=0

(
s

k

)

(q2)s−k < 6
s
2 c̃

n∑

q=1

√

2sq2s < 6
s
2 c̃ 2

s
2ns+1

= 6
s
2
+12

s
2Lc(∆v)sn2smsKr = 2s+13

s
2
+1Lc(∆v)sn2smsKr

Adding the three errors together we arrive at

e = e1 + e2 + e3 = 2s+13
s
2
+1Lc(∆v)sn2smsKr

+ 576π2

(

Kθ,ϕ,λ
ln(m) + 1

m2
+ 2Kθ,ϕ,λ,ψ

1

m

)

+ 192

(

Kθ
ln(n) + 1

n2
+ 2Kθ,ϕ

1

n

)

.

The last thing we want to achieve is to get rid of the coordinate transformations Φ•
in favor of the corresponding matrices M• ∈ G, see proof of 3.3.4. So we take a closer
look at h(θ, ϕ, λ, ψ, r) and use its structure together with alternative representations
of v2,w2,w

′
2.

Looking at ω,ω2 from 3.3.9 using 3.3.6, 3.3.7 we can see that

ω(θ, ϕ) = RRz(θ)y(−ϕ)Rz(θ)x corresponds to x
Rz(θ)−−−−−−−→

x̃
Rz(θ)Ry(−ϕ)Rz(θ)−1

−−−−−−−−−−−−−−−−→
x′ = ω(θ, ϕ)

=⇒ ω(θ, ϕ) = Rz(θ)Ry(−ϕ)x .

As we have seen in the proof of 3.3.4 the transformations Φ• correspond to permuta-
tions M• of the coordinates after the rotation, so we obtain

ω(Φx(θ, ϕ)) =Mxω(θ, ϕ) =MxRRz(θ)y(−ϕ)Rz(θ)x corresponds to

x
Rz(θ)−−−−−−−→

x̃
Rz(θ)Ry(−ϕ)Rz(θ)−1

−−−−−−−−−−−−−−−−→
x′ = ω(θ, ϕ)

Mx−−−−−→Mxω(θ, ϕ)

=⇒Mxω(θ, ϕ) =MxRz(θ)Ry(−ϕ)x =: ω(θ, ϕ,Mx) .

These representations via intrinsic and extrinsic rotations seem to be obvious but this
becomes more complicated when we look at ω2. At this point we begin with the



3.3 Three dimensions 87

diagram obtained through 3.3.9 and 3.3.4:

D := diag(rx, ry, rz) ,

x
Rz(θ)−−−−−−−→

x2

Rz(θi)Ry(−ϕi,j)Rz(θi)−1

−−−−−−−−−−−−−−−−−−−→
x3

Rz(θi)Ry(−ϕi,j)D(Rz(θi)Ry(−ϕi,j))−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Pi,j

Pi,j
Mx−−−−−→

x4 =

B:=
︷ ︸︸ ︷

MxRz(θi)Ry(−ϕi,j)Dx1

BRz(λk)B
−1

−−−−−−−−−→
x5

x5

BRz(λk)Ry(−ψk,l)(BRz(λk))
−1

−−−−−−−−−−−−−−−−−−−−−−−−→
x6

BMyB−1

−−−−−−→
x7 = ω2(Φx(θi, ϕi,j),Φy(λk, ψk,l))

=⇒ x7 = BMyB
−1x6

= BMyB
−1BRz(λk)Ry(−ψk,l)[BRz(λk)]

−1x5

= BMyB
−1BRz(λk)Ry(−ψk,l)[BRz(λk)]

−1BRz(λk)B
−1Bx1

= BMyRz(λk)Ry(−ψk,l)x1
=MxRz(θi)Ry(−ϕi,j)DMyRz(λk)Ry(−ψk,l)x1
=: ω2(θ, ϕ, λ, ψ,Mx,My) = ω2(Φx(θi, ϕi,j),Φy(λk, ψk,l)) .

Now we have to argue why rk,lω2, rk,l〈ω, ω2〉ω should lie on the grid. We know that
the transformations to Pi,j correspond to a transformation from the original grid to
the sub grid given by the axis x′, y′, z′, where the distances between neighboring grid
points on these axis are given by rx, ry, rz. The transformation Pi,j → x4 is a simple
permutation of the coordinates (with possible sign change). The transformations from
x4 −→ x7 correspond to the same transformations used in x1 −→ x4 considering that we
use the base transformation B to do this within the established sub grid. Multiplying
the result with rk,l gives a point on the sub grid established by x′, y′, z′. The last thing
we need to clarify is the implication of these transformations Mx,My for the scalar
product (3.3.8), 〈ω, rk,lω2〉. We know thatMx corresponds to a permutation of the old
coordinate axis (with possible sign changes) and thatMy corresponds to a permutation
of the new coordinate axis (with possible sign changes). This can be used to obtain
an alternative representation of ω2:

ω2(θi, ϕi,j, λk, ψk,l,Mx,My) =
(
Mx[x

′, y′, z′]
)
Myω(λk, ψk,l)

=⇒〈ω(θi, ϕi,j,Mx), rk,lω2(θi, ϕi,j, λk, ψk,l,Mx,My)〉
=
〈

Mxω(θi, ϕi,j),
(
Mx[x

′, y′, z′]
)
Myrk,lω(λk, ψk,l)

〉

=
〈

Mxω(θi, ϕi,j),Mxx
′(MyPk,l)1

〉

= ‖x′‖ · (MyPk,l)1 = ri,j(MyPk,l)1 .

This gives a representation for w2, v
′
2,w

′
2 incorporating the coordinate transformations

Φx,Φy:

w2(i, j, k, l, q, x, y) = v+ q∆vrk,lω2(θi, ϕi,j, λk, ψk,l,Mx,My)



88 3 Consistency

= v+ q∆v
(
Mx[x

′, y′, z′]
)
MyPk,l ∈ V

= w2(Φx(θi, ϕi,j),Φy(λk, ψk,l), rq)

v′2(i, j, k, l, q, x, y) = v+ q∆vrk,l

〈

ω(θi, ϕi,j,Mx), ω2





θi, ϕi,j,
λk, ψk,l,
Mx,My





〉

ω(θi, ϕi,j,Mx)

= v+ q∆v(MyPk,l)1MxPi,j ∈ V

= v′2(Φx(θi, ϕi,j),Φy(λk, ψk,l), rq)

w′
2(i, j, k, l, q, x, y) = v+w2 − v′2 = w′

2(Φx(θi, ϕi,j),Φy(λk, ψk,l), rq) .

The application of 3.3.4 together with the above results gives the final result regarding
the form of the discretization. So last but not least we can rewrite h:

h(Φx(θi, ϕi,j),Φy(λk, ψk,l), rq) = h(θi, ϕi,j, λk, ψk,l,Mx,My) .

Theorem 3.3.12 (Convergence order in terms of ∆v)
Assuming that ∆v ∈ R+, s ∈ N are given constants satisfying

L

√
7(∆v)

s+1
3s+1 π

2
3

2
2
3

(
π

4
3 332

32
3

L2c2

) 1
3s+1

+ 2(∆v)
1

3s+1 1

233
3
2 π

2
3

(
2183

11
2 π

8
3

L3c3

) 1
3s+1

≥ s .

and choosing n,m according to

n = ⌈n(∆v)⌉ =







1

3
1
2π

2
32

1
3

(

3
3
2π

2
325+

1
3

Lc

) 1
3s+1

(∆v)−
s

3s+1







, m =
⌈
3π2n(∆v)

⌉
,

the convergence order of the discretization 3.3.11 is

|I[f ](v)Ĩ − [f ](v)| < e(∆v) ∈ O
(

(∆v)
s

3s+1

)

.

As in the two dimensional case 3.2.4, the main conclusion is that if n,m grow suffi-
ciently slow with and in comparison to 1

∆v
than the whole approximation converges

with the order given above. The first requirement ensures that at least s points lie on
every line that is used for the innermost integration. A lower bound for the minimal
number of points s̃ on any given line is

s̃ ≥ L

√
7(∆v)

s+1
3s+1 π

2
3

2
2
3

(
π

4
3 332

32
3

L2c2

) 1
3s+1

+ 2(∆v)
1

3s+1 1

233
3
2 π

2
3

(
2183

11
2 π

8
3

L3c3

) 1
3s+1

∈ O
(
(∆v)−

1
3s+1

)
.

Proof:
To reduce the anxiety of another proof similar painful as 3.2.4: this one is way more



3.3 Three dimensions 89

understandable, because we loose nothing in using the estimate ln(n)
n2 < 1

n
. Starting

with a simplification of the error e:

e = 2s+13
s
2
+1Lc(∆v)sn2smsKr + 576π2

(

Kθ,ϕ,λ
ln(m) + 1

m2
+ 2Kθ,ϕ,λ,ψ

1

m

)

+ 192

(

Kθ
ln(n) + 1

n2
+ 2Kθ,ϕ

1

n

)

≤ 2s+13
s
2
+1Lc(∆v)s · n2sms ·Kr + 576π2 (Kθ,ϕ,λ + 2Kθ,ϕ,λ,ψ)

1

m

+ 192(Kθ + 2Kθ,ϕ)
1

n

≤ K

[ c3:=
︷ ︸︸ ︷

2s+13
s
2
+1Lc(∆v)s · n2sms +

c2:=
︷ ︸︸ ︷

1728π2 1

m
+

c1:=
︷︸︸︷

576
1

n

]

,

with K = max{Kθ, Kθ,ϕ, Kλ, Kλ,ψ, Kl}. Here we use the same ansatz as in 3.2.4. De-
spite the fact that we ignore the better convergence of one of the integrals in spherical
coordinates, we force the three integrations (two over a sphere and one along a line)
to deliver approximately the same error, only disturbed by the differences between the
K•:

c1
1

n
= c2

1

m
= c3(∆v)

sn2sms .

Now everything becomes very simple:

c1
1

n
= c2

1

m
⇐⇒ m(n) =

c2
c1
n ,

=⇒c1
1

n
= c3(∆v)

sn2sms = c3(∆v)
sn2s c

s
2

cs1
ns = c3

cs2
cs1
(∆v)sn3s

⇐⇒n3s+1 =
cs+1
1

c3c
s
2

(∆v)−s ⇐⇒ n =

(
cs+1
1

c3c
s
2

) 1
3s+1

(∆v)−
s

3s+1

⇐⇒ 1

n
=

(
cs+1
1

c3cs2

)− 1
3s+1

(∆v)
s

3s+1 ∈ O
(

(∆v)
s

3s+1

)

=⇒m(∆v) =
c2
c1

(
cs+1
1

c3cs2

) 1
3s+1

(∆v)−
s

3s+1 =

(
c2s+1
2

c3c2s1

) 1
3s+1

(∆v)−
s

3s+1

⇐⇒ 1

m
=

(
c2s+1
2

c3c2s1

)− 1
3s+1

(∆v)
s

3s+1 ∈ O
(

(∆v)
s

3s+1

)

=⇒c3(∆v)
sn2sms = c3(∆v)

s

((
cs+1
1

c3cs2

) 1
3s+1

(∆v)−
s

3s+1

)2s((
c2s+1
2

c3c2s1

) 1
3s+1

(∆v)−
s

3s+1

)s

= const · (∆v)s(∆v)− 2s2

3s+1 (∆v)−
s2

3s+1 = const · (∆v)
s(3s+1)
3s+1

− 2s2

3s+1
− s2

3s+1



90 3 Consistency

= const · (∆v) s
3s+1 ∈ O

(

(∆v)
s

3s+1

)

=⇒K

(

c1
1

n
+ c2

1

m
+ c3(∆v)

sn2sms

)

∈ O
(

(∆v)
s

3s+1

)

=⇒e ∈ O
(

(∆v)
s

3s+1

)

.

The last thing we have to look at is how many points are at least on any line for the
innermost integration. This determines what the largest s (order of the Newton-Cotes
formula) can be. We know that the minimal number of points s̃ corresponds to

∀i, j, k, l : L

∆ri,j,k,l
=

L

∆vti,jtk,l

√
√
√
√
√
√
√
√








p2i,j
q2i,j
q2i q

2
k +

p2
k,l

q2
k,l

p4i q
2
k + 2

p2
k,l

q2
k,l

p2i q
2
i q

2
k+

p2k,l
q2k,l
q2kq

4
i + q2kp

2
i + p2kq

2
i +

p2k,lp
2
i,j

q2k,lq
2
i,j
p2i q

2
i q

2
k+

q2kq
2
i + p2i p

2
k +

p2i,jp
2
k,l

q2i,jq
2
k,l

q4i q
2
k








>
L

∆v

√
[
n2m2 + n4m2 + 2n2m2 + n4m2 + n2m2+
n2m2 + n4m2 + n2m2 + n2m2 + n4m2

]

=
L

∆v
√
7n2m2 + 4n4m2

>
L

∆v(
√
7nm+ 2n2m)

=
L

√
7(∆v)

s+1
3s+1

(
cs+1
2

c23c
s−1
1

) 1
3s+1

+ 2(∆v)
1

3s+1

(
c21

c33c
s−1
2

) 1
3s+1

=
L

√
7(∆v)

s+1
3s+1 π

2
3

2
2
3

(
π

4
3 332

32
3

L2c2

) 1
3s+1

+ 2(∆v)
1

3s+1 1

233
3
2 π

2
3

(
2183

11
2 π

8
3

L3c3

) 1
3s+1

∈ O
(
(∆v)−

1
3s+1

)
.

For the application of a Newton-Cotes formula of order s we need at most s points
on every line. So a requirement for the application is given by the following condition
that must be fulfilled by ∆v and s

L

√
7(∆v)

s+1
3s+1 π

2
3

2
2
3

(
π

4
3 332

32
3

L2c2

) 1
3s+1

+ 2(∆v)
1

3s+1 1

233
3
2 π

2
3

(
2183

11
2 π

8
3

L3c3

) 1
3s+1

≥ s .



3.3 Three dimensions 91

Lemma 3.3.13 (Discretization as a DVM and its properties)
Assuming that

k(w2 − vi, ω) = k̃(‖w2 − vi‖,∠(w2 − vi, ω)) = k̂(rq‖ω2‖,∠(ω2, ω))

possesses the same symmetries as the grid (which means independence of α, β ∈ G in
the second argument of k̂), the discretization 3.3.11 can be transformed into a DVM:

Ĩ[f ](vi) =
∑

(x,k)∈B

∑

(j,l)∈Cx,k

αxjkl∆vxjkl

⌊L/∆vx,j,k,l⌋∑

q=0

∑

α,β∈G

[
g(q)h(θx, ϕx,j, λk, ψk,l, rq, α, β)

·D(rq, θx, ϕx,j, ψk,l)

]

=
∑

j,k,l

Ak,li,j
(
f(vk)f(vl)− f(vi)f(vj)

)
,

with

Ak,li,j :=







A(a, b, c, d, e), if

∃a, b, c, d ∈ N, e ∈ Nabcd, α, β ∈ G :

(vi, vj, vk, vl) = (vi,w2, v
′
2,w

′
2)

(

a, b, c, d,

e, α, β

)

0, else

,

A(a, b, c, d, e) :=

[
αabcd∆vabcdg(e)D(re, θa, ϕa,b, ψc,d)sabcde·
k(reω2(θa, ϕa,b, λc, ψc,d), ω(θa, ϕa,b))

]

N :=

{

(a, b, c, d) ∈ N4

∣
∣
∣
∣

a ∈ {1, . . . , N}, b ∈ {1, . . . , Na},
c ∈ {1, . . . ,M}, d ∈ {1, . . . ,Mc}

}

,

Nabcd := {0, . . . , ⌊L�∆va,b,c,d⌋} ,
sabcde :=

∣
∣
{
(α, β)

∣
∣(α, β) ∈ G2, (vi, vj , vk, vl) = (vi,w2, v

′
2,w

′
2)(a, b, c, d, e, α, β)

}∣
∣ .

This DVM fulfills the minimal properties 2.1.2.4 and possesses no artificial collision
invariants on normal grids.

Proof:
Similar to the two dimensional case 3.2.9 we begin this proof with a closer look at
the existence of a one to one correspondence between (i, j, k, l) and (a, b, c, d, e, α, β).
In the end we can see that such a correspondence is non-existent, but we realize that
different (a, b, c, d, e, α, β) corresponding to the same (i, j, k, l) only differ in α, β. Due
to this we get the situation that the coefficients A(a, b, c, d, e, α, β) corresponding to
the index (i, j, k, l) are equal and can be merged into Ak,li,j . We begin with a naive

definition of Ak,li,j as

Ãk,li,j :=







Ã(a, b, c, d, e, α, β), if

∃a, b, c, d ∈ N, c ∈ Nabcd, β, γ ∈ G :

(vi, vj , vk, vl) = (vi,w2, v
′
2,w

′
2)

(

a, b, c, d,

e, α, β

)

0, else

,



92 3 Consistency

Ã(a, b, c, d, e, α, β) :=

[
αabcd∆vabcdg(e)D(re, θa, ϕa,b, ψc,d)·
k(reω2(θa, ϕa,b, λc, ψc,d, α, β), ω(θa, ϕa,b, α))

]

,

by simply collecting all coefficients corresponding to an multi index (a, b, c, d, e, α, β).
This approach would be sufficient iff there exists a one to one correspondence between
the multi indexes and the (i, j, k, l). Now we can use the same argumentation as in
the second part of the proof of 3.2.9. We realize that by construction

∀(a, b, c, d, e) 6= (ã, b̃, c̃, d̃, ẽ) : (w2, v
′
2)(a, b, c, d, e) 6= (w2, v

′
2)(ã, b̃, c̃, d̃, ẽ) ,

and so we see that changes in (a, b, c, d, e) lead to different collision pairs vi, vj , vk, vl
and to different coefficients Ãk,li,j . So for every (i, j, k, l) we have at most one (a, b, c, d, e).
Considering the reflections and rotations in the automorphism group we get the insight
that we have at least a two to one correspondence in the general case, given by

∀α1, β1 ∈ G : α2 := −I · α1, β2 := −Iβ1
=⇒ w2(α1, β1) = w2(α2, β2), v

′
2(α1, β1) = v′2(α2, β2), w

′
2(α1, β1) = w′

2(α2, β2) .

And the same argumentation as in 3.2.9 for three dimensions gives the result that we
also get four to one, 8 to 1, 12 to 1 and 16 to 1 correspondences for special values of
θ, ϕ, λ, ψ. As in the two dimensional case these multiple correspondences differ only in
α, β so all coefficients relating to the same (i, j, k, l) are equal iff we assume that the
structure of k gives

k(w2 − vi, ω) = k̃(‖w2 − vi‖,∠(w2 − vi, ω)) = k̂(re‖ω2‖,∠(ω2, ω)) ,

and that k possesses at least the grid symmetries - making it (in the second argument,
the first one is clear) independent of α, β ∈ G. From this arises the necessity to count
the number of occurrences

sijkl :=
∣
∣
{
index

∣
∣index ∈ N ×Nabcd ×G2, (vi, vj, vk, vl) = (vi,w2, v

′
2,w

′
2)(index)

}∣
∣ ,

and to multiply it with Ã:
Ak,li,j := Ãk,li,j · sijkl .

The same argumentation as in the two dimensional case gives

sijkl = sabcde := |{(α, β) |(vi, vj, vk, vl) = (vi,w2, v
′
2,w

′
2)(a, b, c, d, e, α, β)}| ,

eliminating the need to look at the symmetries of s as soon as we have proved that
the necessary symmetries depend only on α, β. This is our next step. We prove these
symmetries with calculations similar to the two dimensional case. For this we need
some preliminary considerations and results from the proof of 3.3.11:

−−→
vw2(α, β) = e∆vrc,dω2(θa, ϕa,b, λc, ψc,d, α, β) = e∆v(α[x′, y′, z′])βPc,d



3.3 Three dimensions 93

−→
vv′2(α, β) =

−−−→
w′

2w2(α, β)

= e∆vrc,d〈ω(θa, ϕa,b, α), ω2(θa, ϕa,b, λc, ψc,d, α, β)〉ω(θa, ϕa,b, α)
= q∆v(βPc,d)1αPa,b

−−→
w′

2v
′
2(α, β) = e∆vrc,dω2(θa, ϕa,b, λc, ψc,d, α, γβ) = e∆v(α[x′, y′, z′])γβPc,d (3.3.15)

=
−−−→
w′

2w2 −−−→
vw2 +

−→
vv′2 = 2

−→
vv′2 −

−−→
vw2 ,

with γ :=





1 0 0
0 −1 0
0 0 −1



 ∈ G . (3.3.16)

The insight (3.3.15) follows from geometrical considerations. Knowing that ω2 cor-
responds to spherical coordinates (in λ, ψ) on a sub grid it becomes clear, that the

reflection of ω2 on the axis x′ (= ω(θa, ϕa,b) results into
−−→
w′

2v
′
2. The following dia-

gram and considerations analog to the derivation of the representation of ω2 through
extrinsic rotations within the proof of 3.3.11 give:

D := diag(rx, ry, rz) ,

x
Rz(θ)−−−−−−−→

x2

Rz(θa)Ry(−ϕa,b)Rz(θa)−1

−−−−−−−−−−−−−−−−−−−−→
x3

Rz(θa)Ry(−ϕa,b)D[Rz(θa)Ry(−ϕa,b)]−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Pa,b

Pa,b
α−−−→

x4 =

B:=
︷ ︸︸ ︷

αRz(θa)Ry(−ϕa,b)Dx1

BRz(λc)B−1

−−−−−−−−−→
x5

x5

BRz(λc)Ry(−ψc,d)[BRz(λc)]−1

−−−−−−−−−−−−−−−−−−−−−−−−→
x6

BβB−1

−−−−−→
x7

BγB−1

−−−−−→
x8

=⇒ x8 = αRz(θa)Ry(−ϕa,b)DγβRz(λc)Ry(−ψc,d)x1
= ω2(θ, ϕ, λ, ψ, α, γ · β) .

And the form of γ in (3.3.16) is given by the demand that this operator reflects a point
on the x - axis (x′ as can be seen in the diagram). From the above representations we
get the following identities

−−→
vw2(α, β) =

−−→
w′

2v
′
2(α, γβ) =

−−→
vw2(α, γ

2β) ,
−−→
vw2(α, β) = −−−→

vw2(−α, β) = −−−→
vw2(α,−β) = −−→

vw2(−α,−β) ,
−→
vv′2(α, β) = −

−→
vv′2(−α, β) = −

−→
vv′2(α,−β) =

−→
vv′2(−α,−β) =

−→
vv′2(α, γβ) .

This and (3.3.15) can be used to prove the symmetries Ak,li,j = Ai,jk,l = Al,kj,i by proving
that the corresponding velocities differ only in the operators α, β, which do not change
the corresponding coefficients A(a, b, c, d, e, α, β):







vi
vj
vk
vl







=








vi
vi +

−−→
vw2

vi +
−→
vv′2

vi +
−−→
vw2 −

−→
vv′2










94 3 Consistency

=⇒







vk
vl
vi
vj







=








vk

vk −
−→
vv′2 +

−−→
vw2 −

−→
vv′2

vk −
−→
vv′2

vk −
−→
vv′2 +

−−→
vw2








=








vk

vk − 2
−→
vv′2(α, β) +

−−→
vw2(α, β)

vk −
−→
vv′2(α, β)

vk − 2
−→
vv′2(α, β) +

−−→
vw2(α, β) +

−→
vv′2(α, β)








=








vk

vk −
−−→
w′

2v
′
2(α, β)

vk −
−→
vv′2(α, β)

vk −
−−→
w′

2v
′
2(α, β) +

−→
vv′2(α, β)








=








vk
vk +

−−→
vw2(−α, γβ)

vk +
−→
vv′2(−α, γβ)

vk +
−−→
vw2(−α, γβ)−

−→
vv′2(−α, γβ)








=⇒







vj
vi
vl
vk







=








vj
vj −−−→

vw2

vj −−−→
vw2 +

−−→
vw2 −

−→
vv′2

vj −−−→
vw2 +

−→
vv′2








=








vj
vj +

−−→
vw2(−α, β)

vj +
−→
vv′2(−α, β)

vj +
−−→
vw2(−α, β)−

−→
vv′2(−α, β)







.

The non negativity of Ak,li,j is given by the fact that the factors A consists of are non
negative. The lack of artificial collision invariants can be obtained by using 2.1.2.10
and realizing that n ≥ 1, m ≥ 1 leads to the inclusion of all squares (in planes parallel
to the x-y, x-z, y-z plane in the velocity space) with a diameter of 2∆v,

√
2∆v as in

the two dimensional case 3.2.9.

Remark 3.3.14
As in the 2D case it is not possible to transform this DVM into an eLGpM, because in
general it does not possess the necessary property (2.2.1) that is needed for theorem
2.2.2 . This condition is violated as soon as the order of the Farey sequences n,m gets
larger than one. Due to this we need an according adjustment of the discretization to
make it compatible with the eLGpMs.



3.4 High order schemes 95

Lemma 3.3.15 (Farey approximation as an eLGpM)
An eLGpM based on the Farey approximation (using Fn,Fm) can be written as

ILGpM[f ](vi) =
∑

c∈C

∑

[v]∈S̃V
i,c

∑

[ϕ]∈G̃

αϕ,vc,vi




∏

ϕ′∈[ϕ]
f(c+ ϕ′(v− c))−

∏

ϕ′∈H
f(c+ ϕ′(vi − c))





with

C := V ∪V 1
2
, vk(c, v, ϕ) := c+ ϕ(v− c), vj(c, i) := 2c− vi ,

S̃V
i,c := SV

ij� ∼c, G̃ := G� ∼H , α
ϕ,v
c,vi

:=
2Aki,j

|{ϕ′ ∈ G|c+ ϕ(v− c) = c+ ϕ′(v− c)}| ,

Ak,li,j := Ak,li,j ·∆vij, ∆vij :=

{

1, if
−−→
vivj
2c

∈ C

2, else
, c = max

{

c̃ ∈ N

∣
∣
∣
∣

−−→
vivj

c̃
∈ V

}

where Ak,li,j comes from 3.3.13. The convergence order is the same as in 3.3.12, the
error boundary is increased by a factor of 2s and this LGpM has no artificial collision
invariants.

Proof:
Analog to the 2D case 3.2.11.

3.4 High order schemes

At this point let us take a look at the approach so far. We use the ansatz proposed
by Rogier and Schneider apply another transformation of the collision operator, use
a Newton-Cotes formula for the approximation of the innermost integral and Farey
sequences for the approximation of the angular integrals. This approximation uses
the Farey angles as grid points and the Farey arcs as the corresponding step sizes.
This approach results into a discretization with a convergence order of up to 1 (in
2D) and we can transform this into a DVM that possesses the minimal requirements
guaranteeing the correct collisional invariants (no artificial ones), equilibrium solutions
and the H - theorem. Panferov and Heintz as well as Michel and Schneider [MS00,
PH99] constructed similar discretizations that possess the same properties (order 1
and DVM with minimal requirements). In the last subsection we showed that this
can be generalized into three dimensions satisfying the same minimal requirements
and giving the same properties except the convergence order which only goes up to a
maximum of 1

3
. Other discretization approaches for the extension of Farey sequences

into three dimensions like [MS00, PH99] reach an order of 1. It remains to be seen
if these approaches are generally better, because in this subsection we look at the
question “Can we chose the integration weights α• corresponding to the Farey angles



96 3 Consistency

in such a way that we obtain a higher convergence order of the discretization ?”. The
answer is yes. To give an idea about the reachable convergence we use the simplest
idea and apply standard quadrature formulas on the grid points given by the Farey
angles. Fortunately the symmetries necessary to obtain the minimal requirements are
independent of the α• due to the used transformation of the collision operator, our
choice to discretize the minimal symmetry region S1 and the successive application of
the automorphism group. To minimize the overhead that is involved in the necessary
modification of 3.2.3, 3.2.4, 3.3.11, 3.3.12, we only redo the necessary parts and refer
to these proofs for anything else. At this points we use the developed framework (a
framework that works parallel and is comparable to the ones used by [MS00,PH99]) to
construct “high” order (order> 1) discretizations of the collision operator retaining the
exact conservation of the moments by taking advantage of the explicit representation
of the grid symmetries through the symmetry regions or the automorphism group. As
far as the author knows the detailed inspection of this idea and its implementation
seems to be new.

Corollary 3.4.1 (High order quadrature in 2D)
If we use quadrature formulas over Farey angles for the angular integrals in 3.2.3, we
obtain the same discretization, where the only difference is the definition of αi,n, αj,m:

α
(2)
i :=







∫ θN
θ⌊ Ñs ⌋s+1

s∏

k = 0

k 6= i + s−N

θ−θN−s+k

θi−θN−s+k
d θ, if i ≥ N − s

0, else

,

αi := α
(1)
i + α

(2)
i , Ñ := N − 1 ,

α
(1)
i :=







∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉
[i−1 mod(s)],s(θ)d θ, if [i− 1 mod(s)] 6= 0 ∨

⌈
i
s

⌉
= 1

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉−1
s,s (θ) + L

⌈ is⌉
0,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
/∈
{

1,
⌊
Ñ
s

⌋

+ 1
}

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉−1
s,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
=
⌊
Ñ
s

⌋

+ 1

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉
0,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
= 1

0, else

,

where αj,m can be defined analog to αi,n by substituting i with j and N with M . Here
t corresponds to the number of used points for the interpolation (polynomial degree s
plus one). The discretization 3.2.3 with these integration weights possesses an upper
error bound of

e <
Kθ

t!

(⌊
n2

s

⌋

+ 1

)( s

n

)t+1

+
π

4

Kλ

t!

(⌊
m2

s

⌋

+ 1

)( s

m

)t+1



3.4 High order schemes 97

+
3π2

32
cL(∆v)rKl2

rnrmr ,

where Kθ, Kλ, Kl are some constants depending on f, k and r, c as in 3.2.3.
Assuming that ∆v ∈ R+, r ∈ N, t ∈ N>1 are given constants satisfying

L

2∆vñ(∆v, r)m̃(∆v, r)
> r, ∧ t ≤ N,M ,

with

ñ(∆v, r, s) =

(
c3
c1

) −1
s+2r

(∆v)
−r
s+2r

(
c1
c2

) −r
s(s+2r)

, m̃(∆v, r, s) =

(
c1
c2

)−1
s

n

(constants can be found in the proof) and choosing n,m according to

n = ⌈ñ(∆v, r, s)⌉, m = ⌈m̃(∆v, r, s)⌉ ,

the convergence order of this discretization is

O
(

(∆v)
rs

2r+s

)

.

The minimal number of points r̃ on any given line associated with the approximation
of the innermost integral grows asymptotically as is given by

r̃(∆v) ∈ O
(

(∆v)
−s

2r+s

)

.

Proof:
For this proof we use the same conventions and abbreviations as in the original proof
3.2.3. The only difference that occurs is the calculation of the three errors. Now
we approximate the angular integrals by integration over interpolation polynomials of
order t. For this we need the definition of the Lagrange polynomials and an estimate
for successive Farey angles:

L
(i)
j,s(θ) :=

s∏

k=0,k 6=j

θ − θs(i−1)+1+k

θs(i−1)+1+j − θs(i−1)+1+k

,

θis+1 − θ(i−1)s+1 = arctan

(
pis+1,n

qis+1,n

)

− arctan

(
p(i−1)s+1,n

q(i−1)s+1,n

)
(3.3.3)
<

pis+1,n

qis+1,n

− p(i−1)s+1,n

q(i−1)s+1,n

=
is∑

j=(i−1)s+1

pj+1,n

qj+1,n

− pj,n
qj,n

≤
is∑

j=(i−1)s+1

1

n
=
s

n
.

Now we calculate the error of a quadrature formula using a polynomial of order s =
t1 − 1 with discretization points θi and N = Ñ + 1 points. Unfortunately we have to



98 3 Consistency

assume Ñ
s
/∈ N, which complicates the normally simple calculations. We begin with

the error of the outermost integral:

e3 :=

∫ π
4

0

H2(θ)dθ −

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θ(i−1)s+1

s∑

j=0

H2(θ(i−1)s+1+j)L
(i)
j,s(θ)d θ

−
∫ θN

θ⌊ Ñs ⌋s+1

s∑

j=0

H2(θN−s+j)
s∏

k=0,k 6=j

θ − θN−s+k
θN−s+j − θN−s+k

d θ

=

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θ(i−1)s+1

H2(θ)−
s∑

j=0

H2(θ(i−1)s+1+j)L
(i)
j,s(θ)d θ

+

∫ θN

θ⌊ Ñs ⌋s+1

H2(θ)−
s∑

j=0

H2(θN−s+j)
s∏

k=0,k 6=j

θ − θN−s+k
θN−s+j − θN−s+k

d θ

≤

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θ(i−1)s+1

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!

s∏

k=0

(
θ − θ(i−1)s+1+k

)
d θ

+

∫ θN

θ⌊ Ñs ⌋s+1

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!

s∏

k=0

(θ − θN−s+k) d θ

<

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θ(i−1)s+1

(θis+1 − θ(i−1)s+1)
t1d θ

+

∫ θN

θ⌊ Ñs ⌋s+1

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!
(θN − θN−s)

t1d θ

<

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!






⌊

Ñ
s

⌋

∑

i=1

( s

n

)t1+1

+
( s

n

)t1+1






=

sup
θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣

t1!

(⌊

Ñ

s

⌋

+ 1

)
( s

n

)t1+1

, and

e3 :=

∫ π
4

0

H2(θ)dθ −

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θs(i−1)+1

s∑

j=0

H2(θs(i−1)+1+j)L
(i)
j,s(θ)d θ



3.4 High order schemes 99

−
∫ θN

θ⌊ Ñs ⌋s+1

s∑

j=0

H2(θN−s+j)
s∏

k=0,k 6=j

θ − θN−s+k
θN−s+j − θN−s+k

d θ

=

∫ π
4

0

H2(θ)dθ −
N∑

i=1

αiH2(θi), with

α
(2)
i :=







∫ θN
θ⌊ Ñs ⌋s+1

s∏

k = 0

k 6= i + s −N

θ−θN−s+k

θi−θN−s+k
d θ, if i ≥ N − s

0, else

αi := α
(1)
i + α

(2)
i

and

α
(1)
i :=







∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉
[i−1 mod(s)],s(θ)d θ, if [i− 1 mod(s)] 6= 0 ∨

⌈
i
s

⌉
= 1

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉−1
s,s (θ) + L

⌈ is⌉
0,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
/∈
{

1,
⌊
Ñ
s

⌋

+ 1
}

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉−1
s,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
=
⌊
Ñ
s

⌋

+ 1

∫ θ⌈ is⌉s+1

θ
s(⌈ is⌉−1)+1

L
⌈ is⌉
0,s (θ)d θ, if

{

[i− 1 mod(s)] = 0

∧
⌈
i
s

⌉
= 1

0, else

.

This complicated looking definition of α
(1)
i is generally very simple. The first case

corresponds to the inner points used for the quadratures, the second case to the points
where different polynomials begin and end (we use a composite rule) and the next two
cases to the begin and the end of the regular quadrature. Then α(2) corresponds to
the case where we have some points left which must be specially treated . Fortunately
we can reuse this for the error of the next integral:

e2(i) := H2(θi)−
M∑

j=1

αj,mH1(λj, θi) ,

where αj,m is defined analog to αi, n (above).

=⇒ e2(i) ≤
sup

λ∈[0,π4 ]

∣
∣
∣
∂t2H1(λ,θi)

∂λt2

∣
∣
∣

t2!

(⌊

M̃

s2

⌋

+ 1

)
(s2
m

)t2+1

,

e2 :=

N∑

i=1

αie2(i)



100 3 Consistency

≤

a:=
︷ ︸︸ ︷

sup
λ,θ∈[0,π4 ]

∣
∣
∣
∂t1H1(λ,θ)

∂λt1

∣
∣
∣

t2!

(⌊

M̃

s2

⌋

+ 1

)
(s2
m

)t2+1
N∑

i=1

αi

= a

⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θs(i−1)+1

s∑

j=0

L
(i)
j,s(θ)d θ

+ a

∫ θN

θ⌊ Ñs ⌋s+1

s∑

j=0

s∏

k=0,k 6=j

θ − θN−s+k
θN−s+j − θN−s+k

d θ

= a






⌊

Ñ
s

⌋

∑

i=1

∫ θis+1

θs(i−1)+1

1d θ +

∫ θN

θ⌊ Ñs ⌋s+1

1d θ






= a(θN − θ1) =
π

4
a .

And the same procedure can be used in the calculation of the last error (for e1(i, j)
see 3.2.3) :

|e1| ≤
N∑

i=1

M∑

j=1

αiαje1(i, j)

=

N∑

i=1

M∑

j=1

αiαjc
3

2
L(∆v)r(p2i,n + q2i,n)

r
2 (p2j,m + q2j,m)

r
2 sup
l∈[0,L]

∣
∣
∣
∣

∂rh(l, λj , θi)

∂lr

∣
∣
∣
∣

≤ 3

2
cL(∆v)r

=:Kl
︷ ︸︸ ︷

sup
l∈[0,L]

θ,λ∈[0,π4 ]

∣
∣
∣
∣

∂rh(l, λ, θ)

∂lr

∣
∣
∣
∣

N∑

i=1

M∑

j=1

αiαj(p
2
i,n + q2i,n)

r
2 (p2j,m + q2j,m)

r
2

<
3

2
cL(∆v)rKl2

rnrmr

N∑

i=1

M∑

j=1

αiαj =
3π2

32
cL(∆v)rKl2

rnrmr .

Adding these three errors together and defining

Kλ := sup
θ,λ∈[0,π4 ]

∣
∣
∣
∣

∂t1H1(λ, θ)

∂λt1

∣
∣
∣
∣
, Kθ := sup

θ∈[0,π4 ]

∣
∣
∣H

(t1)
2 (θ)

∣
∣
∣ ,



3.4 High order schemes 101

we obtain

e :=
∣
∣
∣I[f ](v)− Ĩ[f ](v)

∣
∣
∣ <

Kθ

t1!

(⌊

Ñ

s

⌋

+ 1

)
( s

n

)t1+1

+
π

4

Kλ

t2!

(⌊

M̃

s2

⌋

+ 1

)
(s2
m

)t2+1

+
3π2

32
cL(∆v)rKl2

rnrmr .

(3.4.1)

Now we need to get an estimation for N to determine what convergence order could
be obtained through this approach. We know that N = |Fn| and it is well known that

|Fn| = 1 +

n∑

m=1

ϕ(m)

where ϕ(m) corresponds to Euler’s totient function. This function counts the positive
integers less than or equal to m that are relatively prime to m. This directly gives
ϕ(m) ≤ m leading to

|Fn| ≤ 1 +

n∑

m=1

m = 1 +
n2 + n

2
≤ 1 + n2 .

Using this in the corresponding error estimations we get

e <
Kθ

t1!

(⌊
n2

s

⌋

+ 1

)( s

n

)t1+1

+
π

4

Kλ

t2!

(⌊
m2

s2

⌋

+ 1

)(s2
m

)t2+1

+
3π2

32
cL(∆v)rKl2

rnrmr

< K







c1:=
︷ ︸︸ ︷

2
st1+1

t1!
n−t1+1 +

c2:=
︷ ︸︸ ︷

2π

4

st2+1
2

t2!
m−t2+1 +

c3:=
︷ ︸︸ ︷

3π2

32
cL2r(∆v)rnrmr






,

because

⌊
n2

s

⌋

+ 1
s≥1

≤ 2n2 .

Now we use the same ansatz as in the last 2 convergence order proofs 3.2.4, 3.3.12 and
we assume t1 = t2 for the sake of simplicity:

c1n
−t+1 = c2m

−t+1 = c3(∆v)
rnrmr =⇒ m =

(
c1
c2

) 1
−t+1

n

=⇒ c1n
−t+1 = c3(∆v)

rnr

((
c1
c2

) 1
−t+1

n

)r

= c3(∆v)
rnr
(
c1
c2

) r
−t+1

nr



102 3 Consistency

⇐⇒ n1−t−2r =
c3
c1
(∆v)r

(
c1
c2

) r
−t+1

⇐⇒ n =

(
c3
c1

) 1
1−t−2r

(∆v)
r

1−t−2r

(
c1
c2

) r
(−t+1)(1−t−2r)

∈ O
(

(∆v)
r

1−t−2r

)

=⇒ m =

(
c1
c2

) 1
−t+1

+ r
(−t+1)(1−t−2r)

(
c3
c1

) 1
1−t−2r

(∆v)
r

1−t−2r ∈ O
(

(∆v)
r

1−t−2r

)

=⇒ c1n
−t+1 = const ·

(

(∆v)
r

1−t−2r

)−t+1

= const · (∆v)
t−1

2+ t−1
r

=⇒ c2m
−t+1 = const ·

(

(∆v)
r

1−t−2r

)−t+1

= const · (∆v)
t−1

2+ t−1
r

=⇒ c3(∆v)
rnrmr = const · (∆v)r

(

(∆v)
r

1−t−2r

)r

·
(

(∆v)
r

1−t−2r

)r

= const · (∆v)
t−1

2+ t−1
r

=⇒ e < c1n
−t+1 + c2m

−t+1 + c3(∆v)
rnrmr = O

(

(∆v)
t−1

2+ t−1
r

)

.

The number of minimal points on any given line can be taken from an analog adaption
of the proof of 3.2.4.

Remark 3.4.2
The completion of this approximation can be taken from 3.2.5, because it can be done
in the exact same way. The change of the integration weights αi, αj does not change
the fact, that the corresponding DVM possesses the minimal properties 2.1.2.4 giving
the result that the DVM has no artificial collision invariants, the correct equilibrium
solutions and the H - theorem. According to our ansatz these minimal properties
are only influenced by the transformation of the collision integral, the successive ap-
proximation above minimal symmetry regions S• and the following application of the
automorphism group. The original Farey discretization according to theorem 3.2.4
corresponds to choosing s = 2. Another interesting point is that choosing a fixed s
we obtain lim

r→∞
(∆v)

rs
2r+s = (∆v)

s
2 and choosing a fixed r we get lim

s→∞
(∆v)

rs
2r+s = (∆v)r.

So we are free to construct high order deterministic approximations of the collision
operator satisfying the demand to have the correct collisional invariants, equilibrium
solutions and the H - theorem.

The same can be done in the three dimensional case.



3.4 High order schemes 103

Corollary 3.4.3 (High order quadrature in 3D)
If we use quadrature formulas over Farey angles for the angular integrals in 3.3.11, we
obtain the same discretization, where the only difference is the definition of αi, αi,j,
here αi is defined as in the last corollary and αi,j is given as

α
(2)
i,j :=







∫ ϕi,Ni
ϕ
i,

⌊

Ñi
t

⌋

t+1

t∏

k = 0

k 6= i+ t−Ni

ϕ−ϕi,Ni−t+k
ϕi,j−ϕi,Ni−t+k

dϕ, if j ≥ Ni − t

0, else

,

αi,j := α
(1)
i,j + α

(2)
i,j ,

α
(1)
i,j :=







∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

,i

[i−1 mod(t)],t(ϕ)dϕ, if [j − 1 mod(t)] 6= 0 ∨
⌈
j
t

⌉

= 1

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

−1,i

t,t (ϕ) + L

⌈

j
t

⌉

,i

0,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

/∈
{

1,
⌊
Ñi
t

⌋

+ 1
}

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

−1,i

t,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

=
⌊
Ñi
t

⌋

+ 1

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

,i

0,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

= 1

0, else

,

L
(l,i)
j,t (ϕ) :=

t
∏

k=0,k 6=j

ϕ− ϕi,t(l−1)+1+k

ϕi,t(l−1)+1+j − ϕi,t(l−1)+1+k
.

Here t := t − 1 and t corresponds to the number of used points for the interpolation
polynomial used in the approximation of the angular integrals. The discretization
3.3.11 with these integration weights possesses an upper error bound of

e < 96 · (Kθ +
π

4
Kθ,ϕ)

(t− 1)t+1

t!
n1−t + 288 · π2 · (Kθ,ϕ,λ +

π

4
Kθ,ϕ,λ,ψ)

(t− 1)t+1

t!
m1−t

+
27π4

2
Lc3

s
22sKr(∆v)

sn2sms ,

where Kθ, Kθ,ϕ, Kθ,ϕ,λ, Kθ,ϕ,λ,ψ, Kr are some constants depending only on f, k and its
derivatives and s, c correspond to the used Newton-Cotes formula, s being the error
order and c corresponding to some error constants. The order of the interpolation
polynomials used for the quadrature of the angular integrals is given by t. Assuming
that ∆v ∈ R+, s ∈ N>0 are given constants satisfying

L
√
7(∆v)

s+1
3s+1

(
cs+1
2

c23c
s−1
1

) 1
3s+1

+ 2(∆v)
1

3s+1

(
c21

c33c
s−1
2

) 1
3s+1

≥ s .



104 3 Consistency

with

ñ(∆v, s, t) =

(
c3
c1

) −1
t+3s

(∆v)
−s
t+3s

(
c1
c2

) s
t(t+3s)

, m̃(∆v, s, t) =

(
c1
c2

)−1
t

n

(constants can be found in the proof) and choosing n,m according to

n = ⌈ñ(∆v, s, t)⌉, m = ⌈m̃(∆v, s, t)⌉ ,

the convergence order of this discretization is

O
(

(∆v)
st

3s+t

)

.

The minimal number of points r̃ on any given line associated with the approximation
of the innermost integral grows asymptotically as is given by

r̃(∆v) ∈ O
(

(∆v)
−t

3s+t

)

.

Proof:
For this proof we use the definitions from the proof of 3.3.11, 3.3.12 and the findings
within the proof of the last corollary. We use the same procedure as above, this
means we use standard quadrature formulas based on polynomial interpolation for the
approximation of the angular integrals and Newton-Cotes formulas for the innermost
integral, prove the resulting error boundary and use this to obtain a convergence
order depending on the order of the Newton-Cotes formula and the degree used in the
polynomial interpolations. To do this we need an estimate for successive angles that
occur in the expansion of Farey sequences into the third dimension:

ϕi,jt − ϕi,(j−1)t+1 = arctan

(

pi,jt
qi,jt

qi
√

q2i + p2i

)

− arctan

(

pi,(j−1)t+1

qi,(j−1)t+1

qi
√

q2i + p2i

)

<
pi,jt
qi,jt

qi
√

q2i + p2i
− pi,(j−1)t+1

qi,(j−1)t+1

qi
√

q2i + p2i
=

(
pi,jt
qi,jt

− pi,(j−1)t+1

qi,(j−1)t+1

)
qi

√

q2i + p2i

≤ t− 1

n

qi
√

q2i + p2i
≤ t− 1

n
.

Now we apply the same quadrature formulas as in the last proof and create an al-
ternative to 3.3.2. As before anything within this proposition holds true except the
definition of the αs and the error boundary. Using the definitions from 3.3.2 and the
same quadrature as in the last proof we instantly get:

e :=

∣
∣
∣
∣
∣

N∑

i=1

αi

Ni∑

j=1

αi,jH(θi, ϕi,j)−
∫ π

4

0

∫ arctan(sin(θ))

0

H(θ, ϕ)dϕdθ

∣
∣
∣
∣
∣



3.4 High order schemes 105

< sup
θ∈[0,2π]

∣
∣H(t)(θ)

∣
∣
1

t!

(⌊
N − 1

t− 1

⌋

+ 1

)(
t− 1

n

)t+1

+
π

4
sup

θ ∈ [0, 2π]

ϕ ∈
[

−π

2
, π

2

]

∣
∣
∣
∣

∂tH(θ, ϕ)

∂ϕt

∣
∣
∣
∣

1

t!

(⌊
Ni − 1

t− 1

⌋

+ 1

)(
t− 1

n

)t+1

,

with the same αi as in the last proof, Ñi := Ni − 1, t := t − 1 and the integration
weights

α
(2)
i,j :=







∫ ϕi,Ni
ϕ
i,

⌊

Ñi
t

⌋

t+1

t∏

k = 0

k 6= i+ t−Ni

ϕ−ϕi,Ni−t+k
ϕi,j−ϕi,Ni−t+k

dϕ, if j ≥ Ni − t

0, else

,

αi,j := α
(1)
i,j + α

(2)
i,j ,

α
(1)
i,j :=







∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

,i

[i−1 mod(t)],t(ϕ)dϕ, if [j − 1 mod(t)] 6= 0 ∨
⌈
j
t

⌉

= 1

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

−1,i

t,t (ϕ) + L

⌈

j
t

⌉

,i

0,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

/∈
{

1,
⌊
Ñi
t

⌋

+ 1
}

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

−1,i

t,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

=
⌊
Ñi
t

⌋

+ 1

∫ ϕ
i,⌈ jt ⌉t+1

ϕ
i,t(⌈ jt⌉−1)+1

L

⌈

j
t

⌉

,i

0,t (ϕ)dϕ, if

{

[j − 1 mod(t)] = 0

∧
⌈
j
t

⌉

= 1

0, else

,

L
(l,i)
j,t (ϕ) :=

t
∏

k=0,k 6=j

ϕ− ϕi,t(l−1)+1+k

ϕi,t(l−1)+1+j − ϕi,t(l−1)+1+k

.

Calculations analog to the proof of the last corollary give:
∣
∣
∣
∣
∣

∫ π
4

0

∫ arctan(sin(θ))

0

H(θ, ϕ) cos(ϕ)dϕdθ −
N∑

i=1

αi,n

Ni∑

j=1

αi,jH(θi, ϕi,j) cos(ϕi,j)

∣
∣
∣
∣
∣

< Kθ
1

t!

(⌊

Ñ

t

⌋

+ 1

)(
t

n

)t+1

+
π

4
Kθ,ϕ

1

t!

(⌊

Ñi

t

⌋

+ 1

)(
t

n

)t+1

.

With the same Kθ, Kθ,ϕ as in 3.3.4. So we can directly engage a generalized quadrature
alternative to 3.3.11. For this we use the definitions given in the proof of 3.3.11 and
take a look at the occurring errors (the rest of the proof remains the same) :

e3(x) < Kθ
1

t!

(⌊

Ñ

t

⌋

+ 1

)(
t

n

)t+1

+
π

4
Kθ,ϕ

1

t!

(⌊

Ñi

t

⌋

+ 1

)(
t

n

)t+1

,



106 3 Consistency

e2(i, j, x, y) < Kθ,ϕ,λ
1

t!

(⌊

M̃

t

⌋

+ 1

)(
t

m

)t+1

+
π

4
Kθ,ϕ,λ,ψ

1

t!

(⌊

M̃i

t

⌋

+ 1

)(
t

m

)t+1

≤
(

Kθ,ϕ,λ +
π

4
Kθ,ϕ,λ,ψ

) 1

t!

(⌊

M̃

t

⌋

+ 1

)(
t

m

)t+1

=: ẽ2(x, y) ,

e2(x, y) =
N∑

i=1

Ni∑

j=1

αiαi,je2(i, j, x, y) ≤
N∑

i=1

αi

≤π
4

︷ ︸︸ ︷

arctan(sin(θi))ẽ2(x, y)

≤ π2

16
ẽ2(x, y) ,

e1(x, y) =
∑

(i, k) ∈ C
(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s

⌊
n

qi

⌋s ⌊
m

qk

⌋s
(
5q2i q

2
k + 6q4i q

2
k

) s
2 K̃r

≤
∑

(i, k) ∈ C
(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s(5 + 6q2i )

s
2nsmsK̃r

<
∑

(i, k) ∈ C

(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s6

s
2 (1 + q2i )

s
2nsmsK̃r

≤
∑

(i, k) ∈ C
(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s6

s
2 (2q2i )

s
2nsmsK̃r

≤
∑

(i, k) ∈ C
(j, l) ∈ Cik

αiαi,jαkαk,l
3

2
Lc(∆v)s3

s
22sn2smsK̃r

≤ 3π4

29
Lc(∆v)s3

s
22sn2smsKr .

Analog to the end of the last proof we obtain

e3 < 96 ·
(

Kθ +
π

4
Kθ,ϕ

) (t− 1)t+1

t!
n1−t = c1

(

Kθ +
π

4
Kθ,ϕ

)

n1−t

e2 < 288π2 ·
(

Kθ,ϕ,λ +
π

4
Kθ,ϕ,λ,ψ

) (t− 1)t+1

t!
m1−t = c2

(

Kθ,ϕ,λ +
π

4
Kθ,ϕ,λ,ψ

)

m1−t ,

e1 <
27π4

2
Lc3

s
22sKr(∆v)

sn2sms = c3Kr(∆v)
sn2sms ,

and take a look at

e1 + e2 + e3 < K(c1n
1−t + c2m

1−t + c3(∆v)
sn2sms)

=⇒ c1n
1−t = c2m

1−t = c3(∆v)
sn2sms

=⇒ m =

(
c1
c2

) 1
1−t

n



3.4 High order schemes 107

=⇒ n =

(
c3
c1

) 1
1−t−3s

(∆v)
s

1−t−3s

(
c1
c2

) s
(1−t)(1−t−3s)

∈ O
(

(∆v)
s

1−t−3s

)

=⇒ c1n
1−t = const ·

(

(∆v)
s

1−t−3s

)1−t
= const · (∆v)

s(t−1)
3s+t−1

=⇒ c3(∆v)
sn2sms = const · (∆v)s

(

(∆v)
s

1−t−3s

)2s (

(∆v)
s

1−t−3s

)s

= const · (∆v)
s(t−1)
3s+t−1

=⇒ e1 + e2 + e3 ∈ O
(

(∆v)
s(t−1)
3s+t−1

)

.

The number of minimal points on any given line can be taken from an analog adaption
of the proof of 3.3.12.

Remark 3.4.4 (Interpolation region)

(i) At this point we can construct discretization schemes with “arbitrary” high con-
vergence orders. This sounds good, but we have to take two things into consid-
eration. The first problem we need to be aware of is that high order Lagrange
interpolations can lead to negative integration weights resulting into an unsta-
ble scheme. This can possibly be avoided by applying other (more complex)
interpolation approaches. The second problem arises from the question: “What
is the minimal size of the velocity space to achieve a specific convergence order
?”. The answer to this question is unsatisfactory, because at this point one can
calculate (not a trivial calculation) that 22801 points in the 2D velocity space
are necessary to reach a convergence order of 2. The following corollaries aim at
a reduction of the necessary points by extending the interpolation (quadratures)
onto regions of maximal size retaining the minimal properties of a DVM, but
sacrificing some symmetries of the discretization.

(ii) The vigilant reader may has realized that the last corollary suffers from a fun-
damental flaw. It is obvious (see figure 3.5) that there exist θi (for example θ0
in S1) for which |Fi,n| = 1. This generally forbids to use quadrature formulas in
ϕ• or ψ•. Fortunately this little bug is easily curable by putting some symmetry
regions together to form larger symmetry regions. We avoid a full discussion of
this at this point, because we solve this problem in the corollaries below.

Corollary 3.4.5 (Extension of the interpolation region in 2D)
A discretization of the form

Î[f ](v) =

N̂∑

i=1

αi

M̂∑

j=1

αj∆vij

⌊L�∆vij⌋∑

k=0

∑

ϕα ∈ {−id, id}
ϕβ ∈ {id, ϕγ}

g(k)
(

h̃ (lk, λj, θi, ϕα, ϕβ))
)

,

with the angles

F̂n := Fn ∪
(π

2
− Fn

)

∪
(π

2
+ Fn

)

∪ (π − Fn) ,
∣
∣
∣F̂n

∣
∣
∣ = N̂ = 4N − 3 , (3.4.2)



108 3 Consistency

F̂m := Fm ∪
(π

2
− Fm

)

∪
(π

2
+ Fm

)

∪ (π − Fm) ,
∣
∣
∣F̂m

∣
∣
∣ = M̂ = 4M − 3 ,

and the weights as given in 3.4.1 (exchangingN,M with N̂ , M̂) can be transformed into
a DVM and an eLGpM, possesses the minimal requirements and one can use nearly 4
times more points for the quadrature formulas than the aforementioned discretizations,
significantly decreasing the number of necessary points in the velocity space. The used
discretization points corresponding to F̂n, F̂m can be calculated by

w3(lk, λj, θi, ϕα, ϕβ) = v+ k∆v
(
ϕαϕx(i)

[
Py(i), P

⊥
y(i)

])
ϕβϕx(j)Py(j) ,

v′3(lk, λj, θi, ϕα, ϕβ) = v+ k∆v(ϕβϕx(j)Py(j))1ϕαϕx(i)Py(i) ,

w′
3(lk, λj, θi, ϕα, ϕβ) = v+w3 − v′3, Pi :=

(
qi
pi

)

, P⊥
i :=

(
−pi
qi

)

,

x(i) :=







1, if 0 < i ≤ N

2, if N < i ≤ 2N − 1

3, if 2N − 1 < i ≤ 3N − 2

4, if 3N − 2 < i ≤ 4N − 3

,

y(i) :=







i, if i ≤ N

2N − i, if N ≤ i ≤ 2N − 1

i− 2N + 2, if 2N − 1 ≤ i ≤ 3N − 2

4N − 2− i, if 3N − 2 ≤ i ≤ 4N − 3

,

according to 3.2.8. The corresponding functions for j are given by exchanging i and j
as well as N and M in x, y.

Proof:
At first we have to identify which symmetry regions need to be separated in order to
retain the minimal properties of a DVM. So we take a second look at the proof of 3.2.9.
In this proof it can be seen that we only need the symmetry regions created by the
operator −identity for θ and ϕγ for λ, because the symmetries corresponding to these
operators are needed to obtain the necessary symmetries of the Operator A•,•

•,•. This
means that we can reduce the 8 different Symmetry regions to two symmetry regions
with the property that ϕγ and −identity completely map one of these regions onto the
other. From this argumentation follows that the largest symmetry regions are given
by

Ŝ1 = S1 ∪ S2 ∪ S3 ∪ S4 and Ŝ2 = S5 ∪ S6 ∪ S7 ∪ S8 ,

compare figure 3.7 and 3.5. This corresponds to the two operator sets

G1 :=

{

ϕ1 :=

(
1 0
0 1

)

, ϕ2 :=

(
0 1
1 0

)

, ϕ3 :=

(
0 −1
1 0

)

, ϕ4 :=

(
−1 0
0 1

)}

,

G2 := −id ·G1 ,



3.4 High order schemes 109

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

b b b b b b b b b b b b b

Ŝ2

Ŝ1

S1

S2S3

S4

S5

S6 S7

S8

Figure 3.7: Largest symmetry regions giving minimal requirements

dividing G into the two equivalence classes [id], [−id]. The usable angles for θ, λ are
now given by

F̂n := Fn ∪
(π

2
− Fn

)

∪
(π

2
+ Fn

)

∪ (π − Fn) ,
∣
∣
∣F̂n

∣
∣
∣ = 4N − 3 ,

F̂m := Fm ∪
(π

2
− Fm

)

∪
(π

2
+ Fm

)

∪ (π − Fm) ,
∣
∣
∣F̂m

∣
∣
∣ = 4M − 3 .

These symmetry regions are given for the approximation above λ, because these are
the only ones with the property that ϕγ (reflection on x-axis) maps these regions onto
each other. We could choose other regions for the approximation in θ, because here we
only need the symmetry corresponding to −id. So we could use any symmetry axis of
the given grid to divide the grid into two symmetry regions. In order to simplify things
we choose the same symmetry regions for both approximations. These considerations
become more complex and meaningful in the next corollary doing the same in three
dimensions. The usage of these regions result into a discretization of the form

Î[f ](v) =

N̂∑

i=1

αi

M̂∑

j=1

αj∆vij

⌊L�∆vij⌋∑

k=0

∑

ϕα ∈ {−id, id}
ϕβ ∈ {id, ϕγ}

g(k)
(

h̃ (lk, λj, θi, ϕα, ϕβ))
)

.

Here we can use the simplifications given in 3.2.8 to calculate the used discretization
points. This discretization retains only the symmetries (−I, ϕg) necessary to obtain a
DVM with the minimal requirements (see 3.2.9) and gives almost 4 times more angular
points for the interpolation in the quadrature formulas. All other results can be taken
from the proof of 3.4.1 with minimal modifications.



110 3 Consistency

Corollary 3.4.6 (Extension of the interpolation region in 3D)
A discretization of the form

Ĩ[f ](v) =
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α1,1
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α,β∈A3

[

g(q)h(θ
(1)
i , ϕ

(1)
i,j , λ

(1)
k , ψ

(1)
k,l , rq, α, β)

·D(rq, θ
(1)
i , ϕ

(1)
i,j , ψ

(1)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α1,2
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A3,β∈A2

[

g(q)h(θ
(1)
i , ϕ

(1)
i,j , λ

(2)
k , ψ

(2)
k,l , rq, α, β)

·D(rq, θ
(1)
i , ϕ

(1)
i,j , ψ

(2)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α2,1
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A1,β∈A3

[

g(q)h(θ
(2)
i , ϕ

(2)
i,j , λ

(1)
k , ψ

(1)
k,l , rq, α, β)

·D(rq, θ
(2)
i , ϕ

(2)
i,j , ψ

(1)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α2,2
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A1,β∈A2

[

g(q)h(θ
(2)
i , ϕ

(2)
i,j , λ

(2)
k , ψ

(2)
k,l , rq, α, β)

·D(rq, θ
(2)
i , ϕ

(2)
i,j , ψ

(2)
k,l )

]

,

A1 := {id,−id}, A2 := {id, γ}, A3 := A1 ∪ A2 ,

using the angles corresponding to the regions given in figure 3.8

F̂1
n := Fn ∪

(π

2
− Fn

)

, F̂1
i,n :=

{

Fi,n ∪ −Fi,n, if i ≤ N

F2N−1−i,n ∪ −F2N−1−i,n, if i > N
,

F̂3
n := Fn ∪ (−Fn) , F̂3

i,n :=

{

FN−i,n ∪ −FN−i,n, if i ≤ N

Fi,n ∪ −Fi,n, if i > N
,

|F̂n| = 2N − 1, |F̂i,n| = 2Ni − 1 ,

and standard quadrature formulas based on Lagrangian polynomials, can be trans-
formed into a DVM and an eLGpM, possesses the minimal requirements and one can
use nearly 2 times more points for the quadrature formulas than the aforementioned
discretizations, significantly decreasing the number of necessary points in the velocity
space. Here we used a slightly changed definition of Fi,n (see proof) guaranteeing that
there exist enough points for quadrature formulas.

Proof:
As already mentioned in 3.4.4 we can not use quadrature formulas over S1 (as given
in figure 3.5), due to the lack of discretization points in ϕ for some specific values of θ,
for example θ = 0. This results into new (larger) smallest symmetry regions that are
usable for quadrature formulas. These are obviously S1 ∪ S6, S2 ∪ S3, S4 ∪ S5, because
by applying a discretization using the Farey angles Fn these symmetry regions give N
points for the quadrature in θ and at least n points for the quadrature in ϕ. Now we
are searching for the largest symmetry regions which result into a DVM possessing the
minimal requirements. As can be seen in 3.3.13, these symmetry regions must possess



3.4 High order schemes 111

the property that the operators −id and γ (point reflection on zero and reflection on
the x-axis) map every symmetry region completely onto another one. The optimal
decomposition of the velocity space into symmetry regions would be one dividing the
space into two regions alongside a symmetry plane in such a way that the symmetries
corresponding to −id and γ survive and that we can use quadrature formulas above
these regions. Unfortunately this is not possible within our framework, because a single
quadrature in ϕ above S1∪S6∪S5 is not possible due to the fact that ∀ϕ ∈ F1 : ϕ <

π
4
.

Or in other words: there exist θ for which no new ϕ appear when using S5 in addition
to S6, S1. Dividing the velocity space into symmetry regions Ŝ consisting of multiple
smallest symmetry regions S• in such a way that the new regions consist of the same
number of angles in θ and ϕ and with respect to the symmetries that need to be
retained (−id, γ) we obtain the three regions Ŝ1, Ŝ2, Ŝ3 which are given in figure 3.8.

x
y

z

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Ŝ1

Ŝ2

Ŝ3

Figure 3.8: Largest symmetry regions giving the minimal requirements and usable
angles for quadrature formulas

Here every symmetry region Ŝ• consists of 8 smallest regions S• and possesses 2N − 1
angles in θ and at least 2n−1 angles in ϕ. As one can see we break with the tradition to
use quadrature regions which can be mapped onto each other by using elements of the
automorphism group. So at this point we loose a rather large amount of symmetries
within our discretization, but at the same time we specifically retain −id, γ. The
usable angles for the three regions are given by

F̂1
n := Fn ∪

(π

2
− Fn

)

, F̂1
i,n :=

{

Fi,n ∪ −Fi,n, if i ≤ N

F2N−1−i,n ∪ −F2N−1−i,n, if i > N
,



112 3 Consistency

F̂3
n := Fn ∪ (−Fn) , F̂3

i,n :=

{

FN−i,n ∪ −FN−i,n, if i ≤ N

Fi,n ∪ −Fi,n, if i > N
.

The discretization points for the second angle are given by

F̃i,n :=









(
pi,j
qi,j

, ti,j

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

pi,j ≤ qi,j , p ∈ N0, t ∈
{

1, . . . ,
⌊
n
qi

⌋}

, q = t · qi :
0 ≤ p ≤ t · qi ∧ gcd(pi,j, qi,j) = 1 ∧
(
pi,j
qi,j
, ti,j

)

=
(
p
q
, t
)

∧ ∀j > 1 :
pi,j−1

qi,j−1
<

pi,j
qi,j

∧ when multiple t s are possible choose the smallest one









=

((
pi,1
qi,1

, ti,1

)

, . . . ,

(
pi,Ni
qi,Ni

, ti,Ni

))

= ((Fi,1, ti,1) , . . . , (Fi,Ni, ti,Ni)) , Ni := |F̃i,n|

ϕi,j := arctan

(

Fi,j
qi

√

q2i + p2i

)

, Fi,n := {ϕi,j|j = 1, . . . , Ni} ,

(compare 3.3.2) and can now be used to apply quadrature formulas. The integral cor-
responding to Ŝ2 can be transformed to have the domain of integration Ŝ1 resulting
into the usability of the same angles. The integral corresponding to Ŝ3 can be trans-
formed in such a way that the domain of integration rotates 90◦ around the y-axis
where the angles F̂3

n, F̂
3
i,n can be used. This results into a discretization of the form

Ĩ[f ](v) =
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α1,1
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α,β∈A3

[

g(q)h(θ
(1)
i , ϕ

(1)
i,j , λ

(1)
k , ψ

(1)
k,l , rq, α, β)

·D(rq, θ
(1)
i , ϕ

(1)
i,j , ψ

(1)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α1,2
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A3,β∈A2

[

g(q)h(θ
(1)
i , ϕ

(1)
i,j , λ

(2)
k , ψ

(2)
k,l , rq, α, β)

·D(rq, θ
(1)
i , ϕ

(1)
i,j , ψ

(2)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α2,1
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A1,β∈A3

[

g(q)h(θ
(2)
i , ϕ

(2)
i,j , λ

(1)
k , ψ

(1)
k,l , rq, α, β)

·D(rq, θ
(2)
i , ϕ

(2)
i,j , ψ

(1)
k,l )

]

+
∑

(i,k)∈B̂

∑

(j,l)∈Ĉi,k

α2,2
ijklLi,j,k,l

⌊L/∆vi,j,k,l⌋∑

q=0

∑

α∈A1,β∈A2

[

g(q)h(θ
(2)
i , ϕ

(2)
i,j , λ

(2)
k , ψ

(2)
k,l , rq, α, β)

·D(rq, θ
(2)
i , ϕ

(2)
i,j , ψ

(2)
k,l )

]

,

A1 := {id,−id}, A2 := {id, γ}, A3 := A1 ∪ A2 .

This complicated looking discretization comes from the situation that we have to inte-
grate over the symmetry regions for two spherical integrals (one in θ, ϕ and one in λ, ψ),
so we have the combinations (Ŝ1∪Ŝ2, Ŝ1∪Ŝ2), (Ŝ1∪Ŝ2, Ŝ3), (Ŝ3, Ŝ1∪Ŝ2), (Ŝ3, Ŝ3) for the
domains of integration resulting into these four sums. Here we have
θ
(1)
i ∈ F̂1

n, λ
(1)
k ∈ F̂1

m, ϕ
(1)
i,j ∈ F̂1

i,n, ψ
(1)
k,l ∈ F̂1

k,m, θ
(2)
i ∈ F̂3

n, λ
(2)
k ∈ F̂3

m, ϕ
(2)
i,j ∈ F̂3

i,n, ψ
(2)
k,l ∈

F̂3
k,m and the αs correspond to the coefficients of the quadrature formulas applied and



3.4 High order schemes 113

can be calculated analog to 3.4.3. This discretization possesses the necessary sym-
metries to result into a DVM possessing the minimal requirements and we can use
2 · 2 · 2 · 2 = 16 times more points for the quadrature formulas (two for every scalar
angular integral involved).

Remark 3.4.7

(i) The discretization points as well as the interpolation weights α• can be easily
calculated by an adaption of 3.3.11,3.4.3 analog to the two dimensional case
3.4.5.

(ii) Now we have nearly reached the “final” version of our discretization scheme
alongside the corresponding DVM and eLGpM, ready to be tested within the
next chapter. We want to point out, that the integration weights α• can be
precomputed for every used Farey sequence with arbitrary precision. So the
calculation of these weights does not slows down the resulting algorithm for the
approximation of the collision operator.

(iii) We also want to point out that the symmetry regions can be further extended,
especially over the symmetry axis necessary to obtain the minimal requirements if
we choose the quadrature rule in such a way that the weights retain the necessary
symmetry. For example we could use

F̂n ∪
(

π + F̂n

)

in the two dimensional discretization as long as the corresponding weights

(α1, . . . , αN̂ , . . . , α2N̂−1)

are symmetric with respect to αN̂ .



114 3 Consistency



115

4 Numerical analysis

In this chapter we want to investigate some properties of the developed discretizations.
So we take a look at the convergence orders for some given velocity lattices and we ver-
ify the exact conservation of the moments by numerically solving stationary problems
and calculating the reached convergence orders and moment changes.

4.1 Minimal velocity space sizes

We begin with a theoretical review of the question: “What is the minimal size of the
velocity space to obtain a specific convergence order ?”. The answer of this question
will give us the last necessary tool to construct discretizations with given convergence
orders.

Corollary 4.1.1 (Minimal size to reach specific convergence in 2D)
Using the discretization 3.4.5 to reach a convergence order of

o =
rs

2r + s
,

by applying a Newton-Cotes formula of order r (using r̃ points for the interpolation
polynomials in the quadrature) and quadrature formulas with polynomials of order s
(thus using t = s + 1 points for them) the minimal size of the velocity space is given
by

|V| = (1 + 2 · (r̃ − 1) · 2n2)2 ,

n = max

{(
10(t− 1)t+1

3πct!2r

) 1
s+2r

(∆v)
−r
s+2r ,min

{

n ∈ N

∣
∣
∣
∣
∣
t ≤ 4

n∑

k=1

ϕ(k)− 3

}}

.

(4.1.1)

Here c corresponds to the error constant of the used Newton-Cotes formula and we
assume that we approximate both angular integrals using a Farey sequence of order n
(implying m = n). Moreover ϕ(n), n ∈ N is Euler’s totient function.

Proof:
Using the discretization 3.4.5 and redoing the proof of 3.4.1 with N̂ = 4N − 3, M̂ =
4M − 3 points for the interpolation results into the error estimation

e <
Kθ

t!

(⌊

N̂ − 1

s

⌋

+ 1

)
( s

n

)t+1

+ π
Kλ

t!

(⌊

M̂ − 1

s

⌋

+ 1

)
( s

m

)t+1

+
3π2

2
cL(∆v)rKl2

rnrmr ,



116 4 Numerical analysis

compare (3.4.1). Here t corresponds to the number of points used for the interpolation,
so t ≥ 2 and s to the order of the polynomial s = t− 1. For the following estimations
we use

Kl := sup
l ∈ [0, L]

θ, λ ∈ [0, 2π]

∣
∣
∣
∣

∂rh(l, λ, θ)

∂lr

∣
∣
∣
∣
,

LK̂λ := L sup
l ∈ [0, L]

θ, λ ∈ [0, 2π]

∣
∣
∣
∣

∂th(l, λ, θ)

∂λt

∣
∣
∣
∣
> sup

θ,λ∈[0,2π]

∣
∣
∣
∣
∣

∂t
∫ L

0
h(l, λ, θ)dl

∂λt

∣
∣
∣
∣
∣
= Kλ ,

LπK̂θ := Lπ sup
l ∈ [0, L]

θ, λ ∈ [0, 2π]

∣
∣
∣
∣

∂th(l, λ, θ)

∂θt

∣
∣
∣
∣
> sup

θ∈[0,2π]

∣
∣
∣
∣
∣

∂t
∫ π

0

∫ L

0
h(l, λ, θ)dldλ

∂θt

∣
∣
∣
∣
∣
= Kθ ,

N̂ = 4|Fn| − 3 < 4 + 2n2 + 2n− 3, M̂ = 4|Fm| − 3 < 4 + 2m2 + 2n− 3 ,

giving

e < LπK̂θ
st+1

t!

(⌊
2n2 + 2n

s

⌋

+ 1

)
1

nt+1

+ LπK̂λ
st+1

t!

(⌊
2m2 + 2m

s

⌋

+ 1

)
1

mt+1

+
3π2

2
cL(∆v)rKl2

rnrmr

< Lπ






K̂θ

c1:=
︷ ︸︸ ︷

5
st+1

t!

1

ns
+ K̂λ

c2:=
︷ ︸︸ ︷

5
st+1

t!

1

ms
+Kl

c3:=
︷ ︸︸ ︷

3π

2
c2r(∆v)rnrmr






,

because (⌊
2n2 + 2n

s

⌋

+ 1

)
s≥1

≤
(
4n2 + 1

)
≤ 5n2 .

Now we do the rest analog to the proof of 3.4.1, giving the same result:
Assuming that ∆v ∈ R+, r ∈ N, t ∈ N>1 are given constants satisfying

L

2∆vñ(∆v, r)m̃(∆v, r)
> r, ∧ t ≤ N̂ , M̂ ,

with

ñ(∆v, r) =

(
c3
c1

) −1
s+2r

(∆v)
−r
s+2r , m̃(∆v, r) = n (4.1.2)

and choosing n,m according to

n = ⌈ñ(∆v, r)⌉, m = ⌈m̃(∆v, r)⌉ ,



4.1 Minimal velocity space sizes 117

the convergence order of this discretization is

O
(

(∆v)
rs

2r+s

)

.

The minimal number of points r̃ on any given line associated with the approximation
of the innermost integral grows asymptotically as is given by

r̃(∆v) ∈ O
(

(∆v)
−s

2r+s

)

.

Our aim is to calculate the minimum size of the velocity space to reach a specific
convergence order. So let es assume that we use a Newton-Cotes formula of order r
(resulting into the usage of at least r̃ points on every line) and quadrature formulas
with polynomials of order s (resulting into the usage of at least t = s + 1 angles), so
that we potentially reach a convergence order of −s

2r+s
. Now our used Farey sequences

have to possess the property

n ≥
(
c3
c1

) −1
s+2r

(∆v)
−r
s+2r , m ≥ n .

Moreover we need at least t angles per angular integral and r̃ points on every resulting
line. This gives the additional restriction

n ≥ min

{

n ∈ N

∣
∣
∣
∣
∣
t ≤ 4 |Fn| − 3 = 4N − 3 = 4

n∑

k=1

ϕ(k)− 3

}

, m ≥ n .

At this points we determined the necessary orders of the Farey sequences to use. From
this we can deduce the necessary size of the velocity space. The approximation of the
outermost integral (over θ) restricts the rest of the approximation to live on the sub
lattice {(

x
y

)

∈ Z2

∣
∣
∣
∣

(
x
y

)

= x̃Pi + ŷP⊥
i ,

(
x̂
ŷ

)

∈ Z2

}

.

Now the application of another Farey sequence of order m results into using the points

Pi,j = qjPi + pjP
⊥
i =

(
qiqj − pipj
piqj + qipj

)

,

for the approximation. So we need at least r̃ · (n2 + m2) points in every coordinate
(including zero) resulting in a minimal grid size of

(1 + 2 · (r̃ − 1) · (n2 +m2))2 .



118 4 Numerical analysis

Remark 4.1.2 (Interpretation of minimal velocity space size)

(i) To understand the implications of the last corollary we calculate the convergence
orders as well as the corresponding minimal velocity space sizes. For this we
assume that L = 15 (the only free parameter). The results can be found in table
4.1. Some specific sweet spots, characterized by a maximal convergence order

r�t 2 3 4 5 6 7
o |V| o |V| o |V| o |V| o |V| o |V|

2 0.40 25 0.66 25 0.86 289 1.00 289 1.11 289 1.20 289
4 0.44 81 0.80 81 1.09 81 1.33 81 1.54 1089 1.71 1089
6 0.46 289 0.86 289 1.20 289 1.50 289 1.76 4225 2.00 4225

Table 4.1: convergence order o and minimal size of velocity space |V| above order
of Newton Cotes formula r and points used for angular quadratures t

for a given velocity space size are:

|V| = 25 =⇒ r = 2 ∧ t = 5 =⇒ o = 1 ,

|V| = 81 =⇒ r = 4 ∧ t = 5 =⇒ o = 1 +
1

3
,

|V| = 289 =⇒ r = 2 ∧ t = 9 =⇒ o = 1 +
1

3
; r = 6 ∧ t = 5 =⇒ o = 1.5 ,

|V| = 1089 =⇒ r = 4 ∧ t = 9 =⇒ o = 2 .

Here it remains to be seen if the corresponding high order polynomials suffer
from oscillations or lead to negative integration weights.

(ii) The minimal size of the velocity space greatly depends on the necessary order of
the used Farey sequences. This order is determined by the maximum of the two
variables

(
8(t− 1)t+1

3πct!2r

) 1
s+2r

(∆v)
−r
s+2r , min

{

n ∈ N

∣
∣
∣
∣
∣
t ≤ 4

n∑

k=1

ϕ(k)− 3

}

.

The second one corresponds to the necessity of having at least enough angles for
the angular quadrature formulas and the first one comes from the approach that
we determine the convergence order by assuming that the errors of the three
integral approximations are approximately the same. So as long as the error of
the Newton-Cotes formula (integration along a line) remains large enough only
the second variable determines the order of the Farey sequence and by this the
size of the necessary velocity space.



4.1 Minimal velocity space sizes 119

Remark 4.1.3 (Minimal velocity space size in 3D)

(i) Analog considerations to the two dimensional case give:
Using the discretization 3.4.6 to reach a convergence order of

o =
st

3s+ t
,

by applying a Newton-Cotes formula of order s (using s̃ points for the interpola-
tion polynomials in the quadrature) and quadrature formulas with polynomials
of order t (thus using t = t+ 1 points for them) the minimal size of the velocity
space is given by

|V| = (1 + 2 · (s̃− 1) · (n2 + 2n3))3 ,

n = max

{(
8(t− 1)t+1

3π3
s
2 ct!2s

) 1
t+3s

(∆v)
−s
t+3s ,min {n ∈ N |t ≤ 2n + 1}

}

.

Here c corresponds to the error constant of the used Newton-Cotes formula and
we assume that we approximate both angular integrals using a Farey sequence
of order n (implying m = n).

(ii) As in the two dimensional case we calculate the convergence orders as well as the
corresponding minimal velocity space sizes. The results can be found in table 4.2.
We can see that we need a huge amount of points in the velocity space to even

s�t 2 3 4 5
o |V| o |V| o |V| o |V|

2 0.29 343 0.50 343 0.66 68921 0.80 68921
4 0.31 2197 0.57 2197 0.80 > 105 1.00 > 105

6 0.32 15625 0.60 15625 0.86 > 105 1.09 > 105

Table 4.2: convergence order o and minimal size of velocity space |V| above order
of Newton Cotes formula r and points used for angular quadratures t

reach a convergence order of 1. This result can be substantially improved if we
extend the quadrature regions by applying quadrature rules with the necessary
symmetries, see remark 3.4.7(iii).



120 4 Numerical analysis

4.2 Implementation and test of the discretization

4.2.1 Adjustments of the discretization

In this section we take a look at the approximation of the collision operator for a test
problem. For all following calculations we choose the mass distribution

f(v) :=
1

2π
· e− ‖v‖2

2 +
1

2π
· e− ‖v+E‖2

2 , E :=

(
2
3

)

.

And we restrict the region (integration region) to

A := [−7.5, 7.5]× [−7.5, 7.5], L :=
√
2 · 15 .

The distribution function is given in figure 4.1. Our convergence results are generally

−5

0

5

−6−4−20246

0

5 · 10−2

0.1

v1

v2

Figure 4.1: Distribution function used for numerical calculations

asymptotic results, so it is foreseeable that we need a huge amount of discretization
points to obtain the proven convergence rates. Due to this we restrict our approxima-
tion of the collision integral to the point v0 = (0, 0)T , because otherwise the calculation
time would exceed the amount of time we are willing to spend for a numerical verifi-
cation. This implies that we are looking at an approximation of (compare 3.2.1)

I[f ](v0) =

∫ 2π

0

∫ 2π

0

∫ L

0

[
f
(
v′2
)
f
(
w′

2

)
− f

(
v
)
f
(
w2)
)]
l dl dλ dθ ,

with

v′2 := v+ l〈ω(θ + λ), ω(θ)〉ω(θ), w′
2 := v + l〈ω(θ + λ), ω⊥(θ)〉ω⊥(θ) ,

w2 := v+ lω(θ + λ) .



4.2 Implementation and test of the discretization 121

We calculate a reference solution for the following error calculation. Before we start
this calculation we have to take into account that our numerical algorithm ignores
possible cut off errors, so our reference solution should do the same. To do this we
restrict f onto the region A by setting it to zero outside of this region:

f̃(v) := 1A(v) · f(v) .

An adaptive Clenshaw–Curtis quadrature yields

I[f ](v0) ≈ −0.537037185 =: Icc .

Here we applied the standard algorithm in Octave using a relative error of 10−8 and
an adaptive Gaussian quadrature to verify the result. The main difference between
such rules and our approach is that Clenshaw-Curtis needs a function (integrand) for
which it can calculate arbitrary discretization points whereas our approach works on a
uniform discretization of the velocity space. Before we proceed we recollect the former
results by giving a rough step by step guide for the creation of a discretization in the
form of an algorithm.

Algorithm 4.2.1.1

(i) Start: input values

a) Lnum: desired number of discretization points in one dimension (we use a
quadratic grid)

b) r: order of the Newton-Cotes formula

c) s: order of the polynomial used for angular quadrature

d) L: length of one edge of the quadratic integration domain (the discretization
parameter is now given by ∆v = L

Lnum−1
)

(ii) Calculation of the necessary order of the Farey sequence n (see (4.1.1)) to obtain
the proved convergence behavior and possible correction of Lnum in order to have
enough angles. We also calculate the velocity grid V as well as a predefined mass
distribution on this grid f : V → R+.

(iii) Calculation of all usable angles based on the Farey angles, of all used discretiza-
tion points (and corresponding collision pairs v,w, v′,w′), of the discretization
weights α•, determination of the “smallest” grid point ‖v‖ → min on every line
given through the farey angles in order to determine the step size of the Newton
Cotes formula and finally the calculation of the integration weights correspond-
ing to the Newton Cotes formula. We calculate all according to 3.4.5 and only
in the point 0.

(iv) Now we condense the collision pairs by kicking double occurrences of (i, j, k, l) as
well as (i, j, l, k) (using the symmetry Ak,li,j = Al,ki,j ). This can be done by neglecting
the additional occurrences and summing the corresponding integration weights.



122 4 Numerical analysis

(v) At this point we have obtained a discretization of the collision operator that can
be used for all further evaluations of this operator. This scheme is defined by
the used discretization points as well as the integration weights Ak,li,j . So we can
calculate the collision operator by

J [f ](vi) =
∑

j,k,l

Ak,li,j (f(vk)f(vl)− f(vi)f(vj)), vi := 0 .

Using this algorithm to create different discretizations (depending on ∆v or Lnum) we
take a look at the error evolution for decreasing ∆v and for different discretizations. We
start with t = 2, r = 2 giving a convergence order of 0.4. In the following discussions
we refer to the results of our approximation as Ir,t, so in this case I2,2. A visualization
of the relative error

e
(
(∆v)−1

)
:=

∣
∣
∣
∣

Icc − I2,2 ((∆v)
−1)

Icc

∣
∣
∣
∣

can be found in figure 4.2. We have split the whole plot in order to improve the

0 2 4 6
0

0.2

0.4

(∆v)−1

10 20 30 40 50
0

0.5

1

1.5

2
·10−2

(∆v)−1

Figure 4.2: Relative error e

readability. The number of points used for the discretization can be obtained via

|V| = (15 · (∆v)−1 + 1)2 .

The plot on the left hand gives the error for rough discretizations and the second plot
for very fine ones, giving an impression of the asymptotic behavior. We can see several
effects in these two plots, the first one is some kind of error nullifying at (∆v)−1 = 4.8
where we get a relative error of 5.98 · 10−4. The error development in the left plot is
mainly influenced by the error generated by the Newton-Cotes rule for the integration
over the straight lines whereas the asymptotic error is dominated by the error generated
by the approximation of the angular integrals. This can be clearly observed in the right
hand side figure. Here the error looks like a step function, and the edges of the steps
correspond to the points where the order of the used Farey sequences increases due to



4.2 Implementation and test of the discretization 123

the requirement (4.1.1). Now we want to calculate the numeric convergence order by
fitting the function

ẽ(∆v) := c · (∆v)a (4.2.1)

through the error data. This corresponds to the least square optimization problem

argmin
a∈R

d∑

i=b

(

e(i)− e(b) ·
(
∆v(i)

∆v(b)

)a)2

. (4.2.2)

This corresponds to the calculation of a function ẽ that goes through e(b) and that
minimizes the quadratic difference to the calculated errors e(i), i > b. Now we have the
free parameters b and d corresponding to the start and end index for our calculation.
We are interested in the asymptotic error, so we want to use all error values that are
larger than our start index b. This means we always chose d as large as possible (in
this case 143). Determining the start index b is a bit more complex, because we want
to set it in such a way that we obtain the main error behavior. Now we could do some
more or less justifiable assumptions and choose b in such a way that we exactly obtain
a convergence order of 0.4, but instead of doing this we calculate a “convergence order
function”

o(j) := argmin
a∈R

d∑

i=j

(

e(i)− e(j) ·
(
∆v(i)

∆v(j)

)a)2

and take a look at the result in figure 4.3. Here the red line corresponds to the

0 5 10 15 20 25 30 35 40 45 50 55

0

2

4

6

(∆v)−1

numerical convergence order
theoretical convergence order

Figure 4.3: Plot of the “convergence order function” o(j)

theoretical result of a convergence order of 0.4. And as we can see, beginning from the
point where the asymptotic behavior kicks in (around 5) the estimated convergence
order o stays above 0.4. Indicating that the theoretical result holds true.



124 4 Numerical analysis

Remark 4.2.1.2

(i) Now we take a little break and think about the problems in the determination
of the numerical convergence order. The proof of the convergence order is based
on the assumption that we can choose n (the order of the Farey sequence) in
such a way that the three errors created by the three integral approximations are
approximately the same. But unfortunately that is only possible if n ∈ R. This
is obviously not the case (we have to choose n ∈ N), which led to the round up
of n according to (4.1.1). So it seems appropriate to calculate the (asymptotic)
numerical convergence by using only the points 1

∆v
where the order of the Farey

sequence increases, because at these points the assumption is nearly met, and
the above figure containing o indicates that the numerical convergence order only
increases in between these points (due to the approach of the next step at which
the error significantly decreases).

(ii) We have often referred to this chapter when we spoke about possible oscillations
and negative integration weights due to high order interpolating polynomials.
Now we have to admit that even second order polynomials for the interpolation
in the angular quadratures lead to negative integration weights when the order
of the Farey sequence increases. This poses a real problem, because the order
of the used Farey sequences increases automatically with decreasing ∆v due to
(4.1.1). The reason for this lies in the very unevenly spaced discretization points
given by the Farey sequence. For example the first and second element of the
Farey sequence have always the largest distance. Looking at a Farey sequence
of order n this distance is given by 1

n
− 0

n
= 1

n
, whereas the second and third

element have always the smallest occurring distance 1
n−1

− 1
n
= 1

n(n−1)
. At this

point there is a number of possibilities to approach this problem. Because we
want to stick to simple Lagrange interpolation within the framework of this work
we choose the simple way and abandon the Farey sequence in favor of the easier
angles

Gn :=
{

arctan(a)
∣
∣
∣a =

p

n
, p ∈ {0, . . . , n}

}

,

which are a subset of the Farey angles. Fortunately this simplifies all calculation
and it increases the convergence order of the resulting discretization, as can be
seen in the next theorem. Moreover this approach gives positive integration
weights for polynomials up to order 6, independent of the chosen n.

(iii) It is possible to obtain stable higher order discretizations by using higher order
polynomials (higher than 6). The main idea behind this is that one uses more
than s + 1 points to obtain a polynomial of order s by using a least square
minimization between the polynomial and the given points. This can be done
in such a way that positive integration weights can always be obtained, even for
arbitrary high polynomials. This approach for uniform discretizations (Newton



4.2 Implementation and test of the discretization 125

Cotes like) can be found in [Huy09] and the references therein, another approach
(on non uniform grids) can be found in [Gra12].

Corollary 4.2.1.3 (Final discretization)
A discretization as in 3.4.5, but with the usage of the angles

Ĝn := Gn ∪
(π

2
−Gn

)

∪
(π

2
+Gn

)

∪ (π −Gn), |Ĝn| = 4n + 1

Gn :=
{

arctan(a)
∣
∣
∣a =

p

n
, p ∈ {0, . . . , n}

}

,

possesses a convergence order of

e ∈ O
(

(∆v)
rt

2r+t

)

if we apply a Newton Cotes formula of order r (using r̃ points), a quadrature rule with
polynomials of order s = t − 1 (for the angular integrals) and choose the used angles
as well as the minimal size of the velocity space according to

|V| = (1 + 2 · (r̃ − 1) · 2n2)2 ,

n = max

{(
(s)t

3πct!2r−4

) 1
t+2r

(∆v)
−r
t+2r ,

⌈
t− 1

4

⌉}

.

Here we assume that we use the same discretization angles for the angular integrations
(m = n).

Proof:
Starting with the convergence order we need to take a look at the occurring errors. For
this we take the calculations from the proof of 3.4.1 and realize that the only change
lies in the change of N now defined as N := 4n + 1, Ñ := 4n. So we can take the
same proof, giving :

|e3| <
1

t!

Kθ:=
︷ ︸︸ ︷

sup
θ∈[0,π]

∣
∣
∣H

(t)
2 (θ)

∣
∣
∣

(⌊

Ñ

s

⌋

+ 1

)
( s

n

)t+1

=
1

t!
Kθ

(⌊
4n

s

⌋

+ 1

)( s

n

)t+1

≤ 1

t!
Kθ

(
8n

s

)( s

n

)t+1

=
8st

t!
Kθn

−t

|e2| < π
1

t!

Kλ:=
︷ ︸︸ ︷

sup
λ,θ∈[0,π]

∣
∣
∣
∣

∂tH1(θ, λ)

∂λt

∣
∣
∣
∣

(⌊

Ñ

s

⌋

+ 1

)
( s

n

)t+1

≤ π
8st

t!
Kλn

−t

|e1| <
3π2

2
cL(∆v)rKl2

rnrmr .



126 4 Numerical analysis

The same considerations as in 4.1.1 give

|e| < Lπ






(Kθ +Kλ)

c1=c2:=
︷︸︸︷

8st

t!
n−t +

c3:=
︷ ︸︸ ︷

3π

2
c2rKl(∆v)

rnrnr






.

Now we apply the same approach as in the end of 3.4.1 (but this time a shortened
version):

c1n
−t = c3(∆v)

rn2r ⇐⇒ n =

(
c1
c3

) 1
2r+t

(∆v)
−r

2r+t =

(
st

3π2r−4ct!

) 1
2r+t

(∆v)
−r

2r+t

=⇒|e| ∈ O
([

(∆v)
−r

2r+t

]−t
+ (∆v)r

[

(∆v)
−r

2r+t

]2r
)

= O
(

(∆v)
rt

2r+t

)

.

And the second condition for n is given by the necessity

t ≤ N = 4n+ 1 ⇐= n =

⌈
t− 1

4

⌉

.

Remark 4.2.1.4

(i) For the following calculations we use the same algorithm as described in 4.2.1.1,
but we need to slightly change steps (ii),(iii). We now use 4.2.1.3 to calculate
n, Lnum in step (ii) and we use the angles Gn in step (iii).

(ii) Using the above discretization as well as L = 15 the table 4.1 changes to table
4.3. And now we can say that the corresponding discretizations remain stable

r�t 2 3 4 5 6
o |V| o |V| o |V| o |V| o |V|

2 0.67 25 0.86 25 1.00 289 1.11 289 1.2 289
4 0.8 81 1.09 81 1.33 81 1.54 81 1.71 1089
6 0.86 289 1.2 289 1.50 289 1.76 289 2.00 4225

Table 4.3: convergence order o and minimal size of velocity space |V| above order
of Newton Cotes formula r and points used for angular quadratures t

due to positive integration weights. Moreover the same can be done in the three
dimensional case, also increasing the final convergence order.

Now we reach the last theorem / corollary within this work. We finally take a look at
the computational complexity of our discretizations.



4.2 Implementation and test of the discretization 127

Corollary 4.2.1.5 (Computational complexity)
Assuming that we use 4.2.1.3 for a discretization of the collision operator in two di-
mensions we obtain a computational complexity in

O
(

(∆v)−3− 2r
t+2r

)

,

where t corresponds to the order of the polynomials used for the angular quadrature
and r to the order of the applied Newton Cotes formula. Assuming that we use 3.4.6,
but with the simpler angles used in 4.2.1.3 we obtain a computational complexity in

O
(

(∆v)−4− 4s
t+3s

)

where t corresponds to the order of the polynomials used for the angular quadrature
and s to the order of the applied Newton Cotes formula.
These complexities correspond to the evolution of the number of collision pairs

∣
∣
∣

{

(i, j, k, l)
∣
∣
∣A

k,l
i,j 6= 0

}∣
∣
∣ .

Proof:
We begin with the two dimensional case. We assume that the quadratic discretization
domain (in which the support of f lies) possesses a side length of L. This implies that
the maximum number of discretization points on a line within this domain and the
total number of discretization points is given by

Lnum =
L

∆v
+ 1, |V| = L2

num .

Moreover we use n angles in the first half of the first quadrant, resulting into a total
of

N = 2 · (4n− 3)

angles. Here we have 4n−3 angles in the upper half plane and the same number in the
lower one. We use a Newton Cotes formula of order r for the innermost integration
and a polynomial quadrature formula with polynomials of order t− 1 which gives

n ∈ O
(

(∆v)−
r

t+2r

)

,

according to 4.2.1.3. Now we simply need to put these ingredients together to get an
upper bound of the number of collision pairs. We obtain this bound by multiplying
the maximal number of points on a line with the number of angles in θ (N) and the
number of angles in ϕ (N) as well as the number of points on the grid:

∣
∣
∣

{

(i, j, k, l)|Ak,li,j 6= 0
}∣
∣
∣ < Lnum ·N2 · |V|

∈ O
(
(∆v)−1

)
· O
(

(∆v)−
2r
t+2r

)

· O
(
(∆v)−2

)



128 4 Numerical analysis

= O
(

(∆v)−3− 2r
t+2r

)

.

The same argumentation in the three dimensional case yields (where s corresponds to
the order of the Newton-Cotes formula)

∣
∣
∣

{

(i, j, k, l)|Ak,li,j 6= 0
}∣
∣
∣ < Lnum ·N4 · |V|

∈ O
(
(∆v)−1

)
· O
(

(∆v)−
4s
t+3s

)

· O
(
(∆v)−3

)

= O
(

(∆v)−4− 4s
t+3s

)

.

Remark 4.2.1.6

(i) The message of the above result is that we have a computational complexity

around O
(

(∆v)−3− 2
3

)

in two and around O ((∆v)−5) in three dimensions. In

two dimensions this seems to be less than one would expect (4) and especially in
three dimensions this result seems to be one polynomial order better (5 instead
of 6) than one would expect, compare [IR02] or the introduction of [BR00,PH99].
Here it seems to be interesting that the usage of the Farey angles (roughly cor-
responding to all available angles) results into a quadratic growths of the angles

giving complexities of O
(

(∆v)−4− 1
3

)

, O ((∆v)−6) in 2 resp. 3 dimensions. So

we can deduce that the usage of the fewer and simpler angles Gn results into a
higher convergence, lower computational complexity and more stable discretiza-
tions (regarding negative integration weights).

(ii) It is interesting to mention that the computational complexity of a discretization
only depends on the n (number of used angles within one half of a quadrant)
determined by

n = max

{(
(s)t

3πct!2r−4

) 1
t+2r

(∆v)
−r
t+2r ,

⌈
t− 1

4

⌉}

.

For example we can take a look at table 4.4 . Here we see the number of collision
pairs (direct proportional to the necessary number of floating point operations)
for two discretizations constructed according to 4.2.1.3. Here we see that these
two discretizations (created according to 4.2.1.3) use the same number of collision
pairs if n is the same for the discretizations. Now it is easy to compute that the
n for t = 2, r = 2 grows as (∆v)

−1
3 and the other one as (∆v)

−4
11 . So even if

it looks in the table as if the higher order discretization generally needs less
or the same computational effort this situation changes when Lnum ≈ 1

∆v
gets

sufficiently large.



4.2 Implementation and test of the discretization 129

Lnum r = 2, s = 1 r = 4, s = 2
number of collision pairs n number of collision pairs n

9 288 1 288 1
17 6500 2 2176 1
19 9298 2 3078 1
33 53128 2 53128 2

Table 4.4: computational complexity in numbers of collision pairs

4.2.2 Numerical validation

Now we redo the calculation of I2,2 with remark 4.2.1.2 in mind and by applying a
discretization based on 4.2.1.3. So this time we calculate the errors only at the points
where the n changes and in order to obtain the asymptotic behavior for very large |V|.
The result for t = 2, r = 2 can be found in 4.4a, this time with a visualization of the
theoretical error development in the asymptotic regime. The theoretical error is given
by e∗ ((∆v)−1) = a · (∆v) 2

3 , where we have chosen a in such a way that e(5) = e∗(5).
As before we do some fitting for the function (4.2.1) by calculating (4.2.2) for different

0 100 200 300 400 500 600

10−3

10−2

10−1

(∆v)−1

numerical error e
theor. error e∗

(a) numerical and theor. relative error

0 50 100 150 200 250 300
0

0.5

1

1.5

(∆v)−1

numerical conv. order
theoretical conv. order

(b) plot of o(j)

Figure 4.4: calculation results for I2,2

start indexes, resulting into figure 4.4b. Now we have the situation that figure 4.4a
indicates that our convergence order of 2

3
seems to be correct whereas the message of

4.4b seems to be unclear. At this point we have to use the asymptotic joker card. We
see that in figure 4.4b the order monotonically increases, beginning from (∆v)−1 = 20.
So it seems like a slow convergence of the approximated convergence order o(j) towards
2
3
. Now it would be interesting to look at the development for larger (∆v)−1 to verify

this conjecture, but even the calculation of the used 11 points was time consuming
(more than a day after algorithmic optimization in Octave), where the largest used
velocity grid consists of 88′378′801 points. For the next example we redo the applied



130 4 Numerical analysis

0 100 200 300 400 500
10−5

10−4

10−3

10−2

(∆v)−1

numerical error e
theor. error e∗

(a) numerical and theor. relative error

0 100 200 300 400

1

2

3

(∆v)−1

numerical conv. order
theoretical conv. order

(b) plot of o(j)

Figure 4.5: calculation results for I4,3

interpretation for t = 3, r = 4 giving I4,3. As before we have plotted e∗ = a · (∆v)1.09
and the numerical error in figure 4.5a. Here it looks like the discretization possesses a
significantly better convergence order than estimated. Interestingly the visualization
of the function o(j) (4.5b) shows again that the convergence order asymptotically con-
verges towards the estimated value of 1.09.
In the next example we look at t = 4, r = 6 resulting into a convergence order of 1.5
In figure 4.6a we see that the error e generally remains below e∗ = a · (∆v)1.5, but

0 100 200 300 400 500
10−5

10−4

10−3

10−2

10−1

(∆v)−1

numerical error e
theor. error e∗

(a) numerical and theor. relative error

0 100 200 300 400
0

2

4

6

8

(∆v)−1

numerical conv. order
theoretical conv. order

(b) plot of o(j)

Figure 4.6: calculation results for I6,4

figure 4.6b indicates that we need to calculate more values to get an idea about the
asymptotic numerical behavior. Unfortunately this is not feasible due to the com-
putational complexity. Finally we want to mention that we also derived complete
discretizations for velocity spaces up to |V| = 2401. Here we calculated the change of
the mass, momentum and energy in order to reassure us that the minimal requirements



4.2 Implementation and test of the discretization 131

are met and that the theoretical considerations are correct. The relative error in mass,
momentum and energy lies between 10−14 and 10−16, indicating that the mass, mo-
mentum and energy are in fact conserved, because these relative errors correspond to
the used machine precision (double). It is interesting to mention that the application
of a Clenshaw Curtis rule on a grid with 81 velocities generates a relative error around
1%, independent of the used precision for the rule. Finally we compare the three dis-

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

10−6

10−5

10−4

10−3

10−2

10−1

(∆v)−1

num. error e1, t = 2, s = 2, order 2
3

num. error e2, t = 3, s = 4, order 1.09
num. error e3, t = 4, s = 6, order 1.5

Figure 4.7: calculation results for I2,2, I4,3, I6,4

cretizations in figure 4.7. Here we see that the error for small (∆v)−1 exhibits another
error behavior than in the asymptotic region. For small ∆v the error substantially
grows when the order of the scheme gets increased resulting into a “break even” point
where the accuracy of the higher order scheme becomes better than the accuracy of a
lower order scheme. The observed effect is partially created by the factors

(t− 1)t

t!
, 2r

within the angular and Newton-Cotes errors (see proof of 4.2.1.3 or 3.4.1). These
factors grow exponentially with t, r, because

(t− 1)t

t!
≥ (t− 1)t√

2πtt+
1
2 e−t

=

(
t− 1

t

)t

· 1√
2πe−tt

1
2

t≥2
>

1

e
√
2π

et

t
1
2

.

Here we used a lower bound for t! given by Stirling’s approximation in the first step
and the fact that

(
t−1
t

)t
is a monotonously increasing function for t ≥ 1 that goes

asymptotically to 1
e
. So the “error constant” of our discretizations grows exponentially

with the number of points used for the polynomial interpolation in the quadrature
formulas. This is a standard result regarding quadrature formulas in which one uses



132 4 Numerical analysis

Lagrange or Hermite interpolation due to the interpolation error that introduces an
error constant of the form tt

t!
, for example see proof of 3.4.1. Moreover we see in figure

4.7 that the error e2 behaves exceptionally good, but gets defeated by e3 on extremely
large grids. Now that we have analyzed the asymptotic behavior of our discretizations
that comes into play in homogeneous problems we look at the behavior in regions
typically used in inhomogeneous problems. Due to the computational complexity
one is typically limited to use around 1089 velocities or less. So in figure 4.8 we
take a short look at the error development for quadratic velocity spaces with up to
1089 = 332 velocities. Here we see that the most primitive discretization performs

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

0.1

0.2

0.3

Lnum

num. error e1, t = 2, s = 2, order 2
3

num. error e2, t = 3, s = 4, order 1.09
num. error e3, t = 4, s = 6, order 1.5

Figure 4.8: calculation results for I2,2, I4,3, I6,4

almost consistently better than higher order discretizations on small grids. Moreover
in this region we are not able to see any convergence behavior in e3, which makes
the fact that the relative error almost stays at 7% somehow astonishing. For the
moment the message seems to be that it is not clear which of these schemes should be
used in discretizations for inhomogeneous problems, but we should use higher order
schemes for homogeneous problems where a high precision is required. This figure also
implies that the simplest scheme corresponding to e1, I2,2 gives an error below 10%
for velocity spaces with more than 172 = 289 velocities and below 5% for spaces with
more than 232 = 529 velocities as long as the initial distribution is reasonably smooth
and velocity resolved. Moreover the behavior of e3, I6,4 implies that we should stick to
this discretization for 172 to 212 velocities, because this discretization has the smallest
number of collision pairs, due to n = 1 in the whole figure. These conclusions have to
be taken with some caution, because we only look at one example in a region where we
can not see any asymptotic behavior, so these last observations are only exemplarily.



133

5 Implementation and high

performance computing

In this chapter we discuss our parallelized implementation of a Boltzmann solver based
on LGpMs, whereas this implementation can easily be generalized to the point where
it is able to use arbitrary discretizations of the collision operator as long as one supplies
a C++ routine that constructs the operator A of a DVM. Here it is not our aim to go
into great detail about the implementation specifics in C,CUDA or the GNU compiler
collection. But we want to give an overview about the general approach as well as
optimization (parallelization) strategies which lead to a high utilization of the used
processors. Assuming that one was able to construct a satisfying discretization of
the collision operator the next problem that occurs in the numerical treatment of the
Boltzmann equation is the following system of equations

(∂t + vi · ∇x)fi = α
∑

j,k,l∈MV

Ak,li,j (fkfl − fifj) =: Ji(f), i ∈MV, f ∈ R|MV|
+ . (5.0.1)

5.1 Numerical Methods

Because the calculation of J (the right hand side of (5.0.1)) has high computational
costs and because this was our first attempt in parallelization, we wanted to use simple
algorithms with a minimal number of calculations of J. This led to a first order (with
minimal modifications second order) operator splitting method for (5.0.1) that gives
the two equations

∂tfi(x, t) = −vi · ∇xfi(x, t) (5.1.1)

∂tfi(x, t) = α
∑

j,k,l∈MV

Ak,li,j
(
fk(x, t)fl(x, t)− fi(x, t)fj(x, t)

)
= Ji(f) , (5.1.2)

that have to be solved consecutively. We now discretize a bounded domain Ω of the
position space Rn

x
, n = 2, 3 in an equidistant manner,

X := {x|xj ∈ ∆x · Z, j = 1, . . . , n, x ∈ Ω ⊂ Rn
x
} ,∆x ∈ R+ .

The collision equation (5.1.2) is independent of the position variable x, thus giving a
straightforward way of parallelization, because this equation can be numerically solved
in parallel for every point in the position space X. We solve the transport equation
(5.1.1) with a first order finite difference (upwind) scheme over the equidistant position
space. Because the discretization of the velocity space typically does not fit onto
the discretization of the position space an additional step of linear interpolation is



134 5 Implementation and high performance computing

necessary. This upwind solver can be described as a series of linear interpolations, this
gives (in two dimensions):

λi := ∆tT · max{vi,1, vi,2}
∆x

(5.1.3)

fi(ξi, t) := (1− α)fi(xa(vi), t) + αfi(xb(vi), t) (5.1.4)

fi(x, t+∆t) =
(
1− λi

)
fi(x, t) + λifi(ξi, t) (5.1.5)

b

b

b
xb(vi)

b

b

b

b

b x

vi

︷︸︸︷
α

︷ ︸︸ ︷
1− α

︸︷︷︸

α
︸ ︷︷ ︸

1− α

b
xa(vi) b

ξi

∆x

∆x

Figure 5.1: position space grid

Figure 5.1 shows how we calculate the
mass distribution f that corresponds to
the velocity vi in the position space point
x. At first (5.1.4) we have to interpolate
the distribution fi at the point ξi that lies
in the opposite direction of vi. After that
a second interpolation (5.1.5),(5.1.3) cal-
culates how much mass flows from point
ξi to x within a time of ∆tT . With such
a scheme we obtain a stability-bound
for the time step based on the Courant-
Friedrichs-Lewy-condition:

∆ tT ≤ ∆x

max{‖v‖∞, v ∈ V} (5.1.6)

guaranteeing, that the mass can not flow
further than one cell within one time
step.

Analogous considerations lead to a similar scheme in three dimensions we also imple-
mented. We solve the collision equation (5.1.2) with a time adaptive second order
explicit Runge-Kutta method:

ki,1 = ∆tCJif(x, t)

ki,2 = ∆tCJi [f + 0.5ki,1, f + 0.5ki,1] (x, t)

fi(x, t+∆tC) = fi(x, t) + k2 .

Our error estimator is the difference between the explicit Euler and a second order
Runge-Kutta scheme:

e =

relative error over velocity space
︷ ︸︸ ︷
∑

i∈MV

|ki,1 − ki,2|
max(fi(x, t), fi(x, t+∆t))

· 1

|MV|
· ε
100

,

here ε is the desired relative error in %. If the error is greater than one, the calculation
gets rejected and the time step ∆tC gets divided by 2. Otherwise the next time step



5.1 Numerical Methods 135

length is determined in such a way, that the estimated error lies around 10% of the
desired error, in formulas:

∆tC,new =







0.5 ·∆tC , if e > 1

∆tC ·
{

0.1 · e−1, if e ≥ 0.05

2, if e < 0.05
, if e ≤ 1

.

For such a method we generally get a stability bound around

∆tC ≤ 1

|λmax(t)|
, (5.1.7)

as long as the solution f is sufficiently near to an equilibrium solution, here λmax is
the biggest eigenvalue of the linearization of the ODE (5.1.2) at time t with respect
to its absolute value. In our numerical experiments it turned out, that (5.1.6) only
posed a real restriction at high and transitional Knudsen numbers, whereas (5.1.7)
dominated cases with low Knudsen numbers. We were able to simulate phenomena
like vortex shedding of a compressible mono-atomic gas with our model (and with only
the above equations, no other modifications are needed), so a further investigation in
low Knudsen numbers in conjunction with implicit schemes could lead to interesting
results. Since we only have the mass distribution function f we need to calculate the
macroscopic properties of the gas. Let n be the desired dimensionality and V := (∆x)n

the volume that corresponds to the position space points. With that we get the

• mass density ρ
V
, momentum m = (mi)

n
i=1 and kinetic energy E of ρ via

ρ :=
∑

v∈V
f(v), mi :=

∑

v∈V
vif(v), E :=

1

2

∑

v∈V
‖v‖22f(v); ,

• stress tensor S = (sij)
n
i,j=1 with

sij :=
∑

v∈V
vivjf(v)−

1

ρ
mimj ,

• hydrostatic pressure p with

p :=
1

nV
· tr(S) = 1

nV
·

n∑

i=1

sii ,

• temperature T with

T :=
pV
ρ
me

· kB
,

where kB represents the Boltzmann constant and me the mean mass of a particle
in the gas.



136 5 Implementation and high performance computing

5.2 Technical basics

Using the aforementioned numerical schemes we can approximate the number of float-
ing point operations necessary to solve a small sized problem. Assuming that we use
332 = 1089 points in the velocity space, 960 × 320 = 307200 points in the position
space and apply the approximation 4.2.1.3 with t = 4, r = 4 we obtain 53128 colli-
sion pairs. Here we have already reduced the number of collision pairs that must be
calculated per evaluation of J by a factor of 4, here we use the symmetry proper-
ties of A to calculate fkfl − fifj only once and then add it to fi, fj and subtract it
from fk, fl thus saving 60% of the calculations. One such collision pair results into
8 floating point operations, 3 multiplications and 5 additions. A simulation of such
a space inhomogeneous case typically needs around 50 Runge Kutta steps (each step
needs two evaluations of J) per time step and 20′000 time steps overall. This leads to
2.6113 · 1017 floating point operations or 261.13 peta FLOP. Even the newest CPUs
(with around 200 GFLOPs) would need 15 days to solve this problem if the used code
is highly parallelized (using all cores as well as the advanced vector extensions - AVX).
Without such a parallelization this computation would be around 4 · 8 times slower,
under the assumption that the processor possesses 4 cores and can use 256 bit vec-
tor operations (calculation with 8 floats in parallel). So without parallelization this
problem would need 483 days on the same processor. This example clearly says that
parallelization is mandatory if we want to do numerical simulations. We also see that
the collision step is much more expensive than any other part of the algorithm. That
means that the performance of our resulting program will mainly be bound by the
FLOPS of the used processor and not by the memory bandwidth. At large velocity
spaces the collision time step needs more than 95% of the program run time. Because
of that we focus on the parallelization of this part of the algorithm. We investigate
parallelization on CPUs and GPUs to find out which architecture is better suited for
our problem. One of the main findings of that comparison is that a parallelized CPU
implementation (that should use the vector processing extensions of recent CPUs to
be efficient) and a parallelized GPU implementation are very similar and exhibit very
similar parallelization strategies. In order to parallelize our numerical schemes we need
an idea about an algorithm that allows parallelization and the processor architecture
we are aiming at (partially in order to minimize the code difference between a CPU
and a GPU implementation).

5.2.1 Algorithm - an overview

We now want to give a brief overview about the necessary data structures and the part
of the implementation that corresponds to the numerics. We have a discretization of
the position space X and a discretization of the velocity space V. Let us assume we
have m points in the position space and n points in the velocity space. Our Algorithm
now needs 8 arrays A,B,C,m1, m2, m3, m4, m5. Array A holds the information about



5.2 Technical basics 137

the position and velocity space that means A is a linear array with n · m elements.
The information is stored in the following way:

A =
(
f1(x1), . . . , fn(x1), f1(x2), . . . , fn(x2), . . . , f1(xm), . . . , fn(xm)

)
. (5.2.1)

B has the same dimensions as A and it is also used to save the grid informations,
array C holds the collision pairs. The other arrays m1 to m5 are used to store the
macroscopic values ρ,m, E, p, T . Figure 5.2 shows how the algorithm generally works,
it consists of four main steps: the transport, the collision, the communication step and
the calculation of the macroscopic values. At the beginning array Amust be initialized,
after that we have anA−B memory access pattern. That means the transport transfers
the Data from array A to array B and the collision transfers it from B back to A,
after this an additional communication step can occur before the next transport step
starts. Communication steps occur in the case of periodic boundary conditions where
we need to transfer the corresponding information between border points. After a
fixed number of time steps the algorithm calculates the macroscopic values and saves
them in the corresponding arrays. The saving of these values to the hard disc and the
next of A−B iteration happens in parallel.

Initialization A B A

Am1, . . . , m5

transport collision

communication

macroscopic values

save to disc

Figure 5.2: workflow of the algorithm

5.2.2 Processor Architecture

Figure 5.3 shows a direct comparison of the GPU and the CPU architecture. A GPU
consists of a number n of multi processors (MPi) whereas the CPU (as a many core
Processor) consists of m independent cores (Ci) and on high end IntelR©CPUs the
Hyper-Threading Technology (HTT) is available. That means that every core of the
CPU can execute two threads to reduce memory access wait times, summing up to
2 · m virtual processors that can be used to fully utilize the IntelR©CPU. The GPU
multi processors consist of q scalar processors (SPi), each can do one scalar operation
(so q parallel operations) and a single core of a CPU on the other hand can use single
instruction multiple data (SIMD) instructions (via SSE - Streaming SIMD Extensions
or AVX - Advanced Vector Extensions) to do up to p scalar operations (Si) in parallel.



138 5 Implementation and high performance computing

GPU CPU

. . .MP1 MPn
. . .C1 Cm

. . .SP1 SPq . . .SP1 SPq . . .S1 Sp. . .S1 Sp

L1

L2

Figure 5.3: architecture comparison GPU vs CPU

Due to this hardware structure we need two levels of parallelization. The first level
(L1) is a parallelization across multiple independent processors (cores or GPUs) that
can communicate with each other. The second level (L2) is a SIMD parallelization
where the same operations are executed in parallel over a set of data.

Level 1:
Let’s assume we have m GPUs or cores. In the first parallelization level we divide
the position space grid into m rectangular sub-grids. If we use the notions from
Figure 5.2 we now get the two grid sets (Ai)

m
i=1, (Bi)

m
i=1 and the macroscopic values

(mi,1, . . . , mi,5)
m
i=1. So if we substitute A,B,m1, . . . , m5 with Ai, Bi, mi,1, . . . , mi,5 in

Figure 5.2 this work flow also holds true for the parallelized version. With the addition
that, in the communication step, the used processors transfer the borders of their Grid
Ai into memory buffers that are associated to the processors that work on neighboring
Grids. In the end of such a communication step the processors synchronize (wait until
all copied the data to the buffers) and then they update the borders of their Grid Ai
with these memory buffers and start the next iteration.

Level 2:
Now we look at a single core or a single GPU. To use the SIMD approach we have
to divide the sub-grid Ai into r-point blocks in such a way that the r position space
points in such a block can be calculated in parallel. That means, that r is a hardware
dependent variable and that the memory storage of these r-point blocks must be
adapted to the memory access pattern restrictions of the used processor.

CPU: We apply the SIMD approach on the CPU in such a way that we calculate the
differences corresponding to collision pairs (fkfl−fifj) for four different position
space points in parallel (r = 4). So we have to store

(f(v1)k, f(v2)k, f(v3)k, f(v4)k) =: ssek



5.2 Technical basics 139

into one SSE register so that we can simply calculate ssekssel−sseissej := ssesol
to get the four difference values into one SSE register (ssesol). To efficiently store
data in a SSE register, the data to store must be four consecutive four byte values
in main memory. And these 128 bit long memory region must be 128 bit aligned
in main memory. That means, that the leading address of the four byte array
must be divisible by 8. So the adaption of the former memory storage within A
(see (5.2.1)) now looks like

(f1(xi), . . . , f1(xi+3), f2(xi), . . . , f2(xi+3), . . . , fn(xi), . . . , fn(xi+3)) .

This approach corresponds to SSE, for AV X we can do the same, but with
r = 8, 16 due to the 256, 512 bit long AVX registers. For this to work we need to
reorder the data of these r points prior to the SIMD calculations for this block.
We do this locally, meaning that we reorder one block, do the calculations, reverse
the reordering before we write back to RAM and then reorder the next block.
Fortunately this also guarantees (as much as it can be guaranteed) that the used
(and actually necessary) data gets completely transferred into the processor cache
prior to the calculations and nothing else. This effectively corresponds to cache
blocking and is possibly the reason for the super linear speedup that can be
observed.

GPU: On the GPU we simply have to transfer all memory that corresponds to the
r-point block into shared memory (Multiprocessor cache). The access pattern
we have to obey says, that we have to transfer consecutive linear memory re-
gions from the graphics card memory into the shared memory. This condition
is automatically met. So no data reordering is necessary. There are two main
differences to the CPU core parallelization. The first is that the GPU can handle
n r-point blocks in parallel, because it simply has n multiprocessors. And the
second is that such a multiprocessor has to have at least 64 scalar operations it
can do in parallel. This is needed to fully utilize the 32 scalar processors per
multiprocessor. Unfortunately the shared memory (48 KiB) isn’t large enough to
hold all the necessary information for 64 different position space points (consid-
ering velocity space discretizations with up to 1000 velocities). Because of that
the GPU isn’t generally calculating r-point blocks in parallel but it calculates
the r times number of collision pairs differences fkfl−fifj in parallel. Now r has
to be chosen in such a way that some hardware restrictions are met for an effi-
cient computation (maximum amount of available registers per multiprocessor,
amount of shared memory, ...).

As far as comparability between CPUs and GPUs is concerned one of the main mes-
sages of this architecture comparison is:
The general structure of GPUs and CPUs (see Figure 5.3) is not as different as one
could think, so a CPU implementation should at least use all cores of the CPU and



140 5 Implementation and high performance computing

SSE to be comparable with a GPU implementation, because otherwise we potentially
loose between 95 % and 60 % of the CPU peak performance. This would distort a
speedup factor for the CPU / GPU comparison by a factor between 2.5 and 20.

5.2.3 Additional Optimizations

(i) We maximize the available FLOPS of the CPU through the utilization of the
main CPU capabilities (HTT,SSE) and of the GPU through the creation of a
hardware and discretization dependent automatic optimization algorithm which
calculates the GPU kernel (a kernel is a function that operates on the GPU and
does things in parallel) launch parameters in such a way that every Multiprocessor
can calculate two r-point blocks (if |V| is too big it can happen, that r = 1 and
that the MP can only calculate one block at a time) in parallel and that every
multiprocessor can calculate at least 320 scalar operations in parallel.

(ii) We optimized (minimized) the necessary bandwidth from the main memory to
the processor caches. The major part (90 − 99%) of the bandwidth that was
needed during a collision time step was due to read accesses on the array C (see
section Algorithm - Overview). The collision pairs don’t fit into the Processor
caches and therefore they must be looked up every time a corresponding difference
fifl − fkfl gets evaluated. On the CPU we naturally cut the needed bandwidth
down by a factor of 4/8, because we used SSE/AVX (possibly contributing to the
super linear speedup). For one SSE calculation of a collision difference that is
dedicated to four different position space points we only accessed C one instead
of four times. At the GPU we cut the needed bandwidth down by a factor of
two with the same approach. At the GPU the scalar processors now calculate
a collision difference for two different position space points consecutively, so the
collision pair (i, j, k, l) can be reused one time. That optimization lead to 21.5%
bandwidth usage (of the benchmarked maximum of this GPU) during the collision
step, indicating that the scalar processors are not slowed down by insufficient
memory bandwidth.

(iii) This optimization only involves the GPU version. Within the shared memory
(MP cache) we can get so called memory collisions that stall the computation
for all participating SPs. This can happen because the shared memory consists
of 32 memory banks which are ordered in such a way that 32 consecutive four
byte elements in the shared memory are in 32 different banks. If it happens
that more than one SP of a MP wants to access an element in the same memory
bank, the access gets serialized. This can happen when the 32 SPs calculate
32 collision differences fkfl − fifj , because these SPs must access the elements
fi1 , . . . , fi32 in parallel. Thus we can avoid shared memory collisions by reordering
the collision pairs (i, j, k, l) within the array C and by the use of the symmetry
properties of the Operator A, these properties allow us to use one of the other



5.3 Parallelization results 141

three representations of the collision pair (i, j, k, l) that are given by 2.1.2.4 (i)b.
The efficiency of this approach increases with the number of collision pairs i.e.
the number of velocities |V|. For a grid of medium size, like |V| = 123, this
decreased the overall number of serialization due to shared memory collisions
and atomic operations by 85.5% leading to a 50% decrease of the calculation
time.

(iv) Last but not least we want to point at a number of minor (or obvious) opti-
mizations. On a GPU we have a relatively complex memory hierarchy consisting
of global memory, shared memory, constant memory, texture memory and lo-
cal memory. The NVIDIA programming guide [NVI14] explains very well which
memory region should be used for a specific purpose. We have not said a word
about the parallelization of the transport time step, because the transport step
only accounts for less than 5% of the computation time of our algorithm, at
least for sufficiently large velocity spaces (at 9 velocities it accounts for 50 % on
the CPU). But because of the low memory bandwidth between the RAM and
the graphics cards memory (global memory) we implemented a GPU parallelized
version of the transport time step that is heavily memory throughput bound
(speedup between 5 and 10 for different velocity space discretizations). This en-
abled us to hold the main data grids A and B only in the graphic cards main
memory so we are able to completely avoid the transfer of these grids to the
host computer RAM. The only data that needs to be transferred back from the
graphics card to the RAM during the computation are the macroscopic values
in the arrays m1 to m5. That are only 6 floating point values per position space
point, a fraction of the |V| values per position space point in the arrays A,B.

Appendix A.3 explains how the information about bandwidth, register, instruction,
SSE and thread usage was obtained.

5.3 Parallelization results

5.3.1 Methodology

Hardware
The used hardware consists of a Core I7 960 CPU (with HTT and SSE) and a Geforce
GTX 580 graphic cards. The theoretic capabilities of the used CPU and GPU are
shown in table 5.1, the used legend corresponds to figure 5.3. The GFLOPs and band-
width comparison leads to a theoretic speedup factor around 15 with a theoretical
performance per price ratio of 10.6. The CPU resp. GPU were launched in October
2009 resp. November 2010. A corresponding high end IntelR©CPU from 2010 (I7 970,
released in June) should be around 50%1 faster than the used model but had the same
launch price as the used GPU. So the used CPU has the same performance per price



142 5 Implementation and high performance computing

Processor C/MP S/SP GFLOPs Bandwidth GB/s Price e

Core I7 960 4 4 105.11 12.82 240
GF 110 (GTX580) 16 32 15813 192.43 363

Table 5.1: CPU / GPU comparison

ratio as the direct competitor of the GPU.

Compiler / Software, Benchmark Problem
For the following experiments and CPU / GPU comparisons we used the GCC com-
piler version 4.5.3 with the optimization flags -march=native -O3 and parallelized
through the usage of pthreads for the CPU part and the CUDA (Compute Unified
Device Architecture) toolkit version 4.1 with the optimization flags -O3 -arch sm 20
for the GPU part of the program. All calculations were done in single precision. Be-
side the main program, which does the calculations, we developed a graphical user
interface (GUI) that uses OpenGL for a visualization and the interactive creation of
position spaces and discretization of the velocity space. It is possible to create three
dimensional position spaces with complex objects inside it. The GUI also possesses the
capability of data inspection of the macroscopic values, automatic picture and video
creation, calculation of streak and stream lines and three dimensional visualization via
visualization of the macroscopic values on planes in the position space. For the speed
comparison between CPU and GPU we timed the collision, transport, communication
step and the calculation of macroscopic values and summed them up. We used the
problem of a three dimensional, mach one gas flow through a pipe with Knudsen num-
bers in the range [0.04,0.2] and position space grids that contain between 65536 and
1048576 points.

5.3.2 Results

The wall-times for the following discussion can be found in appendix A.2. In figure
5.4 we see a comparison of four different versions of the algorithm in such a way that
we see the speedup factor over the size of the discretized velocity space. The first
thing we have to mention is that the speedups generally increase with the size of the
velocity space (at least between 9 and 57 velocities). That is due to the fact that our
algorithm is memory bandwidth bound for v-space grids with less than 50 velocities.
This change from memory bandwidth bound to FLOP bound comes from the quadratic
growth of the number of collision pairs with the number of velocities used to discretize
the velocity space. In figure 5.4 it is shown that a SSE parallelized version of our
algorithm, that uses only one core of the CPU, is around three times as fast as a not

1Intel R©specifications [Int11]
2Theoretical peak transfer rate of the used DDR3-1600 RAM
3NVIDIA R©Kepler whitepaper [NVI12] p. 6



5.3 Parallelization results 143

9 27 57 123

100

101

102

103

1.3
2.7 3.2 3.18

7.6
15.5 20.9 20.726.33

112

371.98 346.63

size of v-space

sp
ee
d
u
p
fa
ct
or 1 core

+SSE
4 cores

+SSE,HT
GPU

Figure 5.4: speed comparison of not parallelized CPU vs SSE CPU vs parallelized
SSE CPU vs GPU version

parallelized version. If we use the SSE together with the utilization of all four cores
and hyper-threading (eight virtual cores, which can be utilized through the usage more
than 4 threads) on this CPU we get an additional speedup of around 6.5 thus giving
us a total speedup of around 20 for an efficient CPU parallelized implementation. This
lies above the estimated speedup of 4 · 4 = 16, where we should get a speedup around
4 due to SSE and another speedup around 4 due to the 4 used cores. It is not entirely
clear why this super linear speedup occurs, but it possibly has to do with the implicit
cache blocking and the usage of Hyper Threading as well as an implicit load balancing
due to the larger number of threads. As we can see the GPU is another three to 18
times faster than the whole CPU.

9 27 57 123 251 485 949
0

10

20

30

theory - factor 15

3.47

7.23

17.76 16.75

28.2

22.72

16.89

size of v-space

sp
ee
d
u
p
fa
ct
or

CPU wall-time
GPU wall-time

Figure 5.5: speed comparison of fully parallelized CPU vs GPU version

Figure 5.5 shows the comparison of a fully parallelized CPU vs a GPU implementation
on a wider number of velocity spaces. As we can see the GPU implementation is much
better on big velocity spaces and reaches speedup factors above the theoretical speedup
of 15. That is due to parallelization level two for the GPU, the additional optimization



144 5 Implementation and high performance computing

(iii) and the fact, that it is not possible (in a simple way) to explicitly program and use
the CPU caches whereas we can easily optimize the GPU cache usage for our problem.
The main parallelization on the GPU is focused on a huge amount of collision pairs,
where shared memory collisions can be avoided through reordering of the collision pairs
and where every SP has to calculate many operations that correspond to collision pairs.
Since our aim was to create an efficient implementation for big velocity spaces, we are
satisfied with these results. An implementation that focuses on small velocity spaces
would look very different, because the problem is memory throughput bound on small
spaces. If we want to compare the GPU with a single threaded, not optimized (in the
context of parallelization) CPU version we can look at the speedup factor at |V| = 251
and multiply it with the CPU speedup factor of 20 giving a total speedup of around
600 (which could maybe be reduced by further optimization of the CPU version for
this specific lattice).

Remark 5.3.2.1

(i) An important thing we have to mention here is that a GPU implementation is
much more complicated than a simple (not parallelized) CPU implementation
and because of this the development of such programs simply need more time.
So a GPU implementation should be compared with a parallelized and opti-
mized CPU implementation that was developed with a comparable or at least
an adequate amount of time. Unfortunately only a fraction of the scientific GPU
programmers is following this idea and because of this there are always publi-
cations in which the authors claim to get speedups of around two magnitudes
or more compared to recent CPUs. As one can easily see, parallelization on
one IntelR©processor already gives speedups of more than one magnitude. Be-
cause of this we made a realistic comparison of GPUs and CPUs, that means we
compared a parallelized and optimized CPU implementation that uses SSE with
an optimized (regarding memory access restrictions and bandwidth usage) GPU
implementation (figure 5.5).

(ii) The physical phenomena that have been successfully simulated through this ap-
proach include Rayleigh-Bènard convection, Kàrmàn vortex streets around ob-
stacles, shock fronts produced by supersonic flows and the Knudsen pump in two
and three dimensions. A more detailed description of the latter 3, together with
simulation results and visualization of the results can be found in [Bre12].

(iii) We have shown that typical parallelization strategies used to create parallelized
CPU implementations can partially be used to develop efficient GPU implemen-
tations. Finally we have calculated a 10.6 times better performance per initial
price ratio (assuming a speedup of 16) for a GF110 GPU over an Intel Core I7
9xx series CPU on sufficiently large velocity spaces. This result should typically
hold true for FLOP bound algorithms that are well suited for parallelization.



145

A Appendix

A.1 Algorithms belonging to chapter 2

Algorithm A.1.1 (Kernel computation to determine artificial collision invariants)
This algorithm belongs to 2.1.2.8. This is a simple and inefficient implementation that
goes through all permutations of length 4 in the velocity space.

function kernel = kernel(dim)
#this function calculates the dimension of the space of collision invariants,
#usage: kernel(dimension), where dimension equals to the dimensionality
#of the velocity space.

i=1;
# creating velocity space
for x=−1:1:1
for y=−1:1:1
if dim == 3 10

for z=−1:1:1
V(i,:)=[x,y,z];
i=i+1;

end
else
V(i,:)=[x,y];
i=i+1;

end
end

end 20

Mzt=zeros(1,size(V)(1));

#calculating all possible collision pairs
c = 1;
for i=1:1:size(V)(1)
for j=1:1:size(V)(1)
for k=1:1:size(V)(1)
for l=1:1:size(V)(1)
vec m=(V(i,:)+V(j,:))/2;
vec d2=V(i,:)−V(j,:); 30

vec d1=V(k,:)−V(l,:);
if (



146 A Appendix

# diameter of the squares is 2 or sqrt(2)
(abs(norm(vec d2)−2)<1e−6 | | abs(norm(vec d2)−sqrt(2))<1e−6) &&

# the diagonals are orthogonal
abs(vec d2 * vec d1’) < 1e-6 &&

# and the center of the diagonals are equal
norm((V(i,:)+V(j,:))/2 − (V(k,:)+V(l,:))/2) < 1e−6

# the length of the diagonals is equal
&& abs(norm(vec d1) − norm(vec d2))<1e−6 40

# the edges of the square are pairwise different
&& i != j && i != k && i != l && j !=k && j != l && k != l

)
Mzt(c,k)=1;
Mzt(c,l)=1;
Mzt(c,i)=−1;
Mzt(c,j)=−1;
c = c + 1;
end

end 50

end
end

end
# dropping doppelgänger from the set of collision pairs
for i=1:1:size(Mzt)(1)
j=i+1;
while j<=size(Mzt)(1)
if Mzt(i,:)==Mzt(j,:) | | Mzt(i,:)==−Mzt(j,:)
Mzt(j,:)=[ ];

else 60

j=j+1;
end

end
end
Mzt
printf("above is the matrix corresponding to the possible collision pairs.\n")
printf("size of this matrix: %dx%d.\n“,size(Mzt)(1),size(Mzt)(2))
printf("dimension of the kernel is %d\n“,size(V)(1)-rank(Mzt))



A.2 Wall-times for benchmarks 147

A.2 Wall-times for benchmarks

All time measurements in table A.1 are given in seconds. The difference between many
equal runs was less than 1%, so these values can be considered as the mean wall time
of the Calculations. These large time frames were choosen, because the CPU version

Velocities 1 T no SSE 1 T SSE 16 T SSE GPU Grid Points

9 17689 13628 2328 671 1024x512
27 249914 92654 16126 2231 256x64x64
57 308673 96477 14734 829 128x64x64
123 408180 128218 19721 1177 128x64x64
251 - - 37568 1332 64x64x64
485 - - 22754 1001 64x32x32
949 - - 65415 3873 64x32x32

Table A.1: mean wall-time of CPU and GPU benchmarks, 1 T equals 1 thread

needed a long “burn in” time before it reached its real (and constant) performance.

A.3 Methods used for performance analysis

CPU
On the CPU we measured the wall-time for program runs with different numbers of
threads used to do the calculations. This was simple to achieve, because we designed
our program in such a way, that the number of threads is one of the input parame-
ters of the program. When it comes to SSE usage the situation is more complex. If
one compiles a program (assuming gcc compiler) with the optimization flag -O3 the
compiler automatically tries to vectorize (as part of the optimization) and thus uses
SSE instructions. But without the usage of keywords like const and restrict and an
already vector operation adapted code, the automatic vectorization doesn’t yield any
speed improvement (at least in our case).
That means if we speak about a program version without SSE instructions, we speak
about an efficient C implementation without specific compiler hints or code restruc-
turing aiding automatic vectorization. The SSE version of the code uses explicit SSE
instructions and needed a redesign of the data structures and the code within the op-
timized functions, in our case only the collision step. The difference between the SSE
and the non SSE code are approximately 250 lines of C++ code, including a wrapper
class for the SSE instructions and registers to overload the common operators and
simplify the code development.

GPU
On the GPU we simply used the NVIDIA Visual Profiler that is included in the CUDA



148 A Appendix

toolkit (the executable is called nvv in CUDA 4.x and nvvp in CUDA 5.x). This pro-
gram can be used to profile any CUDA binary without the need of specific compiler
options or recompilation and it automatically handles the necessary logfiles and dis-
plays the information in a readable and understandable way. It can be used to collect
and display all necessary hardware and software counters (for that it starts the pro-
gram multiple times and collects the log files) and it provides automatic calculation
of performance metrics like “Branch Efficiency” or “Achieved Occupancy”.



References 149

References

[Bab08] Hans Babovsky. Kinetic models on orthogonal groups and the simulation of the
Boltzmann equation. In T. Abe, editor, Proceedings of 26th International Sym-
posium on Rarefied Gas Dynamics, volume 1084 of AIP Conference Proceedings,
pages 415–420, 2008. Cited on pages 2 and 5.

[Bab09] Hans Babovsky. A numerical model for the Boltzmann equation with applications
to micro flows. Comput. Math. Appl., 58(4):791–804, August 2009. Cited on
pages 2, 5, 19, 20, 21, and 29.

[Bab11a] Hans Babovsky. Kinetic Lattice Group Models: Structure and Numerics. In 27th

International Symposium on Rarefied Gas Dynamics, volume 1333 of American
Institute of Physics Conference Series, pages 63–68, May 2011. Cited on pages 2
and 29.

[Bab11b] Hans Babovsky. Numerical Simulation of the Boltzmann Equation: Deterministic
vs. Monte Carlo Schemes. PAMM, 11(1):759–760, 2011. Cited on page 2.

[Bab12] H. Babovsky. ”Small” kinetic models for transitional flow simulations. In
M. Mareschal and A. Santos, editors, 28th International Symposium on Rarefied
Gas Dynamics, volume 1501 of American Institute of Physics Conference Series,
pages 272–278, November 2012. Cited on page 2.

[Bab14] Hans Babovsky. Discrete kinetic models in the fluid dynamic limit. Computers
& Mathematics with Applications, 67(2):256 – 271, 2014. Mesoscopic Methods for
Engineering and Science (Proceedings of ICMMES-2012, Taipei, Taiwan, 23–27
July 2012). Cited on page 2.

[BG03] N. Bellomo and R. Gatignol, editors. Lecture Notes on the Discretization of the
Boltzmann Equation, volume 63 of Series on Advances in Mathematics for Applied
Sciences. World Scientific, 2003. Cited on page 2.

[BPS95] Alexandre V. Bobylev, Andrzej Palczewski, and Jacques Schneider. On approxi-
mation of the boltzmann equation by discrete veclocity models. Comptes Rendus
de l’Académie des Sciences - Series I - Mathematics, 320:639–644, 1995. Cited on
pages 2 and 5.

[BR97] A V Bobylev and S Rjasanow. Difference scheme for the boltzmann equation based
on the fast fourier transform. European J. Mech. B Fluids, 16:293–306, 1997. Cited
on page 2.

[BR00] A. V. Bobylev and S. Rjasanow. Numerical solution of the boltzmann equation
using a fully conservative difference scheme based on the fast fourier transform.
Transport Theory and Statistical Physics, 29(3-5):289–310, 2000. Cited on pages 2
and 128.



150 References

[Bre12] S. Brechtken. Lattice group models: GPU acceleration and numerics. In
M. Mareschal and A. Santos, editors, 28th International Symposium on Rarefied
Gas Dynamics, volume 1501 of American Institute of Physics Conference Series,
pages 239–246, November 2012. Cited on page 144.

[Bue96] C. Buet. A discrete-velocity scheme for the boltzmann operator of rarefied gas
dynamics. Transport Theory and Statistical Physics, 25(1):33–60, 1996. Cited on
pages 2 and 5.

[BV12] A. V. Bobylev and M. C. Vinerean. Symmetric extensions of normal discrete
velocity models. In M. Mareschal and A. Santos, editors, 28th International Sym-
posium on Rarefied Gas Dynamics, volume 1501 of American Institute of Physics
Conference Series, pages 254–261, November 2012. Cited on page 2.

[CGL03] H. Cabannes, R. Gatignol, and L.S. Luo. The Discrete Boltzmann Equation: The-
ory and Applications. University of California, College of engineering, nov 2003.
Cited on page 2.

[CIP94] Carlo Cercignani, Reinhard Illner, and Mario Pulvirenti. The Mathematical Theory
of Dilute Gases. Springer series in Applied Mathematical Sciences. Springer-Verlag,
New York, 1994. Cited on page 5.

[CSB87] J. H. Conway, N. J. A. Sloane, and E. Bannai. Sphere-packings, Lattices, and
Groups. Springer-Verlag New York, Inc., New York, NY, USA, 1987. Cited on
page 19.

[FKW06] Laura Fainsilber, Pär Kurlberg, and Bernt Wennberg. Lattice points on circles
and discrete velocity models for the boltzmann equation. SIAM J. Math. Anal,
37:1903–1922, 2006. Cited on page 2.

[FMP06] F. Filbet, C. Mouhot, and L. Pareschi. Solving the boltzmann equation in n log2n.
SIAM Journal on Scientific Computing, 28(3):1029–1053, 2006. Cited on page 2.

[FR03] Francis Filbet and Giovanni Russo. High order numerical methods for the space
non-homogeneous boltzmann equation. J. Comput. Phys., 186(2):457–480, April
2003. Cited on page 2.

[Gra12] Màrio M. Graca. Quadrature as a least-squares and minimax problem.
arXiv1206.0281v1, http://arxiv.org/abs/1206.0281v1, 2012. Cited on
page 125.

[Huy09] Daan Huybrechs. Stable high-order quadrature rules with equidistant points. J.
Computational Applied Mathematics, 231(2):933–947, 2009. Cited on page 125.

[HW60] G. H. Hardy and Edward Maitland Wright. An introduction to the theory of
numbers. Clarendon Press Oxford, 4th ed., 2nd (corr.) impression. edition, 1960.
Cited on pages 31 and 33.

http://arxiv.org/abs/1206.0281v1


References 151

[Int11] Intel core i7-900 desktop processor series. http://download.intel.com/support/
processors/corei7/sb/core_i7-900_d.pdf [Acccessed: 2013-04-23], September
2011. Cited on page 142.

[IR02] I. Ibragimov and S. Rjasanow. Numerical solution of the boltzmann equation on
the uniform grid. Computing, 69(2):163–186, 2002. Cited on pages 2 and 128.

[IW93] Reinhard Illner and Wolfgang Wagner. A random discrete velocity model and
approximation of the boltzmann equation. Journal of Statistical Physics, 70(3-
4):773–792, 1993. Cited on page 2.

[MS00] Philippe Michel and Jacques Schneider. Approximation simultanée de réels par
des nombres rationnels et noyau de collision de l’équation de Boltzmann. Comptes
Rendus de l’Académie des Sciences - Series I - Mathematics, 330(9):857–862, May
2000. Cited on pages 2, 5, 31, 44, 62, 95, and 96.

[NVI12] Whitepaper nvidia geforce gtx 680. http://international.download.nvidia.

com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf [Acc-
cessed: 2013-04-23], 2012. Cited on page 142.

[NVI14] Nvidia cuda c programming guide. http://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html [Acccessed: 2014-11-14], August
2014. Cited on page 141.

[OLBC10] Frank W. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark.
NIST Handbook of Mathematical Functions. Cambridge University Press, New
York, NY, USA, 1st edition, 2010. http://dlmf.nist.gov/4.13. Cited on
page 45.

[PDCD93] S. Ponce Dawson, S. Chen, and G. D. Doolen. Lattice boltzmann computations
for reaction-diffusion equations. The Journal of Chemical Physics, 98(2):1514–
1523, 1993. Cited on page 1.

[PH99] Vladislav A. Panferov and Alexei G. Heintz. A New Consistent Discrete-Velocity
Model for the Boltzmann Equation. Math. Methods Appl. Sci, 25:571–593, 1999.
Cited on pages 2, 5, 31, 44, 95, 96, and 128.

[PI88] Tadeusz P latkowski and Reinhard Illner. Discrete velocity models of the Boltzmann
equation: A survey on the mathematical aspects of the theory. SIAM Review,
30(2):213–255, June 1988. Cited on pages 2, 5, and 8.

[PS98] A Palczewski and J Schneider. Existence, stability, and convergence of solutions
of discrete velocity models to the boltzmann equation. J. Statist. Phys, (91):1–2,
1998. Cited on pages 2 and 5.

[PSB97] Andrzej Palczewski, Jacques Schneider, and Alexandre V. Bobylev. A consistency
result for a discrete-velocity model of the boltzmann equation. SIAM J. Numer.
Anal., 34(5):1865–1883, October 1997. Cited on pages 2 and 39.

http://download.intel.com/support/processors/corei7/sb/core_i7-900_d.pdf
http://download.intel.com/support/processors/corei7/sb/core_i7-900_d.pdf
http://international.download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://international.download.nvidia.com/webassets/en_US/pdf/GeForce-GTX-680-Whitepaper-FINAL.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://dlmf.nist.gov/4.13


152 References

[Raa04] D Raabe. Overview of the lattice boltzmann method for nano- and microscale
fluid dynamics in materials science and engineering. Modelling and Simulation in
Materials Science and Engineering, 12(6):R13, 2004. Cited on page 1.

[RS94] Francois Rogier and Jacques Schneider. A direct method for solving the boltzmann
equation. Transport Theory and Statistical Physics, 23(1-3):313–338, 1994. Cited
on pages 2, 5, 31, 33, 34, 39, and 62.

[RSW98] Sergej Rjasanow, Thomas Schreiber, and Wolfgang Wagner. Reduction of the
number of particles in the stochastic weighted particle method for the boltzmann
equation. Journal of Computational Physics, 145(1):382 – 405, 1998. Cited on
page 2.

[RW98] S. Rjasanow and W. Wagner. A generalized collision mechanism for stochastic
particle schemes approximating boltzmann-type equations. Computers & Mathe-
matics with Applications, 35(1–2):165 – 178, 1998. Cited on page 2.

[RW07] Sergej Rjasanow and Wolfgang Wagner. Stochastic weighted particle method,
theory and numerical examples. Bulletin of the Institute of Mathematics Academia
Sinica (New Series), 2(2):461 – 493, 2007. Cited on page 2.

[SBH91] Sauro Succi, Roberto Benzi, and Francisco Higuera. The lattice boltzmann equa-
tion: A new tool for computational fluid-dynamics. Physica D: Nonlinear Phe-
nomena, 47(1–2):219 – 230, 1991. Cited on page 1.

[TR04] Nils Thuerey and U. Ruede. Free Surface Lattice-Boltzmann fluid simulations with
and without level sets. Proc. of Vision, Modelling, and Visualization VMV, pages
199–207, 2004. Cited on page 1.

[Wag95] Wolfgang Wagner. Approximation of the boltzmann equation by discrete velocity
models. Journal of Statistical Physics, 78(5-6):1555–1570, 1995. Cited on page 2.



List of Symbols 153

List of Symbols

N,R the natural and real numbers

Rn
x ,R

n
v the n-dimensional position and velocity space

Rt the time space





•±
...
•




 = • ± . . .± •, alternative to represent long sums

0, 1, . . . =






0
...
0




 ,






1
...
1




 , . . .

v,w,v,w fraktur and bold characters are elements of Rn, n = 2, 3

v =





v1
v2
v3



 indexed normal characters are components of vectors

v2 := 〈v, v〉

a, b, c, d normal characters are scalars

f, fi, fi a function f : Rn
v → R+

{0}, a value of a function fi := f(vi) and a
function of a function set, most likely a basis vector of a function
space, only used to avoid any possibility of confusion

A :=
{
0, π

2
, π, 3π

2

}
the set of angles for the completion of the two dimen-

sional approximation

A•,•
•,• the coefficient tensor corresponding to DVMs

A•
•,• the reduced coefficient tensor, using that the last index can be repre-

sented through the first 3

Br(a) = {v ∈ Rn | ‖ v− a ‖≤ r}, ball with radius r around a

G the automorphism group of a given lattice

H the subgroup of G containing only id,−id

H [•] the H-functional corresponding to the H-operator and the H-theorem



154 List of Symbols

I the collision operator in the Boltzmann - equation

J discretization of the collision operator I

Lij := ⌈L�∆vij⌉∆vij , length of the domain for the innermost integration
in 2D

M the set of all collision pairs, 4 points are a collision pair if the corre-
sponding operator A or α is nonzero

MV index set of the set V

Mi collision pairs containing vi

Pi :=

(
qi
pi

)

Pij :=

(
qiqj − pipj
piqj + pjqi

)

Rα rotation matrix in two dimensions with angle α around zero

Rα(b) rotation matrix in three dimensions with angle α around b

Rα,β rotation matrix in three dimensions with angles α, β around zero

Sn−1 the n-dimensional unit sphere

Sr(a) = {v ∈ Rn | ‖ v− a ‖= r} = ∂Br(a), sphere around a with radius r

Sij := SV
ij

SBij = {v ∈ B | ‖ v − vi+vj
2

‖=‖ vi−vj
2

‖}, sphere with a diagonal from vi
to vj, unless stated otherwise we assume the Euclidean norm

∆vij := ∆vrij = ∆v
√

(p2i + q2i )(p
2
j + q2j ), stepsize of the approximation of

the innermost integration in 2D

Fn arctan of the Farey sequence of order n

V = V ∩ Br(0), r ∈ R+, the finite discretization of the velocity space

V 1
2

=
{
a | ∃v,w ∈ V :‖ −→

vw ‖= √
n∆v ∧ a = v+w

2

}

α•,•
•,• the coefficient operator corresponding to eLGpMs

α•
•,• the coefficient operator corresponding to LGpMs



List of Symbols 155

αi,n the Farey arcs corresponding to Fn, i ∈ {0, . . . , N}

I the space of collisional invariants

1A(a) =

{

1, if a ∈ A

0, else
, the indicator function over A

C the set of discrete sphere center points for a LGpM, in this work com-
monly V ∪V 1

2
, if not stated otherwise

ω(•) parametrization of the unit sphere in 2 dimensions

ω(•, •) parametrization of the unit sphere in 3 dimensions

V = ∆vZn, ∆v ∈ R+, the infinite discretization of the velocity space

F̃n the Farey sequence of order n

v′1,w
′
1 standard representation of the post collision velocities

v′2,w
′
2,w2 representation of the velocities after the transformations in 2 resp. 3

dimensions

v′3,w
′
3,w3 representation of the velocities after the transformations in 2 resp. 3

dimensions using elements of the automorphism group for the comple-
tion of the approximation

ei the i-th unit vector of the space under consideration, 1 at the i-th
position, zero otherwise

ri :=
√

p2i + q2i

rij :=
√

(p2i + q2i )(p
2
j + q2j )

MVT mean value theorem




	Introduction
	The Lattice Group Model
	Basics
	The Boltzmann equation
	Discrete Velocity Models
	Lattice Group Models

	Classification

	Consistency
	Preliminaries
	Two dimensions
	Three dimensions
	High order schemes

	Numerical analysis
	Minimal velocity space sizes
	Implementation and test of the discretization
	Adjustments of the discretization
	Numerical validation


	Implementation and high performance computing
	Numerical Methods
	Technical basics
	Algorithm - an overview
	Processor Architecture
	Additional Optimizations

	Parallelization results
	Methodology
	Results


	Appendix
	Algorithms belonging to chapter 2
	Wall-times for benchmarks
	Methods used for performance analysis

	References
	List of Symbols

