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Abstract

Without smart usage of spatial propagation dimensions, the achievable spectral
efficiency of a radio link stays limited by the logarithm of signal-to-noise ratio.
Only after careful management of the interference caused by a spatially distributed
access to the propagation media, the ultimate efficiency increases with the num-
ber of transmit and receive antenna pairs. Additional gains on the system level
could be met by cooperation of spatially distributed transceivers. Therefore, the
development and performance evaluation of multi-antenna systems call for models
capable of reproducing the spatial channel features properly. In order to support
system level simulations, the targeted model should offer low complexity as well. A
construction of both realistic and simple spatial propagation model requires a deep
insight into physical propagation phenomena and their simplified reproduction.

This thesis concentrates on the class of geometry-based stochastic channel mod-
els that offer a good trade-off between complexity and realism. The assumed double-
directional model deals with physical ray propagation, which enables proper repro-
duction of the targeted spatial features. Furthermore, the flexible structure of the
geometry-based stochastic channel model enables generic representation of different
propagation scenarios, making the model suitable for simulation of heterogeneous
networks.

The realism of the developed model can be provided by the immediate use
of the experimental data that is collected during measurement experiments. The
usage of a dedicated sounding equipment and calibrated measurement antennas
enables the reconstruction of spatial properties of physical multipath components.
However, due to inherent limitations of the measurement system and the high-
resolution estimation procedure, it is not possible to reliably resolve parameters
of all propagation paths. Thus, the resulting representation of the propagation
channel does not account for the total transmitted energy, and the radio channel
model has to be complemented with an antenna dependent (filtering-based) part.

Since the parameterization of the double-directional model does not require in-
formation on the positions of the scattering objects relative to the transmitting
and receiving antennas, it is possible to design a model that does not explicitly
position the scatterers during the synthesis. Development of such a model, which
uses purely parametric domains to represent physical propagation started with the
3GPP Spatial Channel Model, and it advanced during the WINNER project. Since
a realization of the channel cannot be related to “random” positioning of scatterers,
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viii Abstract

other driving parameters that govern the large-scale model evolution were intro-
duced. These particular models use the control parameters such as “delay spread”,
“angular spread”, “shadowing”, etc. to quantify the power distribution over differ-
ent channel dimensions. Their statistical properties (statistical distributions and
correlation functions) are characterized on the propagation scenario level, and rep-
resent the most important part of the model.

In order to cope with an increased number of dimensions in parametric space,
the large scale parameters are characterized independently using marginal distribu-
tions and auto-correlations over distance. However, independent analysis of chan-
nel dimensions introduces dependence of estimated parameters from the particular
processing sequence and available dynamic range. This prevents the comparison
of parameters extracted under different processing setups. Therefore, the proposed
parameterization of the WINNER model uses a well established computation se-
quence and processing methods to reduce uncertainty.

The representation of measurement in WINNER parametric space and its fur-
ther abstraction as a multi-variate normal process enables the straightforward quan-
tification of the similarity by relative entropy measure. This similarity metric can
be exploited to minimize the required number of distinct reference scenario classes,
which reduces the overall model complexity.

The simplified parameterization of the 3GPP Spatial Channel Model results in
weak consistency of the spatio-temporal channel evolution. This comes as a direct
consequence of the abstracted propagation environment, i.e., the lack of predefined
scatterer setup. In the WINNER model, the intra-cell correlations are exploited
to enforce similarity in the close positions of a mobile terminal. The intra-cell
correlations are still not properly represented and reproduced by this model, which
defines the necessary future work. The thesis proposes a model extension in which
the interaction of large-scale parameters, describing the cooperative (down)links, is
established through a limited dynamic range of the receiver.

The WINNER model is implemented in MATLAB/C and verified with respect
to the reproduced stochastic properties. The validation of the underlying scenario
concept is performed by measurements in different cities corresponding to the same
class of macro-cell urban environments. This model is taken as the reference for
evaluation of the IMT-Advanced radio interface technologies by the ITU-R recom-
mendation M.2135.



Zusammenfassung

Ohne die intelligente Ausnutzung der räumlichen Ausbreitungsdimensionen ist die
erreichbare spektrale Effizienz einer Funkverbindung durch den Logarithmus des
Signal-zu-Rausch-Verhältnis begrenzt. Nur durch ein kluges Management der In-
terferenzen, welche durch den räumlich verteilten Zugriff auf die Ausbreitungsme-
dien verursacht werden, steigt die Effizienz mit der Anzahl der Sende-und Emp-
fangsantennenpaare. Zusätzliche Gewinne können auf System-Level-Ebene durch
die Kooperation von räumlich verteilten Transceivern erreicht werden. Deshalb sind
für die Entwicklung und Leistungsbewertung von Mehrantennensystemen Modelle
notwendig, mit denen die Wiedergabe der räumlichen Kanaleigenschaften geeignet
gelingt. Um die Anforderungen an eine System-Level-Simulation gerecht zu werden,
sollten diese Modelle eine geringe Komplexität bieten. Die Entwicklung realistis-
cher und einfacher räumlicher Ausbreitungsmodelle erfordert einen tiefen Einblick
in physikalische Ausbreitungsphänomene und ihre vereinfachte Wiedergabe.

Diese Arbeit konzentriert sich auf die Klasse der stochastischen geometrie-
basierten Kanalmodelle, die einen guten Kompromiss zwischen Komplexität und
Realismus bieten. Das zweiseitig richtungsaufgelöste Modell befasst sich mit der
physikalischen Wellenausbreitung, diese ermöglicht eine richtige Wiedergabe der
gewünschten räumlichen Funktionen. Die flexible Struktur des geometrie-basierten
stochastischen Kanalmodells ermöglicht eine generische Darstellung der unter-
schiedlichen Ausbreitungsszenarien, so dass dieses Modell für die Simulation von
heterogenen Netzwerken geeignet ist.

Der Realismus des entwickelten Modells kann durch die Verwendung von Kanal-
datensätzen aus sogenannte Channel Sounding Experimente erreicht werden. Der
Einsatz von dedizierten Messgeräten und kalibrierten Messantennen ermöglicht die
Rekonstruktion der räumlichen Eigenschaften der physischen Mehrwegekomponen-
ten. Jedoch aufgrund der inhärenten Beschränkungen des Messsystems und der
hochauflösenden Schätzverfahren ist es nicht möglich, die Parameter aller Aus-
breitungspfade zuverlässig aufzulösen. Somit ist die resultierende Darstellung des
Ausbreitungskanals nicht vollständig bzgl. der gesamten Sendeleistung und muss
um einen antennenabhängigen Teil (filterbasierend und nicht richtungsabhängig)
ergänzt werden.

Da die Parametrisierung des zweiseitig richtungsaufgelösten Modells keine In-
formation über die Positionen der Streuobjekte relativ zu dem Sende-und Emp-
fangsantennen erfordert, ist es möglich, ein Modell zu entwerfen, welches nicht
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x Zusammenfassung

explizit die Position der Streuer während der Synthese bestimmt. Die Entwicklung
eines solchen Modells, welches für die Beschreibung der physikalischen Wellenaus-
breitung nur die parametrische Dimensionen verwendet, begann mit dem 3GPP
Spatial Channel Modell und es während der verschiedenen WINNER Projekte weit-
erentwickelt. Da eine Realisierung des Funkkanals nicht allein auf einer “zufälligen”
Positionierung der Streuer beruhen kann, wurden weitere Kontrollparameter, die
Large Scale Parameter, eingeführt. Die betrachteten Modelle nutzen diese Pa-
rameter wie “Delay Spread”, “Winkelstreuung”, “Shadowing”, etc. um die Leis-
tungsverteilung in den verschiedenen Kanaldimensionen zu quantifizieren. Deren
statistischen Eigenschaften (statistische Verteilungen und Korrelationsfunktionen)
werden auf der Ebene der Ausbreitungsszenarien charakterisiert und stellen damit
den wichtigsten Teil des Modells dar.

Um mit der erhöhten Anzahl von der parametrischen Dimensionen
zurechtzukommen, werden die Large Scale Parameter unabhängig voneinan-
der mittels Randverteilungen und abstandsabhängigen Autokorrelationsfunktionen
beschrieben. Allerdings verursacht eine unabhängige Analyse der verschiedenen
Kanaldimensionen eine Abhängigkeit der geschätzten Parameter von den Verar-
beitungsmethoden und des verfügbaren Dynamikbereichs. Dies führt dazu, dass ein
Vergleich der Parameter unter verschiedenen Analysesetups schwierig wird. Daher
berücksichtigt die vorgeschlagene Parametrierung der WINNER-Modelle etablierte
Berechnungsvorschriften und Analysemethoden um Unsicherheiten zu verringern.

Die Repräsentation der Messdaten/Kanaleigenschaften in WINNER spezi-
fischen parametrischen Dimensionen und deren weitere Abstraktion als mul-
tivariaten normalverteilten Prozess ermöglicht eine einfache Quantifizierung
der Szenarioähnlichkeit basierend auf einer relativen Entropiemetrik. Dieses
Ähnlichkeitsma kann dann genutzt werden, um die erforderliche Anzahl von unter-
schiedlichen Klassen an Referenzszenario zu minimieren, welches die Komplexität
des Gesamtmodells reduziert.

Die vereinfachte Parametrierung des 3GPP Spatial Channel Modell führt
zu einer schwachen Konsistenz der räumlich-zeitlichen Kanalevolution. Die
Ursache liegt in der abstrahierten Ausbreitungsumgebung, also dem Fehlen
von vordefinierten Streuobjekten. Im WINNER-Modell werden die Intra-Zell-
Korrelationen ausgenutzt um Ähnlichkeiten von benachbarten Positionen mobiler
Endgerät zu erzwingen. Die Intra-Zell-Korrelationen sind aber immer noch nicht
angemessen vertreten und reproduziert durch dieses Modell. Hier sind weitere
zukünftige Arbeiten notwendig. Diese Doktorarbeit schlägt eine Modellerweiterung
für kooperative (Down)Links vor, hierbei wird die Interaktion der Large Scale Pa-
rameter durch eine Begrenzung des Dynamikbereichs der Empfänger eingeführt.

Das WINNER-Modell ist in MATLAB/C implementiert und bezüglich der
wiederzugebenden stochastischen Eigenschaften verifiziert. Die Validierung des zu-
grunde gelegten Szenariokonzeptes wurde anhand von Messungen in verschiedenen
Städten der gleiche Klasse (macro-cell urban) durchgeführt. Dieses Modell wird als
Referenz für die Evaluierung der IMT-Advanced Radio Interface-Technologien der
ITU-R Empfehlung M.2135 genommen.
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Chapter 1

Introduction

The properties of the propagation channel will strongly influence:

� development of the new transmission and processing algorithms,

� optimization of a mobile communication system.

Characterization of the radio-channel propagation has always been an important
part of the radio-system design: “Accurate and efficient computer-based channel
modeling is important to validate and/or compare different digital schemes under
realistic channel conditions and to optimize digital modem design” [1] By looking
back in history it can be noted that development of a channel model was following
system enhancement and different aspects of the very same radio channel were be-
coming relevant. Therefore, even in its motivation the radio channel modeling was
not independent from system aspects. It is important to realize that the underlying
system concept defines a set of features that should be properly reproduced by the
model. This restricts the model complexity that is the main issue of the modeling
task. To clarify, a radio-channel itself is not influenced by the deployed system, but
rather by the level in which we try (or are able) to characterize it.

According to the above reasoning it happens that the development of the new
systems requires reconsideration of existing channel models, and usually – devel-
opment of the new ones. E.g., in the Orthogonal Frequency Division Multiplex-
ing (OFDM) signaling concept, the wide-band radio-communication channel is ef-
fectively utilized as a collection of narrow-band channels. Basic system parameters
like the number of subcarriers and symbol duration are selected to mitigate the key
channel impairments: Inter-Symbol Interference (ISI) induced by frequency selec-
tivity and loss of subcarrier orthogonality due to time selectivity [2]. Therefore,
a proper channel model is required both for system design and for performance
evaluation. Additionally, when the Channel State Information (CSI) is available
during the system operation, transmission characteristics, such as the signal con-
stellation or the allocated power, could be adaptively adjusted at the transmitter
per subcarrier in order to maximize total throughput.

1
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Further improvements of the spectral efficiency could be obtained by simul-
taneous transmission and/or reception from/by multiple antenna elements. In
addition to time and frequency, this concept known as Multiple-Input Multiple-
Output (MIMO) exploits the spatial propagation dimension or, more specifically,
multiplicity of energy propagation paths. The MIMO systems combine existing spa-
tial concepts such as: beamforming and (receive) diversity, with new transmission
strategy called Spatial Multiplexing (SM). This significantly improves the system
flexibility and throughput since the appropriate transmission mode can be selected
according to the observed propagation channel. Furthermore, the spatial dimension
can be combined with the time dimension (Space-Time coding), or used instead to
achieve equivalent coding gains.

Since the achievable spectral efficiency is tightly related to the signal corre-
lation across the antenna array [3], the proper representation of correlation lev-
els becomes essential for the analysis of MIMO systems. In order to obtain an
antenna-independent representation of the channel that implicitly comprises corre-
lation properties, geometry-based models are generally used. With geometry-based
approach different antennas in array will observe different correlation levels, de-
pending on the directional distribution of transmit/receive energy.

The optimization of radio transmission can be focused on the single radio link
or the entire system consisting of many, possibly interacting, links. In order to
reach optimal complexity of the model, usually different modeling strategies are
employed for channel representation in link-level and system-level contexts.

This thesis focuses on the development and optimization of geometry based
models for system-level simulations. The targeted future systems will use the large
transmission bandwidths (up to 100 MHz) and antenna arrays on both ends to
exploit the spatial propagation dimension. The developed empirical model is limited
to the transmission bandwidth of the used channel sounding equipment. Therefore,
wideband spatial models analyzed in the framework of this thesis are not suitable
for Ultra-Wideband (UWB) systems: due to extremely large bandwidth of the
UWB system, the perception of the multipath propagation will change.

1.1 Overview and Contributions

The thesis is organized into 7 chapters and 3 appendices.

� The second chapter introduces the concept of a double-directional propagation
channel, and the relevant dimensions for its characterization. Different meth-
ods providing the most realistic insight into physical propagation phenomena:
Computational Electromagnetics (CEM) and diffraction theories applicable
for ray-tracing are briefly discussed. The radio channel is introduced as a
concatenation of a random propagation channel and a deterministic antenna,
and the Bello’s notation for the signal transmission through such a channel is
presented. Consequently, the autocorrelations and power spreading are given
as dual means for characterization of the radio-channel selectivity.

� General modeling aspects are discussed in the third chapter. The sum-of-
ray approach and the filtering-based method are compared with respect to
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the used representation domain and overall modeling strategy. Possibility
to combine both methods within a hybrid model is reconsidered. The basic
concepts behind geometry-based stochastic modeling are given. Two strate-
gies for stochastic model driving are identified. They handle the interacting
objects in different manners and result in models with different complexities.
The WINNER channel model, being the state-of-the-art representative for
wideband MIMO (simplified) system-level modeling, is presented.

� The fourth chapter is dedicated to parameterization of the WINNER channel
model. Since the originally acquired MIMO channel samples have limited
applicability in geometry-based channel modeling, alternative representation,
with reconstructed spatial dimension, has to be acquired. The high-resolution
RIMAX algorithm is employed for the estimation of the hybrid model param-
eters. Due to limited number of channel observations, only limited number
of specular multi-path components can be reliably parameterized. Additional
limitations in spatial reconstruction stem from limitations of the measurement
system. The thesis discusses effects of the limited precision of the antenna
array model on the estimated multipath profile and the resulting model’s
structure.

The transparent procedure for parameterization of the WINNER channel
model that uses both structured parameters and channel tensors is defined.
All features being independent from spatial reconstruction (delays, powers)
are estimated from the channel tensor in the time-delay domain. The cluster-
based analysis and estimation of angular parameters are accomplished from
resolved MPC parameters. Evaluation of the impact of the parameterization
procedure on the obtained model parameters is performed.

� The notion of scenario and its formulation in WINNER are discussed in the
fifth chapter. It was demonstrated that objective classification of WINNER
scenarios, based on quantified similarities of the WINNER parametric space,
would result in different taxonomy. Using the proposed similarity metric, the
WINNER C2 urban macro-cell parameters are validated with new measure-
ments taken in different cities. Description of each scenario is condensed in
channel model parameters. In this chapter the synthesis of the WIM space-
time realizations from scenario parameters is presented.

� The aspects of the system-level modeling are discussed in the sixth chapter.
Due to increased number of interdependent links, the optimization of the
model complexity becomes crucial. The complexity of the WINNER model is
approximated and compared with filtering-based approach that uses explicit
correlation between antennas. While both models are evolved according to
the targeted Large-Scale Parameter (LSP) distributions, the WINNER model
keeps lower complexity. However, further approximation steps of WINNER,
that reduce the model accuracy, could result in simpler models (e.g., cluster-
delay line). The optimal description of the antenna arrays for the simulation
purposes is also analyzed. The concepts like local-stationarity and virtual
placement of clusters in parametric domains are introduced to reduce model
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complexity. However, they affect the consistency of the model space-time evo-
lution and interlink dependencies. It was, therefore, necessary to introduce
correlations between LSPs and gradual cluster replacement to fix inconsisten-
cies. The comparison of the WINNER model with 3GPP SCM and COST
273/2100 generic, wideband, MIMO system-level models is carried out.

� The concluding remarks are given in the seventh chapter.

� The process of experimental channel characterization is elaborated in the first
appendix. The concept of channel sounding and necessary components of the
measurement system are discussed. The WINNER LSPs estimated from dif-
ferent measurements and propagation environments are given in this chapter.
Evaluation of environment stationarity between consecutive measurements
performed by single (Tx,Rx) sounding pair is presented.

� The top overview of the MATLAB implementation of the Wireless World Ini-
tiative New Radio (WINNER) channel model is given in the second appendix.
The model output and intermediate results are verified with respect to the
targeted probability density functions.

� The third appendix contains the elements of the probability theory and
stochastic processes being relevant for the thesis: statistical moments, wide
sense stationarity, ergodicity etc.

The main contributions of this thesis are related to the development, param-
eterization, implementation, verification and validation of the WINNER channel
model.

� The transparent parameterization procedure of the WINNER channel model
is introduced in Sec. 4.3∗ and implemented in MATLAB. The developed
tools are exploited for postprocessing of measured channel tensors and esti-
mated structural parameters, for many measurements and propagation en-
vironments. Some of the obtained large-scale WINNER parameters are pre-
sented in Sec. A.2.

� The influence of extraction procedures to the estimated WINNER parameters
is analyzed in Sec. 4.4. The observed interdependencies between effective
dynamic range and spread distributions are exploited to introduce a consistent
model for cooperative downlink in Sec. 6.4.3.

� Starting from the abstraction of the WINNER model in the form of multi-
variate normal process (Sec. 5.2), similarity metric based on mean Kullback-
Leibler divergence is proposed. This metric enables simple comparison of
measurements in the WINNER parametric space. It is consequently exploited
in Sec. 5.3 to evaluate the WINNER scenario definitions and validate existing
parameters for WINNER C2 urban macro-cell scenario.

∗The thesis presents only estimation of large-scale parameters. The complete procedure is
described in [4] and [5].
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� The correlation coefficients describing the cross-correlations of large-scale
WINNER Channel Model (WIM) parameters are fixed for numerous scenarios
to form a positive definite correlation matrix. It is shown that a precision of
two decimal digits is required to ensure positive definiteness.

� The consistency of the WINNER model is improved in Phase 2 by relating the
cluster angles and delays over the associated powers, Sec. 5.4 and Sec. B.1.5.
The smooth model evolution along the given route, among neighboring drops
and during transitions between scenarios, is enabled by gradual cluster re-
placement, Sec. 6.3.3.

� In Sec. 6.5, the WINNER model is compared with other relevant system-level
models: 3GPP SCM and COST 273/2100.

� The implementation of the WINNER model in Phase II is extended to sup-
port Three-Dimensional (3-D) antenna arrays, and to properly handle their
rotation. Additionally, Effective Aperture Distribution Function (EADF) rep-
resentation of the radiation pattern is supported for model validation with
realistic representation of measurement antenna. The optimal representation
of the antenna arrays for simulation purposes is given in Sec. 6.2.

� The procedure for verification of the WINNER model implementation is pro-
posed in Sec. B.2. The presented results show that implemented model re-
produces targeted statistic with some minor deviations.

The majority of the presented findings are already published in the form of
white, conference or journal papers, project reports or book chapters. The omitted
aspects, still being relevant for the presented work are appropriately referenced.
Therefore, the thesis as a whole offers a systematic overview of the state-of-the-art
system-level channel modeling. The relevance of the WINNER model is pronounced
by the fact that ITU-R recommendation M.2135 takes it as a reference model for
evaluation of IMT-Advanced radio interface technologies.

1.2 Notation and Terminology

This thesis always assumes a radio channel context in a discussion about propaga-
tion, modeling, and validation, unless specified differently. The assumed context
enables usage of more concise descriptions.

Due to historical reasons, different notation is used to differentiate between com-
munication terminals (formerly radio-stations): terms Base Station (BS), Access
Point (AP), Mobile Station (MS), User Equipment (UE) are combining a role of
terminal in a radio network and its mobility.

Vectors are labeled with arrow ~x, and matrices are shown in bold letters X.
Throughout the thesis the baseband representation, x, for signal x(t) is used,
Sec. 2.1.1.

Parenthesis () are used to designate function argument, while the usage of
curly brackets {} assumes application of an operator, e.g., probability, expectation,
Fourier transform, etc. The parameter sets whose members are scalars, vectors and
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matrices (equivalent to MATLAB cells) are represented by ordered n-tuples. They
are designated by bold letters are their elements are listed in parentheses X = (. . . ).

In order to avoid confusion of the transpose symbol (·)T with transmitter label,
the latter is identified in subscripts and superscripts with Tx. Analogously, the
receiver is labeled by Rx.

In cases where both acronyms and abbreviations could be used, the acronyms
are chosen to improve readability. E.g., probability density function and cumulative
distribution function are denoted as PDF/CDF rather than pdf/cdf.

Abbreviations

e.g., exempli gratia (for example),
etc. et cetera (and so forth),
i.e., id est (that is),
w.r.t. with respect to,
vs. versus.



Chapter 2

Radio Communications

Leakage of Electromagnetic (EM) energy into surrounding area (radiation) accom-
panies all electrical circuits where electrons are accelerated/decelerated or conduc-
tors have discontinuities [6]. By choosing appropriate structures, named antennas,
the significant part of produced electrical energy can be transformed into free EM
waves traveling through the space with speed of light. Starting from the end of
19th century this phenomena is employed to establish different forms of wireless
communication. The physical environment between two antennas can serve as
communication medium used for transmission of information between associated
terminals. Since antenna efficiently radiates EM energy only on wavelengths that
are comparable to its size, the emitted signal has to be modified by appropriate
modulation process. In this process parameters of carrier wave (having appropri-
ate wavelength) are modified according to digital or analog information signal that
should be transmitted. As a result of modulation the complete frequency spectrum
is placed to the frequency range where efficient radiation occurs.

The first section of the chapter introduce baseband notation for the transmission
of a signal through the communication channel. Section 2 considers the decompo-
sition of the channel according to the temporal and spatial dependencies. The
tools for the characterization of the physical propagation channel are discussed in
3rd section. The section 4 describes the differences between radio and propagation
channel. It also discusses antenna (de)embedding and equivalent representations of
a channel in different Fourier domains. The selectivity of radio channel is analyzed
in the last section, based on properties of auto-correlation functions and power
spectral densities. The relative classification of channels w.r.t. used data transmis-
sion rate is given, and distinction between large-scale and small-scale fading effects
is established.

2.1 Communication Process

The information is typically represented by appropriate set of symbols in the form
of the message. In current communication systems message was represented in

7
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the form of One-Dimensional (1-D) signals, showing variations over the time do-
main. In order to represent interaction of transmitted signal with channel certain
mathematical notation is necessary.

2.1.1 Signal Transmission through the 1-D LTI Channel

Transmission of signals through the Linear Time Invariant (LTI) system can be
described in time domain by the convolution of transmitted signal with Channel
Impulse Response (CIR)- h(t), or in frequency domain by multiplication of trans-
mitted signal spectra with channel transfer function, H(f).

Baseband (Analytic) Signal Representation

In this thesis baseband representation of linearly modulated (passband) signals will
be used, which omits the dependence of a passband signal from its carrier frequency,
and therefore simplifies notation. Any passband signal s(t) can be represented by
its complex envelope s(t):

s(t) = (s(t) · e−j2πfct) ∗ hLPF (t), (2.1)

where fc represents carrier frequency, and hLPF (t) is the impulse response of an
ideal Low-Pass Filter (LPF). Within the complex baseband representation all
relevant information about modulated passband signal is contained. The complex
envelope representation can be easily recognized, even without special notation,
due to appearance of complex exponential terms.

The original passband signal can be reconstructed by transformation:

s(t) = R
{
s(t) · e−j2πfct

}
, (2.2)

whereR{·} denotes real part of a complex number. Physically realizable modulated
(passband) signals are real-valued, what is reflected in mapping (2.2) since any
complex baseband signal will produce real modulated signal.

Baseband CIR Representation

The same formalism can be applied to obtain baseband equivalent of the passband
CIR, h(t). However, the obtained complex representation has twice more power
than its passband counterpart. Therefore normalization with factor 1

2 is necessary
to avoid input-output power mismatch:

y(t) = x(t) ∗ 1

2
h(t). (2.3)

The relevant transmitter and receiver stages as pulse shaping filter, matched fil-
ter, equalizer, channel estimator, etc. could be equivalently represented in baseband
domain using the complex number notation.
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2.1.2 Degradation Sources

Noise The primary source of performance degradation is thermal noise generated
in the receiver. The thermal noise usually has a flat power spectral density
over the signal band and a zero-mean Gaussian Probability Density Function
(PDF).

Interference For radio links of cell-based mobile communication systems exter-
nal interference received by the antenna is more significant than thermal
noise. Such channels are referred to as interference-limited (in contrast to
noise-limited), and their performance is expressed with signal-to-interference
(+noise) ratio.

Fading Significant change of the received power over time, frequency or space.
Channel exhibiting fading are referred as selective.

Classification of the channel with respect to exhibited fading will be further
analyzed in Sec. 2.5.4.

2.2 Spatial Dimension of Communication

The spatial dimension exist in all types of communications (cable length, atten-
uation per [m], propagation delays, etc.) since the fundamental assumption of
telecommunications was that information should be transmitted between spatially
displaced terminals. Even if only temporal dimension of process is analyzed it is
always conditioned by terminal deployment with respect to environment STx/Rx:

y(t|SRx) =

∫ ∞
−∞

h(τ |STx, SRx)x(t− τ |STx)dτ.

For stationary terminals we can relax notation and drop dependencies from Tx/Rx
spatial characteristics. However the spatial dimension becomes more pronounced in
radio-communications, due to specifics of communication medium and potentially
moving terminals.

In classical communication systems 1-1 and 1-M (broadcasting) configuration
were analyzed, i.e. generated context from single source was transmitted to the
single or multiple sinks. In this context wireless communications are enabling “con-
tinuous” service for moving terminals. For the purpose of transmission of message
over radio medium (ST-coding, beamforming, distributed antenna systems), spatial
dimension in representation may be added, however this is not of interest for the
targeted sink. Namely, currently used sinks does not require or use spatial notion
of a message. This is not changed in spatially-aware services, where only selection
of sources is related to spatial position of sink. The sink typically use message at
non-distributed spatial position (after fully assembling it - meaning that time di-
mension is also removed). From the perspective of communication service provider
a M-M configuration problem has to be solved, where (due to terminal mobility)
sinks/sources have assigned spatial position. Furthermore, an antenna introduces
additional spatial dependence due to directional filtering of emitted/received en-
ergy, which is described by its radiation pattern.
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Figure 2.1: Communicating terminals.

2.2.1 Antenna Radiation Pattern

Communicating Tx and Rx antennas are, usually, sufficiently separated to avoid
their coupling and to describe directional characteristics of terminals with their
radiation patterns ~Fi(~Ω), i ∈ {Tx,Rx}. These assumptions enable characterization
of propagation radio-channel by many different techniques additionally to CEM
(Sec. 2.3.1), since the directional distribution of electrical field in Fraunhofer re-
gion surrounding Tx antenna becomes deterministic property of antenna that is
described by its radiation pattern.

The radiation pattern ~F (~Ω) is function of direction ~Ω ≡ (θ, φ), but does not
depend on distance from transmitting antenna. Therefore, with the concept of
radiation pattern antenna can be described as deterministic system block. The
electrical field in Fraunhofer region will be also proportional to temporal variations
of the transmitted signal s(t), or equivalently the spectral content of E-field would
correspond to the short time Fourier transform of complex baseband signal, S(f) =
F
{
s(t)

}
:

~ETx(d, f, ~Ω) ≈ α(d, f) · S(f) · ~FTx(f, ~Ω). (2.4)

In the free space the strength of E-field, α, decays inversely with distance from
antenna, d. Due to antenna directional selectivity ~F (~Ω), its placement has to
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Figure 2.2: Coordinate system definitions: GCS, ACS and ECS.

described with 3-D position and orientation parameters,

Si = (~ri, ~Θi). (2.5)

For the multi-antenna terminal the spatial characteristics of the individual antennas
define array geometry. The orientation parameters of the single antenna implicitly
determine its radiation pattern ~F (~Ω) w.r.t. propagation environment (Sec. 2.2.2).

2.2.2 Reference Coordinate Systems

Additionally to a spatial position and orientation of the mobile terminal, for radio
channel it is necessary to describe radiation pattern of antenna and geometry of
antenna array. The usage of the single coordinate system to handle all dependences
would be ineffective. Therefore multiple nested coordinate systems are employed
as shown in Fig. 2.2.

The antenna array is modeled as a collection of single elements. Each antenna
element has its own Element Coordinate System (ECS) that can be placed and
oriented anywhere with respect to the Array Coordinate System (ACS) Similarly, to
allow arbitrary array positioning, a third reference system, called Global Coordinate
System (GCS) is used.

In order to completely define a position of one Coordinate System (CS) inside
another, it is necessary to describe orientation and translation, both in 3-D space.
The orientation of the embedded CS is defined by three rotation angles that define
the rotation about the respective axis of the containing CS, assuming that origins
of CSs are aligned.
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Preferred Coordinate Systems

For plane wave assumption spherical coordinate system may be preferable to de-
scribe direction of impinging wave in ACS/ECS. In spherical coordinate system,
the directional filtering and polarization mismatch could be jointly expressed in the
form:

~F (~Ω, f) = [ Fθ(~Ω, f), Fϕ(~Ω, f)]T . (2.6)

where Fθ and Fϕ represent projections of radiation vector onto unit vectors of
spherical CS.

The term co-elevation is used to designate complementary angle from elevation.
Since elevation is well defined w.r.t. azimuthal plane, this convention leaves no
doubt in contrast to alternatives inclination, normal angle. The proposed term is
compatible with “co-latitude”, and shorter from other alternatives: zenith angle or
polar angle.

When using the coordinate system to describe position on Earth, term azimuth
defines clockwise rotation w.r.t. to the North direction. This is exactly opposite to
the angle ϕ in spherical Specular Component (SC) that is measured from x-axis
of Cartesian CS in the positive mathematical direction (counter clockwise). The
usage of the same term would introduce the confusion about reference direction.
Therefore, we assume that y-axis of Cartesian GCS, being placed on Earth surface,
always indicates the North. As a consequence angle ϕ becomes complementary to
azimuth angle, and results in co-azimuth naming convention. Thus, the spherical
coordinates (r, θ, ϕ) are referred as radial distance, co-elevation and co-azimuth.

Relations between Antenna Rotation and Polarization Vector

Transmission polarization vector is related to rotation of transmit Array Coordi-
nate System (ACS). Receive polarization vector is dependent on transmission po-
larization vector, and environment properties, i.e. propagation mechanism. Since
environment interaction may not be invariant to rotation of transmit polarization
vector, channel model has to account for this dependence.

Fig. 2.3a illustrates the effect of Element Coordinate System (ECS) rotation to
antenna element polarization vectors: the rotated ECS (black sphere) is rotated for
certain angle around the x- and z-axis in respect to the original ECS (gray sphere).
Since polarization plane is defined by Direction of Departure (DoD)/Direction of
Arrival (DoA) it stays unchanged after ECS rotation, however projections to~iθ and
~iϕ polarization vectors are changed. This would mean that perception of polariza-
tion direction is not the same after the rotation of CS i.e., that θ and ϕ components
of E-field defined inside Global Coordinate System (GCS), does not align with an-
tenna geometry after ECS rotation. To resolve this, it is necessary to calculate
projections of GCS θ and ϕ components to the new θ and ϕ polarization directions
defined by an antenna-dependant CS, as shown in Fig. 2.3b.
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Figure 2.3: Effects of 3–D antenna rotation: a) changes in θ and ϕ polarization directions,
and b) calculation of the new polarization vectors (Käske [7]).

2.2.3 Relations between Spatial and Temporal Channel Dimensions for
Moving Terminal

For the moving terminal spatial position and temporal dimensions are related in
the following manner:

~r(t) = ~r0 +

∫ t

t0

~v(t)dt, (2.7)

where ~v(t) designates time dependent velocity vector. Assumptions regarding the
evolution of ~v(t) in space-time determine the mobility pattern, that can be employed
to position terminal in simulation. Typically, a rotation of the terminal is not
considered and constant velocity is assumed.

Spatial changes will be observed in temporal domain, and reconstruction of spa-
tial dependence would require exact knowledge of terminal movement and changes
that have occurred in environment. Since environment changes are often not un-
der control or tractable, reconstruction of spatial dimension from e.g. measurement
data can not be performed perfectly, even if exact trajectories of the mobile terminal
are available. This opens two additional topics, namely: environment representa-
tion and gathering of spatial information during channel measurements that are
addressed in Appendix A, which is dedicated to experimental channel characteri-
zation. Further aspects of space-time model evolution will be discussed in Sec. 6.3.

2.2.4 Channel Decomposition

Using the system theory we can perform the following decomposition of the com-
munication channel [8]:

1. Transmission channel enables transmission of 1-D (temporal) signals rep-
resenting data streams. It performs necessary transformation of the input
signal(s) into N separate temporal signals xi(t), i = 1, . . . N that will be fed
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Figure 2.4: Decomposition of communication channel (after Steinbauer [8]).

to N different antenna elements. This process is designated as space-time
processing since an association of the signal xi(t) with ith antenna array ele-
ment creates the spatial dimension of signal. The ST processing is the most
suitable way to improve the communication performance: adjustment of the
format of transmitted signals provides matching to the spatial characteristics
of the radio/propagation subchannels.

2. Radio channel enables transmission of (multiple) temporal signals through
the physical environment without the dedicated transmission media. Instead,
information is carried through the space by electromagnetic waves. The for-
mation of radio channel requires the transformation of electrical energy into
EMW, witch is performed by antenna. Antenna can also be seen as deter-
ministic system block that establishes the relation between the spatial and
temporal dimension. The cooperative insertion of time signals into chosen
points in space (defined by antenna elements position) can impact the dis-
tribution of EM energy in the space (beamforming) or improve the overall
performance (throughput, power or spectral efficiency). The performance of
radio channel is related to the position and orientation antenna, as well as
antenna radiation characteristics. When multiple antenna elements are used
their relative positioning also becomes relevant. Although, antennas could be
repositioned in space, this is rarely used to improve the channel performance
adaptively during communication. Equivalently, on the receiver side anten-
nas perform projection of spatial dependencies into temporal domain, where
further post-processing takes place.

3. Propagation channel describes physical environment in which EMW prop-
agate. It shows dependence from both temporal and spatial dimensions.
The effects of physical propagation environment will be further analyzed in
Sec. 2.3.
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Table 2.1: Maxwell’s equations.

Name Differential form Integral form

Gauss’s law ∇ · ~D = ρ
∮
V
~D · d ~A =

∫
V
ρ · dV

Gauss’s law for magnetism ∇ · ~B = 0
∮
V
~B · d ~A = 0

Faraday’s law of induction ∇× ~E = −∂ ~B∂t
∮
C
~E · d~l = −

∫
S
∂ ~B
∂t · d ~A

Ampere’s circuital law ∇× ~H = ~J + ∂ ~D
∂t

∮
C
~H · d~l = I +

∫
S
∂ ~D
∂t · d ~A

2.3 Physical Propagation Channel

“For most practical channels, where signal propagation takes place in the atmo-
sphere and near the ground, the free space propagation model is inadequate to
describe the channel and predict system performance.” [9]

Electromagnetic Wave (EMW) leaving the Transmitter (Tx) antenna will inter-
act with physical objects in the propagation environment causing different electro-
magnetic effects such as scattering, refraction, reflection, or diffraction (shadowing).

Reflection occurs when a propagating electromagnetic wave impinges on a smooth
surface with very large dimensions compared to the wavelength of EMW.

Shadowing appears when the radio path between the transmitter and receiver is
obstructed by a dense body. In general shadowing considerably effects level
of the received signal.

� If dimensions of the body obstructing a line-of-sight path are greater than
wavelength, a phenomenon called diffraction causes secondary waves be-
hind the obstructing body.

Scattering occurs when a radio wave impinges on either a large rough surface or
any surface whose dimensions are on the order of wavelength or less, causing
the reflected energy to spread out (scattered) in all directions. In an urban
environment, typical signal obstructions that yield scattering are lampposts,
street signs, and foliage.

Those objects in the immediate radio propagation environment of transmitter
and receiver, that have non-negligible influence to the considered propagation of
the electromagnetic waves are referred as Interacting Objects (IO) [10].

2.3.1 Propagation of Electromagnetic Waves

The propagation of EMW through the space-time is nicely described by Maxwell
theory. The energy contained in the traveling wave is repeatedly exchanged between
electrical and magnetic fields. The complete process of EMW generation is initiated
with appropriate distribution of electrical charges and an alternate current over the
antenna. The following changes in electrical ~E and magnetic ~H fields could by
described by only four differential equations, Tab. 2.1 [11]:
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For a linear, isotropic and homogeneous medium without elementary sources it
is possible to describe space-time propagation of electrical and magnetic field by
the separate second order differential equations:

∇2 ~E − µε∂
2 ~E

∂t2
= 0, ∇2 ~H − µε∂

2 ~H

∂t2
= 0. (2.8)

These equations are known as wave equations, and they are indicating that both
fields are traveling through the space with the velocity

v =
1
√
µε
. (2.9)

For the free space the velocity of EM wave propagation will be equal to the speed
of the light, c ≈ 3 · 108 m/s.

Solving Maxwell’s equations requires accurate description of boundary condi-
tions, therefore propagation environment is represented as deterministic distribu-
tion of materials with given electrical and magnetic properties around the EM radi-
ation source. All interactions with objects in propagation environment (as diffrac-
tion, reflection and scattering) are therefore implicitly contained in final solutions.
This would be advantage with respect to some other approaches as ray-tracing for
complex environments of limited extent. It appears that solving Maxwell’s equa-
tions in general case have high computational complexity and requires application
of well established, computationally efficient techniques. All these techniques, that
model interaction of electromagnetic fields with physical objects using numerical
approximations of Maxwell’s equations, are known as CEM.

Source Decoupling Since traveling EMWs interact with other charges and currents,
closely spaced antennas would become coupled meaning that they can not be treated
as independent sources. However, the coupling of EM sources would decrease with
their respective distance what enables their independent analysis for linear media.
Since lower layers of atmosphere and large number of interacting objects belong
to this class, propagation of EMW can be decomposed to analysis of separate
uncoupled sources, and the total field distribution is reconstructed by superposition
principle.

TEM Approximation At large distances from antenna the radial wavefront of
EMWs can be approximated with planar, where intensity within plane is nearly
constant. For large antenna separations above assumptions lead to simplified model
of uniform, transversal waves with planar wavefront.

Computational Electromagnetics - CEM

Since Maxwell equations, in general, can not be solved analytically it is necessary
to employ some numeric methods, which require discretization of the spatial and
temporal/frequency dimensions.

For that purpose integral or differential equation solvers could be applied, where
analysis can be performed in either time or frequency domain.
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The choice of particular method is somehow application specific. Since tran-
sient effects are more accurately represented in time domain, Finite-Difference-
Time-Domain (FDTD) method would be appropriate choice in that case. Usage
of wideband source in FDTD method resolves the EM field distribution over the
large frequency range in single simulation run. The Finite-Element-Method (FEM),
which uses discretization in the frequency domain, is suitable for curved geometrical
objects and low frequencies.

These numerical methods approximate integrals with finite sums and derivatives
with finite differences, what leads, after some additional manipulation, to linear sys-
tem of equations, i.e. “system” matrix [12]. The methods based on discretization of
differential equations (DEs) are referred as finite-difference, finite-area (or volume),
or finite-element procedures. A numerical model based on an IE is also called a
boundary element methods.

Usage of differential methods requires discretization of the entire space what
results in large computational requirements. With integral methods it is possible
to select only important segments of the space where physical laws will be enforced.
This leads to significant differences between DE and IE methods: DE method pro-
duces sparse matrices, simply handles all material types, provides straightforward
code generation and easy parallel computing. On the other hand IE solutions are
more accurate and efficient: contrary to DE, IE methods enforce radiation condition
and does not suffer from spurious solutions.

The usage of numerical methods requires proper selection of spatial and
time/frequency resolution, i.e., time/frequency steps. The proper space-time sam-
pling grid would depend on the particular method, however there is a practical rule
to adopt spatial step that is smaller than one-tenth of the smallest wavelength of
interest. [13] The size of the spatial grid would determine the precision in which ob-
ject shapes (e.g. wall details) could be represented. However the grid itself have to
support the solution for the highest frequencies (the smallest wavelengths) relevant
for the investigated radio-channel. With the predefined resolution of the spatial grid
it is clear that complexity of the Maxwell equation’s solving will be proportional
with volume of the targeted space. Therefore computational or time resources could
be easily exceeded for larger radio environments (outdoor propagation, or interior
or large buildings). Since finite-difference methods update EM fields according to
the values in neighboring cells, the procedure iterates until steady-state solution is
reached.

Deterministic Channel Assembling

The numeric CEM methods are often inefficient for areas being larger than several
wavelengths. Substantially lower complexity and computing time are achievable
with geometric-optical models [14], [15], [16]. These models are based on iterated
approaches, which use the border behavior of electromagnetic fields for high fre-
quencies [17]. The use of these procedures substantially simplifies the description
of the wave propagation. This allows to compute electrically very large problems
very efficiently and exactly.

When an appropriate description of the EM environment is available (in the
form of databases defining geometry and material properties), the propagation of
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Figure 2.5: Multipath effects handled by ray-tracer: reflection (left), diffraction (middle)
and scattering (right), (Reichardt et al. [19]).

the EMW could be predicted by use of the Geometrical or Uniform Theory of
Diffraction (GTD/UTD). Then, the channel within given spatial volume can be
represented by deterministic assembling of EMW. This approach requires an envi-
ronment model and a wave propagation model. The environment model describes
position, geometry, material composition and surface properties of the wave prop-
agation relevant objects and obstacles (e.g. trees, houses, vehicles, walls, etc.).
Interaction of EMW with object in propagation environment depends on the geo-
metrical and electromagnetic properties (permittivity, conductivity, surface irregu-
larities, etc.).

Relevant GTD/UTD Aspects The modern geometrical optics (GO) is an important
representative of these iterated procedures, and it forms the basis for the uniform
geometrical theory of diffraction (UTD). The validity of the GO does not alone de-
pend on the frequency. A further condition is, that the scattering objects contained
in the propagation vicinity are large in relation to the wavelength. Additionally
the surface texture is not allowed to change over a wavelength. Further the mate-
rial properties of the propagation medium must be constant within the range of a
wavelength [17]. Usually these conditions are met for frequencies above 1 GHz.

3D Ray-Tracing Engines The ray-optics are based on the assumption that the wave-
length is small compared to the dimensions of the modeled objects in the simulation
scenario. If this is the case, the multi-path components corresponding to different
types of propagation phenomena (e.g. reflection, diffraction, scattering can be con-
sidered. This is illustrated in Fig. 2.5 for 3-D ray-tracer developed at the Institut
für Hochfrequenztechnik und Elektronik, [18]. Each multi-path is represented by a
ray, which may consecutively experience several different propagation phenomena.
The modified Fresnel reflection coefficients that account for slightly rough surfaces
are used to model the reflections. Diffractions are described by the Uniform Theory
of Diffraction (UTD) and the corresponding coefficients for wedge diffraction. To
describe scattering, e.g. from trees, the surface of scattering objects is subdivided
into small squared tiles. Depending on the energy, which is incident on the surface
of the objects, each tile gives rise to a Lambertian scattering source.
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The accuracy of deterministic channel models was investigated in many publi-
cations: [14], [20], [21], [22]. The results of the applied ray tracing algorithms have
been verified by measurements in different scenarios and have shown to reach a
very high accuracy [23].

Due to its flexibility and accuracy geometric-optical models applied for the site-
specific prediction of the full-polarimetric field strength and/or receiving power in
the regarded propagation area. These engines enable the complete description of the
propagation channel. However, the realistic evaluation of a communication system
performance require the multiple realizations of the propagation environment. Due
to the complexity of geometric-optical models, a substantial computing and time
expenditures must be taken into account. The main advantage of deterministic
channel assembling is that spatially-colored multi-user interference, one of the most
limiting factors for the achievable performance in multi-user MIMO-systems, is
inherently considered [24].

2.3.2 Multipath Components

Due to occurrence of reflections, diffraction and scattering, the energy between
transmitter and receiver is transmitted over the multiple propagation paths. EMW
coming to the receiver from different directions ~ΩRxi travel across different geomet-
rical paths and have different delays τi w.r.t. some referent moment on Tx side. For
single propagation component its delay τi, direction of departure ~ΩTxi and arrival
~ΩRxi are related, and possibly changing in time. Therefore, E-field arriving to Rx

antenna from direction ~ΩRxi corresponds to the signal emitted τi seconds earlier in

departure direction ~ΩTxi ,

~ERx(~ΩRxi , f, t) = S(f) · e−j2π(fτi+νit) ·αTi · ~FTx(~ΩTxi , f). (2.10)

The change of amplitude and phase of i-th MPC, as well as its depolarization,
due to interaction with physical objects is represented by complex matrix αi. The
change of the perceived frequency due to relative movement of terminal with respect
to environment is taken into account by Doppler frequency shift, νi.

The multiple interactions for the particular EMW will combine together, and
produce an overall attenuation of the amplitude accompanied by a phase rotation
which is accounted for by a complex gain coefficients [25]. The propagation over
multiple paths can cause fluctuations in the received signal’s amplitude and phase
that is referred to as multipath fading.∗

2.4 Space-Time Radio Channel

2.4.1 LSTV Nature of Radio Channel

The linearity of the radio channel comes from the linearity of the propagation media
and from superposition of induced voltages in antenna:

e(f, t) =
λ

π
·
∑
i

~E
T

Rx(~ΩRxi , f, t) · ~FRx(~ΩRxi , f), (2.11)

∗Alternatively, the signal variations or fading can be caused by changes in transmission medium
or shadowing itself.
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th t

Figure 2.6: Multipath propagation.

where ~ERx(~Ωi, f, t) represents electric field vector impinging on Receiver (Rx) an-

tenna with complex radiation pattern ~FRx(~ΩRxi , f) from direction ~ΩRxi .
By substitution of (2.10) into (2.11) the spectrum of induced voltage becomes:

e(f, t) = S(f) · λ
π

∑
i

e−j2π(fτi+νit) · ~FTTx(~ΩTxi , f) ·αi · ~FRx(~ΩRxi , f)

= S(f) · 1

2
H(f, t)

(2.12)

The linear relation between the spectra at channel input and output, allows the
channel representation by time-variant transfer function H(f, t) and application
of corresponding Linear Time Variant (LTV) system theory. Since realization of
H(f, t,STx,SRx) depends on position and orientation of terminals STx and SRx
complete transfer function changes in space-time and we have Linear Space-Time
Variant (LSTV) system.

The frequency dependence of antenna radiation pattern becomes relevant only
for UWB communications and for smaller transmission bandwidths can be ne-
glected. Therefore the induced voltage at Rx antenna can be represented as con-
volution over time-delay domain:

e(t) =
∑
i

s(t− τi) ·
λ

π
· δ(τ − τi) · e−j2πνit · ~FTTx(~ΩTxi ) ·αi · ~FRx(~ΩRxi )

=
∑
i

s(t− τi) ·
1

2
h(τi, t)

= s(t) ∗ 1

2
h(t).

(2.13)
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2.4.2 Channel Impulse Response (CIR)

Duration of propagation is typically measured from transmitting instant t0, while
antenna array coordinating system is used to characterize directions of depar-
ture/arriving waves. The position of the antenna coordinating systems in “global”

common coordinating system is fully defined with Si =
(
~ri, ~Θi

)
, i ∈ {Tx,Rx}.

Time-Delay Dimension

According to this assumptions, the impulse response of propagation channel can
be determined as response to full spatial excitation with Dirac time-impulse in the
form:

h(t, t0, ~ΩT , ~ΩR) = Γ
{
δ(t− t0,∀~ΩT )

}
. (2.14)

Typically, difference between observation and emission time is named propaga-
tion delay: τ = t− t0, and it represents the new dimension in analysis of wideband
channels:

h(t0 + τ, t0, ~ΩT , ~ΩR) = Γ
{
δ(t− t0,∀~ΩT )

}
. (2.15)

Expression (2.15) can be interpreted as joint (Tx,Rx) directional selectivity of en-
vironment, showing also short-term memory in the form of different propagation
paths/delays.

Space-Time Dependency

In order to simplify notation we can define space-time realization of radio-link,
having two communicating terminals:

Q ≡ (t0,STx(t0),SRx(t0 + τ)). (2.16)

Therefore, the space-time realization depends on 2 temporal dimensions t0, τ and
6 spatial dimensions defining position and orientation of Tx and Rx terminals in
moments of transmission and reception, STx(t0),SRx(t0 +τ). Note that time-delay,
τ , and position of Rx terminal SRx are not independent dimensions.

Any changes in terminal spatial characteristics Q or in environment (Interacting
Object (IO) movement or change in propagation medium) will influence changes of
delay-directional structure characterizing propagation channel:

h(τ(Q), ν(Q), ~ΩTx(Q), ~ΩRx(Q) = h(τ, ν, ~ΩTx, ~ΩRx|Q)

= h(τ, ν, ~ΩTx, ~ΩRx|(t0,STx(t0),SRx(t0 + τ)).
(2.17)

Structural Parameters

Under the assumption that single EMW can be described with discrete values of
propagation delay, departure and arriving angles we arrive to ray-based represen-
tation of Channel Impulse Response (CIR):

h(τ, ν, ~ΩTx, ~ΩRx|Q) =
∑
i

αi · δ(τ − τi(Qi)) · δ(ν − νi(Qi))·

· δ(~ΩTx − ~ΩTxi (Qi)) · δ(~ΩRx − ~ΩRxi (Qi)).

(2.18)
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Figure 2.7: Structural parameters.

Note that certain assumption about exciting polarization vector (that relates to
Tx orientation and Tx antenna radiation pattern) is necessary when determining
CIR. When characterization (2.15) is repeated for two orthogonal (ϕ, θ) polariza-
tions at Tx and Rx full spatial characterization in the sense of STx and SRx is
obtained. This is represented with 2x2 matrix notation whose rows (first subscript)
are related to Tx and columns (second subscript) to Rx:

α =

[
αθθ αθϕ
αϕθ αϕϕ

]
. (2.19)

The common GCS, Sec. 2.2.2, that encompass all terminals is necessary to charac-
terize environment interaction with polarization dimension [7].

Each of multipath components have its evolution in time, that can be described
by associated Doppler frequency shift, ν. This enables representation of CIR us-
ing only resolvable (“constructive”) domains, where each multipath component is
described by the following parameters: delay, Doppler shift, depolarization matrix
with complex gains, direction of departure and direction of arrival,

pi = (τi, νi,αi, ~Ω
Tx
i , ~ΩRxi ). (2.20)

The (2.18) accounts for departure and arrival directions of multipath compo-
nents and offers double-directional channel representation [26]. Double-directional
concept uses antenna-centric view of environment: positions and orientations of

transmitting STx =
(
~rTx, ~ΘTx

)
and receiving SRx =

(
~rRx, ~ΘRx

)
terminal are

taken as a reference. In the respective coordinating systems energy that is trans-
mitted through environment can be characterized with arrival time and direction.

Antenna (de)Embedding

Starting from expression (2.13) for induced electromotive force it can be seen that
interaction of directionally dependent propagation channel with antenna radiation
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patterns does not depend on transmitted signal. It is therefore possible to introduce
impulse response of the wideband radio channel in the form:

h(τ |t,STx,SRx) = h(τ |Q)

=
∑
i

~FRx(~ΩRxi |SRx)h(τ, ~ΩTx, ~ΩRx|Q)~FTx(~ΩTxi |STx). (2.21)

We have seen that both radio and physical propagation channel show depen-
dencies from space-time radio-link realization Q. However, the impulse response oh
radio channel, h(τ |Q), includes the response of the antenna radiation pattern and
therefore does not show explicit dependence on departure and arriving directions
of the multipath components. Additionally, impulse response of radio channel is
complex scalar, while CIR of physical propagation channel can take form of 2x2
matrix with complex elements that describes depolarization due to environment.

The (2.21) shows that all multipath components arriving from different direc-
tions but having the same delay τi are contributing to h(τi, t). This projection of
directional content to the antenna radiation pattern can be expressed in the form
of convolution of propagation channel impulse response with radiation patterns:

h(τ |Q) =

∫ 4π

0

∫ 4π

0

~FRx(~ΩRx|SRx) · h(τ, ~ΩTx, ~ΩRx|Q) · ~FTx(~ΩTx|STx)d~ΩRxd~ΩTx

= ~FRx(~ΩRx|SRx) ∗ h(τ, ~ΩTx, ~ΩRx|Q) ∗ ~FTx(~ΩTx|STx).
(2.22)

This process of margining response of propagation channel and antenna directivity
will be also referred as antenna embedding. The opposite process where antenna
influence should be removed in order to characterize pure propagation channel is
called antenna de-embedding.

The MIMO concept is expected to significantly increase transfer rates and the
reliability or power efficiency. However the realistic performance of MIMO systems
can be properly investigated only if antenna inter-correlation is properly repre-
sented. For a given antenna arrays the average correlations-levels could be explicitly
expressed. This thesis, however, concentrate on antenna independent geometry-
based models where correlations are implicitly contained in the multi-path re-
alizations. The characterization of every multi-path component requires multi-
ple parameters (delay, directions of departure and arrival, polarization-dependent
weights, and Doppler shift). Resolving the multipath components allows antenna
de-embedding and independent characterization of propagation channel.

Only if all energy is resolved in Tx and Rx directional domains it is possible to
characterize propagation channel independently from deterministic radiation pat-
terns of Tx and Rx antennas. This will impose certain limitation in reconstruction
of propagation channel from channel sounding data, i.e., from multiple spatially
offset realizations of radio channel (Sec. 4.2).

Transmission through a Radio Channel

Recapitulating above discussion we can identify the following dimension of radio
channel:
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Table 2.2: Relations between representation domains are established via Fourier transform.

Resolved
domain

Faded
domain

Transform Inverse transform

Doppler shift, ν time, t
∫∞
−∞(·)exp(j2πνt)dν

∫∞
−∞(·)exp(−j2πνt)dt

delay, τ frequency, f
∫∞
−∞(·)exp(−j2πfτ)dτ

∫∞
−∞(·)exp(j2πfτ)df

wavevector, ~k position, ~r 1
(2π)3

∫∞
−∞(·)exp(j~kT~r)d~k

∫∞
−∞(·)exp(−j~kT~r)d~r

� time, t,

� propagation delay, τ (coming from wideband property),

� position and orientation of terminals at Tx and Rx: STx(t) and SRx(t+ τ).

For a Linear Space-Time Variant (LSTV) channel, the Single-Input Single-
Output (SISO) received signal can be determined via time-delay convolution:

y(t|SRx) =
1

2

∫ ∞
−∞

x(t− τ |STx)h(τ |t,STx,SRx)dτ, (2.23)

or via filtering in frequency domain

y(t|SRx) =
1

2

∫ ∞
−∞

X(f |STx) · h(f |t,STx,SRx) · e−j2πftdf.

2.4.3 Spatio-Temporal Channel Representation by System Functions

It was showed [27] that radio-channel can be equivalently represented in other
domains, being Fourier transformations of the original domains. Relations between
them are given in Tab. 2.2 [28]

Doppler spectrum can be calculated by short-time Fourier transform of temporal
dimension. If channel response would be constant in time, the Doppler spectrum
would consist of single spectral line at ν = 0. Therefore, the spreading in Doppler
domain is proportional to the extent of temporal variations.

Original wideband domains from [27] could be extended with spatial dimensions
i.e. apertures.

The transformation of 3-D spatial channel to the wavevector domain is calcu-
lated as triple integral [28]:

h(kx, ky, kz) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

h(x, y, z)e−j(kxx+kyy+kzz)dxdydz, (2.24)

which is equivalent to 3-D Fourier transformation. By using vector representations

~k = kx~ix + ky~iy + kz~iz, ~r = x~ix + y~iy + z~iz,

and notation∫ ∞
−∞

d~r =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dxdydz,

∫ ∞
−∞

d~k =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

dkxdkydkz,
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the condensed forms are obtained:

h(~k) =

∫ ∞
−∞

(h(~r))exp(−j~kT~r)d~r, (2.25)

h(~r) =
1

(2π)3

∫ ∞
−∞

(h(~k))exp(j~kT~r)d~k. (2.26)

The wavevector ~k correspond to “spatial angular frequency”, i.e., number of wave-
length repetitions per unit space (1 m) measured along direction ~Ω and multiplied
by factor 2π.

~k =
2π

λ
~Ω

=
2π

λ
[sin(θ) cos(ϕ)~ix + sin(θ) sin(φ)~iy + cos(θ)~iz].

(2.27)

The vector ~Ω =~iθ ×~iϕ points in direction of radial component of spherical coordi-
nate system, and it is determined by co-elevation θ and azimuth ϕ angles as shown
on Fig. 2.8.

For stationary distribution of channel realizations in 3-D space (2.25) finds the

spectral content for all directions ~Ω in spherical coordinate system. The kernel used

for Fourier transform of aperture, e−j
~kT~r, describes the phase change that would

experience the plain EMW arriving to the position ~r from direction ~Ω, before it
reaches the center of the coordinate system. From directions that are different
than considered, a phase difference of planar waves is taken into account. Since
product ~kT~r will be the same in all directions perpendicular to the ~k (equiphase
surface of planar wave), the transformation (2.25) sums all function values from
the orthogonal planes and than performs 1-D Fourier transformation. The Fourier
transformation of 3-D space (aperture) is based on inner product of vectors ~kT~r
and therefore can be determined as sequence of independent 1-D transformations.

By exploiting the relation (2.27) is possible to establish correspondence between

directional radiation pattern h(~Ω) and 3-D channel impulse response that would be
limited to the single sphere of radius k0 = 2π

λ :

h(~k) =
δ(|~k| − k0)

k2
0

· h(~Ω). (2.28)

The normalization by the sphere radius k0 comes from the relation of the elementary
solid angle dΩ and the elementary area on the sphere: dA = k2

0dΩ. For this special
case Fourier transform of directional domain becomes:

h(~r) =
1

(2π)3

∫
R3

h(~k) · ej~k
T~rd~k

=
1

(2π)

∫
R

∫
A

δ(|~k| − k0)

k2
0

· h(~Ω) · ej ~k0
T
~r · dA · d(|~k|)

=

∫
~Ω

h(~Ω) · ejk0
~ΩT~r · d~Ω.

(2.29)
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Figure 2.8: Relations between aperture and wavevector.

This transformation relates 3-D spatial channel realizations and directional dis-
tribution of traveling plain waves: the “aperture domain” is obtained as Fourier
transform of directional channel properties.

The Effective Aperture Distribution Function (EADF) represent example of
this transformation in 2-D space that is defined by co-elevation and azimuth angles,
~Ω ≡ (θ, ϕ)

Equation (2.29) has similar form as (2.21), however directional and polarization
properties of antenna are not included - only a phase shift corresponding to spatial
displacement is considered. This means that EMW interact in the free space and
define propagation channel, since antenna is absent. The radio channels observed
with measurement arrays always include effect of the radiation pattern. If antenna
radiation pattern could be removed from gathered spatial samples (including its
polarization properties), the inverse transform of (2.29) could be used to recon-
struct spatial propagation dimension. In this case reconstruction would be based
on the limited number of the spatial samples, since available samples does not cover
complete R3 space.

The effect of depolarization is not properly accounted by (2.29). In order to
sum vector fields it would be necessary to independently sum their orthogonal
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Figure 2.9: Transformation cube (after Del Galdo [29]).

components which additionally complicates the transformation. Anyway, notation
h is kept in order to emphasize that propagation channel is being analyzed.

The existing relations are usually visualized in the form of transformation cube
(Figure 2.9), but only for single side of radio-link (Tx or Rx) and without consid-
ering polarization. Otherwise, multidimensional hyper-cube will be necessary.

If apertures on both Tx and Rx side are represented with departure/arrival
directions the double directional description of the channel is obtained:

h(τ, ν, ~ΩTx, ~ΩRx) =

∫
R3

∫
R3

∫
R

(∫
R

H(f, t, ~rTx, ~rRx) · ej2πfτdf
)
· e−j2πνtdt·

· e−j 2π
λ
~ΩTTx~rTx

d~rTx
λ3
· e− 2π

λ
~ΩTRx~rRx

d~rRx
λ3

.

(2.30)

Classification of Domains
Multipath propagation causes the signal to spread in delay, Doppler shift, and

directions (DoD, DoA). In these domains it is possible to resolve the contribution
of multipath components, and they are referred to as resolvable domains. As the
consequence of spreading in one domain, channel becomes selective in corresponding
FT domain (Tab. 2.2). Therefore propagation channel varies as a function of time,
frequency, and space. These domains are called faded domains. For example, the
channel representation in the equation (2.30) is transformed from purely faded
domains into purely resolvable domains.
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2.4.4 MIMO Radio Channel

Under plane wave assumption, a phase shift corresponding to spatial displacement
of element inside Antenna Array (AA) becomes independent from distance to the
source or the nearest IO. This can be exploited to extend the representation of
antenna radiation pattern (2.6) toward its specific position within the antenna
array.

Antenna Array Model

The antenna array is modeled as a collection of elements being voluntarily placed
and oriented with respect to the ACS and additionally characterized with corre-
sponding radiation patterns. The full 3-D Antenna Array (3DAA) model includes
following effects:

1. spatial displacement: translation of antenna elements (i.e., ECS) in respect
to phase center of array (ACS origin) is resulting in element (and Multi-Path
Component (MPC) direction) dependent phase shift,

2. directional filtering: antenna element radiation patterns will introduce
direction-specific gain for incoming waves,

3. polarization mismatch: non-ideal radiation characteristics will cause direction
dependent rotation of polarization vector, i.e. directional dependent Cross-
Polarization Discrimination (XPD). This effect is handled by two radiation
patterns that are determined for orthogonal polarizations.

4. frequency dependence of polarization patterns.

The plane wave assumption enables a separate analysis of effects of antenna
translation (spatial displacement) and rotation (directional filtering and polariza-
tion mismatch). As a consequence, the usage of the Four-Dimensional (4-D) homo-
geneous coordinates [30], enabling a simultaneous description of both translation
and multiplication through a single matrix multiplication, is unnecessary.

Directional filtering and polarization mismatch are handled by the representa-
tion of radiation pattern [ Fθ(θ, ϕ), Fϕ(θ, ϕ)]

T
for two orthognal polarizations as in

(2.6).

Spatial Displacement ACS is introduced in Sec. 2.2.2 to describe joint movement
of elements constituting AA. The placement of individual antenna elements is de-
scribed jointly by position and orientation parameters (2.5), of which only position
influences the MPC propagation distance. The displacement of the ECS origin and
corresponding kth antenna element inside the ACS can be expressed w.r.t. origin
of ACS by:

~dACSk = xk~i
ACS
x + yk~i

ACS
y + zk~i

ACS
z , k = 1, . . . ,K.

If DoD/DoA of MPC are given in ACS by (θA, ϕA) i.e.,

~ΩACS =
[
sin(θA)

(
cos(ϕA)~iACSx + sin(ϕA)~iACSy

)
+ cos(θA)~iACSz

]T
,
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the corresponding phase offset at kth antenna element in respect to ACS origin is

∆φACSk =
2π

λ
~ΩTACS

~dACSk .

The phase offsets have to be calculated for each MPC for all antenna elements,
since the angles θA and ϕA are different for different MPCs.

Complex Polarimetric Radiation Pattern The influence of spatial displacements is

included through exponential term e(−j∆φ
ACS
k ). For complete description of radia-

tion properties of single antenna element, this information has to be supplemented
with rotation and the intrinsic radiation pattern:

~F k(~Ω)ACS = ~Θ
{
~Fk(~Ω)ECS

}
e−j

2π
λ
~ΩTACS

~dACSk . (2.31)

The intrinsic radiation pattern of antenna element is usually expressed in ECS
that is aligned with antenna geometry, and ~Θ{·} designates rotation of ECS within
ACS. The given complex radiation pattern covers all spatial degrees of freedom:
transversal movement and antenna rotation, as well as any array geometry for the
MIMO case.

MISO Received Signal

For M transmitting antenna arrays consisting of S antenna elements, a received
signal on uth antenna element can be represented as:

y
u
(t|S{m,s},Su) =

1

2

M∑
m=1

S∑
s=1

∫ ∞
−∞

∫ 4π

0

∫ 4π

0

~F
T

u (~ΩRx|Su)h(τ, t, ~ΩT , ~ΩR|Sm,s,Su)·

· ~Fm,s(~ΩTx|Sm,s)xm,s(t− τ |Sm,s)d~ΩTxd~ΩRxdτ
(2.32)

When multiple input sources belong to the same array, they share the same
rotation in global CS, ~Θ and therefore could be represented with position offset
from reference point in array (typically – from phase center): ~dm,s = ~dm + ~ds.

2.5 Selectivity of Radio Channel

Multipath propagation causes the spread of signal in Doppler shift, delay, and
angle. As consequence a channel becomes selective in time, frequency, or space. The
channel is considered to be selective if it varies as a function of either time, frequency
or space. The selectivity within faded domains can be described by the extent of the
corresponding Auto-Correlation Functions (ACFs), The coherence quantifies the
speed of variations in the form of time, frequency or space interval (range) without
significant changes. The faded and resolved domains form Fourier transformation
pairs, as indicated on Fig. 2.10 and Fig. 2.11. Interpretation of the spreading in
resolved domains becomes intuitive when discrete multipath components are used
to describe physical propagation process.
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2.5.1 Auto-Correlation Functions and Power Spectral Densities of
Jointly WSS Process

The system functions describing a radio channel are multidimensional in general
case. The calculation of a correlation function increases number of variables for
every with every considered dimension. Therefore, the correlation function ac-
counting for all dimension doubles the number of independent dimension w.r.t. a
system function.

Rh(f1, f2, t1, t2, ~r1, ~r2) = E
{
h(f1, t1, ~r1) · h∗(f2, t2, ~r2)

}
(2.33)

In order to make correlation analysis tractable, a special class of Wide-Sense Sta-
tionary Uncorrelated Scattering (WSSUS) processes is typically analyzed.

Jointly WSS (US) Process

The WSSUS terminology is introduced by Bello in [27], where only time and delay
dependencies are considered. Uncorrelated Scattering was indicating that signal
components arriving with different delays are uncorrelated. (An independent fading
behavior for different components of band-limited channel is possibly caused by the
irregularity of the scattering structures [32].)
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When the spatial propagation dimension is analyzed, it would be more appro-
priate to address them as jointly Wide-Sense Stationary (WSS) in faded (selective)
domains: (time, frequency, position), or jointly uncorrelated across resolved (spec-
tral) domains: (Doppler, delay, wavevector). WSS property (Sec. C.2) reduces
dimensionality of correlation function to half.

Rh(τ1, τ2, ν1, ν2,~k1,~k2) = E
{
h(τ1, ν1,~k1) · h∗(τ2, ν2,~k2)

}
= 2πSh(τ1, ν1,~k1)δ(τ1 − τ2)δ(ν1 − ν2)δ(~k1 − ~k2)

(2.34)

Additionally, under WSS assumption favorable relations could be established be-
tween Auto-Correlation Function and Power Spectral Density (PSD), as stated by
Wiener-Khintchine Theorem (Sec. C.2):

Rh(∆f,∆t,∆~r) = F
{
Sh(τ, ν,~k)

}
(2.35)

Validity of WSS Assumption
For short time intervals it is possible to assume that the physical scattering pro-

cess generating the stochastic behavior changes only little, causing a WSS behavior
of the short-term fading. This enables approximation of observed stochastic pro-
cess with jointly WSS process within ranges of a few tens of wavelengths [32]. For
the long-term variations (over large spatial extent) a nonstationarity of the random
process that describes a radio channel is expected.

2.5.2 Relations between ACF Extent and Power Spreading within PSD

One of the basic properties of Fourier transformation is that inversely relates ex-
tent of signal between related transformation domains: if signal becomes narrower
in one domain, its Fourier transform becomes wider in the transformed domain.
“Therefore, the RMS width of a power spectrum can provide insight into the co-
herence of a channel: as the power spectrum widens in the transform domain, its
autocorrelation becomes narrower and coherence decreases”. [28]

Channel coherence corresponds to extent of time, frequency or space where prede-
fined level of ACF is kept.

RMS Power Spread describes dispersion of power over single resolved channel di-
mension x: Doppler, delay or wavevector (direction). Root-Mean-Square (RMS)
power spreading can be determined from corresponding 1-D power spectrum den-
sities. The generic expression for RMS spreading over dimension x is:

σx =

√
x2 − x2. (2.36)

The nth non-central moment of x

xn =

∫ ∞
−∞

xn · p(x)dx (2.37)
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is estimated from normalized PSD:

p (x) =
S(x)∫∞

−∞ S(x)dx
. (2.38)

According to established duality RMS spread of PSD and corresponding coher-
ence in ACF will be inversely related.

2.5.3 Decomposition of ACF/PSD

If channel does not exhibit changes over some dimensions they may be dropped
from analysis. E.g., for fixed single-antenna receiver, channel has no spatial depen-
dency and therefore joint time-frequency autocorrelation Rh(∆f,∆t) or its PSD
- scattering function, Sh(τ, ν), are sufficient for its characterization. Further, to
represent transmission of narrowband signal toward fixed single-antenna receiver,
it suffices to use time autocorrelation or Doppler power spectrum.

Rh(∆t) = Rh(∆f,∆t)|∆f=0 (2.39)

Sh(ν) =

∫ ∞
−∞

Sh(τ, ν)dτ (2.40)

The nice symmetry between of jointly WSS process is kept during its decom-
position, thus Rh(∆t) = F−1

{
Sh(ν)

}
as illustrated in Fig. 2.11.† The analysis

and characterization of multidimensional channel could be simplified if performed
in ACF/PSD domains with reduced dimensionality. In the following we analyze
the most important parameters of 1-D ACF/PSD functions.

Power-Delay Profile

The Power-Delay Profile (PDP) shows how the average received power vary as a
function of time delay, τ . It is obtained by accumulating powers of S(ν, τ,ΩTx,ΩRx)
over all other resolved domains except delay.

Sh(τ |LSR) =

∫ ∫ ∫
Sh(ν, τ,ΩTx,ΩRx|LSR)dνdΩTxdΩRx (2.41)

The obtained function is related to Local Stationarity Region (LSR) where the
multipath structure stays approximately unchanged. In stationary environments
where interacting objects do not move this region is assumed to have extent of
20 to 40 wavelengths. Otherwise, it will be dependent on positions and velocities
of the interacting objects. The extent of Local Stationarity Region (LSR) will be
further analyzed in Sec. 4.3.1.

For an ideal system (zero maximum excess delay), the function S(τ) would
consist of an single impulse with weight equal to the total average received signal
power. However, the typical propagation channel introduce a time spreading and
have CIR that is different from Dirac delta function. The same applies to channels

†Fourier dependencies between single dimensional ACFs and Power Spectral Densitys (PSDs)
are given in Tab. 2.2.
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Figure 2.12: Power Delay Profile

exhibiting multipath propagation, where arrival time between the first and the last
received component differ.

An extent of PDP depends on adopted magnitude range for relevant multipath
components. Typically, the components weaker for 20 or 40 dB than the strongest
component are considered as irrelevant due to limited dynamic range of receiver.

Excess Delay represents the additional propagation delay with respect to the first
signal arrival at the receiver.

Maximum Excess Delay (MED) corresponds to the time between the first and last
received component.

Delay Spread is determined according to (2.36) as the square root of the second
central moment (standard deviation) of S(τ).

Frequency Correlation Function

Frequency Correlation Function (FCF) shows the correlation between received
signals that are spaced in frequency for ∆f .

Coherence Bandwidth , Bc, represents a frequency range over which a signal’s
spectral components are similarly affected (gain and phase shift) by the channel.
Similarity of channel’s complex transfer function results in significant levels of auto-
correlation function. The coherence bandwidth is typically determined as frequency
range in which normalized ACF exceeds predefined level, e.g., 0.5.

For WSS channel Frequency Correlation Function (FCF) is inverse Fourier
transform of PDP. It is, therefore, possible to establish approximate relation of
coherence bandwidth and delay spread. If coherence bandwidth is defined as the
frequency interval over which the correlation of channel’s complex frequency trans-
fer function is least 0.5, the coherence bandwidth is:

Bc ≈
1

5στ
(2.42)
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Power Angular (Wavevector) Spectrum

Arriving direction of MPCs that propagate in Two-Dimensional (2-D) plain con-
taining receiver can be described with single, azimuth angle. In 1-D angular power
spectrum, the power of every multipath component is associated with its azimuth
angle.

Under assumption of dense scattering environment, MPCs from all arriving
angles have approximately equal power, i.e., power is uniformly distributed over all
angles.

Sh(ϕ) =
Ptot
2π

(2.43)

The corresponding 1-D wavenumber power spectrum will be [28] [33]:

Sh(k) = 2π

∫ 2π

0

Sh(ϕ)δ(k − k0 cos(ϕ− ϕR))dϕ (2.44)

=
2Ptot√
k2

0 − k2
,

where ϕR represents direction of receiver movement.

Angular Spread expresses spreading of the power around a mean departure/arrival
angle. Due to angular wrapping to domain [−π, π), angular spread is defined as
minimal value for all possible angular offsets of the original spectra [34].

Spatial Correlation Function

In the case of dense scattering channel, the normalized Spatial Correlation Function
(SCF) is [33]:

Rh(∆r)

Ptot
= J0(k0∆r) (2.45)

where J0(·) is the zero-order Bessel function of the first kind, k0 = 2π
λ and ∆r is

mobile terminal displacement. The channel impulse responses become statistically
uncorrelated for a spatial displacement of ∆r = 0.38λ since the first zero of J0(x)
occurs for x = 2.4048 [35].

Coherence Distance , dC , provides the measure of the maximum spatial separation
over which the signal amplitudes have strong correlation. Within the coherence
distance the channel appears to be static. The coherence distance is inversely
proportional to angular spread.

Doppler Power Spectrum

Doppler power spectrum describes the spectral spreading of a transmitted sinusoid
(impulse in frequency) in the Doppler shift domain. In a typical multipath envi-
ronment, components arriving from different directions produce different Doppler
shifts. This effect on the received signal is seen as a Doppler spreading or spectral
broadening of the transmitted signal frequency, rather than a shift.
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For the case of the dense scattering channel in which mobile moves with constant

velocity and therefore ν = |~v|
2πk and νm = |~v|

2πk0, the Doppler power spectrum is
equivalent to wavenumber power spectrum (2.45):

Sh(ν) =
2Ptot√
ν2
m − ν2

, (2.46)

The dense scattering model is not suitable for all environments: e.g., for the indoor
propagation assumption of a flat Doppler spectrum is more appropriate [9].

Doppler Spread describes extent of the power spreading in Doppler frequency shift
domain. For dense scattering channel Doppler spread, σν = νm√

2
, is proportional to

maximum Doppler shift νm
Doppler power spectrum Sh(ν) is the Fourier of transform time correlation func-

tion Rh(∆t).

Time Correlation Function

The time correlation function Rh(∆t) describes the rapidity of the channel fading.
This is the autocorrelation function of the channel responses to a single sinusoid
(narrowband signal with ∆f = 0) taken at time instances t1 and t2 with spacing
∆t = t2 − t1.

For an ideal time-invariant channel the CIR would be highly correlated for
all values of ∆t and Rh(∆t) would be a constant function. In the case of dense
scattering channel, the normalized Time Correlation Function (TCF) is

Rh(∆t)

Ptot
= J0(2πνm∆t) (2.47)

where J0(·) is the zero-order Bessel function of the first kind, and νm = |~v|
λ is

maximal Doppler frequency shift for terminal moving with velocity ~v.

Coherence Time , tC , is a measure of the expected time duration over which the
channel’s response is essentially invariant. Thus, the coherence time is equivalent
to a time window over which the received signals have strong correlation.

At high frequencies the temporal incoherence is usually caused by motion of
either the transmitter or the dominant scatterers. [28] For a constant velocity of
motion and dense scattering channel, a coherence time is proportional to the co-
herence distance of (2.45). For WSS channel TCF is inverse Fourier transform
of Doppler power spectrum, and coherence time is inversely proportional to the
Doppler spread.

It is empirically shown in [36], that fine details and structure of the Doppler
spectrum do not significantly affect temporal channel coherence. This approxima-
tion is valid for a small values of ∆t, i.e. until significant correlation exist.
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Figure 2.13: Classification of fading in wideband channel based on relation between symbol
period T and channel parameters (tC , τm). For different transmission rates (movement
along diagonal line) the same physical channel can be perceived in a different manner.

2.5.4 Channel Classification

The absolute channel properties are quantified in previous sections by stochastic
measures. However, the channel is used to transmit the data being structured in
symbols and code words having certain duration in temporal domain. The impact
of the channel to the transmitted data is related to the ratio of data signaling and
channel parameters. Therefore, it is useful to introduce relative channel classifica-
tion, that qualitatively describes channel effects to data transmission.

Frequency Selective Channel
If Maximum Excess Delay (MED) becomes longer than symbol period then chan-

nel exhibits frequency selective fading. The extended spreading in delay domain re-
duces the coherence bandwidth in frequency domain. The coherence bandwidth of
frequency selective channels is narrower than frequency bandwidth of signal, caus-
ing unequal (selective) modification of different spectral components. Otherwise,
if a coherence bandwith exceeds the bandwidth of transmitted signal, a channel
fading is frequency flat or non-selective.

Fast/Slow Channel
If channel show variation of CIR over time, the coherence time approximate inter-

val without considerable changes. If this interval is shorter than symbol period, we
have the fast fading channel, otherwise it is slow fading channel. Equivalently, for
fast fading channels the width of Doppler spectrum exceeds the signal bandwidth.

From Fig. 2.13 it can be noted that choice of transmission rate, in general,
selects among three of four channel fading manifestations. Possible combinations
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are dependent of ratio between max. excess delay and coherence time: if τm > tC
fading can not be slow and flat, and in opposite case it can not be selective and
fast.

Underspread/Overspread Channel
Channels with τm � tC are classified as overspread (dominantly selective) chan-

nels. On an overspread channel, the total average energy in a received signal is
divided among a large number of independently fading components. In the oppo-
site case when τm � tC channel is underspread (dominantly slow).

Ergodic Channel
Sometimes fast and frequency non-selective (flat) channels are referred to as

ergodic. [25] The reason for such categorization lies in the fact that, during trans-
mission, a long enough code word experiences essentially all states of the channel,
and hence it “averages out” the channel randomness. For such channels is there-
fore possible to determine average capacity. Otherwise, for non-ergodic channels
statistic in the form of outage capacity has to be used.

2.5.5 Fading of Total Received Power in Narrowband Channel

The main issue with radio channel is its spatio-temporal variability. Starting from
1-D (narrowband) channel where only time-delay dimension was relevant, the clas-
sification of channel variations to small-scale and large-scale effects was introduced.

Large-scale fading represents the average signal power attenuation due to motion
over large areas. This phenomenon is caused by changed impact of dominant objects
in propagation environment (hills, forests, billboards, clumps of buildings, etc.)
or propagation media (refractivity gradient, precipitation, etc.) that “shadow” a
receiver in different manners.

Small-scale fading refers to the dramatic changes in signal amplitude and phase
that can be experienced as a result of small changes (as small as a half-wavelength)
in the spatial separation between a receiver and transmitter. A channel experiences
small-scale fading when terminal traverses the distance greater then coherence dis-
tance, or elapsed time exceeds time coherence. The small-scale fading occurs in
narrowband systems since the unresolvable multipath components add up destruc-
tively resulting in a substantial power loss.

This classification is exploited to simplify analysis and characterization of the
radio channel by two independent random processes. The total fading effect to the
narrowband received signal is therefore partitioned in two multiplicative random
components that represent small and large-scale fading. When powers are expressed
in [dB], due to properties of logarithm, multiplicative components become additive.
Therefore spatio-temporal distribution of total received power is governed by 3
terms: single component that reflects average deterministic power attenuation, and
two random components describing large- and small-scale fading.

Mean Transmission Loss is a function of distance, frequency, antenna heights,
and propagation environment. In simple transmission models the average
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received power P̄R (without impact of fading) decays exponentially with dis-
tance, d. Therefore,

L̄ =
PTx
P̄Rx

∼ dn (2.48)

In [dB] domain a transmission loss increases linearly with log10(d), and its
slope is determined by exponent n:

L̄(d)[dB] = PTx[dBm]− P̄Rx[dBm] = L̄(d0) + 10nlog10(
d

d0
) (2.49)

The reference distance d0 is taken in the far field of the antenna, and is
typically 1 km for large cells, 100 m for microcells, and 1 m for indoor channels
[9]. L̄(d) is the average transmission loss (over a multitude of different sites)
for a given value of d. It is usually obtained by linear regression of L(d)
versus d on a log-log scale which yields a straight line with a slope equal
to 10n dB/decade. The power loss exponent n equals 2 in free space, and
increases when obstructions are present. However, in the presence of wave
guided phenomenon (like urban streets), n can become lower than 2, due to
coherent signal summation. Since the environment of different sites may be
quite different for similar transmitter-receiver separations it is necessary to
allow variations around the mean attenuation.

Large-scale Fading , Xσ, describes the deviation from the mean transmission
loss. Therefore, the typical realization of a transmission loss L(d) equals

L(d) = L̄(d) +Xσ. (2.50)

For any value of d, the realizations of transmission loss L(d) in decibels, ap-
pear as normally distributed around L̄(d). Therefore additional term Xσ is
represented with zero-mean Gaussian variable. Typically, a standard devia-
tion of Xσ is in the range 6-10 dB.

Small-scale Fading describes rapid changes of signal envelope over space or time.
Variations of envelope are often described by Rayleigh process in order to
account for near-worst fading statistic. The severity of small-scale fading is
quantified with of level-crossing rate and average fade duration. [28]

Power Budget and Performance of Radio Link

A narrowband SISO radio communication link is designed to account for all power
attenuation causes: mean transmission loss, large- and small-scale fading [37].
These effects jointly determine the level of received power, and the chosen receiver
design (i.e. its sensitivity) will correspondingly determine communication distance
range and outage time of radio link.

In order to reduce channel outage (loss of service), radio-design includes so
called fade margins. A fade margin is the difference, usually in dB, between the
average received power and the minimum power level for reliable communications
(receiver sensitivity) [28]. These margins could be independently determined for



40 Chapter 2. Radio Communications

Distance

Log-Normal

Large-Scale Fading
Mean 

Transmission Loss

0

Power 

Transmitted

Base 

Station

Power 

Received

Transmission 

Loss

Rayleigh

Small-Scale Fading

Large-Scale Fading

Margin

1-2%

Small-Scale Fading

Margin

1-2%

Mobile 

Station

(a)

0 5 10 15 20 25 30 35
10

-4

10
-3

10
-2

10
-1

10
0

AWGN

FLAT and SLOW Fading

Rayleigh Channel

FREQUENCY-SELECTIVE or 

FAST Fading Distortion

SINR [dB]

B
E

R

(b)

Figure 2.14: Fading channel: (a) Power Budget, (b) Error performance (after Sklar [37]).

large- and small-scale fading according to targeted percentage of outage, as indi-
cated on Fig. 2.14.

If the SISO narrowband channel experiences the small-scale fading the system
performance could be significantly impacted. The level of impairment will depend
on relative fading manifestation. The flat and slow fading results in power loss:
the targeted error rate requires larger Signal-to-Noise-Ratio (SNR). The frequency
selective or fast fading can introduce error floor when further increase of SNR does
not decrease error rate. In such cases, the performance can be improved only by
advanced transmission techniques that will mitigate or reduce the fading induced
distortion.

With increase of system bandwidth (i.e. reduction of symbol duration) the
individual multi-path components become resolvable and their interference causes
less severe fading of received power. The wideband systems, although exhibited
to selective fading, rarely show significant power fading since different portions of
spectra are not affected in the same manner. In this context coherence bandwidth
determines the level of frequency diversity. In similar manner a spatial diversity will
determine a performance of multi-antenna systems: the lower coherence distance
results in reduced correlation of received signals in neighboring antennas. In this
way, the realistic representation of channel conditions becomes crucial for system
design and performance analysis.
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General Modeling Aspects

In order to maximize transmission efficiency, wireless communication systems are
forced to exploit the spatial and temporal dimensions of the radio-channel to the
full. The design and performance analysis of such system requires the channel
model to reflect all relevant propagation aspects, which imposes serious constraints
on the minimal complexity of the model. Since the chosen representation domain
has the most important impact to the model structure and the resulting complexity,
this chapter analyzes and compares different possible alternatives.

The relations between model concept and representation domain are discussed
in the first section. The filtering approach for reproduction of observed correlation
properties is elaborated in the second section. The section 3 considers assembling
of sinusoids to represent the CIR. The reasoning behind hybrid models that com-
bine the noise filtering and Sum-of-Sinusoids (SoS) is given in 4th section. For
system design and performance evaluation, site-independent modeling with lower
complexity is preferred. For this purpose, stochastic characterization of different
radio-environment classes could be combined with geometry based propagation as-
pects. This results in the class of geometry-based stochastic channel models that
are described in Sec. 3.5. In order to properly reproduce space-time channel evo-
lution, this class of models uses either positioning of interacting objects in simu-
lated environment or virtual positioning of MPCs in parametric domain. These
approaches are shortly compared in 6th section. A development of empirical model
that uses stochastic characterization of Large-Scale-Parameters (LSPs) is explained
in Sec. 3.6.1. The last section presents the most important features of the WINNER
channel model, which is representative of a geometry-based stochastic model gov-
erned by large-scale parameter statistic.

3.1 Relations between Model Concept and Representation Do-
main: Constituting (Resolved) vs. Faded

Although the final goal is quite clear: the model should reproduce the channel
behavior, it is necessary to determine the appropriate domains for representation

41
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of the stochastic features and consequent channel synthesis. In Sec. 2.5 available
representation domains are classified into selective (fading) domains and constitu-
tive (resolved) domains. In the latter each multi-path component is identified with
joint set of physical propagation parameters, that describe transmission of energy
between transmitter and receiver. In faded domains, unresolved components are
superimposed, producing fluctuations (fading). If we synthesize the channel as sum
of MPCs (sometimes referred to as rays or sinusoids) we have to resolve their indi-
vidual spatio-temporal properties and distribution of total power, and fit targeted
statistic using deterministic constituents, i.e., MPCs. Alternative would be repro-
duction of observed fading statistic without use of identified constituting elements.
The statistical properties could be extracted directly from faded domains in the
form of probability density and correlation functions.

With increased resolvability (i.e. increased measurement/system bandwidth)
the statistical approach has to be reconsidered since the number of interfering (un-
resolved) MPCs is reducing, which changes a statistic of fading. An example could
be the IEEE 802.15.3a UWB channel [38] where several interfering (unresolved)
components does not follow common (Rayleigh/Rice) fading distributions. In ex-
treme cases, when all MPCs are resolved, there is no fading and the model param-
eters can not be related to its statistics. Even in that case, the channel is properly
represented with MPCs constituents.

In cases where fading appears due to superposition of many MPCs, the faded
domains (t, f, ~r(u), ~r(s)) are more appropriate for statistical modeling, since analyt-
ical probability distributions could be exploited to reduce model complexity. This
avoids introduction of numerous MPCs only to reach “random” appearance of sys-
tem functions. From the perspective of the stochastic modeling, radio-channel is
the random process, whose properties could be captured from observed realizations.
Since only few control parameters are necessary to describe standard distribution
functions, complexity of this modeling approach is rather low.

However, the pure stochastic modeling shows limited flexibility in represent-
ing spatial channel dimensions that are important for MIMO transmission. From
above arguments, the selection of a appropriate modeling method is dependent on
the relative channel properties with respect to the considered transmission system
(Sec. 2.5.4). In the following sections so called “filtering approach” and sum-of-rays
method will be compared, Fig. 3.1. The first approach uses faded domains while
second is based on resolved domains.
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3.2 Filtering Approach

In narrowband SISO systems, discussed in Sec. 2.5.5, the (Rayleigh) PDF is used to
describe the small-scale fading of signal envelope. This produces a channel model
with parameters defining the probability distribution. However, for realistic repre-
sentation it is necessary to account for correlation between consecutive realizations
in space-time. This smoothing of independently generated realizations can be per-
formed with appropriate filtering. If we assume jointly WSS process where PSD
and ACF form Fourier transformation pair, design of filter targeting particular ACF
can be also based on corresponding PSD.

If the targeted time selective behavior is quantified by correlation function
R(∆t), then corresponding Doppler spectrum is given as the Fourier transform:
S(ν) = F

{
R(∆t)

}
. Rayleigh fading can be simulated by filtering complex White-

Gaussian-Noise (WGN) with filter that is determined as the square root of the tap
Power Spectral Density (PSD):

Tn
(
z = ej2πνT

)
=
√
Sn(ν). (3.1)

3.2.1 Correlation Tensor-Based Model for Selective Multidimensional
Channels

The filtering approach has a significant complexity when many channel dimensions
are relevant, and are represented jointly in the form of a channel tensor. The
frequency selective MIMO channel observed in kth time segment of width Tw and
having MTx/MRx transmitting/receiving antennas, and Nf frequency bins can be
represented by the channel tensor

Hk ∈ CMTx×MRx×Nf×Tw . (3.2)

Assuming that the channel is block-wise stationary in time, it is possible to esti-
mate a correlation tensor within each block consisting of Tw snapshots by averaging
over time:

R̂k =
1

Tw

Tw∑
n=1

(Hk)i4=n ◦ (Hk)Hi4=n ∈ CMTx×MRx×Nf×MTx×MRx×Nf . (3.3)

Here, i4 = n indicates that indexing is performed with respect to 4th dimension
of channel tensor, and ◦ represents tensor outer product. The similar models of
sixth-order wideband correlation tensor were proposed in [39] and [40]. The random
channel H̃k having the same spatio-frequency correlation as observed channel can
be synthesized by filtering a complex White Gaussian Noise (WGN) by square root
of tensor R̂k. Although, the required filter can be found by Higher-Order Singular
Value Decomposition (HOSVD) of R̂k, the process can be simplified by unfolding
of the channel tensor prior to computation of the correlation matrix [39]:

R̂k =
1

Tw

Tw∑
n=1

vec(Hk)) · vec(Hk)H ∈ CMTx·MRx·Nf×MTx·MRx·Nf (3.4)
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In this case the square-root of matrix can be determined by eigenvalue decom-
position

R̂
1
2

k = Uk ·Λ
1
2

k , (3.5)

where Uk is unitary and Λk is diagonal matrix. The unfolded realization of syn-
thesized channel is obtained as:

vec(H̃k) = R̂
1
2

k vec(G), (3.6)

where G is independent identically distributed (i.i.d.) random matrix, whose ele-
ments are taken from circularly symmetric zero-mean complex Gaussian, with unit
variance - CN (0, 1).

It could be recognized that empirical observation of channel with Nt snapshots
provides K = bNt/Twc realizations of correlation tensor/matrix. The number of
parameters in this model and therefore its complexity are proportional to the num-
ber or Tx and Rx antennas, frequency bins and independent temporal realizations
k = 1, . . . ,K.

3.2.2 Decomposition of Correlation Matrices

Often, the model complexity is reduced by ignoring correlation between different
domains of the channel. This means that correlations between spatial, temporal and
frequency domains are disregarded, and analyzed characterizations are performed
independently for each dimension.

The Weichselberger model [41] introduces vector decomposition of MIMO chan-
nel H ∈ CMTx×MRx with so called structural vector modes. These modes can be
determined from the full correlation matrix or from the one-sided (transmitting
or receiving) correlation matrices. In the first case, the structural modes corre-
spond to the singular vectors obtained by Singular Value Decomposition (SVD) of
asymmetric correlation matrix

RH = E{H∗ ⊗H} ∈ CM
2
Tx×M

2
Rx , (3.7)

where ⊗ denotes Kronecker product.
Alternatively, the necessary vector modes of Weichselberger’s model can be

estimated from eigenvalue decompositions of one-sided correlation matrices:

RTx = E{HH ·H} =

MTx∑
m=1

λTx,m · ~vm · ~vHm = V ΛTxV
H ∈ CMTx×MTx , (3.8)

and

RRx = E{H ·HH} =

MRx∑
n=1

λRx,n · ~wn · ~wHn = WΛRxW
H ∈ CMRx×MRx . (3.9)

In this case the expansion with structured vector modes have a form

RH =

MRx∑
n=1

MTx∑
m=1

ωn,m · (~vm ⊗ ~wn) · (~vm ⊗ ~wn)H ∈ CMTx·MRx×MTx·MRx , (3.10)
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and coefficients ωn,m are determined from projections

ωn,m = (~vm ⊗ ~wn)H ·RH · (~vm ⊗ ~wn). (3.11)

From projection coefficients and vectors, the MIMO channel matrix can be
synthesized by

H̃ =

MRx∑
n=1

MTx∑
m=1

gn,m
√
ωn,m ~wn~v

T
m = W (

√
Ω�G)V T . (3.12)

The matricesW = [~w1, ~w2 . . . ~wMR
] and V = [~v1, ~v2 . . . ~vMT

] are formed by stacking
the Rx and Tx eigenvectors respectively. The operator � designates element-by-
element (Schur) product. The entries of Ω − ωn,m, represent a coupling between
Tx and Rx structured vector modes, while matrix G contains normally distributed
random variables gn,m.

Decoupling of Transmitting and Receiving Side of MIMO Link

The Kronecker model [42] ignores the coupling between transmitting and receiving
antennas which is appropriate only for separable joint angular spectra [43]. The
correlation matrix is expressed as Kronecker product of transmitting and receiving
correlation matrices, (3.8) and (3.9):

RH =
1

tr
{
RRx

}RTx ⊗RRx ∈ CMTx·MRx×MTx·MRx . (3.13)

As a consequence of this approximation is a poor reproduction of the channel ca-
pacity: it can be underestimated or overestimated, depending on the underlying
structure of the reference channel [44]. According to the Kronecker model, a chan-
nel is synthesized by filtering the normally distributed random process G in the
following way:

H̃ =
1

tr
{
RRx

}R1/2
Rx ·G · (R

1/2
Tx )T = W (

1

tr
{
RRx

}√ΛRxG
√

ΛTx)V T . (3.14)

By comparing (3.12) and (3.14) one observes that the “coupling matrix” of the
Kronecker channel is separable:

√
ΩK =

1

tr
{
RRx

}

√
λRx,1√
λRx,2
...√

λRx,MRx

 [√λTx,1 √
λTx,2 . . .

√
λTx,MTx

]
(3.15)

3.3 Finite Sum-of-Rays Representation of CIR

Although instantaneous realizations of the channel may seem random, the underlay-
ing physical process can be described by deterministic means, which are addressed
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in Sec. 2.4.2 as structural parameters∗. According to (2.18) the propagation chan-
nel can be approximated with finite sum of discrete MPCs which are positioned
in delay, Doppler shift, and departure/arrival directions by means of delta func-
tions. Since resolved and fading domains represent Fourier transformations pairs,
delta-impulses from resolved domains correspond to complex exponentials in faded
domains.

H(f, t, ~rTx, ~rRx|Q) = F
{
h(τ, ν, ~ΩTx, ~ΩRx|Q)

}
= F

{∑
i

αi · δ(τ − τi) · δ(ν − νi) · δ(~ΩTx − ~ΩTxi ) · δ(~ΩRx − ~ΩRxi )
}

=
∑
i

αi · exp
{
− j[2πfτi + 2πtνi + k ~Ωi

Tx
~rTx + k~ΩRxi ~rRx]

}
.

(3.16)

Therefore, the obtained representation is also referred to as “sum-of-rays” (or
sinusoids). Equivalently, this can be regarded as a multipath model with discrete
components. Throughout this thesis it is considered that terms ray/sinusoid and
single Multi-Path Component (MPC) are equivalent, and that they are character-
ized by the following parameters:

� polarimetric 2x2 matrix of complex gains α - (2.19), describing jointly
strength of the transmitted ray, carrier phase and rotation of polarization
vector, αi,j = ai,je

φi,j , where i and j denote the rows and columns of the
matrix,

� propagation delay τ , expressing the time elapsed between transmission and
reception,

� direction of departure ~ΩTx is given with respect to Tx antenna ACS, defined

by
(
~rTx, ~ΘTx

)
,

� direction of arrival ~ΩRx is given with respect to Rx antenna array CS, defined

by
(
~rRx, ~ΘRx

)
, and

� Doppler shift ν.

3.3.1 Representation of Band-Limited Channels

From (2.22) it is clear that Rx antenna performs weighted summation of rays ar-
riving at the same time instant (i.e. at reference propagation delay). In general
there will be a continuum of delays, however due to limited system bandwidth
there is a certain inertia that is proportional to the extent of CIR. This limits the
speed of system response to individual MPCs, and due to superposition of their
individual responses the fading occurs. This manifestation enables reduction of
deterministic model with large number of MPCs into model with limited number

∗Since structural parameters describe physical propagation process, they implicitly define the
structural vector modes of Weichselberger’s model. However, this pursuit is not further developed
in the thesis.
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Figure 3.2: Bandlimited representation of propagation channel (after Vaughan [46]).

of equally-spaced delay taps, whose coefficients appear as random variables. The
non-faded components of bandwidth unlimited model are called the specular com-
ponents [9]. Due to limited bandwidth we are not able to resolve parameters of
specular components from measurements. Instead several specular components has
to be characterized jointly in the form of the fading group. Increased resolution
results is lower number of specular components in the fading group.†

Tapped Delay Model
The finite system bandwidth B limits the required resolution for the impulse

response representation due to the smearing of δ-pulses over a width ∆τ ≈ 1
B

[32]. Depending on B, different smoothing of the impulse response g(τ) applies, as
illustrated in Fig. 3.2.

The efficient Tapped Delay Line (TDL) model of wideband communication sys-
tem that includes Tx/Rx filters is proposed in [1]. This model uses a tap spacing
equal to the inverse of the symbol rate.‡ The time-variant tap coefficients are

†It is shown in [45] that the average area size of multipath component visibility (representing
unfaded contribution) increases with the signal bandwidth.
‡It is demonstrated in [47] that samples at output of the Rx filter taken once per-symbol

provide a set of sufficient statistic.
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determined by projecting total CIR to the representation basis:

cn(t) =

∫ ∞
−∞

h(t, τ) · g(τ − nT )dτ (3.17)

The basis functions are created by shifting Tx/Rx filter Impulse Response (IR) g(τ)
for integer multiple of symbol period.

After accounting for bandwith limited resolvability, non-spatial wideband chan-
nel can be represented in the form:

hB(t, τ) =

N∑
n=1

cn(t) · g(τ − τn) (3.18)

where g(τ) is impulse response of bandlimited filter, and cn(t) represents sum of
non-resolved components being in vicinity of τn. cn(t) is usually refered as gain of
nth tap.

Total number of taps The relevant number of taps is related to per-tap SNR.
For maximum observable excess delay τm the number of taps can be estimated as
bBτmc, with B denoting the signal bandwidth.

In the extreme case, a TDL consisting of single tap represents the frequency
flat (narrowband) model. When the bandwidth of a transmitted signal increases to
the extent of showing frequency-dependence, the model is extended with additional
number of narrowband contributions that are distributed over delay dimension.

Statistical properties of taps Since tap gains cn(t) experience frequency flat fading,
they could be characterized by the envelope distribution and correlation function as
described in Sec. 3.2. Although empirical data suggest that fading tap coefficients
are Nakagami-m distributed (Tab. C.1), for practical purposes the assumption of
Rice or Rayleigh fading, as special cases of Nakagami-m fading, is sufficient [32].
If direct line-of-sight (LoS) ray exist it usually have dedicated tap with nonfading
amplitude but possibly changing phase [1].

Segmentation over delay domain is performed according to delay resolution
which is inversely proportional to system bandwidth. As the consequence of dis-
regarding channel delay resolution (i.e. channel bandwidth) and depending on
equivalent system response, the tap coefficients cn(t) may become correlated.

The TDL representation is suited for delay regions with densely spaced rays
(including the continuous delay CIR), while the straightforward implementation,
using the exact delay profile, is favorable when the real CIR consists of several rays
with uncorrelated coefficients.

3.3.2 Synthetic Fading Models

The targeted “random” behavior of the channel can be reproduced by the SoS
model. The modeling goal is to emulate targeted fading distribution and cor-
relations functions, possibly with minimum number of components.When spatial
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dependences (including polarizations) are omitted from (3.16) the SoS narrowband
model reduces to:

h(t) =
∑
i

ai · exp (−j[2πtνi − φi]) (3.19)

The free model parameters: gains, (Doppler) frequencies and phases of sinusoid
functions could be generated randomly or computed by fitting the relevant statis-
tical properties, typically PDFs and ACF [48]. It is also possible to combine these
strategies and to calculate some sinusoid parameters, while randomly generating
others. By considering different combinations of random and pre-calculated pa-
rameters it is possible to define 23 different classes of simulators that have different
stationarity and ergodicity properties. It is shown in [49] that simulators having
fixed gains and frequencies, and random phases are stationary and ergodic.

Deterministic SoS Approach
Deterministic approach tends to produce simple model (by minimizing number of

sinusoids) that is statistically matching to (hypothetic, ideal) reference according
to predefined criteria. The major issues are, therefore, selection/construction of
reference model and selection of relevant criteria.

The reference model can be theoretic, not necessary related to reality. Typically,
simple analytic models (Rayleigh, Rice, etc.) are selected for this purpose.

Many different methods are proposed for parameter calculation, having their
specificities and disadvantages: slow-convergence, non-ergodicity, small period etc.
According to [49], the Lp-Norm method [50] is the most suitable for deterministic
SoS parameterization.

Jakes’ Model
Jakes’ model [51] is the classical example of an efficient SoS fading simulator. Its

efficiency comes from the careful model structuring: the complexity of the straight-
forward realization with N low-frequency Doppler shift oscillators is reduced to
M = 1

2 (N2 − 1). The savings are attained by selection of symmetric arriving angles
relative to the direction of movement and perpendicular direction. It was shown
in [52] that this reduction leads to the generation of a non-stationary signal.

3.4 Mixed Modeling Approach

The optimal modeling approach can be found as combination of the noise filtering
and sum-of-rays models. In order to perform a segmentation of the model to the
noise filtering and SoS parts, it is necessary to identify which MPCs should by
removed and replaced by the noise filtering. Effect of MPCs, having significant
power and being well separated from other components in resolved domains, could
be easily identified. Impact of such MPCs could be classified as dominantly de-
terministic. In cases where it is not possible to identify all present MPC but only
results of their superposition are observable, the effect of such MPC is dominantly
stochastic. The MPC belonging to the latter category are suitable candidates for
replacement with filtering approach.
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3.4.1 Classification of Multipath Components

According to the contained power and possibility of identification MPCs can be
classified as [28]:

� Specular component corresponds to the single homogeneous plane wave: di-
rect line-of-sight wave or strong reflection/diffraction. The single component
does not introduce spread in resolved (delay, wavenumber) domains and there-
fore coherence in faded domains is infinite. Within local stationarity region
the specular component is not subjected to fading.

� Non-specular component is collection of homogeneous plane waves that is
represented by sum of differently phased specular waves. This component is
similar to fading group, being introduced in Sec. 3.3.1 for representation of
band-limited channels.

� Diffuse component can be defined as non-specular component where all con-
stituent specular components carry power that is negligible compared to the
total power of diffuse component. Therefore,

[max
i
{Ai}]2 �

∑
i

A2
i (3.20)

where Ai = ‖αi‖F is magnitude of ith MPC.

Diffuse non-specular components are observable in majority of propagation
environments due to existence of numerous objects that re-scatter received
energy. After numerous interactions, or after transversing long distances, the
significantly attenuated components arrive from many directions in space.
Although they individually have negligible power, due to their large quantity
they joint contribution to the received power can be significant.

In a local area, the hybrid model expresses the channel as the sum of a finite
number of specular waves and a single non-specular (possibly diffuse) component:

H(f, t, ~rTx, ~rRx) =
∑
i

αi · exp
(
−j[2πfτi + 2πtνi + k ~Ωi

Tx
~rTx + k~ΩRxi ~rRx]

)
+ Hdiff (f, t, ~rTx, ~rRx)

(3.21)
The complexity of a channel representation can be reduced if minimum necessary

number of specular components is used. For known amplitudes {Ai} the simple
procedure is proposed in [28] that initially classifies all components as diffuse. The
strongest components are then iteratively removed (one-by-one) until condition
(3.20) is satisfied for all components being classified as diffuse.

In experimental channel characterization the assumption about known ampli-
tudes is not satisfied, therefore another way for selection of the model order (i.e.
number of significant specular components) was necessary. This will be further
discussed within context of dedicated algorithms for estimation of specular MPC
parameters in Sec. 4.2.
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3.4.2 Rice Fading Model

The Rayleigh PDF can be extended to Rice distribution by addition of single dom-
inant (typically line-of-sight) component. Therefore the Rice fading model rep-
resents an example of mixed modeling approach. The ratio of powers between
the single dominant component and remaining (diffuse) components defines the K-
factor of Rice distribution. This concept can be further extended by considering
combinations of different number of specular components and inclusion/omission
of diffuse part [28].

3.5 Geometry-based Stochastic Channel Modeling

When designing a wireless transmission system, it is necessary to evaluate its per-
formance over a sufficient number of channel realizations. These could be generated
by deterministic propagation models described in the Sec. 2.3, however, their high
computational complexity prohibits the intensive link or system level simulations
required during system design.

Thus, procedures with a lower computational complexity that could emulate a
different radio-propagation environments are preferred. These requirements have
led to the Geometry-based Stochastic Channel Models (GSCMs) where generated
multipath components are not directly related to any particular (or very detailed)
radio-environment. Instead, the channel realizations are determined as realizations
of a multidimensional random process that characterises all aspect of physical plane-
wave propagation.

The models of GSCM class combine stochastic and deterministic elements in
order to offer good trade-off between complexity and performance (realism). These
models deal with physical ray propagation, and therefore implicitly or explicitly
include the geometry of the propagation environment.

The form of (3.16) supports the claim in [28] that the received baseband signal
can be represented as superposition of “homogeneous” and “inhomogeneous” plane
waves, i.e., complex sinusoids. Each of these sinusoids have real-valued amplitude,
phase and polarization as indicated in Fig. 2.7. The phase of the sinusoid will
change in time and frequency according to positions of transmitter, receiver and
movement of Interacting Objects (IOs):

� φi,j - accumulated phase change between i and j polarizations due to antenna
and scatterer interaction,

� 2πfτi - phase change due to total distance traveled,

� 2πtνi - phase change due to movement of IO,

�
2π
λ
~Ωi
−→r - phase change due to motion of the transmitter or receiver.

The interaction with scatterers in the propagation environment produce multi-
path waves with different time delays and wavevectors. This results in both spatial
and frequency selectivity. Temporal selectivity is caused by the motion of scatterers,
that will result in the change of structural parameters pi in (2.20). This is included
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into (3.16) through the conditioning on the spatio-temporal realization of the radio
link, Q, that determines the particular realization of structural parameters.

In general terminal/IO velocity (change of spatial position) is is the cause of
evolution of all ray parameters. However, it is often assumed that their movement in
short observation period cause only change in carrier phase, therefore representing
small-scalle effects [5]. This concept corresponds to Local Stationarity Regions
(LSRs) [8], i.e., “drops” where ray gains, propagation delays, DoD/DoA, are kept
constant while only carrier phase evolves. The phase changes are, under given
assumptions, related to terminal movement and resulting Doppler shifts.

3.5.1 Concept of Local-area Approximation

Based on concept of a local stationarity area it is possible to construct geometry-
based stochastic channel model in which all structural parameters that describe
the multipath profile are kept constant within “local-area”. In this model the
parameters pi = (τi, νi,αi, ~Ω

Tx
i , ~ΩRxi ) of all MPCs, are constants and determined

by the propagation that characterizes the local area. When terminal traverses
the extent of “local-area” it enters the new local-area with new (again constant)
structural parameters. The phases of MPCs, for all entries of polarimetric matrix
contain random terms {φi}.

According to the term “local-area” the class of Stochastic Local-Area Chan-
nel (SLAC) models is introduced in [28]. If compared with (3.16), these models
are single-directional and do not consider MPC polarizations, but could be eas-
ily extended to equivalent form. The random phases in the Stochastic Local-Area
Channel (SLAC) model are uniformly distributed over the interval [0, 2π). The
dependences between phase realizations (arbitrary, uncorrelated, or independent)
will determine the level of model stationarity. The model with uncorrelated phases
E{exp(j[φk − φn])} = 0, k 6= n will be Wide-Sense Stationary (WSS), and inde-
pendently distributed phases result in Strict-Sense Stationary (SSS) process [28].
The SLAC models are assuming frequency-space decoupling that is discussed in the
following section.

Frequency-Space Dependence

The geometry-based model uses finite sum of homogeneous plane waves to repre-
sent the frequency and space selectivity of the propagation channel. The frequency
bandwidth and extent of space (i.e., LSR) in which the structural parameters does
not change significantly are very important features of the Geometry-based Stochas-
tic Channel Model (GSCM). Since frequency and spatial domains jointly impact
amplitudes and phases of constituting MPCs it is necessary to consider joint limi-
tation of frequency-space range in which approximation is valid. For known signal
bandwidth this results in the measure of space where approximation is valid, i.e.
with extent of the local area.

If a wavelength is expressed as function of carrier frequency and baseband signal
frequency: λ = c

fc+∆f than the phase term

2π

λ
~Ωi~r =

2πfc
c

~Ωi~r +
2π∆f

c
~Ωi~r (3.22)
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of (3.16) can be divided into purely spatial term (that does not depend on ∆f)
and cross product term. If the cross product term causes the phase change lower
than 2π∆f

c
~Ωi~r <

π
2 it can be neglected [28], and the structural parameters need

not be updated. The resulting channel model uses summation of band-limited ho-
mogeneous plane waves that have uncorrelated scattering between frequency and
space.

The maximum extent of local area over frequency and space i.e. ∆fmax = B
2

and max (~Ωi~r) = LA
2 gives bandwidth-distance relation

LA <
c

B
, (3.23)

where c designates the speed of light. Thus, the spatial range where multipath pro-
file representation can be considered constant reduces for the higher signal band-
width. The extent of LA is related to the signal bandwidth only for channels that
exhibit joint space-frequency selectivity: cross term vanishes for narrowband chan-
nel or stationary receiver.

3.5.2 Classification of Radio Environments

The basic classification of radio environments can be performed by considering
general deployment assumptions (e.g. above or below the rooftop), and general
characteristics of the environment itself (indoor, outdoor, etc.). Positions of termi-
nal in respect to environment are also relevant since they change the interaction
pattern and determine the coverage range.

The radio environments could be additionally classified according the density
of a significant scatterers, and corresponding regularity of MPC distribution. [32].
Existence of large number of buildings in town centers increases possibility of mul-
tiple interactions causing the large number of strong MPCs. On the other hand,
a shadowing from buildings can also strongly attenuate all contributions. This
results in quite irregular distribution of observed MPCs in delay-directional do-
mains. In open areas, with lower density of strong scatterers the direct path occurs
with higher probability due to less shadowing, and multipath profile changes less
abruptly. In hilly and mountainous areas, the strong components with longer delays
could appear due to reflection from the mountain/hill slopes.

In this way the multitude of possible configurations can be reduced into rel-
atively small number of classes. Although this classification is very coarse, with
high level of abstraction, it allows radio-network planners to deal with a quite a
low number of a typical cases, that are usually referred to as propagation scenar-
ios. This approach allows scenario-based modeling approach in which the generic
channel model is used to represent the multiple scenarios.

Scenario based modeling assumes that observed stochastic properties are “stable”
when complete environment is characterized jointly. This means that all collected
data is used together for extraction stochastic parameters. This is typical approach
for the state of the art channels models that are analyzed in this theses. Alternative
would be to divide the environments into sub-classes and perform their separate
characterization. E.g. the results of Cross-Polarization Ratio (XPR) analysis in
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[53] indicate different behavior for corners and streets in the same measurement
environment (city).

3.5.3 Clustering of MPCs

The concept of cluster is introduced to reflect observed energy grouping in direc-
tional and delay domains. Among many clusters definitions this formulation seems
the most complete: “he wave components behaving similarly, in terms of angular
and delay evolution as function of receiver location, were considered to belong to
the same cluster” [54]. Therefore, in the context of this theses cluster represents
collection of MPCs having similar structural parameters, that also evolve in ST
in the similar manner. Therefore, a cluster is not necessarily related to the single
interacting object, but to group(s) of co-located objects.

The goal of clustering is not just multi-dimensional classification of MPCs to
the finite number of groups, but representation of a phenomena observed in phys-
ical propagation. Influence of physical clustering in directional domains becomes
relevant for beamforming, while clustering in in the delay domain influences the
design of receivers or equalizers [55].

The clustering of MPCs, luckily, additionally simplifies construction of the chan-
nel model [56], [57].

The LoS component, accompanied with reflections in the vicinity of transmitter
and receiver could be identified as LoS cluster. When present, the LoS cluster is
dominant and significantly impacts the channel and its statistic.

3.6 Stochastic Driving of Multipath Model

The stochastic generation of multipath can be done in several different forms. We
would distinguish two classes according to the use of the scattering (or interacting)
objects during the physical model synthesis. One possibility is to place all inter-
acting objects that contribute to multipath propagation in a 2-D/3-D coordinate
system. An alternative would be to fully remove scatterers from the model synthe-
sis. In this case multipath components are no longer related to particular scatterers,
but are generated in the parametric domain instead. The term “parametric” relates
to the parameters of multipath components as given by (2.20).

Positioning of Interacting Objects in Real Space
The scatterers are placed in certain geographic area around transmitter and/or

receiver. According to chosen 2-D area it is possible to distinguish a elliptical,
models with one or two rings, disk models, etc. [58] If 3-D distribution is modeled
then solid figures are used as in the double-cylindrical model [59]. These models
typically categorize the MPCs according to number of interactions: none (LoS (di-
rect) component), single, double, multiple. Apart from the area/volume containing
IOs, the scatterer density should be properly determined in order to appropriately
represent the targeted statistic features. E.g. the time correlation will be implicitly
determined by the spatial distribution of scatterers, i.e. Doppler spectrum will be
determined by arriving directions.
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The interacting objects could be abstracted as multipath clusters like in the
COST 273 model [60]. By assigning visibility regions [61] to these clusters, a sim-
plified ray-tracing engine is obtained. The randomness in this approach is attained
by random selection of visibility regions and the intra-cluster structure.

Virtual Positioning of MPCs in Parametric Domain
In general, distribution of scatterers to fit statistical properties of multipath

profile is not the simplest approach to stochastic driving of GSCM. If double-
directional concept is used, than the propagation environment can be described from
perspective of transmitting and receiving antenna. The interactions with scatterers,
are in this approach replaced by virtual positioning of MPCs in parametric domain.
As consequence, these models deal with the virtual clusters for which relations
between departure/arrival directions and delay are not established by principles of
geometrical optics, but randomly.

Typical representatives are the Spatial Channel Model (SCM) [62], the channel
model developed in the WINNER project [5], and the reference model for evalua-
tion of International Mobile Telecommunications (IMT)-Advanced radio interface
technologies [63]. The stochastic equivalence with the realistic radio propagation
environment is a crucial assumption behind Geometry-based Stochastic Channel
Model (GSCM). Within the 3GPP SCM and WINNER models, the global prop-
erties of the underlying stochastic process are expressed by Large-Scale Param-
eters (LSPs), describing the distribution of the transmitted power over different
dimensions of the channel.

3.6.1 Usage of the Large-Scale Parameters for Channel Characteriza-
tion

The consequence of the environment abstraction introduced by parametric domain
synthesis is that the evolution of a space-time model can not be implicitly given by
relative distances of scattering objects. Instead, the channel dynamic is represented
by correlated realisations (over space-time) of so called Large-Scale-Parameters
(LSPs). The term LSPs is used to denote a group of channel parameters that typi-
cally experience notable change only over distances exceeding several wavelengths.
In these models, individual multi-path components are described jointly by cluster-
ing them and then describing the global position of clusters in the multidimensional
space with aid of LSPs.

(Dis)appearance or reallocation of significant clusters/MPCs will effect the
marginal (e.g. delay and directional) spread parameters and thus they could be ex-
ploited for abstraction of large-scale channel behavior. The main role of the LSPs
is, therefore, to describe the joint distribution of the MPC power over different
domains (direction, polarization, delay, Doppler, etc.) and additionally to describe
space-time channel evolution. These parameters are capturing gradual changes in
the structure (angles, delays, powers . . . ) of multipath (opposite to small-scale sig-
nal fading due to interference between multipath components). The set of relevant
LSPs established within the SCM/WINNER models is listed in Tab. 3.1§.

§Doppler shift is not explicitly parameterized, but for a given velocity vector it will be implicitly
determined by the directions of departure and arrival.
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Figure 3.3: Generation of empirical, scenario-based multipath channel model [64]:

a Multidimensional channel sounding ;

b High-resolution estimation of joint MPC parameters;

c Statistic characterisation of LSPs and their space-time dependencies;

d Guided random positioning of MPC in parameter space, according to random real-
ization of multivariate LSP process;

e Determination of antenna array response to given multi-path structure.

The Large-Scale Parameter statistics is obtained from MIMO channel measure-
ments and appropriate post processing procedures. Using the concept of correlated
random LSPs it is easy to reproduce stochastic properties being observed during
channel sounding and therefore this enables the straightforward scenario-based rep-
resentation. By performing the measurement experiment with particular antenna
deployment defining the scenario, it is possible to develop an empirical multipath
model. This process is illustrated in Fig. 3.3.

Empirically obtained probability density functions of LSPs are approximated
with simple analytical distributions. The relevance of obtained model will depend
on gathered LSP realizations: in order to claim that the model represents the
whole urban scenario, it is necessary to perform extensive measurements in multiple
corresponding environments. If so, it is expected that model predictions will be
accurate for other environments too.

Within the modeling context LSPs govern evolution of the synthesized channel,
however their significance is not limited to that purpose only. Since LSPs show
strong correlation with system performance indicators (e.g. Bit Error Rate (BER))
they could be employed for system performance evaluation or adaptation of trans-
mission parameters on radio-link [65].

3.7 WINNER Channel Model

The WINNER Channel Model (WIM) is a generic model, whose scenario-specific
parameters are determined from extensive wideband MIMO radio-channel measure-
ment campaigns and results found in the open literature. The WINNER wideband
MIMO radio channel model ( [66], [67], [68], [5]) has been developed in the course
of the IST-WINNER¶ project [69] as a part of a system-level test-platform. The
model was developed in order to provide a reliable tool for estimation of system
performance, covering frequencies in the range from 2-6 GHz and bandwidths up to

¶The Wireless World Initiative New Radio (WINNER) project [69] was conducted in three
phases (I, II, +) from 2004 until 2010, with the aim to define a single ubiquitous radio access
system concept, scalable and adaptable to different short range and wide area scenarios.



3.7. WINNER Channel Model 57

2

v

h 3

v

h 4

v

h1

v

h 8

v

h7

v

h6

v

h5

v

h

x

y

z

1
24 23 22 21

2
3

4
5

z

x

1
24 23 22 21

2
3

4
5

y

Figure 3.4: The single realization of the modeled MIMO channel.

100 MHz in different types of propagation environments. The WINNER Channel
Model (WIM) was developed starting from the Spatial Channel Model (SCM) [34].
At first, a backward compatible extension toward higher bandwidths was provided (
Spatial Channel Model Extended (SCME), [66]), but later, compatibility was aban-
doned and the model was improved in many aspects (WIM1) [70].

The WIM offers a complete channel model description in a sense of large-scale
as well as small-scale effects in MIMO radio-channel for Beyond 3G (B3G) system
designs. WIM is a generic model, whose scenario-specific parameters are determined
from MIMO radio channel-sounding [5]. The WINNER generic model can describe
an infinite number of propagation environment realizations for single or multiple
radio links, for all the defined scenarios, and for arbitrary antenna configurations,
with one mathematical framework by using different parameter sets.

3.7.1 Structure of the WINNER Channel Model

In WINNER channel model large-scale as well as small-scale effects of MIMO radio-
channel (with S transmitting and U receiving antennas) are reflected in channel
matrix:

hU×S(t, τ) =

 h1,1(t, τ) · · · h1,S(t, τ)
...

. . .
...

hU,1(t, τ) · · · hU,S(t, τ)

 , (3.24)

where hu,s(t, τ) represents time-dependant channel impulse response between sth

transmitting and uth receiving antenna.
WIM is a double-directional [26] geometry-based stochastic channel model, in

which a time-variable channel impulse response is constructed as a finite sum of
Multi-Path Components (MPCs) which are conveniently grouped into clusters.

Geometry Aspects

The constituting MPCs are characterized by departure (from Tx) and arriving
(to Rx) directions, propagation delay and power. Channel realizations between
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transmitter antenna element s and receiver antenna element u are generated by
summing contributions of N clusters, each having M rays:

h(t; τ) =

N∑
n=1

M∑
m=1

~F
T

s (~ΩRxn,m) ·αn,m · ~Fu(~ΩTxn,m)·

· exp j2πνn,mt · δ(τ − τn,m)

(3.25)

The superposition (3.25) of specular paths, with different propagation delays τn,m,
results in the correlation between antenna elements and temporal fading with a
geometry dependent Doppler spectrum.

In WIM necessary MPC (low-level) parameters are calculated from probability
distributions. This applies to all model parameters, except transmitting and re-
ceiving antenna gains which are deterministic and related to the chosen antenna
arrays. Although WINNER uses double-directional propagation modeling approach
that should be completely antenna independent, a generation of channel outputs
requires antenna embedding [7]. The complex, polarimetric response of an element
in the antenna array is given by (2.31). During the WINNER Phase II the suitable
polarimetric representation for 3-D antenna arrays is provided [71] and distributions
of elevation angles are provided for indoor scenarios [68], [5].

An influence of the environment to the orthogonal wave polarizations is de-
scribed by Cross-Polarization Ratios (XPRs). Random XPR realizations, κ, are
used for the construction of 2x2 matrix αn,m. Additionally, elements of this matrix
incorporate complex MPC gains: all MPCs in cluster have the same power and
random (independent) uniformly distributed phases Φ.

αn,m =

√
P ′n
M

[
ejΦ

vv
n,m

√
κn,me

jΦhvn,m

√
κn,me

jΦvhn,m ejΦ
hh
n,m

]
(3.26)

Term ej2πνn,mt in (3.25) describes changes of ray phases that are consequence
of terminal movement, and it is used to simulate small-fading effects.

An evolution of MPC parameters cannot be based on the ray-tracing since
positions of scattering clusters are unknown. Instead, their positions are stochastic
as are their evolutions.

Stochastic Aspects (Randomness and Correlations)

The positions of MPC clusters in multidimensional space are determined by Large-
Scale Parameter (LSP) realizations. LSPs are controlling the distribution of the
power (spreading) over the individual dimensions of the channel, as indicated in
Tab. 3.1. In WIM LSPs are reflecting physical propagation measures, being com-
monly used to characterize power related distributions in wideband/narrowband
radio-channels. WINNER model uses up to 8 LSPs: distributions of departure and
arrival angles are dependent upon Azimuth and Elevation Spreads on Departure
(ASD/ESD) and Arrival(ASA/ESA), distribution of delays is controlled by Delay
Spread (DS), Shadow Fading (SF) standard deviation is used to describe deviation
from average transmission loss, Ricean K-factor is expressing the ratio of powers
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Table 3.1: Large-scale parameters of WINNER model.

LSP Name Acronym Power distribution:

Shadow Fading SF around mean transmission loss
Delay Spread DS over delay domain

angular Spread over angular domain:
ASD/ASA - at Departure and Arrival
ESD/ESA - over Azimuth and Elevation

narrowband K-factor K betw. LoS and NLoS clusters
CROSS Polar. Ratio XPR betw. co- and cross-polar MPCs
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Figure 3.5: Probability distributions of arriving angles, obtained from RIMAX high reso-
lution data analysis.

between line-of-sight (LoS) and remaining paths, and XPRs are used to quantify
interaction between orthogonal polarizations.

Within the modeling context LSPs are exploited to govern the evolution of
the synthesized channel. Experimental distributions of LSPs are determined from
measurement data, and suitable analytical models are introduced. In this way whole
channel model is finally parameterized with few parameters of LSP distributions.
In WINNER modeling, most often, log-normal model distribution is used, as shown
in Fig. 3.5 for distribution of arrival angles.

The generic WINNER model is a stochastic model with two levels of random-
ness. At first, large-scale parameters (LSPs) like shadow fading, delay and angular
spreads are drawn randomly from tabulated distribution functions. Next, small-
scale parameters describing rays (plain waves) like delays, powers and directions
of arrival and departure are drawn randomly according to tabulated distribution
functions and random LSPs. At this stage, the geometric setup is fixed and the
only free variables are the random initial phases of the scatterers. By (randomly)
picking different initial phases, an infinite number of different realizations of the
model can be generated (Fig. 3.4).
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Figure 3.6: LSP are characterized and synthesized in transformed domain.

The entire process of WIM channel synthesis can be done in three hierarchy
levels [72]:

1. Large-Scale Parameters
On top level, Large-Scale Parameter (LSP) listed in Tab. 3.1 are drawn ran-
domly from tabulated log-normal PDFs. With the exception of XPR, all
other LSPs are generated as correlated random variables.

Since spatial, temporal, frequency, and power domains of MIMO channel are
not independent, it is necessary to quantify observed interdependence. For
that purpose the cross-correlation coefficient between different LSPs is used.
A similar approach was proposed in Spatial Channel Model (SCM) [62] to
correlate parameters of the single link (link-level correlations). Additionally to
SCM, WIM extends considered correlations to multiple links with the common
Base Station (BS), Fig. 6.9. The relations of link-level and distance-based
intra-cell correlations of WIM LSPs are illustrated in Fig. 6.10 and analyzed
in Sec. 6.3.3.

In WINNER channel model, both auto-correlations and cross-correlations of
LSPs are reproduced by correlating realizations of independent Gaussian ran-
dom processes in so-called “transformed domain”.

Transformed LSP Domain The WINNER model investigates LSP distribu-
tions and their correlations in transformed domain [5] where normal distri-
butions for all transformed LSPs are assumed. For log-normally distributed
LSPs (delay and angular spreads) the mapping s̃ = g(s) = log10(s) is ap-
plied (Fig. 3.6). The remaining LSPs (SF, XPR, K-factor) have Gaussian
distributions when expressed in [dB]. The WINNER tables specify marginal
(per-dimension) TLSP distributions with mean and variance parameters
(µi, σi)i=1,...,k and matrix of correlation coefficients ρ = [ρi,j ]i=1,...,k;j=1,...,k.
The entries of this matrix express pair-wise correlations of the LSPs xi and
xj in the from of the correlation coefficient:

ρi,j =
Cov[xi, xj ]√

Cov[xi, xi] Cov[xj , xj ]
=

σ2
i,j

σiσj
(3.27)
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where σi,j = Cov[xi, xj ] = E[(xi−E[xi])(xj−E[xj ])]. Fig. 3.7 shows marginal
distributions of delay spread in transformed domain for all WIM reference
scenarios having Non Line-of-Sight (NLoS) propagation and additionally in-
cludes the maximum likelihood estimate of normal distributions for Ilmenau
and Dresden measurements, which will be discussed in the following sections.
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Figure 3.7: Delay spread PDFs in transformed domain.

2. MPC Cluster Centroids
On the second level, cluster centroid parameters are determined. Since radio-
channel is non-stationary, probability distributions of cluster parameters are
also time dependent. In WINNER channel modeling these distributions are
approximated with probability distributions (exponential or normal) that are
fully parameterized by the first and second statistical central moments. Exam-
ple, showing fitting of experimentally determined PDF of MPC propagation
delays and corresponding exponential model is given in Fig. 3.8. In this way,
the probability distributions would be time-varying if their control parame-
ters are changing. Parameters that are controlling probability distributions
of Cluster Centroid (CC) parameters are belonging to the LSP group: Delay
Spread (DS) controls decay for exponentially distributed CC delays, while
Angular Spread (AS) controls dispersion of CC DoD/DoA having wrapped
Gaussian distribution (Sec. C.4.1).

For the sake of the simplicity, the cluster characterization is simplified in
SCM/WIM. Therefore, only cluster centroid (CC) parameters are drawn ran-
domly from tabulated marginal distributions and all clusters share the same
(scenario dependent) intra-cluster angular spread (CAS). Additionally, irre-
spective from WIM scenario, intra-cluster delay spread (CDS) can be either
0 or 3.9 ns.
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Figure 3.8: Distribution of excess delays, obtained from RIMAX high resolution data
analysis.

Frequency Correlation Function and Intra-Cluster Delay Spread
The clusters identified from measurements are, in general, dispersed in an-

gular and delay domains. In order to simplify model and to establish straight-
forward relation to Tapped Delay Line (TDL) model, SCM/WIM1 have in-
troduced Zero Delay Spread Clusters (ZDSCs). Since WINNER Channel
Model is targeting much broader frequency bandwidths, the total number of
identified ZDSC clusters (and paths) in WIM1 was larger then for SCM.

Dispersion in delay domain was firstly introduced in SCME [66] to account
for higher bandwidths and to reproduce the proper level of the frequency
correlation. In [70] it is showed that SCME with intra-cluster delay spread
shows similar frequency correlation as WIM1 based on ZDSC, however the
total number of paths was considerably lower in the SCME case. Since dis-
regarding of CDS increases frequency correlation, ZDSC concept is not fully
suitable for wideband models. As a compromise two strongest clusters are
spread in WINNER Channel Model Phase II (WIM2), by using the constant
CAS of 3.9 ns. The original SCM/WIM1 angular-only distributed paths of a
single cluster are re-grouped to three fixed delay offsets (Fig. 3.9), thus the
cluster subdivision in delay domain does not increase total number of paths.

3. Multi-Path Components
In order to further simplify cluster characterization SCM/WIM does not deal
with random placement of MPCs in “delay-directional” domain. Instead, on
the 3rd level, the same, simple internal structure of the cluster is used and
MPC parameters are calculated in deterministic manner. This structure as-
sumes fixed number of MPCs with equal power. Angular separations between
MPCs account for assumed Laplacian Power Angular Spectrum (PAS) and
given CAS. This WIM functionality is realized by scaling predefined angular
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“one-degree” offsets with targeted CAS. This is achievable since “one-degree”
offsets are symmetric around mean cluster direction, and MPCs have the same
power.In ZDSCs all MPCs share the same propagation delay corresponding
to cluster centroid. Clusters with 3.9 ns delay spread are constructed by the
fixed delay offsets of 0, 5 and 10 ns in respect to a reference CC delay. The
normalized powers of formed sub-clusters are 10/20, 6/20 and 4/20, which
means that delay offset of 0 ns is assign to 10 from 20 available MPCs, 5 ns
offset to 6 MPCs and 10 ns offset is given to 4 MPCs in cluster (Fig. 3.9).

The random initial phases, Φ in (3.26), are taken from uniform distribution.

MPC’s Doppler shift is related to the mobility pattern, i.e. velocity of Mobile
Terminal (MT).

With introduced approximations in WIM structure, the LSPs become the most
important for the particular scenario characterization. We would therefore ignore
the lower hierarchy levels when computing a scenario divergence in the Sec. 5.3.





Chapter 4

Parameterization of WINNER Model

The usability of different channel representations for model development is discussed
in the first section. From channel tensors being collected during multidimensional
channel sounding, a joint space-time-frequency representation that offers the most
detailed insight into propagation mechanisms is obtained. The process of propaga-
tion channel reconstruction from multiple observations of radio channel is based on
high-resolution parameter estimation algorithms, which are presented in the sec-
ond section. The third section describes the processing sequence for estimation
of large-scale parameters of WINNER channel model. The last, fourth, section
demonstrates that usage of incomplete measures (not covering all data dimensions)
for processing of multidimensional sounding data causes ambiguity of estimated
parameter values.

4.1 Alternative Representations of Measurement Data

The measurements are performed in order to observe behavior of propagation chan-
nel, and eventually to apply gained knowledge to the design of communication sys-
tem. Typically, link and system level simulations are used in the development and
evaluation of new algorithms and transmission strategies, before implementation
trials are done. These simulations can use the measurement data in direct form
(measurement replay) or some altered representations.

In measurement replay, the obtained channel realizations over specific tracks and
pre-determined measurement antennas, are exploited for system performance test-
ing. However, the abstraction of a single measurement is preferred representation
of gained knowledge since communication system design should be universal and
not specific to the environment investigated within single measurement experiment.
Otherwise, the measurement replay simulations should use numerous experiments
conducted in different propagations environments. This assumes huge amounts of
data, hard even to store and very impractical to use in system design process.

Therefore, the goal of altered forms of measurement data is to reduce the com-
plexity of channel representation. These modified forms should preserve acquired re-
alism of measured radio-channel, and thus benefit to the system design process [65].

65
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The process of finding appropriate trade-off between the channel representation
complexity and its realism is known as channel modeling.

Reliable channel models are essential for network planning and link design. For
the design of Next Generation Wireless Networks specified in WINNER or 3rd
Generation Partnership Project (3GPP) LTE-Advanced dedicated channel models
are defined: SCM [62], SCME [66] and WINNER channel model [69], [70]. Using the
measured and processed impulse responses a statistical analysis of small and large-
scale parameters can be carried out. This leads to a more generalized representation
of the measured channel data without neglecting the real scenario.

4.1.1 Development and Parameterization of a Channel Model

The multidimensional channel transfer function can be equivalently expressed using
the system functions [27] in either faded domains (~r-space, t-time, f -frequency) or

resolved domains (~Ω-directions, ν-Doppler shift, τ -delay) [31].
According to the dependence of data from the particular measurement we can

distinguish representations that are dependent and independent from measurement
antenna arrays. This distinction becomes very important for analysis of MIMO
transmission where spatial correlations (specific to the used antenna arrays) are
crucial for obtained link/system performance. The applied methods for channel
analysis differ between these model groups since the underlying data representa-
tion is different. The measured transfer functions are related to spatial sampling
predetermined by measurement antenna array properties (geometry, polarizations,
etc.). Therefore the number of used antennas determines the representation in
spatial domain, as a collection of time-varying, wideband SISO channels. When
the representation of propagation channel is given by structural parameters that
independently describe multipath components, the number of relevant parameters
is basically determined by propagation environment.

Non-Directional Representation - Radio Channel

According to introduced terminology for channel decomposition (Sec. 2.2), joint de-
scription of the space-time propagation channel and antenna is referred to as radio
channel. Since an antenna projects a spatial response into time-delay dimension
according to (2.21), the channel tensor H(t, f, s, u, p) obtained by measurements
covers all relevant dimensions for separate analysis of temporal (time-varying wide-
band) and MIMO properties of radio channel.

In general, channel characterization can be performed in one of Fourier-related
domains from Fig. 4.1, which correspond to Bello’s system functions from Sec. 2.4.3.
The selection of the particular domain for parameter estimation is related to target
channel representation. E.g., for estimation of delay spread instead of H(t, f) its
1-D FT pair, h(t, τ), should be used. Some other parameters (e.g. transmission
loss) could be equivalently determined from different domains.

The joint two-dimensional scattering function (Doppler spectrum versus delay
power spectrum) gives partially resolved representation of the channel where the
“resolution” is determined by both measurement time, antenna array aperture size,
and system bandwidth. The scattering function enables limited channel character-
ization directly from measured data.
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Figure 4.1: Domains used for characterization of wideband SISO radio channel [2].

This can be viewed as a natural way of processing since only time projections of
multidimensional data are collected during measurements. However, this represents
analysis in subspace of available data, since spatial and polarization dimension are
not included. Alternative representation can be obtained in the cases when it
is possible to resolve missing dimensions from available time-domain projections.
This goal is achievable if time-projections on spatially displaced antennas are not
completely correlated. Using different spatial signature, the spatial dimension of
propagation can be identified.

Joint Space-Time-Frequency Channel Representation - Propagation Channel

Possibility to remove dependence of measured antennas (antenna de-embedding,
Sec. 2.4.2) is related to the reconstruction of the missing directional and polarization
dimensions of the channel. For that purpose DoD, DoA, and polarimetric gains
α should be estimated/resolved for each multipath component, i, providing the
channel representation by means of structural parameters:

H(~rRx, ~rTx, f, t) =
∑
i

~FTRx(~ΩRxi )αi ~FTx(~ΩTxi )ej2π(τif+νit). (4.1)

Interaction of MPCs with antenna arrays is described by the complex, polarimetic
antenna radiation patterns ~F (~Ω) in (2.31). Due to inability to represent the PAS,
in the general case, as a product of marginal spectra on departure and arrival, a
joint characterisation of DoD and DoA is to be used - as suggested by the double-
directional modeling concept [8], [55]. The complex 2-by-2 matrix α ∈ C2×2 is used
to jointly describe magnitude, phase, and cross-polarization effects for single MPC.

The estimated structural parameters provide an antenna independent set of
specular multi-path parameters that describe realizations of propagation channel.
This additional feature significantly extend the usability of measurement experi-
ment, since it allows characterization of propagation channel independently from
applied measurement antennas.

The reconstructed MPC propagation parameters improve the fundamental un-
derstanding of the mobile multipath channel, and facilitate development of the
Geometry-based Stochastic Channel Model (GSCM).

4.2 Reconstruction of Spatial Propagation Dimension

Although the synthesis of the geometry-based model is quite straightforward to
perform, this is not the case with measurement data analysis that is used for pa-
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rameterization or model verification.
The necessary structural parameters, normally for a large number of MPCs,

could be estimated from appropriate multidimensional channel sounding data. In
order to be able to resolve directions of departure and arrival for transmitted waves,
a radio channel is observed using multiple Tx and Rx antenna pairs [73]. These data
is gathered during wide-band measurement experiments with specially designed
antenna arrays and real-time channel sounding devices [74], [75], [10], [60]. By
performing measurements with specific antenna arrays, the high-resolution path
parameter estimation can be applied.

The most important feature of high-resolution parameter estimation (HRPE)
is related to feasible resolvability of ray parameters in the measurement data. The
resolution of estimated structural parameters is impacted by finite measurement
bandwidth, the limited aperture and number of antennas in the measurement array,
and the geometry of the array. The implementation of measurement array deter-
mines the distribution and number of spatial samples. HRPE algorithms are further
evaluated according to reliability of the estimated ray parameters, and proper de-
termination of the relevant number of rays. Above problems stem from the limits
of the experimental-based characterization that are inherent to measurement pro-
cedures and actual equipment.

The estimation procedure of MPC parameters from channel sounding data re-
quires the use of so called high-resolution algorithms, like e.g. Maximum Likelihood
Estimation [76], ESPRIT (Estimation of Signal Parameters via Rotational Invari-
ance Techniques) [77], [78], SAGE (Space-Alternating Generalized Expectation-
maximation) [79], or RIMAX [80], [81], [82]. Due to the computational complexity
of these algorithms, high-resolution analysis is one of the most time-consuming
phases in the modeling work.

4.2.1 High-Resolution Parameter Estimation with RIMAX Algorithm

For reconstruction of spatial and polarization dimensions from TU Ilmenau mea-
surements, the gradient based maximum likelihood parameter estimation algorithm
RIMAX is employed [81], [83]. Additionally to the parameter-per-parameter op-
timization applied in SAGE, the RIMAX uses simultaneous gradient based opti-
mization over complete parameter set. This property enables reaching of the global
minimum of a cost-function and improves results of reconstruction. When RIMAX
is employed to perform high-resolution parameter estimation, separate characteri-
zation of numerous specular MPCs will be obtained. For each specular multipath
components the parameters pi defined in (2.20) are estimated.

RIMAX uses a data model that describes every temporal observation of a wide-
band MIMO channel (snapshot) as the superposition of SCs and Dense Multipath
Components (DMCs).

H(u, s, f |t0) = s (θsc|t0) + d (θdmc|t0) ∈ CMRx×MTx×Mf . (4.2)

The L-tuple θsc = {pi}i=1,...,L represents collection of MPC (structural) parameters
that jointly describe multipath profile. The contribution of L specular components
to s (θsc) at single frequency f , for MIMO sub-channel (u, s) defined by positions
of Tx and Rx antennas (~rRx, ~rTx) can be calculated using the equation (4.1).
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When MPCs parameters are jointly describing all available dimensions of mea-
sured data there is no ambiguity stemming from the subspace description (as long
as the full description of measurement antennas is available). However, from limited
number of observations it is possible to reliably estimate only limited number of
parameters and MPCs. For each extracted parameter RIMAX provides reliability
measure based on the Fischer information matrix [81].

Dense-Multipath-Components

RIMAX algorithm increases reliability of estimated parameters by introducing con-
cept of Dense Multipath Component (DMC): only limited number of specular
components is resolved as such, while the rest of the observed energy is jointly
characterized as DMCs. The presence of DMCs can be explained by diffuse scat-
tering or otherwise unresolvable specular paths. However, the physical meaning of
DMCs are not the crucial in this context – the introduced DMC model reduces
the complexity of the channel representation and improves robustness of the Max-
imum Likelihood (ML) parameter estimator. Additionally to accounting for the
unresolved paths, the DMCs absorbs influence of different modeling errors: shaped
wave fronts, limited accuracy of the antenna calibration, etc. [82].

Dense multipath components are represented as correlated realizations of the
stochastic process having zero-mean circulary symetric complex Gaussian distribu-
tion:

d (θdmc) ∼ Nc(0,R(θdmc)) ∈ CMx1. (4.3)

For finite measurement bandwidth, it is assumed that Power-Delay Profile of
DMC show exponential decay over the time-delay:

S(τ) = E{|h(τ)|2} =


0 τ < τd
α1

2 τ = τd
α1 · eBd(τd−τ) τ > τd

. (4.4)

Therefore, the triplet θdmc = (τd, α1, Bd) describes the position, magnitude and de-
cay of DMC model. The corresponding frequency correlation function in frequency
domain, under Uncorrelated Scattering (US) assumption, can be determined as
Fourier transform of (4.4):

R(∆f) =
α1

Bd + j2π∆f
· e−j2π∆fτd . (4.5)

The decay parameter Bd is proportional to coherence bandwidth of FCF. The
frequency correlation matrix will contain the samples of FCF taken on multiples
of ∆f0, where ∆f0 designates regular offset between measured frequencies fi+1 =
fi + ∆f0, i = 0, . . . ,Mf − 1.

Rf (θdmc) =


R(0) R(−∆f0) ... R(−(Mf−1)∆f0)

R(∆f0) R(0) ...
...

...
...

. . . R(−∆f0)
R((Mf−1)∆f0) ... R(∆f0) R(0)

 (4.6)
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The realizations of DMC process are reproduced by correlating the samples of
multi-dimensional Gaussian noise, as discussed in Sec. 3.2 for filtering approach.
The RIMAX does not consider the complete correlation matrix but it characterizes
DMC independently over different dimensions of the channel. Therefore, the full
correlation matrix of size M ×M , M = MTx ·MRx ·Mf ·Mt is approximated with
Kronecker model:

R(θdmc) = RR(θdmc)⊗RT (θdmc)⊗Rf (θdmc)⊗Rt(θdmc), (4.7)

where ⊗ designates Kronecker product, and Rx(θdmc), x ∈ {Rx, Tx, f, t}, are cor-
relation matrices for individual channel dimensions: Rx antennas, Tx antennas,
frequency and time.

The independence of channel dimensions (channel separability) used in Kro-
necker model is unlikely to hold for the whole wideband MIMO channel due to
existence of the strong specular components in the channel. However, once the
strong components are removed, it could be more suited for representation of DMC
statistics.

The relevance of DMC part for data modeling will depend on the channel power
contained in dominant (specular) MPCs. The Signal-to-Remainder-Ratio (SRR)
defined as the ratio between the power of the estimated specular paths and the
remaining signal (DMC) power is proposed in [82] to quantify RIMAX estimation
quality. In the case of fast-train measurements (Sec. A.2.2), it is possible to model
about 95% of total received power with specular components only. From that reason
DMCs do not significantly influence global channel parameters. In some cases,
however, only half of received power can be represented with specular components,
and then DMCs become a very important part of data model.

With introduced DMC concept, the observed radio channel can be considered
as a realization of the process:

H(u, s, f |ti) ∼ Nc(s(θsc|ti),R(θdmc|ti)) ∈ CMx1. (4.8)

Therefore the single realization of a wideband MIMO radio-channel (snapshot) is
represented with the parameters:

θ(ti) =

[
θsc(ti)
θdmc(ti)

]
, (4.9)

and estimation of parameters θ(ti) is based on the finding the best match of the
reconstructed observation of H(u, s, f |ti).

Variance of Estimated Parameters

The accuracy of structural parameter estimates θ̂sc ∈ RL×1 is expressed with the
associated covariance matrix:

Cθ̂sc = E{(θ̂sc − θsc)(θ̂sc − θsc)T )} ∈ RL×L. (4.10)

For unbiased estimator, satisfying E{θ̂ − θ} = 0, the Cramér-Rao lower bound
(CRLB) defines the obtainable minimum for the estimation covariance matrix,
Cθ̂sc ≥ CRLBθ̂sc . It is shown in [84] and [81] that the RIMAX maximum likeli-
hood estimator reaches the Cramér-Rao lower bound, assuming the radio channel
sounder and antenna arrays are properly calibrated.
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Model Order Selection
The number of specular components that could be reliably parameterized de-

fines a model order. A proper selection of the model order is crucial for reaching
the optimum between the accuracy and complexity. The Cramér-Rao lower bound
provides an effective measure to decide whether a propagation path should be de-
scribed as specular MPC or associated to DMC group. If the relative variance of
the propagation path magnitude |α| is small enough [81]:

CRLB|α|

|α|2
< ε2
|α| < 1, (4.11)

then propagation path is represented as specular component. Otherwise, it is con-
sidered as a part of the stochastic process describing DMC. The proposed approach
limits the model complexity and improves robustness of the high-resolution channel
parameter estimator. However, it does not completely suppress the appearance of
the “ghost” paths.

Subdivision of Parameter Estimation Problem into Deterministic and Stochastic Parts
RIMAX algorithm assumes that structural parameters θsc are asymptotically

uncoupled with parameters θdmc that characterize DMC. Thus, both Fisher in-
formation matrix F (θ) and Cramér-Rao lower bound have form of block diagonal
matrices:

CRLBθ̂ = F−1(θ) =

[
CRLBθ̂sc 0

0 CRLBθ̂dmc

]
, (4.12)

where θ is formed by the concatenation of structural and DMC parameters, (4.9).
The block diagonal structure is exploited for splitting of ML estimation problem
into deterministic and stochastic parts. Parameters of deterministic part describe
SoS model, while stochastic part corresponds to DMC parameters (diffuse/dense
component) that are represented by filtering approach. However, deterministic and
stochastic parts of the RIMAX mixed model are not completely independent since
significant correlation exists between certain specular and DMC parameters [85].

Impact of Limited AA Model Precision on High-Resolution Parameter Estima-
tion

Some limitations on the performance of the parameter estimation algorithms are
imposed by the random phenomena contained in the channel-sounding data and
are typically characterized by the Cramér-Rao lower bound. There are, however,
additional limitations stemming from the achievable accuracy of the model of the
measurement system that is used for the estimation purposes. More specifically,
inaccuracies of the antenna array model reduce dynamic range of the measurement
data that can be reliably characterized [82].

Due to the inherent spatial characteristics of antennas, their separation from
the propagation channel can not be performed prior to HRPE. Therefore, the
HRPE procedure has to rely on a model of the AA that is used throughout the
measurements. Required AA model is created through the calibration procedure.

The accuracy of the obtained AA model may be impaired by multiple causes
(e.g., phase noise, disregarded frequency dependence of radiation pattern, or by
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unavoidable parasitic reflections present in the anechoic chamber during antenna
calibration) and therefore an impact on channel parameter estimation is to be ex-
pected. AA calibration, being conducted in an anechoic chamber, typically assumes
the existence of a single direct path between the reference antenna and the antenna
under test and disregards possible parasitic reflections. However, this may not fully
correspond to reality: for frequencies between 4 GHz and 6 GHz, the reflection
coefficients of the chamber walls are between -10 dB and -40 dB, depending on
the angle of the incoming wave and the height of the cones of the absorbing ma-
terial [86]. The achievable model accuracy will also depend on the properties of
the anechoic chamber, positioning system, and analyzed antenna arrays; however,
average values in the range from 25 dB to 30 dB can be expected [82].

Impact of AA Model Distortion
The impact of AA model distortion is evaluated in [82] and [87] for a simulated

single-path excitation. Estimation of the fixed number of specular components,
K = 10, is repeated for different arrival directions corresponding to the full co-
elevation range [−180◦, 180◦). It was found that the estimation quality depends on
the direction of the incoming wave, and can be expressed by the number of artifacts
(ghost SCs), their relative powers, and the deviation of their estimated directional
parameters from the true arrival direction.

The consequence of distortion is that each SC will tend to spread in parameter
space, producing clusters of the estimated SC parameters. This important effect
may lead to the false conclusion that clustering of SC parameters observed in mea-
surements is a characteristic of the radio propagation. Instead, clustering may come
solely from the usage of inaccurate AA models in parameter estimation algorithms.

An antenna independent channel characterization can be performed under the
assumption that it is possible to characterize all received energy with specular
components only and that an ideal model for the measurement system (including
antenna arrays) can be constructed. Unfortunately, inaccuracies incorporated into
the AA model during antenna calibration will increase the number of artifacts in the
overall channel representation. For ML parameter estimation algorithms without
a proper model order control, the distorted radiation patterns will increase com-
putational time due to the estimation of physically meaningless components. The
resulting power distribution and angular spreads could lead to a wrong interpreta-
tion of the channel characteristics w.r.t., e.g., clustering properties. These effects
are similar to those caused by an incomplete AA model (meaning non-polarimetric
or not 3-D or both) [88], [89].

4.3 Estimation of the WIM Parameters

The systematic approach to channel parameter extraction, with corresponding
methods and formulas is developed in WINNER project [4], [5]. The given pro-
cedures enable simple and transparent generation of channel model parameters.
The structure of WINNER channel model [5] requires characterization on the sev-
eral levels: i) global, ii) cluster, and iii) ray-level, however this thesis focuses on the
global model behavior that is governed by large-scale parameters.
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The particularities of the 3GPP SCM [62] and WINNER model [5] is the sim-
plified characterization of the power dispersion over delay and angular dimension
only by appropriate spreads. The total received power is expressed by the empirical
transmission-loss model, and deviations from the regression are given by shadow
fading (SF). The remaining LSPs describe existence of line-of-sight component
(narrowband K-factor), and cross polarization ratio (XPR).

The Large-Scale Parameters (LSPs) in WINNER model are characterized
stochastically and described by appropriate log-normal Probability Density Func-
tions (PDFs). Instead of joint PDFs, 3GPP SCM and WINNER characterize
marginal distributions. Cross-correlation coefficients between LSPs (excluding
XPR) are introduced to reflect interdependence observed in measurements. These
models also embed the simple exponential model for intra-site correlations: when
displacement of MT exceeds decorrelation distance LSP correlation drops below 1

e .
The measurement data can take two alternative representations being discussed

in Sec. 4.1: a 5-dimensional tensor∗ h (t, τ, s, u, p) shown in Fig. 4.3 with dimensions:
t – time (snapshot number), τ – delay, s – Tx antenna, u – Rx antenna, and p
– polarization pair, or RIMAX parameters θ(t) from (4.9), being estimated on
snapshot bases t. In the letter representation, dimensions (τ, s, u, p) are replaced

by multitude of MPC parameters (τ, ~ΩTx, ~ΩRx,α)i.
Even with different modifications of EM algorithms HRPE is complex and time

consuming. Thus, the spatial dimensions are not necessarily reconstructed before
parameters describing wideband nature of channel are calculated, and analysis is
performed using delay/frequency and time/Doppler domains. The relevant LSPs
and their distributions for the state-of-the-art channel models like WINNER and
COST are estimated from multiple representation domains [5] [90] [71]. Fig. 4.2
illustrates usage of different representation domains for parameterization of WIM.
While parameters as DS, Transmission Loss (TL), SF and the K-factor are typically
derived from power delay profile, parameters as the Azimuth of Arrival (AoA)
and Azimuth of Departure (AoD) are only accessible via sophisticated and time
consuming HRPE algorithms, e.g., RIMAX [83] [88]. This separation possibly
leads to a decorrelation between the LSPs from different domains as discussed in
Sec. 4.4.2.

In order to get comparable results from the measurements performed with dif-
ferent equipments/setups, the common signal processing assumptions should be
fulfilled:

1. Processing bandwidth is 100MHz, otherwise measurement data has to be
equalized by interpolation/decimation.

2. Only data whose dynamic range exceeds predefined threshold of 20dB should
be used. If the used dynamic range is artificially kept constant, then pa-
rameters such delay spread become independent from thresholding level
(Sec. 4.4.1), however the systematic error is introduced and biased estimate
is obtained.

∗The RUSK channel sounder provides 4-dimensional channel transfer tensorH(t, f, s∗, u∗) that
is transformed into channel impulse response tensor h(t, τ, s, u, p) by Fast Fourier Transform (FFT)
over frequency domain F : f → τ and MIMO sub-channel mapping (s∗, u∗)→ (s, u, p).
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3. Space-time averaging window has to be equivalent with the stationary region
of the channel. Stationary region is often related to a distance range in which
the channel realizations “look similar” for a system with given bandwidth of
100 MHz. Averaging distance taken in WINNER Phase I of approx. 1 meter
ensures that cluster do not move significantly in the delay domain.

4.3.1 Segmentation of Measurement Data

For estimation of WIM parameters the following space-time processing units are
introduced:

1. Snapshot - The collection, having one CIR, h(τ), for every (s, u, p) - triplet, is
referred to as MIMO channel snapshot and is used as a basic processing unit.
Following this terminology we can state that measurements are consisting of
large number of snapshots (Fig. 4.4a).

Measurement

Snapshot Set

Snapshot

Valid

Invalid

(a)

SS1

Measurement

SS2

SS3

SS4 SS5

SS6

(b)

Figure 4.4: a) Space-time processing blocks; b) Processing of the measurement data based
on “snapshot sets”.

The snapshots having acceptable quality are regarded as the valid ones and
used in the analysis. The dynamic range (the highest peak-to-noise level) of
the valid snapshots exceeds 20 dB for at least one (Tx,Rx, Pol) sub-channel.

Prior further WIM processing, the snapshots are classified into disjoint
LoS/NLoS groups according to the existence of the line-of-sight condition.

2. Snapshot Set - When the parameter estimation is related to the channel sta-
tionarity region, a number of successive valid snapshots is of interest. Thus,
snapshot set (SS) containing predefined number of the valid consecutive
snapshots† is used as a higher-level processing unit. The extent of SS over-
lapping, Fig. 4.4b, is related to the processing strategy.

†In some cases (e.g., for time demanding MPC parameter estimation), the condition requiring
all valid snapshots to be consecutive in time dimension may be too strict. In that case, the pro-
cessing could be based on usage of all available SSs, which is equivalent to the usage of subintervals
(exceeding predefined length) over time dimension.
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Extent of Stationarity Region(s)

The concept of LSR enables the differentiation of the large and small-scale effects.
Since underling physical process (and corresponding structural parameters) is un-
changed, then only small-scale effects are exhibited within LSR. Therefore, LSR
corresponds to the limited area where a wide-sense stationarity can be assumed [91].
The multi-path parameters significantly change between neighboring LSRs, which
is considered as large-scale variation.

In cases when channel features exhibit stationarity over space-time realizations,
the parameter extraction requires a prior segmentation of the available data ac-
cording to the stationary regions. If the extent of the stationarity regions is to be
estimated, a processing of the measurement data is divided into two phases. In
the 1st phase, the borders of stationarity regions are determined (number of con-
secutive snapshots that constitute SS), whereas in 2nd phase the actual parameter
computing is performed on SS bases, as shown in Fig. 4.4b. Another approach takes
minimum SS that supports reliable parameter estimation. The extracted features
from smaller SS will show space-time correlation, and enable adequate estimation
of the LSR extent in post-processing phase. The computational burden comes from
an increased (non-optimal) number of SS for which parameters are extracted.

Separation of Large and Small-scale Effects Based on Feature Variability

(Generalized) Lee Method is proposed to determine optimal space-time
region for the calculation of the statistical moments of the received signal strength.
The quality of the separation of large and small scale effects, in this method, de-
pends on properly calculated local mean values. While original method [92] makes
assumptions about probability distributions of the analyzed signals, its general-
ization [93] does not. This method evaluates different sizes of Space-Time (ST)
interval, and the size showing the lowest variance of the estimated mean values of
signal is taken as the appropriate one.

In Lee’s methods the small-scale deviations of signal straight around local mean
are considered. This approach is typically applied for a narrowband channel char-
acterization, where it appears sufficient to characterize large and small signal level
variations using appropriate PDFs (Sec. 2.5.5). When considering wideband MIMO
channels, other parameters, besides signal power, are to be analyzed as well. E.g.,
the authors of [94] point out that the correlation between eigenvectors of different
MIMO links can be high under similar dominant propagation mechanisms (DPM)‡.
The identification of the DPM similarity regions leads to a segmentation of the ST
domain and by that reveals the large-scale evolution of the radio channel.

Suppression of Small-scale Effects in MIMO Sounding Data
In SISO channel, the small-scale variations are typically suppressed by a space-

time averaging over several consecutive PDP realizations. In MIMO case averaging

‡The concept of dominant propagation mechanisms is often applied in channel charac-
terization: [94], [95], [96]. The relevance of existing propagation mechanisms (and related
MPCs/clusters) is evaluated according to the level of received power.
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Delay domain

Cluster level

Angular domain

Correlation

Power

Figure 4.5: Grouping of analysis items.

can be also performed over the antenna array aperture, i.e., by combining the spatial
samples from different antenna elements. When powers of the signals from different
antennas are combined in non-coherent manner in order to emulate “isotropic”
reception, the small-scale effects are already partially suppressed. Requirements
for further ST averaging are therefore relaxed, or they even become excessive for
large number of Tx and Rx antenna elements, as illustrated in Sec. 4.4.1.

4.3.2 WIM Analysis Items and Methods

The WIM analysis items will be classified according to domain that are calculated
from (Delay, Angular, Cluster - joint processing of both domains), or to the property
that they describe (Power, Correlation). This gives 5 groups (processing domains)
being shown in Fig. 4.5. This thesis enlightens only particular items and methods,
mainly related to LSP features, while detailed instructions are given in [4], [5].

Computation Sequence
Since the radio channel measurements are the basis for the research of the wire-

less propagation phenomena, it is important to consider the whole procedure from
measurements to channel models.

The computation sequence in Fig. 4.6 defines order in which items (represented
by the squared block) are calculated and indicates applied computation proce-
dures (represented by the small circles). The figure contains intermediate items as
‘TimeVariantPowerDelayProfile (PerPolarization)’, ‘MPCParameters’, ‘Clusters’,
etc., being required to calculate targeted analysis items.

The processing sequence is independently applied to different polarization di-
mensions. This enables comparison of the features for different polarizations or
calculation of their ratios (such as XPR).

The autocorrelations and cross-correlations of the estimated items are typically
calculated at the end, after an item processing is over.
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Common (Statistical) Processing Methods
Statistical procedures that are repeatedly used for computation of different items

are identified as common processing methods: estimation of distribution (his-
togram), calculation of Auto-Correlation Function (ACF), and cross-correlation
and covariance matrices.

For the estimation of the statistical properties it is important to identify the
relevant subsets of data. E.g., since distribution of MPC delays and angles has
to be calculated for each stationarity region (of the corresponding snapshot set),
the input data has to be collected from each snapshot belonging to that SS. The
autocorrelation functions for LSPs are typically calculated at measurement level.
That would mean that delay, angular spread and shadow fading standard deviation
(std.) data is collected for a whole scenario (one value is calculated per SS), and
correlation coefficient is calculated.

Delay-Domain Analysis

Channel Impulse Response (Per Polarisation) h(τ ′|p, t0, s, u) is a realization of h(τ ′)
in time instant t0, for given positions of Tx and Rx antennas (s, u), and their
polarization properties p. The estimation of the noise level in CIR enables partial
suppression of the noise by thresholding and evaluation of the dynamic range, which
describes snapshot quality. All CIR values below the estimated noise level (that is
increased by a safety margin) are disregarded in the further delay-domain analysis.

Noise Level Estimation Noise level is estimated within a single snapshot
for the subset Gk of spatial channels that share the same Automatic Gain Control
(AGC) setting. Since measurement equipment have the same setup, the impact of
thermal and quantization noise is similar in all considered samples.

~h = vec{h(t0,∀τ ′, (s, u, p) ∈ Gk)}, (4.13)

All samples are sorted in the ascending order, according to their instant power:

P ∗ = sort{Re{~h}2; Im{~h}2}. (4.14)

When the average power over the lowest N samples, scaled by a predefined margin
m, for the first time exceeds the instant power of the N -th sample, we assume that
N -th sample is not generated by noise only.

N̂t0,Gk = min
N
{m
N

N∑
n=1

P ∗i ≥ P ∗N}. (4.15)

The variance of the complex noise (having the same power in real and imaginary
samples) equals:

σ2
N (t0, G) = 2 · P ∗

N̂t0,Gk−1
. (4.16)
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Power Delay Profile (Per Polarization) shows the distribution of received power over
different delays. The PDP has been obtained from the measurement by averaging
instantaneous PDPs S∗(t, τ |p, s, u), from all spatial sub-channels (s, u) within a
local stationary region. For each snapshot the instant powers are calculated as the
squared magnitude of the CIR:

S∗(t, τ |p, s, u) = |h(t, τ |p, s, u)|2. (4.17)

Afterward, the instantaneous power spectra is averaged over Tx and Rx antennas
belonging to the same AGC group, (s, u) ∈ Gk.

S∗(t, τ ′|p,Gk) =
1

#Gk

∑
(s,u)∈Gk

S∗(t, τ ′|p, s, u). (4.18)

In the cases when directional antennas (e.g., patches) are applied to construct the
measurement array, or neighboring antennas are shadowed due to array construction
(e.g., Uniform Circular Array – UCA), each pair of antennas (s, u) observes PDP
that is limited in departure and arrival directions. Only after spatial averaging
(4.18), the appropriate representation of PDP is obtained.

Thresholding Due to the influence of the receiver thermal noise, the averaged
PDP for single polarization (4.18) exhibits floor over the whole observed delay
range. Removal of the noise artifacts is based on estimated noise power, σ2

N from
(4.16), and thresholding of PDP:

S(τ ′|p, tn, Gk) =

{
S∗(τ |p, tn, Gk) S∗(τ |p, tn, Gk) ≥ σ2

N (tn, Gk) ·m
0 otherwise

, (4.19)

where m represents predefined margin. As a consequence, all further calculations
based on S(τ |p) become dependent upon procedure used for σ2

N estimation and
chosen value for margin m. The impact of the estimation procedure onto delay-
domain parameters is further discussed in Sec. 4.4

If none of the resulting averaged PDP does not fulfill the dynamic range require-
ment, i.e., 20 dB from the peak to the noise floor, that snapshot is eliminated from
the further analysis. In Fig. 4.7a an example PDP with the estimated threshold is
illustrated.

Space-Time Averaging and Delay Normalization After thresholding,
averaging over AGC sets and snapshots within SS is performed:

S(τ ′|p) =
1

ntnG

nt∑
n=1

nG∑
k=1

S(τ ′|p, tn, Gk). (4.20)

Additional shift of delay axis τ ′ → τ could be applied to move the beginning (the
first delay with non-zero power) of (4.20) into coordinate origin. The normalized
axis obtained in this way is known as excess delay.

S(τ |p) = S(τ ′ − τ ′min|p). (4.21)
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Figure 4.7: WIM analysis items: a) PDP example from the fast train measurements, b)
Transmission loss for rural scenario, c) Delay spread for high speed networks. [97]

In delay domain, Maximum Excess Delay (MED) and delay spread are calcu-
lated from PDP to quantify the dispersion of power over excess delay. In WINNER
model, PDP can be also used to determine the cluster power according to cluster
delay.

Delay spread (DS) is used to characterize dispersiveness of wideband SISO
channels. DS is determined as standard deviation:

στ (p) =

√
τ2 − τ̄2, (4.22)

where mth moment:

τm(p) =

∑
k (τk)

m
S(τk|p)∑

k S(τk|p)
, (4.23)

is calculated from thresholded Power-Delay Profile (PDP) - S(τ |p). When DS is
extracted from the channel impulse response data, the available dynamic range
in measurement data will influence the obtained parameter values (Sec. 4.4.1).
Thus, the results of different measurement campaigns in literature are not always
comparable. To resolve this ambiguity, WIM parameterization limits the dynamic
range of PDP to 20 dB below the dominant peak and skips snapshots that do not
provide required dynamic.

S(τi|p) =

{
S(τi|p) S(τi|p) ≥ max{S(τi|p)}/100

0 otherwise
. (4.24)

Fig. 4.7c shows a Cumulative Distribution Function (CDF) of delay spread
from a fast train measurement, Sec. A.2.2. The above mentioned 20 dB noise
thresholding has been utilized for DS computation.

Cross-polarization ratios (XPR) is defined as a power ratio between the
co- and cross-polarized components of the received signal. To get the XPR the total
powers for each polarization are calculated by accumulating the power of PDP over
the delay-dimension:

P (p) =
1

nτ

nτ∑
k=1

S(τk|p). (4.25)
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If horizontally (H) and vertically (V) polarized antennas are used on both transmit-
ting and receiving side, 4 different (Tx,Rx) polarization combinations can be made,
so that p ∈ {V V, V H,HV,HH}. Depending on reference transmit polarization, it
is possible to define vertical-to-horizontal and horizontal-to-vertical XPRs:

XPRV =
PV V
PV H

, (4.26)

XPRH =
PHH
PHV

. (4.27)

These quantities could be conveniently represented by matrix if we introduce con-
vention that rows/columns correspond to transmitter/receiver polarization and the
vertical precedes the horizontal polarization:

XPR =

[
1 PV V

PVH
PHH
PHV

1

]
. (4.28)

Transmission loss is normally presented in decibels as a function of distance.
Therefore, the corresponding Tx-Rx distance (d) has to be associated with the
received power levels in order to estimate the transmission loss:

L̄(d) = PTx +
∑
i

Gi −
∑
i

Ai − P̄ (d). (4.29)

Additional input parameters are also required: transmitter power (PTx), total
antenna gain (

∑
iGi) and total cable attenuation (

∑
iAi). All co-polar realizations

of P (d) collected during measurement are exploited to parameterize the model:

L̄(d) = A · log10(d) +B. (4.30)

The coefficients (A,B), defining the linear dependence of transmission loss from
logarithmic distance, are determined by linear regression§: L(d1)

...
L(dn)

 =

 1 log10(d1)
...

...
1 log10(dn)

[ B
A

]
. (4.31)

The WINNER model uses explicit transmission loss formulas that are inde-
pendent from other parameters. As an example, the path loss results for a rural
scenario are given in Fig. 4.7b, with a curve fitting of the data and the free space
loss as a reference.

§The MATLAB function regress() can be exploited to calculate transmission loss coeffi-
cients.
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(a) (b) (c)

Figure 4.8: Distribution of WIM LSPs: a) shadow fading standard deviation for indoor-
to-outdoor scenario, b) Rician K-factor: comparison of MIMO methods, c) azimuth angle
spread for indoor scenario (Hentilä [97]).

Shadow fading (SF) expresses deviation of the measured data from expected
(and modeled) transmission loss. The SF [dB] on Tx-Rx distance dn, n = 1, .., N ,
represents difference between measured transmission losses L(dn) and the loss L̄(dn)
predicted by the model (4.30):

SFn = L(dn)− L̄(dn). (4.32)

The SF is modeled as random variable with a zero mean Gaussian distribution.
The standard deviation of the shadow fading is estimated as:

σSF =

√√√√ 1

N − 1

N∑
n=1

(SFn)
2
. (4.33)

Fig. 4.8a presents the PDF of the shadow fading for indoor-to-outdoor scenario.

Narrowband Ricean K-factor represents the ratio of powers between the
dominant (LoS or NLoS) component and all other multi-path components. The
narrowband CIR is emulated from wideband measurement by complex sum over
delay-domain:

hNB(t, s, u, p) =
∑
i

h(t, τi, s, u, p). (4.34)

Only co-polar Tx/Rx polarization pairs, p ∈ {V V,HH}, are used and estimation
is performed per subset Gj of MIMO channels that share the same AGC settings.
This provides that the total narrowband powers are comparable within the selected
subset of directional antennas. The K-factor is calculated using the Greenstein’s
moment’s method [98] for each subset Gj and stationarity region Ti. The method
of moments is based upon statistics of instant powers:

Pi,j = P (Ti, Gj) = {|vec{hNB(t ∈ Ti, (s, u, p) ∈ Gj)}|2} = {P1, P2, . . . , PN}.
(4.35)
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The mean value and the variance of instant power are:

E{Pi,j} =
1

N

N∑
n=1

Pn, (4.36)

V ar{Pi,j} =
1

N − 1

N∑
n=1

(Pn − E{Pi,j})2. (4.37)

The K-factor in subset stationarity region Ti and Gj is:

K(Ti, Gj) =
1

E{Pi,j}√
(E{Pi,j})2−V ar{Pi,j}

− 1
. (4.38)

When directional antennas are used, a dominant component may contribute
only to the particular subset. By selecting the maximum K-factor over subsets Gj ,
we tend to use only those antennas that sense the dominant component:

K(Ti) = max
j
{K(Ti, Gj)} (4.39)

If distance information is available for all stationary regions Ti, dependence of
K-factor over distance can be modeled, as shown in appendix on Fig. A.10. In
WIM synthesis, randomly generated K-factor determines the power redistribution
between LoS component and sum of all other components.

Angular-Domain Analysis

Power Angular Spectrum (PAS) shows distribution of power over departure (D)
and arrival (A) angles (directions) in both azimuth (A) or elevation (E), φ ∈
{AoD,EoD,AoA,EoA}. After the structural parameters of MPCs have been de-
termined by HRPE, the PAS is easily reconstructed for each snapshot in the form:

S(tk, φ) =
∑
i

‖α(tk, φi)‖2F , (4.40)

where

α =

[
αϕϕ αϕθ
αθϕ αθθ

]
defines polarimetric transmission coefficients, and ‖·‖F is Frobenious norm. The
resulting PASs are averaged over all snapshots in the stationary region:

S(φ) =
1

nt

nt∑
k=1

S(tk, φ). (4.41)

Note that polarimetric properties of MPCs are expressed in polarization planes
that are determined by directions of departure and arrival. Therefore, they can
not be directly associated with reference V/H polarizations (variable p in delay-
domain). Instead, the radiation characteristics of Tx and Rx antennas have to be
defined first.
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Angular Spread (AS) describes dispersion over the angular domain. Due to wrap-
ping of angles, W : φ ∈ (−∞,∞) → [−π, π), the angular offset can influence the
calculated value of AS. In order to avoid ambiguity the 3GPP SCM specifica-
tion [62] chooses the minimum AS value over all possible angular offsets. During
this procedure, the effect of PAS angular shifts, φ′ = (φ+ ∆)W , is evaluated after
wrapping to the range [−π, π). The calculated mth moment, and corresponding
angular spread are therefore dependent on ∆:

(φ′(∆))m =

∑
k (φ′k)

m
P (φ′k)∑

k P (φ′k)
, (4.42)

and

σφ′(∆) =

√
(φ′(∆))2 − φ′(∆)

2
. (4.43)

The minimum value of AS over all circular shifts is chosen as SCM/WIM parameter:

σφ = min
∆
{σφ′(∆)}. (4.44)

In WIM angle spreads are controlling wrapped Gaussian PAS of cluster cen-
troids. Fig. 4.8c presents the CDF of angle spread for the indoor scenario.

Correlation of LSPs

It is possible to distinguish two classes of LSP correlations in WIM: link-level cross-
correlations and distance-based auto-correlations. Relevance of these correlations
for WIM will be further analyzed in Sec. 6.3.3.

Link-level Cross-correlations are represented with correlation coefficient (3.27).

Distance-based Auto-correlations A correlation coefficient between two LSP real-
izations (X,X)d being separated by distance d is calculated as:

ρX(d) =
Cov{(X,X)d}
Cov{X,X}

, (4.45)

where Cov{X,Y } designates covariance between random variables X and Y . At
de-correlation distance dcorr correlation coefficient becomes lower than 1/e.

4.4 Influence of Extraction Procedures on WIM Large-Scale Pa-
rameters

The properties of radio-channels were quantified through appropriate measures to
enable comparison between different realizations, or to get suitable model represen-
tation. In past such measures are established for wideband SISO channels as well
as for narrowband MIMO channels. The characterization of the multidimensional
channel sounding data that depends upon time/Doppler shift, delay/frequency, spa-
tial displacement and polarization of antennas inside Tx/Rx array, becomes more
complicated as the number of relevant channel dimensions increases.
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Incomplete (Subspace-based) Measures
It would be desirable to process tera-bytes of channel sounding data in unique

manner and undoubtedly get the definitive parameter values. Unfortunately, this
is often not the case for multidimensional data, not only because measured sig-
nals are corrupted with noise, but also because incomplete measures (defined over
subset of the available dimensions) introduce non-uniqueness of data processing
sequence. The available and commonly used incomplete measures are usually char-
acterizing data in respect to one dimension only. Due to lack of joint (complete)
measures, radio-channels, being both wideband and MIMO, are still characterized
separately with wideband and MIMO measures. Since usage of remaining dimen-
sions is not predefined by the measure, a processing can be conducted in different
ways. As a consequence, obtained parameters could not be compared without the
complete knowledge about employed processing sequences. This section illustrates
non-uniqueness of the incomplete (subspace-defined) measures in the context of
WINNER wideband MIMO channel model parameterization. It is based on previ-
ously published results [71] and [99].

If calculated channel measures show dependence upon extraction procedure,
the same numerical values could correspond to channels with different properties.
Therefore, a fair comparison of the system features should always relay on the
same procedures for channel characterization, meaning that the model parameter-
ization procedure should not introduce any uncertainties. Therefore, the previous
Sec. 4.3 defines processing sequence for the estimation of WIM parameters that are
dependent (and calculated) only on a subset of multidimensional space.

4.4.1 Ambiguity of Delay-domain Features

Influence of Stationarity Region Extent onto Probability Distribution

Delay Spread Since the mathematical formulation of Delay Spread (DS) [100] con-
siders only a single delay-dimension of data set, there is an ambiguity when applying
this measure to the whole data set.

The effect of averaging PDPs over different number of consecutive snapshots,
prior DS computation, is shown in Fig. 4.9. Per-snapshot DS values are obtained
according to (4.18) by averaging over 40 VV polarized (Tx,Rx) channels between
ULA8 and Cube5 arrays, for single track of Ilmenau measurement (Sec. A.2.3). Dur-
ing measurement experiment approximately 7 snapshots (corresponding to different
spatial samples) have been taken over the single wavelength distance, λ = 11.89 cm.
According to [100], appropriate averaging distance to suppress of small-scale effects
in UHF range and SISO configuration is approximately 40 λ, i.e. 4.7 m in the
considered case.

Note that longer averaging of PDP results in the underestimated DS, if com-
pared with per-snapshot estimates (i.e., mean curve over ST becomes lower for
longer averaging, or the CDF curve shifts to the left). One possible interpretation
is that the multipath structure changes within averaging window. This makes av-
eraging over several tenths of wavelength too long. Following these findings, PDPs
for the particular measurement are averaged over 10λ before calculating parameters
related to the time-delay domain (DS, Total Power, XPR). These findings match
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Figure 4.9: Impact of the PDP averaging over consecutive snapshots before calculating DS.

with WIM1 bandwidth motivated limitation (related to noticeable delay shift) of
1m.

K-factor Direct impact of the selected stationary region (i.e., number of snapshots
in SS) is also observed during K-factor estimation. By increasing the number of
averaged snapshots in SS, we can increase obtained K values. The manipulation
with MIMO subchannels will also impact the probability distribution of K-factor.

Influence of Noise Thresholding on DS Statistics

Fig. 4.10b shows the impact of different noise level margins on two PDP realizations,
having different dynamic range due to different Tx-Rx separation. The impact of
PDP thresholding (4.19) on DS is evaluated for different values of noise margin
M [dB] = 10 · log10(m) and illustrated in Fig. 4.10 for car-to-bridge measurement,
Sec. A.2.2.

The amount of DS variations along the measurement track will be inversely
proportional to the applied thresholding margin, Fig. 4.10a. If DS results for M =
3 dB are not seriously impacted by noise, than significant information is lost for an
increased thresholding margin. The loss of dynamic range, when Tx-Rx distance
exceeds 120 m, further pronounces this effect. This will impact other statistical
features of DS like distance-based autocorrelation function, Fig. 4.11a.

The ACF curve for the M = 3 dB is close to the other two up to a distance of
120m, but from this point this curve shows completely different behavior. The un-
certainty remains: is the first curve corrupted by the noise samples, or the existing
similarity is lost during the reduction dynamic range used for DS calculation.

Impact of noise thresholding to DS probability distribution is demonstrated in
Fig. 4.11b. When lower margin is used for PDP thresholding, DS measure is in-
creasing (cdf curves are shifted to the right) because larger portion of wideband
power is taken into account. Since it is not possible to differentiate between con-
tributions of “real PDP” and noise, it is not clear which of above curves offers the
best estimate.
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Figure 4.10: Influence of PDP noise thresholding onto DS values: a) DS along measure-
ment route, b) impact of noise level margins on PDPs at different Tx-Rx separations [99].
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Figure 4.11: Influence of PDP noise thresholding onto DS statistics.

From the viewpoint of dynamic range in PDP:

DR [dB] = 10 · log10

(
max {S(τ)}
PN ·m

)
, (4.46)

an increase of cutting level PN ·m or decrease of maximal PDP level with distance
would influence S(τ) in the similar way. If the dynamic range is too small (due
to large distances or noisy receiver), obtained parameter estimate (DS or MED)
becomes biased since significant part of PDP is discarded. This reduces confidence
in DS realizations from lower right corner of Fig. 4.12. This can be avoided only if
some kind of data filtering (selection) is applied and parameters are estimated in
subsets of available data. Data filtering increases reliability of estimated parameters
and thus influences experimental distribution of the evaluated parameters, as shown
in Fig. 4.13a. For subspace analysis in the delay domain, it was shown that the
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estimated channel parameters could be also dependent on control parameters of
the processing sequence. The influence of noise cutting level to WIM parameters
calculated in delay domain is mitigated by using fixed observation range of 20 dB.
This decision represents part of agreed procedure for WINNER model parameter
estimation that should resolve ambiguity of both incomplete measures and control
parameters of processing sequence. The effect of fixing PDP dynamic range to 20 dB
is given in Fig. 4.13b: after the reduction of DR by thresholding the DS CDF curves
shift to left side. This figure also analyzes the impact of the used data subset for
noise level estimation: i) within groups of the spatial (s, u, p) subchannels having
the same AGC settings, as described in Sec. 4.3.2, ii) for all CIRs in snapshot, and
iii) for each CIR individually. The individual estimation of noise gives the largest
DS values: due to reduced number of available samples a reliability is reduced, and
possible underestimation of noise level increases DS values. The effect is similar
if samples of data exhibited to different noise levels are mixed and the obtained
noise-level estimate used to threshold all realizations (the second approach): the
noise in some PDP realizations will exceed the threshold more frequently and cause
increase of DS values.

Although examples are given for DS only, equivalent influence can be found in
all parameters that could be calculated in the delay domain: MED, total received
power, transmission loss, shadowing fading, etc.

Impact of the Sounder’s Per-Channel AGC onto XPR

In order to acquire better observation of the channel, RUSK HyEff sounder uses
dynamic AGC, meaning that each measured MIMO subchannel, defined as combi-
nation of the one Tx and one Rx antenna element, has an independent gain control.
This feature requires proper interpretation during the channel characterization: in
Fig. 4.14a it is showed that cross-polar losses are partially compensated and there-
fore the observed dynamic ranges are similar for co-polarized (VV and HH) and
cross-polarized combinations of Tx and Rx antenna elements. As a consequence,
reported XPR values will be slightly reduced.

Impact of the Terminal Height and Radiation Patterns to Received Power Level

By looking into the total received power per subgroups of the Rx antenna elements
(Fig. 4.14b), it is possible to observe variations of the received power w.r.t. the
antenna height above ground. A difference in RF attenuation between multiplexers
has only limited impact to the observed power difference between the MIMO cube
on top of the array and the remaining two rings of the array.

The significant dependence of the transmission loss from the array radiation
pattern can be found for certain array geometries.

4.4.2 Equivalence of Estimates Obtained by Different Procedures

The delay-domain parameters could be also estimated after HRPE, from structural
(MPCs) parameters. The MPC parameters are typically covering all available di-
mensions of the measured data and there is no ambiguity coming from subspace
description. The problem in this case is that only limited number of MPCs could
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Figure 4.15: Comparison of DS statistics obtained by different extraction procedures:
a) Cumulative Distribution Function (CDF), b) Auto-Correlation Function (ACF).

be reliably estimated. Therefore estimated MPC, that provide joint multidimen-
sional representation, do not describe complete propagation process. This problem
is mitigated in RIMAX by introduction of a mixed model in which the remainder
(DMC) is represented only in the delay domain. However, this makes the structural
parameter domain less preferable for calculation of the delay-related features.

From Fig. 4.15a, it can be seen that obtained DS measures with and without
spatial reconstruction may differ considerably. In the delay domain analysis (with-
out spatial reconstruction), given RIMAX DS measure would correspond to the low
observation ranges. This however can not be true since 95% of total (signal+noise)
power is contained in the presented RIMAX results. One possible reason for ob-
served difference is spatial filtering of antenna field patterns: in RIMAX results an-
tenna is de-embedded while delay domain data is fully dependent on measurement
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antenna. (De-embedding can not be done if estimation is performed in delay domain
only since directions of departure/arrival can not be resolved). Different delays are
in general related to different departure/arrival angles. Since antennas are intro-
ducing spatially selective gain to MPCs, the PDP will experience re-distribution
of total power between components and final measure will be distorted. If final
goal is to characterize propagation channel independently from the measurement
antenna, it can be achieved only with algorithms for complete reconstruction of
the measured space. However, difference observed in Fig. 4.15a can be also the
consequence of assumed SoS data model: DS calculated from the specular RIMAX
components does not contain contribution of the DMCs, since the latter that can
not be resolved in the angular domain. This means that distribution of the spec-
ular components over delay does not necessarily reflect the power distribution of
complete continuous PDP.

Fig. 4.15b presents the auto-correlation of DS with and without spatial re-
construction from the car-to-bridge measurements. Up to dms = 45 m the auto-
correlation of DS calculated from specular RIMAX results is lower than that from
delay domain analysis and a parallel shifting of the curves could be observed. This
shifting is probably caused by omitting DMC part from analysis. Since a sim-
ilarity of the transmission environment defines the auto-correlation behavior of
DS [102], [103], [99], it is reasonable to conclude that DMC part of RIMAX hy-
brid model significantly contributes to the correlation measure and should not be
omitted.

Impact of Computation Procedure to K-factor Statistics

In [97], the K-factor empirical CDFs are determined in several ways and compared
with reference SISO data being generated by dipole antennas. It is found that the
vertical component of the ISIS algorithm best reflects the reference data, Fig. 4.8b.

The results presented in this section demonstrate that estimated parameters
could not be taken as granted, without complete insight into extraction procedure.
Accordingly, the channel model parameters are uniquely related to the measurement
data set only for completely defined processing sequence. From the above arguments
it follows that complete insight into measurement setup and processing sequence,
being used for channel model parameterization, is necessary if we are willing to
compare the channel model parameters.



Chapter 5

Representation of Multiple Scenarios
by a Generic Model

The flexible structure of GSCMs enables the representation of different propagation
environments by simple adjustment of model parameters, which is referred to as
generic property. The generic models introduce abstract classes called scenarios
that act as stochastic equivalents for many similar radio environments. As discussed
in [55] these scenarios are not necessarily distinguished by the quantification of
parametric space, but they represent a convenient terminology to designate typical
deployment and propagation conditions. The morphology-based classification of
radio environment does not imply that model control parameters could not have
identical realization in different classes [8]. Historically, it was COST 207 [104] that
started classifying environments based on the type of dispersion (delay spread and
delay window) and involving some intuitive consideration of the (rather limited)
parameter space was involved. But these types of differences have (almost) never
been sought later on when defining new scenarios, especially following deployment
schemes.

Nowadays we can distinguish between two major classes of generic models:
COST 259/273/2100 ( [10], [60] and [105] resp.) and 3GPP SCM [34]/WINNER
[5], [63]. These generic models have been made by joint effort of many institutions,
otherwise provision of parameters for different scenarios would be unattainable.
Despite different model structures, significant overlap of propagation scenario def-
initions exists between SCM/WINNER and COST models as shown in Sec. 6.5
and [72]. In listed channel models, the scenarios are developed/parameterized to
represent the the complete radio environment classes.

The need for generic models follows from the ever growing concept of hetero-
geneous networks, requiring simultaneous representation of multiple-scenarios or
transitions between scenarios. For this purpose scenarios of generic models provide
a uniform modeling approach and decrease the perceived complexity of handling
different environments.

93



94 Chapter 5. Representation of Multiple Scenarios by a Generic Model

With respect to the number of scenarios, design and performance evaluation
of communication systems will cost less time and effort with smaller numbers of
scenarios. Since every environment is specific, the classification of propagation
environments into the different (reference) scenarios is not a simple task: how
many classes suffice and how much divergence within a class should be tolerated?
Obviously, a meaningful answer can be provided only if we have a metric to quantify
the similarity between propagation environments. Providing such a metric is the
main goal of this chapter.

In absence of a scenario distance metric, reference scenarios are typically formed
as a combination of system deployment schemes, mobility assumptions and narra-
tive description of environments, as illustrated in the Sec. 5.1 for the WINNER
reference propagation scenarios. For the purpose of comparison, the WINNER sce-
narios are in Sec. 5.2 approximated by Multi-Variate Normal (MVN) distributions
of Large-Scale Parameters. By disregarding transmission loss and decorrelation
distance, the distance measure is removed from scenario definitions. The mean
Kullback-Liebler divergence is proposed in Sec. 5.3 for comparison of MVN sce-
nario and measurement equivalents. For those scenarios/measurements where WIM
correlation coefficients form a negative definite symmetric matrix, the alternating
projection method is used to determine the closest correlation matrix. The result-
ing set of correlation coefficients is used for quantification of scenario/measurement
divergence.

The Sec. 5.4 describes necessary steps for the synthesis of WINNER channel
model.

5.1 WINNER Reference Propagation Scenarios

The WINNER system is designed to support ubiquitous coverage using different
system-deployment schemes for Wide Area (WA), Metropolitan Area (MA) and
Local Area (LA). Each deployment scheme was described by as few Reference
Propagation Scenarios (RPSs) as possible. The outcome is that the WINNER sce-
narios cover some typical cases, without intent to encounter all possible propagation
environments. The introduced RPSs abstract the effects of the radio-propagation
to the overall system design.

The WINNER reference propagation scenarios [5] are determined by the aspects
that have immediate impact on the radio-signal propagation:

� coverage type (e.g. ubiquitous, localized),

� propagation environment (e.g. indoor, outdoor),

– LoS/NLoS condition,

– limited distance range,

� terminal positions and heights with respect to environment,

� mobility model (terminal speed),

� carrier frequency range/bandwidth.
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WINNER Reference Propagation Scenarios (RPSs) are based on “typical” envi-
ronments, meaning that physical parameters of environment such as average rooftop
height, width of roads, distance between buildings, road orientation with respect to
direct path, size of rooms, number of floors between BS and MT, are not explicitly
used. Some of them are implicitly included into WINNER scenario definitions, in
order to reflect the actual parameters used during experimental characterization.

Starting from the premise that stochastic properties of a radio environment
could be abstracted by scenarios, a generic MIMO channel model is developed
within the WINNER project. Thus, all WINNER Reference Propagation Scenarios
(RPSs) are represented by generic WIM channel model. The process of empirical
channel characterization and scenario-specific parameterization of the WINNER
Channel Model (WIM) is illustrated in Fig. 5.1. Due to different propagation
mechanisms under LoS and NLoS conditions, these conditions are distinguished
and separately characterized in all applicable physical environments.

The characterization of the reference propagation scenarios and the parametriza-
tion of the generic model are based on channel sounding results. In IST-WINNER
projects wideband MIMO measurements were carried out in 2 and 5 GHz frequency
ranges. In order to collect relevant data, a large number of measurement campaigns
has been carried out during the project. Most of them were done using Medav’s
RUSK [73] and Elektrobit’s Propsound [106] channel sounders. However, the re-
alization of large-scale campaigns and the subsequent processing of the results are
both complex and time consuming. As a consequence, the WINNER “scenario”
is formed on basis of measurement results that are gathered by different institu-
tions and are individually projected on the parameter set of WINNER model. Pa-
pers [107], [71], [108], [109] present a few of the WINNER measurement campaigns
and some results extracted from the data. These measurements were conducted in
radio environments providing the best possible match with defined reference scenar-
ios. For that purpose, the position and movement of communication terminals were
chosen according to the typical usage pattern. The “typical usage” is related to the
environments that are found in European and North-American countries. At the
end of Phase II, WIM was parameterized for 12 different scenarios, being listed in
Tab. 5.1: A1–Indoor (small office/residential), A2–Indoor-to-outdoor, B1–Typical
urban micro-cell, B2–Bad urban micro-cell, B3–Indoor hotspot, B4–Outdoor-to-
indoor, B5–Stationary feeder links, C1– Suburban, C2–Typical urban macro-cell,
C3–Bad urban macro-cell, D1–Rural macro-cell, and D2–Moving networks. For
detailed descriptions of the scenarios refer to [110] and [111]. The measurement en-
vironments used to parametrize B3 and D2a WINNER scenarios, and to validate C2
scenario, are shown in Sec. A.2. For these measurements equivalent representation
in WINNER parametric space is provided. The complete overview of WINNER
measurements can be found in [112]. The full set of WIM RPS parameters can be
found in Sec. 4.3 and 4.4 of the WINNER deliverable D1.1.2 [5], while selection is
contained in Tables 5.2, 5.3 and 5.12.
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Figure 5.1: Genesis and representation of WINNER reference propagation scenarios. [72]

5.2 WIM TLSPs Viewed as Correlated Multivariate Random Pro-
cess

The WINNER model requires random data to drive it, and correlations between
the different dimensions make this model realistic. General methods for generation
of Random Variables (RVs) with targeted probability distribution and second-order
statistics (auto-correlation over time) have been suggested in [113], [114]. These
methods reproduce statistical behavior of a random process w.r.t. its realization
over time, by using a transformation of the Gaussian autoregressive process. In
order to avoid complex matching of correlations between original and transformed
domain, the LSPs are first mapped into new variables (Transformed LSPs) hav-
ing Gaussian distributions and the subsequent analysis of LSP inter-dependence
is performed in transformed domain [62], [5]. For LSP Pi with CDF Fi, the nec-
essary mapping∗ could be determined in the form of Pi = F−1

i (Φ(Qi)), where Qi
designates the transformed LSP with normal CDF Φ. Using a linear transformation

Q = Cξ + b (5.1)

∗The solution of an inverse problem, [115].



98 Chapter 5. Representation of Multiple Scenarios by a Generic Model

of the standard multivariate normal process ξ with distribution Nξ(0M×1, IM×M ),
a process Q = [Q1, Q2, . . . , QM ]T with the targeted covariance matrix CCT and
mean b could be easily reproduced.

Multivariate Normal Distribution of TLSPs
The multivariate normal probability density function of a k-dimensional random

vector x = [x1, x2, . . . , xk]T ∼ N (µ,Σ) can be expressed as [116]

f(x) =
1

(2π)k/2|Σ|1/2
exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)
, (5.2)

where
µ = E[x] ∈ Rk (5.3)

is k-dimensional mean vector, and k × k covariance matrix is

Σ = Cov[x,x] = E[(x− E[x])(x− E[x])T ] ∈ Rk×k. (5.4)

Although the structuring of the WIM TLSP distribution parameters is slightly
different, they basically represent maximum-likelihood estimates of a multivariate
normal (MVN) distribution parameters (5.3) and (5.4)†. It is therefore possible to
reconstruct the full covariance matrix of MVN distribution by the following scaling:

Σ = Σ
1
2
0 ρΣ

1
2
0 , (5.5)

where
Σ0 = diag(σ2

1 , σ
2
2 , . . . , σ

2
k) (5.6)

represents the diagonal covariance matrix of the uncorrelated LSPs. The entries
of matrix ρ, denoted ρi,j , correspond to covariance coefficients between TLSPs i
and j. Accordingly, every WINNER scenario can be abstracted with (up to) 8
dimensional normally distributed random process where relevant dimensions de-
scribe different LSPs listed in Tab. 3.1. In the given case, the MVN process offers
a straightforward approximation of WINNER scenario since the majority of them
have identical cluster structure.

5.2.1 Parameters of WINNER Channel Model Describing MVN Distri-
butions

In order to ensure the traceability of the presented results, the relevant subset of
WINNER parameters is given in Tables 5.2 and 5.3. These tables also include
the MVN distribution parameters estimated from Ilmenau (IL) and Dresden (DR)
measurements, Sec. A.2.3. Additionally, Tab. 5.3 contains the modified correlation
coefficients ρ̂ that form positive definite correlation matrices. They will be used
for scenario representation instead of original coefficients, for quantification of the
scenario divergence in Sec. 5.3.

†The random variables showing very specific dependence are not jointly normally distributed
even if their marginal distributions are normal. Since only dependence between continuous WIM
LSPs is expressed by the correlation coefficient (3.27), we assume without explicit proof that the
vector of LSPs will have jointly normal distribution.
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5.2.2 Problem of Negative Definite Covariance Matrices

In some cases the matrix of WIM correlation coefficients (ρ) is not positive semi-
definite, i.e. ρ < 0. The problem manifests itself only for scenarios with resolved
elevation angles (Tab. 5.4) where the dimensionality of the MVN distribution is
increased from 6 (LoS) / 5 (NLoS) to 7/6 or 8/7. The problem is, however, not re-
lated to the number of dimensions or elevation parameters themselves since simple
removal of elevation dimension(s) does not resolve it. This means that correla-
tion coefficients between WINNER LSPs analyzed jointly do not form a proper
Correlation Matrix (CM) – even without elevations.

It is observed that the number of decimal places used for representation of
Correlation Matrix (CM) elements cannot be arbitrarily reduced since resulting
matrix may become negative definite. Since individual coefficients in WINNER
parameter tables are expressed using only one decimal place, it is possible that
this lack of precision causes negative definite CM for scenarios with an increased
number of dimensions.

In order to enable the comparison of problematic scenarios their correlation coef-
ficients have to be slightly modified to form positive definite CM. The “real” corre-
lation matrix is computed using Alternate Projections Method (APM) [117] [118].
For a given symmetric matrix ρ ∈ Rkxk this method finds the nearest correla-
tion matrix ρ̂ that is (semi) definite and has a unity main diagonal. The so-
lution is found in the intersection of the following sets of symmetric matrices
S = {Y = Y T ∈ Rkxk|Y ≥ 0} and U = {Y = Y T ∈ Rkxk|yii = 1, i = 1, . . . , k}. The
iterative procedure in n-th step applies updated Dykstra’s correction ∆Sn−1, and
subsequently projects intermediate result to both matrix sets, using projections PS
and PU :

∆S0 = 0,Y0 = ρ, n = 0

do

n = n+ 1

Rn = Yn−1 −∆Sn−1

Xn = PS{Rn}
∆Sn = Xn −Rn

Yn = PU{Xn}
while‖Yn −Yn−1‖F < tol (5.7)

The projection PS replaces all negative eigenvalues of the matrix with a small
positive constant ε and PU forces ones along the main diagonal. The procedure
stops when Frobenius distance ‖ · ‖F between Yn projections from two consecutive
iterations drops below a predefined tolerance tol. Note, however that the small
tolerance parameter does not insure that Frobenius Distance (FD) from the original
matrix is equally small.

The positive definite approximation ρ̂ obtained by APM will depend on the
selected parameters ε and tol [119]: for tol = 10−10, the effect of eigenvalue ε
to Frobenius distance FD = ‖ρ − ρ̂‖F is illustrated in Tab. 5.4. The results
show that FD decreases when a smaller value of ε is used to substitute originally
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negative eigenvalues. However, the selection of small ε will proportionally increase
the eigenvalues and coefficients of the inverse correlation matrix, ρ̂−1. This will
consequently increase the dissimilarity with all other scenarios. As compromise,
the new WINNER correlation coefficients corresponding to positive definite matrix
are recomputed for ε = 10−2 and tol = 10−10 and given in Tab. 5.3. The maximal
absolute modification of original correlation coefficients per scenario, max{|∆ρi,j |},
where ∆ρi,j = ρi,j − ρ̂i,j , is given in Tab. 5.4. The highest absolute correction
∆ρ = 0.13 is applied to C2-NLoS scenario.

The minimum number of decimal places required to keep ρ̂ positive definite is
determined for different values of ε and listed in Tab. 5.4. The results show that
smaller Frobenius distance requires higher precision for saving coefficients. For
ε = 10−2 two decimal places are sufficient to express correlation coefficients for all
scenarios (Tab. 5.3).

5.2.3 Distances in WIM Scenarios

Although WIM describes the propagation environment implicitly within LSP para-
metric space, it is still using distance to govern transmission loss and spatial vari-
ations of LSP realizations.

Local Stationarity Region represents a larger area where multipath structure of
physical propagation channel does not change significantly (“local region of station-
arity” [120], “drop” [34], “channel segment” [5]) and it is therefore characterized by
a single realization from multidimensional LSP distribution. In WINNER model
it is conveniently assumed that the extent of a Local Stationarity Region can be
represented by a scenario-dependent constant (decorrelation distance) that is inde-
pendent of the LSP cross-correlations.

Both transmission loss and decorrelation distance are deterministic features in
WIM. They do not impact MVN distribution of TLSPs and could be analyzed in-
dependently. Therefore, we investigate MVN process as joint model for WINNER
LSP marginal distributions and cross-correlation coefficients. This representation
of multidimensional channel, on the scenario scale, can be considered as a general-
ization of the 1-D small-scale fading channel approach, where stochastic properties
of instantaneous envelope are characterized by PDF.

5.3 Quantification of Distances Between WINNER Scenarios

For objective comparison and classification of measurements into scenario classes
a metric is required to quantify the distance between reference scenarios and mea-
surements . Since a generic model uses the same set of parameters for representing
different scenarios, this parameter set provides a convenient base for scenario com-
parison. The parameter space of the WINNER model is, among others, described
by normal probability distributions and correlation coefficients that provide a suit-
able space for comparison.

As stated in Sec. 5.2, the parameter set of WINNER model is equivalent to the
parameters of the multivariate normal distribution. Therefore, all measurement
projections and reference scenarios share the same parameter set and could be
treated as multivariate probability distributions. This enables the introduction
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Figure 5.2: Comparison of joint (DS,SF) PDFs for B3 and C2 WINNER scenarios, for
LoS and NLoS propagation [121].

of a metric to quantify the divergence (distance) between different projections of
measurements on the parameter set of the model, and between representations of
different reference scenarios

In order to illustrate the (dis)similarity between B3 and C2 WINNER scenarios
under LoS and NLoS propagation, joint 2-D PDFs of delay spread and shadow
fading are presented in Fig. 5.2. We observe that these scenarios have differences,
but some kind of similarity measure will be useful. Having in mind that we want
to quantify the distance between two distributions P and Q, it is possible to apply
some form of relative entropy, e.g., Kullback-Leibler (KL) divergence [122]:

DKL(P‖Q) =

∫
x∈Rk

p(x) log2

p(x)

q(x)
dx, (5.8)

where p and q denote the densities of P and Q. The computation of the KL
divergence according to (5.8) would require multidimensional mapping of the Rk
subset into two PDFs: p and q. This approach may become impractical for a large
number of dimensions: in the case of WINNER it is necessary to consider up to 8
dimensions (although the XPR is not correlated with other LSPs). The marginal
PDFs of K-factor are given only for scenarios with LoS propagation, which reduces
the dimensionality of MVN distribution for NLoS propagation with one.

In the special case of considering divergence between two MVN distributions it
is possible to construct an analytical expression that depends solely on distribution
parameters. The Kullback-Leibler divergence from N0(µ0,Σ0) to N1(µ1,Σ1), for
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non-singular matrices Σ0 and Σ1 ∈ Rk×k, is [123]:

DKL(N0‖N1) =
1

2 loge 2
·
[

loge

(
det
{

Σ1

}
det
{

Σ0

})+

+ tr
(
Σ−1

1 Σ0

)
+ (µ1 − µ0)

>
Σ−1

1 (µ1 − µ0)− k
]
.

(5.9)

This metric enables a simple comparison of reference WINNER scenarios.
Therefore, the original form of KL metric (5.8) is more suitable for this particular
problem than its symmetrized form, the Jansen-Shannon divergence [124]. Since
KL divergence is not symmetric, it is necessary to define some other symmetrized
extension to obtain proper distance metric. We propose to use mean KL divergence:

DKL(P‖Q) =
1

2
[DKL(P‖Q) +DKL(Q‖P )]. (5.10)

5.3.1 Mean KL Scenario Divergence

In order to compare scenarios that do not share all parameter dimensions, (e.g.,
LoS and NLoS scenarios as for the latter no K-factor is defined), a reduction of
dimensionality was necessary: only those dimensions existing in both scenarios are
used to calculate the mean KL divergence. This means that scenarios with lower
number of resolved dimensions could exhibit more similarity as a consequence of
incomplete representation. A fair comparison would be possible only if all scenarios
have the same number of dimensions. The respective mean KL divergences between
all WINNER scenarios and Ilmenau (IL) and Dresden (DR) measurements, are
given in Tab. 5.5‡.

In order to simplify the analysis of obtained results, for each (scenario, prop-
agation) combination the closest match is listed in Tab. 5.6. Divergences within
the same WINNER scenario group, or having same propagation conditions are
not minimum as may have been expected. Tab. 5.6 shows that only 5 among 16
WINNER (scenario, propagation) pairs have the closest match within the same
WINNER scenario group (A, B, C, D). This comes as consequence of subjective
classification of similar environments, without previously introduced metric. The
minimum distances from Tab. 5.6, DKL = 0.1, confirm some expectations: B4-
NLoS (outdoor-to-indoor) is closest to A2-NLoS (indoor-to-outdoor) because these
are reciprocal scenarios.§ Also, micro-cell and macro-cell versions of outdoor-to-
indoor (B4 and C4) are the closest although not belonging to the same group.
Mean KL divergences from Tab. 5.6 suggest that there is a better way to group
available scenarios.

‡For WINNER scenarios that give two sets of LoS parameters, mean KL distances are com-
puted for LoS parameters before break-point distance of transmission loss.
§Results reported in [125] confirm the similarity of outdoor-to-indoor and indoor-to-outdoor

scenarios also for cluster-level parameters (number, birthrate, lifetime etc.) that are not accounted
by comparison of LSP distributions.
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Table 5.6: Closest (scenario, propagation) pairs according to mean KL divergence.

Scen.1 Prop.1 Scen.2 Prop.2 DKL

A1 LoS A2 NLoS 11.0

A1 NLoS B3 LoS 8.3

A2 NLoS B4 NLoS 0.1

B1 LoS D2a LoS 6.1

B1 NLoS B3 NLoS 10.1

B3 LoS B3 NLoS 5.4

B3 NLoS B3 LoS 5.4

B4 NLoS A2 NLoS 0.1

C1 LoS D1 LoS 5.9

C1 NLoS D1 NLoS 4.8

C2 LoS D1 NLoS 5.6

C2 NLoS DR NLoS 11.0

C4 NLoS B4 NLoS 9.8

D1 LoS C1 LoS 5.9

D1 NLoS C1 NLoS 4.8

D2a LoS D1 NLoS 5.4

IL LoS IL NLoS 2.8

IL NLoS IL LoS 2.8

DR LoS DR NLoS 2.7

DR NLoS DR LoS 2.7

The average distances between all scenarios from one WINNER group to all
scenarios in the other groups are given in Tab. 5.7. If all groups gather the most
similar scenarios, an average distance between any two groups will be higher than
the average distance within a single group. From Tab. 5.7 we can see that this
applies to groups A and D, which are, according to average inter-group distance,
closest to themselves. This indicates that subjective WINNER grouping can be
partially supported by mean KL distance. However, the deviations are observable
for groups B and C where other groups appear to be closer (at a lower average
distance) than other scenarios from the same group. This situation is possibly
caused by inappropriate assignment of distant scenarios, outdoor-to-indoor micro-
cell scenario B4-NLoS and suburban C1-NLoS, to the corresponding groups.

A closer inspection of Tab. 5.4 reveals that the majority of scenarios with in-
creased dimensionality (resolved elevations) comes from groups B and C. This
means that larger intra-group distance may appear due to increased dimension-
ality. Additionally, their correlation matrices have been modified by APM method,

Table 5.7: Average distance between WINNER scenario groups: A, B, C, D.

DKL A B C D

D 22.6 19.1 14.5 6.3
C 88.8 70.6 45.0
B 32.1 35.0
A 15.3
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Table 5.8: Average distance between WINNER LoS and NLoS propagation conditions.

DKL LoS NLoS

NLoS 42.1 50.9
LoS 31.8

so that the parameter ε impacts the absolute value of the mean KL distance. The
joint effect of these phenomena is illustrated by mean KL distances along the antidi-
agonal of Tab. 5.7: they are proportional to the number of modified group members
that are listed in Tab. 5.4: #D = 0,#A = 1,#B = 3,#C = 6.

For 6 out of 16 (scenario, propagation) pairs the best match has the oppo-
site propagation condition (LoS, instead of NLoS, and vice versa), indicating that
WINNER LoS and NLoS parameters do not form disjunctive sets (Tab. 5.6). Cal-
culation of the mean distance between all LoS and NLoS scenarios in Tab. 5.8
shows that lower average distance can be expected between scenarios having LoS
propagation condition (they are more similar than different scenarios with NLoS
propagation).

5.3.2 Classification of Measurements

The same criterion, KL divergence, can be applied to classify measurements as well.
For this purpose even empirical distributions of LSPs can be used since KL metric
(5.8) supports that. However, the extraction of the corresponding WINNER pa-
rameters simplifies the comparison since analytical expression (5.9) can be applied.
Therefore we use the latter approach to compare Ilmenau and Dresden measure-
ments (Sec. A.2.3) with other WINNER scenarios. The parameters of marginal
LSPs and corresponding correlation coefficients estimated from these measurements
are given in Tab. 5.2 and 5.3 together with parameters describing WINNER ref-
erence propagation scenarios. Additional details regarding Ilmenau and Dresden
measurements and analysis can be found in [126] and [127], respectively.

Since both measurements have been performed in urban environments with
macro-cell setup (antennas were elevated above rooftops), it is expected that the
closest scenario will be WINNER C2, which represents typical urban macro-cells.
These measurements are conducted after the publication of WIM-C2 parameters
and therefore provide a proper test set for the validation of reported WIM pa-
rameters. The expectations are met for Ilmenau measurements, where WINNER
C2-NLoS is the closest scenario for both LoS and NLoS conditions, with minimal
distances DKL = 16.9 and DKL = 15.3 (Tab. 5.5). In the case of Dresden mea-
surements minimal mean KL divergences (8.6 and 11.6) indicate that the closest
WIM scenario is C1-LoS, for both LoS and NLoS propagation conditions. This re-
semblance of Dresden measurements to suburban propagation (WINNER C1) may
come from dominant height of BS positions with respect to environment.

Fig. 5.3 shows the 2-D PDFs of the reference WINNER C2-NLoS scenario to-
gether with joint LSP realizations from Ilmenau and Dresden measurements. For
the NLoS propagation condition Ilmenau and Dresden measurements are quite close
to C2: C2-NLoS is the best match for Ilmenau-NLoS (DKL = 16.3) and the second
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Figure 5.3: Comparison of joint WINNER C2 2-D PDFs with the LSP realizations from
Ilmenau (black pluses) and Dresden (white dots), for NLoS propagation [121].

best match for Dresden NLoS data (DKL = 11). Additionally, among all results
presented in Tab. 5.5 the closest match of WIM C2-NLoS is just Dresden-NLoS
(row showed in red).

For LoS conditions, distances from WINNER C2 and Ilmenau and Dresden
measurements are larger (35.7 and 23.9) which classifies Ilmenau-LoS to C2-NLoS
(DKL=16.9) and Dresden-LoS into C1-LoS (DKL=11.6). Tab. 5.6 shows the in-
creased similarity between LoS ans NLoS propagation condition in Ilmenau and
Dresden measurements. This occurs also for WINNER B3, while other WINNER
scenarios do not show this property. One possible interpretation comes from the
data segmentation into LoS and NLoS classes: the actual propagation conditions for
the LoS or NLoS-labeled data may actually correspond to, e.g., Obstructed Line-
of-Sight (OLoS). The previous analysis demonstrates that mean KL divergence,
additionally to the comparison of different measurements, enables the quantifica-
tion of complex relations between different data segments of the same measurement,
as long as they use the same LSP space representation.

The mean KL distances between Ilmenau and Dresden measurements (38.3–
LoS and 22.8–NLoS) are higher than corresponding distances from these measure-
ments to the reference WINNER-C2 scenario. This confirms that WINNER C2
parameters provide appropriate representation for a wide class of urban macro-cell
environments.
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Figure 5.4: WINNER model of single radio link. [5]

Figure 5.5: Generation procedure of WINNER channel coefficients (Kyösti [5]).

5.4 Generation of WINNER Channel Coefficients

A WINNER model of single BS-MS link, with used parameters, is shown in Fig. 5.4.
The circles with dots represent scattering region that correspond to single cluster.
The number of clusters varies from 8 to 20, depending on scenario, while the number
of rays (subpaths) is fixed to 20 for all scenarios.

The procedure of impulse response generation for WINNER II channel model is
depicted in the Fig. 5.5. It consists of 12 blocks that are organized into three differ-
ent parts: a) determination of network layout and large scale channel parameters,
b) determination of small scale propagation parameters, and c) the actual creation
of the channel realizations.
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5.4.1 General Parameters:

Step 1: Set the environment, network layout and antenna array parameters

a) Choose one of the scenarios (A1, A2, B1,. . . );

b) Give number of BS and MS;

c) Give locations of BS and MS, or equally distances of each BS and MS
and relative directions φLOS and ϕLOS of each BS and MS;

d) Give BS and MS antenna field patterns Frx and Ftx, and array geome-
tries;

e) Give BS and MS array orientations with respect to north (reference)
direction;

f) Give speed and direction of motion of MS;

g) Give system center frequency.

5.4.2 Large-scale Parameters:

Step 2: Assign the propagation condition (LoS/NLoS) according to the probability
described in Table 4-7 of [5].

Step 3: Calculate the path loss with formulas of Table 4-4 from [5] for each BS-MS
link to be modeled.

Step 4: Generate the correlated large scale parameters, i.e. delay spread, angular
spreads, Ricean K-factor and shadow fading term according to instructions
in Sec. 3.3.1 “Correlations between large scale parameters” of [5].

5.4.3 Small-scale (Cluster and Ray) Parameters:

Step 5: Generate the delays τ .

Delays are drawn randomly from the delay distribution defined in Tab. 5.12.
With exponential delay distribution calculate

τ ′n = −rτστ ln (Xn) , (5.11)

where rτ is the delay distribution proportionality factor, στ is delay spread,
Xn ∼ U(0, 1) and cluster index n = 1, . . . , N . With uniform delay distribution
the delay values τ ′n are drawn from the corresponding range. Normalize the
delays by subtracting with minimum delay and sort the normalized delays to
descending order.

τn = sort
{
τ ′n −min (τ ′n)

}
. (5.12)

In the case of LoS condition additional scaling of delays is required to com-
pensate the effect of LoS peak addition to the delay spread. Heuristically
determined Ricean K-factor dependent scaling constant is

D = 0.7705− 0.0433K + 0.0002K2 + 0.000017K3, (5.13)
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Table 5.9: Scaling factor applied in inverse Gaussian mapping is related to total number
of clusters.

# clusters 4 5 8 10 11 12 14 15 16 20

C 0.779 0.860 1.018 1.090 1.123 1.146 1.190 1.211 1.226 1.289

where K [dB] is the Ricean K-factor defined in Tab. 5.12. Scaled delays are

τLOSn = τn/D, (5.14)

they are not to be used in cluster power generation.

Step 6: Generate the cluster powers P .

The cluster powers are calculated assuming a single slope exponential power
delay profile. Power assignment depends on the delay distribution defined
in Tab. 5.12. With exponential delay distribution the cluster powers are
determined by

P
′

n = exp

(
−τn

rτ − 1

rτστ

)
· 10

−Zn
10 (5.15)

and with uniform delay distribution they are determined by

P
′

n = exp

(
−τn
στ

)
· 10

−Zn
10 , (5.16)

where Zn ∼ N (0, ζ) is the per cluster shadowing term in [dB]. Normalize the
powers so that sum power of all clusters is equal to one

Pn =
P
′

n∑N
n=1 P

′
n

(5.17)

Assign the power of each ray within a cluster as Pn/M , where M is the
number of rays per cluster.

Step 7: Generate the azimuth arrival angles ϕ and azimuth departure angles φ.

If the composite PAS of all clusters is modeled as wrapped Gaussian (see
Tab. 5.12) the AoA are determined by applying inverse Gaussian function
with input parameters Pn and RMS angle spread σϕ

ϕ′n =
2σAoA

√
− ln (Pn/ max (Pn))

C
. (5.18)

In equation above σAoA = σϕ/1.4 is the standard deviation of arrival angles
(factor 1.4 is the ratio of Gaussian std and corresponding “RMS spread”).
Constant C is a scaling factor related to total number of clusters and is given
in Tab. 5.9.
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Table 5.10: Ray offset angles within a cluster, given for 1◦ RMS angle spread.

Ray number m Basis vector of offset angles αm

1,2 ± 0.0447
3,4 ± 0.1413
5,6 ± 0.2492
7,8 ± 0.3715
9,10 ± 0.5129
11,12 ± 0.6797
13,14 ± 0.8844
15,16 ± 1.1481
17,18 ± 1.5195
19,20 ± 2.1551

In the LoS case constant C is dependent also on Ricean K-factor. Constant
C in eq. (5.20) is substituted by CLOS . Additional scaling of angles is re-
quired to compensate the effect of LoS peak addition to the angle spread.
Heuristically determined Ricean K-factor dependent scaling constant is

CLOS = C ·
(
1.1035− 0.028K − 0.002K2 + 0.0001K3

)
, (5.19)

where K [dB] is the Ricean K-factor defined in Tab. 5.12.

Assign a positive or negative sign to the angles by multiplying with a random
variable Xn with uniform distribution over the discrete set of {1,–1}, add
component Yn ∼ N (0, σAoA/5) to introduce random variation

ϕn = Xnϕ
′
n + Yn + ϕLOS , (5.20)

where ϕLOS is the LoS direction defined in the network layout description
Step 1.c.

In the LoS case substitute (5.22) by (5.23) to enforce the first cluster to the
LoS direction ϕLOS

ϕn = (Xnϕ
′
n + Yn)− (Xnϕ

′
1 + Y1 − ϕLOS) . (5.21)

Finally add the offset angles am from Tab. 5.10 to cluster angles

ϕn,m = ϕn + cAoAαm, (5.22)

where cAoA is the cluster-wise rms azimuth spread of arrival angles (cluster
ASA) in Tab. 5.12.

For departure angles φn the procedure is analogous.

Step 7b: If the elevation angles are supported: Generate elevation arrival angles
ψ and elevation departure angles γ.

Draw elevation angles with the same procedure as azimuth angles on Step 7.
Azimuth RMS angle spread values and cluster-wise azimuth spread values are
replaced by corresponding elevation parameters from Table 4-6 in [5].
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Step 8: Random coupling of rays within clusters.

Couple randomly the departure ray angles φn,m to the arrival ray angles ϕn,m
within a cluster n, or within a sub-cluster in the case of two strongest clusters
(see Step 11 and Tab. 5.11).

If the elevation angles are supported, they are coupled with the same proce-
dure.

Step 9: Generate the cross polarization power ratios (XPR) κ for each ray m of
each cluster n.

XPR is log-normal distributed. Draw XPR values as

κm,n = 10X/10, (5.23)

where ray index m = 1, . . . ,M , X ∼ N (µ, σ) is Gaussian distributed with µ
and σ from Tab. 5.12 for XPR.

5.4.4 Coefficient Generation:

Step 10: Draw the random initial phase
{

ΦVV
n,m,Φ

VH
n,m,Φ

HV
n,m,Φ

HH
n,m

}
for each ray m

of each cluster n and for four different polarization combinations (V V , V H,
HV , HH). Distribution for the initial phases is uniform, U(−π, π).

In the LoS case draw also random initial phases
{

ΦVV
LOS ,Φ

HH
LOS

}
for both VV

and HH polarizations.

Step 11: Generate the channel coefficients for each cluster n and each receiver and
transmitter element pair (u, s).

For the N − 2 weakest clusters, say n = 3, 4, . . . , N , and arbitrary antenna
arrays, the channel coefficients are given by:

hu,s,n (t) =
√
Pn

M∑
m=1

 FVTx,s

(
~ΩTxn,m

)
FHTx,s

(
~ΩTxn,m

) T

·
[

exp
(
jΦV Vn,m

) √
κn,m exp

(
jΦV Hn,m

)
√
κn,m exp

(
jΦHVn,m

)
exp

(
jΦHHn,m

) ] FVRx,u

(
~ΩRxn,m

)
FHRx,u

(
~ΩRxn,m

) 
· exp

(
j2πλ−1

0
~ds · ~ΩTxn,m

)
exp

(
j2πλ−1

0
~du · ~ΩRxn,m

)
exp (j2πνn,mt)

(5.24)

where λ0 is the wave length on carrier frequency, FVRx,u and FHRx,u are radi-
ation patterns of Rx antenna element u, for vertical and horizontal polariza-
tions respectively, ~du is location vector of Rx array element u and ~ΩRxn,m is
departure direction (θn,m, ϕn,m) of ray (n,m). If xs, ys and zs are Cartesian

coordinates of ~du the scalar product can be determined as

~du · ~Ωn,m = xs sin θn,m cosϕn,m + ys sin θn,m sinϕn,m + zs cos θn,m. (5.25)



5.4. Generation of WINNER Channel Coefficients 115

Table 5.11: Sub-cluster information for intra cluster delay spread clusters.

sub-cluster # mapping to rays power delay offset

1 1,2,3,4,5,6,7,8,19,20 10/20 0 ns
2 9,10,11,12,17,18 6/20 5 ns
3 13,14,15,16 4/20 10 ns

Correspondingly, ~ds · ~ΩTxn,m is a scalar product of Tx antenna element s and
vector defining the departure direction of ray (n,m).

If elevations are omitted or simpler array geometries (e.g., linear or planar)
are used the (5.24) can be simplified.

If polarizations are disregarded, 2x2 polarization matrix can be replaced by
scalar exp

(
jΦn,m

)
and only vertically polarized radiation patterns applied.

For the fixed feeder link scenarios, B5, the Doppler frequency component νn,m
is tabulated for the first ray of each cluster, and for the other rays νn,m = 0.
For all other scenarios, the Doppler frequency

νn,m =
~v · ~ΩRxn,m
λ0

, (5.26)

is calculated from direction of arrival ~ΩRxn,m and MS velocity ~v. If only hori-
zontal movement of terminal is considered, than Doppler frequency is:

νn,m =
|~v| cosϕv sin θn,m cosϕn,m + |~v| sinϕv sin θn,m sinϕn,m

λ0
, (5.27)

where ϕv designates direction of travel. When elevations are not modeled,
co-elevation angles θn,m ≡ π/2.

For the two strongest clusters, say n = 1 and 2, rays are spread in delay
to three sub-clusters (per cluster), with fixed delay offset {0, 5, 10 ns} (see
Tab. 5.11). Delays of sub-clusters are

τn,1 = τn + 0 ns
τn,2 = τn + 5 ns
τn,3 = τn + 10 ns

(5.28)

Twenty rays of a cluster are mapped to sub-clusters like presented in Tab. 5.11
below. Corresponding offset angles are taken from Tab. 5.10.

The channel impulse response is obtained as:

hu,s(t, τ) =

N∑
n=1

hu,s(t)δ(τ − τn), (5.29)

where δ(·) is the Dirac’s delta function.
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In the LoS case single line-of-sight ray is added and the CIR is re-scaled
(including all other channel coefficients generated by (5.24)) to fit targeted
K-factor KR.

hLOSu,s (t, τ) =

√
1

KR + 1
hu,s (t, τ)

+

√
KR

KR + 1

 FVTx,s

(
~ΩTxLOS

)
FHTx,s

(
~ΩTxLOS

) T

·
[

exp
(
jΦV VLOS

)
0

0 exp
(
jΦHHLOS

) ] FVRx,u

(
~ΩRxLOS

)
FHRx,u

(
~ΩRxLOS

) 
· exp

(
j2πλ−1

0
~ds · ~ΩTxLOS

)
exp

(
j2πλ−1

0
~du · ~ΩRxLOS

)
· exp (j2πνLOSt) δ (τ)

(5.30)

where KR is the Ricean K-factor defined in Tab. 5.12 converted to linear
scale.

Step 12: Apply the path loss and shadowing for the channel coefficients.
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Chapter 6

System-level, Wideband, MIMO
Radio Channel Models

System level simulations change perspective from single radio-link to the radio net-
work context. Since a radio-network includes multiple radio links it is clear that
complexity increases with the number of communicating terminals, the number
of transmitting/receiving antennas and the transmission bandwidth. Additionally,
wideband MIMO system-level model cannot be considered as a collection of inde-
pendent narrowband SISO link realizations, since correlation between frequencies,
antennas and links should be accounted for. On the other side, due to a large num-
ber of terminals covered by the simulation, a network-level analysis cannot rely on
very complex radio-link description. Therefore, the radio channel models intended
for system performance assessment need to find appropriate balance between ac-
curacy (realism) and complexity. Following the inherent limitations on complexity,
different channel models could be developed to suit particular purposes.

This chapter consists of five sections. The first section targets the model op-
timizations process. The controlled approximation of the model, i.e., reduction
of its realism is considered as mean for complexity depreciation. Expressing the
computation complexity of a model by an equivalent number of real operations
enables straightforward comparison of different modeling approaches. The optimal
strategy for usage of 3-D antenna arrays in simulation is proposed in the second
section. The third section analyzes simplified ST evolution of GSCM that is based
on the “drop” concept. The necessity for LSP correlations to enforce ST con-
sistency is discussed in the context of the WINNER model. Specific aspects of
spatially-distributed transmission corresponding to cooperative downlink are given
in Sec. 6.4.3. The last section discusses global relations between COST 273/2100,
3GPP SCM and WINNER state-of-the-art models being intended for Beyond-3G
(B3G) MIMO simulations.
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Simplification Refine models 
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meas. data 
Link level 
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Figure 6.1: Process of model optimization: relations between validation, simplification and
refinement.

6.1 Model Optimization

Simulation of wireless communication systems is becoming more complex and
time-consuming due to the increased data rates, bandwidths, number of anten-
nas, Quality-of-service (QoS) demands, more complex algorithms, and necessity of
system-level simulations [128]. Even recent development in computer technology
does not compensate the increased requirements, since the realistic multidimen-
sional channel models are needed to obtain accurate and reliable simulation results.
Thus, the modeling goal becomes to achieve as realistic channel model as possible
with reasonable complexity.

Since the modeling process offers multitude of solutions with different com-
plexities, there is a need to evaluate their suitability (optimality) for a particular
problem. The targeted realism of a model is related to the system perception of
the channel: only for given Key Performance Indicators (KPIs) and their maximum
allowed tolerances, different models can be compared regarding their complexity.
This means that reproduction of physical reality is not the goal by itself. Instead,
the relevance of physical phenomena is evaluated by its impact to KPIs. Thus, an
optimization of the model has to be performed in the context of a given number
of KPIs that should be reproduced. If the model will be used to reproduce only
certain system aspects, the non-generic, non-spatial or even non-physical modeling
approaches, having lower complexity, may be preferred.

In general, the necessity for model simplification or refinement stems from the
outcome of the system performance evaluation. A close match between model-
based and measurement data simulations allows a simplification of the model (for
particular KPIs), whereas too large deviations call for model refinement, Fig. 6.1.
Another approach would be to sacrifice some of the model’s realism to reduce its
complexity. Since the term “simplification” does not suggest any loss in the model
realism, the term “approximation” is more appropriate when new methods increase
the gap from the starting model w.r.t. relevant KPIs.
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Figure 6.2: In WIM system-level approach, the spatial simulation area is devided into
channel segments (drops). [5]

6.1.1 Simplification (Approximation) of the WINNER Model

The purpose of the channel model in the WINNER project is to support evaluation
of both link and system features by means of simulations, emulations and demon-
strations. In link and system level simulations the properly tuned model should
generate a significant number of channel realizations, necessary to test different al-
gorithms in terms of KPIs such as throughput, BER, etc. System-level simulations
may include multiple base stations, multiple relay stations, and multiple mobile
terminals, as shown in Fig. 6.2. All modeled links are evolved simultaneously.

The WINNER model, however, has a considerable complexity in terms of model
parameters, scenarios and computational complexity. A further simplification of the
proposed generic channel model would enable a faster evaluation of system features.
In order to optimize the model complexity, a reliable reference is needed. The
measurements used for the development of WIM could be used to simulate reference
system performance, and evaluate (validate) models with a different complexity, as
indicated in Fig. 6.3.

Trading Generality for Simplicity

Having more general models typically means higher model complexity. Generality
can be related to applicability of the model to different environments, or to ability
of the model to reproduce all known (observed) propagation effects.

The WIM uses generic model with scenario-specific parameters. This means
that structure corresponding to each scenario can have different complexity (e.g.,
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Figure 6.3: Simplification/approximation of the WINNER model. (after Jämsä [129])

different number of clusters or rays), without impact to the generic nature of the
model. One possible approach to simplification can be related to different “approx-
imation” space inside every particular scenario. This comes under the assumption
that different sensitivity of the model can be exhibited for different scenarios. If
after individual approximation, all scenarios are still represented with a physical
propagation model, the generic nature is kept, otherwise there is no single generic
core used for representation. In that case the concept of “common modeling frame-
work” can be exploited to associate different scenario representations.

Top-down Approximation of the Physical Model

Starting from the best attainable model of the radio-channel, it is possible to pro-
duce optimized, i.e., simplified/approximated version that still meets targeted KPI
tolerances. The basic idea of the WINNER model simplification/approximation is
illustrated in Fig. 6.3, [129]. The proposed approximation steps should provide the
simplest model for the targeted accuracy. Approximations are based on ignoring
of certain dependencies between model parameters, or intentional reduction of the
number or variability of parameters over different modeling levels. The following
approximation directions could be identified:

1. Ignoring (by setting to zero) auto/cross-correlations between the Large-Scale
Parameters (LSPs).

2. Fixing certain number of LSPs to median values. If all LSPs are fixed, this
corresponds to a single-drop model whose relevance is discussed in Sec. 6.3.2.

3. Reducing the total number of clusters/paths.

4. Fixing the part of, or entire multipath structure (delays or/and angles). The
reduced complexity WIM model that assumes fully fixed delays and angles is
introduced under the name Clustered Delay Line (CDL) model.
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The fact that some of the approximation steps require others is reflected in structur-
ing of the given list: fixing the multipath structure assumes that LSPs are already
fixed.

Approximation by Non-physical (Filtering-based) Models

There are different ways to model spatial dimension of the propagation, however,
methodology offering acceptable complexity for network level simulations typically
considers only filtering methods (characterized by explicit correlation matrices),
and physical models that reconstruct geometry of propagation (at least to cer-
tain extent). The WINNER Channel Model (WIM) itself belong to the cate-
gory of Geometry-based Stochastic Channel Models (GSCMs) that are antenna-
independent and its complexity becomes weakly dependent on the number of Tx/Rx
antennas. The conceptual and computational complexity of the GSCM, however,
exceeds explicit correlation methods. For selected antennas, approximation with
a non-physical model can reduce complexity; however, there is an issue with re-
production of LSP statistic that corresponds to targeted radio-environment (sce-
nario). Due to above restriction, approximation of the GSCM with filtering model
is applicable on per-drop bases only. Namely, in order to transfer current WIM
representation that is related to LSP distributions it would be necessary to create
many instances of correlation matrices, corresponding to different drops. There-
fore, a reproduction of WIM LSPs would require multitude of correlation matrices
that correspond to different drops. Although this may be performed offline, the
resulting model would be away from compact and easy to handle solution, as will
be shown in Sec. 6.1.2.

If a correlation model is desired, correlation matrices can be calculated from the
Clustered Delay Line (CDL) model by fixing the antenna structure. In general, the
full correlation matrices show dependencies over all propagation dimensions: time,
frequency and space. However, they are rarely used in that form for the channel
modeling. In this modeling approach different approximation levels of full spatial
correlation matrix could be introduced:

1. spatial correlation matrices are fixed (averaged) in time but delay dependent,

2. spatial correlation matrices are averaged over both time and frequency,

3. full spatial correlation matrix is separated on Tx and Rx side correlations
(Kronecker approximation, Sec. 3.2.2),

4. spatial correlations are ignored. The resulting wideband channel can be rep-
resented by Tapped Delay Line (TDL) that gives independent realizations for
different antenna elements.

Further approximations regarding the single-antenna or narrowband transmission
result in further simplifications, but they are not of interest here.
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Table 6.1: Equivalent computational complexity of mathematical functions and operations.

Operation
Equivalent Complexity

[ # of Real Op.]

complex multiplication 6
complex division 11
complex addition 2

sinx 7
ex 15

Uniform RV 5
Gaussian RV, X 72
Log-normal RV, 10X = eX ln 10 72+1+15=88

multiplication of a matrix ∈ RN×N and
a vector ∈ RN×1 N · (2 ·N − 1)

6.1.2 Estimation of Computational Complexity

The computational complexity per time sample of the generated channel can be
compared in terms of the number of “real operations”, as suggested in [130] and
[128]. The term Real Operation (RO) equates complexity of the real multiplication,
division, addition and table lookup. All other operations could be transformed to
or approximated by these four basic operations. For example, the complexity of
the complex multiplication, division and addition is 6, 11 and 2 real operations,
respectively. The equivalent complexity of function computation, matrix operations
and random number generations from [130] is listed in Tab. 6.1.

Complexity of WINNER Channel Impulse Response Generation

The procedure of impulse response generation for the WINNER channel model is
divided into 12 blocks and shown in Fig. 5.5. The presented analysis is originally
published in [128] and focuses on blocks 4 to 10 that cover the determination of
propagation parameters (e.g., random delays, powers and azimuth angles etc.) and
pre-processing of block 11 (antenna response and calculation of channel coefficients).

Correlated large-scale parameters The first step of interest is the generation
of correlated large scale parameters in the block 4 of Fig. 5.5. Depending on
LoS/NLoS propagation conditions and availability of estimation parameters,
the WINNER model uses L correlated LSPs, 4 ≤ L ≤ 8. The number of
real operations in drawing L log-normal random numbers is L · 88. LSPs
are then correlated by multiplying 1× L random number vector by a matrix
square root of the L × L correlation matrix. As both the vector and the
matrix are real, the matrix multiplication will take L · L real multiplications
and L · (L− 1) real additions. The total number of real operations needed to
generate correlated LSPs for a single drop is:

Cls = L · (88 + L+ L− 1) = (2L+ 87)L. (6.1)

Factorization of the correlation matrix is excluded from (6.1), because the
matrix will not vary from drop to drop.
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Table 6.2: Complexity of WINNER coefficient generation for ULA geometries under NLoS.

Block Generation/Determinaiton of Label
Equivalent Complexity

[ # of Real Op.]

4 Correlated LSPs Cls (2L+ 87)L

5 Cluster delays Cτ N2 + 74N + 1
6 Cluser powers CP 92N + 3
7 Azimuth angles Caz 166N + 4 + 2M(N + 1)
8 Random coupling of rays Ccoup 5(M − 1)N
9 XPR CXPR 89MN

10 Random ray phases CΦ 5P2MN
11a Antenna array response Crp 13(U + S)PMN
11b Calculation of channel coefficients Ch (134M + 6)USN

Generation of small-scale propagation parameters such as delays, powers, angles
of arrival (AoA), angles of departure (AoD) and cross polarization power ratios
(XPR) is performed in blocks 5 to 9 in Fig. 5.5 and described in Sec. 5.4. The
procedure distinguishes propagation conditions(LoS/NLoS, planar/3-D) and array
geometries, which results in different complexities. Here we discuss only the NLoS
case with propagation in horizontal plane and ULA geometries.

Cluster delays A single delay value is drawn according to (5.11): τ ′n =
−rτστ lnXn, where all the terms are real and Xn is a Gaussian random
number. Generating τ ′n takes two real multiplications, one logarithm which
is implemented as a table look-up, and 72 real operations for Gaussian Xn.
Delays are then sorted in a descending order ~τ ′′ = sort{~τ ′} and normalized by

the subtraction of the shortest delay ~τ = ~τ ′′−τ ′′1 , similarly to (5.12). For nor-
malization one real subtraction per delay value is necessary. The complexity
of sorting in the worst case can be approximated by (N−1)2 operations, where
N is the number of clusters. The total number of real operations required for
delay parameters (block 5) is

Cτ = (2 + 1 + 72 + 1)N + (N − 1)2 = N2 + 74N + 1 (6.2)

Cluster powers are calculated according to (5.15): P ′n =

exp
(
−τn rτ−1

rτστ

)
10
−Zn

10 = exp (a · τn − b · Zn), where Zn is a Gaussian

random number. The computation of constants a = 1−rτ
rτστ

and b = ln(10)
10

is performed only once for all clusters, and requires 3 + 1 = 4 Real Oper-
ations (ROs) in total. The calculation of the power requires a Gaussian
random number, two multiplications, single subtraction and an exponentia-
tion, i.e., 72 + 3 + 15 = 90 real operations per cluster. The powers of clusters

are normalized by the sum of all powers according to (5.17): Pn =
P
′
n∑N

n=1 P
′
n

.

For N clusters, the power normalization requires N − 1 additions and N
divisions. The total number of real operations required for cluster power
generation (block 6) is

CP = 90 ·N + 4 +N + (N − 1) = 92N + 3. (6.3)
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Azimuth angles on departure and arrival are generated according to the offset

from the LoS direction, (5.18): ϕ′n = 2σAoA

√
− ln(Pn/max(Pn))

/
C. The

constant c = 2σAoA

/
C requires 2 real operations and can be determined

only once. The same applies for sorting the powers in max(Pn), which has
complexity of N − 1 RO. The equation is then reduced to one multiplica-
tion, one division, one logarithm and one square root per cluster. Assuming
that real square root needs only one real operation, the total number of real
operations is 4N + 2. The azimuth angles for rays (and sub-rays) are deter-
mined according to (5.20) and (5.22): ϕn,m = Xn ϕ

′
n + Yn + ϕLOS cAoA αm,

where Xn is a discrete RV that takes values {1,–1} with equal probability,
Yn is a Gaussian random number, and αm are tabulated offset angles. The
last term is independent of n and has complexity of M + 1. The realiza-
tion of Xn ∈ {1,−1} determines between addition and subtraction of ϕ′n and
Yn. Offsetting of M rays in N clusters requires NM additions. Therefore,
generation of both arrival and departure angles requires in total

Caz = 2 · (4N + 2 + (N − 1) + (72 + 1 + 5)N + (M + 1) +NM)

= 166N + 4 + 2M(N + 1), (6.4)

where N clusters and M rays per cluster are assumed.

Random coupling of rays (block 8) can be performed by assigning uniformly
distributed random number to each of the M rays. This requires drawing
M − 1 uniformly distributed random numbers per cluster with complexity

Ccoup = 5(M − 1)N (6.5)

XPR values are determined according to (5.23): κm,n = 10X/10 (block 9). This
requires drawing one Gaussian random number, one division and one expo-
nentiation per ray. The total complexity of ray XPRs is:

CXPR = (72 + 1 + 16)MN = 89MN. (6.6)

The overall preprocessing complexity, which corresponds to generation of the prop-
agation parameters being constant within a drop, is a sum of the terms expressed
in equations (6.1), (6.2), (6.3), (6.4), (6.5) and (6.6).

Calculation of channel impulse response coefficients is performed on per-cluster
basis in block 11 of Fig. 5.5. A channel coefficient of nth cluster between sth

transmit and uth receive antenna element is calculated according to (5.24). By
assuming the uniform linear arrays on both sides of radio link, that expression
simplifies to:

hu,s,n(t) =
√
Pn ·

∑N
n=1

∑M
m=1

[
FVs (φn,m)
FHs (φn,m)

]T
An,m

[
FVu (ϕn,m)
FHu (ϕn,m)

]
· exp (jk (ds sin(φn,m) + du sin(ϕn,m)))
· exp (j2πνn,mt) δ(τ − τn),

(6.7)
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where Fs and Fu are the antenna radiation patterns of Tx and Rx antenna elements
s and u, respectively. The polarization matrix A corresponds to

An,m =

[
ejΦ

vv
n,m

√
κn,me

jΦvhn,m

√
κn,me

jΦhvn,m ejΦ
hh
n,m

]
, (6.8)

where Φn,m and κn,m are the random phase and XPR of mth ray in nth cluster,
respectively. P is used to designate number of accounted polarization dimensions,
and P × P corresponds to dimensions of the matrix A.

Random initial phases Φn,m for the matrix A are drawn from uniform distri-
bution U(−π, π) in block 10. For each of the P2 phase values in (6.8) the
complexity is 5 real operations. Therefore, the complexity of random phases
generation is

CΦ = 5P2MN. (6.9)

Antenna array response The responses of antenna arrays for given azimuth an-
gles on departure and arrival have to be determined before computing hu,s,n(t)
coefficients. The complexity of antenna embedding will depend on the chosen
representation of the radiation pattern. If we assume that linear interpolation
of complex samples meets required accuracy, it’s computational complexity,
per polarization, will be determined with two real subtractions, one real di-
vision, two complex additions and one complex multiplication.

Crp = (2 + 1 + 2 · 2 + 1 · 6)P(U + S)MN

= 13(U + S)PMN (6.10)

Application of EADF for radiation pattern representation in the WINNER
channel model is described in [7]. The computational complexity of EADF
radiation pattern interpolation can be approximated by (23W + 2) · P(S +
U)MN , where W designates the number of EADF complex coefficients.

Generation of channel coefficients Preprocessing, related to computing coef-
ficients hu,s,n(t), excludes the impact of the Doppler term in (6.7). The
inclusion of the Doppler phase shift, 2πνn,mt, and summation over MN rays
is done once per each simulated time sample.

The computation of the polarization matrix A in (6.8) requires four exponen-
tiations, one square root and two multiplications between complex and real
number, for each ray and Tx/Rx antenna pair, in total 4 · 15 + 1 + 2 · 2 = 65
(15 if P = 1).

Matrix multiplications of real 1x2 Tx and 2x1 Rx radiation pattern vectors
with complex 2x2 polarization matrix A take 16 + 8 = 24 real multiplications
and 3 complex additions per Tx/Rx antenna pair per ray, in total 24+3·2 = 30
(4 if P = 1).

The relative phase differences between antenna elements are calculated on
the second row of (6.7). The calculation includes two sine values, three real
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Table 6.3: Computational complexity of geometry-based and correlation-based methods for
4x4 MIMO, N=20 cluster, and M=20 rays per clusters, expressed in ×1000 real operations
(after Kyösti [128]).

Processing stage Operation
Geom. Corr.

P = 2 P = 1 P = 1

Drop preprocessing
Gener. of prop. param. 46.3 46.3 46.3

Comput. of chan. coeff.
1021.1 467.9 540.2

Process. per time
sample (from [130])

N/A 140.8 127.7

multiplications, one real addition and one exponential per Tx/Rx antenna
pair per ray, in total 2 · 7 + 3 + 1 + 15 = 33.

Finally, the two aforementioned complex terms are multiplied, and additional
complex multiplication with

√
Pn is performed on cluster level. Therefore,

the total preprocessing complexity of cluster response coefficient hu,s,n is

Ch = [(65 + 30 + 33 + 1 · 6)M + 1 · 6]USN = (134M + 6)USN (6.11)

but it reduces to (58M + 6)USN if P = 1.

Transmission loss and shadow fading , introduced in blocks 3 and 12, deter-
mine SNR for which simulations are performed. The most efficient way to
include them is to scale the transmitted signal. Therefore, the computational
complexity is equivalent to complex multiplication per transmitted symbol.

The overall preprocessing complexity of the cluster response computation is the
sum of the terms given by equations (6.9), (6.10) and (6.11).

Numerical values of the computational complexity for different stages of MIMO
channel coefficient generation are given in Tab. 6.3, for 4x4 MIMO, i.e., U = S =
4, N = 20 clusters and M = 20 rays per cluster. It can be observed that the
preprocessing related to computation of cluster response coefficients dominates the
overall complexity.

The total preprocessing complexity is relatively low compared to per time sam-
ple complexity: generation of about five or more time samples for a drop requires
more computing than all the preprocessing (related to the drop). When typical
channel simulation covers thousands of time samples within a drop, the per drop
preprocessing has only minimal impact to the total channel generation computing
time.

The proper representation of polarizations in geometrical approach (dual po-
larized model with P = 2) approximately doubles complexity of simulations, see
Tab. 6.3 and Fig. 6.4a. Similar situation appears for geometrical models with differ-
ent numbers of clusters: from Fig. 6.4b it can be observed that complexity increases
approximately linearly with the number of clusters. This means that a simulation of
WINNER scenarios with different number of clusters can have significantly different
complexity.
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Complexity Comparison between Geometry- and Filtering-based Approach

The paper [128] analyzes complexity of the filtering-based approach under assump-
tion that space-time evolution of the model is deduced from equivalent geometry-
based approach. Therefore, for comparison of the geometric WINNER method with
the derived correlation matrix based method, the large scale and propagation pa-
rameter determination (blocks 4-10) are assumed to be equivalent. The difference
exists in the channel coefficient generation (blocks 10-11).

Preprocessing in the filtering-based approach is related to determination of
MIMO correlation matrices and Doppler spectrum shaping filters for each clus-
ter [130]. Both features can be estimated according to propagation parameters
and antenna information. The Kronecker model is assumed in [128] and necessary
correlation matrices are independently estimated between transmit and receive an-
tennas.

Due to lack of an established method for representation of dual polarization in
correlation matrices, the complexity comparison is performed for single polarization,
P = 1.

The comparison of preprocessing complexity between the geometric and corre-
lation methods is given in Fig. 6.4 for different MIMO configurations, as a function
of the total number of Tx/Rx antenna pairs (US). The geometric method is more
computationally effective than the correlation based method for all MIMO con-
figurations due to significant computation effort required for estimation of MIMO
correlation matrices for all clusters in each drop. For MIMO configurations larger
than 4x4, the complexity of the correlation based method increases much faster with
number of used antennas US than complexity of the geometry-based approach.

The correlation-based models are usually favored due to their simplicity. How-
ever, if these models are extended to reproduce proper ST evolution, the complex-
ity of channel coefficient generation is comparable to geometry-based models [128].
We can, therefore, conclude that models like Kronecker or Weichselberger are pop-
ular due to their simple interpretation and simple parameter extraction, but they
not necessarily offer lower simulation complexity in cases when large-scale statistic
should be properly reproduced.

6.2 Usage of 3-D Antenna Arrays in Simulations

In this section two different strategies of using 3-D antenna arrays in channel model
simulations are proposed and discussed. Both methods are compared in terms of the
computational complexity and their suitability for the WIM channel model. The
representation of arbitrary 3-D antenna structures is necessary for both modeling
and validation purposes since antenna arrays define the spatial dimension of the
radio-channel. General 3-D antenna array description also embeds polarization
concepts that are becoming important for modeling of 3-D rotation of antenna
array. In order to develop and to validate an antenna-independent MIMO channel
model from/against channel sounding data, it is necessary to use a full 3-D antenna
polarimetric description. In the spatial-channel modeling GCS is used to define
radio-network system layout that also includes positions of the radio-equipment
(antenna arrays). The introduction of ACS is necessary to describe simultaneous
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Figure 6.4: Preprocessing complexity comparison of geom. and corr. approach for different
number of Tx/Rx antennas (Kyösti [128]).

movement of elements belonging to the same array. For representation of antenna-
element complex radiation patterns (2.31) it is possible to use either ACS or ECS.
Selection of ACS for this purpose is especially favorable for measured radiation
patterns when whole antenna array is calibrated jointly. In that case measured
beam patterns already include coupling effects.

The usage of an additional reference system - ECS is suitable for synthetic
arrays where all elements share the same Radiation Pattern (RP). However, it will
be demonstrated here that this approach increases complexity of ray-based channel
simulations, and therefore radiation patterns should be expressed in ACS as well [7].

6.2.1 Representations of 3D Antenna Arrays in WIM

In WIM [110], the channel impulse response from transmitter antenna element s
to receiver antenna element u is determined according to (3.25), and the complex,
polarimetric response of antenna elements s and u is given by (2.31):

~F (~Ω) = [Fθ(~Ω), Fϕ(~Ω)]T · e−j 2π
λ
~ΩT ~d,

that includes the effects of: spatial displacement, directional filtering and polar-
ization mismatch. The radiation patterns [Fθ(~Ω), Fϕ(~Ω)]T express antenna re-
lated depolarization (XPD) in local ACS/ECS, while an environmental cross-
polarization (XPR) is described in GCS by matrix α, expression (3.26). The posi-
tion of ACS/ECS in respect to GCS defines relation between environmental cross-
polarization (XPR), being described globally, and antenna depolarization (XPD)
which is described in local spherical CS. This means that propagation model has
to include projections from GCS into ACS/ECS as showed in Fig. 2.3.

Spatial Displacement A spatial displacement can be easily described if ACS origin
is taken as zero-phase reference point from which all distances in GCS (WINNER
layout) are measured. In this case it is most appropriate to describe MPC phase
offsets in ACS, as described in Sec. 2.4.4.



6.2. Usage of 3-D Antenna Arrays in Simulations 131

Directional Filtering In order to determine effect of directional filtering, a
DoD/DoA for all MPCs and antenna radiation pattern has to be expressed in the
same coordinate system. For that purpose it is possible to use either ECS or ACS,
however the complexity of implementation would not be the same since original
information about antenna element 3-D radiation patterns would be exploited in
different ways in channel simulations. Thus two approaches could be distinguished:

Approach I If directional filtering is calculated in ECS, DoD/DoA for each MPC
is transformed from GCS into ACS and from ACS into ECS.

Approach II The alternative approach, where directional filtering is calculated in
ACS, have the potential to speed up the simulation if the array model is used
very often for large number of MPCs. In this approach, the radiation patterns
of all antenna elements are rotated from ECS to the ACS in a preprocessing
phase. Thus, there is no need to perform DoD/DoA rotations from ACS to
ECS in the subsequent simulations.

Polarization Mismatch Since polarization properties of a single antenna element
are related to its geometry, a comparison of polarization vectors between impinging
wave and the analyzed antenna element has to be performed in the coordinate sys-
tem having the full antenna description. One possibility is to perform two rotations
of polarization vectors (GCS→ACS and ACS→ECS) for each simulated MPC and
to calculate projections in ECS (Fig. 2.3). Another possibility is to use ACS: since
array geometry is not changing, the polarization vectors of antenna elements are
constant in ACS. In this case, polarization vectors are rotated from both GCS
and ECS into ACS, and responses of all antenna elements are calculated in ACS.
This approach is equivalent to approach II described for directional filtering since
rotation of complete 3-D antenna element radiation pattern (including polarization
vectors) is required.

6.2.2 Representation of Radiation Pattern

When Radiation Pattern (RP) of each antenna element is measured separately,
the presence of other elements in array influence the measured RP and the effect
of mutual antenna coupling will be contained in acquired RPs. If RP of every
element in the antenna array is sampled with 1◦ both in azimuth and elevation,
the 360 × 180 vectors ~F (θn, ϕn) are obtained. Therefore, the representation of
polarimetric RP for a single antenna∗ requires 2 × 360 × 180 coefficients. The
memory storage requirements could be reduced if, instead of the radiation pattern,
its 2-D Fourier transform, EADF, is used [131]. The EADF can achieve a high data
compression since spatial limitation of antenna aperture causes particular spectrum
concentration in the transformed domain (Fig. 6.5b).

Furthermore, the EADF provides an effective way of interpolating the radiation
pattern for arbitrary angles in azimuth and elevation that is superior in computation

∗The single port for the dual-polarized antenna.
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Figure 6.5: EADF compression capabilities: instead of 180*360 beam pattern values (a),
the equivalent EADF (b) needs approximately 40*60 values (Landmann [7]).

time and interpolation error to, e.g., a spline interpolation of the radiation patterns
[131]:

~F k(θ, ϕ) = aT
1

(θ)Gka2(ϕ), k ∈ {θ, ϕ} , (6.12)

where ai(α) = ejαµi , µi =
[
− (Li−1)

2 , . . . , (Li−1)
2

]T
, i = 1, 2 and Gk is EADF matrix

with dimensions L1 × L2.
The sampling grid of the antenna RP for EADF calculation contains repetition

of the pole values and because of that EADF is dependent upon referent coordinate
system. As a consequence, after antenna rotation, the resampling of the radiation
pattern in respect to a new pole is necessary. Since sampling grids before and
after the rotation, in general, do not coincide, rotation will introduce interpolation
errors. One way to resolve this issue is to represent antenna beam pattern with
its Vector Spherical Fourier Transform (VSFT). Since Vector Spherical Fourier
Transform (VSFT) uses suitable kernel functions for spherical CS (Vector Spherical
Harmonics) it allows rotating the beam pattern by manipulating VSFT coefficients.
Furthermore, VSFT offers better data compression than EADF [132]. Despite all
this benefits, usage of VSFT for radiation pattern interpolation is considerably more
complex than EADF, and because of that VSFT representation is not appropriate
for system-level simulations.

Complexity Analysis

The rotation of ~Ω vectors (defining DoD/DoA and associated θ/ϕ polarization
vectors) from the ACS to the ECS can be avoided during the simulation if radiation
patterns of all antenna elements are rotated in a preprocessing phase (P 3) and
expressed in ACS. The computational complexity of this phase depends heavily
on the representation of the radiation pattern and the interpolation function. The
comparison given in Tab. 6.4 is based on EADF representation that requires a re-
sampling of the radiation pattern: each pair of azimuth and elevation from the



6.2. Usage of 3-D Antenna Arrays in Simulations 133

Table 6.4: Complexity comparison for different usage of array in simulations.

Approach I II
Phase Simulation Simulation Preprocessing

# Rotations 3(U + S) + 3 3 3(U + S)W/2
# Interpolations 2(U + S) 2(U + S) (U + S)W

ACS is transformed to the ECS and the element response is calculated using the
interpolation function. Interpolation errors could be avoided if VSFT is employed
for the rotation of the radiation pattern in the preprocessing phase. However, a
more precise description would additionally increase the complexity of P 3 and it is
not considered here.

A rough estimate of the differences between the approaches I (ECS is used for
radiation pattern (RP) representation, there is no P 3) and II (ECS is not used in
a simulation since 3-D antenna patterns are expressed in ACS, rotations are per-
formed in P 3) is given in Tab. 6.4. The table shows that number of required opera-
tions (rotations and interpolations) per single MPC depends on the total number of
elements within the arrays, (U +S), and the radiation pattern representation com-
plexity, W . The radiation pattern representation complexity corresponds to number
of coefficients (or samples) necessary for representation of complex polarimetric RP
in (2.31). If EADF corresponds to L1 × L2 complex matrix, in the polarimetric
case (P = 2) the RP will have representation complexity of W = 2L1L2.

In both approaches it is necessary to rotate DoA/DoD from GCS into ACS,
as well as θ and ϕ polarization vectors of the impinging wave. The interpolations
of radiation pattern for given DoA/DoD are handled separately for both antenna
polarizations. Since antenna polarization directions are related to its geometry, in
approach II (rotation of 3-D RP from ECS to ACS) θ and ϕ polarization vectors
defined in ECS will not correspond to spherical unit vectors iACSθ and iACSϕ . Instead,
they will be represented as a linear combination of both (Fig. 2.3).

From Tab. 6.4 it can be seen that for given constant number of MPCs, NM ,
second approach can offer complexity reduction after D simulated channel segments
(drops):

D =
W

NM

(
1

2
+

CI
3CR

)
. (6.13)

Here, CI and CR are representing complexity of interpolation and rotation, respec-
tively. In order to simplify the comparison, the basic complexity unit (BCU) will
consist of complex exponent generation and complex multiplication. According to
the Tab. 6.1 introduced BCU have complexity equivalent to 21 real operations.
From (6.13) it can be seen that the number of antenna elements does not influence
the value of D.

If EADF is used for interpolation according to (6.12), for each interpolation
L1+L2 complex exponentials are generated, L1(·L2+1) complex multiplications and
L1L2 − 1 complex additions are performed. In order to simplify dependence from
EADF size, the complexity of EADF interpolation is approximated with CI = W
BCU, where W = 2L1L2. Each of 2-D rotations requires generation of one complex
exponential and one complex multiplication, giving complexity of CR = 3 BCU
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Figure 6.6: Number of simulated drops, D, that compensates complexity of 3–D antenna
radiation pattern rotation in approach II, parameterized with number of MPCs (NM) [7].

in total. Using the above assumptions, it is possible to determine the number of
simulated drops D, after which the second approach offers lower total complexity,
Fig. 6.6. If the total usage of the channel model (in multiple runs) for a given
antenna array exceeds the value of D given in Fig. 6.6, approach II should be
applied. Since departure/arrival angles of the WINNER model are updated on
drop-basis, the number of simulated time-samples is not relevant for presented
complexity analysis.

When a rotation of 3-D antenna RP is performed in the preprocessing phase,
the complexity of simulations is reduced. However, the reduction of the total com-
plexity (including necessary operations for the rotation of RP) is dependent on the
representation complexity of the RP and the number of MPCs used in simulations.
If EADF of applied antenna requires L1×L2 = 40× 60 coefficients (Fig. 6.5b), the
complexity of C2 NLoS scenario (N = M = 20) simulation can be reduced after
D = 2∗40∗60

20∗20

(
1
2 + 2∗40∗60

3∗3
)

= 6406 drops.

6.3 Space-Time Model Evolution

One of the most important characteristics of the channel model is its evolution over
space and/or time, since variability is inherent characteristic of radio-channel. The
causes for variations could be related to: i) movement of communication termi-
nals, ii) movement of objects in environment, or iii) changes of the communication
medium.

Motion in Radio Environment
For stationary transmitter and receiver small temporal variations in radio channel
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will appear due to motion within the propagation environment. The moving scat-
terers could be vehicles, plants exposed to wind, living beings, machinery, doors,
etc. The impact of individual moving scatterers to the power and frequency of the
Doppler shift depend on their size and speed. Larger objects produce components
with more power, while faster objects introduce components with higher Doppler
frequencies into the Doppler spectrum. However, in general, the most moving scat-
terers, have small effect on Doppler spectrum. This is pointed in [28] in the form
of the “big-slow rule”, where speed by which objects move is inversely proportional
to their size. The consequence will be that faster/smaller object contributes small
amount of power at high Doppler frequencies and power-significant contribution of
slow/big object occurs only at low Doppler frequencies. Therefore, Doppler spec-
trum appears as monotonically decreasing.

6.3.1 Stationarity Assumptions

Typically, in mobile radio applications the channel becomes time-variant due to
motion of communication terminals. If all scatterers contributing to the prop-
agation channel are stationary, the channel will appear time-invariant whenever
terminal stops moving. Under such assumptions, the channel characteristics are
dependent on the transmitter and receiver positions and therefore time variance
becomes equivalent to spatial variance [9]. All system level models being consid-
ered in this thesis (Sec. 6.5) are representing the wideband MIMO channels in static
environments for non-stationary users.

Impact of Terminal Velocity
For static environments, the change of channel characteristics does not come

from speed but from translation from one spot to the other. Done fast, the changes
are fast, done slowly, the changes are slow, but essentially the total changes are
identical for both cases. Although WINNER scenarios listed in Tab. 5.1 assume a
certain range of terminal speed, this is mainly exploited during the synthesis of CIR
where maximum Doppler frequency is to be determined. Therefore, the translation
speed is important in running the model, but none of the model parameters are
speed dependent (except maximal Doppler shift). Thus, a driving speed during
measurements is not important, as long as the environment was nearly static during
the measurements. This means that measurements for WINNER characterization
are NOT performed by different speeds in order to select the closest dataset during
the model usage.

Constraints Regarding Experimental Characterization
The MIMO channel sounding used for WINNER parameterization has a goal to

resolve multipath structure for every position of measurement terminals. Therefore
the maximal speed of terminal during the measurement is limited by the spatial
extent of the area with the same multipath and time that a sounder needs to
record single channel snapshot (CIRs between all Tx and Rx antennas for both
vertical and horizontal polarization). The time required for single snapshot in
RUSK system depends on applied measurement antenna arrays, and typically takes
the values of several [ms]. During that interval the structure of multipath should
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be unaltered. Since any movement of terminal or interacting objects is reflected
in temporal domain (and corresponding Doppler spectrum), the proper sampling
frequency should be ensured. According to the sampling theorem, for snapshot
frequency fS = 1

Ts
it is possible to resolve Doppler frequencies up to fS/2. For

maximal Doppler shift νmax = v
λ ≤

1
2TS

, the maximum allowed speed between
objects and measurement terminal is,

v ≤ λ

2TS
, (6.14)

where TS is snapshot duration in [s]. Under these conditions channels are properly
sampled in space-time.

6.3.2 Drop-based Simulations

One way to approach the ST variability is to divide the analyzed space-time do-
main into small regions with high similarity between channel realizations, named
the Local Stationarity Regions (LSRs) [8]. This concept can be applied for chan-
nel characterization, but also for channel simulation with low complexity. Local
stationarity regions are implemented in many current GSCM, but often under dif-
ferent names (’drops’, ’channel segments’,’local-area’ etc.). In 3GPP SCM drop is
designating area with fixed multipath structure, in which phases are updated to
represent fast fading. The same feature is used in WINNER and later adopted in
IMT-Advanced channel model [63]. According to the drop concept, radio channel
is modeled as a number of stationary drops where multipath structure is assumed
to be invariable. This concept enables multi-link and system level simulations with
a relatively low complexity, Fig. 6.2.

Performance Evaluation by Drop-based Simulations

The analysis performed in [49] indicates that autocorrelation of SoS models is not
ergodic if gains or frequencies are modeled as random variables. Since change of
multipath profile from drop to drop results in random ray gains and Doppler fre-
quencies, the drop-based geometric model is not ergodic. For ergodic models a
single simulation trial represents the whole ensemble, while models with stochastic
parameters require more simulation trials [133]. Therefore, drop-based geometric
models are more complex than deterministic methods being discussed in Sec. 3.3.2.
It is however possible to establish equivalence between them for single realization
of multipath: e.g., within single drop WINNER model pseudo-randomly updates
the ray phases according to Doppler shift. Thus, drop-based simulation correspond
to running multiple deterministic SoS models (being ergodic within LSRs) in order
to collect statistic relevant for complete scenario. Therefore, the proper evaluation
of average performances, that characterize the whole environment, requires instan-
tiation of large number of drops corresponding to different multipath realizations.

If only single drop is initiated during simulation this would correspond to esti-
mation of the link performance of mobile terminal that is moving over the small
spatial area, having almost constant multipath profile and experiencing only small-
scale fading. Therefore, this kind of simulation will provide performance indicator
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BER = f(SNR) that is conditioned for single realization of multipath. This cor-
responds to simulation of the multiple environment realizations with the same mul-
tipath structure but randomly changed phases of MPCs†. This approach however,
does not represent environment to the full extent, since variation of the multipath
structure over the space-time is not considered.

In 3GPP SCM, WINNER and IMT-Advanced channel models the concepts of
Large-Scale Parameter is exploited as tool to grasp the variations of the multipath
profile in space-time. The observed statistic is then used during simulation to re-
produce realistic space-time evolution. The single-drop model approximation have
problem of the adequate environment representation: selection of the single drop
exhibiting e.g. average LSP, does not necessary mean that some performance metric
calculated for that selected drop represents mean of all metrics in full representation

of the environment. If we assume that performance indicator
−→
I n = M(H(

−→
L n))

depends on nth realization
−→
L n of LSP parameters, than average performance for

certain scenario is determined by averaging over different realizations of the envi-

ronments:
−→
I av = 1

N

∑N
n=1M(H(

−→
L n)). Note that even for fully linear performance

metric function,M, averaging of channel realizations before metric calculation does
not provide useful result.

The impact of propagation environment variation between drops on BER and
MIMO capacity is reported in [128] and shown in Fig. 6.7. The evaluation is per-
formed by placing a number of terminals into random network topology and simulat-
ing the short segments of the radio channel. The BER performance is evaluated for
WINNER indoor A1 NLoS scenario [5]. Simulations for every drop and SNR value

are performed during 50 seconds and obtained curves BER(
−→
L n) = f(SNR|

−→
L n)

are represented with different colors on 6.7a. The variation of about 5 dB on 10−3

BER level emphasize the necessity of using multiple drop realizations during per-
formance evaluation.

The channel capacity is evaluated for 1000 drops of WINNER Urban macro C2
NLoS channel and fixed signal-to-noise ratio of 20 dB. The obtained histogram in
Fig. 6.7b shows the large variations of channel capacity (about 12bps) between the
drops. Observed relations imply that statistically valid results (matching contin-
uous channel evolution) require performance averaging over multiple drop simula-
tions.

Complexity of Drop-based Simulations

The complexity of drop-based MIMO simulations is investigated in [128]. Two
major aspects of GSCM are analyzed in the context of WINNER II channel model:
the generation of the propagation parameters and computation of channel response
coefficients. The resulting computational complexity is quantified by the number
of real operations [130] and displayed in Tab. 6.3.

The idea behind drop-based simulations is to keep the multipath structure con-
stant in the local stationarity region (“drop”). This has the advantage that all

† The same idea was used in [134] to approximate capacity CDF curves from estimated MPC
(specular) parameters.
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Figure 6.7: Variations of KPIs between different drops: a) BER curves simulated on 350
drops, b) histogram of ergodic capacity over 1000 drops for SNR = 10 dB (Kyösti [128]).

time-independent operations can be performed only once per drop, in a preprocess-
ing phase. In this way, the recomputation of all MPC parameters and the complete
generation of channel coefficients is avoided in consecutive simulation time instants.
For GSCM using only a single polarization (P = 1), this saves 514 200 real opera-
tions and reduces complexity by 78.5% per time sample. According to Tab. 6.3, the
generation of five or more time samples within a drop during a simulation requires
more computation than the complete drop-related preprocessing. These results
show that drop based simulation does not significantly increase the complexity of
simulation if compared to the traditional synthetic fading models that does not
account for channel geometry or ST evolution.

The reduction of ray-tracing complexity by a drop-like concept is also analyzed
in the context of 802.11g-based ad-hoc networks [135]. The extent of the homoge-
neous zone is defined by the radius for which the autocorrelation function of the
received power levels drops below 50%. In order to reduce complexity of simulations
the received power level was kept constant within a homogeneous zones. According
to the time that mobile spends within the same homogeneous zone and due to a
dropout of unfeasible connections, a reduction of the computation time of ≈50% is
reported.

6.3.3 ST Evolution of WINNER Model

Multi-link channel models can be distinguished by their consistency in representing
the proper space-time evolution of multiple radio links. The proper ST evolution
of all simulated links is important since it will influence system-level performance.

It is previously pointed in Sec. 3.6 that geometry-based models could use differ-
ent strategies for environment representation: “real” positioning of scatters within
simulation coordinate system or virtual positing in direction-delay domain. When
ST evolution is related to cluster placement it inherently provides proper correlation
of consecutive channel realization. Therefore, in the first case, a geometry-based
approach of GSCM ensures a high consistency of the environment. The realism of
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space-time evolution in COST 273 [60] and the COST 2100 models [105] is enforced
by introducing the concept of visibility regions.

When a consistent description of the environment is not available, the knowledge
of joint link properties is required to emulate realistic space-time relations. This is
the case with models that place MPCs directly in the parameter space (angle/de-
lay/Doppler). Examples for such models are the 3GPP SCM [34], the WINNER
channel model [5] and the ITU model [63].

LoS/NLoS Propagation Conditions

For most WIM scenarios, two different sets of model parameters are defined accord-
ing to existence of an unobstructed line-of-sight (LoS) propagation path between
the BS and the MS. Depending on the available environment model, the exis-
tence of LoS/NLoS propagation conditions can be determined in two different ways
during simulations. If the terminal locations are known with respect to a street
grid, the propagation condition can be determined deterministically. On the other
hand, if such knowledge about an environment is not available, the WIM uses the
scenario-dependent probabilities for LOS path existence.

The LoS probabilities depend on basic deployment parameters such as horizontal
distance (d) between the BS and the MS, BS and MS height, as well as parameters
that characterize the radio environment. All expressions for LoS probability in
WIM2 exhibit a dependence on d having the form exp(−d/L), in which L is a
scenario-specific constant. It can be shown that this mathematical form arises
from the assumption that equal length, but non-overlapping, segments of the direct
propagation path have equal and independent probabilities of being obstructed.
This assumption is considered to be reasonable for most actual radio environments,
as long as the spatial distribution of objects that can potentially obstruct the direct
path, is approximately uniform. The parameter L represents mean unobstructed
path length, and tends to become smaller if the density of potentially obstructing
objects increases. Results of ray-tracing simulations carried out in WINNER II
framework indicate that the exponential model mentioned above is valid for dense
urban areas as long as the BS and the MS are not located in the same, straight
street canyon [125].

During dynamic simulations, the LoS probability determines the percentages of
space and time in which the LoS and NLoS model parameters are used. In drop-
based simulations, the LoS/NLoS conditions for all links are set at the beginning
of each drop and kept constant until the next drop.

ST Evolution Along the Route

WINNER models have kept the concept of drops being introduced by its 3GPP
SCM precursor, under new name channel segments. The channel segment corre-
sponds to a local stationarity region, in which propagation delays and DoA/DoDs,
as well as LSPs: DS, AS and SF, do not change considerably. The original
SCM/WIM1 framework uses quasi-stationary environment in which consecutive
simulated channel segments do not necessarily follow predefined mobile route. In-
stead, they correspond to randomly chosen positions of MSs. However, for consis-
tent ST evolution along the route it is necessary to determine how channel evolves
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between two spatially neighboring drops. Attempts to introduce continuous evolu-
tion of angles and delays in extended SCM [66] have resulted in the computationally
complex model, which is not suitable for system-level simulations.

Since a time-evolution of the channel model may have a considerable impact to
the system performance evaluation, the new low-complexity approach is adopted for
WIM2. The route to be modeled is covered by adjacent channel segments (Fig. 6.8),
where the distance between segments, ds, is equal to the extent of the local sta-
tionarity region. In order to support “smooth” model evolution in time, transitions
from segment to segment are carried out by replacing clusters of the “old” segment
by clusters of the “new” segment, one by one, by linearly decreasing/increasing their
powers. The basic idea behind the substitution method is depicted in Fig. 6.8. The
route between adjacent channel segments is divided into subintervals. Their num-
ber, nAB = max {NA, NB}, is equal to maximum number of clusters within the
neighboring channel segments A and B. During each subinterval the power of one
old cluster ramps down and one new cluster ramps up. Clusters from the old and
new segments are coupled based on their power. If number of clusters is different
in the channel segments the weakest clusters are ramped up or down without a pair
from other cluster. With this concept, transitions between LoS/NLoS propagation
conditions and different scenarios are supported.

Usage of Correlations to Enforce ST Consistency

LSPs describing every particular drop are generated as uncorrelated random num-
bers from LSP probability distributions. However, it is necessary to account for
similarities of links with close terminal positions. Since WIM does not “know”
scatterer positions it has to enforce similarity using the correlations of LSPs.‡

‡The concept of LSP correlations is quite different from explicit sub-link correlations being
exploited in filtering-based models. Actually, the latter models are not appropriate for system-level
simulations due its limited ability to ensure consistency of ST evolution.



6.3. Space-Time Model Evolution 141

MS1
MS2

BS

dMS
[m]

(a)

BS1

MS

BS2

dBS
[m]

d [m]

h [m]

(b)

Figure 6.9: Correlation of radio links with common station: a) intra-cell, and b) inter-
cell [125].

Under the assumption that the system layout information about position of all
stations is available, WIM uses positions of MS to introduce the scenario-specific
correlation of LSPs for MSs being connected to the same BS. Thus, multiple
correlated links with the common BS can be simulated simultaneously in WIM.

In cellular networks two types of correlations could be identified at the system-
level (Fig. 6.9): a) intra-cell correlations between MSs connected to the same BS,
and b) inter-cell correlations of links from the single MS to multiple BSs. In both
correlation types, an environment similarity comes from equivalent or common
scatterers contributing to different links. However, due to different deployment
assumptions for BS and MS, a difference between intra- and inter-cell correlations
is observed in measurement data.

Intra-cell Correlations
In WINNER channel model intra-cell correlations are determined between subset

of LSPs: DS, AS of both departure and arrival angles, and SF. WIM2 assumes
that intra-cell correlations are dependent only on distance between MSs (dMS), and
uses correlation coefficient to express them:

ρx̃ỹ(dMS) =
Cx̃ỹ(dMS)√
Cx̃x̃(0)Cỹỹ(0)

. (6.15)

Prior to quantifying their correlation, measured Large-Scale Parameter x and
y are transformed into normally distributed processes x̃ and ỹ, using appropriate
mapping g(·), Sec. 3.7.1. The cross-covariance function between transformed LSPs
x̃ and ỹ is then determined as:

Cx̃ỹ(dMS) = E {(x̃(~r1)− E {x̃(~r1)}) · (ỹ(~r2)− E {ỹ(~r2)})} , (6.16)

where averaging is performed over all pairs of position vectors (~r1, ~r2) being at

distance dMS = ‖~r1 − ~r2‖22.
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Figure 6.10: Distance dependent correlation coefficients used in WINNER channel model.

The LSP correlations observed in WINNER measurements (e.g., [99], [102])
show an exponential decay over distance, as previously reported in [136] and [137].
Similarly to [137], [138], [139], and [103] the experimentally determined dependence
of correlation coefficient over distance is approximated by exponential model:

ρ̂x̃ỹ(dMS) = exp(−dMS

dx̃ỹc
), (6.17)

with single parameter dx̃ỹc that is called de-correlation distance. Accordingly, LSPs
of two links toward the same BS would experience correlations that are proportional
to their relative distance dMS . The de-correlation distance is defined as the distance
between MSs at which the correlation coefficient drops to e−1.

Since every link (i.e., corresponding MS position) in WIM is characterized by
several correlated LSPs, it would be necessary to quantify distance dependent cor-
relations between all of them. In order to simplify correlation dependence from
network layout, the correlations are characterized in two separate ways. The
cross-correlations are considered only at zero distance, dMS = 0, and only auto-
correlations show distance dependence, as illustrated in Fig. 6.10. Correspondingly
WIM reproduces LSP dependence from link-level cross-correlations and distance-
based auto-correlations being introduced in Sec. 4.3.2. Distance based auto-
correlations are characterized independently for every LSP, and applied for spatial
filtering of independent LSP realizations, generated on drop basis. The matrix of
cross-correlation coefficients define the shape of MVN distribution that represents
scenario.

For modeling purposes correlations ρ̂x̃ỹ(dMS) are introduced between indepen-
dent Gaussian random variables with zero mean and unit variance according to
(5.1). The correlated Gaussian RVs are afterward mapped to LSP values by us-
ing g−1(·), Sec. 3.7.1. The given procedure enables the reproduction of distance-
based intra-cell LSP correlations observed in measurement data, as demonstrated
in Appx. B.2.
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Inter-cell Correlations
Inter-cell correlations are not supported in WIM2 implementation, primarily due

to lack of empirically supported results. An appropriate characterization of inter-
cell correlations for different WINNER scenarios requires considerable amount of
data being collected under specific measurement setups. WIM2 assumes that neigh-
boring BSs are sufficiently separated not to exhibit significant inter-cell correlations.
On the other side, different sectors of the same BS are co-located and therefore their
links show full correlation. In order to extend WIM capabilities for simulation of
more complex network topologies, e.g., multihop links, ad-hoc links, peer-to-peer
connections, it is necessary to extend model and incorporate the concept of inter-cell
LSP correlations. The discussion about an extension of LSP correlation concepts
toward representation of arbitrary inter-link dependencies is continued in Sec. 6.4.3.

6.4 Interlink Dependencies

Many wireless network concepts being investigated nowadays employ the multiple
links: mesh topologies, relaying, distributed antennas, cooperative transmission,
virtual MIMO etc. They tend to exploit an existence of spatially distributed termi-
nals by their smart cooperation on the network level. A design and a performance
evaluation of the systems incorporating multiple links require reliable models of
coexisting radio channels.

Additionally, multi-link scenarios range from cellular multi-BS cooperation to
peer-to-peer links, (where terminals on both link-ends can be mobile) and relay
feeder links (with stationary terminals on both ends). These scenarios significantly
differ from the classical cellular concept: changes in terminal deployment (height)
and mobility pattern result in considerably different propagation conditions.

The dependency of different links on each other is a significant aspect in multi-
user channel modeling. Therefore, for proper channel simulation, such dependencies
need to be modeled accordingly.

6.4.1 Channel Similarity Measures

For multi-link channels it is necessary to quantify similarity between different links.
Depending on the link similarity, the processing algorithms or transmission strate-
gies could show different performance.

Typically, a correlation-like measures are used to characterize the similarity: in-
terlink eigenvalue correlations and shadowing correlation are two examples. These
correlations are equally applicable to link-dependencies with and without embedded
space-time evolution. Alternatively, stochastic characterization of the ratios/differ-
ences between corresponding link properties can be applied, like in [140].

The applied approach in representation of similarities will be closely related to
modeling strategy. The geometry-based models, being representatives of sum-of-
rays approach are more suitable for this purpose than filtering-based models that
already use explicit correlation between MIMO sub-links. The similarity of narrow-
band MIMO channels, whose realizations correspond to matrix, could be expressed
by appropriate projections such as matrix collinearity [141] or relations between
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singular values (e.g. ratio of condition numbers [142]). In general, different mea-
sures as condition number ratio and matrix collinearity provide a different notion of
the (dis)similarity of the spatial structure: while the condition number ratio reflects
the channel directivity, the collinearity measure is sensitive to the alignment of the
dominant propagation directions [105].

6.4.2 Impact of Common Scatterers on Interlink Correlation

For the development of multi-link channel models, it is essential to have understand-
ing about the physical phenomena that increase correlation between different links,
such as scatterers that are common for two or more links, i.e. common scatterers
(or clusters of scatterers). Common scatterers are especially harmful for systems
that depend on the spatial characteristics of the channel, since underestimating the
significance of common scatterers in simulations would result in overestimating the
system performance.

In [143] it is shown that large indoor structures as pillars can correlate shadowing
realizations of two links that are established from nearby mobile terminal toward
two significantly separated access points. Although different dominant propagation
mechanisms are identified for links, their relevant MPCs have similar departure/ar-
rival directions at the mobile side, causing a significant correlation of the received
power.

In order to quantify the amount of energy that propagates via the same scat-
terers in different links, a measure called the significance of common scatterers
was introduced in [144] as follows. In a dual-link case, the significance of the nth

common scatterer is denoted as a function of a time instant k by

Sncommon(k) =

√
s

(1),n
common(k) · s(2),n

common(k), (6.18)

where s
(i),n
common(k) is the proportion of the nth common scatterer in total power in

the ith link. If the number of scatterers that are common for the different links is
denoted by N(k), the total significance of the common scatterers can be expressed
by the sum of the significances of the individual common scatterers Sncommon(k) by

Scommon,tot(k) =

N(k)∑
n=1

Sncommon(k). (6.19)

The total significance of the common scatterers Scommon,tot(k) gets values between
0 and 1, where 0 means that the different links have no common scatterers and 1
indicates that all scatterers are common for the two links. This concept is embedded
into the COST 2100 model [105].

The significance of common scatterers was studied in [144]. It is found that
in corridors the total significance of common scatterers is typically between 60%
and 90%. The impact of common clusters to inter-link correlations is evaluated
in [145] by the collinearity of generated correlation matrices. The simulated scenario
considers links from two BSs to a single (fixed) mobile. These links share a single
common cluster and have up to five additional clusters per link, all of which are
randomly positioned. If was found that higher common cluster significance leads
to increased collinearity, since it shifts collinearity CDF to the right.



6.4. Interlink Dependencies 145

1d

2d

)(BS 11 R

)(BS 22 R

)(MT 22 r

)(MT 11 r

1D

2D

MTd

BSD
D∆

H∆

Θ

Figure 6.11: System layout defined by positions of communication terminals [64].

6.4.3 Correlations of LSPs Describing Different Links

Dependence of LSP Covariance Matrix on System Layout

The channel model of a system with K coexisting links should generate K · M
correlated LSPs, where M is the number of LSP per each link. The corresponding
full covariance matrix CCT would have, for each time instant, size M ·K ×M ·K.
This matrix characterizes the correlations between all LSPs describing all coex-
isting links, however its proper synthesis is not trivial due to strong dependence
upon the system layout. The problem can be addressed by proper decomposition
of the transformation matrix, C, according to link-level§ and layout-level corre-
lations. The link-level correlations correspond to cross-correlations of the LSPs
characterising the same link, and according to the proposed simplification they
will not change over space-time. On the other hand, the layout-level correlations
explicitly depend on the relative position of the terminals at both link ends. De-
pending on at which link’s end a terminal displacement occurs, it is possible to
distinguish intra-site and inter-site correlations (Fig. 6.11). Since two different
links with single common end could not simultaneously exhibit both correlation
types, the intra-site (Ri = Rj) and inter-site (ri = rj) correlations could be con-
veniently combined for given system layout. These correlations are typically ex-
pressed in the form of layout-dependent correlation coefficient ρXY (L) = σXY√

σXXσY Y
,

where σXY = E[(X − E[X])(Y − E[Y ])] denotes covariance between LSPs X and
Y . The geometry parameters L are determined from the vectors defining the rel-
ative position of mobile terminals (di,dj) = (ri − R, rj − R) or base stations
(Di,Dj) = (Ri − r,Rj − r) w.r.t. to single common position (Fig. 6.11). The set
of relevant parameters L for intra-site correlations could be reduced to Euclidian
distance between mobile terminals dMT = ||ri − rj || [5]. Opposite to the intra-cell
correlations, inter-cell correlations show dependence upon many layout parame-

§A single link realisation, when compared to itself, could be considered as a special case in
system layout, where there is neither displacement of the mobile terminal nor of the base station.
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ters:¶ [103], [139], [146], [147]. Therefore, the characterization of inter-site correla-
tions requires a more complex parameter space L = [Θ,∆D,DBS,∆H]T [125] being
defined at Fig. 6.11: Θ = ∠(Di,Dj) designates the angular separation of the base
stations as seen from the position of the mobile terminal, ∆D = ||Di||F − ||Dj ||F
is the difference in distance of the mobile terminal to the respective base stations,
DBS is the distance between the base stations and ∆H is their height difference.

Inter-site correlations

Inter-site large-scale parameter correlations are an important property because
their existence affects system performance [148]. Some general observations from
literature are that the correlation is low when the BSs are in opposite directions
as seen from the mobile. However, even for small angular separation between BS
correlation can be low, if distances to the MS are not similar. Additionally, different
height of BSs can considerably reduce correlation level. According to these results
inter-site correlations show dependence on four parameters, ρ(Θ,∆D,DBS,∆H),
as illustrated in Fig. 6.11. Different correlation properties are expected in indoor
and outdoor environments and under different LoS/NLoS conditions.

In [149] the inter-site correlations between links from different base-stations are
analyzed. The assessment is based on simultaneous multi base-station measure-
ments conducted by Ericsson in Stockholm. The parameter correlations between
all combinations of shadow fading and delay spread of two links are investigated in
both NLoS and LoS situations.

It is demonstrated that careful selection of spatial regions where correlations are
calculated (manual selection of “similar” environments, small angular separation of
BS, same propagation conditions, etc.) easily boosts intra-correlation levels above
1/e. Generally, when the MS is between two BSs and also the main lobe of the BSs
face to the routes, a high inter-site correlation exists – even if the BSs are far away
from each other. If the MS is moving towards, or away from both BSs, positive
inter-site correlations are obtained, otherwise negative correlations are obtained.

The (conventional) intra-site parameter correlations and their autocorrelation
values were found to be similar to the established parameters in COST 2100 [105]
and in the WINNER II C2 model.

Cooperative Downlink

In configurations with spatially distributed communication sources a receiving ter-
minal simultaneously receives multiple signals.

The power of the signals transmitted through a radio channel is spread over
delay and angular dimensions, both at transmitter and receiver side. When these
spreads become relevant for system design (e.g. wideband or MIMO transmission)
they should be properly represented in radio-channel model.

Usage of spreads is intuitive way to represent physical channel propagation.
According to its mathematical formulation spreads are independent from the ab-
solute power level. This favourable property enables separate characterization of

¶These results do not match with 3GPP SCM assumption that shadowing fading exhibits
constant (layout independent) correlation coefficient of 0.5.
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Figure 6.12: a) Impact of the power peak level differences to perceived spreads, b) DS PDF
(empirical distribution and log-normal fit) as a function of effective dynamic range [150].

the power spreading and overall transmission loss. Many current models use the
statistics of the measured power spreading to describe large-scale channel evolu-
tion [34], [5], [63]. They, however, do not consider downlink in a cooperative mode:
a setup with common receiver and several spatially distributed transmitters, e.g.
links (−D1,−D2) from Fig. 6.11.

When characterizing the cooperative downlink it is not possible to disregard
the influence of the receiver’s limited dynamic range on perceived LSPs of the
cooperative links [150]. Due to the reception of signals with different power levels
and the limited dynamic range of the receiver, a perception of power spreading in
weaker links reduces. The presence of a dominant (stronger) link forces the weaker
links out of the useful Dynamic Range (DR), as illustrated in Fig. 6.12a.

The perception of power spreading expressed by DS or AS dependents on the
effective dynamic range of the particular radio-link, as shown in Fig. 6.12b. Con-
sequently, the characterization of inter-site correlations between cooperative links
requires previous adjustment of effective dynamic ranges‖. These will depend on
the total power received from all cooperative links, and in general they will be lower
for the weaker links.

The strategy of joint representation of distributed/cooperative wideband MIMO
channels with common sink is proposed in [150], in which the modeling of cooper-
ative links can be based on appropriate relations between relative shadowing and
perceived power spreading [140]. The proposed strategy is described in the context
of WINNER model and therefore relevant Large-Scale Parameters (LSPs) including
Transmission Loss (TL), Delay Spread (DS), Angular Spread (AS) are determined
according to the procedures from Sec. 4.3.

Statistics of Power Level Differences
The pointed LSP inter-dependence on link-level could be decoupled if spread-

‖When measured separately each link will be characterized according to the dynamic range of
the measurement equipment, what is not relevant for reception of simultaneous signals.
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independent power reference is used. Therefore peak power is used instead of cu-
mulative power. This parameter can be related to the power of the strongest multi
path component, or (under certain conditions) to the maximum peak of Power-
Delay Profile. The peak power can be characterized using the same procedures
normally applied for the cumulative power analysis: a distance dependence can be
expressed by regression model

P̂ (d) = A · log10 (d) +B. (6.20)

Differences in peak-power levels from cooperative links are determined from
multi-run measurements, by performing distance-based pair-wise snapshot match-
ing [150]. The power peak difference, 4P , between cooperative links determines
the effective DRs and consequently perceived power spreading. The measured peak
power level difference, ∆P = P1 − P2 is related to peak power regression over the
distance and shadowing realizations Si of considered links i = 1, 2:

∆P = P̂ (d1) + S1 − (P̂ (d2) + S2). (6.21)

Therefore, relative shadowing (difference between shadowing realizations on two
links) can be calculated as:

∆S = S1 − S2 = 4P −
(
P̂ (d1)− P̂ (d2)

)
. (6.22)

The relative shadowing can be statistically characterized for particular multi-link
configurations and targeted scenario, and parameters of corresponding PDFs can
be included into model as an additional LSPs [150].∗∗ The statistics of relative
shadowing for routes ’9a-9b’, ’10b-9a’ and ’41a-42’ and base stations ’BS1’, ’BS2’
and ’BS3’ at height of 25 m from Ilmenau measurement (Sec. A.2.3) is showed
in Fig. 6.13a. The obtained empirical distribution can be roughly approximated
as being uniform in the range from -8 dB to 17dB, or more complex multi-kernel
representation can be used.

For a given realization of the peak power differences (random process) and a
dynamic range of the receiver, the effective dynamic ranges for each of cooperative
links can be determined.

Perceived Power Spreading
As a consequence of the mutual interaction between links, the effective DRs will

impact the distributions of perceived power spreads. The model should, therefore,
quantify a general dependence between the effective DR and power spreads, whose
significance is not limited to distributed links [71]. For this purpose the delay and
angular spreads have been calculated for different dynamic ranges. The dynamic
ranges being lower than the DR of a channel-sounder are emulated by thresholding
the (marginal) power spectrum, S(x), with respect to peak power level, max{S(x)}.
The analysis is performed for Delay Spread (DS), Azimuth Spread on Departure

∗∗Alternatively, the correlation coefficients between shadowing at cooperative links, (e.g. S1

and S2), can be used to represent the multiple-link channel. By using the letter approach nar-
rowband and/or SISO links are analysed in inter-site configurations [147], [146], [103].
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Figure 6.13: a) Empirical PDF of relative (pair-wise) shadowing, b) dependence of power
spread log-normal PDF parameters from effective dynamic range [140].

Table 6.5: Dependence of power spread distributions from effective dynamic range.

.

Dynamic Range [dB] 5 10 15 20 Max

Delay Spread
log10([ns])

µ 1.68 1.83 1.96 2.02 2.19
σ 0.47 0.44 0.37 0.30 0.19

AzimuthSpread@Departure
log10([deg])

µ -0.02 0.09 0.16 0.21 0.32
σ 0.50 0.48 0.46 0.44 0.35

AzimuthSpread@Arrival
log10([deg])

µ 1.25 1.37 1.46 1.53 1.60
σ 0.51 0.43 0.36 0.30 0.21

ElevationSpread @Arrival
log10([deg])

µ 1.21 1.28 1.30 1.31 1.32
σ 0.28 0.21 0.18 0.17 0.16

(ASD), Azimuth Spread on Arrival (ASA), and Elevation Spread on Arrival (ESA).
The elevation angles on transmitter side have not been estimated, since geometry
of the used linear array (ULA) is not suitable for this purpose.

For every computed empirical distribution an appropriate log-normal fitting
is performed, as illustrated in Fig. 6.12b for DS. The observed dependence of log-
normal model parameters (µ, σ) from effective dynamic range is showed in Fig. 6.13b
and summarized in Tab. 6.5. From Fig. 6.13b it can be noticed that mean values (µ)
of the spread distributions increase for higher dynamic range, while simultaneously
their standard deviations (σ) show slight decay. The rate of the change is the
highest for DS. The ESA shows the lowest sensitivity to DR change, meaning that
dominant multi path components are well distributed in the covered elevation range.

Extended Multi-Link Channel Model
After considering the mutual interaction of spatially distributed cooperative links,

it was found that the power level differences and their interactions with perceived
spreads should be properly modeled. In order to avoid correlation between spreads
and reference power-level parameters on link level, it is proposed to refer to the
peak instead of the cumulative power. Following the WINNER approach for other
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parameters, the statistical characterization of peak power-level differences is per-
formed at scenario level. This statistics can be used is direct form, or by accounting
for peak level dependence over distance (equivalent to transmission-loss model). In
the latter case relative shadowing is characterized stochastically, similarly to SF in
existing models.

During model synthesis the randomly generated values of relative shadowing
∆S will define the effective dynamic ranges, and the parameters of spread-related
LSP distributions should be modified accordingly. In this manner, a representation
of cooperative links is adjusted according to the receiver perception. Since the
proposed approach enables simple manipulation of distributions of spreads, it is
also suitable for dynamic simulations.

Above reasoning applies to models that use spreads based on relative power level,
i.e. using an independent transmission-loss model. In the case of WINNER, this
would mean modification of the global PDFs that characterize LSP distributions
for weaker link(s). For the COST 273/2100 model, the consequence is that spreads
of the clusters associated with weaker link(s) should be reduced. In both cases, the
explicit assumption is that reference spread values refer to the maximum dynamic
range for a single-link characterization.

One of the implications of “receiver perceived” channel representation is that
reciprocity (normally assumed in channel modelling) will not be preserved. In
a mesh network, the link between two communication sinks, each having other
spatially distributed links too, will be experienced differently by the two sinks
because of the unequal influence of the additional (distributed) links at both sides.

6.5 Comparison of WIM with Other State-of-Art System-level
Models

The aim of WINNER (Wireless world INitiative NEw Radio) project [151] was to
define a single ubiquitous radio access concept for beyond Third Generation (3G)
systems, being scalable and adaptable to different short range and wide area sce-
narios and considering frequencies up to 5 GHz and bandwidths of 100 MHz. Since
the radio interface have been seen as the key part of this concept, realistic prop-
agation models covering many different environments were required for its design.
Developed WINNER Channel Model (WIM) [5] has advanced 3GPP SCM [62] con-
cepts toward a single generic framework that is capable to represent all targeted
indoor/outdoor environments (scenarios). Different (scenario-specific) parameter
sets for the generic model are based on series of wideband, polarimetric, MIMO
radio channel sounding experiments.

Fig. 6.14 illustrates the relations between the COST, 3GPP, and WINNER
state-of-art models that will be discussed here. By its nature, these models are rep-
resenting the wideband MIMO channels in static environments for non-stationary
users. WIM has been developed starting from the Spatial Channel Model frame-
work, and therefore these models share many concepts, as will be shown here.
Somehow in parallel, a generic COST 273 [60] model is developed from the COST
259 framework, having similar objectives as WIM. Since results of COST 259 ac-
tion have influenced 3GPP SCM as well (SCM is in essence also double directional
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Figure 6.14: Relation between modeling activities: majority of contributions originate from
academy (COST) or industry (SCM/WINNER).

channel model), it is reasonable to expect that WIM and COST 273 model share
some similarities. However, SCM have been developed for system-level performance
analysis and therefore introduced many simplifications to reduce complexity (com-
putation time). COST 273 model designers have claimed that introduced simplifi-
cations could restrict the general applicability of the model and therefore decided
to provide more universal concept. In similar manner, descendant action COST
2100 [152] has continued tuning and parameterization of the COST 273 model,
disregarding WIM/SCM simplifications.

In the meantime WIM concept (being further developed within WINNER+
project) has impacted IMT-Advanced standardization: ITU-R M.2135 Report takes
slightly modified WINNER model as reference for evaluation of IMT-Advanced
radio interface technologies. [63]

6.5.1 Common Modeling Concepts

All compared models support representation of wideband MIMO radio channel be-
tween multiple transmitting and receiving stations. Therefore, they are suitable for
system-level (multiple link) performance evaluation.

The basic modeling philosophy behind all compared models (SCM/SCME/
WIM/COST) is the same: the sum of specular components is used to describe
the changes in the CIR between each transmitting and receiving antenna element
by using SoS approach. Due to the different spatial position of elements inside
Tx/Rx antenna array, different channel characteristics are obtained and MIMO
concept is supported.

All compared models can be classified as stochastically controlled spatial chan-
nel models what means that parameters of randomly selected MPC are related
to its physical propagation in space-time. All these models use GSCM approach,
where MPCs are grouped into clusters. Distinction between SCM/WINNER mod-
els on one side and COST models on another, comes from concept of stochastic
model driving, as indicated in Sec. 3.6. This have consequences to consistency
ST model evolution Sec. 6.3.3, and necessity of SCM/WIM to use correlation for
characterization of inter-link dependencies Sec. 6.3.3.
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To characterize different environments (scenarios) SCM/WINNER/COST mod-
els are using (temporal and spatial) parameters obtained from measured CIRs. For
each scenario measured data is analyzed and processed to obtain scenario-specific
parameters. After this point, same generic model is used to represent all scenarios,
just by using different values of control parameters.

Transmission-loss models are defined explicitly (separately from other features)
in both COST and SCM/WIM. This allows use of the existing transmission-loss
models, however, WIM’s transmission-loss models are mainly based on measure-
ments taken during the WINNER project [112].

In all models power ratio between orthogonal signal polarizations is expressed
by log-normally distributed CROSS-Polarization-Discrimination-Ratios (XPD in
COST 273 and XPR in SCM/WIM).

For LoS cases ratio of direct power and reflected/diffracted power is adjusted
in both models. In SCM/WIM this parameter is called Ricean K-factor (following
analogy with narrowband case), while COST models termed this quantity “LoS
power factor”. In all models this is log-normal random variable.

6.5.2 (Extended) Spatial Channel Model

This subsection is summarizing all important differences and compares features
and performances of WINNER channel model with Spatial Channel Model (SCM)
and its extension (SCME). Compared models are offering complete channel model
description in a sense of large-scale as well as small-scale effects in MIMO radio
channel. Since SCM was originally proposed for 2 GHz range and 5 MHz bandwidth,
certain extensions were necessary. At the beginning of the WINNER project, before
having a full insight into the measurement results, mainly theoretical extension of
SCM is provided under name SCME. It was found that the main limitations of the
proposed approach come from the decision to attain backward compatibility with
SCM. That was the motivation to start using the new WINNER generic channel
model, where model parameters are extracted from channel-sounding measurements
covering frequencies up to 5 GHz and bandwidths of 100 MHz, in different types of
environments.

Supported Scenarios

SCM was originally dedicated to outdoor propagation, and defines three environ-
ments: Suburban macro, Urban macro, Urban micro. In SCME number of scenarios
is not extended. WINNER models are supporting considerably larger number of
scenarios then SCM/SCME, as discussed in Sec. 5.1.

Usually, even for the same scenario, existence of LoS component substantially
influences values of model parameters. Regarding to this property, each WINNER
scenario is differentiating between LoS and NLoS conditions. Originally this was
not the case with SCM where LoS condition was analyzed only in the context
of Urban Micro scenario, but SCME provided the extensions for the other SCM
scenarios.
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System Dependence

Carrier Frequency: Dependence on carrier frequency in SCM/SCME/WIM is found
in transmission-loss models. In SCM, COST 231 Urban Hata (macro-cell) and
COST 231 Walfish-Ikegami (micro-cell) transmission-loss models are adopted and
adjusted for frequencies of 1.9 GHz. In SCME frequency range for SCM scenarios
is extended based on correction of the frequency dependent free space loss:

∆TL(fc) = 20 log

(
fc
2

)
, (6.23)

where fc is carrier frequency in [GHz]. Additionally, in SCME, the COST 231
Walfish-Ikegami transmission-loss model was applied also for macro-cell environ-
ments in 5GHz range since usage of higher frequencies decreases coverage area.
Following SCME approach, all scenarios defined by WIM support frequency depen-
dant path-loss models valid for the ranges of 2 – 6 GHz.

From WINNER measurement results and literature survey it was found that
model parameters Delay Spread, Angular Spread and Rician K-factor do not show
significant frequency dependence [66]. From that reason these parameters show
only dependence on environment (scenario).

For modeling systems with Time Division Duplex (TDD) all models (SCM/
SCME/ WIM) are using same (large-scale and small-scale) parameters for both Up-
Link (UL) and Down-Link (DL). If system is using different carriers for duplexing
(FDD), than (additionally to transmission loss) random phases between UL and
DL are independent.

Bandwidth: In 3GPP SCM reference document [62] there is a note that usage of
6 paths (clusters) may not be suitable for bandwidths higher than 5MHz. This
reflects the possible influence of system bandwidth to the complexity of model
structure, e.g., number of clusters, number of MPCs per cluster. Following the
approach described in [153] for indoor propagation modeling, SCME used intra-
cluster delay spread as a mean to support bandwidth extension. However, since
SCM forced backward-compatibility (to attain comparability with SCM, number of
clusters and total number of MPCs are not increased. Instead, SCM cluster with 20
MPCs is subdivided into 3-4 zero-delay sub-clusters (“mid-paths”), keeping total
number of MPCs constant. Introduced delay spread per cluster (10ns) reflects the
targeted 100 MHz bandwidth, and redistribution of equal power MPCs between
sub-clusters matches PDP decay, Fig. 3.9.

In WIM different philosophy is applied: since measurement systems were sup-
porting 100 MHz bandwidth, during WIM parameterization number of clusters was
traced in delay and angular domains from measured CIR. In this way number of
clusters reflects both system bandwidth and scenario dependence. It is not expected
that intra-cluster spread concept with unchanged number of MPCs better reflects
bandwidth dependence than introduction of the new clusters. However, the latter
approach also increases complexity since total number of MPCs would be increased.
Therefore, both approaches are combined in WIM2.
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Antenna Arrays: SCM/SCME/WIM1 introduce additional support for cross-
polarized antenna arrays because default representation for antenna arrays was
not general enough (the reference polarizations of antennas and environments are
not modeled separately). The full polarimetric antenna description was developed
in WIM2 [7] and described in Sec. 6.2.

System Level Description

In order to calculate transmission-loss, the information about distance between
transmitting and receiving station is necessary for all compared models. Accord-
ingly, the system layout requires positions of all stations. However, the system
layout in these models usually does not contain additional informations about sim-
ulated environment. Only exception is related to the positions of far scatterers in
the SCM and WIM2.

Correlation at System Layout Level: In all models all LSPs are fully correlated for
links between MS and different sectors of the same BS. In this way, influences of
selective antenna gain pattern or different LoS conditions between certain sectors
to the level of LSP correlation are not regarded.

Additionally to SCM, the WIM uses positions of MS to introduce scenario-
specific correlation of link LSPs for MSs being connected to the same BS. In
SCM/SCME correlation of LSPs between different MS is not supported.

In SCM, a standard deviation of shadowing fading for links from one MS to
different BSs (“site-to-site”) has constant correlation coefficient equal to 0.5. In-
troduced correlation does not depend on distances between BSs or their relative
angular positions as seen from MS and therefore it is not layout dependant. WIM
does not support layout independent inter-cell correlations and same applies to
SCM/SCME implementations supported by WINNER.

Complexity Issues

SCM/SCME/WIM are intended for system level evaluation. In order to keep com-
plexity reasonably low, these models are relaying on some quasi-realistic assump-
tions and concepts:

Channel Segment/Drop: Channel segment (drop) represents period of quasi-
stationarity in which probability distributions of low-level parameters are not
changed. During this period all large-scale control parameters, as well as velocity
and direction-of-travel for mobile station are held constant in SCM/WIM models.
Contrary, SCME has allowed simultaneous drifting of arriving angles and delays
for every MPC at each simulation step inside a drop. In respect to this property
SCME can be classified as model with continuous evolution (in discrete steps, being
smaller than drop). Consequence was substantial increase of complexity and simu-
lation time length in comparison to SCM/WIM1. WIM2 uses a reduced complexity
time evolution in comparison to SCME, which is based on cluster replacement be-
tween neighboring drops and described in Sec. 6.3.3.
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Table 6.6: Feature comparison of SCM, SCME, WIM1 and WIM2.

Feature SCM SCME
WINNER

I
WINNER

II

Bandwidth ≥ 100 MHz No Yes Yes Yes

Indoor scenarios No No Yes Yes

Outdoor-to-indoor and
indoor-to-outdoor scen.

No No No Yes

AoA/AoD elevation No No Yes Yes

Intra-cluster delay spread No Yes No Yes

TDL model based on the
generic model

No Yes Yes* Yes

Intra-cell correlations be-
tween MSs

No No Yes Yes

Time evolution of model
parameters

No Yes** No Yes

* TDL model is based on the same measurements as generic model, but analyzed
separately.

** Continuous time evolution.

Zero Delay Spread Cluster (ZDSC): MPCs belonging to the same cluster (path in
SCM terminology) have “close” values of both delay and angular parameters. If all
MPCs belonging to the same cluster have exactly the same delay, it is possible to
define extremely simple relation between SCM/WIM and Tapped Delay Line (TDL)
model. Due to mentioned similarity, the spatial extension of TDL is also called
CDL model in WINNER terminology. This type of reduced-complexity model is
offered in SCM/SCME/WIM for link-level simulations and calibration purposes.
The support of intra-cluster delay spread concept in SCME increases number of
“taps” in TDL/CDL model 3 or 4 times, since cluster is represented by 3 or 4
zero-delay sub-clusters.

Predefined Angular Offsets from the Cluster Center: This property is used by SCM/
SCME/ WIM to avoid random generation of MPC angles in each drop. Difference
is that WIM scales initial offsets with standard deviation of angles per cluster, while
SCM uses predefined values for intra-cluster (sub-path) departure angle spreads of
2◦ (macro) and 5◦ (micro) and 35◦ for spread of arrival angles. When separate
drifting of MPCs inside cluster (continuous evolution) in used by SCME, angular
offsets are not constant any more.

Comparison Tables Tab. 6.6 summarize the qualitative differences between SCM/
SCME/ WIM1/ WIM2 features, while the Tab. 6.7 gives their numerical compari-
son. DS values in WIM2 scenarios are generally lower then for WIM1 due to the new
estimation procedure that regards only upper 20 dB of the observed signal range in
CIR. The higher DS range in Tab. 6.7 corresponds to the bad urban scenarios that
are modeled with an additional far-cluster option. Additionally, other parameters
of WIM1-supported scenarios are also slightly tuned for WIM2 according to the
newly performed measurements.
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Table 6.7: Numerical comparison of SCM, SCME, WIM1 and WIM2.

Parameter Unit SCM SCME
WINNER

I
WINNER

II

Max. bandwidth MHz 5 100* 100** 100**

Frequency range GHz 2 2 – 6 2 – 6 2 – 6

No. of scenarios 3 3 7 12

No. of clusters 6 6 4-24 4-20

No. of mid-paths
per cluster

1 3 – 4 1 1 – 3

No. of sub-paths
per cluster

20 20 10 20

No. of taps 6 18 – 24 4-24 4-20

BS angle spread 5 – 19 4.7 – 18.2 3.0 – 38.0 2.5 – 53.7

MS angle spread 68 62.2 – 67.8 9.5 – 53.0 11.7 – 52.5

Delay spread ns 170 – 650 231 – 841 1.6 – 313.0 16 – 630

Shadow fading
stand. deviation

dB 4 – 10 4 – 10 1.4 – 8.0 2 – 8

* artificial extension from 5 MHz bandwidth
** based on 100 MHz measurements

Performance Figures

Frequency Correlation Under the joint WSS (i.e., WSSUS) assumption, the Fre-
quency Correlation Function (FCF) is related to the average Power-Delay Pro-
file (PDP) through a Fourier transform (Wiener-Khintchine theorem, Appx. C).
Since the compared models are using only specular components, the FCF is esti-
mated from discrete PDP by using:

R(∆f) =
∑
i

S(τi) exp(−j2πτi∆f)

/∑
i

S(τi), (6.24)

where ∆f is the frequency difference, τi is the delay and Pi is the power of the ith

path.
Fig. 6.15a depicts frequency correlation of SCM, SCME, and WIM1 models in

100 MHz bandwidth [154], [155]. The correlations are based on the respective TDL
models of suburban NLoS scenarios.†† This figure shows that the correlation of SCM
model for bandwidths exceeding 10 MHz is considerably higher than correlation of
SCME and WINNER models.

Fading Distribution and Autocorrelation of Equivalent Narrowband Channels The am-
plitude fading, autocorrelation, level crossing rate and Doppler spread are impor-
tant measures of the channel model performance. However, statistical analysis of
these parameters have shown very similar results in all compared models. Fig. 6.15b
shows the temporal auto-correlation functions as example.

††The TDL of SCM was taken from SCME by removing the intra-cluster delay spread.
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Figure 6.15: Comparison of correlation function between SCM, SCME, and WIM: a) Fre-
quency correlation function for Suburban scenario. b) Temporal auto-correlation functions
of the equivalent narrowband channels (Kyösti [70]).

Figure 6.16: MIMO antenna configuration for capacity calculation. [70]

Outage Capacity of Equivalent Narrowband Channels Both spatial and polarization
characteristics of the models are investigated by the means of a channel capacity.
Based on the assumption that the channel state information is unknown to the
transmitter, the narrowband capacity is calculated by

C = log2 det
{
I +

P

σ2
HHH

}
, (6.25)

where I is the identity matrix, P
/
σ2 is the average SNR, H is the narrowband

channel matrix and (·)H denotes the Hermitian transpose operation.
Capacity curves are simulated for signal to noise power ratio of 14 dB for all

(three) scenarios supported by SCM/SCME and shown in Fig. 6.17. The com-
plementary cumulative distribution function of capacity is plotted for a several
independent channel snapshots and compared to Gaussian i.i.d. channel matrix.
The reference antenna configuration is 4x4 MIMO with two sub-groups of ±45◦

slanted single polarized elements whose spacing is 4 wavelengths on BS and half
of wavelength on MS, see Fig. 6.16. For the all three scenarios the median out-
age capacity is about 7 bits/s/Hz lower than Gaussian i.i.d. reference curve. As
expected, SCME gives equal outage capacities to SCM because its spatial and po-
larization characteristics are not changed in the respect to the basic SCM. The
outage capacity of the WIM1 deviates slightly from SCM/SCME in Urban Micro
scenario, while in Urban Macro scenario WINNER model shows higher capacity
than SCM/SCME.

As could be seen from previous discussion, modeling methodology and certain
SCM concepts are still part of WIM. The similarity is observed in the narrowband
capacity measures that reflect the spatial and polarization properties of the models.
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(a) (b) (c)

Figure 6.17: Comparison of outage capacity between SCM, SCME, and WINNER: a)
Suburban Macro, b) Urban Macro, and c) Urban Micro scenario (Kyösti [70]).

However, without extensions provided in WINNER it would not be possible to apply
SCM-based methodology to the frequency ranges and extended system bandwidths.
The main strength of WIM is based in scenario-customized parameters that are
making possible to apply generic spatial-channel-model to the numerous of different
environments. Special WIM quality also comes from the fact that parameterization
is based upon the real channel-sounding measurements.

6.5.3 COST Models

WINNER and COST 273 channel models have been developed for generic (multiple-
environment) representation of the wideband MIMO radio channel. Although both
models belong to the class of Geometry-based Stochastic Channel Models and use
similar concepts, there are still significant differences in model structuring and
parameterization. This section compares modeling strategies adopted by WINNER
and COST 273 and analyzes relevant differences.

Global vs. Cluster-level Characterization

It is necessary to be cautious, when comparing WIM and COST 273 models since
similar terms are applied on different levels of the model characterization: WIM is
introducing Large-Scale Parameters (i.e. angular and delay spreads, shadow fading,
K-factor) on the global level, while COST 273 is often using the same parameters
on cluster-level.

If we disregard the level at which characterization is performed it is possible to
recognize that the general approach is the same: the control variables are generated
as correlated random numbers from predefined distributions. There is however
difference in the number of the correlated control variables: SCM e.g. uses shadow
fading, delay spread, and spread of departure angles. COST 273 model additionally
considers spread of arriving angles, referring to both azimuth and elevation angles
(if applicable). In WIM there is one more parameter: K-factor is used under LoS
conditions, what gives 7 correlated variables in total.
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Cluster Generation

The COST 273 model makes a distinction between clusters involved into single and
multiple interactions. This model allows two different strategies for cluster gen-
eration: “geometric” and “angular spectrum”. The geometric generation assumes
cluster placement in a referent coordinating system via the concept of “visibility
regions”. Different geometric strategies are proposed for both single and multiple
interaction clusters. In “angular spectrum” approach a mean DoD, DoA and delay
are generated as random variables from predetermined distribution (like in WIM).
The “angular spectrum” strategy is intended only for multiple interaction clusters.

In the SCM/WIM models there are no distinction between clusters based on
the number of interactions and the only “angular spectrum” strategy is used for
their generation. This can be considered as one of the essential differences between
COST 273 and WIM. It follows from different viewpoints of measurement-based
characterization (WIM, i.e., “angular spectrum”) and synthetic model generation
(“geometric” strategy). After acquiring MPC parameters from high-resolution al-
gorithms, antenna centric view of the channel is obtained. This analysis gives power
distribution over delay, direction and polarization domains. Such a representation
is suited for “angular spectrum” approach, and enables straightforward extraction
of model parameters. The missing part, that makes this approach different from
geometric cluster generation, is distance between BS/MT and the last interacting
cluster. This step is, however, necessary if we would like to determine scatters
positions from the measurement data. Some related work can be found in [156]
and [29].

Impact of scatterer positioning to model parameterization/validation
The positioning of Interacting Object (IO) in the geometry domain during model

synthesis makes model less suitable for the experimentally-based parameterization,
since additional transformation of the measured features from parametric domain
(Doppler, delay, angular, polarization) into IO positions is required. It can be recog-
nized that this type of analysis tremendously increases data analysis requirements,
which have been already very high due to high-resolution parameter estimation.
(The procedure is simple only for single interaction case [157].) In contrast, the
WIM model is synthesized in parametric domain, without excursion into geometry
domain, what enables straightforward parameterization from measurements.

Additionally if “visibility regions” of single clusters should be determined from
measurements, it would be necessary to perform rendering of the complete 2-D
plane/3-D volume. Typically, measurements have been performed mainly over
straight routes since storage capacities and necessary analysis time are putting
limit to reasonable number of snapshots that should be taken during the measure-
ments. Having this in mind, it becomes clear that verification of geometric cluster
generation cannot be easily performed from measurements!

There is another approach to this problem: a development of mechanisms for
geometric cluster positioning that mimic observed signal statistics. For this pur-
pose COST 273 proposes different strategies for clusters with single and multiple
interactions.
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Number of Clusters In COST 273 model cluster visibility regions (geometry ap-
proach) are placed to reflect constant number of visible clusters in average. “An-
gular spectrum” approach, determines the number of “visible” clusters as random
variable with predefined distribution. WINNER model introduces further simplifi-
cation and for given scenario uses constant number of clusters that is equal to the
mean number of clusters observed in measurement data.

Space-Time Channel Evolution A placement of the visibility regions in COST 273
model is indirectly defining space-time evolution of the propagation channel (e.g.
for given trajectory of the MT), and correlation between different spatial positions.
In the original SCM concept a quasi-static approach is used that does not take care
about evolution – consecutive simulation “drops” correspond to random locations
of the MT. In WIM concept evolutionary transitions between neighboring “drops”
are supported. Since WIM does not use IO positioning (i.e. environment structure),
(dis)appearance of the clusters is considered in parametric “delay-directional” do-
main. In order to emulate ST evolution in parametric domain WIM uses distance-
based correlation of the Large-Scale Parameters.

Cluster Structure

In COST 273 model each cluster (opposite to WINNER, Sec. 5.4) is characterized
with its own (correlated) angular and delay spread parameters. These spreads are
controlling intra-cluster angular (Laplacian) and delay (exponential) power distri-
butions.

SCM/WIM use predetermined cluster structure where all MPCs in cluster share
equal powers. This is not the case in COST 273 model where the power of MPCs is
characterized by a Ricean distribution. It should be noted that COST 273 approach
differs from the usage of per-cluster K-factor in [158]. The latter model assumes that
MPCs have equal power (like WIM), but allows existence of group with coherent
MPCs (forming dominant scatterer).

Correspondence between WINNER and COST 273 Scenarios

The WIM LoS and NLoS conditions are not distinguished only by the existence
of the single strong LoS component. Instead, all scenario-dependent parameters
are calculated separately for the LoS and NLoS propagation conditions. When
simulations are performed without knowledge of street grid or building layout, the
WIM model rely on a set of scenario-dependent expressions for LoS probability.

In the parameterized COST 273 scenarios LoS occurrence is determined using
the “visibility region” concept. The probability of LoS regions in this model de-
creases rapidly with the BS-MT distance, and becomes zero after cut-off distance.

The classification of the COST 273 scenarios is shown in Fig. 6.18. As in the case
of the WINNER RPS, the COST 273 scenario definitions are model independent,
but all of them are being represented by the single generic channel model.

From Fig. 6.18 it can be recognized that significant overlap exist between COST
273 and propagation scenarios investigated in WINNER project. Some COST 273
scenarios (microcell open space, tunnels and home environment) have not been
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Figure 6.18: COST 273 model scenarios (WINNER matching scenarios are indicated in
brackets) [72].

analyzed in WINNER. On the other hand, some WINNER scenarios: Indoor-
to-outdoor, Rural and Moving Networks are not included into COST 273 scenario
classification. Additional measurement have been performed in WINNER+ project
[151], without providing explicit scenario parameters.

Software Implementations

In the course of the WINNER project, SCM, SCME and WIM (phase I and II)
models are implemented in MATLAB/C and made available through the official web
site [151]. The latest WIM2 implementation includes polarimetric representation
for 3-D antenna arrays [7] and distribution parameters for elevation angles for many
scenarios [5].

The MATLAB implementation of the COST 273 model is provided by Helmut
Hofstetter, from Telecommunications Research Center Vienna (FTW). Supported
CIR calculations are valid only for the short MT movements, since the long term
evolution of the model is missing. The implementation covers the core part of
the model (with the placement of the clusters and IOs) and it is available at [30].
Recently, COST 2100 model implementation is provided at [159] under Open Source
license.

General Remarks

It can be noticed that significant similarity exist between WIM and COST 273
models. This becomes especially pronounced when WIM is compared to “angular-
delay” approach of COST 273 model. Opposite to COST 273, WIM has not pro-
posed any “geometric” analogy to “angular-delay” representation. In that sense,
the key driving parameter in the COST 273 geometric model is a density of the
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visibility regions (later transferred into the number and cluster positions), while
WIM characterizes the measured Power-Delay-Directional Profile by using Large-
Scale Parameters (angular and delay spreads, shadowing). The significant differ-
ence between these models is also related to the degrees of the freedom in cluster
characterization: WIM have introduced many simplifications in order to reduce
complexity.

Further extensions/completion of COST 273 model are performed within COST
2100 action. The most significant contribution in new COST 2100 model is related
to introduction of common clusters (Sec. 6.4.2) as the means for quantification and
reproduction of inter-link correlations [105]. In general, appearing differences could
be associated with different optimization criteria: complexity (WINNER) versus
universality (COST). It shows (as expected) that a more universal concept is
more difficult to parameterize and to validate: WINNER model currently has more
parameterized scenarios. Additionally, introduced simplifications made WINNER
model appealing for relevant standardization bodies - the ITU-R has accepted the
WINNER approach as reference for evaluation of IMT-Advanced radio interface
technologies.



Chapter 7

Concluding Remarks

The spatial dimensions of the radio transmission channel offer significant improve-
ment of throughput, range or reliability of transmission. In order to keep the
transmission strategy optimal, the new radio access technologies embed adaptivity
to the current conditions in the propagation channel. This increases the importance
of the channel model in the system design process, and motivates the development
of the system-level models being discussed in the thesis.

Although, the channel is independent from the transmission system, its model
is often limited in bandwidth, dynamic range, etc. On one hand, this reflects the
limitations of the channel measurement and analysis procedures, while on the other,
that enables a reduction of model complexity. The accuracy of the model will not
be of any use if the model is too complex for the targeted application. There-
fore, the appropriate balance with respect to the model’s purpose has the ultimate
importance. This thesis considers models intended for system-level design, where
stochastic models, able to reproduce many different channel conditions, are pre-
ferred. Another important context is that analyzed models should represent the
statistics of the complete propagation scenario. A proper reproduction of the mea-
sured statistics could be achieved more easily with geometry-based (sum-of-rays)
models than with filtering-based models that use the explicit correlation between
antennas.

Once the class of geometry-based stochastic models is selected as the most ap-
propriate one, it determines the place of the antenna in the model, and requires
the reconstruction of spatial propagation dimension. If geometry of multipath is
known, the antenna, due to its deterministic response, can be de-embedded from
the radio-channel. This enables the decomposition of the radio channel and inde-
pendent analysis of the propagation channel that does not include antenna arrays.
However, the parameterization of the GSCM requires the post-processing of mea-
sured channel tensors with specialized high-resolution parameter algorithms. These
algorithms could reliably resolve only a limited number of multi-path components
and therefore the reached representation the channel is only conditionally indepen-
dent from measurement antenna. RIMAX model estimates the optimal model order
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(number of MPCs) based on parameter variances. This leads to a hybrid model in
which the remaining part of the channel after the subtraction of specular compo-
nents is represented with filtering-based model. In this way the realism of estimated
parameters is kept under control. Otherwise, the “ghost” multipath components
stemming from the estimation process and from the propagation channel could lead
to misleading interpretation.

Since the targeted systems require ubiquitous coverage, the channel model
should cover a large number of different scenarios. This can be handled by GSCM
if proper parameters are estimated for all relevant scenarios. Here we can recognize
the most significant contribution of the WINNER model: based on the simplified
model with transparent parameterization procedure, stochastic characterization is
performed (by many institutions) for multiple propagation scenarios. The 3GPP
SCM, WINNER and even the COST model to some extent, are made to support
straightforward parameterization from the measurement experiments. These mod-
els use the double-directional concept which coincides with antenna-centric channel
perspective of a channel sounding. The complete channel analysis and model syn-
thesis are made in “parametric” domain, meaning that actual positioning of the
interacting objects in some coordinate system is never performed. This approach
distinguishes these models from stochastic ray-tracers (like COST models), and
make mapping of observed channel into actual distribution of scatterers unneces-
sary.

The most important gain is the simplified characterization of the space-time
model evolution through the concept of large-scale parameters. Large-scale param-
eters control the spreading of the channel power along different dimensions and, in-
directly, the position of clusters/MPCs in delay-directional parametric space. The
LSPs are estimated from measurements, independently for each dimension, and the
collected observations of delay spread, angular spread, shadowing and other LSPs
are fitted with log-normal distributions. The impact of parameterization proce-
dure to the obtained parameters is limited by fixing the influencing parameters:
dynamic range to 20 dB, bandwidth to 100 MHz, etc. It have been empirically
proved that spatially close LSP estimates are correlated. This comes as a conse-
quence of a gradual change in the multipath profile, which can not be reconstructed
from the relative position of moving terminal with respect to scatterers. Therefore
SCM/WINNER models have to use explicit characterization of the LSP correlations
in order to emulate realistic transitions over space and time. These correlations are
characterized after mapping of individual log-normal LSP distributions into Gaus-
sian distributions. Therefore, the transformed LSPs jointly have a multi-variate
normal distribution. This enables a simple comparison of different measurements
and scenarios, according to an objective similarity metric. Consequently, the num-
ber of required scenarios of the generic model can be minimized.

A consistent reproduction of inter-link dependencies is also important for over-
all system performance especially if the cooperation between spatially distributed
terminals is supported. This should be enforced in all system-level models inde-
pendently from the way they handle scatterers. Therefore, the common interacting
objects, contributing to multiple links, are introduced in COST models. The most
natural way to enforce inter-link dependencies in WINNER model is to use corre-
lations of LSPs controlling different links. The thesis introduce the guidelines for
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analysis of intra-site correlations and suggests the influential geometric parameters,
but does not provide actual correlation values or elaborate model extensions. This
defines the necessary future work.

The specific structure of WINNER model, having two levels of randomness,
requires a customized verification procedure that is elaborated in the appendix.
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Appendix A

Experimental Characterization

The mobile communication systems are constantly improved over last decades. The
higher data throughputs, mobility and quality of service are reached with the new
concepts such multiple transmit and receive antennas, large transmission band-
widths (up to 100 MHz and more) etc. Because these systems are aiming to exploit
as much as possible the given capacity of the channel the new system concepts
are very sensitive to the changes in the propagation channel. Therefore, channel
models are needed to represent the propagation in different scenarios close to the re-
ality. The stochastic properties of the model parameters are extracted from channel
sounder measurement data.

This, possibly redundant, appendix title is used to designate those parameter
extraction procedures that are based on channel-sounding data post-processing. It
is possible to debate that each modeling activity must rely on measurements, since
they are providing necessary observations of channel behavior that is to be modeled.
This is however not the case for all reported models, since there are many cases
where other models are taken a reference. Usually, they use a priory knowledge for
alternative model construction, increasing realism or reducing complexity. How-
ever, that knowledge is ultimately also related to channel measurement, therefore
term “experimental characterization” is applied to emphasize “immediate use of
experimental data”.

In the first part of the appendix, the necessary requirements for characterization
of the multidimensional radio-channel are summarized. The second part presents
the empirical statics that is extracted from measurements and exploited to param-
eterize the WINNER channel model.

A.1 Multidimensional Channel Sounding

The multidimensional sounding with proper setup enables the investigation of the
complete spatio-temporal structure of a radio channel that, additionally to the
temporal delay of incoming waves, includes their angular directions at transmission
and at reception as well as their polarizations.

169
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Especially the combination of angular resolution and polarimetric state is po-
tentially very costly and laborious to record and process at its full extent. Many
antenna elements are necessary for high-resolution results, both to fully cover the
angular domain and to create the required apertures. Providing coverage in a
particular direction demands that antenna elements still have sufficient sensitivity
in that direction. Aperture, required for resolution, means that (sensitive) ele-
ments are to be spread over space. A popular shortcut like using single-polarized
antenna elements leads to biased results [82]. Additionally, for accurate parame-
ter estimation, calibration of every antenna element in the measurement array is
mandatory, providing complex radiation pattern Fr(Ω) of (2.31), required to es-
timate parameters of resolved MPCs in (4.1), in order to relate these to observed

faded dimensions. Restricting ~Ω to the azimuthal cut, another popular saving, also
means to risk grossly distorted estimates [82].

Characterization of propagation delay requires nearly instantaneous measure-
ments, meaning the time needed for a measurement over bandwidth or over the
full delay span should be considerably shorter than the time it takes the channel to
change. Pseudo-random noise sequences, multi-sine tone bursts, or fast frequency-
sweeps can be used, each with its own advantages and disadvantages. If the rep-
etition rate is high enough, also the Doppler spectrum or time variability can be
determined without aliasing.

The temporal and spatial dimension have to be measured jointly, but measur-
ing all antenna elements simultaneously and all transmit-receive combinations in
parallel is deemed technically infeasible (exception: the 16×4 parallel sounding
in [160]).

Therefore, the antenna combinations are multiplexed, making use of one and
the same temporal sounding unit. The multiplexing units themselves are still a
technical challenge, due to requirements on switching speed, damping losses, feed-
through, frequency transfer, delay, and power handling (especially on the transmit
side). Seen these imperfections, the multiplexing units should be calibrated too.
Synchronization of transmit and receive side, which are often too far apart for
synchronization through a cable connection, requires two free-running clocks of
very high stability; typically Rubidium or Caesium standards.

The channel measurements require a dedicated sounding device with calibrated
multiplexing equipment both at transmit and receive side, calibrated antennas, sta-
ble (atomic) clocks, and a high-speed data logger. As an example for the latter,
the COST2100 urban reference scenario “Ilmenau” had to be measured at a mod-
est trawling speed of 3 m/s, in order not to exceed the maximum sustained data
transfer rate of 1.2Gbit/s, the product of snapshot rate, number of transmit-receive
combinations, impulse response length, and number of bits per time sample [161].

A.1.1 RUSK Channel Sounder

The RUSK TUI-FAU channel sounder used at TU Ilmenau for MIMO measure-
ments was designed by Medav, Germany [73]. RUSK is a real-time radio channel
impulse response measurement system that supports multiple transmit and receive
antenna element configurations.
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Figure A.1: MIMO sounder switching time frame.

The RUSK MIMO channel sounder measures the channel response matrix be-
tween all transmitting and receiving antenna elements sequentially by switching
between different (Tx,Rx) antenna element pairs (Fig. A.1). This means that the
sounder uses only one physical transmitter and receiver channel, which reduces sen-
sitivity to channel imbalance. The switched-antenna approach offers a simple way
of changing the effective number of antenna elements in the array. Additionally,
since antennas are not transmitting at the same time, separation of transmitted sig-
nals at the receiver side is straightforward. To accomplish synchronous switching,
rubidium reference oscillators are used at both the transmitter and the receiver.
Timing and switching frame synchronization is established during an initial syn-
chronization process prior to measurement data recording and must be maintained
during the entire measurement. Synchronous switching at the Rx and Tx is re-
quired in order to clearly assign the received signal periods to any input-output
combination of the channel matrix.

Fig. A.1 shows the switching time frames for the transmitting and receiving ar-
rays with 3 and 4 antenna elements, respectively. Any rectangle block in the figure
represents one period of the transmit/receive signal. For single active transmitting
antenna all receive antennas are measured sequentially. The guard-time equiva-
lent to (estimated) maximum excess delay prevents (multi-path) interference from
previous transmission - it allows channel to settle completely.

New broadband systems will be deployed in higher frequency ranges what results
in higher transmission-losses. For channel-sounding purposes this means that level
of total received power will quickly diminish with getting away from transmitter.
Since maximum transmitting power level is always limited (due to environment and
beings protection) noise figure of receiver significantly reduces distance ranges in
which preferable signal observation range (or dynamic range) could be obtained.
Additionally, in wideband case, observation of channel dispersiveness is seriously
influenced since weaker-than-noise delayed signal replicas could not be identified.
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Figure A.2: Block diagram of the RUSK channel sounder from Medav.

The sequential measurements allows increase of dynamic range for certain
Tx/Rx combinations (i.e., MIMO sub-channels): RUSK HyEff supports indepen-
dent AGC for all Tx/Rx combinations analyzed during sounding. This functionality
could not be met when simultaneous transmissions are used since sensitivity of the
receiver can be adjusted at most once per Rx antenna.

Fig. A.2 shows the principal structure of the Medav RUSK Channel Sounder
and Tab. A.1 summarizes the technical key features of the sounder setup, which
were used during the MIMO measurements.

For channel excitation RUSK uses a multi-carrier spread spectrum signal (MC-
SSS) with an almost rectangular shape in the frequency domain, Fig. A.3. This
approach allows precise concentration of the transmitted signal energy in the band
of interest. Simultaneous sounding of multiple bands (e.g., separated up- and down-
link bands in Frequency-Division Duplex (FDD)) is supported by setting some spec-
tral magnitudes to zero. Fig. A.3 presents the MCSSS in time (top row, left) and
frequency domain (top row, right). In case of multipath propagation, the received
signal is impacted by frequency selective fading as illustrated in Fig. A.3 (bottom
row, right). Furthermore, the impulse response (bottom row, left), which would
result from inverse Fourier transform of frequency response, is shown in the same
figure.

A.1.2 Measurement Antenna Arrays

An overview of measurement-relevant technical data for the antenna arrays used in
the TU-Ilmenau campaigns is given in Tab. A.2.

The monopole antenna that is mounted on the ICE roof was manufactured by
Huber&Suhner, and is of type SWA 0859 – 360/4/0/DFRX30. The disc-conical
antenna used for the ICE SISO measurements was designed by Kurt Blau (TU
Ilmenau) for the 5.2 GHz frequency range.
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Table A.1: Key features of the Medav RUSK TUI-FAU channel sounder.

RUSK TUI-FAU
Sounder Property

Range of values

RF bands 5. . . 6 GHz

Max. meas. data storage rate (2x) *160 Mbyte/s

Test signal
Multi Carrier Spread Spectrum
Signal (MCSSS)

Sequence length
(defines maximum excess delay)

256 – 8192 spectral lines, de-
pending on IR length

Number of measurement channels up to 65536 (216 )

Measurement modes SISO, SIMO, MIMO

Sampling frequency 640 MHz at Tx and Rx

Spurious free IR dynamic range: 48 dB

Transmitter output up to 33 dBm (2 W),
Propagation delay resolution 4.17 ns (1/Bandwidth)

Impulse response length 0.8 s – 25.6 s

RF sensitivity -88 dBm

Control Windows PC

Post processing MATLAB package

Synchronisation
rubidium clock with stability of
10−10

* Rate is doubled with additional disk storage. Second storage enables
shorter time gap between Tx-Rx sub-channels.

Frequency dependence of radiation pattern

It is typically assumed that narrowband antennas could be treated as nearly fre-
quency independent. With increased system bandwidth however this assumption
becomes less applicable. Within certain limitations frequency dependence of radi-
ation pattern can be minimized by careful design, however developing wideband
system already use bandwidths exceeding range in which radiation pattern can be
considered as frequency independent.

A.1.3 Measurement Dataset

RUSK TUI-FAU Channel Sounder uses switching between S transmitting (Tx) and
U receiving (Rx) antennas, possibly having different polarization types. This means
thatMIMO channels are monitored sequentially (one-by-one) over time. In contrast
to this, all frequencies in measurement bandwidth are exited simultaneously with
multi-tone signal. Samples of received signals y(kT |s) are consecutively accumu-
lated for all Tx/Rx (s, u) antenna pairs (and polarization types). Extraction of
channel transfer function, H(t, f, s, u), is performed in the post-processing phase
with respect to back-to-back system calibration data.
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Table A.2: Overview of TU-Ilmenau measurement antenna arrays.

Name
PULA8
(@10W)

UCA16 PUCPA24
SPUCPA

4x24

Vendor
IRK City-

placeDresden
TU Ilmenau

IRK City-
placeDresden

IRK City-
placeDresden

Array struc-
ture

uniform
linear array

uniform
circular array

uniform
circular array

stacked
uniform

circular array

Polarization
dual

(vertical+
horizontal)

vertical
dual

(vertical+
horizontal)

dual
(vertical+
horizontal)

Center
frequency
[GHz]

5.2 5.2 5.2 5.2

Bandwidth
[MHz]

120 120 120 120

Max. Power
[dBm]

27 (40) 27 25 24

Number of
elements

8 16 24 96

Element
type

patch disk cone patch Patch

Dimension-
ing

element
spacing
0.4943 λ

diameter
10.85 cm

diameter
19.5 cm

diameter
19.5 cm

ring spacing
0.4943 λ

Element ori-
entation
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Figure A.3: Broadband multicarrier spread spectrum signal (MCSSS) magnitude in the
time and frequency domain (top row) and estimated CIR and received signal spectrum
(bottom row).

Reconstruction of channel transfer function

Observations collected during sounding correspond to delay-domain samples of the
received signal:

y
u
(τ |t0) = xs(τ |t0) ∗ 1

2
hu,s(τ |t0) ∗ 1

2
mu,s(τ |t0) + nu,s(τ |t0). (A.1)

The received signal in (A.1) is influenced by impulse response of the complete
measurement system mu,s(τ |t0) and total observed noise nu,s(τ |t0) in snapshot t0.
The impulse response of the measurement system describes its frequency selectiv-
ity, including both limited system bandwidth and antenna frequency selectivity.
Assuming that impulse responses of channel 1

2hu,s(τ |t0) and measurement system
1
2mu,s(τ |t0) were constant during observed snapshot, a CIR can be estimated in
terms of magnitude and phase change with respect to referent measurement yref (τ)
that is obtained in back-to-back calibration. During the calibration process a chan-
nel is replaced by controlled attenuation line that enables calibration under different
operating conditions of AGC, and corresponding DRs of measurement system. By
switching analysis to frequency domain received spectrum becomes

Y u(f |tk, Gu,s) = Xs(f |tk) ·Au,s(tk) · 1

2
Mu,s(f |tk) +Nu,s(f |tk, Gu,s), (A.2)

where Au,s designates the signal amplification introduced by attenuation line, and
Gu,s is the resulting gain of AGC circuit. Automatic fitting of signal amplitudes
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into operating range of A/D converter will change quantization noise, and therefore
total level of noise is conditioned by mapping Au,s → Gu,s. The RUSK supports
discrete number of AGC values: Gu,s[dB] ∈ 0, 3, 6, 10... and calibration is performed
for all of them by selecting appropriate Au,s. The sufficient number of time samples
(snapshots) tk, k ∈ {1, 2, . . .K} is collected in order to average effects of the noise
term Nu,s. Under assumption that mean value of noise term equals to zero, the
obtained calibration vector will be:

C(f |s, u,G) = Et{Y u(f |t, s)/Au,s(t)} ≈ Et{Xs(f |t) ·
1

2
Mu,s(f |t)}, (A.3)

The estimate of channel transfer function is then performed by a normalization
of the measured Rx signal spectra with calibration vector.

1

2
H(f |t0, s, u,G) =

Y u(f |t0, s,G)

C(f |s, u,G)
(A.4)

Channel Tensor

The RUSK channel sounder provides 4-dimensional channel tensor H(t, f, s*, u*)
whose spatial channels are easily differentiated according to dominant polarizations
of Tx and Rx antennas (s∗, u∗)→ (s, u, p), p ∈ {V V, V H,HV,HH} .

Therefore we can consider that output values of RUSK sounder are depen-
dent upon 5 arguments: t-time, f -frequency, s-Tx antenna, u-Rx antenna, and
p-polarization. First two arguments are related to time-dimension of (wideband)
radio-channel, while others - to its spatial (MIMO) dimension.

In the case of fast-train measurement (Sec. A.2.2) one transmitting and 16
receiving antennas were used, and only vertically polarized signals are emitted and
received. Transmitted test signal was composed from 769 equidistant carriers, and
30.000 time observations (snapshots) are collected during measurements. Regarding
the above mentioned, dimensionality of ICE wideband SIMO measurement data is(

t f s u p
30000 769 1 16 1

)
.

Additional data describing measurements

The obtained channel representation is however still dependent upon measurement
system, i.e. spatial characteristics of measurement antennas. Therefore additional
information about the measurement system settings including the antenna arrays
(meta data) has to be kept for complete measurement description.

Environment description data and positions of terminals during measurement
(geographical coordinates including the height above ground and orientations of
the used antenna arrays) increase the usability of measurement data, especially for
analysis of spatial properties of propagation channel.

A discrimination between propagation conditions (LoS, OLoS, NLoS) facilitates
the data segmentation.
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Validation of Measurement Data Channel sounding experiments, being quite com-
plex process, are highly susceptible to different kinds of errors: hardware defects,
wrong equipment adjustment, too fast terminal movement, uncontrollable inter-
action of measurement environment, equipment or personnel, etc. These errors
corrupt the channel tensor and easily lead to completely unusable data. The com-
plete validation of the collected data can be performed with respect to the features
of propagation channel that could be reliably deducted from environment config-
uration and measurement setup. Therefore an additional information, describing
measurement process and environment, could became crucial in the process of mea-
surement data validation.

A.2 Representation of Measurements in WINNER Parametric
Space

The limited number of statistical parameters is used in WIM to abstract the
recorded realizations of propagation process. These parameters typically corre-
spond to the modeled probability or correlation function. This section presents the
empirical distributions and distance-based correlations that serve as basis for fit-
ting of model functions and computation of final WIM parameters. Following this
procedure every measurement dataset can have equivalent representation in WIM
parametric space. However, since the modeling goal is to abstract the particular
measurement environment, the notion of propagation scenarios is introduced. The
evaluation of WIM scenario taxonomy and classification of the single measurement
into particular scenario are discussed in Sec. 5.3.

A.2.1 Indoor Hotspot Measurements - WINNER B3 Scenario

WINNER B3 scenario is parameterized based on two measurement campaigns:
university lecture hall/foyer and industrial hall for rapid prototyping and testing.
Measurements are performed in Humboldt (2004) and Newton (2006) buildings
located in TU Ilmenau campus, Germany. Both buildings have steel construction
and many glass walls/surfaces. The center frequency for both measurements was
5.2 GHz and the bandwidth was 120 MHz.

B3 – Lecture Hall Measurements

Humboldt building measurements are taken inside the lecture hall (conference
hall) and the entrance area (foyer) next to it (Fig. A.4). The foyer is characterized
by a 2 floor open environment, with dimension of 15 m × 30 m × 8 m. The
conference hall is a typical lecture hall environment with gradually elevated sitting
rows; the dimensions are 30 m × 35 m × 15 m.
Measurements with moving transmitter are repeated for several stationary receiver
positions. Additionally, for NLoS/OLoS measurements in the lecture hall, LoS was
artificially obstructed by absorbing material. These measurements were performed
with the RUSK ATM MIMO sounder ( [73], Sec. A.1.1), and PULA8 and UCA16
antenna arrays (Tab. A.2). Since disk-cones of UCA16 are single (vertically) po-
larized, the results given for this environment correspond to VV combination of
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(a) foyer (b) lecture hall

Figure A.4: Interior of Humboldt building, TU Ilmenau campus.

(a) viewpoint from the AP

AP 

(b) position of the AP

Figure A.5: Interior of the hall for rapid prototyping and testing, Newton building, TU
Ilmenau campus.

Tx-Rx polarization. Model parameters are determined as mean values over data
set consisting of 10 consecutive snapshots, which corresponds to modeled channel
segment (stationarity region)∗.

B3 – Industrial Hall Measurement

Inside the Newton building data is collected in the ground and the first floor
(balcony) of the big open hall for rapid prototyping and testing (Fig. A.5) with
approximate dimensions 60 m × 20 m × 8 m.

All measurement routes (Fig. A.6) share common, highly elevated (6 m) trans-
mitter position, marked in Fig. A.5b as AP (Access-Point). As a consequence dom-
inant propagation condition observed in measurement data was line-of-sight (LoS)

∗The WINNER parameters corresponding to the lecture hall of Humboldt building are esti-
mated by Aihua Hong and Christian Schneider.
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Figure A.6: Measurements routes in Newton building: red – ground floor, blue – balcony
at the first floor level.

Therefore this section presents B3 LoS data used to estimate the most important
large-scale parameters. The remaining parameters, as well as, B3 NLoS data, are
given in the second part of [5].

Measurements were performed by RUSK TUI-FAU channel sounder (Sec. A.1.1)
and PULA8 (Tx) and PUCPA24 (Rx) antenna arrays (Tab. A.2). These were full
polarimetric measurement and therefore results will be presented for all combina-
tions of Tx and Rx polarizations. However, the parameters of the WINNER model
given in [5] correspond to VV case.

All model parameters are determined from the same data set. The majority of
the parameters are calculated in delay domain, with exception of angular depen-
dant parameters that are based on angles resolved with high-resolution parameter
estimation (RIMAX algorithm). The data in delay domain are calculated by thresh-
olding the average power delay profile 20 dB below the highest peak. The presented
data is limited to those snapshots (space-time positions) providing all large scale
parameters (LSPs) relevant for WINNER model. This was necessary to have con-
sistent results between LSP distributions and distance dependant features as e.g.,
correlation coefficient or transmission loss.

B3 LoS– Transmission Loss and Shadow Fading

The measured and modeled path loss for B3 LoS scenario is shown in Fig. A.7. The
transmission loss for VV and HH combination of Tx-Rx polarizations is similar in
industrial-like environment, giving:

L [dB] =

{
13.7 log10(d) + 65.3 for VV case, and
14.1 log10(d) + 63.5 for HH case.

(A.5)

The similar results for VV polarization are observed in lecture hall/foyer (Fig. A.7a)
where linear regression of transmission loss over logarithmic distance, for LoS con-
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Figure A.7: Transmission loss under LoS propagation condition.
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Figure A.8: Shadow Fading distribution under LoS propagation condition for B3 scenario.

dition, gives:

L [dB] = 13.4 log10(d) + 36.9, with σSF = 1.4 dB.

Due to reflections from the walls, floor and ceiling (wave-guiding effect), indoor
propagation environments under LoS condition typically have the transmission loss
distance exponent in the range from 1.3 to 1.7, [10], Pg. 86. Therefore, obtained
estimates of power loss exponent are according to expectations.

Probability distributions of the shadow fading corresponding to transmission
loss models from Fig. A.7 are shown in Fig. A.8. For VV polarization observed
standard deviation of shadow fading were 1.8 dB in industrial hall and 1.4 dB in
lecture hall.
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Figure A.9: CDF of Ricean K factor for B3 LoS scenario.

Table A.3: K-factor [dB] in B3 scenario for VV polarization.

K-factor [dB]
LoS NLoS

Lecture Industrial Industrial

CDF level
10 % -2 0.2 -3.4
50 % 1 1.9 -2.0
90 % 4.9 4.4 -0.7

Table A.4: CDF levels of the cross-polarization ratio for B3 LoS propagation.

XPR type V→H H→V

CDF level
10 % 3.0 -0.3
50 % 9.4 4.9
90 % 15.1 10.1

B3 LoS – Ricean K-factor

The cumulative distribution functions of Ricean K-factor for B3 LoS scenario, as
well as their log-normal fit, are shown in Fig. A.9. The values of the K-factor
corresponding to 10, 50 and 90 % of the CDF, are given in Tab. A.3.

The Ricean K factor for scenario B3 LoS as a function of the distance and the
CDF of it are shown in Fig. A.10. By comparing the K-factor distance dependence
for VV polarization in lecture hall (decreasing) and industrial hall (increasing), it
is not possible to determine general behavior for B3 LoS scenario.

B3 LoS – Cross-Polarization Ratio (XPR)

The probability density functions of V→H and H→V XPRs are shown in Fig. A.11.
In analyzed measurement data V→H XPR is approx. 4 dB higher than H→V XPR.
XPR under LoS condition is 3 dB (H→V) to 4 dB (V→H) bigger then for NLoS [5].
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Figure A.10: Scenario B3 LoS: Ricean K factor as a function of distance.
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Figure A.11: Cross-Polarization Ratio (XPR) for B3 LoS scenario.

Since reference polarization for model parameterization is chosen to be VV,
reference XPR will be V→H. The standard deviation for the V→H XPR under
LoS was found to be 4.6 dB.

B3 LoS – Delay Spread

Delay spread (DS) cumulative distribution functions (CDFs) are shown in Fig. A.12
for different measurement environments. DS values corresponding to 10, 50 and
90 % of the CDF, are given in Fig. A.12 and Tab. A.5. Appropriate log-normal
model minimizing mean square error is also given in Fig. A.12 for each Tx–Rx
polarization measured in industrial hall environment. From Fig. A.12 it can be seen
that both measured environments for VV polarization show similar distribution of
DS values.
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Figure A.12: B3 LoS – RMS delay spread.

Table A.5: RMS delay spread [ns] for B3 LoS scenario and VV polarization.

RMS delay spread [ns] Lecture Industrial

CDF level
10 % 13.2 21.7
50 % 23.7 29.2
90 % 34.6 47.2

B3 LoS – Angular Spread

Departure and arrival angles that are necessary for double-directional channel char-
acterization are estimated using high resolution parameter estimation algorithm
RIMAX. The RMS angle-spread is calculated using the circular angle-spread for-
mula [34]. Parameters of assumed log-normal model are obtained by minimizing
mean square error.

B3 LoS – Azimuth angle spread at BS and MS
The BS in both measurements correspond to the measurement terminal with

stationary and elevated antenna. However, BS is transmitter in Newtonbau mea-
surement and receiver in Humboldtbau measurement. Thus, the associated angular
distribution are on departure and arrival side respectively. The values of azimuth
spread (AS) corresponding to 10, 50 and 90 % of the CDF, are given in Tab. A.6
for both link ends, both propagation conditions and both measured environments.
Going from LoS to NLoS it can be noticed that AS is slightly decreasing for highly
elevated BS (energy that reaches receiver), while AS at MS is increasing.

The cumulative distribution functions of the RMS azimuth spreads of the B3
scenario for LoS propagation conditions in shown in Fig. A.13. Additionally,
log-normal fitting of AS distribution is provided for industrial hall measurements.

B3 – Elevation angle spread at MS
The cumulative distribution functions of the RMS elevation spread (ES) of the
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Table A.6: RMS azimuth spread [deg] for the B3 scenario under LoS condition for VV
polarization.

Link end BS MS

Environment Lect. Indust. Lect. Indust.

CDF level
10 % 9 14.6 7 18.8
50 % 17.5 20.2 41.5 62.8
90 % 33 23.4 55 87.3
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Figure A.13: RMS azimuth spreads for the B3 scenario under LoS propagation condition.
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Figure A.14: RMS AoA elevation spreads (@MS) for the B3 LoS (industrial) scenario.

Table A.7: RMS AoA elevation spreads (@MS) for the B3 (industrial) scenario and VV
polarization.

AoA spreads
(@MS) [deg]

LoS NLoS

CDF level
10 % 15.3 17.4
50 % 21.2 22.3
90 % 26.2 24.6

B3 scenario in LoS propagation conditions is shown in Fig. A.14. Log-normal fitting
of ES CDF is shown in the same figure.
The values of elevation spread (ES) corresponding to 10, 50 and 90 % of the CDF,
are given in Tab. A.7 for LoS propagation condition.

B3 LoS – LSP Correlation Coefficients

The correlated Large-Scale Parameters in WINNER channel model are Delay
Spread, Angular (Azimuth, Elevation) Spreads, Shadow Fading and K-factor. The
correlations are reproduced in model based on:

1. distance dependence of the auto-correlation coefficient that is determined for
all LSPs,

2. cross-correlation coefficient between LSPs at zero distance.

Autocorrelation function (ACF) is modeled as exponentially decaying function with
single parameter called decorellation distance (distance at which ACF becomes
lower than 1/e). In this subsection ACFs are calculated from measured data and
their exponential models are given for LoS case.
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Figure A.15: Distance dependence of the LSP autocorrelation function in B3 LoS scenario.

B3 LoS – Distance Dependent Auto-correlations
Dependence of ACF from distance is shown in Fig. A.15 for selected LSPs: DS,

ES@MS, AS@BS, and AS@MS. It can be noticed that all LSPs in industrial envi-
ronment have rather short decorrelation distance. Under LoS condition and for VV
polarization their values are in the range from 0.7 – 1 m, and decorrelation distance
is even 3–4 times lower for NLoS condition. Since higher decorrelation distances are
observed in lecture hall [68], B3 model parameters are chosen as average between
these two measured environments.

B3 LoS– Cross-correlations
Cross correlations of LSPs that are calculated at zero distance under LoS condi-

tion are given in (A.6). The following labeling is used: DS denotes Delay Spread,
ASD denotes Azimuth Spread on Departure, ASA is Azimuth Spread at Arrival,
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Figure A.16: Moving network (D2) reference scenario.

ESA is Elevation Spread at Arrival, SF denotes Shadow-Fading, and K is K-factor.

ρLoS(0) =

DS ASD ASA ESA SF K
1 −0.3 −0.4 −0.2 0.1 −0.3

1 0.3 0.3 −0.3 0.2
1 0.2 0.2 −0.1

1 0.1 −0.1
1 −0.6

1


DS

ASD
ASA
ESA
SF
K

(A.6)

For VV polarization significant negative correlation is observed between DS and
ASA (-0.4) and SF and K-factor (-0.6). It is interesting to note that given cross-
correlation coefficients are slightly different for HH polarization. In that case the
high correlation levels are observed between DS and SF (0.6) and DS and K-factor
(-0.5).

A.2.2 Moving network measurements – WINNER D2 Scenario

“Moving network” corresponds to radio propagation in environments where both
the AP (or relay station) and the UE are moving, possibly at very high speed. A typ-
ical example of this scenario are carriages of high-speed trains, shown in Fig. A.16,
where wireless coverage is provided by so-called Moving Relay Station (MRS) which
can be mounted, for example, to the ceiling. The MRS provides interior coverage
(D2b scenario) over wireless connection to stationary AP infrastructure (D2a sce-
nario).

The D2a model is based on the fast-train measurements with Single-Input
Multiple-Output (SIMO) setup [5], “high mobility short range” (HMSR) setup [68]
and measurements used for D1 (rural) scenario parameterization.

D2a – Car-to-Bridge Measurement

The “High Mobility Short Range Hot Spot” setup is characterized by bridge-to-car
measurements, Fig. A.17.

The measurements are conducted by Medav, University of Ulm and TU Ilmenau
in August 2004 at a highway bridge close to City Ulm, Germany. The receiving
antenna (BS) was mounted on the bridge with a height of ∼5.5 m above motorway
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Figure A.17: Car-to-bridge measurements: a) environment, b) sketch.

and a tilt of −45◦, whereby the transmit antennas were placed on the roof of a car
(∼2 m height). During measurement the car was moving at a constant speed over
a two lane motorway toward the receiver antenna which was mounted on a bridge.
The maximum distance between Tx and Rx antenna position was 250 m, which
defines the short range area for the hot spot application. In this measurement LoS
was dominant propagation condition, while NLoS is exhibited after the car had
been coming under the bridge. The sketch of the measurement campaign is shown
in Fig. A.17b.

These measurements were performed with RUSK ATM MIMO sounder [73].
The channel measurements have covered a bandwidth of 120 MHz at a carrier
frequency of 5.2 GHz (wavelength, λ=5.77 cm). At the receiver side 8 equal spaced
disc cone antennas were used. Inter-antenna spacing was ∆dBS=88 cm (15 λ),
giving the total span dBS of 7 ·∆dBS . Each of antenna elements is treated as an
individual BS. At the transmitter Uniform Circular Array (UCA) with 16 elements
was used, Tab. A.2.

D2a – Fast train (Inter-City-Express) measurement

The measurement was conducted in August 2006 by Medav, TU Karlsruhe and TU
Ilmenau on the railway line between Siegburg and Frankfurt (Germany) by using
different train-speeds: 20, 100 and 240 km/h. The characteristics of the radio-link
between moving fast-train and fixed base station, being located next to the railroad
track, were measured (Fig. A.18).

Measurements were performed by Medav RUSK TUI-FAU channel sounder [73],
in 5.2 GHz frequency range, with 120 MHz bandwidth. The observed duration of
channel impulse response (CIR) was 6.4 µs. In this campaign existing monopole
antenna mounted at ICE roof-top was used at transmitter side and because of that
limitation only SIMO setup is supported. Additionally, it was not feasible to mea-
sure 3-D radiation pattern of the train roof-top antenna, nor to properly estimate
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Figure A.18: Sketch of the fast train measurements.

influence of the metallic rooftop to the effective radiation pattern. Receive uniform
circular array with 16 disc cone elements (UCA 16, Tab. A.2) was mounted approx-
imately 7 m above railroad tracks level. Both antennas are supporting only vertical
polarization. The data post-processing is performed according to procedures de-
fined in Sec. 4.3.2.

It should be also noted that measurement setup does not fully match D2a ref-
erence setup since the BS height was similar to the MRS antenna height (approx.
5 m).

D2a - Transmission Loss and Shadow Fading

Transmission loss result obtained from fast-train measurements, Fig. A.19, devi-
ates from the expected free-space propagation: the transmission-loss exponent of
the curve was too high. It was concluded that the extraordinary behavior of the
propagation curve depends on the special circumstances in the measurement. The
antenna used in the carriage roof of the train was a monopole that was mounted
very near the roof that now acts as a ground plane. Thus the roof affects the an-
tenna radiation pattern and possibly causes a null of the radiation pattern in the
plane containing the roof. At the same time the BS antenna of the measurement
equipment was quite low, which emphasizes the effect.

The model matching measured data would most probably over-estimate the
path-loss for D2a reference setup, and therefore the D1 (rural area) transmission
loss model is modified with additional term Lenv.

L = LD1 + Lenv, where Lenv =

{
0, d ≤ d′BP

18.5 log10( d
d′BP

), d > d′BP
(A.7)

The parameter d′BP = 120 m is the environmental break-point length, and Lenv
designates the extra attenuation caused by the train environment. It is assumed
that the extra loss is caused by the placement of the MRS antenna very near the
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Figure A.19: Fast train measurement @ 5.2 GHz: (a) transmission loss, and (b) shadow
fading.
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Figure A.20: Car-to-bridge measurement: (a) transmission loss, and (b) shadow fading.

carriage roof, and presented model Lenv is probably over-pessimistic in general case.
A pragmatic way around this could be to use half of this extra loss in simulations.
The proposed path-loss model shows good matching to transmission-loss exponent
in bridge-to-car scenario (Fig. A.20):

L [dB] = 60.6 + 19.3 log10(d), with σ = 3.1 dB,

however covered distances are not long enough to validate all proposed transmission
loss terms.

D2a – Ricean K-factor

The Ricean K-factor for D2a is taken from the car-to-bridge measurement: its CDF
is shown in Fig. A.21. The median value of Ricean K-factor was approx. 6 dB, and
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Figure A.21: CDF of Ricean K-factor for car-to-bridge measurement.
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Figure A.22: Probability functions of RMS delay spread for D2a LoS scenario.

it was nearly constant over the measured distance.

D2a – Cross-Polarization Ratio (XPR)

Since both measurements have used single polarized arrays, it was not possible to
estimate XPR values. Thus, cross-polarization ratios for D2a scenario have been
taken from the D1 [5].

D2a – RMS Delay Spread

The RMS delay distributions for LoS case are determined from fast-train measure-
ments (Fig. A.22).
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Table A.8: CDF levels of RMS delay spread under LoS propagation for D2a scenario.

RMS delay spread [ns] LoS

CDF Level

10 % 21
50 % 39
90 % 55
mean 40
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Figure A.23: RMS angular spreads at BS for the car-2-bridge measurement, under LoS
propagation condition.

Table A.9: Percentiles of the RMS azimuth spread for D2a scenario.

Link end BS, σφ MS, σϕ

D2 moving network LoS NLoS LoS NLoS

CDF Level

10 % 1 5.6 21.3 6.0
50 % 5 18.0 30.4 22.3
90 % 50 34.3 45.9 36.4
mean 21.7 19.5 32.5 21.9

D2a – Azimuth Angular Spread at BS and MS

Azimuth Angular Spread (AS) for D2a LoS is determined from the HMSR (@BS)
and fast-train (@MS) measurements. The placement of the Rx in the bridge-
to-car measurement corresponds to D2a reference setup with dominant BS. The
CDF of circular azimuth angle spread obtained from this measurement is shown
in Fig. A.23. In the fast-train measurement, height of the base station receiver
antenna array is not dominant if compared to train-mounted antenna. From that
reason it can be assumed that similar angular distribution will be measured at mov-
ing station. Probability distributions for azimuth angular spread at receiver side
in fast-train measurements are shown in Fig. 3.5. The values of the RMS azimuth
spread corresponding to 10, 50 and 90 % of the CDF are given in Tab. A.9.
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Table A.10: Channel sounder settings.

Measurement Ilmenau 2008 Dresden 2009

Picture

 

Type
RUSK TUI-FAU

Medav, GmbH
Transmit power
@ PA

[dBm] 46

Centre
frequency

[GHz] 2.53

Bandwidth [MHz] 2x40 100(20)

CIR length [µs] 6.4 12.8

Snapshot rate [Hz] >75

MIMO
sub-channels

[#] 928 (16×58 eff.)

AGC switching in MIMO sub-channels
Positioning Odometer and GPS

A.2.3 Urban Macro-cell Measurements – WINNER C2 Scenario

In this section data from two measurement experiments is presented: the first one
is performed in Ilmenau, Germany in 2008 and the second in Dresden, Germany
in 2009. In thethesis they are conveniently referred to as I08 and D09, respec-
tively. Both measurements are performed with Medav RUSK channel sounder [73]
at 2.53 GHz using frequency bandwidth up to 100 MHz.

The time necessary to record the responses of all wideband MIMO sub-channels,
TS , was 12.1 ms for Ilmenau and 24.2 ms for Dresden measurement. This limits the
maximally allowed speed between the measurement vehicle and other interacting
objects, v ≤ λ

2TS
, to 17.6 km/h and 8.8 km/h, respectively, where λ ≈12 cm denotes

the wavelength of the carrier.
To allow a high-resolution parameter estimations of multipath structure, dedi-

cated antenna arrays at transmit and receive sides are used, providing a total of 928
MIMO subchannels (Tab. A.10). The linear uniform array with 8 dual polarized
elements (PULA8) is used at base station positions. The mobile terminal uses the
stacked uniform circular array (SUCA 2x12) that is constructed from two rings,
both having 12 dual polarized patches. Additionally, a MIMO cube is placed on
top of this array as shown in Tab. A.11. During measurements this antenna array
was mounted on the rooftop of the car, at approximately 1.9 m above ground level.

The measurement campaign focused on gathering realistic channel data in an
urban macro cell environment in the 3GPP Long Term Evolution band (LTE [162]).
The measurement setup targets multi-link configurations between base station and
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Table A.11: Antenna arrays.

Tx Array Rx Array

Picture

Name (type) PULA8
SPUCA 2×12 +

MIMO-Cube

Drawing

HPBW:
azimuth

[◦] 100 Omni

elevation [◦] 24 80

Measurement I08 D09 I08 + D09

Height [m] 25, 15 and 3.5 1.9
Tilt (down) [deg.] 5 0

Mobility [m/s] 0 3-5

users as well as relaying. Furthermore, the presented data offer huge potential
for scientific research, because of the considered system setup, high quality of the
acquired data and applicability for high resolution multipath parameter estimations
[83] [88].

In both campaigns, three well separated base station locations within city cen-
ters are used (Fig. A.24b, Fig. A.25), and mobile terminal is positioned on the
rooftop of the car. The same macro-cell measurement setup, including the configu-
ration of the measurement equipment, provides the proper base for comparison of
Ilmenau and Dresden propagation environments. Ilmenau is a small city compared
to Dresden: whereas Ilmenau is characterized by 3-4 floor buildings, Dresden has
buildings with 6-8 floors. Subsequently the base station height at Dresden (∼50 m)
was almost doubled compared to Ilmenau (∼25 m).

C2 – Ilmenau Inner City Measurement, 2008

The wide band channel measurements are performed in Ilmenau inner city in July
2008. The selected city area is considered as a proper representative of urban macro-
cell environment, Fig. A.24a. The extensive channel sounding campaign covered
the MIMO radio links from 22 mobile tracks to 3 different base stations and 1 relay
station. In Fig. A.24b a map of the city center of Ilmenau is shown including the
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Figure A.24: Ilmenau macro-cell measurement setup: a) Measurement environment, BS
and MT, b) Positions of the base stations and relevant mobile routes.

position of the base stations , the relay station, and the routes. During the channel
measurements the mobile terminal that acts as Rx was moving over different tracks.
A typical length of a track is 50–70 m. The inter-site distance between the base
stations is found to be BS1–BS2 = 680 m, BS2–BS3 = 580 m and BS3–BS1 =
640 m.

The sounding is performed at 2.53 GHz central frequency, and 2×40 MHz band-
width is used in the subsequent analysis. The more detailed information about
channel sounder settings are given in Tab. A.10, and Tab. A.11 describes the used
antenna arrays.

For each of the tracks and for each measured snapshot, geo-data information
based on Global Positioning System (GPS), odometer and separated distance mea-
surements via laser are available. The accuracy around the start and end points
for each track is approximately 0.1 m and along the route 1m.

The parts of the measurement data (9 files describing the links from 3 base
stations at the same height of 25m to 3 tracks) is shared via the web site [163] and
can be considered as the COST 2100 [152] reference scenario for channel modeling
and system evaluation [161].

C2 – Dresden City Measurements, 2009

The measurements have been performed in the city centre of Dresden, Germany,
within the EASY-C project [164]. Links from 3 different base stations (BSs) are
sequentially monitored towards 7 mobile tracks, Fig. A.25. The BS (Tx) arrays
have been placed 3–4 m above the building roof tops. Since the chosen buildings
have dominant heights, this measurement setup corresponds to the urban macro-
cell scenario. The antenna array acting as Mobile Terminal (MT) has been mounted
on top of a car at approximately 2 m above ground. During the measurements the
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(a) (b)

Figure A.25: Sketch of the Dresden scenario: a) Mobile tracks and base station positions,
b) Placement of antennas in measurement environment.

MT has been moving by moderate speed of 3–5 m/s. The investigated environment
with given antenna deployment can be classified as urban macro cell.

The measurements have been performed using a MEDAV RUSK channel
sounder [73] operating at 2.53 GHz, with a bandwidth of 100 MHz. Tab. A.10
gives the basic setup parameters for the Dresden measurements. Chosen antenna
arrays with 8 and 29 dual polarized patches (Tab. A.11) enable the estimation of
MPC parameters with high resolution.

Validation of WINNER C2 large-scale parameters

In this section the characterization of Large-Scale Parameter (LSP) for Ilmenau
and Dresden measurements is performed. Although, the majority of the LSP could
be determined without high- resolution parameter estimation (HRPE), this proce-
dure is required for the characterization of angular spreads at departure and arrival.
The joint estimation of MPC parameters is here performed by the RIMAX algo-
rithm that combines the SAGE and gradient-based search procedures [81]. There-
fore LSPs are calculated from two different domains: a) time-delay domain (DS,
SF, K, XPR) and b) domain with structurally (and spatially) resolved multipath
(ASD, ASA, ESA). An estimation of the elevation angles was possible only on the
receiver side (MT), since geometry of the used transmitter array (Uniform Linear
Arrays (ULA)) does not support it. The analysis follows the established procedures
for the WINNER II channel model parametrization [5], Sec. 4.3.2. Estimation of
all LSP realizations is related to spatial areas, named local-stationarity regions,
where LSPs show negligible variation. In the case of Dresden measurement these
regions are a priory defined as having 2.4 m extent (∼20 wavelengths), with 50 %
overlapping between neighbors. This methodology allows the accumulation of LSP
realizations along measurement tracks, and consequent parameterization of their
empirical probability density functions (PDFs) and correlation properties.
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Figure A.26: Spatial (2-D) positions of calculated LSPs in the Dresden scenario.

Fig. A.26 illustrates the spatial distribution of selected LSPs, where single value
is calculated and showed per local-stationarity region (single marker on figure).
The LSPs corresponding to 3 different BSs and 4 different polarization groups
are plotted next to each other by introduction of a small offset. In this way it
is possible to observe which measurement snapshots would contribute to reported
statistics: those MIMO sub-channels (combinations of Tx and Rx antenna positions
and polarizations) having inadequate SNR are omitted.

The parameters computed from delay domain: delay spread (DS), the transmis-
sion loss (TL), shadow fading (SF) and the narrowband K-factor are determined
using the complete measurement data set. Due to excessive time consumption,
only a subset of the collected data is processed by RIMAX, reducing the num-
ber of observations for estimating the angular spreads (Fig. A.26d) and related
correlation dependencies. Therefore the Large-Scale Parameters calculated from
a power/delay domain use larger data sets from parameters in angular domain,
which is noticeable in Fig. A.26 – regions where HRPE is conducted represent the
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Figure A.27: Transmission loss for LoS and NLoS classes of Dresden measurement.

subset of available data. In order to further reduce computation time, the HRPE
for Dresden measurement is performed in reduced 20 MHz bandwidth.

For the analyzed measurements LSPs are classified according to existence of
the LoS component. The separation between LoS/NLoS is based on ray tracing
and a full 3-D model of the environment. For each class all relevant parameters
defining the WINNER channel model are computed: distributions of LSP values,
corresponding correlation distances, and cross-correlation coefficients.

The obtained parameters are compared with the corresponding WINNER II/+
parameters. In this way we validate the WINNER model, but also empirically verify
how much variation within the same scenario can be expected when measurements
are performed in different cities.

The comparison of the large scale parameters, e.g. delay spread, transmission
loss and shadow fading, with the corresponding scenario C2 showed a good match
[126], [90], [127]. The resulting characterization in the angular domain showed
partial agreement with the WINNER II tables and the same holds for the cross-
correlations. Furthermore, based on presented results, the WINNER C2 model was
extend with Elevation Spread on Arrival (ESA) distribution parameters.

Transmission Loss
The transmission loss parameters are obtained using linear regression separately

for LoS and NLoS. The resulting transmission loss exponents in Fig. A.27 for
both classes of Dresden measurement are lower than in free space (< 2), what sup-
ports hypothesis that strong guiding of radiated energy is experienced along the
streets†. These parameters are quite different from WINNER regression parame-
ters, as shown in Tab. A.12.

A brake-point for WINNER C2 double slope transmission loss model [5] under

LoS occurs at dBP ≈ 4h′Txh
′
Rx

λ = 4∗29∗1
0.119 ≈ 1 km, since estimates of effective BS and

MT heights are 29 m and 1 m, respectively. Therefore, all available data samples
from Dresden measurement belong to this range.

†Data filtering according to min. required dynamic range is not applied here.
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Table A.12: Transmission loss parameters for urban macro-cell.

Transmission Loss
Ilmenau, 2008 Dresden, 2009 WINNER II C2
LoS NLoS LoS NLoS LoS NLoS

A 28.17 36.02 14.9 10.3 26 35.70

B+C· log10
fc[GHz]

5
56.34 41.91 81.6 103.3 50.68 36.70

LSP Distributions
The parameters of normal/log-normal distribution models have been summa-

rized in Tab. 5.2, together with corresponding C2 WINNER II references. The
WINNER model investigates LSP distributions and their correlations in trans-
formed domain [5] where normal distributions for all transformed LSPs are as-
sumed. For log-normally distributed LSPs (delay and angular spreads) mapping
s̃=log10(s) is applied.

Delay Domain Parameters
Parameters of their distributions acquired for Ilmenau measurement show good

agreement with the WINNER II C2 model parameters [90]. Some differences can
be found for the mean DS under NLoS and standard deviation of the K-factor,
which is LoS parameter.

The SF standard deviation in Dresden measurement shows positive offset from
WINNER C2 in LoS and negative in NLoS for approx. same absolute value of
3 dB. By looking into regression of transmission loss on Fig. A.27 it is possible
to observe that LoS and NLoS classes are not significantly separated w.r.t. to the
total received power on distances close to 300 m. Low-power observations being
associated with LoS class (according to ray-tracing analysis) are causing increase
of SF standard deviation (std.) under LoS. Additionally, their existence partially
explains increased std. of K-factor. These values however do not contribute to the
mean value of K-factor, which is increased with respect to WINNER C2.

Match between histograms and (log) normal model is shown on Fig. A.28 for
XPR parameters of Ilmenau and Dresden measurements. Fig. A.28b indicates that,
in the Dresden measurement, the mean XPR under LoS is approx. 2.5 dB higher
than for NLoS case. In WINNER C2 this difference is smaller and equals 1 dB. In
general, obtained parameters show good agreement with reported WINNER II C2
values.

Fitting of empirical delay spread CDF for Dresden measurement with log-normal
model is shown in Fig. A.29a.

Angular domain parameters Inspection of Dresden LSP distribution pa-
rameters from angular domain in Tab. 5.2 reveals that they are pretty much aligned
with WINNER C2 reference. The meaning of observed differences in LSPs distribu-
tion parameters is illustrated for angular spread on arrival (MT side) on Fig. A.29b.
By comparing the distributions of ASA, it can be noticed that spreads observed in
Dresden are slightly lower than WINNER C2 references for both LoS and NLoS.
Difference of 0.15 in distribution mean, µ, corresponds to approx. 20◦, and differ-
ence of in std. σ is 0.07. Difference in mean translates CDF curve while difference
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Figure A.28: Histograms and normal fit of V → H cross-polarization ratios (XPRs).
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Figure A.29: Fitting of empirical CDFs: a) delay spread for Dresden measurement, b)
azimuth spread on arrival.

in std. changes its steepness. The lower arrival and departure angles indicate that
canyon effects are more pronounced on Dresden measurement site. With respect to
the measurements in Ilmenau [90], [126] that are performed with the same equip-
ment, the lower spreads are also observed: the PDFs are shifted to the left in
Fig. A.29b.

The directional parameters are, for Ilmenau measurement, determined for the
data subset consisting of 9 different links, established between the routes: ‘9a-
9b’, ‘10b-9a’ and ‘41a-42’ (shown in red at Fig. A.24b) and base stations ‘BS1’,
‘BS2’ and ‘BS3’. Fig. A.30a shows very small values of azimuth spread on the side
of base-station that are significantly smaller from the reference C2 WINNER II
parameters.

The slightly larger values of elevation spreads are observed under LoS conditions.
These values have not been obtained during the WINNER phase II, and therefore
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Figure A.30: Empirical CDFs for angular spreads in Ilmenau measurement: a) azimuth
spread measured on the base station side, b) elevation spread measured on the side of
mobile terminal.

comparison cannot be made. The opposite (larger values for NLoS) applies to az-
imuth spreads observed on the side of mobile terminal, as shown in Fig. A.30b.
These parameters are pretty much the same as corresponding WINNER II param-
eters.

Normality of Estimated LSPs in Transformed Domain
Fig. A.29a shows maximum likelihood fit of the empirical delay spread CDF from

Dresden measurement with WINNER-like log-normal distribution. Although this
approximation seems reasonable, the null hypothesis that transformed DS samples
come from normal distribution, are rejected by both Lilliefors [165] and Jarque-
Bera [166] normality tests. In contrast to the one-sample Kolmogorov-Smirnov
test, these tests are suitable when parameters of null distribution are unknown and
must be estimated. The normality hypothesis is also rejected for other Large-Scale
Parametersestimated from Ilmenau and Dresden data, for both LoS and NLoS con-
ditions. Therefore, the representation of measurements in WINNER parametric
space can be considered as maximum-likelihood approximation of empirical multi-
variate distribution with MVN process.

Cross-correlation of the Large Scale Parameters on Link-Level
In order to express dependence of separately characterized LSPs their correlations

(at same MT position) are analyzed in transformed domain. Only those MT po-
sitions for which all LSPs are available contribute to the correlation matrix. Note
that intersection of LSP realizations coming from different domains (time-delay
and structural) further reduces number of samples used to calculate this type of
correlation.

Tab. 5.3 summarizes link-level correlations from Dresden and Ilmenau mea-
surements: the results for the cross-correlations among the LSPs are shown and
compared to the results of the WINNER model. It is interesting to note that
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only for few combinations similar correlations between Ilmenau measurement and
WINNER C2 could be found, e.g. K vs. DS, K vs. ASD and K vs.ASA, where oth-
ers show large divergence, e.g. SF vs. ASD, DS vs. ASD. Furthermore, the model
is exteded with new cross-correlation parameters related to the Elevation Spread
on Arrival (ESA). The ESA showed similar and partly stronger correlations with
other LSPs than the ASA. It is also interesting to note, that the correlation be-
tween ASD and ASA is high, around 0.6, but the ASD and ESA are negatively
correlated with lower absolute level of ∼ | − 0.35|.

From Tab. 5.3 it is found that correlation levels of LSPs from Dresden measure-
ments show better match to reference C2 scenario when both LSPs are calculated
from the same domain. All reported angular spreads come from the structurally
resolved domain, where certain amount of received energy cannot be spatially re-
solved by specular components [81]. Instead, the remaining energy (referred as
dense multipath components) is represented in time-delay domain. This may re-
sult in correlation mismatch between angular spreads and other LSPs being calcu-
lated from time-delay domain. In another words the correlation may appear to be
dependent on selected domains: if both delay spread and azimuth spread on ar-
rival are estimated from structural domain (specular components) their correlation
ρ (DS,ASA) =0.65 will match C2 reference. Note however that used estimate of DS
is biased since contribution of dense multipath components is omitted. This points
to the subtle uncertainty left within parameterization procedure of the WINNER
model.

Decorrelation Distance
The dependence of LSP correlation coefficient (CC) over distance is shown in

Fig. A.31a for track ‘9a-9b’. This illustrates the general behavior for all tracks,
where exponential decay shows strong dependence on selected base station (i.e.,
Tx location). A decorrelation distance for Large-Scale Parameters is determined as
distance at which correlation coefficient drops to 1/e. The corresponding decorrela-
tion distances for Ilmenau measurement are: 8–9 m for the delay spread, 2.1–7.5 m
for the shadow fading and 1.5–3 m for the K-factor [90]. These distances are sig-
nificantly lower than parameters reported in WINNER phase II.

Fitting of empirical distance-dependent autocorrelation coefficients with expo-
nential model for Dresden measurement is illustrated in Fig. A.31b for K-factor and
azimuth spread on arrival. A decorrelation distance at which CC becomes lower
than 1/e is indicated on each model: 30.9 m and 5.1/5.7 m in the particular case.
The complete list of LSP de-correlation distances is given in Tab. A.13 .

Decorrelation distances for Dresden measurement are quite different from
WINNER C2 reference: LSPs calculated from time-delay domain have more
than doubled decorrelation distance under LoS condition. This can be explained
with larger LoS contiguous regions on Dresden measurement site. Opposite, de-
correlation distances for all angular spreads (structural domain) are much smaller
than WINNER reference. During processing of Dresden measurements HRPE is
independently performed on blocks of snapshots that are spatially separated for
approx. 10 m. However, this procedure does not impact reported results since cal-
culated angular decorrelation distances are lower than length of a single estimation
block.
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Figure A.31: Distance dependence of correlation coefficients.

Table A.13: LSP decorrelation distances for urban macro-cell.

Ilmenau, 2008 Dresden, 2009 WINNER II C2

LoS NLoS LoS NLoS LoS NLoS

SF 2.1 7.5 129 3 45 50

K 1.5 3 31 N/A 12 N/A

DS 8 9 131 38 40 40

ASD - - 2 2 15 50

ASA - - 6 5 15 50

ESA - - 2 2 N/A N/A

Similarity Between Measurements and WINNER Reference Scenario
In many aspects agreement is found between Ilmenau, Dresden LSPs and

WINNER C2, however there are some features being considerably distinctive. If we
allow possibility that collected number of realization is not adequate, certain find-
ings could be specific for measurement site. It is also possible that certain features
(like marginal LSP distributions) are less sensitive to limited data sample than oth-
ers (transmission loss exponent, decorrelation distances). However, it is not trivial
to establish required number of observations that will insure adequate scenario rep-
resentation since WINNER reference parameters itself come from interpolation of
many measurement campaigns.

Therefore the observed deviations can be attributed to variations of a specific
environment within the abstract scenario definition. This conclusion is additionally
supported by comparison to previous results based on measurement in Ilmenau
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that use similar measurement setup. Namely, the difference between parameters of
Dresden and Ilmenau measurements is typically lower than their distance from the
WINNER reference.

The measure that enables the quantification of similarity between different mea-
surements in WIM parametric space was introduced and discussed in Sec. 5.3.



Appendix B

Implementation and Verification of
WINNER Channel Model

WINNER project [69] has begun in 2004, and Spatial Channel Model (SCM) was
adopted for its initial channel model. SCM was developed in 3GPP/ 3GPP2 ad
hoc group for spatial channel models and released in September 2003 [62]. In
the beginning of 2005 the first extension of the original model was proposed by
WINNER under the name SCM Extension - SCME [66]. SCME was later modified
for 3GPP LTE purposes in [154], [167], [168], [169]. Development time-line of
WINNER model is shown in Fig. B.1. In the end of 2005 further improvements
and extensions are resulted in the model with the new name: WINNER Channel
Model Phase I (WIM1). WIM1 model is described in the deliverable D5.4 [68]
and published in [67]. SCM, SCME, and WIM1 models were briefly compared
in [170]. The interim WINNER Channel Model Phase II (WIM2) was published
in the deliverable D1.1.1 [110] and the final WIM2 model was given in project
deliverable D1.1.2 [5]. In this thesis, WIM refers to WINNER model in general,
WIM1 specifically to Phase I, and WIM2 specifically to Phase II.

In the course of the WINNER project all models are implemented in
MATLAB/C and made available through the official web site [69]. The first part
of appendix gives the short overview of implementation. A verification that WIM
implementation properly reproduces targeted statistical distributions is provided in
the second part of appendix.

B.1 MATLAB Implementation of WINNER Channel Model

The implementation of the WINNER channel model is based on earlier WINNER
models, Spatial Channel Model (SCM) and Spatial Channel Model Extended
(SCME). The model’s purpose is the generation of realistic radio propagation
in different environments, under certain antenna setups, and for given transmission
parameters. This section gives overview of the WIM2 implementation, while more
detailed description can be found in [171].
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Figure B.1: Development time-line of WINNER model.

The high-level WIM implementation structure is shown in the block diagram
given in Fig. B.2. The implementation of the WIM model uses large number of
MATLAB functions. The key function for model usage is wim.m. This function is
depicted in the middle of Fig. B.2 and will be discussed more closely in Sec. B.1.4.
Other functions listed within “WIM implementation” block are usually referred as
helper functions. Their usage makes the implementation modular and simplifies a
development, modification and usage of the code. In that sense, the transmission
loss model is implemented as a separate user-supplied function named pathloss.m.
Additionally, functions used to generate the LoS probability for each scenario or
calculate antenna response belong to this category. The functions that are not being
called during evaluation of the wim.m are referred as external functions. E.g., it is
assumed that the user mobility model is external to the channel matrix generation
routine.

B.1.1 Model Input Parameters

The model simulates radio propagation according to given input parameters that
are conveniently grouped into:
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Figure B.2: High-level description of the WIM computation. The actual WIM model is
shown in the central box labeled ‘WIM’.
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� system and model parameters (wimpar),

� layout parameters (layoutpar), and

� MIMO radio link parameters (initvalues).

Global simulation parameters (wimpar) could be classified into two major groups:

1. MDL – parameters defining model structure and system dependant param-
eters like CenterFrequency. Change of parameters from this group causes
different model behavior.

2. SIM –simulation control parameters. These parameters control sampling in
time and delay, parameter initialization mode (random vs. manual), and
format of output parameters (e.g. inclusion/exclusion of path-loss in channel
matrix H).

Some of the free model parameters could be set in random manner. For that
purpose functions as wimparset.m and layoutparset.m are used.

Scenario specific statistical parameters of the large-scale and low-level distribu-
tions are stored and retrieved by function ScenParTables.m. For each scenario and
propagation condition they define the cross-polarization ratios, the LSP correlation
coefficients and distances, the mean and standard deviation of the LSP distribu-
tions, proportionality ratios of power to probability distributions, the number of
clusters and intra-cluster angle spreads. These parameters are given in Tables 5.2,
5.3, and 5.12.

B.1.2 Construction of Antenna Array Model in Pre-processing Phase

Although WINNER channel model is constructed as antenna independent model,
antenna array model is necessary to obtain signals at the output of the radio-
channel. This model is deterministic and can be created independently from channel
model simulations – in pre-processing phase. It is not good strategy to construct
arrays each time when WIM is used, instead defined antenna arrays should be
stored and retrieved when needed. This becomes particularly important when large
number of operations is performed in this phase, i.e. when 3-D field patterns are
rotated from ECS to ACS (Sec. 6.2).

WINNER phase II channel model uses structure Array for representation of
3-D Antenna Array (3DAA) model. For construction of Array structure MATLAB
function AntennaArray.m is provided, Fig. B.3.

In order to make Array it is necessary to define its geometry (number, positions
and rotation of elements), and to provide element field patterns. The arguments
provided to AntennaArray.m are always processed in predefined way: first array
geometry is created and after that field patterns are assigned.

In WIM2 interpolation of antenna radiation patterns is based on EADF repre-
sentation and handled by function AntennaResponse.m. The verification of created
3DAA model can also be performed by the same function.
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Figure B.3: Construction of antenna array [171].

B.1.3 Description of Network Layout

WIM implementation supports a multi-base station and multi-mobile station net-
work layout. The network layout includes information about: the number and
locations of MSs and BSs in the GCS; the number of sectors in a BS (in case of
a multi-cell network); the array broad side orientations at both MS and BS; the
coupling of an active radio link from a MS to a certain sector of a BS (or vice-versa);
and the directions of the MSs movement. More detailed guidelines for system-level
simulations, including multi-cell, multi-user, multi-hop and relaying setups, could
be found in [5].

Structure LAYOUTPAR defines position of terminal stations, type and orientation
of antenna arrays and lists links of interest for simulation. The given parameters are
related to a certain geometrical setup: the position and orientation of all antennas
is expressed with respect to a global simulation coordinate system in which Y axis
shows north, as shown in Fig. 5.4. Starting from the given network layout, the
function layout2link creates the necessary link-level parameters.

Visualization of Network Layout
A rudimentary visualization of the network layout is implemented as helper utility

in order to visualize the layout of the generated channel. The network layouts with
5 BSs and MS, and 7 active links are illustrated in Fig. B.4. In this figure red arrows
denote the orientation of BS sector array, black arrows indicate the MS direction
of motion, and blue arrows/lines show the active (modeled) links.

B.1.4 Channel Matrix Generation

Channel matrices can be generated for multiple BS–MS links with one call of func-
tion wim.m. To calculate channel matrices from the model input, three main sub-
functions of wim.m are implemented: LScorrelation.m, which generates the cor-
related Large Scale Parameters, generate bulk par.m where the low-level param-
eters are produced, and wim core.m which calculates the channel transfer matrix
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(a) (b)

Figure B.4: Examples of the network layout visualization: a) 5 BSs (three sectors in any
BS), 5 MSs and 7 active links; b) 5 BSs (number of sectors varies from 1-3 in different
BSs), 5 MSs and 7 active links [171].

– H, afterward. More generally, the WIM computation is performed in two main
parts:

1. the (random) generation of system/layout/model parameters
(LScorrelation.m, generate bulk par.m, and ScenParTables.m) and

2. the actual channel matrix computation (wim core.m).

The computation flow, with the most important sub-functions, is shown in Fig. B.5.
The full calling syntax for the wim.m function is:

[H,[DELAYS],[FULL OUTPUT]] = wim(WIMPAR,LAYOUTPAR,[INITVALUES]),

where [·] designates optional argument(s). All input and output arguments of wim.m
function are MATLAB structures/cells. Short description of output parameters is
given in Tab. B.1

Output Parameters

The most important output is five-dimensional array H(U, S,N, T,K) which con-
tains the coefficients of the channel transfer matrix H for U Rx antenna array
elements, S Tx elements, N clusters (paths), T simulated time instants, and K
links.

In addition, the randomly drawn physical channel parameters for each link can
be passed as an optional output argument FULLOUTPUT, as listed in Tab. B.1 [172].
If the option wimpar.polarisedArrays is used, the struct FULLOUTPUT contains
additional array of the cross-polarization coupling power ratios V-to-H and H-to-
V with the dimensions K × 2 × N . Also, the array with the sub-path phases is
extended by additional dimension according to the four polarization combinations,
P ∈ {V V, V H,HV,HH}.
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Table B.1: MATLAB output parameters.

Parameter name Definition Unit Note

H cell array of size K (number of links).
Each element of this cell array contains
a U × S ×N × T matrix.

DELAYS K × N vector of path delay values.
Note that delays are, for compatibility
with the INITVALUES, also included
in FULLOUTPUT.

sec

FULLOUTPUT MATLAB structure with the following elements:

delays K × N matrix of path delays. This
is identical to the second output argu-
ment.

sec

path powers K ×N array of path (cluster) powers. linear
aods K×N×M array of sub-path angles of

departure
degrees

aoas K ×N ×M array of subpath angles of
arrival

degrees

path losses K × 1 vector linear
scale

MsBsDistance 1×K vector of MS–BS distances m
shadow fading K × 1 vector linear

scale
sigmas K× 4 vector of per link large scale pa-

rameters (ASD, ASA, DS, SF)
-

propag condition K×1 vector indicating LoS/NLoS con-
dition (0=NLoS, 1=LoS)

-

Kcluster K × 1 vector defining narrowband K-
factors of links.

linear
scale

Only with LoS.

Phi LOS Final phases for LoS paths, K×1 array. deg Only with LoS.
scatterer freq K ×N ×M array of subpath Doppler

frequecies
Hz Only with B5

CDL.
subpath phases complex-valued K ×N ×M array giv-

ing the final phases of all subpaths.
When polarization option is used, a
K×P ×N×M array, where P = 4. In
this case the second dimension includes
the phases for [V V, V H,HV,HH] po-
larized components.

degrees

delta t K × 1 vector defining time sampling
interval for all links.

sec

IndexOf−
DividedClust

K × 2 matrix. Index to two strongest
clusters. These clusters are spread
to three delay positions if parameter
IntraClusterDsUsed = 'yes'

-

xpr K×N ×M array of cross-polarization
coupling power ratios.

linear
scale

Only with
polarized−
Arrays case.
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Figure B.5: Simplified structure of the WIM [171].

B.1.5 Comparison of Phase I and Phase II Implementations

The most obvious differences between Phase I and Phase II models are related
to the additionally parameterized scenarios (A2, B2, C3, B4, B5f, D2a, and D2b).
Furthermore, an intra cluster delay spread and support for the far clusters are intro-
duced. Time evolution of the LSPs is implemented by gradual cluster replacement
between channel segments, between NLoS and LoS, and between scenarios. The
propagation conditions can be determined before simulations or randomly adjusted
accordint to the LoS probability, for each run and each link, of given the scenario.
Also, various parameters in ScenParTables.m have been tuned. However, the most
relevant impact on reproduced statistic is related to the modification of the angle
generation. In Phase I the angles were drawn from wrapped Gaussian distributions
with adaptive spreads, independently from the cluster powers. In the Phase II
model, the angles are related to cluster powers, which are related to cluster delays.

B.2 Reproduction of Targeted Statistics

To certify that a channel model offers a realistic representation of the mobile chan-
nel, the model has to be verified and validated. Distinction between these proce-
dures is illustrated in Fig. B.6. Verification assumes testing if the channel output
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Figure B.6: Validation and verification procedures.

is being generated according to expectations for given input parameters, while val-
idation checks whether the parameters and structure of the model are chosen so
that model output correlates with realistic, measured values.Thus, verification of
a model includes testing the model’s implementation and comparing the model’s
generated output to certain input. Validation is the comparison of the generated
model output with realistic values gained from measurements (Fig. B.6).

The model should not be validated with the same measurement data from which
the model parameters were being extracted. This might not prove that the model
is correct but would just verify that the parameters were extracted and reproduced
properly [173].

As discussed in previous chapters, due to different limitations it is not possible
to introduce fully system independent validation metric. This means that valida-
tion of channel model based solely on propagation channel can be performed only
partially, by using synthetic data. Validation of radio channel is considered to be
system-dependent since antenna embedding, and system-related filtering have to
be included. Therefore, validation of WINNER Urban C2 scenario in Sec. A.2.3 is
based on measurements that are performed with same equipment performed in two
different cities. The observed similarity between them and WINNER C2 reference
scenario parameters (Sec. 5.3) can be considered as validation of the scenario-based
modeling concept and proper choice of WINNER C2 parameters.

B.2.1 Verification Strategy

Verification of a channel model is based on the comparison of the model output
to its expected outcome. As the WIM is a stochastic model, verification is related
to observation and comparison of certain stochastic properties. For that purpose,
the set of parameters influencing the output has to be predefined. However, the
existence of two levels of randomness in the WIM model complicates comparison.
Namely, the shapes of the low-level parameter (LLP) distributions are controlled
by the randomly generated LSPs. Therefore verification procedure includes the
following steps [174]:
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1. The model is controlled by values of LSPs that are drawn from lognormal
distributions (first level of randomness). The first step would therefore be
to examine how samples drawn from those distributions are fitting to the
expected analytical distributions. Furthermore it is checked if those parame-
ters are correlated in the defined way by calculating a matrix of correlations
coefficients.

2. As the LSP define the distribution of the LLP (second level of randomness),
the next step is to generate low-level parameters and verify their distributions.
This is done for distinct fixed values of the spread parameters, which simplifies
comparison since the resulting distributions correspond only to the second
level of randomness.

3. In the last step both levels of randomness are taken into consideration: the
spread distributions are recalculated from the model’s LLP output and com-
pared to the targeted analytical LSP curves from the first step.

Following this verification strategy the simulations are split into three parts,
Fig. B.7. In the first part the distributions of the LSP, the cross-correlation coeffi-
cients (XCC), and Cross-Polarization Ratio (XPR) are verified. In the second part
the distributions of the LLPs for a fixed spread value are tested and subsequently
used to recalculate the spread values. In the third part the LSP distributions are
regenerated from the model’s LLP output.

All results presented in this section are originally given in [174], which also con-
tains description of related MATLAB implementations. The obtained histograms
are presented graphically and fitted with analytical PDF curves. Necessary distribu-
tion parameters (mean, std.) are estimated using maximum likelihood distribution
fitting, that provides the closest match from the given distribution family. The
verification is performed be qualitative comparison of histograms and fitted PDFs
shapes with analytical curves representing the expected distribution, or by com-
paring mean and standard deviation of the fitted distributions to expected values.
The proper quantification of similarity should by based upon Kullback-Leibler (KL)
divergence (5.8), however that results are currently not available.

B.2.2 Statistics of Generated Large-Scale Parameters

Verifying of the LSP distributions generated by the WIM function
LScorrelation.m is equivalent to testing the correctness of the function
implementation. The presented verification results include the generation of
4 correlated LSPs: Delay Spread (DS), Azimuth Spread on Departure (ASD),
Azimuth Spread on Arrival (ASA), and Shadow Fading (SF).

Marginal Distributions of Correlated Large-Scale Parameters

In WIM the LSPs are generated as correlated random variables from log-normal
distributions. Primarly, the four i.i.d. Gaussian variables ~ξ are generated, and
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Figure B.7: Flow chart of the functions for verification and their targeting points in WIM.

subsequently correlated through multiplication with the square-root of the cross-
correlation matrix:

ξc =

√√√√√√√


1 ρDS,ASD ρDS,ASA ρDS,SF
ρDS,ASD 1 ρASD,ASA ρASD,SF
ρDS,ASA ρASD,ASA 1 ρASA,SF
ρDS,SF ρASD,SF ρASA,SF 1

 · ~ξ. (B.1)

The correlation coefficients ρTLSP1,TLSP2 in the correlation matrix are defined in
ScenParTables.m for each scenario and propagation condition. In the next step,
~ξc ∼ N(0, 1) is transformed to obtain the targeted variances σTLSP and means
µTLSP .

~ξc(µTLSP , σTLSP ) = σTLSP · ~ξc(0, 1) + µTLSP (B.2)

The normal distributions are then transformed into log-normal ones by appro-
priate mapping. For DS, ASA and DS the mapping is:

LSP = 10
~ξc(µTLSP ,σTLSP ) (B.3)
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All scenarios have been simulated 50000 times, and collected LSPs. are shown
in form of histograms. Additionally, a fitted PDF and a analytical shape of the
expected distribution are plotted in the figure for comparison. The histograms are
calculated with the MATLAB hist.m function and the area of the histogram is
normalized to unity. The mean and std. of the fitted PDF are calculated with the
MATLAB function lognfit.m. The tabulated WINNER mean and std. parame-
ters from ScenParTables.m are related to the parameters of log-normal distribu-
tion as

µLN = ln(10)µTLSP (B.4)

σLN = ln(10)σTLSP . (B.5)

From these parameters log-normal PDF

y = f(x|µLN , σLN ) =
1

xσLN
√

2π
e
−(lnx−µLN )2

2σ2
LN (B.6)

is created analytically with lognpdf.m.
A very good agreement between targeted and obtained LSP distributions (in-

cluding XPRs) is obtained for all scenarios. Fig. B.8 illustrates this for the A1 LoS
scenario. From obtained results the conclusion can be drawn that, for all scenarios,
the LSPs are generated as defined in WIM.

Matrix of Cross-Correlation Coefficients

The cross-correlation coefficients of the WINNER TLSPs could be represented in
the form of matrix (B.1). For validation purposes the cross-correlation matrix is
recalculated from the intermediate model output (B.2) and compared to the initial
input matrix. For every scenario and propagation condition 50000 LSP realizations
are collected and used to calculate cross-correlation coefficients. Diverse agreement
between intended and recalculated cross-correlation coefficients are observed for
different scenarios. Usually, the absolute deviation is within 0.05, but in some cases
it can be higher, as shown in Fig. B.9 for the A1 LoS scenario.

Observed deviation does not get significantly smaller when increasing the num-
ber of simulation runs, thus it can be affected by the way correlations are im-
plemented in the model. It can be concluded that the targeted correlation level
between the LSPs is not reproduced ideally during the model generation process.

B.2.3 Distributions of Generated Low-Level Parameters

Since the low-level parameters are strongly dependent on a randomly drawn spreads
(i.e., LSP realizations) that change during simulation, their distributions can not be
simply checked from the regular output parameters of the model. For that reason
it is most reasonable to check the distribution of LLPs for fixed distinct values of
LSPs. This eliminates one level of randomness: by fixing the spread values the
shape of LLP distributions is also fixed. This enables comparison of the expected
outputs with reproduced LLP distributions. The following values of the log-normal
distribution curves are chosen for verification:
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Figure B.8: Verification of LSP marginal distributions for A1 LoS scenario: a) angle
spread arrival, b) angle spread departure, c) delay spread, and d) shadow fading (Fratzscher
[174]).
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Figure B.10: Graphical representation of the LSP values selected for LLP verification
(Fratzscher [174]).

1. The maximum of the PDF curve (σmax). It represents the spread value that
occurs with the highest probability.

2. The mean (average) of the log-normal distribution curve (σav) is analytically
calculated as

σav = eµLN+σ2
LN/2. (B.7)

3. The median (50 % CDF level) - σ50.

4. The 10 %-level, σ10.

5. The 90 %-level, σ90.

The selected spread values σ10, σ50, σ90 define 10 %, 50 %, and 90 % CDF levels,
respectively, as shown in Fig. B.10. Additional four values, having the same prob-
ability (i.e. ordinate of PDF) as already listed values, are selected from log-normal
PDF curve. Therefore, all characteristic values from PDF/CDF curves σX (except
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the PDF maximum) map to additional value σX̃ . This gives nine distinct values on
the distribution curves of DS, ASD, and ASA. For those fixed values the LLP were
generated and verified. The complete procedure of LSPs selection for verification
of LLP distributions is illustrated in Fig. B.10. The nine obtained LSP values form
the verification vector:

~σ =
[
σmax, σãv, σav, σ10, σ1̃0, σ

5̃0, σ50, σ9̃0, σ90
]

(B.8)

For each of selected LSPs 5000 simulation runs is performed to generate LLP realiza-

tions. For that purpose the fixed spread values
[
σXτ , σ

X
φ , σ

X
ϕ

]
, X ∈ {max, ãv, . . . }

are passed to generate bulk par.m.
The LLP realizations cannot be considered separately because delays, powers,

and angles are calculated in sequence, depending on previously determined pa-
rameters. Consequently, if the delay distribution of model output deviates from
expected, this will have an effect on the distributions of the generated powers and
angles. Still the generation process can be followed stepwise exposing the changes
of the distributions after each generation step.

The proposed verification strategy will show whether the deviations between
the model output and expected distributions vary for different spread values.

Distribution of Generated Delays

The delays are generated according to (5.11), in order to obtain exponential distri-
bution:

p(τ) = exp

(
− τ

rτ · στ

)
. (B.9)

The decay of distribution is inversely proportional to the delay spread value
στ used for generation of delays. Their histograms in Fig. B.11 show that the
exponential distribution is decaying imperceptibly faster than expected.

In the case of a LoS propagation condition the histogram of the generated delays
deviates more from the expected curve. Although delays are modified for LoS con-
dition to account for power redistribution between LoS and remaining components
according to (5.14), this does not resolve the issue completely.

Distribution of Generated Powers

WIM does not use analytical functions to describe distribution of cluster powers.
Instead, Power-Delay Profiles (PDPs) is used to map cluster delays into correspond-
ing powers, according to (5.15). Fig. B.12 shows obtained PDP and histogram for
A1 LoS scenario.

The powers are exploited to establish relation between delays and angles, and
cluster departure and arriving angles are based upon the Power Angular Spectrum
(PAS). Therefore the accurate generation of powers from delays PDP is condition
for the proper angle generation.
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Figure B.11: A1 LoS delay distribution: a) without LoS peak, and b) with LoS peak
(Fratzscher [174]).
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Figure B.12: Power related distributions in A1 LoS scenario: a) power-delay profile and
b) histogram of cluster powers (Fratzscher [174]).
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Figure B.13: PDFs related to generation of departure angles: a) max. angular offset of
uniform distr., b) part of angular offset with uniform distribution, c) total angular offset
with uniformly and normally distributed parts (Fratzscher [174]).

Distribution of Generated Angles

Since the generation of the angles was changed from the WIM Phase I to the Phase
II, both cases are compared here. In the Phase I model the angles are generated
independently from the power distribution and therefore of the power generation
does not influence the angular distribution. Both versions use the same wrapping
of the Gaussian distribution to a range of [-180,180], as described in Sec. C.4.1.

WIM Phase II Implementation
In WIM Phase II implementation the angles are generated from the cluster pow-

ers. The maximum angular offset from LoS, ϕn, is gained from inverse PAS mapping
(5.18). The actual offset is estimated as sum of uniformly and normally distributed
random variables (5.20). From Fig. B.13c it can be observed that the histogram
of generated angles is inconsistent with the analytical curve representing expected
distribution. Unexpected deviations around zero offsets are caused by large number
of ϕn realizations being close to zero, Fig. B.13a. This correspond to cluster with

maximum powers, for which ln
(
Pmax
Pmax

)
= 0, and additional sub-cluster spreading

used for two strongest clusters Sec. 3.7.1. It may be necessary to modify described
generation process to avoid disturbance of angular statistics.

After the angular wrapping, the shape of the angular distributions deviates even
more from targeted reference. Further effect of angle wrapping will be analyzed in
the context of WIM Phase I implementation, and LSP reconstruction in Sec. B.2.4.

WIM Phase I implementation For comparison the angles were also generated with a
previous version (Phase I) of the WIM implementation where the angles are taken
from normal distributions without any dependence on the distribution of powers.
The offset angles and the LoS direction angle are added in the same way as in
Phase II. The resulting histogram that includes the angular wrapping is shown in
Fig. B.14.



222 Appendix B. Implementation and Verification of WINNER Channel Model

-200 -150 -100 -50 0 50 100 150 200
0

1

2

3

4

5

6

7

8

x 10
-3

angles of arrival [°]

P
D

F

Scenario: A1LOS (number of runs:5000)

Generated with
angle spread arrival = 96

-200 -150 -100 -50 0 50 100 150 200
0

1

2

3

4

5

6

7

8

x 10
-3

angles of arrival [°]

P
D

F

Scenario: A1LOS (number of runs:5000)

Generated with
angle spread arrival = 44

-200 -150 -100 -50 0 50 100 150 200
0

1

2

3

4

5

6

7

8

9
x 10

-3

angles of arrival [°]

P
D

F

Scenario: A1LOS (number of runs:5000)

Generated with
angle spread arrival = 20

Figure B.14: The effect of the wrapping of normally distributed angles to interval
[−180◦, 180◦), (Fratzscher [174]).

B.2.4 Reconstructing LSP Distributions from Model Output

In the last step of the verification process the LSPs are recalculated from the gen-
erated LLPs, and compared with intended values. This reveals not only the correct
generation of the parameter distributions but particularly the correct generation of
the model parameters themselves. Hence, if small discrepancies between the LLP
distribution and the expected curve occur, their influence on the large scale will be
examined. Two approaches have been taken to check distribution of regenerated
LSPs [174].

Fixed control parameters: In the first appraoch, the LSPs are selected in same
manner as for LLP distribution testing. The aim of verification is to check
weather LSP values recalculated from the LLP output correspond to LSP
values used to generate that LLP output.

Random control parameters: In the second approach the LSP distributions are
being regenerated from the LLP output controlled by random LSP.

The recalculation process is the same in both approaches and equivalent to estima-
tion of LSPs from measurement data, which is discussed in Sec. 4.3.

Fixed control parameters

For each generated set of LLPs the corresponding LSP is calculated and then plotted
as a histogram. Fig. B.15 shows distribution of arriving azimuth angles for A1
NLoS scenario. The expected outcome is the same spread value used to generate
the LLP, i.e. 31◦ in this particular example. This value is marked on histograms
with red star, and mean of recalculated distribution are showed with green star.
Instead of having the single value of recalculated angular spread that is equal to
31◦, lognormal distribution is observed with mean value of 35◦. This illustrates the
week enforcement in generated LSPs in SCM/WIM models. The issue is related
to selection of limited number of realizations from continuous density curves, that
jointly does not reflect the spread in original distribution.

To get an impression of how the results change with higher spreads Fig. B.16
displays the histograms of regenerated LSP according to increasing values of the



B.2. Reproduction of Targeted Statistics 223

0 10 20 30 40 50 60 70 80 90 100

0.005

0.01

0.015

0.02

0.025

0.03

angle spread arrival

P
D

F

A1 LOS 

 

 

regenerated AS

AS used for simulation = 31°

mean of regenerated AS = 35°

Figure B.15: Distibution of regenerated azimuth spreads at arrival (ASA) from model
output (Fratzscher [174]).
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Figure B.17: LSP distributions regenerated from LLPs with Phase II implementation:
a) angle of arrival spread, b) angle of departure spread, c) delay spread (Fratzscher [174]).

LSP distribution curve. The embedded graphs clearly show that the deviation of
the regenerated LSP value from the expected one increases as the targeted LSP
value increases: the higher the spread value the larger becomes the deviation of
the recalculated mean. Also, the recalculated values are not normally distributed
around the mean but have a log-normal distribution, which implies that selection
of limited number of samples causes log-normal deviation of spread from the spread
of initial continuous distribution.

Random control parameters

For the second approach the model is run 50000 times. The LLP parameters are
collected as the optional model output and used to recalculate LSPs. From ob-
tained values histograms are produced, as illustrated in Fig. B.17. The shape of
histogram should correspond to tabulated WINNER log-normal distribution for the
corresponding LSP. For comparison, the targeted analytical curve of expected LSP
distribution is also plotted in the histogram along with log-normally fitted curve
of the recalculated LSP data. The reconstructed delay spread distribution matches
the expected distribution quite well whereas the angle spread distributions are not
even shaped lognormally in Fig. B.17.

To determine the influence of the circular angle wrapping on the shape of the
distribution, the simulations were repeated without restricting the angles to the
range of [-180,180]. Figure B.18 shows that the distribution of unwrapped angles
have lognormal shape as expected, but with a larger spread.

The reconstruction of LSPs from Phase I model output is also performed for
random control parameters and results are shown in Fig. B.19. As the angle dis-
tributions generated with the Phase I model matched the expected fairly accurate,
the angular spread distribution reconstructed from those angles fits the expected
distribution much better if compared with Phase II model in Fig. B.17.

Detected implementation inconsistencies of Phase II model should be fixed in the
future. The method of generating the angles from the powers should be improved.
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Figure B.18: Angular spreads regenerated with Phase II implementation, without angle
wrapping. (Fratzscher [174])
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Figure B.19: Regenerated angle spreads with WIM Phase I implementation (Fratzscher
[174]).





Appendix C

Random Variables and Stochastic
Processes

C.1 Statistical Moments

Joint non-central moment of RVs x and y of order k + r = n :

mkr
xy = E

{
xky∗r

}
(C.1)

Joint central moment of RVs x and y of order k + r = n :

µkrxy = E
{

(x− E {x})k(y − E {y})∗r
}

(C.2)

C.1.1 Correlation and Covariance Functions

“In probability theory, correlation is a measure of conditional predictability (de-
pendency) between random variables. Two random variables are uncorrelated if
realizations of one variable does not provide any predictive information about the
other random variable. This concept appears to be useful for characterization of the
evolution of the random process, since closer observations (with lower separation)
tend to be more correlated.” [28]

Correlation is non-central moment of order 1+1=2:

Rxy = m11
xy = E {xy∗} (C.3)

Orthogonality: Two RVs are orthogonal is their correlation is 0.

Covariance is central moment of order 1+1=2:

Cxy = µ11
xy = E

{
(x− E {x}) (y − E {y})∗

}
(C.4)

Uncorrelatedness: Two RVs are uncorrelated if their covariance is 0.
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Correlation coefficient

ρxy=
Cxy√
CxxCyy

. (C.5)

Due to normalization |ρxy| ≤ 1.

C.2 Wide Sense Stationarity

The random process is considered to be wide sense stationary if its first two statis-
tical moments do not change with time. In the case of second non-central moment
(autocorrelation) this means that Rxx (t1, t2) = E {x(t1)x∗(t2)} depends only on
time difference ∆t = t2 − t1.

Theorem 1. A random process x(t) is WSS if and only if spectral components of
its Fourier transform X (ν) = F {x(t)} are uncorrelated.

The temporal autocorrelation of random process x(t),

Rx(t1, t2) = E
{
x(t1) · x∗(t2)

}
=

∫ ∞
−∞

∫ ∞
−∞

E
{
X(ν1) ·X∗(ν2)

}
︸ ︷︷ ︸

RX(ν1,ν2)

ej2π(ν1t1−ν2t2)dν1dν2, (C.6)

is time indepenedent, i.e., Rx(∆t), if and only if Doppler shifts are uncorrelated:

RX(ν1, ν2) = SX(ν2)δ(ν1 − ν2). (C.7)

Theorem 2 (Wiener-Khintchine). The PSD and autocorrelation of a WSS random
process form Fourier transform pair.

By substituting (C.7) into (C.6):

Rx(∆t) =

∫ ∞
−∞

SX(ν)ej2πνtdν, (C.8)

SX(ν) =

∫ ∞
−∞

Rx(∆t)e−j2πνtd(∆t). (C.9)

C.3 Ergodicity

A statistic of random process is ergodic when its value calculated by averaging
realization of a stochastic ensemble, it is equal to the ensemble average.

Averaging of channel realizations can be performed in fading domains: time,
frequency and space:

〈·〉x = lim
X→∞

∫ X/2

−X/2
(·)dx, x ∈ t, f, ~r. (C.10)
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C.4 Probability Density Functions – Overview

The overview of the PDFs being relevant for the thesis is given in Tab. C.1. “In
communications theory, Nakagami distributions, Rician distributions, and Rayleigh
distributions are used to model scattered signals that reach a receiver by multiple
paths. Depending on the density of the scatter, the signal will display different
fading characteristics. Rayleigh and Nakagami distributions are used to model
dense scatters, while Rician distributions model fading with a stronger line-of-
sight. Nakagami distributions can be reduced to Rayleigh distributions, but give
more control over the extent of the fading.” [175].

C.4.1 The Circularly Wrapped Gaussian Distribution

The azimuth angles of geometrical model span in the range of 360◦. If angles are
drawn from continuous Gaussian distribution, which theoretically have infinite do-
main, they have to be wrapped to the range [−180◦, 180◦). The WINNER channel
model uses circular wrapping in which 360◦ is subtracted from the angles above
the range and 360◦ is added to the angles below the range. The effect of circular
wrapping on the angular distribution is illustrated in Fig. C.1.

-180° 180°

PDF

angles

Figure C.1: Wrapping of the Gaussian distribution as implemented in WIM.

This effect is more visible for Gaussian with larger standard deviation, as the
indicated in Fig. B.14. For very large standard deviation of initial Gaussian dis-
tribution the resulting distribution after wrapping can be approximated with a
uniform distribution. The effect of the circular wrapping of the normal distribution
on the resulting angular distribution can be approximated with von Mises distri-
butions that is sometimes also referred to as circular normal distribution. The von
Mises probability density function is

f(x | µ, κ) =
eκcos(x−µ)

2πI0(κ)
, (C.11)

where I0(x) is the modified Bessel function of order 0. The parameter µ defines the
location, while κ measures the concentration. For very large values of κ von Mises
distribution approaches a normal distribution with mean µ and variance 1

κ [176].
This is equivalent to hardly noticeable wrapping effect for Gaussian distribution
with small standard deviation σ.
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[18] J. Maurer, T. Fügen, and W. Wiesbeck, “Physical layer simulations of IEEE802.11a
for vehicle-to-vehicle communications,” vol. 3, (Dallas, TX), pp. 1849–1853, Sept.
2005. [cited at p. 18]
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data models on estimated angular distributions in channel characterisation,” 2007.
[cited at p. 72, 73, 194]

[89] M. Landmann, M. Käske, and R. S. Thomä, “Impact of incomplete and inaccurate
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and P. Angueira, “Generalization of the Lee method for the analysis of the signal
variability,” Vehicular Technology, IEEE Transactions on, vol. 58, no. 2, pp. 506–
516, 2009. [cited at p. 76]

[94] V.-M. Kolmonen, K. Haneda, T. Hult, J. Poutanen, F. Tufvesson, and
P. Vainikainen, “Measurement-based evaluation of interlink correlation for indoor
multi-user MIMO channels,” Tech. Rep. TD(10)10070, Athens, Greece, February
2010. [cited at p. 76]

[95] J. Poutanen, K. Haneda, J. Salmi, V.-M. Kolmonen, F. Tufvesson, and
P. Vainikainen, “Analysis of radio wave scattering processes for indoor MIMO chan-
nel models,” Tech. Rep. TD(09)839, Valencia, Spain, May 2009. [cited at p. 76]

[96] G. Eriksson, F. Tufvesson, and A. F. Molisch, “Characteristics of MIMO peer-to-
peer propagation channels at 300 MHz,” Tech. Rep. TD(07)376, Duisburg, Germany,
September 2007. [cited at p. 76]
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