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Abstract

For many practical applications it is important to determine not only a numerical
approximation of one but a representation of the whole set of globally optimal solu-
tions of a non-convex optimization problem. Then one element of this representation
may be chosen based on additional information which cannot be formulated as a
mathematical function or within a hierarchical problem formulation. We present
such an application in the field of robotic design. This application problem can be
modeled as a smooth box-constrained optimization problem. For determining a rep-
resentation of the global optimal solution set with a predefined quality we modify
the well known αBB method. We illustrate the properties and give a proof for the
finiteness and correctness of our modified αBB method.

Key Words: Nonconvex programming, global optimization, optimal solution set, αBB
method, robotic design

Mathematics subject classifications (MSC 2000): 90C26, 90C30, 90C90

1 Introduction

Many application problems can be modeled as a smooth nonlinear optimization problem
with box constraints. This is due to the fact that in technical applications often the design
variables are only limited by upper and lower bounds on their range. Numerical solution
methods as gradient based methods, sequential quadratic programming or trust region
methods evaluate local criteria for optimizing such functions. Therefore, for non-convex
problems only locally but not necessarily globally optimal solutions can be guaranteed.
However, in applications one is in general only interested in globally optimal solutions.
Efficient deterministic solvers for smooth global optimization problems, at least for lower
dimensional problems, are available, as for instance the αBB method which is used as the
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base algorithm in this paper. These algorithms aim in general at the determination of a sin-
gle globally optimal solution. In contrast, we aim in this paper at finding a representation
of the whole optimal solution set with a predefined quality.

The (classical) αBB method is based on results in [5, 17, 18, 19, 20], is described in
detail for instance in [1, 2, 9], and is a so-called branch and bound algorithm for determining
a single globally optimal solution. The branching is done by a partitioning of the starting
box which describes the feasible set. The bounding is reached by minimizing valid convex
underestimators of the objective function on each created subbox, and using the minimal
value of the convex underestimator as a lower bound. An upper bound can be obtained
by evaluating the original objective function at the global minimum point of the convex
underestimator.

As a globally optimal solution is in application problems often a possible design, one
might be interested not only in one optimal solution but in the whole set of all globally
optimal solutions — and thus allowed designs. To be more specific, one is interested
in a good representation of the, eventually infinite, optimal solution set, as in practical
applications very small changes in the design variables are not practically relevant. We
discuss such an application problem in Section 4, which leads to a nonlinear optimization
problem with a smooth but non-convex objective function and box constraints. There, the
task is to evaluate the design of a robotic arm and to determine whether a desired position
can be reached by the robotic arm. All different configurations for the robotic arm such
that the position is reached are of interest. This is for instance useful if one wants to move
on to another position and has to find the best starting configuration of the robotic arm
for doing so. In this application problem it is quite common that many or even infinitely
many globally optimal solutions exist.

The topic of this paper is thus a modification of the (classical) αBB method in such a
way that it can be used to determine representations of the set of globally optimal solutions
with a predefined quality and to apply it to the mentioned application problem. While a
naive modification of the αBB method for this purpose seems to be straightforward, we
point out arising difficulties and argue while additional variables and special bounds for
the additional while loops in the algorithm are necessary. Moreover, we give a proof that
our algorithm delivers in a finite number of iterations the desired predefined approximation
quality. For this proof we use a box operator, combine several bounds for the objective
function on the considered subboxes, and borrow techniques from discrete mathematics.

Another deterministic branch and bound based method with the aim to compute a
representation of the whole optimal solution set of a box-constrained optimization problem
is the method of Hansen (see [12]). This method computes a representation of all global
minimizers of a twice continuously differentiable function in the interior of a given box by
using interval arithmetic to evaluate the objective function and its first- and second-order
partial derivatives. Based on this the method eliminates by several tests (midpoint test,
monotonicity test, concavity test) subboxes, which are guaranteed not to contain a global
minimizer. However, this method does not find non-stationary minima on the boundary
of the feasible set (for an amendment in this regard see [28]) and cannot be transferred to
general constrained optimization problems directly. A detailed description of this method
and its modifications can be found in [11, 13] and the references therein.

The remaining of the paper is organized as follows. In section 2 we present some
basic notations and definitions. We collect some properties of a convex underestimator,
prove some first results, and introduce a box operator used in the branching part of the
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algorithms. Our modified αBB method is formulated in section 3. We give a proof for the
finiteness and correctness of this method, we describe possible variations, and we present
first numerical results. In section 4 we apply our method to a design problem in the scope
of robotics. Finally, section 5 concludes the paper and gives some directions of future
research.

2 Preliminaries

We denote by IR the set of all real nonempty closed intervals and by IRn the set of all
n-dimensional boxes. For some X = (X1, . . . , Xn)> ∈ IRn we define the vectors l(X) =
(l(X)1, . . . , l(X)n)>, u(X) = (u(X)1, . . . , u(X)n)>, and mid(X) = (mid(X)1, . . . ,mid(X)n)>

by

l(X)i := min(Xi), u(X)i := max(Xi) , and mid(X)i =
1

2
(u(X)i + l(X)i)

for all i ∈ {1, . . . , n}, respectively. For a given box X ∈ IRn we will use the notation
X = [l(X), u(X)] simultaneously and define the width of X by ω(X) := ‖u(X)− l(X)‖2.

For reasons of simplicity we consider throughout the paper a box-constrained optimiza-
tion problem

min
x∈X0

f(x) (1)

for some X0 ∈ IRn and some f ∈ C2(Rn,R), where C2(Rn,R) denotes the set of all twice
continuously differentiable functions on Rn. At the end of this paper we shortly comment
on how general constraints can be incorporated, see also [9, Chapter 12].

For the representation of the set of minimal solutions of the optimization problem (1)
we will use the following definitions:

Definition 2.1. Let ε > 0, δ > 0, Ω be a nonempty subset of Rn, and f : Ω → R such
that argminx∈Ω f(x) 6= ∅.

(a) A point x̃ ∈ Ω is an ε-minimal point of f w.r.t. Ω, if

f(x̃)−min
x∈Ω

f(x) ≤ ε.

(b) A point x̂ ∈ Ω is an (ε, δ)-minimal point of f w.r.t. x̄ ∈ argminx∈Ω f(x), if

f(x̂)−min
x∈Ω

f(x) ≤ ε and ‖x̂− x̄‖2 ≤ δ.

(c) A finite subset A of Ω is an (ε, δ)-minimal set of f w.r.t. Ω if every point x̃ ∈ A is
an ε-minimal point of f w.r.t. Ω and if for every x̄ ∈ argminx∈Ω f(x) there exists a
point x̂ ∈ A such that x̂ is an (ε, δ)-minimal point of f w.r.t. x̄.

Based on the above definition we denote by ε- min(f,Ω) and by (ε, δ)- min(f,Ω, x̄) the
set of all ε-minimal points of f w.r.t. Ω and the set of all (ε, δ)-minimal points of f w.r.t.
x̄ ∈ argminx∈Ω f(x), respectively.

For constructing lower bounds of the minimum value of (1) in the bounding step of
algorithms based on the αBB approach (valid) convex underestimators are of central im-
portance. Referring for instance to [2], an essential step for the construction of a valid
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convex underestimator is the decomposition of the objective function into a sum of linear,
bilinear, trilinear, fractional, fractional trilinear, convex, univariate concave, and general
non-convex terms. All of the linear and all of the convex terms do not require any transfor-
mations for the construction of such an underestimator, and all univariate concave terms
can be underestimated separately by linear functions without the introduction of additional
variables or constraints (see [2]). For bilinear, trilinear, fractional, and fractional trilinear
terms there exist sophisticated techniques which generate valid and in some cases very tight
convex underestimators (see [6, 21, 22]). We restrict ourselves in this paper to the case of
general non-convex terms and use the classical approaches of [5] and [20]. Here, the convex
underestimator is constructed by adding a quadratic term to the objective function built
by a lower bound of the smallest eigenvalue of the Hessian of the objective function over
the subboxes derived by interval analysis. For improved approaches for the construction
of convex underestimators we refer for instance to [3, 4].

Definition 2.2. Let Ω be a nonempty convex subset of Rn and f : Ω → R. A function
Φ : Ω̃→ R with Ω ⊂ Ω̃ is a convex underestimator of f w.r.t. Ω, if Φ is convex on Ω and
Φ(x) ≤ f(x) for all x ∈ Ω.

For our theoretical results we restrict ourselves with regard to the construction of the
convex underestimators exemplary, as mentioned above, to the classical approach of [20].
Therefor the twice continuously differentiable objective function f will be underestimated
on the box X = [l(X), u(X)] ∈ IRn by a function Φα,X : Rn → R defined by

Φα,X(x) := f(x) + α
n∑
i=1

(l(X)i − xi)(u(X)i − xi) (2)

with α ≥ 0. We denote by ∇f(x) the gradient of f and by ∇ 2f(x) the Hessian of f at
the point x ∈ Rn. Moreover, we denote by λmin(A) the smallest eigenvalue of a symmetric
matrix A = (aij) ∈ Rn×n.

The following lemma is obvious:

Lemma 2.3. Let X0 ∈ IRn, f ∈ C2(Rn,R), X ∈ IRn such that X ⊂ X0 and

X ∩ argmin
x∈X0

f(x) 6= ∅,

α ≥ 0, and Φα,X : X → R be defined as in (2). Then it holds

min
x∈X

Φα,X(x) ≤ min
x∈X0

f(x).

The following two results are well known:

Lemma 2.4. [20, Property 3]
Let X ∈ IRn, f ∈ C2(Rn,R), and Φα,X : Rn → R be defined as in (2). Then the function
Φα,X is a convex underestimator of f w.r.t. X if and only if

α ≥ max

{
0, − 1

2
min

{
λmin(∇ 2f(x))

∣∣ x ∈ X}} . (3)
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Lemma 2.5. [20, Property 4]
Let X ∈ IRn, f ∈ C2(Rn,R), and Φα,X : Rn → R be defined as in (2). Then it holds

max
x∈X

(f(x)− Φα,X(x)) =
1

4
α ω2(X). (4)

Note, if the function f ∈ C2(Rn,R) is convex on X, then λmin(∇ 2f(x)) ≥ 0 holds for
all x ∈ X and α = 0 satisfies (3). Moreover, (4) delivers a (natural) measure for the quality
of the underestimator Φα,X .

Lemma 2.6.
Let X1, X2 ∈ IRn with X2 ⊂ X1, f ∈ C2(Rn,R), and Φα,Xk : Rn → R be defined as in (2)
for k ∈ {1, 2}. If Φα,X1 is a convex underestimator of f w.r.t. X1, then Φα,X2 is also a
convex underestimator of f w.r.t. X2 and it holds

min
x∈X1

Φα,X1(x) ≤ min
x∈X2

Φα,X2(x).

Proof. Let Φα,X1 be a convex underestimator of f w.r.t. X1 and thus also w.r.t. X2 ⊂ X1.
Using

min
x∈X1

λmin(∇ 2f(x)) ≤ min
x∈X2

λmin(∇ 2f(x))

the first conclusion follows immediately by Lemma 2.4. By using X2 ⊂ X1 it follows
l(X1)i ≤ l(X2)i < u(X2)i ≤ u(X1)i for all i ∈ {1, . . . , n}. Hence, for all x ∈ X2 we obtain

Φα,X1(x) = f(x) + α
n∑
i=1

(l(X1)i − xi)(u(X1)i − xi)

≤ f(x) + α
n∑
i=1

(l(X2)i − xi)(u(X2)i − xi)

= Φα,X2(x)

and therefore
min
x∈X1

Φα,X1(x) ≤ min
x∈X2

Φα,X1(x) ≤ min
x∈X2

Φα,X2(x).

For a given box X = [l(X), u(X)] ∈ IRn we define the branching index b(X) by

b(X) := min

{
i ∈ {1, . . . , n}

∣∣∣∣ i ∈ argmax
j=1,...,n

(u(X)j − l(X)j)

}
(5)

and the subboxes L(X) and R(X) of X by

l(L(X))i := l(X)i, u(L(X))b(X) := mid(X)b(X), u(L(X))j := u(X)j,
l(R(X))j := l(X)j, l(R(X))b(X) := mid(X)b(X), u(R(X))i := u(X)i

(6)

for all i ∈ {1, . . . , n} and all j ∈ {1, . . . , n} \ {b(X)}, respectively. According to this we
define the box operator sB : IRn × N0 → 2X recursively by

sB(X, 0) := {X} for all X ∈ IRn,
sB(X, 1) := {L(X), R(X)} for all X ∈ IRn,
sB(X, j) := sB(L(X), j − 1) ∪ sB(R(X), j − 1) for all X ∈ IRn and all j ≥ 2.
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Obviously for all X ∈ IRn and all j ∈ N0 it holds

| sB(X, j)| = 2j and |
m⋃
j=0

sB(X, j)| = 2m+1 − 1. (7)

For the width of a subbox X̃ of X defined by the box operator sB we obtain:

Lemma 2.7. Let X ∈ IRn and j ∈ N0. Then it holds

ω(X̃) ≤ ω(X)

(
1− 3

4n

) j
2

for all X̃ ∈ sB(X, j).

Proof.
For j = 0 the assertion is obvious. For j = 1 and X̃ ∈ sB(X, 1) it follows by (5) and (6)

ω2(X) =
n∑
i=1

(u (X)i − l (X)i)
2 ≤ n

(
u (X)b(X) − l (X)b(X)

)2

and

ω2(X̃) =
n∑
i=1

(
u(X̃)i − l(X̃)i

)2

= ω2 (X)− 3

4

(
u (X)b(X) − l (X)b(X)

)2

.

Hence, we obtain
ω2(X̃)
ω2(X)

≤ 1− 3
4n

and the assertion follows by mathematical induction on
j.

Remark 2.8. Clearly it holds lim
n→∞

(
1− 3

4n

)
= 1, which illustrates the deteriorating con-

vergence properties for branch and bound algorithms used in the case of high dimensional
optimization problems.

3 The modified αBB method

We formulate the (basic version) of the modified αBB method for the computation of an
(ε, δ)-minimal set A of f w.r.t. X0 for the optimization problem (1) as follows:
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Algorithm 1 The modified αBB method

INPUT: X0 ∈ IRn, f ∈ C2(Rn,R), ε > 0, δ > 0
OUTPUT: (ε, δ)-minimal set A of f w.r.t. X0

1: Compute an α ≥ 0 such that Φα,X0 is a convex underestimator of f w.r.t. X0.
2: Set A := ∅, X? := X0, x? := mid(X?), u? := −∞, xact := x?, vact := +∞, vglob := vact,
L := {(X?, x?, u?)}, and the iteration counter k := 0.

3: while L 6= ∅ do
4: Set k := k + 1.
5: Delete (X?, x?, u?) from L.
6: for all X̄ ∈ sB(X?, 1) do
7: Compute x̄ ∈ argminx∈X̄ Φα,X̄(x) and ū := minx∈X̄ Φα,X̄(x).
8: if ū ≤ vglob then
9: Add (X̄, x̄, ū) as the last element to L.

10: if f(x̄) ≤ vact then
11: Set xact := x̄, vact := f(xact), and vglob := min{vact, vglob}.
12: Delete all (X̃, x̃, ũ) ∈ L with ũ > vglob from L.
13: end if
14: end if
15: end for
16: if L 6= ∅ then
17: Define (X?, x?, u?) as the first element of L with u? = min(X̃,x̃,ũ)∈L ũ.

18: while L 6= ∅ and vact − u? ≤ 1
2
ε do

19: if there is a (X̂, x̂, û) ∈ L with xact ∈ X̂ and ω(X̂) ≤ δ then
20: Set A := A ∪ {xact}.
21: Delete all (X̃, x̃, ũ) ∈ L with xact ∈ X̃ and ω(X̃) ≤ δ from L.
22: end if
23: if there is a (X̂, x̂, û) ∈ L with xact ∈ X̂ then
24: Define (X?, x?, u?) as the first element of L with xact ∈ X∗.
25: go to 3.
26: end if
27: if L 6= ∅ then
28: Define (X?, x?, u?) as the first element of L with u? = min(X̃,x̃,ũ)∈L ũ.
29: Compute the first element (·, ẋ, ·) ∈ argmin(X̃,x̃,ũ)∈L f(x̃) of L.
30: Set xact := ẋ and vact := f(xact).
31: end if
32: end while
33: end if
34: end while

The modified αBB method starts with the construction of a convex underestimator
Φα,X0 of the objective function f w.r.t. the starting box X0 (line 1) and with the initial-
ization of the algorithm (line 2). The outer while loop (lines 3-34) includes the iteration
counter (line 4), a branching and bounding part (line 5 and the for-loop of lines 6-15), and
the selection part for the elements of the (ε, δ)-minimal set A of f w.r.t. X0 (lines 16-33).
Obviously, the algorithm terminates in an iteration k ≥ 1 if L = ∅ holds in line 3.
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In every iteration k ≥ 1 the current element (X?, x?, u?) is deleted from L in line 5 and
the corresponding box X? is subdivided by the box operator sB in two subboxes. For a
subbox X̄ ∈ sB(X?, 1) = {L(X?), R(X?)} any local minimum of the corresponding convex
underestimator Φα,X̄ over the convex set X̄ is also a global minimum. Thus in the following
bounding part (lines 6-15) local optimization techniques (for instance SQP methods) can
be used to determine a point x̄ ∈ argminx∈X̄ Φα,X̄(x). Then, we can use

ū = min
x∈X̄

Φα,X̄(x) ≤ min
x∈X̄

f(x) (8)

as a lower bound of f over X̄, cf. line 7. Obviously it holds

min
x∈X0

f(x) ≤ vglob ≤ vact = f(xact) (9)

in every iteration k of Algorithm 1, where vglob denotes the current upper bound of
minx∈X0 f(x).

If ū > vglob is fulfilled in line 8, then it follows by (8) and (9)

min
x∈X0

f(x) ≤ vglob < ū ≤ min
x∈X̄

f(x).

Hence, it holds X̄ ∩ argminx∈X0 f(x) = ∅ and the corresponding element (X̄, x̄, ū) will not
be added to L.

If ū ≤ vglob is fulfilled in line 8, then X̄ can contain an element of argminx∈X0 f(x) and
the corresponding element (X̄, x̄, ū) will be added to L in line 9. In this case the algorithm
tries in the following if-loop (lines 10-13) to improve the values of vact = f(xact) and the
current upper bound vglob by using f(x̄). Where applicable, all elements (X̃, x̃, ũ) ∈ L with
X̃ ∩ argminx∈X0 f(x) = ∅ (guaranteed by the improved upper bound vglob) are deleted
(bounding).

To guarantee uniqueness in the choice of the subbox X̄ we determine that the algo-
rithm analyzes in the bounding part of every iteration k ≥ 1 at first L(X?) and then R(X?).

In the selection part (lines 16-33) the point xact and the value vact are of central im-
portance. We waive a detailed description of this part and we remark only that xact ∈
ε- min(f,X0) holds if L 6= ∅ and vact − u? ≤ 1

2
ε are fulfilled in line 18 (see the forthcoming

Lemma 3.4). Note that this conclusion does not hold in general for the weaker condition
vact − u? ≤ ε as the following example illustrates:

Example 3.1. Note that all results of this example have to be interpreted in view of the
numerical accurateness of Matlab. We consider the box-constrained optimization problem
(1) with f : R→ R, f(x) := −10−6 (sin(x+ 10.5))2 (x+10.5)6, X0 := [0, 4], and the unique
global minimum xopt of f over X0 at

xopt = 3.84335076139211 with f(xopt) = −8.34274122196571.

For α := 6 the function Φ6,[0,4] : R→ R defined by

Φ6,[0,4](x) := −10−6 (sin(x+ 10.5))2 (x+ 10.5)6 + 6x(x− 4)

is a convex underestimator of f w.r.t. X0.

8



Using Algorithm 1 with ε := 6 and δ := 3 we obtain after two iterations

A = {3.70082023715804}

with
f(3.70082023715804) = −8.16807544598965

which is in fact an (ε, δ)-minimal set of f w.r.t. X0.
If we modify the selection part by using the weaker condition vact − u? ≤ ε, then the

modified algorithm delivers after one iteration

A = {3.46575415683705, 0.93618642367221}

with
f(3.46575415683705) = −7.20381885980831,
f(0.93618642367221) = −1.83018768013290,

and this set A is obviously not an (ε, δ)-minimal set of f w.r.t. X0.

3.1 Finiteness and correctness

For the proof of the main result of this subsection (see the forthcoming Theorem 3.6) we
need some preliminary conclusions, which we collect at first. Thereby the following remark
follows immediately by Lemma 2.3:

Remark 3.2.

(i) If in iteration k of Algorithm 1 an element (X?, x?, u?) with

X? ∩ argmin
x∈X0

f(x) 6= ∅

is deleted from L in line 5, then for at least one X̄ ∈ sB(X?, 1) it holds

X̄ ∩ argmin
x∈X0

f(x) 6= ∅

and an element (X̄, x̄, ū) with x̄ ∈ argminx∈X̄ Φα,X̄(x) and ū := minx∈X̄ Φα,X̄(x) is
added to L in iteration k in line 9.

(ii) There exists no iteration k of Algorithm 1 such that an element (X̃, x̃, ũ) with

X̃ ∩ argmin
x∈X0

f(x) 6= ∅

is deleted from L in line 12.

Lemma 3.3. Let k0 be the first iteration of Algorithm 1 such that L 6= ∅ and vact−u? ≤ 1
2
ε

are fulfilled in line 18. Then for all iteration k ≥ k0 it holds

vglob − min
x∈X0

f(x) ≤ 1

2
ε.
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Proof. By the choice of k0 it follows by Remark 3.2(i) and (ii) that in iteration k0 there
exists an element (X, x, u) ∈ L with X ∩ argminx∈X0 f(x) 6= ∅. Moreover, by the choice
of u? (see line 17) it follows by Lemma 2.3 that u? ≤ u ≤ minx∈X0 f(x). Hence, we obtain
by (9)

vglob − min
x∈X0

f(x) ≤ vact − min
x∈X0

f(x) ≤ vact − u? ≤
1

2
ε.

Since the value of vglob does not increase in all iterations k ≥ k0, we are done.

Lemma 3.4. Let k0 be defined as in Lemma 3.3. Then for all iteration k ≥ k0 of Algorithm
1, with L 6= ∅ and vact − u? ≤ 1

2
ε being fulfilled in line 18, it holds

xact ∈ ε- min(f,X0).

Proof. By Lemma 3.3 it holds vglob − 1
2
ε ≤ minx∈X0 f(x) for all k ≥ k0. Hence, by using

vact ≤ u? + 1
2
ε we obtain

vact − min
x∈X0

f(x) ≤ vact − vglob +
1

2
ε ≤ u? − vglob + ε.

Since ũ− vglob ≤ 0 holds for all (X̃, x̃, ũ) ∈ L (see lines 8 - 14) it follows

f(xact) = vact ≤ min
x∈X0

f(x) + u? − vglob + ε ≤ min
x∈X0

f(x) + ε,

and we are done.

In the following d·e denotes the ceiling function, i.e.

dxe := min {n ∈ N | n ≥ x} for all x ∈ R.

Lemma 3.5. Let Algorithm 1 attain in iteration k line 16, let (X̂, x̂, û) be an element of
L, and let j ∈ N0 such that X̂ ∈ sB(X0, j).

(i) If

j ≥ jδ :=

2
log
(

δ
ω(X0)

)
log
(
1− 3

4n

)
 , (10)

then it holds ω(X̂) ≤ δ.

(ii) If

j ≥ jε :=

2

log

( √
2ε
α

ω(X0)

)
log
(
1− 3

4n

)
 , (11)

then it holds vact − û ≤ 1
2
ε.

Proof.
(i) Follows by Lemma 2.7 since

j ≥ 2
log
(

δ
ω(X)

)
log
(
1− 3

4n

) ⇔ ω(X)

(
1− 3

4n

) j
2

≤ δ.
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(ii) It is easy to see that regardless whether the current value of vact in iteration k was
defined in an iteration k

′ ≤ k in line 11 or in line 30 it holds vact ≤ f(x̂) (see line 10 or line
29, respectively). Using Lemma 2.5 and (i) we obtain

vact − û ≤ f(x̂)− û ≤ 1

4
αω2(X̂) ≤ 1

4
α

2ε

α
=

1

2
ε.

Let k0 be defined as in Lemma 3.3 and jε be defined as in (11). By using Lemma 3.5(ii)
we can formulate an upper bound for k0. In every iteration k ≥ 1 of Algorithm 1 where
we reach line 16 with L 6= ∅ then in the next step, in line 17, an element (X?, x?, u?) ∈ L
is chosen as the first element of L with u? = min(X̃,x̃,ũ)∈L ũ . If vact − u? > 1

2
ε, then by

Lemma 3.5(ii) it follows X? ∈ sB(X0, j) for some j with j ≤ jε − 1. If k < k0, then in
iteration k + 1 the element (X?, x?, u?) will be deleted in line 5 and the box X? will be
subdivided in line 6-15. Hence, in all iterations k < k0 every element (X?, x?, u?) ∈ L can
only be chosen once in line 17. The question arises, how many elements (X?, x?, u?) ∈ L
can be chosen in line 17 with X? ∈ sB(X0, j) in the worst case such that j ≤ jε − 1 holds,
before the algorithm must chose an element of L with X? ∈ sB(X0, j) and j = jε.

Therefore, since it holds by (7)

|
jε−1⋃
j=0

sB(X0, j)| = 2jε − 1,

there must be an iteration k0 ≤ 2jε such that L 6= ∅ holds in line 16, an element
(X?, x?, u?) ∈ L is chosen in line 17 with X? ∈ sB(X0, jε), and vact − u? ≤ 1

2
ε is ful-

filled in line 18 by Lemma 3.5(ii).

Let X (0) := {X0}. If Algorithm 1 attains in iteration k ≥ 1 line 5, then an element
(X?, x?, u?) is deleted from L and we define recursively for k ≥ 1

X (k) := X (k − 1) ∪ sB(X?, 1),

i.e. X (k) contains X0 and all subboxes of X0 constructed by Algorithm 1 up to and
including iteration k ≥ 1. Obviously it holds

|X (k)| = 2k + 1 for all k ≥ 0. (12)

Using the above considerations we are now able to formulate and prove our main result:

Theorem 3.6. For Algorithm 1 the following holds:

(i) The algorithm terminates after finitely many iterations.

(ii) At the end of the algorithm the set A is an (ε, δ)-minimal set of f w.r.t. X0.

Proof.
(i) Let jδ be defined as in (10) and jε be defined as in (11), respectively. If Algorithm 1
attains in iteration k line 16 and (X̂, x̂, û) is an element of L with X̂ ∈ sB(X0, jδ,ε) and

jδ,ε := max{jδ, jε},

11



then by Lemma 3.5(i) and (ii) it holds ω(X̂) ≤ δ and vact − û ≤ 1
2
ε. Hence, (X̂, x̂, û)

cannot be chosen as (X?, x?, u?) in an iteration k′ ≥ k in line 24. Moreover, if (X̂, x̂, û) will
be chosen as (X?, x?, u?) in an iteration k′ ≥ k in line 17 or in line 28, respectively, then
the Algorithm 1 will stay in the while-loop between line 18 and line 32 with (X?, x?, u?) =
(X̂, x̂, û) until (X̂, x̂, û) is deleted from L. Hence, there exists no iteration k′ ≥ k such
that (X?, x?, u?) = (X̂, x̂, û) will be deleted from L in line 5 and such that X? = X̂ will
be subdivided in line 6-15. Thus X (k)∩ sB(X0, jδ,ε + 1) = ∅ holds for all iterations k ≥ 1.
Since by (7) and (12) it holds

|
jδ,ε⋃
j=0

sB(X0, j)| = |X (k̄)| ⇔ 2jδ,ε+1 − 1 = 2k̄ + 1⇔ k̄ = 2jδ,ε − 1,

the Algorithm 1 terminates in an iteration k ≤ 2jδ,ε − 1.
(ii) Using Lemma 3.4 it remains to show that at the end of Algorithm 1 for all x̄ ∈
argminx∈Ω f(x) there exists an x̂ ∈ A such that ‖x̂− x̄‖2 ≤ δ. Assume, there is at the end
of the algorithm a point x̄ ∈ argminx∈Ω f(x) such that

‖x̂− x̄‖2 > δ (13)

holds for all x̂ ∈ A. In addition to that let k̄ be the last iteration where an element (X̆, x̆, ŭ)
with x̄ ∈ X̆ is deleted from L. By Remark 3.2 (i) and (ii) the element (X̆, x̆, ŭ) cannot
be deleted in line 5 or in line 12, respectively. Hence, (X̆, x̆, ŭ) must be deleted in line 21
and it holds k̄ ≥ k0, where k0 is defined as in Lemma 3.3. Using Lemma 3.4 it follows
xact ∈ ε- min(f,X0)∩ X̆, xact ∈ A, ω(X̆) ≤ δ, and hence ‖xact− x̄‖2 ≤ δ − in contradiction
to (13).

3.2 Notes on the used implementations

For the first numerical tests of the modified αBB method in the following subsection we
used Matlab (version R2011b) and four different implementations,

modαglob BB, modαloc BB, modαloc
i,d=1 BB, and modαloc

i,d=u−l BB,

which we describe shortly.

To compute a parameter α which satisfies (3) in Lemma 2.4 one possible approach is
to apply interval arithmetics and an interval variant of Gerschgorin’s theorem (see [10]).
Therefor for givenX ∈ IRn and f ∈ C2(Rn,R) let∇2f(X)ij = [l(∇2f(X)ij), u(∇2f(X)ij)] ∈
IR with ∇2f(X)ij = ∇2f(X)ji and ∇2f(x)ij ∈ ∇2f(X)ij for all i, j ∈ {1, . . . , n} and all
x ∈ X. We define the corresponding (symmetric) interval Hessian matrix [∇2f(X)] =
(∇2f(X)ij) by[
∇2f(X)

]
:=
{
H = (hij) ∈ Rn×n ∣∣ H = H>, ∀ i, j ∈ {1, . . . , n} : hij ∈ ∇2f(X)ij }

and based on this

λmin

([
∇2f(X)

])
:= min

{
λmin(H)

∣∣ H ∈ [∇2f(X)
]}
.

12



Obviously it holds

min
{
λmin(∇ 2f(x))

∣∣ x ∈ X} ≥ λmin

([
∇2f(X)

])
and a straightforward extension of Gerschgorin’s theorem to interval matrices (see for
instance [2, Theorem 3.2]) yields the lower bound

λmin

([
∇2f(X)

])
≥ min

i

(
l(∇2f(X)ii)−

∑
i6=j

max
{∣∣l(∇2f(X)ij)

∣∣ , ∣∣u(∇2f(X)ij)
∣∣}) .

Therefore a (simple) possibility to determine a parameter α = α(X) ∈ R+ satisfying (3) is
given by

α(X) := max

{
0,−1

2
min
i

(
l(∇2f(X)ii)−

∑
i6=j

max
{∣∣l(∇2f(X)ij)

∣∣ , ∣∣u(∇2f(X)ij)
∣∣})} .

(14)
We use in all our implementations Intlab (version V8, [30]) and automatic differ-

entiation for the computation of the elements ∇2f(X)ij of the interval Hessian matrix
[∇2f(X)]. We denote our implementation of the modified αBB method using (14) for the
computation of a global parameter α := α(X0) in line 1 shortly by modαglob BB.

A local recalculation of the parameter α = α(X̄) for every subbox X̄ ∈ sB(X?, 1) in
line 6 before the computation of x̄ ∈ argminx∈X̄ Φα,X̄(x) and ū = minx∈X̄ Φα,X̄(x) in line 7
in every iteration k ≥ 1 (instead of a global calculation of the parameter α = α(X0)) may
yield a substantial reduction of the required iteration numbers.

If the parameters α? and ᾱ are chosen such that

α? ≥ max
{

0, − 1
2

min {λmin(∇ 2f(x)) | x ∈ X?}
}
,

ᾱ ≥ max
{

0, − 1
2

min
{
λmin(∇ 2f(x)) | x ∈ X̄

}}
,

(15)

and α? ≥ ᾱ, then by [20, Property 5] Φα?,X? is a convex underestimator of f w.r.t. X?,
Φᾱ,X̄ is a convex underestimator of f w.r.t. X̄, and it holds

min
x∈X?

Φα?,X?(x) ≤ min
x∈X̄

Φᾱ,X̄(x).

In case we determine α? and ᾱ using (14), i.e α? := α(X?) and ᾱ := α(X̄), then (15) and
α? ≥ ᾱ are satisfied, if [∇2f(·)] is inclusion isotonic, i.e. it holds ∇2f(X̄)ij ⊂ ∇2f(X?)ij
for all i, j ∈ {1, . . . , n} (see for instance [25]). We denote by modαloc BB our implemen-
tation of the modified αBB method using in every iteration k ≥ 1 a recalculation of the
parameter ᾱ := α(X̄) according to (14) for every subbox X̄ ∈ sB(X?, 1) in line 6.

For the two remaining implementations of the modified αBB method we use instead
of the classical approach for a convex underestimator defined by (2) the following slight
modification introduced in [5]. Therefor the twice continuously differentiable objective
function f will be underestimated on the box X = [l(X), u(X)] ∈ IRn by a function
Φ̃α̃,X : Rn → R defined by

Φ̃α̃,X(x) := f(x) +
n∑
i=1

α̃i(l(X)i − xi)(u(X)i − xi)

13



with α̃i ≥ 0 for all i ∈ {1, . . . , n}. Using a so-called Scaled Gerschgorin Theorem (see for
instance [2, Theorem 3.13]) it can be shown that the function Φ̃α̃,X is a convex underesti-
mator of f w.r.t. X if for a vector d ∈ int(Rn

+) the parameter α̃ = α̃(X) ∈ Rn
+ is defined

by

α̃i(X) := max

{
0,−1

2

(
l(∇2f(X)ii)−

∑
i6=j

max
{∣∣l(∇2f(X)ij)

∣∣ , ∣∣u(∇2f(X)ij)
∣∣} dj
di

)}
(16)

for all i ∈ {1, . . . , n}.
For both implementations we use a local calculation of the parameter

α̃ := α̃(X̄) = (α̃1(X̄), . . . , α̃n(X̄))> ∈ Rn
+

according to (16) for every subbox X̄ ∈ sB(X?, 1) as described above, where we set di := 1
for all i ∈ {1, . . . , n} in the case of modαloc

i,d=1 BB and d := u(X̄) − l(X̄) in the case of

modαloc
i,d=u−l BB, respectively.

Obviously, if we compare the implementations modαloc BB and modαloc
i,d=1 BB then

in every iteration k ≥ 1 for every subbox X̄ ∈ sB(X?, 1) in line 6 it holds ᾱ ≥ α̃i for all
i ∈ {1, . . . , n} and thus Φᾱ,X̄(x) ≤ Φ̃α̃,X̄(x) for all x ∈ X̄.

For more detailed explanations regarding the used approaches we refer to [2]. We want
to note that usually there will be a trade-off between the reduction of the required iteration
numbers and the needed CPU-time for the additional local calculations of the parameters.
We shortly analyze this effect in the following subsection 3.3.

In all our Matlab-implementations we use for solving the box-constrained local op-
timizations problems (computation of x̄ and ū in line 7) the SQP algorithm of the solver
fmincon of the Optimization Toolbox with the default settings. To ensure that the ap-
proximations of the solutions are feasible, we demand an exitflag greater than or equal to 1.

Clearly, the magnitude of the parameters α and α̃ have an important influence on the
convergence rate of the implementations of the modified αBB method (for instance on
the maximal number of iterations in the worst case, see the proof of Theorem 3.6.) Thus
the determination of parameters which lead to tight convex underestimators is of vital
importance. For further explanations in this direction, regarding to other approaches for
convex underestimators, and regarding to other branching strategies we refer for instance
to [1, 2, 3, 4, 9, 14, 15, 23, 24, 29, 31, 32, 33].

3.3 First computational results

All experiments of this subsection have been performed with an Intel(R) Core(TM) i3-2105
CPU and with 16 GBytes of RAM (2x DDR3-1333/8 GB), using the operating system
Windows 7 Professional. Moreover, let A be the set created by the particular imple-
mentation of Algorithm 1. For the presentation of our numerical results in tabular form
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we use the sets

GLOB := {x̄ ∈ argminx∈X0 f(x) | ∃ a ∈ A : a ∈ (ε, δ)- min(f,X0, x̄)} ,

A¬ε := {a ∈ A
∣∣∣∣ f(a)− min

x∈X0
f(x) > ε},

A¬δ := {a ∈ A | ∀ x̄ ∈ argminx∈X0 f(x) : ‖a− x̄‖2 > δ},

and the following notations :

abbreviation denotation

iter number of required iterations
CPU required CPU time in seconds
|A| cardinality of the set A (created by the algorithm)
|GLOB | cardinality of the set GLOB
|A¬ε| cardinality of the set A¬ε
|A¬δ| cardinality of the set A¬δ
− The algorithm does not terminate after 100 000

iterations or 10 hours of CPU time.

Obviously in the case |argminx∈X0 f(x)| <∞ the set A created by our implementations
of the modified αBB method is an (ε, δ)-minimal set of f w.r.t. X0 if and only if

|GLOB | = |argminx∈X0 f(x)| and |A¬ε| = 0.

At first we consider the box-constrained optimization problem (1) for the following four
classical test problems

f : R2 → R with

Rastrigin [27] f(x) := 20 + x2
1 + x2

2 − 10 (cos(2πx1) + cos(2πx2))

Easom [8] f(x) := − cos(x1) cos(x2) exp (−(x1 − π)2 − (x2 − π)2)

Branin [7] f(x) :=
(
x2 − 5.1

4π2x
2
1 + 5

π
x1 − 6

)2
+ 10

(
1− 1

8π

)
cos(x1) + 10

Levy No.3 [16] f(x) :=
5∑
i=1

[i cos ((i+ 1)x1 + i)]
5∑
j=1

[j cos ((j + 1)x2 + j)]

with:

X0 argminx∈X0 f(x) minx∈X0 f(x)

Rastrigin

[(
−5.12
−5.12

)
,

(
5.12
5.12

)] {(
0
0

)}
0

Easom

[(
−100
−100

)
,

(
100
100

)] {(
π
π

)}
−1

Branin

[(
−5
0

)
,

(
10
15

)] {(
−π
491
40

)
,

(
π
91
40

)
,

(
3π
99
40

)}
5

4π
≈ 0.397887

Levy No.3

[(
−10
−10

)
,

(
10
10

)]
18 global minima ≈ −186.730909
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Clearly, the numerical solutions of all box-constrained convex optimization problems
in line 7 are in general not exact. For this reason we replace in all implementations the
condition ū ≤ vglob in line 8 by

ū ≤ vglob + εsave

for a fixed εsave ≥ 0. Table 1 presents our numerical results for the above defined four test
problems by using the parameters ε := 1E− 3, δ := 1E− 1, and εsave := 1E− 6.

Table 1: Numerical results for ε := 1E− 3, δ := 1E− 1, and εsave := 1E− 6.

modαglob BB
iter CPU |A| |GLOB | |A¬ε| |A¬δ|

Rastrigin 766 20 4 1 0 0
Easom - - - - - -
Branin 821 20 47 3 0 0
Levy No.3 10458 324 132 18 0 0

modαloc BB
iter CPU |A| |GLOB | |A¬ε| |A¬δ|

Rastrigin 641 34 4 1 0 0
Easom 86 4 1 1 0 0
Branin 112 5 6 3 0 0
Levy No.3 4305 523 18 18 0 0

modαloc
i,d=1 BB

iter CPU |A| |GLOB | |A¬ε| |A¬δ|
Rastrigin 580 31 4 1 0 0
Easom 80 4 1 1 0 0
Branin 91 4 4 3 0 0
Levy No.3 4289 514 18 18 0 0

modαloc
i,d=u−l BB

iter CPU |A| |GLOB | |A¬ε| |A¬δ|
Rastrigin 580 31 4 1 0 0
Easom 80 4 1 1 0 0
Branin 77 3 3 3 0 0
Levy No.3 4277 513 18 18 0 0

Only modαglob BB for the test problem Easom does not terminate after 100 000
iterations. No created subbox of X0 was deleted from the list L in the algorithm based on
our bounding criteria. The reason for that may be the very large value of α(X0) (defined
according to (14)) and the related strong underestimation by the convex underestimators
for all subproblems:

Rastrigin Easom Branin Levy No.3

α(X0) 1.963921E + 002 4.296532E + 004 1.698258E + 001 5.075000E + 003
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All algorithms determine for all considered test problems an (ε, δ)-minimal set A of f
w.r.t. X0. Moreover, for all considered problems it holds |A¬δ| = 0 and for all problems
except Rastrigin the cardinalities of the sets A decrease if a local recalculation of the
parameters α = α(X̄) or α̃ = α̃(X̄) is used. In these cases (local recalculation) it holds
|A| − | argminx∈X0 f(x)| ≤ 3 and for modαloc

i,d=u−l BB except Rastrigin even |A| =
| argminx∈X0 f(x)|.

The mentioned trade-off between the reduction of the required iteration number and
the needed CPU-time for the local recalculations can be stated only for the test problems
Rastrigin and Levy No.3. For the test problems Easom and Branin a significant de-
crease of the required iteration number as well as of the needed CPU-time turn out. We
want to note that for modαglob BB and the test problem Rastrigin the four elements of
A are all equal to the unique minimal point. This is due to the fact that in this case the
globally minimal point is at the boundary of four created subboxes and also the solution
of all the corresponding box-constrained convex optimization problems.

Tables 2 and 3 illustrate the importance of the choice of εsave. For the algorithm
modαglob BB and the setting εsave := 0 instead of εsave := 1E − 6 no influences can be
observed. However, all algorithms with a local recalculation and εsave = 0 determine only
for the test problem Rastrigin an (ε, δ)-minimal set A of f w.r.t. X0. Table 2 shows this
fact for modαloc BB. Note that for the test problems Easom and Levy No.3 it holds
|A| = 0. Moreover, an increase of the accuracy of the SQP algorithm used in fmincon by
choosing the parameters TolX := eps, TolFun := eps, and TolCon := eps does not change
this issue.

Table 2: Numerical results for ε := 1E− 3, δ := 1E− 1, and εsave := 0.

modαloc BB
iter CPU |A| |GLOB | |A¬ε| |A¬δ|

Rastrigin 641 34 4 1 0 0
Easom 81 4 0 0 0 0
Branin 94 4 4 1 0 0
Levy No.3 4251 511 0 0 0 0

Clearly, a choice of a too large value of εsave for the implementations with a local
recalculation may yield a substantial increase of the required iteration number and/or the
needed CPU-time. Table 3 illustrates this fact for modαloc BB and εsave := 1 (see the
test problem Branin). For the test problem Easom the algorithm does not terminate
within 100 000 iterations and for all remaining test problems no (ε, δ)-minimal set A of f
w.r.t. X0 is determined (|A¬ε| 6= 0).
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Table 3: Numerical results for ε := 1E− 3, δ := 1E− 1, and εsave := 1.

modαloc BB
iter CPU |A| |GLOB | |A¬ε| |A¬δ|

Rastrigin 699 37 16 1 12 10
Easom - - - - - -
Branin 1840 163 1548 3 1532 1484
Levy No.3 4385 532 58 18 40 0

Figure 1 illustrates the previous results for the implementation modαloc BB, the test
problem Branin, and the considered values of εsave:

−5 0 5 10
0

5

10

15

(a) global minima

−5 0 5 10
0

5

10

15

(b) εsave := 1E− 6

−5 0 5 10
0

5

10

15

(c) εsave := 0 (d) εsave := 1

Figure 1: Subboxes and sets A for the implementation modαloc BB using the test problem
Branin, ε := 1E− 3, and δ := 1E− 1.

We do not require for our modified αBB method that all global minima of the box-
constrained optimization problem are isolated or in the interior of the box X0. For numer-
ical tests in the case of an infinite number of global minima and/or global minima at the
boundary of X0 we use the following three test problems
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f : R2 → R with

Test01 f(x) :=
(
x21
42

+
x22
22
− 1
)2

Test02 f(x) := 1
10

(x1(1− x2) + x2(1− x1))2

Test03 f(x) := sin2
(

5
4
x1 + x2 − 3

)
Test04 f(x) := (x1 + sin2(x1)) cos2(x2)

with

X0 argminx∈X0 f(x)

Test01

[(
−5
−5

)
,

(
5
5

)] {(
x1

x2

) ∣∣∣x2142
+

x22
22

= 1

}
Test02

[(
−5
−5

)
,

(
5
5

)] {(
x1

x2

)∣∣∣∣ x1 ∈ [−5, 5] \
{

1
2

}
,

x2 = − x1
1−2x1

}
Test03

[(
0
−2

)
,

(
4
3

)] {(
x1

x2

)∣∣∣∣ 5
4
x1 + x2 = 3 + a,
a ∈ {−π, 0, π}

}
∩X0

Test04

[(
0
−2

)
,

(
4
3

)] {(
0
x2

)∣∣∣∣x2 ∈ [−2, 3]

}
∪
{(

x1

x2

)∣∣∣∣ x1 ∈ [0, 4],
x2 ∈

{
−π

2
, π

2

} }
and the global minimal value minx∈X0 f(x) = 0. Table 4 shows the results of all implemen-
tations for the above defined test problems. One can see that the implementations with a
local recalculation of the parameters α or α̃ are far better for these test problems. There
are no significant differences between these three implementations.

Table 4: Numerical results for the test problems Test01, Test02, Test03, and Test04
using ε := 1E− 3, δ := 1E− 1, and εsave := 1E− 6.

modαglob BB modαloc BB
iter CPU |A| iter CPU |A|

Test01 27783 22878 10875 1267 103 554
Test02 - - - 1130 68 437
Test03 5353 1185 2483 969 57 395
Test04 13118 7465 6468 676 40 315

modαloc
i,d=1 BB modαloc

i,d=u−l BB

iter CPU |A| iter CPU |A|
Test01 1263 98 554 1271 101 562
Test02 1100 71 437 1093 69 433
Test03 963 58 332 963 54 332
Test04 672 40 315 671 39 315

Figure 2 illustrates the previous results for the implementation modαloc BB and the
test problems Test01, Test02, Test03, and Test04:
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(c) Test03
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(d) Test04

Figure 2: Subboxes and sets A for the implementation modαloc BB using ε := 1E − 3,
δ := 1E− 1, and εsave := 1E− 6.

4 An application to robot design

Figure 3: Developmental sample of a robotic arm, with the kind permission of TETRA
GmbH Ilmenau, Dr. Andreas Karguth.

In this section, we apply the modified αBB method to a design problem in the field of
robotics. Thereby the task is to evaluate which positions P ∈ R3 are reachable by the
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tip of a robotic arm (also called the Tool Center Point (TCP) of the robot) – and which
settings of the robotic arm allow to reach this position. The robotic arm is assumed to
form a kinematic chain which consists of k arm sections (thrust axes), where l sections
have adjustable length and k − l sections have a fixed length. The sections are connected
by k joints, where at m joints a specific rotation angle can be chosen and k − m joints
have a fixed adjustment. We denote a specific choice of the l adjustable lengths of the arm
sections and of the m adjustable angles of the joints as a setting x ∈ Rn with n := l +m.
For an illustration see Figure 4 and for more detailed information we refer to [26].

(a) n = 2 (b) n = 2 (c) n = 3 (d) n = 5

Figure 4: Settings of a robotic arm to reach the point P marked with a ball for a robotic
arm with (a) two arm sections with fixed length (l = 0) and two variable joints (m = 2),
(b) three arm sections with fixed length (l = 0) and two variable joints (m = 2), (c) three
arm sections, where one is adjustable in the length (l = 1), and two variable joints (m = 2),
(d) five arm sections with fixed length (l = 0) and five variable joints (m = 5).

For a setting x ∈ Rn the position of the TCP can be calculated by evaluating the
function g : Rn → R3 with

g(x) :=
k∑
j=1

Dj(x) ·

 0
lj(x)

0

 (17)

(direct kinematics), where Dj(x) is the product of 3×3 rotation matrices and lj(x) denotes
the length of the arm section j for the current setting x.

We are interested in the problem of inverse kinematics which means to find to a given
point P ∈ R3 a setting x ∈ Rn such that ‖g(x) − P‖2

2 = 0. It is important to know all
possible settings. The reason is that in general the robotic arm has to perform several
movements in a row. So it is advantageous to choose for the current position a setting
which gives a good start for the next setting or which is in some sense stable (not too small
or too large angles).

Moreover, from a practical perspective there are bounds on the possible settings xi,
i = 1, . . . , n, which results in a box X0 ∈ IRn and the constraint x ∈ X0. Therefore, we
search for all globally optimal solutions of the nonlinear non-convex optimization problem

min
x∈X0

f(x) with f(x) := ‖g(x)− P‖2
2. (18)
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In case the globally optimal value is zero, then all globally optimal solutions define a
possible setting for the robotic arm to reach the position P . This might be no, one, a
finite number, or an infinite number of settings. The objective function of the optimization
problem (18) is twice continuously differentiable and we are able to apply the modified
αBB method as discussed in section 3.

All numerical calculations of this section have been performed with an Intel(R) Core(TM)
i5-4200 CPU and with 8 GBytes of RAM (2x DDR3-800/4 GB), using the operating sys-
tem Windows 8.1. Moreover, we use a C++ implementation of modαloc BB where we
choose for the parameters of the algorithm ε := 1E − 5, δ := 1.0, and εsave := 1E − 6.
This is, on the one hand, based on heuristic examinations. On the other hand, from the
practical point of view, it is clear that small differences in the settings cannot be realized.
After applying the modified αBB method which results in an (ε, δ)-minimal set A, we re-
duce the large number of points in A by clustering those which differ in no angle by more
than 1◦ and in no thrust axis by more than 0.02. We give only one combined solution for
each of these clusters. In the following example we give some results for the robotic arms
of Figure 4.

Example 4.1.

(a) For the robotic arm of Figure 4(a) with n = 2 we have X0 :=

[(
−100
−100

)
,

(
100
100

)]
as

the angles are assumed to be bounded by ±100◦. The root of the objective function f
of the optimization problem (18) is shown in Figure 5(a). In this case two settings
allow to reach the point P with the TCP. These two globally optimal solutions of
the optimization problem (18) were approximated by two ε-minimal points after the
clustering in 0.13 seconds. An earlier Matlab implementation required instead 34.2
seconds.

(b) For the robotic arm of Figure 4(b) with n = 2 we have X0 :=

[(
0
−100

)
,

(
50
0

)]
.

Again, the root of the objective function f is shown in Figure 5(b). Due to the specific
position of P any choice of the first angle x1 can be compensated by x2 such that the
TCP still reaches the point P . Therefore we have an infinite number of globally
optimal solutions of the optimization problem (18). The modified αBB method as
described above delivers after the clustering 31 ε-minimal points in 0.32 seconds.

(c) For the robotic arm of Figure 4(c) with n = 3 we have X0 :=

 0.2
20
−70

 ,

 1.5
60
−30

,

where the length of the first arm section is adjustable between 0.2 and 1.5. In this
case there is an infinite number of globally optimal solutions of (18). After clustering
the method delivers 30 ε-minimal points in 2.43 seconds.

(d) We consider the robotic arm of Figure 4(d) with n = 5. The box X0 is determined by
lower and upper bounds for the angles which allow the angles to vary in (five different)
intervals of length 10. There is again an infinite number of globally optimal solutions
of (18). The modified αBB method delivers after the clustering 76 ε-minimal points
in around 2.5 hours. We recalculated this example again with a larger feasible set X0

(all intervals for the angles having length 20). In this case the algorithm did not stop
within three days.
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(a) (b)

Figure 5: The roots of the objective functions of the robotic arm of Example 4.1(a) and
(b)

The above examples also illustrate an effect which is well-known from the classical αBB
method: the required calculation time depends on the dimension of the search space (i.e.
on n). Moreover, the modified αBB method is rather sensitive with respect to the choice
of the parameters ε and δ in relation to the length of the box X0.

5 Outlook

Our modified αBB-method for box constrained optimization problems can be extended to
general constrained problems where the feasible set is within a box X0 using the same
techniques as known for the classical αBB method. For convex inequality constraints the
techniques are quite straightforward, as more or less just the boxes X of the subproblems
have to be replaced by the intersection of X with the convex feasible sets. Subboxes
X which contain no feasible point are discarded from further examinations. For non-
convex inequality constraints, convex underestimators have to be calculated. In this case,
additional difficulties arise as considered points x which are feasible for the relaxed problems
may not be feasible for the original problem. For more details we refer for instance to
[9, Chapter 12]. Moreover, the performance of the algorithm could also be improved by
incorporating additional local information (monotonicity test, concavity test, and interval
Newton Gauss-Seidel step) as proposed for instance in [11, 13].
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