
Thresholds for Matchings in
Random Bipartite Graphs

with Applications to
Hashing-Based Data Structures

Michael Rink

Dissertation zur Erlangung des akademischen Grades
Doctor rerum naturalium (Dr. rer. nat.)
vorgelegt der Fakultät für Informatik und Automatisierung
der Technischen Universität Ilmenau
am 13.01.2014, verteidigt am 16.09.2014

1. Gutachter: Univ.-Prof. Dr. Martin Dietzfelbinger (wiss. Betreuer), TU Ilmenau
2. Gutachter: Univ.-Prof. Dr. Konstantinos Panagiotou, LMU München
3. Gutachter: Prof. Rasmus Pagh, PhD., IT University of Copenhagen

urn:nbn:de:gbv:ilm1-2014000557

http://nbn-resolving.org/urn:nbn:de:gbv:ilm1-2014000557

To Anja.

Preface

This thesis presents some results on matchings in random bipartite graphs which
are at the core of several hashing-based data structures that were proposed in
recent years. The results were obtained during my work on Modern Hashing, a
project founded by a research grant from the DFG. It is my aim to put them
into a broader context, show connections between them, as well as emphasize the
simplicity and power of the covered hashing-based data structures.

v

Summary

We study randomized algorithms that take as input a set S of n keys from some
large universe U or a set of n key-value pairs, associating each key from S with a
specific value, and build a data structure that solves one of the following tasks.
On calling the operation lookup for a key x ∈ U:

. Decide set membership with respect to S (membership tester).

. If x ∈ S, then return the value associated with x. If x ∈ U− S, then return
either some specific value ⊥ interpreted as “x 6∈ S” (dictionary), or some
arbitrary value (retrieval data structure).

. If x ∈ S, then return a natural number associated with x, from a range with
size close to n, where for all elements of S the numbers are pairwise distinct.
The numbers for elements x ∈ U− S are arbitrary (perfect hash function).

The data structures that we cover are variations of cuckoo hashing and Bloomier
filter which have the same simple structure. They consist of a table with m cells,
each capable of holding entries of size r bits, as well as a constant number of hash
functions, which are used to map the elements from U to a constant number of
table cells. Assuming fully random hash functions, we will discuss how the data
structures can be constructed in time linear in n, and what load n/m or space
consumption m · r can be achieved in trade-off with the time for lookup.
This leads to the question whether a random bipartite graph with n nodes (keys)
on the left, m nodes (cells) on the right, and edges determined by the hash
functions, asymptotically almost surely has a matching of a certain type, and
furthermore, how such a matching can be calculated efficiently.
The focus of this thesis concerns:

. optimizing the lookup time for dictionary and membership tester (based on
cuckoo hashing) with respect to:
(i) a bound on the average number of cell probes,

(ii) the expected number of page accesses in a setting where the table (mem-
ory) is subdivided into pages of the same size.

. minimizing the space usage of the retrieval data structure and perfect hash
function (based on Bloomier filter), when for each key the number of cell
probes for lookup is upper bounded by a constant.

. an efficient simulation of fully random hash functions as needed by the data
structures.

vii

Zusammenfassung

Wir betrachten randomisierte Algorithmen, die bei Eingabe einer Menge S von n
Schlüsseln aus einem großen Universum U, oder einer Menge von n Schlüssel-Wert-
Paaren bei der jedem Schlüssel aus S ein spezifischer Wert zugeordnet ist, eine
Datenstruktur für eine der folgenden Aufgaben bauen. Bei Aufruf der Operation
lookup für einen Schlüssel x ∈ U:

. Entscheide, ob x Element der Menge S ist (Mengenzugehörigkeitstester).

. Falls x ∈ S, gib den Wert zurück welcher x zugeordnet ist. Ansonsten gib den
Wert ⊥ mit der Interpretation „x 6∈ S“ zurück (Wörterbuch) oder gib einen
beliebigen Wert zurück (Retrieval-Datenstruktur).

. Falls x ∈ S, gib eine von x abhängige natürliche Zahl zurück, wobei für
alle x ∈ S diese Zahlen paarweise verschieden sind und ihr Wertebereich
in etwa die Größe n hat. Für Elemente x ∈ U − S dürfen beliebige Zahlen
zurückgegeben werden (perfekte Hashfunktion).

Die Datenstrukturen die wir behandeln sind Varianten von Cuckoo-Hashing und
des Bloomier-Filters, welchen die gleiche einfache Struktur zu Grunde liegt. Sie
bestehen aus einer Tabelle mit m Zellen der Breite r Bits sowie einer konstanten
Anzahl an Hashfunktionen, welche benutzt werden, um die Elemente aus U auf
eine konstante Anzahl an Tabellenzellen abzubilden. Unter der Annahme voll
zufälliger Hashfunktionen beschäftigen wir uns damit, wie diese Datenstrukturen
in Linearzeit (bezüglich n) konstruiert werden können und welche Ladung n/m
bzw. welcher Platzverbrauch m · r in Abhängigkeit vom Zeitbedarf für lookup
erreicht werden kann. Dies führt zu der Frage, ob ein bipartiter Zufallsgraph mit
n Knoten (Schlüsseln) links und m Knoten (Zellen) rechts und Kanten bestimmt
mittels der Hashfunktionen ein Matching eines bestimmten Typs hat und darüber
hinaus, wie solch ein Matching effizient berechnet werden kann.
Schwerpunkte der Dissertation sind:

. die Optimierung der Lookup-Zeit für Wörterbuch und Mengenzugehörigkeits-
tester (basierend auf Cuckoo-Hashing) bezüglich:
(i) einer Beschränkung der durchschnittlichen Anzahl an Zellenzugriffen,
(ii) der erwarteten Anzahl an Seitenzugriffen unter der Annahme, dass die

Tabelle (Speicher) in Speicherseiten gleicher Größe unterteilt ist.
. die Minimierung des Platzbedarfs von Retrieval-Datenstruktur und perfekter

Hashfunktion (basierend auf dem Bloomier-Filter), wobei für jeden Schlüssel
die Anzahl der Zellenzugriffe nach oben durch eine Konstante beschränkt ist.

. eine effiziente Simulation von voll zufälligen Hashfunktionen, welche von allen
behandelten Datenstrukturen vorausgesetzt werden.

ix

Acknowledgment

Personal Undoubtedly, there are a lot of people who have helped and supported
me in various ways in the process of writing this dissertation; first and foremost
my adviser, Martin Dietzfelbinger, who always found the time for answering my
questions and willingly discussed all ideas brought forward — the good, the bad,
and the flawed. I want to thank him for his endless patience and all of the guidance
that he has given me.
I am also much obliged to my former colleagues: Martin Aumüller and Sascha Grau,
who helped me numerous times and always lended an ear to me; Ulf Schellbach,
my first office mate, and Christopher Mattern, who followed Ulf, for creating an
amicable atmosphere and for showing me what attention to detail really means;
Petra Schüller and Jana Kopp, who aided me with the practical problems of
everyday life; Martin Huschenbett, Roy Mennicke, and Raed Jaberi for their
support and encouragement; Michael Brinkmeier, who was the first to arouse my
interest in theoretical computer science; Dietrich Kuske and Manfred Kunde for
their advice.
Furthermore, I would like to express my appreciation to the external reviewers
Konstantinos Panagiotou and Rasmus Pagh for willingly spending their valuable
time in assessing the thesis submission.
I am grateful to all the people whose work and research directly contributed to
or influenced this thesis. Especially, I would like to mention authors, not named
above, of the papers I was involved during my study: Michael Mitzenmacher,
Hendrik Peilke, Andreas Goerdt, and Andrea Montanari.
Finally, I want to thank my parents Gabriele and Joachim as well as my brother
Thomas for always believing in me.
And last but surely not least, I am deeply indebted to my partner Anja and my
little daughter Tamara who readily accepted my frequent absence from their lives.
Anja’s unremittingly support gave me the time for writing and she constantly
encouraged me not to lose sight of the goal; without her help, this dissertation
would not have been possible.

Institutional This work was supported by DFG, grants DI 412/10-1 and DI
412/10-2.

xi

Previously Published Work and
Contributions by Others

The main results presented in this thesis previously appeared in several peer-
reviewed papers [DR09, ADR09, DGM+10, DMR11a, DR12a, Rin13]. Most of
them are accessible online on http://arXiv.org in an extended or full version
[DGM+09, DMR11b, DR12b, Rin12]. In order to appropriately weight my contri-
bution to each of the multi-author papers so far as it is relevant for this thesis,
the following list acknowledges contributions of the other authors in which I was
not or only partially involved.

Section 3.4 The generalized selfless algorithm from [DGM+10] was found in joint
work with Martin Dietzfelbinger.

Section 3.5 All results from [DR12a] are joint work.

Section 3.6 The idea for the new cuckoo graph presented in [DMR11a] is solely
by Michael Mitzenmacher.

Section 4.1 The experimental results from [ADR09] on the basis of pseudoinverses
are by Martin Aumüller.

Sections 4.4 and 4.5 My main contributions to [DGM+10] concerned the place-
ment algorithm and experiments, but not the theoretical results that set the
starting point for [Rin13].

Section 5.4 The proof of the main theorem of [DR09] is joint work.

xiii

http://arXiv.org

Contents

Contents xv

1. Introduction 1
1.1. Dictionary and Membership . 2
1.2. Retrieval and Perfect Hashing . 5
1.3. Uniform Hashing . 7
1.4. Thesis Outline . 8

1.4.1. Structure of the Main Chapters 8

2. Preliminaries 9
2.1. Notation and Terminology . 9
2.2. The Basic Scheme . 11

2.2.1. Variants . 11
2.2.2. Properties of the Hash Functions 12

2.3. Representations . 13
2.3.1. Cores . 14

3. Dictionary and Membership 17
3.1. Cuckoo Hashing Variants . 17

3.1.1. d-Ary Cuckoo Hashing . 17
.. Results . 24
3.1.2. Irregular d-Ary Cuckoo Hashing 26
.. Results . 29
3.1.3. d-ary Cuckoo Hashing with Pages 31
.. Results . 33
3.1.4. Overview of the Chapter . 34

3.2. Further Background and Related Work 34
3.2.1. Traditional Hash Tables . 35
3.2.2. Multiple Choice Hash Tables . 36
3.2.3. External Memory Hash Tables . 38

3.3. Basics . 40
3.3.1. Worst-Case Space Lower Bounds 40
3.3.2. Left-Perfect Matchings . 41
3.3.3. Minimum Weight Left-Perfect Matchings 42

xv

CONTENTS

3.4. The Generalized Selfless Algorithm . 46
3.4.1. Graph Model . 46
3.4.2. Problem Description . 46
3.4.3. Algorithm . 47
3.4.4. Experiments . 50

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing . . 53
3.5.1. Graph Model . 53
3.5.2. Problem Description . 53
3.5.3. Optimality of Concentration in a Unit Length Interval 53
3.5.4. Essentially Two Different Strategies 62
3.5.5. Asymptotic Behavior and Thresholds 66

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages 69
3.6.1. Graph Model . 69
3.6.2. Problem Description . 70
3.6.3. Algorithms . 70
3.6.4. Experiments . 77

3.7. Conclusion . 93

4. Retrieval and Perfect Hashing 95
4.1. Bloomier Filter Variants . 95

4.1.1. Immutable Bloomier Filter . 95
4.1.2. Irregular Immutable Bloomier Filter 102
.. Results . 104
4.1.3. Mutable Bloomier Filter . 106
4.1.4. Irregular Mutable Bloomier Filter 108
.. Results . 108
4.1.5. Overview of the Chapter . 108

4.2. Further Background and Related Work 109
4.2.1. Perfect Hashing . 109
4.2.2. Retrieval . 114

4.3. Basics . 116
4.3.1. Worst-Case Space Lower Bounds 116
4.3.2. Hypergraph Models . 119

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs 129
4.4.1. Lower Bound . 130
4.4.2. Upper Bound . 145

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs146
4.5.1. Problem Transformation . 147
4.5.2. Preparations . 147
4.5.3. Analysis . 150
4.5.4. Experiments . 160

xvi

CONTENTS

4.5.5. Auxiliary Functions . 162
4.6. Perfect Hashing via Matchings in Bipartite Graphs 170

4.6.1. Construction Algorithm . 171
4.6.2. Experiments . 174

4.7. Conclusion . 180

5. Uniform Hashing 183
5.1. Methods . 183

.. Results . 185
5.1.1. Overview of the Chapter . 186

5.2. Further Background and Related Work 186
5.2.1. Keys are Random Variables . 186
5.2.2. Keys are Arbitrary but Fixed . 187

5.3. Basics . 189
5.3.1. Full Randomness . 189
5.3.2. Universal Hashing . 190
5.3.3. Sequences of Hash Values . 193

5.4. Uniform Hashing in Close to Optimal Space 194
5.4.1. Collapsing the Universe . 198
5.4.2. Splitting the Key Set Evenly . 199
5.4.3. Fully Random Mapping on a Small Key Set 200
5.4.4. Lower Bounds on the Number of Vectors for Linear Dependence . 201
5.4.5. Linear Independence Implies Stochastic Independence 213

5.5. Conclusion . 213

6. Final Remarks 215

A. Appearance of 2-Cores 217
A.1. Asymptotic 2-Core Probability for Normal Graphs of Type A 217
A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B 219

Nomenclature 223

List of Figures 231

List of Tables 233

List of Algorithms 235

Bibliography 237

xvii

1

Introduction

We consider four fundamental static data structure problems know as membership,
perfect hashing, dictionary and retrieval, see, e. g., [Pag01b, DMPP06]. At their core
they can be seen as tasks of representing a function

f : U→ V ,

via building a static data structure D that supports a “lookup” operation for elements
from U according to

lookup(D, x) := f(x) for all x ∈ U.

We assume that U and V are finite. Let S = {x0, x1, . . . , xn−1} ⊆ U be a set of n keys,
and let g = {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)} ⊂ S× V be a set of n key-value pairs.
Then the four problems can be specified as follows:

Membership — Given S, represent the characteristic function of S, i. e., f(x) = 1 if
x ∈ S and f(x) = 0 if x ∈ U − S. We refer to the data structure as membership
tester.

Perfect Hashing — Given S and an integer ḿ > n, represent an arbitrary but fixed
function f : U → {0, 1, . . . , ḿ − 1} that is injective on S, i. e., for all x, x ′ ∈ S with
x 6= x ′ we have that f(x) 6= f(x ′). We refer to the data structure as perfect hash
function.

Dictionary — Given g and an element ⊥ ∈ V with ⊥ 6= g(x) for all x ∈ S, represent
the function f : U→ V with f(x) = g(x) for all x ∈ S and f(x) = ⊥ for all x ∈ U− S.
The value ⊥ is interpreted as “x 6∈ S”. We refer to the data structure as dictionary.

Retrieval — Given g, represent an arbitrary function f : U→ V with f(x) = g(x) for
all x ∈ S, i. e., the function values for elements from U− S are not relevant. We refer
to the data structure as retrieval data structure.

Needless to say, the problem of implementing the (abstract) data structures becomes
only interesting if the available resources are limited. Usually, there are constraints

1

1. Introduction

concerning the consumption of space, time, and random bits during and after the
construction.
In this thesis we will consider variants of known efficient data structures that are

based on the use of “random functions”, commonly denoted as hash functions. These
hashing-based data structures essentially consist of a table with m cells, each capable
of holding entries of size r bits, as well as of a constant number of hash functions,
that are used to map elements from U to a constant number of table cells. We study
what load factor n/m or space consumption m · r these randomized data structures
can achieve asymptotically almost surely, and moreover, how they can be constructed
efficiently. This translates to the questions if their underlying bipartite graphs admit
a matching of a certain type and how such a matching can be calculated efficiently.

1.1. Dictionary and Membership

A standard data structure to solve the membership or dictionary problem is a hash
table. Different forms of hash tables have been widely used and studied for decades,
see, e. g., [Knu98, page 547ff.]. For the static case Fredman, Komlós, and Szemerédi
gave the first construction1, now usually referred as FKS scheme, that guarantees
worst case constant lookup time and simultaneously needs space only proportional to
the space usage of the stored keys or key-value pairs, respectively [FKS82, FKS84].
Later their approach was extended to the dynamic case [DKM+88, DKM+94], allowing
updates in constant expected amortized time. In recent years a new hash table, called
cuckoo hashing, attracted much attention. The static version was analyzed by Pagh in
[Pag01b] and the dynamic version was introduced by Pagh and Rodler in [PR01, PR04].
Cuckoo hashing has the same theoretical properties as the FKS scheme, in the static as
well as in the dynamic case, but is easier to implement and uses very little space; the
load factor n/m is about 0.5. This efficiency and simplicity gave rise to many variants,
which likewise the standard cuckoo hashing are appealing from a theoretical point of
view, see, e. g., [Mit09], as well as from a practical point of view, see, e. g., [EMM06,
Ros07, ASA+09]. One particularly interesting generalization is d-ary cuckoo hashing
[FPSS03, FPSS05], which allows to increase the load factor arbitrary close to 1 at the
price of an increased but constant lookup time; the case d = 2 corresponds to standard
cuckoo hashing.

Structure and Function The basic structure of d-ary cuckoo hashing is simple.
There are two parts, a table of m cells, where each cell can hold exactly one entry
of a fixed type, and a mapping that associates each x ∈ U with d fully random table
cells. For a successful construction, each key x ∈ S (membership) or each key-value pair
(x,g(x)) (dictionary) must be placed into one of its associated table cells. A lookup for

1Actually this data structure can be interpreted as perfect hash function.

2

1.1. Dictionary and Membership

a key x ∈ U probes the table cells associated with x and returns 1 if x is found, or g(x)
if (x,g(x)) is found, respectively. Otherwise, it returns 0 or ⊥, meaning that x 6∈ S.
The association of keys with table cells can be represented by a random d-left regular
bipartite graph with n left nodes and m right nodes, where a successful construction
is possible if and only if this graph admits a left-perfect matching, i. e., a matching
that covers all left nodes. Clearly, the probability of a successful construction, short
success probability, is a function of the parameters n, m, and d.

Worst-case Number of Cells Probes For the case d = 2 the success probability
of d-ary cuckoo hashing can be determined very precisely [DK12], and for the case
d > 3 at least asymptotically, see, e. g., [FP12, FM12, DGM+10]. It follows from these
results that for fixed d > 2 and increasing load factor c = n/m there is a sharp
phase transition between the situations that there is (asymptotically almost surely)
a left-perfect matching and there is (asymptotically almost surely) no left-perfect
matching, and furthermore, the transition points or load thresholds ĉ(d), respectively,
are exactly known. In consequence, the trade-off between asymptotic maximum load
of d-ary cuckoo hashing, which is just below ĉ(d), and the worst-case number of cell
probes for a lookup, which is d, is well understood. For example, with d = 4 one can
already achieve a load factor of about 0.97 and with d = 5 even about 0.99.

Average Worst-case Number of Cell Probes The more general situation,
where the left nodes are allowed to have different degrees, is also settled in the sense
that sharp load thresholds for the existence of left-perfect matchings can be determined
[DGM+10]. In this context the question arises which distribution maximizes the success
probability given some constraint on the left degree. If one aims for maximum degree
d, then clearly one cannot do better than giving each left node degree d. However,
allowing individual left degrees, and given a target average left degree d ∈ N, then
some irregular distributions could not only give a higher success probability, compared
to the d-regular case, but could also lead to a larger threshold.

Overview Over Result 1. We show that irregularity does not help to improve the
success probability and hence gives no improvement with respect to the load thresholds.
More precisely, assuming that the degree of each left node x is a random variable Dx
with almost arbitrary probability mass function, we prove that if the average expected
degree d = (1/n) ·

∑
x∈S Exp(Dx) is integral, then it is optimal if each left node has

degree d, and if d is non-integral, then it is asymptotically optimal if the left nodes
have only two possible degrees, bdc and dde, which according to [DGM+10] leads to a
threshold between the thresholds for the bdc-left regular and dde-left regular case.

Linear Time Algorithms Beside the existence of a matching, we are interested in
its efficient computation. For the case d = 2, Pagh showed how to determine a matching,

3

1. Introduction

if it exists, in expected linear time via a reduction to 2-SAT [Pag01b, Section 2.3]. For
d > 5 and a load factor at some distance to the corresponding theoretical threshold
ĉ(d), Fotakis et al. proved that a matching can be computed in expected linear time via
a modified breadth first search algorithm that determines shortest augmenting paths
up to a certain length [FPSS05, Theorem 1]. According to these two results, there is a
gap that we intend to close.

Overview Over Result 2. Derived from the selfless algorithm by Sanders [San04],
we develop a simple matching algorithm with linear running time and give experimental
evidence that this algorithm is likely to find a matching, if such one exists, up to
the theoretical threshold value ĉ(d) for all d > 2. Additionally, we give a further
generalization for determining a placement in the situation that each x ∈ S must store
k items, each into a different table cell, where each cell can hold ` items. For fixed d,
k , and ` with d > k > 1 and ` > 1 there is a sharp phase transition with respect to
the probability that a legal placement exits and the load thresholds ĉk ,`(d) are known,
see, e. g., [Lel12a, Lel12b]. This very general variant of the selfless algorithm also runs
in linear time and is likely to work up to these thresholds.

Remark. After the development of our generalized selfless algorithm, a novel algo-
rithm for finding left-perfect matchings (in the static and dynamic case), called local
search allocation, was proposed by Khosla [Kho13]. On input of a sparse random d-left
regular bipartite graph, local search allocation has linear running time with high
probability if c 6 ĉ(d) − ε, for d > 3 and constant ε > 0, and always finds a matching
if the graph admits one, whereas the generalized selfless algorithm has worst-case
linear running time and the best we can hope for is a proof that it finds a matching
with high probability if there exists one. Note that it was shown in [CSW07] that the
original selfless algorithm, which corresponds to our algorithm with parameters d = 2,
k = 1, and ` > 2, obtains a placement asymptotically almost surely if c 6 ĉk ,`(d) − ε
for constant ε > 0.

Average Number of Page Accesses Concerning the lookup operation of d-ary
cuckoo hashing, up to now our focus was on the number of cell probes. This seems a
reasonable cost criteria under the assumption that cell probes dominate the running
time and that each single probe approximately needs the same time. However, this
assumption does not hold in general, especially if we have to take a memory hierarchy
into account. A standard setting is when the memory, which in our simplified view is
equivalent with the table, is subdivided into pages or sub-tables, respectively, and the
number of (different) pages that have to be accessed for lookup becomes the primary
cost. In this case it is a drawback that the cells that are associated with keys from U

are spread uniformly at random throughout the table. A natural modification would
be to evenly split the key set S into subsets S0,S1,S2, . . . and then, for each subset Si,
to keep a separate hash table in page i. This limits the number of pages examined to

4

1.2. Retrieval and Perfect Hashing

one. However, a remaining problem is that the most overloaded page limits the load of
the entire data structure. This could significantly affect the maximum achievable load,
at least if one excludes large pages, i. e., pages of size mδ, δ ∈ (0, 1), for constant δ.

Overview Over Result 3. We demonstrate in experiments with small pages and each
key confined to one page, that the maximum achievable load factor is quite low. However,
if each key has d cell choices on one page and a single cell choice on a second page, then
one can determine an optimal placement such that the number of page accesses for
lookup is close to 1. Simultaneously, the load factor is close to the situation where each
key has d+ 1 random cell choices, even when using very small pages. Furthermore, we
give a simple and fast algorithm, based on the Hopcroft-Karp algorithm [HK73], to
determine such an optimal placement in the static case and demonstrate that a simple
variation of the well-known random walk insertion procedure, see, e. g., [FPSS05,
Experiments], allows to determine a near optimal placement in the dynamic case.

1.2. Retrieval and Perfect Hashing

Hash tables can be used straightforwardly to solve retrieval. If no two keys share the
same table cell, as for example in the FKS scheme, then one stores for key x ∈ S only its
function value g(x) in the table. Otherwise, it is required to store (some representation
of) the keys in addition, as for example in the case of d-ary cuckoo hashing. An elegant
static data structure for retrieval that works without solving perfect hashing in the
first place, and without using any explicit representation of keys is the immutable
Bloomier filter by Chazelle, Kilian, Rubinfeld, and Tal [CKRT04, Section 3.1], which
is a kind of generalization of the classical Bloom filter2 [Blo70].
The construction principle of the immutable Bloomier filter was known before, see,

e. g., [MWHC96]. However, for their mutable Bloomier filter [CKRT04, Section 3.3]
Chazelle et al. introduced a clever improvement that allows to solve perfect hashing very
efficiently. Later this method was independently rediscovered, see, e. g., [BPZ07, BPZ13].

Structure and Function Both immutable and mutable Bloomier filter share their
basic structure with d-ary cuckoo hashing. More precisely, we have n key-value pairs
from S × V, a table of m cells of capacity one, and a mapping that associates each
x ∈ U with d fully random table cells. For a successful construction one must fill the
table with elements from V such that for each x ∈ S, the sum of the entries from its d
associated table cells is exactly g(x). Such a solution can be determined in linear time
if (V ,⊕) is an abelian group and the underlying random d-left regular bipartite graph
has a certain left-perfect matching that we refer as order generating matching. An
order generating matching allows at least one complete ordering π on the elements of

2The conceptual step from Bloom filter to Bloomier filter and the relationship with retrieval is
discussed is Section 4.2.2.1.

5

1. Introduction

S = {x0, x1, . . . , xn−1}, so that for all 0 6 i < j < n the matched right node of xπ(i) is
not adjacent to a left node xπ(j). Such an ordering translates into a permutation of
the rows and columns of the adjacency matrix of the bipartite graph that leaves the
matrix in row echelon form.

Now the main difference between immutable and mutable Bloomier filter lies in the
function values. While in the case of retrieval these are given by the application, in the
case of perfect hashing these are determined using an order generating matching. More
precisely, for each x ∈ S the value g(x) is the index of its matching edge, where we
assume that for each left node its incident edges are numbered consecutively from 0 to
d− 1. A lookup for a key x ∈ U probes the table cells associated with x (in arbitrary
order) and computes the sum v of its values. Assuming that the construction was
successful, v must be equal to g(x) if x ∈ S. Otherwise v has an arbitrary value. In
the case of retrieval v is returned, and in the case of perfect hashing the address that
corresponds to the right node of the edge that has index v is returned. As before, we
focus on the success probability, which is equivalent to the probability that a d-left
regular random bipartite graph with parameters n, m, and d has an order generating
matching.

Maximum Load Like in the case of general left-perfect matchings it is known that for
increasing load factor c = n/m there is a phase transition concerning the existence of an
order generating matching. If c is below a certain threshold č(d), then, asymptotically
almost surely if d > 3 and with constant limiting probability if d = 2, there is an order
generating matching; if c is above this threshold, then there is no order generating
matching asymptotically almost surely, see, e. g., [MWHC96, Mol04]. However, in
contrast to general left-perfect matchings, the thresholds č(d) are not monotonically
increasing with increasing d; the maximum is about 0.818 for d = 3.
Therefore, even more than in the case of d-ary cuckoo hashing the question arises

whether an irregular left degree distribution could give an improvement over the regular
case. Interestingly, in related random bipartite graphs that arise in the context of
erasure correcting codes it was shown that carefully chosen irregular degree distributions
can increase the probability of an order generating matching. These distributions are
applied pairwise to left and right nodes, see, e. g., [LMSS01], or only to the right nodes,
see, e. g., [Lub02].

Overview Over Result 4. We generalize the known threshold formula for order gen-
erating matchings to random bipartite graphs with irregular left degree distributions.
For the case of two fixed left degrees, we show how to efficiently obtain a distribution
that maximizes the possible load factor. Moreover, for a suitable choice of two degrees
we obtain thresholds up to 0.920, significantly improving upon the maximum value
obtainable in the d-left regular case for any d.

6

1.3. Uniform Hashing

Improved Perfect Hash Function Using an irregular left degree distribution that
increases the maximum possible load does not necessarily decrease the space usage of
a mutable Bloomier filter. This is because the function values that we have to store are
not fixed but depend on the graph structure and increase with increasing maximum
left degree.

Overview Over Result 5. We generalize the standard mutable Bloomier filter con-
struction by using two different bipartite graphs, one with regular left degree to obtain
a left-perfect matching and another one with irregular left degree to obtain an order
generating matching. In contrast to the (optimal) standard Bloomier filter, where one
can store about m = 1.23 · n “trits”, i. e., elements from {0, 1, 2}, this allows to reduce
the table size to m = 1.1 · n trits. In addition, the range of the perfect hash function
is decreased from ḿ = 1.23 · n to ḿ = 1.1 · n. Furthermore, we experimentally show
that our construction can be used to solve perfect hashing spending 1.76 bits per key
for n > 107.

1.3. Uniform Hashing

For the analysis of the hashing-based data structures that we consider, we assume
that the keys are mapped to table cells using hash functions that are fully random.
A direct consequence is that the edges of the underlying bipartite graphs are chosen
uniformly and independently at random. This is an idealized, but nevertheless common,
assumption whose realization requires non-negligible additional space and which is
highly non-trivial if one simultaneously aims for constant evaluation time of the hash
functions.

Simulation of Full Randomness An, at least theoretical, justification for this
assumption is given by an efficient simulation of full randomness. Here on input n a
randomized algorithm builds a data structure that represents a hash function which
can be evaluated in constant time and for each key set S of size up to n the function is
fully random on S with high probability. A construction with asymptotically optimal
space usage and constant, but very high, evaluation time was given by Pagh and
Pagh [PP08]. An alternative approach allowing faster evaluation time, with space
consumption essentially twice the information theoretical lower bound, was later
proposed by Aumüller, Dietzfelbinger, and Woelfel [ADW12]. This shows that there is
some room of further improvement.

Overview Over Result 6. We give an algorithm for the simulation of full randomness
where the representation of the hash function needs asymptotically optimal space and
the evaluation time is exponentially smaller compared with the construction by Pagh
and Pagh. Our construction has the currently best performance characteristic.

7

1. Introduction

1.4. Thesis Outline

In the next chapter we start by introducing some notation and terminology and subse-
quently describe the scheme that underlies all hashing-based data structures considered
in this work, including its abstract graph, hypergraph, and matrix representations.
In Chapter 3 we focus on how to efficiently solve dictionary and membership using
variants of d-ary cuckoo hashing. The following Chapter 4 covers improvements of
the Bloomier filter construction for solving retrieval and perfect hashing. Chapter 5 is
devoted to uniform hashing, which is implicitly assumed in the two preceding chapters,
and discusses an efficient approach for its simulation. The thesis finishes with concluding
remarks and some open problems.

1.4.1. Structure of the Main Chapters

The Chapters 3 to 5, which constitute the central part of this thesis, share the same
structure. First there is an introduction section that highlights some known facts,
theorems, and problems in order to prepare the presentation of the new findings,
which are stated in separate subsections; later, each result is discussed in detail in its
own section. After the introduction, it follows a section entirely devoted to further
background and related work that places the results in a broader context. Then some
basic facts and definitions are given before the most important part, the sections
containing the actual proofs and experimental findings, begins. Each chapter finishes
with a short conclusion.

8

2

Preliminaries

After a discussion of some nomenclature1 used throughout this thesis, we introduce
the hashing scheme that is the basis of the data structures we cover in the following
chapters.

2.1. Notation and Terminology

Sets For each integer i ∈ N, we let [i] be the set {0, 1, 2, . . . , i− 1}. The symmetric
difference of two sets A and B is denoted by A⊕ B. The power set of any set A is
written P(A). The set of all possible inputs or keys is denoted by U and the set of keys
that actually occur in an application is denoted by S, S ⊆ U. We assume that U, called
the universe, has a simple structure comparable with [u] or [c]r for integers u, c, and
r. The cardinality of U is an integer larger than 1; the cardinality of S is denoted by n.

Matrices Matrices A = (ai,j)i∈[k],j∈[l] are written in bold and their indices start
with zero. This also holds for the special cases of column vectors a = (aj)j∈[l] =

(a0,a1, . . . ,al−1)
ᵀ and row vectors aᵀ.

Probability We will often consider events that depend on n, the number of relevant
keys. If the probability of such an event En approaches 1 if n goes to infinity, i. e.,
Pr (En) = 1−o(1), then we say the event occurs asymptotically almost surely (a. a. s.).
And if we can bound the probability even via 1−O(1/nδ), for some constant δ > 0, then
we say the event occurs with high probability (w. h. p.). The probability distribution
of a discrete random variable Y is characterized via its probability mass function
ρY , given by ρY(y) = Pr(Y = y) for all y. In the case of special distributions we will
make use of the following definitions. A random variable that is fully random follows
a certain uniform distribution. The binomial distribution with sample size k and
success probability p is denoted by Bin(k,p); and we write Bin[k,p] for a random
variable that follows this distribution. Moreover, in order to indicate that Y is Bin(k,p)-
distributed, we use the notation Y ∼ Bin(k,p). Analogously, Po(λ) denotes the Poisson

1A comprehensive list of the notation can be found in Appendix A.2.

9

2. Preliminaries

distribution with parameter λ, Po[λ] is an anonymous random variable that follows
this distribution, and Y ∼ Po(λ) indicates that Y is Po(λ)-distributed.

Statistics For any sequence of observations y0,y1, . . .yk−1 let y denote the sample
mean y = 1

k

∑
i∈[k] yi if k > 0, and let s2[y] denote the unbiased sample variance

s2[y] = 1
k−1

∑
i∈[k](yi − y)

2 if k > 1.

Complexity For theoretical results, we quantify space consumption S in bits and
time consumption T in word operations on a unit-cost RAM with word size Θ(log|U|),
see, e. g., [Hag98, Section 2].

Performance For experimental results, we measured space consumption in bits
and time consumption in seconds on an Intel Core i3-3225 CPU (x86-64) @ 3.30GHz
with 32Kib L1d and L1i cache, 256Kib L2 cache, as well as 3072KiB L3 cache, running
Linux version 3.7.10-1.1-desktop.

Functions For any function f = f(x,y) we will use f(x) and f(x,y) synonymously,
if y is considered to be fixed. We write log for the logarithm to the base 2 and ln for
the logarithm to the base e. A hash function can be any function that maps keys
from U to some range R. Typically, it is assumed that the sequence of hash values
(h(x))x∈U is a random variable that follows some probability distribution. The source
of randomness can be due to the choice of the function, or due to the choice of S if we
restrict ourselves to the sequence (h(x))x∈S. A hash function h is realized via a data
structure Dh that supports an “evaluation” operation for elements from U according to

evaluate(Dh, x) := h(x) for all x ∈ U.

The description size of h is the space consumption of its data structure and the
evaluation time of h is the time consumption of the evaluation operation in the
worst-case over all x from U.

Graphs Unless specified otherwise, graphs are meant to be undirected and with
multiple edges. An undirected edge between two nodes v, v ′ is denoted by {v, v ′}, a
directed edge from v to v ′ is denoted by (v, v ′). Given an undirected graph G = (V ,E)
with node set V and edge multiset E, for each V ′ ⊆ V its neighborhood is defined as
the node set

N(V ′) :=
{
v ∈ V | {v, v ′} ∈ E, v ′ ∈ V ′

}
.

A bipartite graph G = (V ,E) with disjoint, independent node sets L and R, L ∪ R = V ,
and edge set E ⊆

{
{x,y} | x ∈ L,y ∈ R

}
is written as G = (L∪ R,E). The set L is called

10

2.2. The Basic Scheme

left node set, and its elements are called left nodes; the set R is called right node set,
and its elements are called right nodes.
A matching M in G = (V,E) is a subset of the edge multiset E with the property

that the edges from M are pairwise disjoint. With respect to a given matching M we
use the following definitions. An edge from M is called matching edge, an edge that
does not belong to M is called non-matching edge ; and similarly, a node is called
matched if it is incident to a matching edge, otherwise it is called unmatched. An
alternating path (or cycle) is a simple path (or cycle) where the edges are alternately
matching and non-matching edges. An augmenting path is an alternating path that
starts and ends with an unmatched node.

2.2. The Basic Scheme

Our starting point is a simple hashing scheme that resembles the structure of a Bloom
filter [Blo70]. It consists of a universe U, a table t = (t0, t1, . . . , tm−1)

ᵀ with m cells,
as well as d hash functions h0,h1, . . . ,hd−1. The hash functions are used to build a
mapping h : U→ [m]d, via

x 7→
(
h0(x),h1(x), . . . ,hd−1(x)

)
,

which associates each element from U with a sequence of addresses or indices of table
cells, respectively. For each key x ∈ U its set of addresses is defined as

Ax = {hi(x) | i ∈ [d]} .

2.2.1. Variants

There are three common types of the basic scheme with respect to the mapping h, as
illustrated in Figure 2.2.1. In this thesis we will mainly focus on the first two of them.

Type A The hash function values are not restricted (Figure 2.2.1 (a)) according to

hi : U 3 x 7→ a ∈ [m] for all i ∈ [d],

which implies that duplicate addresses are allowed.

Type B The hash addresses for each x ∈ U are pairwise distinct (Figure 2.2.1 (b)),
meaning that

hi(x) 6= hj(x) for all x ∈ U and 0 6 i < j < d, where

hi : U 3 x 7→ a ∈ [m] for all i ∈ [d].

The mapping h for type B can be realized with only slightly more space and time
consumption compared to a realization of h for type A, see Section 5.3.3.2 for details.

11

2. Preliminaries

x3

x2

x1

x0

t6 6

t5 5

t4 4

t3 3

t2 2

t1 1

t0 0

(a) type A

x3

x2

x1

x0

t6 6

t5 5

t4 4

t3 3

t2 2

t1 1

t0 0

(b) type B

x3

x2

x1

x0

t6 6

t5 5

t4 4

t3 3

t2 2

t1 1

t0 0

t6

(c) type C

Figure 2.2.1.: Exemplary illustration of three different types of the basic scheme for
four keys, m = 7, d = 3 and hash functions h0(),h1(),h2(). In the example
of type C, cell t6 is never addressed by h(x) for all x from U.

Type C The hash addresses are from disjoint ranges (Figure 2.2.1 (c)) according to

hi : U 3 x 7→ a ∈ {i · bm/dc, i · bm/dc+ 1, . . . , (i+ 1) · bm/dc− 1} for all i ∈ [d].

This variant is the most convenient one for parallelization. Note that m− d · bm/dc =
m mod d cells cannot be addressed.

2.2.2. Properties of the Hash Functions

Assumptions In the subsequent Chapters 3 and 4 we assume that the hash functions
are ideal in the following sense.

(i) For each x ∈ S and each hi, i ∈ [d], the hash value hi(x) is a fully random vari-
able and h0(x),h1(x), . . . ,hd−1(x) are independent. (The support of (hi(x))i∈[d]
depends on the type of the basic scheme.)

(ii) The evaluation of the hash functions can be done in constant time.

(iii) The space consumption is negligible.

A consequence of (i) is that the three types A, B, and C are hardly distinguishable if d
is constant and n,m go to infinity. It follows from (ii) and (iii) that with d being a
constant, the space consumption of the basic scheme is m times the size of a table cell
and the evaluation time of h is constant too.

Justification Although widely used in the analysis of hashing-based algorithms,
there is no known possibility to fulfill all three assumptions simultaneously without
supposing that the keys from S are fully random, see Section 5.3.1. However, it is
possible to realize hash functions that have property (i) with high probability and
have constant evaluation time (ii) independently of the choice of S, while using space

12

2.3. Representations

x3

x2

x1

x0

6

5

4

3

2

1

0

(a) bipartite graph Gdn,m

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

(b) hypergraph Hdm,n

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1

1 1 1
1

(c) binary matrix Md
n,m

Figure 2.3.2.: Bipartite graph, hypergraph, and matrix view of the basic scheme type A
from Figure 2.2.1 (a) with S = {x0, x1, x2, x3}, n = 4, m = 7, and d = 3.

Ω(n · logm), which violates (iii). In Chapter 5 we discuss common methods for such
realizations, and moreover, we contribute a new space and time efficient variant.

Remark. If we are only interested in asymptotic behavior, we can circumvent prop-
erty (i) in our data structure setting via a method known as split-and-share. Here the
key set S is split into small subsets by a splitting hash function and for each subset a
separate data structure is built that shares its random mapping h with the other data
structures. Since the mapping has description size o(n · logm), property (iii) is met;
details are given in Section 5.1.

2.3. Representations

More than the description of the basic scheme in terms of keys, cells, and hash functions
we will stress its abstract representations as bipartite graph, hypergraph, and binary
matrix. Figure 2.3.2 shows a concrete example and Table 2.3.1 provides an overview
over the terms that correspond to each other.

In this context we consider not the whole universe U but only the set S. However, un-
der the assumption of ideal hash functions the representations are random variables
which depend not on the concrete elements of S but on its size n.
!

Bipartite Graph The basic scheme naturally translates into a bipartite graph

Gdn,m = (S ∪ [m],EG)

consisting of two disjoint node sets, a left node set S of size n and a right node set [m],
as well as an edge multiset

EG =
{
{x,hi(x)} | x ∈ S, i ∈ [d]

}
.

13

2. Preliminaries

parameters basic scheme graph Gdn,m hypergraph Hdm,n matrix Md
n,m

n keys left nodes hyperedges rows
m cells right nodes nodes columns
d addresses left degree edge size row weight

Table 2.3.1.: Related terms in the different representations of the basic scheme.

The degree of each left node is d, i. e., the graph Gdn,m is d-left regular. By definition,
the neighborhood N({x}) is equal to Ax. Figure 2.3.2 (a) shows an example.

Hypergraph Alternatively, the basic scheme can be seen as hypergraph

Hdm,n = ([m],EH)

with node set [m] and hyper-edge multiset

EH = {Ax | x ∈ S} ,

i. e., table cells correspond to nodes and keys correspond to edges. Figure 2.3.2 (b)
shows an example. In the case of type B and type C all edges Ax have cardinality d,
which makes Hdm,n a d-uniform hypergraph.

Matrix Finally, we will interpret the basic scheme as random binary matrix

Md
n,m = (bᵀ

x)x∈S ∈ {0, 1}|S|×m ,

where Md
n,m is the adjacency matrix of Gdn,m and the incidence matrix of Hdm,n,

respectively. That is, for each x ∈ S the row vector bᵀ
x = (bx,0,bx,1, . . . ,bx,m−1) is

the characteristic vector of Ax defined as follows. For all x ∈ S and i ∈ [m] we have
bx,i = 1 if i ∈ Ax, and bx,i = 0 otherwise. Figure 2.3.2 (c) shows an example. We refer
to the number of 1’s in a row as the row weight, which is uniformly d in the case of
type B and type C.

2.3.1. Cores

With regard to the abstract representations of the basic scheme we will often consider
the 2-core of Gdn,m, Hdm,n, and Md

n,m, respectively. The 2-core is the unique outcome
of a simple procedure that successively removes from:

. Gdn,m a right node of degree 0, or a right node of degree 1 together with the
adjacent left node and all edges incident to this left node,

. Hdm,n a node of degree 0, or a node of degree 1 together with its incident edge,

14

2.3. Representations

. Md
n,m a column of weight 0, or a column of weight 1 together with the row that

contributes the 1 to this column.

In this work, we will mainly stress the hypergraph view, and occasionally we will not
only consider the 2-core but more general the `+-core, for non-zero `+ ∈ N, which with
respect to hypergraphs is shortly defined as follows.

Definition 1: (`+-Core)
The `+-core of a hypergraph is the largest induced sub-hypergraph (possibly empty)
that has minimum degree at least `+.

The standard procedure for determining the `+-core of a hypergraph, usually called
peeling, is given as Algorithm 1.

Algorithm 1: peeling
Input : Hypergraph H = (V,E), core parameter `+ ∈ N with `+ > 1.
Output : The `+-core of H.
while ∃v ∈ V : |{e ∈ E | v ∈ e}| 6 `+ − 1 do

V ← V − {v};
E← E− {e ∈ E | v ∈ e};

end
return (V,E)

We conclude this section with a high level view of deep results concerning the
appearance and edge density of the 2-core in random hypergraphs Hdm,n, where edge
density means ratio of the number of edges to the number of nodes.

Remark. As we will discuss in detail later, the edge density of the `+-core is strongly
related to the existence of an orientation of Hdm,n with the property that each edge is
directed (assigned) to exactly one of its nodes and the maximum indegree of each node
is ` = `+ − 1.

We start by defining two functions, called key function

key(λ,d) =
λ

d · Pr (Po[λ] > 1)d−1
,

and density function

dens(λ,d) = key(λ,d) · Pr
(Po[λ] > 1)d

Pr (Po[λ] > 2)
=
λ · Pr (Po[λ] > 1)
d · Pr (Po[λ] > 2)

.

For λ > 0 and fixed d > 3 the key function is strictly convex with global minimum

č(d) := min
λ∈(0,∞)

key(λ,d) ,

15

2. Preliminaries

0.5 1.5 2.5
0.75

1 key(λ)

dens(λ)

λden
1

ĉ

č

d=3

λ

Figure 2.3.3.: Visualization of the definition of 2-core thresholds č(3) and ĉ(3).

and the density function is strictly monotonically increasing for increasing λ. The
following tight connection between these two functions and the edge density of the
2-core of Hdm,n was shown for type B, e. g., in [Coo04, Mol04, Kim06] as well as [BK06,
d = 4], and was recently proven also for type C in [BWZ12]; it also holds for type A.
Let d > 3. If the edge density c = n/m of Hdm,n is smaller than č(d), then a. a. s.

the random hypergraph has an empty 2-core. However, if c is larger than the global
minimum of the key function, then there is exactly one λ = λkey

c to the right of
argminλ∈(0,∞) key(λ,d), such that key(λkey

c ,d) = c, and a. a. s. in this case the hy-
pergraph has a non-empty 2-core whose edge density is tightly concentrated around
dens(λkey

c). Conversely, let ĉ(d) be the value of the key function at the point where the
density function equals 1, i. e.,

ĉ(d) := key(λden
1 ,d), where λden

1 ∈ (0,∞) is the solution of dens(λ,d) = 1.

It follows that if c = ĉ(d), then the edge density of the 2-core of Hdm,n is tightly
concentrated around 1. Figure 2.3.3 shows a plot of key(λ,d), dens(λ,d), č(d), and
ĉ(d) for d = 3. In summary, we have the following theorem.

Theorem 2.1 (Density of 2-Core, see, e. g., [BWZ12, Theorem 3])
Let d > 3 be constant and let c = n/m. Then for any constant ε > 0 a. a. s. the
following holds:

(i) If c 6 č(d) − ε, then Hdm,n has an empty 2-core.

(ii) If c > č(d) + ε, then Hdm,n has a non-empty 2-core.

Moreover, if c > č(d) + ε, then the edge density of the 2-core of Hdm,n is tightly
concentrated around dens(λkey

c), where λkey
c is the unique solution of key(λ) = c. In

particular, for any constant ε > 0 a. a. s. we have:

(i) If c 6 ĉ(d) − ε, then the 2-core of Hdm,n has edge density smaller than 1.

(ii) If c > ĉ(d) + ε, then the 2-core of Hdm,n has edge density larger than 1.

With this background we are ready to discuss efficient solutions of data structure
problems using the basic scheme.

16

3

Dictionary and Membership

In this chapter we cover solutions of the membership and dictionary problem based
on d-ary cuckoo hashing [FPSS05]. The two data structure problems can be briefly
restated as follows.

Membership — Given S, build a data structure D that on lookup(D, x) returns 1 if
x ∈ S, and returns 0 if x ∈ U− S.

Dictionary — Given g = {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)} ⊂ S× (V − {⊥}), build
a data structure D that on lookup(D, x) returns g(x) if x ∈ S, and returns ⊥
otherwise.

3.1. Cuckoo Hashing Variants

We start with a short description of (standard) d-ary cuckoo hashing and present a new
construction algorithm. This algorithm runs in linear time, and we give experimental
evidence that it builds cuckoo hashing data structures up to the theoretical load
thresholds with low failure rate. It follows a discussion of a generalization called
irregular cuckoo hashing. In this context we state the main result of this chapter,
which essentially says that a left-irregular degree distribution of the underlying graph
does not help to increase the load factor of standard d-ary cuckoo hashing. The last
part of this section is devoted to a new cuckoo hashing variant, called cuckoo hashing
with pages, that is adapted for settings where memory hierarchy must be taken into
account.

3.1.1. d-Ary Cuckoo Hashing

Standard d-ary cuckoo hashing is a multiple-choice hash table on top of the basic
scheme considered in Section 2.2. Its construction principle can be described as follows.

3.1.1.1. Construction

Building a static dictionary or membership tester D using the basic scheme is straight-
forward. For ease of discussion, we assume that there is some placeholder x̆ 6∈ U with

17

3. Dictionary and Membership

description size at most dlog|U|e. First we initialize the table t = (t0, t1, . . . , tm−1) by
storing in each cell the same entry, (x̆, v), for arbitrary v ∈ V , if we want a dictionary;
and only x̆ if we want a membership tester. Afterwards, we store for each x ∈ S one
specific entry in a cell ta whose address a is from Ax, the set of addresses associated
with x. This entry is the key-value pair (x,g(x)) in the case of a dictionary, and only
the key x otherwise.

If each table cell can hold only one entry, then in order thatD can be built successfully,
it is necessary and sufficient that there exists an injective mapping from S to [m]

such that for all x ∈ S the image of x under this mapping is an address from Ax. This
is the case if and only if the random bipartite graph Gdn,m that underlies the basic
scheme admits a left-perfect matching, i. e., a set of pairwise disjoint edges that cover
all left nodes. Given such a matching M, for each matching edge {x,a} ∈M the entry
associated with x is stored in cell ta.

A bipartite graph has a left-perfect matching if and only if it fulfills a weak expansion
property [Hal35, follows by Theorem 1], known as marriage condition.

Definition 2: (Marriage Condition)
A bipartite graph G = (L ∪ R,E) fulfills the marriage condition, if for each subset
L ′ of L the size if its neighborhood N(L ′) is at least as large as the size of L ′,

∀L ′ ⊆ L : |L ′| 6 |N(L ′)| . (MC)

A left-perfect matching in Gdn,m corresponds to an orientation of the edges of the
hypergraph Hdm,n, such that each edge is directed to exactly one of its nodes and each
node has indegree at most one. Furthermore, it corresponds to an n× n submatrix of
the binary matrix Md

n,m with non-zero permanent, i. e., the submatrix contains a
permutation matrix. Figure 3.1.1 shows an example.

3.1.1.2. Lookup Operation

The lookup operation only needs to compare a given key x ∈ U with the entries of t
addressed by Ax in an arbitrary order. For all x ∈ U we define

lookup(D, x) :=

{
v, if ∃a ∈ Ax : ta = (x, v)

⊥, if ¬∃a ∈ Ax∃v : ta = (x, v)
,

if D is a dictionary, and analogously

lookup(D, x) :=

{
1, if ∃a ∈ Ax : ta = x

0, otherwise
,

if D is a membership tester.

18

3.1. Cuckoo Hashing Variants

x3

x2

x1

x0

. . 6

. . 5

. . 4

. . 3

. . 2

. . 1

. . 0
(x0,γ)

(x1,β)

(x2,ζ)

(x3,ζ)

(x̆,α)

(x̆,α)

(x̆,α)

(a) dictionary build upon the basic
scheme as given in Figure 2.2.1 (a),
x̆ 6∈ U is a placeholder

x3

x2

x1

x0

6

5

4

3

2

1

0

(b) bipartite graph representation, a
left-perfect matching is indicated via
dark edges

0 1 2

3 4 5

6

Ax0Ax1

Ax2

Ax3

(c) corresponding hypergraph, the ori-
entation of the edges is indicated by
dark nodes

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





0 1 2 3 4 5 6

x0

x1

x2

x3

1 1 1
1 1

1 1 1
1

(d) matrix representation, the gray
submatrix with non-zero permanent
corresponds to the matching

Figure 3.1.1.: A dictionary for {(x0,γ), (x1,β), (x2, ζ), (x3, ζ)} ∪ {(x,⊥) | x ∈ U − S},
realized with the basic scheme (type A), as well as its corresponding graph, hypergraph,
and matrix representations.

3.1.1.3. Success Probability

The probability of a successful construction is the probability that Gdn,m has a left-
perfect matching, which is a function of the parameters n, m, and d. If n and m are
fixed, then with increasing d this probability increases. We consider the situation that
d is given due to the application and ask for the success probability as function of the
load factor c = n/m for n→∞.

Case d = 1 If each left node has only degree one, then Gdn,m admits a left-perfect
matching if and only if each right node is incident to at most one edge. Note that in
this case there is no difference between type A, B, and C. Commonly discussed in the
context of the well known birthday paradox, this probability is exactly mn/mn, which
however is very low even for small n. Asymptotically, we have that if n(m) = ω(

√
m),

19

3. Dictionary and Membership

then w. h. p. Gdn,m has no left-perfect matching, see Section 3.3.2. Hence in the case
d = 1 the space consumption of the data structures is at least a factor of n away from
the optimum, which is generally not very interesting. However, by increasing d only by
one this factor is reduced to a constant.

Case d = 2 If each left node has degree two, then one observes a sharp phase
transition for increasing load factor c = n/m as stated in the following theorem.

Theorem 3.1 (Cuckoo Hashing, see, e. g., [Pag01b, Section 2.3])
Let d = 2 and let c = n/m. Then for any constant ε > 0 w. h. p. the following holds:

(i) If c 6 0.5− ε, then Gdn,m admits a left-perfect matching.

(ii) If c > 0.5+ ε, then Gdn,m admits no left-perfect matching.

The theorem follows for type A, e. g., from [DK12, Theorem 4], and by a modification
of the proof of [CS97, Theorem 9]1; and for type C, e. g., from [Pag01b, Section 2.3]2,
[DM03, Theorem 1], and [DK12, Theorem 1]. It also holds for type B.

Remark. The bipartite graph Gdn,m admits no left-perfect matching, if the graph
Hdm,n has a component that is not a tree nor unicyclic. This is related to appearance
of the giant component in Hdm,n, which is known to happen (for type A, B, and C) if
the edge density passes 0.5.

Case d > 3 Increasing the left degree further allows an arbitrary load factor c < 1.
For the extreme case c = 1, it is well known that one needs a left degree of d = Ω(logn)
in order that Gdn,m has a left perfect matching a. a. s., see, e. g., [Riv78, Section 3]. This
is directly related to the classical coupon collectors problem, where one derives an
upper and lower bound of Θ(n logn) samples needed to obtain n different coupons, see,
e. g., [ER61, Equation 2 with m = 1]. For the case c ∈ (0.5, 1), Fotakis et al. [FPSS05,
Lemmas 1 and 2] showed that d = Θ

(
log
(
1
1−c

))
is necessary and sufficient. Similarly

to the case d = 2, there is a sharp phase transition. The points of transition are the
thresholds ĉ(d) where the 2-core density of Hdm,n switches from below 1 to above 1,
see Section 2.3.1; some threshold values are given in Table 3.1.1.

Theorem 3.2 (d-Ary Cuckoo Hashing, see, e. g., [FP12, Theorem 1.1])
Let d > 3 be a constant integer and let c = n/m. Then for any constant ε > 0 a. a. s.
the following holds:

(i) If c 6 ĉ(d) − ε, then Gdn,m admits a left-perfect matching.

(ii) If c > ĉ(d) + ε, then Gdn,m admits no left-perfect matching.

1In the journal version [CS01] a different proof strategy is used, which is not directly applicable.
2This results assumes not fully random, but weaker O(logn)-wise independent hash functions.

20

3.1. Cuckoo Hashing Variants

The theorem was proven independently and almost simultaneously by Frieze and
Melsted [FM09, FM12] (type A), Fountoulakis and Panagiotou [FP10, FP12] (type B),
and Dietzfelbinger et al. [DGM+10] (type B). The equality of the 2-core density
thresholds for types A, B, and C, see Theorem 2.1, indicate that the theorem also holds
for type C.

d 3 4 5 6 7 8 9

ĉ(d) 0.91794 0.97677 0.99244 0.99738 0.99906 0.99966 0.99988

Table 3.1.1.: Thresholds ĉ(d) for the existence of left-perfect matchings in Gdn,m,
rounded to the nearest multiple of 10−5.

According to Section 2.3.1, we have ĉ(d) = key(λden
1 ,d), where λden

1 is required to
fulfill dens(λden

1 ,d) = 1. Now let

f(λ) = λ ·
(
1−

λ

eλ − 1

)−1

and

˜key(λ,d) =
key(λ,d)
dens(λ,d)

=
1− e−λ − λ · e−λ

(1− e−λ)d
.

Note that f(λ) is strictly increasing for increasing λ > 0, f(λden
1) = d, ∂ ˜key

∂λ
(λden
1 ,d) = 0,

and d− 1 < λden
1 < d. From this, one can conclude that

d−min
{
1,d2/(ed−1 − 1)

}
< λden

1 < d ,

which implies in combination with

ĉ(d) = key(λden
1 ,d) = ˜key (λden

1 ,d) > 1− e−λ
den
1 − λden

1 · e−λ
den
1

that the threshold function ĉ(d) monotonically increases and converges to 1 exponen-
tially fast in d, cf., [FP12, Section 1].

3.1.1.4. Space and Time Consumption

Let ε ∈ (0, 1) and m = (1 + ε) · n. Under the assumptions made in Section 2.2.2
concerning the space and time needs of the hash functions, we have that both data
structures can be constructed a. a. s. with

space usage (1+ ε)·|S| ·
(
dlog|U|e+ dlog|V |e

)
(dictionary),

(1+ ε)·|S| · dlog|U|e (membership tester),

lookup time O
(
log(1/ε)

)
.

Assuming that log|U|� log|S|, the space consumption is roughly a factor of 1+ ε away
from the information theoretical minimum, see Section 3.3.1.

21

3. Dictionary and Membership

3.1.1.5. Linear Time Algorithms

Up to now we did not concern ourselves with the task of computing a left-perfect
matching in Gdn,m. There are a variety of matching algorithms with running time
polynomial in n, but since we focus on constant left degree d, the sparsity of the graph
allows to solve the problem actually in (expected) linear time, independent of the type
(A, B, or C) of Gdn,m.

Case d = 2 For the case d = 2, Pagh discussed how to determine a matching, in
expected linear time, via a reduction to 2-SAT [Pag01b, Section 2.3], as shown in
Algorithm 2. For this, each key x ∈ S is associated with a binary random variable X
that indicates which edge e = {x,hX(x)}, for X ∈ {0, 1}, becomes a matching edge. Then
a 2-SAT instance F is generated, in expected linear time, with clauses that encode legal
choices of matching edges for pairs of distinct keys. If a satisfying assignment ϕ of
F exists, it can be determined in linear time and defines a matching M according to
M =

{
{x,hϕ(X)(x)} | x ∈ S

}
.

Algorithm 2: matching_via_2-SAT
Input : Bipartite graph G = (L ∪ R,E) and functions h0, h1, where

E =
{
{x,hb(x)} | x ∈ L,b ∈ {0, 1}

}
.

Output : Left-perfect Matching M in G if it exists, otherwise ∅.
Require : Function solve_2-SAT(F), that returns a satisfying assignment ϕ if F is

a satisfiable 2-SAT instance, and otherwise returns ∅.
F←

∧
x∈L (Xx ∨ ¬Xx);

foreach a ∈ [m] do
foreach {x,y} ∈

(
N({a})
2

)
do

if h0(x) = h0(y) then F← F ∧ (Xx ∨ Yy);
if h0(x) = h1(y) then F← F ∧ (Xx ∨ ¬Yy);
if h1(x) = h0(y) then F← F ∧ (¬Xx ∨ Yy);
if h1(x) = h1(y) then F← F ∧ (¬Xx ∨ ¬Yy);

end
end
M← ∅;
ϕ← solve_2-SAT(F); // black-box solver
if ϕ 6= ∅ then M←

{
{x,hϕ(Xx)(x)} | x ∈ S

}
;

return M;

Case d > 3 For standard d-ary cuckoo hashing, Fotakis et al. presented an augmenting
path algorithm that determines a matching in Gdn,m in expected linear time for all
c ∈ (0.5, 1) under the condition that d > 5+ 3 · ln(c

1−c) [FPSS05, Theorem 1]. That is,

22

3.1. Cuckoo Hashing Variants

for fixed d the load factor must be sufficiently far away from the theoretical threshold
value ĉ(d). This gap we would like to close.

We hope to improve on this result using a new algorithm, called generalized selfless
algorithm, derived from the selfless algorithm by Sanders [San04].

Remark. Meanwhile, Khosla proposed a new algorithm, called local search allocation,
for determining a left-perfect matching in Gdn,m [Kho13], see also Section 1.1. This
algorithm always finds a matching if the graph admits one and has linear running time
with high probability if c 6 ĉ(d) − ε, for d > 3 and constant ε > 0.

The generalized selfless algorithm allows to attack the following more general problem.
Given a hypergraph H and parameters k and `. Assign each hyperedge of H to k of its
nodes (pairwise distinct), with the constraint that the maximum number of assignments
for each node must not exceed `. This can be seen as directing each hyperedge to k of
its nodes, such that the maximum indegree of each node is at most `. Hence, we call a
legal assignment of edges to nodes a (k , `)-orientation of H.
Determining a (1, 1)-orientation of Hdm,n corresponds exactly to our problem of

finding a left-perfect matching in Gdn,m.

Remark. An orientation for k > 2 allows to redundantly store entries in a hash table.
This can be used in order to build data structures that achieve a high failure resistance
or support efficient parallelization of operations, see, e. g., [AP11, 3 6 d = 2 · k − 1].

We will discuss the details of the algorithm and our results (all experimental) shortly.
But first, we summarize a few facts concerning the orientability of Hdm,n.

Orientability Results obtained by researchers in the last decade show that for
constant parameters (d, k , `) there is a sharp phase transition from the situation that
there is a. a. s. a (k , `)-orientation of the random hypergraph Hdm,n to the situation
that there is a. a. s. no (k , `)-orientation. We refer to the corresponding thresholds ĉk ,`
as orientation thresholds, and define the corresponding normalized load thresholds
as ĉk ,`/`.

Remark. With respect to the basic scheme, assuming that each table cell has a
capacity of ` entries, the load factor c = n/m is the ratio of keys to table cells, the
normalized load factor c/` = n/(m · `) is the quotient of keys and overall capacity,
while the capacity utilization c · k/` = (n · k)/(m · `) is the total number of entries
divided by the overall capacity.

For all sequences (d, k , `) of parameters d > k > 1 and ` > 1 the orientation thresholds
are known. (They are derived for Hdm,n type B and A, but are expected to hold for
type C too.) Beside the results mentioned above, for the cases d = 2, k = 1, ` = 1,
e. g., [PR04], and d > 3, k = 1, ` = 1 [FM12, FP12, DGM+10], the main contributions
are the following. The thresholds for d = 2, k = 1, ` > 2 were found independently
and simultaneously by Fernholz and Ramachandran [FR07] as well as Cain, Sanders,
and Wormald [CSW07]. The thresholds for all d > 3, k = 1, ` > 1 were derived

23

3. Dictionary and Membership

by Fountoulakis, Khosla, and Panagiotou [FKP11] filling the gap in a result by Gao
and Wormald [GW10] that holds for large enough `. And a unifying theorem that
gives the thresholds for all d > k > 1, ` > 1, with max{d − k , `} > 2 was derived by
Lelarge [Lel12a, Lel12b] improving upon the result by Gao and Wormald [GW10] which
assumes that ` is a large constant depending on d and k . The remaining values for
“extreme orientability”, i. e., values d > 3, d = k +1, ` = 1, were shown to be equivalent
to the known thresholds for the appearance of the complex (or giant) component3 by
Loh and Pagh [LP12, Section 2].
For the case d = k + 1 > 2 and ` = 1 the orient algorithm by Loh and Pagh

finds a (k , `)-orientation of Hdm,n (if such an orientation exists) and has linear running
time w. h. p. if c = n/m = (1 − ε) · ĉk ,`(d) for any constant ε ∈ (0, 0.5), see [LP12,
Theorem 1.1 and Section 3.1].

Results

We propose a new algorithm, called generalized selfless algorithm, for determining
orientations of (random) hypergraphs and present strong experimental evidence that
for any sequence (d, k , `) ∈ N3 and sufficiently large n this algorithm is likely to
determine a (k , `)-orientation of Hdm,n if c 6 ĉk ,` − ε, for an arbitrary constant ε > 0.
In particular, this includes finding a left-perfect matching in Gdn,m. Pseudocode is given
as Algorithm 3. With proper implementation, linear running time on input Hdm,n is
guaranteed.

Remark. The generalized selfless algorithm is a greedy algorithm based on the selfless
algorithm by Sanders [San04]. More precisely, for input parameters d = 2 and k = 1 the
Algorithm 3 corresponds to the selfless algorithm. It was proven by Cain, Sanders, and
Wormald that for constant ` > 2 the selfless algorithm a. a. s. finds a legal orientation
of Hdm,n (type A and B) if c 6 ĉ1,`(2)− ε, for an arbitrary constant ε > 0, see [CSW07,
Theorems 2.2 and 2.3].

We summarize our findings in the following conjecture.

Conjecture 3.1.1 (Generalized Selfless Algorithm). Let d, k , and ` be
integer constants with d > k > 1, ` > 1 and let c = n/m. Then for any constant
ε > 0 a. a. s. the following holds. If c 6 ĉk ,`−ε, then the generalized selfless algorithm
applied to Hdm,n with parameters k , ` directs each edge of Hdm,n towards k pairwise
distinct nodes, such that the maximum indegree of each node is at most `.

It follows a high level description of Algorithm 3. Later, in combination with the
presentation of our experimental results in Section 3.5, we will discuss an implementation
that has running time linear in n. In order to describe the algorithm compactly, we
use the following definitions:

3The existence and non-existence can be shown to occur not only a. a. s. but w. h. p..

24

3.1. Cuckoo Hashing Variants

Algorithm 3: generalized_selfless
Input : Undirected hypergraph H = (V,E) with parameters k > 1 and ` > 1.
Purpose : Direct each hyperedge from E to k pairwise distinct nodes from V, such

that the maximum indegree of each node is at most `.
Output : Either H with legal orientation, or ∅ if no such orientation is found.
Require : Functions inc : V → [`+ 1], req : E→ [k + 1], Epot : V → P(E), and

Vpot : E→ P(V) as defined in Section 3.1.1.5.
V ′ ← V;
while V ′ 6= ∅ do

V ′ ← {v ∈ V | |Epot(v)| > 0, inc(v) < `};
randomly choose v ∈ V ′ with smallest (=̂highest) priority prio(v), according to

prio(v) =

0, if |Epot(v)|+ inc(v) 6 `∑
e∈Epot(v)

req(e)
|Vpot(e)|

+ inc(v), otherwise ;

if prio(v) > ` then return ∅; // failure
if prio(v) = 0 then

direct all edges e ∈ Epot(v) to v; // selfless step
else

randomly choose edge e ∈ Epot(v) from those with smallest |Vpot(e)|;
direct e towards v;

end
end
if ∃e ∈ E : req(e) > 0 then return ∅; // failure
return H;

25

3. Dictionary and Membership

(i) The number of edges already directed towards a node v is denoted by inc(v). A
node v is saturated if inc(v) = `, otherwise it is unsaturated.

(ii) The number of nodes to which an edge e must still be directed is denoted by
req(e); initially req(e) = k . An edge e is settled if req(e) = 0, otherwise it is
unsettled.

(iii) The set of unsettled edges incident to a node v that are not directed towards v,
called potential edges, is denoted by Epot(v).

(iv) The set of unsaturated nodes to which an edge e can be directed, called potential
nodes, is denoted by Vpot(e).

The algorithm works in rounds where in each round at least one edge is directed to a
node. Consider a fixed round i > 0. Let V ′ be the set of unsaturated nodes that have
potential edges. Each node v from V ′ is assigned a non-negative priority prio(v) as
follows.

. The priority is 0 if the number of potential edges plus the number of incoming
edges is at most `, i. e., |Epot(v)|+ inc(v) 6 `.

. Otherwise the priority is the expected indegree of v assuming that in this round
all potential edges of v would be directed uniformly at random. The probability
that a potential edge e of v is directed towards v is req(e)/|Vpot(e)|, hence the
expected indegree of v is∑

e∈Epot(v)

req(e)
|Vpot(e)|

+ inc(v) .

Among the nodes from V ′ a node v with smallest priority is chosen uniformly at random.
If this node has a priority larger than `, then the algorithm stops and returns ∅, which
means failure. If v has priority 0, then the node “selflessly” takes all its potential edges
upon himself, i. e., they are directed towards v. Otherwise a potential edge e of v with
smallest number of potential nodes |Vpot(e)| is selected and directed towards v. As
before ties are broken by randomization. If V ′ has no elements left and there is an
unsettled edge, then the algorithm returns ∅. If V ′ is empty and all edges are settled,
then the algorithm returns H.

The experimental results together with a more detailed description of the algorithm
are presented in Section 3.4.

3.1.2. Irregular d-Ary Cuckoo Hashing

If we aim for a given worst-case number of cell probes d for lookup, then we cannot
do better than giving each left node exactly the same degree d. But what happens if
we weaken this restriction slightly? Assume that we focus on bounding the number of

26

3.1. Cuckoo Hashing Variants

cell probes on average over all x ∈ S. For this we modify the basic scheme such that
for each x ∈ U a randomized algorithm determines some individual number of hash
functions dx, and change the sequence of addresses to

h(x) =
(
h0(x),h1(x), . . . ,hdx−1(x)

)
.

Hence, for each x ∈ U the number of addresses becomes a random variable Dx that
follows some probability mass function ρx = ρDx (on the natural numbers). Let ∆x be
the mean of Dx and let d be the average mean over all x ∈ S, i. e.,

∆x = Exp(Dx) =
∑
d∈N

d · ρx(d) for all x ∈ U,

d =
1

n
·
∑
x∈S

∆x .

We define Gdn,m = Gdn,m
(
(ρx)x∈S

)
to be the bipartite graph representation of this new

scheme, i. e., we apply the following substitution

Gdn,m Gdn,m
(
(ρx)x∈S

)
,

where the uniform left degree d is replaced by the average expected left degree d
produced by the sequence of probability mass functions (ρx)x∈S. Analogously, we
obtain the generalization for the hypergraph and matrix representations, according to

Hdm,n Hdm,n
(
(ρx)x∈S

)
and Md

n,m Md
n,m

(
(ρx)x∈S

)
.

Now given d the question arises which sequence of probability mass functions (ρx)x∈S
for the random variables (Dx)x∈S maximizes the probability that the random graph
Gdn,m

(
(ρx)x∈S

)
has a left-perfect matching. We call such a sequence optimal. Note

that there must be some optimal sequence for compactness reasons.
Remark. Without any modification our (greedy heuristic) Algorithm 3 can be used
to try to determine a left-perfect matching in Gdn,m.

3.1.2.1. Identical Distribution

A very natural setting is when all random variables (Dx)x∈S are independent and have
the same probability mass function.
Remark. In this case the random algorithm that determines for each x ∈ U the
individual left degree can be realized with at most two additional independent and
fully random hash functions, if one applies for example the alias method [Gen03,
pages 133ff.].
For type B of Gdn,m it is optimal if the degree of each node is concentrated around d;
that means that

ρ(bdc) = 1− (d− bdc), and ρ(bdc+ 1) = d− bdc

27

3. Dictionary and Membership

is an optimal probability mass function [DGM+10, follows from Proposition 4].
Furthermore, Dietzfelbinger et al. [DGM+10] generalized Theorem 2.1 to determine
values ĉ(d) where a. a. s. the edge density of the 2-core of Hdm,n

(
(ρx)x∈S

)
is below 1 if c

is lower than ĉ(d), and above 1 if c is greater than ĉ(d). They applied these thresholds
to obtain the following generalization of Theorem 3.2 concerning the probability of the
existence of a left-perfect matching.

Theorem 3.3 (d-Ary Cuckoo Hashing, [DGM+10, Theorem 3])
Let (ρx)x∈S be an optimal sequence under the assumption of identical distributions
with constant d > 2 and let c = n/m. Then for any constant ε > 0 a. a. s. the
following holds:

(i) If c 6 ĉ(d) − ε, then Gdn,m
(
(ρx)x∈S

)
(type B) admits a left-perfect matching.

(ii) If c > ĉ(d) + ε, then Gdn,m
(
(ρx)x∈S

)
(type B) admits no left-perfect matching.

The proof concerning the thresholds ĉ(d) for non-integral d is not elaborated in all
details in [DGM+09, DGM+10]. One approach, derived from the integral case that is
discussed in Section 2.3.1, is to study the generalized key function

key(λ,d) =
λ(

α · bdc ·
(
Pr (Po [λ] > 1)

)bdc−1
+ (1− α) · dde ·

(
Pr (Po [λ] > 1)

)dde−1)
,

as well as the generalized density function

dens(λ,d) = key(λ,d) · α · Pr
(Po[λ] > 1)bdc + (1− α) · Pr (Po[λ] > 1)dde

Pr (Po[λ] > 2)
,

for α = 1− (d− bdc).
If the minimum degree bdc of each node is at least 3 then, as shown later in

Section 4.1.2, the threshold for the appearance of a 2-core is minλ∈(0,∞) key(λ,d).
Hence, analogously to the definition of ĉ(d) for integral d, one gets

ĉ(d) := key(λden
1 ,d) ,

where λden
1 is the smallest value for which it holds that λden

1 > argminλ∈(0,∞) key(λ,d)
and dens(λden

1 ,d) = 1.
The same approach can be used in the case that bdc = 2. However, it appears that if

d ∈ (2, 2.25], then we have arg infλ∈(0,∞) key(λ,d) = 0 and there is either no or only a
non-positive solution λ for dens(λ,d) = 1. Accordingly, we probably have

ĉ(d) := lim
λ→0

key(λ,d) =
1

2 ·
(
1− (d− bdc)

) =
1

2 · α
,

28

3.1. Cuckoo Hashing Variants

3 4 5 6 7 8 9 10

0.6

0.7

0.8

0.9

1

d

Figure 3.1.2.: Thresholds ĉ(d) for the existence of left-perfect matchings in random
bipartite graphs Gdn,m

(
(ρx)x∈S

)
where all left degrees are concentrated around d.

for all 2 < d 6 2.25, cf., [DGM+09, end of Section 4.1]. The interpretation is that in
this case, if c is below the threshold ĉ(d), then a. a. s. the 2-core is empty and if c is
above the threshold, then a. a. s. the 2-core is non-empty and has already a density of
at least 1. Figure 3.1.2 depicts some thresholds ĉ(d).

3.1.2.2. Almost Arbitrary Distributions

Beyond identically distributed random variables (Dx)x∈S, in [DGM+10, Proposition 4]
it was shown that if the sequence of individual means (∆x)x∈S is fixed, then it is
optimal (for type B) if the sequence of probability mass functions (ρx)x∈S concentrates
the degree around the individual means (∆x)x∈S. However, it is not a priori clear, given
d, which sequence (∆x)x∈S maximizes the probability of a left-perfect matching.

Results

Under the assumption that the random variables (Dx)x∈S are independent we will
show the following for Gdn,m of type A.!

For each d > 2, there is an optimal sequence of probability mass functions that
concentrates the degree of the left nodes around bdc and dde. Furthermore, if d is
an integer we can explicitly determine this optimal sequence. In the case that d is
non-integral we will identify a tight condition that an optimal sequence must meet.

Theorem 3.4 (Optimality of Concentration [DR12a, Theorem 1])
Let 2 6 n 6 m, 2 6 d, and let (ρx)x∈S be an optimal sequence for parameters
(n,m,d). Then the following holds for all x ∈ S:

(i) If d is an integer, then ρx(d) = 1.

(ii) If d is non-integral, then ρx(bdc) ∈ [0, 1] and ρx(dde) = 1− ρx(bdc).

Note that Theorem 3.4 is not an asymptotic result, but holds for all n and m. The
second statement is not entirely satisfying since it does not identify an optimal solution.

29

3. Dictionary and Membership

However, we will give strong evidence that in the situation of Theorem 3.4 (ii) there is
no single, simple description of the distributions that are optimal, for arbitrary feasible
node set sizes.
Since the case d = 2 is completely settled by Theorem 3.4 (i), we then focus on

the cases where d > 2, with the additional condition that the number of left nodes is
linear in the number of right nodes, that is, n = c ·m for a constant c > 0. We show
that for sufficiently large n all sequences that meet the condition of Theorem 3.4 (ii)
asymptotically lead to the same matching probability. Therefore, we call these sequences
near optimal.

Proposition 3.1 (Asymptotic Behavior & Thresholds [DR12a, Prop. 1])
Let (ρx)x∈S be a near optimal sequence with constant d > 2 and let c = n/m. Then
for any constant ε > 0 a. a. s. the following holds:

(i) If c 6 ĉ(d) − ε, then Gdn,m
(
(ρx)x∈S

)
(type A) admits a left-perfect matching.

(ii) If c > ĉ(d) + ε, then Gdn,m
(
(ρx)x∈S

)
(type A) admits no left-perfect matching.

This is a consequence of Theorem 3.3. Hence, the thresholds ĉ(d) are exactly the same
as defined above for Gdn,m

(
(ρx)x∈S

)
(type B).

So in the case that n = c ·m all near optimal sequences exhibit essentially the same
behavior in terms of matching probability, at least asymptotically. We will, however,
give strong evidence that there are only two sequences that can be optimal, where the
decision which one it is depends on the ratio c.

Conjecture 3.1.2 (Essentially Two Strategies [DR12a, Conjecture 1]).
Let (ρx)x∈S be an optimal sequence for parameters (n,m,d) in the situation of
Theorem 3.4 (ii) for constant c = n/m > 0 and constant d > 2. Let α = dde− d.

(i) If c < ĉ(d), then we have ρx(bdc) = 1 for α · n nodes and ρx(dde) = 1 for
(1− α) · n nodes (assuming that α · n is an integer).

(ii) If c > ĉ(d), then we have ρx(bdc) = α and ρx(dde) = 1− α for all x ∈ S.

This means the following: If c is smaller than the threshold, i. e., Gdn,m has a matching
a. a. s., then it is optimal to fix the degrees of the left nodes; if c is larger than the
threshold, then it is optimal to let each left node choose its degree at random from bdc
and dde, by identical, independent experiments. Hence, the number of edges should
be either fixed to d · n a priori, or should be bdc · X + dde · (n − X) for a binomially
distributed random variable X with sample size n and success probability dde − d.
The reasoning will be that seemingly if c < ĉ(d), then the probability for a matching
to exist as a function of the ratio of degree bdc nodes among all nodes is in essence
concave (so a single value is better than all averages), while if c > ĉ(d), then the
matching probability is in essence convex (so an average over several values will be
larger than any single value).

30

3.1. Cuckoo Hashing Variants

The proofs of Theorem 3.4 and Proposition 3.1 are given in Section 3.5 together
with an in-depth discussion of Conjecture 3.1.2.

3.1.3. d-ary Cuckoo Hashing with Pages

Perhaps the most significant downside of both cuckoo hashing variants discussed so far
is that they potentially require checking multiple cells distributed uniformly at random
throughout the table. Hence, in settings where such random cell probes are expensive
they become a less attractive choice to solve the membership and dictionary problem.
One such standard setting is when memory is subdivided into (not too small) blocks
of fixed size, called pages, and the dominating cost factor for lookup is the number of
block accesses, which is about (d+ 1)/2 on average if we apply d-ary cuckoo hashing.
A natural approach to minimize this number is to split the key set S into disjoint

subsets Si of about the same size, using a fully random hash function, and then keep a
separate cuckoo hash table in each page. This limits the number of pages examined
to one and maintains the constant lookup time; such a scheme has been utilized in
previous work, see, e. g., [ASA+09]. However, this approach has the following downsides:

(i) If the pages are small, say at most poly log(m), then fluctuations in the size of
the key sets Si can significantly affect the maximum achievable load.

(ii) If the pages are large, more precisely of size mδ for δ ∈ (0, 1), then we obtain the
same asymptotic load thresholds as in the setting without pages, but usually fail
to model real-world page and memory sizes.

We generalize the above approach by modifying the basic scheme such that most of the
d cell choices associated with a key x correspond to one single page, called primary
page, and the rest of the cell choices (usually just one) correspond to a different page,
called backup page. In detail, we use the following modification of the basic scheme.
Let db,dp ∈ N with d = dp+db. The table t is subdivided into p pages (sub-tables) of
equal size m̌ = bm/pc. We have d hash functions h0,h1, . . . ,hd−1 with range restricted
to [m̌], i. e.,

hi : U→ [m̌] for all i ∈ [d].

The first dp of them are used for the primary page and the last db of them are used
for the backup page. In addition, we have two fully random hash functions

hp,hb : U→ [p] ,

in order to determine the address offset for the primary and for the backup page. Now
the sequence of addresses is changed to

h(x) =
(
h0(x) + i,h1(x) + i, . . . ,hdp−1 + i︸ ︷︷ ︸

dp addresses

,hdp + j,hdp+1 + j, . . . ,hd−1 + j︸ ︷︷ ︸
db addresses

)
,

with i = hp(x) · m̌ and j = hb(x) · m̌.

31

3. Dictionary and Membership

For type B we require in addition that the hash values are pairwise distinct according
to

hp(x) 6= hb(x) for all x ∈ U,
hi(x) 6= hj(x) for all x ∈ U and 0 6 i < j < dp, as well as dp 6 i < j < d.

Type C is realized analogously to type B via subdividing the pages further into disjoint
sections. Note that in the special case of m̌ = m and db = 0 we have exactly our basic
scheme. As before, we adjust the graph, hypergraph, and matrix representations so
that they reflect the modifications, denoted by the following substitutions

Gdn,m G
dp,db
n,(m,m̌), H

d
m,n H

dp,db
(m,m̌),n, and M

d
n,m M

dp,db
n,(m,m̌) .

Related Paging Models Directly related to our model of cuckoo hashing with
pages is the model CUCKOO-CHOOSE-K by Porat and Shalem [PS12, page 348]. Here
each key is associated with d0 · d1 random addresses, divided into d0 groups of size
d1 each, where each group fully belongs to a page. That is, the model essentially
corresponds to our model for d0 = 2 (number of pages) and d1 = dp = db (addresses
per page). Porat and Shalem provide experimental results concerning the maximum
load factor and they derive lower bounds on the maximum load factor for constant
page size and parameters (d0 − 1) · d0 · d1 > 3. However, their model is not designed
for minimizing the number of page accesses which is our driving motivation.

For constant page size m̌ our paging model is related to blocked cuckoo hashing, an
extension of d-ary cuckoo hashing where the table consists of m blocks of ` cells each,
each key is associated with d randomly chosen blocks, and the entry for each key can
be stored in any of the ` cells of its associated blocks. There are two main variants:
non-overlapping blocks and contiguous overlapping blocks.
In the case of non-overlapping blocks , see [DW05, DW07] and [Pan05, ` = 2], we

have m · ` table cells that are partitioned into blocks of ` (contiguous) cells each. The
construction of the data structure translates into the problem of finding an orientation
of the random hypergraph Hdm,n, with m nodes, which correspond to blocks, and n
edges, which correspond to keys, such that the indegree of each node is at most `. As
we have discussed in Section 3.1.1.5, for constant d and ` as well as increasing c = n/m
there is a sharp phase transition from the situation that there is a. a. s. an orientation
to the situation that there is a. a. s. no orientation; and the orientation thresholds
ĉk ,` = ĉ1,` are known. Recall that the normalized load thresholds are defined as ĉ1,`/`,
since each block can hold ` entries.

The model ofm non-overlapping blocks of size ` and d = 2 hash functions corresponds
to our paging model (type B) for the following parameters: m table cells of capacity `
entries each, divided into pages of size m̌ = 1, using one constant (hash) function to
address the only table cell of each page, i. e., dp = db = 1, or alternatively, m · ` table
cells, each of capacity 1 entry, divided into pages of size m̌ = `, using ` constant (hash)
functions to address the ` table cells of each page, i. e., dp = db = `.

32

3.1. Cuckoo Hashing Variants

A distinction of non-overlapping blocks and pages was made by Porat and Shalem
in their model CUCKOO-DISJOINT , see [PS12, page 349]. Here we have m · ` cells of
capacity one, partitioned into m blocks of ` contiguous cells each, and each m̌ blocks
build a separate page. Analogously to the model CUCKOO-CHOOSE-K described
above, each key is associated with d0 randomly chosen groups of d1 contiguous cells,
where each group fully belongs to a page, which is essentially the same as if each key is
associate with d0 randomly chosen pages and on each page the key is associated with
one random block and its d1 = ` cells. Therefore, independently of the page size, the
maximum achievable load is the same as in the case of non-overlapping blocks of size `
without pages and d = d0 hash functions.

Loosely related is the variant of contiguous overlapping blocks, which can be seen
as a combination of cuckoo hashing and linear probing [Wei04, Section 3.2.1]. Here
the analysis seems significantly harder compared to non-overlapping blocks and up to
now only lower bounds for load thresholds are known, see [LP09] and [Bey12, ` = 2].
Porat and Shalem proposed the model CUCKOO-OVERLAP , analogously to their two
other model described above, as a combination of contiguous overlapping blocks with
paging, where each block is entirely contained in a page [PS12, page 348]; they provide
experimental results concerning the maximum achievable load as a function of the page
size.

Results

We focus on random bipartite graphs Gdp,db
n,(m,m̌) type B with d = dp + db = 4. All of

the following results are experimental.!
With small page size m̌ and dp = 4, db = 0, i. e., each key confined to one page, we
find that the maximum achievable load factor is far below ĉ(4). However, if we set
dp = 3 and db = 1, i. e., each key is given three addresses on a primary page and a
fourth on a backup page, then the load factor is quite close to ĉ(4). The load factor
does not shrink if we set dp = db = 2. Intuitively, a second page for each key allows
overloaded pages to constructively distribute load to underloaded pages. Backed up
by additional experiments for different d, we believe in general the following is true.

Conjecture 3.1.3 (Cuckoo Hashing with Pages [DMR11a, implicit]). Let
dp,db ∈ N be non-zero constants with dp + db > 3 and let c = n/m as well as
m̌ = poly log(m). Then for any constant ε > 0 a. a. s. the following holds:

(i) If c 6 ĉ(d) − ε, then Gdp,db
n,(m,m̌) (type B) admits a left-perfect matching.

(ii) If c > ĉ(d) + ε, then Gdp,db
n,(m,m̌) (type B) admits no left-perfect matching.

So, in order to obtain a reasonable load factor, we must access two pages for lookup
in the worst-case. We distinguish between keys that use their primary page, called

33

3. Dictionary and Membership

primary keys, and keys that use their backup page, called backup keys.
Maximizing the number of primary keys can be done straightforward using a minimum

weighted matching algorithm. We present a simple and efficient variant based on the
Hopcroft-Karp algorithm [HK71, HK73]. Applying this algorithm, we find that with
dp = 3, db = 1, and a load factor of 0.95 only about 3 percent of keys are backup keys
(with suitable page sizes). That is, for most of the keys a lookup requires only a single
page access.

Moreover, we show that a simple variation of the well-known random walk insertion
procedure, see, e. g., [FMM11, Algorithm 2] and [FPS10, Section 2.1], allows nearly
the same level of performance with online placement of keys (including scenarios with
alternating insertion and deletions). Our experiments consistently yield that at most
5 percent of keys needs to be placed on a backup page with these parameters. This
provides a tremendous reduction of the number of page accesses required for successful
searches.
For unsuccessful searches, spending a little more space for Bloom filters [Blo70] on

each page leads to an even smaller number of accesses to backup pages. This is done
via storing for each page all the keys from S in a separate Bloom filter that have this
page as primary page but are placed in their backup pages. An unsuccessful search
for a key x ∈ U− S will access the backup page of x only in the case that the Bloom
filter associated with the primary page of x confirms the set membership (false positive
answer).
The experimental results and the algorithms for static and dynamic insertion are

presented in Section 3.6.

3.1.4. Overview of the Chapter

The next section gives some background information on hashing and load balancing. It
follows Section 3.3 which covers the standard space lower bounds for dictionary and
membership tester, as well as some facts about matchings and weighted matchings in
bipartite graphs since this is needed for the discussion of cuckoo hashing with pages.
In the subsequent three sections we focus on our results, where Section 3.4 treats
the generalized selfless algorithm, Section 3.5 covers irregular cuckoo hashing, and
Section 3.6 deals with cuckoo hashing with pages. The chapter finishes with some
concluding remarks.

3.2. Further Background and Related Work

We now give some background on hash tables and load balancing, which however, is
not required to follow the rest of the chapter. A reader familiar with these topics can
skip this section.

34

3.2. Further Background and Related Work

The dictionary and membership tester variants described in Section 3.1 are represen-
tatives of the most common hashing-based structures, known as hash tables. Basically,
a hash table consists of a table t with m cells and a mapping h

h : U→
<∞⋃
i=1

[m]i ,

based on one hash function h or several hash functions h0,h1,h2, . . ., where each key
x ∈ S is stored in a cell ta whose address a is from the sequence h(x), in the case
of a dictionary together with satellite data g(x). Basically, hash tables differ in their
mapping as well as in the capacity and structure of the table cells. Moreover, often one
considers the dynamic case, that is S and g change over time, which makes strategies
for dynamically inserting, updating, and deleting entries main distinctive factors.

For the rest of Section 3.2 the following holds. The statements with respect to
the performance of the hash tables are valid under the assumption that the hash
functions h and hi, i > 0, are fully random; and events that depend on n occur
asymptotically almost surely.
!
3.2.1. Traditional Hash Tables

A rough classification concerning the table t itself distinguishes between open hashing,
which means that the number of stored entries is not limited by the table size, and
closed hashing, which means that each cell can hold a constant number of entries.
Typical representatives are

separate chaining [Knu98, page 520]. This hash table scheme uses the mapping

h : U→ [m], h(x) :=
(
h(x)

)
.

Each table cell holds a pointer to a linked list of entries and a key is inserted at the
front of the list, whose pointer is stored in the cell with address h(x).

linear probing [Knu98, page 526]. Here each cell can store one entry and we have

h : U→ [m], h(x) :=
(
h(x),h(x)⊕ 1,h(x)⊕ 2, . . . ,h(x)⊕ (m− 1)

)
,

were ⊕ is addition in Zm. Insert and lookup follow the probe sequence given by h(x)
until x or an empty cell is found.

The classical hash table schemes like separate chaining, linear probing, quadratic
probing, and variants, see, e. g., [CLRS01, pages 224ff.] and [Knu98, pages 513ff.], have
in common that lookups cannot guaranteed to be in constant time. Actually, for each
hash table where all probe sequences start at some random position and the whole

35

3. Dictionary and Membership

search is solely determined by this starting value, one needs to test at least Ω(logn
log logn)

entries for lookup in the worst case, independent of the concrete insertion procedure.
This lower bound is a consequence of the result that if one randomly throws n balls
into n bins, then the maximum number of balls that fall into a bin is lnn

ln lnn · (1+ o(1)),
see, e. g., [Gon81, Theorem 6 and Table VI] and [RS98, Section 1.1 and Theorem 1].

3.2.2. Multiple Choice Hash Tables

According to [Mit09, Introduction], in the recent years “[. . .] the field of hashing,
which has enjoyed a long and rich history in computer science [. . .], has also enjoyed
something of a theoretical renaissance [. . .]”, based on what is called the power of
multiple choices, see, e. g., [Mit91].
This process was triggered by the surprising insight that if one throws n balls

into n bins where each ball is associated with two random bins and is placed in
the least loaded one, then the maximum load of a bin is exponentially reduced in
comparison with the situation where each ball has only one random choice. The
concrete maximum load depends on the tie-breaking rule for equally loaded bins.
If ties are broken uniformly at random, then the maximum load drops to ln lnn

ln2 +

Θ(1) [ABKU94], [ABKU99, Theorem 1.1]. If one uses a deterministic and asymmetric
tie-breaking rule, the maximum load can be reduced even further, namely to ln lnn

2·ln1.618 +

O(1) [Vö99], [Vö03, Theorem 1]. This was the starting point for the design of new
hash tables that can be subsumed under the term multiple choice hash tables, see,
e. g., [KM08], which have the advantages of

. worst-case constant lookup time,

. high space efficiency, and

. good parallelizability.

The results on two random choices naturally translate into a hash table that extends
separate chaining, known as

2-way chaining [ABKU99, Section 5], with improvement from [BM01, Section II, 2-
left scheme]. Analogously to separate chaining, each table cell holds a pointer to a
linked list of entries, but now a key is associated with two lists according to

h0,h1 : U→ [bm/2c], h(x) :=
(
h0(x),h1(x) + bm/2c

)
.

An entry that is associated with a key x is stored at the front of the shortest list
given by h0(x) and h1(x), and if both lists have the same length, then either ties
are broken4 uniformly at random (symmetric random rule) or one always uses the
list given by h0(x) (asymmetric deterministic rule). The lookup procedure searches
the two lists in alternating order.

4First 2-way chaining was defined to break ties randomly [ABKU94], later deterministically, see,
e. g., [BM01, PR01].

36

3.2. Further Background and Related Work

With 2-way chaining, a lookup only needs to test Θ(log logn) entries in the worst case,
if the load factor c = n/m is constant. Increasing the number of choices per key further
leads to

d-way chaining [BM01, Section II], [MV99, Section 3], [MV02]. A generalization of
2-way chaining, where each key has d > 2 independent random choices and the
mapping is defined as

h0,h1, . . . ,hd−1 : U→ [bm/dc], h(x) :=
(
hi(x) + i · bm/dc

)
i∈[d] .

The asymmetric tie-breaking rule prefers the list given by the hash function with
the smallest index.

The step from 2 to 3 choices or more decreases the maximum load only by a small factor,
since in general for d > 2 and m = n, the maximum load is ln lnn

lnd +O(1) [ABKU99,
Theorem 1.1] (symmetric random rule) or smaller than ln lnn

(d−1)·ln2 [Vö03, Theorem 1]
(asymmetric deterministic rule), respectively.

In the static case, that is if S is given in advance and one determines an optimal
assignment from keys to table cells, then the maximum load can be even reduced to a
constant, see, e. g. [ABKU99, follows by Lemma 6.1]. More precisely, one only needs
cells of capacity one if each key has d = 2 two random choices and the load factor c
is at most 1/2 − ε for an arbitrary constant ε > 0, see, e. g., [Pag01b, Section 2.3]5,
[DM03, Theorem 1], and very precise [DK12, Theorems 1 and 4].
Remark. More general results give an upper bound for the smallest maximum load
of dn/me+ 1 in the case of an arbitrary load factor c [SEK00, Theorem 3.1], [SEK03,
Theorem 4], and of dn/me if c is bounded from below by Ω(logm) [CRS03, Theorem 2].
In order to achieve two probes for lookup also in the dynamic case while maintaining
a constant load factor just under 1/2, one has to apply an insertion procedure that
moves entries around the table. A straightforward solution, first suggested for a
related hashing scheme, is to solve a matching (or network flow) problem on each
insertion [Riv78, GM79, Section 4]. However, a more practical and very prominent
approach is a variant of the last-come-first-served strategy [PM89], which gave the
resulting hash table the unique name

cuckoo hashing [PR01, PR04]. Like 2-way chaining we use the mapping

h0,h1 : U→ [bm/2c], h(x) :=
(
h0(x),h1(x) + bm/2c

)
,

but now each cell can hold only one entry. The insertion procedure imitates the
nesting habits of a cuckoo. For simplicity assume that entries are keys only. On
insertion of a key x the cell given by h0(x) is probed. If the cell is empty, then x
is stored there and insertion terminates. Otherwise, x displaces the previous stored
key x ′, which now must be inserted in the same way as x, but in the cell given by
h1(x

′), and so on.
5This result assumes not fully random, but weaker O(logn)-wise independent hash functions.

37

3. Dictionary and Membership

Cuckoo hashing naturally extends to more than two hash functions, which leads to

d-ary cuckoo hashing [FPSS03, FPSS05]. This variant of cuckoo hashing uses d > 2
hash functions, and the mapping generalizes to6

h0,h1, . . . ,hd−1 : U→ [m], h(x) :=
(
h0(x),h1(x), . . . ,hd−1(x)

)
.

We discussed d-ary cuckoo hashing in detail in Section 3.1 including variants that allow
the number of hash functions depend on the key, or subdivide the table into pages
or blocks. Other notable variants augment the data structure with a small auxiliary
memory, called stash, or with a queue. The stash is used to increase the probability of a
successful construction [KMW08, KMW09, Kut10, Aum10, ADW12, ADW13], where
the queue in addition is used to maintain a dynamic insertion procedure that needs
constant time in the worst-case [KM07, ANS09, ANS10].

3.2.3. External Memory Hash Tables

Hashing is well suited for realizing large data structures that have to be stored in
external memory. In a standard model [AV88] it is assumed that the external memory
is accessed in the form of pages, each page spanning m̌ entries (records), and the
internal memory can hold at least one page. Time complexity is primarily determined
by the number of page I/Os, i. e., write and read accesses, since in many cases they are
assumed to dominate the time for the other (memory word) operations.
We consider the situation that the m cells of an external memory hash table are

partitioned into p = m/m̌ pages. Each cell has capacity of one entry, which we assume
to be a key (membership) or a key-value pair (dictionary). If n entries are stored, the
load factor is c = n/m = n/(p ·m̌), where in the case of open hashing, see Section 3.2.1,
the total number of pages used can be larger than p. Hash functions are ideal, i. e., in
particular, their internal memory consumption is ignored.

Traditional Hash Tables Traditional hash tables like linear probing and separate
chaining can be easily extended to this setting. The adjustments are as follows:

external separate chaining [Knu98, page 542]. This hash table scheme maps keys to
pages via

h : U→ [m/m̌], h(x) :=
(
h(x)

)
.

Each of the p = m/m̌ pages is the start of a separate linked list of additional pages
and a key is stored in the list with address h(x). For c bounded away by a constant
from 1, most of the lists consist only of one page. Hence, in this case the total number
of pages is close to p.

6Cuckoo hashing was defined using pairwise distinct hash values (type C), whereas d-ary cuckoo
hashing was first defined in a simplified variant allowing duplicate hash values (type A).

38

3.2. Further Background and Related Work

external linear probing [Knu98, page 543]. Here the probe sequence for a key goes
linearly from page to page according to

h : U→ [m/m̌], h(x) :=
(
h(x),h(x)⊕ 1,h(x)⊕ 2, . . . ,h(x)⊕ (p − 1)

)
,

where ⊕ is addition in Zp. Insert and lookup follow h(x) until a non-empty page or
a page with an entry corresponding to x is found.

Knuth showed that both variants work well, see [Knu98, pages 541ff.] and, e. g., [Pag03,
page 28]. More precisely, with load factor c = 1−ε, for constant ε > 0, for both schemes
the expected average number of page accesses for a lookup is 1+ 2−Ω(m̌). This requires
internal memory of O(1) pages only. Interestingly, if linear probing is not adjusted to
paging, i. e., one essentially ignores pages, then the expected average number of page
access for lookup is 1+O(c/m̌), see [QM98, Section 6] and [PWYZ14, Theorem 1].
Combining a variant of chained hashing with new techniques, Jensen and Pagh

[JP08] showed how to obtain an asymptotically optimal external memory hash table
that utilizes internal memory in the size of O(1) pages. Here for a load factor of
c = 1−O(m̌−1/2) the expected number of page accesses is 1+O(m̌−1/2) for successful
and unsuccessful lookup, while insert, delete, and update need 1 + O(m̌−1/2) page
accesses amortized, in expectation. However, in all of the hash tables discussed so far
there is always a small chance that a lookup needs two or more page accesses.

A worst case guarantee of one page access for lookup can be achieved at the price of
additional internal memory depending on n, see, e. g., [GL88, Section 4] and [Lar88,
Section 2] for schemes that work for constant c = c(m̌) < 1 and need additional space
of Θ(n/m̌), not including the space consumption for helper hash functions.

Remark. Schemes that directly map at most m̌ keys to a single page realize a gen-
eralization of an injective function, see Section 4.2.1, in our context usually called
m̌-perfect hash function. For c = 1, i. e., n = m̌ ·p, Mairson proved that if m̌ is constant,
then at least Ω(n · log(m̌)/m̌) bits are necessary in the worst case7 in order to build a
m̌-perfect hash function with such a minimal range [Mai83, Theorem 5].

Multiple Choice Hash Tables With external memory versions of multiple choice
hash tables one can achieve two page accesses for lookup in the worst case. This can
be realized without storing additional data structures that need internal memory that
grows with n if one uses, e. g., a random walk insertion procedure.

For instance, blocked cuckoo hashing with non-overlapping blocks, see Section 3.1.3,
can be directly applied to the external memory model using blocks of size ` = m̌ that
correspond to pages. With d = 2 hash functions the lookup time is limited to at most
two page access for each x ∈ U, and the load factor c is bounded by ĉ1,`(2)/m̌− ε, for
constant ε > 0. This bound can be chosen arbitrary close to one using a large enough
7This is also a lower bound for c = n/m < 1, under the condition that n/m̌ out of m/m̌ pages
get exactly m̌ keys [Mai92].

39

3. Dictionary and Membership

but constant page size m̌. Moreover, with a modified insertion procedure, the expected
number of page accesses for a successful lookup can be made close to 1. This approach
is discussed in Section 3.6.4.3.
As introduced in Section 3.1.3, another variant of cuckoo hashing, called d-ary

cuckoo hashing with pages, also allows to realize an external memory hash table that
guarantees at most two page accesses per lookup; and with a slight adjustment of the
insertion procedure, achieves close to 1 page access for successful lookup in expectation.
For this scheme experiments show that the load factor is more dependent on d, the
number of hash functions used to address table cells inside pages, than on the page
size m̌, and, furthermore, can be made close to ĉ(d). Since the potential positions of
a key within a page are determined via hashing, searching for a key once its page is
loaded in internal memory is fast. This can be advantageous in the case of larger pages.
Cuckoo hashing with pages is discussed in detail in Section 3.6.

3.3. Basics

In this section we give the standard space lower bounds for dictionary and membership.
Afterwards, we discuss how to determine (minimum weight) left-perfect matchings
using augmenting path algorithms, which is required for Section 3.6.

3.3.1. Worst-Case Space Lower Bounds

In Section 3.1.1.4 we stated that, if one ignores the hash functions, then the space
consumption of d-ary cuckoo hashing is (1+ ε) · |S| · log|U| for a membership tester and
(1+ ε) · |S| · (log|U|+ log|V |) for a dictionary, where ε > 0 is an arbitrary constant. If
the universe U is large, then this is near optimal according to the following standard
lower bound.

Lemma 3.3.1 (Space Bounds for Dictionary and Membership). In order to
solve membership for the keys from S ⊆ U one needs at least |S| · (log|U|− log|S|)
bits in the worst-case. For solving dictionary when all keys from S are associated
with a value from V one needs at least |S| · log|V | bits in addition in the worst-case.

Proof. The following is folklore.
Let |U| = u and let |S| = n. For a binary encoding of the set S on needs at least

log
((
u
n

))
bits in the worst-case, since there are s =

(
u
n

)
sets of size n and any uniquely

decodable binary code for these sets must have a codeword of length at least log(s),
since otherwise the number of codewords would be too small to encode all sets. Similarly,
one needs at least n · log|V | bits in the worst-case to encode one of the possible |V |n

sequences of values from V . Hence, it remains to show that log(s) > n · (logu− logn).

40

3.3. Basics

In order to bound log(s) from below we use that

log
((
u

n

))
= log

(
n−1∏
i=0

u− i

n− i

)
=

n−1∑
i=0

log
(
u− i

n− i

)
.

Since the sequence log
(
u−i
n−i

)
, 0 6 i 6 n− 1, is monotonically increasing for u > n, we

can derive a lower bound via straightforward integration as follows:

log
((
u

n

))
= log

(u
n

)
+

n−1∑
i=1

log
(
u− i

n− i

)
> log

(u
n

)
+

∫n−1
0

log
(
u− x

n− x

)
dx

= log
(u
n

)
+

[
(u− n) · log

(
u− n

n− x

)
− (u− x) · log

(
u− x

n− x

)]n−1
0

= n · (logu− logn) + (u− n+ 1) · log
(

u

u− n+ 1

)
− logn︸ ︷︷ ︸

=:T

.

The summand T is non-negative, since using Bernoulli’s inequality we get

T = log
((
1+ n−1

u−n+1

)u−n+1)
− logn > log

(
1+ (u−n+1)·(n−1)

u−n+1

)
− logn = 0 .

Hence, the lemma follows. �

3.3.2. Left-Perfect Matchings

A necessary and sufficient condition for the existence of a left-perfect matching in a
bipartite graph G = (L ∪ R,E) is given by the marriage condition (MC), which states
that each non-empty set of left nodes must have a neighborhood of at least equal size.
This is extremely clearly in the case that G is 1-left-regular like Gdn,m for d = 1. But
as we have mentioned in Section 3.1.1.3, such a graph is not very interesting for us
because of the following well known property.

Lemma 3.3.2 (“Birthday Paradox”). Let d = 1 and let n(m) = ω(
√
m). Then

w. h. p. Gdn,m admits no left-perfect matching.

Proof. The following is folklore.
The probability that Gdn,m admits a left-perfect matching is exactly

mn

mn
= exp

(
n−1∑
i=1

ln
(
1−

i

m

))
=: p(n,m) .

Since f(x) = 1− x
m

is monotonically decreasing for 0 6 x 6 n− 1 < m, where x ∈ R,
we have that the probability p can be bounded from above via

p(n,m) 6 exp
(∫n−1
0

ln
(
1−

x

m

)
dx
)

=: P(n,m) .

41

3. Dictionary and Membership

Due to integration by parts and using that x
m−x = −1+ m

m−x , we get

P(n,m) = exp
([
x · ln

(
1−

x

m

)
− x−m · ln(m− x)

]n−1
0

)
= exp

(
(n− 1) · ln

(
1−

n− 1

m

)
︸ ︷︷ ︸

=:P0(n,m)

+m · ln
(

m

m− (n− 1)

)
− (n− 1)︸ ︷︷ ︸

=:P1(n,m)

)
.

Let n =
√
z ·m for z > 1. By substituting m with n2/z, we determine the limits

lim
n→∞P0(n,n2/z) = lim

n→∞ ln
(
1−

n− 1

n2/z

)n−1
= −z

lim
n→∞P1(n,n2/z) = lim

n→∞
ln
(

n2/z

n2/z−(n−1)

)
− n−1
n2/z

1
n2/z

=
z

2
.

Therefore, we have that limn→∞ P(n,n2/z) = e− z2 , which implies the lemma. �

With turning to bipartite graphs of larger left degree the determination of a left-perfect
matching is no longer trivial but remains relatively easy. A standard method, not
only for bipartite but for general graphs, is to start with an empty matching M and
then iteratively find an augmenting path P with respect to M and replace M by
the symmetric difference P ⊕M. Here and in the following, a path in this context is
considered as set of edges. The algorithm stops, if there is no augmenting path with
respect to M. It is a classical result by Berge that at this point M has the largest
possible size.

Theorem 3.5 (Maximum Cardinality Matching [Ber57, Theorem 1])
A matching M in a graph G is a matching of maximum cardinality if and only if G
has no augmenting path with respect to M.

Since in a bipartite graph G each edge is incident to a left node, a maximum cardinality
matching in G has also the maximum number of matched left nodes.

3.3.3. Minimum Weight Left-Perfect Matchings

In Section 3.6 we will consider matchings in weighted bipartite graphs, that is graphs
G = (L ∪ R,E) with an additional weight function

ω : E→ R .

Our aim is to determine matchings with maximum cardinality that have minimum
weight, where we define the weight of any edge set E ′ ⊆ E as

ω+(E ′) :=
∑
e∈E′

ω(e) .

42

3.3. Basics

In order to obtain a minimum weight maximum cardinality matching one can use
the augmenting path approach discussed above. Given a matching M one chooses an
augmenting path P with respect to M that minimizes the weight ω+(M⊕ P), or with
other words, the incremental weight of P with respect to M, defined as

ω±M(P) := ω+(P −M) −ω+(P ∩M) = ω+(M⊕ P) −ω+(M) ,

must be minimal. This is subsumed in the following standard lemma.

Lemma 3.3.3 (Optimality of Minimum Additional Weight, e. g., [Koz91,
Lemma 19.8]). Let M be a minimum weight matching of size |M| and let P be an
augmenting path forM of minimum incremental weight among all augmenting paths
for M. Then the matching M⊕ P is a minimum weight matching of size |M|+ 1.

On that basis, Algorithm 4 shows a simple method to determine a maximum cardinality
matching of minimum weight. Now a minor observation, which will become useful for

Algorithm 4: min_weight_max_card_matching
Input : Bipartite graph G = (V,E), and weight function ω : E→ R.
Output : Maximum cardinality matching M ⊆ E of minimum weight.
Require : Function min_add_weight_aug_path(G,M) that returns an augmenting

path P in G with respect to M that has minimum incremental weight
ω±M(P) if it exists, and otherwise returns ∅.

M← ∅; P ← ∅;
repeat

P ← min_add_weight_aug_path(G,M);
M←M⊕ P;

until P = ∅;
return M;

us, is that with this strategy of choosing augmenting paths the incremental weight for
bipartite graphs can only increase with each round.

Lemma 3.3.4 (Increasing Additional Weight). Let G be a bipartite graph and
let Mi be the matching M in Algorithm 4 on input G at the point where |M| = i,
and let Pi be the augmenting path for Mi. Furthermore, let s be the size of the
resulting matching. Then the following holds:

ω±M0
(P0) 6 ω

±
M1

(P1) 6 ω
±
M2

(P2) 6 . . . 6 ω±Ms−1
(Ps−1) .

Proof. Assume for a contradiction we have ω±Mi+1
(Pi+1) < ω

±
Mi

(Pi) for fixed i > 0.
Recall that Pi is an augmenting path with respect to Mi and Pi+1 is an augmenting

path with respect to Mi+1 =Mi ⊕ Pi. There are two cases.

43

3. Dictionary and Membership

Case (i): Pi+1 is also an augmenting path with respect to Mi. It follows that Pi and
Pi+1 must be node disjoint and hence ω±Mi

(Pi+1) = ω±Mi+1
(Pi+1) < ω

±
Mi

(Pi). But
then in round i the algorithm would have chosen Pi+1 instead of Pi, a contradiction.
Case (ii): Pi+1 is not an augmenting path with respect to Mi and becomes an

augmenting path for Mi+1 via switching the edges of Pi from matched to unmatched
and vice versa.
For ease of discussion, we define Gj to be the directed bipartite graph that results

from G by orienting each matching edge ofMj from right to left and each non-matching
edge from left to right for all j ∈ [s]. So in Gi the path Pi is directed from left to right,
starting at an unmatched left node v0 and ending at an unmatched right node vt. Let
v0, v1, . . . , vt be the sequence of nodes of Pi in Gi from left to right. In Gi+1 the path
Pi is directed from right to left starting at vt and ending at v0.

Since Pi and Pi+1 are not node disjoint, it is possible that there exist cycles C in the
undirected graph G such that C = AB and A is subset of Pi − Pi+1 and B is a subset
of Pi+1 − Pi. For each such cycle there are two possibilities. Either C is a directed (and
hence an alternating) cycle in Gi, called forward cycle, or C is a directed cycle in Gi+1,
called backward cycle. In both cases C has even length.

Now consider Gi+1. We follow Pi+1 from its unmatched left node to its unmatched
right node and define va to be the node of Pi that is reached first by Pi+1 and vb to be
the node of Pi that is reached last by Pi+1. Let Pi = D0D1D2, where D1 is the sub-path
between va and vb, D0 starts at v0, and D2 ends at vt; and let Pi+1 = E0E1E2, where
E0 starts at a free left node and ends at va, E1 is the sub-path of Pi+1 between va and
vb, and E2 starts at vb and ends at a free right node.
The sub-path E1 of Pi+1 uses at least one edge of Pi. Moreover, E1 can leave and

come back to Pi several times via forward and backward cycles.

Claim 1 (Bypass Costs). For any such cycle C the following holds:

(i) If C is a forward cycle, then ω±Mi+1
(C ∩ Pi+1) > ω±Mi+1

(C ∩ Pi).

(ii) If C is a backward cycle, then ω±Mi+1
(C ∩ Pi+1) > −ω±Mi+1

(C ∩ Pi).

Proof of Claim. Let C be a directed cycle, either in Gi or in Gi+1 and let A = C∩Pi
and B = C ∩ Pi+1. Path A starts at a right node vl and ends at a left node vk and B
starts at vk and ends at vl but uses no other nodes of Pi in between.
If C is a directed cycle in Gi, then we have l < k and it holds

ω+(A ∩Mi) +ω
+(B ∩Mi) 6 ω

+(A−Mi) +ω
+(B−Mi) ,

since otherwise, there is matching M ′i = Mi ⊕ C of size |M ′i| = |Mi| and weight
ω+(M ′i) < ω

+(Mi), which contradicts the assumption that Mi has minimum weight
among all matchings of size |Mi|. We are interested in the incremental weight of the
part B of Pi+1 with respect to Mi+1, i. e., in Gi+1. Since the change from Gi to Gi+1

44

3.3. Basics

reverses all edges from A while the orientation of the edges of B remains the same, the
following holds:

ω±Mi+1
(B) = ω±Mi

(B) = ω+(B−Mi) −ω
+(B ∩Mi)

> ω+(A ∩Mi) −ω
+(A−Mi)

= ω+(A−Mi+1) −ω
+(A ∩Mi+1) = ω

±
Mi+1

(A) .

Analogously, if C is a directed cycle in Gi+1, then we have l > k and

ω+(A ∩Mi+1) +ω
+(B ∩Mi+1) 6 ω

+(A−Mi+1) +ω
+(B−Mi+1) ,

from which it follows that ω±Mi+1
(B) > −ω±Mi+1

(A), and hence the claim holds. �

In order to bound the incremental weight of Pi+1, we have to consider two cases.
a > b. From Claim 1 it follows that regardless of the number and order of forward and
backward cycles that are used by the sub-path E1 of Pi+1, the incremental weight
of E1 with respect to Mi+1 cannot be smaller than the incremental weight of the
sub-path D1 of Pi; more formally

ω±Mi+1
(E1) > ω

±
Mi+1

(D1) = −ω±Mi
(D1) .

Furthermore, it holds that ω±Mi
(E0) > ω

±
Mi

(D0D1), since otherwise E0D2 would be
an augmenting path for Mi of lower incremental weight than Pi, which contradicts
the minimality of ω±Mi

(Pi). Symmetrically, we have that ω±Mi
(E2) > ω

±
Mi

(D1D2),
because D0E2 is also an augmenting path forMi. Using that ω±Mi

(E0) = ω
±
Mi+1

(E0)

and ω±Mi
(E2) = ω

±
Mi+1

(E2), we conclude

ω±Mi+1
(Pi+1) = ω

±
Mi+1

(E0) +ω
±
Mi+1

(E1) +ω
±
Mi+1

(E2)

> ω±Mi
(D0D1) −ω

±
Mi

(D1) +ω
±
Mi

(D1D2)

= ω±Mi
(D0D1D2) = ω

±
Mi

(Pi) .

a < b. Analogously to the first case, in consequence of Claim 1, we have that

ω±Mi+1
(E1) > −ω±Mi+1

(D1) = ω
±
Mi

(D1) ,

as well as ω±Mi
(E0) > ω

±
Mi

(D0), and ω±Mi
(E2) > ω

±
Mi

(D2). It follows that

ω±Mi+1
(Pi+1) = ω

±
Mi

(E0) +ω
±
Mi+1

(E1) +ω
±
Mi

(E2)

> ω±Mi
(D0) +ω

±
Mi

(D1) +ω
±
Mi

(D2)

= ω±Mi
(D0D1D2) = ω

±
Mi

(Pi) .

In both cases we have a contradiction to the assumption that ω±Mi+1
(Pi+1) < ω

±
Mi

(Pi).
This finishes the proof of the lemma. �

45

3. Dictionary and Membership

3.4. The Generalized Selfless Algorithm

In this section we discuss experimental results concerning the generalized selfless
algorithm (Algorithm 3) — parts of them are presented in [DGM+09].

3.4.1. Graph Model

We consider hypergraphs Hdm,n of type B. These are random hypergraphs that consist
of the node set [m] as well as n hyperedges chosen uniformly at random from

(
[m]
d

)
with replacement.

3.4.2. Problem Description

Our aim is to investigate the potential of Algorithm 3 for solving the following problem.
Given Hdm,n and parameters k and `. Find a (k , `)-orientation of the hypergraph, i. e.,
an orientation of the edges such that each edge is directed to k pairwise distinct nodes
and the indegree of each node is at most `.

Remark. Of course, maximum flow algorithms, see, e. g., [AMO93, Chapters 6–8], and
for k = 1 maximum cardinality matching algorithms, see, e. g., [AMO93, Section 12.3],
can be used to solve this problem, cf., Section 3.6.3.1. However, their running time is
not linear in the number of edges.

As we have discussed in Section 3.1.1.5 for constant (d, k , `) there is an orientation
threshold ĉk ,`(d) such that if the load factor, or edge density, c = n/m is bounded
away by a constant, then Hdm,n admits a (k , `)-orientation a. a. s. if c is below the
threshold; and Hdm,n admits no (k , `)-orientation a. a. s. if c is above the threshold.
Table 3.4.2 lists some values.

For d = k + 1 > 2 and ` = 1, the thresholds are simply given via

ĉk ,`(d) =
1

d · (d− 1)
,

as shown, e. g., in [LP12, Section 2]. For the other relevant cases, i. e., d > k > 1, ` > 1,
with max{d − k , `} > 2, they can be defined using two functions, cf., Section 2.3.1,
which we call key function

key(λ,d, k , `) =
λ

d · Pr
(
Bin

[
d− 1, Pr(Po[λ] < `)

]
< k

) , (3.1)

and density function

dens(λ,d, k , `) =
λ ·
∑k−1
i=0 (k − i) · Pr

(
Bin

[
d, Pr(Po[λ] < `)

])
d · Pr (Po[λ] > `+ 1) · Pr

(
Bin

[
d− 1, Pr(Po[λ] < `)

]
< k

) . (3.2)

46

3.4. The Generalized Selfless Algorithm

k�` 1 2 3 4 5 6 7

1 0.91794 1.97640 2.99186 3.99701 4.99887 5.99957 6.99983
2 0.16667 0.75804 1.29856 1.82824 2.35160 2.87067 3.38660

(a) d = 3

k�` 1 2 3 4 5 6 7

1 0.97677 1.99648 2.99939 3.99989 4.99998 6.00000 7.00000
2 0.37985 0.92664 1.45154 1.96692 2.47701 2.98385 3.48858
3 0.08333 0.44086 0.78921 1.13669 1.48303 1.82827 2.17251

(b) d = 4

Table 3.4.2.: Thresholds ĉk ,`(d) for the existence of a (k , `)-orientation of Hdm,n. The
edge densities are rounded to five decimal places.

As shown in [Lel12a, Lel12b], ĉk ,`(d) is the value of the key function at the unique
positive lambda where the density function equals `, see Section 2.3.1, i. e.,

ĉk ,`(d) = key(λden
` ,d, k , `), where λden

` ∈ (0,∞) is the solution of dens(λ) = `.

3.4.3. Algorithm

We give another description of the generalized selfless algorithm as alternative to
Algorithm 3 in order to show how we can obtain linear running time. As before, the
alternative algorithm works in rounds, however, now the hypergraph does not remain
intact but is shrunk.
Input is a hypergraph H = (V,E) with node set V, edge set E, and parameters

d̂ — the maximum edge size,

k — the number of orientations per edge, at most the minimum edge size, and

` — the maximum indegree per node.

The algorithm works as follows.

1. Set scale to the least common multiple of 2, 3, . . . , d̂. This value is a scale factor
used to obtain integer priorities.

2. Set the maximum priority maxPrio to 1+ scale · `.

3. For each v ∈ V let incv be a variable that stores the number of edges directed
towards v. Initialize incv with 0 for all v ∈ V.

4. For each e ∈ E let reqe be a variable that stores the number of nodes to which e
must be directed. Initialize reqe with k for all e ∈ E.

47

3. Dictionary and Membership

5. For each node v ∈ V let unbPriov be a variable that holds its current unbounded
priority, initialized as follows

unbPriov ← scale · incv +
∑

e∈E : v∈e
scale · reqe/|e| .

6. Insert all nodes v ∈ V with deg(v) > 0 and incv < ` into a priority queue Q

according to their bounded priority prio(v), where

prio(v) :=

{
0, if deg(v) + incv 6 `

min {maxPrio,unbPriov} , otherwise
.

(The priority queue and the data structures for the nodes and edges are sketched
afterwards.)

7. While Q is not empty do:

a) Find a node v̌ in Q with minimum priority; break ties by randomization.

b) If prio(v̌) = maxPrio, then return failure. Else
i. Find an edge ě of minimum size |ě| that is incident with v̌; break ties

by randomization.

ii. Store: “ ě is directed towards v̌”.

iii. Increment incv̌ by 1 and unbPriov̌ by 1 · scale . Decrement req ě by 1.

iv. Create an empty list LE for edges that have to be updated as well as
an empty list LV for nodes that have to be updated.

v. If incv̌ < `, then enqueue only ě on LE, otherwise collect all edges that
are incident with v̌ in LE.

vi. For all e in LE do:
A. Compute a decrement dec according to

dec ←

{
scale · (reqe + 1)/|e| if e = ě

scale · reqe/|e| otherwise
.

B. For all v from e decrement their unbounded priority unbPriov by
dec.

C. For all v from e− {v̌} increment the unbounded priority unbPriov
by scale · reqe/(|e|− 1);

D. Collect all nodes v from e in LV .

E. Remove v̌ from e. This reduces |e| and deg(v̌) by 1.

vii. If req ě = 0, then remove ě from E. This will shrink the neighborhood
of its nodes.

48

3.4. The Generalized Selfless Algorithm

viii. Update the priority queue. For each node v from LV remove v from
Q; if deg(v) > 0 and incv < `, then calculate its new bounded priority
prio(v) and re-insert v into Q.

8. If there remain edges e ∈ E with reqe > 0, then return failure.

3.4.3.1. Data Structures

The data structures for priority queue, nodes, and edges can be realized as follows.

Priority Queue The priority queue is an arrayQ[0 . . .maxPrio] of sizemaxPrio+1.
An element Q[p] is an array of pointers to nodes that have priority p.

Nodes For each node v we store a pointer to its associated cell within Q[prio(v)].
Furthermore, we hold an array of pointers to its incident edges (edge list), and an array
of pointers to its associated cells within the node lists of its incident edges (positions
in node lists).

Edges For each edge e we store an array of pointers to its incident nodes (node list),
as well as an array of pointers to its associated cells within the edge lists of its incident
nodes (positions in edge lists).
Determining the minimum priority in step 7a can be realized via linear search for

p = 0, 1, 2, . . . until a non-empty array Q[p] is found. The start value for the next round
can be adjusted in step 7(b)viii. Removing an element from an array Q[p] is done via
overwriting the element with the last entry, adjusting the pointers, and removing the
last entry. In order to remove a node from the node list of an edge and vice versa the
edge from the edge list of the node, essentially the same procedure is used.

3.4.3.2. Running Time

For the analysis we assume that (c, d̂, k , `) is constant.
The initialization of unbPriov for all v ∈ V needs time O(n), since each edge e has

to be considered only |e| 6 d̂ times. Since maxPrio is a constant, finding a node v̌ in
Q with minimum priority prio(v̌) needs constant time. If prio(v̌) < maxPrio, then v̌
has only a constant number of incident edges. Hence, determining an edge of minimum
size needs constant time too. Furthermore, the number of edges in LE and the number
of nodes in LV that have to be updated in each round of the while loop is also bounded
by a constant. Each update of a node with respect to its incident edges, its unbounded
priority, and its position in the priority data structure needs only constant time. The
same holds for each update of an edge. Since, in each round of the while loop either
an edge is directed, or the algorithm stops, the total number of rounds is linear in n.
Hence, the generalized selfless algorithm runs in time O(n) in the worst-case on input
Hdm,n for constant parameters (c,d = d̂, k , `).

49

3. Dictionary and Membership

3.4.4. Experiments

For each of the following experiments we used pseudorandom hypergraphs Hdm,n
with node set [m] and edge set [n], where all edges were randomly chosen, according
to type A or type B, via the pseudorandom number generator MT19937 “Mersenne
Twister” of the GNU Scientific Library [GDT+11, page 199].

Setup and Measurements Wemade a selection of parameter vectors (m,d, k , `). For
each of those vectors we chose load factors cstart, cend that fulfill ĉk ,` ∈ [cstart, cend] as
well as cend−ĉk ,` ≈ ĉk ,`−cstart, and created a sequence of configurations

(
(ci,m,d)

)
i∈[l],

where ci = cstart + i · 10−4 and l = b(cend − cstart) · 104c + 1. According to each
configuration (ci,m,d) we generated 100 pseudorandom hypergraphs Hdm,n with n =

ci ·m edges. On each hypergraph we ran the generalized selfless algorithm in order
to determine a (k , `)-orientation. Finding a legal orientation was considered a success,
finding no legal orientation was considered a failure. We measured the failure rate ξi
among 100 hypergraphs as a function of ci and tried to estimate the value of c, where
the failure rate is about 0.5. For that, we fit the sigmoid function

σ(c;γ, δ) =
1

1+ e−(c−γ)/δ
(3.3)

to the sequence of load factor and failure rate pairs
(
(ci, ξi)

)
i∈[l], via gnuplot [WKL+12],

using the method of least squares. We determined values of γ and δ that lead to a
local minimum of the sum of squares of residuals

Σsre =
∑
i∈[l]

(
σ(ci;γ, δ) − ξi

)2 . (3.4)

The point c = γ is the inflection point of (3.3), which has the property that σ(γ;γ, δ) =
0.5, for δ 6= 0. Our interest is in the absolute difference between the inflection point
given by the fit and the theoretical threshold value ĉk ,`.

Results Here we investigate the gradient of the failure rate of the generalized selfless
algorithm near the theoretical orientation thresholds.

I. Table 3.4.3 gives experimental evidence that our simple algorithm is able to
find placements for edge densities quite close to the calculated thresholds ĉk ,`,
for hypergraphs of type A and type B. These results substantiate Conjecture 3.1.1.
The absolute difference of the inflection point of the fit function and the threshold
|ĉk ,`(d) − γ|, as well as the error of the fit Σsre, are very small in the “non-extreme
cases”, i. e., for max{d − k , `} > 2, and slightly larger in the “extreme case”, i. e., for
d− k = ` = 1. The slope of the sigmoid curve increases and simultaneously the error
Σsre decreases with increasing d, increasing `, and decreasing k . The transition from
total success to total failure is much sharper in the non-extreme cases, see Figure 3.4.3,
than in the extreme cases, see Figure 3.4.4.

50

3.4. The Generalized Selfless Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.976755

Σsre = 0.00412059

measured data
σ(c;γ, δ)

(a) (d, k , `) = (4, 1, 1), 41 data points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.378 0.3785 0.379 0.3795 0.38 0.3805 0.381 0.3815

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.379846

Σsre = 0.0203106

measured data
σ(c;γ, δ)

(b) (d, k , `) = (4, 2, 1), 41 data points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.9945 1.995 1.9955 1.996 1.9965 1.997 1.9975 1.998

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 1.99648

Σsre = 0.000927707

measured data
σ(c;γ, δ)

(c) (d, k , `) = (4, 1, 2), 41 data points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.925 0.9255 0.926 0.9265 0.927 0.9275 0.928 0.9285

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.926642

Σsre = 0.00563194

measured data
σ(c;γ, δ)

(d) (d, k , `) = (4, 2, 2), 41 data points

Figure 3.4.3.: Failure rate of the generalized selfless algorithm when determining
non-extreme orientations of pseudorandom hypergraphs Hdm,n with 106 nodes.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.485 0.49 0.495 0.5 0.505 0.51 0.515

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.504546

Σsre = 0.392004

measured data
σ(c;γ, δ)

(a) (d, k , `) = (2, 1, 1), 321 data points

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.08 0.081 0.082 0.083 0.084 0.085 0.086 0.087

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.0849485

Σsre = 0.113197

measured data
σ(c;γ, δ)

(b) (d, k , `) = (4, 3, 1), 81 data points

Figure 3.4.4.: Failure rate of the generalized selfless algorithm when determining
extreme orientations of pseudorandom hypergraphs Hdm,n with 106 nodes.

51

3. Dictionary and Membership

(d, k , `) [cstart, cend]

(2, 1, 1) [0.48400, 0.51600]
(3, 1, 1) [0.91594, 0.91994]
(4, 1, 1) [0.97477, 0.97877]
(4, 1, 2) [1.99448, 1.99848]
(4, 1, 3) [2.99739, 3.00139]
(4, 2, 1) [0.37785, 0.38185]
(4, 2, 2) [0.92464, 0.92864]
(4, 2, 3) [1.44954, 1.45354]
(4, 3, 1) [0.07933, 0.08733]
(4, 3, 2) [0.43886, 0.44286]
(4, 3, 3) [0.78721, 0.79121]

γ |ĉk ,`(d) − γ| Σsre

0.50454 4540 · 10−6 0.307141
0.917902 33 · 10−6 0.0166131
0.976756 14 · 10−6 0.00859291
1.99648 3 · 10−6 0.000177911
2.99938 5 · 10−6 3.44092 · 10−5
0.379823 25 · 10−6 0.0186169
0.926622 22 · 10−6 0.0174623
1.45154 2 · 10−6 0.00926342
0.0849781 1645 · 10−6 0.154957
0.440838 17 · 10−6 0.0192226
0.789234 20 · 10−6 0.00878215

(a) type A

γ |ĉk ,`(d) − γ| Σsre

0.504546 4546 · 10−6 0.392004
0.917933 2 · 10−6 0.00928238
0.976755 15 · 10−6 0.00412059
1.99648 3 · 10−6 0.000927707
2.99939 5 · 10−6 1.03831 · 10−5
0.379846 2 · 10−6 0.0203106
0.926642 2 · 10−6 0.00563194
1.45152 22 · 10−6 0.0123738
0.0849485 1615 · 10−6 0.113197
0.44084 15 · 10−6 0.0170778
0.789214 0 0.0204965

(b) type B

Table 3.4.3.: Approximation of orientation thresholds due to curve fitting of the failure
rate of the generalized selfless algorithm using 100 pseudorandom hypergraphs Hdm,n
with 106 nodes per data point.

II. Figure 3.4.5 depicts the failure rate of the generalized selfless algorithm and the
failure rate of an optimal placement algorithm for (d, k , `) = (3, 1, 1) and pseudoran-
dom hypergraphs (type B) with 105 and 106 nodes. Clearly our algorithm can fail on
hypergraphs that admit a matching but this becomes very rare for m > 106. The slope
of the sigmoid curve increases and Σsre decreases with growing n, leading to a sharp
transition from total success to total failure.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γoo = 0.917969

γgs = 0.917893

optimal orientation (oo)
generalized selfless (gs)
σ(c;γoo, δoo)
σ(c;γgs, δgs)

(a) m = 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.916 0.9165 0.917 0.9175 0.918 0.9185 0.919 0.9195

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γoo = 0.917918

γgs = 0.917908

optimal orientation (oo)
generalized selfless (gs)
σ(c;γoo, δoo)
σ(c;γgs, δgs)

(b) m = 106

Figure 3.4.5.: Comparison of the failure rate between the generalized selfless algorithm
and an optimal placement algorithm using pseudorandom hypergraphs Hdm,n type B
with (d, k , `) = (3, 1, 1).

52

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

3.5. Towards Optimal Degree Distributions for
Irregular Cuckoo Hashing

In this section we prove Theorem 3.4, Proposition 3.1, and give evidence for Conjec-
ture 3.1.2 — the proofs appeared in [DR12a].

3.5.1. Graph Model

We study graphs Gdn,m
(
(ρx)x∈S

)
of type A which are bipartite multigraphs with left

node set S, |S| = n, and right node set [m], where each left node x from S has Dx
right neighbors. The right neighbors are chosen at random with replacement from [m],
i. e., they are independent as well as uniformly distributed in [m] and therefore may
coincide. The number of choices Dx, which is the degree of x, is a random variable
that follows some probability mass function ρx. For each x from S let Dx > 1 and let
∆x be the mean of Dx, that is,

∆x := Exp(Dx) =
∑
d>1

d · ρx(d) .

Furthermore, let d be the average mean, i. e.,

d :=
1

n
·
∑
x∈S

∆x .

We assume that the random variables Dx, x ∈ S, are independent and d is a given
constant. To simplify notation, for each set S ′ ⊆ S we define GS′ to be the induced
bipartite subgraph of Gdn,m with left node set S ′ and right node set [m], so in particular
we use GS synonymously for Gdn,m. Furthermore, for each S ′ ⊆ S we define MS′ as
the event that GS′ has a left-perfect matching. The probability of such an event is
called success probability.

3.5.2. Problem Description

Our aim is to determine a sequence of probability mass functions (ρx)x∈S that maximizes
the probability that the random graph Gdn,m

(
(ρx)x∈S

)
of type A has a left-perfect

matching. Such a sequence is called optimal.

3.5.3. Optimality of Concentration in a Unit Length Interval

Here we prove Theorem 3.4. Let n, m, and d be fixed and consider some arbitrary
but fixed sequence of probability mass functions (ρx)x∈S. We will show that if this
sequence has certain properties contradicting one of the conditions in Theorem 3.4,

53

3. Dictionary and Membership

then we can apply a modification, obtaining a new sequence (ρ ′x)x∈S with the same
average expected value d, such that the probability that G

(
(ρ ′x)x∈S

)
has a left-perfect

matching is strictly higher than the probability that G
(
(ρx)x∈S

)
has a left-perfect

matching.
Lemma 3.5.1 (Concentration Around the Mean, variant of [DGM+10,
Proposition 4]). Let (ρx)x∈S be given. Let z ∈ S be arbitrary but fixed. If in ρz
two degrees with distance at least 2 have non-zero probability then (ρx)x∈S is not
optimal.

The lemma was stated in [DGM+10] and proven in [DGM+09] for a slightly different
graph model. Its proof runs along the lines of [DGM+09]; it is given in Section 3.5.3.1
for completeness.
Lemma 3.5.1 implies that in an optimal sequence each left node has either a fixed

degree (with probability 1) or two possible degrees with non-zero probability, where
these degrees differ by 1. The lemma and [DGM+09, DGM+10] do not say anything
about the relation between the degrees of different nodes. This follows next.
Lemma 3.5.2 (Average Degrees are Close, [DR12a, Lemma 2]). Let (ρx)x∈S
be given, where for each x ∈ S the only degrees with non-zero probability are from
{b∆xc, d∆xe}. Let y, z ∈ S be arbitrary but fixed. If b∆yc and b∆zc have distance at
least 2, or d∆ye and d∆ze have distance at least 2, then (ρx)x∈S is not optimal.

Lemma 3.5.2 is proved in Section 3.5.3.2. Using Lemma 3.5.2 one concludes that an
optimal sequence restricts the means ∆x, for each x ∈ S, to an open interval (l−1, l+1)
for some integer constant l > 2. Hence all degrees that appear with non-zero probability
must be from {l − 1, l, l + 1}. With the help of the next lemma one concludes that
actually two values are enough.
Lemma 3.5.3 (Two Neighboring Degrees, [DR12a, Lemma 3]). Let (ρx)x∈S
be given, where for each x ∈ S the only degrees with non-zero probability are from
{b∆xc, d∆xe}. Let y, z ∈ S be arbitrary but fixed and assume that ∆y and ∆z are
non-integral. If d∆ye and b∆zc have distance 2 then (ρx)x∈S is not optimal.

Lemma 3.5.3 is proved in Section 3.5.3.3. Combining Lemmas 3.5.1 to 3.5.3, we obtain
the following for an optimal sequence. If l 6 d < l + 1, then we have l 6 ∆x 6 l + 1
for all x ∈ S, and all degrees that appear with non-zero probability must be from
{l, l + 1}. If d is an integer, then by definition of d we have ρx(d) = 1 for all x ∈ S.
Hence Theorem 3.4 follows.

So, to complete the proof of Theorem 3.4, it remains to show Lemmas 3.5.1 to 3.5.3,
which is done in Sections 3.5.3.1 to 3.5.3.3.

3.5.3.1. Degrees Must be Concentrated Around the Mean

In this section we prove Lemma 3.5.1. Let (ρx)x∈S be given and consider some z from S.
We will show that if ρz gives positive weight to two degrees, say l and k, and it holds

54

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

that l < ∆z < k as well as k− l > 2, then the probability that there is a left-perfect
matching for the whole key set S cannot be maximal. More precisely we will show that
modifying ρz to ρ ′z via

ρ ′z(k) = ρz(k) − ε ρ ′z(l) = ρz(l) − ε

ρ ′z(k− 1) = ρz(k− 1) + ε ρ ′z(l+ 1) = ρz(l+ 1) + ε ,

for ε ∈ (0,min{ρz(l), ρz(k)}], and ρ ′z(d) = ρz(d) for all other values d, decreases the
failure probability. That is

Pr
(
MS

)
> Pr′

(
MS

)
,

where Pr and Pr′ refer to the probability spaces created by the sequences (ρx)x∈S and
((ρx)x∈S−{z}, ρ ′z), respectively. Clearly, ∆z and d remain unchanged.
For each element x ∈ S− {z} we fix its degree and neighborhood Nx = N({x}). The

resulting graph GS−{z} can have zero, one or more left-perfect matchings. Let B ⊆ T
be the set of right nodes of GS−{z} that are matched in every left-perfect matching for
S− {z}. Since there can be a left-perfect matching for S only if there is a left-perfect
matching for S− {z} it is sufficient to show that

Pr
(
MS | MS−{z}

)
> Pr′

(
MS | MS−{z}

)
. (3.5)

Using the law of total probability we see that (3.5) is equivalent to

n−1∑
b=0

Pr
(
MS | MS−{z}, |B| = b

)
· Pr

(
|B| = b | MS−{z}

)
>

n−1∑
b=0

Pr′
(
MS | MS−{z}, |B| = b

)
· Pr′

(
|B| = b | MS−{z}

)
.

(3.6)

For GS to have a left-perfect matching there must be at least one node in the neigh-
borhood Nz of z that is not an element of B. Therefore we have to show

n−1∑
b=0

∑
d>1

ρz(d) ·
(
b

m

)d · Pr (|B| = b | MS−{z}

)

>

n−1∑
b=0

∑
d>1

ρ ′z(d) ·
(
b

m

)d · Pr′ (|B| = b | MS−{z}

)
.

Clearly, Pr
(
|B| = b | MS−{z}

)
is not affected by changing ρz to ρ ′z and if b = 0 the

modification from ρz to ρ ′z does not affect the failure probability. Hence it is sufficient
to show for each b > 0 that∑

d>1

ρz(d) ·
(
b

m

)d
>
∑
d>1

ρ ′z(d) ·
(
b

m

)d
. (3.7)

55

3. Dictionary and Membership

By definition of ρ ′z the right-hand side of (3.7) equals

∑
d>1

ρz(d) ·
(
b

m

)d
+ ε ·

(
−

(
b

m

)l
+

(
b

m

)l+1
+

(
b

m

)k−1
−

(
b

m

)k)
,

such that with ε > 0, it follows that (3.7) is equivalent to(
b

m

)l
·
(
1−

b

m

)
>

(
b

m

)k−1
·
(
1−

b

m

)
,

which is true since 0 < b/m < 1, k−l > 2. As the event {b > 0} has positive probability,
inequality (3.5) holds. This finishes the proof of Lemma 3.5.1. �

3.5.3.2. Average Degrees of Different Nodes are Close

In this section we prove Lemma 3.5.2. Consider the probability mass functions ρy and
ρz for the degrees Dy and Dz, respectively. By the hypothesis of the lemma, ρy and
ρz are concentrated on two values each, i. e.,

ρy(k) = p ρz(l) = q

ρy(k+ 1) = 1− p ρz(l+ 1) = 1− q ,

with p,q ∈ [0, 1]. By the assumption, we may arrange things so that k− l > 2 and we
have one of the following situations:

(I) k = b∆yc l = b∆zc p = 1− (∆y − b∆yc) q = 1− (∆z − b∆zc)
(II) k+ 1 = d∆ye l+ 1 = d∆ze p = d∆ye− ∆y q = d∆ze− ∆z .

We will show that changing ρy to ρ ′y and ρz to ρ ′z such that ∆ ′y = ∆y − 1 and
∆ ′z = ∆z + 1, via

ρ ′y(k− 1) = p ρ ′z(l+ 1) = q

ρ ′y(k) = 1− p ρ ′z(l+ 2) = 1− q ,

will strictly increase the probability that GS has a left-perfect matching, while it does
not change d. For this, we will show

Pr
(
MS

)
> Pr′

(
MS

)
,

where, similarly as before, Pr and Pr′ refer to the probability spaces created by the
sequences (ρx)x∈S and ((ρx)x∈S−{y,z}, ρ ′y, ρ ′z), respectively. We fix the neighborhood
Nx for the remaining elements x ∈ S− {y, z} and therefore the graph GS−{y,z}. Since
there can be a left-perfect matching for S only if there is a left-perfect matching for
S− {y, z}, it is sufficient to show that

Pr
(
MS | MS−{y,z}

)
> Pr′

(
MS | MS−{y,z}

)
. (3.8)

56

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

Let

Fail(dy,dz) = Pr
(
MS | MS−{y,z},Dy = dy,Dz = dz

)
. (3.9)

Then (3.8) holds if and only if∑
dy∈{k,k+1}
dz∈{l,l+1}

Fail(dy,dz) · ρy(dy) · ρz(dz) >
∑

dy∈{k−1,k}
dz∈{l+1,l+2}

Fail(dy,dz) · ρ ′y(dy) · ρ ′z(dz) . (3.10)

Note that if k − l = 2, then the summand regarding dy = k and dz = l + 1 on the
left-hand side is the same as the summand regarding dy = k− 1 and dz = l+ 2 on the
right-hand side. Hence, to prove (3.10) it is sufficient to show that for

k− l > 3 : Fail(k, l+ 1) > Fail(k− 1, l+ 2) , and for

k− l > 2 : Fail(k+ 1, l) > Fail(k, l+ 1)

∧ Fail(k+ 1, l+ 1) > Fail(k, l+ 2)

∧ Fail(k, l) > Fail(k− 1, l+ 1) .

This is subsumed by the following condition:

Fail(k, l) > Fail(k− 1, l+ 1) , for k− l > 2 . (3.11)

To prove (3.11), consider the fixed graph GS−{y,z}. We classify the right nodes of
GS−{y,z} according to the following three types:

. We call v blocked if v is matched in all left-perfect matchings of GS−{y,z}.

. We call v free if v is never matched in any left-perfect matching of GS−{y,z}.

. We call v half-free if v is neither blocked nor free.

Let B be the set of blocked nodes, let F be the set of free nodes, and let F be the
set of half-free nodes. Elements of B = F ∪ F are called non-blocked nodes. For a
moment consider only the non-blocked nodes. For each right node set V ⊆ B let HV
be an auxiliary graph with node set V that has an edge between two nodes v1, v2 ∈ V
if and only if there exists a left-perfect matching for GS−{y,z} in which v1 and v2
simultaneously are not matched. Now consider the full set B of non-blocked nodes and
the corresponding graph HB. We define ∼ as the following binary relation: v1 ∼ v2, for
nodes v1 and v2, if {v1, v2} is not an edge in HB. The following observation is crucial.

Claim 2 (Independent Sets). The relation ∼ (no edge) is an equivalence relation.

Proof of Claim. Clearly ∼ is reflexive and symmetric. Assume for a contradiction ∼

is not transitive. That is, we have three nodes v1, v2 and v3 with v1 ∼ v3 and v2 ∼ v3

57

3. Dictionary and Membership

but v1 6∼ v2. Let V = {v1, v2, v3} and consider the graph HV . By definition of ∼ the
edge {v1, v2} is present in HV , while the other edges {v1, v3} and {v2, v3} are not.

If there is a free node in V , then HV is connected since V ⊆ F ∪ F and by definition
of the edge set of HV , leading to a contradiction.
Therefore it remains to consider the case where all nodes of V are half-free nodes.

Let M and M ′ be two matchings in GS−{y,z}, where in M node v3 is unmatched but
nodes v1 and v2 are matched, and in M ′ node v3 is matched but nodes v1 and v2 are
unmatched. MatchingM exists since as a non-blocked node, v3 is unmatched in at least
one matching, and in such a matching nodes v1 and v2 must be matched because of
the absence of edges {v1, v3} and {v2, v3} in HV . Likewise matchingM ′ exists, since the
edge {v1, v2} in HV assures a matching where v1 and v2 are unmatched, and under this
assumption the absence of edge {v1, v3} implies that the half-free node v3 is matched.

Now consider the bipartite multigraph M∪M ′ consisting of all edges from both left-
perfect matchings and the corresponding nodes. We can make the following observations
about M ∪M ′:

. Nodes on the left side have degree 2, since both matchings are left-perfect.

. Nodes on the right side have degree 1 or 2; in particular, v1, v2, and v3 have
degree 1.

It follows that M ∪M ′ is a union of node-disjoint paths and cycles of even length,
where on all paths and cycles edges from M and M ′ alternate. Nodes v1 and v2 must
be at the ends of two distinct paths, since both are incident to M-edges. Node v3 must
be at the end of a path as well, incident to an M ′-edge.
Without loss of generality, we may assume that v1 and v3 do not lie on the same

path. (If they do, we know that v2 lies on a different path, and we swap the names of
v1 and v2.) Starting from M ′, we get a new left-perfect matching in which neither v1
nor v3 are matched by replacing the M ′-edges on the path with v3 by the M-edges
on this path. Therefore there must be an edge {v1, v3} in HV , which contradicts our
assumption, proving the claim. �

From the definition of ∼ and Claim 2 it follows that the right node set T of GS−{y,z}

can be subdivided into disjoint segments B ∪ I1 ∪ I2 ∪ . . . = T , where B is the set of
blocked nodes and I1, I2, . . . are the equivalence classes of ∼, which is equivalent to
saying they are the maximal independent sets in HB. (Note that each free node leads
to a one-element set I.) With this characterization of HB we can express the event
that for fixed neighborhoods Nx, x ∈ S− {y, z}, that admit a left-perfect matching for
GS−{y,z} there is no left-perfect matching for GS as follows:

{Ny ⊆ B} ∪ {Nz ⊆ B} ∪
⋃
j

{(Ny ∪Nz) ⊆ (B ∪ Ij)} . (3.12)

Let BIS−{y,z}(b, r, i1, . . . , ir) be the event that GS−{y,z} has |B| = b many blocked
nodes and r (non-empty) maximal independent sets I1, I2, . . . , Ir according to the

58

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

definition above, with |Ij| = ij and i1 6 i2 6 . . . 6 ir. Let

fail(dy,dz,b, r, i1, . . . , ir) =

Pr
(
MS | MS−{y,z},Dy = dy,Dz = dz,BIS−{y,z}(b, r, i1, . . . , ir)

)
.

From (3.12) we obtain the following, by the principle of inclusion-exclusion:

fail(dy,dz,b, r,i1, . . . , ir) =
(
b

m

)dy
+

(
b

m

)dz
−

(
b

m

)dy
·
(
b

m

)dz
+

r∑
j=1

[(
ij + b

m

)dy
−

(
b

m

)dy]
·

[(
ij + b

m

)dz
−

(
b

m

)dz]
.

Using the law of total probability we can rewrite the value Fail(dy,dz) (3.9) as follows:

Fail(dy,dz) =
∑

(b,r,i1,...,ir)

fail(dy,dz,b, r, i1, . . . , ir)·Pr(BIS−{y,z}(b, r, i1, . . . , ir) | MS−{y,z}) .

We will abbreviate fail(dy,dz,b, r, i1, . . . , ir) by fail(dy,dz) for the rest of Section 3.5.
In order to prove (3.11) it is sufficient to show

fail(k, l) > fail(k− 1, l+ 1) , (3.13)

for each BI-vector (b, r, i1, . . . , ir). Let ιj = ij/m and let β = b/m. Thus,

fail(k, l) = βk + βl − βk+l +
r∑
j=1

[
(ιj + β)

k − βk
]
·
[
(ιj + β)

l − βl
]
. (3.14)

Hence, inequality (3.13) holds if and only if

βk + βl − βk−1 − βl+1 >

r∑
j=1

([
(ιj + β)

k−1 − βk−1
]
·
[
(ιj + β)

l+1 − βl+1
]

−
[
(ιj + β)

k − βk
]
·
[
(ιj + β)

l − βl
])

or, equivalently,

(1− β) · (βl − βk−1) >
r∑
j=1

ιj ·
[
βl · (ιj + β)k−1 − βk−1 · (ιj + β)l

]︸ ︷︷ ︸
=:f(l,k,ιj,β)

. (3.15)

Note that if r = 1 there is no left-perfect matching for GS. Hence we are only interested
in the case r > 2, which implies that ij < m− b and ιj < 1− β, respectively. Consider
the right-hand side of (3.15). The expression within the square brackets increases
monotonically with increasing ιj, since we have

∂f(l,k, ιj,β)
∂ιj

= (k− 1) · βl · (ιj + β)k−2 − l · βk−1 · (ιj + β)l−1 ,

59

3. Dictionary and Membership

and k−1
l
· (ιj+β)k−l−1 > βk−l−1 holds because of k− l > 2 and ιj+β > β. Therefore

replacing ιj with 1− β within f and using that
∑r
j=1 ιj = 1− β strictly increases the

right-hand side of (3.15) and yields the left-hand side of (3.15). But since we assume
ιj < 1−β the strict inequality holds. Due to the fact that the event {r > 2} has positive
probability Lemma 3.5.2 follows. �

3.5.3.3. Optimal Distributions Use Only Two Neighboring Degrees

In this section we prove Lemma 3.5.3. Consider the probability mass functions ρy and
ρz for the degrees Dy and Dz respectively. Let b∆yc = l and b∆zc = l− 1 as well as
p = 1−(∆y− b∆yc) and q = 1−(∆z− b∆zc). By the hypothesis of the lemma we have

ρy(l) = p ρz(l− 1) = q

ρy(l+ 1) = 1− p ρz(l) = 1− q ,

with p ∈ (0, 1) and q ∈ (0, 1). To prove Lemma 3.5.3 we will show that changing ρy to
ρ ′y and ρz to ρ ′z, via

ρ ′y(l) = p+ ε ρ ′z(l− 1) = q− ε

ρ ′y(l+ 1) = 1− p− ε ρ ′z(l) = 1− q+ ε ,

for some small perturbation ε 6= 0 will strictly increase the probability that GS has a
left-perfect matching, while it does not change d. As in the proof of Lemma 3.5.2 we
will obtain that

Pr
(
MS

)
> Pr′

(
MS

)
,

proving that (ρx)x∈S cannot be optimal. As before we fix the neighborhood Nx for the
remaining elements x ∈ S− {y, z} and therefore the graph GS−{y,z}. As in Lemma 3.5.2,
we conclude that it is sufficient to show that for some perturbation term ε 6= 0 we have∑
dy∈{l,l+1}
dz∈{l−1,l}

Fail(dy,dz) · ρy(dy) · ρz(dz) >
∑

dy∈{l,l+1}
dz∈{l−1,l}

Fail(dy,dz) · ρ ′y(dy) · ρ ′z(dz) .

Subtracting the left-hand side from right-hand side gives the equivalent formulation[
−ε2 − ε · (p− q)

]
· [Fail(l, l− 1) + Fail(l+ 1, l) − Fail(l, l) − Fail(l+ 1, l− 1)]︸ ︷︷ ︸

=:K0

−ε· [Fail(l+ 1, l− 1) − Fail(l, l)]︸ ︷︷ ︸
=:K1

< 0 ,

or, abbreviated: −ε2 · K0 − ε · [(p− q) · K0 + K1]︸ ︷︷ ︸
=:L

< 0 . (3.16)

From (3.11), which was proven in Lemma 3.5.2, it follows that K1 > 0. There are three
cases.

60

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

K0 = 0. Since we have K1 > 0, it is easy to see that (3.16) holds for ε > 0.

K0 > 0. Regardless whether L is zero, positive, or negative, (3.16) holds for some small
ε 6= 0.

K0 < 0. The only critical case would be L = 0, but we will show that K1 > −K0 and
therefore L > 0, implying that (3.16) holds for small ε > 0.

Claim 3 (There is No Critical Case). K1 > −K0.

Proof of Claim. Inequality K1 > −K0 holds if and only if

Fail(l+ 1, l) + Fail(l, l− 1) > 2 · Fail(l, l) .

As before we will simply show the sufficient condition

fail(l+ 1, l) + fail(l, l− 1) > 2 · fail(l, l) .

Using (3.14) in combination with the substitutions ιj = ij/m and β = b/m the
condition can be written as

(1− β)2 ·
[
βl−1 − β2l−1

]
>

r∑
j=1

(1− β)2·
[
(ιj + β)

l · βl−1 − β2l−1
]

−

r∑
j=1

[1− (ιj + β)]
2·
[
(ιj + β)

2l−1 − (ιj + β)
l−1 · βl

]
.

Note that the subtrahend of the right-hand side is non-negative. Hence it is sufficient
to show that

(1−β)2 ·
[
βl−1 − β2l−1

]
> (1−β)2 ·

r∑
j=1

(ιj+β)
l ·βl−1− r · (1−β)2 ·β2l−1 . (3.17)

Bounding
∑r
j=1(ιj + β)

l using the binomial theorem gives

r∑
j=1

(ιj + β)
l =

r∑
j=1

l∑
i=0

(
l

i

)
· ιij · βl−i = r · βl +

l∑
i=1

(
l

i

)
· βl−i ·

r∑
j=1

ιij

< r · βl +
l∑
i=1

(
l

i

)
· βl−i ·

[
r∑
j=1

ιj

]i
= (r− 1) · βl + 1 , (3.18)

where the last step follows from
∑r
j=1 ιj = 1−β. Using (3.18) to estimate

∑r
j=1(ιj+β)

l

by (r− 1) ·βl + 1 in (3.17), followed by an obvious calculation, shows that (3.17) holds
and thus the claim. �

This finishes the proof of the lemma and hence completes the proof of Theorem 3.4.�

61

3. Dictionary and Membership

3.5.4. Essentially Two Different Strategies

In this section, we give evidence for Conjecture 3.1.2, which says that essentially two
types of degree distributions may be optimal, if the ratio n/m is fixed to some value
c 6= ĉ(d): one in which all keys are given fixed degrees l or l + 1, and one in which
each node chooses one of l and l+ 1 at random, governed by the same distribution on
{l, l+ 1}. We indicate under what circumstances the one or the other is best.
Assume we are in the situation of Theorem 3.4 (ii), i. e., l < d < l + 1 for some

integer constant l > 2 and ρx(l) ∈ [0, 1] and ρx(l+ 1) = 1− ρx(l), for each x from S.
Let y and z be two arbitrary but fixed elements of S with

ρy(l) = p ρz(l) = q

ρy(l+ 1) = 1− p ρz(l+ 1) = 1− q ,

for p ∈ [0, 1] and q ∈ [0, 1]. We would like to know if the matching probability increases
if we change the probability mass functions ρy and ρz to ρ ′y and ρ ′z, via

ρ ′y(l) = p+ ε ρ ′z(l) = q− ε

ρ ′y(l+ 1) = 1− p− ε ρ ′z(l+ 1) = 1− q+ ε ,

for some ε > 0. We note the following.

. If p > q, i. e., ∆y 6 ∆z, this modification would move both means towards
the boundary of the interval [l, l + 1]. Moving a mean beyond the boundary
cannot increase the matching probability since this would be a contradiction to
Lemma 3.5.3.

. If p < q, i. e., ∆y > ∆z, this modification would move the means towards each
other.

As in Lemma 3.5.3, it can be shown that the matching probability increases if and only
if ∑
dy,dz∈{l,l+1}

Fail(dy,dz) · ρy(dy) · ρz(dz) >
∑

dy,dz∈{l,l+1}

Fail(dy,dz) · ρ ′y(dy) · ρ ′z(dz) .

This inequality is equivalent to

[−ε2 − ε · (p− q)] · [Fail(l, l) − 2 · Fail(l, l+ 1) + Fail(l+ 1, l+ 1)]︸ ︷︷ ︸
=:K

< 0 , (3.19)

utilizing the symmetry Fail(l+ 1, l) = Fail(l, l+ 1). Whether there is an ε that makes
(3.19) true depends on K, which is independent of y, z and p,q. There are three cases.

K = 0. The modifications to ρy and ρz do not change the failure probability. We will
discuss this singularity later.

62

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

K > 0. Arrange that p > q (by interchanging y and z if necessary). Then increasing p
and decreasing q (moving the means away from each other) increases the success
probability.

K < 0. Arrange that p 6 q. If p = q, we are at a local maximum of the matching
probability, otherwise increasing p and decreasing q (moving the means closer
together) increases the success probability.

Unfortunately, using the same method as in Lemmas 3.5.2 and 3.5.3 it is not possible
to show that always K < 0 or always K > 0 happens. To see this, we try to show K > 0
which is equivalent to proving that

Fail(l, l) + Fail(l+ 1, l+ 1) > 2 · Fail(l, l+ 1) . (3.20)

As before we only consider the sufficient condition

fail(l, l) + fail(l+ 1, l+ 1) > 2 · fail(l, l+ 1) . (3.21)

This inequality is equivalent to

2 · βl − β2l +
r∑
j=1

[(ιj + β)
l − βl]2

+2 · βl+1 − β2l+2 +
r∑
j=1

[(ιj + β)
l+1 − βl+1]2

> 2 · βl + 2 · βl+1 − 2 · β2l+1 + 2 ·
r∑
j=1

[(ιj + β)
l − βl] · [(ιj + β)l+1 − βl+1] ,

where we use the substitutions ιj = ij/m and β = b/m. Moving the
∑
j-terms to the

left and the remaining β-terms to the right gives

r∑
j=1

{
(ιj + β)

2l − 2 · (ιj + β)l · βl + β2l + (ιj + β)
2l+2 − 2 · (ιj + β)l+1 · βl+1

+ β2l+2 − 2 · [(ιj + β)l − βl] · [(ιj + β)l+1 − βl+1]
}
> β2l · (1− β)2 ,

which is, by a straightforward calculation, equivalent to

r∑
j=1

[
(ιj + β)

l · (1− ιj − β) − βl · (1− β)
]2
> β2l · (1− β)2 . (3.22)

Inequality (3.22) may hold or may not hold depending on ιj and β. For example,
consider the following events:

. {β = 0}. — Then (3.22) is true for all r > 2.

63

3. Dictionary and Membership

. {r = 2, ι1, ι2 = 1/(2 · l), β = 1− 1/l}. — Then (3.22) is false.

Note that both events have positive probability.
It follows that there exists graphs GS−{y,z} in which (3.21) is true as well as graphs

in which (3.21) is false. For each pair or nodes y, z let K(y, z) be the factor K from
(3.19) with respect to the graph GS−{y,z}. It could be possible that there are nodes
y1, z1 with K(y1, z1) < 0 (their means should be made equal), and nodes y2, z2 with
K(y2, z2) > 0 (their means should be moved away from each other). So hypothetically,
it could be optimal when S is subdivided into three disjoint sets Sl, Sl+1, and Sl,l+1
where each node from Sl has fixed degree l, each node from Sl+1 has fixed degree
l+ 1, and each node from Sl,l+1 has a degree that is concentrated on l and l+ 1 with
the same mean ∆ ∈ (l, l + 1). But this would mean if we assume such an “optimal
situation” and we have three different nodes, say y1, y2 and z, where y1,y2 ∈ Sl,l+1
and z ∈ Sl, then K(y1, z) > 0 and K(y1,y2) < 0, which seems unlikely since S− {y1, z}
and S− {y1,y2} differ in only one node. (Case K = 0 does not seem plausible, either.)
Therefore we conjecture that it is optimal if one of the following two cases holds.

(F) We have S = Sl ∪ Sl+1, that is, for each x from S the mean ∆x is fixed to one of
the interval borders l and l+ 1, and therefore a fixed fraction of dde− d of the
nodes have degree l (assuming that d · n is an integer).

(B) We have S = Sl,l+1, that is, d = ∆x for each x from S, and therefore the number
of nodes of degree l follow a binomial distribution with parameters n and dde−d.

For the rest of the discussion we only focus on these two degree distributions (fixed
and binomial) and we try to argue under which conditions (F) is optimal and when
(B) is optimal.

Again our starting point is (3.20). Now fix the degree of all left nodes from GS and
let α be the fraction of nodes from S with degree l and let α ′ be the fraction of nodes
from S− {y, z} with degree l. Then there are three situations to distinguish according
to the degrees of y and z.

(i) α = α ′ + 2/n, that is y and z have degree l,

(ii) α = α ′ + 1/n, that is one node has degree l the other node has degree l+ 1,

(iii) α = α ′, that is both nodes have degree l+ 1.

Inequality (3.20) states that the increase of the failure probability from (ii) to (i) is
larger than the increase of the failure probability from (iii) to (ii) for all α ′ from [0, 1],
that is, the failure probability as a function of α should be convex (while strictly
monotonically increasing). Experimental results as shown in Figure 3.5.6 suggest that
this is not the case in general. In fact there are three notable situations for fixed d, two
of them shown in Figures 3.5.6 (a) and 3.5.6 (b). Let f(α) denote the failure probability
as a function of α.

64

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

fa
ilu

re
ra
te

am
on

g
1
0
4
ra
nd

om
gr
ap

hs

α

dde− d

approximation of f(α)

(a) c < ĉ(d), c = 0.956

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

fa
ilu

re
ra
te

am
on

g
1
0
4
ra
nd

om
gr
ap

hs

α

dde− d

approximation of f(α)

(b) c > ĉ(d), c = 0.958

Figure 3.5.6.: Rate of pseudorandom bipartite graphs GS with m = 105 right nodes,
c ·m = n left nodes, α ·n left nodes of degree 3, and (1−α) ·n left nodes of degree 4 that
have no left-perfect matching, as a function of α. The reference average mean degree is
d = 3.5. The plots show that the failure function f(α) has probably a transition from
convex to concave. The theoretical threshold ĉ(3.5) is approximately 0.957.

. If c < ĉ(d), then f is convex in a neighborhood of dde−d. By Jensen’s inequality
it follows that the failure probability for fixed degree distribution f(dde− d) is
smaller than the failure probability under the binomial distribution

n∑
i=0

f(i/n) ·
(
n
i

)
· (dde− d)i · (1− dde+ d)n−i ,

ignoring the right tail of the binomial distribution that reaches the concave part
of f(α), since the tail covers only an exponentially small probability mass.

. If c > ĉ(d), then f is concave in a neighborhood of dde − d and the binomial
degree distribution leads to a smaller failure probability than the fixed degree
distribution.

. If c = ĉ(d) and dde− d = 0.5, then, assuming that f is symmetric relative to its
point of inflection

(
dde− d, f(dde− d)

)
, we have that the binomial distribution

and the fixed degree distribution lead to the same failure probability. Moreover,
under these constraints each mixed distribution where for some nodes the degree
is concentrated on l and l+ 1 and for the rest of the nodes the degree is fixed to
l or l+ 1 leads to K = 0, the singularity mentioned above.

In order to back up this observation, an additional experiment was done which directly
compares the failure rates for degree distributions around the threshold. The results are
shown in Figure 3.5.7. Although the differences are small they confirm the conjecture
that if c < ĉ(d), then the fixed degree distribution is optimal (F), and if c > ĉ(d), then
the binomial degree distribution is optimal (B). The difference is most pronounced for

65

3. Dictionary and Membership

−0.004

−0.003

−0.002

−0.001

0

0.001

0.002

0.003

0.004

0.92 0.93 0.94 0.95 ĉ0.96 0.97 0.98 0.99

fa
ilu

re
ra
te

am
on

g
1
0
6
ra
nd

om
gr
ap

hs

c

MINUS failure rate of “binomial degree”
failure rate of “fixed degree”

Figure 3.5.7.: Difference of the failure rates of pseudorandom graphs Gdn,m
(
(ρx)x∈S

)
with Dx ∈ {3, 4}, d = 3.5, m = 103, and different (ρx)x∈S, as a function of the load
factor c = n/m. Minuend is the failure rate using fixed degree, i. e., ρx(3) ∈ {0, 1} for
each x ∈ S. Subtrahend is the failure rate using binomial degree distribution, i. e.,
ρx(3) = 0.5 for each x ∈ S. The theoretical threshold ĉ(3.5) is approximately 0.957.

edge densities close to the threshold, where the failure probabilities are not too close
to 0 or 1.

3.5.5. Asymptotic Behavior and Thresholds

In this section we prove Proposition 3.1. Let (ρx)x∈S be an arbitrary but fixed near
optimal sequence of degree distributions with α = (1/n) ·

∑
x∈S ρx(bdc) ∈ (0, 1], for

d = α · bdc+ (1− α) · dde > 2 .

A concrete near optimal sequence that fulfills these constraints is (ρ ′x)x∈S with
ρ ′x(bdc) = α for all x ∈ S. To shorten notation, we let l = bdc. Note that l+ 1 = d+α.

We consider the following random bipartite graphs with m right nodes and n = c ·m
left nodes:

G := Gdn,m
(
(ρx)x∈S

)
of type A and G ′ := Gdn,m

(
(ρ ′x)x∈S

)
of type B.

In G = G(d) each left node x has Dx ∈ {l, l+ 1} random right neighbors, chosen with
replacement, where Dx is distributed according to ρx. The expected average degree
of a left node in G is d. In graph G ′ = G ′(d) the degrees of the left nodes are chosen
independently as l and l+ 1 with probabilities α and 1−α, respectively, and neighbors

66

3.5. Towards Optimal Degree Distributions for Irregular Cuckoo Hashing

are chosen at random without replacement. About G ′ Theorem 3.3 tells us that there is
a constant threshold ĉ(d) < 1, such that for any constant ε > 0 we have the following: If
c 6 ĉ(d) − ε, then asymptotically almost surely G ′ has a matching, and if c > ĉ(d) + ε,
then asymptotically almost surely G ′ has no matching. We will show that the same
holds for graph G.

Our first step is to define auxiliary random bipartite graphs G̃ = G̃(n1, . . . ,nl,nl+1),
where n = n1 + . . . + nl+1. Such a graph has n left nodes and m right nodes, with
nj nodes of degree j, j = 1, . . . , l + 1. The neighbors of each left node are chosen
uniformly at random without replacement, independently of the other nodes. We
show that asymptotically almost surely G equals some G̃(n1, . . . ,nl,nl+1) if we ignore
multiple edges, where nl and nl+1 are close to α · n and (1− α) · n, respectively, and
n1 + . . .+ nl−1 is very small.

Lemma 3.5.4 (Concentration Bound). For d ∈ {l, l+ 1} let Yd be the number of
left nodes of G(d) with exactly d pairwise distinct neighbors. Then for any constant
δ ∈ (1/2, 1) we have

Pr
(
|n · α− Yl| 6 nδ ∧ |n · (1− α) − Yl+1| 6 nδ

)
= 1−O

(
e−n

2·δ−1)
,

and the number of nodes with fewer than l neighbors is Bin
(
n,Θ(1/m)

)
-distributed.

We will prove the lemma in Section 3.5.5.1 below, employing a standard version of the
Azuma–Hoeffding tail bound.

For technical reasons we also need to consider a variant of model G ′, denoted by
G ′′: In graph G ′′ = G ′′(d) for O(logn) left nodes matching edges have been fixed; the
neighborhood of the other nodes is determined as in G ′. Let ε > 0 be an arbitrary
constant. By a straightforward modification of the arguments in [DGM+10, Sections 2
and 4] one sees that still for c 6 ĉ(d) − ε asymptotically almost surely G ′′ has a
matching.
Now we are ready to prove Proposition 3.1 under the assumption of Lemma 3.5.4.

Case c 6 ĉ(d) − ε. Consider graph G. By Lemma 3.5.4 we see that with probability
1−O(1/m) ignoring multiple edges will give a graph G̃(n1, . . . ,nl,nl+1) with nl =
α ·n ·

(
1± o(1)

)
and nl+1 = (1−α) ·n ·

(
1± o(1)

)
, and the number of left nodes with

degree smaller than l is O(logn). Moreover, with probability 1 −O
(
(logn)2/n

)
, we

will find a matching for these nodes. (This is true even if n1 > 0, which might well be
the case especially if l = 2.) This leads to a graph of type G ′′(d), which has a matching
asymptotically almost surely, as noted above.

Case c > ĉ(d) + ε. Consider the subgraph Gl,l+1 of G that only contains those left
nodes that have l or l+ 1 pairwise distinct neighbors and ignores multiple edges. By
Lemma 3.5.4, with high probability this subgraph will be a graph G̃(0, . . . , 0,nl,nl+1)
with nl + nl+1 =

(
c− o(1)

)
·m and average degree d± o(1). This means that Gl,l+1

is a random graph of type G ′
(
d± o(1)

)
. Applying [DGM+10, Theorem 3] we get that

67

3. Dictionary and Membership

asymptotically almost surely Gl,l+1 does not have a matching, so G cannot have a
matching either.

In order to complete the proof of Proposition 3.1 it only remains to show Lemma 3.5.4,
which is done in the following section.

3.5.5.1. Concentration Bound

In this section we prove Lemma 3.5.4. First, using a standard concentration bound we
will show that with high probability the number of left nodes of G that have l and l+1
pairwise distinct neighbors is concentrated around α · n and (1− α) · n, respectively.
Recall that l = bdc.

For each d and each x from S let Ydx be a binary random variable with Ydx = 1 if the
neighborhood set Nx of x has size d, and Ydx = 0 if Nx has size strictly smaller than d.
Furthermore, let Yd =

∑
x∈S Y

d
x . Then we have

Exp(Yl+1x) =
(
1− ρx(l)

)
·
(
m
l+1

)
· (l+ 1)!
ml+1

, and

Exp(Ylx) = ρx(l) ·
(
m
l

)
· l!

ml
+
(
1− ρx(l)

)
·
(
m
l

)
· l! ·

(
l+1
2

)
ml+1

. (3.23)

Consider the events

A := {n · α− nδ 6 Yl 6 n · α+ nδ} and

B := {n · (1− α) − nδ 6 Yl+1 6 n · (1− α) + nδ} ,

stating that the number of left nodes of G with neighborhood size l and l+ 1 is near
n · α and n · (1− α), respectively.

We want to bound the probability of the event A ∩B from below using the comple-
mentary event A ∪B, via

Pr(A ∪B) 6 Pr(A) + Pr(B) .

First consider the event A. Let Yx = Ylx and Y = Yl as well as px = Pr(Yx = 1).
According to (3.23) it holds that

px = Exp(Yx) = ρx(l) ·
(
1−Θ(1/m)

)
+Θ(1/m) ,

since we have 1− l2/(2 ·m) <
(
m
l

)
· l!/ml < 1− 1/m.

For each x ∈ S let Zx = Yx − px. Now fix an arbitrary order of the left nodes, i. e.,
let S = {x1, x2, . . . , xn}. It holds that X0,X1, . . . ,Xn with X0 = 0 and Xi = Xi−1 + Zxi
is a martingale with bounded differences, since

Exp(Xi+1 | X0, . . . ,Xi) = Exp(Xi + Zxi+1 | X0, . . . ,Xi) = Xi

68

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

and −pxi+1 6 Xi+1 − Xi 6 1− pxi+1 . Applying a standard Azuma–Hoeffding inequal-
ity [DP09, Theorem 5.1], we get

Pr
(
|Xn − X0| > n

δ/
√
2
)
6 2 · e−2·(nδ/

√
2)2/n = 2 · e−n2·δ−1 .

Since |Y − Exp(Y)| = |Xn − X0|, this means that the number of left nodes with a
neighborhood set of size l differs more than nδ/

√
2 from its expected value only with

exponentially small probability. By linearity of expectation, we have

Exp(Y) =
∑
x∈S

px =
(
1−Θ(1/m)

)
·
∑
x∈S

ρx(l) +Θ(1) .

Since α = (1/n) ·
∑
x∈S ρx(l), it follows that Exp(Y) = n · α±Θ(1). This means that

the inequality |Exp(Y) − n · α| 6 nδ · (1− 1/
√
2) holds for all but a constant number

of n. Thus, the probability of event A is exponentially small in n. Essentially the same
proof shows an exponentially small bound for B. Hence, the event Pr(A ∩B) occurs
with high probability. This finishes the proof of the first claim in Lemma 3.5.4.

The proof of the second claim is much simpler. We have seen in (3.23) that the
probability that a node x with degree d = l+ 1 has l neighbors is O(1/m). Similarly,
one sees that the probability that a node with degree d ∈ {l, l + 1} has fewer than
l distinct neighbors is O(1/m). Assume this probability is p. By independence, the
number of nodes with fewer than l distinct neighbors follows the binomial distribution
Bin(n,p). This concludes the proof of Lemma 3.5.4 and also completes the proof of
Proposition 3.1. �

3.6. Minimize the Number of Page Accesses for
Cuckoo Hashing with Pages

In this section we discuss our results on d-ary cuckoo hashing in a setting where the
table is subdivided into pages of equal size — they appeared in [DMR11a, DMR11b].
We give experimental evidence for Conjecture 3.1.3, which states that even with small
pages it is sufficient if each key is associated with only two pages, a primary and a
backup page, in order to obtain the same load thresholds as for normal d-ary cuckoo
hashing. Furthermore, our experiments show that one can efficiently force keys to their
primary page in order to reduce the number of page accesses for lookup to 1 for most
of them, without reducing the maximum load.

3.6.1. Graph Model

We study graphs Gdp,db
n,(m,m̌) of type B, which are random bipartite graphs with left node

set L = S and right node set R = [m]; the left nodes correspond to keys, the right nodes
correspond to table cells. The set R is subdivided into p segments R0,R1, . . . ,Rp−1, each

69

3. Dictionary and Membership

of size m̌ = bm/pc, which correspond to the separate pages (sub-tables). We assume
that m is divisible by p in the following. Each left node x is incident to d = dp + db
edges where its neighborhood N({x}) consists of two disjoint sets Np({x}) and Nb({x})

determined according to the following scheme (all choices are fully random):

1. choose p from [p], the index of the primary page;

2. choose dp different right nodes from Rp to build the set Np({x});

3. choose b from [p] − {p}, the index of the backup page;

4. choose db different right nodes from Rb to build the set Nb({x}).

Let e = {x,y} be an edge where x ∈ L and y ∈ R. We call e a primary edge if
y ∈ Np({x}) and call e a backup edge if y ∈ Nb({x}).

3.6.2. Problem Description

First, we want to find parameters m̌, dp, and db such that even with high load factor
c = n/m the graph Gdp,db

n,(m,m̌) is likely to have a left-perfect matching.

Remark. As mentioned in Section 3.1.3, if dp = d, db = 0 and page sizes are m̌ = mδ

for constant δ > 0, then the asymptotic load factor threshold is the same as in the
setting without pages, see Table 3.1.1. This is easily proven using tight concentration
bounds on the number of keys per page. Our interest, however, is in ranges for m that
are realistic and not too large page sizes m̌, so that this asymptotic behavior is not an
adequate description of performance.

For a given placement let np be the number of keys that are assigned to their
primary page, and let nb be the number of keys that are assigned to their backup
page. Second, we are interested in the potential for saving page accesses on lookup due
to finding left-perfect matchings such that the fraction np/n is maximized. Appropriate
algorithms are presented in the next section.

3.6.3. Algorithms

Each matchingM with respect to a bipartite graph G = (L∪R,E) implies an orientation
of the edges according to:

. Matching edges are directed from right to left.

. Non-matching edges are directed from left to right.

We call an orientation of the edge set (k , `)-orientation, if the indegree of all left nodes
is exactly k , the outdegree of all right nodes is at most `, and for each left node we
have that the incoming edges originate from pairwise distinct right nodes. This is
exactly the same as the (k , `)-orientation with respect to hypergraphs as discussed

70

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

in Section 3.1.1.5. Hence, the problem of finding a left-perfect matching in G, and
especially Gdp,db

n,(m,m̌), can be seen as problem of finding a (1, 1)-orientation of the graph.
A left node whose primary edge is a matching edge is called primary key. A left node
whose backup edge is a matching edge is called backup key. Each (1, 1)-orientation or
left-perfect matching that has a maximum number of primary keys is called optimal.

3.6.3.1. Static Case

The problem of finding an optimal left-perfect matching can be easily reformulated
as minimum weight matching problem or minimum cost flow problem, see, e. g.,
[AMO93, Section 12.4 and Chapters 9–11]. Hence, in the static case, i. e., if a graph
G is given in advance, there are well-known efficient (but not linear time) algorithms
for finding such a matching. We propose Algorithm 5, a modified Hopcroft-Karp
algorithm for determining optimal left-perfect matchings in random graphs Gdp,db

n,(m,m̌)

— a detailed description follows below.

Minimum Cost Flow To obtain a corresponding minimum cost flow problem direct
all edges of G = (L ∪ R,E) from left to right. Add a source node s and a target node t
to G. Furthermore for each node x from L add an edge (s, x) and for each node y from
R add an edge (y, t) to the graph. Let Ecf be the modified edge set. A cost function

ωcf : Ecf → {0, 1}

assigns each primary edge cost 0, each backup edge cost 1, and edges incident to the
source or target node cost 0. All edges get capacity 1. The supply of s and the demand
of t is n, where the supply and demand of all other nodes is 0. Now the problem is
to find an integral minimum cost flow of value n, i. e., a flow f : Ecf → {0, 1} which
assigns each edge (u, v) ∈ Ecf a value f(u, v) such that the total cost∑

(u,v)∈Ecf

ωcf(u, v) · f(u, v)

is minimized under the constraints that the flow of each edge does not exceed its
capacity, the outgoing flow of the source node

∑
x∈L f(s, x) and the incoming flow

of the target node
∑
y∈R f(y, t) are both n, for all other nodes v the incoming flow∑

u∈N({v}) f(u, v) equals the outgoing flow
∑
w∈N({v}) f(v,w).

Minimum Weight Matching Another possibility is to consider a corresponding
minimum weight matching problem, see Section 3.3. Analogously as above, we use a
weight (cost) function

ω : E→ {0, 1}

71

3. Dictionary and Membership

in order to assign each primary edge the weight 0 and each backup edge the weight 1.
Now the problem of finding an optimal left-perfect matching translates into finding a
left-perfect matching M with minimum weight

ω+(M) =
∑
e∈M

ω(e) .

This can be done via successively finding augmenting paths that have smallest incre-
mental weight, see Section 3.3. The incremental weight of an augmenting path P with
respect to some matching M, is

ω±M(P) =
∑

e∈P−M
ω(e) −

∑
e∈M∩P

ω(e) .

Our Algorithm 5 is a variant of the successive shortest path algorithm, see, e. g.,
[AMO93, Section 9.7 and page 471], but in order to determine augmenting paths
with smallest incremental weight, it relies on a modification of the Hopcroft-Karp
algorithm, i. e., a combination of breadth and depth first search, instead of the Moore-
Bellman-Ford algorithm or Dijkstra’s algorithm.

Remark. Results on the length of augmenting paths in sparse random bipartite graphs
[BMST04, BMST06] indicate that on input Gdp,db

n,(m,m̌), with load factor and left degree
upper bounded by constants, w. h. p. the running time of the Hopcroft-Karp algorithm
is O(n · logn).
For the following detailed description of our algorithm, we use the view that the
edges of G are directed, initially with respect to the empty matching, i. e., all edges
are non-matching edges and therefore go from left to right. The algorithm works in
rounds. In each round, wlo is a lower bound for the smallest incremental weight of
any augmenting path. According to our weight function, wlo is initially zero. Consider
some fixed round. With the combination of a modified breadth first search (BFS) and
depth first search (DFS) a maximal set of augmenting paths, i. e., directed paths that
start with an unmatched node from L and end with an unmatched node from R, that
have the following properties is found:

. The paths have incremental weight exactly wlo.

. They are vertex disjoint.

. All have the same number of edges and the number of edges is minimal.

The BFS starts from all left nodes with indegree zero, i. e., unmatched nodes. The
search partitions the nodes into layers. For each explored node the layer and the weight
of the path to this node are stored. A node can be re-explored if it is reached by a
path of smaller weight. The BFS stops at the first level where one or more unmatched
nodes of R are reached by a path of weight exactly wlo. Let Rw be the set of these
right nodes. If Rw is not empty, then DFS is applied to each node y ∈ Rw to find node

72

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

Algorithm 5: min_weight_Hopcroft-Karp
Input : Bipartite Graph G = (L ∪ R,E) and weight function ω : E→ Z.
Output : Matching with maximum number of left nodes that has minimum weight.
Require : Modified breadth-first search and depth-first search algorithms as

described below. We interpret G as directed graph according to
Section 3.6.3, starting with all edges directed from left to right.

target_weight_BFS(G,wlo):
. Partition the nodes of G into layers 0, 1, 2, . . . starting from the unmatched
left nodes.

. Stop at the smallest layer l such that there is a path of weight wlo through
consecutive layers 0, 1, . . . , l to an unmatched right node.

. If such a layer exists, then all unmatched right nodes at this layer that
have such a path are collected in Rw, and (true,Rw) is returned.

. Otherwise, if there is only a path of higher weight, then (true, ∅) is
returned; else (false, ∅) is returned.

target_weight_DFS(G,y,w,wlo):
. Do a recursive descent, starting with y, through the layers of G given by
target_weight_BFS(G,wlo).

. The weight of the current path is given via w.

. If an unmatched left node is reached and w = wlo, then the recursive ascent
flips the edge orientations along the path.

foreach e ∈ E do direct e from left to right;
wlo ← mine∈Eω(e);
while true do

(somePathIsFound ,Rw)← target_weight_BFS(G,wlo);
if Rw 6= ∅ then

foreach y ∈ Rw do target_weight_DFS(G,y, 0,wlo);
else

if somePathIsFound then wlo ← wlo + 1;
else break;

end
end
return {e ∈ E | e is directed from right to left};

73

3. Dictionary and Membership

disjoints paths between Rw and the unmatched left nodes, where the search can only
follow edges between two successive layers. During the recursive descent the weight
of a path is accumulated. If the DFS reaches a unmatched node and the weight of
the path is exactly wlo, the recursive descent stops and the recursive ascent flips the
orientations along the path. After all nodes from Rw are covered by the DFS, the next
round starts. If no augmenting path with incremental weight wlo is found but there
is an augmenting path of larger incremental weight, then wlo is increased by 1. If
there is no augmenting path at all, then the algorithm stops and returns all matching
edges, i. e., edges that are directed from right to left. The algorithm is optimal in the
sense that it successively finds augmenting paths with smallest incremental weight and
therefore returns a maximum cardinality matching of minimum weight. The crucial
insight is that, according to Lemma 3.3.4, the smallest incremental weight can only
increase and since all edge weights are integers, wlo remains a lower bound for this
value in each round.

Experimental Comparison In experiments we compared the running time of
our algorithm with the running time of several standard algorithms for solving the
corresponding minimum cost flow problem made available via the LEMON Graph
Library [LEM11] as part of a recent comparative study [KK10]. We found that for our
pseudorandom graphs Gdp,db

n,(m,m̌) (problem instances) network simplex was the fastest
algorithm among the algorithms provided by the library (network simplex, cost scaling,
capacity scaling, cycle-canceling), which is consistent with the experimental results in
[KK10, Section 3]. However, this algorithm was clearly outperformed by our modified
Hopcroft-Karp algorithm, which became our algorithm of choice for investigating the
potential of cuckoo hashing with paging. Figure 3.6.8 gives an exemplary comparison
of the running times of both algorithms.

3.6.3.2. Dynamic Case

In the online scenario the graph G initially consists only of the right nodes. To begin,
let us consider the case of insertions only. The keys arrive and are inserted one by
one, and with each new key the graph grows by one left node and d edges. To find
an appropriate orientation of the edges in each insertion step, we apply Algorithm 6,
which is a modification of the common random walk for d-ary cuckoo hashing [FPSS05]
but with two additional constraints:

1. avoid creating backup keys at the beginning of the insertion process, and

2. keep the number of backup keys below a small fixed fraction.

For the description of the algorithm we use a dual approach. Algorithm 6 refers to
orienting the graph G and the following explanation uses the view of placing keys into
table cells.

74

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97av
g
ru
nn

in
g
ti
m
e
in

se
c
am

on
g
1
0
0
ra
nd

om
gr
ap

hs

c

modified Hopcroft-Karp
network simplex

(a) m = 103

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97av
g
ru
nn

in
g
ti
m
e
in

se
c
am

on
g
1
0
0
ra
nd

om
gr
ap

hs

c

modified Hopcroft-Karp
network simplex

(b) m = 104

0

0.5

1

1.5

2

2.5

3

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97av
g
ru
nn

in
g
ti
m
e
in

se
c
am

on
g
1
0
0
ra
nd

om
gr
ap

hs

c

modified Hopcroft-Karp
network simplex

(c) m = 105

0

20

40

60

80

100

120

140

160

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97av
g
ru
nn

in
g
ti
m
e
in

se
c
am

on
g
1
0
0
ra
nd

om
gr
ap

hs

c

modified Hopcroft-Karp
network simplex

(d) m = 106

Figure 3.6.8.: Comparison of the average running times of the modified Hopcroft-Karp
algorithm and the network simplex algorithm for graphs Gdp,db

n,(m,m̌) with m̌ = 100,
dp = 3, db = 1, and different n and m. The values T are averages over 100 runs each.
The error bars depict the estimated standard error of the mean

√
s2[T]/100.

75

3. Dictionary and Membership

Algorithm 6: random_walk_basic_step
Input : Directed bipartite graph G = (L ∪ R,E) and node x ∈ L. All edges

incident with x are directed from left to right. The graph induced by
(L− {x}) ∪ R has a (1, 1)-orientation.

Purpose : Direct all edges of G such that G gets a (1, 1)-orientation
Output : (G, true) if a (1, 1)-orientation is found within the maximum number of

total steps left given by globalCounter ; otherwise (G, false).
Require : Random number generator randomNumber() that gives realizations of

independent uniformly distributed random variables with support [0, 1].
success ← false;
while globalCounter > 0 and not success do

if ∃y ∈ Np({x}) with out-deg(y) < 1 then
flip edge (x,y); success ← true;

end
if not success then

if randomNumber()< β then
choose random y ∈ Np({x}); choose random x ′ ∈ N({y});
flip edge (x,y); flip edge (y, x ′); x← x ′;

else
if ∃y ∈ Nb({x}) with out-deg(y) < 1 then

flip edge (x,y); success ← true;
else

choose random y ∈ Nb({x}); choose random x ′ ∈ N({y});
flip edge (x,y); flip edge (y, x ′); x← x ′;

end
end

end
globalCounter ← globalCounter − 1;

end
return (G, success);
(*The modification to avoid unnecessary back steps is not shown for the sake of clarity.*)

76

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

We refer to the dp cells of a key that are on its primary page as primary positions,
and we call the db cells on its backup page backup positions. The insertion of an
arbitrary key x takes one or more basic steps of the random walk, which can be
separated into the following sub-steps.

Let x be the key that is currently “nestless”, i. e., x is not stored in the memory. First
check if one of its primary positions is free. If this is the case store x in such a free cell
and stop successfully. Otherwise toss a biased coin to decide whether the insertion of x
should be proceed on its primary page or on its backup page.

. If the insertion of x is restricted to the primary page, randomly choose one of its
primary positions y. Let x ′ be the key which is stored in cell ty. Store x in ty,
replace x with x ′, and start the next step of the random walk.

. If x is to be stored on its backup page, first check if one of the backup positions
of x is free. If this is the case store x in such a free cell and stop successfully.
Otherwise randomly choose one of the backup positions y on this page and
proceed as in the previous case.

The matching procedure is slightly modified to avoid unnecessary back steps. That
is, if a key x displaces a key x ′ and in the next step x ′ displaces x ′′ then x ′′ = x is
forbidden as long as x ′ has another option on this page.
Our random walk algorithm uses two parameters:

β - the bias of the virtual coin. This influences the fraction of backup keys.

θ - controls the terminating condition. A global counter is initialized with value
θ · n, which is the maximum number of total steps of the random walk summed
over all keys. For each basic step the global counter is decremented by one. If the
limit is exceeded the algorithm stops with “failure”.

Deletions are carried out in a straightforward fashion. To remove a key x, first the
primary page is checked for x in its possible cells, and if needed the backup page is
checked as well. The cell containing x is marked as empty, which can be interpreted
as removing the left node x and its d incident edges from G. The global counter is
ignored in this setting (θ =∞).

3.6.4. Experiments

For each of the following experiments we used pseudorandom graphs Gdp,db
n,(m,m̌) of

type B randomly generated using the Mersenne Twister as in Section 3.4.4. The graphs
are created according to some configuration (c,m, m̌,dp,db), where c is the quotient
of left nodes (keys) and right nodes (table cells), m is the total number of right nodes,
m̌ is the page size, and dp,db are the number of primary and backup edges of each
left node. In the implementation the left and right nodes were simply the number sets

77

3. Dictionary and Membership

[n] and [m]. If not stated otherwise the total number of cells is m = 106 and pages are
of size m̌ = 10i for 1 6 i 6 6.

We restrict ourselves to the cases dp = 3,db = 1 and (just for comparison) dp = 4

and db = 0. While we have done experiments with other parameter values, we
believe these settings are sufficient to illustrate the main points. Also, while we have
computed sample variances, in many cases they are small; this should be assumed
when they are not discussed.

!
3.6.4.1. Static Case

Experimental results for the static case determine the limits of our approach and serve
as a basis of comparison for the dynamic case.

Setup and Measurements We focus on the following points.

I. Our aim is to get approximations for possible threshold densities, where first of all
we want to see the limits of cuckoo hashing with pages if there are no backup options
at all.

Remark. Note that for constant page size m̌ and larger and larger table size m the
fraction of keys that can be placed decreases. If c = n/m is constant too, the load of
each page is approximately Poisson distributed with parameter c · m̌; asymptotically
the success probability can be estimated as

O

((
Pr
(
Po[c · m̌] 6 m̌

))p)
= O

((m̌∑
i=0

(c · m̌)i

i!
· e−c·m̌

)p)
,

for p = m/m̌, which approaches 0 for m→∞.

In the following, we assume the existence of load thresholds ĉdb
m̌ (dp + db) that

identify a transition from the situation that Gdp,db
n,(m,m̌) is likely to admit a left-perfect

matching to the situation that such a matching is unlikely. Accordingly, we denote the
hypothetical threshold for the case with three primary and no backup option with
ĉ0m̌(4), and we denote the hypothetical threshold for the case with three primary and
one backup option with ĉ1m̌(4). To get approximations for ĉ0m̌(4) and ĉ1m̌(4), we study
different ranges of load factors [cstart, cend]. Specifically, analogous to Section 3.4.4, for
all ci where ci = cstart + i · 10−4 6 cend, and i = 0, 1, 2, . . . , b(cend − cstart) · 104c, we
construct a random graphs and measure the failure rate ξi at ci. We fit the sigmoid
function σ(c;γ, δ) (3.3) to the data points (ci, ξi) using the method of least squares.
The parameter γ (inflection point) is used as an approximation of ĉ0m̌(4) and ĉ1m̌(4)

respectively. With Σsre we denote the sum of squares of the residuals (3.4).

78

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

II. Furthermore, for different c and page sizes m̌, we are interested in the maximum
ratio rp = np/n or load factor cp = np/m of primary keys, respectively.

III. For an arbitrary but fixed page let nb|? be the number of keys that have this
page as primary page but are inserted on their backup page. Since the number of
potential primary keys for a page follows a binomial distribution, some pages will be
lightly loaded and therefore have a small value of nb|? or even nb|? = 0. Some pages
will be overloaded and hence have to shed load, yielding a large value of nb|?. We
want to estimate the probability Pr(nb|? = j) for each j ∈ [n]. Therefore, we generate a

many pseudorandom graphs Gdp,db
n,(m,m̌) and number all pages consecutively. Then for

each page i ∈ [a · p] we determine the value nb|i in order to obtain the corresponding
relative frequencies

1

a · p
·
∑
i∈[a·p]
i : nb|i=j

1 for all j ∈ [n],

as well as sample mean

nb|? =
1

a · p
·
∑
i∈[a·p]

nb|i ,

and sample variance

s2[nb|?] =
1

a · p − 1
∑
i∈[a·p]

(nb|i − nb|?)
2 .

Results Here we consider results from an optimal placement algorithm.

I. Table 3.6.4 gives approximations of the transition points where cuckoo hashing
with paging and d = 4 hash functions has failure rate ξ = 0.5 in the case of 1 or 0
backup pages. With no backup pages the number of keys that can be stored decreases
with decreasing page size and the success probability around ĉ0m̌(4) converges less
rapidly, as demonstrated clearly in Figures 3.6.9 and 3.6.10. This effect becomes
stronger as the pages get smaller. For this reason the range of load factors [cstart, cend]
of Table 3.6.4 (a) grows with decreasing page size. Using only one backup edge per key
almost eliminates this effect. In this case the values ĉ1m̌(4) seem to be stable for varying
m̌ and are very near to the theoretical threshold of standard 4-ary cuckoo hashing,
which is ĉ(4) ≈ 0.97677, see Table 3.1.1; only in the case of very small pages m̌ = 10

can a minor shift of ĉ1m̌(4) be observed. The position of ĉ1m̌(4) as well as the slope of
the fitting function appear to be quite stable for all considered page sizes.

79

3. Dictionary and Membership

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.97679

Σsre = 0.0157968

measured data
σ(c;γ, δ)

(a) m̌ = 106, 41 data points, dp = 4, db = 0

identical to Figure 3.6.9 (a)

(b) m̌ = 106, 41 data points, dp = 3, db = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.968 0.969 0.97 0.971 0.972 0.973 0.974 0.975 0.976

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.971982

Σsre = 0.0960227

measured data
σ(c;γ, δ)

(c) m̌ = 105, 81 data points, dp = 4, db = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.976772

Σsre = 0.0106312

measured data
σ(c;γ, δ)

(d) m̌ = 105, 41 data points, dp = 3, db = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.944 0.946 0.948 0.95 0.952 0.954 0.956 0.958 0.96

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.952213

Σsre = 0.299843

measured data
σ(c;γ, δ)

(e) m̌ = 104, 161 data points, dp = 4, db = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.97676

Σsre = 0.0142537

measured data
σ(c;γ, δ)

(f) m̌ = 104, 41 data points, dp = 3, db = 1

Figure 3.6.9.: Identification of transition points ĉ0m̌(4) (left column) and ĉ1m̌(4) (right
column) for m = 106 and page sizes m̌ = 104, 105, 106; see Table 3.6.4.

80

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.865 0.87 0.875 0.88 0.885 0.89 0.895

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.879309

Σsre = 0.653894

measured data
σ(c;γ, δ)

(a) m̌ = 103, 321 data points, dp = 4, db = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.976765

Σsre = 0.00277967

measured data
σ(c;γ, δ)

(b) m̌ = 103, 41 data points, dp = 3, db = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.62 0.63 0.64 0.65 0.66 0.67 0.68

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.648756

Σsre = 1.38276

measured data
σ(c;γ, δ)

(c) m̌ = 102, 641 data points, dp = 4, db = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.975 0.9755 0.976 0.9765 0.977 0.9775 0.978 0.9785 0.979

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.976612

Σsre = 0.00695602

measured data
σ(c;γ, δ)

(d) m̌ = 102, 41 data points, dp = 3, db = 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.14 0.16 0.18 0.2 0.22 0.24

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.188029

Σsre = 1.80962

measured data
σ(c;γ, δ)

(e) m̌ = 101, 1281 data points, dp = 4, db = 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9715 0.972 0.9725 0.973 0.9735 0.974 0.9745 0.975

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.973176

Σsre = 0.00904919

measured data
σ(c;γ, δ)

(f) m̌ = 101, 41 data points, dp = 3, db = 1

Figure 3.6.10.: Identification of transition points ĉ0m̌(4) (left column) and ĉ1m̌(4) (right
column) for m = 106 and page sizes m̌ = 101, 102, 103; see Table 3.6.4.

81

3. Dictionary and Membership

m̌ [cstart, cend] γ Σsre

106 [0.975, 0.979] 0.97679 0.0157968
105 [0.968, 0.976] 0.971982 0.0960227
104 [0.944, 0.960] 0.952213 0.299843
103 [0.863, 0.895] 0.879309 0.653894
102 [0.617, 0.681] 0.648756 1.38276
101 [0.124, 0.252] 0.188029 1.80962

(a) dp = 4, db = 0, 40 · 26−log10(m̌) + 1 data
points per fit

m̌ [cstart, cend] γ Σsre

105 [0.975, 0.979] 0.976772 0.0106312
104 ” 0.97676 0.0142537
103 ” 0.976765 0.00277967
102 ” 0.976612 0.00695602
101 [0.9712, 0.9752] 0.973176 0.00904919

(b) dp = 3, db = 1, 41 data points per fit

Table 3.6.4.: List of approximations γ of load factors ĉ0m̌(4) (left) and ĉ1m̌(4) (right)
that are the midpoints of the transition from failure rate 0 to failure rate 1 (without
and with backup option). The values were determined via fitting the function (3.3)
to a series of data points (c, ξ), using equidistant c from [cstart, cend]. The plots are
shown in Figures 3.6.9 and 3.6.10.

II. The average of the maximum fraction of primary keys, allowing one backup
option, is shown in Table 3.6.5. The fraction decreases with increasing load factor c
and decreases with decreasing page size m̌ as well. The sample variance (not shown in
the table) is very small and increases slightly for decreasing page size; the maximum
value is about 4 · 10−7 for m̌ = 10 and c = 0.97. Interestingly, for several parameters,
we found that an optimal algorithm finds placements with more than ĉ(3) ·m keys
sitting in one of their 3 primary positions, where ĉ(3) ≈ 0.91794 is the threshold for
standard 3-ary cuckoo hashing, see Table 3.1.1. That is, more keys obtain one of their
primary three choices with three primary and one backup choice than what could be
reached using just three primary choices even without paging.

III. Figure 3.6.11 depicts the relative frequency of the values nb|? for selected
parameters (c, m̌) = (0.95, 103), among 105 pages arising from a = 102 pseudorandom
graphs with p = 103 pages each. In this case about 17 percent of all pages do not
need backup pages, i. e., nb|? = 0. This is consistent with the idea that pages with a
load below ĉ(3) · m̌ will generally not need backup pages. The mean nb|? is about 2.5
percent of the page size m̌ and for about 87.6 percent of the pages the value nb|? is
at most 5 percent of the page size. The relative frequency of nb|? being greater than
0.1 · m̌ (very right tail) is very small, about 1.1 · 10−3.

Number of Page Accesses We observed that using pages with (dp,db) = (3, 1)
we achieve load factors very close to the ĉ(4) threshold, i. e., ĉ1m̌(4) ≈ ĉ(4). Moreover
the load factor cp concerning the keys placed on their primary page is quite large, near
or even above ĉ(3).

Let X be the average (over all keys that have been inserted) number of page requests

82

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

m̌ = 106 m̌ = 105 m̌ = 104

c rp cp rp cp rp cp
0.90 1.000000 0.900000 1.000000 0.900000 0.999881 0.899893
0.91 1.000000 0.910000 0.999997 0.909997 0.999093 0.909175
0.92 0.998412 0.918539 0.998136 0.918286 0.996111 0.916422
0.93 0.990918 0.921554 0.990957 0.921510 0.990467 0.921134
0.94 0.983438 0.924431 0.983443 0.924436 0.983422 0.924416
0.95 0.975982 0.927183 0.975952 0.927154 0.975961 0.927163
0.96 0.968528 0.929787 0.968578 0.929835 0.968524 0.929783
0.97 0.961163 0.932328 0.961112 0.932279 0.961157 0.932323

m̌ = 103 m̌ = 102 m̌ = 101

c rp cp rp cp rp cp
0.90 0.995650 0.896085 0.975070 0.877563 0.902733 0.812460
0.91 0.993008 0.903638 0.971556 0.884116 0.898281 0.817436
0.92 0.989452 0.910296 0.967781 0.890358 0.893546 0.822062
0.93 0.985015 0.916064 0.963723 0.896263 0.888041 0.825878
0.94 0.979730 0.920946 0.959429 0.901863 0.880848 0.827997
0.95 0.973744 0.925057 0.954876 0.907132 0.872427 0.828805
0.96 0.967224 0.928535 0.947650 0.909744 0.862883 0.828367
0.97 0.956892 0.928185 0.935928 0.907850 0.850154 0.824650

Table 3.6.5.: Average maximum fraction of primary keys among 100 random graphs for
different page sizes m̌ and dp = 3, db = 1, m = 106. The failure rate is 0. For c > 0.98
the pseudorandom graphs did not admit a left-perfect matching anymore. The entries
of the gray cells are larger than ĉ(3).

needed in a search for a key x ∈ S, where naturally we first check the primary page.
If (dp,db) = (3, 1) and a key is equally likely to be in any of its four locations, the
expected number of page requests Exp(X) would satisfy Exp(X) = 1.25. Actually, for
(dp,db) = (3, 1) and c near ĉ(4) we have roughly

Exp(X) ≈ ĉ(3)/c · 1+ (1− ĉ(3)/c) · 2 .

For example, for (c, m̌) = (0.95, 103), using the values of Table 3.6.4 we find

Exp(X) ≈ 0.974 · 1+ 0.026 · 2 < 1.03 .

Now assume we perform a lookup for a key x ∈ U − S, i. e., a key not in the table.
The disadvantage of using two pages per key is that now we always require two page
requests, i. e., Exp(X) = 2. This can be circumvented by storing an additional set
membership data structure, such as a Bloom filter [Blo70], for each page i representing
the nb|i many keys that have primary page i but are inserted on their backup page.

One can trade off space, computation time, and the false positive probability of the
Bloom filter as desired. As an example, suppose the Bloom filters use 3 hash functions
and their size corresponds to just one bit per page cell. In this case, we can in fact use

83

3. Dictionary and Membership

0

0.01

0.02

0.03

0 20 40 60 80 100 120 140 160

re
la
ti
ve

fr
eq
ue

nc
y
am

on
g
1
0
5
pa

ge
s

nb|?

measured data, nb|? = 24.9147, s2[nb|?] = 426.087

Figure 3.6.11.: Relative frequencies of nb|? values, i. e., the number of backup keys
that are associated with the same primary page, using (c,m, m̌) = (0.95, 106, 103). The
relative frequency of nb|? = 0 is 0.169, the failure rate is 0.

the same hash functions that map keys to table cell locations for our Bloom filters.
Bounding the fraction of 1 bits of a Bloom Filter from above via (dp · nb|?)/m̌, the
distribution of nb|? as in Figure 3.6.11 leads to an average false positive rate of less
than 0.15 percent and therefore an expected number of page requests Exp(X) of less
than 1.0015 for unsuccessful searches. One could reduce false positives even further
using more hash functions, or use less space.

3.6.4.2. Dynamic Case

We have seen the effectiveness of optimal offline cuckoo hashing with paging. We now
investigate whether similar placements can be found online, by considering the simple
random walk algorithm from Section 3.6.3.2. We begin with the case of insertions only.

Setup and Measurements Along with the failure rate ξ, the fraction of primary
keys rp and corresponding load factor cp, and the distribution of the number of keys
nb|? inserted on their backup page, we consider two more performance characteristics:

s — the average number of steps of the random walk insertion procedure. A step is
either storing a key x in a free cell y or replacing an already stored key with the
current “nestless” key.

r — the average number of page requests over all inserted items. Here each new key x
requires at least one page request, and every time we move an item to its backup
page requires another page request.

84

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

I. We focus on characteristics of the algorithm with load factors near the hypothetical
thresholds ĉ1m̌(4), for whose existence we found experimental evidence in the static
case, see, e. g., Figures 3.6.9 and 3.6.10, considering page sizes m̌ = 101, 102, 103 and
a varying number of table cells m = 105, 106, 107. The performance of the algorithm
heavily depends on the choice of parameters β and θ. Instead of covering the complete
parameter space we first set θ to infinity and use the measurements to give insight into
the performance of the algorithm for selected values of β.

II. In addition we want to explore whether we can expect a sufficiently low failure
probability of the random walk algorithm, at least for some selected configurations
κ = (c, m̌,β, θ) that include practical values of θ. For this we tested the following null
hypothesis

H0(κ,p) := {If one uses parameter set κ, Algorithm 6 fails with probability > p.} .

To test the null hypothesis for a specific κ we performed the random experiment

“insertion of n = c ·m keys with Algorithm 6”

a times. Consider the event

A(κ, a) := {All of the a many random experiments for given κ ended successfully.} .

Then we have:

Pr
(
A(κ, a) | H0(κ,p)

)
6 (1− p)a 6 exp(−p · a) .

For example if a = 106 and p = 10−5 we have

Pr
(
A(κ, a) | H0(κ,p)

)
6 exp(−10) ≈ 4.54 · 10−5 .

Hence, if we observe A(κ, a) we may reject the null hypothesis with high confidence.

III. We also study the influence of β for a fixed configuration. We vary β to see
qualitatively how the number of primary keys as well as the number of steps and page
requests depend on this parameter.

IV. It is well known that hashing schemes can perform differently in settings with
insertions and deletions rather than insertions alone, so we investigate whether there
are substantial differences in this setting. Specifically, we consider the table under a
constant load by alternating insertion and deletion steps.

V. Finally, we are interested in the relative frequencies of the values nb|? in order to
minimize the number of page accesses for lookup.

85

3. Dictionary and Membership

m̌ m a p rp cp s s2[s] r s2[r]

101 105 104 104 0.860248 0.817236 158.707669 114.072760 10.327258 0.409334
” 106 103 105 0.860219 0.817208 158.618752 11.405092 10.321981 0.040869
” 107 102 106 0.860217 0.817206 158.645056 1.092781 10.323417 0.003914

102 105 104 103 0.938431 0.891509 22.807328 1.081478 2.248953 0.003760
” 106 103 104 0.938424 0.891503 22.813986 0.104012 2.249273 0.000366
” 107 102 105 0.938412 0.891491 22.813905 0.010862 2.249201 0.000038

103 105 104 102 0.955773 0.907985 16.580150 0.512018 1.892190 0.001779
” 106 103 103 0.955737 0.907950 16.603145 0.052386 1.893515 0.000182
” 107 102 104 0.955730 0.907943 16.598381 0.005534 1.893248 0.000019

Table 3.6.6.: Characteristics of the random walk algorithm concerning the ratio of
primary keys as well as the number of steps and page requests, for parameters (c,β, θ) =
(0.95, 0.97,∞) with failure rate ξ = 0.

Results Here we consider results from the random walk algorithm, see Algorithm 6.

I. Tables 3.6.6 and 3.6.7 show the behavior of the random walk algorithm with load
factors near ĉ1m̌(4) for (c,β) = (0.95, 0.97) and (c,β) = (0.97, 0.90). The number of
allowed steps for the insertion of n keys is set to infinity via θ =∞. The number of
trials a per configuration is chosen such that a ·m = 109 (keeping the running time for
each configuration approximately constant). We first note that with these parameters
the algorithm found a placement for the keys in all experiments; failure did not occur.
For fixed page size the sample means are almost constant; for growing page size the
average load factor with respect to primary keys cp increases, while s and r decrease,
with a significant drop from page size 10 to 100. For a fixed page size the sample
variances of all measurements (including cp) decrease for growing m with about the
factor 10; for growing page sizes the sample variances decrease. The sample variances
of cp are not shown in the table; they were at most 3 · 10−6. For our choices of β the
random walk insertion procedure missed the maximum fraction of primary keys by up
to 2 percent for c = 0.95 and by up to 6 percent for c = 0.97 and needs roughly the
same average number of steps (for fixed page size).

II. To get more practical values for θ we scaled up the values s from Tables 3.6.6
and 3.6.7 and estimated the failure probability for each κ = (c, m̌,β, θ) from
{(0.95, 102, 0.97, 30), (0.95, 103, 0.97, 25), (0.97, 102, 0.90, 30), (0.97, 103, 0.90, 25)} using
m = 106 cells. For all these configurations we observed a failure rate of zero among
a = 106 attempts, i. e., event A(κ, a) took place. Hence, we can conclude at a level of
significance of at least 1− e−10 that for these configurations the failure probability of
the random walk algorithm is at most 10−5.

86

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

m̌ m a p rp cp s s2[s] r s2[r]

101 105 104 104 0.816795 0.792291 158.506335 1222.640379 32.336112 48.892079
” 106 103 105 0.816790 0.792286 153.645339 78.581917 31.363876 3.142566
” 107 102 106 0.816802 0.792298 152.873602 10.759338 31.209210 0.430827

102 105 104 103 0.886997 0.860387 23.320507 2.731285 5.361922 0.108700
” 106 103 104 0.886992 0.860382 23.289233 0.256942 5.355625 0.010218
” 107 102 105 0.886985 0.860375 23.268641 0.024796 5.351518 0.000986

103 105 104 102 0.898281 0.871332 19.497032 1.550490 4.607751 0.061739
” 106 103 103 0.898232 0.871285 19.486312 0.146267 4.605481 0.005816
” 107 102 104 0.898235 0.871288 19.493215 0.012744 4.606893 0.000507

Table 3.6.7.: Characteristics of the random walk algorithm concerning the ratio of
primary keys as well as the number of steps and page requests, for parameters (c,β, θ) =
(0.97, 0.90,∞) with failure rate ξ = 0.

III. Figure 3.6.12 shows how parameter β influences the ratio of primary keys rp,
the number of insertion steps s and the number of page requests r for an insertion. The
mean ratio of primary keys rp grows linearly and s grows nonlinearly with growing β.
For β = 0.98 the gap between the optimal fraction of primary keys and the fraction
reached by the random walk algorithm is about 1 percent. The value of r also depends
nonlinearly on β and reaches a local minimum at β = 0.95. The sample variances are
quite small and stable except for s2[s] and large β (near 0.98).

IV. Figure 3.6.13 shows the results for alternating insertions and deletions using
configuration (c,m, m̌,β, θ) = (0.95, 106, 103, 0.97, 30). We measured the current ratio
of primary keys rp and the number of insertion steps with respect to each key denoted
by skey; recall that s is the average number of insertion steps concerning all keys. In the
first phase (insertions only) the average number of steps per key grows very slowly at
the beginning and is below 10 when reaching a load where about 1 percent of current
keys are backup keys. After that skey grows very fast up to almost 103 (for the last few
keys), which is the page size. The sample mean of the average number of steps s up
to this point is about 16.6. Similarly the sample mean of the ratio of primary keys rp
decreases very slowly at the beginning and decreases faster at the end of the first phase.
Up to load about 82.6 percent, the fraction of backup keys is below 1 percent. In the
second phase (deletions and insertions alternate) skey and s decrease and quickly reach
a steady state. Since the decrease of rp is marginal but the drop skey is significant we
may conclude that the overall behavior is better in steady state than at the end of the
insertion only phase. Moreover, in an extended experiment with n = c ·m insertions
and 10 · n delete-insert pairs the observed equilibrium remains the same and therefore
underpins the conjecture that Figure 3.6.13 really shows a “convergence point” for
alternating deletions and insertions.

87

3. Dictionary and Membership

0.75

0.8

0.85

0.9

0.95

1

0.7 0.74 0.78 0.82 0.86 0.9 0.94 0.98

av
er
ag
e
ov
er
1
0
0
0
ra
nd

om
gr
ap

hs

β

rp

2

6

10

14

18

22

26

0.7 0.74 0.78 0.82 0.86 0.9 0.94 0.98

av
er
ag
e
ov
er
1
0
0
0
ra
nd

om
gr
ap

hs

β

s

1.8

1.9

2

2.1

2.2

2.3

0.7 0.74 0.78 0.82 0.86 0.9 0.94 0.98

av
er
ag
e
ov
er
1
0
0
0
ra
nd

om
gr
ap

hs

β

r

Figure 3.6.12.: Influence of parameter β on the ratio of primary keys as well as the
number of steps and page requests for an insertion exemplarily for configuration
(c,m, m̌, θ) = (0.95, 106, 103, 30). Average values are over a = 103 attempts with
failure rate ξ = 0.

V. Figure 3.6.14 shows the relative frequency of the values nb|? among 105 pages
for parameters (c,m, m̌,β, θ) = (0.95, 106, 103, 0.97, 30) at the end of the insertion only
phase, given by Figure 3.6.14 (a), and at the end of the alternation phase, given by
Figure 3.6.14 (b). Note that Figure 3.6.14 (a) corresponds to Figure 3.6.11 with respect
to the graph parameters. The shapes of the distributions differ only slightly, except
that in the second phase the number of backup keys is larger. In comparison with the
values given by the optimal algorithm in Figure 3.6.11 the distribution of the nb|?
values is more skewed and shifted to the right.

Number of Page Accesses Our simple online random-walk algorithm, with ap-
propriately chosen parameters, performs quite close to the optimal offline algorithm
for cuckoo hashing with pages, even in settings where deletions occur. With param-
eters (c, m̌,β, θ) = (0.95, 103, 0.97, 30) the expected number of page requests for a
successful search is about 1.044, using the values from Table 3.6.6. With the Bloom
filter approach described in Section 3.6.4.1, which can be done only after finishing the

88

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

0.95
0.96
0.97
0.98
0.99
1

1 · 105 3 · 105 5 · 105 7 · 105 9 · 105 1.1 · 1051.3 · 1051.5 · 1051.7 · 1051.9 · 105

r p

key number

1
2
3
4
5
6
7
8
9
10

1 · 105 3 · 105 5 · 105 7 · 105

s k
ey

9 · 105 1.1 · 1051.3 · 1051.5 · 105 1.7 · 1051.9 · 105
1

10

100

1000

16.60

159.54

s2nd phase
s1st phase

Figure 3.6.13.: Characteristics of the random walk algorithm concerning the ratio of
primary keys and number of insertion steps per key in a scenario with alternating
insertions and deletions using configuration (c,m, m̌,β, θ) = (0.95, 106, 103, 0.97, 30).
Average values were determined over a = 103 attempts with failure rate ξ = 0. The
upper plot is divided into two parts at 7 · 105. The ordinate of the right part is in
logarithmic scale, whereas the ordinate of the left part is in linear scale.

insertion of all keys, the distribution from Figure 3.6.14 (a) gives an expected number
of page requests for an unsuccessful search of less than 1.0043. Both values are only
slightly higher than those resulting from an optimal solution. In order to improve
performance for unsuccessful searches with online insertions and deletions, one can use
counting Bloom filters [FCAB98, FCAB00] at the cost of more space.

3.6.4.3. Alternative Approach for Small Pages

We have seen that if one uses one backup option, then the page size has only marginal
influence on the existence of a left-perfect matching or (1, 1)-orientation of Gdp,db

n,(m,m̌),
but heavily influences the maximum fraction of primary keys, in the dynamic case
as well as in the static case. Tables 3.6.5 to 3.6.7 show that the smaller the page the
smaller the fraction of primary keys, with a significant decrease from page size 100 to
10. In order to attenuate this downside one can use the following variant. We use the
idea of (non-overlapping) blocked cuckoo hashing as described in Section 3.1.3, where
the table consists of m blocks, each of capacity ` entries. Our graph model remains
G
dp,db
n,(m,m̌) but now each of the m right nodes has capacity `, the page size is set to

m̌ = 1, i. e., we think of each table cell as separate page and we let dp = db = 1 and
d = 2. Analogously to the experiments before, we want to find a (1, `)-orientation

89

3. Dictionary and Membership

0

0.01

0.02

0.03

0 20 40 60 80 100 120 140 160

re
la
ti
ve

fr
eq
ue

nc
y
am

on
g
1
0
5
pa

ge
s

nb|?

measured data, nb|? = 42.024, s2[nb|?] = 287.472

(a) insertion only phase

0

0.01

0.02

0.03

0 20 40 60 80 100 120 140 160

re
la
ti
ve

fr
eq
ue

nc
y
am

on
g
1
0
5
pa

ge
s

nb|?

measured data, nb|? = 48.8276, s2[nb|?] = 269.099

(b) insertion and deletion phase

Figure 3.6.14.: Relative frequency of nb|? values among 105 pages, resulting from
a = 102 graphs with p = 103 pages each, for (c,m, m̌,β, θ) = (0.95, 106, 103, 0.97, 30)
with a failure rate of ξ = 0.

90

3.6. Minimize the Number of Page Accesses for Cuckoo Hashing with Pages

` 2 3 4 5 8 10 16

ĉ1,`(2)/` 0.89701 0.95915 0.98037 0.98955 0.99785 0.99914 0.99993

Table 3.6.8.: Normalized load thresholds ĉ1,`(2)/` for the existence of a (1, `)-orientation
of Gdp,db

n,(m,m̌) with m̌ = 1 for dp = db = 1. The values are rounded to the nearest multiple
of 10−5.

of Gdp,db
n,(m,m̌), i. e., an orientation of the edges such that each left node has indegree

exactly 1 and each right node has outdegree at most `. A (1, `)-orientation that has a
maximum number of primary keys is called optimal.

For the rest of the section we will only consider the static case, since like before, in
the dynamic case we come close to the solutions obtained in this ideal setting.!

As already discussed in Section 3.1.1.5, the thresholds ĉ1,`(2) for the existence of a (1, `)-
orientation of Gdp,db

n,(m,m̌) and G
d
n,m, respectively, are known. Some reference normalized

load thresholds are given in Table 3.6.8. For comparison, experimental threshold values
are given in Figure 3.6.15. They were obtained using Algorithm 5 for determining
a left-perfect matching or (1, 1)-orientation, respectively, on modified pseudorandom
graphs Gdp,db

n,(m,m̌), where each right node y is replaced with ` copies and each edge to
which y is incident is replace with ` copies as well. An advantage of the alternative
approach for small pages is that for ` > 3 the normalized load thresholds ĉ1,`(2)/`
for a (1, `)-orientation are higher than the hypothetical thresholds ĉ1m̌(4) for a (1, 1)-
orientation, which are near ĉ(4) ≈ 0.97677. Our aim remains to maximize the ratio of
primary keys while keeping the normalized load factor c/` near the threshold ĉ1,`(2)/`.
Some experimental results are given in Table 3.6.9. The comparison with Table 3.6.5
shows that with respect to this ratio obtaining a (1, `)-orientation of Gdp,db

n,(m,m̌) using
parameters (m,dp,db, m̌, `) = (r, 1, 1, 1, 10) is slightly better than obtaining a (1, 1)-
orientation of Gdp,db

n,(m,m̌) using parameters (m,dp,db, m̌, `) = (r · 10, 3, 1, 10, 1), with
the additional benefit of requiring only two hash functions instead of four.

Number of Page Accesses The higher ratio of primary keys rp, achievable with
the alternative approach for small pages, allows to further reduce the number of page
requests, see Section 3.6.4.1. For example, with (c, m̌, `) = (0.97, 10, 1) a fraction of
rp = 0.850 of the keys can be stored in their primary page, while for parameters
(c/`, m̌, `) = (0.97, 1, 10) we have rp = 0.884, and for (c/`, m̌, `) = (0.97, 1, 16) one gets
even a ratio of rp = 0.913. This also holds for load factors beyond ĉ1m̌(4). For example,
using parameters (c/`, m̌, `) = (0.99, 1, 16), the ratio of primary keys is 0.904 which
reduces the expected number of page requests for successful searches from 1.5, when
each key is equally likely to be in either blocks, to about 0.904 · 1+ 0.096 · 2 < 1.1.

91

3. Dictionary and Membership

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.895 0.8955 0.896 0.8965 0.897 0.8975 0.898 0.8985 0.899

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.897025

Σsre = 0.0160997

measured data
σ(c;γ, δ)

(a) ` = 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9785 0.979 0.9795 0.98 0.9805 0.981 0.9815 0.982

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.980359

Σsre = 0.00328322

measured data
σ(c;γ, δ)

(b) ` = 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.996 0.9965 0.997 0.9975 0.998 0.9985 0.999 0.9995

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.997856

Σsre = 0.000636987

measured data
σ(c;γ, δ)

(c) ` = 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.999923

Σsre = 9.28349 · 10−11

measured data
σ(c;γ, δ)

(d) ` = 16

Figure 3.6.15.: Approximation of normalized load thresholds ĉ1,`(2)/` for different
capacities ` using the average failure rate over 100 pseudorandom graphs Gdp,db

n,(m,m̌)

with configuration (c,m,dp,db, m̌, `) = (c, 106, 1, 1, 1, `).

92

3.7. Conclusion

` = 4 ` = 8 ` = 10 ` = 16

c/` rp cp/` rp cp/` rp cp/` rp cp/`

0.90 0.822251 0.740026 0.898282 0.808454 0.913798 0.822418 0.940022 0.846020
0.91 0.815652 0.742244 0.894259 0.813776 0.910014 0.828113 0.936509 0.852223
0.92 0.808867 0.744157 0.890040 0.818837 0.906196 0.833700 0.932937 0.858302
0.93 0.801424 0.745325 0.885679 0.823682 0.902177 0.839024 0.929188 0.864145
0.94 0.793452 0.745845 0.881098 0.828232 0.898052 0.844169 0.925333 0.869813
0.95 0.784526 0.745300 0.876222 0.832411 0.893687 0.849003 0.921360 0.875292
0.96 0.774254 0.743283 0.870778 0.835947 0.889150 0.853584 0.917347 0.880653
0.97 0.761745 0.738893 0.864615 0.838676 0.884317 0.857787 0.913244 0.885846
0.98 0.743799 0.728923 0.857017 0.839876 0.878957 0.861378 0.908929 0.890751
0.99 no solution 0.847632 0.839156 0.870738 0.862030 0.904474 0.895429

Table 3.6.9.: Average maximum fraction of primary keys among 100 random graphs
G
dp,db
n,(m,m̌) with m̌ = 1 and m = 106 right nodes, for different block sizes `. For ` = 4

and c/` = 0.98 the failure rate is ξ = 0.01, for ` = 4 and c/` = 0.99 the failure rate is
ξ = 1; otherwise we have ξ = 0.

3.7. Conclusion

We gave experimental evidence that the generalized selfless algorithm is likely to find
(k , `)-orientations of random hypergraphs Hdm,n as long as the edge density c = n/m
is just below the threshold ĉk ,`(d); a proof for arbitrary constant (k , `) is still open.
Furthermore, we showed how to implement this algorithm to run in linear time, which
results in a practical construction algorithm for cuckoo hashing data structures.
We found (near) optimal degree distributions for matchings in random bipartite

multigraphs Gdn,m, where each left node chooses its right neighbors randomly with
repetition according to its assigned degree. For the case that the number of left nodes
is linear in the number of right nodes, we showed that all of these distributions give
the matching thresholds ĉ(d) and in the case of near optimal degree distributions we
conjectured what the optimal distribution is above and below the threshold.
We studied cuckoo hashing with pages, i. e., essentially random bipartite graphs

G
dp,db
n,(m,m̌), and gave experimental evidence, that if a key is associated with dp cells

on its primary page and has only db = 1 cell on its backup page, then a left-perfect
matching is likely to exist, even if the load factor is near the threshold ĉ(dp + db).
Furthermore, we showed how to obtain a placement of the keys, such that most lookups
require just one page access. Moreover, we proposed simple but efficient algorithms in
order to find such placements offline and online.

93

4

Retrieval and Perfect Hashing

In this chapter we cover solutions of the perfect hashing and retrieval problem based on
the Bloomier filter [CKRT04]. The two data structure problems can be briefly restated
as follows.

Perfect Hashing — Given S ⊆ U and an integer ḿ, build a data structure D that on
lookup(D, x) returns some ax ∈ [ḿ], where ax 6= ax′ for all {x, x ′} ∈

(
S
2

)
.

Retrieval — Given g = {(x0, v0), (x1, v1), . . . , (xn−1, vn−1)} ⊂ S × V, build a data
structure D that on lookup(D, x) returns g(x) if x ∈ S and returns an arbitrary
value otherwise.

Throughout the chapter we assume that (V,⊕) is an abelian group with neutral
element 0V .

4.1. Bloomier Filter Variants

We start with a description of the immutable Bloomier filter [CKRT04, Section 3.1],
a data structure for solving retrieval without an explicit representation of the key set.
Afterwards, we discuss a generalization, called irregular immutable Bloomier filter
and state the main result of this chapter, which essentially says that an irregular left
degree distribution of the underlying graph helps to increase the load factor of the
Bloomier filter. Then we describe the mutable Bloomier filter [CKRT04, Section 3.3],
a data structure for efficiently solving perfect hashing, using a slightly more universal
approach than usually discussed in the literature. Finally, we consider irregular mutable
Bloomier filters and analogously show that they can be made more space efficient
than their regular counterparts.

4.1.1. Immutable Bloomier Filter

The immutable Bloomier filter is a hashing based data structure on top of the basic
scheme considered in Section 2.2. It is not a “classical hash table”, but nevertheless
simple and elegant. Its construction principle, presented in [CHM92, MWHC96], was

95

4. Retrieval and Perfect Hashing

independently rediscovered by Chazelle, Kilian, Rubinfeld, and Tal, who introduced a
new clever modification, which we will discuss in Section 4.1.3.

4.1.1.1. Construction

To realize a retrieval data structure D using the basic scheme we consider the ma-
trix representation Md

n,m = (bᵀ
xi)i∈[n] ∈ {0, 1}n×m. We use this binary matrix in

order to define a group homomorphism φ : Vm → Vn from (Vm,⊕) to (Vn,⊕) with
componentwise ⊕, according to

φ(w) =Md
n,m ·w :=

(⊕
j∈Axi

wj

)
i∈[n]

for all w ∈ Vm.

Let v = (vi)i∈[n] ∈ Vn be the vector of the values to be stored. Now the construction
boils down to setting the vector t, which is the table of the basic scheme, to an arbitrary
element of the preimage φ−1(v), i. e.,

t ∈ {w ∈ Vm |Md
n,m ·w = v} .

So, in order that D can be built successfully, the preimage of v must not be empty or
with other words, there must be at least one solution t of the system of equations{ ⊕

j∈Axi

tj = vi

}
i∈[n]

. (SoE)

To obtain simple necessary and sufficient conditions for this to happen, let us assume
for a moment that (V,⊕) is an elementary abelian group, i. e., each element from
V, without the neutral element, has order p for some fixed prime p. In this case the
group is isomorphic to (Zp)r and can be seen as r-dimensional vector space over Fp;
a natural example is (V,⊕) = ({0, 1}r, xor). It follows that (Vm,⊕) and (Vn,⊕) can
be considered as m and n dimensional vector spaces over Fpr . Now we have that φ
is a linear map and the (linear) system (SoE) has a solution if and only if the rank
of the augmented matrix (Md

n,m | v) equals rank(Md
n,m). This is the case if Md

n,m
has full row rank, i. e., there exists a n× n submatrix with non-zero determinant. A
sufficient condition for full row rank is that the matrix Md

n,m can be transformed
into row echelon form by a finite sequence of row and column permutations. And
this remains sufficient for the existence of a solution of (SoE) in the general case that
(V,⊕) is not elementary abelian.
The matrix Md

n,m can be transformed into row echelon form by permutations if
and only if Gdn,m admits an order generating matching according to the following
definition.

96

4.1. Bloomier Filter Variants

Definition 3: (Order Generating Matching, cf. [CKRT04, Definition 3.2])
Let G = (L ∪ R,E) be a bipartite graph, let M be a matching in G, and let LM be
the set of matched left nodes. We define a relation >M⊆ LM × LM according to

x >M x ′ ⇔ ∃y ∈ R : {x,y} ∈M ∧ y 6∈ N({x ′}) .

The matching M is called order generating matching for G if there exists a per-
mutation π such that the left node set L = {x0, x1, . . . , x|L|−1} is completely ordered
with respect to “>M”, i. e., xπ(0) >M xπ(1) >M . . . >M xπ(|L|−1).

The graph Gdn,m has an order generating matching if and only if it fulfills a strong
expansion property known as singleton property.

Definition 4: (Singleton Property, cf. [CKRT04, Definition 4.1])
A bipartite graph G = (L∪R,E) has the singleton property if each non-empty subset
L ′ of L has an element x such that the neighborhood of L ′ is strictly larger than the
neighborhood of L ′ without x,

∀L ′ ⊆ L,L ′ 6= ∅,∃x ∈ L ′ : |N(L ′ − {x})| < |N(L ′)| . (SP)

Note that the singleton property implies the marriage condition (MC). An alternative
view, which we will stress in the following, is that Gdn,m has the singleton property
if and only if it is (completely) peelable according to [Sie04, Definition 2.5], which
means that Algorithm 1 returns ∅ on input Hdm,n, i. e., the 2-core of Hdm,n is empty.
Figure 4.1.1 shows an example.

4.1.1.2. Lookup Operation

In order to retrieve the value that is associated with a key x ∈ U the entries of all cells
addressed by Ax are “added together” in arbitrary order, i. e., for all x ∈ U we define

lookup(D, x) :=
⊕
a∈Ax

ta .

Hence, if x ∈ S, then by (SoE) its associated value v is returned, and if x ∈ U− S, the
return value is unknown.

4.1.1.3. Success Probability

The probability of a successful construction is the probability that (SoE) has a solution.
In the following we will restrict ourselves to two events that are sufficient conditions
for solvability.

1. {Gdn,m admits an order generating matching.}

2. {Md
n,m has full row rank over F2.}— assuming implicitly that (V ,⊕) is elementary

97

4. Retrieval and Perfect Hashing

x3

x2

x1

x0

6

5

4

3

2

1

0α

ζ

ζ

β

α

δ

β

(a) retrieval data structure built upon
the basic scheme as given in Fig-
ure 2.2.1 (b)

x3

x2

x1

x0

6

5

4

3

2

1

0

(b) bipartite graph representation,
an order generating matching is in-
dicated via dark edges

2nd4th 1st

3rd

0 1 2

3 4 5

6

Ax0Ax1 Ax2

Ax3

(c) corresponding hypergraph; remov-
ing the dark nodes with their incident
edge, according to the given order,
results in an empty set, that is the
2-core is empty

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0





2 1 3 0 4 5 6

x2

x0

x3

x1

1 1 1

1 1 1

11 1

1 1 1

(d) binary matrix representation in
row echelon form, transformed via row
and column permutations, the gray
square matrix has non-zero determi-
nant over F2

Figure 4.1.1.: A retrieval data structure for g = {(x0,γ), (x1,β), (x2, ζ), (x3, ζ)}, realized
with the basic hashing scheme (type B), as well as its corresponding graph, hypergraph,
and matrix representations. The group ({α,β,γ, δ, ε, ζ},⊕) is isomorphic to (Z6,+);
α=̂0,β=̂1,γ=̂2, δ=̂3, ε=̂4, ζ=̂5.

98

4.1. Bloomier Filter Variants

In contrast to the probability of a left-perfect matching, which was central in Chapter 3,
it is not immediately clear how the probabilities of the two events depend qualitatively
on d. As before we consider the situation that d is given and ask for the success
probability as a function of the load factor c = n/m for n→∞.

Case d = 1 If Gdn,m is 1-left-regular, then each left-perfect matching is also an order
generating matching. Furthermore, Gdn,m admits a left-perfect matching if and only if
Md
n,m has full row rank. As we have discussed in Section 3.3.2, the probability that

Gdn,m admits a left-perfect matching is zero w. h. p. if n(m) = ω(
√
m). Hence, this

case is not attractive if we aim for small space usage of the data structure and therefore
is omitted for the rest of the chapter. As before, the situation dramatically changes
for d > 2.

Case d = 2 If each left node of Gdn,m has degree two, then one observes a phase
transition concerning the occurrence of both events, which, however, is not “sharp”, as
stated in the following theorem.

Theorem 4.1 (Bad Cycle(s), see [ER60, CHM92] and Appendix A.1)
Let d = 2 and let c = n/m be constant. Then the following holds:

(i) If c < 0.5, then Gdn,m admits an order generating matching as well as Md
n,m

has full row rank with probability P(c,n), where

lim
n→∞P(c,n) =


exp(c) ·

√
1− 2 · c, for type A

exp(c) ·
√
1− 2 · c, for type B

√
1− 4 · c2, for type C

.

(ii) If c > 0.5, then Gdn,m admits no order generating matching as well as Md
n,m

has not full row rank w. h. p..

The theorem is based on the observation that if the (normal) graph Hdm,n has a cycle
of length at least two (type A, B and C), or a simple path that starts and ends at two
nodes that have a cycle of length one (only type A), then:

1. The singleton property is violated.

2. The corresponding rows of Md
n,m add up to the zero vector.

For type B and type C the theorem follows directly from [CHM92, Section 3], which
extends results from [ER60, Theorem 5b]; see also [CHM97, Theorem 6.3]. The transfer
from type B to type A is discussed in Appendix A.1.

Remark. The threshold 0.5 is the same as the threshold for the appearance of the
giant component in Hdm,n.

99

4. Retrieval and Perfect Hashing

d 3 4 5 6 7 8 9

č(d) 0.81847 0.77228 0.70178 0.63708 0.58178 0.53500 0.49526

Table 4.1.1.: Thresholds č(d) for the existence of order generating matchings in Gdn,m,
rounded to the nearest multiple of 10−5.

Case d > 3 If Gdn,m has a left degree of at least 3, then there is a sharp phase
transition but now the probabilities of the sufficient conditions diverge. As we have
mentioned before, Gdn,m has an order generating matching if and only if the 2-core
of Hdm,n is empty, i. e., the points of transition are the thresholds č(d), as defined
in Section 2.3.1 and given in Table 4.1.1.
Theorem 4.2 (Order Generating Matching)
Let d > 3 be a constant integer and let c = n/m. Then for any constant ε > 0 a. a. s.
the following holds:

(i) If c 6 č(d) − ε, then Gdn,m admits an order generating matching.

(ii) If c > č(d) + ε, then Gdn,m admits no order generating matching.

Since argminλ∈(0,∞) key(λ,d) ≈ ln(d) + ln(ln(d)), see [MWHC96, Section 4.3], the
threshold for the appearance of the 2-core can be approximated via

č(d) ≈ ln(d) + ln(ln(d))

d ·
(
1− 1

d·ln(d)

)d−1 .
The function č(d) is monotonically decreasing. Hence the maximum threshold is č(3),
which is about 0.818.

It was shown by Dietzfelbinger et al. [DGM+09, DGM+10] that the satisfiability
threshold for random d-XORSAT, obtained by Dubois and Mandler for d = 3 [DM02]
and by Pittel and Sorkin for d > 3 [PS12], is the same as the threshold that Gdn,m
has a left-perfect matching. Since a random instance of the d-XORSAT problem can
be interpreted as linear system Md

n,m ·w = v over F2, with random right-hand side
v ∈ {0, 1}n, this threshold is in essence the threshold that the random matrix Md

n,m
has full row rank.
Theorem 4.3 (Full Row Rank, [DGM+10, PS12])
Let d > 3 be a constant integer and let c = n/m. Then for any constant ε > 0 a. a. s.
the following holds:

(i) If c 6 ĉ(d) − ε, then Md
n,m has full row rank.

(ii) If c > ĉ(d) + ε, then Md
n,m has not full row rank.

In contrast to the threshold č(d) for an order generating matching, the thresholds for
full row rank ĉ(d) are monotonically increasing with increasing d, see Table 3.1.1.

100

4.1. Bloomier Filter Variants

4.1.1.4. Space and Time Consumption

Let m = (1 + ε) · n and recall that we assume ideal hash functions as stated in
Section 2.2.2. If we rely on the condition that Md

n,m has full row rank, then the
immutable Bloomier filter can be constructed a. a. s. with

space usage (1+ ε) · |S| · dlog|V |e, and

lookup time O
(
log(1/ε)

)
.

for arbitrary constant ε ∈ (0, 1). This is a factor of 1 + ε away from the information
theoretical minimum, see Section 4.3.1. However, if we rely on the condition that Gdn,m
has an order generating matching, then ε is bounded from below by 1/č(3) − 1 ≈ 0.22,
since č(d) is monotonically decreasing.

4.1.1.5. Linear Time Algorithms

We can build a Bloomier filter retrieval data structure if and only if the system of
equations (SoE) has a solution. If Md

n,m has an order generating matching, then a
solution can be found easily via Algorithm 7, cf., [CKRT04, page 35 CREATE], a
combination of peeling and back substitution, as follows.

Consider the corresponding hypergraph Hdm,n. Successively remove nodes xi of degree
1 together with their incident edge Axi and put them on a stack. Each node-edge pair
encodes a column and a row permutation of Md

n,m. If the procedure ends with an
empty hypergraph or 2-core respectively, then the matrix can be transformed in row
echelon form using only these permutations. In this case we apply back substitution via
successively removing node-edge pairs (xi,Axi) from the top of the stack and solving
the equations

⊕
j∈Axi

tj = vi; otherwise a failure is returned.
In the case that Md

n,m has no order generating matching but has full row rank,
we could try to solve (SoE) directly, assuming that (V,⊕) is elementary abelian
and using an algorithm adapted for sparse linear systems over finite fields. However,
these methods, like the conjugate gradient method and the Lanczos algorithm, see,
e. g. [HE05, Introduction], as well as Wiedemann’s algorithm [Wie86], have running
time Ω(n2) for constant c = n/m and constant d. In order to achieve expected
linear construction time, Dietzfelbinger and Pagh proposed an alternative that relies
on randomly splitting the key set (matrix Md

n,m) into subsets (submatrices) with
n ′ = 1/2 ·

√
logn keys (rows) in expectation [DP08a, DP08b]. For each submatrix that

has not too many rows the solution of the corresponding linear system is obtained via
precomputed pseudoinverses in time O(n ′). The rest of the keys is handled using a
backup data structure. Since the number of n ′ ×m ′ binary matrices with d ones per
row is (m ′d/d!)n′ , it seems clear that this approach is worthwhile only for fairly small
matrices, although only a fraction of them has full row rank. In fact, we confirm in an
experimental study [ADR09] that the approach using precomputed pseudoinverses is
of rather theoretical interest and cannot be used for realistic values of n to obtain very

101

4. Retrieval and Perfect Hashing

Algorithm 7: peeling_with_back_substitution
Input : Matrix M ∈ {0, 1}n×m and vector v ∈ Vn.
Output : Vector t ∈ Vm with M · t = v, if 2-core of M is empty; otherwise ∅.
Require : Stack S and abelian group (V,⊕).
H← hypergraph with node set [m] and incidence matrix M;
S←empty();
while H has a node i incident to only one edge ej do

S← push(S, (i, ej));
remove node i and edge ej from H;

end
if H 6= ∅ then return ∅;
while not empty(S) do

(i, ej)← top(S); S← pop(S);

ti ← vj ⊕
(⊕
k∈ej : k6=i

tk

)−1
;

end
return (ti)i∈[m]

space-efficient Bloomier filters, e. g., with m = 1.1 ·n. However, using the same splitting
approach and solving linear systems directly, i. e., without using precomputed tables,
a reasonable tradeoff between space consumption (during and after the construction)
and the construction time can be obtained; note that the construction time is expected
linear for constant n ′. For example, with n = 106, n ′ = 500, andm = 1.1 ·n a Bloomier
filter can be obtained within a few minutes, see [ADR09, Figure 1].

4.1.2. Irregular Immutable Bloomier Filter

Among the methods for solving (SoE) that we have discussed, the fastest and simplest
approach is to apply Algorithm 7, i. e., peeling with back substitution. Unfortunately,
with this algorithm the space overhead of the solution vector t cannot be made
arbitrarily small, since c = n/m is limited by the threshold of the appearance of the
2-core in Hdm,n.

However, it is known for related random bipartite graphs that emerge in the context
of erasure correcting codes that irregular node degrees that follow carefully chosen
distributions increase the threshold for the appearance of a 2-core in comparison to
the situation where the right node degree is regular, see, e. g., [LMSS01]1. We show
that this also holds for our random graphs, which can be used to derive space efficient
irregular immutable Bloomier Filters that can be constructed via Algorithm 7 — more
details will be provided soon.
1Here two degree distributions are selected, one for the right nodes and one for the left nodes.

102

4.1. Bloomier Filter Variants

We modify the basic scheme such that for each x ∈ U a randomized algorithm
determines some number of hash functions dx, and change the sequence of addresses to

h(x) =
(
h0(x),h1(x), . . . ,hdx−1(x)

)
.

More precisely, the number of hash functions becomes a random variable Dx that
follows a probability mass function ρ (on the natural numbers), given via two vectors
d = (d0,d1, . . . ,ds−1)

ᵀ and α = (α0,α1, . . . ,αs−1)
ᵀ ∈ [0, 1]s, with

∑
i∈[s] αi = 1 and

s > 1, via Pr(Dx = di) = ρ(di) = αi for all x ∈ U. We define Gdn,m,α to be the
bipartite graph representation of this new scheme denoted by

Gdn,m Gdn,m,α ,

where the edge size d is substituted by the vector d, and the expected degree of each
left node is αᵀ · d. Analogously, we obtain the generalization for the hypergraph and
matrix representations which we denote by

Hdm,n Hdm,n,α and Md
n,m Md

n,m,α .

While studying hypergraphs in the context of d-ary cuckoo hashing, the authors
of [DGM+10] described how to extend the analysis of 2-cores from Hdm,n to Hdm,n,α
which directly leads to the following theorem. Consider the generalized key function,
cf. Section 2.3.1,

key(λ,d,α) =
λ∑

i∈[s]
αi · di ·

(
Pr (Po [λ] > 1)

)di−1 .
For each fixed pair d,α we define č(d,α) to be the global minimum of key(λ), i. e.,

č(d,α) := min
λ>0

key(λ,d,α) .

Theorem 4.4 (2-Core Appearance, general. of, e. g., [Mol04, Thm. 1.2])
Let s > 1, d = (di)i∈[s], with di > 3 for all i ∈ [s], and α = (αi)i∈[s] ∈ [0, 1]s, with∑
i∈[s] αi = 1, be constants. Then for any constant ε > 0 a. a. s. the following holds:

(i) If c 6 č(d,α) − ε, then Gdn,m,α (type B) admits an order generating matching.

(ii) If c > č(d,α) + ε, then Gdn,m,α (type B) admits no order generating matching.

Or equivalently:

(i) If c 6 č(d,α) − ε, then Hdm,n,α (type B) has an empty 2-core.

(ii) If c > č(d,α) + ε, then Hdm,n,α (type B) has a non-empty 2-core.

103

4. Retrieval and Perfect Hashing

Using the outline from [DGM+10, Section 4], we prove part (i) of Theorem 4.4 along
the lines of [Mol04, Theorem 1.2] in Section 4.4; furthermore, we sketch the proof of
part (ii) along the lines of [Kim06, Theorem 1.7]. While Theorem 4.4 does also hold
for type A and type C, we restrict ourselves to type B for simplicity.
Remark. Analogous to [Mol04, Theorem 1.2] and [Kim06, Theorem 1.7], the theorem
can be generalized such that it covers `+-cores for all `+ > 2, see Section 4.4. Furthermore,
the 2-core threshold is often given for random hypergraphs slightly different from
Hdm,n,α. A justification that some “common” hypergraph models are equivalent in
terms of this threshold is given in Section 4.3.2.

Related Optimization Problems As mentioned before, our graph model is mo-
tivated by irregular bipartite graphs or hypergraphs that underlie certain erasure
correcting codes such as Tornado codes [LMS+97, LMSS01], LT codes [Lub02], On-
line codes [May02], and Raptor codes [Sho06]. Each of these codes heavily rely on
one or more random bipartite graphs or hypergraphs where the left nodes or hyper-
edges correspond to variables, often denoted as input/message symbols, and the right
nodes or hypernodes correspond to constraints on these variables, often denoted as
encoding/check symbols. An essential part of the decoding process of an encoded
message, more precisely the recovery process, is the application of a procedure that
can be interpreted as peeling, where it is required that the result is an empty 2-core,
see Section 2.3.1. Given n message symbols, carefully designed right-irregular bipartite
graphs or irregular hypergraphs allow, in contrast to regular ones, to gain codes where
in the example of Tornado, Online, and Raptor codes a random set of (1 + ε) · n
encoding symbols are necessary to decode the whole message in linear time w. h. p.,
and in the case of LT codes a random set of n+ o(n) encoding symbols are necessary
to decode the whole message in time proportional to n · ln(n) w. h. p.. As mentioned in
[GM11, footnote page 796 (5)], one could expect similar improvements concerning the
2-core threshold when switching from left-regular graphs Gdn,m or uniform hypergraphs
Hdm,n to left-irregular graphs Gdn,m,α or non-uniform hypergraphs Hdm,n,α.

Results

We consider hypergraphs Hdm,n,α of type B as in Theorem 4.4.!
Define č(d) to be a maximum threshold č(d,α) among all valid α, i. e.,

č(d) := max
α
č(d,α) , (OPT)

and define α∗ to be an optimal vector according to

α∗ ∈ {α | č(d,α) = č(d)} .

Note that there must be some maximum threshold č(d) and corresponding α∗ for
compactness reasons. We prove the following.

104

4.1. Bloomier Filter Variants

d (3, 3) (3, 4) (3, 6) (3, 8) (3, 10) (3, 12) (3, 14) (3, 16) (3, 21)

č(d) 0.81847 0.82151 0.83520 0.85138 0.86752 0.88298 0.89761 0.91089 0.92004
α∗ 1 0.83596 0.85419 0.86512 0.87315 0.87946 0.88464 0.88684 0.88743
d 3 3.16404 3.43744 3.67439 3.88795 4.08482 4.26898 4.47102 5.02626

Table 4.1.2.: Optimal 2-core thresholds č(d) = č(d,α∗) for selected d = (d0,d1), where
α∗ = (α∗, 1−α∗) and d = α∗ ·d0+(1−α∗) ·d1. The values are rounded to the nearest
multiple of 10−5.

Theorem 4.5 (Maximum 2-Core Threshold (informal))
There is an algorithm that on input d = (d0,d1) either gives the threshold č(d)
in analytical form or uses binary search in order to obtain an optimal vector
α∗ = (α∗, 1− α∗), within a subset of the interval (0, 1], which allows to determine
č(d) numerically with arbitrary precision.

Interestingly, it turns out that for adequate edge sizes d0 and d1 the maximum 2-core
threshold č(d) exceeds the maximum 2-core threshold for the left-regular case, i. e., č(d)
for d = 3. Table 4.1.2 lists some values. This allows us to build irregular immutable
Bloomier filters that rely on Algorithm 7 with improved space consumption compared
to the standard construction. More comprehensive tables for parameters 3 6 d0 6 6
and d0 6 d1 6 50 are given in Appendix A.2. The maximum threshold found is
about 0.92 for d = (3, 21).
Numerical experiments indicate that with larger vectors d the value of 0.92 can be

surpassed. For example using the approach

αi =

(∏
j∈[s] : j6=i dj

)1+θ∑
i∈[s]

(∏
j∈[s] : j6=i dj

)1+θ for all i ∈ [s],

we get a threshold of č(d,α) ≈ 0.93220 with expected degree d = αᵀ · d ≈ 7, using
parameters d0 = 3, d1 = 21, d2 = 151, and θ = 0.06355. It is conjectured that the
thresholds can be made arbitrarily close to 1.

Conjecture 4.1.1 (Arbitrarily Small Gap [Pan12]). For each ε > 0 there
exists vectors d and α such that č(d,α) > 1− ε.

Exemplary Parameter Choice for an Irregular Bloomier Filter Substitut-
ing the underlying graph Gdn,m of the immutable Bloomier filter by Gdn,m,α allows to
increase the space consumption with increasing expected left degree, while simultane-
ously relying on Algorithm 7 for the construction. For example, using d = (3, 16) allows
to set m = 1.1 ·n in the irregular case compared to m = 1.22 ·n in the regular case, at
the price that the number of cell probes grows from 3 to about 4.5 in expectation.

105

4. Retrieval and Perfect Hashing

4.1.3. Mutable Bloomier Filter

The mutable Bloomier filter for solving perfect hashing in essence applies retrieval as
described above. The difference is that instead of using pairwise distinct addresses
directly as values v ∈ Vm, like suggested by Majewski, Wormald, Havas, and Czech,
see [MWHC96], Chazelle et al. applied retrieval to a vector v of indices of hash functions
whose hash values are pairwise distinct. This reduces the size of V and therefore the
overall space usage dramatically. The approach was later independently rediscovered
by Botelho, Pagh, and Ziviani [BPZ07, BPZ13].

Remark. Another kind of mutable Bloomier filter for retrieval, without solving perfect
hashing in the first place, can be obtained via determining the table t such that for all
keys x ∈ S the function value g(x) = vx appears at least k = bd/2c + 1 times in the
table cells address by Ax; on lookup the most frequent entry is returned. Here, the
maximum load is bounded by the threshold for a (k , 1)-orientation which has a (local)
maximum of about 0.212 for d = 5 and k = 3.

4.1.3.1. Construction

In the following we describe a slightly more general approach than discussed in
[CKRT04] and [BPZ13].!

In order to build a realization D of a perfect hash function, we use two basic schemes
(not necessarily different) and apply a two-phase construction.

First Phase Using the bipartite graph representation Gd́n,ḿ = (S ∪ [ḿ],E) of the
first basic scheme we obtain a left-perfect matching

M ⊆
{
{xi, h́j(x)} | i ∈ [n], j ∈ [d́]

}
.

Then, we generate a vector v = (vi)i∈[n] ∈ Vn with (Zd́,+) and vi = j if {xi, h́j(x)} is
a matching edge. That is, for each key x ∈ S we store the index of the hash function
that belongs to its matching edge. By definition of left-perfect matching, each value
vi is well-defined and we have h́vi(xi) 6= h́vj(xj) for all {xi, xj} ∈

(
S
2

)
. The number of

right nodes ḿ will become the range of the perfect hash function.

Second Phase Using the vector v ∈ Vn and the matrix Md
n,m of the second basic

scheme, we build a retrieval data structure as in Section 4.1.1 and obtain a vector
t ∈ Vm as solution of the system of equations (SoE).

Classical Variant Usually, the construction is described in a simplified way where
one uses one and the same graph in both phases [CKRT04, BPZ13]. In the first phase
an order generating matching is obtained and the same matching is used to solve (SoE)
in the second phase.

106

4.1. Bloomier Filter Variants

4.1.3.2. Lookup Operation

For a given key the return value of the perfect hash function is determined as follows.
First we retrieve an index of a hash function used in the first phase and then obtain
its hash value, i. e., for all x ∈ U we define

lookup(D, x) := h́j(x) with j :=
(∑
a∈Ax

ta

)
mod d́.

4.1.3.3. Success Probability

Clearly, the whole construction is successful if and only if the first and second phase
are successful. Given d́ and d, the upper bounds for the load factors ć = n/ḿ and
c = n/m up to which a. a. s. a construction is possible have been discussed in detail in
Sections 3.1.1.3 and 4.1.1.3.

4.1.3.4. Space and Time Consumption and Range

With respect to perfect hashing we now have a third competing performance metric,
the range ḿ of the perfect hash function. Let έ ∈ (0, 1) and ḿ = (1 + έ) · n, further
let ε ∈ (0, 1) and m = (1+ ε) · n. Assuming ideal hash functions, see Section 2.2.2, a
mutable Bloomier filter can be constructed a. a. s. with

range (1+ έ) · |S|,

space usage (1+ ε) · |S| · dlog log(1/έO(1))e, and

lookup time O
(
log(1/ε)

)
,

utilizing that d́ = O
(
log(1/έ)

)
and d = O

(
log(1/ε)

)
for d́ > 3 and d > 3. For more

insight concerning the space consumption, we consider the space usage per key and omit
asymptotic notation. From [FPSS05], we obtain d́ =

(
1+ δ́(d́)

)
· ln
(
1+ 1/έ(d́)

)
, where

δ́ ∈ (0, 0.2) and έ 6 0.09. So, if we ignore de, i. e., we assume some ideal compression
scheme, the space usage per key is

(
1+ ε(d)

)
· log(d́) =

(
1+ ε(d)

)
·
ln
((
1+ δ́(d́)

)
· ln
(
1+ 1

έ(d́)

))
ln 2

.

For ḿ = (1 + έ) · n and assuming that the universe U has size polynomial in n, the
worst-case asymptotic space consumption per key is bounded from below by

1+ έ · ln
(
έ
1+έ

)
ln 2

, for έ > 0,

see Section 4.3.1. With respect to this bound the overhead is about 0.465+ ε · 1.585
bits per key for d́ = 3 and έ ≈ 0.0894. This difference increases monotonically with
increasing d́ > 3 and goes to ∞ for έ→ 0.

107

4. Retrieval and Perfect Hashing

4.1.3.5. Liner Time Algorithms

We have discussed linear time algorithms for each of the two construction phases in
Sections 3.1.1.5 and 4.1.1.5. Combining them to an algorithm for the mutable Bloomier
filter is straightforward. Note that the generalized selfless algorithm for finding a
left-perfect matching in the first phase is only conjectured to work up to the threshold
ĉ(d́) a. a. s., see Section 3.4.

4.1.4. Irregular Mutable Bloomier Filter

As in the case of the immutable Bloomier filter, practical problems arise if we want to
solve the system of equations (SoE) in the second phase and c = n/m is slightly below
ĉ(d). Since then, up to our knowledge, the best we can do is to split the matrixMd

n,m
into sub-matrices of almost equal but constant size and solving each of the corresponding
small equation systems via relatively slow system solvers, see Section 4.1.1.5. However,
as discussed in Section 4.1.2, an alternative is to replace the left-regular bipartite graph
Gdn,m by a left-irregular bipartite graph Gdn,m,α, which leads to an irregular mutable
Bloomier filter. Using Gdn,m,α with suitable parameters d and α, the simple and fast
peeling approach (Algorithm 7) a. a. s. obtains a solution of the corresponding system
of equations at least up to c = 0.92.

Results

We demonstrate the practicability of this approach for constructing a space and time
efficient perfect hash function with small range. More precisely, for a key set S
of strings, we show in experiments that with common (non-ideal) underlying hash
functions of small description size, one fastly obtains an irregular mutable Bloomier
filter with range 1.1 · n and space usage 1.1 · dlog 3e = 2.2 bits per key, for n > 105.
Applying a simple compression technique that stores every 5 consecutive elements from
t in one byte, we then obtain a space usage of 1.1 · 8/5 = 1.76 bits per key for n > 107.

4.1.5. Overview of the Chapter

The next section presents some background information on perfect hashing and retrieval
with focus on perfect hashing. A discussion of standard space bounds followed by
some asymptotically nearly equivalent hypergraph models is covered in Section 4.3.
Using these models, we give a proof of the first part of Theorem 4.4 in the subsequent
Section 4.4. Thereafter, we focus on the main results of this chapter, where in Section 4.5
we determine thresholds č(d) for random bipartite graphs Gdn,m,α with two different
left degrees according to Theorem 4.4; and in Section 4.6 we show experimental
measurements on the linear time construction of a space efficient perfect hash function
based on results of the previous section. We close with a short summary.

108

4.2. Further Background and Related Work

4.2. Further Background and Related Work

In this section, we discuss some background on perfect hashing and retrieval. This is
only for informational purpose and not required for the rest of the chapter. A reader
familiar with these topics can skip this section.

4.2.1. Perfect Hashing

Let |U| = u, |S| = n, and |R| = ḿ. A function

h : U→ R

is called perfect hash function for a key set S ⊆ U if h is injective with respect to S.
Given such a function, solving dictionary, membership, and retrieval is trivial. The
only other ingredient that is needed is a table t́ = (t́i)i∈[ḿ] constructed according to

t́h(x) :=


(x, vx), dictionary

x, membership tester

vx, retrieval data structure

,

for all x ∈ S, with some associated value vx. Moreover, suppose a perfect hash function
h with range of size ḿ = n can be provided for free, then this simple hash table
matches the space lower bounds of dictionary and retrieval and almost matches the
space lower bound for membership, see Sections 3.3.1 and 4.3.1.

4.2.1.1. Space Bounds

According to a lower bound by Mehlhorn, see [Meh82, Theorem A], any data structure
that realizes a perfect hash function with range ḿ needs at least Ω(n2/ḿ+ log logu)
bits in the worst-case, cf., Lemma 4.3.2. That is, given n and u, the space consumption
of a perfect hash function can be made negligible only for large ḿ. However, such
a large range is not very attractive, since the perfect hash function is typically used
with some table t́ = (t́i)i∈[ḿ] as described above, which leads to a very high space
consumption for the overall data structure.

Hence, for the rest of the section, we will solely concentrate on the case ḿ = Θ(n).!
Often a perfect hash function h is preferred, or required, to be surjective as well,

i. e., has range ḿ = n. Such a minimal perfect hash function needs at least n · log e+
log logu−O(logn) bits in the worst-case, as proven by Fredman and Komlós [FK84],
assuming that u > n2+ε, for constant ε > 0.

A further common constraint, which also strongly influences the space consumption
of h, is that any given total order “6” of the keys must be also respected by the
hash values, i. e., x 6 y ⇒ h(x) 6 h(y) for all x,y from S. The additional space

109

4. Retrieval and Perfect Hashing

consumption of such an order preserving (minimal) perfect hash function is about
n · logn, which can be directly derived from the lower bound for perfect hashing by
Mehlhorn [Meh84, Theorem 6 a] with an additional factor of n! for all possible total
orderings (permutations) of the key set, see, e. g., [FCDH90, Section 3.1].
A special case arises if the construction algorithm is restricted to one fixed total

order, usually lexicographical. For such a monotone (minimal) perfect hash function
a space consumption of O(n · log log logu), with n > log logu, is sufficient [BBPV09,
Theorem 6.1].

Remark. There exists generalizations of perfect hashing like k-probe hashing [SS88,
SS90], which however, we will not cover in the following.

4.2.1.2. Classical Constructions

For a range of size superlinear in n, space and time efficient perfect hash functions
have been known for a long time. A classical construction, described for example
in [JvEB86, Fact 1 and 2] and [SS88, page 10], allows to solve perfect hashing with
ḿ = n2, constant evaluation time, and space consumption O(logn+ log logu). It can
be used as building block for the construction of space and time efficient perfect hash
functions with smaller range, essentially reducing the size of the domain to be handled,
which is known as collapsing the universe, see Section 5.4.1.

A seminal result by Fredman, Komlós, and Szemerédi [FKS84] is the construction of
a perfect hash function with range Θ(n), usually referred as FKS scheme, that has
constant evaluation time and, used in combination with the mentioned perfect hash
function2 of range ḿ = n2, has a space consumption of O(n · logn+ log logu).
Refinements of their approach allowed to further reduce the space usage while

maintaining constant evaluation time, as, e. g., the construction by Jacobs and van
Emde Boas [JvEB86, Theorem 2], which requires O(n · log logn+ log logu) bits. This
development culminated in a well-known construction by Schmidt and Siegel [SS88,
Theorem 7] 3 that needs space O(n+ log logu), i. e., is space optimal up to a constant
factor.

Remark. Other improvements of the FKS scheme provide dynamic insertion and
deletion in expected constant amortized time, see [DKM+88, DKM+94]. However, even
more than in Section 3.2 concerning hash tables, in this chapter we concentrate on the
static case, i. e., we assume that the key set S is fixed and given in advance.

With respect to minimal perfect hashing, i. e., the case n = ḿ, Mehlhorn gave a
construction with an almost matching upper space bound of n·log e+log logu+O(logn)
[Meh82, Proof of Lemma 3], [Meh84, Section 3.2.3, Proof of Theorem 8]. However,
evaluation time as well as construction time of the data structure are exponential in n.

2Collapsing the universe is already contained in [FKS84, Corollary 2 and Lemma 2].
3A variation of FKS scheme with new internal hash functions and sophisticated compression.

110

4.2. Further Background and Related Work

The best theoretical construction of a minimal perfect hash function, introduced by
Hagerup and Tholey [HT01, Theorem 1], achieves a near optimal space consumption of
n · log e+ log logu+O

(
n · (log logn)2/ logn+ log log logu

)
. They use a randomized

variant of Mehlhorn’s approach, which is applied on small disjoint subsets of the
key set S, thereby achieving constant evaluation time and O(n+ log logu) expected
construction time. The practicability of this construction is discussed, e. g., in [Bot08,
Section 1.6.1].

4.2.1.3. Practical Constructions

Perfect hashing has been studied since decades theoretically as well as experimentally.
For a comprehensive, but somewhat outdated, survey that covers a variety of techniques
see [CHM97]. In the following, leaning on [Die07], we discuss two of these techniques and
corresponding results, which allow very efficient and practical randomized constructions
of (minimal) perfect hash functions and order preserving (minimal) perfect hash
functions.

The functions that we cover are realized via data structures4 that mainly consist of
helper hash functions and a table t = (ti)i∈[m] of m cells that usually dominates the
overall space consumption.

Displacement Based on an idea used before, among others, by Tarjan and Yao [TY79,
Section 3 row displacement], Pagh introduced the following construction principle for
perfect hash functions, see [Pag99]. Two helper hash functions, hrow : U → [m] and
hcol : U→ [ḿ], define a random matrix

A = (ai,j)i∈[m],j∈[ḿ], with ai,j := |{x ∈ S | hrow(x) = i ∧ hcol(x) = j}| ,

that is required to be binary. For each subset of keys x ∈ S that have the same index
hrow(x) = i, i. e., correspond to the same row ofA, a displacement value ti is determined,
such that shifting each row i of A circularly by ti results in a matrix with column
weight at most 1. That implies that for all x ∈ S the values

(
hcol(x) + throw(x)

)
mod ḿ

are pairwise distinct. Hence, this scheme defines a perfect hash function h : U→ [ḿ]

according to

h(x) :=
(
hcol(x) + throw(x)

)
mod ḿ, where

hrow : U→ [m],hcol : U→ [ḿ], t ∈ [ḿ]m .

In order to find appropriate displacement values, Pagh suggested an algorithm called
random-fit-decreasing that treats the rows of A in order of decreasing weight and
chooses the correcting displacement values randomly. With this method (minimal)
perfect hash functions with space consumption (2+ ε) · n · log ḿ, for constant ε > 0,

4Implementations of some of them are available under http://cmph.sourceforge.net/.

111

http://cmph.sourceforge.net/

4. Retrieval and Perfect Hashing

and constant evaluation time can be obtained in O(n) expected time [Pag99, Lemma 4
with Theorem 5].

Remark. The group (Zḿ,+), which is chosen as range of hcol and h, can be replaced
by any other group with ḿ elements.

Using the same scheme but a different algorithm, called undo-one, Dietzfelbinger and
Hagerup could reduce the table size from m = (2+ ε) ·n to m = (1+ ε) ·n for constant
ε > 0, while maintaining the upper bounds for evaluation and construction time [DH01,
Theorem 8]. The undo-one algorithm uses the random-fit-decreasing algorithm for rows
down to weight 3, but now for each computation of the displacement of a weight-2
row, a displacement determined before can be changed. A further asymptotic space
reduction to O(n · log logn), using Pagh’s approach in combination with a splitting
hash function as in [HT01], was proposed by Woelfel [Woe06, Theorem 3].
Another variation of Pagh’s approach, introduced by Belazzougui, Botelho, Di-

etzfelbinger [BBD09], uses d displacement functions hcol0 ,hcol1 , . . . ,hcold−1 instead of
displacement values and defines a perfect hash function h according to

h(x) :=hcolthrow(x)
(x), where

hrow : U→ [m],hcoli : U→ [ḿ] for all i ∈ [d], t ∈ [d]m .

Assuming ideal hash functions hrow, hcol0 ,hcol1 , . . . ,hcold−1, as defined in Section 2.2.2,
they showed how this modification in combination with compression allows to build
perfect hash functions with range5 ḿ = (1 + έ) · n, expected space consumption
n · log e+n ·ζ(λ)+O(λ2), and expected construction time O

(
n · (2λ+(1/έ)λ)

)
[BBD09,

Theorem 1 and 2]. Here, ζ denotes a scale factor, usually smaller than 1, given via
some compression scheme. The value λ controls the tradeoff between space and time
consumption, since ζ decreases with increasing λ, while the construction time increases.
It turned out in experiments, that even for very small ranges a space consumption
of less than 2 bits per key is achievable in a practicable amount of time, see [BBD09,
Figure 1].

Linear System In parallel, another efficient construction approach emerged, using
perfect hash functions of the form

h(x) :=(th0(x) + th1(x) + . . .+ thd−1(x)) mod ḿ, where

hi : U→ [m] for all i ∈ [d], t ∈ [ḿ]m ,

for d > 2, where each key x is considered as the label of an edge Ax = {hi(x) | i ∈ [d]}

of a random (hyper-)graph Hdm,n that has binary incidence matrix

Md
n,m = (mx,j)x∈S,j∈[m], where mx,j := sgn

(
|{i ∈ [d] | hi(x) = j}|

)
.

5A minimum perfect hash function can be derived using, e. g., further compression as discussed in
[BBD09, Section 3].

112

4.2. Further Background and Related Work

A perfect hash function h is found via solving the system of equationsMd
n,m ·t = v, for

some arbitrary vector v = (vx)x∈S ∈ [ḿ]n of pairwise distinct hash values. If we ignore
the helper hash functions hi, i ∈ [d], then the space consumption of h is essentially
the number of bits needed to store a solution t, which is about m · log ḿ.

A sufficient condition for the existence of such a solution is that Hdm,n has an empty
2-core, which was first explored in this context in a series of works by Czech, Havas, and
Majewski [CHM92] together with Wormald [HMWC93, MWHC96]. They argued that,
assuming ideal hash functions, via peeling with back substitution an order preserving
perfect hash function h can be constructed in expected linear time that has a space
consumption of (1/č(d) + ε) · n · log ḿ, for constant ε > 0, see Section 4.1.1.5.

Another approach, proposed in [SH94]6, originated from [Section 2][GS89]7, is to solve
the system of equations over some field using standard methods, like, e. g., Gaussian
elimination or Wiedemann’s algorithm [Wie86] in time at least quadratic in n. Upper
bounds for the minimum space consumption that is a. a. s. achievable with this approach
were derived in a related context due to a series of independent work by Dietzfelbinger
and Pagh [DP08a], Porat [Por08], and shortly after, Charles and Chellapilla [CC08a] —
for the full versions see [DP08b, CC08b, Por09].

Remark. In [DP08a, DP08b] the authors apply a result by Calkin [Cal97] stating that
if c is bounded away by a constant from a threshold ĉ′(d), with č(d) < ĉ′(d) < ĉ(d),
then w. h. p.Md

n,m has full row rank. This gives a space bound of (1/ĉ′(d)+ε) ·n·log ḿ,
for constant ε > 0. In Section 5.4.4 the success probability of this result is improved
from 1−O(n−1) to 1−O(n−Ω(d)) for sufficiently large d.

Finally, the lower space bound that is a. a. s. obtainable by such a direct solution of
the system of equations was found to be (1/ĉ(d) + ε) · n · log ḿ, for constant ε > 0,
where ĉ(d) is the threshold when the edge density in the 2-core of Hdm,n approaches 1,
see [DM02, DGM+10, PS12] as well as Section 4.1.1.3.
A nifty improvement, introduced by Chazelle et al. [CKRT04], and later indepen-

dently rediscovered by Botelho, Pagh, and Ziviani [BPZ07, BPZ13], replaces the hash
values vi, i ∈ [n], by the indices of the d hash functions8 and defines a perfect hash
function h according to

h(x) :=h(th0(x)+th1(x)+...+thd−1(x)
) mod d(x), where

hi : U→ [m] for all i ∈ [d], t ∈ [d]m .

Assuming ideal hash functions, and using the peeling approach, a space consumption
of (1/č(d) + ε) · n · logd, for constant ε > 0, can be obtained maintaining expected
linear construction time. This allows to build perfect hash functions with 1.95 bits per
6Actually, they use the definition mx,j := |{i ∈ [d] | hi(x) = j}|, i. e., Md

n,m is not necessarily
binary anymore.

7This can be seen if one considers Equation 2.4 in combination with Example 1 from [GS89].
8In principle these indices could refer to other hash functions than h0,h1, . . . ,hd−1, i. e., especially
m 6= ḿ can be useful, as we will discuss in Section 4.6.

113

4. Retrieval and Perfect Hashing

key and minimal perfect hash functions with 2.62 bits per key in a practicable amount
of time, see [BPZ13, Section 3.5 and 3.6, Table 7] and [BBD09, Figures 1 a and d].

Hybrid A third approach, which lies in between the first two, was taken by Sager
[Sag85], who proposed perfect hash functions h according to the following scheme

h(x) :=(h2(x) + th0(x) + th1(x)) mod ḿ, where

h0,h1 : U→ [m],h2 : U→ [ḿ], t ∈ [ḿ]m .

His idea was further pursued by Fox, Chen, Heath, and Datta [FCHD89], as well
as Fox, Chen, Heath, and Daoud [FCDH90, FCDH91, FHCD92], using various hash
functions h0, h1, and h2 and construction algorithms. Finally, this lead to an algorithm
for finding minimal perfect hash functions, which worked in experiments with space
consumption 0.6 · n · logn in linear time [FHCD92, Algorithm 1].
For a perfect hash function h based on the related scheme

h(x) :=(th0(x) + th1(x)) mod ḿ where

h0,h1 : U→ [m], t ∈ [ḿ]m ,

Weidling [Wei04] and independently Botelho, Kohayakawa, and Ziviani [BKZ05] pre-
sented similar algorithms with expected linear running time that can be seen as a
combination of the methods from [CHM92] and [Pag99]. Assuming ideal hash functions
h0 and h1, Weidling showed that his algorithm works for m > 1.152 · n, i. e., with
a space consumption of at least 1.152 · n · log ḿ [Wei04, Satz 1], while experiments
indicate that the actual lower bound is m = 1/3 · n, see [Wei04, Abbildung 2.8].
Moreover, he proved a modified version of his algorithm, based on [DH01], to work for
m > 0.936 · n [Wei04, Satz 3].
Botelho, Kohayakawa, and Ziviani conjectured a lower bound of m > 1.152 · n for

their algorithm [BKZ05, page 492 and Conjecture 1], and they presented a modification
that worked in experiments for m > 0.93 · n.
Remark. With the hybrid approach space factors m/n = 1/c that are much lower
than 1/č(2) = 1/ĉ(2) = 2 are achievable, since the construction algorithms do not rely
on the fact that each key x from S can be associated with a value v = h(x) in advance.
That is, in order to determine (some parts) of t no linear system is solved. In turn, the
resulting hash function h is not order preserving.

4.2.2. Retrieval

The retrieval problem is usually solved via perfect hashing, in the manner as sketched in
Section 4.2.1. However, this intermediate step is not necessary for an efficient solution as
pointed out by Chazelle et al. [CKRT04]. Their idea was to build a system of equations
as discussed in Section 4.2.1.3 concerning the construction of order preserving hash

114

4.2. Further Background and Related Work

functions, but use as right-hand side a vector v of given function values v = (f(x))x∈S.
Chazelle et al. used the same method as Majewski et al. [MWHC96] in order to solve
the system of equations but they only derived a lower bound9 on the exact load
thresholds č(d). This approach to build a retrieval data structure was further explored
simultaneously and independently by Porat [Por09], Charles and Chellapilla [CC08b],
and Dietzfelbinger and Pagh [DP08b]. Like Seiden and Hirschberg [SH94], who however
gave only experimental results, they considered the system of equations as sparse linear
system over some field F, in order to find a solution for parameters n = (1 + ε) ·m,
and arbitrary constant ε(d) > 0, in particular n/m > č(d), using standard methods.
Including the case that the 1’s in the binary matrix Md

n,m are replaced by random
elements from F via further hash functions, they derived lower bounds on the maximum
ratio n/m that guarantees a. a. s. that the linear equations are independent. Moreover,
maintaining constant evaluation time, they showed how to obtain expected (almost)
linear construction time [Por09, Section 6], [DP08b, Theorem 1 a], [CC08b, Theorem 6],
via subdividing the large linear system into smaller ones, using a standard technique
known as bucketing. The experimental evaluation of the bucketing approach by Pagh
and Dietzfelbinger exposed the limitations of this method, which is practical only for
very large n [ADR09].

4.2.2.1. Relationship to Bloom Filters

A main feature of the retrieval data structures just mentioned is that they can be easily
extended in order to reduce the false positive probability, which is the probability that
a valid value, i. e., a value from {g(x) | x ∈ S}, is returned on lookup for an x ∈ U− S.
The idea is to combine vx = g(x) for each x ∈ S with the value h(x) of an independent
and uniform hash function h : U → R. This can be done, e. g., via embedding V in
R and adding g(x) and h(x), for a false positive probability of |V |/|R| and additional
space usage m · (log|R|− log|V |), or via extending V to V × R, and concatenating g(x)
and h(x), for a false positive probability of 1/|R| and additional space usage m · log|R|,
cf., [DP08b, Section 1.2].
For the special case that there is only one valid value, i. e., g(x) = v for all x ∈ S,

a false positive probability of 1/|R| can be also achieved via storing v and replacing
g(x) by h(x) for all x ∈ S, see, e. g., [BM03, Section 2.2] and [DP08a, Section 4]. Now,
solving retrieval with a certain false positive probability becomes equivalent to solving
set membership with the same false positive probability, which for a membership tester
is defined as the probability that “x ∈ S” is returned on lookup for an x ∈ U−S. Hence,
these extended retrieval data structures can be seen as alternatives to the Bloom
filter [Blo70], a classical membership tester with adjustable false positive probability.

9Actually, they did not emphasize the connection to perfect hashing, i. e., they seem not to have
been aware of the work by, e. g., Seiden and Hirschberg [SH94] and Majewski et al. [MWHC96].

115

4. Retrieval and Perfect Hashing

Remark. This is the origin of the name Bloomier filter, introduced by Chazelle et al.,
which we retain throughout this thesis although we do not care about false positives.

There are a multitude of further Bloom filter variants, rather loosely related to the
work presented here. A detailed discussion of them is beyond the scope of this thesis.
For a survey see, e. g., [BM03, Rin07].

4.3. Basics

The section starts with standard space lower bounds for retrieval and perfect hashing.
Thereafter, we consider several related hypergraph models, which are used in Section 4.4
for a discussion of Theorem 4.4.

4.3.1. Worst-Case Space Lower Bounds

Deriving a suitable space lower bound for retrieval is straightforward and stated here
only for completeness.

Lemma 4.3.1 (Space Bound for Retrieval). A retrieval data structure for a key
set S, where each key is associated with a value from V, requires at least |S| · log|V |
bits in the worst-case.

The argument is the same as used in the proof for the space lower bound of a dictionary
in Section 3.3.1.
More challenging are good space bounds for perfect hashing. As we have discussed

in Section 4.2.1.1, a minimal perfect hash function needs at least log e = 1/ ln 2 bits
per key in the worst-case, if we have log log|U| = o(|S|) and |S| → ∞, as proved by
Fredman and Komlós [FK84], which is tight in our asymptotic view, see, e. g., [Meh82].
For the more general case of perfect hashing with range linear in the number of keys,
we use the following standard bound, see, e. g., [Bot08, Theorems 1 and 2] and [BPZ13,
Theorem 1.1] for alternative formulations, in order to value the space consumption of
the mutable Bloomier filter.

Lemma 4.3.2 (Asymptotic Space Bound for Perfect Hashing, follows
from [Meh84, Chapter 3, Theorem 6 a)]). Let h : U → R be a hash function
that is injective with respect to S ⊂ U, where |U| = |S|l and (1 + ε) · |S| = |R| for
constants l > 1 and ε > 0. Then for n → ∞, any realization of h requires at least
the following number of bits per element from S in the worst-case:

1

ln 2
, if ε = 0, and

1+ ε · ln
(
ε
1+ε

)
ln 2

, if ε > 0.

Proof. Let |S| = n, |R| = m, and |U| = u. The lower bound is derived straightforwardly
from [Meh84, Chapter 3, Theorem 6 a)], which states that the space usage for the

116

4.3. Basics

realization of a function that maps from U to R and is injective on S must be at least

log

((
u
n

)(
m
n

)
·
(
u
m

)n
)

.

The proof of the lemma is divided into two parts. In the first part we restate the proof
of [Meh84] for completeness, and in the second part we use integration to derive an
asymptotic bound for n→∞.

Part (i): There are T0 =
(
u
n

)
pairwise distinct subsets of U that have size n. We will

show that each of the mu different functions from U to R are injective for at most
T1 =

(
m
n

)
·
(
u
m

)n of them. It follows that we need at least T0/T1 different functions
such that for each set of size n there is one that is injective on this set. Hence, the
space lower bound is log(T0/T1).
Let h : U → R be arbitrary but fixed and let y0,y1, . . . ,yn−1 ∈ R be pairwise

distinct, then the number of subsets from U with size n that are mapped injectively to
{y0,y1, . . . ,yn−1} via h is∣∣h−1(y0)∣∣ · ∣∣h−1(y1)∣∣ · . . . · ∣∣h−1(yn−1)∣∣ .
It follows that h is injective for at most

∑
R′∈(Rn)

∏
y∈R′

∣∣h−1(y)∣∣ subsets of size n. Let
z = (zi)i∈[m]. We are looking for a global maximum of the function

f(z) :=
∑

I∈([m]
n)

∏
i∈I
zi

under the condition that

g(z) :=

m−1∑
i=0

zi = u ,

which exists by compactness.

Claim 4 (Maximum Number of Subsets). The point (u/m,u/m, . . . ,u/m) is
the global maximum point of f(z) restricted to g(z) = u.

Proof of Claim. Let z∗ = (z∗i)i∈[m] be a global maximum point of f(z) restricted to
g(z) = u. Assume for a contradiction that there exists two elements za, zb of z∗ with
za < zb. For all l ∈ N let Jl =

(
[m]−{a,b}
n−l

)
. Using J0, J1, and J2 we rewrite f as follows

f(z∗) =
∑
I∈J0

∏
i∈I
zi + (za + zb) ·

∑
I∈J1

∏
i∈I
zi + za · zb

∑
I∈J2

∏
i∈I
zi .

Define δ = zb−za
2

and let z ′ be the result of substituting za and zb in z∗ with
z ′a = za + δ and z ′b = zb − δ. Since z ′a + z ′b = za + zb and z ′a · z ′b > za · zb, we have
that f(z ′) > f(z∗) and g(z ′) = g(z∗), a contradiction. �

117

4. Retrieval and Perfect Hashing

Therefore, the number of n-element subsets of U for which h is injective is at most∑
R′∈(Rn)

∏
y∈R′

u

m
=

(
m

n

)
·
(u
m

)n
= T1 .

Part (ii): The term T0/T1 can be written as T0/T1 =
∏n−1
i=0

u−i
u
· m
m−i , which gives

log(T0/T1) =
n−1∑
i=1

log
(
1−

i

u

)
︸ ︷︷ ︸

K0(n,u)

+

n−1∑
i=1

log
(
1+

i

m− i

)
︸ ︷︷ ︸

K1(n,m)

.

The sequence log
(
1− i

u

)
, 0 6 i 6 u− 1, is monotonically decreasing and the sequence

log
(
1+ i

m−i

)
, 0 6 i 6 m − 1, is monotonically increasing. Using that n < u and

n 6 m, we can bound K0 and K1 from below via

K0(n,u) >
∫n
1

log
(
1−

x

u

)
dx =

[
u− x

ln 2
·
(
1− ln

(
1−

x

u

))]n
1

=
−n+ 1+ (u− 1) · ln

(
1− 1

u

)
− (u− n) · ln

(
1− n

u

)
ln 2

=: L0(n,u) .

and

K1(n,m) >
∫n−1
0

log
(
1+

x

m− x

)
dx =

[
m− x

ln 2
·
(
−1+ ln

(
1−

x

m

))]n−1
0

=
n− 1+ (m− n+ 1) · ln

(
1− n−1

m

)
ln 2

=: L1(n,m) .

Hence, we get log(T0/T1) > L0(n,u) + L1(n,m) =: L(n,m,u). We are interested in
limn→∞ L(n,m,u)/n, i. e., the asymptotically minimum number of bits per key, for
m = (1+ ε) · n and u = nl, with ε > 0 and l > 1 for constant ε and l.
For this, first consider the lower bound L0(n,u) for u = nl.

lim
n→∞ L0(n,n

l)

n
=

1

ln 2
· lim
n→∞

(
−n+ 1

n
+ nl−1 · ln

(
1−

1

nl

)
−

ln
(
1− 1

nl

)
n

− nl−1 · ln
(
1−

n

nl

)
+ ln

(
1−

n

nl

))

=
1

ln 2
· lim
n→∞

(
− 1+ nl−1 · ln

(
1−

1

nl

)
︸ ︷︷ ︸

=:N0(l,n)

−nl−1 · ln
(
1−

n

nl

)
︸ ︷︷ ︸

=:N1(l,n)

)

Using that

lim
n→∞N0(l,n) = lim

n→∞
d
dn ln

(
1− 1

nl

)
d
dn

1
nl−1

= lim
n→∞ l

nl+1 ·
(
1− 1

nl

) · nl

(−l+ 1)
= 0 ,

118

4.3. Basics

as well as

lim
n→∞N1(l,n) = lim

n→∞
d
dn ln

(
1− 1

nl−1

)
d
dn

1
nl−1

= lim
n→∞ l− 1

nl ·
(
1− 1

nl−1

) · nl

(−l+ 1)
= −1 ,

it follows that limn→∞ L0(n,nl)/n = 0.
Now consider the lower bound L1(n,m) for m = n, i. e., ε = 0.

lim
n→∞ L1(n,n)n

=
1

ln 2
· lim
n→∞

(
n− 1

n
+

ln
(
1− n−1

n

)
n

)
=

1

ln 2
.

Analogously, for m = (1+ ε) · n and ε > 0, we get

lim
n→∞ L1(n, (1+ ε) · n)n

=
1

ln 2
· lim
n→∞

(
n− 1

n
+

(ε · n+ 1) · ln
(
ε·n+1
(1+ε)·n

)
n

)

=
1+ ε · ln

(
ε
1+ε

)
ln 2

.

This finishes the proof of the lemma. �

4.3.2. Hypergraph Models

A random hypergraph model is a probability space that describes the random selection
of a hypergraph according to a specified probability distribution. In this section, we
discuss several such random experiments whose resulting hypergraphs a. a. s. share a
large amount of properties. As a consequence, proving that a certain property a. a. s.
holds in one model often implies that this property a. a. s. holds in a related model too.
We will use these facts in Section 4.4 for determining the 2-core thresholds č(d,α) for
non-uniform hypergraphs Hdm,n,α.

Here and in the following section one should be aware that, with respect to hyper-
graphs, m stands for the number of nodes and n stands for the number of edges,
which is exactly opposite to the common usage.
!

4.3.2.1. Probability Spaces

Before we take a look at the hypergraph models, we summarize all relevant variables
and constants for reference.

119

4. Retrieval and Perfect Hashing

Variables:

m ∈ N number of nodes

n ∈ N number of hyperedges

ni ∈ R (expected) number of hyperedges of size di,∑
i∈[s]

ni = n,∀i ∈ [s] : ni = αi · n,n = (n0,n1, . . . ,ns−1) ∈ Rs

pi ∈ R probability that edge of size di exists, ∀i ∈ [s] : pi ∈ [0, 1],

∀i ∈ [s] : pi =
αi · c ·m(

m
di

) =
ni(
m
di

) ,p = (p0,p1, . . . ,ps−1) ∈ [0, 1]s

(PAR)

Constants with respect to m, n, and n:

c ∈ R load factor, c = n/m

s ∈ N number of different edge sizes, s > 1

di ∈ N edge size number i, ∀i ∈ [s] : di > 3,d = (d0,d1, . . . ,ds−1) ∈ Ns

αi ∈ R (expected) fraction of nodes of size di, ∀i ∈ [s] : αi ∈ [0, 1],∑
i∈[s]

αi = 1,α = (α0,α1, . . . ,αs−1) ∈ [0, 1]s

Λi ∈ R (approximate) expected node degree with respect to edges of size di,

∀i ∈ [s] : Λi = pi ·
(
m−1
di−1

)
= αi · c · di,Λ = (Λ0,Λ1, . . . ,Λs−1) ∈ Rs

If not stated otherwise, the parameters for all hypergraphs in this chapter are chosen
according to these restrictions.
The sample space is defined to be the set of all hypergraphs with m nodes and at

most
(
m
di

)
edges of size di for all i ∈ [s], where the edges are not necessarily pairwise

distinct. We describe the hypergraph models or probability spaces, respectively, via
their corresponding random experiments of choosing a hypergraph H = (V,E). All
of these experiments start with fixed given node set V of size m and an empty edge
(multi-)set E and then successively add up edges to E according to certain random
choices.

Type B Hypergraph Model We start with the random hypergraph Hdm,n,α that
corresponds to the basic scheme type B, as used by the irregular Bloomier filters, see
Sections 4.1.2 and 4.1.4. In order to determine a realization of this random variable, n
edges are chosen one after the other as follows. First the edge size is set to a random
element d from vector d, where for all i ∈ [s] the probability that d = di is αi. Then

120

4.3. Basics

an edge is chosen uniformly at random from the set of all possible edges of size d.
Pseudocode is given as Algorithm 8.

Algorithm 8: type_B_hypergraph
Input : Node set V with |V | = m, number of edges n, edge sizes d, edge

probabilities α.
Output : Realization H = (V,E) of random hypergraph Hdm,n,α.
E0 ← E1 ← . . .← Es−1 ← ∅; // edge multisets
for j← 0 to n− 1 do

i← realization of Yj with ∀y ∈ [s] : Pr(Yj = y) = αy;

e← realization of Zj with ∀z ∈
(
V
di

)
: Pr(Zj = z) =

(
V
di

)−1
;

Ei ← Ei ∪ {e};
end
return (V,

⋃
i∈[s] Ei) ; // expected size of Ei is αi · n

Fixed Fractions Multiple Edges Hypergraph Model In a common variation
of the previous model the edge sizes are not chosen randomly but rather for each
i ∈ [s] the number of edges of size di is set to αi · n, i. e., is given in advance. We refer
to this hypergraph model10 as mulHdm,n,α. Algorithm 9 gives the pseudocode for the
corresponding random experiment.

Algorithm 9: fixed_fractions_multiple_edges_hypergraph
Input : Node set V with |V | = m, number of edges n, edge sizes d, distribution

of edge sizes α.
Output : Realization H = (V,E) of random hypergraph mulHdm,n,α.
E0 ← E1 ← . . .← Es−1 ← ∅; // edge multisets
for i← 0 to s− 1 do

for j← 0 to αi · n− 1 do
e← realization of Zi,j with ∀z ∈

(
V
di

)
: Pr(Zi,j = z) =

(
V
di

)−1
;

Ei ← Ei ∪ {e};
end

end
return (V,

⋃
i∈[s] Ei); // size of Ei is fixed to αi · n

10For s = α0 = 1 and d0 = 2, i. e., normal graphs, this model corresponds to Γ∗m,n in notation of
Erdős and Rényi [ER60, page 20], and was (probably) first studied in [AFPR59].

121

4. Retrieval and Perfect Hashing

Fixed Fractions Simple Edges Hypergraph Model Prohibiting multiple edges
straightforwardly leads from mulHdm,n,α to a model of simple hypergraphs which we
refer11 as simHdm,n,α. Algorithm 10 gives the pseudocode for choosing such a hypergraph.
For ease of subsequent discussions, we refer to the support of simHdm,n,α, i. e., the set
of all simple hypergraphs with m nodes and αi · n edges of size di, as simHdm,n,α.

Algorithm 10: fixed_fractions_simple_edges_hypergraph
Input : Node set V with |V | = m, number of edges n, edge sizes d, distribution

of edge sizes α.
Output : Realization H = (V,E) of random hypergraph simHdm,n,α.
E0 ← E1 ← . . .← Es−1 ← ∅; // edge sets
for i← 0 to s− 1 do

for j← 0 to αi · n− 1 do

e← realization of Zi,j with ∀z ∈
(
V
di

)
− Ei : Pr(Zi,j = z) =

((
V
di

)
− j
)−1

;

Ei ← Ei ∪ {e};
end

end
return (V,

⋃
i∈[s] Ei); // size of Ei is fixed to αi · n

Binomial Hypergraph Model The next model12, which we call binomial hyper-
graph model binHdm,p, is conceptual slightly different from the previous ones. Now the
total number of edges for a realization is not known in advance, instead, for all i ∈ [s]

each possible edge of size di from
(
V
di

)
is present with probability pi independent of

all other edges. The edge selection procedure is shown in Algorithm 11.

Poisson Cloning Hypergraph Model The last model that we consider is, unlike
the previous ones, relatively new. It was introduced by Kim around 2004 and is
called Poisson cloning model [Kim06, Kim08], or in our nomenclature Poisson cloning
hypergraph model poiHdm,Λ. The selection of a hypergraph according to this model can
be described as follows. Given V with |V | = m, for each i ∈ [s] create a new set Ci of
Po[m ·Λi] nodes, called clones, as well as an empty edge multiset Ei for edges of size di.
If the number of clones |Ci| is not divisible by di, then with respect to our applications
the resulting hypergraph is not useable; for convenience let Ej = ∅ for all j ∈ [s] in this
case. Otherwise, choose an arbitrary but fixed partition of Ci, where each part has size
di. Now, label each clone of Ci uniformly at random with a node from V and build a
new edge for each part of the partition using the nodes that correspond to the labels
11This is a slight generalization of the classical graph model Γm,n by Erdős and Rényi [ER60].
12This is a slight generalization of the classical graph model by Gilbert [Gil59], denoted Γ∗∗m,n by

Erdős and Rényi [ER60, page 20].

122

4.3. Basics

Algorithm 11: binomial_hypergraph
Input : Node set V with |V | = m, edge sizes d, edge probabilities p.
Output : Realization H = (V,E) of random hypergraph binHdm,p.
E0 ← E1 ← . . .← Es−1 ← ∅; // edge sets
for i← 0 to s− 1 do

foreach e ∈
(
V
di

)
do

x← realization of Xe with Pr(Xe = 1) = pi;
if x = 1 then Ei ← Ei ∪ {e};

end
end
return (V,

⋃
i∈[s] Ei); // size of Ei is Bin

(∣∣(V
di

)∣∣,pi)-distributed

of this part. If the labels for such an edge e are pairwise distinct, i. e., |e| = di, then
increase Ei by e. Otherwise, for simplicity of further considerations, we choose not to
use the resulting hypergraph, i. e., we define Ej = ∅ for all j ∈ [s], although in principle
e could have a valid size dj for some j ∈ [s]. Pseudocode is given as Algorithm 12.

Remark. If we don’t care if |Ci| is divisible by di or not, and consider edges as
multisets, such that their nodes are allowed to have multiplicities larger than 1, then
the degree Dx of an arbitrary but fixed node x with respect to edges of size di has
Poisson distribution with parameter Λi, independent of the other nodes; here degree is
understood as the sum over all occurrences of x in all edges of size di, i. e., the number
of clones from Ci labeled with x. This can be shown as follows:

Pr(Dx = d) =
∑
k>d

Pr(Dx = d | Po[Λi ·m] = k) · Pr(Po[Λi ·m] = k)

=
∑
k>d

Pr(Bin[k, 1/m] = d) · Pr(Po[Λi ·m] = k)

=
∑
k>d

(
k

d

)
·
(
1

m

)d
·
(
1−

1

m

)k−d
· (Λi ·m)k

k!
· e−Λi·m

=
∑
k>0

Λk+di · e−Λi·m · (m− 1)k

d! · k!
· e−Λi · eΛi

=
Λdi
d!
· e−Λi ·

∑
k>0

(
Λi · (m− 1)

)k
k!

· e−Λi·(m−1)

= Pr(Po[Λi] = d) .

123

4. Retrieval and Perfect Hashing

Algorithm 12: poisson_cloning_hypergraph
Input : Node set V with |V | = m, edge sizes d, corresponding expected node

degrees Λ.
Output : Realization H = (V,E) of random hypergraph poiHdm,Λ.
E0 ← E1 ← . . .← Es−1 ← ∅; // edge multisets
for i← 0 to s− 1 do

mcl ← realization of Po[Λi ·m]; // number of clones
if ∃ni ∈ N : mcl = di · ni then

for j← 0 to mcl/di − 1 do
for k← 0 to di − 1 do // node labels

lk ← realization of Zi,j,k with ∀z ∈ V : Pr(Zi,j,k = z) = m−1;
end
e← {l0, l1, . . . , ldi−1};
if |e| < di then return (V, ∅);
else Ei ← Ei ∪ {e};

end
else return (V, ∅);

end
return (V,

⋃
i∈[s] Ei); // size of Ei is controlled by Poisson distr.

4.3.2.2. Asymptotic Equivalence with Respect to Certain Properties

A property P of hypergraphs is simply a set of hypergraphs, and a hypergraph H has
property P if and only if H ∈ P. Consequently, a property of a hypergraph model is a
subset of its sample space, i. e., a hypergraph model has a property P with a specific
probability.

In the following we give some standard proofs that certain properties which are likely
for one of our hypergraph models are also likely for the other models too. Hereby, we
consider the models in reversed order as discussed above.

Lemma 4.3.3 (Poisson Cloning and Binomial Model, derived from [Kim06,
Kim08, Theorem 1.1]). Given (PAR). Let P ⊆ simHdm,n,α be a hypergraph property,
then the following holds:

(i) If Pr(poiHdm,Λ ∈ P) = o(1), then Pr(binHdm,p ∈ P) = o(1).

(ii) If Pr(poiHdm,Λ ∈ P) = 1− o(1), then Pr(binHdm,p ∈ P) = 1− o(1).

Proof. The proof follows [Kim08, proof of Theorem 1.1], with the difference that
instead of considering d-uniform hypergraphs, i. e., one edge size class, we consider
non-uniform (mixed) hypergraphs with s edge size classes. We will show that there
exist non-zero constants l = l(d) and k = k(d), such that for an arbitrary but fixed

124

4.3. Basics

hypergraph H ∈ P, with P ⊆ simHdm,n,α, we have

l · Pr(binHdm,p = H) 6 Pr(poiHdm,Λ = H) 6 k · Pr(binHdm,p = H) .

Then by

Pr(binHdm,p ∈ P) =
∑
H∈P

Pr(binHdm,p = H) and

Pr(poiHdm,Λ ∈ P) =
∑
H∈P

Pr(poiHdm,Λ = H) ,

we get

l · Pr(binHdm,p ∈ P) 6 Pr(poiHdm,Λ ∈ P) 6 k · Pr(binHdm,p ∈ P) ,

which implies the claim.
So, let H ∈ P be arbitrary but fixed. Furthermore, let ni = αi · n and observe that

Λi ·m = di · ni. According to Section 4.3.2 and Algorithms 11 and 12, we have

Pr(poiHdm,Λ = H) =
∏
i∈[s]

Pr(Po[di · ni] = di · ni) · ni! ·
(
di!
mdi

)ni
︸ ︷︷ ︸

=:Fi

Pr(binHdm,p = H) =
∏
i∈[s]

pnii · (1− pi)
(mdi)−ni︸ ︷︷ ︸

=:Gi

.

Now fix some i ∈ [s] and let F = Fi and G = Gi, as well as pi = p, ni = n, and d = di.
We will now derive bounds for F and G. According to the definition of F, we have

F =
(d · n)d·n

(d · n)!
· e−d·n · n! ·

(
d!
md

)n
.

By Stirling’s formula, we get

F =

(
1+O(1/n)

)
·
√
2π · n ·

(
n
e

)n(
1+O(1/(d · n))

)
·
√
2π · d · n ·

(
d·n
e

)d·n · (d · n)d·n · e−d·n · (d!
md

)n
=
(
d−1/2 ± o(1)

)︸ ︷︷ ︸
=:f

·
(e
n

)(d−1)·n
nd·n · e−d·n ·

(
d!
md

)n

= f ·
nn ·

(
d!
md

)n
en

= f ·
pn ·

(
m
d

)n · (d!
md

)n
en

.

Using that
(
m
d

)d
6
(
m
d

)
6 md

d! , we get

f · d!
dd
· p
n

en
6 F 6 f · p

n

en
.

125

4. Retrieval and Perfect Hashing

According to the definition of G, we have

G = pn · (1− p)(
m
d)−n = pn · eln(1−p)·((

m
d)−n) .

Using that

ln(1− p) ·
((
m

d

)
− n

)
= −

∞∑
j=1

p

j
·
((
m

d

)
− n

)

= −p

(
m

d

)
+

∞∑
j=1

(
pj · n
j

−
pj+1

j+ 1
·
(
m

d

)
︸ ︷︷ ︸

=:g

)
,

where g = nj+1

j·(md)
j −

nj+1

(j+1)·(md)
j > 0 , we get the following bounds

pn · e−p·(
m
d)+p·n−p2/2·(

m
d) 6 G 6 pn · e−p·(

m
d)+p·n .

This is equivalent to

pn

e(1−p/2)·n
6 G 6

pn

e(1−p)·n
.

Now, since p · n = O(m2−d) and d > 3, we have l < F0·F1·...·Fs−1
G0·G1·...·Gs−1 < k, for non-zero

constants l and k, with

l <
∏
i∈[s]

(
(d

−1/2
i ± o(1)) · di!

ddii
·
pnii
eni

)
/

(
pnii

e(1−pi)·ni

)

k >
∏
i∈[s]

(
(d

−1/2
i ± o(1)) ·

pnii
eni

)
/

(
pi
ni

e(1−pi/2)·ni

)
.

This finishes the proof of the lemma. �

The next “transfer” is from binHdm,p to simHdm,n,α. For this purpose we make use of
convex properties. A set P of hypergraphs is called convex property, if for each pair of
hypergraphs HA, HC from P and each hypergraph HB it holds that HA ⊆ HB ⊆ HC
implies that the “middle” hypergraph HB is also from P.

Lemma 4.3.4 (Binomial and Fixed Fractions Simple Edges Model, slight
generalization of [JŁR00, Proposition 1.15]). Given (PAR). Let P be a convex
property of all hypergraphs on m nodes whose edge sizes are restricted to d. Then
the following holds:

If Pr(binHdm,p ∈ P) = 1− o(1), then Pr(simHdm,n,α ∈ P) = 1− o(1) .

126

4.3. Basics

Proof. We follow the proof of [JŁR00, Proposition 1.15]. Let ni = αi · n as well as
let n = (ni)i∈[s]. In the following, we will use simHdm,n and simHdm,n,α synonymously.
Let X = (Xi)i∈[s] be a vector of random variables, where each component Xi ∈

(
m
di

)
counts the number of edges of size di of binHdm,p. Moreover, for any relation R from
{=, 6=,<,>,6,>} and two vectors a and b of the same dimension s, we define a R b⇔
∀i ∈ [s] : ai R bi. By the law of total probability we have

Pr(binHdm,p ∈ P) =
∑
x

Pr(binHdm,p ∈ P | X = x) · Pr(X = x)

=
∑
x

Pr(simHdm,x ∈ P) · Pr(X = x) .

Now define

x− := argmax
x

{
Pr(simHdm,x ∈ P) | x 6 n

}
, and

x+ := argmax
x

{
Pr(simHdm,x ∈ P) | x > n

}
.

Applying these definitions gives the following two upper bounds

Pr(binHdm,p ∈ P) 6 Pr(simHdm,x− ∈ P) · Pr(X 6 n) + 1 ·
(
1− Pr(X 6 n)

)
(M)

Pr(binHdm,p ∈ P) 6 Pr(simHdm,x+ ∈ P) · Pr(X > n) + 1 ·
(
1− Pr(X > n)

)
. (N)

The vector X is a random vector where each component Xi is the sum of indicator
variables Yj, j ∈ [

(
m
di

)
], which indicate if edge number j of size di is present. Using that

the expected value for Xi is Exp(Xi) = pi ·
(
m
di

)
= ni, we get

Pr(Xi 6 ni) = Pr(Xi − Exp(Xi) 6 0) = Pr
(Xi − Exp(Xi)√

Var(Xi)︸ ︷︷ ︸
=:Zi

6 0
)
.

The random variables Zi are independent, because the Xi’s are independent. Moreover,
by the central limit theorem, they follow a standard normal distribution as m goes to∞. Therefore, we have

lim
m→∞Pr(X 6 n) = lim

m→∞Pr(X > n) = 1/2s .

Using the assumption Pr(binHdm,p ∈ P) = 1 − o(1) along with the fact that 1/2s is
constant, it follows from (M) that Pr(simHdm,x− ∈ P) = 1 − o(1), and it follows from
(N) that Pr(simHdm,x+ ∈ P) = 1− o(1).

Analogously to simHdm,n,α, let
simHdm,x−,α be the support of simHdm,x− and let

simHdm,x+,α be the support of simHdm,x+ . Furthermore, let

PA := simHdm,x−,α ∩ P

PC := simHdm,x+,α ∩ P

PB :=
{
HB ∈ simHdm,n,α ∩ P | ∃HA ∈ PA ∃HC ∈ PC : HA ⊆ HB ⊆ HC

}
.

127

4. Retrieval and Perfect Hashing

It holds that

Pr(simHdm,x− ∈ P) =
|PA|∣∣simHdm,x−,α

∣∣
Pr(simHdm,x+ ∈ P) =

|PC|∣∣simHdm,x+,α

∣∣
Pr(simHdm,n ∈ P) >

|PB|∣∣simHdm,n,α

∣∣ .
Since, we know that Pr(simHdm,x− ∈ P) and Pr(simHdm,x+ ∈ P) are bounded by 1−o(1),
it follows that |PA| → |simHdm,x−,α| and |PC| → |simHdm,x+,α| for m → ∞. Since P is
convex, we have that |PB|→ |simHdm,n,α|. Hence, we have

Pr(simHdm,n ∈ P) = Pr(simHdm,n,α ∈ P) = 1− o(1) ,

which finishes the proof of the lemma. �

Next, we show the asymptotic equivalence of the probability that simHdm,n,α has a
given property and the probability that mulHdm,n,α has the same property.

Lemma 4.3.5 (Fixed Fractions Simple Edges and Multiple Edges Model,
analogous to [FP10, Proposition 1]). Given (PAR). Let P ⊆ simHdm,n,α be a
hypergraph property, then the following holds:

Pr(simHdm,n,α ∈ P) = Pr(mulHdm,n,α ∈ P) + o(1) .

Proof. The following is standard. Let A be the event that mulHdm,n,α has duplicate
edges. We get

Pr(mulHdm,n,α ∈ P) =Pr(mulHdm,n,α ∈ P | A) · Pr(A)

=Pr(simHdm,n,α ∈ P) ·
(
1− Pr(A)

)
.

For each i ∈ [s] let Ei be the set of edges of size di of mulHdm,n,α. Furthermore, for
each {ei, e ′i} ∈

(
Ei
2

)
let X{ei,e′i} be a binary random variable with X{ei,e′i} = 1 if ei = e ′i

and X{ei,e′i} = 0 otherwise. Now we have

Pr(A) = Pr

(∑
i∈[s]

∑
{ei,e′i}∈Ei

X{ei,e′i} > 1

)
6
∑
i∈[s]

Exp

(∑
{ei,e′i}∈Ei

X{ei,e′i}

)
.

For arbitrary but fixed i, it holds that Exp(
∑

{ei,e′i}∈Ei
X{ei,e′i}) =

(
αi·n
2

)
/
(
m
di

)
, which is

bounded by o(1) for di > 3. Since s is a constant, we have Pr(A) = o(1), and therefore
Pr(mulHdm,n,α ∈ P) = Pr(simHdm,n,α ∈ P) ·

(
1 − o(1)

)
, which finishes the proof of the

lemma. �

128

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

The last lemma shows the close connection between mulHdm,n,α and Hdm,n,α (type B),
cf., Section 3.5.5.1.

Lemma 4.3.6 (Fixed Fractions Multiple Edges and Type B Model). Given
(PAR). Let P be a convex property of all hypergraphs on m nodes whose edge sizes
are restricted to d. Furthermore, let δ > 1/2 be an arbitrary constant. Then the
following holds:

If Pr(mulHdm,n−nδ,α ∈ P) = 1− o(1) and Pr(mulHdm,n+nδ,α ∈ P) = 1− o(1),

then Pr(Hdm,n,α ∈ P) = 1− o(1) .

Proof. For all i ∈ [s] let Xi be a random variable that counts the number of edges of
size di of Hdm,n,α; recall that Exp(Xi) = αi · n. Arguing analogously to Section 3.5.5.1,
as part of the proof of Proposition 3.1, we conclude that a. a. s. for all i ∈ [s] it holds that
αi · (n− nδ) 6 Xi 6 αi · (n+ nδ). Since a realization of Hdm,n,α | (Xi)i∈[s] = (xi)i∈[s]
is chosen fully random among all hypergraphs with m nodes and xi edges of size di,
the lemma follows by the convexity of P. �

4.4. Thresholds for the Appearance of Cores in
Non-Uniform Hypergraphs

In this section we consider Theorem 4.4 in the subsequent, more general version
concerning `+-cores instead of 2-cores, see Section 2.3.1. Let

č`+(d,α) := min
λ>0

key(λ,d,α, `+ − 1) ,

for the key function

key(λ,d,α, `) =
λ∑

i∈[s]
αi · di ·

(
Pr (Po [λ] > `)

)di−1 ,
with number of orientations ` = `+ − 1 and special case č2(d,α) = č(d,α), see
Sections 3.1.1.5 and 3.4.

Theorem 4.6 (`+-Core Appearance, generalization of Theorem 4.4)
Given (PAR). Let c 6 `+ for constant `+ ∈ N with `+ > 2. Then for any constant
ε > 0 a. a. s. the following holds:

(i) If c 6 č`+(d,α) − ε, then Hdm,n,α (type B) has an empty `+-core.

(ii) If c > č`+(d,α) + ε, then Hdm,n,α (type B) has a non-empty `+-core.

Since an outline of a proof can be easily derived from [DGM+10, Section 4], Theorem 4.6
is not a fully adequate result of this thesis, and, accordingly, is not classified as such.

129

4. Retrieval and Perfect Hashing

However, on the basis of [DGM+09, DGM+10] we elaborate the details missing for a
full proof of the first part of the theorem in Section 4.4.1, i. e., showing that č`+(d,α) is
a lower bound of the `+-core threshold, as well as sketch the proof of the second part in
Section 4.4.2, i. e., argue that č`+(d,α) is also an upper bound of the `+-core threshold.

4.4.1. Lower Bound

The proof of the lower bound for the `+-core threshold is almost identical to the first
part of the proof of [Mol04, Theorem 1.2] by Molloy, using exactly the same strategy
and only slightly generalized lemmas regarding non-uniform or mixed hypergraphs,
respectively.
!
Our starting point is a variant of Algorithm 1 that does peeling steps in parallel,
formalized as Algorithm 13. In order to reference intermediate results, the rounds of
the algorithm and the corresponding hypergraphs are numbered consecutively starting
with 0.

Algorithm 13: peeling_in_parallel
Input : Hypergraph H = (V,E), core parameter `+ ∈ N with `+ > 1.
Output : The `+-core of H.
t← 0;Vt = V;Et = E;
while true do

Ht ← (Vt,Et);
V ′ ←

{
v ∈ Vt | |{e ∈ Et | v ∈ e}| 6 `+ − 1

}
;

if V ′ = ∅ then break;
t← t+ 1; Vt ← Vt−1 − V

′; Et ← Et−1 − {e ∈ Et−1 | e ∩ V ′ 6= ∅};
end
return Ht;

If we apply peeling_in_parallel on a random hypergraph mulHdm,n,α, then a. a. s.
after a constant number of rounds we are left with a hypergraph that has a relatively
small number of nodes.

Lemma 4.4.1 (Relatively Small Remaining Subgraph, slight generaliza-
tion of [Mol04, Lemma 2.1]). Given (PAR) and let ε > 0 be arbitrary but fixed.
If c 6 č`+(d,α) − ε, then for every δ > 0 there is a constant t = t(δ) ∈ N, such that
a. a. s. after t many steps of Algorithm 13 on input binHdm,p, the intermediate result
Ht has less than δ ·m nodes.

Lemma 4.4.1 is proved in Section 4.4.1.1. Applying Lemmas 4.3.4 and 4.3.5, we conclude
that this lemma also holds for mulHdm,n,α.

130

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

Next, we consider the average degree of each subgraph of mulHdm,n,α with less than
δ ·m nodes, where the average degree of a hypergraph H = (V ,E) with node set V and
edge set E is defined as

∑
e∈E|e|/|V |.

Lemma 4.4.2 (Small Average Degree, slight generalization of [Mol04,
Lemma 2.3]). Given (PAR). For any c 6 `+ there is a constant δ = δ(c) such that
a. a. s. the graph mulHdm,n,α has no subgraph with less than δ ·m nodes and average
degree at least `+.

The proof of this lemma is given in Section 4.4.1.2.
By Lemmas 4.4.1 and 4.4.2, it follows that if we apply Algorithm 13 on mulHdm,n,α

with c = n/m 6 č`+(d,α) − ε, then after t(δ(c)) many steps a. a. s. either the output
is empty, or the output is nonempty and all subgraphs of the resulting hypergraph
have minimum node degree below `+. Hence, a. a. s. mulHdm,n,α has no `+-core. This
also holds if the number of edges of mulHdm,n,α are increased or reduced by summands
of size sublinear in ni, e. g., for mulHd

m,n±n4/7,α. Hence, by Lemma 4.3.6, the lower
bound holds for Hdm,n,α type B.

So, to complete the proof of the lower bound of the `+-core threshold, it remains to
show the two lemmas above, which is done in the following two sections.

4.4.1.1. Obtaining a Relatively Small Subgraph After a Constant Number
of Parallel Peeling Steps

In this Section we show Lemma 4.4.1, by adapting the proof of [Mol04, Lemma 2.1].
We start with some definitions to clarify the concepts of path, simple path and

simple tree that we will use in the following, since, regarding hypergraphs, they are
not necessarily unambiguous.

Definition 5: (Path and Distance)
A path P = (v0, e1, v1, e2, . . . , vl−1, el, vl) of length l ∈ N between two nodes v and
v ′ of a hypergraph H is an alternating sequence of nodes and edges with the following
properties:

. The path begins with v and ends with v ′, i. e., v = v0 and v ′ = vl.

. The edges of the path are pairwise distinct, i. e., ei 6= ej for all 1 6 i < j 6 l.

. Each node is element of the edge to the left and element of the edge to the
right in the sequence P, i. e., {vi−1, vi} ⊆ ei, 1 6 i 6 l.

. If P has at least one edge, then the nodes of P are pairwise distinct, i. e., vi 6= vj
for all 0 6 i < j 6 l,

If there is a path between v and v ′, then both nodes are connected. If the path has
length l, then v is within distance l to v ′ and vice versa.

131

4. Retrieval and Perfect Hashing

By definition, P = (v) is a path of length 0 and hence v is within distance 0 to itself.
As a special case, we consider paths where each pair of consecutive edges e and e ′ has
exactly one common node, and non-consecutive edges share no node.

Definition 6: (Simple Path)
A path P of length l is called simple, if for each pair of edges ei, ej from P, with
1 6 i < j 6 l, we have that |ei ∩ ej| = 1 if j− i = 1; otherwise ei ∩ ej = ∅.

Using the concept of a simple path we define a special (hyper-)tree structure.

Definition 7: (Simple Tree)
A hypergraph H is called a simple tree if each pair of nodes is connected via exactly
one path and all paths of H are simple.

Hence, in a simple tree no two different edges have more than a single common node.
With the above definitions, we can start with the actual proof. Consider an arbitrary

but fixed node v from binHdm,p and its neighborhood within constant distance. According
to the following lemma, a. a. s. these nodes induces a small simple tree with root v.

Lemma 4.4.3 (Small Simple Tree, first part of the proof of [Mol04,
Lemma 2.4]). Given (PAR). Let v be an arbitrary but fixed node from binHdm,p. Let
Di be the set of nodes with distance i from v, where 0 6 i 6 t for constant t ∈ N.
Then a. a. s. the node set

⋃t
i=0Di induces a simple tree with root v that has at most

logm nodes.

Proof. Consider the following events

A := {At most logm nodes have distance 6 t to v.} ,

B := {The nodes within distance t to v induce a simple tree.} .

We have to show that the probability of the event A ∩B is 1− o(1). We will do this
via bounding the probability of the complementary event from above using the union
bound, that is

Pr(A ∪B) 6 Pr(A) + Pr(B)
!
= o(1) .

Consider the event A. For each 0 6 i 6 t let Xi be a random variable that counts the
number of nodes in binHdm,p within distance exactly i to v. Using Markov’s inequality,
we get

Pr(A) = Pr

(
t∑
i=0

Xi > logm

)
<

t∑
i=0

Exp(Xi)

logm
.

The expected values Exp(Xi), i ∈ [t+ 1], can be bounded as follows.

132

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

i = 0. Since v is the only node with distance 0 to v, it holds X0 = Exp(X0) = 1.

i = 1. To bound Exp(X1) note that there are
(
m−1
dj−1

)
potential edges of size dj that

contain v. Each such an edge is present with probability pj = αj · c ·m/
(
m
dj

)
inde-

pendently of the other edges. If such an edge is present, then dj − 1 nodes of this
edge are within distance 1 of v. Therefore, we get

Exp(X1) 6
∑
j∈[s]

(dj − 1) ·
(
m− 1

dj − 1

)
· pj 6 c ·m ·

∑
j∈[s]

dj ·

(
m
dj−1

)(
m
dj

) = O(1) ,

using that
(
m
dj

)
= Θ(mdj) for constant dj.

i > 2. To bound Exp(Xi) for 2 6 i 6 t consider all paths of length i − 1 starting
from v = v0. Let P = (v0, e1, v1, e2, . . . , vi−2, ei−1, vi−1) be such a path. Each
additional edge e that does not belong to P but has element vi−1, the endpoint of P,
contributes at most dj − 1 nodes to Xi. The number of possibilities to choose the
nodes v1, v2, . . . , vi−1 is bounded by mi−1, the number of possibilities to choose the

edges e1, e2 . . . , ei−1 of the path is bounded by
(∑

j∈[s]
(
m
dj−2

))i−1
, and the number

of possibilities to choose the last edge e is bounded by
∑
j∈[s]

(
m
dj−1

)
. Hence, we have

Exp(Xi) 6 mi−1 ·

∑
j∈[s]

(
m

dj − 2

)
· pj

i−1 ·∑
j∈[s]

(dj − 1) ·
(

m

dj − 1

)
· pj

6 ci−1 ·m2i−2 ·

∑
j∈[s]

(
m
dj−2

)(
m
dj

)
i−1 · c ·m ·∑

j∈[s]

dj ·
(
m
dj−1

)(
m
dj

) = O(1) .

It follows that Pr(A) = O(1/ logm) = o(1).
Consider the event B. In order to bound the probability of B, we will make use of

the event

C := {There is a sling starting at v with length 2 6 l 6 2 · t.} ,

where sling is defined as follows.

Definition 8: (Sling)
A sling S = (P, e) of length l, l > 2, is a tuple of a path P and an edge e, where:

. The path P = (v0, e1, v1, e2, . . . , vl−2, el−1, vl−1) has length l− 1.

. The last node vl−1 of P is element of e and it holds that
∣∣e ∩ (

⋃l−1
i=1 ei)

∣∣ > 2.
By the next claim, it follows that the probability of event C is at least as high as the
probability of event B.

133

4. Retrieval and Perfect Hashing

Claim 5 (No Simple Hypertree Implies a Sling). It holds B⇒ C.

Proof of Claim. Assume B. By definition, the connected hypergraph that is induced
by the nodes within distance t to v, denoted as HD, is not a simple tree if and only if
we are in one of two cases:

1. There exists a path that is not simple.

2. All paths are simple and there exists a pair of nodes that is connected by two
simple paths.

We will show that in the first as well as in the second case there must exist a sling.

ad (i): Let P = (v, e1, v1, e2, . . . , vk−1, ek, vk) be a path that is not simple. We use v as
the first node of P, since there is a path from v to each other node in HD. By definition.
there is an index j, 2 6 j 6 k, for which it holds |ej−1 ∩ ej| > 2 or |ei ∩ ej| > 1 for
i < j− 1. Hence there exists a sling S =

(
(v, e1, v1, e2, . . . , vj−2, ej−1, vj−1), ej

)
starting

at v.

ad (ii): There must be two nodes u and w that are connected by two simple paths
P0 = (u, e1, v2, e2, . . . , vk−1, ek,w) and P1 = (u, e ′1, v

′
2, e
′
2, . . . , v

′
l−1, e

′
l,w) that have

no common edge, i. e., ei 6= e ′j for all 1 6 i 6 k and 1 6 j 6 l. Since all paths are
simple, no two different edges have more than one common node. Hence the path
P = (u, e1, v2, e2, . . . , vk−1, ek,w, e ′l, v

′
l−1, . . . , e

′
2, v
′
2) is a simple path and S = (P, e ′1)

is a sling starting at u. If v is an element of an edge ei or e ′j of P, then there exists
also a sling starting at v. If v is not an element of an edge of P, then there is a simple
path from v to a node vi or v ′j of P that creates a sling starting at v.

This finishes the proof of the claim. �

For each l with 2 6 l 6 2 · t let Yl be a random variable that counts the number of
slings of length l starting at v. By Claim 5 we have that Pr(C) > Pr(B) and therefore

Pr(B) 6 Pr

(
2t∑
l=2

Yl > 1

)
6

2t∑
l=2

Exp (Yl) .

One can bound Exp(Yl) analogous to Exp(Xi) via

Exp(Yl) 6 ml−1 ·

(∑
j∈[s]

(
m

dj − 2

)
· pj

)l−1
·
∑
j∈[s]

(
m

dj − 2

)
· pj

6 cl−1 ·m2·l−2 ·

(∑
j∈[s]

(
m
dj−2

)(
m
dj

))l−1 · c ·m ·∑
j∈[s]

(
m
dj−2

)(
m
dj

) = O
(
m−1

)
.

It follows that Pr(B) = o(1) and therefore it holds Pr(A ∪ B) = o(1), which finishes
the proof of the lemma. �

134

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

Now we turn our attention to peeling_in_parallel (Algorithm 13) and determine
the probability that a node v from binHdm,p survives a constant number of rounds of
this peeling algorithm.

Lemma 4.4.4 (Probability of Survival, slight generalization of [Mol04,
Lemma 2.4]). Given (PAR). Let v be an arbitrary but fixed node from binHdm,p. For
any constant t ∈ N, let σt be the probability that after t > 1 rounds of Algorithm 13
on input H = binHdm,p the node v is still present in Ht. Then the following holds:

σt = Pr (Po [λt] > `+)± o(1) ,

with

λi := c ·
∑
j∈[s]

αj · dj · ρ
dj−1
i−1 for i > 1,

and ρi recursively defined via

ρi := Pr (Po [λi] > `+ − 1) for i > 1,

ρ0 := 1 .

Proof. Let Di be the set of nodes with distance i from v, where 0 6 i 6 t for constant
t ∈ N. According to Lemma 4.4.3, the event

T := {The set
⋃t

i=0
Di induces a simple tree HD

with root v and at most logm nodes.}

occurs with probability 1− o(1). Hence, in the following we consider all probabilities
under the condition that T holds.
Now, on the simple tree HD we apply Algorithm 14, a modified peeling method,

called peeling_tree_in_parallel, which specifies a certain order in which nodes
have to be removed. For a description of this algorithm, we make use of the following
definitions.

Definition 9: (Edge Types)
A child edge of a node u from Di is an edge incident with u where all nodes but u
are from Di+1. The parent edge of a node u ∈ Di, u 6= v, is the only edge incident
with u that is not a child edge of u.

The algorithm works in rounds. Let i be the number of the current iteration. In each
iteration 1 6 i 6 t− 1 we consider all nodes of Dt−i. A node u is removed from Dt−i
if and only if it has at most `+ − 2 child edges. Removing u includes removing all edges
incident with u, especially its parent edge. In the last iteration t we consider D0 = {v}

and the root v is removed if it has at most `+ − 1 child edges.

135

4. Retrieval and Perfect Hashing

Algorithm 14: peeling_tree_in_parallel
Input : Simple Tree H = (V,E), root v ∈ V, core parameter `+ ∈ N with `+ > 1,

height parameter t ∈ N.
Output : Sub-tree of H.
for i← 0 to t do Di ← {u ∈ V | u has distance i to v} ;
for i← 1 to t do

// 6 `+ − 2 child edges for u 6= v, 6 `+ − 1 child edges for u = v

V ′ ←
{
u ∈ V | u ∈ Dt−i ∧ |{e ∈ E | u ∈ e}| 6 `+ − 1

}
;

V ← V − V ′;
E← E− {e ∈ E | e ∩ V ′ 6= ∅};

end
return (V,E)

Claim 6 (Peeling). The root node v survives t rounds of peeling_in_parallel
(Algorithm 13) if and only if v survives peeling_tree_in_parallel (Algorithm 14).

Proof of Claim. Assume that v does not survive peeling_tree_in_parallel. Ob-
serve that all nodes from HD, except the nodes from Dt, are incident to the same
edges in H and HD, from which it directly follows that v cannot survive t rounds of
peeling_in_parallel.

Assume that v does not survive t rounds of peeling_in_parallel, then there exists
a path P of length at most t − 1 that ends at v and is reducible according to the
following definition. A path P of length l between two nodes is reducible if and only
if either l = 0 and the end node is incident with at most `+ − 1 edges, or l > 0 and
the start node is incident with at most `+ − 1 edges and removing these edges from
binHdm,p results in a reducible path of length smaller than l. It follows that v cannot
survive peeling_tree_in_parallel. �

So, according to Claim 6 it is sufficient to analyze the probability that the root
node v survives peeling_tree_in_parallel. Our next step is to show, by induc-
tion on i ∈ [t], the probability that an arbitrary but fixed node u of Dt−i survives
peeling_tree_in_parallel is ρi ± o(1).

Basis, i = 0 : According to the definition of peeling_tree_in_parallel no node of
Dt is removed. Hence the survival probability is 1 = ρ0.

Induction step, i− 1→ i, 1 6 i < t : Assume that each node of Dt−i+1 survives with
probability ρi−1 ± o(1). Now consider Dt−i and an arbitrary but fixed node u from
this set. Let Yj be a random variable that counts the number of child edges of u
with size dj that have survived round i − 1. We are interested in the probability
distribution of Yj.
In order that such a child edge e has survived round i− 1, two conditions must be
fulfilled:

136

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

1. The edge e must have been chosen during the construction of binHdm,p; the
probability of this event is pj.

2. All of the dj − 1 nodes of e that are from Dt−i+1 must have survived iteration
number i − 1; according to the assumption, the probability for this event is(
ρi−1 ± o(1)

)dj−1.
Let X = |D0 ∪ D1 ∪ . . . ∪ Dt−i| be a random variable that counts the number of
nodes from the current level up to the root level of the simple tree HD. All of the
nodes from these levels cannot be elements of the child edges of u, hence Yj has
distribution

Yj ∼ Bin
((
m− X

dj − 1

)
,pj · (ρi−1 ± o(1))dj−1

)
.

The next step is to show that Yj is approximately Poisson distributed.

Claim 7 (Surviving Child Edges of Size dj). The expected value of Yj is
Exp(Yj) = c · αj · dj · ρ

dj−1
i−1 ± o(1).

Proof of Claim. According to the distribution of Yj, we have

Exp(Yj) =
(
ρi−1 ± o(1)

)dj−1 · c · αj ·m ·
(
m−X
dj−1

)(
m
dj

) .

Let x be the realization of X. Since, we assume that event T holds, we have that
1 6 x 6 logm. All we need is to show that

(
m−x
d−1

)
·m/

(
m
d

) !
= d± o(1), for constant

d > 3. Using factorial representation, we get(
m− x

d− 1

)
· m(m
d

) =d · (m− x)! · (m− d)!
(m− d− (x− 1))! · (m− 1)!

= d ·
x−2∏
i=0

m− d− i

m− 1− i︸ ︷︷ ︸
=:P

.

Since it holds

m− d− i

m− 1− i

!
>
m− d− (i+ 1)

m− 1− (i+ 1)
⇔ −2m+ 2d > −2m+ d+ 1⇔ d > 1 ,

it follows that(
m− d− x+ 2

m− x+ 1

)x−1
6 P 6

(
m− d

m− 1

)x−1
.

It remains to show that P = 1 ± o(1). Using that 1 + z 6 exp(z), the limit of the
upper bound is bounded by

lim
m→∞

(
m− d

m− 1

)x−1
= lim
m→∞

(
1−

d− 1

m− 1

)x−1
6 lim
m→∞ exp

(
(−d+ 1) · (x− 1)

m− 1

)
= 1 .

137

4. Retrieval and Perfect Hashing

Using Bernoulli’s inequality, the limit of the lower bound is bounded by

lim
m→∞

(
m− d− x+ 2

m− x+ 1

)x−1
= lim
m→∞

(
1−

d− 1

m− x+ 1

)x−1
>1+ lim

m→∞ (−d+ 1) · (x− 1)
m− x+ 1

= 1 .

Hence the claim follows. �

By Claim 7, the expected value of Yj can be made arbitrarily close to a positive
constant. Hence, the distribution Po

(
limn→∞ Exp(Yj)

)
is the limit distribution of

Yj, see, e. g., [MU05, Theorem 5.5]. Therefore, for any fixed y we have

Pr(Yj = y) = Pr
(
Po
[
c · αj · dj · ρ

dj−1
i−1

]
= y

)
± o(1) .

Since Y0, Y1, . . . , Ys−1 are independent, their sum Y =
∑
j∈[s] Yj is also approximately

Poisson distributed with parameter λi = c ·
∑
j∈[s]

αj · dj · ρ
dj−1
i−1 . Therefore, we can

express the probability that u survives round i using Y, via

Pr (Y > `+ − 1) = Pr (Po [λi] > `+ − 1)± o(1) = ρi ± o(1) .

This finishes the induction step.

We conclude that the root node v survives the last iteration t with probability

σt = Pr (Po [λt] > `+)± o(1) .

This concludes the proof of the lemma. �

Let Vt be the number of nodes of binHdm,p = (V,E) after t of rounds of Algorithm 13,
especially let V0 = V . The last building block to complete Lemma 4.4.1 is the following
lemma, which states that the number of nodes that survive is concentrated around
m · σt, if t is constant.
Lemma 4.4.5 (Number of Surviving Nodes, slight generalization of
[Mol04, Lemma 2.5]). Given (PAR). For any constant t ∈ N and constant γ > 1

2

it a. a. s. holds that
∣∣|Vt|− σt ·m∣∣ < mγ.

Proof. For each node v from V let Xv be a binary random variable with

Xv :=

{
1, if v survives t iterations of peeling_in_parallel

0, otherwise
.

Let σ := σt = Pr(Xv = 1). For each node v from V we define a random variable
Yv = Xv − σ, i. e.,

Yv :=

{
1− σ, if Xv = 1 (with probability σ)

−σ, if Xv = 0 (with probability 1− σ)
.

138

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

Let P := Pr
(∣∣|Vt|− σt ·m∣∣ < mγ), for constant γ > 1/2. Using the random variables

Xv and Yv, we get

P = Pr

(∣∣∣∑
v∈V

Xv − σ ·m
∣∣∣ < mγ) = Pr

(∣∣∣∑
v∈V

Yv

∣∣∣ < mγ) .

We will show that P !
= 1− o(1) via bounding 1− P from above. It holds

1−P = Pr

(∣∣∣∑
v∈V

Yv

∣∣∣ > mγ) = Pr

((∑
v∈V

Yv

)2
> m2·γ

)
6

Exp
((∑

v∈V
Yv

)2)
m2·γ

,

by Markov’s inequality. Expanding the numerator of the right-hand side gives

Exp

((∑
v∈V

Yv

)2)
= Exp

(∑
v∈V

Y2v

)
︸ ︷︷ ︸

=:S0

+Exp

 ∑
u,v∈V
u6=v

Yu · Yv


︸ ︷︷ ︸

=:S1

.

By linearity of expectation, the first summand is

S0 = m · Exp
(
Y2v
)
= m ·

(
(1− σ)2 · σ+ (−σ)2 · (1− σ)

)
= m · σ · (1− σ) 6 1/4 ·m .

For each pair u and v of different nodes from V, consider the event

Au,v := {There is a path of length 6 t that connects u and v}.

Let u and v be two arbitrary but fixed different nodes. By linearity of expectation, the
second summand can be written as S1 = m · (m− 1) · Exp (Yu · Yv), and by the law of
total expectation, we get

S1 = m · (m− 1) ·
(
Exp(Yu · Yv | Au,v)︸ ︷︷ ︸

=:T0

·Pr(Au,v︸ ︷︷ ︸
=:T1

)

+Exp (Yu · Yv | Au,v)︸ ︷︷ ︸
=:T2

·Pr(Au,v)︸ ︷︷ ︸
=:T3

)
.

It remains to bound the terms T0, T1, T2, and T3. Conditioned on the event Au,v, the
survival probabilities of the nodes u and v during the first t iterations of algorithm
peeling_in_parallel are independent. Hence

T0 = (1− σ)2 · σ2 + (−σ)2 · (1− σ)2 + (−σ) · (1− σ) · 2 · σ · (1− σ)
= 2 · (1− σ)2 · σ2 − 2 · (1− σ)2 · σ2 = 0 .

139

4. Retrieval and Perfect Hashing

We use T1 6 1, as well as T2 6 1, since Yu, Yv ∈ [−1, 1]. It remains to bound T3, i. e.,
the probability of the event Au,v. Let Zi be a random variable counting the number of
paths of length i that connect u and v. It holds by Markov’s inequality

Pr(Au,v) = Pr

(
t∑
i=1

Zi > 1

)
6

t∑
i=1

Exp(Zi) .

Analogous as in the proof of Lemma 4.4.3, it follows that Exp(Zi) = O(m−1), for
constant i, and therefore T3 = O(m−1). So, the second summand can bounded via
S1 = O(m), and we get

1− P 6
S0 + S1
m2·γ

= O(m1−2·γ) ,

which is in o(1) for constant γ > 1/2. This completes the proof of the lemma. �

In order to bound σt, we consider λt using the following functions

f(x) = Pr(Po[x] > `+ − 1) = 1−
`+−2∑
j=0

xj

j!
· e−x

g(x) = c ·
∑
j∈[s]

αj · dj · xdj−1 .

According to the definitions of Lemma 4.4.4, we have λi = g(ρi−1), for i > 1, and
ρi = f(λi) = f

(
g(ρi−1)

)
, for i > 1, as well as ρ0 = 1.

Claim 8 (Limits). Let ρ := limi→∞ ρi and let λ := limi→∞ λi be the limits of the
sequences (ρi)i>0 and (λi)i>1. Then we have ρ = λ = 0.

Proof of Claim. First note that ρi = f(λi) is a probability and therefore ρi ∈ [0, 1],
as well as ρ1 6 ρ0 = 1. The first derivative of f(x) is

df(x)
dx

=
x`+−2

(`+ − 2)!
· e−x ,

and the first derivative of g(x) is

dg(x)
dx

= c ·
∑
j∈[s]

αj · dj · (dj − 1) · xdj−2 .

For x > 0, we have that df(x)
dx > 0 and dg(x)

dx > 0, i. e., the functions f and g are strictly
increasing.
First, assume for a contradiction that the sequence (ρi)i>0 is not non-increasing.

Let j > 2 be the smallest index such that ρj > ρj−1. Then we have

ρj > ρj−1 ⇒ f(ρj) > f(ρj−1)⇒ f
(
g(ρj−1)

)
> f
(
g(ρj−2)

)
⇒ ρj−1 > ρj−2 ,

140

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

which is a contradiction to the minimality of j. Hence the sequence (ρi)i>0 is non-
increasing and the limit ρ exists.

Second, assume for a contradiction that ρ > 0. Since we have ρ = f(g(ρ)), it follows
that g(ρ) = g

(
f
(
g(ρ)

))
, which by definition of f and g is equivalent to

g(ρ) = c ·
∑
j∈[s]

αj · dj ·
(
Pr(Po[g(ρ)] > `+ − 1)

)dj−1 .
Note that λ = g(ρ). By assumption, we have ρ > 0 and therefore λ > 0. It follows that

c =
λ∑

j∈[s]
αj · dj ·

(
Pr(Po[λ] > `+ − 1)

)dj−1 .
Since we are in the case c 6 č`+(d,α) − ε, for constant ε > 0, the last equation
contradicts the definition of č`+ . Hence, it must hold ρ = 0 and λ = 0, respectively. �
Let δ > 0 be arbitrary but fixed. In consequence of the last claim, there must be a
constant t = t(δ), such that λt < δ/2 and even σt = λt ± o(1) < δ/2, for sufficiently
large m. According to Lemma 4.4.5, we have |Vt| < δ ·m with probability 1 − o(1).
This finishes the proof of Lemma 4.4.1. �

4.4.1.2. Small Average Degree

Using the proof idea from [Mol04, Lemma 2.3], we show Lemma 4.4.2, which states
that there exists a constant δ > 0, such that a. a. s. the following event does not occur

A := {simHdm,n,α has a sub-hypergraph with at most δ ·m vertices

and average degree at least `+.} .

Let d̂ = max{di | i ∈ [s]} and ď = min{di | i ∈ [s]}. Without loss of generality assume
V = [m]. For each y ∈ V define the following event:

B
y
(xi)i∈[s]

:= {The sub-hypergraph on the node set {0, 1, . . . ,y− 1}

has exactly xi edges of size di.} .

By union bound, we get

Pr(A) 6
δ·m∑
y=ď

∑
x∈Ns,j∈[d̂] with∑
i∈[s] xi·di=`+·y+j

(
m

y

)
· Pr(Byx) .

For each y with ď 6 y 6 δ ·m consider a vector
(
βi(y) · n

)
i∈[s] of edge counts that

maximizes the probability that the sub-hypergraph on the node set [y] has βi(y) · n

141

4. Retrieval and Perfect Hashing

edges of size di for all i ∈ [s], under the condition that the average node degree is equal
to or just above `+. More formally, we define(

βi(y) · n
)
i∈[s] = argmax

x

{
Pr(Byx) | x ∈ Ns,

∑
i∈[s]

xi · di = `+ · y+ j for j ∈ [d̂]
}
.

Furthermore, let ˜̀+(y) =
(∑

i∈[s] βi(y) ·n ·di
)
/y be the corresponding average degree

with ˜̀+(y) > `+. Note that βi = βi(y) 6 αi for all i ∈ [s], since the maximum number
of edges of size di is αi · n.
Using these definitions, we get

Pr(A) 6
δ·m∑
y=ď

O(ys−1) ·
(
m

y

)
· Pr(By(βi(y)·n)i∈[s])︸ ︷︷ ︸

=:Py

,

with

Py =

(
m

y

)
︸ ︷︷ ︸
=:P0

·
∏
i∈[s]

(
αi · n
βi · n

)
︸ ︷︷ ︸

=:P1

·
∏
i∈[s]

((
y
di

)(
m
di

))βi·n
︸ ︷︷ ︸

=:P2

.

Consider an arbitrary but fixed factor Py. Let y = µ ·m where ď/m 6 µ 6 δ < 1, as
well as let βi · n = νi · y · ˜̀+/di for all i ∈ [s], where

∑
i∈[s] νi = 1.

Recall that αi 6 1 and c 6 `+ 6 ˜̀+. In order to bound Py = Pµ·m from above we use
the following inequalities.

P0 =

(
m

µ ·m

)
6

((
1

µ

)µ
·
(

1

1− µ

)1−µ)m

P1 6
∏
i∈[s]

(
αi · c ·m
νi · y · ˜̀+/di

)
6
∏
i∈[s]

(˜̀+ ·m
νi · µ ·m · ˜̀+/di

)

6

∏
i∈[s]

(
di

νi · µ

)νi·µ
di

·

(
1

1− νi·µ
di

)1−νi·µ
di

˜̀+·m

P2 6
∏
i∈[s]

((y
m

)di)νi·y·˜̀+/di
= µ

∑
i∈[s] νi·µ·m·˜̀+ = µµ·m·

˜̀+ .

Applying the entropy function He(ε) = −ε · ln(ε) − (1− ε) · ln(1− ε) gives

Py = f(µ) = exp
(
m ·

(
He(µ) + ˜̀+ ·

∑
i∈[s]

He(νi · µ/di) + µ · ˜̀+ · ln(µ)︸ ︷︷ ︸
=:g(µ)

))
.

142

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

By substituting Py with f(µ), we get the following upper bound

Pr(A) 6
δ·m∑
y=ď

O(ys−1) · f(µ)

6 O(ln(m)s−1) · ln(m) ·max{f(µ) | ď/m 6 µ 6 ln(m)/m}

+O(ms−1) ·m ·max{f(µ) | ln(m)/m 6 µ 6 δ} .

For rest of the proof, we study f(µ) and g(µ).

Claim 9 (Error Terms).

(i) f(ď/m) = O(m−1).

(ii) f
(
ln(m)/m

)
= O

(
(ln(m)/m)ln(m)/3

)
.

(iii) For every suitable `+, ď and s there exists a constant δ such that for all µ with
ď/m 6 µ 6 δ, it holds dg

dµ (µ) < 0.

It follows by claims (i) and (iii) that max{f(µ) | ď/m 6 µ 6 ln(m)/m} = O(m−1),
and it follows by claims (ii) and (iii) that max{f(µ) | ď/m 6 µ 6 ln(m)/m} =

O
(
(ln(m)/m)ln(m)/3

)
. Hence, assuming the claim, we conclude

Pr(A) 6 O
(
(ln(m))s

)
·O(m−1) +O(ms) ·O

(
(ln(m)/m)ln(m)/3

)
= o(1) .

So it remains to show Claim 9.
Proof of Claim. Using that(

1

1− ε

)1−ε
=

(
1+

ε

1− ε

)1−ε
6 eε/(1−ε)·(1−ε) = eε ,

we can bound f(µ) via

f(µ) 6

(
1

µ

)µ·m
· eµ·m ·

∏
i∈[s]

(
di

νi · µ

)νi·µ/di
· eνi·µ/di

˜̀+·m

· µµ·m·˜̀+

6

(
e

µ

)µ·m
·
(
1

µ

)µ·˜̀+·m/ď
·
∏
i∈[s]

(
di

νi

)νi·µ·˜̀+·m/di
· µµ·m·˜̀+

6 lµ·m ·
(
1

µ

)µ·m+µ·˜̀+·m/ď−µ·m·˜̀+
,

for some constant l.

ad (i): Using the above formula, we get

f(ď/m) 6 lď ·
(
m

ď

)ď+˜̀+−ď·˜̀+
.

143

4. Retrieval and Perfect Hashing

We want to have ď+ ˜̀+ − ď · ˜̀+
!
6 −1, which is equivalent to ď

!
> (˜̀+ + 1)/(˜̀+ − 1) using

that ˜̀+ > 2. This inequality is true, since ď > 3 and (˜̀+ + 1)/(˜̀+ − 1) is monotonically
decreasing with growing ˜̀+.

ad (ii): Analogously, it holds that

f(ln(m)/m) 6 lln(m) ·
(

m

ln(m)

)ln(m)·(1+˜̀+/ď−˜̀+)

.

With ď
!
> (˜̀+ + 1)/(˜̀+ − 1), it follows that 1+ ˜̀+/ď− ˜̀+ 6 −(˜̀+ − 1)/(˜̀+ + 1), which is

at most −1/3, since (˜̀+ − 1)/(˜̀+ + 1) is monotonically increasing with growing ˜̀+ > 2.

ad (iii): With dHe(µ)
dµ = − ln(µ) + ln(1 − µ) = ln

(
(1 − µ)/µ

)
, we get for the first

derivative of g

dg(µ)
dµ

= ln
(
1− µ

µ

)
+ ˜̀+ · (ln(µ) + 1) + ˜̀+ ·

∑
i∈[s]

ln
(
1− νi · µ/di
νi · µ/di

)
· νi
di

6 ln
(
1− µ

µ

)
+ ln(µ˜̀+) + ˜̀+ + ˜̀+ ·

∑
i∈[s]

ln
(

1

νi · µ/di

)
· νi
di

6 ln
(
1

µ

)
+ ln(µ˜̀+) + ˜̀+ + ˜̀+ · ln

(∏
i∈[s]

(
1

µ

)νi
di

·
(

1

νi/di

)νi
di

︸ ︷︷ ︸
=:h(di/νi)

)
.

Since the only root of dh(x)
dx = −x

1
x
−2 · ln(x) + x 1x−2 is e, which is a local maximum

point of h(x), we can bound h(di/νi) by e1/e < 1.5. Hence, we get

dg(µ)
dµ

6 ln
(
µ
˜̀+−1

)
+ ˜̀+ + ˜̀+ · ln

((
1

µ

)∑
i∈[s] νi/ď

· 1.5s
)

6 ln
(
µ
˜̀+−1

)
+ ln

((
1

µ

)˜̀+/ď
)

+ k ,

for some constant k. Furthermore, it holds

k+ ln
(
µ
˜̀+−1−˜̀+/ď

) !
< 0⇔ (˜̀+ − 1− ˜̀+/ď)︸ ︷︷ ︸

>0

· ln(µ)︸ ︷︷ ︸
<0

< −k

⇔ µ
˜̀+−1−˜̀+/ď < e−k ⇔ µ < e−k/(

˜̀+−1−˜̀+/ď) ,

where ˜̀+ − 1− ˜̀+/ď > 1, analogously as above. That is, there is some (small) constant
δ < e−k/(

˜̀+−1−˜̀+/ď), such that g(µ) as well as f(µ) are monotonically decreasing for
increasing µ 6 δ.

This finishes the proof of the claim. �
The proof of the last claim finishes the proof of Lemma 4.4.2. �

144

4.4. Thresholds for the Appearance of Cores in Mixed Hypergraphs

4.4.2. Upper Bound

Analogously to the lower bound of the threshold for the appearance of an `+-core, a
proof of the upper bound can be obtained from a slight generalization of the proof of
[Mol04, Theorem 1.2 b]. The approach can be sketched as follows:
Let c > č`+(d,α) + ε for constant ε > 0. We define σt, the probability that an

arbitrary but fixed node survives t rounds of peeling_in_parallel, as well as λi,
and ρi as in Lemma 4.4.4. Consider the limits λ := limi→∞ λi and ρ := limi→∞ ρi.
Following the reasoning of the proof of Claim 8, one concludes that the sequences
(ρi)i>0 and (λi)i>0 are non-increasing but the equation c = key(λ,d,α, `+ − 1) holds,
i. e., ρ > 0 and λ > 0. Hence, for arbitrary constant δ > 0 and sufficiently large t(δ),
we can bound σt via Pr(Po[λ > `+]) 6 σt 6 Pr(Po[λ > `+]) + δ. Since, according to
Lemma 4.4.5, the number of nodes after t rounds of algorithm peeling_in_parallel
is a. a. s. concentrated around m · σt, it remains to show that the subsequent peeling
steps remove less than Pr(Po[λ > `+]) ·m nodes, such that the result of Algorithm 1 is
non-empty. This can be shown along the lines of the proof of [Mol04, Lemma 2.2 b].
In addition, we propose an alternative way, following the work of Kim [Kim06,

Kim08]. Based on a method for determining realizations of poiHdm,Λ that supersedes
Algorithm 12, one could possibly derive a proof of the upper bound for random non-
uniform Poisson cloning hypergraphs as slight generalization of [Kim06, Theorem 6.2].
Then, starting with Lemma 4.3.3, one uses the asymptotic equivalence of different
hypergraph models in order to transfer the bound to Hdm,n,α, see Section 4.3.2.2.
We close the section with a description of the alternative construction algorithm,

a variation of the cut-off line algorithm from [Kim06, Section 3]. This part can
be skipped by a reader who is not interested in elaborating all the details for a
generalization of [Kim06, Section 6], especially for a full proof of [Kim06, Theorem 6.2]
concerning the size of the `+-core of poiHdm,Λ for c > č`+(d,α) + ε with constant ε > 0.
Given (PAR) and a node set V. Let Λ =

∑
i∈[s]Λi and without loss of generality

assume V = [m]. First determine the total number of clones mcl as realization of a
random variable Po[Λ ·m]. Then obtain a sequence of edge sizes (d̃j)j∈[l], where l is
the smallest integer such that

∑
j∈[l] d̃j > mcl, where for all i ∈ [s] and for all j ∈ [l] we

have Pr(d̃j = di) = αi. Now, analogously to Algorithm 12, if
∑
j∈[l] d̃j is strictly larger

than mcl, then the algorithm fails and we return a hypergraph with empty edge set;
otherwise we continue with the generation of mcl clones. Each such clone is represented
by a triple (x,y, z), where

. The x-coordinate is fully randomly chosen from the real interval [0,Λ].

. The y-coordinate is fully randomly chosen from the set [m], with replacement.

. The z-coordinate is fully randomly chosen from [mcl], without replacement.

The y-value of each clone equals the node that corresponds to this clone, while the
xz-values play a central role in the way the edge set is determined, which comes next.

145

4. Retrieval and Perfect Hashing

For a short description, we use the following definitions. A clone is matched if it is used
to build an edge; otherwise the clone is unmatched. A node is light if its number of
unmatched clones is smaller than `+; otherwise the node is heavy. In addition, a clone
is light/heavy if its corresponding node is light/heavy. Let Λ = Λ̃0. The edge selection
process is carried out in l rounds, determining one edge per round. Assume, we are in
round j ∈ [l]. The first clone u0 = (x0,y0, z0) that is used to build the current edge e
is the unmatched clone that has the smallest z-value among all unmatched light clones,
or if no such clones exist, among all unmatched heavy clones. The remaining clones
u1,u2, . . . ,ud̃j−1 that are associated with e are the d̃j − 1 (unmatched) clones whose
x-values are largest among all clones (except u) that have an x-value of at most Λ̃i.
Finally, we set Λ̃i+1 to the smallest x-value of u1,u2, . . . ,ud̃j−1 and define the edge e
as multiset of the y-values of u0,u1,u2, . . . ,ud̃j−1, i. e., the d̃j clones become matched.

Remark. Choosing the d̃j − 1 clones can be visualized as follows. Consider the
projection of the clones on the xy-plane and a vertical line through (Λ̃i, 0), called the
cut-off line. Move the cut-off line to the left until d̃j−1 unmatched clones (except) u are
on the line or to its right. The advantage of this algorithm compared to Algorithm 12
is that the process of determining a realization H of poiHdm,Λ until no unmatched light
clones exist is equal to the peeling of H using Algorithm 1.

4.5. Maximum Thresholds for the Appearance of
2-Cores in Non-Uniform Hypergraphs

In this section we give the full proof of Theorem 4.5 — presented before in [Rin12, Rin13].
Given a constant vector d = (d0,d1) with two edge sizes, we show how to determine
the optimal (expected) fraction of edges of each size α∗ = (α∗, 1− α∗), such that the
threshold of the appearance of a 2-core in Hdm,n,α (type B) is maximal. More precisely,
we solve the non-linear optimization problem (OPT) on page 104 for the case s = 2.
As is to be expected, the proof mainly employs methods from calculus.

The structure of this section is as follows. First, we restate the optimization problem
using a transformed objective function with adjusted domain. Then, in Section 4.5.2,
we give the first and second partial derivatives of the objective function; in addition,
we define helper functions and list some of their properties as far as they are applied
in the analysis of the optimization problem. It follows the central part, Section 4.5.3,
which contains the characterization of optimum solutions using the helper functions,
as well as an algorithm for computing these solutions efficiently. Experimental results
described in Section 4.5.4 confirm the theoretical findings. The section closes with
Section 4.5.5, which contains the proofs of the properties of the auxiliary functions
that were stated before.

146

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

In order to improve readability, we substitute d0 by l and d1 by k throughout most
of the section.!

4.5.1. Problem Transformation

Our first step is to transform the key function key
(
λ, (l,k), (α, 1−α)

)
from page 103 into

a more manageable function T(z, l,k,α), called threshold function, using a monotonic
and bijective domain mapping via

z = 1− e−λ and λ = − ln(1− z) .

Then, we restate the optimization problem (OPT) as follows.

Given l ∈ N and k ∈ N.

Objective max
α

min
z
T(z, l,k,α).

Objective Function

T(z, l,k,α) =
− ln(1− z)

α · l · zl−1 + (1− α) · k · zk−1
. (4.1)

Constraints 3 6 l < k, α ∈ (0, 1], and13 z ∈ (0, 1).

4.5.2. Preparations

Here we state some basic facts about the threshold function T and several auxiliary
functions which we will use in the subsequent proof.

4.5.2.1. Derivatives

We need to determine the partial derivatives of T(z, l,k,α) with respect to z and α.
To shorten and simplify notation, we use the following definitions. For all j ∈ N let

Dj(z, l,k,α) = α · l · (l− 1)j · zl−1 + (1− α) · k · (k− 1)j · zk−1

Zj(z, l,k) = l · (l− 1)j · zl−1 − k · (k− 1)j · zk−1 .

The first partial derivatives of T(z,α) are

∂T(z,α)
∂z

=
1

1− z
· 1

D0(z,α)
+

ln(1− z)
z

· D1(z,α)
D0(z,α)2

(4.2)

∂T(z,α)
∂α

=
ln(1− z) · Z0(z)
D0(z,α)2

. (4.3)

13We can exclude the case α = 0, since if 3 6 d0 < d1, then it holds that č(d0) > č(d1), see
Section 4.1.1.3.

147

4. Retrieval and Perfect Hashing

The second partial derivatives of T(z,α) are

∂2T(z,α)
(∂z)2

=
1

(1− z)2
· 1

D0(z,α)
−

2

z · (1− z)
· D1(z,α)
D0(z,α)2

(4.4)

+
ln(1− z)
z2

· D2(z,α) −D1(z,α)
D0(z,α)2

−
2 · ln(1− z)

z2
· D1(z,α)

2

D0(z,α)3

∂2T(z,α)
(∂α)2

= −
2 · ln(1− z) · Z0(z)2

D0(z,α)3
(4.5)

∂

∂z

(
∂T(z,α)
∂α

)
= −

1

1− z
· Z0(z)

D0(z,α)2
+

ln(1− z)
z

· Z1(z)

D0(z,α)2
(4.6)

−
2 · ln(1− z)

z
· Z0(z) ·D1(z,α)

D0(z,α)3
.

4.5.2.2. Auxiliary Functions

Our analysis is heavily based on three functions

f(z) =
− ln(1− z) · (1− z)

z
(4.7)

g(z, l,k) = f(z) · (k− 1) · (l− 1) + 1

1− z
+ 2− k− l (4.8)

h(z, l,k) =
l · zl−k − k− f(z) ·

(
l · (l− 1) · zl−k − k · (k− 1)

)
k ·
(
(k− 1) · f(z) − 1

) (4.9)

=
Z0(z, l,k) − f(z) · Z1(z, l,k)
k · zk−1 ·

(
(k− 1) · f(z) − 1

) , (4.10)

which are shown in Figure 4.5.2 for selected parameters l and k. Furthermore, we define
some “special” points

zin =

(
l

k

) 1
k−l

(indicator point)

zle = f
−1

(
1

l− 1

)
(left boundary)

zri = f
−1

(
1

k− 1

)
(right boundary)

ž0 = min{z ∈ (0, 1) | g(z) = 0} ẑ0 = max{z ∈ (0, 1) | g(z) = 0} .

Our line of argument will rely on essential properties of f,g,h as well as zle, zri, ž0, ẑ0 and
zin. Proving these properties is standard calculus but unfortunately lengthy. Therefore
the proofs of the next three lemmas are moved to the end of Section 4.5. We start with
properties of the three auxiliary functions.

148

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Lemma 4.5.1 (Properties of f(z)). Let z ∈ (0, 1), then it holds:

(i) f(z) > 1− z > 0.

(ii) limz→0 f(z) = 1.

(iii) limz→1 f(z) = 0.

(iv) f(z) is strictly decreasing.

(v) f(z) is concave.

(vi) f(zin) > f(zri) = 1
k−1 .

The proof of Lemma 4.5.1 is given in Section 4.5.5.1. A plot of f(z) is shown in
Figure 4.5.2 (a).

Lemma 4.5.2 (Properties of g(z)). Let 3 6 l < k and let z ∈ (0, 1), then it holds:

(i) g(z) is strictly decreasing, reaches a global minimum and is then strictly
increasing. The global minimum point is the only point where ∂g(z)

∂z
= 0.

(ii) ∀z ∈ (0, zle] : g(z) > 0.

(iii) ∀z ∈ [zri, 1) : g(z) > 0.

(iv) If ming(z) < 0, then g(z) has exactly two distinct roots, ž0 and ẑ0, where
ž0 < ẑ0 and ž0, ẑ0 ∈ (zle, zri).

(v) Let z > zle, then it holds g(z, l,k) > g(z, l,k+ 1).

(vi) For fixed l there is a threshold k ′, k ′ > l+ 1, such that the following holds: If
k < k ′, then minz g(z,k) > 0; and if k > k ′, then we have minz g(z,k) < 0.

The proof of Lemma 4.5.2 is given in Section 4.5.5.2. Example plots of g(z, l,k) are
shown in Figure 4.5.2 (b).

Lemma 4.5.3 (Properties of h(z)). Let 3 6 l < k and let z ∈ (0, 1), then it holds:

(i) h(z) has a pole at z = zri.

(ii) limz→0 h(z) = −∞.

(iii) limz→zri h(z) = +∞.

(iv) ∀z ∈ (0, zle] : h(z) ∈ (−∞, 1].

(v) ∀z ∈ (zle, zri) : h(z) ∈ (1,+∞), and h(zle) = 1.

(vi) ∀z ∈ (zri, 1) : h(z) ∈ (−∞, 1).

(vii) ∂h(z)
∂z

> 0⇔ g(z) > 0.

(viii) h(z) is strictly increasing in z ∈ (0, zle].

(ix) h(z) is strictly increasing in z ∈ (zri, 1).

149

4. Retrieval and Perfect Hashing

(x) If minz g(z) > 0, then h(z) is strictly increasing in z ∈ [zle, zri).

(xi) If minz g(z) < 0, then h(z) is strictly increasing to a local maximum at ž0, then
strictly decreasing to a local minimum at ẑ0, then strictly increasing afterwards.

The proof of Lemma 4.5.3 is given in Section 4.5.5.3. Example plots of h(z, l,k) are
shown in Figure 4.5.2 (c).

Concerning the defined special points, we are only interested in how they are related
to each other.
Lemma 4.5.4 (Properties of Special Points). Let 3 6 l < k and let z ∈ (0, 1),
then it holds:

(i) 0 < zle < zri < 1.

(ii) If ž0 and ẑ0 exist (not necessarily distinct), then zle < ž0 and ẑ0 < zri.

(iii) zin ∈ (0, zri).

Proof. Consider the properties of f(z) and g(z).

ad (i): This follows by Lemma 4.5.1 (ii), (iii), and (iv).

ad (ii): This follows from Lemma 4.5.2 (iv).

ad (iii): This follows by Lemma 4.5.1 (vi). �

All of the points but zin are visualized in Figure 4.5.2. Now we are prepared for solving
the optimization problem.

4.5.3. Analysis

Assume first that α is arbitrary but fixed, i. e., we are looking for a global minimum of
(4.1) in z-direction. Since

lim
z→0

T(z) = lim
z→1

T(z) = +∞ , (4.11)

and T(z) is continuous for z ∈ (0, 1), a global minimum must be a point where the
first derivative of T(z) is zero, i. e., a critical point. According to (4.2) critical points in
z-direction for unbounded α, i. e., α ∈ R, can be described via

∂T(z)

∂z
= 0⇔ D0(z)

D1(z)
= f(z) (4.12)

⇔ α =
k · zk−1 ·

(
(k− 1) · f(z) − 1

)
Z0(z) − f(z) · Z1(z)

(4.13)

⇔ α =
1

h(z)
. (4.14)

The next lemma identifies and classifies critical points of T(z) for bounded α that is
for α ∈ (0, 1].

150

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 zle 0.8 0.9 zri

z

1
l−1

1
k−1

f(z)
1− z

(a) Function f(z).

−10

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6 zle ž0 0.85 ẑ0 zri

z

g(z, 3, 10)
g(z, 3, 20)
g(z, 3, 30)

(b) Function g(z, l,k).

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

0.65 0.7zle 0.75 ž0 0.8 0.85 0.9 ẑ0 0.95 zri 1

z

h(z, 3, 10)
h(z, 3, 20)
h(z, 3, 30)

(c) Function h(z, l,k).

Figure 4.5.2.: Auxiliary functions f(z), g(z, l,k), and h(z, l,k) for parameters l = 3 and
k = 10, 20, 30; as well as special points ž0, ẑ0, zle, and zri for l = 3 and k = 20.

151

4. Retrieval and Perfect Hashing

Lemma 4.5.5 (Critical Points). Let α ∈ (0, 1] be arbitrary but fixed. If ∂T
∂z

(z̃) = 0

for some z̃ ∈ (0, 1), then the following holds:

(i) z̃ ∈ [zle, zri).

(ii) If g(z̃) > 0, then T(z̃) is a local minimum.

(iii) If g(z̃) < 0, then T(z̃) is a local maximum.

Proof. ad (i): According to (4.14), we have that α = 1/h(z̃). Hence, with α ∈ (0, 1],
we get h(z̃) ∈ (1,+∞). By Lemma 4.5.3 (iv), (v), (vi), it follows that z̃ ∈ [zle, zri).

ad (ii): Consider the second derivative of T(z) with respect to z. According to (4.4),
we have

∂2T(z)

(∂z)2
> 0⇔ 1

(1− z)2
−

2

z · (1− z)
· D1(z)
D0(z)

+
ln(1− z)
z2

· D2(z) −D1(z)
D0(z)

−
2 · ln(1− z)

z2
· D1(z)

2

D0(z)2
> 0 .

Assume that z̃ ∈ [zle, zri) is a critical point.

For the rest of the proof let z = z̃.!
Utilizing that D0(z)/D1(z) = f(z) (4.12), it follows that

∂2T(z)

(∂z)2
> 0⇔ 1

(1− z)2
−

2

z · (1− z) · f(z)
+

ln(1− z)
z2

· D2(z)
D0(z)

−
ln(1− z)
z2 · f(z)

−
2 · ln(1− z)
z2 · f(z)2

> 0

⇔ 1

(1− z)2
−

f(z)

z · (1− z)
· D2(z)
D0(z)

+
1

z(1− z)
> 0 .

Hence, we obtain

∂2T(z)

(∂z)2
> 0⇔ D0(z)

D2(z)
> f(z) · (1− z)⇔ D1(z)

D2(z)
> (1− z) .

Factoring out α from D1(z)/D2(z) > (1 − z) gives that D1(z) > (1 − z) · D2(z) is
equivalent to

α ·
(
Z1(z) − (1− z) · Z2(z)

)
> −k · (k− 1) · zk−1 + (1− z) · k · (k− 1)2 · zk−1 .

Substituting α according to (4.13) and dividing by k · zk−1 leads to

∂2T(z)

(∂z)2
> 0⇔ (k− 1) · f(z) − 1

Z0(z) − f(z) · Z1(z)
·
(
Z1(z) − (1−z) · Z2(z)

)
>

− (k− 1) + (1− z) · (k− 1)2 .

152

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Consider (4.13). Given α ∈ (0, 1] and z < zri, we have that (k − 1) · f(z) − 1 > 0,
according to the definition of zri and Lemma 4.5.1 (iv). Hence, the numerator of (4.13)
is positive. Since α > 0, it follows that Z0(z) − f(z) · Z1(z) > 0, i. e., the denominator
is positive too. Therefore, we get

∂2T(z)

(∂z)2
> 0⇔

(
(k− 1) · f(z) − 1

)
·
(
Z1(z) − (1− z) · Z2(z)

)
>(

(k− 1)2 · (1− z) − (k− 1)
)
·
(
Z0(z) − f(z) · Z1(z)

)
⇔ Z2(z) ·

(
1− z− (1− z) · (k− 1) · f(z)

)
+Z1(z) ·

(
(k− 1)2 · (1− z) · f(z) − 1

)
>

Z0(z) ·
(
(1− z) · (k− 1)2 − (k− 1)

)
⇔ (l− 1)2 ·

(
1− z− (1− z) · (k− 1) · f(z)

)
+(l− 1) ·

(
(k− 1)2 · (1− z) · f(z) − 1

)
>

(1− z)·(k− 1)2 − (k− 1) .

Factoring out f(z) · (k− 1) · (l− 1) gives

∂2T(z)

(∂z)2
> 0⇔ f(z) · (k− 1) · (l− 1) · (k− l) > (k− 1)2 − (l− 1)2 −

k− l

1− z

⇔ f(z) · (k− 1) · (l− 1) + 1

1− z
+ 2− k− l > 0

def⇔ g(z) > 0 .

ad (iii): This case is analogous to case (ii).
This finishes the proof of the lemma. �

The next lemma can be seen as the central building block for understanding the
behavior of the threshold function. Using the function g(z) we decide how many and
which kind of extremal points T(z) has.

Lemma 4.5.6 (Classifying Extrema). Let α ∈ (0, 1] be arbitrary but fixed.

1. Let minz g(z) > 0, then the function T(z) has exactly one critical point z̃, and
z̃ ∈ [zle, zri) is a global minimum point.

2. Let minz g(z) < 0, then there are four pairwise distinct points

zl0 < ž0 < ẑ0 < z0r

from the interval [zle, zri), such that the following holds:

(i) For all α with 1/α ∈ [1,h(ẑ0)) the function T(z) has exactly one critical
point z̃, and z̃ ∈ (zle, zl0) is a global minimum point.

153

4. Retrieval and Perfect Hashing

(ii) For α with 1/α = h(ẑ0) the function T(z) has exactly two distinct critical

points z̃1 < z̃2, where z̃1 = zl0 is a global minimum point, and z̃2 = ẑ0
is an inflection point.

(iii) For all α with 1/α ∈ (h(ẑ0),h(ž0)) the function T(z) has exactly three
pairwise distinct critical points z̃1 < z̃3 < z̃2, where z̃1, z̃2 are local
minimum points, and z̃3 is a local maximum point.

(iv) For α with 1/α = h(ž0) the function T(z) has exactly two distinct critical
points z̃1 < z̃2, where z̃1 = ž0 is an inflection point, and z̃2 = z0r is an
global minimum point.

(v) For all α with 1/α ∈ (h(ž0),∞) the function T(z) has exactly one critical
point z̃, and z̃ ∈ (z0r, zri) is a global minimum point.

0.9

1

1.1

1.2

1.3

1.4

1.5

0.7 zle zl0 0.75 ž0 0.8 0.85 0.9 ẑ0 0.95 z0r zri

1
/α

z

2(i)

2(ii)

2(iii)

2(iv)

2(v)

h(z) with g(z) > 0
h(z) with g(z) < 0

Figure 4.5.3.: Function h(z) for l = 3, k = 20 visualizing case 2 of Lemma 4.5.6. The
intersection points between the function 1/α (horizontal lines) and the function h(z)
are the extrema of T(z). They are classified depending on the part of h(z) where the
intersection takes place.

Proof. ad 1.: By Lemma 4.5.5 (i), it follows that all critical points z̃ must be from
[zle, zri). Consider the function h(z). According to Lemma 4.5.3 (v) and (x), it holds
that for each x from [1,+∞) there is exactly one z from [zle, zri) such that h(z) = x.
Furthermore, according to (4.14) we have

∂T(z)

∂z
= 0⇔ α = 1/h(z) .

It follows that for each α ∈ (0, 1] there is exactly one z = z̃ with α = 1/h(z̃).

154

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Furthermore, minz g(z) > 0 implies that g(z̃) > 0. Since z̃ is the only critical point of
T(z), it follows with (4.11) that z̃ must be a global minimum point.

ad 2.: Figure 4.5.3 illustrates the complete case 2 of Lemma 4.5.6. We know from
Lemma 4.5.3 (xi) that for z ∈ [zle, zri) the function h(z) is strictly increasing, reaches
a local maximum at ž0, is strictly decreasing, reaches a local minimum at ẑ0, and is
strictly increasing to +∞ afterwards. According to the definition of ž0 and ẑ0 and by
Lemma 4.5.3 (vii), we have that g(z) > 0 for z ∈ [zle, ž0), g(z) = 0 for z = ž0, g(z) < 0
for z ∈ (ž0, ẑ0), g(z) = 0 for z = ẑ0, and g(z) > 0 for z ∈ (ẑ0, zri), Now, consider the
condition (4.14).

ad (i): For all α with 1/α ∈ [1,h(ẑ0)) there is, according to Lemma 4.5.3 (xi), exactly
one z with 1/α = h(z). In addition we have that z ∈ [zle, ž0), and therefore g(z) > 0,
see Lemma 4.5.2 (i) and (ii). Hence, the claim follows by Lemma 4.5.5 (ii).

ad (ii): Let 1/α = h(ẑ0) and let z̃2 = ẑ0. According to Lemma 4.5.3 there is exactly
one other point z̃1, such that α = 1/h(z̃1). Furthermore, it holds g(z̃1) > 0 and
g(z̃2) = 0. According to Lemma 4.5.5 (ii), the point z̃1 must be a local minimum
point. Because of the monotonicity of T(z) (4.11) the other critical point must be an
inflection point. Hence, z̃1 is also a global minimum point.

ad (iii): According to Lemma 4.5.3, there are exactly 3 different points z̃i, 1 6 i 6 3,
such that 1/α = h(z̃i) and ∂T

∂z
(z̃i) = 0, respectively. Furthermore, it holds z̃1 < ž0 <

z̃3 < ẑ0 < z̃2 and g(z̃1) > 0,g(z̃2) > 0,g(z̃3) < 0. By Lemma 4.5.5 (ii) and (iii), it
follows that z̃1 and z̃2 are local minimum points of T(z) and z̃3 is a local maximum
point of T(z).

ad (iv): The case 1/α = 1/h(ž0) is analogous to case 2(ii).

ad (v): The case 1/α ∈ (h(ž0),∞) is analogous to case 2(i).

This finishes the proof of the lemma. �

The last lemma gives a complete characterization of the local extrema of the threshold
function (4.1) in z-direction including the global minimum for arbitrary but fixed α. It
remains to find a value α∗ that maximizes the threshold function at the corresponding
global minimum in z-direction. So the point we are looking for could be a saddle point
of T(z,α). Indeed the following lemma shows that T(z,α) has exactly one saddle point
for unbounded α, i. e., α ∈ R, and the following Theorem 4.5 finally shows under which
conditions this point is the optimum we are looking for.

Lemma 4.5.7 (Saddle Point). Let α ∈ R. Then T(z,α) has exactly one saddle
point (z̃, α̃), where

(z̃, α̃) =

((
l

k

) 1
k−l

,
k− 1

k− l
−

1

f(z̃) · (k− l)

)
.

155

4. Retrieval and Perfect Hashing

Proof. Solving the linear system
{
∂T(z,α)
∂z

= 0, ∂T(z,α)
∂α

= 0
}

gives

∂T(z,α)
∂z

= 0⇔ α = 1/h(z)

∂T(z,α)
∂α

= 0⇔ ln(1− z) · Z0(z)
D0(z,α)2

= 0⇔ Z0(z) = 0⇔ l · zl−1 = k · zk−1

⇔ z =

(
l

k

) 1
k−l def⇔ z = zin .

There is only one solution of ∂T(z,α)
∂α

= 0 and according to Lemma 4.5.3 (i) and
Lemma 4.5.1 (vi) the function h(z) is defined at zin. Hence, we get a unique critical
point (z̃, α̃), with z̃ = zin, and

α̃ = 1/h(z̃)

=
k ·
(
l
k

)k−1
k−l · (f(z̃) · (k− 1) − 1)

−f(z̃) ·
(
l2 ·
(
l
k

) l−1
k−l − k2 ·

(
l
k

)k−1
k−l

) =
k ·
(
l
k

)k−1
k−l ·

(
f(z̃) · (k− 1) − 1

)
−f(z̃) · k2 ·

(
l
k

)k−1
k−l · (l

k
− 1)

=
f(z̃) · (k− 1) − 1
f(z̃) · (k− l)

=
k− 1

k− l
−

1

f(z̃) · (k− l)
.

In order to classify this critical point, we consider the second partial derivatives of
T(z,α), see Section 4.5.2.1. We have Z0(z̃) = 0 and Z1(z̃) < 0, since

Z1(z̃) < 0⇔ l · (l− 1) ·
(
l

k

)(l−1)/(k−l)

− k · (k− 1) ·
(
l

k

)(k−1)/(k−l)

< 0

⇔ l · (l− 1)
k · (k− 1)

<

(
l

k

)(k−l)/(k−l)

⇔ l− 1

k− 1
< 1 ,

and 3 6 l < k. It follows that ∂2

(∂α)2
T(z̃, α̃) = 0 as well as ∂2

∂z∂α
T(z̃, α̃) > 0. Therefore,

the Hessian matrix at point (z̃, α̃), denoted by

HessT (z̃, α̃) =

(
∂2

(∂z)2
T(z̃, α̃) ∂2

∂z∂α
T(z̃, α̃)

∂2

∂z∂α
T(z̃, α̃) ∂2

(∂α)2
T(z̃, α̃)

)
=̂

(
= 0 > 0

> 0 ∂2

(∂z)2
T(z̃, α̃)

)
,

has determinant det
(
HessT (z̃, α̃)

)
< 0, which implies that (z̃, α̃) is a saddle point. �

4.5.3.1. Putting It All Together

For given l and k, each point (z∗,α∗) with the property

T(z∗,α∗) = max
α∈(0,1]

min
z∈(0,1)

T(z,α)

is called optimal point. Now, we can restate Theorem 4.5 more precisely.

156

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Theorem 4.5 (Maximum 2-Core Threshold)
Let l,k ∈ N be fixed with 3 6 l < k, then the following holds:

1. If minz g(z) > 0, then we have a unique optimal point.

(i) If h(zin) 6 1, then the optimal point is

(z∗,α∗) = (zle, 1)

and the maximum threshold is given by

T(z∗,α∗) =
− ln(1− zle)
l · zl−1le

.

(ii) If h(zin) > 1, then the optimal point is the saddle point

(z∗,α∗) =

((
l

k

) 1
k−l

,
k− 1

k− l
−

1

f(z∗) · (k− l)

)

and the maximum threshold is given by

T(z∗,α∗) = − ln

(
1−

(
l

k

) 1
k−l

)
·
(
kl−1

lk−1

) 1
k−l

.

2. If minz g(z) < 0, then we have at most two different optimal points.

(i) If h(zin) 6 1, then the optimum is the same as in case 1(i).

(ii) If h(zin) ∈ (1,h(ẑ0)], then the optimum is the same as in case 1(ii).

(iii) If h(zin) ∈ (h(ẑ0),h(ž0)), then there are exactly two distinct opti-
mal points (z∗,α∗) and (z∗∗,α∗), where 1/α∗ = h(z∗) = h(z∗∗) and
T(z∗,α∗) = T(z∗∗,α∗).
The two optimal points can be determined numerically using binary
search for the value α = α∗, within the interval [1/h(zup), 1/h(zlo)], that
gives T(z̃1,α) = T(z̃2,α) with h(z̃1) = h(z̃2) = 1/α, for

z̃1 ∈ (zle, zup) and z̃2 ∈ (zlo, zri) .

The (initial) interval borders are determined as follows:
. If zin < ž0, then zup = zin and zlo = ẑ0.

. If ž0 < zin < ẑ0, then zup = ž0 and zlo = ẑ0.

. If zin > ẑ0, then zup = ž0 and zlo = zin.

(iv) If h(zin) ∈ [h(ž0),∞), then the optimum is the same as in case 1(ii).

Proof. Using (4.14) we can define a function of critical points T̃(z) of T(z,α) as

157

4. Retrieval and Perfect Hashing

follows

T̃(z) := T(z, 1/h(z)) =
− ln(1− z)

1/h(z) · Z0(z) + k · zk−1

=
z
1−z · Z0(z) + ln(1− z) · Z1(z)

k · l · (k− l) · zk+l−2
.

The first derivative of T̃(z) is

∂T̃(z)

∂z
=

1

k · l · (k− l) · zk+l−2
·
(
Z0(z)

(1− z)2
+

ln(1− z) · Z2(z)
z

)
−

k+ l− 2

k · l · (k− l) · zk+l−2
·
(
Z0(z)

1− z
+

ln(1− z) · Z1(z)
z

)
.

We are interested in the monotonicity of T̃(z).

∂T̃(z)

∂z

!
> 0

⇔ Z0(z)

(1− z)2
+

ln(1− z) · Z2(z)
z

− (k+ l− 2) ·
(
Z0(z)

1− z
+

ln(1− z) · Z1(z)
z

)
> 0

⇔ Z0(z)

1− z
− (k+ l− 2) · Z0(z) − f(z) · (Z2(z) − (k+ l− 2) · Z1(z)) > 0

⇔ Z0(z)

1− z
− (k+ l− 2) · Z0(z) + f(z) · Z0(z) · (k− 1) · (l− 1) > 0

⇔ Z0(z) · g(z) > 0 .

We have that Z0(z) > 0⇔ z <
(
l
k

) 1
k−l = zin. By division of Z0(z) for z 6= zin, we get

∀z < zin :
∂T̃(z)

∂z
> 0⇔ g(z) > 0

∀z > zin :
∂T̃(z)

∂z
< 0⇔ g(z) > 0 .

(4.15)

ad 1.: If minz g(z) > 0, then according to (4.15) the function of critical points has a
global maximum in α-direction at zin. Now consider the special case minz g(z) = 0 and
let zmin = argminz g(z). (Note that according to Lemma 4.5.2 (i) and the definition of
ž0 and ẑ0 we have ž0 = ẑ0 = zmin.) If zmin 6= zin, then zmin must be an inflection point
of T̃(z) since before and after zmin the monotonicity is the same. Hence, the function
of critical points has a global maximum in α-direction at zin also in this case.

ad (i): If h(zin) 6 1, then zin must be from the interval (0, zle] (Lemma 4.5.3 (iv))
and not from the interval (zri, 1) (Lemma 4.5.3 (vi)), since we have f(zin) > f(zri)
(Lemma 4.5.1 (vi)), and f(z) is monotonically decreasing (Lemma 4.5.1 (iv)). However,
if zin 6 zle, then because of the monotonicity of T̃(z) (4.15) the optimal z value is
the nearest feasible critical point. That is, the optimal point is the (degenerated)
solution (zle, 1).

158

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

ad (ii): If h(zin) > 1, then according to Lemma 4.5.3 (v) we have zin ∈ (zle, zri). It
follows from Lemma 4.5.6 1 that T̃(zin) is a global minimum in z-direction. Hence,
(zin, 1/h(zin)) is the optimum point, which is according to Lemma 4.5.7 the saddle
point.

ad 2.: Since minz g(z) < 0, it follows from Lemma 4.5.3 (xi) that for z ∈ [zle, zri) the
function h(z) is strictly increasing, reaches a maximum at ž0, is strictly decreasing,
reaches a minimum at ẑ0, and is strictly increasing afterwards. Furthermore we have
g(z) > 0 for z ∈ [zle, ž0), g(z) < 0 for z ∈ (ž0, ẑ0), g(z) > 0 for z ∈ (ẑ0, zri), and
g(z) = 0 for z = ž0 and z = ẑ0. An optimal z must be a global minimum point of
T(z,α) in z-direction. According to Lemma 4.5.5 (ii) and case 2 of Lemma 4.5.6 global
minimum points are points from [zle, ž0) ∪ (ẑ0, zri).

ad (i): If h(zin) 6 1, then an optimal z cannot be from (ẑ0, zri), since for each
z ∈ (ẑ0, zri) there is an ε > 0 such that z − ε ∈ (ẑ0, zri) and T̃(z − ε) > T̃(z). This
converges to ẑ0, but according to case 2 of Lemma 4.5.6 the point ẑ0 is an inflection
point and not a global minimum point. Hence the optimal z must be from [zle, ž0).
For each z ∈ (zle, ž0) there is an ε > 0 such that z− ε ∈ [zle, ž0) and T̃(z− ε) > T̃(z).
This converges to zle.

ad (ii): If h(zin) ∈ (1,h(ẑ0)], then it follows that zin ∈ (zle, zl0) or zin = ẑ0. An
optimal z cannot be from [ẑ0, zri) for the same reasons as in case 2(i) And if
zin = ẑ0, then there would be no optimal z at all, see Lemma 4.5.6 2. Hence, we have
zin ∈ (zle, zl0) and the optimum is the same as in 1(ii).

ad (iii): Let h(zin) ∈ (h(ẑ0),h(ž0)) and consider an arbitrary but fixed α with
1/α ∈ (h(ẑ0),h(ž0)). According to Lemma 4.5.6 2(iii) we have two different points
z̃1 and z̃2, with z̃1 < ž0 < ẑ0 < z̃2, that are local minimum points of the threshold
function T(z,α) in z-direction.
. Let ž0 < zin < ẑ0. Decreasing α (increasing 1/α) by an arbitrary small but
fixed positive value gives two new local minimum points in z-direction, z̃1 + ε,
z̃2 + δ, where ε, δ > 0. According to (4.15) it holds that T̃(z̃1) < T̃(z̃1 + ε)

and T̃(z̃2) > T̃(z̃2 + δ). Hence, for the left critical point the local minimum in
z-direction becomes smaller while the potential threshold becomes larger and for
the right critical point the local minimum in z-direction becomes larger while
the potential threshold becomes smaller. Increasing α by an arbitrary small but
fixed positive value reverses the behavior. Assume we have found an optimal
α = α∗. Decreasing α by some small fixed positive value increases the threshold
for the left critical point, but because of the optimality of α we have no global
minimum for the left critical point but only a local minimum. Increasing α
increases the threshold for the right critical point but because of the optimality
of α we have no global minimum for the right critical point but only a local
minimum. Hence, for α = α∗ exactly two different critical points z∗ and z∗∗, with
1/α∗ = h(z∗) = h(z∗∗), lead to the same minimum in z-direction, i. e., both local

159

4. Retrieval and Perfect Hashing

minimum points are also global minimum points and T(z∗,α∗) = T(z∗∗,α∗) is
the optimal threshold.

. Let zin < ž0. Assume that 1/α ∈ (h(zin),h(ž0)), then α cannot be optimal since
increasing α by an arbitrary small but fixed positive value increases T̃(z̃1) as
well as T̃(z̃2) and one of the critical points must be the global minimum point in
z-direction. Hence the optimum 1/α must be in the interval (h(ẑ0),h(zin)].

. The case zin > ẑ0 is handled analogously to the case zin < ž0.

ad (iv): If h(zin) ∈ [h(ž0),∞), then we have zin ∈ [z0r, zri) or zin = ž0. Analogously
to the proof of case 2(ii), we conclude that neither an optimal z is from [zle, ž0) nor
zin = ž0. Hence, the optimum is the same as in case 1(ii). �

The distinction between case 1 and case 2 of Theorem 4.5 can be done via solving
∂g(z)
∂z

= 0 for z ∈ (0, 1), since the function g(z) has only one critical point and this
point is a global minimum point, see Lemma 4.5.2 (i). Hence, the theorem is easily
transferred into an algorithm that determines α∗, z∗, and T(z∗,α∗) for given d = (l,k),
as carried out in Algorithm 15.
Optimal thresholds T(z∗, l,k,α∗) = č(d) for selected d = (l,k) are given in Ta-

ble 4.1.2 and Appendix A.2. They show that the optimal 2-core threshold of some
non-uniform hypergraphs Hdm,n,α can be above the 2-core threshold for 3-uniform
hypergraphs.
If one wants to determine the optimal points for fixed l and increasing k, one can

make use of the following observation. According to Lemma 4.5.2 (vi) there is a value
k ′, such that for l < k < k ′ it holds that minz g(z,k) > 0, and for k > k ′ it holds that
g(z,k) < 0. That is, after reaching k ′ we don’t need to further calculate the minimum
of g(z). Table 4.5.3 lists some values for k ′.

l 3 4 5 6 7 8 9 10

k ′ 16 29 45 62 79 98 117 137

Table 4.5.3.: Values k ′(l) where g(z,k) switches from non-negative to negative.

4.5.4. Experiments

To underpin our theoretical results we experimentally approximated the point č(d) of
the phase transition from empty to non-empty 2-core in pseudorandom hypergraphs
Hdm,n,α of type B.

Setup and Measurements For each vector d ∈ {(3, 4), (3, 8), (3, 16), (3, 21)} and
the corresponding optimal fractions of edge sizes α∗ = (α∗, 1 − α∗) we performed

160

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Algorithm 15: maximum_thresholds
Input : Integers l,k with 3 6 l < k and ε > 0.
Purpose : Solve the optimization problem stated in Section 4.5.1. The resulting

threshold is at most ε below the optimal threshold.
Require : Function numSolve(eq,in) that returns numerical solution of

equation eq within the given interval in .
Initialization :
zle ← numSolve(f(z) = 1

l−1,z ∈ (0, 1)); zri ← numSolve(f(z) = 1
k−1,z ∈ (zle, 1));

zmin ← numSolve(∂g(z)
∂z

= 0,z ∈ (0, 1)); zin ←
(
l
k

) 1
k−l ;

ž0 ← zin; ẑ0 ← zin;
if g(zmin, l,k) < 0 then

ž0 ← numSolve(g(z, l,k) = 0,z ∈ (zle, zmin));
ẑ0 ← numSolve(g(z, l,k) = 0,z ∈ (zmin, zri));

end
Optimization :
if h(zin, l,k) 6 1 then

z∗ ← zle; α∗ ← 1; T∗ ← − ln(1−zle)
l·zl−1le

;

else
if h(zin, l,k) 6 h(ẑ0, l,k) or h(zin, l,k) > h(ž0, l,k) then

z∗ ← zin; α∗ ← k−1
k−l −

1
f(z∗)·(k−l) ; T∗ ← ln

(
1−

(
l
k

) 1
k−l

)
·
(
kl−1

lk−1

) 1
k−l

;

else
zup ← ž0; zlo ← ẑ0;
if zin < ž0 then zup ← zin;
if zin > ẑ0 then zlo ← zin;
αmin ← 1

h(zup,l,k)
; αmax ← 1

h(zlo,l,k)
;

while true do
α∗ ← αmax−αmin

2
+ αmin;

z∗ ← numSolve(h(z, l,k) − 1
α∗

= 0,z ∈ (zle, zup));
z∗∗ ← numSolve(h(z, l,k) − 1

α∗
= 0,z ∈ (zlo, zri));

T∗ ← T(z∗ , l,k,α∗); T∗∗ ← T(z∗∗, l,k,α∗);
if |T∗ − T∗∗| < ε then break;
else

if T∗ > T∗∗ then αmin ← α∗;
else αmax ← α∗;

end
end

end
end
return(z∗,α∗, T∗)

161

4. Retrieval and Perfect Hashing

d [cstart, cend] γ |č(d) − γ| Σsre

(3, 4) [0.81951, 0.82351] 0.821483 0.247696 · 10−4 0.00510340
(3, 8) [0.84938, 0.85338] 0.851361 0.211353 · 10−4 0.00840384
(3, 16) [0.90889, 0.91289] 0.910705 1.898272 · 10−4 0.00682809
(3, 21) [0.91804, 0.92204] 0.919809 2.296122 · 10−4 0.00858563

Table 4.5.4.: Comparison of experimentally approximated and theoretical optimal 2-core
thresholds for pseudorandom hypergraphs Hdm,n,α (type B) with two edge sizes. The
values for γ are rounded to the nearest multiple of 10−6.

the following experiments. We fixed the number of nodes to m = 107 and considered
growing equidistant edge densities c = n/m covering an interval [cstart, cend] of size
0.004 with the optimal theoretical 2-core threshold č(d) in its center. For each quintuple
(c,m,d0,d1,α∗) we constructed 102 pseudorandom random hypergraphs of type B
with node set [m], as well as α∗ · c · m edges of size d0 and (1 − α∗) · c · m edges
of size d1 in expectation. As in Section 3.4.4, all random choices were made using
the pseudorandom number generator Mersenne Twister. Given a concrete hypergraph
we applied Algorithm 1 to determine if its 2-core is empty. A non-empty 2-core was
considered a failure, an empty 2-core was considered a success. We measured the failure
rate and determined an approximation of the 2-core threshold, via fitting the sigmoid
function (3.3) to the measured failure rate using a least squares fit, see Section 3.4.4.
The resulting fit parameter γ is shown in Table 4.5.4. The quality of the approximation
is quantified in terms of the sum of squares of residuals Σsre.

Results Theoretical and estimated thresholds are given in Table 4.5.4. The results
show an absolute difference of less than 2.3 · 10−4 at a very low fitting error of less
than 0.009. The corresponding plots of the measured failure rates and the fit function
are shown in Figure 4.5.4. They indicate a very sharp phase transition from success to
failure.

4.5.5. Auxiliary Functions

In the following we prove properties of the auxiliary functions f, g, and h as stated in
Lemmas 4.5.1 to 4.5.3.

4.5.5.1. Properties of f(z)

In this section we show Lemma 4.5.1. Let z ∈ (0, 1) and let 3 6 l < k.

ad (i): f(z) =
− ln(1− z) · (1− z)

z

!
> 1− z

⇔ − ln(1− z) > z⇔ 1

1− z
> ez ⇔ e−z > 1− z .

162

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.82 0.8205 0.821 0.8215 0.822 0.8225 0.823 0.8235

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.821483

Σsre = 0.0051034

measured data
σ(c;γ, δ)

(a) (d0,d1) = (3, 4)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.8495 0.85 0.8505 0.851 0.8515 0.852 0.8525 0.853

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.851361

Σsre = 0.00840384

measured data
σ(c;γ, δ)

(b) (d0,d1) = (3, 8)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.909 0.9095 0.91 0.9105 0.911 0.9115 0.912 0.9125

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.910705

Σsre = 0.00682809

measured data
σ(c;γ, δ)

(c) (d0,d1) = (3, 16)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.9185 0.919 0.9195 0.92 0.9205 0.921 0.9215 0.922

fa
ilu

re
ra
te

am
on

g
1
0
0
ra
nd

om
gr
ap

hs

c

γ = 0.919809

Σsre = 0.00858563

measured data
σ(c;γ, δ)

(d) (d0,d1) = (3, 21)

Figure 4.5.4.: Approximation of optimal 2-core thresholds č(d) for pseudorandom
hypergraphs Hdm,n,α (type B) with m = 107 nodes.

163

4. Retrieval and Perfect Hashing

ad (ii): Applying L’Hôpital’s rule it follows that

lim
z→0

f(z) = lim
z→0

− ln(1− z) · (1− z)
z

= lim
z→0

1
|1−z| · (1− z) + ln(1− z)

1
= 1 .

ad (iii): Applying L’Hôpital’s rule it follows that

lim
z→1

f(z) = lim
z→1

− ln(1− z) · (1− z)
z

= lim
z→1

− ln(1− z)
z
1−z

= lim
z→1

1
|1−z|

1−z+z
(1−z)2

= lim
z→1

1− z = 0 .

ad (iv):
df(z)
dz

=
z+ ln(1− z)

z2
!
< 0⇔ ln(1− z) < −z⇔ 1− z < e−z .

ad (v):
d2 f(z)
(dz)2

=
−2z+ z2 − 2 ln(1− z) · (1− z)

(1− z) · z3
!
< 0⇔ z2 − 2 · z

1− z︸ ︷︷ ︸
f1(z)

< 2 ln(1− z)︸ ︷︷ ︸
f2(z)

,

which is true since it holds limz→0 f1(z) = limz→0 f2(z) = 0 and

df1(z)
dz

=
−z2 + 2 · z− 2

(1− z)2
<

df2(z)
dz

=
−2

1− z
< 0 .

ad (vi): First we show that zin is strictly increasing for growing l and fixed k, since

∂zin

∂l

!
> 0⇔ zin ·

(
ln(l/k)
(k− l)2

+
1

l · (k− l)

)
> 0

⇔ k− l

l
> ln(k/l)⇔ exp

(
k− l

l

)
>
k

l

⇔
∞∑
i=0

(
k− l

l

)i
· 1
i!
>
k

l

⇔ 1+
k− l

l
+

(
k− l

l

)2
· 1
2
+

(
k− l

l

)3
· 1
6
+ . . .︸ ︷︷ ︸

>0

>
k

l
.

Utilizing Lemma 4.5.1 (iv), this implies that f(zin) is strictly monotonically decreasing
for growing l. Now all we need to show is that our assumption holds for the maximum
value of l, that is l = k− 1.

f

((
k− 1

k

) 1
k−(k−1)

)
!
>

1

k− 1
⇔

− ln
(
1− k−1

k

)
·
(
1− k−1

k

)
k−1
k

>
1

k− 1

⇔ − ln(1/k)
k− 1

>
1

k− 1
⇔ ln(k) > 1 ,

which is true since k > 4.

This finishes the proof of Lemma 4.5.1. �

164

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

4.5.5.2. Properties of g(z, l,k)

In this section we prove Lemma 4.5.2. Let z ∈ (0, 1) and let 3 6 l < k.

ad (i): Considering the first derivative of g(z), we get

∂g(z)

∂z

!
< 0⇔ ln(1− z) · (k− 1) · (l− 1)

z2
+

1

(1− z)2
+

(k− 1) · (l− 1)
z

< 0

⇔ −f(z) · (k− 1) · (l− 1)
z · (1− z)

+
1

(1− z)2
+

(k− 1) · (l− 1)
z

< 0

⇔ 1− z+
z

1− z
· 1

(k− 1) · (l− 1)
< f(z)

⇔ 1

(k− 1) · (l− 1)
<
1− z

z
· (f(z) − (1− z))︸ ︷︷ ︸
g1(z)

.

Hence, we have ∂g(z)
∂z

R 0 ⇔ 1
(k−1)·(l−1) R g1(z) for all R ∈ {<,>,=}. Now consider

g1(z). It holds that

. lim
z→0

g1(z) = 0.5, since

lim
z→0

g1(z) = lim
z→0

(1− z) · (f(z) − 1+ z)
z

= lim
z→0

−1 · (f(z) − 1+ z) + (1− z) ·
(
df(z)
dz + 1

)
1

= 1+ lim
z→0

df(z)
dz

= 1+ lim
z→0

z+ ln(1− z)
z2

= 1+ lim
z→0

1+ −1
1−z

2 · z

= 1+ lim
z→0

−z

2 · z · (1− z)
= 1+ lim

z→0

−1

2 · (1− z) − 2 · z
= 0.5 ,

by applying L’Hôpital’s rule three times.

. lim
z→1

g1(z) =
1−1
1
· (0− 1+ 1) = 0.

. g1(z) is strictly decreasing for growing z ∈ (0, 1), since

dg1(z)
dz

= −
−2 · ln(1− z) · (1− z) + z3 + z2 − 2 · z

z3
!
< 0

⇔2 · ln(1− z) · (1− z) < z3 + z2 − 2 · z⇔ ln(1− z) <
z3 + z2 − 2 · z
2 · (1− z)︸ ︷︷ ︸
g2(z)

,

which is true because limz→0 ln(1− z) = 0 = limz→0 g2(z) = 0 and

d ln(1− z)
dz

=
−1

1− z
<

dg2(z)
dz

= −1− z < 0 .

165

4. Retrieval and Perfect Hashing

Using that 0 < 1
(k−1)·(l−1) < 0.5, it follows that for growing z there is a first phase

with g1(z) > 1
(k−1)·(l−1) , which implies dg(z)

dz <0. Then there is exactly one z where
g1(z) =

1
(k−1)·(l−1) , which is a local minimum point for g(z). After this point we have

g1(z) <
1

(k−1)·(l−1) , which implies dg(z)
dz >0. It follows that the local minimum is actual

a global minimum.

ad (ii): If z ∈ (0, zle], then it holds f(z) > 1
l−1 >

1
k−1 . Furthermore, according to

Lemma 4.5.1 (i), we have 1
1−z >

1
f(z) . Let f(z) = 1+ε

l−1 and f(z) = 1+δ
k−1 as well as

1
1−z = 1+γ

f(z) with ε > 0 and δ,γ > 0. Using that f(z) > 0, for z ∈ (0, 1), it follows that

g(z)
!
> 0⇔ f(z) · (k− 1) · (l− 1) + 1+ γ

f(z)
− (l− 1) − (k− 1) > 0

⇔ f(z)2 · (k− 1) · (l− 1) + (1+ γ) − f(z) · (l− 1) − f(z) · (k− 1) > 0
⇔ (1+ ε) · (1+ δ) + (1+ γ) − (1+ ε) − (1+ δ) > 0

⇔ ε · δ+ γ > 0 .

ad (iii): If z ∈ [zri, 1), then it holds f(z) 6 1
k−1 <

1
l−1 . Furthermore, according to

Lemma 4.5.1 (i), we have 1
1−z >

1
f(z) . Let f(z) = 1−ε

l−1 and f(z) = 1−δ
k−1 as well as

1
1−z = 1+γ

f(z) with ε > 0 and δ,γ > 0. Following the proof of Lemma 4.5.2 (ii) we get

g(z)
!
> 0⇔ (1− ε) · (1− δ) + (1+ γ) − (1− ε) − (1− δ) > 0

⇔ ε · δ+ γ > 0 .

ad (iv): For ming(z) < 0, the existence of the roots ž0 and ẑ0 follows directly from
Lemma 4.5.2 (i). Moreover, from Lemma 4.5.2 (ii) and (iii) it follows that if g(z) 6 0
for z ∈ (0, 1), then it holds z ∈ (zle, zri).

ad (v): Let z > zle, i. e., f(z) = 1−ε
l−1 for ε > 0. It follows that

g(z, l,k) = f(z) · (k− 1) · (l− 1) + 1

1− z
+ 2− k− l

= f(z) · k · (l− 1) + 1

1− z
+ 2− (k+ 1) − l− f(z) · (l− 1) + 1

= g(z, l,k+ 1) − f(z) · (l− 1) + 1 = g(z, l,k+ 1) − (1− ε) + 1

> g(z, l,k+ 1) .

ad (vi): Assume that there is some k ′ such that zmin = argminz g(z, l,k ′) < 0. Then by
Lemma 4.5.2 (ii) and (iii) we have that zmin > zle. Using Lemma 4.5.2 (v), we conclude
that for all k > k ′ it holds that g(zmin, l,k) < 0 and therefore minz g(z, l,k) < 0 as
well. It remains to find one such k ′.

166

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

Consider the inequality g(zin, l,k) > 0, which is equivalent to

(k− 1) ·
(
f(zin) · (l− 1)︸ ︷︷ ︸

g1(l,k)

+
1

1− zin
· 1

k− 1︸ ︷︷ ︸
g2(l,k)

−1
)
− (l− 1) > 0 .

Assume that limk→∞ g1(k) = 0 and limk→∞ g2(k) 6 0. It follows that there must be a
k ′ with g(zin(l,k ′), l,k ′) < 0 and thus minz g(zin(l,k ′), l,k ′) < 0.

. limk→∞ g1(k) = 0: It holds limk→∞ zin = 1, since

lim
k→∞ zin = lim

k→∞ exp

(
ln
(
l

k

) 1
k−l

)
= lim
k→∞ exp

(
ln(l) − ln(k)

k− l

)
= exp

(
lim
k→∞

ln(l)
k− l

− lim
k→∞

ln(k)
k− l

)
= exp

(
0− lim

k→∞
1/k

1

)
= 1 .

By Lemma 4.5.1 (iii), we have that limk→∞ f(zin(k)) = 0 = limk→∞ g1(k).
. limk→∞ g2(k) 6 0: Since 2−z

1−z >
1
1−z , for z ∈ (0, 1), it is sufficient to show that

limk→∞ 2−zin
1−zin

· 1
k−1 = 0. We get

lim
k→∞

(2− zin)/(k− 1)

1− zin
= lim
k→∞

− 1
k−1 ·

∂zin
∂k

+ −2+zin
(k−1)2

−∂zin
∂k

= lim
k→∞

(
1

k− 1
+

1
(k−1)2

· (2− zin)
∂zin
∂k

)
.

Using that ∂zin
∂k

= zin ·
(

− ln(l/k)
(k−l)2

− 1
k·(k−l)

)
, it follows that

lim
k→∞

(2− zin)/(k− 1)

1− zin
= lim
k→∞

2− zin
(k− 1)2

· 1
zin
·

(
− ln(l

k
)

(k− l)2
−

1

k · (k− l)

)−1

= lim
k→∞

2− zin
zin︸ ︷︷ ︸
→1

·
(
(k− 1)2 ·

− ln(l
k
)

(k− l)2︸ ︷︷ ︸
→∞

−
(k− 1)2

k · (k− l)︸ ︷︷ ︸
→1

)−1
= 0 .

This finishes the proof of Lemma 4.5.2. �

4.5.5.3. Properties of h(z, l,k)

In this section we prove Lemma 4.5.3. Let z ∈ (0, 1) and let 3 6 l < k.

ad (i): Considering the denominator of h(z) leads to

k ·
(
(k− 1) · f(z) − 1

) !
= 0⇔ f(z) =

1

k− 1
,

which is true for exactly one z from (0, 1), which is per definition z = zri.

167

4. Retrieval and Perfect Hashing

ad (ii): With limz→0 f(z) = 1 (Lemma 4.5.1 (ii)) and

lim
z→0

(
1− f(z) · (l− 1)

)
= 2− l 6 −1 ,

we get

lim
z→0

h(z) = lim
z→0

l · 1
zk−l

·
(
1− f(z) · (l− 1)

)
− k+ f(z) · k · (k− 1)

k ·
(
(k− 1) · f(z) − 1

) =−∞ .

ad (iii): ∀z ∈ (0, zri) : f(z) > 1
k−1 . Let f(z) =

1+ε
k−1 . Consider the limit of the numerator

of h(z):

lim
ε→0

l · 1

zk−lri
·
(
1−

1+ ε

k− 1
· (l− 1)

)
− k+

1+ ε

k− 1
· k · (k− 1)

= lim
ε→0

l · 1

zk−lri
·
(
1−

l− 1

k− 1

)
= K ,

for some positive constant K = K(l,k). For the denominator of h(z) it holds that

lim
ε→+0

k ·
(
(k− 1) · 1+ ε

k− 1
− 1

)
= k · ε = +0 .

Hence, limz→zri h(z) = +∞.

ad (iv): ∀z ∈ (0, zle] : f(z) > 1
l−1 . Let ε > 0 and let f(z) = 1+ε

l−1 . Hence, we have

h(z)
!
6 1

⇔
l · zl−k − k− 1+ε

l−1 ·
(
l · (l− 1) · zl−k − k · (k− 1)

)
k ·
(
(k− 1) · 1+ε

l−1 − 1
) < 1

⇔ l · zl−k − (1+ ε) · l · zl−k − k+ (1+ ε) · k · k−1
l−1 6 −k+ (1+ ε) · k · k−1

l−1

⇔ l · zl−k − (1+ ε) · l · zl−k 6 0⇔ ε > 0 .

ad (v): ∀z ∈ (zle, zri) : 1
l−1 > f(z) >

1
k−1 . Let ε > 0 and let δ > 0 with 1−ε

l−1 = f(z) =
1+δ
k−1 . Hence, we have

h(z)
!
> 1⇔

l · zl−k − k− 1−ε
l−1 ·

(
l · (l− 1) · zl−k + 1+δ

k−1 · k · (k− 1)
)

k ·
(
(k− 1) · 1+δ

k−1 − 1
) > 1

⇔ l · zl−k − (1− ε) · l · zl−k + (1+ δ) · k− k > δ · k
⇔ ε · l · zl−k > 0⇔ ε > 0 .

Note that for z = zle, that is ε = 0, we have h(z) = 1.

168

4.5. Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs

ad (vi): ∀z ∈ (zri, 1) : f(z) < 1
k−1 . Let ε ∈ (0, 1) and let f(z) = 1−ε

k−1 . Hence, we have

h(z)
!
< 1⇔

l · zl−k − k− 1−ε
k−1 ·

(
l · (l− 1) · zl−k − k · (k− 1)

)
k ·
(
(k− 1) · 1−ε

k−1 − 1
) < 1

⇔ l · zl−k ·
(
1− (1− ε) · l− 1

k− 1

)
− k+ k · (1− ε) > −ε · k

⇔ 1− (1− ε) · l− 1
k− 1

> 0⇐ ε ∈ (0, 1) .

ad (vii): Recall (4.10) for representing h(z):

h(z) =
Z0(z) − f(z) · Z1(z)

k · zk−1 ·
(
(k− 1) · f(z) − 1

) .
Let h1(z) = (k− 1) · f(z) − 1. Note that h1(z) 6= 0, if z 6= zri.
The first derivative of h(z) is

∂h(z)

∂z
=

f(z)

k · zk · h1(z)

·

(
Z1(z)

1− z
− Z2(z) − (Z0(z) − f(z) · Z1(z)) ·

(k− 1) ·
(
k− 1− 1

1−z

)
h1(z)

)
.

The function h(z) is strictly increasing if and only if

∂h(z)

∂z

!
> 0⇔ ∂h(z)

∂z
· h1(z)2 > 0

⇔ f(z) ·
[
(h1(z) ·

(Z1(z)
1− z

− Z2(z)
)

−
(
Z0(z) − f(z) · Z1(z)

)
· (k− 1) ·

(
k− 1−

1

1− z

)]
> 0 .

Note that f(z) is positive for z ∈ (0, 1). So we get

∂h(z)

∂z

!
> 0⇔

(
Z1(z)

1− z
− Z2(z)

)
·
(
(k− 1) · f(z) − 1

)
>

(
Z0(z) − f(z) · Z1(z)

)
·
(
(k− 1)2 −

k− 1

1− z

)
.

This inequality is equivalent to

Z1(z)

1− z
· (k− 1) · f(z) − Z1(z)

1− z
− Z2(z) · (k− 1) · f(z) + Z2(z) >

Z1(z)

1− z
· (k− 1) · f(z) + Z0(z) · (k− 1)2 − Z0(z) ·

k− 1

1− z
− f(z) · Z1(z) · (k− 1)2 ,

169

4. Retrieval and Perfect Hashing

which is equivalent to

f(z) · (k− 1)·
(
Z1(z) · (k− 1) − Z2(z)

)
+

1

1− z
·
(
Z0 · (k− 1) − Z1(z)

)
+ Z2(z) − Z0(z) · (k− 1)2 > 0 .

Expanding the functions Zj(z), j ∈ {0, 1, 2}, gives

∂h(z)

∂z

!
> 0⇔ f(z) · (k− 1) · l · zl−1 ·

(
(l− 1) · (k− 1) − (l− 1)2

)
+

1

1− z
· l · zl−1 ·

(
(k− 1) − (l− 1)

)
+ l · zl−1 ·

(
(l− 1)2 − (k− 1)2

)
> 0

⇔ f(z) · (k− 1) · (l− 1) · (k− l)

+
1

1− z
· (k− l) + (l− 1)2 − (k− 1)2 > 0

⇔ f(z) · (k− 1) · (l− 1) + 1

1− z
+ 2− k− l > 0

def⇔ g(z) > 0 ,

where we divided by k− l, which is larger than 0 by definition.

ad (viii): This follows directly from Lemma 4.5.2 (ii) and Lemma 4.5.3 (vii).

ad (ix): This follows directly from Lemma 4.5.2 (iii) and Lemma 4.5.3 (vii)

ad (x): For minz g(z) > 0, this follows directly by Lemma 4.5.3 (vii). Now assume
minz g(z) = 0. According to Lemma 4.5.2 (i), the point zmin = argminz g(z) is the only
point where g(z) = 0. It follows that zmin is the only inflection point of h(z). Therefore,
by Lemma 4.5.3 (vii), h(z) is strictly increasing.

ad (xi): According to Lemma 4.5.2 (iv), the function g(z) has exactly two different roots
ž0, ẑ0 in the interval (zle, zri) and by Lemma 4.5.3 (vii) and Lemma 4.5.2 (i) it follows
that h(z) is strictly increasing for z < ž0, strictly decreasing for z with ž0 < z < ẑ0,
and strictly increasing for z > ẑ0. Hence the claim follows.

This finishes the proof of Lemma 4.5.3. �

4.6. Perfect Hashing via Matchings in Bipartite
Graphs

In this section we discuss our construction of an irregular mutable Bloomier filter from
Sections 4.1.3 and 4.1.4, which is a perfect hash function build upon a combination of
a left-regular random bipartite graph and a left-irregular random bipartite graph —
the construction was sketched before in [Rin12, Rin13]. In an experimental case study,

170

4.6. Perfect Hashing via Matchings in Bipartite Graphs

which includes all aspects one might encounter when using perfect hashing as, e. g.,
normalization of keys, we show that with simple, non-ideal hash functions a space
consumption of 1.76 bits per key can be obtained in linear time for natural key sets of
size n > 107 and range 1.1 · n.

4.6.1. Construction Algorithm

To get started, we restate the construction algorithm, sketched in Section 4.1.4, in
more detail. We split the algorithm in three phases, a preprocessing phase (phase 0),
and two main phases (phases 1 and 2).

Phase 0 The first phase is optional. It is used to map keys from some (almost)
arbitrary universe to pairwise distinct integers. This allows to uniformly handle inputs
from different universes avoiding adjustments in the main phases.

Remark. In applications where one does not emphasize the normalization of the keys
but rather the reduction of their description length, this technique is called domain
reduction or collapsing the universe, see Section 5.4.1.

Let Ŭ be the set of all possible inputs, let S̆ be the actual key set, and let U ⊆ N be the
universe that is used in phases 1 and 2. If U = Ŭ, then phase 0 is skipped. Otherwise,
phase 0 starts with a selection of a random hash function

h0 : Ŭ→ U ,

which is used to define a new key set S, via

S := {h0(x̆) | x̆ ∈ S̆} .

If |S| < |S̆|, i. e., there are keys from S̆ that collide under h0, then phase 0 starts again
with a new random hash function h0.

Phase 1 The phase begins with a random selection of d́ hash functions

h1
0,h

1
1, . . . ,h

1
d́−1

: U→ [ḿ] ,

which are used to define a d-left-regular bipartite graph

Gd́n,ḿ = (S ∪ [ḿ], É)

of type A with edge set

É =
{
(x,h1

i(x)) | x ∈ S, i ∈ [d́]
}
.

The generalized selfless algorithm (Algorithm 3) is applied to the hypergraph repre-
sentation Hd́ḿ,n of Gd́n,ḿ in order to determine a left-perfect matching M in Gd́n,ḿ.

171

4. Retrieval and Perfect Hashing

Remark. Alternatively, one can use local search allocation by Khosla [Kho13, Sec-
tion 2], which always finds a left-perfect matching in Gd́n,ḿ if such one exists, has linear
running time w. h. p., and is fast in practice, see Section 1.1.

In the case that no left-perfect matching is found, phase 1 starts again with new random
hash functions. Otherwise, a vector v = (vx)x∈S is built, where vx = i ∈ [d́], the index
of a hash function, if and only if edge (x,h1

i(x)) is a matching edge from M.

Phase 2 Let α = (αi)i∈[s] ∈ [0, 1]s as well as d = (di)i∈[s] ∈ Ns be two vectors of
length s > 0. Furthermore, define d̂ = max{di | i ∈ [s]}. The last phase starts with a
random selection of d̂ hash functions

h2
0,h

2
1, . . . ,h

2
d̂−1

: U→ [m] with h2
i(x) 6= h2

j(x) for all x ∈ U and 0 6 i < j < d̂,

see Section 5.3.3.2, as well as one additional hash function

h2
d̂
: U→ [s] with Pr(h2

d̂
(x) = i) = αi for all i ∈ [s].

The hash functions are used to build a random d-left-irregular bipartite graph

Gdn,m,α = (S ∪ [m],E)

of type B with edge set

E =
{
(x,h2

i(x)) | x ∈ S, i ∈ [dj], j = h2
d̂
(x)
}
,

where the degree of each left node x is determined via hash function h2
d̂
.

Peeling with back substitution (Algorithm 7) is applied to the matrix representation
Md
n,m,α of Gdn,m,α and the vector v, which consists of elements from the abelian group

(Zd́,+), in order to solve the system of equations

Md
n,m,α · t = v .

In the case that Gdn,m,α has an order generating matching, peeling with back substitu-
tion returns a solution vector t. Otherwise, phase 2 starts again with new random hash
functions. If a solution t is obtained, it is optionally compressed. A standard approach
is to consider every a many consecutive entries of t as a base-d́ representation of a
number that replaces the a entries and has description length of at most b bit. More
precisely, if there are non-zero constants a,b ∈ N with dlog(d́)e > b

a
> log(d́), then

encode the solution vector t = (ti)i∈[m], ti ∈ [d̂], to a vector tenc according to

tenc = (tencj)j∈[dm/ae] with tencj := (tj·a+0 ◦ tj·a+1 ◦ . . . ◦ tj·a+a−1)base d́
and ti := 0 for all i > m,

172

4.6. Perfect Hashing via Matchings in Bipartite Graphs

where each element tencj needs b bits. For fast decoding a lookup matrix Tdec can be
used, where

Tdec = (tdeci,j)i∈[d́a],j∈[a] with (tdeci,0 ◦ tdeci,1 ◦ . . . ◦ tdeci,a−1)base d́ = i, for all i ∈ [d́a].

The parameters for all three phases have to be chosen with respect to the desired
lookup time as well as construction time and space consumption, which are mainly
limited by the probability of the event that Gd́n,ḿ has a left-perfect matching and
Gdn,m,α has an order generating matching. We will discuss appropriate parameters in
the forthcoming Section 4.6.2.

Lookup Operation After a successful construction, we obtain the desired hash
function h : Ŭ→ [ḿ] that is injective with respect to S̆, i. e., a perfect hash function
for S̆. Now, in order to simplify the description of the evaluation of the perfect has
function we will ignore key normalization and compression for a moment. Accordingly,
the lookup for a key x ∈ U is carried out as follows:

1. Determine the index j of the number dj of phase 2 hash functions, using h2
d̂
via

j := h2
d̂
(x) .

2. Access the vector t with the dj hash functions h2
0,h

2
1, . . . ,h

2
dj−1

and determine
an index k of a phase 1 hash function, according to

k :=

(∑
i∈[dj]

th2
i(x)

)
mod d́ .

3. The value of the perfect hash function is equal to the value of the phase 1 hash
function h1

k, i. e.,

h(x) := h1
k(x) .

Space and Time Consumption If we assume constant evaluation time for the hash
functions h0, h1

i, i ∈ [d́], and h2
j, j ∈ [d̂+ 1], and ignore their space needs, we obtain

the following performance characteristics:

space usage m · dlog d́e without compression,

dm/ae · b with simple compression,

lookup time O
(
d̂
)
.

Suitable values are discussed below.

Remark. Using more sophisticated compression the space complexity can be reduced
to dm · log d́e +m/(logm)O(1) [Pă08, Theorem 1] and even to

(
dm · log d́e + o(1)

)
[DPT10, Theorem 1 and Section 4.2], while maintaining constant lookup time.

173

4. Retrieval and Perfect Hashing

4.6.2. Experiments

In our experiments we applied the algorithm on natural key sets, using one single set
of parameters and practical, i. e., non-ideal, hash functions.

Algorithm Parameters Based on the results from Section 4.5, the following
parameters were chosen according to Table 4.1.2:

. d́ = 3 and d = (d0,d1) = (3, 16) with d̂ = max{d0,d1} = 16,

. ḿ = m = 1.1 · n,

. α = (α∗, 1− α∗) with α∗ ≈ 0.88684,

. simple compression scheme with a = 5, b = 8, and decompression matrix Tdec.

It follows that, if one excludes the hash functions, the space usage is d1.1 ·n/5e · 8 bits,
i. e., asymptotically 1.76 bits per key.

Key Sets We defined Ŭ to be the set of binary sequences with length 1 up to 252
bytes, i. e.,

Ŭ :=

252⋃
i=1

{0, 1}8·i .

The keys for our experiments were restricted to elements from some set Ŭw ⊆ Ŭ with
10151094 elements14. The set Ŭw is the set of titles and the set of category labels of
the English Wikipedia, extracted from dumps generated in 2012, see [Wik12].

Choosing a key set S̆ of size n from Ŭ was done according to the following randomized
procedure. Determine a fully random index i from [|Ŭw|− n+ 1] and define S̆ as the
set of n consecutive elements from the sorted list of all elements from Ŭw, starting at
position i.

The idea behind this approach was to get natural key sets with a reduced amount
of entropy in order to shrink the influence of the random choice of the keys on
the performance of our randomized construction algorithm, i. e., the main source
of randomness of the algorithm should be the choice of the coefficients of the hash
functions, see Section 5.2 for more background.

Hash Functions Although the analysis of the data structure is carried out only for
ideal hash functions, see Section 2.2.2, in the experiments we replace these functions by
practical ones with weak random properties and not by some pseudorandom number
generator.

14The reason why we did not define Ŭw = Ŭ is our assumption that the universe has a simple
structure, see Section 2.1.

174

4.6. Perfect Hashing via Matchings in Bipartite Graphs

Remark. The discrepancy between assuming fully randomness in theoretical analysis
and providing limited randomness in practical solutions is addressed in Chapter 5.

For each x̆ ∈ Ŭ let x̆ = x̆0 ◦ x̆1 ◦ . . . ◦ x̆l−1, with x̆i ∈ {0, 1}8 for i ∈ [l]. We reduced the
domain Ŭ to a smaller domain U = [p], with p = 261 − 1, via appending the smallest
non-negative number of blanks (byte 00100000) on each key such that the number of
bytes of the extended key is divisible by 4, evaluating a separate hash function on each
four consecutive bytes, which are interpreted as integers, and finally adding up the
results. More precisely, we use the following hash function h0 : Ŭ→ U

h0(x̆) :=
(bl/4c−1⊕

i=0

h0
i(x̆i·4 ◦ x̆i·4+1 ◦ x̆i·4+2 ◦ x̆i·4+3)

⊕ h0
bl/4c(x̆bl/4c·4 ◦ x̆bl/4c·4+1 ◦ . . . ◦ x̆l−1 ◦ 00100000 ◦ . . . ◦ 00100000︸ ︷︷ ︸

(lmod 4) times

)
)
mod p ,

where for all i ∈ [63], we have h0
i : {0, 1}

32 → [p] according to

h0
i(x̆) :=

(
a0
0,i + a

0
1,i · x̆

)
mod p with a0

0,i,a
0
1,i ∈ [p].

All hash functions h1
i : U→ [ḿ], i ∈ [d́], of phase 1 are realized as polynomials with

κ > 2 coefficients, i. e., of degree κ− 1, according to

h1
i(x) :=

((κ−1∑
j=0

a1
j,i · xj

)
mod p

)
mod ḿ .

All hash functions h2
i : U→ [m], i ∈ [d̂+1], of phase 2 are also realized via polynomials

of degree κ− 1, according to

h2
i(x) :=

((κ−1∑
j=0

a2
j,i · xj

)
mod p

)
mod m ,

and

h2
d̂
(x) :=

3, if
((∑κ−1

j=0 a
2
j,d̂ · x

j
)
mod p

)
mod m < α∗ ·m

16, otherwise
.

Storing the hash functions boils down to storing the coefficients ak
j,i of the polynomials,

as well as storing the range ḿ = m and the prime number p.

Remark. Although possible, we did not share coefficients between distinct polynomials,
since we wanted to demonstrate the efficiency of the construction algorithm without
the need for further modifications.

The random selection of the hash functions for each phase was done via generating
pseudorandom coefficients ak

j,i using the Mersenne Twister, see Section 3.4.4.

175

4. Retrieval and Perfect Hashing

Setup and Measurements For each pair (n, κ) from {103, 104, 105, 106, 107} ×
{2, 3, . . . , 10} we selected a = 108/n key sets S̆ as described above and applied the
construction algorithm on input (S̆, ḿ), using hash functions for phases 1 and 2 based
on polynomials of degree κ− 1. Given (n, κ), we measured sample mean and sample
variance of the following quantities:

. construction time Tc, broken down to the different phases,

. the number of iterations for each phase i0, i1, i2,

. the ratio rα∗ = |{x ∈ S | h2
d̂
(x) = 3}|/n, i. e., the approximation of α∗,

. the overall space consumption S,

. the lookup time, i. e., the evaluation time Te of the perfect hash function.

Results For the sake of conciseness, we present results only for the cases κ = 2, 6, 10.
Qualitative results for κ = 3, 4, 5 and κ = 7, 8, 9 can be deduced easily from them.

I. Figure 4.6.5 shows the average construction time Tc(n) and the average construction
time per key Tc(n)/n. The average time consumption per key for the different phases
are visualized in Figure 4.6.6. In contrast to what is expected for the theoretical
unit-cost RAM, n→∞, and ideal hash functions, the measured average construction
time is not linear. Reasons for the non-linear behavior are:

0. The average construction time per key for phase 0 increases slightly for increasing
n from n = 104 to n = 106, while the number of iterations for this phase is always
1, see Table 4.6.5. This is, at least partially, because of the way the key sets are
constructed, the expected number of large keys increases with increasing n.

1. The average construction time per key for phase 1 increases with increasing n,
while the number of iterations for this phase is constantly close to 1, see Table 4.6.5.
This is probably due to caching effects.

2. The average construction time per key for phase 2 decreases for increasing n from
n = 103 to n = 106, since the larger n, the less likely phase 2 fails, i. e., the fewer
iterations are needed, see Table 4.6.5. In contrast, from n = 106 to n = 107 the
average construction time for phase 2 increases in conformity with the behavior
of phase 1.
For n = 103, 104, 105 the number of iteration of phase 2 is larger than the
number of iterations of phase 1, since n/ḿ = n/m ≈ 0.9091 is much closer to
č
(
(3, 16), (α∗, 1− α∗)

)
≈ 0.91089 than to ĉ(3) ≈ 0.9179 and therefore the failure

probability of phase 2 is likely to be much higher. Furthermore, there is a strong
dependence on the fraction of nodes of degree 3 in the left-irregular bipartite
graph but an adequate approximation of α∗ can be only realized for relatively
large n, see Table 4.6.5.

176

4.6. Perfect Hashing via Matchings in Bipartite Graphs

0

20

40

60

80

100

120

103 104 105 106 107av
g
co
ns
tr

ti
m
e
[µ
s]

pe
r
ke
y
am

on
g
1
0
8
/
n
at
te
m
pt
s

n

κ = 2
κ = 6
κ = 10

(a) time per key [µs] (log10 plot)

0.001

0.01

0.1

1

10

100

103 104 105 106 107

av
g
co
ns
tr
uc

ti
on

ti
m
e
[s
]a

m
on

g
1
0
8
/
n
at
te
m
pt
s

n

Tc(n) ≈ 6.516170 · 10−6 · n
Σsre = 3.02593

κ = 2
κ = 6
κ = 10
linear fit for κ = 2

(b) overall time [s] (log10-log10 plot)

Figure 4.6.5.: Average construction time of the perfect hash function. Ideally, the time
consumption should be linear in n, i. e., measurements in Figure 4.6.5 (a) should be on
a line parallel to the abscissa. However, the data show a slight non-linear behavior.

The crucial observation is that for fixed n, the average number of iterations per phase
remains approximately the same for all κ = 2, 3, . . . , 10. Hence, the case κ = 2 gives
the minimum construction time.

In order to get a linear prediction model for n > 107, we fitted a linear function to the
measured average construction time for κ = 2 using the method of least squares provided
by gnuplot [WKL+12], see also Section 3.4.4. The fit is shown in Figure 4.6.5 (b), where
Σsre denotes the sum of squares of the residuals.

Remark. Using a weighted fit, up to ignoring n = 103 and n = 104 completely,
changed the prediction only marginally, so that we simply used the standard method
and all five measurement points.

II. In contrast to the construction time, the average evaluation time behaves linearly
as one can see in Figure 4.6.7. We derived a good linear prediction for n > 107 and
κ = 2 via the method of least squares as shown in Figure 4.6.7 (b). Clearly, also with
respect to minimum evaluation time, the value κ = 2 is the best choice.

III. As shown in Table 4.6.6, for fixed κ the average space consumption per key S/n

decreases with increasing n, and for n > 107 we are close to the theoretical optimum
for our parameter setting and compression scheme, i. e., we have S/n ≈ 1.76 bits per
key. For fixed n the average space consumption increases with increasing κ, with a
considerable effect for n = 103, 104, 105. This is because the space overhead is mainly
due to the space consumption of the hash functions, or more precisely, their coefficients.
The variance of the space consumption is only caused by the varying number of hash
functions used in phase 0. For n = 107 this number is constant, i. e., the variance is

177

4. Retrieval and Perfect Hashing

n a i0 s2[i0] i1 s2[i1] i2 s2[i2] |rα∗ − α
∗|

103 105 1 0 1.25517 0.31776 95.00980 8961.13672 0.00265
104 104 1 0 1.00270 0.00269 24.34600 562.85537 0.00107
105 103 1 0 1 0 3.23700 7.30213 0.00016
106 102 1 0 1 0 1.01000 0.01000 0.00006
107 101 1 0 1 0 1 0 0.00002

(a) κ = 2

n a i0 s2[i0] i1 s2[i1] i2 s2[i2] |rα∗ − α
∗|

103 105 1 0 1.25174 0.31485 95.05419 9010.90196 0.00261
104 104 1 0 1.00280 0.00279 23.95630 544.29362 0.00109
105 103 1 0 1 0 3.36200 7.69465 0.00022
106 102 1 0 1 0 1 0 0.00001
107 101 1 0 1 0 1 0 0.00001

(b) κ = 6

n a i0 s2[i0] i1 s2[i1] i2 s2[i2] |rα∗ − α
∗|

103 105 1 0 1.25455 0.31732 95.49563 8957.40863 0.00265
104 104 1 0 1.00230 0.00229 24.22400 569.87581 0.00115
105 103 1 0 1 0 3.32000 7.72332 0.00017
106 102 1 0 1 0 1.01000 0.01000 0.00003
107 101 1 0 1 0 1 0 0.00001

(c) κ = 10

Table 4.6.5.: Average number of iterations per phase during construction of the perfect
hash function. The values are rounded to five decimal places.

178

4.6. Perfect Hashing via Matchings in Bipartite Graphs

0

5

10

15

20

25

30

35

40

104 105 106 107av
g
co
ns
tr

ti
m
e
[µ
s]

pe
r
ke
y
am

on
g
1
0
8
/
n
at
te
m
pt
s

n

phase 0
phase 1
phase 2
remaining

(a) κ = 2

0

5

10

15

20

25

30

35

40

104 105 106 107av
g
co
ns
tr

ti
m
e
[µ
s]

pe
r
ke
y
am

on
g
1
0
8
/
n
at
te
m
pt
s

n

phase 0
phase 1
phase 2
remaining

(b) κ = 6

0

5

10

15

20

25

30

35

40

104 105 106 107av
g
co
ns
tr

ti
m
e
[µ
s]

pe
r
ke
y
am

on
g
1
0
8
/
n
at
te
m
pt
s

n

phase 0
phase 1
phase 2
remaining

(c) κ = 10

Figure 4.6.6.: Average construction time per phase and key of the perfect hash function.
Ideally, the bars should have the same height.

179

4. Retrieval and Perfect Hashing

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

103 104 105 106 107

av
g
ev
al

ti
m
e
[µ
s]

pe
r
ke
y
am

on
g
1
0
8
/
n
at
te
m
pt
s

n

κ = 2
κ = 6
κ = 10

(a) per key, log10 plot

0.0001

0.001

0.01

0.1

1

10

103 104 105 106 107

av
g
ev
al
ua

ti
on

ti
m
e
[s
]a

m
on

g
1
0
8
/
n
at
te
m
pt
s

n

Te(n) ≈ 2.738040 · 10−7 · n
Σsre = 2.371440 · 10−7

κ = 2
κ = 6
κ = 10
linear fit for κ = 2

(b) overall, log10-log10 plot

Figure 4.6.7.: Average evaluation time of the perfect hash function. As predicted, the
time consumption is approximately linear, since in Figure 4.6.7 (a) for each κ the
corresponding measurement points are close to one line parallel to the abscissa.

κ = 2 κ = 6 κ = 10

n a S/n s2[S]/n2 S/n s2[S]/n2 S/n s2[S]/n2

103 105 11.61107 0.48924 16.73446 0.49940 21.85553 0.49157
104 104 2.86380 0.01157 3.37643 0.01201 3.88703 0.01121
105 103 1.89059 0.00015 1.94095 0.00016 1.99204 0.00016
106 102 1.77503 0.00000 1.78018 0.00000 1.78530 0.00000
107 101 1.76156 0 1.76207 0 1.76258 0

Table 4.6.6.: Average space consumption of the perfect hash function. The values
are rounded to five decimal places. If one omits the lookup matrix Tdec for fast
decompression, one can save up to 3888/n bits per key.

zero, since the key source Uw has size about 107 and therefore each key set S̆ ⊆ Uw
got a key of maximum length.

4.7. Conclusion

Following [Mol04, Kim06, DGM+10], we determined thresholds č`+(d,α) for the
appearance of an `+-core in left-irregular bipartite graphs Gdn,m,α or non-uniform
hypergraphs Hdm,n,α, respectively. For the special case `+ = 2 and d ∈ N2, we showed
how to analytically obtain optimal vectors α = α∗ that maximize the ratio n/m up to
which a. a. s. the 2-core is empty. For larger vectors d as well as core parameter `+ > 2
this is still open. It turned out that for some vectors d ∈ N2 the optimal thresholds
č(d,α∗) = č(d) are larger than the maximum 2-core threshold č(3) ≈ 0.818 for regular
bipartite graphs Gdn,m and uniform hypergraphs Hdm,n. While experiments indicate

180

4.7. Conclusion

that using more irregularity allows to overcome the local optimum of č((3, 21)) ≈ 0.920
found so far, it is open to prove or disprove the conjecture that the 2-core threshold
can be made arbitrarily close to 1.

Using the results on optimal thresholds č(d) for two different degrees as well as the
generalized selfless algorithm from Section 3.4, we gave an improved construction of
a perfect hash function with small range based on the irregular Bloomier filter. Using
ideal auxiliary hash functions according to Section 2.2.2, this perfect hash function has
expected linear construction time, constant evaluation time, and range 1.1 · n, as well
as space consumption of about 1.76 bits per key. Moreover, we showed in experiments
that by replacing the ideal hash functions with practical ones, this performance is also
obtainable in real-life applications, making this algorithm one of the top perfect hash
function constructions available.

181

5

Uniform Hashing

A hash function h is a function that maps keys from a universe U to some range R,
where the hash values h(x), x ∈ U, are random in a certain way. In Chapters 3 and 4
we require the hash functions to be fully random on some fixed set S, S ⊆ U, which
means that (h(x))x∈S must be uniformly distributed in R|S|. Furthermore, we assume
that the evaluation time of h is constant. How these assumptions can be justified using
only linear space is discussed in the following.

5.1. Methods

In the literature there are basically three approaches for realizing uniform hashing in
constant time:

Dictionary of Random Values — Given S, build a dictionary or retrieval data struc-
ture that stores for each x ∈ S a fully random value from R.

Simulation of Full Randomness — Given n, build a data structure that represents
a hash function that with high probability is uniform on any set S with |S| 6 n.

Split-and-Share — Split S into disjoint subsets Si by a “splitting” hash function and
modify the application such that each subset is handled independently of the other
subsets. Generate a hash function with range R ′ that is fully random on any set of
size |Ŝ|, where Ŝ is one of the subsets Si with maximum size. Share this hash function
among the subsets Si.

In this chapter we describe a randomized algorithm for the space-efficient simulation
of full randomness, which internally uses the split-and-share approach — details to be
discussed shortly.

Dictionary of Random Values It follows by a standard information theoretical
argument, see Section 5.3.1, that any representation of a hash function h that is
fully random on S needs at least |S| · log|R| (random) bits in expectation. Hence in
principle, one cannot do better than randomly choosing a hash value for each key from
S and then use a dictionary to represent the function h given by the key-value pairs.

183

5. Uniform Hashing

Examples for suitable (static) dictionaries with worst-case constant evaluation time
are the famous dictionary by Fredman, Komlós, and Szemerédi [FKS84] using space
O
(
|S| · (log|U|+ log|R|)

)
, and the dictionary by Pagh [Pag01a, Section 6], using space

about1 log
(
|U|

|S|

)
+ |S| · log|R|. The space usage for both is within a constant factor of

the lower bound, under the condition that U has size polynomial in the size of R.

Simulation of Full Randomness In order to avoid building a dictionary with
random function values for each given set S separately, one can apply an approach
known as simulation of full randomness: Given an integer n, using randomization one
builds a data structure Dh that represents a hash function h : U → R, such that for
each set S ⊆ U with |S| 6 n, there is a certain probability of failure, but if the failure
event does not occur, then h is fully random on S. The advantage of this approach is
that Dh can be built in advance without knowledge of a concrete key set S, and then
can be used by many applications. This flexibility comes at the price of introducing a
failure probability as an additional performance characteristic beside evaluation time
and space usage.

For the following discussion let (R,⊕) be an abelian group. Moreover, we assume that
the size of U is polynomial in |S| = n, which can be justified via a standard method
known as domain reduction that introduces some additional small but asymptotically
negligible error probability, see, e. g., Section 5.4.1. The first randomized data structures
for simulation of full randomness that use space essentially linear in the lower bound
n·log|R|, have constant evaluation time, as well as high success probability were provided
independently by Pagh and Östlin [ÖP03] and Dietzfelbinger and Woelfel [DW03]. The
construction by Pagh and Östlin is based on Siegel’s hash functions [Sie04], which add
huge constants to the evaluation time, while the construction by Dietzfelbinger and
Woelfel uses faster hash functions derived from a family of functions initially studied
by Dietzfelbinger and Meyer auf der Heide [DM90, DM92]. Both approaches were later
improved leading to two constructions with almost optimal space usage:
Let ε > 0 and d > 0, with d ∈ N, be arbitrary but fixed.

. In [PP08] Pagh and Pagh reduced the space needs of the data structure from
[ÖP03] further to (1 + ε) · n · log|R| + o(n) + O(log log|U|), while maintaining
evaluation time O(1/ε2), and failure probability O(1/nd).

. Recently in [ADW12, Section 6] Aumüller, Dietzfelbinger and Woelfel gave a
construction based on a generalization of the hash function family from [DW03]
that has a space bound2 of 2 · (1+ ε) ·n · log|R|+ o(n) +O(log log|U|), evaluation
time O(d), and failure probability O(1/nd+1).

1A lower order term that depends on the size of U is ignored.
2This follows by [ADW12, Theorem 2] in combination with domain reduction.

184

5.1. Methods

Split-and-Share There is a simple method, known as split-and-share, that under
some conditions makes it possible to circumvent the assumption that a hash function
h : U→ R is available that is fully random with respect to S. In this case, the required
mapping can be realized in sublinear space. The approach was mentioned in [FPSS05,
Section 6, suggestion by Dietzfelbinger], and was used in principle, e. g., in [HT01,
Section 5]. Two application scenarios are described explicitly in [DW07, Section 2.3] and
[Die07, Section 2], and a detailed discussion as well as a variety of different applications
are given in [DR09].

The general idea is to use a hash function hsplit in order to split the key set S ⊆ U
into disjoint subsets Si. Let Ŝ be a largest of these subsets. Then one builds a hash
function h ′ : U→ R ′ that is fully random on each subset of U of size at most |Ŝ|. For the
construction of h ′ neither S needs to be given in advance, nor the subsets need to be
explicitly determined. Both functions together, hsplit and h ′, can be represented using
space o(|S| · log|R|) bits. Now, instead of building a hashing-based data structure for
the whole set S, one builds a small hashing-based data structure for each Si separately.

The crucial insight is that since h ′ is fully random on each subset of U that has size
at most |Ŝ|, it can be shared among all of these data structures.

Results

Using the split-and-share approach, we give a construction of a randomized data
structure Dh for simulating full randomness that has asymptotically the same space
bound as the construction given in [PP08], but faster evaluation time. Moreover, as
in [ADW12], the use of Siegel’s functions is avoided.

Theorem 5.1 (Uniform Hashing [DR09, Theorem 1])
Let (R,⊕) be an abelian group. There is a randomized algorithm that on input
n ∈ N, d ∈ N, and ε > 0 constructs a data structure Dh that represents a function
h : U→ R with the following properties: For each set S ⊆ U with |S| 6 n there is a
set BS of “bad hash functions for S” such that

(i) Under the condition that h 6∈ BS the function h behaves fully randomly on S.

(ii) The probability that h ∈ BS is O
(
n1−(d+2)/9

)
.

(iii) The space usage for h is (1+ ε) · n · log |R|+ o(n) +O(log log|U|).

(iv) The evaluation time of h is O
(
max{log2(1/ε),d2}

)
.3

(v) The construction time of Dh is O(n), if |R| 6 |U| and log|U| = O(2n1/4/nd/2).

This data structure has the asymptotically best performance characteristic for the
simulation of full randomness known so far.

3In [DR09, Theorem 1] the term log(1/σ) must be replaced by log2(1/σ).

185

5. Uniform Hashing

5.1.1. Overview of the Chapter

The subsequent section puts the result into a wider context. Afterwards, in Section 5.3,
we state some definitions and facts that are presumed to be known in the proof of
Theorem 5.1, which is then given in Section 5.4. The chapter finishes with some
concluding remarks.

5.2. Further Background and Related Work

This section provides an overview of approaches for the analysis of hashing-based data
structures. More precisely, we consider various randomness assumptions that are used
in order to obtain provable performance bounds. Since it is of purely informational
nature, it can be skipped by the expert reader.

Hashing-based data structure like those discussed in Chapters 3 and 4 are built for a
set of (known or unknown) keys S ⊆ U. In order that the construction of such a data
structure is successful or to meet specific performance requirements for its operations,
respectively, the hash functions must be “well-behaved”. Beside fast evaluation time
and small space consumption one usually would like the hash values to satisfy certain
randomness properties. A general approach based on [CW79] is to choose a hash
function

h : U→ R

from a family of hash functions, usually called hash class. Let H = {hi}i∈I be such a
hash class with index set I and hi : U→ R for all i ∈ I. Choosing a function from H

translates into choosing an index i from I uniformly at random. Since H is a family of
hash functions, different probabilities concerning the choice of a function can easily be
modeled by the multiplicity of these functions within the hash class.
Two scenarios are discussed in the analysis of hashing-based data structures:

1. Keys are considered as random variables and |H| > 1. (average case)

2. Keys are arbitrary, but fixed and |H|� 1. (worst case)

When using average-case analysis in the first case, one usually tries to avoid strong
randomness assumptions concerning the keys since they are considered to be unrealistic.
The second case, i. e., the worst-case analysis on the keys, is by far the most common
one. We give a general survey of both approaches in the following.

5.2.1. Keys are Random Variables

Building upon the work on randomness extractors [CG85, CG88, PRB-source, Def-
inition 1 and 2] a standard model [MV08, CV08] assumes that the key set S is a
set of random variables X0,X1, . . . ,Xn−1 which form a block source. That means

186

5.2. Further Background and Related Work

for each i ∈ [n] and arbitrary x0, x1, . . . , xi−1 the variable Xi restricted to the event
{X0 = x0 ∧ X1 = x1 ∧ . . . ∧ Xi−1 = xi−1} has at least l bits of collision entropy or
min-entropy.4 It was shown that if a choice of h gives that each sequence of κ pairwise
distinct random variables from the sequence (h(Xi))i∈[n] is uniformly distributed, and
if l is sufficiently large, then the distribution of the whole sequence (h(Xi))i∈[n] is close
to the uniform distribution in terms of collision probability or statistical distance5.
Under these assumptions the performance of several hashing-based data structures is
asymptotically the same as when using a fully random hash function, like, e. g., the
expected lookup time of linear probing [MV08, Theorem 5.1]. Typically, κ is assumed
to be small, e. g., κ = 2, and the range of h is assumed to be linear in n. Under these
conditions it is sufficient if l is about logn times a small constant that depends on the
specific application, see [CV08, Tables 1 and 2].

5.2.2. Keys are Arbitrary but Fixed

There are three different but related approaches to this situation:

Universal Hashing — an influential paradigm suggested by Carter and Wegman
[CW77, CW79]. Here one identifies hash classes where randomly choosing a hash
function ensures that the sequence (h(x))x∈U satisfies certain randomness properties,
like κ-wise independence [WC79, WC81, strongly universal], which means that each
sequence of κ pairwise distinct random variables h(x) is uniformly distributed in Rκ.
Then in the analysis of the performance of a hashing-based data structure one uses
only these properties, which can be seen as applying some abstract hash class where
the specific structure of the function h is irrelevant.

Full Randomness — the ideal situation and in a certain sense the extreme case of
universal hashing. This is the classical and most convenient approach. Here one
assumes that (h(x))x∈U is uniformly distributed in R|U|, or with other words, h is
|U|-wise independent, which can be modeled by defining H as the set of all functions
from U to R.

Remark. Often it is sufficient to assume full randomness solely for the hash values
h(x), x ∈ S, where S is the set of keys that occur in an application.

Specific Hashing — In contrast to universal hashing, one utilizes the specific structure
of the functions of H for analyzing a hashing-based data structure.

Universal Hashing Consider the examples of hash tables for dictionaries from
Section 3.2. Let |S| = n be the number of keys and let |R| = m be the size of the table.

4The collision entropy − log
(∑

x Pr(X = x)2
)

is greater than or equal to the min-entropy
minx− log (Pr(X = x)).

5The collision probability is
∑
x Pr(X = x)2, and the statistical distance between two random

variables Xi and Xj is
∑
x|Pr(Xi = x) − Pr(Xj = x)|.

187

5. Uniform Hashing

The construction of a hash table applying chaining works with every function h that
maps from U to [m], but for the lookup of a key-value pair the linked lists should be
short, at least on average. To bound the expected lookup time for a key x, it suffices
to bound the expected number of keys y that collide with x, i. e., have the same hash
value h(x) = h(y). Hence, already with only 2-wise independence one can show an
expected time of O(1+ n/m) for a lookup (successful and not successful).

Similarly, a construction of a hash table with linear probing is successful regardless of
the hash function h, as long as n < m, but now the insertion time depends on the lookup
time. A classical result6 due to Knuth [Knu63],[Knu98, page 528] bounds the expected
number of comparisons for unsuccessful lookup and insertion, respectively, to about
1/2 · (1+(1−n/m)−2) and for successful lookup to about 1/2 · (1+(1−n/m)−1). His
analysis assumes a fully random hash function. Hence, a natural question by Carter and
Wegman was how linear probing works with κ-wise independence [CW77, page 111(6)]7.
For n/m bounded away from 1, Pagh, Pagh, and Ružić proved that 5-wise independence
is sufficient to guarantee a constant number of expected comparisons [PPR07, PPR09],
where the difference to full randomness is only by a factor of Ω((1− n/m)−1).

The advantage of cuckoo hashing and its variants is that the number of cell probes
or comparisons, respectively, for lookup is constant in the worst-case. The price for this
is that a successful construction of such hash tables is not possible with every choice of
hash functions. Let m = (2+ε) ·n for some ε > 0, then O(log(n))-wise independence is
sufficient for cuckoo hashing to work with high probability [Pag01b, PR04]. Hash classes
whose functions give such a high degree of independence and simultaneously have
constant evaluation time and relatively small space needs are highly nontrivial. The first
constructions of such high performance hash classes were given by Siegel [Sie89, Sie04].

Specific Hashing Unfortunately, in terms of κ-wise independence (and related
properties), in general one cannot define necessary conditions to gain specific perfor-
mance results. For example, if n/m is constant, then linear probing has a constant
number of expected comparisons if one uses a common, practical tabulation based
3-wise independent hash class [PT11, PT12]; however there exists an artificial 4-wise
independent hash class, such that the expected search time is Ω(ln(n)) [PT10]. Sim-
ilarly, cuckoo hashing works with w. h. p. using a hash class that combines κ-wise
independence with tabulation [DW03, Section 4.1], [Aum10, Corollary 5.10] and works
w. h. p. even with a simple tabulation based 3-wise independent hash class [PT12,
Theorem 1.2]; but fails w. h. p. if one uses a pair of artificial 5-wise independent hash
classes [CK09] and “the number of keys n is large enough”, and also fails w. h. p. if one
uses a common 2-wise independent hash class and “the set of keys is relatively dense in
the universe” [DS09, Sch09]8.
6This results is considered as the beginning of the area of analysis of algorithms, see, e. g., [PS98].
7Probably Carter and Wegman used the term open addressing for linear probing like Knuth in
[Knu63].

8The paper also covers another hash class called multiplicative class with weaker random properties.

188

5.3. Basics

In recent years the focus on analyzing specific hashing-based data structures using
specific hash classes increased and recent results show the power of hash classes that
use tabulation, in a simple form, see, e. g., [TZ04, TZ10, TZ12, PT12, PT13], as well
as in a more involved form [DW03, Aum10, ADW12] that is based on a variant of the
hash class from [DM90].

Full Randomness After discussing the examples above, it could seem that the
full randomness assumption will soon become obsolete with regard to the progress
in the analysis of randomized algorithms and data structures. While this would be
a preferable development, unfortunately there are still many hashing-based data
structures where the analysis assumes full randomness to gain desired performance
characteristics. Notably this includes data structures that apply more than one hash
function and rely on certain properties of random graphs or hypergraphs at their
core — which is exactly the case in Chapters 3 and 4. Examples are dictionaries
(and membership tester) based on generalized cuckoo hashing with at least three
hash functions [FPSS05, FM09, FP10, DGM+10], cells that are grouped together into
(disjoint or non-disjoint) blocks of size at least two [CSW07, FR07, DW07, LP09, Bey12],
as well as their combination [GW10, FKP11, Lel12a, PS12]; also retrieval data structures
(and perfect hash functions) [CKRT04, BPZ07, Die07, DP08b, BBD09]; as well as
modern Bloom filter based data structures [GM11, MV12].

Recent results from [MT12] indicate that the amount of randomness needed for such
data structures that are based on properties of cores of random hypergraphs can be
reduced by replacing d > 3 fully random hash functions by only two fully random hash
functions and determine the hash values using double hashing, see, e. g., [CLRS01,
page 240]. But as discussed in Section 5.1, providing or simulating even only one fully
random hash function is expensive [ÖP03, DW03, PP08, DR09, ADW12], especially
in terms of space consumption. However, often the split-and-share approach can be
applied in order to reduce the amount of additional space to a sublinear number of
words, and simultaneously justifying the assumption of fully random hash values, see,
e. g., [DR09].

5.3. Basics

In this section we introduce some definitions and recall basic facts related to hashing.

5.3.1. Full Randomness

For the analysis of hashing-based data structures it is very convenient to assume ideal
hash functions in the following sense.

189

5. Uniform Hashing

Definition 10: (Fully Random Hash Function)
A hash function h : U → R determined by some random experiment is called fully
random on S for some S ⊆ U, if the hash values h(x), x ∈ S, are independent random
variables that are uniformly distributed in R. If S = U, then the hash function is
simply called fully random.

The minimum expected number of bits needed by any method for writing down a hash
function that is fully random on S, even if we ignore the evaluation time, is essentially
the space usage of a list of |S| random hash values.

Lemma 5.3.1 (Information Theoretical Optimum). Let h : U → R be fully
random on S ⊆ U, then the following holds:

(i) The expected space usage for h is at least |S| · log|R| bits.

(ii) The expected number of random bits for constructing h is at least |S| · log|R|.

Proof. Let |S| = n. If h is fully random on S, then the sequence (h(x))x∈S is a random
variable Y, uniformly distributed in the range Rn.

ad (i): The expected number of bits to represent a realization y of Y is at least n · log|R|.
One way to derive this result is to choose an arbitrary but fixed binary representation
(pairwise distinct) for each y ∈ Rn, and build a binary tree with exactly |R|n leaves,
where each leaf is labeled with one y ∈ Rn (pairwise distinct) and each edge is labeled
with 0 or 1 in such a way that each sequence of bits along the path from the root of
the tree to a leaf y is equal to the binary representation of the leaf. Let L be a random
variable that denotes the length (number of bits) of such a sequence or path for Y. Then
the expected length Exp(L) is bounded from below by the entropy of Y, see, e. g., [CT06,
Theorem 5.3.1 combined with Theorem 5.5.1], which is

∑
y∈Rn |R|

−n · log (|R|n).

ad (ii): The lower bound of the expected number of random bits for determining a
realization of Y is also at least n · log|R|. The idea behind this is as follows: Consider a
(possibly infinite) binary decision tree with at least |R|n leaves or outcomes, respectively.
If the path from the root to a leaf has length l, then the number of random bits used
for this outcome is l and its probability is 2−l. Now each leaf of the tree is labeled
with one realization y ∈ Rn (duplicates allowed) such that the sum of the probabilities
of the leaves with label y is |R|−n. Let L be a random variable that denotes the length
of the random decision path for Y. Then, as above, the expected length Exp(L) is
bounded from below by the entropy of Y, see, e. g., [CT06, Theorem 5.11.1].

5.3.2. Universal Hashing

A common way to circumvent the assumption of fully random hash functions is by the
use of universal hashing [CW79]. Here a hash function h is (efficiently) chosen from

190

5.3. Basics

a class of hash functions H, where depending on H the random choice of h implies
certain randomness properties for (h(x))x∈U.

Definition 11: (Hash Class)
An indexed family H = {hi}i∈I of functions hi from {h | h : U→ R} is called a hash
class. Randomly choosing a function from H is done via selecting its index i from
the index set I uniformly at random.

Usually a hash classes H is represented by some uninitialized data structure DH,
and choosing a hash function h from H translates into randomly initializing the
corresponding data structure DH to Dh, the representation of h.
A property of the sequence (h(x))x∈U that is often assumed is that sub-sequences

of (h(x))x∈U of length at most κ are independent and (almost) uniformly distributed.

Definition 12: ((ε,κ)-Wise Independence)
A hash class H with functions from {h | h : U→ R} is called (ε, κ)-wise independent,
if for each sequence x0, x1, . . . , xκ−1 of pairwise distinct elements from U, all sequences
y0,y1, . . . ,yκ−1 of elements from R, and h randomly chosen from H we have

Pr
(
h(x0) = y0 ∧ . . .∧ h(xκ−1) = yκ−1

)
∈
[
(1− ε) · |R|−κ, (1+ ε) · |R|−κ

]
.

If ε = 0 then H is simply called κ-wise independent.

Classical (ε, κ)-wise independent hash classes, which go back to Wegman and Carter
[WC81, Section 1, strongly universal], are based on polynomials of degree at most κ− 1
over some field. Examples are given in the following.

Let U = Fpk be a field of characteristic p and let R = (Fp)l, where l 6 k. Furthermore
let π be a vector space projection of (Fp)k, which is isomorphic to U, onto R. Then
the hash class H = {ha}a∈Uκ of functions mapping from U to R via

h(a0,a1,...,aκ−1)(x) := π

(
κ−1∑
i=0

ai · xi
)

is κ-wise independent.
More flexibility for the size of the range R allows the following standard construction.

Let U = [|U|] and R = [|R|], where |U| 6 p for some prime number p, and |R| 6 |U|.
Then the hash class H = {ha}a∈[p]κ of functions mapping from U to R via

h(a0,a1,...,aκ−1)(x) :=

(κ−1∑
i=0

ai · xi
)

mod p

 mod |R| ,

is (ε, κ)-wise independent for ε 6 κ·(|R|−1)
p−κ·(|R|−1) , if κ · |R| − κ < p. This is because the

projection via mod |R| gives that the probability Pr
(∧

i∈[κ] h(xi) = yi
)
is from the

191

5. Uniform Hashing

interval[(
1

p
·
⌊
p

|R|

⌋)κ
,
(
1

p
·
⌈
p

|R|

⌉)κ]
⊆
[(
p− |R|+ 1

p

)κ
· |R|−κ,

(
p+ |R|− 1

p

)κ
· |R|−κ

]
,

and then the bound for ε follows by Bernoulli’s inequality and the inequality ez 6 1
1−z ,

for z < 1. Usually p is much larger than |R| · κ, and in this case the difference to exact
κ-wise independence is negligible. Storing such a function h translates into storing
the κ coefficients a0,a1, . . . ,aκ−1 from U, as well as the prime number p, and the
size of R. According to Bertrand’s postulate, see, e. g., [AZ10, Chapter 2], there is
always a prime number between |U| and 2 · |U|. Hence h can be represented using space
O (κ · log|U|+ log|R|); the evaluation time is O(κ). If one wants to store more than
one function, then p and |R| need to be stored only once since they are fixed for all
functions from the hash class.
Slightly weaker than κ-wise independence is the assumption that the collision

probability of at most κ elements from (hx)x∈U is (almost) the same as for fully
random elements.
Definition 13: ((ε, κ)-Universality)
A hash class H of functions from {h | h : U → R} is called (ε, κ)-universal, if for
each sequence x0, x1, . . . , xκ−1 of pairwise distinct elements from U, and h chosen
uniformly at random from H we have

Pr
(
h(x0) = h(x1) = . . . = h(xκ−1)

)
6 (1+ ε) · |R|−κ+1 .

If ε = 0 then H is simply called κ-universal.

A hash class that is κ-wise independent is also κ-universal, but the inverse does not
hold in general.
A common universal hash class that has small description size is the following. Let

U = [|U|] and R = [|R|] with |R| 6 |U|. Furthermore let b = 6 · |R| · ln|U|/ε, for b > 2,
and let P be the set of primes between b and 2 · b. Then the hash class H = {hi}i∈I
with I = {(a0,a1,p) | p ∈ P,a0 ∈ [p],a0 6= 0,a1 ∈ [p]} of functions mapping from U to
R via

h(a0,a1,p)(x) :=
(
(a0 + a1 · x) mod p

)
mod |R| ,

is (ε, 2)-universal, see, e. g., [Sie04, Appendix 1, Facts 1 and 2] and [Pag09, variant of
Theorem 14]. The space usage is O(log|R|+ log log|U|+ log(1/ε)), the evaluation time
is constant. The smaller space usage, compared to the functions above, comes at the
price that beside the coefficients a0 and a1 now also p must be randomly chosen from
P. According to the inequality of Finsler, see, e. g., [Sie88, page 158], it holds that P
has size at least b

3·ln(2·b) .
A standard way for selecting p is to randomly choose several odd integers from the

interval [b, 2 · b] and then repeatedly apply the Miller-Rabin primality test on each of

192

5.3. Basics

these samples, see, e. g., [CLRS01, pages 890–896]. There is a non-zero probability that
the number that is returned by the algorithm is not a prime from P, and in this case
h is not from H. However, this probability can be made vanishingly small using an
appropriate number of samples and repetition count. For example, if b 6 2n1/4 , then
one can achieve a failure probability of at most 2−n1/4 together with a running time of
O(n), see, e. g., [DHKP97, Lemma 2.9].

5.3.3. Sequences of Hash Values

Hashing-based data structures that apply the multiple choice paradigm, like cuckoo
hashing and Bloomier filter, map each key to a sequence of hash values. For ease of
discussion we only consider sequences of integers from [m], i. e., mappings of the form

h : U→ [m]d .

5.3.3.1. Duplicates Allowed

If duplicate hash values are allowed, then one can use d hash functions

h0,h1, . . . ,hd−1 : U→ [m] ,

and define h via

h : x 7→
(
h0(x),h1(x), . . . ,hd−1(x)

)
.

If the d hash functions hi are fully random and independent, then h is also fully
random.

5.3.3.2. Pairwise Distinct Elements

Sometimes the values of h are restricted to sequences with pairwise distinct elements
from [m]. Using d hash functions

h̃i : U→ [m− i] for all i ∈ [d],

whose ranges successively decrease by one, h can be defined via the following standard
approach, see, e. g., [Die07, Section 4.1]. The first element of h(x) is defined as h̃0(x).
If h̃0(x) 6= m − 1, then in the ranges of h̃1, h̃2, h̃3, . . . , h̃d−1 the element h̃0(x) is
substituted bym−1. The next element of h(x) is then defined as h̃1(x). If h̃1(x) 6= m−2,
then in the ranges of h̃2, h̃3, . . . , h̃d−1 the element h̃1(x) is substituted by m− 2. The
third element of h(x) is then h̃2(x) and so forth. More formally consider the recursive
function

ι(a, x, i) =

{
a , if ̂ := sup{j | j ∈ [i],a = h̃j(x)} = −∞
ι(m− ̂− 1, x, ̂) , otherwise .

193

5. Uniform Hashing

Using ι(a, x, i) we define d functions hi(x), i ∈ [d], according to

hi(x) := ι(h̃i(x), x, i) ,

which gives a mapping

h : x 7→
(
h0(x),h1(x), . . . ,hd−1(x)

)
,

as required. If the d hash functions h̃i are fully random and independent, then h is
also fully random. In order to efficiently realize h we use Algorithm 16, which on input
x calculates h(x) via evaluating each function h̃i, i ∈ [d], only once and tracing the
substitution of the hash values using some dictionary D.

Algorithm 16: pairwise_distinct_hash_values
Input : Element x from U.
Output : Sequence a from [m]d, where elements of a are pairwise distinct.
Require : Dictionary D with lookup(insert(D,a,w),a) = w and

lookup(D,a) = a if no key-value pair (a, ?) was inserted. Hash functions
h̃i : U→ [m− i], i ∈ [d].

function h(x)
D← empty();
for i← 0 to d− 1 do

a← h̃i(x); b← m− (i+ 1);
v← lookup(D,a); w← lookup(D,b);
D← insert(D,a,w); D← insert(D,b, v);

end
return (lookup(D,m− 1), lookup(D,m− 2), . . . , lookup(D,m− d));

end

If one uses for example a balanced binary search tree for the implementation of D,
then in addition to space and time consumption of h̃i, i ∈ [d], the algorithm requires
space O

(
d · (log|U|+ logm)

)
and evaluation time O(d · logd). Alternatively, one could

use a hash table to implement D, for example chained hashing with a table of size
nδ, δ > 0, and a random hash function h from a simple (1, 2)-universal hash class.
With probability at least 1−O(d2/nδ) the function h is injective on the inputs that
occur during the execution of Algorithm 16, see Section 5.4.1, which in this case
leads to an additional evaluation time of O(d), while the additional space usage is
O
(
nδ · (log|U|+ logm)

)
.

5.4. Uniform Hashing in Close to Optimal Space

In this section we prove Theorem 5.1 — most of this proof appeared in [DR09]. We
show how to construct a hash function h : U→ R that, with high probability, is fully

194

5.4. Uniform Hashing in Close to Optimal Space

random on an arbitrary key set S ⊆ U with size at most n, where h uses space only
by a factor (1+ ε) larger than the information theoretic optimum, and has evaluation
time O(log2(1/ε)), for an arbitrary constant ε > 0. The construction is inspired by
the construction of the basic retrieval data structure in [DP08b, Section 2.2]. But in
contrast to [DP08b] where the set S is known, our approach must work for an arbitrary,
unknown set S.
Let S ⊆ U be fixed. If the universe has size super-polynomial in n, then we use a

randomly chosen function hcoll from some hash class Hcoll in order to reduce its size to
nκ, for some κ ∈ N determined later. We require that no pair of distinct keys from S

collide under hcoll, since otherwise h would not be fully random on S.

Lemma 5.4.1 (Collapsing the Universe). Let U be of size super-polynomial in
n. For arbitrary constant κ ∈ N, with κ > 3, there is a hash class Hcoll of functions
mapping from U to [nκ], such that for each S ⊆ U with |S| = n and h randomly
chosen from Hcoll the following holds. There is a set BS of “bad hash functions for S”
such that:

(i) Under the condition that h 6∈ BS the function h is injective on S.

(ii) The probability that h ∈ BS is O(n2−κ) + 2−n1/4 .

(iii) The space usage for h is O(logn+ log log|U|).

(iv) The evaluation time of h is O(1).

(v) The construction time of h is O(n), under the condition that log|U| has size
O(2n

1/4

/nκ).

The proof is given in Section 5.4.1. From now on we assume that U has size polynomial in
n. The next step is to split S into t = n1−δ, δ ∈ (0, 1), disjoint subsets S0,S1, . . . ,St−1
of almost the same size without knowledge of S, i. e., without explicitly building these
subsets. To achieve this, we randomly choose a hash function hsplit from a certain hash
class Hsplit and define

Si = {x ∈ S | hsplit(x) = i} for all i ∈ [n1−δ].

The following lemma states properties of hsplit and Si.

Lemma 5.4.2 (Splitting the Key Set Evenly). Let U be of size polynomial in
n. For arbitrary constant δ,α, λ, with δ ∈ (0, 1), α ∈ (δ, 1), λ > 0, as well as arbitrary
constant κ ∈ N, with κ > 1, there is a hash class Hsplit of functions mapping from U

to [n1−δ] such that for each S ⊆ U with |S| = n and h randomly chosen from Hsplit

the following holds. There is a set BS of “bad hash functions for S” such that:

(i) Under the condition that h 6∈ BS all sets Si = {x ∈ S | h(x) = i}, i ∈ [n1−δ],
have size at most (1+ λ) · nδ.

195

5. Uniform Hashing

(ii) With probability at most(
e

κ+ 1

)κ+1
· n1−(α−δ)·κ + n1−δ ·

(
eλ

(1+ λ)1+λ

)nδ/κ
we have that h ∈ BS.

(iii) The space usage for h is O
(
(nα + κ) · logn

)
.

(iv) The evaluation time of h is O(κ).

(v) The construction time of h is O(nα + κ).

The proof of this lemma is given in Section 5.4.2. For the moment we assume all subsets
Si have size at most (1+ λ) · nδ. First we focus on one of these subsets Si for fixed i.
We want to obtain a hash function hmap that fully randomly maps the elements x of Si
to d-element subsets of [mi], for some mi ∈ N determined later. It is easy to construct
an appropriate hash class Hmap if one allows spending many more random words than
the size of Si in order to store a function hmap from Hmap.

Lemma 5.4.3 (Fully Random Mapping on a Small Key Set). Let U be of size
polynomial in n. For arbitrary constant δ,α, with δ ∈ (0, 1), α ∈ (δ, 1), as well as
arbitrary constant κ,d ∈ N, with d > 1 and κ > 1, there is a hash class Hmap of
hash functions mapping from U to

(
[m]
d

)
such that for each S ⊆ U with |S| = 2 · nδ

and h randomly chosen from Hmap the following holds. There is a set BS of “bad
hash functions for S” such that:

(i) Under the condition that h 6∈ BS the function h is fully random on S.

(ii) The probability that h ∈ BS is at most
(
2·e
κ+1

)κ+1 · nδ−(α−δ)·κ.

(iii) The space usage for h is O
(
d · (κ · nα · logn+ logm)

)
.

(iv) The evaluation time of h is O
(
d · (κ+ logd)

)
.

(v) The construction time of h is O(d · κ · nα).

The proof of this lemma is given in Section 5.4.3. Still focusing on Si, we assume that
hmap is fully random on this set. Let |Si| = ni and for each x ∈ Si let bᵀ

x ∈ {0, 1}mi

be the characteristic row vector of the set hmap(x) ∈
(
[mi]
d

)
. The next lemma states

that if mi and d are chosen appropriately, then the multiset
⋃
x∈Si {bx} is linearly

independent with high probability, i. e., the matrix Mi = (bᵀ
x)x∈Si ∈ {0, 1}ni×mi has

full row rank. This is not surprising since Mi is identical to Md
ni,mi type B and,

according to Theorem 4.3, the matrix Mi has asymptotically almost surely full row
rank, if ci = ni/mi < ĉ(d) − ε for arbitrary constant ε > 0. However, for our proof
of Theorem 5.1 we need that Mi has full row rank with high probability. In order to
obtain such a probability bound, we consider an upper bound ĉ′(d) for the load factor
ci somewhat below the threshold ĉ(d).

196

5.4. Uniform Hashing in Close to Optimal Space

Lemma 5.4.4 (Lower Bounds on the Number of Vectors for Linear De-
pendence [Cal97, Theorems 1.1 and 1.2, with better error bound]). Let
Bmd ⊂ {0, 1}m be the set of binary vectors of length m with exactly d ones and m−d

zeros. For any constant d > 8 there is a constant ĉ′(d) such that the following holds
for a sequence of n = c ·m binary vectors b0,b1, . . . ,bn−1 chosen uniformly at
random from Bmd :

(i) If c < ĉ′(d), then the vectors b0,b1, . . . ,bn−1 are linearly independent with
probability O

(
n1−(d+2)/9

)
.

(ii) The constant ĉ′(d) can be chosen at least as large as 1− 2 · e−d/ln 2.

This lemma is proved in Section 5.4.4. Using hmap and a fully random column vector
ti = (ti,0, ti,1, . . . , ti,m−1)

ᵀ ∈ Rm, we construct a function hi : U→ R via

hi(x) := b
ᵀ
x · ti, where b

ᵀ
x is the characteristic row vector of hmap(x).

This is equivalent to

hi(x) = ti,a0 ⊕ ti,a1 ⊕ . . .⊕ ti,ad−1
, where hmap(x) = {a0, . . . ,ad−1}.

Under the condition that Mi = (bᵀ
x)x∈Si has full row rank, it follows that hi(x) is

fully random on Si as stated in the following lemma.

Lemma 5.4.5 (Linear Independence Implies Stochastic Independence). Let
(R,⊕) be an abelian group, and let M ∈ {0, 1}n×m be a binary matrix with full row
rank, as well as let t be a random column vector from Rm. Then the vector M · t is
uniformly distributed in Rn.

The proof of this lemma is given in Section 5.4.5. Up to now, we have constructed a
hash function hi that is fully random on one Si.

The last step is to replicate the construction described so far for all subsets Si with
i ∈ [n1−δ]. The crucial observation is that the function hmap can be shared among all
subsets Si, since its domain is U. The probability that hmap fails on at least one of
these subsets is at most n1−δ times the probability that it fails on a fixed subset. The
vector ti cannot be shared, and we need a separate random vector from Rm for each
subset Si, i. e., vectors t0, t1, . . . , tn1−δ−1. Finally, the desired uniform hash function
h : U→ R is defined as

h(x) :=
⊕

a∈hmap(x′)

thsplit(x′),a for all x ∈ U, where

x ′ =

{
hcoll(x), if domain reduction is applied

x, otherwise
.

For ease of discussion let κ = d/2 for Lemma 5.4.1. Furthermore, let κ = d,α = 2/3,
and δ = 1/2 for Lemmas 5.4.2 and 5.4.3. Moreover, let λ = 1/ĉ′(d) − 1 and let

197

5. Uniform Hashing

ε = 5 · e−d/ln 2, i. e., we have 1/ĉ′(d) · (1+ λ) < 1+ ε and d = O
(
log(1/ε)

)
. Then, for

arbitrary but fixed d > 8, we obtain the following:

(i) By summing up all error probabilities, including the additional factor of n1−δ

for hmap, we get an overall error of O(n1−(d+2)/9).

(ii) The space needs are 1/ĉ′(d) · (1 + λ) · n elements from R for the vectors ti,
i ∈ [n1−δ], plus the space for hcoll,hsplit, and hmap, which sums up to at most
(1+ ε) · n · log |R|+ o(n) +O(log log|U|).

(iii) The evaluation time is at most O(d2), which is in O
(
log2(1/ε)

)
.

(iv) The construction time is dominated by the construction of the tables, which
needs time O(n), if |R| 6 |U|, as well as by the domain reduction which can also
be done in time O(n), if log|U| has size O(2n1/4/nd/2).

To complete the proof of the Theorem 5.1, it remains to show Lemmas 5.4.1 to 5.4.5,
which is done in the following five sections.

5.4.1. Collapsing the Universe

In this section we prove Lemma 5.4.1. Consider a universe U of size super-polynomial
in |S|. A standard way to avoid problems with large keys is to apply an old technique
[Sie95, Section 2], sometimes referred as collapsing the universe [DW03, Section 2.1]
or domain reduction [PP08, Section 2], that comes at the cost of extra but negligible
components in space usage and error probability.
The idea is to use a hash function that maps U to some smaller domain U ′, and

then work with new keys x ′ = h(x) ∈ U ′ of smaller description length. We require
that h : U→ U ′ is injective on S, but since in general S is an arbitrary unknown set,
the usual way is to randomly choose h from some hash class Hcoll and bound the
probability that keys of S collide under h.
Let |U ′| = nκ, for constant κ > 3. If we define Hcoll to be the (ε, 2)-universal hash

class described in Section 5.3.2, then for any set S ⊆ U of n elements, and constant ε,
the probability that a randomly chosen h from Hcoll is not one-to-one when restricted
to S is

Pr
h∈Hcoll

(
∃{x0, x1} ∈

(
S

2

)
: h(x0) = h(x1)

)
6

(
n

2

)
· 1+ ε
nκ

= O(n2−κ) .

The function h can be evaluated in constant time and the additional space usage is
O(logn+ log log|U|), which is in O(logn) for all universes of reasonable size. Moreover,
if nκ · log|U| is in O(2n1/4), then h can be constructed in time O(n), at the price of an
additive term of 2−n1/4 to the probability that h is not one-to-one on S. This finishes
the proof of the lemma. �

198

5.4. Uniform Hashing in Close to Optimal Space

5.4.2. Splitting the Key Set Evenly

In this section we prove Lemma 5.4.2. Let Hsplit = R, the hash class described in
[DM90]. We will use R to sharply split a given key set S, |S| = n, into n1−δ subsets
Si, i ∈ [n1−δ], of size close to nδ. A hash function h from R is built as follows:

h(x) = (g(x) + vf(x)) mod n1−δ for all x ∈ U,

where g and f are chosen uniformly at random from (κ+ 1)-wise independent classes
with ranges [n1−δ] and [nα], where α ∈ (δ, 1); and v = (vj)j∈[nα] is a vector of size nα

with fully random elements from [n1−δ]. For each h from R let Si = {x ∈ S | h(x) = i}.

Lemma 5.4.6 (Property of Hash Class R [DM90, part of Theorem 4.6]). Let
λ > 0 be an arbitrary constant. If h is randomly chosen from R, then it holds:

Pr(∃i : Si > (1+λ) ·nδ) =
(

e

κ+ 1

)κ+1
·n1−(α−δ)·κ+n1−δ ·

(
eλ

(1+ λ)1+λ

)nδ/κ
.

Proof. For all i ∈ [n1−δ] and j ∈ [nα] let

Ti,j = {x ∈ S | g(x) = i∧ f(x) = j} .

Consider the events

Ti,j := {The set Ti,j has size larger than κ.} ,

T := {It exists a set Ti,j of size larger than κ.} .

Since f(x) and g(x) are (κ+ 1)-wise independent, the function h ′(x) = (g(x), f(x)) is
(κ+ 1)-wise independent too. It follows that

Pr(Ti,j) 6
∑

T∈(S
κ+1)

Pr
(
∀x ∈ T : h ′(x) = (i, j)

)
=

(
n

κ+ 1

)
·
(

1

nα+1−δ

)κ+1
.

Using the fact
(
n
κ+1

)
6
(
e·n
κ+1

)κ+1, we get

Pr(T) 6 nα · n1−δ ·
(
e · n
κ+ 1

)κ+1
·
(

1

nα+1−δ

)κ+1
=

(
e

κ+ 1

)κ+1
· n1−(α−δ)·κ .

Hence, if (α− δ) · κ > 1, then T holds with high probability, i. e., h ′ is κ-perfect for
S, which means that for each element y ∈ [n1−δ]× [nα] there are at most κ pairwise
different elements x from S with h ′(x) = y. Now, for all i ∈ [n1−δ] and j ∈ [nα] let
Xi,j be a random variable, where

Xi,j =
∣∣{x ∈ S | f(x) = j ∧ g(x) + vj ≡ i mod n1−δ}

∣∣ .
199

5. Uniform Hashing

Using these random variables, the size of a set Si is simply denoted as

|Si| =
∑
j∈[nα]

Xi,j ,

and it follows that

Exp(Xi,j | T) =
∑

a∈[n1−δ]

∣∣{x ∈ S | f(x) = j ∧ g(x) + a ≡ i mod n1−δ}
∣∣ · Pr(vj = a | T)

=
|x ∈ S | f(x) = j|

n1−δ
,

as well as

Exp(Si | T) =
∑
j∈[nα]

|x ∈ S | f(x) = j|

n1−δ
=

|S|

n1−δ
= nδ .

Observe that all random variables Xi,j | T are restricted to the range {0, 1, 2, . . . , κ}
and therefore all random variables Yi,j := (Xi,j/κ) | T are restricted to the range [0, 1].
Moreover the variables Yi,0, Yi,1, . . . , Yi,nα−1 are independent. Therefore we can apply
a standard a Chernoff–Hoeffding bound [Hoe63, by Theorem 1 with λ := t/µ] to limit
the probability that a fixed Si has size at least (1+ λ) · nδ, via

Pr
(
|Si| > (1+ λ) · nδ | T

)
= Pr

(∑
j∈[nα]

Yi,j > (1+ λ) · n
δ

κ

)
6
(

eλ

(1+λ)1+λ

)nδ/κ
.

Finally, by the law of total probability, we get

Pr
(
∃i ∈ [n1−δ] : |Si| > (1+ λ) · nδ

)
6 1 · Pr(T) + Pr

(
∃i ∈ [n1−δ] : |Si| > (1+ λ) · nδ | T

)
· 1

6 Pr(T) + n1−δ ·
(

eλ

(1+λ)1+λ

)nδ/κ
,

which proves the lemma. �

The functions f and g can be realized by polynomials of degree κ, see, e. g., Section 5.3.2.
In this case the description size for h from R = Hsplit is O

(
(nα + κ) · logn

)
and the

evaluation time is O(κ). The time for the construction of the table is O(nα) and the
two polynomials can be build in time O(κ). This finishes the proof of Lemma 5.4.2.�

5.4.3. Fully Random Mapping on a Small Key Set

The following proof of Lemma 5.4.3 is folklore. It is based on a standard two-level
hashing approach, where one hash function splits the key set into not too large buckets
and then for every bucket a separate hash function with appropriate random properties
is used to map its keys to a common range.

200

5.4. Uniform Hashing in Close to Optimal Space

Remark. This idea lies at the core of the high performance hash class described in
[DM90, DM92].

Let |S| = 2 ·nδ. Randomly choose a hash function hs from a (κ+1)-wise independent
hash class of functions mapping from U to [nα]. Define subsets

Tj := {x ∈ S | j = hs(x)} for all j ∈ [nα],

and consider the event

T := {It exists a set Tj of size larger than κ.} .

Analogously to the first part of the proof of Lemma 5.4.6, it follows that

Pr(T) 6 nα ·
∑

T∈(S
κ+1)

Pr
(
∀x ∈ T : hs(x) = j

)

= nα ·
(
2 · nδ

κ+ 1

)
·
(
1

nα

)κ+1
6

(
2 · e
κ+ 1

)κ+1
· nδ−(α−δ)·κ ,

that is hs is κ-perfect for S with high probability for suitable parameters α, δ and κ.
For each Tj, j ∈ [nα], we randomly choose d hash functions h̃0,j, h̃1,j, . . . , h̃d−1,j from
different κ-wise independent hash classes, where h̃i,j has range [m− i], for all i ∈ [d].
Using a standard approach, see Section 5.3.3.2, for each j one can define a mapping

hj : U→ [m]d ,

on the basis of h̃0,j, h̃1,j, . . . , h̃d−1,j, such that, under the assumption of event T, for
all x ∈ Tj we have that Ax, the set of all elements of the vector hj(x), is a fully random
element from

(
[m]
d

)
. Now the final hash function h : U→

(
[m]
d

)
is defined as

h(x) := Ax, where Ax is the set of elements of hhs(x)(x).

The space usage for the 1 + d · nα hash functions hs and h̃i,j, i ∈ [d], j ∈ [nα], is in
O
(
d · (κ · nα · logn+ logm)

)
if they are realized with polynomials, see Section 5.3.2.

Additional space for hj, j ∈ [nα], is only needed during the evaluation and can be made
as small as O

(
d · (log|U|+ logm)

)
. The evaluation time for h consists of the evaluation

time of hs and h̃i,j, i ∈ [d], as well as the additional time needed for hj, which sums
up to O

(
d · (κ + logd)

)
. Since the construction of h is done simply by choosing the

coefficients of the polynomials, the construction time of h is O(d · κ · nα). This ends
the proof of the lemma. �

5.4.4. Lower Bounds on the Number of Vectors for Linear
Dependence

In this section we prove Lemma 5.4.4, which is a combination and strengthening of
Theorems 1.1 and 1.2 of [Cal97]. In [Cal97] Calkin showed that if one randomly chooses

201

5. Uniform Hashing

n binary weight-d vectors of length m = n/c, for constant d > 5, and c is below some
threshold depending on d, then the vectors are linearly dependent with probability
O(n−1). Following Calkin’s proof, we improve this result and obtain a polynomial error
bound of O

(
n1−(d+2)/9

)
, for d > 8.

When we refer to [Cal97], be aware that we use n and m with reversed meaning.!

5.4.4.1. Markov Chain and Probability Bound

We start by considering a sequence of random binary weight-d vectors b1,b2,b3, . . .;
we want to bound the probability that these vectors sum to 0, the zero vector. To this
end, we define a discrete time Markov chain with m+ 1 states {0, 1, 2, . . . ,m}. At time
t = 0 we are in state X0 = 0, at time t = 1 we are in state X1 = ‖b1‖1 = d, that is the
state corresponding to the weight of b1; at time t = 2 we are in state X2 = ‖b1⊕b2‖1,
and so on (⊕ denotes bitwise xor). In general we have

Xt =
∥∥∥ t⊕
i=0

bi

∥∥∥
1
for all t > 0, where b0 = 0.

Calkin showed [Cal97, page 267], that the probability that the process is in state 0 at
time t, for t > 0, is exactly

Pr(Xt = 0) =
m∑
i=0

1

2m
· λti ·

(
m

i

)
,

where the λi’s are the eigenvalues of the transition matrix of the Markov chain.
According to [Cal97, Theorem 2.1] these eigenvalues are given by

λi =

d∑
l=0

(−1)l ·
(
i
l

)
·
(
m−i
d−l

)(
m
d

) . (5.1)

Note that it holds

Pr(X0 = 0) =
1

2m
·
m∑
i=0

(
m

i

)
=

1

2m
· 2m = 1 ,

and

Pr(X1 = 0) =
1

2m
·
m∑
i=0

d∑
l=0

(−1)l ·
(
i
l

)
·
(
m−i
d−l

)
·
(
m
i

)(
m
d

)
=

1

2m
·
d∑
l=0

(−1)l ·
(
d

l

)
·
m∑
i=0

(
m− d

i− l

)

=
2m−d

2m
·
d∑
l=0

(−1)l ·
(
d

l

)
= 0 ,

202

5.4. Uniform Hashing in Close to Optimal Space

which naturally follows from the definition of the Markov process.
Now we come back to the original problem. Consider a multiset of n random binary

weight-d vectors b1,b2, . . . ,bn. Let Y be a random variable counting the number of
different (non-empty) sub-multisets whose vectors sum to 0. The probability that the
n vectors are linearly dependent can be expressed as Pr(Y > 1). By applying Markov’s
inequality, we get the following upper bound

Pr(Y > 1) 6 Exp(Y) =
n∑
t=1

(
n

t

)
·Pr(Xt = 0) =

n∑
t=1

(
n

t

)
·
m∑
i=0

1

2m
·λti ·

(
m

i

)
. (5.2)

Utilizing that Pr(X0 = 0) = 1, it follows that

Exp(Y) =
n∑
t=0

m∑
i=0

1

2m
·
(
m

i

)
·
(
n

t

)
· λti − 1 =

m∑
i=0

1

2m
·
(
m

i

)
· (1+ λi)n − 1 .

(5.3)

To bound Pr(Y > 1) from above we need asymptotics for the value of λi.

5.4.4.2. Asymptotics of λi — Revisited

In [Cal97, Section 3] Calkin determines asymptotics for the value of λi that relies on
the expansion of the binomial coefficients. To get a more accurate value for λi, we have
to extend this analysis.

Binomial Coefficient We start by expressing the binomial coefficient
(
m
d

)
using

the falling factorial md = m · (m− 1) · (m− 2) · . . . · (m− (d− 1)) via(
m

d

)
=
md

d!
.

The product md =
∏d−1
l=0 (m− l) is the factored form of a polynomial in m, that is

md = sd ·md + sd−1 ·md−1 + . . .+ s1 ·m1 + s0 ·m0 ,

for integer coefficients sl = s(d, l), 0 6 l 6 d. These coefficients are the signed Stirling
numbers of the first kind, see, e. g., [Knu97, page 67], sometimes denoted as

s(d, l) = (−1)d−l ·
[
d

l

]
,

where
[
d
l

]
are the unsigned Stirling numbers of the first kind. Note that

s(d,d) =
[
d
d

]
= 1 ,

s(d, 0) =
[
d
0

]
= 0 , if d > 0, and

s(d+ 1, l) = −d · s(d, l) + s(d, l− 1) , if 1 6 l 6 d . (5.4)

203

5. Uniform Hashing

For example let d = 4, then we have

m4 = m · (m− 1) · (m− 2) · (m− 3) = 1 ·m4 − 6 ·m3 + 11 ·m2 − 6 ·m .

It follows that the binomial coefficient can be written as(
m

d

)
=

∑d
l=0 s(d, l) ·ml

d!
=

∑d
l=0 s(d,d− l) ·md−l

d!
=
md

d!
·

(
d∑
l=0

s(d,d− l)

ml

)
.

(5.5)

Using (5.4) one can show via induction that for fixed l the signed Stirling number
s(d,d− l) can be seen as a polynomial in d of degree at most 2 · l. The following lemma
characterizes this polynomial more precisely.

Lemma 5.4.7 (follows from [Jor79, pages 150–151]9). For fixed l the signed
Stirling number of the first kind s(d,d− l) can be expressed as

s(d,d− l) = (−1)l ·

(
0l +

2·l∑
x=l+1

C(l, x) ·
(
d

x

))
,

with integer coefficients C(l, x) recursively defined via

C(l, x) = 0 , if x 6 l or x > 2 · l+ 1 ,

C(1, 2) = 1 , and

C(l+ 1, x) = (x− 1) · [C(l, x− 1) + C(l, x− 2)] .

By applying Lemma 5.4.7 and the fact that s(d,d) = 1, we get(
m

d

)
=
md

d!
·

(
1+

d∑
l=1

(−1)l ·
∑2l
x=l+1 C(l, x) ·

(
d
x

)
ml

)
. (5.6)

For example, it holds

C(1, 2) = 1 C(2, 3) = 2 · [C(1, 2) + C(1, 1)] = 2
C(2, 4) = 3 · [C(1, 3) + C(1, 2)] = 3 C(3, 4) = 3 · [C(2, 3) + C(2, 2)] = 6 .

Hence,
(
m
4

)
can be expressed as(

m

4

)
=
m4

4!
·

(
1−

C(1, 2) ·
(
4
2

)
m

+
C(2, 3) ·

(
4
3

)
+ C(2, 4) ·

(
4
4

)
m2

−
C(3, 4) ·

(
4
4

)
m3

)

=
m4

4!
·
(
1−

6

m
+
11

m2
−

6

m3

)
=
m4

4!
.

9In [Jor79] the author writes Sn−mn for our s(n,n−m) and his coefficient Cm,ν is equivalent to
our (−1)m ·C(m,2m− ν).

204

5.4. Uniform Hashing in Close to Optimal Space

Products of Binomial Coefficients With (5.5) the eigenvalue λi (5.1) can be
written as

λi =

d∑
l=0

(−1)l · F0 · F1 · F2 , (5.7)

where

F0 =
il · (m− i)d−l · d!
l! · (d− l)! ·md

=

(
d

l

)
· i
l

ml
· (m− i)d−l

md−l

=

(
d

l

)
·
(
i

m

)l
·
(
1−

i

m

)d−l
,

(5.8)

and

F1 =
md

md
6

(
m

m− (d− 1)

)d−1
6 e(d−1)

2/(m−d+1) , (5.9)

as well as

F2 =

(
l∑
x=0

s(l, l− x)
ix

)
·

d−l∑
y=0

s(d− l,d− l− y)

(m− i)y

 .

Using that s(d,d) = 1 and s(d, l) = 0 for l > d and l < 0, the convolution of the two
series of F2 leads to

F2 =

(
l∑
x=0

s(l, l− x)
ix

)
·

d−l∑
y=0

s(d− l,d− l− y)

(m− i)y


=1+

d∑
y=1

y∑
x=0

s(l, l− x) · s(d− l, (d− l) − (y− x))

ix · (m− i)y−x
.

Applying Lemma 5.4.7 gives

F2 = 1+

d∑
y=1

y∑
x=0

(−1)y ·
(
0x +

∑2·x
a=x+1 C(x,a) ·

(
l
a

))
ix · (m− i)y−x

·

(
0y−x +

∑2·(y−x)
b=y−x+1 C(y− x,b) ·

(
d−l
b

))
1

.

205

5. Uniform Hashing

Considering the inner sum for x = y, x = 0, and 1 6 x 6 y− 1, the last equation can
be rearranged to

F2 = 1+

d∑
y=1

2·y∑
a=y+1

(−1)y · 1
iy
· C(y,a) ·

(
l

a

)

+

d∑
y=1

2·y∑
b=y+1

(−1)y · 1

(m− i)y
· C(y,b) ·

(
d− l

b

)

+

d∑
y=2

y−1∑
x=1

2·x∑
a=x+1

2·(y−x)∑
b=y−x+1

(−1)y · 1

ix · (m− i)y−x

· C(x,a) · C(y− x,b) ·
(
l

a

)
·
(
d− l

b

)
.

(5.10)

Recall that according to the definition of the coefficients C it holds

C(x,a) = 0 , if a 6 x or a > 2 · x+ 1
C(y− x,b) = 0 , if b 6 y− x or b > 2 · (y− x) + 1 .

Binomial Identities The last ingredients are some identities of sums that involve
products of binomial coefficients. Observe that(

d

l

)
·
(
l

a

)
=

(
d− a

l− a

)
·
(
d

a

)
(
d

l

)
·
(
d− l

b

)
=

(
d

b

)
·
(
d− b

l

)
(
d

l

)
·
(
l

a

)
·
(
d− l

b

)
=

(
d

a

)
·
(
d− a

b

)
·
(
d− b− a

l− a

)
.

Therefore, we get

d∑
l=0

(
d

l

)
·
(
l

a

)
· (−1)l · pl · qd−l =

(
d

a

)
·
d∑
l=a

(
d− a

l− a

)
· (−p)l · qd−l

=

(
d

a

)
·
d−a∑
l=0

(
d− a

l

)
· (−p)l+a · qd−l−a

=

(
d

a

)
· (−p)a · (q− p)d−a , (5.11)

and analogous

d∑
l=0

(
d

l

)
·
(
d− l

b

)
· (−1)l · pl · qd−l =

(
d

b

)
· qb · (q− p)d−b , (5.12)

206

5.4. Uniform Hashing in Close to Optimal Space

as well as

d∑
l=0

(
d

l

)
·
(
l

a

)
·
(
d− l

b

)
· (−1)l · pl · qd−l

=

(
d

a

)
·
(
d− a

b

)
· (−p)a · qb · (q− p)d−b−a . (5.13)

The last binomial identity that we need is

d∑
l=0

(−1)l ·
(
m

l

)
·
(
m

d− l

)
=

{(
m
d/2

)
· (−1)d/2, if d is even

0, otherwise
, (5.14)

which can be found, e. g., in [Gou72, page 25, Equation 3.32]. The identity can be
proved, e. g., by coefficient comparison of the expansion of (1− x)m · (1− x)m, since

(1− x)m · (1+ x)m =

(
m∑
l=0

(
m

l

)
· (−x)l

)
·

(
m∑
r=0

(
m

r

)
· xr
)

=

2·m∑
r=0

[
r∑
l=0

(−1)l ·
(
m

l

)
·
(
m

r− l

)]
· xr ,

and

(1− x)m · (1+ x)m = (1− x2)m =

m∑
r=0

(
m

r

)
· (−x2)r =

m∑
r=0

[(
m

r

)
· (−1)r

]
· x2·r .

Putting It All Together Note that F1 (5.9) is independent of l. Substitution of
F0 (5.8) in (5.7) gives

λi = F1 ·
d∑
l=0

(−1)l ·
(
d

l

)
·
(
i

m

)l
·
(
1−

i

m

)d−l
· F2 .

Let p = i/m and q = 1− p. Applying the binomial identities (5.11), (5.12) and (5.13)
to the summands of

∑d
l=0(−1)

l ·
(
d
l

)
· pl · qd−l · F2 (5.10) leads to

λi = F1 · (S0 + S1 + S2 + S3) , (5.15)

where

S0 = (1− 2 · p)d , (5.16)

and

S1 =

d∑
y=1

2·y∑
a=y+1

(−1)y · C(y,a)
iy

·
(
d

a

)
· (−p)a · (1− 2 · p)d−a , (5.17)

207

5. Uniform Hashing

and

S2 =

d∑
y=1

2·y∑
b=y+1

(−1)y · C(y,b)
(m− i)y

·
(
d

b

)
· (1− p)b · (1− 2 · p)d−b , (5.18)

as well as

S3 =

d∑
y=2

y−1∑
x=1

2·x∑
a=x+1

2·(y−x)∑
b=y−x+1

(−1)y · C(x,a) · C(y− x,b)
ix · (m− i)y−x

·
(
d

a

)
·
(
d− a

b

)
· (−p)a · (1− p)b · (1− 2 · p)d−b−a .

(5.19)

5.4.4.3. The Middle Range

As in [Cal97, page 268], we derive a bound for λi, when i is close tom/2, more precisely,
i = (m−mθ)/2, for θ ∈ [0, 1). We treat the summands S0,S1,S2, and S3 separately.
Consider S0 (5.16):

S0 =

(
1− 2 · i

m

)d
=

(
1

m1−θ

)d
.

Consider S1 (5.17): Shifting the index a by y gives

S1 =

d∑
y=1

y∑
a=1

(
d

a+ y

)
· C(y,a+ y) ·

(
1

m

)y
·
(
−
m−mθ

2 ·m

)a
·
(

1

m1−θ

)d−a−y
,

which can be bounded from above via

S1 6
d∑
y=1

y∑
a=1

(
d

a+ y

)
· C(y,a+ y) ·

(
1

m1−θ

)d−a
.

From the ranges of the indices we have a 6 y and 2 6 a+y 6 2 ·d. But since
(
d
a+y

)
= 0

for a+ y > d, it follows that only terms with a 6 d/2 contribute to S1 and therefore

S1 = O
(
m−(1−θ)·d/2

)
.

Consider S2 (5.18): Shifting the index b by y gives

S2 =

d∑
y=1

y∑
b=1

(
d

b+ y

)
· C(y,b+ y) ·

(
−
1

m

)y
·
(
m+mθ

2 ·m

)b
·
(

1

m1−θ

)d−b−y
,

which can be bounded from above via

S2 6
d∑
y=1

y∑
b=1

(
d

b+ y

)
· C(y,b+ y) ·

(
1

m1−θ

)d−b
.

208

5.4. Uniform Hashing in Close to Optimal Space

From the ranges of the indices we have b 6 y and 2 6 b+y 6 2 ·d. But since
(
d
b+y

)
= 0

for b+ y > d, it follows that only terms with b 6 d/2 contribute to S2 and therefore

S2 = O
(
m−(1−θ)·d/2

)
.

Consider S3 (5.19): Shifting the index a by x and shifting the index b by y− x gives

S3 =

d∑
y=2

y−1∑
x=1

x∑
a=1

y−x∑
b=1

(
d

a+ x

)
·
(
d− a− x

b+ y− x

)
· C(x,a+ x) · C(y− x,b+ y− x)

·(−1)y+x ·
(
1

m

)y
·
(
−
m−mθ

2 ·m

)a
·
(
m+mθ

2 ·m

)b
·
(

1

m1−θ

)d−b−a−y
,

which can be bounded from above via

S3 6
d∑
y=2

y−1∑
x=1

x∑
a=1

y−x∑
b=1

(
d

a+ x

)
·
(
d− a− x

b+ y− x

)
· C(x,a+ x) · C(y− x,b+ y− x)

·
(

1

m1−θ

)d−(a+b)

.

From the ranges of the indices and the factors
(
d
a+x

)
and

(
d−a−x
b+y−x

)
it follows that for

terms that contribute to the sum we have a+ x 6 d and a 6 x, which implies a 6 d/2,
as well as b+ y− x 6 d− a− x and b 6 y− x 6 d− a− x− b 6 d− a− 1− b, which
implies b 6 d−a−1

2
. Hence, we can bound the sum a+ b according to

a+ b 6 a+
d− a− 1

2
=
a

2
+
d− 1

2
6
d

4
+
d

2
−
1

2
=
3 · d
4

−
1

2
.

Therefore, we get for the summand S3

S3 = O
(
m−(1−θ)·(d/4+1/2)

)
.

Applying the results for S0,S1,S2 and S3 to (5.15) and utilizing that F1 = 1+o(1) (5.9),
as well as d/2 > d/4+ 1/2 for d > 3, we obtain

λm−mθ

2

= O
(
m−(1−θ)·(d/4+1/2)

)
, for d > 3 and θ ∈ [0, 1) . (5.20)

Since mθ 6= 0, it remains to treat the eigenvalue λm
2

for m even. For this purpose we
consider the term λm

2
·
(
m
d

)
, where according to (5.1) we have

λm
2
·
(
m

d

)
=

d∑
l=0

(−1)l ·
(
m/2

l

)
·
(
m/2

d− l

)
.

By (5.14) and
(
m
d

)d
6
(
m
d

)
6 md

d! , it follows that

λm
2
6

(
m/2
d/2

)(
m
d

) = O
(
m−d/2

)
.

Therefore, the upper bound of summand S1 also applies to λm
2
.

209

5. Uniform Hashing

5.4.4.4. Asymptotics of Exp(Y) — Revisited

Following [Cal97, Section 4] we consider the sum

S =

m∑
i=0

1

2m
·
(
m

i

)
· (1+ λi)n , (5.21)

which equals Exp(Y) + 1 (5.3), where Exp(Y) is an upper bound for Pr(Y > 1), the
value we are looking for. We proceed as in [Cal97, Lemma 4.1] and show that S has
the following properties.

. The tails of S, i. e., the partial sums for i ∈ [0, ε ·m] and i ∈ [(1− ε) ·m,m], are
exponentially small.

. The middle part, i. e., the partial sum of S for i ∈ [(1− ε) ·m/2, (1+ ε) ·m/2], is
bounded by 1+O

(
m1−(d+2)/9

)
.

. The rest of the sum, i. e., for i ∈ [ε·m, (1−ε)·m/2] and i ∈ [(1+ε)·m/2, (1−ε)·m],
is exponentially small, if n/m < ĉ′(d) for some constant ĉ′(d).

Let λ̂i be an upper bound of max{λi, λm−i}. Note that λi = (−1)d · λm−i for i > m/2.
We substitute λi by λ̂i and consider the sums

St =

ε·m∑
i=0

1

2m
·
(
m

i

)
· (1+ λ̂i)n Sr =

(1−ε)·m
2∑

i=ε·m

1

2m
·
(
m

i

)
· (1+ λ̂i)n

Sn1 =

m
2
−m

5/9

2∑
i=(1−ε)·m

2

1

2m
·
(
m

i

)
· (1+ λ̂i)n Sn2 =

m
2∑

i=m
2
−m

5/9

2

1

2m
·
(
m

i

)
· (1+ λ̂i)n .

Then, because of the symmetry
(
m
i

)
=
(
m
m−i

)
, it follows that

S 6 2 · (St + Sr + Sn1 + Sn2) . (5.22)

The parameter ε is a function of c = n/m and the value 5/9 is arbitrarily chosen from
the interval (1/2, 1). We let c < 1, ε 6 1/8, and d > 8.

The Tails — “The Good” We consider St. Since |λi| < 1, we let λ̂i = 1. Furthermore,
we use that(

m

i

)
6

(
m

ε ·m

)
6 2H2(ε)·m ,

where H2(ε) = −ε · log(ε) − (1 − ε) · log(1 − ε) is the binary entropy of a Bernoulli
random variable with success probability ε. That gives

St 6 ε ·m · 2H2(ε)·m ·
2n

2m
6
m

8
·
(
2H2(ε)−(1−c)

)m
,

which is exponentially small for some suitable ε that makes H2(ε) − (1− c) a negative
constant. Since 1− c is a constant from (0, 1) there is always such an ε.

210

5.4. Uniform Hashing in Close to Optimal Space

The Middle — “The Bad” First consider the sum Sn1 . According to [Cal97,
Lemma 3.1 c], we can set λ̂i =

(
1− 2·i

m

)d
+O(m−2). Let ρ =

(
1− 2·i

m

)
, i. e., i = m

2
·(1−ρ)

for m−4/9 6 ρ 6 ε. Hence we get

Sn1 6
ρ·m=ε·m∑
ρ·m=m5/9

(
m

m
2
· (1− ρ)

)
· 2−m︸ ︷︷ ︸

B

·
(
1+ ρd +O(m−2)

)c·m
.

The factor B can be bounded via

B =

(
m

x

)
· 2−x · 2−(m−x) = Pr (X = x) 6 Pr (X 6 x) ,

for X = Bin[m, 1/2] and x = m/2 ·(1−ρ). Since X =
∑m
j=1 Xj for independent Bernoulli

random variables Xj with success probability 1/2, we can apply the following standard
Chernoff–Hoeffding bound [MU05, Corollary 4.10] for symmetric random variables

Pr
(
X 6 (1− ρ) · Exp(X)

)
6 e−ρ

2·Exp(X) .

With Exp(X) = m/2 and x = (1− ρ) · Exp(X), we get

B 6 e−ρ
2·m/2 .

Using that 1+ y 6 ey, we conclude

Sn1 6
ρ·m=ε·m∑
ρ·m=m5/9

(
e−ρ

2/2+ρd+O(m−2)
)m

.

We want to bound −ρ2/2+ ρd. Under the condition that d > 3, we get

−
ρ2

2
+ ρd 6 −

ρ2

4
,

if ρ 6 ε 6 1/4. It follows that for constant ρ 6 ε the corresponding summands of
Sn1 are exponentially small. For non-constant ρ > m−4/9 the contribution of the
corresponding summands is at most

e−
m1/9

4
+O(m−1) ,

which is exponentially small. Hence Sn1 is exponentially small.
Second consider the sum Sn2 . Using the results from Section 5.4.4.3, we get

λ̂i = O
(
m−4/9·(d/4+1/2)

)
.

It follows that

Sn2 6
(
1+O

(
m−(d+2)/9

))c·m
· 1
2m
·
m
2∑
i=0

(
m

i

)
.

211

5. Uniform Hashing

Using that 1+ x 6 ex, gives

Sn2 6 e
O(m1−(d+2)/9) .

The exponent is bounded by o(1) for d > 8, and since for x 6 1 it holds

ex =

∞∑
j=0

xj

j!
6 1+ x+ x2 ·

∞∑
j=1

1

2
= 1+ x+ x2 6 1+ 2 · x ,

we get

Sn2 6 1+O
(
m1−(d+2)/9

)
.

The Rest — “And the Ugly” It remains to consider the sum Sr. As before,
according to [Cal97, Lemma 3.1 c] we have λ̂i =

(
1− 2·i

m

)d
+O(m−2). Let i = α ·m,

for α ∈ [ε, (1− ε)/2], then we obtain

Sr =

α·m=(1−ε)·m
2∑

α·m=ε·m

1

2m
·
(
m

α ·m

)
·
(
1+ λ̂α·m

)n
6

α·m=(1−ε)·m
2∑

α·m=ε·m
ef(α,c,d)·m+O(m−1) ,

where

f(α, c,d) = − ln(2) − α · ln(α) − (1− α) · ln(1− α) + c · ln
(
1+ (1− 2 · α)d

)
.

We are looking for some threshold ĉ′ = ĉ′(d), such that for all c < ĉ′ there is a constant
γ < 0 with f(α, c,d) < γ, for all α ∈ [ε, (1−ε)/2]. For this, we consider local maximum
points of f at which f evaluates to 0. Hence we want to solve the homogeneous system{

f(α, c) = 0,
∂f(α, c)
∂α

= 0

}
. (5.23)

Let α̃ = e−d, and let

c̃(α) =
ln(2) + α · ln(α) + (1− α) · ln(1− α)

ln (1+ (1− 2 · α)d)
.

It holds that f(α, c̃(α)) = 0, and in particular f(α̃, c̃(α̃)) = 0. Using a computer algebra
system one easily gets the asymptotic expansion of c̃, see, e. g., [Map09, page 233],
which is

c̃(α) = 1+
ln(α) − 1+ d

ln(2)
· α

+
ln(2) − d2 · ln(2) + 2 · d · ln(2) + 2 · d · ln(α) − 2 · d+ 2 · d2

2 · ln(2)2
· α2 +O(α3) .

212

5.5. Conclusion

It follows that

c̃(α̃) = 1−
e−d

ln(2)
−

e−2·d

2 · ln(2)
·
(
−1+ d2 − 2 · d+

2 · d
ln(2)

)
+O(e−3·d) .

Furthermore, one observes that

lim
d→∞

∂f(α̃, c̃)
∂α

= 0 ,

where (α̃, c̃(α̃)) is near a local maximum point. According to [Cal97, page 270] there
are no other relevant solutions of (5.23). Hence, if we choose c < ĉ′(d) 6 c̃(α̃,d), then
the sum Sr is exponentially small in m. For this it is sufficient to define

ĉ′(d) = 1−
2 · e−d

ln(2)
.

The Complete Sum Recall that Pr(Y > 1) (5.2) is the probability that the n = c ·m
random binary weight-d vectors of length m are linearly dependent and it holds
Pr(Y > 1) 6 Exp(Y) (5.3), as well as Exp(Y) = S − 1 (5.21). According to (5.22) it
follows that for d > 8 and c < ĉ′(d), we have

Pr(Y > 1) 6 O
(
m1−(d+2)/9

)
.

This finishes the proof of Lemma 5.4.4. �

5.4.5. Linear Independence Implies Stochastic Independence

In this section we prove Lemma 5.4.5. We assume that (R,⊕) is an abelian group. Hence,
the structures (Rn,⊕) and (Rm,⊕) with componentwise ⊕ are abelian groups too.
Since M ∈ {0, 1}n×m has full row rank, the mapping φ : Rm → Rn via φ(v) =M · v
is a surjective group homomorphism. Each set of preimages

φ−1(w) = {v ∈ Rm | φ(v) = w}

of an element w from Rn is a coset of the kernel ker(φ) of φ. All cosets of the kernel
have the same cardinality |ker(φ)|. Therefore, if v ∈ Rm is fully random, then the image
M · v is uniformly distributed in Rn. This finishes the proof of the lemma. �

5.5. Conclusion

We have shown how to construct a data structure for representing a hash function
that is with high probability fully random for an arbitrary unknown key set without
excessive costs in space and time consumption. In fact our construction is near optimal

213

5. Uniform Hashing

and has the fastest evaluation time among all data structures currently known that
simulate full randomness with comparable space needs. This justifies the assumption
that the hash functions used for the graph, hypergraph, and matrix structures ana-
lyzed in the previous chapters are fully random and have constant evaluation time,
see Section 2.2.2.

214

6

Final Remarks

In Chapters 3 and 4 we considered random bipartite graphs with bounded left degree, n
left nodes, and m right nodes. We determined left degree distributions for maximizing
the ratio c = n/m, called load factor, up to which such graphs a. a. s. have an empty
2-core, i. e., admit an order generating matching, or a. a. s. have a 2-core of density at
most 1, i. e., admit a general left-perfect matching. In essence, we showed that in the
former case irregular distributions can be superior to regular ones, and that in the
latter case regularity is optimal. Based on matchings in such graphs with optimized left
degrees for large loads, we discussed how to efficiently solve four basic data structure
problems known as dictionary, membership, retrieval, and perfect hashing. Since our
graphs rely on fully random hash functions, in Chapter 5 we gave a randomized
algorithm that w. h. p. determines such functions in linear time with failure probability
arbitrary close to 0.

Open Problems We close with a list of tasks that appear interesting, but remained
untouched or unsolved in the course of our study.

. Extend the proof of [Lel12a] in order to obtain orientation thresholds ĉk ,`(d,α)
for graphs with irregular left degree distributions, see Section 3.1.1.5.

. Prove Conjecture 3.1.1, which says that the generalized selfless algorithm works
a. a. s. up to the orientation threshold ĉk ,`(d) for all suitable parameters (d, k , `);
generalize this to ĉk ,`(d,α).

. Show that the fixed degree distribution is optimal to the left of the 2-core density
threshold ĉ(d), while the binomial degree distribution is optimal to the right, as
stated in Conjecture 3.1.2.

. Obtain provable performance bounds for cuckoo hashing with pages.

. Extend Theorem 4.5 in order to obtain distributions α∗ that maximize the `+-core
appearance threshold č`+(d,α) for all suitable parameters `+ = `+ 1 and d.

. Prove Conjecture 4.1.1, which states that the 2-core appearance threshold can be
made arbitrary close to 1; maybe this could be used to improve the perfect hash
function construction from Section 4.6.

215

6. Final Remarks

. Obtain core appearance and density thresholds, or even general orientation
thresholds, for random bipartite graphs with left degree d > 2 that are based on
simple, non-ideal hash functions, like, e. g., in [DW03, PT12, ADW13] concerning
the 2-core density threshold in the 2-left-regular case.

216

A

Appearance of 2-Cores

A.1. Asymptotic 2-Core Probability for Normal
Graphs of Type A

As we have discussed in Section 4.1.1.3, for d = 2 the following statements are
equivalent:

. Md
n,m has full row rank,

. Gdn,m has an order generating matching,

. Hdm,n has an empty 2-core.

Depending on the actual type of the random graphs and matrices, these statements
are true if and only if:

. type B and type C: Graph Hdm,n is acyclic.

. type A: Graph Hdm,n has no cycle of length at least two, and there is no simple
path that starts and ends at two nodes that have a cycle of length one.

Let c = n/m be a positive constant smaller than 1/2, and let P(c,n) be the probability
that Hdm,n has an empty 2-core. It is long known that

lim
n→∞P(c,n) = exp(c) ·

√
1− 2 · c for type B,

lim
n→∞P(c,n) =

√
1− 4 · c2 for type C,

see, e. g., [CHM92, Section 3]. In this section, we will derive an analogous result for
type A.
So, consider a random graph Hdm,n of type A and the following events:

A := {Hdm,n has no cycle of length at least two.} ,

B := {Hdm,n has no component with two cycles.} .

According to the characterization above, it holds that

Pr(A) < 1− P(c,n) < Pr(A) + Pr(B) .

217

A. Appearance of 2-Cores

For our parameters, the asymptotic probability of B, i. e., the existence of a bicyclic
component, also known as complex component, is zero, see, e. g., [DK12, Theorem 4].
Therefore, we have

lim
n→∞Pr(A) = lim

n→∞P(c,n) .
Let X be the number of cycles of length 1 in Hdm,n, which makes X a Bin

(
n, c/n)-

distributed random variable. By the law of total probability we have

Pr(A) =

log(n)∑
i=0

Pr(A | X = i) · Pr(X = i) +

n∑
i=log(n)+1

Pr(A | X = i) · Pr(X = i) .

The condition X = i reduces the number of available edges for cycles of length larger
than one to n − i. However, edges that form cycles of length one cannot be a part
of longer cycles, i. e., there is no structural dependency. This allows us to derive the
following upper bound

Pr(A) 6Pr(A | X = 0) · Pr(X 6 log(n))

+ Pr(A | X = log(n) + 1) · Pr(X > log(n) + 1)

6Pr(A | X = 0) + Pr(X > log(n)) ,

as well as the following lower bound

Pr(A) > Pr(A | X = log(n)) · Pr(X 6 log(n)) .

By Markov’s inequality, we have Pr(X > log(n)) < c
log(n) . Therefore, we get

lim
n→∞Pr(X > log(n)) = 0 and lim

n→∞Pr(X 6 log(n)) = 1 .

Furthermore, it holds that the probability Pr(A | X = 0) is equivalent to the probability
that a random graph Hdm,n of type B is acyclic, see above. Moreover, the probabilities
Pr(A | X = 0) and Pr(A | X = log(n)) are asymptotically equal. It follows that

lim
n→∞P(c,n) = lim

n→∞Pr(A) = exp(c) ·
√
1− 2 · c ,

which means that the asymptotic probability that Hdm,n has an empty 2-core is the
same for type A and type B.
In order to back up this finding, we did an experiment for large pseudorandom

graphs of type A and type B that were created using the Mersenne Twister, see
Section 3.4.4. For fixed type from {A,B} and fixed number of nodes m from {106, 107},
we generated a = 1010/m pseudorandom graphs Hdm,n with n = c ·m edges for each
c = n/m ∈ {0.01+ 0.01 · i | i ∈ [49]} and obtained the rate of graphs with non-empty
2-core (failure rate). The results are presented in Figure A.1.1. They show that for
m = 106 and m = 107 the failure rates for type A and type B are both very close to
the asymptotic failure probability 1− limn→∞ P(c,n). The error Σsre for m = 107 is
larger than for m = 106, which is possibly due to the smaller number of attempts a
per load factor.

218

A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

fa
ilu

re
ra
te

am
on

g
1
0
0
0
0
ra
nd

om
gr
ap

hs

c

1− exp(c) ·
√
1− 2 · c

type A: Σsre = 0.000540308
type B: Σsre = 0.000399986

(a) m = 106, a = 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

fa
ilu

re
ra
te

am
on

g
1
0
0
0
ra
nd

om
gr
ap

hs

c

1− exp(c) ·
√
1− 2 · c

type A: Σsre = 0.00535026
type B: Σsre = 0.00627357

(b) m = 107, a = 103

Figure A.1.1.: Rate of obtaining a non-empty 2-core in pseudorandom graphs of
type A and type B for c = n/m = 0.01, 0.02, . . . , 0.49. The value Σsre is the sum of
squares of the residuals with respect to asymptotic failure probability (fit function)
1− exp(c) ·

√
1− 2 · c = 1− limn→∞ P(c,n).

A.2. Maximum 2-Core Thresholds for
Non-Uniform Hypergraphs of Type B

Figure A.2.2 shows optimal thresholds č(d) for the appearance of a 2-core in hypergraphs
Hdm,n,α (type B) with d = (d0,d1), for edge sizes 3 6 d0 6 6 and d0 6 d1 6 300. The
values were obtained with Algorithm 15 on input d and ε = 10−10. In addition, for d1
up to 50, Tables A.2.1 and A.2.2 list optimal points (z∗,α∗) of the transformed threshold
function (4.1) and the corresponding average edge size d = α∗ · d0 + (1− α∗) · d1, as
well as the corresponding case of Theorem 4.5 that was applied.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

0 50 100 150 200 250 300

c

d1

č((3, 21)) = 0.92004

č((4, 40)) = 0.82593

č((5, 63)) = 0.73675

č((6, 89)) = 0.66245

č((3,d1))
č((4,d1))
č((5,d1))
č((6,d1))

Figure A.2.2.: Optimal 2-core thresholds č(d) for all d = (d0,d1) ∈ N2 with 3 6 d0 6 6
and d0 6 d1 6 300.

219

A. Appearance of 2-Cores

d1 z∗ α∗ d č
(
(3,d1)

)
case

3 0.71533 1.00000 3.00000 0.81847 1(i)
4 0.75000 0.83596 3.16404 0.82151 1(ii)
5 0.77460 0.84671 3.30658 0.82770 1(ii)
6 0.79370 0.85419 3.43744 0.83520 1(ii)
7 0.80911 0.86014 3.55944 0.84321 1(ii)
8 0.82188 0.86512 3.67439 0.85138 1(ii)
9 0.83268 0.86940 3.78359 0.85952 1(ii)
10 0.84198 0.87315 3.88795 0.86752 1(ii)
11 0.85009 0.87648 3.98818 0.87535 1(ii)
12 0.85724 0.87946 4.08482 0.88298 1(ii)
13 0.86361 0.88217 4.17830 0.89040 1(ii)
14 0.86932 0.88464 4.26898 0.89761 1(ii)
15 0.87449 0.88690 4.35715 0.90461 1(ii)
16 0.77926 0.88684 4.47102 0.91089 2(iii)
17 0.75795 0.88616 4.59372 0.91510 2(iii)
18 0.74529 0.88599 4.71015 0.91772 2(iii)
19 0.73694 0.88620 4.82077 0.91922 2(iii)
20 0.73116 0.88671 4.92601 0.91992 2(iii)
21 0.72704 0.88743 5.02626 0.92004 2(iii)
22 0.72404 0.88832 5.12190 0.91974 2(iii)
23 0.72185 0.88934 5.21328 0.91914 2(iii)
24 0.72022 0.89044 5.30070 0.91832 2(iii)
25 0.71900 0.89162 5.38446 0.91734 2(iii)
26 0.71809 0.89283 5.46482 0.91626 2(iii)
27 0.71741 0.89408 5.54202 0.91510 2(iii)
28 0.71689 0.89535 5.61628 0.91390 2(iii)
29 0.71651 0.89662 5.68780 0.91266 2(iii)
30 0.71621 0.89790 5.75675 0.91141 2(iii)
31 0.71599 0.89917 5.82330 0.91016 2(iii)
32 0.71583 0.90043 5.88761 0.90891 2(iii)
33 0.71570 0.90167 5.94981 0.90768 2(iii)
34 0.71561 0.90290 6.01003 0.90645 2(iii)
35 0.71554 0.90411 6.06839 0.90525 2(iii)
36 0.71549 0.90530 6.12498 0.90406 2(iii)
37 0.71545 0.90647 6.17992 0.90290 2(iii)
38 0.71542 0.90762 6.23328 0.90177 2(iii)
39 0.71540 0.90875 6.28516 0.90065 2(iii)
40 0.71538 0.90985 6.33562 0.89956 2(iii)
41 0.71537 0.91093 6.38475 0.89850 2(iii)
42 0.71536 0.91198 6.43260 0.89746 2(iii)
43 0.71535 0.91302 6.47925 0.89644 2(iii)
44 0.71535 0.91403 6.52474 0.89545 2(iii)
45 0.71534 0.91502 6.56913 0.89448 2(iii)
46 0.71534 0.91599 6.61246 0.89354 2(iii)
47 0.71534 0.91694 6.65480 0.89261 2(iii)
48 0.71534 0.91786 6.69617 0.89171 2(iii)
49 0.71534 0.91877 6.73662 0.89083 2(iii)
50 0.71533 0.91966 6.77619 0.88997 2(iii)

(a) Case d0 = 3, the maximum threshold in
this range is about 0.92004.

d1 z∗ α∗ d č
(
(4,d1)

)
case

4 0.85100 1.00000 4.00000 0.77228 1(i)
5 0.85100 1.00000 4.00000 0.77228 1(i)
6 0.85100 1.00000 4.00000 0.77228 1(i)
7 0.85100 1.00000 4.00000 0.77228 1(i)
8 0.85100 1.00000 4.00000 0.77228 1(i)
9 0.85100 1.00000 4.00000 0.77228 1(i)
10 0.85837 0.98319 4.10087 0.77261 1(ii)
11 0.86544 0.97048 4.20664 0.77358 1(ii)
12 0.87169 0.96143 4.30855 0.77501 1(ii)
13 0.87725 0.95477 4.40707 0.77677 1(ii)
14 0.88225 0.94974 4.50259 0.77878 1(ii)
15 0.88678 0.94587 4.59540 0.78097 1(ii)
16 0.89090 0.94285 4.68579 0.78329 1(ii)
17 0.89467 0.94046 4.77397 0.78571 1(ii)
18 0.89814 0.93856 4.86013 0.78819 1(ii)
19 0.90134 0.93704 4.94444 0.79072 1(ii)
20 0.90430 0.93581 5.02703 0.79329 1(ii)
21 0.90706 0.93482 5.10804 0.79587 1(ii)
22 0.90964 0.93402 5.18757 0.79847 1(ii)
23 0.91205 0.93338 5.26572 0.80106 1(ii)
24 0.91431 0.93287 5.34257 0.80365 1(ii)
25 0.91643 0.93247 5.41822 0.80623 1(ii)
26 0.91844 0.93215 5.49272 0.80880 1(ii)
27 0.92033 0.93191 5.56615 0.81135 1(ii)
28 0.92212 0.93173 5.63855 0.81388 1(ii)
29 0.91076 0.93157 5.71069 0.81638 2(iii)
30 0.89400 0.93133 5.78542 0.81858 2(iii)
31 0.88530 0.93119 5.85792 0.82036 2(iii)
32 0.87918 0.93113 5.92826 0.82179 2(iii)
33 0.87453 0.93115 5.99653 0.82293 2(iii)
34 0.87084 0.93124 6.06282 0.82383 2(iii)
35 0.86785 0.93138 6.12721 0.82453 2(iii)
36 0.86539 0.93157 6.18979 0.82505 2(iii)
37 0.86333 0.93180 6.25063 0.82544 2(iii)
38 0.86161 0.93206 6.30980 0.82570 2(iii)
39 0.86015 0.93236 6.36738 0.82586 2(iii)
40 0.85891 0.93268 6.42343 0.82593 2(iii)
41 0.85784 0.93303 6.47802 0.82593 2(iii)
42 0.85693 0.93339 6.53122 0.82587 2(iii)
43 0.85615 0.93377 6.58308 0.82576 2(iii)
44 0.85548 0.93416 6.63365 0.82560 2(iii)
45 0.85489 0.93456 6.68299 0.82540 2(iii)
46 0.85439 0.93497 6.73115 0.82518 2(iii)
47 0.85395 0.93539 6.77818 0.82492 2(iii)
48 0.85357 0.93582 6.82413 0.82465 2(iii)
49 0.85324 0.93624 6.86903 0.82436 2(iii)
50 0.85295 0.93668 6.91294 0.82405 2(iii)

(b) Case d0 = 4, the maximum threshold in
this range is about 0.82593.

Table A.2.1.: Optimal 2-core thresholds č(d) and corresponding optimal points (z∗,α∗)
for all d = (d0,d1) ∈ N2 with 3 6 d0 6 4 and d0 6 d1 6 50.

220

A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

d1 z∗ α∗ d č
(
(5,d1)

)
case

5 0.90335 1.00000 5.00000 0.70178 1(i)
6 0.90335 1.00000 5.00000 0.70178 1(i)
7 0.90335 1.00000 5.00000 0.70178 1(i)
8 0.90335 1.00000 5.00000 0.70178 1(i)
9 0.90335 1.00000 5.00000 0.70178 1(i)
10 0.90335 1.00000 5.00000 0.70178 1(i)
11 0.90335 1.00000 5.00000 0.70178 1(i)
12 0.90335 1.00000 5.00000 0.70178 1(i)
13 0.90335 1.00000 5.00000 0.70178 1(i)
14 0.90335 1.00000 5.00000 0.70178 1(i)
15 0.90335 1.00000 5.00000 0.70178 1(i)
16 0.90335 1.00000 5.00000 0.70178 1(i)
17 0.90335 1.00000 5.00000 0.70178 1(i)
18 0.90617 0.99375 5.08121 0.70187 1(ii)
19 0.90905 0.98793 5.16898 0.70215 1(ii)
20 0.91172 0.98300 5.25495 0.70258 1(ii)
21 0.91421 0.97880 5.33924 0.70315 1(ii)
22 0.91654 0.97518 5.42198 0.70383 1(ii)
23 0.91871 0.97204 5.50326 0.70460 1(ii)
24 0.92076 0.96931 5.58318 0.70545 1(ii)
25 0.92268 0.96691 5.66183 0.70637 1(ii)
26 0.92450 0.96480 5.73927 0.70734 1(ii)
27 0.92621 0.96293 5.81557 0.70836 1(ii)
28 0.92783 0.96127 5.89081 0.70942 1(ii)
29 0.92937 0.95979 5.96502 0.71051 1(ii)
30 0.93084 0.95847 6.03827 0.71163 1(ii)
31 0.93223 0.95728 6.11061 0.71278 1(ii)
32 0.93356 0.95622 6.18206 0.71394 1(ii)
33 0.93483 0.95526 6.25268 0.71512 1(ii)
34 0.93604 0.95440 6.32250 0.71631 1(ii)
35 0.93720 0.95361 6.39156 0.71752 1(ii)
36 0.93831 0.95291 6.45989 0.71873 1(ii)
37 0.93937 0.95227 6.52751 0.71995 1(ii)
38 0.94039 0.95168 6.59446 0.72117 1(ii)
39 0.94137 0.95115 6.66075 0.72240 1(ii)
40 0.94232 0.95067 6.72643 0.72362 1(ii)
41 0.94323 0.95024 6.79150 0.72485 1(ii)
42 0.94410 0.94984 6.85599 0.72608 1(ii)
43 0.94495 0.94948 6.91991 0.72731 1(ii)
44 0.94576 0.94915 6.98330 0.72853 1(ii)
45 0.93857 0.94897 7.04133 0.72973 2(iii)
46 0.93262 0.94889 7.09535 0.73078 2(iii)
47 0.92856 0.94885 7.14826 0.73171 2(iii)
48 0.92543 0.94883 7.20010 0.73252 2(iii)
49 0.92287 0.94884 7.25089 0.73322 2(iii)
50 0.92073 0.94887 7.30068 0.73384 2(iii)

(a) Case d0 = 5, the maximum threshold in
this range is about 0.73384.

d1 z∗ α∗ d č
(
(6,d1)

)
case

6 0.93008 1.00000 6.00000 0.63708 1(i)
7 0.93008 1.00000 6.00000 0.63708 1(i)
8 0.93008 1.00000 6.00000 0.63708 1(i)
9 0.93008 1.00000 6.00000 0.63708 1(i)
10 0.93008 1.00000 6.00000 0.63708 1(i)
11 0.93008 1.00000 6.00000 0.63708 1(i)
12 0.93008 1.00000 6.00000 0.63708 1(i)
13 0.93008 1.00000 6.00000 0.63708 1(i)
14 0.93008 1.00000 6.00000 0.63708 1(i)
15 0.93008 1.00000 6.00000 0.63708 1(i)
16 0.93008 1.00000 6.00000 0.63708 1(i)
17 0.93008 1.00000 6.00000 0.63708 1(i)
18 0.93008 1.00000 6.00000 0.63708 1(i)
19 0.93008 1.00000 6.00000 0.63708 1(i)
20 0.93008 1.00000 6.00000 0.63708 1(i)
21 0.93008 1.00000 6.00000 0.63708 1(i)
22 0.93008 1.00000 6.00000 0.63708 1(i)
23 0.93008 1.00000 6.00000 0.63708 1(i)
24 0.93008 1.00000 6.00000 0.63708 1(i)
25 0.93008 1.00000 6.00000 0.63708 1(i)
26 0.93008 1.00000 6.00000 0.63708 1(i)
27 0.93088 0.99807 6.04054 0.63709 1(ii)
28 0.93237 0.99463 6.11825 0.63717 1(ii)
29 0.93379 0.99153 6.19490 0.63732 1(ii)
30 0.93514 0.98873 6.27054 0.63754 1(ii)
31 0.93642 0.98619 6.34522 0.63781 1(ii)
32 0.93765 0.98388 6.41900 0.63812 1(ii)
33 0.93881 0.98178 6.49189 0.63849 1(ii)
34 0.93993 0.97986 6.56396 0.63889 1(ii)
35 0.94100 0.97810 6.63523 0.63932 1(ii)
36 0.94202 0.97648 6.70573 0.63979 1(ii)
37 0.94301 0.97498 6.77551 0.64028 1(ii)
38 0.94395 0.97361 6.84458 0.64080 1(ii)
39 0.94486 0.97233 6.91297 0.64134 1(ii)
40 0.94573 0.97116 6.98071 0.64190 1(ii)
41 0.94657 0.97006 7.04783 0.64248 1(ii)
42 0.94738 0.96905 7.11433 0.64308 1(ii)
43 0.94816 0.96810 7.18026 0.64369 1(ii)
44 0.94892 0.96722 7.24562 0.64431 1(ii)
45 0.94965 0.96640 7.31044 0.64494 1(ii)
46 0.95035 0.96563 7.37472 0.64558 1(ii)
47 0.95103 0.96491 7.43850 0.64624 1(ii)
48 0.95170 0.96424 7.50178 0.64690 1(ii)
49 0.95233 0.96361 7.56458 0.64756 1(ii)
50 0.95295 0.96302 7.62692 0.64823 1(ii)

(b) Case d0 = 6, the maximum threshold in
this range is about 0.64823.

Table A.2.2.: Optimal 2-core thresholds č(d) and corresponding optimal points (z∗,α∗)
for all d = (d0,d1) ∈ N2 with 5 6 d0 6 6 and d0 6 d1 6 50.

221

Nomenclature

A set of addresses

a address; also arbitrary variable

A event

a number of attempts

α fraction of left nodes of a certain degree in a bipartite graph

b number of blocked nodes; also arbitrary variable

B event

β bias parameter for random walk, influences how often insertion is tried on
primary and backup pages; also fraction of nodes that belong to the set
of blocked nodes, β = b/m

Bin Binomial distribution / random variable

⊥ special value from V, if associated with a key x ∈ U means that x 6∈ S

c load factor, c = n/m

C event

č threshold for the existence of an order generating matching, č equals č`+
for `+ = 2

č`+ threshold for the appearance of an `+-core

cend end of load factor interval

ĉ threshold for the existence of a left-perfect matching, ĉ equals ĉk ,` for
` = k = 1

ĉdb
m̌ (hypothetical) threshold for the existence of a left-perfect matching in a

scenario with pages of size m̌ and db backup options

ĉk ,` threshold for the existence of a (k , `)-orientation

◦ concatenation operator

223

A. Appearance of 2-Cores

cp load factor of primary keys, cp = np/m

cstart start of load factor interval

d number of choices, node degree, hyperedge size, matrix row weight

D random degree

D (abstract) data structure

db number of choices on backup page

d average mean degree over all x ∈ S, d = 1
n
·
∑
x∈S ∆x

ď minimum degree

deg degree of node

δ small constant; also parameter of fit function σ

∆ expected degree, ∆ = Exp(D)

dens density function

d̂ maximum degree

dp number of choices on primary page

E edge set or edge multiset

E event

Epot set of unsettled edges incident to a node (set of potential edges)

ε small constant

F set of free nodes

f function

Fail failure function, Fail = Fail(dy,dz)

fail failure function, fail = fail(dy,dz,b, r, i1, . . . , ir)

F field

F set of half-free nodes

G graph

g function

224

A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

γ small constant; also parameter of fit function σ

Gd́n,ḿ random bipartite d́-left-regular graph, in general different from Gdn,m

Gdn,m random bipartite left-irregular graph with expected left degree d

Gdn,m random bipartite d-left-regular graph

Gdn,m,α random bipartite left-irregular graph

G
dp,db
n,(m,m̌) random bipartite graph “with pages”

H hypergraph

h (hash) function

H2 entropy to base 2

hb hash function that is used to determine backup pages

binHdm,p random non-uniform binomial hypergraph

H hash class

H0 null hypothesis

Hcoll class of “collapse” hash functions

Hmap class of “mapping” hash functions

simHdm,n,α class of non-uniform hypergraphs without multiple edges

Hsplit class of “splitting” hash functions

hcol hash function for determining a column index of a matrix

hcoll hash function for collapsing the universe, hcoll ∈ Hcoll

Hd́ḿ,n random d́-uniform hypergraph (almost uniform when of type A), in general
different from Hdm,n

Hdm,n random non-uniform hypergraph with expected edge size d

Hdm,n random d-uniform hypergraph (almost uniform when of type A)

Hdm,n,α random non-uniform hypergraph

H
dp,db
(m,m̌),n random hypergraph “with pages”

He entropy to base e

225

A. Appearance of 2-Cores

hmap hash function for mapping step, hmap ∈ Hmap

mulHdm,n,α random non-uniform hypergraph with multiple edges

hp hash function that is used to determine primary pages

poiHdm,Λ random non-uniform Poisson cloning hypergraph

hrow hash function for determining a row index of a matrix

h mapping that is build upon d hash functions

simHdm,n,α random non-uniform hypergraph without multiple edges

hsplit hash function for splitting a key set, hsplit ∈ Hsplit

I index set

i number of iterations

inc number of edges directed towards a node

ι fraction of nodes that belong to an independent set, ιj = ij/m

J index set

k integer constant, usually l 6 k; often degree

K constant

κ degree of independence; also configuration, i. e., sequence of parameters

key key function

k required number of orientations of hyperedge

l integer constant, usually l 6 k; often degree

L left node set of bipartite graph G = (L ∪ R,E)

Λ expected degree of random hypergraph node (with respect to edges of a
certain size)

λ mean of Poisson distribution

λden
` λden

` is the solution of dens(λ) = `

λkey
c λkey

c is the solution of key(λ) = c

L (unordered) list

226

A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

` maximum allowed indegree for orientation, related to core parameter `+
via ` = `+ − 1

ln logarithm to base e

log logarithm to base 2

`+ core parameter, related to orientation parameter ` via `+ = `+ 1

M matrix

M matching, M ⊆ E

m number of table cells, right nodes, hypergraph nodes, matrix columns;
size of range of hash function

ḿ same as m, but in general with different value

M event that a matching exists

m̌ page size

Md
n,m random binary matrix with expected row weight d

Md
n,m random binary matrix with d-uniform row weight (almost uniform when

of type A)

Md
n,m,α random binary matrix with non-uniform row weight

M
dp,db
n,(m,m̌) random binary matrix “with pages”

N neighborhood, set of nodes

n number of (relevant) keys, left nodes, hyperedges, matrix rows

Nb neighborhood consisting of backup nodes only

nb number of keys that are assigned to their backup page (backup keys)

nb|i number of keys that have primary page number i but are inserted on their
backup page

N the set of natural numbers

Np neighborhood consisting of primary nodes only

np number of keys that are assigned to their primary page (primary keys)

ω weight function ω : E→ R

227

A. Appearance of 2-Cores

ωcf cost function ωcf : E→ R

ω+ weight of edge set, ω+(E) =
∑
e∈Eω(e)

ω±M incremental weight of edge set with respect to matching M

⊕ addition in abelian group, often xor; also symmetric difference

out-deg outdegree of node

P path; also product; also probability

p probability; also prime number

P property of hypergraphs; also power set

p number of pages

r average number of page requests of random walk

φ homomorphism

ϕ Boolean formula assignment

π permutation, ordering

Po Poisson distribution / random variable

prio non-negative priority (smallest=̂highest)

Pr′ probability measure in modified probability space

q probability

Q (priority) queue

R right node set of bipartite graph G = (L∪R,E); also range of hash function

r length of vector; also number of independent sets

R the set of real numbers

R hash class with strong randomness properties

req number of nodes to which an edge must be directed

ρ probability mass function

rp ratio of primary keys, rp = np/n

S key set, S ⊆ U; also intermediate result or sum

228

A.2. Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

s length of vector

S̆ subset of Ŭ

S space consumption

s average number of insertion steps of random walk

skey average number of insertion steps of random walk per key

σ fit function

Σsre sum of squares of residuals

? stands for sequence of symbols that has finite length

t table (vector)

T set; also intermediate result or sum

T time consumption

Tc construction time

Te evaluation time

Tdec lookup matrix for decoding (decompression)

tenc encoded (compressed) vector

θ parameter for random walk, influences total number of trials; also real
value from [0, 1)

U universe

u size of universe, u = |U|

Ŭ non-standard or extended universe

V set of values, e. g., f : U→ V; also node set, e. g., G = (V,E); also set of
group elements

v function value; also (hyper-)graph node

Vpot set of unsaturated nodes to which an edge can be directed (set of potential
nodes)

w lower bound for the smallest increment of augmenting paths

X discrete random variable, realization is denoted by x

229

A. Appearance of 2-Cores

x key; also realization of X

x̆ element from Ŭ

ξ failure rate

Y discrete random variable, realization is denoted by y

y key; also realization of Y

Z discrete random variable, realization is denoted by z

Z the set of integers

ž0 smaller root of g(z), local maximum point of h(z)

ẑ0 larger root of g(z), local minimum point of h(z)

zle left interval border for relevant z points

zlo used to determine bound for search interval

zl0 point between zle and ž0 with h(zl0) = h(ẑ0)

zin indicator point

zri right interval border for relevant z points

zup used to determine bound for search interval

z0r point between ẑ0 and zri with h(z0r) = h(ž0)

ζ scale factor that depends on some compression scheme

230

List of Figures

2.2.1. Exemplary illustration of the basic hashing scheme types A, B, and C. 12
2.3.2. Graph, hypergraph, and matrix view of the basic scheme type A. . . . 13
2.3.3. Visualization of the definition of 2-core thresholds č(3) and ĉ(3). . . . 16

3.1.1. A dictionary realized with the basic scheme (type A), as well as its
corresponding representations. 19

3.1.2. Thresholds ĉ(d) for the existence of left-perfect matchings in left-
irregular random bipartite graphs. 29

3.4.3. Failure rate of the generalized selfless algorithm when determining
non-extreme orientations. 51

3.4.4. Failure rate of the generalized selfless algorithm when determining
extreme orientations. 51

3.4.5. Comparison of the failure rate between the generalized selfless algo-
rithm and an optimal placement algorithm. 52

3.5.6. Failure rate of pseudorandom bipartite graphs with fixed load factor
as a function of the left degree distribution. 65

3.5.7. Difference of the failure rates of pseudorandom bipartite graphs that
have the same average mean degree but different left degree distribu-
tions, as a function of the load factor. 66

3.6.8. Comparison of the average running times of the modified Hopcroft-
Karp algorithm and the network simplex algorithm for different paging
graphs. 75

3.6.9. Identification of transition points ĉ0m̌(4) and ĉ1m̌(4) for page sizes from
104 to 106. 80

3.6.10. Identification of transition points ĉ0m̌(4) and ĉ1m̌(4) for page sizes from
101 to 103. 81

3.6.11. Relative frequencies of the number of backup keys that are associated
with the same primary page in the static case. 84

3.6.12. Influence of the amount of bias to primary pages for the random walk
algorithm. 88

3.6.13. Average ratio of primary keys and number of insertion steps per key
for the random walk algorithm in a scenario with alternating insertions
and deletions. 89

3.6.14. Relative frequencies of the number of backup keys that are associated
with the same primary page in the dynamic case. 90

231

LIST OF FIGURES

3.6.15. Approximation of normalized load thresholds ĉ1,`(2)/`. 92

4.1.1. A retrieval data structure realized with the basic scheme (type B), as
well as its corresponding representations. 98

4.5.2. Auxiliary functions and special points that are heavily used in the
solution of the optimization problem (OPT), shown for selected pa-
rameters. 151

4.5.3. Auxiliary function h(z, 3, 20) visualizing case 2 of Lemma 4.5.6. . . . 154
4.5.4. Approximation of optimal 2-core thresholds č(d) for pseudorandom

hypergraphs Hdm,n,α (type B). 163
4.6.5. Average construction time of perfect hash function. 177
4.6.6. Average construction time per phase and key of perfect hash function. 179
4.6.7. Average evaluation time of perfect hash function, overall and per key. 180

A.1.1. Rate of obtaining a non-empty 2-core in pseudorandom graphs of
type A and type B for increasing c < 0.5. 219

A.2.2. Optimal 2-core thresholds č
(
(d0,d1)

)
for parameters 3 6 d0 6 6 and

d0 6 d1 6 300. 219

232

List of Tables

2.3.1. Related terms in the different representations of the basic scheme. . . 14

3.1.1. Thresholds ĉ(d) for the existence of left-perfect matchings. 21
3.4.2. Thresholds ĉk ,`(d) for the existence of a (k , `)-orientation. 47
3.4.3. Approximation of orientation thresholds due to curve fitting of the

failure rate of the generalized selfless algorithm. 52
3.6.4. List of approximated transition points ĉ0m̌(4) and ĉ1m̌(4) in the case of

4-ary cuckoo hashing with paging. 82
3.6.5. Average maximum fraction of primary keys for different page sizes. . . 83
3.6.6. Characteristics of the random walk algorithm slightly away from the

load threshold with strong bias to primary keys. 86
3.6.7. Characteristics of the random walk algorithm close to the load threshold

with moderate bias to primary keys. 87
3.6.8. Normalized load thresholds ĉ1,`(2)/`. 91
3.6.9. Average maximum fraction of primary keys for different page sizes

using the alternative approach for small pages. 93

4.1.1. Thresholds č(d) for the existence of order generating matchings. . . . 100
4.1.2. Optimal 2-core thresholds č(d) for selected d = (d0,d1). 105
4.5.3. Values k ′(l) where g(z,k) switches from non-negative to negative. . . 160
4.5.4. Comparison of experimentally approximated and theoretical optimal

2-core thresholds for pseudorandom hypergraphs Hdm,n,α (type B). . . 162
4.6.5. Average number of iterations per phase during construction of perfect

hash function. 178
4.6.6. Average space consumption per key of perfect hash function. 180

A.2.1. Optimal 2-core thresholds č
(
(d0,d1)

)
and corresponding optimal

points for 3 6 d0 6 4 and d0 6 d1 6 50. 220
A.2.2. Optimal 2-core thresholds č

(
(d0,d1)

)
and corresponding optimal

points for 5 6 d0 6 6 and d0 6 d1 6 50. 221

233

List of Algorithms

1. peeling . 15

2. matching_via_2-SAT . 22
3. generalized_selfless . 25
4. min_weight_max_card_matching . 43
5. min_weight_Hopcroft-Karp . 73
6. random_walk_basic_step . 76

7. peeling_with_back_substitution . 102
8. type_B_hypergraph . 121
9. fixed_fractions_multiple_edges_hypergraph 121
10. fixed_fractions_simple_edges_hypergraph 122
11. binomial_hypergraph . 123
12. poisson_cloning_hypergraph . 124
13. peeling_in_parallel . 130
14. peeling_tree_in_parallel . 136
15. maximum_thresholds . 161

16. pairwise_distinct_hash_values . 194

235

Bibliography

[AV88] Alok Aggarwal and Jeffrey Scott Vitter. The Input/Output Complexity
of Sorting and Related Problems. Commun. ACM, 31(9):1116–1127,
1988. ISSN 0001-0782. January 17, 2015.
http://doi.acm.org/10.1145/48529.48535
(Cited on page 38.)

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, and Applications. Prentice-Hall, Upper
Saddle River, NJ, USA, 1993. ISBN 0-13-617549-X. August 7, 2013.
http://dl.acm.org/citation.cfm?id=137406
(Cited on pages 46, 71, and 72.)

[AZ10] Martin Aigner and Günter M. Ziegler. Proofs from THE BOOK.
Springer, 4th edition, 2010. ISBN 978-3-642-00855-9. August 7, 2013.
http://dx.doi.org/10.1007/978-3-642-00856-6
(Cited on page 192.)

[ASA+09] Dan A. Alcantara, Andrei Sharf, Fatemeh Abbasinejad, Shubhabrata
Sengupta, Michael Mitzenmacher, John D. Owens, and Nina Amenta.
Real-Time Parallel Hashing on the GPU. ACM Trans. Graph., 28(5):
154:1–154:9, 2009. ISSN 0730-0301. July 29, 2013.
http://dx.doi.org/10.1145/1618452.1618500
(Cited on pages 2 and 31.)

[AP11] Rasmus Resen Amossen and Rasmus Pagh. A New Data Layout for Set
Intersection on GPUs. In Proc. 25th IPDPS, pages 698–708. IEEE, 2011.
ISBN 978-1-61284-372-8. December 6, 2014.
http://dx.doi.org/10.1109/IPDPS.2011.71
(Cited on page 23.)

[ANS09] Yuriy Arbitman, Moni Naor, and Gil Segev. De-amortized Cuckoo
Hashing: Provable Worst-Case Performance and Experimental Results. In
Proc. 36th ICALP (1), volume 5555 of LNCS, pages 107–118. Springer,
2009. ISBN 978-3-642-02926-4. July 23, 2013.
http://dx.doi.org/10.1007/978-3-642-02927-1_11
(Cited on page 38.)

[ANS10] Yuriy Arbitman, Moni Naor, and Gil Segev. Backyard Cuckoo Hashing:
Constant Worst-Case Operations with a Succinct Representation. In

237

http://doi.acm.org/10.1145/48529.48535
http://dl.acm.org/citation.cfm?id=137406
http://dx.doi.org/10.1007/978-3-642-00856-6
http://dx.doi.org/10.1145/1618452.1618500
http://dx.doi.org/10.1109/IPDPS.2011.71
http://dx.doi.org/10.1007/978-3-642-02927-1_11

BIBLIOGRAPHY

Proc. 51th FOCS, pages 787–796. IEEE Computer Society, 2010. ISBN
978-0-7695-4244-7. ISSN 0272-5428. July 23, 2013.
http://dx.doi.org/10.1109/FOCS.2010.80
(Cited on page 38.)

[Aum10] Martin Aumüller. An Alternative Analysis of Cuckoo Hashing with a
Stash and Realistic Hash Functions. Diplomarbeit, Technische Universität
Ilmenau, 2010. July 22, 2013.
http://gso.gbv.de/DB=2.1/PPNSET?PPN=622447068
(Cited on pages 38, 188, and 189.)

[ADR09] Martin Aumüller, Martin Dietzfelbinger, and Michael Rink. Experimental
Variations of a Theoretically Good Retrieval Data Structure. In Proc.
17th ESA, volume 5757 of LNCS, pages 742–751. Springer, 2009. ISBN
978-3-642-04127-3. July 25, 2013.
http://dx.doi.org/10.1007/978-3-642-04128-0_66
(Cited on pages xiii, 101, 102, and 115.)

[ADW12] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit
and Efficient Hash Families Suffice for Cuckoo Hashing with a Stash. In
Proc. 20th ESA, volume 7501 of LNCS, pages 108–120. Springer, 2012.
ISBN 978-3-642-33089-6. July 22, 2013.
http://dx.doi.org/10.1007/978-3-642-33090-2_11
(Cited on pages 7, 38, 184, 185, and 189.)

[ADW13] Martin Aumüller, Martin Dietzfelbinger, and Philipp Woelfel. Explicit
and Efficient Hash Families Suffice for Cuckoo Hashing with a Stash.
Algorithmica, pages 1–29, 2013. ISSN 0178-4617. January 11, 2014.
http://dx.doi.org/10.1007/s00453-013-9840-x
(Cited on pages 38 and 216.)

[AFPR59] T. L. Austin, R. E. Fagen, W. F. Penney, and John Riordan. The Number
of Components in Random Linear Graphs. The Annals of Mathematical
Statistics, 30(3):747–754, 1959. August 30, 2013.
http://dx.doi.org/10.1214/aoms/1177706204
(Cited on page 121.)

[ABKU94] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
Allocations (Extended abstract). In Proc 26th. STOC, pages 593–602.
ACM, 1994. ISBN 0-89791-663-8. July 23, 2013.
http://dx.doi.org/10.1145/195058.195412
(Cited on page 36.)

238

http://dx.doi.org/10.1109/FOCS.2010.80
http://gso.gbv.de/DB=2.1/PPNSET?PPN=622447068
http://dx.doi.org/10.1007/978-3-642-04128-0_66
http://dx.doi.org/10.1007/978-3-642-33090-2_11
http://dx.doi.org/10.1007/s00453-013-9840-x
http://dx.doi.org/10.1214/aoms/1177706204
http://dx.doi.org/10.1145/195058.195412

BIBLIOGRAPHY

[ABKU99] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced
Allocations. SIAM J. Comput., 29(1):180–200, 1999. July 31, 2013.
http://dx.doi.org/10.1137/S0097539795288490
(Cited on pages 36 and 37.)

[BMST04] Holger Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao Tamaki. Matching
Algorithms Are Fast in Sparse Random Graphs. In Proc. 21st STACS,
volume 2996 of LNCS, pages 81–92. Springer, 2004. ISBN 3-540-21236-1.
July 22, 2013. http://dx.doi.org/10.1007/978-3-540-24749-4_8
(Cited on page 72.)

[BMST06] Holger Bast, Kurt Mehlhorn, Guido Schäfer, and Hisao Tamaki. Matching
Algorithms Are Fast in Sparse Random Graphs. Theory Comput. Syst.,
39(1):3–14, 2006. July 22, 2013.
http://dx.doi.org/10.1007/s00224-005-1254-y
(Cited on page 72.)

[BBPV09] Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna.
Monotone Minimal Perfect Hashing: Searching a Sorted Table with O(1)
Accesses. In Proc. 20th SODA, pages 785–794. SIAM, 2009. July 24,
2013. http://doi.acm.org/10.1145/1496770.1496856
(Cited on page 110.)

[BBD09] Djamal Belazzougui, Fabiano Cupertino Botelho, and Martin
Dietzfelbinger. Hash, Displace, and Compress. In Proc. 17th ESA,
volume 5757 of LNCS, pages 682–693. Springer, 2009. ISBN
978-3-642-04127-3. July 23, 2013.
http://dx.doi.org/10.1007/978-3-642-04128-0_61
(Cited on pages 112, 114, and 189.)

[Ber57] Claude Berge. Two Theorems in Graph Theory. Proceedings of the
National Academy of Sciences, 43(9):842–844, 1957. July 29, 2013.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534337/
(Cited on page 42.)

[Bey12] Stephan Beyer. Analysis of the Linear Probing Variant of Cuckoo
Hashing. Diplomarbeit, Technische Universität Ilmenau, 2012. July 22,
2013. http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
(Cited on pages 33 and 189.)

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allowable
Errors. Commun. ACM, 13(7):422–426, 1970. ISSN 0001-0782. July 31,
2013. http://doi.acm.org/10.1145/362686.362692
(Cited on pages 5, 11, 34, 83, and 115.)

239

http://dx.doi.org/10.1137/S0097539795288490
http://dx.doi.org/10.1007/978-3-540-24749-4_8
http://dx.doi.org/10.1007/s00224-005-1254-y
http://doi.acm.org/10.1145/1496770.1496856
http://dx.doi.org/10.1007/978-3-642-04128-0_61
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534337/
http://gso.gbv.de/DB=2.1/PPNSET?PPN=685166759
http://doi.acm.org/10.1145/362686.362692

BIBLIOGRAPHY

[BK06] Tom Bohman and Jeong Han Kim. A Phase Transition for Avoiding a
Giant Component. Random Struct. Algorithms, 28(2):195–214, 2006.
ISSN 1042-9832. August 7, 2013.
http://dx.doi.org/10.1002/rsa.20085
(Cited on page 16.)

[Bot08] Fabiano Cupertino Botelho. Near-Optimal Space Perfect Hashing
Algorithms. PhD thesis, Federal University of Minas Gerais, 2008. July
22, 2013.
http://homepages.dcc.ufmg.br/~fbotelho/en/pub/thesis.pdf
(Cited on pages 111 and 116.)

[BKZ05] Fabiano Cupertino Botelho, Yoshiharu Kohayakawa, and Nivio Ziviani. A
Practical Minimal Perfect Hashing Method. In Proc. 4th WEA, volume
3503 of LNCS, pages 488–500. Springer, 2005. ISBN 3-540-25920-1.
August 11, 2013. http://dx.doi.org/10.1007/11427186_42
(Cited on page 114.)

[BPZ07] Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and
Space-Efficient Minimal Perfect Hash Functions. In Proc. 10th WADS,
volume 4619 of LNCS, pages 139–150. Springer, 2007. ISBN
978-3-540-73948-7. July 23, 2013.
http://dx.doi.org/10.1007/978-3-540-73951-7_13
(Cited on pages 5, 106, 113, and 189.)

[BPZ13] Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Practical
Perfect Hashing in Nearly Optimal Space. Inf. Syst., 38(1):108–131, 2013.
ISSN 0306-4379. July 23, 2013.
http://dx.doi.org/10.1016/j.is.2012.06.002
(Cited on pages 5, 106, 113, 114, and 116.)

[BWZ12] Fabiano Cupertino Botelho, Nicholas C. Wormald, and Nivio Ziviani.
Cores of random r-partite hypergraphs. Inf. Process. Lett., 112(8-9):
314–319, 2012. ISSN 0020-0190. July 29, 2013.
http://dx.doi.org/10.1016/j.ipl.2011.10.017
(Cited on page 16.)

[BM01] Andrei Z. Broder and Michael Mitzenmacher. Using Multiple Hash
Functions to Improve IP Lookups. In Proc. 20th INFOCOM, pages
1454–1463. IEEE, 2001. ISBN 0-7803-7016-3. July 23, 2013.
http://dx.doi.org/10.1109/INFCOM.2001.916641
(Cited on pages 36 and 37.)

[BM03] Andrei Z. Broder and Michael Mitzenmacher. Network Applications of
Bloom Filters: A Survey. Internet Mathematics, 1(4):485–509, 2003.

240

http://dx.doi.org/10.1002/rsa.20085
http://homepages.dcc.ufmg.br/~fbotelho/en/pub/thesis.pdf
http://dx.doi.org/10.1007/11427186_42
http://dx.doi.org/10.1007/978-3-540-73951-7_13
http://dx.doi.org/10.1016/j.is.2012.06.002
http://dx.doi.org/10.1016/j.ipl.2011.10.017
http://dx.doi.org/10.1109/INFCOM.2001.916641

BIBLIOGRAPHY

August 2, 2013.
http://dx.doi.org/10.1080/15427951.2004.10129096
(Cited on pages 115 and 116.)

[CSW07] Julie Anne Cain, Peter Sanders, and Nicholas C. Wormald. The Random
Graph Threshold for k-orientiability and a Fast Algorithm for Optimal
Multiple-Choice Allocation. In Proc. 18th SODA, pages 469–476. SIAM,
2007. ISBN 978-0-898716-24-5. July 22, 2013.
http://dl.acm.org/citation.cfm?id=1283383.1283433
(Cited on pages 4, 23, 24, and 189.)

[Cal97] Neil J. Calkin. Dependent Sets of Constant Weight Binary Vectors.
Combinatorics, Probability and Computing, 6(3):263–271, 1997. ISSN
0963-5483. August 8, 2013.
http://journals.cambridge.org/article_S0963548397003040
(Cited on pages 113, 197, 201, 202, 203, 208, 210, 211, 212, and 213.)

[CW77] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions
(Extended Abstract). In Proc. 9th STOC, pages 106–112. ACM, 1977.
July 25, 2013. http://dx.doi.org/10.1145/800105.803400
(Cited on pages 187 and 188.)

[CW79] Larry Carter and Mark N. Wegman. Universal Classes of Hash Functions.
J. Comput. Syst. Sci., 18(2):143–154, 1979. ISSN 0022-0000. August 6,
2013. http://dx.doi.org/10.1016/0022-0000(79)90044-8
(Cited on pages 186, 187, and 190.)

[CC08a] Denis Xavier Charles and Kumar Chellapilla. Bloomier Filters: A second
look. CoRR, abs/0807.0928, 2008. July 31, 2013.
http://arxiv.org/abs/0807.0928
(Cited on page 113.)

[CC08b] Denis Xavier Charles and Kumar Chellapilla. Bloomier Filters: A Second
Look. In Proc. 16th ESA, volume 5193 of LNCS, pages 259–270.
Springer, 2008. ISBN 978-3-540-87743-1. July 29, 2013.
http://dx.doi.org/10.1007/978-3-540-87744-8_22
(Cited on pages 113 and 115.)

[CKRT04] Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The
Bloomier Filter: An Efficient Data Structure for Static Support Lookup
Tables. In Proc. 15th SODA, pages 30–39. SIAM, 2004. ISBN
0-89871-558-X. July 23, 2013.
http://dl.acm.org/citation.cfm?id=982792.982797
(Cited on pages 5, 95, 97, 101, 106, 113, 114, and 189.)

241

http://dx.doi.org/10.1080/15427951.2004.10129096
http://dl.acm.org/citation.cfm?id=1283383.1283433
http://journals.cambridge.org/article_S0963548397003040
http://dx.doi.org/10.1145/800105.803400
http://dx.doi.org/10.1016/0022-0000(79)90044-8
http://arxiv.org/abs/0807.0928
http://dx.doi.org/10.1007/978-3-540-87744-8_22
http://dl.acm.org/citation.cfm?id=982792.982797

BIBLIOGRAPHY

[CG85] Benny Chor and Oded Goldreich. Unbiased Bits from Sources of Weak
Randomness and Probabilistic Communication Complexity (Extended
Abstract). In Proc. 26th FOCS, pages 429–442. IEEE Computer Society,
1985. ISSN 0272-5428. August 7, 2013.
http://dx.doi.org/10.1109/SFCS.1985.62
(Cited on page 186.)

[CG88] Benny Chor and Oded Goldreich. Unbiased Bits from Sources of Weak
Randomness and Probabilistic Communication Complexity. SIAM J.
Comput., 17(2):230–261, 1988. ISSN 0097-5397. August 7, 2013.
http://dx.doi.org/10.1137/0217015
(Cited on page 186.)

[CV08] Kai-Min Chung and Salil P. Vadhan. Tight Bounds for Hashing Block
Sources. In Proc. 11th APPROX / 12th RANDOM, volume 5171 of
LNCS, pages 357–370. Springer, 2008. ISBN 978-3-540-85362-6. July 22,
2013. http://dx.doi.org/10.1007/978-3-540-85363-3_29
(Cited on pages 186 and 187.)

[CK09] Jeffery S. Cohen and Daniel M. Kane. Bounds on the Independence
Required for Cuckoo Hashing, 2009. submitted to ACM TALG; August
14, 2012. http://math.stanford.edu/~dankane/cuchkoohashing.pdf
(Cited on page 188.)

[Coo04] Colin Cooper. The Cores of Random Hypergraphs with a Given Degree
Sequence. Random Struct. Algorithms, 25(4):353–375, 2004. ISSN
1098-2418. July 29, 2013. http://dx.doi.org/10.1002/rsa.20040
(Cited on page 16.)

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press and McGraw-Hill, 2nd
edition, 2001. ISBN 0-262-03293-7. August 7, 2013.
http://dl.acm.org/citation.cfm?id=500824
(Cited on pages 35, 189, and 193.)

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory. Wiley-Interscience, 2nd edition, 2006. ISBN 978-0-471-24195-9.
August 8, 2013. http://gso.gbv.de/DB=2.1/PPNSET?PPN=485617870
(Cited on page 190.)

[CHM92] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. An optimal
algorithm for generating minimal perfect hash functions. Inf. Process.
Lett., 43(5):257–264, 1992. July 22, 2013.
http://dx.doi.org/10.1016/0020-0190(92)90220-P
(Cited on pages 95, 99, 113, 114, and 217.)

242

http://dx.doi.org/10.1109/SFCS.1985.62
http://dx.doi.org/10.1137/0217015
http://dx.doi.org/10.1007/978-3-540-85363-3_29
http://math.stanford.edu/~dankane/cuchkoohashing.pdf
http://dx.doi.org/10.1002/rsa.20040
http://dl.acm.org/citation.cfm?id=500824
http://gso.gbv.de/DB=2.1/PPNSET?PPN=485617870
http://dx.doi.org/10.1016/0020-0190(92)90220-P

BIBLIOGRAPHY

[CHM97] Zbigniew J. Czech, George Havas, and Bohdan S. Majewski. Fundamental
Study Perfect hashing. Theor. Comput. Sci., 182(1-2):1–143, 1997. July
22, 2013. http://itee.uq.edu.au/~havas/chm.pdf
(Cited on pages 99 and 111.)

[CRS03] Artur Czumaj, Chris Riley, and Christian Scheideler. Perfectly Balanced
Allocation. In Proc. 6th APPROX - 7th RANDOM, volume 2764 of
LNCS, pages 240–251. Springer, 2003. ISBN 3-540-40770-7. July 23, 2013.
http://dx.doi.org/10.1007/978-3-540-45198-3_21
(Cited on page 37.)

[CS97] Artur Czumaj and Volker Stemann. Randomized Allocation Processes
(Extended Abstract). In Proc. 38th FOCS, pages 194–203. IEEE
Computer Society, 1997. July 24, 2013.
http://dl.acm.org/citation.cfm?id=795663.796355
(Cited on page 20.)

[CS01] Artur Czumaj and Volker Stemann. Randomized allocation processes.
Random Struct. Algorithms, 18(4):297–331, 2001. ISSN 1098-2418. July
24, 2013. http://dx.doi.org/10.1002/rsa.1011
(Cited on page 20.)

[DMPP06] Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and
Mihai Pătraşcu. De Dictionariis Dynamicis Pauco Spatio Utentibus (lat.
On Dynamic Dictionaries Using Little Space). In LATIN, volume 3887 of
LNCS, pages 349–361. Springer, 2006. ISBN 3-540-32755-X. July 23,
2013. http://dx.doi.org/10.1007/11682462_34
(Cited on page 1.)

[DM03] Luc Devroye and Pat Morin. Cuckoo hashing: Further analysis. Inf.
Process. Lett., 86(4):215–219, 2003. ISSN 0020-0190. July 29, 2013.
http://dx.doi.org/10.1016/S0020-0190(02)00500-8
(Cited on pages 20 and 37.)

[Die07] Martin Dietzfelbinger. Design Strategies for Minimal Perfect Hash
Functions. In Proc. 4th SAGA, volume 4665 of LNCS, pages 2–17.
Springer, 2007. ISBN 978-3-540-74870-0. July 25, 2013.
http://dx.doi.org/10.1007/978-3-540-74871-7_2
(Cited on pages 111, 185, 189, and 193.)

[DGM+09] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea
Montanari, Rasmus Pagh, and Michael Rink. Tight Thresholds for
Cuckoo Hashing via XORSAT. CoRR, abs/0912.0287, 2009. October 10,
2012. http://arxiv.org/abs/0912.0287
(Cited on pages xiii, 28, 29, 46, 54, 100, and 130.)

243

http://itee.uq.edu.au/~havas/chm.pdf
http://dx.doi.org/10.1007/978-3-540-45198-3_21
http://dl.acm.org/citation.cfm?id=795663.796355
http://dx.doi.org/10.1002/rsa.1011
http://dx.doi.org/10.1007/11682462_34
http://dx.doi.org/10.1016/S0020-0190(02)00500-8
http://dx.doi.org/10.1007/978-3-540-74871-7_2
http://arxiv.org/abs/0912.0287

BIBLIOGRAPHY

[DGM+10] Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea
Montanari, Rasmus Pagh, and Michael Rink. Tight Thresholds for
Cuckoo Hashing via XORSAT. In Proc. 37th ICALP (1), volume 6198
of LNCS, pages 213–225. Springer, 2010. ISBN 978-3-642-14164-5. July
25, 2013. http://dx.doi.org/10.1007/978-3-642-14165-2_19
(Cited on pages xiii, 3, 21, 23, 28, 29, 54, 67, 100, 103, 104, 113, 129, 130, 180, and 189.)

[DH01] Martin Dietzfelbinger and Torben Hagerup. Simple Minimal Perfect
Hashing in Less Space. In Proc. 9th ESA, volume 2161 of LNCS, pages
109–120. Springer, 2001. ISBN 3-540-42493-8. July 21, 2013.
http://dx.doi.org/10.1007/3-540-44676-1_9
(Cited on pages 112 and 114.)

[DHKP97] Martin Dietzfelbinger, Torben Hagerup, Jyrki Katajainen, and Martti
Penttonen. A Reliable Randomized Algorithm for the Closest-Pair
Problem. J. Algorithms, 25(1):19–51, 1997. ISSN 0196-6774. July 29,
2013. http://dx.doi.org/10.1006/jagm.1997.0873
(Cited on page 193.)

[DKM+88] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic Perfect
Hashing: Upper and Lower Bounds. In Proc. 29th FOCS, pages 524–531.
IEEE Computer Society, 1988. ISBN 0-8186-0877-3. July 22, 2013.
http://doi.ieeecomputersociety.org/10.1109/SFCS.1988.21968
(Cited on pages 2 and 110.)

[DKM+94] Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer
auf der Heide, Hans Rohnert, and Robert Endre Tarjan. Dynamic Perfect
Hashing: Upper and Lower Bounds. SIAM J. Comput., 23(4):738–761,
1994. ISSN 0097-5397. July 29, 2013.
http://dx.doi.org/10.1137/S0097539791194094
(Cited on pages 2 and 110.)

[DM90] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. A new
universal class of hash functions and dynamic hashing in real time. In
Proc. 17th ICALP, volume 443 of LNCS, pages 6–19. Springer, 1990.
ISBN 3-540-52826-1. July 25, 2013.
http://dx.doi.org/10.1007/BFb0032018
(Cited on pages 184, 189, 199, and 201.)

[DM92] Martin Dietzfelbinger and Friedhelm Meyer auf der Heide. Dynamic
Hashing in Real Time. In Johannes Buchmann, Harald Ganzinger, and
Wolfgang J. Paul, editors, Informatik. Festschrift zum 60. Geburtstag
von Günter Hotz, volume 1 of TEUBNER-TEXTE zur Informatik,

244

http://dx.doi.org/10.1007/978-3-642-14165-2_19
http://dx.doi.org/10.1007/3-540-44676-1_9
http://dx.doi.org/10.1006/jagm.1997.0873
http://doi.ieeecomputersociety.org/10.1109/SFCS.1988.21968
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1007/BFb0032018

BIBLIOGRAPHY

pages 95–119. Vieweg+Teubner Verlag, 1992. ISBN 978-3-8154-2033-1.
November 6, 2014.
http://dx.doi.org/10.1007/978-3-322-95233-2_7
(Cited on pages 184 and 201.)

[DMR11a] Martin Dietzfelbinger, Michael Mitzenmacher, and Michael Rink. Cuckoo
Hashing with Pages. In Proc. 19th ESA, volume 6942 of LNCS, pages
615–627. Springer, 2011. ISBN 978-3-642-23718-8. July 23, 2013.
http://dx.doi.org/10.1007/978-3-642-23719-5_52
(Cited on pages xiii, 33, and 69.)

[DMR11b] Martin Dietzfelbinger, Michael Mitzenmacher, and Michael Rink. Cuckoo
Hashing with Pages. CoRR, abs/1104.5111, 2011. October 10, 2012.
http://arxiv.org/abs/1104.5111
(Cited on pages xiii and 69.)

[DP08a] Martin Dietzfelbinger and Rasmus Pagh. Succinct Data Structures for
Retrieval and Approximate Membership. CoRR, abs/0803.3693, 2008.
April 10, 2013. http://arxiv.org/abs/0803.3693
(Cited on pages 101, 113, and 115.)

[DP08b] Martin Dietzfelbinger and Rasmus Pagh. Succinct Data Structures for
Retrieval and Approximate Membership (Extended Abstract). In Proc.
35th ICALP (1), volume 5125 of LNCS, pages 385–396. Springer, 2008.
ISBN 978-3-540-70574-1. July 25, 2013.
http://dx.doi.org/10.1007/978-3-540-70575-8_32
(Cited on pages 101, 113, 115, 189, and 195.)

[DR09] Martin Dietzfelbinger and Michael Rink. Applications of a Splitting Trick.
In Proc. 36th ICALP (1), volume 5555 of LNCS, pages 354–365.
Springer, 2009. ISBN 978-3-642-02926-4. July 25, 2013.
http://dx.doi.org/10.1007/978-3-642-02927-1_30
(Cited on pages xiii, 185, 189, and 194.)

[DR12a] Martin Dietzfelbinger and Michael Rink. Towards Optimal
Degree-Distributions for Left-Perfect Matchings in Random Bipartite
Graphs. In Proc. 7th CSR, volume 7353 of LNCS, pages 99–111.
Springer, 2012. ISBN 978-3-642-30641-9. July 25, 2013.
http://dx.doi.org/10.1007/978-3-642-30642-6_11
(Cited on pages xiii, 29, 30, 53, and 54.)

[DR12b] Martin Dietzfelbinger and Michael Rink. Towards Optimal
Degree-distributions for Left-perfect Matchings in Random Bipartite

245

http://dx.doi.org/10.1007/978-3-322-95233-2_7
http://dx.doi.org/10.1007/978-3-642-23719-5_52
http://arxiv.org/abs/1104.5111
http://arxiv.org/abs/0803.3693
http://dx.doi.org/10.1007/978-3-540-70575-8_32
http://dx.doi.org/10.1007/978-3-642-02927-1_30
http://dx.doi.org/10.1007/978-3-642-30642-6_11

BIBLIOGRAPHY

Graphs. CoRR, abs/1203.1506, 2012. October 10, 2012.
http://arxiv.org/abs/1203.1506
(Cited on page xiii.)

[DS09] Martin Dietzfelbinger and Ulf Schellbach. On Risks of Using Cuckoo
Hashing with Simple Universal Hash Classes. In Proc. 20th SODA,
pages 795–804. SIAM, 2009. July 25, 2013.
http://dl.acm.org/citation.cfm?id=1496770.1496857
(Cited on page 188.)

[DW05] Martin Dietzfelbinger and Christoph Weidling. Balanced Allocation and
Dictionaries with Tightly Packed Constant Size Bins. In Proc. 32nd
ICALP, volume 3580 of LNCS, pages 166–178. Springer, 2005. ISBN
3-540-27580-0. July 25, 2013.
http://dx.doi.org/10.1007/11523468_14
(Cited on page 32.)

[DW07] Martin Dietzfelbinger and Christoph Weidling. Balanced allocation and
dictionaries with tightly packed constant size bins. Theor. Comput. Sci.,
380(1-2):47–68, 2007. July 25, 2013.
http://dx.doi.org/10.1016/j.tcs.2007.02.054
(Cited on pages 32, 185, and 189.)

[DW03] Martin Dietzfelbinger and Philipp Woelfel. Almost Random Graphs with
Simple Hash Functions. In Proc. 35th STOC, pages 629–638. ACM,
2003. ISBN 1-58113-674-9. July 22, 2013.
http://dx.doi.org/10.1145/780542.780634
(Cited on pages 184, 188, 189, 198, and 216.)

[DPT10] Yevgeniy Dodis, Mihai Pătraşcu, and Mikkel Thorup. Changing Base
without Losing Space. In Proc. 42nd STOC, pages 593–602. ACM, 2010.
ISBN 978-1-4503-0050-6. July 22, 2013.
http://dx.doi.org/10.1145/1806689.1806771
(Cited on page 173.)

[DK12] Michael Drmota and Reinhard Kutzelnigg. A Precise Analysis of Cuckoo
Hashing. ACM Transactions on Algorithms, 8(2):11:1–11:36, 2012.
ISSN 1549-6325. July 29, 2013.
http://doi.acm.org/10.1145/2151171.2151174
(Cited on pages 3, 20, 37, and 218.)

[DP09] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of
Measure for the Analysis of Randomized Algorithms. Cambridge
University Press, New York, NY, USA, 1st edition, 2009. ISBN

246

http://arxiv.org/abs/1203.1506
http://dl.acm.org/citation.cfm?id=1496770.1496857
http://dx.doi.org/10.1007/11523468_14
http://dx.doi.org/10.1016/j.tcs.2007.02.054
http://dx.doi.org/10.1145/780542.780634
http://dx.doi.org/10.1145/1806689.1806771
http://doi.acm.org/10.1145/2151171.2151174

BIBLIOGRAPHY

978-0-521-88427-3. August 7, 2013.
http://dl.acm.org/citation.cfm?id=1568639
(Cited on page 69.)

[DM02] Olivier Dubois and Jacques Mandler. The 3-XORSAT Threshold. In
Proc. 43rd FOCS, pages 769–778. IEEE Computer Society, 2002. ISBN
0-7695-1822-2. July 25, 2013.
http://dx.doi.org/10.1109/SFCS.2002.1182002
(Cited on pages 100 and 113.)

[ER60] Paul Erdős and Alfréd Rényi. On the Evolution of Random Graphs. Publ.
Math. Inst. Hung. Acad. Sci., 5:17–61, 1960. July 29, 2013.
http://www.renyi.hu/~p_erdos/1961-15.pdf
(Cited on pages 99, 121, and 122.)

[ER61] Paul Erdős and Alfréd Rényi. On a Classical Problem of Probability
Theory. Publ. Math. Inst. Hung. Acad. Sci., Ser. A 6, pages 215–220,
1961. July 29, 2013. http://www.renyi.hu/~p_erdos/Erdos.html
(Cited on page 20.)

[EMM06] Úlfar Erlingsson, Mark Manasse, and Frank Mcsherry. A cool and
practical alternative to traditional hash tables. In Proc. 7th WDAS, 2006.
July 25, 2013. http://www.ru.is/faculty/ulfar/CuckooHash.pdf
(Cited on page 2.)

[FCAB98] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol. In Proc.
SIGCOMM ’98, volume 28, pages 254–265. ACM, 1998. ISBN
1-58113-003-1. ISSN 0146-4833. July 25, 2013.
http://doi.acm.org/10.1145/285243.285287
(Cited on page 89.)

[FCAB00] Li Fan, Pei Cao, Jussara M. Almeida, and Andrei Z. Broder. Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol. IEEE/ACM
TON, 8(3):281–293, 2000. ISSN 1063-6692. July 25, 2013.
http://dx.doi.org/10.1109/90.851975
(Cited on page 89.)

[FR07] Daniel Fernholz and Vijaya Ramachandran. The k-orientability
Thresholds for Gn,p. In Proc. 18th SODA, pages 459–468. SIAM, 2007.
ISBN 978-0-898716-24-5. July 22, 2013.
http://dl.acm.org/citation.cfm?id=1283383.1283432
(Cited on pages 23 and 189.)

247

http://dl.acm.org/citation.cfm?id=1568639
http://dx.doi.org/10.1109/SFCS.2002.1182002
http://www.renyi.hu/~p_erdos/1961-15.pdf
http://www.renyi.hu/~p_erdos/Erdos.html
http://www.ru.is/faculty/ulfar/CuckooHash.pdf
http://doi.acm.org/10.1145/285243.285287
http://dx.doi.org/10.1109/90.851975
http://dl.acm.org/citation.cfm?id=1283383.1283432

BIBLIOGRAPHY

[FPSS03] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.
Space Efficient Hash Tables with Worst Case Constant Access Time. In
Proc. 20th STACS, volume 2607 of LNCS, pages 271–282. Springer,
2003. ISBN 3-540-00623-0. July 25, 2013.
http://dx.doi.org/10.1007/3-540-36494-3_25
(Cited on pages 2 and 38.)

[FPSS05] Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis.
Space Efficient Hash Tables with Worst Case Constant Access Time.
Theory Comput. Syst., 38(2):229–248, 2005. July 25, 2013.
http://dx.doi.org/10.1007/s00224-004-1195-x
(Cited on pages 2, 4, 5, 17, 20, 22, 38, 74, 107, 185, and 189.)

[FKP11] Nikolaos Fountoulakis, Megha Khosla, and Konstantinos Panagiotou. The
Multiple-Orientability Thresholds for Random Hypergraphs. In Proc.
22nd SODA, pages 1222–1236. SIAM, 2011. July 22, 2013. http://www.
siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
(Cited on pages 24 and 189.)

[FP10] Nikolaos Fountoulakis and Konstantinos Panagiotou. Orientability of
Random Hypergraphs and the Power of Multiple Choices. In Proc. 37th
ICALP (1), volume 6198 of LNCS, pages 348–359. Springer, 2010. ISBN
978-3-642-14164-5. July 22, 2013.
http://dx.doi.org/10.1007/978-3-642-14165-2_30
(Cited on pages 21, 128, and 189.)

[FP12] Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp Load
Thresholds for Cuckoo Hashing. Random Struct. Algorithms, 41(3):
306–333, 2012. ISSN 1042-9832. July 31, 2013.
http://dx.doi.org/10.1002/rsa.20426
(Cited on pages 3, 20, 21, and 23.)

[FPS10] Nikolaos Fountoulakis, Konstantinos Panagiotou, and Angelika Steger.
On the Insertion Time of Cuckoo Hashing. CoRR, abs/1006.1231, 2010.
March 13, 2013. http://arxiv.org/abs/1006.1231
(Cited on page 34.)

[FCDH90] Edward A. Fox, Qi Fan Chen, Amjad M. Daoud, and Lenwood S. Heath.
Order Preserving Minimal Perfect Hash Functions and Information
Retrieval. In Proc. 13th SIGIR, pages 279–311. ACM, 1990. ISBN
0-89791-408-2. July 22, 2013.
http://dx.doi.org/10.1145/96749.98233
(Cited on pages 110 and 114.)

248

http://dx.doi.org/10.1007/3-540-36494-3_25
http://dx.doi.org/10.1007/s00224-004-1195-x
http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_092_fountoulakisn.pdf
http://dx.doi.org/10.1007/978-3-642-14165-2_30
http://dx.doi.org/10.1002/rsa.20426
http://arxiv.org/abs/1006.1231
http://dx.doi.org/10.1145/96749.98233

BIBLIOGRAPHY

[FCDH91] Edward A. Fox, Qi Fan Chen, Amjad M. Daoud, and Lenwood S. Heath.
Order-preserving Minimal Perfect Hash Functions and Information
Retrieval. ACM Trans. Inf. Syst., 9(3):281–308, 1991. ISSN 1046-8188.
July 22, 2013. http://dx.doi.org/10.1145/125187.125200
(Cited on page 114.)

[FCHD89] Edward A. Fox, Qi Fan Chen, Lenwood S. Heath, and S. Datta. A More
Cost Effective Algorithm for Finding Perfect Hash Functions. In Proc.
17th CSC, pages 114–122. ACM, 1989. July 22, 2013.
http://dx.doi.org/10.1145/75427.75440
(Cited on page 114.)

[FHCD92] Edward A. Fox, Lenwood S. Heath, Qi Fan Chen, and Amjad M. Daoud.
Practical minimal perfect hash functions for large databases. Commun.
ACM, 35(1):105–121, 1992. July 22, 2013.
http://dx.doi.org/10.1145/129617.129623
(Cited on page 114.)

[FK84] Michael L. Fredman and János Komlós. On the Size of Separating
Systems and Families of Perfect Hash Functions. SIAM Journal on
Algebraic Discrete Methods, 5(1):61–68, 1984. ISSN 0196-5212. July 23,
2013. http://dx.doi.org/10.1137/0605009
(Cited on pages 109 and 116.)

[FKS82] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with O(1) worst case access time. In Proc. 23rd FOCS,
pages 165–169. IEEE Computer Society, 1982. July 22, 2013.
http://doi.ieeecomputersociety.org/10.1109/SFCS.1982.39
(Cited on page 2.)

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
Sparse Table with O(1) Worst Case Access Time. J. ACM, 31(3):
538–544, 1984. August 7, 2013. http://dx.doi.org/10.1145/828.1884
(Cited on pages 2, 110, and 184.)

[FM09] Alan M. Frieze and Páll Melsted. Maximum Matchings in Random
Bipartite Graphs and the Space Utilization of Cuckoo Hashtables. CoRR,
abs/0910.5535, 2009. October 11, 2012.
http://arxiv.org/abs/0910.5535
(Cited on pages 21 and 189.)

[FM12] Alan M. Frieze and Páll Melsted. Maximum Matchings in Random
Bipartite Graphs and the Space Utilization of Cuckoo Hash Tables.

249

http://dx.doi.org/10.1145/125187.125200
http://dx.doi.org/10.1145/75427.75440
http://dx.doi.org/10.1145/129617.129623
http://dx.doi.org/10.1137/0605009
http://doi.ieeecomputersociety.org/10.1109/SFCS.1982.39
http://dx.doi.org/10.1145/828.1884
http://arxiv.org/abs/0910.5535

BIBLIOGRAPHY

Random Struct. Algorithms, 41(3):334–364, 2012. ISSN 1042-9832. July
29, 2013. http://dx.doi.org/10.1002/rsa.20427
(Cited on pages 3, 21, and 23.)

[FMM11] Alan M. Frieze, Páll Melsted, and Michael Mitzenmacher. An Analysis of
Random-Walk Cuckoo Hashing. SIAM J. Comput., 40(2):291–308, 2011.
July 29, 2013. http://dx.doi.org/10.1137/090770928
(Cited on page 34.)

[GDT+11] Mark Galassi, Jim Davies, James Theiler, Brian Gough, Gerard Jungman,
Patrick Alken, Michael Booth, and Fabrice Rossi. GNU Scientific
Library Reference Manual. Free Software Foundation, 1.15 edition, 2011.
April 23, 2013. http://www.gnu.org/software/gsl/manual/
(Cited on page 50.)

[GW10] Pu Gao and Nicholas C. Wormald. Load Balancing and Orientability
Thresholds for Random Hypergraphs. In Proc. 42nd STOC, pages
97–104. ACM, 2010. ISBN 978-1-4503-0050-6. July 22, 2013.
http://dx.doi.org/10.1145/1806689.1806705
(Cited on pages 24 and 189.)

[Gen03] James E. Gentle. Random Number Generation and Monte Carlo
Methods. Statistics and Computing. Springer, 2nd edition, 2003. ISBN
0-387-00178-6. August 7, 2013. http://dx.doi.org/10.1007/b97336
(Cited on page 27.)

[Gil59] Edgar Nelson Gilbert. Random graphs. The Annals of Mathematical
Statistics, 30(4):1141–1144, 1959. August 31, 2013.
http://dx.doi.org/10.1214/aoms/1177706098
(Cited on page 122.)

[Gon81] Gaston H. Gonnet. Expected Length of the Longest Probe Sequence in
Hash Code Searching. J. ACM, 28(2):289–304, 1981. ISSN 0004-5411.
December 12, 2014. http://doi.acm.org/10.1145/322248.322254
(Cited on page 36.)

[GL88] Gaston H. Gonnet and Per-Åke Larson. External Hashing with Limited
Internal Storage. J. ACM, 35(1):161–184, 1988. ISSN 0004-5411. January
13, 2015. http://doi.acm.org/10.1145/42267.42274
(Cited on page 39.)

[GM79] Gaston H. Gonnet and J. Ian Munro. Efficient Ordering of Hash Tables.
SIAM J. Comput., 8(3):463–478, 1979. July 29, 2013.
http://dx.doi.org/10.1137/0208038
(Cited on page 37.)

250

http://dx.doi.org/10.1002/rsa.20427
http://dx.doi.org/10.1137/090770928
http://www.gnu.org/software/gsl/manual/
http://dx.doi.org/10.1145/1806689.1806705
http://dx.doi.org/10.1007/b97336
http://dx.doi.org/10.1214/aoms/1177706098
http://doi.acm.org/10.1145/322248.322254
http://doi.acm.org/10.1145/42267.42274
http://dx.doi.org/10.1137/0208038

BIBLIOGRAPHY

[GM11] Michael T. Goodrich and Michael Mitzenmacher. Invertible Bloom
Lookup Tables. In Proc. 49th Communication, Control, and
Computing (Allerton), pages 792–799. IEEE, 2011. ISBN
978-1-4577-1817-5. July 23, 2013.
http://dx.doi.org/10.1109/Allerton.2011.6120248
(Cited on pages 104 and 189.)

[GS89] Marco Gori and Giovanni Soda. An Algebraic Approach to Cichelli’s
Perfect Hashing. BIT, 29(1):2–13, 1989. ISSN 0006-3835. July 23, 2013.
http://dx.doi.org/10.1007/BF01932700
(Cited on page 113.)

[Gou72] Henry W. Gould. Combinatorial Identities: a standardized set of
tables listing 500 binomial coefficient summations. Morgantown, W.
Va., 1972. August 24, 2013.
http://gso.gbv.de/DB=2.1/PPNSET?PPN=025916785
(Cited on page 207.)

[Hag98] Torben Hagerup. Sorting and Searching on the Word RAM. In Proc.
15th STACS, volume 1373 of LNCS, pages 366–398. Springer, 1998.
ISBN 3-540-64230-7. July 22, 2013.
http://dx.doi.org/10.1007/BFb0028575
(Cited on page 10.)

[HT01] Torben Hagerup and Torsten Tholey. Efficient Minimal Perfect Hashing
in Nearly Minimal Space. In Proc. 18th STACS, volume 2010 of LNCS,
pages 317–326. Springer, 2001. ISBN 3-540-41695-1. July 22, 2013.
http://dx.doi.org/10.1007/3-540-44693-1_28
(Cited on pages 111, 112, and 185.)

[Hal35] Philip Hall. On Representatives of Subsets. Journal of the London
Mathematical Society, 10:26–30, 1935. August 7, 2013.
http://dx.doi.org/10.1112/jlms/s1-10.37.26
(Cited on page 18.)

[HMWC93] George Havas, Bohdan S. Majewski, Nicholas C. Wormald, and
Zbigniew J. Czech. Graphs, hypergraphs and hashing. In Proc. 19th WG,
volume 790 of LNCS, pages 153–165. Springer, 1993. ISBN 3-540-57899-4.
July 22, 2013. http://dx.doi.org/10.1007/3-540-57899-4_49
(Cited on page 113.)

[Hoe63] Wassily Hoeffding. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc., 58(301):13–30, 1963. ISSN
0162-1459. July 29, 2013. http://www.jstor.org/stable/2282952
(Cited on page 200.)

251

http://dx.doi.org/10.1109/Allerton.2011.6120248
http://dx.doi.org/10.1007/BF01932700
http://gso.gbv.de/DB=2.1/PPNSET?PPN=025916785
http://dx.doi.org/10.1007/BFb0028575
http://dx.doi.org/10.1007/3-540-44693-1_28
http://dx.doi.org/10.1112/jlms/s1-10.37.26
http://dx.doi.org/10.1007/3-540-57899-4_49
http://www.jstor.org/stable/2282952

BIBLIOGRAPHY

[HK71] John E. Hopcroft and Richard M. Karp. A n5/2 Algorithm for Maximum
Matchings in Bipartite Graphs. In Proc. 12th SWAT (FOCS), pages
122–125. IEEE Computer Society, 1971. ISSN 0272-4847. July 31, 2013.
http://dx.doi.org/10.1109/SWAT.1971.1
(Cited on page 34.)

[HK73] John E. Hopcroft and Richard M. Karp. An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs. SIAM J. Comput., 2(4):
225–231, 1973. July 31, 2013. http://dx.doi.org/10.1137/0202019
(Cited on pages 5 and 34.)

[HE05] Bradford Hovinen and Wayne Eberly. A Reliable Block Lanczos
Algorithm over Small Finite Fields. In Proc. ISSAC 2005, pages
177–184. ACM, 2005. ISBN 1-59593-095-7. July 22, 2013.
http://dx.doi.org/10.1145/1073884.1073910
(Cited on page 101.)

[JvEB86] Christiaan T. M. Jacobs and Peter van Emde Boas. Two Results on
Tables. Inf. Process. Lett., 22(1):43–48, 1986. ISSN 0020-0190. August 6,
2013. http://dx.doi.org/10.1016/0020-0190(86)90041-4
(Cited on page 110.)

[JŁR00] Svante Janson, Tomas Łuczak, and Andrzej Ruciński. Random Graphs.
Wiley-Interscience, 2000. ISBN 978-0-471-17541-4. August 24, 2013.
http://gso.gbv.de/DB=2.1/PPNSET?PPN=308697065
(Cited on pages 126 and 127.)

[JP08] Morten Skaarup Jensen and Rasmus Pagh. Optimality in External
Memory Hashing. Algorithmica, 52(3):403–411, 2008. ISSN 1432-0541.
January 13, 2015. http://dx.doi.org/10.1007/s00453-007-9155-x
(Cited on page 39.)

[Jor79] Charles Jordan. Calculus of Finite Differences. Chelsea Publishing
Company, New York, USA, 3rd edition, 1979. ISBN 0-8284-0033-4.
August 8, 2013. http://gso.gbv.de/DB=2.1/PPNSET?PPN=267909322
(Cited on page 204.)

[Kho13] Megha Khosla. Balls into Bins Made Faster. In Proc. 21st ESA, volume
8125 of LNCS, pages 601–612. Springer, 2013. ISBN 978-3-642-40449-8.
September 15, 2014.
http://dx.doi.org/10.1007/978-3-642-40450-4_51
(Cited on pages 4, 23, and 172.)

252

http://dx.doi.org/10.1109/SWAT.1971.1
http://dx.doi.org/10.1137/0202019
http://dx.doi.org/10.1145/1073884.1073910
http://dx.doi.org/10.1016/0020-0190(86)90041-4
http://gso.gbv.de/DB=2.1/PPNSET?PPN=308697065
http://dx.doi.org/10.1007/s00453-007-9155-x
http://gso.gbv.de/DB=2.1/PPNSET?PPN=267909322
http://dx.doi.org/10.1007/978-3-642-40450-4_51

BIBLIOGRAPHY

[Kim06] Jeong Han Kim. Poisson cloning model for random graphs. In Proc. ICM
Madrid 2006 Vol. III, pages 873–898. EMS Ph, 2006. July 25, 2013.
http://www.mathunion.org/ICM/ICM2006.3/
(Cited on pages 16, 104, 122, 124, 145, and 180.)

[Kim08] Jeong Han Kim. Poisson Cloning Model for Random Graphs. CoRR,
abs/0805.4133v1, 2008. August 21, 2013.
http://arxiv.org/abs/0805.4133v1
(Cited on pages 122, 124, and 145.)

[KM07] Adam Kirsch and Michael Mitzenmacher. Using a Queue to De-amortize
Cuckoo Hashing in Hardware. In Proc. 45th Communication, Control,
and Computing (Allerton), pages 751–758. Curran Associates, 2007.
ISBN 978-1-60560-086-4. July 23, 2013. http:
//www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
(Cited on page 38.)

[KM08] Adam Kirsch and Michael Mitzenmacher. On the Performance of Multiple
Choice Hash Tables with Moves on Deletes and Inserts. In Proc. 46th
Communication, Control, and Computing (Allerton), pages 1284–1290.
IEEE, 2008. ISBN 978-1-4244-2925-7. July 23, 2013.
http://dx.doi.org/10.1109/ALLERTON.2008.4797708
(Cited on page 36.)

[KMW08] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More Robust
Hashing: Cuckoo Hashing with a Stash. In Proc. 16th ESA, volume 5193
of LNCS, pages 611–622. Springer, 2008. ISBN 978-3-540-87743-1. July
23, 2013. http://dx.doi.org/10.1007/978-3-540-87744-8_51
(Cited on page 38.)

[KMW09] Adam Kirsch, Michael Mitzenmacher, and Udi Wieder. More Robust
Hashing: Cuckoo Hashing with a Stash. SIAM J. Comput., 39(4):
1543–1561, 2009. July 31, 2013.
http://dx.doi.org/10.1137/080728743
(Cited on page 38.)

[KK10] Zoltán Király and Péter Kovács. An Experimental Study of Minimum
Cost Flow Algorithms. In Proc. 8th ICAI, volume 2, pages 227–235.
Eger, Hungary, 2010. July 22, 2013.
http://icai.ektf.hu/pdf/ICAI2010-vol2-pp227-235.pdf
(Cited on page 74.)

[Knu63] Donald Ervin Knuth. Notes on "open" addressing. unpublished, 1963.

253

http://www.mathunion.org/ICM/ICM2006.3/
http://arxiv.org/abs/0805.4133v1
http://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/aller2007.pdf
http://dx.doi.org/10.1109/ALLERTON.2008.4797708
http://dx.doi.org/10.1007/978-3-540-87744-8_51
http://dx.doi.org/10.1137/080728743
http://icai.ektf.hu/pdf/ICAI2010-vol2-pp227-235.pdf

BIBLIOGRAPHY

August 14, 2012. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
(Cited on page 188.)

[Knu97] Donald Ervin Knuth. Fundamental Algorithms, volume 1 of The Art of
Computer Programming. Addison-Wesley, 3rd edition, 1997. ISBN
0-201-89683-4. August 8, 2013.
http://dl.acm.org/citation.cfm?id=260999
(Cited on page 203.)

[Knu98] Donald Ervin Knuth. Sorting and Searching, volume 3 of The Art of
Computer Programming. Addison-Wesley, 2nd edition, 1998. ISBN
0-201-89685-0. August 8, 2013.
http://dl.acm.org/citation.cfm?id=280635
(Cited on pages 2, 35, 38, 39, and 188.)

[Koz91] Dexter C. Kozen. The Design and Analysis of Algorithms. Springer,
1991. ISBN 0-387-97687-6. August 7, 2013.
http://dx.doi.org/10.1007/978-1-4612-4400-4
(Cited on page 43.)

[Kut10] Reinhard Kutzelnigg. A further analysis of Cuckoo Hashing with a Stash
and Random Graphs of Excess r. Discrete Mathematics & Theoretical
Computer Science, 12(3):81–102, 2010. ISSN 1365-8050. December 16,
2014. http:
//www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1345
(Cited on page 38.)

[Lar88] Per-Åke Larson. Linear Hashing with Separators — A Dynamic Hashing
Scheme Achieving One-Access Retrieval. ACM Trans. Database Syst.,
13(3):366–388, 1988. ISSN 0362-5915. January 13, 2015.
http://doi.acm.org/10.1145/44498.44500
(Cited on page 39.)

[LP09] Eric Lehman and Rina Panigrahy. 3.5-Way Cuckoo Hashing for the Price
of 2-and-a-Bit. In Proc. 17th ESA, volume 5757 of LNCS, pages
671–681. Springer, 2009. ISBN 978-3-642-04127-3. July 23, 2013.
http://dx.doi.org/10.1007/978-3-642-04128-0_60
(Cited on pages 33 and 189.)

[Lel12a] Marc Lelarge. A New Approach to the Orientation of Random
Hypergraphs. In Proc. 23rd SODA, pages 251–264. SIAM, 2012. January
10, 2014. http://dl.acm.org/citation.cfm?id=2095139
(Cited on pages 4, 24, 47, 189, and 215.)

254

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4899
http://dl.acm.org/citation.cfm?id=260999
http://dl.acm.org/citation.cfm?id=280635
http://dx.doi.org/10.1007/978-1-4612-4400-4
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1345
http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/1345
http://doi.acm.org/10.1145/44498.44500
http://dx.doi.org/10.1007/978-3-642-04128-0_60
http://dl.acm.org/citation.cfm?id=2095139

BIBLIOGRAPHY

[Lel12b] Marc Lelarge. A new approach to the orientation of random hypergraphs.
CoRR, abs/1201.5335, 2012. March 11, 2013.
http://arxiv.org/abs/1201.5335
(Cited on pages 4, 24, and 47.)

[LEM11] LEMON Graph Library, version 1.2.3. online, 2011. launched by the
Egerváry Research Group on Combinatorial Optimization, March 25,
2013. http://lemon.cs.elte.hu/trac/lemon/
(Cited on page 74.)

[LP12] Po-Shen Loh and Rasmus Pagh. Thresholds for Extreme Orientability.
CoRR, abs/1202.1111, 2012. March 18, 2013.
http://arxiv.org/abs/1202.1111
(Cited on pages 24 and 46.)

[Lub02] Michael Luby. LT Codes. In Proc. 43rd FOCS, pages 271–280. IEEE
Computer Society, 2002. ISBN 0-7695-1822-2. ISSN 0272-5428. July 25,
2013. http://dx.doi.org/10.1109/SFCS.2002.1181950
(Cited on pages 6 and 104.)

[LMSS01] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and
Daniel A. Spielman. Efficient Erasure Correcting Codes. IEEE
Transactions on Information Theory, 47(2):569–584, 2001. ISSN
0018-9448. July 29, 2013. http://dx.doi.org/10.1109/18.910575
(Cited on pages 6, 102, and 104.)

[LMS+97] Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi,
Daniel A. Spielman, and Volker Stemann. Practical Loss-Resilient Codes.
In Proc. 29th STOC, pages 150–159. ACM, 1997. ISBN 0-89791-888-6.
July 25, 2013. http://dx.doi.org/10.1145/258533.258573
(Cited on page 104.)

[Mai83] Harry G. Mairson. The Program Complexity of Searching a Table. In
Proc. 24th FOCS, pages 40–47. IEEE Computer Society, 1983. ISBN
0-8186-0508-1. January 18, 2015.
http://dx.doi.org/10.1109/SFCS.1983.76
(Cited on page 39.)

[Mai92] Harry G. Mairson. The Effect of Table Expansion on the Program
Complexity of Perfect Hash Funtions. BIT, 32(3):430–440, 1992. ISSN
0006-3835. January 18, 2015. http://dx.doi.org/10.1007/BF02074879
(Cited on page 39.)

[MWHC96] Bohdan S. Majewski, Nicholas C. Wormald, George Havas, and
Zbigniew J. Czech. A Family of Perfect Hashing Methods. Comput. J.,

255

http://arxiv.org/abs/1201.5335
http://lemon.cs.elte.hu/trac/lemon/
http://arxiv.org/abs/1202.1111
http://dx.doi.org/10.1109/SFCS.2002.1181950
http://dx.doi.org/10.1109/18.910575
http://dx.doi.org/10.1145/258533.258573
http://dx.doi.org/10.1109/SFCS.1983.76
http://dx.doi.org/10.1007/BF02074879

BIBLIOGRAPHY

39(6):547–554, 1996. July 22, 2013.
http://dx.doi.org/10.1093/comjnl/39.6.547
(Cited on pages 5, 6, 95, 100, 106, 113, and 115.)

[Map09] Maplesoft, Waterloo Maple Inc. Maple User Manual, Maple 13, 2009.
August 7, 2012. http://www.maplesoft.com/products/maple/
history/documentation.aspx
(Cited on page 212.)

[May02] Petar Maymounkov. Online codes (Extended Abstract). Technical Report
TR2002-833, Courant Institute, 2002. July 22, 2013.
http://cs.nyu.edu/web/Research/TechReports/reports.html
(Cited on page 104.)

[Meh82] Kurt Mehlhorn. On the program size of perfect and universal hash
functions (extended abstract). In Proc. 23rd FOCS, pages 170–175.
IEEE Computer Society, 1982. July 22, 2013.
http://dx.doi.org/10.1145/96749.98233
(Cited on pages 109, 110, and 116.)

[Meh84] Kurt Mehlhorn. Data Structures and Algorithms 1: Sorting and
Searching. EATCS Monographs on Theoretical Computer Science.
Springer, 1984. ISBN 978-3-540-13302-5. July 3, 2013.
http://www.mpi-inf.mpg.de/~mehlhorn/DatAlgbooks.html
(Cited on pages 110, 116, and 117.)

[Mit09] Michael Mitzenmacher. Some Open Questions Related to Cuckoo
Hashing. In Proc. 17th ESA, volume 5757 of LNCS, pages 1–10.
Springer, 2009. ISBN 978-3-642-04127-3. July 23, 2013.
http://dx.doi.org/10.1007/978-3-642-04128-0_1
(Cited on pages 2 and 36.)

[MT12] Michael Mitzenmacher and Justin Thaler. Peeling Arguments and Double
Hashing. In Proc. 50th Communication, Control, and Computing
(Allerton), pages 1118–1125. IEEE, 2012. ISBN 978-1-4673-4537-8. July
23, 2013. http://dx.doi.org/10.1109/Allerton.2012.6483344
(Cited on page 189.)

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing:
Randomized Algorithms and Probabilistic Analysis. Cambridge
University Press, 2005. ISBN 0-521-83540-2. August 7, 2013.
http://dl.acm.org/citation.cfm?id=1076315
(Cited on pages 138 and 211.)

256

http://dx.doi.org/10.1093/comjnl/39.6.547
http://www.maplesoft.com/products/maple/history/documentation.aspx
http://www.maplesoft.com/products/maple/history/documentation.aspx
http://cs.nyu.edu/web/Research/TechReports/reports.html
http://dx.doi.org/10.1145/96749.98233
http://www.mpi-inf.mpg.de/~mehlhorn/DatAlgbooks.html
http://dx.doi.org/10.1007/978-3-642-04128-0_1
http://dx.doi.org/10.1109/Allerton.2012.6483344
http://dl.acm.org/citation.cfm?id=1076315

BIBLIOGRAPHY

[MV08] Michael Mitzenmacher and Salil P. Vadhan. Why Simple Hash Functions
Work: Exploiting the Entropy in a Data Stream. In Proc. 19th SODA,
pages 746–755. SIAM, 2008. July 23, 2013.
http://dl.acm.org/citation.cfm?id=1347082.1347164
(Cited on pages 186 and 187.)

[MV12] Michael Mitzenmacher and George Varghese. Biff (Bloom Filter) Codes:
Fast Error Correction for Large Data Sets. In Proc. ISIT 2012, pages
483–487. IEEE, 2012. ISBN 978-1-4673-2580-6. July 25, 2013.
http://dx.doi.org/10.1109/ISIT.2012.6284236
(Cited on page 189.)

[MV99] Michael Mitzenmacher and Berhold Vöcking. The Asymptotics of
Selecting the Shortest of Two, Improved. Technical Report TR-08-99,
Computer Science Group, 1999. July 25, 2013.
ftp://ftp.deas.harvard.edu/techreports/tr-1999.html
(Cited on page 37.)

[MV02] Michael Mitzenmacher and Berhold Vöcking. Selecting the Shortest of
Two Queues, Improved. In Yu. M. Suhov, editor, Analytic Methods in
Applied Probability. In Memory of Fridrikh Karpelevich, volume 207
of American Mathematical Society Translations: Series 2, pages
165–175. AMS, 2002. ISBN 0-8218-3306-5. November 6, 2014.
https://zbmath.org/?q=an:1027.60096
(Cited on page 37.)

[Mit91] Michael David Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. PhD thesis, Harvard University, 1991.
July 22, 2013. http:
//www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
(Cited on page 36.)

[Mol04] Michael Molloy. The pure literal rule threshold and cores in random
hypergraphs. In Proc. 15th SODA, pages 672–681. SIAM, 2004. ISBN
0-89871-558-X. July 25, 2013.
http://dl.acm.org/citation.cfm?id=982792.982896
(Cited on pages 6, 16, 103, 104, 130, 131, 132, 135, 138, 141, 145, and 180.)

[ÖP03] Anna Östlin and Rasmus Pagh. Uniform Hashing in Constant Time and
Linear Space. In Proc. 35th STOC, pages 622–628. ACM, 2003. ISBN
1-58113-674-9. July 25, 2013.
http://dx.doi.org/10.1145/780542.780633
(Cited on pages 184 and 189.)

257

http://dl.acm.org/citation.cfm?id=1347082.1347164
http://dx.doi.org/10.1109/ISIT.2012.6284236
ftp://ftp.deas.harvard.edu/techreports/tr-1999.html
https://zbmath.org/?q=an:1027.60096
http://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/mythesis.pdf
http://dl.acm.org/citation.cfm?id=982792.982896
http://dx.doi.org/10.1145/780542.780633

BIBLIOGRAPHY

[PP08] Anna Pagh and Rasmus Pagh. Uniform Hashing in Constant Time and
Optimal Space. SIAM J. Comput., 38(1):85–96, 2008. July 29, 2013.
http://dx.doi.org/10.1137/060658400
(Cited on pages 7, 184, 185, 189, and 198.)

[PPR07] Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear Probing with
Constant Independence. In Proc. 39th STOC, pages 318–327. ACM,
2007. ISBN 978-1-59593-631-8. July 24, 2013.
http://dx.doi.org/10.1145/1250790.1250839
(Cited on page 188.)

[PPR09] Anna Pagh, Rasmus Pagh, and Milan Ružić. Linear Probing with
Constant Independence. SIAM J. Comput., 39(3):1107–1120, 2009. July
24, 2013. http://dx.doi.org/10.1137/070702278
(Cited on page 188.)

[Pag99] Rasmus Pagh. Hash and Displace: Efficient Evaluation of Minimal Perfect
Hash Functions. In Proc. 6th WADS, volume 1663 of LNCS, pages
49–54. Springer, 1999. ISBN 3-540-66279-0. July 23, 2013.
http://dx.doi.org/10.1007/3-540-48447-7_5
(Cited on pages 111, 112, and 114.)

[Pag01a] Rasmus Pagh. Low Redundancy in Static Dictionaries with Constant
Query Time. SIAM J. Comput., 31(2):353–363, 2001. July 29, 2013.
http://dx.doi.org/10.1137/S0097539700369909
(Cited on page 184.)

[Pag01b] Rasmus Pagh. On the Cell Probe Complexity of Membership and Perfect
Hashing. In Proc. 33rd STOC, pages 425–432. ACM, 2001. ISBN
1-58113-349-9. July 24, 2013.
http://dx.doi.org/10.1145/380752.380836
(Cited on pages 1, 2, 4, 20, 22, 37, and 188.)

[Pag03] Rasmus Pagh. Basic External Memory Data Structures. In Algorithms
for Memory Hierarchies, Advanced Lectures, volume 2625 of LNCS,
pages 14–35. Springer, 2003. ISBN 3-540-00883-7. January 13, 2015.
http://dx.doi.org/10.1007/3-540-36574-5_2
(Cited on page 39.)

[Pag09] Rasmus Pagh. Dispersing Hash Functions. Random Struct. Algorithms,
35(1):70–82, 2009. July 23, 2013.
http://dx.doi.org/10.1002/rsa.20257
(Cited on page 192.)

258

http://dx.doi.org/10.1137/060658400
http://dx.doi.org/10.1145/1250790.1250839
http://dx.doi.org/10.1137/070702278
http://dx.doi.org/10.1007/3-540-48447-7_5
http://dx.doi.org/10.1137/S0097539700369909
http://dx.doi.org/10.1145/380752.380836
http://dx.doi.org/10.1007/3-540-36574-5_2
http://dx.doi.org/10.1002/rsa.20257

BIBLIOGRAPHY

[PR01] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. In Proc.
9th ESA, volume 2161 of LNCS, pages 121–133. Springer, 2001. ISBN
3-540-42493-8. July 25, 2013.
http://dx.doi.org/10.1007/3-540-44676-1_10
(Cited on pages 2, 36, and 37.)

[PR04] Rasmus Pagh and Flemming Friche Rodler. Cuckoo Hashing. J.
Algorithms, 51(2):122–144, 2004. ISSN 0196-6774. August 6, 2013.
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
(Cited on pages 2, 23, 37, and 188.)

[PWYZ14] Rasmus Pagh, Zhewei Wei, Ke Yi, and Qin Zhang. Cache-Oblivious
Hashing. Algorithmica, 69(4):864–883, 2014. ISSN 0178-4617. January
17, 2015. http://dx.doi.org/10.1007/s00453-013-9763-6
(Cited on page 39.)

[Pan12] Konstantinos Panagiotou. personal communication (communicated by
Martin Dietzfelbinger), 2012
(Cited on page 105.)

[Pan05] Rina Panigrahy. Efficient Hashing with Lookups in two Memory Accesses.
In Proc. 16th SODA, pages 830–839. SIAM, 2005. ISBN 0-89871-585-7.
July 23, 2013.
http://dl.acm.org/citation.cfm?id=1070432.1070549
(Cited on page 32.)

[PS12] Boris Pittel and Gregory B. Sorkin. The Satisfiability Threshold for
k-XORSAT. CoRR, abs/1212.1905, 2012. April 8, 2013.
http://arxiv.org/abs/1212.1905
(Cited on pages 100 and 113.)

[PM89] Patricio V. Poblete and J. Ian Munro. Last-Come-First-Served Hashing.
J. Algorithms, 10(2):228–248, 1989. ISSN 0196-6774. July 29, 2013.
http://dx.doi.org/10.1016/0196-6774(89)90014-X
(Cited on page 37.)

[Por08] Ely Porat. An Optimal Bloom Filter Replacement Based on Matrix
Solving. CoRR, abs/0804.1845, 2008. July 31, 2013.
http://arxiv.org/abs/0804.1845
(Cited on page 113.)

[Por09] Ely Porat. An Optimal Bloom Filter Replacement Based on Matrix
Solving. In Proc. 4th CSR, volume 5675 of LNCS, pages 263–273.

259

http://dx.doi.org/10.1007/3-540-44676-1_10
http://dx.doi.org/10.1016/j.jalgor.2003.12.002
http://dx.doi.org/10.1007/s00453-013-9763-6
http://dl.acm.org/citation.cfm?id=1070432.1070549
http://arxiv.org/abs/1212.1905
http://dx.doi.org/10.1016/0196-6774(89)90014-X
http://arxiv.org/abs/0804.1845

BIBLIOGRAPHY

Springer, 2009. ISBN 978-3-642-03350-6. July 26, 2013.
http://dx.doi.org/10.1007/978-3-642-03351-3_25
(Cited on pages 113 and 115.)

[PS12] Ely Porat and Bar Shalem. A Cuckoo Hashing Variant with Improved
Memory Utilization and Insertion Time. In Proc. 22nd DCC, pages
347–356. IEEE Computer Society, 2012. ISBN 978-0-7695-4656-8. July 25,
2013. http://dx.doi.org/10.1109/DCC.2012.41
(Cited on pages 32, 33, and 189.)

[PS98] Helmut Prodinger and Wojciech Szpankowski. Preface. Algorithmica, 22
(4):363–365, 1998. ISSN 0178-4617. August 6, 2013.
http://dx.doi.org/10.1007/PL00009229
(Cited on page 188.)

[Pă08] Mihai Pătraşcu. Succincter. In Proc. 49th FOCS, pages 305–313. IEEE
Computer Society, 2008. July 22, 2013.
http://doi.ieeecomputersociety.org/10.1109/FOCS.2008.83
(Cited on page 173.)

[PT10] Mihai Pătraşcu and Mikkel Thorup. On the k-Independence Required by
Linear Probing and Minwise Independence. In Proc. 37th ICALP (1),
volume 6198 of LNCS, pages 715–726. Springer, 2010. ISBN
978-3-642-14164-5. July 25, 2013.
http://dx.doi.org/10.1007/978-3-642-14165-2_60
(Cited on page 188.)

[PT11] Mihai Pătraşcu and Mikkel Thorup. The Power of Simple Tabulation
Hashing. In Proc. 43rd STOC, pages 1–10. ACM, 2011. ISBN
978-1-4503-0691-1. July 25, 2013.
http://doi.acm.org/10.1145/1993636.1993638
(Cited on page 188.)

[PT12] Mihai Pătraşcu and Mikkel Thorup. The Power of Simple Tabulation
Hashing. J. ACM, 59(3):14:1–14:50, 2012. ISSN 0004-5411. July 25, 2013.
http://dx.doi.org/10.1145/2220357.2220361
(Cited on pages 188, 189, and 216.)

[PT13] Mihai Pătraşcu and Mikkel Thorup. Twisted Tabulation Hashing. In
Proc. 24th SODA, pages 209–228. SIAM, 2013. January 6, 2014.
http://knowledgecenter.siam.org/0236-000005
(Cited on page 189.)

[QM98] Hongbin Qi and Charles U. Martel. Design and Analysis of Hashing
Algorithms with Cache Effects. Technical report, UC Davis, 1998.

260

http://dx.doi.org/10.1007/978-3-642-03351-3_25
http://dx.doi.org/10.1109/DCC.2012.41
http://dx.doi.org/10.1007/PL00009229
http://doi.ieeecomputersociety.org/10.1109/FOCS.2008.83
http://dx.doi.org/10.1007/978-3-642-14165-2_60
http://doi.acm.org/10.1145/1993636.1993638
http://dx.doi.org/10.1145/2220357.2220361
http://knowledgecenter.siam.org/0236-000005

BIBLIOGRAPHY

January 17, 2015. http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.664
(Cited on page 39.)

[RS98] Martin Raab and Angelika Steger. "Balls into Bins" - A Simple and Tight
Analysis. In Proc. 2nd RANDOM, volume 1518 of LNCS, pages
159–170. Springer, 1998. ISBN 3-540-65142-X. July 23, 2013.
http://dx.doi.org/10.1007/3-540-49543-6_13
(Cited on page 36.)

[Rin07] Michael Rink. Untersuchungen zu neueren Bloom-Filter-Varianten und
d-left-Hashing. Diplomarbeit, Technische Universität Ilmenau, 2007.
August 2, 2013. http://gso.gbv.de/DB=2.1/PPNSET?PPN=550169911
(Cited on page 116.)

[Rin12] Michael Rink. On Thresholds for the Appearance of 2-cores in Mixed
Hypergraphs. CoRR, abs/1204.2131, 2012. October 10, 2012.
http://arxiv.org/abs/1204.2131
(Cited on pages xiii, 146, and 170.)

[Rin13] Michael Rink. Mixed Hypergraphs for Linear-Time Construction of
Denser Hashing-Based Data Structures. In Proc. 39th SOFSEM, volume
7741 of LNCS, pages 356–368. Springer, 2013. ISBN 978-3-642-35842-5.
July 25, 2013. http://dx.doi.org/10.1007/978-3-642-35843-2_31
(Cited on pages xiii, 146, and 170.)

[Riv78] Ronald L. Rivest. Optimal Arrangement of Keys in a Hash Table. J.
ACM, 25(2):200–209, 1978. ISSN 0004-5411. July 31, 2013.
http://doi.acm.org/10.1145/322063.322065
(Cited on pages 20 and 37.)

[Ros07] Kenneth A. Ross. Efficient Hash Probes on Modern Processors. In Proc.
23rd ICDE, pages 1297–1301. IEEE, 2007. July 22, 2013.
http://doi.ieeecomputersociety.org/10.1109/ICDE.2007.368997
(Cited on page 2.)

[Sag85] Thomas J. Sager. A Polynomial Time Generator for Minimal Perfect
Hash Functions. Commun. ACM, 28(5):523–532, 1985. ISSN 0001-0782.
July 22, 2013. http://doi.acm.org/10.1145/3532.3538
(Cited on page 114.)

[San04] Peter Sanders. Algorithms for Scalable Storage Servers. In Proc. 30th
SOFSEM, volume 2932 of LNCS, pages 82–101. Springer, 2004. ISBN

261

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.664
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.55.664
http://dx.doi.org/10.1007/3-540-49543-6_13
http://gso.gbv.de/DB=2.1/PPNSET?PPN=550169911
http://arxiv.org/abs/1204.2131
http://dx.doi.org/10.1007/978-3-642-35843-2_31
http://doi.acm.org/10.1145/322063.322065
http://doi.ieeecomputersociety.org/10.1109/ICDE.2007.368997
http://doi.acm.org/10.1145/3532.3538

BIBLIOGRAPHY

3-540-20779-1. July 22, 2013.
http://dx.doi.org/10.1007/978-3-540-24618-3_8
(Cited on pages 4, 23, and 24.)

[SEK00] Peter Sanders, Sebastian Egner, and Jan H. M. Korst. Fast Concurrent
Access to Parallel Disks. In Proc. 11th SODA, pages 849–858.
ACM/SIAM, 2000. ISBN 0-89871-453-2. July 29, 2013.
http://dl.acm.org/citation.cfm?id=338219.338649
(Cited on page 37.)

[SEK03] Peter Sanders, Sebastian Egner, and Jan H. M. Korst. Fast Concurrent
Access to Parallel Disks. Algorithmica, 35(1):21–55, 2003. July 29, 2013.
http://dx.doi.org/10.1007/s00453-002-0987-0
(Cited on page 37.)

[Sch09] Ulf Schellbach. On Risks of Using a High Performance Hashing
Scheme With Common Universal Classes. Dissertation, Technische
Universität Ilmenau, 2009. July 22, 2013.
http://gso.gbv.de/DB=2.1/PPNSET?PPN=604739664
(Cited on page 188.)

[SS88] Jeanette P. Schmidt and Alan Siegel. The spatial complexity of oblivious
k-probe hash functions. Technical Report Ultracomputer Note #142,
Courant Institute, 1988. July 25, 2013.
ftp://cs.nyu.edu/pub/local/ultra/ucn/101-150/ucn142.ps.Z
(Cited on page 110.)

[SS90] Jeanette P. Schmidt and Alan Siegel. The Spatial Complexity of
Oblivious k-Probe Hash Functions. SIAM J. Comput., 19(5):775–786,
1990. July 24, 2013. http://dx.doi.org/10.1137/0219054
(Cited on page 110.)

[SH94] Steven S. Seiden and Daniel S. Hirschberg. Finding succinct ordered
minimal perfect hash functions. Inf. Process. Lett., 51(6):283–288, 1994.
ISSN 0020-0190. July 23, 2013.
http://dx.doi.org/10.1016/0020-0190(94)00108-1
(Cited on pages 113 and 115.)

[Sho06] Amin Shokrollahi. Raptor Codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, 2006. ISSN 0018-9448. July 25, 2013.
http://dx.doi.org/10.1109/TIT.2006.874390
(Cited on page 104.)

[Sie89] Alan Siegel. On Universal Classes of Fast High Performance Hash
Functions, Their Time-Space Tradeoff, and Their Applications (Extended

262

http://dx.doi.org/10.1007/978-3-540-24618-3_8
http://dl.acm.org/citation.cfm?id=338219.338649
http://dx.doi.org/10.1007/s00453-002-0987-0
http://gso.gbv.de/DB=2.1/PPNSET?PPN=604739664
ftp://cs.nyu.edu/pub/local/ultra/ucn/101-150/ucn142.ps.Z
http://dx.doi.org/10.1137/0219054
http://dx.doi.org/10.1016/0020-0190(94)00108-1
http://dx.doi.org/10.1109/TIT.2006.874390

BIBLIOGRAPHY

Abstract). In Proc. 30th FOCS, pages 20–25. IEEE Computer Society,
1989. ISBN 0-8186-1982-1. July 25, 2013.
http://dx.doi.org/10.1109/SFCS.1989.63450
(Cited on page 188.)

[Sie95] Alan Siegel. On universal classes of extremely random constant-time hash
functions and their time-space tradeoff. Technical Report TR1995-684,
Courant Institute, 1995. July 22, 2013.
http://cs.nyu.edu/web/Research/TechReports/reports.html
(Cited on page 198.)

[Sie04] Alan Siegel. On Universal Classes of Extremely Random Constant-Time
Hash Functions. SIAM J. Comput., 33(3):505–543, 2004. July 29, 2013.
http://dx.doi.org/10.1137/S0097539701386216
(Cited on pages 97, 184, 188, and 192.)

[Sie88] Wacław Sierpiński. Elementary Theory of Numbers. Elsevier, 2nd
edition, 1988. ISBN 978-0-444-86662-2. August 24, 2013.
http://gso.gbv.de/DB=2.1/PPNSET?PPN=232354383
(Cited on page 192.)

[TY79] Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a Sparse Table.
Commun. ACM, 22(11):606–611, 1979. ISSN 0001-0782. July 23, 2013.
http://dx.doi.org/10.1145/359168.359175
(Cited on page 111.)

[TZ04] Mikkel Thorup and Yin Zhang. Tabulation Based 4-Universal Hashing
with Applications to Second Moment Estimation. In Proc. 15th SODA,
pages 615–624. SIAM, 2004. ISBN 0-89871-558-X. January 6, 2014.
http://dl.acm.org/citation.cfm?id=982792
(Cited on page 189.)

[TZ10] Mikkel Thorup and Yin Zhang. Tabulation Based 5-Universal Hashing
and Linear Probing. In Proc. 12th ALENEX, pages 62–76. SIAM, 2010.
ISBN 978-0-898719-31-4. January 6, 2014. http:
//www.siam.org/proceedings/alenex/2010/alx10_007_thorupm.pdf
(Cited on page 189.)

[TZ12] Mikkel Thorup and Yin Zhang. Tabulation-Based 5-Independent Hashing
with Applications to Linear Probing and Second Moment Estimation.
SIAM J. Comput., 41(2):293–331, 2012. January 6, 2014.
http://dx.doi.org/10.1137/100800774
(Cited on page 189.)

263

http://dx.doi.org/10.1109/SFCS.1989.63450
http://cs.nyu.edu/web/Research/TechReports/reports.html
http://dx.doi.org/10.1137/S0097539701386216
http://gso.gbv.de/DB=2.1/PPNSET?PPN=232354383
http://dx.doi.org/10.1145/359168.359175
http://dl.acm.org/citation.cfm?id=982792
http://www.siam.org/proceedings/alenex/2010/alx10_007_thorupm.pdf
http://www.siam.org/proceedings/alenex/2010/alx10_007_thorupm.pdf
http://dx.doi.org/10.1137/100800774

BIBLIOGRAPHY

[Vö99] Berthold Vöcking. How Asymmetry Helps Load Balancing. In Proc. 40th
FOCS, pages 131–141. IEEE Computer Society, 1999. ISBN
0-7695-0409-4. July 23, 2013.
http://dx.doi.org/10.1109/SFFCS.1999.814585
(Cited on page 36.)

[Vö03] Berthold Vöcking. How Asymmetry Helps Load Balancing. J. ACM, 50
(4):568–589, 2003. ISSN 0004-5411. July 31, 2013.
http://doi.acm.org/10.1145/792538.792546
(Cited on pages 36 and 37.)

[WC79] Mark N. Wegman and Larry Carter. New Classes and Applications of
Hash Functions. In Proc. 20th FOCS, pages 175–182. IEEE Computer
Society, 1979. ISSN 0272-5428. July 25, 2013.
http://doi.ieeecomputersociety.org/10.1109/SFCS.1979.26
(Cited on page 187.)

[WC81] Mark N. Wegman and Larry Carter. New Hash Functions and Their Use
in Authentication and Set Equality. J. Comput. Syst. Sci., 22(3):
265–279, 1981. ISSN 0022-0000. August 6, 2013.
http://dx.doi.org/10.1016/0022-0000(81)90033-7
(Cited on pages 187 and 191.)

[Wei04] Christoph Weidling. Platzeffiziente Hashverfahren mit garantierter
konstanter Zugriffszeit. Dissertation, Technische Universität Ilmenau,
2004. July 22, 2013.
http://www.weidlings.de/christoph/papers/dissertation.pdf
(Cited on pages 33 and 114.)

[Wie86] Douglas H. Wiedemann. Solving Sparse Linear Equations Over Finite
Fields. IEEE Transactions on Information Theory, 32(1):54–62, 1986.
ISSN 0018-9448. July 25, 2013.
http://dx.doi.org/10.1109/TIT.1986.1057137
(Cited on pages 101 and 113.)

[Wik12] Wikipedia. DBpedia 3.8: Dataset Titles and Dataset Categories (Labels),
2012. June 4, 2013. http://wiki.dbpedia.org/Downloads38
(Cited on page 174.)

[WKL+12] Thomas Williams, Colin Kelley, Russell Lang, Dave Kotz, John Campbell,
Gershon Elber, Alexander Woo, and many others. gnuplot, version 4.6.
online, 2012. May 1, 2013. http://www.gnuplot.info/
(Cited on pages 50 and 177.)

264

http://dx.doi.org/10.1109/SFFCS.1999.814585
http://doi.acm.org/10.1145/792538.792546
http://doi.ieeecomputersociety.org/10.1109/SFCS.1979.26
http://dx.doi.org/10.1016/0022-0000(81)90033-7
http://www.weidlings.de/christoph/papers/dissertation.pdf
http://dx.doi.org/10.1109/TIT.1986.1057137
http://wiki.dbpedia.org/Downloads38
http://www.gnuplot.info/

BIBLIOGRAPHY

[Woe06] Philipp Woelfel. Maintaining External Memory Efficient Hash Tables
(Extended Abstract). In Proc. 9th APPROX - 10th RANDOM, volume
4110 of LNCS, pages 508–519. Springer, 2006. ISBN 3-540-38044-2. July
21, 2013. http://dx.doi.org/10.1007/11830924_46
(Cited on page 112.)

265

http://dx.doi.org/10.1007/11830924_46

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die aus anderen
Quellen direkt oder indirekt übernommenen Daten und Konzepte sind unter Angabe
der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden
Arbeit nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von
Vermittlungs- bzw. Beratungsdiensten (Promotionsberater oder anderer Personen)
in Anspruch genommen. Niemand hat von mir unmittelbar oder mittelbar geldwerte
Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten
Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
einer Prüfungsbehörde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vorstehenden Erklärung
als Täuschungsversuch bewertet wird und gemäß § 7 Abs. 10 der Promotionsordnung
den Abbruch des Promotionsverfahrens zur Folge hat.

Ilmenau, den 7. April 2015

Michael Rink

267

	Contents
	1 Introduction
	1.1 Dictionary and Membership
	1.2 Retrieval and Perfect Hashing
	1.3 Uniform Hashing
	1.4 Thesis Outline
	1.4.1 Structure of the Main Chapters

	2 Preliminaries
	2.1 Notation and Terminology
	2.2 The Basic Scheme
	2.2.1 Variants
	2.2.2 Properties of the Hash Functions

	2.3 Representations
	2.3.1 Cores

	3 Dictionary and Membership
	3.1 Cuckoo Hashing Variants
	3.1.1 d-Ary Cuckoo Hashing
	 Results
	3.1.2 Irregular d-Ary Cuckoo Hashing
	 Results
	3.1.3 d-ary Cuckoo Hashing with Pages
	 Results
	3.1.4 Overview of the Chapter

	3.2 Further Background and Related Work
	3.2.1 Traditional Hash Tables
	3.2.2 Multiple Choice Hash Tables
	3.2.3 External Memory Hash Tables

	3.3 Basics
	3.3.1 Worst-Case Space Lower Bounds
	3.3.2 Left-Perfect Matchings
	3.3.3 Minimum Weight Left-Perfect Matchings

	3.4 The Generalized Selfless Algorithm
	3.4.1 Graph Model
	3.4.2 Problem Description
	3.4.3 Algorithm
	3.4.4 Experiments

	3.5 Towards Optimal Degree Distributions for Irregular Cuckoo Hashing
	3.5.1 Graph Model
	3.5.2 Problem Description
	3.5.3 Optimality of Concentration in a Unit Length Interval
	3.5.4 Essentially Two Different Strategies
	3.5.5 Asymptotic Behavior and Thresholds

	3.6 Minimize the Number of Page Accesses for Cuckoo Hashing with Pages
	3.6.1 Graph Model
	3.6.2 Problem Description
	3.6.3 Algorithms
	3.6.4 Experiments

	3.7 Conclusion

	4 Retrieval and Perfect Hashing
	4.1 Bloomier Filter Variants
	4.1.1 Immutable Bloomier Filter
	4.1.2 Irregular Immutable Bloomier Filter
	 Results
	4.1.3 Mutable Bloomier Filter
	4.1.4 Irregular Mutable Bloomier Filter
	 Results
	4.1.5 Overview of the Chapter

	4.2 Further Background and Related Work
	4.2.1 Perfect Hashing
	4.2.2 Retrieval

	4.3 Basics
	4.3.1 Worst-Case Space Lower Bounds
	4.3.2 Hypergraph Models

	4.4 Thresholds for the Appearance of Cores in Mixed Hypergraphs
	4.4.1 Lower Bound
	4.4.2 Upper Bound

	4.5 Maximum Thresholds for the Appearance of 2-Cores in Mixed Hypergraphs
	4.5.1 Problem Transformation
	4.5.2 Preparations
	4.5.3 Analysis
	4.5.4 Experiments
	4.5.5 Auxiliary Functions

	4.6 Perfect Hashing via Matchings in Bipartite Graphs
	4.6.1 Construction Algorithm
	4.6.2 Experiments

	4.7 Conclusion

	5 Uniform Hashing
	5.1 Methods
	 Results
	5.1.1 Overview of the Chapter

	5.2 Further Background and Related Work
	5.2.1 Keys are Random Variables
	5.2.2 Keys are Arbitrary but Fixed

	5.3 Basics
	5.3.1 Full Randomness
	5.3.2 Universal Hashing
	5.3.3 Sequences of Hash Values

	5.4 Uniform Hashing in Close to Optimal Space
	5.4.1 Collapsing the Universe
	5.4.2 Splitting the Key Set Evenly
	5.4.3 Fully Random Mapping on a Small Key Set
	5.4.4 Lower Bounds on the Number of Vectors for Linear Dependence
	5.4.5 Linear Independence Implies Stochastic Independence

	5.5 Conclusion

	6 Final Remarks
	A Appearance of 2-Cores
	A.1 Asymptotic 2-Core Probability for Normal Graphs of Type A
	A.2 Maximum 2-Core Thresholds for Mixed Hypergraphs of Type B

	Nomenclature
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

