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Abstract

To enable ultra-high data rate and ubiquitous coverage in future wireless networks, new physi-

cal layer techniques are desired. Relaying is a promising technique for future wireless networks

since it can boost the coverage and can provide low cost wireless backhauling solutions, as

compared to traditional wired backhauling solutions via fiber and copper. Traditional one-

way relaying (OWR) techniques suffer from the spectral loss due to the half-duplex (HD)

operation at the relay. On one hand, two-way relaying (TWR) allows the communication

partners to transmit to and/or receive from the relay simultaneously and thus uses the spec-

trum more efficiently than OWR. Therefore, we study two-way relays and more specifically

multi-pair/multi-user TWR systems with amplify-and-forward (AF) relays. These scenarios

suffer from inter-pair or inter-user interference. To deal with the interference, advanced signal

processing algorithms, in other words, spatial division multiple access (SDMA) techniques, are

desired. On the other hand, if the relay is a full-duplex (FD) relay, the spectral loss due to a

HD operation can also be compensated. However, in practice, a FD device is hard to realize

due to the strong loop-back self-interference and the limited dynamic range at the transceiver.

Thus, advanced self-interference suppression techniques should be developed. This thesis con-

tributes to the two goals by developing optimal and/or efficient algebraic solutions for different

scenarios subject to different utility functions of the system, e.g., sum rate maximization and

transmit power minimization.

In the first part of this thesis, we first study a multi-pair TWR network with a multi-antenna

AF relay. This scenario can be also treated as the sharing of the relay and the spectrum among

multiple operators assuming that different pairs of users belong to different operators. Existing

approaches focus on interference suppression. We propose a projection based separation of

multiple operators (ProBaSeMO) scheme, which can be easily extended when each user has

multiple antennas or when different system design criteria are applied. To benchmark the

ProBaSeMO scheme, we develop optimal relay transmit strategies to maximize the system

sum rate, minimize the required transmit power at the relay, or maximize the minimum signal

to interference plus noise ratio (SINR) of the users. Specifically for the sum rate maximization

problem, gradient based methods are developed regardless whether each user has a single

antenna or multiple antennas. To guarantee a worst-case polynomial time solution, we also

develop a polynomial time algorithm which has been inspired by the polynomial time difference

of convex functions (POTDC) method. Finally, we analyze the conditions for obtaining the
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Abstract

sharing gain in terms of the sum rate. Then we study the sum rate maximization problem of

a multi-pair TWR network with multiple single antenna AF relays and single antenna users.

The resulting sum rate maximization problem, subject to a total transmit power constraint

of the relays in the network, yields a similar problem structure as in the previous scenario.

Therefore the optimal solution for one scenario can be used for the other. Moreover, a global

optimal solution, which is based on the polyblock approach, and several suboptimal solutions,

which are more computationally efficient and approximate the optimal solution, are developed

when there is a total transmit power constraint of the relays in the network or each relay has

its own transmit power constraint. We then shift our focus to a multi-pair TWR network

with multiple multi-antenna AF relays and multiple dumb repeaters. This scenario is more

general because the previous two scenarios can be seen as special realizations of this scenario.

The interference management in this scenario is more challenging due to the existence of

the repeaters. Interference neutralization (IN) is a solution for dealing with this kind of

interference. Thereby, necessary and sufficient conditions for neutralizing the interference are

derived. Moreover, a general framework to optimize different system utility functions in this

network with or without IN is developed regardless whether the AF relays in the network have

a total transmit power limit or individual transmit power limits. Finally, we develop the relay

transmit strategy as well as base station (BS) precoding and decoding schemes for a TWR

assisted multi-user MIMO (MU-MIMO) downlink channel. Compared to the multi-pair TWR

network, this scenario suffers from the co-channel interference. We develop three suboptimal

algorithms which are based on channel inversion, ProBaSeMO and zero-forcing dirty paper

coding (ZFDPC), which has a low computational complexity, provides a balance between the

performance and the complexity, and suffers only a little when the system is heavily loaded,

respectively.

In the second part of this thesis, we investigate self-interference (SI) suppression techniques

to exploit the FD gain for a point-to-point MIMO system. We first develop SI aware transmit

strategies, which provide a balance between the SI suppression and the multiplexing gain of

the system. To get the best performance, perfect channel state information (CSI) is needed,

which is imperfect in practice. Thus, worst case transmit strategies to combat the imperfect

CSI are developed, where the CSI errors are modeled deterministically and bounded by ellip-

soids. In real word applications, the RF chain is imperfect. This affects the performance of

the SI suppression techniques and thus results in residual SI. We develop efficient transmit

beamforming techniques, which are based on the signal to leakage plus noise ratio (SLNR)

criterion, to deal with the imperfections in the RF chain. All the proposed design concepts

can be extended to FD OWR systems.
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Zusammenfassung

Sehr hohe Datenraten und eine ständige Netzabdeckung in zukünftigen drahtlosen Netzwerken

erfordern die Entwicklung neuer Algorithmen auf der physikalischen Schicht. Die Nutzung von

Relais stellt dabei ein vielversprechendes Verfahren dar, um die Netzabdeckung zu vergrößern.

Zusätzlich steht hierdurch im Vergleich zu Kupfer- oder Glasfaserleitungen eine preiswerte

Lösung zur Anbindung an die Netzinfrastruktur zur Verfügung. Traditionelle Einwege-Relais-

Techniken (One-Way Relaying [OWR]) nutzen Halbduplex-Verfahren (HD-Verfahren), welche

das übertragungssystem ausbremsen und zu spektralen Verlusten führen. Einerseits erlauben es

Zweiwege-Relais-Techniken (Two-Way Relaying [TWR]), simultan sowohl das Senden als auch

das Empfangen am Relais, wodurch im Vergleich zu OWR das Spektrum effizienter genutzt

wird. Aus diesem Grunde untersuchen wir Zweiwege-Relais und im Speziellen TWR-Systeme

für den Mehrpaar-/Mehrnutzer-Betrieb unter Nutzung von Amplify-and-forward-Relais (AF-

Relais). Derartige Szenarien leiden unter Interferenz zwischen Paaren bzw. zwischen Nutzern.

Um diesen Interferenz zu vermeiden, werden hochentwickelte Signalverarbeitungsalgorithmen

– oder in anderen Worten räumliche Mehrfachzugriffsverfahren (Spatial Division Multiple Ac-

cess [SDMA]) – benötigt. Andererseits kann der spektrale Verlust durch den HD-Betrieb auch

kompensiert werden, wenn das Relais im Vollduplexbetrieb arbeitet. Nichtsdestotrotz ist ein

FD-Gerät in der Praxis aufgrund starker interner Selbstinterferenz (SI) und begrenztem Dy-

namikumfang des Tranceivers schwer zu realisieren. Aus diesem Grunde sollten fortschrittliche

Verfahren zur SI-Unterdrückung entwickelt werden. Diese Dissertation trägt diesen beiden Zie-

len Rechnung, indem optimale und/oder effiziente algebraische Lösungen entwickelt werden,

welche verschiedene Nutzenfunktionen, wie Summenrate und minimale Sendeleistung, opti-

mieren.

Im ersten Teil der Arbeit studieren wir zunächst Mehrpaar-TWR-Netzwerke mit einem

einzelnen Mehrantennen-AF-Relais. Dieser Anwendungsfall kann auch so betrachtet werden,

dass sich mehrere verschiedene Dienstoperatoren das Relais und das Spektrum teilen, wobei

verschiedene Nutzerpaare zu verschiedenen Dienstoperatoren gehören. Aktuelle Ansätze zie-

len auf die Interferenzunterdrückung ab. Wir schlagen ein auf Projektion basiertes Verfahren

zur Trennung mehrerer Dienstoperatoren (projection based separation of multiple operators

[ProBaSeMO]) vor. ProBaSeMO ist leicht anpassbar für den Fall, dass jeder Nutzer mehrere

Antennen besitzt oder unterschiedliche Systemdesignkriterien angewendet werden müssen. Als

Bewertungsmaßstab für ProBaSeMO entwickeln wir optimale Algorithmen zur Maximierung
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Zusammenfassung

der Summenrate, zur Minimierung der Sendeleistung am Relais oder zur Maximierung des

minimalen Signal-zu-Interferenz-und-Rausch-Verhältnisses (Signal to Interference plus Noise

Ratio [SINR]) am Nutzer. Zur Maximierung der Summenrate wurden spezifische gradientenba-

sierte Methoden entwickelt, die unabhängig von den Anzahl der Antennen am Nutzer sind. Um

im Falle eines
”
Worst-Case“ immer noch eine geringe Rechenkomplexität zu garantieren, entwi-

ckelten wir einen Algorithmus mit polynomieller Laufzeit. Dieser ist inspiriert von der
”
Polyno-

mial Time Difference of Convex Functions“-Methode (POTDC-Methode). Bezüglich der Sum-

menrate des Systems untersuchen wir schließlich, welche Bedingungen erfüllt sein müssen, um

einen Gewinn durch gemeinsames Nutzen zu erhalten. Hiernach untersuchen wir die Maximie-

rung der Summenrate eines Mehrpaar-TWR-Netzwerkes mit mehreren Einantennen-AF-Relais

und Einantennen-Nutzern. Das daraus resultierende Problem der Summenraten-Maximierung,

gebunden an eine bestimmte Gesamtsendeleistung aller Relais im Netzwerk, ist ähnlich dem

des vorangegangenen Szenarios. Dementsprechend kann eine optimale Lösung für das eine

Szenario auch für das jeweils andere Szenario genutzt werden. Weiterhin werden basierend

auf dem Polynomialzeitalgorithmus global optimale Lösungen entwickelt. Diese Lösungen sind

entweder an eine maximale Gesamtsendeleistung aller Relais oder an eine maximale Sende-

leistung jedes einzelnen Relais gebunden. Zusätzlich entwickeln wir suboptimale Lösungen,

die effizient in ihrer Laufzeit sind und eine Approximation der optimalen Lösung darstellen.

Anschließend legen wir unser Augenmerk auf ein Mehrpaar-TWR-Netzwerk mit mehreren

Mehrantennen-AF-Relais und mehreren Repeatern. Solch ein Szenario ist allgemeiner, da die

vorherigen beiden Szenarien als spezielle Realisierungen dieses Szenarios aufgefasst werden

können. Das Interferenz-Management in diesem Szenario ist herausfordernder aufgrund der

vorhandenen Repeater. Eine Interferenzneutralisierung (IN) stellt eine Lösung dar, um diese

entstehende Interferenz zu handhaben. Im Zuge dessen werden notwendige und ausreichende

Bedingungen zur Aufhebung der Interferenz hergeleitet. Weiterhin wird ein Framework entwi-

ckelt, dass verschiedene Systemnutzenfunktionen optimiert, wobei IN im jeweiligen Netzwerk

vorhanden sein kann oder auch nicht. Dies ist unabhängig davon, ob die Relais einer maxima-

len Gesamtsendeleistung oder einer individuellen maximalen Sendeleistung unterliegen. Letzt-

endlich entwickeln wir ein übertragungsverfahren sowie ein Vorkodier- und Dekodierverfahren

für Basisstationen (BS) in einem TWR-assistierten Mehrbenutzer-MIMO-Downlink-Kanal. Im

Vergleich mit dem Mehrpaar-TWR-Netzwerk leidet dieses Szenario unter Interferenzen zwi-

schen den Kanälen. Wir entwickeln drei suboptimale Algorithmen, welche auf die Kanalinver-

sion, ProBaSeMO und
”
Zero-Forcing Dirty Paper Coding“ (ZFDPC) beruhen. Diese weisen

eine geringe Zeitkomplexität auf und schaffen eine Balance zwischen Leistungsfähigkeit und

Komplexität. Zusätzlich gibt es jeweils nur geringe Einbrüche in stark beanspruchten Kom-

x



munikationssystemen.

Im zweiten Teil untersuchen wir Techniken zur SI-Unterdrückung, um den FD-Gewinn in ei-

nem Punkt-zu-Punkt-System auszunutzen. Zunächst entwickeln wir ein übertragungsverfahren,

dass auf SI Rücksicht nimmt und die SI-Unterdrückung gegen den Multiplexgewinn abwägt.

Die besten Ergebnisse werden durch die perfekte Kenntnis des Kanals erzielt, was praktisch

kaum der Fall ist. Aus diesem Grund werden übertragungstechniken für den
”
Worst Case“

entwickelt, die den Kanalschätzfehlern Rechnung tragen. Diese Fehler werden deterministisch

modelliert und durch Ellipsoide beschränkt. In praktischen Szenarien sind außerdem die HF-

Schaltkreise nicht perfekt. Dies hat Einfluss auf die Verfahren zur SI-Unterdrückung und führt

zu einer Restselbstinterferenz. Wir entwickeln effiziente Übertragungstechniken mittels Be-

amforming, welche auf dem Signal-zu-Verlust-und-Rausch-Verhältnis (signal to leakage plus

noise ratio [SLNR]) aufbauen, um Unvollkommenheiten der HF-Schaltkreise auszugleichen.

Zusätzlich können alle Designkonzepte auf FD-OWR-Systeme erweitert werden.
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1 Introduction and scope of the thesis

The successful deployment of new applications in wireless communications, e.g., short message

services (SMS) in the second generation (2G) of cellular communications, mobile Internet

services and wireless data services in the third generation (3G), etc., has allowed its rapid

development from the first generation (1G) to the fourth generation (4G) [5GN13]. The

popularity of the smart phone and its associated mobile data services, e.g., video streaming,

set up a strong demand on high data rate and real-time communications everywhere and

every time. This is the current challenge for the 4G. As reported in [Cis14] and shown in

Figure 1.1, the smart phone will occupy the largest portion of wireless devices in 2018. This

makes it still the focus of the service architecture for future mobile networks. Meanwhile,

the mobile data traffic by 2018 is estimated to be nearly 11 times more than in 2013. As

also reported in [4G 14], the data traffic on mobile Internet doubles per year. Moreover,

the growth of the machine-to-machine (M2M) connections, e.g., home and office security and

automation, smart metering and utilities, and wearable devices, e.g., smart watches, heads-up

displays, health and fitness trackers, etc., which bring together people, processes and things

to make networked connections more relevant and valuable, will have a tangible impact on

mobile traffic, as shown in Figure 1.2. The next generation of mobile broadband, say, the fifth

generation (5G), should be fully prepared for forthcoming challenges and be able to support

different service requirements [Eri13]. First of all, the requirement on higher data rate, which

will be accelerated by video streaming, data sharing, and cloud devices, should be fulfilled.

Moreover, new applications such as augmented reality and ultra-high-resolution video require

not only reliable Gbps data rates but also lower latency down to a few milliseconds. In addition,

the large-scale M2M communications are not human centric any more. Instead, they should

operate without the monitoring of human beings [TK12]. They will also bring requirements on

new levels of services, e.g., for sensor networks low energy consumption is extremely important;

for applications like e-health and traffic surveillance very high levels of network reliability are

required, etc..

To enable ultra-high traffic capacity and data rate, the key solution is to have ultra-dense

small-cell deployments, as foreseen by Ericsson [Eri13]. That is, low-power access nodes,

which operate with a very wide bandwidth and in higher frequency band, i.e., 10 - 100 GHz,

are deployed with much higher density than the networks of today. The motivation of using

higher frequency bands is because they can provide a contiguous large bandwidth, which
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1 Introduction and scope of the thesis

(a) Global mobile devices growth (b) Forecasts of mobile data traffic by
2018

Figure 1.1: Cisco’s forecasts of the global mobile devices growth and the mobile data traffic by
2018. [Cis14]

is the direct enabler of a high data rate. Moreover, the millimeter-wave technology, which

provides radio communications over the band 30 - 300 GHz, becomes more mature after years of

development [PK11]. A drawback of using ultra-dense networks is the associated overwhelming

task of installing and configuring backhaul network nodes, where the conventional backhauling

solutions, e.g., via optic fibers, becomes cost and operation inefficient. New backhauling

technology, i.e., wireless backhauling via relays (also called self-backhauling [ITN10]), becomes

promising for this purpose. Relaying means that the communications between partners are

accomplished via the help of multiple intermediate nodes, i.e., relays. Transmit strategies,

which can enhance the performance of a relaying network, will be investigated in Part I of this

thesis. One major drawback of the relaying technology is the latency introduced by multiple

hops and the half-duplex (HD) operation, i.e., a device can only transmit or receive in one

time slot (time-division duplex (TDD)) or on a single frequency (frequency-division duplex

(FDD)). Full-duplex (FD) communications allow simultaneous transmission and reception at

the same time and on the same frequency, which in theory can reduce the round-trip time

by half. Therefore, it can be used to alleviate or even overcome the disadvantage of the

HD operation [CJLK10]. But in practice there are still obstacles, which prevent us from fully

exploiting the gain of a FD system. One of these obstacles is the strong loop-back interference.

In Part II of this thesis, we will introduce transmit strategies which can help to suppress the

self-interference such that a simultaneous transmission and reception is guaranteed.

In summary, our thesis is motivated but not restricted by the possible 5G application of

relaying technologies and FD communications. To enhance the overall structure of the thesis,
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(a) Global M2M growth from 2G to 4G (b) Global connected wearable devices

Figure 1.2: Cisco’s forecasts of the global M2M growth and mitigation from 2G to 4G, and the
growth of global connected wearable devices by 2018. [Cis14].

the two different technologies are presented in a separate part of the thesis which can be read

independently of each other. The following sections provide a brief introduction of different

research problems, outlining the possible applications, summarizing the major contributions,

and sketching the overall structure of the thesis.

1.1 Summary of contributions

In this thesis we provide a general framework to optimize different system utility functions in

a multi-pair or multi-user non-regenerative two-way relaying network and a general framework

to improve the performance of a FD system with limited dynamic range based on spatial

division multiple access (SDMA) techniques.

Before we discuss the detailed contributions, it is worth introducing some common assump-

tions of our research. First, all the system models are valid under a narrow band assumption,

or considering a frequency flat subcarrier of a broadband multi-carrier system, e.g., this can be

achieved by considering a subcarrier of an orthogonal frequency division multiplexing (OFDM)

system with cyclic prefix (CP). Second, the considered transmit power constraints are average

power constraints, i.e., the power of the transmitted data (assuming a zero mean) is set to its

variance. Lastly, the sum rate maximization problem refers to the maximization of the mutual

information using complex circularly symmetric Gaussian inputs. Note that Gaussian inputs

are optimal from a mutual information point of view and they cannot be realized in practice.

Discrete modulations/constellations, e.g., quadrature amplitude modulation (QAM), are used
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in practice, which can significantly depart from the Gaussian idealization. To maximize the

mutual information subject to arbitrary input constellations, one may consider the so called

mercury/waterfilling technique in [LTV06].

Furthermore, convex optimization theory is the one of the major mathematical tools, which

is used to solve the formulated optimization problems in this thesis. If the formulated prob-

lems are convex, they can be solved using a unified approach, i.e., the interior-point algorithm

in [BV04]. Many software programs are available for solving standard convex optimization

problems, e.g., the CVX toolbox [CVX12] and the MOSEK toolbox [MOS12]. A short in-

troduction to convex optimization theory is found in Appendix B. Nevertheless, it is worth

stressing two major enablers, which make it possible to solve our problems using convex op-

timization theory. First, in general convex optimization theory is more suitable/developed

for vector or scalar optimization variables. However, in most of our problems, e.g., the relay

amplification matrix design in Part I, the optimization variable is a matrix. In this case, the

properties of the Kronecker product, e.g., in Chapter 3, and the Hadamard product, e.g., in

Chapter 4, enable the transformation from matrix variables to vector variables. Second, most

of our formulated optimization problems are non-convex quadratically constrained quadratic

programming (QCQP) problems. Convex reformulations are required such that the non-convex

problems can be reformulated, e.g., via the S-procedure in Chapter 8, or relaxed, e.g., using

the semidefinite relaxation (SDR) technique or the second-order cone programming (SOCP)

method in Chapter 3, to convex problems.

1.1.1 Part I: Two-Way Relaying Networks

Relays have a good potential in reducing the deployment cost, enhancing the network capacity,

mitigating shadowing effects, and providing reliable communications for different applications.

When placed at the cell edge, relays can also boost the coverage. Earlier works focus on

one-way relaying (OWR) [CT91]. In one-way relaying the communication between two nodes

is completed in four phases since the channels are accessed by the two nodes in an orthog-

onal manner and a HD relay is considered. By allowing non-orthogonal channel access, i.e.,

both nodes transmit to or receive from the relay at the same time, the communication can

be completed in two phases. This is the so-called two-way relaying (TWR) or bidirectional

relaying technique. It can compensate the spectral efficiency loss in one-way relaying due to

the HD constraint of the relay and therefore uses the radio resources in a particular efficient

manner [RW07]. Moreover, it can be combined with the amplify-and-forward (AF) relaying

strategy, which simply amplifies the received data and retransmits it to the destination. In

contrast to the decode-and-forward (DF) relaying strategy, which decodes the received data
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and re-encodes and retransmits it to the destination, the AF strategy has a reduced process-

ing delay and a reduced hardware complexity [ZLCC09]. Hence, AF TWR is also considered

in our work. Single-pair AF TWR systems are well studied especially for the case where

two nodes communicate with the help of a multiple-antenna relay [UK08, ZLCC09] or multi-

ple cooperative single antenna relays [DS10]. The fundamental problem associated with the

TWR systems is the design of the relay transmit strategy based on the available channel state

information (CSI). For a scenario with a MIMO 1 relay, this refers to the design of a relay am-

plification matrix. For a scenario with multiple single antenna relays, this refers to the design

of a complex weighting factor per relay. Nevertheless, in practice single pair TWR scenarios

are not sufficient to cover all network structures. For instance, the optimal transmit strategies

for single-pair TWR systems are in general suboptimal when they are applied to multi-user

TWR scenarios. By multi-user TWR scenarios, we mean multi-pair multi-user TWR scenarios

and the relay-assisted multi-user downlink scenario. These scenarios have important practical

applications. For example, if different pairs of users belong to different operators, then we

will have a multi-operator TWR scenario [ZRH12b]. Typically, in such a scenario the physical

resources, i.e., the spectrum and the relays, are used by different operators in an orthogonal

manner, e.g., users of different operators can access the spectrum and the relay in different

time slots. However, the orthogonal manner is spectrally inefficient compared to the case that

users of different operators access the spectrum and the relay at the same time, i.e., the non-

orthogonal manner. Such a non-orthogonal resource access scheme is termed as the physical

resource sharing and it is a potential candidate for improving the spectral efficiency of future

networks. However, in the aforementioned application interference from users of the other

operators is introduced due to the co-channel transmissions. When the noise is weak, the per-

formance of the inter-operator/inter-pair TWR system will be dominated by the interference.

In other words, the system is interference limited. Since the inter-operator/inter-pair interfer-

ence does not exist in a single-pair system, the optimal single-pair relay transmit strategies are

naturally suboptimal for the multi-operator/multi-pair TWR system with a non-orthogonal

resource access. Thus, this motivates us to develop advanced relay transmit strategies, which

are more suitable for the multi-operator/multi-pair TWR system. A similar motivation holds

for our study of the relay-assisted multi-user MIMO (MU-MIMO) downlink scenario, where

the difference is that the interference is caused by the dedicated signal to the other users of

the same operator or the same base station (BS).

1Multiple-input and multiple output (MIMO) relay here means that the relay has multiple transmit and receive
antennas and it receives and transmits the signal using MIMO techniques, e.g., spatial multiplexing schemes
or diversity schemes.
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Relay transmit strategy design for the multi-opertor/multi-pair TWR system

The relay transmit strategy is usually designed such that a specific performance criterion is

optimized under constraints on the available resources or quality of service (QoS) requirements.

This can be done by setting up a constrained optimization problem and then solving it using

optimization theory, e.g., maximizing the sum rate under the power constraint at the relay.

However, this methodology might result in a non-linear problem which is in general non-

deterministic polynomial time hard (NP-hard) to solve [GJ79]. Moreover, the obtained optimal

strategy might not be simply adapted for other performance criteria or other system settings.

Therefore, it is also attractive to have low-complexity (e.g., closed-form) efficient (e.g., close

to optimal performance) solutions which are flexible to be used under different system setups

or for different performance criteria.

The first scenario we investigate is the multi-operator TWR scenario with a MIMO AF

relay, where the users of different operators can have single or multiple antennas. In previous

works the relay amplification matrix has been designed based on zero-forcing (ZF) and mini-

mum mean-squared-error (MMSE) criteria [JS10], or only single antenna users are considered

[YZGK10]. Inspired by the transmit strategy for the MU-MIMO downlink channel [SSH04],

i.e., linear precoding techniques are designed to first suppress the inter-user interference and

then to optimize each user’s performance separately, we propose to design the relay amplifi-

cation matrix in the way that first the inter-operator interference is suppressed and then each

operator can design their relay transmit strategies independently. The proposed scheme is

called the projection based separation of multiple operators (ProBaSeMO) scheme [ZRH12b].

It provides an interference-free communication environment for different operators. The relay

amplification matrix is obtained as a closed-form solution. It can also be easily adapted to

different utility functions such as sum rate maximization, relay transmit power minimization,

or minimum signal to interference plus noise ratio (SINR) maximization. When each user

has multiple antennas, the ProBaSeMO strategy can be easily extended. Since it allows each

operator to design its own relay transmit strategy, it protects the privacy of each operator.

This is especially important in the context of physical resource sharing. Nevertheless, the

proposed ProBaSeMO strategy is a suboptimal solution. It is worth to know its performance

loss compared to the optimal solution. Hence, we study optimal relay transmit strategies to

maximize the system sum rate subject to the transmit power constraint at the relay [ZRH12b],

[ZVKH13], minimize the required transmit power at the relay subject to SINR constraints at

each user [ZBR+12], and maximize the minimum achievable SINR at the users subject to the

transmit power constraint at the relay (also known as SINR balancing) [ZBR+12]. It is worth
mentioning that we are the first to study these optimization problems. We reformulate the
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sum rate maximization problem into an unconstrained optimization problem. This optimiza-

tion problem is non-linear and in general NP-hard to solve regardless of whether each user

has single or multiple antennas. We then adopt the gradient based solutions. More specifi-

cally, when each user has a single antenna, we show that, by taking the first-order derivative

of the cost function and setting it to zero, the obtained equation is similar to a dominant

eigenvector problem. Thus, we apply the power method, which is an iterative algorithm for

calculating the dominant eigenvalue and the corresponding dominant eigenvector of a square

matrix [GL96]. When each user has multiple antennas, we apply the steepest descent method

from [Ber95]. Interestingly, the power method shows fast convergence in numerical simula-

tions. However, in general we do not have analytic evidences that either the power method or

the steepest descent method have a guaranteed polynomial time convergence. Moreover, they

might only converge to local optima. Therefore, it is worth further investigating the sum rate

maximization problem in the direction of reducing the computational complexity or finding

a global optimum. To this end, we study this optimization problem from the aspect of the

optimization theory. Moreover, to avoid intractable optimization problems, we consider only

single antenna users from now on. We first show that the corresponding sum rate maximiza-

tion problem corresponds to the difference of convex functions (DC) programming problem

which is non-convex and NP-hard in general. Afterwards, we derive an efficient polynomial

time convex optimization based algorithm to solve the problem approximately. The derived

algorithm can be viewed as an extension of the polynomial time DC (POTDC) method which

has been recently proposed in [KRVH12] to maximize the sum rate of a single pair TWR

system. For the latter problem, the POTDC algorithm, one step of which is based on SDR,

is exact, while in the case of multiple operators, the randomization procedure has to be used

that makes it approximate 2. Numerical results show that the POTDC inspired algorithm

converges much faster than the power method. Then we derive the optimal relay amplification

matrix to minimize the required transmit power at the relay or to solve the SINR balancing

problem. Both optimization problems are non-convex QCQP problems, which are in general

NP-hard to solve [LMS+10]. We show that they can be solved using the SDR technique. More

specifically, the transmit power minimization problem can be solved using the SDR technique

together with the randomization procedure while for solving the SINR balancing problem an

additional bisection search is required. Additionally, we show that the transmit power mini-

2The SDR technique first transforms the quadratic terms into the traces of a matrix product and then drops the
non-convex rank-1 constraint on the new matrix variable. The goal is to relax a non-convex QCQP problem
into a convex semidefinite programming (SDP) problem [LMS+10]. After solving the relaxed problem, rank-1
extraction has to be performed to obtain a rank-1 approximation for the original problem. The randomization
technique is one of the rank-1 extraction techniques. More details are discussed in Appendix B.3.5.
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mization problem can be also reformulated into a SOCP problem. One advantage of the SOCP

approach is that it has less computational complexity compared to the SDP approach [BPG12].

Simulation results show that the obtained solutions for both problems are almost always op-

timal. We compare the proposed ProBaSeMO approach to optimal solutions by adapting it

to different utility functions. Numerical results show that the proposed ProBaSeMO approach

has close to optimal performance especially when there are many antennas at the relay. The

last research we carry on for the multi-operator TWR scenario is the derivation of an optimal

widely linear relay amplification matrix. The motivation behind this is that if the transmitted

complex-valued signal is non-circular, i.e., the real part and the imaginary part of the signal

are correlated, also known as non-circularity, widely linear signal processing techniques can be

used to exploit this non-circularity such that additional gain is obtained compared to purely

linear processing [Ste07]. The key idea of a widely linear design is to perform linear processing

to the real and imaginary parts of the signal separately. Again, we study both optimal and

suboptimal widely linear relay amplification matrix designs. For optimal designs we use relay

transmit power minimization and SINR balancing as the design criteria. After some refor-

mulation we obtain optimization problems which have same problem structure but doubled

parameter size compared to their linear counterparts. For a suboptimal widely linear design

we consider a single pair TWR system. We propose the widely linear dual channel matching

(DCM) scheme [VRWH11] and derive the gain of using widely linear signal processing over

liner signal processing analytically [ZH13].

The second scenario we investigate is a multi-pair TWR network with multiple single an-

tenna AF relays and single antenna users. Here relay transmit strategy design means that the

relays cooperate with each other to design their amplification coefficients, i.e., a complex-valued

coefficient is applied to each relay. Due to the change of the parameter structure, it is not

possible to apply the ProBaSeMO scheme. The optimization problem also needs to be refor-

mulated. Among previous works, reference [LXDL10] deals with the adaptive power allocation

problem while assuming different pairs of users access the network using different subcarriers,

i.e., no inter-pair interference is created during the data transmission. Reference [WCY+11]
proposes suboptimal beamforming techniques for networks with inter-pair interference, where

the proposed strategy is to first null the inter-pair interference using a ZF method and then op-

timize the interference-free system using a relay transmit power minimization criterion (under

a linear constraint). In summary, both [LXDL10] and [WCY+11] resort to ZF based transmis-

sion. Moreover, none of them deals with the case that each relay has its own transmit power

constraint. In other words, previous works consider only a total transmit power constraint for

all relays in the network. In contrast, we study the sum rate maximization problem for such a
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network with either a total transmit power constraint or individual transmit power constraints

[ZRH+12c, ZRH12a]. We first show that the objective function of the optimization problem

can be represented as a product of quadratic ratios, which is a non-convex QCQP optimization

problem. Then we prove that regardless of the considered power constraints the optimization

problem satisfies the monotonic optimization framework [Tuy00]. Thus, a polyblock approach,

which is a unified approach to solve the monotonic optimization problem [Tuy00], can be ap-

plied to solve our problem. Although theoretically the polyblock approach provides globally

optimal solutions, its computational cost is high and thus low complexity algorithms are re-

quired. It is worth mentioning that when the total transmit power is considered the sum rate

maximization problem has the same problem structure as the sum rate maximization problem

of the previous multi-operator TWR scenario with single antenna users. This implies that the

optimal algorithm designed for one scenario can be used for the other scenario and vice versa.

Therefore, we can apply the power method and the POTDC algorithm to the sum rate max-

imization problem in this scenario, which yield a lower computational complexity compared

to the polyblock approach. When each relay has its own transmit power constraint, we show

that a low complexity solution can be also obtained by extending the POTDC algorithm. To

further reduce the computational complexity, we propose a heuristic approach, i.e., the total

SINR eigen-beamformer. The total SINR eigen-beamformer maximizes the ratio between the

sum of the signal powers of all the users and the sum of the interference plus noise powers

of all the users. It provides a closed-form solution when a total transmit power constraint is

considered while it does not require iterations when individual transmit power constraints are

considered. Numerical results demonstrate the superiority of the proposed methods over the

previously developed methods.

The third scenario under investigation is a multi-pair TWR network with single antenna

users and two types of AF relays, namely, the smart relays and the dummy repeaters. Smart

relays mean that the relays have multiple antennas and they perform linear processing over

the signal as in the scenarios before. By dummy repeaters we refer to the relays which do

not require CSI and only amplify the power of the received signal. Dummy repeaters do not

cooperate with each other so that cooperative transmission is not possible. Assume that the

dummy repeaters can be shut off. Then the considered scenario simplifies to the multi-operator

TWR scenario if the smart relays in the network are grouped together to form a big MIMO

relay. The considered scenario degenerates to the multi-pair TWR scenario with single an-

tenna relays if the antennas are distributed in the network such that each relay only has a

single antenna. Therefore, the third scenario generalizes the first and the second scenario.

Interference management in this kind of scenario is more challenging due to the existence of
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the dummy repeaters [HJG13b]. Interference neutralization (IN) is a technique, which tunes

the interfering signals such that they neutralize each other at the destination node, is proven

to be a powerful tool to handle interference in a multi-pair OWR network with both smart

relays and repeaters [HJ12], and in deterministic channels [MDFT08a, MDT09]. Therefore,

we study the IN feasibility and derive necessary and sufficient IN conditions for our scenario

[ZHJH14c, ZHJH14a]. The derived conditions provide an interesting result on how the total

number of antennas in the network, which are required to realize IN, decreases when clusters

of relays can be formed. Afterwards, we develop relay amplification matrices to optimize dif-

ferent system utility functions with or without IN [ZHJH14b]. The utility functions include

minimizing the required transmit power at the relays subject to minimum SINR constraints,

maximizing the minimum SINR of the users subject to relay transmit power constraint(s) (i.e.,

the SINR balancing problem), and maximize the weighted sum rate subject to relay transmit

power constraint(s), regardless whether the smart relays in the network have a total transmit

power limit or individual transmit power limits. We solve the relay power minimization prob-

lem and the sum rate maximization problem using the SDR technique and the monotonic opti-

mization framework, respectively. For the SINR balancing problem, we propose a generalized

Dinkelbach-type algorithm, which has a better convergence speed compared to the traditional

solution using bisection search [GSS+10]. Simulation results show that the IN based solution

has close to optimal performance but has a much lower computational complexity compared

to optimal solutions without IN.

Joint relay transmit strategy design and BS precoder and decoder design for

relay-assisted MU-MIMO downlink channel

The last scenario we study is the relay-assisted MU-MIMO downlink channel (or relay broad-

casting channel) with a MIMO AF relay. Here the BS has individual messages for each single

antenna user and it communicates with its users via the help a MIMO AF relay. The problem

is that the transmit strategy design includes not only the relay transmit strategy but also the

transmit and receive strategy (precoding and decoding strategy) for the BS. Before our work

[ZRH11], only [TS09] and [DKTL11] discuss the transmit strategy design problem for a MIMO

AF relay broadcasting channel and they consider only the channel inversion based techniques.

Finding the sum rate optimal transmit strategy for our scenario might result in an intractable

optimization problem. To avoid this issue, we resort to a suboptimal transmit strategy design.

We propose three suboptimal algorithms for computing the transmit and receive beamforming

matrices at the BS as well as the amplification matrix at the relay [ZRH11]. They are based

on conventional channel inversion (CI), the ProBaSeMO approach, and ZF dirty paper cod-
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ing (ZFDPC), which is a non-linear precoding technique [YH10]. Numerical results show the

superiority of the proposed methods over the previously developed methods in [TS09].

1.1.2 Part II: Full-Duplex Wireless Communication Systems

FD technologies enable simultaneous transmission and reception at the same time on the same

frequency and thus they have the potential to improve the spectral efficiency. For example, if

the relay node can operate in a FD mode, then the spectral efficiency loss of a OWR system

due to the HD limitation of the relay can be compensated. This will make a FD OWR system

competitive when compared to a TWR system. Moreover, if both the users and the relays

can operate in FD modes and a TWR protocol is deployed, then the spectral efficiency of

the relaying system can be further improved. The latter scenario, i.e., a FD TWR system, is

more ambitious and thus can be considered as a future research topic. The major challenge

of enabling a FD operation is that the loop-back self-interference (SI) is much stronger than

the received desired signal [JCK+11]. Theoretically, the loop-back SI is known at the receiver

and hence it can be successfully subtracted from the received signal if we have a sufficiently

large dynamic range at the receiver and the SI channel is perfectly known. In practice these

two requirements cannot be satisfied especially in an outdoor scenario3. To suppress the SI

as much as possible, most of the current SI cancellation techniques suggests a combining

of RF cancellation techniques and digital baseband cancellation techniques at the receiver.

First, a sufficient isolation between the transmit and the receive chain has to be achieved via

geometrical separation of the transmit and the receive antennas or via exploiting the antenna

diversity [EDDS11]. This kind of techniques can be seen as an artificial injection of path loss

for the SI channel. Then one can consider utilizing specific physical phenomena [CJLK10],

[JCK+11], [SPS11], e.g., an antenna cancellation approach using two transmit antennas is

proposed [CJLK10]. By properly adjusting the position of the two antennas, the signals of

both transmit antennas overlap destructively at the receiver antenna. All the aforementioned

technique are performed in the RF domain and thus they are RF cancellation techniques. The

amount of SI suppression provided by most of the RF cancellation techniques is limited by

the hardware capabilities. Therefore, other SI cancellation techniques, i.e., digital baseband

cancellation techniques [RWW11], have to be used to further reduce the SI. Digital baseband

cancellation can be achieved via the subtraction of the estimated SI signal at the receiver

or via spatial suppression schemes by jointly designing the precoder at the transmitter and

the decoder at the receiver [RWW11]. There are several disadvantages of the current SI

3In an outdoor scenario the path loss and the user mobility is more severe and thus requires a even larger
dynamic range compared to an indoor scenario for an idealistic FD implementation.
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cancellation schemes. First, they only guarantee a SI suppression in a specific scenario under

a specific system configuration, i.e., their extendability to a different scenario and to a general

system setup, e.g., MIMO settings, are unknown. Second, most of the cancellation techniques

focus only on the SI minimization but are not aware of the resulting system performance, e.g.,

the achievable sum rate.

Hence, we propose a SI aware transmit beamforming solution for realizing a FD point-to-

point (P2P) MIMO system. Our concept here is to first define a SI threshold (which is known

a priori). This threshold guarantees that with or without using RF cancellation techniques the

received SI should be within the limited dynamic range of the receiver chain. Then the residual

SI can be estimated and then be subtracted at the digital baseband of the receiver. Since this

threshold can be formulated as a constraint, this allows us to develop transmit beamformers

to optimize different system utility functions by setting up constrained optimization problems.

Clearly, this approach provides more flexibilities in SI cancellation, which can be very useful

for critical scenarios such as wide-area deployments. The other advantage of this approach

is that it allows two transceivers to design their transmit strategies independently compared

to the joint design in [DMBS12]. We develop optimal SI aware precoders to maximize the

sum rate of the FD system [ZTLH12]. By analyzing active constraints at the optimality,

i.e., the constraints are satisfied with equality at the optimality, we show that closed-form

solutions can be obtained when each FD device has multiple transmit antennas and a single

receive antenna, i.e., a multiple-input single-output (MISO) setup, or when each FD device

has 2 transmit antennas and 2 receive antennas, i.e., a 2-by-2 MIMO setup. To achieve the

best performance, perfect CSI is desired, which is difficult to obtain practice. Thus, robust

design approaches which take into account the imperfections of the CSI such as [WP09] are

important for a realistic system implementation. Therefore, we also develop a worst-case

optimal transmit strategy by applying a deterministic channel error model in case of imperfect

CSI [ZTH13b]. The system utility function is to minimize the total transmit power subject

to total SINR constraints at each user. Simulation results demonstrate the robustness of the

developed algorithm.

Due to the imperfect RF chain, even after subtracting the known SI, the residual SI can

still affect the achievable sum rate of a FD P2P system [DMBS12]. The resulting sum rate

maximization problem is non-convex and thus a gradient projection (GP) algorithm is applied

in [DMBS12]. Moreover, to guarantee that the achievable FD sum rate is never below the

achievable sum rate of a HD baseline scenario, reference [DMBS12] proposes to jointly optimize

the transmit covariance matrices of the two terminals for every two time slots. Thereby, when

the achievable FD rate is smaller than its HD counterpart, a FD operation is switched to a
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HD operation by the proposed algorithm. To avoid a prohibitive computational complexity,

we develop sub-optimal transmit strategies which can be calculated during each time slot

[ZTH13c]. First, we exploit the statistics of the residual interference and develop signal to

leakage plus noise ratio (SLNR) based precoders which have closed-form solutions for both

the MISO and the MIMO setup [HMVS01]. The proposed precoders allow the devices to

always operate in a FD mode (such that simultaneous transmission and reception is always

available). A FD gain is obtained especially in the low to medium SNR regime. Second,

noticing that properly controlling the transmit power can also improve the performance of a

FD system, we design optimal power adjustment schemes while the precoder is fixed. Power

adjustment schemes which maximize the achievable sum rate are developed for the single-input

single-output (SISO) and MISO setup while a power adjustment scheme which maximizes the

sum SINRs are found for the MIMO setup. Considering the fairness in the system, we also

develop power adjustment schemes which maximize the minimum total SINR per user in

the system. The proposed power adjustment algorithms can be further combined with the

proposed precoding algorithms to enhance the performance. Simulation results demonstrate

that the proposed transmit strategies achieve a significant gain over traditional HD transmit

strategies when applied to FD systems.

1.1.3 Other contributions

In this section we provide a list of contributions which are not directly related to the two

major contributions before. These contributions are worth mentioning because either they are

side products of our major contributions or the knowledge we have learned from the major

contributions can be applied here. They are not part of the thesis.

The first contribution is a tensor-based channel estimation algorithm for single-pair TWR

systems with multiple multi-antenna AF relays and multi-antenna users [ZNH14]. The moti-

vation behind this is that advanced transmit strategy designs (especially the precoder and de-

coder design at the users) require instantaneous CSI at the transmitter and/or at the receiver.

To estimate the channel for relaying networks, tensor-based channel estimation methods, e.g.,

[RH10b] and [RKX12], can provide a better estimation accuracy, require less training and lead

to less ambiguities compared to the traditional matrix-based methods, e.g., [LV08].

The second contribution deals with an optimal transmit strategy for the single-pair TWR

scenario with a DF relay [GZV+12, GVJ+13a, GVJ+13b]. In these works we consider only a

single carrier flat fading system but each node has multiple antennas and the superposition

coding in [OWB09] is applied at the relay. Our task is to characterize the achievable rate

region by optimizing the transmit strategies at the relay as well as at the users. By analyzing
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active constraints at the optimality, we obtain analytical solutions at the end.

Another contribution is about the joint source and relay precoding design for FD MIMO

OWR systems with a MIMO AF relay. Specifically, we study the sum rate maximization

problem subject to a SI power constraint and the transmit power constraints at the source

and the relay [ZTH13a, TZH14]. Moreover, the sum rate maximization problem for a FD P2P

MIMO system with multiple linear constraints is studied in [CZHH14].

The last part of the contributions we would like to mention are the works related to the

transmit strategy for MU-MIMO downlink scenarios [CLZ+12, LCZ+12, CLZ+13, ZRH13].

The works in [CLZ+12, LCZ+12, CLZ+13] are devoted to the development of practical low-

complexity transmit strategies for OFDM based MU-MIMO downlink systems. The results of

these works are successfully patented in [DCL+13a], [DCL+13c], and [DCL+13b]. In [ZRH13],

we study the analytic performance of the block diagonalization (BD) scheme under imperfect

CSI.

1.2 Organization of the thesis

The thesis is organized as follows. In Part I we first provide a detailed introduction and moti-

vation of TWR in Chapter 2. Then we present the multi-operator TWR scenario with a MIMO

AF relay in Chapter 3. Here we propose the ProBaSeMO scheme and derive optimal relay

amplification matrices subject to different system utility functions. We also develop optimal

and suboptimal widely linear relay transmit strategies for TWR systems with non-circular sig-

nals. Then in Chapter 4 we study the sum rate maximization problem for a multi-pair TWR

scenario with multiple single antenna AF relays. We develop optimal and suboptimal transmit

strategies under a total transmit power constraint of the relays in the network or under individ-

ual relay transmit power constraints. In Chapter 5 we study a multi-pair TWR network with

multiple MIMO AF relays and dumb repeaters. The necessary and sufficient conditions for

interference-free transmission via IN are derived. A general framework for optimizing different

utility functions is also developed. In Chapter 6 we develop suboptimal solutions for the joint

design of the precoder and the decoder at the BS as well as the relay amplification matrix

in a relay-assisted MU-MIMO downlink channel with a two-way MIMO AF relay. Chapter 7

provides a summary and outlines possible future research directions related to TWR. Proofs

and derivations are found in Appendix C.

In Part II of this thesis we discuss the possibilities of using digital transmit strategies to

suppress the SI in a FD point to point system. In Chapter 8 we develop SI aware trans-

mit strategies to maximize the sum rate of the system. To combat the imperfect CSI at the
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transmitter, we also develop a robust transmit strategy, i.e., worst-case beamforming to mini-

mize the required transmit power. In Chapter 9 we develop transmit strategies to combat the

residual interference in a FD system due to imperfect RF chains. To this end, SLNR based

beamformers and power adjustment algorithms are designed. A complete summary of Part II

and possible future research topics are given in Chapter 10. The related proofs of this part

are provided in Appendix D.

The final Chapters 11 and 12 collect all the contributions from the thesis again and sum-

marize the future research directions. There are four appendices to the thesis. Appendix A

summarizes the list of acronyms and the mathematical notation used throughout the thesis.

Appendix B provides background knowledge of convex optimization. Appendices C and D

contain proofs and derivations of Part I and Part II, respectively. The bibliography is split

into two parts: one part with the own publications and the other part with all other references.
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Part I

Two-Way Relaying Networks

16



The first part of the thesis is devoted to the development of suboptimal or optimal linear

relay transmit strategies for relay-assisted communications with two-way amplify-and-forward

(AF) relays. More specifically, we focus on multi-pair/multi-user two-way relaying (TWR)

networks. Here the network is interference limited especially in the high signal to noise ratio

(SNR) regime. In other words, we allow non-orthogonal physical resource access, in contrast to

the orthogonal physical resource access schemes, e.g., time-division multiple access (TDMA).

The physical resources include the spectrum and the infrastructure, e.g., the relay. By a non-

orthogonal physical resource access, we mean the simultaneous access of the spectrum and

the relay, i.e., spatial-division multiple access (SDMA) schemes. One of the applications of

this scenario is the spectrum and the relay sharing among multiple operators. Non-orthogonal

physical resource access suffers from the co-channel interference, which is caused by the non-

orthogonal use of the channels at the same time and on the same frequency. If the interference

is not dealt with carefully, the network might fail to provide sufficient quality of services (QoSs)

to the users. The QoS measures include the total throughput, the achievable SINR per user,

etc..

In Chapter 2 we give a thorough introduction into commonly used relaying protocols, strate-

gies, and its standardization activities. At the end of this chapter we provide the assumption

on the relay model and the system model, which are used in the rest of this part. In Chapter 3

we introduce a multi-operator TWR network with a MIMO AF relay, where multiple operators

share the spectrum and the relay. This scenario motivates our study of interference limited

relay networks. In this chapter we first present a low complexity close to optimal performance

relay amplification matrix design, which is called the projection based separation of multiple

operators (ProBaSeMO) scheme. The ProBaSeMO scheme nulls the inter-operator interfer-

ence and thus allow an interference-free transmission of each operator’s signals via the relay.

It is flexible in the sense that it can be extended to different system utility functions, i.e.,

maximizing the system sum rate, minimizing the transmit power at the relay, and maximizing

the minimum SINR per user, and that the users can have multiple antennas. Concerning the

sum rate maximization problem of the considered scenario, we develop gradient based solu-

tions which are suitable for both single and multiple antenna terminals. Furthermore, when

each user has only a single antenna, we derive optimal relay amplification matrices, which can

be used for maximizing the achievable sum rate, minimizing the transmit power at the relay,

or maximizing the minimum SINR at each user. At the end of this chapter, we also study

widely linear relay transmit strategies for single/multiple pair AF TWR systems, which can

exploit the non-circularity (as defined in Section 3.8) of the source signals. In Chapter 4, we

study the sum rate maximization problem of a multi-pair TWR network with multiple single



antenna AF relays. This scenario can be seen as a counterpart of the scenario in Chapter 3,

i.e., instead of using a multi-antenna relay we use multiple relays each with a single antenna.

The relays cooperate with each other to calculate the optimal beamforming vectors for a cen-

tralized network. A globally optimal solution has been found using the monotonic optimization

framework. In Chapter 5 we study interference neutralization, which is a technique that cre-

ates positive and negative copies of the interference at the receiver such that they cancel each

other, for more general multi-pair TWR networks. It is general because this scenario considers

multiple multi-antenna relays as well as repeaters, which simply scale the received signals and

forward them. The scenarios in Chapter 3 and Chapter 4 can be seen as special cases of this

scenario. Necessary and sufficient conditions for interference neutralization are derived and

optimal relay amplification matrices are developed with or without interference neutralization.

The last TWR scenario we introduce is the relay broadcast channel in Chapter 6, which is a

common scenario in a cellular network. Here we develop suboptimal linear and non-linear relay

transmit strategies as well as precoders and decoders at the base station to provide a better

system throughput. Finally, a conclusion and a future perspective are given in Chapter 7.



2 Introduction to two-way relaying networks

The increasing demand on high data rates and better user experiences have significantly influ-

enced the development of next generation wireless communications systems. It is a common

view that larger bandwidths, densified network structures using small cells, and high spectrum

efficiency are key solutions to satisfy the demand. On the one hand, a larger bandwidth re-

quires the shift from the current low frequency bands, i.e., 300 MHz - 3 GHz to much higher

frequency bands, e.g., the millimeter-wave band from 30 - 300 GHz [PK11], in addition to the

lower frequency. A drawback of the frequency shift is that the path loss will increase expo-

nentially such that the cell size has to be decreased. Thus, a coverage extension is required.

Instead of building new network facilities, i.e., sites, base stations (BSs), and backhauls etc.,

one economic solution for coverage extension is to use intermediate nodes to forward the signal

from the BSs to user terminals (UTs). The intermediate node which performs the relaying

functionality is called a relay. On the other hand, small cells can be used to connect both per-

spective UTs in the vicinity and massive devices, e.g., smart home devices. However, unless

the terminals within the small cell only communicate with each other, backhaul solutions are

required for an access to the mobile Internet. Compared to the wired backhauls via fibers,

relays can provide wireless backhauling solutions with much lower costs [WIN06]. Therefore,

relays will become essential elements of future wireless networks. For more motivations or

practical scenarios we refer to [SAP10] and the references therein.

Unlike the typical single-hop communication scenarios, e.g., point-to-point, point-to-multi-

point, multi-point-to-multi-point, multi-hop communications have more variations depending

on the transmission protocols, e.g., one-way, two-way, or the transmit strategies, e.g., amplify-

and-forward or decode-and-forward, at the intermediate nodes (relays), and whether a direct

link between the source and the destination is available. Thereby, even though the capacity

region of some relaying scenarios has been derived [EK11], the optimal relay transmit strategies

are in general unknown. To be focused, we limit ourselves to two-hop relaying and half-duplex

relays. Moreover, we assume that the direct link between the source and the destination

is poor and thus it can be ignored. In the rest of this chapter, we first introduce popular

relay transmit strategies of two-hop relaying in Section 2.1. Then we summarize the current

standardization activities in the area of two-hop relaying in the long term evolution advanced

(LTE-A) standard by the 3rd Generation Partnership Project (3GPP). Finally, we discuss the

relaying model considered in the rest of Part I.
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2.1 Relaying protocols and relaying strategies

Relaying protocols
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Figure 2.1: A traditional one-way relaying protocol where the communication is completed in
4 phases. The communication partner S1 has a message x1 for S2. The communication partner
S2 has a message x2 for S1.
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(a) 2-phase two-way relaying
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(b) 3-phase two-way relaying

Figure 2.2: Different types of two-way relaying. x1 and x2 represent the messages from the
two communication partners S1 and S2 while x12 represent the forwarded signal from the relay,
which is a coded version of x1 and x2.

The simplest relaying protocol is one-way relaying (OWR) in Figure 2.1. Here one-way

means that the information flows in a unidirectional way, i.e., from one specific source via

one relay or multiple relays to a specific destination. One-way relaying is also the earliest

relaying protocol which was investigated [CT91]. Therefore, it has been comparably well

studied. However, the main drawback of one-way relaying is that for a bidirectional exchange
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(b) Phase 2 of a multi-way relaying
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(c) Phase 3 of a multi-way relaying

Figure 2.3: An example of multi-way relaying with three communication partners S1, S2, and
S3. The messages x1, x2, and x3 are messages from one partner to the other two partners.
The three-phase protocol in the figure is the same as in [AK10b].

of information, at least four time slots are needed if the relay operates in the half-duplex mode.

This causes a fundamental loss in spectral efficiency.

To compensate this drawback, two-way relaying (TWR), where two communication partners

exchange data bidirectionally with the assistance of one relay node as shown in Figure 2.2, has

been proposed [RW07]. Each of these communication partners could be a mobile user as well as

a fixed BS. Moreover, the information exchange between two partners takes only two time slots

instead of four time slots of the OWR protocol, i.e., in the first time slot all the communication

partners transmit simultaneously to the relay and in the second time slot the relay processes

the received data, and forwards it to all the nodes. Thereby, the spectral efficiency loss of

one-way relaying is compensated and the two-way relaying protocol has been popularized

especially via [RW07] and [UK08]. Not surprisingly, two-way relaying has its own drawbacks.

The most obvious one is the interference introduced into the two phases: the multi-user uplink

interference is created in the first time slot; the multi-user downlink interference and the self-

interference are created in the second time slot. Although each communication partner knows

its own transmitted symbols and thus the self-interference can be subtracted given the channel

knowledge at the receiver, additional coding and signal processing are required, which is much

more complex compared to one-way relaying. It is worth mentioning that there also exists a

three-phase version of two-way relaying, where in the first phase the communication partners

transmit to the relay sequentially [SGS11]. The original purpose of this three-phase two-way
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relaying is to apply network coding schemes [LK10].

Recently, another relaying protocol, namely, multi-way relaying (MWR), has drawn more

and more research interest [GYGP09]. Here multi-way means that there are more than two

communication partners, at least three, that communicate with the help of a relay, where each

partner has a message and wants to decode messages from all the other partners. Multi-way

relaying has its applications such as video conferencing and multi-player gaming. In such

applications, multiple nodes communicate with each other. Multi-way relaying can be treated

as an extension of one-way or two-way relaying [AK10b]. But it is more difficult to deal with

because more co-channel interferences from the other users are introduced. An example of a

multi-way relaying scenario is demonstrated in Figure 2.3. In the first phase, the sources S1,

S2, and S3 send messages x1, x2, and x3 to a multi-antenna relay. The relay uses beamforming

to spatially separate the data streams and forwards them to the destinations. In the second

phase, the relay forwards x1 to S2, x2 to S3, and x3 to S1. In the third phase, the relay forwards

x1 to S3, x2 to S1, and x3 to S2. After three phases, each node has received the messages from

the other nodes [AK10b].

Relaying strategies

Relaying strategies specify what kind of processing is applied to the received data at the

relay. One of the relaying strategies is decode-and-forward (DF) relaying. DF relays decode

the original message from the received signal via base band signal processing, similarly as

what the receiver does in a single-hop communication. Afterwards, it encodes the decoded

information using dedicated modulation and coding schemes (MCSs) and then transmit the

re-encoded information to the destination, similarly as a general transmitter does. Therefore,

DF relays are closely related to single-hop communications. Signal processing techniques from

single-hop communications can be easily adopted. Moreover, if the there are no decoding

errors, the information will be forwarded in a noise-free manner. The drawback of a DF

relay is that it performs the functions of the transmitter and the receiver in a sequential

way, and thus an additional delay is introduced. When combined with the TWR protocol,

additional coding schemes have to be applied to remove the self-interference at the destination.

Commonly used codes are superposition codes and network codes, e.g., XOR codes [OWB09].

The superposition code can be easily implemented but it is power inefficient. The XOR code

can achieve a rectangular rate region in the second phase (also called the broadcast channel

(BC) phase) but it is not suitable if two communication partners experience asymmetric data

traffic. In other words, the existing coding schemes do not achieve the capacity of a DF relay

channel. But the optimal coding scheme is unknown. Furthermore, one should be aware that
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in a DF channel the rate from one communication partner to the other communication partner

is dominated by the weakest link, i.e., the weaker one of the link from the source to the relay

and the link from the relay to the destination. In a two-way relaying channel, this restriction

is extended such that the rate region is the limited by the minimum achievable rate in the first

phase (also called the multiple access channel (MAC) phase) and in the second phase.

Another well-known relaying strategy is the so called amplify-and-forward (AF) relaying

strategy. The AF relays simply amplify the received data and retransmit it to the destination.

Thereby, the received noise at the relay is also amplified and forwarded, which will affect

the performance at the destination. However, compared to the DF relay, it does not decode

and re-encode the data and thus it requires less computational complexity and has a smaller

delay. Moreover, since it does not require detailed modulation and coding information, it

protects the privacy of the communication partners, which is important especially in a relay

sharing scenario, e.g., the multi-operator relay sharing scenario in Chapter 3. The simplest

implementation of the AF relaying strategy is to amplify the received data directly in the

radio frequency (RF) band, i.e., without going to base band. This version of AF relays is

also known as repeaters [3GP08], which we will call analog AF. From the signal processing

point of view, only powers are tuned or trivial complex coefficients are adopted at each RF

chain. Moreover, this implies that the signal cannot be stored and hence the relay must

operate in full-duplex mode. A full-duplex mode operation will result in the problem of a

strong loop-back interference, i.e., the transmitted signal of the relay is much stronger than its

received signal. Thus, additional loop-back interference cancellation techniques are required

[RWW11]. One way to avoid the loop-back interference is to use different bands for the source-

to-relay link and the relay-to-destination link. Obviously, such an operation mode is spectrally

inefficient. Another operation mode of AF relays is to process the received signal at the base

band, i.e., the received signal is converted to the base band and then its weighted linear

combination is amplified and transmitted. This processing happens in the digital domain and

thus we call it digital AF. Compared to repeaters, digital AF relay can tune both the powers

and the phases and thus it has more flexibilities in signal processing, e.g., it can be used to

realize sophisticated cooperative relaying networks, although this means that channel state

information (CSI) has to be available at the relay. When combined with two-way relaying, the

estimated self-interference, i.e., the product of the estimated channel and its own transmitted

symbols is subtracted at the receiver, which is known as analogy network coding [ZLCC09].

There are also other relaying strategies, e.g., compress-and-forward (CrF) [CE79], [KGG05],

[SMMVC10] and compute-and-forward (CuF) [NG11]. Both CrF and CuF relaying are pro-

posed from an information theory basis and are more closely related to DF relaying. Consider
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a OWR channel, when the capacity of the source to relay link becomes infinitely high, the

DF strategy becomes capacity achieving since the relay channel capacity tends to that of a

point-to-point channel given that the duration of the first time slot of DF relaying can be

shortened as much as possible. Now, thinking about of the second time slot, instead of send-

ing a replica of the received signal, we can quantize it, e.g., using the Wyner-Ziv (WZ) source

coding scheme, and send the resulting finite sequence of bits. The destination can then recon-

struct the relay observation, and the duration of the second time slot can be made arbitrarily

short regardless of the quantization accuracy, provided the relay to destination link capacity

is infinite. In this case, this quantized relaying strategy, which is called compress-and-forward,

becomes capacity-achieving. Compared to the noisy quantization introduced by the CrF re-

lays, compute and forward relays tend to provide reliable information especially in a muli-user

relaying channel, e.g., the TWR channel. That is, if the source transmits coded messages

using structured codes, e.g., nested lattice codes, CuF relays can decode linear equations of

the transmitted messages using the noisy linear combinations provided by the channel. The

destination can decode the desired message if it receives sufficiently many linear combinations

[NG11]. The advantage of using structured codes is that a better MAC rate region is obtained

compared to traditional DF relaying strategies.

2.2 Standardization activities

Standardization bodies, e.g., 3GPP, IEEE 802.16j, are also active in pushing relays to real-

world deployments [YHXM09]. In this section we focus on the relaying operations and ter-

minologies defined in 3GPP LTE-A [HCM+12], [ITN10], [SVP+13]. Two types of relays have

been exactly defined in the 3GPP LTE-Advanced standards, namely, a Type-1 relay and a

Type-2 relay [3GP10]. Moreover, relays in the LTE network can also be classified as L1 relays,

L2 relays and L3 relays according to the functionality at the relay. Recently, moving relay

nodes (MRNs) have also become an active item of the 3GPP standardization group [SVP+13].

Type-1 relay vs. Type-2 relay

According to [3GP10], a Type-1 relay station (RS) is non-transparent to the user equipments

(UEs). It is in control of cells of its own and has a unique physical-layer cell identity as

depicted in Figure 2.4. It is used to help remote UEs, which are located far away from an

evolved Node B (eNB, or a BS), to access the eNB. Thus, its main objective is to extend the

coverage. A Type-1 RS uses the DF relaying strategy. There are two variants of Type-1 RSs,

namely, a Type-1a RS and a Type-1b RS. A Type-1a RS is half-duplex and operates outband,
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eNB RS UE
backhaul link

access link

Figure 2.4: A Type-1, Type-1a, or Type-1b relay defined in LTE. These types of relays have
their own cell identities.

i.e., the eNB-relay link (also known as the backhaul link) and the relay-UE link (also known as

the access link) use different frequencies. A Type-1b relay operates inband, i.e., the backhaul

link and the access link use the same frequency. Since the backhaul link and the access links

of a Type-1b RS operate in the same spectrum, an adequate antenna isolation is required to

minimize the self-interference between the access link and the backhaul link [DPS14]. Thus,

a Type-1b relay is expensive to implement. In contrast, a Type-1 RS is always a half-duplex

inband relay, where the backhaul link and the access link operate in different time slots and

thus the self-interference is avoided. It is said that at least Type 1 and Type-1a relays are

part of LTE-Advanced. On the other hand, a Type-2 relay helps a local UE, which is located

within the coverage of an eNB and has a direct communication link with the eNB as shown in

Figure 2.5, to improve its service quality and link capacity. It is always an inband relay and

thus does not have its own cell identity [YHXM09]. The relaying system in this thesis fits to

the description of a Type-1 RS except that an AF relaying strategy is used.

L1 relays, L2 relays and L3 relays

According to [ITN10], relays in LTE can be also categorized into L1 relays, L2 relays and L3

relays according to the functionality of the relay. A L1 relay is a smart repeater. In contrast to a

dumb repeater (also considered in Chapter 5), which, once installed, continuously forwards the

received signal regardless of whether there is a terminal in its coverage area, a smart repeater

can be controlled, e.g., activate the repeater only when users are present in the area. However,

scheduling and retransmission control is always handled by the eNB. If the RS performs the

25



2 Introduction to two-way relaying networks

eNB RS UE

direct link
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Figure 2.5: A Type-2 relay defined in LTE. A Type-2 relay does not has its own cell identity.

DF strategy, less noise is forwarded by the relay and thus more options can be included on the

RS, e.g., rate adaptation. Nevertheless, this kind of relay distinguishes itself based on whether

forwarding is performed on Layer 2 (thus denoted as L2 relaying) or on Layer 3 (thus denoted

as L3 relaying or self-backhauling).

Moving relay nodes

MRNs or mobile relays nodes aim at providing good quality of service to users on high speed

vehicles, e.g., trains that operate at 350 km/h [3GP13]. The advantages of using a mobile

relay for such scenarios are shown as follows: firstly, group handover can be performed by

considering the UEs served by the same MRN as a group. The probability of a group handover

failure can be noticeably reduced [SVP+13]. Secondly, the MRN is not limited by the size and

power compared to the regular UE, and thus it can better exploit MIMO techniques and other

advanced signal processing schemes. Lastly, by a proper placement of the indoor and outdoor

antennas, an MRN can circumvent the strong vehicular penetration loss [SVP+13].

2.3 System assumption, transmission protocols, and mathematical

notation

In this section, we describe the general relay and system assumptions used in our study, i.e.,

in the rest of Part I. We consider TWR with half-duplex AF relays. That is, half-duplex UTs

communicate with each other via AF relays and the direct links between UTs are ignored

due to their weaknesses. Moreover, in our work one successful communication consists of a
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training phase and a data transmission phase. That is, in the training phase each UT only

transmits training symbols. These training symbols are used for channel estimation. The

estimated channels are used for the calculation of the complex weighting coefficients at each

antenna of the relays. The training symbols are also used for channel estimation and the

calculation of precoding matrices at the UTs, given multiple receive antennas at the UTs.

The algorithms proposed in the rest of Part I are all executed after the training phase. In

the data transmission phase, each UT transmits data symbols using the precoding matrices

computed from the training phase and a scaled version of the complex weighting coefficients

can be applied at each antenna of the relays 1. Furthermore, the considered systems are

narrow band systems. Symbol level synchronization is assumed. The channel is assumed to

be frequency flat and quasi-static block fading. Moreover, we assume that the reciprocity

holds for the uplink and downlink channel between the UTs and the relay, which is valid

in an ideal reciprocal time-division duplex (TDD) system. Note that in an OFDM system

the proposed signal processing algorithms can be applied on a per-subcarrier basis. But the

resulting performance is suboptimal in general since some problems can only be studied under

a multi-carrier setup, e.g., optimal power allocation over different subcarriers [HDL11].

Upper-case and lower-case bold-faced letters denote matrices and vectors, respectively. The

expectation, trace of a matrix, transpose, conjugate, Hermitian transpose, and Moore-Penrose

pseudo inverse are denoted by E{⋅}, Tr{⋅}, {⋅}T, {⋅}∗, {⋅}H, and {⋅}+, respectively. Them−by−m
identity matrix is Im. The m−by−n matrix with all zero elements is 0m×n. The Euclidean

norm of a vector and the Frobenius norm of a matrix are denoted by ∥ ⋅∥ and ∥ ⋅∥F, respectively.
The operator ∣ ⋅ ∣ denotes the absolute value or the determinant of a matrix and ≡ stands for

identical. The Kronecker product is ⊗ and the Hadamard product is ⊙. The Khatri-Rao

product is denoted by ◇, which is defined as a column-wise Kronecker product. The vec{⋅}
operator stacks the columns of a matrix into a vector. The unvecM×N{⋅} operator stands for
the inverse function of vec{⋅}. The operator diag{v} creates a diagonal matrix by aligning the

elements of the vector v onto its diagonal. A block diagonal matrix is created by the operation

blkdiag{An}Nn=1 or blkdiag{A,B}. The rank of a matrix is denoted by rank{⋅}. For vectors

⪰ and ≻ denote element-wise inequality while for matrices they denote positive semidefinite

and positive definite, correspondingly. The ceiling function ⌈x⌉ maps a real number x to the

smallest integer that is greater or equal to x. The dimension of a subspace, the image/range of a

matrix, and the null space of a matrix are denoted by dim{⋅}, S{⋅}, and N{⋅}, correspondingly.
The operator ∂ stands for the partial derivative. The dominant eigenvalue and the dominant

eigenvector of a square matrix are denoted as λmax{⋅} and P(⋅), respectively. Moreover, log

1The reason for the scaling will be elaborated in Section 3.3.5.
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and log2 stand for the natural logarithm and the logarithm to the base 2, respectively.
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In this chapter, we discuss multi-operator two-way relaying networks, where UTs of multiple

operators communicate with each other with a shared MIMO AF relay. Specifically, we de-

velop optimal and suboptimal transmit strategies and verify the sharing gain in terms of the

system sum rate of the simultaneous spectrum and relay sharing compared to the time-shared

use of the spectrum and the relay by the operators 1. We first propose an efficient relay trans-

mit strategy which is the projection based separation of multiple operators (ProBaSeMO)

[RZHJ10, ZRH12b] in Section 3.3. Using ProBaSeMO, the system is firstly decoupled into

multiple independent single-operator TWR sub-systems via inter-operator interference sup-

pression techniques at the relay. Then, arbitrary transmit strategies for single-operator two-

way AF MIMO relaying are applied to enhance the performance of the sub-systems of each

operator. Note that the ProBaSeMO approach also facilitates the use of multiple antennas

at the UTs. Therefore, we introduce precoding and decoding strategies for UTs with mul-

tiple antennas in Section 3.3.4. Moreover, we introduce a least squares (LS) based channel

estimation algorithm for acquiring channel knowledge about the compound channel at both

the relay and each UT in Section 3.3.6. Next, to get benchmarks for the ProBaSeMO strat-

egy, we study the sum rate maximization problem subject to a transmit power constraint at

the relay [ZRH12b, ZVKH13] in Sections 3.4 and 3.5, the relay transmit power minimization

problem [ZRH+12c] in Section 3.6, and the SINR balancing problem [ZRH+12c] in Section 3.7.

Afterwards, we develop widely linear transmit strategies, which can take advantage of the non-

circularity of the transmitted complex-valued signals [ZH13] in contrast to the linear transmit

strategies, in Section 3.8. Finally, the developed algorithms are compared based on simula-

tions in Section 3.9. Moreover, the sharing gain compared to the time-shared approach is also

evaluated and discussed in Section 3.9.

3.1 Problem description and state of the art

In general, the physical resources in wireless communications are spectrum and infrastructure

[JBF+10]. Traditionally these resources are allocated orthogonally or exclusively in frequency,

time, and space inside the network of a single operator or among the networks of different

operators. Nevertheless, it is shown in [LJLM09] that spectrum sharing offers the potential

1In the time-shared approach the operators and the UTs are multiplexed in the time domain.
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to improve the network spectral efficiency. It is also reported that infrastructure (including

network equipments, sites, etc.) sharing provides advantages like reduced capital expenditures

and reduced operating expenditures [GSM08]. However, by sharing physical resources, new

types of interference are created on the physical layer. Handling these new types of interference

poses a significant and novel challenge to the design of appropriate transmission techniques.

Figure 3.1: A typical metropolitan scenario where two operators share the spectrum and a
multi-antenna relay. The arrows show the data flow in two phases, i.e., in the first time slot,
all the UTs transmit to the multi-antenna relay and the relay amplifies and sends the signal
to all the UTs in the second time slot.

We present a relay-assisted resource sharing scenario in which multiple communication part-

ners (belonging to different operators) use one relay (possibly owned by a third party / virtual

operator) to bidirectionally exchange information using the same spectrum. The relay has

multiple antennas and operates in a half-duplex mode. Note that this scenario includes spec-

trum as well as infrastructure (relay) sharing and has attractive practical applications. One

concrete application for this kind of relay sharing is the metropolitan scenario as shown in

Figure 3.1. Here, strong shadowing effects may cause many coverage holes. Therefore, dense

networks are required to guarantee the quality of service (QoS) at the user terminals. Also

taking into account that more than one operator or service provider operate in the same area,
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if they share the relays as well as the spectrum, this leads to lower capital expenditures and

operating expenditures for all the operators. Another application is a disaster scenario where

the BS cannot provide services any more. Then the relays can be deployed to temporarily

maintain the communication among the local residents. Concerning the privacy and the com-

petitiveness of different operators, in our scenario AF relays are preferable since they avoid

complex signaling and data sharing among operators, e.g., an AF relay does not need the

knowledge of the modulation and coding formats of different operators as opposed to the re-

generative relaying strategies such as DF. Moreover, AF relays significantly reduce the delay

and the complexity.

A traditional transmit strategy for our scenario is to assign the physical resources to all the

operators in an orthogonal manner, e.g., via different time slots (TDMA manner which is the

time-shared approach used in this chapter). Hence, if there is voluntary infrastructure (relay)

and spectrum sharing, four important questions arise:

• What are the potential gains (losses) with respect to the chosen performance metric (e.g.,

the system sum rate, the achievable rate region, etc.) as compared to the orthogonally

sharing (e.g., time-shared) approach?

• What are the parameter settings such that a significant gain is achieved?

• What is the order of magnitude of the gain?

• Which transmit strategies, i.e., optimal transmit strategies or suboptimal transmit strate-

gies, are more efficient to achieve the sharing gain?

These are the questions that we will answer in this chapter. For simplicity, we focus on the

abstracted system model for L operators shown in Figure 3.2. A multi-antenna AF relay is

deployed to assist the communication between pairs of UTs belonging to L different operators.

This system model has the same mathematical formulation as the multi-pair TWR scenario

with a MIMO AF relay. Thereby, each UT experiences not only the intra-operator interference

(the self-interference (SI) caused by its own transmitted signal) but also the inter-operator

interference (interference caused by other data signals dedicated to the UTs of other operators).

The SI can be subtracted at the UTs if channel knowledge can be acquired. Depending on

whether to subtract the SI at the UTs, the SDMA based techniques for our scenario can

be categorized into pairing aware methods (in which the SI is subtracted at the UTs, e.g.,

[RZHJ10], [YZGK10]) and non-pairing aware methods (in which the SI is nulled at the relay,

e.g., [JS10]). We will adopt pairing aware methods to design optimal or suboptimal relay

transmit strategies.
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Let us first provide a brief review of the state of the art in relay transmit strategy design.

One-way relaying techniques with MIMO AF relays have been well studied. For example, the

optimal beamforming design for single pair one-way relaying systems with single antenna or

multiple-antenna UTs are studied in [HNSG10] and [KYA08], respectively. In [FDSG09] it is

also implicitly shown that sharing relays between multiple UT pairs outperforms the TDMA

scheme. Nevertheless, TWR can compensate the spectral efficiency loss of one-way relaying due

to the half-duplex constraint and therefore uses the radio resources more efficiently [RW07].

Previous work on TWR systems with MIMO AF relays includes [JS10], [LLSL09], [RH09],

[RH10a], [YZGK10], [ZLCC09]. The optimal beamforming technique [LLSL09], [ZLCC09] as

well as several linear preprocessing techniques [RH09], [RH10a], have been proposed for the

design of relay amplification matrix in the single pair two-way AF relay channel. Beamforming

solutions for the multi-pair two-way MIMO relay channel are shown in [JS10], [YZGK10]. The

transmit strategy proposed in [JS10] is based on zero-forcing (ZF) and minimummean-squared-

error (MMSE) criteria. In [YZGK10] the authors consider single antenna UTs and focus on the

quantize and forward relaying strategy. In [TW12] the max-min fair relay amplification matrix

design for multi-pair two-way MIMO relay channel is presented, which has been published

almost at the same time as our work [ZBR+12]. In a more recent work [FWY13] optimal relay

transmit strategies based on Dinkelbach type I algorithm are also studied, which maximize the

sum rate (using the same polyblock approach as in our work [ZRH+12c], [ZRH12a]), minimize

the transmit power at the relay (less efficient than our proposed algorithm in [ZBR+12]), or
maximize the minimum SINR per UT. However, to our knowledge, no references deal explicitly

with the relay sharing scenario other than our work in [RZHJ10] and [ZRH12b]. Therefore, we

consider the transmit strategy design to accomplish this form of spectrum and infrastructure

sharing by exploiting the multiple antennas at the relay.

3.2 Data model and transmission protocol

The scenario under investigation is shown in Figure 3.2. Pairs of UTs belonging to L different

operators want to communicate with each other. However, due to the poor quality of the direct

channel between these pairs of UTs, they can communicate only with the help of the relay. For

notational simplicity, the kth UT of the ℓth operator has M
(ℓ)
k
=MU antennas ∀k, ℓ (k ∈ {1,2}

is the UT index, ℓ ∈ {1, . . . , L} denotes the operator index). The relay is equipped with MR

antennas. We assume that the synchronization is perfect 2 and the channel is flat fading. The

2In practice, the level of synchronization between UTs of the same operator and UTs of different operators
might be different which will have practical impacts on the performance of the proposed algorithms. However,
analyzing this issue is out of our scope since detailed mathematical modeling and analysis are required.
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Figure 3.2: L-operator two-way relaying system model. The k-th terminal belonging to the

ℓ-th operator has M
(ℓ)
k

antennas and the relay station is equipped with M R antennas.

channel between the kth UT of the ℓth operator and the relay is denoted by H
(ℓ)
k
∈ CMR×MU .

Furthermore, we assume H
(ℓ)
k

is a full rank matrix which implies rank{H(ℓ)
k
} =min{MR,MU}.

The two-way AF relaying protocol consists of two transmission phases: in the first phase,

which could also be called MAC phase, all the UTs transmit their data simultaneously to the

relay. Let the kth UT of the ℓth operator transmit the data vector s
(ℓ)
k
∈ Cr

(ℓ)
k with transmit

precoding matrix W
(ℓ)
k
∈ CMU×r(ℓ)k (r

(ℓ)
k

is the number of transmitted data streams of the

corresponding UT.). Then its transmitted signal vector x
(ℓ)
k

can be written as

x
(ℓ)
k
=W (ℓ)

k
s
(ℓ)
k

, (3.1)

with the transmit power constraint E{∥x(ℓ)
k
∥2} = P (ℓ)

k
. The elements of the input data vectors

s
(ℓ)
k

are independently distributed with zero mean and unit variance.

The received signal vector at the relay is then

r =
L∑
ℓ=1

2∑
k=1

H
(ℓ)
k

x
(ℓ)
k
+nR ∈ CMR , (3.2)

where nR ∈ CMR denotes the zero-mean circularly symmetric complex Gaussian (ZMCSCG)
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3 Multi-operator relaying networks with a MIMO relay

noise vector and E{nRn
H
R} = σ2

RIMR
.

In the second phase, which could also be called BC phase, the relay amplifies the received

signal and then forwards it to all the UTs simultaneously. The signal transmitted by the relay

can be expressed as

r̄ =G ⋅ r. (3.3)

where G ∈ CMR×MR is the relay amplification matrix. The transmit power constraint at the

relay should be fulfilled such that E{∥r̄∥2} ≤ PR, where PR denotes the total power at the

relay.

For notational simplicity, we assume that the reciprocity assumption between the first- and

second-phase channels is valid. This assumption is fulfilled in a TDD system if the RF chains

are calibrated.3 The received signal vector y
(ℓ)
k

at the kth UT of the ℓth operator can be

written as

y
(ℓ)
k
=H(ℓ)T

k
r̄ +n(ℓ)

k

=H(ℓ)T
k

GH
(ℓ)
3−kx

(ℓ)
3−k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

desired signal

+H(ℓ)T
k

GH
(ℓ)
k

x
(ℓ)
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

self-interference

+ ∑
k̄=1,2
ℓ̄≠ℓ

H
(ℓ)T
k

GH
(ℓ̄)
k̄

x
(ℓ̄)
k̄

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter-operator interference

+H(ℓ)T
k

GnR +n
(ℓ)
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

∈ CMU , (3.4)

where n
(ℓ)
k
∈ CMU denotes the ZMCSCG noise vector and E{n(ℓ)

k
n
(ℓ)H
k
} = σ

(ℓ)2
k

IMU
. Then

the decoding matrix F
(ℓ)
k
∈ C

r̄
(ℓ)
k
×MU (r̄

(ℓ)
k

is the number of received data streams of the

corresponding UT.) will be used to convert the received signal y
(ℓ)
k

into an estimate of the

transmitted data

ŝ
(ℓ)
k
= F (ℓ)

k
y
(ℓ)
k

. (3.5)

The overall sum rate of the system is equal to

Rsum =
1

2

L∑
ℓ=1

2∑
k=1

r̄
(ℓ)
k∑
i=1

log2(1 + η(ℓ)k,i
) (3.6)

where η
(ℓ)
k,i

is the SINR per stream at each UT and the factor 1/2 is due to the two transmission

3Our method is not limited to the reciprocity assumption.
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phases (half duplex).

3.3 Projection based separation of multiple operators

(ProBaSeMO) concept

The system in Figure 3.2 is an interference limited system since the UTs of one operator suffer

from both the inter-operator interference which is created by the UTs of the other operators

and the additional self-interference which is due to the two-way relaying protocol. We need

to manage these interferences in an efficient way such that the QoS of all the UTs can be

guaranteed. A similar situation occurs in the multi-user MIMO (MU-MIMO) downlink system.

There linear precoding techniques like block diagonalization (BD) [SSH04] and regularized

block diagonalization (RBD) [SH08] first suppress the inter-user interference and then calculate

the precoder for each user separately, which simplifies the system design and significantly

improves the system performance. Inspired by this two-step strategy for MU-MIMO systems,

we propose to first suppress the inter-operator interference in our system, e.g., by designing the

relay amplification matrix such that the UTs of one operator transmit and receive in the null

space of the combined channels of all the other UTs. Thereby, the system will be decoupled into

L parallel independent single-operator TWR sub-systems. Then, in the second step, arbitrary

transmission techniques for single-operator TWR systems can be applied separately on each

sub-system. This also facilitates the differentiation among multiple operators. To fulfill the

requirement of our proposed projection based separation of multiple operators (ProBaSeMO)

approach, we decompose the relay amplification matrix G into

G = γ0 ⋅G0 = γ0 ⋅GT ⋅GS ⋅GR ∈ CMR×MR (3.7)

where GR ∈ CLMR×MR and GT ∈ CMR×LMR are filters designed to suppress the inter-operator

interference during the MAC phase and the BC phase, respectively. The parameter γ0 ∈ R+
is chosen such that the transmit power constraint at the relay is fulfilled. Moreover, the

dimensions of the system increase such that the block diagonal matrix GS ∈ CLMR×LMR can

be written as

GS = blkdiag{G(ℓ)S
}
L

ℓ=1 =
⎡⎢⎢⎢⎢⎢⎢⎣

G
(1)
S

⋯ 0MR×MR

⋮ ⋱ ⋮

0MR×MR
⋯ G

(L)
S

⎤⎥⎥⎥⎥⎥⎥⎦
,

where G
(1)
S

, . . . ,G
(L)
S
∈ CMR×MR are the relay amplification matrices for each sub-system. Note

that GS is block diagonal since it represents the processing performed in the individual sub-
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3 Multi-operator relaying networks with a MIMO relay

systems.

The overall transmit and receive filter matrices GT and GR can also be partitioned as

GT = [G(1)T
, . . . , G

(L)
T
] , GR = [G(1)TR

, . . . , G
(L)T
R
]T

where G
(ℓ)
T
∈ CMR×MR and G

(ℓ)
R
∈ CMR×MR . In the following we show how to calculate the

matrices G
(ℓ)
T

, G
(ℓ)
S

, and G
(ℓ)
R

for each operator.

3.3.1 Block-diagonalization at the Relay

As mentioned before, to eliminate only the inter-operator interference but leave the intra-

operator interference to the UTs themselves, one choice is to adapt the BD technique for

MU-MIMO systems in [SSH04] to design the matrices G
(ℓ)
T

and G
(ℓ)
R

.

Taking the design of the G
(ℓ)
R

matrix for the MAC phase as an example, let us define the

combined channel matrix H̃(ℓ) ∈ CMR×2(L−1)MU for all UTs except the UTs of the ℓth operator

as

H̃(ℓ) = [H(1) . . . H(ℓ−1)H(ℓ+1) . . . H(L)] , (3.8)

where H(ℓ) = [H(ℓ)
1 H

(ℓ)
2
] ∈ CMR×2MU is the concatenated channel matrix of the UTs of the

ℓth operator. Then the receive filter matrix G
(ℓ)
R

should lie in the left null space of H̃(ℓ) so
that the signal of the ℓth operator will not cause interference to all the other operators. Let

L̃(ℓ) = rank{H̃(ℓ)} and define the singular value decomposition (SVD) of H̃(ℓ) as

H̃(ℓ) = [Ũ (ℓ)s Ũ
(ℓ)
n ] Σ̃(ℓ)Ṽ (ℓ)H , (3.9)

where Ũ
(ℓ)
n contains the last (MR− L̃(ℓ)) left singular vectors. Thus, Ũ (ℓ)n forms an orthogonal

basis for the left null space of H̃(ℓ) such that Ũ
(ℓ)H
n H̃(ℓ) = 0. Then a linear combination of

the rows of Ũ
(ℓ)H
n is the candidate for the receive filter G

(ℓ)
R

. Unlike the work in [YZGK10],

we choose

G
(ℓ)
R
= Ũ (ℓ)n Ũ (ℓ)Hn ∈ CMR×MR . (3.10)

It can be easily seen that the G
(ℓ)
R

in (3.10) is a projection matrix which projects any matrix

onto the left null space of H̃(ℓ).
In the BC phase, due to the reciprocity of the channel and the usage of BD, the transmit

filter G
(ℓ)
T

and receive filter G
(ℓ)
R

are also reciprocal, so that we get

G
(ℓ)
T
=G(ℓ)T

R
. (3.11)
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3.3 Projection based separation of multiple operators (ProBaSeMO) concept

Note that the BD inspired strategy can null the inter-operator interference completely. How-

ever, it is restricted by the dimensionality constraint, i.e., the left null space of H̃(ℓ) cannot
be empty. For our system it implies that the condition MR > 2(L − 1)MU has to be fulfilled.

3.3.2 Regularized Block-diagonalization at the Relay

One algorithm for MU-MIMO systems which is not limited by the dimensionality constraint is

the RBD algorithm [SH08]. It allows a residual amount of interference in order to balance it

with the noise enhancement. It has been also proved in [SH09] that the performance of RBD

converges to BD in the high SNR regime. Now we adopt the RBD design for our scenario.

In the MAC phase, the mean square error (MSE) of the received signal vector can be written

as:

E{∥x −GRr∥2} = E{∥x −GRHx −GRnR∥2} = E{∥x −GRHx∥2 + ∥GRnR∥2 } (3.12)

where x = [x(1)T1 , x
(1)T
2 , . . . x

(L)T
1 , x

(L)T
2
]T ∈ C2LMU contains the concatenated trans-

mitted signal vectors of all the UTs and the equivalent combined channel matrix of all the

operators GRH is equal to

GRH =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G
(1)
R

H(1) G
(1)
R

H(2) . . . G
(1)
R

H(L)
G
(2)
R

H(1) G
(2)
R

H(2) . . . G
(2)
R

H(L)
⋮ ⋮ ⋱ ⋮

G
(L)
R

H(1) G
(L)
R

H(2) . . . G
(L)
R

H(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.13)

Using the same definition of the interference channel H̃(ℓ) as in (3.8), the ℓth operator’s

effective channel is given by G
(ℓ)
R

H(ℓ) and the interference caused by the other operators to

the ℓth operator is determined by G
(ℓ)
R

H̃(ℓ). Inspired by the RBD algorithm, the matrix GR

is designed to minimize the interference plus noise power, i.e., the optimization criterion of our

RBD inspired strategy is given as

GR = argmin
GR

E{ L∑
ℓ=1
∥G(ℓ)

R
H̃(ℓ)x̃(ℓ)∥2 + ∥GRnR∥2} , (3.14)

where x̃(ℓ) = [x(1)T . . . x(ℓ−1)Tx(ℓ+1)T . . . x(L)T]T with x(ℓ) = [x(ℓ)T1 x
(ℓ)T
2 ]T.

Let us again compute the SVD of H̃(ℓ) as

H̃(ℓ) = Ũ (ℓ)Σ̃(ℓ)Ṽ (ℓ)H . (3.15)
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3 Multi-operator relaying networks with a MIMO relay

Following a similar procedure as in [SH08], the solution to (3.14) can be obtained as

G
(ℓ)
R
= ⎛⎝

P
(ℓ)
k

MU

Σ̃(ℓ)Σ̃(ℓ)H + σ2
RIMR

⎞
⎠
−1/2

Ũ (ℓ)H . (3.16)

The complete proof is given in the Appendix C.1.

In the BC phase, the design of the GT matrix follows the same way. The interference

generated to the other operators is determined by H̃(ℓ)TG(ℓ)
T

.4 Then, the optimization criterion

becomes

GT = argmin
GT

E{ L∑
ℓ=1
(∥H̃(ℓ)TG(ℓ)

T
x̃(ℓ)∥2 + ∥n(ℓ)∥2)} , (3.17)

where n(ℓ) = [n(ℓ)T1 n
(ℓ)T
2 ]T and we set ∑L

ℓ=1 ∥G(ℓ)T
∥2F = PR. After following the optimization

procedure in [SH08] and utilizing the SVD definition in (3.15), G
(ℓ)
T

is obtained as

G
(ℓ)
T
= Ũ (ℓ)∗ (Σ̃(ℓ)∗Σ̃(ℓ)T + 2LMUσ

(ℓ)2
k

IMR
/PR)−1/2 . (3.18)
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Figure 3.3: The average interference level at the UTs when RBD is applied and L = 2. (2,16)
stands for (MU, MR). The SNR is defined in equation (3.100) of Section 3.9.

Figure 3.3 demonstrates the relationship between the residual interference power and the

4{⋅}T comes from the reciprocity assumption.
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3.3 Projection based separation of multiple operators (ProBaSeMO) concept

effective noise power when the RBD inspired strategy is applied. It is obvious that the residual

interference decreases significantly as SNR increases. This implies that the RBD inspired

design is noise dominated especially in the high SNR regime for our application.

3.3.3 Relay amplification matrix for each sub-system

After applying the receive filter GR and the transmit filter GT, we get L independent single-

operator TWR systems when BD is used which corresponds to RBD in the high SNR regime.

Thus, each sub-matrix G
(ℓ)
S

can be derived separately. In general, any arbitrary design of G
(ℓ)
S

can be applied. Nevertheless, in our work we use the algebraic norm maximizing (ANOMAX)

transmit strategy where the Frobenius norm of the desired signal is maximized [RH09] and

its modification rank-restored ANOMAX (RR-ANOMAX) which restores the rank while pre-

serving the same subspace and is thus more suitable for spatial multiplexing [RH10a]. Both

algorithms have a good trade-off between performance and computational complexity.

The received signal vectors (3.4) at the UTs of the ℓth operator can be further expanded as

y
(ℓ)
1 = H

(ℓ)
1,1x

(ℓ)
1 +H

(ℓ)
1,2x

(ℓ)
2 + ñ

(ℓ)
1

y
(ℓ)
2 = H

(ℓ)
2,2x

(ℓ)
2 +H

(ℓ)
2,1x

(ℓ)
1 + ñ

(ℓ)
2 , (3.19)

where ñ
(ℓ)
k
= ∑k̄,ℓ̄≠ℓH

(ℓ)T
k

GH
(ℓ̄)
k̄

x
(ℓ̄)
k̄
+H(ℓ)T

k
GnR +n

(ℓ)
k

denotes the effective noise term which

consists of the residual inter-operator interference, the UTs’ own noise, and the forwarded

relay noise. The effective channel H
(ℓ)
k,m

between the source m and destination k up to γ0 is

defined as

H
(ℓ)
k,m
=H(ℓ)T

k
G
(ℓ)
T

G
(ℓ)
S

G
(ℓ)
R

H(ℓ)
m , (3.20)

where m ∈ {1,2}. The ANOMAX algorithm solves the following cost function [RH09]

arg max
∥G(ℓ)

S
∥
F
=1
β2 ∥H(ℓ)

1,2∥2F + (1 − β)2 ∥H(ℓ)
2,1∥2F (3.21)

where β ∈ [0,1] is a weighting factor. Next we introduce the definitions g
(ℓ)
S
= vec{G(ℓ)

S
} and

K
(ℓ)
β
=
⎡⎢⎢⎢⎢⎣β((G

(ℓ)
R

H
(ℓ)
2 )⊗ (G(ℓ)TT

H
(ℓ)
1 )), (1 − β)((G(ℓ)R

H
(ℓ)
1 )⊗ (G(ℓ)TT

H
(ℓ)
2 ))

⎤⎥⎥⎥⎥⎦. (3.22)

We compute the SVD of K
(ℓ)
β

as K
(ℓ)
β
= U (ℓ)

β
Σ
(ℓ)
β

V
(ℓ)H
β

. Then, the optimal g
(ℓ)
S

is given by

g
(ℓ)
S
= u(ℓ)∗

β,1
, where u

(ℓ)
β,1

is the first column of U
(ℓ)
β

[RH09]. Finally, the optimal matrix G
(ℓ)
S

is
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3 Multi-operator relaying networks with a MIMO relay

computed via G
(ℓ)
S
= unvecMR×MR

{u(ℓ)∗
β,1
}.

However, as discussed in [RH10a], the ANOMAX scheme yields a low rank relay amplifi-

cation matrix and therefore cannot reach the full multiplexing gain for high SNRs especially

when multiple antennas are deployed at the UTs. Therefore, one alternative low complexity

scheme which is called water-filling rank-restored ANOMAX (WF RR-ANOMAX) is proposed

in the same paper. The WF RR-ANOMAX scheme restores the rank of the relay amplification

matrix G
(ℓ)
S

via an optimization inspired by the water filling algorithm over the profile of the

singular values of the matrix G
(ℓ)
S

[RH10a].

3.3.4 Transmit and receive strategies at the UTs

When each UT has multiple antennas, it is beneficial to apply the precoding matrix to either

exploit the multiplexing gain or the diversity gain. Beamforming designs have also been

addressed in [JS10]. The beamforming schemes used in [JS10] are based on the amount of

channel state information (CSI) available at the UTs. Moreover, in [JS10] H
(ℓ)
k

is required

for each UT to generate its beamforming vector. However, it is more natural to design the

beamforming vector based on the equivalent channel between the transceiver pair, i.e., the pair

of UTs which communicate with each other. It is also easier to obtain the equivalent channel

than to obtain H
(ℓ)
k

at each UT as shown in Section 3.3.6.

Since the transmit and receive strategies of the same UT are based on different equivalent

channels, we define two kinds of equivalent channels. The first one, which we refer to as the

equivalent forward channel, denotes the effective channel from the source to the destination.

The second one, which we refer to as the equivalent backward channel, denotes the effective

channel measured at the destination from the source. Taking UTs of the ℓth operator as an

example, the equivalent forward channel of its first UT is H
(ℓ)T
2 GH

(ℓ)
1 and its corresponding

equivalent backward channel is H
(ℓ)T
1 GH

(ℓ)
2 .

Assume that ProBaSeMO is used to determine G and we fix G0 during the training phase

and the data transmission phase. The resulting system will comprise 2L independent point-

to-point MIMO systems.5 In our work, the matrices W
(ℓ)
k

and F
(ℓ)
k

are designed using two

optimal transmit strategies for single stream transmission and multiple stream transmission

in the point-to-point MIMO system, respectively.

• Dominant eigenmode transmission (DET): The transmit and receive beamforming

vectors of the effective channel between the transceiver pair are chosen to be its right and

left dominant singular vector, respectively. DET is a single stream transmission scheme

5For RBD the residual inter-operator interference is treated as noise.
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which maximizes the receive SNR.

• Spatial multiplexing with water-filling algorithm (WF): With perfect CSI at the

transmitter the capacity maximizing spatial multiplexing strategy corresponds to the

SVD based precoding along with a power allocation based on water-filling [PNG03].

Note that all the point-to-point MIMO systems experience colored noise. Therefore, prewhiten-

ing operation is required. The details on the DET andWF schemes are shown in Appendix C.2.

3.3.5 Power control at the relay

In this section, we determine the amplification factor γ0 which scales G0 such that the transmit

power constraint at the relay is fulfilled. The amplification factor γ0 can be obtained via

γ0 =
√

PR

E{∥r̄∥2} =
¿ÁÁÁÁÁÀ

PR

Tr

⎧⎪⎪⎨⎪⎪⎩G0

⎛⎝∑k,ℓ P (ℓ)k
Q
(ℓ)
k
+ σ2

RIMR

⎞⎠GH
0

⎫⎪⎪⎬⎪⎪⎭
, (3.23)

with Q
(ℓ)
k
= H

(ℓ)
k

R
x
(ℓ)

k
x
(ℓ)

k

H
(ℓ)H
k

. Here the transmit covariance matrix of the kth UT of the

ℓth operator is defined as R
x
(ℓ)

k
x
(ℓ)

k

=W (ℓ)
k

W
(ℓ)H
k

.

However, when the transmit strategies in Section 3.3.4 are used, γ0 cannot be calculated in

a closed-form using (3.23). This is due to the fact that in general the precoding matrices (e.g.,

WF) of the UTs depend on the the effective SNR which is a function of γ0. Vice versa, the

power allocation at each UT will affect Tr{G0P
(ℓ)
k

Q
(ℓ)
k

GH
0 } and thus the received power at

the relay. Hence, to fulfill the transmit power constraint at the relay a joint design of R
x
(ℓ)

k
x
(ℓ)

k

and γ0 is required. To avoid a complex joint optimization, we propose an iterative solution

which finds the two parameters sequentially. The proposed iterative algorithm is presented in

Algorithm 1. It is observed from numerical simulations that in general the proposed algorithm

converges in less than 10 iterations.

Remarks

Remark 1. As shown in [RH09], if the weighting factor β is set to 0.5, we will have G
(ℓ)
S
=

G
(ℓ)T
S

. Furthermore, if BD is applied or RBD is applied in the high SNR regime, we get

G = GT. Such a feature can help to avoid the use of channel feedback or backhauling when

channel reciprocity exists. Thus it further reduces the complexity of the system.
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Algorithm 1 Iterative power control at the relay in case of multi-stream transmission

1: Initialize: set γ
(0)
0 = 1, G(0)0 = G0, maximum iteration number Nmax and the threshold

value ǫ.
2: Main step:
3: for p = 1 to Nmax do

4: Insert G
(p−1)
0 into the algorithm in Appendix C.2 to calculate R

(p)
x
(ℓ)

k
x
(ℓ)

k

.

5: Insert R
(p)
x
(ℓ)

k
x
(ℓ)

k

and G
(p−1)
0 into equation (3.23) to obtain γ

(p)
update

.

6: γ
(p)
0 = γ(p−1)0 ⋅ γ(p)

update

7: G
(p)
0 = γ(p)0 G0

8: if ∣ log10(γ(p)update
)∣ < ǫ then

9: G = γ(p)0 ⋅G0

10: break
11: end if
12: end for

Table 3.1: Comparison of Relay Amplification Schemes

Algorithm GT GS GR

ZF [JS10] (FHT)H ((FHT) (FHT)H)−1 IL ⊗ (Π2 ⊗ IMU
) ((HW )H (HW ))−1 (HW )H

MMSE [JS10] (HHT

FHFHT + 2Lσ(ℓ)
2

k
IMR
/PR)−1HHT

FH IL ⊗ (Π2 ⊗ IMU
) WHHH (HWWHHT + σ2

RIMR
/P (ℓ)

k
)−1

ProBaSeMO (BD) GT
R Arbitrary block diagonal matrix Ũ

(ℓ)
n Ũ

(ℓ)H
n ∀ℓ

ProBaSeMO (RBD) Ũ (ℓ)∗ (Σ̃(ℓ)∗Σ̃(ℓ)T + 2LMUσ
(ℓ)2
k

IMR
/PR)−1/2 ,∀ℓ Arbitrary block diagonal matrix (P (ℓ)

k
Σ̃(ℓ)Σ̃(ℓ)H/MU + σ2

RIMR
)−1/2 Ũ (ℓ)H ,∀ℓ

Remark 2. The ZF and MMSE solution in [JS10] can be also obtained using the routine of

(3.7), i.e., designing GT and GR using the ZF and MMSE criteria. Since in these cases all the

channels are equalized, the matrix G
(ℓ)
S
=Π2⊗ IMU

is a permutation matrix where Π2 = [ 0 1
1 0 ]

is the exchange matrix which ensures that the user will not receive its own transmitted data.

A detailed comparison is shown in Table 3.1. Note that the ZF algorithm requires that

MR ≥ 2LMU if the same transmit strategy is used.

Remark 3. As discussed in Section 3.3.1, to apply BD, there should be at least MR > 2(L −
1)MU antennas at the relay. However, this requirement is exact only if MU data streams per

UT have to be transmitted without interference. In other words, given fixed number of MR

and MU, BD can be still applied by jointly designing the precoder and the decoder at the UTs

(also known as coordinated beamforming [SRH13]) once MR > 2(L − 1), i.e., each UT only

transmits a single stream.

Remark 4. The problem of jointly designing G, W
(ℓ)
k

, and F
(ℓ)
k

is non-convex. To simplify
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3.3 Projection based separation of multiple operators (ProBaSeMO) concept

the non-convexity, iteratively designing these matrices using the strategy in Section 3.3 can

improve the performance. However, this requires an additional overhead in both signaling and

computational complexity compared to the proposed scheme.

3.3.6 Acquisition of channel knowledge

The ProBaSeMO strategy requires that the relay and each UT possess channel knowledge.

The relay needs to know the channels H
(ℓ)
k

, ∀k, ℓ. If a single antenna is deployed at each

UT, the equivalent backward channel is needed at each UT; if multiple antennas are deployed

at each UT, both the equivalent forward and backward channels are needed at each UT. In

both cases, knowledge of the self-interference channel should be also obtained at each UT. In

general, the equivalent backward channel can be obtained via channel estimation. If G =GT,

the equivalent forward channel is equal to the transpose of the equivalent backward channel.

Otherwise, feedback from the relay is required.

To avoid unnecessary complexity, we propose a simple extension of the LS scheme introduced

in [RH10b] to estimate these channels. To this end, all the terminals need to transmit a

sequence of MU ⋅Np pilot symbols p
(ℓ)
k,j

for j = [1,2,⋯,Np]. The overall training data received

at the relay is then

B =
L

∑
ℓ=1

2

∑
k=1

H
(ℓ)
k

P
(ℓ)
k
+NR ∈ CMR×Np , (3.24)

where NR denotes the ZMCSCG noise matrix and the pilot matrix P
(ℓ)
k

is defined as

P
(ℓ)
k
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
(ℓ)
k,1,1

p
(ℓ)
k,1,2

⋯ p
(ℓ)
k,1,Np

p
(ℓ)
k,2,1

p
(ℓ)
k,2,2

⋯ p
(ℓ)
k,2,Np

⋮ ⋮ ⋱ ⋮

p
(ℓ)
k,M

(ℓ)
k

,1
p
(ℓ)
k,M

(ℓ)
k

,2
⋯ p

(ℓ)
k,M

(ℓ)
k

,Np

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.25)

Let P = [P (1)T1 ,P
(1)T
2 ,⋯,P (L)

T

1 ,P
(L)T
2 ]T be a row-orthogonal matrix. The conventional LS

estimate Ĥ of the overall channel matrix H at the relay is obtained via

Ĥ =B ⋅P +. (3.26)

Note that (3.26) requires Np ≥ 2⋅L⋅MU. Let us denote the relay amplification matrix computed

from the imperfect channel knowledge as G̃. The relay can compute G̃, e.g., using BD, and

then transmits G̃ ⋅B to all UTs. At the kth UT of the lth operator, the received signal can

43



3 Multi-operator relaying networks with a MIMO relay

be written as

Y
(ℓ)
k
= H̃(ℓ)

k,k
P
(ℓ)
k
+ H̃(ℓ)

k,m
P (ℓ)m + Ñ (ℓ)

k
, (3.27)

with m ≠ k, m,k ∈ {1,2} and H̃
(ℓ)
i,j = H

(ℓ)T
i G̃H

(ℓ)
j , ∀i, j, ℓ. The effective noise matrix is

denoted by Ñ
(ℓ)
k
= ∑k̄,ℓ̄≠ℓH

(ℓ,ℓ̄)
k,k̄

P
(ℓ̄)
k̄
+ G̃NR +N

(ℓ)
k

where N
(ℓ)
k

denotes the ZMCSCG noise

matrix at the UT.

Similarly, the LS estimates of the effective channels for UTs of the lth operator are given by

[ Ĥ
(ℓ)
1,1 Ĥ

(ℓ)
1,2
] = Y

(ℓ)
1 ⋅P (ℓ)+ for UT1 and

[ Ĥ
(ℓ)
2,1 Ĥ

(ℓ)
2,2
] = Y

(ℓ)
2 ⋅P (ℓ)+ for UT2, (3.28)

where P (ℓ) is defined as P (ℓ) = [P (ℓ)T1 ,P
(ℓ)T
2 ]T. Here we only require that Np ≥ 2MU. It

implies that to estimate the channel at the relay requires additional training overhead.

3.4 Sum rate maximization via gradient-based methods

In this section, we derive the optimal matrix G using the sum rate maximization criterion.

Then, the results will be used as the benchmark for our ProBaSeMO scheme.

3.4.1 Single antenna at each UT

The specific case with MU = 1 is considered in the following while the general case is discussed

in Section 3.4.2. We compute the optimal G which maximizes the sum rate of the system

subject to a transmit power constraint at the relay, i.e.,

max
G

1

2

L

∑
ℓ=1

2

∑
k=1

log2 (1 + η(ℓ)k
)

s. t. E{∥r̄∥2} ≤ PR. (3.29)

Since each UT has only a single antenna, the SINR η
(ℓ)
k

of each UT is expressed as

η
(ℓ)
k
=

E{∣h(ℓ)T
k

Gh
(ℓ)
3−kx

(ℓ)
3−k∣2}

E{∣ ∑
k̄,ℓ̄≠ℓ

h
(ℓ)T
k

Gh
(ℓ̄)
k̄

x
(ℓ̄)
k̄
∣2} +E{∥h(ℓ)T

k
GnR∥2} + σ(ℓ)2k

(3.30)

where all the terms in (3.30) come from the single antenna version of (3.4).
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3.4 Sum rate maximization via gradient-based methods

To derive the optimal G, further algebraic manipulations are required. The transmit power

at the relay can be expanded as

E{∥r̄∥2} = E{Tr{Gr(Gr)H}}
= Tr
⎧⎪⎪⎨⎪⎪⎩G
⎛⎝∑k,ℓ P (ℓ)k

h
(ℓ)
k

h
(ℓ)H
k
+ σ2

RIMR

⎞⎠GH
⎫⎪⎪⎬⎪⎪⎭

=∑
k,ℓ

Tr{P (ℓ)
k

Gh
(ℓ)
k

h
(ℓ)H
k

GH} +Tr{σ2
RGGH}

=∑
k,ℓ

P
(ℓ)
k
(Gh

(ℓ)
k
)HGh

(ℓ)
k
+ σ2

Rg
Hg = gHCg (3.31)

where g = vec{G}. The fact Tr{Γ1Γ2} = Tr{Γ2Γ1} and vec{Γ1XΓ2} = (ΓT
2 ⊗ Γ1)vec{X} is

used in the derivation. Moreover, C is a positive definite Hermitian matrix which is defined

as

C =∑
k,ℓ

P
(ℓ)
k
((h(ℓ)

k
h
(ℓ)H
k
)T ⊗ IMR

) + σ2
RIM2

R
.

Following a similar procedure, the SINR η
(ℓ)
k

can be rewritten as

η
(ℓ)
k
= gHD

(ℓ)
k

g

gHE
(ℓ)
k

g + σ(ℓ)2
k

(3.32)

where D
(ℓ)
k
⪰ 0 and E

(ℓ)
k
≻ 0 are defined as

D
(ℓ)
k
= P (ℓ)

k
(h(ℓ)T

3−k ⊗h
(ℓ)T
k
)H(h(ℓ)T

3−k ⊗h
(ℓ)T
k
)

E
(ℓ)
k
= ∑

k̄,ℓ̄≠ℓ
P
(ℓ̃)
k̄
(h(ℓ̃)T

k̄
⊗h

(ℓ)T
k
)H(h(ℓ̃)T

k̄
⊗h

(ℓ)T
k
) + σ2

R(IMR
⊗ (h(ℓ)

k
h
(ℓ)H
k
)T).

The derivation of (3.32) is found in Appendix C.3.

Inserting (3.32) and (3.31) into (3.29), the original problem can be reformulated as

max
g

1

2

L

∑
ℓ=1

2

∑
k=1

log2
⎛⎝1 + gHD

(ℓ)
k

g

gHE
(ℓ)
k

g + σ(ℓ)2
k

⎞⎠
s. t. gHCg ≤ PR. (3.33)

Problem (3.33) is non-convex. To simplify the optimization problem we note that the inequality

constraint in (3.33) has to be satisfied with equality at the optimal point. Otherwise, the
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3 Multi-operator relaying networks with a MIMO relay

optimal g can be scaled up to satisfy the constraint with equality while increasing the objective

function, which contradicts the optimality. Inserting the power constraint into the objective

function and dropping the logarithm in the cost function, problem (3.33) can be reformulated

as an unconstrained optimization problem

max
g

λ(g) = L

∏
ℓ=1

2

∏
k=1

gHA
(ℓ)
k

g

gHB
(ℓ)
k

g
(3.34)

where B
(ℓ)
k
= E

(ℓ)
k
+

σ
(ℓ)2

k

PR
C and A

(ℓ)
k
= B

(ℓ)
k
+D(ℓ)

k
are positive definite Hermitian matrices.

Since the objective function in (3.34) is homogeneous and any scaling in g does not change

the optimality, the solution to problem (3.34) differs from the solution to (3.29) only in scaling

and reshaping, i.e., if ḡ is the solution to (3.34), the optimal solution to (3.29) is given by

G = unvecMR×MR

⎧⎪⎪⎨⎪⎪⎩ḡ
√

PR

ḡHCḡ

⎫⎪⎪⎬⎪⎪⎭ . (3.35)

To solve (3.34), we follow a similar routine as in [RH10b]. We take the necessary condition

for optimality of (3.34), i.e.,
∂λ(g)
∂g∗ = 0. (3.36)

After some algebraic manipulations [RH10b], we obtain

K̃ ⋅ g = λ(g) ⋅ J̃ ⋅ g (3.37)

The matrices K̃ and J̃ are defined as

K̃ =
L

∑
ℓ=1

2

∑
k=1
( ∏
k̄,ℓ̄∖k,ℓ

gHA
(ℓ̄)
k̄

g)A(ℓ)
k

J̃ =
L

∑
ℓ=1

2

∑
k=1
( ∏
k̄,ℓ̄∖k,ℓ

gHB
(ℓ̄)
k̄

g)B(ℓ)
k

. (3.38)

where k̄, ℓ̄ ∖ k, ℓ stands for the whole set {{k̄, ℓ̄}∣k̄ ∈ {1,2}, ℓ̄ ∈ {1,2,⋯, L}} excluding the con-

dition {k̄ = k, ℓ̄ = ℓ}. Clearly, equation (3.37) shows that the optimal g must be a generalized

eigenvector of the matrices K̃ and J̃ . This is similar as in [RH10b]. However, the bisection

search of [RH10b] cannot be applied here since an increase in L will increase the number of

parameters to search over and thus results in a prohibitive computational complexity. For-

tunately, J̃ is a positive definite matrix and thus it is invertible. Equation (3.37) can be
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3.4 Sum rate maximization via gradient-based methods

reformulated into an eigenvalue problem as

J̃−1K̃ ⋅ g = λ(g) ⋅ g. (3.39)

From (3.39) the dominant eigenvalue of J̃−1K̃ will be the global optimum for (3.34) and the

corresponding dominant eigenvector will the optimal g. If J̃−1K̃ and λ(g) are not functions

of g, the dominant eigenvalue and the dominant eigenvector can be obtained using the power

method (PM) in [GL96] (Section 7.3.1 ). In our case, although the matrix J̃−1K̃ and the scalar

λ(g) are functions of g, we still propose to compute optimal g using the iterative power method.

Since our problem is more general than the one in [GL96], we call the proposed algorithm as

generalized power method (GPM). The details for the GPM are summarized in Algorithm 2.

It is worth mentioning that using the PM to solve the maximization problem of the form in

(3.34) is also proposed in [LYC08]. Although simulation results show that the GPM algorithm

converges, compared to ProBaSeMO it has a significantly higher computational complexity

and can only be used as a benchmark.

Algorithm 2 Generalized power method (GPM) for sum rate maximization

1: Initialize: set a random g(0), maximum iteration number Nmax and the threshold value
υ.

2: Main step:
3: for p = 1 to Nmax do

4: Calculate Ψ(p−1) = (J̃−1K̃)(p−1) using g(p−1).
5: z(p) =Ψ(p−1)g(p−1)
6: g(p) = z(p)/∥z(p)∥
7: if ∥g(p) − g(p−1)∥ < υ then
8: break
9: end if

10: end for

3.4.2 Multiple antennas at each UT

In this section, we calculate the optimal relay amplification matrix assuming that W
(ℓ)
k
=√

P
(ℓ)
k

IMU
/√MU. The achievable rate for the kth UT of the ℓth operator is

R
(ℓ)
k
= 1

2
log2
⎛⎝∣IMU

+
P
(ℓ)
3−k
MU

H
(ℓ)T
k

GH
(ℓ)
3−kH

(ℓ)H
3−k GHH

(ℓ)∗
k

47



3 Multi-operator relaying networks with a MIMO relay

⋅ ( ∑
k̄,ℓ̄≠ℓ

P
(ℓ̄)
k̄

MU

H
(ℓ)T
k

GH
(ℓ̄)
k̄

H
(ℓ̄)H
k̄

GHH
(ℓ)∗
k
+ σ2

RH
(ℓ)T
k

GGHH
(ℓ)∗
k
+ σ(ℓ)

2

k
IMU
)−1∣⎞⎠.

The sum rate maximization problem is then formulated as

max
G

Rsum =
L

∑
ℓ=1

2

∑
k=1

R
(ℓ)
k

s. t. E{∥r̄∥2} ≤ PR. (3.40)

The same argument as in Section 3.4.1 holds, i.e., the constraint has to be satisfied with

equality at the optimum. Inserting the constraint into the cost function in (3.40), again we

calculate the necessary condition for optimality. Using the fact that d(log ∣Γ∣) = tr{Γ−1dΓ},
d{tr{Γ}} = tr{dΓ} [Hjø11], the gradient of the sum rate is then obtained as:

∇Rsum =
∂Rsum

∂G∗

=∑
k,ℓ

1

2MU log 2
[σ(ℓ)

2

k

PR

Tr{Ψ(ℓ)−1
k

−Ψ(ℓ)
−1

3−k }GΩ +H(ℓ)∗
k
(Ψ(ℓ)−1

k
−Ψ(ℓ)

−1

3−k )H(ℓ)T
k

⋅G(Ω − P (ℓ)
k

H
(ℓ)
k

H
(ℓ)H
k
) + P (ℓ)

3−kH
(ℓ)∗
k

Ψ
(ℓ)−1
3−k H

(ℓ)H
k

GH
(ℓ)
3−kH

(ℓ)H
3−k ] (3.41)

where Ω, Ψ
(ℓ)
k

, and Ψ
(ℓ)
3−k are defined as

Ω =∑
k,ℓ

P
(ℓ)
k

H
(ℓ)
k

H
(ℓ)H
k
+ σ2

RMUIMR

Ψ
(ℓ)
k
= σ

(ℓ)2
k

Tr{Ω}
MUPR

IMU
+

1

MU

H
(ℓ)T
k

G(Ω − P (ℓ)
k

H
(ℓ)
k

H
(ℓ)H
k
)GHH

(ℓ)∗
k

Ψ
(ℓ)
3−k =Ψ

(ℓ)
k
−
P
(ℓ)
3−k
MU

H
(ℓ)T
k

GH
(ℓ)
3−kH

(ℓ)H
3−k GHH

(ℓ)∗
k

(3.42)

Finally, we apply the steepest descent method as in Algorithm 3 to obtain G. The step size

t is chosen using the Armijo’s Rule which provides provable convergence [Ber95]. That is, t is

calculated as t = βn where n is the smallest integer such that

Rsum(G + βn∇Rsum) −Rsum(G) ≤ αβnTr{∇Rsum
H∇Rsum} (3.43)

where β and α are fixed scalars between zero and one. Since the cost function in (3.40) is

non-convex, this solution here might be merely a local minimum.
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3.5 Sum rate maximization via POTDC

Algorithm 3 Steepest descent method for sum rate maximization

1: Initialize: set a random G and calculate R
(0)
sum, maximum iteration number Nmax and the

threshold value υ.
2: Main step:
3: for p = 1 to Nmax do
4: Calculate the steepest descent direction ∇Rsum/∥∇Rsum∥F.
5: Choose a step size t using Armijo’s Rule in (3.43).
6: Update G =G + t∇Rsum/∥∇Rsum∥F.
7: Calculate R

(p)
sum with the updated G.

8: if ∣R(p)sum −R
(p−1)
sum ∣ < υ then

9: break
10: end if
11: end for

3.5 Sum rate maximization via POTDC

The sum rate maximization problem can be also formulated as a difference of convex functions

(DC) programming problem, which is non-convex and NP-hard in general. Using the DC

structure, in the following we derive an efficient polynomial time convex optimization-based

algorithm to solve the problem approximately. This algorithm can be viewed as an extension

of the polynomial time DC (POTDC) method which has been recently proposed in [KRVH12]

to maximize the sum rate in AF TWR with multiple antennas at the relay and just a single

pair of users. For the latter problem, the POTDC algorithm, one step of which is based on

semidefinite programming (SDP) relaxation, is exact, while in the case of multiple operators

(multiple pairs of users that share the same relay), the randomization procedure has to be

used that makes it approximate.

We consider the sum rate maximization problem (3.33), which is

max
g

1

2

L

∑
ℓ=1

2

∑
k=1

log2
⎛⎝1 + gHD

(ℓ)
k

g

gHE
(ℓ)
k

g + σ(ℓ)2
k

⎞⎠
s. t. gHCg ≤ PR. (3.44)

Using the observation that the relay transmit power constraint in (3.44) can be rewritten as

an equality constraint, changing to the natural logarithm, and also omitting the constant 1
2

in the objective function, the constrained optimization problem (3.44) can be turned into the
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3 Multi-operator relaying networks with a MIMO relay

following unconstrained optimization problem

max
g

L

∑
ℓ=1

2

∑
k=1

log

⎛⎜⎜⎝1 +
gHD

(ℓ)
k

g

gHE
(ℓ)
k

g + gH
σ
(ℓ)2

k

PR
Cg

⎞⎟⎟⎠ . (3.45)

Moreover, after some straightforward algebra, the problem (3.45) can be shown to be equivalent

to the following optimization problem

max
g

log
⎛⎝

L

∏
ℓ=1

2

∏
k=1

gHA
(ℓ)
k

g

gHB
(ℓ)
k

g

⎞⎠ . (3.46)

The problem (3.46) is a homogeneous quadratically constrained quadratic programming (QCQP)

problem which is NP-hard in general.

Introducing the new notation X = ggH and using the property that Tr{ΓX} = gHΓg, the
problem (3.46) can be equivalently written as

max
X

L

∑
ℓ=1

2

∑
k=1
(log(Tr{A(ℓ)

k
X}) − log(Tr{B(ℓ)

k
X}))

s. t. rank(X) = 1
X ⪰ 0. (3.47)

Moreover, using SDP relaxation, i.e., removing the non-convex rank-1 constraint in (3.47),

the relaxed problem can be shown to be a DC programming problem, which is still non-

convex. Hereafter, for notational simplicity, we define an index m to substitute the indices
(ℓ)
k

such that m = 2(ℓ − 1) + k,∀k, ℓ (i.e., m ∈ {1,2,⋯,2L}). Then the relaxed problem (3.47) with

new simplified indices can be rewritten as

max
X,{αm,βm}

log(Tr{A1X}) − log(Tr{B1X}) + 2L

∑
m=2

log(αm) − 2L

∑
m=2

log(βm)
s. t. Tr{AmX} = αm, m = 2,3,⋯,2L

Tr{BmX} = βm, m = 2,3,⋯,2L
X ⪰ 0. (3.48)

Due to the Rayleigh-quotient structure of (3.46), the problem does not change by setting

gHB1g = Tr{B1X} = 1. Furthermore, the objective function in (3.48) turns into a convex

function by replacing the concave elements, i.e., the elements with the minus signs by scalar
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3.5 Sum rate maximization via POTDC

variables. Then the reformulated problem, which is equivalent to (3.48), is written as

max
X,{αm,βm,tm}

log(Tr{A1X}) + 2L

∑
m=2

log(αm) − 2L

∑
m=2

tm

s. t. Tr{AmX} = αm, m = 2,3,⋯,2L
Tr{BmX} = βm, m = 2,3,⋯,2L
log(βm) ≤ tm, m = 2,3,⋯,2L
Tr{B1X} = 1, X ⪰ 0. (3.49)

As compared to the problem (3.48) with a non-convex DC-type objective function, the non-

convexity in the equivalent problem (3.49) is localized in the inequality constraints log(βm) ≤
tm, m = 2,3,⋯,2L. To deal with these non-convex constraints, we propose to use a linear

approximation of the log function, e.g., the first order Taylor series of the log function, which

uses the same philosophy as the original POTDC algorithm in [KRVH12]. The first order

Taylor polynomial approximation of log(β) at β0 is defined as

log(β) ≈ log(β0) + β − β0
β0

. (3.50)

Using (3.50), the optimization problem (3.49) can be reformulated as

max
X,{αm,βm,tm}

log(Tr{A1X}) + 2L

∑
m=2

log(αm) − 2L

∑
m=2

tm

s. t. Tr{AmX} = αm, m = 2,3,⋯,2L
Tr{BmX} = βm, m = 2,3,⋯,2L

log(β0,m) + βm − β0,m
β0,m

≤ tm, m = 2,3,⋯,2L

Tr{B1X} = 1, X ⪰ 0. (3.51)

It can be seen that for a given set of initial values {β0,2, β0,3,⋯, β0,m}, the problem (3.51) is

an SDP problem that can be solved efficiently using the interior-point algorithms if it is feasible

[BV04]. Since the best set of initial values is unknown, it is natural to use an iterative method

and update the initial values in each iteration. Here, the initial values {β(p)0,2 , β
(p)
0,3 ,⋯, β

(p)
0,m} at

the pth step are the optimal values of βm which are obtained by solving the problem (3.51) at

the (p − 1)th step. It is worth stressing that, if the problem (3.51) is feasible at the pth step,

then the optimal value of the cost function in (3.51) denoted as f⋆(p) should be larger or equal
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3 Multi-operator relaying networks with a MIMO relay

to the optimal value for the same problem at the previous (p−1)th step, i.e., f⋆(p−1) . Otherwise,

if f⋆(p) < f⋆(p−1) , it is contradictory to the objective function. Moreover, the following lemma

holds for the POTDC inspired algorithm.

Lemma 3.5.1. The solution generated by the POTDC inspired algorithm converges to the

Karush-Kuhn-Tucker (KKT) point of problem (3.49).

Proof. This conclusion comes straightforwardly from Proposition 3.2 of [BBTT10].

Summarizing, the proposed iterative algorithm for solving the optimization problem (3.49)

can be described as in Algorithm 4.

Algorithm 4 Iterative algorithm for solving the optimization problem (3.49)

1: Initialize: input: A1, B1, Am, Bm, C, set {β(0)0,2 , β
(0)
0,3 ,⋯, β

(0)
0,m}, f⋆(0) , maximum iteration

number Nmax and the threshold value ǫ.
2: Main step:
3: for p = 1 to Nmax do

4: Solve the problem (3.51) in order to find the optimal value f⋆(p) and β
(p)
m .

5: β
(0)
0,m = β

(p)
m , m = 2,3,⋯,2L

6: if ∣f⋆(p) − f⋆(p−1) ∣ ≤ ǫ then
7: break
8: end if
9: end for

It should also be stressed that the initial set of {β(0)0,2 , β
(0)
0,3 ,⋯, β

(0)
0,m} has to be feasible. Taking

into account the generalized Rayleigh quotient structure and recalling that gHB1g = 1, βm can

be any value between the maximum and minimum generalized eigenvalues of the matrix pair

Bm and B1, i.e, βm ∈ {λmin{B−11 Bm}, λmax{B−11 Bm}}. For example, β
(0)
0,m can be chosen in a

random way such that

β
(0)
0,m =

aHBma

aHB1a
, m = 2,3,⋯,2L, (3.52)

where a ∈ CM2
R ∼ CN (0,IM2

R
).

Algorithm 4 provides only an approximate solution to the relaxed problem (3.44) in terms

of the matrix variable X. This solution is the same as the solution of the original problem

(3.44) only if X is a rank-1 matrix. In other words, ĝ is optimal for (3.44) only if there exists

X⋆ = ĝĝH, where X⋆ is the solution obtained based on Algorithm 4. However, according

to [HP10] (Theorem 3.2 and Corollary 3.4 ), there is no guarantee that the matrix X found

using Algorithm 4 has rank-1. Indeed, the latter would be guaranteed only if the number
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of constraints in the SDP relaxed optimization problem would be less or equal to 3. In our

problem, the number of constraints is clearly larger than 3 when (L ≥ 2), i.e., when the

number of operators is larger than one. For such a situation, a good rank-1 approximation

can be obtained by using the randomization techniques [LMS+10], which is also described in

Appendix B.3.5. Thus, using also randomization for obtaining a rank-1 approximate solution

to the problem (3.44), the overall algorithm for finding an approximate solution to the sum-

rate maximization problem in multi-operator TWR networks with an AF relay equipped with

multiple antennas can be summarized as in Algorithm 5.

Algorithm 5 Iterative algorithm for approximately solving the problem (3.44)

1: Initialize: input: A1, B1, Am, Bm, C, set {β(0)0,2 , β
(0)
0,3 ,⋯, β

(0)
0,m}, f⋆(0) , Rsum,0, maximum

iteration number Nmax, Niter and the threshold value ǫ.
2: Main step:
3: Solve problem (3.49) finding X with arbitrary rank
4: Calculate the eigen-decomposition of X as X = UΣUH;
5: for j = 1 to Niter do
6: Generate ĝj = UΣ1/2zj where zj ∈ CM2

R ∼ CN (0,IM2
R
).

7: g̃j = ĝj
√
PR√

ĝH
j
Cĝj

.

8: Insert g̃j into (3.44) to calculate Rsum,j .
9: if Rsum,j > Rsum,(j−1) then

10: gopt = g̃j .
11: end if
12: end for

Remark 5. Note that due to the randomization step in Algorithm 5 the optimality of the

obtained solutions to problem (3.44) is not guaranteed theoretically. However, numerical

results show a strong evidence that the achieved performance is optimal.

It is interesting to compare the proposed POTDC approach with the ProBaSeMO algorithm.

While the performance comparison is summarized in Section 3.9, we discuss their computa-

tional complexity here. The complexity of the ProBaSeMO schemes can be roughly estimated

as follows. For L pairs ProBaSeMO requires L SVDs of complex matrices of size MR×2(L−1)
and L SVDs of complex matrices of size M2

R × 2. Assuming that the SVD of a M ×N real

matrix has the complexity of O(MN2) and taking into account that a M ×N complex matrix

can be written equivalently as a 2M ×2N real matrix, then the complexity of ProBaSeMO can

be estimated as O(L(32M2
R + 32MR(L − 1)2)). The complexity of the proposed POTDC-type

algorithm is a product of the number of required iterations to the complexity of solving the

SDP problem (3.51), which is higher than the complexity of the SVD.
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3 Multi-operator relaying networks with a MIMO relay

3.6 Relay transmit power minimization

In this subsection, we determine the optimal g which minimizes the transmit power at the

relay subject to an SINR constraint at each UT. The optimization problem is expressed as

min
g

gHCg

s.t.
gHD

(ℓ)
k

g

gHE
(ℓ)
k

g + σ(ℓ)2
k

≥ γ(ℓ)
k

, ∀k, ℓ. (3.53)

Problem (3.53) is mathematically similar to the beamforming problems in [LMS+10] and

[BPG12] which are in general non-convex. It can be further expanded into the following

equivalent problem

min
g

gHCg

s.t. gHC
(ℓ)
k

g ≥ γ(ℓ)
k

σ
(ℓ)2
k

, ∀k, ℓ. (3.54)

where C
(ℓ)
k
= D

(ℓ)
k
− γ(ℓ)

k
E
(ℓ)
k

. Each constraint in (3.54) is a superlevel set of a quadratic

function [BV04]. Such a set is convex if and only if the quadratic function is concave, i.e.,

C
(ℓ)
k

is negative semi-definite, ∀k, ℓ. It is clear that in this case the feasible set is empty

since gHC
(ℓ)
k

g ≤ 0, ∀k, ℓ. Hence, problem (3.54) may not be solvable in polynomial time, but

its approximate solution can be obtained by using either the SDP approach [LMS+10] or the
iterative second-order cone programming (SOCP) approach [BPG12]. In the sequel we will

discuss the two approaches.

In general, the SDP approach which uses the semidefinite relaxation technique (SDR) works

as follows [LMS+10]. We introduce a new variable X = ggH and rewrite problem (3.54) as

min
X

Tr{CX}
s.t. Tr{C(ℓ)

k
X} ≥ γ(ℓ)

k
σ
(ℓ)2
k

, ∀k, ℓ

X ⪰ 0, rank{X} = 1. (3.55)

Dropping the rank-1 constraint, problem (3.55) can be approximated by the following convex

SDP problem which can be solved efficiently by the interior-point method [BV04],

min
X

Tr{CX}
s.t. Tr{C(ℓ)

k
X} ≥ γ(ℓ)

k
σ
(ℓ)2
k

, ∀k, ℓ
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3.6 Relay transmit power minimization

X ⪰ 0. (3.56)

Obviously, problem (3.56) is a relaxed version of the original problem (3.53), i.e., the optimal

value of (3.56) is a lower bound of problem (3.53). If the optimal solutionXopt of (3.56) is rank-

1, it is also optimal for the original problem and the optimal gopt is the principle component

of Xopt. Due to the relaxation, Xopt is generally not rank-1. Although a rank-1 solution of

(3.56) always exists if the number of constraints in (3.56) is less or equal to three [HP10], our

problem has always more than three constraints, i.e, at least two operators and two UTs per

operator. Thus, we apply the randomization method in Appendix B.3.5 to extract the rank-1

approximation from Xopt [LMS+10].

Since the SDP solution is in general not optimal for our problem, it is worth applying an

alternative approach which is the iterative SOCP method [BPG12]. In the traditional SOCP

method, the rank-1 property of the matrix D
(ℓ)
k

is exploited and the constraints in (3.53) are

rewritten as √
P
(ℓ)
k
∣gH(h(ℓ)T

3−k ⊗h
(ℓ)T
k
)H∣√

gHE
(ℓ)
k

g + σ(ℓ)2
k

≥
√

γ
(ℓ)
k

, ∀k, ℓ (3.57)

If we introduce

Ũ
(ℓ)
k
=
⎡⎢⎢⎢⎢⎣
σ
(ℓ)2
k

0T

0 E
(ℓ)
k

⎤⎥⎥⎥⎥⎦
1
2

,

g̃ = [1, gT]T, h̃(ℓ)
k
= [0, (h(ℓ)T

3−k ⊗h
(ℓ)T
k
)∗]T,

(3.57) can be rewritten as

∣g̃Hh̃
(ℓ)
k
∣ ≥√γ

(ℓ)
k
/P (ℓ)

k
∥Ũ (ℓ)H

k
g̃∥, ∀k, ℓ (3.58)

With the conservative approximation [BPG12]

∣g̃Hh̃
(ℓ)
k
∣ ≥ Re{g̃Hh̃

(ℓ)
k
} , (3.59)

the non-convex part of the constraint (3.58) can be strengthened as

Re{g̃Hh̃
(ℓ)
k
} ≥√γ

(ℓ)
k
/P (ℓ)

k
∥Ũ (ℓ)H

k
g̃∥, ∀k, ℓ. (3.60)
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3 Multi-operator relaying networks with a MIMO relay

Constraint (3.60) is harder to fulfill than (3.58). This is also due to the fact that Re{g̃Hh̃(ℓ)
k
}

can have a negative value. Introducing the auxiliary variable t and the matrix

Ṽ =
⎡⎢⎢⎢⎢⎣
0 0T

0 C

⎤⎥⎥⎥⎥⎦
1
2

, (3.61)

problem (3.53) can be approximated by the following convex SOCP problem

min
t,g̃

t

s.t. ∥Ṽ Hg̃∥ ≤ t, g̃1 = 1
Re{g̃Hh̃(ℓ)

k
} ≥√γ

(ℓ)
k
/P (ℓ)

k
∥Ũ (ℓ)H

k
g̃∥, ∀k, ℓ, (3.62)

where g̃1 is the first element of g̃.

Since replacing (3.58) by (3.60) yields a restricted convex feasible set which is a subset of

the original feasible set of problem (3.53), it guarantees that the optimal solution of (3.62)

is always feasible for (3.53). However, the drawback of this approach is that the solution of

(3.53) might not be in the feasible set of (3.62) and thus it may turn the original feasible

problem into an infeasible one. Thus, the performance and feasibility strongly depend on how

accurately the non-convex feasible set of problem (3.53) is approximated. To improve the

convex approximation, we apply the iterative SOCP approach which is proposed in [BPG12].

The iterative SOCP approach guarantees that in each iteration the obtained approximate

solution of the original problem is improved as compared to that of the previous iteration.

It is worth mentioning that numerical results in Section 3.9 show that the SOCP approach

converges to the SDP approach, which is a strong evidence that the obtained solution is globally

optimal.

3.7 SINR balancing

In this section, we study the SINR balancing problem. That is, we derive optimal g to maximize

the minimum SINR at each UT. Recalling the SINR definition in (3.32), the SINR balancing

problem can be formulated as

max
g

min∀k,ℓ η
(ℓ)
k

s.t. gHCg ≤ PR (3.63)
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3.8 Widely linear relay amplification matrix design

or equivalently as

max
g,t

t

s.t. gHCg ≤ PR,

gHD
(ℓ)
k

g

gHE
(ℓ)
k

g+σ(ℓ)2
k

≥ t, ∀k, ℓ. (3.64)

Problem (3.63) is non-convex. Following the idea of SDR in the previous section, we introduce

X = ggH and drop the non-convex rank-1 constraint. The problem is then reformulated into

max
X,t

t

s.t. Tr{CX} ≤ PR, X ⪰ 0
Tr{(D(ℓ)

k
− tE(ℓ)

k
)X} ≥ tσ(ℓ)2

k
, ∀k, ℓ (3.65)

Problem (3.65) is a quasi-convex problem similar as in [GSS+10]. Hence, it can be solved using

the same procedure as in [GSS+10], i.e., using a simple bisection search algorithm in which

a feasibility problem is solved at each step. Due to the relaxation, the solution Xopt might

not be feasible for the original problem. The randomization techniques in Appendix B.3.5 is

applied to obtain the final g [LMS+10].

3.8 Widely linear relay amplification matrix design

Widely linear (WL) signal processing generalizes linear signal processing by linearly process-

ing the real and imaginary parts of the input signals separately [ASS11]. When applied to

wireless communication systems which deploy improper or non-circular modulation schemes,

such as real modulation formats (e.g., binary phase-shift keying (BPSK), amplitude-shift key-

ing (ASK)) and offset schemes (e.g., OQAM), additional degrees of freedom can be exploited.

Thereby, a significant performance gain is obtained over linear signal processing methods

[Ste07]. Although WL signal processing techniques have been studied for point-to-point MIMO

[Ste07], [DGPV12] and the one-way relaying scenario with multiple AF relays [SH13], they have

not been extended to two-way relaying scenarios with MIMO relays.

In this section, we develop WL signal processing techniques for TWR scenarios with single

or multiple pairs of UTs and a MIMO AF relay. First, we propose generalized WL system

models which are a prerequisite for developing WL signal processing techniques. Since WL

processing can be applied at the relay and/or the UTs, a complete design requires jointly

optimizing the WL precoder and decoder at the UT and the WL relay amplification matrix at
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3 Multi-operator relaying networks with a MIMO relay

the relay. This problem is non-convex and might be intractable. Thus, we resort to a simplified

model where the WL signal processing is only applied at the relay. Since this model can be

transformed into an equivalent linear model, most of the linear transmit strategies can simply

be extended. We design WL relay amplification matrices by adopting the optimal transmit

strategies (which include the maximization of the minimum SINR subject to a relay power

constraint and the minimization of the required transmit power at the relay subject to SINR

constraints [ZBR+12]) as well as a suboptimal transmit strategy, which is the dual channel

matching (DCM) scheme in [VRWH11].

3.8.1 Transformation from widely linear system model to linear system model

Let us first introduce the definition of non-circular data. According to [SS10], we have the

following definition.

Definition 3.8.1. [SS10] A complex-valued random vector x ∈ Cn is called circular if x has

the same probability distribution as ejαx for any given real number α; otherwise it is called

non-circular.

As we have mentioned before, real modulation schemes, e.g., BPSK and ASK, and complex

offset modulation schemes (after some processing [GSL03]), e.g., OQAM, are non-circular

modulation schemes.

To perform the WL processing, or in other words, to explore the noncircularity for the

scenario in Figure 3.2, we need WL transformations of the transmitted and received complex-

valued data [ASS11]. For notational simplicity, we select the complex augmented representa-

tion of the complex-valued data as defined in [ASS11]. That is, if a WL precoder w̃
(ℓ)
k
∈ C2 is

applied, the transmitted data at the UT is written as:

x
(ℓ)
k
= w̃(ℓ)H

k
s
(ℓ)
k
= [w(ℓ)∗

k,1
w
(ℓ)∗
k,2
] [s(ℓ)

k
s
(ℓ)∗
k
]T (3.66)

where s
(ℓ)
k

is called the complex augmented vector of s
(ℓ)
k
∈ C and s

(ℓ)
k

has zero mean and unit

variance. It is further assumed that s
(ℓ)
k

is strongly non-circular [SS10], i.e., s
(ℓ)∗
k
= ejβs

(ℓ)
k

and β ∈ R. For example, real modulation schemes satisfy β = 0. Thereby, s
(ℓ)
k

has non-zero

pseudo-variance, i.e., C̃ℓ
k = E{s(ℓ)2k

} = e−jβ ≠ 0. The selection of β will not affect our analysis in

the following. Therefore, without loss of generality we assume β = 0. Moreover, the transmit

power constraint at each UT has to be fulfilled such that E{∣xℓk∣2} = P (ℓ)k
. Then the received
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3.8 Widely linear relay amplification matrix design

signal at the relay is

r =
L

∑
ℓ=1

2

∑
k=1

h
(ℓ)
k

x
(ℓ)
k
+nR ∈ CMR (3.67)

where nR denote the ZMCSCG noise and E{nRn
H
R} = σ2

RIMR
. The AF relay amplifies the

received data and forwards it to all the UTs simultaneously. If WL processing is applied at

the relay, the signal transmitted by the relay is expressed as

r̄ = G̃r = [G1 G2][rT rH]T (3.68)

where {G1,G2} ∈ CMR×MR and the transmit power constraint at the relay has to be satisfied

such that E{∥r̄∥2} ≤ PR. Assume that there is reciprocity between the uplink and downlink

channels due to TDD transmission and define h
(ℓ)
k

, x
(ℓ)
k

, nR, n
(ℓ)
k

, and y
(ℓ)
k

as the augmented

complex vectors of h
(ℓ)
k

, x
(ℓ)
k

, nR, n
(ℓ)
k

, and y
(ℓ)
k

, respectively. If the receiver performs WL

processing, the received augmented data vector at the kth UT of the ℓth operator is given by

y(ℓ)
k
= H̃(ℓ)T

k
GH̃

(ℓ)
3−kx

(ℓ)
3−k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

desired signal

+H̃(ℓ)T
k

GH̃
(ℓ)
k

x
(ℓ)
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

self-interference

+ ∑
k̄=1,2
ℓ̄≠ℓ

H̃
(ℓ)T
k

GH̃
(ℓ̄)
k̄

x
(ℓ̄)
k̄

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter-operator interference

+H(ℓ)T
k

GnR +n
(ℓ)
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

∈ C2, (3.69)

where H̃
(ℓ)
k
= blkdiag{h(ℓ)

k
,h
(ℓ)∗
k
} ∈ C2MR×2, G =

⎡⎢⎢⎢⎢⎣
G1 G2

G∗2 G∗1

⎤⎥⎥⎥⎥⎦ ∈ C
2MR×2MR , and n

(ℓ)
k

is the

ZMCSCG noise with variance σ
(ℓ)2
k

. If channel knowledge is available at the UTs, the self-

interference term can be subtracted and we get

ŷ(ℓ)
k
= y(ℓ)

k
− H̃(ℓ)T

k
GH̃

(ℓ)
k

x
(ℓ)
k

. (3.70)

An estimate of the transmitted symbol is then obtained via

x̂
(ℓ)
3−k = f̃

(ℓ)H
k

ŷ(ℓ)
k
= [f (ℓ)∗

k,1
f
(ℓ)∗
k,2
] [ŷ(ℓ)

k
ŷ
(ℓ)∗
k
]T (3.71)

where f̃
(ℓ)
k
∈ C2 is the WL decoder. From (3.69) it appears that to jointly design w̃

(ℓ)
k

, G,

and f̃
(ℓ)
k

is difficult since G has a specific structure. Actually it has been already discussed in
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Section 2.3 that for a practical system it is better to divide the transmission into two phases.

In the first phase (training phase), the UTs send out only training symbols so that the relay

amplification matrix is designed at the relay as described in Section 3.3.6. Afterwards, each

UT estimates its equivalent channel which is h
(ℓ)T
k

G̃h
(ℓ)
3−k and then designs its WL precoder

and decoder based on the channel knowledge. In the second phase, the data will be transmitted

using precoders, decoders and the relay amplification matrix which is designed in the training

phase. Nevertheless, in this chapter we focus on the WL relay amplification matrix design

in the first phase but leave the WL precoder and decoder design for future work. More

specifically, the precoder and the decoder are set to w̃
(ℓ)H
k
= [√P

(ℓ)
k

0] and f̃
(ℓ)H
k
= [1 0],

∀k, ℓ, respectively. Then the system model in (3.69) simplifies to:

ŷ
(ℓ)
k
=
√

P
(ℓ)
3−kh

(ℓ)T
k

G̃H̃
(ℓ)
3−ks

(ℓ)
3−k + ∑

k̄=1,2
ℓ̄≠ℓ

√
P
(ℓ̄)
k̄

h
(ℓ)T
k

G̃H̃
(ℓ̄)
k̄

s
(ℓ̄)
k̄
+h(ℓ)

T

k
G̃nR + n

(ℓ)
k

=
√

P
(ℓ)
3−kh

(ℓ)T
k

G̃h
(ℓ)
3−ks

(ℓ)
3−k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

desired signal

+ ∑
k̄=1,2
ℓ̄≠ℓ

√
P
(ℓ̄)
k̄

h
(ℓ)T
k

G̃h
(ℓ̄)
k̄

s
(ℓ̄)
k̄

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter-operator interference

+h(ℓ)
T

k
G̃nR + n

(ℓ)
k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

(3.72)

It is worth mentioning that equation (3.72) is a linear function with respect to G̃ and thus

arbitrary linear transmit strategies can be extended to this equivalent linear model.

3.8.2 Optimal widely linear design

In this section we address the optimal WL design of G̃ such that the minimum SINR of the UTs

is maximized subject to a total transmit power constraint at the relay or the relay transmit

power is minimized subject to SINR constraints at the UTs. For this purpose we need to

derive explicit expressions for the actual SINR and the actual power consumption at the relay.

The SINR at the kth UT of the ℓth operator is computed as

SINR
(ℓ)
k
= P

(ℓ)
3−k∣h(ℓ)Tk

G̃h
(ℓ)
3−k∣2

∑
k̄=1,2
ℓ̄≠ℓ

P
(ℓ̄)
k̄
∣h(ℓ)T

k
G̃h

(ℓ̄)
k̄
∣2 + σ2

R∥h(ℓ)Tk
G̃∥2 + σ(ℓ)2

k

(3.73)

and the actual relay transmit power is calculated by

E{∥r̄∥2} = L

∑
ℓ=1

2

∑
k=1

P
(ℓ)
k
∥G̃h

(ℓ)
k
∥2 + σ2

R∥G̃∥2F. (3.74)
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Let us define g̃ = vec{G̃}. Using the properties that Tr{Γ1Γ2} = Tr{Γ2Γ1} and vec{Γ1XΓ2} =(ΓT
2 ⊗Γ1)vec{X}, it is possible to further expand (3.73) and (3.74) by following a similar pro-

cedure as in [ZBR+12] and the same steps in Appendix C.3. Finally we get

SINR
(ℓ)
k
= g̃HD

(ℓ)
k

g̃

g̃H(E(ℓ)
k
+F (ℓ)

k
)g̃ + σ(ℓ)2

k

(3.75)

and

E{∥r̄∥2} = g̃HAg̃, (3.76)

where D
(ℓ)
k

, E
(ℓ)
k

, and F
(ℓ)
k

are defined as

D
(ℓ)
k
= P (ℓ)

3−k(h(ℓ)∗3−kh
(ℓ)T
3−k )⊗ (h(ℓ)∗k

h
(ℓ)T
k
)

E
(ℓ)
k
= ∑

k̄=1,2
ℓ̄=1,⋯,L,ℓ̄≠ℓ

P
(ℓ̄)
k̄
(h(ℓ̄)∗

k̄
h
(ℓ̄)T
k̄
)⊗ (h(ℓ)∗

k
h
(ℓ)T
k
)

F
(ℓ)
k
= σ2

R(I2MR
⊗ (h(ℓ)

k
h
(ℓ)H
k
)T)

A =∑
k,ℓ

P
(ℓ)
k
(h(ℓ)∗

k
h
(ℓ)T
k
)⊗ IMR

+ σ2
RI2M2

R
. (3.77)

Now it is possible to calculate the optimal WL relay amplification matrix G̃ using the derived

expressions (3.75) and (3.76). Our SINR balancing problem is formulated as

max
g̃

min∀k,ℓ SINR
(ℓ)
k

s.t. g̃HAg̃ ≤ PR (3.78)

or equivalently

max
g̃,t

t

s.t. SINR
(ℓ)
k
≥ t,∀k, ℓ

g̃HAg̃ ≤ PR (3.79)

Problem (3.78) is the same non-convex problem as in Section 3.7. Therefore, it can be solved

efficiently using the two-step method proposed in Section 3.7. The first step is to solve the

relaxed problem based on SDR together with a bisection search. Afterwards, a randomization

procedure is used to get a rank-1 approximation.
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The power minimization problem is formulated as

min
g̃

g̃HAg̃

s.t.
g̃HD

(ℓ)
k

g̃

g̃H(E(ℓ)
k
+F (ℓ)

k
)g̃ + σ(ℓ)2

k

≥ γ(ℓ)
k

, ∀k, ℓ. (3.80)

Problem (3.80) has exactly the same structure as the problem in Section 3.6. Thus, it can be

solved using SDR together with the randomization procedure or the iterative SOCP approach.

Here the SDR approach is used.

3.8.3 Suboptimal widely linear design and large system analysis for a single

operator TWR system

The main idea of WL signal processing is to exploit the noncircularity of the transmitted

symbols. However, as also pointed out in [ASS11] and [Ste07], the magnitude of the gain from

a WL design depends on certain conditions. Although in general such conditions are still open

for TWR scenarios, in the following we show that a simple extension of the suboptimal relay

amplification matrix design may provide only limited gain over linear signal processing. This

is true for our proposed WL extension of the DCM method [VRWH11] which is a simple and

efficient algorithm used in single operator TWR with a MIMO AF relay. Here we only consider

the single operator case, i.e., L = 1. In the remaining part of this section, the index (ℓ) will be
dropped for simplicity. The WL model in (3.72) is then reduced to

ŷk =
√
P3−khT

k G̃h3−ks3−k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
desired signal

+h(ℓ)
T

k
G̃nR + nk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

(3.81)

Let us first recall the linear DCM design by setting G̃ = [ G 0 ]. Then we get the linear

model of our system as

ŷk =
√
P3−khT

kGh3−ks3−k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
desired signal

+h(ℓ)
T

k
GnR + nk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

(3.82)

According to [VRWH11], the linear DCM design which is inspired by the maximum ratio

combining is given by

GL,DCM = h∗1hH
2 +h

∗
2h

H
1 ∈ CMR×MR (3.83)
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3.8 Widely linear relay amplification matrix design

We extend this strategy to our equivalent linear system model in (3.81) and propose our WL

DCM design as

G̃WL,DCM = h∗1hH
2 +h

∗
2h

H
1 = [h∗1hH

2 +h
∗
2h

H
1 , h∗1hT

2 +h
∗
2h

T
1 ] ∈ CMR×2MR . (3.84)

Our proposed WL DCM design in (3.84) shares the same characteristics as the linear DCM

design in the sense that the received signal powers at both UTs are the same.

Now we analyze the WL gain in terms of SNR using the proposed design. Taking UT 1

(k = 1) as an example, the SNR of UT 1 in the linear model (3.82) can be computed by

SNRL,1 =
E{∣√P2h

T
1 GL,DCMh2s2∣2}

E{∣hT
1 GL,DCMnR∣2} + σ2

1 ⋅ γ
−2
L

(3.85)

where γL ∈ R+ is an amplification factor which guarantees that the transmit power constraint

at the relay is fulfilled, i.e.,

E{∥γL ⋅GL,DCM ⋅ r∥2} = PR. (3.86)

Then by using the linear DCM design the desired signal power at the UT 1 is derived as

E{∣√P2h
T
1 GL,DCMh2s2∣2} = P2∣hT

1 GL,DCMh2∣2 = P2∣hT
1 h
∗
1h

H
2 h2 +hT

1 h
∗
2h

H
1 h2∣2

= P2(∥h1∥2∥h2∥2 + ∣hH
1 h2∣2)2. (3.87)

Using the fact that hT
1 h
∗
2 = hH

2 h1 and ∣hH
1 h2∣ = ∣hH

2 h1∣, the noise power which includes both

the propagated noise power from the relay and the noise power at UT 1 is calculated by

E{∣hT
1 GL,DCMnR∣2} + σ2

1 ⋅ γ
−2
L

= σ2
Rh

T
1 GL,DCMGH

L,DCMh∗1 +
σ2
1

PR

(P1h
H
1 G

H
L,DCMGL,DCMh1 + P2h

H
2 G

H
L,DCMGL,DCMh2

+E{nH
RG

H
L,DCMGL,DCMnR})

= σ2
R(∥h1∥4∥h2∥2 + 3∥h1∥2∣hH

1 h2∣2) + σ2
1( P1

PR

∥h1∥2 + P2

PR

∥h2∥2)(∥h1∥2∥h2∥2 + 3∣hH
1 h2∣2)

+ 2σ2
1σ

2
R

1

PR

(∥h1∥2∥h2∥2 + ∣hH
1 h2∣2) (3.88)

Similarly, the SNR of UT 1 using the WL DCM design is calculated as

SNRWL,1 =
E{∣√P2h

T
1 G̃WL,DCMh2s2∣2}

E{∣hT
1 G̃WL,DCMnR∣2} + σ2

1 ⋅ γ
−2
L

(3.89)
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where γWL ∈ R+ is determined by

E{∣γWL ⋅ G̃WL,DCM ⋅ r∣2} = PR. (3.90)

Then the desired signal power and the noise power are computed by

E{∣√P2h
T
1 G̃WL,DCMh2s2∣2} = P2∣2∥h1∥2∥h2∥2 + ∣hH

1 h2∣2 + (hH
2 h1)2∣2. (3.91)

and

E{∣hT
1 G̃WL,DCMnR∣2} + σ2

1 ⋅ γ
−2
WL

= σ2
Rh

T
1 G̃WL,DCMG̃H

WL,DCMh∗1 +
σ2
1

PR

(P1h
H
1 G̃

H
WL,DCM ⋅ G̃WL,DCMh1 + P2h

H
2 G̃

H
WL,DCMG̃WL,DCMh2

+E{nH
RG̃

H
WL,DCMG̃WL,DCMnR})

= 2σ2
R(∥h1∥4∥h2∥2 + 2∥h1∥2∣hH

1 h2∣2 + 1

2
∥h1∥2((hH

1 h2)2 + (hH
2 h1)2))

+ 4σ2
1( P1

PR

∥h1∥2 + P2

PR

∥h2∥2) ⋅ (∥h1∥2∥h2∥2 + 1.5∣hH
1 h2∣2 + 3

4
((hH

1 h2)2 + (hH
2 h1)2))

+ 4σ2
1σ

2
R

1

PR

(∥h1∥2∥h2∥2 + 1

2
∣hH

1 h2∣2 + 1

4
∥h1∥2((hH

1 h2)2 + (hH
2 h1)2)), (3.92)

correspondingly. Based on the equations (3.87), (3.88), (3.91), and (3.92) it is clear that in

general we do not get a two-fold WL gain. But it is difficult to determine the exact magnitude

of the WL gain since the derived expressions are complicated. Hence, to gain more insights

into the achievable WL gain we perform a large system analysis, i.e., MR → +∞. Let the

elements of the channels hk be i.i.d Gaussian distributed with zero mean and variance one,

i.e., ZMCSCG. According to the law of large numbers in [Ser80] we have

1

MR

hH
i hj

a.s.→
⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 i = j
0 i ≠ j

(3.93)

where {i, j} ∈ {1,2}. Thereby, for equation (3.87) we have

1

M4
R

E{∣√P2h
T
1 GL,DCMh2s2∣2} a.s.→ P2. (3.94)
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For equation (3.88) we can get

1

M3
R

(E{∣hT
1 GL,DCMnR∣2} + σ2

1 ⋅ γ
−2
L ) a.s.→ σ2

R + σ
2
1

P1 + P2

PR

. (3.95)

Similarly, for the derived signal power expression (3.91) and the derived noise power expression

(3.92) we have
1

M4
R

E{∣√P2h
T
1 G̃WL,DCMh2s2∣2} a.s.→ 4P2 (3.96)

and
1

M3
R

(E{∣hT
1 G̃WL,DCMnR∣2} + σ2

1 ⋅ γ
−2
WL) a.s.→ 2σ2

R + 4σ
2
1

P1 + P2

PR

, (3.97)

correspondingly. Therefore, when MR → +∞, the WL gain in terms of the SNR for UT 1 is

computed as

η = SNRWL,1

SNRL,1

a.s.→ 2σ2
R + 2σ

2
1
P1+P2

PR

σ2
R
+ 2σ2

1
P1+P2

PR

. (3.98)

If we consider the special case where P1 = P2 = PR = P and σ2
1 = σ2

2 = σ2
R = σ2

n, then we get

η = 1.2 immediately, which implies the achievable WL gain is only 20 %. However, if we have

P1 = P2 = PR

100
and σ2

1 = σ2
2 = σ2

R = σ2
n, then η = 1.96. If PR increases and P1 = P2 ≪ PR, then

η = 2 and a two-fold WL gain can be obtained.

3.9 Simulation results

In this section, the performance of the proposed algorithms are evaluated via Monte Carlo sim-

ulations. In the first set of simulations (Figures 3.7-3.19), a single antenna is used at each UT

and the proposed optimal and suboptimal algorithms are evaluated and compared to the time-

shared case as well as the algorithms in [JS10] and [YZGK10]. In the second set of simulations

(Figures 3.20, 3.21, 3.22), a similar evaluation is performed for multiple antennas at the UT.

Here, “uXX” stands for the transmit strategy at each UT and “rXX” stands for the transmit

strategy at the relay. In Figure 3.23, the effects of CSI imperfections are evaluated and dis-

cussed. Based on the simulation results of the four ProBaSeMO approaches, i.e., {BD, RBD}

& {ANOMAX, RR-ANOMAX}, the BD and the RBD strategy only differ in the low SNR

regime and in general ”BD ANOMAX”≤”RBD ANOMAX”< ”BD RR-ANOMAX”≤”RBD
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RR-ANOMAX”. 6 For brevity, we mainly demonstrate the performance of ”BD ANOMAX”

(or ”ProBaSeMO (BA)”) and ”RBD RR-ANOMAX” (or ”ProBaSeMO (RR)”) in the sequel.

Moreover, the time-shared case performance is labeled by “excl” which stands for exclusively.

It means that the relay as well as the spectrum are used by different operators in a TDMA

fashion. In particular, in the first two time slots, only the UTs of the first operator are served.

In the next two time slots, the UTs of the second operator are served and so on.

The simulated MIMO flat fading channels H
(ℓ)
k

are uncorrelated Rayleigh channels except

for Figure 3.22. When the channel is correlated, the spatial correlation is modeled using the

Kronecker model such that the channel matrix H
(ℓ)
k

is obtained from

H
(ℓ)
k
=R1/2

R
H(ℓ)

wk
R
(ℓ)1/2
k

, (3.99)

where H
(ℓ)
wk
∈ CMR×MU represents a spatially white unit variance flat fading MIMO channel,

whereas RR and R
(ℓ)
k

are the spatial correlation matrices with Tr{RR} =MR and Tr{R(ℓ)
k
} =

MU. The spatial correlation matrix RR at the relay contains ones on the main diagonal and

elements with magnitude ρR and random phases on all the other positions.

The channel H
(ℓ)
k

is fixed during the training phase and the data transmission phase. The

transmit power at each UT and at the relay are identical and P
(ℓ)
k
= PR = 1W, ∀k, ℓ. The

SNR at each UT and at the relay are also identical. It is defined as

SNR = 1/σ2
R = 1/σ(ℓ)k

2
, ∀k, ℓ. (3.100)

The ANOMAX weighting factor β is set to 0.5 in all simulations (see Section 3.3.3). All the

simulation results are obtained by averaging over 1000 channel realizations.

3.9.1 Single antenna at each UT

Figure 3.7 shows the system sum rate comparison when MU = 1 and L = 2. The “Optimum”

and “excl Optimum” methods are based on the power method described in Section 3.4.1. The

performance of the ProBaSeMO algorithm outperforms the time-shared approach for large

values of MR as well as moderate to high SNR values. At an SNR of 35 dB, the sharing

gain is nearly two-fold due to an increased multiplexing gain. The result also implies that the

ProBaSeMO algorithm coincides with the optimum when MR increases.

Figure 3.8 shows the relay transmit power vs. a common SINR constraint with SNR =

15 dB, i.e., the transmit power of the UTs is 15 dB above the noise power level. “SDP” is

6”RBD ANOMAX”>”BD RR-ANOMAX” in the low SNR regime. When MR increases the differences become
small.
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the convex approximation using SDP and the randomization technique [LMS+10] while “lower
bound” is obtained from (3.56). “iSOCP” is the iterative SOCP technique. It can be observed

that the difference of the ProBaSeMO solution to the lower bound reduces for increasing MR.

Moreover, the two convex approximation techniques SDP and iterative SOCP merge with the

lower bound. This implies that both approximation techniques are accurate enough for our

problem.

Figure 3.9 depicts the results corresponding to the SINR balancing approach where this

time, the maximized minimum SINR vs. SNR is shown. “BiSDR” stands for SDP with rank-

one extraction plus bisection search. Again the method based on convex approximation yields

the best results. However, the ProBaSeMO method, which yields competitive results, requires

a significantly lower computational complexity.

Additionally, the optimal linear design and the optimal widely linear design are compared

in Fig. 3.10 and Fig. 3.11. “Optimal WL” stands for the optimal WL design solution while

“Optimal L” stands for the optimal linear solution. Fig. 3.10 demonstrates the achievable

average minimum SINR by using the optimal WL design and the linear design under different

system settings. It can be concluded that in general the WL processing is more effective than

the linear processing techniques. Nevertheless, when L = 1 the WL gain is approximately 1

dB and the gain reduces slightly when the number of antennas at the relay increases. This

result fits to our analysis of the suboptimal algorithm. As L increases, the WL gain also

increases. But the gain again reduces as the array size of the relay enlarges. This implies

that the linear design benefits more from increased spatial dimension and the WL design is

superior compared to the linear design only if there are not sufficient degrees of freedom in

the spatial domain. Fig. 3.11 shows the average minimum transmit power at the relay given

identical SINR constraints at all UTs. The same conclusion can be drawn. That is, the WL

gain is limited when there is only a single pair of UTs. The WL gain increases as the number

of pairs increases. However, it decreases as the array size at the relay increases.

Figure 3.12 demonstrates the sum rate comparison of the ProBaSeMO schemes and the

proposed POTDC approach in a symmetric scenario. That is, each user has equal distance to

the relay. The proposed POTDC only slightly outperforms the ProBaSeMO schemes. When

the noise variance is small and the number of antennas at the relay is large, the performance

difference almost vanishes.

In Figure 3.13, the ProBaSeMO algorithms are compared to other techniques from the liter-

ature. The “ZF” and ”MMSE” methods are the single antenna version of algorithms proposed

in [JS10]. “YZGK10” stands for the algorithm proposed in [YZGK10]. As the result suggests,

the ProBaSeMO algorithms give the best performance especially from moderate to high SNRs.
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When MR increases, there will be sufficient degrees of freedom in the spatial dimension. Thus,

non-pairing aware algorithms (ZF and MMSE) almost approach the performance of pairing

aware algorithms with less than 1 dB difference. The ProBaSeMO methods can provide a

gain of approximately 10 dB over the YZGK10 method at the high SNRs when MR = 8. This
implies that ANOMAX offers this performance enhancement because one major difference

between the YZGK10 method and the ProBaSeMO (BA) method is that an identity matrix

instead of the ANOMAX strategy in Section 3.3.3 is used as the relay amplification matrix for

each sub-system. However, all the curves have the same slope in the high SNR regime which

means that they yield the same multiplexing gain.

Figure 3.14 shows the sum rate as a function of the number of antennas at the relay when the

SNR is 25 dB. The sharing gain of pairing aware schemes (ProBaSeMO, YZGK10) as well as

non-pairing aware schemes (ZF and MMSE) increases as the array size at the relay increases.

ProBaSeMO outperforms ZF and MMSE especially when only a few antennas are deployed at

the relay, e.g., MR = 3. This is due to the fact that the ZF and the MMSE algorithms require

more antennas at the relay to null the interference. It can be also seen that the time-shared

approach has a better or equal performance compared to the non-pairing aware algorithms

when the relay has only a few antennas (e.g., 3 antennas). Again, the performance of the

YZGK10 approach implies that the ANOMAX algorithm determines the gain obtained in the

ProBaSeMO schemes.

Figure 3.15 demonstrates the system loading capability for both high SNR (25 dB) and low

SNR (5 dB) when the relay has 20 antennas. It shows that increasing the number of operators

which share the spectrum and the relay will increase the sharing gain. However, due to the

dimensionality constraint of the SDMA based appraches, there is a turning point after which

increasing number of operators will decrease the system sum rate.

Figure 3.16 demonstrates the effects of path loss on the sum rate performance for MR = 8.
The path loss model PL = 20 log10(d(ℓ)k

) is applied where d
(ℓ)
k

is the normalized distance between

the relay and the UT. We further assume a symmetric system model, i.e., d
(ℓ)
1 = d1 and d

(ℓ)
2 = d2

∀ℓ. The near-far (N/F) ratio is defined as d2/d1. It can be seen that the suboptimal algorithms

suffer more loss when the ratio is smaller that 0.5. When an asymmetric path loss model

is applied, i.e., N/Fratio = d
(1)
2 /d(1)1 = d

(2)
1 /d(2)2 , the superiority of the optimal approach is

further revealed. As shown in Figures 3.17 and 3.18, compared to the POTDC approach, the

ProBaSeMO scheme and the MMSE method in [JS10] suffer more from the asymmetry of the

system especially when the near-far ratio is far away from 1. When the number of antennas

at the relay increases, the performance difference between the ProBaSeMO approach and the

POTDC approach is even enlarged.
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Figure 3.19 illustrates the uncoded system BER performance of different algorithms. Un-

coded system BER is defined as the average over all UTs’ uncoded BERs. Among all al-

gorithms, RBD RR-ANOMAX provides the best performance. Not surprisingly, the RBD

ANOMAX solution has a slightly worse performance than BD ANOMAX. There are two rea-

sons. First, the low rank nature of ANOMAX will cause more bit errors in some data streams

and the worst data stream dominates the BER performance. Second, compared to the BD

solution, the singular value profile of the RBD solution is more imbalanced [SH08]. This

will result in a worse decoding situation. Thus, substituting ANOMAX with RR-ANOMAX

provides a better BER performance. Another method for improving the RBD ANOMAX per-

formance is to use the power loading method in [SH08]. However, it requires a significantly

higher computational complexity.

3.9.2 Two antennas at each UT

Figure 3.20 shows the comparison of different transmission strategies when each UT has 2 an-

tennas. Three precoding approaches, namely, “uWF (water-filling algorithm in Section 3.3.4)”,

“uDET” (dominant eigenmode transmission in Section 3.3.4) and “uJou2010” (dominant eigen

beamforming in [JS10] which uses a different effective channel than “uDET”), are compared

in this simulation. “rStDe” is the steepest descent method in Section 3.4.2. Compared to

the time-shared approach, the ProBaSeMO approaches obtain an almost two-fold sharing gain

in terms of the sum rate at an SNR of 35 dB due to the increased slope of the curves (in-

creased spatial multiplexing gain). Moreover, the ProBaSeMO approaches have achieved the

same multiplexing gain as the steepest descent method but with much less computational

complexity.

In Figure 3.21, the sum rate performance is shown as a function of the number of antennas at

the relay at high SNR (25 dB). AsMR increases, the slope of ProBaSeMO is higher compared to

the time-shared approaches. This means that larger sharing gains are obtained when the relay

has more antennas. However, when the relay has only 5 antennas, the time-shared approach

slightly outperforms ProBaSeMO because the SDMA approach sacrifices the available degrees

of freedom. Nevertheless, the ProBaSeMO scheme achieves the same multiplexing gain as the

steepest descent method.

Figure 3.22 demonstrates the sum rate comparison of different transmission strategies when

spatial correlation exists at the relay, i.e., ρR = 0.9. The ProBaSeMO algorithms with single

stream transmission are robust against this kind of correlation while multiple stream transmis-

sion suffers from spatial correlation. However, the ZF and MMSE methods have a significant

degradation of the performance even in the case of single stream transmission.
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3.9.3 CSI imperfections

In Figure 3.23, we show the effects of the CSI imperfection on the system spectral effi-

ciency when each UT has 2 antennas and the relay has 8 antennas. Each UT transmits 8

pilot symbols. The spectral efficiency is defined as (Number of correctly received packets ×

Number of bits per packet/Total transmission time). “LS r+u” denotes that the LS channel

estimation method in Section 3.3.6 is applied at all nodes while “pCSI” stands for perfect CSI.

As can be seen, the ProBaSeMO approaches are not sensitive (in this simulation less than 1

dB) to channel estimation errors. Note that we have not compared to the techniques in [JS10]

since each UT needs to acquire H
(ℓ)
k

and the CSI acquisition method is not specified in [JS10].

3.10 Discussion of the sharing gain

In this section we discuss some important findings with respect to the sharing gain, i.e.,

• What is the order of magnitude of the gain?

• What are the parameter settings such that a significant gain is achieved?

To demonstrate our findings, we use numerical simulations and the simulation parameters

are the same as in Section 3.9. Moreover, we consider the single antenna UT case and select the

ProBaSeMO approach as the transmit strategy for accomplishing the resource sharing among

multiple operators. If we define the fractional sharing gain as

Fractional sharing gain = Throughput of non-orthogonal sharing

Throughput of TDMA with half the number of antennas at the relay
,

then the fractional sharing gain as a function of the SNR and a function of number of antennas

at the relay for the two operator (L = 2) sharing case are demonstrated in Figure 3.4 and

Figure 3.5. TDMA with half the number of antennas at the relay implies that the two operators

will not only share the spectrum but will also share a relay with twice the number of antennas.

As shown in Figure 3.4, the sharing gain tends to be two-fold as long as the SNR increases.

Figure 3.5 shows that the sharing gain converges to two-fold as the number of antennas at the

relay increases regardless of the SNR, i.e., the sharing gain saturates when there are only two

operators share the spectrum and the relay.

If we increase the number of the operators L and allow the array size of the relay increases

linearly as the number of operators, i.e., MR = 4L, then Figure 3.6 shows that the sharing gain

increases linearly as the number of operators increases. In such a case, the fractional sharing
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Figure 3.4: Fractional sharing gain as a function of SNR for MU = 1 and L = 2.

gain is defined as

Fractional sharing gain = Throughput of non-orthogonal sharing

Throughput of TDMA with 4 antennas at the relay
.

3.11 Summary

In this chapter we discuss relay transmit strategies for multi-operator two-way relaying net-

works with a MIMO AF relay first proposed by us in [RZHJ10, ZRH+12c, ZRH12b, ZH13,
ZVKH13]. First, we propose the ProBaSeMO strategy inspired by the BD and RBD MU-

MIMO precoding schemes. We demonstrate that all operators can serve their users by using

multiple antennas at the relay via the the ProBaSeMO strategy. This ProBaSeMO strategy can

be applied for both single and multiple antennas at the UTs. Transmit and receive strategies

for both single-stream and multiple streams transmission are also proposed. Then, we develop

optimal linear relaying strategies which can be used as benchmarks for the ProBaSeMO ap-

proach when each UT has a single antenna. The sum rate maximization problem is non-convex

and in general NP-hard. The steepest descent algorithm simplifies to a dominant eigenvector

problem for the single antenna UT case. It thus can be solved using a modified power method.
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Figure 3.5: Fractional sharing gain as a function of MR for MU = 1 and L = 2.
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Although the steepest descent algorithm can be extended for multiple antennas UT, it re-

quires many iterations. Thus, its computational complexity is much higher compared to the

ProBaSeMO approach. In a single antenna UT case, the corresponding optimization task can

be also represented as a DC programming problem. Therefore, the efficient polynomial time al-

gorithm POTDC is extended to this multi-operator case and solves the problem approximately.

Furthermore, two other QoS based system design criteria have been chosen for the design of

optimal relay amplification matrices. First, we minimize the average transmit power at the

relay subject to an SINR constraint per user. Second, we discuss the SINR balancing problem

with average relay transmit power constraint. Both problems are generally non-convex. Thus,

to solve the optimization problems, we apply convex approximation techniques based on SDP

and SOCP. Finally, we address the WL design for the specific case of transmitting strictly

non-circular signals. Our goal is to exploit the WL gain by applying WL signal processing

to the nodes in the system. It turns out that a globally optimal WL design for our system

requires a joint WL design at the UTs and at the relay. This problem is in general non-convex

and NP-hard. Therefore, we resort to a suboptimal problem where the WL design is only

applied at the relay. Since the considered WL model can be transformed into an equivalent

linear model, arbitrary linear transmit strategies can be applied. We study the design of the

optimal WL transmit strategies to maximize the minimum SINR per user or to minimize the

average required transmit power at the relay. We have also proposed a suboptimal WL design,

namely, the WL DCM method, for the scenario with only one operator.

Simulation results have demonstrated that

• Compared to the time-shared approach, the ProBaSeMO approach can achieve a two-

fold sharing gain with many antennas at the relay or in the high SNR regime regardless

of single stream transmission or multiple stream transmission at the UTs when two

operators are considered. For a fixed number of antennas at the relay, a higher sharing

gain can be obtained if the number of operators which share the relay increases. The

sharing gain is defined as the performance comparison of the non-orthogonal sharing

approaches and the time-shared approach in terms of system sum rate.

• Compared to the non-pairing aware approach in [JS10] and the pairing aware approach

in [YZGK10], the ProBaSeMO approach has a better sum rate performance especially in

the high SNR regime and is more robust to the spatial correlation at the relay. Moreover,

less number of antennas at the relay are required to apply the ProBaSeMO approach

compared to the methods in [JS10].

• The ProBaSeMO scheme has almost the same performance as the power method for the
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3 Multi-operator relaying networks with a MIMO relay

single antenna case and suffers only a little loss compared to the steepest descent method

for the multiple antennas case.

• When each UT has a single antenna and the relay power minimization and SINR bal-

ancing are system design criteria, the ProBaSeMO scheme yields competitive results

compared to the convex optimization techniques especially when a large number of an-

tennas is deployed at the relay. However, it requires much less computational complexity.

• When each UT has a single antenna and strongly non-circular modulation schemes are

deployed, a WL signal processing gain is obtained by using optimal WL techniques over

optimal linear techniques. The WL gain increases as the number of operators increases

but it decreases as the number of antennas at the relay increases. Moreover, by taking a

large number of antennas at the relay and using the law of large numbers we derive the

asymptotic gain of the WL DCM scheme when compared to linear DCM, which can be

only 20 % in the worst case.
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−5 0 5 10 15
−20

−10

0

10

20

30

SINR constraint [dB]

A
ve

ra
ge

 r
el

ay
 p

ow
er

 [d
B

W
]

 

 

ZF  M
 R

=5

ProBaSeMO(BA)  M
 R

=5

iSOCP  M
 R

=5

SDP  M
 R

=5

Lower bound  M
 R

=5

ZF  M
 R

=8

ProBaSeMO(BA)  M
 R

=8

iSOCP  M
 R

=8

SDP  M
 R

=8

Lower bound  M
 R

=8

Figure 3.8: Relay transmit power vs. SINR constraint, SNR = 15 dB, 1000 channel realizations
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Figure 3.19: Uncoded system BER comparison of different multi-operator TWR approaches
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Figure 3.21: Sum rate comparison of different multi-operator TWR approaches for MU = 2,
SNR= 25 dB and L = 2.
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Figure 3.22: Sum rate comparison of different approaches for MU = 2, MR = 8, and L = 2 when
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tion, MU = 2, MR = 8 and L = 2.

83



4 Multi-pair relaying networks with multiple single antenna relays

4 Multi-pair relaying networks with multiple single

antenna relays

Now we consider another TWR scenario, i.e., a multi-pair TWR network with multiple single

antenna AF relays. The sum rate maximization problem subject to a total transmit power

constraint of the relays in the network or individual relay transmit power constraints is studied.

Due to the structure of the network, we shift from the design of relay amplification matrices

to the design of relay amplification coefficients for each relay. The major challenge comes

when each relay has its own transmit power constraint. Considering different types of power

constraints, we divide this chapter into two parts. In the first part, we investigate the opti-

mization problem under a total relay transmit power constraint [ZRH+12c]. First, we show

that the problem is a monotonic optimization problem and propose a polyblock approxima-

tion algorithm for obtaining the global optimum. However, this algorithm is only suitable for

benchmarking because of its high computational complexity. After observing that the nec-

essary optimality condition for our problem is similar to that of the generalized eigenvalue

problem, we propose to use the power method as in Section 3.4 which can approach the opti-

mum recursively. Finally, we propose the total signal to interference plus noise ratio (SINR)

eigen-beamformer which is a closed-form suboptimal solution that reduces the computational

complexity significantly. In the second part we study the sum rate maximization problem

problem where each relay has its own transmit power constraint [ZRH12a]. Again, we show

that the polyblock algorithm can be applied with a few modifications. Afterwards, inspired by

the polynomial time difference of convex functions (POTDC) method [KRVH12], we develop

a suboptimal solution which has lower complexity but comparable performance. To further

reduce the computational complexity, we propose two other algorithms, i.e., the modified total

SINR eigen-beamformer and an interference neutralization based design which are the low

SNR and high SNR approximations of the original optimization problem, respectively.

4.1 Problem description and state of the art

The optimal beamforming design for the sum rate maximization in AF TWR networks with

one pair of users and multiple single antenna AF relays has been studied in [HNSG10] and

[DS10]. Only a few references deal with multi-pair AF TWR networks, which include adaptive

power allocation [LXDL10] and distributed beamforming [WCY+11]. Reference [LXDL10]
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Figure 4.1: Multi-pair two-way relaying with multiple single antenna amplify and forward
relays.

deals with the adaptive power allocation problem while assuming different pairs of UTs access

the network using different frequency bins, i.e., no inter-pair interference is created during

the data transmission. Reference [WCY+11] proposes suboptimal beamforming techniques

for networks with inter-pair interference, where the strategy is to first null the inter-pair

interference using a ZF method and then optimize the interference-free system. When the

inter-pair interference is involved in the sum rate maximization problem, it is non-convex and

in general NP-hard.

The sum rate maximization problem with non-orthogonal network access has not been stud-

ied prior to our work [ZRH+12c] and [ZRH12a]. The optimum beamforming design for maxi-

mizing the sum rate of this system is developed in [ZRH+12c]. However, a sum power constraint

is assumed in [ZRH+12c]. Thereby, this motivates us to extend it to the case where each relay

has its own transmit power constraint in [ZRH12a] because this case has not been dealt with

before. Moreover, it is mathematically more difficult as will be shown in Section 4.4.

4.2 System model

The scenario under investigation is shown in Fig. 4.1. K pairs of single antenna users would

like to communicate with each other via the help of N single antenna relays. We assume perfect

synchronization and the channel is frequency flat and quasi-static block fading. The vector

channel from the (2k−1)−th user (on the left-hand side of Fig. 4.1) to the relays is denoted as

f2k−1 = [f2k−1,1, f2k−1,2, . . . , f2k−1,N ]T ∈ CN , while the channel from the (2k)−th user (on the

right-hand side of Fig. 4.1) to the relay is denoted as g2k = [g2k,1, g2k,2, . . . , g2k,N ]T ∈ CN , for
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k ∈ {1,2,⋯,K}. For notational simplicity, we assume an ideal TDD system, i.e., the channels

are reciprocal. The transmission takes two time slots. In the first time slot, the signal received

at all relays can be combined in a vector as

r =
K

∑
k=1
(f2k−1s2k−1 + g2ks2k) +nR ∈ CN (4.1)

where s2k−1 and s2k are i.i.d. symbols with zero mean and unit power. The vector nR denotes

the ZMCSCG noise and E{nRn
H
R} = σ2

RIN .

Afterwards, the AF relays broadcast the weighted signal as

r̄ =W ⋅ r (4.2)

where W = diag{w∗} and w = [w1, w2, . . . , wN ]T is the vector which consists of the N complex

weights of all the relays.

In the second time slot, the received signal at the (2k − 1)-th user (on the left-hand side of

Fig. 4.1) is expressed as [WCY+11]

y2k−1 =wHF2k−1g2ks2k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
desired signal

+wHF2k−1f2k−1s2k−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
self-interfernce

+wHF2k−1
K

∑
ℓ≠k
ℓ=1
(f2ℓ−1s2ℓ−1 + g2ℓs2ℓ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inter-pair interference

+wHF2k−1nR + n2k−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
effective noise

(4.3)

where F2k−1 = diag{f2k−1} and n2k−1 is the ZMCSCG noise with variance σ2
2k−1. The SINR of

the m-th user can be calculated as

SINR2k−1 =
wHB2k−1w

wH(D2k−1 +E2k−1)w + σ2
2k−1

(4.4)

where D2k−1 = ∑K
ℓ≠k
ℓ=1
(h̃(o)

2k−1,ℓh̃
(o)H
2k−1,ℓ + h̃

(e)
2k−1,ℓh̃

(e)H
2k−1,ℓ) and B2k−1 = h2k−1hH

2k−1 are N ×N positive

semidefinite Hermitian matrices. The matrices D2k−1 and B2k−1 are related to the interference

power and the desired signal power, respectively, (h2k−1 = f2k−1 ⊙ g2k, h̃
(o)
2k−1,ℓ = f2k−1 ⊙ f2ℓ−1

and h̃
(e)
2k−1,ℓ = f2k−1 ⊙ g2ℓ). The term which is related to the forwarded noise from the relay

is denoted by an N × N full rank diagonal matrix E2k−1 = σ2
RF2k−1FH

2k−1. Similar SINR

expression can be obtained when m = 2k. Furthermore, the total transmit power is given by
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4.3 Sum rate maximization under a total relay transmit power constraint

E{∥r̄∥2} =wHΓw with

Γ =
K

∑
k=1
(F2k−1FH

2k−1 +G2kG
H
2k) + σ2

RIN , (4.5)

where G2k = diag{g2k}. The i-th relay’s transmit power is given by E{∥r̄i∥2} = wHΥiw with

Υi = Γi,ieie
H
i . The vector ei is the i-th column of an identity matrix. The scalar Γi,i is the(i, i)-th element of the diagonal matrix Γ.

Assume that perfect channel knowledge can be obtained such that the self-interference terms

can be canceled. Our goal is to find the weight vector w such that the sum rate of the system

is maximized subject to a sum power constraint or individual relay transmit power constraints.

4.3 Sum rate maximization under a total relay transmit power

constraint

Hereafter, for notational simplicity, we define an index m to substitute the indices k such that

m ∈ {1,2,⋯,2K}. Let PR be the total transmit power consumed by the relays in the network.

The optimization problem can be formulated as

max
w

1
2

2K

∑
m=1

log2(1 + SINRm)
subject to E{∥r̄∥2} ≤ PR, (4.6)

where the factor 1/2 is due to the two channel uses (half duplex).

To simplify the optimization problem we note that the inequality constraint in (4.6) has to

be satisfied with equality at optimality. Otherwise, the optimal w can be scaled up to satisfy

the constraint with equality while increasing the objective function, which contradicts the

optimality. Inserting the constraint into the objective function in (4.6), the original problem

can be reformulated as an unconstrained optimization problem

max
w

2K

∏
m=1

wHAmw

wHCmw
(4.7)

where Cm = Dm + Em +
σ2
m

PR
Γ and Am = Bm + Cm are positive definite. Problem (4.7) is

equivalent to (4.6) since the objective function is homogeneous and any scaling in w does not

change the optimality. Nevertheless, if w̄ is the solution to (4.7), it should be scaled to fulfill
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4 Multi-pair relaying networks with multiple single antenna relays

the transmit power constraint, i.e., the optimal solution to (4.6) is given by

w =
√

PR

w̄HΓw̄
w̄. (4.8)

Problem (4.7) is non-convex and in general NP-hard.

4.3.1 Generalized polyblock algorithm

Monotonic optimization (see [Tuy00], [PT03]) deals with the maximization or minimization of

an increasing function over an intersection of normal and reverse normal sets. The polyblock

approximation approach is a unified algorithm to find the global optimum of the monotonic

optimization problem. Prior work that used this approach in the area of wireless communi-

cations can be found in [QZH09], [JL10]. We show that the problem (4.7) is a monotonic

optimization problem and then propose a version of the polyblock algorithm to solve it. A

polyblock approach is also summarized in Appendix C.7.2.

Proposition 4.3.1. Problem (4.7) is a monotonic optimization problem.

Proof. Problem (4.7) is equivalent to the following problem

max
y
{Φ(y)∣y ∈ D} (4.9)

where Φ(y) = ∏2K
m=1 ym and D = G ∩ L. The sets G = {y ∈ R2K+ ∣ym ≤ maxw

wHAmw
wHCmw

, w ∈ CN}
and L = {y ∈ R2K+ ∣ym ≥minw

wHAmw
wHCmw

} are normal set and reverse normal set, respectively. The

function Φ(y) is an increasing function since Φ(ȳ) ≥ Φ(ỹ) for ȳ ⪰ ỹ. Then the proof of the

equivalence follows similar steps as in [PT03]. Thus, problem (4.7) is a monotonic optimization

problem. The definitions of increasing function, normal set, and reverse normal set are the

same as in [PT03].

A polyblock P with vertex set T ⊂ R2K+ is defined as the finite union of all the boxes [0,z],
z ∈ T. It is dominated by its proper vertices. A vertex z is proper if there is no z̄ ≠ z and

z̄ ⪰ z for z̄ ∈ T.
According to Proposition 2 in [PT03], the global maximum of the problem (4.9), if exists, is

attained on ∂+D, i.e., the upper boundary of D. The main idea of the polyblock approxima-

tion algorithm for solving (4.9) is to approximate ∂+D by polyblocks, i.e., construct a nested

sequence of polyblocks which approximate D from above, that is,

P1 ⊃ P2 ⊃ ⋯ ⊃ D s.t. max
y∈Pk

Φ(y)→max
y∈D Φ(y) (4.10)
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4.3 Sum rate maximization under a total relay transmit power constraint

when k →∞ and yk ⪰ yℓ for all ℓ ≥ k.
Now we outline how to construct the subset Pk in our case, which is clearly the critical step

of a polyblock approximation. Let Tk be the proper vertex set of Pk and define the maximizer

at iteration k as

ȳk ∈ argmax
ȳ
{Φ(ȳ)∣ȳ ∈ Tk}. (4.11)

Compute the unique intersection point of ∂+D and ȳk as ŷk = γkȳk with γk ∈ [0,1]. Then the

proper vertex set Tk+1 of Pk+1 in step k + 1 is the set obtained by substituting ȳk in Tk with

the new vertices {ȳ1
k,⋯, ȳ

2K
k } defined by

ȳm
k = ȳk − (ȳk,m − ŷk,m)em, m = 1,⋯,2K (4.12)

and removing all the improper vertices 1 as well as the vertices not belonging to L. The

scalar ȳk,m is the m-th element of ȳk and em ∈ R2K+ is the m-th unit vector. The factor γk is

calculated as [PT03]

γk =max
w

min
m

wHAmw

ȳk,mwHCmw
. (4.13)

Although (4.13) is non-convex, it is an easier sub-problem which can be solved approximately

(η−optimality) 2 using the algorithm in [GSS+10]. Finally, the proposed (ǫ, η)-optimal solution

using the polyblock algorithm is described in Algorithm 6. The proof of the global convergence

follows similar steps as in [PT03].

Algorithm 6 (ǫ, η)-optimal polyblock algorithm for solving (4.7)

1: Initialize: set initial vertex set T0 = {b}3, maximum iteration number Nmax, and the
threshold values ǫ, η.

2: Main step:
3: for k = 1 to Nmax do
4: Solve (4.11) and (4.13) finding ȳk and η−optimal γk.
5: Construct a smaller polyblock Pk using ȳk and γk.
6: if maxm{(ȳk,m − ŷk,m)/ȳk,m} ≤ ǫ then
7: break
8: end if
9: end for

1A vertex is improper if it is dominated by other vertices in the same set. For example, if {y1,y2} ∈ T and
y2 ⪰ y1, then y1 is dominated by y2 and thus y1 is improper [PT03].

2The η−optimality means that the stopping criterion or the tolerance factor of the iterative algorithm is η.
3Here b ∈ R2K

+ satisfies bm =maxw
w

H
Amw

wHCmw
, m = 1,⋯,2K.
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4 Multi-pair relaying networks with multiple single antenna relays

4.3.2 Extended GPM algorithm

Clearly, problem (4.7) can also be solved using the GPM algorithm in Section 3.4.1, which

is also applied in [LYC08]. Although the GPM algorithm converges fast in practice and

the numerical results provide a strong evidence that it provides globally optimal solution

(compared to the polyblock approach), we can neither prove its optimality nor characterize its

convergence behavior theoretically. The analytic study of it is not trivial.

Let us briefly review the GPM method of Section 3.4.1. According to the optimality condi-

tion, all the local maximizers for the problem (4.7) should satisfy

∂λ(w)
∂w

∣
w=w̄ = 0 (4.14)

where λ(w) = ∏2K
m=1 wHAmw

wHCmw
. After differentiation and some algebraic manipulation, the con-

dition in (4.14) can be converted into

V (w̄)w̄ = λ(w̄)Q(w̄)w̄ (4.15)

where V (w̄) = ∑2K
m=1(∏i≠m w̄HAiw̄)Am and Q(w̄) = ∑2K

m=1(∏i≠m w̄HCiw̄)Cm. Equation

(4.15) is a generalized eigenvalue problem and λ(w̄) can be thought as the generalized eigen-

value of matrices V (w̄) and Q(w̄). Thus, the maximum generalized eigenvalue λmax(w̄) is the
maximum of the problem (4.7). Since both matrices are functions of w̄, a closed-form solution

is not possible. Therefore, in Section 3.4.1 we propose to apply the recursive power method of

[GL96] to obtain the solution. In [GL96], it is shown that the original power method converges

only if the largest eigenvalue is dominant and the convergence speed depends on the ratio

between the largest and the second largest eigenvalues. Although we can only demonstrate

this via numerical simulations, we claim that GPM should have similar features as the original

power method. Thus, the following conjecture is given.

Conjecture 1. The GPM algorithm converges if there is a dominant eigenvalue. The conver-

gence behavior depends on the dispersion of the eigenvalue profiles of the matrices of Am and

Cm.

Moreover, it is observed that the GPM algorithm converges faster in the high SNR regime

with a given error tolerance factor. For a detailed implementation one can be referred to

Section 3.4.1.
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4.4 Sum rate maximization under individual relay transmit power constraints

4.3.3 Total SINR Eigen-Beamformer

Although the polyblock algorithm and the GPM algorithm solve the problem (4.7) in an

optimal way, they require many iterations. In this section, we propose a closed-form sub-

optimal design. This closed-form solution is based on the observation that for our scenario

nulling the inter-pair interferences by forcing every interference term to zero is equivalent to

nulling the sum of the inter-pair interferences. That is, if the sum of the interference powers

wH(∑2K
m=1Dm)w = ∑2K

m=1(wHDmw) = 0, it is clear that wHDmw = 0, for all m since Dm ⪰ 0.
Let us define Stot = ∑2K

m=1Bm and Utot = ∑2K
m=1Cm. Thus, wHStotw and wHUtotw are the

sum of the signal power and the sum of the interference plus noise power of all the users,

respectively. Then the proposed total SINR eigen-beamformer solves the following problem

max
w

wHStotw

wHUtotw
. (4.16)

It is obvious that the optimal value of (4.16) is the dominant eigenvalue λmax{U−1totStot} and
the optimal w is the corresponding dominant eigenvector of the matrix U−1totStot (Utot is always

invertible due to the noise term). In the end, a scaling has to be performed as in (4.8).

Remark 6. Although all the proposed algorithms do not have any requirements on N , to

cancel the interference completely N > 2K(K − 1) is required since the rank of the sum of the

interference terms is equal to rank{∑2K
m=1Dm} = 2K(K −1) [WCY+11]. If N ≤ 2K(K −1), the

results will be unfair for some users since they will suffer from extremely lower throughput

compared to the other users.

4.4 Sum rate maximization under individual relay transmit power

constraints

Let PR,i be the transmit power constraint of the i-th relay in the network. The optimization

problem can be formulated as

max
w

1

2

2K

∑
m=1

log2(1 + SINRm)
subject to E{∥r̄i∥2} ≤ PR,i,∀i ∈ {1,2,⋯,N}. (4.17)

91



4 Multi-pair relaying networks with multiple single antenna relays

Using the quadratic reformulation in Section 4.2, problem (4.17) can be rewritten as

max
w

2K

∏
m=1

wHĀmw + σ2
u

wHC̄mw + σ2
u

subject to wHΥiw ≤ PR,i,∀i (4.18)

or equivalently

max
w

2K

∑
m=1
( log(wHĀmw + σ2

u) − log(wHC̄mw + σ2
u))

subject to wHΥiw ≤ PR,i,∀i (4.19)

where C̄m = Dm + Em and Ām = Bm + C̄m are positive definite, and Υi is defined below

equation (4.5). Note that for simplicity the scalar 1
2
is dropped and the natural logarithm is

used instead. The formulations (4.18) or (4.19) are still non-convex.

4.4.1 Generalized polyblock Algorithm

In Section 4.3.1 we have proven that the sum rate maximization problem in such a relay net-

work with a total power constraint satisfies the monotonic optimization framework. Similarly,

problem (4.18) is also a monotonic optimization problem which can be solved using a unified

algorithm, which is called the polyblock approximation approach [PT03]. In the following

we prove that the problem (4.18) is a monotonic optimization problem and then adapt the

polyblock algorithm to solve it.

Problem (4.18) is equivalent to the following problem

max
y
{Φ(y)∣y ∈ D} (4.20)

where Φ(y) = ∏2K
m=1 ym and D = G ∩ L. The sets G = {y ∈ R2K+ ∣ym ≤ maxw

wHĀmw+σ2
u

wHC̄mw+σ2
u
} and

L = {y ∈ R2K+ ∣ym ≥ minw
wHĀmw+σ2

u

wHC̄mw+σ2
u
} are a normal set and a reverse normal set, respectively

[PT03]. The domain of w is defined as {w ∈ CN ∣wHΥiw ≤ PR,i,∀i}. Moreover, the function

Φ(y) is an increasing function since Φ(ȳ) ≥ Φ(ỹ), ∀ȳ ⪰ ỹ. Thereby, problem (4.18) is the

maximization of an increasing function over an intersection of normal and reverse normal sets.

As shown in [PT03], such a formulation is a monotonic optimization problem. The definitions

of the increasing function, the normal set, and the reverse normal set are the same as in [PT03].

Following the same procedure as in Section 4.3.1, the (ǫ, η)-optimal solution of problem
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4.4 Sum rate maximization under individual relay transmit power constraints

(4.18) is obtained. Note that the major difference between the problem in Section 4.3.1 and

our problem is the calculation of γk ∈ (0,1] at the k-th step. The scalar γk determines the

unique intersection between the ray through 0 and ȳk and the upper boundary ∂+D where ȳk

is the vertex in Tk which maximizes the function Φ(y). Instead of solving an unconstrained

max-min problem as in Section 4.3.1, we need to solve the following constrained problem

γk =max
w

min
m

wHĀmw + σ2
u

ȳk,mwHC̄mw + σ2
u

subject to wHΥiw ≤ PR,i,∀i (4.21)

Similar as in [ZRH+12c], problem (4.21) is solved using semidefinite relaxation together with

the bisection search (the concept of this method is elaborated in Section 4.4.3).

4.4.2 POTDC inspired approach

The computational complexity of the polyblock algorithm can be non-polynomial time in the

worst case. Thus, it is worth to look for a polynomial time solution. In this section, we

introduce a polynomial time solution which is similar as in Section 3.5.

Let us first define X =wwH. Using the SDR technique and dropping the rank-1 constraint,

problem (4.19) can be reformulated as

min
X,αm,βm,∀m −

2K

∑
m=1

log(αm) − (− 2K

∑
m=1

log(βm))
subject to Tr{ΥiX} ≤ PR,i,∀i,

Tr{ĀmX} + σ2
u = αm,

Tr{C̄mX} + σ2
u = βm,∀m,

X ⪰ 0. (4.22)

The objective function of problem (4.22) is a DC problem and therefore is non-convex and

in general NP-hard. Inspired by the POTDC algorithm in [KRVH12], we replace the concave

part of the objective function in (4.22) by its linear approximation, i.e., log(βm) is replaced

by its first order Taylor polynomial log(β0,m) + βm−β0,m

β0,m
,∀m. After the substitutions, the cost

function in (4.22) becomes convex. Finally, we obtain the following problem:

min
X,αm,βm,tm∀m −

2K

∑
m=1

log(αm) + 2K

∑
m=1

tm
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4 Multi-pair relaying networks with multiple single antenna relays

subject to Tr{ΥiX} ≤ PR,i,∀i,X ⪰ 0
Tr{ĀmX} + σ2

u = αm,

Tr{C̄mX} + σ2
u = βm

log(β0,m) + 1

β0,m
(βm − β0,m) ≤ tm. (4.23)

Problem (4.23) is a convex SDP problem and can be solved using the standard interior-point

algorithm [BV04].

Clearly, the first order Taylor polynomial approximation in problem (4.23) is the exact Taylor

expansion of log(βm) in (4.22) only if β0,m is equal to the optimal βopt,m. Thus, similarly as in

Section 3.5, we apply the same iterative algorithm as in Algorithm 4 for obtaining the optimal

Xopt of problem (4.23). The proposed algorithm, which is described in Algorithm 7, has

preserved the convergence properties from the original POTDC. That is, the optimal values

obtained over the iterations are non-decreasing. Furthermore, the proposed algorithm provides

a polynomial-time solution since it solves a sequence of convex problems. In the end, to obtain

wopt we need to extract a rank-1 solution from Xopt. In our work, the randomization technique

described in [LMS+10] and Appendix B.3.5 is applied.

Algorithm 7 POTDC approach for solving problem (4.23)

1: Initialize: set initial values β0,m,∀m, maximum iteration number Nmax and the tolerance
factor ǫ.

2: Main step:
3: for p = 1 to Nmax do

4: Solve (4.23) finding optimal value f⋆(p) and β
(p)
m .

5: β
(p+1)
0,m = β(p)m ,m = 1,⋯,2K

6: if ∣f⋆(p) − f⋆(p−1) ∣ ≤ ǫ then
7: break
8: end if
9: end for

4.4.3 Modified total SINR Eigen-Beamformer

Although the POTDC inspired algorithm has a comparable performance and guaranteed poly-

nomial time solution compared to the polyblock algorithm, it requires iterations (approxi-

mately 10-20 iterations are required in general) and therefore is still computationally ineffi-

cient. To further reduce the computational complexity, we propose a low SNR approximation

of problem (4.17), i.e., the total SINR eigen-beamformer (denoted as ToT in the simulation
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4.4 Sum rate maximization under individual relay transmit power constraints

results). As stated in Section 4.3.3, the total SINR eigen-beamformer aims at maximizing the

ratio between the sum of the received signal powers of all the UTs and the sum of interference

plus noise power of all the UTs. This beamformer design can be applied to our problem but a

closed-form solution as in Section 4.3.3 cannot be obtained due to the individual relay power

constraints. In the following we apply the concept of the total SINR eigen-beamformer and

develop the solution to it.

Let us define Stot = ∑2K
m=1Bm and Utot = ∑2K

m=1 C̄m. Thus, wHStotw and wHUtotw are the

sum of the signal power and the sum of the interference power plus the forwarded noise power

from all the relays, respectively. Then our proposed total SINR eigen-beamformer solves the

following problem

max
w

wHStotw

wHUtotw + 2Kσ2
u

subject to wHΥiw ≤ PR,i,∀i (4.24)

Although problem (4.24) is in general non-convex and NP-hard, it is well studied in the

literature, e.g., [GSS+10], [LPP11]. In our work, we use the SDR together with a bisection

search which is similar to [GSS+10]. In the following we briefly introduce this algorithm.

Applying the SDR method, problem (4.24) is reformulated as

min
X,t

− t

subject to Tr{ΥiX} ≤ PR,i,∀i,X ⪰ 0
Tr{(tUtot −Stot)X} ≤ −2Ktσ2

u,∀i (4.25)

For a fixed t, problem (4.25) is a feasibility check problem. Thereby, the optimal Xopt can be

obtained via a bisection search over an interval [tmin, tmax]. In our case, we select tmin = 0 and

tmax = P((Utot+2Kσ2
uΓ/(∑N

i PR,i))−1Stot), where Γ is defined in equation (4.5). After obtain-

ing Xopt, the optimal beamforming vector wopt is found using the randomization techniques

described in [LMS+10].

Next we prove that problem (4.24) is the low SNR approximation of the original problem

(4.17). Applying the the Taylor expansion of the logarithmic function log(1+x), we have ∀m

log(1 + wHBmw

wH(Dm +Em)w + σ2
u

) ≈ wHBmw

wH(Dm +Em)w + σ2
u

.

Using the fact that in the low SNR regime (σ2
R → +∞) wHDmw ≪ wHEmw ≈ σ2

R,∀m and
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thus wH(Dm̄+Em̄)w ≈wH(Dn̄+En̄)w for m̄ ≠ n̄ and {m̄, n̄} ∈ {1,⋯,2K}, we can rewrite the

objective function in (4.17) as

2K

∑
m=1

log(1 + wHBmw

wH(Dm +Em)w + σ2
u

) ≈ 2K

∑
m=1

wHBmw

wH(Dm +Em)w + σ2
u

≈

2K

∑
m=1

wHBmw

2K

∑
m=1
(wH(Dm +Em)w + σ2

u)
= wHStotw

wHUtotw + 2Kσ2
u

.

4.4.4 Interference neutralization based design

In this section, we propose a high SNR approximation of the original problem (4.17). The

proposed algorithm is based on the interference neutralization which is a technique that tunes

the interfering signals such that they neutralize each other at the receiver [MDFT08a]. Math-

ematically, interference neutralization for our scenario requires that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(f2k−1 ⊙ f2ℓ−1)Hw = 0 ∀ℓ, k, ℓ ≠ k
(f2k−1 ⊙ g2ℓ)Hw = 0 ∀ℓ, k, ℓ ≠ k
(g2k ⊙ f2ℓ−1)Hw = 0 ∀ℓ, k, ℓ ≠ k
(g2k ⊙ g2ℓ)Hw = 0 ∀ℓ, k, ℓ ≠ k.

(4.26)

where the first two equations, which are from equation (4.3), represent the interference from

odd-indexed (i.e., (2ℓ − 1)-th) users and even-indexed (i.e., (2ℓ)-th) users to another odd-

indexed (i.e., (2k − 1)-th) user. Similar as equation (4.3), the received signal model for the

even-indexed (i.e., (2k)-th) users can be obtained and thus we get the last two equations of

(4.26).

Utilizing the commutative property of the Hadamard product, 2K(K − 1) duplicated equa-

tions in (4.26) are removed and we have

H(e) ⋅w = 0. (4.27)

where H(e) has a dimension of 2K(K − 1)×N . Define ī ∈ {1,⋯,K} and j̄ ∈ {̄i+ 1,⋯,K}. The
matrix H(e) is generated by

H(e) = [f∗
2̄i−1 ⊙ f∗

2j̄−1 f∗
2̄i−1 ⊙ g∗

2j̄
g∗
2̄i
⊙ f∗

2j̄−1 g∗
2̄i
⊙ g∗

2j̄
]T .
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4.5 Simulation results

Equation (4.27) is solvable only if the null space of H(e) is not empty, i.e., N > 2K(K − 1).
Define the SVD of H(e) = UΣ[Vs Vn]H, where Vn contains the last (N − 2K(K − 1)) right

singular vectors and thus forms an orthonormal basis for the null subspace of H(e). Without

loss of generality, we define the interference neutralization based beamformer (denoted as

IntNeu in the simulation results) as w = Vnw̄, where w̄ ∈ CN−2K2+2K has a smaller dimension

than w ∈ CN . In other words, searching over w̄ yields a lower computational complexity.

Furthermore, observing that we havewHEmw → σ2
R,∀m also in the high SNR regime (σ2

R → 0),

the cost function in (4.19) is then reformulated as

2K

∑
m=1

log(w̄HV H
n ĀmVnw̄ + σ2

u) − 2K

∑
m=1

log(σ2
R + σ

2
u) (4.28)

Replacing the cost function in (4.19) by (4.28) and dropping the constant terms, we obtain

the following problem

max
w̄

2K

∑
m=1

log(w̄HĀmw̄ + σ2
u)

subject to w̄HῩiw̄ ≤ PR,i,∀i (4.29)

where Ām = V H
n ĀmVn,∀m and Ῡi = V H

n Γiieie
H
i Vn. Again applying the SDR, we have the

following convex SDP problem

min
X̄,ᾱm,∀m −

2K

∑
m=1

log(ᾱm)
subject to Tr{ῩiX̄} ≤ PR,i,∀i,X ⪰ 0

Tr{ĀmX̄} + σ2
u = ᾱm. (4.30)

where X̄ = w̄w̄H. After obtaining the optimal X̄opt, the rank-1 extraction of VnX̄V H
n , which

is computed using the randomization technique, yields the final wopt.

4.5 Simulation results

In this section, the performance of the proposed algorithms is evaluated via Monte-Carlo

simulations. The simulated flat fading channels are spatially uncorrelated Rayleigh fading

channels. The total relay power PR is fixed to unity. The noise variances at all nodes are the

same, i.e., σ2
R = σ2

u and thus SNR = 1/σ2
u. There are K = 2 pairs of users in the network. All

the simulation results are obtained by averaging over 1000 channel realizations.
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4.5.1 A sum transmit power constraint for the relays in the network

“Polyblock”, “GPM”, “Total SINR”, and “Method 1” denote the algorithms in Sections 4.3.1,

4.3.2, 4.3.3, and [WCY+11], respectively. For the polyblock algorithm, ǫ = 10−1 and η = 10−6.
Figure 4.2 shows the comparison of different algorithms with N = 5 relays and N = 12

relays in the network. “Method 1” is available only for the case N = 12 since it requires that

N ≥ 2K2+K. It is obvious that “Polyblock”, “GPM” and “Total SINR” outperform “Method

1”. One possible reason is that in “Method 1” a part of the transmit power is used to force

the self-interference power to a certain level. The polyblock algorithm performs slightly worse

than the GPM algorithm. This is due to the (ǫ, η)-optimality. Moreover, the total SINR

eigen-beamformer performs almost the same as the optimal solution with a small number of

relays (N = 5) and suffers only a small loss when many relays (N = 12) exist.
Figures 4.3, 4.4, and 4.5 demonstrate the convergence behavior of the POTDC inspired

algorithm, the GPM algorithm, and the polyblock approach, when a total transmit power

constraint is considered, respectively. As can be seen, the POTDC approach provides the

fastest convergence speed in all cases. The polyblock approach provides the worst convergence

behavior. As we discussed in Section 4.3.2, the convergence speed of the GPM scheme increases

when the number of relays increases in the network or the SNR is high.

4.5.2 Individual relay transmit power constraints

“Polyblock”, “POTDC”, “ToT”, and “IntNeu” denote the algorithms in Sections 4.4.1, 4.4.2,

4.4.3, and 4.4.4, respectively. For the polyblock algorithm, the POTDC algorithm, and the

ToT algorithm, the stopping criterion is set to be a tolerance factor of 10−4.
Figure 4.6 shows the comparison of different algorithms with N = 6 relays and N = 12 relays

in the network. Clearly, the POTDC algorithm has close to optimal performance especially in

the low SNR regime and when there is a sufficient number of relays in the network (e.g., N =
12). Thus, the POTDC algorithm can also be used as a benchmark for the other suboptimal

algorithms since it has a lower computational complexity but a comparable performance when

compared to the global optimal solution.

Figure 4.7 demonstrates the comparison of different suboptimal algorithms. As depicted in

the figure, the modified total SINR eigen-beamformer (denoted by “ToT”) and the interference

neutralization based design (denoted by “IntNeu”) show a low SNR performance and a high

SNR performance of the global optimum solution, respectively. Moreover, when there are

enough relays in the network, both the distributed total SINR eigen-beamformer and the

interference neutralization based design are very close to the optimum solution but have a
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much lower computational complexity.

4.6 Summary

In this chapter, we investigate the sum rate maximization problem in multi-pair AF TWR

networks with multiple single antenna relays, which has been firstly studied by us in [ZRH+12c,
ZRH12a]. Unlike the multi-operator TWR networks in Chapter 3, a relay transmit beamformer

instead of a relay amplification matrix has to be designed. Given a total network power

constraint, the optimization problem is quite similar to the one in Sections 3.4.1 and 3.5

and thus the power method and the POTDC based approach can be directly applied. But

it is not possible to apply the ProBaSeMO approach here. When a sum power constraint is

considered, the optimization problem fits into the monotonic optimization framework and thus

can be solved using the generalized polyblock approximation algorithm. Since the optimality

condition yields a generalized eigenvalue problem, we apply the GPM algorithm, which is based

on the power method in Sections 3.4.1. To reduce the computational complexity, we propose

the total SINR eigen-beamformer which maximizes the total SINR of the network. When

each relay in the network has its own transmit power constraint, the optimization problem

becomes more challenging. Most of the aforementioned methods cannot be applied directly.

Nevertheless, by modifying the polyblock algorithm and the POTDC approach, it is possible to

solve the optimization problem accordingly. Again, considering the computational complexity,

we propose a modified version of the total SINR eigen-beamformer method. The modified

total SINR eigen-beamformer is a low SNR approximation of the original problem. We also

propose an interference neutralization based design which provides a high SNR approximation

of the optimum solution.

Simulation results have illustrated that

• When a sum relay transmit power is considered, all the proposed algorithms outperform

the state of the art algorithm in [WCY+11]. Moreover, the proposed total SINR eigen-

beamformer only suffers a little loss compared to the polyblock algorithm and the GPM

algorithm.

• When each relay has its own transmit power constraint, the achievable system sum rate

is slightly worse compared to the case with a total transmit power constraint. Moreover,

the proposed modified total SINR eigen-beamformer is close to the polyblock algorithm

and the generalized POTDC algorithm when there is a sufficient number of relays in

the network. The same performance can be observed for the proposed interference neu-
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4 Multi-pair relaying networks with multiple single antenna relays

tralization based design, which has the lowest computational complexity among all the

proposed algorithms.
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Figure 4.2: Sum rate comparison of the proposed algorithms under a total transmit power
constraint.

20 40 60 80 100 120 140

10
−6

10
−4

10
−2

10
0

Iterations

1−
no

rm
al

iz
ed

 s
um

 r
at

e

 

 

SNR = −5 dB,N=5
SNR = 15 dB,N=5
SNR = −5 dB,N=12
SNR = 15 dB,N=12

Figure 4.3: Convergence property of the POTDC inspired method with different N and SNRs.
Averaged over 100 channel realizations.
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Figure 4.4: Convergence property of GPM with different N and SNRs. Averaged over 100
channel realizations.
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Figure 4.5: Convergence property of the polyblock approach with different N and SNRs. Av-
eraged over 100 channel realizations.
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Figure 4.6: Sum rate comparison of the polyblock algorithm and the POTDC algorithm under
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Figure 4.7: Sum rate comparison of the POTDC algorithm, the total SINR eigen-beamfomer
(low SNR approximation), and the interference neutralization based design (high SNR approx-
imation) under individual relay transmit power constraints.
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5 Multi-pair relaying networks with non-cooperative

repeaters

In this chapter we look at a more general multi-pair TWR scenario, i.e., a TWR network

with multiple repeaters and smart relays, where the smart relays use the AF relaying strat-

egy. The relaying network here is more general because the scenarios, which are studied in

previous chapters, can be seen as special cases of the considered scenario. Our contribu-

tion is summarized as a general framework to optimize different system utility functions in

a TWR with repeaters and smart relay nodes with and without interference neutralization

[ZHJH14c, ZHJH14a, ZHJH14b]. In this part, we first introduce the system model and per-

form necessary algebraic manipulations on it in Section 5.3. Then in Section 5.4 we derive

necessary and sufficient conditions for realizing interference-free transmission using interference

neutralization. Afterwards, we design optimal relay amplification matrices, which minimize

the required transmit power at the relays subject to minimum SINR constraints, maximize the

minimum SINR of the users subject to relay transmit power constraint(s), or maximize the

weighted system sum rate subject to relay transmit power constraint(s), regardless whether

the smart relays in the network have a total transmit power limit or individual transmit power

limits in Sections 5.5, 5.6, and 5.7, respectively. Finally, the proposed methods are evaluated

in Section 5.8 and a conclusion is drawn in Section 5.9.

5.1 State of the art

Interference is one major bottleneck on the capacity of wireless networks. Recently a num-

ber of new ideas and techniques have been developed in network information theory [EK11].

These approaches led to the optimal resource allocation and transceiver design of single-hop

multi-cell systems [BJ13]. However, in modern networks such as LTE and WiMAX [IEE09],

wireless links can be connected using layer-1 repeaters (simple amplifiers) [Sei09, BSR+13].
The advantage of non-regenerative relaying strategies is that the relay is transparent to the

modulation and coding schemes and thus offers a flexible implementation. Furthermore, it

induces negligible signal processing delays [BUK+09]. The notion of relay-without-delays, also

known as instantaneous relays if the relays are memoryless [EH05, EHM07, CJ09, LJ11], refers

to relays that forward signals consisting of both current symbol and symbols in the past, in-

stead of only the past symbols as in conventional relays. Therefore, we assume that the relays
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employ an AF, i.e., a non-regenerative, strategy.

In multi-hop interference networks, one way to manage interference is to choose the transmit

and receive strategies such that the interference components cancel over different paths when

arriving at a destination node. This is usually termed as interference neutralization (IN). IN

has been applied to eliminate interference in various single-carrier systems, such as determin-

istic channels [MDFT08b, MDT09], together with other interference management techniques,

e.g., interference separation, interference alignment, and interference suppression. For two-hop

relay channels IN is studied in [BUK+09, BW05] where it is termed multi-user ZF relaying. In

[LLL13], the generalized degrees of freedom of a two-way MIMO relay interference channel are

studied. In [RW07] partial and complete interference cancellation in two-way and two-path

relaying is proposed and compared. Finally, in [ZRH12a] and in Chapter 4, the maximization

of the sum rate of a multi-pair two-way AF relaying network where each relay has its individual

power constraint is studied. In [LJ13] the degrees of freedom of the two-cell two-hop MIMO

interference channel are described and an interference-free relay transmission scheme is pro-

posed. Instantaneous relay channels are considered in [HJ12] and interference neutralization

is compared to the optimal relaying strategy obtained by non-convex complex optimization.

In relay-enhanced cellular systems, instantaneous relays originate from the coexistence of

layer-1 repeaters and smart non-regenerative relays. Both operate on the same time scale:

Signals traveling over layer-1 repeaters and smart AF relays arrive symbol-synchronous at the

receivers (see example LTE scenario in [HJG13b]). This results in an effective instantaneous

relay model. In an adversarial environment in which receivers act as well-behaved but curious

nodes, the IN technique can be successfully applied to avoid information leakage [HJG13b].

When multiple pairs of users access the network via the help of MIMO relays, the design

of the relay amplification matrices becomes more complicated. This is due to the fact that

each pair of users in this network suffers from the interference caused by the other users

especially in the high SNR regime. Thus, the inter-pair interference has to be dealt with

properly. Previous work on multi-pair TWR systems with a single MIMO relay includes

optimal designs [FWY13], [TW12], [ZBR+12] and suboptimal designs [YZGK10], [ZRH12b],

[JS10]. All the suboptimal schemes use the concept of interference cancellation or suppression.

In [JS10], closed-form relay transmit strategies are obtained based on ZF and MMSE criteria.

In [YZGK10], the relay amplification matrix is designed using a singular value decomposition

(SVD) to null the interference. A more general SVD-based algorithm is proposed in [ZRH12b],

where the design principle is to null the inter-pair interference first and then to optimize

each sub-system (pair) independently. Conversely, an optimal design does not necessarily

rely on interference cancellation. Moreover, the known optimal designs use the fact that the
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relay amplification matrix can be stacked into a vector. Thereby, system utilities such as

max-min fairness in [TW12] and power minimization in [ZBR+12] (in Section 3.6) turn into

quadratic programming problems, which can be solved using convex optimization techniques.

In [FWY13], this approach was generalized such that all the utility functions are reformulated

as a max-min fairness problem.

Nevertheless, IN has not been studied for a general multi-pair TWR network with multiple

AF relays prior to our work. The general scenario can include the TWR scenario with direct

user terminal links (via dummy repeaters) or not. Thereby, it is more general than the multi-

pair two-way MIMO relay interference channel. Furthermore, our system operates with finite

relay and terminal transmit power. Therefore the feasibility of IN depends on the system

parameters (number of antennas and links) but also on the terminal and relay transmit powers.

Moreover, neither optimal relay transmit strategies nor IN based suboptimal strategies have

been studied prior to our work. Therefore, our problem is more general. But it is also more

challenging due to the involvement of multiple relays, which can have their own transmit power

limitation.

5.2 Our contributions

In this chapter, we develop a general framework to optimize different system utility functions

in a two-way relay network with repeater and smart relay nodes with and without interference

neutralization. Sufficient and necessary conditions for interference neutralization under differ-

ent system settings have been characterized and proven. Optimal relay amplification matrices,

which minimize the required transmit power at the relay subject to minimum SINR constraints,

maximize the minimum SINR of the users subject to relay transmit power constraint(s), and

maximize the weighted system sum rate subject to relay transmit power constraint(s) have

been derived regardless whether the smart relays in the network have a total transmit power

limit or individual transmit power limits. The major contributions are summarized in the

following.

5.2.1 Distributed relay nodes vs. relay clusters

To have a better network resource management, given a total number of antennas, we study

the problem of antenna assignment in a relay-assisted wireless network. This is a relevant

question in network planning and resource management. In one extreme, it is possible to

group all antennas in one mega relay which is powerful and manages all network resources and

traffic. In another extreme, we can use a single antenna per relay, such as in sensor networks.
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Or, as a compromise between both schemes, bundles of antennas are distributed in various

locations in the network. We discuss the feasibility of interference neutralization with two-way

relaying in these settings in Section 5.4.

We provide a very interesting result which shows how the required total number of antennas

in the network decreases when clusters of relays can be formed. For example, when single

antenna relays cannot cooperate with each other, one needs NMR ≥ 2K(K − 1) antennas in

total, where N , MR, and K denote the number of relays, the number of antennas at each relay

and the number of user pairs, respectively. However, if we allow 3 single antenna relays to form

a cluster - a multi-antenna relay, the number of antennas required in the network decreases by

half: NMR ≥K(K − 1).
5.2.2 The minimum required transmit power to perform IN

To neutralize the interference, a certain amount of power has to be available at the relay.

Then the question arises regarding the minimum required transmit power to perform IN in the

network. This problem is solved and analytic solutions are provided in Section 5.4. Similar to

the discussion about the distribution of the antennas, the general trend is that the required

power decreases as the number of antennas at each relay increases. It increases as the number

of pairs increases. However, the decrease is not monotonic. Moreover, for fixed K, we show

that the required transmit power depends on the value of 1
2
NMR(MR +1)−2K(K −1), which

represents the available spatial dimensions that can be used to scale down the required transmit

power. The higher this value is, the less power is required to perform IN.

5.2.3 Optimal relay amplification matrices

For the considered scenario it is interesting to know the optimal relay amplification matrices

under different system utility functions, e.g., minimizing the required transmit power at the

relay, balancing the achievable SINR of the users, and maximizing the weighted sum rate.

Although IN nulls the interference in the system, in general the structure of the considered

optimization problems remains unchanged after the interference is canceled. This is due to

the forwarded noise of the AF relaying strategy. Thus, the system with and without IN share

the same optimal solution. The difference is that less parameters need to be optimized after

applying IN. Moreover, the optimal solution for the case where the relays in the network have

a total transmit power limit can be extended to the case where each relay has its own transmit

power limit. Furthermore, all the formulated problems are in general non-convex QCQP

problems. But they can be relaxed into SDP problems using SDR techniques. Numerical
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results show that the obtained solutions are almost always rank-1. Specifically, when the SINR

balancing problem is considered, we propose a generalized Dinkelbach-type (DT) algorithm,

which includes two versions, namely, DT-1 and DT-2. The convergence speed of the proposed

algorithm is proven to be at least linearly in general. If a DT-2 algorithm is applied, a better

convergence can be obtained. When the weighted sum rate problem is considered, we propose

a polyblock approach which can be applied to obtain a globally optimal solution.

5.2.4 Orthogonal vs non-orthogonal resource access

In such an interference limited network, one way to avoid the interference is to let the users

access the resources in the network, e.g., the smart relays, in an orthogonal way. This leads to

the question when it is better to perform an orthogonal resource access than a non-orthogonal

resource access, and vice versa. We answer this question by comparing our proposed non-

orthogonal relay access schemes to an orthogonal relay access scheme, where the smart relays

are used by different pairs of users in a time-shared approach as described in Section 5.8.

Simulation results show that the non-orthogonal approach is preferred when the noise power

is low and when there are many antennas at the relay (given a fixed N ⋅MR).

5.3 Preliminaries

5.3.1 System model

The scenario under investigation is shown in Figure 5.1, where K pairs of single antenna UTs

communicate with each other via the help of N smart relays and K dumb repeaters. Each

smart relay has MR antennas. All the nodes are half-duplex. We assume that the channel is

frequency flat and quasi-static block fading. The channel vector from the (2k − 1)-th UT to

the n-th relay is denoted as f2k−1,n ∈ CMR (n ∈ {1,⋯,N}) and the cascaded channel vector of

the (2k − 1)-th UT to all the relays is f2k−1 = [fT
2k−1,1, . . . ,fT

2k−1,N ]T ∈ CNMR . Meanwhile, the

channel from the (2k)-th user to the n-th relay is denoted as g2k,n ∈ CMR and the cascaded

channel vector of the (2k)-th UT to all the relays is g2k = [gT
2k,1, . . . ,g

T
2k,N ]T ∈ CNMR , for

k ∈ {1,2,⋯,K}. The repeaters in the network do not cooperate with each other and amplify

only their received signals [HJ12]. Therefore, the equivalent channel from the i-th UT to the

j-th UT via the network of repeaters is modeled as an effective channel, which is denoted as

hi,j ({i, j} ∈ {1,⋯,2K}). We assume that the reciprocity holds for the smart relay channel as

well as for the repeaters’ channels such that hi,j = hj,i. This is valid in an ideal TDD system.

The signals passing through the repeaters and the smart relays are assumed to arrive at the
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Figure 5.1: Multi-pair two-way relaying with multiple repeaters and amplify-and-forward re-
lays where each relay has MR antennas.

destination at the same time (symbol-synchronous). The transmission takes two time slots. In

the first time slot, all the UTs transmit to the relays and the repeaters. The signals received

at the n-th relay can be combined in a vector as

rn =
K

∑
k=1
(f2k−1,ns2k−1 + g2k,ns2k) +nR,n ∈ CMR (5.1)

where sm (m ∈ {1,2,3, . . . ,2K}) is i.i.d. with zero mean and variance Pm and nR,n represents

ZMCSCG noise with covariance matrix E{nR,nn
H
R,n} = σ2

RIMR
, for all 1 ≤ n ≤ N . In the second

time slot, the repeaters simply amplify and forward the received signal while the n-th relay

amplifies its received signal and transmits

r̄n =Wnrn (5.2)

where Wn ∈ CMR×MR is the relay amplification matrix. The relay transmit power constraint

has to be fulfilled such that

E{∥r̄n∥2} ≤ P (Ind)R,max
, for all 1 ≤ n ≤ N, (5.3)
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if identical individual relay power constraints are considered, e.g., as in [ZRH12a]. Alterna-

tively,
N

∑
n=1

E{∥r̄n∥2} ≤ PR,max, (5.4)

if a total sum relay power constraint is considered, e.g. as in [ZRH+12c]. Finally, the received

signal at the (2k − 1)-th user can be written as

y2k−1 = (h2k−1,2k + fT
2k−1W̃g2k) s2k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

desired signal

+ (h2k−1,2k−1 + fT
2k−1W̃f2k−1) s2k−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

self-interference

+
K

∑
ℓ≠k
ℓ=1
(h2k−1,2ℓ−1 + fT

2k−1W̃f2ℓ−1)s2ℓ−1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from left inter-pair interference

+
K

∑
ℓ≠k
ℓ=1
(h2k−1,2ℓ + fT

2k−1W̃g2ℓ)s2ℓ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

from right inter-pair interference

+ fT
2k−1W̃ n̄R + n2k−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
effective colored noise

where n̄R = [nT
R,1 ⋯ nT

R,N
]T and W̃ ∈ CNMR×NMR is a block diagonal matrix which is

defined as W̃ = blkdiag{Wn}Nn=1 and n2k−1 denotes the ZMCSCG noise with variance σ2
U, for

all 1 ≤ k ≤ K. Assume that the CSI is known at the receiver. The self-interference term can

be subtracted and thus we get

ŷ2k−1 = y2k−1 − (h2k−1,2k−1 + fT
2k−1W̃f2k−1) s2k−1. (5.5)

5.3.2 Derivation of the SINR and the actual transmit power of the relays

without interference neutralization

The goal of this section is to arrive at quadratic formulas for the SINR expressions and the

transmit power constraints at the relay with or without IN. The derived quadratic forms are

highlighted by boxes.

Let w̃ = [vec{W1}T ⋯ vec{WN}T]T ∈ CNM2
R . Define F̃2k−1 = unvecMR×N{f2k−1}, G̃2k =

unvecMR×N{g2k}, F̃2ℓ−1 = unvecMR×N{f2ℓ−1} and G̃2ℓ = unvecMR×N{g2ℓ}. Define h2k−1,2k =
vec{G̃2k ◇ F̃2k−1}, h2k−1,2ℓ−1 = vec{F̃2ℓ−1 ◇ F̃2k−1} and h2k−1,2ℓ = vec{G̃2ℓ ◇ F̃2k−1}. Define

H̄2k−1 = blkdiag {IMR
⊗ f2k−1,n}Nn=1. The received effective data in (5.5) can be rewritten as

ŷ2k−1 = (h2k−1,2k +hT
2k−1,2kw̃) s2k

+
K

∑
ℓ≠k
ℓ=1
(h2k−1,2ℓ−1 +hT

2k−1,2ℓ−1w̃)s2ℓ−1 + K

∑
ℓ≠k
ℓ=1
(h2k−1,2ℓ +hT

2k−1,2ℓw̃)s2ℓ + w̃TH̄2k−1n̄R + n2k−1.
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The SINR of the (2k − 1)-th UT is calculated as

γ2k−1 =
P
(S)
2k−1

P
(I)
2k−1 + P

(N)
2k−1

where the signal power P
(S)
2k−1, the interference power P

(I)
2k−1, and the effective noise power P

(N)
2k−1

are defined as P
(S)
2k−1 = P2k∣h2k−1,2k + h2k−1,2kw̃∣2, P (I)2k−1 =

K

∑
ℓ≠k
ℓ=1
(P2ℓ−1∣h2k−1,2ℓ−1 + h2k−1,2ℓ−1w̃∣2 +

P2ℓ∣h2k−1,2ℓ +h2k−1,2ℓw̃∣2), and P
(N)
2k−1 = σ2

R∥w̃TH̄2k−1∥2 + σ2
U.

Utilizing the Charnes-Cooper transform [CC62], we let η1/β1 = w̃ and w1 = [ηT
1 β1]T ∈

C
NM2

R+1, where β1 ∈ C is arbitrary with ∣β1∣ = 1. Then we can express the signal power P
(S)
2k−1

as

P
(S)
2k−1 = P2k ∣h2k−1,2k +hT

2k,2k−1w̃∣2 = P2k∣β1∣2 ∣β1 ⋅ h2k−1,2k +hT
2k,2k−1η1∣2 =wH

1 E
(g)
2k−1w1,

where E
(g)
2k−1 = P2kh̄

∗
2k−1,2kh̄T

2k−1,2k and h̄i,j = [hT
i,j hi,j]T, ∀i, j. It is straightforward to apply

similar derivations to the interference power P
(I)
2k−1 and the effective noise power P

(N)
2k−1. The

generalized SINR expression of the (2k − 1)-th UT is then given by

γ2k−1 =
wH

1 E
(g)
2k−1w1

wH
1 F

(g)
2k−1w1

(5.6)

where

F
(g)
2k−1 =

K

∑
ℓ≠k
ℓ=1
(P2ℓ−1h̄∗2k−1,2ℓ−1h̄T

2k−1,2ℓ−1 + P2ℓh̄
∗
2k−1,2ℓh̄T

2k−1,2ℓ) + blkdiag{σ2
RH̄

∗
2k−1H̄T

2k−1, σ2
U}.

Define F̄n = [f1,n ⋯ f2K−1,n] ∈ C
MR×K , Ḡn = [g2,n ⋯ g2K,n] ∈ C

MR×K , ∀n, Po =
blkdiag{P2k−1}Kk=1 ∈ CK×K , and Pe = blkdiag{P2k}Kk=1 ∈ CK×K . The total transmit power of

the relays in the network is computed by

N

∑
n=1

E{∥r̄n∥2} = N

∑
n=1
∥Wn(F̄nP

1
2
o + ḠnP

1
2
e + σ2

RIMR
)∥2F

=
N

∑
n=1
∥vec{Wn(F̄nP

1
2
o + ḠnP

1
2
e + σ2

RIMR
)}∥2 = w̃HC̃

(g)
0 w̃ = 1∣β1∣2wH

1 C̄
(g)
0 w1 (5.7)
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where C̃
(g)
0 = blkdiag{(F̄ ∗nPoF̄

T
n + Ḡ

∗
nPeḠ

T
n + σ

2
RIMR

) ⊗ IMR
}N
n=1 ∈ CNM2

R×NM2
R and C̄

(g)
0 =

blkdiag{C̃(g)0 ,0}. The actual transmit power of the n-th relay can be expressed as

E{∥r̄n∥2} = w̃HC̃(g)n w̃ = 1∣β1∣2wH
1 C̄

(g)
n w1 (5.8)

where C̃
(g)
n is obtained by setting all the elements in C̃

(g)
0 to zero except for the n-th M2

R-by-

M2
R matrix on the main diagonal and C̄

(g)
n = blkdiag{C̃(g)n ,0}.

The total transmit power constraint of the relays in the network can be expanded as

N

∑
n=1

E{∥r̄n∥2} ≤ PR,max⇔ wH
1 C

(g)
0 w1 ≤ 0 (5.9)

where C
(g)
0 = blkdiag{C̃(g)0 ,−PR,max}. The individual power constraint for each relay can be

obtained as

E{∥r̄n∥2} ≤ P (Ind)R,max
,∀n⇔ wH

1 C
(g)
n w1 ≤ 0,∀n (5.10)

where C
(g)
n = blkdiag{C̃(g)n ,−P (Ind)

R,max
}.

5.4 Interference neutralization

5.4.1 Feasibility of interference neutralization

In this section we show how the relay forwarding strategy can be chosen to neutralize all

interference and which conditions are necessary and sufficient to achieve this. To this end, the

following equalities must be satisfied at the same time. For all ℓ, k ∈ {1,⋯,K}, ℓ ≠ k,
h2k−1,2ℓ−1 + fT

2k−1W̃f2ℓ−1 = 0 (5.11a)

h2k−1,2ℓ + fT
2k−1W̃g2ℓ = 0 (5.11b)

h2k,2ℓ−1 + gT2kW̃f2ℓ−1 = 0 (5.11c)

h2k,2ℓ + g
T
2kW̃g2ℓ = 0. (5.11d)

Equation (5.11a) describes the interference from any odd-indexed (i.e., (2ℓ − 1)-th) UT to

another odd-indexed (i.e., (2k − 1)-th) UT. Similarly (5.11b), (5.11c), (5.11d) describe the

interference from any even-indexed UT to another odd-indexed UT, from any odd-indexed

UT to another even-indexed UT and from any even-indexed UT to another even-indexed UT,

respectively. The feasibility conditions in (5.11) can be quantified by four parameters: the
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5.4 Interference neutralization

number of relay nodes N , the number of antennas at each relay node MR, the number of UT

pairs K, and the maximum available power at the relay. The conditions are summarized in

the following main result:

Theorem 5.4.1. Assume that we have a two-way relay channel with 2K UTs and N relay

nodes each with MR antennas. The interference neutralization requirements, given in (5.11),

can be satisfied if and only if both of the following criteria are satisfied:

1. The total available number of antennas in the network should satisfy

2K(K − 1) ≤ 1

2
NMR(MR + 1). (5.12)

2. Given the interference neutralization solution as w̃(I), the available relay power should

satisfy

PR,max ≥ w̃(I)
H

C̃
(g)
0 w̃(I) (5.13)

if a total transmit power constraint is considered. Or

P
(Ind)
R,max

≥ w̃(I)HC̃(g)n w̃(I),∀1 ≤ n ≤ N (5.14)

if individual transmit power constraints are considered.

Proof. Please refer to Appendix C.4.1.

If all the antennas in the network are grouped together to form a single relay or are dis-

tributed such that each relay has a single antenna, we have the following results.

Corollary 5.4.2. In the special case of a single relay node N = 1 with MR antennas, condition

(5.12) implies that MR ≥ 2(K − 1). At the other extreme, N > 1 relays and each with a single

antenna MR = 1, condition (5.12) simplifies to N ≥ 2K(K − 1).
Proof. When N = 1 and MR > 1, by applying the roots of quadratic equations, condition (5.12)

means that

MR ≥ ⌈−1 +
√
16K2 − 16K + 1

2
⌉ = 2(K − 1).

The equality can be verified using proof by contradiction. That is, we prove that 1+−1+
√
16K2−16K+1

2
≤

2(K−1) is false. After some algebraic manipulation, the previous condition simplifies to K ≤ 1,
which is contradictory with our assumption that K > 1. Therefore, MR ≥ 2(K − 1). When

N > 1 and MR = 1, the proof is straightforward.
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5 Multi-pair relaying networks with non-cooperative repeaters

From Corollary 5.4.2 follows that the gain of cooperation is going from 2(K−1) to 2K(K−1).
Furthermore, the IN solution w̃(I) can be expressed in a generic form as follows.

Lemma 5.4.3. Assume that interference neutralization is feasible, i.e., the two conditions in

Theorem 5.4.1 are fulfilled. The interference neutralization solution w̃(I), using the vectorized

representation of W̃ , must satisfy the following form:

w̃(I) = c +Bv (5.15)

where c is a known vector, B is a known projection matrix, and v is an arbitrary vector.

More specifically, let KM2
R
be a commutation matrix as defined in [Lue96]. Define the SVD

of K̄ = IN ⊗ (IM2
R
−KM2

R
) as K̄ = UΣ[Vs Vn]H where Vn ∈ CNM2

R×(NM2
R−r1) spans the null

space of K̄ and r2 is the rank of K̄, where we have r1 = 1
2
NMR(MR − 1). The interference

neutralization solution is computed as

w̃(I) = Vn ((AVn)+b + (INM2
R
−r1 − (AVn)+AVn)v) (5.16)

where v ∈ C 1
2
NMR(MR+1) contains (1

2
NMR(MR+1)−2K(K −1)) signal dimensions that can be

used for further system improvements. Define ī ∈ {1,⋯K} and j̄ ∈ {̄i + 1,⋯K}. The column-

vector b ∈ C2K(K−1) is generated by

b = − [h2̄i−1,2j̄−1 h2̄i−1,2j̄ h2̄i,2j̄−1 h2̄i,2j̄]T ,∀ī, j̄

and the corresponding A ∈ C2K(K−1)×NM2
R is generated via

A = [h2̄i−1,2j̄−1 h2̄i−1,2j̄ h2̄i,2j̄−1 h2̄i,2j̄]T ,∀ī, j̄.

Proof. Please refer to Appendix C.4.2.

Corollary 5.4.4. Assume that interference neutralization is feasible. When MR = 1 and

N > 1, the interference neutralization solution simplifies to

w̃(I) =A+b + (IN −A+A)v.
Define the SVD (IM2

R
−KM2

R
) = U3Σ3 [Vs,3 Vn,3]H where Vn,3 ∈ CM2

R×( 12MR(MR+1)) contains
the last (1

2
MR(MR + 1)) columns. When N = 1 and MR > 1, the interference neutralization
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solution simplifies to

w̃(I) = Vn,3 ((AVn,3)+b + (I 1
2
MR(MR+1) − (AVn,3)+AVn,3)v) .

Proof. Please refer to Appendix C.4.2.

Finally, the following statements are direct consequences of Lemma 5.4.3.

Corollary 5.4.5. 1. If 2K(K −1) < 1
2
NMR(MR +1), the required minimum total transmit

power of the relays in the network (if considered) is computed as

PR,max = cHC̃(g)0 c − bHpA
+
pbp

where Ap =BHC̃
(g)
0 B and bp =BHC̃

(g)
0 c, while the required minimum individual trans-

mit power (if considered) is calculated by

P
(Ind)
R,max

=max
n
(cHC̃(g)n c − bHp,nA

+
p,nbp,n)

where Ap,n = BHC̃
(g)
n B and bp,n = BHC̃

(g)
n c. Otherwise, if 2K(K − 1) = 1

2
NMR(MR +

1), the required minimum total transmit power is PR,max = cHC̃
(g)
0 c while the required

minimum individual transmit power is given by P
(Ind)
R,max

=maxn cHC̃
(g)
n c.

2. If both conditions in Theorem 5.4.1 are satisfied, then w̃(I) = c is a closed-form IN

solution. Moreover, it is a minimum norm solution such that ∥w̃(I)∥ is minimized.

3. If condition (5.12) or condition (5.13) (or (5.14)) is violated, then

w̃(I) = c,

when condition (5.12) is violated, or

w̃(I) = c
¿ÁÁÀ PR,max

cHC̃
(g)
0 c

⎛⎜⎜⎝or w̃
(I) = c

¿ÁÁÁÀ P
(Ind)
R,max

maxn cHC̃
(g)
n c

⎞⎟⎟⎠ ,

when condition (5.13) (or (5.14)) is violated, is a least square solution which minimizes

the weighted sum of the interference power in the network, i.e.,

w̃(I) = argmin
w̃

K

∑
k=1
( 1

P2k−1
P
(I)
2k−1 +

1

P2k

P
(I)
2k
) .
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Proof. Please refer to Appendix C.4.3.

Remark

Remark 7. When there are no dumb repeaters in the network, i.e., hi,j = 0, ∀i, j, to neu-

tralize/cancel the interference in the network no additional constraints are imposed on the

available powers of the relays, i.e., (5.13) or (5.14) is not required. However, condition (5.12)

has to be satisfied with inequality, i.e., 2K(K − 1) < 1
2
NMR(MR + 1). This holds true also for

the extreme cases. That is, from Corollary 5.4.2, when there is a single multi-antenna relay in

the network, we should have MR > 2(K −1). When each relay has a single antenna, we should

have N > 2K(K − 1). These results coincide with our findings in Chapters 3 and 4.

5.4.2 SINR and the actual transmit power of the relays after interference

neutralization

Taking the (2k−1)-th UT as an example, the interference term P
(I)
2k−1 is zero after applying IN.

We consider the generalized IN solution in Lemma 1. By using the Charness-Cooper transform,

we let η2/β2 = v and w2 = [ηT
2 β2]T ∈ CrB+1 where β2 ∈ C and ∣β2∣ = 1. Define erB+1 as the(rB + 1)-th column of the identity matrix IrB+1. Then the SINR expression of the (2k − 1)-th

UT becomes

γ2k−1 =
wH

2 E
(n)
2k−1w2

wH
2 F

(n)
2k−1w2

(5.17)

where E
(n)
2k−1 = P2kh̃

∗
2k−1,2kh̃T

2k−1,2k, h̃i,j = [hT
i,jB hi,j +hT

i,jc]T ,∀i, j, F (n)
2k−1 = σ2

RH̃
H
2k−1H̃2k−1+

σ2
UerB+1eHrB+1, and H̃2k−1 = [H̄T

2k−1B H̄T
2k−1c].

Clearly, compared to w1 in (5.6), w2 has fewer elements to be optimized, i.e., a lower

computational complexity. Conversely, w2 possesses fewer signal dimensions to utilize, i.e., a

worse performance in general. In other words, IN provides a balance between the performance

and the computational complexity.

Define C̄
(n)
0 = [B c]HC̃(g)0 [B c] and C̄

(n)
n = [B c]HC̃(g)n [B c], ∀n. The actual total

transmit power of the relays in the network and actual individual transmit powers at the relays

after applying IN are calculated by

N

∑
n=1

E{∥r̄n∥2} = w̃HC̃
(g)
0 w̃ = 1∣β2∣2wH

2 C̄
(n)
0 w2 (5.18)
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and

E{∥r̄n∥2} = w̃HC̃(g)n w̃ = 1∣β2∣2wH
2 C̄

(n)
n w2,∀n . (5.19)

Moreover, the total power constraint and the individual power constraints are rewritten as

wH
2 C

(n)
0 w2 ≤ 0 (5.20)

and

wH
2 C

(n)
n w2 ≤ 0,∀n , (5.21)

respectively, where we haveC
(n)
0 = C̄(n)0 −PR,maxerB+1eHrB+1 andC

(n)
n = C̄(n)n −P

(Ind)
R,max

erB+1eHrB+1.
In summary, IN does not change the structure of the SINR expressions and the structure

of the power constraints compared to Section 5.3.2. Therefore, the same kind of optimization

problems are formulated, as shown in Sections 5.5, 5.6, and 5.7. For notational simplicity, we

unify the derived expressions with or without IN. By using the superindex m instead of 2k − 1

(or 2k), we define the SINR of the m-th UT with or without IN as

γm =
wHEmw

wHFmw
(5.22)

where w ∈ {w1,w2}, Em ∈ {E(g)m ,E
(n)
m }, and Fm ∈ {F (g)m ,F

(n)
m }. We have Em ⪰ 0 and Fm ≻ 0,

∀m. The sum transmit power constraint (5.9), (5.20) or individual transmit power constraints

(5.10), (5.21) are generalized as

wHC0w ≤ 0 (5.23)

and

wHCnw ≤ 0, (5.24)

correspondingly, where C0 ∈ {C(g)0 ,C
(n)
0 } and Cn ∈ {C(g)n ,C

(n)
n }.

In the following we design the beamforming vector w subject to various system design

criteria.

Remark 8. If the optimal wopt is obtained, the optimal w̃opt is computed via w̃opt =
η1,opt/β1,opt or w̃opt = c +Bη2,opt/β2,opt. Afterwards, the cascaded relay amplification ma-

trix W̌opt can be computed as

W̌opt = unvecMR×NMR
{w̃opt} (5.25)

Finally, the n-th relay’s amplification matrix Wn,opt is given by MR columns of W̌opt starting
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from the ((n − 1)MR + 1)-th column.

5.5 Relay power minimization

In this section, we introduce the relay power minimization problems subject to QoS constraints.

To this end, we first define the following two types of power metrics

1. the individual relay power metric PR,n(w) =wHC̄nw, ∀1 ≤ n ≤ N

2. the sum relay power metric PR,sum(w) = ∑N
n=1 PR,n(w) =wHC̄0w

where C̄n ∈ {C̄(g)n , C̄
(n)
n } and C̄0 ∈ {C̄(g)0 , C̄

(n)
0 }. Moreover, we consider two utility functions.

The min-max relay power utility is to minimize the maximum relay power over all relays:

PR,max(w) =max
n

PR,n(w). (5.26)

The sum relay power utility is to minimize the total required relay power PR,sum(w) in the

network. Denote the general relay power optimization metric as PR(w), which represents

PR,max(w) or PR,sum(w). Note that PR(w) in the expressions above are convex functions

of w. In the following, the optimization problem can be formulated using the the general

relay power optimization metric. The proposed algorithm applies to all power constraints

with minor modifications. Recall the achievable SINR for user m with or without interference

neutralization from (5.22) as γm. Let β ∈ {β1, β2}. The relay power minimization problem

subject to SINR constraints is given by

min
w

PR(w)
s.t. γm ≥ ηm, m = 1, . . . ,2K, (5.27a)

wHCcw = 1 (5.27b)

where ηm is the target SINR value for user m. Constraint (5.27b) comes from the fact that∣β∣ = 1 and Cc = blkdiag{0,1}. Although the cost function of problem (5.27) is convex,

constraint (5.27a) is non-convex in general. Therefore, problem (5.27) is a non-convex QCQP

problem. It may not be solvable in polynomial time. But its approximate solution can be

obtained by using either the SDP approach [LMS+10] or the SOCP approach [BV04]. In our

work we adopt the SDP approach.
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The SDP approach uses the SDR technique [LMS+10]. By introducing a new variable

X =wwH we can rewrite problem (5.27) as

min
X

PR(X)
s.t. Tr{(Em − ηmFm)X} ≥ 0, m = 1, . . . ,2K,

Tr{CcX} = 1,X ⪰ 0, rank{X} = 1 (5.28)

where PR(X) = maxnTr{C̄nX} if individual power constraints are considered and PR(X) =
Tr{C̄0X} if the sum power constraint is considered. Dropping the rank-1 constraint, problem

(5.28) can be approximated by the following convex SDP problem

min
X

PR(X)
s.t. Tr{(Em − qmFm)X} ≥ 0, m = 1, . . . ,2K,

Tr{CcX} = 1,X ⪰ 0, (5.29)

which can be solved efficiently using the standard interior-point algorithm [BV04]. If the opti-

mal solution of problem (5.29) is a rank-1 matrix, it is also the optimal solution to the original

problem (5.28). Otherwise, rank-1 extraction techniques in [LMS+10] should be applied. Since

we have more than three constraints, a rank-1 solution is not guaranteed for our problem (5.29)

according to [HP10, Theorem 3.2 & Corollary 3.4]. Hence, the randomization technique, which

is a rank-1 approximation technique [LMS+10], is used to get an approximate solution, finally.

5.6 SINR balancing

The SINR balancing problem is another QoS based system design criterion. It aims at max-

imizing the minimum SINR of the UTs in the network subject to transmit power constraints

at the relay. In the following we discuss the SINR balancing solution with or without IN.

Define fκ(X) = Tr{CκX} where X can have arbitrary rank. Let fκ(wwH) = wHCκw

represent the rank-1 case. The optimization problem with a sum power constraint or individual

power constraints can be generalized as

max
w

min
m

γm

s.t. wHCcw = 1
fκ(wwH) ≤ 0, ∀κ ∈N , (5.30)
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where N = {0} if a total power constraint is considered and N = {1,⋯,N} if individual power
constraints are considered.

Problem (5.30) is non-convex. But its approximate solution can be obtained using the same

SDP approach as in Section 5.5. After replacing wwH by X, (5.30) can be rewritten as

λopt =max
X

min
m

Tr{EmX}
Tr{FmX}

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈N . (5.31)

If the optimal solution Xopt to problem (5.31) is rank-1, it is also the optimal solution to

the original problem (5.30). Similarly as in Section 5.5, a rank-1 solution is not guaranteed

since there are more than three constraints in (5.31). Hence, the randomization technique

in [LMS+10] and Appendix B.3.5 is applied at the end to get an approximate solution. From

now on, concerning the convergence speed of our proposed iterative solutions, we introduce

two methods, namely, the bisection search method and the Dinkelbach-type algorithm. To

distinguish the convergence speed, we give the following definition.

Definition 5.6.1. [NW99] Consider the sequence λ(p), which converges to λopt as a limit.

The sequence λ(p) is said to converge with an order q to λopt if

lim
p→+∞

∣λ(p+1) − λopt∣∣λ(p) − λopt∣q = δ. (5.32)

The number q is called the Q-order of convergence where “Q” stands for quotient.

• δ ∈ (0,1) and q = 1, it is Q-linearly convergent.

• δ = 0 and q = 1, it is Q-superlinearly convergent.

• δ > 0 and q > 1, it is said that the Q-order of convergence is q, e.g., Q-quadratic convergent

for q = 2.

In general, sequences with higher q converge faster [NW99].

5.6.1 The bisection search method

Problem (5.31) is equivalent to the following optimization problem

max
X,t

t
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5.6 SINR balancing

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈N

Tr{(tFm −Em)X} ≤ 0, ∀m. (5.33)

For fixed t, (5.33) is a convex SDP problem. Moreover, t represents the minimum SINR of

the UTs in the network and thus it has a finite interval, e.g., [0, tmax]. Hence, problem (5.33)

can be solved using bisection search method as discussed in [LMS+10]. That is, we solve the

following feasibility problem in each iteration.

find X

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈N

Tr{(tFm −Em)X} ≤ 0, ∀m (5.34)

where t is updated using the bisection search method. A possible choice of tmax for our problem

will be

tmax =max
m

λmax{F −1m Em}. (5.35)

The intuition of (5.35) comes from the fact that our SINR expressions γm in (5.22) are gener-

alized Rayleigh quotients. It is well known that the Rayleigh quotient is bounded between the

maximum and minimum eigenvalues of the matrix F −1m Em. The details of the bisection search

method are found in [LMS+10]. The bisection search method is linearly convergent since in

each iteration the search space is reduced by half such that we have q = 1 and δ = 1/2.
5.6.2 Parametric programming via Dinkelbach-type algorithms

Parametric optimization can be also used to solve fractional programming problems like (5.31).

When the formulated parametric optimization problem is solved using the Dinkelbach ap-

proach, a better convergence speed might be obtained [CF91]. In the following, we develop

Dinkelbach-type algorithms for our problems and analyze their convergence behavior.

A parametric programming of (5.31) is formulated as

f(λ) =max
X

min
m

Tr{EmX} − λTr{FmX}
s.t. Tr{CcX} = 1

fκ(X) ≤ 0, , ∀κ ∈N (5.36)
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5 Multi-pair relaying networks with non-cooperative repeaters

where parametric here implies that we consider the solution of this optimization problem for

various values of λ. This formulation is especially useful if f(λ) is a convex function with

respect to X, because it is easier to solve a convex problem (5.36) than a non-convex problem

(5.31)1. Problem (5.36) is equivalent to (5.31) if f(λ) = 0 [CF91]. Thus, this gives rise to

finding the root of the equation f(λ) = 0. A Newton’s method for finding the roots of the

function uses the following iterative process

λ(p+1) = λ(p) − f(λ(p))
∂λf(λ(p)) . (5.37)

In general, finding the gradient ∂λf(λ(p)) = ∂f(λ)
∂λ
∣
λ=λ(p) is non-trivial. When problem (5.36)

contains only a single ratio, i.e., the minimization is not involved such that the index m can

be dropped, a subgradient of f(λ) at λ(p) can be found to be −Tr{FX(p)} [Din67]. Thus,

using this subgradient instead, we get the following update rule

λ(p+1) = λ(p) + f(λ(p))
Tr{FX(p)} = Tr{EX(p)}

Tr{FX(p)} , (5.38)

and this method is called Dinkelbach’s algorithm [Din67]. Compared to the bisection method,

Dinkelbach’s algorithm converges superlinearly given that the feasible region is compact and

λ is finite2.

Dinkelbach’s algorithm has been extended to the case with multiple ratios in [CF91]. If the

update of λ(p+1) is calculated as

λ(p+1) =min
m

Tr{EmX(p)}
Tr{FmX(p)} , (5.39)

and in each iteration we solve the following problem

max
X

min
m

Tr{EmX} − λ(p)Tr{FmX}
s.t. Tr{CcX} = 1

fκ(X) ≤ 0, ∀κ ∈N , (5.40)

which is equivalent to

max
X,t1

t1

1The cost function in (5.31) is quasi-convex.
2λ of our problem is bounded between minm λmin{F −1m Em} and maxm λmax{F −1m Em}
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5.6 SINR balancing

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈ N ,

Tr{EmX} − λ(p)Tr{FmX} ≥ t1, ∀m,

it is called Dinkelbach Type-I (DT-1) algorithm in [CF91] and was used for solving the max-

min SINR problem in multi-pair TWR networks in [FWY13]. Unfortunately, it is revealed in

[CFS85] that in general the DT-1 algorithm converges only linearly since the subgradient is not

unique anymore. Thus, a modified version of the DT-1 algorithm with a better convergence is

proposed in [CFS86]. The proposed method is named as the DT-2 algorithm [CF91] and the

following problem is solved in each iteration instead

max
X

min
m

Tr{EmX} − λ(p)Tr{FmX}
Tr{FmX(p−1)}

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈ N . (5.41)

Hence, we propose a generalized Dinkelbach algorithm which is summarized in Algorithm 8

and we have the following lemma.

Lemma 5.6.1. The generalized Dinkelbach-type algorithm in Algorithm 8 has the following

properties:

1. it solves (5.31).

2. it has at least a linear convergence when (5.40) is used while a better convergence is

achieved when (5.41) is applied.

Proof. Please refer to Appendix C.6.

A trivial initial point λ(1) for the proposed algorithm is

λ(1) =min
m

wH
iniEmwini

wH
iniFmwini

(5.42)

where wini = [0T 1]T is a feasible solution to problem (5.31).

Clearly, both (5.40) and (5.41) can be formulated into standard SDP problems, which are

solved using the interior-point algorithm in [BV04]. Taking into account the guaranteed con-

vergence speed of the Dinkelbach-type algorithms, we conclude that Algorithm 8 provides a
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5 Multi-pair relaying networks with non-cooperative repeaters

polynomial-time solution. Moreover, from numerical examples we observe that Algorithm 8

converges much faster than the bisection search method.

Algorithm 8 The generalized Dinkelbach algorithm

1: Initialize: set a feasible λ(1), e.g., using (5.42), maximum iteration number Nmax and the
threshold value υ.

2: Main step:
3: for p = 1 to Nmax do

4: Obtain (X(p), t(p)1 ) by solving
(5.40) if DT-1 is applied;
(5.41) if DT-2 is applied.

5: Calculate λ(p+1) using (5.39)

6: if ∣t(p)1 ∣ ≤ υ then
7: return X(p)
8: end if
9: end for

5.7 Weighted sum rate maximization

In this section, we discuss the weighted sum rate maximization problem. The weighted sum

rate maximization problem for our scenario with or without IN can be formulated as

max
w

1

2

2K

∑
m=1

αm log2 (1 + γm)
s. t. wHCcw = 1

fκ(wwH) ≤ 0, ∀κ ∈ N (5.43)

where αm ∈ [0,1] is a given weighting factor for the mth UT’s rate and ∑m αm = 1. When

αm = 1
2K

, ∀m, problem (5.43) is a sum rate maximization problem. As discussed in our previous

work ([ZRH12a], [ZRH+12c]) and also in Chapter 4, similar sum rate maximization problems

can be solved using monotonic optimization. Monotonic optimization ([Tuy00], [PT03]) deals

with the maximization or minimization of an increasing function over an intersection of normal

and reverse normal sets. A generic algorithm for solving monotonic optimization problems is

the polyblock approximation approach [PT03]. In the following we solve problem (5.43) using

the polyblock approach, which is also applied in Chapter 4.
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5.7 Weighted sum rate maximization

Let us start by introducing new variables ym ∈ R+ and reformulate (5.43) as

max
w,ym,∀m

2K

∑
m=1

αm log(ym)
s. t. wHCcw = 1

fκ(wwH) ≤ 0, ∀κ ∈N
ym ≤max

w

wHĒmw

wHFmw
, ∀m

ym ≥min
w

wHĒmw

wHFmw
, ∀m (5.44)

where Ēm = Em +Fm and the factor 1/2 is dropped for simplicity. Define the sets

G = {y ∈ R2K+ ∶ ym ≤max
w

wHĒmw

wHFmw
,w ∈ F,∀m} ,

and

L = {y ∈ R2K+ ∶ ym ≥min
w

wHĒmw

wHFmw
≥ 1,w ∈ F,∀m} .

where F = {w∣wHCcw = 1, fκ(wwH) ≤ 0,∀κ ∈ N}. Let D = G ∩ L and formulate the following

optimization problem

max
y

Φ(y)
s. t. y ∈ D (5.45)

where we have Φ(y) = ∑2K
m=1 αm log(ym). Clearly, given a global optimal solution yopt of (5.45),

then an optimalwopt should exist and it is a global optimizer of (5.44). In the following we solve

problem (5.45) using the polyblock algorithm. For this purpose, we introduce the following

lemma.

Lemma 5.7.1. Problem (5.45) is a monotonic optimization problem.

Proof. Please refer to Appendix C.7.1.

According to [Tuy00], a monotonic optimization problem can be solved using the polyblock

outer approximation algorithm which is described in Appendix C.7.2. The main idea of the

polyblock approach is to iteratively create an outer approximation of G using a sequence of

polyblocks, where a polyblock P
(p) is a union of a finite number of hypercubes and it can be
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5 Multi-pair relaying networks with non-cooperative repeaters

represented with its vertex set T
(p) = {z1,⋯zL}, assume that there are L vertices in the set.

To build up the next polyblock P
(p+1), one fundamental step is to find the unique intersection

between the boundary of G, which is denoted as ∂+G, and the line segment connecting the

origin and z
(p)
opt, where z

(p)
opt ∈ T(p) and Φ(z(p)opt) ≥ Φ(z), ∀z ∈ T(p). Mathematically, the following

problem has to be solved

µ(p) = max
µ∈(0,1]µ, s. t. µz

(p)
opt ∈ D, (5.46)

which is equivalent to the following optimization problem

µ(p) =max
w

min
m

wHĒmw

z
(p)
opt,mwHFmw

s.t. wHCcw = 1
fκ(wwH) ≤ 0, ∀κ ∈ N . (5.47)

Problem (5.47) is similar to the SINR balancing problem in Section 5.6. Thus, we solve it

using the SDR technique, i.e., by replacing wwH by X we get

µ(p) =max
X

min
m

Tr{ĒmX}
Tr{z(p)opt,mFmX}

s.t. Tr{CcX} = 1
fκ(X) ≤ 0, ∀κ ∈ N . (5.48)

Problem (5.48) can be solved approximately (υ-optimality) using the bisection search method

or the Dinkelbach-type algorithms. Similarly as in Section 5.6, a rank-1 solution is not guar-

anteed for (5.48). Thus, problem (5.46) cannot be solved exactly. For a polyblock algorithm, if

its sub-problem like (5.46) is not solved exactly, to guarantee the convergence of the polyblock

algorithm, further restrictions have to be given [PT03]. To find these restrictions explicitly

for our problem is usually non-trivial, e.g., [UB12], and might be intractable. Moreover,

concerning the computational complexity, we resort to a simplified implementation as given

in Algorithm 9. The (ǫ, υ)-optimal polyblock algorithm implies that the following problem

instead of (5.44) is solved.

max
X,ym,∀m

2K

∑
m=1

αm log(ym)
s. t. Tr{CcX} = 1

fκ(X) ≤ 0, ∀κ ∈ N
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Algorithm 9 (ǫ, υ)-optimal polyblock algorithm for weighted sum rate maximization given
fixed weighting factor αm

1: Initialize: set initial vertex set T0 = {z0}, maximum iteration number Nmax, and the
threshold values ǫ, υ.

2: Main step:
3: for p = 1 to Nmax do

4: Find z
(p)
opt as described in Appendix C.7.2.

5: Solve (5.48) to find X(p) and υ−optimal µ(p).
6: Construct a smaller polyblock P

(p+1) as described in Appendix C.7.2.
7: if ∣Φ(y(p+1)) −Φ(y(p))∣ ≤ ǫ then
8: return X(p)
9: end if

10: end for
11: Obtain the optimal w from X(p) using the randomization technique in [LMS+10].

ym ≤max
X

Tr{ĒmX}
Tr{FmX} , ∀m

ym ≥min
X

Tr{ĒmX}
Tr{FmX} , ∀m (5.49)

Note that the two stopping criteria, i.e., the maximum iteration numberNmax and the tolerance

factors (ǫ, υ), reduce the computational complexity of the polyblock algorithm in Algorithm 9.

But in general the obtained solutions are not globally optimal and thus only (ǫ, υ)-optimal

solutions are achieved for problem (5.49). Moreover, the randomization based rank-1 approx-

imation in the end of Algorithm 9 drives the final solution further away from the globally

optimal solution.

Remark 9. Although the polyblock algorithm has guaranteed convergence, it is in general

not a polynomial time algorithm. Its convergence speed depends on the initial vetex set T0,

the threshold value (ǫ, υ)3 as well as the problem size 2K [PT03]. In practice it is only suitable

as a benchmark algorithm.

5.8 Simulation results

The proposed algorithms in Sections 5.5, 5.6, and 5.7 are evaluated using Monte-Carlo simula-

tions. The simulated channels fm,n, gm,n, and hi,j are uncorrelated flat Rayleigh fading and all

their elements have zero mean and unit variance. The transmit powers at each UT are identical

3Practically, it suffices to set υ = ǫ/4K [PT03].
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and Pm = 1 W, ∀m. When SINR balancing and sum rate maximization are considered, the

total power constraint of the relays is set to PR,max = 1 W while individual power constraints

are set to P
(Ind)
R,max

= PR,max/N . Moreover, the noise power at each UT and at each relay are also

identical and σ2
U = σ2

R = σ2
n. “Opt-FP” and “Opt-IP” denote the proposed algorithms with a

total transmit power constraint and individual transmit power constraints. “Opt-xx-INL” and

“Opt-xx” denote the cases with and without IN, where “xx” represents “FP” or “IP”. All the

simulation results are obtained by averaging over 1000 channel realizations and K = 2 pairs of

users are considered.

The feasibility region of interference neutralization is visualized in Figure 5.2. When MR is

fixed, the minimum number of relays which is required for interference neutralization increases

exponentially as the number of pairs increases, although less relays are needed when MR is

large. Meanwhile, if N is fixed, the minimum number of antennas at the relay increases almost

linearly as K increases. Again, less antennas are required when N is large. Moreover, if the

total number of antennas in the network is fixed, Figure 5.2 suggests that a better choice to

neutralize the interference in the network is to have more antennas at each relay.

Figure 5.3 illustrates an asymptotic analysis of the IN condition (5.12). When K,MR →∞
and the ratio α = K

MR
remains as a constant, we have N ≥ 4 K(K−1)

MR(MR+1) → 4α2. That is, N grows

quadratically with respect to the ratio α. As shown in Figure 5.3, as long as the ratio is small,

even with a small MR the exact results will coincide with the asymptotic results.

Figures 5.4, 5.5, and 5.6 demonstrate the minimum required total transmit power for in-

terference neutralization, which is averaged over 1000 channel realizations. In general, the

required transmit power increases as the number of pairs increases. It decreases as the num-

ber of antennas at the relay increases. However, the decrease is not monotonic. This phe-

nomenon depends on the value of the function f(K,MR,N) = 1
2
NMR(MR + 1) − 2K(K − 1).

According to Lemma C.4.3 in Appendix C.4.3, f(K,MR,N) represents the additional spa-

tial dimensions which can be used to scale down the required power. For example, we have

f(K = 2,MR = 1,N = 4) = 0. Thus, the required power only depends on the channel real-

izations. The required power is high and a strong fluctuation can happen if the noise power

changes, as shown in Figure 5.6. Moreover, the CDF curve converges slowly as shown in Fig-

ure 5.5. The same interpretation can be given to the cases (K = 3, MR = 3, N = 2) and (K = 4,
MR = 3, N = 4). Furthermore, if K is fixed, e.g., K = 3, we have f(K = 3,MR = 4,N = 2) = 8
and f(K = 2,MR = 5,N = 1) = 3. This explains why the required transmit power increases

from (K = 3, MR = 4, N = 2) to (K = 2, MR = 5, N = 1). Finally, Figure 5.6 implies that the

required transmit power varies slightly as the noised power changes.

Figure 5.7 shows the minimum required transmit power as a function of the required mini-

128



5.8 Simulation results

mum SINR. Given a fixed value of MR ⋅N , in general, more relays require more transmit power

at the relay. One explanation is that fewer antennas at the relay yield a smaller feasibility

range and thus fewer degrees of freedom in the spatial domain, which can be used to reach

the SINR requirements. Due to a similar reason, when IN is applied, more power has to be

consumed to achieve the desired SINR. However, as the required SINR increases, the required

power with IN increases slower than for the case without IN. Moreover, it is worth mentioning

that numerical results show that the relaxed problem, i.e., problem (5.29), provides almost

always a rank-1 solution 4. We observe the same behavior for all the other simulations of SDR

based solutions.

Figure 5.8 demonstrates the required number of iterations for the bisection method and the

DT algorithms. Although in general all the proposed algorithms converge linearly, as discussed

in Section 5.6, simulation results show that the DT algorithms converge in fewer iterations

compared to the bisection search method. Compared to the DT-1 algorithm, the DT-2 al-

gorithm converges faster when the noise power is high. When the noise power is low, it can

happen that the DT-2 algorithm will take more iterations. However, we observe that if IN is

applied, all the proposed algorithms take fewer iterations. The difference between convergence

speeds of different algorithms reduces. In the following, all the simulation results are obtained

using the DT-2 algorithm. Figures 5.9 illustrates the SINR balancing performance under two

different system settings, i.e., N = 2, MR = 4 and N = 4, MR = 2. Other than the proposed

algorithms, the following two algorithms have also been compared. The first one is denoted as

“Non-smart”, which refers to the scheme where smart relays are not deployed. The second one

is denoted as “TDMA”. This scheme refers to an orthogonal resource access where each pair

of the UTs utilize the relays and repeaters in the network in a time-division multiple access

(TDMA) fashion. Thus, for a fair comparison, peak power constraints are used in the simula-

tion and the simulation results obtained using the “TDMA” scheme are additionally divided

by K. Clearly, when there are no smart relays in the network, the presence of interferences

will significantly affect the system performance. On the other hand, the orthogonal resource

access scheme “TDMA” has its benefits especially when the system is noise limited. Among

the two non-orthogonal resource access schemes, the IN scheme provides a balance between the

computational complexity and the performance. Moreover, when the total number of antennas

is limited in a network, to have a better system performance, it is more reasonable to have a

few relays but many antennas at each relay.

When the system sum rate is considered as depicted in Figure 5.10, the difference between

the algorithm with or without IN is quite small. Moreover, the proposed non-orthogonal

4For the case with IN, this refers to the matrix [B c]H Xopt [B c].
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schemes outperform the orthogonal schemes significantly.

5.9 Summary

In this chapter we study the feasibility problem of neutralizing the interference for a AF TWR

network with multiple repeaters and smart relays. The necessary and sufficient conditions for

IN have been derived. Moreover, a general framework to design optimal relay amplification

matrices subject to different system design criteria, i.e., minimize the required transmit power

at the relays subject to minimum SINR constraints, maximize the minimum SINR of the UTs

subject to relay transmit power constraint(s), and maximize the weighted system sum rate

subject to relay transmit power constraint(s), has been developed for such a scenario with or

without IN, regardless whether the smart relays in the network have a total transmit power

limit or individual transmit power limits.

Simulation results have demonstrated that

• When the number of antennas at each relay is fixed, the minimum number of relays

which is required for IN increases exponentially as the number of pairs increases. When

the number of relays is fixed, the minimum required number of antennas at each relay

increases almost linearly as the number of pairs increases. These results suggest that a

better choice to perform IN in the network is to have more antennas at each relay.

• In general, the required relay transmit power to perform IN increases as the number

of UT pairs increases. It decreases as the number of antennas at each relay increases

although the decrease is not monotonic due to the available spatial dimensions, which

can be used to reduce the required relay transmit power for neutralizing the interference.

• To guarantee the required minimum SINR at each UT, the minimum required relay

transmit power increases if the number of relays in the network increases, given a fixed

value of MR ⋅N . This is because less spatial dimensions can be used to satisfy the mini-

mum SINR requirements. When IN is applied, more power are required since additional

power might be required to neutralize the interference.

• In general, the proposed DT algorithms yield a better convergence behavior than the

traditional bisection search algorithm. Compared to the TDMA scheme, the proposed

non-orthogonal schemes are especially better when the noise is weak or when there are

many number of antennas at each relay. When IN is applied, the performance is worse
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Figure 5.2: An illustration of condition (5.12) in Theorem 5.4.1. Given the number of user
pairs K, the feasible region of interference neutralization consists of all pairs (MR, N) which
are on or above the plotted curve.

than the optimal performance. However, the performance difference reduces as the num-

ber of antennas at each relay increases. A similar performance is observed when sum

rate maximization is the system design criterion.
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Figure 5.3: An illustration of the asymptotic analysis of (5.12) in Theorem 5.4.1. Let K,MR →
∞ and the ratio K

MR
be a constant.
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Figure 5.4: An illustration of the average minimum required total transmit power as a function
of MR. Given K and MR, N is the minimum integer value which satisfies (5.12). In other
words, N is the corresponding value on the curves of Figure 5.2. σ−2n = 15 dB.
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Figure 5.5: The cumulative distribution function (CDF) of the minimum required total trans-
mit power under different pairs of (MR, N) for K = 2 and σ−2n = 15 dB. MR and N are
calculated in the same way as in Figure 5.4.
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Figure 5.6: An illustration of the average minimum required total transmit power as a function
of σ−2n . We have K = 2. MR and N are calculated in the same way as in Figure 5.4.
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Figure 5.7: A comparison of the minimum required transmit power with and without interfer-
ence neutralization.
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Figure 5.8: A demonstration of the convergence speed of the bisection search method
(“BiSec”), the DT-1 algorithm (“DT-1”), and the DT-2 algorithm (“DT-2”) without IN. N = 2
and MR = 4.
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Figure 5.9: A comparison of the achievable minimum SINR using the state of art algorithm
and the proposed algorithm.
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Figure 5.10: Maximum achievable sum rate with and without interference neutralization.
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6 Relay broadcasting channel

Now we shift our focus from a multi-pair scenario to a multi-user downlink scenario, which is

a typical scene for modern cellular networks. More specifically, we consider relay broadcasting

channel with a MIMO AF relay where a MIMO BS and multiple single antenna UTs exchange

messages via the relay. The precoding matrix at the BS and the relay amplification matrix

should be designed. Moreover, multi-user scheduling should be also taken into account. This

results in a complicated cross-layer design problem which is in general difficult to solve. To

avoid the prohibitive complexity, we focus on the design of the precoder and decoder matrices

at the BS as well as the relay amplification matrix while assuming that the UT scheduling is

fixed. We develop suboptimal MIMO transmission techniques for both the BS and the relay

[ZRH11]. The proposed suboptimal schemes are based on conventional channel inversion (CI),

ProBaSeMO and zero-forcing dirty paper coding (ZFDPC), respectively. All the proposed

algorithms are also compared to the state of the art algorithm in [TS09].

6.1 Problem description and state of the art

When relays are placed at the cell edge to boost the coverage, it is likely that each relay

has to support multiple users. This motivates the development of multi-user MIMO relaying

techniques, where the relay forwards data to and from multiple users. Compared to the multi-

pair multi-user scenarios discussed in Chapters 3, 4, and 5, the major difference is that the

BS sends multiple data steams to different UTs, i.e., brodcasting instead of unicasting. In

such a situation, a proper user scheduling is inevitable. It is clear that a joint design of user

scheduling techniques and MIMO transmission techniques cannot be avoided if one would like

to optimize the system performance. This may result in a non-tractable optimization problem.

Thus, most of the known work (including our work [ZRH11]) focuses on the design of novel

MIMO transmission techniques while assuming that the user scheduling algorithm is fixed.

Prior work on the OWR broadcasting channel includes [TCHC06], [CTJC08], [YH10], and

[AHV10] . In [TCHC06] a relay precoder design based on the SVD and a low-complexity user

selection algorithm are proposed. In [CTJC08] the authors propose upper and lower bounds

on the achievable sum rate assuming ZFDPC precoding at the BS. In [YH10] a ZFDPC strat-

egy is also applied such that the relay precoder design problem reduces to a power allocation

problem. Afterwards, the authors develop a so called generalized water-filling (GWF) algo-
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BS

UT1

UTK

R

1

MB

1 MR

Figure 6.1: Multi-user two-way relaying with a MIMO amplify and forward relay.

rithm to solve the remaining problem. In [AHV10] the authors consider a relay broadcasting

channel with BS cooperation. Again, non-linear precoding techniques, i.e., iterative Tomlin-

son Harashima precoding (THP) based schemes, are used such that the problem turns into a

power allocation problem. Moreover, in this reference the authors use the multiuser fairness

instead of the system sum rate in [YH10] as the design criterion. However, all the proposed

techniques for one-way relaying scenario cannot be applied to the two-way relaying scenario

directly. References dealing with multi-user two-way relaying include beamforming with an

AF relay [TS09], beamforming with a DF relay [EW08a], relaying protocols with repeaters

[WM07] as well as the performance analysis of a channel inversion (CI) based transmit pre-

coder design in [DKTL11]. In general, only [TS09] and [DKTL11] discuss the precoder design

problem for a MIMO AF relay broadcasting channel and they consider only the CI based tech-

niques. Therefore, this motivates us to develop other advanced linear or non-linear precoding

techniques.

6.2 Data model

The scenario under investigation is shown in Figure 6.1. Due to the poor quality of the direct

channel between the BS and the UTs, they can only communicate with each other with the

help of the relay. Assume that we have K single antenna UTs. The BS is equipped with MB

antennas and the relay has MR antennas. For notational simplicity, in the rest of our work

we assume that MB = K. The channel is flat fading. The channel between the kth user and

the relay is denoted by hk ∈ CMR . The channel between the BS and the relay is full rank and

denoted by HB ∈ CMR×MB .

The two-way AF relaying protocol consists of two transmission phases: in the first phase
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6 Relay broadcasting channel

all the users and the BS transmit their data simultaneously to the relay. Let the BS transmit

the data symbol vector dB = [dB,1, . . . , dB,K]T ∈ CK using the transmit beamforming matrix

FB ∈ CMB×K . The data symbols in dB are independently distributed with zero mean and unit

variance. Let us further assume that dB,k is the symbol transmitted from the BS to the kth

UT and the relay knows the order of the data streams from the BS. The total power at the

BS is denoted by PB. The transmit power constraint can be written as

E{∥FBdB∥2} = Tr{FBF
H
B } = PB. (6.1)

Then, the received signal vector at the relay is given by

r =
K

∑
k=1

hk ⋅ dk +HBFBdB +nR ∈ CMR , (6.2)

where dk is the transmitted scalar from the kth user to the BS and nR ∈ CMR is the ZMCSCG

noise with E{nRn
H
R} = σ2

RIMR
. Moreover, we assume that each user has identical transmit

power PU and the transmit power constraint is equivalent to E{∣dk∣2} ≤ PU.

In the second phase, the relay amplifies the received signal and then forwards it to all the

UTs as well as the BS. The signal transmitted by the relay can be expressed as

r̄ = γ0 ⋅G ⋅ r. (6.3)

where G ∈ CMR×MR is the relay amplification matrix and γ0 ∈ R+ is chosen such that the

transmit power constraint at the relay is fulfilled, i.e.,

E{∥r̄∥2} = Tr{γ20 ⋅G{PUHUH
H
U + PBHBFBF

H
B HH

B + σ
2
RIMR

}GH} = PR, (6.4)

where HU = [h1, . . . ,hK] ∈ CMR×K is the concatenated channel matrix of all UTs.

For notational simplicity, we assume that the reciprocity assumption between the first and

second phase channels is valid. This assumption is fulfilled in a TDD system if identical

calibrated RF chains are applied. Then the received signal vector at the BS can be expressed

as

yB =WB(HT
B r̄ +nB)

= γ0WBH
T
BGHUdU´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

useful signal

+γ0WBH
T
BGHBFBdB´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

self-interference

+γ0WBH
T
BGnR +WBnB´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

∈ CMR (6.5)
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where dU = [d1, . . . , dK]T ∈ CK is the concatenated data vector of all the UTs and nB ∈ CMB

is the ZMCSCG noise with E{nBn
H
B} = σ2

BIMB
. The receive beamforming matrix is denoted

by WB ∈ CK×MB . It can be seen from (6.5) that the BS only experiences the self-interference

caused by its own transmitted signal. If the BS has perfect channel knowledge, the self-

interference can be subtracted.

On the other hand, the received scalar yk at the kth UT can be written as

yk = hT
k r̄ + nk = γ0hT

kGHBfB,kdB,k´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
useful signal

+γ0hT
kGhkdk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

self-interference

+
K

∑
m=1
m≠k

γ0h
T
kGHBfB,mdB,m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
interference from other streams to other UTs

+
K

∑
j=1
j≠k

γ0h
T
kGhjdj

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
interference from other UTs

+γ0hT
kGnR + nk´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

effective noise

(6.6)

where fB,k is the kth column of FB and nk is ZMCSCG noise at each UT with identical variance

σ2
U. As can be seen from (6.6), unlike the BS, each UT experiences self-interference, interference

caused by other UTs, and the interference caused by the signal which is transmitted from the

BS but intended for another UT.

The overall sum rate of the system could be written as

Rsum = RU +RB (6.7)

where RB and RU are the achievable data rate at the BS and the cumulated achievable data

rate at all UTs, respectively. The optimization problem to find the relay amplification ma-

trix structure which maximizes (6.7) subject to the transmit power constrains in (6.1) and

(6.4) is non-convex. To avoid a non-tractable optimization problem, we resort to suboptimal

algorithms instead.

In [TS09], a linear beamforming is proposed such that

G = γ1(HT
U)−1H−1

U

FB = γ2H
−1
B HU

WB = HT
U(HT

B )−1 (6.8)

where γ1 and γ2 are the normalizing coefficients satisfying the transmit power constraint at

the relay and the BS, respectively.

However, it can be seen that the inverses of HU and HB do not always exist. Hence, this
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6 Relay broadcasting channel

method can not be always utilized since (6.8) requires that MR =MB =K. Our algorithms in

Sections 6.3.1, 6.3.2, and 6.3.3 are applicable for a broader range of antenna configurations.

We specify the corresponding dimensionality constraints below.

Moreover, inspired by the ProBaSeMO approach in Section 3.3, we decompose G into

G =GT ⋅GS ⋅GR ∈ CMR×MR (6.9)

6.3 Transmit strategies design for the BS and the relay

6.3.1 Channel inversion based design

In this section, we introduce a straightforward beamforming design based on CI. Using this

method, orthogonal channels are created between the BS and the UTs for interference free

communication. This algorithm can efficiently eliminate the self-interference as well as the

co-channel interference. However, the well-known disadvantage of it is the enhancement of the

noise power.

Let us define H = [HB HU] ∈ CMR×(K+MB). The CI receive beamforming is then given by

GR =H+ = (HHH)−1HH (6.10)

and the transmit beamforming is given by GT =GT
R.

In this case, the matrix GS is chosen to be a block matrix of the form GS = Π2 ⊗ IK ∈
C
2⋅K×2⋅K , where Π2 = [ 0 1

1 0 ] is the exchange matrix which ensures that the BS and the

UTs will not receive their own transmitted signals. Furthermore, for simplicity, we choose

FB =WB =
√

PB

MB
IMB

. As can be seen from (6.10), this CI method requires that MR ≥ 2K.

Moreover, compared to the other algorithms proposed in the following sections, the complexity

for calculating the Moore-Penrose pseudoinverse is much lower.

6.3.2 ProBaSeMO inspired approach

For simplicity, we again choose FB = WB =
√

PB

MB
IMB

in this section. Let us further fix the

order of the users such that the kth user communicates with the BS only via the kth antenna

at the BS. Then this system can be treated as multiple pairs of single antenna users which

communicate with each other with the help of the relay. Clearly, this kind of architecture

possesses the same mathematical model as in Chapter 3. Thus, all proposed schemes in

Chapter 3 can be applied. But the optimal algorithms in Chapter 3 are suboptimal for the

relay broadcasting channel.
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Therefore, for simplicity, we recommend the ProBaSeMO scheme and more specifically, BD

combined with ANOMAX, since according to our work in Chapter 3 it provides the best trade-

off between performance and computational complexity. Here we extend the BD ANOMAX

method to the relay broadcasting channel.

First, define GT = [G(1)T
, . . . , G

(K)
T
] ∈ CMR×KMR , GS = blkdiag {G(k)S

}K
k=1 ∈ C

KMR×KMR ,

and GR = [G(1)TR
, . . . , G

(K)T
R
]T ∈ CKMR×MR , where G

(k)
T

, G
(k)
S

, and G
(k)
R
∈ CMR×MR . BD

ANOMAX consists of two steps. In the first step, the system is converted into K parallel

independent sub-systems via the BD design of GR and GT. Then, in the second step, for each

single-pair two-way relaying sub-system, we use the ANOMAX algorithm [RH09] to calculate

G
(k)
S

.

Let us define the combined channel matrix H̃(k) for all UTs except for the kth UT as

H̃(k) = [H(1) . . . H(k−1) H(k+1) . . . H(K)] , (6.11)

where H(k) = [hB,k hk] and hB,k is the kth column of HB.

Let L̃(k) = rank{H̃(k)} and calculate the singular value decomposition (SVD)

H̃(k) = [Ũ (k)s Ũ
(k)
n ] Σ̃(k)Ṽ (k)H . (6.12)

where Ũ
(k)
n contains the last (MR−L̃(k)) left singular vectors. Thus, Ũ (k)n forms an orthogonal

basis for the null space of H̃(k). Therefore, we choose G
(k)
R
= Ũ (k)n Ũ

(k)H
n ∈ CMR×MR which is

a projection matrix that projects any matrix into the null space of H̃(k). Due to the channel

reciprocity, we can simply set G
(k)
T
=G(k)T

R
.

Next, we define the matrix

K
(k)
β
= [β((G(k)

R
hk)⊗ (G(k)TT

hB,k)) (1 − β)((G(k)R
hB,k)⊗ (G(k)TT

hk)))] ,
which is needed to calculate the ANOMAX solution of G

(k)
S

[RH09]. The parameter β ∈ [0,1]
is a weighting factor.

Then we compute the SVD of K
(k)
β

as K
(k)
β
= U (k)

β
Σ
(k)
β

V
(k)H
β

. Let the first column of U
(k)
β

,

i.e., the dominant left singular vector of K
(k)
β

be denoted by u
(k)
β,1

. According to the ANOMAX

concept, the matrix G
(k)
S

is then obtained via

G
(k)
S
= unvecMR×MR

{u(k)∗
β,1
} . (6.13)

In this chapter we use equal weighting and therefore β is set to 0.5. This algorithm has the
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dimensionality constraint that MR > (2K − 2).

6.3.3 ZFDPC based design

The multi-antenna BS has the ability of jointly encoding its transmitted data streams or

of jointly decoding of its received data streams. To further make use of this capability, we

introduce the ZFDPC based beamforming design.

Let us partition GR = [GT
B, GT

U
]T and assume that GT = GT

R. Moreover, let LU =
rank(HU) and define the SVD of HU as

HU = [UU,s UU,n]ΣUV
H
U ∈ CMR×K . (6.14)

where UU,n contains the last L̄U =MR−LU left singular vectors. Thus, with the same reasoning

as in Section 6.3.2, we choose

GB = UU,nU
H
U,n ∈ CMR×MR .

Furthermore, let us define GS =Π2⊗IMR
∈ C2⋅MR×2⋅MR and 0K×K to be the K-by-K matrix

with all zero elements. Then the concatenated received signal at the BS and all UTs can be

written as

⎡⎢⎢⎢⎢⎣
yB

yU

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
γ0WBH

T
BGHBFB WBH

T
BG

T
BGUHU

HT
UG

T
UGBHBFB 0K×K

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Heff

⋅
⎡⎢⎢⎢⎢⎣
dB

dU

⎤⎥⎥⎥⎥⎦ + ñ ∈ C
(MB+K). (6.15)

In equation (6.15), the first MB rows represent the received signal at the BS (yB). We

further assume that the BS has perfect channel knowledge, and thus, the self-interference term

which corresponds to the upper left block of Heff can be subtracted from yB. Then, the

system is further decomposed into two-sub systems where the upper right part is equivalent

to the uplink of a one-way relay broadcast channel and the lower left part is equivalent to the

downlink of a one-way relay multiple access channel. In the next step, we show how to design

GU, FB, and WB using ZFDPC.

ZFDPC is a suboptimal beamforming solution which has been used in several multi-user

MIMO relaying references ([YH10], [TCHC06], [EW08a]). Thus, we will also modify the

ZFDPC design for our scenario.

First, we apply the QR decomposition and the SVD to the channel matrices HU and GBHB
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6.3 Transmit strategies design for the BS and the relay

respectively,

HT
U =MUQU ∈ CK×MR , (6.16)

where MU ∈ CK×MR is a lower triangular matrix and QU ∈ CMR×MR is a unitary matrix. The

SVD of GBHB is denoted by GBHB = UBΣBV
H
B ∈ CMR×MB . Then the linear processing

matrix GU can be expressed as:

GU = U∗BQ∗U ∈ CMR×MR . (6.17)

Moreover, the precoding matrix FB is chosen as FB =
√

PB

MB
VB and the decoding matrix WB

is constructed as WB = FT
B ∈ CMB×MB .

Inserting GU, FB and WB into (6.15), the upper right matrix in Heff is converted into

an upper-triangular matrix while the lower left part of it is converted into a lower-triangular

matrix, as shown in the following.

⎡⎢⎢⎢⎢⎣
yB

yU

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣
γ0WBH

T
BGHBFB

√
PB

MB
ΣT

BM
T
U√

PB

MB
MUΣB 0K×K

⎤⎥⎥⎥⎥⎦´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Heff

⋅
⎡⎢⎢⎢⎢⎣
dB

dU

⎤⎥⎥⎥⎥⎦ + ñ ∈ C
(MB+K).

Assuming that the BS has also perfect knowledge of the interference signals, it can utilize a

successive interference cancellation (SIC) receiver to decode each data stream. For each UT,

the interference can be canceled by applying a DPC coding at the BS with perfect knowledge of

the interfering signals. Unfortunately, the ZFDPC design has also a dimensionality constraint,

which means MR ≥ 2K. Furthermore, since this is a non-linear algorithm, it has the highest

computational complexity among the three proposed algorithms.

6.3.4 Simulation results

In this section, the performance of the proposed algorithms is evaluated via Monte-Carlo

simulations. The simulated MIMO flat fading channels hk and HB are spatially uncorrelated

Rayleigh fading channels. The SNRs at all nodes are defined as SNR = 1/σ2
B = 1/σ2

R = 1/σ2
U.

All the simulation results are obtained by averaging over 1000 channel realizations. “CI”,

“ProBaSeMO(BA)”, “OWR ZFDPC”, and “Toh09” denote the algorithms in Sections 6.3.1,

6.3.2, 6.3.3 and [TS09], respectively. Note that the curves labeled “Toh09” in our results are

obtained by using the pseudo-inverse of HB and HU in (6.8).

As can be seen from Figure 6.2, “ProBaSeMO(BA)” provides the best performance and is

8 dB better than “Toh09” in the high SNR regime. The “OWR ZFDPC” curve is as good as
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“CI” and is close to “ProBaSeMO(BA)”. However, it should be noted that “OWR ZFDPC”

has the highest complexity. Moreover, all the curves have the same slope at high SNRs which

implies that they possess the same multiplexing gain.

Figure 6.3 show the system loading when MR = 20 and the SNRs at all nodes are 25 dB. It

can be seen that due to the dimensionality constraint for “ProBaSeMO(BA)” and “CI”, there

is an inflexion point after which increasing the number of UTs will decrease the system sum

rate. For “OWR ZFDPC”, although there seems to be also an inflexion point when the system

is heavily loaded (at K = 9), the sum rate does not drop as quickly as in the case of the other

two algorithms.

6.4 Summary

In this chapter we discuss our proposed precoding techniques (at both BS and relay) in [ZRH11]

for the multi-user two-way relay broadcasting channel with a MIMO AF relay. We propose

three suboptimal algorithms, namely, the CI approach, the ProBaSeMO (BA) approach and

the ZFDPC based design, for computing the transmit and receive beamforming matrices at

the BS as well as the linear amplification matrix at the relay. The CI approach relies on the

existence of the inverse of the compound channel. Although it can be easily implemented, it

amplifies the noise and thus the performance is limited. The ProBaSeMO approach is applied

while assuming that the precoder and decoder of the BS are fixed. Thus, its performance

might be far from the optimal performance. Although the ZFDPC approach also requires a

sufficient number of antennas at the relay, it suffers only a little when the number of user

pairs K increases compared to the two approaches before. But it has a high computational

complexity.

Simulation results have illustrated that

• When there are sufficient antennas at the relay, the proposed algorithms have almost the

same performance. Among the proposed algorithms “ProBaSeMO(BA)” provides the

best balance between complexity and performance. All the algorithms outperform the

algorithm in [TS09].

• When the system is heavily loaded, i.e., the required number of antennas at the BS and

at the relay for performing the proposed algorithms are satisfied with a small margin,

“OWR ZFDPC” can still perform well due to its non-linear nature.

144



6.4 Summary

−5 0 5 10 15 20 25 30 35
0

5

10

15

20

25

SNR [dB]

S
um

 r
at

e 
[B

its
/s

/H
z]

 

 

ProBaSeMO(BA)
CI
OWR ZFDPC
Toh09

Figure 6.2: Sum rate comparison for MR = 8 and K = 2.
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Figure 6.3: Sum rate comparison for MR = 20 and SNR = 25 dB.
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7 Summary of the two-way relaying networks

7.1 Summary of contributions

This part of the thesis devotes to the signal processing algorithms design for TWR networks

with AF relays. Our major contributions are summarized as:

• The projection based separation of multiple operators (ProBaSeMO) algorithm has been

proposed to accomplish the relay-assisted physical resource sharing in a TWR network

with a MIMO AF relay [RZHJ10], [ZRH12b]. The ProBaSeMO algorithm is flexible and

can be extended to the multi-antenna user case and can be adjusted for different utility

functions. We have also demonstrated that in a two operator case the non-orthogonal

sharing approach can provide a two-fold gain in terms of sum rate compared to the time

shared approach when the SNR is large enough and when there are many antennas at

the relay. For the aforementioned time shared approach the relay is assumed to have

half number of antennas. If in a time shared approach only 4 antennas are at the relay

and the number of antennas at the relay increases linearly as the number of operators in

the non-orthogonal sharing approach, i.e., four times the number of operators, then the

sharing gain increases linearly with the number of operators.

• The sum rate maximization problem of a multi-operator TWR network with a MIMO

AF relay has been solved using the gradient based solutions or the POTDC inspired

algorithm [ZVKH13]. Compared to the gradient based solution in [ZRH12b], the POTDC

algorithm provides a polynomial-time solution. Compared to the ProBaSeMO scheme,

the POTDC algorithm or the gradient based solution is especially suitable for a near-far

scenario.

• Optimal relay amplification matrices, which minimize the transmit power at the relay

subject to SINR constraints at the UTs or maximize the minimum SINR constraints

subject to the transmit power constraint at the relay, have been derived for a TWR

network with a MIMO AF relay [ZBR+12]. The former problem is solved using the

iterative SOCP approach, which has a lower computational complexity compared to

the conventional SDP approach. The latter problem is solved using a bisection search

together with a SDP approach.
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• To exploit the non-circularity of the source signals by using WL processing at the relay,

widely linear relay amplification matrices have been developed for a TWR network with

a MIMO AF relay [ZH13]. Optimal widely linear relay amplification matrices have been

derived, which can minimize the transmit power at the relay or maximize the minimum

SINR at the UTs. A suboptimal solution has been derived based on the DCM method.

Moreover, a large scale analysis has been performed and analytic results on the achievable

widely linear gain have been obtained. If the available transmit power at the relay is

much larger than the available transmit power at the UTs, a two-fold widely linear gain

is achieved.

• Sum rate maximization problems have been addressed for cooperative multi-pair TWR

networks with multiple single antenna AF relays [ZRH+12c], [ZRH12a]. Global optimal

solutions have been obtained regardless whether a total transmit power in the network is

considered or individual transmit power constraints per relay are considered. The solu-

tions are obtained using the monotonic optimization framework. Suboptimal solutions,

which have close to optimal solution, have also been developed based on other design

criteria, e.g., maximizing the total SINR.

• We have studied interference neutralization problems for non-regenerative TWR net-

works [ZHJH14c], [ZHJH14a], [ZHJH14b]. The considered relaying network contains

multiple multi-antenna AF relays and dummy repeaters. Necessary and sufficient condi-

tions for interference neutralization have been derived. Moreover, a general framework

to optimize different system utility functions in such a network with and without inter-

ference neutralization has been developed.

• We have considered the beamforming design problem for a two-way relay broadcasting

channel with a MIMO AF relay [ZRH11]. To optimize the performance of this channel,

a joint design of the precoder and the decoder at the BS and the relay amplification

matrix at the relay has to be performed. Nevertheless, we resort to suboptimal solutions.

Linear transmit strategies have been designed using the channel inversion criterion or

the ProBaSeMO concept. A non-linear transmit strategy has also been proposed based

on the ZFDPC method.

We would like to emphasize that for all the considered mutli-operator/multi-pair TWR

scenarios the proposed non-orthogonal resource access schemes, i.e., SDMA based solutions,

are better than the orthogonal resource access schemes, i.e., TDMA based schemes, especially

when there are many antennas at each relay, there are many relays in the network, or the noise
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is weak. More related contributions that are not explicitly discussed in this thesis but worth

mentioning are:

• Different types of relay sharing scenarios have been presented in [LZR+11], [ABZ+12]. We

have developed novel physical layer solutions to accomplish different types of relaying

sharing. The developed algorithms provide a significant sharing gain compared to an

exclusive resource sharing approach.

• In [GZV+12], [GVJ+13a], and [GVJ+13b] we study a three-node TWR channel, where

each node has multiple antennas and the relay uses the DF relaying strategy. Moreover,

the superposition coding scheme is applied. Our task is to maximize the achievable rate

region by optimizing the transmit strategies at the relay as well as at the UTs. By

analyzing active constraints at the optimality, we have proven that the optimal transmit

strategy problem can be decoupled into several power allocation problems, all of which

can be solved using the water-filling algorithm. Thus, analytical solutions have been

obtained at the end.

• We have proposed a novel channel estimation scheme for estimating the channel between

the UTs and the relays in a TWR channel with multiple MIMO AF relays [ZNH14]. The

proposed scheme is based on the block component decomposition. It is more flexible

compared to the state of the art channel estimation schemes since it allows the relay to

apply a full relay amplification matrix instead of a diagonal relay amplification matrix.

This will become a major enabler for further optimizing the relay amplification matrix

in the training phase.

7.2 Future work

Two-way relaying is a promising technique for satisfying the high data rate needs in the future

dense networks since it is cost efficient, flexible and uses the spectrum in a more efficient way

(compared to the traditional one-way relaying). Nevertheless, to deploy the TWR protocol

in future wireless systems, there are still many practical and theoretical issues needed to be

solved especially on the PHY and MAC layer. In my opinion, future researches shall address

the following areas:

• The fundamental information theory limit of the TWR system is still unknown. Although

AF and DF relaying strategies have been intensively studied in the literature, the best

relaying strategy in a certain scenario is still unclear. Thus, it makes sense to study the

fundamental limits of the TWR systems.
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• There are still remaining problems regarding the relay transmit strategy design of a

multi-pair TWR scenario or a TWR based relay broadcast channel. For example, energy

efficient relay transmit strategies have not been studied for multi-pair TWR scenarios.

Similarly, distributed beamforming design for a system with multiple single or multiple-

antenna relays should be investigated. Optimal transmit strategies subject to peak power

constraint(s) should be studied because in a practical RF chain a peak power constraint

per antenna is more realistic compared to an average power constraint. When each user

has multiple antennas, optimal joint design of the relay amplification matrix and the

precoder and the decoder at the users need to be investigated. If strongly non-circular

signals are transmitted and each user has multiple antennas, a joint WL design of the

relay amplification matrix and the precoder and the decoder at the users should be

investigated. It is also important to study the analytic performance of the proposed

transmit strategies, e.g., the analytic sharing gain of the ProBaSeMO scheme.

• To achieve the best performance, perfect CSI is desired. However, in practice it is difficult

to obtain perfect CSI. Therefore, robust transmit strategies to combat the imperfect CSI,

which are already existing for MU-MIMO downlink systems, e.g., [ZRH13], should be

studied.

• The beamforming design requires certain CSI knowledge, e.g., instantaneous CSI, second

order statistics of the CSI. For TWR systems, it is natural to estimate the channels and

design the beamforming matrices at the relay. However, it has been shown in [RH10b]

that the traditional training based channel estimation method is inefficient for obtaining

the CSI at the relay. A more efficient pilot design together with channel estimation

algorithms or even blind channel estimation schemes shall be studied.

• Unlike conventional cellular networks, there is no widely used topology for relay planning

in existing networks. One of the reasons is that relay networks are interference limited

networks. Although relays help to improve the network quality, they might also create

interference to the macro-cell users. Such effects have not really been well studied. Novel

resource allocation (or cross layer design) algorithms, e.g., scheduling of the macro-cell

users and relay users, relay selection, are needed especially when the system is fully

loaded.

• In a system with two-way relays the uplink and downlink communications links are

coupled. This may leads to difficulties when introducing the TWR protocol into modern

cellular networks such as LTE or LTE-A that are based on multicarrier techniques.
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In LTE the air interfaces for the downlink, i.e., OFDMA, and the uplink, i.e., single

carrier frequency division multiple access (SC-FDMA), are different. To use the TWR

techniques more efficiently, a joint consideration of the air interface of the downlink

and the uplink might be required. Moreover, if the channels of different subcarriers

are correlated, a chunk based design of the relay transmit strategies for the considered

scenarios can be considered. That is, instead of a per subcarrier design, the transmit

strategy for a group of subcarriers can be designed based on their equivalent channel.

This is computationally more efficient compared to a per subcarrier design.

• Link adaptation is well adopted in modern wireless communication systems as an efficient

closed-loop method for improving the system performance. How the relay should behave

in the link adaptation procedure in relay-assisted networks is an interesting issue to

address. For example, when the DF relay is applied, the relay decodes the received

signal and thus can provide a metric for the quality of the CSI of the instantaneous

channel. It can then inform the communication partners so that they can change their

modulation and coding schemes (MCSs) accordingly.

• Compared to the OWR protocol, the TWR protocol might be more sensitive to synchro-

nization errors since in the first phase it requires the signals from the two users to arrive

at the relay at the same time. Thus, the impact of imperfect synchronization (either

timing errors or carrier frequency offsets (CFOs)) shall be investigated.
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Part II

Full-duplex wireless communication systems
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This part of the thesis is devoted to the development of transmit strategies to enable a

simultaneous transmission and reception of a full-duplex (FD) transceiver with limited dynamic

range. The major challenge of enabling a FD operation is that the loop-back self-interference

(SI) is much stronger (60 - 100 dB) than the received desired signal [CJLK10]. The SI has to be

suppressed. Otherwise, it will prevent correctly detecting and decoding of the desired signal.

Due to the limited dynamic range and imperfect RF chains at the transceiver, current SI

cancellation techniques cannot provide efficient SI suppression in realistic scenarios (although

in experiments the reported suppression is up to 80 dB [JCK+11]).

Therefore, in Chapter 8 we develop flexible digital SI cancellation techniques for FD point-to-

point (P2P) systems. More specifically, we propose to exploit the multiple antennas at both the

transmitter and the receiver, i.e., MIMO techniques. To this end, a novel SI (limited dynamic

range) aware transmit beamforming based FD MIMO system model is proposed. Optimal

transmit strategies, which maximize the sum rate for the MISO and the MIMO setup, are

derived. Analytic solutions are obtained using convex analysis. Since the proposed transmit

strategies require channel state information (CSI) at the transmitter, which is imperfect in

practice, robust transmit strategies to combat worst-case CSI errors are also proposed. In

Chapter 9 we deal with other drawbacks of the current SI cancellation techniques. That is,

imperfect RF chains can result in residual SI, which can affect the system performance as

well as the design of transmit strategies. Thus, we develop efficient transmit strategies, which

maximize the signal to leakage plus noise ratio (SLNR), and power adjustment techniques to

combat the residual interference. In contrast to the existing approach in [DMBS12] and [Cir14],

our proposed approaches do not require the CSI to be invariant over every two consecutive

time slots. It is worth emphasizing that the proposed design concepts in this part can be

extended to a OWR scenario with an AF FD relay [ZTH13a], [TZH14].

A summary of our achievements and an overview of possible future work are finally provided

in Chapter 10. Proofs and derivations are moved to Appendix D to enhance the readability.



8 Self-interference aware transmit strategies for

full-duplex point-to-point MIMO systems

This chapter is devoted to the optimal linear transmit strategies for a full-duplex (FD) point-

to-point (P2P) MIMO system with limited dynamic range. We first motivate the necessity of

developing self-interference (limited dynamic range) aware transmit strategies for a FD P2P

MIMO system in Section 8.1. Afterwards, we describe the self-interference (SI) limited FD

system in Section 8.2. Optimal linear transmit strategies are then developed to maximize

the achievable sum rate of the FD MIMO system [ZTLH12] in Section 8.3. The proposed

transmit strategies require CSI at the transmitter, which is imperfect in practice. Therefore,

robust transmit strategies to combat the imperfect CSI [ZTH13b] are introduced in Section 8.4.

Finally, the proposed algorithms are evaluated via numerical simulations in Section 8.5.

8.1 Motivation and state of the art

Full-duplex (FD) wireless systems have the potential to double the system spectral efficiency

compared to half-duplex (HD) systems [JCK+11]. The main difficulty in implementing a FD

system is that the strong loop-back SI exceeds the limited dynamic range at the receiver, i.e.,

60 - 100 dB stronger as reported in [CJLK10]. This phenomenon is critical since it saturates

the receiver which will not only prevent the correct reception of the desired signal but may

also damage the device. Thus, to exploit the advantages of FD operations, the SI has to be

suppressed. The receiver knows its transmitted symbols. Ideally, if the CSI is available at the

receiver, the SI can be estimated and thus can be subtracted. This kind of SI cancellation

technique is also called time-domain cancellation [RWW11], which is supposed to be applied at

the digital baseband of the receiver. However, in practice, the components of RF chains (e.g.,

the power amplifier (PA) and analog-to-digital converter (ADC)) have limited dynamic range.

For example, as the receiver automatic gain control (AGC) keeps the total ADC input at a

constant level, higher SI power requires a larger dynamic range. Otherwise, the desired signal

power is reduced and thus its resolution is weak, which will results in a bad performance of

the transceiver. For more details regarding the linearity and dynamic range of the transceiver

chain we refer to [KSA+14] and the references therein. In other words, a perfect digital domain

SI subtraction is far from realistic. Therefore, different SI suppression approaches have been

proposed to realize FD transceivers and especially SISO FD systems. Most of the proposed
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Table 8.1: A summary of the existing SI cancellation techniques.

SI cancellation techniques References Institute a

Analog
Antenna attenuation [Kha10], [EDDS11] RiceU, UWaterloo, AaltoU

RF cancellation b [CJLK10], [JCK+11], [SPS11] StanfordU, RiceU

digital
time domain cancellation c [RWW11], [HLM+12] AaltoU, UCRS

frequency domain cancellation d [RVW13], [ZTLH12] TUIL, AaltoU

aThe research institutes include Stanford University (StanfordU), Aalto University (AaltoU), Rice University
(RiceU), University of California Riverside (UCRS), University of Waterloo (UWaterloo), etc..

bThis includes Balun effect, auxiliary transmit chains, etc.
cThis includes receiver-side subtraction and spatial-temporal transmit beamforming
dThis includes spatial suppression techniques, e.g., null space projection and SI aware transmit beamforming

approaches involve advanced concepts in both RF transceiver architecture and digital signal

processing at the receiver. The simplest approach is to use directional transmit and receive

antennas to decouple the transmit and receive signals [EDDS11], which is also known as

antenna attenuation. However, this approach is only suitable when the transmit antennas and

the receive antennas are sufficiently separated. In [CJLK10], a RF cancellation approach was

proposed, which requires two transmit antennas. By proper position adjustment, the signals of

both transmit antennas overlap destructively at the receive antenna, which leads to a certain

degree of SI cancellation. This approach can be regarded as a static beamforming approach and

has the drawback that it is only suitable for narrow band transmissions and requires accurate

manual tuning of antenna positions. In [JCK+11] and [SPS11], more advanced approaches

are proposed, which can cope with larger bandwidths. In [JCK+11] a balun is used at the

transmit antenna input to feed an inverted as well as amplitude and phase adjusted version

of the RF transmit signal to the output of the receive antenna to cancel the SI. In [SPS11],

an auxiliary transmit path is used to feed a cancellation signal to the receiver input for RF

cancellation, where the cancellation signal is a preprocessed version of the own transmitted

signal to match the actual signal. These SI cancellation methods can be categorized as RF

cancellation techniques. If both the transmitter and the receiver have multiple antennas, then

spatial domain suppression techniques can be deployed to null the SI, i.e., the precoding matrix

at the transmitter and the decoding matrix at the receiver are jointly designed such that the

SI is nullified [RWW11] and [RVW13]. Clearly, the spatial domain suppression techniques are

also performed in the digital domain. The existing SI cancellation techniques are summarized

in Table 8.1.
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Nevertheless, the cancellation ability of the RF cancellation schemes has not yet been verified

in real-world applications and thus their stability is unknown. The extension of the these

schemes for MIMO systems is unclear. Actually, it is possible that after the RF cancellation,

the receiver might be still saturated. On the other hand, the spatial domain suppression

techniques will in general consume the available spatial dimensions and thus the multiplexing

gain of the system is significantly effected. This issue is also pointed out in [RVW13]. Moreover,

in [RWW11] and [RVW13], the time-domain subtraction technique and the spatial domain

suppression techniques are treated as competitors. Yet, there is another possibility which is

ignored. That is, the time-domain subtraction technique can be combined with the spatial

domain suppression techniques to provide an enhanced digital domain SI cancellation and/or

to improve the resulted system performance. For this purpose, we propose the concept of the

SI aware transmit beamforming. That is, when the spatial domain suppression techniques

are deployed, we design the transmit beamformer such that the SI power is suppressed up

to a certain threshold, instead of zero-forcing (ZF) as in [RVW13]. The residual SI will be

canceled using the time domain cancellation technique. There are several benefits of this design

concept. Compared to pure spatial domain suppression techniques, the multiplexing gain of

the system can be preserved depending on the threshold. Compared to the pure time-domain

subtraction technique, the SI is suppressed before going through the transceiver with a limited

dynamic range. Therefore, more dynamic range will be reserved for the desired signal, and

the saturation of the receiver RF chain due to a strong loop-back SI can be avoided. Our

concept can be realized by setting an additional constraint on the received SI power. Based

on the proposed method, optimal transmit strategies can be developed such that the system

performance is improved and the SI is suppressed. However, to achieve the best performance,

perfect CSI is required, which is difficult to obtain in practice. Thus, robust design approaches

which take into account the imperfections of the CSI such as [WP09] are important for a

realistic system implementation. Therefore, we also develop robust transmit strategies by

applying a worst-case deterministic channel error model in case of imperfect CSI.

8.2 System model

Two transceivers with identical hardware configurations communicate with each other as de-

picted in Figure 8.1. Each transceiver has Mt transmit antennas and Mr receive antennas. The

transmitter and the receiver at the same transceiver are indexed by {i, j} ∈ {1,2} and i ≠ j. We

assume perfect synchronization. The channel is frequency flat and quasi-static block fading.

The desired channel from the i-th transmitter to the i-th receiver is denoted as Hii ∈ CMr×Mt
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Figure 8.1: The sketch of a symmetric full-duplex point-to-point MIMO system.

while the SI channel from the i-th transmitter to the j-th receiver is Hji ∈ CMr×Mt . All the

channels have full rank, i.e., rank(Hii) = rank(Hji) =min(Mr,Mt).
Let the i-th transmitter transmits the data vector si with the precoding matrix Wi ∈ CMt×ri ,

where ri is the number of transmitted data streams of the corresponding transmitter. Then

its transmitted signal vector xi can be written as

xi =Wisi (8.1)

with the transmit power constraint E{∥xi∥2} ≤ ǫiP (TH)
i where ǫi ∈ R+. The elements of si are

independently distributed with zero mean and unit variance. Moreover, we define a SI power

constraint as

E{ηj∥Hijxj∥2} ≤ P (TH)
i , (8.2)

where ηj ∈ R+ denotes the ratio between the path-loss of the SI channel and the path-loss of

the desired channel, i.e., the near-far ratio, and P
(TH)
i denotes the threshold of the received

SI power, which should be achieved by using the spatial domain (in other words, SDMA)

suppression techniques. Note that the effects of antenna attenuation (if applied) and RF

cancellation techniques (if applied) can be taken into account using the factor ηj , i.e., treated

as artificial path loss. A smaller ηj means that more SI suppression is provided by antenna

attenuation and the RF cancellation techniques. The factor ǫi represents the ratio between

the maximum allowable transmit power and the maximum allowable SI power of the i-th

transceiver. As will be discussed in Section 8.3, when ηj is fixed, ǫi decides whether the spatial
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dimensions are used to suppress the SI or not. The constraint (8.2) implies that if the SI power

is below this required threshold, the SI suppression is sufficient and the received signal power,

including the desired signal power and the residual SI power, is within the dynamic range of

the receiver. The received signal at the i-th receiver is written as

yi = Hiixi²
desired signal

+
√
ηjHijxj´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
residual SI

+ni ∈ CMr (8.3)

where ni denotes the zero-mean circularly symmetric complex Gaussian (ZMCSCG) noise and

E{nini} = σ2
nIMR

, ∀i. If channel knowledge is available at the receiver, the residual SI can be

subtracted using the time-domain subtraction technique since the transceiver knows its own

transmitted signal. If we further ignore the remaining SI after the subtraction, the received

signal is simplified as

ŷi =Hiixi +ni ∈ CMr (8.4)

One biggest advantage of this design, as will be seen in Section 8.3, is that it decouples the

design of the precoders of the two transmitters, which cannot be achieved in general, e.g.,

[DMBS12]. One important assumption of this design is that the threshold has to be known in

advance. We will discuss this assumption at the end of Section 8.3.

Given the above system model and assuming perfect channel knowledge at the transmitter,

in the following we develop linear transmit strategies which maximize the system sum rate

and derive analytic solutions for the MIMO and the MISO setup, respectively.

8.3 Optimal linear transmit strategies for sum rate maximization

In this section we solve the sum rate maximization problem for the MISO and the MIMO

setup separately.

8.3.1 MISO setup

The sum rate maximization problem for the MISO setup is given by:

max
wi

2

∑
i=1

log2 (1 +wH
i h

H
iihiiwi)

s. t. wH
i wi ≤ ǫiP (TH)

i

ηiw
H
i h

H
jihjiwi ≤ P (TH)

i , i ∈ {1,2}, (8.5)
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where wi ∈ CN , hT
ii ∈ CN , hT

ji ∈ CN are vector versions of Wi, Hii, Hji, respectively. Since

in problem (8.5) the design of w1 and w2 can be decoupled, it is equivalent to solving the

following sub-problem, ∀i,

max
wi

wH
i h

H
iihiiwi

s. t. wH
i wi ≤ ǫiP (TH)

i

ηiw
H
i h

H
jihjiwi ≤ P (TH)

i (8.6)

Problem (8.6) is non-convex QCQP problem. As we have discussed in Section 3.6, a common

approach to solve (8.6) is to apply the SDR technique to first obtain a convex problem [HP10],

as also introduced in Appendix B.3.5. That is, define Xi = wiw
H
i . By dropping the rank-1

constraint on Xi, ∀i, we get the following convex problem

max
Xi

Tr{hH
iihiiXi}

s. t. Xi ⪰ 0,Tr{Xi} ≤ ǫiP (TH)
i

Tr{ηihH
jihjiXi} ≤ P (TH)

i . (8.7)

A rank-1 optimal solution of (8.7) is the solution to the original problem. Fortunately, accord-

ing to Corollary 3.4 in [HP10], problem (8.7) has a guaranteed rank-1 solution and thus the

iterative rank-1 extraction technique in [HP10] can be used.

Nevertheless, the interior-point algorithm only provides numerical solutions which do not

give all the insights of the problem. If possible, an analytic solution is preferred. To this end,

we analyze the active1 and inactive constraints of problem (8.6). The following proposition is

derived.

Proposition 8.3.1. At the optimality of problem (8.6), ∀i,

i) The transmit power constraint is always active. This implies that either both the trans-

mit power constraint and the SI power constraint are active or only the transmit power

constraint is active.

ii) If the SI power constraint is inactive, the optimal transmit strategy is the maximum ratio

transmission (MRT) scheme, i.e., wopt,i =
√

ǫiP
(TH)
i

hH
ii∥hii∥ . A two-fold FD gain in terms of

sum rate is achievable.

1Active constraints means that at the optimality the constraints are satisfied with equality [BV04].

158



8.3 Optimal linear transmit strategies for sum rate maximization

Proof. Please see Appendix D.1.

When both of the constraints in (8.6) are active, an analytic solution can be derived and

the following corollary is obtained.

Corollary 8.3.2. Define the orthogonal complement of hH
ji ∈ CMt as Π⊥

hH
ji

= IMt −
hH
jihji∥hji∥2 ∈

C
Mt×Mt. When both of the constraints in (8.6) are active, the optimal beamformer is given by

wopt,i =
hH
ji∥hji∥2
¿ÁÁÀP

(TH)
i

ηi
⋅ ejαopt,i +Π⊥

hH
ji

⋅ bopt,i (8.8)

where bopt,i = (υopt,iIMt − z
H
v,izv,i)−1zH

v,izs,i ∈ CMt, zv,i = hiiΠ
⊥
hH
ji

∈ C1×Mt , zs,i = hiih
H
ji∥hji∥2
√

P
(TH)
i

ηi
∈

C, υopt,i = ∥zv,i∥2 − ∣zs,i∣∥zv,i∥√
(ǫi− 1

ηi∥hji∥
2 )P (TH)

i

, and αopt,i = arg
⎧⎪⎪⎨⎪⎪⎩
hiiΠ

⊥

hH
ji

⋅bopt,i

hiih
H
ji

⎫⎪⎪⎬⎪⎪⎭.
Proof. Please see Appendix D.2.

8.3.2 MIMO setup

The sum rate maximization problem for the MIMO setup is formulated as:

max
Qi

2

∑
i=1

log2 (∣IM + 1

σ2
n

HiiQiH
H
ii ∣)

s. t. Qi ⪰ 0, Tr{Qi} ≤ ǫiP (TH)
i

Tr{ηiHjiQiH
H
ji} ≤ P (TH)

i , i ∈ {1,2}, (8.9)

where Qi =WiW
H
i . Since in problem (8.9) the design of Q1 and Q2 is not coupled so that we

can design them separately, i.e., ∀i, we solve

min
Qi

− log(∣IM + 1

σ2
n

HiiQiH
H
ii ∣)

s. t. Qi ⪰ 0, Tr{Qi} ≤ ǫiP (TH)
i

Tr{ηiHjiQiH
H
ji} ≤ P (TH)

i . (8.10)

According to [BV04], problem (8.10) is a convex problem since both the cost function and the

constraints are convex. Thus, it can be solved using the interior-point algorithm in [BV04].

Define the EVD of Qi = UiΣiU
H
i . The optimal precoding matrix is given by Wi,opt = UiΣ

1
2

i .
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Similar as in the MISO setup, we investigate the possibility of obtaining an analytic solution

to problem (8.10). We start by first pointing out that at least one of the constraints in (8.10)

is active at the optimality. Otherwise, the optimal Qi,opt can be scaled up to satisfy at least

one of the constraints with equality while increasing the objective function, which contradicts

the optimality. Based on this fact, we are able to prove the following proposition.

Proposition 8.3.3. At the optimality of problem (8.10), the following statements hold:

i) If the transmit power constraint is active while the SI power constraint is inactive, the

analytic solution is obtained by using the SVD of Hii together with the water-filling

(WF) power allocation, i.e., the optimal solution for a HD P2P system. Two-fold gain

is achievable;

ii) If the transmit power constraint is inactive while the SI power constraint is active, the

analytic solution is given by the WF power allocation over the eigenmodes of the effective

channel HiiH
+

ji.

Proof. Case i): after dropping the inactive SI power constraint, the remaining problem is the

same as the capacity achieving precoder design problem for a HD MIMO system [PNG03].

Thereby, the solution is the well-known WF solution [PNG03].

Case ii): Let us define Q̂i = HjiQiH
H
ji . If the pseudoinverse of H+

ji = (HH
jiHji)−1HH

ji

(M ≥ N is required) exists, then we have Qi =H+

jiQ̂iH
+
H

ji . Problem (8.10) is reformulated as

min
Q̂i

− log(∣IM + 1

σ2
n

HiiH
+

jiQ̂iH
+
H

ji HH
ii ∣)

s. t. Q̂i ⪰ 0, Tr{ηiQ̂i} = P (TH)
i (8.11)

Problem (8.11) has the same formulation as the MIMO capacity achieving problem for a HD

system in [PNG03] and thus it can be solved using the WF algorithm. This solution is called

inverse WF.

When both constraints are active, an analytic solution is in general difficult to obtain. A

possible routine for obtaining an analytic solution for such a situation is to apply the Karush-

Kuhn-Tucker (KKT) conditions in [BV04] and Appendix B.2, which are first-order necessary

conditions for optimality. The intention behind this approach is that the solution obtained

from the KKT conditions (if it exists) is also globally optimal since our problem is a convex

problem. For the case Mr =Mt = 2 an analytic solution is derived in the following proposition.
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Proposition 8.3.4. Define the EVD of Aii = HH
iiHii/σ2

n = Uii ⋅ diag {λii}UH
ii and Bji =

HH
jiHji = Uji ⋅diag {λji}UH

ji , where λii = [λii,1,⋯, λii,Mt
]T and λji = [λji,1,⋯, λji,Mt

]T are the

corresponding eigenvalue profiles of Aii and Bji, respectively. Define UH
jiAiiUji =

⎡⎢⎢⎢⎢⎣
a11 a12

a∗12 a22

⎤⎥⎥⎥⎥⎦
where a11 ∈ R, a22 ∈ R, and a12 ∈ C. When Mr =Mt = 2 and both constraints are active at the

optimality of problem (8.10), ∀i, the optimal Qi is computed as

Qopt,i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

QPSD,i if QPSD,i ⪰ 0;

Uji

⎡⎢⎢⎢⎢⎢⎣
∣vi,1∣ejαi

∣vi,2∣
⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
∣vi,1∣ejαi

∣vi,2∣
⎤⎥⎥⎥⎥⎥⎦
H

UH
ji otherwise,

(8.12)

where QPSD,i = (ρiIMt + υiηiBji)−1 −A−1ii , ρi = λji,1

λji,1z̃i−z̄i
+ λji,2

λji,2z̃i−z̄i
, υi = 1

z̄i−λji,1z̃i
+ 1

z̄i−λji,2z̃i
,

z̃i = ǫiP
(TH)
i + ∑2

m=1 λ−1ii,m, z̄i = P
(TH)
i /ηi + Tr{BjiA

−1
ii }, ∣vi,1∣ =

√
P
(TH)
i

/ηi−λji,2ǫiP
(TH)
i

λji,1−λji,2
, ∣vi,2∣ =√

λji,1ǫiP
(TH)
i

−P
(TH)
i

/ηi
λji,1−λji,2

, and αi = arg {a12}.
Proof. Please see Appendix D.3.

Remark

Remark 10. When the proposed concept is applied to a SISO setup, the optimal solution is

readily available. The sum rate maximization problem for the SISO setup is given by

max
Pi

2

∑
i=1

log2(1 + Pi∣hii∣2)
s. t. Pi ≤ ǫiP (TH)

i

Piηi∣hji∣2 ≤ P (TH)
i , i ∈ {1,2}. (8.13)

Since in this case only the transmit power Pi ∈ R+ can be tuned, an analytic solution is obtained

as Popt,i =min(ǫiP (TH)
i ,

P
(TH)
i

ηi∣hji∣2).
Remark 11. Compared to a pure HD system, our design concept results in a HD system with

an additional constraint, i.e., the SI power constraint. This can be interpreted as that each

transceiver maximizes its own performance while suppressing the interference, which it causes

to the received signal from the other transmitter, up to a certain level. Clearly, this design

requires that P
(TH)
i is known a priori. This is possible in practice. For example, a typical

received signal power in a LTE system is -83.9 dBm [RVW13]. The value of P
(TH)
i can be set
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to a fraction of -83.9 dBm such that the SI power is sufficiently low. That is, the threshold

P
(TH)
i is fixed. When P

(TH)
i is fixed, it can happen that the received signal power is still

worse than the received SI power. For example, if there are not sufficient spatial dimensions,

which can be used to suppress the SI and thus the transmit power has to be reduced to satisfy

the SI power constraint. Since the transmit power is reduced, the received power is reduced

and might be smaller than the received SI power. If one of the desired channels is weak,

this phenomenon can also happen. In such a situation, instead of fixing P
(TH)
i , we propose

to update P
(TH)
i iteratively. That is, the two transceivers coordinate with each other in the

design of their own transmit strategy. Since only the value of P
(TH)
i , i.e., a scalar, needs to be

exchanged, it will not bring a large burden to the system.

8.4 Worst-case design for transmit power minimization

8.4.1 Data model under imperfect CSI

Tx1

Rx2

Rx1

Tx2

Mt Mr

Mr Mt

Ĥ11 +∆11

Ĥ22 +∆22

Ĥ
2
1
+
∆

2
1

Ĥ
1
2
+
∆
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D
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1

D
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Figure 8.2: A symmetric FD point-to-point system with deterministic channel errors.

In practice, the CSI at the transmitter can be obtained by directly estimating the channel

at the transmitter when TDD is applied and the RF end is calibrated, or by feeding back the

estimated channel at the receiver side when FDD is applied. The imperfect channel estimation

and/or the limited feedback capability cause CSI errors at the transmitter. Therefore, a robust

design to combat CSI errors is essential for a practical system implementation. Although the

FD operation, i.e., at the same time and on the same frequency, makes it possible to estimate
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8.4 Worst-case design for transmit power minimization

the channel directly at the transmitter, it is unclear what kind of calibration has to be used such

that the reciprocity holds for a FD communication link and thus there might be calibration

errors. Therefore, we apply a general CSI error model as in [WP09]. That is, the imperfect

CSI is modeled as

Hii = Ĥii +∆ii, Hij = Ĥij +∆ij ,∀i, j ∈ {1,2}, (8.14)

where Ĥii and Ĥij are the estimated channels. The corresponding CSI errors are modeled

deterministically using ∆ii and ∆ij and they are bounded by ellipsoids [WP09] such that

Tr{∆iiTii∆
H
ii} ≤ γii, Tr{∆ijTij∆

H
ij} ≤ γij ,∀i, j ∈ {1,2}, (8.15)

where {Tii,Tij} ≻ 0 characterize the shape of the uncertainty region of the CSI errors and ≻
stands for positive definite [WP09]. It is further assumed that ∆ii and ∆ij are independent

from each other. Given the CSI error model in (8.14), we can subtract the estimated SI term

Ĥijxj . Then the received signal at the ith receiver can be rewritten as

yi = (Ĥii +∆ii)xi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
desired signal

+ ∆ijxj´¹¹¹¹¹¸¹¹¹¹¹¶
residual SI

+ni (8.16)

Let us define the total SINR at the ith receiver as the ratio between the sum of the received

signal power and the sum of the received interference plus noise power at all antennas of the

ith receiver. Then it is calculated as

SINRi =
Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H}

Tr{∆ijQj∆H
ij} +Mrσ2

n

(8.17)

and the SI constraint is computed by

E{∥Hijxj∥2} = Tr{(Ĥij +∆ij)Qj(Ĥij +∆ij)H} ≤ P (TH)
i . (8.18)

Our goal is to design worst-case optimal covariance matrices Qi,∀i, which minimize the total

required transmit power of the system subject to total SINR constraints and SI constraints.

Afterwards, the robust transmit beamforming Fi is determined by Fi =Q
1
2

i .
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8.4.2 Worst-case transmit strategies

Our worst-case total transmit power minimization problem can be formulated as the following

min-max problem:

min
Qi,
∀i

max
∆ii,∆ij ,
∀i,j

∑
i

Tr{Qi}
s.t.

Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H}
Tr{∆ijQj∆H

ij} +Mrσ2
n

≥ ηi

Tr{(Ĥij +∆ij)Qj(Ĥij +∆ij)H} ≤ P (TH)
i

Tr{∆iiTii∆
H
ii} ≤ γii, Tr{∆ijTij∆

H
ij} ≤ γij , Qi ⪰ 0,∀i, j ∈ {1,2}, (8.19)

where ηi > 0 are the SINR requirements. Noticing that the objective function in (8.19) is

independent of ∆ii and ∆ij ,∀i, j, we can reformulate the cost function and get the following

equivalent problem:

min
Qi,∀∆ii,∆ij

∑
i

Tr{Qi}
s.t.

Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H}
Tr{∆ijQj∆H

ij} +Mrσ2
n

≥ ηi (8.20a)

Tr{(Ĥij +∆ij)Qj(Ĥij +∆ij)H} ≤ P (TH)
i (8.20b)

Tr{∆iiTii∆
H
ii} ≤ γii, Tr{∆ijTij∆

H
ij} ≤ γij , Qi ⪰ 0,∀i, j ∈ {1,2}. (8.20c)

Problem (8.20) is still non-convex since its constraints are infinite, i.e., we need to solve (8.20)

for every feasible ∆ii and ∆ij which makes it intractable. Nevertheless, by applying the S-

procedure and the Schur complement as in [WP09], it is possible to convert problem (8.22)

into a SDP problem. For this purpose, we reformulate the constraint (8.20a) such that its

dependence on ∆ii and ∆ii is separated. Let us introduce slack variables ti > 0 [BV04]. Then

(8.20a) can be split into the following two constraints.

Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H} ≥ tiηi
Tr{∆ijQj∆

H
ij} +Mrσ

2
n ≤ ti (8.21)

Replacing (8.20a) with its equivalent constraints in (8.21), we get

min
Qi,ti,∀∆ii,∆ij

∑
i

Tr{Qi}
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s.t. Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H} ≥ tiηi (8.22a)

Tr{∆ijQj∆
H
ij} +Mrσ

2
n ≤ ti (8.22b)

Tr{(Ĥij +∆ij)Qj(Ĥij +∆ij)H} ≤ P (TH)
i (8.22c)

Tr{∆iiTii∆
H
ii} ≤ γii (8.22d)

Tr{∆ijTij∆
H
ij} ≤ γij (8.22e)

Qi ⪰ 0, ti > 0,∀i, j ∈ {1,2}. (8.22f)

Now let us review the definitions of the S-procedure and the Schur complement from [BV04].

Lemma 8.4.1. (S-procedure [BV04]) Let Ak = AH
k ∈ Cm×m, bk ∈ Cm, and ck ∈ R where

k ∈ {1,2}. Then

xHA1x + 2 ⋅Re{bH1 x} + c1 ≤ 0
implies

xHA2x + 2 ⋅Re{bH2 x} + c2 ≤ 0
if and only if there exists a µ ≥ 0 such that

µ

⎡⎢⎢⎢⎢⎣
A1 b1

bH1 c1

⎤⎥⎥⎥⎥⎦ −
⎡⎢⎢⎢⎢⎣
A2 b2

bH2 c2

⎤⎥⎥⎥⎥⎦ ⪰ 0 (8.23)

provided there exists a point x̂ with

x̂HA1x̂ + 2 ⋅Re{bH1 x̂} + c1 < 0. (8.24)

Lemma 8.4.2. (Schur complement [BV04]) Let

Γ =
⎡⎢⎢⎢⎢⎣
A BH

B D

⎤⎥⎥⎥⎥⎦ (8.25)

be a Hermitian matrix. Then Γ ⪰ 0 if and only if D −BHA−1B ⪰ 0 (assuming A ≻ 0), or

A −BHD−1B ⪰ 0 (assuming D ≻ 0).

Define δii = vec{∆H
ii} and δij = vec{∆H

ij} where vec{⋅} stacks the columns of a matrix into

a vector. Using the fact that Tr{ABCD} = vec{AH}H(DH ⊗B)vec{C} where ⊗ stands for

the Kronecker product, the constraint (8.22a) can be further expanded as

Tr{(Ĥii +∆ii)Qi(Ĥii +∆ii)H}
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= Tr{∆iiQi∆
H
ii + 2 ⋅Re{ĤiiQi∆

H
ii} + ĤiiQiĤ

H
ii }

= δHii (IMr ⊗Qi)δii + 2 ⋅Re{vec{ĤH
ii }H(IMr ⊗Qi)δii} +Tr{ĤiiQiĤ

H
ii } − tiηi ≥ 0 (8.26)

Similarly, constraints (8.22b)-(8.22e) can be also rewritten as the following quadratic forms,

respectively.

δHij(IMr ⊗Qj)δij +Mrσ
2
n − ti ≤ 0 (8.27a)

δHij(IMr ⊗Qj)δij + 2 ⋅Re{vec{ĤH
ij}H(IMr ⊗Qj)δij} +Tr{ĤijQjĤ

H
ij} − P (TH)

i ≤ 0 (8.27b)

δHii (IMr ⊗ Tii)δii − γii ≤ 0 (8.27c)

δHij(IMr ⊗ Tij)δij − γij ≤ 0 (8.27d)

Since δii and δij are independent, we can deal with the constraints (8.22a), (8.22d) ((8.26) and

(8.27c), respectively) and (8.22b), (8.22c), (8.22e) ((8.27a), (8.27b), and (8.27d), respectively)

separately. Clearly, according to Lemma 8.4.1, (8.26) and (8.27c) hold if and only if there

exists µi ≥ 0 such that

⎡⎢⎢⎢⎢⎣
IMr ⊗ (Qi + µiTii) (IMr ⊗Qi)vec{ĤH

ii }
vec{ĤH

ii }H(IMr ⊗Qi) Tr{ĤiiQiĤ
H
ii } − tiηi − µiγii

⎤⎥⎥⎥⎥⎦ ⪰ 0 (8.28)

To further simplify the constraint (8.28), we apply Lemma 8.4.2. Then it is worth mentioning

that we need to distinguish the two cases µi > 0 and µi = 0 since Q−1i might not exist when

µi = 0 [WP09]. For µi > 0, using Lemma 8.4.2, (8.28) is equivalent to

Tr{ĤiiQiĤ
H
ii } − tiηi − µiγii − vec{ĤH

ii }H(IMr ⊗Qi)(IMr ⊗ (Qi + µiTii))−1
⋅ (IMr ⊗Qi)vec{ĤH

ii } ≥ 0
which can be further simplified to

Tr{ĤiiQiĤ
H
ii } −Tr{ĤiiQi(Qi + µiTii)−1QiĤ

H
ii } − tiηi − µiγii ≥ 0. (8.29)

To decouple the matrix inverse term from (8.29), we introduce an auxiliary variable Zi ∈
C
Mt×Mt . By using the fact that Tr{AB} = Tr{BA}, the constraint (8.29) can be written as

the following two constraints.

Tr{ĤH
ii Ĥii(Qi −Zi)} − tiηi − µiγii ≥ 0 (8.30a)

Qi(Qi + µiTii)−1Qi ⪯ Zi (8.30b)
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Using Lemma 8.4.2 again, (8.30b) can be equivalently transformed into

⎡⎢⎢⎢⎢⎣
Zi Qi

Qi Qi + µiTii

⎤⎥⎥⎥⎥⎦ ⪰ 0 (8.31)

Furthermore, it can be proven that the case µi = 0 can be integrated into the new constraints

(8.30a) and (8.31) by following a similar proof as in [WP09]. Thereby, the infinite constraints

(8.22a) and (8.22d) with respect to∆ii are successfully reformulated into two equivalent convex

constraints (8.30a) and (8.31).

However, there are three instead of two sets of infinite constraints with respect to ∆ii, i.e.,

(8.22b), (8.22c), and (8.22e), which does not fulfill the structure of the original S-procedure.

Therefore, it is not straightforward to apply the same derivation. To tackle this problem, we

notice that the feasible region for the three constraints is equivalent to the intersection of the

feasible region of any two constraints. For instance, we can choose the sets {(8.22b),(8.22e)}

and {(8.22c),(8.22e)} as the two pairs. Then the intersection of the feasible region of these

two pairs of constraints will give us exactly the same feasible region for the case with three

constraints. The benefits of doing this is that for each pair we can apply the original S-

procedure. Thus, we can convert the infinite constraints into equivalent convex constraints

as we have done for (8.22a) and (8.22d). Finally, the constraints (8.22b) and (8.22e) can be

transformed into the following equivalent convex constraints

Tr{ĤH
ijĤij(−Qj −Yi)} − κiγij + P (TH)

i ≥ 0 (8.32a)⎡⎢⎢⎢⎢⎣
Yi −Qj

−Qj −Qj + κiTij

⎤⎥⎥⎥⎥⎦ ⪰ 0 (8.32b)

where κi ≥ 0 and Yi ∈ CMt×Mt are auxiliary variables. The constraints (8.22c) and (8.22e) can

be converted to

ti −Mrσ
2
n − λiγij ≥ 0 (8.33a)⎡⎢⎢⎢⎢⎣

Xi −Qj

−Qj −Qj + λiTij

⎤⎥⎥⎥⎥⎦ ⪰ 0 (8.33b)

where λi ≥ 0 and Xi ∈ CMt×Mt are auxiliary variables. Thereby, the three constraints (8.22b),

(8.22c), and (8.22e) can now be substituted by the equivalent four convex constraints (8.32a),

(8.32b), (8.33a), and (8.33b).

Replacing (8.22a), (8.22b), (8.22c), (8.22d), and (8.22e) with (8.30a), (8.31), (8.32a), (8.32b),
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(8.33a), and (8.33b), problem (8.22) is reformulated as

min
Qi,Xi,Yi,Zi,
ti,µi,κi,λi

∑
i

Tr{Qi}
s.t. Tr{ĤH

ii Ĥii(Qi −Zi)} − tiηi − µiγii ≥ 0
Tr{ĤH

ijĤij(−Qj −Yi)} − κiγij + P (TH)
i ≥ 0

ti −Mrσ
2
n − λiγij ≥ 0⎡⎢⎢⎢⎢⎣

Zi Qi

Qi Qi + µiTii

⎤⎥⎥⎥⎥⎦ ⪰ 0,
⎡⎢⎢⎢⎢⎣

Yi −Qj

−Qj −Qj + κiTij

⎤⎥⎥⎥⎥⎦ ⪰ 0,
⎡⎢⎢⎢⎢⎣

Xi −Qj

−Qj −Qj + λiTij

⎤⎥⎥⎥⎥⎦ ⪰ 0
Qi ⪰ 0, ti > 0, µi ≥ 0, κi ≥ 0, λi ≥ 0,∀i, j ∈ {1,2}. (8.34)

Problem (8.34) is a convex SDP problem. Thus, it can be solved efficiently using the standard

interior-point algorithm in [BV04].

8.5 Simulation results

In this section the proposed algorithms are evaluated using Monte-Carlo simulations. The

generated channels are uncorrelated Rayleigh flat fading. For simplicity, we have ǫi = ǫ, ηi = η,
and P

(TH)
i = P , ∀i. The threshold power P is set to unity and the SNR is defined as SNR = ǫ/σ2

n.

All the simulation results are averaged over 1000 channel realizations. To demonstrate whether

and under which conditions a FD system can achieve a two-fold gain compared to a HD system

in terms of the sum rate, we define the HD baseline system. The HD baseline system has the

same hardware configurations (e.g., the same number of transmit and receive antennas, the

same transmit power constraints, etc.) as the transceiver in the FD system. It works in a

TDD HD mode, i.e., at each time slot, the HD system only receives or transmits the data.

The applied transmit strategies are capacity achieving, i.e., MRT for the MISO setup and

the SVD-based WF solution for the MIMO setup. Other than these optimal solutions, the

performance of suboptimal transmit strategies for the FD system is also demonstrated in the

simulations. For the MIMO case, we show the performance of the classical WF solution and

the inverse WF (IWF) solution derived in Section 8.3.2. This is done by first calculating the

WF or IWF solution and then scaling the obtained solution such that both constraints in

(8.10) are satisfied. The same procedure is also applied to the selected suboptimal algorithms

for the MISO setup. For a FD MISO setup, we also demonstrate the performance of the MRT
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and the ZF strategy 2.

8.5.1 Achievable sum rate with perfect CSI

Let “FD-Opt” denotes the optimal FD solution using the interior-point algorithm. “HD”

denotes the optimal HD solution. “FD-WF” denotes the WF solution. “FD-IWF” denotes

the IWF solution. “FD-MRT” denotes the MRT solution. “FD-ZF” denotes the ZF solution.

Figures 8.3, 8.4, and 8.5 demonstrate the achievable sum rate of a FD MIMO system. The

parameters ǫ and η can be seen as the indicator of the direct (e.g., creating a negative copy

of the transmitted signal at the receiver, e.g., using the axillary transmit chain in [SPS11])

and the indirect (e.g., artificially introducing path-loss, e.g., techniques in [EDDS11]) RF SI

cancellation ability, respectively. The smaller the ǫ or the η is, the higher is the RF cancellation

ability of the FD system. Clearly, the three subfigures imply that compared to a HD MIMO

system a two-fold gain in terms of the sum rate is only achievable in the high SNR regime and

when ǫ or η is small enough. It is also observed that the suboptimal solution WF and IWF

is not far from the optimal solution. When the SI cancellation ability is weak, i.e., in the low

SNR regime and when ǫ or η is big, the optimal solution corresponds to the IWF algorithm

and a two-fold gain is not obtainable. When the SI cancellation ability is strong, the optimal

solution corresponds to the WF algorithm.

A similar observation can be obtained for the MISO setup in Figures 8.6, 8.7, and 8.8. That

is, the suboptimal algorithms MRT and ZF have close to optimum performance. When the

SI cancellation ability is strong, the MRT method corresponds to the optimal scheme. When

the SI cancellation ability is weak, the ZF solution is close to the optimal solution. However,

interestingly, it can be seen that as ǫ increases the gain of using a FD system is constant. Even

though the gain of using a FD system decreases as η increases, the degradation is quite small

compared to the MIMO setup. This implies that for a MISO setup the transmit strategies act

not only as an aid of the RF cancellation techniques but also as a replacement of them. This

advantage is due to the fact that in the MISO case the transmitter can allocate as much power

as possible to the null space of the SI channel and this amount of power will also contribute

to the sum rate maximization. However, this ability is limited in the MIMO setup due to the

existence of the co-channel interference created by the multiple stream transmission.

2The transmitter transmits into the null space of the SI channel

169
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8.5.2 Minimum required transmit power with imperfect CSI

The noise level is normalized to be unity and we have T ii = T ij = IMt ,∀i, j. “Robust” stands

for the solution of (8.34). “Non-Robust” stands for the solution where problem (8.20) is first

solved by assuming ∆ii =∆ij = 0,∀i, j and then the obtained solution is scaled such that the

constraints are satisfied. We further define υ1 = γii,∀i and υ2 = γji/γii,∀i, j to represent the

channel error intensity for the desired channel and the SI channel, respectively [WP09].

Figure 8.9 demonstrates the comparison of the robust design and the non-robust design over

different SINR requirements. The channel error intensity of the SI channel is much smaller than

that of the desired channel, i.e., ν2 = 10−3 ≪ 1. It can be seen that as the SINR requirements

increase the robust design outperforms the non-robust design. Moreover, the gain increases as

the the channel error intensity becomes higher.

Figure 8.10 compares the performance of the robust design and the non-robust design when

the channel error intensity varies. Clearly, as the channel error intensity of both the SI channel

and the desired channel increases, the robust design performs better compared to the non-

robust design. When the array size increases, a higher gain is obtained. This is an interesting

result since more antennas not only provide more degrees of freedom but also increase the SI.

Hence, it is surprising to observe that the robust design significantly benefits from the enlarged

array size.

8.6 Summary

In this chapter, we discuss our proposed SI aware transmit strategies for a FD P2P MIMO

system, which are developed in [ZTLH12] and [ZTH13b]. The proposed transmit strategies

are SDMA techniques, which are aware of the SI cancellation provided by other cancellation

techniques such as RF cancellation techniques and other digital cancellation techniques. By

tuning a SI threshold, the proposed transmit strategies can balance between the spatial SI

cancellation and the multiplexing gain of the resulting FD system. Given a SI threshold,

optimal transmit strategies, which maximize the sum rate of the system for a MIMO/MISO

setup, are derived using convex optimization. Moreover, analytic solutions are obtained by

using convex analysis. Since the proposed transmit strategies rely on the CSI at the transmitter

side, which is imperfect in practice, we consider the worst-case beamforming design which

minimizes the required transmit power subject to total SINR requirements and SI constraints.

More specifically, the CSI errors are modeled deterministically and are bounded by ellipsoids.

The resulting optimization problem is non-convex. We have reformulated it into a convex

problem using the S-procedure.
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Figure 8.3: Achievable sum rate as a function of SNR for a FD system with a MIMO setup,
ǫ = η = 1.

Simulation results have demonstrated that

• Compared to the HD baseline system a two-fold gain in terms of the sum rate is achievable

when the SI cancellation provided by the other cancellation techniques is sufficient. In a

MISO setup, the achievable gain is less affected by the SI cancellation provided by the

other cancellation techniques because there are a sufficient number of spatial dimensions,

which can be used to suppress the SI.

• The proposed robust beamforming design is superior compared to the non-robust design

especially when the channel error intensity is high and there are many antennas at the

transmitter and at the receiver.

171



8 Self-interference aware transmit strategies for full-duplex point-to-point MIMO systems

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

25

30

35

40

45

S
um

 r
at

e 
[b

ps
/H

z]

ε

 

 

FD−Opt, SNR=20dB
FD−WF, SNR=20dB
FD−IWF, SNR=20dB
HD, SNR=20dB
FD−Opt, SNR=5dB
FD−WF, SNR=5dB
FD−IWF, SNR=5dB
HD, SNR=5dB

Figure 8.4: Achievable sum rate as a function of ǫ for a FD system with a MIMO setup,
Mr =Mt = 4, η = 1.

172



8.6 Summary

−10 −5 0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

40

45

S
um

 r
at

e 
[b

ps
/H

z]

η

 

 

FD−Opt, SNR=20dB
FD−WF, SNR=20dB
FD−IWF, SNR=20dB
HD, SNR=20dB
FD−Opt, SNR=5dB
FD−WF, SNR=5dB
FD−IWF, SNR=5dB
HD, SNR=5dB
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Figure 8.7: Achievable sum rate as a function of ǫ for a FD system with a MISO setup, Mt = 4,
η = 1.
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9 Transmit strategies for full-duplex systems with

imperfect RF chain

In this chapter, we study transmit strategies for a full-duplex point-to-point system with

imperfect RF chains [ZTH13c]. When the RF chain is imperfect, finding optimal transmit

strategies which maximize the system sum rate corresponds to a joint design of the precoders at

the two transmitters. To avoid prohibitive computational complexity, we resort to suboptimal

solutions. First, we propose the signal to leakage plus noise ratio (SLNR) based precoder

design for the MISO and the MIMO setup in Section 9.3. The SLNR based precoder design

avoids the joint design of the precoders at the two transmitters and also provides a closed-form

solution. Notice that properly adjusting the transmit power can also improve the performance

of a FD system. We develop power adjustment schemes which maximize the system sum rate

for SISO, MISO, and MIMO scenarios in Section 9.4. Analytic solutions for optimal power

adjustment are also obtained. Furthermore, we discuss how to adjust the power to take into

account the max-min fairness of the system.

9.1 Problem description and our contributions

As discussed in Chapter 8, where the SI cancellation techniques, including the antenna attenua-

tion, RF domain cancellation techniques, and digital domain cancellation techniques proposed

in [JCK+11], [DS10], [DMBS12], [SPS11], and [RWW11], are combined, ideally the SI can

be completely removed. However, due to practical RF imperfections, e.g., ADC quantization

noise and oscillator phase noise, some residual SI will exist [DMBS12]. It is critical especially

when only simple SI cancellation techniques are deployed in the system, i.e., only SI subtrac-

tion in the digital baseband of the receiver is used [KSA+14]. The residual SI will significantly

influence optimal transmit strategies of the two communicating devices. Depending on the

strength of the residual SI, optimal transmit strategies for a HD P2P system, e.g., total power

transmission for SISO, maximum ratio transmission (MRT) for MISO, and an SVD together

with water-filling (WF) for MIMO, can be far from optimal for the resulting HD system. If the

residual SI is not well handled, it can still prevent us from exploiting the benefits of FD wire-

less communications. This motivates the development of robust signal processing techniques

to combat the imperfections in the RF chain. Transmit strategies to combat imperfect RF

chains are studied in [DMBS12]. Moreover, to guarantee a HD performance in the worst case,
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i.e., the achievable sum rate is never worse than that of a HD baseline scenario, the design

in [DMBS12] is performed for two consecutive time slots (assuming that the CSI remains the

same). The formulated optimization problem is non-convex and a gradient projection (GP)

based method is proposed to solve it. The GP method is a type of gradient method and

thus does neither achieve a global optimality nor has a guaranteed polynomial time solution.

Moreover, switching from a FD mode to a HD mode prevents the simultaneous transmission

and reception of a FD system, which itself is an important property of a FD system, e.g., if a

reduced round-trip time is more desired.

Therefore, we develop efficient transmit strategies for a FD system with imperfect RF chains.

The developed transmit strategies can be designed in every time slot. The resulting sum rate

maximization problem is non-convex and NP-hard, similarly as in [DMBS12]. Hence, we resort

to suboptimal solutions. We first propose precoding techniques which take into account the

trade-offs between increasing the achievable rate and reducing the residual SI power. To this

end, we exploit the statistics of the residual SI and develop SLNR based precoders which have

closed-form solutions for both the MISO and the MIMO setup. On the other hand, properly

controlling the transmit power can also improve the performance of a FD system. Thereby,

given a fixed precoder we design optimal power scaling factors to achieve a better performance

for the system. That is, power scaling factors which maximize the achievable sum rate are

developed for SISO and MISO while power scaling factors which maximize the sum SINR are

found for MIMO. Considering the fairness in the system, we also develop power adjustment

schemes which maximize the minimum SINR in the system. The proposed power adjustment

algorithms can be further combined with the proposed precoding algorithms to enhance the

performance. It is worth emphasizing that the major difference between the contributions

in this chapter and the contributions in Chapter 8 can be summarized as: in Chapter 8 we

propose an advanced SI aware transmit precoding algorithm. We assume that after applying

the existing SI cancellation techniques and the proposed scheme the SI can be significantly

reduced or completely removed and thus the residual SI is ignorable. In this chapter we

apply only SI subtraction in the digital baseband of the receiver. In general the residual SI

is strong and might be non-linear. We model the nonlinearity and other distortions such as

ADC quantization noise using a simplified model, i.e., an additive Gaussian distortion model

[DMBS12]. Based on this simplified model, we develop efficient transmit precoders to combat

the imperfections from the RF chain. This model has also been used in [Cir14] for the design

of optimal transmit strategies under multiple linear constraints.
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9 Transmit strategies for full-duplex systems with imperfect RF chain

9.2 System model

We consider a FD P2P MIMO system with two identical transceivers. Each transceiver has

Mr receive antennas and Mt transmit antennas. The channel is flat fading and has full rank.

Perfect synchronization is also assumed. The desired channel between the i-th (i ∈ {1,2})
transmitter and the i-th receiver is denoted as Hii ∈ CMr×Mt while the SI channel from the

j-th (j ∈ {1,2} and j ≠ i) transmitter to the i-th receiver is denoted as Hij ∈ CMr×Mt . As

derived in [DMBS12], the received signal at the i-th receiver is written as:

yi =√ρiHii(xi + eti) +√ηiHij(xj + etj) +ni´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ui

+eri

= √ρiHiixi´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
desired signal

+
√
ηiHijxj´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

suppressible SI

+
√
ρiHiie

t
i +
√
ηiHije

t
j +ni + eri´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

insuppressible interference + Noise

(9.1)

where ρi ∈ R+ and ηi ∈ R+ determine the strength of the desired and SI channel, respectively.

The transmitted data vector xi has zero mean and covariance matrix E{xix
H
i } =Qi, ∀i. The

maximum allowable transmit power for each transmitter is Pmax. Let us define the received

covariance matrix E{uiu
H
i } = Φi, where ui is defined in equation (9.1). Then the vectors

eti ∼ CN (0, κ ⋅Diag{Qi}) and eri ∼ CN (0, β ⋅Diag{Φi}) denote the transmit error signal and

the receive error signal of the RF chains, respectively. The scalars κ ∈ R+ (κ≪ 1) and β ∈ R+
(β ≪ 1) denote the ratio between the transmit error power and the transmit power and the

ratio of the receive error power to the received power, respectively [DMBS12]. The vector

ni denotes the ZMCSCG noise and E{nin
H
i } = σ2

nIMr , ∀i. If channel knowledge is available

at the receiver, then the suppressible interference in (9.1) can be subtracted. Since the error

vectors eti and eri are not correlated with the signal vector xi, ∀i [DMBS12], the interference

plus noise power at the ith receiver is computed as

P
(IN)
i = E{∥√ρiHiie

t
i∥2} +E{∥√ηiHije

t
j∥2} +E{∥eri∥2} +E{∥ni∥2}

= E{∥√ρiHiie
t
i∥2} +E{∥√ηiHije

t
j∥2} + βDiag{E{∥√ρiHiixi∥2} +E{∥√ηiHijxj∥2}

+E{∥√ρiHiie
t
i∥2} +E{∥√ηiHije

t
j∥2} +E{∥ni∥2}} +E{∥ni∥2} (9.2)

Using the fact that κ≪ 1 and β ≪ 1, equation (9.2) reduces to

P
(IN)
i ≈ E{∥√ρiHiie

t
i∥2} + βDiag{E{∥√ρiHiixi∥2}}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

distortion from the i-th transmitter

+E{∥√ηiHije
t
j∥2} + βDiag{E{∥√ηiHijxj∥2}}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

SI from the j-th transmitter
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Figure 9.1: A MIMO point-to-point full-duplex system with insuppressibe interference
[DMBS12].

+ βDiag{E{∥ni∥2}} +E{∥ni∥2}´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
enhanced noise

(9.3)

A detailed flow chart of the considered FD system is illustrated in Figure 9.1.

Due to the existence of insuppressible residual SI in (9.1), the sum rate achievable transmit

strategies for HD systems, i.e., maximum power transmission for SISO, MRT for MISO, and

WF for MIMO, are not necessarily optimal for our FD system. In fact the sum rate maximiza-

tion problem of our system is non-convex and NP-hard [DMBS12]. Although in [DMBS12] a

GP based algorithm is proposed to solve this problem, the algorithm is neither optimal nor

computationally efficient. Thus, in our work we develop low complexity suboptimal transmit

strategies to improve the performance of a FD system with insuppressible SI.

9.3 Signal to leakage plus noise ratio (SLNR) based precoder

design

Clearly, the desired transmit techniques for our scenario must consider the trade-off between

increasing the achievable rate and reducing the generated residual SI. Taking into account

that in practice the desired channel is much weaker than the SI channel, i.e., ρi ≪ ηi, we can

conclude from equation (9.3) that the performance limitation of the system comes from the

SI and the enhanced noise. Moreover, the SI has coupled the design of the two covariance
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9 Transmit strategies for full-duplex systems with imperfect RF chain

matrices which makes the optimization problem difficult to solve. Note that we are interested

in developing efficient suboptimal precoding algorithms. To this end, we propose transmit

strategies which maximize the so called SLNR for both MISO and MIMO setups. In this

section we focus on precoding techniques and thus the SISO case will not be covered here, but

in Section 9.4.

9.3.1 MISO

In the MISO case we have Mt >Mr = 1 and the vector channels {hii,hij} ∈ CMt . The proposed

transmit strategy which maximizes the SLNR is analogous to the concept of the SLNR based

precoding design for a multi-user MIMO downlink system in [HMVS01] and [STS07]. Let us

start by defining the leakage. The SI term in (9.3) is caused by the j-th transmitter and thus

can be also treated as the signal leaked from the j-th transmitter to the i-th receiver. Let us

define Qi =wiw
H
i . Then the signal power leaked from the i-th transmitter is described by

P
(L)
i = E{∥√ηjhT

jie
t
i∥2} + βDiag{E{∥√ηjhT

jixi∥2}} =wH
i ηjκDiag{h∗jihT

ji}wi +wH
i βηjh

∗

jih
T
jiwi.

The effective signal from the i-th transmitter is given by

P
(E)
i = E{∥√ρihT

iixi∥2} =wH
i ρih

∗

iih
T
iiwi

The SLNR maximization problem of the i-th transmitter is then formulated as

max
wi

P
(E)
i

P
(L)
i + (β + 1)σ2

n

s.t. wH
i wi ≤ Pmax, (9.4)

where the noise variance is the enhanced noise power in equation (9.3). Clearly, the constraint

in (9.4) is satisfied with equality at the optimality. Inserting wH
i wi = Pmax into the cost

function of (9.4), it can be rewritten as the following unconstrained optimization problem

max∥wi∥2=Pmax

wH
i Aiwi

wH
i Biwi

, (9.5)

where Ai = ρih∗iihT
ii and Bi = κηjDiag{h∗jihT

ji} + βηjh∗jihT
ji +

(β+1)σ2
n

Pmax
IN .

Problem (9.5) has the structure of a generalized Rayleigh quotient. Thus, the optimal value

is the dominant eigenvalue of the matrix B−1i Ai and the optimal wopt,i is a scaled version
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of the corresponding eigenvector, i.e., wopt,i =
√
Pmax ⋅ P(B−1i Ai), where P(⋅) computes the

dominant eigenvector of a Hermitain matrix.

Obviously, the SLNR based design avoids the joint optimization of the two beamforming

vectors. Moreover, if the suppressible SI is supposed to be canceled at the transmitter instead

of the receiver, the SLNR based design can be combined with a ZF schemes. By ZF we mean

that the i-th transmitter uses the beamformer wi to transmit in the null space of the SI channel

hT
ji. More specifically, we have

wi =Π⊥hT
ji

w̄i, (9.6)

where Π⊥
hT
ji

is the projection matrix which projects any vector onto the null space of hT
ji (which

corresponds to the left null space of hji.). The orthogonal complement of the subspace spanned

by hT
ji is a candidate of Π⊥hji

and is calculated by Π⊥hji
= IN −

h∗jih
T
ji∥hji∥2 .

The ZF design ensures that the suppressible interference in (9.1) vanishes, i.e., hT
jixi = 0.

Afterwards, we can insert (9.6) into (9.4). This does not change the problem and therefore a

closed-form solution is still obtained. The drawback is that the ZF scheme sacrifices the degrees

of freedom in the spatial domain. Therefore, if the number of antennas at the transmitter is

not large enough, the performance degrades compared to the original SLNR based design.

9.3.2 MIMO

For the MIMO setup we consider the case where Mr = Mt. We again develop the transmit

strategy which maximizes the ratio between the efficient signal power and the leakage plus

noise. Unlike the MISO case, per-antenna signal leakage exists in the MIMO case. For sim-

plicity, we choose the total SLNR as the design criterion. That is, we maximize the ratio

between the sum of received signal power per-antenna and the sum of leakage plus noise power

per antenna. Thereby, the total power leaked from the i-th transmitter to the j-th receiver is

given by

P
(L)
i = E{∥√ηjHjie

t
i∥2} + βDiag{E{∥√ηjHjixi∥2}}

= Tr{κηjHjiDiag{Qi}HH
ji} +Tr{βηjDiag{HjiQiH

H
ji}}. (9.7)

The received signal power is computed as

P
(E)
i = E{∥√ηjHiix

t
i∥2} = Tr{ρiHiiQiHii

H}. (9.8)
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9 Transmit strategies for full-duplex systems with imperfect RF chain

Our goal is to find optimal Qi such that the SLNR is maximized given the transmit power

constraint. Mathematically, the optimization problem is formulated as

max
Qi

P
(E)
i

P
(L)
i + (β + 1)Mrσ2

n

s.t. Tr{Qi} ≤ Pmax (9.9)

To solve problem (9.9), further algebraic manipulation is required. Let us define the SVD

of Hji as Hji = UiTiV
H
i . Without loss of generality, we decompose the transmit covariance

matrix Qi ∈ CMt×Mt as

Qi = ViΣiΣ
H
i V

H
i (9.10)

where Σi ∈ CMt×Mt is a diagonal matrix and Wi = ViΣi ∈ CMt×Mt is the precoding matrix

applied at the i-th transmitter.

Using (9.10), equation (9.7) can be further expanded as

P
(L)
i = Tr{βηjDiag{HjiQiH

H
ji}} +Tr{κηjHjiDiag{Qi}HH

ji}
= σH

i Diag{βηjV H
i HH

jiHjiVi}σi +σH
i κηjDiag{1T ⋅ (Hji ⊙H∗

ji) ⋅ (Vi ⊙V ∗i )}σi

= σH
i (κηjDiag{1T ⋅ (Hji ⊙H∗

ji) ⋅ (Vi ⊙V ∗i )} +Diag{βηjV H
i Hji

HHjiVi})σi (9.11)

where σi = diag{Σi}, and the facts that diag{X ⋅Diag{Y } ⋅XH} = (X ⊙X∗) ⋅ diag{Y } 1 and

1T ⋅ diag{X} = Tr{X} are used in the derivation.

Similarly, the received signal power P
(E)
i is rewritten as

P
(E)
i = Tr{ρiHiiViΣiΣ

H
i V

H
i Hii

H} = Tr{ρiΣH
i V

H
i Hii

HHiiV Σi}
= σH

i Diag{ρiV H
i Hii

HHiiVi}σi. (9.12)

Applying (9.11) and (9.12), the original problem (9.9) is reformulated as

max
σi

σH
i Γiσi

σH
i Θiσi + (β + 1)Mrσ2

n

s.t. σH
i σi ≤ Pmax (9.13)

where Θi = κηjDiag{1T ⋅ (Hji ⊙H∗

ji) ⋅ (Vi ⊙ V ∗i )} + βηjDiag{V H
i Hji

HHjiVi} and we have

Γi = Diag{ρiV H
i Hii

HHiiVi}. Clearly, at the optimality of problem (9.13) the constraint has

1It can be easily verified that: [diag{X ⋅Diag{Y } ⋅XH}]i = [(X ⊙X∗) ⋅ diag{Y }]i = ∑Mr

j=1 ∣[X]i,j ∣
2 ⋅ [Y ]j,j .
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to be satisfied with equality. Inserting σH
i σi = Pmax into the objective function, we get the

following unconstrained optimization problem

max∥σi∥2=Pmax

σH
i Γiσi

σH
i (Θi +

(β+1)Mrσ2
n

Pmax
IN)σi

. (9.14)

Problem (9.14) is a generalized Rayleigh quotient problem. Therefore, the solution is given by

σopt,i =
√
Pmax ⋅P ⎛⎝(Θi +

(β + 1)Mrσ
2
n

Pmax

IN)−1Γi

⎞⎠
Finally, the optimal precoding matrix Wi is obtained as Wi = Vidiag{σopt,i}.
9.4 Power adjustment for performance improvement

As an alternative to the precoding techniques in Section 9.3, one can always reduce the imposed

SI at the receiver by correctly controlling the transmit power at the transmitter. In the

following, we find the optimum power allocations that either maximize the system sum rate

or maximize the minimum SINR at the two receivers, assuming that the transmit covariance

matrices have been determined, e.g., using the results of Section 9.3.2.

9.4.1 SISO and MISO setting

Since the SISO and the MISO setup yield the same mathematical problem, we solve the

MISO case in this part and the results can be directly applied to the SISO scenario. Given

a fixed transmit covariance matrix, i.e., Qi = PiQi,fix, the sum rate maximization problem is

formulated as

max
Pi,i∈{1,2} Rsum =

2

∑
i=1

log2(1 + SINRi), s.t. Pi ≤ Pmax, ∀i ∈ {1,2}, (9.15)

where SINRi is the SINR at the i-th receiver. Applying the fact that β ≪ 1, the SINRi is

computed as

SINRi =
E{∣√ρihT

iixi∣2}
E{∣√ρihT

iie
t
i ∣2} +E{∣√ηihT

ije
t
j ∣2} +E{∣eri ∣2} + σ2

n

≈ Piai

Pibi + Pjci + σ2
n

(9.16)

where ai, bi, and ci are computed by ai = ρihT
iiQi,fixh

∗

ii, bi = κρihT
iiDiag{Qi,fix}h∗ii+βρihT

iiQi,fixh
∗

ii,

and ci = κηihT
ijDiag{Qj,fix}h∗ij + βηihT

ijQj,fixh
∗

ij .
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9 Transmit strategies for full-duplex systems with imperfect RF chain

Clearly, problem (9.15) is non-convex. To solve it, we notice that at least one of the con-

straints is satisfied with equality at the optimality, i.e., P1 = Pmax or P2 = Pmax. Otherwise,

we can always scale up P1 and P2 using the same scaling factor. This increases the optimal

value of (9.15) and thus contradicts the optimality assumption. Exploiting this fact, we can

relax problem (9.15) into two sub-problems: i) P2 = Pmax, ii) P1 = Pmax. Then we solve each

sub-problem individually. Finally the optimal value is the largest optimal value of the sub-

problems and the corresponding solution is the optimal solution. Since case i) and case ii) are

symmetric, we take case i) as an example. The objective function of (9.15) is reformulated as:

Rsum = log2 (1 + P1a1

P1b1 + Pmaxc1 + σ2
n

) + log2 (1 + Pmaxa2

Pmaxb2 + P1c2 + σ2
n

) . (9.17)

Equation (9.17) can be further simplified if we consider that in practice the SI channel is

much stronger than the desired channel, i.e., ρi ≪ ηi and therefore bi ≈ 0, ∀i. Nevertheless,

the resulting optimization problem is still non-convex. We calculate the first-order necessary

condition for optimality of the resulting problem by taking the derivative with respect to P1

and set it to zero. Then we get

∂Rsum

∂P1

= 1

log2
( f2

P1a1 + f2
⋅
a1

f2
+

σ2
n + P1c2

σ2
n + P1c2 + f1

⋅
−c2f1(P1c2 + (β + 1)σ2

n)2 ) = 0.
where f1 = Pmaxa2 and f2 = Pmaxc1 + σ2

n. After some algebraic manipulation, the following

second-order polynomial function is obtained

P 2
1 k1 + P1k2 + k3 = 0 (9.18)

where k1 = a1c22, k2 = 2a1c2σ2
n, and k3 = a1σ4

n + a1f1σ
2
n − f1f2c2.

In the following we show that regardless of the solution to equation (9.18) the optimal

solution to problem (9.17) is either P1 = 0 or P1 = Pmax.

If the roots of equation (9.18) are complex, it is straightforward to conclude that the optimum

P1 must be at the boundary of the feasible region [0, Pmax]. If the roots of equation (9.18)

are real, they are given by P1,root =
−k2±

√
k2
2
−4k1k3

2k1
. Clearly, the negative root cannot be a valid

solution. Moreover, the positive root is a minimum of the objective function (9.17). This

conclusion is based on the following statements.

1. The cost function (9.17) is continuous. As P1 → +∞, Rsum → +∞.

2. Function (9.18) has only two roots and one of them is negative. The feasible region of
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9.4 Power adjustment for performance improvement

our problem is P1 ∈ [0, Pmax].
Similar results can be derived for case ii). Thereby, the optimal solution of problem (9.15)

should be chosen from the following three choices, i.e., i) P1 = 0, P2 = Pmax; ii) P1 = Pmax,

P2 = 0; iii) P1 = P2 = Pmax.

9.4.2 MIMO setting

For the MIMO setup, we again follow the same target, i.e., adjusting the devices’ transmit

power so that a better system performance is obtained. To avoid dealing with the complicated

logarithmic formulation of the channel capacity, we look for a solution which maximizes the

sum of the total SINR of our system. Hence our initial problem is formulated as:

max
Pi,i∈{1,2}

2

∑
i=1

SINRi, s.t. Pi ≤ Pmax, ∀i ∈ {1,2}, (9.19)

where SINRi stands for the total SINR at the i-th receiver which is defined as ratio between

the sum of the received signal power per antenna and the sum of the interference plus noise

power per antenna. Similarly to the MISO case, we use the fact that β ≪ 1. Further-

more, we define Qi = PiQi,fix and define three auxiliary constants ai = Tr{ρiH iiQi,fixH
H
ii}, bi =

Tr{κρiH iiDiag{Qi,fix}HH
ii+βρiH iiQi,fixH

H
ii}, and ci = Tr{κηiH ijDiag{Qj,fix}HH

ij+βηiH ijQj,fixH
H
ij}.

Then the sum of the total SINR of our system is expressed as

2

∑
i=1

SINRi ≈
P1a1

P1b1 + P2c1 + σ2
n

+
P2a2

P2b2 + P1c2 + σ2
n

. (9.20)

Once again, we can conclude that at least one of the transmit powers has to be equal to Pmax

at the optimality. Thereby, assuming that P1 = Pmax, our original problem is reformulated into

max
P2

2

∑
i=1

SINRi, s.t P2 ≤ Pmax, ∀i ∈ {1,2}. (9.21)

Using the fact that ρi ≪ ηi and thus bi ≈ 0, the objective function now becomes

2

∑
i=1

SINRi ≈
Pmaxa1

P2c1 +Mrσ2
n

+
P2c2

Pmaxc2 +Mrσ2
n

. (9.22)

By computing the first-order necessary condition for optimality we get

∂∑2
i=1 SINRi

∂P2

= −c1a1Pmax(P2c1 +Mrσ2
n)2 +

a2

Pmaxc2 +Mrσ2
n

= 0. (9.23)
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9 Transmit strategies for full-duplex systems with imperfect RF chain

As for the MISO case, we can conclude that the solution of (9.23) is given by P2 = 0 or

Pmax if the roots of (9.23) are complex-valued. If the roots of (9.23) are real-valued, they are

obtained as P2,root =
−Mrσ

2
n±

√
k4
k5

c1
, where k4 = a2

Pmaxc2+Mrσ2
n
and k5 = Pmaxa1c1. Following the

same arguments as in the MISO case, the optimal solution is one of the following possible

solutions: i) P1 = 0, P2 = Pmax; ii) P1 = Pmax, P2 = 0; iii) P1 = P2 = Pmax.

9.4.3 Power adjustment for max-min fairness
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Figure 9.2: Average consumed power in a SISO FD system using power adjustment schemes in
9.4.1 and Pmax = 1 W. Max PT: full power transmission. MI: medium interference environment
in Section 9.5. HI: high interference environment in Section 9.5.

Although the power adjustment schemes in Sections 9.4.1 and 9.4.2 maximize the achievable

sum rate of the system, these are greedy algorithms which do not take into account the fairness

between two transceivers. In fact, if the final solution in Sections 9.4.1 and 9.4.2 is given by the

choice i) or ii), one of the receivers will have zero throughput and thus its QoS is not guaranteed.

The simulation results in Figure 9.2 have also shown that this is likely to happen in the high

SNR regime where the interference is dominant. Thus, instead of the sum rate criterion, one

may consider the system design criterion which takes care of the QoS requirements. In the

following, we develop such a power adjustment strategy which maximizes the minimum SINR
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9.4 Power adjustment for performance improvement

at the receiver. Utilizing the SINR definition for MISO and SISO setups in Section 9.4.1 and

the total SINR for the MIMO setup in Section 9.4.2, we can develop a unified framework for

achieving the max-min fairness.

Taking the MISO case as an example, we aim at solving the following max-min problem.

max min
Pi,i∈{1,2} SINRi, s.t. Pi ≤ Pmax, ∀i ∈ {1,2} (9.24)

or equivalently

max
t,Pi,i∈{1,2} t, s.t. SINRi ≥ t, Pi ≤ Pmax, ∀i ∈ {1,2}. (9.25)

To efficiently solve this problem, we need more insights. First, we find that SINRi = t,∀i at
the optimality. To see this, without loss of generality, we assume that SINR1 > SINR2 at the

optimality. Then by decreasing P1 we can decrease SINR1 while SINR2 increases. This will

not violate the transmit power constraints. But it will increase the optimal value and thus

contradicts the optimality. Second, at least one of the transmit power constraints is satisfied

with equality at the optimality. Otherwise, we can still scale up P1 and P2 with the same scaling

factor α > 1. This will again increase the optimal value and thus contradicts the optimality.

Finally, the optimization problem (9.25) can be split into the following sub-problems

1. P1 = Pmax, SINR1 = SINR2

2. P2 = Pmax, SINR1 = SINR2

3. P1 = P2 = Pmax, SINR1 = SINR2

The optimal solution will be the power pair (P1, P2) which is feasible and also provides the

largest minimum SINR. When solving the three sub-problems, we find that the optimization

problem can be further simplified. To illustrate this, we start by validating sub-problem 3.

Inserting P1 = P2 = Pmax into the SINR formulation (9.16), if SINR1 = SINR2, then P1 = P2 =
Pmax is the optimal solution. Otherwise, if SINR1 > SINR2, then the optimal solution is given

by the solution of sub-problem 2. This is because decreasing P1 while fixing P2 = Pmax will

increase SINR2 and also increase the optimal value. But decreasing P2 while fixing P1 = Pmax

will decrease SINR2 and thus decrease the optimal value. Similarly, if SINR1 < SINR2, then

the optimal solution is given by the solution of sub-problem 1.

Remark 12. The proposed power adjustment schemes can be combined with precoding tech-

niques to further improve the system performance for MISO and MIMO setups. When SLNR
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SISO
SISO

power adjustment

MISO SLNR
MISO

Power adjustment
HD MRT

MIMO SLNR
MIMO

Power adjustment
HD WF

P1 = 0
P2 = 0

P1 = 0
P2 = 0

Figure 9.3: The proposed beamforming and power adjustment schemes selection procedure for
achieving a higher sum rate.

transmit strategies are applied and P1 = 0 or P2 = 0 is obtained as the power adjustment

solution to the sum rate maximization problem, the FD system reduces to a HD system. In

such a situation the conventional HD transmit strategies together with the previous power

adjustment solution will achieve a higher sum rate than the proposed SLNR techniques. The

proposed beamforming and power adjustment selection procedures are shown in Figure 9.3.

9.5 Simulation results

In this section the proposed algorithms are verified using Monte Carlo simulations. The gen-

erated channels are uncorrelated Rayleigh flat fading channels and all the simulation results

are averaged over 1000 channel realizations. The transmit power is set to unity and the SNR

is given by 1/σ2
n. Moreover, we have the following parameter settings: i) ρ1 = 0 dB, ρ2 = 0

dB, η1 = 60 dB, η2 = 60 dB, β = −65 dB, κ = −65 dB, which represent an environment with

less significant insuppressible SI (medium interference (MI) scenario). ii) ρ1 = 0 dB, ρ2 = 0

dB, η1 = 60 dB, η2 = 60 dB, β = −60 dB, κ = −60 dB, which represent an environment with

intensive insuppressible SI (high interference (HI) scenario). We compare the performance

of the proposed schemes with conventional capacity achieving HD transmit strategies where

the residual interference is treated as noise. We also compare the system performance to the

capacity of a HD baseline scenario where each transceiver has identical system settings as in

our FD system but works in a TDD mode. “PG” denotes the power adjustment for sum rate

maximization while “PF” denotes the power adjustment for max-min fairness. “Best Sel” de-

notes the best combination of the proposed power adjustment schemes and the beamforming

techniques which achieves the highest sum rate.

Figure 9.4 shows how our power adjustment technique helps a SISO FD system to achieve
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a higher system sum rate. Clearly, the proposed power adjustment technique has achieved a

substantial gain over the traditional full power transmission scheme. Moreover, the proposed

scheme is robust to the residual interference.

Figure 9.5 demonstrates the comparison of different algorithms in a MISO setup when

Mt = 4. In both the MI and the HI scenario the proposed SLNR methods outperforms the

classical transmit strategies such as ZF and MRT. When combining SLNR with the “PG”

power adjustment technique, a larger gain can be obtained. Moreover, if the “PG” scheme is

applied together with ZF and MRT schemes, a substantial gain is also obtained especially in

the high SNR regime. When the residual interference is relatively high, the ZF scheme obtains

the same performance as the SLNR method in the high SNR regime.

Figure 9.6 depicts the performance of the proposed techniques compared to the WF algo-

rithm for a 2-by-2 MIMO FD system in the presence of high and medium residual interference.

Similar results are observed as in the MISO case. The proposed SLNR method outperforms the

WF method. When combining with the greedy power adjustment scheme “PG”, the proposed

precoder selection scheme outperforms the HD baseline scenario, which makes a FD system

more valuable. Furthermore, when applying the greedy power adjustment scheme to the WF

method, a significant gain is obtained.
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Figure 9.4: Comparison of different algorithms in a SISO setup. Max PT: full power transmis-
sion. MI: medium interference. HI: high interference.
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9 Transmit strategies for full-duplex systems with imperfect RF chain

9.6 Summary

In this chapter we have studied a FD P2P system with imperfect RF chain. This residual SI

dominates the system performance and prevents us from fully exploiting the advantage of a

FD system. To combat the residual SI we have developed SLNR based precoding algorithms

for MISO and MIMO setups. Moreover, noticing that power adjustment schemes can also be

used to alleviate the effects of the residual interference, we have developed power adjustment

schemes which maximize the system sum rate or maximize the minimum SINR in the sys-

tem. The developed power adjustment schemes can also be combined with the SLNR based

precoding algorithms to further improve the system performance.

Simulation results have demonstrated that

• The proposed transmit schemes have much better performance compared to the conven-

tional HD transmit strategies when applied to FD systems.

• When the proposed SLNR beamforming is used, it outperforms the HD baseline scenario

in the low to medium SNR regime. But it saturates in the high SNR regime due to the

insupressible SI. When combined with power adjustment schemes, which maximize the

system sum rate, it always outperforms the HD baseline scenario. This is because the

optimal power adjustment schemes switch a FD system to a HD system and thus the SI

is avoided.
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Figure 9.5: Comparison of different algorithms in a MISO setup where Mt = 4. ZF: zero forcing
technique
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Figure 9.6: Comparison of different algorithms in a MIMO setup where Mr =Mt = 2.
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10 Summary of full-duplex wireless communication

systems

10.1 Summary of contributions

This part of the thesis discusses transmit strategies for a MIMO FD P2P system with limited

dynamic range. Our major contributions can be summarized as:

• The SI aware transmit strategies have been proposed [ZTLH12]. The SI aware transmit

strategies can be combined with other-types of SI cancellation techniques to improve the

reliability and the performance a FD system.

• Optimal SI aware transmit strategies, which maximizes the system sum rate of a MIMO

FD P2P system, have been derived [ZTLH12]. When both the transmitter and the re-

ceiver have multiple antennas, i.e., the MIMO setup, the optimization problem is convex

and thus a global optimal solution can be obtained. By analyzing whether the con-

straints are active at the optimality, a closed-form solution is obtained for the case of

2-by-2 MIMO. For MISO setup, the optimization problem is non-convex. However, the

global optimal solution can still be obtained by using the SDR technique. Moreover,

analytic solutions are derived.

• A robust transmit strategy has been developed to combat the imperfect CSI at the

transmitter [ZTH13b]. The channel estimation errors are modeled as deterministic errors,

which are bounded by ellipsoids. An optimization problem, which minimizes the total

required transmit power of the system subject to total SINR constraints and SI power

constraints, is formulated and solved. The same methodology can be used to develop

robust transmit strategies subject to other system criteria of a FD system.

• Efficient transmit strategies for a FD system with imperfect RF chain have been de-

veloped [ZTH13c]. The SLNR based beamformer design for MISO and MIMO setup

provides closed-form solutions, which can preserve a FD gain even when the residual SI

is strong. When combined with power adjustment schemes and hybrid operation modes

(switch between HD mode and FD mode), a FD gain (in terms of system sum rate) up

to two-fold is always achieved regardless the strength of the residual SI.
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More related contributions that are not explicitly discussed in this thesis but worth men-

tioning are:

• The SI aware transmit strategies are extended to the OWR system with a MIMO AF

relay [ZTH13a] [TZH14]. Although analytic solutions cannot be obtained for such a

scenario, convex optimization based techniques and gradient projection based techniques

have been developed to exploit the advantages of a FD system.

10.2 Future work

The study of FD MIMO systems with limited dynamic range has opened up the following

research areas.

• The fundamental limits of SI aware transmit strategies are worth investigating. Opti-

mal SI aware transmit strategies for other system design criteria, e.g., max-min fairness,

power minimization can be developed. In the MIMO case we consider only the average

sum SI power constraint, which might be not practical since a per-antenna power con-

straint and instantaneous power constraints are more realistic. Moreover, receive-side

beamforming assisted SI cancellation techniques or joint SI aware transmit and receive

beamforming techniques are still not well studied. Furthermore, adaptive techniques

should be developed for time-variant channels.

• Many SI cancellation techniques require channel knowledge of the SI channel. First, the

characteristics of the SI channel is still unclear. Although the channel is more likely to be

Rician fading channel or even line-of-sight (LOS) channel, it has to be investigated, e.g.,

via physical measurements and modeling. Second, the training phase, which is devoted

to channel estimation, will also suffer from the SI. Therefore, efficient and/or optimal

training protocols for FD systems should be studied. Moreover, it is interesting to know

how to calibrate the RF chains of a FD system such that the reciprocity holds for the

uplink and the downlink channel. Finally, robust transmit strategies subject to different

system utility functions should be investigated.

• System level performance is always important for new physical layer techniques such as

FD wireless communications. For example, in a MU-MIMO system, if the BS operates in

a FD mode, it can serve the downlink users and the uplink users at the same time and on

the same frequency. Precoding algorithms which can maximize the system throughput

in such a scenario are worth investigating. Moreover, cross-layer designs, such as joint
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user scheduling and precoder design, should be studied for a further improvement user

experiences.
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11 Conclusions

In this thesis, we develop signal processing algorithms for two different class of wireless tech-

niques, namely, two-way relaying (TWR) techniques and full-duplex (FD) techniques. The

goal is to find the fundamental limits and to exploit the benefits of these two techniques

for different wireless communication scenarios. As we show, optimal and suboptimal linear

transmit strategies are developed subject to different system utility functions.

In the first part of the thesis we discuss multi-pair/multi-user TWR networks with AF relays.

First, we have introduced the projection based separation of multiple operators (ProBaSeMO)

scheme [ZRH12b] to accomplish the relay-assisted resource sharing in a multi-operator relaying

network with a MIMO AF relay. Compared to a TDMA manner of the relay and the spec-

trum sharing, which is an orthogonal resource sharing schemes, the ProBaSeMO scheme is a

non-orthogonal resource sharing scheme, where the interference-free transmission of different

operators is achieved via orthogonal spatial domains. It is shown that the non-orthogonal

resource sharing scheme is superior compared to the orthogonal one especially when there are

many antennas at the relay and/or the noise power is weak. We also study the sum rate max-

imization problem of the considered scenario. Gradient based solutions have been developed

regardless whether the user terminals (UTs) have single or multiple antennas. When each UT

has a single antenna, a polynomial time solution, which is inspired by the polynomial-time

DC (POTDC) algorithm, has been developed [ZVKH13], which performs close to the gradient

based solution but yields a polynomial-time complexity. Since QoS criteria, such as mini-

mizing the transmit power at the relay under guaranteed QoSs or maximizing the minimum

achievable SINR of each UT, are also important performance metrics for a modern wireless

communication system. We have also developed optimal linear transmit strategies to achieve

these goals [ZBR+12]. The derived strategies are based on the semidefinite relaxation (SDR)

technique or the second-order cone programming (SOCP) technique. Furthermore, we have

also developed optimal and suboptimal widely linear (WL) relay transmit strategies for such

a multi-operator TWR network when non-circular signals are transmitted [ZH13]. Moreover,

analytic results on the achievable WL gain are obtained for the WL dual channel matching

(DCM) based scheme. After obtaining a comprehensive insight into the multi-operator TWR

network, we shift our focus to a multi-pair TWR network with multiple single antenna AF

relays. The relays in the network cooperate with each other to calculate their amplification

coefficients. Again, we consider the sum rate maximization problem. We have shown that the
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sum rate maximization problem can be formulated into a monotonic optimization problem,

regardless whether the network has a total transmit power constraint [ZRH+12c] or each relay

has its individual transmit power constraint [ZRH12a]. Thereby, a global optimal solution has

been obtained by using the polyblock algorithm. Since in general the polyblock algorithm does

not guarantee a polynomial-time complexity, we have derived low-complexity approximations

of the optimal algorithm in the low SNR regime and the high SNR regime, respectively. The

former solution is obtained by maximizing the total SINR while the latter one is obtained by

applying the interference neutralization (IN) technique. Afterwards, we have studied a more

general multi-pair TWR network, which consists of multiple cooperative smart multi-antenna

AF relays and non-cooperative dumb repeaters. The interference in the network can be man-

aged using the IN technique. Hence, we have derived necessary and sufficient conditions for

neutralizing the interference in the network [ZHJH14a]. Moreover, a general framework to

optimize different system utility functions in such a network with or without IN has been

developed [ZHJH14c], [ZHJH14b]. Finally, a joint design of the precoder and the decoder at

the BS and the relay amplification matrix at the relay has been studied for a TWR assisted

relay broadcasting channel with a multi-antenna AF relay [ZRH11]. Three suboptimal solu-

tions, which are based on the channel inversion criterion, the ProBaSeMO concept, or the

zero-forcing dirty paper coding (ZFDPC) have been proposed.

In the second part of the thesis we investigate advanced transmit strategies for realizing

a FD operation in wireless communication systems and especially a full-duplex (FD) MIMO

point-to-point (P2P) system. The major challenge of realizing a FD operation is to suppress

the overwhelming self-interference (SI). Although different RF domain or digital domain SI

cancellation techniques are developed to solve this problem, they are far from perfect and

thus cannot meet the requirements of real world applications [DMBS12]. By exploiting the

MIMO techniques, we have proposed SI aware transmit strategies [ZTLH12]. They can be

used to combine with current SI cancellation techniques to provide sufficient and/or reliable

SI cancellation for real world applications. Moreover, they can be also adjusted such that

the spatial multiplexing gain in a MIMO system is preserved. Optimal SI aware transmit

strategies, which maximize the system sum rate in a FD MIMO system, have been developed

using convex optimization. Specifically for the MISO case and the 2-by-2 MIMO case, closed-

form solutions have been derived. The performance of the SI aware transmit strategies depends

on the available channel state information (CSI) at the transmitter. If the CSI is imperfect,

robust transmit strategies to combat the channel imperfections are desired. When the CSI

errors are modeled deterministically and bounded by ellipsoids, a robust transmit strategy

which can minimize the total required transmit power in the worst-case has been derived
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[ZRH13]. Even though the SI can be estimated and subtracted at the digital baseband of the

receiver side, the residual SI can still significantly affect the performance of the system due

to the imperfect RF chain [DMBS12]. Hence, this motivates us to develop transmit strategies

to suppress the residual SI so that the FD gain can still be exploited. For this purpose, we

have developed signal to leakage plus noise ratio (SLNR) based beamforming strategies, which

guarantee a FD gain especially when the residual SI is weak or in the low to medium SNR

regime. When combined with the proposed power adjustment schemes, which automatically

switch between the FD mode and the half-duplex (HD) mode, a FD gain is always achievable

[ZTH13c].

Overall, the thesis demonstrates that many practical problems in TWR networks or FD

wireless systems can efficiently be addressed using the developed signal processing algorithms.

We benefit from these algorithms in multiple ways, e.g., a lower complexity (many suboptimal

approaches presented in the context of TWR), enhanced flexibility (as for the ProBaSeMO

scheme and the IN solution), or the possibility to provide benchmarks on the performance of

the systems (as for the optimal solutions).
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12 Future work

The thesis has addressed a broad spectrum of topics and, thereby, opened up many exciting

directions for future research.

Regarding the first part on TWR with AF relays, many unanswered questions remain. One

open research area is the analytical performance of the proposed algorithms. For example,

computing the diversity order and multiplexing gain achieved by the ProBaSeMO scheme is a

good starting point. Moreover, large-scale performance analysis is also desirable not only for

the ProBaSeMO scheme but also for the IN solution and even optimal solutions.

An extension from single antenna UTs to multiple antenna UTs is also an important area.

This opens up a challenging problem in relaying scenarios, i.e., the joint design of the UTs’

transmit strategies and the relays’ transmit strategies. However, one can also start from a

simpler joint design problem, e.g., the joint optimization of the UTs’ transmit power and the

relays’ transmit strategies.

Moreover, taking into account real-world conditions such as frequency-selective fading, im-

perfect synchronization, or reciprocity imbalance are of significant practical interest. Such

considerations help to verify the robustness of the proposed algorithms and may lead to new

ideas how to improve them further with respect to real-world conditions.

The knowledge we learn from optimal studies of TWR can also be extended by adopting

other system utility functions, e.g., energy efficiency or by studying other relaying protocols

and relaying strategies. For instance, one can consider applying the proposed algorithms to

multi-way AF relaying or multi-pair DF relaying.

Finally, integrating the TWR protocol into a larger wireless communication system and

performing system-level simulations to assess its performance is an important step towards

the adaptation of our developed ideas into future mobile communication standards.

Concerning the second part on signal processing techniques for FD communications we

would recommend to go two directions. The first direction is the continuous fundamental

study. That is, we investigate how digital signal processing can help to suppress or cancel

the SI, e.g., studying the joint design of transmitter-side and receiver-side SI cancellation

techniques. Instead of using an ideal model, we take into account practical imperfections, e.g.,

time-invariant channels. Moreover, the SI cancellation technique for a multi-carrier system has

to be addressed. The ultimate goal is to realize SI-free broadband MIMO FD communications

for much wider applications. The second direction is to study the network aspects of FD
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communications. For example, it is interesting to know how FD BSs improve the resource

allocation and user scheduling in a MU-MIMO scenario.
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Appendix A

Glossary of Acronyms, Symbols and Notation

A.1 Acronyms

1G First Generation
2G Second Generation
3G Third Generation
4G Fourth Generation
5G Fifth Generation
AF Amplify and Forward
ANC Analog Network Coding
ANOMAX Algebraic Norm Maximizing
BC Broadcast Channel
BCD Block Component Decomposition
BD Block Diagonalization
BER Bit Error Rate
BPSK Binary Phase Shift Keying
BS Base Station
CDF Cumulative Density Function
CCDF Complementary Cumulative Distribution Function
CI Channel Inversion
CP Cyclic Prefix
CrF Compress and Forward
CSI Channel State Information
CuF Compute and Forward
DC Difference of Convex Functions
DCM Dual Channel Matching
DET Dominant Eigenmode Transmission
DF Decode and Forward
DPC Dirty Paper Coding
eNB Evolved Node B
EVD EigenValue Decomposition
FD Full-Duplex
FDD Frequency Division Duplexing
FDMA Frequency Division Multiple Access
GP Gradient Projection
HD Half-Duplex
IN Interference Neutralization
LOS Line Of Sight
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LP Linear Progarmming
LS Least Squares
LTE Long Term Evolution
LTI Linear Time Invariant
M2M Machine-to-Machine
MAC Multiple Access Channel
MCS Modulation and Coding Scheme
MIMO Multiple Input Multiple Output
MISO Multiple Input Single Output
MRC Maximum Ratio Combining
MSE Mean Squared Error
MMSE Minimum Mean Squared Error
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OQAM Offset Quadrature Amplitude Modulation
OWR One-Way Relaying
POTDC Polynomial time DC
P2P Point to point
ProBaSeMO Projection Based Separation of Multiple Operators
QAM Quadrature Amplitude Modulation
QCQP Quadratically Constrained Quadratic Programming
QoS Quality of Service
RR-ANOMAX Rank-Restored ANOMAX
RBD Regularized Block Diagonalization
RF Radio Frequency
RN Relay Node
RS Relay Station
SDMA Space-Division Multiple Access
SDP Semidefinite Programming
SDR Semidefinite Relaxation
SI Self-Interference
SIMO Single Input Multiple Output
SISO Single Input Single Output
SINR Single to Interference Plus Noise Ratio
SLNR Single to Leakage Plus Noise Ratio
SNR Signal to Noise Ratio
SOCP Second-Order Cone Programming
SVD Singular Value Decomposition
TDD Time Division Duplexing
TDMA Time-Division Multiple Access
TWR Two-Way Relaying
UE User Equipment
UT User Terminal
WF Water Filling
WL Widely Linear
ZF Zero Forcing
ZFDPC Zero Forcing Dirty Paper Coding
ZMCSCG Zero Mean Circularly Symmetric Complex Gaussian
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A.2 Symbols and Notation

R Set of real numbers

R+ Set of non-negative real numbers

C Set of complex numbers

Sn Set of n-by-n Symmetric matrices

Sn
+

Set of n-by-n Symmetric positive semidefinite matrices

Sn
++

Set of n-by-n Symmetric positive definite matrices

Hn Set of n-by-n Hermitian matrices

Hn
+

Set of n-by-n Hermitian positive semidefinite matrices

Hn
++

Set of n-by-n Hermitian positive definite matrices

Z Set of integer numbers

e, π,  Euler’s number, π, and imaginary unit: eπ + 1 = 0
a, b, c Scalars

a, b, c Column vectors

A, B, C Matrices

Re{x} Real part of complex variable x

Im{x} Imaginary part of complex variable x

arg {x} Argument (phase) of complex variable x

x∗ Complex conjugate of x

log Natural logarithm

log2 Logarithm to the base 2

0M×N Matrix of zeros of size M ×N

1M×N Matrix of ones of size M ×N

IM Identity matrix of size M ×M

ΠM Exchange of size M ×M with ones on its anti-diagonal and zeros elsewhere

Q ⪰ 0 Q is a positive-semidefinite matrix

Q ≻ 0 Q is a positive-definite matrix

[A](i,j) The (i, j)-element of the matrix A

[ai]i=1,2,...,I An I × 1 column vector a with i-th element ai(⋅)T Matrix transpose

(⋅)H Hermitian transpose

∥.∥2 Euclidean (two-) norm

∥.∥F Frobenius norm
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A⊗B Kronecker product between A ∈ CM×N and B ∈ CP×Q defined as

A⊗B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 ⋅B a1,2 ⋅B ⋯ a1,N ⋅B

a2,1 ⋅B a2,2 ⋅B ⋯ a2,N ⋅B

⋮ ⋮ ⋮ ⋮

aM,1 ⋅B aM,2 ⋅B ⋯ aM,N ⋅B

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A ◇B Khatri-Rao (column-wise Kronecker) product between A ∈ CM×N and

B ∈ CP×N

A⊙B Schur (element-wise) product between A ∈ CM×N and B ∈ CM×N and

B ∈ CM×N

vec{⋅} Vec-operator: stack elements of a matrix/tensor into a column vector,

begin with first (row) index, then proceed to second (column), third, etc.

unvecI×J {⋅} Inverse vec-operator: reshape elements of a vector back into a

matrix/tensor of the indicated size

diag {⋅} Transform a vector into a square diagonal matrix or extract main diagonal

of a square matrix and place elements into a vector

blkdiag{An}Nn=1 Transform matrices into a block diagonal matrix. The blkdiag operation

on a sequence of matrices A1,⋯,AN is defined as

blkdiag{An}Nn=1 = blkdiag{A1,⋯,AN} =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A1 ⋯ ⋯

⋮ A2 ⋮

⋮ ⋮ ⋮

⋯ ⋯ AN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Diag{B} Transform a square matrix B ∈ CN×N into a square diagonal matrix by

replacing all the off-diagonal elements with zeros

trace{⋅} Trace of a matrix (sum of diagonal elements = sum of eigenvalues)

det{⋅} Determinant of a matrix (product of eigenvalues)

rank{⋅} Rank of a matrix

λmax{⋅} Dominant eigenvalue of a matrix

P{⋅} Dominant eigenvector of a square matrix

A+ Moore-Penrose pseudo inverse [Moo20, Pen55] of a matrix A ∈ CM×N ,

which we can compute via

• A+ = Vs ⋅Σ−1s ⋅U
H
s , where A = Us ⋅Σs ⋅V H

s represents the

economy-size SVD of A.
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• A+ = (AH ⋅A)−1 ⋅AH if rank{A} = N (full column rank)

• A+ =AH ⋅ (A ⋅AH)−1 if rank{A} =M (full row rank).

E{X} Expectation operator, i.e., mean of the random variable X Note that

Med{X} = E{X} only if X has a symmetric distribution.

N (µ,σ2) Gaussian distribution with mean µ, variance σ2

CN (µ,σ2) Circularly symmetric complex Gaussian distribution
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Appendix B

Convex optimization background

In this chapter, we introduce the convexity theory, which is an important mathematical tool

for signal processing in wireless communications. The convexity theory and convex optimiza-

tion methods are also important for understanding the developed algorithms in this thesis.

Specifically, the following two properties of convex sets and functions make them so attractive

for our work:

• A convex function has no local minima that are not global.

• Convex problems can be solved efficiently using a generic polynomial-time algorithm,

e.g., the interior-point algorithm [BV04].

The introduction is a summary of some important results from [BV04] (except Section B.3.5)

and is organized in a compact way. For more details one can refer to [BV04] and [BNO03].

B.1 Convex sets and convex functions

B.1.1 Convex sets

Convex set: A set C is convex if the line segment between any two points in C lies in C, i.e.,
if for any X1, X2 ∈ C and any µ ∈ [0,1], we have

µX1 + (1 − µ)X2 ∈ C. (B.1)

Under the defining condition on µ, the linear sum in (B.1) is called a convex combination of

X1 and X2. If X1 and X2 are points in a real finite-dimensional Euclidean vector space R
n or

R
m×n, then (B.1) represents the closed line segment jointing them. Line segments are thereby

convex sets [Dat05]. More specifically, such a set is affine.

Convex hull: The convex hull of a set C, denoted conv(C), is the set of all convex combi-

nations of point in C:
conv(C) = {µ1X1 +⋯+ µkXk∣Xi ∈ C, µi ≥ 0, i = 1, . . . , k, µ1 +⋯+ µk = 1} . (B.2)
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B.1 Convex sets and convex functions

As the name suggests, the convex hull conv(C) is always convex. It is the smallest convex set

that contains C.
Convex cone: A set C is called a cone, or nonnegative homogeneous, if for every X ∈ C and

µ ≥ 0 we have µX ∈ C. A set C is a convex cone if it is convex and a cone, which means that

for any X1, X2 ∈ C and µ1, µ2 ≥ 0, we have

µ1X1 + µ2X2 ∈ C. (B.3)

Ellipsoids: An important family of convex sets is the ellipsoids, which have the form

{x ∈ Rn∣∥A(x − a)∥2 = ((x − a))TP −1((x − a))} (B.4)

where P = PT ≻ 0, i.e., P is symmetric and positive definite. The vector a ∈ Rn is the center

of the ellipsoid.

Norm ball & Norm cone: Suppose ∥ ⋅∥ is any norm on R
n. Form the general properties of

norms it can be shown that a norm ball of radius r and center c, given by {x ∈ Rn∣∥x−c∥ ≤ r}
is convex. The norm cone associated with the norm ∥ ⋅ ∥ is the set {(x, t) ∈ Rn∣∥x∥ ≤ t} ⊂ Rn+1.

It is a convex cone.

Positive semidefinite cone: Let Sn denote the set of symmetric n × n matrices,

Sn = {X ∈ Rn×n∣X =XT}, (B.5)

which is a vector space with dimension n(n+1)/2. Let Sn
+
and Sn

++
denote the set of symmetric

positive semidefinite matrices

Sn
+
= {X ∈ Sn∣X ⪰ 0}, (B.6)

and the set of symmetric positive definite matrices

Sn
++
= {X ∈ Sn∣X ≻ 0}, (B.7)

respectively. The set Sn
+
is a convex cone [BV04].

B.1.2 Convex functions

A function f ∶ Rn → R is convex if its domain dom{f} is a convex set and if for all x,

y ∈ dom{f}, and µ ∈ [0,1], we have

f(µx + (1 − µ)y) ≤ µf(x) + (1 − µ)f(y). (B.8)
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A function f is strictly convex if the strict inequality holds in (B.8) whenever x ≠ y and

µ ∈ (0,1). We say f is concave if −f is convex, and strictly concave if −f is strictly convex.

For an affine function 1, equation (B.8) is always satisfied with equality and thus all affine

functions are both convex and concave. Conversely, any function that is convex and concave

is affine.

B.1.2.1 First- and second-order conditions

Suppose f is differentiable (i.e., its gradient
∂f(x)
∂x

exists at each point in dom{f}, which is

open). Then f is convex if and only if dom{f} is convex and

f(y) ≥ f(x) + ∂f(x)
∂x

T(y −x) (B.9)

holds for all x, y ∈ dom{f}.
We now assume f is twice differentiable, that is, its Hessian or second derivative

∂2f(x)
∂x2

exists at each point in dom{f}, which is open. Then f is convex if and only if dom{f} is

convex and its Hessian is positive semidefinite: for all x ∈ dom{f},
∂2f(x)
∂x2

≥ 0. (B.10)

B.1.2.2 Composition of convex functions

Define functions h ∶ Rk → R and gi ∶ Rn → R, i = 1, . . . , k. In this section, we introduce the

composition rules which guarantee the convexity or the concavity of the composed function

f = h ○ g ∶ Rn → R, defined by

f(x) = h(g(x)) = h(g1(x), . . . , gk(x)). (B.11)

Depending on the convexity and concavity of h and gi, ∀i, we can derive the following rules:

• f is convex if h is convex and nondecreasing in each argument, and the gi are convex,

∀i,

• f is convex if h is convex and nonincreasing in each argument, and the gi are concave,

∀i,

1A function is affine if it is a sum of a linear function and a constant, e.g., f(x) =Ax+ b, where A ∈ Rm×n and
b ∈ Rm [BV04].
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• f is concave if h is concave and nondecreasing in each argument, and the gi are concave,

∀i,

• f is concave if h is concave and nonincreasing in each argument, and the gi are convex,

∀i,

B.2 Convex optimization and duality theory

A general optimization problem of finding an x that minimizes f0(x) among all x that satisfy

the conditions fi(x) ≤ 0, i = 1, . . . ,m, and hj(x) = 0, j = 1, . . . , p is denoted as

min
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p. (B.12)

where x ∈ Rn is called the optimization variable and the function f0 is called the objective

function or cost function. The inequalities fi(x) ≤ 0 are called inequality constraints, and the

equations hj(x) = 0 are called the equality constraints. If there are no constraints, we say

the optimization problem is unconstrained. Moreover, we refer to (B.12) as an optimization

problem in standard form.

A convex optimization problem is one of the form

min
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m

aT
j x = bj , j = 1, . . . , p. (B.13)

where f0, . . . , fm are convex functions. Compared to the general standard form problem (B.12),

the convex problem has three additional requirements:

• the objective function must be convex,

• the inequality constraint functions must be convex,

• the equality constraint functions hj(x) = aT
j x − bj must be affine.

If the optimization problem is convex, it can be solved efficiently using the interior-point

algorithm in [BV04].
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B.2.1 The Lagrangian dual problem

The Lagrangian dual problem provides a view of the optimization problem from the other

angle and thus it plays an important role in optimization theory. In this section, we briefly

introduce the Lagrangian dual function and the corresponding dual problem.

Lagrangian: Let λ = [λ1, ⋯, λm]T and ν = [ν1, ⋯, νp]T. The Lagrangian L associ-

ated with the problem (B.12) is given by

L(x,λ,ν) = f0(x) + m

∑
i=1

λifi(x) + p

∑
j=1

νjhj(x) (B.14)

where λi and νj are the Lagrangian multipliers that are associated with the inequality con-

straints fi(x) ≤ 0 and the equality constraints hj(x) = 0, respectively.
Lagrangian dual function: For a fixed pair (λ,ν), the Lagrangian dual function associ-

ated with the optimization problem (B.12) is defined as

g(λ,ν) =min
x∈D L(x,λ,ν) =min

x∈D (f0(x) +
m

∑
i=1

λifi(x) + p

∑
j=1

νjhj(x)) (B.15)

where D is the domain of the optimization problem (B.12). The Lagrangian dual function

is the pointwise minimum of a family of affine functions of (λ,ν), it is always concave with

respect to λ and ν regardless of the convexity of the primal problem (B.12). For any dual

feasible variables λ and ν, the Lagrangian dual function g(λ,ν) gives a lower bound for the

optimal values of the optimization problem (B.12), i.e., g(λ,ν) ≤ f0(x⋆) where x⋆ represents

the optimal point for the primal problem (B.12) [BV04].

Lagrangian dual problem: The Lagrangian dual problem is the problem of finding the

tightest (i.e., the greatest) lower-bound for the optimal value of problem (B.12) using the

Lagrangian dual function (B.15). The Lagrangian dual problem can be expressed as

max
λ,ν

g(λ,ν)
subject to λi ≥ 0, i = 1,⋯,m. (B.16)

Since the Lagrangian dual function (B.15) is always concave, the Lagrangian dual problem

(B.16) is always convex even if the primal problem (B.12) is not convex. Let λ⋆ and ν⋆ denote

the optimal points of the dual problem (B.16). Clearly, we always have g(λ⋆,ν⋆) ≤ f0(x⋆).
This property is referred as the weak duality. The difference between the optimal values of

the dual problem (B.16) and the primal problem (B.12) is called the duality gap.

212



B.3 Convex optimization problems

The duality gap is in general nonzero. When the duality gap is zero, it is said that the

strong duality holds. Convex optimization problems are optimization problems for which the

strong duality holds under some mild conditions. More specifically, if the primal problem

(B.12) is convex and it satisfies certain constraint qualifications, strong duality holds. One of

the simplest constraint qualifications is the Slater’s condition. Slater’s condition holds if there

exists a feasible point x ∈ Int{D} for which all the inequalities fi(x) < 0, i = 1,⋯,m hold true,

where Int{⋅} denotes the interior of a set [BV04].

B.2.2 Necessary conditions for optimality

In this section, we discuss the Karush-Kuhn-Tucker (KKT) optimality conditions for problem

(B.12). In general, for any optimization problem with differentiable objective f0 and con-

straint functions f1,⋯, fm, h1,⋯, hp, for which strong duality holds, any pair of primal and

dual optimal points, i.e., x⋆ and (λ⋆,ν⋆), must satisfy the KKT conditions [BV04]. The KKT

conditions are described with the following equations [BV04].

fi(x⋆) ≤ 0, , i = 1,⋯,m
hj(x⋆) = 0, , j = 1,⋯, p

λ⋆i ≥ 0, , i = 1,⋯,m
λ⋆i fi(x⋆) = 0, , i = 1,⋯,m

∂f0(x)
∂x

∣
x=x⋆ +

m

∑
i=1

λ⋆i
∂fi(x)
∂x

∣
x=x⋆ +

p

∑
j=1

ν⋆j
∂hj(x)
∂x

∣
x=x⋆ = 0 (B.17)

The KKT conditions are also sufficient for the points to be primal and dual optimal if the

primal problem is convex [BV04].

B.3 Convex optimization problems

In the following, we introduce several convex optimization problems which have also appeared

in our derivations. Since in wireless communications and signal processing it is more common

to have complex-valued signals, we will use notations from the complex domain, i.e., in Sec-

tions B.3.3, B.3.4, B.3.5. For complex variables, the convex optimization theory introduced

in Sections B.1 and B.2 can be applied by representing the complex numbers using matrix

representation, i.e., a complex number x+ jy, where {x, y} ∈ R, can be represented by a 2-by-2
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real valued matrix in the following form

⎡⎢⎢⎢⎢⎣
x −y

y x

⎤⎥⎥⎥⎥⎦ . (B.18)

It is worth mentioning that when complex-domain notations are used all the functions have to

be real-valued functions in the domain of the optimization problem. For optimization problems

introduced in Sections B.3.1 and B.3.2, it is not common to define them in the complex domain

and thus the real-domain notations will be preserved.

B.3.1 Linear programming (LP)

When the objective and constraint functions are all affine, the problem is called a linear

programming (LP). A general linear programming has the form

min
x

cTx + d

subject to Gx ⪯ h
Ax = b, (B.19)

where x ∈ Rn, G ∈ Rm×n and A ∈ Rp×n. Linear programmings are always convex optimization

problems [BV04].

B.3.2 Second-order cone programming (SOCP)

The second-order cone programming (SOCP) is of the form

min
x

fTx

subject to ∥Aix + bi∥2 ≤ cTi x + di, i = 1, . . . ,m
Fx = g, (B.20)

where Ai ∈ R
ni×n and F ∈ R

p×n. The inequality constraint is called a second-order cone

constraint since it is the same as requiring the affine function (Aix+ bi,cTi x+ di) to lie in the

second-order cone in R
k+1.
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B.3.3 Quadratic programming (QP)

The convex optimization problem (B.13) is called a quadratic programing (QP) if the objective

function is convex quadratic and the constraint functions are affine. A quadratic program can

be expressed in the form

min
w

(1/2)wHPw + qHw +wHq + r

subject to Gw ⪯ h
Aw = b, (B.21)

where w ∈ Cn, P ∈ Hn
+
, G ∈ Cm×n, and A ∈ Cp×n, where Hn

+
stands for the set of Hermitian

positive semidefinite matrices. If the objective in (B.13) as well as the inequality constraint

functions are convex quadratic as

min
w

(1/2)wHPw + qHw +wHq + r

subject to (1/2)wHPiw + qHi w +w
Hqi + ri ≤ 0, i = 1, . . . ,m

Aw = b, (B.22)

where Pi ∈ Hn
+
, ∀i, the problem is called a quadratically constrained quadratic program

(QCQP).

B.3.4 Semidefinite programming (SDP)

A standard form semidefinite programming (SDP) has linear equality constraints, and a (ma-

trix) nonnegativity constant on the variable X ∈Hn:

min
X

Tr{CX}
subject to Tr{AjX} = bj , j = 1, . . . , p

X ⪰ 0, (B.23)

where {C,A1, . . . ,Ap} ∈Hn and where Hn denotes the set of Hermitian matrices.
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B.3.5 Non-convex quadratic constrained quadratic programming (QCQP)

problems via Semidefinite relaxation (SDR)

In wireless communications and signal processing, QCQP problems of the following homoge-

neous form often appear [HP10], [LMS+10], [GSS+10].

min
w

wHA0w

subject to wHAiw ≤ αi, i = 1, . . . ,m
wHBjw = βj , j = 1, . . . , p, (B.24)

where Ai (i = 0, . . . ,m) and Bj , ∀j are Hermitian matrices.

According to the definition of convex optimization in (B.13), (B.24) is a convex optimization

problem unless there are only inequality constraints and the Ai are all positive semidefinite

matrices. As a result, such QCQP problems are in general non-convex and difficult to deal with.

This motivates researchers to develop generalized solutions [HP10], [LMS+10]. In the following,

we introduce one general approach, namely, the semidefinite relaxation (SDR) technique. The

principle of the SDR approach is to convexify the non-convex feasible region of the original

QCQP problems. More specifically, the SDR technique enlarges the feasible region and thus an

approximation technique is needed (in general), which can be used to obtain an approximate

solution that is feasible for the original problem. In other words, the final solution of the SDR

approach is not necessarily the optimal solution of the original problem [HP10].

By semidefinite relaxation, we mean that by introducing X =wwH and using the property

that Tr{ΓX} =wHΓw problem (B.24) can be rewritten as

min
X

Tr{A0X}
subject to Tr{AiX} ≤ αi, i = 1, . . . ,m

Tr{BjX} = βj , j = 1, . . . , p
X ⪰ 0, rank{X} = 1, (B.25)

where the only non-convex part is the rank-1 constraint while the other constraints are affine.

If we drop the rank-1 constraint, a relaxed problem can be obtained

min
X

Tr{A0X}
subject to Tr{AiX} ≤ αi, i = 1, . . . ,m

Tr{BjX} = βj , j = 1, . . . , p
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X ⪰ 0. (B.26)

Clearly, the new problem (B.26) is a convex SDP problem. It is always feasible and the

optimal solution X⋆ can have an arbitrary rank. In other words, the relaxed problem (B.26)

is equivalent to the original problem (B.24) if and only if (B.26) has guaranteed rank-1 solutions

[LMS+10]. There are some theoretical results on conditions under which rank-1 solutions are

guaranteed for problem (B.26). For example, according to [HP10, Theorem 3.2 & Corollary

3.4], if there are no more than three constraints in (B.26), i.e., m + p ≤ 3, a rank-1 optimal

solution can be obtained. However, these conditions are not necessary conditions for the

existence of rank-1 optimal solutions in general. In the following, we show how to compute an

exact or approximate solution w⋆ from the optimal solution X⋆.

If X⋆ is rank-1, then w⋆ is obtained as

w⋆ =
√
λmax{X⋆} ⋅P{X⋆} (B.27)

where λmax{X⋆} and P{X⋆} are the corresponding dominant eigenvalues and domaint eigen-

vectors of X⋆. If X⋆ is not rank-1 and problem (B.26) does not satisfy [HP10, Theorem 3.2

& Corollary 3.4], a rank-1 approximation technique has to be applied to X⋆. In our work, the

randomization technique, more specifically, the Gaussian randomization technique is applied.

The randomization procedure is summarized in Algorithm 10. In practice 100 iterations, i.e.,

Nran = 100, is sufficient to obtain a good approximate solution.

Algorithm 10 Gaussian randomization procedure

1: Input: SDR solution X⋆, and a number of randomizations Nran.
2: Main step:
3: Calculate the eigen-decomposition of X as X = UΣUH;
4: for n = 1 to Nran do
5: Generate ŵn = UΣ1/2zn where zn ∼ CN (0,I).
6: Construct w̃n = γŵn which is feasible for the QCQP problem (B.24).
7: Insert w̃n into the cost function (B.24) to calculate the optimal value f⋆n .
8: if f⋆n < f

⋆

n−1 then
9: w⋆ = w̃n.

10: end if
11: end for
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Appendix C

Proofs and derivations for Part I

C.1 Derivation of RBD in the MAC Phase

In this section we derive the RBD solution is described in Section 3.3.2. Recall the cost function

in (3.14), it can be further expanded as

GR = min
GR

E{ L

∑
l=1
∥G(ℓ)

R
H̃(l)x̃(ℓ)∥2 + L

∑
l=1
∥G(ℓ)

R
nR∥2}

= min
GR

E

⎧⎪⎪⎨⎪⎪⎩
L

∑
l=1
(Tr{G(ℓ)

R
H̃(l)x̃(ℓ)x̃(ℓ)HH̃(ℓ)HG(ℓ)H

R
+G(ℓ)

R
nRn

H
RG

(ℓ)H
R
})⎫⎪⎪⎬⎪⎪⎭ (C.1)

Using E{x̃(ℓ)x̃(ℓ)H} = P (ℓ)
k

I2(L−1)MU
, we obtain

min
GR

E

⎧⎪⎪⎨⎪⎪⎩
L

∑
l=1
(Tr{G(ℓ)

R
H̃(l)x̃(ℓ)x̃(ℓ)HH̃(ℓ)HG(ℓ)H

R
+G(ℓ)

R
nRn

H
RG

(ℓ)H
R
})⎫⎪⎪⎬⎪⎪⎭

= min
GR

⎧⎪⎪⎨⎪⎪⎩
L

∑
l=1
(Tr{G(ℓ)

R

⎛⎝P
(ℓ)
k

MU

H̃(ℓ)H̃(ℓ)H + σ2
RIMR

⎞⎠G(ℓ)
H

R
})⎫⎪⎪⎬⎪⎪⎭

= min
GR

⎧⎪⎪⎨⎪⎪⎩
L

∑
l=1
(Tr{G(ℓ)

R
Ũ (ℓ) ⎛⎝P

(ℓ)
k

MU

Σ̃(ℓ)Σ̃(ℓ)H + σ2
RIMR

⎞⎠ Ũ (ℓ)HG(ℓ)
H

R
})⎫⎪⎪⎬⎪⎪⎭ (C.2)

According to [SH08], the expression in (C.2) is minimized by decomposing G
(ℓ)
R
=D(ℓ)T (ℓ). If

we choose T (ℓ) = Ũ (ℓ)H , then (C.2) reduces to

min
D(ℓ)

⎧⎪⎪⎨⎪⎪⎩
L

∑
l=1
⎛⎝Tr
⎧⎪⎪⎨⎪⎪⎩
⎛⎝P

(ℓ)
k

MU

Σ̃(ℓ)Σ̃(ℓ)H + σ2
RIMR

⎞⎠D(ℓ)2
⎫⎪⎪⎬⎪⎪⎭
⎞⎠
⎫⎪⎪⎬⎪⎪⎭ (C.3)
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where the matrices D(ℓ) have to be positive definite in order to find a nontrivial solution to

(C.3) [SH08]. Using the results from [SH08], the final solution to (C.2) is given by

G
(ℓ)
R
= ⎛⎝P

(ℓ)
k

MU

Σ̃(ℓ)Σ̃(ℓ)H + σ2
RIMR

⎞⎠
−1/2

Ũ (ℓ)H . (C.4)

Note that an additional constraint E{∥G(ℓ)
R

H(ℓ)x(ℓ)∥2} = 2Pu can be imposed on G
(ℓ)
R

so that

after applying GR the level of the received signal power is normalized to the transmit power.

However, since the AF relay does not decode the signal and the scaling with regard to the

transmit power is handled via γ0 we will not apply the normalization here.

C.2 Calculation of the precoding and decoding matrices in the

presence of colored noise

The applied precoding and decoding matrices in Section 3.3.4 is derived here. Taking the first

UT of the ℓth operator as an example and recalling the signal model in (3.19), the received

signal of the first UT after subtracting the self-interference is:

ỹ
(ℓ)
1 =H

(ℓ)
1,2x

(ℓ)
2 + ñ

(ℓ)
1 . (C.5)

Define the covariance matrix of the colored noise as Rnn = E{ñ(ℓ)1 ñ
(ℓ)H
1 }. To whiten the

colored noise, we compute the EVD as Rnn = UnΣnU
H
n . Then the pre-whitening filter is

chosen as:

Rwhiten =Σ−1/2n UH
n . (C.6)

Pre-multiplying equation (C.5) byRwhiten, the SVD of the effective channelH
(eff)
1,2 =RwhitenH

(ℓ)
1,2

can be obtained by:

H
(eff)
1,2 = U

(eff)
1,2 Σ

(eff)
1,2 V

(eff)H
1,2 . (C.7)

When DET is applied, the transmit beamforming vector W
(ℓ)
2 =w(ℓ)2 and receive beamform-

ing vector F
(ℓ)
1 = f (ℓ)1 are selected as the first column of V

(eff)
1,2 and the conjugate transpose of

the first column of U
(eff)
1,2 , respectively.

When spatial multiplexing is applied, a new matrix Σ
(wf)
1,2 is obtained by adjusting singular

values in Σ
(eff)
1,2 using the water-filling algorithm in [PNG03]. The transmit covariance matrix

is given by:

R
x
(ℓ)

2
x
(ℓ)

2

= V (eff)1,2 Σ
(wf)
1,2 V

(eff)H
1,2 . (C.8)
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with W
(ℓ)
2 = V (eff)1,2 Σ

(wf)1/2
1,2 . The decoding matrix can be chosen as F

(ℓ)
1 = U (eff)H1,2 Rwhiten.

C.3 Derivation of quadratic terms when each UT has a single

antenna

The goal of this appendix is to arrive at quadratic formulas for the signal power, the interference

power, and the noise power in Section 3.4.1. Using Tr{Γ1Γ2} = Tr{Γ2Γ1} and vec{Γ1XΓ2} =(ΓT
2 ⊗Γ1)vec{X}, the numerator of equation (3.30), i.e., the signal power, is further expanded

as

E{∣h(ℓ)T
k

Gh
(ℓ)
3−k

x
(ℓ)
3−k
∣2} = P (ℓ)

k
Tr{h(ℓ)T

k
Gh

(ℓ)
3−k
(h(ℓ)T

k
Gh

(ℓ)
3−k
)H}

= P (ℓ)
k

Tr{(h(ℓ)T
3−k
⊗h

(ℓ)T
k
)g ((h(ℓ)T

3−k
⊗h

(ℓ)T
k
)g)H}

= gH (P (ℓ)
k
(h(ℓ)T

3−k
⊗h

(ℓ)T
k
)H(h(ℓ)T

3−k
⊗h

(ℓ)T
k
))´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

D
(ℓ)
k

g. (C.9)

Noticing that the interference term in (3.30) and the transmitted symbols are independently

distributed with zero mean, the interference term can be calculated as

E

⎧⎪⎪⎪⎨⎪⎪⎪⎩
RRRRRRRRRRRR∑k̄,ℓ̄≠ℓh

(ℓ)T
k

Gh
(ℓ̄)
k̄

x
(ℓ̄)
k̄

RRRRRRRRRRRR
2⎫⎪⎪⎪⎬⎪⎪⎪⎭ = g

H
⎛⎜⎝∑k̄,ℓ̃≠ℓP

(ℓ̃)
k̄
(h(ℓ̃)T

k̄
⊗h

(ℓ)T
k
)H(h(ℓ̃)T

k̄
⊗h

(ℓ)T
k
)⎞⎟⎠g

Finally, the forwarded noise term is calculated as

E{∣h(ℓ)T
k

GnR∣2} = σ2
Rh
(ℓ)T
k

GGHh
(ℓ)∗
k

= σ2
Rvec{h(ℓ)Tk

G}Hvec{h(ℓ)T
k

G} = σ2
R((IMR

⊗h
(ℓ)T
k
) ⋅ g)H(IMR

⊗h
(ℓ)T
k
) ⋅ g

= gH (σ2
R(IMR

⊗ (h(ℓ)
k

h
(ℓ)H
k
)T))g

C.4 Proof for Section 5.4.1 (feasibility of interference

neutralization)

Since all the proofs for Section 5.4.1 are connected and are built on each other, we string them

up in a series of subsections. First, we provide the proof of Theorem 5.4.1 in Appendix C.4.1.

It consists of two parts. A pre-result (C.14) is shown in Appendix C.4.1 1), which is then
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refined in Appendix C.4.1 2). Afterwards, the exact IN solution and its special cases are

derived in Appendix C.4.2. Finally, the minimum required transmit power for IN is calculated

in Appendix C.4.3.

C.4.1 Proof of Theorem 5.4.1

The IN condition is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2k−1,2ℓ−1 + fT
2k−1W̃f2ℓ−1 = 0 ∀ℓ, k, ℓ ≠ k

h2k−1,2ℓ + fT
2k−1W̃g2ℓ = 0 ∀ℓ, k, ℓ ≠ k

h2k,2ℓ−1 + gT2kW̃f2ℓ−1 = 0 ∀ℓ, k, ℓ ≠ k
h2k,2ℓ + gT2kW̃g2ℓ = 0 ∀ℓ, k, ℓ ≠ k

, (C.10)

or equivalently ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h2k−1,2ℓ−1 +hT
2k−1,2ℓ−1w̃ = 0 ∀ℓ, k, ℓ ≠ k

h2k−1,2ℓ +hT
2k−1,2ℓw̃ = 0 ∀ℓ, k, ℓ ≠ k

h2k,2ℓ−1 +hT
2k,2ℓ−1w̃ = 0 ∀ℓ, k, ℓ ≠ k

h2k,2ℓ +hT
2k,2ℓw̃ = 0 ∀ℓ, k, ℓ ≠ k

Condition (C.10) can be rewritten as a linear system of equations (L. S. E.), which is expressed

as

A1w̃ = b1 (C.11)

where A1 ∈ C4K(K−1)×NM2
R represents the effective channel which is defined as

A1 = [h2k−1,2ℓ−1 h2k−1,2ℓ h2k,2ℓ−1 h2k,2ℓ]T ,∀k, ℓ,

and where b1 ∈ C4K(K−1) is generated by

b1 = − [h2k−1,2ℓ−1 h2k−1,2ℓ h2k,2ℓ−1 h2k,2ℓ]T ,∀k, ℓ.

Thereby, the feasibility problem of IN evolves to find solutions to a L. S. E.. Furthermore, the

IN solution w̃ has to fulfill the transmit power constraint at the relay, i.e.,

PR,max ≥ w̃HC̃
(g)
0 w̃ (C.12)
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when the total transmit power of the relays in the network is considered, or

P
(Ind)
R,max

≥max
n

w̃HC̃(g)n w̃ (C.13)

when each relay has its own power constraint.

According to the Kronecker-Capelli Theorem [Mey04], a L. S. E. such as (C.11) has a solution

if and only if (C.11) is consistent, where consistency is defined in the following lemma.

Lemma C.4.1. Consistency [Mey04]: Each of the following is equivalent to saying that[A1 b1] is consistent.

1. in row reducing [A1 b1], a row of the following form never appears:

[0 0 ⋯ 0 ∣ α1] , α1 ≠ 0.

2. rank{[A1 b1]} = rank{A1}.
3. b1 is a combination of the basic columns in A1.

Item 3 can be interpreted using the four fundamental subspaces of A1. That is, the vector

b1 has to be in the column space of A1. Define the rank of A1 as rA. Define the SVD of

A1 as A1 = [UAs UAn]ΣAV
H
A where UAs ∈ C4K(K−1)×rA and UAn ∈ C4K(K−1)×(4K(K−1)−rA)

are orthonormal bases of the column space of A1 and the left null space of A1, respectively.

Item 3 implies that equation (C.11) has a solution if and only if UAnU
H
Anb1 = 0. Otherwise,

the left null space component of b1 cannot be eliminated since A1x is always a vector in the

column space of A1.

C.4.1.1 A general result

In our case A1 and b1 are generated from complex Gaussian distributions. Thus, A1 should

have full rank in general, i.e., rank{A1} =min(4K(K − 1),NM2
R).1 If A1 is a tall matrix, i.e.,

4K(K − 1) > NM2
R, equation (C.11) has no solution almost surely. In other words, (C.11) has

a solution if and only if

NM2
R ≥ 4K(K − 1). (C.14)

In such a case, the solution to (C.11) is calculated using the pseudo inverse, i.e., w̃ = A+1b1 +(I −A+1A1)w̄n and A+1 = AH
1 (A1A

H
1 )−1. Notice that in practice A1 can be degenerated /

1This is because the determinant of A1 is a multivariate polynomial in its entries. Since the entries are
independent and from a continuous distribution, the probability to get a zero of the polynomial has measure
zero [Mui82].
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rank-deficient, e.g., in case of pure line of sight (LOS) channels. Nevertheless, this discussion

is out of the scope of this thesis.

C.4.1.2 A specific result when the channel is reciprocal

Condition (C.14) reveals the dimensionality constraint in a general case, under which IN is

feasible. For a special structure of the effective channel, i.e., the channel is reciprocal, the

condition for IN can be relaxed. This is shown in the following. If w̃ is designed such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fT
2k−1W̃f2ℓ−1 = fT

2ℓ−1W̃f2k−1 ∀ℓ, k, ℓ ≠ k
fT
2k−1W̃g2ℓ = fT

2ℓW̃g2k−1 ∀ℓ, k, ℓ ≠ k
gT2kW̃f2ℓ−1 = gT2ℓ−1W̃f2k ∀ℓ, k, ℓ ≠ k
gT2kW̃g2ℓ = gT

2ℓW̃g2k ∀ℓ, k, ℓ ≠ k

, (C.15)

there will be only 2K(K−1) equations in condition (C.10) while the other 2K(K−1) equations
are duplicates and thus can be removed. Afterwards, we get a new L. S. E.

Aw̃ = b (C.16)

where A ∈ C2K(K−1)×NM2
R is generated by

A = [h2̄i−1,2j̄−1 h2̄i−1,2j̄ h2̄i,2j̄−1 h2̄i,2j̄]T ,∀ī, j̄,

b ∈ C2K(K−1) is generated by

b = − [h2̄i−1,2j̄−1 h2̄i−1,2j̄ h2̄i,2j̄−1 h2̄i,2j̄]T ,∀ī, j̄,

and where ī ∈ {1,⋯K} and j̄ ∈ {̄i + 1,⋯K}. Moreover, condition (C.15) has to be satisfied for

2K(K − 1) equations and via reformulation we get

AK̄w̃ = 0 (C.17)

where K̄ = IN⊗(IM2
R
−KM2

R
) and KM2

R
∈ CM2

R×M
2
R is a commutation matrix, which is a unique

permutation matrix such that KM2
R
vec{W } = vec{WT} [Lue96].

According to our previous discussion, equation (C.16) has a solution if and only if 2K(K −
1) ≤ NM2

R. However, the solution to (C.16) should be a feasible solution to (C.17) as well,

and vice visa. That means, our new IN problem can be formulated as the following convex
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feasibility problem

find w̃

s.t. Aw̃ = b (C.18a)

AK̄w̃ = 0 (C.18b)

and 2K(K − 1) ≤ NM2
R might be just an necessary condition such that problem (C.18) is

feasible. Our task is to find necessary and sufficient conditions such that problem (C.18) is

feasible. To this end, we find that it is useful to split the constraint (C.18b) into the following

two cases, where the first one is given by

K̄w̃ = 0 (C.19)

and the second one is

⎧⎪⎪⎨⎪⎪⎩
AK̄w̃ = 0 (C.20a)

K̄w̃ = c (C.20b)

where c ∈ CNM2
R should have at least one non-zero element. The two cases can be interpreted

using the four fundamental subspaces in linear algebra. That is, case (C.19) implies that w̃ has

to lie in the null space of K̄ while case (C.19) requires w̃ to be in the intersection of the row

space of K̄ and the null space of AK̄. Since the null space and the row space of a matrix are

orthogonal, case (C.19) and case (C.20) cannot be feasible at the same time. In the following,

we discuss the solution to problem (C.18) under different cases.

Let us first consider case (C.19). Define the SVD K̄ = U1Σ1[Vs,1 Vn,1]H where Vn,1 ∈
C
NM2

R×(NM2
R−r1) spans the null space of K̄ and r1 is the rank of K̄. We have r1 = 1

2
NMR(MR−

1) based on the following two statements.

1. according to [Lue96, p. 116], the rank of (IM2
R
−KM2

R
) is equal to 1

2
MR(MR − 1).

2. rank{Γ⊗Ω} = rank{Γ} ⋅ rank{Ω} [Lue96, p. 20].
Without loss of generality, w̃ which satisfies (C.19) can be expressed as

w̃ = Vn,1ŵ (C.21)

where ŵ ∈ CNM2
R−r1 . Inserting (C.21) into (C.18a), we get

AVn,1ŵ = b. (C.22)
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Both A and Vn,1 have a full rank and thus the matrix product AVn,1 has a full rank almost

surely, i.e., the rank is given by min(2K(K − 1),NM2
R − r1). According to Lemma C.4.1,

equation (C.22) has a solution if and only if

2K(K − 1) ≤ NM2
R − r1 =

1

2
NMR(MR + 1). (C.23)

This condition means that

MR ≥
⎡⎢⎢⎢⎢⎢⎢
−1 +

√
16K2−16K

N
+ 1

2

⎤⎥⎥⎥⎥⎥⎥
. (C.24)

When case (C.20) is feasible, problem (C.18) be solved in a similar way. Nevertheless, the

obtained solution is not useful for our purpose due to the following fact.

Lemma C.4.2. If case (C.20) is feasible, the inequality 2K(K − 1) ≤ 1
2
NMR(MR − 1) has to

hold.

Proof. Please refer to Appendix C.5.

Clearly, condition (C.35) is more stringent than (C.23). Therefore, assume that there is

sufficient power at the relay. We can conclude that IN is feasible if and only if condition

(C.23) is fulfilled.

C.4.2 Proof of Lemma 5.4.3 and Corollary 5.4.4

Define the SVD AVn,1 = U2[Σs,2 0][Vs,2 Vn,2]H, where Vs,2 ∈ C
1
2
NMR(MR+1)×r2 and Vn,2 ∈

C
1
2
NMR(MR+1)×( 12NMR(MR+1)−r2) span the row space and the null space of AVn,1, respectively.

We have Σs,2 ∈ Cr2×r2 and r2 = 2K(K − 1). The IN solution of w̃, which is also the solution to

(C.22), is given by

w̃ = Vn,1Σ
−1
s,2U

H
2 b +Vn,1Vn,2ŵn, (C.25)

where ŵn ∈ C
1
2
NMR(MR+1)−r2 . Using the orthogonal complement of AVn,1, the IN solution can

also be obtained as

w̃ = Vn,1 ((AVn,1)+b + (Ifrac12NMR(MR+1) − (AVn,1)+AVn,1)v) (C.26)

where v ∈ C 1
2
NMR(MR+1). Although solution (C.25) and solution (C.26) provide the same num-

ber of signal dimensions, i.e., 1
2
NMR(MR+1)−r2, optimizing v yields a higher computational

complexity since it has more elements than ŵn. However, the computational complexity of
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computing (C.26) is lower than computing (C.25). This is because the computational complex-

ity of computing a pseudo inverse lies in the calculation of an inverse of a Hermitian positive

definite matrix, which can be computed using the Cholesky decomposition. It is known that

the Cholesky decomposition has a lower computational complexity compared to the SVD.

When MR = 1, N > 1, and N ≥ 2K(K − 1), the IN solution is simplified to

w̃ =A+b + (IN −A+A)v. (C.27)

Define the SVD (IM2
R
−KM2

R
) = U3Σ3 [Vs,3 Vn,3]H where Vn,3 ∈ CM2

R×( 12MR(MR+1)) contains
the last (1

2
MR(MR + 1)) columns. When N = 1, and MR ≥ 2K − 2, the IN solution is given by

w̃ = Vn,3((AVn,3)+b + (Ifrac12MR(MR+1) − (AVn,3)+AVn,3)v). (C.28)

Without loss of generality, we can express the IN solutions (C.25), (C.26), (C.27) and (C.28)

in the form of w̃ = c +Bv, where c and B are fixed and v is a free parameter.

C.4.3 Proof of Corollary 5.4.5

Using the general IN solution w̃ = c +Bv and the power constraints in (C.12) and (C.13), we

compute the minimum required transmit power for IN and obtain the following lemma.

Lemma C.4.3.

Case 1 (2K(K − 1) < 1
2
NMR(MR + 1)). When a total transmit power of the relays in the

network is considered, the minimum required transmit power PR,max is

PR,max = cHC̃(g)0 c − bHpA
+

pbp (C.29)

where Ap =BHC̃
(g)
0 B and bp =BHC̃

(g)
0 c. When each relay has its own power constraint, the

minimum required transmit power P
(Ind)
R,max

is calculated as

P
(Ind)
R,max

=max
n
(cHC̃(g)n c − bHp,nA

+

p,nbp,n) (C.30)

where Ap,n =BHC̃
(g)
n B and bp,n =BHC̃

(g)
n c.

Case 2 (2K(K−1) = 1
2
NMR(MR+1)). Under a total transmit power constraint, the minimum

required transmit power PR,max is

PR,max = cHC̃(g)0 c. (C.31)
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Under individual transmit power constraints, the minimum required transmit power P
(Ind)
R,max

is

given by

P
(Ind)
R,max

=max
n

cHC̃(g)n c (C.32)

Proof. When the total transmit power of the relays in the network is considered, the minimum

required transmit power PR,max is obtained by finding v such that the following cost function

is minimized

J (v) = w̃HC̃
(g)
0 w̃ = (c +Bv)HC̃(g)0 (c +Bv)

= cHC̃(g)0 c + 2Re{vHBHC̃
(g)
0 c} + vHBHC̃

(g)
0 Bv

= cHC̃(g)0 c + 2Re{vHbp} + vHApv

where Re{⋅} denotes the real part of a complex number. Clearly, we have Ap ⪰ 0. Hence,

J (v) is a convex function and it has a global minimum. To find the minimum value, we can

take the derivative with respect to v∗ and set it to zero, i.e.,

∂J (v)
∂v∗

=Apv + bp = 0. (C.33)

Define the EVD Ap = [Up,s Up,n]Σp[Up,s Up,n]H where Up,n contains the eigenvectors,

which correspond to zero eigenvalues. Then v = −A+pbp+Up,nvp,n, where vp,n is a free variable,

minimizes the function J (v). The minimum value of J (v) can be computed to be cHC̃
(g)
0 c−

bHpA
+

pbp. Moreover, it is straightforward to get (C.30) when individual power constraints are

considered.

The above derivation is based on the fact that Ap is not a matrix with all zeros. However,

this will happen under the condition that 2K(K − 1) = 1
2
NMR(MR + 1). In such a case, the

matrix AVn,1 becomes a full-rank square matrix. It does not possess a null space and thus the

matrix B is a zero matrix. Hence, the cost function J (v) becomes a constant. Conclusions

(C.31) and (C.32) are obtained.

Moreover, the minimum norm IN solution of w̃ is given by w̃ = c since it minimizes ∥w̃∥.
In the following we discuss cases where IN is not feasible, i.e., the dimensionality requirement

(C.23) or the minimum transmit power requirement (C.12) (or (C.13)) is violated. First,

if only the dimensionality requirement (C.23) is violated, equation (C.22) has no solution

almost surely since AVn,1 will have a full column rank. But we can still obtain the least

square solution w̃ = Vn,1(AVn,1)+b, i.e., w̃ = c, which minimizes the least squares ∥Aw̃ − b∥2.
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It is straightforward to see that the least squares problem is equivalent to the interference

minimization problem for our scenario. Thus, w̃ = c is also a solution to the total interference

minimization problem:

min
w̃

K

∑
k=1

1

P2k−1

P
(I)
2k−1
+

1

P2k

P
(I)
2k

. (C.34)

When the minimum transmit power requirement (C.12) (or (C.13)) is violated, we can scale

w̃ such that the total interference is minimized. It is not difficult to see that the solution is

given by

w̃ = c
¿ÁÁÀ PR,max

cHC̃
(g)
0 c

,

if a total transmit power constraint is considered, or

w̃ = c

¿ÁÁÁÀ P
(Ind)
R,max

maxn cHC̃
(g)
n c

,

if individual transmit power constraints are considered.

C.5 Proof to Lemma C.4.2

The proof to Lemma C.4.2 in Appendix C.4 is provided here. In general the matrix product

AK̄ has a full-rank which is equal to min(rank(A), rank(K̄)) =min(2K(K−1), 1
2
NMR(MR−

1)). To see this, we define a change of basis matrix T such that K̄ = T [K̄′ 0]T −1, where[K̄′ 0] is the new basis and K̄′ ∈ CNM2
R×

1
2
N [Mey04]. Then we have

rank(AK̄) = rank(AT [K̄′ 0]T −1) = rank(AT [K̄′ 0])
= rank(ATK̄′).

Clearly, the matrix product TK̄′ has a full rank. Thus, the matrix product AK̄ has a full

rank almost surely. According to [Mey04], this also implies that

dim{N{A} ∩ S{K̄}} = 0
when 2K(K − 1) > 1

2
NMR(MR − 1). Or

dim{N{K̄H} ∩ S{AH}} = 0
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C.6 Proof to Lemma 5.6.1

when 2K(K − 1) ≤ 1
2
NMR(MR − 1) since the rank of a matrix product is obtained by

rank(AK̄) = rank(A) − dim{N{K̄H} ∩ S{AH}}
= rank(K̄) − dim{N{A} ∩ S{K̄}}.

Moreover, case (C.20b) implies that the vector c has to lie in the range of K̄. Inserting (C.20b)

into (C.20a) shows that the vector c has to lie in the null space of A. In other words, the

intersection of the subspace S{K̄} and the subspace N{A} should not be empty. If the rank

of the matrix AK̄ is equal to 1
2
NMR(MR − 1), i.e., 2K(K − 1) > 1

2
NMR(MR − 1), there does

not exist a vector c which satisfies (C.20) since dim{N{A} ∩ S{K̄}} = 0. If the rank of the

matrix AK̄ is equal to 2K(K −1), i.e., 2K(K −1) ≤ 1
2
NMR(MR −1), there exists a nontrivial

c for (C.20). Hence, it is necessarily to have

2K(K − 1) ≤ 1

2
NMR(MR − 1) (C.35)

if case (C.20) is feasible.

C.6 Proof to Lemma 5.6.1

The optimality and the convergence behavior of the proposed DT algorithms in Section 5.6

are derived in this appendix. According to [LV12, Theorem 1.7.2], the set of all positive

semidefinite matrices is closed. Moreover, given the two constraints in problem (5.31), the

feasible region of problem (5.31) is closed under limits and thus it is compact. Then it is

straightforward to apply Proposition 4.1 from [CFS85] and Theorem 2.1 from [CFS86], which

state that problem (5.31) and its parametric representation (5.36) have the same set of optimal

solutions if f(λ) = 0. Moreover, the generated sequences {λ(p)} converges at least linearly to

λopt, and each convergent subsequences of {X(p)} converges to an optimal solution of (5.31).

Thus, the generalized Dinkelbach algorithm solves (5.31).

Next, we analyze the convergence behavior of the generalized Dinkelbach algorithm. Define

gi(X) = Tr{FmX(p)}. According to [CFS85], if there is a single ratio in (5.31), an unique

subgradient of f(λ) is obtained and thus a superlinear convergence property of the Dinkelbach

algorithm can be proven. When there are multiple ratios, the subgradient is not unique

anymore. Instead, we have the following two relations.

Corollary C.6.1. [CFS85, Proposition 2.2] Assume that X(p) is an optimal solution of (5.36)
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at the (p)-th step. Then

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f(λ) ≥ f(λ(p)) − g(X(p))(λ − λ(p)) if λ > λ(p)
f(λ) ≥ f(λ(p)) − g(X(p))(λ − λ(p)) if λ < λ(p).

(C.36)

If DT-1 is applied, we have g(X(p)) =minmTr{FmX(p)} and g(X(p)) =maxmTr{FmX(p)}.
If DT-2 is applied, we have g(X(p)) = minm(Tr{FmX(p)}/Tr{FmX(p−1)}) and g(X(p)) =
maxm(Tr{FmX(p)}/Tr{FmX(p−1)}). Using the inequalities in Corollary C.6.1, we derive the

convergence speed of the proposed Dinkelbach-type algorithms. To this end, we apply the

following fact, which can be proven in the same way as in [CFS85, Proposition 3.1],

λ(p+1) ≥ λ(p) + f(λ(p))/g(X(p)),
which is equivalent to

λ(p+1) − λopt ≥ λ(p) − λopt + f(λ(p))/g(X(p)). (C.37)

Furthermore, the first inequality in equation (C.36) implies that

f(λ(p)) ≥ f(λopt) + g(Xopt)(λopt − λ(p)) = g(Xopt)(λopt − λ(p)). (C.38)

Combining equations (C.37) and (C.38), we have

∣λ(p+1) − λopt∣ ≤ ∣λ(p) − λopt∣(1 − g(Xopt)/g(X(p))). (C.39)

Let δ1 = g(Xopt)/g(X(p)). Clearly, in general 0 < δ1 < 1 and thus the Dinkelbach algorithm

has a linear convergence according to Definition 5.6.1. But if there is a single ratio, α1 → 1

when p → ∞, which implies a superlinear convergence. When there are multiple ratios and

the DT-2 algorithm is applied, if the optimal solution is unique, i.e., X(p) converges to Xopt

[CFS86], then

g(Xopt) =min
m
(Tr{FmXopt}/Tr{FmX(p−1)}) a.s.→ 1 (C.40)

and

g(X(p)) =max
m
(Tr{FmX(p)}/Tr{FmX(p−1)}) a.s.→ 1. (C.41)

Again, a superlinear convergence will be obtained. Unfortunately, problem (5.31) does not

have a unique solution because its denominator is not strictly convex [SS03]. Nevertheless,

by using the convex analysis, an even higher convergence order might be obtained for the
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Ḡ

(a) A normal set Ḡ ∈ R2
+

H̄

(b) A reverse normal set H̄ ∈ R2
+

Figure C.1: An illustration of a normal set Ḡ ∈ R2
+
and a reverse normal set H̄ ∈ R2

+
.

DT-2 algorithm as in [BC87], which means a better than linear convergence speed in general.

However, this is out of the scope of this thesis.

C.7 Monotonic optimization and the polyblock algorithm

This appendix devotes to the introduction of the monotonic optimization problem and its

solution via polyblock algorithm, which are applied in Section 5.7.

C.7.1 Monotonic optimization

According to [Tuy00], a set Ḡ ∈ Rn
+
is called normal if y ∈ Ḡ also implies that the hypercube[0,y] ∈ Ḡ, as depicted in Figure C.1a. A set H̄ ∈ Rn

+
is called reverse normal if y ∈ H̄ and y′ ⪰ y

also implies that y′ ∈ H̄, as depicted in Figure C.1b. A function f ∶ Rn
+
→ R+ is an increasing

function if y′ ⪰ y implies f(y′) ≥ f(y), ∀y′.
Maximizing an increasing function over the intersection of a normal set and an inverse

normal set, i.e.,

max
y

f(y), s. t. y ∈ Ḡ ∩ H̄, (C.42)

is a monotonic optimization problem [Tuy00].

For problem (5.45), ym = wHĒmw
wHFmw

, ∀m and w ∈ F, represents the Rayleigh quotient. Hence, it

is bounded between minm λmin{F −1m Ēm} and minm λmax{F −1m Ēm} 2. Thereby, the definitions

of G and L satisfy the definitions of the normal set and the inverse normal set, respectively. It

2ym ≥ 1 because it is equal to 1 + γm, ∀m.
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is then straightforward to conclude that problem (5.45) is a monotonic optimization problem

since its cost function Φ(y) is an increasing function.

C.7.2 Polyblock algorithm

The polyblock algorithm is a unified algorithm to solve the monotonic optimization problem

[JL10], [Tuy00], [UB12]. A polyblock P with vertex set T ∈ Rn
+
is simply a union of a finite

number of hypercubes [0,z], z ∈ T. A polyblock is dominated by its proper vertices, where a

vertex z ∈ T is proper if there is no z′ ≠ z and z′ ⪰ z, z′ ∈ T. Since Ḡ is a normal set there

exists a polyblock P
(1) such that Ḡ ⊂ P(1). Moreover, we can construct a nested sequence of

polyblocks which approximate Ḡ from above, i.e., an iteratively refined outer approximation

of Ḡ is created starting from p = 1

P
(1) ⊃ ⋯ ⊃ P(p) ⊇ Ḡ.

If we replace Ḡ by P
(p) in (C.42) and obtain

max
y

f(y), s. t. y ∈ P(p) ∩ H̄, (C.43)

then the maximizer y
(p)
opt to (C.43) should be attained at one proper vertex of the polyblock

P
(p), say z

(p)
opt, due to the monotonicity of f [Tuy00]. It will be also the global optimizer if

z
(p)
opt ∈ Ḡ. In other words, the global maximum of (C.42), if it exists, is attained on ∂+Ḡ,

i.e., the upper boundary of Ḡ [Tuy00]. However, in general, z
(p)
opt will lie outside of Ḡ since

the polyblock is just an outer approximation of Ḡ. In such a case, we need to create a new

polyblock P
(p+1) which satisfies

P
(p+1) ⊃ P(p) ⊇ Ḡ.

According to [Tuy00], this can be achieved using the following procedure. First, finding the

unique intersection point ẑ(p) between ∂+Ḡ and the line segment connecting the origin and

z
(p)
opt via

ẑ(p) = µ(p)z(p)opt

with

µ(p) = max
µ∈(0,1]µ, s. t. µz

(p)
opt ∈ Ḡ ∩ H̄. (C.44)

Then the current objective value is given by f(ẑ(p)) and the current best objective value is

calculated as f
(p)
opt = max(f (p−1)opt , f(ẑ(p))) . Second, let T(p) be the proper vertices of P(p) and
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T̃
(p) ⊂ T(p) such that z

(p)
opt ∈ T̃(p) ⊂ {z̃ ∈ T(p)∣z̃ ≻ ẑ(p)}. We replace all the z ∈ T̃(p) from T

(p) by
points

z̄i = z − (zi − ẑ(p)i )ei,∀i ∈ {1,⋯n}. (C.45)

Afterwards, we remove all improper elements as well as all points not belonging to H̄. Then the

remaining vertex set is the proper vertex T̃
(p+1) for our new polyblock P

(p+1). This algorithm,

which is referred to as the polyblock outer approximation algorithm in [Tuy00], runs iteratively

until T̃(p+1) = ∅ or an ǫ-optimal solution is found. When the computational complexity is

concerned, an ǫ-optimal solution is preferred. To this end, during the construction of T̃(p+1),
it is practical to discard vertices ž ∈ T̃(p+1) and f(ž) ≤ (1 + ǫ)f (p)opt .

An example of the polyblock approach is shown in Figure C.2. The original feasible region is

given by D̄ = Ḡ∩ H̄ ∈ R2
+
and an initial vertex set is T(1) = {z0}. As seen from Figure C.2a, the

rectangular/polyblock defined by [0,z0] approximates D̄ from the outside. The maximizer z
(1)
opt

from the current vertex set is z0. Since z
(1)
opt does not lie on the boundary of D̄, in the second

step (as depicted in Figure C.2b), the unique intersection ẑ(1) between the boundary of D̄ and

the line segment which connects the origin and z
(1)
opt = z0 has to be computed. In the third

step (as depicted in Figure C.2c), two new vertices z̄1 and z̄2 are computed using equation

(C.45). The region, which are decided by the vectors ẑ(1), z0, z̄1, and z̄2, are marked red in

Figure C.2c. It is infeasible for the original problem and thus should be discarded. Finally,

the new vertex set T̃
(2) = {z̄1, z̄2} is decided as in Figure C.2d and thus a new polyblock is

constructed. This approach continues until the global optimal is found.
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D̄

z0

(a) Deciding the maximizer z
(1)
opt from the current

vertex set T(1) = {z0}. Clearly, z
(1)
opt = z0.

D̄

z0

ẑ(1)

(b) Finding the unique intersection point ẑ(1).

D̄

z0

ẑ(1)

z̄1

z̄2

(c) Replacing z0 with new vertices z̄1 and z̄2.

D̄

z̄1

z̄2

(d) Constructing the new vertex set T̃(2) = {z̄1, z̄2}.

Figure C.2: An illustration of the polyblock approach for a feasible region of D̄ = Ḡ ∩ H̄ ∈ R2
+
.

The initial vertex set is T(1) = {z0}.
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Proofs and derivations for Part II

D.1 Proof of Proposition 8.3.1

The statement i) of Proposition 8.3.1 is based on the following findings. First, at least one of

the constraints has to be active at the optimality. Otherwise, the optimal solution wopt,i can

be scaled up such that one of the constraints is satisfied with equality. The increasing of wopt,i

will increase the objective value and thus contradicts the optimality. Second, at the optimality

of problem (8.6), ∀i, it cannot happen that the SI power constraint is active and the transmit

power constraint is inactive. This can be verified using proof by contradiction.

Define the orthogonal complement of hH
ji ∈ CMt as Π⊥

hH
ji

= IMt −
hH
jihji∥hji∥2 ∈ CMt×Mt . Without

loss of generality, we write the optimal wopt,i as

wopt,i = hH
ji ⋅ ai +Π

⊥
hH
ji

⋅ bi ∈ CMt (D.1)

where ai ∈ C and bi ∈ CMt . Assume that at the optimality of problem (8.6) the transmit

power constraint is inactive and the SI power constraint is active. Inserting wopt,i into the two

constraints and the objective function we get the following equations

ηiw
H
opt,ih

H
jihjiwopt,i = ηi ⋅ ∥hji∥2 ⋅ ∣ai∣2 = P (TH)

i , (D.2)

wH
opt,iwopt,i = ∥hji∥2∣ai∣2 + ∥bi∥2 < ǫiP (TH)

i , (D.3)

and

wH
opt,ih

H
iihiiwopt,i = ∣hiih

H
ji ⋅ ai +hiiΠ

⊥
hH
ji

⋅ bi∣2 ≤ (∣hiiu
s
ji ⋅ ai∣ + ∣hiiΠ

⊥
hH
ji

⋅ bi∣)2 . (D.4)

According to the triangular inequality, the maximum is obtained if the two complex numbers

have the same phase, i.e., arg {hiih
H
ji ⋅ ai} = arg{hiiΠ

⊥
hH
ji

⋅ bi}, where arg {⋅} obtains the angle

of a complex number.

Since ∣ai∣2 is fixed via the active transmit power constraint, it is straightforward to see that

scaling up ∥bi∥ will also increase the optimal value which contradicts the optimality. Therefore,
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we conclude that the transmit power constraint has to be active if the SI power constraint is

active.

The statement ii) of Proposition 8.3.1 comes directly from the fact that if the SI power

constraint is inactive, problem (8.6) degenerates to a classical HD MISO setup.

D.2 Proof of Corollary 8.3.2

Using the definition of wopt,i from equation (D.1) and the fact that the SI constraint is satisfied

with equality at the optimality, we conclude that the only uncertainty regarding ai is its phase

αi, i.e.,

ai =
¿ÁÁÀ P

(TH)
i

ηi ⋅ ∥hji∥4 ejαi . (D.5)

Moreover, we conclude the optimization over wopt,i can be achieved by first optimizing bi and

then αi. Our conclusion is based on the following two statements:

1. The two active constraints do not depend on αi.

2. The objective function of (8.6) satisfies the inequality (D.4). According to the triangular

inequality, the maximum is obtained if arg {hiih
H
ji ⋅ ai} = arg{hiiΠ

⊥
hH
ji

⋅ bi}. That is, if

an optimal bopt,i is obtained, the optimal phase of ai is computed as

αopt,i = arg
⎧⎪⎪⎪⎨⎪⎪⎪⎩
hiiΠ

⊥
hH
ji

⋅ bopt,i

hiih
H
ji

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (D.6)

Therefore, problem (8.6) with two active constraints can be decomposed into two equivalent

problems, i.e., first finding optimal bi and then adjusting αi. Without loss of generality, we

set αi = 0. Thereby, problem (8.6) simplifies to the following optimization problem

max
bi

bHi z
H
v,izv,ibi + z

∗

s,izv,ibi + b
H
i z

H
v,izs,i

subject to bHi bi = (ǫi − 1

ηi∥hji∥2)P (TH)
i (D.7)

where zv,i = hiiΠ
⊥
hH
ji

and zs,i = hiih
H
ji∥hji∥2
√

P
(TH)
i

ηi
.
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Problem (D.7) can be solved using the Lagrangian multiplier method. The Lagrangian of

problem (D.7) is expressed as

L(bi, υi) = bHi zH
v,izv,ibi + z

∗

s,izv,ibi + b
H
i z

H
v,izs,i − υi (bHi bi − (ǫi − 1

ηi∥hji∥2)P (TH)
i ) (D.8)

where υi represents the Lagrangian multiplier. Taking the first-order derivatives over b∗i and

υi and setting them to zero, we get

bi = (υiIMt − z
H
v,izv,i)−1zH

v,izs,i (D.9a)

bHi bi = (ǫi − 1

ηi∥hji∥2)P (TH)
i . (D.9b)

Inserting (D.9a) into (D.9b), we have

bHi bi = zv,iz∗s,i(υiIMt − z
H
v,izv,i)−H(υiIMt − z

H
v,izv,i)−1zH

v,izs,i

= ∣zs,i∣2Tr{(υiIMt − z
H
v,izv,i)−H(υiIMt − z

H
v,izv,i)−1zH

v,izv,i}
= ∣zs,i∣2Tr{(υiIMt − z

H
v,izv,i)−2zH

v,izv,i}
= ∣zs,i∣2∥zv,i∥2(υi − ∥zv,i∥2)2 = (ǫi −

1

ηi∥hji∥2)P (TH)
i .

Although there are two roots in the above equation, the optimal υi is given by

υopt,i = ∥zv,i∥2 − ∣zs,i∣∥zv,i∥√(ǫi − 1
ηi∥hji∥2 )P (TH)

i

(D.10)

because the cost function in (D.7) has to be maximized. The optimal bopt,i is then calculated

using (D.9a).

D.3 Proof of Proposition 8.3.4

In this appendix, we derive analytic solutions for a special case of the FD MIMO system, i.e.,

Mr =Mt = 2 and both the transmit power constraint and the SI constraint are satisfied with

equality. Define Aii = HH
iiHii/σ2

n and Bji = HH
jiHji. Mathematically, for each {i, j} ∈ {1,2}

and i ≠ j, we solve the following optimization problem

min
Qi

− log (∣IM +AiiQi∣)
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s. t. Qi ⪰ 0, Tr{Qi} = ǫiP (TH)
i

Tr{ηiBjiQi} = P (TH)
i . (D.11)

Problem (D.11) is convex with respect to Qi. The analytic solutions to problem (D.11) when

Mr = Mt = 2 can be obtained using the Lagrangian multiplier method. The Lagrangian of

problem (D.11) is given by

L(Qi, ρi, υi) = − log (∣IM +AiiQi∣)+ ρi(Tr{Qi}− ǫiP (TH)
i )+ υi(Tr{ηiBjiQi}−P (TH)

i ), (D.12)

where ρi and υi denote the Lagrangian multipliers. To obtain the optimal solution for the

original problem (D.11), an additional constraint on Qi has to be taken into account, i.e., Qi

has to be Hermitian positive semidefinite. However, to make the Lagrangian method solvable,

we propose to first relax Qi to be a Hermitian matrix, which is a larger set than the set of

Hermitian positive semidefinite matrices. When Qi =QH
i , the following rule from [Hjø11] can

be used, i.e.,
∂L
∂Q∗i

= ∂L
∂Q∗i

+ ( ∂L
∂Qi

)T . (D.13)

Moreover, utilizing the fact that d(log ∣Γ∣) = tr{Γ−1dΓ}, d{tr{Γ}} = tr{dΓ} [Hjø11], the first-

order derivative of the Lagrangian with respect to Q∗i is computed as

∂L(Qi, ρi, υi)
∂Q∗i

∣
Qi=QH

i

= −(IMt +AiiQi)−1Aii + ρiIMt + υiηiBji. (D.14)

Then by taking the first-order derivatives over Q∗i , ρi and υi, respectively, and setting them

to zero, we get

Qi = (ρiIMt + υiηiBji)−1 −A−1ii (D.15a)

Tr{Qi} = ǫiP (TH)
i (D.15b)

Tr{ηiBjiQi} = P (TH)
i . (D.15c)

Define the EVD of Aii = Uii ⋅ diag {λii}UH
ii and Bji = Uji ⋅ diag {λji}UH

ji , where λii =
[λii,1,⋯, λii,Mt

]T and λji = [λji,1,⋯, λji,Mt
]T are the corresponding eigenvalue profiles of Aii

and Bji, respectively. Inserting (D.15a) into (D.15b), the following expressions are obtained

Tr{(ρiIMt + υiηiBji)−1 −A−1ii }
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= Tr{(ρiIMt + υiηiBji)−1} −Tr{A−1ii }
= Tr{Uji(ρiIMt + υiηi diag {λji})−1UH

ji} −Tr{Uii diag {λii}−1UH
ii }

=
Mt

∑
m=1
((ρi + υiλji,m)−1 − λ−1ii,m) = ǫiP (TH)

i . (D.16)

Similarly, inserting (D.15a) into (D.15c), we obtain the following equation

Mt

∑
m=1
(λji,m(ρi + υiλji,m)−1) −Tr{BjiA

−1
ii } = P (TH)

i /ηi. (D.17)

Equations (D.16) and (D.17) are polynomial equations with respect to ρi and υi. They are

solvable but closed-form expressions for the roots of the polynomial equations are available for

specific polynomial order, e.g., the second order. Moreover, after obtaining ρi and υi, equation

(D.15a) has to be calculated. If the obtained Qi is positive semidefinite, the optimal solution to

the original problem (D.11) is found. If the obtained Qi is not positive semidefinite, it implies

that at least one of the eigenvalues of Qi is zero. A reformulation of the Lagrangian has to

be done. Therefore, an analytic solution is in general difficult to obtain when both constraints

are active. Nevertheless, in the following we derive analytical solutions for Mr =Mt = 2. When

Mt = 2, by combining (D.16) and (D.17), ρi and υi are computed by

ρi =
λji,1

λji,1z̃i − z̄i
+

λji,2

λji,2z̃i − z̄i

υi =
1

z̄i − λji,1z̃i
+

1

z̄i − λji,2z̃i
(D.18)

where z̃i = ǫiP
(TH)
i + ∑2

m=1 λ−1ii,m and z̄i = P
(TH)
i /ηi + Tr{BjiA

−1
ii }. If the obtained Qi is not

positive semidefinite, one of its eigenvalues is zero, i.e., Qi is a rank-1 matrix. Without loss

of generality, we define Qi = wiw
H
i . Problem (D.11) can be reformulated into the following

equivalent problem

max
wi

wH
i Aiiwi

s. t. wH
i wi = ǫiP (TH)

i , ηiw
H
i Bjiwi = P (TH)

i . (D.19)

The covariance matrix Bji is full rank and thus Uji is an orthonormal basis of the two-
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dimensional space. Thereby, without loss of generality, we define

wi = Ujivi = Uji

⎡⎢⎢⎢⎢⎣
∣vi,1∣ 0

0 ∣vi,2∣
⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
ejαi

ejβi

⎤⎥⎥⎥⎥⎦ , (D.20)

where ∣vi,1∣, ∣vi,2∣ and αi, βi, represent the corresponding amplitudes and phases of the elements

of the vector vi ∈ C2. Inserting (D.20) into the two constraints of (D.19), we obtain

∣vi,1∣2 + ∣vi,2∣2 = ǫiP (TH)
i

λji,1∣vi,1∣2 + λji,2∣vi,2∣2 = P (TH)
i /ηi. (D.21)

Thereby, the amplitudes of the elements of vi are decided by ∣vi,1∣ =
√

P
(TH)
i

/ηi−λji,2ǫiP
(TH)
i

λji,1−λji,2

and ∣vi,2∣ =
√

λji,1ǫiP
(TH)
i

−P
(TH)
i

/ηi
λji,1−λji,2

. Define UH
jiAiiUji =

⎡⎢⎢⎢⎢⎣
a11 a12

a∗12 a22

⎤⎥⎥⎥⎥⎦ where a11 ∈ R, a22 ∈ R,

and a12 ∈ C. Inserting (D.20) into the objective function of (D.19), after some algebraic

manipulation, we get

wH
i Aiiwi = a11∣vi,1∣2 + ej(βi−αi) ⋅ ∣vi,1∣∣vi,2∣a12 + ej(αi−βi) ⋅ ∣vi,1∣∣vi,2∣a∗12 + a22∣vi,2∣2. (D.22)

Clearly, (D.22) is optimized if αi − βi = arg {a12}. Hence, without loss of generality, we set

βi = 0 and thus αi = arg {a12}.
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