
Resource and Location Aware
Robust, Decentralized Data

Management

Dissertation
zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt der
Fakultät für Informatik und Automatisierung

der Technischen Universität Ilmenau

von

Dipl.-Math. Elizabeth Ribe-Baumann

Tag der Einreichung: 16.Oktober 2013
Tag der wissenschaftlichen Aussprache: 18.November 2014

Gutachter

1. Prof. Dr.–Ing. Kai-Uwe Sattler

2. Prof. Dr. rer. nat. Jochen Seitz

3. Prof. Dr. Manfred Hauswirth

urn:nbn:de:gbv:ilm1-2014000449

Abstract
Increasingly, large amounts of data are being stored in a distributed manner over wide area net-
works. Such large scale networks most often employ heterogeneous nodes, with heterogeneity taking
the form of available battery power, bandwidth, computing power, and/or network up-times, among
other things. As smartphones have become an ubiquitous element of every-day life, the potential for
large scale peer-to-peer networks with strong contrasts in peers’ capabilities has become undeniable.
This scenario is especially relevant for disaster scenarios when access to existing data storage may
be unavailable or inaccessible for the broad population, although important information about condi-
tions, hazards, or injured people could be collected by general civilians. But networks built on a mix
of smartphones, laptops, and servers are not the only heterogeneous systems with the potential to
distributively store large amounts of data: sensor networks and computing clouds also contain nodes
with varying characteristics. However, at the core of these distributed, heterogeneous networks is a
necessity to accommodate nodes’ varying accessibility to resources and to reduce network load by
providing short paths between where data is stored and needed, while ensuring a high level of data
robustness, or availability. In fact, this resource and location awareness should be used to increase
robustness.

This work thus focuses on resource and location awareness for robust data management in decentral-
ized, potentially peer-to-peer, networks. In order to facilitate the assessment and comparison of re-
source and location aware approaches, taxonomies are developed for the classification of how resources
and proximity are handled. In addition to robustness, resource awareness, and location awareness,
four further requirements are derived from this work’s use case scenarios: self-organization, scalability,
load balancing, and data consistency. A structured network approach was chosen in order to provide
availability guarantees for stored data.

The lack of structured approaches with both resource and location awareness led to the development
of two novel distributed hash tables (DHTs) Resource Based Finger Management (RBFM) and Hier-
archical Resource Management (HRM), which are more and less loosely based on the existing DHT
Chord and have the same O(logN) routing complexity. These two DHTs take fundamentally different
structural approaches to building an overlay, such that the flat RBFM and the multi-tiered hierarchical
HRM provide a foundation with which to examine the suitability of flat vs. hierarchical overlay struc-
tures for resource and location awareness. Moreover, HRM uses a variable number of hierarchical layers,
facilitating also a comparisons of varying numbers of hierarchy layers. An additional hybrid version of
both DHTs as well as a cluster-based version of RBFM for ad hoc networks are also described and
used for simulative comparisons. Mathematical analysis and simulative evaluations of the developed
DHTs in comparison with naive and location aware approaches demonstrate how resource awareness
improve both node lifetimes and lookup success rates twofold when resources are correlated with node
failure probabilities. However, a higher number of hierarchy layers causes an increase in overall routing
and maintenance load, thus decreasing node lifetimes, so that a lower number of hierarchy layers is
beneficial.

DHTs require data replication to ensure that data is not lost when nodes unexpectedly leave the

network, which is especially important in the high churn scenarios considered in this work. Thus, a

replication technique is tailored to the resource and location aware structure of the proposed DHTs,

providing both an increase in resource and location awareness as well as a reduction in the overall

replication load. Mathematical analysis demonstrates how the number of replicas necessary to provide

a given availability probability is significantly reduced while the remaining replica load is transferred

from weak to strong nodes.

Zusammenfassung
Große Datenmengen werden zunehmend auf weite Netze, die oft aus heterogenen Knoten bestehen,
verteilt. Dabei kann Heterogenität beispielsweise variable Batteriekapazität, Bandbreite, Rechenleis-
tung oder auch Lebenszeiten beudeuten. Die weite Verbreitung von Smartphones im Alltag birgt ein
Potenzial für große Peer-to-Peer Netzwerke, in dem Knoten stark variierende Leistungsfähigkeiten
aufweisen. Dieses Szenario ist besonders für Katastrophen-Szenarien relevant, wenn der Zugang zu
bereits existierenden Datenspeicherungsmöglichkeiten entweder unerreichbar oder unzugänglich für
die Mehrheit der Bevölkerung ist. Gerade in einem Katastrophen-Szenario sammeln Zivilisten allein
durch ihren Aufenthalt an weit verteilten Orten ständig eventuell wichtige Information über Zustände,
Gefahren und verletzte Personen, die für weitere Verwendung und Koordinierung gesammelt werden
sollten. Allerdings sind Netzwerke, die auf Smartphones, Laptops und Servern basieren, nicht die einzi-
gen heterogenen Netzwerke, die große Datenmengen verwalten: Sensornetzwerke und Clouds bestehen
ebenfalls aus Knoten mit variierenden Eigenschaften. Im Kern all dieser verteilen heterogenen Netzw-
erken besteht die Notwendigkeit, den variierenden Zugang der Knoten zu Ressourcen zu berücksichtigen
und die Gesamtlast durch kurze Wege zwischen den Speicherungsorten und Anfrageorten der Daten
möglichst zu minimieren. All dies ist allerdings einer hohen Verfügbarkeit der Daten unterstellt und es
sollte sogar angestrebt werden die Verfügbarkeit der Daten gerade durch das Ressourcen- und Loka-
tionsbewusstsein zu verbessern.

Die hier vorgestellte Arbeit konzentriert sich auf die Integration von Ressourcen- und Lokationsinfor-
mationen für eine robuste Datenverwaltung in verteilten, vielleicht sogar Peer-to-Peer, Netzwerken.
Um verschiedene ressourcen- und lokationsbewusste Ansätze auszuwerten und zu vergleichen, wurden
Taxonomien zur Klassifizierung der Nutzung von Ressourcen und Entfernungen entwickelt. Über Ro-
bustheit, Ressourcenbewusstsein und Lokationsbewusstsein hinaus wurden vier weitere Anforderungen
für die zentralen betrachteten Anwendungsfälle hergeleitet: Selbstorganisation, Skalierbarkeit, Lastbal-
ancierung und Datenkonsistenz. Ein strukturierter Netzwerkansatz wurde gewählt, um Verfügbarkeits-
garantien für die gespeicherten Daten bieten zu können.

Ein Mangel an strukturierten Ansätzen, die sowohl Ressourcen- als auch Lokationsbewusstsein nutzen,
führte zu der Entwicklung von zwei neuen verteilten Hashtabellen (weiter DHT genannt): Resource
Based Finger Management (RBFM) und Hierarchical Resource Management (HRM), die mehr oder
weniger auf der existierenden Chord DHT aufbauen und ihre O(logN) Routingkomplexität beibehal-
ten. Diese zwei DHTs nutzen grundsätzlich unterschiedliche Ansätze für den Aufbau des Overlays.
So bilden die flache RBFM und die hierarchische HRM eine Grundlage, mit der die Eignung von
flachen und hierarchischen Overlaystrukturen für Ressourcen- als auch Lokationsbewusstsein verglichen
werden kann. Darüber hinaus verwendet HRM eine variable Anzahl an Hierarchieebenen, womit ein
Vergleich zwischen verschiedenen Ebenenanzahlen ermöglicht wird. Weiterhin werden eine zusätzliche
hybride Version von beiden DHTs sowie eine cluster-basierte Version von RBFM für ad hoc Netzw-
erke beschrieben und für simulationsbasierte Vergleiche benutzt. Eine mathematische Analyse und
simulationsbasierte Evaluation der entwickelten DHTs zeigen, wie Ressourcenbewusstsein sowohl die
Lebensdauer der Knoten als auch die Erfolgsrate der Anfragen gegenüber einem völlig naiven Ansatz
und einen nur lokationsbewussten Ansatz um das zweifache erhöht, wenn angenommen wird, dass die
Ausfallwahrscheinlichkeit der Knoten mit den Ressourcen der Knoten korreliert. Allerdings wurde fest-
gestellt, dass eine hohe Anzahl von Hierarchieebenen die gesamte Routing- und Wartungslast ebenfalls
erhöht und somit die Lebensdauer der Knoten reduziert, sodass eine niedrige Ebenenanzahl von Vorteil
ist.

Um zu versichern, dass Daten nicht verloren gehen, wenn Knoten unerwartet das Netzwerk ver-

lassen, benötigen DHTs Replikation. Deshalb wurde eine Replikationsstrategie entwickelt, welche die

resourcen- und lokationsbewusste Struktur der vorgestellten DHTs ausnutzt. Diese Strategie erhöht

somit das Ressourcen- und Lokationsbewusstsein während die Gesamtlast für der Replikation ver-

ringert wird. Eine mathematische Analyse zeigt, wie die Anzahl der benötigten Replikate signifikant

gesenkt werden kann um eine vorgegebene Verfügbarkeitswahrscheinlichkeit zu erreichen, während die

übrige Ressourcenlast von den schwachen auf den starken Knoten verschoben wird.

Acknowledgements

I’d like to thank first and foremost Stephan Baumann for providing me with hurdles that
have encouraged me to grow in ways that I never thought possible, believing that I would
find my way when I couldn’t see the end of the tunnel, and shouldering triple the load when
I could no longer carry my own weight. Although they do not yet understand their sacrifice,
I am indescribably indebted to Lukas and Niklas Baumann for their patience, interest, and
kind words as I struggled to find the time and energy for them. And a special thank you is
due to Prof. Kai-Uwe Sattler, who not only believed that I could finish this dissertation long
after I had given up but also shared his awe inspiring refusal to abandon projects or people
in whom he has invested time and effort.

And of course, I’d like to thank my family and friends who have been, at times insanely,
supportive of both me and my progress on this dissertation. I am aware that my dissertation
ambitions would have perished before a single word had been brought to paper without my
colleagues and fellow PhD-students-in-suffering, and I am grateful for the solidarity they
emanated in excited exchanges of ideas, tedious labor on projects, and whinny banter about
the hopeless state of of our work.

Contents

List of Tables . xii

List of Figures . xiii

Nomenclature . xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Use Cases . 3

1.2.1 Disaster Scenario . 3

1.2.2 Distributed Map Management . 6

1.2.3 Sensor Networks . 7

1.2.4 Heterogeneous Cloud . 7

1.3 Requirements . 8

2 Concepts: Resource and Location Awareness 11

2.1 Resources Taxonomy . 11

2.2 Location Taxonomy . 13

2.3 Taxonomy Decisions . 15

2.4 Network Assumptions . 16

2.4.1 Resource Availability . 16

2.4.2 Node Failure . 18

3 Peer-to-Peer Approaches, Limitations, and Contributions 21

3.1 Peer-to-Peer Systems . 21

3.2 Distributed Hash Tables . 26

3.3 DHT Design . 31

3.3.1 Resource Awareness . 31

3.3.2 Location Awareness . 32

3.3.3 Requirement Tradeoffs . 33

3.4 Contributions . 36

ix

4 Related Work: DHTs 37

4.1 Original DHTs . 37

4.1.1 Applications . 44

4.2 Awareness . 46

4.3 Resource Awareness: Heterogeneous Netwoks 46

4.3.1 Virtual Nodes and Node Movement . 51

4.3.2 Hierarchies . 52

4.4 Location Awareness . 57

4.4.1 General Location Aware Approaches . 59

4.4.2 Mobile (Ad Hoc) Networks . 60

4.5 Resource and Location Aware DHTs . 62

4.6 Evaluation Measures . 63

4.7 Open Questions . 69

5 Resource and Location Aware DHTs 71

5.1 DHT Foundations . 72

5.2 Flat DHT - RBFM . 73

5.2.1 Finding Links . 73

5.2.2 Routing . 75

5.2.3 Link Maintenance . 76

5.2.4 Node Joins and Failures . 77

5.2.5 Adaptability . 77

5.3 Hierarchical DHT- HRM . 78

5.3.1 Varying Levels with Varying Responsibilities 78

5.3.2 Finding Links . 79

5.3.3 Routing . 84

5.3.4 Link Maintenance . 87

5.3.5 Node Joins and Failures . 88

5.3.6 Adaptability . 89

5.4 Adaptations . 89

5.4.1 Cluster-based Flat DHT . 89

5.4.2 Hybrid Hierarchical DHT . 90

5.5 Summary . 90

6 DHT Analysis 93

6.1 Flat RBFM . 95

6.1.1 Expected Resource Level and Distance of Fingers 95

6.1.2 Maintenance . 100

6.1.3 Failures . 101

6.2 Hierarchical HRM . 102

6.2.1 Expected Distance of Layer Fingers . 102

6.2.2 Maintenance . 104

6.2.3 Failures . 106

6.3 Summary . 107

7 DHT Evaluation 109

7.1 Evaluation Platform and Setup . 111

7.1.1 Configurations . 113

7.1.2 RBFM Comparison . 113

7.1.3 Underlay Comparison . 114

7.1.4 Approach Comparison . 114

7.1.5 Layer Comparison . 115

7.2 Results . 116

7.2.1 Maintenance Load . 118

7.2.2 Lookup Distance . 119

7.2.3 Lookup Failure . 121

7.2.4 Node Load . 121

7.2.5 Node Lifetime . 124

7.2.6 Links . 126

7.3 Summary . 128

8 Related Work: Replication 131

8.1 Goals . 132

8.2 Unstructured Systems: MANET Replication . 133

8.3 Structured Systems: DHT Replication . 134

8.4 Open Questions . 136

9 Resource and Location Aware Replication 139

9.1 Assumptions . 140

9.2 Number and Location of Replicas . 141

9.2.1 Availability and Resource Awareness . 141

9.2.2 Location Awareness . 143

9.3 Routing . 146

9.4 Adaptability . 146

9.5 Summary . 147

10 Replication Analysis 149

10.1 Number of Replicas per Data Object . 150

10.2 Portion of Keyspace per Node . 152

10.3 Finding Replicas on Fingers . 155

10.4 Summary . 157

11 Conclusion 159

11.1 Summary . 160

11.2 Addressed Questions . 162

11.3 Future Work . 163

List of Tables

1.1 Requirement integration . 10

2.1 Resource taxonomy . 12

2.2 Location taxonomy . 14

3.1 Peer-to-peer taxonomy . 23

3.2 Peer-to-peer taxonomy applied to use case scenario 25

3.3 DHT design issue tradeoffs . 35

4.1 Basic DHT approaches . 41

4.2 DHT applications . 44

4.3 Heterogeneous DHT approaches . 48

4.4 Resource aware DHTs with respect to resource taxonomy 49

4.5 DHT resource integration: RIS, RNS, RRS, RSD 50

4.6 Location aware DHTs . 61

4.7 Measures used to evaluate DHTs. 64

4.8 Evaluation measures used by specific DHTs . 68

5.1 Maintenance delays . 87

6.1 Analysis evaluation metrics used in this work 94

7.1 Measures used for varying evaluation scenarios 110

7.2 Simulation variables used . 112

7.3 Nodes per hierarchy layer in evaluation . 115

11.1 Actual requirement integration . 161

xiii

List of Figures

1.1 Disaster scenario data flow . 3

1.2 Disaster scenario example network . 4

1.3 Delay tolerant example network . 5

1.4 Distributed map example network . 6

1.5 Cloud example network . 8

2.1 Example node resource distributions . 17

3.1 Mapping of peer-to-peer challenges to use case requirements 22

3.2 Mobile ad hoc network lookup . 26

3.3 DHT keyring . 27

3.4 Changing keyranges and neighbors with node joins and failures in a DHT . . . 28

3.5 Binary tree node neighbors . 29

3.6 Proximity identifier selection (PIS) . 33

4.1 DHT topologies . 39

4.2 DHT topology routing . 40

4.3 Characterization of DHT resource and location awareness 46

4.4 Peer-to-peer system classification from Koskela et. al [KKHY13]. 52

4.5 Peer-to-peer structural classification . 53

4.6 Mapping of measures to peer-to-peer challenges 65

4.7 Four viewpoints of the challenges . 66

5.1 RBFM prospective links lists and fingers . 74

5.2 RBFM greedy routing . 76

5.3 HRM overlay structure . 79

5.4 HRM prospective links list . 80

5.5 HRM varying kinds of links . 83

5.6 Underlay routing . 89

xv

5.7 C-DHash++ prospective links . 91

5.8 C-RBFM prospective links . 91

5.9 Hybrid RBFM/HRM overlay structure . 91

6.1 RBFM expected resource level of fingers . 97

6.2 RBFM expected physical distance of fingers . 98

6.3 RBFM expected number of maintenance messages 100

6.4 RBFM finger failure probabilities . 101

6.5 HRM expected physical distance of layer fingers 103

6.6 HRM expected physical distance for fingers with varying number of layers . . . 103

6.7 HRM expected number of maintenance messages 105

6.8 HRM link failure probabilities . 106

7.1 Evaluation: Maintenance load . 117

7.2 Evaluation: Maintenance load . 118

7.3 Evaluation: Lookup distances . 120

7.4 Evaluation: Lookup failures and node load . 122

7.5 Evaluation: Node load . 123

7.6 Evaluation: Node lifetime . 125

7.7 Evaluation: Link resources and distances . 127

9.1 Choosing replicas after put request . 143

9.2 Choosing replicas after lookups . 144

10.1 Necessary number of replicas . 151

10.2 Replication factor for RBFM . 153

10.3 Replication factor for HRM . 154

10.4 Finding replicas on RBFM fingers . 156

Nomenclature

General Terminology

layer position within a hierarchy, ∈ {0, 1, . . . , hmax}
level differentiation between peers’ resource strengths, ∈ {0, 1, . . . , lmax}
bottom layer hierarchy layer 0

lower layer hierarchy layers {0, . . . , hmax − 1}
top layer hierarchy layer hmax

upper layer hierarchy layers {1, . . . , hmax}
DHT: Variables and Constants

Bx,i node x’s ith finger interval [xID + 2i−1, xID + 2i)

c . stretch constant for resource height function h(xR) := c · (lmax−xR)

dkey(x, y) clockwise key distance of x and y

dphy(x, y) physical distance of x and y

dres(x, y) resource distance between x and y: dres(x, y) = dphy(x, y) + xh + yh

g(`) finger maintenance interval function

h(xR) resource height function h : {0, 1, . . . , lmax} → R+

hmax maximum hierarchy layer

hnum number of hierarchy layers hmax + 1

κ . denotes a key as needed

k . number of entries stored in prospective links lists per finger interval

ki . expected number of nodes in finger interval Bx,i

` . resource level ∈ {0, 1, . . . , lmax} or hierarchy layer ∈ {0, 1, . . . , hmax}
lmax maximum resource level

m . size of the binary key: 2m

N . number of network nodes

ρ . power used for Zipf distributions

p` . probability that a random node has resource level `. P (xR = `)

r . number of entries stored in a node’s successor list

xvii

xID key of node x

xH hierarchy layer of node x

xh resource height xh = h(xR)

xR resource level of node x

x.Fkey finger range key: first key in finger interval x.Frange

x.Frange finger range: farthest finger interval in which x maintains finger

x.F [i] x’s layer finger in Bx,i (layer xH)

x.F [i].node node associated with x.F [i]

x.I.closestHigher inter-layer link with smallest dkey(x, x.I[`]), layer> xH

x.I.closestInt finger interval Bx,i containing x.I.closestHigher

x.I.closestLayer x.I.closestHigher’s hierarchy layer

x.I[`] x’s layer-` inter-layer link (direct successor in layer `)

x.I[`].node node associated with x.I[`]

x.srange simple key range (yID, xID] with predecessor y

x.urange upper key range [xID, zID) with upper layer successor z

Replication: Variables and Constants

ε-replicas replicas chosen to fulfill availability probability requirement

local-replicas replicas additionally chosen to ensure local copies by querying nodes

d . data object

ε . target availability probability

Λ(d) set of nodes which have initiated a lookup for d

Σ(d) set of nodes on which data object d is replicated

input(d) node which initiated put request for d

owner(d) node responsible for d’s key

π . proximity constant - determines local fraction of network

φ . number of ε-replicas

φmin,` for HRM, minimum number of ε-replicas for owner(d)R = ` that
fulfill availability requirement

φmin for RBFM, minimum number of ε-replicas that fulfill availability
requirement

r . estimated radius of network

Approach Abbreviations

HRM2:0-123

w/RBFM:L90
. HRM2:0-123 which uses RBFM in the upper hierarchy layer

HRM Hierarchical Resource Management - novel, hierarchical resource and
location aware DHT

HRM2:0-123 HRM with hnum = 2 and res.level 0 nodes in hier.layer 0

HRM2:01-23 HRM with hnum = 2 and res.level 0 1 nodes in hier.layer 0

HRM4 HRM with hnum = 4

RBFM Resource Based Finger Management - novel flat location and re-
source aware DHT

RBFM:Q90 flat location and resource aware DHT, quadratic maintenance pat-
terns, stretch factor 90

Chapter 1

Introduction

As the world becomes increasingly digitally archived, the enormous quantity of digital infor-
mation generated and stored every day also increases. Information generated by companies,
government offices, academic organizations, sensor networks, web surveillance, media produc-
tion and exchange, social networks, and everything web 2.0 must be stored in a highly scalable
fashion that accommodates its incredibly fast generation. Much of this data is stored in pri-
vate data centers or on rented space in data clouds, with attention paid to high availability
and low cost, among other things. Yet, decentralized data management schemes have become
important for managing huge amounts of data without the bottlenecks associated with cen-
tral coordination and for situations in which the central coordination of data is unfeasible or
undesirable, due to either a lack of connectivity, monetary means, or trust. Peer-to-peer ad
hoc networks, for example, in which peers can only communicate on a local level to peers
within wireless communication range, cannot store gathered information on a central server
to which they do not have communication access. Likewise, a network of users with local
storage capacities may be interested in saving large amounts of data but unwilling to pay for
outsourced storage. Or a network of sensors might have access to large scale storage, but not
be willing to save sensitive or unfiltered data on an external central system.

However, these decentralized solutions are often geared towards heterogeneous networks where
nodes have varying access to resources such as energy, computing power, or bandwidth. This
work concentrates on methods for ensuring the robustness of highly scalable distributed stor-
age of data on heterogeneous networks where nodes have varying availability to resources.
Here, robustness is understood as high data availability which is affected by many factors
such as the system’s self-organization, scalability, load balancing, data consistency, resource
awareness, and location awareness. While many of the use cases motivating this work employ
heterogeneous (mobile) peer-to-peer networks which offer large, unharnessed storage capaci-
ties, this work’s central goal to increase robustness with minimal resource usage also caters
to the needs of other scenarios such as energy-efficient storage within a cloud.

1.1 Motivation

Consider a heterogeneous network of nodes on potentially mobile devices that would like to
store a large amount of data but either lack the required communication to a central server,

1

CHAPTER 1. INTRODUCTION

the means with which to pay for outsourced data storage, or the willingness to store data on an
external system. These nodes could, for example, comprise a sensor network having strongly
restricted battery and computing power, or an ad hoc network of mobile users after a disaster
with restricted battery power and bandwidth. Alternatively, the nodes could compose a cloud
responsible for storing a large amount of data within a data center, with restricted bandwidth
and varying available computing powers. As mobile devices have become more prevalent, their
users are both generating more data and better utilizing their computing capacities. While
mobile applications for smartphones are now just as much a part of day-to-day life as the
wireless internet connections that make interactive applications possible, the mobile devices’
collective storage potential is yet to be harnessed. Yet, it is easy to imagine that, should it
suddenly become necessary for large amounts of data to be stored in an ad hoc fashion, these
smartphones and other mobile devices might join forces to provide a source of highly scalable,
distributed data storage.

However, a distributed data system also comes with additional costs for maintenance, data
updates, and queries:

� nodes must establish and keep track of their links and routing paths within the network,

� nodes must migrate data when nodes join and leave the networks,

� the correct node must be found for each data update, and when replicas are present,
multiple nodes are involved in the process,

� when replicas are present, nodes must coordinate the consistency of queried data, and

� queries must be routed to the owner(s) of the queried data.

These additional costs cause higher use of mobile devices’ varying resources such as battery
power, bandwidth, and computing power. Resulting overburdened nodes can lead to node
inaccessibility, high delay times, and node failures, which in turn lead to lower data availability,
higher data loss, and lower cumulative storage space, i.e. lower robustness. We might say that
the system is only as reliable as its weakest node’s ability to complete its assigned tasks. The
reliability and applicability of such a system depends strongly on its ability to allocate load
in a resource sensitive manner by shifting load to nodes with stronger resources.

On the other hand, location awareness is also necessary in a mobile network that might
depend on ad hoc routing for communication. Long distance hops require more energy than
short hops, and long distance paths require multiple hops between end nodes, using more
energy, bandwidth, and computing power. Thus, long distance searches inevitably use more
resources than short distance searches. By placing data closer to where it is actually needed
and routing queries on shorter, more efficient paths, unnecessary resource usage, network load,
and delays could be avoided.

So while resource awareness leads to a more balanced usage of resources, location awareness
leads to an overall conservative usage of resources. Applied together, they offer the potential
to overcome the challenges facing mobile devices due to the additional costs associated with
maintaining a distributed data system.

2 Resource and Location Aware Robust, Decentralized Data Management

1.2. USE CASES

Figure 1.1: In a disaster scenario, data may be generated and used by both human users and
automated network processes.

1.2 Use Cases

The task of balancing load in a distributed data system based on nodes’ resources is by no
means restricted to scenarios with mobile devices. The following outlines four plausible sce-
narios which could all reap benefits from resource and location awareness while demonstrating
heterogeneity in the form of computing power, available bandwidth, power usage, available
software, or system uptimes. The central use case for this work is of a heterogeneous network
of mobile devices in a disaster scenario and is described first and in most detail. This use case
targets a simple distributed data management application in which each participating node
can enter data into and lookup data in the system. The following three use case scenarios
are based on today’s heterogeneous world wide web, on which web 2.0 applications requiring
data storage are built; sensor networks, which store filtered sensor data within the network
for later processing; and a heterogeneous cloud network, in which nodes know and trust one
another while maintaining data with equal interest. Thus, each use case scenario presented
uses a different network constellation with a specific application.

1.2.1 Disaster Scenario

During the response and recovery phases after a disaster, various working levels produce and
require an immense amount of information. The most visible layer is formed by the front-end
users, or helpers, who are ideally equipped with mobile devices that serve their communication
and information needs. The services that these helpers use access and provide global infor-
mation about, for example, participants, environmental states, or routing. In order to ensure
efficient disaster management, this data must be reliably available to a quickly growing group
of front-end users, despite possible breaks in network links or node failures due to, for exam-
ple, power loss or mobile devices that have moved out of broadcast range. Users may even be

Resource and Location Aware Robust, Decentralized Data Management 3

CHAPTER 1. INTRODUCTION

Figure 1.2: Example of a disaster scenario in which varying actors are responsible for collecting,
storing, and routing data. Wireless connections are shown as lines, and the truck’s changing
connections as it passes through its trajectory are shown dashed.

employing a delay-tolerant network for joining network partitions, with mobile users trans-
porting messages between partitions or single users outside of communication range [BRB10].
In this case, placing copies of data physically close to where it is needed could prevent the
use of the delay tolerant network when queried data can be found within the local partition
(see Figure 1.3). In any case, the information management system must be designed robustly
for this highly dynamic situation.

Further down, a network of base stations enables wireless communication between front-end
users, the information management system, and the outer world. This base station network
is also highly dynamic and its management requires similarly reliable storage, retrieval, and
aggregation of real-time data to accommodate tasks such as spectrum sensing and spectrum
aware routing for cognitive radios. Imagine, for example, that the information management
system is providing crucial routing information for base stations and users (e.g. for spectrum
aware routing or as a DNS server). Clearly, if this information cannot be retrieved as needed,
then communication fails.

On the other hand, civilians with personal mobile devices are constantly gathering first-hand
information about the current situation. If this data could be saved digitally in a reliable,
distributed fashion among the available private mobile and stationary devices, it could poten-
tially be used to help find hurt or needy people; identify blocked roads, collapsed buildings,
and broken utilities lines; locate hospitals with capacities; or assign displaced citizens to shel-
ters. While the effective use of such data is a topic in and of itself, which is not approached
here, the sheer feasibility of its storage is a first step in that direction.

4 Resource and Location Aware Robust, Decentralized Data Management

1.2. USE CASES

Partition 1

Partition 2

Figure 1.3: Two network partitions are joined to a single delay tolerant network with the help
of users (a quadrocopter and a PDA) that move between the partitions. Information updates
and retrievals can thus be performed but with longer delays.

Figure 1.2 demonstrates how such a network with varying participants might look in a disaster
scenario. In this example, all nodes (i.e. cell phones, PDAs, base stations, quadrocopters, and
the truck) are jointly responsible for collecting, storing, and routing data. Cell phones are
depicted for civilians and PDAs for recovery workers. The two broken base stations’ coverage
is being compensated for by using mobile base stations, both statically placed (quadrocopters)
and constantly moving along a trajectory (truck). Data is routed along wireless links, some
of which (dashed) are only established for short periods of time. While all nodes collect
and jointly store information, they have varying availability to resources such as power and
bandwidth and must deal with a changing, perhaps partitioned, network.

A single break in the data lifecycle as shown in Figure 1.1 can debilitate the cumulative man-
agement efforts. A disaster scenario with its broken power and communication infrastructures
has its own special challenges with regard to resource and location awareness, whether data is
being stored and retrieved for relief workers, the underlying network infrastructure, or civilian
observations:

Strongly restricted energy: Since power supply infrastructures may be broken, nodes can
be expected to have very low energy availability. Nodes that do have access to power
sources may lose it at regular intervals, resulting in long-term node failures once their
energy has been depleted. Since this potentially holds for the entire network, the more
energy that is collectively used, the less storage space is collectively available.

Strongly restricted bandwidth: With communication infrastructures damaged, band-
width is either strongly reduced or nodes become reliant on an ad hoc routing network.
Either way, the network has very high relative load and quickly becomes overburdened,
leading to long delays and dropped packages. Reducing the communication overhead on
the underlay is thus a central challenge that depends strongly on location awareness in
ad hoc networks.

Location-sensivite data: Much data is location specific, and more likely to be inserted into
the system or queried from nodes in a specific area. Storing and replicating this data

Resource and Location Aware Robust, Decentralized Data Management 5

CHAPTER 1. INTRODUCTION

getLocalInfo

Figure 1.4: Distributed map maintenance for events and restaurant reviews (red dots and
orange triangles). Each user maintains a list of information that is potentially interesting in
its area. When a user would like information about a given region, for example when it moves
into a new area, it queries the network for a cumulated view of stored information.

geographically near to where it is needed and ensuring efficient lookup routing would
both reduce network traffic and increase data availability in case of partitioning.

Network partitioning: Since geographic-based network partitioning may be expected due
to further infrastructure losses or natural occurrences, location-aware routing is also
important to enable lookup routing after network partitions. Replication that anticipates
the dynamic changes in the network can also ensure data availability despite partitioning.

1.2.2 Distributed Map Management

Many mobile device users already use distributed applications or contribute to the web 2.0
through platforms such as facebook [fac13] and Yelp [Yel13]. Users are increasingly inter-
ested in storing and finding specific information from mobile users, such as product reviews,
restaurant reviews for a given area, or event advice for a given city. This inevitably leads to
a huge quantity of data, which could be stored in a distributed, location aware fashion on
mobile devices and queried from the network on demand. For example, interesting events and
restaurants in large cities might be stored collectively in the distributed data management
network along with their locations and reviews. When a visitor to Seattle queries the net-
work, the network searches for events, restaurants, and respective reviews on active mobile
devices within the city, perhaps using given user preferences, which are then visualized on a
map. The structured distributed data management system ensures that data is found from
all nodes having participated in and entered information into the system, and not only those

6 Resource and Location Aware Robust, Decentralized Data Management

1.2. USE CASES

that are currently online 1. Figure 1.4 illustrates how users each have different information
which they store locally and can be combined when queried.

However, mobile users will only be interested in participating in data storage and retrieval if
their mobile devices are not overrun by the accrued load. In this case, a natural load balancing
may be achieved by distributing the information in a location aware fashion to the physical
area it pertains to. Areas with much information most likely have many participating nodes
within said area inputting data. The same is likely of areas with high query rates. On the
other hand, weak nodes with low battery power or bandwidth availability should be used
only moderately, while laptops or servers with more resources and longer uptimes should be
more heavily utilized. Hence, both resource and location awareness play important roles in
the success of the network.

1.2.3 Sensor Networks

Sensor networks may employ static or moving sensor nodes with hard wired or dynamic over-
lays between the nodes. A sensor network may be responsible for streaming or forwarding
sensed data to a sink, distributing data or detected changes among the sensor nodes, jointly
processing sensed data, or distributively storing processed data in the sensor network for a
specified amount of time. Sensor networks with large numbers of extremely small sensors,
for example dust sensors, often operate on battery power and are based on wireless com-
munication. Such networks can be used, for example, as survaillence of earthquake activities
using a mesh network distributed across city rooftops as in EDIM (Earthquake Disaster In-
formation System for the Marmara Region, Turkey) as coordinated by the University of Karl-
sruhe [WEZ+10]; or to closely monitor ground temperatures within a natural region prone to
forest fires.

Wireless communication most often happens on an ad hoc basis, with sensor nodes commu-
nicating directly with one another, but there are many different approaches for building and
routing over an ad hoc network, from cluster based schemes to emergent schemes such as ant-
based routing. Thus, sensor nodes demonstrate restricted resources including battery power,
bandwidth, and computing power that, if overused or misused with respect to their under-
lying ad hoc network, can quickly lead to node failures, network delays, lost data, or failed
processes. Furthermore, the network can improve its resource usage and data availability by
acting in a location aware fashion, reducing the amount of hops that single tasks require by, for
example, storing data inside the wireless sensor network nearby to where it will be needed or
jointly processing data on nodes that are within direct communication range of one another.
Location awareness, however, may depend strongly on the implemented underlay structures.
A cluster-based approach, for example, would profit most from location awareness that takes
cluster structures and cluster heads into account, as two nodes that are physically close but
belong to different clusters may be logically distant within the underlay.

1.2.4 Heterogeneous Cloud

Take for example a cloud environment, in which nodes have varying computing power, energy
consumption, and network connections (see Figure 1.5). Efficient and reliable nodes with high

1This use case idea originated from Béatrice Finance from PRiSM Laberatory-University of Versailles.

Resource and Location Aware Robust, Decentralized Data Management 7

CHAPTER 1. INTRODUCTION

11-2012

07-2013

01-2013

04-2013

01-2013

08-2011

09-2012

09-2012

10-2010

09-2009

09-2012

09-2012

05-2011

06-2009

03-2008 05-2013

05-2013

01-2013

11-2011

12-2012

03-2008

09-2013

04-2010

07-2010

07-2009

05-2011

05-2011

08-2010

08-2010

03-2008

09-2012

07-2013

07-2013

09-2013

06-2009 03-2012

04-2008

03-2010

02-2009

02-2009

Figure 1.5: Server racks in a cloud have varying physical distances to one another depending
on their locations, even if they are all located within a single building. They also have varying
strengths and reliabilities depending on, among other things, their load and ages.

computing power should obtain more load than inefficient nodes with low computing power.
Furthermore, fewer replicas are required to achieve the same data availability when they are
placed on reliable nodes. On the other hand, routing hops should follow low-latency links in
order to reduce cross-rack and cross-network traffic, shorten lookup times, and reduce energy
costs. Thus, links to nearby nodes within the same rack or regional area should be preferred.

Or consider a second example in which widespread wireless nodes run on battery power (e.g.
smart phones which are recharged at regular, dependable intervals) and maintain a distributed
hash table using an intact infrastructure: Nodes with high power availability can handle more
load than nodes with very limited power availability while latencies between nodes vary greatly
depending on nodes’ up and down links. While in both scenarios all nodes may cooperatively
share the storage load, reducing the maintenance and routing load on weaker nodes would
improve the networks’ performance. Moreover, in the first case, minimizing inefficient node’s
maintenance and routing load can help reduce the overall network costs, while in the second
case, minimizing low power nodes’ maintenance and routing load can help to lengthen nodes’
lifetimes between recharging. A homogeneous use of the nodes would ultimately result in
shorter battery lifetimes and thus higher failure rates of low power nodes, thus effecting both
the network’s robustness and overall storage capacity.

1.3 Requirements

While our main goal remains robustness, these use cases provide us with a list of specialized
requirements that influence robustness for the distributed data management system and go
beyond location and resource awareness. These requirements are explained before taking a
more in depth look at the definition issues surrounding location and resource awareness. As
we will see in Chapter 4, each of these requirements can be assessed from varying perspectives

8 Resource and Location Aware Robust, Decentralized Data Management

1.3. REQUIREMENTS

using numerous measures. The main goal from which all others stem remains:

Robustness. Data that has been input into the system needs to be available at any given
time. Thus, robustness can be equated to data availability. This means that data can
be found when queried, even if there is a very high query rate or the data’s original owner
has failed. To ensure robustness, the network must remain intact, the network must be
able to efficiently store and query for information, enough nodes must be present to
cover the required storage capacity and query load, and nodes must be able to handle
node failures and data handoffs.

Note that while each of the following six specific requirements has a unique specialized goal, the
means towards reaching these goals often overlap, and they all serve the purpose of improving
the central goal: overall robustness.

(i) Self-organization. The centralized coordination of a quickly growing network based
on a large number of users inputting data into the system and storing and querying that
data would inevitably lead to a bottleneck. In order to facilitate the system’s growth
without a bottleneck, decentralized self-organization is necessary.

(ii) Scalability. Self-organization alone does not ensure the system’s scalability. Nodes
may be joining the network and information may be input into the system at a high
rate, and the system needs to be able to handle these growth dynamics.

(iii) Load Balancing. Load needs to be distributed amongst nodes in a manner that avoids
both bottlenecks and underused nodes. When, for example, load is distributed primarily
within a single given geographic region where queries originate, then nodes within that
region become overused with long delay and high failure rates while nodes in other
regions have little to no load.

(iv) Data consistency. Data replication is essential in ensuring robustness, but replications
need to be held up to date and consistent to ensure that queries return the correct
information.

(v) Resource awareness. The heterogeneous, possibly mobile nodes should be handled
with respect to their varying resource availabilities. Ignoring nodes’ strengths or weak-
nesses may cause nodes to be overburdened or underused, resulting in poor load bal-
ancing and possibly causing node failure, thus reducing the overall robustness of the
system.

(vi) Location awareness. Location awareness aims at integrating nodes’ locations into
where and how information is stored and how queries are routed within the network. It
ultimately leads to lower network traffic and can be used to save information close to
where it is needed, also improving the data’s availability in the case of node failures or
network partitioning.

Robustness along with the requirements (i)-(vi) provide the basis for this work’s research
goals, which can be summarized as the development and comparison of system solutions that
suitably fulfill these requirements. Naturally, foundational system decisions are made on the
basis of these requirements.

Resource and Location Aware Robust, Decentralized Data Management 9

CHAPTER 1. INTRODUCTION

Requirement Characterization

While the goal of this work is to develop and compare system solutions that fulfill the ro-
bustness requirement by fulfilling requirements (i)-(vi), the possible systems cannot take the
form of a mathematical optimization problem that can simply be solved for the best solutions.
However, as we will see in later chapters, a specific system often has settings and parameters
that can be used to alter the degree to which various requirements are fulfilled and which can
be used to formulate mathematical optimization problems. But first, we must find systems
that fulfill all of these requirements to some degree.

While each system can be broken into various design aspects that work together to create the
overall system’s behavior, note that a system can display load balancing, data consistency,
resource awareness, or location awareness even when the respective requirement is not incor-
porated into every design aspect. For example, an effectively load balanced system might have
both imbalanced routing and maintenance load, with routing being performed primarily by
one group of nodes and maintenance performed by yet another group of nodes. Or a resource
aware system may only have resource awareness integrated into its routing, and not into its
data distribution or maintenance.

Integration Requirement

Prerequisite for (i) self-organization

all design issues (ii) scalability

(iii) load balancing

Overall system goals, (iv) data consistency

vary for design issues (v) resource awareness

(vi) location awareness

Table 1.1: Requirements must be met in different manners.

On the other hand, the self-organization and scalability requirements can only be fulfilled
when every aspect of the system is self-organizing and scalable. For this work, if a single
design aspect proves not to be self-organizing, i.e. requires central coordination, then the
overall system cannot be considered self-organizing. Likewise, a single non-scalable aspect
leads to a bottleneck, impeding the overall scalability. Thus, in Chapter 3, where limitations
and approaches are discussed, requirements (i) self-organization and (ii) scalability are treated
as prerequisites for each design aspect while the remaining requirements (iii)-(vi) are treated
as overall system goals (see Table 1.1).

10 Resource and Location Aware Robust, Decentralized Data Management

Chapter 2

Concepts: Resource and Location
Awareness

As we will see in the related work discussed in Chapter 4, resource and location awareness have
been treated in varying fashions in structured peer-to-peer networks and have seldom been
considered together. Unfortunately, the lack of a common foundation makes comparing the
characteristics, goals, applicability, and effectiveness of various approaches difficult. Moreover,
resource awareness is generally not considered directly in evaluation metrics, hindering the
evaluation of the effects of resource awareness on system behavior. In order to facilitate such
comparisons, taxonomies for the treatment of resources and locations are introduced in this
chapter. These taxonomies do not address how approaches use these resources and locations to
achieve resource and location awareness, as discussed in Chapter 4, but rather what and how
resources and locations can be interpreted. With the help of these taxonomies, the specific
interpretations used throughout this work are then discussed and a basic resource and location
framework is established.

2.1 Resources Taxonomy

As previously discussed, resources are understood in a broad sense, ranging from battery
power to computing capacities to bandwidth, but always express some heterogeneity among
nodes. Yet, how effectively this heterogeneity can be incorporated into a system’s design
depends on how nodes’ resources are defined and observed. Since this clearly varies widely
for specific cases, a more specific characterization is necessary to understand the concept and
use of “resources.” The following five dimensions enable the characterization of how nodes’
resources are treated:

R.1 which node characteristics are represented by observing resource availability levels,

R.2 what is interpreted as resources,

R.3 how is the availability of a node’s resources determined,

R.4 what scale is used to express this availability,

11

CHAPTER 2. CONCEPTS: RESOURCE AND LOCATION AWARENESS

R.5 how are these resources notationally expressed.

Dimension Example

connection strength to network

R.1 Characteristics available/existent load

reflected by resources suitability for specific tasks

time-to-live

combination of:

R.2 Interpreted as resources bandwidth, battery power, computing power,

available software, connectivity to server

global/centralized assignment

R.3 Determining local raw resource measurement values

resource availability local values compared to neighborhood values

local values compared to global/static values

binary {0, 1}

R.4 Scale finite/infinite discrete levels {0, 1, . . . , lmax} or N

continuous range ⊆ R+

function

R.5 Notation scalar

tuple

Table 2.1: Concrete examples for resource dimensions.

Table 2.1 offers concrete possibilities for these dimensions, but these lists are not necessarily
exhaustive. Note that the various dimensions are independent of one another. We might, for
example:

(R.1) wish to represent a node’s suitability to run a given program and its corresponding
time-to-live by observing its resources while having

(R.2) nodes with battery power and an available software package considered as resources
whose availability are

(R.3) determined compared to a given global power scale and the local presence of the
software on

(R.4) continuous and binary scales, respectively, but

(R.5) expressed as a scalar by multiplying both values.

Note furthermore that while R.4 and R.5 only represent the mathematical framework in which
resources are interpreted and saved, they have significant influence in how effective resources

12 Resource and Location Aware Robust, Decentralized Data Management

2.2. LOCATION TAXONOMY

are used. The scale determines at what granularity resources are observed, and thus how
much information is made accessible. For example, whether battery power is observed merely
as “strong” and “weak” (binary), on a scale of integers between 1 and 4, or in the continuous
interval [0, 1] strongly influences how an implementation can treat and differentiate between
nodes of varying battery strength. On the other hand, when multiple resources are monitored,
the notation influences how the varying resources can be used. For example, if battery power
and bandwidth are both of interest, they might be combined into and stored as a scalar sum
quality = power + bandwidth, used as parameters for a function that expresses node quality
in over a node-uptime variable quality = fpower,bandwidth(uptime), or stored separately in a
tuple quality = (power, bandwidth).

Clearly, these dimensions will strongly influence the effects of resource integration in a system:
the better the chosen resources’ calculated notations (a combination of dimensions R.3, R.4,
and R.5) reflect the target characteristics in R.1, the more reliably they can be used to
the desired effect within the system. In our case, where an improvement in the overall data
availability robustness is the main goal, R.1 should also be correlated with individual nodes’
robustness. However, node robustness is inevitably interpreted differently for various scenarios.
Take for example a mobile network: time-to-live plays an important role if there are many
nodes with short lifetimes while connection strength is more important if nodes have long
lifetimes but often loose connectivity on the outskirts of the network. Thus, the goals of this
work provide few constraints for R.1 alone, and likewise leave the other dimensions largely
without constraints, as it is more important how the dimensions work together.

2.2 Location Taxonomy

Of course, the effects of location awareness also hinge on how location and distance is de-
fined and used. While location may be used directly for tasks such as data placement, the
corresponding distance may be used to establish links to nearby nodes or to chose nearby
routing hops. However, location itself can range from direct physical location to a relative
location with limited similarity to the physical world based merely on the round trip times to
other nodes. Location can also be characterized via multiple dimensions, so that its working
definition depends on:

L.1 what we understand location to express,

L.2 how location is notationally expressed,

L.3 how location is determined,

L.4 how location is used to calculate distances, and

L.5 what we understand distances to express.

Possible values for these dimensions are listed in Table 2.2, although, again, this list is not
necessarily exhaustive. The first and fifth dimensions determine how the location information
can be meaningfully used within a system, and the accuracy with which L.2, L.3, and L.4
reflect L.1 in L.5 will play a role in determining how effectively the location information can
be used to increase robustness.

Resource and Location Aware Robust, Decentralized Data Management 13

CHAPTER 2. CONCEPTS: RESOURCE AND LOCATION AWARENESS

Dimension Example

L.1 Location expresses (i) actual physical location

(ii) relative location in respect to landmarks or nodes

coordinates

L.2 Location notation bins

(links within) a graph

GPS coordinates - (i)

triangulation to nodes with GPS coordinates - (i) or (ii)

L.3 Location determined latency between node pairs - (ii)

graph based information - (ii)

closest found node’s bin - (i) or (ii)

Euclidean distance

L.4 Distance calculated Shortest distance in graph

Manhattan distance

round trip latency between two nodes

L.5 Distance expresses number of hops between two nodes

number of ISP’s traversed between two nodes

physical distance between two nodes

Table 2.2: Concrete examples for location dimensions. For “location determined” values, the
meaningful corresponding values for “location expresses” are listed.

For example, from the perspective of location aware routing load and replication, if the dis-
tance expresses:

� the number of hops between two nodes, then the system may decrease the overall network
traffic (by reducing the number of hops used per task) and to place data within a few
hops of where it is needed;

� the number of ISP’s traversed between two nodes, then the system may decrease the
cross-network traffic (by reducing the number of hops between ISP’s for tasks) and place
data within the ISP where it is needed;

� the physical distance between two nodes, then the system may decrease the total physical
distance traveled by lookups (thus decreasing the number of underlay hops for tasks)
and place data physically close to where it is needed.

Analogous to resource awareness, our scenarios and the robustness requirements set few con-
ditions on the values assumed for these dimensions, requiring only that the resulting distances
effectively reflect the desired behavior between nodes.

14 Resource and Location Aware Robust, Decentralized Data Management

2.3. TAXONOMY DECISIONS

2.3 Taxonomy Decisions

This work attempts to take a broad approach to resources and location, as is the case with
much of literature as discussed in Chapter 4 but some restrictions are made within the tax-
onomy. These restrictions provide a foundation for this work with which the applicability
of existing approaches can be assessed, new approaches can be developed, and analysis and
evaluations can be performed.

R.1 Nodes’ resource availabilities reflect some availability-related characteristic. For example,
this could be node load if nodes become unavailable with a certain load threshold or
connection strength if nodes with weaker connections are often unavailable. The primary
use case scenario with mobile nodes with limited battery power corresponds to time-to-
live. This assumption is a necessary link between the discussed use case scenarios and
the work that follows.

R.2 The resources used to reflect availability are also unrestricted, although the use cases
refer primarily to battery power and bandwidth.

R.3 Nodes determine resource availability locally, but their values should be comparable on
a global scale. This is necessary in order to uphold the scalability and self-organization
requirements. In order to achieve a global scale, each node must know approximately
how much battery-power or bandwidth is associated globally with a given availability.

R.4 A finite set of discrete values {0, 1, . . . , lmax} is used for nodes’ resource levels. This
provides a large degree of differentiation with an arbitrary number of levels. While this
does not offer as much variation as a continuous range, it eases analysis and evaluation
by providing groupings of nodes over which measures can be assessed.

R.5 This work focuses on the scalar notation, exploring the possibilities for integrating re-
source and location awareness for this most simple and popular notational form. Based
on this work, future work could then focus on the more complex tuple or function
notations.

L.1 Location expresses actual physical location, such that any two nodes can determine their
location with respect to one another. Otherwise, nodes cannot decide if they are physi-
cally close to arbitrary other nodes, which diminishes the system’s flexibility.

L.2 Location is notated using coordinates, thus facilitating accurate distance approximations
between nodes that reflect physical distance. This supports the use of actual physical
positions. Note that bins or graphs could indeed be derived from physical locations with
coordinates.

L.3 Location can be determined in any way that reflects actual physical location.

L.4 The Euclidean distance is used to reflect physical distance. While this distance is not nec-
essary, it is the most common when using coordinates.. A distance must be established
in order to perform the later analysis in Chapters 6 and 10.

L.5 It is only assumed that it is somehow advantageous for nodes to be linked to, route
along, and have needed information stored at nodes within a small distance. Location

Resource and Location Aware Robust, Decentralized Data Management 15

CHAPTER 2. CONCEPTS: RESOURCE AND LOCATION AWARENESS

awareness could otherwise be considered superfluous. Thus, distance expresses physical
distance but may interpreted to reflect the round trip latency or number of hops between
two nodes.

2.4 Network Assumptions

We assume that each node x has sufficiently correct two dimensional virtual (i.e. not nec-
essarily geographical) network coordinates (x1, x2). These may be obtained, for example, by
nodes measuring their latencies to other nodes and adjusting their coordinates according to a
mass-spring system such as in Vivaldi [DCKM04]. Any two nodes x and y can determine their
physical distance by calculating the Euclidean distance between their network coordinates:

Definition 2.4.1 (Physical Distance.).

dphy(x, y) :=
√

(x1 − y1)2 + (x2 − y2)2.

Although similar networks could be built using other coordinate dimensionality and distance
metrics, this constellation is chosen for simplicity. Similarly, coordinates are treated statically
in analysis and evaluation to reduce the number of variables.

For analysis purposes, a uniform distribution of nodes within a disc-space with a fixed di-
ameter was chosen to simplify mathematical comparisons. Simulated evaluations use both
these randomly chosen coordinates and coordinates from a set of over 200,000 node positions
provided by the used peer-to-peer simulation framework OverSim [IB09].

2.4.1 Resource Availability

There are a fixed number of resource availability levels lmax + 1. Each node x knows its
dynamic resource availability level that is expressed as an integer value

xR ∈ {0, 1, . . . , lmax}

for the fixed maximum level lmax. The lowest possible resource level (while still operational) is
xR = 0 while xR = lmax implies unbounded resources. This assumption must be handled with
care, for each node still has a maximum load that it can handle and dictated by, for example,
CPU or bandwidth. Thus, an upper bound for load per time frame must be considered for
these strongest nodes. The resource levels are globally defined so that a given resource level on
differing node types is comparable, i.e. nodes with identical resource levels have comparable
available resources, but a node’s own resource level is only locally known. Considering for
example power availability with lmax = 3, that could mean that a handheld operating on
battery power may have resource level two when fully charged, but a cell phone with a weaker
battery may only reach a resource level one when fully charged, and only nodes hooked up to
constant power supplies can be considered level three. Note that nodes can switch between
resource levels

When analysis or evaluation require a distribution of nodes’ resource levels, a Zipf distribution
is assumed. This reflects trends for node lifetime found in peer-to-peer networks, where node
lifetime tends to follow a heavy-tailed Pareto distribution (the continuous counterpart of the

16 Resource and Location Aware Robust, Decentralized Data Management

2.4. NETWORK ASSUMPTIONS

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 1 2 3 4

n
u

m
b

e
r

o
f

n
o

d
e

s

resource level

lmax=3

lmax=4

lmax=5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30 35 40 45 50

p
e
rc

e
n
ta

g
e
 o

f
n
o
d
e
s

hours online

Level 0
Level 1
Level 2
Level 3
Level 4

Gnutella Pareto

Figure 2.1: Left: The quadratic Zipf distribution for 1000 nodes and 3,4, and 5 resource
levels. Right: The Pareto distribution found by Bustamante and Qiao for Gnutella nodes’
lifetimes [BQ04]. The lifetime-groupings which correspond to the number of nodes in each
resource level for 5-level quadratic Zipf-distribution at right are shown as a bar graph.

Zipf distribution) [BQ04,SGG02]. While Kassinen et al. have used an exponential distribution
to model mobile node lifetimes in peer-to-peer systems [KHKY09], Ou et al. showed that the
choice between a Pareto distribution, exponential distribution, or Weibull distribution did not
significantly effect the performance of their simulated P2P network [OHY09].

The probability that a random node x has resource level xR = ` ∈ {0, 1, . . . , lmax} depends
on the power ρ of the Zipf-distribution:

p` := P (xR = `) =
1

(`+ 1)ρ
· 1∑lmax

j=0 1/(j + 1)ρ
. (2.1)

The power of the Zipf distribution is not set for the analysis, but for examples and evaluation
where a concrete distribution is needed, a power of two Zipf distribution is used. The corre-
sponding number of nodes per resource level in with a power of two Zipf distribution with
a total of 3, 4, and 5 resource levels are shown in Figure 2.1, as is the Pareto distribution’s
probability density function (pdf) with the corresponding cumulative distribution function

FX(x) =

{
1− (1.1924

x)1.0607, x ≥ 1.1924

0, x < 1.1924
(2.2)

found by Bustamante and Qiao [BQ04] to express node lifetimes in the peer-to-peer file sharing
system Gnutella [AH00]. The bar graph behind the Pareto pdf shows how nodes’ lifetime
lengths would have to be assigned to resource levels for lmax = 5 in order to assign the
nodes to resource levels that yield the shown Zipf distribution of 1000 nodes. For example,
nodes with lifetimes between the lowest lifetime 1.924 hours and approximately 3.5 hours
would be assigned to resource level 0 to yield an expected 683.2 nodes, while nodes with
lifetimes between 3.5 and 7.3 hours yield an expected 170.8. Note how, for this quadratic Zipf
distribution, the size of the corresponding hour-windows increase along with resource levels.
This characteristic has been reflected in simulation setups, as described in Chapter 7.

Resource and Location Aware Robust, Decentralized Data Management 17

CHAPTER 2. CONCEPTS: RESOURCE AND LOCATION AWARENESS

2.4.2 Node Failure

Node failure is approached from three different perspectives for the mathematical analysis
and simulative evaluation in order to assess all of the Chapter 1 requirements: a massive
simultaneous failure, a constant drain scenario, and a location-based scenario. For the massive
failures, nodes with higher resource levels have lower failure probability (based on a scenario
with nodes with varying time-to-live or battery power), with 30% to 50% of nodes leaving
simultaneously and ungracefully. This scenario is meant to assess the network’s ability to
route lookups and find replicas after massive unexpected failures, thus directly evaluating the
robustness and data consistency requirements and indirectly evaluating resource awareness.
With resource awareness, the system should recognize which nodes are in higher danger of
failing and prepare accordingly.

For the analysis and evaluation with the massive failure model, a probability distribution
function for nodes’ conditional failures P (Fx|xR = `), given the event xR = `. This means
that a node x’s failure probability depends on its resource level xR. Based again on Bustamante
and Qiao [BQ04], a Zipf-distribution is used and it is assumed that the conditional probability
is proportional to P (R = `), i.e. P (Fx|xR = `) = α · P (xR = `) for some α. Assuming that
there are an expected γ simultaneous network failures, e.g. γ = 500 out of N = 1000 nodes
fail, then the probability that a single random node will fail is γ/N . This failure probability
can be used to derive α:

γ

N
= P (Fx) =

lmax∑
j=0

P (Fx and xR = j)

=

lmax∑
j=0

P (Fx|xR = j)P (xR = j)

=

lmax∑
j=0

αP (xR = j)P (xR = j)

= α

lmax∑
j=0

P (xR = j)2. (2.3)

Thus, for the conditional probabilities P (Fx|xR = j) = αP (xR = j) the constant α is:

α = γ/

N lmax∑
j=0

P (xR = j)2

 .

On the other hand, the constant drain scenario assesses how long a network can “survive”
without the help of new peers. A network is assumed “dead” after a fixed percentage of nodes
have failed, for example 50% or 70%. This is a simplified churn model, in which nodes only
fail (i.e. new nodes are not added), and failure is caused by node activities which drain a
node’s resources until they are depleted. Thus, the above conditional failure probabilities are
not applicable in this scenario, since a node’s failure depends not only on its resource level
but also on how heavily it is used. This failure model is rooted in the use case scenario with
nodes running on varying levels of battery power (i.e. resource levels) and drained with each

18 Resource and Location Aware Robust, Decentralized Data Management

2.4. NETWORK ASSUMPTIONS

sent and received message. Asymmetrical drain patterns are used, with a send costing more
than a receive, but with drain levels constant and do not vary between the resource levels.
However, the top resource level is the exception, and since it is considered to have undepletable
resources, it is not drained at all (i.e. they do not fail). The selected resource and drain values
are kept abstract to serve only in comparing various approaches, and thus do not attempt
reflect real world battery runtimes. By observing the system’s lifetime and resource usage
patterns as the system adapts to node failure, the applicability of various approaches to large
resource-limited networks can be assessed. Thus, it directly evaluates the scalability, load
balancing, and resource awareness requirements.

The location-based failure model aims at testing and comparing systems’ location awareness.
Recall that the objectives of location awareness include using location information to improve
data availability in the face of node failures, reduce overall load, and decrease lookup times
by placing data close to where it is needed. Much of this can be tested in static networks or
networks with normal churn. By additionally triggering widespread failures within physical
clusters, as might be the case in a disaster scenario, the additional robustness added by the
location awareness can be tested. For this failure model, nodes fail with a probability that
depends on their distance to a fixed point. Thus, nodes close to the failure hub have a very
high failure rate while far nodes are left mostly unscathed. By observing the data availability
and lookup latency of data of specific interest to the affected area, the location awareness,
data consistency, and load balancing of various approaches can be compared.

Resource and Location Aware Robust, Decentralized Data Management 19

CHAPTER 2. CONCEPTS: RESOURCE AND LOCATION AWARENESS

20 Resource and Location Aware Robust, Decentralized Data Management

Chapter 3

Peer-to-Peer Approaches,
Limitations, and Contributions

This chapter explores the possibilities for developing a distributed data management system
that fulfills the robustness requirements from Section 1.3, highlights limitations and challenges
that must be faced in doing so, outlines this work’s specific goals based on the limitations and
challenges, and briefly describes the contributions of this work. Open problems associated with
these goals and contributions are discussed in Chapters 4 and 8 after an intensive overview of
existing approaches and solutions. Thus, the contributions described here are meant merely
as an orientation point for the reader.

While not all of the use cases necessarily implement peer-to-peer systems, they are assumed
to be the basis of this work. In order to achieve the self-organization requirement, nodes
are assumed to cooperate to collectively store, maintain, and query a large amount of data,
with each node taking on both a client and a server role. In its client role, a node can input
information into and query the system. In its server role, a node maintains, updates, and
answers queries on data itself. The following section thus explores the term peer-to-peer and
the characterization of peer-to-peer systems in order to provide a basis for further design
decisions.

3.1 Peer-to-Peer Systems

There have been many definitions of peer-to-peer systems since the turn of the century, includ-
ing the following much cited definition from Androutsellis-Theotokis and Spinellis [ATS04]
which is based on two characteristics that they ascribe to peer-to-peer systems: the direct
sharing of resources (i.e. without an intermediary node/server) and the ability to adapt to
network dynamics (e.g node and connection failures).

Peer-to-peer systems are distributed systems consisting of interconnected nodes
able to self-organize into network topologies with the purpose of sharing resources
such as content, CPU cycles, storage and bandwidth, capable of adapting to fail-
ures and accommodating transient populations of nodes while maintaining ac-
ceptable connectivity and performance, without requiring the intermediation or
support of a global centralized server or authority.

21

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

Use case requirements

robustness

self-organization

scalability

load balancing

data consistency

resource awareness

location awareness

P2P challenges

robustness

resource management

fairness

performance

scalability

security

grouping of
information

Figure 3.1: Mapping of general peer-to-peer challenges to specific use case requirements.

This definition excludes systems that rely on centralized servers, as does the approach taken
in this work. Furthermore, it stresses the importance of sharing resources, while this work
aims at examining and optimizing how those resources other than content and storage space
are used. The main challenges [KKHY13] or attributes [ATS04] associated with peer-to-peer
networks in literature include:

Robustness may be interpreted in many ways. Risson and Moors, for example, consider
robustness as a combination of dependability in the face of failure [LZZ+04] and adapt-
ability to changing resources, identities, queries, and application requirements [RM06].
Androutsellis-Theotokis and Spinellis meanwhile group robustness into security as
“availability and persistence”, such that data is accessible to users when required despite
failures and system changes [ATS04].

Resource management capabilities were reduced by Koskela et al. to “suitability for
battery-powered devices” [KKHY13] while Androutsellis-Theotokis and Spinellis focus
primarily on data as a resource [ATS04]. These resources are managed, for example, by
adapting message patterns to reduce power usage or allowing the removal or documents
and adaption of storage space.

Fairness involves each node obtaining a level of load that corresponds to its capabilities. Fan
et al. state that “To make the system scalable, peers need to contribute (via uploading
to other peers) in order to receive service.” [FLC09]

Performance stands, as a trade-off, in direct relation to fairness [FLC09]. It generally refers
to the ability to complete tasks within an acceptable time frame, such as data storage
and lookups.

Scalability refers to the system’s capability to uphold its performance and robustness despite
an increase in the number of nodes.

22 Resource and Location Aware Robust, Decentralized Data Management

3.1. PEER-TO-PEER SYSTEMS

Security is a very broad challenge that includes both integrity and authenticity; privacy
and confidentiality; and availability and persistence (thus overlapping with robust-
ness) [ATS04]. It thus deals with the accuracy and completeness of data and its origin
as well as the protection of data from unauthorized use.

Grouping of information was identified by Androutsellis-Theotokis and Spinellis as an
important new area of peer-to-peer research. Data can be grouped in various fashions,
from semantic grouping to location-based grouping [ATS04].

Typical measures which are used to evaluate these challenges in implemented systems are
discussed with respect to the literature in Chapter 4. The specific requirements established in
Chapter 1 can be mapped to the general peer-to-peer challenges as shown in Figure 3.1. While
robustness and scalability can be uniquely mapped, the other requirements can be associated
with multiple challenges. Note that security is the sole challenge that is not addressed in this
work, although it is certainly important for any distributed data management system.

These peer-to-peer challenges have been addressed in a multitude of fashions, and vari-
ous taxonomies have been developed in order to classify peer-to-peer solutions. Risson and
Moors, for example, introduced a taxonomy with categories for four research directions in
their research survey on robust peer-to-peer networks: search, storage, security, and appli-
cations [RM06]. A taxonomy introduced by Brands and Karagiannis [BK09] that was based
largely on Androutsellis-Theotokis and Spinellis survey on peer-to-peer content distribution
technologies [ATS04] and was later extended by Koskela et al. as shown in Table 3.1. Con-
sidering these categories with respect to the requirements established in Chapter 1, relevant
characteristics are then explained and characterized for this work’s use cases, further summa-
rized in Table 3.2.

Category Options From

Type of service
communication; collaboration; backup

[ATS04]

distributed computing; content distribution;
streaming; data management; information retrieval

Index centralization partially centralized; distributed; hybrid; local

Network structure
structured; unstructured;
unstructured and structured

Security mechanisms
authentication; authorization; access control;
encryption; anonymity; accountability

Caching, replication, passive/active/cache-based replication;
and migration introspective/dynamic replica management

Deployment deployed; undeployed
[KKHY13]

Standardization standardized; proprietary

Number of overlays single overlay; multi-overlay [BK09]

Table 3.1: P2P taxonomy categories.

Resource and Location Aware Robust, Decentralized Data Management 23

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

Type of service. The types of peer-to-peer services have evolved over the past decade, and
these categories are similar to those suggested by Vu et al. in their recent book on peer-to-peer
computing [VLO10]. Content distribution includes the classic wide-spread file sharing as well
as web caching, high/multi-dimensional data sharing, and publish/subscribe applications. File
sharing networks are without a doubt the most well known peer-to-peer application, including
Napster, Freenet [CSWH01a], Gnutella [AH00] and Oceanstore [KBC+00]. Peer-to-peer web
caching saves (popular) internet content at peers within an intranet through which requests
can be routed to fetch cached content, while high/multi-dimensional data sharing introduces
a more complex file sharing, indexing data according to multiple attributes or dimensions, for
example using feature vectors that describe the content of a file via the most frequently used
words. Information retrieval, although similar, can be viewed as a separate category of appli-
cations that focus on the content-based extraction of information, from which the most visible
application as web search engines such as YaCy [Yac13] or FAROO [Far13] that makes use
of distributed crawlers. Data management, on the other hand, can be viewed as an extension
of content distribution or file sharing, but refers less to the storage of unpredictable, unstruc-
tured data than as to the structuring and querying of data over a peer-to-peer infrastructure.
Examples include Local Relational Model (LRM) [BGK+02] for modeling distributed data
the distributed query engine PIER [HHL+03]. Backup systems such as pStore [BBST01] have
more sophisticated versioning and backup mechanisms than file sharing systems and are not
intended for general file sharing. Of these data-centric categories, the use case scenarios from
Chapter 1 clearly correspond to a content distribution application, or more specifically, file
sharing.

Meanwhile, of the remaining categories, the collaboration applications such as the Java soft-
ware development tool JBuilder [JBu13] or the project-oriented Collanos Workplace [Col13]
are inherently peer-to-peer on some level, since their main goal is the cooperation of
peers on joint projects. And peer-to-peer communication applications such as Skype [BS06]
and Jabber [Jab13] have found wide-spread use, similar to streaming media such as
P2PTV [dSLMM08] for television and Spotify [KN10] for music. Distributed computing appli-
cations vary widely, from the bitcoin [RH13] currency that can be earned by participating in
mining processes, to the numerous applications that use the Berkeley Open Infrastructure for
Network Computing (BOINC) middleware system on which the original SETI@home (Search
for Extra-Terrestrial Intelligence) project of “volunteer computing” was initiated.

Indexing structure. A system’s indexing structure is considered hybrid decentralized if
there is a single server which is responsible for maintaining index lists of where information
is stored or resources are located, but nodes communicate directly to perform tasks/retrieve
information. In order to locate a suitable peer for a given task, the centralized index server
must first be queried. A distributed (or decentralized) indexing structure is independent of
centralized servers such that each node is capable of locating suitable peers, while a partially
centralized index involves dynamically assigned super-peers which act as index servers. When
local indexes are used, peers index only their own data and some form of flooding must be
used to locate other peers or the data on other peers. Androutsellis-Theotokis and Spinellis
note that peer-to-peer networks are by definition decentralized, but in reality use varying
degrees of decentralization, necessitating this differentiation [ATS04]. Since hybrid systems
suffer from a single point of failure and loss of scalability due to their bottleneck, the estab-
lished requirements restrict the indexing structure to decentralized and partially centralized
systems only.

24 Resource and Location Aware Robust, Decentralized Data Management

3.1. PEER-TO-PEER SYSTEMS

Category Options

Type of service content distribution

Index centralization partially centralized; distributed

Network structure structured

Security mechanisms *

Caching, replication, and migration *

Deployment *

Standardization standardized

Number of overlays *

Table 3.2: P2P taxonomy for the approaches examined here, * denotes an arbitrary value for
the given category.

Network structure. Every peer-to-peer network is based on an overlay, or graphical rep-
resentation of the logical connections between peers. In unstructured networks, these logical
connections are formed ad hoc, with links added in an unpredictable fashion as peers enter
the network. In content distribution networks, the location at which a piece of data is stored
is independent from the overlay’s (data) structure, and is therefore not allocated to a globally
determinable set of nodes. Rather, data is stored, for example, on the node x that it originates
from; a number of nodes nearby to x; or to a strong storage node with similar data. Thus,
searching for data in an unstructured system involves exhaustively querying nodes using some
variation of flooding, since there is no way to know exactly where a piece of data is located.
Unless every node in the system is queried, there is no way to guarantee that data present
in the system will be found within a given number of hops or successfully found at all (see
Figure 3.2 for an example of flooding that is terminated after three hops). Furthermore, if data
is replicated, data updates are difficult and not typically dealt with, so that even if a query
returns a result, there is no guarantee that the result is up to date. Unstructured distributed
data management systems are often built on and reflect many of the characteristics of mobile
ad hoc networks (MANETs), with adept location-awareness and shortest-path searches. They
are considered well suited for networks with very high levels of churn [ATS04], and have thus
been implemented in systems such as Napster and Gnutella [AH00].

In structured networks, on the other hand, links are formed based on deterministic rules and
each piece of data is deterministically assigned to nodes based on the overlay’s logical struc-
ture. These assignments are simply mappings from data onto nodes and each node contains
part of a distributed routing table based on this mapping. Queries systematically traverse
the overlay with the help of these routing tables so that extant data can always be retrieved
within a bounded number of overlay hops. While structured networks have more complicated
maintenance, they profit from better scalability and lookup guarantees. Due to the definition
of overall robustness as data availability in Section 1.3, any system must provide data re-
trieval guarantees with lookup bounds in order to satisfy the robustness requirements and be
applicable for this work. Therefore, unstructured systems are ruled out at the cost of native
location-awareness and lightweight overlay maintenance, and this work concentrates solely

Resource and Location Aware Robust, Decentralized Data Management 25

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

d

get(d)

1

2
1

2

3

3

3

3

Figure 3.2: A lookup on an unstructured network often requires some kind of flooding to
search for data at an unknown position. Here, data “d” is search for, but it is still not found
after three flooding hops.

on structured peer-to-peer systems which are almost always implemented as distributed hash
tables (DHTs), which are described in the following section.

Standardization. While there are numerous peer-to-peer systems for content distribution,
only those which are freely available and whose protocols are freely documented for research
and further development are considered here. While proprietary applications may have so-
phisticated solutions to problems such as battery conservation, they offer little research value
without the necessary transparency.

Number of overlays. This category refers to the number of independent overlays which
are brought together to form a single, joint peer-to-peer network. These overlays do not nec-
essarily share the same keyspace or structure, but jointly run applications. The established
requirements place no restriction on this category, but the developed novel overlays in Chap-
ter 5 are based on single overlay systems for simplicity’s sake.

3.2 Distributed Hash Tables

Structured peer-to-peer systems, comprised to date of almost only Distributed Hash Tables
(DHTs) (Mercury is one rare example of a non-DHT structured system [BAS04]), have been
implemented for a range of applications from peer-to-peer file-sharing to instant messaging.
DHTs map both nodes and data into a joint keyspace so that data can be found in a determin-
istic fashion using key-based routing. In contrast to unstructured systems, DHTs ensure that
lookups of stored data are successful within a given number of hops, provided the network is
intact. DHTs typically spread information randomly and uniformly over participating nodes,
which self-organize into a logical key-based overlay network according to which nodes have
knowledge of each other. DHTs in their original form have a relatively good degree of robust-
ness and fulfill many of the requirements outlined in Section 1.3, including self-organization,
scalability, load balancing, and replication protocols that ensure data consistency. And while

26 Resource and Location Aware Robust, Decentralized Data Management

3.2. DISTRIBUTED HASH TABLES

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111
0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Figure 3.3: Left: all keys from the wrap-around binary space 04 . . . 14 arranged as a ring.
Right: Three nodes, shown as squares, have chosen nodeIDs which determine their position
in the keyspace. Possible keyranges for which they are responsible are backdropped in gray,
in this case using a distance measure of clockwise key distance. Dashed links represent nodes’
“nearest neighbors” as might be defined in a ring-topology.

work has been done to improve their location awareness and to handle heterogeneous networks,
there is little at the crosssection that incorporates both location and resource awareness to
increase the system’s robustness in dynamic scenarios such as in Section 1.2. This work picks
up here and aims at improving the robustness of DHTs on heterogeneous networks with nodes
of varying resource availability and with consideration to the outlined requirements (0)-(vi).

A distributed hash table is essentially a hash table with (key, value) pairs (κ, ν) that is broken
up to be stored on many different nodes using a mapping of keys to nodes. The basic functions
called by users of a DHT are the store operation put(κ, ν), which stores value ν at key κ, and
the lookup operation get(κ), which returns the value(s) stored at key κ. DHT design issues
include:

(keys) the choice of the keyspace,

(map) the allocation of keys to nodes,

(links) the overlay network generated by logical links between participating nodes,

(routing) the routing of lookups over the overlay network,

(maintenance) the maintenance of the overlay network links,

(churn) the handling of node joins and fails, and

(replication) replication to increase data availability and ensure data consistency.

For each (κ, ν) pair, the key is taken from a defined keyspace: for example the wrap-around
binary space 0m . . . 1m as shown in Figure 3.3. This key value is a piece of data to be stored,
possibly ranging from complete files to the address(es) of the node(s) that store the particular
data referred to by κ. Typically, each node chooses a nodeID from the keyspace and a system-
wide known mapping of individual keys to nodeIDs then partitions the keyspace such that

Resource and Location Aware Robust, Decentralized Data Management 27

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

0000
0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111
0000

0001

0010

0011

0100

0101

0110

0111
1000

1001

1010

1011

1100

1101

1110

1111

Figure 3.4: Starting from the situation in Figure 3.3. Left: a node with nodeID 1010 joins the
network, data must only be migrated between nodes 0001 and 1010. Right: Node 1000 leaves
the network, data must only be migrated between nodes 1000 and 1010.

each node recognizes in a self-organized manner the keyrange for which it is responsible (the
gray underlayed areas in Figure 3.3 show one example of such a mapping). This mapping
employs consistent hashing to ensure that a single node’s join or failure only effects a small
number of the total nodes, preferably producing significant changes in the routing tables and
key values of only one or two neighboring nodes. Figure 3.4 demonstrates how the key values
assigned to nodes may change using consistent hashing for node joins and failures. Indeed,
consistent hashing is one of the most important characteristics of DHTS, as it is contributes
greatly to scalability and self-organization. NodeIDs are chosen in a variety of fashions, most
often randomly or as the SHA-1 hash of a node’s IP address but also in direct correlation
to a node’s location. As we will see in Chapter 4, most of the standard approaches (e.g.
Chord, Pastry, P-Grid, end Kademlia) do use the m-bit binary wrap-around keyspace, pick
nodeIDs randomly, and store (κ, ν) pairs on the node whose nodeID is closest to κ based
on a protocol-specific distance (e.g. clockwise distance for Chord, Pastry, and P-Grid; XOR
distance for Kademlia).

Using these nodeIDs, nodes then establish logical links to each other on which network mes-
sages are routed. These overlay links are established depending on the network topology
prescribed by the given DHT and together form the network overlay. While the most popu-
lar topologies are rings, prefix trees, and binary trees, these and other topologies have many
similarities and often establish links to identical neighbors. Figure 3.3 shows how links might
logically be established to nodes’ nearest neighbors in a ring-based topology, while Figure 3.5
demonstrates how links to nearest neighbors might be logically determined for a binary-tree
based approach. Since overlay links are logical, they most often require multiple physical
underlay hops, often on nodes that do not belong to the DHT. Network messages, such as
lookup and maintenance messages, are routed on the overlay according to the routing proto-
col specified by the DHT. All DHTs use key based routing, with many using either greedy
routing or digit fixing on the keys, while specialized DHTs also use other paradigms such as
geographic or hierarchical routing. Both iterative and recursive routing approaches are used.
Iterative routing involves the initiating node sending out search messages for a key, receiving
answers about additional closer nodes, and repeatedly sending out search messages to closer

28 Resource and Location Aware Robust, Decentralized Data Management

3.2. DISTRIBUTED HASH TABLES

00000001

1 0

00100011

1 0

1 0

01000101

1 0

01100111

1 0

1 0

1 0

10001001

1 0

10101011

1 0

1 0

11001101

1 0

11101111

1 0

1 0

1 0

1 0

Figure 3.5: The same three nodes with nodeIDs 1000, 0101, and 0001 are used for this binary-
tree based example. Each node now looks for a nearest neighbor in the smallest possible
subtree to which it belongs, for 0101 and 0001 shown dotted and for 1000 shown in gray.
Node 1000 has a choice of two links, and has chosen 0001 in this example.

nodes until the destination has been found and the lookup message is delivered directly by
the originating node. In recursive routing, the originating node forwards the lookup message
directly to some neighbor node which then forwards the message in turn to on of its neighbor
nodes, until the destination node receives the message. The basic routing protocol used by a
node receiving a lookup or search message is summarized in Algorithm 1. Both a low number
of links per node, i.e. low degree, and a low routing complexity are DHT design goals, but
they typically pose a tradeoff: the lower the degree, the higher the routing complexity. Up-
per bounds on the routing complexity play a central role in comparing DHTs and are often
around O(logN) for networks with N nodes, while nodes’ degrees range from constant to
slowly growing such as O(logN) or O(

√
N).

Most DHTs take basic steps to replicate data in order to handle unexpected node failures,
often replicating data to several of the closest nodes in the keyspace. More complex replication
schemes are necessary for networks with high churn or update rates, and are often presented
independently from the system. The steps to discover failed nodes and partitions and then
reestablish links to rebuild the overlay are outlined for a DHT regardless of its replication
schemes.

So typically (as seen in Algorithm 2), to join a DHT, a node x first chooses a nodeID from the
defined keyspace and then contacts some bootstrap node in the DHT with a join request and
its nodeID xID. This request is routed to the node’s immediate overlay neighbor(s) (often its
immediate neighbors in the keyspace), which then adjust their routing tables, perform data
migration with x, and perhaps share network information with x. Once x has established the

Resource and Location Aware Robust, Decentralized Data Management 29

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

Algorithm 1 Lookup routing procedure at local node thisNode.

procedure routeTo(msg, key, fromNode)
if key.isInKeyrange(thisNode) then processLocally(msg)
else

for neighborNode in routingTable do
if key.isInKeyrange(neighorNode) then nextHop=neighborNode
end if

end for
end if
if nextHop undefined then nextHop = findBestNextHop(routingTable, msg, key)
end if
if nextHop undefined then dropMessage(msg)
else if usingIterativeRouting() then replyToSearch(nextHop, fromNode)
else if usingRecursiveRoutinge() then forward(msg, key, nextHop)
end if

end procedure

Algorithm 2 Local node thisNode joins via bootstrapNode.

procedure nodeJoin(bootstrapNode)
thisNode.nodeID = choseID(keyspace);
sendJoinMessage(bootstrapNode, thisNodeInfo)
processJoinResponse()
if notEmpty(neighborList) then

startDataMigration()
gatherNetworkInfoFromNeighbors()
for keyrange from overlayLinkKeyranges do

sendLinkRequest(requestMsg, keyrange)
end for

else rescheduleNodeJoin(delay)
end if

end procedure

necessary overlay links to other nodes, it is fully functional in the DHT. Any node in the
DHT can initiate a put(κ,value) or get(κ) lookup for any key κ. For example, to find a piece
of data associated with a filename, a hash of the filename can first be calculated to obtain
the respective key. The lookup is routed to the node responsible for κ either iteratively or
recursively. Once a lookup has reached the responsible node, this node either saves the value
in its local storage as a (key, value) pair or returns the requested data associated with κ to the
node that initiated the lookup. Thus, any node participating in the DHT or client that has
rights on a participating node can initiate the storage or request of data in the DHT, which
is performed in a scalable fashion with guarantees on the number of overlay hops necessary
to reach the responsible node.

Since they were first published around 2000, DHTs have received much attention and have
shown themselves to be efficient, reliable approach for storing large amounts of data in a
distributed fashion. With a quickly growing network, a DHTs slowly growing lookup latency,

30 Resource and Location Aware Robust, Decentralized Data Management

3.3. DHT DESIGN

load balancing, and low costs for adding new nodes provide the needed scalability. How-
ever, well established DHTs such as the Content Addressable Network (CAN) [RFH+01] and
Chord [SMK+01] were designed to route efficiently on homogeneous networks without lo-
cation information. Thus, most of the early DHTs do not inherently differentiate between
nodes’ characteristics (for example, group associations or resources), nor do they take loca-
tion information into account when routing lookups or placing data. This causes unnecessary
lookup delays and cross-network traffic, wasting network resources such as bandwidth and
node power, and leads to overburdened weak nodes and underused strong nodes. Further-
more, they are designed for relatively static networks so highly frequent failures and network
partitioning compromise data availability. These shortcomings are especially detrimental in
a wireless environment, which thus requires additional design consideration for resources and
location.

3.3 DHT Design

Having restricted the problem of fulfilling the system requirements from Section 1.3 to the
use of DHTs, the DHT design issues from Section 3.2 must be considered in respect to these
requirements (data availability, self-organization, scalability, load balancing, data consistency,
resource awareness, and location awareness). Cumulatively, these design aspects must yield a
system that provides robust, distributed data management on highly heterogeneous networks
of nodes that are restricted by their resource availability and display some sort of location
sensitivity. Recall that a network’s resource sensitivity may be observable through nodes’
varying power availability, bandwidth, computing power, or available software, and a network
may demonstrate location sensitivity by displaying varying latency times between various
nodes, more physical hops and incurred network load between varying node pairs, or more
routing failures to nodes from other internet service providers.

While DHT’s fulfill not only the prerequisites of data availability, self-organization, and scal-
ability but also the more flexible load balancing and data consistency requirements, they
do not natively address both resource and location awareness. In fact, resource and location
awareness often come at the cost of scalability and load balancing. However, as we will see
in Chapter 4, some DHTs do integrate either resource or location awareness to some degree.
The following two sections provide examples of how resource and location awareness could
possibly be integrated into the various DHT design aspects. Recall that, as established in
Sections 2.1 and 2.2, we have few restrictions on the concrete definition of the resource and
location dimensions (R.1)-(R.5) and (L.1)-(L.5) other than an effective reflection of what is
expected through (R.1), (L.1), and (L.5) by the respective other dimensions.

3.3.1 Resource Awareness

Each of the DHT design issues from Section 3.2 can be adjusted for resource awareness,
although their practicality depends on the given scenario, for example:

(keys) and (map) the keyspace can be chosen as the same space in which the resources
are notated and then used to define nodes’ keys, resulting in nodes with similar resource
availabilities being near to one another in the keyspace,

Resource and Location Aware Robust, Decentralized Data Management 31

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

(links) links can be generated based on nodes’ resources, such that only nodes with similar
resources are linked or each node has links to each of various resource types,

(routing) routing can be designed with a preference for strong nodes or paths that use
nodes with similar resources,

(maintenance) maintenance frequency can be adjusted to be more frequent for weak nodes,
increasing awareness of weak nodes’ current resource states, or to be coordinated by and
more frequent for strong nodes, reducing weaker nodes’ maintenance load,

(churn) node joins and fails can be initialized and overseen by strong nodes, and

(replication) data can be replicated to and managed by strong nodes, with replica avail-
ability and the degree to which eventual consistency is preformed on each responsible
node depending on its resource level.

3.3.2 Location Awareness

Similar to resources, location can also be integrated into the various design issues from Section
3.2, for example:

(keys) and (map) Analogously to resource awareness, the keyspace and nodeIDs can be
chosen to reflect physical location, for example a two-dimensional space that wraps
around to form a torus (as in CAN [RFH+01]), with a distance preserving mapping
between a node’s GPS coordinates and its nodeID in the keyspace.

(links) and (routing) To avoid neighbored nodes in the overlay network that are distant
in the underlay network, which causes increases in latencies, lookup path hop lengths,
and load (and thus decreasing robustness), overlay links can be established to nearby
nodes and routing can prefer nearby nodes or overall short routing paths.

(maintenance) Nodes could reduce the overall network maintenance load by performing
link maintenance based on the distance to their links, with nearby links maintained
more frequently than distant links. This would specifically reduce costly cross-network
traffic.

(churn) Node joins and failures could be broadcast within a restricted distance of the
respective node, ensuring that “local” nodes are informed of the nodes in their vicinity.

(replication) To ensure that data is more available in case of node failure or network
partitioning, which makes lookup routing more difficult especially for physically long
lookups, data replications can be placed geographically near to where they are needed.

Note that the examples given for (links), (routing), and (replication), as previously mentioned
in Section 2.2, will be of central interest for this work.

32 Resource and Location Aware Robust, Decentralized Data Management

3.3. DHT DESIGN

00

11

10

01

000 001 010 011 100 101 110 111

01010

Figure 3.6: Nodes can be assigned nodeIDs depending on their geographic location, as demon-
strated here as a combination of a vertical and horizontal coordinates and shown for nodeID
01010. However, highly populated areas result in nodes sharing nodeIDs or, with finer gran-
ularity, nodes assuming responsibility for much smaller keyranges. For uniformly distributed
data in the keyspace, storage load is thus highly skewed, reducing scalability.

3.3.3 Requirement Tradeoffs

Not necessarily all of the requirements can be concurrently fulfilled for each of the design
issues, since for some design issues certain requirements simply do not apply while for other
design issues requirements may pose tradeoffs. However, as discussed in Section 1.3, all of
the design issues must be self-organizing and scalable. For other requirements, those that are
neglected for one design issue must be compensated for or balanced out by another. Each of
the DHT design elements is now considered with respect to the system requirements and the
respective possible tradeoffs.

(keys) The choice of the keyspace can facilitate a location aware partitioning of and rout-
ing within the keyspace, for example, by choosing a two or three dimensional space
that reflects the real physical world. However, as also mentioned below, location aware
partitioning of the keyspace can lead to a loss of the necessary scalability and load bal-
ancing. Multi-dimensional keyspaces can also facilitate high scalability by reducing the
key distances between nodes.

(map) Keys can be assigned to nodes based on their locations and/or resources to ensure
a certain intrinsic location and/or resource awareness (see Figure 3.6 for an exam-
ple). However, the scalability and load balancing that are facilitated by the uniform
distribution of nodeIDs in the keyspace when nodeIDs are randomly chosen is compro-
mised by this location/resource awareness, and complicated and costly self-organizing
workarounds for ensuring uniform distribution must be found in that case.

(links) Scalability for the overlay network means that each node maintains a low number
of overlay links that increases only slowly as the network grows. Choosing physically

Resource and Location Aware Robust, Decentralized Data Management 33

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

nearby overlay links facilitates location awareness, as choosing overlay links based in
some fashion on their resource availabilities facilitates resource awareness. However,
self-organizing approaches for identifying strong nearby nodes may be costly and may
potentially decrease scalability and load balancing if specific nodes (for example phys-
ically central nodes or a few nodes with high resource availability) have significantly
more links than others.

(routing) To ensure scalability, each lookup should be routable to its destination with a low
number of overlay hops. On the other hand, location awareness means that the total
distance traveled by a lookup is low, which often leads to more overlay hops of shorter
distances (but in mobile ad hoc networks, fewer underlay hops). Moreover, resource
awareness means that the overall resources used for a single lookup are kept low or dis-
tributed to strong nodes, but this depends on both the number of hops and the resources
of the nodes along the lookup. Hence, an increase in overlay hops from location aware-
ness can lead to an increase in resource usage and thus a decrease in resource awareness
as well as a decrease in scalability. However, resource (location) awareness may also
overburden strong (central) nodes and under use weak (non-central) nodes, necessitat-
ing additional load balancing schemes that distribute manageable routing load to nodes
depending on nodes’ resource availabilities (locations) in a self-organized fashion.

(maintenance) The load incurred from maintenance must be kept scalable, which may be
especially challenging for nodes with a high number of links (for example, from resource
or location awareness on the overlay network). While resource awareness and location
awareness could integrate node characteristics into maintenance decisions, for example
maintaining strong or far-away links less often, this may compromise those connections
and the correctness of node information, possibly leading to lost or inconsistent data
after failed updates or lookups.

(churn) Self-organization means that there is no central node that registers and unregisters
nodes that join and leave the system. With high churn rates, scalable approaches for
disseminating information about new and failed nodes can only incorporate a limited
number of affected nodes. Yet, this information is important to ensure data availability
and consistency, for example, when the owner of a piece of replicated data fails. Re-
source or location awareness could be integrated by delegating the task of collecting
and disseminating this information to strong nodes or nodes within a certain region (for
example, physically close to the joined/failed node), but again, these approaches come
with load balancing and possibly scalability issues.

(replication) Replication is, of course, the main design issue that addresses data consistency
and one of the most influential for data availability. To remain scalable, the amount of
additional traffic generated by replica maintenance should be kept manageable, while to
remain consistent, the replicas must be maintained so as to provide sufficiently up-to-
date data. Here again, resource awareness that replicates data predominantly to strong
nodes must beware of possible load balancing issues. Similarly, location awareness may,
for example, strive to place replicas physically close to the data owner, to where the
data is most frequently queried and used, or to where the data originated. In any case,
hotspot locations may emerge, generating a large amount of replication management
and rerouting traffic on a restricted physical area and hindering both scalability and
load balancing.

34 Resource and Location Aware Robust, Decentralized Data Management

3.3.
D
H
T

D
E
S
IG

N

Robustness as se
lf

-o
rg

.

sc
al

ab
il

it
y

lo
ad

b
al

.

co
n

si
st

en
cy

re
so

u
rc

e
aw

.

lo
ca

ti
on

aw
.

se
lf

-o
rg

.

sc
al

ab
il

it
y

lo
ad

b
al

.

co
n

si
st

en
cy

re
so

u
rc

e
aw

.

lo
ca

ti
o
n

aw
.

self-organization

scalability

(map) load balancing (links)

consistency

resource awareness • • • • • •

location awareness • • • • • • • •

self-organization

scalability

(routing) load balancing (maintenance)

consistency

resource awareness • •

location awareness • • • • •

self-organization

scalability

(churn) load balancing (replication)

consistency •

resource awareness • • • •

location awareness • • • • • •

Table 3.3: Tradeoffs as listed above for the various design issues.

R
eso

u
rce

a
n

d
L

o
ca

tio
n

A
w

a
re

R
o
b

u
st,

D
ecen

tra
lized

D
a
ta

M
a
n

a
g
em

en
t

35

CHAPTER 3. PEER-TO-PEER APPROACHES, LIMITATIONS, AND
CONTRIBUTIONS

To illustrate the similarities and differences, the above mentioned tradeoffs are listed in Ta-
ble 3.3. Note that this list is not necessarily exhaustive and that choice of keyspace has been
left out due to the lack of tradeoffs that can be deduced from this design aspect alone. Al-
though not included in the above list, location and resource awareness also pose tradeoffs to
one another for each design issue since an increase in location awareness most likely comes at
the cost of a decrease in resource awareness and vice versa.

3.4 Contributions

While this work strives to answer how the given requirements can be fulfilled simultaneously
in a DHT, an exhaustive search of the set of all possible solutions is implausible and beyond
the scope of this work. Instead, the focus is placed on establishing a framework with which
to compare systems on the basis of these requirements, with a focus on resource and location
awareness, and then developing and comparing several systems that decrease or eliminate
the effects of the tradeoffs listed above in order to fulfill all of the requirements. Although
replication is considered a design aspect of DHTs in Section 3.2, it is treated as a separate
issue in the remaining structure of this work, as it is typically treated separately from the
other design issues in literature. In particular, the contributions of this work include:

Awareness Framework. A framework for assessing and comparing the resource awareness
of various systems is described in Chapter 2. Taxonomies are introduced for classify-
ing the handling of resource awareness and location awareness within DHTs (or more
generally, peer-to-peer systems). These taxonomies are used to classify many existing
approaches as well as discern suitable approaches for the introduced use cases.

Novel resource and location aware DHTs. Several novel DHTs which fulfill all of the
robustness requirements (i)-(vi) have been designed, as found in Chapter 5, and com-
pared with each other and existing DHTs, as found in Chapters 6 and 7, to better
understand the behavior of the discussed tradeoffs in various scenarios. The main DHT
design elements considered for resource and location awareness are overlay construction,
routing, and maintenance, and results provide insight into how well suited these design
elements are for awareness.

Flat vs. hierarchical overlay. Several flat and hierarchical DHTs are also compared in
Chapter 6 to determine whether one of the structures is better suited for the integration
of resource and location awareness with the given requirements. The effects of varying
numbers of hierarchy levels are also examined, further corroborating the results between
one hierarchy level (flat structure) and multiple levels.

Novel resource and location aware DHT replication. A replication protocol that
builds on the DHTs from Chapter 5 is presented in Chapter 9 and analyzed in Chapter
10. This replication decreases the total number of necessary replicas while increasing the
overall resource and location awareness by placing replicas on strong nodes and nodes
that are near to where data is needed.

This work thus contributes both an analysis of the effects of varying overlay structures on
overall resource and location awareness as well as novel DHT and replication techniques which
fulfill all of the derived requirements.

36 Resource and Location Aware Robust, Decentralized Data Management

Chapter 4

Related Work: DHTs

Work on DHTs became popular around the turn of the millennium with a burst of high level
ideas regarding DHT protocols. In these DHTs, a keyspace (such as the wrap-around space
0m . . . 1m) is first established. Then mappings of each node x to a key in the keyspace, referred
to as its nodeID, and each piece of data to its datakey are determined (for example, a SHA-1
hash function of a node’s IP to determine its nodeID). A distance function is defined (or
implied) over the keyspace and each key κ is allocated to the node who’s nodeID has the
smallest distance to κ. The last step is then to determine which nodes maintain links with
each other (for example, direct neighbors in the keyspace) and how a lookup for key κ is
routed along those links to the node responsible for κ. Many of these basic DHTs and their
differences are highlighted below in Section 4.1.

With basic DHTs in place, further features such as data replication (see Chapter 8), load
balancing, node heterogeneity, and location awareness became interesting. Extended func-
tionalities that dealt with DHT weaknesses were introduced and tested, optimizing DHTs for
both real usages as is Section 4.1.1 and further academic study. Specific optimizations often
assume a specific underlying scenario, for example a high churn rate for a replication protocol
with a high redundancy factor; a mobile ad-hoc network for location awareness; or a heteroge-
neous network with nodes of varying computing power for load balancing. How awareness has
previously been addressed for DHTs is discussed in Section 4.2, and well known and a sam-
pling of more specific resource and location awareness approaches are outlined in Sections 4.3
and 4.4, respectively. Furthermore, those approaches which are both resource and location
aware are examined in Section 4.5 with respect to the requirements established in Chapter 1.
Evaluation measures used in awareness approaches are discussed in Section 4.6 to frame how
these approaches have been expected to perform in order to meet specific design goals. Sev-
eral resulting open questions, in particular with respect to the design of a distributed data
management system the fulfills our established requirements, are discussed in Section 4.7.

4.1 Original DHTs

The PRR [PRR97a] tree from Plaxton, Rajarman, and Richa, was the forerunner of the many
later DHTs, and was designed to help locate copies of objects in a data/file sharing system.
The first DHTs following suit in literature were mainly (analogously) based on an m-bit

37

CHAPTER 4. RELATED WORK: DHTS

identifier ring as keyspace, with the exception of the Content Addressable Network (CAN)
which uses a d-torus (a multi-dimensional version of the identifier ring), and focused primarily
on defining routing protocols and neighbor links without significant attention to location
awareness, replication, resource awareness, dynamic load balancing, or other extensions that
came with later work. All of the approaches mentioned here and listed in Table 4.1 use
random nodeIDs within their keyspace, most often derived from the SHA-1 hash of some
value such as a node’s IP. CAN [RFH+01], Chord [SMK+01], and Pastry [RD01] were among
the first and most well known approaches on which significant future work was built. Further
approaches discussed here are Tapestry [ZHS+04], and P-Grid [ACMD+03] which reflect the
basics of Pastry with slightly altered design aspects; Koorde [KK03] which uses a mix of
Chord with de Bruijn graphs [LKRG03]; Symphony [MBR03] which is drawn from Chord;
Kademlia [MM02] which is built on an XOR metric; Viceroy [MNR02], which uses layers of
rings referred to as a butterfly structure; and BATON [JOV05] which uses a tree structure but
is not a true DHT. These approaches’ characteristics are summarized in Table 4.1. The main
topologies - ring, torus, binary tree, prefix tree - are demonstrated with respect to their link
structures in Figure 4.1 and their routing patterns in Figure 4.2 using a simple example. For
these examples, Chord was used“ as the reference ring topology, CAN as the torus, Kademlia
as the binary tree, and Pastry as the prefix tree.

CAN is built on a d-torus, or a d-dimensional Cartesian space that wraps around on the
edges (note that an m-bit identifier ring can be seen as a 1-dimensional Cartesian space that
wraps around on its edges), and nodes are assigned d-dimensional regions for which they are
responsible. When a node x joins the network, the node responsible for xID splits its current
region and hands over the respective half to x. Links are established to direct neighbors on the
d-torus (i.e., nodes who’s regions abut on exactly d-1 dimensions) and lookups are routed to
the neighbor that is in the direction of the lookup key. For d=2, CAN provides an interesting
starting point for DHTs based on geographic routing when nodeIDs are chosen dependent on
nodes’ positions [RGJZ04, RHKS02, WR03, JMW03], similar to Figure 3.6 from Chapter 3.
Of course, this leads to scalability problems, as discussed later in Sections 4.4 and 2.3. While
most DHTs generate networks in which the allocation of identifiers to nodes is independent
of the order in which nodes join the network, this is not the case for CAN. Thus, if the same
set of nodes with the same set of identifiers join the DHT in two different orders, the nodes’
regions may very well differ, causing node’s links to differ as well. Hence, it is difficult to
analyze CAN’s routing or link complexity, since the network’s structure (i.e. nodes’ regions
and links) is not given alone by its nodes with their respective nodeIDs. However, if a CAN
with N nodes is divided into N equal zones, then its routing complexity is O(logN1/d) with
2d links per node to maintain.

In contrast, and like all of the other protocols mentioned in this section (with the exception
of BATON), the Chord protocol uses an m-bit identifier space which wraps around. This
keyspace can be expressed as an identifier ring modulo 2m with values from 0 to 2m − 1 or
alternatively as values from the interval [0, 1) which are then mapped to the respective binary
keyspace. In Chord, distance is measured as the clockwise distance on the keyring, and an ID
is mapped to the node to which it has the smallest distance, i.e. to its successor node on the
keyring. Each node x with nodeID xID establishes links to its direct successor and predecessor
nodes on the keyring as well as additional links, called fingers, to the nodes responsible for the
keys xID+2i for i = 1, . . . ,m−1 (i.e. the direct successors of these keys). Routing is performed
greedily, with lookups passed to the closest predecessor of the destination key and then to

38 Resource and Location Aware Robust, Decentralized Data Management

4.1. ORIGINAL DHTS

01
00
1

01
10
1

11
01
0

00
00
1

00
10
1

10
00
0

11
11
1

00

01

10

11

000 001 010 011 100 101 110 111

00001 00101 01001 01101

10000

11010

11111

1 01 0

1 0

1 01 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 0

1 0

0
0
00
1

0
01
01

01
00
1

01
10
1

10
00
0

11
01
0

11
11
1

10 11 01 0010 11 01 0010 11 01 0010 11 01 00

10 11 01 00
00
0
00
1

00
0
10
1

00
10
01

00
11
01

01
00
00

01
10
10

01
11
11

Figure 4.1: Four topologies are shown here with seven nodes and keyspace 05 . . . 15: a ring,
a two-dimensional wrap-around space (torus), a binary tree, and a prefix tree (shown with
six bits). The topologies are shown with all keys, contrary to the standard view of nodeIDs
only (e.g., prefix node 010000 would otherwise be shown as node 0100). The torus is shown
flat, with edges that wrap around; the gray areas express the keyranges that each node is
responsible for and links are established to bordering areas. For each structure, possible links
for node (0)00001 along with the keyranges they are chosen from are indicated.

Resource and Location Aware Robust, Decentralized Data Management 39

CHAPTER 4. RELATED WORK: DHTS

01
00
1

01
10
1

11
01
0

00
00
1

00
10
1

10
00
0

11
11
1

00

01

10

11

000 001 010 011 100 101 110 111

00001 00101 01001 01101

10000

11010

11111

1 01 0

1 0

1 01 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 01 0

1 0

1 01 0

1 0

1 0

1 0

1 0

00
00
1

00
10
1

01
00
1

01
10
1

10
00
0

11
01
0

11
11
1

10 11 01 0010 11 01 0010 11 01 0010 11 01 00

10 11 01 00
00
00
01

00
0
10
1

00
10
01

00
11
01

01
00
00

01
10
10

01
11
11

Figure 4.2: Examples of how routing may be performed on various topologies for a lookup
from node 00001 (gray) to a nodes shown in black. Since the links shown in Figure 4.1 for
00001 are used, the destination node has been varied to ensure paths of length > 1. Here, the
ring and torus use greedy key based routing, while the tree structures use digit fixing, which
can also be greedy depending on its implementation.

40 Resource and Location Aware Robust, Decentralized Data Management

4.1.
O
R
IG

IN
A
L
D
H
T
S

Approach Keyspace Topology Distance Routing Routing Complexity # Links LA

PRR [PRR97b] m-bit ring prefix tree clockwise dist. digit fixing O(logbN) O(logbN)

CAN [RFH+01] d-torus d-torus Euclidean greedy using O(N1/d) 2d equal zones
local neighborhood N equal zones

Chord [SMK+01] m-bit ring ring clockwise dist. greedy O(logN) logN

Koorde [KK03] m-bit ring ring clockwise dist. digit fixing O(logN/ log logN) O(logN)
O(logN) O(1) = 2

Pastry [RD01] m-bit ring prefix tree clockwise dist. digit fixing O(logbN) O(logbN) X

Tapestry [ZHS+04] m-bit ring prefix tree clockwise dist. digit fixing O(logbN) O(logbN) X

P-Grid [ACMD+03] m-bit ring prefix tree clockwise dist. digit fixing O(logN) O(logN)

Symphony [MBR03] m-bit ring ring clockwise dist. greedy O(log2N) O(1) = k

Kademlia [MM02] m-bit ring binary tree XOR greedy O(logN)* ** X

Viceroy [MNR02] m-bit ring mult. rings clockwse dist. hierarchical O(log2N) O(1) = 7

BATON [JOV05] - binary tree - greedy O(logN) O(logN)

Table 4.1: Basic DHT approaches. LA = location awareness. *on the basis that Kademlia is similar to Chord, **no upper bound
given.

R
eso

u
rce

a
n

d
L

o
ca

tio
n

A
w

a
re

R
o
b

u
st,

D
ecen

tra
lized

D
a
ta

M
a
n

a
g
em

en
t

41

CHAPTER 4. RELATED WORK: DHTS

the owner in one final step. When a finger is found for each of these m − 1 ranges, Chord
has logN links and a routing complexity of O(logN). While Chord was designed without
regard to replication and location awareness, its basic structure has been demonstrated to be
very resilient and adaptable [CCN+06,GGG+03] and many extensions have been proposed to
add specific functionalities (see Table 4.2). “ Koorde uses the basics of Chord - the keyring,
the successor lists, the join protocols - but adjusts the fingers to the structure of a de Bruijn
graph [LKRG03]. When based on a simple degree-two de Bruijn graph, Koorde has one extra
link (i.e. finger) with which it can achieve a routing complexity of O(logN) by digit fixing.
However, there is a factor of three hidden in the O(logN) that could prove significant in
implementation and with so few links, fault-tolerance cannot be ensured. To achieve fault-
tolerance, O(logN) fingers are necessary, for which a logN -degree de Bruijn graph is taken as
model, and routing can be achieved in O(logN/ log logN) (but again with an unpredictable
hidden factor).

The widely used DHT structure introduced with the static PRR - and later adapted to Pastry,
Tapestry, and P-Grid - also uses an m-bit identifier keyspace with Pastry and Tapastry using
the same allocation of keys to nodes as in Chord, but here the network is viewed as a prefix
tree instead of a ring. Instead of routing a lookup in one direction along the identifier ring
towards its destination key κ, lookups are based on digit fixing, increasing the length of the
prefix shared by κ and the current routing node x’s nodeID xID in each routing step. In PRR,
Pastry, and Tapestry, the m-bit identifiers can be expressed in base b = 2i, resulting in wider
tries with up to b child nodes for a single parent node. In order to perform digit-fixing routing,
each node x establishes for each prefix xPID of xID a link to some node with nodeID prefix
xPID ·d for each digit 0 ≤ d < b of the used base b (i.e. for b = 4, digits 0, 1, 2, 3). Of course, one
of these digits corresponds to xID’s next digit, and is therefore ignored. The result is a routing
table with b−1 entries for each logbN prefix length, plus neighbor sets with the closest nodes
in the keyspace and/or the physical space. Thus, these protocols have O(logbN) links and a
routing complexity of O(logbN). While the routing complexity is lower for increasing b, note
that we can view the number of links (b− 1) · logbN as

(b− 1) · logbN = (2i − 1) · log2i N

= (2i − 1) · logN

log2i

=
2i − 1

log2i
logN,

which clearly grows for larger i and thus larger b, resulting in a tradeoff between routing
complexity and number of links to maintain. The examples shown in Figures 4.1 and 4.2 use
a base 4.

Both Pastry and Tapestry also integrate a form of location awareness: Pastry replicates data
items to a neighborhood set, so that a nearby nodes can be used for lookups when possible;
Tapestry goes further by pushing replicas and object pointers throughout the system, so that
local replicas can be found; and both aim to find proximate links for their digit-fixing routing
tables. While these protocols have many implementations (see Table 4.2), they are actually
quite similar to Chord, with links in each keyrange (xID + 2i, xID + 2i+1) (see Figure 4.1).

P-Grid uses a slightly different protocol for choosing nodes’ nodeIDs; each node x chooses
a prefix p and assumes responsibility for all keys that start with prefix p. As more nodes

42 Resource and Location Aware Robust, Decentralized Data Management

4.1. ORIGINAL DHTS

join the network, these prefixes can be lengthened in order to distribute load to more nodes.
Furthermore, they can be both lengthened or shortened to balance load depending on the data
distribution in the keyspace by individual nodes either increasing or decreasing the range for
which they are responsible. Note that nodes’ ranges can overlap in P-Grid, and additional
data redundancy is also injected into the system with adaptive, sampling-based replication
and a respective update algorithm [DHA03]. However, due to a potentially m-deep virtual
tree and a routing protocol similar to Pastry and Tapestry which performs digit-fixing bit
by bit, the worst case routing complexity can be up to linear respective to the network size.
Luckily, random links to other nodes have been shown to tackle this problem [Abe02].

While Kademlia also uses a tree structure to visualize the network, it uses the XOR metric for
the distance between two keys. Links are maintained as “k-buckets”, with the most recently
seen k nodes with a given prefix saved as links. Starting with the simple “0” and “1” prefixes,
once a node x’s k-bucket for prefix p is full, it is split into two buckets of longer prefix length
(with prefixes “p · 1” and “p · 0”) in case p is a prefix of xID. Otherwise, the least recent
entry is replaced. Thus, the linked regions resemble those of Pastry with base b = 2, but the
choice for the next hop during lookups is based greedily on the XOR metric. Due to this
similarity, Kademlia clearly has the same O(logN) bound for the number of links as Pastry
(with a factor of k), but a clear upper bound on the routing has not been given in literature,
although its similarity to Chord is mentioned. One of Kademlia’s interesting features is its
caching along lookup routes: once a lookup is successfully completed, the (key, value) pair is
cached at the closest node to the key along the lookup path that did not return the value,
potentially resulting in high redundancy rates and therefore lower lookup latency.

Using a binary tree structure, BATON is inspired by B+-Trees to enable range queries in a
DHT by preventing data from being reordered through a hash function that evenly distributes
load. While it has many similarities to Chord, Pastry, and P-Grid, it cannot be classified as
a DHT since it hashes neither nodes nor data into a keyspace. Joining nodes are inserted
into a suitable position in the tree in order to maintain the tree’s balanced structure. Links
are established to child and parent nodes as well as specifically defined “adjacent” nodes and
nodes that are on the same level within the tree at a distance 2i within that level (nodes are
numbered within a single level), for a total of at most O(logN) routing table entries. Nodes
do not use their nodeIDs to determine which data they are responsible for like other DHTs.
Rather, each node receives data from its parent node upon joining the network along with
a lower and upper bound for its range of values, which its neighbors store in their routing
tables. While BATON boasts an index-like overlay structure for easy range queries with a
range query lookup complexity of O(logN), node failures and churn present a significant
challenge, as restructuring is necessary when nodes leave the network. Furthermore, load
balancing is very critical for skewed data (which is not randomly uniformly redistributed with
a hash function) and a suggested heuristic approach costs O(logN) per insertion or deletion
without providing guarantees.

The two remaining DHTs discussed in this section, Symphony and Viceroy, are again based on
a ring-structure similar to Chord and achieve relatively good routing behavior for a constant
number of links. Symphony distinguishes itself by using random shortcuts (comparable to
Chord’s fingers) by pulling key distances from a probability distribution function from the
family of harmonic distributions. This gives Symphony a structure similar to Kleinberg’s small-
world grids [Kle00] and provides expected (not worst case) routing complexity of O(log2N)
for a fixed number of links.

Resource and Location Aware Robust, Decentralized Data Management 43

CHAPTER 4. RELATED WORK: DHTS

Approach Applications

CAN [RFH+01] PIER, pSearch

Chord [SMK+01] CFS, SOSIMPLE, pStore, PRISM, M-Chord,
Mercury, SOSIMPLE

Pastry [RD01] PAST, Pastwatch, SCRIBE, SplitStream

Tapestry [ZHS+04] OceanStore, Bayeux, Mnemosyne, SpamWatch

P-Grid [ACMD+03] UniStore, GridVine

Kademlia [MM02] Kad Network, Mojito DHT, I2P-Bote, cSpace
OverNet, Mainline DHT, RetroShare

Table 4.2: Noteworthy applications of original DHTs and their characteristics.

Viceroy was designed for networks with extreme scale and traffic, and takes a very different
approach by constructing one central ring and then many multiple levels of rings as well. Nodes
randomly choose a ring-level based on their perceived size of the network such that there
are approximately logN levels. After links are established to the predecessor and successors
within the level-ring, one link to a higher level ring and two links to lower level rings are
also established, resulting in a total of seven links. Routing is performed in three phases, first
lookups are routed upward to level one, then routed back down as far as possible, and then
routed using successor links to the correct node. Viceroy has been attributed with an expected
routing complexity of O(logN), but O(log2N) with high probability.

4.1.1 Applications

There are a wide range of applications running on or using DHTs. Drawing from the peer-
to-peer type of service classification from Chapter 3, applications are grouped here into the
categories content distribution; data management; streaming, backup, and information re-
trieval; communication and collaboration, and are discussed with respect to DHTs. For an
overview of which applications use which DHTs (where applicable), see Table 4.2.

Content distribution. File sharing produces a large portion of the internet’s traffic, and
many of the file sharing networks’ clients now have DHTs implemented as well, which help by
storing information about how to find peers and files. For example, the Gnutella [AH00] client
gtk-gnutella [gtk13] and the former client Limewire [Lim13] both use the Kademlia-based Mo-
jito DHT [Liu09] and the BitTorrent [Bit13] clients such as Vuze (formerly Azureus) [Vuz13]
use the Kademlia-based Mainline DHT [JOK09]. The Kademlia-based Kad Network, on the
other hand, is mostly used along with the file sharing eDonkey2000 network [eDo13] to store
and search for eDonkey2000 file hashes, ratings, and locations. Clients such as eMule [eMu13]
are specialized in connecting to both the Kad Network and eDonkey2000.

Distributed file system applications include the Pastry-based PAST [DR01], which deter-
mines where files are stored (as opposed to only storing pointers to the data), similar to
OceanStore [KBC+00], the Cooperative File System (CFS) [DKK+01], or the DHT-like
Freenet [Fre13,CSWH01b]. The Tapestry-based Mnemosyne [HR02] application provides data-

44 Resource and Location Aware Robust, Decentralized Data Management

4.1. ORIGINAL DHTS

hiding, or steganography, by encrypting and “hiding” sensitive data in large volumes of random
data written on each peer. SCRIBE [CDKR02], on the other hand, is a Pastry-based publish/-
subscribe application which hashes the concatenation of topic names and their publishers to
determine which peer is responsible for published data. Other peers can then subscribe to the
published data at the responsible node. Meanwhile, caching applications such as the Coral
Content Distribution Network [Fre10] and CoDeeN system [Cod13] cache web content by
storing popular websites on peers to provide quicker loading of slow or overloaded websites.

Squirrel [IRD02] is an example of a peer-to-peer web caching application, and which uses
Pastry as an index to locate peers within the intranet that have cached copies of desired
objects. High/multi-dimensional data sharing systems include Mercury [BAS04], which sup-
ports multi-attribute range queries by constructing multiple Chord rings which each store
data according to varying attributes and can thus be simultaneously queried, and M-Chord,
which supports high-dimensional similarity searches by mapping high-dimensional data onto
one-dimensional identifiers [NZ06].

Database management. DHT applications range from the distributed query process-
ing system PIER [HHL+03]; to the distributed continuous (i.e. stream) query processor
Medusa [CBB+03]; to Amazon’s Dynamo that uses key-value storage but focuses on extremely
high data availability for its zero-hop DHT, where each node has sufficient links to directly
route lookups [DHJ+07]; to the P-Grid systems GridVine PDMS (Peer Data Management Sys-
tem) which uses schemes and schema mappings to utilize semantic information [ACMHP04]
or UniStore [KSR+07] which focuses on efficient query processing over distributed structured
data.

Streaming, backup, and information retrieval. SplitStream is one example of a
(SCRIBE) DHT-based content distribution system designed specifically for distributing load
fairly for high-bandwidth streaming [CDK+03]. Bayeux [ZZJ+01], on the other hand, is a pub-
lish/subscribe system similar to SCRIBE but developed specifically for multimedia streaming.
Backup systems that use DHTs include pStore [BBST01], which stores blocks of backup data
on peers determined by the underlying Chord, Pastiche [CMN02], which uses DHTs to merely
find backup “buddies” on which to store backups for one another, and PeerStore [LZT04],
which is built on an unstructured network and uses the DHT only for finding and track-
ing backup locations. Information retrievale DHT-based search engines include BitTorrent’s
BTDigg [Btd13] and YaCy [Yac13], while pSearch [TXM03] and PRISM [SGE+05] are com-
plete file sharing systems with content-based searching through super-peers forming and ad-
ditional DHT to store multi-dimensional semantic vectors. Peer-to-peer spam filters such as
SpamWatch [ZZZ+03] may also be considered in this category, since their primary purpose is
to identify similar content within emails.

Communication and collaboration. Communication protocols that use DHTs include
distributed email services such as the I2P (Invisible Internet Project) service I2P-Bote which
stores email messages in a Kademlia DHT [I2P13]. Retroshare, on the other hand, uses a
DHT to store peers’ IPs for peer-to-peer email, instant messaging, and file sharing [Ret13].
The Kademlia-based cSpace also offers a variety of friend-to-friend services, including screen
sharing and instant messaging [cSp13,RB07]. Yet other applications offer voice over IP services
with DHT-based directory services, such as OpenVoIP [BS08] or SOSIMPLE [BLJ05], or
distributed version control systems such as Pastwatch [YCM06].

Resource and Location Aware Robust, Decentralized Data Management 45

CHAPTER 4. RELATED WORK: DHTS

Awareness

Heterogeneity Location

RSD PNSPRSRNSRRS PISRIS

Node movements
Virtual nodes

Hierarchies Hierarchies Message
dropping

Space filling
curves

Geographic
routing

Closest
neighbors

Figure 4.3: Characterization of DHT heterogeneity and location awareness with application
examples.

4.2 Awareness

While the original DHT’s focused on the basic construction of links and routing, many net-
works such as those discussed in Chapter 1 can profit from additional awareness about the
network’s and nodes’ states. As we will see in Section 4.3, resource awareness approaches have
been developed for heterogeneous networks and highly dynamic systems with high churn rates
by treating nodes differently within the DHT depending on their characteristics. Similarly,
much effort has been invested into developing routing and load allocation optimizations with
the help of nodes’ physical locations, or location awareness, for mobile (ad hoc) networks and
networks with high load, as we will see in Section 4.4.

Although mobile networks are often heterogeneous and heterogeneous networks often involve
mobile nodes, these two issues have been viewed almost exclusively separately in the past.
Heterogeneous networks, where nodes have varying capabilities or attributes of some sort, are
often addressed by balancing nodes’ loads with respect to their capabilities: the stronger or
more reliable a node is, the more load it is assigned. Here, the main approaches are the use of
virtual nodes, node movements within the identifier space, and hierarchical overlay structures.
However, a fair amount of work has also focused on (hierarchically) structuring overlays for
heterogeneous nodes whose varying attributes are not associated with strengths, for example
organizations or shared physical locations. Mobile (ad hoc) networks, on the other hand, are
treated primarily from a location aware routing perspective, adapting the overlay structure
and protocols to (ad hoc) routing over wireless links: overlay hops should be nearby hops
that incur as little underlay load as possible. Some combination of proximity aware identifier
selection, routing selection, and node selection (see Section 4.4) are integrated into the DHT
to this end, often with the help of clusters and cluster heads (i.e., a rudimentary hierarchical
design).

4.3 Resource Awareness: Heterogeneous Netwoks

As mentioned earlier, the three main approaches to addressing heterogeneous node capabilities
have been the use of hierarchical DHT structures, virtual nodes, or node movements within the

46 Resource and Location Aware Robust, Decentralized Data Management

4.3. RESOURCE AWARENESS: HETEROGENEOUS NETWOKS

identifier space, with the primary aim of balancing either communication or storage overhead.
However, several new approaches focus specifically on decreasing the energy consumption of
mobile nodes, such as Gurun et al. [GNZ06] who suggest that the most important energy
conservation approach could be idle-times when nodes do not receive messages or Kelenyi
and Nurminen [KN08] who suggest that weak nodes should simply drop a percentage of
incoming messages. With these approaches in mind, a classification for resource awareness
approaches can be derived similar to the classification for location awareness from Gummadi
et al. [GGG+03] as described in Section 4.4. This classification contains four categories (as
opposed to the three used for location awareness) which can be applied concurrently within
a single application:

RIS Resource Identifier Selection: the selection of a node’s nodeID depends on, among other
things, the node’s available resources and the node’s level of load. Virtual nodes and
node movements both use RIS, as may certain hierarchies.

RNS Resource Neighbor Selection: nodes select links based on their own and/or their links’
available resources, as is often the case in hierarchies.

RRS Resource Route Selection: each routing hop for a lookup is chosen based not only on
the destination key, but also on the current node’s and/or its links’ available resources,
as may be the case in resource aware hierarchies.

RSD Resource-based Service Denial: services such as message forwarding or participation in
maintenance my be denied depending on a node’s resource availability and level of load.
The newer approaches mentioned above fall into this category [GNZ06,KN08].

While the fourth category RSD diverges from the classification for location awareness, it
comprises an important strategy for dealing with low or non-existent resources: withholding
resources. Note that RNS and RRS often occur hand in hand, for instance when strong nodes
are chosen as superpeers which are both highly linked (RNS) and preferred as next-hops
(RRS). Figure 4.3 shows both the resource and location awareness characterizations (see
Section 4.4) with application examples for each category.

Many of the suggestions for DHTs on heterogeneous networks are described below and grouped
together based on their traditional approach: virtual nodes, node movements, hierarchies
based on varying resources, and hierarchies based on varying group associations. Hierarchical
approaches are furthermore classified as vertical or horizontal, where a vertical hierarchy uses
a form of gateway or superpeers to switch between otherwise self-contained hierarchy layers
while in a horizontal hierarchy each node maintains connections to nodes in other hierarchy
layers. Table 4.3 contains a characterization according to which awarenesses and approaches
they use. Those that use some form of resource awareness are further characterized in Table 4.4
according to the resource dimensions from Section 2.1, and in Table 4.5 according to RIS,
RNS, RRS, and RSD. Note that the main focus here is placed on approaches that actively
consider heterogeneous networks, with either the aim of distributing load of varying sizes to
nodes depending on nodes’ resources or building a single DHT on nodes from heterogeneous
networks. Since many of the virtual node and node movement approaches were not necessarily
designed for node heterogeneity, but rather to balance load in homogeneous networks, most
of the approaches in Table 4.3 involve some form of hierarchy.

Resource and Location Aware Robust, Decentralized Data Management 47

C
H
A
P
T
E
R

4.
R
E
L
A
T
E
D

W
O
R
K
:
D
H
T
S

Approach Applied to Location Resource Node Virtual Hierarchy Hierarchy Multi-
Aware Aware Movement Nodes Type overlay

HIERAS [XMH03] Chord,* X X horizontal

expressway [XMK03] CAN,* X X X horizontal

[GEBF+03] * X X X vertical X

Coral [FM03] Chord, Kademlia,* X X horizontal

SkipNet [HJS+03] - X X horizontal

Canon in G Major Chord, Symphony, X X horizontal
[GGGM04] CAN, Kademlia

[MD04] * possible X vertical X

SmartBoa [HLZ+04] - X X horizontal

Cyclone [ALAS05] Chord(=Whirl), * X X horizontal

Y0 [GS05] Chord, * X X X

SuperPastry [CCR05] MS Pastry X X vertical

HeteroPastry [CCR05] MS Pastry X

HONet / HDBNet [TXZ+05] De Bruijn Graph, * X X X hybrid X

LIP [RQMH06] * X X vertical

idle phase [GNZ06] Chimera [Chi13], * X X

superpeer-child Chord X X vertical
[ZDK06,ZDK07,ZHDK09]

message dropping [KN08] Kademlia, * X

hierarchical Bamboo [TWS+09] Bamboo X X X vertical

SkewCCC+ [BBKK10] SkewCCC X X X X X horizontal

Table 4.3: Characterization of heterogeneous DHT approaches, * refers to the applicability to any arbitrary DHT.

48
R

eso
u

rce
a
n

d
L

o
ca

tio
n

A
w

a
re

R
o
b

u
st,

D
ecen

tra
lized

D
a
ta

M
a
n

a
g
em

en
t

4.3
.

R
E
S
O
U
R
C
E

A
W
A
R
E
N
E
S
S
:
H
E
T
E
R
O
G
E
N
E
O
U
S
N
E
T
W

O
K
S

Approach R.1 R.2 R.3 R.4 R.5
Characteristics Resources Determining availability Scale Notation

expressway [XMK03]

reliability load self-decided yes-no scalar
central location forwarding capacities

connections
availability

stability CPU superpeer collects and yes-no scalar
[GEBF+03] availability bandwidth evaluates characteristics

uptime

SmartBoa [HLZ+04] stability bandwidth current ability to handle load 0-128 scalar

load bound storage space - cont. range scalar
Y0 [GS05] processing capacities

last-mile bandwidth

load bound bandwidth - yes-no scalar
SuperPastry [CCR05] storage space

processing capacities

load bound bandwidth - cont. range scalar
HeteroPastry [CCR05] storage

processing capacities

HDBNet [TXZ+05]
load bound processing capacities - cont. range scalar

bandwidth

superpeer-child load bound bandwidth actual # uploaded msg cont. range scalar
[ZDK06,ZDK07,ZHDK09] failure prob. vs. # willing to accept

stability processing capacities - low-medium-high scalar
hierarchical Bamboo strength storage space
[TWS+09] bandwidth

uptime

SkewCCC+ [BBKK10] strength bandwidth - 20-2k scalar

Table 4.4: Characterization of resource handling in various heterogeneous, resource aware DHTs.

R
eso

u
rce

a
n

d
L

o
ca

tio
n

A
w

a
re

R
o
b

u
st,

D
ecen

tra
lized

D
a
ta

M
a
n

a
g
em

en
t

49

CHAPTER 4. RELATED WORK: DHTS

Approach RIS RNS RRS RSD

expressway [XMK03] X X

[GEBF+03] X X

SmartBoa [HLZ+04] X

Y0 [GS05] X

SuperPastry [CCR05] X X

HeteroPastry [CCR05] X X

HDBNet [TXZ+05] X X

idle phase [GNZ06] X

superpeer-child [ZDK06,ZDK07,ZHDK09] X X

message dropping [KN08] X

hierarchical Bamboo [TWS+09] X X

SkewCCC+ [BBKK10] X X X

Table 4.5: Characterization of resource integration in various heterogeneous, resource aware
DHTs.

As we will see, most of these approaches are difficult to adapt to all of the requirements
for our scenario. The resource-unaware hierarchical approaches discussed here focus on or-
ganizational node heterogeneity with the goal of using nodes from separate organizations or
clusters to form a joint DHT. For example, various companies my each maintain an indepen-
dent inter-company DHT but collectively form an additional global DHT on which nodes can
search for and save data at other companies’ sites. While these approaches have also been
referred to as homogeneous approaches [ALS07], we refer to nodes’ varying organizational
associations as heterogeneity. Location awareness clearly makes sense in these cases, as is
reflected in Table 4.3. On the other hand, almost all of the approaches that do use a form of
resource awareness have focused on (among other resources) heterogeneity as nodes’ varying
bandwidths (see Table 4.4). In this case, location awareness is not the rule but has been used
in some approaches which are examined more closely with respect to our requirements in
Section 4.5.

Resource aware approaches (see Table 4.4), while they all share a general focus on bandwidth,
have interpreted resources as expressing upper load boundaries or node availability, while node
availability is alternatively referred to as reliability, stability, availability, failure probability,
or strength. While each of these terms has a different nuance, their exact meanings are not
adequately discussed to differentiate between them. And while all of them use simple scalar
notation (i.e. a single value to express a node’s resources), they do vary in their used scales from
simple binary scales (i.e. nodes “have” or “have not”) to continuous and set ranges to express
how much resources single nodes possess. However, how the actual values are determined has
been left open for all of the approaches, although a few do abstractly address the idea.

50 Resource and Location Aware Robust, Decentralized Data Management

4.3. RESOURCE AWARENESS: HETEROGENEOUS NETWOKS

4.3.1 Virtual Nodes and Node Movement

The core concept behind virtual node and node movement approaches is that each node is
assigned a portion of the keyspace proportional to the given node’s ability to handle load.
Thus, the physical nodes have varying quantities of data that they are responsible for storing
and answering queries on. However, these concepts assume that higher resource availability
infers larger storage capacities, which is not necessarily applicable to a network in which
nodes have varying access to resources such as energy or computing power, but homogeneous
(or very bounded) storage capacities. Furthermore, considering that the main communication
load in a DHT is often accrued from maintenance, it is not nodes’ storage capacities that need
to be treated heterogeneously but rather the maintenance overhead required of the nodes.

When using virtual nodes, each physical network node balances its load independently by
hosting a number of virtual overlay nodes that corresponds to its capacity, each with its own
set of keys and links, as introduced by Karger et al. [KLL+97]. Since capacity refers to the
amount of load a node can handle, the number of virtual nodes hosted by a single physical
node may be dynamic with adjustments depending on the physical node’s current load, such
as in later work from Karger and Ruhl [KR04] (however, this approach only activates one
virtual node at a time) which extended work from Rao et al. on static systems without
virtual node insertions and deletions [RLS+03]. For example, a strong node with low load
may add more virtual nodes in order to obtain a larger portion of keys as well as more links
and more routing load. Thus, one physical node with multiple virtual nodes also maintains
multiple sets of overlay links and performs all of the routing and maintenance required for
each of those virtual nodes. This incurs not only higher costs at the node hosting multiple
virtual servers, especially from the relatively high cost for maintaining direct successors and
predecessors within ring based key structures, it also increases the number of DHT nodes
and thus the expected lookup hop count (which typically depends on N , the total number of
nodes, for example O(log(N))). To counteract this cost increase, it has been suggested that
virtual nodes act as a single entity by sharing links and routing responsibilities [BBKK10],
thus reducing the redundant maintenance load and simultaneously improving the routing
performance by lowering the lookup hop count. However, in order to determine a suitable
number of virtual nodes for any physical node, some knowledge about the total number of
nodes, the overall overlay load, and/or the average load per node is often required, thus
introducing additional network maintenance. Furthermore, virtual node dynamics for load
balancing generate additional churn from nodes adding and removing virtual nodes as their
load fluctuates.

While the previously mentioned virtual node approaches aim to balance load without explicit
attention to nodes’ varying resource availabilities, both Y0 from Godfrey et al. [GS05] and the
hierarchical ScewCC++ from Bienkowski et al. (see below) [BBKK10] incorporate resource
awareness for heterogeneous systems. Y0 uses both virtual nodes and node movements to
adjust the load for nodes with varying capacities such as storage space, processing speed, or
last-mile bandwidth, assigning high capacity nodes multiple virtual nodes within a keyspace
block to reduce the link maintenance.

Similar to virtual nodes, and often in combination with them [KR04,RLS+03,BBKK10,GS05],
node movements within the identifier space achieve load balance by adjusting the data that
each node stores [Man04,NW03,AKU03,BAS04,GBGM04]. These adjustments are made by
shifting the key ranges that nodes are responsible for, thus assigning new nodeIDs to nodes.

Resource and Location Aware Robust, Decentralized Data Management 51

CHAPTER 4. RELATED WORK: DHTS

P2P Systems

Single Overlay Multi-Overlay

Centralized Distributed

U
ns

tr
uc

tu
re

d

U
ns

tr
uc

tu
re

d
&

S
tr

uc
tu

r e
d

V
er

tic
al

H
or

iz
on

ta
l

Number of overlays

Index centralization

Network structure

S
tr

uc
tu

r e
d

Hybrid

U
ns

tr
uc

tu
re

d

U
ns

tr
uc

tu
re

d
&

S
tr

uc
tu

r e
d

S
tr

uc
tu

r e
d

U
ns

tr
uc

tu
re

d

U
ns

tr
uc

tu
re

d
&

S
tr

uc
tu

r e
d

S
tr

uc
tu

r e
d

Figure 4.4: Peer-to-peer system classification from Koskela et. al [KKHY13].

In order to determine when and how a node movement is necessary, information about the
distribution of load in the system must be monitored and nodes must be aware of their load in
relation to other nodes’ load. The keyspace may also be partitioned into ranges over which load
information can be gathered [GBGM04]. In general, nodes with low load will move towards
nodes or areas with high load to “steal” overburdened nodes work [KR04] (or vice versa). Once
a node initializes its movement to a different nodeID, it must perform a data handoff for all or
some of its data and establish a new set of links (unless the move has preserved the neighbor-
hood relations of network nodes as in distributed balanced tables [GB03]). These movements
are suitable for adapting to a statically skewed data distribution within the keyrange, but
the additional costs for load balancing make it impracticable for a highly dynamic scenario
with both high levels of churn and changes in nodes’ target or maximum acceptable load. The
extra dynamics that would be introduced by constant node movements would be costly while
jeopardizing the system’s robustness.

4.3.2 Hierarchies

Artigas et al. [ALS07] considered a hierarchical DHT to be “a collection of disjoint clusters of
peers defining together a k-layer architecture”, which expresses the most important attribute
of a hierarchical structure: that a peer performs or routes differently, depending on which
hierarchy layer it associates itself. Moreover, a node may be involved in many hierarchical
layers, but it must function at a given time or for a given operation from only one of those
layers. Artigas et al. go on to differentiate between homogeneous design and superpeer design,
which we refer to as horizontal and vertical design, respectively: In horizontal hierarchies,
nodes play symmetric roles while in vertical hierarchies, hierarchy layers can only be traversed
with the help of gateway (i.e. superpeer) nodes. Thus, horizontal and vertical refer only to
nodes’ ability to switch between hierarchy layers, i.e. the links that they maintain between
layers.

Recall that DHT hierarchies are typically used to express nodes’ heterogeneity in either their
available resources (often called capacities) or their group associations. In the first case, nodes

52 Resource and Location Aware Robust, Decentralized Data Management

4.3. RESOURCE AWARENESS: HETEROGENEOUS NETWOKS

P2P Systems

Single Overlay Multi-Overlay

Flat Hierarchical

V
er

tic
al

H
or

iz
on

ta
l

Flat Hierarchical

V
er

tic
al

H
or

iz
on

ta
l

Number of overlays

Peer roles

Gateway handling

H
or

iz
on

ta
l

H
or

iz
on

ta
l

Figure 4.5: Structural characterization of structured peer-to-peer systems, depending on the
number of autonomous overlays involved, whether the peers’ roles vary, and whether nodes
traverse various overlays/hierarchy layers via gateway nodes.

with more resources are given more load and responsibility within the DHT, often as su-
perpeers or cluster-heads. Where superpeers are used, super nodes are fully responsible for
performing lookup routing and for a large portion of maintenance, thus neglecting the varying
nuances of nodes’ resource availabilities. In the second case, nodes that belong to otherwise
disparate groups such as companies or university departments collaboratively form a single
DHT, although the groups may each maintain an independent overlay, resulting in a multi-
overlay system. Superpeers often act within one group (or overlay) as gateways to communi-
cate with the global network while the remaining group nodes build a local network (i.e. in a
vertical structure). These structures use routing protocols that tend to route lookups as far
as possible within one group before forwarding them on via a superpeer to a different group.
While these grouped hierarchical DHTs are not as relevant for our specific use cases and goals
as the resource-based approaches, they are described here to provide an overview of existing
hierarchical approaches.

But first, recall the peer-to-peer taxonomy described in Table 3.1, which included a category
number of overlays as introduced by Koskela et al. [KKHY13]. Koskela et al. performed
a survey of peer-to-peer systems which use some variation of group management strategy,
identifying the main challenges for these systems (as discussed in Chapter 3) and discussing
various approaches according to the P2P characterization shown in Figure 4.4. This figure
includes only a portion of the total taxonomy, showing the new number of overlays category
with the older structural categories index centralization and network structure introduced by
Androutsellis-Theotokis and Spinellis [ATS04].

While Koskela’s number of overlays category is especially important for hierarchical overlays,
it fails to provide consistency with the remainder of the taxonomy. While multi-overlay systems
may be vertical or horizontal, they may also be flat (i.e. not hierarchical) or vary in their
index centralization and/or network structure similarly to single overlay systems. Moreover,
hierarchical structures are not restricted to single-overlay systems and can also be vertical
or horizontal on single-overlay systems. Thus, one additional category is necessary for the
structural characterization as flat or hierarchical (peer roles) and hierarchical systems can

Resource and Location Aware Robust, Decentralized Data Management 53

CHAPTER 4. RELATED WORK: DHTS

furthermore be classified as horizontal or vertical (gateway handling). These two additions to
Brands and Karagiannis’s taxonomy are shown in Figure 4.5, and together with the taxonomy
from Table 3.1 give us nine categories. Note that a flat overlay cannot be vertical, since vertical
gateway handling implies a variation in nodes’ roles between gateway nodes and non-gateway
nodes, thus implying a hierarchy. Note that the approaches discussed in this work are both
hierarchical and flat as well as vertical and horizontal.

The hierarchical approaches discussed in this section are characterized in Table 4.3 (ordered by
year of appearance), with regards to the relevant taxonomy categories concerning the number
of overlays, the peer roles (hierarchy), and the gateway handling (vertical/horizontal) in addi-
tion to which (if any) existing DHT they were built on, use of location and resource awareness,
and use of node movements and virtual nodes. Of the existing hierarchal DHTs for group asso-
ciations, HIERAS from Xu et al. in 2003 [XMH03], an approach from Garces-Erice et al. from
2003 [GEBF+03], Coral from Freedman and Mazieres in 2003 [FM03], SkipNet from Harvey et
al. in 2003 [HJS+03], Canon in G Major from Ganesan et al. in 2004 [GGGM04], an approach
from Mislove and Druschel from 2004 [MD04], Cyclone from Artigas et al. in 2005 [ALAS05],
and LIP from Risson et al. in 2005 [RQMH06] are several well known approaches which we
start with. The remaining approaches - expressway by Xu et al. in 2003 [XMK03], Smart-
Boa from Hu et al. from 2004 [HLZ+04], SuperPastry from Castro et al. in 2005 [CCR05],
HONet from Tian et al. in 2005 [TXZ+05]. multiple superpeer-child approaches from Zoels
et al. in 2006 to 2009 [ZDK06, ZDK07, ZHDK09], a hierarchical Bamboo from Tian et al. in
2009 [TWS+09], and SkewCCC++ from Bienkowski et al. in 2010 [BBKK10] - all use some
sort of resource awareness.

Groups

HIERAS [XMH03] and Canon in G Major [GGGM04] are identical in their basic form, can be
applied to any DHT, but have been built on Chord - Canon’s implementation of Chord is called
Crescendo - and use a location aware hierarchy with many layers. Each node participates in
some Chord ring at every layer, with the sparsest and most topologically close Chord rings in
the bottom layer which are merged in successive upper layers so that the top layer consists of all
nodes. While HIERAS uses a distributed binning scheme via network latencies to landmark
nodes, Canon assumes that nodes are already separated into logical (and location aware)
groups such as university departments. Nodes share a single keyspace and establish a fully
linked local DHT in addition to links in each layer, thus HIERAS and Canon’s hierarchies
are both horizontal. Lookups are routed first to the closest (i.e. preceding) node within the
initiating node’s lowest (most local) layer before being routed in the successively higher, more
global layers.

Coral [FM03] is introduced based on Chord or Kademlia, but can also be applied to other
DHTs, and uses distributed sloppy hash tables (DSHT) in which caching plays a central role.
Cluster overlays are built based on proximity awareness and three layer “regional layer”,
“continental coverage”, and “planet-wide cluster” are used for varying degrees of proximity.
Round trip times within clusters are monitored to determine when a cluster has become too
large and should be split. Data is input into the responsible nodes in each layer, such that
lookups are performed in the initiating regional layer before moving up to a higher layer.

SkipNet [HJS+03] generalizes Skip Lists [Pug90] for a DHT which uses both a name ID
and a numeric ID naming scheme simultaneously. While the numeric ID resembles a hashed

54 Resource and Location Aware Robust, Decentralized Data Management

4.3. RESOURCE AWARENESS: HETEROGENEOUS NETWOKS

value, the name ID represents a node’s domain, for example databases.tuilmenau.de, with
varying levels of abstraction. With these joint naming schemes, SkipNet aims at achieving
both content and path locality, meaning that data can be stored close to a given location
or within a given group and lookup paths are local whenever possible, leaving groups only
when necessary. Thus, domains can be defined in which data is stored and searches can be
performed within domains, which the authors call constrained load balancing, since load is
balanced in a random fashion within the (sub)domains. However, individual nodes’ resources
are ignored, and the use of virtual nodes is assumed for nodes with homogeneous resources
and overlay failures are assumed to be primarily domain related (e.g. a broken connection
behind one ISP).

Mislove and Druschel’s [MD04] approach combines independent DHTs whose nodes may be
separated from the global network while using varying overlays. Each node that is not behind
a firewall or network address translation that prevents it from direct communication joins the
global overlay. Each sub-network has its own ringID for routing, and these gateway nodes are
responsible for passing queries between sub-networks using Scribe application multicast trees.
Lookups are performed with a (key, ringID) pair, and the global overlay of gateway nodes
stores (key, ringID) pairs that are looked up when the ringID of a given key is not known.
The global overlay does not use location awareness, but it may be present in the independent
sub-networks’ DHTs.

Cyclone [ALAS05], whose Chord implementation is called Whirl, and also may be used for
various DHTs, also uses node identifiers with prefixes and suffixes similar to SkipNet. However,
the suffixes are part of the keyspace keys used for cluster identification (for example, 128
bit keys with the last three bits used for the cluster identification) and the nodes share a
single keyspace, providing automatic load balancing between the clusters. Clusters are merged
similar to HIERAS and Canon.

LIP [RQMH06] was actually designed for internet telephony for saving contact information,
aiming to handle node and data location movements between various clusters while supporting
both short and long lived nodes. It uses multiple hierarchy layers which are connected via
gateway nodes whose addresses are stored and replicated within the respective DHT. While
DHTs at various hierarchy levels are built using location awareness by grouping together
nodes, for example, that are behind a single ISP (as in SkipNet), routing is aided by caching
lookups along their paths.

Garces-Erice et al. [GEBF+03] present a grouping hierarchy that, in contrast to the other
presented approaches, takes node resources into account. Nodes of various organizations are
organized into arbitrary, autonomous overlays which choose one stable node as a superpeer.
Together, the superpeers form a global DHT and are expected to have low failure probability.
Superpeers must recognize which keys belong to their clusters and use this information to
route lookups between clusters.

Resources

Xu et al. [XMK03] present an approach to resource awareness that builds “expressways” of
strongly connected nodes through the network that form an extra hierarchical layer, with
nodes self-determining whether they are strong and central enough to join the expressway
layer. Expressway nodes have many links to other expressway nodes while normal nodes have

Resource and Location Aware Robust, Decentralized Data Management 55

CHAPTER 4. RELATED WORK: DHTS

only local links and links to nearby expressway nodes.

In SmartBoa [HLZ+04], nodes are divided into up to 128 resource based levels, with each
node determining its level based on its current load and increasing or decreasing its level if
it has too much load or can handle more load. Nodes are arranged in a horizontal hierarchy
and nodes in different levels vary primarily in the number of links they establish, with a level
k node maintaining approximately N/2k links. Thus, routing tables have no significant upper
bound and nodes may maintain up to N links, i.e. be connected to every other network node.
A multicast algorithm is used for joins, leaves, and routing table updates instead of periodic
probing, so that SmartBoa has limited applicability in highly dynamic scenarios.

SuperPastry and HeteroPastry [CCR05] were introduced for comparison with each other and
unstructured overlays for heterogeneous networks. SuperPastry uses a vertical hierarchy with
strong nodes as superpeers and weak nodes as children, while HeteroPastry uses a flexible
choice of link nodes (similar to DHash++ [DLS+04]) to establish links to nodes with high
resource levels. HeteroPastry thus builds a flat overlay in which nodes’ links are relatively
strong, also enabling nodes to specify a maximum in-degree depending on nodes’ capacities
(similar to the varying out-degrees in SmartBoa). While the authors use a simple scalar for
expressing nodes’ resource levels and choose links based only on a single resource, they note
that “it is possible to design neighbor selection functions that combine several capacity metrics
and even network proximity.”

In HONet [TXZ+05], based on De Bruijn networks [LKRG03], nodes organize into location
aware clusters that each use their own overlay and keyspace (similar to HIERAS and other
group hierarchies). Each cluster has a stable node as cluster head which together form a
core (global) overlay. Each node is identified via a cluster ID (CID) and a member ID (MID,
the node ID within its cluster) and lookups can only be performed with a (CID, MID) pair.
Nodes restrict their degree based on their capacity and network conditions, although (similar
to other approaches) this idea is not described formally. Each node with adequately high
capacity establishes shortcut links to physically close nodes from other clusters. A lookup to
(CID, MID) is first routed to a “reflector” of CID within the local cluster which is responsible
for maintaining information about how to route to CID. Then, using this information, it is
routed to either a node within its local cluster with a shortcut to cluster CID or to the core
overlay via the root node.

Zoels et al. have suggested multiple approaches that take node capacity into consideration to
optimize a standard superpeer-child architecture, where superpeers form an overlay ring and
each child node is connected only to its respective superpeer [ZDK06,ZDK07,ZHDK09]. They
begin by showing that while the centralization of a superpeer-child architecture increases the
risk of overloading superpeers, it decreases the overall system costs [ZDK06]. The distribution
of leaf nodes to supernodes in order to balance load between supernodes is then considered
in [ZDK07]. An optimal superpeer:total-peers ratio is sought in [ZHDK09] with consideration
to nodes’ load factors, i.e. the amount of load nodes have compared to the amount of load
nodes are willing to accept.

A hierarchical adaptation of the location aware DHT Bamboo [RGRK04] (Bamboo is an
extension of Pastry described in Section 4.4.1) uses clusters that are connected via superpeer
cluster-heads [TWS+09]. Nodes are divided into ordinary (weak) nodes, superpeers (strong
nodes), and index peers (resource strength between weak and strong). Ordinary peers maintain
connections to their superpeers only, superpeers form a global overlay for inter-cluster lookups,

56 Resource and Location Aware Robust, Decentralized Data Management

4.4. LOCATION AWARENESS

and index peers store records of ordinary nodes’ information.

Another more recent approach, SkewCCC++ [BBKK10], focuses primarily on protection from
adversaries and assumes bandwidth as the only resource. A node that can communicate with
3 · ` neighbors is assigned a resource strength (level) of `. Based on a hypercube, the higher
a node’s strength is, the more dimensions the node has links in. Each node also hosts as
many virtual nodes as its strength, but these virtual nodes are treated as a single entity for
maintenance and routing purposes. However, load balancing on node or data insertion and
deletion is costly and requires whole subsets of the system nodes to choose new nodeIDs,
rendering this approach unsuitable for highly dynamic scenarios.

4.4 Location Awareness

While the original DHTs route efficiently, most were not designed to utilize location infor-
mation (see Table 4.1). Proximity-awareness has garnered interest in many areas related to
DHTs, including caching and replication protocols, hybrid overlays which combine structured
DHTs with proximity-based unstructured networks [EDPK09, MBK07], and DHTs’ overall
designs. The various approaches to integrating location awareness into a DHT’s design can
be characterized into three categories, as suggested be Gummadi et al. [GGG+03] and similar
to the slightly earlier terminology from Castro et al. [CDHR02]:

PIS Proximity Identifier Selection: the selection of a node’s nodeID depends on, among other
things, the node’s physical position (Mithos [WR03], SAT-Match [RGJZ04]).

PNS Proximity Neighbor Selection: nodes select links based on their distance in the physical
space (Pastry [RD01], DHash++ [DLS+04]).

PRS Proximity Route Selection: each routing hop for a lookup is chosen based not only on
the destination key, but also on the physical locations of the current node, the current
node’s links, and/or the destination key. (Tapestry [ZKJ01]).

Note that physical location and physical distance can be viewed from many perspectives, for
example as geographic locations, virtual positions based on latency between nodes, or the
latency between nodes directly. Each of these proximity aware approaches comes with its own
inherent strengths and weaknesses, making their applicability dependent on the network they
are planned for.

PIS impedes network scalability by non-uniformly distributing keysrange sizes to nodes if the
nodes are not uniformly distributed in space. If, for example, many nodes join the network
in a small physical area, they are likely mapped to a small portion of the total keyspace.
This results in small keyranges for these nodes, but potentially higher query and storage load
overall, increasing the load on nodes from other physical areas. Thus, load balancing must
be achieved through other optimizations. Furthermore, in many networks, nodes which are
physically close have correlated failure probabilities, for example in wireless networks when
base stations fail. However, failures of direct successors can make system recovery more difficult
and jeopardize the network’s ability to successfully route messages. These drawbacks were
especially important in the design choices made during this work and discussed in Section 2.3.
On the other hand, PIS can effectively provide a network that reflects the actual physical

Resource and Location Aware Robust, Decentralized Data Management 57

CHAPTER 4. RELATED WORK: DHTS

network, making geographic routing more effective and eliminating the high latency that is
otherwise incurred by a lookup’s last routing hop.

PNS may cause higher search overhead for finding suitable links that are as close as possible
or cause an imbalanced routing load due to central nodes with more in-links. However, these
issues can be worked around by, for example, piggybacking network and node information
on network messages or setting caps on the maximum number of in-links a single node will
allow. On the other hand, PNS can provide many nearby links, so that a significant portion of
routing and maintenance can be performed with close nodes and has no effect on the system’s
scalability.

PRS affects only routing paths, also potentially causing an imbalanced routing load. However,
the most difficult topic to address is the tradeoff between routing paths’ number of hops and
physically traversed distances. The next-hop in routing is chosen to a node that may be closer
in the physical space than the link otherwise chosen by greedy key-based routing, and is thus
not necessarily closest in the keyspace. Depending on a DHT’s structure, this can increase the
number of hops and make upper bounds on routing complexity more difficult to determine.
PRS has the advantages of PNS, without the extra overhead to find good nodes, but has been
reasoned (and shown for Pastry) to perform less effectively than PNS [GGG+03].

As discussed in Section 2.2, the effectiveness of location integration - i.e. PIS, PNS, or PRS -
depends on how location is defined and used, as characterized by the location dimensions L.1
to L.5. Noteworthy approaches from implementations and literature, with location expressed
(L.1) as either (i) actual physical location or (ii) relative location in respect to other nodes,
location notated (L.2) as either coordinates, bins, or graphs, and location determined (L.3)
in a variety of fashions, include:

(i) the physical position of a node given by its GPS coordinates,

(i) virtual coordinates calculated through the triangulation of latency to landmark nodes
whose GPS coordinates are known (e.g. Global Network Positioning, GNP [NZ01]),

(ii) virtual coordinates built using latency between node pairs (e.g. Practical Internet Co-
ordinates, PIC [CCRK04]; Vivaldi [DCKM04]; geographic routing [RRP+03]),

(ii) graph based internet distance information that expresses actual node links, gathered
locally or centrally (e.g. IDMaps [FJJ+01]), or

(ii) binning schemes that group nearby nodes into single bins (e.g. [RHKS02]).

So, in addition to the range of possibilities for integrating location awareness into a DHT,
there is clearly a broad interpretation of what location is. Although location is approached
differently, we will see in Section 4.6 that the optimization goals for DHTs, as expressed
through the used evaluation measures, are often identical.

The following two sections look at two variations of location aware DHTs: general proximity
aware approaches (often extensions of the original DHTs from Table 4.1) and approaches
specifically designed for mobile ad hoc networks.

58 Resource and Location Aware Robust, Decentralized Data Management

4.4. LOCATION AWARENESS

4.4.1 General Location Aware Approaches

Location awareness started to be applied to the original DHT ideas shortly after their intro-
duction, and new DHTs with the intent of reducing latencies or cross-network traffic emerged.
Shortly after its introduction, Castro et al. [CDCR02, CDHR02] evaluated Pastry’s location
awareness properties, concluding that location awareness can be achieved in protocols such as
Pastry, Chord, and Tapestry without significant changes in their load balancing and routing
quality. They offer a discussion of the evaluation measures which offer meaningful feedback
about the effects of location awareness, as mentioned later in Section 4.6. Ratnasamy et al.
suggest a binning scheme for integrating location awareness into DHTs, unstructured over-
lays, and server selection [RHKS02], using PIS with CAN for the DHT variation to achieve
proximity awareness.

Gummadi et al. [GGG+03] also offer a discussion of possible evaluation measures, while ex-
amining the effects of different DHT routing algorithms’ “geometries” (i.e. the structure of
their overlays and how it is used to route) on their robustness and location awareness. They
explain how DHTs can provide algorithmic flexibility for their neighbor and/or route selec-
tion by allowing a choice for links and/or next hop decisions after the foundational overlay
and routing have been chosen. They furthermore examine the degree of algorithmic flexibility
present in tree (PRR), hypercubes (CAN), rings (Chord), butterfly (Viceroy), XOR (Kadem-
lia) and hybrid (Pastry) geometries. Algorithmic flexibility for link choices can be obtained
when links are not necessarily determinate and can be chosen from a keyrange with multiple
nodes. For Chord, for example, node x’s links could be chosen not as the first successor of the
keys xID + 2i but rather from the keyrange [xID + 2i, xID + 2i+1]. An evaluative comparison
of proximity aware tree, hypercube, ring, and XOR geometries leads to the conclusion that
PNS is significantly more important than PRS for decreasing lookup path distances (latency),
while the overlay geometry is important only with respect to how well it implements PRN and
PRS (i.e. how much algorithmic flexibility it offers). Ultimately, they found the ring structure
to offer the highest level of flexibility and speculated that the ring structure may be superior
for proximity awareness.

Jain et al. [JMW03] also suggest proximity aware variations for CAN, Chord, and Pastry that
they compared with two measurement-based overlays in regard to the relative delay penalty
(RDP), link stress, and load balancing. While they offer a discussion of the significance of their
evaluation measures, they use CAN and Chord with PIS and PRS, while Pastry uses PNS
only, making the results difficult to reasonably compare. Bamboo also explores optimization
of Pastry with a high churn scenario by applying several PNS techniques, reactive vs. periodic
recovery for failures, and timeout calculations for lookups [RGRK04].

Motivated by the development of the Cooperative File System (CFS), Dabek et al. [DKK+01]
introduced a PRS variation of Chord used by their DHash system, in which routing hops
are chosen with the help of link latency information. This approach was further extended to
DHash++ [DLS+04] which uses PRS and PNS along with Chord. Proximity is established
using Vivaldi [DCKM04] to generate virtual network coordinates for each node that reflect
the underlying network latencies via a spring-mass estimation. Each node uses these virtual
coordinates to chose its physically (in terms of latency) closest neighbor within keyrange
blocks. DHash++ saves each data block in 14 erasure-code fragments, from which any seven
are required to reconstruct the block. The authors discuss the effects of, among other things,
caching data, recursive vs. iterative routing, PNS, and replication and server selection on the

Resource and Location Aware Robust, Decentralized Data Management 59

CHAPTER 4. RELATED WORK: DHTS

system’s latency.

Kaune et al. [KLKP08] introduce a proximity aware version of Kademlia that uses PNS and
PRS much in line with DHash++ and other approaches. The authors provide a discussion
of multiple underlay metrics which can be used to express and integrate location, in other
words, several variations for the location dimensions L.1-L.3.

While the above approaches focused on PNS and PRS, the following have applied PIS. SAT-
Match, which was evaluated on CAN, uses TTL-k flooding to find nodes with the clos-
est round trip times, and nodes then “jump” to their closest neighbors by adjusting their
nodeIDs [RGJZ04]. Mithos [WR03] uses a protocol similar to Vivaldi in order to establish
node locations, from which logical quadrants are formed so that nodes on bordering quad-
rants establish links. eQuus [LSW06] uses a hypercube topology in which nodes within a given
proximity to one another form cliques which are then connected. Items are replicated to all
nodes within a given clique to provide fault-tolerance.

4.4.2 Mobile (Ad Hoc) Networks

In mobile ad hoc networks (MANETs), each overlay hop incurred from routing a DHT lookup
may require multiple underlay hops on DHT nodes since DHT nodes are also responsible for
underlay routing. Furthermore, the use of overlay hops for which no underlay route is known
often results in broadcast messages to determine a route. This clearly causes unnecessary
overhead since a single broadcast message destined for an intermediate overlay hop may very
well reach the given lookup’s ultimate destination. MANETs also comprise networks with
high movement and churn rates, causing frequent changes in “good” routes and requiring
highly dynamic protocols for overlay maintenance and data persistence. While MANETs are
typically heterogeneous, DHT design for MANETs has primarily focused on minimizing the
number of necessary underlay hops, thus indirectly reducing load on all nodes. Note that while
the approaches described here were specifically designed for MANETs, they are often similar
to the group hierarchy approaches from Section 4.3.2 which establish groups based on node
location (i.e. clusters of nearby nodes) that are then connected via a hierarchy.

Generally speaking, DHTs in MANETs employ some combination of cross-layer PIS, PRS, and
PNS, often using network layer (i.e. underlay route) information to augment overlay decisions
and thus merging layers within the OSI model. Many of these overlays can be considered
hierarchical, in part due to clustered structures. Many of the numerous MANET protocols
are described below, and their approaches to location-awareness and heterogeneity, i.e. the use
of PIS, PNS, PRS, hierarchical structure, node movements, and/or virtual nodes, are shown
in Table 4.6.

GHT (Geographic Hash Table) [RKY+02] is among the foundational work on sensornets with
very similar goals to Ekta [PDH04], MADPastry [ZS05], and CHR [ARK+05], which were
among the first DHTs suggested for MANETs. In fact, GHT considers both nodes with re-
stricted energy availability and mobile nodes. It uses geographic hashing to map and replicate
data to a geographic area that corresponds to its own key and employs geographic routing to
find short, efficient paths. Its resource awareness stems from the assumption that data, which
is distributed according to where it is needed or where it was produced, is not necessarily uni-
formly distributed and will thus cause bottlenecks at certain nodes. A structured replication
protocol is designed to distribute data from an overloaded bottleneck node to (geographically)

60 Resource and Location Aware Robust, Decentralized Data Management

4.4. LOCATION AWARENESS

Approach Applied to PIS PRS PNS NM Hierarchy RA

PIS CAN
CAN X

[RHKS02,RHKS02]

Gummadi et al. PRR, Chord
X X

[GGG+03] Kademlia, CAN

Jain et al. CAN, Chord X X

[JMW03] Pastry X

Mithos [WR03] X

SAT-Match [RGJZ04] CAN X X

DHash++ [DLS+04] Chord X X

Bamboo [RGRK04] Pastry X

eQuus [LSW06] X

location Kademlia
Kademlia X X

[KLKP08]

GHT [RKY+02] X X X X

Ekta [PDH04] Pastry X X

MADPastry [ZS05] Pastry X X 2 - CH

CHR [ARK+05] X X X

hier. Pastry [YV11] Pastry X X 2/3 - CH

ROBUST [MPP10] Bamboo (Pastry) X X X 2 - CH

PNS-CHORD [CF05b] Chord X

[KKF06] X

VRR [CCN+06] X

Table 4.6: Location aware DHTs. The approaches below the bold line are geared towards
MANETS, NM stands for node movements for location awareness purposes (as opposed to
for load balancing), and RA for resource awareness.

surrounding nodes, but increases query costs from O(
√
n) to O(2d

√
n) (with 4d−1 replicating

nodes) and is thus better suited for frequent storage with infrequent querying [RKY+02].

Ekta [PDH04], which is based on Pastry, uses underlay routing information to choose links
(PNS - analogously to Pastry) and make overlay routing decisions (PRS). Furthermore, saved
underlay routes are constantly updated by monitoring the forwarded overlay messages. MAD-
Pastry [ZS05], on the other hand, uses select landmark keys to delegate landmark nodes. Nodes
form location-based clusters based on their physically closest landmark node, whose nodeID
determines a joint nodeID prefix shared by all nodes in its cluster. Thus, each node’s nodeID
depends on its cluster’s landmark node (PIS), and a new nodeID must be chosen each time a
node changes clusters (i.e. when the node becomes physically closer to a different landmark

Resource and Location Aware Robust, Decentralized Data Management 61

CHAPTER 4. RELATED WORK: DHTS

node). Physical node movements thus lead to node movements within the key space, causing
unnecessary overhead in highly dynamic mobile networks due to data-reallocation and overlay
link maintenance. Furthermore, since each node stores the network’s landmark nodes in its
routing table, landmark nodes receive heavy routing load although they are chosen regardless
of nodes’ strengths.

CHR [ARK+05] (Cell Hash Routing) uses geographic clusters by dividing the space into cells
of a fixed size (PIS). The clusters act jointly as super-peers, with data stored, geographic
lookups routed as in GHT [RKY+02] (PNS, PRS), and lookups processed on a cluster scale,
as opposed to a node scale. While CHR demonstrates strong proximity-aware attributes, its
structure restricts its scalability for highly dynamic scenarios.

Cramer and Fuhrmann considered how to use a DHT ring as a routing structure in un-
structured networks without routing capabilities, suggesting ISPRP [CF05a]. They also ex-
amined the practicality of PNS on MANETs, specifically a proximity-aware Chord PNS-
CHORD [CF05b]. They defend Chord’s adaptability to the physical network and suggest a
hybrid approach to finding neighbors using PNS, flooding for neighbors in small index ranges,
and caching nodes within a k-hop neighborhood for larger index ranges.

Kummer et al. introduced an approach that uses every underlay hop to reroute the current
overlay hop to a more ideal node [KKF06]. They suggested a ring-based DHT in which nodes
establish overlay links only to their direct logical successors and predecessors as well as their
direct physical neighbors. Upon forwarding a lookup to the current destination hop along the
underlay, each intermediate node checks whether one of its overlay links is closer to the final
destination key. If so, the current destination hop is changed to this logically closer overlay
node, creating a logical shortcut and thus decreasing the total network traffic and lookup
hop lengths. Similarly, the network routing protocol VRR (Virtual Ring Routing) was also
introduced as a blend of point-to-point and overlay routing, implementing key-based routing
directly on the link layer [CCN+06]. Nodes are organized in a ring and information about
physical links and bi-directional routes between virtual links is stored at each node. Much
like the approach from Kummer et al., optimizations to the overlay route are made in each
underlay step.

Another alteration of Pastry/MADPastry was suggested by Yu and Vuong [YV11] for mas-
sively multi-player online games (MMOGs) over MANETs. Here, cluster heads are used for
additional link information collection and dissemination, resulting in what can be seen as a
3-tiered hierarchical system. ROBUST [MPP10], based on Bamboo [TWS+09], uses location-
based clusters with super-peer cluster heads. A node’s cluster is determined based on its
physical proximity to the network’s cluster heads and a node’s nodeID’s prefix is based on its
cluster’s cluster head. ROBUST also uses proximity synchronization, or a node movement (in
the ID-space) to a closer cluster head after nodes’ physical movements.

4.5 Resource and Location Aware DHTs

Of the approaches discussed here, six of them use some form of both resource and location
awareness [XMK03, GEBF+03, TXZ+05, BBKK10, TWS+09, RKY+02], and are therefore of
special interest for this work. However, each of these approaches also has significant boundaries
which restrict their applicability, and only GHT [RKY+02] has been evaluated with some

62 Resource and Location Aware Robust, Decentralized Data Management

4.6. EVALUATION MEASURES

respect to resources. GHT was designed primarily for stationary sensornets and uses PIS to
distribute nodes and data keys in the keyspace, ultimately making node movements costly.
Moreover, GHT does not explicitly consider varying levels of resources. This is especially
evident in its evaluation, which takes only a maximum storage and message load into account,
assuming that all nodes can handle a similar load.

The expressway approach [XMK03] and the approach from Garcés-Erice et al. [GEBF+03]
both employ a simple binary approach to resources with superpeers responsible for clusters of
weak nodes. They thus ignore nodes’ varying resource availabilities, and were only evaluated
for a small set of measures (see Section 4.6). While HONet [TXZ+05] employs a continuous
scale for resources, it requires that the cluster ID of a given piece of data is known in or-
der to perform a lookup, making global lookups either unfeasible or much more costly. For
example, this information may be stored in the core overlay with extra clusterID lookups per-
formed whenever the cluster ID is unknown. The hierarchical version of Bamboo [TWS+09]
differentiates between three resource availability levels, but its description and evaluation are
unfortunately very restricted so that neither its applicability nor its implementation are clear
enough to justify consideration. Finally, in ScewCCC+ [BBKK10], tedious re-balancing is
required for data inserts and deletions, rendering the system unfit for dynamic scenarios, and
it lacks any evaluation with which to counter these assumptions.

4.6 Evaluation Measures

Although the various DHT approaches described thus far justify their development using
widely varying challenges, deficits, and goals, they ultimately share the central goal of robust
data storage, i.e. high data availability, along with the other peer-to-peer challenges described
in Section 3.1. While these challenges can be addressed via the many DHT design issues and
thus evaluated in many fashions, literature tends to focus on the following four questions for
evaluation:

� Can lookups be successfully routed to their destinations?

� Are query delays within acceptable ranges?

� Are nodes overburdened with heavy load, causing bottlenecks or node failures?

� Is data adequately replicated to ensure that it is not lost due to node failures?

However, the literature discussed in this chapter has mostly ignored the last replication-related
question, which has been addressed in replication specific work as discussed in Chapter 8.
These questions have been evaluated using a diverse set of measures concerning the nodes in
general, links, lookups, and maintenance which are summarized in Table 4.7. A very broad
range of measures have been used due to the lack of standardized benchmarks for DHT
evaluation. Ranges of implemented measures are grouped together to form the categories
in Table 4.7. For example, the category link latency contains implemented measures that
range from the costs associated with using a link [TXZ+05], to the latency of individual
overlay hops [RFH+01], to the distribution of links within areas such as the local ISP, region,
country, continent, and world [KLKP08]. More precisely defined, the lookup overlap refers
to how much the paths of two lookups for the same key κ originating at two different nodes

Resource and Location Aware Robust, Decentralized Data Management 63

CHAPTER 4. RELATED WORK: DHTS

M
ai

n
te

n
a
n

ce latency round-trip-times of maintenance messages

load
bandwidth bandwidth consumed by maintenance activity

messages
number of messages sent and/or received for maintenance
activity

L
o
ok

u
p

hop count number of hops per lookup

latency time/distance round-trip-time (or physical distance) of lookups

stretch

RDP
relative delay penalty ratio of overlay latency to
quickest physical path per lookup

underlay
ratio of underlay distance to
shortest possible underlay distance per lookup

hop ratio of overlay hops : fewest possible overlay hops per lookup

failure
overlay percentage of failed lookups

underlay percentage of dropped underlay hops or packets

overlap
percentage of lookup routes that converge for
similar lookup routes

N
o
d

e

degree number of links per node

keyspace percentage of nodes’ maintained keyspace or total storage

load

bandwidth bandwidth used by node

bytes bytes sent/received by node

messages messages sent/received by node

underlay msg number of packets sent/received on underlay

L
in

k

resources strength/capacity of peers to which a node is linked

latency latency of a node’s links

load load (messages, bytes, etc.) per linked node pair

Table 4.7: Measures used to evaluate DHTs.

overlap, while the lookup stretch refers to the ratio of the distance of the shortest possible
end-to-end connection between an initiating node and a destination node to the distance of
the total lookup path.

Each of the measures from Table 4.7 can be (i.e. has been for DHTs) interpreted to reflect
how well one or more of the peer-to-peer challenges has been overcome. Figure 4.6 provides
an overview of these relationships. The security and grouping of information challenges have
been omitted, since they are not clearly addressed by any of the measures. Note that the
measures are merely indirect indicators of specific attributes (i.e. challenges) and can often
be interpreted to assess multiple related challenges. For example, a measure that is used to
evaluate performance can also be interpreted to evaluate scalability by increasing the network
size. Likewise, a measure used to evaluate resource management can also be interpreted to
evaluate fairness. On the other hand, the measures can also be used with relation to one
another to establish more complex measures. For example, in the comparative performance
survey from Li et al. [LSM+05], nodes’ lookup latency (performance) was plotted against

64 Resource and Location Aware Robust, Decentralized Data Management

4.6. EVALUATION MEASURES

Measures

maintenance latency

maintenance load

lookup hop count

lookup latency

lookup stretch

lookup failure

lookup overlap

node degree

node keyspace

node load

link resources

link latency

stress

P2P challenges

robustness

scalability

fairness

performance

resource management

Figure 4.6: Mapping of measures to peer-to-peer challenges they help to evaluate.

nodes’ bandwidth load (cost scalability).

In their survey on peer-to-peer search methods, Risson and Moors focused on robustness,
especially its dependability and adaptability aspects [RM06]. They discuss how the mea-
sures for dependability are well established as the mean-time-to-failure (MTTF), mean-time-
to-repair (MTTR), availability (combination of MTTR and MRRF), maintainability, and
safety [RM06, Lap85]. It is thus surprising that none of these measures have established
themselves as common DHT evaluation measures. The original DHTs focused on the basic
construction of links, load balancing, and efficient routing while DHTs specializing in hetero-
geneous networks and MANETs shifted the focus to include the differences between nodes
and the robustness of systems in the dynamic and/or heterogeneous systems. However, when
examining the evaluation measures used by the original, the heterogeneous, and the location
aware DHTs, there is no clear shift in measures as might be expected. Table 4.8 provides an
overview of which approaches were tested with which measures. Measures used to validate the
correctness of an implemented algorithm have been omitted from this table (for example, how
many links nodes are able to find for their routing tables) as have mathematically analyzed
measures (for example node degree). Approaches discussed above but not evaluated are also
omitted. As one can easily see, the measures associated with lookups have been more popular
in literature than the remaining measures.

How these evaluation measures, the specific scenario requirements from Section 1.3, the peer-
to-peer challenges from Section 3.1, and the DHT design issues from Section 3.3 relate to

Resource and Location Aware Robust, Decentralized Data Management 65

CHAPTER 4. RELATED WORK: DHTS

Which design issues can
help fulfill specific

requirements and how?

Which measures can
be used to evaluate

P2P challenges?

Which challenges
do the specific
requirements

produce?

Which design
elements

affect which
measures?

Which measures
are relevant for

the specific
scenario?

Evaluation measures

e.g:
maintenance load

lookup latency
lookup hop count

lookup failure
node load in messages

link capacity

Scenario requirements

robustness
self-organization

scalability
load balancing

data consistency
resource awareness
location awareness

DHT design

keys
maps
links

routing
maintenance

churn
replication

P2P challenges

robustness
security

scalability
fairness

performance
resource management
grouping of information

How can P2P
challenges

be addressed
by a DHT?

Figure 4.7: The relationship between each of four viewpoints from which the problem can
be approached: general peer-to-peer challenges, specific scenario requirements, DHT design
issues, and DHT evaluation measures.

each other is illustrated in Figure 4.7. For the further development of DHTs for our use
case scenarios, we are specifically interested in the intersection of the scenario requirements
with the other three issues. The relationship between the peer-to.peer challenges and the
scenario requirements was discussed in Section 3.1 while the DHT design tradeoffs for the
scenario requirements were explored in Section 3.3.3. We consider now the specific scenario
requirements, in particular resource and location awareness, with respect to the evaluation
measures. Location awareness has been a focus of every MANET application and is effectively
measured with latency and stretch measures. Resource awareness, on the other hand, must be
evaluated with respect to each node’s individual resource level. Lookup failure or node load
alone cannot express how well the resources of individual nodes are fairly used. Rather, the
measures used to evaluate fairness (maintenance load, node degree, node keyspace, node load,
link resources, stress), together with a differentiation between the nodes’ various resource
availability levels, can reflect how well resources have been taken into account. The resource
levels established in Chapter 2 must thus, in contrast to previous literature, be integrated into
the evaluation process.

66 Resource and Location Aware Robust, Decentralized Data Management

4.7. OPEN QUESTIONS

Maint. Lookup Node Link

Approach la
te

n
cy

lo
ad

h
o
p

co
u

n
t

la
te

n
cy

st
re

tc
h

(R
D

P
)

fa
il

u
re

ov
er

la
p

fr
a
ct

io
n

d
eg

re
e

ke
y
sp

ac
e

p
or

ti
o
n

lo
ad

re
so

u
rc

es

la
te

n
cy

lo
a
d

or
ig

in
a
l

D
H

T
s

CAN [RFH+01] X X X X

Chord [SMK+01] X X X X

Pastry [RD01] X u

Tapestry [ZHS+04] X bw X X bw

P-Grid [ACMD+03,Abe01] m X

Symphony [MBR03] m X X m

BATON [JOV05] m

h
ie

ra
rc

h
ic

al
D

H
T

s

HIERAS [XMH03] X X

expressway [XMK03] X

[GEBF+03] X

CORAL [FM03] X

SkipNet [HJS+03] X X X X

Canon [GGGM04] X X X X X

Cyclone [ALAS05] X

Y0 [GS05] X X X m

HeteroPastry [CCR05] X X X X m X

HONet [TXZ+05] X X X

Superpeer-child [ZDK06] m

Superpeer-child [ZDK07] X m

Superpeer-child [ZHDK09] X X m

SkewCCC+ [BBKK10] X

Continued on next page

Resource and Location Aware Robust, Decentralized Data Management 67

CHAPTER 4. RELATED WORK: DHTS

Continued from previous page

Maint. Lookup Node Link

Approach la
te

n
cy

lo
ad

h
o
p

co
u

n
t

la
te

n
cy

st
re

tc
h

(R
D

P
)

fa
il

u
re

p
a
th

co
n
v
er

g
en

ce

d
eg

re
e

ke
y
sp

ac
e

p
or

ti
o
n

lo
ad

re
so

u
rc

es

la
te

n
cy

lo
a
d

[GGG+03] X X h X X

[CDCR02] m X X X X X X

PIS CAN [RHKS02] X

[JMW03] X bw,p X

SAT-Match [RGJZ04] X X X b

DHash++ [DLS+04] X X

Bamboo [RGRK04] X X bw

lo
ca

ti
on

aw
ar

e
D

H
T

s [KLKP08] X X

Mithos [WR03] X X

eQuus [LSW06] X X

GHT [RKY+02] X X m

Ekta [PDH04] X u um

MADPastry [ZS05] X m,b

CHR [ARK+05] u

ROBUST [MPP10] b u X X

PNS-CHORD [CF05b] u u

[KKF06] u u

VRR [CCN+06] u X u u bw

comparison [LSM+05] X X bw

Table 4.8: Measures used to evaluate DHTs. Abbreviations used to classify more specifically
how measures were used: m-message, h-hops, bw-bandwidth, b-bytes, u-underlay, um-underlay
messages. p-pairs of source-destination nodes for forwarding.

68 Resource and Location Aware Robust, Decentralized Data Management

4.7. OPEN QUESTIONS

4.7 Open Questions

This work’s central question regarding the ideal system to meet the requirements developed in
Chapter 1, particularly the resource and location awareness, gives rise to many other questions
when considering previous literature. Location and resource awareness seem to pose a natural
tradeoff, and have often been considered separately. However, if and how they impede each
other can only be guessed. Can a distributed storage system gain resource awareness simply
by integrating location awareness or vice versa?

Of the new resource and location awareness characterization dimensions introduced in Chap-
ter 2, which, if any, actively affect how successful awareness can be implemented? For example,
can a continuous scale for resource awareness better adapt to a dynamic system than a binary
scale (R.4)? Or can the round trip latency between two nodes better decrease a system’s total
location-related costs than considering the number of hops between nodes (L.5)? Some dimen-
sions - such as the resource awareness notation (R.5), with scalars, tuples, or functions - have
typically been restricted in literature (here to scalars). How can these, or other, dimensions
be implemented in new fashions?

Furthermore, the difference between the effectiveness of the newly introduced resource aware-
ness approach characterizations RIS, RNS, RRS, and RSD remain unclear. There has been
ample literature involving systems that use one or more of these approaches, but they have
not been considered on a higher level similar to Gummadi et al.’s [GGG+03] consideration of
location awareness through PIS, PNS, and PRS. Which advantages and disadvantages does
each approach contribute, which can be considered the “strongest” (similar to Gummadi et
al.’s preference to PNS)?

However, these ambitious questions are not in the scope of this work. Rather, the focus here
is placed on a more humble question with a primarily RNS (partially RRS) approach: Which
structure is best for the developed requirements? Or, how do the variations in the taxonomy
from Figure 4.5 influence the effectiveness of resource and location awareness? Moreover, how
does the number of layers in a hierarchy (with one layer being effectively flat) generally effect
the system robustness and specifically effect resource and location awareness?

In order to answer any of these questions, evaluation metrics must first be found that accu-
rately reflect the desired robustness requirements. To date, there are no agreed upon evaluation
metrics or processes for evaluating peer-to-peer systems, let alone benchmarks. A standard-
ized framework, as in Chapter 2, is necessary in order to establish common conditions for any
wide scope comparison. Furthermore, in the long term, only standardized evaluation metrics
can provide relevant cross-approach or cross-study comparisons and both their use and their
interpretation must be discussed to ensure their comparability.

Resource and Location Aware Robust, Decentralized Data Management 69

CHAPTER 4. RELATED WORK: DHTS

70 Resource and Location Aware Robust, Decentralized Data Management

Chapter 5

Resource and Location Aware
DHTs

Consider now a Chord implementation run on servers and smart-phones alike: While servers
have unlimited energy availability and large storage capacities, smart-phones have very lim-
ited energy and storage capacities. Since nodes’ delays may vary greatly depending on their
connectivity, fingers should clearly be chosen across low latency links (i.e. to “near” nodes).
While virtual nodes or node movements could help to suitably distribute data, both fail to
relieve weaker nodes with dwindling energy of costly maintenance and routing responsibilities.
On the other hand, the integration of a super-peer structure with binary “have” or “have not”
nodes invariably over-uses or under-uses the resources of the energy (un)restricted devices.
Subsequent node failures lead to a drop in the overall network storage and computational ca-
pacity and thus compromise not only data availability and consistency but also the network’s
scalability. Without location awareness, lookups are routed blindly back and forth across the
network, putting unnecessary strain on weaker nodes and increasing the delay and failure
rates of lookups.

In this chapter, several structured location and resource aware peer-to-peer storage systems,
i.e. DHTs, are developed in order to address several open questions. First, how do location and
resource awareness effect each other and do they pose tradeoffs or can they actually support
one another. Secondly, can a hierarchical or flat approach provide better joint awareness and
what is the effect of multiple hierarchy layers. This question indirectly answers whether it is
worth the effort for nodes to differentiate between their resources, i.e. strengths, on a finer
scale than “have” and “have not”? While this chapter takes a structural approach, this alone
is sufficient for neither data availability in a dynamic network nor location awareness when
data is randomly distributed (i.e. scalably and balanced). Thus, approach specific resource
and locations aware replication is developed in Chapter 8 to supplement the DHTs developed
in this chapter.

In the following sections, one flat and one hierarchical novel overlay is presented, as well as
a hybrid version of these two overlays and a cluster-based variation of the flat approach.
While all of these approaches are more or less based on the flexible ring-topology Chord,
they could conceivably be adapted to almost any other DHT. In the flat approach, each node
chooses links and routes messages independent of its own resource availability, i.e. nodes have
symmetric roles. Meanwhile, in the hierarchical approach, nodes establish links and route

71

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

lookups depending directly on their resource levels, thus separating nodes into hierarchical
layers.

In the flat approach, each node chooses for a given link that node within a given keyrange with
the “best mixture” of high resource availability and near location, as defined variably by the
system. This provides many opportunities to optimize and adjust the system by adjusting the
relationship between resource and location awareness. The hierarchical approach, on the other
hand, provides less room for adjustment with a more rigid structure which inherently removes
load from the weakest nodes, which function as leaf nodes. Due to these obvious differences, we
can expect the approaches to behave significantly differently in various scenarios. Hypotheses
regarding their performance are formulated in Chapter 7, for example, weak nodes in the
hierarchal approach could be expected to have longer lifetimes while the flat structure could
be expected to adapt better to network changes.

5.1 DHT Foundations

Recall that for resource awareness in DHTs, RIS, RNS, RRS, and RDS approaches can be
applied, similar to the original PIS, PNS, and PRS for proximity awareness. Gummadi et
al. [GGG+03] argue that using proximity identifier selection comes at the cost of scalability
and load balancing, as might be expected from resource identifier selection. Since the random
distribution of identifiers to nodes is a key source of DHTs’ scalability and inherent load
balancing, this work develops and compares approaches which use only random identifiers.
Furthermore, virtual nodes and node movements, forms of PIS, are also excluded. Recall
from Section 4.3.1 that virtual nodes and node relocation introduce additional maintenance
overhead while making the basic assumption that weaker nodes have less storage space to
contribute. We assume that lower resource nodes have an integral role in storing data and
propose systems which distribute data evenly on all nodes while addressing heterogeneity of
nodes through their maintenance and routing responsibilities. A replication mechanism for
placing data is developed in Chapter 9 to augment these RIS and PIS-free approaches and
distribute varying storage load when necessary.

The DHTs developed here are based on Chord [SMK+01] in part because Chord is the basis
of the location aware DHash++ which has a rather simplistic and adaptable structure, and
in part because Chord has wide-spread popularity both in literature and in applications (see
Chapter 4. While all of the following DHTs are based on Chord, they could also be adapted
to many other DHTs. Analogous to Chord, consistent hashing [KLL+97] is used to distribute
keys to nodes. Each node x chooses a random (or hashed) nodeID xID from the binary
key space 0 . . . 2m − 1, which is viewed as a ring with key values increasing in a clockwise
direction. Each node positions itself at its nodeID on the key ring and establishes links to its
immediate predecessor and successor as well as a successor list with its r nearest (clockwise)
successors. The successor list makes repairs possible after unexpected node failures. Each key
κ ∈ {0, . . . , 2m − 1} is assigned to the first node x whose nodeID xID is equal to or succeeds
κ on the key ring. The asymmetric key distance from a node x with nodeID xID (or key) to
a node y with nodeID yID (or key) is called the key distance:

Definition 5.1.1 (Key Distance). The key distance from x to y is the clockwise distance on

72 Resource and Location Aware Robust, Decentralized Data Management

5.2. FLAT DHT - RBFM

the key ring from xID to yID:

dkey(x, y) := yID − xID mod 2m.

Note that this distance is not symmetric (dkey(x, y) 6= dkey(y, x)).

5.2 Flat DHT - RBFM

The flat approach is called RBFM for Resource Based Finger Management [RB11], and can
be easily used for almost any underlying DHT. Based on DHash++ [DLS+04], each node in
RBFM chooses its links based on other nodes’ key distances, physical distances, and resource
levels. Each additional shortcut link (i.e. not successor or predecessor links) is called a finger
and is chosen from a designated finger key-interval. From this interval, a node with the best
balance of low physical distance and high resource level is chosen. Links are maintained
at varying frequencies: links to strong nodes are maintained less frequently than links to
weak nodes. Thus, weak nodes have fewer incoming links and maintenance to strong nodes is
reduced, reducing the overall load for weaker nodes.

5.2.1 Finding Links

Similar to DHash++ and borrowing the terminology from Chord, each node views the
keyspace as broken into finger intervals:

Definition 5.2.1 (Finger Interval). The ith finger interval for node x with nodeID xID is

Bx,i := [xID + 2i−1, xID + 2i) i ∈ {1, 2, . . . ,m}.

Each node x with nodeID xID chooses one finger x.F [i] per finger interval Bx,i for i ∈
{1, 2, . . . ,m}. The corresponding node that x.F [i] points to is notated x.F [i].node. But while
DHash++ chooses for x.F [i].node the node with the smallest physical distance to x in each
finger interval, RBFM chooses a node based on both its physical distance and resource level,
or its resource distance. This resource distance is inspired by Vivaldi’s [DCKM04] distance
metric for network coordinates which uses an additional height dimension to distance a node
from the entire network. Similarly, RBFM use a node’s resource level to distance it from the
entire network, ensuring that the lower a node’s resource level is, the further it will be dis-
tanced from every other node. First, we define each node x’s resource height xh via a resource
height function h : {0, 1, . . . , lmax} → R+ for some stretch constant c > 0:

xh = h(xR) := c · (lmax − xR), ` ∈ {0, 1, . . . , lmax}. (5.1)

The higher the resource stretch constant is, the farther the node is thus distanced from the
rest of the network using the following resource distance.

Definition 5.2.2 (Resource Distance). The resource distance between nodes x and y with
coordinates (x1, x2), (y1, y2), resource levels xR, yR ∈ {0, 1, . . . , lmax}, and resource heights
xh = h(xR) and yh = h(yR) is:

dres(x, y) = dphy(x, y) + xh + yh.

Resource and Location Aware Robust, Decentralized Data Management 73

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

B
x
,m
−

1

xID
xID + 2m−2

xID + 2m−1

p3

p4

p1

p2

ProspectiveLinks[m-1]
NodeID P.Dist. R.Level R.Dist.

p2ID 1.6 2 2.6
p3ID 1.4 1 3.4
p4ID 0.9 0 3.9
p1ID 4.1 3 4.1

Figure 5.1: Key ring with six nodes in x’s m−1st finger interval Bx,m−1, four of which x knows
in its prospective links list (squares). A finger is established to p2, the known node with the
best resource distance (dependent on distance and resource level) to x.

In order to gain information about other nodes’ resource distances, coordinates and resource
levels are piggybacked on network messages. Each node x maintains a prospective links list
with a list of nodes it has gained information about either directly or via piggybacked node
hints. This prospective links list contains a list of the k best known nodes in terms of resource
distance for each finger interval Bx,i, i ∈ {1, 2, . . . ,m}. Thus, at most k nodes in Bx,i with
the shortest resource distances to x are saved as (nodeID, physical distance, resource level,
resource distance) tuples, for an upper bound of k ·m entries. When receiving a message from
sender y, node x uses y’s coordinates and resource level to determine dres(x, y) and update
its prospective links list accordingly (see Algorithm 3).

Algorithm 3 Updating prospective links list with ≤ k entries

procedure suggestProspectiveLink(nodeInfo)
finger = getFingerInterval(nodeInfo.key)
dist = getResourceDistance(nodeInfo.coordinates, nodeInfo.resourceLevel)
if prospectiveLinkList.contains(finger, nodeInfo.key) then

prospectiveLinkList.updateNode(finger, dist, nodeInfo)
else if dist < prospectiveLinkList.getFarthestLinkDistance(finger) or

prospectiveLinkList.size(finger) < k then
prospectiveLinkList.addNode(finger, dist, nodeInfo)
while prospectiveLinkList.size(finger) > k do

prospectiveLinkList.removeFarthestLink(finger)
end while

end if
end procedure

Each node x maintains a finger table with one finger x.F [i] in each Bx,i for i ∈ {1, 2, . . . ,m}: if
prospective links contains at least one entry for Bx,i, then the entry with the smallest resource
distance is contacted with a finger request (see Figure 5.1); otherwise, the owner (i.e. successor)
of key xID +2i−1 is contacted as in Chord (see Algorithm 4). To ensure that prospective links

74 Resource and Location Aware Robust, Decentralized Data Management

5.2. FLAT DHT - RBFM

are up-to-date and alive, an entry is deleted as soon as it is used for a finger request. Thus,
it cannot be used twice without confirmation that it is still alive, and prospective links are
periodically cleared of old entries. The prospective links list entries are continually updated
with fresh node information, so the network automatically adapts to changes in node resource
levels or coordinates. Note that if there is a finger interval that contains no node, then multiple
fingers will point to the same node, as in Chord. On the other hand, if there is at least one
node in a finger interval Bx,i, then x.F [i] will point to a node in Bx,i.

Algorithm 4 Establishing and maintaining fingers 1 to m− 1

procedure maintainFinger(finger)
lookupKey = myKey + getOffset(finger)
if prospectiveLinkList.size(finger) > 0 then

listEntry = prospectiveLinkList.getClosestEntry(finger)
lookupKey = listEntry.key
prospectiveLinkList.removeUsedEntry(listEntry)

end if
sendLookup(lookupKey)

end procedure

As we will see later, the larger i is, i.e. the farther away in the keyspace the finger is, the larger
the finger interval is and the higher we expect x.F [i]’s resource level to be. This means that
high resource level nodes tend to have more incoming fingers than low resource level nodes.

5.2.2 Routing

Lookup routing is performed greedily, identical to unidirectional routing in Chord: A node x
which needs to lookup a key κ ∈ {0, . . . , 2m − 1} first checks if it is the owner of κ, i.e. if κ is
between x’s predecessor and itself. If this is not the case, x forwards the lookup to the closest
predecessor of κ in its routing table (including its successor list and its own nodeID xID). If x
is the closest predecessor itself, then the key is maintained by x’s successor, and the routing
is completed after one hop. Figure 5.2 demonstrates how a message might be routed, with the
hops becoming increasingly small.

Since fingers are not deterministically defined in this approach, allowing fingers to be spaced
more irregularly, the expected (and worst case) number of hops which are necessary to locate
a key is higher than in Chord. However, this increase can be expressed as a constant factor,
leaving us with the same O(logN) routing complexity as in Chord. In fact, simulation results
in Chapter 7 show that the difference in routing lengths is in fact negligible. Note that the
term with high probability is used here to express a probability ≥ 1− 1/N .

Theorem 5.2.1. Given a network with N nodes, with high probability, a message is routed
from any node to the successor node of any key in O(log(N)) hops.

Proof. Assume that a node x is to forward a message to the node y responsible for key κ, and
let p be κ’s immediate predecessor node. We consider how many hops are necessary to reach
p. Let p be in x’s ith finger interval Bx,i = [xID + 2i−1, xID + 2i). Then either:

Resource and Location Aware Robust, Decentralized Data Management 75

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

x

y

Figure 5.2: Greedy routing from x to y in four hops. The first hops cover a long key distance
and can use stronger links. The latter hops become increasingly short and weak, since the
smaller finger intervals offer fewer nodes to chose from.

� x.F [i] is a predecessor of p, and forwarding to this finger reduces dkey(x, p) by at least
2i−1, or

� x.F [i] is a successor of p. Since p is a successor of the key xID + 2i−2, x.F [i− 1].node is
in the interval Bx,i−1 = [xID + 2i−2, xID + 2i−1) ⊂ [xID + 2i−2, pID]. Forwarding to this
finger reduces dkey(x, p) by at least 2i−2.

We see that the key distance dkey(x, p) ≤ 2i−1 is reduced by a factor of at least 2i/2i−2 = 1/4
for each forwarding. Thus, we are within one key of p after at most m/ log(4/3) steps, which
we see by assuming that we are the maximum of 2m keys away from κ and that each step
decreases this distance by 3/4:

2m ·
(

3

4

)m/ log(4/3)

=2m ·

[(
3

4

)log(3/4)
]−m

=2m · 2−m

=1.

Analogously, after logN/ log(4/3) steps we are within 2m/N keys of p:

2m ·
(

3

4

)logN/ log(4/3)

=2m ·

[(
3

4

)log(3/4)
]− logN

=
2m

N
.

Considering the consistent hashing used to generate nodeIDs and assuming that nodes are
uniformly distributed in the keyspace, with high probability there are no more than O(logN)
nodes in a logN/ log(4/3) sized keyrange. Thus, p can be reached within another O(logN)
hops using direct successors. So p, and with it y, are reached in at most O(logN) hops.

5.2.3 Link Maintenance

Given a dynamic network with frequent node joins, failures, movements, and changing resource
levels, links must be updated on a regular basis to uphold the network’s routing characteristics.

76 Resource and Location Aware Robust, Decentralized Data Management

5.2. FLAT DHT - RBFM

Links to nodes which have failed or no longer have the minimum resource distance in a finger
interval must be reassigned; links to newly joined nodes must be established. Note that a node’s
outgoing fingers do not change when its resource level changes, but its incoming links most
likely will since its new resource level will eventually be updated in other nodes’ prospective
links lists.

Since we correlate a node’s resource availability with its reliability, we choose the frequency
with which a finger f is updated depending on f.node’s resource level: Fingers to high resource
level nodes require updates less often. This reduces the maintenance load for both low resource
nodes, which initiate link maintenance, and high resource nodes, which respond to the link
maintenance. Link maintenance is performed on a finger f after a time interval which depends
on a reference interval tref and the resource level f.nodeR:

Definition 5.2.3 (Finger maintenance interval). The interval between finger maintenance
messages sent by node x to finger f is determined by the finger maintenance interval:

g : {0, 1, . . . , lmax} → R+

One possible finger maintenance interval which is dependent on a resource level ` is, for exam-
ple, g(f.nodeR) = tref ·(f.nodeR+1)2. With this function, a finger with resource level 0 would
be updated after the interval timeref while a finger with resource level 3 would be updated
after the interval 16timeref . In later chapters, this example is referred to as a quadratic finger
maintenance interval, but linear or constant examples are used as well. Thus, the function
g(`) provides an opportunity to tune the network’s degree of robustness and maintenance
overhead. While routing robustness and maintenance overhead usually imply a direct trade-
off, the dependence of the finger maintenance interval on nodes’ resource availabilities softens
this tradeoff by decreasing the maintenance overhead of specific, but not all, links. However,
this only improves robustness when a node’s failure or reliability is reflected by its resource
level.

5.2.4 Node Joins and Failures

In order to join the DHT, a node x must have valid network coordinates, choose a nodeID
and resource level, and contact one participating node. Once x has established links to its
immediate predecessor p and successor s on the key ring, p and s send their prospective links
lists to x, which x uses to initialize its own list, and corresponding keys are transfered from
s to x. The node x continually updates its prospective links and periodically performs finger
maintenance (see Algorithm 4) to establish and maintain its fingers. Node failure is handled
as in Chord, but extended to remove a prospective link once its node is recognized as failed.

5.2.5 Adaptability

Since nodes consult their prospective links lists every time finger maintenance is due, changes
in fingers’ resource distances are continually reflected in the overlay’s structure. When stronger
nodes appear and are observed in a finger interval, they are added to the prospective links list
and requested as fingers upon maintenance. When existing fingers become weak, their resource
distances are increased, and since their entries in the prospective links list are updated, they

Resource and Location Aware Robust, Decentralized Data Management 77

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

become less attractive as fingers. Furthermore, old entries in the prospective links list are
removed at regular intervals to avoid using outdated node information and reduce the risk of
sending finger requests to failed nodes.

5.3 Hierarchical DHT- HRM

The hierarchical approach is called HRM for Hierarchical Resource Management [RBS12,
RBS13], where nodes are separated into different hierarchical layers and maintain links within
and between those layers. This approach is inspired by small world networks and in particular
by Milgram’s well known small-world experiment in which letters were sent to unknown
destinations and arrived with an average of 6 intermediate forwards, giving rise to the popular
term “six degrees of separation” [Mil67]. In order to achieved such short routing distances,
letters tended to first be sent to very well linked, popular individuals near the destination.
Well linked individuals then forwarded letters to increasingly more specialized but poorly
linked individuals until the destination was reached. Following this model, this hierarchical
approach has highly linked powerful nodes and poorly linked weak nodes so that messages are
quickly routed upwards through the hierarchy before they are routed back down to weaker
destination nodes.

The lowest layer, consisting of the weakest nodes, functions as a leaf layer where each leaf node
maintains a parent node from some upper layer. Each layer is linked to form a location aware
DHash++ [DLS+04], with the number of shortcut links (i.e. fingers) determined by the given
hierarchy layer. Thus, the higher a node’s resource availability (i.e. the higher the layer it is
placed in), the more links it is expected to maintain. This significantly reduces weaker nodes’
maintenance loads despite their additional load as parent nodes. Figure 5.3 provides a first
impression of how the hierarchy is built and demonstrates how nodes with varying resource
availability levels can be divided into different hierarchical layers (more complex allocations
are discussed below). Furthermore, as explained below in detail, Algorithm 3 shows how
nodes save information that is piggybacked on network messages about the physical distances
to nodes from various hierarchy layers; Algorithm 6 clarifies how links are found using this
saved information; and Algorithm 7 delineates the hierarchical routing procedure.

5.3.1 Varying Levels with Varying Responsibilities

In the following, the notation “layer” is reserved strictly for hierarchy layers and “level”
for resource availability levels. The number of hierarchy layers used is hmax − 1, with layers
{0, . . . , hmax}, and a node x’s hierarchy layer is denoted xH . In the simplest case, hmax = lmax
such that for every node xR = xH , as in Figure 5.3. We generally assume that the higher a
node’s resources are, the higher its hierarchy layer will be. In the following, the following
terms are used:

bottom layer for nodes in hierarchy layer = 0,

upper layer for nodes with hierarchy layer > 0,

top layer for nodes with hierarchy layer = hmax, and

78 Resource and Location Aware Robust, Decentralized Data Management

5.3. HIERARCHICAL DHT- HRM

Level 3
Level 2

Level 1
Level 0 x.urange x.srangex

x.I.closestHigher

layer fingers up to x.Finterval

Figure 5.3: All hierarchy layers are shown together on the top key ring for xH = xR. Following
the first arrow down, nodes are shown with their respective leaf nodes on one central ring.
Following yet another arrow down, nodes are shown in their three upper hierarchy layer
keyrings with their bottom layer leaf nodes. Each upper layer forms a location aware DHash++
overlay and links are established to the closest successors in other upper hierarchy layers.

lower layer for nodes with hierarchy layer < hmax.

In addition to each node’s links to its predecessor and successors, there are three additional
types of links:

leaf-parent links between bottom layer nodes and the closest preceding upper layer node,

inter-layer links connecting each upper layer node with its immediate successor in each of
the hmax − 1 other upper layers, and

layer fingers providing each upper layer node with shortcuts within its own hierarchy layer.

Since nodes establish links and perform routing differently based on their own layers (and
thus, indirectly their resource levels), this approach is clearly hierarchical. Furthermore, each
node maintains links to all other layers, with the exception of leaf nodes which only have
access to one particular other (parent) layer, so this approach can be classified as horizontal.

5.3.2 Finding Links

In order to find nodes within the hierarchical structure, two new key ranges are defined. The
simple key range is used to assign nodes to keys as we are familiar with from RBFM and the

Resource and Location Aware Robust, Decentralized Data Management 79

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

B
x
,i

xID
xID + 2i−1

xID + 2i

p3

p4

p1

p2

Layer xH

xID

All layers
ProspectiveLinks[xH][i]

NodeID P.Dist.

p2ID 0.4
p3ID 0.9
p4ID 0.9
p1ID 1.7

Figure 5.4: Key ring at right shown for node x with all nodes not in layer xH as hollow circles
and at left with layer xH nodes only: six nodes in Bx,i, four of which x knows in its xH
prospective links list (squares). A layer finger is established to p2, the known node with the
best physical distance to x in layer xH .

underlying Chord. The upper key range, on the other hand, is used by upper layer nodes for
identifying the key range in which they must act as parents to leaf nodes.

Definition 5.3.1 (Simple Key Range). A node x’s simple key range x.srange spans the keys
between its predecessor y’s key (exclusive) and its own key:

x.srange = (yID, xID].

Thus, since each key κ is assigned to the first node whose nodeID is equal to or succeeds κ
on the key ring, it is stored on that node whose simple key range contains κ. For the upper
key range, which is integral to routing success, each node maintains an upper layer successor
and predecessor node, i.e. the first successor and predecessor nodes from any upper layer.

Definition 5.3.2 (Upper Key Range). An upper node x’s upper key range x.urange consists
of all keys between xID and its upper layer successor y’s nodeID yID:

x.urange = [xID, yID).

Note that x.srange and x.urange overlap only in xID. Node x also saves information about
its upper layer successor y’s simple key range. This enables x to route messages destined for
y directly instead of forwarding through leaf nodes.

Leaf Links

Each bottom layer node x (xH = 0) maintains a link to its parent node, which is the first
upper layer node preceding x in the keyspace. Thus, leaf nodes have parents from varying
hierarchy layers and each upper layer node has the same expected number of leaf nodes to
maintain. Leaf nodes have neither the inter-layer links nor layer fingers described below, so
this parent link is necessary for efficient, successful routing.

80 Resource and Location Aware Robust, Decentralized Data Management

5.3. HIERARCHICAL DHT- HRM

Inter-layer Links

Each upper layer node x establishes a link x.I[`] to its direct successor x.I[`].node in each of
the hmax − 1 upper layers ` 6= xH . This is made possible by the upper layer successor and
predecessor links that each upper layer node maintains. These links form an additional ring
on which requests can be routed with the help of the layer finger shortcuts (see Section 5.3.3).

Inter-layer links enable routing between any two hierarchy layers and are used to restrict the
number of layer fingers (see below). Generally, the range of layer fingers (0 < xH < hmax)
can be restricted to the key range “gap” between two higher layer nodes. This ensures that
the network is well connected throughout the more densely populated lower layers but longer
key-distances are routed over higher layers. Thus, for layer 0 < xH < hmax nodes, we are
interested in the finger interval in which node x’s nearest key-distance inter-layer link from
any higher layer is located. We define x.I.closestHigher as the closest of x’s higher layer inter-
layer links, x.I.closestLevel as its hierarchy layer, and x.I.closestInt as the finger interval in
which it is found:

x.I.closestLevel := argmax
`:xH<`≤hmax

dkey(x, x.I[`].node)

x.I.closestHigher := x.I[x.I.closestLevel].node

x.I.closestInt := j : x.I.closestHigher ∈ Bx,j .

Note that the finger interval is as defined for the flat approach. The interval x.I.closestInt is
then used by layer 1 nodes (and possibly other lower layers, depending on the configuration) as
a bound for the farthest layer finger established, causing short key space hops to be performed
within a single layer and longer hops to be forwarded to higher layers. This inevitably causes
lower maintenance and routing load within the lower layers.

Layer Fingers

In HRM, a node x only chooses layer fingers within its own hierarchy layer xH . Furthermore,
the number of fingers that nodes establish varies from layer to layer. A weak node x with
xH = 1 has as few fingers as necessary, establishing layer fingers only to nodes which are
closer successors in the keyspace than x.I.closestHigher, i.e.:

dkey(x, x.F [i].node) < dkey(x, x.I.closestHigher). (5.2)

Meanwhile, a strong node x with xH = hmax maintains fingers for each finger interval Bx,i
for i ∈ {1, 2, . . . ,m}. Nodes in additional layers ` with 1 < ` < hmax maintain sets of fingers
of varying sizes, depending on `, which is determined as part of the system design.

Definition 5.3.3 (Finger Range). The furthest finger interval in which a node x in hierarchy
layer xH maintains a finger is called its finger range:

x.Frange = Frange(xR) ∈ {1, 2, . . . ,m}

and x.Fkey = xID + 2x.Frange−1 its corresponding key value. For xR ∈ {1, hmax the finger
range is defined as:

x.Frange =

{
x.I.closestInt, xH = 1

m, xH = hmax.

Resource and Location Aware Robust, Decentralized Data Management 81

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

Thus, each upper layer node x maintains a finger table with one finger in layer xH for each
finger interval Bx,i with i ∈ {1, 2, . . . , x.Frange}. Note that the fewer links a layer maintains,
the less maintenance load is incurred and the faster messages are passed on to other (higher)
layers. Lookups are thus routed quickly out of the (weak) bottom layers and dispersed between
the (strong) upper layers.

For example, a system with five hierarchy layers (hmax = 4) might use finger ranges:

x.Frange =

x.I.closestInt, xH = 1

m− 1, xH = 2

m, xH ∈ {3, 4},

where the top two layers establish layer fingers for the entire keyspace, the middle layer nodes
establish one less layer finger (thus ignoring half of the key space), and the layer one nodes
only provide layer fingers only up to their first higher layer successor.

Algorithm 5 Updating prospective links lists with ≤ k entries.

procedure suggestProspectiveLink(nodeInfo)
finger = getFingerInterval(nodeInfo.key)
dist = getPhysicalDist(nodeInfo.coordinates)
layer = nodeInfo.hierarchyLayer
if prospectiveLinkList(layer).contains(finger, nodeInfo.key) then

prospectiveLinkList(layer).update(finger, dist, nodeInfo)
else if prospectiveLinkList(layer).size(finger) < k or

dist < prospectiveLinkList(layer).farthestLinkDist(finger) then
prospectiveLinkList(layer).addNode(finger, dist, nodeInfo)
while prospectiveLinkList(layer).size(finger) > k do

prospectiveLinkList(layer).removeFarthestLink(finger)
end while

end if
end procedure

Algorithm 6 Maintaining layer fingers 1 to m− 1

procedure maintainFinger(finger)
lookupKey = myKey + getOffset(finger)
myLayerList = prospectiveLinkList(myLayer)
if myLayerList.size(finger) > 0 then

listEntry = myLayerList.getClosestEntry(finger)
lookupKey = listEntry.key
myLayerList.removeUsedEntry(listEntry)

end if
sendLookup(lookupKey)

end procedure

Layer fingers are chosen in a location aware fashion as in DHash++. Nodes’ coordinates,
resource levels, and hierarchy layers are piggybacked on network messages, providing node
information to other nodes at minimal overhead. Thus, an upper layer node x chooses for

82 Resource and Location Aware Robust, Decentralized Data Management

5.3. HIERARCHICAL DHT- HRM

 Leaf links
 Layer fingers
 Inter-layer links

 Layer 3 Layer 1
Layer 2 Layer 0

Figure 5.5: All hierarchy layers are shown together on one key ring with all links shown for
a single node. Note that this layer one node’s finger range is determined by its layer three
closest higher inter-layer link - no fingers are maintained after this link.

x.F [i] the known node in hierarchy layer xH and finger interval Bx,i which has the smallest
physical distance to x. For this, x maintains a set of hmax prospective links lists, one for each
upper hierarchy layer. The `th prospective links list contains the k physically closest nodes in
Bx,i for each i ∈ {1, 2, . . . ,m} from hierarchy layer ` which are known to x. Thus, at most
k ·m · hmax nodes are saved via their hierarchy layers, nodeIDs, and physical distances.

When x receives a message that originated at sender y, x uses y’s coordinates to determine
dphy(x, y) and update its prospective links list accordingly (see Algorithm 5). An ith-finger
request is sent to the physically closest entry in x’s layer xH prospective links list for Bx,i, if it
contains an entry. Otherwise, the first successor of key xID+2i−1 in layer xH is contacted (see
Algorithm 6), which requires layer-specific lookup forwarding (see Routing). Upon node x’s
receipt of a finger request response from node y, if yH = xH and y ∈ Bx,i with i ≤ x.Frange,
then y is assigned to x.F [i]. This may not be the case if y’s layer has changed or y was found
without a prospective links list entry and is beyond the finger range. If a given finger interval
contains no layer xH node, then this finger entry remains empty.

Note that while node x only links layer fingers to nodes in layer xH , maintaining prospective
links lists for multiple layers causes little overhead while easing a node’s transition between
hierarchy layers (when, for example, a node’s resource level changes). However, should this
cause too much added computational load for weak nodes, the number of layers and/or finger
intervals for which these lists are maintained can be adjusted. The prospective links list entries
are continually updated with fresh node information to automatically adapt to changing
coordinates and are deleted once used for a finger request to ensure their freshness. It is
especially important for the lists from other layers to be periodically cleared of old entries,
since they are not cleared with finger maintenance. Simulations have shown that k = 1
is beneficial in networks with high churn, reducing the use of failed prospective links and
minimizing the lists’ overhead.

Figure 5.3 shows the basic overlay structure, with hierarchy layers assigned as xH = xR. The
connected key ring on which each node establishes its predecessor and successor is shown on
top, and individual layers are shown below with the bottom layer nodes assigned to their
upper layer predecessors (i.e. parents). Inter-layer links are shown for three nodes only and
layer fingers were omitted. The closest higher layer inter-layer link and finger range has also
been indicated for the layer 2 node x marked with a double triangle. Figure 5.5 shows all of
the links for a single node.

Resource and Location Aware Robust, Decentralized Data Management 83

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

5.3.3 Routing

Routing of lookups is not performed in a strictly greedy fashion like Chord, but rather in
a series of greedy steps. Recall that a message is destined for the node whose simple key
range contains the message’s destination key κ. Let κ be the message’s destination key in the
following considerations. Note that we add one negligible piece of information to messages
(in high churn scenarios): the key of the last upper layer node that handled the message.
Since leaf nodes actually route nodes backwards to their parent nodes, this prevents unwanted
routing cycles when nodes have not yet adapted to network changes and have out of date
parent links or leaf node lists. Once a node x has determined that κ /∈ x.srange, its routing
behavior depends on its hierarchy layer as follows.

Leaf Nodes

If a message originates at a leaf node, the first step is to route it to the parent node. If a
leaf node x receives a message with κ /∈ x.srange and its parent node was not the last upper
layer node to have handled the message, it forwards the message to its parent node. This
may be the case if the parent node’s connections to its leaf nodes or upper layer successor are
damaged, which is not uncommon in systems with high churn rates. Otherwise, it forwards
the message to its successor node y if κ ∈ y.srange or else to the closest preceding node from
its successor list, which is only the case when x’s parent node’s leaf links are not complete.

Upper Layer Nodes

An upper layer node x basically routes greedily to the closest preceding node in a layer ≥ xH
using both its finger table and inter-layer list. For lower layer nodes with restricted finger
tables, this means that messages to ’distant’ destinations are routed upward. For top layer
nodes, this means that messages are routed to the closest top layer predecessor of κ. At this
stage, routing is greedy with the one condition that the next hop has layer ≥ xH . However,
once the message has reached a node x for which κ is within x’s layer finger range (i.e.
dkey(x, κ) < x.Fkey), routing becomes less greedy, as higher layer links are preferred twofold:
In the top layer, inter-layer links are entirely ignored and messages are only routed to other
top layer nodes until there is no closer top layer predecessor to κ. Once routing is exhausted
within one of the upper layers, i.e. there is no closer predecessor node with layer ≥ xH , then
the message is routed back down the hierarchy by choosing the highest possible inter-layer
link preceding κ. If there are no such links, then κ ∈ x.urange and the message is delivered
directly to the node y with κ ∈ y.srange: y is either x’s upper layer successor (whose simple
key range overlaps x.urange) or one of x’s leaf nodes.

Thus, lookup routing traverses the layers only one time and lower layer nodes are used a
little as possible. Once a message has been passed upwards, it does not come back down the
hierarchy until it has no closer predecessor in that layer. Algorithm 7 provides an overview of
the decisions that nodes make while routing.

84 Resource and Location Aware Robust, Decentralized Data Management

5.3. HIERARCHICAL DHT- HRM

Algorithm 7 Lookup routing procedure at local node thisNode.

procedure routeTo(msg, key)
if key.inSRange(thisNode) then deliverToApplication(msg)
else if key.inSRange(successorNode) then forward(msg, successorNode)
else if thisNode.layer = 0 then

if message.lastHop = parentNode then
forward(msg, findClosestPredecessor(key, successorList))
→ finds the closest predecessor node of key in successor list of r nodes

else forward(msg, parentNode)
end if

else if key.inSRange(upperLayerSuccessor) then
forward(msg, upperLayerSuccessor)

else
if isBeyondLayerRouting(key) then
→ key beyond range in which thisNode maintains layer fingers
forward(msg, findClosestPredecessor(key, interLayerList), thisNode.layer)
→ find closest inter-layer link in higher layer than thisNode

else if hasPredecessor(key, layerFingerList) then
forward(msg, findClosestPredecessor(key, layerFingerList))
→ find closest layer finger

else forward(msg, findHighestPredecessor(key, interLayerList)
→ find predecessor of key in highest possible layer

end if
end if

end procedure

Layer Routing

Finger requests and inter-layer link requests use layer sensitive overlay routing. These requests
are not necessarily delivered to the node x for which κ ∈ x.srange, but rather to the first
found successor of κ in a given layer `. A node y considers itself the request’s destination if
yH = ` and κ is between the sending node’s nodeID and yID. If not, y forwards to its layer `
inter-layer link if it succeeds κ, and otherwise to its closest known preceding link in layer `.
This routing is not necessarily correct, especially in dynamic networks, but it is sufficient for
join and maintenance messages and was sufficiently reliable in simulations.

Routing Characteristics

The expected lookup routing complexity in the hierarchical overlay keeps with Chord at
O(log(N)). Note, though, that the simulation results did show an increase in routing hops
compared with Chord (1-2 hops), as expected due to the hops up and down the hierarchy (see
below). The following finger ranges are used for the following routing theorem:

x.Frange =

{
x.I.closestInt, 0 < xH < hmax

m, xH = hmax.

Resource and Location Aware Robust, Decentralized Data Management 85

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

Since the number of layer fingers is higher for alternative finger ranges, the routing can only
be better.

Theorem 5.3.1 (Lookup Hop Length Theorem). Given a network with N nodes, the expected
upper bound for the number of overlay hops required to route a lookup from any node to the
successor node of any key κ is O(log(N)) hops.

Proof. We assume that a message is to be routed from any node to the node y responsible for
key κ, i.e. κ ∈ y.srange. To show that routing terminates and find an upper bound on the
routing hops, we consider the farthest possible lookup route. Since it takes at most one hop
to route from a leaf to a parent node, we assume that each message originates at an upper
layer node (1 hop). Furthermore, it takes at most one hop to reach y from κ’s upper layer
predecessor, since y’s upper layer predecessor (which is its parent node if yH = 0) always
knows y’s simple key range. Thus, we need only determine the number of hops necessary to
reach κ’s (and y’s) upper layer predecessor (1 hop).

If the originating node, its successor, or its upper layer successor are the destination, then we
are done. Otherwise, the message is passed upwards until it reaches the first layer in which κ
is a predecessor of the current node x’s farthest finger interval’s corresponding key x.Fkey. In
other words, κ is in x’s finger range or dkey(x, κ) < dkey(x, x.Fkey). To reach this layer, the
message is passed up at most hmax − 1 layers, from layer 1 to layer hmax (hmax − 1 hops).

So assume that κ is a predecessor of x.Fkey and will thus be routed within layer λ := xH on
layer fingers until it has reached either the destination node or the closest predecessor node
within layer xH . Then, as shown for RBFM in Section 5.2.2 and as for DHash++, the routing
complexity within layer xH is at most O(log(x.N)), where x.N is the number of nodes in layer
xH between x and x.Fkey. So assume that the message is at the closest predecessor node z
of κ in this layer (O(log(x.N)) hops).

Assuming the message has not reached its destination, the message is passed at most once to
each of the other upper layers and routed analogously (starting at higher layers first), because
it is only passed to a new layer `′ once there is no closer predecessor in the current layer ` and
the message can therefore never be passed back to `. So we have a total of hmax−1 remaining
hops between other upper layers (hmax − 1 hops).

However, since we know that z is the closest predecessor node to κ in layer λ, we know that
the remaining key distance between κ and y is less than the key distance between z and z’s
layer λ successor. Thus, we can use the expected number of network nodes between any two
layer λ nodes (some constant c) as an upper bound on the key range and thus the number of
nodes over which remain to route in each of the remaining layers. Thus, we expect at most
O(log(c)) routing hops in each remaining layer ` > 0, ` 6= λ (O(log(c)) · (hmax − 2) hops).
Note that this is a loose bound, as the remaining key range and thus the number of nodes
over which to route decreases as the message is forwarded through the layers. This gives us
an expected total of at most:

2 + 2(lmax − 1) +O(log(x.N)) + (lmax − 2)O(log(c)) ≤ 2 · lmax + ĉ+O(log(N))

= O(log(N))

for some constant ĉ.

86 Resource and Location Aware Robust, Decentralized Data Management

5.3. HIERARCHICAL DHT- HRM

In fact, simulation results did show an increase in routing hops for an increase in the number
of hierarchy layers and compared with Chord, as expected due to the maximum 2 ·hmax hops
up and down the hierarchy.

5.3.4 Link Maintenance

Given the dynamics of mobile networks and the various roles of links, maintenance is integral
for detecting and addressing network changes and ensuring correct links and data availability.
Since maintenance composes a large portion of the network load, it plays a major role in node
lifetimes when resources are restricted. Nodes perform maintenance stabilization for their links
at given intervals si as shown in Table 5.1 along with the number of links that are maintained
by bottom (i.e. leaf) and upper nodes per link type. These intervals can vary, depending on
a network’s churn, but several are performed with the same frequency.

Link Delay Bottom nodes Upper nodes

Predecessor s0 1 1

Successor s1 r r

Parent node s1 1 -

Upper layer predecessor s1 - 1

Upper layer successor s1 - 1

Leaf node s1 - many

Inter-layer link g(xH) - hmax − 1

Layer finger g(xH) - ≤ x.Frange ≤ m

Table 5.1: Varying forms of link maintenance with the delay between messages and the
number of links that bottom and upper nodes must maintain. For inter-layer links, x refers
to the individual link nodes (and xH to their hierarchy layers) and thus varies, while for layer
fingers xH is constant.

Inter-layer links and layer fingers are maintained as in RBFM with varying maintenance
intervals and are automatically adapted when nodes change hierarchy layers. Thus, each
link is maintained using its finger maintenance interval that depends on the link node x’s
hierarchy layer as opposed to its resource level, giving us g(xH). Using the examples of finger
maintenance interval functions from Section 5.2.3, bottom layer links are maintained according
to a reference interval tref and higher layer links at varying multiples of tref for each hierarchy
layer. Generally speaking, links to lower layers are maintained more frequently than links to
higher layers. However, leaf and parent links as well as upper layer successor and predecessor
links are maintained analogously to direct successor links, using direct maintenance messages
at a fixed interval s1. This is due to their importance in routing success; outdated leaf or
parent links can be very costly, since messages must then be passed on direct successor links,
while the upper layer successor and predecessor links are necessary for the upper layer ring
and all upper layer activities.

Resource and Location Aware Robust, Decentralized Data Management 87

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

5.3.5 Node Joins and Failures

To join the DHT, a node x must have valid network coordinates, choose a nodeID and resource
level, map its resource level to a hierarchy layer, and contact one participating node. Once
x has established links to its immediate predecessor p and successor s on the key ring, s
sends its successor lists to x, which x uses to initialize its own lists, and corresponding keys
are transfered from s to x. Once x has completed the basic join in the overlay, it must also
perform either a leaf join or upper layer join (see below). The node x continually updates its
prospective links lists and periodically performs finger maintenance (see Algorithms 3 and 6)
to establish and maintain its fingers.

The basic reaction to node failures is as in Chord, with failed nodes also removed from the
inter-layer list, prospective link lists, and potentially the parent link or leaf list once their
failure is noticed. An upper layer node leaves gracefully by sending messages to each of its
leaf nodes and its upper layer predecessor informing them of their new parents/leaf nodes.
Otherwise, if a leaf node’s parent has failed unexpectedly, the leaf node must perform a leaf
join to reestablish a parent (see below). If a node is removed from the inter-layer list or parent
link, then its information must be stored for a short period to deal with other nodes’ old hints
to the failed node.

Upper Layer Joins and Failures

The upper layer join serves two purposes: establishing the upper layer successor and predeces-
sor nodes (from any upper layer) and transferring responsibility for leaf nodes. Node x uses
an upper layer bootstrap node to send an upper layer join message, which is routed along the
upper layer nodes to x’s upper layer predecessor y, for which xID ∈ y.urange. In other words,
x belongs to the key range in which y maintains leaf nodes. Node y responds to x with its
own upper layer successor z and the list of y’s leaf nodes which are now in x.urange. Then y
informs each of these leaf nodes of their new parent node x and removes them from its leaf
list.

If an upper layer node’s resource level is reduced such that it becomes a leaf node, it forfeits
its role as parent node by transferring its leaf nodes to its upper layer predecessor. As a
leaf node, it then ignores finger and inter-layer link requests, upper and leaf join requests,
and upper stabilize requests. Its leaf nodes are transfered to its upper layer predecessor y by
sending a message to y with a list of its leaf nodes as well as messages to each of its leaf nodes
with a hint to y. Leaf nodes do not respond to many of the requests that upper layer nodes
respond to (finger and inter-layer link requests, upper and leaf join requests, upper stabilize
requests), yet they still perform data lookups. If it is observed that a node has left the upper
layers, either gracefully or unannounced, that node must be removed from inter-layer lists,
prospective link lists, upper layer successor and predecessor links, and parent links (but not
from successor and predecessor links).

Leaf Joins and Failures

Node x with xH = 0 performs a leaf join to establish a live parent node. Recall that a
node’s parent is the first preceding upper layer node on the key ring. The leaf join message is
forwarded to an upper layer bootstrap node and then routed to the upper layer node whose

88 Resource and Location Aware Robust, Decentralized Data Management

5.4. ADAPTATIONS

Figure 5.6: A single overlay hop as shown in (a) is performed on the underlay shown in (b)
which routes messages along cluster heads. Physically close nodes may have longer connection
routes than more distant pairs depending on the clusters they belong to, as demonstrated in
(c) and (d).

upper layer key range contains xID. This parent node responds and enters x into its leaf
list. Leaf node maintenance is performed frequently by the parent node so that failures are
quickly recognized. Leaf node failure affects only the parent node and the direct successor and
predecessor on the key ring.

5.3.6 Adaptability

The hierarchical approach poses more challenges regarding adaptability than a flat approach,
since changes in resource levels that result in changes in hierarchy layers require nodes to
change both their incoming and outgoing links. The prospective links lists aid this transition
on both sides and in both directions, helping a node with a new hierarchy layer by providing
lists of potentially nearby nodes within that layer, and helping nodes whose links have changed
layers to find new links. Nodes can thus move relatively freely between the hierarchical layers
as their resources change. Location movements, on the other hand, are treated much as in
RBFM with nodes adapting their layer fingers automatically via their prospective links list.

5.4 Adaptations

The following two approaches present adaptations to the flat and hierarchical DHTs, respec-
tively. They were primarily developed for evaluation purposes (see Chapter 7): the cluster-
based RBFM for evaluating the effects of varying approaches on underlay behavior, and the
hybrid DHT for comparing both RBFM and HRM to a resource aware traditional two-tiered
hierarchy.

5.4.1 Cluster-based Flat DHT

Cluster-based versions of DHash++ and RBFM were developed for scenarios in which nodes
use a form of cluster-based underlay routing, such as that illustrated in Figure 5.6. The
resulting approaches were developed in joint work with Zafar et al. [ZARBH13] and are
referred to as C-DHash++ (cluster aware DHash++) and C-RBFM (cluster aware RBFM).
In the case that a node routes messages on the underlay first to a physically close cluster-head

Resource and Location Aware Robust, Decentralized Data Management 89

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

(or other node within its own cluster), which then performs the longer-distance forwarding,
overlay links to physically close nodes in other clusters are much more costly with regard to
energy, bandwidth, and time than links within a node’s own cluster.

Thus, a node’s finger selection is altered to depend not only on the physical/resource distance
to prospective peers but also on the clusters to which they belong. The node information piggy-
backed on messages is extended to include the sending node’s clusterID and peers prospective
links lists are extended by an extra binary value “SameCluster.” Nodes with identical clus-
terIDs are preferred to nodes with low physical/resource distance when entering nodes into
the list. When choosing fingers, links within the same cluster are also given priority. Should
there be multiple same-cluster nodes within one finger interval, the node with the shortest
physical/resource distance is chosen as a finger. But should there be no same-cluster node for
a finger interval, then the finger is chosen just as in the original DHash++ or RBFM. Exam-
ples of the prospective links lists and finger choices are shown in Figure 5.7 for C-DHash++
and in Figure 5.8 for C-RBFM.

5.4.2 Hybrid Hierarchical DHT

A hybrid variation of HRM with RBFM provides a two-tier overlay with multi-level resource
awareness as well as location awareness. The hybrid approach uses only two hierarchical layers,
with leaf nodes acting as HRM leaf nodes and the layer 1 superpeers building their upper
layer shortcuts just as RBFM. Without the additional layers and inter-layer links, the result is
a common superpeer-child structure, but the superpeers use additional resource awareness by
selecting fingers to strong, nearby nodes. This approach has the benefit of additional location
awareness in the upper layers compared with HRM. Since HRM has potentially sparse upper
layers, upper layer nodes have fewer peers from which to choose physically close fingers,
restricting location awareness. The hybrid approach, however, has fewer layers in which nodes
are distributed and thus potentially more layer 1 nodes and in each finger interval, increasing
the number of nearby peers from which fingers are chosen.

Figure 5.9 demonstrates the structure of the hybrid approach using four resource levels. The
bottom resource level nodes are assigned to layer 0 and thus act as leaf nodes, while all other
resource levels are placed in layer 1. Note that, analogous to HRM, nodes can be assigned
to hierarchy layers in an arbitrary fashion. Thus, levels 0 and 2 could, for example, both be
assigned to the bottom layer with the remaining levels in the upper layer. The figure shows
leaf nodes’ links to their upper layer predecessors and the fingers of one upper layer node.
Note that fingers are established to strong, physically nearby nodes within each finger interval
(finger intervals are indicated by gray backdrops).

5.5 Summary

Two primary resource and location aware DHTs, RBFM and HRM, which also fulfill the
remaining derived scenario requirements, were introduced in this chapter. These overlays
adapt a Chord DHT with inspiration from DHash++ for the flat RBFM and inspiration from
small-world networks for the hierarchical HRM. In order to ensure the necessary scalability,
proximity identifier selection was avoided and location awareness was built into nodes’ choices
of links. Of course, this restricts the degree of location awareness which can be achieved, but

90 Resource and Location Aware Robust, Decentralized Data Management

5.5. SUMMARY

Figure 5.7: The difference between DHash++ and C-DHash++ links is illustrated on the
finger interval Bx,m−1. The preferred DHash++ link is shown dashed and its cluster aware
alternative for C-DHash++ dotted.

Figure 5.8: The preferred finger for finger interval Bx,m−1 in C-RBFM is not p2 as in RBFM
but rather the node p3 within its own cluster.

Figure 5.9: Hybrid overlay structure. Resource level 0 nodes have been placed in hierarchy
layer 0 as leaf nodes, all other resource levels are placed in hierarchy layer 1. The fingers of a
single layer 1 (and level 1) node are shown. The respective finger intervals from which fingers
are chosen according to RBFM are shown with the gray backdrops.

Resource and Location Aware Robust, Decentralized Data Management 91

CHAPTER 5. RESOURCE AND LOCATION AWARE DHTS

location aware data placement strategies can be integrated with the help of replication, as
suggested in Chapter 9.

For RBFM, a resource distance was defined which calculates the physical distance between
two nodes plus an additional “resource height” with which nodes distance themselves from
the entire network. This way, nodes establish links much like in Chord or DHash++ to both
nearby and strong nodes, with the degree of location vs. resource awareness determined by
a variable stretch constant. In order to use multiple hierarchy layers, HRM must take a
different approach. A node’s resource level in HRM thus determines its hierarchy layer while
location awareness is achieved only within the hierarchy layers analog to DHash++. With
bottom layer nodes acting as mere leaf nodes but still responsible for storing data, HRM
first routes lookups upwards in the hierarchy to strong, highly linked nodes for as much of
the lookup path as possible. Both links and routing are based on nodes’ hierarchy layers and
thus their resource levels. In addition to these varying overlay structures and routing, variable
maintenance techniques were also introduced to reduce the largely superfluous maintenance
to strong nodes and thus the overall network maintenance load.

Two adaptations of these primary DHTs, the cluster-based flat DHT and the hybrid hi-
erarchical DHT, were introduced for the evaluation of the approaches’ performance on ad
hoc multi-hop underlays and the effects of the number of hierarchy layers, respectively. The
cluster-based DHTs C-DHash++ and C-RBFM add another dimension of location awareness
by using information about nodes’ cluster-heads to prefer links within a node’s local cluster.
This should reduce both the lookup underlay hop count and the physical distance traveled on
underlays that use cluster-heads for routing. The hybrid hierarchical DHT, on the other hand,
uses a two-tiered RBFM with single leaf and parent layers. Leaf nodes function as in HRM
while the parent level nodes, which may come from multiple resource levels, form a resource
and location aware RBFM overlay. Thus, although the number of hierarchy layers is reduced,
a finer differentiation between nodes’ resource levels is still possible.

The degree of resource and location awareness of these approaches is assessed in the following
chapters via mathematical analysis and simulative evaluation. The success of their awareness is
gaged against their fulfillment of the remaining derived requirements, in particular the general
data availability requirement. Resource and location awareness can only be considered if they
uphold the systems’ data availability, but should in fact improve this availability.

92 Resource and Location Aware Robust, Decentralized Data Management

Chapter 6

DHT Analysis

In order to compare these two approaches, various measures are examined through mathemat-
ical analysis. The most popular measures for DHT evaluation were discussed in Chapter 4,
and are reflected in the following analysis and the evaluation that follows in Chapter 7. In
contrast with previous work, however, and in order to facilitate an understanding of how nodes
are treated with regards to their resources, many of these measures utilize the resource levels.
For example, the maintenance or lookup load of nodes can be analyzed and evaluated per
resource level as opposed to for an average node. Thus, instead of general system wide mea-
sures, resource-level-centric measures are used to evaluate and compare the effect of various
design issues on individual resource levels.

The specific evaluation measures used in this and the following chapter are summarized in
Table 6.1, with the primary measure used in Chapter 10 for the replication analysis marked
“r.” This table includes the categories for evaluation measures from Table 4.7 and adds two
new measures that were important for the given scenario: node lifetime and the number of
forwarded maintenance messages. The number of forwarded maintenance messages indicates
how much network load is incurred by maintenance being routed via key based routing as
opposed to using directly addressed messages. With the exception of maintenance latency,
lookup overlap, and link load, each of the popular measures is used for at least one medium.
The three unused measures are of marginal interest for our scenario since the delays incurred
by maintenance are of little importance to actual robustness; the system can perform similarly
without nodes taking overlapping routes to their destinations (and thus dispersing load); and
the link load is in fact expected to vary greatly, with links to and from high level nodes
experiencing heavier load. However, the maintenance latency is reflected in the expected link
latencies used in this analysis, since it is these links that are being maintained.

Of the remaining measures, those that are simple enough and do not rely on paths with node
dependencies are addressed using mathematical analysis, while their more complex coun-
terparts are evaluated in simulation only. Lookup latency, for example, is very complex for
analysis, since each hop depends on the hop node that preceded it and the fingers it happens
to have (non-deterministically) established, but can be easily measured in simulation. The
actual expected number of hops for both RBFM and HRM is O(logN), as already proven in
Chapter 5 Many of the analytical measure categories have also been used in both analysis and
simulation for comparison. However, the explicit mediums used may vary, for example with
link resources and latency: while the analysis focuses on the resource level and distance of

93

CHAPTER 6. DHT ANALYSIS

medium resource-centric analysis evaluation

Maintenance
latency

load
bandwidth
messages X X X
forwarded msg X X

Lookup

hop count X X

latency time/distance X

stretch
RDP
underlay X
hop

failure
overlay X X
underlay

overlap

Node

degree X X

keyspace X r

load

bandwidth
bytes
messages X X
underlay msg X

lifetime X X

Link

resources X X X

latency X X X

load

Table 6.1: Measures used in this work to perform mathematical analysis and simulative
evaluation. Measures which are used on a resource level basis to compare individual resource
levels are marked resource-centric. The keyspace portion measure marked “r” is used in the
replication analysis.

links, the evaluation measures the average resource level and distance of used hop links (i.e.
more popular links are weighted heavier than links with light traffic). The preferred medium
for measuring load is the number of messages sent or received, since the size of lookup requests
and maintenance messages is comparable, but the bandwidth or bytes from transferring of
data may vary heavily depending on the application.

Note that nodeIDs are assumed to be uniformly distributed for the analytical observations.
In reality, nodeIDs are often a deterministic SHA-1 hash of nodes’ IP addresses, but unless
the SHA-1 function is tampered with (which is considered hard to do) it distributes nodes
nearly uniformly in the key space.

94 Resource and Location Aware Robust, Decentralized Data Management

6.1. FLAT RBFM

6.1 Flat RBFM

In RBFM, nodes choose links in a non-deterministic fashion based on both other peers’ re-
source levels and physical distances (i.e. their resource distances), so the key to analyzing the
system’s behavior is first understanding how these links are distributed. Nodes’ fingers are
compared with the resource naive, location naive Chord and the resource naive, location aware
DHash++. Using the expected resource level and physical distance of links, a failure proba-
bility for these links can also be derived under the assumption that weak nodes have higher
failure rates. Maintenance load is also compared for varying finger maintenance intervals.

6.1.1 Expected Resource Level and Distance of Fingers

The probability distributions of the physical distance and resource level of a random node
x’s ith finger indirectly reflects the physical distance and used resource levels of lookups and
maintenance. Since x.f [i] is taken from a finger interval of size 2i−1, the larger i is, the more
nodes x has to choose x.F [i].node from. Since x chooses the node to which it has the smallest
resource distance, this node tends to be physically closer with higher resource availability as
i increases. In fact, the analysis confirms that long key distance fingers tend to be physically
close nodes with high resource levels (see Figures 6.1 and 6.2).

We derive these probability distributions for a node x’s ith finger using the Zipf probability
distribution P (xR = `) = p` for the resource levels from Equation (2.1):

p` := P (xR = `) =
1

(`+ 1)ρ
· 1∑lmax

j=0 1/(j + 1)ρ

and some distribution of nodes with respect to x in the coordinate space. This distribution is
expressed as the probability that a random node will have a given physical distance to x and
given by the probability density function (pdf) over all nodes’ physical distances, fD(t), and
its cumulative distribution function, FD(t). The following theorem gives us the probability
distributions for the physical distance to and resource level of a finger chosen by x from a
given number k of random nodes.

Theorem 6.1.1. Given is a node x and a set S of k random nodes with resource levels in
{0, 1, . . . , lmax}. Let y ∈ S be a node with the minimum resource distance to x in S, fD(t) be the
probability density function (pdf) over all nodes’ physical distances, and FD(t) its cumulative
distribution function. Then the probability that y has resource level ` ∈ {0, 1, . . . , lmax} is

P (Rk,min = `) = kp`

∞∫
0

(
1−

lmax∑
j=0

FD(t+ h(`)− h(j))pj

)k−1
fD(t)dt, (6.1)

and the pdf for y’s physical distance t ≥ 0 is

fDmin(t) = kfD(t)

lmax∑
`=0

p`

(
1−

lmax∑
j=0

pjFD(t− h(j) + h(`))
)k−1

. (6.2)

Resource and Location Aware Robust, Decentralized Data Management 95

CHAPTER 6. DHT ANALYSIS

Proof. These equations are perhaps best understood by considering the meaning of the terms
in each of these equations:

P (Rk,min = `) = k︸︷︷︸
a.

p`︸︷︷︸
b.

∞∫
0

d.︷ ︸︸ ︷(
1−

lmax∑
j=0

FD(t+ h(`)− h(j))pj

)k−1
fD(t)dt

︸ ︷︷ ︸
c.

,

a. Number of possible nodes that may have minimum resource distance.

b. Probability that the closest node has resource level yR = `.

c. Probability that for all nodes v ∈ S/{y} : dres(x, v) ≥ dres(x, y).

d. Probability that, with fixed physical distance and resource level to the node in question
y (dphy(x, y) = t and yR = `), all other nodes have a large resource distance: v ∈ S/{y} :
dres(x, v) ≥ dres(x, y).

In other words, there are k nodes in the set S = {y1, . . . , yk} which may each have the smallest
resource distance to x, and their probabilities to be both the best node and have resource
level ` must be summed:

P (Rk,min = `) = P (∃y′ ∈ S, ∀v ∈ S/{y′} : y′ = ` and dres(x, y
′) ≤ dres(x, v))

=

k∑
i=1

P (ykR = ` and dres(x, yk) ≤ dres(x, v), ∀v ∈ S/{yk})

=
k∑
i=1

P (ykR = `) · P (dres(x, yk) ≤ dres(x, v), ∀v ∈ S/{yk}|ykR = `)

= kp` · P (∃y′ ∈ S, ∀v ∈ S/{y′} : dres(x, y
′) ≤ dres(x, v), y′ ∈ S|y′R = `) (6.3)

Now the probability that a single node y′ with resource level ` has the smallest resource
distance means that for each physical distance t from x (dphy(x, y) = t), each of the other
nodes in S has a distance that, together with its resource level, results in a larger resource
distance. So for y′ with level ` and physical distance t, this means that for all other v ∈ S/{y′}:

dphy(x, v) + h(vR) = dres(x, v) ≥ dres(x, y′) = t+ h(`)

⇒ dphy(x, v) ≥ t+ h(`)− h(vR).

Thus, the probability that a single random node v with unknown resource level has a larger
resource distance than y′ for a fixed dphy(x, y) = t and yR = ` is:

lmax∑
j=0

(1− FD(t+ h(`)− h(j)))pj =

lmax∑
j=0

(pj − FD(t+ h(`)− h(j))pj)

= 1−
lmax∑
j=0

FD(t+ h(`)− h(j))pj

96 Resource and Location Aware Robust, Decentralized Data Management

6.1. FLAT RBFM

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 1 2 3 4 5 6 7 8 9 10

E
x
p

e
c
te

d
 r

e
s
o

u
rc

e
 l
e

v
e
l

Set of k=2
x
 nodes

c~ = 1
c~ = 2
c~ = 8
naive

Figure 6.1: The expected resource level of the node with minimum resource distance from
sets of 20, 21, . . . , 210 nodes are shown for ρ = 2 and r = 10, the standard deviation is shown
for stretch c̃ = 1 only.

Of course, in our case there are k − 1 random nodes which must fulfill this condition, giving
us the above term d. Integrating over all possible physical distances dphy(x, y) = t, we obtain
the above term c for 6.3:

P (dres(x, y
′) ≤ dres(x, v), y′ ∈ S, v ∈ S/{y′}|y′R = `)

=

∞∫
0

(
1−

lmax∑
j=0

FD(t+ h(`)− h(j))pj

)k−1
fD(t)dt,

The pdf for the physical distance is derived analogously, so only a similar description of the
various terms is given here:

fDmin(t) = k︸︷︷︸
a.

fD(t)︸ ︷︷ ︸
b.

lmax∑
`=0

p`

d.︷ ︸︸ ︷(
1−

lmax∑
j=0

pjFd(t− h(j) + h(`))
)k−1

︸ ︷︷ ︸
c.

a. Number of possible nodes that may have minimum resource distance.

b. Probability density function for physical distance t of y.

c. Probability that for all nodes v ∈ S/{y} : dres(x, v) ≥ dres(x, y).

d. With fixed dphy(x, y) = t and yR = `, probability that ∀v ∈ S/{y} : dres(x, v) ≥
dres(x, y)

Resource and Location Aware Robust, Decentralized Data Management 97

CHAPTER 6. DHT ANALYSIS

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 1 2 3 4 5 6 7 8 9 10

E
x
p

e
c
te

d
 p

h
y
s
ic

a
l
d

is
ta

n
c
e

Set of k=2
x
 nodes

c~ = 1
c~ = 2
c~ = 8

DHash++
naive

Figure 6.2: The expected physical distance of the node with minimum resource distance from
sets of 20, 21, . . . , 210 nodes are shown for ρ = 2 and r = 10 along with the respective values for
DHash++ and Chord. The corresponding standard deviation is shown for one stretch value
c̃ = 1.

While node x’s i+1st finger interval contains 2i keys, it only contains an expected k = N
2m · 2

i

nodes. However, the number of actual nodes which are known to x and thus used in the
decision for a finger for each finger interval may be substantially smaller. Choosing the node
with the minimum resource distance to x from these k nodes, (6.1) will give us the probability
that x’s ith finger has resource level ` ∈ {0, 1, . . . , lmax} and (6.2) will give us the pdf of its
physical distance to x.

Note that it is not possible to make any statements about the fingers’ resource levels or physical
distances without some assumption about the nodes’ distribution within the coordinate space.
For this reason, we consider one specific and simple case, where nodes are uniformly distributed
around a central point x on a disk of radius r. We observe only x, which means that we are
only examining the disk’s center node, but similar observations were made for nodes on the
edges of the disk.

fuD(t) =

{
2t/r2 0 ≤ t ≤ r
0 else

, (6.4)

F uD(t) =

{
t2/r2 0 ≤ t ≤ r
0 else.

(6.5)

To simplify (6.1) and (6.2) for this distance distribution, we use a concrete instance of the
height function h(xR) from (5.1) with

c :=
r

lmax · c̃

h(xR) =
lmax − xR
lmax

· r
c̃
.

This hight function determines the resource height as a fixed fraction r/c̃ of the network’s
physical radius multiplied with (lmax − xR)/lmax. This means that the highest used resource

98 Resource and Location Aware Robust, Decentralized Data Management

6.1. FLAT RBFM

height for distancing a node with resource level 0 from the rest of the network is a fraction
r/c̃ of its longest possible physical distance to other nodes. Then using (6.1), we obtain a
probability distribution which is independent of r

P (Rk,min = `) = kp`

∞∫
0

(
1−

lmax∑
j=0

F uD(t+ h(`)− h(j))pj

)k−1 2t

r2
dt

=
2kp`
r2

∞∫
0

(
1−

lmax∑
j=0

F uD(t+
lmax − `
lmax

· r
c̃
− lmax − j

lmax
· r
c̃

)pj

)k−1
tdt

=
2kp`
r2

∞∫
0

(
1−

lmax∑
j=0

F uD(t+
j − `
lmax

· r
c̃

)pj

)k−1
tdt

= 2kp`

∞∫
0

(
1−

lmax∑
j=0

F u
′

D (t+
j − `
c · lmax

)pj

)k−1
tdt

with

F u
′

D (t) =

{
t2 if 0 ≤ t ≤ 1

0 else.

The expected resource levels as given by these probabilities are depicted in Figure 6.1 for
lmax = 3, specific values of k (20, 21, . . . , 210), and stretch constant c̃ = 1, 2, and 8, and the
corresponding expected values for the physical distance to the node with minimum resource
distance as shown in Figure 6.2. Although we do not expect that x knows all of the nodes
in each Bx,i, the expected number of nodes per finger interval doubles per interval and we
presume that each node knows a fair number of nodes per finger interval. Since finger interval
Bx,i contains 2i−1 key values, a node’s dm+ 1− log(N)eth finger interval is the first in which
a node is expected to be found. Thus, each set of 2j nodes in Figures 6.1 and 6.2 corresponds
to a node’s j + dm + 1 − log(N)eth finger interval in a network of N nodes. The expected
bound for nodes’ first fingers is found by solving for j after setting the key size (2j−1) of a
node’s jth finger interval to the expected size of an interval containing one node (2m/N):

2j−1 = d2m/Ne
⇒ j = dlog 2m−1/Ne = dm+ 1− logNe

Figures 6.1 and 6.2 show us how stretch affects fingers’ resource levels and physical distances,
with low stretch (c̃ = 8) favoring lower physical distances and high stretch (c̃ = 1) favoring
higher resource levels in an apparent tradeoff. For a middle stretch of c̃ = 2, a finger’s expected
resource level is doubled when there are 26 random nodes to choose from, while a mere 24

nodes are needed to reduce its expected physical distance by more than half. Note that the
expected physical distance of a finger in a location unaware Chord is constant and given for
k = 1 = 20, as is the expected resource level of both Chord and DHash++. Interpreting the
results for the specific scenario in Figures 6.1 and 6.2, we expect that resource and location
aware fingers cause a higher number of routing hops to be sent across high level, physically
close nodes, resulting in less traffic on low level nodes, less cross-network traffic, and ultimately
robuster lookups.

Resource and Location Aware Robust, Decentralized Data Management 99

CHAPTER 6. DHT ANALYSIS

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 20 21 22 23 24 25 26 27 28 29

E
x
p

e
c
te

d
 #

 s
e

n
t

m
a

in
te

n
a

n
c
e

 m
s
g

/t
im

e
 u

n
it

Finger interval

linear
quadratic

cubic

Figure 6.3: The expected number of sent messages per finger per time unit for linear,
quadratic, and cubic finger maintenance intervals, with 10, 000 nodes, 32-bit keyspace,
lmax = 3, r = 10, ρ = 2, and stretch c̃ = 2. Note that the 20th finger interval in the first in
which a node is expected.

6.1.2 Maintenance

The finger maintenance interval function g(`) and (6.1) can be used to find the expected
number of maintenance messages for a finger F [i] per unit of time (see Figure 6.3). Let
fi = x.F [i].node for simplicity and assume that there are the expected ki = bN · 2i−m−1c
nodes in Bx,i for i ≥ dm+ 1− log(N)e and that they are known to x.

E(# messages for fi) = E

(
1

g(Rki,min)

)
=

lmax∑
`=0

P (Rki,min = `)

g(`)
.

Figure 6.3 shows the expected number of maintenance messages sent per finger and time unit
for a concrete scenario with 10,000 nodes and the following finger maintenance intervals:

g(f.nodeR) = tref · (f.nodeR + 1)β, (6.6)

called constant for β = 0, linear for β = 1, quadratic for β = 2, and cubic for β = 3. Note
that in Figure 6.3, a constant finger maintenance interval g(`) = tref (i.e. as in Chord) would
send one message per unit of time. This estimation concentrates only on sent messages, and
determining the incoming links is much more complex. Figure 6.3 demonstrates how nodes
using quadratic finger maintenance intervals require in expectancy significantly fewer messages
as the finger intervals grow, with less than 50% of the maintenance messages necessary with a
constant finger maintenance interval for the 23th finger interval (which corresponds to 24 = 16
known nodes) and less than 20% after the 25th finger interval (which corresponds to 26 = 64
known nodes). Since maintenance overhead accounts for a large portion of the total network
load, we expect that this reduced maintenance overhead would lead to a significant increase
in the nodes’ lifetimes.

100 Resource and Location Aware Robust, Decentralized Data Management

6.1. FLAT RBFM

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 20 21 22 23 24 25 26 27 28 29

F
a

ilu
re

 p
ro

b
a

b
ili

ty

Finger interval

c~ = 10 (c=1)
c~ = 5 (c=2)
c~ = 2 (c=5)

Figure 6.4: Failure probability for a finger in variable finger intervals with 10, 000 nodes,
5, 000 of which fail, 32-bit keyspace, lmax = 3, r = 10, ρ = 2, and variable stretch c̃ = 10, 5,
and 2.

The total expected number of maintenance messages τ(x) sent by a node x during one unit
of time is found by summing over all of a node’s fingers together with the maintenance delays
s0 and s1 for predecessor and successor nodes, respectively:

τ(x) =
1

s0
+

r

s1
+

m∑
i=dm+1−logNe

lmax∑
`=0

P (Rki,min = `)

g(`)

6.1.3 Failures

Recall that we use three failure scenarios, one of which uses nodes which fail simultaneously
according to a given probability distribution. For this failure scenario, we consider the failure
probability of a random node x’s fingers given a fixed number of failures where the failure
probabilities depend on nodes’ resource levels. Using the conditional failure probabilities for
the nodes from (2.3) and the resource probabilities for the fingers from (6.1), we have:

P (fi fails) =

lmax∑
j=0

P (fi fails and (fi)R = j) (6.7)

=

lmax∑
j=0

P (fi fails |(fi)R = j) · P ((fi)R = j)

=

lmax∑
j=0

P (Fx|xR = j) · P (Rki,min = j).

Again using the example distance distribution from (6.4), Figure 6.4 shows an example sce-
nario which demonstrates how the stretch affects fingers’ failure probabilities. Note that for
Chord and DHash++, this probability is constant for all fingers, resulting in fingers which are
more likely to fail. Thus, we expect fewer finger failures for RBFM and thus a lower number
of lookup failures.

Resource and Location Aware Robust, Decentralized Data Management 101

CHAPTER 6. DHT ANALYSIS

6.2 Hierarchical HRM

While a node’s links in RBFM have varying resource levels and distances - posing the question
how these resources are distributed to the links and how these resources affect, for example,
links’ failure probabilities - HRM’s links have deterministic hierarchy layers which reflect
resource levels. In fact, resource levels are assigned to hierarchy layers in an arbitrary fashion,
but for simplicity’s sake, assume here that xR = xH and lmax = hmax. Thus, we need not ask
how resources are distributed to links or with which probability a given link might fail (with
the exception of parent links), as we know that each node has fingers within its own hierarchy
layer and links to the other hierarchy layers independent of the nodes’ resource levels (i.e.
deterministically determined). However, each hierarchy layer has location aware layer fingers,
so the distribution of links’ distances can be addressed similarly to RBFM. On the other
hand, the expected maintenance messages sent per node, in contrast to RBFM, vary from
layer to layer. The maintenance of layer fingers depends on the number of links that varying
levels must maintain. And lastly, the failure probabilities of various levels’ links, especially
the non-deterministic leaf nodes’ parent links, can be compared with those of RBFM links.

6.2.1 Expected Distance of Layer Fingers

Within each layer, nodes choose layer fingers based on location only, while the links’ resource
levels are dictated by the resource levels within that layer. However, an upper node x has fewer
peers from which to choose fingers per finger interval than RBFM or DHash++, since only a
fraction of the total network nodes are within layer xH . Thus, HRM’s location awareness is
most certainly poorer than in DHash++ but it is unclear how it compares to RBFM, which
also chooses farther fingers for the benefit of link strength. Assuming that xR = xH and
lmax = hmax and using the resource probability function from Equation (2.1), there are an
expected p` · N nodes in layer `. Thus, the first expected finger for a layer ` node is in the
dm+1− log(p` ·N)e finger interval. Furthermore, the expected number of nodes in the (layer)
finger interval Bx,i is ⌊

p` ·N · 2i−1

2m

⌋
=

⌊
p` ·N

2m+1−i

⌋
.

Borrowing from Theorem 6.1.1, the pdf of a link’s distance can be found. Assuming that the
pdf fD(t) and cumulative distribution function FD(t) of physical nodes’ distances from node
x are given, then the pfd for the physical distance of the physically closest node in a random
set of k nodes is (here derived from (6.2) with h(`) = 0):

fDmin(t) = kfD(t)

lmax∑
`=0

p`

(
1−

lmax∑
j=0

pjFD(t)
)k−1

= kfD(t)(1− FD(t))k−1.

This pdf can also be applied to the example scenario from Section 6.1.3 with nodes distributed
uniformly on a disk of radius r to compare the location awareness of HRM and RBFM:

fDmin(t) = k
2t

r2

(
1− t2

r2

)k−1

102 Resource and Location Aware Robust, Decentralized Data Management

6.2. HIERARCHICAL HRM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 21 22 23 24 25 26 27 28 29 30 31 32

E
x
p

e
c
te

d
 p

h
y
s
ic

a
l
d

is
ta

n
c
e

Finger interval

DHash++
RBFM

Level 1
Level 2
Level 3

naive

Figure 6.5: The expected physical distance of the ith finger is shown for DHash++, a four
level RBFM, and a the individual layers of a four layer HRM with 10, 000 nodes, m = 32,
ρ = 2, and r = 10. For RBFM, the stretch value is set at c̃ = 1. For HRM with xR = xH , the
bottom level nodes have no layer fingers, so only levels 1, 2, and 3 are shown.

 0

 1

 2

 3

 4

 5

 6

 7

 24 25 26 27 28 29 30 31 32E
x
p

e
c
te

d
 p

h
y
s
ic

a
l
d

is
ta

n
c
e

 f
o

r
to

p
 l
e

v
e

l
n

o
d

e
s

Finger interval

3 Layers
4 Layers
5 Layers

naive

Figure 6.6: The expected physical distances of fingers in HRM are shown for the sparsest, i.e.
top, layers of three different HRM with three, four, and five hierarchy layers with xR = xH .
The setup used 10, 000 nodes, m = 32, ρ = 2, and r = 10.

Resource and Location Aware Robust, Decentralized Data Management 103

CHAPTER 6. DHT ANALYSIS

Of course, when only observing sets of nodes of a given size, this HRM distribution has
identical values as DHash++ as plotted in Figure 6.2. But since HRM has fewer nodes than
RBFM for a given finger interval Bx,i from which to select a (layer) finger, the finger interval
sizes must also be taken into account. The expected distance of upper layer nodes’ layer fingers
has been plotted with regards to their finger intervals in Figure 6.5 using the example scenario
with 10,000 nodes. A four layer HRM (hmax = 3) is used for this figure, and the respective
distances for DHash++ and a four level RBFM are also shown for comparison. Note that
the difference between DHash++, level 1, level 2, and level 3 resembles a shift within the
finger intervals. For example, the expected physical distance achieved by DHash++ in the
21st finger interval is its second finger interval in which nodes can be expected to be found,
corresponding with the 24th finger interval for level 1 nodes, the 25th finger interval for level
2 nodes, and the 26th interval for level 3 nodes. The standard deviation has thus been shown
for DHash++ only, since it is quite similar for the respective fingers in HRM. RBFM, on
the other hand, behaves differently due to its additional resource awareness, with a slower
decrease in expected distance.

6.2.2 Maintenance

In contrast to RBFM, a node x’s links, and thus its total expected maintenance load, depend
on its own hierarchy layer xH . If p(`) is the probability that a random node belongs to
hierarchy layer ` (giving us an expected ratio between the sizes of the layers), then the total
expected maintenance load τ(x) can be expressed with the help of the maintenance delays
from Table 5.1 and the number of layer fingers each node is expected to maintain. The first
finger is expected for finger interval dm+ 1− log(pxR ·N)e, but the last finger depends on the
defined finger range given by x.Frange. For a layer 1 node, x.Frange = x.I.closestInt, in
which case the expected number of fingers depends on the key of the first higher layer node.
With an expected N

∑lmax
`+1 p(i) nodes in higher layers randomly distributed in the key space,

an interval must contain 2m/(N
∑lmax

`+1 p(i)) keys to be expected to contain at least one higher
layer node. The first finger interval with at least this number of nodes is the interval Bx,j with

j =

⌈
m+ 1− log

(
N

lmax∑
`+1

p(i)

)⌉
.

Thus, the expected number of layer fingers for layer 1 nodes, which is referred to as θ1, is
given by the expected first interval that contains a layer 1 node and the expected last interval
that does not contain a higher layer node:

θ1 =

⌈
m+ 1− log

(
N

lmax∑
i=2

p(i)

)⌉
− dm+ 1− log(Np1)e+ 1

= dlog(Np1)e −

⌈
log

(
N

lmax∑
i=2

p(i)

)⌉
+ 1.

On the other hand, a layer hmax node has fingers throughout the entire key space, so it has
an expected

θlmax = m− dm+ 1− log(Nplmax)e+ 1

104 Resource and Location Aware Robust, Decentralized Data Management

6.2. HIERARCHICAL HRM

 5

 10

 15

 20

 25

 30

 35

C5 C15 C30 L5 L15 L30 Q5 Q15 Q30

T
o

ta
l
e

x
p

e
c
te

d
 #

 s
e

n
t

m
a

in
te

n
a

n
c
e

 m
s
g

/t
im

e
 u

n
it

Level 0
Level 1
Level 2
Level 3
Level 4
RBFM

Figure 6.7: The total expected number of sent messages per node in a 5-level RBFM or one
of 5 layers in HRM in a 60 second time frame. “C” notates a constant finger maintenance
interval, “L” linear, and “Q” quadratic while the corresponding numbers refer to the values
for s0 = 5, 15, or 30. Calculations are based on s1 = 30, tref = 60, 10,000 nodes, 32.bit
keyspace, lmax = 5, r = 10, ρ = 2, stretch c̃ = 2.

fingers. All of the other upper layers 1 < ` < hmax are bound by x.Frange, which can be
variably defined for ` = xR as:

θ` = x.Frange−min{x.Frange, dm+ 1− log(Nplmax)e}+ 1.

Furthermore, since there are an expected p0N layer 0 nodes and (1−p0)N upper layer nodes,
each upper layer node has responsibility for an expected

θp =
p0N

(1− p0)N
=

p0

1− p0

leaf nodes to which it maintains links. Thus, the total expected maintenance load per unit of
time depends on a node’s resource level (see Table 5.1):

τ(x) =

1
s0

+ (r + 1) 1
s1

xR = 0

1
s0

+ (r + 2 + θp)
1
s1

+

(
lmax∑

i=1,i 6=xR

1
g(i)

)
+ θxR

1
g(xR) xR > 0.

The example scenario used above with 10,000 nodes is used in Figure 6.7 to compare the total
maintenance of the hierarchy layers in a 5-layer HRM with the total maintenance incurred by
a 5-level RBFM. The values of s0 and s1 often dominate nodes’ maintenance load, since these
delays must be short enough to ensure that the ring structure remains intact in dynamic
scenarios. In Figure 6.7, varying values of s0 = 5, 15, and 30 are used, while s1 = 30 and
tref = 60 are held constant. However, the finger maintenance interval is varied between
constant, linear, and quadratic as in Equation (6.6). The used used finger ranges were:

x.Frange =

x.I.closestInt xH = 1

m− 1 xH = 2

m xH = hmax.

Resource and Location Aware Robust, Decentralized Data Management 105

CHAPTER 6. DHT ANALYSIS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

HRM
Level 0

HRM
Level 1

HRM
Level 2

HRM
Level 3

HRM
Level 4

RBFM
 c = 2

RBFM
 c= 10

F
a

ilu
re

 p
ro

b
a

b
ili

ty
 f

o
r

o
n

e
 r

a
n

d
o

m
 l
in

k

3 Levels, 30%
4 Levels, 30%
5 Levels, 30%
3 Levels, 50%
4 Levels, 50%
5 Levels, 50%

Figure 6.8: Approximate failure probability that one random node from a node’s set of leaf
link, inter-layer links, and layer fingers (or fingers for RBFM) fails. Calculated for 10, 000
nodes, 50% or 30% of which fail, a 32-bit keyspace, lmax ∈ {3, 4, 5}, r = 10, ρ = 2, and
variable stretch c̃ ∈ {2, 10}.

Note how the highest populated level 0 nodes consistently have significantly less maintenance
load than the other levels or RBFM nodes. The upper nodes in HRM, however, have a higher
load than RBFM as the result of their upper layer successor and predecessor and inter-layer
links which require frequent maintenance. Indeed, these upper layer successor and predecessor
links have a constant maintenance interval s0 which keeps their load relatively high even for
the lightest scenario “Q30.” However, these upper level nodes account for only approximately
30% of nodes and these numbers account for outgoing links only - incoming links incur more
load on stronger nodes for both HRM and RBFM. Note that the RBFM values correspond
to the resource-unaware Chord or DHash++ for the constant finger maintenance intervals.

6.2.3 Failures

The probability that a given inter-layer link or layer finger will fail is already known for
the above failure scenario (see Section 6.1.3), since these links’ resource levels are known.
However, leaf nodes’ links to their parent nodes are non-deterministic and from any of the
upper resource levels. The probability that a leaf node x’s parent y is from a defined resource
level ` is

P (Ly = `) =
p`∑lmax
i=1 pi

.

Analogously to Equation (6.7), the probability that a leaf node’s parent fails is thus:

P (LF fails) =

lmax∑
j=1

P (Fy|yR = j) · P (Ly = j)

with the failure probabilities from Equation (2.3). Using this leaf failure probability, Figure 6.8
shows an approximation for the probability that a randomly chosen link from the set of leaf,
inter-layer, and layer finger links in HRM or a randomly chosen finger from RBFM fails. For

106 Resource and Location Aware Robust, Decentralized Data Management

6.3. SUMMARY

this approximation, fixed numbers of leaf links, layer fingers (HRM), and fingers (RBFM)
were assumed according to their respective expected values. The number of layers/resource
levels was varied between 3, 4, and 5 and the number of total node failures ranged from 30%
to 50% of the 10,000 network nodes. Level 0 HRM nodes have only one such link, so these
values reflect only the probability that a parent node fails, but are significantly lower than the
other HRM levels and the two RBFM configurations. Note the higher link-failure probability
of level 1 HRM nodes, who maintain level 1 layer fingers. The link-failure in RBFM is strongly
effected by the used stretch c̃, which determines the extent of resource awareness.

6.3 Summary

Comparing RBFM and HRM on a mathematical basis is difficult due to their varying con-
struction and maintenance of links. While RBFM almost exclusively uses non-deterministic
fingers, HRM’s leaf and inter-layer links are deterministic. Moreover, these links also require a
higher maintenance frequency to ensure the success of lookups (not just their efficiency), but
this added load only affects upper layer nodes. Thus, bottom layer nodes experience a drop
in the maintenance load for outgoing links as seen in Figure 6.7. While the expected physical
distance of an RBFM node x’s finger depends only on its finger interval and not on xR, with
higher resources and lower physical distances for increasingly farther intervals, in HRM fin-
gers’ physical distances depend on x’s own hierarchy layer. More specifically, nodes in higher
layers have fewer peers from which to choose physically close layer fingers and thus have less
location awareness. With regards to link failure, RBFM link failure rates are reduced when
resource awareness is increased through the stretch variable. Meanwhile, level 0 HRM nodes
benefit from the lowest link failure rate tested, since they are linked to only one upper layer
parent. Thus, HRM provides the failure and maintenance reduction for the highest populated
bottom level, while RBFM provides more uniform node treatment when observing outgoing
links.

These observation lead to several expectations for the evaluation in the following chapter. Since
HRM bottom layer nodes have such dramatically lower load, we can expect these bottom nodes
and thus HRM’s total network to have longer lifetimes then RBFM. RBFM lifetimes should
likewise increase as resource awareness is increased by the stretch variable. However, we also
expect slightly longer paths in HRM, which increases the total network load and could also
negatively affect node lifetimes. Furthermore, due to the lower location awareness is HRM’s
top layer (whose routing hops coincide with the long key-ranged hops over more aware nodes
in RBFM) and the higher hop count per lookup, the physical distance traversed by lookup
routing paths of RBFM can be expected to be significantly shorter than in HRM, but still
longer than in DHash++. Unfortunately, it is difficult to predict which system might have
more robustness with better lookup deliverability rates - while HRM’s bottom layer nodes
have only one link that can fail, and therefore lower average failure rates, leaf nodes become
practically unavailable when their parent links are not intact.

Resource and Location Aware Robust, Decentralized Data Management 107

CHAPTER 6. DHT ANALYSIS

108 Resource and Location Aware Robust, Decentralized Data Management

Chapter 7

DHT Evaluation

As discussed in Chapter 6, many of the important evaluative measures can only be assessed
with the help of simulation. In this chapter, four different simulation sets are used to compare
RBFM and HRM with C-RBFM and the hybrid DHT as well as the standard Chord and
DHash++. Their results help highlight the advantages and tradeoffs of the different systems,
their applicability to highly dynamic scenarios with restricted resource availability, and general
structural guidelines with regard to network behavior. When possible, these results are also
compared with the analytical results from the previous chapter.

Each of the simulation sets uses various (multiple) simulation scenarios to evaluate specific
aspects of the suggested DHTs. These scenarios are referred to as:

Static scenario. Nodes neither fail nor are added to the network after an initialization
period. The network thus remains static.

Churn scenario Nodes are drained of their resources as they send and receive messages.
Once a node’s resources have been completely depleted, the node dies and a new node
eventually joins the network in its place.

Drain scenario. Nodes are drained of their resources as they send and receive messages
until they fail, but no new nodes are added. Thus, the time until a fixed percentage of
network nodes fail can be measures as the system’s lifetime.

Massive failure scenario. Nodes are static until a fixed large portion of the nodes simul-
taneously fail. These failures are dependent on node resource levels, such that weaker
nodes have a higher probability of failure.

The four simulation sets each focus on a different aspect or DHT approach. In the following
chapter, the results are broken apart on an evaluation measure basis, so that each measure or
set of similar measures is addressed in a section that includes all applicable simulation sets.
For clarity, each simulation set is given a name and a focus:

RBFM Comparison. These simulations focus on RBFM and the effects of its various pa-
rameters. It primarily uses a churn scenario, but results for a massive failure scenario in
which 30% of nodes fail is briefly discussed.

109

CHAPTER 7. DHT EVALUATION

R
B

F
M

U
n

d
er

la
y

A
p

p
r.

C
om

p
ar

is
on

L
ev

el
C

o
m

p
a
ri

so
n

In Section

Maintenance load
messages X X X

maintenance load
forwarded msg X

Lookup

hop count X X X
lookup distancelatency distance X X

stretch underlay X

failure overlay X X lookup failure

Node
load

messages X
node load

underlay msg X

lifetime X X X load lifetime

Link
resources X X X

links
latency X X

Table 7.1: Measures used for varying evaluation scenarios.

Underlay Comparison. These simulations use a static scenario but concentrate on the
effects on a possible cluster-based underlay network. The underlay hops necessary to
complete (random) overlay lookups are observed along with the resources consumed by
this underlay routing. C-DHash++ and C-RBFM are compared with RBFM, DHash++,
and Chord.

Approach Comparison. These simulations compare RBFM, HRM, and the suggested hy-
brid DHT with Chord, DHash++, and two-tier DHTs, using a static and a drain sce-
nario.

Level Comparison. These simulations focus on HRM and the effects of varying numbers of
hierarchy layers on load, lifetimes, and latencies. They use a static and a drain scenario,
varying the application and maintenance load so as to assess varying load profiles and
the deliverability of messages under high load.

The evaluation measures used in each of these comparisons are listed in Table 7.1. In the
following chapter, the simulation framework and setups of the evaluations are first discussed
before the results are presented per evaluation measure (set). The measures are grouped
together in the subsections maintenance load 7.2.1, lookup distances 7.2.2, lookup failure 7.2.3,
node load 7.2.4, node lifetime 7.2.5, and links 7.2.6 as denoted in Table 7.1. By grouping
the results from various simulation sets and scenarios together according to their measures,
we have a broader scope with which to draw conclusions for each measure. Note that the

110 Resource and Location Aware Robust, Decentralized Data Management

7.1. EVALUATION PLATFORM AND SETUP

comparative values for the lower resource levels are often the primary interest, since the
highest number of nodes belong to these volatile levels.

7.1 Evaluation Platform and Setup

The simulations were performed in OmNET++ using the OverSim overlay framework [IB09].
The existing Chord implementation was extended for location and resource awareness for
RBFM and significantly altered for HRM. For RBFM, this extension included adding resource
levels to nodes which are automatically decremented when a message is sent or received,
piggybacking resource levels and coordinates on messages, adding and maintaining prospective
links lists, altering finger choices, adding resource-dependent finger maintenance intervals, and
managing nodes’ removals and additions once resources are depleted. For HRM, however, the
entire routing structure was also changed, since nodes no longer use strictly greed routing.
While the basic ring structure was maintained, nodes were separated into layers with specific
layer routing for establishing and maintaining leaf links, inter-layer links, and layer fingers,
and the prospective links lists were extended to save multiple layers.

When a node is created in the simulation, it is assigned an initial resource availability level
in {0, . . . , lmax} and corresponding resource values. While the resource levels divide nodes
into sets which we look at individually for resource-level-based results, the resource values
provide a continuous range of values that can be incremented and decremented and mapped
to resource levels. For example, nodes may have resource levels in {0, 1, 2, 3} and resource
values in (0, 1600], and, with xV referring to node x’s resource value, the mapping of values
to levels as:

xR =

3, xV = 1600

2, 800 ≤ xV < 1600

1, 200 ≤ xV < 800

0, 0 < xV < 200

as in Table 7.2 for the approach comparison. For HRM, a node can be assigned to various
layers in the hierarchy based on either its resource level or resource value. For example, as in
HRM2:0-123 explained below, a node with resource level 3 may be assigned to layer 1 in the
hierarchy. The number of hierarchy layers used is referred to as hnum := hmax + 1.

For the churn and drain scenarios, a node’s resource value is drained by a fixed resource
unit for each sent and received message if that node’s resource level is less than lmax. Since
top level nodes are assumed to have inexhaustible resources, they are excluded from resource
drainage. The drain scenario, in contrast to the other three scenarios, has no fixed simulation
time, and runs until a set portion of the nodes have failed and the network is thus considered
failed. For the static and massive failure scenarios, on the other hand, resource drain is turned
off and the simulations run for a set period of time. For the massive failure scenario, a fixed
percentage of nodes are selected to fail simultaneously depending on their failure probabilities
from Section 2.4.2.

Resource and Location Aware Robust, Decentralized Data Management 111

C
H
A
P
T
E
R

7.
D
H
T

E
V
A
L
U
A
T
IO

N

RBFM Underlay Appr. Comparison Layer Comparison

Number of nodes N 10000 1000 10000 1000

Node resource levels lmax + 1 4 4 4 5

Level 4 - - - 1600

Creation Level 3 800 800 1600 800-1599

resource value Level 2 400 400 800 400-799

Level 1 200 200 200 200-399

Level 0 100 100 100 100-199

Hierarchy layers hmax + 1 - - 4 3,4,5

Drain
Send 0.05 0.05 0.04 0.04

Receive 0.05 0.05 0.02 0.02

Application frequency 60 60 30 sec. 10,35,45,60 sec.

s0 5 5 5 sec. 30 sec.

Maintenance frequency s1 - - 20 sec. 60 sec.

s2 = tref 60 60 120 sec. 120 sec.

Simulation time 4000 5000 10000 20000

Rsc. distribution power ρ 2 2 2 2

Maintenance interval β 1,2 1,2 RBFM:2, HRM:1 1

Coordinates OverSim OverSim random random

Additional parameters k = 1, 3 5000 clusters

Table 7.2: Simulation variables used.

11
2

R
eso

u
rce

a
n

d
L

o
ca

tio
n

A
w

a
re

R
o
b

u
st,

D
ecen

tra
lized

D
a
ta

M
a
n

a
g
em

en
t

7.1. EVALUATION PLATFORM AND SETUP

7.1.1 Configurations

Most of the configurations for the varying simulation sets can be found in Table 7.2, but
specifics and expectations for each simulation are discussed in the following four subsections.
All configurations use nodes with resource availability levels/values assigned to nodes based
on the power of two Zipf distribution from Section 2.4.1. In addition to the maintenance
messages listed in Table 5.1 using frequencies listed in Table 7.2, a dummy application on
each node sent lookups at set intervals to randomly chosen keys. The dummy application
interval is held constant for all but the layer comparison, which varies application load in
order to achieve high, medium, and low ratios of the total number of maintenance messages
to the total number of application messages sent. The application lookups are observed for
the number of hops, hop distances, and successful delivery. The lower the rate of delivery, the
less reliable the DHT stores and retrieves data.

7.1.2 RBFM Comparison

This comparison uses Chord, DHash++, and RBFM. The OverSim framework provides a
coordinate set with over 200,000 coordinates, which was used for both the random and under-
lay comparisons with a resulting network coordinate diameter of approximately 2,000. Both
linear and quadratic finger maintenance functions, g(xR) = tref · (xR + 1)β for β ∈ {1, 2},
were used as well as varying sizes of the prospective links lists k ∈ {1, 3}. After nodes within
the churn scenario fail, new nodes are added to ensure that there are a total of 10,000 nodes
with a quadratic Zipf-distribution of their resource levels. Thus, a total of between 34,000 and
59,000 nodes (depending on the approach) were introduced to the network over the measure-
ment period of 4,000 seconds. All results are based on the means of three runs which yielded
negligible variances. This comparison evaluates the benefits of RBFM’s resource usage by
focusing on the direct measures of node lifetimes and lookup failures as well as the indirect
measures of the mean resource levels and physical distances used for routing and the total
number of maintenance messages sent. Expectations for this simulation included:

� Smaller prospective links lists prevent nodes from using stale node information of peers
that have moved, changed resource levels, or perhaps since failed, while longer lists
provide more alternatives when nodes do fail. Thus, failure rates should be lower for
smaller lists while resource and location awareness are better for longer lists.

� Less use of lower level nodes for routing in RBFM.

� Decreased physical lookup distances and thus network load in RBFM compared with
Chord, but increased compared with DHash++.

� Reduced link failure and increased node lifetime in RBFM due to lower nodes’ reduced
load.

Indeed, the results support the assumption that better finger characteristics do indeed result
in improvements in global behavior.

Resource and Location Aware Robust, Decentralized Data Management 113

CHAPTER 7. DHT EVALUATION

7.1.3 Underlay Comparison

For the underlay comparison, the overlay lookup hops generated by RBFM in the existing On-
NET++ simulation were passed into a MATLAB environment called SONIR (Self-Organizing
Network with Intelligent Relaying) [ZGA+10] for the simulation of underlay routing. SONIR
is a purpose-built framework for simulating cluster-based ad-hoc networks with cooperative
multi-hop relaying. The coordinates and resource levels of the nodes used in SONIR were iden-
tical to those used for the overlay simulation. The underlay simulation divided the nodes into
location-based clusters, either with or without resource awareness for the choice of cluster-
heads. Nodes then collect information needed for routing via extensive piloting, so that the
route from a source to a destination can be established by one of multiple possible routing
protocols. Of those routing protocols, AODV (Ad-hoc On-demand Distance Vector) was used,
since it is a popular, scalable and loop free reactive routing protocol widely used in both sim-
ulation tasks as well as in real applications [BBB09]. Expectations for this simulation include:

� Improved location awareness with fewer underlay hops per lookup and total underlay
hops for RBFM compared with Chord, slight increase compared with DHash++.

� Even further location aware improvement for cluster-based approaches.

� Less use of resources per lookup for both normal and cluster-based RBFM when com-
pared to Chord and (cluster-based) DHash++.

7.1.4 Approach Comparison

For the approach comparison, nodes with four resource availability levels are used to com-
pare Chord, RBFM, HRM, the hybrid RBFM/HRM from Section 5.4, and a basic two-tier
hierarchical overlay. Thus, the four resource levels are assigned to either four hierarchical
layers (as in HRM, thus called HRM4), two hierarchical layers (as in the two-tier overlays),
or one layer (as in Chord and RBFM). Due to the small variation caused by different finger
maintenance intervals and stretch constants in RBFM in comparison to the larger variations
between approaches, a single fixed RBFM configuration is used with stretch c = 90 and
quadratic finger maintenance. The HRM4 and hybrid HRM approaches, on the other hand,
use the load-heavier linear finger maintenance. HRM4 assigns nodes to layers with xH = xR
and uses finger ranges as described in Section 5.3.2:

x.Frange =

{
x.I.closestInt, xR = 1

m, xR ∈ {2, 3}.

The basic location aware two-tier hierarchies place weak nodes in the leaf layer and strong
nodes in the single super peer layer. Using four resource levels (lmax = 3), nodes are assigned
to layers in two fashions: For HRM2:0-123, level 0 nodes are assigned to the leaf layer and
level 1,2, and 3 nodes to the super peer layer, while for HRM2:01-23 level 0 and 1 nodes
are assigned to the leaf layer and level 2 and 3 nodes to the super peer layer. In contrast to
the hybrid approach, nodes within the super peer layer are unaware of their varying resource
levels and choose their fingers based only on physical distance. For the hybrid approach, only
layer 0 nodes are assigned to the leaf layer to provide a large number of nodes from which

114 Resource and Location Aware Robust, Decentralized Data Management

7.1. EVALUATION PLATFORM AND SETUP

Approach Comp. Layer Comparison

H
R

M
4

H
R

M
2:

0-
12

3

H
R

M
2:

01
-2

3

h
n
u
m

=
5

h
n
u
m

=
4

h
n
u
m

=
3

Layer 4 - - - 27 - -

(Expected) Layer 3 439 - - 43 27 -

Number of nodes Layer 2 780 - - 76 62 27

in hierarchy Layer 1 1756 2976 1220 171 142.5 100

Layer 0 7024 7024 8780 683 768.5 873

Table 7.3: In the layer comparison, nodes from five resource availability levels are distributed
amongst five, four, and three hierarchical layers.

resource and location aware fingers can be chosen in the super peer layer. Thus, it is called
HRM2:0-123 with RBFM and uses the same setup as HRM2:0-123 with the addition of a
stretch-constant c = 90 for its RBFM fingers. The expected number of nodes per hierarchy
layer upon network initialization for HRM4 and the two-tier hierarchies are listed in Table
7.3. Expectations for this simulation include:

� Hierarchical approaches should be best a relieving weak (leaf) nodes of routing and
maintenance load, thus prolonging their average lifetimes. This, in turn, prolongs the
network lifetime.

� Physical distances for HRM may be longer than for RBFM (due to analytical results)
and even the hybrid hierarchies (since nodes also have more peers from which to choose
links), causing an increase in overall network load. However, leaf HRM nodes should
still have decreased load.

� RBFM has a very adaptable structure, since a node’s links do not depend on its resource
level, and may thus adapt better to network dynamics, and a lower lookup failure rate.

7.1.5 Layer Comparison

The layer comparison is based on nodes from five resource availability levels (lmax = 5) that
are distributed among three, four, and five hierarchical layers (hnum ∈ {3, 4, 5}). In order
to compare hierarchies with varying numbers of layers, we must ensure that the underlying
network starts in the same state for each configuration. Therefore, nodes’ initial resource
values and the number of nodes with inexhaustible resources must remain identical. Thus,
instead of setting lmax = hnum − 1, resource values are always assigned across five resource
availability levels for hnum = 3, 4, and 5, and then varying resource value thresholds assign
nodes to hierarchical layers. In this way, five resource levels are, for example, assigned to three
hierarchy layers. A node x that has been assigned the resource level xR chooses its resource

Resource and Location Aware Robust, Decentralized Data Management 115

CHAPTER 7. DHT EVALUATION

value at random from the corresponding interval listed in Table 7.2. Each value of hnum uses
its own set of resource value thresholds to determine which hierarchy layer each node is placed
in. The expected number of nodes per hierarchy layer upon network initialization is listed in
Table 7.3 for hnum ∈ {3, 4, 5}. Note that the assignment of nodes to layers follows a quadratic
Zipf distribution for hnum = 5 only.

Maintenance accounts for a large portion of total network traffic and is distributed differ-
ently among the layers than application lookup routing. In order to compare the scenarios
where either maintenance or lookup load dominated, we use four different application loads
with a constant maintenance load (as in Table 7.2). The ratio of application lookup load to
maintenance load was thus varied using the following configurations:

Notation Delay Total Application:Maintenance Message Ratio

static configuration drain configuration

low 60 sec. 4:5 3:5

mid 45 sec. 1:1 9:11

high 35 sec. 7:5 1:1

high+ 10 sec. 24:5 7:2

While results were expected to vary for different configurations, the overwhelming negative
effect of additional hierarchy layers was surprisingly clear. Expectations for this simulation
include:

� Fewer layers should incur fewer lookup hops, thus reducing overall network traffic.

� Fewer layers give nodes more peers from which to choose nearby layer fingers, thus
improving location awareness.

� Fewer layers provide poorer resource awareness, since nodes are differentiated on a less
fine scale. Thus, load may be less differentiated between resource levels for fewer lay-
ers. Furthermore, lookup failure rate may be higher, since peers are less prepared for
individual nodes’ failure.

� Higher application load increases the importance of resource aware routing. The varying
load patterns of maintenance and lookup routing may cause various number of layers
to have better node lifetimes.

7.2 Results

Results are discussed per evaluation measure across all simulation sets. Figures have thus
also been grouped by measure and are marked with their respective simulation set (RBFM,
Underlay, Approach, Layer) and scenario (static, churn, drain).

116 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

 3e+07

 3.5e+07

 4e+07

 4.5e+07

 5e+07

 5.5e+07

 6e+07

Chord DHash++ Linear
 c=10

Linear
 c=90

Quad.
 c=90

#
 m

a
in

te
n
a
n
c
e
 m

e
s
s
a
g
e
s

(a) RBFM, churn

0

10

20

30

40

50

60

70

Chord DHash++ Linear
 c=10

Linear
 c=90

Quad.
 c=90

%
 f

o
rw

a
rd

e
d

 m
a

in
te

n
a

n
c
e

 m
e

s
s
a

g
e

s

Level 0
Level 1
Level 2
Level 3

(b) RBFM, churn

 0

 1000

 2000

 3000

 4000

 5000

 6000

C
h
o
rd

R
B

F
M

:Q
9
0

H
R

M
4

H
R

M
2
:0

-1
2
3

w
/R

B
F
M

:L
9
0

H
R

M
2
:0

-1
2
3

H
R

M
2
:0

1
-2

3

to
ta

l
m

a
in

te
n

a
n

c
e

 m
s
g

/u
n

it
 o

f
ti
m

e

(c) Approach, drain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

C
h
o
rd

R
B

F
M

:Q
9
0

H
R

M
4

H
R

M
2
:0

-1
2
3

w
/R

B
F
M

:L
9
0

H
R

M
2
:0

-1
2
3

H
R

M
2
:0

1
-2

3

p
e
rc

e
n
ta

g
e
 o

f
m

a
in

te
n
a

n
c
e
 l
o
a

d

Level 0
Level 1
Level 2
Level 3

(d) Approach, drain

Figure 7.1: Maintenance load Quadratic finger maintenance and k = 1. (a) Total number
of maintenance messages sent. (b) Percent of the total forwarded maintenance messages that
each level forwarded. (c) Total number of maintenance messages sent per second in system.
(d) Percentage of total messages sent per level.

Resource and Location Aware Robust, Decentralized Data Management 117

CHAPTER 7. DHT EVALUATION

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

Level 0

Level 1

Level 2

Level 3

Level 4

m
a
in

te
n
a
n
c
e
 m

e
s
s
a
g
e
s
 s

e
n
t High+: 3 Layers

High+: 4 Layers
High+: 5 Layers

High: 3 Layers
High: 4 Layers
High: 5 Layers
Low: 3 Layers
Low: 4 Layers
Low: 5 Layers

(a) Layer, static

Figure 7.2: Maintenance load Average number of maintenance messages sent per node with
resource availability levels 0 to 4. Maintenance is more or less constant regardless of the
application load.

7.2.1 Maintenance Load

Figures 7.1 and 7.2 show the maintenance load results, ranging from the total number of
maintenance messages sent, to the percentage of maintenance messages sent per resource
level, to the percentage of maintenance messages that were forwarded (i.e. not delivered in
one overlay hop) per resource level.

Figure 7.1a demonstrates the RBFM reduction in maintenance messages, with a decreasing
tendency for increasing stretch (i.e. increasing resource-awareness integrated into the resource
distance) and infrequent finger maintenance interval. Considering the large number of nodes
in the bottom level, level 0 is responsible for the majority of the maintenance load in each
system. The number of maintenance messages per second varies depending on the protocol
and node failure, but Chord consistently has the highest maintenance load. Figure 7.1b, on
the other hand, shows only the maintenance traffic which is not delivered within one hop and
therefore creates extra network routing/lookup load. The figure indicates that the percentage
of hops routed over lower levels is significantly reduced for RBFM, depending on the stretch.
As expected from the analysis, a substantial portion of forwarding responsibilities have been
transfered from lower level to higher level nodes.

Meanwhile, Figure 7.1c demonstrates that the difference in maintenance load between the flat
and hierarchical structures is in fact small, despite the more frequently required maintenance
in the hierarchal DHTs for leaf nodes and upper layer predecessors and successors. Figure 7.1d,
on the other hand, shows the percentage of total maintenance load per level (as opposed to
forwarded load in Figure 7.1b). Interestingly, RBFM level 0 nodes actually have a slightly
higher overall percentage of maintenance load than in Chord, while level 1 loads have a
slightly lower percentage of load. This is however, perhaps due to the lifetime lengths of
nodes and therefore the number of nodes that persist in level 0. As we will see in Figure 7.6b,

118 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

level 0 Chord nodes have substantially shorter lifetimes and thus create a substantially lower
number of messages in relation to the other levels. In this we see a reoccurring problem in level-
based measures in dynamic scenarios, where multiple variables make reliable interpretation
difficult. Note, however, that there is a significant drop in total level 0 maintenance load for
the hierarchical approaches which cannot be similarly explained, but rather is the result of
leaf nodes’ low number of links.

Figure 7.2 compares the number of maintenance messages sent for varying numbers of hierar-
chy layers and maintenance to application load ratio. As might be expected, the maintenance
is not significantly effected by application load. However, while maintenance load remains low
for level 0 nodes, it increases strongly for level 1 nodes with increasing number of hierarchy
layers. On the other hand, level 2, 3, and 4 nodes’ maintenance load is strongly decreased.
Thus, splitting the network into more hierarchy layers decreases the maintenance load of
strong nodes while increasing the load of weak upper layer nodes. This may, however, be
beneficial by freeing top layer nodes’ capacities for heavier lookup responsibilities.

7.2.2 Lookup Distance

For both the massive failure and the churn scenarios in RBFM, the differences between the
approaches’ various average hop counts for lookups were nearly negligible. The average hop
count varied by at the most 5% with 6.5 to 6.8 hops, and the standard deviation of hops per
lookup was, at its highest, 1.8. The mean physical distance traveled by all application lookups
is shown in Figure 7.3a. While the increased physical distance for increased stretch (and thus
increased resource awareness) in RBFM was expected, the lower value of the linear RBFM
with stretch c = 10 than DHash++ was not. Since RBFM with any stretch constant > 0
forfeits a bit of location awareness, this must be related to the network churn. With slightly
shorter lifetimes (see Figure 7.6a), DHash++ nodes have less time to find and establish the
best possible fingers, which then also fail sooner. After all, a node can only choose a finger from
the peers which it knows through the information piggybacked on messages. This indicates
that lower node lifetimes also inhibit the systems’ ability to implement location (or resource)
awareness.

In contrast to the RBFM results, the underlay results in Figure 7.3b based on a static net-
work do indeed reflect that DHash++ is more location aware than RBFM. Furthermore, each
cluster-based approach uses significantly fewer underlay hops than its cluster-naive counter-
part. The signal to noise ratio indicates how sparse the network is, with lower signal to noise
ratios indicating sparser networks. The location aware benefits are even more pronounced for
sparse clustered networks in which more underlay hops are necessary.

In the approach comparison, average lookup hop lengths ranged from 6.5 to 8.5 hops. The hi-
erarchical approaches tended to have approximately one hop more than the other approaches,
presumably from the final and/or initial hops to and from leaf nodes, as discussed in Chap-
ter 5. Figure 7.3b suggests, again as expected, that the location awareness provided by RBFM
mostly surpasses the location awareness of a hierarchical structure with sparse hierarchy lay-
ers from which to choose links. Note that the drawn line represents the actual mean physical
distance between the sender and receiver of a lookup. HRM2:01-23 does, however, surpass
RBFM, since it chooses links based only on location within its parent hierarchy layer. The
difference between HRM2:01-23 and HRM2:0-123, on the other hand demonstrates how more

Resource and Location Aware Robust, Decentralized Data Management 119

CHAPTER 7. DHT EVALUATION

 350

 400

 450

 500

 550

 600

C
h
o
rd

D
H

a
s
h
+

+

L
in

e
a
r

 c
=

1
0

L
in

e
a
r

 c
=

9
0

Q
u
a
d
.

 c
=

9
0

m
e
a
n
 p

h
y
s
ic

a
l
d
is

ta
n
c
e
 p

e
r

lo
o
k
u
p

k=1
k=3

(a) RBFM, churn (b) Underlay, static

 0

 100

 200

 300

 400

 500

 600

 700

 800

Chord
RBFM:Q90

HRM4
HRM2:0-123

w/RBFM:L90

HRM2:0-123

HRM2:01-23

p
h
y
s
ic

a
l
d
is

ta
n
c
e

static
drain

(c) Approach, static and drain

 2

 3

 4

 5

 6

 7

 8

 9

 10

loss:low

loss:high+

static:low

static:high+

a
v
e
ra

g
e
 n

u
m

b
e
r

o
f
h
o
p
s
 p

e
r

lo
o
k
u
p

3 Layers
4 Layers
5 Layers

(d) Layer, static and drain

Figure 7.3: Lookup distance (a) Mean physical distance traveled by a lookup. (b) Number
of cluster-based underlay hops per overlay hop. (c) Average number and standard deviation
of overlay hops per application lookup. (d) Mean physical distance traveled by a lookup.

120 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

possible nodes from which to choose fingers do not necessarily improve location awareness:
HRM2:0-123, although it has more nodes in its upper layer, has a higher variation of physical
lookup lengths, perhaps due to the increased number of hops necessary to forward messages
in this more populated parent layer.

Increasing the number of hierarchy layers also increases the number of necessary hops per
lookup as shown in Figure 7.3d. Note that the hop number is higher for the static than for the
drain scenario, presumably because the overall size of the upper overlay which routes lookups
is quickly reduced as nodes loose energy and switch to lower layers in the drain scenario (see
Figure 7.6c). In fact, the drain scenario with higher application load and thus lower lifetimes
has an even lower number of hops per lookup.

7.2.3 Lookup Failure

One of the most direct result for robustness is the application lookup deliverability. The
results for RBFM with churn in Figure 7.4a were slightly surprising in that the resource-naive
DHash++ performed significantly better with respect to resources than Chord although one
could expected both to behave similarly. However, this improvement can be explained by
DHash++’s prospective links list. Nodes with higher resource levels also have longer lifetimes,
making then more well known to other nodes by their continually backpacked information.
Since this information can propagate longer, these higher level nodes will invariably take up
a larger portion of the prospective fingers lists. and thus, increase their number of incoming
links. The result is an indirect resource-awareness which improves lookup deliverability.

One result from the RBFM with massive failures is also noteworthy: Message failures were
comparable at around 20− 25% for Chord, DHash++, and RBFM with a linear finger main-
tenance interval for stretch c = 10, 90, but surprisingly poor (45 − 55%) for the quadratic
finger maintenance function for c = 90. This indicates the importance of adequately frequent
finger maintenance for all levels when large scale failures can be expected.

The lookup failure rates for the basic two-tier hierarchies in Figure 7.4b were surprisingly high,
with lookup success rates reduced to under 65%. While Figure 7.6b shows how their averaged
node lifetimes are actually longer, the lack of more than leaf-parent resource awareness appears
to affect them just as strongly as the completely resource naive Chord.

7.2.4 Node Load

Figures 7.4b and 7.4c provide an overview of the lookup hop load distribution among the
resource levels. Only successful lookups are included in these figures. Figure 7.4c clearly shows
how strongly each approach prefers a single resource level for its lookup hops and demonstrates
how important it is to design an overlay with the nodes’ resource availabilities in mind. For
example, RBFM’s lookup hop distribution is more suitable for networks in which top level
nodes can handle unlimited load while HRM4 is more suitable for systems with strong nodes
in level 2 that should be used to reduce top level load. Note the high load on level 1 nodes
for the two-tier approach HRM2:0-123 in Figure 7.4c. This may cause a high rate of node
movement between the super peer and leaf layers, triggering HRM2:0-123’s low deliverabiliy
rate. Similarly, HRM4 distributes more load to level 2 nodes at the cost of their average
lifetimes (relative to the other levels) as seen in Figure 7.6b.

Resource and Location Aware Robust, Decentralized Data Management 121

CHAPTER 7. DHT EVALUATION

0

10

20

30

40

50

60

70

80

Chord DHash++ Linear
 c=10

Linear
 c=90

Quad.
 c=90

%
 d

e
liv

e
re

d
 a

p
p
lic

a
ti
o
n
 m

e
s
s
a
g
e
s

k=1
k=3

(a) RBFM, churn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Chord
RBFM:Q90

HRM4
HRM2:0-123

w/RBFM:L90

HRM2:0-123

HRM2:01-23

p
e
rc

e
n
ta

g
e

Delivered Msgs
Level 0 Hops
Level 1 Hops
Level 2 Hops
Level 3 Hops

(b) Approach, drain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

Chord
RBFM:Q90

HRM4
HRM2:0-123

w/RBFM:L90

HRM2:0-123

HRM2:01-23

p
e
rc

e
n
ta

g
e

Level 0 Hops
Level 1 Hops
Level 2 Hops
Level 3 Hops

(c) Approach, static

Figure 7.4: Lookup failures/Node load (a) Percentage of delivered application lookups
using prospective links lists with one and three entries. (b) Percentage of delivered application
messages and percentage of total lookup hops resolved per resource level. (c) Percentage of
total lookup hops resolved per resource level. Each approach delivered more than 99% of
lookups.

122 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

(a) Underlay, static

(b) Underlay, static

 1000

 10000

 100000

Level 1

Level 2

Level 3

Level 4

a
p
p
lic

a
ti
o
n
 m

e
s
s
a
g
e
s
 f
o
rw

a
rd

e
d

High+: 3 Layers
High+: 4 Layers
High+: 5 Layers

High: 3 Layers
High: 4 Layers
High: 5 Layers
Low: 3 Layers
Low: 4 Layers
Low: 5 Layers

(c) Layer, static

Figure 7.5: Node load (a) Total number of underlay hops for application and maintenance
messages. (b) Number of underlay hops shown with corresponding overlay hops for fixed SNR
(25 dB). (c) Average number of application messages forwarded per node. Nodes in hierarchy
layer 0 (i.e. level 0 nodes, level 1 nodes for 3 layers) do not forward messages.

Resource and Location Aware Robust, Decentralized Data Management 123

CHAPTER 7. DHT EVALUATION

Figure 7.5a reflects the findings regarding the mean number of underlay hops per single overlay
hop, but additionally includes maintenance messages. The corresponding cumulative number
of total overlay and underlay messages sent is shown in Figure 7.5b. These reflect what is
expected of ad hoc networks, namely that location awareness provides an overall reduction of
network load. Clearly, the lowest load is incurred by the cluster-aware approaches.

The total number of application messages routed in HRM is shown in Figure 7.5c for vary-
ing numbers of hierarchy layers. It shows how the increasing and decreasing tendencies for
application load per node over the levels and the number of layers hnum are preserved for
varying application:maintenance ratios, and similar to the shifts in maintenance load from
Figure 7.2. Note that the increases and decreases in the level maintenance and application
load for increasing hnum can be explained by the shifts of nodes to higher hierarchy layers
caused by the chosen thresholds. Level 1 nodes, for example, are continually shifted upwards
in the hierarchy, thus assuming more load. And while level 2,3, and 4 nodes also shift upwards
in the hierarchy, their load is increasingly shared with the numerous level 1 nodes that have
shifted up to take more load, and thus deceased. Level 3 nodes experience a slight increase
in application load for increasing hnum, perhaps due to the lack of nodes shifting up into its
layers (there are fewer level 2 nodes to shift upwards) as level 3 nodes shift up themselves.

7.2.5 Node Lifetime

The mean node lifetime for RBFM in Figure 7.6a has a similar behavior with regard to
DHash++ and Chord as with the lookup failure rate in Figure 7.4a: DHash++, although it
is not resource aware, has longer node lifetimes. This again can be explained by the use of
prospective links lists, since finger maintenance is often routed directly to an existing finger in
the prospective links list, generating less maintenance overhead and thus less resource usage
(as also seen in Figure 7.1a). Otherwise, the highest mean node lifetime is achieved by the
RBFM configuration which sends the most infrequent of the tested maintenance messages:
the quadratic finger maintenance interval.

The lifetimes of each of the approaches before half of its nodes fail, as shown in Figure
7.6b, vary strongly. Despite a very infrequent finger maintenance interval for Chord, set here
intentionally to 240 seconds to reduce maintenance load, it cannot compare to the alternative
approaches. Note that while HRM4 performs significantly better than RBFM, the two-tier
approaches perform even better, most likely due to the higher average hop length of lookups
in HRM (approximately one hop more per lookup). While Figure 7.6b demonstrates how
well the traditional two tier approaches prolong node lifetimes, Figure 7.4b shows that these
two-tier approaches’ performance suffers given high failure rates, reducing the success rate of
lookups to under 65%.

When the number of hierarchy layers is considered, the upwards shift from level 1 nodes that
reduces the load on level 2-4 nodes with an increasing number of layers, ultimately decreases
these level 1 nodes’ and thus the network’s lifetime. As we see in Figure 7.6c, this upwards shift
occurs regardless of the application load. Weaker nodes’ lifetimes are bounded by the periodic
maintenance and application messages that they (and every other node) send, providing an
upper bound for network lifetime. Thus, if additional load is added to these weak nodes, this
bound is reduced, shortening the possible network lifetime.

124 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

Chord DHash++

 k=1

DHash++

 k=3

Linear

 c=10

 k=1

Linear

 c=10

 k=3

Linear

 c=90

 k=1

Linear

 c=90

 k=3

Quad.

 c=90

 k=1

Quad.

 c=90

 k=3

m
e

a
n

 n
o

d
e

 l
if
e

ti
m

e

Level 0

Level 1

Level 2

(a) RBFM, churn

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

Chord

RBFM
:Q90

HRM
4

HRM
2:0-123

w/RBFM
:L90

HRM
2:0-123

HRM
2:01-23

li
fe

ti
m

e
 i
n
 s

e
c
o
n
d
s

Level 0
Level 1
Level 2
Level 3

(b) Approach, drain

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

low mid
high

+high

lif
e

ti
m

e
 i
n

 s
e

c
o

n
d

s

3 Layers
4 Layers
5 Layers

(c) Layer, drain

Figure 7.6: Node lifetime (a) Mean node lifetimes per resource level for k = 1. (b) Mean node
lifetimes per resource level. Level 3 is also total system lifetime. (c) Mean network lifetime
until half of the nodes have failed.

Resource and Location Aware Robust, Decentralized Data Management 125

CHAPTER 7. DHT EVALUATION

7.2.6 Links

Links are considered with respect to both their physical distance and resource levels. However,
“hops” might be a better term, since it is the mean distance and resources for hops taken
that is observed. This means simply that links that are more heavily used influence the mean
more significantly, giving us a weighted mean for the links.

The increase in mean resource levels per hop in Figure 7.7b for RBFM surpassed the expec-
tations from the analysis. This increase is due to a combination of the higher resource fingers
as in Figure 6.1 and the fact that higher fingers are used more frequently in routing. Note the
increase in mean resource level of DHash++ compared to Chord, which was also apparent
for mean node lifetimes and the lookup success rates. Furthermore, the resource awareness
clearly depend on stretch but is not significantly effected by the finger maintenance interval
or size of the prospective links lists.

Figures 7.7a and 7.7d measure the resources used by the hops of a path using a resource
utilization measure. The resource utilization for a hop to node x is lmax−xR. So a node with
resource level 2 in a 5-layer system (lmax = 4) has resource utilization 2, while the accumulated
resource utilization of a path along top level nodes will have resource utilization 0 regardless
of its length. Figure 7.7a shows the accumulated resource utilization of the underlay hops nec-
essary for a single overlay hop. Contrary to expectations, RBFM did not have a lower resource
utilization that DHash++, although it uses significantly more resource-aware hops as seen in
Figure 7.7b. However, the resource levels of underlay nodes used relays for the multi-hop un-
derlay route of a single overlay hop are not considered in the choice of fingers in RBFM. Thus,
the physically shortest paths, which have fewer intermediate underlay nodes, provide the best
resource utilization. Alternatively, the cluster-aware approaches further decrease these path
distances, thus yielding less resource usage. However, the best approach regarding resources
remains the resource unaware C-DHash++. This illustrates how underlay routing must play
a role in establishing connections in an ad hoc network to best utilize resources.

The average physical distance of single lookup hops shown in Figure 7.3c reflects what we
expect: while RBFM:Q90 has a large pool of nodes from which to choose links with strong
and physically close nodes, HRM4’s nodes have less choice for their links which are drawn
from specific (less populated) hierarchical layers. HRM4 actually performs only slightly more
location-aware than the completely location-naive Chord - further reducing its usability for
mobile network scenarios with ad hoc routing where location-awareness is integral. Multi-
tiered hierarchical approaches for MANETs require additional location-awareness such as PIS
or PRS. On the other hand, level 2 and 3 nodes in HRM2:01-23 choose links from these two
upper levels based only on distance, providing upper nodes with physically close links. Thus,
depending on the tolerable lookup failure rate and desired distribution of load between the
upper level nodes, HRM2:01-23 and RBFM are best suited for systems where the physical
routing distance plays a central role.

An increase in the number of hierarchy layers also results in higher physical distances per
lookup hop, as shown in Figure 7.7c. This increase in hop distances is presumably due to the
number of nodes in the top two hierarchy layers, which perform a large portion of the routing
(see Table 7.3). Indeed, the average physical distance per hop varies only negligibly between
the scenarios.

126 Resource and Location Aware Robust, Decentralized Data Management

7.2. RESULTS

(a) Underlay, static

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

C
h

o
rd

D
H

a
s
h

+
+

L
in

e
a

r
 c

=
1

0

L
in

e
a

r
 c

=
9

0

Q
u

a
d

.
 c

=
9

0

m
e

a
n

 r
e

s
o

u
rc

e
 l
e

v
e

l
p

e
r

h
o

p

k=1
k=3

(b) RBFM, churn

 100

 200

 300

 400

 500

 600

 700

 800

loss:low

loss:high+

static:low

static:high+

p
h

y
s
ic

a
l
d

is
ta

n
c
e

3 Layers
4 Layers
5 Layers

(c) Layer, static and drain

 0

 5

 10

 15

 20

 25

Chord
RBFM:Q90

HRM4
HRM2:0-123

HRM2:01-23

HRM2:0-123

 w/RBFM:L90

re
s
o

u
rc

e
 u

s
a

g
e
 v

a
lu

e

static
drain

(d) Approach, static and drain

 45

 50

 55

 60

 65

 70

 75

 80

Chord
RBFM:Q90

HRM4
HRM2:0-123

HRM2:0-123

 w/RBFM:L90

HRM2:01-23

p
h

y
s
ic

a
l
d

is
ta

n
c
e

static
drain

(e) Approach, static and drain

Figure 7.7: Links (a) Mean power consumed by underlay nodes for a single overlay hop. (b)
Mean resource level per hop of RBFM is nearly twenty times that of Chord and ten times
that of DHash++. (c) Mean physical distance and standard deviation per application hop. (d)
Mean and standard deviation of resource usage per overlay hop. (e) Mean physical distance
per application hop.

Resource and Location Aware Robust, Decentralized Data Management 127

CHAPTER 7. DHT EVALUATION

7.3 Summary

The majority of results reflect the expectations outlined in Section 7.1 and from the analysis
in Section 6.3, with lower lookup failure and higher node lifetimes for RBFM and HRM
configurations. Considering only node and network lifetimes together with the percentage of
delivered lookups, RBFM and HRM4 clearly outperform the other approaches with over twice
the lifetimes compared with resource naive approaches. While the hierarchical approaches all
provided the longest lifetimes, HRM4 alone retained a lookup success rate over 65% (at 85%).

Node lifetimes effect not only the stability and the cumulative storage space in the system, but
also its ability to implement awareness. When discovering suitable nodes in a non-deterministic
fashion, longer lifetimes mean that nodes have more opportunities to find nearby or strong
peers. Similarly, any awareness that uses a non-deterministic approach such as piggybacked
information may inadvertently improve resource awareness (in the sense of node-lifetime),
since longer lived nodes’ information is propagated longer, thus increasing their prevalence in
other peers’ links. Of course, for application lookups which are non-uniformly distributed to
nodes, nodes with high lookup rates similarly propagate their information more extensively.

Results also demonstrate that an increase in the number of nodes from which to choose nearby
links does not necessarily decrease path lengths, since they are often accompanied by a higher
number of necessary (underlay) hops to fulfill a lookup. Moreover, in order to integrate any
form of resource awareness on an ad hoc network, the resources along the underlay routes must
be taken into consideration. Otherwise, the shortest lookup paths yield the most conservative
resource usage.

With regards to the number of hierarchy layers used, three central conjectures can be derived
from the results:

� The more hierarchy layers used, the longer lookup path lengths become, both in hops
and physical distances. However, more hierarchy layers also facilitate a more fine grained
allocation of load to resource levels. In choosing an optimal number or hierarchy layers,
the benefits of the varying load-to-level distributions must be waged against the overall
increase in load for additional layers.

� The weakest nodes easily dominate system performance. A target minimum lifetime
for the weakest nodes could help the system optimization process by decoupling the
robustness problem from the maximization of weakest nodes’ lifetimes.

� A system-specific optimal threshold for determining which nodes act as leaf nodes and
which act as upper layer nodes could also help maximize network lifetime, but has not
yet been explored. For example, for the simulated configurations, an increase in the
numbers of hierarchy layers resulted in lower maintenance load at stronger nodes and
higher load at weak upper layer nodes. However, this likely depends on the allocation
of nodes to layers.

Considering this last conjecture, if the threshold is too low (i.e. there are too few leaf nodes),
then weak nodes are assigned higher layers and fail earlier; if it is too high (i.e. too many leaf
nodes), then strong nodes have fewer nodes from which to choose nearby links and higher load
that causes earlier failure. However, the optimal threshold depends on the send and receive

128 Resource and Location Aware Robust, Decentralized Data Management

7.3. SUMMARY

drain variables as well as the actual resource values of each resource level and the expected
query load. If concrete values for these parameters are known, then, with the help of the
expected maintenance and lookup load per node (the lookup load per node can be roughly
derived from the fingers’ resource levels and the expected query load), the expected number
of sent and received messages could be derived to provide expected lifetimes.

Although HRM ultimately provides a robust basis for dynamic mobile (resource restricted)
networks with long node lifetimes, it is inferior to the flat RBFM in lookup hop lengths,
physical distances, and success rates. However, optimization techniques targeted at multi-
tiered hierarchical approaches could cause significant improvements. While optimal thresholds
for leaf nodes could improve lookup success rates, routing optimization could reduce the extra
hops generated from routing between hierarchy layers and significantly reduce network load,
thus further prolonging lifetimes and reducing lookups’ physical distances.

Resource and Location Aware Robust, Decentralized Data Management 129

CHAPTER 7. DHT EVALUATION

130 Resource and Location Aware Robust, Decentralized Data Management

Chapter 8

Related Work: Replication

The choice of a structured network in the form of a DHT ensures the necessary scalability,
load balancing, and data availability through guaranteed upper bounds on lookup lengths.
However, without additional replication, data is neither placed physically near to where it is
needed nor is it distributed to stronger more reliable nodes to ensure both data persistence
and lower query load on weaker nodes. Thus, data replication is viewed here as more than
a backup or faster accesses strategy: it is integral to the resource and location awareness
of the DHTs developed in Chapter 5. Replication in peer-to-peer (content distribution or
data management) systems focuses heavily on a smaller set of issues than traditional data
management systems.

Traditional (distributed) systems are primarily concerned with the consistency of the data,
and focus heavily on update propagation, concurrency control, failure detection and recovery,
and the handling of read transactions to ensure that the most frequent version of data items is
available and being used [LS13]. Dynamic peer-to-peer systems, on the other hand, in which
nodes are much less reliable than the servers in a (distributed) data management system with
centralized control, much invest significantly more effort to ensure that data is not lost when
transient peers leave the system. Moreover, controlling consistency becomes an increasingly
difficult task without a central coordinator for the potentially high number of updates, failures,
and transactions. In fact, Brewer’s CAP theorem [GL02] rules out the simultaneous existence
of (strong) consistency, availability, and partition tolerance, where consistency in this context
is understood to be a single view of data from any source. However, availability and partition
tolerance are two important characteristics of peer-to-peer data management: Data should be
found even if nodes have failed or a part of the network nodes have been partitioned from the
remainder of the network. In relaxing the consistency requirements, peer-to-peer systems must
use at most a form of weak consistency called eventual consistency: if an update is made to a
data object and no further updates are performed, then the data will eventually be updated
on every node within a given time frame. On the other hand, traditional solutions based
on central (transaction) coordination such as locking mechanisms become impracticable with
data objects distributed to high numbers of peers with costly and slow communication paths
so that approaches must be found that enable distant, transient peers to reliably coordinate
joint tasks. Thus, peer-to-peer systems must find more sophisticated solutions for dealing with
the issues of replica consistency while also determining in a self-organized fashion how many
replicas are needed (depending, for example, on the churn rate), which nodes they should be

131

CHAPTER 8. RELATED WORK: REPLICATION

stored on, and how these copies can be found. However, this work focuses primarily on peer-
to-peer replica placement issues instead of concurrency control, and standard concurrency
approaches are not further discussed.

8.1 Goals

Many existing systems already employ replication that addresses the general peer-to-peer re-
quirements (i)-(iv) self-organization, scalability, load balancing, and data consistency from
Chapter 1, several of which are discussed in Sections 8.2 and 8.3. As with other DHT de-
sign issues, these requirements also pose tradeoffs for replication. While, for example, having
enough replicas to effectively reduce the lookup path lengths increases system scalability (both
load and latency-wise), and replicating popular data objects to multiple nodes can reduce the
responsible node’s overall load if the replicated objects can be effectively found and thus im-
prove load balancing, both approaches may decrease data consistency if the increased number
of replicas are not reliably updated. But as the number of replicas increases, so does the
necessary effort to maintain updates. The main peer-to-peer replication issues that existing
approaches have addressed in order to pursue these requirements have been discussed in sev-
eral replication surveys [VLO10, PGVA08, KMP99, DB09] and include (note that the replica
characterizations placed in italics are from [VLO10]):

Replica quantity. How many replicas are needed to assure a desired availability rate? With
system dynamics, too few replicas may cause data to be lost when nodes fail, but too
many replicas cause unnecessary storage and update load and may result in outdated
data lookups. Should each data object have the same replication rate (uniform repli-
cation) or should this rate depend on, for example, the object’s lookup rate or how
important the information is (e.g. proportional or square root replication)?

Replica location. Which nodes should a data object be replicated to? Replicas that are close
in the physical or key space to the object’s owner (predecessor or successor replication),
while easier to update, may become simultaneously unavailable if massive failures occur.
On the other hand, replicas that are placed along frequent lookup paths for that object
(path replication) or close to the querying node(s) (owner or client replication [She10])
must be accompanied by strategies for locating these replicas. Furthermore, these repli-
cas may no longer be beneficial should the query origin shift. Placing replicas randomly,
for example with a hash function, (random replication) requires no additional over-
head to determine suitable replica nodes and may be found at good rates for random
distributions of queries over nodes, but fail to adapt to non-uniform query patterns.

Replica maintenance. How often should replicas be initiated or updated? Should the up-
date frequency depend, for example, on when the data object is updated, when conflicts
for the data object occur, the number of replicas, the popularity of the data object, or
the dynamics of the system? If replicas are updated or maintained on a time schedule
expiration updates more frequently than the object is queried or changed, then unnec-
essary traffic increases the total system load. However, if replication or updates are too
infrequent, then data may be lost from failure of replicas’ nodes and queries may return
outdated replicas. On the other hand, if replicas are updated pessimistically as soon
as the data object is altered, but the replicas are seldom queried, unnecessary load is

132 Resource and Location Aware Robust, Decentralized Data Management

8.2. UNSTRUCTURED SYSTEMS: MANET REPLICATION

incurred. However, if replicas are updated optimistically only after conflicts have oc-
curred, then nodes may receive outdated objects and sophisticated conflict detection
and resolution mechanisms must exist. Further examples include location-based updates
and connectivity-based updates [VLO10,PGVA08].

Query routing. Simply because a data object has been highly replicated does not mean that
any replicas will be found during a lookup. In order to be found, and thus enable shorter
more efficient lookups and load balancing, lookup mechanisms must be in place which re-
route original lookups to replicated copies. However, these mechanisms must ensure that
the lookup successful, which is especially challenging in highly dynamic systems where
replica nodes are transient. Moreover, the replica lookup mechanism must decide which
replica to use, depending on, for example, key or physical distance, load, or reliability.

However, traditional DHT replication approaches consider neither the resource awareness
(v) nor the location awareness (xi) requirements. While approaches with a strong focus on
load balancing use techniques that might be altered for resource awareness, for example by
replacing node load parameters with node resource availability, location awareness must still be
integrated. On the other hand, mobile ad hoc network (MANET) replication focuses strongly
on location awareness as well as the power availability of its mobile nodes, but is almost
exclusively built on unstructured networks. Yet, the DHT approaches developed in Chapter 5
provide resource and location aware structures that can be exploited to provide novel resource
and location aware replication mechanisms.

8.2 Unstructured Systems: MANET Replication

Since MANETs are based on ad hoc communication between nodes, with each overlay hop
equal to a physical underlay hop, location awareness is an inherent MANET characteristic.
Thus, the MANET replication mechanisms are characterized using other categories, such
as the following three categories, the first of which is particularly interesting for our sce-
nario [PGVA08,DB09]:

Power-awareness. Is the power availability of replica peers, querying peers, or routing peers
considered? Replicas should be placed at strong peers to reduce the replication and query
load on weaker nodes. Examples include E-DSM, which considers two types of peers:
small mobile hosts (SMH) and large mobile hosts (LMH) and reduces transmission costs
by buffering data and transaction messages to be broadcast together [MC04].

Partition-awareness. Are partitions anticipated by the replica mechanism and replication
performed accordingly to ensure data availability post-partition? Some such approaches
predict when network partitioning will occur by using node movement patterns, for ex-
ample Wang and Li with their reference velocity group mobility model (RVGM) [WL02],
or evaluating link robustness, such as Hauspie et al. [HSC01]. However, MANET parti-
tioning detection is not necessarily applicable to DHT scenarios, since it based on the
assumption that all hops are direct physical transmissions between nodes.

Real-time-awareness or scalability. Can information be delivered quickly and before dead-
lines given by real-time applications? This issue is a reflection of performance with

Resource and Location Aware Robust, Decentralized Data Management 133

CHAPTER 8. RELATED WORK: REPLICATION

regard to network size, i.e. scalability. However, it is less interesting for DHTs, since
they provide guarantees on lookup path complexity.

Further replication mechanisms are categorized as non-location-aware, non-partition-aware,
and non-real-time-aware, including REDMAN, which stores replica indexes with hints to
replicas’ locations on nodes between the data object’s owner and the replica peers [BCM05].
Due to the distinctly different character of MANET networks, their replication approaches
can be used at most as inspiration for DHT replication. Indeed, their explicit location-based
replica positioning and power (i.e. resource) awareness are, besides data redundancy, the main
goals of our replication.

Derhab and Badache [DB09] offered a discussion of general evaluation metrics relating to the
replication issues from Section 8.1 and awareness-specific evaluation metrics in their survey of
MANET replication. The general and power-aware metrics, in contrast with the replication
approaches themselves, can be directly applied to the DHT scenario. They found the primary
general quantitative evaluation metrics to be the replication cost (e.g. in quantity of replicas
or space), update cost (e.g. total messages or hops for updates), query costs (e.g. total hops for
queries), data availability (e.g. probability that a random data object can be retrieved within a
given time frame), and data consistency (the retrieved data object is the most recent version).
Meanwhile, the power-aware metrics were energy balancing, the costs associated with selecting
replica peers, the power-availability of replica peers, and whether energy-related failures of
replica nodes can be predicted.

8.3 Structured Systems: DHT Replication

Replication in structured systems varies widely and only several replication techniques are
discussed here. PAST [DR01] and CFS [DKK+01] are read-only distributed file systems men-
tioned in Chapter 4 and based on Pastry and Chord, respectively. In PAST, replicas are
stored at the k-nearest neighbors in the keyspace, quite similar to the original Chord. This
provides physical dispersion of the replicas, thus protecting against massive failures, and as-
signs roughly the same load to each node. However, it does not consider the popularity of files,
so that load balancing (even regardless of resource-awareness) is not increased. A popular or
important file has the same number of replicas as a file that is never queried. In CFS, data is
saved on a block level, with blocks of data and metadata. These blocks are replicated using
both the k-nearest neighbors and path replication along lookup search paths. Load balancing
is thus improved, since popular blocks are replicated more often along their lookup paths.

Beehive [RS04] is designed to work on many of the original DHTs such as Chord and Pastry.
It uses a combination of predecessor and path replication, replicating to all of a single node’s
neighbors on a lookup path before replicating to the next node along the lookup path. Thus, all
of the owner’s neighbors receive replicas, as do all of the neighbors of the last hop of a lookup,
etc. The more popular a data object is, the further along these lookup paths the replicas
will be places and the more replicas will be created. By replicating to all neighbors instead
of just those in the lookup path, this approach reduces the expected lookup hop length for
lookups originating at other nodes as well. Nodes decide autonomously using target parameters
whether fewer or more replicas are needed and perform these adjustments themselves. Updates
are disseminated along the tree structure by each (non end-point) replica node broadcasting

134 Resource and Location Aware Robust, Decentralized Data Management

8.3. STRUCTURED SYSTEMS: DHT REPLICATION

to its neighbors. While Beehive provides an interesting replica fanout structure, the owner of
a data object has no influence on where and how it will be replicated, which would make the
integration of location and resource awareness difficult.

Ghodsi et al. [GAH07] introduce a replication mechanism which divides nodes into groups and
then replicates the same data to each of the nodes within a single group, namely all data object
held within the group. The groups can, for example, be determined using identifier ranges and
the number and size of the groups can be altered to adjust the load and replication degree.
While this approach is resource and location naive, it could easily be made aware through a
resource and location aware selection of the groups.

Controlled Update Propagation (CUP) [RB03] uses path replication, and each node decides
autonomously whether to keep a replica of a data object based on possible benefits related to
the object’s popularity. Popularity is based on the node’s query history for the object within
a sliding window, and the more popular an object is, the more nodes will decide to store a
replica. In order to receive a replica, a node must establish an update channel along the lookup
route to the data’s owner through which the owner will send updates as soon as they occur.
Each node tracks which of its neighbors needs which replicas and thus forwards updates only
where they are needed. This approach would be difficult in highly dynamic networks, where
nodes are highly transient and links often change, thus breaking the link-based update tree,
and the owner has, similar to Beehive, little control over the placement of the replicas.

Chen et al. [CKK02] use another variation of path replication, but suitable replica nodes
are selected with the help of constraints. Each replica node maintains a dissemination tree
of replica nodes further along the lookup path for forwarding updates, thus offering more
stability in dynamic scenarios than CUP. In addition to update messages, the owner node
periodically sends heartbeat messages just as replica nodes send refresh messages, an perform
necessary updates to the dissemination tree. This approach is particularly easy to adapt to
resource and location awareness by using replica constraints such as the distance from queries’
origins or nodes’ resource availability.

Datta et al. [DHA03] suggested a more flexible replica maintenance structure, with each node
holding lists of all known replicas as opposed to dissemination trees. These lists can contain
nodes from which replicas have been received, nodes on which replicas have been placed, and
nodes whose replicas have only been discovered through joint replica update messages. This
approach focuses on maintenance instead of placement, with a push phase for disseminating
updates and a pull phase for temporarily disconnected or unavailable nodes to receive missed
updates. During the push phase of an update, upon receiving the update each node then
propagates it to a random number of nodes in its replica list. Update messages include the
updated data object, its version, a list of already updated nodes (to which a forwarding node
appends itself), and an update round counter.

Tempo [SHD+06] takes a decidedly different approach to replica dissemination, although it
also does not determine the nodes at which replicas are to be placed. Assuming a network with
highly transient nodes and thus high failure rates, Sit et al.’s goal was to add replicas at a rate
at least as high as the rate at which replica nodes fail in order to maintain a given number of
replicas and avoid data loss. This runs the risk of swamping the system with replicas that must
be stored and maintained, so parameters for each node’s bandwidth budget for replication,
each node’s storage budget for replication, and a global number of replications needed per
object (Rmax) are introduced. They suggest adding new replicas of a data object at a high

Resource and Location Aware Robust, Decentralized Data Management 135

CHAPTER 8. RELATED WORK: REPLICATION

rate at the beginning and then tapering the rate off once Rmax replicas have been established.
Additionally, each node is only permitted to place further replicas a fixed number of times,
and only in accordance with its bandwidth and storage budget.

While each of these approaches was designed for a structured system, note that many are
not necessarily dependent on the underlying system being structured. Especially approaches
that focus on maintenance such as Datta et al. [DHA03]. BORG (Borg-gOverning Replica-
tion objects in larGe environments) [KSHK08], which focuses on highly dynamic massively
distributed systems, is yet another maintenance and update approach that is orthogonal to
its underlying system. The nodes to which a data object is replicated arrange themselves in
a ring, with shortcuts similar to Chord, over which updates are propagated. Thus, a node
may belong to multiple rings if it maintains multiple replicas. Each node has a rank which
expresses its performance (CPU, bandwidth, and/or data access time) and reliability (aver-
age online availability), and the node with highest ranking (i.e. the strongest node) within
a replication ring is designated its temporary master. The temporary master is responsible
for coordinating the propagation of updates throughout the replication ring and adding new
nodes to the replication ring if necessary. This approach is clearly resource aware with its use
of node ranks, and could be combined with location aware replica node selection to create
resource and location aware replication.

8.4 Open Questions

Of the four main issues surrounding peer-to-peer replication (replica quantity, replica location,
replication maintenance, and query routing), replication approaches typically focus on only a
subset. Thus, for example, a replica maintenance approach can be combined with an approach
to replica location and query routing. In this work, the emphasis is placed on three of these
four issues which strongly influence availability and resource and location awareness: replica
quantity, replica location, and query routing. Replica maintenance approaches such as BORG
or that from Datta et al. [DHA03] can be used to supplement the aware placement of replicas
with robust maintenance.

The open issues addressed in the following chapters target the highly dynamic nature of the
use case scenarios along with the resource and location awareness deficiencies of DHTs. Since
the DHT approaches developed in Chapter 5 do provide resource and location aware structures
(i.e. links) which can be further exploited to find suitable replica nodes, replication techniques
developed specifically for these novel approaches may offer added benefits. The open issues
are therefore viewed from the perspective of the developed DHTs:

Replica quantity. How can nodes’ varying resource levels be utilized to vary the number
of replicas necessary? When replicas are located at nodes with high resource levels,
fewer replicas may be necessary to ensure the same level of availability. How does an
increase in the number of replicas used per data object effect the resource usages of
nodes system-wide? Can fewer replicas result in higher availability, since there is less
resource drain caused by replication lookups and management?

Replica location. Replicas should be placed physically near to where they will be needed in
order to provide availability should partitioning happen and to reduce lookups’ distances
to the closest replica. Placing replicas at the locations from which a data object was input

136 Resource and Location Aware Robust, Decentralized Data Management

8.4. OPEN QUESTIONS

into the DHT, from which it is queried, and along which the queries travel can help to
improve location awareness. Furthermore, placing replicas at robust nodes may improve
availability and reduce storage, query, and routing load on weaker nodes. How can the
existing location and resource aware links be used to select suitable replica nodes? How
does the use of stronger nodes effect the overall resource usage distribution? What
mechanisms can be used to ensure that strong nodes are not overloaded with replication
load?

Query routing. How well replicas are found by lookups effects not only the overall load, but
also which nodes receive that load. If queries can be routed to both nearby and strong
nodes, then load on weaker nodes is reduces twofold. How can query routing be designed
to prefer strong and nearby replicas? Replicas on nodes with lower resource levels may
be less reliable, and routing to them may cause extra overhead if they have failed or are
overloaded. Yet, routing to stronger replica nodes may require longer lookup paths. Can
a threshold be found for the decision of whether to route queries to nearby or strong
replicas?

Resource and Location Aware Robust, Decentralized Data Management 137

CHAPTER 8. RELATED WORK: REPLICATION

138 Resource and Location Aware Robust, Decentralized Data Management

Chapter 9

Resource and Location Aware
Replication

Replication is necessary in any DHT to ensure the availability of data when nodes leave the
network, but even more important in highly dynamic networks with limited resource avail-
ability. In this case, replication can provide the resource and location aware data placement
by copying data to strong nodes and nodes that are close to where they are needed in case
partitioning should occur. Indeed, since the approaches in Chapter 5 explicitly avoid resource
and proximity identifier selection (RIS and PIS) due to their scalability issues, data replication
can provide this “missing” aware placement. Thus, this work’s replication’s focus on replica
quantity, location, and routing must tackle three central goals:

Availability. The set of replicas must ensure a minimum data availability probability ε that
any data object can be found at any time. Since nodes have varying resources and failure
probabilities, the number of replicas necessary to guarantee availability depends on the
strength of the nodes on which they are placed.

Resource Awareness. The use of resources should be minimized. This means not only repli-
cating to strong nodes when possible but also minimizing the total number of replicas
and thus the network traffic generated from maintaining these replicas.

Location Awareness. Replicas placed and found physically close to where they are needed
can reduce costly cross-network traffic. Furthermore, in the case of physical partitioning
in a highly dynamic network, replicas should be found within physical proximity to
where they are needed to improve availability. This may include the locations at which
data was input into the system and the locations from which the data is queried.

The approaches introduced in Chapter 5 build links that are both resource and location
aware. These links offer both efficient discovery of suitable replica nodes as well as one-hop
overlay distances to them, so their utilization for replication should incur less organizational
load while offering a high level of availability. Moreover, nodes within the higher levels have
much higher incoming link degrees than lower level nodes. If these incoming links are aware
of the replica placed at the end node, replicas on high level nodes will have a significant pool
of routing hints to assist their discovery without significantly adding hint propagation load.
Thus, this higher incoming degree can used for designing routing to the replicas.

139

CHAPTER 9. RESOURCE AND LOCATION AWARE REPLICATION

9.1 Assumptions

In keeping with the DHTs’ goals of scalability and self-organization, a decentralized approach
to replication is chosen in which the owner of a data object d’s key, referred to as owner(d),
is responsible for coordinating the number and location of replicas of d. For HRM, this means
that leaf nodes also coordinate replication, although they do so with the help of their parent
nodes. A global desired availability probability ε must be known to each of the nodes. While
this probability could also easily be varied for different data objects, it is assumed here that
it is constant. In order to assess how many replicas are necessary to ensure this availability
probability, the probabilities of its replica nodes being available must be known. Nodes’ avail-
ability can be described using a probabilistic model or a time slots model [RDB10]. In the
probabilistic model, each node has a known probability of being available after a given period
of time (for example in [BLF09]), while in the time slot model, the time periods that a given
node is/will be available are deterministically given (for example periodically [SENB09]). We
assume that no information is available about when exactly nodes will be available, but rather
that available nodes’ chances of being available in the future are correlated with their resource
levels, and thus use a probabilistic model.

However, nodes within a system rarely know what their future failure probabilities will be
in order to estimate the required number of replicas, but the nodes in the proposed systems
do know their resource levels. Furthermore, the use of resource levels as node availability
levels facilitates the use of the existing resource aware structure. Thus, it is assumed that a
node’s resource level is correlated with its failure probability. This scenario therefore focuses
on a subset of possible resources such as battery power or node lifetimes, although it can be
analogously used for other resources to allocate replicas to strong - if not long lived - nodes.

In order to simplify this requirement, it is assumed that each node x with resource level xR = `
that is part of the network at a fixed time t0 has the same probability of being available at
time t > t0:

pt,` := P (x ∈ At0,t|xR = `),

where At0,t is the set of live nodes at time t. Further simplifying, consider that a set of replica
nodes Σ(d) on which each data object d is placed is maintained after a fixed interval of time
s3. Thus, the owner responsible for selecting replica nodes need only know the probability of
the replica nodes being alive at time t = t0 + s3. We therefore consider only each node x’s
failure probability after this fixed time s0, which depends only on x’s resource level:

p` := P (x ∈ At0,t0+s3 |xR = `), (9.1)

The probability of node x with not being available after this time interval is 1 − pxR . The
probability that the set of nodes Σ(d) to which data object d has been replicated will have at
least one node still available after s3 is:

P (|Σ(d) ∩At0,t0+s3 | ≥ 1) = 1−
∏

x∈Σ(d)

(1− pxR).

If we assume that a massive failure occurs within the s3 time interval, then the failure prob-
abilities for resource levels according to the example scenario in Chapter 2, Equation (2.3)

140 Resource and Location Aware Robust, Decentralized Data Management

9.2. NUMBER AND LOCATION OF REPLICAS

would be

p` = P (x ∈ At0,t0+s3 |xR = `)

= P (Fx|xR = `)

= γ/

N lmax∑
j=0

P (xR = j)2

 · P (xR = `).

Of course, these probabilities need not preclude a massive failure scenario. Varying battery
powers in varying resource levels, for example, provide expected lifetimes for nodes, which
could also be interpreted as failure probabilities. Or the Pareto distribution of node lifetimes
as in Equation (2.2) could be adapted to reflect the lifetimes, and thus failure probabilities,
of the individual resource levels. However, concrete failure probabilities are not assumed and
are not further discussed in this work. Hence, it is assumed in the following that the failure
probabilities of resource levels are given and that higher resource levels have lower failure
probabilities.

9.2 Number and Location of Replicas

Each data object d must guarantee a minimum level of availability, which may be achieved
with the help of its owner node owner(d)’s links. The node which inputs d into the system
is referred to as input(d) and the set of nodes which have placed lookup queries for d is
Λ(d). Since nodes’ failure probabilities depend on their resource levels, the number of replicas
necessary to achieve an availability probability > ε depends on which nodes are chosen to
replicate. Thus, the number and location of replicas depend directly on one another.

9.2.1 Availability and Resource Awareness

If replica maintenance is performed at time intervals s3, then the probability that at least one
node in Σ(d) is still available after s3 must be > ε.

1−
∏

x∈Σ(d)

(1− pxR) > ε. (9.2)

Furthermore, if the set Σ(d) is to be chosen from owner(d)’s set of links L(owner(d)) (i.e.
fingers or layer fingers and inter-layer links), then these together must provide sufficient avail-
ability:

1−
∏

x∈L(owner(d))

(1− pxR) > ε.

Since top level nodes are considered inexhaustible in the scenarios used in this work, a single
top level node would be sufficient to provide absolute availability (ε = 1). This, however, is
an unrealistic assumption in the real world, in which no node or set of nodes can actually
achieve absolute availability. Nonetheless, top level nodes have lower failure rates.

Fortunately, in RBFM, each node has links to higher level nodes. Figure 6.2 shows that, for
the used example scenario, the expected resource level of a finger in a finger interval containing

Resource and Location Aware Robust, Decentralized Data Management 141

CHAPTER 9. RESOURCE AND LOCATION AWARE REPLICATION

24 nodes is already the second highest resource level 3 = lmax − 1 for stretch c̃ = 1. On the
other hand, every upper layer node in HRM has a top layer (and thus top level if xH = xR)
inter-layer link. However, HRM leaf nodes have only parent nodes within the upper layers.
To overcome this deficit, each leaf node maintains a list of its parent node’s current links,
which is updated once every replica maintenance interval s3 by the parent nodes adding its
links list to a leaf maintenance message. This parent link list is then used by the leaf node to
coordinate replication placement.

So for both RBFM and HRM, each node knows a set of strong nodes with which to fulfill
(9.2). As explained below, a link or other node x nearby to the peer input(d) which initiates
the put request for d is first inserted into the set of replicas Σ(d), after which owner(d)
picks a minimum sized subset of its link nodes (or its parents’ link nodes) to add to Σ(d)
which together with x fulfill (9.2). Since nodes with higher resource levels have lower failure
probabilities, a greedy selection can be used. Thus, if Σ(d) does not yet fulfill (9.2), the highest
level link node not yet included in the replication set is added to Σ(d) and condition (9.2) is
again tested. If multiple link nodes share the same resource level, the node physically closest to
owner(d) is chosen. Thus, the number of replicas is minimized while maximizing the resource
levels of the used replica nodes. See Algorithm 8 for the initial replication steps a node takes
after receiving a put request for a data object.

Algorithm 8 Selecting a set of replica nodes upon an initial put

procedure initializeReplication(data, request)
if isLeafNode(thisNode) then

linkSet.input(parentsLinksList)
else

linkSet.input(interLayerLinkList)
→ only for HRM
linkSet.input(fingerList)

end if
originReplica = findStrongestLocalNode(linkSet, request.origin)
linkSet.remove(originReplica)
if originReplica.undefined then

originReplica = findStrongestLocalNode(request.hintList, request.origin)
→ request.origin is in request.hintList

end ifreplicaSet.input(originReplica)
while !fulfillsAvailabilityRequirement(replicaSet) & linkSet.size > 0 do

nextNodeList = findStrongestNodes(linkSet)
nextNode = physicallyClosestNode(nextNodeList, thisNode)
replicaSet.input(nextNode)
linkSet.remove(nextNode)

end while
replicaLists.input(data, replicaSet, request.origin)
replicateTo(data, replicaSet)

end procedure

142 Resource and Location Aware Robust, Decentralized Data Management

9.2. NUMBER AND LOCATION OF REPLICAS

owner(d)

input(d)
put(d,key(d)) input(d)

f1

f3

f2

f4

input(d)

f1

f2

f3

r1: replica hint

r1

r2: replica hint

r2

f4

owner(d)

Layer 3
Layer 1
Layer 2
Layer 0

 Finger
 Lookup
 Replica
 Local
 region
 ε Replica

Figure 9.1: Data object d is stored at owner(d) after it receives a put request from input(d).
Node owner(d)’s fingers and two replica hints from the put request message are shown on
the left. The chosen replicas which fulfill the availability probability requirement are shown
at the right as ε replicas and include the replica placed locally to input(d).

9.2.2 Location Awareness

While the fundamental availability level is reached by nodes replicating to their links (or their
parents’ links), this provides neither varying numbers of copies depending on a data object’s
popularity nor would it ensure that data can be found physically close to where it is needed.
In order to provide this location awareness and load balancing, a data object d is replicated
to within a given radius of the node input(d) that initiated d’s put request and each of the
lookup nodes in Λ(d). To these means, each node x maintains an approximation r(x) of the
total physical network radius r by monitoring the node information piggybacked on network
messages. Furthermore, a global proximity constant π dictates which fraction of the observed
network is considered “local” to a node:

Definition 9.2.1 (Node locality.). Two nodes u and v are considered local by node x, which
is referred to as locx(u, v), if:

dphy(u, v) ≤ r(x)/π.

In order to establish location awareness, node x places replicas of d locally for input(d) and
each node in Λ(d), such that:

∀z ∈ {input(d)} ∪ {Λ(d)} : min
y∈Σ(d)

{dphy(y, z)} ≤ r(x)/π.

To facilitate the discovery of suitable replica nodes, each node x which initiates a request
(put or get) piggybacks on the request message information about the strongest link that it
considers local to itself, i.e. a node v with locx(x, v). Furthermore, each hop along the lookup
path also appends the message with its node information, resulting in a set hop nodes. Ideally,
suitable nodes can be found in owner(d)’s links, but these when this is not the case, these
replica hints within the request messages are used.

Thus, when node owner(d) receives a put request for d, it first identifies if it has a link (or its
parent has a link) which it considers local to input(d). If this is the case, it adds the strongest

Resource and Location Aware Robust, Decentralized Data Management 143

CHAPTER 9. RESOURCE AND LOCATION AWARE REPLICATION

owner(d)

get(key(d))

input(d)

f1

f3

f2

f4

input(d)

f1

f2

f3

r1

r1

f4

owner(d)

get(key(d))

q1

q2

h2

h1

q1

h1

q2

h2

Layer 3
Layer 1
Layer 2
Layer 0

 Finger
 Lookup
 Replica
 Local
 region
 ε Replica
 Lookup
 replica

Figure 9.2: Data object d is stored at owner(d) and is already replicated at three nodes.
The new replicas are shown on the right, with ε replicas denoting the replicas chosen to fulfill
the availability probability requirement and lookup replicas denoting the additional replicas
chosen locally by the lookup locations.

of those local links to Σ(d). If this is not the case, it adds the strongest (i.e. highest level) of
the local links found in the put request’s hint list, i.e. a node y ∈ S the set of replica hints
such that

locowner(d)(input(d), y) and yR = max{zR| z ∈ S and locowner(d)(input(d), z)}.

It then adds a minimum number of additional links as discussed above so that Σ(d) fulfills
(9.2). This initial replica choice is illustrated in Figure 9.1 for RBFM and an owner(d) node
with four fingers and two replica hints r1 and r2 contained in the put request’s message. The
strongest of these two hints is chosen for one replica and two further replica nodes are necessary
to achieve the desired availability probability. See also Algorithm 8 for this initialization phase.

Replica maintenance, on the other hand, also incorporates the locations of the nodes which
have requested lookups for d. Thus, each node x with a replica of d stores a list with each
node y which has queried d and another list with a respective strongest local replica hint z per
lookup-node y (locx(y, z)). This information is forwarded to owner(d) along with the lookup
load for d at the replica node x before the scheduled replica maintenance in a replica-alive
message. Node owner(d) stores a list of all querying nodes Λ(d) for each data object d (which
expire after a set time period) along with a list of all replica hints for these querying nodes.

When replica maintenance is performed, owner(d) reevaluates the nodes on which replicas
have been place. It chooses replica nodes to fulfill (9.2) similarly to the replication initializa-
tion, with the exception that the replica hint list also helps to find a suitable replica near
input(d) and the list of current replica nodes which are still alive helps find the remaining
suitable replica nodes (see Algorithm 9). After establishing these necessary nodes, further
replicas are placed local to each lookup initiating node x ∈ Λ(d), if there are not already local
replicas in Σ(d) (@v ∈ Σ(d) : locowner(d)(x, v)). Node owner(d)’s links (or parent’s links) are
first used to find the strongest local node, but if no suitable replica nodes are found the replica
hint list is used. If local nodes are found for each node in Λ(d), then the following holds:

∀xinΛ(d)∃y ∈ Σ(d) : locowner(d)(x, y).

144 Resource and Location Aware Robust, Decentralized Data Management

9.2. NUMBER AND LOCATION OF REPLICAS

Algorithm 9 Selecting a set of replica nodes with replica maintenance

procedure maintenanceReplication(data)
liveReplicas = listsLiveReplicas[data] → list of replica node that are still alive
queryLocation = listQueryLocations[data] → list of where data has been queried from
replicaHints = listReplicaHints[data] → list of nodes gathered from lookup requests

linkSet.input(liveReplicas)
if isLeafNode(thisNode) then

linkSet.input(parentsLinksList)
else

linkSet.input(interLayerLinkList) → only for HRM
linkSet.input(fingerList)

end if
originNode = replicaLists(data).getOrigin
originReplica = findStrongestLocalNode(linkSet, originNode)
linkSet.remove(originReplica)
if originReplica.undefined then

originReplica = findStrongestLocalNode(replicaHints, request.origin)
end if
if originReplica.undefined then

originReplica = originNode
end ifreplicaSet.input(originReplica)
while !fulfillsAvailabilityRequirement(replicaSet) & linkSet.size > 0 do

nextNodeList = findStrongestNodes(linkSet)
nextNode = physicallyClosestNode(nextNodeList, thisNode)
replicaSet.input(nextNode)
linkSet.remove(nextNode)

end while
for queryNode in queryLocations do

if containsLocalNode(replicaSet, queryNode) == false then
queryReplica = findStrongestLocalNode(linkSet, queryNode)
if q thenueryReplica.undefined

queryReplica = findStrongestLocalNode(replicaHints, queryNode)
→ replicaHints includes query nodes

end if
linkSet.input(queryReplica)

end if
end for
replicaLists.update(data, replicaSet)
replicateTo(data, replicaSet)

end procedure

Resource and Location Aware Robust, Decentralized Data Management 145

CHAPTER 9. RESOURCE AND LOCATION AWARE REPLICATION

While this procedure may cause replica nodes to change after a given replica maintenance
period, this is necessary in order to find the best possible replica nodes while adjusting to
higher data popularity. Note that a replica node that remains online is only replaced when
a better replica node with higher resource level or closer physical distance to owner(d) has
been found.

Algorithm 8 shows this basic procedure for selecting a new set of replicas upon replica main-
tenance while Figure 9.2 illustrates what this might look like. The owner of data object d is
shown with its fingers, lookup nodes (shown only for lookup directly to owner(d)) and one
respective replica hint, and existing replicas on the left. On the right, the newly chosen repli-
cas after replica maintenance are shown. Node r1 is within the local region of both input(d)
and lookup node q1, so no new replica is needed for q1. However, q2 requires a new replica
within its local region and is chosen itself due to its resource level.

9.3 Routing

Nodes with high resource levels are preferred for replication and also have high incoming
link degrees. By informing nodes of the replicas held by their fingers and inter-layer links, the
information about strong nodes’ replicas is thus widely disseminated. To keep such information
fresh, each finger (inter-layer link) maintenance request response includes all of the keys
located at the respective node. Each finger table (inter-layer link list) contains - in addition to
links’ keys, addresses, locations, and resource levels - a list of the replicas’ keys held at each
link.

In addition to this information about fingers’ (inter-layer links’) replicas, local lists of repli-
cated keys are also maintained. A node x keeps a local replica list of all known local replica
nodes and their keys, where local is understood as above defined. By including this informa-
tion on maintenance messages to links (including predecessor and successor links) within a
physical distance radius of 2r/π, these lists are propagated on nodes within a given region.
To prevent the use of stale replica hints within the local replica list, replica entries are given
time-to-live values and deleted after they expire.

Lookup routing for a data object d remains simple. After a node x has determined that it and
its direct successors are not the owner of d, it then checks its finger lists, inter-layer link lists,
and local replica lists for replicas of d. If one or more replicas are found, the physically closest
replica is chosen as the new destination of the lookup. Otherwise, the lookup is forwarded on
using the standard routing procedure (for either RBFM or HRM).

9.4 Adaptability

In a highly dynamic scenario, replicas must be regularly maintained - even in the absence of
updates - to determine which replica nodes are still alive. Replica nodes which have failed
must be replaced in order to maintain the desired level of availability. The replica maintenance
suggested here finds not only replacements for failed replica nodes, but also replaces replica
nodes as stronger or physically closer nodes are found or replica nodes’ resource levels decline.
Replica information propagated to finger tables or inter-layer link lists is either refreshed with
finger maintenance or is removed once the finger is discovered failed. Similarly, information

146 Resource and Location Aware Robust, Decentralized Data Management

9.5. SUMMARY

propagated into local replica lists expires after a set time and is only refreshed when its
respective replica node directly refreshes the information to one of its links. This refreshed
information is then again propagated throughout the local region with the standard link
maintenance messages.

Popular data objects may cause very high load at some or all replica nodes, requiring addi-
tional load balancing. The additional replicas placed locally by query nodes provide a rudimen-
tary increase in the number of replicas depending on the data objects popularity. However, to
ensure that nodes are nor overwhelmed by lookup load, each replica node maintains a lookup
request counter for data object d which it relays to owner(d) to determine if load must be
further balanced. For example, if load is above a given threshold, then an additional replica
node may be added for the following maintenance period. Alternatively, if a nodes load is
above a given threshold it may refuse to replicate data and be removed from Σ(d).

9.5 Summary

In this chapter, a replication technique was introduced that uses nodes’ existing links to
increase the systems’ resource and location awareness while reducing the number of replicas
which are necessary to achieve a given availability probability ε. In both RBFM and HRM,
nodes have links (in expectation) to strong nodes on which replicas are placed to achieve this
necessary minimum availability ε. To place additional replicas close to where they are needed,
the concept of two nodes being considered local to each other is defined as having physical
distances within a fraction of the perceived physical radius of the network. A replica for data
object d is placed local to the node which initiated its put request (this replica is included in
the set of nodes which fulfill the availability requirement) as well as local to every node which
has performed a lookup for d. This provides both load balancing for popular data objects and
location awareness with respect to where the data is needed.

The following chapter provides a mathematical analysis of the expected number of replica
nodes necessary to fulfill the availability probability ε, the expected replication load on each
node per resource level, and the probability of finding replicas via the replica hints in nodes’
finger lists. Analog to the overlay simulation, similar results would be expected in a simulative
evaluation regarding these three measures of primary interest. The only relevant measures
not covered in the analysis concern the added location awareness through the locally placed
replicas. However, assuming that local replicas are in fact placed near querying nodes and
maintained in local replica lists which are propagated within a node’s local area, repeated
queries are found locally within a single physically close hop, thus fully fulfilling their purpose.
This replication technique is therefore assessed purely analytically with respect to the most
relevant measures regarding the load which it incurs.

Resource and Location Aware Robust, Decentralized Data Management 147

CHAPTER 9. RESOURCE AND LOCATION AWARE REPLICATION

148 Resource and Location Aware Robust, Decentralized Data Management

Chapter 10

Replication Analysis

In order to mathematically analyze replication, many assumptions must be made in order
to simplify the replication model. A node x’s number and location of replicas of data object
d depend on, among other things: x’s non-deterministic resource and location aware links’
resource levels and distances; the location from which d’s put request was issued and the
location of queries for d; x’s non-deterministic network radius estimation r(x); the links of
input(d); the nodes of Λ(d) which are sent as replica hints; and the hops along the put
request and lookup paths which are saved as replica hints. To simplify these very complex
dependencies, the following analysis focuses on the ε-replicas, i.e. the replicas which are chosen
to fulfill the availability requirement and which are primarily placed on owner owner(d)’s links.
The replicas which are added after these ε-replicas in order to ensure that each node in the
querying set Λ(d) has a replica that is considered local are referred to as local-replicas.

The number and locations of ε-replicas, with the exception of the replica local to input(d),
are determined primarily by the structure of the overlay and desired availability probability
ε. In contrast, the number and locations of local-replicas depend heavily on the location of
the ε-replicas, the query load, the nodes through which lookups are routed, and the local
estimation of the network radius. For the sake of simplicity, the local-replicas are ignored in
the following analysis, and the necessary ε-replicas’ distributions are simplified.

Thus, the input(d)-local replica is left out of the ε-replicas, which are assumed to be placed
only on owner owner(d)’s strongest links. Moreover, links are assumed to take unbounded
replica load, so that replicas are not rejected by overloaded nodes. With this assumptions,
we look at the number of replicas which are necessary to achieve the desired availability
probability for single data objects (stored under a single key value) and the replication load
that is thus incurred by nodes in varying resource levels. However, applications may in fact
need entire sets of data objects to be available with a given probability ε̂ > 0. Note that this
can be achieved analogously by determining the necessary availability probability for each
data object ε (and thus the number of necessary replicas) with the help of ε̂ and the size n of
the data set: ε = ε̂1/n. Furthermore, the replica load placed on each node via the ε-replicas is
considered, thus providing an estimate for the portion of keyspace that each node is ultimately
responsible for.

It is assumed that the local replica lists are corrects and complete and that a lookup thus
terminates as soon as it is within the local distance to a replica. This means alternatively
that we are only interested in “new” query locations for d, since previous locations route

149

CHAPTER 10. REPLICATION ANALYSIS

lookups within one hop to the correct local-replica. However, in order to consider how likely
the ε-replicas are found by a “new” lookup, further simplification is necessary: We assume
that d’s replicas are uniformly distributed in the physical and key spaces. Then we can assess
the probability that a random node x’s finger list will contain a replica of d. Although local-
replicas increase the probability of replica discovery, they are ignored in these considerations
due to the unknown and variable nature of their numbers, which depend on the frequency
and locations of queries as well as the chosen proximity constant π.

10.1 Number of Replicas per Data Object

Recall that the owner node places replicas in a greedy fashion on its links with respect to
the links’ resource levels. In RBFM, fingers from further finger intervals (i.e. from Bx,i for
i large) have higher expected resource levels. For simplicity sake, we assume that owner(d)
adds first the furthest finger owner(d).F [m] to Σ(d), and only adds the ith finger if all further
fingers have already been added, i.e. owner(d).F [j] ∈ Σ(d)∀i < j ≤ m. Of course, in reality,
a finger owner(d).F [i] may have a higher resource level than a further finger owner(d).F [j]
with j > i. In this way we assume that the choice of replica nodes is not greedy. Thus, using
fingers’ individual failure probabilities from Section 6.1.3 Equation (6.7) and assuming that
we have taken the furthest φ fingers as replicas, the probability that at least one of these
replicas does not fail must be larger than ε:

1−
m∏

i=m−φ+1

P (fi fails) = 1−
m∏

i=m−φ+1

lmax∑
j=0

P (Fx|xR = j) · P (Rki,min = j)

 > ε. (10.1)

Note that fi and f are used here, as in Chapter 6 as abbreviations for x.fi.node and x.f.node
for either a random or specific node x. Figure 10.1a shows the probability that all nodes
replica nodes fail for the scenario used in Section 6.1.3 with variable φ. Recall that this
scenario used 10,000 nodes in four resource levels, of which 5,000 fail according to a quadratic
Zipf distribution. Again, the stretch, which determines the amount of resource vs. location
awareness in finger choices, is varied. In order to provide more pessimistic failure probabilities,
a maximum number of nodes that have been seen for each finger interval is also used. Thus,
RBFM64 assumes that at most 64 nodes are known (i.e. have been “seen” through piggybacked
node information) for any finger interval, while RBFM128 assumes a maximum of 128 = 27

and is shown for comparison only. Note that in this scenario, the 32nd finger interval contains
an expected 10, 000/2 > 211 nodes. The naive approach shown for comparison is unaware of
the resource level differences between nodes so that each node has a failure probability of 0.5.
The respective failure probability for all φ replicas is thus 0.5φ. Three respective values of
ε = 0.95, 0.99, and 0.999 are shown in the figure.

Clearly, and as expected, RBFM requires significantly fewer replicas to ensure a fixed avail-
ability probability. For a 95% availability, RBFM64 with c̃ = 5 (the approach with middle
resource awareness of those tested) requires only 3 replicas while the naive approach requires
5. This difference becomes more pronounced as the required availability rises, with RBFM64
needing only 7 replicas for 95% while the naive approach needs 10.

HRM, on the other hand, has very different links than RBFM. We assume here for simplicity
that lmax = hmax and xH = xR for all nodes x. Each upper layer node x has inter-layer links

150 Resource and Location Aware Robust, Decentralized Data Management

10.1. NUMBER OF REPLICAS PER DATA OBJECT

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7 8 9 10

P
ro

b
a
b
ili

ty
 t
h
a
t
a
ll

re
p
lic

a
s
 f
a
il

Number of replicas

ε = 0.999

ε = 0.99

ε = 0.95

naive
RBFM64, c~ = 10

RBFM128, c~ = 10
RBFM64, c~ = 5
RBFM64, c~ = 2

(a) RBFM, 4 levels

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
ili

ty
 t

h
a

t
a

ll
re

p
lic

a
s
 f

a
il

Number of replicas

ε = 0.999
ε = 0.99
ε = 0.95

naive
Level 1
Level 2
Level 3

(b) HRM, 4 levels

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1 2 3 4 5 6 7 8 9 10

P
ro

b
a

b
ili

ty
 t

h
a

t
a

ll
re

p
lic

a
s
 f

a
il

Number of replicas

ε = 0.999
ε = 0.99
ε = 0.95

naive
Level 1
Level 2
Level 3
Level 4

(c) RBFM, 5 levels

Figure 10.1: The necessary number of replicas is determined by the desired availability prob-
ability ε.

Resource and Location Aware Robust, Decentralized Data Management 151

CHAPTER 10. REPLICATION ANALYSIS

in every upper layer ` 6= xH and layer fingers in layer xH , and replicates first to the highest
layers. So x replicates first to its inter-layer links x.I[`] with ` > xH and then within its own
layer on layer fingers. For layers ` > 0, the probability that φ replicas of a single owner(d)
node fail depends on the resource level owner(d)R and must again be smaller than 1− ε:

P (φ replica nodes fail with owner(d)R = `) = (10.2){∏lmax
i=lmax−φ+1 P (Fx|xR = i), φ ≤ lmax − `

P (Fx|xR = `)φ−(lmax−`)∏lmax
i=yR+1 P (Fx|xR = i), otherwise

This probability is derived by simply multiplying the failure probabilities of the higher inter-
layer links with the failure probabilities of the layer fingers. Note that we assume that layer 0
nodes use the same replica nodes as their parents, so they have been omitted. Furthermore,
the layers < hmax are considered for an arbitrary number of fingers although the number
of fingers may be restricted by x.I.closestInt (we see, however, that few layer fingers are
actually needed). Figures 10.1b and 10.1c show analog scenarios to Figure 10.1a for HRM
with four and five layers (i.e. levels), respectively. Since all HRM nodes replicate first to the
deterministic top level inter-layer link, the failure probability with only one replica is already
under 5%. The 5-layer hierarchy provides quicker reduction of the failure probability due to
the lower failure probabilities of level 5 nodes and higher number of strong inter-layer links,
but both approaches achieve under 0.1% failure probability with only three replicas per data
object, regardless of the data owner owner(d). Note that while HRM requires fewer replicas
for a fixed availability probability than RBFM or a naive approach, this is due to the high
replica load placed on the top layer nodes.

10.2 Portion of Keyspace per Node

The focus here is placed on the portion of the keyspace that each node is responsible for with
its replicas. Since keys are uniformly distributed, each node has an expectedc:dhtAnalysis
2m/N keys for which it is the owner. It is assumed that the data’s’ keys are also uniformly
distributed so that each node is owner to the same expected number of data objects. For
simplicity, we consider that there is a data object on every key, and consider the expected
total number of data objects that a each node maintains as ε-replicas. This depends only a
node’s resource level (again xR = xH for HRM) and can be best expressed as a factor of
2m/N , its load without replicas. For example, if node x has replication factor 0.5, then it
maintains 0.5 · 2m/N replicas in addition to its own 2m/N keys and its load is 1.5 times more
than without replication.

RBFM

For simplicity, assume that a fixed number of replicas are used for each RBFM node according
to the availability probabilities in Equation (10.1) and seen in Figure 10.1a. Each node thus
sends φmin replicas to its furthest fingers with:

φmin = min

φ
∣∣∣∣∣∣1−

m∏
i=m−φ+1

P (fi fails) > ε

 .

152 Resource and Location Aware Robust, Decentralized Data Management

10.2. PORTION OF KEYSPACE PER NODE

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

RBFM64
 c = 10

 ε = 0.95
 φ = 4

RBFM64
 c = 10

 ε = 0.99
 φ = 6

RBFM64
 c = 10

 ε = 0.999
 φ = 8

RBFM64
 c = 5

 ε = 0.95
 φ = 3

RBFM64
 c = 5

 ε = 0.99
 φ = 4

RBFM64
 c = 5

 ε = 0.999
 φ = 6

RBFM64
 c = 2

 ε = 0.95
 φ = 2

RBFM64
 c = 2

 ε = 0.99
 φ = 3

RBFM64
 c = 2

 ε = 0.999
 φ = 4

R
e
p
lic

a
ti
o
n
 f
a
c
to

r

ε = 0.999
ε = 0.99
ε = 0.95

Level 0
Level 1
Level 2
Level 3

Figure 10.2: The replica factor for 10, 000 nodes, 32-bit keyspace, lmax = 3, r = 10, ρ = 2,
variable stretch c̃ = 10, 5, and 2, and variable required availability probabilities. The number
of replicas used to achieve this availability varies from φmin = 2 to 8. The replica factor used
by every node for a resource naive approach is shown with lines for ε = 0.95, 0.99 and 0.999.

Then the expected number of replicas of a single data object d which are placed in level ` can
be determined using the probabilities that the owner owner(d)’s fingers belong the varying
resource levels from Equations 6.1 and 6.7:

E(#replicas on level `) =
m∑

i=m−φmin+1

1 · P (Rki,min = `).

Note that each of the 2m d’s has the same expected number of replicas per level in RBFM,
regardless of owner(d). Since there are an expected N ·p` nodes in level `, each node thus has
total expected replica load:

2m · E(#replicas on level `)

N · p`
.

Expressed as a replication factor, we have thus:

r` =
1

p`

m∑
i=m−φmin+1

P (Rki,min = `).

The respective replication factors for the scenarios in Figure 10.1a are shown in Figure 10.2.
Recall that a fixed number of fingers φmin, whose values can be read from Figure 10.1a and are
noted for each availability requirement ε. The replication factor for a naive approach is simply
the number of links necessary to ensure the availability probability and can also be read from
Figure 10.1a for this scenario. While top level nodes have up to over four times replication load
for the very resource aware approach with c̃ = 2, level 0 and 1 nodes have significantly less
load even for the mildly resource aware approach with c̃ = 10. This demonstrates how well the
replication technique alleviates weak nodes of replication responsibilities while highlighting
the importance of load distribution mechanisms for possibly overloaded top level nodes.

Resource and Location Aware Robust, Decentralized Data Management 153

CHAPTER 10. REPLICATION ANALYSIS

 0

 5

 10

 15

 20

 25

 30

 35

 40

HRM5
 ε = 0.95
 (1,1,1,1)

HRM5
 ε = 0.99
 (2,2,2,2)

HRM5
 ε = 0.999
 (3,3,3,2)

HRM4
 ε = 0.95
 (1,1,1)

HRM4
 ε = 0.99
 (2,2,2)

HRM4
 ε = 0.999

 (3,3,3)

R
e

p
lic

a
ti
o

n
 f

a
c
to

r

ε = 0.999

ε = 0.99

ε = 0.95

Level 1
Level 2
Level 3
Level 4

Figure 10.3: The replica factor for lmax = 3 and 4, 32-bit keyspace, ρ = 2, and variable
required availability probabilities. The number of replicas used to achieve this availability
varies depending on the data owner owner(d)’s resource level and ranges from φmin = 1 to 3.
The values (φmin,1, φmin,2, φmin,3) or (φmin,1, φmin,2, φmin,3, φmin,4) are denoted along with the
availability probabilities. The replica factor used by every node for a resource naive approach
is shown with lines for ε = 0.95, 0.99 and 0.999.

HRM

In contrast to RBFM, replicas in HRM are placed differently depending on the owner
owner(d)’s resource level. For simplicity, a fixed number of replicas is assigned for each data
object d, although this number φmin,` depends also on the owner owner(d)’s resource level in
HRM, according to (10.2):

φmin,` = min{φ|P (φ replica nodes fail with owner(d)R = `) ≤ 1− ε}.

Each level distributes replicas in a different fashion, first placing replicas on higher inter-layer
links and then on the own layer fingers. However, level 0 nodes use their parent’s links in
HRM to find replica nodes. Since level 0 nodes are also distributed uniformly through the
key space to parent nodes, of the expected N · p0 level 0 nodes, each upper level ` has an
additional

p`
1− p0

(Np0)

level 0 (i.e. leaf) nodes that analogously place replicas. Thus, there are a total of

Np` +
p`

1− p0
(Np0) =

Np`
1− p0

nodes which place replicas in the fashion of level ` nodes, which corresponds to a total number
of keys which are replicated in this fashion:

m(`) =
2m

N
· Np`

1− p0
=

2mp`
1− p0

.

154 Resource and Location Aware Robust, Decentralized Data Management

10.3. FINDING REPLICAS ON FINGERS

The expected total number of replicas ni(`) which are placed on level ` by a level i depends
on whether ` > i or ` = i and the number of required replicas:

ni(`) =

m(i) · 1, i < ` and φmin,i > lmax − `
m(i) · (φmin,` − lmax + `), i = ` and φmin,` > lmax − `
0, otherwise

Note that the conditions φmin,` > lmax − ` refer to the number of replicas which are placed
first on stronger links. Then the total number of replicas (i.e.size of keyspace) that are placed
on level ` nodes is

∑lmax
i=1 ni(`) and the number of replicas placed on a single node in level ` is

1

Np`

lmax∑
i=1

ni(`).

The replication factor for level ` can thus be simplified to:

r` =
1

p`(1− p0)

∑̀
i=1

ñi(`) for ñi(`) =

pi, i < ` and φmin,i > lmax − `
p`(φmin,` − lmax + `), i = ` and φmin,` > lmax − `
0, otherwise.

The replication factors corresponding to the scenarios in Figures 10.1b and 10.1c are shown
in Figure 10.3. The numbers of necessary replicas per resource level φmin,` as taken from
Figures 10.1b and 10.1c are shown for the 3 and 4 upper levels as tuples (φmin,1, φmin,2, φmin,3)
and (φmin,1, φmin,2, φmin,3, φmin,4), respectively. In contrast to RBFM, the required number of
replicas is low due to the definite replicas to nodes in top levels via the inter-layer links and
level 0 nodes are never given replicas. While this results in higher replication factors for the top
level nodes, especially for few numbers of replicas, level 1 nodes are largely spared replication
load. The difference between the replication factors for top level nodes for lmax = 4 and 5 is
due to the dwindling number of nodes in the top level (i.e. layer) as the overall number of levels
is increased. These fewer nodes handle the same set of replicas and thus have more replicas
per nodes. HRM underlines the importance of upper load limits for strong but overburdened
nodes even more so than RBFM.

10.3 Finding Replicas on Fingers

We now consider for RBFM how probable it is that replicas are found via the replica lists
integrated into nodes’ finger lists. This loosely reflects the probability of finding a replica
along the lookup path of a new query node, since a repeated query is fulfilled directly from
the querying node’s local replica list. Of course, observing only the replicas in nodes’ finger
lists ignores the possibility of finding a replica in a local replica list along the lookup path, so
the actual probability of finding a replica would be higher, albeit difficult to estimate.

So consider a random node x /∈ Σ(d) ∪ {owner(d)} along the lookup path for data object d.
Recall that x has at most m fingers x.F [i] for i ∈ {1, . . . ,m} that link to nodes x.F [i].node,
which is denoted simply as fi or f . The probability that at least one of x’s finger nodes f

Resource and Location Aware Robust, Decentralized Data Management 155

CHAPTER 10. REPLICATION ANALYSIS

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

RBFM64
 c = 10

 ε = 0.95
 φ = 4

RBFM64
 c = 10

 ε = 0.99
 φ = 6

RBFM64
 c = 10

 ε = 0.999
 φ = 8

RBFM64
 c = 5

 ε = 0.95
 φ = 3

RBFM64
 c = 5

 ε = 0.99
 φ = 4

RBFM64
 c = 5

 ε = 0.999
 φ = 6

RBFM64
 c = 2

 ε = 0.95
 φ = 2

RBFM64
 c = 2

 ε = 0.99
 φ = 3

RBFM64
 c = 2

 ε = 0.999
 φ = 4

P
ro

b
a

b
ili

ty
 o

f
fi
n

d
in

g
 a

 r
e

p
lic

a
 o

n
 f

in
g

e
rs

1 hop
3 hops
5 hops
7 hops

Figure 10.4: Using the same scenario as Figure 10.2, the approximated probabilities that a
node along a lookup of variable hop length will have a finger with a replica of the sought data
object.

maintains a ε-replica of d is

P (∃f ∈ Σ(d)) = 1−
m∏
i=1

(1− P (∃fi and fi ∈ Σ(d))). (10.3)

The probability that a single finger node fi has a replica of d is furthermore:

P (∃fi and fi ∈ Σ(d)) = P (∃fi)P (fi ∈ Σ(d)|∃fi)

= P (∃fi)
lmax∑
`=0

P (Rki,min = `)P (fi ∈ Σ(d)|Rki,min = `),

where again ki is the number of nodes in finger interval Bx,i. In order to estimate th conditional
probability P (fi ∈ Σ(d)|Rki,min = `), we make the unrealistic assumption that d’s replicas
are uniformly distributed in the key space. We furthermore assume that each data object is
replicated to a fixed number of nodes φmin and use the expected number or nodes in Bx,i for
ki = bN2i−m−1c. Since they are placed on owner(d)’s fingers, the expected number of replicas
in a given resource level ` is thus:

m∑
j=m−φmin+1

P (Rkj ,min = `).

The conditional probability is then approximated by the expected number of replicas of d in
resource level ` divided by the expected number of nodes in resource level `:

P (fi ∈ Σ(d)|Rki,min = `) '
∑m

j=m−φmin+1 P (Rkj ,min = `)

Np`
.

Considering the minimum expected finger interval dm+ 1− log(N)e which actually contains

156 Resource and Location Aware Robust, Decentralized Data Management

10.4. SUMMARY

nodes, we obtain thus the following approximation for (10.3):

P (∃f ∈ Σ(d)) '

1−
m∏

i=dm+1−log(N)e

[
1−

lmax∑
`=0

(
P (Rki,min = `)

∑m
j=m−φmin+1 P (Rkj ,min = `)

Np`

)]
(10.4)

Furthermore, if the nodes along a lookup path of length hops are considered independent of
one another, then the probability that at least one replica will be found on at least one of the
path’s nodes’ fingers is:

1− (1− P (∃f ∈ Σ(d)))hops.

Figure 10.4 demonstrates this approximated probability of finding a replica for varying lookup
hop lengths hops = 1, 3, 5, and 7 for the scenarios in Figure 10.2, where one hop corresponds
to the simple case from (e:repanalfindingrep). As expected, the probability of finding a replica
increases for the number of ε-replicas used and the lookup hop length, but note how it also
increases as resource awareness increases (i.e. c̃ decreases). However, these probabilities are
rather small and illustrate the importance of the additional local-replicas and the propagation
of replica information to nearby nodes, which should significantly increase the replica hit rate.

10.4 Summary

This analysis of the replication techniques using simplified models and assumptions demon-
strates how many replicas might be expected to satisfy the availability requirements, how
much replication load nodes in the varying resource levels are assigned for these replicas, and
how probable these replicas are found during simple lookups. While RBFM tends to require
more replicas than HRM since its nodes’ links have non-deterministic resource levels that are
not guaranteed strong, the replication factor on its strongest nodes tends to be lower due
to the participation of nodes from all levels in storing replicas. As the stretch is adjusted to
increase resource awareness in RBFM, fewer replicas are necessary and more replica load is
transfered from weak nodes to strong nodes. HRM, on the other hand, consistently has very
high replication factors on its strongest nodes, with between 20 to 40 times the normal load
in the given scenarios. This is the result of each data object being first replicated to level lmax
and the numerous nodes in level 0 not being used at all for replica storage. HRM is thus, as
for the overlay comparisons, better suited to networks in which the lowest level nodes have
very low capabilities and should be spared possible load.

These load-oriented results’ primary contribution - other than verifying that the replication
technique’s resource awareness - was to illustrate the importance of mechanisms which enable
nodes to cap their total replica load in order to prevent strong nodes from becoming over-
loaded. Such mechanisms distribute as much replica load as possible to the highest levels, in
which replicas are also more easily found, and spread the excess load downward through the
levels. On the other hand, the ability for new lookup requests to find replica nodes is limited
when only considering the ε-replicas and the replica hints found in nodes’ finger lists, with
the used scenarios showing between 2% and 12% successful replica discovery for lookup paths
with 5 hops. This emphasizes the importance of both local-replicas, which increase the total
number of replicas and thus significantly improve the chances of finding replicas, and further
replica information propagation, for example through local replica lists.

Resource and Location Aware Robust, Decentralized Data Management 157

CHAPTER 10. REPLICATION ANALYSIS

158 Resource and Location Aware Robust, Decentralized Data Management

Chapter 11

Conclusion

The focus of this work lay in the resource-based groundwork established in Chapters 2 and 3;
the novel resource and location aware DHTs presented in Chapter 5; the DHT comparison
results with regard to the number of hierarchy layers and the tradeoffs between resource and
location awareness in Chapters 6 and 7; and the resource and location aware replication from
Chapter 9. More specifically, the main contributions are:

Awareness Framework. Both resource and location usage taxonomies are introduced to
provide a basis for describing existing work, comparing varying approaches, and defining
relevant new work. The importance but lack of popular evaluation metrics that are used
on a resource-level-basis for assessing resource awareness is established.

Novel resource and location aware DHTs. These approaches use both resource and lo-
cation awareness while fulfilling the remaining use case requirements. Both flat and
hierarchical structures are used so that differences caused by network structure might
be assessed. A cluster-based approach is developed to compare and improve underlay
routing.

DHT Comparisons. The simulative evaluation reflects the analysis results, showing how
the developed DHTs have up to over twice the node lifetimes for weak nodes while
experiencing success rates over twice as high as the resource and location unaware
alternatives. The most interesting evaluative results include:

� The resource-level-based measures demonstrate that various approaches prefer dif-
ferent levels for routing responsibilities, showing how important these trends to-
wards levels might be if nodes’ resource level distributions and strengths are known.

� Surprisingly, resource and location awareness do not always behave as tradeoffs,
and can even indirectly improve each other.

� Underlays require an underlay-aware approach more sophisticated than latency, as
overlay improvements are otherwise unsatisfactorily reflected in the used cluster-
based underlay.

� An increase in hierarchy layers increases the necessary hop count but can reduce
the load for nodes in upper layers. On the other hand, a flat (i.e. one layer) system
increases the lookup routing success through its simplified structure, but has lower
lifetimes than a hierarchical approach with leaf nodes.

159

CHAPTER 11. CONCLUSION

Replication. A replication technique that improves resource and location awareness by using
existing aware links is introduced. This form of replication presents a work-around to
the poorly scalable RIS and PIS approaches. Its lower overall load and added resource
awareness is demonstrated in a mathematical analysis.

These contributions provide the foundation for further research in the area of awareness in
dynamic distributed data management systems by classifying the differences between ap-
proaches, performing comparisons of possible solutions, and deriving initial conclusions about
tradeoffs and structural decisions. After recapping this work’s development in Section 11.1,
the open questions from Chapters 4 and 8 which were targeted in this work are discussed in
Section 11.2, and an excerpt of possible future work encouraged by these results is presented
in Section 11.3.

11.1 Summary

In order to address resource and location aware, robust decentralized data management, much
preliminary work was devoted to understanding the dimensions of the given problem and how
previous approaches have dealt with similar problems. In Chapter 1, various use case sce-
narios were described in which data management systems on peer-to-peer networks require
both nodes’ varying resources and their locations to be considered in order to provide ro-
bustness, i.e. high data availability. These scenarios included systems built on both intact
infrastructures such as the heterogeneous cloud scenario as well as ad hoc networks such as
the disaster scenario. However, these underlaying networks have inherently different require-
ments considering resource and location awareness. The focus of this work was devoted to the
intact infrastructure case in which nodes can be viewed independently of their underlay, but
with an interest in the applicability of these systems being used on ad hoc networks. Require-
ments were derived from the use case scenarios and stemming from what is considered to be
robustness in decentralized data management. Of these requirements, self-organization and
scalability were viewed as prerequisites for all design issues, while the remaining requirements
may vary for different design issues.

After establishing the scenarios and requirements on which this work is founded, Chapter 2
establishes a working definition of two of the central requirements: resource and location
awareness. In order to differentiate between various approaches to and implementations of
resource and location awareness, taxonomies are established for each to define their use and
integration. With the help of these taxonomies, the use of resources and location in this work
are then specified. Foundational assumptions such as the distribution of resources to nodes
are also discussed.

With an established approach to resources and location, Chapter 3 considers how peer-to-peer
systems can meet the derived requirements. General peer-to-peer challenges are discussed and
placed in relation to the specific use case scenario requirements. Furthermore, the use case
scenarios are classified, where possible, with regard to a popular peer-to-peer application
taxonomy, thus narrowing the possible solution design space. Of the design decisions, un-
structured systems were ruled out so that the focus is turned to structured systems, which
are almost exclusively distributed hash tables. After an introduction to DHTs, their possi-
ble design issues are discussed in relation to resource and location awareness. Going further,

160 Resource and Location Aware Robust, Decentralized Data Management

11.1. SUMMARY

possible tradeoffs for the derived requirements are considered for each of the DHT design
issues. While most of the DHT design issues are addressed together in the following chapters,
replication is addressed in separate chapters. The derived requirements and the design issues
that were used in this work are listed in Table 11.1.

Integration Requirement Addressed by design issues

Prerequisite for (i) self-organization all

all design issues (ii) scalability all

(iii) load balancing links, routing (HRM), maintenance, replication

Overall system goals, (iv) data consistency replication

vary for design issues (v) resource awareness links, routing, maintenance, replication

(vi) location awareness links, routing, maintenance, replication

Table 11.1: Requirements met primarily through links, routing, maintenance, and replication.

Concrete related work and applications for DHTs are presented and characterized with respect
to the introduced resource taxonomy and resource classifications RIS, RNS, RRS, and RSD,
among other things, in Chapter 4. Various approaches to resource and location awareness in
DHTs are discussed and an extended peer-to-peer structural taxonomy is suggested for dif-
ferentiating between the structural approaches to resource awareness. MANETs in particular
were discussed as the forerunners of location awareness, although they rarely also employ
resource awareness. Finally, the recurring measures applied in the evaluation of the numerous
mentioned approaches are identified and mapped to peer-to-peer challenges which they aim to
assess, thus establishing an evaluative foundation. Of the countless open questions regarding
awareness in DHTs, a focus is then set on structural aspects, in particular how well hierarchal
structures can accommodate the requirements derived from the use case scenarios.

In Chapter 5, several novel resource and location aware DHTs are introduced. The two main
DHTs, RBFM and HRM, use a flat and a multi-tiered hierarchical structure, respectively.
While RBFM is a rather simple extension of the existing DHash++ and can easily be applied
to almost any DHT, HRM is specifically designed for the use case scenarios and bears less
resemblance to existing systems. Although they use distinctly different links and routing, both
maintain the standard (expected) lookup hop length of O(logN). Two adaptations of these
approaches are also described, with C −DHash+ + and C −RBFM making use of cluster-
head information in a cluster-based ad hoc routing scenario and a hybrid approach combining
RBFM and HRM to a two-tiered hierarchical approach.

The following analysis of RBFM and HRM in Chapter 6 starts by summarizing the mea-
sures that are used in both the mathematical analysis and simulative evaluation. Resources,
distances, maintenance and failures are then analyzed on a per-link basis, since the analysis
of complete lookup hops is impracticable due to the dependencies between single hops in a
lookup. Each of these measures yields a probability or expected value that depends on many
different variables, including the distribution of nodes in space and the distribution of re-
sources to nodes. Thus, for illustration, the measures are calculated and shown for a simple,
fixed scenario. These results provided expectations for the following simulative evaluation in
Chapter 7.

Resource and Location Aware Robust, Decentralized Data Management 161

CHAPTER 11. CONCLUSION

The evaluation used a combination of the static, churn, drain, and massive failure behavior
scenarios for four different comparisons. These comparisons observed RBFM with varying pa-
rameters to DHash++ and Chord; RBFM and the cluster-based approaches C-DHash++ and
C-RBFM on a cluster-based ad hoc underlay; HRM, the hybrid DHT, and two-tier hierar-
chies against the flat RBFM; and varying numbers of hierarchy layers in HRM. Using varying
simulation setups, the expected behavior was tested for a slew of measures which were often
meaningless on their own. The node lifetime and lookup failure rates were particularly inter-
esting, since they directly reflect the system’s robustness and capability to deal with nodes
with varying resource strengths. The results show that while HRM could more successfully
incorporate nodes’ resource availability differences and thus provide long lifetimes while sus-
taining an acceptable lookup failure rate, RBFM more easily adapted to network changes and
thus provided lower lookup failure rates and distances.

Although these DHTs proved promising for highly dynamic scenarios, they can only provide
robust data availability with the help of replication. The goals of and existing approaches
to replication in peer-to-peer systems are outlined in Chapter 8. The focus of this work
is narrowed to replica quantity, location, and routing, with the goal of utilizing the existing
structure of RBFM and HRM’s links to placed links physically near to where they are needed in
a fashion that assures their availability. Solutions for unstructured MANET systems are briefly
summarized, as they have provided a large amount of resource aware replication strategies.
Unfortunately, they are largely unsuitable to structured scenarios, while DHT replication
strategies, on the other hand, have typically ignored nodes’ varying resources.

A replica strategy geared specifically towards RBFM and HRM is then described in Chapter 9.
In order to ensure a set availability probability of data, the failure probability of nodes must
be known within given time periods. And in order to effectively use the resource and location
aware link structure of RBFM and HRM, the use case scenario is restricted to resources
that correlate with failure probabilities. The number of replicas thus depends on the resource
levels of their replica nodes while the position of the replica nodes depend on the data owner’s,
inputting node’s, and querying nodes’ locations. This replication strategy adds an element of
proximity data placement without searching for new replica nodes by utilizing the existing
links which prefer both strong and nearby nodes.

Chapter 10 considers the introduced replica strategy with a mathematical analysis. Using
simplified conditions, the number of replicas necessary to fulfill the required availability prob-
ability, the replica load placed on varying resource levels, and the probability of finding a
replica on a random lookup are discussed. In order to illustrate the meaning of the resulting
approximations, the measures are calculated for the same fixed scenario as in the DHT anal-
ysis in Chapter 6. The results demonstrate the reduced number of required replicas for the
resource aware replica placement and the importance of using upper bounds on replica load
for top level nodes.

11.2 Addressed Questions

Many of the open questions discussed in Chapters 4 and 8 have been addressed throughout this
work, while others were not in this work’s scope. While the replication specific questions were
addressed through the replica design in Chapter 9, the more general questions were addressed
throughout the DHT analysis and evaluation. The following three questions in particular were

162 Resource and Location Aware Robust, Decentralized Data Management

11.3. FUTURE WORK

addressed.

How do resource and location awareness effect each other? The use of prospective
links lists collected via information piggybacked on messages caused stronger nodes to be
preferred in a churn scenario even for the resource unaware DHash++. This indicates that
such gathered information about nodes may unintentionally cause resource awareness when
high resource nodes are more active or live longer, thus propagating more of their own node
information throughout the network. On the other hand, resource awareness on the overlay
level can actually have an adverse effect on total resource awareness in ad hoc networks if the
resources are not also considered on the underlay level, since longer paths may then be chosen
which route through more (low level) nodes. In order to facilitate total resource awareness
in an ad hoc network, it is necessary that the underlay hops’ locations are integrated in the
overlay design. And interestingly, resource awareness can also improve location awareness in
churn scenarios where nodes are highly dynamic. When links are established to both close
and stable nodes (as opposed to simply the nearest node), then those links are longer lived so
that fewer reconfiguration phases are necessary in which new suitable nodes must be found.
Thus, we have seen for multiple situations that resource and location awareness can actually
positively effect each other instead of posing a tradeoff.

How do the peer-to-peer structural taxonomy variations influence resource and
location awareness? This work concentrated primarily on the topic of flat vs. hierarchical
structure, as opposed to single vs. multiple or vertical vs. horizontal overlays. A horizontal
approach was chosen to increase robustness by removing the bottleneck gateway peers, and
the single overlay used could easily be replaced by a horizontal multi-overlay system. The
hierarchical structure in question did in fact offer longer node lifetimes due to the finer dif-
ferentiation between nodes’ resource levels. However, in comparison to the flat RBFM, the
hierarchical HRM also led to higher hop counts per lookup due to the passing of messages
between layers; longer physical link and lookup distances due to the smaller set of nodes from
which to choose close links within a single hierarchy layer; and higher lookup failures due to
links being broken. Furthermore, node lifetimes and location awareness decreased as hierarchy
layers increased, suggesting that lower numbers of hierarchy layers are able to provide better
awareness. The number of hierarchy layers thus effects not only the distribution of load to the
individual resource levels but also the degree of possible resource or location awareness.

Which structure is best for the derived requirements? While the multi-tiered hier-
archical approach HRM provided less location awareness, thus making it less suitable for ad
hoc networks, it is more capable of relieving leaf nodes of load. Thus, leaf nodes and with
them the entire network, have longer lifetimes. RBFM, on the other hand, can be configured
to incorporate more or less resource or location awareness and can easier adapt to a changing
network. With its flat structure, nodes that change levels do not change their outgoing links
or responsibilities, which led to fewer lookup failures in simulation. Depending on the differing
strengths of the nodes, a flat or hierarchical structure may be better.

11.3 Future Work

The two-tier approaches performed well on many measures, especially location awareness, but
failed to provide the robustness required for a system with high churn rates. The improvement

Resource and Location Aware Robust, Decentralized Data Management 163

CHAPTER 11. CONCLUSION

of these approaches’ robustness could provide promising resource and location aware alterna-
tives. Similarly, the multi-tier hierarchy suffers primarily from the extra hop counts necessary
to traverse hierarchy layers. If a routing workaround to this problem that does not require
extra hops for additional hierarchy layers can be found, then HRM would have an even larger
resource awareness advantage.

The approach and layer comparisons showed how the choice of a threshold with which weak
nodes are allocated to either a leaf or upper layers in HRM affects the distribution of network
load and ultimately the nodes’ and network’s lifetime. An optimal threshold would maximize
node lifetimes and thus increase robustness. While previous work from Zoels et al. has ad-
dressed similar questions, it focused on either balancing load between super-peers [ZDK07]
or minimizing the total network traffic by finding an optimal ratio of leaf to super-peer
nodes [ZHDK09]. However, results presented here demonstrated that when nodes are drained
by activities, then lifetimes are determined not by the total network load but rather by the
load incurred by the network’s weakest nodes. This could be addressed by either finding opti-
mal thresholds to maximize network lifetime, or using minimum target lifetimes for weakest
nodes to further optimize the hierarchical system. In the second case, optimal thresholds be-
tween the remaining hierarchy layers could also be sought for more sophisticated scenarios; for
example, scenarios that place upper bounds on the permissible load per time unit for varying
resource levels.

An optimal configuration of the system could be explored for the cases that nodes’ replica-
tion distributions are either completely known or unknown. For an example of a system in
which distributions are completely known, consider a cloud use case scenario like that from
Section 1.2.4 in which nodes are not restricted by their battery power but rather classified
by their computing power, energy consumption, and network connections - such as Amazon’s
Dynamo system with DHT-based key-value storage in a cloud [DHJ+07]. On the other hand,
consider a standard unregulated peer-to-peer system of heterogeneous nodes for an example
of a system with unknown replication distribution. Recall that this work assumed a Zipf dis-
tribution for resource availabilities, but does not specifically configure the system to work
optimally for this distribution. However, for systems in which the resource distribution is
known, optimal values for the number of resource levels, allocation of nodes to resource levels,
number of hierarchy layers, various maintenance parameters, numbers and ranges of fingers,
and the concrete number of replicas might be found. And when there is no distribution that
can be assumed for the system, approaches for determining good configurations without the
help of a priori information must be found.

Finding an optimal configuration is also a necessary step when considering how to best adapt
the approaches introduced here to specific cloud and sensor-net use cases. For the cloud
scenario without restricted battery power (as mentioned above), much information may be
available about the locations and strengths of systems nodes. However, weak nodes with un-
bounded power supplies are restricted by their computing power instead of the total number of
messages they have sent and received. So the suggested approaches must be adapted to specif-
ically incorporate node computing load as its resource as well as the known distributions of
resources and node failure probabilities. Sensor-nets, on the other hand, have both restricted
battery and computing power and operate on ad hoc networks with a primarily static struc-
ture. The adaptation to this scenario should thus requires stricter underlay-based location
awareness, which could be achieved through specialized routing and replication techniques.

164 Resource and Location Aware Robust, Decentralized Data Management

11.3. FUTURE WORK

Currently unexplored scenarios could also benefit from the interpretation of nodes’ suitability
to perform specific tasks as resources. In this case, the DHT overlays could also be used to dis-
tribute (computational) tasks to nodes with varying capabilities to perform them, for example
via the resource and location aware links. Specific use cases would have to be identified, the
resource notation and usage adapted to incorporate multiple dimensions which reflect nodes’
capabilities to perform tasks, and techniques for distributing tasks developed.

Multiple resources such as sensor-nets’ battery and computing power may also benefit from
a more sophisticated use of replication notation (R.5). Tuples that store values for multiple
resources could, for example, enable nodes to prefer or weight other peers’ resources differently
depending on their needs, whole systems to prefer varying resources for different times or sce-
narios, or each node to communicate which resource is being over or under-loaded. Functions,
on the other hand, could provide information about the fluctuation in a node’s resources. For
example, a node that moves in a periodic fashion may have bandwidth availability that de-
pends on its location, which is given by a function over time. Such resource functions could be
used in a fashion similar to path predictions in delay-tolerant networks, with peers predicting
when a specific node will have strong resources. This is relevant not only for establishing and
routing over links, but also for determining the number and location of replicas necessary to
provide availability guarantees.

Thus, the potential for future work extends in varying directions, including the search for more
efficient hierarchical routing, an optimal allocation of nodes to hierarchy layers, and the exam-
ination of the effects of different resource distributions on the system. While a Zipf distribution
with arbitrary power was assumed for the resource distribution in this work (quadratic Zipf
distributions were used when a concrete distribution was necessary), this distribution may
also be formally known or completely unknown. This relates closely to the possible future
application of the presented approaches in specific cloud and sensor-net scenarios, in which
resource distributions may in fact be known. Furthermore, an examination of the possible use
of more sophisticated tuple and function notations for resource awareness could provide more
variable resource awareness for multi-dimensional or time-dependent resources.

Resource and Location Aware Robust, Decentralized Data Management 165

CHAPTER 11. CONCLUSION

166 Resource and Location Aware Robust, Decentralized Data Management

Bibliography

[Abe01] K. Aberer. P-grid: A self-organizing access structure for p2p information sys-
tems. In C. Batini, F. Giunchiglia, P. Giorgini, and M. Mecella, editors, Cooper-
ative Information Systems, volume 2172 of Lecture Notes in Computer Science,
pages 179–194. Springer Berlin Heidelberg, 2001.

[Abe02] K. Aberer. Scalable Data Access in P2P Systems Using Unbalanced Search
Trees. In Workshop on Distributed Data and Structures (WDAS’02), 2002.

[ACMD+03] K. Aberer, P. Cudré-Mauroux, A. Datta, Z. Despotovic, M. Hauswirth,
M. Punceva, and R. Schmidt. P-Grid: A Self-organizing Structured P2P System.
SIGMOD Record, 32(3):29–33, 2003.

[ACMHP04] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and T. V. Pelt. GridVine: Building
Internet-Scale Semantic Overlay Networks. In ISWC’04, pages 107–121, 2004.

[AH00] E. Adar and B. A. Huberman. Free Riding on Gnutella. Technical report, Xerox
PARC, 9 September 2000. http://www.firstmonday.dk/issues/issue5_10/

adar/index.html.

[AKU03] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Stability and efficiency of a ran-
dom local load balancing protocol. In In Proceedings FOCS, pages 472–481,
2003.

[ALAS05] M. Artigas, P. Lopez, J. P. Ahullo, and A. Skarmeta. Cyclone: A novel design
schema for hierarchical dhts. In P2P’05, pages 49–56, 2005.

[ALS07] M. S. Artigas, P. G. Lopez, and A. F. Skarmeta. A comparative study of hi-
erarchical dht systems. In Proceedings of the 32nd IEEE Conference on Local
Computer Networks, pages 325–333, 2007.

[ARK+05] F. Araujo, L. Rodrigues, J. Kaiser, C. Liu, and C. Mitidieri. Chr: a distributed
hash table for wireless ad hoc networks. In ICDCS Workshops ’05, pages 407 –
413, 2005.

[ATS04] S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content
distribution technologies. ACM Comput. Surv., 36(4):335–371, December 2004.

[BAS04] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting scalable
multi-attribute range queries. In SIGCOMM ’04, pages 353–366, 2004.

167

http://www.firstmonday.dk/issues/issue5_10/adar/index.html
http://www.firstmonday.dk/issues/issue5_10/adar/index.html

BIBLIOGRAPHY

[BBB09] M. Bouhorma, H. Bentaouit, and A. Boudhir. Performance comparison of ad-
hoc routing protocols aodv and dsr. In Multimedia Computing and Systems,
2009. ICMCS’09. International Conference on, pages 511–514. IEEE, 2009.

[BBKK10] M. Bienkowski, A. Brinkmann, M. Klonowski, and M. Korzeniowski. Skewccc+:
a heterogeneous distributed hash table. In Proceedings of the 14th interna-
tional conference on Principles of distributed systems, OPODIS’10, pages 219–
234, Berlin, Heidelberg, 2010. Springer-Verlag.

[BBST01] C. Batten, K. Barr, A. Saraf, and S. Trepetin. pstore: A secure peer-to-peer
backup system. Unpublished report, MIT Laboratory for Computer Science,
pages 130–139, 2001.

[BCM05] P. Bellavista, A. Corradi, and E. Magistretti. Comparing and evaluating
lightweight solutions for replica dissemination and retrieval in dense manets.
In Computers and Communications, 2005. ISCC 2005. Proceedings. 10th IEEE
Symposium on, pages 43–50. IEEE, 2005.

[BGK+02] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data management for peer-to-peer computing: A vision. In
Fifth Int. Workshop on the Web and Databases (WebDB’02), pages 89–94, 2002.

[Bit13] Bittorrent, 2013. http://www.bittorrent.com.

[BK09] E. H. T. B. Brands and G. Karagiannis. Taxonomy of p2p applications. In
GLOBECOM Workshops, 2009 IEEE, pages 1–8, 2009.

[BLF09] S. Bernard and F. Le Fessant. Optimizing peer-to-peer backup using lifetime
estimations. In Proceedings of the 2009 EDBT/ICDT Workshops, pages 26–33.
ACM, 2009.

[BLJ05] D. A. Bryan, B. B. Lowekamp, and C. Jennings. Sosimple: A serverless,
standards-based, p2p sip communication system. In Advanced Architectures and
Algorithms for Internet Delivery and Applications, 2005. AAA-IDEA 2005. First
International Workshop on, pages 42–49. IEEE, 2005.

[BQ04] F. Bustamante and Y. Qiao. Friendships that last: Peer lifespan and its role in
p2p protocols. In F. Douglis and B. Davison, editors, Web Content Caching and
Distribution, pages 233–246. Springer Netherlands, 2004.

[BRB10] M. Brückner and L. Ribe-Baumann. Decentralized, resource-aware informa-
tion management and delay tolerant networks in command-and-control. In GI
Jahrestagung (2), pages 175–180, 2010.

[BS06] S. Baset and H. Schulzrinne. An analysis of the skype peer-to-peer internet
telephony protocol. In INFOCOM 2006. 25th IEEE International Conference
on Computer Communications. Proceedings, pages 1–11, 2006.

[BS08] S. A. Baset and H. Schulzrinne. Openvoip: An open peer-to-peer voip and im
system. Proc. of SIGCOMM (demo), 2008.

[Btd13] BTDigg DHT search engine, 2013. http://btdigg.org.

168 Resource and Location Aware Robust, Decentralized Data Management

http://www.bittorrent.com
http://btdigg.org

BIBLIOGRAPHY

[CBB+03] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel,
Y. Xing, and S. B. Zdonik. Scalable distributed stream processing. In CIDR,
volume 3, pages 257–268, 2003.

[CCN+06] M. Caesar, M. Castro, E. B. Nightingale, G. O’Shea, and A. Rowstron. Virtual
ring routing: network routing inspired by dhts. In Proceedings of the 2006 con-
ference on Applications, technologies, architectures, and protocols for computer
communications, SIGCOMM ’06, pages 351–362, New York, NY, USA, 2006.
ACM.

[CCR05] M. Castro, M. Costa, and A. Rowstron. Debunking some myths about structured
and unstructured overlays. In Proceedings of the 2nd conference on Symposium
on Networked Systems Design & Implementation - Volume 2, NSDI’05, pages
85–98, Berkeley, CA, USA, 2005. USENIX Association.

[CCRK04] M. Costa, M. Castro, A. Rowstron, and P. Key. Pic: practical internet coor-
dinates for distance estimation. In Distributed Computing Systems, 2004. Pro-
ceedings. 24th International Conference on, pages 178–187, 2004.

[CDCR02] M. Castro, P. Druschel, Y. Charlie, and H. A. Rowstron. Exploiting network
proximity in peer-to-peer overlay networks. Technical Report MSR-TR-2002-82,
Microsoft Research, 2002.

[CDHR02] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploiting network proximity
in distributed hash tables. Technical report, Microsoft Research, 2002.

[CDK+03] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi, A. Rowstron, and A. Singh.
Splitstream: high-bandwidth multicast in cooperative environments. In ACM
SIGOPS Operating Systems Review, number 5, pages 298–313. ACM, 2003.

[CDKR02] M. Castro, P. Druschel, A.-M. Kermarrec, and A. I. Rowstron. Scribe: A large-
scale and decentralized application-level multicast infrastructure. Selected Areas
in Communications, IEEE Journal on, 20(8):1489–1499, 2002.

[CF05a] C. Cramer and T. Fuhrmann. Isprp: a message-efficient protocol for initializing
structured p2p networks. In Performance, Computing, and Communications
Conference, 2005. IPCCC 2005. 24th IEEE International, pages 365 – 370, april
2005.

[CF05b] C. Cramer and T. Fuhrmann. Proximity neighbor selection for a dht in wireless
multi-hop networks. In P2P ’05, pages 3 – 10, 2005.

[Chi13] Chimera structured overlay network, 2013. http://current.cs.ucsb.edu/

projects/chimera.

[CKK02] Y. Chen, R. H. Katz, and J. D. Kubiatowicz. Dynamic replica placement for
scalable content delivery. In Peer-to-Peer Systems, pages 306–318. Springer,
2002.

[CMN02] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche: Making backup cheap and
easy. ACM SIGOPS Operating Systems Review, 36(SI):285–298, 2002.

Resource and Location Aware Robust, Decentralized Data Management 169

http://current.cs.ucsb.edu/projects/chimera
http://current.cs.ucsb.edu/projects/chimera

BIBLIOGRAPHY

[Cod13] Codeen, 2013. http://codeen.cs.princeton.edu.

[Col13] Collanos workplace, 2013. http://collanos-workplace.en.softonic.com.

[cSp13] cSpace Project, 2013. http://code.google.com/p/cspace.

[CSWH01a] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed
anonymous information storage and retrieval system. Lecture Notes in Computer
Science, 2009:46+, 2001.

[CSWH01b] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A Distributed
Anonymous Information Storage and Retrieval System. In Designing Pri-
vacy Enhancing Technologies: International Workshop on Design Issues in
Anonymity and Unobservability, 2001.

[DB09] A. Derhab and N. Badache. Data replication protocols for mobile ad-hoc net-
works: a survey and taxonomy. Communications Surveys & Tutorials, IEEE,
11(2):33–51, 2009.

[DCKM04] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: a decentralized network
coordinate system. In SIGCOMM ’04, pages 15–26, 2004.

[DHA03] A. Datta, M. Hauswirth, and K. Aberer. Updates in Highly Unreliable, Repli-
cated Peer-to-Peer Systems. In ICDCS’03, page 76, 2003.

[DHJ+07] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s
highly available key-value store. In SOSP, volume 7, pages 205–220, 2007.

[DKK+01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area
cooperative storage with cfs. In Proceedings of the eighteenth ACM symposium
on Operating systems principles, SOSP ’01, pages 202–215, New York, NY, USA,
2001. ACM.

[DLS+04] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek, and R. Morris. Designing
a dht for low latency and high throughput. In PROCEEDINGS OF THE 1ST
NSDI, pages 85–98, 2004.

[DR01] P. Druschel and A. Rowstron. Past: a large-scale, persistent peer-to-peer storage
utility. In Hot Topics in Operating Systems, 2001. Proceedings of the Eighth
Workshop on, pages 75–80, 2001.

[dSLMM08] A. da Silva, E. Leonardi, M. Mellia, and M. Meo. A bandwidth-aware scheduling
strategy for p2p-tv systems. In Peer-to-Peer Computing , 2008. P2P ’08. Eighth
International Conference on, pages 279–288, 2008.

[eDo13] eDonkey2000, 2013. http://edonkey2000.en.softonic.com.

[EDPK09] M. El Dick, E. Pacitti, and B. Kemme. Flower-cdn: a hybrid p2p overlay for
efficient query processing in cdn. In EDBT ’09, pages 427–438, 2009.

[eMu13] eMule, 2013. http://www.emule-project.net.

170 Resource and Location Aware Robust, Decentralized Data Management

http://codeen.cs.princeton.edu
http://collanos-workplace.en.softonic.com
http://code.google.com/p/cspace
http://edonkey2000.en.softonic.com
http://www.emule-project.net

BIBLIOGRAPHY

[fac13] facebook, 2013. http://www.facebook.com.

[Far13] Faroo peer-to-peer web search, 2013. http://www.faroo.com.

[FJJ+01] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and L. Zhang. Idmaps:
a global internet host distance estimation service. IEEE/ACM Trans. Netw.,
9(5):525–540, 2001.

[FLC09] B. Fan, J. C. S. Lui, and D.-M. Chiu. The design trade-offs of bittorrent-like file
sharing protocols. IEEE/ACM Trans. Netw., 17(2):365–376, April 2009.

[FM03] M. Freedman and D. Mazières. Sloppy hashing and self-organizing clusters. In
In IPTPS, pages 45–55, 2003.

[Fre10] M. J. Freedman. Experiences with coralcdn: A five-year operational view. In
Proc. 7th USENIX/ACM Symposium on Networked Systems Design and Imple-
mentation, pages 95–110, 2010.

[Fre13] Freenet Project, 2013. http://FreenetProject.org.

[GAH07] A. Ghodsi, L. O. Alima, and S. Haridi. Symmetric replication for structured
peer-to-peer systems. In Databases, Information Systems, and Peer-to-Peer
Computing, pages 74–85. Springer, 2007.

[GB03] P. Ganesan and M. Bawa. Distributed balanced tables: Not making a hash of it
all. Technical Report 2003-71, Stanford InfoLab, 2003.

[GBGM04] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online balancing of range-
partitioned data with applications to peer-to-peer systems. In VLDB ’04, pages
444–455, 2004.

[GEBF+03] L. Garces-Erice, E. W. Biersack, P. A. Felber, K. W. Ross, and G. Urvoy-Keller.
Hierarchical peer-to-peer systems. In Proceedings of ACM/IFIP International
Conference on Parallel and Distributed Computing, pages 643–657, 2003.

[GGG+03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy, S. Shenker, and I. Stoica.
The impact of dht routing geometry on resilience and proximity. In SIGCOMM
’03, pages 381–394, 2003.

[GGGM04] P. Ganesan, K. Gummadi, and H. Garcia-Molina. Canon in g major: Designing
dhts with hierarchical structure. In ICDCS’04, pages 263–272, 2004.

[GL02] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[GNZ06] S. Gurun, P. Nagpurkar, and B. Y. Zhao. Energy consumption and conser-
vation in mobile peer-to-peer systems. In Proceedings of the 1st international
workshop on Decentralized resource sharing in mobile computing and networking,
MobiShare ’06, pages 18–23, New York, NY, USA, 2006. ACM.

[GS05] P. B. Godfrey and I. Stoica. Heterogeneity and load balance in distributed hash
tables. In PROC. OF IEEE INFOCOM, 2005.

Resource and Location Aware Robust, Decentralized Data Management 171

http://www.facebook.com
http://www.faroo.com
http://FreenetProject.org

BIBLIOGRAPHY

[gtk13] gtk-gnutella, 2013. http://gtk-gnutella.sourceforge.net.

[HHL+03] R. Huebsch, J. M. Hellerstein, N. Lanham, B. Thau Loo, S. Shenker, and I. Sto-
ica. Querying the Internet with PIER. In ’03, pages 321–332, 2003.

[HJS+03] N. J. A. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and A. Wolman. SkipNet:
A Scalable Overlay Network with Practical Locality Properties. In USENIX
Symposium on Internet Technologies and Systems (USITS’03), 2003.

[HLZ+04] J. Hu, M. Li, W. Zheng, D. Wang, N. Ning, and H. Dong. Smartboa: constructing
p2p overlay network in the heterogeneous internet using irregular routing tables.
In Proceedings of the Third international conference on Peer-to-Peer Systems,
IPTPS’04, pages 278–287, Berlin, Heidelberg, 2004. Springer-Verlag.

[HR02] S. Hand and T. Roscoe. Mnemosyne: Peer-to-peer steganographic storage. In
P. Druschel, F. Kaashoek, and A. Rowstron, editors, Peer-to-Peer Systems, vol-
ume 2429 of Lecture Notes in Computer Science, pages 130–140. Springer Berlin
Heidelberg, 2002.

[HSC01] M. Hauspie, D. Simplot, and J. Carle. Replication decision algorithm based on
link evaluation for services in manet. CNRS UPRESA, 2001.

[I2P13] I2P Technical Introduction, 2013. http://www.i2p2.de/techintro.html.

[IB09] S. K. Ingmar Baumgart, Bernhard Heep. Oversim: A scalable and flexible overlay
framework for simulation and real network applications. In IEEE P2P’09, 2009.

[IRD02] S. Iyer, A. Rowstron, and P. Druschel. Squirrel: A decentralized peer-to-peer
web cache. In Proceedings of the twenty-first annual symposium on Principles
of distributed computing, pages 213–222. ACM, 2002.

[Jab13] Jabber, 2013. http://www.jabber.de.

[JBu13] JBuilder, 2013. http://www.embarcadero.com/products/jbuilder.

[JMW03] S. Jain, R. Mahajan, and D. Wetherall. A study of the performance potential
of dht-based overlays. In Proceedings of the 4th conference on USENIX Sympo-
sium on Internet Technologies and Systems - Volume 4, USITS’03, pages 11–11,
Berkeley, CA, USA, 2003. USENIX Association.

[JOK09] R. Jiménez, F. Osmani, and B. Knutsson. Connectivity properties of mainline
bittorrent dht nodes. In Peer-to-Peer Computing, 2009. P2P’09. IEEE Ninth
International Conference on, pages 262–270. IEEE, 2009.

[JOV05] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced tree structure for
peer-to-peer networks. In In VLDB, pages 661–672, 2005.

[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D. Geels,
R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao.
OceanStore: an architecture for global-scale persistent storage. SIGPLAN Not.,
35(11):190–201, 2000.

172 Resource and Location Aware Robust, Decentralized Data Management

http://gtk-gnutella.sourceforge.net
http://www.i2p2.de/techintro.html
http://www.jabber.de
http://www.embarcadero.com/products/jbuilder

BIBLIOGRAPHY

[KHKY09] O. Kassinen, E. Harjula, J. Korhonen, and M. Ylianttila. Battery life of mobile
peers with umts and wlan in a kademlia-based p2p overlay. In Personal, Indoor
and Mobile Radio Communications, 2009 IEEE 20th International Symposium
on, pages 662–665, 2009.

[KK03] M. F. Kaashoek and D. R. Karger. Koorder: A simple degree-optimal distributed
hash table. In In Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems (IPTPS’2003, 2003.

[KKF06] R. Kummer, P. Kropf, and P. Felber. Distributed lookup in structured peer-
to-peer ad-hoc networks. In R. Meersman and Z. Tari, editors, On the Move
’06: CoopIS, DOA, GADA, and ODBASE, volume 4276 of Lecture Notes in
Computer Science, pages 1541–1554. Springer Berlin / Heidelberg, 2006.

[KKHY13] T. Koskela, O. Kassinen, E. Harjula, and M. Ylianttila. P2p group management
systems: A conceptual analysis. ACM Comput. Surv., 45(2):20:1–20:25, March
2013.

[Kle00] J. Kleinberg. The small-world phenomenon: An algorithm perspective. In STOC
’00: Proceedings of the thirty-second annual ACM symposium on theory of com-
puting, pages 163–170, 2000.

[KLKP08] S. Kaune, T. Lauinger, A. Kovačević, and K. Pussep. Embracing the peer next
door: Proximity in kademlia. In P2P ’08, 2008.

[KLL+97] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine, and
D. Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In STOC, pages 654–663, 1997.

[KMP99] G. Karumanchi, S. Muralidharan, and R. Prakash. Information dissemination
in partitionable mobile ad hoc networks. In Reliable Distributed Systems, 1999.
Proceedings of the 18th IEEE Symposium on, pages 4–13. IEEE, 1999.

[KN08] I. Kelenyi and J. Nurminen. Optimizing energy consumption of mobile nodes in
heterogeneous kademlia-based distributed hash tables. In Next Generation Mo-
bile Applications, Services and Technologies, 2008. NGMAST ’08. The Second
International Conference on, pages 70–75, 2008.

[KN10] G. Kreitz and F. Niemela. Spotify – large scale, low latency, p2p music-on-
demand streaming. In Peer-to-Peer Computing (P2P), 2010 IEEE Tenth Inter-
national Conference on, pages 1–10, 2010.

[KR04] D. R. Karger and M. Ruhl. Simple efficient load balancing algorithms for peer-
to-peer systems. In SPAA’04, pages 36–43, 2004.

[KSHK08] D. Klan, K.-U. Sattler, K. Hose, and M. Karnstedt. Decentralized managing of
replication objects in massively distributed systems. In Proceedings of the 2008
international workshop on Data management in peer-to-peer systems, pages 19–
26. ACM, 2008.

Resource and Location Aware Robust, Decentralized Data Management 173

BIBLIOGRAPHY

[KSR+07] M. Karnstedt, K.-U. Sattler, M. Richtarsky, J. Muller, M. Hauswirth,
R. Schmidt, and R. John. Unistore: querying a dht-based universal storage.
In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference
on, pages 1503–1504. IEEE, 2007. http://www.p-grid.org/implementation/
extensions.html.

[Lap85] J.-C. Laprie. Dependable computing and fault-tolerance. Digest of Papers
FTCS-15, pages 2–11, 1985.

[Lim13] Former limewire homepage, 2013. http://www.limewire.com.

[Liu09] J. Liu. Mojito under churn, 2009. http://www.cs.utexas.edu.

[LKRG03] D. Loguinov, A. Kumar, V. Rai, and S. Ganesh. Graph-theoretic analysis of
structured peer-to-peer systems: routing distances and fault resilience. In SIG-
COMM, pages 395–406, 2003.

[LS13] W. Lehner and K.-U. Sattler. Transactional data management services for the
cloud. In Web-Scale Data Management for the Cloud, pages 59–90. Springer,
2013.

[LSM+05] J. Li, J. Stribling, R. Morris, M. Kaashoek, and T. Gil. A performance vs. cost
framework for evaluating dht design tradeoffs under churn. In INFOCOM 2005.
24th Annual Joint Conference of the IEEE Computer and Communications So-
cieties. Proceedings IEEE, volume 1, pages 225–236 vol. 1, 2005.

[LSW06] T. Locher, S. Schmid, and R. Wattenhofer. equus: A provably robust and
locality-aware peer-to-peer system. In Peer-to-Peer Computing, 2006. P2P 2006.
Sixth IEEE International Conference on, pages 3–11, 2006.

[LZT04] M. Landers, H. Zhang, and K.-L. Tan. Peerstore: Better performance by re-
laxing in peer-to-peer backup. In Peer-to-Peer Computing, 2004. Proceedings.
Proceedings. Fourth International Conference on, pages 72–79. IEEE, 2004.

[LZZ+04] V. Lo, D. Zappala, D. Zhou, Y. Liu, and S. Zhao. Cluster computing on the
fly: P2p scheduling of idle cycles in the internet. In Proceedings of the Third
international conference on Peer-to-Peer Systems, IPTPS’04, pages 227–236,
Berlin, Heidelberg, 2004. Springer-Verlag.

[Man04] G. S. Manku. Balanced binary trees for id management and load balance in dis-
tributed hash tables. In Proceedings of the twenty-third annual ACM symposium
on Principles of distributed computing, PODC ’04, pages 197–205, New York,
NY, USA, 2004. ACM.

[MBK07] B. Maniymaran, M. Bertier, and A.-M. Kermarrec. Build one, get one free:
Leveraging the coexistence of multiple p2p overlay networks. In ICDCS ’07,
pages 33–33, June 2007.

[MBR03] G. S. Manku, M. Bawa, and P. Raghavan. Symphony: Distributed hashing in
a small world. In In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems, pages 127–140, 2003.

174 Resource and Location Aware Robust, Decentralized Data Management

http://www.p-grid.org/implementation/extensions.html
http://www.p-grid.org/implementation/extensions.html
http://www.limewire.com
http://www.cs.utexas.edu

BIBLIOGRAPHY

[MC04] A. Moon and H. Cho. Energy efficient replication extended database state ma-
chine in mobile ad hoc network. In IADIS International Conference on Applied
Computing, pages 224–228, 2004.

[MD04] A. Mislove and P. Druschel. Providing administrative control and autonomy in
structured peer-to-peer overlays, 2004.

[Mil67] S. Milgram. The small world problem. Psychology Today, 2:60–67, 1967.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peer Information System
Based on the XOR Metric. In IPTPS, 2002.

[MNR02] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A scalable and dynamic em-
ulation of the butterfly. In Proceedings of the 21st annual ACM symposium on
Principles of distributed computing. ACM Press, 2002.

[MPP10] G. Millar, E. Panaousis, and C. Politis. Robust: Reliable overlay based utilisation
of services and topology for emergency manets. In Future Network and Mobile
Summit ’10, pages 1 –8, 2010.

[NW03] M. Naor and U. Wieder. Novel architectures for p2p applications: the continuous-
discrete approach. In Proceedings of the fifteenth annual ACM symposium on
Parallel algorithms and architectures, SPAA ’03, pages 50–59, New York, NY,
USA, 2003. ACM.

[NZ01] T. S. E. Ng and H. Zhang. Predicting internet network distance with coordinates-
based approaches. In In INFOCOM, pages 170–179, 2001.

[NZ06] D. Novak and P. Zezula. M-chord: a scalable distributed similarity search struc-
ture. In InfoScale, page 19, 2006.

[OHY09] Z. Ou, E. Harjula, and M. Ylianttila. Effects of different churn models on the
performance of structured peer-to-peer networks. In Personal, Indoor and Mobile
Radio Communications, 2009 IEEE 20th International Symposium on, pages
2856–2860, 2009.

[PDH04] H. Pucha, S. Das, and Y. Hu. Ekta: an efficient dht substrate for distributed
applications in mobile ad hoc networks. In WMCSA ’04, pages 163 – 173, 2004.

[PGVA08] P. Padmanabhan, L. Gruenwald, A. Vallur, and M. Atiquzzaman. A survey of
data replication techniques for mobile ad hoc network databases. The VLDB
Journal-The International Journal on Very Large Data Bases, 17(5):1143–1164,
2008.

[PRR97a] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies of
Replicated Objects in a Distribute d Environment. In SPAA, 1997.

[PRR97b] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing Nearby Copies
of Replicated Objects in a Distributed Environment. In 9th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 311–20, June 1997.
http://www.cs.utexas.edu/users/plaxton/ps/1997/spaa.ps.

Resource and Location Aware Robust, Decentralized Data Management 175

http://www.cs.utexas.edu/users/plaxton/ps/1997/spaa.ps

BIBLIOGRAPHY

[Pug90] W. Pugh. Skip lists: A probabilistic alternative to balanced trees. Communica-
tions of the ACM, 33(6), 1990.

[RB03] M. Roussopoulos and M. Baker. Cup: Controlled update propagation in peer-to-
peer networks. In USENIX Annual Technical Conference, General Track, pages
167–180, 2003.

[RB07] M. Rogers and S. Bhatti. How to disappear completely: A survey of private
peer-to-peer networks. networks, 13:14, 2007.

[RB11] L. Ribe-Baumann. Combining resource and location awareness in dhts. In
R. Meersman, T. Dillon, and P. Herrero, editors, OTM 2011, Part I, LNCS
7044, pages 385–402. Springer-Verlag, 2011.

[RBS12] L. Ribe-Baumann and K.-U. Sattler. A hierarchical approach to resource aware-
ness in dhts for mobile data management. In 2nd International Workshop on
Information Management for Mobile Applications, pages 5–12, 2012.

[RBS13] L. Ribe-Baumann and K.-U. Sattler. A hierarchical approach to resource aware-
ness in {DHTs} for mobile data management. Pervasive and Mobile Comput-
ing, to appear 2013. http://www.sciencedirect.com/science/article/pii/
S1574119213000990.

[RD01] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. In IFIP/ACM International Con-
ference on Distributed Systems Platforms (Middleware), 2001.

[RDB10] K. Rzadca, A. Datta, and S. Buchegger. Replica placement in p2p storage:
Complexity and game theoretic analyses. In Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on, pages 599–609. IEEE,
2010.

[Ret13] Retroshare development blog, 2013. http://retroshareteam.wordpress.com.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable
content addressable network. In SIGCOMM’01, 2001.

[RGJZ04] S. Ren, L. Guo, S. Jiang, and X. Zhang. Sat-match: a self-adaptive topology
matching method to achieve low lookup latency in structured p2p overlay net-
works. In IPDPS’04, pages 83–91, April 2004.

[RGRK04] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling churn in a DHT.
In USENIX Annual Technical Conference (ATEC’04), pages 10–10, 2004.

[RH13] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In
Security and Privacy in Social Networks, pages 197–223. Springer, 2013.

[RHKS02] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. Topologically-aware overlay
construction and server selection. In INFPCOM 2002, 2002.

[RKY+02] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker.
Ght: a geographic hash table for data-centric storage. In WSNA ’02, pages
78–87, New York, NY, USA, 2002. ACM.

176 Resource and Location Aware Robust, Decentralized Data Management

http://www.sciencedirect.com/science/article/pii/S1574119213000990
http://www.sciencedirect.com/science/article/pii/S1574119213000990
http://retroshareteam.wordpress.com

BIBLIOGRAPHY

[RLS+03] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica. Load Balanc-
ing in Structured P2P Systems. In 2nd International Workshop on Peer-to-Peer
Systems (IPTPS ’03), 2003.

[RM06] J. Risson and T. Moors. Survey of research towards robust peer-to-peer net-
works: Search methods. Computer Networks, 50(17):3485 – 3521, 2006.

[RQMH06] J. Risson, S. Qazi, T. Moors, and A. Harwood. A dependable global location ser-
vice using rendezvous on hierarchic distributed hash tables. In Proceedings of the
International Conference on Networking, International Conference on Systems
and International Conference on Mobile Communications and Learning Tech-
nologies, ICNICONSMCL ’06, pages 4–, Washington, DC, USA, 2006. IEEE
Computer Society.

[RRP+03] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Stoica. Geographic
routing without location information. In MobiCom ’03: Proceedings of the 9th
annual international conference on Mobile computing and networking, pages 96–
108, New York, NY, USA, 2003. ACM.

[RS04] V. Ramasubramanian and E. G. Sirer. Beehive: O(1) lookup performance for
power-law query distributions in peer-to-peer overlays. In NSDI, volume 4, pages
8–8, 2004.

[SENB09] M. Steiner, T. En-Najjary, and E. W. Biersack. Long term study of peer behavior
in the kad dht. IEEE/ACM Transactions on Networking (TON), 17(5):1371–
1384, 2009.

[SGE+05] O. D. Sahin, A. Gulbeden, F. Emekçi, D. Agrawal, and A. El Abbadi. Prism:
indexing multi-dimensional data in p2p networks using reference vectors. In
Proceedings of the 13th annual ACM international conference on Multimedia,
pages 946–955. ACM, 2005.

[SGG02] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A measurement study of peer-
to-peer file sharing systems. In Proceedings of the Multimedia Computing and
Networking, 2002.

[SHD+06] E. Sit, A. Haeberlen, F. Dabek, B. gon Chun, H. Weatherspoon, R. Morris,
M. F. Kaashoek, and J. Kubiatowicz. Proactive replication for data durability.
In Proceedings of the 5th Intl Workshop on Peer-to-Peer Systems (IPTPS), 2006.

[She10] H. Shen. An efficient and adaptive decentralized file replication algorithm in
p2p file sharing systems. Parallel and Distributed Systems, IEEE Transactions
on, 21(6):827–840, 2010.

[SMK+01] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM’01,
pages 149–160, 2001.

[TWS+09] Z. Tian, X. Wen, Y. Sun, W. Zheng, and Y. Cheng. Improved bamboo algorithm
based on hierarchical network model. In CCCM ’09, volume 1, pages 297 –300,
2009.

Resource and Location Aware Robust, Decentralized Data Management 177

BIBLIOGRAPHY

[TXM03] C. Tang, Z. Xu, and M. Mahalingam. psearch: Information retrieval in struc-
tured overlays. ACM SIGCOMM Computer Communication Review, 33(1):89–
94, 2003.

[TXZ+05] R. Tian, Y. Xiong, Q. Zhang, B. Li, B. Y. Zhao, and X. Li. Hybrid overlay
structure based on random walks. In In Proc. of the 4th Intl. Workshop on
Peer-toPeer Systems (IPTPS’05, 2005.

[VLO10] Q. H. Vu, M. Lupu, and B. C. Ooi. Peer-to-peer computing. Springer, 2010.

[Vuz13] Vuze bittorrent client, 2013. http://www.vuze.com.

[WEZ+10] F. Wenzel, M. Erdik, J. Zschau, J. Fischer, I. Christ, and C. Kiehle. Edim
- earthquake disaster information system for the marmara region, turkey. In
European Geosciences Union, General Assembly 2010, 2.-7. May 2010.

[WL02] K. H. Wang and B. Li. Efficient and guaranteed service coverage in partition-
able mobile ad-hoc networks. In INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE, volume 2, pages 1089–1098. IEEE, 2002.

[WR03] M. Waldvogel and R. Rinaldi. Efficient topology-aware overlay network. SIG-
COMM Comput. Commun. Rev., 33:101–106, January 2003.

[XMH03] Z. Xu, R. Min, and Y. Hu. Hieras: A dht based hierarchical p2p routing algo-
rithm. In ICPP’03, page 187, 2003.

[XMK03] Z. Xu, M. Mahalingam, and M. Karlsson. Turning heterogeneity into an ad-
vantage in overlay routing. In INFOCOM 2003. Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications. IEEE Societies, vol-
ume 2, pages 1499–1509 vol.2, 2003.

[Yac13] Yacy decentralized web search, 2013. http://yacy.net.

[YCM06] A. Yip, B. Chen, and R. Morris. Pastwatch: A distributed version control system.
In NSDI, 2006.

[Yel13] Yelp, 2013. http://www.yelp.com.

[YV11] A. Yu and S. Vuong. A dht-based hierarchical overlay for peer-to-peer mmogs
over manets. In IWCMC ’11, pages 1475 –1480, 2011.

[ZARBH13] B. Zafar, R. Alieiev, L. Ribe-Baumann, and M. Haardt. Dhts for cluster-based
ad-hoc networks employing multi-hop relaying. In The 7th Workshop on Wireless
Mesh and Ad Hoc Networks, to appear 2013.

[ZDK06] S. Zoels, Z. Despotovic, and W. Kellerer. Cost-based analysis of hierarchical dht
design. In P2P ’06, pages 233–239, 2006.

[ZDK07] S. Zoels, Z. Despotovic, and W. Kellerer. Load balancing in a hierarchical dht-
based p2p system. In Proceedings of the 2007 International Conference on Col-
laborative Computing: Networking, Applications and Worksharing, COLCOM
’07, pages 353–361, Washington, DC, USA, 2007. IEEE Computer Society.

178 Resource and Location Aware Robust, Decentralized Data Management

http://www.vuze.com
http://yacy.net
http://www.yelp.com

BIBLIOGRAPHY

[ZGA+10] B. Zafar, S. Gherekhloo, A. Asgharzadeh, M. T. Garrosi, and M. Haardt. Self-
organizing network with intelligent relaying (sonir). In Mobile Adhoc and Sensor
Systems (MASS), 2010 IEEE 7th International Conference on, pages 765–767.
IEEE, 2010.

[ZHDK09] S. Zoels, Q. Hofstätter, Z. Despotovic, and W. Kellerer. Achieving and main-
taining cost-optimal operation of a hierarchical dht system. In Proceedings of the
2009 IEEE international conference on Communications, ICC’09, pages 2194–
2199, Piscataway, NJ, USA, 2009. IEEE Press.

[ZHS+04] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. D. Ku-
biatowicz. Tapestry: A Resilient Global-Scale Overlay for Service Deployment.
IEEE Journal on Selected Areas in Communications, 22:41–53, 2004.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An infrastructure
for fault-tolerant wide-are location and routing. Technical Report UCB/CSD-
01-1141, UC Berkeley, 2001.

[ZS05] T. Zahn and J. Schiller. Madpastry: a dht substrate for practicably sized manets.
In ASWN ’05, 2005.

[ZZJ+01] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. D. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant wide-area data dis-
semination. In Proceedings of the 11th international workshop on Network and
operating systems support for digital audio and video, pages 11–20. ACM, 2001.

[ZZZ+03] F. Zhou, L. Zhuang, B. Y. Zhao, L. Huang, A. D. Joseph, and J. Kubiatowicz.
Approximate object location and spam filtering on peer-to-peer systems. In
Middleware 2003, pages 1–20. Springer, 2003. http://www.zhoufeng.net/eng/
spamwatch.

Resource and Location Aware Robust, Decentralized Data Management 179

http://www.zhoufeng.net/eng/spamwatch
http://www.zhoufeng.net/eng/spamwatch

	List of Tables
	List of Figures
	Nomenclature
	Introduction
	Motivation
	Use Cases
	Disaster Scenario
	Distributed Map Management
	Sensor Networks
	Heterogeneous Cloud

	Requirements

	Concepts: Resource and Location Awareness
	Resources Taxonomy
	Location Taxonomy
	Taxonomy Decisions
	Network Assumptions
	Resource Availability
	Node Failure

	Peer-to-Peer Approaches, Limitations, and Contributions
	Peer-to-Peer Systems
	Distributed Hash Tables
	DHT Design
	Resource Awareness
	Location Awareness
	Requirement Tradeoffs

	Contributions

	Related Work: DHTs
	Original DHTs
	Applications

	Awareness
	Resource Awareness: Heterogeneous Netwoks
	Virtual Nodes and Node Movement
	Hierarchies

	Location Awareness
	General Location Aware Approaches
	Mobile (Ad Hoc) Networks

	Resource and Location Aware DHTs
	Evaluation Measures
	Open Questions

	Resource and Location Aware DHTs
	DHT Foundations
	Flat DHT - RBFM
	Finding Links
	Routing
	Link Maintenance
	Node Joins and Failures
	Adaptability

	Hierarchical DHT- HRM
	Varying Levels with Varying Responsibilities
	Finding Links
	Routing
	Link Maintenance
	Node Joins and Failures
	Adaptability

	Adaptations
	Cluster-based Flat DHT
	Hybrid Hierarchical DHT

	Summary

	DHT Analysis
	Flat RBFM
	Expected Resource Level and Distance of Fingers
	Maintenance
	Failures

	Hierarchical HRM
	Expected Distance of Layer Fingers
	Maintenance
	Failures

	Summary

	DHT Evaluation
	Evaluation Platform and Setup
	Configurations
	RBFM Comparison
	Underlay Comparison
	Approach Comparison
	Layer Comparison

	Results
	Maintenance Load
	Lookup Distance
	Lookup Failure
	Node Load
	Node Lifetime
	Links

	Summary

	Related Work: Replication
	Goals
	Unstructured Systems: MANET Replication
	Structured Systems: DHT Replication
	Open Questions

	Resource and Location Aware Replication
	Assumptions
	Number and Location of Replicas
	Availability and Resource Awareness
	Location Awareness

	Routing
	Adaptability
	Summary

	Replication Analysis
	Number of Replicas per Data Object
	Portion of Keyspace per Node
	Finding Replicas on Fingers
	Summary

	Conclusion
	Summary
	Addressed Questions
	Future Work

