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Kurzfassung

Ein Großteil der Verkehrsunfälle auf Europas Straßen findet in städtischen Kreu-
zungsbereichen statt. Die Ursache liegt in den meisten Fällen in einem vorange-
gangen Fehler seitens eines Fahrers. Eine Möglichkeit, um solche Unfälle zu verhin-
den, wäre der Einsatz eines Fahrassistenzsystems, welches im Fahrzeug verbaut ist
und den Fahrer in Kreuzungssituationen unterstützt und auf mögliche Gefahren
hinweist. Das Fahrassistenzsystem müsste dafür in der Lage sein eine komplexe
Verkehrssituation ganzheitlich zu erfassen und basierend darauf abzuschätzen wie
sich die Situation in naher Zukunft weiter entwickelt. Derzeit gibt es aber noch kein
System, dass solch eine Funktionalität bietet, und auch im akademischen Bereich
fehlt es an Methoden für eine ganzheitliche Situationserfassung.
Die vorliegende Arbeit präsentiert eine neuartige Methode um innerstädtische

Kreuzungssituationen zu erfassen. Sie basiert auf der Erkenntnis, dass derartige
Verkehrssituationen zu komplex und zu variabel sind, um sie im Ganzen zu analy-
sieren. Deshalb wird die Verkehrssituation in kleinere, leichter handhabbare Teile
zerlegt, wobei jeder Teil aus zwei in Beziehung stehenden Entitäten besteht. Da-
bei beeinflusst eine Entität das Verhalten der anderen, zum Beispiel ein Fahrzeug,
welches ein folgendes Fahrzeug zum Abbremsen veranlasst. Mögliche Konstellatio-
nen für in Beziehung stehende Entitäten werden von einem Experten in Modellen
spezifiziert, die als Konfigurationen bezeichnet werden.
Im Zuge der Arbeit wurde eine Reihe von Methoden entwickelt, die von dem

Konfigurationen-Konzept Gebrauch machen. Neben der eigentlichen Erkennung ei-
ner Konfiguration wird das Konzept auch für Methoden zur Verhaltensprädiktion
verwendet, unter anderem, um ausgehend von der Konfiguration eines Fahrzeugs
das longitudinale Verhalten oder nächste Manöver vorherzusagen. In einer um-
fassenden Evaluation kann gezeigt werden, dass sich Konfigurationen zuverlässig
erkennen lassen und sich zur Situationseinschätzung eignen. Zusätzlich übertreffen
die vorgeschlagenen Prädiktionsmethoden die zum Vergleich herangezogenen bis-
herigen Methoden. Als Grund dafür wird die Berücksichtigung der Konfigurations-
information ausgemacht.
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Abstract

In Europe, the major share of traffic accidents takes place at urban intersections.
In most of the cases, these accidents are the result of a preceding driver error.
One possibility for avoiding these accidents would be to employ a vehicle-mounted
Advanced Driver Assistance System (ADAS) that supports the driver during nego-
tiating an intersection and warns of possible hazards. For this purpose, the ADAS
would be required to assess complex traffic situations comprehensively in order to
anticipate the future evolution of the current situation. At the time being, there
is no system available offering this functionality, and also in academia there are
no suitable methods for performing a comprehensive situation assessment.
The work at hand presents a novel method for assessing urban intersection

situations. It is based on the insight that these traffic situations are too complex
and too variable to assess them as a whole. Therefore, a decomposition of the traffic
situation into smaller, more manageable parts is proposed. Each part consists of a
pair of interrelated entities, where one entity affects the behavior of the other, for
example a vehicle forcing a trailing vehicle to slow down. Possible constellations
of interrelated entities are defined by a human expert in models which are tagged
configurations.
In the course of this work, a set of methods was developed that employ the

concept of configurations. Besides fundamental methods aiming at the recognition
of a road user’s configuration also novel approaches for predicting the behavior or
the upcoming maneuver of a vehicle are presented, which take the configuration
of the vehicle explicitly into account. In an extensive evaluation, it is shown
that configurations can be robustly recognized and are suited for a comprehensive
situation assessment. In addition, the proposed prediction methods excel the state-
of-the-art methods used for reference which can be traced back to the consideration
of configuration-information.
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1. Introduction

Road safety has been an important topic since the first days of the automobile.
Public authorities have enacted laws to enforce safer driving and invested in in-
frastructure for a hazard-free traffic flow. Additionally, car manufacturers have
used technological advancements in order to improve control over a vehicle under
difficult conditions and protect passengers during crashes. In recent times the
advancement has been propelled by the rise of information technology.
Modern cars have an ever-increasing amount of sensors and computing power

at their disposal. Besides realizing an efficient engine management and providing
real-time information about the state of a vehicle a large amount of electronics
is dedicated to active and passive safety systems. Systems that warn the driver
of critical situations or even take corrective action autonomously, are called Ad-
vanced Driver Assistance Systems (ADAS). The work at hand is concerned with
fundamental research towards an ADAS for inner-city intersections.
The remainder of this chapter is structured as follows. At first, the context

of the work is given in Section 1.1. It shows that intersections are the most
crash-prone spots encountered in every-day driving and that currently sold ADAS
do not address this issue sufficiently. Section 1.2 presents the problem that this
thesis addresses: the development of a method that allows for an scalable situation
assessment even in highly unstructured environments. Section 1.3 enumerates the
contributions made towards solving the stated problem. In Section 1.4 an outline
of the structure of this work and the contents of the chapters to come are provided.

1.1. Context: Driver Assistance Systems for

inner-city driving

While in the last decades the number of fatalities has steadily declined, still 3600
people lost their lives on German roads in 2012 [sta, 2012]. Altogether 299,600 road
injuries accidents occurred across Germany, of which 17,800 occurred on highways,
75,100 occurred on rural roads and the vast majority of them, 68% or 206,700,
occurred in inner-city locations (see Figure 1.1). The European research project
TRACE (Traffic Accident Causation in Europe) investigated on pre-accidental
driving situations and found that in 2004 43% of road injury accidents in the EU27
had taken place on intersections [Molinero Martinez et al., 2008]. According to

1



1. Introduction

TRACE, intersections accounted for 32% of accidents resulting in serious injuries
and fatalities.

Road Injury Accidents in Germany 2012 by location

Inner-city (206,700)

Rural roads (75,100)

Highways (17,800)68%

26%

6%

Figure 1.1.: According to the Federal Statistical Office, 299,600 road injuries
accidents occurred 2012 in Germany. The major share took place in inner-city
areas. Data source: Destatis, Unfallentwicklung auf deutschen Straßen, 2012.

The numbers demonstrate that intersections are accident-prone locations in the
roadway system. A recent study issued by the U.S. National Highway Traffic
Safety Administration, named Crash Factors in Intersection-Related Crashes, in-
vestigates the causes for such a high share in accidents [Choi, 2010]. The authors
state that intersections require driving activities like crossing over or turning into
other roads that have a high potential for conflicts resulting in crashes. In the
National Motor Vehicle Crash Causation Survey (NMVCCS) accident data has
been collected over a two year period. In this dataset, the critical reason for each
of the reported crashes was either attributed to a driver error, a vehicle malfunc-
tion or the environmental circumstances. NMVCCS defines a critical reason as
the immediate reason for the event that puts a vehicle on the course that makes a
collision unavoidable. The results of the survey are given in Figure 1.2.
Interestingly, the critical reason for more than 96% of intersection-related crashes

can be attributed to the driver. Preventing human error is thus a major issue for
increasing road safety.

1.1.1. History of Driver Assistance Systems

Car manufacturers identified long ago the potential for Advanced Driver Assistance
Systems (ADAS) that support the driver in his task. The first marketed ADAS was
an Adaptive Cruise Control (ACC) system offered by Mitsubishi in 1995. An ACC
keeps a motor vehicle at the speed set by the driver like a regular Cruise Control
system does, but it additionally comprises a forward looking sensor monitoring the

2
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Crash-Factors in Intersection-related Crashes

Driver error

Vehicle malfunction

Environmental circumstances

96.5%

2.5%
1%

Figure 1.2.: Results of the National Motor Vehicle Crash Causation Survey. Data
source: NMVCCS, 2007.

area ahead. If the sensor detects a vehicle in front, the ACC adapts the speed in
order to keep the vehicle at a safe distance.

A more recent type of collision avoidance systems, also relying on forward looking
sensors like LIDAR and RADAR, are Precrash systems. The first system of its
kind was offered by Honda in 2003 [Shaout et al., 2011]. Contrary to an ACC,
a Precrash system is permanently active during driving and constantly observes
the area ahead of the vehicle. As soon as the system detects a possible collision
with an obstacle in front it issues a warning to the driver and in most cases also
prepares seatbelts and brakes for an upcoming emergency break. If the driver still
does not react, the system triggers an emergency braking that mitigates or even
prevents a crash.

Blind Spot Information Systems (BLIS) are even more tailored to accident pre-
vention, as they notify the driver of vehicles situated in the uncovered (=blind)
area of side- and rear-view mirrors. A vehicle equipped with BLIS has on each
side an additional sensor like a laser scanner, radar sensor or a camera. These
sensors inform the driver visually of other vehicles being currently in its blind
spot by an illuminated LED close to the corresponding side-view mirror. A BLIS
was first presented by Volvo in their 2004 model update of the S80 sedan [Shaout
et al., 2011]. Newer systems also take corrective action into steering to prevent
anticipated accidents.

With sensors and onboard computers becoming increasingly powerful the use
cases and capabilities of driver assistance systems have accordingly increased. Cur-
rently commercially offered ADAS feature Lane Keeping Assistants, automatic
parking and traffic sign recognition [Bosch GmbH, 2013] to name a few.

3
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1.1.2. Assistance Systems for intersections

Although intersection-related crashes account for an overproportional share in ac-
cidents there are currently no commercially available ADAS that assist the driver
in negotiating an intersection. Certainly, a Precrash system can help to prevent
rearending on intersection entrances and a BLIS assists when merging into a de-
sired lane for turning. But both of these systems support the driver only during
approaching instead of during the whole crossing maneuver. One reason for the
lack of suitable ADAS is the high specialization of nowadays systems: they are all
tailored to a very specific use case in a constrained situation. Precrash systems for
example base their decision to intervene on the detection of an obstacle in the ve-
hicles path without requiring to identify it as a certain entity [Shaout et al., 2011].
The information that it lies on a collision course with an extrapolated trajectory
of the own vehicle is sufficient.

At intersections it is often not possible to anticipate conflicts based on extrap-
olated trajectories. One example where this holds true is given in Figure 1.3.

(a) (b)

Figure 1.3.: Physically extrapolated trajectories do not provide any hint of an
upcoming conflict (a), while considering the structure of the intersection does (b).

In Figure 1.3(a) two vehicles entering an intersection from opposite sides are
depicted. Judging from their current movement they are expected to pass each
other. This assessment changes completely when taking the additional lane in-
formation as provided in Figure 1.3(b) into account: The red vehicle can now be
expected to follow a route that crosses the route of the green vehicle and thus a
potential conflict can be assumed.
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The example above demonstrates that in inner-city scenarios a comprehensive
situation assessment can not be obtained from vehicle kinematics alone. Instead,
a multitude of entities, concepts and rules need to be considered, each of which
might be crucial to obtain a correct interpretation of a situation. For the situation
depicted in Figure 1.3 the consideration or neglect of a single aspect – the lane
markings – changes the interpretation completely.

When talking about situations, it is important to clarify what is actually meant
by this term. In this work two types of situations are discerned: traffic situations
and driving situations. The definitions for these types are loosely along the lines
of [Reichart, 2001]. Both of these types are defined around an acting road user,
in this case the driver. A traffic situation is the objectively given spatial and
temporal constellation of traffic related entities, including applicable traffic rules
in which a road user is acting. In contrast, a driving situation is the section of
a traffic situation comprising only these aspects that are currently relevant for a
driver’s behavior. An aspect is relevant if it is perceivable by the driver and can
possibly play a role in its decision making. To give an example: At an intersection
the traffic situation is constituted by all vehicles in the surrounding including the
driver itself, traffic lights, routing of streets, right-of-way rules and all other nearby
road users like pedestrians and bicyclists. The driving situation is an excerpt of
the traffic situation, with only those road users that are noticeable by the driver
and that can eventually cross or join his path.

Whenever the term situation is used without further specification, a traffic sit-
uation is meant. Situation assessment as described here is always concerned with
the assessment of a traffic situation as a whole.

Two major obstacles hinder the realization of a driver assistance system ca-
pable of performing comprehensive situation assessment: lack of adequate sensor
technology and lack of methods for situational inference. For inner-city driving
adequate sensors are required for detecting nearby road users, read lane markings,
recognize traffic signs and provide accurate localization. While for all of these
tasks sensor systems have been developed their performance is still far from per-
fect. Additionally, many sensor systems are still far too costly to be reasonably
used for an ADAS system. For example, a 360 degree laser scanner like the Velo-
dyne HDL-64e has a list price of 75,000 $. Nevertheless, one can expect that as
more and more cars are equipped with ADAS the prices of sensor systems will fall
while their robustness will increase.

The second obstacle towards driver assistance systems for inner-city intersections
is the lack of methods for situational inference. The following section will present
the challenges in developing such methods and detail in which way the thesis at
hand is expected to contribute to mastering them.

5
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1.2. Problem formulation

There are two properties of inner-city scenarios that make situation assessment
especially difficult compared to highway scenarios: High complexity and high vari-
ability. The high complexity arises from the fact that a significantly higher number
of entities can be present at the same time. Besides vehicles also pedestrians, bi-
cyclists, traffic lights and right-of-way rules have to be considered. Additionally,
road users cross the path of others at intersections or zebra-crossings and thus
require coordination. Some entities are even so important that neglecting them
can have serious consequences, e.g. a red traffic light. It is essential to judge the
relevance of one entity to another correctly.
The high complexity of inner-city scenarios is accompanied by a high variability.

When driving in dense inner-city traffic one will rarely encounter the same situation
twice. The number, location and behavior of nearby road users will vary from time
to time and thus the number of possible situations is infinite. That is why it is
crucial to identify in which way a variation changes the correct interpretation. It
is not constructive to consider two situations as completely different just because
the position of a single entity differs by one millimeter. Therefore a mechanism for
abstraction is needed that extracts the gist of a situation and is robust to irrelevant
changes.
The requirements identified in the preceding paragraphs serve as problem to be

addressed by this thesis and can be stated as follows:
Provide an approach to situation assessment:

1. Based on the concept of relevance between entities

2. Scaling to high numbers of road users

3. Showing robustness by abstraction

Situation assessment does not provide a value per se. Stating that a certain
situation belongs to type X and another situation belongs to type Y offers no ad-
ditional information unless it serves as a basis for further usage. In a descriptive
usage identifying elementary types helps to understand how inner-city traffic be-
haves. In a predictive usage the behavior of road users can be projected into the
future to anticipate their maneuvers. Both usage types should be enabled by this
work as well.
Though this work is focused rather on methodical aspects of situation assessment

than on sensory issues it is unrealistic to assume that in the near future sensors
will provide perfect measurements. Until then sensors are prone to inaccuracies,
errors or even complete failure. Based on the preceding considerations the problem
formulation is extended.
Anticipate the future behavior of other road users:

6
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1. Foresee their intended maneuvers

2. Predict their future positions

3. ...while being capable of handling uncertainties of nowadays sensor systems

The aforesaid requirements determined the goals of the PhD project that cul-
minated in the thesis at hand.

1.3. Contributions

The work presented here is a novel, comprehensive approach towards driver as-
sistance systems for urban intersections. It was developed along the problem
formulation given above and comprises the following contributions:

1. Providing a novel approach to situation assessment:

• Based on the concept of affecting and affected entity: The in-
teractions between multiple road users are modeled in a relevance view,
allowing to identify for each road user which entity does currently affect
his behavior.

• Scaling to high numbers of road users: When modeling the in-
teractions between multiple road users by determining pairs of affect-
ing and affected entity the difficulty of the assessment is significantly
lowered: Instead of all-to-all relations only bilateral dependencies are
considered.

• Showing robustness towards the challenges of intersection sce-

narios: Allows to incorporate expert knowledge for distinguishing rel-
evant from irrelevant variations between situations.

2. Providing a framework for situation assessment:

• Recognizing interacting entities robustly The framework provides
a consistent method to learn and to recognize the relations between road
users. It identifies which entity affects whom based on probabilistic rea-
soning. The probabilistic implementation allows to take uncertainties
of real-world sensors into account.

• Predicting Behavior Based on the recognized dependencies of a road
user his future behavior is estimated. This comprises estimating his
maneuver intention as well as his longitudinal maneuver execution.

7
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1.4. Thesis Outline

The remainder of this thesis is structured as follows:

Chapter 2: Related work presents a review on approaches addressing simi-
lar problems as formulated in this thesis. Relevant works come from various areas
which are categorized into three fields according to their focus, namely Situation
Assessment, Trajectory Prediction and Intention Estimation. After a discussion
of the advantages and downsides of each method the need for a novel approach is
motivated.

Chapter 3: Configurations introduces a novel concept for decomposing complex
traffic situations into manageable parts. A Configuration can be used to model the
relationship between interrelated entities and offers insight on the determinants of
individual behavior. Configurations describe how and by what a vehicle’s behavior
is affected and are a central building block for all methods developed in the course
of this work.

Chapter 4: Situation Assessment using Configurations details all these
methods. A special emphasis is put on Situation Assessment itself and some of
the presented methods have been developed for exactly this purpose. Other meth-
ods in turn use Situation Assessment as an additional cue for e.g. improving the
accuracy of a behavior prediction system.

Chapter 5: CarD Simulation Framework describes all aspects of the mi-
croscopic traffic simulator CarD that was developed in the course of this thesis.
Besides its overall architecture also the design of its independently acting road
users is presented and discussed. CarD has been used for creating large datasets
on which newly developed methods have been evaluated.

Chapter 6: Evaluation and Results presents the results obtained from evalu-
ating the methods of Chapter 4. The evaluation is performed on traffic situations
both simulated by CarD and recorded by a test vehicle and the benefit of the
newly developed methods is investigated.

Chapter 7: Future Work is concerned with all the areas that need additional
research. It discusses insights requiring further validation and issues that have
been raised and might be worth looking into. The chapter also identifies ways for
extending the framework presented herein.

Chapter 8: Conclusion provides a summary of the work and gives an out-
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line of all previous chapters. It also relates to the introduction by comparing the
initially set goals and the final achievements.
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2. Related Work

The issues identified in the problem formulation of Chapter 1 are subject to vital
research. This chapter reviews the state of the art in related work and identifies
shortcomings of current approaches for the problem at hand.
Section 2.1 starts by matching the goals of this thesis with research areas that

pursue similar goals. Three areas are identified as highly related, namely Situation
Assessment, Intention Estimation and Trajectory Prediction. The corresponding
works are reviewed in Subsections 1-4. The subsequent discussion in Section 2.2
reveals that current methods suffer from various shortcomings: e.g. they are tai-
lored to highway-scenarios or do not regard intersection-specific aspects like traffic
lights and right of way.

2.1. Literature Review

In the preceding chapter two major goals were defined that a sought-after method
should reach. These goals are:

1. Assess complex traffic situations in inner-city driving. Determine which road
users interact and in which way.

2. Anticipate the future behavior of other road users

The first goal is usually tackled by a field called Situation Assessment. Due to
the fact that situation is a very general term, an assessment can be performed
wherever spatial and temporal constellations of multiple acting entities are an-
alyzed. That is why approaches for Situation Assessment range from robotics
[Wendler and Lenz, 1998] across medicine [Zahlmann et al., 2000] to warfare [Das
et al., 2002]. As the overlap of problems between the various applications is rather
small this review will only focus on works concerned with traffic situations. These
works approach the problem in one of two ways: Either by classifying a situation
as one out of a set of previously specified ones, such that the known interpretation
of a pre-specified situation can be reused for the currently observed one. Or by
interpreting the spatial and temporal constellations of entities based on previously
learned patterns.
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The second goal matches the field of Intention Estimation, which is concerned
with anticipating the next maneuver of an observed road user. The set of con-
sidered maneuvers is defined beforehand and ranges in most works between two
and four; examples are Going straight vs. Turning Left/Right or Following vs.
Overtaking.
Intention Estimation provides a coarse, discrete description of a road user’s

future behavior. Methods from Trajectory Prediction allow for a more fine-grained
estimation that also comprises a route with anticipated positions and velocities.
Works in this field could serve also as a basis for the second goal.
In the following subsections works of all mentioned fields are presented. Some

approaches do not belong exclusively to one field or another, but combine multiple
fields e.g. when simultaneously estimating intention and trajectory of an observed
vehicle. These works are presented in Subsection 2.1.4.

2.1.1. Situation Assessment

A recent approach for classification-based situation assessment is described in [Re-
ichel et al., 2010]. The authors propose to decompose complex situations into
subsets, which are termed situation aspects and are based on a concept first intro-
duced by Schaaf in [Schaaf, 1997]. A situation aspect is defined as a “...relevant
hypothesis that must be answered in order to select and parameterize the correct
behavior” [Reichel et al., 2010]. Reichel et al. use a Convoy Merging Situation As-
pect (CMSA) that is designed to answer the question “Does the EGO participate
at a convoy merging on the absorbing convoy lane?” Based on a set of features
describing state and constellation of ego and nearby vehicles a classifier is trained
that answers the question posed by the CMSA. An extension of Random Forests
[Breiman, 2001], a Scenario-Based Random Forest is employed for the classification
task, which differs from the original algorithm in that it is oversampling training
cases based on their associated risk. Using this method the presence of a convoy
merging situation is recognized with an accuracy of about 91 %. Downsides of the
approach is its limitation to a single type of situation and its focus on highway
scenarios.
Another work on situation classification is presented in [Vacek et al., 2007], de-

scribing a method for a more general situation assessment. The goal is to interprete
arbitrary situations by comparing the observed one with already encountered ones
stored in a memory. At the same time the experience gained from already encoun-
tered and successfuly mastered situations is used to deduce the appropriate action
to take. To arrive at this goal case-based reasoning is employed, a framework from
the field of Artificial Intelligence. In this paper, cases represent situations. An ini-
tial set is manually designed and stored in a memory, the so-called case-base. This
case-base is structured in a hierarchical manner, as it is shown in Figure 2.1(a).
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The hierarchy orders situations depending on how general they are, with the most
general situations being on top. An additional temporal interconnection is used
to store the evolution of situations as a result of maneuvers performed by drivers
being in that situation. Figure 2.1(b) displays the evolution of an intersection
situation depending on the turning behavior chosen by the present vehicles, where
one behavior leads to a crash.

(a) (b)

Figure 2.1.: Case-bases for representing different situations and their evolution;
as proposed in [Vacek et al., 2007]. The case-base is structured in a hierarchical
manner (a). Temporal links between cases represent the consequences resulting
from alternative actions (b).

Using a case-base as in Figures 2.1, newly encountered situations are matched
to it and the closest case is retrieved. For the retrieved case the possible behaviors
and their experienced outcomes are checked and the behavior with the most desired
outcome is chosen and executed. The new situation is added to the case-base along
with the outcome of the behavior. The overall approach is appealing in theory,
but it requires a significant amount of handcrafting to set up the case base and it
might not be desired that a vehicular system learns from experience, as this means
that critical situations need to be encountered to obtain a learning signal.
The framework proposed by [Hülsen et al., 2011] is also capable of reasoning

about situations based on given knowledge. Huelsen et al. employ Description
Logic [Baader, 2003], a subset of first-order predicate logic that is limited to unary
and binary relations, in order to specify an ontology. This ontology consists of
concepts and relations. Concepts are entities like lanes, traffic signs or cars. The
taxonomy of these objects is realized in a hierarchical manner, e.g. YieldSign
is a sub-concept of TrafficSignAtCrossing. Relations between entities describe
dependencies between concepts and provide the basis for any reasoning. Relations
considered are isPart, approachesTo, and hasToYield to new a few. The way
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concepts and relations are used is illustrated in Figure 2.2.
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Figure 2.2.: An ontology for describing intersection situations as proposed in
[Hülsen et al., 2011]. It consists of both concepts like Car and YieldSign as well
as relations like hasToYield.

The goal of the reasoning framework is to create a system that fully comprehends
a traffic situation. The authors demonstrate its capabilities by querying various
aspects of a complex intersection scenario, for example ’Retrieve all instances with
the relation ”hasToYield” coming from car 1’. They can show that their system
arrives at the right conclusions, but a single query takes 3 seconds on a modern
quad-core processor. Though description logic circumvents the problems arising
from a closed world assumption as given in other logic formalisms, it is still not
capable to cope with noisy sensor information.

While logic formalisms have the advantage of providing a well-defined mecha-
nism for reasoning, they also suffer from their inability to handle inexact informa-
tion. In [Schamm and Zöllner, 2011] a method is proposed that aims at combining
first-order logic with probabilistic networks, as the latter is a viable method to
incorporate noisy sensor data . The authors employ Object-Oriented Probabilistic
Relational Language (OPRL), an entity-relationship based formal description, in
order to assess situations and judge the level of risk associated with them. In
Figure 2.3(a) an exemplary situation for risk assessment is given. Using OPRL,
this situation can be transferred into a relational model as it is shown in Figure
2.3(b).

The relational model serves as a basis for constructing an object-oriented Bayesian
Network, where each entity or relation is mapped to an individual network frag-
ment that is connected to other fragments according to the OPRL description. The
resulting Bayesian Network is a polytree for which its conditional probabilities can
be determined exactly. Schamm and Zöllner claim that their computations take
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Figure 2.3.: Approach to situation assessment using Object-Oriented Probabilistic
Relational Language (OPRL) as presented in [Schamm and Zöllner, 2011]. Sketch
of a typical driving situation and features for describing it (a). The correspond-
ing OPRL description models the relations between the vehicles in a class-based
notation (b).

less than 0.02 seconds on a single CPU core. A downside of their approach is the
high effort for the manual model specification, as it requires to specify both the
logic description as well as its realization as Bayesian Network.

The method for situation assessment presented in [Schubert et al., 2010] is also
based on Bayesian Networks while setting logic formalism aside. The goal of the
assessment is to select an appropriate and safe maneuver while driving on highway,
i.e. changing or keeping the current lane. For this purpose the measurements of
an upstream lane and occupancy detection system are converted into probabilities
and discretized into a small number of states. These states are part of the Bayesian
Network used for taking a maneuver decision, which is depicted in Figure 2.4.

Schubert et al. use the Bayesian Network to turn measurements of an observed
situation into a utility for performing a lane change versus keeping the lane. The
utility value depends directly on the situation assessment provided by the Bayesian
Network, which judges the individual safety of driving on each of the nearby lanes.
The assumed safety of a lane serves as basis for the expected utility of driving
on that lane in that the overall system recommends the maneuver that results in
driving on the safest lane. The overall approach is very suitable to handle uncertain
measurements and requires only a moderate amount of handcrafting, however, it
is limited to a very constrained highway scenario.

2.1.2. Intention Estimation

A situation assessment returns a descriptive model answering such aspects about a
situation as e.g. which lane can be considered safe, which road user is interacting

15



2. Related Work

Observation_EgoLane__DST

0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6

16.7
16.7
16.7
16.7
16.7
16.7

LeftLane: Status of left neighbor lane

Dangerous
Free
Occupied

33.3
33.3
33.3

RightLane: Status of right neighbor lane

Dangerous
Free
Occupied

33.3
33.3
33.3

Observation_RightLane__DST

0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6

16.7
16.7
16.7
16.7
16.7
16.7

Observation_LeftLane__DST

0 to 1
1 to 2
2 to 3
3 to 4
4 to 5
5 to 6

16.7
16.7
16.7
16.7
16.7
16.7

LateralSafety

LateralManoeuvre

KeepLane
LaneChangeLeft
LaneChangeRight

33.3
33.3
33.3

LaneChangeRight

Impossible
Possible
Safe

33.3
33.3
33.3

Observation_BorderLeft

Dashed
Solid
Unknown

33.3
33.3
33.3

Observation_BorderRight

Dashed
Solid
Unknown

33.3
33.3
33.3

LaneChangeLeft

Impossible
Possible
Safe

33.3
33.3
33.3

EgoLane: Status of own lane

Dangerous
Free
Occupied

33.3
33.3
33.3

BorderLeft: Type of the left lane border

Dashed
Solid

50.0
50.0

BorderRight: Type of the left lane border

Dashed
Solid

50.0
50.0

Figure 2.4.: The Bayesian Network for deriving lane-change decisions as proposed
in [Schubert et al., 2010]. Based on the conditional probabilities in OwnLane,
LaneChangeLeft and LaneChangeRight the utility of a lane change is determined
in the LateralSafetyNode.

with whom and which type of driving situation a driver is currently in. This
information might suffice already for various applications, though in many cases a
predictive model for the future behavior of a road user is more helpful. Especially
for collision avoidance systems an accurate prediction capability for the maneuvers
of nearby road users is crucial. The field of intention estimation is concerned with
the development of methods for anticipating maneuvers.

Case-based reasoning is not only used for situation assessment as described in
the previous subsection, but can also be applied to intention estimation. In [Graf
et al., 2013] a learning concept for maneuver prediction which relies on case-based
reasoning is presented. The reasoning system is tailored to highway scenarios,
where it estimates whether a leading vehicle is going to perform an overtaking
maneuver or stays in its lane. Cases are created by coding situations as sequence
of characters that represents the constellation of all nearby vehicles. The case ’rsf ’
for example stands for a situation in which the intent for a car driving on the
right lane relative to the ego vehicle is estimated, which in turn has a car passing
by its side and another car driving in front of it. A case is further augmented by
information describing a situation’s dynamic aspects, here the relative velocity and
the distance between observed and its leading vehicle, which are also discretized
and character coded. The case-base thus consists of cases that can be retrieved
and compared by their character code and for which the resulting maneuver is
known. The complete system is evaluated on real-world data and it is shown that
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the system improves with experience, though the low number of samples used
impedes statements about the long-term stability of the system. Another problem
is that constellations are discretized into very coarse categories like right or faster.
This discretization might sacrifice accuracy for tractability.
Incorporating sensor uncertainty into prediction methods is a major topic in the

research community, which is why probabilistic models are becoming increasingly
popular also in the field of intention estimation. In [Lidstrom and Larsson, 2008] a
probabilistic approach for predicting the turning intention of vehicles approaching
an intersection is presented. Lidström and Larsson design a state space model
that captures the dynamics of a vehicle during an intersection approach. The
corresponding velocity evolution model consists of two components. The first
component implements a car-following behavior based on the Gipps model [Gipps,
1981] and the second component a decelerating behavior for turning maneuvers.
A particle filter takes the observed velocity profile of an approaching vehicle as
input and estimates how likely it belongs to either of these components. As soon
as the likelihood of one component is significantly higher than the likelihood of the
other component, the system returns whether the observed vehicle intends to go
straight or turn at the intersection. The accuracy of the estimation is about 85 %,
but for almost every fifth vehicle no decision could be made as the likelihoods were
not discriminative enough. As 400 particles need to be evolved for each vehicle
the approach is also computationally costly.
A common framework for state space models are hidden Markov Models (HMM).

They are called ’hidden’ because the internal state of the modelled entity can not
be measured directly. In the works discussed here the hidden internal state is the
intended maneuver. In [Hayashi and Yamada, 2009] HMM’s are used to predict
unusual and potentially dangerous right-turn behavior where the driver leaves the
correct driving corridor and thus provokes conflicts with other road users. The
three considered behaviors are depicted in Figure 2.5(a).
The situation consists of the observed vehicle arriving from below and an addi-

tional vehicle arriving from above. Note that left-hand traffic is assumed. Hayashi
and Yamada train an individual HMM for each of the three behaviors and for each
of twelve Time-To-Collision (TTC) intervals. The TTC is obtained by extrapo-
lating the kinematic movement of the two vehicles. The resulting 36 HMM’s are
trained individually on data obtained by a driving simulator. In order to arrive
at a single decision two mechanisms are employed. At first, only those HMM’s
are considered which match the currently estimated TTC. Second, out of these
models the one with the highest likelihood that also surpasses a given threshold
is selected. If no model surpasses the threshold, the intention is considered un-
predictable (see Figure 2.5(b). An evaluation on driving simulator data shows an
almost perfect estimation accuracy for TTC’s below 1.5 seconds. Still, it is limited
to a very specific situation.
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Figure 2.5.: A HMM-based approach for predicting potentially dangerous right-
turn behaviors as presented in [Hayashi and Yamada, 2009]. The three considered
right-turn maneuvers (a). Maneuver A is correctly executed while the others lead
either to a critical situation (B) or end in the wrong lane (C). In (b) the method
for predicting unusual right-turn behavior is depicted. Based on the current TTC
the results of corresponding HMM’s are gated to the decision block.

Another solution for anticipating risky intentions is described in [Aoude et al.,
2012]. The work is concerned with early detection of red light runners such that
vehicles intending to violate a red traffic light are detected before they enter the
critical intersection area. This information can then be used to either remind the
driver of the violating car of braking or to warn other drivers nearby. Besides
a support vector machine the authors also use HMM’s for recognizing a drivers
intention to violate a red traffic light. One HMM, denoted as λc, is trained solely
on instances where the observed vehicle stops correctly at the designated line. A
second HMM, λv is trained solely on instances where the observed vehicle does not
stop correctly but violates the traffic light by crossing the intersection. In order
to decide which of the two possible maneuvers an approaching vehicle intends to
perform the likelihood ratio of λc and λv is computed based on the behavior of the
observed vehicle so far. If the ratio surpasses a given threshold the system outputs
a warning of an upcoming violation. In a first evaluation the authors achieve a
true positive rate of almost 98%, but at the expense of an false positive rate of
about 17 %.

In [Meyer-Delius et al., 2009] HMM’s are used to anticipate one of three differ-
ent maneuvers on highways: ’Following’, ’Passing’ and ’Aborted Passing’. Here,
HMM’s constitute the top layer of a hierarchical, two-layer model and Dynamic
Bayesian Networks [Murphy, 2002] (DBN) serve as bottom layer. The bottom
layer implements a state space model that tracks a vehicle’s behavior on a phys-
ical level while the more abstract top layer recognizes the intended maneuvers.
Separating state space model and maneuver recognition into two separate layers
has the purpose of lowering the complexity of the overall system. Meyer-Delius et
al. evaluate their method on both simulated and real data and show that their
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hierarchical model is able to identify maneuvers with a good accuracy. Unfortu-
nately, their approach requires that the observed vehicle is already executing the
first part of a maneuver before it can be recognized. Using this approach, there is
only little time to react to an intended maneuver after it has been recognized.
A longer prediction horizon is pursued in the work presented in [Dagli et al.,

2003] which is concerned with an early detection of overtaking maneuvers on high-
ways. Dagli et al. use a Dynamic Bayesian Network that captures both the current
state and the driving situation of an observed vehicle and combines this informa-
tion for anticipating its next maneuver which can be either changing or keeping
the current lane. This is depicted in Figure 2.6.

Lane_end

Blinker Lat_V

Long_Prob

Long_ACC

F_TN

BL_TN

BL_dTN

BL_Pressure

BL_TTC BL_dTTC

L_GAP

L_Lane FL_dTN

FL_Pressure

FL_dTTC

FL_TN

FL_TTC

B_dTTC B_TTC

B_Pressure

B_dTN B_TN

F_TN

F_Pressure

F_TTC

F_dTTC

R_Gap

R_Lane

FR_dTTC

FR_Pressure

FR_dTN

FR_TTC

FR_TN

BR_dTTC

BR_Pressure

BR_dTN

BR_TTC

BR_TN

Lat_Prob
F_dTN

Sum_Lat_Evid

Figure 2.6.: The static part of a DBN for predicting overtaking maneuvers as
proposed in [Dagli et al., 2003]. Green borders denote individual subnets. The
necessity for a lane change, called Pressure, is derived from the TTC and Net-
Time-Gap (TN) to vehicles in Front, Back, to the Left or Right.

The DBN is separated into five subnets (framed green), where each subnet cap-
tures a different aspect of a situation, for example the possible gain of performing
a lane change or the behavior of the observed vehicle. Nodes of the DBN represent
situational features like the Time-To-Collision to nearby vehicles and the observed
vehicle’s lateral position in the current lane. The TTC and the Net-Time-Gap is
transformed into a probabilistic necessity to perform a lane change, called pres-
sure. In a qualitative evaluation on simulated data the authors demonstrate that
their approach can predict an intended lane change 1.5 seconds in advance. At the
same time they have to admit that due to the complexity of both network and its
features a bayesian learning is intractable.
A much leaner and more tractable method for intention estimation using Dy-

namic Bayesian Networks is presented in the works by Lefèvre [Lefèvre et al.,
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2011, Lefèvre et al., 2012]. Her approach aims for identifying risky situations at
intersections by detecting conflicts between intention and expectation. This means
that the proposed algorithm compares a driver’s intended behavior with the behav-
ior expected by him and if it finds a significant difference it defines the situation as
risky. The intuition behind this is that each driver selects his own behavior based
on the anticipated maneuvers of others and an erroneous anticipation may result
in a crash. For example, a situation where a vehicle approaching an intersection
would be expected to yield to vehicles with right-of-way but behaves as if it intends
to cross, is considered risky. The Dynamic Baysian Network used by Lefèvre et
al. consists of only three nodes per timestep; its structure for three consecutive
timesteps is given in Figure 2.7.
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Figure 2.7.: Risk estimation based on a detected conflict between the intended and
expected behavior of a vehicle as proposed in [Lefèvre et al., 2012]. The Dynamic
Bayesian Network for a single vehicle and three consecutive time steps. E models
the expected behavior and B models the intended behavior. The latter is hidden and
is therefore derived from the observed behavior O. Bold arrows represent multi-
vehicle dependencies.

The node with the letter E denotes the expected behavior, node B captures
the hidden intention and node O the physical behavior for an observed vehicle.
Physical behavior is obtained by measuring a vehicles position, speed and heading.
The expected behavior is obtained by modeling the driver as compliant road user
obeying traffic rules and avoiding unsafe maneuvers. The intention is derived from
the similarity of expected and physical behavior. The risk level is obtained by
computing the probability of a mismatch between intention and expectation. If
this probability surpasses a certain threshold a situation is considered dangerous.
In a large scale evaluation on real-world data Lefèvre et al. can show that their
system detects more than 90 % of risky situations at a TTC of at least 1 second.
The only downside of the approach is its limitation to only two vehicles.
One major benefit of Dynamic Bayesian Networks is their ability to model on-
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going processes in a probabilistically consistent manner. This ability comes with
significant computationally costs which can be either met with shrinking a network
to the bare minimum like Lefèvre did or by representing the dynamic part outside
the network. This results in a standard Bayesian Network plus a dynamic behavior
model and was proposed in [Liebner et al., 2012]. The goal of the approach is to
estimate whether the driver of the ego vehicle is intending to turn right or to drive
straight at the next intersection. A Bayesian Network is used to relate a driver’s
hidden intention to observable behavior. The dynamic aspect of the behavior is
captured using the Intelligent Driver Model (IDM) [Treiber and Helbing, 2002],
which is one of the most widely used driver models for car-following behavior. The
IDM reproduces the way a driver keeps a gap to a leading vehicle depending on
his velocity, the leading vehicle’s velocity and his driving style. The main feature
for the intention estimation by Liebner et al. is the velocity profile of the ego
vehicle while approaching an intersection. This is motivated by the observation
that a vehicle with the intention to turn will significantly decelerate already long
before reaching the intersection while a vehicle crossing straight will not. In order
to exploit this property the IDM is extended such that it also considers turning
behavior. The match between an observed velocity profile and the expected be-
haviors as computed by the IDM returns a likelihood for turning versus driving
straight. This likelihood is provided to the Bayesian Network which returns its es-
timation of the intention. An evaluation on real data confirms that the approach
achieves highly accurate estimations, however, this accuracy drops significantly
when the driver’s chosen velocity is dominated by a preceding vehicle.

The work presented in [Kasper et al., 2011] is another example where a static
Bayesian Network is used for modeling dynamic behavior. It is concerned with
an early recognition of intended maneuvers of vehicles driving on highway. The
Bayesian Network used for recognition captures all dynamic aspects of the observed
situation in discrete states of its nodes. As the goal is to identify 27 different
maneuvers the complexity of the network is considerably high. This is adressed in
two ways. Firstly, the Bayesian Network is modeled in an object-oriented manner
(OOBN) [Koller and Pfeffer, 1997] which allows for modularization and reuse of
subnets. Secondly, not all conditional probabilities in the network are trained but
they are parameterized by hand. For example, the node LaneChange is set to
the state right if the probability of node CrossingLaneMarkingLeft is 0 and the
probability of node CrossingLaneMarkingRight is 1. Unfortunately, the authors
do not provide a quantitative evaluation of their approach for demonstrating its
feasibility.
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2.1.3. Trajectory Prediction

A method for intention estimation outputs the upcoming maneuver of an observed
vehicle. In some cases, however, it might not only be of interest which maneuver
a vehicle will perform but also how it will execute it. Knowing when a vehicle
will be at a certain position is an important requirement for an accurate collision
avoidance system. Therefore a prediction of a vehicle’s path over time, namely its
trajectory, is needed. The following approaches are concerned with this problem.

In [Yao et al., 2013] a method for predicting trajectories during lane change
maneuvers is presented. The method relies on a large database of previously
recorded lane change maneuvers. When an observed vehicle initiates a lane change,
its current trajectory is compared to the ones already in the database. The distance
metric for this comparison takes besides kinematic properties also the distances
to nearby, surrounding vehicles into account. By means of a nearest-neighbor
algorithm, the k most similar trajectories are retrieved from the database and
combined into a single one using an inverse distance weighting. At the moment
the approach works only on straight highway sections and does consider possible
changes in a vehicles velocity during the maneuver only via heuristics.

A parametric approach to trajectory prediction is undertaken in [Hermes et al.,
2009]. In this work the goal is to predict a vehicle’s motion for intervals of up to
three seconds. The proposed system applies a two-step procedure: In the first step
a coarse path is predicted, which is then refined in the second step. The path is
predicted by using an RBF network classifier [Schürmann, 1996] with adapted ra-
dial basis functions. Instead of computing the Euclidean distance between training
samples the radial basis functions employ a variant of a string matching method
that is known for its suitability for trajectories. In the second step, particle fil-
ters are initialized with the path given by the classifier. The mean-shift algorithm
[Comaniciu and Meer, 2002] condenses the trajectories predicted by the individ-
ual particle filters into a single one. Based on recorded vehicle odometry data
the authors can show that their method achieves an accurate motion prediction
even up to three seconds in the future. Nevertheless, for this result the number of
considered path alternatives are limited to two very distinct ones.

A more general take on long term motion prediction is presented in [Alin et al.,
2012]. It is based on the intuition that a vehicle’s path is not only determined
by its current dynamics but also by its surrounding, for example by the course of
its current lane or the behavior of other traffic participants. This environmental
knowledge is incorporated as attractor functions into a Bayesian filtering frame-
work. The basis of the framework is provided by a grid-based Bayesian filter, that
distributes the state estimate of a vehicle’s position, velocity and direction over
a uniformly arranged grid to handle multi-modal probability distributions. The
probabilities for the individual states in the grid are determined by both the kine-

22



+
3
m
m

C
h
a
p
te
r
2

2. Related Work

matic behavior of the observed vehicle and the influence exercised by the attractor
points. In Figure 2.8(a) attractor points that model lane-following are depicted.

Left lane borderRight lane border

Driving 

direction Attractor point

(a)

A2

A1
A3

Start
state

(b)

Figure 2.8.: In [Alin et al., 2012] attractor functions are used for a trajectory
prediction method that takes lane information directly into account. A curved lane
segment with attractor points along its center that model lane-following behavior
(a). Splines represent a path from a grid node to all attractor locations (b). If
a spline’s curvature is too high such that a vehicle could not traverse it then the
corresponding attractor is considered unreachable and not used anymore.

In order to determine whether a grid node is influenced by a certain attractor
splines are fitted between the current vehicle position, this node and the attractor
points as shown in Figure 2.8(b). If the curvature of the spline is above a pre-
determined threshold thus leading to an unrealistic vehicle movement then the
attractor is not considered for that node. In an evaluation on simulated data Alin
et al. can show that using environmental knowledge improves both tracking and
prediction accuracy. One downside of the approach is that no method for the
parameterization and weighting of attractor points is provided.
The authors of [Petrich et al., 2013] are also incorporating lane-following into

their models in order to obtain more accurately estimated trajectories for long
prediction horizons. Petrich et al. employ a stochastic filter framework based on
Extended Kalman Filters (EKF) for predicting the lateral dynamics of vehicles for
up to 4.8 seconds in advance. A key element of their approach is the use of Active
Lane Points (ALP) for encoding a vehicle’s lateral position with respect to nearby
lanes. The ALP of a lane is the perpendicular projection of a vehicle’s x and y
position to the center of this lane. Under consideration of measurement noise and
the typical deviation exercised by drivers during lane-following, the distance to
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nearby lanes can be used to determine which lane a driver is currently driving on.
This aspect makes the approach suitable for multilane roads, as opposed to the
approach presented by Alin et al. Additionally, Petrich et al. do not assume that
the observed vehicle stays strictly in the same lane but they are able to detect
lane-changing maneuvers based on the change of the distance to the nearest ADP
over time. The trajectory prediction is in all cases obtained by initializing the EKF
with the current dynamics and using the nearest ADP as pseudo-measurement for
its update step. In a qualitative evaluation, the authors show the general feasibility
of their method. Unfortunately, it does not yet consider longitudinal dynamics,
which is necessary for anticipating critical situations.
In [Althoff et al., 2009] lane-following is only one of the aspects that are taken

into account in their prediction system. Additionally they also incorporate other
traffic participants along with their interactions and maneuvers. In order to make
such a comprehensive state space tractable, Althoff et al. rely on Markov chains
[Norris, 1998] and a coarse discretization of the state space. Markov chains model
the transition probabilities from one discrete state to the next and are used here to
compute stochastic reachable sets for the longitudinal and lateral behavior of all
nearby road users. An illustrating comparison of a continuous reachability set and
a discrete, stochastic reachability set based on Markov chains is given in Figure
2.9.
The probability distribution in the sets is adjusted by models that implement

car-following behavior and lane change behavior by increasing the probabilities in
cells that are in line with these behaviors. The final result is a set of probabilistic
trajectories of all considered vehicles. A drawback of this approach is its com-
plexity: it has a high number of free parameters that need to be carefully set to
reasonable values.

2.1.4. Combined Approaches

As it was shown above, the accuracy of a trajectory prediction can be significantly
improved by incorporating information about the course of roads and individual
lanes, since especially in single-lane roads it is viable to assume that a driver will
stay within the borders of its current lane. But this assumption does not hold
anymore when the lane splits up as it is the case at intersections. In order to
still make use of lane information a prediction method needs to know which of the
alternatives a driver plans to take, which is addressed by intention estimation. Due
to this dependency, there are some works that combine intention estimation and
trajectory prediction in a common framework for obtaining accurate predictions
on both maneuver level and physical level. Two of the most relevant approaches
are discussed in the following.
The approach presented in [Gindele et al., 2013] employs a single Dynamic
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Figure 2.9.: In [Althoff et al., 2009] discrete reachable sets are proposed for a tra-
jectory prediction method that takes lane information as well as other road users
into account. Reachable set for a given time interval, where blue polygons describe
the future development of position and velocity (a). The corresponding stochastic
reachable set of a Markov-chain is discretized and provides probabilities for indi-
vidual cells in the state space, encoded here in saturation levels of blue (b).
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Bayesian Network. The nodes of the DBN encode context knowledge with their
states determined by a set of separate models, each of them capturing a different
aspect of the environment. For example, one model is tagged as Lane Matching
Model and uses a vehicle’s position relative to nearby lanes to determine the prob-
ability of the vehicle following the respective lane. Another model, the Traffic
Participants Relations Model consists of multiple submodels that turns interrela-
tion between road users like right of way or TTC into probabilities. All of the
context models are combined by a Policy Model that takes evidence about the
environment of a vehicle as input and returns a probabilistic estimate of its future
behavior, e.g. the future trajectory. This combining model is trained on recorded
driving data, while the other models are parameterized by experts in order to make
better use of limited training data. While the authors claim that the approach
can handle arbitrary numbers of road users the evaluation is restricted to only two
vehicles approaching an intersection.

In [Tran and Firl, 2013] a prediction method is presented that combines a linear,
probabilistic regression algorithm named Gaussian Processes [Doob, 1944] with
a nonlinear filtering method, the Unscented Kalman Filters (UKF) [Julier and
Uhlmann, 1997]. The goal of the work is to determine which route a vehicle
approaching an urban intersection will take and how it will execute its maneuver.
In the first step, a dataset of approaching maneuvers was recorded using a 360◦

laser scanner stationed at an intersection. For each of the three possible maneuvers,
turn-left, turn-right, go-straight a pair of two-dimensional Gaussian Processes is
trained. In a coordinate system that is stationary for the considered intersection,
one Gaussian Process learns the horizontal velocity and the other one the vertical
velocity for a given position. A pair of Gaussian Processes can be seen as describing
a motion flow field describing the expected vehicle movement for a given position.
An illustrative example of such a motion flow field is given in Figure 2.10.

For a vehicle approaching the intersection, the intention estimation is realized
by computing the likelihood of all intentions given the vehicles position and ve-
locity. This likelihood can be directly obtained from the trained pairs of Gaussian
Processes. The maneuver that is associated with the pair having the clearly high-
est likelihood is considered the intention, where ’clearly’ means that its likelihood
is at least twice as high as for any other model. Once the intention has been
determined, the trajectory prediction is accomplished by an Unscented Kalman
Filter, which obtains its measurement updates from the Gaussian Processes as
well, by sampling from the motion flow field. The advantage of coupling Gaussian
Processes and UKF is that for each part of the trajectory the uncertainty of the
prediction can be determined. The authors do not provide a quantitative evalua-
tion of their approach but one downside of it is its inability to handle cases where
multiple cars arrive at an intersection and interact.
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Figure 2.10.: Schematic Motion flow field as taken from a pair of Gaussian Pro-
cesses for jointly predicting the intention and the trajectory of a vehicle. It shows
the most probable velocity vector for a vehicle performing a left turn. From the
length of the arrows one can tell that a vehicle slows down before turning and
accelerates afterwards. Adapted from [Tran and Firl, 2013].

2.2. Discussion

As already stated in the beginning of this chapter, there are two problems for
which suitable methods are needed. The methods should be able to:

1. Assess complex traffic situations in inner-city driving. Determine which road
users interact and in which way.

2. Anticipate the future behavior of other road users

The first problem is investigated in the field of Situation Assessment; related
methods were discussed in Subsection 2.1.1. It turned out that none of these
methods provide an adequate solution. The approaches presented in [Reichel et al.,
2010] and [Schubert et al., 2010] consider only a single, specific situation and are
restricted to highway scenarios. There is no obvious way how these algorithms can
be extended to multiple, distinct situations or adapted to an urban setting. More
versatile methods have been proposed in [Vacek et al., 2007] and [Schamm and
Zöllner, 2011]. Their frameworks can handle various types of situations but this
versatility is achieved by a labor-intensive modeling of the considered situations
by human experts. The framework presented in [Hülsen et al., 2011] requires less
handcrafting and stands out with its ability to infer a large number of relations that
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also take traffic signs and rules into account. Unfortunately, the logic formalism
providing this capability is computationally costly and unable to handle noisy
sensors. But especially the fact that nowadays sensors provide imperfect and
uncertain measurements is a problem that is recognized and increasingly addressed
by the research community. This is why most of the discussed works rely on some
kind of probabilistic modeling to incorporate uncertain sensor measurements, and
the method developed in this thesis should possess this ability as well.
The second problem is addressed by research in the areas of Intention Estimation

and Trajectory Prediction. Works from the former area were discussed in Subsec-
tion 2.1.2. They contain useful ideas but all of them miss at least one aspect import
for this work. The approaches proposed in [Graf et al., 2013] and [Dagli et al.,
2003] struggle with their complexity and either require a coarse discretization or
guessed parameters in order to be tractable. The works presented in [Aoude et al.,
2012] and [Hayashi and Yamada, 2009] are tailored to a very specific situation
that is only rarely encountered in everyday driving. A more common situation is
considered in [Lefèvre et al., 2012], however, the method fails as soon as a vehicle
driving in front of the observed vehicle influences the observed vehicle’s velocity.
Car-following behavior is more directly addressed in the works of [Lidstrom and
Larsson, 2008] and [Liebner et al., 2012] but their methods also experience a sharp
drop in accuracy whenever a vehicle’s velocity profile is not only determined by
its intention but also by a preceding vehicle. Still, the velocity profile appears to
be an import feature for estimating a drivers intention. At the same time it is
important to take interactions between vehicles into account.
In Subsection 2.1.3 works from the area of Trajectory Prediction were discussed

and, again, none of these allow a direct application to the problem at hand. For
example, one method is limited to lane change maneuvers [Yao et al., 2013] while
another method requires predefined path alternatives [Hermes et al., 2009]. The
approach taken in [Alin et al., 2012] is tailored to single lane roads but disregards
interactions with other vehicles. In [Petrich et al., 2013] multilane roads are explic-
itly modeled, but other vehicles are also not considered. The more comprehensive
framework proposed in [Althoff et al., 2009] takes other vehicles into account but
requires a large number of parameters whose values are not trivial to determine.
Two works combining Intention Estimation and Trajectory Prediction in a single

framework were discussed in Subsection 2.1.4. In [Gindele et al., 2013] the authors
also struggle with the parameterization of their complex model while the method
proposed in [Tran and Firl, 2013] neglects other vehicles.
Two important insights can be drawn from this literature review. The first is,

that probabilistic methods are the state-of-the-art in all of the three presented
fields. Their ability to model sensor uncertainties as well as hidden states like
a driver’s intention make them very attractive for a use in this work. The sec-
ond insight is that even for predicting trajectories not only kinematic but also
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situational aspects are gaining increasing attention. Interactions between vehi-
cles, especially during car-following situations, are modeled by many approaches.
However, in these cases the preceding vehicle is simply assumed to be currently
relevant for the following driver instead of determining this relevance methodically.
A framework that would be able to determine first which entities in a given situa-
tion interact could then exploit this knowledge to improve the behavior prediction
of individual behaviors. This means, that a method for solving problem 1.) is
needed that is versatile enough to provide the basis for solving problem 2.). The
development of such a method will be detailed in Chapter 3.
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The literature review in Chapter 2 demonstrated the need for a scalable method
for situation assessment. An elemental building block for the method proposed
in the work at hand is the concept of configurations, that will be detailed in this
chapter. It is a novel method for modeling and understanding the interactions
between road users that was also developed in the course of this work.

This chapter is structured as follows. In Section 3.1 an explanation is given why
standard approaches fail for inner-city traffic situations. Based on the insights a
model tagged configuration is proposed that avoids the shortcomings of standard
approaches. Its specification is given in Section 3.2.

3.1. Motivation

The central goal of this work is to develop a method for assessing traffic situations
as they are typically encountered in urban driving, especially when negotiating
intersections. Assessing a situation means in this work to obtain an understanding
that is sufficient to either, from a driver’s point of view, take correct actions,
or, from an observer’s point of view, anticipate the actions of others. The thesis
at hand puts its emphasis on the latter part: to anticipate the actions of other
road users based on the interpretation of their current state and individual driving
situation.

Independent from the specific goal, a situation assessment consists of two steps.

1. Perception In the first step, one or multiple sensors take measurements from
the surroundings in order to obtain a preferably complete registration of all
relevant entities and the environment. These sensors can be video cameras,
laser scanners or radar systems to name a few. Raw measurements need
to be processed with specific algorithms, e.g. for detecting lanes in camera
images, recognizing pedestrians in laser scans or classifying radar reflections
as vehicles.

2. Interpretation The environment and the entities perceived in the first step
provide the basis for the second step. In this step questions like ’Which
rules apply for a certain entity?’, ’What determines the current behavior of
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a vehicle?’ or ’Which entities are interrelated?’ are posed and answered
given the provided evidence.

Put simply, the first step tackles the ’What?’ and ’Where?’ aspect of a given
traffic situation, whereas the second step tackles the ’Why?’ and ’How?’ aspect.
Whereas the first step returns a physical representation of a traffic situation, the
second step aims for a logical, interpretative representation. This thesis takes
the imperfections of nowadays sensor systems explicitly into account, but apart
from that considers the physical representation as given and puts its focus on
the logical representation. This representation explains a situation by identifying
those relations, patterns and interactions that have caused the observed situation.
The gain of such an explanation is twofold: Knowing what determines a vehicle’s
current behavior is an important prerequisite for anticipating its future behavior.
This can be illustrated by the scenario given in Figure 3.1: Vehicle ’A’ overtakes
a slow-driving, preceding truck and changes to the leftmost lane. But as on this
lane vehicle ’B’ is already arriving at a much higher speed, ’B’ is forced to brake in
order to avoid a collision with ’A’. The interpretation ’B’ has to slow down because
of the maneuver of ’A’ serves, a short time before ’A’ initiates its lane change, as
a prediction: ’B’ will slow down because of the maneuver of ’A’.

-

-
-
- AB

Figure 3.1.: A critical situation where the ability to interpret the relations between
vehicles A and B is useful. For example, anticipating that the maneuver of A forces
B to brake allows successive vehicles to keep a sufficient headway to B.

The second advantage of an interpretation is that it can be used to evaluate the
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consequences of maneuvers which is important for choosing the most appropriate
maneuver from a set of different alternatives. In the example above, ’A’ can
choose between waiting behind the truck and overtaking it. If ’A’ was operated
by a system that considers that overtaking results in a critical situation with ’B’,
it would have selected to wait.

3.1.1. Challenges: Complexity and Variability of Intersection

Situations

In order to interpret a specific situation a general model is needed that describes
how traffic-related entities behave and interact. It turns out that the development
of a general model is a challenging endeavor, as a straightforward solution is hin-
dered by two obstacles which are particularly prominent in inner-city driving: the
high variability and the high complexity of intersection scenarios.
’High variability’ describes the insight that a driver will rarely encounter a sit-

uation twice whenever one ore more other road users are present, as each time
their positions and dynamics will be different. The examples given in Figure 3.2
illustrates that this property also holds on a simple intersection with only two road
users. Of course, also highway scenarios are subject to a certain extent of variabil-
ity, but as opposed to inner-city scenarios they are significantly more constrained
as there is no crossing traffic. At the same time they possess a lower diversity of
road users as bicyclists and pedestrians do usually not take part in this traffic.

BA

-
-
-

Figure 3.2.: Three different situations at the same intersection. Even though
only two vehicles are participating, all three situations are inherently different.
Situations B and C differ only by the dynamics, such that in B the black vehicle
could not enter the intersection before the blue one, but in C it could.

The challenge of a high variability comes from the fact that it is not possible to
build a system that is trained for all possible situations that can be encountered
- simply because the number of possible situations is infinite. Accordingly, a
solution based on a set of prototypical situations would be too inflexible to fit
every situation.
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The second obstacle, the high complexity, is visualized by the image shown in
Figure 3.3.

Figure 3.3.: Although the intersection shown above is only of a medium size,
interpreting applicable traffic rules, interactions and possible maneuvers takes a
significant amount of time even for a human observer.

It depicts an urban intersection of medium size. Though the number of road
users present is rather moderate, it takes even for a human observer some time
to grasp applicable rules and admissible maneuvers for all vehicles close to the
intersection. The example shows that even for a basic intersection a situation
assessment is non-trivial. And its complexity rises significantly when more and a
higher variety of road users need to be considered. The more entities are present,
the more potential dependencies and interactions need to be checked and evaluated
by an algorithm. A straightforward method that relates each entity with any other
entity is therefore intractable for all but the smallest intersections.

3.1.2. Solution: Decomposing a Situation into parts

In Computer Science, a common approach for dealing with overly complex prob-
lems is to decompose the problem into smaller subproblems that are easier to
handle. Prominent examples are algorithms for sorting which can be reduced from
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a polynomial complexity down to quasilinear complexity, by sorting small sub-
sets of the data and merging these intermediate results later on. Transferred to
the problem of situation assessment, this means to decompose a complex traffic
situation into parts that can be analyzed separately.
A decomposition can also be used to tackle the high variability of traffic situ-

ations. Traffic situations are not concerted by a single, controlling instance, but
arise from the actions performed by multiple, independent agents, such as drivers
or pedestrians. Because of that, one can argue that a complex traffic situation
is the aggregation of much simpler situations, like individual interactions between
two entities. These basic situations are then the parts into which a complex situ-
ation can be decomposed.
The preceding considerations suggest a parts-based approach, by which all present

entities are sorted into small groups. The challenge here is to ensure that the
decomposition process does not loose valuable information about the situation.
A part needs to comprise all the information currently relevant to the entities
contained, which is why the notion of relevance has to be a key element of the
decomposition scheme. It is often the case that for a given road user not all of the
present entities are equally relevant, as it is illustrated in Figure 3.4.

Figure 3.4.: For a road user not all present entities are equally relevant. For
example, the green vehicle can neglect the cars waiting at the red traffic lights.

From the green car’s view, the vehicles currently waiting at red traffic lights are
of no direct relevance and will thus not affect its immediate behavior. Instead, the
green car is mainly affected by the white car ahead in the center of the intersection.
The white car itself has stopped in order to yield to oncoming traffic thus blocking
the green car’s way, which is thereby forced to slow down.
This shows that for a given road user the relevance of other entities is based on

their effect on his behavior. According to that, a possible decomposition scheme
is to create overlapping sets of each road user and all of its affecting entities. In
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this thesis, such a set is termed Configuration. It is a novel concept proposed and
extensively used in the work at hand.

3.2. Specification

A configuration is a model for describing the relation between a road user and
the entities that are affecting the road user. There might be multiple possibilities
how the influence of one entity on another can be quantified, but in this work
it is based on acceleration. An entity is affecting another entity, for example a
vehicle, when it is causing the vehicle to slow down or stop. A vehicle that slows
down for a crossing pedestrian or stops in front of a red traffic light is considered
to be affected by the pedestrian or the traffic light, respectively. Analog to that,
a vehicle accelerating for reaching a desired velocity or keeping its current one is
considered to be currently unaffected, as the longitudinal behavior of the driver is
solely determined by his own goals. Using deceleration and stopping as a measure
of influence is motivated by two aspects. First, these behaviors are more interesting
for safety concerns, as vehicles are usually able to decelerate far more suddenly
than they can accelerate, and rear-ending is a typical crash scenario in urban
environments. Second, the causes for a decelerating behavior can be generally
obtained from cues in the near surroundings, like red traffic lights or obstacles.
Nevertheless, the restriction to this definition of influence is not a limitation by
the concept of configurations itself, but a deliberate choice in the work at hand.
This is also the case for the decision to constrain the number of affecting entities

in a configuration to one, the most influential one, reducing the complexity of
individual configurations. Nevertheless, if it is so desired, multiple affecting entities
can be still modeled by using multiple configurations.
The use of configurations aims at decomposing a traffic situation into sets of

related entities, in order to obtain an understanding which road user is affected
by what. Furthermore, this understanding can be useful in additional ways, for
example as a preprocessing step for attention control, such that attention can
be focused on entities that were found relevant. Another use case is behavior
prediction, where the information how an observed vehicle is affected by others
can be directly incorporated in the prediction process. These and further areas of
application will be explored in Chapter 4.
The formal specification of a configuration is obtained by describing the respec-

tive entities and their relations in a graph. Using graphs as specification method
was primarily motivated by their suitability for modeling relationships in a com-
prehensible representation. The graph for a configuration C is an ordered tuple

C = {L,R,A, F, E} (3.1)
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where:

L = root node, holding the configuration label
R = node that represents the reference entity
A = node that represents the affecting entity
F = nodes that describe the relations of entities when being in that particular

configuration
E = edges between nodes

Herein, the set of nodes F plays an important role for deciding whether a certain
configuration is present or not. This is accomplished by inspecting the relations
of and between reference and affecting entity. Relations can be either unary when
involving only a single entity or binary when involving both entities. A unary
relation of an entity is simply its state, like its position, velocity or orientation.
Binary relations result from combining states of both entities into a single value.
For example, the binary relation distance is the difference in position between the
two entities and relativeV elocity is their difference in velocity.

Relations are specified as child nodes of their corresponding entity and can be
used for recognizing the configuration of a vehicle. For this purpose a classifier is
learned that decides based on the values of the relations whether the corresponding
configuration is present. Accordingly, the values of the relations serve as features
for the classifier. It is important to note that a human expert needs only to
specify which relations are necessary for a correct recognition but not the values
themselves.

In the following, the specification of a configuration is explained by means of an
example. The configuration used for it is labeled StoppedByRedTrafficLight which
is present whenever a vehicle has to slow down or stop in front of a red traffic light.
Its graph is plotted in Figure 3.5.

The root node L situated on top of the graph holds the label. It has two child
nodes: the reference entity node R stating that the affected entity is a vehicle
and the affecting entity node A defining that the corresponding entity is a traffic
light. The remaining nodes are feature nodes F that define in which relations the
involved entities need to be so that the configuration is present. Slowing down and
stopping is captured by the features acceleration and velocity, respectively, which
are unary relations. As they belong to the reference entity they are modeled as
its child nodes. Likewise, the property ’red’ is a state of the affecting entity, the
traffic light, that is implemented by the feature trafficLightState, also modeled as
child node. Additionally, the specifying expert incorporated the knowledge that a
vehicle will not be affected by a red traffic light when it is arbitrarily far away, but
only when it is in a certain range. That is why a binary relation for the feature
distance is added as common child node of both involved entities.

37



3. Configurations

L:StoppedByRedTrafficLight

R:Vehicle

F :velocity F :acceleration

A:Traffic Light

F :distance

F :trafficLightState

Figure 3.5.: A graph-based specification of the StoppedByRedTrafficLight-
configuration. The root node L holds the label, the reference entity R is a vehicle
and the affecting entity A is a traffic light. F describes which relations of the
entities are relevant for recognizing the configuration.

At this point the specification process is complete. The example demonstrates
that the amount of hand-crafting is limited to a minimum – the involved entities
and possibly relevant features – while still providing the opportunity to incorporate
domain knowledge.

3.3. Classification Methods

As discussed above, the motivation behind the concept of configurations is to de-
compose complex traffic situations into parts, which are sets of interrelated entities.
The specification of a set of interrelated entities belonging to a configuration was
given in the preceding section. But as the specification is reduced to the bare min-
imum it only states which relations are cues for a configuration to be present. The
actual values, for example the maximum distance in meters to the considered traffic
light in the StoppedByRedTrafficLight-configuration (see Figure 3.5), are not spec-
ified. Likewise, a vehicle will only be in a StoppedByRedTrafficLight-configuration
when its acceleration is negative or its velocity is zero, but this information is not
given either. Instead, the values that a feature or a combination thereof takes when
a configuration is present need to be learned by a dedicated learning algorithm.
The algorithm requires a batch of labeled training data that consists of feature
combinations along with the information whether the configuration is present for
that combination. Given the training data, the algorithm learns a decision func-
tion for recognizing configurations, i.e. that can decide for a given pair of entities
whether they are in a configuration or not, based on their features. Such a method
is called a classification algorithm.
A classification algorithm takes feature values as input and returns a label, in

this case whether for a pair of entities a configuration is present or not.
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h(F)→ {0, 1} (3.2)

Here, h denotes the classification function, F denotes the feature values of the
considered configuration and a label of 1 denotes that the configuration is present
and a label of 0 that it is not present.
If multiple configurations are considered, say N different ones, Equation 3.2

becomes

h(F1,F2, ...,FN)→ {0, 1, 2, ..., N} (3.3)

with Fn denoting the features of the n’th configuration and n ∈ {0, 1, ..., N}.
There is a large variety of state-of-the-art classification algorithms, most notably

Support Vector Machine [Cortes and Vapnik, 1995], Neural Networks [Bishop,
1995] and Tree Ensembles [Breiman, 2001] for nonlinear classifiers and Logistic
Regression and Probabilistic Models for linear classifiers. Nonlinear classifiers are
capable of learning more complex decision functions than linear classifiers but they
lack an important ability that was found to be crucial for this work: Probabilistic
treatment. In the problem formulation of Section 1.2 it was demanded that the
method for situation assessment should be able to cope with inaccurate sensor
measurements. The significance of this property was confirmed in the literature
review of Chapter 2 where almost all state-of-the-art methods addressed the issue
of unreliable sensor data. All of those who did, use probabilistic methods for ex-
plicitly taking the uncertainty of a sensor reading into account. While there are
extensions to nonlinear classification algorithms that aim at incorporating proba-
bilities, for example as the level of confidence for the returned labels, only linear
methods allow a consistent treatment.
This reduces the set of possible algorithms to Logistic Regression and Proba-

bilistic Models. Hereof, the latter has another useful property: It can also handle
the case when a sensor measurement is not available at all, be it a fault or a lack of
computational resources, both of which are possible scenarios in automotive appli-
cations. Probabilistic Models allow a thorough probabilistic treatment of all the
information obtained (or lacking) from sensors. Accordingly, their output is not a
single label like in Equation 3.3. Instead, the models compute the probability of
each individual configuration Cn to be present, given all features Fn:

h(F1,F2, ...,FN)→ P (C|F1,F2, ...,FN) (3.4)

C is a random variable with the states {C0, C1, C2, ..., CN}.
Using a fully probabilistic method for situation recognition means to consider

besides C also all individual feature values of Fn ∈ F as random variables.
A straightforward probability assessment, that conditions each variable on each
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other, can turn out prohibitively complex. For example, even in the simpler case
of recognizing only a single configuration Cn, with K individual feature values
{f1, ..., fk, ...fK} of Fn, the joint probability distribution is

P (Cn, f1, ..., fk, ..., fK) = P (Cn)× P (f1|Cn)× P (f2|Cn, f1)× ...

×P (fK |Cn, f1, ..., fk, ..., fK−1)
(3.5)

It becomes clear that conditioning each random variable on each other is imprac-
tical as it requires to compute a large number of probabilities. That is why con-
ditional dependency is usually only assumed for certain sets of random variables
and most variables are considered conditionally independent of each other. To
specify dependency relations, graphical models are used that are termed Bayesian
Networks [Pearl, 1988]. In the following, their application to recognizing configu-
rations will be outlined in order to explain the process of mapping configuration
graphs to Bayesian Networks. However, a comprehensive explanation of the recog-
nition method will be given in 4.1. Furthermore, a brief introduction to Bayesian
Networks can be found in Appendix A.

Besides the ability to specify conditional dependency, Bayesian Networks also
provide a consistent calculus that defines how probabilities are computed based on
the given representation. One downside of Bayesian Networks is that they are still
computationally demanding and require like all probabilistic methods substantial
amounts of training data for working properly. Nevertheless, these shortcomings
are overcompensated by two major advantages. A useful property of Bayesian
Networks is that they are white-box classifiers, which means that they allow for
introspection on how they arrive at their results. The parameters of a Bayesian
Network give a clear statement on the contribution of individual features and how
their values affect the final outcome. Especially in safety-critical applications this
information is valuable to check for unwanted system behavior.

The second major advantage is the close relationship to the graphical represen-
tation used for configurations. It allows to map configurations specified as graphs
directly to Bayesian Networks, using a simple procedure. The procedure removes
both reference and affecting entity nodes R and A, as they do not represent a
random variable, and attaches all feature nodes as children of the label node as
described in the following procedure:

1. Root node: The label node becomes the only parent of the Bayesian Net-
work and provides the classification result. It holds two states, with True
denoting the configuration is present and False denoting it is not.

2. Entity nodes: Both entity nodes are removed.
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3. Configurations

3. Feature nodes: All feature nodes become direct child nodes of the root
node.

An illustration of the mapping result is given in Figure 3.6.

StoppedByRedTrafficLight

True
False

re velocity re acceleration distance ae trafficLightState

Figure 3.6.: The Bayesian Network resulting from the
StoppedByRedTrafficLight-configuration. The prefixes ’re’ and ’ae’ indicate
that the nodes represent features from reference entity and affecting entity,
respectively.

The resulting Bayesian Network is a so called Naive Bayes Classifier, which
assumes conditional independence between all features, and is therefore compu-
tationally cheap and requires only small amounts of training data. Due to the
conditional independence, the joint probability distribution from Equation 3.5 be-
comes, apart from a constant scaling factor Z:

P (Cn, f1, ..., fk, ..., fK) ∝
1

Z
P (Cn)

∏

k

P (Cn|fk) (3.6)

While conditional independence seems to be an assumption that severely re-
stricts the applicability of the algorithm, it has been shown that Naive Bayes
Classifiers perform well even in cases where the assumption does not fully hold
[Zhang, 2004].

3.4. Discussion

In this chapter the concept of configurations was presented which was developed
in the course of this work. It is the result from the insight that inner-city traffic
situations are too complex and too diverse to be assessed in a straightforward
manner. Thus, neither an assessment based on a manageable set of predefined,
prototypical situations nor a brute-force interpretation relating every entity to
another will be feasible approaches. The solution proposed here is to tackle both
complexity and variety of traffic situations by decomposing them into smaller parts
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which are easier to handle. Influence is the main criterion for the decomposition
in that each part consists of a pair of interrelated entities where the behavior of
one entity is affected by the other. Possible constellations of interrelated entities
are defined by a human expert in a model that is tagged configuration.
A configuration consists of a label and two entities: the affected or reference

entity and the affecting entity. Furthermore, a set of features determines which
states and relations need to be considered to judge the presence of this config-
uration. All this information is specified in a graph notation which was chosen
because of its suitability for encoding relational aspects.
An advantage of a graph notation is that it can be directly mapped to the

classifier used for recognizing configurations: Bayesian Networks. A Bayesian
Network is a probabilistic model that computes the probability of an entity being
in a given configuration based on the corresponding feature values. The advantage
of recognizing configurations using a probabilistic model is that it can naturally
cope with inaccurate or missing sensor data as it can be expected in an automotive
setting. The Bayesian Network used for the recognition is designed as Naive Bayes
Classifier, because they work even when the number of training samples is low and
because they are computationally cheap.
Configurations are a fundamental concept in this work as they offer a basis for

scalable situation assessment. All methods presented in Chapter 4 build on top of
this approach. The amenities of this concept will be shown in Chapter 6.
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Configurations

In Chapter 3 a method for modeling complex traffic situations has been introduced
that is based on the concept of configurations. Using configurations a traffic situ-
ation is assessed according to the notion of relevance: Inter-dependencies between
road users are identified in order to make a situation interpretable. In this chapter
methods that make use of configurations, especially in order to overcome problems
of current approaches, are presented.
Before a method can profit from configuration information, it is necessary to

recognize a road user’s configuration in the first place. In Section 4.1 the prob-
abilistic recognition method using Bayesian Networks is described in detail, that
was only briefly outlined in the previous chapter.
Using configurations allows to reduce the complexity of a situation assessment.

Nevertheless, it is still beneficial if the computational effort for recognizing config-
urations can be further decreased. Another method for configuration recognition
that reduces the number of necessary sensor readings during the recognition pro-
cess is presented in Section 4.2.
By employing these methods for recognizing configurations, a descriptive situa-

tion assessment can be performed. It provides an interpretation of a situation in
that individual behavior is explained on the basis of the identified dependencies.
While a descriptive assessment is already of use, it is in many cases more inter-
esting to obtain a predictive assessment. In this case a prediction on the future
situation is made which allows to make decisions in time and to foresee upcoming
conflicts. In Section 4.3 a method for predicting the future velocity profiles of
vehicles is described. Knowledge about a vehicles velocity is especially useful for
avoiding rear-end crashes. In Section 4.4 another method for behavior prediction
is presented, but in this case the manual specification of configurations is replaced
by a learning algorithm.
A central claim in this thesis is that configurations, which are a way of recogniz-

ing a vehicle’s driving situation, can be used to improve methods that currently
neglect situation information. For evaluating this claim a demonstrator system
has been built, that estimates the intention of a driver when it approaches an in-
tersection, for example whether the driver plans to cross straight or to turn. The
goal is to reliably distinguish between more intentions than the state-of-the-art
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by incorporating the information obtained from a configuration recognition. This
approach is detailed in Section 4.5. A summary of this chapter is given in Section
4.6.

4.1. Recognition of Configurations

In this section a method for recognizing configurations is presented. This method
serves as basis for all other methods in this chapter that take configuration infor-
mation into account. The method was published in [Platho et al., 2012].

4.1.1. Considered Configurations

Before a recognition method can be developed it is first necessary to decide which
configurations should be considered. The selection can be guided by various goals,
but in this case three criteria appeared to be particularly reasonable:

1. Criticality The considered configurations should cover situations in a way
that critical settings can be detected.

2. Recognizability A configuration is only useful when it can be recognized
by nowadays sensor technology.

3. Commonness Each of the considered configurations should occur frequently
in every-day driving. At the same time the considered configurations should
be sufficient to fully model all of the traffic situations encountered.

Criteria 1 and 2 lead to the decision to focus on considerations that result in
slowing down or stopping of the reference vehicle. Decelerating behaviors are
critical because a vehicle can usually change its velocity more suddenly by braking
than by accelerating. Furthermore, unexpected stopping maneuvers are a common
cause for rear-end crashes. In terms of recognizability, the advantage of focusing on
these configurations is that the cause for a deceleration can usually be explained
from the situation, e.g. in case of a blocking obstacle, a red traffic light or a
crossing road user.
Criterion 3, commonness, is harder to fulfill. It is difficult to find a set of

configurations that fits for explaining all and every situation possibly encountered.
But as this work focuses on intersection scenarios, it is sufficient to be able to
model typical traffic situations in the vicinity of urban intersections. Still, in urban
areas there is a high variety in road users, namely pedestrians or bicyclists, which
could all require an individual set of possible configurations. As the methods
proposed here are targeted for a vehicle-based assistance system and as other

44



+
3
m
m

C
h
a
p
te
r
4
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vehicles are the most commonly encountered road users, it was decided to focus
on configurations where entities can be vehicles or part of the infrastructure. With
these parameters, it was found that three general configurations can cover most of
the typical intersection situations. An illustration of these configurations is given
in Figure 4.1.

Figure 4.1.: A traffic situation with various configurations.

In this illustration, the green vehicle brakes because of the stopped red vehi-
cle ahead. Cases, in which of two consecutive vehicles the leading vehicle forces
the following vehicle to slow down, are modeled by a StoppedByLeadingVehicle-
configuration. Its representation as Bayesian Network is shown in Figure 4.2.

StoppedByLeadingVehicle

True
False

re velocity re acceleration distance relativeVelocity

Figure 4.2.: The Bayesian Network resulting from the StoppedByLeadingVehicle-
configuration. For recognizing this configuration the features velocity, acceleration,
distance and relativeVelocity are used. The leading ’re’ denotes features that are
taken from the reference entity. Features without such a prefix stem from binary
relations taking both entities into account.

The features re velocity and re acceleration are required to check whether the
reference entity is currently decelerating or even stopped. This is a necessary
condition for a configuration to be present, as defined above. In addition, the
distance between reference and affecting entity is taken as feature as well as their
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relative velocity. The intuition behind these features is that closer vehicles will
to a higher probability be in a configuration, especially if the leading vehicle is
significantly slower than the following one.
Another typical scenario at intersections is that one vehicle on a minor road

yields to another vehicle on a major road, as it is the case for the red and blue
vehicle in Figure 4.1. This configuration is tagged StoppedByIntersection. It is
depicted in Figure 4.3.

StoppedByIntersection

True
False

re velocity re acceleration re onMajorRoad intersectionDistance

Figure 4.3.: The Bayesian Network resulting from the StoppedByIntersection-
configuration. Velocity, acceleration and onMajorRoad are features of the refer-
ence entity, denoted by the prefix ’re’. The feature intersectionDistance is given
by the maximum of the distances of both vehicles to the intersection.

The feature re onMajorRoad captures whether the reference entity is on a major
or a minor road and the feature intersectionDistance covers the distance of both
vehicles to the intersection. A single value is obtained by taking the maximum
of both distances. Another option would be to incorporate the distances of both
vehicles individually, but besides increasing the state space the Bayesian Network
could hardly learn their nonlinear relationship.
The StoppedByRedTrafficLight-configuration, in which a vehicle is forced to stop

at a red traffic light, has been already discussed in Chapter 3. It is given in Figure
4.4.

StoppedByRedTrafficLight

True
False

re velocity re acceleration distance ae trafficLightState

Figure 4.4.: The Bayesian Network resulting from the
StoppedByRedTrafficLight-configuration. The prefixes ’re’ and ’ae’ indicate
that the nodes represent features from reference entity and affecting entity,
respectively.
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4.1.2. Discretization

When creating a Bayesian Network with continuous features one has the choice
between incorporating them as continuous or as discrete nodes. Continuous nodes
avoid a loss in precision caused by discretization errors in exchange for a higher
computational complexity during learning and inference. Another downside is
that continuous nodes can not have discrete child nodes. In order to circumvent
these issues and to keep learning and inference tractable, continuous feature are
discretized.

Discretization means to define how many states a formerly continuous node
should have and then to define the intervals for each state. For example, the
continuous feature re velocity could be discretized into three states: Stopped, Low
Velocity, and High Velocity. The interval for the state Stopped could comprise
all velocities below 2m

s
, the interval for the state Low Velocity could comprise

all velocities above that and below 7m
s
and the state High Velocity all velocities

beyond 7m
s
. It shows that both the number of states for a discretization and the

exact intervals provide many parameters that need to be determined. This task
can be either performed by an expert or by a dedicated learning method.

A well-known method for performing a discretization via learning was presented
in [Friedman and Goldszmidt, 1996]. The learning method guides the discretiza-
tion process by the principle of the minimum description length for trading the
number of discretization levels against the classification accuracy on the train-
ing set. However, parameterizing this trade-off is non-trivial. Additionally, there
are discretization levels that make more sense than others for individual features.
Reasonable values depend to a large extent on the feature itself. For example, a
straightforward approach to separating the feature re acceleration into three states
for positive, negative and zero acceleration would come up with the levels > 0m

s2
,

< 0m
s2

and = 0m
s2
, respectively. But this neglects the fact that the acceleration

of a vehicle is difficult to measure and therefore it is a very noise feature, which
oscillates constantly around its true value. Due to this property, levels should be
set according to the characteristics of the feature, as it was done for the Bayesian
Network used here.

The number of intervals influences the complexity of the resulting network and
the effort necessary during learning and inference. It is therefore advisable to keep
the number of intervals as small as possible.

In a study a discretization using the method by Friedman & Goldszmidt was
evaluated. It showed that the resulting Bayesian Networks fitted the training data
much better, but at the same time their generalization abilities were impaired.
Due to this the discretization was performed by an expert with the goal to limit
the number of intervals to the bare minimum.
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4.1.3. Network Structure

For recognizing the configuration of a vehicle it is necessary to combine the Bayesian
Networks of the individual configurations into a single network. The beliefs of in-
dividual configurations need to be gathered in a single node that provides the
classification result – the recognized configuration. The classification node has
four states, one for each configuration and a forth termed NoConfiguration. A
vehicle is in no configuration when it is currently unaffected by the considered
entities.

Assembling all configurations into a single network is necessary in order to nor-
malize their beliefs. Otherwise the probabilities of the individual configurations
could not be compared against each other. The overall network is given in Figure
4.5.

Configuration

RedTrafficLight

LeadingVehicle

Intersection
NoConfiguration

StoppedByRedTrafficLight

True
False

tl trafficLightState

distance

StoppedByLeadingVehicle

True
False

re velocity

relativeVelocity

distance

re acceleration

StoppedByIntersection

True
False

re onMajorRoad

intersectionDistance

Figure 4.5.: The Bayesian Network used for recognizing configurations. The be-
liefs of the individual configurations are combined by a single classification node
(top).

Since re velocity and re acceleration are used by all configurations they also
share the corresponding nodes. This introduces additional conditional dependen-
cies between the configurations, which turns out to be beneficial for the recognition
accuracy.

Given sufficient training data, the network can learn which feature combinations
lead to which configuration. An evaluation of the recognition performance of this
network will be given in Section 6.1.
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4.2. Incremental Situation Assessment

Decomposing complex traffic situations into configurations lowers already the com-
putational costs of a situation assessment as compared to standard approaches.
Nevertheless, recognizing the configuration of a single road user requires to mea-
sure all of the features considered in the classifying Bayesian Network. A single
feature is measured by using a suitable sensor to perceive a certain part of the
environment and turn the resulting sensor reading into a feature value. For exam-
ple, the feature relativeVelocity can be obtained by identifying a leading vehicle
in the point cloud provided by a laser scanner and integrating the distance over
multiple steps. The example shows that a measurement results in costs like the
computational costs from running an object recognition algorithm over multiple
point clouds. The more configurations are considered, the higher will be the effort
to compute the corresponding features up to the point where the costs become
prohibitively large. To counter this, it would be advantageous if the number of
considered features during a recognition, and thus the number of measurements,
could be reduced to a minimum.
This reduction can be achieved by changing the recognition method from a

batch process taking all features at once to a sequential method. In this case the
recognition becomes an active process: Measurements are triggered according to
the current hypothesis about which configurations are likely. Features that could
separate between the currently most likely ones would be measured first while
features of already very unlikely configurations would not be measured at all. A
method for such an active measuring process is detailed in the following. It was
also published in [Platho and Eggert, 2012].

4.2.1. Sensor Level and High Level

For understanding the intuition behind an active measuring process it is neces-
sary to consider a configuration recognition system as a whole. An actual system
consists of two parts as it is depicted in Figure 4.6.
In the upper part there is the Bayesian Network that was presented in the

previous section. Based on a set of features the probability of each individual
configuration to be present is determined. The individual probabilities are then
aggregated in a single classification node on top of the network. It has to be noted
that in this network the classification node is termed hypothesis. In the sequential
recognition process described in the following the interesting probabilities in this
node are not only the highest one, as it would be necessary for a pure classification
task. Instead, the probabilities of all configurations are considered as they are
regarded as confidence in the hypothesis that the corresponding configuration is
present.
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Figure 4.6.: Schematic representation for the relation between high level and sen-
sor level in a complete system for configuration recognition. The Bayesian Network
in the high level relies on measurements taken in the sensor level.

The lower part of Figure 4.6 depicts the sensor level. It is capable of perform-
ing different measurements for perceiving the environment. Each measurement is
obtained by using one or multiple sensors like cameras, radar or laser scanners.
As discussed above, each measurement is associated with some cost like blocking
an exclusive resource, consuming energy or requiring computational resources for
processing sensor data. Even in cases where no direct cost can be attributed to a
measurement, it still takes time to wait for the measurement’s data.

The connection between the Bayesian Network in the high level and the sensor
level is limited to the point where sensor measurements are turned into feature
values. Each feature obtains a dedicated, unique measurement. Apart from this
connection both levels are completely independent. The independence becomes
relevant when considering the fact that inference in the high level is comparably
cheap to obtaining measurements in the sensor level. According to this, if addi-
tional computations in the Bayesian Network allow to reduce the number of sensor
measurements, it will also reduce computational costs. This insight is the starting
point for an active measuring approach.

4.2.2. Active Measuring

An active measuring approach takes sensor measurements sequentially, one at a
time. In each step it selects that measurement for which the corresponding feature
offers the highest gain. In a recognition task the highest gain is provided by that
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feature that is expected to maximize the probability of a single, preferably the
correct, hypothesis and minimize the probabilities of all other hypotheses. In
a Bayesian Network the gain of measuring an individual feature can be directly
computed by means of the expected mutual information [Shannon and Weaver,
1949].
Given a set of hypotheses H comprising N hypotheses Hn, one for each con-

sidered configuration Cn ∈ {C1, ..., Cn, ..., CN} and K features Fk, the mutual
information I(H ;Fk) is defined as

I(H;Fk) =
∑

n

∑

k

p(Hn, fk)log
p(Hn, fk)

p(Hn)p(fk)
(4.1)

where p(Hn) denotes the probability of hypothesis Hn and p(fk) denotes the
probability of feature Fk having value fk. Via inference, the probabilities can be
obtained from the Bayesian Network used for recognition.
Mutual information measures how much knowing about one variable reduces the

uncertainty of the other. The higher the mutual information of a feature is, the
more its measurement will contribute to the beliefs of the hypotheses.
The active measuring method presented here selects one measurement after the

other until the probability of a single hypothesis surpasses a predetermined thresh-
old τ . The method aims at decreasing the set of probable configurations quickly to
a single, confident one. The goal is to terminate the costly measurement process
as soon as it becomes improbable that further measurements will change the most
likely hypothesis anymore. The working principle can be separated in four steps:

1. Measurement Selection: In the Bayesian Network, compute the expected
mutual information of each yet unobserved feature.

2. Observation: In the sensor level, trigger the measurement of the feature with
the highest expected mutual information.

3. Inference: Perform inference incorporating the newly obtained feature. If
the belief in the most probable hypothesis is below the threshold τ and not
all features have been measured already, continue with step 1, otherwise
continue with step 4.

4. Result: Return the most probable configuration as recognition result.

It is important to note that the sequence of measurements depends on the ev-
idence obtained so far. This is why the active measuring process can not define
the sequence in advance but needs to compute it online.
The threshold τ serves as parameter for trading accuracy against computational

speed. For values of τ close to 1, more measurements will be triggered as the
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method will stop only if the system is perfectly sure about a hypothesis. In this
case the system will still provide the same accuracy as the method presented in
Section 4.1.
By considering only the single, most promising feature at a time, the proposed

method would neglect features that contribute only slightly when measured alone
but are strong in combination with each other. However, if these features belong
to the same configuration this would indicate that they are strongly dependent on
each other, which is not the case for the features used in the network. Nevertheless,
a solution is to consider the expected joint mutual information of multiple features,
although this would significantly increase the complexity of the selection process.
The degree to which computational costs can be reduced, while maintaining a

high recognition accuracy, will be evaluated in Section 6.2.

4.3. Prediction of Velocity Profiles

The methods that were presented in Sections 4.1 and 4.2 can be employed for
assessing traffic situations. They identify the configurations of present road users
and thus provide a descriptive model of the situation. Whereas understanding the
current situation has a value per se, in many cases it is even more important to
consider the future situation. Predicting how the situation will change in the next
few seconds is particularly helpful for planning own maneuvers or anticipating
upcoming conflicts. The method that will be presented in the following takes
a configuration-based situation assessment as starting point for predicting the
behavior of individual vehicles. It was published in [Platho et al., 2013a].

4.3.1. Overall Prediction System

At urban intersections upcoming conflicts can in many cases only be detected by
predicting the evolution of the current situation comprehensively, which means
to take all possibly relevant entities into account. But for a prediction the same
issues apply as for situation assessment: An all-encompassing prediction model
that incorporates all entities at once will grow overly complex. Thus, a more
feasible approach is to perform the prediction individually for each road user. In
this case it is important to ensure that the prediction takes situational aspects into
account instead of considering the regarded road user isolated from its context.
Accordingly, situation assessment is an essential part of a prediction process and
the proposed approach accounts for this by employing a two-staged method.
In the first stage, the situation is decomposed into configurations using one of the

recognition methods that were presented in Sections 4.1 and 4.2. For each vehicle
its current driving situation is determined by recognizing its configuration. The
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considered configurations are besides StoppedByRedTrafficLight, StoppedByLead-
ingVehicle and StoppedByIntersection also NoConfiguration, which denotes the
case when a vehicle is currently unaffected by other entities. The first stage is
depicted in step 1 of Figure 4.7.

Figure 4.7.: System overview for a situation-aware behavior prediction. After
determining a vehicle’s configuration (step 1), a configuration specific behavior
model (step 2) is employed to predict the velocity profile of the vehicle (step 3).

In the second stage, for each vehicle the longitudinal behavior in form of its ve-
locity profile is predicted. For this purpose, there are 4 situation-specific prediction
models used, each of them trained exclusively for one configuration. Based on a
vehicle’s recognized configuration in the first stage, the appropriate model is used
to predict its behavior up to three seconds into the future. Using situation-specific
prediction models has two advantages: First, it allows to naturally incorporate
a feature selection that discards features that are irrelevant for the driving situ-
ation. This reduces the feature dimensionality for the prediction algorithm and
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thus reduces training effort while increasing the models robustness. The second
advantage is that the prediction model is tailored to a single driving situation
for which it can be assumed that vehicles show a similar behavior. The working
principle of the second stage is illustrated in steps 2 and 3 of Figure 4.7.

4.3.2. Prediction Process

The system returns the predicted velocity profile of a vehicle for the next three
seconds. A velocity profile is represented by a vector with 30 individual velocity
values, which is obtained by sampling the velocity at 10 Hz for 3 seconds. For
each of the considered configurations an individual prediction model is trained.
The model takes, besides the velocity and acceleration, also features specific to
the driving situation as input. Only the prediction model for NoConfiguration
utilizes no additional features.
Altogether, there are 7 features used as independent variables for the prediction

models. In addition to the velocity, later denoted as VEL, and the acceleration
(ACC) of the target car, for which the prediction is performed, there are 5 more
features.

• Traffic light distance (TLD): Distance to the stopping line of the next, rele-
vant traffic light in m

• Car ahead relative speed (CAS): Relative velocity between target car and its
leading car in m/s

• Car ahead distance (CAD): Distance between target car and its leading car
in m

• Intersection distance (ID): Distance to the entry point of the next intersec-
tion in m

• Time (TIME): Time instance for which the velocity is predicted in s. Values
are 0.1, 0.2, 0.3...3.0

Each of the four prediction models take a proper subset of these features as input
variables. One reason for using only subsets is that in certain configurations some
features may not be specified at all. For example, when a vehicle approaches an
unsignalized intersection there is no traffic light and thus no value for the distance
to the traffic light TLD. Another, more important reason for using proper subsets
is that features that are not relevant in the current driving situation only increase
the dimensionality of the regression task and distract the regression algorithm from
learning the effect to relevant features. Table 4.1 lists which features are used by
the individual models.
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Prediction model VEL ACC TLD CAS CAD ID TIME
PTrafficLight x x x x
PLeadingCar x x x x x
PInterSection x x x x
PNoConfiguration x x x

Table 4.1.: Features used by the four prediction models.

All models are realized by a Random Forest Regressor (RFR) [Breiman, 2001].
An RFR is a nonlinear, state-of-the-art regression method which is known for its
robustness against noise and over-fitting. Its name originates from its underlying
working principle, as it aggregates a set of individually learned Classification-
and-Regression-Trees (CART) [Breiman et al., 1984] into an ensemble, a so-called
forest. In a pre-study, also Multiple Linear Regression was evaluated as regression
method, but it was significantly excelled by RFR.
A Random Forest Regression has, depending on the implementation, multiple

parameters, with two of them having the greatest impact: the depth of each tree
and the size of the forest. The maximal depth can be interpreted as the degree
of the dependencies among features. The number of trees is set according to
computational restrictions. The larger the forest, the better is the regularization
ability of the regression method, up to the limit that the given data imposes. In
turn both learning and prediction time increase linearly with the number of trees.
Based on the results of a preliminary evaluation, the maximal depth is set to 4
and the number of trees is set to 400.
The optimization criterion for the RFR is the sum of squared distances. It

minimizes the prediction error e between the actual velocity profile V and the
estimated velocity profile V̂ for each of the 30 individual values:

e =

30
∑

i=1

(V̂i − Vi)
2 (4.2)

To summarize, given a traffic situation, its evolution is predicted by recognizing
the current configuration of each vehicle and applying the corresponding prediction
model to foresee its future velocity profile. The feasibility of this approach and
the results obtained are presented in Chapter 6, Section 6.3.

4.4. Learning Configurations from Observations

The system presented in the previous section predicts a vehicles longitudinal be-
havior in a two-staged approach: in the first stage the configuration of the ve-
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hicle is determined in order to employ in the second stage the corresponding,
configuration-specific behavior model for predicting the future velocity profile.
This method requires manual work by an expert in two areas: For specifying
the considered configurations and for manually annotating training data with the
information which configuration is currently active. Regarding the specification
of the considered configurations there are multiple advantages of letting an expert
perform this task. For example, it allows to directly incorporate expert knowledge
and to make configurations interpretable.
Today, however, collecting data has become so ubiquitous that even comprehen-

sive driving data is readily available [Zecha and Rasshofer, 2009]. In cases, where
large amounts of driving data can be obtained easily but manually annotating
the data is intractable, it would be advantageous if the manual work could be
circumvented. In the following a method is presented for learning a complete pre-
diction system as in Section 4.3 from unlabeled data. The method was published
in [Platho et al., 2013b].

4.4.1. System Overview

The goal of the learning algorithm described in the following is to learn all param-
eters of a system for predicting the velocity profiles of individual road users. The
prediction system has the same working principle as the two-staged approach pre-
sented in Section 4.3: In the first stage, a vehicle’s driving situation in terms of its
current configuration is determined. In the second stage a configuration-specific
prediction model is used to estimate the vehicle’s future velocity profile. Both
stages can be further subdivided into two steps each. Thus there are altogether
four steps that the system performs in order to arrive at a prediction. The steps
are sketched in Figure 4.8 and are as follows.

I. Feature Extraction: By taking sensory measurements, a set of features
F is obtained. These features are designed to capture the current driving
situation and the state of the target vehicle, for which the prediction will be
performed, adequately.

II. Configuration Recognition: Given the measured features, the current
driving situation of the vehicle is determined. Formally, the second step can
be interpreted as a classifier that takes the features as inputs and returns a
configuration label, i.e. h(F ) → Cn with N being the number of considered
driving situations and C = {C1, .., Cn, ..., CN}.

III. Feature Selection: Depending on the estimated driving situation a proper
subset F ′ of the measured features F is selected. The subset selection func-
tion sn(F ) leaves only these features that are found to be relevant for the
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Feature
Extraction

h(F )
Configuration
Recognition

s1(F ) s2(F ) sN(F )

r1(F
′
1) r2(F

′
2) rN(F

′
N)

= C1 = C2 = CN

F
′
1 ⊂ F F

′
2 ⊂ F F

′
N ⊂ F

V̂ 1 V̂ 2 V̂ N

(I.)

(II.)

(III.)

(IV.)

Figure 4.8.: Architecture of a behavior prediction. Based on a set of extracted
features of the target vehicle (I), its driving situation is determined, here by recog-
nizing its configuration (II). Then a subset of the extracted features (III) is used
as input for a configuration-specific prediction model, which returns a predicted
velocity profile V̂ (IV) (see text).

subsequent velocity prediction. This step has the goal to increase the chance
of learning diverse prediction models that are highly specialized to their con-
figuration and that work with as few features as possible. Additionally, it
can be assumed that some features will not contribute to a prediction in all
possible configurations.

IV. Prediction: A regression model rn takes the subset F ′

n as input and returns
the predicted velocity profile V̂ for the target car.

The challenge in learning this prediction system lies in the fact that three com-
ponents need to be learned which are dependent from each other. The components
are the configuration recognition function h, the subset selection functions sn and
the prediction models rn. An iterative learning algorithm is employed because for
this problem no closed-form solution exists.
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4.4.2. Learning Method

As starting point for the algorithm an unlabeled data set containing driving data is
given. The data consists of many observations, where each observation comprises a
set of features F and a velocity profile V . TheK features of F have been measured
by sensors for a given target vehicle and its surrounding at a time t0. The velocity
profile V consists of a vector of 30 individual values that were obtained by sampling
the velocity of the target vehicle between t0 + 0.1s and t0 + 3s at 10 Hz.

Target Function

The goal of the overall system is to predict the behavior of individual vehicles as
accurately as possible. More formally, it aims at minimizing the error e between the
actual velocity profile V and the estimated velocity profile V̂ for all observations
i:

e =
∑

i

||V i − V̂ i||2 (4.3)

Incorporating the fact that each velocity profile consists of 30 individual values
and representing time as t ∈ {1, .., 30} this equation becomes

e =
∑

i

∑

t

||Vit − V̂i(t)||2 (4.4)

The estimation V̂i(t) is written as a function of time to account for the use in
a regression model in which time is an independent variable. Given the features,
the first step for obtaining V̂ is to recognize the configuration using a classifier
function h:

h(Fi) : F → Cn ∈ {C1, ..., CN} (4.5)

Unfortunately, this classifier can not be trained because only unlabeled data
is available and the configuration themselves are part of the learning procedure.
Therefore an approach similar to the Expectation-Maximization [Dempster et al.,
1977] algorithm is taken, where observations are directly assigned to configura-
tions using a probabilistic assignment matrix H. The assignments can be gradually
adapted by the learning method and upon convergence a classifier can be trained
using the assignment information as label. The assignment matrix H is of order
I ×N with

Hin = p(Cn|i) with
∑

n

Hin = 1 (4.6)

denoting the probability of the i-th observation to belong to configuration Cn.
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A predicted velocity profile V̂ is obtained by summing over the predictions of
all N regression models rn, each of which takes the subset of features returned by
sn(F ) and the time as input. The assignment matrix H weights and normalizes
the individual contributions of the regression models.

V̂i(t) =
∑

n

Hinrn(sn(Fi), t) (4.7)

However, using a mixture of regression models is not intended. Instead each
observation should be exclusively assigned to a single configuration. Achieving
this goal is left to the learning algorithm which ensures that for each observation
the weight of a single regression model becomes close to ’1’ and ’0’ elsewhere.

Based on the previous considerations, the final target function is

min
H,r,s

∑

i

∑

t

||Vit −
∑

n

Hinrn(sn(Fi), t)||2 (4.8)

Regression model

Each velocity profile comprises 30 individual values, one for each time step in the
prediction horizon. One option for a suitable regression model is to take a non-
parametric approach and predict the velocity for each time step individually. While
this approach provides a high flexibility and allows parameterizing each time step
separately, such a model requires a large number of parameters which are costly to
learn. Furthermore, real velocity profiles favor smooth parametric models: Since
vehicles are physical systems and thus subject to inertia, their velocity follows a
smooth function as the change in velocity between consecutive time steps is rather
moderate. It is therefore reasonable to model a profile by a smooth function. An
example of such a function is

vi(t) = vi0 + ai1t + ai2t
2 (4.9)

which is determined by two parameters, a1 and a2 for linear and quadratic term,
respectively. In order to make the representation invariant towards the initial
velocity v0, it can be rewritten as

vi(t)− vi0 = ai1t + ai2t
2 (4.10)

The parameters a1 and a2 are learned independently from each other via Multiple
Linear Regression (MLR)

aij = βj0 + βj1f1 + ...+ βjKfK (4.11)
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with j ∈ {1, 2} and βf denoting the regression coefficients for individual feature
values fk ∈ {f1, ..., fk, ..., fK}. By inserting Equation 4.11 into Equation 4.10 the
regression model for the n-th configuration is

bn(Fi, t) = (
∑

k=0

β1nkfik)t + (
∑

k=0

β2nkfik)t
2 (4.12)

with fi0 defined as 1 in order to serve as intercept variable for the regression.
The model is uniquely defined by the vectors of regression coefficients β1 and β2.
Although there are more powerful regression methods than MLR, it was chosen

due to its computational speed and its ability to handle weights for observations.
This property is important asH can be seen as a weight matrix for the observations
which an MLR can directly incorporate into the estimation of its coefficients.
The feature selection function s for selecting a configuration-specific subset of

features F ′ from the given Features F are realized by a matrix S of size N ×K
with

snk =

{

1 if fik ∈ F ′

i for Cn,

0 otherwise.
(4.13)

Each configuration-specific feature can only be exclusively assigned to a single
configuration.
The estimated velocity profile from Equation 4.7 can thus be rewritten as

V̂i(t) =
∑

n

Hin

(

(
∑

k=0

snkβ1nkfik)t+ (
∑

k=0

snkβ2nkfik)t
2

)

(4.14)

Minimization algorithm

In order to minimize the total error e between actual and estimated velocity pro-
files, a simultaneous adaptation of assessment matrix H , feature selection matrix
S and regression coefficients β is needed, as postulated in Equation 4.8. Because
there is no analytical solution to this optimization problem, an iterative method
which was inspired by the EM-algorithm is employed. It starts with a randomly
initialized H and then repeats to sequentially update β, S and H , in that order.
The coefficients β are updated by a weighted linear regression

βjn = (FTHnF)
−1
F
THnaj (4.15)

where Hn denotes the n-th column of matrix H . F represents the matrix that
results from concatenating the features F i of all observations into a single matrix.
The use of H as weight matrix ensures that the coefficients of a regression model
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are determined only by observations that are sufficiently probable to belong to the
corresponding configuration.
With S being a binary matrix no gradient can be computed for it. The solution

that was chosen here is an exhaustive search on all pairwise swaps of entries. A
swap is performed by assigning a feature from the current configuration to another
configuration which is realized by exchanging a ’1’ and a ’0’ in the same column.
For each possible swap the change in e, ∆e, is computed. The swap with the lowest
∆e is selected as long as ∆e < 0, that is the swap improves the overall estimation.
The entries of the assignment matrix H are updated by computing for each

observation i the model error ein for each of the N configurations. The lower
ein is, the stronger is the increase in probability that observation i belongs to
configuration n. More formally:

pin =
Hin

ein
(4.16)

win =
pin

∑

nH
′

in

(4.17)

H ′

in = l × win + (1− l)×Hin (4.18)

The current probability of the i-th observation in the assignment matrix is di-
vided by its error using the n-th regression model (Equation 4.16) and normalized
(Equation 4.17). The parameter l acts as the learning rate and controls the impact
of an update (Equation 4.18). It has to be noted that due to the multiplication
in Equation 4.16 the rows of H converge to a vector with all zeros and a single 1,
which is a desired property.
The error e is decreased in every iteration because the updates of β and H

ensure that the total error decreases and the update of S can at least not increase
it.
The minimization is stopped when the relative improvement between successive

iterations drops below a predefined threshold τ .

Application to unseen data

When the minimization algorithm terminates all components of a prediction sys-
tem have been learned, except for the classifier for recognizing configurations. As
stated before, the use of unlabeled data prohibits a training of the classifier which
is dependent on label information. The solution to this was to replace the clas-
sifier by an assignment matrix H that could be directly incorporated into the
minimization algorithm, but looses its classification abilities. Nevertheless, after
termination this assignment matrix provides the required label information: The
configuration that is the most probable for an observation is assumed to be the

61



4. Situation Assessment Using Configurations

correct one. The label li for the correct configuration of the i-th observation is
obtained by

li =n| Hin = max
o

Hio (4.19)

The labels are used for training a classifier. The classification algorithm can be
chosen based on the number of observations and the availability of computational
resources. Here a Random Forest Classifier [Breiman, 2001] is employed instead
of a Bayesian Network as used so far. This is due to the fact that generally the
learned configurations can not be as well separated by a linear classifier as the
manually specified configurations.

The method presented in this section trades interpretability and generalizabil-
ity for avoiding a time-consuming labeling. An evaluation on the degree to which
learned configurations match specified configurations and the accuracy of the re-
sulting prediction system is given in Section 6.4.

4.5. Intention Estimation

The systems presented in Sections 4.3 and 4.4 provide a prediction how a road
user will execute its next maneuver by anticipating the longitudinal behavior.
In many cases it is more interesting to predict which maneuver the driver will
execute next. As it was already discussed in Section 2.1.2, this task is termed
intention estimation and aims at predicting the next maneuver of a road user out
of multiple possibilities. Research in this area has attracted increasing interest in
recent years and considerable progress has been made. However, in an extensive
review of related work (see Subsection 2.1.2) no method was found that considered
more than two intentions for an estimation. Furthermore, the methods make only
limited use of situational cues but focus mainly on cues from a vehicle’s behavior.
But taking behavior as sole cue neglects the fact that a driver selects its behavior
not solely according to its intentions but also according to its driving situation.
The preceding considerations motivated the development of a method for intention
estimation that takes situational cues explicitly into account in order to distinguish
between more than two intentions. One central goal in the development process
was to build a system that implements the new method and demonstrates the
feasibility of the approach. This intention estimation system is presented in the
following. It aims at predicting the intended maneuver of the ego-vehicle when it
approaches a signaled intersection. A paper about the system was submitted to
[IV2014].
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4.5.1. System Overview

The goal of the system is to anticipate the intended maneuver of the ego-vehicle
when it approaches a signaled intersection. Four different intentions are considered:

I. Go straight

II. Turn right

III. Stop at red traffic light

IV. Car following

Current literature focuses on intentions I and II as a correct estimation allows
to anticipate trajectories that conflict with other road users. Additionally, these
intentions can be generally well distinguished based on a vehicle’s velocity pro-
file, as a driver with the intent to turn will slow down the vehicle early and a
driver with the intent to go straight will maintain the current velocity. Signifi-
cantly fewer approaches consider intention III, although it is highly relevant e.g.
to anticipate red-light running. The intention is harder to detect as its corre-
sponding decelerating behavior can be mistaken for a right turn intention which
is why it profits from situational cues. Intention IV, ’Car following’, considers the
case when the behavior of the considered vehicle is dominated by the behavior of
the leading vehicle. In this case the following vehicle is forced to slow down or
stop in order to keep a sufficient distance to the vehicle ahead. This intention
is equivalent to a StoppedByLeadingVehicle-configuration and its consideration is
especially beneficial: it has been shown in [Liebner et al., 2012] that a close pre-
ceding vehicle impairs a behavior-based intention estimation considerably. Making
’Car following’ an explicit intention allows to detect it and pass this information to
subsequent systems. The intention can hardly be detected by a vehicle’s behavior
itself, instead situational cues need to be taken into account.

A system capable of anticipating the four intentions correctly, one to two seconds
before the target vehicle reaches the intersection, can be used for multiple purposes.
An already mentioned purpose is its use as warning and prevention system for red-
light running. Additionally, subsequent assistance systems can utilize the intention
estimation as input, as Liebner pointed out: a system for preventing collisions with
bicyclists during turning maneuvers could then only issue a warning if the driver
actually intends to turn right. Otherwise the system would warn the driver at
every intersection whenever a bicyclist is nearby, even if the driver plans to go
straight. Eventually, the driver would switch off the warning system and thus
loose its benefit.
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Data Collection

GPS

CAN-Bus

Laser

Stereo-camera

Configuration Recognition

StoppedByLeadingVehicle

StoppedByRedTrafficLight

Behavior Recognition

Go straight

Turn right

Stop at red traffic light

Intention Estimation

Go straight

Turn right

Stop at red traffic light

Car following

Predicted
Intention

Figure 4.9.: Schematic representation of the system for intention estimation. In
order to distinguish between four intentions, both the behavior and its configuration
are considered.

In order to distinguish between all four intentions a system needs to consider
both a vehicle’s behavior and its driving situation. This insight lead to a system
architecture as sketched in Figure 4.9.
In this system two separate models are learned, one for a behavior-based esti-

mation and another for a situation-based estimation. The output of both models
is then combined in a single one to compute the final estimation. Before detailing
the individual system components the sensor equipment of the test vehicle and the
data acquisition procedure are presented in order to make certain design decisions
better understandable.

4.5.2. Data Acquisition

Data generated by a traffic simulator is naturally biased as compared to data ac-
quired from real-world sensors. Since the system should work on real-world data,
the characteristics of real measurements were regarded throughout the develop-
ment process. In order to understand all of the design decisions made, the sensor
equipment and the acquisition procedure are detailed in this subsection.
A dedicated test vehicle was used to record approaches to urban intersections.

The vehicle was equipped with an IBEO laser scanner operating at 100 Hz. It
faces forwards and is able to detect objects directly in front and to determine their
distance as well as their relative velocity. The filtering and object detection is
therefore performed by the scanner. A leading vehicle is detected by taking the
closest object in a 1 m corridor in front of the vehicle, if any. A consumer-grade
GPS provides the absolute position of the vehicle at 10 Hz. The velocity of the
ego-vehicle is obtained directly from its CAN-bus. A forward-facing stereo camera
filmed the drives.
In order to increase the variability of the data, the test drives were performed

by two different drivers approaching seven different urban intersections. During
the test drives 37 intersection approaches were recorded.
The recorded data was further processed. The acceleration of the ego-vehicle

is computed by deriving the recorded velocity. Since the derivation increases any
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measurement noise present in the velocity, the acceleration oscillates heavily. This
is countered by smoothing the acceleration using a moving average over the last
20 measurements.

The GPS positions of all intersections’ stop lines are obtained from the vehicle’s
GPS position when it waits as first vehicle at a red traffic light. Due to the lack of
a traffic light recognition system the state of a traffic light is annotated manually.

Images from the dataset can be found in Appendix B.

4.5.3. Configuration Recognition

The configuration recognition is realized similar to the method presented in Section
4.1, but without a separate classification node as the classification takes place in
the final, combining component of the system.

Since only intentions III and IV require situational cues, there are only the cor-
responding two configurations considered:StoppedByRedTrafficLight and Stopped-
ByLeadingVehicle, where the former is specified as described in Section 4.1 while
the latter is augmented by two additional features. The feature carAheadTTC rep-
resents the Time-To-Collision to the leading vehicle and the feature netTimeGap
represents the time that passes until the following vehicle reaches the position of
the leading vehicle. These features turned out to improve the recognition accuracy
of the StoppedByLeadingVehicle-configuration. The Bayesian Network including all
states is given in Figure 4.10.

StoppedByLeadingVehicle

True
False

carAheadTTC

Long
Medium
Short
Not Present

relativSpeed

MuchSlower
Slower
Similar
Faster

netTimeGap

Long
Medium
Short
NotPresent

re velocity

LowVelocity
MediumVelocity
HighVelocity
VeryHighVelocity

re acceleration

HighDeceleration
MediumDeceleration
LowDeceleration
Acceleration

distance

Near
Medium
Far
NotPresent

Figure 4.10.: The Bayesian Network used for recognizing a
StoppedByLeadingVehicle-intention including all states.
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Figure 4.11.: Velocity profiles (a), acceleration (b) profiles and AVS feature (c)
for 37 intersection approaches. The red lines show the velocity profiles for a red
traffic light, green corresponds to straight intersection crossings and blue to right
turn intersection crossings. The shaded gray area indicates the interesting range
of 15 to 20 meters, where an estimation leaves sufficient time for a reaction if
necessary.

4.5.4. Feature Selection

Since Intention IV can not be recognized based on a vehicle’s behavior, only inten-
tions I-III are considered for the behavior-based estimation. Before an estimation
model can be built, appropriate features need to be selected or engineered.

One feature that is widely accepted in the state of the art [Liebner et al., 2012,
von Eichhorn et al., 2013] is the velocity. It is clear that a driver will slow down the
vehicle for an intended turn or a red traffic light whereas the driver will maintain
the current velocity for a straight crossing. These characteristics can be found in
our data as well, as it is shown in Figure 4.11a. However, in the shaded region at
a point 15 to 20 meters away from the stop line, a clear separation is not possible.

Intuitively, the acceleration is also a useful feature. Bringing a vehicle to a
complete stop at a red traffic light requires a stronger deceleration than for a
turning maneuver and even less so for a straight crossing. But the acceleration is
a very noisy feature that needs to be heavily filtered. The filtering stabilizes the
values but still the acceleration is a weaker feature than the velocity as it can be
seen in Figure 4.11b.

Even when combining both features a satisfactory separation is not possible. A
solution is to engineer a stronger feature out of the existing. A close look on the
velocity profiles shows that the intentions are linearly separable when the vehicle is
close to the stop line. Another observation is that the last 20 meters of a velocity
profile can be approximated by a straight line. Combining both observations leads
to the assumption that the velocity at the stop line can be predicted already
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20 meters before and that this prediction can be used to distinguish between
the individual intentions. The corresponding feature will be tagged Anticipated
Velocity at Stop Line(AVS).
The AVS feature results from predicting a vehicle’s velocity for the moment it

reaches the stop line. The prediction is made from the current distance d, velocity
v and acceleration a of the considered vehicle; it thus combines all kinematic
information in a single value. AVS is obtained by a straightforward extrapolation
of the vehicle dynamics:

vs = v + ats, (4.20)

with vs representing the velocity at the stop line and ts the expected time for
reaching the stop line. The value of ts can be obtained from the equation of motion

xs =
1

2
at2s + vts + x, (4.21)

for xs = 0 and x = −d. When solving in Equation 4.21 for ts, two possible
solutions for ts are obtained:

ts,1 =
−v +

√
v2 + 2da

a
(4.22)

ts,2 =
−v −

√
v2 + 2da

a
. (4.23)

The next step is to decide which solution to take. For realistic intersection
approaches both v and d are positive. If a > 0, then ts,2 becomes negative whereas
ts,1 is positive. For a < 0 also ts,1 is the appropriate choice, but this is less obvious
so it will be explained in the following paragraph.
For a < 0 both ts,1 and ts,2 are positive as the stop line is passed twice. A uni-

versal decision whether ts,1 or ts,2 provide the first pass can be made by inspecting
the equations more closely. For real-numbered solutions and v > 0, d > 0 and
a < 0 the inequality

√
v2 + 2da < v.

holds true. In combination with Equations 4.22 and 4.23 it can be inferred that
ts,1 < ts,2. Thus, ts,2 represents the case that a vehicle continues to decelerate after
passing the stop line until it eventually reverses and crosses the line again. Since
this point in time is not of interest it shows that only ts,1 needs to be considered.
Inserting Equation 4.22 into 4.20 results in
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vs =
√
v2 + 2da. (4.24)

In cases where 2da < −v2 a vehicles deceleration is high enough that the vehicle
will never reach the stop line. In these cases vs is not real-numbered and also
ts,1, ts,2 ∈ C. In order to still obtain a real-numbered result and a fully continuous
function for all possible input values d, v ∈ R+ and a ∈ R, vs is squared. The novel
AVS feature is thus defined as

AV S = v2 + 2da.

The values of the AVS feature for the considered intersection approaches are
shown in Figure 4.11c. Obviously, the individual behaviors can be separated sig-
nificantly better than for the other features.

4.5.5. Behavior-based Intention Estimation

One method that was recently proposed for behavior-based intention estimation
are Gaussian Processes [Tran and Firl, 2013, Armand et al., 2013]. One advantage
is that they provide a probabilistic output; assigning each intention a likelihood
of its presence. This way the estimation can be naturally combined with the
Bayesian Networks for the configuration recognition. However, a first evaluation
using Gaussian Processes revealed that they are not suitable for the given data.
The problem is that for each intention the individual approaches, regardless of
the considered feature, show a high variability and thus a high variance. But
Gaussian Processes assume that variance results only from measurement noise
and thus struggle with representing the variability adequately.

An alternative method that also provides a probabilistic output is Logistic Re-
gression. Despite its name, Logistic Regression is a linear classifier. It is known
for its computational efficiency for both learning and classification and its high ac-
curacy. For a set of K features f1, ..., fK and K+1 regression coefficients β0, ...βK ,
it arrives at a prediction hypothesis h for a binary classification task by

h(f ) =
1

1 + e−(β0+β1f1+...+βKfK)
(4.25)

Since h returns values in the interval [0, 1], its output can be interpreted as
probability. For a classification, values above 0.5 are interpreted as class 1 and
values below or equal to 0.5 are interpreted as class 0. For tasks with more than
two classes multiple Logistic Regressions are trained and combined into a single
output per class.
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During training, the regression coefficients are learned using gradient descent
with a parameter C controlling the strength of the regularization. The regulariza-
tion term is used to prevent overfitting [Tsuruoka et al., 2009]. In the system, C
is set to its typical value of 1.
While a first evaluation using only the distance and AVS as features already

provided accurate estimations, adding the velocity increased the accuracy further.
The acceleration is not used as feature, as its incorporation reduced the perfor-
mance of the estimation slightly.
Given the features, the Logistic Regression returns three values PI , PII and PIII ,

denoting the probability of intentions I, II and III, respectively.

4.5.6. Overall System

The overall system is a Bayesian Network related to the one used for configuration
recognition in Section 4.1. It is depicted in Figure 4.12.

StoppedByLeadingVehicle

True

False

CarAheadTTCCarAheadRelativSpeed CarAheadNetTimeGap

Velocity Acceleration CarAheadDistance

StoppedByTrafficLight

True

False

TrafficLightStateTrafficLightDistance

Behaviors

Go straight

Turn right
Stop at red Traffic Light

Intention

Go straight

Turn right
Stop at red traffic light

Car following

Figure 4.12.: The Bayesian Network aggregates the beliefs of the behavior-based
intention estimation and of the configurations. It provides the probability of each
of the four considered intentions in its node Intention.

A classification node, tagged Intention, combines the evidence of both considered
configurations. Additionally, the probabilities PI , PII and PIII from the behavior-
based intention estimation are fed into a dedicated node on the same level as the
configurations; it is tagged Behaviors.
The system is designed to run continuously during the time the ego-vehicle

approaches an intersection. It steadily computes the vehicle’s Time-To-Intersection
(TTI) by dividing the current distance by the current velocity. As soon as the
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TTI falls below a given threshold, in this case 1.5 seconds, all features are entered
into the Bayesian Network given in Figure 4.12. The intention with the highest
probability is returned as estimation.
An evaluation of the system and the newly engineered AV S-feature will be given

in Section 6.5.

4.6. Discussion

In this chapter methods that make use of the concept of configurations were pre-
sented. In Section 4.1 a method for recognizing configurations using Bayesian Net-
works was detailed that can be used to assess complex situations by identifying
the current configuration of each individual road user. The method was extended
in Section 4.2 with the goal to reduce the computational costs for a recognition by
serializing the recognition process and limiting the number of sensor measurements
for a recognition to a minimum. Both recognition algorithms serve as a basis for
the methods presented in the remaining parts of the chapter.
In Section 4.3 an approach for predicting the longitudinal behavior of vehicles

was discussed that uses configuration-specific prediction models which can be, due
to their specialization, simpler and more tailored to the task than a single, general
prediction model. A similar system was presented in Section 4.4, but with the goal
to avoid any manual annotation of data or configurations. The system trades the
interpretability and generalizability of expert-crafted configurations for the ability
to realize a constrained application on unlabeled data.
Section 4.5 detailed a targeted real-world application of configurations in a

demonstrator system for predicting a driver’s intended maneuver. It aims at con-
firming the suitability of configurations for Advanced Driver Assistance Systems.
Additionally, it was chosen to test the claim that configurations can provide useful
situation information and that this information can be used to bring the state-
of-the-art forward. This is why it tackles a more difficult problem in intention
estimation than the published work by considering more than two intentions.
The methods that were presented herein will be extensively evaluated in Chapter

6. Since for many evaluations also driving data obtained by a self-developed traffic
simulator is used, this simulator will be presented before, in Chapter 5.
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5. CarD Simulation Framework

In this chapter a traffic simulation framework tagged CarD is presented that was
developed in the course of the PhD project. The motivation was to create a tool
for generating sufficient and suitable driving data that can be used to benchmark
newly developed methods. While it is is undoubted that data obtained from record-
ings in the real-world enables more resilient results, its acquisition is a costly and
time-consuming process. Furthermore, as long as the goal is not to parameterize
an actual system but to evaluate the feasibility of methods and algorithms, a sim-
ulator’s major advantage is that exactly these types of situations can be generated
for which a method should be tested.
CarD is able to simulate urban intersection scenarios with vehicles that inter-

act, adhere to traffic lights and respect right-of-way rules. The vehicles are not
controlled by a central instance but each driver decides individually according to
its own goals. CarD was used to generate data labeled with ground truth infor-
mation, e.g. the actual configuration of vehicles, and this data is used for some of
the evaluations presented in Chapter 6.
The remainder of this chapter is structured as follows. In Section 5.1 the mo-

tivation for creating a traffic simulator is given. A review of available simulation
frameworks regarding their suitability for data generation reveals that none of these
tools provides the required capabilities. Section 5.2 outlines the design goals of
CarD and presents the software architecture chosen for reaching these goals. One
central design goal is to create traffic by the aggregated behavior of autonomously
acting drivers. Each driver behaves according to a model which is the subject of
Section 5.3. The implementation of CarD is sketched in Section 5.4. This chapter
concludes with a summary and a discussion of CarD’s capabilities for research on
ADAS in 5.5.

5.1. Motivation

After a new method for a given problem has been developed, its suitability for
solving the problem and its benefit over existing methods needs to be determined.
In some cases this benefit can be assessed analytically, for example by considering
convergence properties or proving optimality. In other cases, and especially for
a complex real-world application like an ADAS, the benefit can most adequately
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be assessed by evaluating a method online during a test drive, as part of the
system for which it was developed. For comparing multiple methods against each
other, however, an online evaluation is unsuitable, as each test drive will differ
considerably. The solution is to record test drives by logging all incurring data
and then to play this data back for offline evaluations.

A major downside of real-world recordings is the associated cost for obtaining
them. A data set that is large and variable enough to make valid statements
about the benefit of the evaluated methods can require tenths or hundreds of
hours of recording. Furthermore, there is no guarantee that during the recordings
all the situations are encountered on which a method should be tested. While
it is theoretically possible to reenact situations of interest this approach becomes
extremely costly for urban intersection scenarios with dozens of road users.

A traffic simulator being able to generate and record arbitrary situations is
especially for urban scenarios a more affordable and quicker alternative. The
downside of a traffic simulator is in turn that the data recorded by it is less realistic.
The data will be subject to bias resulting from simplifying assumptions made in
the simulator’s models for generating sensor measurements and the behavior of
road users. Nevertheless, as long as the results are not used to parameterize actual
systems but to compare a set of given methods for a specific purpose, a simulator’s
data can provide resilient results. The preceding considerations motivated the use
of a traffic simulator.

Traffic simulators can be coarsely divided into two groups: macroscopic traffic
simulators andmicroscopic traffic simulators. Macroscopic traffic simulators model
traffic on an aggregated level, measuring traffic flow and traffic density in the road
network in order to identify the potential of jams or study the effects of congestion.
Opposed to that, microscopic traffic simulators model traffic on entity level. Each
road user is controlled by a more complex behavior model that reacts appropriately
to other road users. For example, cars stop for pedestrians or yield to prioritized
public transport vehicles. As a tool for generating suitable data for an evaluation
only microscopic traffic simulators come into consideration.

Commercially available microscopic traffic simulators like VISSIM [PTV, 2014]
or Paramics [Quadstone, 2014] claim that they implement realistic, extensively
validated models for their simulated road users. However, in none of these pro-
grams it is possible to access these behavior models in order to obtain the rea-
sons for a specific behavior. But this information becomes relevant for evaluating
configuration-based methods: Does the driver stop because of a red traffic light?
Does the driver slow down because of a vehicle ahead? Another shortcoming of
the available traffic simulators is that they lack the freedom to generate arbitrary
traffic situations but are limited to rudimentary setting options. These insights
lead to the development of CarD.
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5. CarD Simulation Framework

5.2. Design Concept

The name CarD is a short form of Car Director and as such a design goal was
to create a framework for setting up arbitrary situations. And comparable to a
movie director a user should only set the infrastructure and conditions while any
actions are in the responsibility of the simulation.
Traffic emerges from the behavior of individual road users, each of them act-

ing autonomously for reaching a desired destination. In order to account for this
property, the simulator models each road user as intelligent agent [Russell and
Norvig, 2003]. An intelligent agent is an autonomous entity which perceives its
environment using sensors, plans its actions for reaching given goals and acts
accordingly. But even when each road user plans and acts autonomously, a co-
ordinating instance is needed for the perception part. Whenever an agent senses
its environment it requests information about the world it is in. The state of the
world needs to be in a central place, especially for allowing agents to sense each
other. The coordinating instance of CarD is tagged SceneManager and its relation
to an agent is depicted in the component diagram given in Figure 5.1

SceneManager

World State

Infrastructure

Agents

Agent

perceive

act

request
reply

Visualization

Visible State

request
reply

Figure 5.1.: The basic architecture of CarD, the simulation framework created for
data generation. A central managing instance, the SceneManager, provides infor-
mation about the simulated world for both the visualization module and individual
agents.

The world state comprises information about both infrastructural conditions
and agents. Infrastructural conditions are information about the layout of the
road network, the positions of traffic lights including their assignment to individual
lanes or whether a road is a minor or major road.
The perception of an agent is realized by a message exchange pattern, in which

the perception module requests information about the environment. The Scene-
Manager, having all information about the world at its disposal, provides the
requested information in its reply. A central design decision was to make the
SceneManager agnostic to the sensory capabilities of road users. It provides any
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information that was requested even if that includes entities that are beyond the
line-of-sight and by no means detectable for the requester. Perceptional particular-
ities need to be implemented by the agent itself. The advantage of this method is
that the simulator framework can be extended more easily as adding an agent with
a modified sensor equipment does not require any changes in the SceneManager.
Expandability played also an important role for the decision to realize the visu-

alization in a separate module, as it is shown in Figure 5.1. The module requests
the world state from the SceneManager which replies by delivering mainly posi-
tion and orientation information about all agents and infrastructural entities in
the simulation. Since the reply is limited to basic physical properties and no vi-
sual information about the agents is given, all of the visualization logic as well as
images, 3D models or textures need to be implemented in the visualization model.
This allows for modifying or switching the visualization independently from the
SceneManager. A screenshot of a 3D visualization is given in Figure 5.2.

Figure 5.2.: A screenshot of a CarD simulation run using a 3D visualization.

5.3. Behavior Models

Each vehicle is controlled by an autonomously acting agent. At creation time,
the agent obtains a route and a destination, which the agent tries to follow. The
agent’s lateral behavior is realized by a controller for ensuring that a vehicle stays
inside the bounds of its current lane. The longitudinal behavior is determined by
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5. CarD Simulation Framework

four dedicated behavior models. The agent selects the appropriate model based
on the current driving situation. These four models are

1. Car following

2. Adhere to traffic light

3. Negotiate an intersection

4. Free driving

and their working principle is given below.

5.3.1. Car Following

Car following is a behavior that enables an agent to react to a vehicle ahead;
otherwise vehicles in the simulation would be rear-ending all the time. The car
following model implemented in CarD is the linear model that was proposed by
Helly [Helly, 1961]. It was also used for the SITRA-B+ microscopic traffic sim-
ulator [Gabard and Breheret, 1999] and is known for matching natural driving
behavior well [Panwai and Dia, 2005].
The model adapts the acceleration of a vehicle in order to maintain a safe dis-

tance to a leading vehicle. Formally, taken from [Panwai and Dia, 2005]:

ac[k + 1] = C1∆v[k − T ] + C2∆x[k − T ]−D[k + 1] (5.1)

D[k + 1] = α + βv[k − T ] + γa[k − T ] (5.2)

where

ac[k + 1] is the acceleration of the regarded vehicle at time
step k + 1

D[k + 1] is the desired following distance to the nearest
leading vehicle in front of it

v is the speed of the vehicle
∆x is the relative distance between the regarded ve-

hicle and the leading vehicle
∆v is the relative speed between the regarded vehicle

and the leading vehicle
T is the driver reaction time
α, β, γ, C1,
C2

are (vehicle-specific) calibration constants
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An advantage of the model is that its calibration constants are interpretable
which simplifies setting them correctly. For example, α denotes the desired mini-
mum distance a driver wants to keep to a leading vehicle. Additionally, the con-
stants can be used to implement various driving styles from aggressive to cautious.
CarD sets these values by drawing randomly from reasonable intervals such that
each agent is different from the other, thus adding variability into the simulation
to make it more realistic.

5.3.2. Adhere To Traffic Lights

This behavior makes an agent aware of traffic lights. When a traffic light associated
to an agent’s lane and within perception range ρt turns red, the vehicle is steadily
slowed down until it is brought to a stop at the stopping line.

at[k + 1] = −1
2

v[k]2

∆xs[k]
if ∆xs[k] < ρt (5.3)

where ∆xs is the relative distance between the regarded vehicle and the nearest
stopping line on its lane and direction.
Since in the real world a car has a limited braking force, the same is implemented

in CarD: When a traffic light turns red but the required deceleration surpasses the
maximum possible deceleration of a car it runs the red light.

5.3.3. Negotiate an Intersection

This behavior is the most complex behavior of an agent. It controls how an agent
crosses an intersection. Assuming there is no vehicle blocking the way – which
would be handled by the car following behavior – the agent crosses the intersection
if it is driving on a road with right of way or if it is able to traverse conflict-free.

Determining whether the agent will conflict with other road users during the
traversal is a complex process. It starts with identifying areas at intersections
where two lanes intersect each other, which are tagged conflict zones in the follow-
ing. An example of a conflict zone for a left turn on a T-intersection is depicted
in Figure 5.3.
The size of a conflict zone is given by the dimensions of the agent’s vehicle in

a way that only when entering the conflict zone traffic on the crossing lane will
be affected. For deciding when a vehicle is able to safely pass a conflict zone the
agent has to compute two aspects: the duration la that passing through the conflict
area will take and a prediction of the intervals during which the conflict zone is
unoccupied. The prediction is obtained by extrapolating the current kinematic
properties of oncoming vehicles, namely acceleration and velocity, for determining
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5. CarD Simulation Framework

Figure 5.3.: The conflict zone for a left turn maneuver. It is centered around
the intersecting point and has the dimensions of the area covered by the crossing
vehicle.

when the conflict zone is entered and left. For the situation given in Figure 5.3
the time gap profile could look like it is illustrated in Figure 5.4.

Figure 5.4.: Intervals in which the conflict zone is free are drawn in green on the
time bar. The duration la that the turning vehicle takes to pass the conflict zone
is so long that it has to wait until the vehicles on the crossing lane have passed by.

In this case the agent of the turning vehicle will wait until both vehicles have
passed by in order to have sufficient time for the turning. In the implementation
the agents also add a safety margin to la, which varies between agents to create
both risky and defensive drivers. The deceleration for reaching the beginning of
the conflict zone xc is therefore computed as in Equation 5.3:

ai[k + 1] = −1
2

v[k]2

∆xc[k]
(5.4)

Here, ∆xc denotes the distance to the beginning of the conflict zone. As soon
as the agent enters the conflict zone, it switches to a car-following or free driving
behavior, depending on whether there is a vehicle in the lane at the end of the
conflict zone.

5.3.4. Free Driving

Free driving is the most simple behavior. An agent accelerates according to its
desired maximum acceleration amax until it reaches the speed limit for the road it
is driving on.
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5.3.5. Behavior selection

With four different behaviors at its disposal, an agent needs to decide which one
to choose when. This is achieved by computing the deceleration proposed by each
of the four behaviors. In cases where there is no vehicle,traffic light or intersection
in perception range the corresponding behaviors are not considered. The behavior
with the highest deceleration is selected. This ensures that the agent always reacts
to the most critical entity.
The behavior selection is also useful for creating labeled data. Each of the four

behaviors can be mapped to one of the configurations presented in Chapter 3. For
example, whenever an agent chooses the car following behavior, in order to react to
a slow driving vehicle ahead, the simulator logs this as a StoppedByLeadingVehicle-
configuration. Labeled driving data created in this fashion will be used in the
evaluation presented in Chapter 6.

5.3.6. Variability

For a realistic simulation it is desired that various traffic situations emerge from
the joint behavior of individual agents. Such a variability in the generated driving
data can be best achieved by making the agents variable themselves. The intuition
is that in real traffic each road user has its own driving style. This is why the
driving style is varied between agents by a set of parameters. For each agent the
parameters are chosen by sampling uniformly from the intervals given in Table 5.1.
The values were selected either according to values recommended in the liter-

ature or are the result of adjustments when the behavior of agents seemed un-
realistic. The parameters allow to model driving styles ranging from risky and
aggressive to cautious and defensive.

5.4. Implementation

CarD is implemented in the scripting language Python, version 2.66. The visualiza-
tion is realized using external libraries; for the 2D visualization a Python-binding
to wxWidgets named wxPython [WxPython, 2014] is used and for the 3D visual-
ization the open-source library Panda3D [Panda3D, 2014] is employed. The 3D
visualization allows to take arbitrary view points in the simulation, for example
to take the view of a driver. The visualization module runs in its own, separate
process in order to keep its impact on the simulation speed minimal.
Agents inherit from a base class named SceneElement which provides them

with two methods: update(delta time) and draw(). For a simulation the Scene-
Manager runs a loop in which in each iteration for all registered agents first their
update() and then their draw() method is called. The parameter delta time
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Parameter Description Interval
alpha Desired minimum distance to a leading vehi-

cle (m)
[1,2]

beta Factor for the distance to a leading vehicle
depending on the velocity

[0.8,1.2]

C1 Weight of the relative velocity during car-
following

[2.5,3.5]

C2 Weight of the desired distance during car-
following

[1.7,2.3]

rhot Perception range for traffic lights (m) [50,60]
rhoi Perception range for intersections (m) [40,50]
amax Maximum acceleration during free driving

(m/s2)
[2.5,3.5]

ts Safety margin for computing la during cross-
ing a conflict zone (s)

[0.5,2]

Table 5.1.: Parameters for specifying an agent’s driving style.

gives the milliseconds that have passed since the last iteration. This information
allows to run a simulation in real time and is also relevant to determine how far a
vehicle can be moved since the last iteration.
When an agent’s update() method is called, it starts with perceiving the envi-

ronment by querying the SceneManager. The agent requests within its perception
range:

• distance to a leading vehicle ∆x

• relative speed to a leading vehicle ∆v

• distance to the stop line for the next relevant traffic light ∆xs

• state of the next relevant traffic light

• distance to the next intersection

• positions of vehicles at the next intersection

• kinematic state of vehicles at the next intersection

• the right-of-way for the next intersection

Based on the obtained information the agent selects a behavior as described in
Section 5.3. This gives the longitudinal behavior of the agent, i.e. the desired
acceleration, and is fed into the lateral control loop. This control loop uses a
linearized bicycle model for keeping the vehicle in its lane by giving steering com-
mands.
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In order to guarantee a stable simulation the update method is called at least
at 20 Hz. That means, if between two iterations of the SceneManager ’s loop pass
more than 50 milliseconds, then the update method is called multiple times in a
row with a delta time of at most 50 milliseconds. Otherwise the lateral control
loop could exhibit unwanted oscillations.
The draw() method returns a representation of the current state of an agent

to the caller. The representation is limited to those aspects that are relevant to a
visualization. This includes world position and orientation as well as states, like
the one of a turn-indicator. The SceneManager sends all representations via a pipe
to the visualization module.
After the calls to update() and draw() the SceneManager writes the new

world state to a log file. This log file can then be used to extract features and
configuration information for each vehicle in the simulation at any given time.

5.5. Discussion

In this chapter the microscopic traffic simulation framework CarD was presented.
Its purpose is to create driving data that can be used for evaluating some of the
methods presented in Chapter 4. One major benefit of using CarD over commercial
simulators is that it provides information about the current configuration of a
vehicle.
In order to make the traffic simulated by CarD more realistic, vehicles are not

centrally controlled by a single instance, but each vehicle is controlled by an in-
telligent agent. The agent tries to reach a given destination and on its way it
constantly evaluates which entity it should react to and chooses an appropriate
behavior. Based on the selected behavior the agent’s configuration can be deter-
mined and logged.
Using a simulator for an evaluation of course evokes the question whether the

results obtained can be generalized to the real world. It is obvious that this
generalizability is hard to prove and the answer will particularly depend on the
use case. Nevertheless, throughout the design of CarD achieving a sufficient level
of realism has been targeted, for example by decentralizing traffic and by using
behavior models that have proven to mimic driver behavior. Additionally, in
Chapter 6 it will be shown that some methods that build on insights gained from
using the simulator, work well on data obtained from real test drives. This may be
still not a proof of CarD’s realism, but it is at least an indication of its usefulness.
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6. Evaluation and Results

In the following the methods described in Chapter 4 are evaluated. For this purpose
both simulated data obtained from CarD as well as driving data obtained from
test drives is used.
Sections are named identically to those in Chapter 4 in order to make their relat-

edness explicit. In Section 6.1 the proposed method for recognizing configurations
is tested and in Section 6.2 its extension to a resource saving recognition process
is evaluated. Section 6.3 benchmarks the accuracy of the presented prediction
system for velocity profiles. In Section 6.4 it is investigated whether such a predic-
tion system can be learned from unlabeled data. Section 6.5 presents the results
obtained on the configuration-based intention estimation system. A summary of
this chapter and a discussion of the found benefit of using configurations is given
in Section 6.6.

6.1. Recognizing Configurations in Complex Traffic

Scenes

The method that is evaluated here was detailed in Section 4.1. It uses a Bayesian
Network as shown in Figure 6.1 to recognize whether a given vehicle is in one of
three possible configurations or in no configuration at all. The considered config-
urations are StoppedByRedTrafficLight (TL), StoppedByLeadingVehicle (LV) and
StoppedByIntersection (IS).

6.1.1. Evaluation Method

For data generation the simulation framework CarD is used. An intersection sce-
nario is set up consisting of a major road with two lanes in each direction and
a crossing minor road with a single lane in each direction. The intersection is
signalized with traffic lights. Cars approach from all incoming lanes; on average
about 15 vehicles are nearby the intersection. A top view on the intersection is
given in Figure 6.2.
The simulation was run for about 20 minutes. Every 0.1 seconds the state,

behavior, features and configuration of each present vehicle is recorded and logged
as a separate case. In total, there are thus 142030 cases.
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False
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Figure 6.1.: The Bayesian Network used for recognizing configurations.

Figure 6.2.: A screenshot of the top view of the intersection scenario used for the
CarD simulation. Icons on the cars indicate their corresponding situation.

For the evaluation the cases are randomly split into 10 partitions in order
to employ a 10-fold cross-validation. The Bayesian Network is trained using
Expectation-Maximization.

6.1.2. Results

The results obtained are given in the confusion matrix shown below:

The matrix has high values on its main diagonal, indicating a high accuracy
for recognizing each of the four possibilities. The overall recognition accuracy,
averaged over the 10 folds, is 97.9%. Accordingly, 2.1% or about 2900 cases were
misclassified. The major share of these misclassifications occurs in cases where a
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TL LV IS None ← Measured/Actual ↓
30530 792 17 241 TL

293 25481 1185 0 LV
0 30 1184 0 IS
0 355 138 81784 None

Table 6.1.: Confusion matrix for configuration recognition.

vehicle is forced to brake by more than one entity and it is hard to distinguish
which of them is the most relevant one. One example is when a vehicle approaches
a red traffic light at which another vehicle is already waiting. Then, for a certain
range during the approach, it is hard to tell whether the considered vehicle is
more affected by the traffic light or the leading vehicle. This is exacerbated by
the property that individual agents differ in their driving style and thus react
slightly different to other entities (see 5.3.6). In view of the fact that at a busy
intersection as the simulated cases with more than one potential affecting entity
occur frequently, a misclassification rate of 2.1% can be considered low.

The configuration that is least accurately recognized is StoppedByLeadingVehicle
with an accuracy of 94.1%. The highest accuracy, 99.3% was achieved for the case
where a vehicle is in no configuration.

The results show that the proposed method is able to robustly recognize the
configuration of a vehicle. The method can therefore be used to assess complex
traffic situations according to the concept of configurations.

6.2. Incremental Situation Assessment

The method that is evaluated in the following was described in Section 4.2. It is
concerned with tackling the problem that for recognizing a single vehicle’s driving
situation all considered features of all considered configurations need to be mea-
sured, which is computationally costly. The proposed solution employs an active
measurement process where features are obtained one after the other until the be-
lief in one configuration is sufficiently high. At this point the measurement process
is terminated and the most probable configuration is returned as result. The order
of measurements is obtained by selecting in each step that feature with the highest
expected information gain as computed in the Bayesian Network for configuration
recognition.
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6.2.1. Evaluation Method

The active measurement process pursues two goals:

1. Achieve a high belief in the correct configuration quickly

2. When terminating the measurement process early, the most probable config-
uration should be the correct one

Goals 1 and 2 are interrelated because both of them contribute to a correct
recognition after as few measurements as possible. Nevertheless, a separate eval-
uation allows to determine which aspects work and which do not work in the
proposed method. If the first goal is not met, the proposed method will – for a
given, conservative threshold – still measure most of the features and the saving
by using the method will be negligible. If the second goal is not met, the most
probable configuration at the time of termination will often be a wrong one.
The benefit of using information gain for determining the order of measurements

is quantified by comparing the results with a baseline algorithm. The baseline
algorithm selects in each step randomly one of the yet unmeasured features.
In this evaluation the same data set is used as in the previous section, because

the active measurement process is an extension of the therein evaluated method.
By using the same data the results can be compared.

6.2.2. Results

The degree to which the first goal, achieving a high belief in the correct config-
uration quickly, is met can be seen in Figure 6.3. It shows the average belief in
the correct configuration after a given number of measurements performed. Using
information gain for selecting the order of measurements, the average belief sur-
passes 80% after only 3 measurements and it surpasses 90% after 4 measurements.
In contrast, the baseline algorithm needs 7 out of 8 measurements for reaching 90%
confidence. Given these results it can be stated that the first goal of the active
measurement process is met.
In Figure 6.4 the recognition accuracy achieved after a given number of measure-

ments is plotted. Using information gain as selection criterion results in a steep
increase of the recognition rate as compared to the gradual increase of a random
selection. The proposed method is able to correctly recognize the configuration in
more than 96% of the cases after performing only 3 measurements. This is less
than two percentage points away from the recognition accuracy that is obtained
after 8 measurements, which is 97.9%, as reported in Section 6.1. Opposed to that,
the baseline method requires 6 measurements to reach an accuracy above 90%.
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Figure 6.3.: Average belief in the correct configuration after conducting a certain
number of measurements. After only four measurements the belief surpasses 90%
when using mutual information.

The evaluation shows that both goals have been met. The proposed method is
able to quickly maximize the belief in a single, confident configuration that is in
the vast majority of cases also the correct one. Using the method allows to save
more than half of the measurements while impairing the recognition accuracy by
less than 2 percentage points. Nevertheless it has to be noted that the measure-
ments are assumed to be free of noise. It is possible that erroneous measurements
could impact the recognition accuracy more severely using the active measurement
process than the recognition method presented in the previous section, because the
latter takes always all available evidence into account. Investigating this topic is
left to future work.

6.3. Predicting Velocity Profiles

The method evaluated in the following utilizes recognized configurations for esti-
mating the future evolution of a situation. The future evolution is anticipated by
predicting the future velocity profile of each individual vehicle present. The overall
system is realized as a two-staged approach which was presented in Section 4.3.
In the first stage the configuration of a vehicle is determined in order to select in
the second stage a configuration-specific prediction model. Each prediction model
is tailored to its corresponding configuration by regarding only those features that
are considered relevant for the velocity profile in that configuration.
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Figure 6.4.: Recognition accuracy when terminating the measurement process af-
ter a certain number of measurements. After only 3 measurements a recognition
accuracy of 96% is achieved when using mutual information as selection criterion.

6.3.1. Evaluation Method

The data for the evaluation is again obtained by a simulation run of CarD. In an
urban intersection scenario a total of 30 minutes was logged, of which the first 20
minutes are used as training data and the rest is used as testing data. This results
in 15361 cases for training and 7084 cases for testing. Here, a case consists of all
considered features as measured for a single vehicle at a certain point in time t0 as
well as the velocity profile for the next three seconds. The velocity is sampled at
10 Hz, thus the velocity profile consists of 30 individual values for t0 + 0.1s up to
t0+3s. The error measure used for the evaluation is the sum of squared distances.
The prediction error e between the actual velocity profile V and the predicted
velocity profile V̂ is therefore:

e =
30
∑

t=1

(V̂t − Vt)
2 (6.1)

In order to put the results obtained into perspective, two alternative methods
for profile prediction are also evaluated which are tagged KINEMATIC and PRE-
DONLY. KINEMATIC employs a straightforward prediction method and serves
as a baseline such that the gain of more sophisticated methods can be assessed.
The prediction method simply extrapolates the current kinematic properties of a
vehicle into the future. The predicted velocity V̂t for time step t given the current
velocity v0 and acceleration a0 is thus:
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6. Evaluation and Results

V̂t = max(0, v0 + t ∗ a0) (6.2)

The max operator prevents a calculation of negative velocities.
The PREDONLY method takes also solely current velocity and acceleration as

well as time as input features. As opposed to KINEMATIC, PREDONLY learns
a prediction model from training data. This allows the model to capture certain
characteristics of the training data, like the speed limit or typical acceleration
and deceleration behaviors. A Random Forest Regression is employed as predic-
tion model, the same regression method that is used by the proposed two-staged
approach. The proposed method will be later on referred to as TWO-STAGED.
If the proposed TWO-STAGED method excels the other methods used for ref-

erence this could be attributed to the fact that the reference methods are limited
to three input features while TWO-STAGED has eight features at its disposal. In
order to exclude this possibility and to show the benefit of a two-staged approach
a variant of TWO-STAGED, tagged TS-BASIC, is also evaluated. The prediction
models of TS-BASIC are limited to the same three features as PREDONLY is,
with all other aspects being equal.

6.3.2. Results

The results of the evaluation are given in Table 6.2. In order to ease the comparison
the total error on the test set for each of the methods was divided by the total
error of the proposed TWO-STAGED method, thus giving the relative error. The
table shows that KINEMATIC yields an error more than twice as high than the
proposed method and also PREDONLY is 26% less accurate. Even the stripped-
down variant TS-BASIC performs better than both reference methods.

Method Relative error
TWO-STAGED 1
TS BASIC 1.17
PREDONLY 1.26
KINEMATIC 2.27

Table 6.2.: Relative velocity prediction error

An interesting aspect of a prediction model is its accuracy depending on the
time. In Figure 6.5 the relative velocity error over time for all methods is plot-
ted. The error of KINEMATIC rises steeply for a prediction horizon beyond 0.5
seconds. The result demonstrates that a velocity profile prediction based on a
simple extrapolation of a vehicle’s current behavior is not sufficiently accurate.
PREDONLY and TWO-STAGED achieve almost the same accuracy for the first
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1.3 seconds, but then the error of PREDONLY rises significantly faster than for
TWO-STAGED.
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Figure 6.5.: The relative prediction error over time is lowest when employing the
proposed two-staged method (a), even if no configuration-specific features are used
(b).

A similar observation can be made for the comparison in Figure 6.5(b): For
longer prediction horizons the improved accuracy of the TS-BASIC method as
compared to PREDONLY becomes increasingly visible.

The results show that the proposed method is superior to the methods that
neglect configuration information for their prediction models. The impact that
the 21% higher accuracy of TWO-STAGED has can be best understood when
considering two findings on the data set. First, about a fifth of the cases in the
test set contain a stopped car for which the velocity prediction is trivial so that
the proposed method can not set itself apart. Secondly, TWO-STAGED performs
less severe mispredictions than the reference methods. This can be quantified by
integrating the predicted velocity profile to obtain a future position. KINEMATIC
is off by more than an average car length (4 meters) in about 19% of the cases in the
test set and PREDONLY is off in 10% whereas this happens for TWO-STAGED
only in 5% of the considered cases.

The results obtained for TS-BASIC also confirm that a two-staged approach is
beneficial for the accuracy. The specialization of the prediction models to their
corresponding configuration improves the prediction accuracy notably, even with-
out taking additional features into account. But it is also important to note
that the prediction models of the proposed TWO-STAGED method incorporate
at most two additional features and the thereby improved accuracy shows that
these configuration-specific features are indeed relevant for the prediction.
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6.4. Learning Configurations from Observations

In Section 4.4 a method was presented that is designed for the case where a large
amount of unlabeled real-world driving data is available. Using the method a
time-consuming, manual labeling with configuration information is circumvented
by learning the configurations from the data itself. The proposed method learns
a parameterization of a complete prediction system for velocity profiles, as it was
presented in Section 4.3. The system employs a two-staged approach where in the
first stage a vehicle’s configuration is estimated and then in the second stage a
dedicated, configuration-specific prediction model is used for estimating the vehi-
cle’s future velocity profile. In the following the learning method will be referred
to as TS-LEARNED.

6.4.1. Evaluation Method

The evaluation is split into two parts. In the first part the degree to which the
learned configurations match actual configurations is quantified. For this purpose,
TS-LEARNED is applied to driving data obtained from CarD, where the actual
configuration of a vehicle is known. The data set stems from a 40 minute long
simulation of urban traffic and comprises 35506 cases. Each case consists of a
vehicle’s velocity profile for the next three seconds and nine features indicating its
current driving situation:

• Velocity (VEL): Velocity of target car in m/s

• Acceleration (ACC): Acceleration of target car in m/s2

• Traffic light distance (TLD): Distance to the stopping line of the next, rele-
vant traffic light in m

• Traffic light state (TLS) : State of next, relevant traffic light. 1 if green, 0
otherwise

• Car ahead relative speed (CAS): Relative velocity between target car and its
leading car in m/s

• Car ahead distance (CAD): Distance between target car and its leading car
in m

• Car ahead TTC (TTC): Time to contact between target car and in ts leading
car in s

• Intersection distance (ID): Distance to the entry point of the next intersec-
tion in m
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• Major Road (MJ): Whether target car is driving on a major road (1) or
minor road (0).

TS-LEARNED uses this data to identify configurations; after termination it is
determined whether the cases belonging to an actual configuration are also assigned
to the same learned configuration. This is accomplished by using the purity-
measure known from the field of clustering [Zhao and Karypis, 2001]. Using this
measure, each learned configuration Ĉn is assigned to the configuration Cn which
occurs most frequent in the cases assigned to Ĉn. Formally,

purity(Ĉ,C) =
1

I

∑

n

max
n
|ok ∩ ôk| (6.3)

where I denotes the number of cases, on and ôn denote the cases belonging to
Cn and Ĉn, respectively. A value of 1 indicates a perfect match whereas a purity of
0 denotes no match. Because the optimization problem solved by TS-LEARNED
is not convex its solution varies depending on the random initialization of the
assignment matrix H . In order to account for this, the proposed method is run
64 times and the obtained results are aggregated to give a reliable value.

In the second part of the evaluation the prediction accuracy of TS-LEARNED
is compared to two other methods. A baseline algorithm, tagged KINEMATIC,
performs its prediction by extrapolating the current velocity and acceleration like
it was specified in Equation 6.2. The other method is a state-of-the-art regression
model based on Random Forests. The Random Forest Regression (RFR) directly
takes all features as input and returns a velocity value.

For the comparison of TS-LEARNED with the reference methods data obtained
from real-world test drives is used. The data set was recorded by a test vehicle
equipped with multiple sensors. A laser scanner provides the distance to and the
relative velocity of a vehicle ahead, yielding features CAD and CAS. The CAN-
bus is tapped for obtaining the kinematic state of the ego-vehicle (VEL, ACC).
Camera data is used to determine stop line positions and the states of traffic lights
(TLD, TLS). Additionally the time step is added as variable which is utilized by
the reference methods to specify the time instance for which a velocity value is
predicted. The time step ranges from 0.1s to 3s. The data set comprises a total
of 29 minutes of recording of which the first 15 minutes were used for training and
the remaining 14 minutes were used for testing.

For all experiments the learning parameter l of TS-LEARNED is set to 0.1
and the algorithm terminates if the relative improvement between two consecutive
iterations is less than 1%.
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Figure 6.6.: Camera images taken from the data set used for training and testing.

6.4.2. Results

The purity between the configurations learned by TS-LEARNED and the actual
configurations as given by CarD is shown in Table 6.3. The average purity is 0.63
and thus the learned configurations have only a limited similarity with the actual
ones. The reasons for this can be either that the method is unable to capture the
underlying domain knowledge or that by coupling configuration recognition with
velocity prediction the latter dominated the former part during the minimization.

Purity
Min Mean Max
0.38 0.63 0.80

Table 6.3.: Match between learned configurations and actual configurations.

An indication that the minimization method of TS-LEARNED emphasizes the
prediction part can be found when considering the results obtained in the second
part of the evaluation. In Figure 6.7 the prediction accuracy of TS-LEARNED
and the methods used for reference is given. It shows that the proposed method is
significantly better than KINEMATIC and RFR, especially for predictions beyond
1 second in the future. The unexpected bad performance of RFR was in a separate
evaluation traced to the fact that the statistics of training and test set differ
considerably. The results indicate that the two-staged approach of TS-LEARNED
adds a sufficient degree of robustness to this variation.
The first part of the evaluation shows that the configurations learned are not

comparable to the configurations as specified in Chapter 3. They are not necessar-
ily bilateral, that is restricted to a single affecting entity, for example when both
traffic light distance and car ahead distance are features of the same configuration.
Furthermore, the learned configurations do not enable any conclusions on affecting
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Figure 6.7.: TS-LEARNED excels both KINEMATIC and RFR, especially for
longer prediction horizons.

and affected entity. Nevertheless, the proposed method is particularly suited for a
specific application if large amounts of unlabeled driving data are available: The
results show that the proposed method allows to parameterize a prediction system
that is capable of beating a state-of-the-art regression method.

6.5. Intention Estimation

A central claim in this thesis is that configurations are a useful concept for assessing
traffic situations and that a configuration captures the driving situation of a vehicle
adequately. Furthermore, the concept of configurations is developed to extend the
state-of-the-art.
To put these claims to the test, a demonstration system for intention estimation

was developed as described in Section 4.5. The system distinguishes between four
instead of the usually considered two intentions, which are

I. Go straight

II. Turn right

III. Stop at red traffic light

92



+
3
m
m

C
h
a
p
te
r
6

6. Evaluation and Results

IV. Car following

The increased number of intentions is enabled by combining the typically con-
sidered behavioral cues with situational cues, where the latter are captured by two
configurations. For the behavioral cues also a novel feature has been engineered,
the Anticipated Velocity at Stop Line (AVS), which is expected to improve the
accuracy of the behavioral part of the intention estimation.

During an intersection approach, the overall system continuously computes the
expected Time-To-Intersection (TTI). If the TTI drops below 1.5 seconds, both
behavioral cues and situational cues are measured and combined and the system
returns the estimated intention.

6.5.1. Evaluation Method

The evaluation consists of three parts. In the first part the accuracy of the TTI
estimation is benchmarked. This is necessary because if the actual TTI is overesti-
mated such that the remaining time to the stop line is in fact significantly less than
1.5 seconds, then the estimated intention will be available too late for subsequent
systems to react properly.

In the second part of the evaluation the benefit from using the newly developed
AVS feature is quantified. For this purpose the accuracy of the behavior-based
intention estimation when using the traditional features velocity and acceleration
is compared with the accuracy obtained when using solely AVS. The distance is
provided as feature in both cases. For the comparison only approaches with the
intentions I or II are used, because for these intentions no situational cues are
required.

The third part of the evaluation is concerned with the overall system perfor-
mance. Since among the 37 intersection approaches used for the evaluation there
are only four approaches for ’Car following’, a stratified four-fold cross validation
is employed, such that in each fold such an approach is present. In order to provide
sufficient training data all measurements from each approach in the training set,
where the vehicle is less than 25 meters away, are incorporated. This yields 600
cases per fold for training.

6.5.2. Results

The relation between estimated and actual TTI is depicted in Figure 6.8. The
histogram shows that the computation method for the TTI used here is a conser-
vative estimation such that the actual TTI is rather under- than over estimated.
For all approaches more than one second remains until the vehicle reaches the stop
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line and for only six approaches the remaining time is less than the anticipated 1.5
seconds.

1 1.5 2
0

5

10

15
µ = 1.706

Actual TTI in s

Q
u
a
n
ti
ty

Figure 6.8.: Histogram of the actual TTI at a predicted TTI of 1.5s

The results of the comparison between kinematic features and the proposed
AVS feature are given in Figure 6.9. The ROC curves plotted therein illustrate
the superiority of the AVS feature. The behavior-based estimation is significantly
more accurate when relying on the AVS feature than when employing kinematic
features directly. Nevertheless, it has to be noted that this evaluation takes only
20 approaches into account and before far-reaching generalizations can be derived
more data will be needed.
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Figure 6.9.: Behavior recognition of ’Go straight’ and ’Turn Right’ using Logistic
Regression. The AVS feature (blue) is significantly more accurate than velocity and
acceleration (green).

The performance of the overall intention estimation system is presented in Table
6.4. The confusion matrix shows that only three approaches have been misclas-
sified, yielding an overall classification accuracy of 91.9%. The system is able to
identify only 50% of the approaches labeled ’Car following’ correctly, though this
is satisfactory given the low number of training examples.
The overall system performs also well for longer prediction horizons. In Figure

6.10 the estimation accuracy is plotted against the estimated TTI. The plot shows
that accuracy decreases slowly for longer horizons and even for a TTI of 3 seconds
the accuracy is above 80%.
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I II III IV
← Prediction /

Actual ↓

6 0 0 0 I
0 13 0 1 II
0 0 13 0 III
0 2 0 2 IV

Table 6.4.
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Figure 6.10.: The accuracy of the overall system, dependent on the prediction
horizon

The results document that the goals set in the forefront have been attained by
the final system. The estimated TTI leaves sufficient time for subsequent systems
to react to an estimated intention. The proposed AVS feature is superior to a direct
incorporation of kinematic features. Furthermore, the overall system achieves an
accuracy of nearly 92% even though the increased number of considered intentions
complicates the estimation task.

6.6. Discussion

In the preceding evaluation the feasibility of the methods proposed in Chapter 4 has
been confirmed. At first, in Section 6.1 it was shown that multiple configurations
can be reliably recognized using a Bayesian Network. The network achieves a
recognition accuracy of 97.9%.
In Section 6.2 it was furthermore shown that the recognition process itself can

be streamlined in order to save sensory and computational resources without dete-
riorating the recognition rate considerably. The proposed reduction method takes
advantage of the fact that the recognition is realized as a Bayesian Network and al-
lows to save more than 50% of the measurements normally taken while maintaining
an accuracy above 96%.
Section 6.3 details how the explicit consideration of a vehicle’s configuration
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can be used to improve a system for behavior prediction. Training and employing
configuration-specific prediction models leads to a significantly more accurate es-
timation of a vehicle’s future velocity profile than when configuration information
is neglected.
For cases, where sufficient unlabeled driving data is available but the capacity

for its annotation is lacking, the method evaluated in Section 6.4 can be employed.
The proposed method is capable of parameterizing a complete prediction system
using solely unlabeled data. Additionally, the resulting system is superior to state-
of-the-art regression methods. However, it turns out that the configurations as
defined in Chapter 3 can not be learned from unlabeled data, especially because
the learned configurations miss their bilateral character and any interpretability.
The demonstration system evaluated in Section 6.5 puts configurations to the

test in a real-world application. The results confirm that by using configurations
the state-of-the-art in the area of intention estimation can be advanced. The sys-
tem is able to distinguish reliably between four different driver intentions whereas
nowadays approaches consider usually only two.
The first three methods were solely evaluated on simulated data. It is possible

that they profited from using this data, as simulated data can be assumed to be
much cleaner and more accurate than data taken from the real world. Additionally,
the simulator provides an abundance of data, which allows for parameterizing also
complex models. However, the remaining two methods are based on the first three
methods and turned out to work well on real data. This indicates that the findings
on simulated data have a sufficient validity for real-world data.
Although the evaluation has shown that the methods proposed in Chapter 4

work the way as it was hoped for, the evaluation also revealed many aspects that
require further investigation. For example, why are the learned configurations
so far off from the actual configurations? Is this a property of the minimization
algorithm or is the domain knowledge that is encoded during a manual specification
simply not present in driving data? These and more starting points for future work
are given in Chapter 7.
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7. Future Work

Developing the foundation of an urban driver assistance system is an open-ended
research project. The preceding evaluation showed that the methods proposed in
the course of the work accomplish the goals they were developed for, however,
there is plenty of room for improvement. This chapter discusses possible starting
points for future work.

In Section 7.1 possible extensions are discussed which are expected to enhance
the capabilities of the proposed methods and tackle their shortcomings. Section 7.2
is concerned with the question how the concept of configurations can be further
augmented to increase its applicability for future driver assistance systems. It
names areas in which further research seem promising.

7.1. Extensions

The active measurement process proposed in Section 4.2 can be extended in mul-
tiple ways. One option is to assign different costs to individual measurements.
These costs can be based on the computational effort required for a sensor pro-
cessing. Additionally, the process should consider the case where the same sensor
measurement can be used for computing multiple features, for example when a
camera image is acquired for both detecting cars ahead and on nearby lanes. In-
sights from an approach, where a related problem has been tackled for a computer
vision system, can be found in [Rebhan et al., 2009].

One downside of recognizing configurations using an active measurement process
is the high latency resulting from measuring features sequentially. If this high
latency becomes an issue further research on a cost function that considers parallel
measurements will be needed.

The behavior prediction system that was detailed in Section 4.3 offers also mul-
tiple starting points for improvement. So far, only the longitudinal behavior in
form of velocity profiles is considered, whereas an extension towards lateral be-
havior would be interesting. Lateral behavior can be used to anticipate the next
maneuver of a vehicle; the resulting system would be thus related to the intention
estimation system proposed in Section 4.5 and could adopt the behavior estimation
used therein.
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Because nowadays the availability of driving data is constantly increasing, meth-
ods that are able to learn directly from data will become more and more important.
One study for example, the SHRP2 naturalistic driving study [Campbell, 2012],
expects to record one petabyte of driving data. The data will in its first version
only consist of unlabeled, raw sensor measurements. The method proposed in Sec-
tion 4.4 was developed to work with unlabeled data. The evaluation showed that
it is possible to parameterize a competitive prediction system but it also revealed
that the algorithm employed is unable to identify the underlying configurations.
This could be countered by introducing additional terms into the target function,
that punishes when a learned configuration comprises more than two entities. Fur-
thermore, the currently implemented feature selection mechanism which ensures
that each feature is only exclusively assigned to a single configuration, hinders the
computation of a gradient. A solution for this problem is to replace the currently
used binary feature selection matrix by a continuous weight matrix, as it was done
for the assignment matrix H . At the same time, another term is added to the
target function that punishes when a feature is utilized by multiple configurations.

The intention estimation system detailed in Section 4.5 could be further ex-
tended to anticipate also left turn maneuvers. This requires a lane-level accurate
localization, like it was proposed in [Vu et al., 2012], and sufficiently accurate map
data. The currently needed manual annotation regarding the traffic light state
can be replaced by a state-of-the-art traffic light detector as it was presented in
[deCharette and Nashashibi, 2009].

7.2. Potential Research Directions

In order to make the increased volume of available driving data usable for all
presented methods rather than only the learning algorithm, a convenient solution
for labeling needs to be found. A possibility, which was not further pursued due
to time constraints, is to employ a driver behavior model. The intuition behind
this is that if a driver’s reaction to leading vehicles or red traffic lights is captured
by a driver model, it will be possible to parameterize this model using the data.
For example, when in the data the driver approaches a signalized intersection
many times and in some cases the traffic light shows green and in other cases it
shows red then differences in the driver’s behavior can be attributed to the traffic
light state – given that everything else remains unchanged. Even though every
two approaches will differ in more than one aspect, if the number of recorded
approaches is sufficiently high these changes can be neglected. A driver model
that takes multiple driving situations into account is for example the CAIDM
[Sridharan et al., 2012], which is an extension of the Intelligent Driver Model
[Treiber and Helbing, 2002]. A driver model, that is learned from data, was lately
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presented in [D’Agostino et al., 2013].
For test drives where the need for configuration information is known in advance

the labeling can take place during the recording itself. A method for this purpose
is the think-aloud-protocol as proposed in [Lewis, 1982]. It was recently employed
for the evaluation of an ADAS for traffic jam mitigation [Risto and Martens, 2013].
Using the think-aloud-protocol the driver would comment on the decisions made
during driving, especially which road users are currently affecting him. If the
protocol is sufficiently reliable and the additional workload remains manageable
for the driver such a protocol could speed up the later annotation by an expert.
Another promising extension to this work is to increase the number of considered

configurations. Though many situations can be covered by the four configurations
used so far, the regarded entities are currently only vehicles and traffic lights. For
urban driver assistance systems the consideration of pedestrians, bicyclists and
zebra crossings would open up additional areas of use. A higher number of entities
challenges the current recognition method, but an advantage of configurations with
a single affecting entity as used here is that each possible affected entity can be
treated by a separate Bayesian Network.
Future work can also be directed to the development of methods that are con-

cerned with anticipating critical situations. By now, the future evolution of a
situation is only predicted without any assessment of potentially upcoming haz-
ards. Inspiration for research in the direction of risk estimation is provided by
the works of Lefèvre [Lefèvre et al., 2011, Lefèvre et al., 2012]. Here, a mismatch
between the anticipated and the usually expected behavior of a driver is taken as
a measure for quantifying risk. This approach can be transferred to the concept
of configurations: a vehicle for which situational cues hint to a StoppedByRedTraf-
ficLight configuration while its behavior is more close to NoConfiguration might
be about to run a red light. A method that identifies this mismatch and draws
appropriate conclusions from it would be able to identify risky behavior and warn
the driver.
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8. Conclusion

In the preceding chapters fundamental research has been presented towards an
Advanced Driver Assistance System for inner-city intersections. In this chapter a
summary of the work is given.
Chapter 1 started with an analysis of traffic accident reports. The statistics

reveal that the most accident-prone spots in the road network are urban intersec-
tions. Furthermore, an in-depth study found that intersection-related crashes can
almost exclusively be attributed to errors committed by the driver. The findings
suggest that an intelligent system for assisting the driver in negotiating intersec-
tions could greatly reduce the number of accidents. However, for the time being
such Advanced Driver Assistance Systems are neither commercially available nor
have they been presented in academia; current ADAS are only helpful before an
intersection is entered. But in order to support the driver throughout a crossing
maneuver a comprehensive assessment of the current traffic situation is needed.
Such an assessment turns the traffic situation into a descriptive model that cap-
tures dependencies and interactions of all road users present. A descriptive model
provides a basis for performing inference and gaining an understanding of the situ-
ation. While understanding a situation is a value per se, using this understanding
to predict upcoming conflicts promises further benefit. Based on these considera-
tions the goal of the PhD project was specified as finding a method for situation
assessment that can also be employed to improve the state-of-the-art in predicting
future situations.
In order to find the desired methods a literature review was conducted in Chapter

2. Three research areas were identified as closely related: Situation Assessment, In-
tention Estimation and Trajectory Prediction. The review revealed that in the field
of Situation Assessment none of the current works provide an adequate solution.
Some works consider only a single, specific situation or are restricted to highway
scenarios. More versatile methods require an extensive modeling by designated
experts which becomes intractable the more complex the covered situations are.
Similar findings were made for works presented in the fields of Intention Estima-
tion and Trajectory Prediction each of which misses at least one aspect important
for this work. Some approaches are highly complex which results in difficulties
concerning their parameterization as well as their application to a real-world sys-
tem. Other methods are unable to deal with situations – or are at least severely
impaired – if more than the considered one or two road users are present. Two
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pivotal conclusions were drawn from the literature review: probabilistic methods
are widely accepted as state-of-the-art due to their ability to model sensor un-
certainties. Furthermore, dependencies and interactions between road users are
currently rarely taken into account.
Based on the insights gained from the preceding review the concept of con-

figurations was devised in Chapter 3. It is based on the fact that urban traffic
situations are too complex and too diverse for a straightforward assessment. Nei-
ther an assessment on a manageable set of predefined, prototypical situations nor a
brute-force interpretation relating every entity to each other are feasible. To over-
come the problems caused by the high complexity and variability of urban traffic
situations the decomposition of situations into smaller parts, which are easier to
handle, is proposed. Each part consists of a pair of interrelated entities, with one
entity affecting the behavior of the other. Possible constellations of interrelated
entities are defined by a human expert in a model that is tagged ’configuration’.
Configurations are specified as graphs such that they can be directly mapped to
a Bayesian Network (a probabilistic model). The Bayesian Network can then be
used for recognizing the presence of the corresponding configuration.
In Chapter 4 several methods were presented, all of them related to the con-

cept of configurations. A method for recognizing configurations is proposed which
aims at identifying the correct configuration of a road user out of multiple possi-
bilities. The method is then extended to a streamlined version for improving the
efficiency of the recognition process. Both of these methods are concerned with
the descriptive part, the assessment of a traffic situation. In addition, approaches
for situation prediction which employ these recognition methods were presented.
One approach is concerned with predicting the velocity profiles of other vehicles
by utilizing configuration-specific prediction models. Another approach is tailored
to the case where large amounts of unlabeled data are available. For this case a
method is proposed that learns not only the parameters of a prediction system
but also tries to identify configurations from the data. In order to show the ap-
plicability of configurations to real-world systems an intention estimation system
was also developed. It aims at distinguishing between four considered intentions
instead of the usually two in state-of-the-art methods. The claim is that this made
possible not only by an also newly engineered feature but mainly by the explicit
incorporation of configuration information.
Instead of a subsequent evaluation of the proposed methods, the next chap-

ter, Chapter 5, presented the traffic simulation framework CarD. This order was
chosen because the evaluation relies to a large extent on driving data that were
generated by the simulator. The simulation framework CarD was developed in the
course of this work after it became clear that no currently available traffic simu-
lator grants access to a driver’s behavior model. In order to obtain a sufficiently
realistic simulation, traffic is not governed by a central instance but each vehicle is
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controlled by an individual intelligent agent. Agents perceive the world via virtual
sensors and choose their driving behavior according to the gathered information
and their goals. Based on the selected behavior of an agent its configuration can
be determined and logged.
In Chapter 6 both simulated driving data and data obtained during test drives

were used to evaluate the proposed methods. On a large data set it was shown
that configurations were reliably recognized by the designated method; an accu-
racy of nearly 98% was achieved. The proposed extension for saving computational
resources turned out to be able to halve the required effort for an individual recog-
nition without impairing the overall recognition accuracy significantly. Further-
more it was shown that the presented behavior prediction system profits from its
explicit consideration of configurations and thereby outperforms state-of-the-art
methods that neglect this information. Also the proposed learning algorithm for
parameterizing prediction systems from unlabeled data demonstrated its advan-
tages over state-of-the-art methods. However, the configurations identified by the
learning algorithm did not match the specification as given in Chapter 3, because
a learning algorithm can hardly extract the domain knowledge that a human ex-
pert introduces in the course of specifying a configuration. At last, the intention
estimation system showed also the desired results. The newly engineered feature
excels typically used kinematic features and the proposed method distinguishes
between the considered intentions with an accuracy of nearly 92%. This is es-
pecially remarkable as the system has to distinguish between four instead of the
usually considered two intentions in the state-of-the-art. The evaluation indicates
that the higher number of considered intentions is made possible by the explicit
incorporation of configuration information.
Possible starting points for future work were discussed in Chapter 7. The stream-

lined method for recognizing configurations could be further improved by paral-
lelization and the prediction systems could also incorporate a vehicle’s lateral be-
havior. In order to annotate driving data already during test drives the use of a
think-aloud-protocol was proposed.
The work at hand was motivated by the finding that the major share of road

injury accidents takes place at urban intersections. A pivotal contribution of this
work is the newly introduced concept of configurations, which understands traffic
situations as composed of parts. An additionally proposed method for recognizing
configurations enables for the first time a situation assessment that scales also
to complex situations. The related work focused so far either only on highway
scenarios, was limited to at most two vehicles or struggled with the complexity of
a comprehensive assessment.
Building on top of the new approach for situation assessment, multiple methods

were presented for predicting the evolution of traffic situations. It is shown that,
by taking configuration information explicitly into account, the current state of
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the art in prediction methods can be advanced. The research contribution made
by this thesis is also demonstrated by an intention estimation system which is able
to distinguish reliably between more intentions than related systems do.
The configurations used throughout the thesis did not consider entities such as

bicyclists or pedestrians. Since these entities are usually encountered during urban
driving, it is necessary to extend the proposed methods accordingly, but this has
to be left to future work.
The research presented in this thesis provides a foundation for the development

of an Advanced Driver Assistance System that assists the driver in negotiating
urban intersections. Nevertheless, still a lot of work has to be done and it is hoped
that this thesis provides a relevant part of which in the near future such a system
will be composed.
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A. Bayesian Networks

A Bayesian Network (BN) is a directed acyclic graph in which nodes represent
random variables and edges represent conditional dependencies. Bayesian Net-
works describe the joint probability distribution of all considered random vari-
ables Xi ∈ X. An edge between two random variables denotes their conditional
dependence, whereas the lack thereof denotes their independence.
An exemplary Bayesian Network is given in Figure A.1. It models the relation

between a vehicle’s gas level, the turning of the ignition key and the start of the
engine.

Ignition

Engine

Gas

Figure A.1.: An exemplary Bayesian Network. The random variables Gas and
Ignition are conditionally independent.

The Bayesian Network states that Gas (G) and Ignition (I) are conditionally
independent, as their nodes are not connected by an edge. This means that

P (G|I) = P (G) and P (I|G) = P (I) (A.1)

At the same time Engine (E) is conditionally dependent from Gas and Ignition.
The joint probability distribution of E,G and I is thus

P (E,G, I) = P (E|I, G)P (I)P (G) (A.2)

In general, the joint probability distribution of a Bayesian Network is given by

P (X1, .., Xi, .., XN) =
∏

i

P (Xi|parents(Xi)) (A.3)

where ’parents(Xi)’ returns the nodes of which Xi is conditionally dependent.
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A. Bayesian Networks

For a complete Bayesian Network the conditional probability distribution of each
node given its parents needs to be specified. For nodes without parents a prior
probability is needed. In case the considered probability distributions are discrete,
the distributions are given by a conditional probability table. The example given
above could for example have distributions as depicted in Figure A.2.

Ignition

Engine

Gas

turned not turned
0.7 0.3

full low
0.9 0.1

Gas Ignition on off
f t 0.99 0.01
f n 0 1
l t 0.7 0.3
l n 0 1

Figure A.2.: Bayesian Network including priors and conditional probability tables

A.1. Inference in Bayesian Networks

Bayesian Networks can be used to answer probabilistic queries about yet unob-
served variables, which is termed as inference. The complexity of this inference
is NP-hard, thus in real-world applications often approximate inference methods
are used that are more tractable. In the work at hand inference is used to employ
a Bayesian Network as classifier: given the features, the state of the unobserved
node for the class label is inferred.
Since a Bayesian Network specifies a complete joint probability distribution

over its variables, an inference query can be answered by marginalization, that
is summing out any irrelevant variable. For example, one query to the network
presented above could be to infer the probability that the engine will start when
the ignition is turned, P (E = on|I = turned). In this case, E is the query
variable, I is the evidence variable and G is a hidden, irrelevant variable. G is
thus marginalized:

P (E = on|I = t) =
∑

g

P (E = on|I = t, G = g)P (I = t)P (G = g)

= P (E = on|I = t, G = full)P (I = t)P (G = full) +

P (E = on|I = t, G = low)P (I = t)P (G = low)

= 0.99 · 1 · 0.9 + 0.7 · 1 · 0.1
= 0.961
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The probability that the engine will start is therefore 0.961.
In practice, a straightforward marginalization will be inefficient for networks

with a higher number of nodes because many intermediate computations will be
performed multiple times. Therefore, approaches to variable elimination were
developed, in which by reusing intermediate results a significant share of compu-
tations can be saved [Kschischang et al., 2001].

A.2. Learning in Bayesian Networks

The values in a network’s conditional probability tables are usually obtained by
learning from training data. A fictive data set is given in Table A.1.

Observations
Gas Ignition Engine
full turned on
low turned on
full not turned off
full turned on
full not turned off
full turned on
full turned on
full turned on
full turned on
full not turned off

Table A.1.: Data set of observations.

In cases where the structure of the Bayesian Network itself is already speci-
fied and the training data is fully observed (no missing entries), the individual
probabilities can be determined by counting learning. As the name implies, the
probabilities are obtained by simply counting the occurrences of each combina-
tion. For example, to compute the priors in the conditional probability table of
Gas the frequency of both events - ’full’ and ’low’ - is divided by the total number
of observations:

P (G = full) =
#full

#observations
=

9

10
= 0.9

P (G = low) =
#low

#observations
=

1

10
= 0.1
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A. Bayesian Networks

Like other machine learning algorithms, Bayesian Networks perform best when
trained with sufficiently large and balanced data sets. The data set in Table A.1
has only ten observations and thus some combinations are not covered by a single
observation, e.g. for determining P (E|G = low, I = notturned). In this case
either a default value can be taken or the data set has to be enlarged.
It is also possible that the available data set is incomplete in that one or more

variables are unknown for some observations. In these cases counting-learning can
no longer be used for learning. Instead, gradient descent [Russell et al., 1995] or
expectation maximization [Dempster et al., 1977] algorithms need to be employed.
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B. Test Drive Data

B.1. Test Drives

The data was obtained in the course of three test drives, conducted by two different
drivers in the period between August and December 2013. In Figure B.1 a map
of the downtown area of Offenbach is given, in which the test drives have taken
place. A total of 37 approaches to 7 different intersections have been recorded.

Figure B.1.: Map of the downtown area of Offenbach, in which the test drives
have taken place. The turning symbols mark the intersections at which approaches
have been recorded.

B.2. Distribution

The 37 approaches are distributed among the four intentions as given in Table B.1.

I. ’Go straight’ 6
II. ’Turn right ’ 14
III. ’Stop at red traffic light’ 13
IV. ’Car Following’ 4.

Table B.1.: Number of approaches per intention
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B. Test Drive Data

B.3. Intersections

Figure B.2.: Camera images of intersections 1 to 7 contained in the data set.
Images are ordered from left to right, top to bottom.
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