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Abstract

Often decision makers have to cope with a programming problem
with unknown quantitities. Then they will estimate these quantities
and solve the problem as it then appears - the ‘approximate problem’.
Thus there is a need to establish conditions which will ensure that the
solutions to the approximate problem will come close to the solutions
to the true problem in a suitable manner. Confidence sets, i.e. sets
that cover the true sets with a given prescribed probability, provide
useful quantitative information. In this paper we consider multiobjec-
tive problems and derive confidence sets for the sets of efficient points,
weakly efficient points, and the corresponding solution sets.

Besides the crucial convergence conditions for the objective and/or
constraint functions, one approach for the derivation of confidence
sets requires some knowledge about the true problem, which may be
not available. Therefore also another method, called relaxation, is
suggested. This approach works without any knowledge about the
true problem.

The results are applied to the Markowitz model of portfolio opti-
mization.

Keywords: multiobjective programming, stability, confidence sets,
estimated functions, relaxation, Markowitz model
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1 Introduction

Often decision makers face a problem where not all quantities are completely
known. Then they usually estimate the unknown parameters or probability
distributions and solve the problem as it then arises. They hope that the de-
cisions obtained in that way come close to the true optimal decisions. Hence
there is a need for assertions that can justify this hope, so-called stability as-
sertions. Regarding the estimates as random variables, the decision problem
which is really solved, is a realization of a random problem. As reasonable
estimates approximate the true value in some random sense if the sample
size n tends to infinity, one can ask in what sense and under what conditions
the random decision problems approximate the true ones. Qualitative stabil-
ity statements provide conditions that ensure convergence (almost surely, in
probability, in distribution) of optimal values and solution sets of the random
surrogate problems.

In parametric statistics, in addition to the convergence (consistency) of
the estimators, confidence sets play an important rule. Confidence sets are
random sets that cover the true parameter with a prescribed high probability.
They are derived from samples of size n and they should shrink to the true
parameter if n increases. Thus they can provide important quantitative
information.

In the present paper we will derive confidence sets in the framework of
multiobjective decision problems. Decision makers usually have to take into
account more than one goals. Then the sets of efficient points in the image
set are investigated instead of the optimal values. We will use a minimization
framework, hence the sets of minimal points with respect to the usual par-
tial ordering in Rk and the corresponding decisions - the solutions - will be
investigated. And again, estimates will have to be used instead of unknown
quantities and one arrives at a sequence of random multiobjective problems.

Estimates for unknown quantities are not the only framework where ran-
dom approximations occur. Random surrogate problems come also into play
if completely known decision problems are solved with an algorithm that
uses random steps. Sample size approximation [15] is an important example.
Furthermore, bootstrap procedures (in a wider sense) often sample from an
approximate model, which is obtained via an estimation procedure, hence
confidence sets for the parameters of the model are of interest.

Qualitative stability results for deterministic multiobjective parametric
programming problems can be found in [7], [8], [9], [13], [19], and [20]. The
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authors consider, among others, ‘semicontinuous’ behaviour of the sets of
efficient points and the corresponding decisions. Multiobjective stochastic
optimization problems are investigated in [3] and the probability measure is
regarded as parameter. In [28] stability results for sequences of deterministic
problems are formulated in a unifying framework.

The results from deterministic multiobjective programming, particularly
from multiobjective parametric programming, can be employed to derive
statements about convergence almost surely, see [23]. Note that the stochas-
tic approach usually requires considerably weaker conditions than the deter-
ministic approach, while in real-life situations an assertion that holds ‘almost
surely’ is usually not worse than an assertion that holds in the deterministic
sense. Weaker convergence modes, such as convergence in probability or con-
vergence in distribution, require even weaker assumptions and hence apply
to a larger class of problems.

In [23] a method was suggested which opens the possibility to derive
results about the convergence in probability from assertions for convergence
almost surely. In his PhD thesis Gersch [1] investigated convergence in distri-
bution for single-objective and multiobjective problems and considered also
ε-efficient points.

Quantitative assertions for single-objective problems which provide bounds
for the distance between solution sets in terms of probability metrics are given
e.g. in [12]. Confidence sets for solution sets of single-objective optimization
problems were derived in [11] and [25]. Like in statistics, in our framework
a confidence set is understood as a set that covers the true set with a pre-
scribed high probability. Recall that many statistical estimates are obtained
as solutions of random optimization problems and hence fit into this set-
ting, cf. [24]. In statistics, however, confidence sets are usually derived for
single-valued solutions of an estimation-optimization procedure. Often so-
called identifiability conditions are imposed to enforce single-valuedness. In
the multiobjective setting we can not confine to sets that are single-valued.
The approach, which will be used here, relies on a quantified version of con-
vergence in probability. Such ‘quantified’ convergence assertions can not be
obtained in the way described in [23]. We therefore extend a method sug-
gested in [21]. While in [21] only a rate for the convergence in probability
was taken into account, the derivation of confidence sets also requires further
information.

In order to derive a confidence set for a set Ψ0 ⊂ Rp, we can proceed as
follows: Assume that a sequence (Ψn)n∈N of random sets with the following
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property is available:

∀κ > 0 : sup
n∈N

P{ω : Ψ0 \ Uβn,κΨn(ω) 6= ∅} ≤ H(κ). (1)

Here (βn,κ)n∈N is a sequence of nonnegative numbers tending to zero and
H satisfies lim

κ→∞
H(κ) = 0.

Given a prescribed confidence level 1 − η, one determines κ0 such that
H(κ0) ≤ η. Then for each sample size n the set Uβn,κ0Ψn covers the true set
Ψ0 at least with probability 1− η. Note that no knowledge about the exact
distribution or the asymptotic distribution is needed. Because confidence sets
for each sample size n can be derived in this way, Pflug [11], who first derived
confidence sets in the framework of stochastic programming, introduced the
denotion ‘universal confidence’ sets.

We call sequences of random sets which satisfy (1) outer approximations
in probability with convergence rate βn,κ and tail behavior function H. The
denotations ‘convergence rate’ and ‘tail behavior function’ were suggested in
[11]. Note that the convergence rate ist different from the rate for convergence
in probability considered in [21].

Once an outer approximation is found, each sequence of supersets also
forms an outer approximation. Since one is interested in small confidence
sets, one could therefore ask for sequences which tend to be contained in
the true set. So-called inner approximations with convergence rate and tail
behavior function, defined by

∀κ > 0 : sup
n∈N

P{ω : Ψn(ω) \ Uβn,κΨ0 6= ∅} ≤ H(κ), (2)

have this property.

Note that a sequence which is an inner and an outer approximation with
the same convergence rate and tail behavior function is Kuratowski-Painlevè-
convergent with this convergent rate and tail behavior function, see [25] for
the relation to Kuratowski-Painlevè-convergence in probability.

However, inner approximations need not be contained in the true set for
fixed n. Approximations which are contained in the true set for each n with
a high probability will be called subset-approximations, see [27]. These kind
of approximations will be needed in the relaxation approach.

In multiobjective decision problems the sets of efficient points and the
corresponding solution sets are of main interest. However, it is well-known
from parametric multiobjective programming that the sets of efficient points
of the approximate problems usually do not approximate the set of efficient
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points of the true problem, they tend to be contained in a superset, the
set so-called weakly efficient points. At the end of Section 2 an example
with a deterministic sequence of approximating problems is provided which
shows a typical situation. Hence, additionally to the sets of efficient points,
also the sets of weakly efficient points and the corresponding decisions (weak
solutions) have to be taken into account. We will provide outer and inner
approximations for the image sets, the sets of efficient points, the sets of
weakly efficient points, and the corresponding solution sets. In this paper we
will not consider approximately efficient solutions, as for instance dealt with
in [18] and [28]. This topic will be considered elsewhere.

The assertions will be illustrated by the Markowitz model of portfolio
optimization. As some of the conditions usually imposed in stability theory
in multiobjective deterministic programming do not apply to the Markowitz
model, we will also prove results which are particularly useful for linear and
quadratic objective functions with estimated parameters.

The results assume certain convergence properties of the objective and/or
the constraint functions. Sufficient conditions for these assumptions are con-
sidered in [26] for functions which are expectations. Regression functions are
dealt with in [16] and [17]. The case of estimated parameters for a Lipschitz
function will be added in this paper.

Besides the convergence of the objective and perhaps the constraint func-
tions some knowledge about the true problem is needed. In many cases
bounds for the continuity functions or growth functions, employed in the
following, are available. If one can or will not rely on information about the
true problem, one can use an approach called relaxation. It was investigated
in [27] for the single-objective case. In this paper it will be elaborated in the
multiobjective framework.

The paper is organized as follows. The mathematical model is provided
in section 2. The Markowitz model is introduced in section 3. Section 4
investigates the image sets. Moreover, further sufficient conditions, which
particularly apply to the Markowitz model, are derived. In section 5 results
about outer and inner approximations of the sets of efficient points and the
sets of weakly efficient points are proved. Section 6 deals with the solution
sets and section 7 explains the relaxation approach.
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2 Mathematical Model

Suppose that we are given the deterministic multiobjective programming
problem

(P0) min
x∈Γ0

f0(x)

where Γ0 ⊂ Rp is a nonempty closed set and f0|Rp → Rk. Minimization is
understood with respect to the usual partial ordering “≤” in Rk, which is
generated by the cone Rk

+. By (a1 . . . ak)
T < (b1 . . . bk)

T ; ai, bi ∈ R, we
mean ai < bi ∀i ∈ {1, . . . , k}.

We consider random surrogate problems

(Pn(ω)) min
x∈Γn(ω)

fn(x, ω)

where Γn, n ∈ N , are multifunctions defined on a given complete probability
space [Ω,A, P ] with values in the σ−field of Borel sets Σp. fn|Rp ×Ω→ Rk

is taken as (Σp⊗A,Σk)− measurable. Sufficient conditions for this property
are given by Vogel [21]. To avoid restricting the model to closed-valued
multifunctions we, additionally, assume that the graphs Graph Γn, n ∈ N,
belong to A⊗Σp. In our setting multifunctions with measurable graphs are
measurable, i.e. Γ−1

n (M) := {ω ∈ Ω : Γn(ω) ∩M 6= ∅} ∈ A for every closed
set M ∈ Σp.

Γ0 and Γn(ω) may be specified by inequality constraints:

Γ0 := {x ∈ Rp : gj0(x) ≤ 0, j ∈ J},

Γn(ω) := {x ∈ Rp : gjn(x, ω) ≤ 0, j ∈ J},
where gj0|Rp → R1; gjn|Rp × Ω → R1 is (Σp ⊗ A,Σ1)-measurable and J
is a finite index set. Multifunctions Γn of the above form have measurable
graphs.

For sake of simplicity we assume that there is a compact set K ⊂ Rp such
that Γ0 ⊂ K and Γn(ω) ⊂ K ∀n ∈ N ∀ω ∈ Ω.

When a single component of f0 or fn or other vector-valued functions is
dealt with, the same letter is used with a superscript: f jn denotes the j-th
component of fn. For elements of Rp, Rm, or Rk, however, we use subscripts:
xj denotes the j-th component of x.

Firstly, we have to deal with the image sets. We will denote them by F0

and Fn:
F0 := {f0(x) : x ∈ Γ0} = f0(Γ0),
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Fn(ω) := {fn(x, ω) : x ∈ Γn(ω)} = fn(Γn(ω), ω).

The sets of efficient points (or efficiency sets) for the original problem (P0)
and the approximate problems (Pn(ω)) are explained by

E0 := {y ∈ F0 : 6 ∃ ȳ ∈ F0 with (ȳ ≤ y ∧ ȳ 6= y)} = {y ∈ F0 : (y−Rk
+)∩F0 = {y}},

En(ω) := {y ∈ Fn(ω) : 6 ∃ ȳ ∈ Fn(ω) with (ȳ ≤ y ∧ ȳ 6= y)}
= {y ∈ Fn(ω) : (y −Rk

+) ∩ Fn(ω) = {y}}.

By S0 and Sn we denote the corresponding solution sets:

S0 := {x ∈ Γ0 :6 ∃ x̄ ∈ Γ0 with (f0(x̄) ≤ f0(x) ∧ f 0(x̄) 6= f0(x))},

Sn(ω) := {x ∈ Γn(ω) :6 ∃ x̄ ∈ Γn(ω) with (fn(x̄, ω) ≤ fn(x, ω)∧fn(x̄, ω) 6= fn(x, ω))}.

Moreover, we introduce the sets of weakly efficient points

W0 := {y ∈ F0 : 6 ∃ ȳ ∈ F0 with ȳ < y} = {y ∈ F0 : (y − intRk
+) ∩ F0 = ∅}

and

Wn(ω) := {y ∈ Fn(ω) :6 ∃ȳ ∈ Fn(ω) with ȳ < y} = {y ∈ Fn(ω) : (y−intRk
+)∩Fn(ω) = ∅}

and the corresponding ‘weak’ solution sets

SW0 := {x ∈ Γ0 : 6 ∃ x̄ ∈ Γ0 with f0(x̄) < f0(ω)},

SWn (ω) := {x ∈ Γn(ω) :6 ∃ x̄ ∈ Γn(ω) with fn(x̄, ω) < fn(x, ω)}

. By definition, the sets of efficient points are contained in the sets of weakly
efficient points and a corresponding relation holds for the solution sets.

The following deterministic example shows that, in general, one can only
expect that the sets of efficient points of the approximating problems tend
to a subset of the set of weakly efficient points of the true problem.

Example. Suppose that f 1
0 (x1, x2) = x1, f

2
0 (x1, x2) = x2 and 0 ≤ xi ≤

1, i = 1, 2. Then the set of images is the set

F0 := {(f 1
0 (x1, x2), f 2

0 (x1, x2)) : 0 ≤ xi ≤ 1, i = 1, 2} = [0, 1]× [0, 1]
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and the only efficient point is the point (0, 0). The approximating functions
are assumed to have the form f 1

n(x1, x2) = x1 and

f 2
n(x1, x2) =

{
1− (n− 1)x1 + x2, if 0 ≤ x1 ≤ 1

n
, 0 ≤ x2 ≤ 1,

1−x1
n−1

+ x2, if 1
n
< x1 ≤ 1, 0 ≤ x2 ≤ 1.

Then the set of efficient points of

Fn := {(f 1
n(x1, x2), f 2

n(x1, x2)) : 0 ≤ xi ≤ 1, i = 1, 2}

is the set

En = {(x1, x2) : 0 ≤ x1 ≤
1

n
, x2 = 1−(n−1)x1}∪{(x1, x2) :

1

n
< x1 ≤ 1, x2 =

1− x1

n− 1
},

which, for n → ∞ approximates the set W0 = ({0} × [0, 1]) ∪ ([0, 1] × {0})
in the Hausdorff metric and in the Kuratowski-Painlevé sense.

In [23] we showed that measurability of the sets under consideration is
ensured under the assumptions of this paper.

3 The Markowitz Model

As an example we will consider the well-known Markowitz model of portfolio
optimization. An investor has an amount of money of value 1 and can invest
his money into a set of p assets. Markowitz suggested to maximize the
expected return and minimize the variance of the return as an indicator of
risk. Thus, denoting the proportion invested into the i-th asset with xi and
the random return of the i-th asset with ρi, we have the decision-vector
x = (x1, . . . , xp)

T and the random vector of returns ρ = (ρ1, . . . , ρp)
T . Let

µ = (µ1, . . . , µp)
T be the expectation of ρ and B its covariance matrix. Then,

in our minimization setting, we obtain the objective functions

f 1
0 (x) = −E(xTρ) = −xTµ

and
f 2

0 (x) = var(xTρ) = xTBx.

We assume that estimates

µ̂n = (µ̂n,1, . . . , µ̂n,p)
T =

1

n

n∑
l=1

ρ(l)
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for the expectation and

B̂n =
1

n− 1

n∑
l=1

(ρ(l) − µ̂n)(ρ(l) − µ̂n)T

for the covariance matrix, based on i.i.d. random samples ρ(l) = (ρ
(l)
1 , . . . , ρ

(l)
p )T l =

1, . . . , n, are available. Thus the approximating objective functions have the
following form:

f 1
n(x, ω) = −xT µ̂n(ω),

f 2
n(x, ω)) = xT B̂n(ω)x.

The constraint set is given by

Γ0 := {x ∈ Rp|xi ≥ 0, i = 1, . . . , p;
n∑
i=1

xi ≤ 1}

and in this form there is no need for approximations. We would like to note,
however, that further restrictions, e.g. in form of shortfall constraints, could
be incorporated. Then also approximations of the constraint set would come
into play.

Note that the measurability assumptions imposed in section 2 are satis-
fied.

4 Approximation of the Image Set

The sets of efficient points and the sets of weakly efficient points are subsets
of the image sets. Therefore we start with the investigation of the behavior
of the image sets Fn. We present an assertion for the inner approximations
and an assertion for the outer approximations.

In the following theorems sets H, B and Λ occur. B is the set of sequences
of positive numbers that converge monotonously to zero. H denotes the set
of functions H|R+ → R+ with the property lim

κ→∞
H(κ) = 0.

Λ is defined by

Λ := {λ|R+ → R+: λ is increasing, not constant, right-continuous,
and satisfies λ(0) = 0}.
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The functions in Λ allow for a generalized inverse in the following form:
λ−1(y) := inf{z ∈ R1 : λ(z) > y}. || · || denotes the Euclidean norm and d
the metric induced by this norm. A neighborhood UεA of a set A ⊂ Rl is
defined by UεA = {x ∈ Rl : d(x,A) < ε}. UΓ0 denotes a suitable neighbor-
hood of Γ0.

Theorem 1-(i). Suppose that the following conditions are satisfied:

(CΓ-i) There exist a function H1 ∈ H and for all κ > 0 a sequence

(β
(1)
n,κ)n∈N ∈ B such that
∀κ > 0 sup

n∈N
P{ω : Γn(ω) \ U

β
(1)
n,κ

Γ0 6= ∅} ≤ H1(κ).

(Cf) There exist a function H2 ∈ H and for all κ > 0 a sequence

(β
(2)
n,κ)n∈N ∈ B such that

∀κ > 0 sup
n∈N

P{ω : sup
x∈UΓ0

||fn(x, ω)− f0(x)|| ≥ β
(2)
n,κ} ≤ H2(κ).

(Sf) There exists a function λ ∈ Λ such that for all ε > 0
∀ x, y ∈ UΓ0 : ||f0(x)− f0(y)|| ≥ ε⇒ ||x− y|| ≥ λ(ε).

Then for β
(3)
n,κ := max{2β(2)

n,κ, 2λ−1(β
(1)
n,κ)} the following relation holds:

∀κ > 0
sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and Fn(ω) \ U
β
(3)
n,κ
F0 6= ∅} ≤ H1(κ) +H2(κ).

Proof. Assume that for given 0 < κ, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and Fn(ω) \ U
β
(3)
n,κ
F0 6= ∅ are satisfied. Then there exists a

yn(ω) ∈ Fn(ω) which does not belong to U
β
(3)
n,κ
F0. To yn(ω) we find xn(ω) ∈

Γn(ω) with fn(xn(ω), ω) = yn(ω). Hence ∀x0 ∈ Γ0 : ||fn(xn(ω)− f0(x0)|| ≥
β

(3)
n,κ.

Firstly, assume that d(xn(ω),Γ0) ≥ β
(1)
n,κ. Then Γn(ω) \ U

β
(1)
n,κ

Γ0 6= ∅ and

we can employ condition (CΓ-i).
Secondly, assume that here exists x0(ω) ∈ Γ0 with x0(ω) ∈ U

β
(1)
n,κ

(xn(ω)).

Then, by (Sf) and ||xn(ω) − x0(ω)|| < β
(1)
n,κ, the inequality ||f0(xn(ω)) −

f0(x0(ω))|| < β
(3)
n,κ

2
follows. From ||fn(xn(ω), ω) − f0(x0(ω))|| > β

(3)
n,κ we ob-

tain ||fn(xn(ω), ω)− f0(xn(ω))|| > β
(3)
n,κ

2
. As xn(ω) ∈ U

β
(1)
n,κ

Γ0 ⊂ UΓ0 we have

sup
x∈UΓ0

||fn(x, ω)− f0(x)|| ≥ β
(2)
n,κ and the assertion follows by (Cf). �
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In the conclusion we use the condition U
β
(1)
n,κ

Γ0 ⊂ UΓ0. This is no restric-

tion, we only have to make sure that UΓ0 is large enough to cover all sets
U
β
(1)
n,κ

Γ0. If UΓ0 does not have this property, we have to replace sup
n∈N

P{. . .}

by sup
n≥n0

P{. . .} .

Theorem 1-(ii). Suppose that (Cf), (Sf), and the following condition
are satisfied:

(CΓ-o) There exist a function H1 ∈ H and for all κ > 0 a sequence

(β
(1)
n,κ)n∈N ∈ B such that
∀κ > 0 sup

n∈N
P{ω : Γ0 \ Uβ(1)

n,κ
Γn(ω) 6= ∅} ≤ H1(κ).

Then for β
(3)
n,κ := max{2β(2)

n,κ, 2λ−1(β
(1)
n,κ)} the following relation holds:

∀κ > 0
sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and F0 \ Uβ(3)
n,κ
Fn(ω) 6= ∅} ≤ H1(κ) +H2(κ).

Proof. Assume that for given 0 < κ, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and F0 \ Uβ(3)
n,κ
Fn(ω) 6= ∅ are satisfied. Then there exists a

y0(ω) ∈ F0 which does not belong to U
β
(3)
n,κ
Fn(ω). To y0(ω) we find x0(ω) ∈ Γ0

with fn(x0(ω), ω) = y0(ω).

Firstly, assume that d(x0(ω),Γn(ω)) ≥ β
(1)
n,κ. Then Γ0 \ Uβ(1)

n,κ
Γn(ω) 6= ∅.

Otherwise we choose xn(ω) ∈ Γn(ω) with ||x0(ω) − xn(ω)|| < β
(1)
n,κ and pro-

ceed as in the proof of Theorem 1-(i). �

Sufficient conditions for (CΓ-i) and (CΓ-o) are available for the case that
the constraint set is given by inequality constraints. Then assumptions sim-
ilar to (Cf) are imposed for the constraint functions, see [25]. The condition
(Sf) is a ‘continuity’ condition. In many cases it should be possible to give
at least a rough bound for the function λ. Note that, once a function λ
satisfying (Sf) is found, each function in Λ with smaller positive values also
satisfies (Sf). Smaller values for λ, however, result in larger confidence sets.

Sufficient conditions for the condition (Cf) can be derived from sufficient
conditions for single-objective functions, see the introduction for references.
The case of estimated parameters has not been considered so far and will be
added in the following. We confine the investigation to functions with values
in R1.
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Suppose that there exist a function f |Rp × Rm → R1 such that f0(x) :=
f(x, y0) for some y0 ∈ Rm. If y0 is estimated by a sequence (Yn)n∈N of ran-
dom variables, we obtain fn(x, ω) = f(x, Yn(ω)).

Lemma 4.1. Suppose that Γ0 is compact and that f is continuous on
Rp × {y0}. Furthermore, assume that there exist a neighborhood UΓ0 and
for all κ > 0 a sequence (βn,κ)n∈N ∈ B such that the following conditions are
satisfied:

(Lf) To each κ > 0 there exists a constant L(κ) such that for all x ∈ UΓ0

and all y ∈ Uβ1,κ{y} the relation |f(x, y) − f(x, y0)| < L(κ)||y − y0||
holds.

(CY) There exist a function H ∈ H such that
∀κ > 0 sup

n∈N
P{ω : ||Yn(ω)− y0|| ≥ βn,κ} ≤ H(κ).

Then (Cf) is satisfied with β
(2)
n,κ = 1

L(κ)
βn,κ and H2 = H.

Proof. Assume that for given 0 < κ, n ∈ N, and ω ∈ Ω the rela-
tion sup

x∈UΓ0

|fn(x, ω) − f0(x)| ≥ β
(2)
n,κ is satisfied. Hence there is an x ∈ UΓ0

such that |f(x, Yn(ω)) − f(x, y0)| ≥ 1
L(κ)

βn,κ. If Yn(ω) /∈ Uβn,κ{y0} condi-

tion (CY) can be employed. Otherwise, because of (Lf), |fn(x, ω)− f0(x)| <
L(κ)||Yn(ω)− y0|| < β

(2)
n,κ in contradiction to assumption. �

Proposition 2.1 could be applied to the Markowitz model and used to
derive uniform concentration of measure results for the expected return and
the variance of the return under a uniform boundedness condition of the
random returns. Because of the simple structure of the constraint set in the
Markowitz model, we will instead provide a direct proof for a bound. Note
that we do not need to approximate the constraint set, hence instead of tak-
ing the supremum over a neighborhood of Γ0 it suffices to take the supremum
over the set Γ0.

Lemma 4.2. Assume that there exists a constant C ∈ R such that
|ρi| ≤ C a.s. Then we have

P{ω : sup
x∈Γ0

|µ̂Tn (ω)− µT |x ≥ κ√
n
} ≤ 2pe

− κ2

2p2C2 and
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P{ω : sup
x∈Γ0

|xT (B̂n(ω)−B)x| ≥ κ√
n
} ≤ 2p2e−

κ2

8C4 .

Proof. Firstly, we use Hoeffding’s inequality [2] and obtain

P{ω : sup
x∈Γ0

|
p∑
j=1

[ 1
n

n∑
l=1

ρ
(l)
j − Eρ

(l)
j ]xj| ≥ η}

≤ P{ω : ∃j ∈ {1, . . . , p} with sup
x∈Γ0

| 1
n

n∑
l=1

ρ
(l)
j − Eρ

(l)
j |xj ≥

η
p
}

≤ P{ω : ∃j ∈ {1, . . . , p} with | 1
n

n∑
l=1

ρ
(l)
j − Eρ

(l)
j | ≥

η
p
} ≤ 2pe

− nη2

2p2C2 .

With η = κ√
n

the first conclusion follows.

For the second assertion we consider A(ω) := B̂n(ω) − B and make use
of the following inequalities:

|xTA(ω)x| ≤ max
i,j∈{1,...,p}

|ai,j(ω)|xTx ≤ max
i,j∈{1,...,p}

|ai,j(ω)|.

Hence |xTA(ω)x| ≥ η implies max
i,j∈{1,...,p}

|ai,j(ω)| ≥ η.

Now we use a concentration-of-measure result for

ai,j(ω) =
1

n− 1

n∑
l=1

(ρ
(l)
i (ω)− µ̂i(ω))(ρ

(l)
j (ω)− µ̂j(ω))− cov(ρi, ρj),

where µ̂i(ω) stands for µ̂n,i(ω) and cov(ρi, ρj) = E[(ρi−Eρi)(ρj−Eρj)]. Since
the summands in the above sum are not independent, we can not make use
of Hoeffding’s inequality. Instead we use McDiarmid’s inequality [6]. ai,j can

be regarded as a function of the i.i.d. vectors (ρ
(1)
i , ρ

(1)
j ), . . . , (ρ

(n)
i , ρ

(n)
j ):

ai,j= g((ρ
(1)
i , ρ

(1)
j ), . . . , (ρ

(n)
i , ρ

(n)
j ))

= 1
n−1

n∑
l=1

(ρ
(l)
i − 1

n

n∑
k=1

ρ
(k)
i )(ρ

(l)
j − 1

n

n∑
r=1

ρ
(r)
j )− cov(ρi, ρj).

Note that E(ai,j) = 0.
n∑
l=1

(ρ
(l)
i (ω)− µ̂i(ω))(ρ

(l)
j (ω)− µ̂j(ω)) can be rewritten

as
n∑
l=1

(ρ
(l)
i (ω)− µ̂i(ω))(ρ

(l)
j (ω)− µ̂j(ω)) = ρ̄i(ω)TMρ̄j(ω)

where ρ̄i = (ρ
(1)
i −µi, . . . , ρ

(n)
i −µi)T , and M = (mi,j)i,j=1,...,n with mi,i = 1− 1

n

and mi,j = 1
n

if i 6= j.
Consequently we have for all (yj, zj) with |yj| ≤ C and |zj| ≤ C the

inequality

13



|g((y1, z1), . . . , (yr, zr), . . . (yn, zn))− g((y1, z1), . . . , (y′r, z
′
r), . . . (yn, zn))|

≤ 1
n−1

(1− 1
n
)4C2 = 1

n
4C2.

Hence, by McDiarmid’s inequality, for each pair (i, j),

P{ω : |ai,j(ω)| ≥ η) ≤ 2e−
2nη2

16C4 , and finally

P{ω : max
i,j∈{1,...,p}

|ai,j(ω)| ≥ η} ≤ p2P{ω : |ai,j(ω)| ≥ η} ≤ 2p2e−
nη2

8C4 .

With η = κ√
n

the conclusion follows. �

5 Approximation of the Sets of Efficient Points

and the Sets of Weakly Efficient Points

As mentioned in the introduction and section 2 the sets of efficient points of
the approximate problems tend to be contained in the set of weakly efficient
points of the true problem. Therefore problems for which the set of efficient
points and the set of weakly efficient points coincide are of special interest.
Fortunately, there are some important cases where this property is fulfilled,
see e.g. [20] or [21]. Particularly for the Markowitz model the following
condition (VE) is useful:

(VE) For all yλ with yλ = λy1 + (1− λ)y2, y1 ∈ F0, y2 ∈ F0,
y1 6= y2, λ ∈ (0, 1), the set (yλ − intRk

+) ∩ F0 is nonempty.

Lemma 5.1. If (VE) is satisfied the equality E0 = W0 holds.

Proof. Suppose that there is a y0 ∈ W0 which does not belong to
E0. Hence there exists y ∈ F0 such that y ≤ y0 and yj < y0,j for some
j ∈ {1, . . . , k}. Consider yλ = λy0 + (1 − λ)y. Then to yλ there is ỹλ ∈ F0

with ỹλ < yλ and consequently, because of yλ ≤ y0, also ỹλ < y0 in contra-
diction to y0 ∈ W0. �

Lemma 5.2. In the Markowitz model condition (VE) is satisfied if the
returns have pairwise different positive expectations and the covariance ma-
trix is positive definite.

Proof: Consider y1, y2 ∈ F0, y1 6= y2, yλ = λy1 +(1−λ)y2 with λ ∈ (0, 1),
and the preimages x1 ∈ Γ0 and x2 ∈ Γ0 with f0(xi) = yi, i = 1, 2. We

14



construct y ∈ (yλ − intRk
+) ∩ F0. Because of the strict convexity of f 2

0 we
have for xλ = λx1 + (1− λ)x2 the relation f 2

0 (xλ) < yλ,2. Note that there is
a neighborhood U{xλ} of xλ with f 2

0 (x) < yλ,2 for all x ∈ U{xλ}.
If xλ is an inner point of Γ0, we find x ∈ U{xλ}∩Γ0 with f 1

0 (x) < f 1
0 (xλ)

and can choose y = f0(x).
Finally we assume that xλ belongs to the boundary of Γ0. We construct

an x ∈ Γ0 such that y = f0(x) has the desired property. We distinguish two
cases:

(i) Let xλ,i = 0 for all i in an index set I ⊂ {1, . . . , p} and
p∑
i=1

xλ,i < 1.

Then, taking into account that f 1
0 (x) = −xT~µ we find γ > 0 and x such

that x := xλ + γ
∑
i/∈I
ei ∈ Γ0 and f 1

0 (x) < y1,1. Here ei denotes the unit vector

with 1 in the i-th position.

(ii) Let xλ,i = 0 for all i in an index set I ⊂ {1, . . . , p} and
p∑
i=1

xλ,i = 1. Then

the set Ī = {1, . . . , p} \ I contains at least two elements. Let i0 ∈ Ī be such
that E(ρi0) > E(ρi) for all i ∈ Ī \ {ρi0}. Then, with i1 ∈ Ī \ {ρi0}, we choose
x := xλ + γ(ei0 − ei1) ∈ Γ0. �

Theorem 2. Suppose that there exist a function H ∈ H and for all
κ > 0 a sequence (βn,κ)n∈N ∈ B such that

(CF) ∀ε > 0 sup
n∈N

P{ω : (Fn(ω) \ Uβn,κF0) ∪ (F0 \ Uβn,κFn(ω)) 6= ∅} ≤ H(κ).

(i) If, additionally, there exists a function δ1 ∈ Λ such that

(C1) ∀ε > 0 ∀y ∈ (Uδ1(ε)F0 \ UεW0) ∃y0 ∈ W0 : Uδ1(ε){y0} ⊂ y − intRk
+

is satisfied, then for β
(i)
n,κ = δ−1

1 (βn,κ) the following relation holds:
∀κ > 0 sup

n∈N
P{ω : Wn(ω) \ U

β
(i)
n,κ
W0) 6= ∅} ≤ H(κ).

(ii) If, additionally, there exists a function δ2 ∈ Λ such that

(C2) ∀ε > 0 ∀y0 ∈ E0 ∃y1 ∈ E0 : Uδ2(ε)(y1) ⊂ Uε(y0) and
[(Uδ2(ε)(y1)−Rk

+) \ Uε(y0)] ∩ Uδ2(ε)F0 = ∅

is satisfied, then for β
(o)
n,κ = δ−1

2 (βn,κ) the following relation holds:
∀κ > 0 sup

n∈N
P{ω : En(ω) 6= ∅ and E0 \ Uβ(o)

n,κ
En(ω) 6= ∅} ≤ H(κ).
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Proof. (i) Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relation
Wn(ω)\U

β
(i)
n,κ
W0 6= ∅ is satisfied. Then there exists a yn(ω) ∈ Wn(ω) ⊂ Fn(ω)

which does not belong to U
β
(i)
n,κ
W0. Firstly, assume that yn(ω) /∈ Uβn,κF0.

Then, because of yn(ω) ∈ Fn(ω) we immediately obtain Fn(ω) \Uβn,κF0 6= ∅.
Secondly, suppose that yn(ω) ∈ Uβn,κF0. Hence yn(ω) ∈ Uβn,κF0 \ Uβ(i)

n,κ
W0.

By condition (C1) with ε = β
(i)
n,κ there is y0 ∈ W0 such that Uβn,κ(y0) ⊂

yn(ω) − Rk
+. By definition of Wn, yn(ω) − intRk

+ can not contain elements
of Fn(ω). Consequently we obtain Uβn,κ(y0) ∩ Fn(ω) = ∅ and, taking into
account that y0 ∈ F0, also F0 \ Uβn,κFn(ω) 6= ∅.

(ii) Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
En(ω) 6= ∅ and E0 \ Uβ(o)

n,κ
En(ω) 6= ∅ is satisfied. Then there is y0(ω) ∈ E0

which does not belong to U
β
(o)
n,κ
En(ω). By condition (C2) to y0(ω) we find

y1(ω) ∈ E0 such that Uβn,κ{y1(ω)} ⊂ U
β
(o)
n,κ
{y0(ω)} and [(Uβn,κ{y1(ω)}−Rk

+)\
U
β
(o)
n,κ

(y0(ω)] ∩ Uβn,κF0 = ∅.
Firstly, assume that Uβn,κ{y1(ω)} ∩ Fn(ω) = ∅. As y1(ω) ∈ E0 ⊂ F0 we

obtain F0 \ Uβn,κFn(ω) 6= ∅.
Secondly, suppose that there exists yn(ω) ∈ Uβn,κ{y1(ω)}∩Fn(ω). Because

of y0(ω) /∈ U
β
(o)
n,κ
En(ω) we have U

β
(o)
n,κ
{y0(ω)}∩En(ω) = ∅. Consequently, since

Uβn,κ{y1(ω)} ⊂ U
β
(o)
n,κ
{y0(ω)}, yn(ω) does not belong to En(ω).

Hence we find an element ỹn(ω) ∈ En(ω) which ‘dominates’ yn(ω) with
respect to the order relation, i.e. ỹn(ω) ∈ (yn(ω)−Rk

+) ∩ En(ω) and further
ỹn(ω) ∈ (Uβn,κ{y1(ω)} −Rk

+) ∩ En(ω).

Because of y0(ω) /∈ U
β
(o)
n,κ
En(ω), ỹn(ω), which belongs to En(ω), can

not be an element of U
β
(o)
n,κ
{y0(ω)}. Consequently ỹn(ω) ∈ (Uβn,κ{y1(ω)} −

Rk
+) \ U

β
(o)
n,κ
{y0(ω)}). Because of (C2), we obtain ỹn(ω) /∈ Uβn,κF0, hence

Fn(ω) \ Uβn,κF0 6= ∅. �

Since the sets of efficient points are contained in the sets of weakly effi-
cient points, under the assumptions of Theorem 2-(i) we immediately obtain:
∀κ > 0 sup

n∈N
P{ω : En(ω) \ U

β
(3)
n,κ
W0 6= ∅} ≤ H(κ).

The existence of functions δ2 was already considered in [21]. However
in the setting of [21] the additional property δ2 ∈ Λ is not needed. In [14]
the existence of functions δ1 ∈ Λ and δ2 ∈ Λ is shown under compactness
conditions for F0 and E0. Particularly, the function δ2 may be hard to de-
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termine in the general case. The problem becomes considerably easier under
convexity conditions, e.g. (VE). Special cases will be considered elsewhere.
If it is not possibly to determine δ2 or δ2, the relaxation approach, presented
in section 7, can be employed.

For the condition En(ω) 6= ∅ in the conclusion of Theorem 2-(ii) there are
several sufficient conditions, which can be found in textbooks on multiobjec-
tive optimization.

6 Approximation of the Solution Sets

In the deterministic parametric framework, stability results for the solution
sets are usually derived for one-to-one objective functions. In our setting
we need a quantification with a growth function µ for this property, see the
following condition :

(Gf) There exist a function µ ∈ Λ and a neighborhood UΓ0 such that
∀ε > 0
∀ x, y ∈ UΓ0 : ||x− y|| ≥ ε⇒ ||f0(x)− f0(y)|| ≥ µ(ε).

Theorem 3. Suppose that (CΓ-i), (Cf), and (Gf) are satisfied. Further-
more assume that the following condition holds:

(CW) There exist a function H3 ∈ H and for all κ > 0 a sequence

(β
(3)
n,κ)n∈N ∈ B such that

sup
n∈N

P{ω : Wn(ω) \ U
β
(3)
n,κ
W0 6= ∅} ≤ H3(κ).

Then for β
(4)
n,κ := max{µ−1(β

(2)
n,κ + β

(3)
n,κ), β

(1)
n,κ, β

(2)
n,κ} the following relation

holds:
∀κ > 0

sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SWn (ω) \ U
β
(4)
n,κ
SW0 6= ∅} ≤ H1(κ) + H2(κ) +

H3(κ.)

Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SWn (ω) \ U
β
(4)
n,κ
SW0 6= ∅ are satisfied. Then there exists

an xn(ω) ∈ SWn (ω) which does not belong to U
β
(4)
n,κ
SW0 . Firstly, assume that

xn(ω) /∈ U
β
(1)
n,κ

Γ0. Then we can employ (CΓ-i).
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Secondly, assume that xn(ω) ∈ U
β
(1)
n,κ

Γ0. If ||fn(xn(ω), ω)− f0(xn(ω))|| ≥
β

(2)
n,κ we make use of (Cf). Otherwise we have ||fn(xn(ω), ω)− f0(xn(ω))|| <
β

(2)
n,κ and can proceed as follows: For x0 ∈ SW0 we obtain ||fn(xn(ω), ω) −
f0(x0)|| ≥ ||f0(x0) − f0(xn(ω)|| − ||fn(xn(ω), ω) − f0(xn(ω))|| ≥ µ(β

(4)
n,κ) −

β
(2)
n,κ ≥ β

(3)
n,κ. Since the last inequality holds for all x0 ∈ SW0 we have

Wn(ω) \ U
β
(3)
n,κ
W0 6= ∅, and the conclusion follows. �

Theorem 4. Suppose that (CΓ-i), (Cf), and (Gf) are satisfied. Further-
more assume that the following condition is fulfilled:

(CE) There exist a function H3 ∈ H and for all κ > 0 a sequence

(β
(3)
n,κ)n∈N ∈ B such that

sup
n∈N

P{ω : E0 \ Uβ(3)
n,κ
En(ω) 6= ∅} ≤ H3(κ).

Then for β
(4)
n,κ := max{µ−1(β

(2)
n,κ + β

(3)
n,κ), β

(1)
n,κ, β

(2)
n,κ} the following relation

holds:
∀κ > 0

sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SE0 \ Uβ(4)
n,κ
SEn (ω) 6= ∅} ≤ H1(κ) + H2(κ) +

H3(κ).

Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SE0 \ Uβ(4)
n,κ
SEn (ω) 6= ∅ are satisfied. Then there exists

an x0(ω) ∈ SE0 which does not belong to U
β
(4)
n,κ
SEn (ω). Consider an xn(ω) ∈

SEn (ω). Firstly, assume that xn(ω) /∈ U
β
(1)
n,κ

Γ0. Then we can employ (CΓ-i).

Secondly, assume that xn(ω) ∈ U
β
(1)
n,κ

Γ0. If ||fn(xn(ω), ω) − f0(xn(ω))|| ≥
β

(2)
n,κ we make use of (Cf). Otherwise we have that ||fn(xn(ω), ω)−f0(xn(ω))|| <
β

(2)
n,κ and can proceed as follows: For all xn(ω) ∈ SEn (ω) we obtain ||fn(xn(ω), ω)−
f0(x0(ω))|| ≥ ||f0(x0(ω))−f0(xn(ω))||−||fn(xn(ω), ω)−f0(xn(ω))|| ≥ µ(β

(4)
n,κ)−

β
(2)
n,κ ≥ β

(3)
n,κ. Since the last inequality holds for all xn(ω) ∈ SEn (ω) we have

E0 \ Uβ(3)
n,κ
En(ω) 6= ∅ and the conclusion follows. �

The existence of a growth function µ is considered in the following lemma.

Lemma 6.1. Let f0 be continuous. Furthermore assume that for a com-
pact neighborhood UΓ0 the following condition is satisfied:

18



∀x ∈ UΓ0 ∀y ∈ (UΓ0 \ {x}) : ||f0(x)− f0(y)|| > 0.
Then (Gf) holds.

Proof. Firstly we show that condition (C) is fulfilled:

(C) ∀ε > 0 ∃µ̃(ε) > 0 ∀x, y ∈ UΓ0: ||x− y|| ≥ ε⇒ ||f0(x)− f0(y)|| ≥ µ̃(ε).

Assume, to the contrary,
∃ε > 0 ∀n ∈ N ∃xn, yn ∈ UΓ0 : ||xn − yn|| ≥ ε ∧ ||f0(xn)− f0(yn)|| < 1

n
.

UΓ0 being compact, there are subsequences (xnl)l∈N and (ynl)l∈N of (xn)n∈N
and (yn)n∈N , respectively, which converge to x0 ∈ UΓ0 and y0 ∈ UΓ0. Be-
cause of the continuity of f0 we have f0(x0) = f0(y0) but ||x0 − y0|| ≥ ε in
contradiction to the assumption of the lemma.

Once a function ε→ µ̃(ε) with property (C) has been found, each function
µ̃1 with smaller positive values satisfies condition (C). Hence by µ̂ we denote
the function which assigns to each ε the supremum over all possible values.
Furthermore, we define µ(α) := inf

ε>α
µ̂(ε). The function µ is by definition

increasing and right continuous. µ(0) = 0 follows by (C) because of the
continuity of f0.

In order to show that µ ∈ Λ it remains to confirm that µ is not con-
stant. Suppose that µ(α) = 0 for an α > 0. Hence there are an x0

and a sequence (xn)n∈N ⊂ UΓ0 with ||xn − x0|| ≥ εn, lim inf
n→∞

εn ≥ α and

lim
n→∞

||f0(xn) − f0(x0)|| = 0. Because of the compactness assumption there

are an x̂0 6= x0 and a subsequence (xnl)l∈N with lim
l→∞
||xnl − x̂0|| = 0 and

lim
l→∞
||f0(xnl) − f0(x̂0)|| = 0. Consequently we obtain ||f0(x0) − f0(x̂0)|| = 0

in contradiction to the assumption. �

In some applications, among them the Markowitz model, condition (Gf) is
not satisfied. Therefore we we prove another result with the weaker condition
(w-Gf), which applies to the Markowitz model if (VE) is fulfilled.

(w-Gf) ∃ε0 > 0 ∃δ ∈ Λ ∀0 < ε ≤ ε0 ∀x0 ∈ SE0
∃x ∈ Γ0 with d(x, x0) = ε ∃j ∈ J : f j0 (x)− f j0 (x0) ≥ δ(ε).

Lemma 6.2. Suppose that SE0 ist compact, connected, and not single-valued
and that f0 is continuous. Furthermore assume that (VE) is satisfied. Then
(w-Gf) holds.
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Proof. Firstly we show that
∃ε0 > 0 ∀0 < ε ≤ ε0 ∃δ̃ > 0 ∀x0 ∈ SE0 ∃x ∈ Γ0 with d(x, x0) = ε
∃j ∈ J : f j0 (x)− f j0 (x0) ≥ δ̃.
Assume, to the contrary,
∀n ∈ N ∃εn with 0 < εn ≤ 1

n
∀r ∈ N ∃x0

n,r ∈ SE0 ∀xn,r ∈ Γ0 with d(x0
n,r, xn,r) =

εn
∀j ∈ J : f j0 (xn,r)− f j0 (x0

n,r) <
1
r
.

For each n ∈ N , let r tend to infinity. Then, because of the compactness
of SE0 , to (x0

n,r)r∈N there is a subsequence (x0
n,rl

)l∈N which converges to an
x0
n ∈ SE0 . Furthermore, to (x0

n,rl
)l∈N we consider a sequence (xn,rl)l∈N with

xn,rl ∈ SE0 . Such a sequence, which belongs to SE0 ⊂ Γ0, exists, because
SE0 is connected and not single-valued. (xn,rl)l∈N ∈ SE0 in turn contains a
converging subsequence which tends to xn ∈ SE0 . We obtain d(x0

n, xn) = 1
n
,

but ∀j ∈ J ∀r ∈ N : f j0 (xn) − f j0 (x0
n) < 1

r
. Hence to each x0

n ∈ SE0 there
exists xn ∈ SE0 with d(xn, x

0
n) = 1

n
for sufficiently large n ∈ N and ∀j ∈ J :

f j0 (xn)− f j0 (x0
n) = 0 which contradicts (VE).

In order to show that to the function ε→ δ̃(ε) there is a function δ ∈ Λ
which satisfies (w-Gf) we can proceed as in the proof of Lemma 6.1. �

With this condition we obtain the following modification of Theorem 4.

Theorem 4-M. Suppose that the conditions (CΓ-i), (Cf), (w-Gf), and
(CE) are satisfied.

Then for β
(4)
n,κ := max{δ−1(2β

(2)
n,κ + β

(3)
n,κ), β

(1)
n,κ, β

(2)
n,κ} the following relation

holds:

∀κ > 0 sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SE0 \ Uβ(4)
n,κ
SEn (ω) 6= ∅}

≤ H1(κ) +H2(κ) +H3(κ).

Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SE0 \ Uβ(4)
n,κ
SEn (ω) 6= ∅ are satisfied. Then there exists

an x0(ω) ∈ SE0 which does not belong to U
β
(4)
n,κ
SEn (ω). Because of (w-Gf)

there exists x̃0(ω) ∈ Γ0 \ Uβ
(4)
n,κ
2

SEn (ω) such that for a j ∈ J the relation

f j0 (x̃0(ω))− f0(x0(ω)) ≥ δ(
β
(4)
n,κ

2
) holds.

Then we can proceed as in the proof of Theorem 4, replacing x0(ω) with
x̃0(ω). �
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7 Relaxation

The assertions of the foregoing sections impose assumptions about the true
problem, namely the knowledge of the continuity function λ, the growth
function µ, and the functions δ1, δ2. If this information is not available,
one could try to estimate these functions from the data. How this approach
works in the case of one objective function is considered in [27]. In [27]
also another approach is proposed, the so-called relaxation. It relies on the
following consideration: If a convergence rate has to be taken into account
it can be used to ‘relax’ the constraints and the objective functions with the
error, which is ‘usually’ not exceeded, namely the convergence rate.

We will derive sequences of random sets S̃WR,n and SWR,n which cover SW0
with a probability which is bounded by a tail behavior function. These sets
can be regarded as ‘superset-approximations’. They depend on the argument
κ of the tail behavior function, although this is not indicated in the denota-
tion. Hence in order to derive a confidence set, one can proceed as explained
in the introduction for outer approximations with convergence rate and tail
behavior function. Because of SE0 ⊂ SW0 , also confidence sets for SE0 are
obtained in that way.

Firstly, we assume that the ‘continuity’ function λ is known. It will
become clear from the proof of the next theorem that also a bound for λ
will do, and such a bound is is often available, at least locally. The general
case without any knowledge about the true problem will be considered in
Theorem 6.

We introduce a ‘shifted’ order cone, which will be used to cope with the
approximation of the objective function. For sake of simplicity we use the
same convergence rate for all components of the objective function, one could,
however, also deal with individual convergence rates for each component. Let,
for a given ‘continuity function’ λ ∈ Λ, βλn,κ := 2β

(2)
n,κ + λ(β

(1)
n,κ),

Rk
βλn,κ

:= Rk
+ + βλn,κ1

k, and

S̃WR,n(ω) := {x ∈ U
β
(1)
n,κ

Γn(ω) : (fn(x, ω)− intRk
βλn,κ

) ∩ Fn(ω) = ∅}

. Here 1k denotes the k-dimensional vector (1, 1, . . . , 1)T .
Then we have the following assertion.

Theorem 5. Suppose that the conditions (CΓ-i), (CΓ-o), (Cf), and (Sf)
are satisfied. Then the following realtion holds:
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∀κ > 0:
sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SW0 \ S̃WR,n(ω) 6= ∅} ≤ H1(κ) +H2(κ).

Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SW0 \ S̃WR,n(ω) 6= ∅ are satisfied. Then there exists an

x0(ω) ∈ SW0 which does not belong to S̃WR,n(ω). If x0(ω) /∈ U
β
(1)
n,κ

Γn(ω) we

have Γ0 \Uβ(1)
n,κ

Γn(ω) 6= ∅ and can employ (CΓ-o). Hence, in the following we

assume that x0(ω) ∈ U
β
(1)
n,κ

Γn(ω).

Because of x0(ω) /∈ S̃WR,n(ω) and the definition of SWR,n(ω) there is an
xn(ω) ∈ Γn(ω) with the property
fn(xn(ω), ω) < fn(x0(ω), ω)− βλn,κ. (3)
If xn(ω) /∈ U

β
(1)
n,κ

Γ0 we again have Γn(ω) \ U
β
(1)
n,κ

Γ0 6= ∅ and make use of

(CΓ-i). Hence we can assume that xn(ω) ∈ U
β
(1)
n,κ

Γ0. To xn(ω) we consider

x̃0(ω) ∈ Γ0 with minimal distance to xn(ω). If x̃0(ω) /∈ U
β
(1)
n,κ
{xn(ω)} we

have Γn(ω) \U
β
(1)
n,κ

Γ0 6= ∅ and can again employ (CΓ-i). Now we assume that

x̃0(ω) ∈ U
β
(1)
n,κ
{xn(ω)}. Then

||f0(x̃0(ω))− f0(xn(ω))|| ≤ λ(β
(1)
n,κ). (4)

Because of xn(ω) ∈ UΓ0 we can either apply (Cf) or we have for xn(ω) and

x0(ω) the relations ||fn(xn(ω), ω) − f0(xn(ω))|| ≤ β
(2)
n,κ and ||fn(x0(ω), ω) −

f0(x0(ω))|| ≤ β
(2)
n,κ. In the latter case we obtain from (3) and (4) fn(xn(ω), ω)−

f0(xn(ω)) + f0(x̃0(ω)) < fn(x0(ω), ω)− f0(x0(ω)) + f0(x0(ω))−βλn,κ +λ(β
(1)
n,κ)

and can by ||fn(x0(ω), ω)−f0(x0(ω))|| ≤ β
(2)
n,κ and ||fn(xn(ω), ω)−f0(xn(ω))|| ≤

β
(2)
n,κ conclude f0(x̃0(ω)) < f0(x0(ω)) which contradicts x0(ω) ∈ SW0 . �

Now we will cope without any knowledge about the true problem. This,
however, requires the knowledge of sets which are subsets of the constraint set
with prescribed high probability. Inner approximations need not be subsets
of the true set, hence we introduce so-called subset-approximations. Such
approximations are also considered in [27].

Definition. A sequence (Γsubn,κ)n∈N which satisfies the condition

∀κ > 0 : sup
n∈N

P{ω : Γsubn,κ(ω) \ Γ0 6= ∅} ≤ H(κ)

is called subset-approximation in probability to Γ0 with tail behavior function
H.
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If Γ0 is given by inequality constraints, it is easy to obtain a subset-
appproximation, see [27] and a simple method at the end of this section.

In order to derive a superset approximation for the set of weakly efficient
points, we consider the image set F sub

n,κ of a subset-approximation for Γn:

F sub
n,κ (ω) := {fn(x, ω) : x ∈ Γsubn,κ(ω)}.

Furthermore we introduce Rk
βn,κ

:= Rk
+ + 2βn,κ1

k and

SWR,n(ω) := {x ∈ U
β
(1)
n,κ

Γn(ω) : (fn(x, ω)− intRk
βn,κ) ∩ F sub

n,κ (ω) = ∅}.

Theorem 6. Suppose that (Γsubn,κ)n∈N is a subset approximation to Γ0

with tail behavior function H3 and that the conditions (CΓ-o) and (Cf) are
satisfied. Then the following relation holds:
∀κ > 0:
sup
n∈N

P{ω : U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SW0 \ SWR,n(ω) 6= ∅} ≤ H1(κ) +H2(κ).

Proof. Assume that for given κ > 0, n ∈ N, and ω ∈ Ω the relations
U
β
(1)
n,κ

Γ0 ⊂ UΓ0 and SW0 \ SWR,n(ω) 6= ∅ are satisfied. Then there exists an

x0(ω) ∈ SW0 which does not belong to SWR,n(ω). If x0(ω) /∈ U
β
(1)
n,κ

Γn(ω) we

have Γ0 \Uβ(1)
n,κ

Γn(ω) 6= ∅ and can employ (CΓ-o). Hence, in the following we

assume that x0(ω) ∈ U
β
(1)
n,κ

Γn(ω).

Because of x0(ω) /∈ SWR,n(ω) and the definition of SWR,n(ω) there is an
xn(ω) ∈ Γsubn,κ(ω) with the property fn(xn(ω), ω) < fn(x0(ω), ω)− 2βn,κ.

If xn(ω) /∈ Γ0 we have Γsubn,κ(ω) \ Γ0 6= ∅. Otherwise, because of (Cf),
the relation f0(xn(ω)) < f0(x0(ω)) follows, which contradicts the assumption
x0(ω) ∈ SW0 . �

If the constraint set is not approximated, like in the Markowitz model,
only the approximation of the objective functions has to be taken into ac-
count. Hence, for Γn(ω) = Γ0 ∀n ∈ N ∀ω ∈ Ω, we have Fn(ω) = {fn(x, ω) :
x ∈ Γ0} and define

ŜWR,n(ω) := {x ∈ Γ0 : (fn(x, ω)− intRk
2βn,κ

) ∩ Fn(ω) = ∅}.
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Lemma 7.1 Suppose that (Cf) is satisfied. Then
∀κ > 0: sup

n∈N
P{ω : SW0 \ ŜWR,n(ω) 6= ∅} ≤ H2(κ).

Lemma 7.1 can be proved similar to Theorem 6.

In order to derive a subset-approximation of Γ0 := {x ∈ Rp : g0(x) ≤ 0}
we introduce the following sets for α < 0:

Γαn(ω) := {x ∈ Rp : gn(x, ω) ≤ α}.

Here g0 and gn can be regarded as the supremum of a set of constraint
functions. Obviously, for α < 0 we obtain a subset of Γn. Furthermore, we
have the following assertion:

Lemma 7.2: If there exist a function H2 and to all κ > 0 a sequence
(β

(2)
n,κ)n∈N such that

sup
n∈N

P{ω : inf
x∈UΓ0

(gn(x, ω)− g0(x)) ≤ −β(1)
n,κ} ≤ H2(κ)

for a suitable neighborhood UΓ0,

then (Γ
−β(1)

n,κ
n )n∈N is a subset-approximation for Γ0.

Proof. (i) Let ω ∈ Ω, n ∈ N and κ > 0 be such that Γ
−β(1)

n,κ
n (ω) \ Γ0 6= ∅.

Then there is an xn(ω) ∈ Γ
−β(1)

n,κ
n (ω) which does not belong to Γ0. Hence

gn(xn(ω), ω) ≤ −β(1)
n,κ while g0(xn(ω)) > 0 and we can employ the assump-

tion. �

Another subset approximation could be obtained if a suitable neighbor-
hood of the boundary of Γn(ω) is removed from Γn(ω).
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in Operations Research and Management Science, Vol. 10, Elsevier, 427–
482, 2003.

[12] W. Römisch: Stability of stochastic programming. In: Stochastic Pro-
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