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Abstract

This paper aims at combining variable ordering structures with set relations in set
optimization, which have been defined using the constant ordering cone before. Since
the purpose is to connect these two important approaches in set optimization, we do
not restrict our considerations to one certain relation. Conversely, we provide the
reader with many new variable set relations generalizing the relations from [16, 25]
and discuss their usefulness. After analyzing the properties of the introduced rela-
tions, we define new solution notions for set-valued optimization problems equipped
with variable ordering structures and compare them with other concepts from the
literature. In order to characterize the introduced solutions a nonlinear scalarization
approach is used.
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1 Introduction

In set optimization we deal with optimization problems with a set-valued objective function
F : S ⊂ X → 2Y (with real linear spaces X, Y , a nonempty set S and the power set 2Y ).
Such problems arise for instance in case one considers a vector-valued objective map but
allows (relative) errors [16], in bilevel optimization if neither optimistic nor pessimistic
approach is regarded [6] or in some applications as the navigation of transportation robots,
cf. [16]. For a detailed introduction to set optimization see [20].
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The topic of this paper are set optimization problems based on variable ordering struc-
tures. As discussed in [7, Remark 2.6] there are (at least) three approaches for defin-
ing solution concepts in set optimization: the vector approach [2, 27], the set approach
[10, 19, 23] and the lattice approach [12, 33].

In the vector approach one directly generalizes the concepts known from vector opti-
mization to set optimization: at first the union of all image sets F (S) :=

⋃
x∈S F (x) of

the set-valued objective map F over the feasible set S is determined. Then one tries to
find a best element ȳ in the set F (S). This defines an optimal solution of the set-valued
optimization problem by searching for a feasible element x̄ ∈ S with ȳ ∈ F (x̄). The draw-
back of this approach is that in most applications only one element ȳ does not imply that
the whole set F (x̄) is in a certain sense optimal compared to the other sets F (x), x ∈ S
in general. Therefore, in the set approach, one aims on defining binary relations 4 for
comparing sets. Then one denotes x̄ ∈ S an optimal solution if F (x) 4 F (x̄) for some
x ∈ S implies F (x̄) 4 F (x), cf. [10, Definition 1.9].

For both approaches, the binary relations for comparing elements or sets in a linear
space are in general based on a convex cone K ⊂ Y . Next to such fixed ordering structures,
there is in the last years an increasing interest in vector optimization problems with a
variable ordering structure (see for instance [3, 5, 8, 28, 32]). There, the partial ordering
defined by a convex cone in the image space of the vector-valued objective function is
replaced by a variable ordering structure. This variable ordering structure is defined by a
set-valued map, called ordering map, which associates with each element of the space an
individual set or cone of preferred or dominated directions.

We are interested in such variable ordering structures for set optimization problems.
In contrast to [7] and [9], who follow the vector approach, we take the set approach and
introduce binary relations to compare sets directly. This was also done in a recent paper
by Köbis, see [21], who compared sets w.r.t. a variable ordering structure based on one
specific set relation. We propose here a different approach for these relations and discuss
this subject in more detail on page 8.

In Section 2 we introduce new set relations based on variable ordering structures, which
generalize the relations defined in [16, 25] using constant ordering cones. Thereby we do not
restrict our considerations to one chosen relation intentionally. Doubtlessly, some of these
relations are more practically relevant than others, which we discuss on page 11. Section 3
presents some properties of the considered set relations including among others reflexivity,
transitivity and antisymmetry of these relations. In Section 4 we define optimality notions
using the introduced relations and provide characterizations of some of these solutions
w.r.t. selected relations by means of nonlinear scalarization.

We end this introduction by discussing an application which illustrates the relevance
of considering such set optimization problems. In intensity-modulated radiation therapy
(IMRT) the importance of incorporating variable ordering structures to allow an improved
modeling of the decision making problem is already discussed in [8, Chapter 10]. In IMRT
one searches for an optimal treatment plan x for the irradiation of a tumor. Thereby
one aims on reducing the radiation dose delivered to the neighbored healthy organs, while
destroying the tumor. This is a multi-objective optimization problem with an objective fi
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(i ∈ {1, . . . , k}) for each healthy neighbored organ measuring its dose stress.
For calculating the dose stress fi(x) in an organ i a model of the patients body is used.

This model is based on a partition of the relevant area into voxels which are assigned
to the different tissues and organs. For choosing an appropriate model of the patient a
body scan can be used and the specific data can be compared with models from a data
base. For safety purpose one might prefer to do the calculations based on several data
sets. Additionally, for calculating the dose stress various approaches exist. Widely used is
a concept based on the equivalent uniform dose in terms of p-norms. The organ dependent
parameters p are determined based on statistical tests so it might also be of interest to
study a range of parameters p. This leads to a dose level fi(x, p,m) for each choice of the
model m and the parameter p, and for safety reasons it might be preferable to consider
the whole sets

F (x) :=
⋃
p,m

{(f1(x, p,m), . . . , fk(x, p,m))>}

for each irradiation plan x, i.e. a set optimization problem with a set-valued objective
function F (x) ⊂ Rk.

For comparing elements (f1(x, p,m), . . . , fk(x, p,m))> in Rk it is already mentioned in
[8, Chapter 10] that a variable ordering structure reflects the application problem better
than a constant ordering cone. This is based on the fact that there is no linear (but an
s-shaped) relation between the dose delivered to an organ and the effect on that organ.
For small and high values of the dose a change in the dose level has hardly any effect on an
organ, but there is a sensible dose range in which slight changes have a significant impact.
As long as the response of the organ on dose variations is relatively small a rise of the
dose delivered to that organ in favor of an improvement of the value for another organ
would be preferred. Thus, dependent on the current values in the objective space, different
preferences exist. According to [8, Chapter 10] this can be modeled by a variable ordering
structure defined by a set-valued map D : Rk → 2R

k
with Rk

+ ⊂ D(y) for all y ∈ Rk. In
this paper we consider approaches to compare such sets F (x) based on variable ordering
structures associating to each element y of the image space Rk an individual set D(y).

2 Set relations

After introducing some basic notations, we present in this section new variable set relations
generalizing the relations from [16, 25], and discuss their usefulness.

2.1 Preliminaries

Let Y be a real linear space. A nonempty set C ⊂ Y is called a cone if λc ∈ C holds for
all λ ∈ R, λ ≥ 0 and c ∈ C. The set C is said to be pointed if C ∩ (−C) = {0Y } where
−C := {−c : c ∈ C}. We denote the Minkowski sum of two nonempty sets A,B ⊂ Y by
A + B and the difference by A − B := A + (−B). For the (algebraic) interior of a set
A ⊂ Y we write cor(A) and for the (algebraic) boundary ∂A. In case A is a subset of a
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real topological linear space Y , we denote by int(A) the (topological) interior and by cl(A)
the (topological) closure of A.

Definition 2.1. Let Y be an arbitrary nonempty set. A binary relation ≤ on Y is called
a partial ordering on Y if for each x, y, z ∈ Y the following properties are satisfied:

(i) y ≤ y (reflexivity),

(ii) y ≤ x and x ≤ z imply y ≤ z (transitivity),

(iii) y ≤ x and x ≤ y imply x = y (antisymmetry).

If a relation satisfies only the properties (i) and (ii), then it is a preorder. A convex
cone K ⊂ Y which introduces a preorder on a real linear space Y by

∀y, z ∈ Y : y ≤K z :⇔ z − y ∈ K

is denoted an ordering cone.
Using the set-valued maps D : Y → 2Y and P : Y → 2Y , two different binary relations

are defined on Y by:
y ≤D ȳ :⇔ ȳ ∈ {y}+D(y) (1)

and by
y ≤P ȳ :⇔ y ∈ {ȳ} − P(ȳ). (2)

Be aware that we use the symbol 2Y := {A ⊂ Y : A is nonempty } to denote the power
set of Y , while P is a set-valued map. The notation P(Y ) :=

⋃
y∈Y P(y) stands for the

image of Y under P .
As it will be discussed in the forthcoming Lemma 2.3, these binary relations define no

preorder on Y in general. The binary relation (1) reflects the idea of domination: we have
for y, z ∈ Y that y ≤D z if z is considered to be larger (or worse — in case we minimize)
than y from the point of view of y. Whereas the binary relation (2) models the idea of
preference. Then y ≤P z can be interpreted by saying that y is smaller (or better) than
z from the point of view of z. Of course, for any y ∈ Y the set D(y), describing with
{y} + D(y) \ {0Y } the set of elements which are considered to be worse than y, does not
have to be equal to P(y), depicting with {y} − P(y) \ {0Y } the set of elements which are
considered to be preferred to y.

Definition 2.2. Let Y be a real linear space and D,P : Y → 2Y set-valued maps where
D(y),P(y) are (algebraically) closed sets with 0Y ∈ ∂D(y) and 0Y ∈ ∂P(y) for all y ∈ Y .
If elements in the space Y are compared using (1) or (2), then the map D or P is called
ordering map, its images are ordering sets and relations (1), (2) are variable ordering
relations.

In the following we are going to make use of some properties of relations (1) and (2),
which are summarized in the lemma below and can be found in [8, Lemma 1.10].
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Lemma 2.3. Let Y be a real linear space with ordering maps D and P where D(y) and
P(y) are nonempty convex cones for all y ∈ Y .

(i) The relations defined in (1) and (2) are reflexive.

(ii) The relation ≤D is transitive if and only if

∀y ∈ Y ∀d ∈ D(y) : D(y + d) ⊂ D(y). (3)

(iii) The relation ≤P is transitive if and only if

∀y ∈ Y ∀d ∈ P(y) : P(y − d) ⊂ P(y). (4)

(iv) The relation ≤D (≤P) is antisymmetric if D(Y ) =
⋃
y∈Y
D(y) (P(Y ) =

⋃
y∈Y
P(y)) is

pointed.

Let X, Y be real linear spaces, S ⊂ X a nonempty set and F : X → 2Y a set-valued
map. We assume that the space Y is not equipped with a partial ordering but that we
have some kind of variable ordering structure (which we discuss and introduce next) and
study the set optimization problem

min
x∈S

F (x) . (SOP)

It is possible to use variable ordering structures introduced by ordering maps as given
in Definition 2.2 for set optimization problems. This can be done by application of results
from vector optimization with variable ordering structures, cf. [3, 7, 9], based on the so
called vector approach. Using this concept a pair (x̄, ȳ) is an optimal solution of (SOP)
if ȳ ∈ F (x̄) and ȳ is an optimal element of F (S) =

⋃
x∈S F (x) in a certain sense, see also

Definition 4.9. If instead the set approach is regarded, we need to define set-valued maps
depending on a whole set in order to introduce binary relations between elements of the
power set of Y analogously to (1) and (2). Next we discuss the possibilities of how to
define the ordering maps (cf. Definition 2.2) in order to clarify the choice of approach that
we use in the sequel.

I. D̃ : 2Y → 2Y and P̃ : 2Y → 2Y .
Let us consider an arbitrary set A ⊂ Y and the corresponding image of the ordering
map D̃(A). Since D̃ is defined on 2Y , the ordering set associated with some set

B ⊂ A could be completely different from D̃(A). In the worst case we may obtain

D̃(A) ∩ D̃(B) = {0Y }. The same problem arises while considering the map P̃ .

II. D̂ : X → 2Y and P̂ : X → 2Y .
By regarding the map D̂ without any additional assumptions, we notice the following:
it is possible that there exist x1, x2 ∈ X with F (x1) = F (x2). If we now take the

map D̂ into consideration, we note that, because it is defined on X, it can take
different values for x1 and x2. Consequently, the set F (x1) would be characterized by
two diverse ordering cones in the image space. Moreover, also in this case the same
problem as in I. may occur.
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III. D : Y → 2Y and P : Y → 2Y .
We may unify all sets D(a), a ∈ A in order to obtain D(A) =

⋃
a∈A
D(a). Additionally,

by considering images of a given map F we have D(F (x1)) = D(F (x2)) whenever
F (x1) = F (x2) and D(B) ⊂ D(A) if B ⊂ A.

We can observe the following relationships between the set-valued maps defined above:

(i) If F is bijective, then we may consider D̂(x) := D̃(F (x)) and the maps D̃ and D̂ may
coincide.

(ii) From a practical point of view it is important to require one of the following properties

of D̃ (and also D̂): for all B ⊂ A we have D̃(B) ⊂ D̃(A) or D̃(A) ⊂ D̃(B). By setting

D̃(A) :=
⋃

a∈AD(a) we note that the first condition is obviously satisfied. This could

be interpreted as considering the ordering set for the set A such that if d ∈ D̃(A),

then there exists at least one element a ∈ A with d ∈ D̃(a) — so d ∈ D̃(A) as soon
as for at least one value a ∈ A adding d means a worsening of the current value.
If we define D̃(A) :=

⋂
a∈AD(a), we obtain the second property (for all B ⊂ A we

have D̃(A) ⊂ D̃(B)). In this case d ∈ D̃(A) means that d ∈ D̃(a) for each a ∈ A —

so d ∈ D̃(A) only if for all values a ∈ A adding d means a worsening of the current
value.

In [7] the ordering map was defined on X, i.e. D̂ : X → 2Y , and an application in
the theory of consumer demand was also presented. Hereby, based on a map g : X → Y ∗

with X = Rn, the ordering map D̂(x) := {d ∈ Y : g(x)(d) ≥ 0} is defined. Here,
Y ∗ denotes the dual space. Of course, for Y = Rm (which is in general the case in the
application, see [8]) and any y ∈ g(Rn) we can instead define the map D : g(Rn)→ 2Y by
D(y) := {d ∈ Rm : y>d ≥ 0}.

Based on the properties of the discussed ordering maps we define binary relations on
2Y . Before we introduce these binary relations, let us recall the definition of the l-type less
order relation (l-less order relation), see e.g. [12, 15, 24, 29], between sets A,B ∈ 2Y with
a constant ordering cone K ⊂ Y :

A 4l B :⇔
(
∀b ∈ B ∃a ∈ A : a ≤K b

)
⇔ B ⊂ A+K. (5)

If we regard the set A + K on the right hand side of the last inclusion and try to replace
the cone K with the set D(A), we notice that by considering the map D we have another
possibility, namely, the set

⋃
a∈A

({a}+D(a)) with
⋃
a∈A

({a}+D(a)) ⊂ A+D(A). It is also

important to mention that there exists in general no set C ⊂ Y such that the equation⋃
a∈A

({a}+D(a)) = A+ C holds.

Since the different binary relations for set-valued maps, which can be found in [16, 25],
are defined pointwise, in our opinion the maps D and P seem to provide the best possibility
to generalize these relations using variable ordering structures.
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2.2 Definition of set relations

Following the publications [16] and [25] we can define 16 set relations (in Definitions 2.4 and
2.5), which are not equivalent in general. Note that for instance from the binary relation
defined in (5) for a partially ordered space Y we obtain two different binary relations w.r.t.
a variable ordering structure dependent on whether we replace ≤K by ≤D (see the binary
relation number 7) or by ≤P (see the binary relation 8).

Definition 2.4. Let Y be a real linear space and A,B ∈ 2Y be nonempty arbitrarily chosen
sets and D,P : Y → 2Y be ordering maps. Then we define binary relations on 2Y as follows:

1. the certainly less order relation of type D (4Dc ) is defined by:

A 4Dc B :⇔
(
∀a ∈ A ∀b ∈ B : a ≤D b

)
⇔ B ⊂

⋂
a∈A

({a}+D(a)) .

2. the certainly less order relation of type P (4Pc ) is defined by:

A 4Pc B :⇔
(
∀a ∈ A ∀b ∈ B : a ≤P b

)
⇔ A ⊂

⋂
b∈B

({b} − P(b)) .

3. the l-existence less order relation (there exists an element which is “smaller”) of type
D (4Del) is defined by:

A 4Del B :⇔
(
∃a ∈ A such that ∀b ∈ B : a ≤D b

)
⇔ ∃a ∈ A : B ⊂ {a}+D(a).

4. the l-existence less order relation of type P (4Pel) is defined by:

A 4Pel B :⇔
(
∃a ∈ A such that ∀b ∈ B : a ≤P b

)
⇔ A∩

(⋂
b∈B

({b} − P(b))

)
6= ∅.

5. the u-existence less order relation (there exists an element which is “larger”) of type
D (4Deu) is defined by:

A 4Deu B :⇔
(
∃b ∈ B such that ∀a ∈ A : a ≤D b

)
⇔ B∩

(⋂
a∈A

({a}+D(a))

)
6= ∅.

6. the u-existence less order relation of type P (4Peu) is defined by:

A 4Peu B :⇔
(
∃b ∈ B such that ∀a ∈ A : a ≤P b

)
⇔ ∃b ∈ B : A ⊂ {b}−P(b).

7. the l-less order relation of type D (4Dl ) is defined by:

A 4Dl B :⇔
(
∀b ∈ B ∃a ∈ A : a ≤D b

)
⇔ B ⊂

⋃
a∈A

({a}+D(a)) .
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8. the l-less order relation of type P (4Pl ) is defined by:

A 4Pl B :⇔
(
∀b ∈ B ∃a ∈ A : a ≤P b

)
⇔ ∀b ∈ B : A ∩ ({b} − P(b)) 6= ∅.

9. the u-less order relation of type D (4Du ) is defined by:

A 4Du B :⇔
(
∀a ∈ A ∃b ∈ B : a ≤D b

)
⇔ ∀a ∈ A : B ∩ ({a}+D(a)) 6= ∅.

10. the u-less order relation of type P (4Pu ) is defined by:

A 4Pu B :⇔
(
∀a ∈ A ∃b ∈ B : a ≤P b

)
⇔ A ⊂

⋃
b∈B

({b} − P(b)) .

11. the possibly less order relation of type D (4Dp ) is defined by:

A 4Dp B :⇔
(
∃a ∈ A ∃b ∈ B : a ≤D b

)
⇔ B ∩

(⋃
a∈A

({a}+D(a))

)
6= ∅.

12. the possibly less order relation of type P (4Pp ) is defined by:

A 4Pp B :⇔
(
∃a ∈ A ∃b ∈ B : a ≤P b

)
⇔ A ∩

(⋃
b∈B

({b} − P(b))

)
6= ∅.

Provided the constant maps D(y) = P(y) = K for all y ∈ Y with a convex cone K in
Y are considered, the above relations 4Dc and 4Pc , 4Del and 4Pel , 4

D
eu and 4Peu , 4Dl and 4Pl ,

4Du and 4Pu , and 4Dp and 4Pp coincide pairwise with each other. Moreover, their definitions
correspond exactly to those introduced for a constant ordering cone in [25]. Therefore, in
that case we omit the superindex.
Note that in [19] the certainly less order relation — assuming the space Y to be partially
ordered by a constant pointed ordering cone K ⊂ Y — is defined as follows:

A 4c,r B :⇔
(
A 6= B, ∀a ∈ A ∀b ∈ B : a ≤K b

)
or (A = B) .

Based on this definition the obtained relation is reflexive, which is otherwise not the case in
general. We instead generalize here the certainly less order relation as originally introduced
in [4] and discuss the properties of the above defined binary relations in more detail in
Section 3.

For an illustration of the concepts for two sets A and B in case of constant (but different)
maps D and P on A and B respectively, see Figures 1 and 2. Figure 3 depicts a survey
on the implications between the different binary relations, which follow directly from the
definitions.
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A

B

A

B

A

B

A 4Dc B, A 64Pc B A 4Del B, A 64Pel B A 4Deu B, A 64Peu B

A

B

A

B

A

B

A 4Dl B, A 64Pl B A 4Du B, A 64Pu B A 4Dp B, A 64Pp B

Figure 1: Illustration of the concepts of Definition 2.4.

D(a) ∀a ∈ A

0Y

P(b) ∀b ∈ B

0Y

Figure 2: Illustration of maps D and P used in Figure 1.

Köbis introduces in [21] two set relations called upper set less order relations with
variable ordering based on a set-valued map C : Y → 2Y :

A �u
C,1 B :⇔ ∀a ∈ A ∃b ∈ B : b ∈ a+ C(a)

A �u
C,2 B :⇔ ∀a ∈ A ∃b ∈ B : a ∈ b− C(b).

By using the set-valued map D (P) instead of C for the definition of �u
C,1 (�u

C,2) we obtain
exactly the u-less order relation of type D (4Du ) and the u-less order relation of type P (4Pu )
as defined above. Also a stronger relation was introduced in [21]:

A �u
C,1,2 B :⇔ ∀a ∈ A ∃b ∈ B : b ∈ a+ C(a) and a ∈ b− C(b)

⇔ ∀a ∈ A ∃b ∈ B : b− a ∈ C(a) ∩ C(b).

Based on a new map C : Y × Y → 2Y the so called variable upper set less order relation is
then defined by

A �u
C B :⇔ ∀a ∈ A ∃b ∈ B : b− a ∈ C(a, b).
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4Del 4Peu4Pel 4Deu

4Pl 4Du4Dl 4Pu

4Dc 4Pc

4Dp 4Pp

Figure 3: Implications between the certainly less order relations, the l-existence and u-
existence less order relations, the l-less and u-less order relations and the possibly less
order relations.

This approach generalizes the relations �C,1 and �C,2 in the following sense: the binary
relation�u

C,1 is the special case of �u
C with C(a, b) = C(a, c) =: C(a) for arbitrary a, b, c ∈ Y ,

i.e. the case when C depends on the first variable only. The binary relation �u
C,2 is the

special case of �u
C when C depends on the second variable only (cf. [21, Remark 2]).

We do not follow this approach by [21] based on the following considerations. Let us
assume that C(a, b) depends on both variables a and b for all a, b ∈ Y (and not on the
first or the second variable only), i.e. for (a, b) 6= (a, c) we have C(a, b) 6= C(a, c) and for
(a, c) 6= (b, c) we have C(a, c) 6= C(b, c) in general. Then this means the following: for a pair
(a, b) ∈ Y ×Y all but one element of the set C(a, b) are not of interest and do not play any
role for the defined set relations. It only matters whether b− a ∈ C(a, b) or b− a 6∈ C(a, b).
The remaining elements of the set C(a, b) are not of interest for the definition of the binary
relation {a} �u

C {b}. In other words, all other elements z ∈ C(a, b) with z 6= a − b are
superfluous since they give no information about domination or preference for a given pair
(a, b) ∈ Y × Y . Since we cannot find a suitable interpretation for all elements of the set
C(a, b) we do not use such a more general set-valued map C in this manuscript.

The forthcoming Definition 2.5 contains four other relations which are defined with the
aid of relations 7-10 from Definition 2.4. These relations seem to be particularly practically
relevant (cf. [19]), since they consider the set as a whole. Definition 2.5 is based on the
definition of the set less relation with a constant ordering cone K (see e.g. [16]):

A 4s B :⇔ B ⊂ A+K and A ⊂ B −K. (6)

This definition was motivated by a set relation for intervals in [4] denoted there set less or
equal relation.

Definition 2.5. Let Y be a linear space and A,B ∈ 2Y be nonempty arbitrarily chosen
sets. Then we define binary relations on 2Y as follows:

13. the set less order relation of type D (4Ds ) is defined by:

A 4Ds B :⇔ A 4Dl B and A 4Du B.
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(4Del ∧ 4Peu)(4Pel ∧ 4Deu)(4Del ∧ 4Deu) (4Pel ∧ 4Peu)

4DPs 4PDs4Ds 4Ps

4Pl 4Du4Dl 4Pu

Figure 4: Implications between the l-existence and u-existence order relations, the l-less
and u-less order relations and the set less order relations.

14. the set less order relation of type DP (4DPs ) is defined by:

A 4DPs B :⇔ A 4Dl B and A 4Pu B.

15. the set less order relation of type PD (4PDs ) is defined by:

A 4PDs B :⇔ A 4Pl B and A 4Du B.

16. the set less order relation of type P (4Ps ) is defined by:

A 4Ps B :⇔ A 4Pl B and A 4Pu B.

If the constant maps D = P = K for all y ∈ Y with a convex cone K ⊂ Y are
considered, the relations 13-16 are equivalent. For a survey on the implications between
the binary relations of Definitions 2.4 and 2.5 see Figure 4. The shown implications follow
again directly from the definitions.

2.3 Discussion on the different set relations

We study in this paper a wide range of set relations and generalize them to variable ordering
structures. There are even more concepts for set relations which are based, for instance,
on comparing the sets of minimal or maximal elements of the considered sets as defined in
[19, Section 3.2]. In this section we discuss the usefulness of the different set relations to
motivate introducing all the relations in Definitions 2.4 and 2.5.

We start with a result which allows a simple intuitive interpretation of the set less
relation: A 4s B if A is “less or equal” B and B is “greater or equal” A at the same time.
We give this characterization in a partially ordered space but it still illustrates the meaning
of the set less order relations also in the case of a variable ordering. For this result we need
the notion of the infimal set and supremal set for a cone-bounded set which were defined
in a more general setting by Löhne [26]. Thereby, a subset A of a real topological linear
space Y is K-bounded w.r.t. some ordering cone K ⊂ Y if there exist a ∈ Y and b ∈ Y
with

A ⊂ {a}+K and A ⊂ {b} −K.
If ∅ 6= int(K) 6= Y is satisfied, then it holds for a K-bounded set A: cl(A+K) 6= Y.
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Definition 2.6. Let Y be a real topological linear space with a (constant) ordering cone
K satisfying ∅ 6= int(K) 6= Y . Assume that A ⊂ Y is nonempty and bounded, then the
infimal set and supremal set of A with respect to K are defined by

InfA := {y ∈ cl(A+K) : ({y} − int(K)) ∩ cl(A+K) = ∅}

SupA := {y ∈ cl(A−K) : ({y}+ int(K)) ∩ cl(A−K) = ∅}
respectively.

In the next lemma we observe that by considering the 4s relation both infimal and
supremal sets are compared with each other:

Lemma 2.7. Let Y be a partially ordered real topological linear space with a pointed or-
dering cone K satisfying ∅ 6= int(K) 6= Y . Moreover, assume that A,B ⊂ Y are nonempty
and bounded sets. Then

A 4s B ⇒ InfA 4l InfB and SupA 4l SupB.

Proof. Let A 4s B hold. Then it follows B+K ⊂ A+K and consequently, using Corollary
1.48 (ix) from [26] we obtain

InfB ⊂ cl(B+K) ⊂ cl(A+K) = InfA∪ (InfA+ int(K)) ⊂ InfA∪ (InfA+K) = InfA+K.

Due to the fact that A ⊂ B − K if and only if −A ⊂ −B + K and for a given set C it
follows SupC = −Inf(−C) (see [26, Chapter 1]), we obtain analogously

SupA = −Inf(−A) ⊂ −cl(−A+K) ⊂ −cl(−B +K +K)
= −cl(−B +K) = − (Inf(−B) ∪ (Inf(−B) + int(K)) ⊂ SupB −K.

Now we only need to show that the last inclusion implies SupB ⊂ SupA + K. Suppose
on the contrary that there exists b̄ ∈ SupB with b̄ /∈ SupA + K. Using Corollary 1.48
(xi) from [26] we have b̄ ∈ Y = SupA ∪ (SupA− int(K)) ∪ (SupA+ int(K)). Therefore, it
follows b̄ ∈ SupA− int(K) and there exist ā ∈ SupA and k̄ ∈ int(K) with b̄ = ā− k̄. Since
SupA ⊂ SupB−K holds, if we take ā ∈ SupA, then there exist b ∈ SupB and k ∈ K with
ā = b− k. Now we have b− k = ā ∈ ({b̄}+ int(K)) ∩ cl(B −K), which is a contradiction
to b̄ ∈ SupB.

Based on the above result the set less order relations (Definition 2.5) seem to be most
realistic and practically relevant, cf. [18] (where a constant ordering cone is considered).
Especially, the set less order relation of type DP provides the following simple interpreta-
tion. Let us consider two nonempty sets A,B ⊂ Y . Then A is less than B if each element
in B is dominated by some element in A and also each element in a ∈ A is preferred to
some element in B.

While the practical relevance of the set less order relations may be true in many cases,
there might also be some applications where other concepts are of interest as well. We
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illustrate this with a simple example (Example 2.8) assuming for simplicity again a partially
ordered space. Moreover, in Example 2.9 we discuss a special situation where there is no
need to consider the set less order relation.

Furthermore, even when the set less order relation is the appropriate concept for an
application, other (stronger or weaker) concepts might be used to derive necessary and
sufficient conditions, which could be easier to evaluate, see Example 2.10. For instance
Theorem 4.18 presents such simple sufficient criteria using the stronger concept of the
certainly less order relation.

Example 2.8. Let us assume that there is a head of a school with 20 school classes. For
a competition the head can send classes which will be examined in math and geography.
The head is only interested in whether a class of his school wins the competition or not.
In the competition, each student of the class has to write a test in both subjects and gets
marks (1 is best, 6 is worst). A final mark is calculated as a weighted sum w1x + w2y
(with w1, w2 ≥ 0, w1 + w2 = 1) of the two marks x and y. The weights are not known
before the head of the school has to decide which classes should be sent to take part in the
competition. Finally, the result of a class is identified with the best result achieved by one
of its students. Moreover, it is expected that the students will have the same marks as they
are known to have in school. Assume class A has 10 students with marks

(math = 2, geography = 1), (1, 2), (3, 1), (1, 3), (4, 4), (4, 5), (5, 4), (5, 5), (6, 5), (5, 6)

and class B has 10 students with marks

(2, 2), (1, 3), (3, 1), (2, 3), (3, 2), (3, 3), (4, 1), (1, 4), (2, 4), (3, 4), (4, 4).

Then no matter which weights w1, w2 will be chosen, class A will always reach a better or
equal result than class B. Thus, class B is not going to be sent to the competition.

The classes A and B can be identified with discrete subsets from R2. Then A 4l B
w.r.t. the natural ordering but A 64s B, so the l-less order relation (and not the set less
order relation) seems to be appropriate for modeling this problem.

The following example shows that for some special situations (unbounded sets) there
is no need to consider the set less order relation.

Example 2.9. Let Y be a real linear space and let K be a cone with cor(K) 6= ∅ and
K ⊂ P(y) for all y ∈ Y . Then K is reproducing, i.e. K − K = Y . Let M ⊂ 2Y be a
family of nonempty sets with the property

A+K = A for all A ∈M.

Then for arbitrary sets A,B ∈M it holds

A ⊂ Y = B + Y = B +K −K = B −K ⊂
⋃
b∈B

({b} − P(b)) ,
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i.e. A 4Pu B. Therefore, for arbitrary A,B ∈M

A 4DPs B ⇔ A 4Dl B and A 4Pu B ⇔ A 4Dl B

and it suffices to study the l-less order relation of type D.

Analogous argumentation can be also used to motivate the usefulness of the u-less order
relations.

It is known that the certainly less order relation is a very strong concept and that in
practical applications it might happen that no sets can be compared by this set relation.
Therefore, defining a solution using this relation seems not to be reasonable. However,
if there is a high number of sets for instance in a low dimensional space as R2, there
might be many sets which can be compared. In this case the certainly less order relation
(or characterization results for this relation) can be used to pre-select some sets. This is
illustrated in the following example. For simplicity we assume the space R2 to be partially
ordered by the natural ordering.

Example 2.10. We consider the family of sets M which contains n nonempty closed
convex subsets of R2. We assume the space R2 to be partially ordered by R2

+. These subsets
are randomly constructed disks with random radius in the open interval (0, 2) and random
center points (xi, yi) ∈ (0, 10). (The implementation uses the Matlab function rand which
constructs pseudorandom values drawn from the standard uniform distribution on the open
interval (0, 1)). Figure 5 shows such a family of setsM with n = 100 disks. We determined
those disks which are larger w.r.t. the certainly less order relation than any other set and
marked them in the figure in gray — these have been k = 72 disks. So only the remaining
28 disks have to be considered for other binary relations as the l-less or the set less order
relation in case one wants to find the “minimal” sets (see Definition 4.1).

In a simulation run we considered the familiesM of random disks with n = 50, 100, 500,
1000 and 5000 disks, respectively. As the runs are based on random data, we repeated each
of them 100 times and took the average results. Table 1 gives the average number (in total
k and the ratio k/n) of those disks which are larger than any other of the n sets w.r.t. the
certainly less order relation. As it can be seen, for larger n the number of the sets which
cannot be optimal w.r.t. the l-less or the set less order relation increases. For n = 5000
disks it turns out that an average of 79 percent of random sets is larger than another set
w.r.t. the certainly less order relation and thus, these sets can be deleted in a pre-selection.

The same purpose — to sort out the sets which cannot be optimal — may be attacked
using the existence relations.

The possibly less relation is very week and therefore, it seems indeed not to be prac-
tically relevant. On the other hand, the negation of this relation might be useful to see
in which case one set is definitely not less or equal another using any of the relations
considered before.
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Figure 5: Sets of Example 2.10. The gray circles are the boundaries of those sets which
are larger than some other set w.r.t. the certainly less order relation.

n k k
n

50 30 0.61
100 66 0.66
500 371 0.74
1000 755 0.76
5000 3941 0.79

Table 1: Average simulation results (100 runs each) for families of sets M with n ∈
{50, 100, 500, 1000, 5000} subsets (disks) of R2.

3 Properties of the set relations

This section is devoted to the discussion of the basic properties of the introduced set
relations as reflexivity or transitivity. Next to that we provide some basic calculation
rules. We make use of the following assumption:

Assumption 1. Let Y be a real linear space and D,P : Y → 2Y be ordering maps (see
Definition 2.2) where D(y),P(y) are convex cones for all y ∈ Y .

Lemma 3.1. Let Assumption 1 hold.

(i) The binary relations 4Dl , 4Pl , 4Du , 4Pu , 4Dp ,4Pp (Relations 7-12 in Definition 2.4)
are reflexive.

(ii) Any of the binary relations 4Dc , 4Del, 4
D
eu, 4Dl , 4Du (Relations 1,3,5,7,9 in Definition
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2.4) is transitive if and only if D satisfies (3), i.e. if and only if the binary relation
≤D is transitive.

(iii) Any of the binary relations 4Pc , 4Pel, 4
P
eu, 4Pl , 4Pu (Relations 2,4,6,8,10 in Definition

2.4) is transitive if and only if P satisfies (4), i.e. if and only if the binary relation
≤P is transitive.

(iv) If the cone D(Y ) is pointed, then the binary relation 4Dc (Relation 1 in Definition 2.4)
is antisymmetric. If the cone P(Y ) is pointed, then the binary relation 4Pc (Relation
2 in Definition 2.4) is antisymmetric.

Proof. (i) The reflexivity follows from the fact that 0Y ∈ D(y) and 0Y ∈ P(y) for all
y ∈ Y .

(ii) We only show the equivalence for the certainly less order relation of type D. The
proofs of the other equivalences are analogous.

First assume that D possesses the property given by (3) and we have A,B,C ⊂ Y
with A 4Dc B and B 4Dc C. Then from the definition it follows for all a ∈ A and for
all b ∈ B that b − a ∈ D(a). Furthermore, we obtain also for all b ∈ B and for all
c ∈ C that c ∈ {b}+D(b). Due to the property (3) of D and since D(a) is a convex
cone, we have for all a ∈ A, for all b ∈ B, and for all c ∈ C that

c ∈ {b}+D(a+ b− a) ⊂ {b}+D(a) ⊂ {a}+D(a) +D(a) = {a}+D(a).

Consequently, A 4Dc C is satisfied and since the sets were chosen arbitrarily, the
relation 4Dc is transitive. For the opposite direction we only need to state that if
4Dc is transitive for all elements of the power set of Y , then it is also transitive for
singletons. Hence, we obtain immediately the transitivity of the binary relation ≤D.

(iii) Analogous to the proof of (ii).

(iv) We only show the implication for the certainly less order relation of type D. The
proof for the other implication is analogous.

Let us consider A,B ⊂ Y satisfying the conditions A 4Dc B and B 4Dc A but A 6= B.
W.l.o.g. there exists a ∈ A such that a /∈ B. Take an arbitrary b ∈ B and observe that
due to relations between A and B, we obtain the inclusions b−a ∈ D(a) ⊂ D(Y ) and
a− b ∈ D(b) ⊂ D(Y ). Since a 6= b holds, we have a contradiction to the pointedness
of D(Y ).

The certainly less order relation of type D is obviously not reflexiv in general. If D is
a cone valued map and D(Y ) is pointed, the reflexivity of this relation implies that the
compared sets have to be singletons, which can be shown by contradiction. The same
property holds for the certainly less order relation of type P . The l-existence less order
relation of type D and of type P as well as the u-existence less order relation of type D
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and of type P are also not reflexiv in general. In order to analyze the reflexivity of these
binary relations, we need the notions of infimum and supremum of a considered set. These
definitions using constant ordering cone can be found in [26].

Definition 3.2. Let A ⊂ Y and consider a variable ordering relation ≤. An element l ∈ Y
is called a lower (upper) bound of A if l ≤ a (a ≤ l) for all a ∈ A. Furthermore, an element
k ∈ Y is called infimum (supremum) of A if k is a lower (upper) bound of A and for every
other lower (upper) bound l of A we have l ≤ k (k ≤ l). We use the notation inf A (supA)
for the set of infima (suprema) of A.

By considering Example 3.3 we note that the set inf A of a given set A is no singleton
in general.

Example 3.3. Let the set A be defined by: A := {(x, y) ∈ R2 : (x − 1)2 + (y − 1)2 ≤ 1}.
We consider the following ordering map

D(z) :=

{
R2

+ ∀z ∈ R2 \ {(2, 0)}
cone {(−1, 0), (0, 1)} if z = (2, 0) .

Using Definition 3.2 we obtain that the set A has two infima w.r.t. the variable ordering
relation ≤D at points (0, 0) and (2, 0) since for each lower bound l of the set A we have
(0, 0) ∈ {l}+D(l) as well as (2, 0) ∈ {l}+D(l).

If we assume that the maps D and P satisfy the properties given by (3) and (4) respec-
tively and that D(Y ) and P(Y ) are pointed, then we obtain that for a given set A ⊂ Y
inf A and supA are singletons if they exist. This follows directly from Proposition 1.4
in [26] since in this case ≤D or ≤P are transitive and antisymmetric and therefore, they
are partial orderings. Note that if in the definition of the infimum (Definition 3.2) the
condition “for every other lower bound l of A we have l ≤ k” is replaced by “for every
other lower bound l of A we have k � l”, then there could exist more than one infimum
even if the ordering cone is constant (for an example see [26, Example 1.9]).

For the reflexivity of the l-existence less order relation of type D we obtain the following
characterization:

Lemma 3.4. Let Y be a real linear space, A ⊂ Y be a nonempty set and D : Y → 2Y be
an ordering map. Then A 4Del A if and only if (inf A) ∩ A 6= ∅, where inf A is considered
w.r.t. the variable ordering relation ≤D.

Proof. First we assume that the set A contains an infimum with respect to the relation
≤D. Since any infimum of A is also a lower bound of A, for all a ∈ A we obtain inf A ≤D a
and hence, A 4Del A holds. On the other hand, by considering A ⊂ Y and assuming that
A 4Del A is satisfied, from the definition of the relation 4Del we obtain immediately that
there is a lower bound ā of A contained in this set. If we now assume that ā is not an
infimum of A, then there exists another lower bound k of A with k 6≤D ā. However, due
to the fact that k is a lower bound of A and ā ∈ A holds, we obtain k ≤D ā, which is a
contradiction. Therefore, it follows (inf A) ∩ A 6= ∅.
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The reflexivity of the l-existence less order relation of type P can be obtained analo-
gously. For studying the reflexivity of the u-existence less order relations of type D or type
P we obtain analogously the condition (supA) ∩ A 6= ∅, where supA is considered w.r.t.
the variable ordering relation ≤D or ≤P , respectively.

The possibly less order relations of type D and P are both not transitive because they
are also not transitive if a constant ordering cone is considered (D(·) = P(·) = K ⊂ Y ), cf.
[19]. Note that all introduced relations except the certainly less order relations of type D
and P (under assumption D(Y ) and P(Y ) are pointed) are not antisymmetric in general.
This follows from the fact that they are also not antisymmetric if a constant ordering cone
is considered (cf. [19] for u-less, l-less and possibly less order relations).

For the l-existence order relation of type D we obtain the following result:

Lemma 3.5. Let Y be a real linear space and D : Y → 2Y be an ordering map. Assume
additionally that D(Y ) is pointed and A,B ⊂ Y are arbitrary nonempty sets. Then A 4Del B
and B 4Del A if and only if there exists ȳ ∈ (inf A) ∩ (inf B), where inf A and inf B are
considered w.r.t. the variable ordering relation ≤D.

Proof. First assume A 4Del B and B 4Del A. The definition of the relation 4Del implies the
existence of ā ∈ A and b̄ ∈ B satisfying B ⊂ {ā} + D(ā) and A ⊂ {b̄} + D(b̄). Therefore,
we have ā− b̄ ∈ D(b̄) as well as b̄− ā ∈ D(ā). Since D(Y ) is pointed, it follows ā = b̄ and
hence, the obtained conditions B ⊂ {b̄} + D(b̄) and A ⊂ {ā} + D(ā) imply ā ∈ inf A and
b̄ ∈ inf B with respect to the relation ≤D.

On the other hand, if there exist ā ∈ inf A and b̄ ∈ inf B with respect to the relation
≤D satisfying ā = b̄, then the definitions of inf A and the relation 4Del imply A 4Del B and
B 4Del A.

Similar properties characterize also the l-existence order relation of type P and the u-
existence order relations of type D and P . Therefore, these relations are not antisymmetric
in general as well.

The following corollary is a simple consequence of Lemma 3.1.

Corollary 3.6. Let Assumption 1 hold.

(i) The set less order relation of type D is reflexive and it is transitive if and only if the
map D possesses the property given by (3).

(ii) The set less order relations of types DP and PD are reflexive and they are transitive if
and only if the maps D and P possess the properties given by (3) and (4) respectively.

(iii) The set less order relation of type P is reflexive and it is transitive if and only if the
map P possesses the property given by (4).

In the following we collect some basic calculation rules and implications for the discussed
set relations. We omit the simple proofs as they easily follow from the definitions.
For the first result let the sets A,B ⊂ Y be comparable with respect to one of the relations
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introduced in Definitions 2.4 and 2.5. If additionally the binary relations ≤D and ≤P are
transitive, we can note the following implications between the corresponding images of the
maps D and P of these sets.

Lemma 3.7. Suppose that Assumption 1 holds. Let A,B ⊂ Y be arbitrary nonempty
sets, the intersections of the corresponding cones be denoted by D(A) :=

⋂
a∈A
D(a) and

P(A) :=
⋂
a∈A
P(a) and the maps D and P satisfy the conditions (3) and (4) respectively.

Moreover, assume that for each y ∈ Y it holds D(y) 6= {0Y } and P(y) 6= {0Y }. Then

(i) if A 4Dc B, then D(B) ⊂ D(A),

(ii) if A 4Pc B, then P(A) ⊂ P(B),

(iii) if A 4Del B, then ∃a ∈ A : D(B) ⊂ D(a),

(iv) if A 4Pel B, then ∃a ∈ A : P(a) ⊂ P(B),

(v) if A 4Deu B, then ∃b ∈ B : D(b) ⊂ D(A),

(vi) if A 4Peu B, then ∃b ∈ B : P(A) ⊂ P(b),

(vii) if A 4Dl B, then D(B) ⊂ D(A),

(viii) if A 4Pl B, then ∀b ∈ B : P(A) ∩ P(b) 6= {0Y },

(ix) if A 4Du B, then ∀a ∈ A : D(B) ∩ D(a) 6= {0Y },

(x) if A 4Pu B, then P(A) ⊂ P(B),

(xi) if A 4Dp B, then D(B) ∩ D(A) 6= {0Y },

(xii) if A 4Pp B, then P(A) ∩ P(B) 6= {0Y },

(xiii) if A 4Ds B, then D(B) ⊂ D(A) and ∀a ∈ A : D(B) ∩ D(a) 6= {0Y },

(xiv) if A 4DPs B, then D(B) ⊂ D(A) and P(A) ⊂ P(B),

(xv) if A 4PDs B, then ∀b ∈ B : P(A) ∩ P(b) 6= {0Y } and ∀a ∈ A : D(B) ∩ D(a) 6= {0Y },

(xvi) if A 4Ps B, then ∀b ∈ B : P(A) ∩ P(b) 6= {0Y } and P(A) ⊂ P(B).

The following lemma states which relations hold if we regard subsets or supersets of
considered sets:
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Lemma 3.8. Let Y be a real linear space and D,P : Y → 2Y be ordering maps. Assume
that A,B,C ⊂ Y are nonempty sets. Then

(i) if A 4Dc B and C ⊂ A, then C 4Dc B,
if A 4Dc B and C ⊂ B, then A 4Dc C,

(ii) if A 4Del B and A ⊂ C, then C 4Del B,
if A 4Del B and C ⊂ B, then A 4Del C,

(iii) if A 4Deu B and C ⊂ A, then C 4Deu B,
if A 4Deu B and B ⊂ C, then A 4Deu C,

(iv) if A 4Dl B and A ⊂ C, then C 4Dl B,
if A 4Dl B and C ⊂ B, then A 4Dl C,

(v) if A 4Du B and C ⊂ A, then C 4Du B,
if A 4Du B and B ⊂ C, then A 4Du C,

(vi) if A 4Dp B and A ⊂ C, then C 4Dp B,
if A 4Dp B and B ⊂ C, then A 4Dp C,

(vii) if in assertions (i)-(vi) the relations of type D are replaced by the corresponding
relations of type P, the same implications hold.

Note that for the set less order relations of all types (see Definition 2.5) it is not possible
to obtain similar results as in Lemma 3.8. In the next lemma we consider the intersections
and unions of the images of the ordering maps D,P : Y → 2Y . The relations follow directly
from the fact that for arbitrary nonempty sets A,B ⊂ Y we have: for all a ∈ A (b ∈ B)
the condition D(A) ⊂ D(a) ⊂ D(A) (P(B) ⊂ P(b) ⊂ P(B)) is satisfied.

Lemma 3.9. Let Y be a real linear space and D,P : Y → 2Y be ordering maps. Assume
that A,B ⊂ Y are arbitrary nonempty sets. The following implications hold:

A 4D(A) B ⇒ A 4D B ⇒ A 4D(A) B (7)

where 4· denotes one of relations 1, 3, 5, 7, 9, 11, 13 (from Definitions 2.4 and 2.5) with
one of the constant cones D(A), D(A) or map D,

A 4P(B) B ⇒ A 4P B ⇒ A 4P(B) B (8)

where 4· denotes one of relations 2, 4, 6, 8, 10, 12, 16 with one of the constant cones
P(A), P(A) or map P. Additionally, for relations 14 and 15 we have:

A 4D(A)P(B)
s B ⇒ A 4DP B ⇒ A 4D(A)P(B) B, (9)

A 4P(B)D(A) B ⇒ A 4PD B ⇒ A 4P(B)D(A) B. (10)
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4 Optimal solutions of a set optimization problem

Based on the introduced set relations we define in this section optimal solutions of a set
optimization problem. As discussed in the introduction we use thereby the set approach in
set optimization. We also compare the introduced optimality notions with those obtained
by the vector approach.

A well known tool in vector optimization is to use scalarization approaches to determine
optimal solutions. Jahn proposes in [18] a vectorization approach for set optimization
based on the set less order relation with a constant ordering cone. This approach uses
linear scalarizations for each of the two set relations (the l- and the u-less order relation)
on which the definition of the set less order relation is based. Köbis gives in [21] linear
scalarizations for the variable upper set less oder relation based on a variable ordering
structure. Hernández and Rodŕıguez-Maŕın [14] and Gutiérrez et al. [11] discuss also
nonlinear scalarization functionals for the l-less order relation in partially ordered spaces
based among others on the Tammer-Weidner functional. We study in the following shortly
linear scalarization approaches for the introduced set relations before we discuss a nonlinear
scalarization based on a representation of the images of the ordering maps D and P as
Bishop-Phelps cones.

In this section, next to Assumption 1, we make use of the following assumption:

Assumption 2. Let in addition to Assumption 1 X be a real linear space, S ⊂ X be a
nonempty set and F : X → 2Y be a set-valued map with F (x) 6= ∅ for all x ∈ S.

Recall that by Assumption 1, Y is a real linear space and D,P : Y → 2Y are ordering
maps where D(y),P(y) are convex cones for all y ∈ Y .

4.1 Definition of optimal solutions

In this section we use the notation 4 in order to indicate an arbitrary relation from Defi-
nitions 2.4 and 2.5. Provided we use only one or a subset of these relations, we remark it
explicitly. Based on the set relations from Definitions 2.4 and 2.5 we can define optimal
elements of a family of sets:

Definition 4.1. Let Assumption 1 hold and let F ⊂ 2Y be a family of nonempty sets.

(i) The set Ā ∈ F is an optimal element of F w.r.t. 4 if A 4 Ā for some set A ∈ F
implies Ā 4 A.

(ii) The set Ā ∈ F is a strongly optimal element of F w.r.t. 4 if Ā 4 A for all sets
A ∈ F \ {Ā}.

We denote the set of optimal elements and of strongly optimal elements of F by
Min(F ,4) and SMin(F ,4), respectively. Note that if a considered set relation 4 is reflex-
ive, then we have: a set Ā ∈ SMin(F ,4) if and only if Ā 4 A for all sets A ∈ F . Based on
optimal elements of a family of sets we can define optimal solutions of the set optimization
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problem (SOP) as preimages of optimal elements of the family of sets {F (x) : x ∈ S},
see part (i) in the definition below. We also give the definition of a strict optimal solution:

Definition 4.2. Let Assumption 2 hold and let x̄ be an element of S.

(i) The element x̄ is a (strongly) optimal solution of (SOP) w.r.t. one of the set relations
4 if F (x̄) is a (strongly) optimal element of F := {F (x) : x ∈ S} w.r.t. this set
relation 4, i.e. if F (x̄) ∈ Min(F ,4) (F (x̄) ∈ SMin(F ,4)).

(ii) The element x̄ is a strict optimal solution of (SOP) w.r.t. one of the set relations 4
if there exists no x ∈ S \ {x̄} with F (x) = F (x̄) or with F (x) 4 F (x̄) (i.e. we have
F (x) 64 F (x̄) and F (x) 6= F (x̄) for all x ∈ S \ {x̄}).

The definition above is based on the set approach. See [19, 31] for the analogous defini-
tions regarding binary relations using a constant ordering cone. Note that the reason why
we modified the definition of the strict optimal solutions slightly is the lack of reflexivity
of some introduced relations, cf. Lemma 3.1. In the scalar-valued case the optimal and
strongly optimal solutions both coincide with the common minimal solutions and the strict
optimal solutions correspond to the unique minimal solutions.

4.2 Relation to the vector approach

For deriving some relationships of the solution concepts from Definition 4.2 and solutions
using the vector approach with variable ordering structures in [7, 9], we define a new
property for a given family of sets. We introduce the weak domination property, which
is based on the concept of the domination property as used for instance in [19, Definition
4.9] for studying set relations with constant ordering cones.

Definition 4.3. Let a family F ⊂ 2Y of nonempty sets and one of the reflexive set relations
4 be given.

(i) We say that F satisfies the weak domination property w.r.t. 4 if for each set A ∈ F
there exists a family of sets FA ⊂ F such that FA ⊂ Min(F ,4) and we have⋃

{B : B ∈ FA} 4 A.

(ii) We say that F ⊂ F satisfies the domination property for F w.r.t. 4 if Min(F ,4) 6= ∅
and for each set A ∈ F there exists a set B ∈ Min(F ,4) such that B 4 A.

The following lemma clarifies, why we speak of a weaker notion.

Lemma 4.4. Let a family F ⊂ 2Y of nonempty sets and one of the reflexive set relations
4 be given.

(i) Let the binary relation 4 be transitive. If there exists F ⊂ F such that F satisfies the
domination property for F w.r.t. 4, then F satisfies the weak domination property
w.r.t. 4.
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(ii) If Min(F ,4) satisfies the domination property for F w.r.t. 4, then F satisfies the
weak domination property w.r.t. 4.

Proof. (i) We first show that Min(F ,4) ⊂ Min(F ,4). Assume to the contrary that
B ∈ Min(F ,4) but B 6∈ Min(F ,4). Then there exists A ∈ F \ F with A 4 B
and B 64 A. Since we have A ∈ F , there is a set C ∈ Min(F ,4) such that C 4 A
holds. As 4 is transitive, it follows C 4 B. Due to the inclusions B ∈ Min(F ,4)
and C ∈ F , we obtain also B 4 C. Again, since 4 is transitive, we get B 4 A which
is a contradiction.

Next, let A ∈ F be arbitrarily chosen. As F ⊂ F satisfies the domination property
for F w.r.t. 4, there exists B ∈ Min(F ,4) ⊂ Min(F ,4) ⊂ F such that B 4 A

is satisfied. Let us define FA
:= {B}. Then FA ⊂ Min(F ,4) holds and we have⋃{C : C ∈ FA} = B 4 A. Hence, the proof is completed.

(ii) Let A ∈ F be arbitrarily chosen. As Min(F ,4) satisfies the domination property for

F w.r.t. 4, there exists B ∈ Min(F ,4) ⊂ F such that B 4 A. We set FA
:= {B}.

Then we have FA ⊂ Min(F ,4) as well as
⋃{C : C ∈ FA} = B 4 A and we are

done.

The following example gives a family of sets F which possesses the weak domination
property but for which there exists no F ⊂ F such that F satisfies the domination property
for F . We use the l-less order relation of type D in this example.

Example 4.5. Consider the constant ordering map D(y) = R2
+ for each y ∈ R2

+ and the

l-less order relation of type D. Let the set-valued map F : [0, 1]→ 2R
2

be defined by:

F (x) =


{(1

2
, 0)} if x = 1

{(0, 1
2
)} if x = 0

conv{(0, 1), (1, x)} otherwise.

(11)

Then the points F (0) and F (1) are the only optimal elements of the family of sets
F := {F (x) : x ∈ [0, 1]}. On the other hand, for each set F (x) with x ∈ (0, 1) we
have F (0) 64Dl F (x) as well as F (1) 64Dl F (x) and there is no F ⊂ F such that F sat-

isfies the domination property for F . However, by taking FF (x)
:= {F (0), F (1)} for each

x ∈ [0, 1], F satisfies the weak domination property.

The fact that we need the transitivity of the binary relation 4 for the result (i) of
Lemma 4.4 is illustrated in the next example using again the l-less order relation of type
D.
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Example 4.6. Consider the l-less order relation of type D and let a family of nonempty
sets F ⊂ 2R

2
be given by F := {(0, 1), (1, 0), (1, 1)}. The set-valued map D possesses

the following images: D(y) = cone{(0, 1), (1, 1)} for all y ∈ R2 \ {(1, 1)} and D(1, 1) =
cone{(0, 1), (−1, 0)}. It holds

{(1, 1)} 4Dl {(0, 1)} and {(1, 0)} 4Dl {(1, 1)}

but
{(1, 0)} 64Dl {(0, 1)}.

Thus 4Dl is not transitive. The set F = {(0, 1), (1, 0)} = Min(F ,4Dl ) satisfies the domi-
nation property for F w.r.t. 4Dl . On the other hand, F does not possess the weak dom-
ination property since we have Min(F ,4Dl ) = {(1, 0)}. Hence, if we set A = {(0, 1)},
there is no family of sets FA ⊂ F with FA ⊂ Min(F ,4Dl ) such that the condition⋃{B : B ∈ FA} 4 A is satisfied. This example illustrates also that the pointedness of
D(Y ) is not a sufficient condition for the first relation between the domination properties
from Lemma 4.4.

The next property, the lower quasi domination property for families of sets, generalizes
Definition 3.7 in [19] and is equivalent to the weak domination property for certain set
relations, cf. Lemma 4.8.

Definition 4.7. Let a family F ⊂ 2Y of nonempty sets and one of the reflexive set relations
4 be given. We say that F satisfies the lower quasi domination property w.r.t. 4 if for
each A ∈ F it follows

⋃{B : B ∈ Min(F ,4)} 4 A.

Lemma 4.8. Let a family F ⊂ 2Y of nonempty sets and one of the reflexive set relations
4Dl ,4

P
l ,4

D
p ,4

P
p be given. Then F ⊂ 2Y has the lower quasi domination property w.r.t. 4

iff it satisfies the weak domination property w.r.t. 4.

Proof. Let F possess the lower quasi domination property w.r.t. 4. Then by defining

FA
:= Min(F ,4) for each A ∈ F we obtain immediately that for all A ∈ F the relation⋃{B : B ∈ Min(F ,4)} 4 A holds. Hence, F satisfies the weak domination property

w.r.t. 4.
On the other hand, if F satisfies the weak domination property w.r.t. 4, then for each

set A ∈ F there exists a family of sets FA ⊂ F such that FA ⊂ Min(F ,4) and we have⋃{B : B ∈ FA} 4 A. Now, using Lemma 3.8 it follows
⋃{B : B ∈ Min(F ,4)} 4 A and

the proof is completed.

Obviously, if the considered relation 4 is not reflexive, none of the introduced domina-
tion properties can be satisfied.
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Definitions of solutions of (SOP) which generalize the vector approach for a variable
ordering given by a set-valued map D : Y → 2Y can be found in [9]:

Definition 4.9. Let Assumption 2 hold. Let x̄ be an element of S and ȳ ∈ F (x̄).

(i) The pair (x̄, ȳ) is called a nondominated solution of the problem (SOP) with respect
to the ordering map D if ȳ is a nondominated element of the set F (S), i.e. there is
no y ∈ F (S) \ {ȳ} such that ȳ ∈ {y}+D(y).

(ii) The pair (x̄, ȳ) is called a strongly minimal solution of the problem (SOP) with respect
to the ordering map D if ȳ is a strongly minimal element of the set F (S), i.e. if
F (S) ⊂ {ȳ}+D(ȳ).

Analogously one can define (weakly/strongly/properly) minimal and nondominated
solutions [8]. We restrict ourselves here to the two notions given in (i) and (ii) in Definition
4.9 and give relations to the optimality notions from Definition 4.2.

Theorem 4.10. Let Assumption 2 hold and consider problem (SOP). Then the following
assertions hold:

(i) Assume that (x̄, ȳ) is a nondominated solution (from Definition 4.9) of problem
(SOP) with respect to the ordering map D and F := {F (x), x ∈ S} has the weak
domination property w.r.t. 4Dl . Then there exists an optimal solution x′ ∈ S of
(SOP) w.r.t. the relation 4Dl with ȳ ∈ F (x′).

(ii) Assume additionally that D satisfies condition (3) and that D(y) is pointed for all
y ∈ S. Let x̄ be a strongly optimal solution of (SOP) w.r.t. the relation 4Dl and the set
F (x̄) possesses at least one nondominated element ȳ with respect to the ordering map
D, i.e. it holds ȳ 6∈ {y}+D(y) for all y ∈ F (x̄) \ {ȳ}. Then (x̄, ȳ) is a nondominated
solution (from Definition 4.9) of problem (SOP) with respect to the ordering map D.

(iii) If (x̄, ȳ) is a strongly minimal solution (from Definition 4.9) of problem (SOP) with
respect to the ordering map D, then x̄ is a strongly optimal solution of (SOP) w.r.t.
the relation 4Del.

(iv) Let x̄ be a strongly optimal solution of (SOP) w.r.t. the relation 4Dc and a strongly
minimal element ȳ of F (x̄) exist, i.e. F (x̄) ⊂ {ȳ} + D(ȳ). Then (x̄, ȳ) is a strongly
minimal solution (from Definition 4.9) of problem (SOP) with respect to the ordering
map D.

Proof. (i) It holds ȳ /∈ {y}+D(y) for all y ∈ F (S) \ {ȳ}. Furthermore, due to the weak

domination property, there exists a family of sets FF (x̄) ⊂ F such that each x with

F (x) ∈ FF (x̄)
is an optimal solution of (SOP) w.r.t. 4Dl . Thus, there exists S̄ ⊂ S

with FF (x̄)
= {F (x) | x ∈ S̄} and each x ∈ S̄ is an optimal solution of (SOP) w.r.t.

4Dl . Moreover, we have

F (x̄) ⊂
⋃
x∈S̄

⋃
y∈F (x)

({y}+D(y)) .
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Hence, as ȳ ∈ F (x̄) holds, we obtain that there is y ∈ F (S̄) ⊂ F (S) with
ȳ ∈ {y}+D(y). However, by assumption we have ȳ /∈ {y}+D(y) for all y ∈ F (S)\{ȳ}
and therefore, y = ȳ follows. Consequently, there exists x′ ∈ S̄ with ȳ ∈ F (x′).

(ii) As x̄ is a strongly optimal solution of (SOP) w.r.t. the relation 4Dl , for each x ∈ S we
have F (x̄) 4Dl F (x). That means F (x) ⊂ ⋃y∈F (x̄) ({y}+D(y)) for all x ∈ S. Now we

take an arbitrary nondominated element ȳ of F (x̄) and assume on the contrary that
ȳ is not a nondominated element of F (S). Then there are x ∈ S and y ∈ F (x) \ {ȳ}
with

ȳ ∈ {y}+D(y).

On the other hand, there exists ŷ ∈ F (x̄) such that y ∈ {ŷ} + D(ŷ) (since x̄ is a
strongly optimal solution of (SOP)). Using condition (3) we obtain D(y) ⊂ D(ŷ) and
consequently, (due to convexity of images of D) we have

{y}+D(y) ⊂ {ŷ}+D(ŷ).

Now it follows ȳ ∈ {ŷ}+D(ŷ) with ŷ ∈ F (x̄). Provided ȳ 6= ŷ, we have a contradiction
since ȳ is a nondominated element of F (x̄). If ŷ = ȳ holds, then due to property (3)
of D we have D(ȳ) ⊂ D(y) and we obtain

{ȳ}+D(ȳ) ⊂ {y}+D(y) ⊂ {ȳ}+D(ȳ).

Moreover, it follows D(ȳ) ⊂ D(y) ⊂ D(ŷ) = D(ȳ) and hence, D(y) = D(ȳ) is
satisfied. Thus, {y} + D(ȳ) = {ȳ} + D(ȳ) holds and as D(ȳ) is pointed, we obtain
y = ȳ. This is a contradiction to y ∈ F (x) \ {ȳ}. Therefore, ȳ is a nondominated
element of F (S) and (x̄, ȳ) is a nondominated solution of problem (SOP) with respect
to the ordering map D.

(iii) Since F (S) ⊂ {ȳ}+D(ȳ) holds, it follows F (x) ⊂ {ȳ}+D(ȳ) for all x ∈ S. Therefore,
we have F (x̄) 4Del F (x) for all x ∈ S and x̄ is a strongly optimal solution of (SOP)
w.r.t. the relation 4Del .

(iv) From F (x̄) 4Dc F (x) for all x ∈ S with F (x) 6= F (x̄) it follows

F (x) ⊂
⋂

y∈F (x̄)

({y}+D(y)) for all x ∈ S with F (x) 6= F (x̄).

Choose an arbitrary strongly minimal element ȳ of F (x̄). Then we obtain
F (x) ⊂ {ȳ} + D(ȳ) for all x ∈ S and consequently, F (S) ⊂ {ȳ} + D(ȳ) holds.
Thus, (x̄, ȳ) is a strongly minimal solution of (SOP) with respect to the ordering
map D.
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In [7, Definition 2.1] the following vector approach based on an ordering map

D̂ : X → 2Y is used (in fact, a local version of the following definition):

Definition 4.11. Let real linear spaces X and Y , a nonempty set S ⊂ X, a set-valued map
F : X → 2Y , an ordering map D̂ : X → 2Y and the pair (x̄, ȳ) ∈ S × Y with ȳ ∈ F (x̄) be
given. The pair (x̄, ȳ) is called a nondominated solution of the problem (SOP) with respect

to the ordering map D̂ if

ȳ 6∈
⋃
x∈S

(
F (x) + D̂(x) \ {0Y }

)
.

Lemma 4.12. Let Assumption 2 hold. Additionally, assume that x̄ is a strict optimal
solution of (SOP) w.r.t. the relation 4Dp and define D̂(x) :=

⋂
y∈F (x)D(y) for all x ∈ X. If

there exists ȳ ∈ F (x̄) with ȳ 6∈ F (x̄) + D̂(x̄) \ {0Y }, then the pair (x̄, ȳ) is a nondominated

solution of (SOP) w.r.t. D̂ (from Definition 4.11).

Proof. As x̄ is a strict optimal solution of (SOP) w.r.t. the set relation 4Dp , we have

F (x) 64Dp F (x̄) for all x ∈ S \ {x̄}.

Therefore, for all x ∈ S \{x̄}, for all y ∈ F (x) and for all ŷ ∈ F (x̄) it holds ŷ 6∈ {y}+D(y).
Consequently, since for each x ∈ S \ {x̄} we have ŷ 6∈ ⋃y∈F (x) ({y}+D(y)), it follows for

all x ∈ S \ {x̄} : ŷ 6∈ ⋃y∈F (x)

(
{y}+

⋂
ỹ∈F (x)D(ỹ)

)
. Now we obtain

ŷ 6∈
⋃

x∈S\{x̄}

(
F (x) + D̂(x)

)
for all ŷ ∈ F (x̄).

Let us now take ȳ ∈ F (x̄) satisfying ȳ 6∈ F (x̄) + D̂(x̄) \ {0Y }. Then it follows

ȳ /∈
⋃
x∈S

(
F (x) + D̂(x) \ {0Y }

)
and the pair (x̄, ȳ) is a nondominated solution of (SOP) w.r.t. D̂ (from Definition 4.11).

Lemma 4.12 allows to use the necessary optimality conditions developed in [7] for
characterizing strict optimal solutions w.r.t. the relation 4Dp .

4.3 Characterization by scalarization

Next we study characterizations of optimal solutions by scalarization. We start with a
short examination of linear scalarizations. These were used by Jahn in [18] for the set less
order relation, cf. (6), with a constant ordering cone resulting in a so-called vectorization
approach. Vectorization with variable ordering structures can also be found in the paper
by Köbis [21] for the special binary relation mentioned above.
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The vectorization approach by Jahn in [18] uses the assumption that for a given subset
A of a real locally convex linear space Y and the ordering cone K ⊂ Y the Minkowski sum
of these sets A+K is closed and convex. He proved the relation

A ⊂ B +K ⇔ sup
`∈K∗\{0Y ∗}

(inf
a∈A

`(a)− inf
b∈B

`(b)) ≤ 0 , (12)

where K∗ := {` ∈ Y ∗ : `(y) ≥ 0 for all y ∈ K} denotes the dual cone of K and Y ∗ denotes
the (topological) dual space of Y .
In order to derive an analogous result for the l-less order relation of type D, we need to
define the cone D :=

⋂
y∈Y D(y). Applying the result by Jahn, cf. [18, Lemma 2.1], we

obtain immediately

sup
`∈(D)∗\{0Y ∗}

(inf
a∈A

`(a)− inf
b∈B

`(b)) ≤ 0⇔ A 4Dl B.

Because D ⊂ D(a) holds for each a ∈ A, we can use the analogous argumentation as in
Lemma 3.9 and this implies the following corollary.

Corollary 4.13. Let Assumption 1 hold and let Y be additionally locally convex. Let A
and B be arbitrary nonempty subsets of Y . If the set A+D is closed and convex, then

sup
`∈(D)∗\{0Y ∗}

(inf
a∈A

`(a)− inf
b∈B

`(b)) ≤ 0 ⇒ A 4Dl B. (13)

The result in Corollary 4.13 resembles the one derived by Köbis [21] for a different
binary relation. Note that for comparing fixed nonempty sets A ⊂ Y and B ⊂ Y as in
Corollary 4.13 it is enough to take the intersection of the images of the ordering maps over
A or B, i.e. D(A) =

⋂
a∈AD(a) or D(B) =

⋂
b∈B D(b).

By using the cone D(Y ) =
⋃

y∈Y D(y) we can derive similarly a necessary condition. If
we assume that D(Y ) is convex and A+D(Y ) is closed and convex, we have:

A 4Dl B ⇒ sup
`∈(D(Y ))∗\{0Y ∗}

(inf
a∈A

`(a)− inf
b∈B

`(b)) ≤ 0. (14)

Doubtlessly, it would be interesting to obtain similar assertions without considering con-
stant unions or intersections of images of the ordering map. Unfortunately, the results that
we derive in this case are more difficult to evaluate than the above ones.

Before we illustrate this issue using the l-less order relation of type D, we need to recall
some well known results. For any closed convex cone K 6= {0Y } of a locally convex linear
space Y we have

K = {y ∈ Y : `(y) ≥ 0 for all ` ∈ K∗ \ {0Y ∗}}
[16, Lemma 3.21]. Therefore, for any c ∈ Y we obtain

inf
`∈K∗\{0Y ∗}

`(c) =

{
0 if c ∈ K
−∞ if c /∈ K. (15)

We use this in order to prove the following characterization of the l-less order relation of
type D:
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Lemma 4.14. Let Assumption 1 hold, D(y) 6= {0Y } for all y ∈ Y and Y be locally convex.
Assume that A and B are arbitrary nonempty subsets of Y . Then

A 4Dl B ⇔ inf
b∈B

sup
a∈A

inf
`∈(D(a))∗\{0Y ∗}

`(b− a) = 0. (16)

Proof. Using (15) we obtain the following chain of relationships:

A 4Dl B

⇔ ∀b ∈ B ∃a ∈ A : b− a ∈ D(a)

⇔ ∀b ∈ B ∃a ∈ A : inf
`∈(D(a))∗\{0Y ∗}

`(b− a) = 0

⇔ ∀b ∈ B : sup
a∈A

inf
`∈(D(a))∗\{0Y ∗}

`(b− a) = 0

⇔ inf
b∈B

sup
a∈A

inf
`∈(D(a))∗\{0Y ∗}

`(b− a) = 0.

For the certainly less order relation of type D we have the following with analogous
argumentation:

A 4Dc B ⇔ inf
b∈B

inf
a∈A

inf
l∈(D(a))∗\{0Y ∗}

l(b− a) = 0. (17)

To give another example, for the set less order relation of type DP we have

A 4DPs B ⇔ infb∈B supa∈A inf`∈(D(a))∗\{0Y ∗} `(b− a) = 0
∧ infa∈A supb∈B inf`∈(P(b))∗\{0Y ∗} `(b− a) = 0.

(18)

From such necessary and sufficient conditions one may obtain characterizations of opti-
mal solutions of set optimization problems by scalar-valued problems. Since the nonlinear
scalarization constitutes our main focus, we deal with this issue in more detail using the
nonlinear scalarization functionals, which we discuss next.

We use functionals introduced in [9] and therefore, we need to assume that the images
of the ordering map D are representable as Bishop-Phelps cones.
A cone K in a real normed space (Y, ‖ · ‖Y ) is said to be representable as a Bishop-Phelps
(BP) cone if there exists a norm ‖·‖, equivalent to the norm of the space, and a continuous
linear functional ` such that we can write K = {z ∈ Y : ‖l‖ ≤ `(z)}. For that reason we
need the following assumption:

Assumption 3. Let (Y, ‖ · ‖) be a real normed space and let D,P : Y → 2Y be ordering
maps where D(y),P(y) are representable as BP cones for all y ∈ Y . That means, to any
y ∈ Y there exists a norm ‖ · ‖y equivalent to but eventually different from the norm of the
space and for a given map ` : Y → Y ∗ we can write

D(y) = {z ∈ Y : `(y)(z) ≥ ‖z‖y}. (19)

Moreover, let D(y) = P(y) for all y ∈ Y .
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Note that a wide range of different cones can be represented as BP cones (cf. [13] for
examples and [9] for a discussion on this topic). For instance every nontrivial convex cone
in Rn is representable as a BP cone if and only if it is closed and pointed. Moreover, in
general real normed spaces every nontrivial convex cone with a closed and bounded base
is representable as a BP cone (cf. [17, 30]). Examples for cone-valued maps satisfying
condition (19) are given in [9].
We assume here that D(y) = P(y) holds for all y ∈ Y in order to avoid introducing to
many notations. Obviously, all the results may be obtained analogously for maps which
do not satisfy this assumption.

Following [9] we define the functionals g : Y × Y → R and h : Y × Y → R by

g(y, z) := `(z)(z − y) + ‖z − y‖z for all y ∈ Y, z ∈ Y (20)

h(y, z) := `(y)(z − y) + ‖z − y‖y for all y ∈ Y, z ∈ Y. (21)

Hereafter we need properties of these functionals depicted in the next lemma.

Lemma 4.15. Let Assumption 3 hold and let elements a, b ∈ Y be given. Then

a ≤D b ⇔ g(b, a) ≤ 0
a ≤P b ⇔ h(b, a) ≤ 0.

Proof. The first relationship holds due to

a ≤D b ⇔ b− a ∈ D(a)
⇔ `(a)(b− a) ≥ ‖b− a‖a
⇔ `(a)(a− b) + ‖a− b‖a ≤ 0
⇔ g(b, a) ≤ 0 .

Analogously, we obtain the second relationship

a ≤P b ⇔ b− a ∈ P(b)
⇔ `(b)(b− a) ≥ ‖b− a‖b
⇔ `(b)(a− b) + ‖a− b‖b ≤ 0
⇔ h(b, a) ≤ 0 .

As a consequence of Lemma 4.15 we observe that given a set A ⊂ Y and an element
b ∈ Y , we obtain

∀ a ∈ A : a ≤D b ⇔ sup
a∈A

g(b, a) ≤ 0.

Additionally, if the considered set A is weakly sequentially compact and g(b, ·) is weakly
lower semicontinuous on A, then we have also

∃ a ∈ A : a ≤D b ⇔ min
a∈A

g(b, a) ≤ 0.

30



Without assumption on the compactness of A we obviously obtain only the implication
∃ a ∈ A : a ≤D b⇒ infa∈A g(b, a) ≤ 0.
Using these ideas we are able to characterize the set relations 1-16 introduced in Definitions
2.4 and 2.5 in terms of the functional (20) or (21). Due to the lack of space we will give
only a few interesting examples. Let us consider the certainly less order relation of type D
and assume that A,B ⊂ Y are chosen arbitrarily. Then we obtain

A 4Dc B ⇔ ∀b ∈ B ∀a ∈ A : a ≤D b
⇔ ∀b ∈ B : sup

a∈A
g(b, a) ≤ 0

⇔ sup
b∈B

sup
a∈A

g(b, a) ≤ 0

⇔ sup
a∈A, b∈B

g(b, a) ≤ 0 .

(22)

The last equivalence relation follows from Lemma 7.3.2. in [22].
Similarly, we may consider the l-less order relation of typeD. If we choose two nonempty

weakly sequentially compact sets A,B ⊂ Y and assume that g(b, ·) and g(·, a) are weakly
lower semicontinuous on A or B respectively, we have

A 4Dl B ⇔ ∀b ∈ B ∃a ∈ A : a ≤D b
⇔ ∀b ∈ B : min

a∈A
g(b, a) ≤ 0

⇔ sup
b∈B

min
a∈A

g(b, a) ≤ 0

(23)

and
A 4Du B ⇔ sup

a∈A
min
b∈B

g(b, a) ≤ 0.

In case we assume that the same norm ‖ · ‖y := ‖ · ‖ can be chosen in Assumption 3
for all y ∈ Y , then it was shown in [9] that the function g inherits several properties from
the properties of the map `. To be more exact, according to [9, Proposition 3.13], if ` is
continuous at a for each a ∈ A, then g(b, ·) is continuous on A and the above assumptions on
g are satisfied (as g(·, a) is obviously continuous on B without any additional assumptions).

For considering the possibly less order relation of type P , we need to assume that the
set B ⊂ Y is compact, the set A ⊂ Y is weakly sequentially compact and the functional
h(·, ·) is lower semicontinuous on A×B. Then using [1, Theorem 4.2.1] we obtain

A 4Pp B ⇔ ∃a ∈ A ∃b ∈ B : a ≤P b

⇔ ∃a ∈ A : min
b∈B

h(b, a) ≤ 0

⇔ min
a∈A, b∈B

h(b, a) ≤ 0.

(24)

Now we are ready to derive the characterization of the optimality notions introduced
in Definition 4.2 using the functional (20) for the set less, the l-less and the certainly less
order relations of type D.
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Theorem 4.16. Consider problem (SOP). Let Assumptions 2 and 3 hold and let x̄ ∈ S.
Additionally, suppose that for each y ∈ F (S) the functionals g(y, ·) and g(·, y) are weakly
lower semicontinuous on F (S) and that the images of F are weakly sequentially compact
for all x ∈ S.

(i) Then x̄ is a strongly optimal solution of the problem (SOP) w.r.t. the set less order
relation of type D iff

sup
y∈F (S)

min
ȳ∈F (x̄)

g(y, ȳ) ≤ 0 ∧ sup
ȳ∈F (x̄)

min
y∈F (S)

g(y, ȳ) ≤ 0.

(ii) Then x̄ is a strict optimal solution of the problem (SOP) w.r.t. the set less order
relation of type D iff

∀x ∈ S \ {x̄} : sup
ȳ∈F (x̄)

min
y∈F (x)

g(ȳ, y) > 0 ∨ sup
y∈F (x)

min
ȳ∈F (x̄)

g(ȳ, y) > 0

holds.

Proof. (i) This assertion follows immediately from the condition F (x̄) 4Ds F (x) for all
x ∈ S using (23).

(ii) As the set less order relation is reflexive, we have that x̄ ∈ S is a strict optimal
solution of the problem (SOP) if there exists no x ∈ S \ {x̄} with F (x) 4Ds F (x̄).
Using (23) this is equivalent to

@x ∈ S \ {x̄} : supȳ∈F (x̄) miny∈F (x) g(ȳ, y) ≤ 0

∧ supy∈F (x) minȳ∈F (x̄) g(ȳ, y) ≤ 0

⇔ ∀x ∈ S \ {x̄} : supȳ∈F (x̄) miny∈F (x) g(ȳ, y) > 0

∨ supy∈F (x) minȳ∈F (x̄) g(ȳ, y) > 0 .

Hence, the assertion holds.

Similarly to Theorem 4.16 one may deduce analogous results for strong and strict
optimal solutions w.r.t. the l-less or the u-less order relation of type D. In the next
theorem we give a result for optimal solutions w.r.t. the l-less order relation of type D.

Theorem 4.17. Consider problem (SOP). Let Assumptions 2 and 3 hold and let x̄ ∈ S.
Additionally, suppose that for each y ∈ F (S) the functionals g(y, ·) and g(·, y) are weakly
lower semicontinuous on F (S) and that the images of F are weakly sequentially compact
for all x ∈ S. Then x̄ is an optimal solution of the problem (SOP) w.r.t. the l-less order
relation of type D iff

∀x ∈ S : sup
y∈F (x)

min
ȳ∈F (x̄)

g(y, ȳ) ≤ 0 ∨ sup
ȳ∈F (x̄)

min
y∈F (x)

g(ȳ, y) > 0. (25)
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Proof. Let x̄ be an optimal solution of the problem (SOP) w.r.t. the l-less order relation
of type D. If we choose any x ∈ S, then we need to distinguish two cases:

• F (x) 4Dl F (x̄) holds. Then it follows F (x̄) 4Dl F (x) and from (23) we obtain

sup
y∈F (x)

min
ȳ∈F (x̄)

g(y, ȳ) ≤ 0.

• F (x) 64Dl F (x̄) is satisfied or equivalently there exists an element ȳ ∈ F (x̄) such that
for all y ∈ F (x) the condition y 6≤D ȳ holds. Using Lemma 4.15 it follows g(ȳ, y) > 0
for all y ∈ F (x) and therefore, we have supȳ∈F (x̄) miny∈F (x) g(ȳ, y) > 0.

Let us now take x̄ ∈ S such that the condition (25) is satisfied and assume that x̄ is
no optimal solution of (SOP) w.r.t. the l-less order relation of type D. Then there ex-
ists x̂ ∈ S such that F (x̂) 4Dl F (x̄) and F (x̄) 64Dl F (x̂) holds. Using (23) we obtain
supȳ∈F (x̄) miny∈F (x̂) g(ȳ, y) ≤ 0 and supy∈F (x̂) minȳ∈F (x̄) g(y, ȳ) > 0. This contradicts the
condition (25).

A result analogous to Theorem 4.17 can also be obtained for the set less order relation.
However, due to the definition of this relation as a combination of the l-less and the u-less
order relation, one needs to take many cases into consideration. Therefore, due to lack of
space we do not regard it in this paper.

Theorem 4.18. Consider problem (SOP). Let Assumptions 2 and 3 hold and let x̄ ∈ S.

(i) x̄ is a strongly optimal solution of the problem (SOP) w.r.t. the certainly less order
relation of type D iff

∀x ∈ S with F (x) 6= F (x̄) : sup
y∈F (x),ȳ∈F (x̄)

g(y, ȳ) ≤ 0.

(ii) Assume additionally that F (x) 6= F (x̄) for all x ∈ S \{x̄}. Then x̄ is a strict optimal
solution of the problem (SOP) w.r.t. the certainly less order relation of type D iff

∀x ∈ S \ {x̄} : sup
y∈F (x), ȳ∈F (x̄)

g(ȳ, y) > 0

holds.

(iii) x̄ is an optimal solution of the problem (SOP) w.r.t. the certainly less order relation
of type D iff

∀x ∈ S : sup
y∈F (x),ȳ∈F (x̄)

g(y, ȳ) ≤ 0 ∨ sup
y∈F (x), ȳ∈F (x̄)

g(ȳ, y) > 0. (26)
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We omit the simple proof, since it is based on the same ideas as the proofs of Theorems
4.16 and 4.17 using (22).

In case D(Y ) is pointed and |F (x)| 6= 1 for each x ∈ S we have that the set relation
4Dc is antisymmetric and that F (x) 64Dc F (x) for all x ∈ S. Under these additional
assumptions obviously every optimal solution is also strict optimal provided F (x) 6= F (x̄)
for all x ∈ S \ {x̄}. Hence, (ii) and (iii) coincide in this case.

One can derive analogous results for other set relations from Definitions 2.4 and 2.5 by
adjusting the assumptions in order to guarantee that the supremum or infimum is attained
(analogously as in (24)) depending on the considered relation.

Note that it is possible to apply the optimality conditions developed for the vector
approach from [3] and [9] to set-valued optimization problems using the set criterion. This
follows from the relations between the solutions of the set-valued optimization problems
obtained in Theorem 4.10. Other nonlinear scalarization methods for problem (SOP)
can also be derived if instead of the constant ordering cone in the scalarization func-
tional in Gutiérrez et al. [11] a variable ordering map is considered. Let A,B ⊂ Y be
arbitrary sets and let e ∈ −

(⋂
a∈AD(a)

)
\ {0Y } hold. The Tammer-Weidner functional

Ge(A,B) : 2Y × 2Y → R ∪ {±∞} is defined by:

Ge(A,B) := inf

{
t ∈ R : B ⊂ t e+

⋃
a∈A

({a}+D(a))

}

where inf{∅} := +∞. The results in [8, Theorem 5.11] suggest that it may be possible
to characterize the solutions of a set-valued optimization problem w.r.t. the l-less order
relation of type D using this functional.

5 Conclusions

The introduced order relations establish an attempt to fill the gap between the set opti-
mization with set relations and the problems equipped with variable ordering structure.
This generalization of well-known set relations allows us to introduce optimality notions
for set optimization problems with variable ordering structures, which seem to be more
practice oriented than the notions based on the vector approach considered before. The
obtained scalarization results for selected relations reveal the complexity of the regarded
topic. Therefore, it would be interesting to consider set-valued maps with images charac-
terized by a special structure as e.g. polyhedral-valued maps [34]. From the practical point
of view some relations seem to be more appropriate for consideration than others. One of
them may be the set less order relation of type DP , which should be studied in the future
in more detail.
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Optimization. Birkhäuser, Basel (1983)

[2] Bao, T.Q., Mordukhovich, B.S.: Set-valued optimization in welfare economics. Adv.
Math. Econ. 13, 113–153 (2010)

[3] Bao, T.Q., Mordukhovich, B.S.: Necessary Nondomination Conditions in Set and
Vector Optimization with Variable Ordering Structures. J. Optim. Theory Appl. 162,
350–370 (2014)

[4] Chiriaev, D., Walster, G.W.: Interval arithmetic specification. Technical Report
(1998)

[5] Cruz, J.Y.B., Allende, G.B.: A steepest descent-like method for variable order vec-
tor optimization problems. J. Optim. Theory Appl. 162, 371–391 (2014). DOI
10.1007/s10957-013-0308-6

[6] Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, Dor-
drecht (2002)

[7] Durea, M., Strugariu, R., Tammer, C.: On set-valued optimization problems with
variable ordering structure. J. Glob. Optim. (2014). DOI 10.1007/s10898-014-0207-x

[8] Eichfelder, G.: Variable Ordering Structures in Vector Optimization. Springer, Hei-
delberg (2014)

[9] Eichfelder, G., Ha, T.X.D.: Optimality conditions for vector optimization problems
with variable ordering structures. Optimization 62, 597–627 (2013)

[10] Eichfelder, G., Jahn, J.: Recent Developments in Vector Optimization, chap. Vec-
tor Optimization Problems and Their Solution Concepts, pp. 1–27. Springer, Berlin
Heidelberg (2012)
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