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ABSTRACT

In this paper, we deal with the transversal vibration analysis of beams. Based on mechanical models which are
inspired by the vibrissae of rats and mice, a contribution to the distance detection using these mechanical sensors
is made. Already existing models from literature are improved and designed more realistic: the elasticity of the
follicle-sine-complex (FSC, support of the vibrissa), of the skin, and the conical shape of the vibrissa are taken
into account, and their impact on the dynamic analysis is determined. The FSC is modeled by a viscoelastic-
foundation, the skin by a discrete spring-damper-combination, the conical shape by three different diameters, and
the object contact point by a (fixed) bearing. Furthermore, different types of supports (clamping, bearing and free
end) are considered. Due to the complexity of the models, we firstly focus on conservative systems in this paper
(three models are studied). As mentioned, these models differ from each other only by the type of support. For
the obstacle distance detection, we set up two algorithms to unambiguously determine the object distance with the
help of some eigenvalues (later measured in experiments) of the boundary-value system (i.e., partial differential
equation with boundary conditions). This is firstly done in deriving the context of the transition points between w;
and w; 1, and secondly in establishing the functions of the displacements v;(x, t) with the help of the relationship
between the eigenvalues and the natural frequencies. Finally, the influence of the discrete spring on the behavior
of the eigenvalues is presented, and the algorithms are tested to be valid for the developed models.

Index Terms— tactile sensor, bio-inspired sensor, animal vibrissa, distance determination, object localization,
natural frequency

1. INTRODUCTION

There is a great interest in tactile sensors, since they have advantages in contrast to other sensor types. They are
superior to optical sensors, for example in the dark, murky water or in smoky air, and also cheaper in manufacture
and use. In the development, engineers often use biological systems as an inspiration. A tactile system, which
attracted attention in recent years, is the vibrissa of rats and mice, see Fig. 1 (left). They use their vibrissae, e.g., to
distinguish between different surfaces or to recognize textures and edges, respectively. There are already various
mechanical models for a vibrissa to explain the technical acquisition of information.

The scope of the present paper is to contribute to the mechanical modeling of a technical vibrissa as tactile sensors
for the distance detection.

1.1. Vibrissae

Vibrissae are a particular type of hair which occur in most mammals (an exception is the human being, who
possesses no vibrissae [16], [1]). Commonly, these are also called whiskers and the term is Pilus tactilis [21], [27].
They can occur at different areas of the body, for example, on the forearms, near the lips and eyes [1]. Most studies
have concentrated on vibrissae near lips of rats and mice, which are called mystacial vibrissae. The mystacial
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vibrissae are arranged in a specific manner in the snout region of rats and mice: they form arcs and rows [8]. The
rows are denoted from dorsal to ventral with letters and the arcs from caudal to rostral with numbers [20], see
Fig. 1 (right).

Figure 1. Vibrissae (see arrows in the picture) of the mouse “Lilly” (left); mystacial pad [33] (right).

Remark 1.1. The following descriptions largely refer to the mystacial vibrissae. In addition, the focus is on a
single vibrissa in the later calculations, not on the whole field of vibrissae. o

Vibrissae differ from an ordinary hair by their larger diameter and greater length [21]. Further, vibrissae are
slightly curved, hollow and have a conical shape [33]. Furthermore, the vibrissa is surrounded by a blood sinus
beneath the skin [21], [20], see Fig. 2 (left). There are different assumptions about the function of the sinus [20]:
one is, that due to the change of the blood pressure in sinus, the animal can adjust the stiffness of the support of
the vibrissae [8]. Thus, the mouse or rat could actively adjust the vibrissae to the environmental conditions [29].
The hair follicle and the blood sinus build together the follicle-sine-complex (FSC).

There are different types of mechanoreceptors within the FSC, which can measure stress, strain and vibration stim-
uli, see Fig. 2 (left). For example, Merkel cells can detect compression stimuli [20]. Thus mechanical stimuli can
be realized and converted into information, but how is still unknown (and this does not matter for the investigation
of this work).

The mystacial vibrissae can be moved through the extrinsic and/or intrinsic muscles. The extrinsic muscles belong
to the group of facial muscles and have their origin outside of the mystacial region. The intrinsic muscles form
a loop around the lower third of the hair follicle and connect two consecutive vibrissae. The hair follicles are
interconnected by a fibrous tissue and placed in the fat tissue, so that they can move freely [10], see Fig. 2 (right).
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Figure 2. FSC with blood sinus and mechanoreceptors [2] (left); Representation of the musculature of the vibrissa
[3] (right).

Rats and mice can move their vibrissae in special patterns [1]. Therefore, one can distinguish between a passive
and an active mode for the mystacial vibrissae:

1. passive mode
In the passive mode, the vibrissa is deflected from its rest position by an external force and, after the disap-



pearance of the external force, the vibrissa returns passively to its original position through the fibrous tissue
[29], [8].

2. active mode
In the active mode, the vibrissa is moved by the intrinsic and/or extrinsic muscles. The extrinsic muscles
generate a movement in the caudal direction (retraction), while the intrinsic muscles produce a movement
in the rostral direction (protraction) [6]. These two possibilities can explain the two patterns of the vibrissae
movement, also called whisking:

e exploratory whisking:
The vibrissae are moved with a large amplitude and small frequency between 5-15 Hz. The protraction
results from the intrinsic muscles and the retraction from the extrinsic ones. Thus, the retraction is
an active process [6]. This pattern is used for the exploration of the environment, e.g., for scanning
contours and edges [29], [8].

e foveal whisking:
The vibrissae are moved with a small amplitude and large frequency between 15-25 Hz. The protraction
results from the intrinsic muscles and the retraction from the fibrous tissue. Thus, the retraction is a
passive process [6]. This pattern is used for a closer examination of objects, e.g., for texture recognition
(291, [8].

How the movements in the passive or active mode are converted into information about the environment is not
yet clearly understood. An essential fact is that the vibrissae have no receptors along their hair shaft, but that the
receptors, which can obtain information and then transmit this information through the neural pathways, are only
located in the blood sinus.

One possibility is, that the natural frequencies of the vibrissae could play a role in the texture recognition. Thus,
it has been shown that textures can be distinguished by two vibrissae with a different natural frequency spectrum
[24].

1.2. Modeling

There are different approaches for the mechanical modeling, which are used to analyze the vibrissa mechanically
and to investigate the properties:

1. rigid-body model
The vibrissa consists of a finite number of bodies, coupled physically and/or geometrically with each other,
[4], [29], [28]. But, every body is rigid and therefore not deformable. The simplest model is that the
vibrissa consists of one body. However, this model has the disadvantage that the elasticity of the vibrissa is
completely neglected. By contact with an object, the vibrissa is bent. So, with this model, only a part of the
properties or functions of the vibrissa can be explained.

2. continuum model
In this model, the vibrissa is modeled as a beam. Within the bending beam models, different beam theories
can be distinguished. The two best known are the Euler-Bernoulli beam theory and the Timoshenko one. For
the vibrissa (major length to minor diameter) the Euler-Bernoulli beam theory is almost exclusively used.
Basically two types of examination, the static and dynamic analysis, can be differed:

e static analysis
On the basis of forces and moments at the base support, the shape or the point of contact between the
vibrissa and the object is determined.

o dynamic analysis
On the basis of the natural frequency spectrum, information about the environment is obtained, e.g.,
where the contact point is and which roughness the surface has.

For the modeling of the vibrissa in this study, the continuum model is used. Therefore, in Chapter 2, the recent
continuum models of a vibrissa from the literature are presented. The focus is on the vibration analysis (dynamic
analysis).



1.3. Goal

In the present paper, mechanical models of animal vibrissae — already existing in the literature — are improved
and made more realistic. Hence, the FSC, the skin and the conical shape are considered and their impact on
the dynamic analysis can be determined. Furthermore, different types of support can be examined. Afterwards,
information about the environment is derived by using natural frequencies. Here, we focus on the determination
of the contact point between the vibrissa and the object. This contact point is calculated by using an algorithm and
parts of the natural frequency spectrum.

The focus is not on using the mechanical model to explain the characteristics and functions of the biological
system of the vibrissae. Rather, the focus is on the vibrissa as an inspiration (bionics): Starting with the vibrissa a
mechanical model is created and based on this, relationship and properties are investigated. Ultimately, this study
will contribute to the development of tactile sensors.

2. STATE OF ART

As mentioned in Chapter 1, it is not yet clearly understood, how the information gathering occurs, but concerning
the mechanical parameters that are measured by the receptors, there are several hypotheses:

One hypothesis is that the forces and moments measured with the receptors in the blood sinus can be used to
determine the contact point along the vibrissa and the torque curve, which is caused by the movement of the
vibrissa over the surface, can be used to differ between different surface structures.

In addition to the forces and moments, the vibration of the vibrissae, which occur when touching an object, could
be used as well (vibration analysis). The vibrissa has a natural frequency spectrum and by contact this spectrum
is shifted. This information could be used to determine the contact point along the vibrissa. Furthermore, there
are vibrissae with different lengths and diameters and so with a different natural frequency spectrum. If different
vibrissae are moved over the surface, the surface structure could be determined due to the different effects on the
vibration behavior.

In the following, a brief insight into the vibration analysis of a vibrissa is described. The reader’s attention is
invited to, e.g., [7], [31], [14], or [30], to get some insights on the static analysis. Finally, the models for the
vibration analysis are summarized.

2.1. Dynamic analysis
2.1.1. Model 1

In [24], the vibrissae are seen as thin elastic beams with a conical shape. The formula for the natural frequencies

for free vibrations is:
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where 7pqse 1S the radius at the base of the hair, L is the length of hair, p is the density of the hair, and «,, is
a constant. This constant depends on the boundary conditions and the shape of the hair. In x,, the eigenvalue is
included, which can be determined by the eigenvalue equation. Vibrissae, which are located on a living mouse, and
vibrissae, which have been removed from a mouse and have been clamped, were set into vibration by a piezoelectric
actuator and the first natural frequency has been determined. Subsequently, F' and x; were estimated from these
data. After that the first natural frequency of each vibrissa in the mystacial pad of a mouse was experimentally
determined and compared with the calculations based on the model. It is shown that the experimentally determined
and the calculated values differ, see Fig. 3. If the vibrissa is excited with a frequency near the natural frequency,
the amplitude of the oscillation movement is increased. If the vibrissa is moved over a surface texture, vibrations
of the vibrissa are generated. The frequency of the vibration depends on the speed of movement and the surface
structure. Thus, the amplitude of the oscillation movement is increased when the frequency of oscillation is near
the natural frequency of the vibrissa. Due to the large span of the natural frequencies of the field of vibrissae,
the mouse could determine with a single vibrissa whether a surface is rather smooth or rough. If the mouse uses
several vibrissae at the same time, the mouse could determine more precisely the surface texture by the difference
of the amplitude between two rows of vibrissae [24].
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Figure 3. Comparison of the experimentally and numerically calculated first frequency [24].

2.1.2. Model 2

The model in [32] is called “dynamic antenna”. It is a flexible beam with a constant cross section and a mass
at the tip. With help of the first and second natural frequency of the beam, the contact point with an object can
be determined. As the name already indicates, this is not a model for a vibrissa, but one for the long antenna of
insects. Nevertheless, the model can also be applied to vibrissae by setting the mass of the tip equal to zero. One
end of the beam is considered to be clamped while the other can vibrate freely. A contact with an object along the
length of the beam is regarded as being held temporarily.
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Figure 4. The first three natural frequencies (left); the first frequency vs. the second frequency (right) [32].

It turns out that the natural frequency curve does not have a strict monotonic behavior, see Fig. 4 (left). Thus,
for a certain value, the contact point cannot be determined uniquely by only one natural frequency curve. But, if a
spectrum of the natural frequencies is known, the contact point can be determined unambiguously. The authors also
show, that an unambiguous determination of the contact point is possible by using the first two natural frequencies,
see Fig. 4 (right). Thus, the system “dynamic antenna” can determine the distance of an object with the help of the
first two natural frequencies.

Remark 2.1. In Figure 4 (right), it can be seen, that the curve almost has an intersection. In [32], the authors
expanded the curve with the mass at the tip, in this paper an attempt is made to expand the curve by a change of
parameters.

2.1.3. Model 3

The model in [19] is similar to the model in [32]. The authors also used a beam with a constant cross-section,
but the beam posses no mass at the tip, since this model has been developed directly for the vibrissa. Based on
their model they create an artificial vibrissa. They experimentally checked on the one hand the run of the natural
frequency curves in contact with an object, and on the other hand they performed experiments on the ability of
the surface discrimination. It is found that for the first three natural frequencies the calculated values match well
with the experimental data. However, the higher natural frequencies show larger differences. An explanation for



this could be the damping, which has not been considered [19]. In a next step, it was checked whether surfaces
discrimination with the artificial vibrissa is possible. It has been found, that the best results have been obtained
with short vibrissae, which had a small diameter and were moved fast over the surface. This could explain why the
mice and rats use small vibrissae on their snout, called microvibrissae, for texture recognition [19].

2.1.4. Model 4

In the model of [36], the vibrissae have a conical shape, as in [24]. A special feature of this model is the support of
the vibrissae. Both the base and the tip of the vibrissae are supported by two springs, a translational and rotational

one, see Fig. 5.
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Figure 5. Model of the vibrissa from [36].

These support conditions are in a high contrast to those of previous models, which have held the base of the

vibrissa clamped. However, they reflect the reality not yet precise enough. Therefore, in this work, the support
conditions are modeled more realistic. With help of the spring constant k, ; for the translatory spring and 73 5 for
the rotary spring, several special cases can be generated. Whereas ¢ is the spring at the tip and b is the spring at the
base. So one get a free end for k; 3, T} ;, = 0 and a clamping for k; ;, T} , — +o0.
In the analysis of this model, one can see very well that not only the support conditions, but also the ratio of
the radii has influence on the natural frequency. The natural frequency has been calculated for different spring
constants of the base using real data from a vibrissa. This has the background that probably the mouse can actively
change the support conditions of the base with the help of the FSC. There is an area that is around 3 - 10~7 Nm/rad
to 3 - 1075 Nm/rad, in which a change of k; has only a small effect on the natural frequency, while the natural
frequency is very sensitive to a change of T}. If T} is increased in this area, the natural frequency decreases
sharply. This means that a rat or mouse might change the natural frequency of individual vibrissa by an increase
or decrease of the rotational spring constants. This suggests that the resonance of vibrissae could play a role in the
texture recognition [36].

2.1.5. Model 5

In this model of [17], as in the model of [36] and [24], the vibrissa has a conical shape, but with a clamping at
the base and a free tip. In [17], the vibration behavior of vibrissae is inspected, which were removed from rats
and fixed with glue to a vibration table, and of vibrissae of living rats. However, the glue has damping properties,
and thus could distort the results. With help of the vibrissae attached on the vibration table they have analyzed
to what extent the experimentally determined natural frequencies coincide with the numerically calculated natural
frequencies and thus, whether the model of vibrissa as a truncated cone is applicable. Furthermore, they have
examined the vibration behavior of vibrissae on living rats.

For the first three natural frequencies the measured values are 40, 94 and 188 Hz and the numerically calculated
values are 47, 115 and 213 Hz. This shows that the experimentally determined values are less than the calculated
values. One reason could be the attachment with the glue. Subsequently, the vibration behavior of vibrissae of
living rats was examined. On the one hand the natural frequencies were smaller, and on the other hand a higher
damping occurred. This can be attributed to the difference in the boundary conditions. In the experiment with
the vibration table, the vibrissae have been attached to the table, while in the rat the vibrissae are held in the FSC.
Furthermore, the rat seems to be able to actively vary the natural frequency and the damping of a individual vibrissa
with the help of the FSC, because different degrees of damping and different natural frequencies of an individual
vibrissa have been observed [17].

2.1.6. Models at the TU Ilmenau

In [4], different models for the vibrissa were studied. The influence of various system parameters to the natural
frequencies were analytically analyzed. In the following, two models are shown:



In the first model — Model 6 — both the skin and the support in the FSC are considered through a spring-damper
pairing, see Fig. 6(left).

Y A

P A D el

L, p, E, A(x), 1,(x) 1

<

— <
y <

Figure 6. Two models of a vibrissa [4].

Here, an influence on the natural frequencies by the two spring constants ¢; and cs and the two distances a; and
as was found. Furthermore, the natural frequencies decrease because of the damping, but with an unlike behavior,
see [5].

In another model — Model 7 — the complete FSC is assembled with a fixed bearing, a rotational spring and a
rotational damper, see Fig. 6(right).

It was shown that by an increase of ¢; — 400 or d; — 400 the oscillation behavior matches with that of a
clamping. In addition, the natural frequencies only changed marginal, if ¢; or d; are above a certain value. Below
this range, the biggest change occurs.

2.1.7. Robots with vibrissae

In [25], a robot rat which can discriminate textures by using his vibrissae is developed. For that the robot rat has a
vibrissae field on both sides, which is based on the vibrissae field of a rat. The deflections of the individual vibrissa
are collected in order to determine the product of the amplitude and frequency of the signal with the help of an
algorithm. It is believed that by a rat this product is directed to the brain.

In a first experiment, the position of the rat is fixed and only the head can whisk the vibrissae field over the eight
different surfaces (eight different gainings of sandpaper). The more vibrissae were used, the better the texture
recognition was. Looking at the results of the individual arcs, where as in [24] the vibrissae within the same arc
have about the same natural frequencies and there are differences in the natural frequencies between the arcs, it
has been shown that certain arcs have achieved better results by certain surfaces than other arcs. This suggests that
the natural frequency of the individual vibrissa could play a role in surface recognition [25].

In a second experiment, the position of the rat is no longer fixed. The robot rat has to go through a corridor and has
to distinguish between four textures, without moving the head. Depending on the texture combination within the
corridor the robot rat has to turn right or left autonomously. Just by the result of the algorithm, the robot rat turned
right or left autonomously depending on the texture combination.

2.2. Conclusion

Finally, the mechanical models for the vibrissa used in the vibration analysis are compared in terms of their
similarity to the real vibrissa.

Model 2 and 3 represent the most abstract model. The vibrissa is considered as a cylindrical beam and the FSC as
a clamping. Model 1 and 5 represent the FSC as a clamping, but assumes a conical shape of the vibrissa. Model 4
does not use a clamping, but springs. With this, the conditions of support can be changed by using the spring
constants. Model 7 is similar to Model 4. Instead of a clamping a bearing, a rotational spring and a rotational
damper is used. In Model 6 the FSC is considered in more detail. There is a spring-damper pairing for the blood
sinus and a pairing used for the skin. Thus, Model 4, 6 and 7 are a first step to simulate the actual support in the
FSC.

Overall, several forms for the vibrissa have been considered and there have been first approaches to the modeling



of the support conditions in the FSC, but the bearing in the FSC requires a more detailed examination, as this could
play a crucial role in stimulus detection. An assumption is that the support conditions can be actively changed to
suit the vibrissa to the running task.

3. CONCRETION

In this paper, the Euler-Bernoulli beam theory is used. Exclusively a consideration of the dynamic analysis (vi-
bration analysis) is done and linear models are used. The already existing models in the literature have shown,
that although there are approaches to simulate the real support of the vibrissae, they are still very far from reality.
Furthermore, the skin has not been taken into account. Therefore, known models in the literature are enhanced and
improved. Thus, complex models are created, which better reflect the actual properties and support conditions of
the vibrissae. These models, for example, have the ability to change the support conditions with help of the spring
constant, because probably the mouse or rat also has this facility.

With help of the models the influence of FSC, skin, conical shape and modification of support on the dynamic
analysis can be determined. Furthermore, it is investigated, to what extent models that depict the biological model
in more detail, are better suited for distance detection.

The previous investigations of tactile sensors have used a cantilever beam with a point mass at the tip as a model.
The investigations in this paper extend the results of the literature in order to develop further options for the design
of tactile sensors.

4. MODELING

In this chapter the modeling of the vibrissae is discussed. It is shown which parts of the vibrissa can be modeled
by means of mechanical components. Subsequently, for the technical vibrissa a set of parameters is presented.

4.1. Modeling

Figure 7 shows how the vibrissa is converted into a mechanical model:

e Properties of the FSC — viscoelastic-foundation (adjustable)

Influence of skin — discrete spring-damper combination

Object contact point — short-term bearing

Conical shape — three cross sections
(D7 - diameter in the FSC, D5 - diameter between FSC and skin, and D3 - diameter outside the skin)

Since this model is very complex, it is broken down for further calculations into smaller sub-models. A first
classification is based on conservative systems, which are presented in Chapter 5, and non-conservative systems,
which are not analysed in this paper. Within this classification a further breakdown by type of support at the base
is made:

e Model A: at z = 0 a clamping,
e Model B: at x = 0 a bearing, and

e Model C: at x = 0 a free end as well.

4.2. Parameter set for the vibrissa

For the model, different values are needed to calculate the natural frequencies and eigenvalues for the dynamic
analysis. Therefore, a parameter set is created. Since the goal is not the replica of biology, but the understanding
of influences and relationships, a technical set is used. This data are unrealistic for the vibrissae of rats, but they
represent the relationships better and can be considered as parameters for a tactile sensor.

Technical set
In the technical set a steel beam is used:
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Figure 7. Modeling of a vibrissa: above - vibrissa with contact [12]; below - model of a vibrissa with contact.

Table 1. Technical set.

p 7850 &
E 210 GPa
Di=D 10 mm
Do 7.5 mm
Ds 5 mm
l1 250 mm
lo 500 mm
l 1000 mm

5. CONSERVATIVE SYSTEMS
In this chapter, three conservative models for the vibrissa are presented. For each model the first three eigenvalues
are calculated and the possibility of a distance detections is checked. In addition, the influence of the discrete
spring is examined.
For all calculations, Euler-Bernoulli beam theory is used and the following conditions and assumptions were made:
e straight beam (no pre-curvature),
e linear elastic material behavior (HOOKE’s law),

e small strains, and thus small deformations,

e plane sections remain flat in the deformation and the cross sections are perpendicular to the axis of the beam
(BERNOULLI-Hypothese) [18], [22], [35], [15], [11],

e free vibrations, i.e., the beam is excited once by an impulse,

e F, p, I, and A constant over the length of the beam or constant in sections.



The equation of motion of a beam with a spring foundation is, see [13], [26]:
pAv(z,t)+ EL V" (z,t) +cro(z,t) =0, ()

where v(x, t) is the vertical displacement at point  and time ¢ in the y-direction (see Fig. 7), E is the modulus of
elasticity, I, is the second moment of area, A is the cross section area, p is the density of the material and c; is the
spring rate of the foundation. The solution of (2) is found by using the method of separation of variables with the
following approach:

v(z,t) = X(x) - T(t), V(z,1),
resulting in the following equation:

) aX"(@) e
T(t) X(z) pA )

Equation (3) shows that the left-hand and right-hand sides, for each time ¢ and for each location =, must be the
same and, therefore, constant. The constant is set to —u2. Subsequently the partial differential equation can be
split into two ordinary differential equation. The first differential equation is:

’;Eg:—;ﬁ, peC

T(t)+p*T(t) =0,
with solution:
T(t) = Cye™ + Che ™, Cy, Cy €C.
With p = pire + @ fhim, C~'1 = él,re + iC’l,im and C‘g = C’Q’re + ié&im we have:
T(t) = e "t C e cos(pret) — € C i sin(pret)
+ etimt Cy e cos(pret) 4 € Co iy sin(piret)
+1 (e_’“’mt é’l}im cos(piyet) + e Himt C~’17Te sin(pret)
Hetimt ég’im cos(fret) — ghim? C’gym sin(umt)) .
As a free vibration is existent, the energy cannot increase, so the following results, see [34]:
T(t)=CelMt,  Cec,
and, for the real part of the function, we have, see [4], [34]:
T(t) = e "t (O cos(|pret) + Ca sin(|prelt)),  Ci, C2 €R.
Thus, the following substitutions can be used, see [4], [34]:

natural frequency w := ||

decay rate 0 := |pim|

The second differential equation is:

4 X””(l‘) 2 _
X(z) pA
2 _ °r
X"(2) — A () =0
k4
W= 5

X"(x) = M X(z) =0, M= P22



with the solution:
X (x) = C3 cos(Azx) + Cy sin(Az) + Cs cosh(Az) 4+ Cg sinh(Az), C3,Cy4,C5,Cs € C.

Rewriting A = A, + i\, leads to the following (for the calculation of the root see [23]):

c
= gt S8
B=4/ +pA
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therefore, the natural frequency and the decay rate is:

vaZ+b%+a
natural frequency w = || = — 4)

JVaZ 12 —
decay rate 0 := || = |sign(d) % . ®)

Remark 5.1. In this chapter, a conservative system is assumed, so the energy cannot increase or decrease. There-
fore, § musst be zero and from (5) follows that A must be purely real or imaginary. Both A\ = A\, or A = i\, lead
to:

T(t) = Cy cos(|pre| t) + Co sin(|pre| t).

Furthermore, it can be concluded.:

B = pre = W,
and for A = Ay
EI c
_ 24 Z o
w re pA + pA’
and for A = i \jp,
El c
Y LA
So | Are|l = [Nim]| := X and this leads to:
EI, cf
w = )\ pA + 7
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All models in this section consist of four sections and, therefore, require four functions of displacement v; (z, t),
1€1,..,4,t e Ry

= (017 cos(w,;t) + CQ,; sin(wit)) . (037 cos()\ix) + 041‘ Sll’l(/\ZI)

+ C5; cosh(\x) + Cg; sinh()\ix)), 1=1,...,4.



Therefore, a relationship between wi, wa, ws and wy is needed. At the contact point a we have v;(a,t) =
viy1(a,t), Ve, i fixed, therefore, it follows, see [34]:

Ti()Xi(a) = Tis1(t) Xit1(a)
Ti(t) = Ti(t)B
0171‘ cos(wit) + 0271‘ sin(wit) = [3 Cl,i+1 cos(w,-+1t) + ﬁ 0271‘4_1 sin(w,-+1t).

To accomplish this, the following must hold:

Cii=pBChit (6)

Cyi=pCoi41 @)
)

wit1 = wi+ 5§ € L. @®)

Furthermore, at the contact point we have v;(a,t) = 0;41(a,t), Vt, and thus it follows:

Ti(t) = Ty41(t)B
_Cl,i wj sin(wit) =+ CQ)»L‘ Wi cos(wit) = —ﬁ Cl,i—i—l Wi+t1 Sin(wiﬂt) =+ ﬁ C2,i+1 Wit1 cos(wi+1t). 9)

If the conditions of (6)-(8) substituted in (9), this results in:

— Ol,i Wi sin(wit) + 0271‘ Wi COS(w,‘t) =

23 2j 2j 27
70171‘ <w1+ iﬂ—) sm(<wl+ .7t7r) t) +CQ’1 <w1+ .7t7r) COS ( <wl+ {;T) t)

Therefrom, it follows by the comparing of the coefficients that j = 0 and hence w; = w;41 := w, see [34]. So, for
all models we have:

W] =Wy = W3 = Wy ‘= W, (10)

and the following relationship between the eigenvalues is derived:

wi = w3
&
/\‘fk4+p—f4:/\§k4
c
Ay = @ A§+E§Z (11)
W%:OJ?)
o
Ay = ¢+ L 12
3 1+EIZ ( )
w%zwél
c
M= fa+ L 13
4 1+EIZ7 ( )
with
ki =ks =k =ki:=k" (14)

Therefore, it follows for the four functions of displacement v;(x,t),i € 1,...,4,¢ € Rsy:

vy (z,1) :(CH cos (wt) 4+ Cay sin (wt)) . (031 cos (Az) + Cyy sin (Ax)

+ Cs1 cosh (A\z) + Cer sinh(/\as)>, z e (0,1)



(%] (1‘7 t) :(012 COS (wt) + 022 sin (wt)) . (032 COS (14) A4 + Efij} I) + 042 sin (14/ A4 + Efij} I)
+Csp cosh {424 + -2 ) 4+ Cpp sinh [ g/ M+ Lo x € (l1,1s)
52 EIZ 62 EIZ ) 1502

vs (z,1) :(C13 cos (wt) 4+ Cag sin (wt)) : (ng cos ( AL+ EC—J} x) + Cy3 sin < AL+ EC—J} x)

c . c
+Cjs3 COSh<4 )\4—|—Eflzx) + Cg3 smh(4 )\4—|—E§2x)> , « € (lg,a)

vy (x,t) :(014 cos (wt) + Cay sin (wt)) . (034 CoS (,4/ A4+ EC—J} x) + Cy4 sin (,4/ A4+ EC—J} x)

. 4/ \4 ct i 4/ \4 ct
+Ca4cosh< A +Elzm)+064smh< A —i—EIZx)),a:E(a,l).

Remark 5.2. For the models in this section, the boundary conditions (BCs) and transition conditions (TCs) are
established. With Maple (Maplesoft, 2013, Version 17) a linear system in (Csy, ..., Cg1, ...,Cs4, ..., Cg4q) is de-
rived, and with Matlab (MathWorks, 2014, Version R2014a) the solutions A\ are computed, which represent the
eigenvalues of the boundary-value problem (BVP). Here, only the results are shown. o

Remark 5.3. Because only the first two boundary conditions are changing, only these two new conditions of each
model (Model B and C) are presented. The influence of the spring foundation is not shown, because a change of
the spring rate generates only a planar shift of the x1-x2-curve (x := \l). o
5.1. Investigation of Model A

In Model A the vibrissa is held in a clamping, see Fig. 8. The discrete spring and the elastic foundation represent
the skin and the FSC, respectively.

y AN

[
c, C, V(X1t)
N S
P |
X
z 1, o
E=Svives

A
v

Figure 8. Model A.

For this model the following BCs and TCs, Vt, are formulated:
e v1(0,¢t) =0,v1(0,¢t) =0

111, t) = v2(ly, ), vi(l1,t) = vh(1y,t), v (l1,t) = v (I1,t), v{"(I1,t) = v§'(I1,1)

(
(
(
(

[ ]
<

[ ]
<

2 lg, t) = ’Ug(lg,t), Ué(lg, t) = ’Ué(lg, t), Ué’(lg,t) = Ug(lg,t), Ué”(lg, t) = ’Ué”(lz,t) + EC(;Z Ug(lg, t)
e v3(a,t) = vy4(a,t), v4(a,t) = v)(a,t), vs(a, t) =0, v (a,t) = vy (a,t)
e v(l,t)=0,v)(l,t)=0

Remark 5.4. For the calculations, the following dimensionless ratios were introduced.:

PR | i, . d Go= 2
Cf 1= EL Cq ‘= EL ’ a = I
B 3

and the dimensionless eigenvalue x ‘= \l. o



In Figure 9 (left), it can be seen that the contact point cannot be unambiguous determined solely by the first
eigenvalue, because for a certain eigenvalue there exist two a-values. So, in a next step, it was checked, if it is
possible to determine the contact point with the first two eigenvalues. Therefore, for each a-value the first and
second eigenvalue are plotted in one graph. Figure 9 (right) shows, that there is no intersection of the x;-x2-curve.
So it is possible to determine the contact point with the first two eigenvalues. It also can been seen, that the y1-x2-
curve can be expanded with variation of the discrete spring rate.

In the next step, an algorithm is developed, which can identify the contact point with the first and second eigenvalue.
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Figure 9. The first three eigenvalues for different ¢4 vs. a (left); x1-x2-curve for different g (right): No. 1 ¢; = 0,
¢q = 0;No. 2 ¢y = 10, ¢q = 10; No. 3 ¢y = 10, ¢q = 30; No. 4 ¢y = 10, ¢4 = 50.
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Figure 10. Geometric sketch for Algorithm 1.
Algorithm 1:
Before the algorithm can be used, a file with the values of a, x; and x2 must be created.
1. Read values of @, x1 and x5 from the file

2. Compute for all a from 0.5 to 1 the distance from the measured point
C (X1messsX2mess) Of eigenvalues (later in experiments) according to the formula:

d(d) = \/(leess - Xl(a)>2 + (X?mess - XZ(d))2




3. Determine the point B ()1,Xx2) with the shortest distance from C

4. Determine the point A (x1,x2) With the second shortest distance from C

5. Determine the distance a(LC) of footpoint LC from A, see Fig. 10

6. Return the value of @ = a(A) + a(LC) ©
Remark 5.5. For the calculation, the values of the technical set, Table 1, is used and ¢, = 10, ¢, = 10. o

To test the algorithm, it is assumed that the following eigenvalues have been measured for a chosen (and to be
identified) a = 0.6525, and the step size between the calculated values for the file is stepsize = 0.005:

e x1 = 4.009821190665984

® x2 = 6.836620874358188

Table 2. Results of the Algorithm 1 - Model A.

a X1 X2
Algorithm 1 | 0.652509605326106 | 4.009892954566971 | 6.836561689590511

Difference | 0.000009605326106 | 0.000071763900990 | -0.000059184767671

Table 2 shows, that algorithm provides pretty good results for the distance detection.

5.2. Investigation of Model B

This model, see Fig. 11, differs from Model A by the support at the base. Instead of a clamping the left side is held
in a bearing.
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Figure 11. Model B.

The arising BCs of the new support are, Vt:
e v1(0,¢) = 0and v{(0,¢) = 0.

Figure 12 (left) shows, that, as in Model A, an unambiguous determination of the contact point with the first
eigenvalue is not possible. But, Figure 12 (right), there is an intersection of the x1-x2-curve, so also with the first
and second eigenvalue an unambiguous determination of the contact point is not possible, in contrast to Model A.
If the spring rate is increased the curve expands and so the intersection point vanishes. Thus, Algorithm 1 cannot
be used anymore in general. Only if the spring rate is high enough (and this is not given a-priori), Algorithm 1 can
unambiguous determine the contact point and thus another algorithm has to be developed, which can identify the
contact point with the first, second and third eigenvalue.
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Figure 12. The first three eigenvalues for different ¢4 vs. a (left); x1-xo-curve for different ¢, (right): No. 1
¢f=0,¢q=0;No.2¢; =10, ¢q = 10; No. 3 ¢y = 10, ¢4 = 30; No. 4 ¢¢ = 10, ¢q = 50.

Remark 5.6. In Matlab (MathWorks, 2014, Version R2014a) the x1-X2-Xx3-curve is plotted. There was no inter-
section point and so an unambiguous determination of the contact point with the first three eigenvalues is possible.
o

Algorithm 2:
Before the algorithm can be used, a file with the values of a, x1, x2 and x3 must be created.

1. Read values of a, x1, x2 and x3 from the file

2. Compute for all a from 0.5 to 1 the distance from the measured point
C (X1messsX2messsX3mess) Of eigenvalues (later in experiments) according to the formula:

d(d) = \/(leess - Xl(&))Q =+ (X2mess - XQ(E"))Q + (XBmess - X3(d))2

3. Determine the point B (x1,X2,x3) with the shortest distance from C

4. Determine the point A (x1,X2,Xx3) With the second shortest distance from C

5. Determine the distance a(LC') of footpoint LC from A

6. Return the value of @ = a(A) + a(LC) ¢

Remark 5.7. For the calculation the values of the technical set, Table 1, is used and ¢; = 10, ¢5 = 30. o

To test these two algorithms, it is assumed that the following eigenvalues have been measured for a given (and
to identified) a = 0.6525 and the step size of calculated values for the file is stepsize = 0.005:

e x1 = 3.731967524287328
e X2 = 5.844390565285849
o x3 = 10.033242682221617

Table 3. Results of the Algorithm 2 - Model B.

a X1 X2 X3
Algorithm 2 | 0.652484098410265 3.731877648391381 | 5.844431508913212 | 10.033242682221617

Difference: | -0.000016254322481 \ -0.000089875895940 | 0.000040943627370 | 0.000142676864199




Table 4. Results of the Algorithm 1 - Model B.

a X1 X2
Algorithm 1 | 0.652526752659562 | 3.732115438706637 | 5.844323226138748

Difference: | 0.00002675265956 | 0.00014791441931 | -0.00006733914710

If Table 3 is compared with Table 4, it is apparent that Algorithm 2 works better for this model than Algorithm 1.
But, this difference is small and both lead to the requested value if the results are rounded to four digits.

5.3. Investigation of Model C

This model, see Fig. 13, differs from Model A and B by the support at the base. Instead of a clamping or a bearing
the left side is free.
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Figure 13. Model C.

The arising BCs are, Vt:
e v/(0,t) = 0and v{"(0,t) = 0.

Figure 14 shows, that, as in Model B, an unambiguous determination of the contact point with the first eigenvalue
and with the first an second eigenvalue is not possible. As in Model B, if the spring rate is increased the curve
expands and so the intersection point of the yi-x2-Xxs-curve vanishes. Only if the spring rate is high enough,
Algorithm 1 can unambiguous determine the contact point and so in general Algorithm 2 has to be used.
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Figure 14. The first three eigenvalues for different ¢4 vs. a (left); x1-x2-curve for different ¢4 (right): No. 1
¢y =10, ¢q = 10; No. 2 ¢y = 10, éq = 30; No. 3 &y = 10, ¢4 = 50.



Remark 5.8. For the calculation the values of the technical set, Table 1, is used and ¢, = 10, ¢o = 30. o

To test both algorithms, it is assumed that the following eigenvalues have been measured for a given (but to be
identified) @ = 0.6525 (the step size of the calculated values for the file is stepsize = 0.005):

o x1 = 4.194420266332767
e 2 = 6.811788900720613
e x3 = 10.991851216321621

Table 5. Results of the Algorithm 2 - Model C.

a X1 X2 X3
Algorithm 2 | 0.652457474802077 4.194165392853138 | 6.812044228850565 | 10.991996397898973

Difference: \ -0.000042525197923 \ -0.000254873479630 \ 0.000255328129950 \ 0.000145181577301 \

Table 6. Results of the Algorithm 1 - Model C.

a X1 X2
Algorithm 1 | 0.652508007451328 | 4.194468264239080 | 6.811740834385314

Difference: | 0.00000800745133 \ 0.00004799790632 | -0.00004806633530

If Table 5 is compared with Table 6, it is shown that Algorithm 1 works better for this model than Algorithm 2
(but the intersection cannot be excluded a-priori). But, both lead to the requested value if the results are rounded
to four digits.

6. SUMMARY AND FUTURE PROSPECTS

The scope of the present paper was to contribute to the mechanical modeling of technical vibrissa as tactile sensors
for the distance detection. Here, the focus is not on using the mechanical model to explain the characteristics and
functions of the biological system of the vibrissae, but on the investigation of the relationship and properties of the
technical system.

As a first step, the modeling of the vibrissa was considered. It was shown, which parts of the vibrissa can be
modeled by means of mechanical components. Subsequently, three models were built and for the technical vibrissa
a set of parameters was presented.

In a next step, three conservative models have been analyzed. For all models, a distance detection with only the first
eigenvalue was not possible. But, for Model A is an unambiguous distance detection with the first two eigenvalues
possible and with the discrete spring the x1-y2-curve could be expand and so the accuracy can be increased. So,
a first algorithm was developed, which can determine the distance with a file of the first two eigenvalues. But,
for Model B and C, this algorithm cannot be used in general, because an unambiguous distance detection with
the first two eigenvalues is not possible for all parameters of the system. It was shown, that with the discrete
spring the x1-x2-curve could be expand, so that the intersection points vanishes. But, one goal was to develop
an algorithm that can be used for all models independent on the parameters of the system. It was found, that for
all models an unambiguous distance detection with the first three eigenvalues is possible. So, a second algorithm
was developed, which can determine the distance with a file of the first three eigenvalues. The first algorithm was
tested for Model A, B and C, and the second one for Model B and C. It was found that both algorithms provide
good results.

Future steps should be directed to:

e investigation of Model A, B and C with various cross sections,
e investigation of Model A, B and C with a discrete damper,
e investigation of Model A, B and C with a damper foundation.

But, also some of the conditions and assumptions of Chapter 5 could be dropped. The vibrissa has a pre-curvature,
so investigation on beams with a pre-curvature should be done, or E, p, A and I, are no longer constant over the
length of the beam.
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