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ABSTRACT

Biological observations have shown that rodents use their vibrissae to estimate obstacle contact within a few
contacts of the tactile hair. Based on this observation, a mechanical model of an animal vibrissa is developed,
resulting in a long slim beam with a clamp as support at one end. A sweep of the beam along a profile, with its
boundary describable by a strictly convex function, exhibits two phases. A phase in which the beam contacts the
profile at its tip and a phase in which the beam contacts the profile tangentially (between the tip and the base).
An analysis of the problem results in a decision criterion for the reconstruction and in a formula for the contact
point of the beam with the profile. This is new in literature. Based only on forces and moments at the support it is
possible to reconstruct the profile.

Index Terms— vibrissa, mechanical contact, beam, bending, large deflections, profile reconstruction.

1. INTRODUCTION

Some mammals, e.g. mice and rats, have large tactile hairs in their snout region (mystacial vibrissae). These hairs
allow the animal to get information about its environment. The information is processed in the support of the
vibrissa, the follicle sine complex (FSC) as shown in Fig. 1. In it, mechanoreceptors (e.g. Merkel cells) convert
mechanical strain into nerve signals for further processing. Observations in [8] show, that the animals are able to
determine contacts with obstacles within a few touches of a vibrissa. The key observation here is, that the animal
has only the information generated by the mechanoreceptors in the FSC.

This biological paragon — incorporating the vibrissa as a lever of force transmission and the support FSC as a
processing unit of signals — is focus of main interest in, e.g., robotic research to develop artificial sensors. Based
on this paragon we develop a mechanical model for object scanning. Before doing this, we focus on the state of
art to get hints for developing and to make a dissociation of the actual work in this field.
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Figure 1: Follicle sine complex [2], arranged by D. Voges (TU Ilmenau).

2. STATE OF THE ART

Many different approaches were taken to transfer the well working biological system into the field of engineering
for obstacle detection. Very simple models, like the one presented in [6] and shown in Fig. 2, use long thin beams
to detect deformation due to obstacle contact on mobile robots. If the “whisker-like” sensor detects a deformation
of the beam, the position is marked as containing obstacles. In this case the authors are not interested in any
particular information about the obstacle, only in its existence to restrict the range of motion of the robot.

Figure 2: Mobile robot with whisker-like sensors, [6].

In [7] and [12] the approaches are similar, but the described methods focus on information about the object. This is
obtained by using a method based on computer tomography in [12]. The beam can be seen as a ray and a deflection
of the beam as ray distraction. Thus, it is possible to estimate the contact point based on the angle of deflection
at the base of the beam. Principle and realization for this method are shown in Fig. 3. In [7] the linear theory of
elasticity is applied to large deflections with angular relations shown in Fig. 4. Both methods have in common that
only the deflection angle and no moments or forces are measured, which obviate the need of calibration for the
sensors. Nevertheless, this needs a scanning tactic which ensures that the estimation of the deflection angle using
linear theory is valid.
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Figure 3: Model and prototype of obstacle detection using only angular relations, [12].

Figure 4: Model for obstacle distance detection using only the bending angle, [7].

A model which includes small deformations and the curvature of the vibrissa is presented in [3]. As shown in Fig.
5, the authors added the curvature and the linear deflection of the beam to get the actual position of the beam. The
achievable accuracy of the model depends on the precurvature of the beam, because the curvature is assumed to be
a function of the beam axis shown in Fig. 5B.

Figure 5: Proposed method to consider small deflections of pre-curved beams from [3].

A method, which considers large deflections and focuses on object detection, is proposed in [10] for plane problems
and in [4] for spacial problems. In both works, the authors relinquish the linear approximation of the curvature and
express the problem in natural coordinates, thus allowing large deflections of the beam and a clear formulation of
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the boundary conditions. Both are also only interested in reconstructing the profile from experimental data, thus no
analysis on how to compute the reactions at the clamp for a verification of the system takes place. The mechanical
model used in [10] is shown in Fig. 6 and the result of the reconstruction in Fig. 7.

Figure 6: Mechanical model regarding large deflection due to the contact with a rigid body, [10].

Figure 7: Deformed beams gained from experimental data: (a) triangle profile, (b) circle profile; [10].

Others, like [9], approximate the curvature using finite differences. This gives an option to consider the curvature
of an undeformed biological vibrissa.

3. PROBLEM FORMULATION AND SOLUTION

The present paper deals with the problem what an animal “feels” and perceives by means of a single vibrissa while
moving along an obstacle, and which information it can get about the obstacle. As already mentioned in Section
1, the only information is available at the support of the vibrissa. In order to get further information, we treat the
problem analytically to the greatest extent. The work is based on [11] and [13]. In order to model the problem, the
following assumptions are made:

• The animal is moving at low speed, this allows us to treat the problem quasi-statically.

• All movements take place in a plane, w.l.o.g. in the (x, y)-plane, along the x-axis with the base of the vertical
vibrissa at y = 0.

• The vibrissa is assumed to be a long, slim, straight (until now, no precurvature is assumed) beam with
constant second moment of area Iz , constant Young’s modulus E and length L. Thus, ignoring shear stress,
the Euler-Bernoulli theory for large deflections is applicable.

• Without loss of generality, the beam moves relative to the obstacle from the right to the left along the x-axis.
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• The stress at each point of the beam is sufficiently small to describe the behavior of the material with Hooke’s
law of linear elasticity.

• The support of the beam is very stiff compared to the stiffness of the beam, thus it can be approximated as
a clamp, whereby we know that this will not match the reality of the vibrissa. But our work is in the bionic
point of view. We do not want to construct a prototype with 1-to-1 properties of the biological paragon. In
upcoming works we will diminish the stiffness of the support to get hints, for which mechanical reasons the
biological vibrissa is embedded in a compliant FSC support.

• The obstacle, responsible for a deflection of the beam, is a rigid body fixed in the (x, y)-plane with a strictly
convex contour. Its boundary is described by the function g : x 7→ g(x). Furthermore, g ∈ C1(R;R) is
assumed.

• Deformation of the beam is caused by a single contact force (due to an object contact). This force is perpen-
dicular to the obstacle profile, i.e., no friction forces are taken into account.

With these assumptions made above, the Euler-Bernoulli equation, first mentioned in [5], is applicable:

κ(s) =
Mbz(s)

EIz
, (1)

whereMbz(·) is the bending moment around the z-axis, s ∈ [0, L] the arc length of the beam and κ(·) the curvature,
see Fig. 8.
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Figure 8: Euler-Bernoulli beam under large deflection.

To archieve a short notation of formulas we shall use dimensionless coordinates. For this end we use the units of
measure [length] = L, [moments] = EIzL

−1 and [forces] = EIzL
−2 (so, e.g., we have s = Ls∗ , s ∈ [0, 1]).

From now on, all quantities are given in dimensionless representation, where we drop the asterisk for brevity in
the following. Hence (1) becomes

κ(s) =Mbz(s) . (2)

The deformed beam in the (x, y)-plane can now be given by

d

ds
x(s) = cos (ϕ(s)) ,

d

ds
y(s) = sin (ϕ(s)) ,

d

ds
ϕ(s) = κ(s) .
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In order to reach a short formulation of the problem, the profile function g needs to be parameterized. Because

g ∈ C1 is strictly convex, x and y become functions of the slope angle α in the following:

d

dx
g(x) = g′(x) = tan(α)

⇒ x = ξ(α) := g′−1(tan(α)) ,

⇒ y = η(α) := g(ξ(α)) .

Every point (x, g(x)) is now mapped to the tuple (ξ(α), η(α)). As a next step the boundary conditions have to be

formulated. To do this the contact between beam and profile has to be seen in two phases, see Fig. 9:

• Phase A: Contact of beam tip and profile with ϕ(1) ≥ α,

• Phase B: Contact of a point s1 ∈ (0, 1) and the profile with equal angles ϕ(s1) = α.

In both phases, the contact point is given by the slope angle α of the profile.
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Figure 9: Profile with deflected beams.

3.1. Phase A: Contact at the tip

An equation for the bending moment results from the equilibrium of moments applied on the deformed state shown

in Fig. 10:

⎛
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⎞
⎠ = −

⎛
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0
Mbz(s)

⎞
⎠+

⎛
⎝
⎛
⎝x(1)
y(1)
0

⎞
⎠−

⎛
⎝x(s)
y(s)
0

⎞
⎠
⎞
⎠× f

⎛
⎝ sin(α)
− cos(α)

0

⎞
⎠

︸ ︷︷ ︸
=

#„
F

⇔ Mbz(s) = f
((

y(s)− η(α)
)
sin(α) +

(
x(s)− ξ(α)

)
cos(α)

)
, s ∈ (0, 1) . (3)
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Figure 10: Deflected beam in Phase A.

In order to decouple the bending moment (i.e., the curvature κ(·), see (2)) from x(s) and y(s), the derivative of
(3) with the additional boundary condition κ(1) = Mbz(1) = 0 is considered. This results in the following ODE
system (4) with boundary conditions (5):

(a) κ′(s) = f cos(ϕ(s)− α)
(b) ϕ′(s) = κ(s)

(c) x′(s) = cos(ϕ(s))

(d) y′(s) = sin(ϕ(s))
(4)

(a) ϕ(0) = π
2

(b) y(0) = 0
(c) κ(1) = 0

(d) x(1) = ξ(α)

(e) y(1) = η(α)
(5)

This boundary value problem splits into two separate problems: {(4a,b),(5a,c)} and {(4c,d),(5b,d,e)}. The first
one has

κ2 = 2f (sin(ϕ− α)− sin(ϕ1 − α)) (6)

as a first integral with ϕ1 := ϕ(1).
The bending moment, considering the lower part of the beam, depends on the clamp reactions MAz, FAx, FAy ,
which results in a first integral in the form

κ2 = 2f sin(ϕ− α)− 2f cos(α) +M2
Az .

Taken the numerical computation into account, a domain for the still unknown variable ϕ1 would be advantageous.
For this purpose (6) is rearranged:

κ2 = 4f sin

(
ϕ− ϕ1

2

)
cos

(
ϕ+ ϕ1 − 2α

2

)
. (7)

Hence κ2(s) ≥ 0 has to be fulfilled, three cases must to be discussed (f > 0):

1. At least one factor is equal to zero: Consequently κ(s) ≡ 0 holds. In this trivial case, the beam is not
deformed at all and there is no need for further discussion.

2. Both factors are negative: The sine function is positive on the interval (−π, 0) and negative on (π, 2π). This
results in the inequations

−2π < ϕ(s)− ϕ1 < 0 ∨ 2π < ϕ(s)− ϕ1 < 4π .

Hence ϕ(s) < ϕ1 ∨ ϕ(s) > 2π. This is a contradiction, because ϕ(s) ∈
[
ϕ1,

π
2

]
∀s ∈ [0, 1].

3. Both factors are positive: The sine function is positive on the domain (0, π), the cosine function on
(
−π2 , π2

)
.

Therefore, it must hold:

0 < ϕ(s)− ϕ1 < 2π ∧ −π < ϕ(s) + ϕ1 − 2α < π .
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The first inequality contains no additional information, the second one yields:

ϕ(s) + ϕ1 < π + 2α ∀s
⇒ ϕ1 <

π

2
+ 2α, since ϕ(s) ≤ π

2
.

Therefore, the angle ϕ1 has to be in the domain α < ϕ1 < min
({

π
2 ,

π
2 + 2α

})
.

With respect to the assumptions made at the beginning of this section, the curvature is non-positive along the
solutions of (4a,b), hence we get

d

ds
ϕ(s) = κ(s) = −

√
2f
√
sin(ϕ(s)− α)− sin(ϕ1 − α) (8)

as a ODE with separated variables for ϕ(s). For the sake of brevity the function HA is introduced:

HA : (t, u) 7→ F

(
sin
(
π
4 − t

2

)
sin
(
π
4 − u

2

) , sin(π
4
− u

2

))
, (9)

where F is the incomplete elliptic integral of first kind according to the definition [1, 17.2.7]

F : (z, k) 7→
z∫

0

1√
1− ψ2

√
1− k2ψ2

dψ .

Separation of variables applied on (8) with initial value (5a) yields:√
fs = HA

(
ϕ(s)− α,ϕ1 − α

)
−HA

(π
2
− α,ϕ1 − α

)
. (10)

Hence the contact force f can be expressed as

f =

(
HA (ϕ1 − α,ϕ1 − α)−HA

(π
2
− α,ϕ1 − α

))2

=: f(ϕ1, α) . (11)

Therefore, the only unknown parameter at this stage is the angle of the tip of the beam ϕ1. To get a formula for
this parameter, (5b,e) have to be considered, which can be done in two ways presented in the following sections.

3.1.1. Substitution of variable

Instead of letting the arc length s be the variable of the ODE system, y(s) can also be expressed in terms of the
slope angle:

dy(s)

ds
dϕ(s)

ds

=
dy(ϕ)

dϕ
=

1

κ(ϕ)
sin (ϕ) ,

with boundary conditions y(π2 ) = 0 and y(ϕ1) = η(α). At first, only the first condition is considered, which leads
to

y(ϕ) = − 1√
2f

ϕ∫
π
2

sin(τ)√
sin(τ − α)− sin(ϕ1 − α)

dτ .

The second boundary condition results in an implicit expression for ϕ1 ∈
(
α,min

{
π
2 ,

π
2 + 2α

})
:

η(α)
√

2f +

ϕ1∫
π
2

sin(τ)√
sin(τ − α)− sin(ϕ1 − α)

= 0 . (12)

Note that the integral (12) can be analytically calculated, but not in short terms without using elliptic Jacobi
functions. Anyway, we have — using (11) and (12) — an equation for ϕ1(α) which is a little bit unpleasant.
Therefore, it is convenient to switch to another method of solution in the next subsection.
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3.1.2. Shooting method

Instead of substituting the variable, the problem can efficiently be solved by applying a shooting method for ϕ1.
Dependent on the implementation, this method can be both faster and more accurate.
Let ϕ∗1 ∈

[
α+ ε,min

{
π
2 ,

π
2 + 2α

}
− ε
]

be a valid candidate for ϕ1. The corresponding deflection angle ϕ(s) can
be calculated from (10) with f from (11):

ϕ(s, ϕ∗1) = α+H−1A

(√
f(ϕ∗1, α)s+HA

(π
2
− α,ϕ∗1 − α

)
, ϕ∗1 − α

)
, with

H−1A (t, u) = −π
2
+ 2 arccos

(
JacobiSN

(
t, cos

(π
4
+
u

2

))
cos
(π
4
+
u

2

))
from (9) and JacobiSN according to [1, 16.1.3 and 16.1.5].
At the base of the vibrissa, (5b) must hold. Thus y can be numerically computed:

y(s, ϕ∗1) =

s∫
0

sin(ϕ(τ, ϕ∗1)) dτ .

The shooting value for ϕ∗1 is correct, if y(1, ϕ∗1)− η(α) = 0.

Summarizing, independent of the chosen method, ϕ1 is now known. The actual deformation and the solution of
(4c,d), respectively, can be numerically computed starting at s = 1:

x = ξ(α) +

s∫
1

cos(ϕ(τ)) dτ , (13)

y = η(α) +

s∫
1

sin(ϕ(τ)) dτ .

3.2. Phase B: Tangential Contact

The bending moment is now, with yet unknown contact point s1 (see Fig. 11):

Mbz(s) =

{
f
((
y(s)− η(α)

)
sin(α) +

(
x(s)− ξ(α)

)
cos(α)

)
, s ∈ (0, s1] ,

0 , s ∈ (s1, 1) .
(14)
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Figure 11: Deflected beam in Phase B, contact point s1 ∈ (0, 1).

Again the derivative of the curvature is of interest, thus the related boundary value problem is:

(a) κ′(s) = f cos(ϕ(s)− α)
(b) ϕ′(s) = κ(s)

(c) x′(s) = cos(ϕ(s))

(d) y′(s) = sin(ϕ(s))
s ∈ (0, s1) (15)
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(a) ϕ(0) = π
2

(b) y(0) = 0

(c) κ(s1) = 0

(d) ϕ(s1) = α

(e) x(s1) = ξ(α)

(f) y(s1) = η(α)
(16)

A first integral of (15a) together with (15b) and (16c) is

κ2 = 2f sin(ϕ− α)

⇒ d

ds
ϕ(s) = κ(s) = −

√
2f
√

sin(ϕ(s)− α) . (17)

The ODE (15b) with (17) and (16a) yields√
fs = HB(ϕ(s)− α)−HB

(π
2
− α

)
,

which can be solved for ϕ(s):

ϕ(s) = α+H−1B
(√

fs+HB
(π
2
− α

))
.

Again, fore sake of brevity, a function HB is used

HB : t→ F

(
√
2 sin

(
π

4
− t

2

)
,

√
2

2

)
,

H−1B (t) = −π
2
+ 2 arccos

(√
2

2
JacobiSN

(
t,

√
2

2

))
.

At the contact point s1, the slope angle ϕ(s1) = α is known. Thus, the contact force can be expressed as

√
f =

HB(0)−HB
(
π
2 − α

)
s1

. (18)

Again, consider the function y to get the last missing parameter s1. Condition (16b) results in:

y(s) =

s∫
0

sin
(
α+H−1B

(√
ft+HB

(π
2
− α

)))
dt

⇔ y(s) =
1√
f

√
fs+HB(π2−α)∫
HB(π2−α)

sin
(
α+H−1B (τ)

)
dτ . (19)

After collecting all information, (18), (19) and (16f) result in

f(α) =

 1

η(α)

HB(0)∫
HB(π2−α)

sin
(
α+H−1B (τ)

)
dτ


2

. (20)

Now, (18) and (20) lead to the following equation for the contact point s1:

s1(α) =
η(α)

(
HB (0)−HB

(
π
2 − α

))
HB(0)∫

HB(π2−α)
sin
(
α+H−1B (τ)

)
dτ

. (21)

The last integral of (15c) with (16e) is:

x(s) = x0 +
1√
f

√
fs+HB(π2−α)∫
HB(π2−α)

cos
(
α+H−1B (τ)

)
dτ ,
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whence, with s = s1, we obtain the food coordinate

x0 = ξ(α)− 1√
f

HB(0)∫
HB(π

2−α)

cos
(
α+H−1

B (τ)
)
. (22)

Finally, for both phases, via (13) and (22), the foot x0 is derived. Using (11) and (20) we can determine f and,

hence, knowing α, also the contact forces
#„

F . With f we get the clamping force FAx and FAy , as well as the

clamping moment MAz using (3) or (14).

4. COMPUTATION ALGORITHM FOR THE OBSERVABLES

With the analysis done in the previous section, the next step is now numerics: the computation of the observables.

The first step thereby is to find the starting point α0 at which the beam first contacts the profile in its undeformed

state: α0 = {α ≥ 0 | η(α) = 1}. After this, the minimum of the function s1,min := min(s1(α)) at point αmin is

determined, starting from α0. While s1(α) only produces physically realistic results in case of Phase B, it can

also help to determine starting and end point of this phase. Testing Phase B, s1,min < 1 must hold. In this case,

there must exist two angles αB,start and αB,end at which s1 (αB,start) = s1 (αB,end) = 1 is valid. The graph of the

function s1(α) with the mentioned points is shown in Fig. 12.

αend αB,end 0 αB,start α0
0

1

2

s1,min

α

s 1

Figure 12: Graph of s1 vs. α for profile function g : x �→ cosh
(
1
4x

)− 4
5 .

The flow chart of the proposed algorithm is shown in Fig. 13. If there is at least one point with s1 < 1, the

computation takes place in parallel. This can easily be done because there is no exit condition until the end of

Phase B and the discrete αk along the profiles arc length can be computed before. In case of no Phase B, the only

known exit condition are reachability (can the contact point be reached with a beam of length 1) and plausibility

(the base is moved from the right to the left, so x0,k > x0,k+1 must hold). Even though the case of no Phase B can

also be parallelized, e.g. in a task based parallel model, the effort is higher.
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Figure 13: Flowchart for strictly convex profiles;
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parallel computation on PC, [13].

5. RECONSTRUCTION OF THE PROFILE

The last section dealt with the generation of observables x0, FAx, FAy,MAz (values which are assumed that an
animal can solely rely on) available at the base of a single vibrissa if it is swept along an obstacle. In experiments
these values are governed by a measurement device.
The next step is to get information about the obstacle by using only the information at the base:

κ(0) = lim
s→0+

Mbz(s) = −MAz ,

ϕ(0) =
π

2
,

x(0) = x0 ,

y(0) = 0

and

α = − arctan

(
FAx
FAy

)
,

f =
√
F 2
Ax + F 2

Ay .

The main difficulty is to decide whether the actual deformation at a given point is related to Phase A or Phase B.
The key to solve this is to analyze the curvature for Phases A and B, and somewhere:

Phase A: κ2A(s) = 2f (sin(ϕ(s)− α)− sin(ϕ1 − α)) , (23)

any s: κ2R(s) = 2f sin(ϕ(s)− α)− 2f cos(α) +M2
Az , (24)

Phase B: κ2B(s) = 2f sin(ϕ(s)− α) . (25)
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Clearly, the observables are related to Phase B if and only if ϕ1 = α holds. The tip angle ϕ1 can be calculated as
follows:

ϕ1 = α− arcsin

(
M2
Az − 2f cos(α)

2f

)
,

which then results in the condition for Phase B with only known parameters:

M2
Az − 2FAy = 0 . (26)

If (26) is not valid, the contact force is applied at s1 = 1 else the contact point s1 must be computed:

s1 =
HB(0)−HB

(
π
2 − α

)
√
f

.

The initial value problem is solved numerically using MATLAB’s variable order Adams-Bashforth-Moulton PECE
solver:

ϕ′(s) = −
√
2f sin(ϕ(s)− α)− 2f cos(α) +M2

Az , ϕ(0) =
π

2
,

x′(s) = cos(ϕ(s)) , x(0) = x0 ,

y′(s) = sin(ϕ(s)) , y(0) = 0 ,

which results in the reconstructed contact point: ξ(α) = x(s1), η(α) = y(s1) .

6. SIMULATIONS

In this paper, three profile functions are presented:

g1 : x 7→ cosh

(
1

2
x

)
− 4

5
,

g2 : x 7→ 1

2
x2 +

1

2
,

g3 : x 7→
{
−
√
22 − x2 + 5

2 , α > 0 ,

−
√

1
4 − x2 + 1, else .

Function g1 is a catenary, g2 a parabola and g3 a profile composed of two circles, all shown in Fig. 14. Observables
and reconstruction error for profile g1 are shown in Fig. 15. The relative error for each computation point k along
the profile function g shown in Fig. 15(d) is computed using the formula

error :=
∥∥∥∥(xk (s1k)yk (s1k)

)
−
(
ξ(α)
η(α)

)∥∥∥∥
2

with s1k as reconstructed contact point, (xk(s), yk(s)) the reconstructed position of the beam in the plane and
(ξ(α), η(α)) the given contact point for computing the observables.
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(a) Catenary profile g1
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(b) Parabola profile g2
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(c) Profile composed of two circles g3

Figure 14: Profiles under consideration.
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(d) Reconstruction error

Figure 15: Observables and reconstruction error with profile function g1.

Comparison of 15(d) and 16 leads to the conclusion of the error staying within the tolerances given in the numerical
computation routine to compute the observables.
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Figure 16: Reconstruction error.
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7. CONCLUSION

From the mechanical point of view it is possible to reconstruct a profile by sweeping one time a thin elastic beam
along it and only record forces and moments at the support. The theoretical analysis of the problem results in a very
simple equation to decide if the beam contacts an object at the tip or between the tip and the base. Furthermore,
a formula to calculate the contact point with respect to the arc length of the beam is provided. This analytical
formula is new in literature. A reconstruction is feasible, which supports the hypothesis that animals can navigate
by strongly relying on their mechanoreceptors at the FSC.
Future work should aim at increasing the level of complexity of the scanning problem and the mechanical beam
sensor, respectively, as to choose Iz = Iz(s), E = E(s) and incorporate sliding friction and stiction during
scanning.

8. REFERENCES

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions: With formulas, graphs, and math-
ematical tables, volume 55 of National Bureau of Standards applied mathematics series. United States
Department of Commerce, Washington and DC, 10. print., dec. 1972, with corr edition, 1972.

[2] Carsten Behn. Mathematical Modeling and Control of Biologically Inspired Uncertain Motion Systems with
Adaptive Features. Habilitation thesis, Ilmenau University of Technology, Ilmenau, 2013.

[3] J. A. Birdwell, J. H. Solomon, M. Thajchayapong, M. A. Taylor, M. Cheely, R. B. Towal, J. Conradt, and
M. J. Z. Hartmann. Biomechanical Models for Radial Distance Determination by the Rat Vibrissal System.
Journal of Neurophysiology, 98(4):2439–2455, 2007.

[4] T. N. Clements and C. D. Rahn. Three-dimensional contact imaging with an actuated whisker. IEEE Trans-
actions on Robotics, 22(4):844–848, 2006.

[5] Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio
problematis isoperimetrici latissimo sensu accepti. Bousquet, Lausannæ and Genevæ, 1744.

[6] S. Hirose, S. Inoue, and K. Yoneda. The whisker sensor and the transmission of multiple sensor signals.
Advanced Robotics, 4(2):105–117, 1989.
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