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ABSTRACT 

For high-accuracy roundness measurements of ring gauges it is necessary to know the 

uncertainty input of the parasite influences to the recorded data. The experience in roundness 

measurements showed that one of the largest deviations is caused by the concentric run-out 

error of the utilized rotary table. A novel optical probe head basing on laser interferometers 

has a measurement resolution up to 20lpm to detect a relative change in length. Hence, it is a 

promising experiment to use this optical probe head technology for the concentric run-out 

detection. It is possible to show the accuracy potential in interferometrical form measurements 

of ring gauges. Therefore, the institute for process measurement and sensor technology 

developed an optical principle based on established and adapted measurement methods in 

concentric run-out error detection. The main goal is to increase the reproducibility of the 

whole measurement system by using the interferometrical sensor technologies for recording a 

table specific concentric run-out error. After that it is possible to correct the roundness 

measurement results in the future by subtraction of the recorded data from the roundness 

measurement data. This publication presents measurement results for the concentric run-out 

error of a system-integrated rotary table which includes air bearings. The investigations of this 

table show a maximal concentric run-out error of 537.51lnm. It was possible to determine this 

error with a reproducibility of 31.31lnm in maximum.  

Keywords – Roundness measurement, laser interferometry, concentric run-out error, 

non-tactile, rotary tables 

1. INTRODUCTION

In the last years one of the research fields at the Institute for Process Measurement and Sensor 

Technology (IPMS) was the development and investigation of systems for optical roundness 

measurement. Sensor technology basing on interferometers has the ability to increase the 

accuracy and to decrease the duration of roundness measurements [1], [2], [3]. Furthermore, 

in optical test principles there are no manipulations on measuring object surface like physical 

or chemical abrasions [4]. In addition to that the probe head interacts without any force input 

to the measuring object during the whole scanning process. In this case it can be guaranteed 

that the measuring object has the same geometrical characteristics after the scanning like 

before. This advantage is transferable for roundness and cylindrical shape determination on 

ring gauges utilizing laser interferometers. 

Basically, a roundness measurement is carried out by rotating the workpiece with help of a 

rotary table and measuring its radius variation. Therefore the measured signal not only 

comprises the roundness deviation of the workpiece but also misalignment errors with respect 

to the rotary axis and run-out errors of the rotary table. The first, the ring alignment, contains 

two position aberrations compared to the rotary table axis. An automated adjustment reduces 
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the absolute deviation of the ring eccentricity and the ring tilt. Additionally, mathematical 

compensation algorithms decrease the uncertainty part of position errors in the measurement 

results. For a correct roundness measurement it is necessary to know the accurate dynamic 

characteristics of the rotary table. Each roundness measurement system which is equipped 

with tactile or with optical sensors requires the concentric run-out error of the utilized rotary 

table as dataset to achieve a low uncertainty in measurements. The data processing requires a 

separation of this concentric run-out error from the ring gauge values. Hence, for an exact 

measurement with a decreased uncertainty it is necessary to record the concentric run-out 

error with highest precision. To investigate this error with an optical technology the 

interferometrical roundness measurement setup with two laser interferometers was tested. 

 

2. MEASUREMENT SETUP 

 

The basic measurement principle is the interferometrical detection of small length differences 

(nm-range) relative to a defined rotary axis. This axis is defined by a utilized rotary table 

which has a concentric run-out error. The ring gauge is on the top of this table. Two laser 

interferometers measure the radius in dependence of the rotary table axis angle in two index 

arms (figure 1). The main concept of this non-tactile measurement system is the direct optical 

touch between the interferometer beam and the technical surface of the ring gauge. Therefore, 

the probe head construction with two laser interferometers allows the optical scanning of ring 

gauge surfaces at two positions simultaneously. A beam guiding system controls the scanning 

positions and the 180 degree angle offset between the first and the second laser beam. The 

laser beams are guided to the ring surface by the use of two 90° prisms which are arranged in 

the middle axis of the probe head.  

 

 
Figure 1: Probe head principle based on two laser interferometers – tilting effects during the measurement 

process and their detection 

 

Due to the cylindrical shape of the ring gauge, the beams have to be focused on the cylindrical 

surface to reduce a distortion of the reflected beams. Different ring diameters require a 

different focal length. An adaptive optical system forms the wave fronts for a direct 
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measuring at the cylindrical surface of the ring gauges. This focusing unit contains a movable 

and a static cylindrical lens. It can be used for ring diameters in a range between 10lmm and 

300lmm. 

Figure 2 shows the realized measuring setup in laboratory. This is the same system which was 

described by Kühnel in 2011 [2] but it includes some additional or enhanced construction 

elements which are developed by the optimization processes of the last three years. 

 

 
Figure 2: Realized measurement setup including: 1-spindle for z-axis adjustment, 2-probe head with two 

interferometers, 3-portal with probe head adjusting elements, 4-Ring gauge, 5-Stage for x- and y-axis alignment, 

6-Tested rotary table with air bearings  

 

Furthermore, the whole measuring system contains a portal for the probe head, a PC-

controlled data acquisition module with an integrated laser unit as well as a complete 

positioning stage for the tested rotary table. The portal contains a spindle drive for an 

additional cylinder shape determination in the measuring mode.  

 

3. MEASUREMENT METHOD 

 

3.1 Measurement preparation and ring gauge alignment 

Before the measuring process of the concentric run-out error starts, the positioning stage of 

the rotary table moves and tilts the deposited ring gauge to overlap the ring middle axis with 

the rotary axis to compensate the influences of the ring tilting and the ring eccentricity. In 

addition to that an alignment process is necessary to get useable interferometer signals. This 

circumstance requires laser beams which reflect nearly 180° back in the direction to the 

interferometers. Therefore, an automated alignment process measures the tilting angle β and 

the eccentricity e(α) of the ring gauge position. Two beam splitters divide the reflected laser 

beams and guide one part to a quadrant photodiode for the angles (α,β) detection. The second 
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part passes the beam splitter and enters the interferometer (figure 1 including tilt angle β). In 

case of the tilt angle detection β is calculated with equation 3.1. 
 

� � 1
2 ∙ arctan �∆


� � (3.1) 

  

Hence, the beam offset ∆y depends on the tilt angle β. The beam length L is the optical path 

between the ring surface and the quadrant photodiode. The eccentricity depended beam 

alignment is shown in figure 3. 

 

 
Figure 3: Eccentricity determination with the quadrant photodiode 
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The aligned beam angles 2α and 2β between the incoming and reflected beams have to be 

smaller than 0.5° 
1
 for a valid photodiode signal. This is realizable with a manual adjusting. 

For a valid interferometer signal the angles have to be smaller than one angle minute. This is 

realizable with the automatic alignment process which uses the quadrant photodiode signals. 

Now with an available interferometer signal it is possible to detect the eccentricity by the 

calculation of the sum and the difference signal of both index arm signals with a nanometer 

resolution. Due to that, the difference signal D(ϕ, γ) (equation 3.4) delivers the fourfold 

eccentricity (e) and the sum signal S(ϕ, γ) (equation 3.5) compresses the influence of the 

eccentricity in the measurement signal. Smax is the diameter deviation of the ring gauge. The 

angle ϕ is the measurement position and the angle γ is the direction of the eccentricity. The 

relationship is given in equation 3.2 and in figure 4. 

 

$%&' � (%&' ) � � � ∙ �*!%& ) +' , -�� ) �� ∙ sin�%& ) +' ) �	 (3.3) 

  0%&' � $%&' ) $%& , 180°' � 2 ∙ � ∙ cos%& ) +' (3.4) 

  

                                                 
1
 The angle value depends on the ring gauge diameter, in this case the ring diameter is 100mm 
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Figure 4: Principle of the zoom lens system (left) and principle of roundness measurement in one index arm 

 
The lowest achievable eccentricity is less than 0.1 µm and limited by the resolution of the 

positioning stage. After the alignment process with a whole duration of less than 120ls the 

eccentricity of the ring gauge is between one and two micrometers. That is an adequate 

eccentricity for usable interferometer signals.  The reason for this remaining eccentricity is a 

stick-slip effect in the linear guiding systems of the x-y-alignment stage. Hence, it is 

necessary to subtract the eccentricity in the following data processing step. 

 

3.2 Measurement data acquisition and data processing 

In every new data acquisition the number of sampled values in each roundness measurement 

step over an area of 360° is nl=l9000. The sampling time respectively the measurement time is 

tl=l30ls. The measurement is triggered by the own incremental position sensor of the rotary 

table. An additional electronic device converts the sinusoidal signal of this sensor in a TTL-

compatible rectangular signal which is used for the start and stop trigger of the interferometer 

data acquisition module. 

It is necessary to use a data processing before the calculation of the concentric run-out error 

can start. For example the residual eccentricity (see 3.1) has to be subtracted from the 

roundness values. But there are some other systematical errors which have to be corrected. 

The most important in the interferometrical setup are determined and compared at the 

institute. Table 1 includes these results [5]. 

 
Table 1: Systematical error values a measured roundness [5] of a 60mm ring gauge in three sections 

Systematical error Determined divergence ∆R 

(Min…Max) 

Correction method 

Linear signal drift 0.009lµm…0.016lnm Linear drift correction 

Surface roughness and signal 

noise 

0.061lµm…0.123lµm  Mean value filter + low-pass 

filter 

Eccentricity 0.63lµm…1.993lµm  Harmonic analysis 

Concentric run-out error 0.54lµm  Subtraction from roundness 

data 

 

The smallest influence is given by the linear signal drift of the interferometers during the 

measurement sampling. To correct this error the difference between the first mean value of 
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the last five values and the second mean value of the first five values in the roundness data 
generates a slope (a) if this difference gets divided by the number of values in the measured 
data (n); i is the array index: 
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(3.6) 

 
After that the all values in the measured array can be corrected by subtraction of the product 
between their index (i) and the slope (a):  
 ����� = �� − � ∙ � (3.7) 
 
The surface roughness and the signal noise are reduced by using a mean value filter over nine 
nearby values in combination with an additional low-pass filter. The low-pass filter is 
designed by the rules which are given in DIN EN ISO 12181-2 [6] and in VDI/VDE 2631 [7]. 
But caused by the optical instead of tactile interaction between the probe head and the object 
surface it is not possible to transfer all rules in detail to the data processing of optical 
measurement data. For example in our measurement setup there is no stylus head diameter. 
The designed low-pass filter has its cut-off wavenumber now at 150lW/U.  
The eccentricity can be calculated with a harmonic analysis [8] of the first order in every 
roundness measurement data array. 
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2
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With both coefficients it is possible to calculate the eccentricity e and the phase φ angle. After 
that the next data processing step subtracts the eccentricity from the measured data array. 
 
3.3 Calculation of the concentric run-out error 

The tested rotary table with air bearings is investigated by the Donaldson reversal method [9], 
[10]. Therefore the system measures the workpiece two times, but before the second 
measurement the ring is manually rotated by 180 degree with respect to the table and new 
automatically adjusted before (see the section 3.1). Both measurements determine the ring and 
the concentric run-out error twice with two interferometers, but in the second measurement 
with an angle phase difference of 180 degree (compare with figure 5) of the ring gauge 
roundness.  
After the data processing step (section 3.2) it is possible to calculate the two run-out errors 

(��, ��) and a mean value of both with these four datasets (cross-over subtraction (1), (2)). 
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7�,	° is the measured data array of the first interferometer with the ring gauge in 0° position 

and 7�,��	° is the array of the second interferometer after the changed ring position. The 

advantage of two utilized interferometers allows that there is no need to rotate the probe head 

together with ring. This circumstance increases the measurement speed. All of the following 

measurements are processed in the quality control laboratory of LMW Schmalkalden GmbH. 

The laboratory room has controlled environmental conditions with a stabilized temperature of 

20l°C. This circumstance helps by controlling the environmental influences to the refraction 

index in air and the resulting influences to the interferometer signals. 

 
Figure 5: Start/End points of the two measurements for concentric run-out detection with Donaldson reversal 

method 

 

4. MEASUREMENT RESULTS 

 

4.1 Determined concentric run-out error 

In experiments the concentric run-out error of the used rotary table PI MICOS UPR-160 AIR 

was determined. Its spindle error has a periodic 360 degree characteristic. This is caused by 

the implemented air bearings instead of ball bearings (720 degree characteristic). Hence, after 

one rotation the same error gradient repeats. The complete concentric run-out error is 

diagramed in figure 6.  

 

 
Figure 6: Mean concentric run-out error of the used rotary table MICOS UPR-160 AIR over all concentric run-

out measurements; the grey dotted lines represent the variance limits of the concentric run-out error  
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It is the mean value of the measured error with different ring gauge diameters of 20lmm, 

40lmm, 50lmm and 60lmm. The curve is normed to the mean value of all sampling points. The 

peak-to-peak divergence is 537.51lnm. There are two additional dotted lines in the diagram in 

figure 6. They show the variance limits which are generated by all measured mean values of 

the concentric run-out error. This gives a first outlook to the reproducibility results which are 

discussed in section 4.2. 

 

4.2 Reproducibility tests 

Four series of measurement generates four curves (figure 7) for concentric run-out errors of 

the investigated rotary table. The intention for the choice of the used ring gauge diameters 

was to investigate correlations between the mass of the ring gauges, their diameter and the 

resulting measurement reproducibility. Thus, the result measurements show no dependencies 

to different masses.  

 

 
Figure 7: Concentric run-out errors for the tested rotary table MICOS UPR-160 determined with four different 

ring gauge diameters 

 

 
Figure 8: Reproducibility for compared measurements with the following ring gauge diameters: 20mm, 40mm, 

50mm and 60mm 
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In addition to that there is a long time gap of five months between the measurements of the 

20lmm and 50lmm gauges and the measurements of the 40lmm and 60lmm gauges. This 

circumstance shows a high long-term stability of the measurement setup. 

Figure 8 shows the maximum divergence in each sampling point of all four determined ring 

gauge concentric run-out errors. It is interesting to see that there are graph sections with an 

increased reproducibility of the concentric run-out error. This indicates an inhomogeneity of 

the spindle axis position stability over the 360° of the rotary table, but measurements with 

honed gauges instead of lapped gauges show a correlation between the reproducibility and the 

surface character (see section 4.3). A superposition of both effects is conceivable, too. The 

calculated mean reproducibility is 15.83lnm. But the maximum divergence for the concentric 

run-out determination with different ring gauges is 31.31lnm. The minimum divergence of 

4.53lnm shows the high metrological potential of the optical measurement setup. 

 

4.3 Investigation of systematical correlations 

There was the possibility for an investigation and comparison of the reproducibility between 

honed and lapped ring gauges. Figure 9 includes the reproducibility for two series of 

measurements which consists ten single measurements of the concentric run-out errors.  

 

 
Figure 9: Comparison of the reproducibility between measurements with honed ring gauges and lapped ring 

gauges  

 

The mean reproducibility is 3.63lnm between the maximum divergence of 9.51lnm and the 

minimum divergence of 0.70lnm for the 10lmm ring gauge. This ring gauge has a honed 

surface. For the 60lmm ring gauge with a lapped surface the mean reproducibility is 10.75lnm 

between the maximum divergence of 27.79lnm and the minimum divergence of 2.23lnm. 

Hence, the measurement accuracy with honed ring gauges is nearly three times higher than 

using lapped ring gauges with this optical measurement setup. This is an unexpected result 

because the honed surfaces have an increased roughness. Though the surface roughness 

decreases the signal quality of the laser interferometers but there are no dominating scrapers 

at the surface like on lapped ring gauges which have a large influences to the length signal by 

an additional beam tilting. 

Another investigation aspect is the tilting of the rotary table which results in different 

concentric run-out errors for different measuring sections. The results for comparing 

measurement in different ring gauge heights are shown in figure 10. The first height is 

measured two millimeters above the ring gauge bottom and the second height is measured two 
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millimeters below the top of the ring gauge. The peak-to-peak divergence between both 

concentric run-out errors is 53.91lnm for the 40lmm ring gauge and 42.26lnm for the 60lmm 

ring gauge and these values are higher than the determined reproducibility. Hence, the 

concentric run-out error is changing by measuring in different heights. The reason for this is a 

wobbling of the rotary table. Thus, measurements in different sections require their own 

determined concentric run-out error to compensate the influence in roundness measurements. 

 

 
Figure 10: Comparison between two ring gauge concentric run-out errors which are measured in different 

heights.  

 

5. CONCLUSIONS 

 

In result the special construction of the probe head and the two utilized Michelson 

interferometers support the determination of concentric run-out errors with highest accuracy. 

The concentric run-out error including the axis eccentricity error and axis wobbling error in 

the work level of the whole roundness measurement system is determined with 537.51lnm in 

maximum during the 360°-rotation. The reproducibility of these measurements is 31.31lnm in 

maximum and 4.53lnm in minimum. Reproducibility tests in a series of measurements with 

one ring gauge shows differences between honed and lapped ring gauges. It seems that the 

honed ring surface is an advantage for this kind of optical measurements. The reproducibility 

with the honed ring gauge is between 0.70lnm and 9.51lnm for each of the 9000 sampling 

points in ten single measurements. The reproducibility with the lapped ring gauge is between 

2.23lnm and 27.79lnm. Further investigations with honed ring gauges are required to confirm 

this assumption that the honed surface increases the reproducibility in the optical 

measurement. In conclusion the results have shown that the optical system is not only 

qualified for highest accuracy standards in roundness measurements [1] but also in run-out 

error measurements with an additional acquisition of measurement speed. 

 

6. OUTLOOK 

 

The setup will be tested in the future with more and different measuring objects. It is planned 

to realize system optimizations. The goal is to get lower uncertainties for the roundness and 

cylinder form measurements with this measuring system. More measurements of the 

concentric run-out error will help to increase the data base for the compensation of it in 

roundness measurements. Hence, it will be possible to correct the measurement values of 
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different ring gauges with a higher accuracy by respect to their considered weight and surface 
character. In addition to that the information about the adjustment stability in the optical 
system will be assured. 
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