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ABSTRACT 

Standard PC hardware rapidly increases in parallel computing power in form of multicore 
CPUs and general purpose GPUs. To take advantage of this situation it is necessary to create 
specialized code. This is a very time consuming and therefore an expensive task. One 
approach on solving this problem is the OpenCL (Open Computing Language) standard. It 
offers the possibility to run the same code on different hardware platforms. OpenCL provides 
code portability but not performance portability. This paper introduces the concept of a new 
developed self-optimizing parallel programming framework that addresses the issue of 
performance portability. This framework provides a set of algorithm building blocks. With the 
help of these building blocks a wide range of algorithms can be described, that work on one- 
or two-dimensional objects like images, vectors and matrices. The achieved performance is 
demonstrated with different algorithms on standard computer hardware platforms.  

1. INTRODUCTION

The precise measurement of optical surfaces requires not only high performance measurement 
instruments but also extreme compute intensive algorithms. Production constrains often 
dictate that measurement tasks should be finished as fast as possible. In the last decade it 
became clear that the increase in computing power of CPUs by increasing the clock rate could 
not be kept. In 1965 Moore predicted that the count of transistors, that can be incorporated 
into integrated circuits, will double every year [1]. This timespan has later been corrected to 
18 month, but the prediction still holds. The increase in transistor count and the flattening in 
clock rate gain lead to a dramatic increase of parallelism in computer architectures over the 
last decade. Nowadays CPUs that are used in standard PCs have at least two or more cores. 
Each of them supports parallel SIMD instruction sets like SSE or AVX. That enables the 
usage of SIMD commands. SIMD is a classification for computer architectures in Flynn’s 
taxonomy and stands for single instruction, multiple data (-streams) [2]. It says that a single 
instruction is executed on multiple data-streams in parallel. For example the AVX2 extension 
supports eight element wide single precision SIMD instructions. A single Intel® Haswell 
CPU core can execute two AVX2 FMA instructions in parallel. This enables a throughput of 
32 single precision floating point operations per cycle and 16 double precision floating point 
operations per cycle and core [3]. This shows that CPUs became massive parallel processors. 
Another development is the introduction of dedicated Graphic Processing Units (GPUs) that 
originally handled the calculation of complex graphical scenes in two and three dimensions. 
GPUs became more and more powerful massive parallel processors over time. Nowadays they 
are able to handle not only image processing tasks but also general purpose computations. 
Meanwhile GPUs are widely used as coprocessors for intensive parallel computations. One 
example is the number 2 in the latest TOP500 list [4]. This supercomputer, called “Titan”, 
uses 18.688 NVIDIA® Tesla C2050 Cards that are based on the NVIDIA® Fermi GPU 
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architecture. The currently most powerful supercomputer, the Tianhe 2, uses 48.000 Xeon Phi 
coprocessors. The Intel® Xeon Phi consists of 57 processor cores and was originally designed 
as graphic processing architecture. Now it serves as massive parallel coprocessor for 
numerical intensive tasks. These developments lead to the point that today nearly every 
standard PC not only contains a multicore processor, but also a massive parallel GPU. This 
can be used for general purpose computations. At first view it seems quite reasonable to 
exploit the parallel computing power of both CPU and GPU for computation intensive tasks. 
At closer look development of software that runs on GPUs and other massive parallel 
hardware is a very demanding and time consuming task.  
For the development of GPU based programs many programming interfaces are available. 
Two of the most important are CUDA and OpenCL. CUDA is developed by NVIDIA and 
runs exclusively on hardware of this manufacturer. In contrast, OpenCL is supported by 
numerous hardware manufacturers like AMD, Intel, ARM and also NVIDIA. OpenCL 
programs can be executed on any hardware that provides an OpenCL driver. Based on this 
flexibility, OpenCL seems to be a good choice for the usage as programming interface for the 
development of portable and efficient software. OpenCL programs have to be optimized for 
specific hardware architectures to run efficiently on them. This shows that it provides 
portability of code between hardware architectures, but cannot ensure portability of 
performance. This work introduces a framework that has been designed to overcome the 
problem of performance portability. It enables the creation of parallel numeric algorithms that 
can be run on nearly any OpenCL supporting hardware, while maintaining considerable 
performance. 
 

2. OPENCL 
 
OpenCL is an open standard for parallel programming of parallel processors like CPUs, GPUs 
and other computer architectures. It is developed by the Khronos Group. The latest version is 
2.0 but there is currently no implementation available. This work will focus on version 1.2 
[5]. OpenCL provides a platform API for managing and executing OpenCL programs that are 
called OpenCL kernels. OpenCL kernels can be executed on any hardware that delivers 
OpenCL drivers. Currently there exist OpenCL implementations from nearly every big 
hardware vendor. Some of them and their supported hardware architectures are listed in Table 
1. OpenCL is based on an abstract hardware platform model that is shown in Figure 1. 
 

Vendor Architectures 

Intel 
CPU, integrated GPU, 
accelerator 

AMD CPU, GOU, integrated GPU 

NVIDIA GPU 

IBM CPU, CELL 
 

Table 1: Hardware vendors and their computer architectures  

which are currently supporting OpenCL 
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Figure 1: The OpenCL platform model 

 
The host of an OpenCL environment runs the application program. It uses OpenCL API calls 
to manage the creation and execution of OpenCL programs on one or more compute devices 
that map accessible compute resources like CPUs or GPUs. A compute device is separated 
into Compute Units that bundle a number of processing elements. 
OpenCL kernels are executed on a predefined discrete index space that can have up to three 
dimensions. For every point in that index space, called NDRange, an instance of the kernel is 
executed. The index space is clustered into workgroups. An example of a two dimensional 
index space is shown in Figure 2. 
 

 
 

Figure 2: The OpenCL execution model for a two dimensional index space 

 
OpenCL kernels are written in the OpenCL C language. It is a subset of the C99 standard and 
has been expanded with vector data types, vector instructions and OpenCL mechanic specific 
functions. 
 

3. THE FRAMEWORK 
 
3.1 Introduction to the framework 
 
The presented framework enables the creation of numerical libraries. Its purpose is to reach 
reasonable performance on different hardware architectures without specific optimizations in 
the definition of the programs. To achieve this goal the framework relies on OpenCL as target 
backend. The usage of OpenCL enables the framework to run on nearly every device that 
supports at least Version OpenCL 1.1. Therefore the framework is designed for single 
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OpenCL hosts and the usage of a single OpenCL device. The coarse design idea of the 
proposed framework is outlined in Figure 3.  
 

 
Figure 3: Coarse architecture view of the proposed framework 

 
The framework is split into three different levels. On the application side, a number of 
numerical object classes enable an application to create numerical objects like matrices and 
vectors with different element types. The numerical classes define operations that can be 
applied on numerical objects. The operation kernels are defined in a description language that 
is presented in chapter 3.2. Data transfers between the application and OpenCL devices are 
automatically managed and minimized. 
 

 
Figure 4: Operations of the numerical library mainly serve as wrapper for the execution 

of predefined kernels. Those kernels are managed by a class called kernel manager. 

 

 
To simplify the creation of kernels, a management class is introduced. It is a class prototype 
for easy management of kernels and represents the second level of the framework. Its usage 
scenario is shown in Figure 4. The root kernel manager class has to be overloaded to create a 
specific kernel manager class. In the overloading process it is necessary to implement 
functions that deliver a kernel description and sets of benchmark descriptions that are used to 
create different data objects for benchmark purposes. 
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The third level is nearest to the OpenCL side. It consists of the Assembled Kernel and the 
Assembled Data Object. The Assembled Kernel consists of a compiled OpenCL kernel and all 
information needed to execute it. The Assembled Data Object consists of a pointer to an 
OpenCL memory object and information how to handle it. 
To adopt the defined kernels to the underlying hardware a tuning step is performed. It is 
outlined in Figure 5. In a first step the kernel manager creates different Assembled Kernels. 
Those kernels differ in code variation and their parallel distribution schemes. Kernel 
variations are described in chapter 3.4. In the next step the kernel manager creates a set of 
data objects and parameters for every defined benchmark set. In an auto-tuning process the 
kernel manger searches the Assembled Kernel that runs fastest for the data objects and 
parameters of a specific benchmark set. This results in a benchmark tuple that connects a 
reference to the fastest kernel with a benchmark set.  

 
Figure 5: Auto-tuning Process 

 
The library can execute the kernel by calling the “Run” routine of the overloaded kernel 
manager class at runtime. It has to provide a list of wrapped parameters and a list of wrapped 
data objects that create a connection between Assembled Data Objects and the data object 
names used in the kernel description. The kernel generator decides which assembled kernel is 
used from the given parameters, the saved benchmark tuples and the properties of the 
wrapped data objects. The benchmark process has to be executed only once per specialized 
kernel manger and OpenCL device. The resulting benchmark tuples are saved in a 
configuration file and can be loaded within the initialization process of the library. 
 
3.2 The description language 
 
A description language has been developed for this framework to describe parallel numerical 
algorithm kernels. It uses an XML-like style and is data-flow oriented. Its development was 
focused on different aspects: 
 

 Simplicity: Use only a small number of constructs to describe a kernel 
 Power: It should deliver the possibility to solve nearly every numerical problem 
 Implicit parallelism: The programmer should not be forced to think about parallelism 

in the algorithms 
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A description of a parallel algorithm in the framework consists of a number of objects and a 
list of connections that describe the data-flow between these objects. Every object has 
connection emitters and connection acceptors that define the direction of data flow. A 
connection emitter has to be connected to a connection acceptor. The value of the connection 
emitter is assigned to the connection acceptor at the beginning of the execution of the 
acceptors object. In the assembling process it is necessary to determine an order of the 
execution of the objects. This order is detected automatically from the connection graph that 
is defined by the connections in the description. Optionally the programmer can add a list of 
ordering rules that consist of a tuple (object1, object2) which means that object1 has to be 
executed prior to object2. These rules are considered in the ordering process. 
Some objects can house other objects and create their own iteration space. The iteration space 
defines the how many times that child objects consume, process and emit data. There is no 
direct mapping between the number of executions of a kernel body and the number of 
elements in a data object. To describe the kernels, there are basically six constructs: 
 

 ParallelAlgorithm: This object serves as hull of the numerical kernel. Its number of 
dimensions and “Size(…)” properties define the main iteration space. Optionally it can 
own an iteration connection function (ICF) that can connect elements of the main 
Iteration Space and delivers a single data value to a DataObject. The general structure 
of a ParallelAlgorithm object is shown in Listing 1: 
 

 
Listing 1: General structure of a ParallelAlgorithm. 

 
 DataObject: This Object consists of a number of elements that are ordered in schemes. 

Currently there are two different organization schemes available: vector and matrix. 
The element types of a DataObject are described in Table 2. 
 
element type description 

SP single precision floating point number (IEEE 754) 

DP double precision floating point number (IEEE 754) 

INT32 32 bit integer format 

SP2 
2 single precision floating point numbers (IEEE 754) for the 
representation of complex numbers 

DP2 
2 double precision floating point numbers (IEEE 754) for the 
representation of complex numbers 

B boolean value 

 

Table 2: Data types of DataObject elements. 

 
 The elements of a DataObject can only be changed by DataAccess objects.  

<ParallelAlgorithm name="..." dimension="..." ICF="...">  
 <DataObjects> 
  ... 
 </DataObjects> 
 <Children> 
  ... 
 </Children> 
 <Connections> 
  ... 
 </Connections> 
</ParallelAlgorithm> 
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 DataAccess: This object enables a kernel to access the elements of the specified source 
DataObject. It exists in two versions: DataAccessRead and DataAccessWrite. 
DataAccess objects own a selector function that describes how a number of selection 
variables define the selected element of the source DataObject. The selection variables 
of a DataAccess object are connection acceptors. DataAccessRead objects own a 
connection emitter “out” that delivers the read data value of the selected element of 
the source object. The connection acceptor “in” of the DataAccessWrite object 
receives the value that has be written to the selected source Data Object. 
 

 FunctionBlock: This describes a function that connects variables that are connection 
acceptors and returns the result of this function as a connection emitter.  

 
 IteratorBlock: This Object expands the iteration space temporarily with up to two 

additional dimensions, depending on the number of dimensions and the values of the 
connection acceptors “Size(…)”. An IteratorBlock itself can contain objects with the 
exception of ParallelAlgorithm and other IteratorBlock objects. 

 
3.3 Example 
 
In this chapter an implementation of the dense matrix-vector multiplication  ⃗       ⃗⃗ is 
described. It is the one that is used in the presented framework benchmark in chapter 4. The 
description code is shown in Listing 2. 
 

 
Listing 2: Kernel description of dense matrix-vector multiplication 

   <ParallelAlgorithm name="MV" dimensions="1"> 
      <DataObjects> 
         <DataObject name="A" structure="matrix" elementDataType="USED_FLOAT"/> 
         <DataObject name="b" structure="vector" elementDataType="USED_FLOAT"/> 
         <DataObject name="c" structure="vector" elementDataType="USED_FLOAT"/> 
      </DataObjects> 
      <Children> 
         <IteratorBlock name="iter1" dimensions="1" ICF="#acc(0)+#in(0)"  
          ICFType="USED_FLOAT"> 
            <DataAccessRead name="access_A" source="A" selFunction="v0, v1"/> 
            <DataAccessRead name="access_b" source="b" selFunction="v0"/> 
            <FunctionBlock name="MulFunc" numInVars="2" numOutVars="1" 
                           dataType="USED_FLOAT" function="#in(0) * #in(1);"/> 
         </IteratorBlock> 
         <DataAccessWrite name="access_c" destination="c" accessFunction="v0"/> 
      </Children> 
      <Connections> 
         <Connection source="A.Size(1)" destination="MV.Range(0)"/> 
         <Connection source="A.Size(0)" destination="iter1.Range(0)"/> 
         <Connection source="iter1.i(0)" destination="access_A.v(0)"/> 
         <Connection source="MV.i(0)" destination="access_A.v(1)"/> 
         <Connection source="iter1.i(0)" destination="access_b.v(0)"/> 
         <Connection source="access_A.out" destination="MulFunc.in(0)"/> 
         <Connection source="access_b.out" destination="MulFunc.in(1)"/> 
         <Connection source="MulFunc.out(0)" destination="iter1.func(0)"/> 
         <Connection source="iter1.out" destination="access_c.in"/> 
         <Connection source="MV.i(0)" destination="access_c.v(0)"/> 
      </Connections> 
   </ParallelAlgorithm> 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
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The first step in every kernel is the creation of a ParallelAlgorithm object. It is named “MV” 
in this example (line 2). The next step is to define the used DataObjects (lines 2 - 6). With the 
matrix          the operation  ⃗       ⃗⃗ can be formulated as     ∑     

 
       for 

        . The Iteration Space of “MV” is set to the size of the returning vector  ⃗ that is 
equal to the number of rows in  . This is achieved by connecting the “Size(1)” attribute of the 
DataObject “A” to the ParallelAlgorithm objects attribute “Range(0)” that represents the size 
of its iteration space dimension 0 (line 18)  
To formulate the reduction sum ∑     

 
       an IteratorBlock object called “iter1” is added. 

It has the ICF “#acc(0) + #in(0)” and a one dimensional iteration space (line 8). The ICF says 
that the accumulation variable “#acc(0)” is set to the sum of itself and the ICF input variable 
“#in(0)”. The size of its iteration space is set to the number of columns in   (line 19). 
To perform the multiplication of the elements of   and  ⃗⃗ two reading DataAccessRead 
objects are created. They have selector functions that use unmodified input variables v0 and 
v1 (lines 10-11). The input variables are connected to the iteration spaces of the 
ParallelAlgorithm and the IteratorBlock. (lines 20-22). The outputs of the DataAccessRead 
objects are connected to the input variables of a FunctionBlock named “MulFunc” that carries 
out the multiplication (lines 23-24 and 12-13). Its output is connected to the input of the ICF 
of the enclosing IteratorBlock. (line 25)  
The calculated sum of the IteratorBlock has to be written to the DataObject “c”, thus a 
DataAccessWrite object named “access_c” is added. Its input variable is connected with the 
output of the IteratorBlock. Its selector function is the unmodified input and its access 
variables are connected to the current position in the iteration space of the ParallelAlgorithm 
(lines 15 and 26-27). 
The used floating point precision can be chosen by replacing the string “USED_FLOAT” 
with an element data type listed in Table 2.  
 
3.4 Kernel variation 
 
There are some significant benefits from the introduction of a building-blocks-like description 
language. It creates the possibility to search not only for an optimal OpenCL work group size, 
but also for possible code variants. This can increase the achieved performance on some 
hardware architectures. Some of them are: 
 

 Use of shared memory: The selector functions of DataAccessRead objects are 
analyzed and it is decided if it is beneficial to cache the accesses in local memory. 
 

 SIMDization: The framework tries to map the defined kernel to OpenCL vector data 
types and vector operations. This can be beneficial for Architectures like CPUs that 
directly support SIMD operations. 
 

 Parallel reduction operations: With the ICF of the ParallelAlgorithm and the 
IteratorBlock objects exists a direct possibility for the formulation of reduction 
operations. The framework can choose between different strategies to perform a 
reduction.  

 
Every object in the description can have code variations. Every possible code variation has 
different states. At minimum they have two different states: on or off. Some of them like 
SIMDization have more {Off, vector2, vector4,..}. 
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The other factor that can be varied is the OpenCL workgroup size that is used to execute the 
created OpenCL kernels. The framework can choose for any of the used         workgroup 
dimensions    from the set                                    . Every OpenCL device 
has a upper limit   that can be read out from the OpenCL API. The workgroup size is limited 
by the condition ∏   

 
     . Let  ̅ be the number of the usable workgroup sizes and  ̅ of 

possible code variations, then the complete number of variations  ̅ of a kernel results from: 
 

 ̅   ̅   ̅ 
 
 

4. RESULTS 
 
Some kernels have been implemented to prove the ability of the framework to create kernels 
in different areas of numerical science. They have been benchmarked on three completely 
different hardware platforms. The used hardware platforms are listed in Table 3.  
 
Architecture Device 

Type 
Single Precision 
Peak Performance 
[Gflop/s]  

Double Precision 
Peak Performance 
[Gflop/s]  

Peak 
Bandwidth 
[GByte/s] 

Intel® Core i7 960 CPU 102,4 51,2 25,6 
NVIDIA® 
GeForce GTX 480 GPU 1345 168 177 

AMD® Radeon 
HD 7750 GPU 819 51 72 

 

Table 3: Overview of benchmarked hardware architectures 

 
The following kernels have been created and benchmarked: 
 

 Laplace2D: Laplace operator of the size 3x3 elements for floating point matrices. For 
the benchmark a matrix of the size 2048 x 2048 was used. 

 L2Norm: This kernel calculates the L2-norm of a given vector. For the benchmark a 
vector of the length of 4194304 elements was used. 

 Max: This kernel returns the maximum element of a given vector. For the benchmark 
a vector of the length of 4194304 elements was used. 

 Add: This kernel adds two matrices. For the benchmark a matrix of the size 2048 x 
2048 was used. 

 GeMM: This kernel multiplies two matrices. For the benchmark a matrix of the size 
1024 x 1024 was multiplied with a matrix of the same size. 

 SpMV: This kernel multiplies a sparse matrix (format: CSR) with a vector. For the 
benchmark a matrix of the size 524288 x 524288 with 32 Elements per row and a 
vector of the length of 32768 elements were used. 

 GeMV: This kernel multiplies a dense matrix with a vector. For the benchmark a 
matrix of the size 2048 x 2048 was multiplied with a vector of the length 2048. 
 

The reached fractions of either the peak performance or the peak bandwidth for the different 
kernels have been calculated. The achieved numbers for single precision are shown in  
Figure 6 and the numbers for double precision are shown in Figure 7. 
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Figure 6: Benchmark of some common single precision kernels that have been implemented in the proposed 

framework. Shown is the fraction of either the peak performance or the peak bandwidth depending on the 

limiting factor of the kernel. 

  

Overall the framework delivers considerable single precision performance for the three 
architectures. The performance on the GPUs never falls below 45% of the peak performance 
for the corresponding kernel. On the Radeon GPU the framework achieves more than 80% of 
the peak performance for seven of the eight tested kernels. Sole exception is the GeMM 
kernel. This kernel is limited by the peak floating point throughput of the GPU and is difficult 
to optimize. The example GeMM program of the AMD APP SDK 2.9 reaches the same 
performance as the framework (ca. 380 GFlop/s for the stated matrix sizes). 
The performance on the NVIDIA® GTX 480 reaches more than 80% of peak for four of the 
eight tested kernels. This shows that there is some space for improvement. The GeMM kernel 
achieves a comparable efficiency as on the AMD® Radeon HD 7750 GPU. Even 
sophisticated programming and modelling efforts lead to only 63% efficiency for the stated 
matrix sizes on the NVIDIA® Fermi architecture [6]. From this perspective the reached 
GeMM performance on the both architectures seems to be within the range of the optimum. 
The framework performs at between 35% and 61% of the peak performance on the used CPU. 
The observed performance gap between CPU and GPUs is not surprising given the fact that 
the framework currently performs no implicit cache optimizations like blocking. 
 
The only difference in the definition of single precision and double precision kernels lies in 
the use of different data types. Generally the performance figures for double precision appear 
similar to the single precision ones. The GPUs perform slightly better and the CPU shows no 
significant different behavior. The only exception is the GeMM kernel. Here the CPU 
performs worse than with single precision because of the increased data size and therefore 
decreased cache efficiency. On the GPU side the achievable double precision performance is 
much lower as the single precision performance. This is shown in Table 3. This explains the 
high efficiency that the GeForce GPU reaches. 
 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1
fr

ac
ti

o
n

 o
f 

p
ea

k 

Intel(R) Core(TM) i7 CPU

GeForce GTX 480

AMD Radeon HD 7750



©2014 - TU Ilmenau  11 

 
Figure 7: Benchmark of some common double precision kernels that have been implemented in the proposed 

framework. Shown is the fraction of either the peak performance or the peak bandwidth depending on the 

limiting factor of the kernel 

 
A more complex example of an algorithm is phase unwrapping. It removes the phase wraps 
that can appear in interferograms [7]. A straight forward algorithm that solves the problem 
looks like: 
 

1. Get the derivatives in x- and y- direction of the wrapped phase image 
2. Delete jumps in the derivatives that exceed a predefined limit 
3. Recalculate the unwrapped phase image from the modified derivatives by integration 

 
The 1st and 2nd step can be implemented straight forward. Step three is more difficult to 
handle. Because of the modification of the derivatives there is no guarantee that a unique 
solution for the integration problem exists. Instead of the exact integral, an algorithm that 
delivers a result with a minimal residual is sought. To solve this problem it is reformulated as 
a least squares problem. The resulting linear system is solved with a geometric multigrid 
algorithm.  
The complete unwrapping algorithm has been implemented in C++ and parallelized with the 
help of OpenMP [8]. One run on an Intel® Core i7 960 CPU took 0.25 seconds. The same 
algorithm implemented with the proposed framework took 0.15 seconds for a run on the same 
processor and 0.038 seconds on a NVIDIA® GeForce GTX 480 GPU. This leads to the 
speedup shown in Figure 8. 
This speedup made it possible to execute the phase unwrapping algorithm with 26 frames per 
second and enables its usage in an interferometry live view application. This application is 
used to measure the wavefront deformation of high performance objectives.  
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Figure 8: Speedup for the phase unwrapping of a 1024x1024 matrix 

 
5. RELATED WORK 

 
Performance portability has been addressed in many different frameworks and research 
efforts. One established framework is ATLAS [9]. It focuses on delivering performance 
portable basic linear algebra subroutines (BLAS). This is mainly accomplished by blocking of 
memory accesses. The FFTW [10] is a framework that delivers empirical auto-tuned FFT 
routines. Both mentioned frameworks need complete C99 compiler support and therefore are 
not useable on architectures like GPUs. 
In the last years a number of frameworks have been developed that address the portability of 
algorithms between completely different architectures like CPUs and GPUs. 
ViennaCL [11] is a numerical library that supports BLAS and the iterative solution of sparse 
systems of equations. The library is based on OpenCL and supports computations on GPUs 
and CPUs. To increase the performance it auto-tunes the workgroup-dimension of the used 
kernels [12] and contains a kernel generator that can fuse multiple operations on vectors 
(BLAS level 1) into one OpenCL kernel [13].  
PetaBricks [14] is an implicit parallel language and compiler. Its main paradigm is to describe 
multiple algorithms for solving one problem and how they fit together. The PetaBricks 
runtime and compiler not only auto-tunes different parameters like data distribution and 
accuracy, but also the choice of algorithms.  
Halide [15] is an image processing framework that includes an optimizing compiler for the 
Halide image processing language that is a domain specific language for the description of 
image processing pipelines. Compiler targets include CUDA, OpenCL and x86/SSE. It uses 
modelling of the complete processing pipeline to create complex scheduling choices that 
include different loop unrolling strategies or the use of vector instructions. Exhaustive auto-
tuning of the identified scheduling choices creates high efficient code that outperforms even 
hand tuned solutions.  
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6. FUTURE IMPROVEMENTS 
 
An obvious challenge for future work is to further improve the reached performance 
efficiency of the created OpenCL kernels. This could be possible with the introduction of new 
code variations or the mixed usage of already developed ones. 
The benchmarks showed that the reduction algorithms perform mediocre on NVIDIA 
architectures and not very well on the Intel CPU. This will be addressed. The introduction of 
cache blocking concepts could also improve the performance on CPU architectures. 
A major improvement, that is planned to be implemented, is the support for using multiple 
heterogeneous devices. But this may need some structural changes in the framework. There is 
not only the problem of proper load balancing but also the incorporation of boundary handling 
in the codegenerator and the automated identification of a feasible distribution of the problem 
to the different devices. 
Another aspect, that will be explored, is benchmarking the framework on newer NVIDIA 
hardware like GeForce® Titan and higher performance AMD GPUs. 
 

7. CONCLUSION 
 
While there is room for future improvements it has been shown that the introduced framework 
is able to deliver considerable performance on different hardware architectures. This makes it 
possible to create compute intensive metrology applications that can run on different 
hardware architectures with high performance without changes in the application code. This 
performance portability reduces the development time of performance critical software and 
enables a usage on different hardware architectures. Additionally the ability to use nearly any 
OpenCL device reduces the dependency on a single hardware vendor or architecture. This can 
be important for software that should be used for a long time span. 
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