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Abstract

In this paper the properties of right invertible row operators, i.e., of 1 x 2
surjective operator matrices are studied. This investigation is based on a
specific space decomposition. Using this decomposition, we characterize the
invertibility of a 2 x 2 operator matrix. As an application, the invertibility
of Hamiltonian operator matrices is investigated.
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1 Introduction

The invertibility of a linear operator is one of the most basic problems in operator
theory, and, obviously, appears in the study of the linear equation Tx = y with a
linear operator 7.

This problem becomes even more involved if one considers the invertibility of
2 x 2 operator matrices. For this let A, B, C and D be bounded linear operators
on a Hilbert space. If, e.g., they are pairwise commutative, then the operator

matrix
A B
M = <C’ D) (1.1)

is invertible if and only if AD — BC' is invertible (cf. [3, Problem 70]). If only
C and D are commutative, and if, in addition, D is invertible, then the operator
matrix M is invertible if and only if AD — BC' is invertible (cf. [3, Problem 71]). In
fact, the commutativity is essential in the above characterization, see [3, Problem
71]. The situation is even more involved if A and D are not defined on the same
space and, hence, the formal expression AD — BC has no meaning.

In general, there is no complete description of the invertibility of operator
matrices in the non-commutative case. But if at least one of the entries A or D of
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the operator matrix M is invertible, one can describe the invertibility of M in terms
of the Schur complement. A similar statement holds also in the case of invertible
entries B or C. Moreover, the Schur complement method can be effectively used
also in the case where the entries of M are unbounded operators under additionally
assumptions on the domain of the entries, such as the diagonally (or off-diagonally)
dominant or upper (lower) dominant cases, see, e.g., the monograph [7]. We also
refer to [5, 8] for sufficient conditions for nonnegative Hamiltonian operators to
have bounded inverses.

However, it is easy to see that there are many invertible 2 x 2 operator ma-
trices with non invertible entries A, B, C and D (see, e.g., Theorem 2.11 below).
Obviously, in such cases, the Schur complement method is not applicable.

It is the aim of the present article to give a full characterization for the invert-
ibility of bounded 2 x 2 operator matrices. We do this in the following manner:
A necessary condition for the invertibility of a 2 x 2 operator matrix M in (1.1)
is the fact that the row operator (A B) is right invertible (that is, the range
R((A B)) of the operator (A B) covers all of the spaces). A further necessary
condition is N((A B)) # {0}, where N((A B)) denotes the kernel of (A B)
(see Corollary 3.3 below). This non-zero kernel N'((A B)) plays a crucial role.
Its projection Py(N((A B))) onto the first component is a subset of the kernel of
Pr(p)r A, where P p)1 denotes the orthogonal projection onto R(B)*. Similarly,
the projection of N'((A B)) onto the second component is a subset of N'(Pr 4y B).

Therefore we investigate a right invertible row operator (A B) and choose
a decomposition of the space into six parts which is built out of the subspaces
N(A),N(B),/\[(PR(B)LA) and N (PgrayrB). As a result, we show that the
operator By 1Ay considered as an operator from Py (N ((A B))) to N(B)* &
N (Pg( A)LB)J_ is correctly defined. Here Ay (B;) denote the restriction of A
(B, respectively) to N (Pg(pyLA) (N(B)* © N (Pr(a)x B)*, respectively).

The main result of the present article is a full characterization of the invert-
ibility of a 2 X 2 matrix operator M in terms of its entries A, B,C, D, or to be
more precise, in terms of the restrictions Ay, By, Co and D which are, in some
sense, all related to N'((A B)): A 2 x 2 operator matrix M is invertible if and
only if the following two statements are satisfied

(1) The restriction D|pr(py is left invertible and
(ii) the operator
CQ—DQBQ_IAVQ : Px(N((AB))) — (R(D|N(B)))L is one-to-one and surjective.

Here Cy (D) is the restriction of C' (D, respectively) to N (Pg(pyr A) (N(B)* ©
N (Pg(ayL B)*, respectively) projected onto (R(D|yp)))*-

This characterization is especially helpful if the spaces N'((A B)), N (Pg(p)L A)
or N(PR(A)L B) are known explicitly, see, e.g., Theorem 2.11 in Section 2. More-
over, we use it to derive a characterization for isomorphic row operators in Sec-
tion 3. Finally, in Section 4 we give an application to Hamiltonian operators.



2 Main result

We always assume that X and ) are complex separable Hilbert spaces. Let T be
a bounded operator between X and ). We write T' € B(X,)) and, if X = ),
T € B(X). The range of T is denoted by R(T), the kernel by N (T). The term
isomorphism is reserved for linear bijections 7' : X — ) that are homeomorphisms,
ie, T €B(X,Y)and T' € BV, X).

A subspace in ) is an operator range if it coincides with the range of some
bounded operator T' € B(X,)). The following lemma is from [2, Theorem 2.4].

Lemma 2.1 Let R and Ra be operator ranges in Y such that Ri1 + Ro is
closed.

(i) If R1 N'Rq is closed, then Ry and Ra are closed.

(ii) If R1 and Ry are dense in ), then R1 MRy is dense in ).

From [1, Proposition 2.14, Theorem 2.16], we have the following basic facts,
which are important in the proofs of our main results.

Lemma 2.2 Let Q1 and Qo be two closed subspaces in X. Then
QLN = +99) 9 NQy = (Q + Q)

and we further have the following equivalent descriptions:
(i) Q1 + Q2 is closed;
(ii) Qf + Q5 is closed;
(iii) Q1 + Q2 = (Q N Q)L
(iV) (Ql N QZ)L = QlL + QQL

As usual, the symbol @ denotes the orthogonal sum of two closed subspaces
in a Hilbert space whereas the symbol + denotes the direct sum of two (not
necessarily closed) subspaces in a Hilbert space. If 2, are closed subspaces,
Q1 C Q, we denote by Q © Q; the uniquely determined closed subspace (2o in €2
with = Q1 & Qs.

The next lemma is well known, see, e.g., [7, Proposition 1.6.2] or [4, 6].

Lemma 2.3 Let A € B(X),B € B(Y,X),C € B(X,Y), and D € B(Y). Let

A (B) be an isomorphism. Then the 2 x 2 operator matrix

(g g) cEBX DY)

is an isomorphism if and only if D — CA™'B (resp. C — DB™'A) is an isomor-
phism.



Recall that an operator 7' € B(X,)) is called right invertible if there exists an
operator S € B(), X) with T'S = Iy, where Iy stands for the identity mapping in
Y. Hence, if T is right invertible then it is surjective. Conversely, if T' € B(X,))
then the restriction Ty (7). maps N(T)* onto R(T) and, if R(T) = Y, then
Tlnryr N(T)*+ — Y is an isomorphism. Then with

T|n(rye

S = (( " >—1>:37—>./\/’(T)€B/\/'(T)L (2.1)

considered as an operator in B(), X') we see that T" is right invertible. This shows
the equivalence of (i)-(iii) in the following (well-known) lemma.

Lemma 2.4 For T € B(X,)) the following assertions are equivalent.
(i) The operator T is right invertible.
(ii) R(T) =Y.

(iii) The operator T|y-¢pyr considered as an operator from N(T)* into Y is an
isomorphism.

(iv) There exists an isomorphism U € B()) such that UT is a right invertible
operator.

Proof. It remains to show the equivalence of (iv) with (i)-(iii). Choose U = Iy
and we see that (i) implies (iv). Conversely, let U € B(Y) be an isomorphism. If
UT is right invertible, then by (ii) R(UT) = Y. As R(T) = R(UT), again (ii)
shows that T is right invertible. ([

Similarly, T' € B(X,)) is called left invertible if there exists an operator S €
B(Y,X) with ST = Ix. Hence, if T is left invertible then it is injective and for a
sequence (yy,) in R(T') with y,, — y as n — oo we find (x,,) with Tz, = y,, and

Ty =STxy, = Sy, > Sy and vy, =Tz, — TSy,

which shows the closedness of R(T).

Conversely, if N'(T') = {0} and R(T) is closed, then T considered as an opera-
tor from & into R(T) is an isomorphism and its inverse 7! acts from R(T') into
X. Then with

S:=0 T :RIO*&R(T) = X, (2.2)

considered as an operator in B(Y, X'), we see that T is left invertible. We collect
these statements in the following lemma, where the equivalence of (i)-(iii) follows
from the above considerations and the equivalence of (i)-(iii) with (iv) is obvious.

Lemma 2.5 For T € B(X,)) the following assertions are equivalent.



(i) The operator T is left invertible.
(il) N(T) = {0} and R(T) is closed.

(iii) The operator T considered as an operator from X into R(T') is an isomor-
phism.

(iv) There exists an isomorphism V € B(X) such that TV is a left invertible
operator.

Remark 2.6 The following observation for T € B(X,Y) follows immediately
from the Lemmas 2.4 and 2.5. If T is right invertible, then there exists a left
invertible operator S € B(Y,X) (cf. (2.1)) with TS = Iy and R(S) = N(T)*. If
T is left invertible, then there exists a right invertible operator S € B(Y,X) (cf.
(2.2)) with ST = Iy.

For the orthogonal projection onto a closed subspace €2 in some Hilbert space
we shortly write Pq.

Theorem 2.7 Let A € B(X) and B € B(Y,X) and assume that the row
operator (A B) € B(X®Y, X) is right invertible. Then X admits the decomposition

X = (R(A)+R(B)*F) @ R(A) NR(B) (2.3)
and the space X ® ) admits the decomposition
XOY=X10X0X30V30)2® ), (2.4)

where

X = N(A), Xo:=N(A)FSN(Prp)r A, Xs:=N(Prpyr A

Yi:=N(B), YVo:=N(B)FSN(Pra:B)t, V3:=N(Pga-B)". (2:5)

The row operator (A B) from X & Y into X admits the following representation
with respect to the decompositions (2.3) and (2.4)

0 0 0 B3 0 0
0 0 43 0 0 0}, (2.6)
0 AQ AO Bo BQ 0

where
Ao € B (Xg,R(A)
ByebB <y3,R(A)

R(B)). Az € B(X, R(A)NR(B)), 4s € B (X3, R(B)):

N
NR(B)). B¢ B (¥ R(A)NR(B)), By € B(s R(A)*).

Then the operators As and Bs are isomorphisms and the row operator (As Bs) :
Xo @ Vo — R(A) NR(B) is right invertible and

R(A3) = R(A) N R(B) = R(By). (2.7)



Proof.  Step 1. We prove (2.3)—(2.6).
The row operator (A B) : X @ Y — X is right invertible and we have with

Lemma 2.4
R(A)+R(B)=X. (2.8)

We claim
Pr(ay:(R(B)) = R(A)". (2.9)

To see this, it suffices to show the inclusion Pr4y1(R(B)) D R(A)*. Let x €

R(A)L. Then there exist 21 € R(A) and 2o € R(B) such that x = x1 + x2, s0
z = Pray1 2 € PrayL(R(B)). This proves the claim. Similarly, we obtain

Pr(p)+(R(A)) = R(B)™. (2.10)

Moreover, by (2.8), we have

{0} = X" = (R(4) + R(B))" =R(4) NR(B)"
and also the sum R(A) + R(B) is closed. By Lemma 2.2 (iv) it follows that

(RANRB) =RA" +R(B"-

To sum up, we have the space decomposition (2.3). As N'(A) C N(Pg(pyLA), we
have N'(Pg(p) A)* C N(A)1. Analogously we see N'(Pg4y. B)™ C N(B)* and,
hence, decomposition (2.4) follows.

For z € X" = N(Pr(p)+ A) we have

Hence, x € N(Pg(p)+A) if and only if
Az € R(B). (2.11)

Similarly, y € N(PR(A)J_B) if and only if By € R(A). Therefore, if 29 € Ay
(y2 € V2), then it follows that zo € N(Pg(p)LA) (vesp. y2 € N(Pg(ayLB)) and,
by (2.11)

Azy € R(B) (resp. Bys € R(A)). (2.12)

Then the zero entries in (2.6) follow from the fact that Az = 0 for z € N (A),
By =0 for y € N(B), Az € R(A), By € R(B), and (2.12).

Step 2. We show that (Aa B2) is right invertible.

We have N(A) C N(Pg(pyrA), N(B) C N(Pg(4)LB) and by (2.8) and (2.3)
we see that Az and Bg are isomorphisms Thus, there exists an isomorphism
U € B(R(A)*4+R(B) R(A)N

0 0
1 0
BOB —ApAzt 1




such that

As (A B) is right invertible, Lemma 2.4 shows that (Ay Bz2) : Xo & Vo —
R(A) NR(B) is right invertible.

Step 3. We show (2.7).

By definition, we have R(A4s) € R(A) N R(B) and R(Bz) C R(A) N R(B).
We will only show R(A) NR(B) C R(B3). The proof for R(A) N R(B) C R(As2)
is the same and, hence, we omit this proof.

Let z € R(A) N R(B). Then there exists a sequence (zy) in R(B) which
converges to z. By the block representation (2.6) for B we find 21, in R(A4)* and

z3n € R(A) N R(B) with
Zn =Zp+ 230, NEN, (2.13)
where we have
21 = B3ys, and 23, = Boysn + Bay2, forn eN (2.14)

for some yo,, € Vo and y3, € V3. The convergence of (z,) implies the convergence
of (21,n) to some z; € R(A)L and of (23,,) to some 23 € R(A) N R(B),

2 =2z1+ z3.

The vectors z and z3 belong to R(A), thus z; € R(A) and z; = 0 follows. Therefore
(B3ys,n) in (2.14) converges to zero. The fact that B3 is an isomorphism implies
y3n — 0 as n — oo. We conclude

z=2z3= lim 23, = lim Boys,
n—0o0 n—oo

and z € R(B3) follows. Relation (2.7) is proved. O

The following proposition will be used in the proof of the main result.

Proposition 2.8 Let A € B(X) and B € B(Y,X) and let the row operator
(A B) e B(X® Y, X) be right invertible. The following assertions are equivalent.

(i) R(B) is closed.
(ii) Px(N((A B))) is a closed subspace in X.
(iii) R(Bzg) is closed.



Proof. Let R(B) be closed. We have
Py(N((AB))={zeX: Az e RLANR(B)} ={z e X: Az € R(B)}

and Py(N((A B))) is the pre-image of R(B) under A, and, hence, it is a closed
subspace and (ii) holds.
If Px(N((A B))) is closed, then also

Q:=PyN(AB))NNAL ={z € X 2 c N(A)*, Az € R(A)NR(B)}

is closed. Decompose x € ) with respect to the decomposition, cf. Theorem 2.7,
X=X PA3as v = o1 +22+23 with z; € & for j = 1,2,3. Then 21 = 0 and
for some y € Y we have Ax = By. Decompose y with respect to Y =YV Vo P Vs
(cf. Theorem 2.7) as y = y1 + y2 + y3 with y; € V; for j = 1,2,3. Relation (2.6)
shows

0 0 Bsys Y3
Ar=Al x| = Asxs = 0 =B |y | =By
T3 Azxo + Agx3 Boyz + Bayo (1

and, as As is an isomorphism, we obtain x3 = 0. Therefore 2 C X» and we write
Xy :Q@(XQQQ)

By Theorem 2.7 (A Bs) is right invertible and we obtain with Lemma 2.4

A2(X2 © Q) + By(V2) = RAANR(B), As(Xo© Q)N Bo(Vs) = {0}.

Thus, using Lemma 2.1, we deduce that As(Xe © Q) and R(B2) are closed.
Assume that (iii) holds. Then, by (2.7), the operator By is an isomorphism.

Let z € R(B). Then there exists a sequence (z,,) in R(B) which converges to z. By
the block representation (2.6) for B we find 21 ,, in R(A)* and z3,, € R(A)NR(B)
such that (2.13) and (2.14) hold for some y2,, € V2 and y3, € V3. The convergence
of (2,,) implies the convergence of (21,,) to some 21 € R(A)* and of (23,,) to some
z3 € R(A) NR(B), z = z1 + 2z3. As the operators By and Bs (cf. Theorem 2.7)

are isomorphisms, we have

Y3 — Bglzl Yon — —BQ_IBOBg_lzl + 32_123 as n — oo.

Thus, with (2.6),

Bylxn 21
B| -By'BoBy'z21+ Byl | = | 0| =2,
0 z3
and z € R(B). O



Lemma 2.9 Let A € B(X), B € B(Y,X) and assume that the row operator
(A B) € B(X ®Y,X) is right invertible. Let Ay and Bz be as in Theorem 2.7.
Then Bs considered as an operator from Yo to R(Bz) is one-to-one and has an
inverse By : R(Bg) — Ya. Define

Ay = (0 Ay) : Xy & Xy — R(A) N R(B).
Then gg‘pX(N((A B))) maps to R(Bz) and the operator

By Aol paavia my) - Pe V(A B))) = Vs

is correctly defined.
If R(B) is closed, then Bs is an isomorphism and we have

X1 B Ao IN(PR(B)lA) = PX(N((A B)))

and the operator B
By'Ay i N(Pr(p)A) — Vs (2.15)

is correctly defined.

Proof.  As Yy C N(B)* the operator By is one-to-one, hence its inverse
BQ_1 : R(B2) — Vs exists. From

Py(N((AB))={zeX: Az e R(A)NR(B)} C{r € X: Az € R(B)} (2.16)

we conclude

Moreover, we decompose = € Py(N((A B))) with respect to the decomposition
X =X1®X @ A3 (cf. Theorem 2.7) as . = 1 +xo+23 with 2; € &) for j =1,2,3.
Then z3 = 0 and for some y € Y we have Ax = By. Decompose y with respect to
YV =Y1®Y2® V3 (cf. Theorem 2.7) as y = y1 +y2 +y3 with y; € V; for j =1,2,3.
Relation (2.6) shows

T 0 Bsys Y3
Ar=A |z | = 0 = 0 =B |y | =By
0 Agwg Boys + Bay2 Y1
and, as Bg is an isomorphism, we obtain y3 = 0 and Aszs = Bsys. Thus

Ayz € R(By) for z € Py(N((A B))) and B;1g2|pX(N((A B))) is correctly de-
fined. If R(B) is closed, then by Proposition 2.8 also R(Bz) is closed and by
(2.7) we see that By is an isomorphism. Moreover, from (2.16) we see in this case
X1 ® Xy = N(Prp)rA) = Px(N((A B))) and (2.15) follows. O

The following theorem is the main result. It provides a full characterization of
isomorphic 2 x 2 operator matrices in terms of their entries.



Theorem 2.10 Let A € B(X), B € B(Y,X). Assume that the row operator
(A B) e B(X®Y,X) is right invertible and, hence, adopt the notions As, Ba, and
X;, Vi, 3 =1,2,3, as in Theorem 2.7 and Ay as in Lemma 2.9. Let C € B(Xx,Y)
and D € B(Y). Define the operator matriz M by

A B
M= ( A D) .
Define the operator BEIAV2|PX(N((A B))) as in Lemma 2.9 and define

CQ = P(R(D‘N<B)))LC|X1@X2 : Xl ® XQ — (R(D’N(B)))L
and
Dy = P(R(D‘/WB)))LD‘))Q Vo — (R(D‘N(B)))J_

Then M is an isomorphism if and only if the following two statements are satisfied:
(i) The restriction D|y gy : N(B) — Y is left invertible.

(ii) The operator

(G~ D287 22)| : Px(N((A4 B)) = (R(Dlx(s))*

Px(N((A B)))

s one-to-one and surjective.

Proof. Let M be an isomorphism. Then the row operator (4 B) : X xY — X
is right invertible, see Lemma 2.4, and the column operator ( g) Y > X x)Yis
injective. Moreover, if the range of (g) is not closed then there exists a sequence
(yn) in Y with |jyn|| =1, n € N, and (B)y, — 0 as n — oo. But this implies
M (y%) — 0, a contradiction as M is assumed to be an isomorphism. Therefore
the column operator (g) is left invertible, cf. Lemma 2.5.

Now let z € R(D|r(p)). Then, there exists z, € N'(B) such that Dz, — z as
n — 0o, and we further have

B . 0 N 0
D)™ \ Dz, z)’
which together with Lemma 2.5 implies
B {0
D))"=\,

for some z € N(B), and hence D|ypyr = 2. This proves that R(D|y(p)) is
closed, hence, D|y(p) is left invertible by Lemma 2.5 and (i) is proved.
As R(D|n(p)) is a closed subspace in ), we decompose ),

Y = (R(D|ns)) " ® R(D|n(s))- (2.17)

10



Similar to the proof of Theorem 2.7, M as an operator from N(PR(B)LA) &)
X3 @ V3 & Yo ® V1 into

(R(A)THR(B)") @ R(A) N R(B) ® (R(D|n(5)))" ® R(D|n(p))

has the following block representation

0 0 By 0 0
0 A3 0 0 0
M=\|4, Ay By By 0 (2.18)

Co C3 Dy Dy O
Cy, Cs D3 Dy Ds

By Theorem 2.7, A3 and Bj are isomorphisms. Additionally, as M is an isomor-
phism, Ds is also an isomorphism. Then there exist isomorphisms

U € B((R(A)*4+R(B)) & R(A) N R(B) & (R(Dlym))* & R(Dly())) -
V € B(N(Pr(g)-A) @ X © Y5 © %8 )

with
1 0 000
0 1 000
U:=|-ByB;' 443" 1 0 0],
~DiB;' G343t 0 1 0
0 0 00 1
1 0 0 0 0
0 1 0 0 0
Vo= 0 0 1 0 0
0 0 0 1 0
-Dg'Cy -D;'Cs —-Dy'Dy —Di'Dy 1
such that
0 0 By 0 0
0 A3 0 0 0
UMV =4 0 0 By 0 (2.19)
C, 0 0 Dy O
0 0 0 0 Dj

Thus, M is an isomorphism if and only if

A= <‘é§ gz> : N(Prp)LA) & Yo = (R(A) NR(B)) & (R(D|ns))" (2:20)

is an isomorphism.

11



Case 1: R(B) is closed. In this case, from Lemma 2.9, By : Yo — R(A) N R(B)
is an isomorphism and By ' Ay : N/ (Pr(p)LA) — Y2 is correctly defined, see Lemma
2.9. According to Lemma 2.3, A is an isomorphism if and only if

Cy — DyBy ' Ay : N(Pripyr A) = (R(Dlnm)))*

is an isomorphism. By Lemma 2.9 N(Pg)1A4) = Px(N((A B))) and (ii) is
satisfied.

Case 2: R(B) is not closed. By Proposition 2.8 also R(Bz) is not closed which
implies dim R(Bz) = oo and dim )» = co. The dimension does not change when
we close a subspace, therefore we conclude from (2.7)

dim R(A) N R(B) = dim R(Bz) = dim R(Bs) = cc. (2.21)

By Theorem 2.7 (Ay Bs) is right invertible, (2.7) and Lemma 2.1 imply

R(Az) N R(BQ) = R(A) N R(B)

Obviously, R(A3) N R(Bz) € R(A) N R(B) and we obtain R(A) N R(B) C
R(A) NR(B). Thus

R(A) NR(B) = R(A) NR(B).

From this and from R(A) N R(B) C R(A) NR(B) C R(A) N R(B) we conclude
with (2.21)

0o = dimR(A) NR(B) = dimR(A) N R(B) = dim R(A) N R(B). (2.22)
We will use (2.22) to show
dim N ((Ay Bs)) = dim N (P gL A). (2.23)
For this we consider
N((AB) ={(3) e N} o {(4) sy e N(A)", Ay = —Bz}  (2.24)

and

N(Prepyi A) = N(A) & {x Lz e N(AL, Az e W} .

As A restricted to N(A)* is injective, we obtain with (2.22)

dim{(g):yeN(A)L,Ay:—Bz}:dimR(A)mR( ) = dim R(A) NR(B)
:dim{m:xe/\/( , Az € R(B }

Therefore

12



and with (2.19) we obtain dim N ((Az By)) = dim N (Pgpy: A), hence (2.23) is
proved. Two separable Hilbert spaces of the same dimension are unitarily equiv-
alent, therefore there exists a left invertible operator

<ff> . yg — N(PR(B)J_A) D yg With range N((gg Bg)) (225)
Since X} © Xy = N(Pg(p)LA) and by Theorem 2.7 and Lemma 2.9 (Ay By) :

N(PrpyLA) @ Yo — R(A) N R(B) is a right invertible operator. Then, see
Remark 2.6, there exists a left invertible operator

@) : R(A) NR(B) = N (Pr(p)LA) & Vs (2.26)
such that
AoB + ByF = Iy with R <<§>> — (N((As B))): (2.27)
Define
W= (? g) : R(A) NR(B) @ Vo — N (Pr(p)LA) & a. (2.28)

As (%) and (£) are left invertible and from (2.25) and (2.27) we obtain easily
that W is an isomorphism. We have

AR 0
AW = | _RA)NR(B) ) 2.29
(CZE + Do F CoG + Do H ( )

As M is an isomorphism, A is an isomorphism (see (2.20)) and the operator
CoG + DoH : Yo — (R(D|pr(p)))* is an isomorphism. Moreover, the operator By
considered as an operator from Vs to R(Bz) is one-to-one and has an inverse, see
Lemma 2.9. From AVQG + BoH = 0 we conclude —BQ_IEQG = H and

CyG + DyH = (CQ — DQBEIZQ)G (230)

Therefore, Co — _DQBQ_I,;{Q :R(G) — (R(D[N(B)))L is one-to-one with range equal
to (R(D|n(p)))*- From

R((§)) = N((A2 By))
= (%’”) ® {(5) rx e N(A)Yy e N(B)H, Az = —By} (2.31)
= N((4 B)),

see (2.24), it follows that R(G) = Px(N((A B))) and (ii) is shown.
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Now let us assume that (i) and (ii) hold. Then R(D|x(p)) is a closed subspace
and ) admits a decomposition as in (2.17) and we obtain the representation of
M as in (2.18), where A3, B3 and D5 are isomorphisms. Then, taking the same
U and V as above, we obtain the relation (2.19). Moreover, if A in (2.20) is an
isomorphism, then M is an isomorphism.

If R(B) is closed, then from Lemma 2.9, By : Yo — R(A)NR(B) is an
isomorphism and By 4y« NV (PR(B)LA> — Yo is correctly defined. Moreover,
Lemma 2.9, N'(Pg(p)1 A) = Px(N((A B))). Then, by (ii),

Co — DBy ' Ay : N (Pr(pyr A) = (R(Dnm)*

is an isomorphism and according to Lemma 2.3, A is an isomorphism and, hence,
M is an isomorphism.

If R(B) is not closed, then as above, we define the operators G, H, E, F, and
W asin (2.25), (2.26), (2.27), and (2.28). Moreover, the operator W in (2.28) is an
isomorphism and also (2.30) and (2.31) hold. By (2.31) R(G) = Px(N((4A B)))
and as Bs is one-to-one, we see that the operator G in (2.25) is one-to-one. Hence,
together with (i), the operator (Cy — DaBy ' A5)G : Yy — (R(Dlar(p)))* is one-
to-one with range equal to (R(D|x(p)))*. Therefore, by (2.30), C2G + D2 H is
an isomorphism and, by (2.29) and as W is an isomorphism, also A is an isomor-
phism. Therefore, see (2.20), M is an isomorphism. O

Finally, we consider the following special case.

Theorem 2.11 Let A,B,C,D € B(X) and let X', X" be closed subspaces of
X with
X — X/ @ A)Cv//

such that
R(A) =X, NA)=X", R(B)=X", and N(B)=2X"
Moreover assume that the restriction D|y: : X' — X is left invertible. Then the

2 x 2 operator matriz M,
A B
w=(& D),

is an isomorphism if and only if
Cy = Pir(p| - Clan : X" = (R(D]a))*

18 an isomorphism.

In particular, if, in addition, R(B) # {0} and the operator D]y : X' — X is
an isomorphism, then for every operator C' € B(X) the 2 x 2 operator matriz M
18 not an isomorphism.
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Proof. Denote by Py the orthogonal projection in X & X onto the first com-
ponent. Then

Px(N((A B))) = N(4) = &",

Moreover, we have N'(Pg gyt A)*t = N(PyA)*t = N(A)*+ and R(A) NR(B) =
X'N X" ={0}. Then the space Xo in Theorem 2.7 equals zero and the operators
As and 112 in Theorem 2.10 are zero. Then the statements of Theorem 2.11 follow
from Theorem 2.10. O

3 A characterization of isomorphic row operators

In this section let A, B,C, D and M be as in Theorem 2.10. In the following we
use Theorems 2.7 and 2.10 to characterize the case of an isomorphic row operator
(A B) and to derive a necessary condition for M to be an isomorphism.

Proposition 3.1 Let A € B(X) and B € B(Y,X). The row operator (A B) €
B(X @Y, X) is an isomorphism (i.e. (A B) is left and right invertible) if and only
if the following two statements are satisfied:

(i) N(4) =N (B) = {0}.
(ii) R(A) = R(B)*, R(B) = R(A)* .

Proof. 1If (i) and (ii) hold, then Az + By = 0 for some x € X, y € ) implies
Az = —By € R(B). By (ii), Az = 0 and, hence, By = 0 follows. Then (i) implies
x=y=0and N((A B)) = {0}. Moreover, we have with (ii)

R((A B)) C R(A) + R(B) = R(A) + R(A)t =X

and the row operator (A B) is an isomorphism.

For the contrary let the row operator (A B) be an isomorphism. If for some
xz € X we have Az = 0 then (A B) (§) =0 and, as N (A B) = {0}, z = 0 follows.
That is, N(A) = {0} and, similarly, we see N (B) = {0}. This shows (i). In
order to show (ii) let z € R(A) N R(B) and assume = # 0. Then there exists
sequences (x,) in X and (y,) in ) such that (Ax,) and (By,) converge both to
z with liminf, e [|2,|| > 0 and liminf, o [|yn| > 0. But then (A B) (%) =
Az, — By, tends to zero and R((A B)) is not closed, a contradiction. This shows

R(A)NR(B) = {0}. (3.1)
As z € N(Pr(pyLA) if and only if Az € R(B) (see also (2.11)), we conclude with
N(A) = {0} and (3.1)
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In the same way we obtain from (3.1) and N'(B) = {0} that N (Pg4) B) = {0}.
Then for the spaces X7, Xo, X3, V1, Vo, V3 from Theorem 2.7 we conclude

X1 ={0}, A={0}, Az=X, Y1 ={0}, b={0}, and Y3=)

and the row operator (A B) admits a representation according to Theorem 2.7
with respect to the decompositions X @) and X = R(A)>+R(B)* of the form

0 Bs

As 0 )’
where Az € B (X,R(B)') and B € B (¥, R(A)*) are isomorphisms. This shows
(ii). O

Example 3.2 Let X =Y = (*(N) and consider the following operators A and
Bin X:
A(zp)nen = (1,0,22,0...) and B(xp)nen = (0,21,0,22...).

Then the row operator (A B) satisfies (i) and (ii) of Proposition 3.1 and, hence,
(A B) is an isomorphism.

As a consequence, we derive the following condition for M to be an isomor-
phism.

Corollary 3.3 Let A€ B(X), Be B(Y,X), C € B(X,Y) and D € B(Y). If
Y #{0} and N((A B))={0}

v=(e o)

Proof. If M is an isomorphism, then as noted in the proof of Theorem 2.10,
the row operator (A B) is right invertible. Assume N((A B)) = {0}. Then
(A B) is an isomorphism, and, by Proposition 3.1, N (B) = {0}. Hence, we ob-
tain (R(D\N(B)))L = Y and (ii) in Theorem 2.10 cannot be true unless Y = {0}.
Therefore, either ) = {0} or N((A B)) # {0} holds. O

then the operator matriz M

18 not a isomorphism.

4 Application to Hamiltonian operators

In this section we consider the special case of Hamiltonian operators, i.e., in the
situation of Theorem 2.10, X = ), the operators B, C are self-adjoint and D =
—A*. Under these assumptions, Theorem 2.10 takes the following simple form.
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Theorem 4.1 Let A,B,C € B(X). Assume that the row operator (A B) €
B(X @& X, X) is right invertible and that B and C are self-adjoint operators in X,
i.e. B=B* and C = C*. Adopt the notions Az, Ba, and X;, YV;, j =1,2,3, as in
Theorem 2.7 and As as in Lemma 2.9. Define the operator BQ_IEQIPX(N((A B)))
as in Lemma 2.9 and define

Cy := Py )Clriox, : X1 @ Xy = N(Prp)A4)

Pp gL A

and
(—A*)Q = _PN(PR(B)LA)A*b}Q . y2 — N(PR(B)J_A)

Then the Hamiltonian operator
A B
m= (e %)

is an isomorphism if and only if

(i) the operator

(02 - (—A*)QB;%)] : Px(N((A B))) = N(Pr(p): A)

Px(N((A B)))
s one-to-one and surjective.

If in this case we have, in addition, that R(B) is closed, then C’Q—(—A*)QBQ_IZQ €
B(N(Prpy+A)) is an isomorphism.

Proof. By assumption, the row operator (A B) is right invertible, hence (see
Lemma 2.4) its range is closed and R(A) + R(B) = X. The same applies to

(B — A) and thus its adjoint,
. (B

has a closed range and is one-to-one. Let z € R(—A*|y(py). Then, there exists
zn € N(B) such that —A*z, — z as n — oo, and we further have

B L 0 N 0
—A*) T\ —A*z, z)’
which together with the closedness of the range of (B — A)* implies

()= ()

for some 2 € N(B), and hence —A*|;(pyr = z. This proves that R(—A*|y(p)) is
closed and (i) in Theorem 2.10 is satisfied for D = —A*.
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Next, we verify
(R(=A%|y(1) " = N(Pr(p)r A). (4.1)

Indeed, if = € (R(—A*]N(B)))J-, we have (—Ax,y) = (z,—A*y) = 0 for every
y € N(B), hence —Az € N(B)*, which together with the self-adjointness of B
deduces Az € R(B), and hence x € N(Pg(p)L A); while if 2 € N (Pg(pyL A), then

Az € R(B), and hence we have for y € N(B) that (z,—A*y) = (—Az,y) = 0,
ie., x € (R(—A*‘N(B)))J‘

Now the equivalence of (i) and the fact that H is an isomorphism follows from
(4.1) and Theorem 2.10. The additional statement in the case of a closed range
of B follows from Lemma 2.9. i
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