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Abstract

In this paper the properties of right invertible row operators, i.e., of 1× 2
surjective operator matrices are studied. This investigation is based on a
specific space decomposition. Using this decomposition, we characterize the
invertibility of a 2 × 2 operator matrix. As an application, the invertibility
of Hamiltonian operator matrices is investigated.
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1 Introduction

The invertibility of a linear operator is one of the most basic problems in operator
theory, and, obviously, appears in the study of the linear equation Tx = y with a
linear operator T .

This problem becomes even more involved if one considers the invertibility of
2× 2 operator matrices. For this let A, B, C and D be bounded linear operators
on a Hilbert space. If, e.g., they are pairwise commutative, then the operator
matrix

M =

(
A B
C D

)
(1.1)

is invertible if and only if AD − BC is invertible (cf. [3, Problem 70]). If only
C and D are commutative, and if, in addition, D is invertible, then the operator
matrix M is invertible if and only if AD−BC is invertible (cf. [3, Problem 71]). In
fact, the commutativity is essential in the above characterization, see [3, Problem
71]. The situation is even more involved if A and D are not defined on the same
space and, hence, the formal expression AD −BC has no meaning.

In general, there is no complete description of the invertibility of operator
matrices in the non-commutative case. But if at least one of the entries A or D of

1Corresponding author.
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the operator matrixM is invertible, one can describe the invertibility ofM in terms
of the Schur complement. A similar statement holds also in the case of invertible
entries B or C. Moreover, the Schur complement method can be effectively used
also in the case where the entries ofM are unbounded operators under additionally
assumptions on the domain of the entries, such as the diagonally (or off-diagonally)
dominant or upper (lower) dominant cases, see, e.g., the monograph [7]. We also
refer to [5, 8] for sufficient conditions for nonnegative Hamiltonian operators to
have bounded inverses.

However, it is easy to see that there are many invertible 2 × 2 operator ma-
trices with non invertible entries A,B,C and D (see, e.g., Theorem 2.11 below).
Obviously, in such cases, the Schur complement method is not applicable.

It is the aim of the present article to give a full characterization for the invert-
ibility of bounded 2 × 2 operator matrices. We do this in the following manner:
A necessary condition for the invertibility of a 2 × 2 operator matrix M in (1.1)
is the fact that the row operator (A B) is right invertible (that is, the range
R((A B)) of the operator (A B) covers all of the spaces). A further necessary
condition is N ((A B)) ̸= {0}, where N ((A B)) denotes the kernel of (A B)
(see Corollary 3.3 below). This non-zero kernel N ((A B)) plays a crucial role.
Its projection PX (N ((A B))) onto the first component is a subset of the kernel of
PR(B)⊥A, where PR(B)⊥ denotes the orthogonal projection onto R(B)⊥. Similarly,
the projection ofN ((A B)) onto the second component is a subset ofN (PR(A)⊥B).

Therefore we investigate a right invertible row operator (A B) and choose
a decomposition of the space into six parts which is built out of the subspaces
N (A),N (B),N (PR(B)⊥A) and N (PR(A)⊥B). As a result, we show that the

operator B−1
2 Ã2 considered as an operator from PX (N ((A B))) to N (B)⊥ ⊖

N (PR(A)⊥B)⊥ is correctly defined. Here Ã2 (B2) denote the restriction of A

(B, respectively) to N (PR(B)⊥A) (N (B)⊥ ⊖N (PR(A)⊥B)⊥, respectively).
The main result of the present article is a full characterization of the invert-

ibility of a 2 × 2 matrix operator M in terms of its entries A,B,C,D, or to be
more precise, in terms of the restrictions Ã2, B2, C2 and D2 which are, in some
sense, all related to N ((A B)): A 2 × 2 operator matrix M is invertible if and
only if the following two statements are satisfied

(i) The restriction D|N (B) is left invertible and

(ii) the operator

C2−D2B
−1
2 Ã2 : PX (N ((AB))) → (R(D|N (B)))

⊥ is one-to-one and surjective.

Here C2 (D2) is the restriction of C (D, respectively) to N (PR(B)⊥A) (N (B)⊥ ⊖
N (PR(A)⊥B)⊥, respectively) projected onto (R(D|N (B)))

⊥.
This characterization is especially helpful if the spacesN ((A B)), N (PR(B)⊥A)

or N (PR(A)⊥B) are known explicitly, see, e.g., Theorem 2.11 in Section 2. More-
over, we use it to derive a characterization for isomorphic row operators in Sec-
tion 3. Finally, in Section 4 we give an application to Hamiltonian operators.
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2 Main result

We always assume that X and Y are complex separable Hilbert spaces. Let T be
a bounded operator between X and Y. We write T ∈ B(X ,Y) and, if X = Y,
T ∈ B(X ). The range of T is denoted by R(T ), the kernel by N (T ). The term
isomorphism is reserved for linear bijections T : X → Y that are homeomorphisms,
i.e., T ∈ B(X ,Y) and T−1 ∈ B(Y,X ).

A subspace in Y is an operator range if it coincides with the range of some
bounded operator T ∈ B(X ,Y). The following lemma is from [2, Theorem 2.4].

Lemma 2.1 Let R1 and R2 be operator ranges in Y such that R1 + R2 is
closed.

(i) If R1 ∩R2 is closed, then R1 and R2 are closed.
(ii) If R1 and R2 are dense in Y, then R1 ∩R2 is dense in Y.

From [1, Proposition 2.14, Theorem 2.16], we have the following basic facts,
which are important in the proofs of our main results.

Lemma 2.2 Let Ω1 and Ω2 be two closed subspaces in X . Then

Ω1 ∩ Ω2 = (Ω⊥
1 +Ω⊥

2 )
⊥, Ω⊥

1 ∩ Ω⊥
2 = (Ω1 +Ω2)

⊥,

and we further have the following equivalent descriptions:
(i) Ω1 +Ω2 is closed;
(ii) Ω⊥

1 +Ω⊥
2 is closed;

(iii) Ω1 +Ω2 = (Ω⊥
1 ∩ Ω⊥

2 )
⊥;

(iv) (Ω1 ∩ Ω2)
⊥ = Ω⊥

1 +Ω⊥
2 .

As usual, the symbol ⊕ denotes the orthogonal sum of two closed subspaces
in a Hilbert space whereas the symbol +̇ denotes the direct sum of two (not
necessarily closed) subspaces in a Hilbert space. If Ω,Ω1 are closed subspaces,
Ω1 ⊂ Ω, we denote by Ω ⊖ Ω1 the uniquely determined closed subspace Ω2 in Ω
with Ω = Ω1 ⊕ Ω2.

The next lemma is well known, see, e.g., [7, Proposition 1.6.2] or [4, 6].

Lemma 2.3 Let A ∈ B(X ), B ∈ B(Y,X ), C ∈ B(X ,Y), and D ∈ B(Y). Let
A (B) be an isomorphism. Then the 2× 2 operator matrix(

A B
C D

)
∈ B(X ⊕ Y)

is an isomorphism if and only if D − CA−1B (resp. C −DB−1A) is an isomor-
phism.
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Recall that an operator T ∈ B(X ,Y) is called right invertible if there exists an
operator S ∈ B(Y,X ) with TS = IY , where IY stands for the identity mapping in
Y. Hence, if T is right invertible then it is surjective. Conversely, if T ∈ B(X ,Y)
then the restriction T |N (T )⊥ maps N (T )⊥ onto R(T ) and, if R(T ) = Y, then

T |N (T )⊥ : N (T )⊥ → Y is an isomorphism. Then with

S :=

(
0(

T |N (T )⊥

)−1

)
: Y → N (T )⊕N (T )⊥ (2.1)

considered as an operator in B(Y,X ) we see that T is right invertible. This shows
the equivalence of (i)-(iii) in the following (well-known) lemma.

Lemma 2.4 For T ∈ B(X ,Y) the following assertions are equivalent.

(i) The operator T is right invertible.

(ii) R(T ) = Y.

(iii) The operator T |N (T )⊥ considered as an operator from N (T )⊥ into Y is an
isomorphism.

(iv) There exists an isomorphism U ∈ B(Y) such that UT is a right invertible
operator.

Proof. It remains to show the equivalence of (iv) with (i)-(iii). Choose U = IY
and we see that (i) implies (iv). Conversely, let U ∈ B(Y) be an isomorphism. If
UT is right invertible, then by (ii) R(UT ) = Y. As R(T ) = R(UT ), again (ii)
shows that T is right invertible. �

Similarly, T ∈ B(X ,Y) is called left invertible if there exists an operator S ∈
B(Y,X ) with ST = IX . Hence, if T is left invertible then it is injective and for a
sequence (yn) in R(T ) with yn → y as n → ∞ we find (xn) with Txn = yn and

xn = STxn = Syn → Sy and yn = Txn → TSy,

which shows the closedness of R(T ).
Conversely, if N (T ) = {0} and R(T ) is closed, then T considered as an opera-

tor from X into R(T ) is an isomorphism and its inverse T−1 acts from R(T ) into
X . Then with

S :=
(
0 T−1

)
: R(T )⊥ ⊕R(T ) → X , (2.2)

considered as an operator in B(Y,X ), we see that T is left invertible. We collect
these statements in the following lemma, where the equivalence of (i)-(iii) follows
from the above considerations and the equivalence of (i)-(iii) with (iv) is obvious.

Lemma 2.5 For T ∈ B(X ,Y) the following assertions are equivalent.
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(i) The operator T is left invertible.

(ii) N (T ) = {0} and R(T ) is closed.

(iii) The operator T considered as an operator from X into R(T ) is an isomor-
phism.

(iv) There exists an isomorphism V ∈ B(X ) such that TV is a left invertible
operator.

Remark 2.6 The following observation for T ∈ B(X ,Y) follows immediately
from the Lemmas 2.4 and 2.5. If T is right invertible, then there exists a left
invertible operator S ∈ B(Y,X ) (cf. (2.1)) with TS = IY and R(S) = N (T )⊥. If
T is left invertible, then there exists a right invertible operator S ∈ B(Y,X ) (cf.
(2.2)) with ST = IX .

For the orthogonal projection onto a closed subspace Ω in some Hilbert space
we shortly write PΩ.

Theorem 2.7 Let A ∈ B(X ) and B ∈ B(Y,X ) and assume that the row
operator (A B) ∈ B(X⊕Y,X ) is right invertible. Then X admits the decomposition

X = (R(A)⊥+̇R(B)⊥)⊕R(A) ∩R(B) (2.3)

and the space X ⊕ Y admits the decomposition

X ⊕ Y = X1 ⊕X2 ⊕X3 ⊕ Y3 ⊕ Y2 ⊕ Y1, (2.4)

where

X1 := N (A), X2 := N (A)⊥ ⊖N (PR(B)⊥A)
⊥, X3 := N (PR(B)⊥A)

⊥;

Y1 := N (B), Y2 := N (B)⊥ ⊖N (PR(A)⊥B)⊥, Y3 := N (PR(A)⊥B)⊥.
(2.5)

The row operator (A B) from X ⊕ Y into X admits the following representation
with respect to the decompositions (2.3) and (2.4)0 0 0 B3 0 0

0 0 A3 0 0 0
0 A2 A0 B0 B2 0

 , (2.6)

where

A0 ∈ B
(
X3,R(A) ∩R(B)

)
, A2 ∈ B

(
X2,R(A) ∩R(B)

)
, A3 ∈ B

(
X3,R(B)⊥

)
;

B0 ∈ B
(
Y3,R(A) ∩R(B)

)
, B2 ∈ B

(
Y2,R(A) ∩R(B)

)
, B3 ∈ B

(
Y3,R(A)⊥

)
.

Then the operators A3 and B3 are isomorphisms and the row operator (A2 B2) :
X2 ⊕ Y2 → R(A) ∩R(B) is right invertible and

R(A2) = R(A) ∩R(B) = R(B2). (2.7)
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Proof. Step 1. We prove (2.3)–(2.6).
The row operator (A B) : X ⊕ Y → X is right invertible and we have with

Lemma 2.4
R(A) +R(B) = X . (2.8)

We claim
PR(A)⊥(R(B)) = R(A)⊥. (2.9)

To see this, it suffices to show the inclusion PR(A)⊥(R(B)) ⊃ R(A)⊥. Let x ∈
R(A)⊥. Then there exist x1 ∈ R(A) and x2 ∈ R(B) such that x = x1 + x2, so
x = PR(A)⊥x2 ∈ PR(A)⊥(R(B)). This proves the claim. Similarly, we obtain

PR(B)⊥(R(A)) = R(B)⊥. (2.10)

Moreover, by (2.8), we have

{0} = X⊥ = (R(A) +R(B))⊥ = R(A)
⊥ ∩R(B)

⊥

and also the sum R(A) +R(B) is closed. By Lemma 2.2 (iv) it follows that(
R(A) ∩R(B)

)⊥
= R(A)

⊥
+R(B)

⊥
.

To sum up, we have the space decomposition (2.3). As N (A) ⊂ N (PR(B)⊥A), we

have N (PR(B)⊥A)
⊥ ⊂ N (A)⊥. Analogously we see N (PR(A)⊥B)⊥ ⊂ N (B)⊥ and,

hence, decomposition (2.4) follows.
For x ∈ X⊥

3 = N (PR(B)⊥A) we have

Ax =
(
I − PR(B)⊥

)
Ax = PR(B)

Ax.

Hence, x ∈ N (PR(B)⊥A) if and only if

Ax ∈ R(B). (2.11)

Similarly, y ∈ N (PR(A)⊥B) if and only if By ∈ R(A). Therefore, if x2 ∈ X2

(y2 ∈ Y2), then it follows that x2 ∈ N (PR(B)⊥A) (resp. y2 ∈ N (PR(A)⊥B)) and,
by (2.11)

Ax2 ∈ R(B) (resp. By2 ∈ R(A)). (2.12)

Then the zero entries in (2.6) follow from the fact that Ax = 0 for x ∈ N (A),
By = 0 for y ∈ N (B), Ax ∈ R(A), By ∈ R(B), and (2.12).

Step 2. We show that (A2 B2) is right invertible.
We have N (A) ⊂ N (PR(B)⊥A), N (B) ⊂ N (PR(A)⊥B) and by (2.8) and (2.3)

we see that A3 and B3 are isomorphisms. Thus, there exists an isomorphism
U ∈ B((R(A)⊥+̇R(B)⊥)⊕R(A) ∩R(B))

U :=

 1 0 0
0 1 0

−B0B
−1
3 −A0A

−1
3 1


6



such that

U

0 0 0 B3 0 0
0 0 A3 0 0 0
0 A2 A0 B0 B2 0

 =

0 0 0 B3 0 0
0 0 A3 0 0 0
0 A2 0 0 B2 0

 .

As (A B) is right invertible, Lemma 2.4 shows that (A2 B2) : X2 ⊕ Y2 →
R(A) ∩R(B) is right invertible.

Step 3. We show (2.7).
By definition, we have R(A2) ⊂ R(A) ∩ R(B) and R(B2) ⊂ R(A) ∩ R(B).

We will only show R(A) ∩R(B) ⊂ R(B2). The proof for R(A) ∩R(B) ⊂ R(A2)
is the same and, hence, we omit this proof.

Let z ∈ R(A) ∩ R(B). Then there exists a sequence (zn) in R(B) which
converges to z. By the block representation (2.6) for B we find z1,n in R(A)⊥ and

z3,n ∈ R(A) ∩R(B) with

zn = z1,n + z3,n, n ∈ N, (2.13)

where we have

z1,n = B3y3,n and z3,n = B0y3,n +B2y2,n for n ∈ N (2.14)

for some y2,n ∈ Y2 and y3,n ∈ Y3. The convergence of (zn) implies the convergence

of (z1,n) to some z1 ∈ R(A)⊥ and of (z3,n) to some z3 ∈ R(A) ∩R(B),

z = z1 + z3.

The vectors z and z3 belong toR(A), thus z1 ∈ R(A) and z1 = 0 follows. Therefore
(B3y3,n) in (2.14) converges to zero. The fact that B3 is an isomorphism implies
y3,n → 0 as n → ∞. We conclude

z = z3 = lim
n→∞

z3,n = lim
n→∞

B2y2,n

and z ∈ R(B2) follows. Relation (2.7) is proved. �

The following proposition will be used in the proof of the main result.

Proposition 2.8 Let A ∈ B(X ) and B ∈ B(Y,X ) and let the row operator
(A B) ∈ B(X ⊕Y,X ) be right invertible. The following assertions are equivalent.

(i) R(B) is closed.

(ii) PX (N ((A B))) is a closed subspace in X .

(iii) R(B2) is closed.
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Proof. Let R(B) be closed. We have

PX (N ((A B))) = {x ∈ X : Ax ∈ R(A) ∩R(B)} = {x ∈ X : Ax ∈ R(B)}

and PX (N ((A B))) is the pre-image of R(B) under A, and, hence, it is a closed
subspace and (ii) holds.

If PX (N ((A B))) is closed, then also

Ω := PX (N ((A B))) ∩N (A)⊥ = {x ∈ X : x ∈ N (A)⊥, Ax ∈ R(A) ∩R(B)}

is closed. Decompose x ∈ Ω with respect to the decomposition, cf. Theorem 2.7,
X = X1⊕X2⊕X3 as x = x1+x2+x3 with xj ∈ Xj for j = 1, 2, 3. Then x1 = 0 and
for some y ∈ Y we have Ax = By. Decompose y with respect to Y = Y1⊕Y2⊕Y3

(cf. Theorem 2.7) as y = y1 + y2 + y3 with yj ∈ Yj for j = 1, 2, 3. Relation (2.6)
shows

Ax = A

 0
x2
x3

 =

 0
A3x3

A2x2 +A0x3

 =

 B3y3
0

B0y3 +B2y2

 = B

y3
y2
y1

 = By

and, as A3 is an isomorphism, we obtain x3 = 0. Therefore Ω ⊂ X2 and we write

X2 = Ω⊕ (X2 ⊖ Ω).

By Theorem 2.7 (A2 B2) is right invertible and we obtain with Lemma 2.4

A2(X2 ⊖ Ω) +B2(Y2) = R(A) ∩R(B), A2(X2 ⊖ Ω) ∩B2(Y2) = {0}.

Thus, using Lemma 2.1, we deduce that A2(X2 ⊖ Ω) and R(B2) are closed.
Assume that (iii) holds. Then, by (2.7), the operator B2 is an isomorphism.

Let z ∈ R(B). Then there exists a sequence (zn) inR(B) which converges to z. By
the block representation (2.6) for B we find z1,n in R(A)⊥ and z3,n ∈ R(A)∩R(B)
such that (2.13) and (2.14) hold for some y2,n ∈ Y2 and y3,n ∈ Y3. The convergence
of (zn) implies the convergence of (z1,n) to some z1 ∈ R(A)⊥ and of (z3,n) to some

z3 ∈ R(A) ∩ R(B), z = z1 + z3. As the operators B2 and B3 (cf. Theorem 2.7)
are isomorphisms, we have

y3,n → B−1
3 z1 y2,n → −B−1

2 B0B
−1
3 z1 +B−1

2 z3 as n → ∞.

Thus, with (2.6),

B

 B−1
3 z1

−B−1
2 B0B

−1
3 z1 +B−1

2 z3
0

 =

z1
0
z3

 = z,

and z ∈ R(B). �
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Lemma 2.9 Let A ∈ B(X ), B ∈ B(Y,X ) and assume that the row operator
(A B) ∈ B(X ⊕ Y,X ) is right invertible. Let A2 and B2 be as in Theorem 2.7.
Then B2 considered as an operator from Y2 to R(B2) is one-to-one and has an
inverse B−1

2 : R(B2) → Y2. Define

Ã2 := (0 A2) : X1 ⊕X2 → R(A) ∩R(B).

Then Ã2|PX (N ((A B))) maps to R(B2) and the operator

B−1
2 Ã2|PX (N ((A B))) : PX (N ((A B))) → Y2

is correctly defined.
If R(B) is closed, then B2 is an isomorphism and we have

X1 ⊕X2 = N (PR(B)⊥A) = PX (N ((A B)))

and the operator
B−1

2 Ã2 : N (PR(B)⊥A) → Y2 (2.15)

is correctly defined.

Proof. As Y2 ⊂ N (B)⊥ the operator B2 is one-to-one, hence its inverse
B−1

2 : R(B2) → Y2 exists. From

PX (N ((A B))) = {x ∈ X : Ax ∈ R(A) ∩R(B)} ⊂ {x ∈ X : Ax ∈ R(B)} (2.16)

we conclude
PX (N ((A B))) ⊂ N (PR(B)⊥A) = X1 ⊕X2.

Moreover, we decompose x ∈ PX (N ((A B))) with respect to the decomposition
X = X1⊕X2⊕X3 (cf. Theorem 2.7) as x = x1+x2+x3 with xj ∈ Xj for j = 1, 2, 3.
Then x3 = 0 and for some y ∈ Y we have Ax = By. Decompose y with respect to
Y = Y1⊕Y2⊕Y3 (cf. Theorem 2.7) as y = y1+y2+y3 with yj ∈ Yj for j = 1, 2, 3.
Relation (2.6) shows

Ax = A

x1
x2
0

 =

 0
0

A2x2

 =

 B3y3
0

B0y3 +B2y2

 = B

y3
y2
y1

 = By

and, as B3 is an isomorphism, we obtain y3 = 0 and A2x2 = B2y2. Thus
Ã2x ∈ R(B2) for x ∈ PX (N ((A B))) and B−1

2 Ã2|PX (N ((A B))) is correctly de-
fined. If R(B) is closed, then by Proposition 2.8 also R(B2) is closed and by
(2.7) we see that B2 is an isomorphism. Moreover, from (2.16) we see in this case
X1 ⊕X2 = N (PR(B)⊥A) = PX (N ((A B))) and (2.15) follows. �

The following theorem is the main result. It provides a full characterization of
isomorphic 2× 2 operator matrices in terms of their entries.
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Theorem 2.10 Let A ∈ B(X ), B ∈ B(Y,X ). Assume that the row operator
(A B) ∈ B(X ⊕Y ,X ) is right invertible and, hence, adopt the notions A2, B2, and
Xj, Yj, j = 1, 2, 3, as in Theorem 2.7 and Ã2 as in Lemma 2.9. Let C ∈ B(X ,Y)
and D ∈ B(Y). Define the operator matrix M by

M =

(
A B
C D

)
.

Define the operator B−1
2 Ã2|PX (N ((A B))) as in Lemma 2.9 and define

C2 := P(R(D|N (B)))
⊥C|X1⊕X2 : X1 ⊕X2 → (R(D|N (B)))

⊥

and
D2 := P(R(D|N (B)))

⊥D|Y2 : Y2 → (R(D|N (B)))
⊥.

Then M is an isomorphism if and only if the following two statements are satisfied:

(i) The restriction D|N (B) : N (B) → Y is left invertible.

(ii) The operator(
C2 −D2B

−1
2 Ã2

)∣∣∣
PX (N ((A B)))

: PX (N ((A B))) → (R(D|N (B)))
⊥

is one-to-one and surjective.

Proof. Let M be an isomorphism. Then the row operator (A B) : X ×Y → X
is right invertible, see Lemma 2.4, and the column operator

(
B
D

)
: Y → X × Y is

injective. Moreover, if the range of
(
B
D

)
is not closed then there exists a sequence

(yn) in Y with ∥yn∥ = 1, n ∈ N, and
(
B
D

)
yn → 0 as n → ∞. But this implies

M
(

0
yn

)
→ 0, a contradiction as M is assumed to be an isomorphism. Therefore

the column operator
(
B
D

)
is left invertible, cf. Lemma 2.5.

Now let z ∈ R(D|N (B)). Then, there exists zn ∈ N (B) such that Dzn → z as
n → ∞, and we further have(

B
D

)
zn =

(
0

Dzn

)
→
(
0
z

)
,

which together with Lemma 2.5 implies(
B
D

)
x =

(
0
z

)
for some x ∈ N (B), and hence D|N (B)x = z. This proves that R(D|N (B)) is
closed, hence, D|N (B) is left invertible by Lemma 2.5 and (i) is proved.

As R(D|N (B)) is a closed subspace in Y, we decompose Y,

Y = (R(D|N (B)))
⊥ ⊕R(D|N (B)). (2.17)
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Similar to the proof of Theorem 2.7, M as an operator from N (PR(B)⊥A) ⊕
X3 ⊕ Y3 ⊕ Y2 ⊕ Y1 into

(R(A)⊥+̇R(B)⊥)⊕R(A) ∩R(B)⊕ (R(D|N (B)))
⊥ ⊕R(D|N (B))

has the following block representation

M =


0 0 B3 0 0
0 A3 0 0 0

Ã2 A0 B0 B2 0
C2 C3 D1 D2 0
C4 C5 D3 D4 D5

 . (2.18)

By Theorem 2.7, A3 and B3 are isomorphisms. Additionally, as M is an isomor-
phism, D5 is also an isomorphism. Then there exist isomorphisms

U ∈ B
(
(R(A)⊥+̇R(B)⊥)⊕R(A) ∩R(B)⊕ (R(D|N (B)))

⊥ ⊕R(D|N (B))
)
,

V ∈ B
(
N (PR(B)⊥A)⊕X3 ⊕ Y3 ⊕ Y2 ⊕ Y1

)
with

U :=


1 0 0 0 0
0 1 0 0 0

−B0B
−1
3 −A0A

−1
3 1 0 0

−D1B
−1
3 −C3A

−1
3 0 1 0

0 0 0 0 1

 ,

V :=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

−D−1
5 C4 −D−1

5 C5 −D−1
5 D3 −D−1

5 D4 1


such that

UMV =


0 0 B3 0 0
0 A3 0 0 0

Ã2 0 0 B2 0
C2 0 0 D2 0
0 0 0 0 D5

 . (2.19)

Thus, M is an isomorphism if and only if

∆ :=

(
Ã2 B2

C2 D2

)
: N (PR(B)⊥A)⊕ Y2 → (R(A) ∩R(B))⊕ (R(D|N (B)))

⊥ (2.20)

is an isomorphism.
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Case 1: R(B) is closed. In this case, from Lemma 2.9, B2 : Y2 → R(A) ∩R(B)
is an isomorphism and B−1

2 Ã2 : N (PR(B)⊥A) → Y2 is correctly defined, see Lemma
2.9. According to Lemma 2.3, ∆ is an isomorphism if and only if

C2 −D2B
−1
2 Ã2 : N (PR(B)⊥A) → (R(D|N (B)))

⊥

is an isomorphism. By Lemma 2.9 N (PR(B)⊥A) = PX (N ((A B))) and (ii) is
satisfied.

Case 2: R(B) is not closed. By Proposition 2.8 also R(B2) is not closed which
implies dimR(B2) = ∞ and dimY2 = ∞. The dimension does not change when
we close a subspace, therefore we conclude from (2.7)

dimR(A) ∩R(B) = dimR(B2) = dimR(B2) = ∞. (2.21)

By Theorem 2.7 (A2 B2) is right invertible, (2.7) and Lemma 2.1 imply

R(A2) ∩R(B2) = R(A) ∩R(B).

Obviously, R(A2) ∩ R(B2) ⊂ R(A) ∩ R(B) and we obtain R(A) ∩ R(B) ⊂
R(A) ∩R(B). Thus

R(A) ∩R(B) = R(A) ∩R(B).

From this and from R(A) ∩ R(B) ⊂ R(A) ∩ R(B) ⊂ R(A) ∩ R(B) we conclude
with (2.21)

∞ = dimR(A) ∩R(B) = dimR(A) ∩R(B) = dimR(A) ∩R(B). (2.22)

We will use (2.22) to show

dimN ((Ã2 B2)) = dimN (PR(B)⊥A). (2.23)

For this we consider

N ((A B)) = {( x0 ) : x ∈ N (A)} ⊕
{
( yz ) : y ∈ N (A)⊥, Ay = −Bz

}
(2.24)

and
N (PR(B)⊥A) = N (A)⊕

{
x : x ∈ N (A)⊥, Ax ∈ R(B)

}
.

As A restricted to N (A)⊥ is injective, we obtain with (2.22)

dim
{
( yz ) : y ∈ N (A)⊥, Ay = −Bz

}
= dimR(A) ∩R(B) = dimR(A) ∩R(B)

= dim
{
x : x ∈ N (A)⊥, Ax ∈ R(B)

}
.

Therefore
dimN ((A B)) = dimN (PR(B)⊥A)
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and with (2.19) we obtain dimN ((Ã2 B2)) = dimN (PR(B)⊥A), hence (2.23) is
proved. Two separable Hilbert spaces of the same dimension are unitarily equiv-
alent, therefore there exists a left invertible operator(

G
H

)
: Y2 → N (PR(B)⊥A)⊕ Y2 with range N ((Ã2 B2)). (2.25)

Since X1 ⊕ X2 = N (PR(B)⊥A) and by Theorem 2.7 and Lemma 2.9 (Ã2 B2) :

N (PR(B)⊥A) ⊕ Y2 → R(A) ∩ R(B) is a right invertible operator. Then, see
Remark 2.6, there exists a left invertible operator(

E
F

)
: R(A) ∩R(B) → N (PR(B)⊥A)⊕ Y2 (2.26)

such that

Ã2E +B2F = IR(A)∩R(B)
with R

((
E
F

))
= (N ((Ã2 B2)))

⊥ (2.27)

Define

W =

(
E G
F H

)
: R(A) ∩R(B)⊕ Y2 → N (PR(B)⊥A)⊕ Y2. (2.28)

As
(
G
H

)
and

(
E
F

)
are left invertible and from (2.25) and (2.27) we obtain easily

that W is an isomorphism. We have

∆W =

(
IR(A)∩R(B)

0

C2E +D2F C2G+D2H

)
. (2.29)

As M is an isomorphism, ∆ is an isomorphism (see (2.20)) and the operator
C2G+D2H : Y2 → (R(D|N (B)))

⊥ is an isomorphism. Moreover, the operator B2

considered as an operator from Y2 to R(B2) is one-to-one and has an inverse, see
Lemma 2.9. From Ã2G+B2H = 0 we conclude −B−1

2 Ã2G = H and

C2G+D2H = (C2 −D2B
−1
2 Ã2)G. (2.30)

Therefore, C2−D2B
−1
2 Ã2 : R(G) → (R(D|N (B)))

⊥ is one-to-one with range equal

to (R(D|N (B)))
⊥. From

R(
(
G
H

)
) = N ((Ã2 B2))

=
(

N (A)
0

)
⊕
{
( xy ) : x ∈ N (A)⊥, y ∈ N (B)⊥, Ax = −By

}
= N ((A B)),

(2.31)

see (2.24), it follows that R(G) = PX (N ((A B))) and (ii) is shown.
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Now let us assume that (i) and (ii) hold. Then R(D|N (B)) is a closed subspace
and Y admits a decomposition as in (2.17) and we obtain the representation of
M as in (2.18), where A3, B3 and D5 are isomorphisms. Then, taking the same
U and V as above, we obtain the relation (2.19). Moreover, if ∆ in (2.20) is an
isomorphism, then M is an isomorphism.

If R(B) is closed, then from Lemma 2.9, B2 : Y2 → R(A) ∩R(B) is an
isomorphism and B−1

2 Ã2 : N (PR(B)⊥A) → Y2 is correctly defined. Moreover,
Lemma 2.9, N (PR(B)⊥A) = PX (N ((A B))). Then, by (ii),

C2 −D2B
−1
2 Ã2 : N (PR(B)⊥A) → (R(D|N (B)))

⊥

is an isomorphism and according to Lemma 2.3, ∆ is an isomorphism and, hence,
M is an isomorphism.

If R(B) is not closed, then as above, we define the operators G, H, E, F , and
W as in (2.25), (2.26), (2.27), and (2.28). Moreover, the operator W in (2.28) is an
isomorphism and also (2.30) and (2.31) hold. By (2.31) R(G) = PX (N ((A B)))
and as B2 is one-to-one, we see that the operator G in (2.25) is one-to-one. Hence,
together with (ii), the operator (C2 −D2B

−1
2 Ã2)G : Y2 → (R(D|N (B)))

⊥ is one-

to-one with range equal to (R(D|N (B)))
⊥. Therefore, by (2.30), C2G + D2H is

an isomorphism and, by (2.29) and as W is an isomorphism, also ∆ is an isomor-
phism. Therefore, see (2.20), M is an isomorphism. �

Finally, we consider the following special case.

Theorem 2.11 Let A,B,C,D ∈ B(X ) and let X ′,X ′′ be closed subspaces of
X with

X = X ′ ⊕X ′′

such that

R(A) = X ′, N (A) = X ′′, R(B) = X ′′, and N (B) = X ′.

Moreover assume that the restriction D|X ′ : X ′ → X is left invertible. Then the
2× 2 operator matrix M ,

M =

(
A B
C D

)
,

is an isomorphism if and only if

C2 := P(R(D|X′ ))⊥ C|X ′′ : X ′′ → (R(D|X ′))⊥

is an isomorphism.
In particular, if, in addition, R(B) ̸= {0} and the operator D|X ′ : X ′ → X is

an isomorphism, then for every operator C ∈ B(X ) the 2 × 2 operator matrix M
is not an isomorphism.
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Proof. Denote by PX the orthogonal projection in X ⊕ X onto the first com-
ponent. Then

PX (N ((A B))) = N (A) = X ′′.

Moreover, we have N (PR(B)⊥A)
⊥ = N (PX ′A)⊥ = N (A)⊥ and R(A) ∩ R(B) =

X ′ ∩ X ′′ = {0}. Then the space X2 in Theorem 2.7 equals zero and the operators
A2 and Ã2 in Theorem 2.10 are zero. Then the statements of Theorem 2.11 follow
from Theorem 2.10. �

3 A characterization of isomorphic row operators

In this section let A,B,C,D and M be as in Theorem 2.10. In the following we
use Theorems 2.7 and 2.10 to characterize the case of an isomorphic row operator
(A B) and to derive a necessary condition for M to be an isomorphism.

Proposition 3.1 Let A ∈ B(X ) and B ∈ B(Y,X ). The row operator (A B) ∈
B(X ⊕Y ,X ) is an isomorphism (i.e. (A B) is left and right invertible) if and only
if the following two statements are satisfied:

(i) N (A) = N (B) = {0}.

(ii) R(A) = R(B)⊥, R(B) = R(A)⊥.

Proof. If (i) and (ii) hold, then Ax + By = 0 for some x ∈ X , y ∈ Y implies
Ax = −By ∈ R(B). By (ii), Ax = 0 and, hence, By = 0 follows. Then (i) implies
x = y = 0 and N ((A B)) = {0}. Moreover, we have with (ii)

R((A B)) ⊂ R(A) +R(B) = R(A) +R(A)⊥ = X

and the row operator (A B) is an isomorphism.
For the contrary let the row operator (A B) be an isomorphism. If for some

x ∈ X we have Ax = 0 then (A B) ( x0 ) = 0 and, as N (A B) = {0}, x = 0 follows.
That is, N (A) = {0} and, similarly, we see N (B) = {0}. This shows (i). In
order to show (ii) let x ∈ R(A) ∩ R(B) and assume x ̸= 0. Then there exists
sequences (xn) in X and (yn) in Y such that (Axn) and (Byn) converge both to
x with lim infn→∞ ∥xn∥ > 0 and lim infn→∞ ∥yn∥ > 0. But then (A B)

( xn
−yn

)
=

Axn−Byn tends to zero and R((A B)) is not closed, a contradiction. This shows

R(A) ∩R(B) = {0}. (3.1)

As x ∈ N (PR(B)⊥A) if and only if Ax ∈ R(B) (see also (2.11)), we conclude with
N (A) = {0} and (3.1)

N (PR(B)⊥A) = {0}.
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In the same way we obtain from (3.1) and N (B) = {0} that N (PR(A)⊥B) = {0}.
Then for the spaces X1,X2,X3,Y1,Y2,Y3 from Theorem 2.7 we conclude

X1 = {0}, X2 = {0}, X3 = X , Y1 = {0}, Y2 = {0}, and Y3 = Y

and the row operator (A B) admits a representation according to Theorem 2.7
with respect to the decompositions X ⊕ Y and X = R(A)⊥+̇R(B)⊥ of the form(

0 B3

A3 0

)
,

where A3 ∈ B
(
X ,R(B)⊥

)
and B3 ∈ B

(
Y,R(A)⊥

)
are isomorphisms. This shows

(ii). �

Example 3.2 Let X = Y = ℓ2(N) and consider the following operators A and
B in X:

A(xn)n∈N := (x1, 0, x2, 0 . . . ) and B(xn)n∈N := (0, x1, 0, x2 . . . ).

Then the row operator (A B) satisfies (i) and (ii) of Proposition 3.1 and, hence,
(A B) is an isomorphism.

As a consequence, we derive the following condition for M to be an isomor-
phism.

Corollary 3.3 Let A ∈ B(X ), B ∈ B(Y,X ), C ∈ B(X ,Y) and D ∈ B(Y). If

Y ̸= {0} and N ((A B)) = {0}

then the operator matrix M

M =

(
A B
C D

)
is not a isomorphism.

Proof. If M is an isomorphism, then as noted in the proof of Theorem 2.10,
the row operator (A B) is right invertible. Assume N ((A B)) = {0}. Then
(A B) is an isomorphism, and, by Proposition 3.1, N (B) = {0}. Hence, we ob-
tain (R(D|N (B)))

⊥ = Y and (ii) in Theorem 2.10 cannot be true unless Y = {0}.
Therefore, either Y = {0} or N ((A B)) ̸= {0} holds. �

4 Application to Hamiltonian operators

In this section we consider the special case of Hamiltonian operators, i.e., in the
situation of Theorem 2.10, X = Y, the operators B,C are self-adjoint and D =
−A∗. Under these assumptions, Theorem 2.10 takes the following simple form.
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Theorem 4.1 Let A,B,C ∈ B(X ). Assume that the row operator (A B) ∈
B(X ⊕X ,X ) is right invertible and that B and C are self-adjoint operators in X ,
i.e. B = B∗ and C = C∗. Adopt the notions A2, B2, and Xj, Yj, j = 1, 2, 3, as in

Theorem 2.7 and Ã2 as in Lemma 2.9. Define the operator B−1
2 Ã2|PX (N ((A B)))

as in Lemma 2.9 and define

C2 := PN (PR(B)⊥A)C|X1⊕X2 : X1 ⊕X2 → N (PR(B)⊥A)

and
(−A∗)2 := −PN (PR(B)⊥A)A

∗|Y2 : Y2 → N (PR(B)⊥A).

Then the Hamiltonian operator

H =

(
A B
C −A∗

)
is an isomorphism if and only if

(i) the operator(
C2 − (−A∗)2B

−1
2 Ã2

)∣∣∣
PX (N ((A B)))

: PX (N ((A B))) → N (PR(B)⊥A)

is one-to-one and surjective.

If in this case we have, in addition, that R(B) is closed, then C2−(−A∗)2B
−1
2 Ã2 ∈

B(N (PR(B)⊥A)) is an isomorphism.

Proof. By assumption, the row operator (A B) is right invertible, hence (see
Lemma 2.4) its range is closed and R(A) + R(B) = X . The same applies to
(B −A) and thus its adjoint,

(B −A)∗ =

(
B

−A∗

)
,

has a closed range and is one-to-one. Let z ∈ R(−A∗|N (B)). Then, there exists
zn ∈ N (B) such that −A∗zn → z as n → ∞, and we further have(

B
−A∗

)
zn =

(
0

−A∗zn

)
→
(
0
z

)
,

which together with the closedness of the range of (B −A)∗ implies(
B

−A∗

)
x =

(
0
z

)
for some x ∈ N (B), and hence −A∗|N (B)x = z. This proves that R(−A∗|N (B)) is
closed and (i) in Theorem 2.10 is satisfied for D = −A∗.
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Next, we verify
(R(−A∗|N (B)))

⊥ = N (PR(B)⊥A). (4.1)

Indeed, if x ∈ (R(−A∗|N (B)))
⊥, we have (−Ax, y) = (x,−A∗y) = 0 for every

y ∈ N (B), hence −Ax ∈ N (B)⊥, which together with the self-adjointness of B
deduces Ax ∈ R(B), and hence x ∈ N (PR(B)⊥A); while if x ∈ N (PR(B)⊥A), then

Ax ∈ R(B), and hence we have for y ∈ N (B) that (x,−A∗y) = (−Ax, y) = 0,
i.e., x ∈ (R(−A∗|N (B)))

⊥.
Now the equivalence of (i) and the fact that H is an isomorphism follows from

(4.1) and Theorem 2.10. The additional statement in the case of a closed range
of B follows from Lemma 2.9. �
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