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Thermovoltages under consideration of the thermal 

expansion 

ABSTRACT 

This contribution deals with the representation of the Seebeck- coefficient of simple non-magnetic 

metals like copper using a classical thermoelectric field model. 

Other calculations leading to the same or similar results are based on Gibb's theory or on the 

Boltzmann-Fermi transport model. 

The classical model can be expanded very simply to include the effect of the thermal expansion on 

both the total thermovoltage and of the total thermocurrent, using Fick's law. The thermal 

expansion reduces the thermal diffusion based Seebeck coefficient by a factor of (1- 4αZT), where 

α contains the linear expansion coefficient. Also it is shown, that the temperature course along the 

thermowire is regarded by a correction factor z. 
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1. INTRODUCTION 

 

We find various models for the determination of the absolute Seebeck-coefficient (ASC) vs. 

temperature curves in the literature [1,2]. Some of the results are based on the Gibb's relations [1] 

or others on the Fermi-Boltzmann statistics [3]. They are usually consistent for certain temperature 

regimes.  

For the description of the ASC characteristic of standard thermoelectric metals one can also start 

with a thermoelectric field. However, one has still to discriminate between magnetic and 

nonmagnetic metals, s-band metals and s-d-band metals and between electron and hole 

conduction. 

In what follows we consider only nonmagnetic-band metals, for example Copper (Cu). 

Once a temperature gradient is applied along a metallic thermowire we observe a thermodiffusion 

of the charge carriers. i.e. the carriers which are already excited to the Fermi temperature move to 

the cold end of the thermowire, at least for simple metals. This leads to the build-up of a counter 

electrical field E(T) over the wire length (l) and with it to a thermoelectric voltage UTE(T) between 

the end faces of the wire. 

Between the ASC and those thermoelectric quantities under a temperature gradient dT/dx along 

the wire we have the following relations: 

 

(1) ASC(T) = dUTE/dT 

(2) UTE = ∫ E(T)dx  integration over the wire length l 

 

Eq's 1,2 now yield the temperature dependence of the ASC as : 

 

     (3)        ASC(T) = E(T)/dT/dx 

 

2. THERMOELECTRICAL FIELD AS OBTAINED BY THERMODIFFUSION, 

ETD(T) 

 

If we have a temperature gradient dT/dx along the wire axis x, the charge carriers (electrons or 

holes) have slightly different electronic levels at a given x because of the temperature differences. 

This leads to a force F(T) 
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which in turn initiates a motion towards the cold end. 

As we have an energy increment dWe corresponding to a temperature increment dT along the path 

increment dx, we can write down the force F(T) as: 

 

(4) F(T) = dWe/dx  or expanded by dT : F(T) = (dWe/dT).(dT/dx) 

 

Fig.1 Generalized temperature gradient and electron diffusion in a metallic wire 
 

 
The energy increment dW which is taken up by the thermowire can also be expressed by the  total 

molar  heat capacity Cm = Cem + Cgm, as in order to install the temperature gradient one has to heat 

both the lattice and the electron gas . The relation between dW and Cm reads: 

 

(5) dW = CmNMdT 

 

with Cm molar heat capacity, NM mole number. 

According to the literature [4], the molar heat capacity of a free electron gas reads: 

 

(6) Cem = (π2/2)NAk(T/TF) 

 

with NA electrons per mole, k Boltzmann's constant, TF Fermi temperature, T Kelvin temperature. 
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Combining eq's 4,5,6 , one arrives at : 

 

 (7)    FTD =  (π2/2)NAk(T/TF)NM (dT/dx)  

 

with N= NANM the total electron number. The electrical field ETD which builds up according to 

the electron diffusion reads: 

 

(8) ETD = (π2/2)NAk(T/TF)NM (dT/dx) 

 

 if one considers that FTD = eNETD with  e  the elementary charge. According to eq.3, the ASC 

characteristic now reads: 

 
 (9) ASC(T) = (π2/2)(k/e)(T/TF) 

 

in agreement with standard results [2,3]. This result implies medium temperatures and a  

contribution of all electrons at the Fermi surface. As according to eq.8 the thermoelectric field 

does not depend on the number of moles, the cross section and the wire length do not influence the 

value of the thermovoltage.  

However, there is a number of factors which will influence the thermo-voltage, for example the 

thermal expansion. 

 

The influence of the thermal expansion coefficient α has been investigated 

in materials which are known to have an uniaxial  tensor of expansion coefficients, making use of 

a correlation analysis [5]. α has been considered to have an influence on the ASC just as the heat 

and electrical conductivities. 
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Fig.2 Uniaxial thermal expansion of thermoelectric materials, (a) short axis (b) long axis (c) table of α and ASC 
values for different materials. 

 
 
Changes of the thermovoltage could also be observed in volume clamped thermowires (mounting 

in invar cylinders)[6]. 

The thermal expansion creates an increase in volume Thus, on gets a larger volume at the hot side 

of the thermowire as compared to the cold side. But under a constant number of charge carriers 

per unit volume, a volume change means a change in the carrier density Dn, which, however, will 

be equalized by diffusion, i.e. under Fick's law. 

 

 
Fig.3 : 2D-graph of the thermal lattice volume change 
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3. CHARGE EQUALIZING CURRENTS UNDER THERMAL EXPANSION OF THE 
THERMOWIRE 

 
Without thermal expansion, i.e. for α = 0, all charge carriers at the Fermisurface, NF with nF the 

carrier density, contribute to the carrier diffusion. For α > 0, the expansion created carrier density 

change  at the hot end is - ∆nF. Carrier diffusion, ∆NF , now sets in from the cold end - where the 

carrier density is higher - to the hot end. This number of carriers, ∆NF, is now missing for the 

thermodiffusion which points to the cold end, i.e. only  (NF-∆NF) carriers thermodiffuse.  As the 

thermodiffusion and the expansion created diffusion are opposite, the contributions ∆NF 

compensate and in total we will have a loss of 2NF. This is true also for the carrier densities as 

2∆NF/NF = 2∆nF/nF. The same result is obtained if one argues with two independent thermally 

induced and opposite electrical field components along the wire axis. 

 

 
Fig.4 : Currents of carriers in the temperature field 

 
 
Specifically, we find for the thermodiffusive force: 

 

(10)  FTD = eETD(NF – ∆NF), 

 

and for the expansion created force: 

 

(11)  FTA = eETD∆NF . 
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As the forces are opposite, the resulting force is the difference, 

 

 (12)  FT = FTD - FTA = e ETD(NF-2∆NF) or per mole  fT = eETD (1 - 2∆nF/nF). 

 

In sum, the thermodiffusive field in a metallic wire is weakened by an amount 2∆NF/NF  if there is 

a positive expansion coefficient α > 0. 

 
4. CALCULATION OF THE EXPANSION CREATED CHANGE IN THE 

ELECTRON DENSITY ∆n 
 

If there is a certain number of electrons per atom given to the electron gas of a metal, sometimes  

called the valence number z,  the number of free electrons per atomic volume is constant even if 

the atomic volume gets larger under thermal expansion, if we take a volume which contains a 

constant number of atoms and call it the unit volume V, it would still get larger by thermal 

expansion while also having a constant number of electrons, No. However, the carrier density n 

would then get lower with increasing temperature as n = No/V with V increasing (see also fig.5). 

 

 
Fig.5: Incremental volume change with temperature change 

 
 
Specifically, an incremental volume change dV at a position x of the thermowire which has the 

temperature T(x) can be expressed as dV(x) = A(x)dx, where A(x) is the cross section of the wire  

 

at the position x. A neighbouring volume element , dV(x+dx) is larger if it is under a larger 
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temperature T(x+dx). Using the applied T-gradient , T',  this temperature can be expressed as  

 

 

T(x+dx) = T(x) + (dT/dx)dx = T(x) + T'dx. The volume increment the can be rewritten as : 

 

 (13) ∆V = dA.dx, 

 

 as dA = A(x+dx) -A(x) and ∆V = dV(x+dx) – dV(x) = (A(x+dx) -A(x))dx. 

The total volume increase ∆Vl (per wire length) and an eventual non-linear T-gradient (see fig.6) is 

then obtained by integration: 

 

(14)∆Vl = 2αA ∫dTdx.  

 

because  dA = 2αA.dT and ∆Vl = ∫ ∆V .  

 

 
 

Fig.6:  T(x) and its gradient. 
 
Expressing the volume change in x-direction , 

 

(15) dV/dx = 2α ∫ T'dx   , 

 

and expanding the differential of n(x): 

  

  (16)         dn/dx = (dn/dV)(dV/dx) , 
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using the volume increment, one now has a chance to  formulate a differential equation for n(x)on  

 

the basis of eq. (16) For that one has to add dn/dV. Since n = No/V, that differential is: 

 

(17) dn/dV = n/V 

 

 Eq.'s 15-17 result in: 

 

(18) dn/dx = 2α n (A/V) ∫ T'dx  = (2αn/l)T(x)  

 

, as the integral yields T(x) and A/V is just the wire length l. One can now introduce a temperature 

course correction term Z.T. Z is defined by : 

 

 (19)  ∆N=∫dn  =   (2αn)(1/l)∫Tdx  = Z.T   ,or as 2∆n/4αn = Z  . 

 

Z.T is the area of T(x) over the full temperature and length interval (see fig.7). 

 

 
Fig.7 Linear versus exponential drop in temperature over the wire length To maximal temperature. 

 
 

 
5. ABSOLUTE SEEBECK COEFFICIENT ASC(T) UNDER DIFFERENT 

TEMPERATURE COURSES 
 

The temperature course T(x) along the wire can be different from linear, for example following  

Newton's  cooling function or they are hyperbolic functions (see /8/). In such cases we have to use  
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the correction term, Following eq.(19) we have: 

(20)   ASC(T) = (π2kT/2eTF)(1-4αTZ), 

where k is Boltzmann's constant, e elementary charge, TF the Fermi temperature, Z the 

temperature course correction term, α the linear expansion coefficient. 

Under the assumption that the temperature course is mainly determined by  

the inner heat conduction, we have a linear slope and Z would be 0.5. That case would yield: 

 (21)ASC(T) = (π2k/2eTF)(T-2αT2)  . 

 Under consideration of the thermal expansion there appears a term in the ASC which is quadratic 

in T. Moreover, using the specific heat capacity of the electron gas one obtains another useful 

expression for the ASC: (22) ASC(T) =(Cem/eNA)(1-4αTZ). The effect of the thermal expansion is 

found also in metals with   s-d shells and for magnetic materials as Ni or Fe. Fig.8 shows that the 

ASC(T) -curves can indeed be curved, eventually representing the expansion related quadratic 

temperature term. 

Fig.8:  ASC(T) curves of Ag,Au,Cu and Al , acc. to [6] 
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The temperature course correction term Z introduced above is of fundamental importance. On one  

hand it is shown that a change of the temperature course along the thermo wire will alter the ASC 

value. In consequence, if the two thermocouple wires are exposed to a different temperature 

course respectively the Z values are different resulting in an error. Of course those errors are rather  

small and will appear for high temperatures only. But, it should be taken into account for precision 

thermo couple calibrations. In contrast to well-known inhomogeneity effects it occurs also for new 

unused thermo wires and remarkably, it can’t detected by moving the thermocouple against the 

spatial temperature gradient into or out of the oven. 

On the other hand we believe that this Z value calculation could be an explanation for the 

Benedickts effect which is for metals currently unproven. The author will pick up on this in a 

future paper. 
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