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Abstract

We consider differential-algebraic systems whose transfer function is outer: i.e., it has full row rank
and all transmission zeros lie in the closed left half complex plane. We characterize outer, with
the aid of the Kronecker structure of the system pencil and the Smith-McMillan structure of the
transfer function, as the following property of a behavioural stabilizable and detectable realization:
each consistent initial value can be asymptotically controlled to zero while the output can be made
arbitrarily small in the L2-norm. The zero dynamics of systems with outer transfer functions are
analyzed. We further show that our characterizations of outer provide a simple and very structured
analysis of the linear-quadratic optimal control problem.

Keywords: differential-algebraic equations, outer transfer function, matrix pencils, zero dynamics,
minimum phase, optimal control

Nomenclature

K = R or C the field of real numbers or complex numbers, resp.

N, N0 set of natural numbers N and N0 = N∪{0}, resp.

R≥0, R>0, set of non-negative, positive real numbers, resp.

C+, C− open set of complex numbers with positive real part, negative real part,
resp.

K[s], K(s) the ring of polynomials with coefficients in K, and the quotient field of
K[s], resp.

p(s) | q(s) p(s) ∈ K[s] is a divisor of q(s) ∈ K[s]

Rn×m the set of n×m matrices with entries in a ring R

Gln(R) the group of invertible n× n matrices with coefficients in a ring R

In identity matrix of size n

0m×n the zero matrix of m× n
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M⊤, M∗ the transpose of M ∈ R
m×n and conjugate transpose of M ∈ C

m×n, resp.

M ≻ 0, M � 0 M ∈ C
n×n is Hermitian and positive definite, positive semi-definite, resp.

σ(M) the spectrum of M ∈ C
n×n

diag(A1, . . . , Ak) the block diagonal matrix with Ai ∈ C
ni×mi , mi, ni ∈ N0, for i = 1, . . . , k

(i.e., A ∈ C
m×n with m = m1 + . . .+mk, n = n1 + . . .+ nk)

ḟ the distributional derivative of f : I → K
n with I ⊆ R,

ess supt∈I f(t) the essential supremum of f : I → R on the set I ⊆ R

L2(I → K
n),

(L2
loc(I→K

n))
the set of measurable and (locally) square integrable functions f : I → K

n

on the set I ⊆ R

AC(I→R
n) the set of functions f : I →R

n which are absolutely continuous on each
compact interval I ⊂ I, see [13, p. 87]

H2(C+→C
p) the Hardy space of holomorphic functions f̂ : C+ → C

p which have a square
integrable extension to iR, see [8, Sec. A.6.3]

H2(C+→R
p) =

{
f̂ ∈ H2(C+→C

p)
∣∣∣ f̂(R>0) ⊂ R

p
}

H∞(C+→C
p×m) the Hardy space of bounded holomorphic functions G : C+ → C

p×m, see [8,
Sec. A.6.3]

H∞(C+→R
p×m) = {G ∈ H∞(C+→C

p×m) | G(R>0) ⊂ R
p×m }

1 Introduction

We consider linear differential-algebraic control systems of the form

d
dtEx(t) =Ax(t) +Bu(t),

y(t) =Cx(t) +Du(t),
(1.1)

where E,A ∈ K
n×n, B ∈ K

n×m, C ∈ K
p×n, D ∈ K

p×m and the pencil sE−A ∈ K[s]n×n is regular, i.e.
det(sE−A) ∈ K[s]\{0}; the set of these systems is denoted by Σn,m,p(K) and we write [E,A,B,C,D] ∈
Σn,m,p(K). K is either R or C.
The function u(·) : R → K

m is called input, y(·) : R → K
p is called output of the system; we call x(t)

the state of [E,A,B,C,D] at time t ∈ R. A trajectory (x(·), u(·), y(·)) : R → K
n × K

m × K
p is said to

be a solution of (1.1) if it belongs to the behaviour of (1.1):

B[E,A,B,C,D] :=





(x, u, y) ∈ L2
loc(R≥0→R

n × R
m × R

p)

∣∣∣∣∣∣∣∣

Ex ∈ AC(R→R
n)

and (x, u, y) solves (1.1)

for almost all t ∈ R




.

In this article, we investigate outer transfer functions. In the single-input single-output case, the
transfer function G(s) ∈ K(s) is scalar and we define

G(s) =
ε(s)

ψ(s)
is outer :⇐⇒ ∀λ ∈ C+ : ε(λ) 6= 0 , where ε(s) ∈ K[s], ψ(s) ∈ K[s]\{0}.
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This means a scalar rational function is outer if, and only if, it is nonzero and all zeros are in the closed
left half complex plane. The notion will be extended to multi-input multi-output transfer functions in
Definition 3.1 in terms of the Smith-McMillan form.

Some of our results are also new for systems described by ordinary differential equations of the form

d
dtx(t) =Ax(t) +Bu(t), x(0) = x0,

y(t) =Cx(t) +Du(t),
(1.2)

with unique solution x(· ; 0, x0, u) and output y(· ; 0, x0, u).
If the system (1.2) is stabilizable and detectable, then we will show that the transfer function satisfies
the frequency domain criterium outer if, and only if, the following two properties hold:

(P3’) ∀ y0 ∈ K
p \ {0} ∃x0 ∈ R

n, u ∈ L2
loc(R≥0→K

m) : (y0)∗y(· ; 0, x0, u) 6= 0.

(P4’)
∀ ε > 0 ∀x0 ∈ K

n ∃u ∈ L2(R≥0→K
m) :

lim
t→∞

x(t; 0, x0, u(·)) = 0 ∧ ‖y(· ; 0, x0, u)‖L2 < ε

Property (P3’) is simply equivalent to rk [C,D] = p, as we will prove in Corollary 7.3.
Property (P4’) means that for any initial condition one may find an L2-input such that the state is
asymptotically steered to zero and the L2-norm of the output is arbitrarily small.

However, our main focus is on DAEs. The Properties (P3’) and (P4’) become slightly more technical
for DAEs since one has to take care of consistency of the initial value. The set of solutions of (1.1)
which satisfies the initial condition Ex(0) = Ex0 is denoted by

B[E,A,B,C,D](x
0) :=

{
(x, u, y) ∈ B[E,A,B,C,D]

∣∣∣ Ex(0) = Ex0
}
.

The vector space of consistent initial differential variables of [E,A,B,C,D] is denoted by

Vdiff
[E,A,B,C,D] :=

{
x0 ∈ K

n
∣∣∣ B[E,A,B,C,D](x

0) 6= ∅
}
.

The transfer function of [E,A,B,C,D] ∈ Σn,m,p(K) is the rational function

G(s) = C(sE −A)−1B +D ∈ K(s)p×m.

Now the generalization of the Properties (P3’) and (P4’) is as follows

(P3) ∀ y0 ∈ K
p \ {0} ∃ (x, u, y) ∈ B[E,A,B,C,D] : (y0)∗y(·) 6= 0.

(P4)
∀ ε > 0 ∀x0 ∈ Vdiff

[E,A,B,C,D] ∃ (x, u, y) ∈ B[E,A,B,C,D](x
0) :

u ∈ L2(R≥0→K
m) ∧ lim

t→∞
Ex(t) = 0 ∧ ‖y‖L2 < ε
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In Theorem 6.6 we will show, apart from some technicalities, that the transfer function of a behavioural
stabilizable and detectable system (1.1) is outer if, and only if, Properties (P3) and (P4) holds.
Next we report the literature about outer transfer functions of systems described by ordinary differential
equations. This class plays a fundamental role e.g. in H∞-control, spectral factorization and linear-
quadratic optimal control [4–7, 10, 12, 27]. For instance, it follows from the results in [22, 26] that the
difference between the actual and optimal cost can be expressed as the square of the L2-norm of the
spectral factor system which has an outer transfer function (cf. Section 8).
There are many different definitions of outer in the literature: In [27, p. 366], a system (1.2) is called
outer, if its transfer function belongs to H∞(C+→K

p×m) and has full row rank in C+.
In [7], outer systems are defined via the property that the transfer function belongs to H∞(C+→K

p×m)
and that there exists a right inverse of the transfer function which has no poles in C+. In [16], outer
(they are also called minimum phase) for infinite-dimensional systems governed by ordinary differen-
tial equations is defined by the property that the input-output map from L2 to L2 is bounded and
the range of the input-output map is dense in L2. This is, in the frequency domain, equivalent to
G(s) ∈ H∞(C+→K

p×m) and the multiplication operator induced by the transfer function has dense
range in H2(C+→K

p). In [23], analytic operator-valued functions are studied, where outer is defined
via the property that a multiplication operator with dense range in H2 is induced. It is stated in [16]
that for the rational matrix-valued case (i.e., transfer functions of finite-dimensional systems) this is
exactly the class of transfer functions of systems being outer according to the definition in [27].
We note that there is a certain inconsistency in the definition of minimum phase (which has been
identified with outer in [16]). In [14] and further article of this author, systems (1.2) with p = m

and D = 0 are called minimum phase, if the system pencil R(s) =
[

sI−A, −B
C 0

]
is invertible and all

generalized eigenvalues lie in C−. Note that no stability assumption is required for this definition;
however, generalized eigenvalues on the imaginary axis are not allowed in contrast to the aforemen-
tioned references. It is known that this minimum phase notion is equivalent to the fact that the zero
dynamics (i.e., the dynamics of the system generating a trivial output) are asymptotically stable. For
a justification of the notion minimum phase in terms of Bode plots, we refer to [15] and the bibliography
therein. The equivalence to asymptotical stability of the zero dynamics allows to generalize minimum
phase to nonlinear systems [3].

In the present article we investigate outer differential-algebraic systems. We allow for transfer func-
tions which are improper and/or have poles in the closed right half complex plane. Therefore, many
applications (such as linear-quadratic optimal control) where asymptotic stability of the systems would
be a restrictive assumption, are captured.
The paper is organized as follows. In Section 2, we collect some system theoretic concepts of differential-
algebraic systems, the Kronecker canonical form and its consequences is investigated.
In Section 3, we show for behavioural stabilizable and detectable DAE (1.1) that its transfer function is

outer if, and only if, the system pencil R(s) =
[

sE−A, −B
C D

]
has full row rank on C+. Furthermore, and

this relates our concept to the definition in [7], outer is equivalent to the existence of a right inverse
which has no poles in C+.
In Section 4, the zero dynamics of the DAE system (1.1) are studied and it is shown that outer is
equivalent to the two properties: the system pencil satisfies rkK(s)R(s) = n+ p and the zero dynamics
are polynomial stabilizability (that is, for each consistent initial value, there exists a polynomially
bounded trajectory of the zero dynamics). This allows to relate the present notion of outer to the
notion of minimum phase in [14,15].
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In Section 5, we characterize outer of the transfer function G(s) of the DAE system (1.1) if it is in
addition stable, i.e. it belongs to H∞(C+→K

p×m). We show that G(s) is outer if, and only if, the
input-output operator has dense range in L2. This means that our notion of outer is, in the stable
case, equivalent to that of [16,23].
Section 6 is the main section of the present paper. We show that outer and behavioural stabilizable
DAE systems (1.1) have the property that any consistent initial value can be asymptotically controlled
to zero under arbitrarily small output (in the L2-sense). The opposite statement holds true in the
sense: If each consistent initial value can be asymptotically controlled to zero under arbitrarily small
output, then some linearly dependent output components can be removed, such that an outer system
remains.
In Section 7 we discuss (new) consequences of the previous sections for ODE systems (1.2) and show
simple characterizations of outer.
Finally, in Section 8 the previous results are applied to the optimal control problem for for ODE
systems (1.2). Feasibility of the optimal control problem is characterized in terms of the Kalman-
Yakubovich-Popov inequality and the Lur’e equation. These results are not new, but the approach
is new. It provides a simple and very structured analysis of the optimal control problem. It also
shows that the zero dynamics are instrumental to understand when the infimum of the optimal control
problem is a minimum.

2 Preliminaries

In this section we recall some well known basic concepts of system theory as well as of matrix pencils
needed in the following sections; some results on matrix pencils are new.

2.1 System theory

Definition 2.1 (Impulse controllable, behavioural stabilizable, behavioural detectable).
The system [E,A,B,C,D] ∈ Σn,m,p(K) is called

impulse controllable :⇐⇒ Vdiff
[E,A,B,C,D] = K

n,

behavioural stabilizable :⇐⇒ ∀x0 ∈ Vdiff
[E,A,B,C,D] ∃ (x, u, y) ∈ B[E,A,B,C,D]

: Ex(0) = Ex0 ∧ limt→∞Ex(t) = 0,

behavioural detectable :⇐⇒ ∀ (x1, u1, y1), (x2, u2, y2) ∈ B[E,A,B,C,D] with

u1 = u2, y1 = y2 : limt→∞E(x1(t) − x2(t)) = 0.

Well known characterizations of these concepts are the following.

Proposition 2.2 (Characterizations of impulse controllable, behavioural stabilizable and detectable).
The system [E,A,B,C,D] ∈ Σn,m,p(K) is

(a) impulse controllable ⇐⇒ im[E,B] +A · kerE = K
n,

(b) behavioural stabilizable ⇐⇒ ∀λ ∈ C+ : rk
[
λE −A, B

]
= n,

(c) behavioural detectable ⇐⇒ ∀λ ∈ C+ : rk

[
λE −A
C

]
= n.
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Proof. (a) See [1] and [9, Thm. 2-2.3].
(b) In [1, Rem. 3.11 & Cor. 3.12] it is shown that the definition of behavioural stabilizable is indepen-
dent if B[E,A,B,C,D] is considered or the solution space of infinitely many times differentiable functions.
Therefore, [21, Thm. 5.2.30] may be applied.
(c) This can be concluded from [21, Thm. 5.3.17].

2.2 Matrix pencils

A fundamental tool is the Kronecker canonical form which is a canonical form with respect to the
following equivalence relation.

Definition 2.3 (System equivalence).

Two pencils
[

sEi−Ai, −Bi

Ci Di

]
∈ K

(n+p)×(n+m)[s], i = 1, 2, with [Ei, Ai, Bi, Ci,Di] ∈ Σn,m,p(K) are called

system equivalent, if

∃S, T ∈ Gln(K) :

[
S 0
0 Ip

] [
sE1 −A1 −B1

C1 D1

] [
T 0
0 Im

]
=

[
sE2 −A2 −B2

C2 D2

]
.

It can be verified immediately that system equivalence is an equivalence relation on K
(n+p)×(n+m)[s].

A canonical form of this equivalence relation is the Kronecker canonical form (KCF). To state this,
the following notation is necessary:

Nk :=




0

1
. . .
. . .

. . .
1 0


 ∈ R

k×k,

Kk :=




0 1
. . .

. . .
0 1


 , Lk :=




1 0
. . .

. . .
1 0


 ∈ R

(k−1)×k, k ∈ N.

(2.1)

We are finally in a position to define the Kronecker canonical form. For the sake of the presentation,
we will consider pencils over C and not over R since the real Kronecker form canonical form is more
cumbersome.

Definition 2.4 (Kronecker canonical form (KCF)). The pencil sF − G ∈ C
g×ℓ[s] is said to be in

Kronecker canonical form (KCF) if

sF −G = diag
(
sF1 −G1, . . . , sFf −Gf

)
(2.2)

where each of the pencils sFj −Gj is one of the types
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(UD) sKk − Lk =




−1 s
. . .

. . .

−1 s


 ∈ R

(k−1)×k[s],

(ODE) (s− λ)Ik −Nk =




s− λ

−1
. . .
. . .

. . .
−1 s− λ


 ∈ C

k×k[s]

(AE) sNk − Ik =




−1

s
. . .

. . .
. . .

s −1




∈ R
k×k[s]

(OD) sK⊤
k − L⊤

k =




−1

s
. . .

. . . −1
s




∈ R
k×(k−1)[s],

The acronyms (UD), (ODE), (AE) and (OD) refer to the following meaning of the associated DAE
( d

dtFi − Gi)(x) = 0: under determined, ordinary differential equation, algebraic equation, over deter-
mined [11, Chap. XII, § 7].
Further note that a 0 × 1 (UD)-block (or a 1 × 0) (OD)-block) before or after some sFj − Aj block
means that a column (or row) is attached to the sFj −Aj block.

Remark 2.5 (Kronecker canonical form).
Let sF − G ∈ C

g×ℓ[s] with Kronecker canonical form (2.2). Since the rank is invariant under system
equivalence, the following facts hold:

(a) g − rk[F,G] = #{(OD)-blocks of size 1 × 0} = #{zero rows in (2.2)},
(b) g − rk

[
F
G

]
= #{(UD)-blocks of size 0 × 1} = #{zero columns in (2.2)},

(c) g − rkC(s) sF −G = #{(OD)-blocks in (2.2)},
(d) ℓ− rkC(s) sF −G = #{(UD)-blocks in (2.2)}
(e) For λ ∈ C we have:

rk λF −G < rkK(s) sF −G ⇐⇒ (2.2) contains an (ODE)-block (s− λ)Ij −Nj.

As a consequence of these observations, we conclude, for the case g = ℓ,

(f) sF −G is regular ⇐⇒ #{(OD)-blocks in (2.2)} = #{(UD)-blocks in (2.2)} = 0.

Kronecker’s celebrated result is that in each equivalence class of a pencil sF −G ∈ C
m×n[s] there is a

Kronecker canonical form.

Theorem 2.6 (Kronecker canonical form). [11, Chap. XII, §4 & 5]
For every pencil sF −G ∈ C

m×n[s] there exist S ∈ Glm(C) and T ∈ Gln(C) such that sSFT −SGT =
S(sF −G)T is in Kronecker canonical form.
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Definition 2.7 (Generalized eigenvalue, index).
For a pencil sF −G ∈ K

g×ℓ[s] we define

λ ∈ C a generalized eigenvalue :⇐⇒ rk(λF −G) < rkK(s)(sF −G),

ν ∈ N0 the index :⇐⇒ sF −G is regular and ν is the size of the
largest (AE)-block in (2.2).

Remark 2.8 (Kronecker canonical form, generalized eigenvalue).

(a) Let sF −G ∈ C
g×ℓ[s] with Kronecker canonical form (2.2). We obtain from Remark 2.5 (e) that

λ ∈ C is a generalized eigenvalue of sF −G ⇐⇒ (2.2) contains an (ODE)-block (s − λ)Ik −Nk.

(b) For any system [E,A,B,C,D] ∈ Σn,m,p(K) we have, by Remark 2.5 (a), (c), (e), that

∀λ ∈ C+ : rk
[

E A B
0 C D

]
= rk

[
λE−A, −B

C D

]

⇐⇒

{
#{(OD)-blocks of (2.2) of size 1 × 0} = #{(OD)-blocks of (2.2)}

and each (ODE)-block (s− λ)Ik −Nk of (2.2) has λ ∈ C−.

Another useful system equivalence form is the following:

Proposition 2.9 (System equivalence form (SEF)).
Let [E,A,B,C,D] ∈ Σn,m,p(K). Then

∃S, T ∈ Gln(K) :

[
S 0
0 Ip

] [
sE −A, −B

C D

] [
T 0
0 Im

]
=



sE11 −A11 sE12 −A12 −B1

0 sN − Ik 0
C1 C2 D


 , (2.3)

where N ∈ K
k×k is nilpotent, and [E11, A11, B1, C1] is impulse controllable.

Furthermore, the following statements hold true:

(a) C(sE −A)−1B +D = C1 (sE11 −A11)−1 B1 +D.

(b) (x, u, y) ∈ B[E,A,B,C,D] ⇐⇒ (x1, u, y) ∈ B[E11,A11,B1,C1,D], where x = T ( x1
0 ).

(c) Vdiff
[E,A,B,C,D] = T

(
K

n−k

ker
[

E12
N

]
)

.

(d) ∀λ ∈ C : rk

[
λE −A −B
C D

]
= k + rk

[
λE11 −A11 −B1

C1 D

]
.

Proof. The existence of a form (2.3) is shown in [2, Prop. 4.2] where it is also shown that [E11, A11, B1, C1]
is completely controllable. The latter yields impulse controllable, see [1, Cor. 4.3].
Assertion (a) and (b) follow from direct calculations, where the fact is used that nilpotency of N gives:
Nẋ2 = x2 implies x2 = 0.

Now we prove Assertion (c): The inclusion Vdiff
[E,A,B,C,D] ⊃ T

(
Kn−k

{0}

)
is an immediate consequence of (b)

and impulse controllability of the subsystem [E11, A11, B1, C1,D]. Since, further, the trivial trajectory
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satisfies (0, 0, 0) ∈ B[E,A,B,C,D](x
0) for all x0 ∈ T

(
{0}

ker

[
E12
N

]
)

, we obtain Vdiff
[E,A,B,C,D] ⊃ T

(
{0}

ker

[
E12
N

]
)

.

Altogether, this gives Vdiff
[E,A,B,C,D] ⊃ T

(
Kn−k

ker

[
E12
N

])

To prove the opposite inclusion, let x0 ∈ Vdiff
[E,A,B,C,D], and define

(
x0

1

x0
2

)
= T−1x0. Then there exists

some (x, u, y) ∈ B[E,A,B,C,D](x
0), whence, by (b), x = T ( x1

0 ) for some K
n1-valued function x1. Thus

we have (x, u, y) ∈ B[E,A,B,C,D]

(
T
(

x0
1

0

))
. This leads to

(0, 0, 0) = (x, u, y) − (x, u, y) ∈ B[E,A,B,C,D]

(
x0 − T

(
x0

1
0

))
= B[E,A,B,C,D]

(
T
(

0
x0

2

))
,

whence T
(

0
x0

2

)
= 0. Thus we have

[
E12

N

]
x0

2 =

[
In1 E12

0 N

](
0
x0

2

)
= SET

(
0

x0
2

)
= 0.

This gives x0
2 ∈ ker

[
E12
N

]
. Altogether, we obtain x0 ∈ T ·

(
{0}

ker

[
E12
N

]
)

, and therefore the inclusion

Vdiff
[E,A,B,C,D] ⊂ T

(
{0}

ker

[
E12
N

]
)

holds true.

Finally, we prove Assertion (d): Since N is nilpotent, we have rk(λN − Ik) = k for all λ ∈ C, and
therefore

∀λ ∈ C : rk

[
λE −A −B
C D

]
= rk



λE11 −A11 λE12 −A12 −B1

0 λN − Ik 0
C1 C2 D


 = k + rk

[
λE11 −A11 −B1

C1 D

]
.

This completes the proof of the proposition.

Definition 2.10 (Feedback equivalence).

The two pencils
[

sEi−Ai, −Bi

Ci Di

]
∈ K

(n+p)×(n+m)[s], i = 1, 2, with [Ei, Ai, Bi, Ci,Di] ∈ Σn,m,p(K) are

called feedback equivalent, if

∃S, T ∈ Gln(K) ∃F ∈ K
m×n :

[
S 0
0 Ip

] [
sE1 −A1 −B1

C1 D1

] [
T 0
F Im

]
=

[
sE2 −A2 −B2

C2 D2

]
.

Remark 2.11 (Invariance under feedback equivalence).
We collect, using the notation from Definition 2.10, the following observations:

(i) Feedback equivalence is an equivalence relation since

[
sE −A −B
C D

]
=

[
S−1 0

0 Ip

] [
sE2 −A2 −B2

C2 D2

] [
T−1 0
−F Im

]
.

(ii) (x, u, y) ∈ B[E1,A1,B1,C1,D1] ⇐⇒ (T−1x, u− Fx, y) ∈ B[E2,A2,B2,C2,D2].
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(iii) By Proposition 2.2 (a), (b) we have:
[E1, A1, B1, C1,D1] is behavioural stabilizable/detectable

⇐⇒ [E2, A2, B2, C2,D2] is behavioural stabilizable/detectable, resp.

(iv) T · Vdiff
[E1,A1,B1,C1,D1] = Vdiff

[E2,A2,B2,C2,D2].

(v) C1(sE1 −A1)−1B1 +D1 = C2(sE2 −A2)−1B2 +D2.

The following feedback equivalence form (FEF) will we very useful as well.

Proposition 2.12 (Feedback equivalence form (FEF)).
Let [E,A,B,C,D] ∈ Σn,m,p(K). Then there exist S, T ∈ Gln(K) and F ∈ K

m×n such that

[
S 0
0 Ip

] [
sE −A −B
C D

] [
T 0
FT Im

]
=




sIn1 −A11 0 sE13 −A13 −B1

0 −In2 sE23 −A23 −B2

0 0 sN − Ik 0
C1 C2 C3 D


 , (2.4)

where N ∈ K
k×k is nilpotent. Furthermore, the following statements hold true:

(a) (x, u, y) ∈ B[E,A,B,C,D] ⇐⇒ (x1, u−Fx, y) ∈ B[In,A11,B1,C1,D−C2B2], where x = T

(
x1

B2[u−F x]
0

)
.

(b) Vdiff
[E,A,B,C,D] = T




K
n−k

ker

[
E13
E23
N

]

.

(c) ∀λ ∈ C : rk

[
λE −A −B
C D

]
= k + rk



λIn1 −A11 0 −B1

0 −In2 −B2

C1 C2 D


 .

(d) If [E,A,B,C,D] is behavioural stabilizable, then S, T, F can be chosen such that σ(A11) ⊂ C−.

(e) If [E,A,B,C,D] is impulse controllable, then S, T, F can be chosen such that k = 0.

Proof. By Proposition 2.9 there exist S1, T1 ∈ Gln(K), such that

S1(sE −A)T1 =

[
sẼ11 − Ã11 sẼ12 − Ã12

0 sN − Ik

]
, SB =

[
B̃1

0

]
, CT =

[
C̃1 C̃2

]
, (2.5)

where [Ẽ11, Ã11, B̃1, C̃1,D] is impulse controllable and N ∈ K
k×k is nilpotent. By [1, Thm. 5.2 (a)],

there exists some F̃1 ∈ K
n−k such that the index of sẼ11 − (Ã11 + B̃1F̃1) is at most one. Consequently,

there exist some S̃1, T̃1 ∈ Gln−k(K) such that

S̃1(sẼ11 − (Ã11 + B̃1F̃1))T̃1 =

[
sIn1 −A11 0

0 −In2

]
.

Finally, for

T := T1

[
T̃1 0
0 In2

]
, S :=

[
S̃1 0
0 In2

]
S1, F := [ F̃1 0 ]T−1

1 .
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the form (2.4) is satisfied.
Assertion (a) is a consequence of Remark 2.11 (ii) and the fact that nilpotency of N yields that
Nẋ2 = x2 implies x2 = 0.
Then Assertion (b) is an immediate consequence of (a).
The proof of statement (c) is analogous to the proof of Proposition 2.9 (d) and omitted.
We prove Assertion (d). Assume that [E,A,B,C,D] is behavioural stabilizable. Then the system
[Ẽ11, Ã11, B̃1, C̃1,D] is strongly stabilizable in the sense of [1, Def. 2.1 (k)] and [1, Thm. 5.2 (c) &
Rem. 5.3 (i)] implies that F̃1 can be chosen so that the index of sẼ11 − (Ã11 + B̃1F̃1) is at most one
and, furthermore, all generalized eigenvalues of sẼ11 − (Ã11 + B̃1F̃1) lie in C−.
Assertion (e) follows since an impulse controllable system [E,A,B,C,D] is already in a form (2.5) with
k = 0. This completes the proof of the proposition.

Many properties will be analyzed by means of the Smith-McMillan form; it is a canonical form on
K(s)p×m under the group action of multiplication from the left and right with unimodular matrices
(i.e., units of the ring of square polynomial matrices).

Theorem 2.13. (Smith-McMillan form [17, Sec. 6.5.2])
For G(s) ∈ K(s)p×m with rkK(s) G(s) = r, there exist unimodular matrices U(s) ∈ Glm(K[s]) and
V (s) ∈ Glm(K[s]) such that

U−1(s)G(s)V −1(s) =

[
D(s) 0

0 0

]
, where D(s) = diag

(
ε1(s)

ψ1(s)
, . . . ,

εr(s)

ψr(s)

)
(2.6)

with unique monic and coprime polynomials εi(s), ψi(s) ∈ R[s] \ {0} satisfying εi(s) | εi+1(s) and
ψi+1(s) | ψi(s) for all i ∈ {1, . . . , r − 1}.

Theorem 2.13 gives rise to the following (standard) definitions.

Definition 2.14. (Poles and zeros [27])
Let G(s) ∈ K(s)p×m with rkK(s)G(s) = r and use the notation from Theorem 2.13. Then

(a) D(s) in (2.6) is called the Smith-McMillan form of G(s);

(b) λ ∈ C is called a transmission zero of G(s), if εr(λ) = 0;

(c) λ ∈ C is called an invariant zero of a realization [E,A,B,C,D] ∈ Σn,m,p(K) of G(s), if

rk
[

λE−A, −B
C D

]
< rkC(s)

[
sE−A, −B

C D

]
;

(d) λ ∈ C is called a pole of G(s), if ψ1(λ) = 0.

3 Outer transfer functions

Definition 3.1 (Outer transfer function).
A transfer function G(s) ∈ K(s)p×m with Smith-McMillan form (2.6) is called

outer :⇐⇒ rkK(s) G(s) = p ∧ ∀λ ∈ C+ : εp(λ) 6= 0 .

11



The following result relates outer transfer functions to the rank condition of an associated matrix pencil
of the system [E,A,B,C,D] ∈ Σn,m,p(K):

(P1) ∀λ ∈ C+ : rk
[

λE−A, −B
C D

]
= n+ p

Remark 3.2 (Property (P1)).

(a) Assume that [E,A,B,C,D] ∈ Σn,m,p(K) fulfills (P1). Then rk[λE − A, B] = n for all λ ∈ C+.
Combining this fact with Proposition 2.2 (b), we obtain

[E,A,B,C,D] is behavioural stabilizable ⇐⇒ ∀ω ∈ R : rk[iωE −A, B] = n.

(b) Consider a system [E,A,B,C,D] ∈ Σn,m,p(K). In view of Remark 2.11 (i), Property (P1) is
invariant under feedback equivalence. Therefore, by Remark 2.5 (c), (e) Property (P1) can be
characterized in terms of the KCF as follows:

(P1) ⇐⇒





the blocks of the Kronecker canonical form of
[

sE−A, −B
C D

]
satisfy:

(OD)-blocks do not exist, and each (ODE)-block (s− λ)Ik −Nk has λ ∈ C−.

Now we give the first “almost characterization” of outer transfer functions.

Theorem 3.3 (Characterization of (P1)).
For any [E,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sE −A)−1B + D ∈ K(s)p×m we
have:

(a) (P1) =⇒ G(s) is outer.

(b) (P1) ⇐=

{
G(s) is outer and

[E,A,B,C,D] is behavioural stabilizable and detectable.

Proof. The proof follows from the observations in [24] specialized to systems of the form (1.1).

We can furthermore characterize outer transfer functions by the structure of their right inverses.

Proposition 3.4 (Right inverses of outer functions).
Let [E,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sE −A)−1B +D ∈ K(s)p×m. Then

G(s) is outer ⇐⇒

{
∃G−(s) ∈ K(s)m×p : G(s)G−(s) = Ip and

λ ∈ C is a pole of G−(s) ⇒ λ ∈ C−.

Proof. Suppose that G(s) is in Smith-McMillan form (2.6). Then

G−(s) = V −1(s)

[
D(s)−1

0

]
U−1(s)

is a right inverse and if G(s) is outer, then G−(s) does not have any poles in C+.
To prove the converse, assume that G−(s) ∈ K(s)m×p does not have any poles in C+ and is a right
inverse: G(s)G−(s) = Ip. Then, we have

V (s)G−(s)U(s) =

[
D(s)−1

F (s)

]
for some F (s) ∈ K(s)(m−p)×p.

12



Since G−(s) has no poles in C+, this also holds true for D(s)−1; and therefore D(s) has no zeros in C+.
This completes the proof of the proposition.

Remark 3.5. The set of units in the ring H∞(C+→K
m×m)∩K(s)m×m is a subset of the class of outer

function functions of dimension m×m. The the set of outer functions in H∞(C+→K
m×m) ∩K(s)m×m

however further contains elements which might have inverses which are improper and/or have poles on
the imaginary axis; this holds already true for m = 1.

4 Zero dynamics

An important time domain concept related to the pencil
[

sE−A, −B
C D

]
are the zero dynamics.

Definition 4.1 (Zero dynamics). The zero dynamics of [E,A,B,C,D] ∈ Σn,m,p(K) is defined as

ZD[E,A,B,C,D] :=
{

(x, u) ∈ L2
loc(R≥0→K

n × K
m)

∣∣∣ (x, u, 0) ∈ B[E,A,B,C,D]

}
.

The set of zero dynamics initialized by the “initial state” x0 ∈ K
n is

ZD[E,A,B,C,D](x
0) :=

{
(x, u) ∈ ZD[E,A,B,C,D]

∣∣∣ Ex0 = Ex(0)
}
.

The set of consistent initial differential variables for the zero dynamics are

ZDdiff
[E,A,B,C,D] :=

{
x0 ∈ K

n
∣∣∣ ZD[E,A,B,C,D](x

0) 6= ∅
}
.

The zero dynamics ZD[E,A,B,C,D] are called

polynomially bounded :⇐⇒ ∀ (x, u) ∈ ZD[E,A,B,C,D] ∃ p(s) ∈ R[s] ∃M ≥ 0

for almost all τ ≥ 0 :
∥∥(x(τ), u(τ)

)∥∥ ≤ M · |p(τ)|;

asymptotically stable :⇐⇒ ∀ (x, u) ∈ ZD[E,A,B,C,D] : limt→∞ ess supτ>t

∥∥(x(τ), u(τ)
)∥∥ = 0 ;

polynomially stabilizable :⇐⇒ ∀x0 ∈ ZDdiff
[E,A,B,C,D]

∃ p(s) ∈ R[s] ∃M ≥ 0 ∃ (x, u) ∈ ZD[E,A,B,C,D](x
0)

for almost all τ ≥ 0 :
∥∥(x(τ), u(τ)

)∥∥ ≤ M · |p(τ)|;

stabilizable :⇐⇒ ∀x0 ∈ ZDdiff
[E,A,B,C,D] ∃ (x, u) ∈ ZD[E,A,B,C,D](x

0)

limt→∞ ess supτ>t

∥∥(x(τ), u(τ)
)∥∥ = 0 ;

autonomous :⇐⇒ ∀x0 ∈ K
n : ZD[E,A,B,C,D](x

0) contains at most one element.

Alternatively, we may write the zero dynamics as

ZD[E,A,B,C,D] =





(x, u) ∈ L2
loc(R≥0→K

n) × L2
loc(R≥0→K

m)

∣∣∣∣∣∣∣∣∣

(x, u, 0) ∈ B[E,A,B,C,D]

[
d
dt E−A, −B

C D

](
x
u

)
=

(
0
0

)




. (4.1)

We will now show that the space of consistent initial differential variables is the whole K
n. Namely,

by using (4.1), performing the substitutions E  
[

E
0

]
, A  

[
A
C

]
and B  

[
B
D

]
and invoking that

ker
[

E
0

]
= kerE, we can infer the subsequent statement from [1, Cor 4.3]:
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Proposition 4.2. For [E,A,B,C,D] ∈ Σn,m,p(K) holds

ZDdiff
[E,A,B,C,D] = K

n ⇐⇒ im
[

E B
0 D

]
+
[

A
C

]
· kerE= K

n+p.

Now all concepts in Definition 4.1 are characterized in terms of some algebraic properties of the pencil

R(s) =
[

sE−A, −B
C D

]
.

Proposition 4.3. Let [E,A,B,C,D] ∈ Σn,m,p(K) and set R(s) =
[

sE−A, −B
C D

]
. Then the zero dynam-

ics ZD[E,A,B,C,D] are

(a) autonomous ⇐⇒ rkR(s) R(s) = n+m;

(b) polynomially bounded ⇐⇒ ∀λ ∈ C+ : rkR(λ) = n+m;

(c) asymptotically stable ⇐⇒ ∀λ ∈ C+ : rkR(λ) = n+m;

(d) polynomially stabilizable ⇐⇒ ∀λ ∈ C+ : rkK(s)R(s) = rkR(λ);

(e) stabilizable ⇐⇒ ∀λ ∈ C+ : rkK(s)R(s) = rkR(λ)

⇐⇒ ∀x0 ∈ ZDdiff
[E,A,B,C,D] ∃ (x, u) ∈ ZD[E,A,B,C,D](x

0) :

limt→∞Ex(t) = 0 ;

(f) polynomially bounded ⇐⇒ [E,A,B,C,D] is autonomous and polynomially stabilizable;

(g) asymptotically stable ⇐⇒ [E,A,B,C,D] is autonomous and stabilizable

⇐⇒ ∀x0 ∈ ZDdiff
[E,A,B,C,D] ∃! (x, u) ∈ ZD[E,A,B,C,D](x

0) :

limt→∞Ex(t) = 0 .

Proof. By Theorem 2.6 we may choose S ∈ Glm(C) and T ∈ Gln(C) such that

SR(s)T = diag
(
sF1 −G1, . . . , sFf −Gf

)
(4.2)

is in Kronecker canonical form. Using (4.1), we see that

z = ( x
u ) ∈ ZD[E,A,B,C,D] ⇐⇒ ( d

dtFi −Gi)(zi) = 0 ∀ i = 1, . . . , f, where

(
z1

...
zf

)
:= T−1z.

The representations of the solution sets of the DAEs ( d
dtFi −Gi)(zi) = 0 in [11, Chap. XII, § 7] allow

to conclude the following equivalences for the zero dynamics ZD[E,A,B,C,D]

(a’) autonomous ⇐⇒ #{(UD)-blocks in (4.2)} = 0

(b’) polynomially bounded ⇐⇒ #{(UD)-blocks in (4.2)} = 0 and every (ODE)-block in (4.2)
corresponds to a generalized eigenvalues in C−

(c’) asymptotically stable ⇐⇒ #{(UD)-blocks in (4.2)} = 0 and every (ODE)-block in (4.2)
corresponds to a generalized eigenvalues in C−

(d’) polynomially stabilizable ⇐⇒ and every (ODE)-block in (4.2)
corresponds to a generalized eigenvalues in C−

(e’) stabilizable ⇐⇒ and every (ODE)-block in (4.2)
corresponds to a generalized eigenvalues in C−.

Now by Remark 2.5 (d) and (e) the Assertions (a)-(e) follow from (a’)-(e’), respectively.
Assertion (f) follows from a combination of Assertions (a), (b), and (d).
Assertion (g) can be obtained by combining (a), (c), and (e).
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The above characterizations immediately give the following characterization of the rank condition (P1)
which, in view of Theorem 3.3, is for stabilizable and detectable (in the behavioural sense) systems
equivalent to the transfer function being outer.

Corollary 4.4 (Zero dynamics and (P1)).
Any [E,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sE−A)−1B+D ∈ K(s)p×m satisfies:

(P1) ⇐⇒





rkK(s)

[
sE−A, −B

C D

]
= n+ p and

ZD[E,A,B,C,D] is polynomable stabilizable.

5 Stable outer transfer functions

We will now present a time domain characterization of outer transfer functions. Under the con-
dition that the transfer function G(s) belongs to H∞(C+ → K

p×m), i.e. all poles are in the open
left half complex plane, the transfer function G(s) is outer if, and only if, the time domain system
[E,A,B,C,D] ∈ Σn,m,p(K) satisfies the following Property (P2):

(P2) ∀ ε > 0 ∀ z ∈ L2(R≥0→K
p) ∃ (x, u, y) ∈ B[E,A,B,C,D](0) :

{
u ∈ L2(R≥0→K

m)

∧ ‖z − y‖L2 < ε.

Theorem 5.1 (Equivalence of outer and (P2)).
For any system [E,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sE − A)−1B + D ∈
K(s)p×m ∩ H∞(C+→K

m×p) we have

G(s) is outer ⇐⇒ (P2) .

Two technical lemmata are needed for the proof of the above theorem.

Lemma 5.2. Let G(s) ∈ K(s)p×m ∩ H∞(C+→K
p×m) be outer. Then

∃G2(s) ∈ K(s)(m−p)×m ∩ H∞(C+→K
(m−p)×m) :

[
G(s)
G2(s)

]
∈ K(s)m×m ∩ H∞(C+→K

m×m) is outer.

(5.1)

Proof. Consider the Smith-McMillan form of G(s) as in (2.6). Then Proposition 3.4 yields

U−1(s)G(s)V −1(s) =
[
D(s) 0

]
,

where, by the fact that G(s) is outer and belongs to H∞(C+→K
p×m), D(s) neither has poles in C+

nor zeros in C+. Since V (s) is a polynomial matrix, we may choose k ∈ N such that

G2(s) :=
1

(s+ 1)k
V (s) ∈ H∞(C+→K

m×m).

Then we obtain that (5.1) holds true, and by

U−1(s)

[
G(s)
G2(s)

] [
V −1(s) 0

0 Im−p

]
=

[
D(s) 0

0 1
(s+1)k Im−p

]
,
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we see that [
G(s)
G2(s)

]−1

= V −1(s)

[
D(s)−1 0

0 (s+ 1)k · Im−p

]
U−1(s)

does not have any poles in C+. The augmented matrix in (5.1) is therefore invertible and does not
have any zeros in C+, whence it is outer.

In the following lemma we show that Property (P2) yields that the input-output map of stable and
outer system has dense range in L2. Therefore, for H∞-transfer functions, our definition of an outer
transfer function is equivalent to the definition in [16,23].

Lemma 5.3. For any G(s) ∈ K(s)p×m ∩ H∞(C+→K
p×m) we have

G(s) is outer ⇐⇒





the multiplication operator

MG : H2(C+→K
m) → H2(C+→K

p), û(s) 7→ G(s)û(s) ∀s ∈ C+

has dense range.

Proof. (a) We prove the statement for K = C:
⇐= : Seeking for a contradiction, assume that G(s) is not outer and MG has dense range:
The Smith-McMillan form (2.6) implies that there exists some λ ∈ C+ and some ξ ∈ C

m \{0} such
that ξ∗G(λ) = 01,m. Consider the function

ẑ(s) =
ξ

s− λ
∈ H2(C+→C

m) ∩ C(s)m. (5.2)

By the density of imMG in H2(C+→K
p) we have

∃ û ∈ H2(C+→C
m) : ‖ẑ −MGû‖H2 <

1√
2 Re(λ)

. (5.3)

Then, by using Cauchy’s integral formula we obtain

〈ẑ,MGû〉H2 = 1
2π

∞∫
−∞

(
1

ıω−λ
ξ
)∗

G(ıω) û(ıω) dω

= 1
2π

∞∫
−∞

−1
ıω−λ · ξ∗G(ıω) û(ıω) dω = −ξ∗G(λ) û(λ) = 0.

Therefore, the Pythagorean theorem yields

‖ẑ −MGû‖2
H2 = ‖ẑ‖2

H2 + ‖MGû‖2
H2 ≥ ‖ẑ‖2

H2 =
1

2 Re(λ)
,

which contradicts (5.3).
=⇒ : Step 1: We prove the implication =⇒ for the case p = m:
Since G(s) is outer, it follows from the Smith-McMillan form (2.6) that the scalar rational function
g(s) := detG(s) ∈ C(s) is outer as well. Then, by [20, p. 1251], the multiplication operator
Mg : H2(C+→C) → H2(C+→C) has dense range. Then the Helson-Lowdenslager Theorem [19,
p. 22] implies that MG has dense range.
Step 2: We show the implication =⇒ for the case p 6= m:
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Let ẑ ∈ H2(C+→C
p) and ε > 0 be given. Using Lemma 5.2, we obtain that there exists some

G2(s) ∈ K(s)(m−p)×m ∩ H∞(C+→K
(m−p)×m) such that

G̃(s) :=

[
G(s)
G2(s)

]
∈ K(s)m×m ∩ H∞(C+→K

m×m)

is outer. By the result in Step 1 for the case p = m, there exists some û ∈ H2(C+→C
m) with

∥∥∥∥∥

(
ẑ
0

)
−

(
MGû
MG1 û

)∥∥∥∥∥
H2

=
∥∥∥
(

ẑ
0

)
−M

G̃
û
∥∥∥

H2
< ε.

This implies ‖ẑ −MGû‖H2 < ε, whence this implication is shown.

(b) We prove the statement for K = R:
⇐= Again seeking for a contradiction, assume that G(s) ∈ R(s)p×m ∩ H∞(C+ →R

p×m) is not
outer and MG has dense range.
Assume that G(s) has a zero in λ ∈ C+. Then there exists some z ∈ C

p \ {0} with z∗G(λ) = 0.
Since G(s) ∈ R(s)p×m, we have that the element-wise conjugate of z satisfies z∗G(λ) = 0. Define
the function ẑ ∈ H2(C+→C

p) \ {0} as in (5.2). Then at least one of the functions

ẑ1 := ẑ + ẑ(·) ∈ H2(C+→R
p), z2 = 1

ı · (z − ẑ(·)) ∈ H2(C+→R
p)

is non-zero. Then, by the results in the complex case, we obtain for all û ∈ H2(C+→R
m) that MGû

is, in the H2-sense, orthogonal to both ẑ1 and ẑ2 as in (5.2). This leads to the same contradiction
as in the complex case.
=⇒ Let G(s) ∈ R(s)p×m ∩ H∞(C+→R

p×m) be outer, ẑ ∈ H2(C+→R
p) and ε > 0. Then, by a),

there exists some û1 ∈ H2(C+→C
m), such that ‖ẑ −MGû‖H2 < ε. Define

û :=
û1 + û1(·)

2
∈ H2(C+→R

m).

The realness of G(s) implies MGû1(·) = MGû1(·), and thus

‖ẑ −MGû‖H2 ≤ 1
2 · ‖ẑ −MGû1‖H2 + 1

2 ·
∥∥∥ẑ −MGû1(·)

∥∥∥
H2

= 1
2 · ‖ẑ −MGû1‖H2 + 1

2 ·
∥∥∥ẑ(·) −MGû1(·)

∥∥∥
H2

= ‖ẑ −MGû‖H2 < ε.

Proof of Theorem 5.1: First note that

(i) for (x, u, y) ∈ B[E,A,B,C,D](0), the Laplace transforms of y and u are related by ŷ(s) = G(s)û(s)
∀s ∈ C+;

(ii) by the Paley-Wiener Theorem [8, Thm. A.6.21], Laplace transform defines an isometric mapping
from L2(R≥0→K

m) to H2(C+→K
m);

(iii) the norm of the multiplication operator MG : H2(C+ → K
m) → H2(C+ → K

p) defined by
MG(û)(s) = G(s)û(s) ∀s ∈ C+ equals to ‖G‖H∞ [8, Thm. A.6.26];

17



(iv) for all infinitely often differentiable u ∈ L2(R≥0→K
m) with support contained in (0,∞), there

exists some unique (x, u, y) ∈ B[E,A,B,C,D](0).

=⇒ Assume that G(s) is outer, ε > 0, and z ∈ L2(R≥0→K
p). Then we have to show

∃ (x, u, y) ∈ B[E,A,B,C,D](0) : u ∈ L2(R≥0→K
m) ∧ ‖z − y‖L2 < ε .

Let ẑ be the Laplace transform of z. By Lemma 5.3, there exists some û1 ∈ H2(C+→K
m) with

‖ẑ −MGû1‖H2 < ε/2. (5.4)

By a density argument, we see that there exists some infinitely often differentiable u ∈ L2(R≥0→K
m)

with support contained in (0,∞), such that

‖u− u1‖L2 · ‖G‖H∞ < ε/2. (5.5)

By statement (iv), there exist x ∈ L2(R≥0→K
n), y ∈ L2(R≥0→K

p) with (x, u, y) ∈ B[E,A,B,C,D](0).
Then we obtain

‖z − y‖L2
(i)
= ‖ẑ − ŷ‖H2

(ii)
= ‖ẑ −MGû‖H2 ≤ ‖ẑ −MGû1‖H2 + ‖MG(û− û1‖H2

(iii)&(5.4)

≤ ε/2 + ‖G‖H∞ ‖û− û1‖H2
(i)
= ε/2 + ‖G‖H∞‖u− u1‖L2

(5.5)
< ε.

⇐= Seeking for a contradiction, assume that G(s) is not outer and Property (P2) holds.
By Lemma 5.3, there exists some ẑ ∈ H2(C+→K

p) and some ε > 0 such that for all û ∈ H2(C+→K
m)

holds
‖ẑ −MGû‖H2 ≥ ε.

Assume that (x, u, y) ∈ B[E,A,B,C,D](0). Then

‖z − y‖L2
(i)
= ‖ẑ − ŷ‖H2

(ii)
= ‖ẑ −MGû‖H2 ≥ ε.

This contradicts Property (P2). ✷

Remark 5.4 (Stable outer functions). Note that in [23] a (possibly non-rational) transfer function G ∈
H∞(C+→K

p×m) is defined to be outer, if the multiplication operator MG as in Lemma 5.3 is surjective.
In the possibly non-rational case, Cauchy’s integral formula (cf. the proof of ⇐= in Lemma 5.3) can
as well be used to infer that outer functions do not have zeros in C+. The converse direction =⇒
in Lemma 5.3 however does no longer hold true for non-rational functions. A counterexample is
G(s) = e−s, see [16].

6 Outer transfer functions

Next we wave the H∞-condition in Theorem 5.1. To this end the Property (P2) is strengthened to the
following two properties.

(P3) ∀ y0 ∈ K
p \ {0} ∃ (x, u, y) ∈ B[E,A,B,C,D] : (y0)∗y(·) 6= 0

and
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(P4)
∀ ε > 0 ∀x0 ∈ Vdiff

[E,A,B,C,D] ∃ (x, u, y) ∈ B[E,A,B,C,D](x
0) :

u ∈ L2(R≥0→K
m) ∧ lim

t→∞
Ex(t) = 0 ∧ ‖y‖L2 < ε.

Properties (P3) and (P4) mean for systems described by ordinary differential equations simply (P3’)
and (P4’), respectively; see page 3.

Note that in Property (P4) we allow for arbitrary initial data x0 ∈ Vdiff
[E,A,B,C,D] but the internal

state Ex(t) has to go to zero. This replaces in a sense the H∞-condition of the transfer function in
Property (P2).

Remark 6.1. If a system [E,A,B,C,D] ∈ Σn,m,p(K) has stabilizable zero dynamics, then Prop-
erty (P4) holds and we have

∀x0 ∈ Vdiff
[E,A,B,C,D] ∃ (x, u, y) ∈ B[E,A,B,C,D](x

0) :

u ∈ L2(R≥0→K
m) ∧ lim

t→∞
Ex(t) = 0 ∧ ‖y‖L2 = 0.

The main result of this section is Theorem 6.6 where we show that a system has an outer transfer
function “almost if, and only if,” the Properties (P3) and (P4) hold. We first give an“almost charac-
terization” of Property (P3).

Proposition 6.2 (Characterization of (P3)).
For any system [E,A,B,C,D] ∈ Σn,m,p(K) the following statements hold true:

(a) (P3)
=⇒
6⇐=

rk
[

E A B
0 C D

]
= n+ p

(b) (P3) ⇐=





rk
[

E A B
0 C D

]
= n+ p and

[E,A,B,C,D] is impulse controllable.

Proof.

(a) Seeking for a contradiction, assume that rk
[

E A B
0 C D

]
< n+ p. Then

∃(x0, y0) ∈ K
n × K

p \ {(0, 0)} :

(
x0

y0

)∗ [
E A B
0 C D

]
= 0.

If y0 = 0, then x0 6= 0 and (x0)∗E = (x0)∗A = 0 contradicted the regularity of sE −A. Therefore,
y0 6= 0. Now assume that (x, u, y) ∈ B[E,A,B,C,D]. Then

(y0)∗y(·) = (y0)∗Cx(·) + (y0)∗Du(·) = −(x0)∗Ax(·) − (x0)∗Bu(·) = −(x0)∗Eẋ(·) = 0

contradicts (P3).
To see that the reverse implication does not hold true in general, consider

[E,A,B,C,D] :=

[[
0 1
0 0

]
,

[
1 0
0 1

]
,

[
0
0

]
,
[
1 0

]
, 0

]
∈ Σ2,1,1. (6.1)
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In passing we note that the pencil sE−A is regular. Since B[E,A,B,C,D] = {0}×L2
loc(R≥0→K)×{0},

Property (P3) is not fulfilled. However,

rk

[
E A B
0 C D

]
= rk




0 1 1 0 0
0 0 0 1 0
0 0 1 0 0


 = 3 = n+ p.

(b) Step 1: We prove the assertion for the case E = In. Let y0 ∈ K
p \ {0}. Then

0 6=

(
0
y0

)∗ [
E A B
0 C D

]
, and so (y0)∗C 6= 0 ∨ (y0)∗D 6= 0.

Therefore,
∃x0 ∈ K

n ∃u0 ∈ K
m : (y0)∗Cx0 + (y0)∗Du0 6= 0.

Define the trajectory

(x(·), u(·), y(·)) =

(
eA·x0, u0, CeA·x0 + C

∫ ·

0
eA(·−τ)Bu0 dτ +Du0

)
∈ B[In,A,B,C,D]. (6.2)

Then (x, u, y) is continuous with (x(0), u(0), y(0)) = (x0, u0, Cx0 + Du0). In particular we have
(y0)∗y(0) = (y0)∗Cx0 + (y0)∗Du0 6= 0, whence (y0)∗y(·) 6= 0.

Step 2: We prove the assertion for impulse controllable systems [E,A,B,C,D] ∈ Σn,m,p(K):
By Proposition 2.12 (e)

∃S, T ∈ Gln(K) ∃F ∈ K
m×n :

[
S 0
0 Ip

] [
E A B
0 C D

]

T 0 0
0 T 0
0 FT Im


 =



In1 0 A11 0 B1

0 0 0 In2 B2

0 0 C1 C2 D


 .

Since

rk

[
E A B
0 C D

]
= rk



In1 0 A11 0 B1

0 0 0 In2 B2

0 0 C1 C2 D




and Property (P3) is invariant under feedback equivalence, it suffices to consider the DAE associ-
ated to the matrix on the right hand side, i.e.

ẋ1 = A11x1 +B1u
0 = x2 +B2u
y = C1x1 + C2x2 +Du

or equivalently, x2 = −B2u together with

ẋ1 = A11x1 +B1u
y = C1x1 + (D − C2B2)u.

Now we may apply Step 1 to show Property (P3) for B[In1 ,A11,B1,C1,D−C2B2], and it is easy to see
that (P3) also holds for B[E,A,B,C,D].

This completes the proof of the proposition.
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Next we prove that, for any [E,A,B,C,D] ∈ Σn,m,p, the output space can be reduced to a system
with Property (P3). This is a key result to provide an “almost characterization” of the Property (P4)
in Proposition 6.4.

Proposition 6.3. Let [E,A,B,C,D] ∈ Σn,m,p, define

Y0 :=
{
y0 ∈ K

p
∣∣∣ ∀(x, u, y) ∈ B[E,A,B,C,D] and for almost all t ∈ R : (y0)∗y(t) = 0

}

and choose
Y ∈ K

p×p1 : im Y = Y⊥
0 ∧ Y ∗Y = Ip1. (6.3)

Then we have

(i) B[E,A,B,C,D] =
{

(x, u, Y y1)
∣∣∣ (x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D]

}
;

(ii) [E,A,B, Y ∗C, Y ∗D] satisfies (P3);

(iii) ∀λ ∈ C : rk

[
λE −A −B
C D

]
= rk

[
λE −A −B
Y ∗C Y ∗D

]
.

Moreover, if (i) and (ii) hold, instead for Y , for some Ŷ ∈ K
p×p1 with Ŷ ∗Ŷ = Ip1, then im Ŷ = Y⊥

0

and hence Y and Ŷ differ by a unitary factor from the right.

Proof. Since Y0 ⊂ K
p is a linear subspace, the choice of Y is possible. We may also choose

Y0 ∈ K
p×(p−p1) : im Y0 = Y0 ∧ Y ∗

0 Y0 = Ip−p1. (6.4)

Then we have im Y = kerY ∗
0 and

[Y, Y0] [Y, Y0]∗ = Ip. (6.5)

By the definition of Y0 we have

∀(x, u, y) ∈ B[E,A,B,C,D] =⇒
[

for almost all t ∈ R : y(t) ∈ Y⊥
0

]
(6.6)

and Y ∗Y = Ip1 yields that

Y Y ∗ ∈ K
p×p is an orthogonal projector onto Y⊥

0 . (6.7)

We now proceed in several steps.
(i), ⊂: Let (x, u, y) ∈ B[E,A,B,C,D]. Then

(x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D] for y1 := Y ∗y = Y ∗Cx+ Y ∗Du

and (6.6) and (6.7) yield y = Y Y ∗y = Y y1.
(i), ⊃: Let (x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D] and define y = Cx+Du. Then (6.6) and (6.7) yield

Y y1 = Y [Y ∗Cx+ Y ∗Du] = Y Y ∗y = y and (x, u, y) ∈ B[E,A,B,C,D].

(ii): Seeking a contradiction, suppose that

∃ŷ0 ∈ K
p1 \ {0} ∀(x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D] and for almost all t ∈ R : (ŷ0)∗y1(t) = 0. (6.8)
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Fix (x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D] and define y := Cx+Du. Then

(x, u, y) ∈ B[E,A,B,C,D] and y1 = Y ∗[Cx+Du] = Y ∗y

and (6.6)-(6.7) yield that Y y1 = Y Y ∗y = y, and therefore

(Y ŷ0)∗y(t) = (ŷ0)∗ Y ∗Y y1(t)
(6.3)
= (ŷ0)∗y1(t)

(6.8)
= 0 for almost all t ∈ R.

This shows Y ŷ0 ∈ Y0 ∩ im Y = Y0 ∩ Y⊥
0 = {0}, whence, again by (6.3), ŷ0 = 0. This contradicts (6.8).

Before we show Assertion (iii), we show the last statement of the proposition. Let Ŷ ∈ K
p×p1 with

Ŷ ∗Ŷ = Ip1 such that (i) and (ii) hold for Ŷ .
We show im Ŷ ⊥ ⊂ Y0: Since (i) holds for Ŷ , we may choose

(x, u, y) ∈ B[E,A,B,C,D], (x, u, ŷ1) ∈ B
[E,A,B,Ŷ ∗C,Ŷ ∗D]

: y = Ŷ ŷ1.

Then we have, for ŷ0 ∈ im Ŷ ⊥,

(ŷ0)∗y(t) = (ŷ0)∗Ŷ ŷ1(t) = 0 for almost all t ∈ R

and thus ŷ0 ∈ Y0,
We show im Ŷ ⊥ = Y0: Seeking a contradiction, suppose there exists y0 ∈ Y0 \ im Ŷ ⊥ and set
ŷ0 := Ŷ ∗y0. Since Property (P3) holds for Ŷ , we have

∃(x, u, ŷ1) ∈ B
[E,A,B,Ŷ ∗C,Ŷ ∗D]

: (ŷ0)∗ŷ1 6= 0.

Since (i) holds for Ŷ , we have (x, u, y) ∈ B[E,A,B,C,D] for y = Ŷ ŷ1 and we conclude

0 6= (ŷ0)∗ŷ1 = (y0)∗Ŷ ŷ1 = (y0)∗y

and this yields the contradiction y0 6∈ Y0.

(iii): First we show, for Y0 as in (6.4),

E = In =⇒ Y ∗
0 [C,D] = 0. (6.9)

Let
y0

k := Y0ek ∈ im Y0 \ {0} = Y0 \ {0} for k ∈ {1, . . . , p− p1}.

Then
∀(x, u, y) ∈ B[In,A,B,C,D] and for almost all t ∈ R : (y0

k)∗y(t) = 0

and, for arbitrary x0 ∈ K
n and u0 ∈ K

m and any trajectory

(x(·), u(·), y(·)) :=

(
eA·x0, u0, CeA·x0 + C

∫ ·

0
eA(·−τ)Bu0 dτ +Du0

)
∈ B[In,A,B,C,D],

we conclude by continuity of y

(y0
k)∗y(0) = (y0

k)∗[C,D]
(

x0

u0

)
= 0.
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Since x0 and u0 are arbitrary, it follows that (y0
k)∗[C,D], and the claim follows since k is arbitrary.

Finally, we show (iii) for any [E,A,B,C,D] ∈ Σn,m,p.
In terms of the notion from Proposition 2.12 we have, for all λ ∈ C,

rk

[
λE −A −B
C D

]
(2.4)
= rk




λIn1 −A11 0 λE13 −B1

0 −In2 λE23 +A23 −B2

0 0 λN − Ik 0
C1 C2 C3 D




N nilpt.
= k + rk



λIn1 −A11 0 −B1

0 −In2 −B2

C1 C2 D




(6.5)
= = k + rk




λIn1 −A11 0 −B1

0 −In2 −B2

Y ∗C1 Y ∗C2 Y ∗D
Y ∗

0 C1 Y ∗
0 C2 Y ∗

0 D




Using Proposition 2.12 (a), we further obtain from (6.9) that

Y ∗
0 C1 = 0 and Y ∗

0 (D − C2B2) = 0 (6.10)

and continue

rk

[
λE −A −B
C D

]
(6.10)

= k + rk




λIn1 −A11 0 −B1

0 −In2 −B2

Y ∗C1 Y ∗C2 Y ∗D
0 Y ∗

0 C2 Y ∗
0 C2B2




= k + rk




λIn1 −A11 0 −B1

0 −In2 0
Y ∗C1 Y ∗C2 Y ∗(D − C2B2)

0 0 0




= k + rk



λIn1 −A11 0 −B1

0 −In2 −B2

Y ∗C1 Y ∗C2 Y ∗D




N nilpt.
= rk




λIn1 −A11 0 λE13 +A13 −B1

0 −In2 λE23 +A23 −B2

0 0 λN − Ik 0
Y ∗C1 Y ∗C2 Y ∗C3 Y ∗D




(2.4)
= rk

[
λE −A −B
Y ∗C Y ∗D

]
.

This completes the proof of the proposition.

We are now in a position to show the first “almost characterization” of the Property (P4).
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Proposition 6.4. For any system [E,A,B,C,D] ∈ Σn,m,p(K) the following statements hold true:

(a) (P4)
⇐=
6=⇒





rk
[

E A B
0 C D

]
= rk

[
λE−A, −B

C D

]
∀λ ∈ C+

and [E,A,B,C,D] is behavioural stabilizable.

(b)
(P4) and [E,A,B,C,D]

is impulse controllable.
=⇒





rk
[

E A B
0 C D

]
= rk

[
λE−A, −B

C D

]
∀λ ∈ C+

and [E,A,B,C,D] is behavioural stabilizable.

Proof. We preface the proof with some basic observations needed in the steps of the proof. First note
the following facts.

(O1) A real system [E,A,B,C,D] ∈ Σn,m,p(R) satisfies Property (P4), if, and only if, it satisfies (P4)
as a complex system [E,A,B,C,D] ∈ Σn,m,p(C). The property of impulse controllability does
also not depend on regarding [E,A,B,C,D] as a real or as a complex system. Further, the
transformation to Kronecker canonical form is complex, independent of the matrix pencil being
real or complex. As a consequence, it suffices to prove the statements for the case K = C.

(O2) The property

∀λ ∈ C+ : rk
[

E A B
0 C D

]
= rk

[
λE−A, −B

C D

]
(6.11)

is equivalent to

∀λ ∈ C+ : im
[

−E −A −B
0 C D

]
= im

[
λE−A, −B

C D

]
(6.12)

since
[

−E −A −B
0 C D

]
=
[

−In 0
0 Ip

] [
E A B
0 C D

]
and

∀λ ∈ C : im
[

λE−A −B
C D

]
= im

([
−E −A −B

0 C D

] [−λIn 0
In 0
0 Ip

])
⊂ im

[
−E −A −B

0 C D

]
.

(O3) Property (6.11) is invariant under feedback equivalence since

[
W ET W (A+BF )T W B

0 CT D

]
=
[

W 0
0 Ip

]
·
[

E A B
0 C D

]
·

[
T 0 0
0 T 0
0 F T Im

]

and
∀λ ∈ C :

[
λW ET −W (A+BF )T −W B

CT D

]
=
[

W 0
0 Ip

]
·
[

λE−A −B
C D

]
·
[

T 0
F T Im

]
.

We are now ready for the proof and proceed in several steps.

(a) ⇐ Step 1: We first additionally assume that all generalized eigenvalues of sE−A are belonging to C−

and the index of sE−A is at most one. The latter yields that [E,A,B,C,D] is impulse controllable.
Let Y ∈ K

p×p1 be as in (6.3). Since (6.11) holds by assumption, we have, by using (O2),

∀λ ∈ C+ : im

[
λE −A −B
Y ∗C Y ∗D

]
=

[
In 0
0 Y ∗

]
· im

[
λE −A −B
C D

]

(6.12)
=

[
In 0
0 Y ∗

]
· im

[
−E −A −B
0 C D

]
= im

[
−E −A −B
0 Y ∗C Y ∗D

]
,
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and therefore

∀λ ∈ C+ : rk

[
λE −A −B
Y ∗C Y ∗D

]
= rk

[
−E −A −B
0 Y ∗C Y ∗D

]
= rk

[
E A B
0 Y ∗C Y ∗D

]
= n+ p1,

where the last equality follows from the fact that [E,A,B, Y ∗C, Y ∗D] satisfies Property (P3) by
Proposition 6.3 (ii) and hence we may apply Proposition 6.2 (a). Therefore, the system
[E,A,B, Y ∗C, Y ∗D] satisfies (P1). By Theorem 3.3 (a), we obtain that the transfer function
G(s) = Y ∗D + Y ∗C(sE − A)−1B ∈ C(s)p1×m is outer. The assumption that all generalized
eigenvalues of sE − A are belonging to C− and the index of sE − A is at most one yields that,
additionally, G(s) ∈ H∞(C+→K

p1×m). Let ε > 0 and x0 ∈ Vdiff
[E,A,B,C,D] = R

n. The Kronecker
canonical form allows to assume that the system is in the form

sE −A = s

[
In1 0
0 0n2

]
−

[
A11 0
0 In2

]
, B =

[
B1

B2

]
, C =

[
C1 C2

]
, x0 =

(
x01

x02

)
,

and, by the assumption that the set of generalized eigenvalues of sE − A is contained in C−, we
have σ(A11) ⊂ C−. In these coordinates, a solution (( x1

x2 ) , u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D] satisfies, for
all t ≥ 0,

x1(t) = eA11tx01 +

∫ t

0
eA11(t−τ) B1 u(τ) dτ

x2(t) = −B2u(t)

y1(t) =Y ∗C1x1(t) + Y ∗C2x2(t) + Y ∗Du(t) .

Apply
z(·) := C1eA11·x01 ∈ L2(R≥0→K

p)

to Theorem 5.1. Then

∃ (( x21
x22 ) , u, y2) ∈ B[E,A,B,Y ∗C,Y ∗D](0) : u ∈ L2(R≥0→K

m) ∧ ‖ − z − y2‖L2 < ε .

Since
((

x21+eA11·x01

x22

)
, u, y2 + z

)
∈ B[E,A,B,Y ∗C,Y ∗D](x

0), we have, by linearity of the behaviour,

that
(x, u, y1) =

((
x21+eA11·x01

x22

)
, u, z + y2

)
∈ B[E,A,B,Y ∗C,Y ∗D](x

0)

By Proposition 6.3 (i), we have (x, u, y) := (x, u, Y y1) ∈ B[E,A,B,C,D](x
0), and the orthonormality

of the columns of Y gives rise to

‖y‖L2 = ‖Y y1‖L2 = ‖y1‖L2 = ‖z + y2‖L2 < ε .

Moreover, since σ(A11) ⊂ C− and u ∈ L2(R≥0→K
m), it can be shown (see e.g. [13, Rem. 2.3.11])

that x1 ∈ L2(R≥0→K
n1), x2 ∈ L2(R≥0→K

n2), and limt→∞ x1(t) = 0.

Step 2: We prove the implication ⇐= in the general case:
By Proposition 2.12, there exist S, T ∈ Gln(K) and F ∈ K

m×n, such that (2.4) holds true, where
N ∈ K

k×k is nilpotent and σ(A11) ⊂ C−.

Step 2a: We prove that the system

[Ẽ, Ã, B̃, C̃, D̃] :=

[[
In1 0
0 0

]
,

[
A11 0
0 In2

]
,

[
B1

B2

]
,
[
C1 C2

]
,D

]
(6.13)
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has property (6.11). It suffices to prove that

∀λ ∈ C+ : ker

[ λIn1 −A11 0, −B1

0 −In1 −B2

C1 C2 D

]∗

⊂ ker

[ In1 0 A11 0 B1

0 0 0 In2 −B2

0 0 C1 C2 D

]∗

.

Assume that

(
x̃1

x̃2

ũ

)
∈ ker

[ λIn1 −A11 0, −B1

0 −In1 B2

C1 C2 D

]∗

with x̃1 ∈ C
n1, x̃2 ∈ C

n2. Then for

x̃3 := −(λN − I)−∗
(
(λE23 −A23)∗x̃2 + (λE13 −A13)∗x̃1 + C∗

3 ũ
)

we have 


x̃1

x̃2

x̃3

ũ


 ∈ kerC




λIn1 −A11 0 λE13−A13, −B1

0 −In2 λE23−A23, −B2

0 0 λN−Ik, 0
C1 C2 C3 D




∗

.

Since, by Observation (O3), the Property (6.11) is invariant under feedback equivalence, an appli-
cation of Observation (O2) yields




x̃1

x̃2

x̃3

ũ


 ∈ kerC




In1 0 E13 A11 0 A13 B1

0 0 E23 0 −In2 A23 B2

0 0 N 0 0 Ik 0
0 0 0 C1 C2 C3 D




∗

and hence (
x̃1

x̃2

ũ

)
∈ kerC

[ In1 0 A11 0 B1

0 0 0 −In2 B2

0 0 C1 C2 D

]∗

.

Step 2b: We prove that [E,A,B,C,D] has Property (P4):

Let x0 ∈ Vdiff
[E,A,B,C,D] and define

(
x0

1

x0
2

x0
3

)
= T−1x0. By the results in Step 2a, we see that the system

[Ẽ, Ã, B̃, C̃, D̃] defined in (6.13) is impulse controllable and satisfies (6.11). Now Step 1 gives

∃(x̃, ũ, ỹ) ∈ B
[Ẽ,Ã,B̃,C̃,D̃]

((
x0

1

x0
2

))
: ũ ∈ L2(R≥0→K

m) ∧ ‖ỹ‖L2 < ε.

Further, since all generalized eigenvalues of sẼ − Ã belong to C− and the index of sẼ − Ã is at
most one, the property ũ ∈ L2(R≥0→K

m) together with the latter statement in Step 1 implies
that x̃ ∈ L2(R≥0→C

n1+n2).

Proposition 2.12 (a) gives

(x, u, y) =
(
T
(

x̃
0

)
, ũ+ FT

(
x̃
0

)
, y
)

∈ B[E,A,B,C,D].

The L2-norm of the output thus satisfies ‖y‖L2 = ‖ỹ‖L2 < ε. Since, further, Proposition 2.12 (b)
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leads to x0
3 ∈ ker

[
E13
E23
N

]
, we obtain

Ex(0) =W−1



In1 0 E13

0 0 E23

0 0 N






x1(0)
x2(0)
x3(0)


 = W−1




[
In1 0
0 0

](
x1(0)
x2(0)

)

0




=W−1




[
In1 0
0 0

](
x0

1

x0
2

)

0


 = W−1



In1 0 E13

0 0 E23

0 0 N






x0

1

x0
2

x0
3




=W−1



In1 0 E13

0 0 E23

0 0 N


T−1x0 = Ex0.

Therefore, (x, u, y) ∈ B[E,A,B,C,D](x
0), and summarizing we have shown that [E,A,B,C,D] satis-

fies Property (P4).

(a) 6⇒ Consider the example [E,A,B,C,D] ∈ Σ2,1,1 as in (6.1). Since the behaviour is B[E,A,B,C,D] =
{0} × L2

loc(R≥0→K) × {0}, it follows that (P4) is fulfilled. However,

∀λ ∈ C : rk
[

E A B
0 C D

]
= rk

[
0 1 1 0 0
0 0 0 1 0
0 0 1 0 0

]
= 3 6= 2 = rk

[
−1 λ 0
0 −1 0
1 0 0

]
= rk

[
λE−A −B

C D

]
.

(b) ⇒ Since [E,A,B,C,D] satisfies (P4), it follows that [E,A,B,C,D] is behavioural stabilizable. Let
S ∈ Gln+p(C), T ∈ Gln+m(C) such that

S
[

λE−A, −B
C D

]
T = diag

(
sF1 −G1, . . . , sFf −Gf

)
as in (2.2).

By (ii) it suffices to prove that all (ODE)-blocks are corresponding to generalized eigenvalues in
C−, and all all (OD)-blocks are of size 1 × 0.

Step 1: We prove:

∀ε > 0 ∀j ∈ {1, . . . , f} ∀z0
j ∈ C

kj ∃zj ∈ L2(R≥0→C
kj ) :

Fjzj(0) = Fjz
0
j ∧ lim

t→∞
Fjzj(t) = 0 ∧ Fj żj −Gjzj ∈ L2(R≥0→C

lj ) ∧ ‖Fj żj −Gjzj‖L2 < ε.

Since the blocks may be suitably reordered, it suffices to prove the statement for j = 1. Define,
for z0

1 ∈ C
k1 , (

x0

u0

)
= T−1

[
Ik1
0

]
z0

1 where x0 ∈ C
n, u0 ∈ C

m.

Then impulse controllability of [E,A,B,C,D] and (P4) yields the existence of some (x, u, y) ∈
B[E,A,B,C,D](x

0) such that limt→∞Ex(t) = 0 and ‖y‖L2 < ‖S‖−1 · ε. Equivalently, ( x
u ) = Tz

satisfies
(

0
y

)
=

[
E 0
0 0

]
d
dt

(
x
u

)
−

[
A B

−C −D

](
x
u

)
,

[
E 0
0 0

](
x(0)
u(0)

)
=

[
E 0
0 0

](
x0

u0

)
,

limt→∞

[
E 0
0 0

](
x(t)
u(t)

)
= 0 ,

∥∥∥∥∥

(
0
y

)∥∥∥∥∥
L2

< ‖S‖−1 · ε.
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Then

F1z1(0) = [ Il1
0 ]S

[
E 0
0 0

]
T
[

Ik1
0

]
z1(0) = [ Il1

0 ]S

[
E 0
0 0

](
x(0)
u(0)

)

= [ Il1
0 ]S

[
E 0
0 0

](
x0

u0

)
= [ Il1

0 ]S

[
E 0
0 0

]
T
[

Ik1
0

]
z0

1 = F1z
0
1 .

and for w1 := [ Il1
0 ]S

(
0
y

)
∈ L2(R≥0→C

l1) we have

w1 = F1ż1−G1z1, lim
t→∞

F1z1(t) = 0, ‖F1ż1−G1z1‖L2 = ‖w1‖L2 ≤ ‖[ Ilj
0 ]‖·‖S‖·‖y‖L2 < ε.

This proves the claim in Step 1.

Step 2: We prove that if sFj −Gj = sIkj
− (λIkj

+ Nkj
) is a (ODE)-block for some j = 1, . . . , k,

then λ ∈ C−.
Seeking a contradiction, assume that λ ∈ C+. Again, it is no loss of generality to assume that
j = 1. Then σ(−G1) ⊂ C−, and by [25, Thm. 3.28] there exists some P ≻ 0 which solves the
Lyapunov equation (−G1)P + P (−G1)∗ + Ik1 = 0 or equivalently

G∗
1Q+QG∗

1 = Q2 for Q := P−1.

Let z0
1 ∈ C

k1 \ {0} and set ε := (z0
1)∗Qz0

1 = (P−1z0
1)∗P (P−1z0

1) > 0. Then by Step 1 there exists
z1 ∈ L2(R≥0→C

k1) such that

z1(0) = z0
1 ∧ lim

t→∞
z1(t) = 0 ∧ w1 := ż1 −G1z1 ∈ L2(R≥0→C

k1) ∧ ‖w1‖2
L2 < (z0

1)∗Qz0
1 ,

and we conclude, for all t ≥ 0,

(z0
1)∗Qz0

1 − z1(t)∗Qz1(t) = −
∫ t

0

d
dτ (z1(τ)∗Qz1(τ)) dτ = −

∫ t

0
2 z1(τ)∗Qż1(τ) dτ

= −
∫ t

0

(
z1(τ)∗Q2z1(τ) + 2 z1(τ)∗Qw1(τ)

)
dτ

= −
∫ t

0

(
‖Qz1(τ) + w1(τ)‖2 − ‖w1(τ)‖2)dτ ≤

∫ t

0
‖w1(τ)‖2dτ.

Now taking the limit for t → ∞ and invoking limt→∞ zj(t) = 0 yields the contradiction

(z0
1)∗Qz0

1 ≤ ‖w1‖2
L2 < (z0

1)∗Qz0
1 .

Step 3: We prove that if sFj −Gj = sK⊤
kj

− L⊤
kj

is an (OD)-block for some j = 1, . . . , k, then its
size is at most 1 × 0.
Again, it is no loss of generality to assume that j = 1. Seeking a contradiction, assume that
k1 ≥ 2. Define f0, . . . , fk1 ∈ R such that

(s− 1)k1 = f0 + . . .+ fk1−1s
k1−1 + sk1 ∈ R[s] and F :=




−fk1−1
...

−f0

Ik1


 ∈ R

k1×(k1+1).

Then a straightforward calculation gives

sIk1 −A1 := F
(
sK⊤

k1
− L⊤

k1

)
satisfies det (sIk1 −A1) = (s− 1)k1 .
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Let z0
1 ∈ C

k1 and ε > 0. Then by Step 1

∃z1 ∈ L2(R≥0→C
k1) : Kk1z1(0) = Kk1z

0
1 ∧ lim

t→∞
Kk1z1(t) = 0

∧ w1 := Kk1 ż1 − Lk1z1 ∈ L2(R≥0→C
k1+1) ∧ ‖w1‖2

L2 < ‖F‖−1 · ε,

and since Kk1 has full column rank, we see that z1(0) = z0
1 and limt→∞ z1(t) = 0. Moreover,

Fw1 = ż1 − A1z1 ∈ L2(R≥0→C
k1) and ‖Fw1‖2

L2 < ‖F‖ · ‖F‖−1 · ε = ε. This leads to the same
contradiction as in Step 2.

In the following we present a characterization of Property (P4) in terms of the reduced system in
Proposition 6.3.

Proposition 6.5. Let [E,A,B,C,D] ∈ Σn,m,p and Y ∈ K
p×p1 as in (6.3). Then

[E,A,B,C,D] satisfies (P4) ⇐⇒ [E,A,B, Y ∗C, Y ∗D] satisfies (P1) and is behavioural stabilizable.

Proof.
⇐ Let ε > 0 and x0 ∈ Vdiff

[E,A,B,C,D] = Vdiff
[E,A,B,Y ∗C,Y ∗D]. Since [E,A,B, Y ∗C, Y ∗D] satisfies (P4) by

Proposition 6.4 (a), behavioural stabilizability yields

∃(x, u, y1) ∈ B[E,A,B,Y ∗C,Y ∗D](x
0) : u ∈ L2(R≥0→K

m) ∧ lim
t→∞

Ex(t) = 0 ∧ ‖y1‖L2 < ε.

Now Proposition 6.3 (i) together with the orthonormality of the columns of Y gives (x, u, y) ∈
B[E,A,B,C,D](x

0) for y = Y y1 and ‖y‖L2 = ‖y1‖L2 < ε. Hence, [E,A,B,C,D] satisfies Prop-
erty (P4).

⇒ In view of Y ∗Y = Ip1 and Proposition 6.3 (i) we see that [E,A,B, Y ∗C, Y ∗D] satisfies (P4), Note
also that behavioural stability of [E,A,B,C,D] follows immediately from Property (P4).

Step 1: We prove, under the additional assumption that [E,A,B,C,D] is impulse controllable,
that [E,A,B, Y ∗C, Y ∗D] satisfies (P1).
Since the assertion gives that [E,A,B, Y ∗C, Y ∗D] is impulse controllable, we may conclude

∀λ ∈ C+ : rk

[
λE −A, −B
Y ∗C Y ∗D

]
Pr. 6.4(b)

= rk

[
E A B
0 Y ∗C Y ∗D

]
Pr. 6.3(iii)

=
Pr. 6.2(b)

n+ p1.

and so [E,A,B, Y ∗C, Y ∗D] satisfies (P1).

Step 2: We prove the implication =⇒ in the general case:
Since the properties (P1) and (P4) are invariant under system equivalence, we can, in view of
Proposition 2.9, assume that

[
sE −A, −B

C D

]
=



sE11 −A11 sE12 −A12 −B1

0 sN − Ik 0
C1 C2 D


 ,

where N ∈ K
k×k is nilpotent

and [E11, A11, B1, C1]
is impulse controllable.

(6.14)

Since [E,A,B,C,D] satisfies (P4), an application of Proposition 2.9 (b) yields that the subsystem
[E11, A11, B1, C1,D] satisfies (P4), too. Now we may apply Step 1 to conclude, for all λ ∈ C+,

rk
[

λE−A −B1
Y ∗C Y ∗D

]
= rk

[
λE11−A11 λE12−A12, −B1

0 λN−Ik, 0
Y ∗C1 Y ∗C2 Y ∗D

]
= k+rk

[
λE11−A11, −B1

Y ∗C1 Y ∗D

]
Step 1

= k+n1+p1 = n+p1.

Therefore, [E,A,B, Y ∗C, Y ∗D] satisfies (P1).
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This completes the proof of the proposition.

Finally, we are in a position to “almost characterize” outer transfer functions in terms of Properties (P3)
and (P4).

Theorem 6.6. For any system [E,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sE −
A)−1B +D ∈ K(s)p×m the following statements hold true:

(a) (P3) & (P4) ⇐⇒

{
(P1) and [E,A,B,C,D]

is behavioural stabilizable.

(b) (P3) & (P4) =⇒ G(s) is outer.

(c) (P3) & (P4) ⇐=

{
G(s) is outer and [E,A,B,C,D] is

behavioural stabilizable and detectable.

Proof.

(a) ⇒ Since [E,A,B,C,D] satisfies (P3), we have Y = Ip for Y as in (6.3). Now the implication is a
consequence of Proposition 6.5.

(a) ⇐ Step 1: We first additionally assume that [E,A,B,C,D] is impulse controllable.
We have

∀λ ∈ C+ : rk
[

E A B
0 C D

]
≥ rk

[
λE−A, −B

C D

] (P1)
= n+ p ≥ rk

[
E A B
0 C D

]
,

and thus
∀λ ∈ C+ : rk

[
λE−A, −B

C D

]
= rk

[
E A B
0 C D

]
= n+ p.

Proposition 6.2 (b) now yields Property (P3), and Proposition 6.4 (a) implies Property (P4).
Step 2: We prove the implication for general [E,A,B,C,D] ∈ Σn,m,p(K): Since the Proper-
ties (P1), (P3), (P4) and behavioural stabilizability are invariant under system equivalence, we
can again, by Proposition 2.9, assume that the system [E,A,B,C,D] is in the form (6.14). Then

∀λ ∈ C+ : n+ p
(P1)
= rk

[
λE −A −B
C D

]
= k + rk

[
λE11 −A11 −B1

C1 D

]

and so [E11, A11, B1, C1,D] satisfies (P1) and is impulse controllable. We can immediately con-
clude from Proposition 2.9 (b) that behavioural stabilizability of [E,A,B,C,D] is equivalent to
behavioural stabilizability of [E11, A11, B1, C1,D]. Therefore, we may apply the result of Step 1
to conclude that [E11, A11, B1, C1,D] satisfies (P3) and (P4). Finally, Proposition 2.9 (b) yields
that [E,A,B,C,D] satisfies (P3) and (P4).

(b)&(c) The implications in Assertions (b) and (c) are a consequence of Assertion (a) and Theorem 3.3.

This completes the proof of the theorem.
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7 Systems described by ordinary differential equations

Here we discuss consequences of the results in Sections 3–6 for systems described by ordinary differential
equations

d
dtx(t) =Ax(t) +Bu(t), x(0) = x0,

y(t) =Cx(t) +Du(t).

The essential additional feature of ordinary differential equations is that for any initial state x0 ∈ K
n

and input x0 ∈ K
n, u ∈ L2

loc(R≥0 →R
m), there exist unique functions x = x(· ; 0, x0, u) and y =

y(· ; 0, x0, u) with (x, u, y) ∈ B[I,A,B,C,D](x
0). The following conclusions can be drawn from this fact

for any [I,A,B,C,D] ∈ Σn,m,p(K):

(ODE 1) B[I,A,B,C,D] :=
{

(x(· ; 0, x0, u), u, y(· ; 0, x0 , u))
∣∣∣ x0 ∈ K

n, u ∈ L2
loc(R≥0→R

m)
}

;

(ODE 2) Vdiff
[I,A,B,C,D] = K

n. In other words, any [I,A,B,C,D] ∈ Σn,m,p(K) is impulse controllable;

(ODE 3) [I,A,B,C,D] is behavioural stabilizable if, and only if, [I,A,B,C,D] is stabilizable;

(ODE 4) [I,A,B,C,D] is behavioural detectable if, and only if, [I,A,B,C,D] is detectable.

For the notions of stabilizability and detectability of ordinary differential equations, we refer to [25,
Sec. 3.10 & Sec. 3.11].
Taking into account (ODE 1) and (ODE 2), we obtain that Properties (P1)-(P4) read as follows for
ordinary differential equations:

(P1’) ∀λ ∈ C+ : rk
[

λI−A, −B
C D

]
= n+ p.

(P2’)
∀ ε > 0 ∀ z ∈ L2(R≥0→K

p) ∃u ∈ L2(R≥0→K
m) :

‖z − y(· ; 0, 0, u)‖L2 < ε.

(P3’) ∀ y0 ∈ K
p \ {0} ∃x0 ∈ R

n, u ∈ L2
loc(R≥0→K

m) : (y0)∗y(· ; 0, x0, u) 6= 0.

(P4’)
∀ ε > 0 ∀x0 ∈ K

n ∃u ∈ L2(R≥0→K
m) :

lim
t→∞

x(t; 0, x0, u(·)) = 0 ∧ ‖y(· ; 0, x0, u)‖L2 < ε.

Using Properties (ODE 3) & (ODE 4), we can formulate the following corollary of Theorem 3.3:

Corollary 7.1 (Equivalence of outer and (P1’)).
For any [I,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sI − A)−1B + D ∈ K(s)p×m we
have:

(a) (P1’) =⇒ G(s) is outer.

(b) (P1’) ⇐= G(s) is outer and [I,A,B,C,D] is stabilizable and detectable.
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It is straightforward that Theorem 5.1 becomes:

Corollary 7.2 (Characterization of (P2’)).
For any system [I,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sI − A)−1B + D ∈
K(s)p×m ∩ H∞(C+→K

m×p) we have

G(s) is outer ⇐⇒ (P2’) .

Using (ODE 2), Proposition 6.2 and

rk
[

I A B
0 C D

]
= n+ rk [C, D] , (7.1)

the following characterization of Property (P3’) can be made:

Corollary 7.3 (Characterization of (P3’)).
For any system [I,A,B,C,D] ∈ Σn,m,p(K) the following statements hold true:

(P3’) ⇐⇒ rk [C, D] = p.

Property (ODE 1) implies that the space Y0 as defined in Proposition 6.3 reads as follows for an
ordinary differential equation [I,A,B,C,D] ∈ Σn,m,p:

Y0 :=

{
y0 ∈ K

p

∣∣∣∣∣
∀x0 ∈ K

n ∀u ∈ L2
loc(R≥0→K

m) and for almost all t ∈ R :
(y0)∗y(· ; 0, x0, u) = 0

}
. (7.2)

Now we show that this space has a rather simple representation.

Proposition 7.4 (Representation of Y0).
For any system [I,A,B,C,D] ∈ Σn,m,p(K), the space Y0 as in (7.2) is given by

Y0 = (im [C, D])⊥ .

Proof. ⊃: Assume that y0 ∈ (im [C, D])⊥. Then for all x0 ∈ K
n, u ∈ L2

loc(R≥0→K
m) holds

(y0)∗y(· ; 0, x0, u) = (y0)∗ [C, D]
(

x(· ;0,x0,u)
u

)
= 0,

and thus y0 ∈ Y0.
⊂: Let y0 ∈ Y0. Then for all x0 ∈ K

n and u0 ∈ K
m, an application of the constant input u(·) = u0

gives
0 = (y0)∗y(· ; 0, x0, u),

and we can conclude by continuity of y that

0 = (y0)∗y(0) = (y0)∗[C,D]
(

x0

u0

)
∀x0 ∈ K

n, u0 ∈ K
m,

whence y0 ∈ (im [C, D])⊥.

An immediate consequence of Proposition 7.4 is that, for ordinary differential equations, the matrix
Y ∈ K

p×p1 as in (6.3) is equivalently characterized by

Y ∈ K
p×p1 : im Y = [C, D] ∧ Y ∗Y = Ip1. (7.3)

This representation of Y together with (ODE 2) and (7.1) allows to infer the subsequent characteriza-
tion of (P4’) from Propositions 6.4 and 6.5:
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Corollary 7.5 (Characterization of (P4’)). Let [I,A,B,C,D] ∈ Σn,m,p and Y ∈ K
p×p1 as in (7.3).

Then

(P4’) ⇐⇒ n+ rk [C, D] = rk
[

λI−A, −B
C D

]
∀λ ∈ C+ and [I,A,B,C,D] is stabilizable,

⇐⇒ [I,A,B, Y ∗C, Y ∗D] satisfies (P1’) and is stabilizable.

Using Properties (ODE 3) and (ODE 4) we can conclude an equivalent characterization for (P3’)&
(P4’) from Theorem 6.6.

Corollary 7.6. For any system [I,A,B,C,D] ∈ Σn,m,p(K) with transfer function G(s) = C(sI −
A)−1B +D ∈ K(s)p×m the following statements hold true:

(a) (P3’) & (P4’) ⇐⇒ (P1’) and [I,A,B,C,D] is stabilizable.

(b) (P3’) & (P4’) =⇒ G(s) is outer.

(c) (P3’) & (P4’) ⇐= G(s) is outer and [I,A,B,C,D] is stabilizable and detectable.

We finalize this section with an example where the generalized eigenvalues of the system pencil R(s) =[
sI−A, −B

C D

]
lie on the imaginary axis.

Example 7.7.

(a) Consider the stabilizable and detectable system

d
dtx(t) = −x(t) + u(t), x(0) = x0,
y(t) = x(t) − u(t).

(7.4)

Then the system pencil R(s) =
[

s+1, −1
1 −1

]
has only the generalized eigenvalue λ = 0. Thus Prop-

erty (P1’) holds and, according to Corollary 7.1, the transfer function G(s) = −s
s+1 is outer. By

Corollary 7.3, Property (P3’) is valid and so, in view of Corollary 7.6, Property (P4’) holds.
This property says that for arbitrary x0 ∈ R and arbitrarily small ε > 0, there exists some
u(·) ∈ L2(R≥0→R) such that lim

t→∞
x(t; 0, x0, u(·)) = 0 and ‖y(· ; 0, x0, u)‖L2 < ε.

For instance, choose δ > 0 with |x0|2 δ < 2 ε2 and

u(·) = (1 − δ) e−δ· x0 ∈ L2(R≥0→R).

Then, by variation of constants, we obtain x(· ; 0, 1, u) = e−δ· x0, whence y(·) = δ e−δ· x0 and
‖y‖L2 =

√
δ/2 |x0| < ε.

(b) Consider the stabilizable and detectable system

d
dtx(t) = −x(t) + u(t), x(0) = x0,
y(t) = x(t).

(7.5)

Then the system pencil R(s) =
[

s+1, −1
1 0

]
has only generalized eigenvalue at ∞, its Kronecker

canonical form consists of only one 2× 2 (AE)-block. It follows as above that the Properties (P1’),
(P3’), and (P4’) hold. For instance, choose δ > 0 with |x0|2 δ < 2 ε2 and

u(·) = (δ − 1)/δ e−·/δ x0 ∈ L2(R≥0→R).

Then, by variation of constants, y(·) = x(· ; 0, 1, u) = e−·/δ x0 and ‖y‖L2 =
√
δ/2 |x0| < ε.
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8 The optimal control problem of ordinary differential equations

In this section we investigate the optimal control problem for stabilizable systems described by

d
dtx(t) = Ax(t) +Bu(t), x(0) = x0, (8.1)

where A ∈ K
n×n, B ∈ K

n×m, x0 ∈ K
n. The results of the present section are known; the novelty

lies in the simple proofs. The concepts of outer transfer function as well as (stable) zero dynamics
have a unifying power. This allows for simple and structurally interesting proofs of the relationships
between the feasibility of the optimal control problem, Lur’e and Riccati matrix equations, the Kalman-
Yakubovich-Popov (KYP) inequality, and - most importantly - of the zero dynamics and outer. For
example, we will show that if u is an optimal control function, then (x, u) belongs to the zero dynamics
of a certain system that will be constructed from a solution of Lur’e equations.

Moreover, we strongly believe that the approach of the present section is the right approach to solve
the optimal control problem for differential-algebraic equations. This will be subject of future research.

Definition 8.1 (Feasibility of the optimal control problem, stabilizing solution of the Lur’e equation).
Consider a stabilizable system [I,A,B, 0, 0] ∈ Σn,m,0(K) and

(Q,S,R) ∈ K
n×n × K

n×m × K
m×m with Q = Q∗ and R = R∗. (8.2)

We say that the optimal control problem for [I,A,B, 0, 0] is feasible, if the cost functional

V + : Kn → R ∪ {−∞}, x0 7→ inf
(x,u,y)∈B[I,A,B,0,0](x0)

limt→∞ x(t)=0

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ (8.3)

satisfies
∀x0 ∈ K

n : V +(x0) ∈ R.

We call triple (X,K,L) ∈ K
n×n × K

p×n × K
p×m with X = X∗ a solution of the Lur’e equation, if

A∗X +XA+Q = K∗K,

XB + S = K∗L,

R = L∗L;

(8.4)

and (X,K,L) is called a stabilizing solution, if additionally

∀λ ∈ C+ : rk
[

λI−A, −B
K L

]
= n+ p. (8.5)

The reason why (8.5) leads to the notion of “stabilizing solution” is due to the fact that if for all
x0 ∈ K

n there exists a unique (x, u, y) ∈ B[I,A,B,0,0](x
0) with limt→∞ x(t) = 0 and minimizing the cost

functional (8.3), then the Lur’e equation is equivalent to an algebraic Riccati equation (see (8.13)),
and its Hermitian solution solution leads to rk(λI − (A−BR−1(B∗X + S∗)) = n for all λ ∈ C+. The
latter is called stabilizing solution of algebraic Riccati equations, see [18, Sec. 9.3].
Algebraic criteria for the solvability of the Lur’e equation can be found in [22].

Remark 8.2 (Lur’e equation and Kalman-Yakubovich-Popov (KYP) inequality).
We collect some important consequences of the Lur’e equation (8.4):
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(i) The Lur’e equation (8.4) is equivalent to
[
A∗X +XA+Q XB + S
B∗X + S∗ R

]
=

[
K∗

L∗

] [
K L

]
. (8.6)

(ii) If (X,K,L) solves the Lur’e equation (8.4), then by (8.6) the matrix X solves the Kalman-
Yakubovich-Popov (KYP) inequality, i.e.,

[
A∗X +XA+Q XB + S
B∗X + S∗ R

]
� 0. (8.7)

(iii) If X solves the Kalman-Yakubovich-Popov inequality (8.7), then we may choose K ∈ K
n×p and

L ∈ K
m×p of full rank p = rk

[
A∗X+XA+Q XB+S

B∗X+S∗ R

]
so that (X,K,L) solves the Lur’e equation (8.6).

(iv) It is shown in [22] that if (X,K,L) is a stabilizing solution of Lur’e equation, then X is the
maximal solution (with respect to the partial order �) of the KYP inequality (8.7).

(v) If (X,K,L) solves the Lur’e equation (8.4), then we have, for every (x, u, y) ∈ B[I,A,B,0,0] and
0 ≤ t1 ≤ t2, by the fundamental theorem of calculus, the product rule of differentiation, and
omitting the arguments τ ,

x(t2)∗Xx(t2) − x(t1)∗Xx(t1)

=

∫ t2

t1

d
dτ x

∗Xxdτ =

∫ t2

t1

2x∗Xẋdτ =

∫ t2

t1

2x∗X(Ax+Bu) dτ

(8.4)
=

∫ t2

t1

−x∗Qx+ x∗K∗Kx− u∗S∗x+ u∗L∗Kx− x∗Su+ x∗K∗Lu− u∗Ru+ u∗L∗Ludτ

= −
∫ t2

t1

( x
u )∗

[
Q S
S∗ R

]
( x

u ) dτ +

∫ t2

t1

‖Kx+ Lu‖2 dτ. (8.8)

This yields that V ∗(x0) := (x0)∗Xx0 is a dissipation function for [I,A,B, 0, 0], that is we have,

∀(x, u, y) ∈ B[I,A,B,0,0] ∀0 ≤ t1 ≤ t2 : V +(x(t1)) − V +(x(t2)) ≤
∫ t2

t1

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ.

(8.9)

(vi) If (X,K,L) solves the Lur’e equation (8.4), then (8.8) yields that for every x0 ∈ K
n and (x, u, ys) ∈

B[I,A,B,K,L](x
0) with limt→∞ x(t) = 0 we have

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ = (x0)∗Xx0 +

∫ t2

t1

‖ys(τ)‖2 dτ. (8.10)

We are now in a position to state and to give a simple prove of the celebrated optimal control theorem.

Theorem 8.3 (Necessary and sufficient criteria for the optimal control problem). For any stabilizable
system [I,A,B, 0, 0] ∈ Σn,m,0(K) and (Q,S,R) as in (8.2) the following statements are equivalent:

(a) The optimal control problem is feasible.

(b) ∃X = X∗ ∈ K
n×n ∀x0 ∈ K

n : V +(x0) = (x0)∗Xx0. This means, the cost functional is quadratic.

(c) There exists a stabilizing solution (X,K,L) of the Lur’e equation.
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Proof. (a) ⇔ (b): This is stated in the proof of [26, Thm. 3] where it is additionally assumed that
the system [I,A,B, 0, 0] is controllable. The claim can be proved, even without the assumption of
controllability, by invoking the parallelogram law. The proof is omitted.
(b) ⇒ (c): We proceed in several steps.
(i): Since V + is a dissipation function for [I,A,B, 0, 0], Remark 8.2 (v) yields that (8.9) holds for
V +(x0) = (x0)∗Xx0.
(ii): We show that X satisfies the KYP inequality (8.7).
Let x0 ∈ K

n, u(·) = u0 ∈ K
m, and consider (x, u, y) ∈ B[I,A,B,0,0](x

0). Then (8.9) yields, for all h > 0,

1

h

(
(x0)∗Xx0 − x(h)∗Xx(h)

)
≤

1

h

∫ h

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ,

and invoking continuity of u and x, and taking the limit h → 0 gives

(
x0

u0

)∗ [
Q S
S∗ R

] (
x0

u0

)
≥ − ẋ(0)∗Xx0 − (x0)∗Xẋ(0) = −(Ax0 +Bu0)∗Xx0 − (x0)∗X(Ax0 +Bu0)

=

(
x0

u0

)∗ [
−A∗X −XA −XB

−B∗X 0

](
x0

u0

)
.

Since x0, u0 are arbitrary, this proves (8.7).
(iii): Since (8.7) holds, it follows from Remark 8.2 (iii) that (8.6) is valid. Therefore, the Lur’e
equation (8.4) holds for (X,K,L) by Remark 8.2 (i).
(iv): Since rk[K, L] = p, Corollary 7.3 yields that [I,A,B,K,L] satisfies the Property (P3’).
(v): Equation (8.10) reads, for every (x, u, ys) ∈ B[I,A,B,K,L](x

0) with limt→∞ x(t) = 0,

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ = V +(x0) + ‖ys‖2

L2,

and hence the definition of V + yields that [I,A,B,K,L] satisfies Property (P4’).
(vi): Now it follows from Corollary 7.6 (a) that [I,A,B,K,L] satisfies Property (P1’). Therefore,
(X,K,L) is a stabilizing solution.
(c) ⇒ (b):
(vii): The inequality V +(x0) ≥ (x0)∗Xx0 for all x0 ∈ K

n follows since we have, for all (x, u, y) ∈
B[I,A,B,0,0](x

0) with limt→∞ x(t) = 0,

(x0)∗Xx0 ≤ (x0)∗Xx0 +

∫ ∞

0
‖Kx(τ) + Lu(τ)‖2dτ

(8.8)
=

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ. (8.11)

(viii): We show the inequality V +(x0) ≤ (x0)∗Xx0 for all x0 ∈ K
n.

For x0 ∈ K
n and (x, u, ys) ∈ B[I,A,B,K,L](x

0), equation (8.8) reads

(x0)∗Xx0 + ‖ys‖2
L2 =

∫ ∞

0

(
x(τ)
u(τ)

)∗ [
Q S
S∗ R

] (
x(τ)
u(τ)

)
dτ ≥ V +(x0). (8.12)

By (8.5), [I,A,B,K,L] satisfies (P1’); and since [I,A,B, 0, 0] is stabilizable by assumption, stabilizabil-
ity of [I,A,B,K,L] follows. Therefore, we may apply Corollary 7.6 (a) to conclude that [I,A,B,K,L]
satisfies (P4’). Finally, (P4’) applied to (8.12) shows (x0)∗Xx0 ≥ V +(x0).
This completes the proof of the theorem.
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Remark 8.4 (Optimal control, Lur’e equations and outer). Let [I,A,B, 0, 0] ∈ Σn,m,0(K) and (Q,S,R)
as in (8.2) and assume that (X,K,L) is a stabilizing solution of the Lur’e equation (8.4) (i.e., the
optimal control problem is feasible by Theorem 8.3). Then the following can be concluded from
Theorem 7.6:

(a) [I,A,B,K,L] is stabilizable.

(b) The transfer function of [I,A,B,K,L] is outer.

(c) [I,A,B,K,L] satisfies the Properties (P1’), (P3’), and (P4’).

Next we characterize the existence of a minimizer (x, u, y) in (8.3); if it exists, then Willems [26] calls
the corresponding input u the optimal control. We stress that this characterization shows that the
concept of zero dynamics is an instrumental for the optimal control problem.

Proposition 8.5 (Characterizations of an infimum which is attained).
Suppose [I,A,B, 0, 0] ∈ Σn,m,0(K) is stabilizable and the optimal control problem is feasible, where
(Q,S,R) is as in (8.2). According to Theorem 8.3 (c), we may choose a stabilizing solution (X,K,L)
of the Lur’e equation. Then the following characterizations hold.

(a) The infimum in (8.3) is attained at (x, u, y) ∈ B[I,A,B,0,0](x
0) for x0 ∈ K

n if, and only if,

(x, u, y) ∈ ZD[I,A,B,K,L](x
0) and lim

t→∞
x(t) = 0.

(b) The infimum in (8.3) is attained for all x0 ∈ K
n if, and only if,

ZDdiff
[I,A,B,K,L] = K

n and ZD[I,A,B,K,L] is stablilizable.

(c) The infimum in (8.3) is uniquely attained for all x0 ∈ K
n if, and only if,

ZDdiff
[I,A,B,K,L] = K

n and ZD[I,A,B,K,L] is asymptotically stable.
Proof.
(a): The equivalence follows from (8.10).
(b): By a), we see that the infimum in (8.3) is attained for all x0 ∈ K

n if, and only if,

∀x0 ∈ K
n ∃(x, u) ∈ ZD[I,A,B,K,L](x

0) : lim
t→∞

x(t) = 0.

In view of the second characterization in Proposition 4.3 (e), the above is equivalent to the second
assertion in (b).
(c): Using again that, by a), the infimum in (8.3) is uniquely attained for all x0 ∈ K

n if, and only if,

∀x0 ∈ K
n ∃! (x, u) ∈ ZD[I,A,B,K,L](x

0) : lim
t→∞

x(t) = 0,

the second characterization in Proposition 4.3 (g) implies that the above is equivalent to asymptotic
stability of the zero dynamics of [I,A,B,K,L].

Proposition 8.5 allows to conclude the following necessary conditions for the uniquely attained infimum
for all x0 ∈ K

n.
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Corollary 8.6. Let [I,A,B, 0, 0] ∈ Σn,m,0(K) be stabilizable and suppose the optimal control problem
is feasible, where (Q,S,R) is as in (8.2). According to Theorem 8.3 (c), we may choose a stabilizing
solution (X,K,L) of the Lur’e equation. If the infimum in (8.3) is uniquely attained for all x0 ∈ K

n,
then we have:

(a) The zero dynamics ZD[I,A,B,K,L] are autonomous.

(b) The pencil
[

sI−A, −B
K L

]
is regular, and hence p = m.

(c) L ∈ Glm(K).

(d) R ∈ Glm(K).

(e) The state feedback u(t) = −R−1(B∗X + S∗)x(t) applied to (8.1) yields an asymptotically stable
closed loop system.

Proof. (a) follow from Proposition 4.3 and Proposition 8.5.

(b): Proposition 4.3 yields that kerK(s)

[
sI−A, −B

K L

]
= {0} and hence regularity follows from (8.5).

(c) is a consequence of Proposition 4.2.
(d) is a consequence of (c) and R = L∗L.
(e): Since L−∗(B∗X + S∗) = K, the Lur’e equation (8.4) can be written as the algebraic Riccati
equation

A∗X +XA+Q− (B∗X + S∗)∗R−1(B∗X + S∗) = 0. (8.13)

Applying Proposition 4.3 again, we see that asymptotic stability of the zero dynamics implies that

rk
[

λI−A, −B
K L

]
= n+m for all λ ∈ C+. Therefore, the equations B∗X +S∗ = L∗K and L∗L = R yield,

for all λ ∈ C+,

n+m = rk
[

λI−A, −B
K L

]
= rk

[
λI−A, −B
L∗K L∗L

]
= rk

[
λI−A, −B

B∗X+S∗ R

]

= rk
[

λI−(A−BR−1(B∗X+S∗) −B
0 I

]
= m+ rk(λI − (A−BR−1(B∗X + S∗)).

This proves the assertion and completes the proof of the corollary.
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