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1 Introduction

The quest to realize functional optical elements at ever decreasing length scales and a
parallel development of advanced fabrication techniques have resurrected surface plas-
mon polaritons (SPP) from the archives of research literature. SPP, in short, refers
to the coupled oscillation of electrons with the incoming radiation at a metal-dielectric
interface [1,2]|. Although the principles of waveguiding and focusing are well-established
in dielectric systems, they invariably suffer from the problem of diffraction limit which
forbids the localization of light to a scale smaller than half-wavelength in the medium |[3].
With metallic structures exhibiting SPP, however, it is possible to go far beyond that
limit to truly localize light at sub-wavelength scales [4-6]. As waveguiding geometries,
they support guided surface waves which evanescently decay across the metal-dielectric
interface [1,2]. This allows them to propagate while being confined at a scale much
smaller than the wavelength of light in dielectric medium. Likewise, plasmonic particles
such as spheres act as light localizing antennas at resonance [6-9]. Within the realms
of classical electrodynamics, their size can be shrunk to as low as tens of nano meters
thereby providing plasmonic focusing elements which converge light to spot size much
smaller than what can ordinarily be achieved by diffraction limited microscopes. Further-
more, the high near fields necessarily associated with plasmonic resonances and modes
serve additional purpose of enhancing nonlinearities that exist in metal and dielectric
media [10-12].

This has stimulated an ever-increasing quest into discovering novel plasmonic sys-
tems and characterizing their response. Plasmonic waveguides, for instance, have been
subjected to intensive theoretical and experimental studies (for instance Refs. [13-18]).
Departing from the simplest single metal-dielectric interface, SPPs guided by thin metal-
lic (dielectric) films sandwiched between dielectric (metallic) media have been exten-
sively explored for their linear and nonlinear response [19-25|. This involves construct-
ing more complicated and versatile structures for confining light in plasmonic waveg-
uides [17,26-30], identifying efficient coupling schemes [31-37], directional couplers for

integrated plasmonics [38—41], nano-focusing the guided light to achieve high intensities
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at the focus [39,42-46|, and even materializing effects such as negative mode index in
plasmonic waveguides [47-51].

As to the resonant focusing of light by plasmonic particles, this goes even further back
to 1908 when Gustav Mie proposed a rigorous solution to the problem of scattering of
light by spheres [7]. Mie solution is further adapted to account for other geometries
like ellipsoids and cylinders [8]. The scattering properties of these structures have now
been further customized by arranging them in the form of dimers [52,53], trimers [54,55]
and so on and so forth [56,57]. Besides plasmonic particles, extended metallic antennas
constructed on the scale of tens to hundreds of nano-meters also exhibit localized plas-
monic resonances. Their working principle is phenomenologically understood, much like
antennas in radio frequency, as the interference effects of propagating SPP modes in the
antenna cavity [58-61|. Both plasmonic particles and antennas form a rich set of tools
for manipulating focused light at nano-scale.

In addition to light guiding and focusing, systems based on plasmonic structures have
also opened gates to observing a whole new set of sophisticated phenomena. Famous
examples include extraordinary optical transmission [62-65], induced magnetic response
in metals [66-70], asymmetric transmission [71-75], plasmon induced transparency 76—
79|, and perfect absorption of light [38,80-82] to name only a few. Many of these areas
have grown into separate topic in their own right.

In this thesis, we present select contributions of our own to the stream of research
going on in plasmonics. The work is divided into six chapters including the present one.
As necessary introduction is included at the beginning of each chapter, it suffices here
to give only a brief mention of what is to follow in the upcoming chapters.

Chapter 2 is dedicated to setting down theoretical constructs and notations which
will be required in understanding the contents presented in later chapters. The only
exception is the discussion of mode impedance in waveguides which does not constitute
the foundation of any further study.

Beginning from Ch. 3, we consider the well-known problem of scattering of light by
spheres and other analytical understood particles [8]. However, we cast the geometry
now into a new light altogether by visualizing the particles as a special case of extended
antennas with terminations drawn from half of the particles under consideration. This
naturally brings up the question about the existence of a single physical explanation that
accounts for the resonances sustained by such systems. We try to find answer to this
question in terms of widely employed phenomenological model for antenna resonances.

Chapter 4 is dedicated to enhancing the nonlinear response of extended plasmonic
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antennas. The recent trend indicates a growing interest in structures that sustain reso-
nances at multiple or ideally all the frequencies participating in the nonlinear process.
This has already led to a few reports proposing sophisticated geometries with unique
features that allow their resonances to be desirably engineered to overlap with multiple
frequencies involved in the nonlinear interaction [83-86]. Here we consider a rather sim-
ple and unsuspected geometry of cylindrical antennas to investigate their potential for
achieving the same end without introducing any conceptual design complexity.

In Ch. 5 we present our results for the problem of nonlinear phase mismatch in
degenerate second harmonic generation (SHG) [87] in plasmonic slot waveguides. Like
any frequency conversion process in waveguides, it is essential to alleviate the phase
mismatch that exists between guided modes at fundamental and second harmonics. As
an application, we also consider the problem of parametric amplification of a guided
SPP mode in slot waveguide. This should be an interesting case because any scheme for
compensating plasmonic dissipation can have an enabling effect for further applications
involving plasmonic waveguides in integrated optics.

In Ch. 6, we finally summarize all the results and further discuss the possibilities for
taking forward the work presented in preceding chapters.

Lastly, it is apt to note here that the title of this treatise derives primarily from the fact
that waveguide approach has been adopted in solving all the problems presented in this
work, majority of which appertains to plasmonic antennas. The case of slot waveguides
considered at in Ch. 5 obviously does not fall into the category of antennas. However, it
is included because it carries forward the theme of preceding chapter by exploring the
waveguide analogue of multiply-resonant antennas for efficient nonlinear conversion of

energy.



2 Analytical framework

Over the course of this treatise, we will be dealing with various forms of modal dynamics
in the plasmonic waveguides coming under consideration. In this context, it is instructive
to lay down at the very outset the theoretical formalism that shall be employed, at
times repeatedly, to both qualitatively and quantitatively understand the evolution of
guided modes in waveguiding systems. This would allow an uninhibited flow of ideas in
later chapters where we would be able to remain focused on the physical aspects of the
problems rather than detouring into the derivation of mathematical formalisms. With
this in mind, we lay down the Maxwell’s equations in the beginning and derive some
necessary relations that will be of use later. Next we derive the reciprocity relation
leading to modal orthogonality which constitutes the foundation upon which we can
build the more involved treatment of modal dynamics in waveguides. Thereafter we will
consider the description of impedance concept in complex waveguides which would be
followed with a rigorous formalism to describe the nonlinear interaction of modes in the
waveguides. In the end, we will derive equations to describe surface plasmon polaritons
(SPP) in the most basic forms i.e. as a wave guided at the interface between metal
and dielectric and secondly as a localized resonance of a metallic sphere embedded in a

dielectric medium.

2.1 Maxwell’s equations

It is pertinent to lay down succinctly at the onset equations governing the behavior
of electromagnetic fields in classical electrodynamics. This will serve as a convenient
reference point for the derivations to follow in later sections. Given the immense breadth
of phenomena that can be described by these equations, we will limit our description
only to the point where it remains relevant to the ideas going to be discussed later in
this treatise.

We begin with Maxwell’s curl and divergence equations which are defined in the ab-

sence of source electric charges and currents as [88]
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V x E(r,t) = —MOM V xH(r,t) = M, (2.1.1)

V-D(r,t)=0, V-H(rt)=0. (2.1.2)

In Eqs. (2.1.1) and (2.1.2), E (r, t) stands for the electric field, D (r, t) the electric dis-
placement and H (r,t) the magnetic field. Time dependence of the fields in Eqs. (2.1.1)
and (2.1.2) has been signified by means of tilde. It will be dropped for quantities that
are time independent (depending solely on spatial domain parameters) or transformed to
frequency domain, as we will see later in the chapter. Since we are exclusively concerned
with the electromagnetic effects in the visible and infra-red regime, we have ignored
any intrinsic magnetic effects in the medium and therefore described the magnetic flux
density B (r,t) as

B (r,t) = uoH (r,1).

The electric displacement D (r,t) depends upon material parameters and the electric

field in the medium. In linear regime, it is related to the electric field through its causal
=(1)

dielectric response tensor R (r,t) in the following form:

D (r,1) = 2 /_ "R et DB dr (2.1.3)

Taking Fourier transform of Egs. (2.1.1) and (2.1.2), we get

V X E (r,v) = 2rvpH (r,v), VxH(r,v)=—27vD (r,v) (2.1.4)

for the curl equations and

V-D(rv)=0, V-H(rv) =0, (2.1.5)

for divergence Equations The Fourier integral and synthesis equations are defined as

Aw) = /_ T A () exp (i2m0t) dt, (2.1.6)
A(t) = /_OO A (v) exp (—e2mvt) dv. (2.1.7)

By means of Fourier convolution theorem [89], the corresponding definition of electric

displacement field D (r, ) now becomes
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D (r,v) = g, (r,v) E(r,v), (2.1.8)

where the complex dielectric permittivity tensor of the medium &, (r,v) is the Fourier

domain counterpart of the time domain response of the medium. It is defined as

5, (r,v) = / TR (et exp (2mot) di. (2.1.9)

At the interface between two media described by permittivities g, (v) and &, (1), it can
be shown that Eqs. (2.1.4) and (2.1.5) lead to the following boundary conditions [88]:

for the electric and displacement fields and

for the magnetic and flux fields. In Eqs. (2.1.10) and (2.1.11) above, fi is the unit vector

normal to the interface between the two media.

2.2 Reciprocity relations

As mentioned above, reciprocity relation serves to be the foundation on which a detailed
account of the electromagnetic field dynamics in waveguides can be based. In a general
sense, the reciprocity relations are used to establish relationship between a current source
and the field it generates at the observation point to the case when the positions of
source and observation points are interchanged. A more precise interpretation depends
upon the specific formulation of reciprocity relation under consideration (see for instance
Ref. [90] for a detailed account). But for our purpose, we will restrict our attention to
the application of reciprocity relations in solving the problems of mode orthogonality
and nonlinear coupling in waveguides.

Let us consider two sets of electromagnetic fields {E; (r,v),H; (r,v)} and {E; (r,v),
H, (r,v)} defined in a medium with complex permittivity g, (r,»). Each set of fields is
subjected to a perturbative polarization Py (r, ) and Ps (r, v) respectively. Accordingly,

the electric displacement field in Eq. (2.1.4) becomes

D12y (r,v) = Dy, (r,0) + Py (r,v). (2.2.1)
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The non-perturbative part D&),Q} (r,v) of the electric displacement field is defined ac-
cording to Eq. (2.1.8). For our purpose, the exact nature of the perturbative polarization
does not need to be specified here. At this point, it is now possible to obtain two different
kinds of results that are usually found in standard literature [91]. These two forms are
known as conjugated and unconjugated reciprocity theorem [91]. Although we will need
only one, as it shall soon become clear, for the sake of completeness we would consider
both here.

Unconjugated reciprocity relation

We begin with deriving the form of reciprocity relation which is going to be relied upon
later in the chapter for the analysis of waveguiding systems. We note that our derivation
closely follows the one presented earlier but for isotropic media [91]. By using the vector
identity

V-(AxB)=B:-(VxA)-—A-(VxB), (2.2.2)

we easily obtain the following expression relating the two sets of electromagnetic fields:

V- [Ei(r,v) x Hy (r,v) — Es (r,v) x Hy (r,v)] = 27050 [Eq (r,v) - {& (r,v) Es (r,0) }
—{& (., V)E; (r,v)} - Ey (r,v)]
+ 27 [Py (r,v) - Eq (r,v)
— Py (r,v) - Ey(r,v)]. (2.2.3)

Equation (2.2.3) can be further simplified by noting that g, (r,v) is always symmet-

ric (see Ref. [92] and further references therein) and

A-(B) = (F'A) B, (2.2.4)

where ' is the transpose of E. Therefore, we can write Eq. (2.2.3) as

V- [Eq(r,v) x Hy(r,v) — Ey (r,v) x Hy (r,v)] = 270 [Py (v, v) - Eq (r, V)
—Pi(r,v) - Ey(r,v)]. (2.2.5)

Equation (2.2.5) is known as the unconjugated form of reciprocity relation. Together
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with Eq. (2.1.4), it provides all the ground work required to establish modal orthogonality
that is necessary to describe the mode propagation in waveguiding systems as well as
the interaction of modes in the presence of a perturbation. The perturbation term, in

principle, can be both linear and nonlinear in nature.

Conjugated reciprocity relation

We now turn our attention to the conjugated form of reciprocity relation. Beginning once

again with Eq. (2.2.2), we now relate the two sets of electromagnetic fields as follows:

V- [Ei (r,v) x Hy (r,v) + E} (r,v) x Hy (r,v)] = 27vgg [{E, (r,v) E; (r,0)} - Ej (r,v)
— E; (r,v)- {& (r,v)E} (r,v)}]
— 27mv [Py (r,v) - E} (r,v)

—Pi(r,v) E (r,0)] (2.2.6)

Simplifying Eq. (2.2.6) in the same way Eq. (2.2.3) was simplified, we arrive at

V- [Ei(r,v) x H (r,v) + B} (r,v) x Hy (r,v)] = wdrvey [S{E (r,v) } Ei (r,v)] - Ej (v, v)
+ 27v [Py (r,v) - ES (r,v)
— P (r,v)-E;(r,v)], (2.2.7)

where S {Z, (r,v)} is the imaginary part of & (r,v). Equation (2.2.7) is known as the
conjugated form of reciprocity relation. We note that Eq. (2.2.7) is rather similar in
appearance to its unconjugated counterpart in Eq. (2.2.5) except for the presence of a
term depending upon the imaginary part of &, (r,v) on the right hand side. Due to
this factor, it becomes impossible to derive generalized results of mode orthogonality in

dissipative media. The details will become apparent in the following section.

2.3 Mode orthogonality

Any treatment of the evolution of electromagnetic field in waveguides necessarily begins
with the relations establishing orthogonality between guided modes. This is all the

more necessary since the oft-employed framework of conjugated reciprocity theorem

10
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[Eq. (2.2.7)], essentially derived for lossless media [91], is no longer applicable to metallic
waveguides which always exhibit significant dissipation at optical frequencies. Therefore,
a platform is required which dictates the orthogonality between modes while handling
losses in dissipative systems.

Let us consider a waveguide with a cross-section area defined on the zy-plane and
extending uniformly along the z-axis which is the direction of mode propagation. Ac-
cording to the definition of Fourier integral in Eq. (2.1.7), we can define the evolution of a
waveguide mode propagating along positive z-axis as E; (r,v) = e; (r,v) exp (15; (V) 2);
where the subscript index 7 denotes the mode order, e; (r,v) is the vectorial field dis-
tribution of the mode over the cross-section, r e {x,y} and §; (v) is the complex mode
wave number. Assuming a uniform, unperturbed waveguide such that there are no po-
larization sources Py 9y (r,7) in Eq. (2.2.5), we consider two distinct modes of order i
and j respectively. Substituting the corresponding fields {E{i,j} (r,v),Hgj (r, V)} in
Eq. (2.2.5) and employing divergence theorem we obtain [91]:

16i (v) + B; (V)] // lei (ri,v) xhj(ry,v)—e;(ry,v) xh;(ry,v)] dA=0. (2.3.1)

In the absence of degenerate modes, the factor [3; (v)+ 8; (v)] in Eq. (2.3.1) can
be zero only if §; (v) = —p; (v) i.e. i = —j. Therefore, we can derive the following

orthogonality relation for modes as:

// lei(ri,v) xhj(ry,v) —ej(ry,v) x h;(ry,v)], dA = Ki6; _;, (2.3.2)

where K; is a constant that depends upon the normalization of modes. Equation (2.3.2)
establishes mode orthogonality between all modes except of the same order but prop-
agating in opposite directions (i = —j). It is instructive to point out that in deriving
Egs. (2.2.5) and (2.3.1), we did not impose any condition that prohibits the dielectric
permittivity e (r, ), wave number of the mode 3 (v) or the fields from being complex.
Therefore, the results presented here are perfectly valid for both lossless and lossy waveg-
uides. This sets Eq. (2.3.2) apart from the more widely-used orthogonality relations
obtained through the framework of conjugated reciprocity relations [91]. In latter, the
structure is assumed to be lossless and material dissipation is included as another per-
turbative polarization source in Eq. (2.2.7). While the approach works to great accuracy
for weakly absorbing structures, metallic waveguides at optical frequencies generally be-

come too damped to include mode attenuation perturbatively. Therefore, we shall rely

11
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on exact treatment of these systems based on Eqgs. (2.2.5) and (2.3.2).

Before proceeding to the next section, we shall take a moment to introduce a simplified
notation for Eq. (2.3.2). We use the braket notation for donating the transverse electric
and magnetic field components of a mode |¢f> as

+ + px g g=\T
}ﬁbz > = (Ei,wEi,y?Hi,x?Hi,y) )
where the superscript denotes the direction of propagation along +z-axis. Following the

convention introduced in Ref. [93,94], the integral in Eq. (2.3.2) can thus be rewritten

as

<¢;t| ¢;t> = // [eii (I‘L, V) X h:l:j (I’L, l/) — €4y (I’L, l/) X h:l:i (I‘L, I/)LdA (233)

With above notation, the result of various permutations of mode indices and their

signs in Eq. (2.3.3) can be compactly written down as:

(07| ¢7) = £Kidyj,
(7| &7) =0. (2.3.4)

2.4 Modal impedance

Having established the orthogonality of modes in Eq. (2.3.2), we employ it to the problem
of impedance of modes in waveguides. The concept of impedance has always been an
extremely successful tool in understanding the propagation of electromagnetic waves
across the interfaces. It is defined as the ratio between the magnetic and electric field

amplitudes of a plane wave in a homogeneous medium [88]:

E P
===/ 2.4.1
P\t 2.4.1)

where F and H are the electric and magnetic field amplitudes respectively. As an
instance of the application of wave impedance in the simplest case of a plane wave
normally incident on a dielectric interface, the Fresnel reflection and transmission coef-
ficients describing wave reflection and transmission can be described in terms of plane

wave impedances as [88]:

12
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Z— 7,

T = —
Zi+ 7y
27,

= ——— 2.4.2
7 2 (2.4.2)

where Z; and Z; are the impedances according to Eq. (2.4.1) of the incident and trans-
mitted media denoted by the subscripts ¢ and ¢ respectively. Apart from plane waves
in homogeneous media, the impedance concept is also extensively employed in trans-
mission line theory where it encapsulates both the resistive and capacitive effects of the
line [61]. In the same vein, the definition of Eq. (2.4.1) remains useful in specific waveg-
uide geometries where the ratio of transverse electric and magnetic field components of
the modes remains constant across the waveguide cross-section. Rectangular waveguides
made up of perfect electric conductors (PEC) are one famous example in the micro-wave
regime [61, 88].

Nevertheless, the concept fails despite its versatility in complex waveguide geometries.
The complexity could arise due to both the shape and physical properties of the medium.
In these cases, the ratio of the transverse electric and magnetic field components no
longer remains constant over the entire cross-section of the geometry, giving rise to
the problem of any unique definition of impedance according to Eq. (2.4.1). Over the
years, a lot of alternative definitions and averaging techniques have been suggested. For
instance, in photonic crystals, some examples can be found in Refs. [95-97]. In the limit
when photonic crystals support only single mode, a more analytically exact solution was
presented in the form of Bloch mode impedances [98,99|.

Hereby, we present one such attempt which aims to restore the Fresnel formulation
of Eq. (2.4.2) for the interfaces involving lossy waveguides in which it is generally not
possible to define impedance of the modes through Eq. (2.4.1) due to the problems
already indicated. As it turns out, the implication of our results for the impedance
definition turns out to be completely different from what is familiarly known.

Let us consider an interface between any two waveguides where the transverse compo-
nents of the modes supported by the incident and transmitted waveguides are denoted
by |qb§t>and W]i> respectively. The subscript {4, j} denotes order of the mode in each
waveguide whereas the plus and minus signs in the superscript signify propagation in
positive or negative propagation direction which we shall take to be along z-axis for our
discussion. The interface between the waveguides is assumed to be formed at z = 0 such

that the incident waveguide is placed in z < 0 and transmitted for z > 0 (Fig. 2.4.1).

13
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The modes in the respective media are normalized such that Eq. (2.3.4) becomes

(o o7 ) = (o v ) = £04,
(07 |7 ) = (Wi [vy) =0. (2.4.3)

At the interface, the continuity of the transverse components requires

65)+ D rm|ér) =Dt |7, (2.4.4)
l l

where 7, denotes reflection into mode order [ due to incident mode order n, t;, similarly
defines transmission into mode order [ due to incident mode order n. Any arbitrary

incident illumination |¢*) can be decomposed into waveguide modes as

67) = enldl).

where the coefficients ¢, are obtained by projecting the mode |¢;) on the total incident
field |¢T) which is defined using Eq. (2.4.3) as

e = (o, |o"). (2.4.5)

In order to derive intuitively meaningful results, we consider a system in which the
incident and transmitted waveguides support only a single propagating mode at the
frequency of operation. This is true, for instance, in rectangular waveguides made with
PEC boundaries in microwave regime for the right combination of core dimensions and
operating frequency [61]. Although coupling to radiating and evanescent modes usually

have to be taken into account, here we consider a case where it can be approximated to
be negligible. With this, Eq. (2.4.4) reduces to

|63 + 70 |60 ) = to |v5) - (2.4.6)
A straightforward application of Eq. (2.4.3) yields:

14
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et lu)
(6g | )
1
th = ———. 2.4.7
0= T T (247)

It is obvious that unlike rg, ty is dependent upon the normalization of modes propa-
gating in the two interfacing waveguides. We will come back to resolve this apparent
inconsistency later. For now, we attempt to solve the problem of modal impedance
which in the special case of relative impedance fortunately does not depend upon the
modal transmission 5. The formula of Fresnel reflection coefficient in Eq. (2.4.2) can be

inverted to obtain:

_Zw_l—f-?"o

= = 2.4.
Z¢ 1-— 7’07 ( 8)

Zr

where z, is the relative impedance of the mode defined as the ratio of the impedance
of transmitted mode with respect to the incident. Substituting the formula of ry from

Eq. (2.4.7) in the above equation, we find the relative impedance to be

It ()
" (e + o8 g )

It is instructive to take a pause here and reflect upon the significance of the result

(2.4.9)

obtained in Eq. (2.4.9). It is well understood that the coupling of modes between the
two interfacing waveguides or media is determined by the overlap between the incident
and transmitted modes. Less expected, however, is the fact that relative impedance
between the two waveguides can be similarly defined as a function of the overlap between
modes supported by the respective waveguides. While it does not seem possible in our
formulation to assign any unique modal impedance to an individual waveguide, having
relative value at hand is still useful in solving problems where the major concern is
to minimize reflection from the interface. Compared to the field averaging techniques
usually employed, it provides a theoretically exact definition of the modal reflection and
transmission at the interface between waveguides.

With the reflection coefficient and relative impedance well defined, we can return to
the issue of mode normalization suitable for defining the transmission of mode across
the interface. Without any loss of generality, we normalize the mode propagating in the

transmitted waveguide ‘@Z)Zi> with factor N; such that Eq. (2.4.3) now becomes

15
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Figure 2.4.1: Schematic sketch showing the interface between two dielectric waveguides
having a geometrical as well as material disparity (core permittivities e
and e.). Substrate and cladding have been shown to be the same (e, and
gs) across the interface without any loss of generality.

(67 [6%) = 85,
dij
WF o) = =55 (2.4.10)
Likewise, the Eq. (2.4.7) for transmission coefficient thus reads as
No
fo = 0 (2.4.11)
(0 [vd)

For the correct normalization of modes, the formula for ¢, in Eq. (2.4.2) should hold

good. Substituting the values of relative impedance z, and ty in Eq. (2.4.2) gives:

No = (65 — o [v). (2.412)

Equation (2.4.12) provides us the normalization of modes in transmitted waveguide

for restoring the meaning of mode transmission coefficient t.

Multimode

In waveguides supporting multiple modes it is still possible to obtain the reflection
coefficient and associate relative impedance for the system. By successively projecting

|t for each mode order n on Eq. (2.4.4) and introducing a matrix notation, we can
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straightforwardly obtain the reflection matrix:

F=—P1Q, (2.4.13)

where P and Q are matrices defined as

Pon = (U100 ) s Qun = (U ]67) - (2.4.14)

The resultant formula for the matrix elements of relative impedance Z is written as:

1 -2 (15_1) Qrn
S = —(mk (2.4.15)
142 <P*1> Qrn
mk

The results derived in this section have been included as an application of the mode

orthogonality relations to the problem of impedance definition in dissipative waveguides.
Due to space constraints, we will not present any application of these results in the
remainder of this treatise. Interested reader may refer to Ref. [100] where we discuss

further details and applications.

2.5 Coupled mode theory

Another interesting application of Eq. (2.3.2) is to the problem of mode propagation
in waveguides subject to a nonlinear perturbation term P (r,v). The general form of
the nonlinear polarization can become very complex to describe if we take into account
the full-breadth of the nonlinear response that may arise in a medium. We shall, there-
fore, restrict our attention to non-centrosymmetric media whose second order x®) tensor
dominates over all possible nonlinear responses. In the following, we adapt existing cou-
pled mode formulation for describing nonlinear interaction according to our requirement
(see, for instance, Ref. [101] and further references therein).

In case of nonlinear perturbation, the total field in the waveguide has to be repre-
sented as the linear superposition of modes. Having said that, it helps taking note of
the fact that in the cases we are going to study, the waveguide is mono-mode at funda-
mental harmonic (FH). Although, this is something usually true in a lot of waveguides
of practical interest. Therefore, it suffices to consider the multi-mode dynamics only at
higher frequencies i.e. SH. As we shall be exclusively interested in the nonlinear second

harmonic generation (SHG) in the presence of x(?) nonlinearity, the total field ansatz in
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the waveguide can be written as

Ei(r,t) = a5 (2,t) e (r1) exp [t (852 — 2m/"t) |
+ Z @y, (z,t) €}, (r1)exp [¢ (852 — 2m/°t)] + cc,

H,(r,t) = @} (z,t)hi (ry)exp [ (8 =z — 2m/"t) ]
+ Z&,Sn (z,t) b, (r1)exp [0 (B2 — 2m/°t)] + c.c.. (2.5.1)

The subscript m in Eqgs. (2.5.1) is the mode order, the superscript F and S denote the

fundamental harmonic (FH) and second harmonic (SH) respectively (v° = 2vF) while

;E%F’S} is the complex modal wave number. Perturbative effect on the evolution of modes

due to nonlinearity is expressed through slowly varying envelope aist (z,t). Performing

Fourier transformation of Eq. (2.5.1), we obtain

Ei(r,v) = ug (z,v —v") e (ri)exp (185 2) + {ug (z,v+ ") eg (ry) }* exp (—uf3) 2)
—i—Z[uf’n (z,v=1°) €}, (r1)exp (185,2) + {u, (z,v+1°) €}, (r1) } exp (—852)]

H,(r,v) = ug (z, v — VF) h{ (r))exp (Lﬁgz) + {ug (z, v+ VF> h) (rL)}* exp (—Lﬁgz)
+ Z [u5, (z,v —V°) B, (v1)exp (165,2) + {u), (z,v +°) b, (rL)}*exp (—85,2)] -

(2.5.2)

Utilizing the fact that utSy (z,t) is a slowly varying envelope in time, we can simplify
Egs. (2.5.2) above for cases when the carrier frequency v} is much higher compared
to the bandwidth of u,, (z,) as it should be at optical frequencies. Therefore, we can

*
ignore the terms depending upon {u;{nF’S} (z, v+ I/{F’S})} to write

Ei(r,v) = uy (z,v —v") ey (r1)exp (185 2) + Zu (z,v—1°) €}, (r1)exp (185,2) ,
Hi(r,v) ~ ugy (z,v — V") hy (r1)exp (155 2) + Zu )RS, (r1)exp (1852) .

(2.5.3)
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The perturbative polarization associated with the quadratic nonlinear interaction is
defined as

P, (r,t) = Z {1’351 (r,t) exp [L (/Bgz — uFt)} + P> (r,t) exp [L (/85,2 — 27wst)} } +c.c.,
: (2.5.4)

where f);{f S} (r,t) is once again a slowly varying polarization envelope owing to the

mode of order m at SH whose exact expression shall be described later. Taking Fourier

transform of Eq. (2.5.4), we write

P(r,v) =~ Z {PEL (r, v — VF) exp (LBOFz) +p>, (r, v— I/S) exp (Lﬁ,snz)} , (2.5.5)

where 15({]51’8} (r,t) is treated as a narrow band signal in the way explained before. In

order to apply the reciprocity relations [Eq. (2.2.5)], we define another set of fields
{E; (r,v) ,Hs (r,v)} but this time in the absence of any perturbation [P, (r,v) = 0].
To be able to exploit the mode orthogonality defined in Eq. (2.3.2), we choose a back
propagating mode of order M. Exploiting the vectorial symmetry between the forward

and backward propagating modes and noting that

Bui (v) = =B (v), (2.5.6)

the electromagnetic fields can be defined as:

E; (r,v) = leny (ro,v) —ew. (ro,v)]exp (—tBu (V) 2),

H; (r,v) = [~hyy (r1,v) + hy, (vo,v)] exp (=g (V) 2) (2.5.7)

where ey (ro,v) and hyy (rp,v) are the transverse modal field components with re-
spect to the direction of propagation (z-axis). Inserting Egs. (2.5.1) and (2.5.7) into
Eq. (2.2.5) and applying the mode orthogonality condition [Eq. (2.2.5)|, we obtain the

following set of coupled differential equations:
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: {aug(w—”F)+L{ﬁ§—ﬁM<u>}u§(z,v— )}exp[{ﬂo— )}

N(FM (l/) az

V)}ufn(z,y—y)}exp[ {ﬁs )}z}:

N o S U — S
+;N5M(y){ um(zaz ”)+L{ﬁi—
Lv Z // dr | {pfn (r, v — VF) exp (L,BOFz) + pi (r, v— VS) exp (Lﬁiz)} Es (r,v

(2.5.8)

where NYEI;}IS} (v) is defined as

~ 1 o0
Nig\}[s} (l/) = — // dI‘L [einFiS} (I‘L) X hMi (I‘L, l/) +emL (I‘L, l/) X hf:is} (I‘L>i| .

2m

(2.5.9)

At this stage, we shall now utilize the fact that ul s (z v — vif S}) is narrowly cen-

tered around 1"}, Therefore, we can approximate the coefficients of utS? ( V{F’S})

appearing in Eq. (2.5.8) by dropping the frequency dependance:

. . 1

NESH ) & NIESE = 2 // dr el () x niH (2.5.10)
T

Similarly, the mode vector Sy (v) is approximated to first order Taylor expansion

(F5) (2 — pFSH). Ap-

around the center frequency v{1F:S} when being a coefficient of w5,
plying mode orthogonality in Eq. (2.5.10) allows us to rewrite Eq. (2.5.8) as

U
F “M
0z UM

NE {auﬂ B V) g =) (=) } exp (152)

S
0z Uy

vy // dry {pF, (v, — vF) exp (1552)

—}—p;qn (r, v — VS) exp (Lﬁiz)} -Eq (r,v)exp (1O (V) 2) ,

S .8
+NG {aUM br=v) s (20 = %) (v =% } ) =

(2.5.11)
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where Nl\{f’s}is finally defined as

1
NI;{/[F,S} - - //drie{F ) x hi{ff} (r,) (2.5.12)

and the group velocity vg S} of the mode comes from the first order term in Taylor

expansion which is given as

JFSH _ [351\/1 (v)

-1
) 2.5.13
’ ui) J (2.5.13)

We can provide similar treatment to the right hand side of Eq. (2.5.11) as well. The
product pg’s} (r, v — V{F’S}) - Ey (r,v) appearing in Eq. (2.5.11) can also be simplified
considering that p7{ﬂF St (r, v — I/{F’S}> is likewise narrowly centered around v = p{F:S}

Therefore, it can be rewritten as

P (r,p = v ") By ()~ p{ (1 = 79 el (1) — el (r1) | exp (~0u (1) 2).
(2.5.14)
Inserting the above definition of pinF’S} (r, v — V{F’S}) -E5 (r, v) from the equation above

in Eq. (2.5.11) and performing the inverse Fourier transform yields:

wp {20 SO e (55 - )

oy (z,t) 1 9y, (2,1)
S M\~ Uy \Z, S, _ .S —
+Ny {—02 + _UE/I — o } exp [¢ (Byz — V1]

3 // dry {BF, (r,t). [k, (r.) — eF. (r1)] exp [¢ (852 — vF1)]

+ P, (r,t) . [edy, (ri) — ey, (ro)] exp [t (Bhz — v51)]} . (2.5.15)

By comparing the coefficients of exp [L (5,&”}2 — V{F’S}tﬂ we easily obtain the fol-

lowing set of equations for the mode envelope afﬁ (z,1):
ou (z,t) 1 9ug (2,1 F .
0. + E—t NF Z//dﬂpm r,t). [eg, (ri) —ep, (r1)],
1
oS
Um

oty (z,t)

oty (z,t)
0z M@t NS //drlpM [eMi (r) — ey (H)]- (2.5.16)
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We can now finally address the nonlinear polarization p,{nF S} (r,t). Asis often the case,

for a narrow-band pulse with a carrier frequency v1¥:3} much away from material reso-
nance, the nonlinear response can be approximated to be instantaneous and Kleinman
symmetry holds good [87|. The nonlinear polarization at each harmonic is then defined

as

Y (r,t) = x? (ro, =" =", 0°) {ag (=, t)}* @, (2 t)exp (¢ (B3 —285) 2)  (2.5.17)

and

P (r,t) = x? (ro, =250 0% {ug (=, t)}2 exp (—¢ (ﬁi —2863) 2), (2.5.18)

where x(? (I‘L, —F —F, I/S) and Y (rl, —2F Ut VF) are the nonlinear susceptibility

tensors defined for the polarizations at FH and SH respectively according to terminology
defined in Ref. [101].
We can further incorporate the effect of linear damping of the mode explicitly through

the transformation

Al (2,) = Al (2, 1) exp (9F92) (25.19)

where BalS) = %{ &F’S}}. Defining the momentum mismatch in Egs. (2.5.17) and
(2.5.18) as

ABy =R{B — 265} (2.5.20)

and substituting Eqgs. (2.5.17) and (2.5.18) into Egs. (2.5.16), we arrive at the final form

of temporal coupled mode equations:

~F ~F
aaoa(zzyt) + %aaoa(:yt) + (/]/FaOF (2775) _ L;'YE@ {dg (27 t)}*dfn (Z,t) exp (LAﬁmz) 7
0ay; (z,t 1 0as (2.t
aM(f)(Z’ ) 5 i (7:1) + By (z,t) = vy {ag (z,t)}2 exp (—tABwz),  (2.5.21)
z Uy ot

The complex mode overlap coefficient ”yilF’S} in Egs. (2.5.21) is defined as
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JF
Vo = NF //erX(Q) (ro, =" =", 0%)  eg, (ro) —eg, (r1)],
0
S
’Ysl =5 // erX(z) (rL, 2 VF) . [efnL (rp) — efnz (rL)] ) (2.5.22)

On the left hand side of Eq. (2.5.21), spatial partial derivative indicates propagation in
space, temporal derivative denotes the same in time while the last term denotes modal
damping along propagation direction. The right hand side of the equation contains
terms that couple the modes at FH and SH. Equation (2.5.21) can be easily adapted to
continuous wave (CW) case by dropping the temporal dependance of the mode envelopes
~{F,S} 3 3 .
am " (z,t). This gives us:

F
1) | gira (2) = S 0 6 (e (852),
da%Z(Z) + B8 a3, (2) = sy {af (2)} exp (—1ABuz2) . (2.5.23)

We would like to point out that in deriving the results expressed in Egs. (2.5.21), we
had approximated the mode envelope ﬂ;{f St (z,t) to be narrow band i.e. slowly varying
in time [see Eq. (2.5.3)]. However, no such restriction was imposed upon the spatial
evolution of @b (z,t). Therefore, the mode envelope ab (2) in Egs. (2.5.23) does
not suffer from any similar limitation in spatial domain

Another aspect worth pointing out in Eqs. (2.5.23) is that in lossless regime <B§,’1{F’S} = O) ,
the efficiency of interaction is determined by the amplitude of ’%f’s} ‘ and |Af,,|. While

the former determines the strength with which the modes interact nonlinearly, the lat-
ter represents the momentum mismatch whose effect is to reverse the conversion cycle
from one harmonic to another. In the latter case, the distance after which the energy

conversion process reverses is known as coherence length which is defined as

. ™
|A S|

Therefore, AfS,, is a delimiting factor that restricts the nonlinearly interacting har-

Fom . (2.5.24)

monics from full energy exchange. The effect of modal damping can be seen to reduce
the interaction strength as it attenuates the mode along the propagation path until it

negligibly reduces the overall effect of nonlinear interaction.
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Analytical solution

The analytical solution of Eq. (2.5.23) can be obtained if the partial differential equations
(PDE) could be decoupled. Most of the text books treat the coupled mode interaction
presented in the foregoing section considering lossless structures wherein it is possible to
arrive at simplified energy conservation relations known as Manley-Rowe relations [87,
102]. This allows Egs. (2.5.23) to be decoupled and solved analytically. What is less
talked about, however, is the existence of an analogous result in damped systems. In
the following we explore the possibility of applying the same idea to the simplified CW
system formulated in Eq. (2.5.23).

Without any loss of generality, we can simplify the analysis by assuming there exists
only a single mode of order M at SH. Beginning from Eqs. (2.5.23), we can then arrive

at the following relation by means of straightforward algebraic manipulations:

0 .
= (0" [af @ + a5 (") = =2 (a8 |af )"+ 55 [ (2)]°)

— 28 {a} v {ag (z)}2 {a¥ (z)}* exp(tAfyz), (2.5.25)

where the mode overlap coefficients at FH and SH [Eq. (2.5.22)] are related by the

complex constant « as

o= (2.5.26)

We can now attempt to understand the ramifications of Eq. (2.5.25). In lossless case,
both the mode vector B,EF’S} and constant « are real, making the right hand side of
Eq. (2.5.25) vanish. This leaves us with the well-known Manley-Rowe relations [87]
which establish the conservation of total power in the waveguide at any point z along
the propagation direction. The existence of losses, however, does not allow the derivation
of a similar identity that could be then used to decouple the set of Egs. (2.5.23). To the
best of our knowledge, the analytical solution for the lossy media is known to exist only
in a special case when ¥ = 8”5 [103]. However, it is too restrictive an assumption to
rely on in dissipative systems which we are going to consider. Therefore, an analytical
solution to Eq. (2.5.23) will not be sought and we will be relying on numerical techniques
for solutions.

Figures (2.5.1) plot some examples of the solution of Eqgs. (2.5.23) for select values of
AB, 415} and 4" when there is no incident SH at the input. In Fig. (2.5.1)(a), we find
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Figure 2.5.1: Evolution of SH power |as (z)|2 in various cases. (a) Varying hs‘ and fixed

AB = " =0. (b) Varying AB and fixed 45, 3”° = 0. (c) Varying 7° and

fixed A3 = 0, 3”5 = 15. (c) Varying AB and fixed 7%, 8" = 15. 5" is
defined on the same unit scale as the propagation axis z in Figures
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SH to asymptotically achieve all the input pump power thanks to an absence of phase-
mismatch and propagation loss. However, the relative amplitude of 4% determines how
quickly the total energy transfer takes place. Next we highlight the influence of phase
mismatch on maximum power converted and oscillation of energy in Fig. 2.5.1(b). The
last two cases are similar except that losses are now present which further deteriorate
the efficiency of nonlinear energy conversion in Figs. 2.5.1(c) and (d).

In Ch. 5, we will consider the problem of SH generation in plasmonic slot waveguides

where the results derived in this section would be extensively put to use.

2.6 Surface Plasmon Polaritons

Surface plasmon polaritons (SPP) are the surface charge oscillations coupled to the
incident electromagnetic field at the interface between metallic and dielectric media.
Depending upon the broad categorization of geometry of the metal-dielectric structure
into a planar interface and a closed form object, such as a spherical particle, SPP ac-
quire peculiar features adapting to each of the two scenarios. The SPP supported by the
former structure is guided along the interface and referred generally in the literature and
specifically in this treatise as the propagating SPP (PSPP). Whereas in the latter case,
SPP appear in the form of static charge oscillations and shall be distinguished hence-
forth as the localized SPP (LSPP). In the following subsections we present necessary
derivations and discussions on the essential properties of each of the two to an extent

that is necessary to understand the work presented in the following chapters.

2.6.1 Propagating SPP

In media that can be defined over a 2D plane, it is known that the electromagnetic waves
can be decomposed into TM and TE polarizations whereby the electric field components
are parallel and perpendicular to the plane of propagation respectively [88,104]. Hence-
forth we will investigate both TM and TE polarizations to find the electromagnetic mode
guided along the interface between metal (R {e, ()} < 0) and dielectric (R {e, (v)} > 1),
both of which are considered isotropic here. Beginning with the former, we define the

following ansatz for the out of plane component of the magnetic field (Fig. 2.6.1):

Hyexp (—kq (v)z)exp (1 (v)2z), x>0

H,(z,z,v)= ,
Hyexp (km (v)x)exp (15 (v)2z), <0

(2.6.1)
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Dielectric

Figure 2.6.1: Schematic sketch showing the propagation of a PSPP mode along the in-
terface between metal and dielectric.

where Hy is some constant, ((v) is the complex wave number of the mode and kq (V)
in dielectric (z > 0) and ky, (v) in metal (z < 0) is related to 5 (v), vacuum wave num-
ber ko (v) = 2mv/c and material parameters g4 (v) and e, (v) for dielectric and metal

respectively as

Fam) ( \/52 V) Edm} (V). (2.6.2)

Since we are seeking a mode that decays evanescently in both media across the inter-
face, R {k(qm) (v)} should be positive in Eq. (2.6.1). The electric field components of
the mode can easily be obtained through the Maxwell’s curl equation for the magnetic
field [Eq. (2.1.4)] as

E,(z,z,v) = HoB (v) exp (16 (v) z) Ed(”) oxp(~ha(v)e), @>0 (2.6.3)
VEQ m exp (kn (V) x), <0
and for F, (x,y,v):
H, —kaW) oxp (kg (W) 2), x>0
E,(z,zv) = —exp (16 (V) 2) Ed()”) ’ (2.6.4)
)

Ve Em(
em(

= exp (b (V) ), <0

v

In order to solve for the wave number (3 (v), we apply the boundary conditions obtained
in Egs. (2.1.10) and (2.1.11) on the tangential component of electric field E, (x, z,v)
[Eq. (2.6.3)] and magnetic field H, (x,y,v) at the interface (y = 0). We note that the
latter condition is already satisfied in the definition of ansatz in Eq. (2.6.1). An appli-

cation of the former leads us to
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ka(v) _ ea(v)
km (V) Em (V)

We observe that Eq. (2.6.5) can be valid only if R[e,, ()] < 0 given the ansatz in

(2.6.5)

Eq. (2.6.1). Therefore, angular frequency v of the electromagnetic wave has to be larger

than the bulk plasma frequency of the metal. Solving for 5 (v) in Eq. (2.6.5) yields:

B(v) = ko\/ fa (V) em (V) (2.6.6)

gq (V) +em(v)

In the light of Egs. (2.6.2) and (2.6.6), following conclusions can be drawn about the
dispersion S (v) of the mode:

1. The real part ' (v) = R[5 (v)] is always larger than the dielectric wave number
ko (V) \/ed—(l/) . As a result, any incident illumination will fail to excite a PSPP
mode at the surface unless the momentum-mismatch between the wave in the
dielectric medium and [ (v) is compensated by artificial means such as grating
vector (see Ref. [2] for details).

2. ' (v) reaches a maximum value when the real part of the denominator in Eq. (2.6.6)
is minimum. For the special case of a Drude metal and a dispersion-less dielectric,

it can be defined in terms of the bulk plasma frequency as

p

v = ——,

where vp is the bulk plasma frequency of the metal whose permittivity is defined

(2.6.7)

together with the damping frequency v, as:

V2

em (V) =1-— m. (2.6.8)
The condition defined in Eq. (2.6.7) is usually referred as the resonance of PSPP.
As a matter of fact, in the limit of negligible damping (3 [en, (v)] = 0), the wave
number (' (v) approaches infinity at resonance and the group velocity becomes
zero. The PSPP thus acquires the character of a standing wave and the distinction
we had set between PSPP and LSPP vanishes. However, in realistic metallic media
such a negligible damping limit is never reached. In fact, metallic dissipation causes
a steady increase in mode damping as can be observed in Fig. 2.6.2(b). Therefore,

for all practical purposes, we can overlook the ramifications of operating in the
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extreme limit of loss-less metals.

3. When ' (v) /ko becomes smaller than +/zq (), ka (v) becomes predominantly
imaginary. As a result, the wave can be said to have lost its evanescent char-
acter in the dielectric half-space in Egs. (2.6.1), (2.6.3) and (2.6.4). Therefore, the
frequency when 5’ (v) /ko becomes equal to \/eq4 (v) is usually referred as the mode
cut-off frequency. Note that the cut-off frequency is smaller than the bulk plasma
frequency beyond which the mode definition becomes invalid as already discussed
with reference to Eq. (2.6.5).

Figure 2.6.2 plots the frequency dispersion of wave number S (v) of a PSPP mode guided
at the interface between air and silver (Ag) whose experimentally determined values of
the permittivity is used [105]. For smaller frequencies in Fig. 2.6.2(a), we find 5’ (v) to be
linear as it should only be marginally larger than the dielectric wave number kg \/sd—(u) .
However, as it proceeds to the resonance frequency, ' (v) steadily increases until it
reaches the maximum as discussed above. Thereafter, it undergoes back-bending until
it meets with the dielectric wave number k:o\/sd—(y) beyond which it loses its evanescent
character as already discussed. It should be noted that the possibility to achieve sub-
wavelength confinement through PSPP comes from the fact that modes are allowed to
decay evanescently in both media forming the interface. In conventional waveguides
formed either with perfect metals (R {e,,} & —o0), dielectrics or both, there is always a
requirement for a dielectric core in which the mode maintains non-evanescent, oscillatory
character (see for instance Refs. [61,91,104]). It is the core whose dimensions cannot be
made smaller than the wavelength which prohibits conventional waveguides from guiding
modes at scale smaller than the wavelength.

We will now finally address the problem of TE surface modes sustained by the geometry
shown in Fig. 2.6.1. Similar to Eq. (2.6.1), we propose the following ansatz for the

independent E, component of electric field:

Epexp (—kq (v)x)exp (15 (v)2z), x>0

E,(z,z,v) = )
Eoexp (km (v)z)exp (18 (v)2z), <0

(2.6.9)

where knay () and (3 (v) have the same definition and relation as already discussed
with respect to Eq. (2.6.2). The corresponding magnetic field components are obtained

likewise from the Maxwell’s curl equation [Eq. (2.1.4)] for electric field as
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Figure 2.6.2: Dispersion of the real (a) and imaginary (b) parts of the propagation wave
number 3 (v) of PSPP using the experimentally obtained values of the per-
mittivity of Ag [105] and dispersion less dielectric medium of permittivity
Eq-

H,(x,z,v) = tEo exp (14 (v) 2) fa(v)exp(~ha(w)z), = >0 (2.6.10)
0 —km (V) exp (kn (V) x), <0
and
EofB (v) exp (—kqa (v)z), >0
H, (x,yv) = — exp (10 (V) 2 : 2.6.11
(z, yv) vy SPB)2) e (ke ()2), <0 (2.6.11)

As before, we subject the tangential components of the electric and magnetic fields to
the boundary conditions Egs. (2.1.10) and (2.1.11). This leads us to:

Eo [k (v) + kq (v)] = 0. (2.6.12)

Equation (2.6.12) cannot be satisfied until R {k{mq; (¥)} in either metal or dielectric
is allowed to be negative. This however contradicts our earlier stipulation in the ansatz
[Eq. (2.6.9)] that both of them should be positive. Therefore, there is no surface mode
solution for TE polarization and PSPP exists only for TM polarization. This also corre-
sponds to the intuitive requirement for a non-vanishing component of electric field along
the propagation direction in order to drive surface electrons.

To conclude this section, we would like to point out that the basic PSPP example
presented in the foregoing pertains only to the simplest case. There are more compli-

cated cases formed by more complex metal dielectric interfaces, not all of which are
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Dielectric

Figure 2.6.3: Geometrical sketch of a metallic sphere in dielectric space.

known to be analytically considerable. However, the simplest case still shares the basic
features, advantages and limitations that are associated with PSPP modes found in com-
plex waveguides. Therefore, we leave the discussion specific to a particular plasmonic

waveguide geometry to those sections where they will be used.

2.6.2 Localized SPP

In finite metallic objects surrounded by the dielectric media (and vice versa), the in-
teraction with an incident monochromatic plane wave can induce a resonant scattering
response from the structure. For spherical particles, a rigorous solution was presented
by Gustav Mie in 1908 that described the field scattered by the object as a superposition
of vector spherical harmonics |7, 8]. While the theory is fully sufficient to account for
the scattering of light by spheres of any size, it is physically more instructive to con-
sider the problem in terms of the so-called quasi-static (QS) approximation for spheres
significantly smaller than the incident wavelength. As the size of the problem becomes
sufficiently small (roughly less than A\/10), the retardation effect of the incident wave
can be neglected. Mathematically, this amounts to approximating the time derivative
terms in Eq. (2.1.1) to be negligible which causes a decoupling of electric and magnetic

fields [106]. This allows writing Maxwell’s curl equations [Eq. (2.1.1)] as

VxE(r) =0, VxH() =0 (2.6.13)

The electric field in Eq. (2.6.13) can be written in terms of the scalar potential ® (r)

as

E(r)=-Vo(r),

which further simplifies the problem to solving for the potential according to Laplace

equation:
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V20 (r) = 0. (2.6.14)

Equation (2.6.14) is valid in each homogeneous medium making up the geometry. The
interface between two media are dealt with through appropriate boundary conditions
as we shall see shortly. Now let us consider a spherical particle of radius a, made up
of metal of permittivity e, (v), embedded in a dielectric medium of permittivity eq (v)
and illuminated by an incoming wave mono-chromatic of frequency v and electric field
amplitude Ej polarized along the z-axis as shown in Fig. 2.6.3. As we are approximating
the problem in quasi-static, the temporal response of the medium can be approximated
as complex constants e, and €4 respectively. Amplitude of the incident mono-chromatic

electric field is expressed as

E,, = Eoa,. (2.6.15)

Considering Eq. (2.6.13), we can write down the potential of the incident field in

spherical symmetry as

Oy, (1,0) = —Eogz = —Egrcos (0) . (2.6.16)

In order to solve for the field scattered by the sphere it is convenient to consider spher-
ical coordinates in order to take advantage of the azimuthal symmetry of the geometry.

In this case, the general solution of the Laplace equation [Eq. (2.6.14)] is written as [88]:

® (r,0) = X2 4! + Byr= ] Py (cos 0) (2.6.17)

where P, (cosf) is the Legendre polynomial of order [ and 6 is the angle between the
position vector r and the z-axis (Fig. 2.6.3). Since the factor r~(!+1) becomes infinite
when r = 0 inside the sphere, B; has to be zero within the sphere. In the same vein, the
scattered field outside the sphere should reduce to zero as the radius r goes to infinity

leaving behind only the incident field. This implies:

lim ® (r,0) = —Eyz = —Eyrcos (0). (2.6.18)

T—00

Therefore, By = —Fj and for all [ # 1 we have B; = 0. With this we can rewrite
Eq. (2.6.17) for the two cases of within (r < a) and without (r > a) the metallic sphere

as
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¥ At By (cos6) r<a
O (r,0) = : (2.6.19)
—Egrcos (0) + 3°,Crr= VP (cos6), r>a
For the rest of coefficients A; and C;, we apply the boundary conditions at the interface
r = a. The boundary conditions for the continuity of the tangential component of electric
field and the normal component of electric displacement [Eq. (2.1.10)| are translated into

scalar potential as

109 (r,0) _10®(r,0)
a 00 |_,._- a 00 | _.’
oo (r,0) B 0P (r,0)
€0fm— o = —C0Ed— g . (2.6.20)

A straightforward application of Eqgs. (2.6.20) gives us the following result for potential

inside and outside the sphere:

ng Eqr cos, r<a
O (r,0) = { "t . (2.6.21)

—FEgrcosf + —LX—  r>a

4megemrs?

In Eq. (2.6.21) above, the dipole moment vector p is defined in terms of the polariz-

ability a as

P = €oEm Ky, (2.6.22)
where
Em — &4
= 42— 2.6.23
“ ma Em + 264 ( )

According to Eq. (2.6.21), the total field outside the sphere in Eq. (2.6.21) is a super-
position of the incident field and the field radiated by a dipole induced inside the sphere
with a moment proportional to the incident field’s amplitude [Eq. (2.6.22)]. We now
note the fact that the permittivities of metal and dielectric in Egs. (2.6.21,2.6.22,2.6.23)
parametrically depend upon the frequency 14 of the incident plane wave. Therefore, the
polarizability a [Eq. (2.6.23)] of the sub-wavelength sphere exhibits a resonant response
when the real part of the denominator in Eq. (2.6.23) is minimum. This is known as the
dipole SPP resonance of the metallic sphere. However, for the purpose of distinguishing

it from the PSPP resonance discussed in the preceding section we shall refer to it sim-
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Figure 2.6.4: Normalized magnitude (a) and phase (b) of the polarizability « of a Ag
sphere in a dispersion less dielectric medium of permittivity e4.

ply as LSPP resonance. At resonance, the incident field couples strongly to the surface

charges causing it oscillate together. The resonance condition is expressed as

R {em (1)} = —224 (1) - (2.6.24)

Figure 2.6.4 shows the dispersion of the absolute value and phase of the polarizability
a (v) for a Ag sphere [105] in dispersion less dielectric media. Once again, for a Drude
metal whose permittivity is defined previously in Eq. (2.6.8) and dispersion-less dielectric
of permittivity 4, it can be shown that the resonance condition in Eq. (2.6.24) is satisfied
at:

vp

S S— 2.6.25
VLSPP m ( )
We can now finally write the expression for the total electric field as
36% Eo, r<a
E(r) = -V (r) = { st : (2.6.26)

3nn.pl-p 1
Eq+ Thmeery 7% T>a

where n is the unit vector along the position vector r. Therefore, we find the electric fields
in the near-field to undergo resonant enhancement when the condition in Eq. (2.6.24) is
satisfied. This allows the sub-wavelength metallic spheres to act as simple yet effective
antenna elements for focusing light at optical frequencies.

Before leaving, we would like to point out that the simplest example of PSPP con-

sidered here is to provide a foundation on which more complex plasmonic waveguiding
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geometries to appear later can be understood. As such, we would not treat the referential
metal dielectric interface anymore. However, the basic insights derived from this case
will guide our qualitative eye in understanding the behavior of more complex structures.

Likewise, the scattering of light by sub-wavelength sphere considered here serves as
the simplest referential example of the antenna focusing of light by plasmonic particles.
Cases such as infinitely extended metallic cylinder or more complicated geometries like
core-shells, spheroids, etc. have also been analytically studied but due to space con-
straints we would have to content with just citing their unique results from the available
literature wherever required. Qualitative meaning once again will be built upon the

insight we gained in this section from the example of a spherical scatterer.

2.7 Concluding remarks

To sum up, we presented in this chapter the basic framework of reciprocity relations
formulated on top of bulk Maxwell’s Equations Using those results, we further derived
the impedance definition between waveguiding interfaces and the interaction of modes
coupled through second order nonlinear channels. At the very end, we went back yet
again to Maxwell’s equations to establish fundamental results for the most basic cases
involving SPPs; both propagating at the interface between metal and dielectric media

or localized thereon.
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plasmonic resonances

3.1 Introduction

With the tools to analyze the behavior of modes in waveguides, we begin with the prob-
lem of localized resonance in plasmonic systems whose dimensions are much smaller than
interacting light’s wavelength. As we derived results in Sec. 2.6.2 for the referential ex-
ample of a sphere, such cases can be described through quasi-static (QS) approximation
whereby the propagation effects are ignored and the problem is solved by finding the
static potential of the field scattered by the illuminated object [2,88|. This has led to ex-
tremely simple expressions offering insights into a multitude of particle geometries such
as sphere, infinitely extended cylinders, ellipsoids, etc. While in general the resonance
frequencies remain sensitive to the geometrical features of the particle, it was curiously
shown that the quality factor (Q-factor) approaches a constant limit determined only by
the material absorption of the particle irrespective of its shape at resonance [107]|. This
universal Q-factor, so to say, in QS limit is defined only in terms of material parameters

as [107]:

Voaegl(z/)
=T—— 3.1.1
Q=r" e, (3.1.1)

where 1 is the resonance frequency and ey, (v) = €/, (v) + el (v) is the complex per-
mittivity of the metal.

With all its success, however, the aforementioned approach also presents a theoretical
puzzle. As we saw in Sec. 2.6.2, QS approach allows us to treat the problem as static for
all practical purpose. If the physical properties of a QS system can indeed be understood
without considering wave dynamics, is it still possible to view the resonance of sub-
wavelength systems through wave effects? In a previous study, a finite length metallic

cylinder of dimensions much smaller than the incident wavelength was shown to sustain
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3 Antenna description of localized plasmonic resonances

Figure 3.1.1: Schematic illustration of the FP antennas of length L considered in this
chapter. (a) Sphere, (b) core-shell, (c) ellipsoid and (d) cylinder. The
last one extends indefinitely along the direction indicated by dotted blue
line. Notice that when L goes to zero, all the cavities collapse to familiar
nano-particle geometries.

Fabry-Perot (FP) resonances of the PSPP mode excited by the incident radiation [108].
Since FP resonance is based on wave interference effect, it means that a system which
is well within QS regime can still be described from a wave perspective.

To further motivate this problem, we refer to Figs. 3.1.1(a-d) which show circular,
core-shell, elliptical and strip waveguides having hemispherical, half core-shell, semi-
spheroidal and semi-circular terminations respectively. The response of these antennas
can be easily predicted through FP description of the guided PSPP mode sustained
by the respective waveguiding geometries (see for instance, Refs. [59,60,109]). If the
length L of the waveguide is made vanishingly small, it is easy to see that we will
recover particles made up of terminal caps in Fig. 3.1.1. The question arises whether
the resonator model will still be applicable? If so, it can potentially provide us a unified
way of looking at the response of plasmonic antennas and particles.

This becomes all the more interesting when we consider the fact that a QS approach can
be applied only to simple particles possessing certain geometrical symmetry that lends
the problem to analytical treatment. This makes it unlikely, if not outright impossible,
to subject complex particles, such as those possessing asymmetric geometrical features,
to analytical treatment under quasi-static formulation. If a semi-analytical FP model
is indeed applicable to closed-form particles much like extended antenna geometries of
Fig. (3.1.1), it can potentially provide a way to numerically investigate and design closed-
form particles which are otherwise inaccessible or cumbersome to approach by means of

theoretical methods.
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3 Antenna description of localized plasmonic resonances

In what follows, we attempt to answer this question. We will first formally present
FP model and outline the general procedure. Then we will consider metallic sphere as a
specific application in detail. Afterward, metallic core-shell, spheroidal and cylindrical
geometries would be considered in the same vein. At last, we will apply our approach
to a composite particle whose resonance cannot be predicted by means of a theoretical

model.

3.2 Fabry-Perot model

To subject nano-particles to a treatment based on semi-analytical FP approach, we
consider the antennas shown in Fig. 3.1.1. Each of these antennas support propagating
SPP modes traveling along length L of the antenna between the caps. Antennas with

symmetric mirrors respond resonantly whenever the following condition is satisfied:

Y (v)=p (v)L+ ¢ (v) =nm. (3.2.1)

In Eq. (3.2.1) above, 8’ (v) is the real part of the complex mode vector 3 (v) of the
PSPP supported by the antenna, ¢, (v) the reflected phase jump of the PSPP mode
and n denotes the integer order of FP resonance. In the curious limit when the length
L of the resonator becomes negligibly small, we regain the nanoparticle geometry. The
resonance of the antenna, if the model remains valid, is then exclusively determined by
the phase jump ¢, (v) of the PSPP mode supported by the structure. Therefore, the
antenna should respond resonantly whenever ¢, (v) is equal to integer multiple of 7. In
the specific context of symmetric particles and symmetric illumination schemes, there
should be additional requirement of n to be an odd integer in Eq. (3.2.1) because even
values lead to symmetry forbidden modes. As the procedure remains the same for all
the geometries shown in Fig. 3.1.1, we shall demonstrate our approach in detail only
for the first case of sphere |Fig. 3.1.1(a)| before presenting results obtained in the same
manner for other geometries.

Before we formally consider any specific example, it is instructive to clarify that the
antenna approach presented here is demonstrated only to the point of predicting the fre-
quencies of QS resonances. Additional properties of interest such as scattering response,
induced polarization, absorption spectra etc. of the particle will not be considered. Since
this is pretty much the beginning of a new way to predict the scattering response of plas-
monic particles, we will be contented with establishing the fundamental possibility to

correlate the resonances found in similar geometries but seen from different standpoints.
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3 Antenna description of localized plasmonic resonances

3.3 Sphere

We divide our discussion on spheres into a brief recap of the known QS formulation and

the antenna model which we wish to demonstrate as an equivalent alternative.

Quasi-static model

As already discussed at length in Sec. 2.6.2, the scattering response of a sphere much
smaller than the incident wavelength can be described in QS limit to be the response
of an induced electric dipole. For a sphere made up of metal of permittivity e, (v) and
surrounded by a dielectric of permittivity e4 (v), the induced polarizability « () can be

described as

3 Em (V) —ea (V)
em (V) +2e4 (V)

a(v) =4ma (3.3.1)

The resonance of the electric dipole induced inside the sphere is described by the
Frohlich condition [Eq. (2.6.25)] and the associated mode is called LSPP of the metallic
sphere [2]. This is as much as needed to be understood in order to follow the proceedings

of this chapter.

Antenna model

In order to solve the resonance problem of sphere through Eq. (3.2.1), we begin by
finding the guided mode supported by the metallic cylinder surrounded by a dielectric
medium as shown in Fig. 3.1.1(a). The earliest known trace of this problem appears to
be the work of Sommerfeld in which he considered the problem of metallic cylinders of
finite conductivity in microwave regime [110]. In recent years, however, the problem has
received increased attention after it came to be known that in THz regime these cylinders
act as low-dispersion and low-loss waveguides (for instance, see Refs. [111-113]). Here we
shall focus our attention on the results relevant to our discussion on antennas operating
near plasma frequency and formed using these cylinders within quasi-static regime only.

By considering cylindrical symmetry, it is possible to analytically find the modes guided
by the structure. A metallic cylinder of given radius a, in general, is host to a myriad of
guided modes identified according to their azimuthal order [. It has been shown that in
the limit when the radius a becomes sufficiently small compared to the wavelength, all
azimuthal modes for |/| > 2 experience cut-off [114]. On the other hand, the mode with
|l| = 1 azimuthal dependance [Fig. 3.3.1(b)| has its propagation wave number [ (v)
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3 Antenna description of localized plasmonic resonances

approach the free-space propagation number k = 27/X of the surrounding dielectric
medium accompanied by a simultaneous delocalization of the modal fields. Therefore,
the resonance generated by this mode, if at all, will necessarily be delocalized. However,
the characteristic of QS resonance is to localize the fields and not the other way around.
Therefore, this mode has to have negligible effect in driving the resonance response of
sphere in QS limit.

As for the the azimuthally symmetric fundamental TMy mode (I = 0), it undergoes
increased localization caused by the corresponding increase in its propagation wave num-
ber (3, (v) with increasing frequency. Any resonance brought about by this mode should
also be localized, meeting with our expectation of a QS resonance of the sphere. There-
fore, if our resonator model has to correspond with the QS scattering of sphere, the
azimuthally symmetric fundamental TMy mode should determine the resonant response
of the antenna in QS regime.

By a straightforward application of the boundary conditions at the metal-dielectric
interface, the dispersion of the TMy mode can be found to be given by the following
transcendental equation [115]:

Kolpa(v)al I [pm (v)a] _ ea (¥) pm (v) (33.2)
Kilpa(v)a] lo[pm (v)a] — em(v)pa(v)’

where I,, and K, being the modified Bessel functions of first and second kind of order n

and the transverse wave number py, q () defined in metal [y, (v)] and dielectric [gq (V)]

as

P (V) = /B2 () = K (1) €uma (v). (3.3.3)

The distribution of the independent azimuthal component of the magnetic field is given

again in terms of the modified Bessel functions as

11 (pm (¥)p)

Ii(pm(v)a)’ P <a
mo = { BRER 020 33
Ki(pm()a) P

To solve the antenna problem defined in Eq. (3.2.1), we consider a silver cylinder
of radius ¢ = 10nm surrounded by a homogeneous and isotropic dielectric medium.
Metallic dispersion is described by the experimentally measured values [105] while the
dielectric medium is assumed to be dispersion-less without any loss of generality. The
terminal caps of the cylinder are also taken to be hemispheres of the same radius as that

of the cylinder. Therefore, the radius of the corresponding sphere in our case is the same
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Figure 3.3.1: Electric field component parallel to the propagation direction of the fun-
damental TM, (a) and TM; (b) mode of a Ag cylinder in air with a radius
of 10nm at v = 500 THz. Real (c) and imaginary (d) part of the modal
wave number 3 (v) of the fundamental TM, mode for select values of the
permittivity £q4 of the surrounding medium: ¢4 = 1 (solid red), ¢4 = 2.8
(dashed blue), e4 = 5.4 (dotted magenta), eq = 9 (dotted-dash black).

as that of the radius of the cylinder.

Figures 3.3.1(c) and (d) show dispersion of the fundamental TM, mode guided by
the cylinder. The characteristic resonant behavior of the plasmonic mode is easily dis-
cerned in Fig. 3.3.1(c) followed by a back bending of the curve which is characterized by
increased mode damping [Fig. 3.3.1(d)].

Having obtained modal dispersion, we move on to compute the complex modal reflec-
tion coefficient of the fundamental TMy mode at the hemispherical cap. For a metallic
cylinder with flat termination, it is possible to solve the problem analytically by repre-
senting the field scattered in free-space through a superposition of the radiating Bessel
fields in cylindrical basis [115]. In our case, however, the curvature of the hemispherical
cap does not allow any straightforward analytical tool for solving the boundary condi-

tions at the complex interface formed by the cylinder, hemispherical cap and free-space.
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Figure 3.3.2: Schematic sketch of the simulation geometry used for obtaining modal re-
flection coefficient of the mode.

Therefore, we resort to numerically compute the reflection coefficient of the mode.
Figure 3.3.2 schematically sketches the 2D profile of the axially symmetric simulation
scheme employed for obtaining the modal reflection coefficient. By using a commercial
finite element method (FEM) based solver, COMSOL MULTIPHYSICS, we launch the
TMy mode onto the cylinder from z = 0 plane in the Figure The whole geometry is
wrapped around with perfectly matched layers (PMLs) to absorb the back reflected
mode as well as the scattered radiation from the hemispherical termination. Through a
straightforward application of the mode orthogonality relations [Eq. (2.3.1)], we obtain

the expression for the modal reflection coefficient:

f(]oo Ep,O (pa V) [H¢,T (pa Z = 07 V) - H¢>,0 (pa V)] pdlo

- (3.3.5)
15 Epo (psv) Hyo (p,v) pdp

F(v) = —exp -2 () L]

In Eq. (3.3.5) above, E,((p,v) and Hy (p,v) are the radial electric and azimuthal
magnetic field components of the guided mode respectively which is launched at z = 0
plane whereas Hy 1 (p, 2,v) is the total azimuthal magnetic field in the simulation ge-
ometry. A glance at Eq. (3.3.5) reveals that the reflection coefficient r (v) should be
complex because of the complex nature of the field components of the TMy mode at
optical frequencies owing in turn to the complex nature of the permittivity of metal
(Ag) near the plasma frequency. Therefore, the phase ¢, () in Eq. (3.2.1) would not
be negligible and play a significant role in correctly predicting the FP resonances of the

antenna. This is in contrast to antennas in the microwave regime where the electro-
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Figure 3.3.3: Amplitude (a) and unwrapped phase (b) of the modal reflection coefficient
of TMy mode for various values of the permittivity €4 of the surrounding
medium: g4 = 1 (solid red), 4 = 2.8 (dashed blue), e4 = 5.4 (dotted
magenta), ¢q = 9 (dotted-dash black).

magnetic field components of the guided modes to a good approximation are either real
or imaginary, thereby obviating the need to account for the reflection phase jump in
predicting antenna resonances.

Figure 3.3.3 plots the amplitude and phase of the complex reflection coefficient. Since
we are primarily interested in the problem of antenna resonance in the limit of vanishing
length, we consider the phase jump ¢, (v) of the reflection coefficient in Fig. 3.3.3(b)
only. It is seen to rise from small to large values as we move to higher frequencies
which conforms well to the qualitative understanding we had while discussing Eq. (3.3.5)
above. In fact, it continues to rise and even becomes equal and larger than 7. As the
antenna resonates when the round-trip phase is equal to integer multiple of 27, we
compare the resonance frequencies predicted by the antenna model with those suggested
by QS theory [Eq. (3.3.1)] in Fig. 3.3.4 for various values of the permittivity eq of the
surrounding dielectric medium. Evidently, there is a perfect agreement between the
two which substantiates the proposition that localized plasmonic resonances under QS
regime can be understood as FP resonances of the corresponding antenna of negligible
length.

Before we move on to the next section, for completeness sake we take a brief moment to
observe the behavior of reflection amplitude in Fig. 3.3.3(a). It is found to be relatively
larger at smaller frequencies indicating the mirrors to be well-reflecting like metals.
However, at larger frequencies it takes a downward slope even though we would have

otherwise expected the PSPP mode to overlap even more poorly with the free-space
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Figure 3.3.4: Comparison between the resonance frequencies predicted by QS theory
and antenna models as a function of the permittivity 4 of the surround-
ing medium. Solid line describes the QS resonances whereas the antenna
resonance is indicated by circular marks.

modes beyond hemispherical cap (Fig. 3.3.2). We speculate it to be caused by the
increased metallic damping which steadily increases as the plasma limit is approached.

In the following sections, we will perform the foregoing analysis for other geometries
presented in Fig. 3.1.1. Since the methodology is exactly the same, we will keep the
description terse and present results straightforwardly unless a peculiarity of the case

under consideration calls for greater illustration.

3.4 Core-shell

Plasmonic core-shell particles are a straightforward extension of the spherical geometry
in which the sphere made up of metal (dielectric) is coated over with a thin layer of
dielectric (metal). It allows the thickness of the film to be used as a degree of freedom
to tune the resonance of the particle over a wide spectral range [116] which in the
simple case of a sphere is dependent only upon the physical parameters of the metal
and surrounding medium. In the QS limit, this behavior is well-understood in terms of
the hybridization theory which describes the splitting of resonances of the isolated core
and shell spherical particles into bonding and anti-bonding modes. The corresponding

frequencies of the modes are given by [117]:

2

p
Vit = —

4ll a 204+1 4
S (+1)<3> , (3.4.1)
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Figure 3.4.1: Electric field distribution of the longitudinal component of symmetric (a)
and anti-symmetric (b) modes supported by the core-shell waveguide. In-
ner and outer radii are 10 nm and 20 nm respectively whereas the core and
cladding are air and shell is assumed to be Ag at v = 500 THz.

(a)

where 1, denotes the bulk plasma frequency of the electron gas, [ stands for the order
of spherical harmonic that is undergoing hybridization and the inner and outer radii of
the core-shell particle are denoted by a and b respectively. Of the two hybridized modes,
only the lower energy one brightly scatters the light. The higher energy mode has a
dominantly quadrupolar character and thus does not interact strongly under normal
circumstances with the plane wave excitation. Therefore, it is the bright lower energy
mode that we shall be interested in the rest of this section.

From the antenna point of view, the whole problem once again has to be understood
in terms of a core-shell waveguide with hemispherical core-shell termination likewise. As
shown in Fig. 3.1.1(b), we consider a dielectric core of radius a cladded with Ag metallic
film of thickness b — a. The waveguide is terminated similarly into a core-shell cap
whose inner and outer radii are the same as those of the core. Similar to the behavior
of localized resonances in core-shell particles, the modes related to each azimuthal order
m splits into symmetric and anti-symmetric modes, each characterized with respect to
the electric field component parallel to propagation direction. Dispersion of these modes
is determined by a complicated transcendental equation obtained by applying Maxwell
boundary conditions at the material interfaces [118]. Since we will be exclusively working
with core and shell radii {a, b} < A, modes characterized by azimuthal order |m| > 1 can
be ignored which cut-off in this regime [118]. Furthermore, the anti-symmetric mode of
azimuthal order m = 0 is cut-off except near the plasma frequency of metal and certain
ratio of a/b [118]. This leaves us practically with a mono-mode system that sustains

only the symmetric TMy mode. Figures 3.4.1(a) and (b) show the longitudinal electric
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Figure 3.4.2: (a) Reflection phase jump of the symmetric TMy mode guided on the core-
shell waveguide of inner radius ¢ = 10nm and outer radius given by the
b/a ratio. Shell is made up of Ag while the core and cladding are taken to
be air. (b) Comparison between QS resonance denoted by the blue solid
curve with antenna resonances represented by circular marks.

field distribution of symmetric and anti-symmetric modes for m = 0.

To compare the QS and antenna model, we consider a core-shell particle whose core of
fixed radius a = 10 nm and cladding are made up of air while the shell of radius b is made
up of Ag. Figure 3.4.2(a) plots the reflection phase jump ¢, (v) for various values of the
outer and inner radii ratio b/a. The first order antenna resonance is compared with the
QS resonance of the lower energy symmetric mode of Eq. (3.4.1) in Fig. 3.4.2(b) for a
range of ratio b/a. As evident from Fig. 3.4.2(b), the resonance frequency asymptotes
to a limiting value for larger values of b/a whereas for smaller ratios splitting of the
resonance seems to be larger. This happens because the coupling between the modes of
isolated metallic sphere and hole weakens due to decreasing field overlap of the modes
when the shell thickness is increased. Quite remarkably, this feature appears to be
perfectly captured by the reflection phase jump in Fig. 3.4.2(a). For smaller values of
the ratio b/a, it accumulates faster to m causing the cavity resonance to coincide just
around the same frequency as predicted by the QS model. As the value of b/a becomes
larger, we find the reflected phase jump converges to a curve which becomes by and

large independent of the defining b/a ratio.
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Figure 3.5.1: Electric field distribution of the longitudinal component of symmetric (a)
and anti-symmetric (b) modes supported by a Ag elliptical core waveguide
surrounded by air at ¥ = 400 THz. Smaller and larger semi-axes are 15 nm
and 20 nm respectively.

3.5 Ellipsoid

Ellipsoids are direct generalization of the spherical geometry in which all the semi-
axes are identical. For theoretical evaluation, ellipsoids are generally characterized in
terms of prolate and oblate spheroids which are formed by rotating an ellipse around
its major and minor axes respectively. Thus the spheroids have two of the three semi-
axes identical. From a physical point of view, spheroids (or ellipsoids) afford additional
degree of freedom by allowing the possibility to tune their resonance through adjusting
their defining axes [119]. In quasi-static limit, the dipole polarizability of the ellipsoid
is defined as [8]

gq (V) —em (V)
3em (V) + 35 [ea (V) — &m (v)]

where a, b and ¢ are the three semi-axes and S is the geometrical shape-factor. While

a(v) = 4rabe (3.5.1)

the exact expression of the shape factor can take a complicated form and vary according
to the incident polarization from prolate to oblate spheroids [8], it geometrically remains
a function only of the aspect ratio between the two non-identical axes of the spheroid.
This allows the dipole resonance to be adjusted by tailoring the geometrical features of
the particles in a simple yet flexible way.

The FP equivalent of a general ellipsoidal particle is illustrated in Fig. 3.1.1(c). We
consider a nano-wire of elliptical cross-section which is terminated by a semi-ellipsoidal
cap. The semi-axes of the cap on the plane of wire cross-section are identical to those

of the wire whereas the semi-axis perpendicular to the plane of cross-section is allowed
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to be different. Without any loss of generality, the surrounding dielectric medium is
assumed to be air. The spheroids considered are generated by revolving around the
semi-axis a while the semi-axis ¢ (and hence b of the generated spheroid) remain fixed
at 20nm. As to the modes guided on the nanowire, for the semi-axes ratio ¢/a = 1
we retrieve a circular cross-section which has already been discussed in Sec. 3.3. For
all other values, the cross-section is elliptical in shape. Figures 3.5.1(a) and (b) show
the distribution of electric field components parallel to the propagation direction of the
two modes supported on a Ag nanowire surrounded by air. While the mode shown in
Fig. 3.5.1(a) is localized strongly on the metal-air interface, the mode of Fig. 3.5.1(b)
has quite a wide spatial expanse and unlike the former mode its effective mode index is
less than air. Therefore, we conclude that the symmetric mode shown in Fig. 3.5.1(a)
should account for the QS resonance of the spheroid. Figures 3.5.1(c) and (d) plot the
reflection phase jump of the mode for selected values of the ratio ¢/a.

We can finally now compare the resonances predicted according to the antenna model
from Figs. 3.5.2(a) and (b) and the QS description obtained from Eq. (3.5.1). Fig-
ure 3.5.2(c) plots the two resonances together. The quasi-static resonance is represented
in Fig. 3.5.2 through solid blue curve which is the case when the illuminating radiation
is polarized parallel to the a-axis (axis of revolution). For the case when the incident
polarization is perpendicular to the a-axis, quasi-static resonance is plotted in dashed-
red color. Comparison with the antenna resonance for the two cases is shown through
circular and diamond marks respectively. While we observe some deviation between QS
and cavity resonances, we attribute it to numerical noise which arises due to compro-
mise between mesh resolution and computational cost incurred in running a rigorous 3D
FEM simulation. But overall, we find good agreement between the resonance frequencies

predicted by both approaches.

3.6 Cylinder

Having discussed 3D particles, we at last consider metallic cylinder which extends indef-
initely along its cylindrical axis. As the geometry is invariant along cylindrical axis, the
whole problem can be reduced to a formulation on the 2D cross-sectional plane. The
resonance sustained by such a metallic cylinder of permittivity e, (¥) when illuminated
with light propagating in the cross-sectional plane and polarized perpendicular to the

cylindrical axis (i.e. polarized in the plane of propagation) is defined as [8]
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o, [l

Figure 3.5.2: Reflection phase jump of the symmetric mode [Fig. 3.5.1(a)] when the
incident polarization is parallel (a) and perpendicular (b) to the axis of
rotation a [inset of (c)]. Comparison between S and antenna resonance
of spheroids in (c) as the ratio between semi-axes c¢/a. Blue solid line rep-
resents QS resonance when the incident polarization is parallel to a-axis
(inset) while the dashed red line represents the case when it is perpen-
dicular. The corresponding cavity resonances are denoted by circular and
diamond marks for the two respective cases.
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R{em (v)} = —ea(v), (3.6.1)

where g4 (v) is the permittivity of the surrounding medium. In terms of a Fabry-Perot
cavity, the geometry of a cylinder can be mimicked by an insulator-metal-insulator (IMI)
strip having semi-circular terminations [Fig. 3.1.1(d)]. The IMI waveguide of thickness

a exhibits hybridized symmetric and anti-symmetric SPP modes whose dispersion is
defined as [2]

tanh [km ) a} _ _FaW)en() (3.6.2)

for odd symmetry and

tanh {km (v) a} k(W) ea(v)

2 T k(W) em (V)

for even parity. Symmetry of the modes is considered with respect to the component of

(3.6.3)

electric field parallel to propagation direction. Mode propagation wave number [ (v) is

defined in Eq. (3.6.2,3.6.3) through the transverse wave number kg qy (v) as

Bmay () = /B2 (%) = B (%) may (0). (3.6.4)

While writing Egs. (3.6.2) and (3.6.3), the geometry was assumed to be symmetric such
that the dielectric permittivity of both substrate and cladding is €4 (v). Figures 3.6.1(a)
and (b) plot the cross-sectional distribution of the longitudinal component of the electric
field (i.e. parallel to propagation direction) of the anti-symmetric and symmetric modes
respectively.

In order to relate the modes guided on Ag film with the QS response of metallic
cylinder, we note that only one of the two modes guided can be a possible candidate
for producing cavity resonance in Fabry-Perot model. The symmetric mode of the IMI
geometry has the characteristic that it localizes with reducing thickness whereas the
anti-symmetric one delocalizes in the limit of vanishing thickness. As already discussed
in the context of TM; mode sustained by metallic cylinder in Sec. 3.3, the anti-symmetric
mode of IMI strip cannot be responsible for a localized resonance which is the hallmark
of QS response. Therefore, we discern that the symmetric mode should be probed for
comparison with scattering resonance of the cylinder in quasi-static regime.

We perform numerical computations on a Ag strip of thickness a = 20 nm surrounded

by a dielectric medium of constant permittivity 4. This corresponds to a cylinder
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Figure 3.6.1: Electric field component parallel to propagation direction of (a) anti-
symmetric and (b) symmetric modes. Modes have been computed for a
Ag film of thickness a = 20nm at v = 600 THz and surrounded by air.

whose radius is 10 nm. Simulation geometry remains essentially the same as shown in
Fig. (3.3.2) with now a different interpretation of being on a 2D plane. Figure 3.6.2(a)
plots the reflection phase jump of the symmetric mode from the semi-circular termina-
tion for a few select values of the permittivity of the surrounding medium. We note
that for the case of air [solid blue curve in Fig. 3.6.2(a)|, the maximum value of the
phase ¢, (v) of the mode is around 0.957. However, we attribute this to a shift induced
by numerical errors such as discretization, finite cross-section length and the influence
of PML regions on the cross-sectional plane where the mode overlap is evaluated. Fig-
ure 3.6.2 shows the comparison between the antenna resonance of Fig. 3.1.1(d) when its
length is reduced to zero and the localized resonances of the cylinder according to QS
resonance |Eq. (3.6.1)]. Once again, we observe excellent correspondence between the

two resonances substantiating the applicability of FP model for 2D cylinders.

3.7 Composite particle

After demonstrating the applicability of the FP model to localized resonances found
in nano-particles we are now in a position to extend this proposition to a structure
that are not amenable to analytical treatment. This would be potentially useful for
tuning or determining resonances of particles whose shape does not conform to that of
analytically studied geometries either due to fabrication errors or because fine tuning
of their resonance properties is desired. As a specific case, we consider an egg shaped

particle which is made up by conjoining a hemisphere with a semi-ellipsoid. The two
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. (a) (b)

Figure 3.6.2: (a) Reflection phase jump of the symmetric IMI mode for ¢4 = 1 (solid
blue), g4 = 5 (dashed red) and €4 = 9 (dotted-dash green) of the surround-
ing medium. Thickness of the Ag metallic film was taken to be 20nm.
(b) Comparison between QS and antenna resonance of a 2D cylinder as a
function of the permittivity e4 of the surrounding medium. The solid line
denotes quasi-static resonance whereas cavity resonances are marked with
circles.

semi-axes of the semi-ellipsoid are equal to radius of the hemisphere while the third axis
is different so as to produce the egg shape of the composite particle (inset of Fig. 3.7.1).

Such a geometry cannot be analytically treated at least through any of the known,
established methods. The semi-analytical model, nevertheless, of waveguide resonances
in a FP cavity presented and demonstrated in the foregoing sections makes it possible to
predict and tune the resonance of such particles. In terms of Fig. 3.1.1(a), the asymmetric
cavity is formed by having a hemispherical on one end while a semi-ellipsoidal cap on
the other. Half of the reflection phase-jump of the guided TMy mode on the cylinder is
contributed by the hemispherical cap [¢s ()] while the rest comes from the semi-ellipsoid
[¢e (¥)]. The structure resonates when the total round trip phase ¢ (v) = ¢ (V) + ¢e (V)
is equal to an integer multiple of 27 (Fig. 3.7.1).

In order to compare the prediction of our semi-analytical model, we numerically com-
pute the scattering spectra of our composite particle shown in the upper part of Fig. 3.7.1.
For reference, we also include the spectra of a perfect sphere (radius 15 nm) and spheroid
(a = b= 15nm and ¢ = 20nm). The lower part of Fig. 3.7.1 shows the total round-trip
phase whose intersection with the 27 line indicates cavity resonance. Comparing the
lower and upper parts, it is evident that the resonances predicted by FP model and

rigorous scattering computations are in excellent agreement.
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Figure 3.7.1: (a) Normalized scattering spectra (top) and round-trip phase (bottom) of
a sphere, spheroid and composite particle made up by conjoining a semi-
ellipsoid with a hemisphere (inset of the figure at bottom). Radius of the
sphere is 15nm, spheroids semi-axes ¢ = b = 15nm and ¢ = 20nm, while
the composite particle is made up of hemisphere and semi-ellipsoids just de-
scribed. (b) Scattered electric field norm at resonance of the corresponding
sphere, spheroid and composite particles in order from top to bottom.
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3.8 Concluding remarks

To sum up the results of our foregoing discussion, we demonstrated the equivalence
between the localized resonances exhibited by plasmonic nano-particles in QS regime
with the resonances exhibited by a FP antenna of negligible length but with suitable
terminations such that the round-trip phase accumulates only upon reflection from the
mirrors. Much sophisticated structures were also possible however we sufficed to dis-
cuss only those geometries whose physics is understood on analytical grounds to permit
comparison between exact results and semi-analytical model. Therefore, we treated a
core-shell particle, spheroids and infinitely extending cylinders. All of the cases turned
out to be well predictable by our approach within the limits of numerical accuracy. At
the very end, we tested the FP approach to predict the resonance of a composite particle
which was formed by putting together a semi-spheroid and a hemisphere. By means of
rigorous scattering simulations, we were able to validate the prediction of our approach.
This suggests a new way to tailor the resonance of those particles which are otherwise
inaccessible to theoretical methods.

After publication of the results presented in the foregoing [120], the equivalence be-
tween QS and antenna model was further investigated by analyzing the Q-factor of a
sub-wavelength FP cavity [121]. As it turned out, the Q-factor was shown to be equal to
that of a particle in QS limit [Eq. (3.1.1)] which is the same for all particles irrespective
of geometrical shape. This served as yet another proof of the equivalence between the
two perspectives.

Nevertheless, we would like to honestly point out the missing links in our picture which
should be found for the completion of our model. In discussing the antenna resonances
of particles, we always considered the first m-crossing of reflection phase jump ¢, (v) for
comparison with QS limit. However, at times we found there to be multiple crossings of ™
as well as its higher order integer multiples [see Fig.3.3.4 (a), Fig. 3.4.2(a), Figs. 3.5.2(a)
and (b), Fig. 3.6.2(a), Fig. 3.7.1(b)]. In principle, all the odd integer multiple values
of 7 should cause FP resonances in symmetric structures. However, except for the
core-shell geometry which exhibits two hybridized resonances, this contradicts the QS
description of the particles considered in this chapter which are known to support only
one scattering resonance. Even for core-shell particles, the higher energy resonance is
dark whereas we find ¢, (v) of PSPP mode supported by core-shell waveguide to be
achieving 37 value [Fig. 3.4.2(a)| which should be able to induce a bright resonance. As

a possible way to address this discrepancy, we speculate that a complete treatment of
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the FP cavity is required that takes into account absorption at the mirrors, coupling
efficiency of the incoming radiation to the guided PSPP mode and out-coupling to plane
waves in the free-space at terminations. If there is indeed full correspondence between
QS and FP models, it should be able to explain why higher order modes are not found

in the scattering response.
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4 Nonlinear response of cylindrical

antennas

4.1 Introduction

It was established in the previous chapter how the localized resonances sustained by
plasmonic nano-structures in the QS limit can be seen as an epiphenomenon of the
cavity dynamics induced by the excitation of PSPP modes at the terminal edges. In
the present chapter, we will be considering plasmonic cavities with similar terminal
caps from another viewpoint. We wish to investigate the potential of such systems
in enhancing the strength of nonlinear response of the system. The objective of the
previous chapter necessitated us to consider that have a vanishing length such that
the entire phase-accumulation takes place only at the terminal caps. However, now we
will allow ourselves a greater degree of design freedom by considering similar cavities
but with non-vanishing length such that the phase-accumulation incurred during the
propagation of SPP mode also contributes to determining the resonance of antennas. It
is to naturally take advantage of the highly dispersive behavior of the modal reflection
coefficient of the PSPP mode both to physical and geometrical parameters of the system.

Thanks to the sub-wavelength focusing of light by plasmonic antennas, there is an
ever increasing interest in exploring both novel and known design schemes but at the
sub-wavelength scale. Some famous examples include directional control of light by a
nano-optical Yagi-Uda scheme [122], detecting the presence of Hydrogen gas at single
particle level [123], controlling single molecule emission [124], etc. At the same time,
however, the high near field intensities found at the metal-dielectric interface naturally
give rise to the question as to the potential of this phenomenon in enhancing the non-
linear response of the antenna [11]. Unlike the linear response of the system, the nature
and strength of nonlinear interaction depends critically upon the intensity of the elec-
tromagnetic field involved. Therefore, any optical system or illuminating scheme that

provides higher electromagnetic field intensities would naturally be more favorable for
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observing nonlinear electromagnetic phenomena at nanoscale.

Consequently, the high field confinement in plasmonic systems raises the bar for famil-
iar phenomena such as frequency mixing and nonlinear modulation of material index. At
the same time, high near fields also trigger to prominent levels those nonlinear processes
which are at times too weak to be of any practical interest. Some conspicuous examples
of such cases include the generation of third harmonic (TH) due to the nonlinear polar-
ization induced inside metals or even the observation of second harmonic (SH) generation
due to symmetry breaking at metallic surfaces [111,125-128] or even bulk SH generation
from non-centrosymmetric plasmonic structures [129-133]. Therefore, it is possible to
observe significant frequency conversion from plasmonic systems even if they are placed
in vacuum or surrounded by media having vanishingly small nonlinear response. This
naturally caused a great deal of research to separate the contribution originating from
the nonlinear polarization induced inside the dielectric and metallic regions. The former
is referred to as extrinsic [134] whereas the latter is usually understood as the intrinsic
nonlinear response of the nano-optical systems [135-138|.

On a theoretical level, another recent approach for treating the intrinsic nonlinear
response has been to consider the material dispersion of metals beyond the Drude for-
malism by means of semi-classical hydrodynamic models [94,139,140]. In the same vein,
much work has also been done to study plasmonic systems containing dielectric materials
which act as a much stronger source of nonlinear activity [141,142]. The metallic compo-
nents are designed such as to focus large amount of incident power to dielectric regions
which results in huge enhancement of nonlinear response compared to an all-dielectric
setup.

As a general rule, the nonlinear processes involve the interaction of light oscillating at
multiple frequencies depending on the order of nonlinearity and the specific nature of
interaction under consideration. This makes it ideal, if not necessary, to have plasmonic
elements that are resonant to all the frequencies involved. Recent studies attempted to
perceive such nanostructures by employing innovative antenna designs with tunability
at multiple frequencies [83-86]. However, most of these approaches usually choose a
path where a few individual antennas that sustain resonances at selected frequencies are
fused into a single optical antenna. This assures the requirement of having a antenna
that sustains resonances at all frequencies of interest [83,85]. But it is challenging to
achieve a good spatial overlap - necessary for strong nonlinear response - among the
modes at different frequencies which might localize in different spatial domains of the

composite antenna geometry. Moreover, it is easy to realize that the fabrication of
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such structures that consist of multiple elements remains a challenge for current nano-
fabrication. Even though many top-down as well as bottom-up approaches for nano-
fabrication are developed, the precise alignment of the individual elements to form the
actual antenna constitutes an unnecessary complication. Therefore, it is desirable to
have available compact and isolated antennas that can sustain resonances at frequencies
on demand.

In the present chapter, we aim to explore the potential of cylindrical nanowires as an
ideal platform to tailor the nonlinear interaction of light with matter and which meets
both aforementioned requirements. These optical nanowire antennas are superior for
various reasons when compared to many other antennas. First, their basic functionality
is well understood by now in terms of semi-analytical models [59,115|. Second, various
fabrication methods have been proven to be applicable to realize these antennas with
high precision in experimental studies (see for instance Refs. [60,143]).

In the following sections, we will show that by engineering the termination of a cylindri-
cal antenna, we can devise configurations that sustain resonances at multiple frequencies
which are involved in the nonlinear process. This will be followed by numerical estima-
tion of the nonlinear response of these antennas to demonstrate their superiority over
singly-resonant schemes. To this end, we will combine a mix of theoretical and numer-
ical means to explore the opportunities available to tailor the second-order nonlinear
response of nanowire antennas embedded in Lithium Niobate (LiNbOj). Specifically,
we utilize an analytical model that can precisely predict the resonances, use a coupled-
field theory approach to calculate the strength of the nonlinear response, and verify all
our predictions using full-wave simulations that take into account the nonlinear process

correctly.

4.2 Antenna design consideration

As mentioned in the introduction, we will exploit the length of the antenna as an im-
portant degree of freedom along with terminal caps to tune the resonance frequencies
of our antennas. Therefore, the resonance is determined by identifying the geometrical
configurations in which the back and forth propagating guided PSPP mode accumulates
a round-trip phase which is an integral multiple of 27 at resonance frequency. Con-
tributions to this phase accumulation are due to propagation along the nanowire, i.e.,
determined by the dispersion relation, but also by the phase of the complex reflection

coefficient at the termination. While the phase accumulation due to propagation is
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independent of the cap, the reflection phase jump depends in a complex way on both
geometry of the cap as well as the dispersion of PSPP mode. Similarly, while it has been
possible in some special yet practically important cases to analytically calculate the dis-
persion of PSPP mode, the same does not hold true for the modal reflection coefficient
except for the simplest case of flat wire termination [115]. Perhaps for these reasons, the
design and engineering of the antenna terminations with a view to tailor the antenna
resonances has thus far remained an underestimated factor. Therefore, it is only natural
to fill in this gap by taking into account the phase of modal reflection coefficient from
antenna terminations and apply it towards an enhancement of multi-frequency nonlinear

processes as discussed before.

4.3 Linear response

The nonlinear response of the system in case of a non-resonant interaction of light with
matter can be well described within the formalism of perturbative nonlinear optics [87].
Therefore, tuning the linear response of the system is the first step towards predicting
the nonlinear output. A strong linear light matter interaction will also result in strong
nonlinear interaction.

Figure 4.3.1(a) sketches the antenna geometry under consideration. It consists of a
cylindrical nanowire of length L that has a semi-ellipsoidal cap as termination. Two of
the three semi-axes of the cap are identical to the radius of the nanowire whereas the
third semi-axis a [Fig. 4.3.1(a)] is allowed to be different. This serves as an additional
degree of freedom to tailor the response of the antenna. The limiting case of a = 0 would
make it an abrupt termination whereas the other limiting scenario of L = 0 would cause
the antenna to collapse towards an ellipsoidal nano-particle [120]. When illuminated
with a plane wave whose electric field is polarized along the cylinder’s axis [z-axis in
Fig. 4.3.1(a)] and propagating along the z-axis [Fig. 4.3.1(a)|, a PSPP is excited on the
nanowire. It bounces back and forth between the semi-ellipsoidal terminations where
it causes the antenna to sustain eventually Fabry-Perot (FP) resonances at specific
frequencies for a fixed geometry. The requirement to observe antenna resonance at a

frequency v is expressed as [59,109,120]

B ()L + ¢(a,v) = mm, (4.3.1)

where 8'(v) = R{B(v)} is the real part of the propagation constant, ¢, (a, ) the phase of

the modal reflection coefficient r(1), L the length of the cavity, and m an integer denoting
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Figure 4.3.1: (a) Cylindrical nanowire of length L terminated by semi-ellipsoidal caps
on both sides. Two semi-axes of these caps are shared with the radius of
the nanowire whereas the third axis is a free parameter, labeled as a. (b-f)
|Ey| distribution on xy-plane of FP modes of order M when the antenna
is illuminated by an z-polarized plane wave propagating along z-axis. For
exciting modes with even integer M, the exciting wave was inclined with
respect to the z-axis on the xz-plane in order to break the symmetry.
Length of the antenna is 50nm while the cap semi-axis a = 17 nm.
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Figure 4.3.2: Dispersion of the real (a) and imaginary (b) parts of fundamental TM,
mode computed for a cylindrical wire of radius 15 nm embedded in LiNbO3.
(c) Amplitude |r|* and (d) phase ¢,(v) = arg [r(v)] of the reflection coeffi-
cient for three different spheroids as the termination.

the order of FP resonance. It should be pointed out that only symmetric antennas are
considered here, i.e., those where the antenna cap is identical for both terminations.
This means that for normal incidence with respect to z-axis, only resonances associated
with odd integer values of m would be visible. Even integer order resonances would
remain forbidden in this scheme until the illuminating field is inclined to the z-axis on
xz-plane [Fig. 4.3.1(a)| to break the illumination symmetry. Figures 4.3.1(b-f) plot the
|Ey| field distribution of FP resonances of various order m in the xz cross-section plane
of the antenna.

To be able to easily model the system in finite difference time domain (FDTD) sim-
ulations later, we numerically model the system by describing the cylindrical metal-
lic antenna using a Drude fit of Ag [105] which is defined by the plasma frequency
v, = 1.88 x 10° THz and damping v, = 19.3 THz. Radius of the cylinder is chosen to be
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15 nm such that the cross-section remains much smaller than the illuminating wavelength
obviating any need to consider guided modes other than the fundamental TM, [59,120].
The surrounding dielectric medium is assumed to be LiNbO3 whose dispersion is isotrop-
ically defined, for the sake of computational simplicity, through the extraordinary axis
by means of a Sellmeir fit [144]. The anisotropy of the nonlinear x(? tensor, however, is
fully considered and its c-axis is aligned to the z-axis [Fig. 4.3.1(a)] to make the most out
of the strongest ds3 coefficient. Considering the fact that numerical techniques based on
FEM are more suitable to capture geometrical curvature [145], we persist with our choice
of commercially available FEM based electromagnetic solver COMSOL MULTIPHYSICS
to compute all the physical quantities of interest in linear analysis.

Given the strong dispersion of 5 (v) and r(a, v) [Figs. 4.3.2(a-d)| upon both frequency
and, in the case of latter, cap geometry, we attempt to explore the possibility to align FP
resonances of different orders with the frequencies taking part in the nonlinear process.
To this end, we propose to exploit the semi-axis a of the cap as a degree of freedom in
design parameters while keeping the radius of the nanowire constant. This can be desir-
able in circumstances where strong field localization is required since the fundamental
TM, mode shows increasing localization with decreasing wire radius (see the discussion
in Sec. 3.3). As for the specific nonlinear interaction considered, we choose to work with
nonlinear process of degenerate SH generation when the metallic cylinder is embedded
in a dielectric medium possessing x response. More complex scenarios involving three-

or four-wave mixing (cubic media) can be explored along the same lines.

4.4 Tuning the resonances

Having obtained the modal dispersion and reflection phase jump of the TMy mode
propagating on the wire, we are now in a position to predict the spectral position of
various FP resonances that are supported by the antenna. In terms of the antenna length

L, the resonance condition of Eq. (4.3.1) can be expressed for FH and SH frequencies as

mn — ¢p(a, V")
O
S
L, = %f;” (4.4.1)

L,

where ' (I/{F’S}) =R {6 (V{F’S})}, m and n are integers denoting the order of the
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Figure 4.4.1: (a) Pump frequency v at FH and (b) length L for the given cap radius a
where the structure resonates at both FH and SH for FP orders m,n. In-
tersection of dashed-black lines indicates the doubly-resonant configuration
chosen for further computations.

FP resonances at FH (I/F) and SH (VS) frequencies respectively. For an antenna to
be resonant at both FH and SH, we have the condition that L,, = L, for certain
combinations of FP resonance orders m and n.

Figure 4.4.1 displays the result when the semi-axis a is varied from 5nm to 25nm
and the FH frequency from 180 THz to 320 THz. The horizontal scale displays the cap
radius a whereas the vertical scale in Fig. 4.4.1(a) denotes the frequency of illumination
at FH. Figure 4.4.1(b) plots the required antenna length for the structure to be resonant
at that illuminating frequency. Different graph colors identify the combination of FP
resonance orders {m,n} such that a working configuration is obtained by reading the
configuration of the same order in both graphs.

Allowing for different FP orders at FH and SH, we found doubly-resonant configu-
rations for the combination of 1% order at FH with 3'¢ and 4" order at SH, and the
combination of 2°¢ order at FH with 5" order at SH, as indicated in the legend of
Fig. 4.4.1(b). It is apparent that a suitable design that spans the entire frequency spec-
trum is not found for the present geometry. Nevertheless, this is something that will
vary from structure to structure depending upon the exact geometrical configuration
and physical properties of the media surrounding it.

We demonstrate the precise tuning of our multi-resonant structures by means of power
transmission simulation through an array of such antennas. We choose a working config-
uration of FP mode orders {1,3} for the cap radius a = 17nm. This is done so as to be

able to work with bright resonances at both harmonic, i.e. excitable resonances, under
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Figure 4.4.2: Linear transmission through the period array of antennas for (a) cap de-
tuning and (b) length detuning.

normal illumination (parallel to the z-axis [Fig. 4.3.1(a)]). However, it is by no means
a general restriction because other combinations could have been explored as well. This
corresponds to illuminating frequency v = 277 THz and an antenna length L = 50 nm
according to the solid blue curve in Figs. 4.4.1 (a) and (b). Dimension of the periodic
cell is taken to be 200 nm x 200 nm which is large enough to make the coupling between
nearest neighbors negligible. The periodic array is then excited with z-polarized light
according to Fig. 4.3.1(a) to compute the linear response of the system. Figures 4.4.2(a)
and (b) plot the simulation results for cap and length detuning respectively. Evidently,
the structures exhibit 1%'and 3'¢ order resonances at v = 277 THz and its corresponding
SH when the geometrical configuration is precisely tuned to the required cap radius and
antenna length. Therefore, we can safely conclude that the resonances predicted with

the analytical model are indeed supported by the structure at the correct frequencies.

4.5 Nonlinear response

Having found structures that are capable of exhibiting resonances at both the illuminat-
ing FH and its corresponding SH frequencies, we will now attempt to estimate the benefit
of employing such schemes for nonlinear interaction through a semi-analytic formulation.
Therefore, an attempt will not be made to define a rigorous analytical approach to the
problem of nonlinear interaction between normal modes, as we did in Sec. 2.5 for waveg-
uides. Instead, we adopt a rather simplified and non-exact approach that gives us an

estimate of the nonlinear interaction strength but not the quantified output.
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4 Nonlinear response of cylindrical antennas

According to the coupled mode theory employed in resonators that sustain weakly

radiating modes, the nonlinear mode coupling coefficient is expressed as [146|

[[J dre, (r, VS) x? (r =20 U8 VF) . [eo (r ys)r

v =T e (4.5.1)
[If dre, (x,vF) ey (v, vF)[* (J[f dre, (r,v5) |eo (r,v9)]?)?

where e (r, V{F’S}) is the linear eigen mode of resonator and ¢, (r, V{F’S}) is the permit-

tivity of the medium at frequency v{FS}. The corresponding coupled mode equations

describing the evolution of mode envelopes a5} () are written as [146]

il Gt LAC RGO R ESN S
& 2
d dt(t) _ (L27T1/S _ %) a® (t) — vy {a" (1)} + \/TESSS+ GF (4.5.2)

where 7175} is the total cavity life time, 735} the decay time to outgoing wave and s (t)

the amplitude of the incoming pump wave. Superscript {F,S} describes the harmonic
of operation like before.

We take cue from the semi-analytical formalism presented above but modify it to suit
our specific scenario. Computing linear modes of the antennas under consideration at
both FH and SH for a wide range of geometrical parameters is prohibitively expensive
in terms of computational cost. Instead, we consider the total electric field when the
antennas are illuminated with incoming plane wave at FH. Taking total field at SH into
account would actually correspond to parametric interaction in which both harmonics
are pumped. Therefore, we consider the scattered field at SH which is easily obtained by
removing the contribution of incoming plane wave from the total field. At resonance, the
total and scattered fields around the antenna would be nevertheless dominated by the
resonant mode. Otherwise, it would be just a superposition of linear modes as expected
in any realistic illumination scheme. We thus define a nonlinear field coupling or overlap

coefficient as

v = g1 ///dr)(@) (r, —2F: Y, VF) ) [esc (r, VS)]*. (4.5.3)

The field overlap coefficient v defined in Eq. (4.5.3) above has a unit of Watts. As-
suming Kleinman’s symmetry [87] and exploiting the fact that dz3 component of the

nonlinear susceptibility tensor of LINbO3 happens to be the strongest [87], we align the
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Figure 4.5.1: The nonlinear mode overlap over a range of frequencies when cap radius
(a) and length of the antenna (b) are varied. Periodic cell is illuminated
with a pump of power 1 W per unit cell at both FH and SH frequencies.
Please note that |y| is mapped on a logarithmic scale.

optical axis of the nonlinear crystal with the incident polarization [z-axis in Fig. 4.3.1(a)].

This allows us to simplify Eq. (4.5.3) into an approximate form:

yzsoys///drdg,g(r)E )E;SC( %) (4.5.4)

Equation (4.5.4) helps in qualitatively understanding the outcome of Eq. (4.5.3). In
numerical simulations, however, the full anisotropic x® tensor is taken into account.
It can be seen from Eq. (4.5.4) that for there to be strong nonlinear coupling, the
E, s (r, I/S) component of scattered electric field (and of resonant mode) at SH needs to
have symmetric distribution. Anti-symmetric field distribution at SH will prevent any
enhancement of nonlinear response even with a resonance at FH.

By illuminating the periodic array with a plane wave of power 1 W per unit cell at each
harmonic, we scanned for the variation of || in case of cap and length detuning as before.
The results are shown in Fig. 4.5.1. We find approximately twice the order of magnitude
enhancement in |y| when v¥ = 277THz and the cap axis @ = 17nm |Fig. 4.5.1(a)]
or length L = 50nm [Fig. 4.5.1(b)]. Another bright trace is visible when the incident
pump frequency is v ~ 139 THz. This happens because the corresponding SH frequency
coincides with the first order FP resonance of the antenna causing a comparatively weak
enhancement in the strength of nonlinear interaction.

As described before, the nonlinear coupling coefficient v is only to estimate the nonlin-

ear coupling strength in the light of a semi-analytical coupled mode theory. To confirm its
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4 Nonlinear response of cylindrical antennas

prediction, we resort to an in-house code based on rigorous finite-difference time-domain
(FDTD) method [147| to substantiate its predictions. The cartesian grid size was cho-
sen to be 1 nm whereas the metallic and dielectric dispersions were directly incorporated
through the Drude and Sellmeir models described earlier. The instantaneous nonlinear

polarization of the dielectric medium was embedded in the code in the following form:

d33(r)E§(r, t) + d31 (I‘)E; (I‘, t)
PP (r,t) = 2¢ 2d3) (v) E, (v, t) B, (r, t) . (4.5.5)
0

In order to save computational cost, we omitted factors in Eq. (4.5.5) that depend upon
E. (r,t) and the weakest dyy component of x® tensor. Due to symmetry of the geometry,
scattered E, (r,t) and F, (r,t) components are almost equal in strength and share the
same symmetry properties. Therefore, by omitting one we do not lose any essential
information. However, this helps us save a significant amount of computational effort
which is already quite high owing to the size and discretization requirements. In each
case, it should be noted that the nonlinear polarization response would be dominated
by dss(r)E2(r,t) term in Eq. (4.5.5).

[luminating the periodic array with a continuous-wave (CW) pump at v = 277 THz
and carrying 13mW power per unit cell, we computed the power flux in transmission
at SH through a single periodic cell. Figures 4.5.2(a) and (b) show the results of the
same two specific cases of cap and length detuning discussed earlier in Figs. 4.5.1 above.
Although the considerations of numerical stability forced use considerably weaker pump
power than what was used (1 W) to compute 7, an order of magnitude enhancement
is still observed in the generated SH when the geometrical parameters coincide with
the doubly resonant configuration (Fig. 4.5.2). This clearly demonstrates the prediction
made by the nonlinear coupling coefficient ~.

The cases discussed until now consider geometric schemes in which the antenna is either
resonant at both the FH and SH or at none. In order to fully distinguish the advantage
of working with multiply-resonant schemes over the singly-resonant ones, we will now
consider antenna geometries in which only one of the two frequencies induce resonant re-
sponse when illuminated at the same CW frequency v = 277 THz. Figure 4.5.3(a) shows
the geometric configuration for this purpose. The red curve provides the configuration
in which the antenna remains resonant at FH whereas the dashed blue specifies the same
at SH. At the intersection of the two curves we recover the doubly-resonant scheme used

before. Since majority of the antenna designs are made to be resonant at FH, we choose
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Figure 4.5.2: (a) Power transmission flux as computed from nonlinear FDTD simulation.
Periodic cells were illuminated with CW pump of 13mW power at input
frequency v = 277 THz. Part (a) shows the effect of detuning the cap radius
a (L = 50nm) while (b) plots the length L (a = 17nm) being detuned from
their resonant values of @ = 17nm and L = 50 nm, respectively.

to work with the red-curve in which FH is always resonant in order to clearly observe
the relative advantage of reaching the doubly resonant design. Figure 4.5.3(b) plots the
linear transmission spectrum for a few chosen configurations according to Fig. 4.5.3(a)
by modifying the cap and length simultaneously. The FH is found to be always resonant
at v = 277 THz but the third-order FP resonance gets detuned from the corresponding
SH frequency with changing geometrical configurations.

Figure 4.5.3(c) scans the value of |y|. The bright line in Fig. 4.5.3(c) at " = 139 THz
shows no geometrical dependance because the antenna is always resonant at the corre-
sponding SH. But the bright line around ¥ = 277 THz is slanted indicating a prominent
dependance upon the SH resonance of the antenna which keeps changing for different ge-
ometrical configurations. Figure 4.5.3(d) shows the computed SH transmission spectrum
in nonlinear FDTD-simulations whose computational details are the same as described
earlier. The peak for the largest second harmonic signal is reached in Fig. 4.5.3(c) for
a = 18 nm which is close enough to the predicted value of ¢« = 17nm. This minor
deviation can be attributed to disparity between the numerical methods - FEM for the
analytical prediction while the FDTD-method was employed for nonlinear computations.
However, overall we see an excellent agreement and a clear demonstration of the posi-
tive impact doubly resonant antennas can have on enhancing the efficiency of nonlinear

interaction.
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Figure 4.5.3: (a) Antenna configuration at v = 277 THz when FH has FP resonance of
1°¢ and SH of 3" order. (b) Linear transmission spectrum and (c) nonlinear
mode overlap |y| are shown when the antenna is kept resonant at FH
according to (a). Likewise, the transmission spectrum of nonlinear FDTD-
simulations is shown in (d) when the structure is illuminated with a pump
of V¥ = 277 THz.

4.6 Other example: Core-shell antenna

In the foregoing sections we demonstrated the potential of cylindrical metallic antennas
with semi-ellipsoidal caps to act as a doubly-resonant platform for enhancing degenerate
SH generation. In this section, we briefly present, without repeating complete analysis,
a simple extension of the above scheme to present another example of the practical
possibilities that exist in employing this design methodology.

Instead of a bare-metal antenna, we now consider a core-shell geometry in which the
cylindrical dielectric core is layered with a thin metallic shell. The whole geometry
is terminated with semi-ellipsoidal caps which in our case are made up of the same

core-shell structure. In this scheme, we therefore have thickness of the metallic shell as
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Figure 4.6.1: (a) Doubly resonant configurations for FP order m, n showing (a) the pump
frequency vpy and (b) length L for the given cap radius a when thickness of
the shell is 5nm. Parts (c¢) and (d) show the same result for shell thickness
of 10 nm.

another degree of freedom in addition to the semi-axis of the semi-ellipsoidal core that
was considered before. As such, it is the same geometry that was considered earlier in
Fig. 3.1.1(b) except that now we allow length of the antenna to be non-zero. These
geometries have already been considered for the linear tunability of resonant scattering
in particle form (L = 0) [113] and SH generation due to non-centrosymmetric medium
in the core [148|. Therefore, it is of practical interest to consider further possibilities for
materializing their full potential for nonlinear applications.

Figure 3.1.1 sketches the geometrical configuration that support resonances at both FH
and SH by using the method outlined in the foregoing sections. Also included is the FP
order of the modes sustained by these configurations. We only consider shell thicknesses
of 5nm [Figs. 3.1.1(a) and (b)] and 10nm [Figs. 3.1.1(c) and (d)| here although other

values are possible too. However, it adequately establishes the possibility to further
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explore our antenna design methodology for similar structures of practical interest.

4.7 Concluding remarks

In conclusion, we demonstrated the possibility of designing simple yet highly efficient
plasmonic antennas for the purpose of strong nonlinear frequency mixing. By utilizing
the high frequency and geometrical dispersion of the reflection phase jump of the guided
SPP mode at terminal cap, we managed to design FP cavities that exhibited resonant
response at both the frequencies involved in degenerate SH generation. By means of
a semi-analytical approach to the nonlinear interaction, the superiority of multiply-
resonant schemes was predicted over singly-resonant ones. Further characterization of
the predicted nonlinear enhancement was confirmed through rigorous FDTD simulations.
In the end, we also considered a simple extension of this work by considering antennas
made up of a cylindrical dielectric core cladded with thin metallic shell. It was found that
following a similar design methodology conveniently uncovered existence of geometrical
parameters which are highly optimized for nonlinear interaction thanks to the resonances
of various FP orders at both FH and SH frequencies. It should be interesting to see if
experimental methods for fabricating these geometries can cope up with the challenge
of meeting stringent design requirements suggested by our results.

At the end, we note that some results of this chapter have already appeared in our
publication found in Ref. [149]
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waveguides

5.1 Introduction

In this chapter we will be finally considering guided wave phenomenon in its own light.
Like in dielectric integrated optics platform, plasmonic waveguides are seen to be a
potential candidate for routing on-chip communication at a scale much smaller than
the half-wavelength limit [5]. While the linear properties of plasmonic waveguides are
interesting enough for the said reason, they too are viewed with the same kind of oppor-
tunism to observe enhanced nonlinear phenomena as in structures sustaining localized
plasmonic resonances [134, 150-159]. However, most of the times, attention has been
given to 2D waveguides which guide light only in one dimension that is perpendicular to
the propagation direction. This helps in making a large part of the problem, if not whole,
analytically accessible. At the same time, however, it poses the question of correspon-
dence of the results thus obtained to practical devices which are necessarily bounded in
both dimensions transverse to propagation. In the same vein, diffraction spread of the
beam also remains unaccounted in cases when the beam width of the launched mode
is much smaller compared to either of the transverse dimension of waveguide core on
the cross-section plane. Addressing the latter, it was shown with the help of third order
polarization response that the diffractive spread of the propagating plasmonic modes
can be arrested at sufficiently high intensities by means of plasmon-solitons [160-162].
The second order nonlinear response is always much stronger in non-centrosymmetric
media but poses additional overhead of phase mismatch owing to dispersion effects of the
waves interacting at distinct frequencies [87]. To circumvent this problem, quasi-phase-
matching (QPM) by periodically poling the nonlinear dielectric was considered to obtain
steady conversion of energy from the pump at fundamental harmonic (FH) to second
harmonic (SH) in an insulator-metal-insulator (IMI) geometry [163]. Although QPM in

principle can always compensate the phase-mismatch, it remains practically challenging
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to implement it in an actual device and has an additional side-effect of decreasing the
strength of effective nonlinearity by a factor corresponding to the discrete Fourier order

employed to balance the phase-mismatch [87].

Figure 5.1.1: Schematic illustration of the metallic slot waveguides. Thickness and width
are denoted by ¢t and w respectively.

Another possibility for achieving phase matching is to exploit distinct modal dispersion
present in waveguides between disparate modes to obtain steady nonlinear interaction.
In dielectric waveguides, it is a well reported method to achieve phase-matched quadratic
conversion between modes of different orders at FH and SH by optimizing geometrical
parameters of the waveguide [164-167]. However, it comes at the cost of a reduced
mode overlap which is always less when compared to the interaction of modes with
the same order at FH and SH. For plasmonic waveguides, it was recently shown that
the width of metal-insulator-metal (MIM) waveguides can be optimized to phase-match
quadratic interaction between the symmetric mode at FH and anti-symmetric mode at
SH [168]. In yet another report, the same modal phase matching was used to paramet-
rically amplify the plasmonic mode propagating at FH through the TM; photonic mode
at SH by varying the thickness of dielectric layer deposited on the semi-infinite metallic
substrate [169].

As stated earlier, the potential for enhanced nonlinear effects in 3D plasmonic waveg-
uides which guide light in both transverse directions has attracted comparatively less at-
tention. Metallic slot waveguides (Fig. 5.1.1) are one well-known example which were tai-
lored to be an efficient source for producing coherent THz radiation by down-converting
from optical frequencies [170]. These waveguides happen to be one of the most straight-
forward 3D extensions of the 2D MIM waveguides [26]. Whilst retaining high field

confinement, which is the hallmark of MIM waveguides, they also introduce a whole
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new range of plasmonic modes as opposed to the symmetric and anti-symmetric modes
realizable in the simple MIM geometries [26].

It is the objective of this chapter to explore the potential of metallic slot waveguides
for efficient frequency mixing in the presence of quadratic nonlinearity. In particular, we
will consider degenerate SH generation in the presence of a dielectric medium possessing
strong quadratic nonlinear response. But the significance of our results should make a
strong case for further methodologically similar exploration for the enhancement of full
breadth of phenomena possible in three and even four wave mixing processes, the latter
in the context of a cubic nonlinear response. As an example of the application of our
results, we will consider parametric amplification of a weak low-frequency mode with
a strong high-frequency pump mode at SH. Given the short propagation distances of
modes in plasmonic waveguides, this can have a far-reaching implication on the ongoing
drive toward realization of practical plasmonic circuits. With that said, it is instructive
to recall that extending the propagation length to infinity by fully compensating the
metallic damping is never a necessary objective for practical purposes. Extending the
propagation length by twice the original scale can also push the frontiers of plasmonic
devices to practical limits for certain applications.

In the following sections we will present the modes sustained by slot waveguides and
the theoretical framework used in our investigations, followed by results from both SH

generation as well parametric amplification of the mode at FH.

5.2 Modes in slot waveguides

Any exposition of modes in slot waveguides (Fig. 5.1.1) necessarily involves reference to
2D MIM waveguides which are thoroughly treated in standard texts on plasmonics (for
example, see [2]|). Therefore, we will overstep detailed derivations and be content with
delineating essential results and features which are necessary to understand the actual

problem at hand.

MIM Waveguide

MIM waveguides are formed by bringing two metal-dielectric interfaces in close proximity
such that the guided SPP mode supported at each interface strongly couples with the
other. This leads to a splitting of modes into even and odd branches which are hereby

characterized with respect to the symmetry of the longitudinal electric field component.
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The dispersion of mode number 5 (v) is defined through the following transcendental

equations as [2]

N kq(v)a _ km (V) eq (v)
tanh [ 5 1 NPENT (5.2.1)
for odd symmetry and
ka(W)al  ka(v)em (V)
tanh { 5 } = T () ea(0) (5.2.2)

for even parity. In Eqgs. (5.2.1, 5.2.2), dielectric permittivities of metal and dielectric
media are denoted by ey, () and e4 (v) respectively while thickness of the dielectric film

is a. The wave number /3 () is defined in terms of kg qy (v) as

BW) = gy ) = K (V) egmay () (5.2.3)

where ko (v) = 2mv/c is the vacuum wave number with ¢ being velocity of light in the
vacuum. Since the even parity mode is mostly cut-off and is found propagating only
for special geometrical configurations near the bulk plasma frequency, we will ignore it
henceforth. The odd parity mode, however, never cuts-off and is therefore responsible
for most of the field dynamics that dominates the behavior of more complexly shaped
waveguides formed out of MIM geometries. Therefore, it suffices to look at the important
features of odd symmetry mode here. Figure 5.2.1 shows the mode profile as well as the
dispersion of modes for an MIM geometry made up of Ag [105] and a dielectric film of
dispersion-less dielectric permittivity eq4 = 4.84.

In Fig. 5.2.1, we observe the effect of mode coupling between the metal-dielectric SPP
modes for varying thicknesses of the dielectric film. For stronger coupling, i.e. smaller
film thickness, the wave number assumes larger values and so does the concomitant
propagation loss due to larger field penetration into the metal [Fig. 5.2.1(d)]. This
is a necessary trade-off between larger field confinement that is achieved with smaller
film thicknesses and propagation losses. The same goes for the resonance |around v =
720 THz in Fig. 5.2.1(c)] where the propagation loss tends to dominate any other feature
of the system. Therefore, for most problems of practical interest, it benefits more to

operate at frequencies much lower than resonance.
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Figure 5.2.1: Cross-sectional profile of the longitudinal component of electric field (E”)
component of the (a) odd [Eq. (5.2.1)] and (b) even modes [Eq. (5.2.2)]
supported by MIM waveguides having a dielectric film of thickness a. Dis-
persion of the real (c¢) and imaginary (d) parts of the effective mode index
(nesr (v) = B (v) /ko) of odd-parity mode supported by the MIM waveguide
for various values of film thickness.
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Slot waveguide

Slot waveguides are the simplest 3D extension of MIM waveguides by clipping the indefi-
nitely extending dimension of the waveguide to finite lengths (Fig. 5.1.1). Like the MIM
waveguide, a slot waveguide can be essentially understood to support the same even and
odd modes with respect to the longitudinal electric component (F, in Fig. 5.1.1) formed
by the hybridization of modes at metal-dielectric interface. Much like the MIM waveg-
uide, the even mode is visible only near the plasma frequency and that too for special
frequency bands and geometrical configurations. The odd mode, however, remains ac-
cessible and is responsible for the fundamental and higher mode orders depending upon
the thickness and wavelength of light (Fig. 5.2.3). For characterizing the waveguide, we
once again take metal to be Ag, dielectric core to be LiNbOj (optics axis parallel to the
x-axis according to Fig. 5.1.1), substrate to be dispersion-less SiOy (¢, = 1.96) and air
as cladding. Since the problem is not amenable to analytical solution, we resort to FEM
based mode solver COMSOL MULTIPHYSICS to find the modes. Figures 5.2.2(a-c) show
the E, (r) field distribution of the mode for mode orders L = {0, 1,2}. Field symmetry
is further highlighted in Figs. 5.2.2(d-f) along y-axis defined according to Fig. 5.1.1. Fig-
ure 5.2.3 plots the frequency dispersion of the same modes for constant values of width
and thickness of the waveguide (Fig. 5.1.1) over the frequency range of interest. As ex-
pected, we observe the higher order mode (L = 2) to be cut-off (n.g less than maximum
core index which is around 2.2) at lower frequencies. However, the terminology of mode
cut-off in the context of slot waveguides that we are discussing only signifies a loss of
sub-wavelength confinement. They in fact continue to propagate while guided within the
core until the n.g becomes smaller than the refractive index of the surrounding substrate
after which they start leaking power in the substrate as they propagate. But since we
are primarily interested in sub-wavelength guiding feature of slot waveguides, we will
not be taking any practical interest in the modes that are cut-off.

Like the physical parameters, modes guided in the slot waveguides are also sensitive
to geometrical features of the system. Figure 5.2.4 exposes the dependence of modes on
width and thickness of the dielectric slot shown in Fig. 5.1.1(a). Figures 5.2.4(a) and (b)
plot the dependance of mode of order L = 0 for various values of slot width. Expectedly,
the smaller the width, the larger the effective mode index (and loss) owing to tighter
packing of modes between metallic boundaries. Increasing the thickness, however, allows
the mode to asymptotically stabilize to a value corresponding to that of the even mode
in 2D MIM waveguide. Figures 5.2.4(c) and (d) show the modal dependance of various
orders for a fixed width (w = 20nm) and thickness. Like before, we find the modes to
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Figure 5.2.2: Modal distribution of the electric field’s x-component according to the
coordinate frame shown in Fig. 5.1.1 for mode order L = 0 (a), L = 2
(b) and L = 3. Dielectric core (shaded) is made up of LiNbOg3 while the
dielectric substrate is SiOy (e, = 1.96). Parts (d-f) show the profile of E,
along y-axis (Fig. 5.1.1) in the core to highlight symmetry of the modes
shown in (a-c) respectively.
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Figure 5.2.3: Frequency dispersion of various mode order L shown in Figs. 5.2.2(a-c).
(a) shows the real and (b) imaginary part of effective mode index. Width
and thickness have been taken to be 50 nm and 100 nm respectively.

become more or less insensitive to the thickness for sufficiently large values. For smaller
values, however, the imaginary part of mode index [Fig. (5.2.4)(d)| suddenly declines
below the cut-off point indicating lower losses that should be associated for the modes
which are localized primarily in the dielectric core rather than on the metal-dielectric
interface.

The high field confinement, which is the hallmark of MIM waveguides and existence
of high sensitivity to geometrical and physical features, prompts us to investigate the
possibility of tailoring the system in order to optimize the efficiency of degenerate SH
generation. Like before, we have chosen the degenerate SH generation owing to its
simplicity of concept together with the diversity of forms in which it finds applications
such as generation of x(? solitons, parametric amplification, optical diode etc. In the
following, we will briefly reproduce the relevant results derived in detail in Sec. 2.5 that

describe the interaction of guided modes in a quadratic medium.

5.3 Coupled mode theory

Considering the waveguide to be mono-mode at FH and multi-mode at SH, we define

the modes at each harmonic as:

Eo(r,v") = A(2) ef (z,y) exp (15 z) (5.3.1)

for FH and
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Figure 5.2.4: Geometric dispersion of slot waveguides. (a) and (b) show the dispersion
of mode order L = 0 order as a function of slot thickness and width while
(c) and (d) plot the dependence of modes of various order L on thickness

t for a fixed width (w = 20nm). Modes were evaluated in all figures at
telecom wavelength A = 1.55 ym.
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E(r,v%) = By, (2) €}, (z,y) exp (165.2) (5.3.2)

for SH. In Eqgs. (5.3.1) and (5.3.2) above, field distribution of the complex vectorial
mode is denoted by el (x,y) where the subscript m denotes the mode order and
superscripts F and S represent the FH and SH frequencies respectively. The mode order
for FH in Eq. (5.3.1) is already specified since we shall be considering only mono-mode
configuration at FH. Nonlinear interaction and linear propagation loss are accounted
for through the mode envelopes A (z) and B,, (z). If the modes at FH and SH are
normalized to unit power, then the power contained in the mode at any point z along
the propagation path is directly obtained through |A(z)|> and |B,, (z)|>. Linear phase

accumulation along the propagation direction z is described by 6,{nF’S}/ = §R{ &F’S}}

where ﬁ;{nF’S} is the complex mode propagation wave number. With this, we can rewrite

Egs. (2.5.23) from Sec. 2.5 as

A
G _ _grage) + YA ) B () (3.
dBCh;Z(z) = BB (2) + 175,42 (2) exp (—1ABuz) (5.3.3)

where AB,, = %{255 — El} is the nonlinear phase-mismatch, 5r{nF’S}” _ g {BT{nF,S}} s

the linear damping of the mode and %{nF’S} is the mode overlap computed according to

Eq. (2.5.22). In the following section, we will numerically attempt to solve the system
of Egs. (5.3.3). As already discussed in detail in Sec. 2.5, phase-mismatch Ap,, deter-
mines oscillations in energy conversion cycle from one harmonic to another while %{nF’S}

determines the nonlinear coupling strength already defined in Egs. (2.5.22).

5.4 Numerical results

In finding the solution to Egs. (5.3.3), we set out to search for cases that minimize
the phase-mismatch Af,, and maximize the mode coupling coefficient ‘W&F’S}‘. In the

following sub-sections we discuss each of them in order.

81



5 Nonlinear interaction in slot waveguides

5.4.1 Phase-mismatch

The phase-mismatch factor A, in Egs. (5.3.3) can be equivalently written in terms of

effective mode index as:

S
ABy, = py (NS — Mt 0) (5.4.1)
C )

eff, m

{F,S}

offt.m 18 the real

where ¢ is the vacuum velocity of light, v the SH frequency and n
part of effective mode index of order m. For non-oscillating conversion of energy, we
require Af,, to be zero which implies n;%m = ngm. Therefore, we have to search
for configurations in which both FH and SH have the same effective mode indices. In
what follows, we will fix the FH at telecom wavelength (A = 1.55 ym) and optimize
the geometry. Figure 5.4.2 shows the dispersion of modes for a fixed set of geometrical
parameters. At the wavelength of choice and for sufficiently small geometrical dimensions
(w,t <0.5 pum), there is only one fundamental mode (I = 0) having an effective mode
index greater than the core. In this regime, higher order modes (I > 1) are delocalized
out of the core and provide very small overlap with plasmonic modes at SH and at times
are even radiative into the substrate. We will, therefore, restrict our attention to only
fundamental mode [ = 0 at FH. At SH, however, the modes are localized inside the core
in the dimensions under consideration. Therefore, we will consider coupling to modes
up to m < 2 at SH.

Figure 5.4.1 scans An,, = R {ngﬁm — ”Sﬁ,o} over a range of geometrical parameters.
We find that An,, exhibits no sign change for m = 0 order mode at SH indicating a lack
of phase-matched configuration. For m = {1, 2}, however, An,, undergoes sign change
indicating the existence of parameters where the phase matching condition is completely
satisfied for the two modes at FH and SH respectively. Dark areas in Figs. 5.4.1(b)
and (c) correspond to those configurations where the respective modes at SH are cut-
off. Figure 5.4.2 plots the dispersion of phase-matched modes for select geometrical
configurations as a function of FH frequency to provide an elaborate view of how the

effective mode indices of modes at SH meet up with the one at FH.

5.4.2 Mode overlap

While the phase-mismatch factor AfS,, describes the steady nonlinear conversion (or a
lack thereof) from one frequency to another, mode overlap coefficients 7,%F’S} in Eq. (5.3.3)
determine the strength of nonlinear interaction. In lossless systems, striking a phase-

match guarantees complete energy conversion from the incident FH to SH. However, in
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Figure 5.4.1: Phase mismatch An,, between | = 0 mode at FH and SH mode m = 0
(a), m =1 (b) and m = 2 (c). Dashed blue curve indicates the line where
phase matching takes place. Black area denotes regions in the parameter
space where the SH plasmonic mode is cut-off.

plasmonic systems which are dominated by dissipation in the metal, a complete power
conversion from FH to SH even when AfS,, = 0 is never accomplished. This is due to
the fact that energy is depleted faster owing to linear damping which further causes
the nonlinear interaction to grow weaker as the modes propagate. Therefore, in such
lossless systems the mode overlap coefficient ’y{g@F’S} serves to provide at least a qualitative
idea of the coupling strength that determines the rate at which an energy transfer takes
place. It is instructive at this point to simplify Eqgs. (2.5.22) in order to draw qualitative
understanding of the results which we will discuss shortly. We note that the electric field
component normal to metallic boundaries [E, distribution in Figs. 5.2.2(a-c)| should
always be the strongest and that the strongest. Therefore, the strongest ds3 component
of the nonlinear Y tensor of LiNbOj3 [87] should be aligned parallel to it to get maximum

advantage. With this, Eqs. (2.5.22) can be approximated as
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while the subscript of SH in the legend stands for the mode order. Width
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and (b) undergoes cut-off near 210 THz.

It is evident from Egs. (5.4.2) that for there to observe a significant mode overlap,
the x-component of the electric field of the mode at SH necessarily needs to have a
symmetric distribution. The FH mode, however, gets squared and thus can have a
symmetric and anti-symmetric profile. We take nonlinear coefficients of the LiNbOg

tensor to be dyy = 2.76pm/V, d3; = 5.77pm/V and ds3 = —31.8pm/V [171] and
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5 Nonlinear interaction in slot waveguides

compute the mode overlap coefficients of Eq. (2.5.22). Figure 5.4.3 maps the mode
overlap coefficient ‘%i‘ at SH as a function of geometric parameters of the slot with
all the modes normalized to unit power. The blacked out areas once again correspond
to those configurations in which the SH mode is cut-off. Furthermore, in Fig. 5.4.3(b)
we find another dark curve beginning from {¢,w} = {200,700} nm which is due to the
first order mode taking on anti-symmetric profile along the y-axis (Fig. 5.1.1). However,
being away from the phase-matched configuration [Fig. 5.4.1(b)], it does not interest us
for the purpose of nonlinear interaction and therefore we will not explore any further

what could potentially be an interesting anomaly of the mode in its own right.
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Figure 5.4.3: Mode overlap coefficient |v5 | as defined in Eq. (2.5.22) between [ = 0 mode
at FH and SH modes of order m =0 (a), m = 1 (b), and m = 2 (c). Linear
modes have been normalized to unit power. Black area denotes regions in
the parameter space where the SH plasmonic mode is cut-off.

According to Fig. 5.4.3, the highest values of h,ij is obtained for m = 0 while the
lowest for mode order m = 1. This is because of the fact that the latter has an anti-
symmetric profile of the strongest electric field z-component [Figs. 5.1.1(b) and (d)]

which reduces the strength of overlap integral with symmetric [ = 0 mode at FH in
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Eq. (5.4.2). In case when both substrate and cladding are identical (not considered
here), this value will reduce further to negligible limits as the modes assume perfectly
symmetric or anti-symmetric character depending upon the specific polarization of the
field. Before moving on, it should be pointed out that although ’fysl‘ is not equal to "ym,
they share a proportional relationship with one another. As a matter of fact, it can be
shown that in lossless systems and for the specific case of degenerate SH generation
which is under consideration here, 75 is exactly equal to v (see Ref. [101] and further
references therein). Therefore, in a qualitative discussion it suffices to speak in terms of
either one of them.

We sum up the foregoing discussion by plotting in Fig. 5.4.4 phase-matched configu-
rations obtained from Figs. 5.4.1(b) and (c) and the corresponding strength of nonlinear
interaction determined through |3 | in Figs. 5.4.3(b) and (c). It is instructive to remark
here the comparative advantage of working with metallic plasmonic waveguides over di-
electric ones. If we substitute the metallic blocks in Fig. 5.1.1(a) with air and increase
the dielectric core’s width and thickness to 355nm each, the maximum mode overlap
coefficient |75 | turns out to be around 10%54. This is an order of magnitude weaker than
the maximum we can get in phase-matched configuration shown in Fig. 5.4.4(b). In case
of identical modes interaction [Fig. 5.4.3(a)|, the advantage is even higher although it
is not the configuration of choice in most circumstances owing to phase-mismatch as

discussed before.

Figure 5.4.4: (a) Phase-matched configuration (ApS,, =0) of the slot waveguide ex-

{F,S}

tracted from Fig. 5.4.1. (b) Value of nonlinear coupling coefficient |,

at phase-matched points extracted from Fig. 5.4.3.

The knowledge of phase mismatch and mode overlap coefficients finally bring us to a

position where we can quantify the output of the nonlinear interaction by numerically
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solving the coupled mode equations in Eq. (5.3.3). The linear modes at both FH and
SH are normalized to unit power so that absolute squares of the mode envelopes A(z)
and B,,(z) represent the amount of power in the modes at propagation distance z in an
infinite waveguide. Without any loss of generality, the input pump power is taken to be
1 W which then gives A(0) = 1 and B(0) = 0 as the boundary conditions for solving the
coupled differential equations in Eq. (5.3.3). Figure 5.4.5 scans the maximum conversion
efficiency 7, from FH to SH defined in the units of %W !em™! as

. _ max {| B, (2)| *} 100%
" [A0)][ 6 (1VS)

(5.4.3)

where k(%) is the linear propagation length of SH mode in the unit of cm, |B,, (2)|*

the power of the mode at SH and |A (0)|* the square of input pump power. Including
propagation losses in the definition of conversion efficiency provides a better measure of
the overall efficiency of the process given the finite propagation length of the SH modes
involved.

Considering Fig. 5.4.5(a), we find that the larger mode overlap }%S,LH (see Fig. 5.4.3)
ensures that n,, always remains larger when the fundamental mode interacts with m =0
at SH. This is valid even when Af,, goes to zero for m = {1, 2} [Figs. 5.4.5(b) and (c)].
As already discussed at length, this is a direct consequence of the progressive depletion
of the modal power due to metallic losses as the mode propagates forward.

It is instructive to highlight the underlying trade-off possible in working under phase-
matched or higher overlap configuration. Figure 5.4.6 plots the evolution of SH mode
envelope’s amplitude |B,, (z) |* as a function of propagation distance for two different
pairs of width and thickness. The two cases presented in Figs. 5.4.6(a,d) refer to the two
extreme points in Figs. 5.4.3(b) and (c) where phase mismatch Af,, is zero to observe the
maximum comparative advantages achievable through the two simultaneous nonlinear
2

processes. In all the cases shown, the SH power |By(z)|* undergoes a comparatively

larger rise due to stronger mode overlap in the beginning. However, sufficiently far
away from the input at z = 0, |By(2)]* ultimately takes over with its steady rise due
to Afy = 0. This implies that in compact optical circuits designed for operation on
nano-meter scale, the phase mismatch effects might become negligible and the feasibility
will be completely determined by the value of mode overlap "yﬁl} This suggests that
nonlinear mode interaction between modes of same order (i.e. [ = m = 0) would be
more useful. For long scale interaction, however, reducing the phase mismatch would be

essential to observing significant SH conversion. Although the mode overlap is reduced,
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Figure 5.4.5: Nonlinear conversion efficiency 7,, of the SH mode order m =0 (a), m =1

(b) and m = 2 (c). Input pump power of FH is equal to 1 W. Black area
denotes regions in the parameter space where the plasmonic mode is cut-off.

it appears to be favorable to choose modes with different indices which can however be

phase matched exploiting modal dispersion.

5.4.3 Parametric Amplification

Having obtained an understanding about the potential of slot waveguides for nonlinear
interaction in both phase-matched schemes and otherwise, we are now in a position to
suggest applications without necessarily involving any need for artificial schemes such as
periodic poling of the nonlinear lattice or grating vector. Although plenty of applications
can be gleaned up by looking at the existing literature on nonlinear effects in waveguides,
we choose to explore the possibility of enhancing the propagation length of a weak
seed signal at FH through parametric down-conversion of the pump at SH. It can be

safely anticipated that such application could well be the most prominent y®-effect
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Figure 5.4.6: Evolution of SH power with propagation distance. (a) w = 20nm, t =
170nm. (b) w = 172nm, t = 415nm. (¢) w = 20nm, t = 360nm. (d) w
= 200nm, t = 929 nm.

in the near-future given the fact that small propagation lengths of propagating SPPs
is considered to be the biggest stumbling block toward realization of sub-wavelength
optical circuits. Figure 5.4.7 shows the linear propagation length of the modes at phase-
matched configuration, which is defined as the distance up to which the input intensity
decreases by a factor of exp (—1) of its input strength. For the parametric interaction
of modes, both A(z = 0) and B,, (2 = 0) have non-zero amplitudes as input boundary
conditions. For an input seed of 1 mW power at FH (|4 (z = 0> = 107?), we scan the
input pump power of SH at geometrical configurations taken from Fig. 5.4.1 for SH mode
order m = {1,2} and disclose its impact on the propagation length for the seed signal
at FH.

Figure 5.4.8 maps the length enhancement of the seed signal in form of the ratio
between the maximum propagation length sy, in the presence of the pump beam relative
to the linear propagation length rpv as shown in Figs. 5.4.7(a) and (c). We point out
that the propagation length of the seed signal is also a function of the relative input

phase difference between the envelopes A(z = 0) and B,,(z = 0). In Fig. 5.4.8, however,
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Figure 5.4.7: Linear propagation length x of the modes at phase-matched configurations
provided in Fig. 5.4.4(a). For An; = 0, propagation length of FH (a) and
SH (b) are shown. Likewise, for Any = 0, propagation length at FH (c)
and SH (d) are given.

only the maximum achievable propagation length is used while the optimum value of
the input phase difference is not shown. Comparing the results of Fig. 5.4.8 with the
linear propagation length of FH shown in Figs. 5.4.7(a) and (c), we observe that the
length enhancement factor is always larger for smaller values of the thickness of the
waveguide despite the fact that propagation lengths are smaller too. This is due to the
high mode intensities and thus the higher overlap values obtained at those geometrical
configurations. Another noteworthy feature is that while in the case of Fig. 5.4.8(a), o
decreases more or less monotonically with increasing values of thickness, in Fig. 5.4.8(b)
it rises again after an initial pattern of decline. On the actual length scale, this results in
larger values of the propagation length of the FH seed when pumped with mode of order
m = 2 as the linear propagation length tends to be larger at higher values of thickness

[Fig. 5.4.7(c)|. As a specific example from Fig. 5.4.8(b), for a pump of 35 W input power
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Figure 5.4.8: Ratio of the seed signal’s propagation length obtained with a nonlinear
pump (knr,) to the linear propagation (krn) when pumped from the mode
of order m =1 (a) and m = 2 (b) at SH.

we get 0 equal to 1.22 and 1.16 for thickness of 368 nm and 930 nm respectively. This
amounts to a differential increase in propagation length with respect to Fig. 5.4.7(c)
[ko(0)(0 — 1) equal to 1.37 pm and 5.92 pm respectively for the same pair of thickness

as mentioned before.

5.5 Concluding remarks

To conclude the foregoing discussion, we demonstrated the possibility of modal phase-
matching in plasmonic slot waveguides by exploiting geometrical dispersion of the modes.
As expected, maximum conversion efficiency between modes of the same order at both
FH and SH turned out to be superior because of better mode overlap despite the exis-
tence of phase mismatch. However, it was found that this advantage could be traded-off
if the distance to observe nonlinear frequency conversion becomes large. In such cir-
cumstances, phase-matched interaction by exploiting geometric dispersion of disparate
waveguide modes can yield superior results. As for the parametric amplification of a
weak seed signal at FH, the results indicate the possibility to achieve moderate length
enhancements whereas higher enhancement factors appear to lie beyond the realm of
perturbative nonlinear effects.

At the end, we note that results of this chapter have already appeared in our publica-
tion found in Ref. [172]
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The purpose of this thesis was to investigate select problems of practical interest that
could usefully contribute to the drive towards functional plasmonic devices. In this
regard, we began with laying down in Ch. 2 the analytical framework that was to be
employed in understanding specific cases that were to follow in the following chapters.
The three cases included, namely, the localized resonance of plasmonic particles seen
in terms of PSPPs in Ch. 3, enhancing the nonlinear response of cylindrical plasmonic
antennas in Ch. 4, and lastly, efficient SHG in plasmonic slot waveguides in Ch. 5. We
will now summarize in a flow the essential points of each of them as well as present
further research directions possible.

In Ch. 3, we revisited the problem of QS resonance in analytically known plasmonic
particles but this time through a semi-analytical view of FP antennas. We hypothesized
the existence of a unified explanation for the FP resonances found in extended antennas
and LSPP resonances sustained by particles such as spheres when the length of antenna
is reduced to zero. Therefore, for FP model to still predict resonances for antennas of
negligible length, the reflection phase jump at the terminal mirrors (half particles in our
case) had to be 7. It turned out to be indeed the case for spheres, core-shell particles,
spheroids and cylinders, all of which are analytically well-understood in QS approach.
Thereafter, we demonstrated the applicability of FP model on a composite particle
made up of hemisphere and semi-spheroid. Since the structure cannot be understood
analytically, it was interesting to see if we can still predict the scattering resonance by
means of antenna approach. In the end, we suggested factors other than reflection phase
jump to be included into a full-fledged analysis so as to explain possible inconsistencies
between LSPP resonances in QS theory and antenna approach. The latter presently
seem to suggest a larger number of resonances compared to QS approach in the form of
multiple m-crossings of the reflection phase jump.

Beyond QS limit, it shall be interesting to see whether and how successfully the idea
can be extended to describe particle resonances beyond QS regime. This would probably

necessitate investigation of all the modes sustained by the antenna at a given frequency
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to ascertain whether they too experience a m phase jump at the terminations. And if
yes, then how do these resonances compare with their analytical counterparts found in
the corresponding Mie theory description.

Another way of furthering this work would be to relate the analytically known dipole
response of the respective particles to the modal parameters such as wave number,
reflection and absorption coefficients of the guided PSPP mode. If successful, this would
be a tremendous step forward as it might potentially lead to a complete description
of the scattering properties of asymmetric particles much like their analytically known
symmetric counterparts.

Moving over to actual antennas in Ch. 4, we put to use the dispersion of modal re-
flection coefficient in designing cylindrical antennas with semi-spheroidal caps that can
resonate at both FH and SH frequencies involved in a nonlinear process. This was shown
to considerably increase the nonlinear coupling coefficient which was defined in a form
similar to what is found in another nonlinear interaction model for standing wave reso-
nances before [146]. The prediction of enhanced nonlinear interaction was substantiated
later by nonlinear FDTD simulations which demonstrated the superiority of doubly-
resonant antennas over those which resonate only at the incident pump frequency as has
been the standard practice until recently. At the end, we showed a similar approach
works with cylindrical core-shell antennas made up of metallic shells and terminated
with semi-spheroidal core-shall caps.

As a future research direction, we would like to see parametric effects investigated in
our geometries in which the antennas are illuminated at both FH and SH frequencies.
As the energy conversion in this case is sensitive upon the phase difference between the
incident radiation at the two harmonics, it might enable interesting switching elements
which could be turned on and off by means of a control signal through either FH or SH.
Another plausible direction would be to go beyond SHG and consider full breadth of
processes possible in quadratic and even cubic nonlinear interactions.

In Ch. 5, at last, we considered the problem of nonlinear SHG in infinitely extending
plasmonic waveguides. Similar to Ch. 4, the already high nonlinear conversion efficiency
due to high field intensities in sub-wavelength plasmonic waveguides could be further
enhanced if the so-called momentum or phase mismatch is compensated between the
modes involved in nonlinear conversion process. In this regards, we opted to work with
metallic slot waveguides. By manipulating the geometrical parameters of the nonlinear
dielectric core, we showed the possibility of finding configurations in which the mo-

mentum mismatch disappears for certain combination of modes which are sustained by
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the waveguides and taking part in degenerate SHG. Since modes of different orders are
required in this scheme, we highlighted the fact in our discussion that the utility of
employing this method would mostly depend upon the propagation distances at which
higher conversion efficiencies are desired. For comparatively smaller propagation dis-
tances, we can achieve better conversion efficiency between modes of same order at both
FH and SH without compensating phase-mismatch. At last, the existence of phase-
matched schemes prompted us to consider the problem of compensating propagation
losses which are usually considered to be the most prominent stumbling block in the
deployment of plasmonic waveguides in optical devices of practical interest.

A straightforward extension of this work would be to improve the geometrical aspect
ratio by suitably engineering the media used for substrate and perhaps even cladding.
This would make the whole idea more amenable to implementation in practical schemes
where a 1:1 aspect ratio is usually desired between the width and thickness of structures.
With this we can further utilize the same method but extended out to include full range
of frequencies participating in three- or even four-wave mixing.

The problem of compensating propagation losses also deserve further attention. In
a recent study appearing after the publication of results presented in Ch. 5 [172], a
polymeric material was used as the nonlinear core in the same geometry as considered
here which was able to achieve much larger amplification at significantly lower pump
power levels [173]|. This provides a more optimistic outlook at the practical utility of the
scheme considered here. Therefore, we believe there to be further possibility of exploring
available polymeric media which could provide the required degree of loss compensation

with minimum requirement on the input pump power.
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Zusammenfassung

Ziel dieser Arbeit war es ausgewdhlte Strukturen von praktischer Relevanz zu unter-
suchen, die einen entscheidenden Beitrag zu funktionalen, plasmonischen Bauelementen
zu leisten in der Lage sind. In diesem Sinne wurde in Kapitel 2 der analytische Rahmen
dargelegt, auf dessen Basis die folgenden Kapitel aufgebaut werden sollten. Das Augen-
merk wurde im Folgenden auf drei Spezialfille gerichtet. Als Erstes wurde in Kapitel 3
die lokalisierte Plasmonenresonanz, welche in plasmonischen Partikeln beobachtet wer-
den kann, aus dem Blickwinkel der propagierenden Oberflichenplasmonenpolaritonen
betrachtet. In Kapitel 4 wurde als Zweites die Erhohung der nichtlinearen Antwort zylin-
drischer, plasmonischer Antennen erortert. Schlieklich wurde in Kapitel 5 die effiziente
Erzeugung der zweiten Harmonischen (SHG) in plasmonischen Schlitzhohlleitern behan-
delt. Im Folgenden werden nun die wichtigsten Punkte dieser Kapitel zusammengefasst.
In Kapitel 3 wurde das Problem der quasistatischen Resonanz in plasmonischen Par-
tikeln aufgegriffen, die eine analytische Beschreibung zulassen. Diesmal hingegen mit
dem semi-analytischen Ansatz der Fabry-Pérot (FP) Antenne. Die Existenz einer um-
fassenden Theorie zur Erklarung sowohl der FP Resonanzen in ausgedehnten Antennen
als auch der auftretenden lokalisierten Oberflaichenplasmonenpolaritonen-Resonanzen
(LSPP) in Partikeln wie Kugeln, wenn die Lénge der ausgedehnten Antenne gegen Null
strebt, wurde vermutet. Damit der FP Ansatz die Resonanzen in Antennen vernach-
lassigbarer Lange korrekt beschreibt, muss der Phasensprung an den Endspiegeln, Hal-
bkugeln im hier betrachteten Fall, = betragen. Es stellte sich heraus, dass fiir Kugeln,
Kugel-Schalen-Systeme, Sphéaroide und Zylinder, welche allesamt im quasistatischen
Ansatz analytisch beschreibbar sind, dies in der Tat der Fall ist. Sodann wurde gezeigt,
dass das Anwenden des FP Ansatzes auf Kompositpartikel, welche aus einer Halbkugel
und einem Halbsphéroiden bestehen, ebenfalls zu korrekten Resultaten fiithrt. Nebst dem
Phasensprung bei der Reflexion wurden weitere Faktoren vorgeschlagen, welche in die
Theorie einzuflieen haben, um mogliche Unstimmigkeiten in der Form von mehrfachen
n-Durchgéingen im Reflexionsphasensprung zwischen den LSPP Resonanzen im Quasis-

tatischen und dem Antennenansatz auszuraumen.



Zusammenfassung

Des Weiteren stellt sich die Frage, ob und falls ja, wie erfolgreich die Beschreibung aus-
geweitet werden kann, um auch jenseits des quasistatischen Limits Partikelresonanzen
korrekt vorauszusagen. Vermutlich wird es die Notwendigkeit nach sich ziehen samtliche
in der Antenne auftretenden Moden bei einer bestimmten Frequenz zu untersuchen,
um sicherzustellen, dass diese Moden einen Phasensprung von n an den Enden erlei-
den. Sollte das der Fall sein, taucht fast unweigerlich die Frage auf, ob diese Partikel-
resonanzen einen Vergleich zu mit der Mie-Theorie gefundenen analytischen Losungen
erlauben.

In Kapitel 4 wurden alsdann zylindrische Antennen mit semi-sphéroidalen Enden
betrachtet. Diese Antennen sollten sowohl bei der an einem nicht linearen Prozess
beteiligten Fundamentalfrequenz als auch bei der zweiten harmonischen Frequenz eine
Resonanz besitzen. Hierzu wurde die Dispersion des modalen Reflexionskoeffizienten
verwendet. Der nicht lineare Kopplungskoeffizient lief sich damit erheblich steigern.
Die Definition dieses nicht linearen Kopplungskoeffizienten wurde dabei in &hnlicher
Weise vorgenommen, wie in nicht linearen Wechselwirkungmodellen fiir Resonanzen ste-
hender Wellen [146]. Die vorhergesagte Steigerung der nicht linearen Wechselwirkung
wurde numerisch untermauert unter Verwendung nicht linearer FDTD-Simulationen.
Die Simulationen bestétigten die Uberlegenheit doppelt resonanter Antennen iiber jene
Antennen, welche ausschliefslich bei der Pumpfrequenz eine Resonanz besitzen.

Kapitel 5 behandelte die nicht lineare SHG in unendlich ausgedehnten, plasmonischen
Wellenleitern. Genauso wie in Kapitel 4 konnte auch hier die nicht lineare Konver-
sionseflizienz gesteigert werden. Dies allerdings nur unter der Voraussetzung, dass der
Impuls- oder Phasenmismatch zwischen den bei der nicht linearen Konversion beteiligten
Moden kompensiert werden kann. Im Hinblick darauf fiel die Wahl auf plasmonische
Schlitzhohlleiter. Indem die geometrischen Parameter des nicht linearen, dielektrischen
Kerns variiert wurden, liefs sich zeigen, dass bei geeigneten Ausdehnungen des Kerns
fiir bestimmte Kombinationen von erlaubten Moden des Wellenleiters, die auch bei der
entarteten SHG beteiligt sind, der Impulsmismatch verschwindet. Abschliefend wurden
phasenangepasste Modelle betrachtet, um Propagationsverluste zu kompensieren. Nach
giangiger Meinung stellen diese Propagationsverluste die hochste Hiirde dar auf dem Weg

zu plasmonischen Wellenleitern in optischen Systemen.
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