
Technische Universität Ilmenau
Fakultät für Mathematik und Naturwissenschaften
Arbeitsgruppe Mathematische Methoden des
Operations Research

Efficient numerical solution of chance constrained

optimization problems with engineering applications

Dissertation zur Erlangung des akademischen Grades Dr. rer. nat.

Michael Klöppel

betreut von
Prof. Dr. rer. nat. habil. Armin Hoffmann

Dresden, 30.05.2014

urn:nbn:de:gbv:ilm1-2014000087

i

Zusammenfassung

In der Praxis werden viele Prozesse durch Unsicherheiten beeinflusst. Die Auswirkungen
dieser Unsicherheiten können dabei beträchtlich sein. Es ist daher sinnvoll diese Einflüsse
bei der Prozessoptimierung zu betrachten. Ein Ansatz dazu ist die Nutzung der wahrschein-
lichkeitsrestringierten Optimierung. Diese erfordert die Einhaltung der Nebenbedingungen nur
mit einer gewissen Wahrscheinlichkeit und erlaubt damit einen Kompromiss zwischen Profit
und Zuverlässigkeit.

In Abhängigkeit des unterliegenden Prozesses sind mehrere Ansätze zur Umwandlung der
Wahrscheinlichkeitsrestriktionen in deterministische Restriktionen möglich. Die meisten dieser
Ansätze basieren auf der Berechnung hochdimensionaler Integrale. In dieser Arbeit werden
entsprechende Methoden zur Berechnung solcher Integrale vorgestellt. Hauptaugenmerk liegt
dabei immer auf einer möglichst effizienten numerischen Implementation. Hauptbestandteil
der Arbeit ist dabei die Beschreibung von so genannten analytischen Approximationen, welche
effizient für eine Vielzahl von Anwendungen eingesetzt werden können. Für diese Verfahren
werden Methoden zur Berechnung der Gradienten entwickelt. Eine weitere Verringerung der
Rechenzeit wird durch die effiziente Approximierung der unterliegenden Modellgleichungen er-
reicht.

In Fallstudien aus dem Ingenieurbereich werden die analytischen Approximationen mit an-
deren Ansätzen verglichen. Dabei stellt sich heraus, dass diese Methoden als genereller Ansatz
benutzt werden können, auch wenn andere Methoden zu leicht besseren Ergebnissen führen.
Als größere Fallstudie wird eine Problem aus dem Bereich des optimalen Lastflusses gelöst.
Hier zeigt sich, dass die vorgeschlagenen Ansätze bessere Ergebnisse liefern als die weithin be-
nutzte Approximation mit normalverteilten Zufallsgrößen. Außerdem kann durch den Einsatz
effizienter Methoden selbst dieses größere Beispiel in vernünftiger Rechenzeit gelöst werden.

Abstract

Many practical processes are influenced by uncertainties, which might have a large impact.
Therefore, these uncertainties should be considered when optimizing such process. One ap-
proach of incorporating uncertain influences is the usage of chance constrained optimization.
This approach requires that the constraints are only held with a certain probability level,
thereby allowing a compromised decision between reliability and profitability.

Depending on the underlying process, several approaches to transform the chance constraints
into deterministic constraints exist. Most of these approaches are based on high-dimensional
integrals. In this work, corresponding methods for the evaluation of such integrals will be
introduced. In doing so, the focus is always on efficient numerical implementations. An essential
part of this thesis is the characterization of so called analytical approximations, which can be

ii

efficiently used for a large class of applications. For these approaches, methods to evaluate
gradients are described. A further reduction of the computation time can be achieved through
an efficient approximation of the underlying model equations.

In the case studies, the analytical approximations are compared with several other ap-
proaches. One result is that analytical approximations can act as general purpose approaches,
although other methods lead to slightly better optimization results. The largest case study
deals with a problem from the area of optimal power flow. Here, it can be shown that the re-
sults obtained by the proposed approach is better than the results obtained through the usage
of the widely employed Gaussian approximation. Furthermore, by using efficient methods even
larger scale case studies can be solved in reasonable computation time.

iii

Nomenclature

det(A) the determinant of a matrix A ∈ Rn×n

∂F
∂y

, Fy partial derivative of F w.r.t. y

R, R+, R++ set of real numbers, R+ = {x ∈ R | x ≥ 0}, R++ = {x ∈ R | x > 0}

N set of natural numbers

clA closure of a set A ⊂ Rn

Ck(A,Rm) the set of k-times continuously differentiable functions f : A→ Rm, k ∈ N ∪ {∞},
A ⊆ Rn an open set

E [·] expectation induced by the corresponding uncertain variables

In = diag {1, . . . , 1} ∈ Rn×n, or I if the dimension is clear from the context

L2 [−1, 1]d set of all square-integrable functions on the hypercube [−1, 1]d, d ≥ 1

Pr {·} probability measure induced by the corresponding uncertain variables

V ar [·] variance induced by the corresponding uncertain variables

List of acronyms

AA Analytical Approximation
AFA AFine Arithmetic
ANN Artificial Neural Network
CC Clenshaw-Curtis
CCOPF Chance Constrained Optimal Power Flow
CCOPT Chance Constrained OPTimization
cdf cumulative distribution function

iv

DS Distribution System
IA Interval Arithmetic
MPC Model Predictive Control
NLP NonLinear Programming
MDO Multidisciplinary Design Optimization
OPF Optimal Power Flow
pdf probability density function
(Q)MC (Quasi-)Monte-Carlo
RBDO Reliability Based Design Optimization
SAA Sample Average Approximation

v

Acknowledgments

I would like to thank the Carl-Zeiss-Stiftung for the financial support, my colleagues in the
department of Simulation and Optimal Processes as well as in the Institute of Mathematics
for their helpful suggestions and fruitful discussions, and, last but not least, my family and
friends for their moral support.
The layout of this thesis is based on BergerStyle 2.0 by Thomas Berger.

Contents vii

Contents

1 Introduction 1
1.1 Related approaches . 3

1.1.1 Robust optimization . 3
1.1.2 Recourse stochastic programming 3

1.2 Contributions of the author . 4

2 Prerequisites 5
2.1 Implicit function theorems . 5
2.2 Partition of the unity . 6
2.3 Interval and affine arithmetic . 7

2.3.1 Interval arithmetic . 8
2.3.2 Affine arithmetic . 9

2.4 Probability distributions . 9
2.4.1 Gaussian distribution . 9
2.4.2 Beta distribution . 10

3 Chance Constrained Optimization 13
3.1 Classification of Chance Constrained OPTimization (CCOPT) prob-

lems . 14
3.1.1 Type of model equations . 15
3.1.2 Linearity . 15
3.1.3 Temporal behavior and distribution of the uncertain variables 15

3.2 Components of solution approaches 16

4 Evaluation of Chance Constraints 19
4.1 Direct computation . 19
4.2 Linearization . 20

4.2.1 Implementation . 21
4.3 Projection approaches . 21
4.4 Analytical approximations . 24

4.4.1 Some details on an analytic approximation approach pro-
posed by Nemirovski and Shapiro 28

4.4.2 A novel analytical approximation approach 30
4.4.3 Implementation . 41

5 Numerical Integration 45
5.1 Univariate integration (quadrature) 45

5.1.1 Newton-Cotes quadrature 46

5.1.2 Clenshaw-Curtis quadrature 48
5.1.3 Gauß quadrature . 49
5.1.4 Kronrod-Patterson quadrature 51
5.1.5 Some remarks on univariate quadrature in the context of

CCOPT . 55
5.2 Multivariate integration (cubature) 56

5.2.1 Full grids . 57
5.2.2 Sparse Grids . 58

5.3 (Quasi-)Monte-Carlo cubature . 60
5.4 Comparison of the different methods 61

5.4.1 Test Results . 61

6 Solution of Model Equations 65
6.1 Newton’s method . 65
6.2 Approximation approaches . 67

6.2.1 Artificial Neural Networks 68
6.2.2 (Generalized) Fourier series 70

7 Applications and Numerical Experiments 73
7.1 Software and implementation . 73

7.1.1 Parallelization . 73
7.1.2 Implementation . 74

7.2 Numerical experiments . 74
7.2.1 Cattle feed problem . 74
7.2.2 Portfolio optimization problem 76
7.2.3 Multidisciplinary design optimization: Maximum distance

problem . 76
7.2.4 Multidisciplinary design optimization: Design of a short col-

umn . 77
7.2.5 Chemical Process Engineering under Uncertainty 78
7.2.6 Summary . 86

7.3 Chance constrained optimal power flow 88
7.3.1 OPF under non-Gaussian Uncertainties 89
7.3.2 A Case study . 90

8 Conclusions and Future Work 95
8.1 Future work . 95

8.1.1 Theory . 95
8.1.2 Applications . 96

References 97

Appendix 105

1

1 Introduction

Uncertainties are an inherent property of nearly all practical processes, in engi-
neering as well as in finance. They have a considerable impact on the process in
many situations. Therefore, optimization of such processes must be considered
under these uncertainties. Several approaches have been proposed to carry out
this task. These include (approximated) robust counterparts [10,23], approximate
polyhedral dynamic programming [11], nominal solutions [82], measurement-based
optimization [81], extended Kalman filter based nonlinear model predictive control
approaches [61], worst-case and distributional robustness analysis [62,63], recourse
programming [69] and chance constrained optimization [16, 17]. In this thesis the
focus is on the CCOPT approach.

The main idea of CCOPT is to require the satisfaction of process restrictions
with a predefined probability level. An advantage of CCOPT is that a relationship
between the optimality, in the sense of achieving an optimal objective function
value, and the reliability, in the sense of satisfying process restrictions, can be
obtained. Based on this relationship a compromised decision which balances the
profitability and reliability can be made.

The last two decades have shown a rising interest in the numerical solution of
CCOPT problems. This is partly due to the increased capability of computer hard-
ware as well as software and the availability of efficient computational approaches
to large-scale deterministic optimization problems. Recently the demand for high
reliability, fault tolerance and risk minimization in structure design [73, 74] and
financial risk metrics [70] has led to wider areas of applications of CCOPT.

There exist several available approaches to the solution of CCOPT problems.
Until recently, most of the models considered were linear. Analytical solutions
can be obtained for linear systems with single chance constraints [78]. A linear
CCOPT problem with a joint chance constraint is inherently nonlinear and the
probability evaluation can be made by the inclusion-exclusion method proposed
by Szantai and Prekopa [69]. Based on this method chance constrained model
predictive control was studied [41, 56]. Cannon et al. [14] analyzed a chance con-
strained control approach for linear time-dependent systems with certain quadratic
objective functions.

The solution of nonlinear CCOPT problems is usually carried out in a NonLinear
Programming (NLP) framework. To do this, the values and gradients of the ob-
jective function and probability constraints need to be computed. For nonlinear
systems a direct evaluation of probabilities of holding output restrictions is not
promising, since the probability distribution of outputs can hardly be explicitly
described due to the propagation through nonlinear model equations. Monte-Carlo
sampling was used for computing average sums of function values to approximate

2 1 Introduction

chance constraints [13, 40]. Despite the fact that this approach is applicable irre-
spective of the type of the distribution function of uncertain variables, it requires a
very large sample size to yield accurate estimations for the probability values. Im-
portance sampling may provide some improvements over Monte-Carlo sampling.
For high dimensional systems, however, it is well-known that sampling methods
are not efficient for evaluating gradient values.

Based on a monotonic relation between the constrained output and an uncer-
tain input, a projection approach was proposed by Wendt et al. [89] to evaluate
the probability of the output constraint satisfaction in the space of the uncertain
inputs. Collocation on finite elements (a so called full-grid method) was used
for the numerical multivariate integration. This method was further studied by
Arellano-Garcia and Wozny [6] for monotonicity analysis and Flemming et al. [27]
for optimization of closed-loop systems under uncertainty as well as Xie et al. [91]
for nonlinear model predictive control. The back-mapping approach needs inten-
sive computation due to its demand for repeatedly solving the nonlinear model
equations at the grid points. For CCOPT of large-scale systems, these full grid
integrations will be prohibitive, in particular when an online implementation is
needed.

Recently, Nemirovski and Shapiro [64] and Geletu et al. [34] proposed the usage
of so called analytical approximations to extend the solution of CCOPT problems
to instances, where a monotonic relation cannot be found or simply does not
exist. Whereas the approach of Nemirovski and Shapiro [64] pertains convexity
properties of the constraints, the approach of Geletu et al. [34] generally results
in much tighter approximations. Similar to the projection approach, analytical
approximations require the evaluation of high dimensional integrals, and again the
usage of full grid integration will be prohibitive.

As a consequence, one of the main challenges in the efficient solution of large-
scale nonlinear CCOPT problems is finding adequate high dimensional integration
rules. High dimensional integration approaches can be generally constructed in
two different ways.

On the one hand, there are methods based on one-dimensional underlying rules,
namely full grid and sparse grid methods. Full grid methods are either a tensor-
product of one-dimensional quadrature rules or recursive dimension-wise integra-
tion techniques. Such techniques are known to be ineffective for integrals of high
dimensions [60]. In contrast, sparse-grid approaches, based on fully-symmetric
integration formulas, need very few integration nodes [37]. They are found to pro-
vide an efficient evaluation of high dimensional integrations by reducing compu-
tation time significantly. Sparse-grids were first proposed by Smolyak in 1963 [80]
and have been recently applied to many fields of numerical computation such
as stochastic partial differential equations [49, 65], micro-electromechanical sys-
tems [3], data mining [30] as well as quantum mechanics [92].

On the other hand, sampling approaches, i.e., (Quasi-)Monte-Carlo ((Q)MC)
methods [12,54], are widely employed for the evaluation of high dimensional inte-
grals. Their main advantage is their wide field of application, since corresponding
integration rules can be constructed for a large class of underlying weight functions,
and the good convergence in the presence of discontinuities.

From the above it is clear that the solution of CCOPT problems is computation-

1.1 Related approaches 3

ally very demanding, especially in the presence of a higher number of uncertainties.
Therefore, the aim of this thesis is to investigate efficient numerical approaches to
the solution of such problems. Several methods for treating chance constraints
will be introduced and the construction of multivariate integration rules will be
discussed. Moreover, the usage of approximation methods can further reduce the
computational burden.

The remainder of this thesis is organized as follows. Chapter 2 contains the basic
mathematical notions. Chapter 3 introduces the chance constraint optimization
problem and gives a basic classification. Chapter 4 presents methods of trans-
forming the probabilistic constraints in deterministic ones. Chapter 5 discusses
integration methods in connection with CCOPT. Chapter 6 mainly introduces
Newton’s method and presents a new idea involving approximation methods. In
Chapter 7 several smaller numerical examples and one larger case study from the
area of energy network optimization are carried out. A conclusion and an outlook
to further work can be found in Chapter 8.

1.1 Related approaches

Here, we will shortly review two additional approaches to optimization under un-
certainty, which can be applied in settings slightly different from that of CCOPT.

1.1.1 Robust optimization

Robust optimization [9] deals with the case that no distribution of the uncertain-
ties is known. Instead, uncertainties are contained inside a known compact set.
Formally, this leads to the following problem formulation

min
u∈U

f(u)

s.t. g(u, ξ) ≤ 0, ∀ξ ∈ Ω,

where f : Rm → R, g : Rm × Rp → Rl, U ⊂ Rm, and Ω ⊂ Rp. The difficulty here
is that the constraints have to be fulfilled for all realization ξ ∈ Ω, leading to a
semi-infinite optimization problem.

1.1.2 Recourse stochastic programming

Recourse programming [69] can be applied under circumstances similar to that of
CCOPT, but requires a certain structure of the optimization problem. Here, we
consider only the standard case of two stage optimization. One possible problem
formulation is

min
u∈U

f(u) + E [Q(u, ξ)]

s.t. g(u) ≤ 0

Q(u, ξ) = min
t∈T

q(t, u, ξ)

s.t. h(t, u, ξ) ≤ 0,

4 1 Introduction

where f , ξ, and U are like above, g : Rm → Rl are the constraints of the first stage,
T ⊂ Rm2 , Q : Rm × Rp → R is the optimal solution of the second optimization
problem, q : Rm2×Rm×Rp → R is the objective function of the second problem and
h : Rm2 × Rm × Rp → Rl2 are the constraints of the second stage. The operator
E [·] is the expectation with regard to the underlying uncertainty ξ. The idea
behind the recourse approach is to take a deterministic decision in the first stage
and than have a look how the realizations of the uncertainties affect this outcome
(second stage). This becomes clear from the well known Newsboy problem [69],
p. 252. A newsboy can order an amount u ∈ N news papers in the evening,
which he is going to sell on the next day. If he orders to much newspapers, he
will incur a loss for every newspaper not sold. On the other hand, if he orders to
little, he decreases his profit, since more newspapers could have been sold. Given
a probability distribution for the amounts of papers sold, recourse programming
can now be used to find an optimal solution.

1.2 Contributions of the author

Most of the novel results presented in this thesis were derived by a research group,
consisting of Prof. Pu Li, Prof. Armin Hoffmann, Dr. Abebe Geletu, Aouss
Gabash, Hui Zhang and the author. The purpose of this section is to clarify the
contributions of the author within the research group.

Projection approaches, Chapter 4: The author co-authored a paper [33] on the
projection approach. The main contribution was the implementation of the
case study.

Analytic approximation, Chapter 4: The author co-authored a paper [34] intro-
ducing the analytical approximation approach. The contributions are the
evaluation of gradients in the setting of analytical approximations and the
implementation of case studies. Moreover, in this thesis the proofs contained
in [34] are fleshed out and expanded to higher order derivatives.

Kronrod-Patterson integration, Chapter 5: The experiments on constructing Kronrod-
Patterson extensions were carried out solely by the author.

Approximation methods, Chapter 6: The idea of using approximation methods
in conjunction with the analytical approximation approach is proposed by
the author.

Case studies, Chapter 7: All case studies were conducted by the author. A part
of the case studies were previously published in [35,50].

5

2 Prerequisites

The main purpose of this chapter is to summarize important mathematical results, which will
be required later on, and to act as a reference for the reader. Therefore, it is possible to skip
this chapter, especially if one is familiar with the mathematical notions. Since all the result
can be found in standard text books no proofs are given here. Instead, references are given.

2.1 Implicit function theorems

In engineering, model equations are either given by or can be discretized to yield a non-linear
set of equations in the form F (x, y) = 0, where F : Rm × Rn → Rn, x are control (input)
variables, and y denotes state variables. Implicit function theorems answer the question, if
there exists a function f : Rm → Rn mapping the control variables x to the state variables y.
More clearly, given a function F and a point (x0, y0) ∈ Rm × Rn with F (x0, y0) = 0, implicit
functions theorems give conditions under which there exists a representation y = f(x) with
F (x, f(x)) = 0 either locally in a neighborhood of (x0, y0) or even globally. Moreover, under
additional assumptions, further properties of the function f , e.g., f being bijective, can be
assured. The first theorem stated below contains the standard (local) result.

Notation 2.1.1. By Ck(A,Rm), 0 ≤ k ≤ ∞, A ⊂ Rn an open set, n,m ∈ N we denote the
set of all functions f : A→ Rm which have continuous (partial) derivatives of order up to and
including k. By Ck

0 (A,Rm), 0 ≤ k ≤ ∞ we denote the set of all functions f ∈ Ck(A,Rm)
which have a compact support. Whenever A or the dimension m follow from the context, the
arguments will be dropped for brevity.

Theorem 2.1.2 (Implicit function theorem, [52] p. 43). Let F (x, y), x ∈ Rm, y ∈ Rn be a
mapping of class Ck, k ≥ 1 defined on an open set U ⊂ Rm × Rn and taking values in Rn.

Let (x0, y0) be a point of U with F (x0, y0) = 0. Of course we let (x, y) be any point of U ×V .
We suppose that

det

(
∂F

∂y
(x0, y0)

)
6= 0.

Then there exists a neighborhood Ũ of (x0, y0), and an open set W ⊂ Rm containing x0, and
function f : Rm → Rn of class Ck on W such that

F (x, f(x)) = 0 for every x ∈ W.

6 2 Prerequisites

Furthermore f is the unique function satisfying{
(x, y) ∈ Ũ : F (x, y) = 0

}
=
{

(x, y) ∈ Ũ : x ∈ W, y = f(x), l = 1, . . . ,M
}
.

One consequence of the above result is that the implicitly defined function f is at least one
time continuously differentiable. The derivate can be obtained by

d

dx
f(x) = −

(
∂F

∂y

)−1
∂

∂x
F (x, y)

for (x, y) ∈ U with F (x, y) = 0. Furthermore, if one assumes that m ≥ n and ∂F
∂x

(x0, y0) has
full rank, then by standard analysis f is injective on an open set W0 ⊂ W . When restricting f
to the open set f(W0), the function f can be made bijective.

As a next step, one possible formulation of a global implicit function is given.

Theorem 2.1.3 (Global implicit function theorem, [75]). Assume U is an open convex subset
of Rm and V is an open subset of Rn, in which n and m are positive integers such that m ≥ n.
Assume also that F : U × V → Rn is continuously differentiable on U × V and that the rank of
the n×m matrix ∂F

∂x
is n for (x, y) ∈ U × V with F (x, y) = 0. Let A be any family of compact

subsets of V such that for each compact subset C of V , there is an S ∈ A such that C ⊂ S,
and, similarly, let B denote any collection of compact subsets of U with the property that for
any compact subset D in u, there is T ∈ B such that D ⊂ T .

Under these conditions there is a unique f : U → V such that F (x, f(x)) = 0 for all x ∈ U ,
and f is continuously differentiable on V, if and only if

(i) for some x0 ∈ U , there is exactly one y0 ∈ V such that F (x0, y0) = 0,

(ii) det ∂F
∂y
6= 0 for (x, y) ∈ U × V with F (x, y) = 0,

(iii) for each T ∈ B, there is an S ∈ A such that x ∈ T , y ∈ V , and F (x, y) = 0 imply that
y ∈ S.

2.2 Partition of the unity

Let G ⊂ Rn, n ∈ N be an open set. Furthermore, assume there exists an open covering
{Gi | i ∈ I} of the set G, where I is an arbitrary index set. The partition of the unity now
allows to partition the unity 1 on the set G using non-negative functions αj(x), whose support is
contained in some Gi. A formal statement of the theorem is given below after some introductory
definitions.

Definition 2.2.1 (Topological space, [95] p. 9). A set X is said to be a topological space if a
system τ of subsets of X is exhibited (called open sets in X) possessing the following properties:

(i) ∅ ∈ τ , X ∈ τ

2.3 Interval and affine arithmetic 7

(ii) τi ∈ τ , i ∈ I ⇒
⋃
i∈I τi ∈ τ

(iii) τi ∈ τ , i ∈ {1, . . . , n} ⇒
⋂n
i=1 τi ∈ τ

Definition 2.2.2 (Hausdorff, [95] p. 12). A topological space is Hausdorff if the Hausdorff
axiom holds in it: any two distinct points of the space have non-intersecting neighborhoods.

Definition 2.2.3 (σ-compact, [44] p. 339). A topological spaceX is σ-compact if it is Hausdorff
and is a countable union of compact sets.

Definition 2.2.4 (Locally finite cover, [44] p. 340). An open cover W := (Wi)i∈I of a topo-
logical space X is locally finite if every point x ∈ X has a neighborhood that intersects only
finitely many of the Wi.

Definition 2.2.5 (Partition of unity subordinate to an open cover, [32] p. 72). For a topological
space X, a set of nonnegative continuous functions {αj}j∈J , αj : X → R, j ∈ J , is a partition
of unity subordinate to an open cover {Vj}j∈J of X if, and only if,

• each αj is not identically zero,

• αj(x) = 0 if x 6∈ Vj,

• for each x in X, only finitely many αj(x) are different from zero, and

•
∑

j∈J αj(x) ≡ 1.

Theorem 2.2.6 (Partition of unity, [44] p. 341). Let X be a second countable finite-dimensional
topological space, and let W be an open cover of X. Then there exists a locally finite refinement
V of W, and a continuous partition of unity subordinate to V. Moreover, if X is C∞ manifold,
the partition of unity can be chosen C∞.

Remark 2.2.7. In this work the partition of the unity is applied to subsets G ⊂ Rn, which
are second countable finite-dimensional topological C∞ spaces.

Given a function f : G → Rm of class Ck, m ∈ N, and using partition of the unity it holds
that f(x) =

∑
j∈J αj(x)f(x). Furthermore, the functions αj(x)f(x) are of class Ck and their

support is contained in some Gi.

2.3 Interval and affine arithmetic

Interval Arithmetic (IA) and AFine Arithmetic (AFA) are both generalizations of the standard
arithmetic to interval inputs. Both are also methods of self-validated numerical computing, i.e.,
they can account for round off and truncations errors which occur in numerical calculations when
working with floating point numbers. Not accounting for such errors may lead to inaccurate
or imprecise results, for an example see [21]. The main application for these methods in this
work is to check whether a given interval I does not contain a root of some given function f .

8 2 Prerequisites

Generally, IA and AFA are approximations, which result in supersets of the actual result, i.e,
given a function f it holds for any interval input I that f(I) ⊂ fIA(I) or f(I) ⊂ fAFA(I),
respectively. Here, fIA and fAFA are the representations of the function f in the respective
arithmetic. Due to the nature of the methods, whenever 0 /∈ fIA/AFA(I) then f contains no
root in I. However, 0 ∈ fIA/AFA(I) does not imply that f has a root in I, since both methods
overestimate f(I),

Remark 2.3.1. For practical application both methods need a careful choice of rounding mode.
Since a discussion of these modes is out of the scope of this work, any influences of rounding
are neglected during the description of these methods.

2.3.1 Interval arithmetic

IA was introduced by Moore in 1966 [58]. It is based on the usage of closed intervals [a, b] =
{x ∈ R | a ≤ x ≤ b}, where a, b ∈ R ∪ {−∞,∞}, a ≤ b. Scalar values are represented by
intervals with the same upper and lower bound, e.g., 3 = [3, 3]. Let Ij = [aj, bj], aj, bj ∈ R,
j = 1, 2. Then the standard arithmetic operations are defined by

I1 + I2 = [a1 + a2, b1 + b2] ,

I1 − I2 = [a1 − b2, b1 − a2] ,

I1 × I2 = [min(a1a2, a1b2, b1a2, b1b2),max(a1a2, a1b2, b1a2, b1b2)] ,

I1/I2 =



[a1/b2, b1/a2] a1, a2 > 0,
[a1/a2, b1/b2] b1 < 0, a2 > 0,
[a1/a2, b1/a2] a1 < 0, b1 > 0, a2 > 0,
[b1/b2, a1/a2] a1 > 0, b2 < 0,
[b1/a2, a1/b2] b1 < 0, b2 < 0,
[b1/b2, a1/b2] a1 < 0, b1 > 0, b2 < 0,
[−∞,∞] otherwise.

The generalization of elementary functions f : R→ R is done depending on whether the given
function is monotonic or not. The monotonic case is straightforward, i.e., f([a, b]) = [f(a), f(b)]
for f monotonically increasing and f([a, b] = [f(b), f(a)] if f is monotonically decreasing. For
non-monotonic f it is necessary to check whether f has a minimum/maximum in the input
interval I. The output interval then has to be set accordingly, e.g.,

f : R→ R, x 7→ 1− x2,

f([−1, 1]) = [0, 1] = [f(−1), f(0)]; f contains a maximum in [−1, 1],

f([1, 2]) = [−3, 0] = [f(2), f(1)]; f is monotonic in [1, 2].

Please note that in IA I − I 6= 0 and I/I 6= 1. This is due to the fact that every occurrence of
an interval I is treated independently. Such behavior is desired when analyzing for example the
influence on round-off errors on calculations (one of the first applications of IA methods), but
leads to large overestimation when checking for roots, especially for complicated expressions.
To overcome this problem Stolfi and Figueiredo proposed the usage of AFA.

2.4 Probability distributions 9

2.3.2 Affine arithmetic

In the AFA approach [21] intervals are expressed using an affine expression of the form

x̂ = x0 + x1ε1 + . . .+ xnεn,

where xi ∈ R, i = 0, . . . , n. The quantities εi ∈ [−1, 1] are called noise symbols, the quantity
rx =

∑n
i=1 |xi| is called the total deviation, and x̂ corresponds to the interval [x0 − rx, x0 + rx].

On the other hand, every interval [a, b] can be expressed as

a+ b

2
+
b− a

2
ε1.

Addition and subtraction in AFA are straightforward, since both are affine linear functions,
i.e., if x̂ = x0 + x1ε1 + . . .+ xnεn and ŷ = y0 + y1ε1 + . . .+ ynεn then

x̂± ŷ = (x0 ± y0) + (x1 ± y1)ε1 + . . .+ (xn ± yn)εn.

One important property of AFA is that noise symbols can be shared between different ex-
pressions (just like x̂ and ŷ above). This allows for much tighter bounds in contrast to IA.
For transformations, which are not affine linear, an affine linear approximation has to be con-
structed. For standard transformations (e.g., trigonometric functions, multiplication, division)
this was already done and approximations are readily available in computer implementations.

2.4 Probability distributions

The main purpose of this section is to give a short introduction on the probability distributions
used in this thesis. The idea here is to mention only the most important facts for reference,
since more detailed information can be found in various text books, e.g., in [47].

2.4.1 Gaussian distribution

The Gaussian or normal distribution is one of the most commonly found distributions. Its
univariate probability density function (pdf) is defined by

ϕ(ξ) =
1√
2πσ

e−
(ξ−µ)2

2σ2 ,

where µ is the expectation and σ is the standard deviation. There exists no closed form for the
cumulative distribution function (cdf). Every univariate Gaussian distributed uncertain vari-
able Y can be transformed to a standard Gaussian distributed uncertain variable by applying
the transformation Y−µ

σ
.

Similar properties hold also true for multivariate Gaussian distributed uncertainties, which
pdf is given by

ϕ(ξ) =
1√

2π
n

det Σ
e−

(ξ−µ)TΣ−1(ξ−µ)
2 ,

10 2 Prerequisites

where ξ = (ξ1, . . . , ξn), µ is the vector of expectation and Σ is the covariance matrix. A
transformation to the standard case can be achieved by L(Y −µ), where Y is a vector of jointly
Gaussian distributed uncertain variables and L is such that LLT = Σ. The matrix L can be
obtained from Σ by means of a Cholesky decomposition.

Two additional properties of Gaussian distributed uncertainties are worth mentioning. First,
all marginal distributions of a jointly Gaussian distributed uncertain vector are also Gaussian
distributed. Second, a linear transformation of a jointly Gaussian distributed uncertain vector
always leads to a Gaussian distributed result. This is the reason, why the Gaussian distribution
is so widely applied in the context of CCOPT, since this allows to directly compute chance
constraints (see Chapter 4).

2.4.2 Beta distribution

The Beta distribution is a large family of rather different probability distributions, as can be
seen in Figure 2.1. Depending on the choice of the distribution parameters α and β, the pdf
may be bounded or unbounded as well as unimodal or bimodal. One special case of the Beta
distribution is the uniform distribution, which appears for α = β = 1. The pdf of a Beta
distributed uncertain variable is given by

φ(ξ) =
ξα−1(1− ξ)β−1∫ 1

0
xα−1(1− x)β−1dx

,

where 0 ≤ ξ ≤ 1, and α, β ∈ R++. If the uncertain variable Y underlies a Beta distribution
with parameters α, β, then

E[Y] =
α

α + β

and

Var[Y] =
αβ

(α + β)2(α + β + 1)
.

Higher order moments can also be directly obtained, which is quite useful when constructing
Gaussian quadrature rules (see Chapter 5). They are given by

E[Y k] =
k−1∏
i=0

α + i

α + β + i
.

The variance of a Beta distributed uncertain variable is always smaller than 1
4
, which is one

reason why there exists no standard form of the Beta distribution.

2.4 Probability distributions 11

F
ig

u
re

2
.1

:
B

et
a

p
d

f
fo

r
d

iff
er

en
t

d
is

tr
ib

u
ti

on
p

ar
am

et
er

s
α

a
n

d
β

13

3 Chance Constrained Optimization

In this chapter, the solution process of typical CCOPT problems occurring in process engineer-
ing will be discussed. As a first step a classification of CCOPT is given. This is necessary, since
different problems may require different solution approaches. Furthermore, some problems can
be treated by more than one method. One should keep in mind that the classification given
below is not complete, i.e., only problems, which can be solved with the methods presented in
this thesis, are listed.

To clarify, which kind of problems can be solved within the scope of this thesis and which
cannot, consider a general stochastic optimization problem with single chance constraints. It
takes the form

(NLP) min
u∈U

E [f(y, u, ξ)] (3.0.1)

s.t. F (y, u, ξ) = 0 (3.0.2)

Pr {gi(y, u, ξ) ≤ 0} ≥ αi, i = 1, . . . , q, (3.0.3)

where y ∈ Rn is a vector of output variables, u ∈ U ⊂ Rm is a vector of control variables, and
ξ is a vector of Borel-measurable uncertain input variables from a probability space into Rp.
The function f : Rn × U × Rp → R is the objective function, F : Rn × U × Rp → Rn describes
the model equations, and gi : Rn × U × Rp → R, i = 1, . . . , q are the constrained quantities.
The chance constraints (3.0.3) are to be held with a probability level αi ∈ [0.5, 1]1, i = 1, . . . , q.
Furthermore, the following assumptions are imposed.

Assumption 3.0.1. The functions f(·, ·, ·), F (·, ·, ·), and gi(·, ·, ·), i = 1, . . . , q are twice con-
tinuously differentiable.

Assumption 3.0.2. The vector of uncertain inputs ξ has a known continuously differentiable
pdf with support in a Borel-measurable set Ω ⊂ Rp.

Assumption 3.0.3. The derivatives ∇ξgi(u, y, ξ) are non-zero a.e. for u ∈ U , ξ ∈ Ω, y ∈ Rn,
and i = 1, . . . , q.

Assumption 3.0.4. For every u ∈ U and every ξ ∈ Ω there exists a unique y ∈ Rn with
F (y, u, ξ) = 0.
1Theoretically, αi ∈ (0, 1] would be possible, although, for αi < 0.5 the probability of violating the constraint

might be actually larger then the probability of holding it. This is not useful from the process engineering
point of view.

14 3 Chance Constrained Optimization

Process Uncertainties

Dynamic

Steady State/
Static

Linear

Nonlinear

Time dependent

Constant

Gaussian

Non-Gaussian

Figure 3.1: Classification of CCOPT problems. All possible combinations may occur, e.g.,
static problems with nonlinear process model and time dependent, non-Gaussian
distributed uncertainties.

Notation 3.0.5. A solution y of the model equations F (u, y, ξ) = 0 for given u ∈ U and ξ ∈ Ω
is denoted by y(u, ξ).

The first assumption allows to use standard algorithms in the solution process, e.g., SQP- or
interior point methods for optimization and Newton’s method for solving the model equations.
Among others, this excludes problems containing integer variables. The second assumption
assures that the integration task necessary to evaluate probabilities, expectations, etc. can
be carried out using standard methods, e.g., (Quasi-)-Monte-Carlo integration. Furthermore,
uncertainties with discrete distributions and generalizations of CCOPT, where only a family of
possible distributions of the uncertain variables is known, are excluded. The third assumption
guarantees that the functions Pr {gi(·, y, ξ) ≤ 0} are continuous w.r.t. u ∈ U . The last assump-
tion guarantees that for every u ∈ U and every ξ ∈ Ω there exists exactly one possible system
state y. This is necessary, since otherwise it is hard to decide how to treat several possible
system states, especially if some of these states are inside and others are outside of the desired
bounds.

3.1 Classification of CCOPT problems

CCOPT problems can be classified considering several aspects, where one possible scheme for
classification can be seen in Figure 3.1 (this figure mimics the presentation in [55]). There, four
different aspects are considered, i.e., type of model equations, linearity, temporal behavior of
the uncertain variables, and distribution of the uncertain variables. Since all possible combi-
nations of the single components lead to a valid CCOPT problem, overall 16 different types of
optimization problems can be found. In the following, the impact of the different classification
aspects on the solution of CCOPT problems is discussed.

3.1 Classification of CCOPT problems 15

3.1.1 Type of model equations

The process model can either be static, i.e., they are described by an algebraic equation, or
dynamic, i.e., they are described by differential or difference equations. While static problems
can be handled directly with the proposed methods, dynamic problems require further treat-
ment. As a first step the following restriction is imposed: For the remainder of this work in
connection with dynamic problems only difference equations will be considered, since differ-
ential equations can always be discretized to yield difference equations (e.g., using Euler or
Runge-Kutta methods). Nonetheless, there are several possible problems, which may occur in
connection with difference equations. First, the time horizon may be infinite, resulting in an
infinite state space. Second, guaranteeing the feasibility over a long (or even infinite) time hori-
zon might be impossible and even if a feasible solution exists it might be very conservative. To
overcome these problems the usage of Model Predictive Control (MPC) methods is proposed.
MPC methods require the successive solution of CCOPT problems for a given (changing) time
horizon. A schematic of this process can be found in Figure 3.2. Based on measurements from
the past, the future behavior of the process is predicted for a certain time horizon (the so called
prediction horizon) and the objective function is minimized over the prospective horizon. But
instead of applying all obtained optimal controls only a part of the controls (those in the so
called control horizon) are applied to the process. This is done to compensate deviations, which
might be introduced by the realization of the uncertain variables. The whole process (predic-
tion, optimization, applying part of the optimal controls) is then repeated. It is clear that this
approach overcomes the problem of an infinite state space, since the optimization horizon is
finite. The problem of guaranteeing the existence of feasible solutions is more involved and
topic of ongoing research. For specific problems it can be shown that there exists a certain
upper bound for the length of the optimization horizon, where a violation of this bound always
leads to an empty feasible set [51]. More general results are not available at this time.

3.1.2 Linearity

The functions g(u, y, ξ) can depend linearly (i.e., ∂
∂ξ
g(u, y, ξ) ≡ const) or non-linearly (i.e.,

∂
∂ξ
g(u, y, ξ) 6≡ const) on the uncertain input variables ξ. Linear constraints are of special

interest in connection with Gaussian distributed uncertainties, since this combination allows to
directly determine the distribution of g(u, y, ξ). Furthermore, several approximation schemes
exist for linear constraints.

3.1.3 Temporal behavior and distribution of the uncertain variables

The last two categories in the classification determine what kind of integration routines is neces-
sary to evaluate the chance constraints. In a problem with static uncertainties the distribution
and possible distribution parameters are known beforehand and a suitable integration routine
can be a priori chosen depending on the distribution of the uncertain variables. In the case
of dynamic uncertainties either distribution parameters or even the type of distribution may

16 3 Chance Constrained Optimization

...

Control
Horizon

Applied Control input

l

Figure 3.2: Schematic of the MPC process.2

change over time. In the first case, the type of distribution has a huge influence, i.e., distribu-
tions which can be transformed to a standard case (like the Gaussian distribution) do not pose
a problem. This is due to the fact that irrespective of the actual distribution parameters it is
always possible to transform the problem to the standard case, i.e., only integration routines
for the standard case have to be implemented. On the other hand, if no standard case exists,
integration rules have to be found online (like in the case of Beta-distributed uncertainties),
resulting in a possible higher computational demand. The possibility of a change in the type
of the distribution of the uncertainties will not be considered in this work. Nonetheless, an
effect similar to the case for distributions without a standardized form is to be expected, i.e.,
integration routines need to be constructed online.

3.2 Components of solution approaches

Each of the 16 different CCOPT problems defined above has unique properties which allow
certain techniques to be used in the solution process. In general, the solution process consists
of three parts:

(i) transforming the probabilistic into deterministic constraints,

(ii) solution of the model equations, and

(iii) numerical integration.

The interaction of these three steps is shown in Figure 3.3. In general, a CCOPT solver is
based on a standard NLP solver (e.g., interior point or SQP solver) as can be seen in the first

2This figure was created based on a work of Martin Behrendt (http://commons.wikimedia.org/wiki/File:
MPC_scheme_basic.svg).

http://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg
http://commons.wikimedia.org/wiki/File:MPC_scheme_basic.svg

3.2 Components of solution approaches 17

Figure 3.3: Basic structure of a CCOPT solver.

layer. In order to be able to employ such solvers, the chance constraints have to be transformed
into equivalent deterministic constraints, using for instance one of the methods presented in
Chapter 4. These methods typically require the evaluation of multivariate integrals (so called
cubature) as shown in the second layer. Several methods for carrying out the integration task
are presented in Chapter 5. Finally, in order to evaluate the integrals it is necessary to solve
the model equations using for instance one of the methods presented in Chapter 6. Depending
on the starting point u0 of the optimization method the described steps may be carried out
repeatedly.

19

4 Evaluation of Chance Constraints

In this chapter several approaches to the evaluation of chance constraints will be introduced.
For brevity, the notation g(u, ξ) := g(u, y, ξ) is used throughout the chapter and the remainder
of this thesis. This does not suppress any dependencies, since y also depends on u and ξ through
the model equations F (u, y, ξ) = 0. Furthermore, any indices on g(·, ·) are dropped, since all
single chance constraints are treated separately.

4.1 Direct computation

The direct computation approach is the (historically) first one used to solve CCOPT problems,
since it was proposed by Charnes et al., who introduced this approach together with CCOPT
in [17]. Even today it finds widespread application, due to its ease of use and low demand
on computational power. The major disadvantage of this approach is that it only works for
(multivariate) Gaussian distributed uncertainties and only for function g(u, ξ) which are linear
in ξ. Therefore, the next assumption is necessary for the remainder of this section.

Assumption 4.1.1. The uncertain variables ξ underlie a multivariate normal distribution with
expectation µ and covariance matrix Σ. Furthermore, g(u, ξ) can be expressed as g(u, ξ) =
g(u)T ξ, where g : Rn → Rp.

Notation 4.1.2. The cdf of an univariate standard Gaussian distributed uncertain variable is
denoted by Φ(·), whereas the pdf is denoted by ϕ(·).

Lemma 4.1.3. Under the previous assumption the chance constraint Pr {g(u, ξ) ≤ 0} ≥ α is

equivalent to −g(u)Tµ√
g(u)TΣg(u)

≥ Φ−1(α). Additionally,

∂

∂ui
Pr {g(u, ξ) ≤ 0} =

ϕ

(
− g(u)Tµ√

g(u)TΣg(u)

) (
µTg(u)

)
g(u)TΣ ∂

∂ui
g(u)−

(
µT ∂

∂ui
g(u)

)
g(u)TΣg(u)(

g(u)TΣg(u)
) 3

2

.

Proof: For this proof we employ that for a multivariate Gaussian distributed uncertain vari-
able ξ it holds that g(u)T ξ is also Gaussian distributed with expectation g(u)Tµ and variance

20 4 Evaluation of Chance Constraints

g(u)TΣg(u). A short calculation reveals

Pr {g(u, ξ) ≤ 0} = Pr

{
g(u, ξ)− g(u)Tµ√

g(u)TΣg(u)
≤ − g(u)Tµ√

g(u)TΣg(u)

}
(4.1.1)

= Φ

(
− g(u)Tµ√

g(u)TΣg(u)

)
, (4.1.2)

i.e., Pr {g(u, ξ) ≤ 0} ≥ α is equivalent to Φ

(
− g(u)Tµ√

g(u)TΣg(u)

)
≥ α. Furthermore, the function

Φ : R → R is bijective and, therefore, Φ−1(·) exists and the last statement is equivalent to

− g(u)Tµ√
g(u)TΣg(u)

≥ Φ−1(α), which completes the first part of the proof. For the second part,

calculating the derivative of (4.1.2) immediately yields the desired result.

4.2 Linearization

The idea of linearization methods is to extend the direct computation method to nonlinear
problems by using a first order Taylor series expansion. More clearly, for given u ∈ U and
ξ0 ∈ Ω one uses

g(u, ξ) = g(u, ξ0) +∇ξg(u, ξ0)(ξ − ξ0) + o
(
(ξ − ξ0)2

)
≈ g(u, ξ0) +∇ξg(u, ξ0)(ξ − ξ0).

The next lemma shows that under some assumption on the concavity of g(u, ξ) one can guar-
antee that a solution of the approximate (linear) problem is feasible to the original problem
(NLP).

Lemma 4.2.1. Let Klin = {u ∈ U|Pr {g(u, ξ0) +∇ξg(u, ξ0)(ξ − ξ0) ≤ 0} ≥ α}. If g(u, ξ) is
concave w.r.t. ξ for all u ∈ U then

Klin ⊂ K.

Proof: The case Klin = ∅ is trivial. Therefore, assume Klin 6= ∅. Then, for u ∈ Klin we have
Pr {g(u, ξ0) +∇ξg(u, ξ0)(ξ − ξ0) ≤ 0} ≥ α. Furthermore, since g(u, ξ) is concave w.r.t. ξ, we
have g(u, ξ) ≤ g(u, ξ0) + ∇ξg(u, ξ0)(ξ − ξ0) for all ξ ∈ Ω. As a direct consequence, we get
Pr {g(u, ξ) ≤ 0} ≥ α. This yields u ∈ K, which completes the proof.

Remark 4.2.2. If g(u, ξ) is convex w.r.t. ξ for all u ∈ U a similar reasoning is possible. In
this case consider the equivalent constraint Pr {g(u, ξ) > 0} ≤ 1− α.

4.3 Projection approaches 21

4.2.1 Implementation

Similar to the direct approach, linearization is very straight-forward to implement. Nonetheless,
one should take care when using such techniques in the presence of larger variances of the
uncertain variables. As shown in the work of Garnier et al. [31], these might lead to considerable
errors in the gradients computation and, hence, to problems in the solution of the optimization
problem.

4.3 Projection approaches

Projection methods were first introduced by Wendt et al. [89] and provide an approach for a
wide range of nonlinear problems. Additionally, these methods are not restricted to a certain
kind of uncertainty. The main idea is to find a monotonic relationship between g(u, ξ) and one
of the uncertain input variables ξ. This relation can be used to transform the chance constraint
into the domain of the uncertain input variables, where the probabilities can be determined
using multivariate integration. A concise description of this process is given in the following.

Notation 4.3.1. The vector ξ without the j-th entry, j ∈ {1, . . . , p} is denoted by ξ−j, i.e.,

ξ−j = (ξ1, . . . , ξj−1, ξj+1, . . . , ξp)

and ξ−j ∈ Rp−1. The set Ω−j ⊂ Rp−1 is defined by Ω−j := {ξ−j|ξ ∈ Ω}. Furthermore, (ξ−j, ξj)
is an additional notation for the vector ξ.

Definition 4.3.2 (Monotonic relation, [33]). The function g(u, ξ) is monotonically related with
an uncertain input ξj, j ∈ {1, . . . , p} on the interval (−∞, 0] if uniformly for arbitrary fixed
u ∈ U and input ξ−j the following two conditions are satisfied:

(i) For each y ∈ (−∞, 0] exists an input ξj(y, u, ξ−j) such that g
(
u, (ξ−j, ξj(y, u, ξ−j))

)
= y

and (ξ−j, ξj(y, u, ξ−j)) ∈ Ω.

(ii) ∞ < y1 < y2 ≤ 0 implies on the whole interval (−∞, 0]

a) either ξj(y1, u, ξ−j) < ξj(y2, u, ξ−j)

b) or ξj(y1, u, ξ−j) > ξj(y2, u, ξ−j).

In case (a) the monotonic relation is called positive and is denoted by g(u, ξ) ↑ ξj. In case (b)
it is called negative and denoted by g(u, ξ) ↓ ξj.

If we have a monotonic relation we can project the constraints in the following way. In case
(a) we have

Pr {g(u, ξ) ≤ 0} = Pr {ξj ≤ ξj(0, u, ξ−j)}

=

∫
Ω−j

∫ ξ−j(0,u,ξ−j)

−∞
φ(ξ)dξjdξ−j,

22 4 Evaluation of Chance Constraints

whereas in case (b) we get

Pr {g(u, ξ) ≤ 0} = Pr {ξj(0, u, ξ−j) ≤ ξj}

=

∫
Ω−j

∫ ∞
ξ−j(0,u,ξ−j)

φ(ξ)dξjdξ−j.

Under the following assumption we can also determine the gradients w.r.t. the controls u.

Assumption 4.3.3. The function ξj(0, u, ξ−j) is for all ξ−j ∈ Ω−j continuously differentiable
w.r.t. to u ∈ U .

Then, using Leibniz’s rule, we can find the gradients with respect to u in case (a) as

∇uPr {g(u, ξ) ≤ 0} = ∇u

∫
Ω−j

∫ ξ−j(0,u,ξ−j)

−∞
φ(ξ)dξjdξ−j

=

∫
Ω−j

φ(ξ−j, ξj)|ξj=ξj(0,ξ−j)∇uξ−j(0, u, ξ−j)dξ−j

and in case (b) as

∇uPr {g(u, ξ) ≤ 0} = ∇u

∫
Ω−j

∫ ∞
ξ−j(0,u,ξ−j)

φ(ξ)dξjdξ−j

= −
∫

Ω−j

φ(ξ−j, ξj)|ξj=ξj(0,ξ−j)∇uξ−j(0, u, ξ−j)dξ−j.

Note that in comparison with the computation of the probability values the dimension of
integration is reduced by one.

Remark 4.3.4. Royset and Polak [74] proposed a similar approach under the context of Sample
Average Approximation (SAA), using Monte-Carlo integration for the evaluation of the involved
integrals.

As a next step a method to determine monotonic relationships is described. This method
is based on a global implicit function theorem and was proposed by Geletu et al. [33]. It can
be used in the special case that gi(u, ξ) = yj(i), i.e., some or all of the state variables are
constrained. The method is based on the global implicit function theorem 2.1.3 applied to the
model equations F (y, u, ξ) = 0. If the three conditions of Theorem 2.1.3 are fulfilled for all
u ∈ U , then there exists a global implicit representation

y = ζ(u, ξ), ξ ∈ Ω.

This equation can be used to determine a monotonic relation between a single coordinate yi of
the state variables y and a single coordinate ξj of ξ in the following way. By means of the local
implicit function theorem we have

F (ζ(u, ξ), u, ξ) = 0, u ∈ U , ξ ∈ Ω. (4.3.1)

4.3 Projection approaches 23

Calculating the total partial derivate of (4.3.1) with respect to ξj results in

dF (ζ(u, ξ), u, ξ)

dξj
=
∂F (ζ(u, ξ), u, ξ)

∂yi

∂yi
∂ξj

+
n∑
k=1
k 6=i

∂F (ζ(u, ξ), u, ξ)

∂yk

∂yk
∂ξj

+
∂F (ζ(u, ξ), u, ξ)

∂ξj
= 0,

(4.3.2)

where ∂F (ζ(u,ξ),u,ξ)
∂ξj

are the partial derivatives with respect to ξj. By the global implicit function

theorem, the matrix ∂F (ζ(u,ξ),u,ξ)
∂y

is regular for all ξ ∈ Ω and all u ∈ U with F (y, u, ξ) = 0.
Therefore, the linear system of equations

ηT
∂F (ζ(u, ξ), u, ξ)

∂yk
= δki, k = 1, . . . , n

has a unique C1-solution η(u, ξ) for ξ ∈ Ω and u ∈ U . Here, δki = 1 if i = k and δki = 0,
otherwise. Multiplying both sides of (4.3.2) with η(u, ξ) results in

∂yi
∂ξj

= −η(u, ξ)T
∂F (ζ(u, ξ), u, ξ)

∂ξj
,

which can be used to derive necessary and sufficient conditions for strict monotonicity of yi to
ξj. This gives rise to the following theorem.

Theorem 4.3.5 (Geletu et al. 2011 [33]). Suppose the assumptions for the global implicit
function theorem 2.1.3 hold true. Then yi is globally monotonically to ξj if either

• ξj ↑ yi, i.e.,

η(u, ξ)T
∂F (ζ(u, ξ), u, ξ)

∂ξj
< 0, ξ ∈ Ω, u ∈ U ,

or

• ξj ↓ yi, i.e.,

η(u, ξ)T
∂F (ζ(u, ξ), u, ξ)

∂ξj
> 0, ξ ∈ Ω, u ∈ U .

As a direct consequence of the theorem, it is only necessary to check the sign of the scalar
product

ηT
(
∂F

∂ξj

)
to determine monotonicity relations. Nevertheless, for larger scale systems an analysis of all
possible combinations yi and ξj is impractical, due to the pure amount of such combinations.
One should also keep in mind that monotonicity relations need not necessarily exist.

24 4 Evaluation of Chance Constraints

4.4 Analytical approximations

Analytical Approximation (AA) are one approach for handling CCOPT problems, including
for instance highly nonlinear and non-monotonic problems. Their main advantage is the possi-
bility to solve medium and large scale problems without detailed knowledge (e.g., monotonicity
relations) of the underlying system.

The section is loosely based on [34], additional material includes a new method to evaluate
gradients when using AA.

The main idea of AA is based on the fact that probability functions can be alternatively
expressed using expectations, i.e., if p(u) = Pr {g(u, ξ) ≤ 0} then

1− p(u) = Pr {g(u, ξ) > 0} = E [1(g(u, ξ))] , where 1(x) =

{
1, x > 0,
0, x ≤ 0.

Consequently, the constraint
Pr {g(u, ξ) ≤ 0} ≥ α

is equivalent to
1− p(u) ≤ 1− α and finally to E [1(g(u, ξ))] ≤ 1− α.

Furthermore, definingK = {u ∈ U p(u) ≥ α} andM = {u ∈ U|E [1(g(u, ξ))] ≤ 1− α} one has
M = K, i.e., the optimal solution sets of the problems minu∈ME [f(u, ξ)] and minu∈KE [f(u, ξ)]
are the same. Please note that the existence of optimal solution sets is guaranteed by the
assumptions made on the involved functions (see Chapter 3).

Remark 4.4.1. The more general case of two-sided constraints Pr {a ≤ g(u, ξ) ≤ b} for a, b ∈
R, a < b can be handled by AA as well. In this case,

Pr {a ≤ g(u, ξ) ≤ b} = 1− Pr {g(u, ξ)− b > 0} − Pr {a− g(u, ξ) > 0}
= 1− E [1(g(u, ξ)− b)]− E [1(a− g(u, ξ))] .

The approximation methods introduced in this section are then applied to the two subtrahends.

Despite the fact that there are now two equivalent descriptions of the CCOPT problem, this
does not directly simplify the process of solution. This is due to the fact that the function
1(·) is discontinuous, which leads to difficulties in the numerical computation. Nonetheless,
the function E [1(g(u, ξ))] can be used to construct tractable approximations to the CCOPT
problem. More clearly, assume there exists a continuous function ψ : R++ × Rm → R+ and a
τmax ∈ R++ with the following properties:

• P1: E [1(g(u, ξ))] ≤ ψ(τ, u) for all 0 < τ < τmax and all u ∈ U ,

• P2: infτ>0 ψ(τ, u) = E [1(g(u, ξ))] for all u ∈ U ,

• P3: ψ(τ, u) is non-decreasing w.r.t. τ , 0 < τ .

4.4 Analytical approximations 25

Here, the property P1 guarantees that a solution u∗NLPτ of the approximate problem

(NLPτ) min
u∈U

E [f(u, ξ)]

s.t. ψ(τ, u) ≤ 1− α

is also feasible to the original problem, since E
[
1(g(u∗NLPτ , ξ))

]
≤ ψ(τ, u∗NLPτ) ≤ 1 − α. A

function ψ(·, ·) having only property P1 would suffice to generate an approximate solution,
but regardless of the choice of the parameter τ it is difficult to relate a solution u∗NLPτ of the
approximate problem to a solution of the original problem. This is evident in an AA approach
proposed by Nemirovski and Shapiro [64], where only the property P1 is fulfilled. For general
problems, the aforementioned approach grossly underestimates the actual probability of holding
the constraints leading to robust but also conservative solutions of the CCOPT problem. To
overcome such difficulties, it is desirable to find approximations which are arbitrarily close (in a
certain sense) to the original problem. Therefore, properties P2 and P3 are also desired, which
guarantee (in connection with the continuity of ψ(·, ·)) that

inf
τ>0

ψ(τ, u) = lim
τ→0+

ψ(τ, u) = E [1(g(u, ξ))] .

The advantage of these properties is made clear in the next lemma, which is based on the
following definitions.

Definition 4.4.2 (Regularity). Let α ∈
[

1
2
, 1
]
. A chance constraint Pr {g(u, ξ) ≤ 0} ≥ α is

called regular if for each u ∈ U with Pr {g(u, ξ) ≤ 0} = α there exists a sequence (uk)k∈N such
that limk→∞ uk = u and Pr {g(uk, ξ) ≤ 0} > α for all k ∈ N.

Definition 4.4.3 (Convergence of set valued maps, [71] p. 152). .For X, Y metric spaces,
F → P(Y) a set-valued map, and x0 ∈ X

lim sup
x→x0

F (x) := {y | ∃xn → x0, ∃yn → y, yn ∈ F (xn)} ,

lim inf
x→x0

F (x) := {y | ∀xn → x0, ∃yn → y, yn ∈ F (xn)} ,

and, if lim supx→x0
F (x) = lim infx→x0 F (x) = Ŷ , Ŷ ⊂ Y then

lim
x→x0

F (x) = Ŷ .

Lemma 4.4.4. Consider a regular chance constraint and suppose ψ : R++ × Rm → R+ is a
continuous function having the properties P1–P3. Let Mτ = {u ∈ U|ψ(u, τ) ≤ 1− α}. Then

lim
τ→0+

Mτ =M = K

in the sense of convergence of set-valued maps as in Definition 4.4.3.

26 4 Evaluation of Chance Constraints

Proof: Let us start by observing that M is compact since U is compact. Now, for

0 < τ1 < τ2 < τmax

the following inclusion holds Mτ2 ⊂ Mτ1 ⊂ M. Since M is compact one automatically gets
lim infτ→0+Mτ ⊂ lim supτ→0+Mτ ⊂ M, i.e., in order to complete the proof it is sufficient to
show M⊂ lim infτ→0+Mτ .

Assume M 6⊂ lim infτ→0+Mτ , then there exists û ∈ M and a sequence (τk)k∈N, τk → 0+

such that for all sequences (uk)k∈N with uk → û exists a subsequence (ukl)l∈N with ukl 6∈
Mτkl

, i.e., for all l ∈ N: ψ(τkl , ukl) > 1 − α. This implies that Pr {g(û, ξ) ≤ 0} = α or
equivalently E [1(g(û, ξ))] = 1 − α, since ψ(·, û) is a non-decreasing and continuous function
and limτ→0+ ψ(τ, û) = E [1(g(û, ξ))].

Indeed, if E [1(g(û, ξ))] < 1 − α then there exists an index k0 ∈ N such that for all k > k0:
ψ(τk, û) ≤ 1 − α and, therefore, û ∈ Mτk . Taking the constant sequence uk = û results in a
direct contradiction of the assumption.

Due to the regularity assumption, we now have a sequence (ūk)k∈N with limk→∞ ūk = û and
E [1(g(ūk, ξ))] < 1 − α. Again, due to the continuity of ψ(·, ūk) we have that for sufficiently
small τk we can find a ūl(k) ∈ (ūk)k∈N with ψ(τk, ūl(k)) ≤ 1 − α, i.e., ¯ul(k) ∈ Mτk . Now the
sequence uk = ūl(k) yields a contradiction to the assumption. Therefore, M⊂ lim infτ→0+Mτ

and finally M = limτ→0+Mτ .

The above result indicates that the feasible sets of the approximate problems (NLPτ) con-
verge to the feasible set of the original problem as τ → 0+. The next lemma shows that this
convergence is uniform with respect to the Haussdorf metric.

Definition 4.4.5 (Hausdorff distance, [26] p. 393). Let A,B ⊂ Rn bounded sets and x ∈ Rn.
The distance of x to the set A is defined by

dist(x,A) := inf
y∈A
‖x− y‖2 .

The Hausdorff distance of the sets A, B is given by

H(A,B) := max

{
sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)

}
.

Lemma 4.4.6. If the chance constraint Pr {g(u, ξ) ≤ 0} is regular then

lim
τ→0+

H(Mτ ,M) = 0.

Proof: SinceMτ ⊂M for all τ > 0 the expressionH(Mτ ,M) simplifies to supu∈M dist(u,Mτ).
Choose an arbitrary u ∈M. Then, similar to the proof of Lemma 4.4.4, either Pr {g(u, ξ) ≤ 0} >
α or Pr {g(u, ξ) ≤ 0} = α. In the first case we have ψ(τ̂ , u) ≤ 1 − α for a sufficiently small
τ̂ , i.e., u ∈ Mτ̂ and dist(u,Mτ) = 0 for all 0 < τ ≤ τ̂ . In the second case we find again a
sequence (uk)k∈N, uk → u and Pr {g(uk, ξ) ≤ 0} > α for all k ∈ N. Due to the continuity of
ψ(·, uk), for any uk we can find a τk such that ψ (τ, uk) ≤ 1 − α for all τ ≤ τk, i.e., uk ∈ Mτ

for all τ ≤ τk. This implies that dist(u,Mτ) ≤ dist(u, uk) for all τ ≤ τk. For k → ∞ we get
τk → 0 and uk → u, i.e., dist(u, uk)→ 0, which implies limτ→0+ H(Mτ ,M) = 0.

4.4 Analytical approximations 27

Till now, we have shown that the feasible setM of the original problem can be approximated
arbitrarily close by sets Mτ . Here, the natural question arises, whether such behavior can be
also shown for the solutions of the approximate problems, i.e., if one has a sequence of solutions
of approximate problems (NLPτk) with τk → 0, does this sequence converge to a solution of the
original problem and, conversely, if one has a solution u∗NLP of the original problem is there a
sequence of solutions u∗NLPτk

of the approximate problems (NLPτk) with u∗NLPτk
→ u∗NLP . The

following theorem will shed some light on this issue.

Theorem 4.4.7 (Geletu et al. 2013 [34]).

(i) Let (τk)k∈N, τk → 0 for k → ∞ and (uk)k∈N be sequences such that uk is a local optimal
solution of (NLPτk), k ∈ N. Then there exists a subsequence (ukl)l∈N of (uk)k∈N such
that ukl → u∗. Let B̄(u∗) be a closed ball around u∗, u∗ ∈ M∩ B̄(u∗). If for all kl with
ukl ∈ B̄(u∗) ∩M the quantity ukl is a global minimizer of the problem

min
u∈Mτkl

∩B̄(u∗)
E [f(u, ξ)] (4.4.1)

then

E [f(u∗, ξ)] = min
u∈M∩B̄(u∗)

E [f(u, ξ)] , (4.4.2)

i.e., u∗ is a local optimal solution of (NLP).

(ii) Conversely, if u0 is a strict local minimizer of (NLP), then there is a sequence of local
minimizers uk of (NLPτk) which converges to u0.

Proof:

(i) Assume that u∗ is not a local optimal solution of (NLP), i.e., there exists û ∈ B̄(u∗)∩M
with E [f(û, ξ)] < E [f(u∗, ξ)]. By Lemma 4.4.6 we can find a sequence (zk)k∈N with
zk ∈Mτk ∩ B̄(u∗) and zk → û. For a subsequence (zkl)l∈N we get

E [f(zkl , ξ)] ≥ E [f(ukl , ξ)] ,

because of the optimality of ukl . This implies that

E [f(û, ξ)] = lim
kl→∞

E [f(zkl , ξ)] ≥ lim
kl→∞

E [f(ukl , ξ)] = E [f(u∗, ξ)] > E [f(û, ξ)] .

Hence we get a contradiction.

(ii) Since u0 is a local optimal solution, we have E [f(u, ξ)] ≥ E [f(u0, ξ)] for all u ∈ clB(u0)∩
M. Furthermore, for a sequence (τk)k∈N with τk → 0 it holds that

H(Mτk ∩ clB(u0),M∩ clB(u0))→ 0, (4.4.3)

28 4 Evaluation of Chance Constraints

especially for k sufficiently large Mτk ∩ clB(u0) is non-empty. By compactness of these
sets and the continuity of the objective function, one can find uk ∈ Mτk ∩ clB(u0) such
that for all u ∈Mτk ∩ clB(u0): E [f(u, ξ)] ≥ E [f(uk, ξ)]. The sequence (uk)k∈N ⊂M has
a convergent subsequence (ukl)l∈N with ukl → u∗ for a u∗ ∈ M. Due to (4.4.3) and the
continuity of E [f(·, ξ)] it follows that E [f(u, ξ)] ≥ E [f(u∗, ξ)] for all u ∈ clB(u0) ∩M.
Hence E [f(u∗, ξ)] = E [f(u0, ξ)] and since u0 is a strict local solution it follows that
u∗ = u0. Additionally, there exists a k0 such that for all k > k0: uk ∈ B(u0), i.e., uk is a
local solution of (NLPτk).

Remark 4.4.8. The above theorem requires that the ukl are global minimizers of certain
optimization problems. This assumption is fulfilled if for instance E [f(·, ξ)] is convex on the
set B̄(u∗) ∩M and for all kl with ukl ∈ B̄(u∗) ∩M the sets Mτkl

are convex.

The theorem stated above guarantees under some assumptions that for an arbitrary sequence
(τk)k∈N with τk → 0 and corresponding local optimal solutions uk of the approximate problems
(NLPτk) we can find a subsequence (ukl)l∈N with ukl → u∗ and u∗ is a local optimal solution
of (NLP). Since the solutions uk are always feasible to the original problem we now have a
practical way of generating solutions for (NLP) by solving a sequence of problems (NLPτk).
By P2 and P3 we have the point-wise convergence of ψ(τ, u) towards E [1(g(u, ξ))]. If we can
furthermore guarantee the uniform convergence of the derivatives ∇uψ(τ, u) for τ → 0, then
we have, by standard analysis, that

lim
τk→0+

∇uψ(τk, u) = ∇uE [1(g(u, ξ))] .

In the next two parts two specific choices for the function ψ(τ, u) will be explored. The first
was proposed by Nemirovski and Shapiro [64] and only fulfills P1, i.e., most of the results of
this section cannot be guaranteed. As a contrast, we will also explore an approach proposed by
Geletu et al. [34], which fulfills P1–P3. For this case, a new method for evaluating the gradients
numerically will be introduced.

4.4.1 Some details on an analytic approximation approach proposed by
Nemirovski and Shapiro

Here, we consider an analytic approximation approach proposed by Nemirovski and Shapiro
[64]. They use

ψNS(τ, u) = E
[
exp(τ−1g(u, ξ))

]
(4.4.4)

for some τ > 0. The main idea is to approximate a chance constraint Pr {g(u, ξ) ≤ 0} ≥ α
by infτ>0 τE [exp(τ−1g(u, ξ))]− τ(1− α) ≤ 0, which is a convex constraint as long as g(u, ξ) is
convex w.r.t. u ∈ U and ξ ∈ Ω. The next lemma summarizes some properties of (4.4.4).

4.4 Analytical approximations 29

Lemma 4.4.9. Assuming Pr {g(u, ξ) > ε} > α1 and Pr
{
−1

2
< g(u, ξ) ≤ 0

}
> α2 for an ε > 0,

α1, α2 ∈ (0, 1), and at least one u ∈ U , the approximation ψNS(τ, u) has property P1, but does
fulfill neither P2 nor P3.

Proof: For all τ > 0 and all u ∈ U we have exp(τ−1g(u, ξ)) ≥ 1(g(u, ξ)) ≥ 0. This implies
ψNS(τ, u) = E [exp(τ−1g(u, ξ))] ≥ E [1(g(u, ξ))] and, hence, property P1. Taking u ∈ U with
Pr {g(u, ξ) > 0} > 0 we get

E
[
exp(τ−1g(u, ξ))

]
− E [1(g(u, ξ))]

=

∫
Ω

(
exp(τ−1g(u, ξ))− 1(g(u, ξ))

)
φ(ξ)dξ

=

∫
g(u,ξ)≤0

exp(τ−1g(u, ξ))φ(ξ)dξ︸ ︷︷ ︸
≥0

+

∫
g(u,ξ)>0

(
exp(τ−1g(u, ξ))− 1

)
φ(ξ)dξ︸ ︷︷ ︸

>0

≥
∫
g(u,ξ)≤0

max
{

0, 1 + τ−1g(u, ξ)
}
φ(ξ)dξ +

∫
0<g(u,ξ)≤ε

τ−1g(u, ξ)φ(ξ)dξ︸ ︷︷ ︸
≥0

+

∫
g(u,ξ)>ε

τ−1g(u, ξ)φ(ξ)dξ︸ ︷︷ ︸
≥εα1τ

−1

≥
∫
− 1

2
<g(u,ξ)≤0

max
{

0, 1 + τ−1g(u, ξ)
}
φ(ξ)dξ + εα1τ

−1

≥ α2 max

{
0, 1− τ−1

2

}
+ εα1τ

−1 (4.4.5)

≥ min
{
α2, 2εα1

}
,

where for τ ≤ 1
2

the first summand of (4.4.5) is zero and εα1τ
−1 ≥ 2εα1 and for τ > 1

2
the

sum (4.4.5) equals α2 + τ−1
(
εα1 −

α2

2

)
, which is either greater than α2 if the expression in the

brackets is positive or greater than 2εα1 if the expression is negative. In summary, this yields
that infτ>0 ψNS(τ, u) > E [1(g(u, ξ))].

For the third part of the proof take u ∈ U such that the assumptions of the lemma hold
and 0 < τ1 < τ2. Since Pr

{
−1

2
< g(u, ξ) ≤ 0

}
> α2 it holds that Pr {g(u, ξ) ≤ 0} = α3 for an

30 4 Evaluation of Chance Constraints

α3 ≥ α2. Similarly, Pr {g(u, ξ) > ε} = α4 for an α4 ≥ α1. Now, it follows that

ψNS(τ2, u)− ψNS(τ1, u)

=

∫
Ω

(
exp(τ−1

2 g(u, ξ))− exp(τ−1
1 g(u, ξ))

)
φ(ξ)dξ

=

∫
g(u,ξ)≤0

(
exp(τ−1

2 g(u, ξ))− exp(τ−1
1 g(u, ξ))

)
φ(ξ)dξ︸ ︷︷ ︸

≥0

+

∫
g(u,ξ)>0

(
exp(τ−1

2 g(u, ξ))− exp(τ−1
1 g(u, ξ))

)
φ(ξ)dξ︸ ︷︷ ︸

≤0

(4.4.6)

≤ α3 −
∫
g(u,ξ)>ε

(
exp(τ−1

1 g(u, ξ))− exp(τ−1
2 g(u, ξ))

)
φ(ξ)dξ (4.4.7)

≤ α3 − α4(exp(τ−1
1 ε)− exp(τ−1

2 ε)). (4.4.8)

To get from (4.4.6) to (4.4.7) we use that 1 ≥ exp(τ−1
2 g(u, ξ)) − exp(τ−1

1 g(u, ξ)) ≥ 0 and
α3 =

∫
g(u,ξ)≤0

φ(ξ)dξ ≥
∫
g(u,ξ)≤0

(
exp(τ−1

2 g(u, ξ))− exp(τ−1
1 g(u, ξ))

)
φ(ξ)dξ. Somewhat similar

is the step from (4.4.7) to (4.4.8) were exp(τ−1
1 g(u, ξ))−exp(τ−1

2 g(u, ξ)) ≥ exp(τ−1
1 ε)−exp(τ−1

2 ε)
for all g(u, ξ) > ε is employed. Now assume τ2 is fixed. Then we can choose

0 < τ1 < min

 ε

ln
(
α3

α4
+ exp(τ−1

2 ε)
) , τ2


and a simple calculation reveals ψNS(τ2, u)−ψNS(τ1, u) < 0, i.e., ψNS(τ, u) is not non-decreasing
with respect to τ .

The assumptions in the previous lemma are necessary to avoid pathological cases, e.g., the
cases Pr {g(u, ξ) ≤ 0} = 1 for all u ∈ U or Pr {g(u, ξ) > 0} = 1 for all u ∈ U . As such,
the requirements are rather weak. As a direct consequence of the lemma we do not have
infτ>0 ψ(τ, u) = limτ→0 ψ(τ, u).

4.4.2 A novel analytical approximation approach

In this section, an AA based on the parametric function

Θ(τ, u, s) =
1 +m1τ

1 +m2τ exp(− s
τ
)
, with ψG(τ, u) := E [Θ(τ, u, g(u, ξ))] , (4.4.9)

where 0 < τ < τmax, m1,m2, τmax ∈ R are given positive constants, is analyzed. Important
properties of the function Θ(τ, u, s) are given in the following proposition.

Proposition 4.4.10 (Geletu et. al. 2013 [34]). Suppose m1,m2, τmax ∈ R, 0 < τ ≤ τmax,
m2 <

m1

1+m1τmax
and Θ(τ, u, s) defined as above. Then the following holds:

4.4 Analytical approximations 31

(i) Θ(τ, u, s) > 0 for all s ∈ R,

(ii) Θ(τ, u, s) > 1 for s ≥ 0,

(iii) Θ(τ, u, ·) > 0 is a strictly increasing function w.r.t. s ∈ R,

(iv) Θ(·, u, s) > 0 is a strictly increasing function w.r.t. τ , 0 < τ < τmax,

(v) and

lim
τ→0+

Θ(τ, u, s) =

{
1, if s ≥ 0,
0, if s < 0,

uniformly for u ∈ U and for each ε > 0 uniformly for s ∈ (−∞,−ε) ∪ [0,∞).

Proof:

(i) Trivial.

(ii) To verify this, observe that m2 < m1 as a direct consequence of the assumption m2 <
m1

1+m1τmax
. Then,

m2τ exp(−s
τ

) ≤ m2τ < m1τ,

since exp(− s
τ
) ≤ 1 for s ≥ 0. This implies

1 +m2τ exp(−s
τ

) < 1 +m1τ ⇒
1 +m1τ

1 +m2τ exp(− s
τ
)
> 1.

(iii) Calculating the derivative

∂

∂s
Θ(τ, u, s) =

(1 +m1τ)(m2exp(− s
τ
))

(1 +m2τ exp(− s
τ
))2

> 0

directly delivers the desired result.

(iv) The derivative ∂
∂τ

Θ(τ, u, s) is

∂

∂τ
Θ(τ, u, s) =

m1(1 +m2τ exp(− s
τ
))− (1 +m1τ)(m2 exp(− s

τ
) +m2

s
τ

exp(− s
τ
))

(1 +m2τ exp(− s
τ
))2

32 4 Evaluation of Chance Constraints

Since the denominator (1 +m2τ exp(− s
τ
))2 > 1, i.e., positive, only the numerator has to

be further analyzed. Using the well known inequality exp(x) ≥ 1 + x for all x ∈ R in the
form 1 ≥ (1 + s

τ
) exp(− s

τ
) the following approximations can be made:

m1(1 +m2τ exp(−s
τ

))− (1 +m1τ)(m2 exp(−s
τ

) +m2
s

τ
exp(−s

τ
))

> m1 −m2(1 +m1τ)(1 +
s

τ
) exp(−s

τ
)

(
m2τ exp(−s

τ
) > 0

)
≥ m1 −m2(1 +m1τ)

(
1 ≥ (1 +

s

τ
) exp(−s

τ
)
)

≥ m1 −m2(1 +m1τmax) (τ ≤ τmax)

≥ 0

(
m2 <

m1

1 +m1τmax

)

In summary, it follows that ∂
∂τ

Θ(τ, u, s) > 0.

(v) This proof consists of two parts. First, assume s ≥ 0. Then Θ(τ, u, s) > 1 and

0 < Θ(τ, u, s)− 1 =
1 +m1τ

1 +m2τ exp(− s
τ
)
− 1

< 1 +m1τ − 1
(

1 +m2τ exp
(
−s
τ

)
> 1
)

< m1τ.

Now assume s < −ε for an arbitrary ε > 0. Then,

0 < Θ(τ, u, s) =
1 +m1τ

1 +m2τ exp(− s
τ
)

<
1 +m1τ

1 +m2τ exp(ε
τ
)
.

This concludes the proof.

Using this proposition, we can now show that ψG(·, ·) has the desired properties P1–P3.

Corollary 4.4.11. The analytic approximation ψG(τ, u) = E [Θ(τ, u, g(u, ξ))] has properties
P1–P3.

Proof: Take arbitrary 0 < τ1 < τ2 < τmax. Then, by Proposition 4.4.10 1., 2. and 4., we have

ψG(τ2, u) = E [Θ(τ2, u, g(u, ξ)]

> E [Θ(τ1, u, g(u, ξ)] = ψG(τ1, u)

> E [1(g(u, ξ))]

4.4 Analytical approximations 33

for all u ∈ U , and, therefore, properties P1 and P3. To get P2, first observe that the uncertain
variables ξ underlie a continuous distribution and that the function g(·, ·) is also continuous.
Hence, for all u ∈ U it holds that limδ→0+ Pr {−δ < g(u, ξ) < 0} = 0. Therefore, for every
u ∈ U and ε > 0 we find a δ(u) > 0, such that Pr {−δ(u) < g(u, ξ) < 0} < ε. Observe that

ψG(τ, u)− E [1(g(u, ξ))] =

∫
g(u,ξ)≤−δ(u)

Θ(τ, u, g(u, ξ))φ(ξ)dξ

+

∫
−δ(u)<g(u,ξ)<0

Θ(τ, u, g(u, ξ))φ(ξ)dξ︸ ︷︷ ︸
≤
∫
−δ(u)<g(u,ξ)<0(1+m1τmax)φ(ξ)dξ≤(1+m1τmax)ε

+

∫
g(u,ξ)≥0

(Θ(τ, u, g(u, ξ))− 1)φ(ξ)dξ.

Due to Proposition 4.4.10 5. we can find a τ̂ > 0 such that Θ(τ̂ , u, g(u, ξ))− 1(g(u, ξ)) ≤ ε for
all u ∈ U and for g(u, ξ) ≤ −δ(u) or g(u, ξ) ≥ 0. It follows that

ψG(τ, u)− E [1(g(u, ξ))] ≤ (2 +m1τmax)ε

for all τ < τ̂ , i.e., limτ→0 ψG(τ, u)− E [1g(u, ξ)] = 0. This implies property P2.

By Corollary 4.4.11 we have limτ→0 ψG(τ, u) = E [1g(u, ξ)], i.e., the approximation ψ(τ, u)
converges point-wise towards E [1g(u, ξ)] as τ → 0. As a next step, we will show that the
gradients ∇uψG(τ, u) converge uniformly for τ → 0, since this implies that ∇uψ(τ, u) →
∇uE [1g(u, ξ)]. In order to do this, observe that Θ(τ, u, g(u, ξ))φ(ξ) is continuous w.r.t. all
variables and the partial derivatives

∇uΘ(τ, u, g(u, ξ))φ(ξ) =
(1 +m1τ)m2 exp(−τ−1g(u, ξ))

(1 +m2τ exp(−τ−1g(u, ξ)))2 ∇ug(u, ξ)φ(ξ)

exist and are also continuous w.r.t. all variables (due to the differentiability of g(u, ξ)). Together
with the next assumption this allows to exchange differentiation and integration.

Assumption 4.4.12. For the remainder of this section, we assume that the support Ω of the
pdf φ is a compact subset of Rp.

Using this, we get

∇uψG(τ, u) =

∫
Ω

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ

The next results determine properties of ∇uψG(τ, u).

Lemma 4.4.13. Let Bε(u) = {ξ ∈ Ω| |g(u, ξ)| < ε}. Then,

lim
τ→0+

sup
u∈U

∣∣∣∣∫
Ω\Bε(u)

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ

∣∣∣∣ = 0.

34 4 Evaluation of Chance Constraints

Proof: Since Ω and U are compact and g is continuous we have a constant γ > 0 such that
supu∈U ,ξ∈Ω ‖∇ug(u, ξ)‖ = γ <∞. Hence, we get

sup
u∈U

∣∣∣∣∫
Ω\Bε(u)

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ

∣∣∣∣
= sup

u∈U

∣∣∣∣∫
Ω\Bε(u)

(1 +m1τ)m2 exp(−τ−1g(u, ξ))

(1 +m2τ exp(−τ−1g(u, ξ)))2 ∇ug(u, ξ)φ(ξ)dξ

∣∣∣∣
≤ sup

u∈U

∫
Ω\Bε(u)

(1 +m1τ)m2 exp(−τ−1g(u, ξ))

(1 +m2τ exp(−τ−1g(u, ξ)))2 ‖∇ug(u, ξ)‖φ(ξ)dξ

≤ sup
u∈U

∫
Ω\Bε(u)

γ(1 +m1τ)

(1 +m2τ exp(−τ−1g(u, ξ)))
(
m−1

2 exp(τ−1g(u, ξ)) + τ
)φ(ξ)dξ

= sup
u∈U

[∫
g(u,ξ)<−ε

γ(1 +m1τ)

(1 +m2τ exp(−τ−1g(u, ξ)))
(
m−1

2 exp(τ−1g(u, ξ)) + τ
)φ(ξ)dξ

+

∫
g(u,ξ)>ε

γ(1 +m1τ)

(1 +m2τ exp(−τ−1g(u, ξ)))
(
m−1

2 exp(τ−1g(u, ξ)) + τ
)φ(ξ)dξ

]

≤ sup
u∈U

[∫
g(u,ξ)<−ε

γ(1 +m1τ)

(1 +m2 exp(τ−1ε))τ
φ(ξ)dξ +

∫
g(u,ξ)>ε

γ(1 +m1τ)

m−1
2 exp(τ−1ε) + τ

φ(ξ)dξ

]
≤ sup

u∈U

[
γ(1 +m1τ)

(1 +m2 exp(τ−1ε))τ
+

γ(1 +m1τ)

m−1
2 exp(τ−1ε) + τ

]
.

As an immediate consequence, we obtain

lim
τ→0+

sup
u∈U

∣∣∣∣∫
Ω\Bε(u)

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ

∣∣∣∣ = 0.

Assumption 4.4.14. Let Ωg(u) = {ξ ∈ Ω| g(u, ξ) = 0}. For all u ∈ U and all ξ ∈ Ωg(u) it
holds that∇ξg(u, ξ) 6= 0.

Lemma 4.4.15. The limit

lim
τ→0+

∇uψG(τ, u)

exists and the convergence is uniform for u ∈ U .

Proof: For this proof we consider the transformation t = g(u, ξ) on the set U × Ω. Assume
that there is a point (ũ, ξ̃) ∈ U ×Ω such that g(ũ, ξ̃) = 0. Otherwise, we can find an ε > 0 with
|g(u, ξ)| > ε for all (u, ξ) ∈ U × Ω and by the previous lemma limτ→0+ supu∈U ∇uψG(τ, u) = 0.
Let

Γg := {(u, ξ, t)| t = g(u, ξ) = 0, (u, ξ) ∈ U × Ω} .

4.4 Analytical approximations 35

For each (ũ, ξ̃, 0) ∈ Γg, we find an index β ∈ {1, . . . , p} with ∂
∂ξβ
g(u, ξ) 6= 0 since ∇ξg(u, ξ) 6= 0

by assumption. Furthermore, set η̃j = ξ̃j for j ∈ {1, . . . , p} \ {β}. Due to the implicit function
theorem, we find open l∞-balls Ũ , Ṽ , (−t̂, t̂), and (a, b) around ũ, η̃j, ξ̃β, and 0 and a unique
function q : Ũ × Ṽ × (−t̂, t̂)→ (a, b) with q(ũ, η̃, 0) = ξ̃β.

As a next step, we introduce the coordinate transformation

ξj =

{
ηj j 6= β
q(u, η, t) j = β

(4.4.10)

for j = 1, . . . , p. By construction, we have

∂ξj
∂ηi

= δij, i, j ∈ {1, . . . , p} \ {β}

∂ξj
∂t

= 0, j ∈ {1, . . . , p} \ {β}

∂ξβ
∂ηi

=
∂q(u, η)

∂ηi
, i ∈ {1, . . . , p} \ {β}

∂ξβ
∂ηt

=
∂q(u, η)

∂t
=

(
∂g(u, ξ)

∂ξβ

∣∣∣∣
ξβ=q(u,η,t)

)−1

6= 0

The last non-vanishing property holds for sufficiently small neighborhoods Ũ × Ṽ × (−t̂, t̂) due
to the continuity of g. Therefore, the functional determinant

∆(u, η, t) :=

∣∣∣∣ ∂ξ

∂(η, t)

∣∣∣∣ =

∣∣∣∣∂ξβ∂t
∣∣∣∣ =

∣∣∣∣∣
(
∂g

∂ξβ

)−1
∣∣∣∣∣ > 0.

Hence, for each u ∈ Ũ we have a one-to-one C1-mapping from
{
ξ ∈ Ṽ × (a, b)| − t̂ < g(u, ξ) < t̂

}
to the set Ṽ × (−t̂, t̂), which does not depend on u.

The open sets {
Ũ ×

(
Ṽ × (a, b)

)
× (−t̂, t̂)

}
(ũ,ξ̃,0)∈Γg

create an infinite open covering of the compact set Γg, therefore, we can find a finite open
subcovering

{Ui × (Vi × (ai, bi))× (−ti, ti)}i=1,...,z

Now, choose an ε > 0 such that ε < ti for i = 1, . . . , z and each (u, ξ) ∈ U ×Ω with |g(u, ξ)| < ε
belongs to the covering. This is possible, since ‖∇g(u, ξ)‖ ≥ ‖∇ξg(u, ξ)‖ ≥ C > 0 for a constant
C ∈ R++ and for all (u, ξ, 0) ∈ Γg. For

N :=
⋃

i=1,...,z

Ui × (Vi × (ai, bi))

36 4 Evaluation of Chance Constraints

and its corresponding open covering exists a smooth partition of the unity {µi}i=1,...,z. Now,
we can use the partition of the unity and the parameter transformations constructed above to
analyze the integral

∫
Bε(u)

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ =

∫
Bε(u)

(1 +m1τ)m2 exp(−τ−1g(u, ξ))

(1 +m2τ exp(−τ−1g(u, ξ)))2 ∇ug(u, ξ)φ(ξ)︸ ︷︷ ︸
:=Q(g(u,ξ),τ)

dξ

(4.4.11)

=
z∑
i=1

∫
Vi×(ai,bi),|g(u,ξ)|<ε

Q(g(u, ξ), τ)µi(u, ξ)dξ (4.4.12)

=
z∑
i=1

∫
Vi

∫ ε

−ε
Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη. (4.4.13)

Regardless of the coordinate used for the transformation (which might be different for each
summand) we use (η, t) for the new variables and Vi for the set of vectors η. In the same sense
we understand the substitution ξ = (η, q(u, η, t)). Continuing, we obtain

z∑
i=1

∫
Vi

∫ ε

−ε
Q(t, τ)µi(u, η, qi(u, η, t))dtdη

=
z∑
i=1

∫
Vi

∫ ti

−ti
Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη

−
z∑
i=1

∫
Vi

∫ −ε
−ti

Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη

−
z∑
i=1

∫
Vi

∫ ti

ε

Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη.

By the previous lemma, the second and third summand tend uniformly towards zero for τ → 0+,
i.e.,

lim
τ→0+

sup
u∈U
∇uψG(τ, u)

= lim
τ→0+

sup
u∈U

z∑
i=1

∫
Vi

ti∫
−ti

Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη.

Define λ(u, η, t) := ∇ug(u, (η, qi(u, η, t)))µi(u, η, qi(u, η, t))∆(u, η, t) and φ̂(u, η, t) := φ(η, qi(u, η, t)).

4.4 Analytical approximations 37

Then

lim
τ→0+

sup
u∈U

z∑
i=1

∫
Vi

ti∫
−ti

Q(t, τ)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη

= lim
τ→0+

sup
u∈U

z∑
i=1

∫
Vi

ti∫
−ti

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 λ(u, η, t)φ̂(u, η, t)dtdη

= lim
τ→0+

sup
u∈U

z∑
i=1

τ log(m2
τ)∫

τ log(τ2m2)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2

∫
Vi

λ(u, η, t)φ̂(u, η, t)dtdη

+ lim
τ→0+

sup
u∈U

z∑
i=1

ti∫
τ log(m2

τ)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2

∫
Vi

λ(u, η, t)φ̂(u, η, t)dtdη

+ lim
τ→0+

sup
u∈U

z∑
i=1

τ log(τ2m2)∫
−ti

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2

∫
Vi

λ(u, η, t)φ̂(u, η, t)dtdη

Using the mean value theorem for integrals and the assumption that φ is continuous for all
ξ ∈ Ω, the above translates to

lim
τ→0+

sup
u∈U

z∑
i=1

τ log(m2
τ)∫

τ log(τ2m2)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt

∫
Vi

λ(u, η, t1(τ))φ̂(u, η, t1i (τ))dη

+ lim
τ→0+

sup
u∈U

z∑
i=1

ti∫
τ log(m2

τ)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt

∫
Vi

λ(u, η, t2i (τ))φ̂(u, η, t2i (τ))dη

+ lim
τ→0+

sup
u∈U

z∑
i=1

τ log(τ2m2)∫
−ti

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt

∫
Vi

λ(u, η, t3i (τ))φ̂(u, η, t3i (τ))dη,

where τ log(τ 2m2) < t1i < τ log
(
m2

τ

)
, τ log

(
m2

τ

)
< t2i < ti, and −ti < t3i < τ log(τ 2m2) for

38 4 Evaluation of Chance Constraints

i = 1, . . . , z. A short calculation reveals

τ log(m2
τ)∫

τ log(τ2m2)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt =
1 +m1τ

1 + τ 2
− τ(1 +m1τ)

1 + τ
−→τ→0+ 1

t1∫
τ log(m2

τ)

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt =
1 +m1τ

1 +m2τ exp(− t1
τ

)
− 1 +m1τ

1 + τ 2
−→τ→0+ 0

τ log(τ2m2)∫
−t1

(1 +m1τ)m2 exp(−τ−1t)

(1 +m2τ exp(−τ−1t))2 dt =
τ(1 +m1τ)

1 + τ
− 1 +m1τ

1 +m2τ exp(t1
τ

)
−→τ→0+ 0.

Furthermore, for the second and third summand it holds that the second factor is uniformly
bounded for u ∈ U , together with the calculation above this indicates that the second and
third summand go uniformly towards zero as τ → 0+. Additionally, the first factors of the
first summand goes to one independent of u, whereas the second factors converges uniformly
towards some integrals

Ji :=

∫
Vi

λ(u, η, 0)φ̂(u, η, 0)dη

and, finally,

lim
τ→0+

∇uψG(τ, u) =
z∑
i=1

Ji

uniformly for u ∈ U .

From the previous lemma, by standard arguments of analysis, immediately follows the fol-
lowing statement.

Theorem 4.4.16. The function ψG(τ, u) is continuously differentiable and it holds that

lim
τ→0+

sup
u∈U
‖∇uψG(τ, u)−∇uE [1(g(u, ξ))]‖ = 0.

The method employed to show the uniform convergence of the derivatives can be seen as
a generalization of the projection approach presented in Section 4.3. Whereas the original
approach relies on the existence of a global monotonic relation between g(u, ξ) and one of the
ξj, the proof given above requires the existence of such relations only on a finite number of sets.
Furthermore, the uncertain variable which induces monotonicity may change between this sets.
The transformation (4.4.10) can be seen as an inverse back projection, i.e., a forward projection
from the domain Ω into Ṽ × (−t̂, t̂). Consequently, like in the case of back-projection methods,
the derivatives (in the limit) can be found by integrating over a subset of Rp−1.

4.4 Analytical approximations 39

The proof presented above can be naturally extended to cover also higher order derivatives.
Under the assumptions made here and in Chapter 3 the convergence of the Hessian can be
shown, giving rise to the following corollary.

Corollary 4.4.17. The limit

lim
τ→0+

∇2
uψG(τ, u)

exists and the convergence is uniform for u ∈ U .

Proof: We start with

∇2
uψG(τ, u)

=

∫
Bε(u)

∇2
uΘ(τ, u, g(u, ξ))φ(ξ)dξ

=

∫
Bε(u)

(
∇2
sΘ(τ, u, s)

∣∣
s=g(u,ξ)

∇ug(u, ξ)∇ug(u, ξ)T + ∇sΘ(τ, u, s)|s=g(u,ξ)∇
2
ug(u, ξ)

)
φ(ξ)dξ,

which can be directly obtained by calculating the derivative of (4.4.11) with respect to u. Using
a partition of the unity and the transformation constructed in the proof of Lemma (4.4.15), we
get

∇2
uψG(τ, u)

=
z∑
i=1

∫
Vi

∫ ε

−ε
∇2
tΘ(τ, u, t)∇uĝ(u, η, t)∇uĝ(u, η, t)T φ̂(u, η, t)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη+

. . .+

∫
Vi

∫ ε

−ε
∇tΘ(τ, u, t)∇2

uĝ(u, η, t)φ̂(u, η, t)µi(u, η, qi(u, η, t))∆(u, η, t)dtdη

=
z∑
i=1

∫
Vi

∫ ε

−ε
∇tΘ(τ, u, t)∇t

(
∇uĝ(u, η, t)∇uĝ(u, η, t)T φ̂(u, η, t)µi(u, η, qi(u, η, t))∆(u, η, t)

)
︸ ︷︷ ︸

:=Q1(u,η,t)

dtdη+

. . .+

∫
V−i

(
∇tΘ(τ, u, t)∇uĝ(u, η, t)∇uĝ(u, η, t)T φ̂(u, η, t)µi(u, η, qi(u, η, t))∆(u, η, t)

)∣∣∣ε
t=−ε︸ ︷︷ ︸

:=Q2(u,η)

dη

. . .+

∫
Vi

∫ ε

−ε
∇tΘ(τ, u, t)∇2

uĝ(u, η, t)φ̂(u, η, t)µi(u, η, qi(u, η, t))∆(u, η, t)︸ ︷︷ ︸
:=Q3(u,η,t)

dtdη,

where φ̂(u, η, t) is defined as in the proof of Lemma 4.4.15 and ĝ(u, η, t) := g(u, η, qi(u, η, t)).
The last equation holds by integration by parts. Due to the assumptions made, Q1 and Q3 are
at least continuous and, therefore, bounded for u ∈ U and ξ ∈ Ω. This allows to continue in
the same way as in the proof of Lemma 4.4.15. By doing this, we obtain

Hi :=

∫
Vi

Q1(u, η, 0) +Q2(u, η) +Q3(u, η, 0)dη

40 4 Evaluation of Chance Constraints

Figure 4.1: Comparison between the functions exp(τ−1s) (method 1) employed by Nemirovski
and Shapiro and the function Θ(τ, u, s) (method 2) employed by Geletu et al.

and, finally,

lim
τ→0
∇2
uψG(τ, u) =

z∑
i=1

Hi

uniformly for u ∈ U .

Remark 4.4.18. Under the assumption of sufficient smooth functions g and φ, the convergence
of even higher derivatives can be shown in the same way, by repeatedly applying integration
by parts.

Remark 4.4.19. The proofs above hold only for uncertainties, where the corresponding pdf
is continuous (and continuously differentiable) on the compact set Ω. One should be aware
that this property is not guaranteed for all common distributions, e.g., for Beta distributed
uncertainties with parameters α, β < 1 the pdf is only continuous in the interior of Ω. In
application it is, therefore, necessary to check whether such cases occur.

Remark 4.4.20. It is possible to define a generalized version of ψG(τ, u), where the parameters
m1 and m2 are functions of the controls u, for details see [34]. Since this yields no immediate
gain for practical applications it was not considered in this work.

Figure 4.1 shows a comparison between the approximations methods proposed by Nemirovski
and Shapiro as well as Geletu et al. It can be clearly seen that the approximation of the step
function 1(g(u, ξ)) with Θ(τ, u, s) improves as τ decreases for the second method (Geletu et
al.), whereas the same is not true for the first method (Nemirovski/Shapiro).

4.4 Analytical approximations 41

4.4.3 Implementation

Approach of Nemirovski and Shapiro (ψNS(τ, u))

All in all, the approach proposed by Nemirovski and Shapiro is rather straight-forward to imple-
ment. The approximations ψNS(τ, u) can be evaluated using (Q)MC or sparse grid integration
methods. The derivatives ∇uψNS(τ, u) can be evaluated by

∇uψNS(τ, u) =

∫
Ω

∇u exp(τ−1g(u, ξ))φ(ξ)dξ

=

∫
Ω

exp(τ−1g(u, ξ))τ−1∇ug(u, ξ)φ(ξ)dξ,

again using (Q)MC or sparse grid methods. The choice of the parameter τ poses the biggest
difficulty, since for general problems either one chooses a fixed τ , probably leading to a more
conservative approximation, or one has to solve a two-stage optimization problem where in the
lower stage an optimal value of τ has to be determined.

Approach of Geletu et al. (ψG(τ, u))

In comparison to ψNS(τ, u) the implementation of ψG(τ, u) is more involved. This begins to
show in the computation of ψG(τ, u), since (Q)MC methods can be successfully employed, but
sparse grid rules are no longer an option. The reason for this is that for τ → 0+ the integrand
Θ(τ, u, s) becomes rather steep, which leads to large errors in sparse grid integration rules.
Although it is clear from the theory that one should solve a sequence of optimization problems
(NLPτk), (τk)k∈N with τk → 0+ one should keep in mind that the integration rule has to be
adapted to τk as k → ∞ (i.e., more grid points) in order to avoid that the integration error
actually invalidates the approximation property. For practical purposes it might be useful to
determine a τmin > 0, subject to the condition that the problem (NLPτmin) has a non-empty
feasible set and solve a sequence of problems with τk → τmin.

Another challenge when implementing ψG(τ, u) is the evaluation of derivatives. Although the
proof of Lemma 4.4.15 indicates a method for the evaluation, it is difficult to implement. There
are several reasons for this, including the difficulty of determining the open coverings and the
partition of the unity. For τ sufficiently large, finite differences can be used to approximate the
derivatives, e.g., central differences

∂

∂ui
ψG(τ, u) ≈ ψG(τ, u+ ∆u)− ψG(τ, u−∆u)

2∆u
.

In order to minimize the influence of integration errors on the derivatives ∆u has to be chosen
sufficiently large. A second approach is the direct evaluation of

∇uψG(τ, u) =

∫
Ω

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ

42 4 Evaluation of Chance Constraints

using cubature methods. But due to Lemma 4.4.13 we have∫
|g(,uξ)|>ε

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ = 0,

i.e., a very large number of grid points would be necessary to sufficiently determine and integrate
the set Bε(u), especially for small values of τ . To overcome this difficulty, here a new branch-
and-bound algorithm is proposed. The idea is to determine a finite number N of disjoint subsets
Ωi of Ω such that for given u ∈ U and for each ξ ∈ Ω with g(u, ξ) = 0 there exists an index j,
such that ξ ∈ Ωj. The derivatives are evaluated by

∇uψG(τ, u) =
N∑
i=1

∫
Ωi

∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ,

thereby eliminating subsets of Ω, which do not contribute to the integral. In order to find such
sets, we have to be able to efficiently determine, whether 0 ∈ g(u, Ω̃) holds for a given subset
Ω̃ ⊂ Ω: . This can be done using interval or affine arithmetic (see Chapter 2). To use these
methods, we need an explicit description of g(u, ξ). If such description is not available, we can
construct an explicit approximation using for instance (generalized) Fourier series or Artificial
Neural Network (ANN). These methods were shown to be uniformly convergent for a wide
class of functions (see Chapter 6), i.e., for every ε > 0 we can find an approximation g̃(u, ξ),
such that

‖g̃(u, ξ)− g(u, ξ)‖ < ε, for all ξ ∈ Ω.

Using this approximation we can now formulate the following algorithm.

Algorithm 4.4.21. Let Ω = [ξmin1 , ξmax1] × . . . ×
[
ξminp , ξmaxp

]
be the Cartesian product of

compact intervals [ξmini , ξmaxi], i = 1, . . . , p, let g̃(u, ξ) be an approximation of g(u, ξ) with
‖g̃(u, ξ)− g(u, ξ)‖ < ε for a given ε > 0, and δ > 0 a parameter. Set A = {Ω}.

(i) Choose Ω̃ ∈ A with Pr
{
ξ ∈ Ω̃

}
= maxΩ̂∈A Pr

{
ξ ∈ Ω̂

}
and set A := A\

{
Ω̃
}

.

(ii) Test, if 0 ∈ g̃(u, Ω̃) + (−ε, ε) using interval or affine arithmetic. If this is the case, dissect

Ω̃ into 2p hypercubes Ω̃i, i = 1, . . . , 2p with Pr
{
ξ ∈ Ω̃1

}
= . . . = Pr

{
ξ ∈ Ω̃2p

}
and set

A := A ∪
⋃2p

i=1 Ω̃i.

(iii) If A is empty return ∇uψG(τ, u) = 0. If Pr
{
ξ ∈ Ω̃

}
< δ for all Ω̃ in A go to (iv), else go

to (i).

(iv) Return ∇uψG(τ, u) =
∑

Ω̃∈A
∫

Ω̃
∇uΘ(τ, u, g(u, ξ))φ(ξ)dξ.

4.4 Analytical approximations 43

Proof: We first consider the termination and then the correctness of the algorithm. If A is
empty in step (iii) the algorithms terminates, therefore, assume that A is non-empty in this

step. Then, for all Ω̃ ∈ A it holds that Pr
{
ξ ∈ Ω̃

}
≤ 1

2p
as a result of step (ii). After at

maximum 2p iterations of the algorithm we have Pr
{
ξ ∈ Ω̃

}
<
(

1
2p

)2
for all Ω̃ ∈ A, since by

then every Ω̃ ∈ A with
(

1
2p

)2
< Pr

{
ξ ∈ Ω̃

}
≤ 1

2p
would have been chosen in step (i) and be

either discarded or dissected in step (ii). By a similar argument we have Pr
{
ξ ∈ Ω̃

}
<
(

1
2p

)3

for all Ω̃ ∈ A after a maximum of 2p + (2p)2 iterations. Generalizing this notion we have

Pr
{
ξ ∈ Ω̃

}
<
(

1
2p

)k
for all Ω̃ ∈ A after

∑k
i=1(2p)i iterations, i.e., with k̃ =

⌈
− log δ
p log 2

⌉
we get

Pr
{
ξ ∈ Ω̃

}
< δ for all Ω̃ ∈ A after a maximum of

∑k̃
i=1(2p)i iterations. The algorithm then

terminates in step (iv).
Now consider the correctness. In step (i), A is always non-empty since either A = {Ω} in

the first iteration or the algorithms would have terminated in the third step with an empty set
A. Consider ξ ∈ Ω with g(u, ξ) = 0. By step (ii) we find 0 ∈ g̃(u, Ω̃) + (−ε, ε) and, therefore,
ξ ∈ Ω̃j for some j ∈ {1, . . . , 2p}. As a consequence we have

{ξ ∈ Ω| g(u, ξ) = 0} ⊂
⋃

Ω̃∈A

Ω̃,

which concludes the proof.

Remark 4.4.22. If the multivariate pdf can be decomposed as in 5.2.2 and cdf and inverse cdf
are available (e.g., for standard distributions) then the dissection in step (ii) can be carried in
a straight forward fashion.

In the worst case, no set is ever discarded in step (ii). Then, after
∑k̃

i=1(2p)i iterations, A

contains (2p)k̃+1 sets. It limits the presented approach to smaller values of the dimension p. In
practical applications this usually means that p should not exceed 12–15.

45

5 Numerical Integration

Purpose of this chapter is to give an overview over integration rules which are suitable for the
application in CCOPT. We will also shortly discuss why certain well known rules are not useful
and give some ideas for future work. First, one dimensional integration (or quadrature rules)
will be treated. Based on these, we will then come to multivariate integration (or cubature)
rules. A section on sampling algorithms will conclude this chapter.

5.1 Univariate integration (quadrature)

Quadrature is concerned with the numerical evaluations of integrals of the form∫ b

a

f(ξ)w(ξ)dξ,

where −∞ ≤ a < b ≤ ∞, f : [a, b] → R is at least piecewise continuous with a finite number
of singularities, w : [a, b] → R is a piecewise continuous weight function with w(ξ) > 0 for

ξ ∈ (a, b). Furthermore, we require that
∫ b
a
w(ξ)dξ < ∞. This does not lead to restrictions in

the course of this work, since pdf will act as weight functions and therefore
∫ b
a
w(ξ)dξ = 1 if

supp w ⊂ (a, b).
Generally, an quadrature rule I[·] is described by N integration nodes ξi, i = 1, . . . , N and

corresponding weights ωi, which may depend on the weight function w(·) and the integral
bounds, but not on the function f(·) to be integrated. Numerically computing the integral
consists of evaluating the sum

I[f] =
N∑
i=1

ωif(ξ).

A helpful tool in comparing integration routines is the concept of polynomial accuracy:

Definition 5.1.1 (Polynomial accuracy). An integration rule I[f] is said to have a polynomial
accuracy of n, if all polynomials up to order n, denoted by Πn are integrated exactly, i.e.,∫ b

a

w(ξ)f(ξ)dξ − I[f] = 0, f ∈ Πn.

46 5 Numerical Integration

5.1.1 Newton-Cotes quadrature

As a first step, we shortly review the Newton-Cotes rules without going into detail, since
these kind of rules are generally not suitable for application in CCOPT. Nonetheless, they are
useful for getting to know the basic ideas of numerical integration and are also quite common
in numerical libraries. Furthermore, will we use them to examine what are useful/suitable
properties of an integration rule in the context of CCOPT. An in depth introduction to these
kind of integration rules (upon which the following summary is based) can be found in [83], p.
126 ff.

Newton-Cotes quadrature rules are based on a uniform partition of a bounded interval of inte-
gration [a, b] and are commonly used with a constant weight function w ≡ 1. As a consequence,
in this section only the computation of ∫ b

a

f(ξ)dξ (5.1.1)

is considered. The results can easily be extended to the “weighted” case by setting

f̂(ξ) = w(ξ)f(ξ)

and evaluating
∫ b
a
f̂(ξ)dξ. The single integration nodes (or points) are given by

h =
b− a
N − 1

ξi = a+ h(i− 1), i = 1, . . . , N,

where N ≥ 2 is the number of integration nodes. The integral (5.1.1) is then evaluated using

NC(N, a, b) [f] = h
N∑
i=1

ωif(ξi). (5.1.2)

Since NC(N, a, b) depends on the parameter h it is useful to determine how this length in-
fluences the integration error. This gives rise to the notion of the order of a Newton-Cotes
quadrature rule.

Definition 5.1.2 (Order of a Newton-Cotes quadrature rule). A Newton-Cotes quadrature
rule NC(N, a, b) is said to of order l, if and only if, there exists a function K depending on a,
b, and f but not on h or N , such that for all functions f in an appropriate function space∣∣∣∣∫ b

a

f(ξ)dξ −NC(N, a, b)[f]

∣∣∣∣ ≤ K(a, b, f)hl.

There exist several approaches to determine the weights ωi in (5.1.2) for a given number of
grid points N . The main idea in all approaches is to interpolate the integrand f(·) with a
polynomial either on the whole interval [a, b] or on subintervals of equal length.

5.1 Univariate integration (quadrature) 47

In the first case, the interpolating polynomial is of degree N −1 and the N weights ωi can be
chosen, such that all polynomials up to degree N−1 are integrated exactly. In general, weights
can be generated this way for any number of N , but in practice a larger choice of this value
leads to negative weights ωi, which in turn lead to numerical difficulties due to cancellation.
One common example of this class of rules is the well known trapezoidal integration rule

NC(2, a, b)[f] =
h

2
(f(a) + f(b)) ,

which appears when choosing N = 2. The integration error in this case is given by∫ b

a

f(ξ)dξ −NC(2, a, b) =
h3

12
f (2)(ξ̃),

for functions f ∈ C2[a, b], where ξ̃ ∈ (a, b), but unknown. As a direct consequence, the
trapezoidal rule has polynomial accuracy one and is of order three. A list of similar rules and
the corresponding integration errors can be found in [83], p. 128. Generally, it is difficult to
obtain higher order rules (i.e., rules with an order higher than eight), due to the problem of
negative weights occurring for larger numbers of N .

Another approach to the determination of the weights ωi is to apply the integration rules
obtained in the first case to subintervals of [a, b], e.g., given integration nodes ξ0, . . . , ξN−1 using
the trapezoidal rule on [ξi, ξi+1], i = 0, . . . , N − 2 and summing up the results to obtain an
(composite) integration rule of the form

NCcomp(N, a, b)[f] = h

[
f(a)

2
+
f(b)

2
+

N−2∑
i=1

f(ξi)

]
.

The integration error of this rule is bound by

b− a
12

h2f (2)(ξ)

for a ξ ∈ [a, b], i.e., this rule is of order two and has polynomial accuracy one. In contrast to the
trapezoidal rule for the whole interval the order is decreased by one. On the other hand it is now
possible to increase the number of integration points to improve the result. Using for example
twice as many integration nodes decreases the bound on the integration error by a factor of four.
Moreover, this approach allows the construction of series of nested integration rules, using N ,
2N−1, 4N−3, 8N−7, . . . integration nodes. The advantage of such construction is that every
integration node in a rule with fewer nodes is also existent in rules with a higher node count, i.e.,
the computed results can be reused. One possible usage of such nested integration rules is to
act as termination criterion in an integration routine. If integration results for two consecutive
integration rules (e.g., the rules using N and 2N − 1 nodes) differ less than a previously chosen
value ε than the result of the integration rule with the higher node count is accepted as result.
Otherwise, the result of the integration rule with the lower node count is discarded and the

48 5 Numerical Integration

whole process is repeated starting with the integration rule with the initially higher node count
and its consecutive rule (e.g., taking the rules with 2N − 1 and 4N − 3 integration nodes). Due
to the fact that the integration rules derived with this second approach are based on the results
of the first approach they suffer from the same fate of being numerically unstable for methods
of higher polynomial accuracy.

Summing up, we find that the rules generated by the first approach are more of theoretical
nature, since their application is confined to integration on a relatively small interval [a, b] in
order to keep the step size h low. Furthermore, choosing more integration nodes with the goal
of reducing the step size h may lead to numerically unstable integration rules. In contrast,
the second approach allows for an arbitrary step size by choosing a suitable value N for the
number of integration nodes. In addition, the construction of series of nested integration rules
is possible. What renders these rules unsuitable in the given setting is the fact that increasing
N neither increases the polynomial accuracy nor the order of the rule. Moreover, similar to the
first approach, integration rules with higher polynomial accuracy can only be generated at the
cost of numerical instabilities.

Remark 5.1.3. Generally, Newton-Cotes rules can be designed to include derivative infor-
mation at the integration nodes. Since in the case of CCOPT the calculation of derivatives
typically includes the solution of a possibly medium to large scale linear system in addition to
the solution of a nonlinear system such an approach is not useful in the given setting, due to
the high computational demand.

5.1.2 Clenshaw-Curtis quadrature

Clenshaw-Curtis (CC) rules are typically generated for integrals of the form∫ 1

−1

f(ξ)dξ,

but other bounded intervals of integration are possible (by transforming the integral from [a, b]
to [−1, 1] using a linear transformation) as well as extensions for the weighted case. The
integration nodes in the standard case are given by

ξi = cos

(
i− 1

N − 1
π

)
, i = 1, . . . , N

for an N ≥ 2 and the weights can be obtained by

ωi =
ci

N − 1

1−
dN−1

2 e∑
j=1

bj
4j2 − 1

cos

(
2j

iπ

N − 1

) ,

where

bj =

{
1, j = N−1

2

2, j < N−1
2

, ci =

{
1, i = 0 mod (N − 1)
2, otherwise

.

5.1 Univariate integration (quadrature) 49

These weights are obtained by requiring that all polynomials up to degree N-1 are integrated
exactly [86]. This is equivalent to the requirement that all monomials are integrated exactly,
which leads to linear system of equations of the form

1 . . . 1
ξ1 . . . ξN
ξ2

1 . . . ξ2
N

...
...

ξN−1
1 . . . ξN−1

n


︸ ︷︷ ︸

A

 ω1

...
ωN

 =


∫ b
a

1dξ∫ b
a
ξdξ
...∫ b

a
ξN−1dξ

 . (5.1.3)

Since the nodes ξi, i = 1, . . . , N are all distinct, the N × N -matrix A has full rank and there
always exists a unique solution of (5.1.3). As a direct consequence, an N -point CC rule has at
least a polynomial accuracy of N − 1. An extension of standard CC rules to the weighted case
is possible by changing the right-hand side of (5.1.3) to

∫ b
a
w(ξ)dξ∫ b

a
ξw(ξ)dξ
...∫ b

a
ξN−1w(ξ)dξ

 .

One should be aware that in this generalized approach negative weights can occur (resulting
in cancellation and numerical instabilities), whereas the same can not happen in the standard
case.

Remark 5.1.4. Although the system (5.1.3) could be used to determine the weights in a CC
rule this is not a practical approach, since the matrix A has a bad condition, especially for
larger values of N . This leads to a reduced accuracy when trying to solve the system with
numerical methods. Practical approaches to the computation of the weights usually involve the
usage of a discrete Fourier transform [86].

In summary, N -node CC rules have a polynomial accuracy of N − 1, i.e., in contrast to
the composite Newton-Cotes rules, increasing the number of node points actually increases the
polynomial accuracy. Furthermore, generating CC rules for arbitrary polynomial accuracy does
not pose a problem. Similar to the Newton-Cotes formulas the construction of nested sequences
of CC rules is possible.

5.1.3 Gauß quadrature

Gauss quadrature offers a natural framework to overcome the limitations of the previously men-
tioned quadrature rules. For instance, weight functions can be included without the occurrence
of negative weights. Moreover, Gauss quadrature achieves the highest polynomial accuracy

50 5 Numerical Integration

among all integration rules for a given number of integration nodes N . This is achieved by
choosing not only the weights but also the integration nodes in an optimal way.

Gaussian quadrature rules are based on the notion of orthogonal polynomials in the Hilbert
space L2[a, b] of all functions for which∫ b

a

(f(ξ))2w(ξ)dξ

is well defined. The corresponding scalar product is defined by

〈f, g〉 :=

∫ b

a

f(ξ)g(ξ)w(ξ)dξ,

where f, g : [a, b] → R and two polynomials p1, p2 are said to be orthogonal if 〈p1, p2〉 = 0.
Starting with the polynomial p0 ≡ 1 it is now possible to construct a orthonormal system
p0.p1, . . . of polynomials, such that 〈pi, pj〉 = 0 whenever i 6= j. One way of doing this is to use
the following recursive construction (see [83], p. 151)

p−1 ≡ 0, (5.1.4)

p0 ≡ 1, (5.1.5)

pi+1(ξ) = (ξ − δi+1)pi(ξ)− γ2
i+1pi−1ξ, i ≥ 0, (5.1.6)

with δi+1 =
〈ξpi, pi〉
〈pi, pi〉

and γi+1 =

{
0, i = 0

〈pi,pi〉
〈pi−1,pi−1〉 , i ≥ 1

. (5.1.7)

The roots of these polynomials together with suitable weights can be used as integration rules,
which becomes clear from the following theorem.

Theorem 5.1.5 (Gaussian quadrature, [83] p. 153 f.).

(i) Let ξ1, . . . , ξN be the real and simple roots of the N-th orthogonal polynomial pN(ξ), and
let ω1, . . . , ωN be the solution of the (non-singular) system of equations

N∑
i=1

ωipk(ξi) =

{
〈< p0, p0〉 >, k = 0

0 k = 1, . . . , N − 1
. (5.1.8)

Then ωi > 0 for i = 1, . . . ;N and∫ b

a

p(ξ)w(ξ)dξ =
n∑
i=1

ωip(ξi) (5.1.9)

holds for all polynomials p ∈ Π2N−1.

(ii) Conversely, if the numbers ωi, i = 1, . . . , N are such that (5.1.9) holds for all p ∈ Π2N−1,
then the ξi are the roots of pN and the weights ωi satisfy (5.1.8).

5.1 Univariate integration (quadrature) 51

(iii) It is not possible to find numbers ξi, ωi, i = 1, . . . ;N , such that (5.1.9) holds for all
polynomials p ∈ Π2N .

Remark 5.1.6. Similar to the CC rules it is inappropriate to use the theoretical construction to
determine the integration nodes and weights for Gaussian quadrature rules. This is due to the
fact that it is numerically difficult to obtain the N roots of the N -th orthogonal polynomial pN
with sufficient accuracy. Additionally, the system (5.1.8) suffers from bad condition for larger
numbers of N . For practical purposes one can construct a symmetric matrix from the values δi
and γi used in the recurrence relation. The integration nodes can then be found as eigenvalues
of this matrix, whereas the weights can be constructed from the eigenvectors (see [83], p. 156
ff. for a detailed description).

An error bound for N -point Gaussian quadrature of functions f ∈ C2N [a, b] is given by

f (2N)(ξ)

2N !
〈p0, p0〉

for a ξ ∈ (a, b).
In summary, Gaussian quadrature rules seem to be the “best” available method for univariate

integration, allowing a polynomial accuracy of 2N − 1 for an N -point rule. Furthermore, the
weights are guaranteed to be positive, therefore, no cancellations occur. Nevertheless, the rules
under consideration also have a drawback, since they generally cannot be nested like Clenshaw-
Curtis or Newton-Cotes rules. Additionally, for non-polynomial functions the performance of
Gaussian rules seems to be similar to those of Clenshaw-Curtis rules [84].

5.1.4 Kronrod-Patterson quadrature

Gauss-Kronrod and Kronrod-Patterson integration both try to extend existing Gaussian rules
with N nodes by adding M > N further integration nodes. Since the original integration nodes
are preserved, this results in a set of nested quadrature rules. This “nested” property comes at
the price of a reduced polynomial accuracy, which is usually lower than the polynomial accuracy
of 2(N +M)− 1 achieved by a pure Gaussian rule with the same number of nodes but greater
than a polynomial accuracy of N + M − 1 achieved by a Clenshaw-Curtis rule with N + M
nodes. Kronrod [53] proposed to extend a rule containing N nodes by further N+1 nodes, e.g.,
he extended the seven point Gauss-Legendre rule by additional eight points. Building on the
work of Kronrod, Patterson tried to generate extensions to the already extended rules, using a
similar approach.

Starting point for the process of Gauss-Kronrod and Kronrod-Patterson quadrature is an
arbitrary orthogonal polynomial pN of a corresponding Gauss quadrature rule. The next step
is to construct a polynomial

qM(ξ) = ξM +
M−1∑
i=0

κiξ
i, (5.1.10)

52 5 Numerical Integration

Figure 5.1: Kronrod-Patterson extensions to four different quadrature rules with Beta weight,
constant parameter β and four different choices for the parameter α

such that

〈qMpN , pi〉 = 0, i = 0, . . . , N

i.e., qMpN is orthogonal to all polynomials pi, i = 0, . . . , N . This is equivalent to the requirement
that

〈qMpN , ξi〉 = 0, i = 0, . . . , N. (5.1.11)

Inserting (5.1.10) into (5.1.11) leads to the linear system

∫ b
a
w(ξ)dξ . . .

∫ b
a
ξM−1w(ξ)dξ∫ b

a
ξw(ξ)dξ . . .

∫ b
a
ξMw(ξ)dξ

...
...∫ b

a
ξN−2w(ξ)dξ . . .

∫ b
a
ξN+M−3w(ξ)dξ∫ b

a
ξN−1w(ξ)dξ . . .

∫ b
a
ξN+M−2w(ξ)dξ




κ0

κ1

...
κM−2

κM−1

 =


−
∫ b
a
ξMw(ξ)dξ

−
∫ b
a
ξM+1w(ξ)dξ

...

−
∫ b
a
ξN+M−1w(ξ)dξ

−
∫ b
a
ξN+Mw(ξ)dξ

 ,

(5.1.12)

which has a unique solution if M = N + 1. The M roots of qM together with the N roots of
pN form the integration nodes of the Kronrod extensions. In contrast to Gaussian quadrature,
the roots of qM may be neither real nor simple. Furthermore, it is not assured that all roots
of qM are actually inside the region of integration. An example for this behavior is shown in
Figure 5.1 , where extensions to several 7-node quadrature rules for Beta weight with the same
parameter β but slightly changing parameter α were generated. In the three cases on the top
the extensions exist, as all nodes are simple, real and inside the interval of integration. In the
last case however, while the nodes are still real and simple, the most left node is outside of the
domain of integration. As a consequence, this extension cannot be used for quadrature. More
generally, if some of the previously mentioned conditions appear the Kronrod is said to be non-
existent. In the case that the extensions exists, it has a polynomial accuracy of 3N + 1 while
having 2N + 1 integration nodes. This is less than the maximum possible polynomial accuracy
of 4N + 1 achieved by a pure Gaussian rule but more than a polynomial accuracy of 2N , which
could be achieved by a Clenshaw-Curtis rule. Although some measures have been taken to
find conditions for the existence of Kronrod extensions, this field of research is wide open. In
many instances the only way to find such extensions is by the method of trial-and-error. A
second approach is the usage of suboptimal Kronrod extensions [8]. Here the polynomial qM

5.1 Univariate integration (quadrature) 53

is constructed in a certain way to guarantee the existence of the extensions, but this comes at
the cost of a reduced polynomial accuracy. A third approach is to choose a value M > N + 1,
e.g., M = N + 3. Since (5.1.12) is now underdetermined, additional conditions of the form
〈qMpN , pi〉 = 0, i = N + 1, . . . ,M − 1 can be added. These additional conditions ensure that
the constructed rule has the highest possible polynomial accuracy of at least 2M + N − 1.
Fundamentally, this method also relies on trial-and-error.

In the following, yet another approach will be presented. It arose during the work on a
practical CCOPT problem, which was solved as part of this thesis (see the Chance Constrained
Optimal Power Flow (CCOPF) problem in the case studies). This particular problem includes
Beta-distributed uncertainties, whose parameters α, β depend on a forecast. For this reason,
the actual values of α and β are not known beforehand. Since the Beta distribution has no
standard form, quadrature rules have to be generated for every possible pair of parameters α,
β. The proposed approach goes as follows. Starting with a Kronrod extension generated for
integrals with Beta weight for some parameters α0, β0 by means of another approach, Newton’s
method can be used to find the nodes of Kronrod rules for weight functions with parameters
α, β in some neighborhood of α0, β0. Assuming that the already generated extension adds M
nodes to an N node Gaussian quadrature rule, the proposed approach consists of two steps:

(i) The N nodes of the Gaussian quadrature rule belonging to the weight function with
parameters α and β are sought by means of a standard approach.

(ii) The additional integration nodes are determined by Newton’s method. The system to
be solved is essentially (5.1.12), but since qM is now described by its roots instead of its
coefficients the system is nonlinear. In the case that M > N + 1 the system (5.1.12) has
to be padded with further restrictions of the kind 〈qMpN , pi〉 = 0, i = N + 1, . . . ,M − 1.
As starting point of Newton’s method the M roots of the polynomial qM for weight with
parameters α0, β0 are used.

Similar to the construction of standard Kronrod extensions, solutions may not exist (i.e., some of
the nodes are complex) or some of the nodes may not be contained in the domain of integration.
If this happens the extensions by means of Newton’s method fails. Otherwise, this approach
results in a Kronrod type quadrature rule for weights with parameters α, β. The same approach
can also be used to construct Patterson extensions from a given existing sequence of Patterson
extensions. In this case, the second step has to be carried out repeatedly. Figure (5.2) shows
the approximate area in the domain of the parameters α, β of a Beta-distribution, where a
Patterson extension of the type 1 + 2 + 4 + 22 exists. This figure was obtained by using the
aforementioned approach. The type 1 + 2 + 4 + 22 has to be read as a one node Gaussian rule
extend by two nodes to get a Kronrod extensions, further extended by first four and then 22
nodes. As can be seen in Figure (5.2), the domain where this kind of extensions exist is rather
irregular. Consequently, the idea to provide a list of precomputed Gauss-Kronrod or Kronrod-
Patterson rules from which other rules could then be generated proved impractical, since it is
generally unclear for which parameters quadrature rules should be computed beforehand.

Till now we have only discussed the computation of the nodes. The weights ωi can be found

54 5 Numerical Integration

4.5 5 5.5 6
2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

1+2+4+22

alpha

beta

Figure 5.2: Approximation of the parameters α, β of a Beta-distribution for which a Kronrod-
Patterson rule of the type 1 + 2 + 4 + 22 exists

5.1 Univariate integration (quadrature) 55

Figure 5.3: Integration nodes for different quadrature methods on the interval [−1, 1] with
uniform weight

as the unique solution of (5.1.8), i.e., the same system as in standard Gaussian quadrature.
Unlike the standard case, negative weights may appear.

In summary, Kronrod-Patterson quadrature rules can be seen as a kind of compromise be-
tween pure Gaussian and Clenshaw-Curtis rules. From the first they inherit the high polynomial
accuracy, from the second the property of “nestedness”. While for some weight functions (es-
pecially Gaussian and uniform weight) the Kronrod-Patterson rules are readily available, the
existence of extensions is not clear for others (e.g., Beta weight). In practice, this limits the
usage of such rules mostly to weight functions of the first type.

5.1.5 Some remarks on univariate quadrature in the context of CCOPT

While univariate quadrature is seldom necessary on itself in the context of CCOPT (most
problems contain more than one uncertainty), the corresponding rules can be used as building
blocks for multivariate quadrature rules as demonstrated in the next section. As a consequence,
the methods presented in this section were rated mainly on their suitability for being building
blocks. The necessary criteria are

• high polynomial accuracy,

• nestedness (i.e., rules with a higher count of integration nodes should contain the nodes
of an integration rule with fewer node count),

• ability to incorporate weight functions,

• positive weights.

As became clear in this section, there is no approach fulfilling all these criteria. While Newton-
Cotes rules fulfill only two of the criteria (nestedness and positive weights) and, therefore, are
unsuitable for CCOPT, Gauss and Clenshaw-Curtis both fulfill three criteria. These are high
polynomial accuracy, ability to incorporate weights functions, and positive weights for Gaussian
quadrature and high polynomial accuracy (although to a lesser extent than Gaussian rules),
nestedness and positive weights for Clenshaw-Curtis quadrature. For specific weight functions,
Clenshaw-Curtis quadrature fulfills all four criteria, which is the same as for Kronrod-Patterson
rules. For weight functions were all four criteria are fulfilled by either Kronrod-Patterson or

56 5 Numerical Integration

Clenshaw-Curtis, the respective method is the approach of choice. Otherwise, if the negative
weights in the Clenshaw-Curtis rule do not impact the numerical stability of the integration rule
(i.e., the negative weights have a small magnitude) then Clenshaw-Curtis is still the method of
choice, since the nestedness significantly reduces the number of grid points (multidimensional
integration nodes) in an important type of multivariate integration rules. If the numerical
stability is impacted in Clenshaw-Curtis rules then Gaussian rules are the method of choice.

We conclude this section with a comparison of seven node Newton-Cotes, Clenshaw-Curtis
and Gaussian rules for the interval [−1, 1] with uniform weight. The corresponding nodes are
shown in Figure 5.3. While the Newton-Codes nodes are uniformly distributed, the nodes for
the other two methods are more dense near the boundary of the domain of integration, which
is actually necessary to guarantee a high polynomial accuracy.

5.2 Multivariate integration (cubature)

As discussed above, to compute the probability values and gradients in the chance constraints
as well as statistical moments and gradients we have to evaluate multidimensional integrals of
the form

I =

b1∫
a1

. . .

bn∫
an

f(ξ1, . . . , ξn)w(ξ1, . . . , ξn)dξn . . . dξ1, (5.2.1)

where −∞ ≤ aj < bj ≤ ∞ for i = 1, . . . , n, f is at least piecewise continuous, and w : [a1, b1]×
. . . × [ab, bn] → R is a continuous weight function with w(ξ1, . . . , ξn) > 0 for (ξ1, . . . , ξN) ∈
(a1, b1)× . . .× (ab, bn). Furthermore, we assume that the weight function w can be decomposed
in the following way

w(ξ1, . . . , ξn) =
n∏
i=1

wi(ξi), (5.2.2)

where wi : [ai, bi]→ R. For systems with a large number of uncertain variables the computation
of such integrals is very time consuming. Similar to the univariate case such integrals can be
approximated by cubature formulas

Î[f] =
N∑
i=1

ωif(ξi1, . . . , ξ
i
n),

where N is the number of grid points (multivariate integration nodes), ωi are weighting factors
and ξi1, . . . , ξ

i
n denote grid points aj ≤ ξij ≤ bj for j = 1, . . . , n and i = 1, . . . , N , respectively.

5.2 Multivariate integration (cubature) 57

5.2.1 Full grids

Full grids present the trivial approach to multivariate integration. Writing (5.2.1) as∫ b1

a1

(∫ b2

a2

(. . .)w2(ξ2)dξ2

)
w1(ξ1)dξ1

allows to use a suitable univariate quadrature rule for the outer integral, then at every integra-
tion node the next inner integral is again computed using a univariate rule, and so on. More
clearly, let Vj(Nj) =

∑Nj
i=1 ω

i
jf(ξij) denote a one-dimensional integration rule for the integral∫ bj

aj

f(ξj)wj(ξj)dξj

with Nj nodes ξij and weights ωij. This can be used to construct a rule for the integral (5.2.1)
using the tensor product approach. The product (or full-grid) rule [19] over the n-dimensional
integral is defined by

V1(N1)⊗ . . .⊗ Vn(Nn)[f] =
N1∑
i1=1

. . .

Nk∑
ik=1

ωi11 . . . ω
in
n f(ξi11 , . . . , ξ

in
n). (5.2.3)

A graphical explanation of the construction of tensor product grids is shown in 5.4. The points
on the left-hand-side and below the square represent the one-dimensional integration nodes,
while the grid points inside the square are the derived points for a two-dimensional rule.

The number of grid points of the product rule is N1 × . . . × Nn. Assuming that N1 =
. . . = Nn = N the number of points in the product rule is Nn, i.e., the number of grid points
grows exponentially with the dimension of the integral. This behavior is called the “curse of
dimension”. The polynomial accuracy of a full grid rule depends on the polynomial accuracy
of the underlying univariate rule. If these rules have a polynomial accuracy of Ai, i = 1, . . . , n
then all polynomials of the form

n∏
i=1

ξp1

1 , 0 ≤ pi ≤ Ai, i = 1, . . . , n

are integrated exactly. This leads to cases where a polynomial of degree
∑n

i=1 Ai is integrated
exactly, whereas certain polynomials with lesser degree are not integrated exactly. Nevertheless,
the minimum guaranteed polynomial exactness is mini∈{1,...,n}Ai.

Remark 5.2.1. A method, comparable to full grid integration, was proposed by Prékopa
for Gaussian weights in [69], p. 195. This method is based on the fact that the marginal
distributions of a Gaussian distributed uncertain vector also underlie a Gaussian distribution.
But as Prékopa himself points out, this method should not be applied due to the high amount
of computation required to carry out the necessary transformations.

58 5 Numerical Integration

Figure 5.4: Construction of tensor product grids

5.2.2 Sparse Grids

In 1963 Smolyak [80] proposed the sparse-grid integration method to overcome the “curse of
dimension”. The idea is to construct multi-dimensional rules using tensor products of differ-
ences of quadrature rules, in contrast to full-grid integration, where only quadrature rules are
used. The basis of sparse-grids is a sequence of one-dimensional quadrature rules Vi(Ni) with
an increasing polynomial accuracy, i = 1, . . . , n, which explains the requirement of a high poly-
nomial accuracy in evaluating the univariate integration rules. Using these integration rules
the differences of quadrature rules can be defined by

V0(N0) = 0, ∆0 = 0,∆i = Vi(Ni)− Vi−1(Ni−1).

It is easy to see that Vn(Nn) =
∑n

i=1 ∆i because of the telescopic sum. A second observation is
that for continuous integrands and suitable underlying quadrature rules limn→∞

∑n
i=1 ∆i = I,

i.e., the series converges toward the exact integral value. This series is used to derive the
multi-dimensional cubature formula. As in the full-grid case the series is combined using the
tensor-product approach (see (5.2.3)), leading to∑

0≤i1,...,in<∞

∆i1 ⊗ . . .⊗∆in .

The series cannot be evaluated practically. Therefore a truncation is used, such that the sparse-
grid integration rule has the form

A(n, q) =
∑

0≤i1+...+in≤q

∆i1 ⊗ . . .⊗∆in . (5.2.4)

It is possible to express A(n, q) directly in terms of the underlying quadrature rules as shown
by Wasilkowski and Wozniakowski [87].

Sparse-grid rules generated through (5.2.4) generally contain negative weights. Since these
negative weights affect the numerical stability of the rules, not all rules generated by (5.2.4)

5.2 Multivariate integration (cubature) 59

are convenient for integration. In fact, one has to determine grid points and weights where the
norm of the negative weights is comparatively small. Such grids have already been evaluated
for unweighted integrals over hypercubes and integrals with Gaussian weights. Novak and
Ritter [66] have shown that formulas generated with (5.2.4) have a polynomial accuracy of
at least 2(q − n) + 1 if integration over a hypercube is considered and the underlying one-
dimensional rules are Gaussian quadrature rules. For the same class of integrals it was shown
that the number of grid points to obtain the same polynomial accuracy grows only polynomially
with the dimension of the integral, in contrast to an exponential growth for the product rule.
This is a real advantage, which becomes clear from Figure 5.5, where the numbers of necessary
grid points are shown for full and sparse grid rules with the same polynomial accuracy. Whereas
the eight-dimensional sparse-grid rule needs only about 1000 grid points, a full grid rule of
the same polynomial accuracy needs about 108 grid points, which is prohibitive in practical
application. The number of grid points in a sparse grid rule can be further reduced by using
nested underlying quadrature rules, which explains why nestedness was a desired property in
the last section.

Figure 5.5: Comparison of the number of required grid points for full and sparse grid inte-
gration for different dimensions of integration and the same polynomial accuracy

Further comparisons between product rules and sparse-grids based on standard Gaussian
rules as well as on the extensions proposed by Genz and Keister [36] were given by Heiss
and Winschel [39]. More performance results for sparse-grids were obtained by Gerstner and
Griebel [37]. The advantages of sparse-grid integration techniques can be summarized as follows:

60 5 Numerical Integration

• Multidimensional integrals can be accurately computed using only a few grid points.

• Integration of polynomials can be evaluated exactly (depending on the order).

• Grid points and weights only depend on the region of integration not on the integrand
itself.

• They can be easily implemented when using predefined grid points and weights.

• Existing routines for full-grids can be used without any or with only few modifications.

The disadvantages of sparse-grid rules are basically twofold. First, the existence of negative
weights cannot be prevented, therefore, it is necessary to check sparse grid rules for numerical
instabilities. Second, the constructed rules are only suitable for very smooth functions, which
can be seen by the error estimate

O
(
N̂−r/n(log N̂)(n−1)(r/n+1))

)
(5.2.5)

given in [66] for a bounded domain of integration and integrands f with bounded derivatives
up to order r, where N̂ is the total number of grid points and n is the dimension of the integral.

5.3 (Quasi-)Monte-Carlo cubature

In order to apply Monte-Carlo and Quasi-Monte-Carlo schemes we transform the integrals to
the unit cube, ∫

Rd

f(x)φ(x)dx =

∫
[0,1]d

f(Φ−1(y))dy, (5.3.1)

using the inverse cumulative distribution function Φ−1. Then both methods approximate inte-
grals in the following way

Q(n, d) =
1

N

N∑
i=1

f
(
Φ−1(yi)

)
. (5.3.2)

Monte-Carlo methods sample the grid points yi from a uniform distribution. On the other
hand, Quasi-Monte-Carlo methods use the concept of low discrepancy for the generation of
grid points. Roughly speaking, this means that the empirical distribution induced by the grid
points should not deviate too much from the uniform distribution. The main difficulty is to
generate such grids in higher dimensions without an exponential growth of the necessary grid
points. There exist different strategies to generate such grids. In this work the Sobol sequence
was used, because at least for the test functions it yields the best results. A detailed description
of Monte-Carlo and Quasi-Monte-Carlo methods can be found in [54].

5.4 Comparison of the different methods 61

The integration error of standard Monte-Carlo integration is in the order of

O

(
1√
N̂

)
,

whereas the integration error of Quasi-Monte-Carlo is in the order of

O
(

(log N̂)n
1

N̂

)
,

where again N̂ is the number of grid points and n the dimension of integration [12]. Although
the error rate of Quasi-Monte-Carlo integration is better than that of pure Monte-Carlo for
moderate dimension n of integration, it should be noted that the Monte-Carlo result could
be improved by additional methods like importance sampling [67]. Such methods were not
considered in the course of this work, since such methods would need to be carried out during
run time of an integration algorithm, thereby further increasing computational demand.

5.4 Comparison of the different methods

5.4.1 Test Results

The goal of these tests is to determine the minimum number of grid points necessary to evaluate
the weighted integrals ∫

Rd

f(ξ)φ(ξ)dξ,

where φ(ξ) is the multivariate Gaussian weight, with an absolute numerical error smaller or
equal to 10−3 for different test functions. Table 5.1 presents the results of the numerical
experiments. The table does not list the result of the integration, but instead lists the numerical
errors. The first column contains the dimension, whereas the second column contains the
description of the routine in the format “method - # of grid points‘”. The acronym SG stands
for sparse grid, MC and QMC for Monte-Carlo and Quasi-Monte-Carlo, respectively. The
integration routines (column 2) which are most suitable for application are printed in bold font.
The bold face numbers in columns 3–8 indicate violations of the chosen numerical accuracy. As
one can see, sparse grids yield the best results (measured in numbers of necessary grid points)
except for the step function. Since the step function is discontinuous, such behavior is not
surprising in the light of the error estimate 5.2.5. This shows that sparse grid techniques are
not suitable if the functions contain discontinuities or are generally not very smooth, which, for
example, is the case when using AA methods. Consequently, the integration method of choice
in this case are Quasi-Monte-Carlo algorithms. It is also obvious that the Monte-Carlo method
requires significantly more grid points than the other integration routines. Therefore, it should
not be applied in its pure form.

62 5 Numerical Integration

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

Quasi Monte-Carlo (49 grid points)
0 0,2 0,4 0,6 0,8 1

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

Full grid (225 grid points)
0 0,2 0,4 0,6 0,8 1

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

Sparse grid (65 grid points)
0 0,2 0,4 0,6 0,8 1

0 0,2 0,4 0,6 0,8 1

0

0,2

0,4

0,6

0,8

1

0

0,2

0,4

0,6

0,8

1

Full grid (49 grid points)
0 0,2 0,4 0,6 0,8 1

0 0,2 0,4 0,6 0,8 1

Figure 5.6: Grid points of different integration methods for a two-dimensional integration
with Beta weight.

We conclude this section with a comparison of the different grid points of two full grids, a
sparse grids (all three based on Clenshaw-Curtis rules), and a Quasi-Monte-Carlo grid for two-
dimensional integration with Beta weight, which is shown in Figure 5.6. The integration rules
connected with the grids shown in the first column have the same polynomial accuracy, but
the sparse grid rule in the second row uses only a subset of the grid points of the full grid rule.
Furthermore, while the grid points of the (Q)MC rule are uniformly distributed (with respect
to the underlying Beta weight), the grid points of the sparse grid rule are concentrated on two
axis parallel to the boundary of the domain and on the boundary itself. This explains, why
sparse grids rules are only suitable for sufficiently smooth functions, since any discontinuities
suitably far away from the grid points cannot be detected.

5.4 Comparison of the different methods 63

T
ab

le
5.

1:
T

es
t

fu
n

ct
io

n
s

an
d

er
ro

r
re

su
lt

s

f
(x

)
=

1
x

x
2

x
3

si
n
(x

)
x

x
2
+

1
1
x
<

0

1-
d
im

.

S
G

-
9

0
1.

1e
-1

7
4.

4e
-1

6
3.

9e
-1

7
1.

7e
-1

7
1.

1e
-1

8
1.

3e
-1

Q
M

C
-

18
,0

00
8e

-7
2.

6e
-4

1e
-3

2
.3

e
-3

4.
8e

-5
4.

4e
-5

4e
-7

Q
M

C
-

2
0
,0

0
0

1e
-1

3
1.

4e
-4

7.
6e

-4
6.

1e
-4

6.
3e

-5
2.

9e
-5

4.
7e

-1
4

M
C

-
80

0,
00

0
1.

7e
-1

1
3.

8e
-4

1
.2

e
-3

5.
9e

-4
5.

0e
-4

3.
7.

3e
-4

6.
5e

-5
M

C
-

90
0,

00
0

1.
0e

-6
1.

0e
-4

6.
9e

-4
4.

2e
-4

1.
6e

-5
4.

3e
-4

3.
7e

-4
f

(x
)

=
1

x
1

+
x

2
x

1
∗
x

2
(x

1
−
x

2
)2

si
n
(x

1
)

co
s(
x

2
)

co
s(
x

1
)

si
n
(x

2
)

1
x
<

0

2-
d
im

.

S
G

-
4
5

0
5.

1e
-1

9
6.

4e
-1

8
0

1.
5e

-1
7

9.
6e

-1
8

1.
5e

-1
Q

M
C

-
30

,0
00

1.
0e

-6
1.

4e
-4

9.
4e

-6
1
.3

e
-3

6.
4e

-5
2.

9e
-5

2.
5e

-7
Q

M
C

-
3
5
,0

0
0

1.
0e

-6
2.

5e
-4

3.
5e

-5
9.

8e
-4

3.
6e

-5
2.

3e
-5

2.
5e

-7
M

C
-

1,
50

0,
00

0
5.

0e
-7

4.
0e

-4
6.

7e
-5

2
.8

e
-3

1.
3e

-4
5.

4e
-4

1.
8e

-4
M

C
-

2,
50

0,
00

0
2.

5e
-1

1
4.

0e
-4

5.
9e

-4
4.

4e
-4

3.
3e

-4
6.

7e
-4

9.
0e

-5

f
(x

)
=

1
∑ x i

∏ x i
(x

1
−
∑ d 2

x
i)

2
1
x
<

0

3-
d
im

.
S
G

-
1
6
5

6.
7e

-1
6

1.
7e

-1
7

6.
3e

-1
9

3.
6e

-1
5

1.
1e

-1
Q

M
C

-
45

,0
00

1e
-6

8.
8e

-5
6.

9e
-5

1
.0

1
e
-3

2.
2e

-5
Q

M
C

-
5
0
,0

0
0

7.
1e

-1
3

1.
3e

-4
2.

2e
-4

9.
5e

-4
2e

-5

4-
d
im

.
S
G

-
4
4
1

2.
2e

-1
6

7.
5e

-1
9

1.
5e

-1
9

3.
3e

-1
4

6.
1e

-2
Q

M
C

-
70

,0
00

1e
-6

6.
4e

-5
8.

6e
-5

1
.2

e
-3

1.
4e

-5
Q

M
C

-
7
2
,0

0
0

8.
0e

-6
2.

8e
-5

2.
6e

-4
6.

6e
-4

1.
4e

-5

5-
d
im

.
S
G

-
9
9
3

1.
1e

-1
5

3.
4e

-1
6

1.
4e

-1
9

6.
3e

-1
4

3.
1e

-2
Q

M
C

-
16

0,
00

0
1.

5e
-1

2
7.

5e
-5

2.
2e

-5
1
.0

2
e
-3

1.
3e

-5
Q

M
C

-
1
6
5
,0

0
0

6.
5e

-7
3.

4e
-1

6
1.

4e
-1

9
9.

8e
-4

7.
6e

-6

6-
d
im

.
S
G

-
2
0
2
1

1.
9e

-1
4

1.
2e

-1
6

0
4.

0e
-1

3
1.

6e
-2

Q
M

C
-

52
0,

00
0

1.
6e

-6
4.

1e
-5

1
.1

e
-3

4.
6e

-4
1.

9e
-6

Q
M

C
-

5
5
0
,0

0
0

1.
0e

-6
1.

5e
-5

4.
9e

-4
5.

4e
-4

1.
4e

-6

65

6 Solution of Model Equations

This chapter describes the way the model equations F (y, u, ξ) = 0 can be solved for y given
controls u ∈ U and uncertain inputs ξ ∈ Ω. The case that F (y, u, ξ) = 0 can be explicitly solved
for the state variables y is trivial. Therefore, the following discussion is limited to problems
where this is not the case. The usual approach to such problems is the usage of (generalized)
Newton methods, which are described below.

6.1 Newton’s method

The main idea of the Newton (also Newton-Raphson) method is to use a first order Tailor
approximation of the function F (y, u, ξ) to determine a root of the function. More clearly,
given a starting point y0 ∈ Rn and using the first order approximation

F̂ (y, u, ξ) = F (y0, u, ξ) + Fy(y0, u, ξ)(y − y0), (6.1.1)

where Fy is a short-hand notation for ∂F
∂y

, a new approximation of the root can be obtained by

calculating a root of (6.1.1), which is given by

y1 = y0 − Fy(y0, u, ξ)
−1F (y0, u, ξ).

Repeatedly applying the above approximation leads to

yk+1 = yk − Fy(yk, u, ξ)−1F (yk, u, ξ), k ∈ N, (6.1.2)

which results in a sequence (yk)k∈N being generated, assuming that Fy(yk, u, ξ) is invertible for
k ∈ N. The next theorem gives assumptions under which the sequence converges towards a
root of F (y, u, ξ). Here, ‖·‖ denotes either the operator norm (for matrix arguments) or the
Euclidean norm (for vector arguments).

Notation 6.1.1. Let y0 ∈ Rn and r > 0. By Br(y0) we denote an open ball of radius r around
y0 in the Euclidean norm, i.e.,

Br(y0) = {y ∈ Rn | ‖y − y0‖2 < r} .

66 6 Solution of Model Equations

Theorem 6.1.2 (Convergence of Newton’s method, [83] p. 270). Let C ⊂ Rn be a given
open set. Further, let C0 be a convex set with cl C0 ⊂ C, and let F : C × U × Ω → Rn,
(y, u, ξ) 7→ F (y, u, ξ) be a given function, which is differentiable with respect to y on C0 for all
u ∈ U and ξ ∈ Ω, and continuous on C × U × Ω.

For y0 ∈ C0 let positive constants r, α, β, γ, h be given with following properties:

Br(y0) ⊂ C0

h :=
αβγ

2
< 1

r := α/(1− h)

and for arbitrary but fixed u ∈ U and ξ ∈ Ω let F (y, u, ξ) have the properties

(i) ‖Fy(ŷ, u, ξ)− Fy(ỹ, u, ξ)‖ ≤ γ‖ŷ − ỹ‖ for all ŷ, ỹ ∈ C0;

(ii) Fy(y, u, ξ)
−1 exists and satisfies ‖Fy(y, u, ξ)−1‖ ≤ β for all y ∈ C0;

(iii) ‖Fy(y0, u, ξ)
−1F (y0, u, ξ)‖ ≤ α.

Then

(i) beginning at y0, each point

yk+1 = yk − Fy(yk, u, ξ)−1F (yk, u, ξ), k ∈ N,

is well defined and satisfies yk ∈ Br(y0) for all k ≥ 0,

(ii) limk→∞ yk = ȳ exists and satisfies ȳ ∈ cl Br(y0) and F (ȳ, u, ξ) = 0,

(iii) for all k ≥ 1

‖yk − ȳ‖ ≤ α
h2k−1

1− h2k
.

Since 0 < h < 1, Newton’s method is at least quadratically convergent.

It is clear from the previous theorem that convergence of Newton’s method can only be
expected when starting in a sufficiently small neighborhood of the root. Several methods to
overcome this problem have been proposed. One possible approach is the usage of a line search
method, i.e., instead of (6.1.2) the iteration

yk+1 = yk − µkFy(yk, u, ξ)−1F (yk, u, ξ), k ∈ N, 0 < µk < 1,

is used for suitable choices of the parameter µk.

6.2 Approximation approaches 67

6.2 Approximation approaches

Approximation methods are actually not a method to find an exact solution to a set of equations,
but rather a means to find a suitable approximation of such solution. As a consequence, they
are not a replacement of Newton’s method. Nonetheless, under certain circumstances they
can significantly reduce the computational burden in the solution of CCOPT problems. The
methods described below are best employed in conjunction with the AA approach proposed by
Geletu et al. [34] (see also Chapter 4). As guaranteed by Proposition 4.4.10 (v)

lim
τ→0+

Θ(τ, u, s) =

{
1, if s ≥ 0,
0, if s < 0,

uniformly for u ∈ U and uniformly for s ∈ (−∞,−ε) ∪ [0,∞) and for given ε > 0. This means
that whenever g(u, ξ) ≥ 0 or g(u, ξ) < −ε the function Θ(τ, u, g(u, ξ), used in the approxima-
tion, tends to 1 or 0, respectively. Using an suitably small value of τ , a sufficiently large value
of ε, and an approximation ĝ(u, ξ) of g(u, ξ) with a maximum guaranteed approximation error
of εapprox leads to the following algorithm:

Algorithm 6.2.1. In the evaluation of ψG(τ, u) use

Θ̂(τ, u, g(u, ξ)) =


0, ĝ(u, ξ) < −ε− εapprox

Θ(τ, u, g(u, ξ)), −ε− εapprox ≤ ĝ(u, ξ) ≤ εapprox
1, ĝ(u, ξ) > εapprox

.

Proof: Since the approximation ĝ(u, ξ) has a maximum error of εapprox, ĝ(u, ξ) < −ε− εapprox
guarantees that g(u, ξ) < −ε and, therefore, limτ→0+ Θ(τ, u, g(u, ξ)) = 0. The same reasoning
can be applied in the case that ĝ(u, ξ) > εapprox, which yields the desired result.

Assuming that the approximation algorithm is faster than the solution of the model equations
by Newton’s method the following approach can be used. Whenever the probability of holding
the constraints is computed by means of a numerical integration of∫

Ω

Θ(τ, u, g(u, ξ))dξ

the first step is to determine ĝ(u, ξk) for all grid points ξk, k = 1, . . . , N in a suitable integration
rule I[·]. The grid points ξk can be grouped into three sets:

(i) S<−ε−εapprox = {k | g(u, ξk) < −ε− εapprox},

(ii) S>εapprox = {k | g(u, ξk) > εapprox},

(iii) Sother = {k | − ε− εapprox ≤ g(u, ξk) ≤ εapprox}.

68 6 Solution of Model Equations

The corresponding integration routine then becomes

I[Θ̂(τ, u, g(u, ξ)] =
∑

i∈S>εapprox

ωi +
∑

i∈Sother

ωiΘ(τ, u, g(u, xi)),

which can possibly be evaluated much faster than the original integral I[Θ(τ, u, g(u, ξ))], de-
pending of course on the actual sizes of the sets S<−ε−εapprox and S>εapprox . In the following we
will shortly examine two methods of approximation.

6.2.1 Artificial Neural Networks

Artificial Neural Network (ANN) are a concept of machine learning and the main idea is to
emulate the working of a human brain by using a somewhat similar structure. Here, we will
only consider so called feed-forward networks, since a general description of ANN is out of the
scope of this work. A feed-forward network generally consists of three type of neurons (input,
hidden, and output) and connections between these neurons. A schematic of such network is
shown in Figure 6.1. From the mathematical point of view, a neural network is a mapping
FANN : Rn → Rm, m,n ∈ N, mapping the values of the input neurons onto the output neurons.
This is done in several steps, depending on the amount of layers in the network. Let i=0, . . . ,M
number the single layers, where layer 0 contains the input neurons and layer M contains the
output neurons. Let further Ni be the number of neurons in layer i, i = 0, . . . ,M . All layers,
except layer 0, describe a mapping Fi : RNi−1 → RNi , where Fi(x) = (Fi,1(x), . . . Fi,Ni(x))T .
The j-th neuron in layer i then calculates the entry Fi,j(x

i). The single functions Fi,j(x
i) can

be further decomposed into an activation function Ai,j : RNi−1 → R, and a transfer function
Ti,j : R→ R with Fi,j(x

i) = Ti,j (Ai,j(x
i)). The whole network output is then described by

FANN(x) = FM (FM−1 (FM−2 (. . . F1(x) . . .))) .

The activation functions Ai,j are typically weighted summation, i.e.,

Ai,j(x
i) =

Ni−1∑
k=1

wi,j,kFi−1,k(x
i−1),

where wi,j,k ∈ R for 1 ≤ i ≤ M , 1 ≤ j ≤ Ni and 1 ≤ k ≤ Ni−1. Transfer functions can be any
at least smooth functions, e.g., sigmoidal functions.

Before an ANN can be used for the approximation of a function F : Rn → Rm it has to be
“trained”. For this step precomputed pairs (xi, yi) with yi = F (xi), i = 1, . . . , L are required.
The training now consists of finding optimal values for the weights wi,j,k. This can be done in
several ways. One way consists of solving a least square problem of the following form

min
wi,j,k

L∑
k=1

|F (xi)− FANN(xi)|2,

6.2 Approximation approaches 69

...

Input layer Hidden layers Output layer

Figure 6.1: Schematic of a feed-forward network1

another approach is the so called back propagation [72], Chapter 7. Assuming that the number
of layers is low enough and all involved functions are given in a closed form, the output of an
ANN can be obtained reasonably fast, since only arithmetic operations have to be carried out.
The next theorem, proposed by Cybenko [20], guarantees that for continuous functions F on
the unit hypercube we can always find a feed-forward network with only one hidden layer and
an approximation error less than εapprox.

Definition 6.2.2 (Discriminatory function, [20]). We say that σ : R → R is discriminatory if
for a measure µ ∫

[0,1]n
σ(wTx+ θ)dµ(x) = 0

for all w ∈ Rn and θ ∈ R implies that µ ≡ 0.

Remark 6.2.3. One common discriminatory function used in the context of ANN is

σ(x) =
1

1 + e−βx

for some β ∈ R++.

Theorem 6.2.4 (Cybenko, [20]). Let σ be any continuous discriminatory functions. Then
finite sums of the form

FANN(x) =
N∑
j=1

αjσ(wTj x+ θj),

1This figure was created based on a work of Mysid Dake (http://commons.wikimedia.org/wiki/File:
Neural_network.svg).

http://commons.wikimedia.org/wiki/File:Neural_network.svg
http://commons.wikimedia.org/wiki/File:Neural_network.svg

70 6 Solution of Model Equations

where αj, θj ∈ R for j = 1, . . . , n and wj ∈ Rn for j = 1, . . . , n, are dense in C ([0, 1]m). In
other words, given any F ∈ C ([0, 1]m) and εapprox > 0, there is a sum, G(x), of the above form,
for which

|F (x)− FANN(x)| ≤ εapprox

for all x ∈ [0, 1]n.

6.2.2 (Generalized) Fourier series

The second approach of approximation consists of using a series of orthogonal functions (like
the polynomials constructed in Gaussian quadrature), which form a basis of a suitable function
space. One commonly known method of this type is the Fourier series expansion [95], Chapter
18, which is defined in the space L2([−π, π]) of all square-integrable functions on the interval
[−π, π]. The corresponding basis functions are ψ0 ≡ 1, ψSn (x) = sin(nx), and ψCn (x) = cos(nx),
n ∈ N. Any function f ∈ L2 [−π, π] can now be approximated using

sN(x) =
〈f, ψ0〉
〈ψ0, ψ0〉

ψ0(x) +
N∑
i=1

(
〈f, ψSi 〉
〈ψSi , ψSi 〉

ψSi (x) +
〈f, ψCi 〉
〈ψCi , ψCi 〉

ψCi (x)

)
for an N ∈ N and

〈f, g〉 =

∫ π

−π
f(x)g(x)dx,

for f, g ∈ L2 [−π, π]. The next theorem gives conditions for the uniform convergence of this
approximation.

Theorem 6.2.5 (Zorich [95], p. 542). If the function F : [−π, π]→ R is such that

(i) f ∈ C(m−1) [−π, π], m ∈ N,

(ii) f (j)(−π) = f (j)(π), j = 1, . . . ,m− 1,

(iii) f has a piecewise continuous m-th derivative f (m) on [−π, π], m ≥ 1,

then the Fourier series of f converges absolutely and uniformly on [−π, π] to f , and the deviation
of the n-th partial sum sN(x) of the Fourier series from f(x) has the following estimate on the
entire interval:

|f(x)− sN(x)| ≤ εN

Nm− 1
2

,

where {εN} is a sequence of positive numbers tending to zero.

The main problem with this kind of approximation is the fact that uniform convergence is
only guaranteed for 2π-periodic functions.

6.2 Approximation approaches 71

Remark 6.2.6. Approximations can be also defined on a basis of orthogonal polynomials on
suitable intervals [a, b]. The main concern with these approximations is that uniform con-
vergence of the approximation towards the original function can generally only be shown for
compact intervals inside (a, b), see for example [46,77].

One way to overcome this problem was proposed by Adcock [1]. He used a modified Fourier

series expansion for approximation on the interval [−1, 1] with ψ̄
[0]
0 ≡ 1√

2
, ψ̄

[0]
n (x) = cos(nπx),

and ψ̄
[1]
n (x) = sin

((
n− 1

2

)
πx
)

and

s̄N(x) = sN(x) =
〈f, ψ̄[0]

0 〉
〈ψ̄[0]

0 , ψ̄
[0]
0 〉

ψ̄
[0]
0 (x) +

N∑
i=1

(
〈f, ψ̄[0]

i 〉
〈ψ̄[0]

i , ψ̄
[0]
i 〉

ψ̄
[0]
i (x) +

〈f, ψ̄[1]
i 〉

〈ψ̄[1]
i , ψ̄

[1]
i 〉

ψ̄
[1]
i (x)

)
.

In the following theorem we will see that this kind of approximation converges uniformly on
[−1, 1] regardless of periodicity.

Definition 6.2.7 (Weak derivative, [48] p. 266). Let Ω ⊂ Rd be open, f ∈ L1
loc(Ω) :=

{f ∈ L1(Ω′) | Ω′ ⊂ Ω compact}. A function v is called the weak (partial) derivative of f in the
direction ξj if ∫

Ω

v(ξ)u(ξ)dξ = −
∫

Ω

f(ξ)
∂

∂ξj
u(ξ)dξ

holds for all u ∈ C1
0(Ω) = {f ∈ C1(Ω) | suppf ⊂ Ω}.

Definition 6.2.8. The space H1[−1, 1] is defined by

H1[−1, 1] =

{
f ∈ L2[−1, 1] |

∫ 1

−1

f 2(x) +

(
∂

∂x
f(x)

)2

dx <∞

}
,

where ∂
∂x
f is the weak derivative of f .

Theorem 6.2.9 (Adcock [1]). Suppose that f ∈ H1[−1, 1]. Then ‖f − s̄N‖∞ → 0 as N →∞.

Another advantage of this approach is that it can easily be extended to the multivariate case of
approximating functions over the hypercube [−1, 1]d. Using multi-indices n = (n1, . . . , nd) ∈ Nd

and i = (i1, . . . , id) ⊂ {0, 1}d the d-dimensional basis functions are given by

ψn[i] =
d∏
j=1

ψ[ij]
nj

(xj),

where x = (x1, . . . , xd) ∈ [−1, 1]d. Given a finite index set IN ⊂ Nd an approximation to
f : [−1, 1]d → R can be obtained by

ŝN(x) =
∑

i∈{0,1}d

∑
n∈IN

〈f, ψ[i]
n 〉ψ[i]

n (x).

Similar to the univariate case the uniform convergence of this approximation can be shown.

72 6 Solution of Model Equations

Definition 6.2.10.

H1
mix[−1, 1]d =

{
f ∈ L2[−1, 1]d | ∂

∂xj
f ∈ L2[−1, 1]d, ∀j = 1, . . . , d

}
,

where ∂
∂xj
f , j = 1, . . . , d, are the weak partial derivatives of f .

Theorem 6.2.11 (Adcock [2]). Suppose that f ∈ H1
mix[−1, 1]d and IN ⊂ Nd, N ∈ N satisfy⋃

N≥1 IN = Nd as well as I1 ⊂ I2 ⊂ Then, ŝN(x) converges point-wise to f for all

x ∈ [−1, 1]d as N →∞. Moreover, the convergence is uniform.

Whereas in the neural network approach a high count of pairs (xi, yi) with yi = f(xI)
is necessary to train the network, Fourier approaches require a similar amount of function
evaluations to determine the coefficients 〈f, ψ〉, which can be found by numerical integration,
least square approaches or Fast Fourier Transform (FFT)2. As a consequence, approximation
approaches are only suitable if the function f needs to be approximated sufficiently often or
under time constraints in an online application.

2The authors of [45] argue that numerical integration is more suited for the task than FFT methods.

73

7 Applications and Numerical Experi-
ments

7.1 Software and implementation

Purpose of this section is to describe, which software and what hardware was used to obtain
the results described below. All problems were solved using a personal computer equipped
with a hexacore I7-980X processor, 6 GiBi RAM, an NVIDIA GTX 470 consumer graphic
card, and running Ubuntu Linux. The problems were implemented in C++ using IpOPT as
optimizer. Routines from the GNU Scientific Library were used to generate (Q)MC grid points
as well as to solve linear and nonlinear systems of equations. To speed up the computation,
parallelization, based on OpenMP, was used. Additionally, GPU computing, based on CUDA,
was employed for certain problems. Besides the usage of compiler flags (as “-O3” in the gcc
compiler), parallelization, and the choice of suitable data structures no further attempts on
optimizing the implementation were made.

7.1.1 Parallelization

Modern processors with more than one core (i.e., so called multicore processors) are MIMD
(multiple instructions, multiple data) devices. As such, every core can carry out different
computation tasks using totally different data sets as input. The limiting factors are the
computation speed of the single cores (e.g., clock speed) and the time it takes to transport data
from the main memory to the processor cores. Multicore processor can be used to speed up the
solution of CCOPT problems. The approach, taken in this thesis, is to parallelize the evaluation
of integrals using OpenMP1. As the evaluation on a single grid point does not depend on
information from any other grid point this avoids the appearance of so called racing conditions,
which appear if one thread in a parallel execution depends on data processed by another thread.
One problem in connection with parallel execution is the inherent non-determinism. It occurs
since threads are distributed differently over the distinct processor cores every time a parallel
part of a program is executed. Since the order of execution is no longer deterministic, problems
may occur for example when summing up results of the single grid points using a reduction
(one method of summing up the results of different iterations of a loop in OpenMP). Due

1openmp.org - visited 31.07.2013

74 7 Applications and Numerical Experiments

to the changing order in the summation of the results, different rounding occurs, leading to
non-deterministic results when the same program is executed repeatedly.

In contrast to processors, graphic cards are so called SIMD (single instruction, multiple data)
devices. These cards usually contain a larger number of processor cores (typically 128–2048).
The main characteristic is that all processors have to carry out the same operation (or do
nothing), leading to a more restricted area of application. In this work, parallelization on an
NVDIA graphics card using CUDA [76] was employed.

7.1.2 Implementation

The main difficulty when implementing the AA approach is the choice of a suitable parameter
τ . One has to keep in mind that smaller values of τ typically require a more refined integration
method, i.e., a method using more grid points, thereby increasing the computation time. In the
case studies, the following approach to the choice of τ was used. In a first step an integration
routine was generated. Then, by experiment, the smallest value of τ for which the generated
integration rule gave reliable results was determined. If the resulting value of τ was deemed too
large (e.g., τ > 0.001), the integration method was refined and the whole process of determining
the minimal parameter τ was repeated. The whole process was repeatedly carried out until a
suitable integration method, allowing a sufficiently small value of τ , was found. This value of
τ was the used one throughout the optimization.

7.2 Numerical experiments

The main contribution of this work is the introduction of a novel Analytical Approximation
approach (see Chapter 4) and suitable methods for the computation of the corresponding
gradients. Furthermore, an approach to decrease the computation time was proposed. In
the following, a comparison of the proposed approach with other methods for solving CCOPT
problems is conducted. The test problems include applications in finance, chemical process
engineering and Reliability Based Design Optimization (RBDO). The first four experiments
were not previously published, whereas the last case study was partly published in [35].

We begin with four academic standard examples. As integration methods, suitable (Q)MC
rules based on the Sobol sequence are used. The parameters for the AA approach are τmax =
0.0005, τ = 0.0004, m1 = 1.0005, m2 = 1.

7.2.1 Cattle feed problem

The first test problem is a cattle feed problem proposed and solved in [22]. It consists of
finding a cost optimal mix of ingredients (barley, oats, sesame flake, and groundnut meal)
which satisfies certain constraints on the nutritional content (in this case protein and fat) of
the mix. In addition, the content of protein in the single ingredients was assumed to be normally
distributed and independent of the protein content in the other ingredients (see Table 7.1 for

7.2 Numerical experiments 75

Table 7.1: Data for the cattle feed problem

Expected Variance in Fat Price
Variable Ingredient protein content protein content content per ton
X1 Barley 12.0 0.2809 2.3 24.55
X2 Oats 11.9 0.1936 5.6 26.75
X3 Sesame flakes 41.8 20.2500 11.1 39.00
X4 Groundnut meal 52.1 0.6241 1.3 40.50

Table 7.2: Comparison of optimization results for the cattle feed problem, plain text numbers
represent the results found in [68], results in italic numbers were obtained using
the AA approach

α X1 X2 X3 X4 Cost True probability

0.9
0.6269 0.0100 0.3089 0.0515 29.86 0.944
0.6408 0.0100 0.3078 0.0414 29.68 0.9004

0.95
0.6127 0.0100 0.3106 0.0666 30.12 0.979
0.6273 0.0100 0.3092 0.0536 29.89 0.9503

0.98
0.5935 0.0100 0.3126 0.0839 30.43 0.995
0.2933 0.3939 0.1748 0.1380 30.14 0.9802

0.99
0.0100 0.6995 0.0696 0.2209 30.62 0.999
0.2101 0.4874 0.1423 0.1602 30.23 0.9901

the details). The corresponding optimization problem is given as

min 24.55X1 + 26.75X2 + 39.00X3 + 40.50X4 (7.2.1)

s.t. X1 +X2 +X3 +X4 = 1 (7.2.2)

2.3X1 + 5.6X2 + 11.1X3 + 52.1X4 ≥ 5 (7.2.3)

Pr {21− ξ1X1 + ξ2X2 + ξ3X3 + ξ4X4 ≤ 0} ≥ α (7.2.4)

X1, X2, X3, X4 ≥ 0.01. (7.2.5)

Due to the Gaussian distribution of the uncertainties and the linearity of the problem, the
chance constraint could be transformed into an equivalent nonlinear deterministic constraint.
In order to obtain a linear deterministic problem, the authors of [68] proposed a linear ap-
proximation of the chance constraint. A comparison of the results obtained by the linear
approximation and the analytic approximation is given in Table 7.2. It can be seen that both
approaches underestimate the true probability value. Nonetheless, the analytic approximation
approach results in a tighter bound of the probability values and, consequently, better solutions
of the cattle feed problem. The solution of this problem needs five seconds when using parallel
computation on the CPU. A comparison with the approach in [68] is not possible, since no
performance data was presented there.

76 7 Applications and Numerical Experiments

7.2.2 Portfolio optimization problem

This problem was considered in [5] and is concerned with the optimal investment of borrowed
capital. At the beginning of a time period a capital is borrowed which has to be payed off
at the end of this period with an interest rate l. The borrowed capital can be invested at a
fixed rate b or at a uncertain rate ξ (E [ξ] > b). Furthermore, a part of the capital can be
consumed resulting in a satisfaction measured by a concave non-decreasing function f . Goal
of the optimization is to maximize the sum of the satisfaction and the expected capital return,
subject to the constraint that the borrowed capital and the interest rate can be paid off at the
end of the period, at least with a probability α. The optimization problem is stated as follows

min − s(1− u− v)− (1 + b)u− (1 + E [ξ])v (7.2.6)

s.t. u+ v ≤ 1 (7.2.7)

Pr {1 + l − (1 + b)u− (1 + ξ)v ≤ 0} ≥ α (7.2.8)

u, v ≥ 0, (7.2.9)

where u describes the amount of capital invested at the fixed rate b, v describes the amount of
capital invested at the uncertain rate ξ and the function s : R→ R given by

s(x) = −x
2

2
+ 2x

describes the satisfaction brought by spending the amount x. The parameters are given as
b = 0.2, l = 0.15 and the cdf of ξ is

Φ(ξ) =


0 ξ < −2.6,
1
16

(
3
(
ξ−0.4

3

)5 − 10
(
ξ−0.4

3

)3
+ 15

(
ξ−0.4

3

)
+ 8
)
−2.6 ≤ ξ ≤ 3.4,

1 ξ > 3.4.

One special property of this optimization problem is that for α ≥ 0.7 an investment at the
uncertain rate ξ becomes infeasible, i.e., in this case the chance constraint is reduced to a
deterministic constraint, which is satisfied as long as u ≥ 0.95833. The proposed approach is
able to deal with this pathology, i.e., for α = 0.7 the optimal values of the decision variables
are u∗ = 0.961 and v∗ = 0. For α = 0.24 the authors of [5] report the optimal values u∗ = 0
and v∗ = 0.504 with objective function value −1.5746, whereas the proposed approach leads
to optimal values u∗ = 0 and v∗ = 0.506 with objective function value −1.5744. Although, the
result reported in [5] is better by a small margin, it should be noted that the proposed AA
approach does not require any special adaption to neither the pathologies of the optimization
problem nor the non-standard distribution of the uncertain variable. The computations require
less than one second (using parallelization on the CPU). A comparison with the approach in [5]
is not possible, since no performance data was given there.

7.2.3 Multidisciplinary design optimization: Maximum distance problem

Multidisciplinary Design Optimization (MDO) is concerned with the solution of design opti-
mization problems in the case that more than one (engineering) discipline is required to describe

7.2 Numerical experiments 77

the underlying system. Commonly, models from two or more disciplines are coupled to describe
the system behavior, leading to possible computational problems when trying to solve the com-
plete system at once. Here, a maximum distance problem as presented in [18] is considered.
The problem is defined as

min − x2 (7.2.10)

s.t. h1(x, ξ, u, v) = ξ2x1 + 2x2 − u+ v = 0 (7.2.11)

h2(x, ξ, u, v) = 3x1 − u− v = 0 (7.2.12)

Pr

{
−ξ1 + u(x, ξ)− 1

2
(ξ2 + 1)x1 ≤ 0

}
≥ α (7.2.13)

Pr {−v(x, ξ) ≤ 0} ≥ α (7.2.14)

x1, x2 ≥ 0, (7.2.15)

where h1(·, ·, ·, ·) and h2(·, ·, ·, ·) are the model equations associated with different disciplines
and ξ = (ξ1, ξ2) are multivariate Gaussian distributed uncertainties with E [ξ] = (1, 1) and
Σ = I2, where In is the n × n identity matrix. The quantities u(x, ξ) and v(x, ξ) are so
called intermediate or state variables. The probability level is set to α = 0.9987. The optimal
solution as derived by Chiralaksanakul and Mahadevan [18] with several different methods is
x∗ = (0.378, 0.322). The AA approach results in the optimal values x∗ = (0.378, 0.318). Again,
the result obtained through analytical approximation differs by a small margin from the optimal
value. The solution of the problem is computed within one second using parallelization on the
CPU. Like above, a comparison of the performance is not possible.

In the context of MDO the proposed AA approach is a so called all-at-once approach, i.e.,
all model equations are solved simultaneously. This may lead to increased computational costs
in comparison to specialized approaches. Nonetheless, the proposed approach is a good choice
for a general purpose solver, since it is easy to implement and no in-depth knowledge of the
involved disciplines is necessary.

7.2.4 Multidisciplinary design optimization: Design of a short column

This problem is concerned with the optimal design of a short structural column and is widely
used as a benchmark for numerical methods in RBDO. The objective is to design a structural
column with minimal cross section b× h, which is able to withstand certain stresses (so called
oblique bending). The problem formulation as presented in [74] is

min bh (7.2.16)

s.t.
1

2
≤ b

h
≤ 2 (7.2.17)

G(b, h, ξ) = 1− 4ξ1

bh2ξ4

− 4ξ2

b2hy
−
(

ξ3

bhξ4

)2

(7.2.18)

Pr {−G(b, h, ξ) ≤ 0} ≥ α (7.2.19)

b, h ≥ 0, (7.2.20)

78 7 Applications and Numerical Experiments

where b and h are breadth and height of the column, respectively, and ξ = (ξ1, . . . , ξ4) are sta-
tistically independent uncertain variables. Details on these variables can be found in Table 7.3.
Before presenting the results a similar problem formulation, considered in [24], is introduced.
In addition to minimizing the cross sectional area a penalty term for violating the constraint
is added. Furthermore, breadth and width are also considered as independently normally dis-
tributed random variables ξ5 and ξ6 with expectation b and h, respectively, and coefficient of
variation 0.01. The corresponding optimization problem is

min bh(1 + 100Pr {G(ξ) ≤ 0}) (7.2.21)

s.t.
1

2
≤ b

h
≤ 2 (7.2.22)

G(ξ) = 1− 4ξ1

ξ5ξ2
6ξ4

− 4ξ2

ξ2
5ξ6

−
(

ξ3

ξ5ξ6ξ4

)2

(7.2.23)

Pr {−G(ξ) ≤ 0} ≥ α (7.2.24)

b, h ≥ 0. (7.2.25)

The optimization results for both problems can be found in 7.4. For the first problem one can
find the usual result, i.e., the direct solution of the problem leads to a better objective function
value, but again only by a small margin. Considering the second problem, the proposed AA
algorithm actually results in a lower objective function value in comparison to the kriging
method presented in [24]. One cause for this might be that the kriging method uses only a
small number of model function evaluations and relies on interpolation, introducing conservative
approximations of the chance constraints. The computation times are 22 seconds for the first
problem and 146 seconds for the second problem. In both cases parallelization on the CPU
was employed. Although, no information on the computation time was presented, [24] gives
the number of function calls made by different approaches for the second problem. The kriging
method requires only 140 model function evaluations, whereas the employed AA approach
requires 5.16×108 evaluations. To put this number into a context, it should be mentioned that
the approach of Dubourg et al. also needs 1.9 × 107 evaluations when used without kriging.
This gives rise to the question whether kriging could be used together with the AA approach.
Similar to the approximation approaches in Chapter 6, kriging replaces the model equations
by a so-called emulator, which is much easier to evaluate. Unlike the other approaches, kriging
assumes that the solution of the model equations can be described by a Gaussian process, an
assumption, which does not hold in general CCOPT problems. Therefore, kriging can generally
not be used in conjunction with the AA approach.

7.2.5 Chemical Process Engineering under Uncertainty

In the last case study a batch reactor with a series reaction of the form

A→ B → C

is considered, where species B is the desired product, but the reaction of B into C cannot
be totally avoided. A similar process was considered as a case-study by [79]. There, only

7.2 Numerical experiments 79

Table 7.3: Data for the short column problem

Variable Meaning Distribution Expectation Coefficient of variation
ξ1 biaxial bending moment log-normal 250 kNm 0.3
ξ2 biaxial bending moment log-normal 125 kNm 0.3
ξ3 axial force log-normal 2500 kN 0.2
ξ4 material yield strength log-normal 40 MPa 0.1

Table 7.4: Comparison of the solutions for the short column problem

Objective b∗ h∗ Cost Source
min bh 0.313 0.624 0.1953 [74]
min bh 0.313 0.626 0.1957 proposed app.

min bh(1 + 100Pr {G(ξ) ≤ 0}) 0.379 0.547 0.2166 [24]
min bh(1 + 100Pr {G(ξ) ≤ 0}) 0.326 0.630 0.2145 proposed app.

uncertainties in one of the pre-exponential Arrhenius factors were considered. In contrast, we
consider uncertainties in both pre-exponential Arrhenius factors as well as in both activation
energies. The principal configuration of a batch reactor can be seen in Figure 7.1.

The process in the reactor is described by a system of nonlinear differential equations

ẋ1 = −k1x
2
1 (7.2.26)

ẋ2 = k1x
2
1 − k2x2 (7.2.27)

Ṫ =
(∆Hr1k1x

2
1 + ∆Hr2k2x2)Vp − hAT (T − TM)

V pρpcp
(7.2.28)

ṪM =
hAT (T − 2TM + TJ)

VMρMcM
(7.2.29)

ṪJ =
FJρJcJ(TJ0 − TJ) + hAT (TM − TJ)

VJρJcJ
(7.2.30)

k1 = k10 exp(− E1

RT
) (7.2.31)

k2 = k20 exp(− E2

RT
) (7.2.32)

with initial conditions

x1(0) = 1,

x2(0) = 0,

T (0) = TM(0) = TJ(0) = 320K,

where x1 and x2 are the concentration of species A and B, T , TM and TJ are the temperatures
of the reaction mass, wall, jacket, respectively. The k1, k2 describe the reaction rates, E1, E2 the

80 7 Applications and Numerical Experiments

Jacket

Wall

Reaction Mass

FJ

T

TJ

TM

Figure 7.1: Principal configuration of a batch reactor

activation energy, k10, k20 the pre-exponential Arrhenius factors and FJ is the amount of cooling
water per hour. The physical parameters of the model are described in Table 7.5. The behavior
of the temperature T for the deterministic system for different constant levels of FJ is shown
in Figure 7.2. We assume that the variables E1, E2, k10 and k20 are time-independent and
underlie a joint normal distribution with the parameters given in Table 7.6. This is motivated
by the fact, that these four quantities are determined experimentally and therefore underlie
measurement errors. Using an Euler discretization of the dynamic system (7.2.26)–(7.2.32), a

7.2 Numerical experiments 81

chance constrained dynamic optimization problem can be formulated as

min f(FJ , x1, x2, T, TM , TJ , t̂, h) (7.2.33)

s.t. k1(t) = k10 exp

(
− E1

RT (t− 1)

)
(7.2.34)

k2(t) = k20 exp

(
− E2

RT (t− 1)

)
(7.2.35)

x1(t) = x1(t− 1)−∆t(k1(t)x2
1(t− 1)) (7.2.36)

x2(t) = x2(t− 1) + ∆t(k1(t)x1(t− 1)− k2(t)x2(t− 1)) (7.2.37)

T (t) = T (t− 1)+

∆t

(
(∆Hr1k1(t)x2

1(t− 1) + ∆Hr2k2(t)x2(t− 1))Vp − hAT (T (t− 1)− TM(t− 1))

Vpρpcp

)
(7.2.38)

TM(t) = TM(t− 1) + ∆t

(
hAT (T (t− 1)− 2TM(t− 1)− ZJ(t− 1))

VMρMcM

)
(7.2.39)

TJ(t) = TJ(t− 1) + ∆t

(
FJ(t)ρJcJ (TJ0 − TJ(t− 1)) + hAT (TM(t− 1)− TJ(t− 1))

VJρJcJ

)
(7.2.40)

Pr {T (t) ≤ 328K} ≥ 0.8 (7.2.41)

t ∈
{
t̂, . . . , t̂+ h− 1

}
(7.2.42)

x1(0) = 1, x2(0) = 0, T (0) = TM(0) = TJ(0) = 320K, (7.2.43)

where h is the length of the prediction horizon, t̂ is the actual time interval, ∆t = 2min is the
time interval used for the discretization and the other quantities are defined as above. Firstly,
a deterministic objective function in the form

f(FJ , x1, x2, T, TM , TJ , t̂, h) = ∆F T
J ∆FJ +

t̂+h−1∑
t=t̂

F 2
J (t) (7.2.44)

is considered, where the term ∆FJ =

(
FJ(t̂)− FJ(t̂− 1), . . . , FJ(t̂+ h− 1)− FJ(t̂+ h− 2)

)T
describes the fluctuation in the cooling water inflow. We use a model predictive control scheme
for the optimal control of the process. The objective of the optimization is to reduce the
fluctuations in the cooling water stream (described by the first term in the objective function)
and at the same time to minimize the amount of cooling water used (described by second
term), whereas the temperature of the reaction mass should not exceed 328 K. It is visible from
Figure 7.2 that reaction mass temperatures above 328K typically only occur within the first 60
minutes of the process. Therefore, this time period was chosen for optimization together with
a prediction horizon h = 8. The results for one specific realization of the uncertain variables

82 7 Applications and Numerical Experiments

Table 7.5: Physical parameters of the batch reactor

Parameter Description Value
∆Hr1 heat of reaction A→ B 10000 cal/mol
∆Hr2 heat of reaction B → C 50000 cal/mol
Vp volume of reaction mass 1.5 m3

VM volume of wall 0.25 m3

VJ volume of jacket 1.7 m3

ρp density of reaction mass 700 kg/m3

ρM density of wall 8220 kg/m3

cJ specific heat of jacket 1 kcal/kgK
cp specific heat of reaction mass 0.5 kcal/kgK
cM specific heat of wall 0.12 kcal/kgK
ρJ density of jacket 1000 kg/m3

h heat transfer coefficient 100 kcal/hK
AT heat transfer area 10 m2

TJ0 temperature of cooling water 297 K
R gas constant 1.985 cal/molK

and using different approaches to the calculation of the probabilities (analytical approximation
approach proposed by Nemirovski/Shapiro (called convex approximation for the remainder
of the section) with sparse grid integration, analytical approximation proposed by Geletu et
al. with (Q)MC integration, back-mapping with sparse grid integration) are shown in Figure
7.3. For the back-mapping approach the positive monotonic relationship k20 ↑ T was used.
This relation is clear from the equations (7.2.37) and (7.2.38): A higher value of k20 leads to
an increased reaction B → C, which produces reaction heat and therefore increases reaction
mass temperature as described in (7.2.38). As shown in Figure 7.3, the convex approximation
approach uses a higher amount of cooling water, due to the underestimation of the probabilities
of holding the constraints, leading to increased costs. Furthermore it should be noted, that no
feasible solution could be found in the first five time horizons when using this approach. On the
other hand, the cooling water stream profiles for the analytic approximation and back-mapping
approach are similar and lead to similar costs (amounting to 5181.2 for the AA proposed
by Geletu et al., 5551.1 for the back-mapping, and 15345.3 for the convex approximation,
respectively.) The differences in the profiles can be mainly attributed to the behavior of the
NLP solver used (fmincon from MatlabTM).

The special structure of the given problem, i.e., state variables can be obtained explicitly,
allows the usage of various parallel programming methods in the solution. Table 7.7 shows the
computation time using a single core, multiple cores (based on OpenMP), and GPU computing
(based on CUDA). Using the six processor cores, the computation was sped up by a factor of 4.5.
The theoretic maximum speed up of 6 cannot be reached due to communication overhead. In
comparison, CUDA allowed a speed up of a factor 47.6 in comparison with the single-threaded
application and a factor 10.6 in comparison with the multi-threaded CPU implementation. It

7.2 Numerical experiments 83

Re
ac

ti
on

 M
as

s
Te

m
pe

ra
tu

re
 T

 in
 K

300

305

310

315

320

325

330

335

300

305

310

315

320

325

330

335

Time t in min
0 50 100 150 200

0 50 100 150 200

Fj=50 m3/h
Fj=25 m3/h
Fj=0 m3/h

Figure 7.2: Temperature T of the reaction mass for different levels of the feed FJ

Variable (unit) Expectation Standard deviation Covariance matrix
E1 (cal/mol) 4680 10.26 1 0.4 -0.6 0.1
E2 (cal/mol) 11000 25.78 0.4 1 0.1 0.31
k10 (l/molh) 3730 25.67 -0.6 0.1 1 0.5
k20 (1/h) 480125 1000 0.1 0.31 0.5 1

Table 7.6: Parameters for the uncertain inputs

Re
ac

ti
on

 M
as

s
Te

m
pe

ra
tu

re
 T

 in
 K

318

320

322

324

326

328

330

318

320

322

324

326

328

330

Time t in min
0 10 20 30 40 50 60

0 10 20 30 40 50 60

Tmax

Analytic approximation
Convex approximation
Back-mapping Am

ou
nt

 o
f C

oo
lin

g
W

at
er

 F
j i

n
m

3 /h

0

10

20

30

40

50

60

0

10

20

30

40

50

60

Time t in min
0 10 20 30 40 50 60

0 10 20 30 40 50 60

Analytic approximation,
Convex approximation
Back-mapping

Figure 7.3: Optimization results for the reactor problem and different approaches to the cal-
culation of the chance constraints

84 7 Applications and Numerical Experiments

Method Computation Time
Single-threaded CPU 238 s
Parallel CPU (OpenMP) 53 s
Parallel GPU (CUDA) 5 s

Table 7.7: Computation time for 120 time steps and a prediction horizon of 15 time steps for
several parallel programming methods using the AA approach of Geletu et al. and
(Q)MC integration.

GTX 470 GTX Titan C2050 I7-980X
Cores 448 2688 448 6 + Hyperthreading
Clock (MHz) 1215 837 1150 3300
Memory (MiBi) 1280 6144 3072 6144
Bandwidth (GB/s) 133.9 288.4 144
Price (Euro) 190.00 880.00 1950.00 890.00

Table 7.8: Comparison of several graphic cards and the processor employed.

is interesting to note that the processor employed is still the second fastest (as of August 2013)
available in the end user segment, whereas the graphics card is slow in comparison to today’s
models.

Table 7.8 shows a comparison between several graphics cards and the employed processor,
which allows to make some predictions on the possible speed ups obtainable with current cards.
Graphic cards data was obtained at nvidia.com, whereas data on the processor was obtained
at intel.com. The C2050 is a card designated for the usage with CUDA. Prices were obtained
using geizhals.eu on August the 10th, 2013.

Current consumer graphics cards (especially the 600 and 700 series) from NVIDIA (with
exception of the Titan models) are not suitable for improving the computation speed, since the
double precision computation capability of these cards is artificially restricted in the driver.
Nevertheless, taking into account the information in Table 7.8, one could expect a speed up
of about 500× in comparison to the single-threaded application when using a Titan model.
Interestingly, such card costs even a little less than the CPU employed.

In order to show the viability of the AA approach of Geletu et al., an optimization problem
with the stochastic objective function

f(FJ , x1, x2, T, TM , TJ , t̂, h) =ω1

t̂+h−1∑
t=t̂

(
− E [x2(t)] + V ar [x2(t)]

)+ . . .

. . .+ ω2

F T
J ∆FJ +

t̂+h−1∑
t=t̂

F 2
J (t)

 , (7.2.45)

is solved under the same set of constraints (7.2.34)-(7.2.43). Here, ω1 and ω2 are weighting

7.2 Numerical experiments 85
D

iff
er

en
ce

 o
f C

on
ce

nt
ra

ti
on

 x
2 f

or
 t

he
 t

w
o

di
ff

er
en

t
ob

je
ct

iv
es

0

5e−05

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

0

5e−05

0,0001

0,00015

0,0002

0,00025

0,0003

0,00035

Time t in min
0 10 20 30 40 50 60

0 10 20 30 40 50 60

Am
ou

nt
 o

f C
oo

lin
g

W
at

er
 F

J i
n

m
3 /h

0

10

20

30

40

50

0

10

20

30

40

50

Time t in min
0 10 20 30 40 50 60

0 10 20 30 40 50 60

 Stochastic objective
 Deterministiv objective

Figure 7.4: Comparison of the results for optimization with deterministic and stochastic ob-
jective function using the AA approach.

factors. This objective function is a weighted sum: between the function in (7.2.44) and the
expected concentration of product B (i.e., E [x2(t)]) while decreasing its variance (V ar [x2(t)]).
For this problem only the AA approach was considered. The results of the optimization can
be found in Figure 7.4. The left hand side presents the difference between the concentration of
x2 for the stochastic objective (7.2.45) and the deterministic objective (7.2.44). It can be seen,
that the difference is always non-negative, showing a success in the optimization. The fact that
the margin of difference is not very large can be attributed to the model used. The right hand
side figure shows that there exist qualitative as well as quantitative differences in the cooling
water stream profiles.

Since the presented problems have only four uncertain input variables (the corresponding
sparse grid cubature rule for back-mapping uses only 441 grid points and the (Q)MC rule in
the AA approach 500 grid points), the computation of probabilities, expectations and variances
can be carried out without significant computational load. The typical computation time for
the solution of both problems for an optimization horizon of 30 is well below one minute using
the MatlabTMoptimization toolbox.

To compare the AA approach proposed by Geletu et al. with previously employed methods,
the above problem with the objective function (7.2.45) is solved for an optimization horizon
of 30 using AA and back-projection under MatlabTM. The corresponding computation time,
number of total iterations, and computation time per iteration can be found in Table 7.9. It
is clear that the AA approach needs significantly less overall computation time, but since the
problem is dynamic this might be misleading. Due to the different optimization results, one
method may encounter a situation were a lot of iterations are required. That this is not the case
here can be seen from the number of iterations, where the back-projection approach requires
fewer iterations in comparison to the AA approach. When comparing the computation time,
AA is much faster (about 38×). This can be attributed to the fact that AA is able to evaluate all
15 constraints at once. Furthermore, due to the structure of the problem the system states can

86 7 Applications and Numerical Experiments

Method Computation time Total iterations Time per Iteration
AA 67.2 s 930 0.07 s

Back-projection 1534.6 s 554 2.77 s

Table 7.9: Performance results for the AA approach of Geletu et al. and back-projection
for the problem with the stochastic objective function (7.2.45), an optimization
horizon of 30, and a prediction horizon of 15 time steps.

be obtained explicitly, thereby further decreasing computation time. In contrast and although
the system states can be obtained explicitly, the back-projection approach has to evaluate all
15 constraints separately and the corresponding model equations to carry out the projection
are implicit, requiring additional effort to solve the corresponding equations.

To further study the influence of the two approaches on the computation time, the problem
was solved for different values of the prediction horizon h. It is clear from the problem formula-
tion that the number of chance constraints equals the length of the prediction horizon. In order
to minimize the effect of the dynamical problem on the computation time, the average compu-
tation time per iteration was measured. The results of the experiment can be found in Figure
7.5. It is apparent that the back-projection approach needs significantly more computation time
per iteration. Moreover, the computation time per iteration in the analytical approximation
approach appears to depend only linearly on the length of the prediction horizon, whereas with
the back-projection approach it appears to depend quadratically on the parameter. This can be
explained by the fact that the analytical approximation approach requires the solution of the
model equations only once at every grid point of the underlying integration routine to compute
all the chance constraints. Since the computation time to evaluate the model equations also
increases linearly with the length of the prediction horizon, overall a linear dependence O(h)
can be expected. In contrast, the back-projection approach requires the solution of h different
modified versions of the original model equations at every grid point, resulting in a quadratic
dependence of O(h2).

More generally, for an arbitrary problem, let nc be the number of chance constraints, Tsol the
computation time necessary to solve the model equations, and ni the number of grid points in
the corresponding integration routine. Then, one would expect computation times per iteration
of O(niTsol) for the AA approach and O(ncniTsol) for the back-projection approach. One should
keep in mind that ni can generally be chosen smaller when using back-projection, since this
method allows the usage of sparse grid integration (see Chapter 5). Nevertheless, in the presence
of a sufficiently high number of chance constraints, the AA outperforms the previously employed
back-projection approach.

7.2.6 Summary

Considering the numerical studies presented above the following conclusion about the AA
approach can be found. The advantages are as follows.

• Arbitrary uncertainties can be handled.

7.2 Numerical experiments 87

C
om

pu
ta

ti
on

 t
im

e
pe

r
it

er
at

io
n

[s
]

0

0.5

1

1.5

2

2.5

3

0

0.5

1

1.5

2

2.5

3

Prediction horizon h
7 8 9 10 11 12 13 14 15 16

7 8 9 10 11 12 13 14 15 16

 Analytical approximation
 Back-projection

Figure 7.5: Average computation time per iteration for the chemical reactor example when
using analytical approximation and back-projection.

88 7 Applications and Numerical Experiments

• No in-depth knowledge about the involved model equations is required.

• Pathological cases can be handled.

• In comparison with certain other approximation methods tighter bounds are generated,
resulting in a better approximation of the optimal solution.

Naturally, each approach also contains some disadvantages. For the AA approach, these can
be found below.

• Due to the fact that AA only approximates the problem, solutions generated with AA are
usually worse than solutions generated by a direct approach. Nonetheless, the experiments
have shown that the results of direct and AA approaches differ only by a small margin.

• The proposed AA may require more function evaluations than a more specialized ap-
proach, leading to possibly higher computation time.

7.3 Chance constrained optimal power flow

The solution of CCOPT problems in the field of energy networks was one of the main moti-
vations for this thesis. In contrast to the numerical experiments presented above the solution
of CCOPT problems in such systems is more involved due to the dimension of the problem as
well as the unavailability of monotonicity relations in the power flow equations, which present
the main part of the model equations when dealing with energy networks. The results below
were previously published in [50].

It is well recognized that many uncertainties have to be considered in the operations planning
for power transmission and distribution systems [88]. Well-known uncertainties include power
loads due to forecast inaccuracy, system parameters due to variations of the atmospheric tem-
perature, renewable penetrations due to random availability of renewable energies as well as
electricity prices due to varying market conditions. Under these uncertainties an optimal deci-
sion needs to be determined, which should lead to a both operatively reliable and economically
beneficial operation.

In the recent years many studies have been made to investigate probabilistic methods for
Optimal Power Flow (OPF) with uncertainty. Monte-Carlo simulation was commonly used to
analyze the impacts of uncertain input parameters on the operation of power systems [4]. More
recently, the method of CCOPT has been applied to optimization of electrical systems under
uncertainty. The unique feature of this method is that the solution can achieve a balanced
decision between profitability and reliability [55]. CCOPT was used in generation expansion
[57], filter planning [15], wind farm planning [38], stochastic optimal reactive power dispatch
[43], transmission network planning [93], optimal scheduling [90], and OPF for transmission
networks under demand uncertainty [94].

In almost all of these previous studies the Gaussian (normal) distribution was assumed to
describe the probability distribution of uncertain input parameters. However, many studies

7.3 Chance constrained optimal power flow 89

show that the stochastic distributions of renewable energy penetrations deviate considerably
from the Gaussian distribution. In [59] the variation in wind speed was described by the Weibull
probability distribution, while other studies indicated that wind power prediction errors can be
well represented with Beta or Gamma distribution [25,85].

This section presents an extension and continuation of the work presented in [94]. Here, OPF
under non-Gaussian uncertainties is formulated as a nonlinear CCOPT problem. To solve this
problem, the AA approach is used. This approach overcomes the two shortcomings in [94], i.e.,
a monotonic relation is not required and non-Gaussian distributed uncertain parameters can
be treated. The effectiveness of the proposed approach is demonstrate on a real distribution
system with a wind power penetration.

7.3.1 OPF under non-Gaussian Uncertainties

We start by relating the general CCOPT problem (3.0.1)–(3.0.3) to an OPF problem in
Distribution System (DS). A DS consists of buses, which are connected by feeders. Every
bus in an electrical network can be specified by four quantities: active and reactive power,
respectively, voltage magnitude and phase angle. Two of these values are always fixed, the
other two are state variables. For the slack bus, which acts as reference, voltage magnitude
and phase angle are given, active and reactive power are state variables. For PQ buses the
contrary is true, active and reactive power are given, voltage magnitude and phase angles are
state variables. The aforementioned quantities are computed using active and reactive power
flow equations

Pi − Vi
N∑
j=1
j∈i

Vj(Gij cos θij +Bij sin θij) = 0, i ∈ N (7.3.1)

Qi − Vi
N∑
j=1
j∈i

Vj(Gij sin θij −Bij cos θij) = 0, i ∈ N, (7.3.2)

where Pi and Qi are the active and reactive power injection at bus i, respectively. The matrices
G and B are the bus conductance and susceptance matrix of the system, Vi is the voltage
magnitude at bus i, θij is the difference of the phase angles between buses i and j, and N is
the number of buses. The active and reactive power injections are given by

Pi = PS + βcurt,iPr,i(ξ)− Pd,i, i ∈ N (7.3.3)

Qi = QS −Qd,i, i ∈ N (7.3.4)

where PS and QS denote active and reactive power injected at the slack bus, respectively, βcurt,i
is a curtailment factor for the active power generation Pr,i(ξ) of a renewable energy source, Pd,i
and Qd,i are the active and reactive power demand, respectively. In the case that no curtailment
occurs βcurt,i = 1, otherwise βcurt,i < 1. This approach to OPF was proposed in [28].

90 7 Applications and Numerical Experiments

Figure 7.6: Comparison of Beta, Gamma, Gaussian, and Weibull pdfs with the same mean
and variance

Although other formulations are possible, the minimization of the amount of renewable energy
curtailment is considered as objective function (3.0.1) in this study. Chance constraints of the
type (3.0.3) are included to prevent inadmissible states by constraining the voltage magnitude
of PQ buses, active as well as reactive power at slack bus, and the capacity of the feeders.
Since the curtailment factors are considered as control variables, the control constraints can be
written as βcurt,i ∈ [0, 1].

In this study, only uncertainties from renewable wind energy penetration are considered.
Furthermore, we restrict our discussion to Beta-distributed uncertainties, which were proposed
for the distribution of wind speed in [25], although additional load uncertainties as well as
Gamma- and Weibull-distributed uncertainties could be treated with the presented approach.
To illustrate the differences between the different distributions, a Beta pdf, a Gamma pdf, and
a Weibull pdf (all with µ = 0.7, σ = 0.2) and their approximation with a Gaussian pdf are
shown in Fig. 7.6. It can be clearly seen that a Gaussian approximation of the Beta-distributed
uncertainties is unfeasible and will possibly lead to large errors in the probability computation.

7.3.2 A Case study

In this subsection the proposed approach is applied to a DS as shown in Fig. 7.7. It is a 27.6
kV, 41 bus real radial DS which was studied in [7, 28]. Values in per unit system are given on
10-MVA base, otherwise specified. The DS has three embedded wind parks, located at buses
19, 28 and 40, with rated powers 0.8, 0.4 and 1, respectively. Due to the small local spread of
the system, the expected wind speed and its variance are assumed to be the same at all wind
parks. Bus 1 is considered to be the slack bus, whereas other buses are considered to be PQ
buses.

7.3 Chance constrained optimal power flow 91

The operation of this system is considered in the situation that the total rated power of
the installed wind parks exceeds the total active power demand. It is assumed that reverse
active power flow through the slack bus is not allowed. In this case, curtailment is required to
ensure a safe operation of the DS. The goal of the optimization is to minimize the necessary
curtailments, in order to minimize spilled wind energy. The CCOPF problem is formulated as
follows

min
u

E

 ∑
i∈{19,28,40}

(1− βcurt,i)PW,i(v)

 (7.3.5)

s.t. Pr
{
V min ≤ Vi ≤ V max

}
≥ αV ,

i ∈ N, i 6= S (7.3.6)

Pr
{
Pmin ≤ PS ≤ Pmax

}
≥ αPS (7.3.7)

Pr
{
Qmin ≤ QS ≤ Qmax

}
≥ αQS (7.3.8)

Pr {Si,j ≤ Smax} ≥ αS,

i, j ∈ N, i 6= j (7.3.9)

0 ≤ βcurt,i ≤ 1, i ∈ {19, 28, 40} (7.3.10)

where
(
PW,19(v), PW,28(v), PW,40(v)

)
are the uncertain variables , V min and V max are the lower

and upper bounds of the voltage magnitude at PQ buses, respectively. Similarly, Pmin, Pmax,
Qmin, and Qmax are the lower and upper bounds of the active and reactive power at slack
bus, respectively, and Smax is the upper bound of the apparent power of the main feeder
in the system. The apparent power flow between bus i and j is denoted by Si,j. Overall,
82 different chance constraints (40 constraints on voltage magnitudes, one constraint on PS
and QS, respectively, and 40 constraints on the feeders) are considered in this case study. The
objective function describes the total curtailed wind power for the three wind parks and PW,i(v)
is the available power from the wind park at bus i for a given wind speed v. According to [42],
this quantity can be obtained by

PW,i(v) =


0, 0 ≤ v ≤ vcin

PWrated,i

(
v−vcin
vr−vcin

)
, vcin ≤ v ≤ vr

PWrated,i, vr ≤ v ≤ vco
0, vco < v,

(7.3.11)

where PWrated,i is the rated power of the wind park at bus i, and the parameters are given as
vcin = 4 m

s
, vr = 14 m

s
, and vco = 24 m

s
. If one considers a variance V ar [v] in the wind speed

prediction and takes the predicted value

µ(v) =


0, 0 ≤ v ≤ vcin

E
[
v−vcin
vr−vcin

]
, vcin ≤ v ≤ vr

1, vr ≤ v ≤ vco
0, vco < v,

92 7 Applications and Numerical Experiments

Figure 7.7: Distribution system for the case study.

Table 7.10: Parameters used in the case study

V min V max Pmin Pmax Qmin Qmax Smax

0.95 1.05 0 2 -2 2 1.43
αV αPS αQS αS τ m1 m2

95% 95% 95% 95% 0.001 1 1

as expectation, then PW,i(v) can be considered as an uncertain variable. Following [25], this
uncertain variable can be described by the product ξPWrated,i in the case that vcin ≤ v ≤ vr,
where ξ is a Beta-distributed uncertain variable. Note that in the other cases either full or no
wind power injection is expected. The parameters α and β of the underlying Beta distribution
can be computed using (7.3.11), i.e.,

α = µ(v)

(
µ(v)

(vr − vcin)2(1− µ(v))

V ar [v]
− 1

)
β = (1− µ(v))

(
µ(v)

(vr − vcin)2(1− µ(v))

V ar [v]
− 1

)
.

Computation tests for solving the CCOPT problem are conducted for a scenario with low
demand (i.e., a total demand of active power of 0.66) and expected wind speeds between vcin
and vr. Different test scenarios with an increasing expected wind power penetration are shown
in Fig. 7.8. The parameters used in the computation tests are listed in Table 7.10 and the
results from the different tests are shown in Fig. 7.8. As can be seen from Fig. 7.8 (a), an
increasing expected wind speed leads to a higher available wind power. Nonetheless, with an
increasing available wind power the necessary curtailment increases. Fig. 7.8 (b) shows the
minimum value of the chance constraints at the optimum obtained through a posteriori Monte-
Carlo simulation. The simulation results indicate that the chance constraints are held with a

7.3 Chance constrained optimal power flow 93

probability higher than the desired probability level of 95%, i.e., the solution generated by the
proposed approach is feasible.

To show the viability of the AA approach, the same optimization problem is solved using
a Gaussian approximation and Quasi-Monte-Carlo integration (using the Sobol sequence), the
results can be found in Fig. 7.8. It can be seen from 7.8 (a) that when employing Gaussian
approximation, generally, less curtailment occurs in comparison to the proposed approach.
While this might indicate that this approximation is more suitable for the task, the contrary is
true. When simulating the model it becomes apparent that the chance constraints are violated
by a large extent (in the worst case only a satisfaction in 17% is guaranteed in contrast to
the desired value of 95%). This indicates that the Gaussian approximation cannot capture the
essential details of the Beta-distribution.

In Fig. 7.8 (c) and (d) the expected values of Ps and the total active power losses are shown.
It can be seen that the proposed approach imports more active power in comparison to that
from the Gaussian approximation (i.e., less available wind power is utilized) in seven of nine
scenarios, while the overall active power losses are lower for the proposed method in most
scenarios. These results are strongly related to the formulation of the objective function, i.e.,
in order to accommodate a large amount of wind energy, active power losses are increased [29],
e.g., in scenario six of the Gaussian approximation and scenario nine of the proposed approach.

Capability of dealing with high dimensional uncertainties

To test the ability of the proposed approach for handling high dimensional uncertain variables,
numerical experiments are carried out with 10, 15 and 20 embedded wind parks at different
locations in the DS shown in Figure 7.7. The location and sizes of the wind parks are given in
Table 7.11. A medium wind speed scenario (v = 9 m

s
) is considered, since it is shown to be the

most time consuming case in solving the CCOPT problem with three wind parks. In effect, the
limiting factor of the computation expense is the number of grid points, since the power flow
equations need to be solved at each grid point to evaluate the integrals for probability as well
as gradient values. The obtained results and the corresponding computation time are listed in
Table 7.11. It can be seen that, using the proposed approach, a chance constrained OPF with
up to 20 wind parks (and, correspondingly, 20 uncertain variables) can be solved in reasonable
CPU time on a desktop PC.

94 7 Applications and Numerical Experiments

To
ta

l a
ct

iv
e

po
w

er
s

0

0.5

1

1.5

2
Expected wind power usage, proposed approach
Expected wind power usage, Gauss. approx.
Expected available wind power
Total demand

(a)

(a)

P s
la

ck

0

0.1

0.2

0.3

0.4

0.5
Expected PS, proposesd approach
Expected PS, Gauss. approx.

(c)

P l
os

se
s

0.006
0.007
0.008
0.009
0.01

0.011
0.012
0.013

Scenario
2 4 6 8 10

22
23

Expected active power losses, proposed approach
Expected active power losses, Gauss. approx.

(d)

Pr
ob

ab
ili

ty
 (

%
)

20
30
405050
60
70
80
90
95
98
9999.5

99.9
99.99

99.999

Minimum probability of constraint satisfaction, proposed approach
Minimum probability of constraint satisfaction, Gauss. approx.

(b)

Figure 7.8: Results for the case study. (a) Expected available wind power generation, active
demand and expected wind power generation for the proposed approach and the
Gaussian approximation. (b) Minimum chance constraint values obtained from
simulation. (c) Expected PS . (d) Expected active power losses.

Table 7.11: Computation time and results for different numbers of uncertain variables. Total
expected available wind power is 1.1.

Number of Rated Curtailed Computation
wind parks Wind parks at buses power wind power time

3 19, 28, 40 0.8, 0.4, 1 0.670 4 min
10 17, 18, 19, 22, 26, 28, 29, 36, 40, 41 0.22 each 0.663 3 min
15 Same as for 10, 27, 33, 34, 37, 39 0.146 each 0.662 4 min
20 Same as for 15, 16, 23, 25, 34, 35 0.11 each 0.662 5 min

95

8 Conclusions and Future Work

The thesis at hand consists of two major parts. In the first part, the notion of a Chance
Constrained OPTimization (CCOPT) problem is introduced, followed by a description of a
general solution framework. Depending on the actual problem several approaches may be
available. This thesis introduces the most important methods for transforming the probabilistic
constraints into deterministic ones. The main contribution here consists of a novel Analytical
Approximation (AA) approach. Furthermore, the necessary multivariate integration routines
are covered.

The second part consists of numerical experiments showing the viability of the AA approach.
These experiments can be divided into smaller experiments with less then ten uncertain vari-
ables and only few constraints and a larger application in the field of energy network with up
to twenty uncertain variables and about 100 constraints. The experiments show that AA can
be seen as a general purpose approach, which does not require in-depth knowledge about the
system involved. Although the results are generally worse than results obtained by a direct
approach, both results usually differ only by a small margin. Additionally, the results can be
further improved by decreasing the value of the parameter τ in the Analytical Approximation
approach. Even though, this may require a more accurate integration method. In addition, the
Chance Constrained Optimal Power Flow problems shows that the commonly used Gaussian
approximation of uncertainties is not a valid approach.

8.1 Future work

8.1.1 Theory

Concerning the theoretical background of CCOPT further work is required on several fronts.
First, the proposed approaches are mainly suitable for handling single chance constraints

Pr {gi(u, y, ξ) ≤ 0} ≥ αi, i = 1, . . . , q.

In the future, also the more natural joint chance constraint formulation

Pr {gi(u, y, ξ) ≤ 0, i = 1, . . . , q} ≥ α

should be treated. This is currently possible with the back-projection approaches, but only for
certain systems.

96 8 Conclusions and Future Work

Second, the AA approach proposed by Geletu et al. [34] currently uses a sigmoidal function to
approximate a step function. While this functions exhibits good properties, another one, e.g.,
constructed from composite polynomials, could be even more suitable. Extrapolation methods
could be used to obtain the value of the chance constraints as τ → 0.

Third, the treatment of dynamic problems needs further study. The methods employed today
cannot guarantee that in the next time step there exists a feasible solution of the corresponding
problem. This could be treated by a hybrid robust optimization/CCOPT approach. The
requirement in the robust part consists of guaranteeing a feasible solution in the next time step
regardless of the realization of the uncertain variables.

8.1.2 Applications

Prospective work for the practical applications is mainly considered with the CCOPF example.
Additional versions could include demand uncertainties, increasing the number of uncertain-
ties in the system. Furthermore, one could examine the influence of batteries in the network,
converting the problem into a dynamic one. This does not pose a large difficulty, since the
charge/discharge of batteries are included as control variables. Moreover, the power flow prob-
lems in the different time horizons are very much decoupled (i.e., the only coupling is the charge
of the batteries) allowing to treat every time step separately. Thereby, computation time grows
only linearly with the length of the prediction horizon. If the problem is dynamic one could
also consider different uncertainty distributions at different time steps, e.g., households have
a low demand in the night, but a high demand in the morning and the evening. All these
extensions can generally be treated within the existing framework, so the main concern is the
implementation and guaranteeing a reasonable computation time.

References 97

References

[1] Adcock, B. Univariate modified fourier methods for second order boundary value problems.
BIT Numerical Mathematics 49, 2 (2009), 249–280. Cited on page 71.

[2] Adcock, B. Multivariate modified fourier series and application to boundary value problems.
Numerische Mathematik 115, 4 (2010), 511–552. Cited on page 72.

[3] Agarwal, N., and Aluru, N. R. Stochastic analysis of electrostatic mems subjected to
parameter variations. JMEMS 18, 6 (2009), 1454–1468. Cited on page 2.

[4] Anders, G. J. Probability concepts in electric power systems. John Wiley & Sons, 2005. Cited
on page 88.

[5] Andrieu, L., Cohen, G., and V’azquez-Abad, F. J. Stochastic programming with proba-
bility constraints. In 10th International Conference on Stochastic Programming (Tucson, USA,
October 2004). Cited on page 76.

[6] Arellano-Garcia, H., and Wozny, G. Chance constrained optimization of process systems
under uncertainty: I. strict monotonicity. Comput. Chem. Eng. 33 (2009), 1568–1583. Cited on
page 2.

[7] Atwa, Y., and El-Saadany, E. F. Probabilistic approach for optimal allocation of wind-based
distributed generation in distribution systems. IET Renewable Power Generation 5, 1 (2010),
79–88. Cited on page 90.

[8] Begumisa, A., and Robinson, I. Suboptimal kronrod extension formulae for numerical quadra-
ture. Numerische Mathematik 58, 1 (1990), 807–818. Cited on page 52.

[9] Ben-Tal, A., and Nemirovski, A. Robust solutions of uncertain linear programs. Operations
research letters 25, 1 (1999), 1–13. Cited on page 3.

[10] Ben-Tal, A., and Nemirovski, A. Lecture Notes on Modern Convex Optimization. MPS-SIAM
Series on Optimization. SIAM, Philadelphia, 2001. Cited on page 1.

[11] Björnberg, J., and Diehl, M. Approximate robust dynamic programming and robustly stable
mpc. Automatica 42 (2006), 777–782. Cited on page 1.

[12] Caflisch, R. E. Monte carlo and quasi-monte carlo methods. Acta numerica 1998 (1998), 1–49.
Cited on pages 2 and 61.

98 References

[13] Calafiore, G., and Campi, M. C. Uncertain convex programs: randomized solutions and
confidence levels. Math. Program., Ser. A 102 (2005), 23–46. Cited on page 2.

[14] Cannon, M., Kouvaritakis, B., and Wu, X. Model predictive control for systems with
stochastic multiplicative uncertainty and probabilistic constraints. Automatica 45, 1 (2009), 167–
172. Cited on page 1.

[15] Chang, G. W., Wang, H. L., and Chu, S. Y. A probabilistic approach for optimal passive
harmonic filter planning. IEEE Trans. Power Syst. 22, 3 (2007), 1790–1798. Cited on page 88.

[16] Charnes, A., and Cooper, W. Chance-constrained programming. Management Science 6
(1959), 73–79. Cited on page 1.

[17] Charnes, A., Cooper, W., and Symmonds, G. H. Cost horizons and certainity equivalents:
an approach to stochastic programming of heating oil. Management Science 4 (1958), 235–263.
Cited on pages 1 and 19.

[18] Chiralaksanakul, A., and Mahadevan, S. Decoupled approach to multidisciplinary design
optimization under uncertainty. Optim Eng 8 (2005), 261–267. Cited on page 77.

[19] Cools, R. Advances in multidimensional integration. Journal of computational and applied
mathematics 149, 1 (2002), 1–12. Cited on page 57.

[20] Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals
Systems 2 (1989), 303–314. Cited on page 69.

[21] de Figueiredo, L. H., and Stolfi, J. Self-Validated Numerical Methods and Applications.
Brazilian Mathematics Colloquium monographs. IMPA/CNPq, Rio de Janeiro, Brazil, 1997.
Cited on pages 7 and 9.

[22] de Panne, C. V., and Popp, W. Minimum cost cattle feed under probabilistic protein con-
straints. Mgmt Sci. 9 (1963), 405–430. Cited on page 74.

[23] Diehl, M., Bock, H. G., and Kostina, E. An approximation technique for robust nonlinear
optimization. Math. Program., Ser. B 107 (2005), 213–230. Cited on page 1.

[24] Dubourg, V., Sudret, B., and Bourinet, J.-M. Reliability-based design optimization using
kriging surrogates and subset simulation. Struct. Multidisc. Optim. 44, 4 (2011), 673–690. Cited
on pages 78 and 79.

[25] Fabbri, A., Román, T. G. S., Abbad, J. R., and Quezada, V. H. M. Assessment of the
cost associated with wind generation prediction errors in a liberalized electricity market. IEEE
Trans. Power Syst. 20, 3 (2005), 1440–1446. Cited on pages 89, 90, and 92.

[26] Feigner, U., Herrlich, H., Husek, M., Kanovei, V., Koepke, P., Preuß, G., Purkert,
W., and Scholz, E., Eds. Felix Hausdorff, Gesammelte Werke, Band II. Springer, Berlin, 2008.
Cited on page 26.

[27] Flemming, T., Bartl, M., and Li, P. Set-point optimization for closed-loop control systems
under uncertainty. Ind. Eng. Chem. Res. 46 (2007), 4930–4942. Cited on page 2.

References 99

[28] Gabash, A., and Li, P. Active-reactive optimal power flow in distribution networks with
embedded generation and battery storage. IEEE Trans. Power Syst. 27, 4 (2012), 2026–2035.
Cited on pages 89 and 90.

[29] Gabash, A., and Li, P. Active-reactive power flow for low-voltage networks with photovoltaic
distributed generation. In 2nd IEEE International Energy Conference and Exhibition (Energy-
Con2012)/ Future Energy Grids and Systems(FEGS) (Florence, Italy, September 2012). Cited
on page 93.

[30] Garcke, J., Griebel, M., and Thess, M. Data mining with sparse grids. Computing 67
(2001), 225–253. Cited on page 2.

[31] Garnier, J., Omrane, A., and Rouchdy, Y. Asymptotic formulas for the derivatives of
probability functions and their monte carlo estimations. Eur. J. Oper. Res. 198, 3 (2008), 848–
858. Cited on page 21.

[32] Gelbaum, B. Problems in Real and Complex Analysis. Problem books in mathematics. Springer,
New York, 1992. Cited on page 7.

[33] Geletu, A., Hoffmann, A., Klöppel, M., and Li, P. Monotony analysis and sparse-grid
integration for nonlinear chance constrained process optimization. Eng. Optim. 43, 11 (2011),
1019–1041. Cited on pages 4, 21, 22, and 23.

[34] Geletu, A., Klöppel, M., Hoffmann, A., and Li, P. A tractable approximation of non-
convex chance constrained optimization with non-gaussian uncertainties. To appear in Eng.
Optim. (2014). Cited on pages 2, 4, 24, 27, 28, 30, 40, 67, and 96.

[35] Geletu, A., Klöppel, M., Zhang, H., and Li, P. Advances and applications of chance-
constrained approaches to systems optimisation under uncertainty. Int. J. System Sci. (2012).
Cited on pages 4 and 74.

[36] Genz, A., and Keister, B. D. Fully symmetric interpolatory rules for multiple integrals over
infinite regions with gaussian weight. J. Comput. Appl. Math. 71, 2 (1996), 299–309. Cited on
page 59.

[37] Gerstner, T., and Griebel, M. Numerical integration using sparse grids. Numer. Algorithms
18 (1998), 209–232. Cited on pages 2 and 59.

[38] Gu, W., Wang, R., Sun, R., and Li, Q. Wind power penetration limit calculation based
on stochastic optimal power flow. International Review of Electrical Engineering 6, 4 (2011),
1939–1945. Cited on page 88.

[39] Heiss, F., and Winschel, V. Estimation with numerical integration on sparse grids. Tech.
rep., Münchener Wirtschaftswissenschaftliche Beiträge (VWL) 2006-15, 2006. Cited on page 59.

[40] Henrion, R., Li, P., Möller, A., Steinbach, M. C., Wendt, M., and Wozny, G. Online
Optimization of Large Scale Systems. Springer, Berlin, 2001, ch. Stochastic optimization for
operating chemical processes under uncertainty, pp. 455–476. Cited on page 2.

100 References

[41] Henrion, R., and Möller, A. Optimization of a continuous distillation process under random
inflow rate. Comput. Math. Appl. 45 (2003), 247–262. Cited on page 1.

[42] Hetzer, J., Yu, D. C., and Bhattarei, K. An economic dispatch model incorporating wind
power. IEEE Trans. Energy Convers. 23, 2 (2008), 603–611. Cited on page 91.

[43] Hu, Z. C., Wang, X. F., and Taylor, G. Stochastic optimal reactive power dispatch: for-
mulation and solution method. International Journal of Electrical power & Energy Systems 32,
6 (2010), 615–621. Cited on page 88.

[44] Hubbard, J. Teichmüller theory and applications to geometry, topology, and dynamics. No. Bd. 1
in Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Matrix Editions,
Ithaca, NY, 2006. Cited on page 7.

[45] Iserles, A., and Nørsett, S. P. From high oscillation to rapid approximation i: Modified
fourier expansions. IMA journal of numerical analysis 28, 4 (2008), 862–887. Cited on page 72.

[46] Jackson, D. Fourier Series and Orthogonal Polynomials. Dover Books on Mathematics Series.
Dover Publications, Mineola, 2004. Cited on page 71.

[47] Johnson, N. L., Kotz, S., and Balakrishnan, N. Continuous Univariate Distributions,
Volume 1. John Wiley & Sons, New York, 1994. Cited on page 9.

[48] Jost, J. Postmodern Analysis. Universitext (1979). Springer, Berlin, 2005. Cited on page 71.

[49] Keese, A., and Matthies, H. G. Numerical methods and smolyak quadrature for nonlinear
stochastic partial differential equations. Tech. rep., Technische Universität Braunschweig, 2003.
Cited on page 2.

[50] Klöppel, M., Gabash, A., Geletu, A., and Li, P. Chance constrained optimal power flow
with non-gaussian distributed uncertain wind power generation. In Environment and Electrical
Engineering (EEEIC), 2013 12th International Conference on (2013), pp. 265–270. Cited on
pages 4 and 88.

[51] Klöppel, M., Geletu, A., Hoffmann, A., and Li, P. Using sparse-grid methods to improve
computation efficiency in solving dynamic nonlinear chance-constrained optimization problems.
Ind. Eng. Chem. Res. 50, 9 (2011), 5693–5704. Cited on page 15.

[52] Krantz, S. G., and Parks, H. R. The Implicit Function Theorem. Birkhäuser, 2002. Cited
on page 5.

[53] Kronrod, A. S. Nodes and Weights of Quadrature Formulas: Sixteen-Place Tables. Consultants
Bureau, New York, 1965. Cited on page 51.

[54] Lemieux, C. Monte Carlo and Quasi-Monte-Carlo Sampling. Springer, New York, 2009. Cited
on pages 2 and 60.

[55] Li, P., Arellano-Garcia, H., and Wozny, G. Chance constrained programming approach
to process optimization under uncertainity. Comput. Chem. Eng. 32 (2008), 24–45. Cited on
pages 14 and 88.

References 101

[56] Li, P., Wendt, M., and Wozny, G. Robust model predictive control under chance constraints.
Comput. Chem. Eng. 24 (2000), 829–834. Cited on page 1.

[57] Mazadi, M., Rosenhart, W. D., Malik, O. P., and Aguado, J. Modified chance con-
strained optimization applied to the generation expansion problem. IEEE Trans. Power Syst. 24,
3 (2009), 1635–1636. Cited on page 88.

[58] Moore, R. E. Interval analysis, vol. 2. Prentice-Hall Englewood Cliffs, 1966. Cited on page 8.

[59] Musgrove, P. Wind power. Cambridge Univ. Press, New York, USA, 2010. Cited on page 89.

[60] Mysovkikh, I. P. On the construction of cubature formulas with the smallest number of nodes.
Soviet Math. Dokl. 9 (1968), 277–280. Cited on page 2.

[61] Nagy, Z. K., and Braatz, R. D. Robust nonlinear model predictive control of batch processes.
AIChE J. 49, 7 (2003), 1776–1786. Cited on page 1.

[62] Nagy, Z. K., and Braatz, R. D. Worst-case and distributional robustness analysis of finite-
time control trajectories for nonlinear distributed parameter systems. IEEE Trans. Control Syst.
Technol. 11, 5 (2003), 694–704. Cited on page 1.

[63] Nagy, Z. K., and Braatz, R. D. Open-loop and closed-loop robust optimal control of batch
processes using distributional and worst-case analysis. J. Process Control 14 (2004), 411–422.
Cited on page 1.

[64] Nemirovski, A., and Shapiro, A. Convex approximations of chance constrained programs.
SIAM J. Optim. 17, 4 (2006), 969–996. Cited on pages 2, 25, and 28.

[65] Nobile, F., Tempone, R., and Webster, C. G. A sparse grid stochastic collocation method
for partial differential equations with random input data. SIAM J. Numer. Anal. 46, 5 (2008),
2309–2345. Cited on page 2.

[66] Novak, E., and Ritter, K. Simple cubature formulas with high polynomial exactness. Constr.
Approx. 15 (1999), 499–522. Cited on pages 59 and 60.

[67] Oh, M.-S., and Berger, J. O. Adaptive importance sampling in monte carlo integration.
Journal of Statistical Computation and Simulation 41, 3-4 (1992), 143–168. Cited on page 61.

[68] Olson, D. L., and Swenseth, S. R. A linear approximation for chance-constrained program-
ming. J. Opl Res. Soc. 38, 3 (1987), 261–267. Cited on page 75.

[69] Prekopa, A. Stochastic Programming. Springer, Netherlands, 1995. Cited on pages 1, 3, 4,
and 57.

[70] Rockafellar, R. T., and Uryasev, S. Optimization of conditional value-at-risk. Journal of
Risk 2 (2000), 21–41. Cited on page 1.

[71] Rockafellar, R. T., and Wets, R. J.-B. Variational Analysis, vol. 317 of Grundlehren der
mathematischen Wissenschaften. Springer, Dordrecht, 2009. Cited on page 25.

102 References

[72] Rojas, R. Neural Networks - A Systematic Introduction. Springer, Berlin, 1996. Cited on
page 69.

[73] Royset, J. O., Kiureghian, A. D., and Polak, E. Optimal design with probabilistic objec-
tive and constraints. J. of Eng. Mech. (ASCE) 32 (2006), 107–118. Cited on page 1.

[74] Royset, J. O., and Polak, E. Implementable algorithm for stochastic optimization using
sample average approximation. J. Optim. Theory Appl. 122, 1 (2004), 157–184. Cited on pages 1,
22, 77, and 79.

[75] Sandberg, I. W. Global implicit function theorems. IEEE Trans. Circuits Syst. 28 (1981),
145–149. Cited on page 6.

[76] Sanders, J., and Kandrot, E. Cuda by Example: An Introduction to General-purpose GPU
Programming. Addison Wesley Professional, 2011. Cited on page 74.

[77] Sansone, G. Orthogonal Functions. Dover Publications, New York, 1991. Cited on page 71.

[78] Schwarm, A. T., and Nikolaou, M. Chance constrained model predictive control. AIChE J.
45 (1999), 1743–1752. Cited on page 1.

[79] Shah, S. S., and Madhavan, K. P. Design of controllable batch processes in the presence of
uncertainity. Ann. Oper. Res. 132 (2004), 223–241. Cited on page 78.

[80] Smolyak, S. A. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Math. Dokl. 4 (1963), 240–243. Cited on pages 2 and 58.

[81] Srinivasan, B., Bonvin, D., Visser, E., and Palanki, S. Dynamic optimization of batch
processes ii. role of measurements in handling uncertainty. Comput. Chem. Eng. 27 (2002), 27–44.
Cited on page 1.

[82] Srinivasan, B., Palanki, S., and Bonvin, D. Dynamic optimization of batch processes i.
characterization of the nominal solution. Comput. Chem. Eng. 27 (2003), 1–26. Cited on page 1.

[83] Stoer, J., and Bulirsch, R. Introduction to Numerical Analysis. Springer, New York, 1992.
Cited on pages 46, 47, 50, 51, and 66.

[84] Trefethen, L. Is gauss quadrature better than clenshaw-curtis? SIAM Review 50, 1 (2008),
67–87. Cited on page 51.

[85] Usaola, J. Probabilistic load flow in systems with wind generation. IET Generation, Trans-
mission & Distribution 3, 12 (2009), 1031–1041. Cited on page 89.

[86] Waldvogel, J. Fast construction of the fejér and clenshaw–curtis quadrature rules. BIT Nu-
merical Mathematics 46, 1 (2006), 195–202. Cited on page 49.

[87] Wasilkowski, G. W., and Wozniakowski, H. Explicit cost bounds of algorithms for multi-
variate tensor product problems. J. Complexity 11 (1994), 1–56. Cited on page 58.

[88] Weber, C. Uncertainty in the electric industry, methods and model for decision support.
Springer, New York, USA, 2005. Cited on page 88.

References 103

[89] Wendt, M., Li, P., and Wozny, G. Nonlinear chance-constrained process optimization under
uncertainity. Ind. Eng. Chem. Res. 41 (2002), 3621–3629. Cited on pages 2 and 21.

[90] Wu, J., Zhu, J., Chen, G., and Zhang, H. A hybrid method for optimal scheduling of
short-term electric power generation of cascaded hydroelectric plants based on particle swarm
optimization and chance-constrained programming. IEEE Trans. Power Syst. 23, 4 (2008), 1570–
1579. Cited on page 88.

[91] Xie, L., Li, P., and Wozny, G. Chance constrained nonlinear model predictive control. Lecture
Notes in Control and Inform. Sci. 358 (2007), 295–304. Cited on page 2.

[92] Yserentant, H. Sparse grid spaces for the numerical solution of the electronic schrödinger
equation. Numer. Math. 101 (2005), 381–389. Cited on page 2.

[93] Yu, H., Chung, C. Y., Wong, K. P., and Zhang, J. H. A chance constrained transmission
network expansion planning method with consideration of load and wind farm uncertainties.
IEEE Trans. Power Syst. 24, 3 (2009), 1568–1576. Cited on page 88.

[94] Zhang, H., and Li, P. Chance constrained programming for optimal power flow under uncer-
tainty. IEEE Trans. Power Syst. 26, 4 (2008), 2417–2424. Cited on pages 88 and 89.

[95] Zorich, V. Mathematical Analysis II. Springer, Berlin, 2004. Cited on pages 6, 7, and 70.

Appendix 105

Appendix

Description of the Implementations

Implementations of the problems presented in the case studies and numerical experiments can
be obtained from the author1.

All the implementations are based on IpOPT and share a similar layout. Typical components
are

〈name〉 main.cpp, which contains the initializations of the optimization (e.g., choice of termi-
nation criteria, output options, etc.) and also loads or generates grid points and weights
of the integration routine,

〈name〉 nlp.cpp, where the actual optimization problem is defined, and

stochopt global.hpp, which defines problem specific global variables (e.g., for the integration
routine and other necessary parameters).

Generally, all IpOPT options are available from the documentation (http://www.coin-or.
org/Ipopt/documentation/). Nonetheless, some options are especially important when using
the software for the solution of CCOPT problems. These are as follows.

Termination tolerances: Due to the usage of integration routines, the objective function and
the constraints cannot be calculated exactly. With the exception of some special cases,
there always remains a small error, which makes it necessary to increase termination
tolerances, since otherwise IpOPT would not converge.

Approximation of the Hessian: While it is mathematically possible to obtain the Hessian, it
is very time consuming in a numerical implementation. It is, therefore, advisable to use
the limited memory Hessian approximation provided by IpOPT.

Choice of algorithm for the selection of the barrier parameter: For specific problems it may
be advisable to use a different algorithm for the computation of the barrier parameter
(e.g., the option “adaptive”). This can decrease the number of necessary iterations.

1Email: michael.kloeppel@gmx.net

http://www.coin-or.org/Ipopt/documentation/
http://www.coin-or.org/Ipopt/documentation/

106 Appendix

The 〈name〉 nlp.cpp files are used to describe the NLP problems, which is done by implementing
the methods of the IpOPT NLP-class. The purpose of the single functions is clear from their
names. In the given programs, one will usually find additional routines, which evaluate the
constraints and possibly also the objective function. This is done by looping over all grid
points in the integration routine and solving the model equations at each point. This part
of the programs is carried out as parallel computation (recognizable from the “#pragma omp
parallel for” directive). If a Newton method is used, one will find additional functions to
evaluate the model equations and the partial Jacobian.

There are two additional methods, which might be useful.

finalize solution Allows to safe the optimal solution to other variables, since these are no longer
available after the execution of IpOPT. Also allows to access additional information, e.g.
multipliers, diagnostic information, etc.

intermediate callback Allows to access all available information on the problem between two
iterations. Can be either used to terminate the problem with a user-specified termination
criterion or to adapt some problem parameters to properties of the optimization routine
(e.g., match the parameter τ in the AA approach to the barrier parameter).

With the exception of the OPF example, the problems are usually not scalable. Increasing the
number of constraints or uncertainties requires significant changes to the existing code.

	Introduction
	Related approaches
	Robust optimization
	Recourse stochastic programming

	Contributions of the author

	Prerequisites
	Implicit function theorems
	Partition of the unity
	Interval and affine arithmetic
	Interval arithmetic
	Affine arithmetic

	Probability distributions
	Gaussian distribution
	Beta distribution

	Chance Constrained Optimization
	Classification of CCOPT problems
	Type of model equations
	Linearity
	Temporal behavior and distribution of the uncertain variables

	Components of solution approaches

	Evaluation of Chance Constraints
	Direct computation
	Linearization
	Implementation

	Projection approaches
	Analytical approximations
	Some details on an analytic approximation approach proposed by Nemirovski and Shapiro
	A novel analytical approximation approach
	Implementation

	Numerical Integration
	Univariate integration (quadrature)
	Newton-Cotes quadrature
	Clenshaw-Curtis quadrature
	Gauß quadrature
	Kronrod-Patterson quadrature
	Some remarks on univariate quadrature in the context of CCOPT

	Multivariate integration (cubature)
	Full grids
	Sparse Grids

	(Quasi-)Monte-Carlo cubature
	Comparison of the different methods
	Test Results

	Solution of Model Equations
	Newton's method
	Approximation approaches
	Artificial Neural Networks
	(Generalized) Fourier series

	Applications and Numerical Experiments
	Software and implementation
	Parallelization
	Implementation

	Numerical experiments
	Cattle feed problem
	Portfolio optimization problem
	Multidisciplinary design optimization: Maximum distance problem
	Multidisciplinary design optimization: Design of a short column
	Chemical Process Engineering under Uncertainty
	Summary

	Chance constrained optimal power flow
	OPF under non-Gaussian Uncertainties
	A Case study

	Conclusions and Future Work
	Future work
	Theory
	Applications

	References
	Appendix

