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Abstract

We introduce the notion of spectral points of type π+ and type π− of
closed operators A in a Hilbert space which is equipped with an indefinite
inner product. It is shown that these points are stable under compact
perturbations. In the second part of the paper we assume that A is sym-
metric with respect to the indefinite inner product and prove that the
growth of the resolvent of A is of finite order in a neighborhood of a real
spectral point of type π+ or π− which is not in the interior of the spec-
trum of A. Finally, we prove that there exists a local spectral function on
intervals of type π+ or π−.

Keywords:Indefinite inner product; selfadjoint operator; spectrum of posi-
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1 Introduction

Let (H, [· , ·]) be a Krein space and let A be a bounded or unbounded linear
operator in H which is selfadjoint with respect to the Krein space inner product
[·, ·]. The spectral properties of selfadjoint operators in Krein spaces differ es-
sentially from the spectral properties of selfadjoint operators in Hilbert spaces,
e.g., the spectrum σ(A) of A is in general not real and even σ(A) = C may
happen.

The indefiniteness of the scalar product [· , ·] on H induces a natural classi-
fication of isolated real eigenvalues: A real isolated eigenvalue λ0 is said to be
of positive (negative) type if all corresponding eigenvectors are positive (nega-
tive, respectively) with respect to [· , ·]. In this case, there is no Jordan chain of
length greater than one. This classification of real isolated eigenvalues is used
frequently in some papers from theoretical physics, see, e.g., [7, 8, 10, 13, 22].
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There is a corresponding notion for points from the approximate point spec-
trum σap(A). Namely, a point λ ∈ σap(A) is called a spectral point of positive
(negative) type of A if for every approximate eigensequence (xn) of A at λ we
have

lim inf
n→∞

[xn, xn] > 0
(
resp. lim sup

n→∞
[xn, xn] < 0

)
. (1.1)

The above definitions also make sense when the underlying inner product is no
longer a Krein space inner product. In [21] bounded operators in a Hilbert space
(H, (· , ·)) are considered which are selfadjoint with respect to an inner product
[· , ·] = (G·, ·) with a selfadjoint bounded operator G. Note that in this case
the point zero is allowed to be a point of the spectrum of G, which corresponds
to the situation where (H, (· , ·)) is not a Krein space. In [21] it is shown that
the sets of the spectral points of positive and negative type are contained in
R. If, in addition, the non-real points of a neighbourhood of spectral points of
positive/negative type are contained in ρ(A), then there exists a local spectral
function E, see [21]. The second main result in [21] is for a compact and [· , ·]-
selfadjoint perturbation K: A spectral point of positive type which is not in the
interior of σ(A) and of σ(A+K) is either a spectral point of positive type or a
regular point of A+K or it is contained in σ−,f (A+K), see [21].

In [4] the notions of spectral points of positive/negative type are generalized
to spectral points of type π+ and type π−. These points are also introduced via
approximate eigensequences, and the relation (1.1) is only required for sequences
(xn) in a subspace of finite codimension. In [4] the operator A is allowed to be
unbounded, but [· , ·] is still a Krein space inner product. One of the main results
in [4] is that the above-mentioned set σ−,f (A) essentially coincides with the set
of the spectral points of type π+ which are not of positive type. Moreover,
a local spectral function similar as above is constructed. However, the proof
relies on the Krein space structure. This paper is in a sense continued by [6].
Moreover, in [1], the stability results from [4] and [21] were generalized to closed
linear relations in Krein spaces and were used in, e.g., [2, 5, 14, 15, 26]

In the present paper we drop the condition that (H, [· , ·]) is a Krein space
and (contrary to [21]) allow the operator A to be unbounded. Some of the known
results from [4] and [6] still hold in this much more general situation. They are
collected in Section 3. In addition, it is shown in Section 3 that ker(A − λ) is
an Almost Pontryagin space for all complex numbers λ from the spectrum of
type π+ or π−. Moreover it is shown that the spectral points of type π are
stable under compact perturbations. In Section 4 it is proved in Theorem 4.2
that a compact interval of type π+ or π− is always contained in an open set
U such that U either consists only of eigenvalues of A or U \ R consists only
of points outside σap(A). Here we also show that in this situation either each
point of U possesses a Jordan chain of infinite length or that there exists at most
finitely many points in U with a Jordan chain of length greater than one which
has, in addition, a finite length. In Subsection 4.2, a finite rank perturbation
is constructed which turns a spectral point of type π into a spectral point of
definite type. If U \ R ⊂ ρ(A) then the growth of the resolvent towards the
interval is of finite order (see Theorem 4.7). Finally, we prove in Section 5 that
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the operator A possesses a local spectral function on intervals of type π+ or
type π−.

2 Preliminaries

In this paper let (H, (· , ·)) be a Hilbert space and let G be a bounded selfadjoint
operator in H. By [· , ·] we denote the inner product which is induced by G, i.e.

[x, y] := (Gx, y) for x, y ∈ H. (2.1)

The operatorG is called theGram operator of the inner product [· , ·] in (H, (· , ·)).
A vector x ∈ H is called positive (negative, neutral ) if [x, x] > 0 ([x, x] < 0,

[x, x] = 0, respectively). A subset is called positive (negative, neutral ) if all its
non-zero vectors are positive (negative, neutral, respectively). As usual (see e.g.
[3, 9]), the orthogonal companion M[⊥] and the isotropic part M◦ of a subset
M are defined by

M[⊥] := {x ∈ H : [x, y] = 0 for all y ∈ M} and M◦ := M∩M[⊥].

In this paper a subspace is always a closed linear manifold. Let L ⊂ H be a
subspace. A fundamental decomposition of L is a decomposition of the type

L = L+[u]L−[u]L◦, (2.2)

where L+ is a positive subspace, L− is a negative subspace, and the projections
in L onto L+, L− and L◦, which are defined by this decomposition, are bounded
operators. The symbol [u] indicates that the sum is direct and orthogonal with
respect to the inner product [· , ·]. Recall, that a subspace L ⊂ H always admits
a fundamental decomposition (2.2) (see [9, Theorem IV.5.2]). The numbers

κ+(L) := dimL+, κ−(L) := dimL−, and κ0(L) := dimL◦

will be called the rank of positivity, rank of negativity and the rank of degeneracy
of L, respectively. They do not depend on the particularly chosen fundamental
decomposition. Furthermore, we define

κ+,0(L) := κ+(L) + κ0(L) and κ−,0(L) := κ−(L) + κ0(L),

and call these values the rank of non-negativity and the rank of non-positivity
of L, respectively. A subset L is called uniformly positive (uniformly negative)
if there exists a number δ > 0 such that

[x, x] ≥ δ∥x∥2 for all x ∈ L (−[x, x] ≥ δ∥x∥2 for all x ∈ L, respectively).

A subset is called uniformly definite if it is either uniformly positive or uniformly
negative. Recall, that for a uniformly definite subspace L ⊂ H we have (see,
e.g., [21])

H = L[u]L[⊥]. (2.3)
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Let A be a closed and densely defined operator inH. We denote the spectrum
and the resolvent set by σ(A) and ρ(A), respectively. By ker(A) we denote the
kernel and by ran(A) the range of A. We call A a Φ+-operator if ker(A) is finite-
dimensional and ran(A) is closed. Recall (see, e.g., [24, Theorem 8 in Section
16]) that A is a Φ+-operator if and only if there exist a subspace M ⊂ H with
codim M < ∞ and a number c > 0 such that

∥Ax∥ ≥ c∥x∥ for all x ∈ M∩ domA. (2.4)

The approximate point spectrum σap(A) of A is the set of all points λ ∈ C
for which there exists a sequence (xn) in domA with the property

∥xn∥ = 1, n ∈ N, and (A− λ)xn → 0 as n → ∞.

A point λ ∈ σap(A) is called an approximate eigenvalue of A. If λ ∈ C is not an
approximate eigenvalue of A, it is called a point of regular type of A. We denote
the set of those points by r(A). It is not difficult to see that λ ∈ C is a point of
regular type of A if and only if ker(A − λ) = {0} and ran(A − λ) is closed. In
particular, if λ ∈ r(A), then A− λ is a Φ+-operator.

As usual, the compactification C ∪ {∞} of C is denoted by C. We define
σ̃ap(A) := σap(A) if A is bounded, and σ̃ap(A) := σap(A) ∪ {∞} if A is un-
bounded and call the set σ̃ap(A) the extended approximate point spectrum of A.
The extended spectrum σ̃(A) of A is defined analogously. The complementary
sets

ρ̃(A) := C \ σ̃(A) and r̃(A) := C \ σ̃ap(A)

are called the extended resolvent set and the extended set of points of regular type
of A, respectively. Obviously, σap(A) ⊂ σ(A) and σ̃ap(A) ⊂ σ̃(A). Moreover,
we have

∂σ(A) ⊂ σap(A) and ∂σ̃(A) ⊂ σ̃ap(A). (2.5)

A point λ ∈ C is contained in r̃(A) if and only if there exist an open neighborhood
U of λ in C and a number c > 0 such that

∥(A− µ)x∥ ≥ c∥x∥ for all µ ∈ U \ {∞} and all x ∈ domA. (2.6)

Thus, r̃(A) and r(A) are open in C and C, respectively.
For a linear manifold L ⊂ H the codimension of L is defined by codimL :=

dim(H/L). If M ⊂ H is another linear manifold such that L ⊂ M we define
codimM L := dim(M/L).

3 Spectral Points of Type π+ and Type π−

Throughout this section, let A be a closed, densely defined operator in H. We
define the spectral points of type π+ and type π− of A in analogy to [1, 4, 6].
However, we emphasize that here neither (H, [· , ·]) is assumed to be a Krein
space (as in [1, 4, 6]) nor is the operator A assumed to be selfadjoint (as in
[4, 6]). The following definition is a generalization of the spectral points of
definite type (see, e.g., [21, 25]).
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Definition 3.1. Let A be a closed, densely defined operator in H. A point
λ ∈ σap(A) is called a spectral point of type π+ (type π−) of A if there exists
a linear manifold Hλ ⊂ H with codim Hλ < ∞, such that for every sequence
(xn) in Hλ ∩ domA with ∥xn∥ = 1 and (A− λ)xn → 0 as n → ∞ we have

lim inf
n→∞

[xn, xn] > 0

(
lim sup
n→∞

[xn, xn] < 0, respectively

)
.

The point∞ is called a spectral point of type π+ (type π−) of A if A is unbounded
and if there exists a linear manifold Hλ ⊂ H with codimHλ < ∞, such that for
every sequence (xn) in Hλ ∩ domA with ∥Axn∥ = 1 and xn → 0 as n → ∞ we
have

lim inf
n→∞

[Axn, Axn] > 0

(
lim sup
n→∞

[Axn, Axn] < 0, respectively

)
.

We denote the set of all spectral points of type π+ (type π−) of A by σπ+(A)
(σπ−(A), respectively).

A point λ ∈ σπ+(A) (λ ∈ σπ−(A)) is called a spectral point of positive type
(negative type, respectively) of A if Hλ in the above definition can be chosen as
H. The set consisting of all spectral points of positive (negative) type of A is
denoted by σ+(A) (σ−(A), respectively).

Remark 3.2. Contrary to the notion above, in [1, 4, 6] the notion σ++(A) and
σ−−(A) is used for spectral points of positive (negative) type of A. However,
here we will use the notion σ+(A) (σ−(A), respectively) as in [21].

Remark 3.3. If λ ∈ C then A−λ is a Φ+-operator if and only if λ ∈ (σπ+(A)∩
σπ−(A)) ∪ r(A). Indeed, if A − λ is a Φ+-operator, then there is a subspace
Hλ with finite codimension such that there does not exist any sequence (xn)
in Hλ ∩ domA with ∥xn∥ = 1 and (A − λ)xn → 0 as n → ∞. The opposite
direction follows directly from Definition 3.1.

In the sequel, by HA we denote the Hilbert space (domA, (· , ·)A), where

(x, y)A := (x, y) + (Ax,Ay), x, y ∈ domA.

The graph norm on HA induced by (· , ·)A is denoted by ∥ · ∥A, i.e.

∥x∥A :=
√
∥x∥2 + ∥Ax∥2, x ∈ domA. (3.1)

For M ⊂ HA we denote the closure of M in HA by M
A
. If (xn) is a sequence

in HA converging (weakly) to some x ∈ HA, we write xn
A→ x (xn

A
⇀ x, respec-

tively), n → ∞. In the following theorem we collect different characterizations
for a point to belong to σπ+(A) (or to λ ∈ σπ−(A)), see also [1, 4].

Theorem 3.4. Let A be a closed, densely defined operator in H and let λ ∈
σ̃ap(A). Then the following statements are equivalent.
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(i) λ ∈ σπ+
(A) (λ ∈ σπ−(A)).

(ii) There exists a linear manifold Dλ ⊂ domA with codimdomA Dλ < ∞,
such that for every sequence (xn) in Dλ we have: If λ ̸= ∞, then

∥xn∥ = 1 and (A− λ)xn → 0 as n → ∞ (3.2)

implies

lim inf
n→∞

[xn, xn] > 0

(
lim sup
n→∞

[xn, xn] < 0, respectively

)
. (3.3)

If λ = ∞, then

∥Axn∥ = 1 and xn → 0 as n → ∞ (3.4)

implies

lim inf
n→∞

[Axn, Axn] > 0

(
lim sup
n→∞

[Axn, Axn] < 0 respectively

)
. (3.5)

(iii) There exists a linear manifold D̃λ ⊂ domA with codimdomA D̃λ < ∞
which is closed in HA such that for every sequence (xn) in D̃λ we have:
If λ ̸= ∞, then (3.2) implies (3.3). If λ = ∞, (3.4) implies (3.5).

(iv) There exists a subspace1 Hλ ⊂ H with codimHλ < ∞ such that for every
sequence (xn) in Hλ∩domA we have: If λ ̸= ∞, then (3.2) implies (3.3).
If λ = ∞, (3.4) implies (3.5).

(v) If λ ̸= ∞, then for every sequence (xn) in domA with xn ⇀ 0 as n → ∞
(3.2) implies (3.3). If λ = ∞, then for every sequence (xn) in domA with
Axn ⇀ 0 as n → ∞ (3.4) implies (3.5).

Proof. Let λ ∈ σπ+(A). A similar reasoning applies to λ ∈ σπ−(A).
(i)⇒(ii). LetHλ be a linear manifold with finite codimension as in Definition

3.1. Then there exists a finite-dimensional subspace Z ⊂ H, such that

H = Hλ u Z and domA = (domA ∩Hλ)u (domA ∩ Z),

see, e.g., [19, §7.6]. Thus, Dλ := domA∩Hλ is a linear manifold as in statement
(ii).

(ii)⇒(iii). Let Dλ be a linear manifold as in (ii). In order to show (iii),

we set D̃λ := Dλ
A
, where Dλ

A
denotes the closure of Dλ with respect to the

graph norm in (3.1). Let (xn) in D̃λ be a sequence satisfying (3.2) if λ ̸= ∞ or
(3.4) if λ = ∞. Then there is a sequence (un) in Dλ with ∥xn − un∥ → 0 and
∥Axn −Aun∥ → 0 as n → ∞. If λ ̸= ∞, we have ∥un∥ → 1 and (A− λ)un → 0
as n → ∞, which implies

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[un, un] > 0.

1Recall that here a subspace is always a closed linear (sub)manifold
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If λ = ∞, un → 0 and ∥Aun∥ → 1 as n → ∞ follows, which yields

lim inf
n→∞

[Axn, Axn] = lim inf
n→∞

[Aun, Aun] > 0.

This shows (iii).
(iii)⇒(iv) & (v)⇒(iv). Suppose that (iv) is not true. If λ ̸= ∞, then for

any subspace M of H with finite codimension there is a sequence (xn,M) in M∩
domA with ∥xn,M∥ = 1, (A−λ)xn,M → 0, n → ∞, and lim infn→∞[xn,M, xn,M] ≤
0. Hence, by induction, we find a sequence (xn) in domA with ∥xn∥ = 1,
xn ∈ {x1, . . . , xn−1}⊥, ∥(A − λ)xn∥ ≤ 1

n and [xn, xn] ≤ 1
n . Therefore the

orthonormal sequence (xn) satisfies

(A− λ)xn → 0 as n → ∞ and lim inf
n→∞

[xn, xn] ≤ 0.

In the case λ = ∞ there exists a sequence (xn) in domA with

∥Axn∥ = 1, xn → 0 as n → ∞ and lim inf
n→∞

[Axn, Axn] ≤ 0.

We may assume that (Axn) converges weakly to some y. Since A is a closed
operator, it has a closed graph which is also weakly closed. Then {xn, Axn} ⇀
{0, y}, n → ∞, in H×H and y = 0 follows. Thus, in both cases we have xn ⇀ 0
and Axn ⇀ 0, which yields the weak convergence of (xn) to zero in (HA, (· , ·)A).
This shows that (v) does not hold. Suppose, that (iii) holds Then HA admits a
decomposition

HA = D̃λ u D̃

with some finite-dimensional subspace D̃. The projections onto D̃λ and D̃ with
respect to this decomposition are continuous in HA. Let (un) in D̃λ and (vn)

in D̃ be sequences such that xn = un + vn holds. Since D̃ is finite-dimensional,

vn
A
⇀ 0 implies vn

A→ 0, which means vn → 0 and Avn → 0 as n → ∞. If
λ ̸= ∞, we have ∥un∥ → 1, (A− λ)un → 0 as n → ∞ and

lim inf
n→∞

[un, un] = lim inf
n→∞

(
[xn, xn]− [xn, vn]− [vn, un]

)
≤ 0,

which is a contradiction to (iii). If λ = ∞, then un → 0, ∥Aun∥ → 1 as n → ∞
and

lim inf
n→∞

[Aun, Aun] = lim inf
n→∞

(
[Axn, Axn]− [Axn, Avn]− [Avn, Aun]

)
≤ 0

follows, contradicting (iii).
Obviously, (iv) implies (i) and, hence, assertions (i)–(iv) are equivalent. It

remains to show that (iv) implies (v). For this let Hλ be a subspace as in (iv).
Then there exists a finite-dimensional subspace Gλ ⊂ domA, such that

H = Hλ u Gλ.

Let λ ̸= ∞ and let (xn) in domA be a sequence with xn ⇀ 0 as n → ∞ which
fulfils (3.2). Further, let (un) in Hλ and (vn) in Gλ be sequences, such that
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xn = un + vn. Then, since vn ⇀ 0, we have vn → 0, and thus ∥un∥ → 1,
(A− λ)un → 0, and

lim inf
n→∞

[xn, xn] = lim inf
n→∞

[un, un] > 0.

Suppose λ = ∞. If (xn) in domA is a sequence with Axn ⇀ 0 as n → ∞ such
that (3.4) holds, define the sequences (un) in Hλ and (vn) in Gλ as above. Then
un → 0, vn → 0 and Avn → 0 as n → ∞, which implies limn→∞ ∥Aun∥ = 1
and therefore

lim inf
n→∞

[Axn, Axn] = lim inf
n→∞

[Aun, Aun] > 0.

Therorem 3.4 is proved.

The following lemma shows that the point ∞ cannot be a spectral point of
type π+ or π− when it is not of positive (resp. negative) type.

Lemma 3.5. ∞ ∈ σπ+(A) implies ∞ ∈ σ+(A), ∞ ∈ σπ−(A) implies ∞ ∈
σ−(A).

Proof. If ∞ ∈ σπ+(A) \ σ+(A), then there exists (xn) in domA with xn → 0
as n → ∞, ∥Axn∥ = 1 and lim infn→∞ [Axn, Axn] ≤ 0. We may assume that
Axn ⇀ y as n → ∞ for some y ∈ H. But then {xn, Axn} ⇀ {0, y} in H ×H,
which implies y = 0, since A is closed. By Theorem 3.4 we obtain a contradiction
to ∞ ∈ σπ+(A).

In the following we study compact sets which consist of points that either
belong to σπ+(A)∪σπ−(A) or to r̃(A). As a byproduct, it will turn out that the
sets σπ+

(A), σπ−(A), σ+(A) and σ−(A) are relatively open in σ̃ap(A). Theorems
3.6 and 3.7 below can be proved in the same way as in [4, Lemma 2 and Lemma
12]. Therefore, we omit their proofs.

Theorem 3.6. Let A be a closed, densely defined operator in H, and let K ⊂ C
be a compact set such that K ∩ σ̃ap(A) ⊂ σ+(A) (K ∩ σ̃ap(A) ⊂ σ−(A)). Then
there exist an open neighborhood U in C of K and ε > 0 such that

λ ∈ U \ {∞}, x ∈ domA, ∥(A− λ)x∥ ≤ ε∥x∥

implies
[x, x] ≥ ε∥x∥2 (−[x, x] ≥ ε∥x∥2, respectively ).

In this case, we have

U ∩ σ̃ap(A) ⊂ σ+(A) (U ∩ σ̃ap(A) ⊂ σ−(A), respectively).

Theorem 3.7. Let A be a closed, densely defined operator in H, and let K ⊂ C
be a compact set such that K ∩ σ̃ap(A) ⊂ σπ+(A) (K ∩ σ̃ap(A) ⊂ σπ−(A)). Then

there exist an open neighborhood U in C of K, a linear manifold H0 ⊂ H with
codimH0 < ∞, and ε > 0 such that

λ ∈ U \ {∞}, x ∈ H0 ∩ domA, ∥(A− λ)x∥ ≤ ε∥x∥

8



implies
[x, x] ≥ ε∥x∥2 (−[x, x] ≥ ε∥x∥2, respectively ).

In this case, we have

U ∩ σ̃ap(A) ⊂ σπ+(A) (U ∩ σ̃ap(A) ⊂ σπ−(A), respectively).

Theorems 3.6 and 3.7 in particular imply the following corollary.

Corollary 3.8. The sets σπ+(A), σπ−(A), σ+(A) and σ−(A) are (relatively)
open in σ̃ap(A).

There is a certain connection between the linear manifoldHλ from Definition
3.1 and the ”nonpositive part” of the eigenspace ker(A − λ). For this, we first
recall the notion of an Almost Pontryagin space, see e.g. [18] and [27].

Definition 3.9. A subspace L ⊂ H is called an Almost Pontryagin space with
finite rank of non-positivity (non-negativity) if there exists a uniformly positive

(uniformly negative, respectively) subspace L̃ ⊂ L with codimL L̃ < ∞.

Lemma 3.10. Let A be a closed, densely defined operator in H and let λ ∈
σπ+

(A) \ {∞} (λ ∈ σπ−(A) \ {∞}). Then ker(A− λ) is an Almost Pontryagin
space with finite rank of non-positivity (non-negativity, respectively).

Proof. We show Lemma 3.10 only for λ ∈ σπ+
(A). Let L+[u]L−[u]L◦ be a

fundamental decomposition of ker(A − λ), cf. (2.2). If L−[u]L◦ is infinite-
dimensional then there is an orthonormal sequence in L−[u]L◦ ⊂ ker(A − λ),
which is by Theorem 3.4 (v) impossible. Hence, L+ has finite codimension
in L, and it remains to show that L+ is uniformly positive. Suppose, that
this is not the case. Then there exists a sequence (xn) in L+ with ∥xn∥ = 1
and limn→∞[xn, xn] = 0. We may assume that (xn) converges weakly to some
x0 ∈ L+. For this x0 we have

|[x0, x0]| ≤ |[x0, x0 − xn]|+ [x0, x0]
1/2[xn, xn]

1/2,

and x0 = 0 follows. But this contradicts λ ∈ σπ+(A) by Theorem 3.4 (v).

The following theorem characterizes which linear manifolds can be chosen for
Hλ in Definition 3.1 and what their smallest possible codimension is. Theorem
3.11 is contained in [6, Lemma 3.1, Theorem 3.3] for the situation where A is
a selfadjoint operator in a Krein space. However, the proof in [6] is also valid
for the current situation, where A is only a closed, densely defined operator
in a space with inner product given by (2.1). Therefore, we omit the proof of
Theorem 3.11.

Theorem 3.11. Let A be a closed, densely defined operator in H and let λ ∈
σπ+(A) \ {∞} (λ ∈ σπ−(A) \ {∞}). A linear manifold Hλ with codimHλ < ∞
is as in Definition 3.1 if and only if the subspace

Hλ ∩ domA
A ∩ ker(A− λ)
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is positive (negative, respectively). In the case where Hλ is closed, this is equiv-
alent to the positivity (negativity, respectively) of

Hλ ∩ ker(A− λ).

Moreover, there exists a subspace H′
λ with this property and

codimH′
λ = κ−,0(ker(A− λ)) (codimH′

λ = κ+,0(ker(A− λ)), respectively)

which is the smallest possible codimension of all the linear manifolds satisfying
the conditions of Definition 3.1.

Corollary 3.12. Let λ ∈ σπ+(A) \ {∞} (λ ∈ σπ−(A) \ {∞}). Then λ ∈
σ+(A) (λ ∈ σ−(A), respectively) if and only if ker(A− λ) is positive (negative,
respectively).

Corollary 3.13. Any λ ∈ σπ+(A)\σ+(A) (λ ∈ σπ−(A)\σ−(A)) is an eigenvalue
of A with a corresponding non-positive (non-negative, respectively) eigenvector.

Probably the most important property of spectral points of type π+ and
type π− is their stability under compact perturbations. For this, let A be a
closed, densely defined operator in H. Recall that an operator K is said to
be A-compact if domA ⊂ domK and K, as a mapping from (HA, (· , ·)A) (cf.
(3.1)), into H, is compact, cf. [17, IV §1.3].

Theorem 3.14. Let A and B be closed and densely defined operators in H,
and assume that either domB = domA such that B − A is A-compact or that
ρ(A) ∩ ρ(B) ̸= ∅ such that

(A− µ)−1 − (B − µ)−1 (3.6)

is compact for some (and hence for all ) µ ∈ ρ(A) ∩ ρ(B). Then

σπ+(A) ∪ r(A) = σπ+(B) ∪ r(B) and σπ−(A) ∪ r(A) = σπ−(B) ∪ r(B),

∞ ∈ σ+(A) ⇐⇒ ∞ ∈ σ+(B),

∞ ∈ σ−(A) ⇐⇒ ∞ ∈ σ−(B),

∞ ∈ r̃(A) ⇐⇒ ∞ ∈ r̃(B).

(3.7)

Proof. Assume that the operator in (3.6) is compact. In the proof of [1, Theorem
4.1] G is assumed to be boundedly invertible. This proof also holds for the
current situation. Therefore, the first two equalities in (3.7) follow from [1,
Theorem 4.1]. Hence, it remains to prove the statements in (3.7) concerning ∞.
We observe

∞ ∈ r̃(A) ⇐⇒ A− µ is a bounded operator ⇐⇒ (A− µ)−1 is a Φ+-operator

⇐⇒ (B − µ)−1 is a Φ+-operator ⇐⇒ ∞ ∈ r̃(B).

Let ∞ ∈ σ+(A) and let (xn) in dom(B) be a sequence with xn → 0, Bxn ⇀ 0
as n → ∞ and ∥Bxn∥ = 1. Denote by K the operator in (3.6), K := (A −
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µ)−1 − (B − µ)−1. Then (B − µ)xn ⇀ 0 implies K(B − µ)xn → 0 as n → ∞.
Set

un := (A− µ)−1(B − µ)xn = xn −K(B − µ)xn.

Then un → 0 and since Aun = Bxn+µ(un−xn) we have Aun ⇀ 0, ∥Aun∥ → 1,
n → ∞,

lim inf
n→∞

[Bxn, Bxn] = lim inf
n→∞

[Aun, Aun],

and ∞ ∈ σ+(B) follows from Theorem 3.4 and Lemma 3.5.
It remains to show (3.7) if K := B − A is A-compact. By [17, Theorem

IV.1.11] K is B-compact. If λ ∈ r(A) then A − λ is a Φ+-operator. By [17,
Theorem IV.5.26] the same holds for B − λ, and we have λ ∈ σπ+(B) ∪ r(B)
(see Remark 3.3).

Let λ ∈ σap(B) \ {∞} and let (xn) be a sequence in domA with ∥xn∥ = 1,
xn ⇀ 0 and (B − λ)xn → 0 as n → ∞. Since (xn) converges weakly to zero in
HB we have Kxn → 0 and thus (A− λ)xn → 0 as n → ∞. Hence, by Theorem
3.4, λ ∈ σπ+(A) implies λ ∈ σπ+(B) ∪ r(B).

For the point ∞ we have

∞ ∈ r̃(A) ⇐⇒ A bounded ⇐⇒ B bounded ⇐⇒ ∞ ∈ r̃(B).

Let (xn) be a sequence in domA with xn → 0, Bxn ⇀ 0 as n → ∞ and
∥Bxn∥ = 1. As (xn) converges weakly to zero in HB, it follows that Kxn → 0
as n → ∞. Consequently, we have limn→∞ ∥Axn∥ = 1 and

lim inf
n→∞

[Bxn, Bxn] = lim inf
n→∞

[Axn, Axn].

By Theorem 3.4 and Lemma 3.5, ∞ ∈ σ+(A) implies ∞ ∈ σ+(B).

4 Spectral Points of Type π+ and π− of G-Sym-
metric Operators

As in the previous section, let G be a bounded selfadjoint operator in the Hilbert
space (H, (· , ·)) inducing the inner product [· , ·] = (G·, ·). A linear operator A
in H will be called G-symmetric (or [· , ·]-symmetric) if

[Ax, y] = [x,Ay] holds for all x, y ∈ domA.

Obviously, this is equivalent to GA ⊂ (GA)∗ where ∗ denotes the adjoint with
respect to the Hilbert space inner product (· , ·). If GA = (GA)∗ holds we say
that A is G-selfadjoint. E.g., such operators are studied in [2, 21] and in [27] in
the case where the inner product [· , ·] only has a finite number of non-positive
squares.

In the sequel, let A be a closed and densely defined G-symmetric operator in
H. A Jordan chain of A at λ ∈ C of length n is a finite ordered set of non-zero
vectors {x0, . . . , xn−1} in domA such that (A−λ)x0 = 0 and (A−λ)xi = xi−1,
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i = 1, . . . , n − 1. The vector x0 is called the eigenvector of the Jordan chain.
Several Jordan chains of A at λ are called linearly independent if their union is
linearly independent. This holds if and only if the respective eigenvectors are
linearly independent. The algebraic eigenspace Lλ(A) of A at λ is the collection
of all Jordan chains of A at λ,

Lλ(A) :=
∞∪

n=1

ker(A− λ)n.

The proof of [12, Proposition 3.2] is also valid in the present situation (in [12] it
is assumed that G is boundedly invertible). Hence, we obtain for λ, µ ∈ C with
λ ̸= µ

Lλ(A) [⊥] Lµ(A), in particular, Lλ(A) is neutral for non-real λ. (4.1)

4.1 Spectral points of type π+ and π− and Jordan chains

In the following lemma we collect some properties of spectral points of type π+

and type π− and of spectral points of positive and negative type of G-symmetric
operators.

Lemma 4.1. Let A be a closed, densely defined G-symmetric operator in H.
Then σ+(A) and σ−(A) are contained in R, and for λ ∈ (σπ+(A)∪ σπ−(A)) \R
the operator A − λ is a Φ+-operator. For λ ∈ σπ+(A) ∪ σπ−(A) the following
holds.

(i) The eigenvector of a Jordan chain of length greater than one of A corre-
sponding to λ is an element of the isotropic part of ker(A− λ).

(ii) ker(A − λ) is an Almost Pontryagin space, and there exists only finitely
many linear independent Jordan chains of A at λ.

(iii) Let N+ [u]N− [u]N0 be a fundamental decomposition of ker(A−λ). Then
there is an A-invariant linear manifold L such that

Lλ(A) = N+ [u]N− [u]L.

Proof. Let λ ∈ σπ+(A) \ R. We show that A − λ is a Φ+-operator. Let
Hλ ⊂ H be a subspace of finite codimension as in Theorem 3.4 (iv). Sup-
pose that A − λ is not a Φ+-operator. Then, by (2.4), there exists no ε > 0
such that ∥(A−λ)x∥ ≥ ε∥x∥ for all x ∈ Hλ ∩ domA. Hence there is a sequence
(xn) in Hλ ∩ domA with ∥xn∥ = 1 and (A − λ)xn → 0 as n → ∞. From
Imλ ̸= 0 and (− Imλ)[xn, xn] = Im[(A− λ)xn, xn] → 0 as n → ∞ we conclude
limn→∞[xn, xn] = 0, a contradiction to λ ∈ σπ+(A), and A−λ is a Φ+-operator.

If, in addition, λ ∈ σ+(A)\R (λ ∈ σ−(A)\R), then by Corollary 3.12 and (4.1),
we have ker(A − λ) = {0}. Thus, as A − λ is a Φ+-operator, λ ∈ r(A) follows,
which is not possible. Therefore, σ+(A) and σ−(A) are contained in R.

12



We prove (i)–(iii). Let λ ∈ σπ+
(A) ∪ σπ−(A). For λ /∈ R, (i) follows from

(4.1). For λ ∈ R, let x be the eigenvector of a Jordan chain of A at λ of
length greater than one. Then there exists y ∈ domA such that (A− λ)y = x.
Hence, for any v ∈ ker(A− λ) we have [x, v] = [(A− λ)y, v] = [y, (A− λ)v] = 0
and (i) is shown. By Lemma 3.10 ker(A − λ) is an Almost Pontryagin space.
Hence, its isotropic part is finite-dimensional and (ii) follows from (i). Setting
L := (N+ [u]N−)

[⊥] ∩ Lλ(A) we obtain (iii).

Let [a, b] be an interval in R such that [a, b]∩σap(A) ⊂ σπ+(A). By Theorem
3.7 there exists an open neighborhood U of [a, b] in C such that also U∩σap(A) ⊂
σπ+(A). It is no restriction to assume that U is connected. By Lemma 4.1, for
every λ ∈ U \ R the operator A − λ is a Φ+-operator. By [17, IV §5.6], there
exists a discrete set Ξ ⊂ U\R such that dimker(A−λ) is constant on each of the
two connected components of U \ (Ξ∪R). The following theorem shows that in
the special situation under consideration both these constants coincide and that
it is possible to choose U such that Ξ = ∅. The following theorem reveals an
insight into the Jordan structures corresponding to the points in U . It extends
[6, Theorem 4.1] to G-symmetric operators. Moreover, the statements (a), (b),
and (e) below are not contained in [6].

Theorem 4.2. Let A be a closed, densely defined G-symmetric operator in
H. Let [a, b] be a compact interval in R with [a, b] ∩ σap(A) ⊂ σπ+(A) ([a, b] ∩
σap(A) ⊂ σπ−(A)). Then there exist an open neighborhood U of [a, b] in C, a
finite set σ ⊂ [a, b]∩(σπ+(A)\σ+(A)) (σ ⊂ [a, b]∩(σπ−(A)\σ−(A)), respectively)
and a constant α ∈ N such that for all λ ∈ U \ σ we have

κ0(ker(A− λ)) = α ≤ min
µ∈σ

κ0(ker(A− µ))

and
κ−(ker(A− λ)) = 0

(
κ+(ker(A− λ)) = 0, respectively

)
.

If α = 0, then

(a) Lλ(A), λ ∈ U , is an Almost Pontryagin space. If λ ∈ U \ σ then ker(A−
λ) = Lλ(A) is a Hilbert space (anti-Hilbert space, respectively) and there
is no Jordan chain of length greater than one. If λ ∈ σ then every Jordan
chain of A at λ is of finite length and, if N λ

+[u]N λ
−[u]N λ

0 is a fundamental
decomposition of ker(A−λ), then there exists a finite-dimensional subspace
L1 with

Lλ(A) = N λ
+[u]L1

(
Lλ(A) = N λ

−[u]L1, respectively
)
.

(b) The set σ can be chosen as σ = ([a, b] ∩ σap(A)) \ σ+(A) (σ = ([a, b] ∩
σap(A)) \ σ−(A), respectively).

(c) U \R ⊂ r(A) and U ∩σap(A) ⊂ σ+(A)∪σ (resp. U ∩σap(A) ⊂ σ−(A)∪σ).

And in the case α > 0 the following hold:
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(d) U ⊂ σp(A) with
(
ker(A− λ)

)◦ ̸= {0} for every λ ∈ U .

(e) For each λ ∈ U there exist at least α linearly independent Jordan chains
of A corresponding to λ of infinite length.

(f) U ⊂ σπ+(A) \ σ+(A) (U ⊂ σπ−(A) \ σ−(A), respectively).

Proof. We only prove the theorem for the case [a, b] ∩ σap(A) ⊂ σπ+(A). The
statements follow from Lemma 4.1, Corollary 3.12, a compactness argument,
and the following claim:

Claim. Let λ0 be a real point with λ0 ∈ σπ+(A) ∪ r(A). Then there exists
an open neighborhood U0 in C of λ0 and an integer constant α0 such that the
following holds:

(i) For each λ ∈ U0 \ {λ0} we have

κ0(ker(A−λ)) = α0 ≤ κ0(ker(A−λ0)) and κ−(ker(A−λ)) = 0. (4.2)

(ii) If α0 = 0 then Lλ(A) is an Almost Pontryagin space for all λ ∈ U0 and
U0 \ {λ0} ⊂ σ+(A). Every Jordan chain of A corresponding to λ is of
finite length.

(iii) If α0 > 0 then for all λ ∈ U0 there are at least α0 linearly independent
Jordan chains of A of infinite length.

To prove the claim, we observe that by Theorem 3.7 we find an open neigh-
borhood V0 in C of λ0 with V0 ∩ σap(A) ⊂ σπ+

(A). For λ ∈ V0 let ker(A−λ) =
N λ

+[u]N λ
−[u]N λ

0 be a fundamental decomposition of ker(A− λ). As ker(A− λ)
is an Almost Pontryagin space (cf. Lemma 3.10), the spaces N λ

− and N λ
0 are

finite-dimensional. We define

N0 := span{N λ
0 : λ ∈ V0 \ {λ0}, Imλ ≥ 0} and

N−,0 := span{N λ
−[u]N λ

0 : λ ∈ V0 \ {λ0}, Imλ ≥ 0},

and set L0 := N0 and L−,0 := N−,0. By (4.1), L0 is neutral and L−,0 is
nonpositive. By A0 (A−,0) we denote the closure of the restriction of A to N0

(N−,0, respectively) which then is a closed and densely defined [· , ·]-symmetric
operator in L0 (L−,0, respectively). We will show that for λ ∈ V0 \ {λ0},
Imλ ≥ 0,

ker(A0 − λ) = N λ
0 , ker(A−,0 − λ) = N λ

− [u]N λ
0 , (4.3)

ker(A0 − λ0) ⊂ N λ0
0 . (4.4)

If λ ∈ V0 \ {λ0} with Imλ ≥ 0, the inclusion ker(A0 − λ) ⊇ N λ
0 is obvious. Let

λ ∈ V0, Imλ ≥ 0, and x ∈ ker(A0 − λ). Since x ∈ ker(A− λ) we find x+ ∈ N λ
+,

x− ∈ N λ
− and x0 ∈ N λ

0 such that x = x+ + x− + x0. Moreover, there exists
a sequence (xn) in N0 with xn → x as n → ∞. From N0[⊥]N λ

+ we conclude
[x+, x+] = [x, x+] = limn→∞[xn, x+] = 0. Analogously, we obtain [x−, x−] = 0
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and therefore x = x0 ∈ N λ
0 . Thus, we have shown the first equation in (4.3)

and also the inclusion (4.4). With a similar argument one shows the second
equation in (4.3).

Since the operator A − λ0 maps N0 (N−,0, respectively) surjectively onto
itself, ran(A0 − λ0) (ran(A−,0 − λ0), respectively) is dense in L0 (L−,0, respec-
tively). If this range was not closed, then A0−λ0 (A−,0−λ0, respectively) would
not be a Φ+-operator. Hence, by (2.4), there exists an orthonormal sequence
(xn) in domA0 ((xn) in domA−,0, respectively) with (A−λ0)xn → 0 as n → ∞.
But this contradicts λ0 ∈ σπ+(A) since L0 and L−,0 are nonpositive subspaces,
see Theorem 3.4 (v). Thus, the operators A0 − λ0 and A−,0 − λ0 are surjective
Fredholm operators. By [17, IV Theorem 5.22] we find an open neighborhood
U0 ⊂ V0 in C of λ0 such that all operators A0 − λ and A−,0 − λ for λ ∈ U0,
Imλ ≥ 0, have the same index and are surjective Fredholm operators. For all
λ ∈ U0 with Imλ ≥ 0 this gives

dim ker(A0−λ) = dim ker(A0−λ0) and dim ker(A−,0−λ) = dim ker(A−,0−λ0).

Set α0 := dim ker(A0 − λ0) and α−,0 := dim ker(A−,0 − λ0). Together with
(4.3) and (4.4) we obtain for all λ ∈ U0 with Imλ ≥ 0

κ0(ker(A− λ)) = dimN λ
0 = α0 ≤ dimN λ0

0 = κ0(ker(A− λ0)),

which proves the first relation in (4.2) for Imλ ≥ 0. We have either α0 = 0 or
α0 > 0 in which case for every λ ∈ U0 the surjectivity of A0 − λ implies that
any Jordan chain of A0 corresponding to λ is of infinite length. This shows (iii).
As Lλ(A) is neutral for non-real λ, see (4.1), N λ

− = {0} and we conclude with
(4.3) for Imλ > 0 that α0 and α−,0 coincide. But this, considering (4.3) again,
implies N λ

− = 0 also for λ ∈ U0 ∩R, λ ̸= λ0. Hence, the second relation in (4.2)
holds for all λ ∈ U0 \ {λ0} with Imλ ≥ 0. Applying similar arguments as above
for the lower complex plane we obtain (4.2) for all λ ∈ U0 \ {λ0}.

It remains to prove (ii). Due to (4.1) and (4.2) we have

Lλ(A) = {0} for λ ∈ U0 \ R. (4.5)

(4.2) and Lemma 4.1 also imply that

Lλ(A) = ker(A− λ) = N λ
+ for λ ∈ U0 ∩ R, λ ̸= λ0.

With Corollary 3.12, we obtain U0 \ {λ0} ⊂ σ+(A) and Lλ(A) is uniformly
positive and, hence, also an Almost Pontryagin space. Therefore we have to
show (ii) only for Lλ0(A). By Lemma 4.1 it suffices to show that each Jordan
chain of A corresponding to λ0 is finite. Assume the contrary. Then there exists
an infinite sequence (xn) in domA such that (A − λ0)xk+1 = xk for all k ≥ 0
and (A− λ0)x0 = 0. Since

[xn, xm] = [(A− λ0)
mxn+m, xm] = [xn+m, (A− λ0)

mxm] = 0

holds for all n,m ∈ N, M0 := span{xn : n ∈ N} is neutral, and A−λ0 maps M0

surjectively onto itself. Let A1 be the closure of A|M0 in the neutral subspace
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M1 := M0. As above for A0 − λ0 it can be shown that A1 − λ0 is a surjective
Fredholm operator. Since x0 ∈ ker(A1 − λ0) it follows [17, IV Theorem 5.22]
that ker(A − λ) ⊃ ker(A1 − λ) ̸= {0} for all λ in a neighborhood of λ0, which
contradicts (4.5).

We refer to [27, Section 4] for an example with α0 > 0 where the unit disc
is contained in σπ+(A) \ σ+(A).

4.2 Finite rank perturbations

In this section we construct a finite rank perturbation which turns a real spectral
point of type π+ (type π−) into a spectral point of positive (negative, respec-
tively) type. It was shown in [16] that such a finite rank perturbation exists
in the case where A is a definitizable operator in a Krein space. The proof of
the following lemma is omitted as the proof of [27, Lemma 3.10] proves also the
statements of Lemma 4.3 below.

Lemma 4.3. Let D be a dense linear manifold in H and let L ⊂ D be an Almost
Pontryagin space. If L = L+[u]L−[u]L◦ is a fundamental decomposition of L,
then there exist subspaces L00,L01,P ⊂ D and M ⊂ H such that

H = L+[u]L−[u]L00[u](L01 u P)[u]M,

and the following statements hold

(i) L00 = L◦ ∩H◦ and L◦ = L00 u L01,

(ii) P is neutral,

(iii) P ∩ L01 = L01 ∩ P [⊥] = L[⊥]
01 ∩ P = {0},

(iv) G := L01 u P is non-degenerate, that is G ∩ G◦ = {0},

(v) κ+(G) = κ−(G) = dimP = dimL01 < ∞,

(vi) L[⊥] = L◦[u]M.

Moreover, there exists a fundamental symmetry J in G such that P = JL01.

We now state the above-mentioned theorem. We refer to [6] where a similar
result is shown for (the special case of) self adjoint operators in Krein spaces.
Contrary to [6], the proof of Theorem 4.4 below is based on Lemma 4.3.

Theorem 4.4. Let A be a closed, densely defined G-symmetric operator in H
and let 0 /∈ σp(G). If λ ∈ σπ+(A) ∩ R (λ ∈ σπ−(A) ∩ R) then there is a
G-symmetric and bounded finite rank operator F such that

λ ∈ σ+(A+ F ) ∪ r(A+ F ) (λ ∈ σ−(A+ F ) ∪ r(A+ F ), respectively) and

dim ran(F ) = κ−,0(ker(A− λ))
(
dim ran(F ) = κ+,0(ker(A− λ)), respectively

)
.
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Proof. ker(A − λ) is an Almost Pontryagin space (Lemma 3.10) with a funda-
mental decomposition L+[u]L−[u]L0. There are P ⊂ domA and M ⊂ H as in
Lemma 4.3 (L00 = {0}) with

H = L+[u]L−[u](L01 u P)[u]M.

The subspace L+ is uniformly positive and, by (2.3), H = L+[u]L[⊥]
+ . Hence

a bounded projection onto L[⊥]
+ = L−[u](L01 u P)[u]M exists. The subspaces

L01 and P are finite-dimensional, therefore (L01uP)[u]M is also closed and the
bounded projection P− onto L− exists. A similar reasoning shows that there
exists the bounded projection P0 onto L01. With the fundamental symmetry J
in L01 u P with JL01 = P (see Lemma 4.3) define

F := P− + JP0.

This operator is G-symmetric since P− is G-symmetric and

[JP0x, y] = [JP0x, P0y] = [P0x, JP0y] = [x, JP0y] for x, y ∈ H.

Assume λ ∈ σap(A+F ). SetHλ := L+[u]P[u]M. By λ ∈ σπ+(A) and Theorem
3.11, Hλ is a subspace as as in Definition 3.1 (for A). Since A|Hλ = (A+F )|Hλ

we have λ ∈ σπ+(A+ F ). Moreover, the inclusion L+ ⊂ ker(A+ F − λ) holds.
If, conversely, x ∈ ker(A + F − λ), then we have P−x, P0x ∈ ker(A − λ),
[x, (A− λ)P−x] = 0, [JP0x, P−x] = 0, [x, (A− λ)P0x] = 0, [P−x, P0x] = 0, and

[P−x, P−x] = [P−x, P−x] + [(A− λ)x, P−x] + [JP0x, P−x]

= [(A+ F − λ)x, P−x] = 0 and

[JP0x, P0x] = [JP0x, P0x] + [(A− λ)x, P0x] + [P−x, P0x]

= [(A+ F − λ)x, P0x] = 0.

Hence we have P−x = P0x = 0, Fx = 0, x ∈ ker(A − λ), and thus x ∈ L+.
With Corollary 3.12, λ ∈ σ+(A+ F ) follows.

Theorem 4.4 and Theorem 4.2 together with Corollary 3.12 yield

Corollary 4.5. Let A be a closed, densely defined G-symmetric operator in
H, let 0 /∈ σp(G), let [a, b] ∩ σap(A) ⊂ σπ+(A) or [a, b] ∩ σap(A) ⊂ σπ−(A).
Then there exists a G-symmetric, bounded finite rank operator F and an open
neighborhood U of [a, b] in C such that U \ R ⊂ r(A+ F ).

4.3 Growth of the Resolvent

The second part of the following Theorem was proved in [21] for bounded G-
symmetric operators.

Theorem 4.6. Let A be a closed, densely defined G-symmetric operator in H.
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(a) If [a, b]∩σap(A) ⊂ σπ+
(A) or [a, b]∩σap(A) ⊂ σπ−(A), then there exist an

open neighborhood U in C of [a, b], a subspace H0 ⊂ H with codimH0 < ∞
and a number c > 0 such that

∥(A− λ)x∥ ≥ c| Imλ|∥x∥ (4.6)

holds for all x ∈ H0 ∩ domA and all λ ∈ U \ R.

(b) If [a, b] ∩ σap(A) ⊂ σ+(A) or [a, b] ∩ σap(A) ⊂ σ−(A), then there are U
and c as in (a) such that (4.6) holds for all x ∈ domA and all λ ∈ U \R.
In particular, U \ R ⊂ r(A), and if even U \ R ⊂ ρ(A) holds, then with
M := c−1 we have

∥(A− λ)−1∥ ≤ M

| Imλ|
for all λ ∈ U \ R. (4.7)

If G is boundedly invertible and the operator GA is selfadjoint in H, then
U can be chosen such that U \ R ⊂ ρ(A).

Proof. (a). Let us assume that [a, b] ∩ σap(A) ⊂ σπ+(A). Set K := [a, b], let
U , H0, and ε be as in Theorem 3.7 and define c := min{ε/∥G∥, 1}. It is no
restriction to assume | Imλ| < ε for all λ ∈ U . Now, let x ∈ H0 ∩ domA
and λ ∈ U \ R. If ∥(A − λ)x∥ ≥ ε∥x∥, relation (4.6) clearly holds and if
∥(A− λ)x∥ ≤ ε∥x∥, then by Theorem 3.7 we have [x, x] ≥ ε∥x∥2, and

| Imλ|ε∥x∥2 ≤ | Im[λx, x]| = | Im[(A− λ)x, x]| ≤ ∥G∥∥(A− λ)x∥∥x∥

follows. This shows (a).
(b). For the proof of the first part of (b) apply Theorem 3.6 instead of

Theorem 3.7 in the argumentation above and we obtain that the inequality (4.6)
is valid for all x ∈ domA, thus U \ R ⊂ r(A) holds. Hence, (4.7) follows from
the assumption U \ R ⊂ ρ(A). If G is boundedly invertible and GA = (GA)∗

then A is selfadjoint in the Krein space (H, [· , ·]). Choose U as in the first part
of (b) such that U is symmetric with respect to R. Then U \ R ⊂ r(A) and for
λ ∈ U \R we have ker(A−λ) = ker(A−λ) = {0} and ran(A−λ) = ran(A− λ) =
ker(A− λ)[⊥] = H. This proves λ ∈ ρ(A).

The following theorem shows that an inequality similar to (4.7) holds in a
neighborhood of intervals with spectral points of type π+ or regular points of
A.

Theorem 4.7. Let A be a closed, densely defined G-symmetric operator in H.
Let [a, b] ∩ σap(A) ⊂ σπ+(A) or [a, b] ∩ σap(A) ⊂ σπ−(A) such that there is an
open neighborhood U of [a, b] in C with U \R ⊂ ρ(A). Then there exists an open
neighborhood V of [a, b] in C and constants M > 0 and m ∈ N such that for
λ ∈ V \ R we have

∥(A− λ)−1∥ ≤ M

| Im λ|m
. (4.8)
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Proof. In view of Theorems 4.6 and 4.2 it is sufficient to prove Theorem 4.7
in a neighbourhood of a spectral point λ ∈ σπ+(A) \ σ+(A). Choose a fun-
damental decomposition of ker(A − λ) = N+[u]N−[u]N0. By Lemma 3.10,
N−[u]N0 is finite-dimensional and by Corollary 3.13 it contains at least one

non-zero element. We set A0 := A|N [⊥]
+ . Then A0 is closed, densely de-

fined in N [⊥]
+ , G-symmetric with λ ∈ σπ+(A0) and U \ R ⊂ ρ(A0). We have

Lλ(A) = N+[u]Lλ(A0) and by Theorem 4.2 (b) the subspace Lλ(A0) is finite-
dimensional. If Lλ(A0) = L+[u]L−[u]L0 is a fundamental decomposition of
Lλ(A0), then L+, L− and L0 are finite-dimensional. With Lemma 4.3 applied

to Lλ(A0) we find subspaces L00,L01,P ⊂ dom(A0) and M ⊂ N [⊥]
+ which

satisfy L0 = L00[u]L01 and

N [⊥]
+ = L+[u]L−[u]L00[u](L01 u P)[u]M.

Set L1 := L+[u]L−. With (2.3) we obtain

H = N+ u L0 u L1 uMu P. (4.9)

With respect to the decomposition (4.9) the operator A can be represented as

A =


λ 0 0 0 0
0 A11 A12 A13 A14

0 0 A22 0 A24

0 0 0 A33 A34

0 0 0 0 A44

 . (4.10)

This is a consequence of the fact that N+, N [⊥]
+ L0, L1 u L0 as well as L[⊥]

0 =
L0 uM are A-invariant. On domA define the operators

K :=


0 0 0 0 0
0 −A11 −A12 −A13 −A14

0 0 −A22 0 −A24

0 0 0 0 −A34

0 0 0 0 −A44

 and Ã :=


λ 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 A33 0
0 0 0 0 0

 .

(4.11)

Then, Ã = A + K, and K is easily seen to be A-bounded, that is, Ã is a
bounded mapping from (HA, (· , ·)A) (cf. (3.1)) into H, see [17, IV §1.1]. As K
has a finite-dimensional range, K is A-compact. By [17, Theorem IV.1.11], the

operator Ã is closed. Hence also A33 is closed. We have

ρ(A) \ {λ} = ρ(A11) ∩ ρ(A22) ∩ ρ(A33) ∩ ρ(A44) \ {λ}. (4.12)

Moreover, A33 is [· , ·]-symmetric and if for some x ∈ M ∩ domA we have
(A33 − λ)x = 0, then (4.10) implies (A− λ)x ∈ Lλ(A), hence x ∈ Lλ(A) which
yields x = 0. Thus, we have

ker(A33 − λ) = {0}. (4.13)
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In addition, the following holds:

λ ∈ σ+(A33) ∪ ρ(A33). (4.14)

To prove (4.14), assume λ ∈ r(A33). Then we find a neighbourhood (cf. (2.6))
W of λ in C such that W ⊂ r(A33) and W ⊂ U . By assumption W\R ⊂ U \R ⊂
ρ(A) and we conclude from (4.12) that A33 − λ is a Fredholm operator of index
zero which together with (4.13) implies λ ∈ ρ(A33). It remains to consider the

case λ ∈ σap(A33). By (4.11), λ ∈ σap(Ã) and, as λ ∈ σπ+(A) we conclude

from Theorem 3.14 that λ ∈ σπ+(Ã). Also, by (4.11), λ ∈ σπ+(A33). In view of
Corollary 3.13 and (4.13) we obtain λ ∈ σ+(A33) and (4.14) is proved.

Taking into account that the operators A11, A22 and A44 act in spaces of
finite dimension and using Theorem 4.6 (b) we find an open neighborhood V of
λ in C and constants M1,M2 > 0 as well as m1 ∈ N such that

max
k=1,2,4

∥(Akk − µ)−1∥ ≤ M1

|µ− λ|m1
and ∥(A33 − µ)−1∥ ≤ M2

| Im µ|

for all µ ∈ V \ R. Now, by using (4.10) it is easily seen that (4.8) holds.

5 The Local Spectral Function

Let (a, b) be a real open interval with −∞ ≤ a < b ≤ ∞. By M (a, b) we denote
the set consisting of all bounded intervals ∆ whose closure is contained in (a, b)
and finite unions of such intervals. If S is a discrete subset of (a, b), we set

MS(a, b) := {∆ ∈ M (a, b) : ∂∆ ∩ S = ∅}.

Note that S may accumulate to a or b and that M∅(a, b) = M (a, b). We shall
say that the bounded operator B commutes with A if BA ⊂ AB, i.e.

x ∈ domA =⇒ Bx ∈ domA and ABx = BAx.

If ρ(A) ̸= ∅ this is equivalent to the fact that B commutes with the resolvent
of A.

Definition 5.1. Let S be a discrete subset of the open (and maybe unbounded)
interval (a, b). A mapping E from MS(a, b) into the set of bounded projections
on H is called a local spectral function for A on (a, b) if E(∅) = 0 and the
following conditions are satisfied:

(S1) E(∆1 ∩∆2) = E(∆1)E(∆2) for all ∆1,∆2 ∈ MS(a, b).

(S2) If ∆1,∆2, . . . ∈ MS(a, b) are mutually disjoint and ∆ :=
∪∞

i=1 ∆i ∈
MS(a, b) then

E(∆) =
∞∑
i=1

E(∆i),

where the sum converges in the strong operator topology.

20



(S3) If the bounded operator B commutes with A, then it commutes with every
E(∆), ∆ ∈ MS(a, b).

(S4) σ(A|E(∆)H) ⊂ ∆.

(S5) σ(A|(I − E(∆))H) ⊂ σ(A) \∆.

For a bounded operator A with (a, b) ∩ σap(A) ⊂ σ+(A) and U \ R ⊂ ρ(A)
for some open neighborhood U ⊂ C of (a, b) it is proved in [21] that there
exists a set function E defined on M (a, b) with (S1), (S2), (S4), and (S5) as
in Definition 5.1. Moreover, every E(∆) is a G-symmetric projection onto a
uniformly positive subspace. Thus, (E(∆)H, [· , ·]) is a Hilbert space and the
restriction of A to E(∆)H is a selfadjoint operator.

It is not mentioned in [21] that E also has the property (S3). We will
show this in the next theorem. Moreover, we extend the results on the local
spectral function from [21, Section 3] to unbounded operators. We mention
that Theorem 5.2 below is contained in [2, Theorem 2.7]. However, in [2] the
property (S3) is not proved explicitly. Therefore we prefer to give a detailed
proof here.

Theorem 5.2. Let A be a closed and densely defined G-symmetric operator in
H. Assume that [a, b] ∩ σap(A) ⊂ σ+(A), and let U be an open neighborhood of
[a, b] in C with U \ R ⊂ ρ(A). Then there exists a local spectral function for A
defined on M (a, b) as in Definition 5.1. Moreover, every E(∆), ∆ ∈ M (a, b),
is a G-symmetric projection onto a uniformly positive subspace.

Proof. 1. By Theorem 4.6(b) and [23, Chapter II, §2, Theorem 5], the maximal
spectral subspace L[a,b] of A corresponding to [a, b] exists. Recall that the
maximal spectral subspace L∆ of A corresponding to a compact interval ∆ (if
it exists) has the following properties (cf. [23, Chapter I, §4]):

I. L∆ ⊂ domA is A-invariant.

II. σ(A|L∆) ⊂ ∆ ∩ σ(A).

III. If L ⊂ domA is an A-invariant subspace and σ(A|L) ⊂ ∆ then L ⊂ L∆.

We set A1 := A|L[a,b]. Then it follows from σ(A1) ⊂ [a, b] and (2.5) that
σ(A1) = σap(A1). This and the assumption [a, b] ∩ σap(A) ⊂ σ+(A) yield
σ(A1) = σ+(A1). By [21], (L[a,b], [· , ·]) is a Hilbert space, and the restriction of
A to L[a,b] is selfadjoint in this Hilbert space. Consequently, it has a spectral

function which we denote by E1. As A is G-symmetric, also L[⊥]
[a,b] is A-invariant.

Let P be the projection onto L[a,b] with respect to the decomposition H =

L[a,b][u]L[⊥]
[a,b]. Then, we define E by

E(∆) := E1(∆)P, ∆ ∈ M (a, b).

It is not difficult to see that E satisfies (S1), (S2), (S4) and (S5).
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2. It remains to show (S3). As E1 is a spectral function of a selfadjoint
operator in a Hilbert space, it is sufficient to prove (S3) for a compact interval
∆0 ⊂ (a, b). Note that L∆0

:= E(∆0)H is the maximal spectral subspace of A
corresponding to ∆0. Let B be a bounded operator which commutes with A.
In order to show that B commutes with E(∆0) it is sufficient to show that L∆0

and L[⊥]
∆0

are B-invariant. It is easily checked that the proof of [11, Proposition
1.3.2] is also valid for an unbounded operator A and we obtain BL∆0 ⊂ L∆0 .
It remains to prove

BL[⊥]
∆0

⊂ L[⊥]
∆0

. (5.1)

To see this, let ∆ ⊂ (a, b) be a compact interval such that ∆0 is contained in
the interior of ∆. We will show

BL[⊥]
∆ ⊂ L[⊥]

∆0
. (5.2)

Then (5.1) follows from the fact that for α, β ∈ (a, b), α < β,∩
ε>0

L[α−ε,β+ε] = L∆,

which easily follows from the properties of maximal spectral subspaces.

In order to show (5.2), let λ0 ∈ ρ(B) and set K := (B − λ0)L[⊥]
∆ . Evidently,

K is closed. Since L[⊥]
∆ is A-invariant and BA ⊂ AB holds, K is A-invariant.

From
A|L[⊥]

∆ =
[
(B − λ0)

−1|K
] [

A|K
] [

(B − λ0)|L[⊥]
∆

]
and (S5) we conclude that

σ(A|K) = σ
(
A|L[⊥]

∆

)
⊂ σ(A) \∆. (5.3)

Let x ∈ K, x = u+ v, where u ∈ L∆ and v ∈ L[⊥]
∆ . For λ ∈ ρ(A) we have

(A− λ)−1u = (A|K − λ)−1x− (A|L[⊥]
∆ − λ)−1v,

and from (5.3) it follows that this function admits a holomorphic continuation to
(a′, b′) where ∆ = [a′, b′]. As (A− λ)−1u ∈ L∆ for λ ∈ ρ(A) and σ(A|L∆) ⊂ ∆,
the function λ 7→ (A|L∆−λ)−1u extends to a holomorphic function C\{a′, b′} →
L∆. Since (L∆, [· , ·]) is a Hilbert space and A|L∆ is selfadjoint in this Hilbert
space,

u ∈ ker(A− a′)u ker(A− b′) ⊂ L[⊥]
∆0

,

follows and, hence, x = u+ v ∈ L[⊥]
∆0

+ L[⊥]
∆ ⊂ L[⊥]

∆0
.

The next theorem is the main result in this section.

Theorem 5.3. Let A be a closed, densely defined G-symmetric operator in
H and (a, b) a (possibly unbounded) open interval in R with (a, b) ∩ σap(A) ⊂
σπ+(A) such that there exists an open neighborhood U of (a, b) in C with U \R ⊂
ρ(A). Then A has a local spectral function E on (a, b) with S := (a, b)∩(σπ+(A)\
σ+(A)). For ∆ ∈ MS(a, b) the projection E(∆) is G-selfadjoint, and its range
is an Almost Pontryagin space with finite rank of non-positivity.
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Proof. The proof is divided into three parts. First, we define the spectral func-
tion, then we prove that it satisfies (S1)–(S5) and show in the last part that the
spectral projections map to Almost Pontryagin spaces.

1. Let ∆ ∈ MS(a, b) be an interval with endpoints a′ and b′, a′ < b′.
We choose numbers a′′, b′′ ∈ (a′, b′), a′′ < b′′, such that [a′, a′′] ∪ [b′′, b′] has
no common point with S (cf. Theorem 4.2). Then ∆1 := ∆ ∩ [a′, a′′] and
∆2 := ∆ ∩ [b′′, b′] are of positive type with respect to A. By Theorem 5.2, A
has a spectral function Ej on ∆j , j = 1, 2, such that the spectral subspace

Lj := Ej(∆j)H, j = 1, 2,

of A is uniformly positive. Moreover, as σ(A|L1∩L2) = ∅, we have L1∩L2 = {0}
and thus, by (S3), E1(∆1)E2(∆2) = 0 which implies L1 [⊥]L2. By [20, Lemma
I.5.3], L1[u]L2 is uniformly positive, and we have

H = L1 [u]L2 [u] H̃, (5.4)

where H̃ = (L1[u]L2)
[⊥]. Define Ã := A|H̃. Then, since σ(A|L[⊥]

j ) ⊂ σ(A) \∆j ,
j = 1, 2, we have due to (5.4)

σ(Ã) ⊂ σ(A) \∆1 ∩ σ(A) \∆2 = σ(A) \ (∆1 ∪∆2).

This implies (a′, a′′) ∪ (b′′, b′) ⊂ ρ(Ã). Let Γ be a closed curve in ρ(Ã) which is

symmetric with respect to the real axis such that the part of the spectrum of Ã
in the interior of Γ coincides with σ(Ã)∩ [a′′, b′′]. The Riesz-Dunford projection

Ẽ := − 1

2πi

∫
Γ

(Ã− λ)−1 dλ

is then easily seen to be a bounded [· , ·]-symmetric operator in H̃. With respect
to the decomposition (5.4) of H we now define

E(∆) := IL1 [u] IL2 [u] Ẽ. (5.5)

This is obviously a G-selfadjoint projection in H which commutes with A.
The definition of E(∆) in (5.5) depends on the choice of a′′ and b′′. However,

it is not difficult to show that a different value for a′′ leads to the same operator
in (5.5). The same then holds for a different b′′ which proves that the definition
(5.5) is in fact independent on the choice of a′′ and b′′.

For arbitrary ∆ ∈ MS(a, b) we define E(∆) := E(δ1) + . . . + E(δn), where
the δj are the connected components of ∆.

2. Let us prove that the set function E, defined in the first part of this
proof, is in fact a local spectral function for A on (a, b). Let ∆ ∈ MS(a, b) be
an interval. Then it is evident that (S3) holds for ∆, and we have (using the
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notation from part 1)

σ(A|E(∆)H) = σ(A|L1) ∪ σ(A|L2) ∪ σ(Ã|ẼH)

⊂ σ(A) ∩ (∆1 ∪∆2) ∪ (σ(A) ∩ [a′′, b′′])

= σ(A) ∩ (∆1 ∪∆2 ∪ [a′′, b′′]),

which is (S4). The property (S5) for ∆ is proved similarly. Now, let us show
that for two intervals ∆1,∆2 ∈ MS(a, b) we have

∆1 ∩∆2 = ∅ =⇒ E(∆1)E(∆2) = 0. (5.6)

Indeed, if ∆1 ∩∆2 = ∅, then, as E(∆1)E(∆2) maps onto E(∆1)H ∩ E(∆2)H,
we have σ(A|E(∆1)E(∆2)H) ⊂ ∆1 ∩ ∆2 = ∅, and thus E(∆1)E(∆2) = 0.
It remains to consider the case that ∆1 and ∆2 have a common endpoint α.
But then, a real neighborhood of α must be of positive type, and the assertion
follows from Theorem 5.2.

Due to (5.6) it suffices to prove (S1)–(S5) only for intervals ∆,∆j ∈ MS(a, b),
and hence it remains to prove (S1) and (S2) for intervals. But (S1) follows from
(5.6) and (S2), so that only the proof of (S2) is left. For this, let ∆j ∈ MS(a, b),
j ∈ N, be mutually disjoint intervals such that ∆ :=

∪∞
j=1 ∆j is also an element

of MS(a, b). Due to the definition of E(∆) via connected components and the
finiteness of ∆∩S, it is no restriction to assume that each ∆j is an interval with

∆j ∩ S = ∅. Hence, also ∆ ∩ S = ∅. Therefore, the subspace Ĥ := E(∆)H is

uniformly positive and the operator Â := A|Ĥ is a bounded selfadjoint operator
in the Hilbert space (Ĥ, [· , ·]) with σ(Â) ⊂ ∆. Now, the assertion follows from
the fact that the restriction of E(∆j) to Ĥ coincides with Ê(∆j), where Ê is

the usual spectral measure of Â in Ĥ.

3. In this step we will show that E(∆)H is an Almost Pontryagin space with
finite rank of non-positivity. It is sufficient to show this for a compact interval
∆ ∈ MS(a, b) such that S ∩ ∆ consists only of one point γ. Let Lγ(A) =
L+ [u]L− [u]L0 be a fundamental decomposition of the algebraic eigenspace
Lγ(A) which is by Theorem 4.2 an Almost Pontryagin space with finite rank
of non-positivity. By Lemma 4.3, we find subspaces P,M ⊂ E(∆)H with
dim P < ∞ such that

E(∆)H = L+ [u]L− [u]L00 [u] (L01 u P) [u]M,

where
L00 = LS∩∆(A) ∩H◦, Lγ(A)◦ = L00 u L01,

and Lγ(A)
[⊥] = Lγ(A)

◦ [u]M. Hence, with respect to the decomposition

E(∆)H = Lγ(A) u M u P

the operator A∆ := A|E(∆)H admits the following representation:

A∆ =

A11 A12 A13

0 A22 A23

0 0 A33

 .
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Obviously, the operator A22 is [· , ·]-symmetric in the subspace M. Let us show
that σ(A22) = σ+(A22). Then from [21, Theorem 3.1] it follows that M is
uniformly positive and thus that E(∆)H is an Almost Pontryagin space with
finite rank of non-positivity. We have σ(A∆) = σπ+(A∆), and since the operator
A12 maps into the finite-dimensional subspace Lγ(A)◦, it follows from Theorem
3.4 that σ(A22) = σπ+(A22). For σ(A22) = σ+(A22) it suffices to show that
ker(A22 − λ) is positive for all λ ∈ σ(A22); cf. Corollary 3.12. Hence, let λ ∈
σ(A22), and let x ∈ domA22 ⊂ M with (A22 − λ)x = 0. If λ = γ we have
(A∆ − γ)x = A12x ∈ Lγ(A) and hence (A− γ)kx = 0 for some k ∈ N. But this
implies x ∈ Lγ(A) and therefore x = 0. Let λ ̸= γ. There is m ∈ N such that
(A− γ)mLγ(A) = {0}. Set

y := (A− γ)mx.

Then, since (A∆ − λ)x = A12x ∈ Lγ(A), we have (A∆ − λ)y = 0 and hence
either y = 0 (which implies x = 0) or [y, y] > 0 as λ ∈ σ+(A∆). Suppose y ̸= 0.
Then we have (A− γ)x = A12x+ (λ− γ)x, and, by induction,

(A− γ)2m x = ℓ+ (λ− γ)2m x

with some ℓ ∈ Lγ(A). Finally, we obtain

[x, x] =

[
(A− γ)2m x− ℓ , x

]
(λ− γ)2m

=

[
(A− γ)2m x , x

]
(λ− γ)2m

=
[y, y]

(λ− γ)2m
> 0,

and the theorem is proved.
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