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Abstract

A general result on the structure and dimension of the root subspaces of a
matrix or a linear operator under finite rank perturbations is proved: The
increase of dimension from the n-th power of the kernel of the perturbed
operator to the (n+ 1)-th power differs from the increase of dimension of
the corresponding powers of the kernels of the unperturbed operator by
at most the rank of the perturbation and this bound is sharp.
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1 Introduction

Perturbation theory for linear operators and their spectra is one of the main
objectives in operator theory and functional analysis, with numerous applica-
tions in mathematics, physics and engineering sciences, here we mention only
[4]. In many approaches compact perturbations and perturbations small in size
are investigated, e.g. when stability properties of the index, nullity and defi-
ciency of Fredholm and semi-Fredholm operators are analysed. A widely used
and well-known fact on the effect of compact perturbations on eigenvalues is the
following: If S and T are bounded operators in a Banach space, K = S − T is
compact and λ ∈ C is an isolated eigenvalue with finite algebraic multiplicity of
S or λ 6∈ σ(S) then λ is an eigenvalue with finite algebraic multiplicity of T or
λ 6∈ σ(T ). It is clear that for an arbitrary compact perturbation K there exists
no bound in λ on the dimensions of ker(T − λ) or ker(T − λ)n+1/ ker(T − λ)n.
The situation is different when the perturbation is not only compact but of fi-
nite rank. This is the case which is considered in the present note. It follows
easily that the dimensions of ker(S−λ) and ker(T −λ) differ at most by k if the
perturbation K = S−T is an operator with rank (K) = k (see e.g. [5, Theorem
2.2] for the case of matrices).
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Our main objective is to explore such connections between kernels of con-
secutive higher powers of S − λ and T − λ, and to prove the following general
result on the structure and dimensions of the root subspaces under finite rank
perturbations: Given a linear operator S acting on a vector space X (over R or
C), consider the space ker(S − λ)n+1/ ker(S − λ)n, where λ ∈ σ(S). Its dimen-
sion coincides with the number of linearly independent Jordan chains of S at
λ of length at least n + 1. It then turns out that the change of the number of
these Jordan chains of S at λ under a rank k perturbation can be bounded by
k, ∣∣∣∣dim

(
ker(S − λ)n+1

ker(S − λ)n

)
− dim

(
ker(T − λ)n+1

ker(T − λ)n

)∣∣∣∣ ≤ k, (1.1)

where K = S − T is an operator with rank (K) = k and this bound is sharp.

The most interesting case is when S has a rich structure of Jordan chains in
the sense that the dimensions of ker(S − λ) and of ker(S − λ)n+1/ ker(S − λ)n

are large compared with the rank k of the perturbation. Moreover (1.1) is valid
not only for bounded operators/matrices but also for unbounded operators and
a slightly more general variant of finite rank perturbations, see Hypothesis 2.1
below.

We were not able to find this general fact in the mathematical literature.
Even for matrices the statements in Theorem 2.2 are only known for the special
case of so-called generic perturbations; cf. [1, 2, 3, 5, 6, 7, 8, 9].
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2 Main result

Let X be a vector space over K, where K stands either for R or C. Let S and
T be linear operators in X defined on some linear subspaces domS and domT
of X, respectively. We shall assume that the following holds:

Hypothesis 2.1. There exists a linear subspace M contained in domS∩domT
such that the restrictions S �M and T �M coincide on M and

max
{

dim(domS/M),dim(domT/M)
}

= k <∞.

Three typical situations where the above hypothesis is satisfied are the fol-
lowing:

(i) X is a finite dimensional space, S and T are defined on X and the rank
of S−T is k. In this case, for a fixed basis of X, S and T are represented
by matrices.
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(ii) S and T are defined on the same subspace M of X and we have

dim(ran (S − T )) = k.

(iii) The operators S − µ0 and T − µ0 are bijective for some µ0 ∈ K and

dim
(
ran

(
(S − µ0)−1 − (T − µ0)−1

))
= k.

A Jordan chain of S at λ ∈ K of length n is a finite ordered set of non-zero
vectors {x0, . . . , xn−1} of X such that (S − λ)x0 = 0 and (S − λ)xi = xi−1,
i = 1, . . . , n − 1. The elements of a Jordan chain are linearly independent.
The first n − 1 elements of a Jordan chain of length n form a Jordan chain of
length n − 1. Two Jordan chains {x0, . . . , xn} and {y0, . . . , ym} are called lin-
early independent if the vectors x0, . . . , xn, y0, . . . , ym are linearly independent.
Furthermore, we say that S has k Jordan chains at λ of length n if there exist k
linearly independent Jordan chains of length n. The root subspace Lλ(S) of S
at λ is the collection of all Jordan chains of S at λ, Lλ(S) = ∪∞j=1 ker(S − λ)j .

The following theorem is the main result of this note. We postpone its proof
to Section 4.

Theorem 2.2. Let S and T be linear operators in X satisfying Hypothesis 2.1.
Then, the following holds for every λ ∈ K:

(i) If ker(S − λ)n is finite dimensional for some n ∈ N, then the same holds
for ker(T − λ)n and

|dim ker(S − λ)n − dim ker(T − λ)n| ≤ k n. (2.1)

(ii) If ker(S − λ)n+1/ ker(S − λ)n is finite dimensional for some n ∈ N, then
the same holds for ker(T − λ)n+1/ ker(T − λ)n and∣∣∣∣dim

(
ker(S − λ)n+1

ker(S − λ)n

)
− dim

(
ker(T − λ)n+1

ker(T − λ)n

)∣∣∣∣ ≤ k. (2.2)

In the following corollary the bounds in Theorem 2.2 are considered in the
context of the dimensions of the root subspaces.

Corollary 2.3. Let S and T be linear operators in X which satisfy Hypothe-
sis 2.1. Assume that the root subspace Lλ(S) of S at λ ∈ K is finite dimensional.
Then, the following holds:

(i) If the maximal length of Jordan chains of S at λ is bounded by p then

|dimLλ(S)− dim ker(T − λ)p| ≤ k p.

(ii) If the maximal lengths of Jordan chains of S at λ and Jordan chains of T
at λ are bounded by p and q, respectively, then∣∣dimLλ(S)− dimLλ(T )

∣∣ ≤ k max{p, q}.
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Proof. In (i) we have Lλ(S) = ker(S−λ)p. In (ii) we have, in addition, Lλ(T ) =
ker(T − λ)q. Then (i) and (ii) follow from (2.1).

The estimates in Theorem 2.2 are sharp in the following sense.

Example 2.4. In Km consider a fixed basis
{
e1, . . . , em

}
and let with respect

to this basis the linear operators A1 and B1 be given via their m ×m matrix-
representation

A1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
0 0 0 · · · 0

 and B1 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
. . .

...
0 0 0 · · · 1
1 0 0 · · · 0

 .

Then A1 and B1 satisfy Hypothesis 2.1 with k = 1 and we have for j ≤ m

kerAj1 = span
{
e1, . . . , ej

}
and kerBj1 = {0}.

Hence the assertions in Theorem 2.2 are sharp for the case λ = 0 and k = 1. In
order to obtain sharpness for general k ∈ N consider the (mk ×mk)-matrices

A = A1 ⊕ · · · ⊕A1 and B = B1 ⊕ · · · ⊕B1.

3 Auxiliary statements

In the following we collect some observations which will be used in the proofs.

Observation 3.1. Let S and T be linear operators in X satisfying Hypothe-
sis 2.1. If {x0, . . . , xn} is a Jordan chain of S at λ such that xk ∈M for every
k = 0, . . . , n, then {x0, . . . , xn} is also a Jordan chain of T at λ. Indeed, notice
that if xk ∈ M then Sxk = Txk. Therefore, (T − λ)x0 = (S − λ)x0 = 0 and
(T − λ)xk = (S − λ)xk = xk−1 for every k = 1, . . . , n.

Observation 3.2. Given an operator A acting on a vector space Y , the family
of cosets {y1 + kerA, . . . , ym + kerA} is linearly independent in Y/ kerA if and
only if the family {Ay1, . . . , Aym} is linearly independent in Y . This follows
from the fact that

A′ : Y/ kerA→ Y, y + kerA 7→ Ay,

is a linear isomorphism between the vector spaces Y/ kerA and ran A. Consid-
ering the subspaces span{y1 + kerA, . . . , ym + kerA} and span{Ay1, . . . , Aym},
the assertion above follows immediately.

Notice that it suffices to prove Theorem 2.2 for λ = 0, otherwise replace S
and T by S − λ and T − λ. In the following lemma we discuss this situation in
the case k = 1.
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Lemma 3.3. Let S and T be linear operators in X satisfying Hypothesis 2.1
with k = 1. Then the following holds:

(i) If kerSn is finite dimensional for some n ∈ N, n ≥ 1, then the same holds
for kerTn and

|dim kerSn − dim kerTn| ≤ n. (3.1)

(ii) If kerSn+1/ kerSn is finite dimensional for some n ∈ N, n ≥ 1, then the
same holds for kerTn+1/ kerTn and∣∣dim

(
kerSn+1/ kerSn

)
− dim

(
kerTn+1/ kerTn

)∣∣ ≤ 1. (3.2)

Proof. We show (i) for the case n = 1, i.e.

|dim kerS − dim kerT | ≤ 1. (3.3)

Assume that kerS is finite dimensional and dim kerT > dim kerS + 1. Then
there exist m := dim kerS + 2 linearly independent vectors {x1, . . . , xm} in
kerT . If xj ∈ M then Sxj = Txj . So, if xj ∈ M for all j = 1, . . . ,m then
{x1, . . . , xm} ⊆ kerS, a contradiction.

Hence, there exists 1 ≤ k0 ≤ m such that xk0 ∈ kerT \M . After reordering
we can assume that k0 = m. As dim(domT/M) ≤ 1 it is easy to see that there
exist αk ∈ K such that

zk := xk − αkxm ∈M, k = 1, . . . ,m− 1.

Thus Szk = Tzk = 0 for k = 1, . . . ,m− 1, and we conclude that {z1, . . . , zm−1}
is a linearly independent set in kerS; a contradiction. Therefore, dim kerT ≤
dim kerS+ 1 and, in particular, kerT is finite dimensional. By interchanging S
and T we also obtain dim kerS − 1 ≤ dim kerT and hence (3.3) follows.

In the following we prove (ii). Let n ∈ N, n ≥ 1, such that kerSn+1/ kerSn

is finite dimensional and set

m := dim(kerSn+1/ kerSn) + 2. (3.4)

Assume that the set {x1,n + kerTn, . . . , xm,n + kerTn} is linearly independent
in kerTn+1/ kerTn. For k = 1, . . . ,m construct the following Jordan chains of
T at 0:

xk,0 := Tnxk,n, xk,1 := Tn−1xk,n, . . . , xk,n−1 := Txk,n.

Then, xk,0 ∈ kerT for k = 1, . . . ,m and, applying Observation 3.2 to Tn it
follows that

{x1,0, . . . , xm,0} is a linearly independent set in kerT . (3.5)
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Define the index set I by

I :=
{

(k, j) : xk,j /∈M, 1 ≤ k ≤ m, 1 ≤ j ≤ n
}
.

The set I is non-empty. Otherwise {xk,0, . . . xk,n} ⊂ M for every 1 ≤ k ≤ m
and, by Observation 3.1, these m (linearly independent) Jordan chains of T at
0 of length n + 1 are as well (linearly independent) Jordan chains of S at 0 of
length n+ 1, a contradiction to (3.4). Set

h := min
{
j : (k, j) ∈ I for some k with 1 ≤ k ≤ m

}
.

Without loss of generality, after a reordering of the indices, assume that (m,h) ∈
I, i.e. xm,h /∈M . Then,

j < h implies xk,j ∈M for all k = 1, . . . ,m. (3.6)

In what follows we construct m− 1 elements z1, . . . , zm−1 in kerSn+1 such that
{z1 + kerSn, . . . , zm−1 + kerSn} is linearly independent in kerSn+1/ kerSn,
which is a contradiction to (3.4). We consider three different cases.

Case I: h = n. Since xm,n 6∈M , there exist αk,n ∈ K such that

zk := xk,n − αk,nxm,n ∈M ∩ kerTn+1 for k = 1, . . . ,m− 1.

From (3.6) it follows that, for every k = 1, . . . ,m− 1, the Jordan chain {xk,0 −
αk,nxm,0, . . . , xk,n−1 − αk,nxm,n−1, zk} of T at 0 is contained in M . Then, by
Observation 3.1 these are also m − 1 (linearly independent) Jordan chains of
S at 0 of length n. In particular, the set {z1 + kerSn, . . . , zm−1 + kerSn} is
linearly independent in kerSn+1/ kerSn.

Case II: h = n− 1. Since xm,n−1 6∈M , there exist αk,n−1 ∈ K such that

vk,n−1 := xk,n−1 − αk,n−1xm,n−1 ∈M ∩ kerTn for k = 1, . . . ,m− 1.

Let wk,n := xk,n − αk,n−1xm,n ∈ kerTn+1 for k = 1, . . . ,m − 1 and choose
αk,n ∈ K such that

zk := wk,n − αk,nxm,n−1 ∈M ∩ kerTn+1 for k = 1, . . . ,m− 1.

Since zk ∈ M and vk,n−1 ∈ M , k = 1, . . . ,m − 1, we conclude from Twk,n =
vk,n−1 together with (3.6) that

Sn+1zk = SnSzk = SnTzk

= SnT (wk,n − αk,nxm,n−1) = Sn(vk,n−1 − αk,nxm,n−2)

= Sn−1T (vk,n−1 − αk,nxm,n−2)

= Sn−1T (xk,n−1 − αk,n−1xm,n−1 − αk,nxm,n−2)

= Sn−1(xk,n−2 − αk,n−1xm,n−2 − αk,nxm,n−3)

...

= S2(xk,1 − αk,n−1xm,1 − αk,nxm,0)

= ST (xk,1 − αk,n−1xm,1 − αk,nxm,0)

= S(xk,0 − αk,n−1xm,0) = T (xk,0 − αk,n−1xm,0) = 0,
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and Snzk = xk,0 − αk,n−1xm,0 6= 0 for all k = 1, . . . ,m − 1. By (3.5) the set
{x1,0−α1,n−1xm,0, . . . , xm−1,0−αm−1,n−1xm,0} is linearly independent. Then,
by Observation 3.2 applied to Sn, {z1+kerSn, . . . , zm−1+kerSn} is also linearly
independent in kerSn+1/ kerSn.

Case III: 0 ≤ h ≤ n − 2. In this case we construct, as in Case II, two sets of
vectors {

vk,j ∈M ∩ kerT j+1 : k = 1, . . . ,m− 1, j = h, . . . , n− 1
}
, (3.7)

and {
wk,j+1 ∈ kerT j+2 : k = 1, . . . ,m− 1, j = h, . . . , n− 1

}
. (3.8)

By assumption, xm,h 6∈M . We start the construction with j = h, that is, with
the definition of the vectors vk,h and wk,h+1 for k = 1, . . . ,m − 1: There exist
αk,h ∈ K such that

vk,h := xk,h − αk,hxm,h ∈M ∩ kerTh+1 for k = 1, . . . ,m− 1.

Using the same coefficients αk,h ∈ K, let

wk,h+1 := xk,h+1 − αk,hxm,h+1 ∈ kerTh+2 for k = 1, . . . ,m− 1.

Notice that Twk,h+1 = vk,h for k = 1, . . . ,m − 1. The vectors vk,j and wk,j+1

for k = 1, . . . ,m − 1 are defined inductively for j = h + 1, . . . , n − 1, in the
following way: Fix j = h + 1, . . . , n − 1 and assume that we have constructed
vk,j−1 ∈ M ∩ kerT j and wk,j ∈ kerT j+1for k = 1, . . . ,m− 1. Then there exist
αk,j ∈ K such that

vk,j := wk,j − αk,jxm,h ∈M ∩ kerT j+1 for k = 1, . . . ,m− 1.

Also, define

wk,j+1 := xk,j+1 −
j−h∑
i=0

αk,h+ixm,j−i+1 ∈ kerT j+2 for k = 1, . . . ,m− 1.

A straightforward computation shows Twk,j+1 = vk,j for k = 1, . . . ,m− 1. We
have constructed the sets in (3.7) and (3.8).

Finally, observe that there also exist αk,n ∈ K such that

zk := wk,n − αk,nxm,h ∈M ∩ kerTn+1 for k = 1, . . . ,m− 1.

Hence,

Szk = Tzk = T (wk,n − αk,nxm,h) = vk,n−1 − αk,nxm,h−1,
S2zk = S(vk,n−1 − αk,nxm,h−1)

= T (vk,n−1 − αk,nxm,h−1)

= T (wk,n−1 − αk,n−1xm,h − αk,nxm,h−1)

= vk,n−2 − αk,n−1xm,h−1 − αk,nxm,h−2,

7



and, in the same way, we show that

Sn−hzk = vk,h −
n−h∑
i=1

αk,h+ixm,h−i,

where xm,l = 0 if l < 0. Also, observe that

Sn−h+1zk = S(vk,h −
n−h∑
i=1

αk,h+ixm,h−i)

= T (vk,h −
n−h∑
i=1

αk,h+ixm,h−i)

= T (xk,h − αk,hxm,h −
n−h∑
i=1

αk,h+ixm,h−i)

= xk,h−1 −
n−h∑
i=0

αk,h+ixm,h−i−1,

Sn−h+2zk = S(xk,h−1 −
n−h∑
i=0

αk,h+ixm,h−i−1)

= T (xk,h−1 −
n−h∑
i=0

αk,h+ixm,h−i−1)

= xk,h−2 −
n−h∑
i=0

αk,h+ixm,h−i−2,

...

Snzk = xk,0 − αk,hxm,0, and

Sn+1zk = 0.

Furthermore, the set {z1 + kerSn, . . . , zm−1 + kerSn} is linearly independent
in kerSn+1/ kerSn. In fact, by (3.5), the set {x1,0 − α1,hxm,0, . . . , xm−1,0 −
αm−1,hxm,0} is linearly independent in kerS. Then, applying Observation 3.2
to Sn, it follows that {z1 + kerSn, . . . , zm−1 + kerSn} is linearly independent
in kerSn+1/ kerSn.

Summing up, we have shown in Cases I-III above that there exists a linearly
independent set {z1 + kerSn, . . . , zm−1 + kerSn} in kerSn+1/ kerSn, which
contradicts (3.4). Therefore,

dim(kerTn+1/ kerTn) ≤ dim(kerSn+1/ kerSn) + 1,

and, in particular, kerTn+1/ kerTn is finite dimensional. By interchanging S
and T we obtain

dim(kerSn+1/ kerSn)− 1 ≤ dim(kerTn+1/ kerTn),

8



and (3.2) follows. Finally, (3.1) is a consequence of (3.3) and repeated applica-
tions of (3.2).

Before proving Theorem 2.2 we will improve the upper bound in (ii) of
Lemma 3.3 for a particular class of rank-one perturbations.

Assume that S is a linear operator in X and M is a linear subspace in domS
such that dim

(
domS/M

)
= k. Then, there exist linearly independent vectors

x1, . . . , xk ∈ (domS) \M such that

domS = M +̇ span{x1, . . . , xk}

We define the restrictions

Sp := S �
(
M +̇ span{x1, . . . , xp}

)
, 1 ≤ p ≤ k.

Lemma 3.4. Given 2 ≤ p ≤ k, if kerSn+1
p / kerSnp is finite dimensional for

some n ∈ N, then the same holds for kerSn+1
p−1 / kerSnp−1 and

dim

(
kerSn+1

p

kerSnp

)
− 1 ≤ dim

(
kerSn+1

p−1

kerSnp−1

)
≤ dim

(
kerSn+1

p

kerSnp

)
.

Proof. By Lemma 3.3 only the second inequality needs to be proved. Assume
that dim

(
kerSn+1

p / kerSnp
)

= i <∞ and that the set {z1 +kerSnp−1, . . . , zi+1 +

kerSnp−1} is linearly independent in kerSn+1
p−1 / kerSnp−1. Then, since kerSn+1

p−1 ⊂
kerSn+1

p , there exist α1, . . . , αi+1 ∈ K (not all equal to zero) such that

z := α1z1 + · · ·+ αi+1zi+1 ∈ kerSnp .

Together with z ∈ domSn+1
p−1 ⊂ domSnp−1 we conclude z ∈ kerSnp−1, a contra-

diction, and Lemma 3.4 is shown.

4 Proof of Theorem 2.2

We start the proof with some preparations. By assumption S and T satisfy
Hypothesis 2.1. We discuss the case

dim
(
domS/M

)
= k and dim

(
domT/M

)
= l ≤ k.

Then there exist linearly independent vectors x1, . . . , xk ∈ (domS) \ M and
y1, . . . , yl ∈ (domT ) \M such that

domS = M +̇ span{x1, . . . , xk} and domT = M +̇ span{y1, . . . , yl}.

Also, we can assume that span{x1, . . . , xk} ∩ span{y1, . . . , yl} = {0} (otherwise
M can be enlarged). Next, consider the restrictions

Sp := S �
(
M +̇ span{x1, . . . , xp}

)
, 1 ≤ p ≤ k,
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and
Tq := T �

(
M +̇ span{y1, . . . , yq}

)
, 1 ≤ q ≤ l.

Clearly S = Sk and T = Tl. As mentioned before, it is sufficient to prove
Theorem 2.2 for λ = 0. Let kerSn+1/ kerSn be finite dimensional for some
n ∈ N, n ≥ 1. Applying repeatedly Lemma 3.4 to S = Sk, Sk−1, . . . , S2, we see
that kerSn+1

1 / kerSn1 is finite dimensional and

dim

(
kerSn+1

kerSn

)
− (k − 1) ≤ dim

(
kerSn+1

1

kerSn1

)
≤ dim

(
kerSn+1

kerSn

)
. (4.1)

The operators S1 and T1 satisfy Hypothesis 2.1 with k = 1. Hence, by Lemma
3.3, kerTn+1

1 / kerTn1 is finite dimensional and∣∣dim
(
kerSn+1

1 / kerSn1
)
− dim

(
kerTn+1

1 / kerTn1
)∣∣ ≤ 1. (4.2)

Similarly, repeated application of Lemma 3.4 to T2, T3, . . . , Tl = T shows that
kerTn+1/ kerTn is finite dimensional and

dim

(
kerTn+1

kerTn

)
− (l − 1) ≤ dim

(
kerTn+1

1

kerTn1

)
≤ dim

(
kerTn+1

kerTn

)
. (4.3)

Since l ≤ k, notice that −(k − 1) ≤ −(l − 1). Therefore with (4.1), (4.2) and
(4.3)

dim
(
kerSn+1/ kerSn

)
− dim

(
kerTn+1/ kerTn

)
≥ dim

(
kerSn+1

1 / kerSn1
)
− dim

(
kerTn+1/ kerTn

)
≥ dim

(
kerTn+1

1 / kerTn1
)
− 1− dim

(
kerTn+1/ kerTn

)
≥ −(l − 1)− 1

≥ −(k − 1)− 1 = −k.

An analogous calculation for the upper bound shows

dim
(
kerSn+1/ kerSn

)
− dim

(
kerTn+1/ kerTn

)
≤ k,

which yields∣∣dim
(
kerSn+1/ kerSn

)
− dim

(
kerTn+1/ kerTn

)∣∣ ≤ k,
and assertion (ii) in Theorem 2.2 holds. Finally, assertion (i) in Theorem 2.2
follows from

|dim kerS − dim kerT | ≤ k,

which is shown in a similar way as in the proof of Lemma 3.3, and a repeated
application of (2.2).
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