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Abstract

This paper addresses applied image segmentation techniques for the detection of dyed ob-
jects (transgenic barley cells) in microscope color images. It is shown on exemplary image data
that edge detection with Canny’s algorithm applied to the hue channel of the HSV color space
outperforms both multidimensional edge detection in RGB space as well as color-based pixel
classification. This provides a firm basis for a fully automatic high-throughput analysis tool.

1 Introduction and Problem Statement

Image processing applications can gain significant benefit from color as an additional or exclusive
feature beside gray level information. Compared to a gray level image, a color image is no longer a
scalar valued function I(x, y): R2 → R, but a vector valued function I(x, y): R2 → Rd, depending
on the spatial coordinates x and y, where each picture element (pixel) can be described by, e.g.,
the contributions of red, green, and blue (RGB) color, I = [IR, IG, IB]T .
In bioinformatics applied color image processing plays an important role, especially when fea-
tures of biological experiments are contained in dyed or somehow differently colored objects. The
motivation for this paper is to present some preliminary results of a project in which resistance
mechanisms of crop plants against powdery mildew are analyzed from the genetical point of view.
Biologists are able to “switch on and off” desired genes in randomly chosen barley cells by a ge-
netical transformation procedure. Such genetically transformed cells are marked for later analysis
by a color-indicator, which dyes the whole transformed cell greenish blue. The penetration of
the powdery mildew fungus into the cell is indicated by the development of haustoriums [1]. See
Figure 1 to get an impression of the image data and the haustoriums.
Such images are acquired by an automatic microscope under control of a computer. The microscope
slides are mounted on an x-y table, hence, the complete object can be scanned automatically, e.g.,

Figure 1: Cutouts of microscope images of barley cells. The greenish dyed ones are genetically
transformed and some contain haustoriums of powdery mildew. The original captured images were
2600× 2060 pixels, these cutouts are 2000× 1100 pixels.



overnight, which produces an enormous amount of image data. Normally, the resolution of an
image is 2600× 2060 pixels, the displayed images in Figure 1 are cutouts of 2000× 1100 pixels.
Since there are many potential genes concerning resistance, a huge number of experiments is
needed to attain a certain statistical confidence. This motivates firstly the effort on automatic
image acquisition hardware and, secondly, the demand for an automatic analysis because manual
evaluation is a tedious and time-consuming task for humans. From the present position, two main
steps are needed for the automatic analysis: i) Find genetically transformed (dyed) cells and label
each cell (image segmentation). ii) Analyze each cell for the development status of haustoriums.
This paper deals mainly with the image segmentation procedure and is organized as follows: in
Section 2 we evaluate a segmentation approach based on color classification of each pixel using
a parametric model for statistical decision making. Section 3 introduces a more advanced and
promising technique based on edge detection. Finally, the results are discussed and some conclu-
sions are given in Section 4.

2 Segmentation by Pixel-Color Classification

There is no universal image segmentation algorithm and the literature offers an enormous pool of
approaches which work under certain circumstances for a limited class of problems. See, e.g., [2]
for an overview about image segmentation. Thresholding a gray-level value is one of the simplest
image segmentation techniques. Based on the histogram information, one or more thresholds
are calculated and each pixel is assigned to a class. As an extension, a basic approach for color
image segmentation could be a pixel-wise color classification. Since the information contained in
each pixel is no longer a scalar, but a vector (generally the RGB color components), we need a
vector-valued analysis technique.

Figure 2: Typical cutouts of background (left) and cell regions (right).

Figure 3: Pixel-color clusters from back-
ground (black) and cell (green) region
(compare Figure 2) in RGB space.

Figure 4: Pixel-color clusters displayed
as hue-saturation part of the HSV model.
Black is background, green is cell.



Figure 2 shows two typical cutouts for background and cell regions of our microscope images,
respectively. In Figure 3, the RGB value of each pixel of these background and cell regions are
depicted as black and green dots in 3D while the density of these dots can be interpreted as a
3D histogram. It can be clearly observed that the color of background and cell regions form two
clusters, hence, both regions must be separable somehow. In the next section we will analyze the
performance of a Bayesian classification method based on a parametric model of these pixel-color
clusters.

2.1 Segmentation in RGB by a Multivariate Gaussian Model Approach

The histogram information contained in these clusters in RGB space (Figure 3) can be approxi-
mately described by a parametric model which is used for statistical decision making in the sequel.
A both powerful but quite simple model is the Multivariate Gaussian model [3]. Suppose, gener-
ally, we have k classes, each with d features. Then, the Multivariate Gaussian model for a class Ci

is completely described by the mean vector µi and the covariance matrix Σi
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This assumes all higher statistical moments than the second one to be zero and approximates the
probability density function of class Ci by the Multivariate Gaussian Distribution

p(x|Ci) =
1√
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exp

[
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TΣ−1
i (x− µi)

]
, (2)

which gives the probability of a sample vector x to belong to class Ci. The task is now to build this
model from representative data of our images, for example from the data according to Figure 3,
and to assess the classification performance. Therefore, Bayes’ Theorem states that the sample x
should be classified into the class Ci that maximizes

P (Ci|x) =
P (Ci)p(x|Ci)∑k

j=1 P (Cj)p(x|Cj)
, (3)

which is also known as maximum likelihood (ML) classification. P (Ci) is the prior (a priori) prob-
ability that a sample belongs to class Ci, and with the knowledge of the probability distributions
of each class we calculate the posterior (a posteriori) probability P (Ci|x) given the sample x.
Precisely, our image data is three-dimensional, and the sample vector x has to be replaced by the
vector of the RGB values [IR, IG, IB]T of each pixel of the image to be segmented.
Furthermore, since we have two classes only (let us call them Cb for background and Cc for cell),
we can easily develop a graphical understanding of the classification process by calculating the
optimum decision boundary between the two clusters in RGB space. This decision boundary is
given by the quadratic equation (see [3] for derivation)

0 = xTAx + bTx + c , with the parameters (4)
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b (5)
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c µc + 2Σ−1
b µb (6)

c = −2 ln(P (Cc)) + 2 ln(P (Cb)) + ln(detΣc)− ln(detΣb) + µT
c Σ−1

c µc − µT
b Σ−1

b µb , (7)

and is either of linear, circular, parabolic, elliptical or hyperbolic character. A linear decision
boundery, for example, is obtained when the covariance matrices Σb and Σc are equal. Then, the
parameter A gets zero, and the quadratic term in (4) vanishes.



2.2 Validation of the Multivariate Gaussian Model Assumption

How valid is the assumption of a Multivariate Gaussian Distribution to model the pixel-color
clusters? We answer this question by inspecting the “Gaussianess” of the decorrelated data of
both clusters.
Let a general d-dimensional process be collected from N sample vectors xn ∈ R

d×1 according to
X = [x1, x2, . . . , xN ]. The centered process X(c) is obtained by subtracting the mean vector μ of
the process from each sample vector, X(c) = [x1 − μ, x2 − μ, . . . , xN − μ].
Let ViΛiVT

i = Σi be an eigenvalue decomposition of the covariance matrix of class Ci. Projecting
the centered data of class Ci into the space spanned by the eigenvectors of the covariance matrix
of class Ci according to

X̃(c)
i = VT

i X
(c)
i (8)

decorrelates the data and rotates it such that their principal axis are aligned with the axis of the
underlying coordinate system. That principal components of the clusters are displayed in Figure 5,
and, as can be clearly seen, they are nearly Gaussian distributed which confirms the validity of
the Multivariate Gaussian Model for the considered data.
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Figure 5: Probability density function (PDF) of the decorrelated RGB-cluster data of background
(left) and cell (right). ⇒ The Multivariate Gaussian Model is a good approximation.

2.3 Segmentation Results by Multivariate Gaussian Pixel-Color Classification

Figure 6 shows the segmented images from Figure 1, where every pixel is classified into background
(white) and cell (black). It can be observed that strong-colored cells are marked as a connected re-
gion, whereas parts of weak-colored cells appear as fragmented regions. Moreover, the background
region is disturbed by several misclassified pixels, but this effect can be removed easily by some
morphological post-processing. We conclude at this point that images with isolated strong-colored
cells can be labeled by this simple technique, but, since our data is generally not that ideal, we need
a more sophisticated and much more reliable technique. From the signal processing point of view,
this pixel-color classification method suffers from the ignorance of all spatial information of an
image and using histogram information only instead. Furthermore, traning data is needed for this
classification procedure and variations in our data concerning luminance and color parameters will
deteriorate the classification results. These obvious drawbacks are avoided by an edge detection
based segmentation approach, as shown in the next section.



Figure 6: Segmentation into background (white) and cell (black) by pixel-color classification.
⇒ Weak colored cells are not properly detected.

3 Segmentation by Edge Detection

The ignorance of spatial information leads to a limited image segmentation performance, as con-
cluded in the last section. Edge detection is a powerful approach that inherently exploits spatial
information to find salient features in images. An edge detector [4] basicly applies directional
derivative operators to an image, e.g., according to linear signal processing as a convolution by
an appropriate filter kernel. Depending on this filter and further signal processing, there exists a
large number of edge detectors, which can be essentially devided into first-order and second-order
derivative based ones. First-order based detectors put a threshold on the gradient image to find
potential edge elements (edgels), whereas the latter respond to zero crossings of the second-order
derivative. A particularly powerful and prominent edge detector is the one developed by Canny [5].
Its filtering mask is built on a Gaussian derivative with a scale parameter σ, determining the spatial
selectivity of the high-pass filter.
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A small scale parameter results in a locally sharp and certain gradient profile while a larger scale
parameter reduces false edgels that appear from noisy image data, at the cost of higher uncer-
tainty about the position of edgels. Additionally, a Gaussian low-pass is applied for regularization

reasons. Moreover, Canny’s algorithm exploits not only the magnitude information
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)
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thresholding procedure this leads to more connected edges than produced by less advanced edge
detectors, and getting connected edges is a crucial requirement for our application, since we are
looking for relatively large objects that can be described by a closed boundery.

3.1 Multidimensional Edge Detection in RGB

The gradient operations in (9) can only be applied to a scalar valued function, i.e., a gray level
image. Now the question arises, how to operate on color images? One approach could be to apply
the gradient operation on every vector component independently, as suggested in [6]. In this case,
the matrix S = JTJ is build from the Jacobian matrix
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and the trace of S is evaluated as a measure of the joint channel gradient intensity. For the sake
of computational complexity, we downsample our images from Figure 1 by a factor of four, hence,
we end up in a resolution of 500 × 275 pixels. From Figure 7 it can be observed that the arising



gradient profile does not represent the salient features of our images, namely the greenish cells, very
well, but other unwanted parts are highlighted instead. Intuitively, this is caused by operating on
both luminance and color information, whereas the features we are looking for are mainly caused
by changes in color and not by changes in brightness. Therefore, we transform the image from
RGB space into another color space where brightness and color information are separated and
choose the HSV (Hue Saturation Value) color space as an appropriate candidate.

Figure 7: Magnitude of multichannel gradient according to the trace of S = JTJ from Eq. (10).
Image size 500 × 275 pixels, σ = 5. ⇒ The salient features (the greenish cells) do not appear
clearly.

3.2 Edge Detection in HSV domain

After the transformation of RGB data into HSV (Hue Saturation Value) color space, the data is
still three-dimensional, but needs a completely different interpretation than in RGB space. Hue
specifies the color and is inherently an angle, i.e., it has a cyclic or periodic character. See again
Figure 3 and focus on the color plane with the red green and blue end points. The color angle
in HSV is defined to start at red, goes on via green to blue and back to red. This full circle can
be mapped onto an axis from zero to one, and red color has both values, zero and one, because
of the cyclic character. The distance from the center of the plane is the saturation of a color and
states how much the pure color is diluted by white. Last but not least the value channel is related
to the equivalent gray level. Since the HSV transform is entirely non-linear, the terms “angle”,
“distance” and “gray level” have to be treated in the broader sense. See [7] for details on the HSV
transformation.

Figure 8: Hue channel in HSV color space of the microscope images from Figure 1.

In Figure 4, the hue-saturation plane of the HSV model is depicted with the corresponding trans-
formed color clusters from Figure 3. The mean hue of the background and cell cluster are about
60◦ and 150◦, respectively. The hue channel of the images from Figure 1 is depicted miscolored
in Figure 8. It can be observed that the hue channel contains mainly the features of our images
which we are looking for — thus the hue channel seems to be appropriate for edge detection in a



single color component to find the greenish cells in our images. We note again that hue is not a
linear but a periodic axis, and one has to be careful in generalizing edge detection on hue channel.
In our case, this is valid because our images contain no red color components which are located
around the cyclic ambiguity of the hue axis.

Figure 9: Gradient magnitude image of hue channel. Image size 500× 275 pixels, σ = 5. ⇒ The
salient features (the greenish cells) appear clearly.

The gradient magnitude profile at a scale of σ = 5 is depicted in Figure 9. As a result, the object
bounderies of our dyed genetically transformed cells are clearly detectable. The resulting edgels are
calculated by hysteresis thresholding and overlaid into the original image, as depicted in Figure 10.
The result looks promising, the detected edgels belong mainly to the objects we are looking for, but
there are also false edgels which have to be removed. Now, intelligent further processing is needed
to link the detected edgels together such that each cell can be labeled individually. In fact, simple
local neighborhood based edge linking approaches help in some cases to “repair” broken edges but
cannot fulfill our high demands on cell detection performance. Recently, a promising edge-linking
approach for closed contours was published [8], which may help to generally solve that problem.
Another approach to connect true edgels to closed objects is to work on multiple scales. As can
be seen in Figure 11, where Canny edge detection was done with a “rigorous” scale of σ = 12, the
region of interest is bordered by a closed boundery. Such closed edges can easily be identified and
a subtler analysis can be performed at lower scales, taking the coarse segmentation information
from larger scales into account to remove false edgels. This leads to a hierarchical system using
different scales of the Canny detector. The goal is to find and mark each individual transformed
cell even in cell compounds, like the three connected ones in the second sample image.

4 Conclusions and Future Work

In this paper, we have discussed image segmentation techniques for microscope color images that
have to be analyzed automatically in biological research applications and we have demonstrated
the segmentation performance on two exemplary images. Simple pixel-based classification methods
cannot accomplish the demands on segmentation performance, whereas edge detection on the hue
channel of the HSV color space performs very promising on our image data. With Canny’s edge
detector the region of interest is found as a closed contour, when it is tuned with a large scale
parameter σ. Fortunately, the resulting edges are relatively insensitive to changes of the edge
detector thresholds, which emphasizes a certain robustness of the used techniques. Some work
still needs to be done to separate cell compounds and label each cell individually as well as to
check each labeled object to be truely a single genetically transformed cell. This is crucial for the
confidence of the resulting statistics.
In the future, the suggested segmentation procedure has to stand the test and we have to go on
solving the problem of detecting the development status of haustoriums within the segmented
genetically transformed cells to get closer to a pure automatic machine-driven tool that helps
analyzing thousands of images.



Figure 10: Edgels detected with Canny’s algorithm on hue channel with σ = 5, low threshold 0.16,
high threshold 0.40.

Figure 11: Edgels detected with Canny’s algorithm on hue channel with σ = 12, low threshold 0.16,
high threshold 0.40.
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