

Florian Liers

Forwarding on Gates
A flexible and scalable inter-network layer supporting in-network functions

Forwarding on Gates

A flexible and scalable inter-network layer

supporting in-network functions

Florian Liers

Universitätsverlag Ilmenau
2014

Impressum

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Angaben sind
im Internet über http://dnb.d-nb.de abrufbar.

Diese Arbeit hat der Fakultät für Informatik und Automatisierung der
Technischen Universität Ilmenau als Dissertation vorgelegen.

Tag der Einreichung: 1. Juli 2013
1. Gutachter: Prof. Dr.-Ing. habil. Andreas Mitschele-Thiel

(Technische Universität Ilmenau)
2. Gutachter: Prof. Dr. rer. nat. Paul Müller

(Technische Universität Kaiserslautern)
3. Gutachter: PD Dr. rer. nat. Oliver P. Waldhorst

(Karlsruher Institut für Technologie)
Tag der Verteidigung: 16. Dezember 2013

Technische Universität Ilmenau/Universitätsbibliothek
Universitätsverlag Ilmenau
Postfach 10 05 65
98684 Ilmenau
www.tu-ilmenau.de/universitaetsverlag

Herstellung und Auslieferung
Verlagshaus Monsenstein und Vannerdat OHG
Am Hawerkamp 31
48155 Münster
www.mv-verlag.de

ISBN 978-3-86360-094-5 (Druckausgabe)
URN urn:nbn:de:gbv:ilm1-2013000657

Coverfoto: photocase.com

http://nbn-resolving.de/urn:nbn:de:gbv:ilm1-2013000657

Ohne euch würde es das Schiff nicht geben.
Ohne euch wäre es nie seetüchtig geworden.
Ohne euch hätte es nie Segel gesetzt.
Ohne euch hätte es keine Karte gehabt.
Ohne euch hätte es nicht die Gnade einer Wahl gehabt.

Und auch wenn das Schiff in der Welt unterwegs ist,
erinnert es sich doch immer an den schönsten aller Ankerpunkte.

Ohne dich wäre es auf Riffe gelaufen.
Ohne dich wäre es gestrandet.
Ohne dich hätte es nicht seine Anker gelichtet.
Ohne dich hätte es nicht alle Segel gesetzt.
Ohne dich hätte es vertraute Gewässer nicht verlassen.

Und so ist es gemeinsam mit dir auf neuem Kurs,
der Zukunft entgegen.

Ich widme diese Arbeit meinen Eltern
und meiner Lebensgefährtin Susanne.

Acknowledgements
Although I am the only author of this book, a lot of people contributed to it
and supported me during my time at the Technische Universität Ilmenau. The
order of the following acknowledgments does not express a judgment about
their importance.

Many thanks go to the supervisor of my dissertation Prof. Dr.-Ing. Andreas
Mitschele-Thiel. He trusted in my attitude to scientific work and allowed me to
do research in unexpected directions. This academic freedom was essential for
my time at the Integrated Communication Systems group. Thank you also for
the constructive feedback to my work and for simple but challenging questions.

I like to thank Prof. Dr. Paul Müller and PD Dr. Oliver Waldhorst for taking
over the review of my thesis. I hope you enjoyed the reading of my thesis,
although it is a bit longer than promised.

I would like to thank my colleague Thomas Volkert for the constructive
cooperation. Together, we invented our baby FoG and accomplished it over
nearly five years. It started in late summer 2008 during a discussion between
Thomas and me. We had been sitting outside in the sun in front of the
Humboldt building arguing about the missing innovations in networking
research. Thank you also for the name “FoG”.

Thanks to my colleagues for the inspiring time! In particular, I would like to
thank my colleague Mohamed Kalil for the open and relaxed atmosphere in
our office in the old Blechhaus.

Daniel Lorenz and Tim Langner read early versions of the thesis. Thank you
for working through the text, although you did not know anything about the
topic. The remaining errors are all my fault.

I would like to thank Florian Evers as well for reviewing parts of the thesis –
some parts even multiple times. Thank you, Florian, also for introducing me to
the most addictive hobby. “Searching” is not so far away from research.

A lot of students and colleagues contributed to the project by writing code
or conducting conceptual work. I acted as supervisor for the work done
by students and as team leader for the colleagues. The following persons
contributed to my thesis (in alphabetic order):

• Martin Bengsch with a Diploma thesis about the connection setup in FoG

• Markus Brückner as colleague during the last six month of the project
with debugging the rerouting code

• Sebastian Dietzel with a Diploma thesis about a mobility solution compa-
rable to MobileIP

• Daniel Hundsdörfer as student assistant for emulator issues

• Robert Kaltenhäuser with a project seminar about rerouting experiments

• Sebastian Messing with a Diploma thesis about rerouting in networks
with explicit routes

• Manuel Osdoba with a project seminar and as student assistant in the
context of rerouting experiments

• Udo Peschek with a Studienarbeit about transport protocols

• Daniel Renner with a Bachelor thesis about extensions to the algorithm
mapping requirements to chains

• Thomas Volkert with a focus on hierarchical routing management, emula-
tion, interoperability and video transmission. During countless discus-
sions, he contributed to the definition of the FoG layer architecture in its
non-recursive form and its packet format as well.

Finally, I would like to thank some people that are more familiar with
German.

Vielen Dank auch an die Mensa des Studentenwerkes der TU Ilmenau. Die
Auswahl zwischen den Essen war nicht immer einfach; aber ohne sie wäre ich
verhungert.

Weiterhin möchte ich meiner Familie für ihre geistige Unterstützung über
die lange Zeit danken. Vielen Dank für euer Verständnis, wenn andere Dinge
wegen der Dissertation liegen blieben.

Schlussendlich möchte ich meiner Lebensgefährtin Susanne für noch mehr
Verständnis für falsche Prioritäten danken. Du gabst mir die Motivation zurück.
Und dank deiner Unterstützung ist wider Erwarten doch noch alles fertig
geworden.

VIII

Contents

1. Introduction 1
1.1. Research question . 3
1.2. Scientific contributions . 4
1.3. Research environment . 5
1.4. Restrictions on the scope . 5
1.5. Chapter overview . 6

2. Background 9
2.1. Terms and definitions . 9

2.1.1. Network, subnetwork, and inter-network 10
2.1.2. Layer and its architecture 11
2.1.3. Name and address . 12
2.1.4. Connection, quality of service, and requirements 13
2.1.5. States . 14
2.1.6. Routing, relaying, forwarding 15

2.2. Layer models . 16
2.2.1. ISO/OSI . 16
2.2.2. IP suite . 21
2.2.3. Mixed versions . 26
2.2.4. Recursive layers . 26

2.3. Protocols . 32
2.3.1. Relaying protocol control information 32
2.3.2. Error and flow control protocols 37
2.3.3. Access protocols . 37
2.3.4. Resource information exchange protocols 39

2.4. Connections, states and quality of service 39
2.4.1. Connectionless networks and overprovisioning 41
2.4.2. Connectionless networks with quality of service add-ons 41
2.4.3. Connection-oriented networks 43
2.4.4. Inter-network issues . 44
2.4.5. Political aspects and network neutrality 45

2.5. Dynamic protocol stacks . 47
2.5.1. Service access points . 48
2.5.2. Stack construction and selection 49
2.5.3. Stack runtime environment 49

IX

Contents

3. Forwarding on Gates architecture 51
3.1. Motivation and design . 53

3.1.1. Use case with Google and Deutsche Telekom 54
3.1.2. Possible solutions with today’s Internet 56
3.1.3. Conclusions for new design 59
3.1.4. Related motivations . 65

3.2. Communication model . 66
3.2.1. Functional blocks . 67
3.2.2. Chaining functional blocks 68
3.2.3. Example . 72
3.2.4. Related work . 73

3.3. Layer architecture . 75
3.3.1. Interface . 78
3.3.2. Transfer service . 80
3.3.3. Routing service . 82
3.3.4. Authentication service . 85
3.3.5. Incremental routing process 88
3.3.6. Report and request functional blocks 92
3.3.7. Interaction with lower layers 93
3.3.8. Related work . 95

3.4. Examples . 98
3.4.1. Motivating use case . 98
3.4.2. Emulation of IP . 103
3.4.3. Emulation of MPLS . 105

3.5. Political aspects . 106
3.6. Deployment and interoperability 108

3.6.1. Deployment . 109
3.6.2. Interoperability . 110

3.7. Discussion . 111
3.7.1. Review of evaluation questions 112
3.7.2. Comparison with reference model 114

4. Implementation of FoG 117
4.1. Use cases and design requirements 118
4.2. Software architecture . 119

4.2.1. Plug-ins and extension points 119
4.2.2. Event simulation . 121

4.3. Transfer service . 122
4.3.1. Functional blocks . 124
4.3.2. Packet structure and relaying 128
4.3.3. Access protocol . 134
4.3.4. Error recovery . 136
4.3.5. Mobility . 140

X

Contents

4.4. Routing services . 141
4.4.1. Simulated routing service 142
4.4.2. BGP for FoG . 145
4.4.3. Mapping from requirements to gates 147

4.5. Authentication services . 151
4.6. Emulator . 152

5. Performance studies 155
5.1. Simulation setup . 158

5.1.1. Representing subnetworks 159
5.1.2. Network load and applications 161

5.2. Scalability of transfer service . 161
5.2.1. Packet overhead due to route length 162
5.2.2. State distribution . 165
5.2.3. Discussion . 168

5.3. Scalability of routing service . 169
5.3.1. Creation of routing service policies and assumptions . . . 170
5.3.2. Routing service requests . 173
5.3.3. Size of routing service graphs 174
5.3.4. Runtime performance and trade-off 174
5.3.5. Discussion . 177

5.4. Robustness of connections . 179

6. Conclusions 183

7. Outlook 187

A. Protocol control information formats 189

B. FoG layer interface 199
B.1. EventSource . 199
B.2. Layer . 200
B.3. Binding . 203
B.4. Connection . 204

C. Productions for mapping requirements to functions 207

D. Performance studies for implementation 209
D.1. Emulation setup . 210
D.2. Video streaming performance . 211
D.3. Application throughput . 213

E. Analysis of state distribution for FoG network 217

XI

Contents

F. Node degree correlation analysis 221

G. Additional simulation results 223
G.1. Statistical reliability of routing service graph sizes 223
G.2. Error recovery for random link failures 224
G.3. Mapping states distribution . 226

Nomenclature 227

Lists 230

Index 238

Bibliography 243

XII

1. Introduction
The location of functions is a central theme of computer networks. In the past,
unreliable telephone links had to be enhanced with forward error correction
and retransmission functions. Since networks had used such links as backbone
links, the functions had resided on relay systems in the network. Later, new
transmission techniques, like fiber optics, with a much better reliability have
been introduced. Their reduced bit error rate influenced the functions required
in networks. In such networks, packet loss is mainly caused by congestions
rather than transmission errors. Thus, a design with retransmission functions
at end systems (or “hosts”) rather than within networks became more efficient.
With the advent of less reliable wireless links, a need for functions coping
with loss or bit errors on these links arises. Solutions such as special transport
protocols for wireless links [SS06] basically re-introduce this functionality. This
time, however, the function is placed mainly on both sides of the last hop.
Other functions are placed at different locations as well. For example, packets
of a multicast transmission can be duplicated by relay systems within networks
or at end systems by using a multicast overlay.

History shows that there is a tendency to add new functions which are
unforeseen by the original design of a communication network in order to
support new use cases. The Internet, which started out as a basic “dump”
packet forwarding network, was gradually enhanced with various functions.
In order to support mobile devices, protocols, like MobileIP [Per10], and
special “anchor point” functions on relay systems have been added to the
Internet. Other features such as network address translation and firewalls
require additional functions within the Internet as well.

The efficiency of some existing features can be improved by adding functions
to networks. Examples are the functions mentioned above that reduce bit error
rates and that reduce the network load induced by multicast transmissions.
Caching of content is another example, which reduces delivery time and
network load. Even the non-functional characteristics of packet forwarding –
also known as Quality of Service (QoS) characteristics – can be influenced by
functions. A function can, for example, prioritize packets or relay them with a
minimal data rate over a highly utilized link.

The requirements of applications for their data transmissions and the situ-
ation of the network influence the amount of required functions. For simple
web-browsing and a low loaded Internet with abundant capacity, no additional
functions on relay systems are required. However, with increasing load and

1

1. Introduction

shrinking free capacities more functions within the network can improve the
performance. For example, caches can be introduced to handle web page
requests more efficiently. Alternatively or in addition, packets that transport
content of web pages or requests for them can be marked and handled with
a higher priority than, for example, packets of a file download. The same
trade-off applies for live video streaming, but with slightly different functions
required in the network. Instead of assigning priorities, resources may have to
be reserved to ensure a steady stream of packets in situations with high load.

The situation is even more complex, since today’s Internet is a network of
subnetworks, called inter-network. Each subnetwork has an operator deciding
independently about the equipment, policies, and protocols used within its
subnetwork. For example, one subnetwork may use the Universal Mobile
Telecommunications System (UMTS) access technology in order to connect mobile
users to the Internet. Another subnetwork favors Ethernet to connect stationary
computers. The inter-network has to enable the interoperability between
various types of end systems connected to heterogeneous subnetworks. It has
to balance constraints required for the interoperability with the autonomy of
each operator to decide about the functions provided by its subnetworks. Thus,
the previously mentioned decision of how many functions a network provides
has to be made for each subnetwork individually. A UMTS subnetwork may,
for example, introduce resource reservation functions for video streaming due
to its limited capacity. An Ethernet subnetwork may rely on over-provisioning
and does not require such additional functions. For a transmission between end
systems from both subnetworks, however, the networks have to interoperate.
This may even require the support from relaying (or transit) subnetworks, if
the subnetworks are not directly connected to each other.

The provisioning of functions comes along with some cost in terms of
memory, throughput, and Central Processing Unit (CPU) load. Typically, an
instance of a function requires memory to store its current state, buffers, timers,
and management information. In order to perform its operations, CPU time is
required. Moreover, a system has to know which packets have to be processed
by which functions. It has to classify packets according to some pattern and to
relay packets of different classes to different functions. For example, Integrated
Service (IntServ), which is an extension to the Internet Protocol (IP), uses the
source and destination IP addresses and the protocol field value of a packet
as pattern to identify the flow the packet belongs to and, thus, identify the
function that has to be performed on the packet. These so called mapping
states have to be stored and – even more critical – have to be searched for
each packet arriving at a node. If the search algorithm is assumed to be fixed,
the amount of mapping states directly influences the delay of a packet. A
scalability problem arises: The more states a node has to store, the longer the
delay, and the worse the system performance. Besides these cost of functions
being in use, cost occur for setting up and maintain them. Typically, the

2

1.1. Research question

creation and removal of functions requires communication between peers.
These messages regarding the maintenance are called signaling messages. They
consume transport capacity and increase the CPU load of the systems. Thus,
the more functions are maintained, the more signaling messages have to be
exchanged, and the higher the load of a network.

In summary, networks should be flexible in order to accommodate a broad
variety of functions in various and changing locations. Moreover they have to
be scalable in order to be applicable for large-scale setups such as the Internet.

1.1. Research question

Today’s networks, however, are far from this goal. They are either flexible or
scalable.

They are rather static regarding their set of functions and regarding the
possible locations of these functions. Since the Internet design makes it hard
to support functions within a network, various problems for newly added
functions arise. For example, network address translation and firewalls hamper
the direct communication between IP nodes. The combination of functions
such as QoS, mobility, and security may lead to undesired feature interactions.
The more functions are added to an IP network the more severe the scalability
problems seems to be. QoS-add-ons exemplify this: IntServ supports a large set
of functions but comes along with a high number of states, which are required
on every node along a path. Differentiated Service (DiffServ), in contrast, requires
only a small amount of states but limits the functionality.

The static nature of networks is not limited to IP. The traditional layered
reference models such as the Open System Interconnection (OSI) model are part of
the problem. They propagate a static placement of functions by defining the set
of functions supported by a layer and the arrangement of layers. This hampers
the introduction of functions not included in the initial design. Moreover,
it limits the placement of functions. For example, end-to-end flow control
functions are assigned to the transport layer and, thus, are located on end
systems. It is hard for functions on relay systems, which belong to the network
layer, to assist directly.1

This thesis answers the question of how to provide arbitrary functions in
inter-networks in a scalable and flexible way.

I approached this question from an architectural standpoint by investigating
invariances –similarities – of existing solutions. The applicability of this method
for network research is discussed in [ABE+04]. Specific invariants are exploited
and generalized to a more abstract solution applicable to a larger set of prob-

1 Since – in theory – they are not aware of the transport connections, they can just drop packets.

3

1. Introduction

lems. The feasibility of my contributions is shown with an implementation.
Their performance is studied with simulations.

1.2. Scientific contributions
This book describes the following innovative scientific contributions:

Communication model for combining arbitrary functions: I propose a
communication model based purely on functional blocks in order to support
arbitrary functions. The model differs from other solutions in two aspects.
First, functional blocks represent all kinds of functions residing on end and
relay systems as well as links in networks. This allows the integration of
new functions without being limited to specific locations for them. Second, it
aligns functions on end and relay systems and, thus, merges the mechanism
for selecting and composing functional blocks with classical routing. The
merge increases the flexibility, enables function reuse, and opens the possibility
for algorithms to handle the underlying location-routing problem with all its
challenges.

Flexible state placement for scalability: I propose to separate the provision-
ing of functions from the decision for what the functions are used for. This
divides states between the provider of a function and the user of a function,
which leads to a flexible placement of states in a network. This flexibility
can be used by networks for a scalable function provisioning. The separation
complements the traditional method of aggregating states in an orthogonal way
and is inspired from schemes like DiffServ and source routing that separate the
provisioning of relaying functions from the decision which relaying functions
are used for which packets. My proposal represents a more general solution
that goes beyond the existing ones by being applicable for larger scopes with
independent operators and arbitrary functions.

Layer architecture supporting both of the above proposals: I identified
the impact of the two previous proposals – communication model and state
placement – on architectures. Since existing architectures do not consider
these influences, a new architecture called Forwarding on Gates (FoG) has been
designed. It is an architecture for a single layer that belongs to a reference
model, which is layered according to scope and not according to functionality
such as the traditional OSI reference model. The FoG layer comprises several
protocols and performs operations that are comparable to the OSI network
and transport layer. Its core is a protocol that supports a new hybrid relaying
approach by combining explicit and hop-by-hop routes.

“Edge-based” view on networking: From a theoretical standpoint, I propose
an “edge-based” middle ground between the node-based view of connectionless
networks using hop-by-hop forwarding and the route-based view of connection-
oriented networks. The former focuses on routes defined by sequences of

4

1.3. Research environment

nodes. The latter requires sequences of links between end systems. I introduce
a classification of relaying approaches according to their protocol format, which
indicates that most protocols are designed for one or the other type of network.
In contrast, FoG enables a combination of both, which opens new opportunities
for an interworking between relaying and routing.

1.3. Research environment
During my research career, I witnessed the rise of a research environment for a
Future Internet. In the US, the NSF supported the first GENI/FIND “spiral” in
2008. The European Commission funded around 150 research projects2 related
to Future Internet during the Framework Programme 7, which started in 2007.
An overview about these activities is given in [PPJ11a]. Beginning in October
2008, the German ministry for research and education (BMBF) funded the first
phase of the German Lab (G-Lab)3 Future Internet initiative. Together with my
colleague Thomas Volkert, I wrote a project proposal for the second phase that
described our idea of how a Future Internet might look like. In September 2009,
the project called “G-Lab_FoG” (Project number 16BK0935) got accepted even
so it was conducted by a single university without industry partners. Thus, I
had the pleasure to work on a self-designed project for more than three years,
a project allowing me to execute my research on FoG.

The project was embedded in the G-Lab by regular meetings with the other
projects of the second phase and with the partners from the first phase. I had
the pleasure to act as speaker of one Special Interest Group (SIG) of G-Lab, called
“Functional composition”. Its focus was on interfaces between applications
and network stacks, languages for defining requirements, and use cases for
a Future Internet. The discussions in the SIG resulted in the definition of an
interface between applications and network stacks [LVM+11] and influenced
the definition of the FoG layer interface.

1.4. Restrictions on the scope
Future Internet research is a wide field and includes research from boosting
the throughput for physical transmission to new applications using it. In-
terested readers are referred to a survey written by Paul et al. [PPJ11b] that
provides a comprehensive overview. This book focuses on the technical issues
related to protocols for inter-networks. My results do not enhance physi-
cal data transmissions, transport protocols, routing algorithms, service level

2 http://www.future-internet.eu/home/future-internet-assembly.html
3 http://www.german-lab.de/phase-1/

5

http://www.future-internet.eu/home/future-internet-assembly.html
http://www.german-lab.de/phase-1/

1. Introduction

agreements, requirement definitions, quality of service enforcement, public-
key-infrastructures, network test-beds, and signature generation. Furthermore,
this book does not introduce new (“killer”) applications for networks.

Moreover, the economic usage and social impact of the Internet are part of
the Future Internet research area. I assume that functions within the network
are useful elements for a more efficient service provisioning by networks. The
political aspects of the assumption are discussed in Section 3.5. However, my
book does not contribute to the research fields of market analysis, game theory,
and insights for regulators. Interested readers are deferred to [DSW09].

Although FoG operates with functional blocks, the functions themselves are
not the focus of this book.

The FoG architecture opens new possibilities for algorithms. Routing algo-
rithms in particular profit from the greater flexibility. However, new algorithms
or protocols exploiting this flexibility are not part of this book. Interested
readers are deferred to the work on routing of my colleague Thomas Volk-
ert [VMT12, VOBMT13]. Other algorithms, such as the algorithm that maps
application requirements to functional blocks, prove the feasibility of some
algorithmic aspects of the architecture. However, they might not be optimal
and, thus, are only starting points for future work.

This is not the solution your are searching for. . .
At the PIMRC 2007, a speaker was asking the audience about in-
novations in Future Internet research. The gist of what he said
was: “Circuit switching was first. The Internet brought us packet
switching. What is the next step? [dramatic pause] And cell switch-
ing is not the answer!” No one in the audience had an answer.
Unfortunately, I do not provide an answer either. Since there is
no radically new traffic pattern, such as the burst traffic pattern
leading to packet switching (cp. Section 2.2.2.1), I stick with packet
switching.

1.5. Chapter overview
After the introduction, Chapter 2 sets up the basics for this book. It defines the
terms and introduces the reference layer model for FoG. Afterwards, the basics
and the state of the art in the research field are introduced.

Thereafter, Chapter 3 describes the new FoG architecture. It starts with
a motivating use case in Section 3.1, which shows the limitations of today’s
solutions. Based on these limitations, design ideas for my solution are derived.
In order to support arbitrary functions, Section 3.2 introduces the communi-
cation model comprising functional blocks and their dependencies. Section
3.3 describes the architecture defining how a network layer using this model

6

1.5. Chapter overview

has to be structured. Each of these sections includes a review of the related
research work. Section 3.4 illustrates the theoretical description with examples.
Afterwards, the features of the architecture are reviewed in the context of the
political environment in Section 3.5. Section 3.6 discusses deployment and
interoperability aspects. Finally, a summary outlines the differences between
FoG and the recursive reference model.

Chapter 4 describes the design of a sample implementation of the FoG
architecture. The use cases for the implementation are specified in more
detail in Section 4.1. The software architecture supporting them is shown
thereafter. Starting with Section 4.3, the algorithms and protocols required
for implementing the architecture are described. Most prominent is the new
network protocol presented in Section 4.3.2 and the algorithm used to map
requirements to functions and functional blocks discussed in Section 4.4.3.

Chapter 5 contains the results from several performance studies executed
with the software presented in Chapter 4. The quantitative results complement
the qualitative arguments from Chapter 3. Each study takes advantage of a
feature of the implementation that is enabled by the architecture. The most
important study is described in Section 5.2. It illustrates the flexible state
distribution of the FoG relaying and its implications on scalability. In addition,
Section 5.3 describes the study reviewing the state distribution of the routing.
The robustness of connections in case of link failures is analyzed in Section 5.4.

Finally, Chapter 6 summarizes the results of my thesis. Chapter 7 gives an
outlook to future research questions.

Fast readers with a background in computer communication are encouraged
to read at least Section 2.1 about the terms used in Chapters 3 to 7 and
Section 2.2.4 about the recursive reference model. The former will prevent
misunderstandings, for example regarding the term “connection”. The latter
supports the understanding of the structure of the proposed solution and of
the thesis itself.

7

2. Background
This chapter introduces the terms and concepts required by this book.

At first, the basic terms used in Chapter 3 to 7 are defined in Section 2.1.
This is important since the definition of some terms, such as connection, is not
standardized. The description of the state of the art in this chapter uses mainly
the terms as they are defined in the references.

Section 2.2 describes the traditional reference models OSI and the IP suite as
well as a new recursive model. The historical context of each model is outlined
in order to highlight the motivation of the model creators. The traditional
reference models are presented to motivate the choice of the new recursive
model as reference model. The recursive model provides guidance for the
design decisions documented in this book.

In general, the focus of the description is more on the similarities of solutions.
The invariants of solutions for similar problems are highlighted by the structure
of this chapter. In particular, Section 2.3 does not follow the structure of
traditional textbooks derived from the OSI layer model. Instead, protocols are
presented from the point of view of the recursive layer model by grouping
protocols for similar purposes.

Starting from Section 2.4, this chapter reviews the state of the art of providing
functions within networks. This description is close to today’s situation in
networks or commercial products. Some of the introduced concepts or protocols
will later be reused as building block for the new architecture. Others are
presented to justify different design decisions in Chapter 3 and 4. Related
research work is presented in Chapter 3 after introducing my contributions.

Since this book focuses on flexible networks supporting arbitrary functions,
Section 2.5 introduces the state of the art for dynamic protocol stacks. Section
2.5 describes solutions for constructing such stacks and how to select the parts
for the construction.

2.1. Terms and definitions
Since this book focuses on architectural issues, terms for ideas and elements of
architectures play an important role. However, many terms in networking are
not defined clearly or are not used in a homogenous way. Thus, this section
defines the terms used in most parts of this book. Only Chapter 2 and sections
about related work use the definition given here and the definition used by

9

2. Background

reference documents. The mixed usage should simplify the reading for readers,
who are familiar with the reference documents.

The computer network and protocol community happily uses a lot of abbre-
viations. This thesis tries to avoid abbreviations in order to improve readability.
While common and frequently used terms such Internet Protocol and Forward-
ing on Gates1 are still abbreviated, more rarely terms are written out. Thus,
“transfer service plane” and “autonomous system” are favored instead of TSP
and AS, respectively.

2.1.1. Network, subnetwork, and inter-network
A network is a set of systems interconnected with each other via links. Examples
for systems are host computers and routers. In not fully meshed networks, a
system can act as end system or relay system for communication. End systems
communicate with each other while the relay systems support the communica-
tion by relaying exchanged data [Day95]. Both terms refer to a role of a system.
For example, a router can be a relay system for others and an end system for
its management applications.

Along the same lines, I use the term relay network for networks relaying
data for end systems. End networks are the networks in which an end system
is located.

The Internet is not a homogenous network under the control of one single
operator. It is a network of networks called inter-network. Each individual
network is owned by an operator. Each operator might have different use
and business cases in mind and might have different optimization goals for
its network. Furthermore, different countries might have different laws and
regulations for network operators, which influence the technique used for
service provisioning. Consequently, the inter-network has to support a variety
of network techniques, protocols, and policies. Since the term Internet is
tightly bound to IP, the term inter-network will be used to refer to a network
of networks independent of IP. The OSI term subnetwork is used to refer
to a network within an inter-network, if the network aspects are important.
Occasionally, the term autonomous system is used in the context of management
decisions by operators.

The term network has a broader meaning and includes inter-networks as well
as subnetworks. On a more abstract level, a network can be seen as graph with
the systems as nodes and the links between them as edges. The mathematical
terms will also be preferred if the described issue is independent of systems or
refers to entities or virtual elements on systems.

In the context of recursive layers (cp. Section 2.2.4), the terms inter-network
and subnetwork refer to two layers with different scope. The term network is

1This is a common term at least for this thesis.

10

2.1. Terms and definitions

used to refer to the graph of interconnected entities of a single layer.
The term topology refers to the characteristics of a graph. A topology is a set

of graphs sharing common properties. For example, the tree topology contains
all loop-free graphs. [Day08a]

2.1.2. Layer and its architecture
Communication systems are complex systems with a lot of interacting compo-
nents. In order to simplify design, management, and extendibility, a reduction
of complexity is required. A common approach is to group the components
and to limit the relationships between these groups. The most prominent ap-
proach in networking is to define groups and arrange them linearly by allowing
interactions only between one group and its two neighboring groups in the
line. In such an arrangement, a group is called a layer. Since this arrangement
is mostly drawn with a vertically orientation, each layer is allowed to interact
only with its direct “lower” and “higher” neighbor layers. Most commonly, the
layer most related to hardware issues is located at the bottom of this stack of
layers and the layer most related to the applications on top of it.

The OSI model, which is described in Section 2.2.1, defines a generic set of
terms to describe layers of any kind. A slightly modified version of these terms
is used in this book and introduced in the following.

Four aspects of a layer can be separated:

• The service definition describes what a layer provides to higher layers.
The description is rather abstract. Implementation details are not part of
the service definition.

• Service access points with their service primitives describe the interaction
between higher layers and the layer itself in order to access the service.
The term interface is considered to be not as abstract and used in between
design and implementation [Day95]. This book uses the term interface as
a general term for design and implementation discussions.

• A protocol state machine describes the states of a protocol and the allowed
state transitions. Instances of a protocol state machine reflect the current
state of a protocol entity on a system.

• The protocol is an internal issue of a service and used to exchange
commands and information between instances of protocol state machines.

The base line of this split is comparable to the split between interface and
implementation in object-oriented software engineering.

Figure 2.1 shows a layer at the N-th position in a stack. It consists of two
instances implementing the layer functions. An instance is called entity. The

11

2. Background

(N) layer
PSM

(N+1) layer

(N-1) layer

SDU

PDU

SAP SAP

Entity Entity

PSM PSM

Figure 2.1.: Layer at the N-th position in the stack with its entities, protocol
state machines (PSM), and service access points (SAP). Service
data units (SDU) are exchanged with higher layers. Protocol data
units (PDU) are exchanged with lower layers and between PSMs,
respectively.

(N)-layer provides a Service Access Point (SAP) to higher layers at the position
(N+1). Via this SAP, the (N+1)-layer hands over Service Data Units (SDU) for
delivery. The (N)-layer forms a Protocol Data Unit (PDU) by adding Protocol
Control Information (PCI) to the SDU. The PDUs are logically transported from
the source entity to the destination entity. Since the entities normally do not
share memory, the PDU has to be handed over to the lower layer at the position
(N-1) in order to perform the delivery. This recurses till the lowest layer is
reached and the PDU is physically transmitted over a medium. At the receiver
side, the PDU is handed over from the (N-1)-layer to the (N)-layer. The (N)-layer
is removing the PCI from the PDU and hands over the SDU to the (N+1)-layer.
This recurses till the application receives its SDU.

An architecture defines logical components and their interactions [Cla05].
Consequently, an architecture for a layer defines the components of a layer and
their interaction.

Approaches introducing interactions between non-adjacent layers are referred
to as cross-layer approaches. An overview about different types of cross-layer
approaches is given in [SM05].

2.1.3. Name and address
The terms name and address are overloaded with different semantics in network
literature. For this book, these terms are defined based on Saltzer [Sal82] and
Day [Day08a].

12

2.1. Terms and definitions

According to Saltzer, names are taken from namespaces. A namespace is the set
of all allowed names. Names may be human-readable, like URLs, or machine-
readable, like labels for the MultiProtocol Label Switching (MPLS) [RTF+01].
Since the differentiation according to readability is not important for this book,
the term is used for both. More important is the differentiation according to
the internal structure of names. Names having an internal structure are called
addresses. In general, such a structure is defined in order to perform efficient
searches in a hierarchical namespace. Names without an internal structure,
such as hashes, are called labels.

A structure is only useful if it is known to someone using an address. Ad-
dresses used by Ethernet actually have an internal structure, which indicates
the manufacturer of a network interface card (Organizationally Unique Identi-
fier [IEE13]). Network management applications can use the internal structure
in order to resolve the name of the manufacturer and the type of the interface
card. However, this structure is of little help for routing protocols since it does
not reflect the location of the network interface card. Thus, they treat such
addresses as labels. Another example is the interpretation of URLs. For the
DNS system, they have an internal structure used for looking up the DNS
server responsible for storing the DNS entry. However, from the point of view
of IP, DNS names are just labels. Thus, an (N+1)-address might be treated as
(N)-labels. Consequently, the definition is extended by the context in which a
name is used. [Day08a]

IP addresses are no addresses from the point of view of inter-network IP
routing. Although unicast IP addresses are composed of a network and a host
part, the network part itself does not have a structure and does not reveal a
location in the graph of subnetworks. Other IP addresses, such as multicast
addresses, identify groups and are not structured.

Proposals for a locator/identifier split [HMH13] used the term identifier for
labels and locator for the addresses used by routing. Even though, this book
discusses addresses in the context of routing, these new terms seems not to
enhance the original definitions by Saltzer. Critical issues of locator/identifier
split approaches are discussed in [Day08b].

2.1.4. Connection, quality of service, and requirements
In networking literature, a variety of terms is used for state shared between
two protocol state machines handling a sequence of packets. Examples are flow,
association, and connection. I require a term for such a construct independent
from the amount of shared state. Based on the discussions in the G-Lab SIG
“Functional composition”, I use the term connection. It refers to an instance of a
communication between two higher layer entities. A connection is mapped to
some layer internal mechanism implementing the requirements associated with
a connection. Depending on this mechanism, a connection may be mapped

13

2. Background

to a UDP-like construction with a small amount of shared state, a TCP-like
construction with a large amount of shared state, or anything in between.

Chapter 3 shows how connections are mapped to chains of functional blocks.
The recursive layer model described in [Day08a] prefers the term flow. It allows
to map flows to EFCP connections (cp. Section 2.2.4). While the terms differ,
the idea of splitting the request and its implementation is the same.

QoS is concerned about non-functional requirements and characteristics
of communication such as data rate, loss, and delay [Tan03]. An overview
about the QoS parameters for the OSI layers is given in [Sta93, p. 44]. The
requirements might be “hard” or “soft”. The former defines exact limits, which
are not allowed to be exceeded. The latter defines thresholds, which have to be
met for a specific percentage of packets. If not only the non-functional aspects
are considered, the functional requirements have to be specified additionally.
Examples for functional requirements are in-order data delivery or delimiting
aspects (if the peer should receive the data in the same chunks as they are send).
I use the term requirements to refer to a set of functional and non-functional
requirements. The term QoS is used as short form to refer to non-functional
requirements.

2.1.5. States

Protocols are used to exchange information between protocol state machines
residing on different systems. Each protocol state machine requires some
internal information about its current status called state. States represent the
knowledge of a protocol state machine and require memory on the system
hosting the protocol state machine.

In the context of QoS-provisioning, multiple types of states are known. For
example, the authors in [DF99] differentiate between three types of states in
the context of the Resource Reservation Protocol (RSVP) [BZB+97]:

• Classification states identify the connection a packet belongs to. They
contain all knowledge a relay system requires to decide which function
should handle a packet. RSVP uses a (minimal) classification state of
source address, destination address, and protocol field value in order to
classify IPv4 packets according to their connection.

• Scheduling states define the service for a packet. They contain all informa-
tion required to define a service such as scheduling parameters.

• Signaling states include the control information such as timers. In contrast
to the two previous ones, these states are used less frequently since they
are not required for each packet.

14

2.1. Terms and definitions

Comparable to the term connection, I require a more general classification of
states. It should be suitable for functions in general and not only for QoS-
relaying functions. Thus, the following classification is used in this book:

• Mapping states identify the functions, to which a packet should be relayed
to, and the parameters required therefore. Fine grain mapping states can
specify the functions per connection. For example, they can map packets
from a specific connection to a function, which ensures the relaying with
10 msec and with a speed of 20 Mbit/s. More abstract mapping states
can map packets from a specific service type (e.g. VoIP) to a function,
which ensures the prioritized relaying of such packets. The mapping
states include the classification states with some parameters originally
classified as scheduling states. Examples for such parameters are given
in Section 3.2.1.1.

• Function states include all information required by a function, which are
independent of a single packet or connection. That includes the signaling
states and the remaining scheduling states. In particular, they include the
buffers, timers, and authentication information.

2.1.6. Routing, relaying, forwarding

The calculation of routes through a graph is called routing. Routing calculates
the best route connecting a source and a destination node with respect to con-
straints such as non-functional requirements. In general, it requires knowledge
of the graph. In order to obtain this knowledge in distributed environments,
routing protocols are used to exchange information about the graph between
routing entities.

Relaying is the process of handling a packet in a relay system without know-
ing the whole network graph. It consists of determining the outgoing queue of
a network interface card for an incoming packet based on information in the
packet and a smaller information base.

Forwarding includes routing and relaying and refers to the whole process of
transmitting data from a source to a destination.

For IP, routing is done by the Dijkstra algorithm and the graph information is
distributed by the Border Gateway Protocol (BGP) or the Open Shortest Path First
(OSPF) protocol. The graph information is called Routing Information Base (RIB).
The result of this process is the Forward Information Base (FIB). It is consulted
by the relaying process when a packet arrives at a system. In MPLS networks,
both tasks are more different. The relaying is done based on tables containing
labels, which are local for each system. Each label represents a Label Switched
Path (LSP). Routing is only required in order to establish the LSPs.

15

2. Background

2.2. Layer models
The debate about layers has a long history in the research community. How
many layers a system has, depends strongly on the guidelines for grouping
components to a layer. A UMTS system has a very different layer structure
[HT11] in contrast to, for example, a DSL system [ML02]. In some cases these
guidelines are not only relevant for a special system but for a family of systems.
Such guidelines define a layer model or reference model, which can be used to
judge the correctness or completeness of new system designs. In the following,
the most prominent reference models are outlined. They are used later on to
discuss the design decisions of the new architecture presented later on.

John Day states that a standard document is half political and half technical
[Day08a]. Since all reference models are rooted in the thinking of the time
they had been defined, the history of each reference model is reviewed. This
review stresses the influences of the political and economic environment on the
technical decisions. As far as they are known, motivations for design choices
are outlined.

Instead of reducing complexity with a layered approach, less strict rules of
how components may interact are possible. The approaches mainly follow the
object-oriented paradigm such as the Modular Communication Systems (MCS)
described in [Boc97].

2.2.1. ISO/OSI
2.2.1.1. History

In the early 1970s, the increasing need for distributed systems lead to many
activities focusing on the development and standardization of communication
systems. In particular, the network required to connect computers was one
major issue. The International Telegraph and Telephone Consultative Committee
(CCITT) started its work on computer networks standards in 1969 with the Joint
Working Party on “New data networks” (later: Study Group 7). This group
was dominated by the telecommunication companies and, thus, more focused
on connection-oriented solutions. A meeting in 1970, mentioned an ARPANET
presentation from Bob Kahn (see next section about IP suite), and summarizes
that “little support was given for packet switching by any delegation” [CCI70].
After a first publication in 1972, the CCITT published its standard for X.25 in
the so-called “Orange Book” in 1976. Networks such as Telenet in the US and
the public British SERCnet used X.25 from the mid/end 1970 on.

In 1977, the British Standards Institute proposed to standardize a network for
distributed processing to the International Organization for Standardization (ISO).
ISO formed the Subcommittee 16 of the Technical Committee 97 for OSI. John
Day states in [Day08a, p. 356] that this was a political maneuver. The CCITT

16

2.2. Layer models

was dominated by telecommunication companies and the upcoming computer
companies had no influence in this standardization body. In contrast, ISO was
a nongovernmental standardization body and gave the computer companies
a better chance to push their ideas. The American National Standards Institute
(ANSI) had to develop a proposal for the first meeting of this subcommittee.
Mike Canepa and Charlie Bachman from Honeywell Information Systems
participated in the ANSI preparation meeting in 1977 and presented their
Distributed System Architecture (DSA). DSA resulted from the work of their
group in the context of communication architectures for distributed databases,
which started in the mid 1970s. It was influenced by the work of the ARPANET
and by IBM’s Systems Network Architecture (SNA), which was published in 1974.
DSA was selected by ANSI as the best proposal and submitted to the first ISO
meeting in March 1978. The proposal was accepted. After some refinements,
the ISO committee finished a first draft in June 1979. Starting from 1981, CCITT
and OSI aligned their work. OSI published a draft standard in 1982. CCITT
published the compatible standard X.200. [Sta93]

The final standard ISO 7498 was frozen in 1983 and published in 1984
[Day95].

The standardization was mainly driven by governmental telecommunication
companies, the new computer industry lead by IBM, and the researches from
the DARPA Internet. The result was a technical standard influenced by the
individual business goals of the participating companies. Consequently, OSI
shares common parts with products the companies wanted to sell. The early
Internet pioneers had a hard task to push the ideas of the Internet in this
process. First of all, such a process was new for most of them. Second, they did
not have the political support the big companies had. The conflicts between
IETF and ISO/OSI date back to these times. [Day08a]

In 1988, the ISO committee SC21, which is responsible for OSI, decided
to start the work on the first revision of the OSI reference model 7498-1. It
was published in 1994 with only limited changes. John Day, working as the
Rapporteur of this process and, thus, responsible to arrive at a consensus,
stated that the most important problems regarding a cooperation between
connectionless and connection mode, revision of the upper layers, and multicast
had not been solved. The changes primarily cleaned up the document and
aligned it with the new technologies. An example for the latter is the extension
of data link layer tasks by routing due to new technologies such as Ethernet.
[Day95]

Ethernet was developed at the beginning of 1972 by Xerox. Later, Digital
Equipment (DEC), Intel and Xerox continued the development jointly. The IEEE
standard family 802 for Local Area Networks (LAN) defines two sub layers within
the OSI data link layer: Logical Link Control (LLC) (802.2) and Medium Access
Control (MAC) (dependent on the access, e.g., 802.3 for Ethernet). [Hea93]

17

2. Background

2.2.1.2. Model

The OSI reference model defines seven layers. The lowest one is highly in-
fluenced by the physical media and its limitations. Each subsequent layer
increases the functionality. Finally, the application layer can rely on an abstract
and highly flexible service provided by the presentation layer. This grouping
of functions to layers was inspired by the design of operating systems. Figure
2.2 shows the following stack:

1. Physical: Transmission of an unstructured bit stream over a physical link.
Defines electrical, mechanical, functional and procedural characteristics
for connecting two devices

2. Data Link: Provides a reliable link with flow control between two devices
and manages the link, which includes the activation, maintenance and
deactivation of the link. It handles QoS for single links and might be
capable to negotiate suitable parameters with the peer. Most prominent
is the “high-level data-link control” (HDLC) protocol, which provides
such features.

3. Network: Data transfer between end systems, which are not directly
adjacent but connected to a communication network. This includes
finding an end-to-end path (routing) and to convey the data over that
path (relaying). Segments packets for different data link layers.

4. Transport: Providing end-to-end data transport. Depending on the re-
quirements, the transport layer can provide reliable connections with flow
control and in-order data delivery or no corrections at all.

5. Session: Controls the dialogue between applications; Token management
to prevent mutual access to operations; Synchronization with checkpoints.

6. Presentation: Defines the format of the exchanged data and provides
data-transformation capabilities; defines syntax and semantic of data.

7. Application: Logic dedicated to a specific application.

More detailed descriptions can be found in nearly all text books about network-
ing. An implementation view on the model with an outline of its advantages
and disadvantages is given by Rose in [Ros90].

Except the physical layer, each layer supports a connection and a connec-
tionless mode. The connection mode includes all signaling required to setup,
maintain and release connections between peers. The connectionless mode
allows sending data without such a setup. However, Rose remarks that the
upper layers use nearly exclusively the connection mode [Ros90]. Theoretically,

18

2.2. Layer models

Physical layer

2.

1.

3.

Data link layer

Network layer

4. Transport layer

5. Session layer

6. Presentation layer

7. Application layer

Medium access control

Logical link control

Subnetwork access sublayer

Subnetwork dependent sublayer

Subnetwork independent sublayer

Figure 2.2.: OSI layer stack with the layer most related to hardware at the
bottom. Sublayer are separated by dashed lines.

adjacent layers can operate in connection or connectionless mode indepen-
dently of each other. Transition between both models is possible [Sta93] (e.g.
connection to connection with one-to-one, multiplexing (many to one), and
splitting (one to many)).

Basically, X.25 corresponds to the first three layers of the OSI model in connec-
tion mode. It uses virtual circuits over the Line Access Protocol Balanced (LAPB).
The Connectionless Network Protocol (CLNP), which is similar to IP (including the
Internet Control Message Protocol (ICMP)), takes over the connectionless mode.
Depending on the network protocol, transport protocols of different classes
(TP0-4) have to be used.

In order to support cooperation between subnetworks operating in different
modes, OSI introduces the Internal Organization of the Network Layer (IONL)
[ION88]. It splits the network layer in three sublayers:

• The subnetwork access sublayer defines the interworking between a
specific subnetwork technology (e.g. Ethernet) and the network layer.

• The subnetwork dependent sublayer adapts the subnetwork technology
to the desired network service (e.g. a connectionless subnetwork to a
connection mode).

• The subnetwork independent sublayer provides the network service
between the end systems.

19

2. Background

Stallings [Sta93] and Day [Day08a] provide a detailed description of the sublay-
ers of IONL. Rose points out the technical and political problems and limitations
surrounding this issue. In [Ros90], he concludes that due to addressing and
other problems resulting from combining X.25, CLNP, and the Transport Proto-
colclass 4 (TP4), an interworking between different OSI subnetworks is in most
cases not possible.

QoS parameters have been defined for each layer (Table 2.10 in [Sta93]),
which includes throughput, transit delay, residual error rate, resilience, delay
for establishing a connection, and others. Basically the higher layers pass these
parameters down to the transport layer.

2.2.1.3. Problems

The OSI model was heavily influenced by the political situation during the
time it was created. The telecommunication companies tried to defend their
monopolies against the influence of the upcoming computer companies. The
computer companies in turn tried to get into the market of communication.
Some companies such as IBM had already products (such as SNA) and pushed
the standard to match these products. In summary, the standard does not only
reflect scientific insights but also the environment of that time. In particular, the
complexity of OSI was strongly increased by the “war” between the connection
mode and connectionless camps. A more detailed description of the political
and market forces and their effects on the standard are given in [Ros90], [Day95]
and [Day08a].

Furthermore, the standard was not defined in the best time period between
the peak of research and the peak of investments. [TW11]

Together with the bad impression of the first implementations, the perception
of the standard in the community was not the best. Thus, a tendency towards
the alternative IP solution was created. [Ros90]

Moreover, new inventions do not fit in the reference model. The reference
model does not “explain” these solutions and how they might fit in an overall
architecture. Ethernet was among the first inventions leading to changes at the
OSI model (see previous description of the first revision). “Shim layers” such
as MPLS or overlays do not fit in the OSI layer structure as well.

The session and presentation layer are usually omitted as discussed in Section
2.2.3. John Day argues that there are even some indications that both have to
be in reverse order [Day08a].

Several functions repeat themselves in multiple layers. For example, the data
link and the transport layer handling reliability issues. Routing, originally a
management function of the network layer, is now also present in the data link
layer. Moreover, peer-to-peer overlay networks operating in the application
layer perform their own routing. This repetition of functions raises the idea of
recursive layers outlined in Section 2.2.4.

20

2.2. Layer models

In addition, some of the OSI definitions seem to be unpractical. For example,
addresses name SAPs not protocol state machines and connections are defined
as association between (N+1)-entities. [Day11, Day95]

2.2.2. IP suite
The IP suite used for today’s Internet is a collection of protocols with the
Internet Protocol at its center. I use the term IP to refer to the IP suite and the
protocol in order to avoid terms such as “IP suite nodes”. Only occasionally,
both have to be differentiated and the term IP suite is used.

2.2.2.1. History

The following condensed history of the Internet is based on [HL03], which
points out the history and the biographies of the people involved in detail.
This section focuses on the motivation and the inspiration of design decisions.
References for the newer history are given directly in the text.

The RAND Corporation was ordered by the US Air Force to enhance the
control system for the nuclear weapons of the US. This system depended on
the long-distance communications network, which was highly centralized and,
thus, vulnerable for a nuclear attack. Paul Baran, who joint RAND Corporation
in 1959, had the idea to implement a distributed network with redundant
connections in order to provide alternative routes through the network in case
of node failures due to a nuclear war. Furthermore, he proposed to split data
in small “message blocks” and to forward them independently through the
network. Each node in the network should have a routing table and use a
decentralized “hot potato routing” algorithm. The idea was inspired by the
human brain, which can survive local defects. While the military liked his ideas
and Baran was able to convince his colleagues in RAND Corporation, he did not
succeed in convincing AT&T, which should build the system. The approach was
too different from the circuit switched networks classical telecommunication
companies used. In 1965, after five years, the project was stopped.

In spring 1966, Donald Watts Davies, physicist at the British National Physical
Laboratory (NPL), gave a presentation with his ideas for a new public com-
munication network more suitable for the bursty characteristics of computer
generated traffic. His idea of splitting up data into smaller “packets”, which are
handled independently by the network, matches the one proposed by Baran
very closely. Davies idea was born from his work with time-sharing systems in
1965.

In 1958 the Advanced Research Projects Agency (ARPA) was founded by Presi-
dent Eisenhower as reaction to the Sputnik shock. By taking over the research
funding from multiple military organizations, ARPA had the task to ensure
that the USA will win the scientific race against the USSR. In 1962, Joseph Carl

21

2. Background

Robnett Licklider took over the “command and control division” of ARPA.
Licklider was focusing on time-sharing and interactive systems and shifted the
focus of the division to research in time-sharing systems, computer graphics
and computer languages. Thus, the name of his division was changed to
Information Processing Techniques Office (IPTO). In 1964, Licklider left ARPA
and his colleague Ivan Sutherland took over. In 1965, Sutherland hired Bob
Taylor. Taylor was influenced by Lickliders work on psychoacoustics and had
changed over to computing. In 1966, Taylor took over IPTO from Sutherland
and approached the “terminal problem”. Each contractor of his office requested
money for its own computer in order to conduct time-sharing experiments.
Moreover, the computers were so different that the exchange of results between
universities and different computers was very costly if possible at all. Taylor
proposed to link the computers and form a network. Instead of buying new
computers for each research project, the researcher should use the network in
order to access a suitable one. He saw the resource-sharing network as a tool
for reducing costs of research projects and to overcome the incompatibility of
hardware from different vendors. Taylor convinced Larry Roberts, who had
prior experience in linking two computers, to act as project officer. Performance
(below 500ms response time) and reliability were the primary goals for the
network. However, ARPAs contractors were unwilling to burden their com-
puters with the extra load of doing networking. Thus, one of the contractors,
Wes Clark, came up with the idea of having small, interconnected specialized
computers for the network. The computers of the sites should be attached to
the network via these small computers. In the end of 1967, Roberts published
an article about this idea in ACM SIGOPS Symposium on Operation System
Principles and called such a small computer Interface Message Processor (IMP).
At the same conference, a paper from Davies team at NPL described Davies
idea and the small scale prototype for the NPL campus with a reference to the
work of Baran. Roberts planned to build an equivalent system called ARPANET
for the US. In December 1968, the consulting company BBN got the contract to
build the IMPs. A group led by Frank Heart, which included Bob Kahn and
others, designed the store-and-forward IMPs with a special focus on reliability.
In particular, the IMPs performed packet retransmission to deal with bit errors
due to the faulty telecommunication lines of these days. In December 1969, an
experimental network with four nodes was operational. Afterwards, the IMPs
were installed at a rate of one per month and the network grew rapidly.

Len Kleinrock at UCLA, a queuing system expert, got the contract for the
Network Measurement Center. Kleinrock was leading a group of students
including Vint Cerf, Steve Crocker, and Jon Postel.

At the same time, Roberts selected four universities, whose mainframes
should be connected to the network at first. Each of these four universities
had the task of implementing the connection between their computers and the
IMP of their site. The university teams started in summer 1968 to design the

22

2.2. Layer models

“host-to-host” protocol. They called themselves the Network Working Group
(NWG). In April 1969, the first note of their meetings, the Request for Comments
(RFC) number 1, was written by Steve Crocker. The protocol development took
more time than the IMP development and in summer 1970, the Network Control
Protocol (NCP) was finished. Till July 1972, the Telnet and the File Transfer
Protocol were designed.

The first big official demonstration of the ARPA network took place at the
first International Conference on Computer Communication (ICCC) in October
1972. It consisted of various demos showing the access to resources via the
ARPANET.

In parallel to the ARPANET, several other packet networks had been estab-
lished. For example, a radio network demonstrated the wireless transmission
of packets between islands in Hawaii. During the year 1973, Cerf and Kahn
developed a protocol, which enables the exchange of packets between these
networks. The solution consists of gateways between these different networks
and a Transmission Control Protocol (TCP) for the host-to-host communication. In
contrast to NCP used before, TCP assumed an unreliable network. This design
choice was inspired by Louis Pouzin. Pouzin, responsible for the CYCLADES
network at IRIA in France, stated that such “datagram” networks could operate
without connections and that the function of recovering from packet loss or bit
errors could be moved from the IMPs to the hosts [Pou74b]. TCP was demon-
strated in October 1977 with the concatenation of three different networks.
During 1978, TCP was split in one part required by gateways for relaying
packets and another part responsible for dealing with errors and loss. The
former was called Internet Protocol (IP). This split was inspired by the PARC
Universal Packet (PUP), which had been developed by the Xerox Corporation.
On January 1st in 1983, the ARPANET made its transition to TCP/IP.

Over the years, incremental changes had been added to the Internet in order
to solve upcoming problems. Around 1980, updating the “host file” containing
the mapping from names to IP addresses on each end system got too slow
for the growth of the Internet. This problem was solved with introducing the
Domain Name System (DNS). Starting from October 1986, the Internet faced
severe congestion collapses. Jacobsons [Jac88] proposed to include a congestion-
avoidance scheme in TCP. [Day08a]

Some more details about this “a history of change” is given in [Han06].
In 1974, a National Science Foundation (NSF) advisory board stated the

enormous importance of the network for science in general and not only for
computer science. However, access to the ARPANET was very expensive and
not affordable by all universities. In 1979/80, a proposal for a Computer
Science Network (CSNET) was developed, which should link computer science
researchers in academia and industry. After the five year project duration,
nearly all computer science departments in the US were connected. This
success enabled the creation of an NSFNET backbone in 1985. It connected

23

2. Background

regional networks and was open for all academic institutions. Similar efforts
were launched in other countries all over the world.

By the end of the 1980th, the NSFNET outperformed the ARPANET in terms
of performance and number of users. Thus, ARPA decided to shut down the
ARPANET by transferring the nodes to other networks (e.g. the NSFNET). The
transition ended in 1989.

At the beginning 1990th, the shortage of IPv4 addresses and growing routing
table sizes became a mayor concern and the “IP Next Generation” (IPng)
activities were launched [BM95]. After rejecting to build upon the OSI protocol
CLNP in 1992, new network protocols were designed. The IPng working group
considered the Common Architecture for Next Generation Internet Protocol
(CATNIP), TCP and UDP with Bigger Addresses (TUBA), and Simple Internet
Protocol Plus (SIPP) proposals. Finally, the work on a successor for IP targeted
on expanded addressing capabilities, header format simplification, improved
support for extensions and options, flow labeling capability, and authentication
and privacy capabilities. A first draft of IPv6 was published in 1995 [DH95]
and was finalized in 1998 [DH98].

2.2.2.2. Model

Many network researchers believe that there is “no architecture, but only a
tradition” [Car96] for IP. This is supported by the time difference between the
design decisions and publications describing them. Important design papers
had been published by Leiner et al. [LCPM85] in 1985 and by Clark [Cla88] in
1988 from a backward perspective. They describe the design of a connectionless
inter-network service with a special focus on reliability. Reliability is ensured
by a network specialized on routing without connection states. Simplicity and
the “empowerment” of the end hosts are important. Less important are security
and accounting considerations.

One of the most important design foundations of IP is provided by the end-
to-end argument. The end-to-end argument suggests that if a function “can
completely and correctly be implemented only with the knowledge and help of
the application standing at the endpoints of the communication system”, it has
to be implemented at the endpoints. In such a case, it is not “a feature of the
communication system itself” [SRC84]. RFC 3724 [KAI04] describes the various
versions of the end-to-end principles in their historical order. One consequence
of the argument is that states and functions required to implement a loss- and
error-free connection are moved from relay to end systems.

RFC 1122 [Bra89] served as guideline for implementing IP. It defines four
layers, which are also used by Tanenbaum [TW11] to describe the structure of
an IP stack. The layers follow closely the OSI layers 2 to 4 and 7:

• The link layer includes anything below IP. It includes the host to network

24

2.2. Layer models

protocols. However, it is more an interface than a protocol.

• The internet layer corresponds to the OSI network layer in connectionless
mode. Its protocol is IP.

• The transport layer provides end-to-end communication services and
matches the OSI transport layer. TCP and UDP are its protocols.

• The application layer includes anything above IP.

Starting from 2001, the IP stack was compared with an “hourglass” with IP
at its waist [Dee01]. Evolution models inspired by biology try to explain this
shape and to derive design hints for Future Internets (cp. EvoArch project
[AD11] and references within). However, such models are criticized for being
over-simplistic and for underestimating the control aspects [Agu08].

2.2.2.3. Problems

In contrast to the OSI model, the model explaining the design of IP had been
developed after the protocols. It is very much tailored to the IP world and not
useful for explaining networking in general. Tanenbaum states that in contrast
to OSI “the TCP/IP model is not at all general and is poorly suited to describe
any protocol stack other than TCP/IP” [TW11, p. 75].

Along the same lines, Day argues that IP is a reference model for subnetworks
and not for inter-networks. IP misses a layer for the inter-network and uses
addresses naming subnetwork point of attachments. [Day11]

IP addresses name the point of attachment of a node to a subnetwork. If a
system has two points of attachments, it gets two IP addresses, which might
be completely different. In particular, the network prefix might be different if
a system is attached to the Internet via two different ISPs. Such multihoming
scenarios lead to large RIB. [BGT04]

Names for nodes are missing. Compared with the theoretical solution
proposed by Saltzer [Sal82], node names are required to keep them constant
if the point of attachment changes. Practically, the lack of node addresses
hampers IP in mobile scenarios, in which a mobile node changes its points of
attachment and, thus, has to change its IP address. [Day08a]

IP addresses are visible to applications. The mapping from DNS names
to IP addresses was introduced late (cp. Section 2.2.2.1) and was optional
to applications. Moreover, the applications had to use interfaces requiring
the application to know the IP address of the communication partner. The
transition from IPv4 to IPv6 showed the problems of this missing abstraction.

The architecture of IP assigns all communication related functions to end
systems. Relay systems are dedicated to routing, only. However, a lot of
“middle boxes” have been introduced to the Internet. Firewalls are used to

25

2. Background

restrict the openness of the Internet and to block undesired or malicious traffic.
Multicast requires group management in the network to perform efficiently.
Anchor systems provide mobility support for IP. Finally, Network Address
Translation (NAT) introduces gateways to extend the IP address space. This
functionality in the network is not supported by IP and leads to management
and connectivity problems and undesired feature interactions.

In [Han06], Handley notes that the Internet seems to fail to adapt to new
challenges since 1993 and he fears that it might stagnate in the future.

Although the original design of IP favors simplicity, Perlman argues that
today’s IP implementations are larger and less reliable than these of ISDN
[Per01].

2.2.3. Mixed versions
Due to the limitations of the two reference models, several text book authors
introduce alternative reference models. A five layer model is described by
Tanenbaum [TW11] and Stallings [Sta93]. This model is a “typical network
architecture of the early 1970s” [Day08a]. The model consists of the following
five layers:

• Physical layer

• Data link layer

• Network layer

• Transport layer

• Application layer

Compared to the OSI model, the session and presentations layer are omitted.
However, the layers themselves follow closely the layer definition of the OSI
model.

2.2.4. Recursive layers
2.2.4.1. History

At the beginning of the 2000th, the Internet with its IPv4 protocol had evolved
to the most important and critical communication infrastructure for economy,
science, and private life. The dramatic growth had broadened the diversity
of the Internet users. From a pure research network in the early phases, the
Internet had reached the public and nearly everybody’s life in the industrial
countries. This broad user base comes along with a broad variety of applica-
tions and business models. These business models have very heterogeneous

26

2.2. Layer models

requirements on the network. However, the best-effort and open Internet
showed several limitations in terms of performance, reliability, security, and
privacy. Moreover, the addressing problem – even though IPv6 was long
standardized – has been still an open issue due to a very limited deployment
of IPv6. This slow convergence from IPv4 to v6 raised questions about the
flexibility and evolvability of the Internet. The public pressure caused so-called
“Future Internet” research activities in nearly all aspects of the Internet. The US
(GENI and FIND), the EU (within its Framework Program 7), and others set
up large funding agendas to support and speed-up these research activities.
Obviously the first Internet had opened new markets and nobody wanted to
miss the opportunities a second new Internet might open.

In this wave of research activities, the reference model for networking got
new attention. Multiple “clean-slate” projects invented new ways of networking
and ways of structuring the network stack. Starting from 20062, the Recursive
Network Architecture (RNA) project led by Joseph Touch proposed a single
“metaprotocol”, which recurses in an unbound number of layers. The flexibility
of such a recursive layer was inspired by modular protocol systems and config-
urable protocols. Such an approach moves away from the static layer setup of
the OSI or IP reference models and focuses on a single layer, which is repeated
as often as required.

John Day, who was unsatisfied by the outcome of the first revision of the OSI
model (cp. Section 2.2.1.1) in 1994, started to work on “patterns”, which should
lead to “major simplifications in our understanding of protocol architecture”
[Day95]. In 2008, he published papers and a book [Day08a] about his results.
Related documents are collected on the community webpage of the “Pouzin
Society” [Pou]. His book proposes a recursive layer model and outlines the
reference architecture of such a recursive layer. The model is called “Network
IPC model”. Instead of defining layers based on functionality, they are defined
via their scope. In newer presentations and on webpages [RIN] the name
Recursive INternet Architecture (RINA) is used.

In 2011, a joint work of Touch’s group, Abraham Matta – who worked
with John Day – and others proposed the Dynamic Recursive Unified Internet
Design (DRUID) [TBD+11]. It uses a single recursive block in combination with
translation tables and persistent states to create a network. However, the project
was not funded by the NSF.3

With begin of 20134, the EU project Investigating RINA as an Alternative
to TCP/IP (IRATI) [IRA] started to work on a specification for RINA and to
validate it with implementations.

2 http://www.nsf.gov/awardsearch/showAward.do?AwardNumber=0626788
3According to John Day [private conversation]
4 http://cordis.europa.eu/projects/index.cfm?fuseaction=app.details&REF=106030

27

2. Background

2.2.4.2. Model

Currently, there is no official standard for networks with recursive layers. In the
following, the Network IPC model is summarized, which has been proposed
by John Day [Day08a]. From my point of view, it is closer to a new standard
model than any other proposal for recursive layering.

Layers in the recursive model are not structured according to functionality
as in the OSI model but to their scope. Each layer in the model provides the
same functionality such as addressing, routing, relaying, resource management
and error and flow control. The functionality comprises roughly the functions
known from layer 3 and 4 of the OSI model. Each layer implements these
functions for a different scope. For example, there might be four layers:

• Broadcast scope: The lowest layer handles the functions for a single link
or broadcast domain.

• Subnetwork scope: The next layer is responsible for transmitting data
through a subnetwork of an operator by using a variety of lower layers
with broadcast scope.

• Inter-network scope: The next higher layer connects the subnetworks to
one big inter-network.

• Virtual-private network scope: The last layer shrinks the scope to a private
network that is built on top of the inter-network scope. The layer may
restrict the access to some trusted entities.

There might be more or less layers if required by a network setup. The number
of layers is not predefined as in the OSI or IP model.

Day calls a layer a Distributed IPC Facility to mark the difference to layers
in the OSI/IP context. For example, the layer for the virtual-private network
scope may also use layers with subnetwork scope as (N-1)-layers [Day08a]. I
prefer the term layer to avoid the introduction of too many terms.

Due to the recursive nature, each layer provides the same interface to its
higher layers. Such an interface has to encapsulate the layer efficiently in order
to enable the different implementations of a layer. In particular, the addresses
have to be internal to a layer. They must not be revealed to other layers. Only
names are exchanged at the interface. Consequently, a layer is free to choose its
mapping from higher layer names to its internal addresses and to choose the
name space of its addresses. Furthermore, the interface hides the details of how
requirements are satisfied. A higher layer is not able to choose the methods
used to ensure, for example, reliability directly. It specifies its requirements,
like lossless, and the layer itself has to decide how to achieve them. In terms of
the other reference models, the transport protocol used for connections should
be hidden.

28

2.2. Layer models

PDU
protection

SAP

SDU
delimiting

Data transfer Data transfer
control

Management

R
eso

u
rce

in
fo

rm
atio

n

b
ase

Relaying and
multiplexing

Error and
flow control

States

Enrollment

Security
management

Resource
allocation

Routing

Resource
inform.

exchange

Address
assignment

Figure 2.3.: Architecture of a single recursive layer (based on Figure 6-16 in
[Day08a] and on the list of “The IPC Management Task[s]” [Day08a,
p. 260ff])

The architecture of a single recursive layer is shown in Figure 2.3. It contains
three parts that are loosely coupled via state vectors or information bases.

• Data transfer is responsible for relaying packets and handling buffers
and queues. It takes over all tightly coupled mechanisms for transferring
packets.

– SDU delimiting function splits SDU into PDUs, which can be de-
livered by the layer. At the destination the SDUs are reassembled
again.

– Error and flow control is split in two parts. The data transfer part
contains the tightly coupled mechanisms and uses only a basic set
of PCI such as port identifiers, message identifiers, and checksums.

– Relaying and multiplexing task relays PDUs between not directly
connected entities of a layer.

– PDU protection function is responsible for calculating checksums
and encryption functions.

• Data transfer control contains loosely coupled mechanisms required to
fulfill the requirements for packet delivery. Its main task is to create,
configure and release the connections required for the data transfer part.

– The data transfer control part of the error and flow control contains
the loosely coupled mechanisms for the initial state synchronization.

29

2. Background

Its states are shared with the data transfer part.

• Management includes all mechanisms required to maintain a layer. Some
of its functions are listed in the following:

– Enrollment creates enough shared state between entities of a layer
that connection can be established. It contains the mechanisms
necessary for an entity to join an existing layer and to share states
such as timeout ranges and policies.

– Address assignment (“directory”) provides and sets up mapping
information from names to addresses.

– Security management includes authentication, protection against
malicious lower layers and access control of higher layers.

– Resource allocation reserves resources required to fulfill the require-
ments of connections.

– Routing is responsible to extract forwarding tables for the relaying
from the resource information base. For different QoS requirements
of connections, routing has to support different optimization metrics.

A layer comprises several protocols to implement its service. In the following,
these types of protocols are summarized. Each type is explained in Section
2.4.5 in more detail with some example protocols from today’s networks.

• An Error and Flow Control Protocol (EFCP) implements reliability, order,
and flow control. The protocol is used for maintaining shared state
between two EFCP protocol peers. The amount of shared state depends
on the requirements for the connections and ranges from a low amount of
shared state comparable to UDP to much more shared state comparable
to TCP. The protocol is split in a data transfer PDU and a control protocol5

for the loosely coupled ones.

• An access protocol6 is used to query the contact information about an
application process. This includes, e.g., its address and requirements. Fur-
thermore, the protocol is used to figure out if the requesting application
is allowed to contact the application process.

• A Resource Information Exchange Protocol (RIEP) is used to exchange infor-
mation between entities of a layer. The information comprises connectivity
information required for routing, mapping information, and information
about available resources on nodes and links. This protocol is used to
update the resource information base.

5 Originally named “IPC Control Protocol” in [Day08a]
6Originally named “IPC Access protocol” in [Day08a]. However, I omit the “IPC” in order to

align the name with the names of the other types.

30

2.2. Layer models

The relaying and multiplexing task requires some relaying PCI attached to
EFCP PDUs in order to implement packet forwarding. “The PCI contains the
source and destination addresses” [Day08a, p. 255]. It is required for networks
not fully meshed.

RINA assumes that all layers use the same protocols. However, the ways they
are used differ according to the scope and the conditions of a layer. [TGD+11]

A layer operates with six different identifiers [Day08a, p. 271f]. The three
internal ones are:

• A port identifier is internal to the system an entity is located at. It is
used by the (N)-layer and the (N+1)-layer to refer to a communication
sequence.

• Addresses are used for internal layer operations such as routing and
management.

• A connection identifier is used by the EFCP to distinguish between
multiple connections. It may be created by the concatenation of source
and destination port identifiers.

For the relaying of PDUs between entities of a layer, each layer operates over a
graph representing the connectivity between its entities. Entities are nodes in
the graph and connections between two entities via (N-1)-layers are represented
by links. The latter are established in the enrollment of the management. In
the enrollment, an entity joins an existing layer by establishing connections to
other (N)-entities via (N-1)-layers. Therefore, the entity has to know the name
under that the other entities are known at the (N-1)-layers. This name is called
a distributed application name. This name is defined as “anycast or multicast
name” [Day08a, p. 246] or only as “multicast-application-name” [Day08a, p.
247].

Multihoming is modeled by having connections to other entities of the
(N)-layer via more than one (N-1)-layer. Mobility is dynamic multihoming.

2.2.4.3. Problems

There is no standardized recursive layer reference model. The model outlined
before is a proposal of a single author and not as mature as the other older
models. Furthermore, no larger network designed in a recursive way exists.
Thus, there is little experience with such models in comparison to the others.

Even though the model opens new perspectives and provides guidance for
the design of protocols and networks, some issues require further analysis.
Especially the role of QoS and its relation to the protocol types is not de-
scribed in detail. On the one hand, the analysis of the general problem of
communicating systems indicates that QoS information is transported with

31

2. Background

access protocols in order to determine “whether the communication can be
established” [Day08a, p. 204]. On the other hand, the description of the model
does not confirm that. It states that “when an [access protocol] request returns
successfully, [. . .] management must determine whether and how to allocate
the flow/connection to a new or existing flow” [Day08a, p. 261]. An access
protocol “is required to carry [. . .] names to the remote” peer [Day08a, p. 257]
in a “simple request/response” [Day08a, p. 201] fashion. Relay systems are
required to deliver an access protocol message [Day08a, p. 269f] but seems not
to be involved in setting up QoS.

The model leaves open algorithmic questions. In particular, John Day raises
the question of how to make addresses topological.

2.3. Protocols
As pointed out in Section 2.2.4.2, a recursive layer requires a set of protocols
in order to implement its service. In the following, some existing protocols
are classified according to the protocol categories required for recursive layers.
All protocols of a category serve the same purpose. Therefore, the similarities
between the protocols are dominant. The differences due to the different
scopes, for which the protocols had been designed, are highlighted. This way
of presenting protocols should highlight the building block character of the
protocols. Some of these protocols are useful for the creation of a new recursive
layer. The others are required later on to justify different design decisions.

This section is more concerned about putting protocols in the context of
recursive layers according to Day [Day08a] and not too much about describing
each protocol in detail. For details about individual protocols, the reader is
referred to the references given in the text.

In addition to the protocols, the common relaying PCI is outlined in more
details since it is a mayor building block for the solution developed later on.

2.3.1. Relaying protocol control information
If not all nodes in a network are fully meshed, the relaying and multiplexing
task has to relay packets between nodes and to multiplex them on (N-1)-
connections. It requires relaying PCI attached to each packet. This common
part of the protocol control information is used to forward the packet through
intermediate nodes to its destination. [Day08a, p. 215]

The network protocols of the other reference models provide examples for
such relaying PCI with various formats. The diversity of existing relaying
PCI formats contradicts the definition that only addresses are stored in the
relaying PCI (cp. Section 2.2.4.2). I introduce a classification of relaying PCI
formats according to two different criteria, criteria structuring the long list of

32

2.3. Protocols

QoS
External Orthogonal

R
el

ay
External Circuit switched netw.

GMPLS
SDH

Destination-
based

DDP
Ethernet
IPX
PUP

CLNP (opt.)
Ethernet+802.1Q
IP (TOS / traffic class)
PFRI (knobs & dials)
SIPP (prio. bits)

Route-based Frame Relay
MPLS
OvIP
PARIS
[Pathlet]
SIRPENT (Viper)
[X.25]

ATM (cong. bit)
PARIS (Prio. bits)

Hybrid PIP

Table 2.1.: Classification of relaying PCI formats according to their fields

developed relaying PCI formats. First, the formats are classified according to
their encoding of the relaying direction into external, destination-based, route-
based, and hybrid formats. The encoding strongly influences the data structure
and size of the required FIB. Second, the formats are classified according to
their ability to specify QoS-related parameters into external and orthogonal. In
the following, the classification is presented in more detail. The details of the
classified protocol headers are shown in Appendix A. Table 2.1 summarizes
the classification.

2.3.1.1. External

The first class of formats stores the information about how to relay a packet not
within the packet but external to it on systems. The FIB of systems contains
a description of some kind of incoming channel and an indication to which
outgoing channel the packets have to be relayed to. The packet itself does not
influence the decision.

For example, optical networks using Generalized Multi-Protocol Label Switching
(GMPLS) can define a “channel” based on the wave length. All packets received
via such a channel are relayed to a specific outgoing interface and an outgoing
wave length. Other systems can use time-division multiplexing for defining

33

2. Background

such channels.
External relaying PCI is especially useful for transmitting packets without

additional overhead caused by headers. Therefore, such a format is preferred
by telecommunication backbones such as the Synchronous Digital Hierarchy
(SDH), which have to transport comparatively small packets with a short delay.
In most cases, the channels and the rules for the FIB are rather static. Since
packets are not evaluated by relay systems, most networks based on external
relaying PCI formats require an out-of-band signaling.

2.3.1.2. Destination-based

Destination-based relaying PCI formats transport destination names, which are
used as input for forwarding decisions. For each destination, the FIB contains
the direction where to forward the packet to.

The most prominent example is the Internet Protocol (IP) [Pos81, DH98]. A
relay system has to forward packets according to the destination IP address
stored in each packet. For each IP address, the FIB contains the outgoing port
and IP address of the next hop, to which the packet has to be forwarded to. In
order to reduce the size of the FIB, IP addresses having the same next hop are
aggregated according to their prefixes. If, for example, all IP addresses with
the prefix 141.24/16 share the same next hop, the FIB contains only one entry
with this prefix. The entry with the longest prefix, which matches a destination
IP address, specifies the next hop for a packet. Consequently, the better the
aggregation of IP addresses to prefixes the smaller the FIB.

Further examples are Datagram Delivery Protocol (DDP) [App94], Internetwork
Packet eXchange (IPX) [FLSS99], PARC Universal Protocol (PUP) [BSTM80], Simple
Internet Protocol Plus (SIPP) [Hin94], CLNP [Int86], and Ethernet [IEE08]. They
differ in the size of the destination name. If the name is assigned dynamically,
its size is directly related to the scope of a protocol. The bigger the scope
the longer the name must be. If names are assigned statically, such as MAC
addresses, they do not depend on the scope of an Ethernet network but on the
amount of produced hardware elements.

The semantic of the destination name differs. An IP address names a network
interface (a subnetwork point of attachment). In contrast, a CLNP address
names a node.

The Postmodern Forwarding and Routing Infrastructure (PFRI) [BCG+06] uses
a list of addresses, which name the links, a packet should travel through.
Comparable to the loose source-route of IP, the list might only be a partial
one. Since the link addresses are globally valid and a relay system requires a
mapping from destination link address to “next hop” link address (at least for
large networks, which use aggregation) the protocol is classified as destination-
based.

34

2.3. Protocols

2.3.1.3. Route-based

Route-based relaying PCI formats specify the next hop without the indirection
of destination addresses. A packet contains a name (in most cases a label) that
refers to a local rule specifying how to handle the packet. This name is only
valid locally and must be inserted in the packet before it reaches a relay system
requiring the name. In an extreme case, all names required during forwarding
are inserted at the source of a packet. This stack of names is called an explicit
route. In the extreme case mentioned before, it is a source-route.

The size of a single entry in a route is rather small compared to the names
included in destination-based relaying PCI. A single entry is only valid locally
and, thus, its size has to reflect the number of “outgoing ports” or number of
“context information” of a relay system.

A prominent example is MPLS [RTF+01], which is doing forwarding based
on labels for outgoing paths. Each packet contains a label, which refers to an
entry in the local FIB of a relay system. For each label the FIB contains the next
hop information. Since the labels are only valid locally, each hop replaces the
label of an incoming packet with a new label, which is valid for the FIB of the
next relay system. Additionally, labels can be stacked to reduce the number of
labels maintained in the system. The topmost label of the route is treated as
described before. A FIB entry can specify the removal of the topmost one or to
add more labels.

Other protocols focus more on the route itself and do not replace the topmost
label for the next hop. They use the topmost label for querying the FIB entry
and remove it from the route afterwards. Each label in a route used by such
protocols refers to one forwarding decision. In particular, some use indices of
local FIB entries as labels. In the following, such routes are called index-based
routes. Examples for protocols using such routes are Asynchronous Transfer
Mode (ATM) [MP02], PARIS [CG88] and Pathlet [GGSS09]. Although the Pathlet
routing proposal does not specify a relaying PCI format directly, the authors
describe a protocol using a stack of “forwarding identifiers”, which are valid
only locally. Examples using not only indices but more information per hop
are Sirpent [Che89] and Overpass IP (OvIP) [FRM97]. Some (esp. the older)
approaches are more related to subnetworks. Pathlet - the newest one - deals
specifically with policy issues in inter-network routing.

X.25 is a network access protocol and not used for relaying in a network.
However, it uses locally valid labels to differentiate between connections.

2.3.1.4. Hybrid

Hybrid relaying PCI formats combine destination-based and route-based as-
pects. Thus, they can define the path for a packet based on destination names
(e.g. names of relay systems) and explicit routes (e.g. stacks of indices).

35

2. Background

The P Internet Protocol (PIP) [Tsu92] introduces a variable length header field,
which contains a list of “routing hints”. Each hint encodes some piece of
information required by a relay system to make a relay decision. The proposal
mainly encodes each part of a hierarchical address as one hint. Each relay
system uses the hint for the current hierarchy level as index for its FIB. That
usage pattern would suggest a classification as route-based. However, a hint
might be a destination address, which requires a level of indirection as for
destination-based relaying PCI formats. Therefore, the protocol is supporting
both and is classified as a hybrid protocol.

2.3.1.5. QoS support

Some relaying PCI formats do not support the storage of QoS-related infor-
mation. If QoS should be supported, the information is either integrated it in
the relaying direction or provided external to a packet. Relaying PCI formats
supporting the storage of QoS information in a packet provide a dedicated
field for them. The QoS information can be set orthogonal to the direction
information.

For example, IP specifies the non-functional aspects of each packet in the
Type of Service (TOS) field (IPv4) or traffic class field (IPv6). The fields are
orthogonal to the destination specification.

Ethernet, DDP, PUP or IPX do not support QoS directly and rely on context
information located on relay systems. In order to enable a differentiation of
multiple connections between two end systems such protocols often include
socket numbers. A combination of source and destination addresses and port
numbers acts as connection identifier. Examples are PUP and IPX. If socket
numbers are known by the relaying system, they can be additionally used for
error messages (e.g. for MTU errors or congestion notifications). Ethernet and
DDP are examples without socket numbers.

Packets with orthogonal QoS PCI fields can be subject to additional QoS
information on relay systems. However, the connection identification might
require a more or less deep packet inspection. For example, the connection
identification for IPv4 requires more information than provided by the IPv4
header (e.g. port numbers of the transport protocol). IPv6 and SIPP are counter
examples, which provide header fields for both, connection identification and
QoS aspects. The connection identification is done via a combination of names
and a single flow label instead of socket numbers.

In general, QoS or other application requirement aspects are not discussed in
detail for protocols with index-based routes. Obviously, parallel edges between
two hosts with different indices can be used to represent (virtual) links with
different QoS attributes. Thus, most route-based relaying PCI formats rely on
QoS context information on relay systems. Their routes link a packet to some
local information on relay systems, which specifies the direction as well as the

36

2.3. Protocols

non-functional aspects. Exceptions are ATM and PARIS, which provides short
priority fields that are used in case of congestion, and hybrid protocols such
as PIP. MPLS might be also an exception, if the experimental bits are used as
“TOS field” analog to IP.

PIP is specifying QoS indirectly via a “logical router” field. The field selects
the role of a relay system. Such a role might include non-functional aspects and
leads to different FIB entries for the same hint. The examples in [Tsu92] use 1
bit of the logical router field for QoS. Thus, the QoS information is integrated
in the direction decision.

2.3.2. Error and flow control protocols
As the name suggests, an error and flow control protocol handles lost packets or bit
errors that occurs during transmission. If requested and if necessary, it might
reorder received packets. Furthermore, it controls the data rate of connections
in order to avoid congestions in the network and to protect slow receivers from
being overloaded by fast senders. Furthermore, the protocol has to delimit the
SDUs received from the higher layer. If a SDU is larger than the maximum
PDU supported, the SDU has to be split up. Multiple small SDU for the same
destination might be concatenated. The question of whether the original SDU
has to be re-assembled at the receiver depends on the higher layer. For higher
layers doing streaming it might be unnecessary. For datagram-oriented higher
layers it is required [Day08a, p. 253ff].

An EFCP uses one data transfer PDU for the tightly coupled mechanisms
and a control protocol7 for the loosely coupled ones.

The most prominent EFCPs for multi-hop scenarios are TCP and UDP. TP4
is an OSI transport protocol. In the scope of a broadcast domain LLC can be
used. However, newer protocols such as Xpress Transfer Protocol (XTP) [SDW92]
separate the protocol from configuration and are capable of handling the whole
configuration space.

2.3.3. Access protocols
In [Day08a], these protocols are named “IPC Access Protocols”. However, I
omit the “IPC” to align the name with the names of the other protocol classes8.

Access protocols are used to find a higher layer entity and request permission
to setup a connection from it [Day08a, p. 201]. Additional, they signal which
instances of the EFCP transmit data for a connection [Day08a, p. 207]. It
transports the source and destination application names, access control and
capability information, QoS requirements, and identifier for the EFCP peers

7 Named “IPC Control Protocol” in [Day08a]
8The abbreviation AP is not used in this book.

37

2. Background

(“port-ids”) used for the connection (Figure 6-6, page 207, and page 269 in
[Day08a]). They decouple higher layer request from the EFCP actions by taking
over the following tasks (quotations from [Day08a, p. 257]):

1. “Finding the address of the destination” layer instance, which hosts the
destination higher layer entity.

2. “Determining whether the requested [higher layer entity] is actually at
that destination and the requesting [higher layer entity] has permission
to access” it.

3. “Carrying information to the destination [layer instance] on the policies to
be used for the requested communication and returning the destination’s
response to the source”.

The information in the resource information base guides the search of an access
protocol for the location (meaning: address) of a higher layer entity. In contrast
to today, the protocol verifies the information by sending a signaling message to
the layer instance of the destination. If the resource information base contains
no or wrong information (e.g. due to mobility), access protocol messages
spread out to determine the current destination. If the destination is found, it is
asked for permission to set up a connection. The decision is influenced by the
parameters transported by the access protocol mentioned before. If it is positive,
the management can bind the connection to the EFCP instances specified by
the access protocol. The management does not necessarily have to create new
EFCP instances. The access protocol can be used to assign an existing EFCP
“flow” to a new connection between higher layer entities. [Day08a, p. 257f]

In today’s Internet, parts of the access protocol functionality are integrated
in the control protocol of the EFCP. For example, the control protocol of
TCP includes the higher layer instance names in form of port numbers (e.g.
destination port 80 for the web server). This integration loses the flexibility
to reuse existing TCP “flows” for new connections. The localization of the
destination depends on the correctness of the resource information base. If the
higher layer name is mapped to a wrong IP address (and port number), no
connection can be established.

As stated in Section 2.2.4.3, it is not clear if the access protocols are responsi-
ble for signaling non-functional requirements of connections to relay systems
as well. If we assume that they are responsible, relay systems would have to
react on access protocol message passing through. Their management would
have to reserve resources in order to satisfy the non-functional requirements
of connections. Thus, typical resource reservation protocols such as RSVP
and Next Step in Signaling (NSIS) take over this task of the access protocols in
today’s networks.

38

2.4. Connections, states and quality of service

2.3.4. Resource information exchange protocols
Resource information exchange protocols are used to inform layer entities about
capabilities and states of remote entities. This information comprises connectiv-
ity between entities, current state and load of links, and mapping information.
[Day08a, p. 259]

Such protocols feed the resource information base, which is used to derive
routing and allocation decisions of an entity. Furthermore, the information base
acts as cache for all information required locally for operating an entity, such
as its name and policy. Due to the delay and cost of exchanging information
between instances, information bases reflect only a partial, potentially outdated
state of the remote entities. Decision algorithms have to take this unreliability
into account.

The BGP and the OSPF protocol are protocols for exchanging connectivity
information in today’s networks. The former had been designed for the scope
of inter-networks and the latter for the scope of subnetworks. Both can (be
extended to) carry load information.

Mapping information is typically exchanged with dedicated protocols. Exam-
ples are the DNS for the inter-network scope, Bonjour [App] for the subnetwork
scope, and the Address Resolution Protocol (ARP) for the broadcast scope.

Not all layers require a directory for the mapping. Peer-to-peer overlays, such
as Kademlia [MM02], derive the address by calculating a hash value directly
from the name.

The Dynamic Host Configuration Protocol (DHCP) is used to initialize important
information in the resource information base such as the name of the system,
DNS server names, and gateways in a subnetwork scope.

Management and load information are typically exchanged with the Simple
Network Management Protocol (SNMP).

2.4. Connections, states and quality of service
Packet switched networks split communication data in small fractions, called
packets. Furthermore, they do not provide exclusive physical connections
between end systems but multiplex packets from various communications on
physical connections. Such networks are especially useful for connections with
varying traffic characteristics, such as data bursts. By multiplexing packets of
different connections to the same physical network resources, the resources can
be used more efficiently compared to a circuit switched approach. According to
[Heap93], packet switched networks can be classified according to their setup
procedure:

• Datagram networks do not require any individual setup before a commu-
nication can start. The end systems of such connectionless networks can

39

2. Background

send their packets without any connection setup. The relay systems are
not aware of these packet sequences and their requirements. Examples
are IP and Ethernet networks.

• Logical/virtual circuit networks require a connection setup within the
network before a communication can start. Such connection-oriented net-
works inherit the possibility to control the non-functional aspects from
the circuit-switched networks by being aware of packet sequences. They
are useful for data exchanges requiring constant non-functional character-
istics such as a constant data rate. Examples are MPLS, ATM and Frame
Relay networks.

A comparison of datagram and virtual-circuit networks is also given in [TW11,
p. 379].

One of the most important problems discussed in networking history is
the synthesis of connection-oriented and connectionless networks. In more
general terms, Day states that the “primary distinction between connectionless
and connection transmission is the amount of shared state. Connectionless
transmission represents less shared state than connection mode. A connection
mode functionality can be built quite simply on a connectionless functionality
by adding mechanisms to the connectionless mechanisms. The converse is not
true.” [Day95]

Connections are often the entities that are subject for resource management.
Relay systems can control the non-functional characteristics of connections by
appropriate buffering, multiplexing, and scheduling their packets. The more
connection-oriented aspects a network supports, the more control does it have
over non-functional aspects. This benefit comes along with some disadvantages
causing scalability problems:

• Setup delay: Signaling messages have to be exchanged in order to set up
a connection. That introduces delay and induces processing load on relay
systems. The setup costs are especially problematic for short connections
with a very low amount of data.

• States: Relay systems have to store some states about connections in order
to manage their resources. These states require memory. The classification
states are particularly problematic because they influence the handling of
packets and, thus, have to be processed for each packet.

In the following, solutions with different amounts of shared state within
networks are presented. The description starts with solutions handling a small
amount of shared state and continues with solutions with more shared state.
Afterwards, the special aspects of inter-networks are outlined in Section 2.4.4.
The technical mechanisms influence the distribution of power between the

40

2.4. Connections, states and quality of service

market actors. The political dimension of QoS-provisioning is described in
Section 2.4.5.

2.4.1. Connectionless networks and overprovisioning
Pure connectionless networks do not support any non-functional guarantees
since they are not aware of connections and their requirements. Since the
connectionless relay service requires only the destination name for each packet,
destination-based relaying PCI formats are used.

Overprovisioned networks provide resources well beyond the resources re-
quired to satisfy connection requirements. They provide relaying characteristics
near the Nature of Service (NoS), which is defined by physics (e.g. speed of light).
Backbone networks of telecommunication providers tend to be overprovisioned
and operate at a maximum of 20 to 30% of its capacity.

A mathematical model for estimating the efficiency of overprovisioning
regarding its capability to handle variations of traffic is presented in [HG05].
The authors conclude that overprovisioning has advantages as long as router
capacity increases faster than the number of routers in a network grows.

2.4.2. Connectionless networks with quality of service add-ons
If the network resources are limited and significantly utilized, QoS mechanisms
become important. They can prevent overload situations or at least secure
important traffic from being affected by congestions. Thus, the higher the load
in a network tends to be, the higher the impact of QoS mechanisms. Examples
for networks with limited capacity are radio access networks and last miles to
customers of wired networks.

2.4.2.1. Type of connection

The scalability problems caused by the number of connections can be avoided
by introducing a limited set of service classes instead of connections. Each
relay system knows about the service classes and how to handle traffic for each
class. Since this set is limited, no scalability problem arises. A typical example
is to introduce a priority value for each class that defines which packets are
dropped in case of congestion. End systems classify their connections and store
the identifier of the service class in each packet of a connection. This scheme
cannot enforce QoS guaranties on a per-connection base. However, it enables a
differentiation between types of connections.

For IP networks, DiffServ [BBC+98] uses the header field “type of service”
(IPv4) or “class of service” (IPv6) to encode service classes in IP packets. Diff-
Serv is mainly used by subnetworks to provide better QoS for delay sensitive

41

2. Background

services such as voice and to limit the traffic of data rate-intense Peer-to-Peer
overlay networks.

For transit traffic or incoming traffic, the mapping to service classes is mainly
done by more or less deep packet inspection at the gateways of a subnetwork.
Comparable to the set of service classes, the set of rules for this mapping is
rather small. Thus, the amount of classification states is limited as well. Since
the DiffServ standard does not define a signaling protocol to create service
classes, the setup is mainly done manually. End systems are neither able to
influence the mapping nor are they informed if their connections are mapped
to some specific classes.

2.4.2.2. Packet states

Instead of encoding only the type of a connection in a packet, the entire
requirements of a connection can be stored within each packet. A relay system
decides about the relaying based on the connections, from which it has packets
in its buffer. Other connections that are routed through a relay system but do
not send packets are not known to a relay system and do not influence the
decision.

For subnetworks, Stoica proposes a stateless core network called Scalable
Core (SCORE) [SZ99] that is able to emulate an IntServ solution. Each packet
contains “dynamic packet states”, which tells the relay system about the QoS
requirements of the connection and of the consumed fraction of the individual
packet. In particular, packets transport three parameters for the scheduler
used by relay systems (Jitter-Virtual Clock) and one for admission control (cp.
Section 5.2 of [SZ99]).

2.4.2.3. Volatile connection

Connectionless networks can support QoS for selected connections. For these
connections, the problems mentioned on page 40 apply.

A difference between connection-oriented and connectionless networks with
a connection-oriented add-on is that the latter do not drop packets not related
to a connection but relay them with best-effort quality. This feature relaxes
the coupling between resource reservations and routing. The relaxed coupling
may cause more routing states on relay systems. Connectionless networks
with an add-on have to know the routing for established connections and,
additionally, the routing for all other destinations. Thus, the amount of routing
states is maximized. That is somehow contradicting the colloquial phrase
that connectionless networks are “dumb networks” since they minimize their
internal states. However, this minimization is only done for the states about
resource usage and not for routing. [Day08a]

42

2.4. Connections, states and quality of service

The most prominent example for IP networks is the IntServ model [BCS94]
with its signaling protocol RSVP [BZB+97]. Another signaling framework is
Next Step In Signaling (NSIS) [HKLdB05]. For RSVP, a combination of source
address, destination address, and protocol field of IPv4 serves as connection
identification, which is included in the classification states. Optionally, the port
numbers from the transport protocol can be added. If this is not possible, e.g.,
because the transport protocol is not known to relay systems, RSVP cannot
distinguish between multiple transport connections between two peers. IPv6
introduces a header field called “flow label”. In combination with the source
and destination IP addresses, it may be used to identify connections on IP level
without knowledge about the transport layer [RCCD04].

RSVP uses a soft-state approach. Soft-state indicatesthat the reservations on
relay systems are only valid for a limited time. In order to extend their duration,
a keep-alive signaling message has to be sent. This approach exploits the loose
coupling between the reservations and routing. If routing changes, packets are
relayed on the new path in a best-effort manner. The next keep-alive message
will try to create the reservations on the new path. The reservations on the old
path will expire after a while without an explicit release message. RSVP can
operate in partial deployment scenarios, where not all relay systems support
RSVP. However, the requirements of the connection can only be “fulfilled” if
the relay systems not supporting RSVP belong to an overprovisioned part of
the network.

The scalability problem regarding the number of connections can be ap-
proached by reducing the number of states via aggregation of connections.
[BIFD01, DF99]

Overlays can improve the QoS of the Internet as well. An example is the
overlay-based architecture for reducing packet loss OverQoS [SSBK03]. It uses
“controlled-loss virtual links” between the overlay nodes in order to provide
“statistical loss and bandwidth guarantees”. It uses a hybrid forward error
correction and automatic repeat request method to achieve loss rate limits.

2.4.3. Connection-oriented networks
Connection-oriented networks require a connection setup before data can be
exchanged. Such connections include not only the states on the end systems
but additional states on all relay systems. The exchange of signaling messages
is done either in-band or out-of-band. The former is implemented with spe-
cially marked packets and mainly used by approaches inspired by the Internet.
Approaches inspired by telecommunication networks prefer out-of-band sig-
naling (e.g. Signaling System No. 7) via special channels or even separate
infrastructure. Some approaches support both (e.g. frame relay).

In order to enable relay systems to identify the connection a packet belongs
to, a packet has to have some fields that can be used to identify a connection.

43

2. Background

It does not necessarily have to include the destination. Since destination names
are, in general, longer than connection names with a local scope, relaying PCI
formats of such networks tend to use short labels. Example protocols are listed
in the Section 2.3.1.3 about route-based relaying PCI formats.

2.4.4. Inter-network issues
The previous description focused on subnetworks. For inter-networks, the
situation is more complex since each subnetwork of an inter-network might
operate in a different mode9. OSI address this issue by introducing three
sublayers for the network layer. As pointed out in Section 2.2.1.3, the IP
model includes only a single subnetwork layer. Thus, the model does not
include inter-networks with different kinds of subnetworks. The solutions
of the Internet community to this problem are called “two tier approaches”.
Tier one represents the solution for each subnetwork while tier two handles
the inter-network aspects and concatenates the tier one solutions to end-to-
end connections. A survey about one and two tier solutions for QoS is given
in [VPMK04]. A typical solution consists of a connection-oriented add-on
on inter-network level and a connectionless network with service classes or
SCORE-like approaches on subnetwork level. This combination of IntServ
and DiffServ/SCORE has the advantage that connections are known to each
subnetwork and that each subnetwork can handle these connections with a
less state-intense approach internally. However, the scalability problems of the
connection-oriented part remain for the gateways of each subnetwork. They
have to map packets to connections and connections to the internal service
classes. Thus, they have to store at least a classification state for each connection.
In practice, the connection-oriented add-on for the inter-network part is omitted
due to interoperability, political, and business case reasons.

From a more general standpoint, an inter-network can either define mappings
between each adjacent subnetwork or define a single standard, which has to
be supported by all subnetworks (see Section 5.5.2 in [TW11]). For example,
the Internet defines the connectionless IP as the least common denominator
for data relaying between all its networks10. Such a common standard has the
advantage of a lower complexity and enables a subnetwork operator to define
the mapping from its subnetwork technique to the inter-network approach
independently from the techniques used by its neighbors.

However, the inter-network standard defines the least common denominator
of the subnetwork techniques. If a subnetwork is providing more features than
supported by the inter-network, these features might not be available for transit
connections or for connections with other subnetworks of the inter-network.

9 More differences between networks are listed in Figure 5-38 in [TW11].
10 Furthermore, supporting BGP is required to participate in routing.

44

2.4. Connections, states and quality of service

Since IP does not provide a standard notion for a connection, connection-
oriented networks are not able to map their connections natively to IP. Two
connection-oriented networks willing to communicate with each other have to
use the second method of how an inter-network can be implemented: They have
to define a mapping between their subnetwork techniques. As discussed before,
this can be done as add-on to the Internet. Other solutions use application
specific protocols, such as the Session Initiation Protocol (SIP), on top of IP.

2.4.5. Political aspects and network neutrality
Due to the enormous importance of large communication networks for busi-
ness and private life, its aspects are highly political. Thus, the socio-economic
aspects are important for the design of an inter-network. Due to the enormous
complexity of the topic, this section just gives a short introduction. The inter-
ested reader is referred to a more detailed analysis in [Zit08] and a survey in
[DSW09].

As networking history shows, the design of a communication network has
a strong impact on the distribution of power among the participants. An
“intelligent” connection-oriented network, which provides services for “dumb”
end systems, empowers the owner of the network. In contrast, a “dumb”
connectionless network reduces the dependency of the end system on the
network and, thus, reduces the influence of the network owner. In combination
with cheap equipment owned by private people, an “intelligent” end system
empowers private people. The last two decades with countless new services
showed the enormous innovation potential. However, the fast growth of the
Internet was enabled by the result of the previous innovation cycle. The
“intelligent” network, which started its revolution against the telegraph back in
1877 when the Bell Telephone Company had been founded, provided the links
for the “dumb” Internet. In summary, history shows that the empowerment of
people is an important factor for innovations. However, the network, which
interconnects them, is important as well. The key political question is how the
power should be distributed in a future inter-network.

Today’s discussion about network neutrality is about the distribution of power
in the communication market. Depending on the political decisions and the
technical capabilities the distribution is somewhere in between the two extremes
outlined before. In addition to the private people and the network operators,
companies, which provide their service via the Internet, appear as third fraction.
Companies such as Goolge and Amazon sell their services “over-the-top” of
the network operators, which provide just the “dumb” bit pipe.

Network neutrality is not a unified term and there are various definition used
in literature. A common one refers to the situation in a “two-sided market”,
where the operators are in between the companies and the private people
[ET12]. On the first side, operators sell Internet access to private people and

45

2. Background

companies. This side is present today and includes best-effort traffic. On the
second side, operators buy services or content from companies and sell it to
their customers (in particular private people). Thus, they bundle Internet access
with specific services and content. Such bundling is known from the telephone
market, where operators sell bit pipes in addition to their telephone service.
However, it is rather new in the computer business. Examples in Germany
are the bundling of Apples iPhone with a T-Mobile contract and Bundesliga
football live streaming with a Telekom DSL [Deu] contract. Further examples
are given in [Zit08].

Such a two-side market empowers the operators. They can bundle services
and content with their bit pipe in a unique way. If no other operator can offer
the same bundle, the bundling can be used to create monopolies. Moreover, it
might get very frustrating for users if they have to decide for one bundle out
of hundred different ones. The situation is in particularly critical since the bit
pipe might be used by similar competing services not included in a bundle. In
such cases, the services compete for the bit pipe. Since the bit pipe is under
the control of the operator, the operator might favor its own service. Even
more severe, the operator might forbid services, which are comparable to its
own services (like VoIP), or slow-down undesired services (like peer-to-peer
applications).

Consequently, the political questions are twofold. First, the politic has to
decide if a two-side market is allowed at all. If operators are allowed to bundle
services with Internet access, rules for such bundles are required to prevent
monopolies. Second, politics have to decide about the rules how to handle
competing services. This question seems to be the network neutrality question
in a narrower sense. The answers to this question depend on which kind of
neutrality is considered.

One definition of network neutrality refers to the content of packets. All
packets and, thus, all services should be treated equally. A best-effort network
seems to fit into this ideal, since it handles all packets equally without any
traffic engineering methods. In essence, this form of neutrality assumes that the
services are fair to each other. However, not even the UDP transport protocol
is fair to TCP. More information about fairness is given in [MW00] and the
references within. In a best-effort network a single user is able to balance
its services by switching them on or off or by applying traffic engineering
locally. Balancing the services of multiple users requires a fair distribution of
the data rate among users. That seems to be challenging without any traffic
engineering11. Thus, at least the last miles to customers with limited capacity
might require traffic engineering mechanisms. The politic would have to decide
about the rules for competing services in more detail.

11 It seems that traffic engineering – as many other technologies, too – can be used for useful and
dangerous things.

46

2.5. Dynamic protocol stacks

Another neutrality definition refers to the neutrality of offerings. According
to this definition, a network is neutral if it offers QoS to everyone without dis-
crimination [Cer06, CCR+09]. A proposal for a technical solution is presented
in [DWJ09]. The political questions for a neutral-offering network concentrate
on the price. For example, a free of charge best-effort access might be a suitable
political statement to connect the whole society to the Internet. As for the
prices for telephone calls or the SMS today, the politic – or an agent in form
of a regulator – would have to limit prices for connections with requirements.
Moreover, the regulator would have to control the fraction of capacity opera-
tors reserved for best-effort. Without such a reservation for best-effort traffic,
operators would be able reduce the quality of best-effort by using all their
capacity for high-price QoS connections. This reduction would “force” their
customers to use non-best-effort requirements, even though, the service does
not necessarily require it.

2.5. Dynamic protocol stacks
Traditionally, software engineers design network protocol stacks in a static
way in order to optimize them for performance. For very high performance
networks, stacks or parts of them are even implemented in hardware rather
than software. That is especially true for link layer implementations, where
the protocols have tight real time requirements. For example, IEEE 802.11
requires interframe spacing in the order of 10 to 50 µs. If performance is less
critical, a software implementation has advantages regarding its flexibility. The
flexibility is even greater, if the stack can be composed or changed at runtime.
In the 1990th, a research field called “active networks” analyzed programmable
network stacks. A survey is given by Tennenhouse et. al in [TSS+97].

In the last years, the relaxation of the layer boundaries led to dynamic
network stacks. In contrast to today’s monolithic stacks, dynamic stacks
are composed by linking atomic functions. Such atoms are called building
blocks, functional blocks, or function blocks. They are created at design
time and provide predefined functions, which can be inserted in a stack at
runtime. The set of functional blocks required for a data exchange depends
on the requirements of the communication. Thus, the service access point
to the outside world is important for dynamic stacks. It decouples the stack
from the other components and provides the degree of freedom to change its
implementation. Moreover, it enables the application to specify its requirements.
The stack should provide a connection, which satisfies some requirements of
the network or/and of the higher layer. Thus, the goal of the dynamic creation
of stacks is the provisioning of the most efficient implementation for supporting
these requirements. However, this requires a method for deriving the new
composition of the stack from the requirements. Finally, runtime environments

47

2. Background

and tools for conducting the programming are research topics. All these issues
are discussed in the following.

2.5.1. Service access points

A flexible stack has to be decoupled from the static software components. From
a software engineering perspective, the programmable component has to be
hidden behind an interface. This interface must encapsulate the component
in order to enable changes of its implementation. The interface protects other
components of being affected by different and changing implementations.

On end systems, the stack has to be decoupled from applications. Today’s
de-facto standard for accessing the local TCP/UDP stack is the Berkeley socket
Application Programming Interface (API). It provides functions for exchanging
stream-based data via TCP and functions for datagram-oriented communication
based on UDP. For applications willing to provide a service to others, it offers
the function bind to link its service to a port of TCP or UDP and a local
subnetwork point of attachment. Even though it is possible to bind to any port,
most communication partners expect the service to bind to its well-known port
[IAN13]. That is caused by the connect function, which enables an application
to start a communication with a remote one. It requires an IP address specifying
the destination point of attachment and the port number of the service.

The Berkeley socket API provides only limited abstraction from IP and its
transport protocols. A higher layer has to be aware of the different error and
flow control protocols and of the addressing. Newer interfaces are more abstract
and hide all these details. First, they restrict the bind and connect functions to
names, which can be chosen by higher layers. Furthermore, they allow higher
layers to specify their requirements for bound services and connections. An
example is the GAPI [LVM+11], which was developed by the SIG “Functional
Composition” of the G-Lab project. Current operating systems hide the details
of IP and HTTP behind the functions usually used for local files. An example
is the Windows API function open, which support URLs in addition to local
file names. The proposal in [SM12] provides a definition of how to specify
requirements for communications.

Relay systems have to support either a protocol, enabling the dynamic
programming of its stack, or to provide a local interface for management
applications. OpenFlow [MAB+08] is an example for accessing a programmable
router. The OpenFlow specification 1.1 [Ope11] is mainly limited to program
the router behavior based on Ethernet and IP header fields. The access to
arbitrary octets of packets is not supported but might be subject of future
versions of the standard.

48

2.5. Dynamic protocol stacks

2.5.2. Stack construction and selection
The ability to construct a stack dynamically requires an algorithm determining
the layout of the construction based on optimization goals and construction
constraints. Since a communication includes at least two (remote) peers such a
construction has to be done on both sides. The peers have to exchange different
data depending on the algorithm used to construct the stack layout. If the
algorithm is deterministic, it might be sufficient to signal only its input values
and not the layout itself. If both peers may calculate different layouts, the
whole layout has to be exchanged.

Approaches to these problems differ in the point in time of the construction
decision and complexity aspects. The time aspect defines when decisions about
the layout are made. In order to reduce the complexity, some approaches such
as the Netlets [VMEK+09, VMW+09] decide about the layout at design time. At
runtime, an algorithm selects one of the already constructed stacks. “Template
approaches” [SKM12] define a stack template at design time, which includes
a limited set of variability. At runtime, only the variable part is configured to
satisfy given requirements. Depending on the degree of freedom of this flexible
part, such template approaches can trade flexibility for setup time. The more
flexibility a template includes, the more complex is the decision at runtime but
the better the adaptability to requirements. Without a fixed template part, the
whole complexity of the layout decision has to be handled at runtime. Service
Oriented Node Architecture (SONATE) [KSRM12, MR08] is a framework for full
dynamic and template based stack construction.

2.5.3. Stack runtime environment
In addition, most approaches require some kind of “runtime environment”,
in which the stacks are constructed and in which these stacks can operate. A
prominent example for such a framework is the Click modular router [KMC+00].
It provides a framework for developing functional blocks, which can be com-
posed to a stack. Its main focus is on the development environment and the
design-time of a stack and not on dynamic composition.

The SILO architecture is an example for a dynamic composition, which
focuses on cross-layer issues [DRB+07]. In contrast to SONATE’s composition
and selection algorithms, it focuses more on the ability to provide a set of
functional blocks and their configuration. Its authors do not discuss the
method of how to derive the set of blocks from the requirements. Similar, the
Autonomic Network Architecture (ANA) [KHM+08] focuses more on the grouping
of functional blocks in “compartments” and the resolution of addresses within.

49

3. Forwarding on Gates architecture
FoG enables a flexible and scalable network that supports different locations
for arbitrary functions. It aligns functions traditionally located in stacks on end
systems and functions representing transmission capabilities within networks.
FoG achieves that by operating in a world constructed solely of instances
of functions, which are called functional blocks. Examples for functions are
encryption, retransmission, video encoding or transcoding, ordering, prioritiza-
tion of packets, best-effort transmission, transmission with minimal data rate
guarantees, packet duplication for multicast, and virus scan. They take packets
as input and perform their operations on them.

Each functional block is hosted by a function provider and is used by function
users. Both roles can be adopted by end and by relay systems. Moreover, a
system may have both roles at the same time. The distinction of these roles is
crucial, because each role comes along with different tasks. A function provider
provides the memory and CPU resources required by a function. A function user
knows about a functional block and decides which packets should use it. Only
the creation of functional blocks requires negotiations. Afterwards, function
users can assign packets of any connection to a functional block without
having to negotiate with the function provider. A function user implements
the assignment by encoding its decision within each packet that is send to the
function provider. Figure 3.1 shows an example setup, in which a relay system
of a connection between the applications C and S decides about the usage of the
functional block X based on the requirements given from the client application
C. The relay system acting as function provider is notified about the decision
but not about the requirements. The importance of both roles is exemplified
with a use case, which is described in Section 3.1. It lists the requirements of
function providers and users regarding flexibility and scalability.

The separation of tasks between function users and providers decouples
the creation of functional blocks from the decision about their utilization. A
system can request the creation of a functional block and adopt the role of a
function user independent from the management of connections. This enables
a pro-active creation strategy for functional blocks that reduces connection
setup delays and allows even the setup of connections without initial signaling.

FoG is flexible regarding the assignment of roles to systems and, thus, flexible
regarding the placement of states. Function users and providers have to store
different states in order to fulfill their tasks. In particular, the function users
have to store mapping states, which define the functions the packets of a

51

3. Forwarding on Gates architecture

Relay system Relay system End system

Server
app. S

Func.
user

Func.
provider

End system

Client
app. C

Functional
block X

hosts

w
ith

 req
u

i. fo
r S

fo
r X

, S

fo
r S

Select
function

Mapping
states

Figure 3.1.: A function user decides to include functional block X to the chain
of a connection between the applications C and S. The stream of
packets of the connection is shown with thick arrows. Meta-data
included in the packets is listed between the systems.

connection should use. FoG can move states by delegating roles from one
system to another. In particular, a system can delegate the role of a function
user and, thus, delegate states and the power of decision. FoG can adjust the
initial placement of states flexibly by network policies. Since each network
operator can define its own policies, the autonomy of subnetworks in an
inter-network is preserved.

Functional blocks are concatenated to chains in order to combine their
functions. Packets of a connection are mapped to chains that satisfy the
requirements of the connection with their combinations of functional blocks.
A communication model, which is described in Section 3.2, defines the rules
for the creation of chains. Its key aspect is the differentiation between two
types of functional blocks: Forwarding nodes and gates. The formers take over
the multiplexing function and the latters represent all other functions. This
differentiation enables the creation of chains by an external entity that does not
need to know the details of the implementation of a function.

The FoG layer architecture combines the parts mentioned before to a holistic
solution for large inter-networks. It is an architecture for a layer with inter-
network scope in a recursive reference model. This reference model provides an
enhanced layer encapsulation that enables the implementation of the new ideas
within a single layer. FoG’s separation between function user and provider and
its communication model influence the logical components of a layer such as
the transfer and the routing service. Section 3.3 describes these components
and their interworking.

The related work is reviewed within the individual sections. Other motiva-
tions for a future Internet are outlined in Section 3.1.4. Alternative or similar
communication models are discussed in Section 3.2.4. Finally, related archi-

52

3.1. Motivation and design

tectures or proposals for architecture building blocks are presented in Section
3.3.8.

FoG is not just a combination of existing technologies such as IP and MPLS
but supports a real superset of scenarios. In order to support this claim,
two aspects are analyzed in Section 3.4. First, it shows the implementation
of a scenario that is not supported by traditional architectures with FoG.
Therefore, it picks up the use case introduced in Section 3.1.1 and discusses its
implementation with FoG. Second, the ability of FoG to emulate the behavior
of IP and MPLS networks and, thus, to support the scenarios supported by
them is shown.

Due to the economic and political importance of the Internet, an inter-
network architecture is not only influenced by technical aspects. The socio-
economic consequences of an architecture are important as well. Section 3.5
reviews the political aspects of FoG in the context of the “network neutrality”
debate. Business aspects are highlighted in Section 3.6, which takes a closer
look at deployment and interoperability issues.

The chapter closes with a discussion of the architecture in the context of
the use case and of the reference model. Section 3.7.1 picks up the design
questions from the use case and discusses the fitness of FoG for the use case.
The advantages of the reference model and the differences between FoG and
the reference model are outlined in Section 3.7.2.

Functions in a network? Sounds like an old telco ad.
I use this phrase to highlight that functions are not located on end
systems. From the perspective of a recursive layer, however, the
functions are all within a FoG layer and located in transfer service
entities. From an architectural standpoint, these entities are all the
same. There are no special entities for “hosts” and “routers” (but
most probably there will be special implementations for both). Thus,
the phrase refers to the traditional reference models and should
make it easier to understand this text without knowing the recursive
ideas.

3.1. Motivation and design
The histories of the reference models show their strong dependency on the
environments existing when they were created. Although the recursive model
directs the development in a new and promising direction, historical conflicts
are still present. Most important is the conflict between connection-oriented
and connectionless approaches. FoG proposes a middle ground between both
by a small shift of the perspective. The perspective shifts from a “node-“ or
“route-based” view to an “edge-based” one. A FoG-route is neither defined

53

3. Forwarding on Gates architecture

Deutsche Telekom Google AT&T

Server
150 MBit/s, 5 ms

best-effort

100 MBit/s, prio. Clients

Figure 3.2.: Sketch of motivating use case with the two function providers
AT&T and Deutsche Telekom and the function user Gogle.

by a single (destination) node nor a list of nodes as assumed by IP or RINA.
Neither is it defined by a complete list of concatenated edges as required by
connection-oriented systems. FoG defines a route with at least one node and
one edge. However, the node is just a means to an end to direct a packet to
an edge. The edge is more important than the node, which is just required to
direct the construction and to bridge gaps in the knowledge about edges.

In the following, a use case starts the discussion why such an “edge-based”
view is reasonable. Afterwards, Section 3.1.2 points out the problems of state-
of-the-art solutions to support the use case. Finally, Section 3.1.3 highlights the
main design decisions for FoG.

3.1.1. Use case with Google and Deutsche Telekom
An example with a typical application provider and a network operator may
look like the one depicted in Figure 3.2 and described in the following: The
application provider Google requests a higher priority for some of “its” con-
nections from a transport provider like Deutsche Telekom. Google plans to
improve the QoS, for example, for its YouTube video streaming. The higher pri-
ority should ensure a better QoS for the videos on the resource-limited last mile
to the end systems in the network of Deutsche Telekom. Deutsche Telekom has
to limit the usage of this function, in order to prevent its network from being
overwhelmed by high priority traffic. In this example, the throughput of the
function is restricted to 100 Mbit/s. In other words: The function user Google
requests a function – prioritized packet relaying with a maximum throughput –
from the function provider Deutsche Telekom. In addition, Google combines
the function provided by Deutsche Telekom with other functions from other

54

3.1. Motivation and design

providers. For example, Google uses a transit relay function that ensures 5
ms delay for a maximum of 150 Mbit/s from AT&T. Google concatenates both
functions in order to direct its connections through the network of AT&T to
the assignment of a higher priority in the network of Deutsche Telekom.

The following questions structure an evaluation of solutions for the use case:

• Arbitrary functions: Can Google request an arbitrary function from
Deutsche Telekom? In the use case, Google requests a different relaying
function from each function provider. It should be possible to request not
only relaying functions but arbitrary ones such as video transcoding, loss
handling, virus scanning, and encryption.

• Flexibility:

– Combining functions: Can Google combine several different func-
tions from the provided set? Google has to assign a connection to a
set of different functions. The use case includes a combination of a
relaying function with guaranteed non-functional properties with a
relaying function with rather vague non-functional characteristics.
More sophisticated combinations with, for example, application-
related functions should be possible.

– Location of functions: Can Google choose a specific location and,
thus, a function provider for a function? Google should be enabled
to select function providers even if their subnetworks are not directly
adjacent. In the example, Google requests a function from Deutsche
Telekom without further support or negotiations with the relaying
subnetwork of AT&T. In general, the function user should be able to
decide which connection uses which function from which provider.

– Autonomy of providers: Can Deutsche Telekom decide about the
set of supported functions independently from others? Deutsche
Telekom must have the ability to influence the location decision of
users by limiting possible locations (e.g. to a subset of its systems)
and by limiting the set of supported functions.

• Scalability:

– States required for relaying: Does Deutsche Telekom has to store
connections-specific states for relaying? The function provisioning
must scale with the number of connections using a function and,
thus, connection-specific classification states (definition in Section
2.1.4) must be avoided.

– Signaling: Does Google have to notify Deutsche Telekom of each
new connection that is using a function (e.g. is assigned a higher
priority)? The omitted notification reduces the delay for setting up

55

3. Forwarding on Gates architecture

new connections because the exchange of signaling messages before
a data exchange is avoided. For Deutsche Telekom, the omitted
signaling reduces the computational load for processing signaling
messages and updating states.

3.1.2. Possible solutions with today’s Internet
Today’s network operators focus on best-effort relaying and do not offer func-
tion user – end users or other operators – mechanisms to request functions
as required by the use case. In most cases, peerings between subnetworks
include best-effort service level agreements only. However, the extensions to the
Internet presented in Section 2.4 offer some possibilities to implement the use
case. In the following, the fitness of the extensions for the use case is discussed.
The discussion assumes that the extensions are deployed in a network. Table
3.1 shows a summary. After these protocol related solutions, drawbacks of
today’s interfaces are outlined in the last part of this section.

IntServ and other similar approaches define the mapping of packets (via
connections) to functions with classification states, which are established with
signaling messages. For RSVP and IPv4, such a classification state consists
of at least source and destination address and of the protocol field and sums
up to a minimum of 9 octets. Typically, classification states are created for
each connection separately, which limits the scalability significantly. The use
case requires mechanisms to request functions for relaying with non-functional
properties without support from relay subnetworks. This is already supported
by most QoS signaling protocols, like RSVP or NSIS. However, the request of
arbitrary functions, such as video transcoding or encryption, is not supported.
That requires new signaling protocols or extensions to existing ones. Since
most signaling protocols are designed to be extensible, it seems to be possible
to add this feature. Since signaling protocols such as RSVP are optimized for
requesting functions for connections and since IP routing is involved, the user
cannot control the location of functions. The providers direct traffic to their
function locations on their own.

Aggregated classification states are suitable for IntServ, if connection-spe-
cific classification states induce too much overhead. For example, Google
could signal an IP prefix to Deutsche Telekom, which identifies the source IP
addresses of its video servers. Deutsche Telekom could setup this prefix as
classification state in its ingress routers. However, this limits Googles autonomy
in addressing its servers. Moreover, it may be problematic to determine such a
prefix in environments, where load is distributed dynamically among several
systems. An example is a cloud environment, where the server application is
distributed transparently over a large set of systems. If multiple services are
provided by such a cloud, the prefix does no longer identify a single service.
Thus, the classification state in the network of Deutsche Telekom would lead to

56

3.1. Motivation and design

Possible
solutions

Arbitrary
functions

Flexibility Scalability

C
om

bi
ni

ng

Lo
ca

ti
on

A
ut

on
om

y

St
at

es

Si
gn

al
in

g

IntServ (+) + − + − −
Aggregated
states

(+) o − + o o

DiffServ o − − − + (+)
MPLS & IP − + o + o o
OverQoS o + (o) − − −

Table 3.1.: Fitness of possible solutions for the use case from an inter-network
perspective. A plus indicates a good fitness, circle an average one,
and a minus indicates a non-fiting solution. Brakets indicate that a
classification bases on some assumptions mentioned in the text.

a wrong mapping for, e.g., web server traffic. Since YouTube videos as well as
web pages would be transmitted from source addresses with the same prefix
via TCP and port 80, they are undistinguishable for RSVP. Thus, it might be
impossible to combine arbitrary functions.

DiffServ [BBC+98] stores the classification state in a header field, such as
the TOS field of IPv4, in order to inform relay systems about it. Today, the
TOS field is mainly used within a subnetwork because there is no common
agreement for the TOS field values for inter-networks. Since the RFCs 791
[Pos81] and 2474 [NBBB98] are not compatible, a network may have to translate
the values at its gateways. If all operators of an inter-network agree on a
homogenous interpretation of the values, DiffServ might be used in inter"-
networks1. However, the alignment of values unifies the set of functions and
limits the autonomy of providers. The limited size of the TOS field restricts the
number of functions that can be provided by a network. Moreover, the use case
combines two different functions (guaranteed relaying in the AT&T network
and prioritization in the network of Deutsche Telekom) requiring different TOS
field values in different parts of the route. Such a setup is not supported by
DiffServ. DiffServ in an inter-network context raises additional authorization
problems. If DiffServ is used in a subnetwork, the gateway assigning packet to
classes is under the control of the same operator as the other relay systems of
the subnetwork. If used in an inter-network, the entity assigning a packet to a

1 Subnetworks not using DiffServ internally would have to map the DiffServ classes to their
internal mechanism implementing the function.

57

3. Forwarding on Gates architecture

class is not identical to the entity providing a function. For example, Deutsche
Telekom would require some more information in addition to the TOS field
value in order to figure out that traffic has been classified by Google and not by
AT&T or some other subnetwork. In the worst-case, Deutsche Telekom would
require information about connections in order to enable an authorization. If
this problem is ignored, DiffServ does not require signaling.

Since the TOS field of the relaying PCI of IP seems to limit possible solutions,
combinations with other relaying PCI formats may be more suitable. A combi-
nation of MPLS and IP provides more flexibility with respect to a separation
of routing and relaying. IP takes over the routing and MPLS the QoS-related
relaying of packets. Arbitrary functions are not supported. The label stacking
of MPLS provides the ability to identify different relaying functions. However,
the combination limits the switching between IP and MPLS. With an IP packet
encapsulated in MPLS, it is possible to execute a defined sequence of relaying
functions as specified in the MPLS label stack before IP routing takes over. The
MPLS labels, which should be used after the IP routing, cannot be specified
directly. Figure 3.3 illustrates that the classification states on the last IP relay
system B are required to map a connection to the next LSP number 3. Google is
not able to construct a packet, which is sent via IP to the network of Deutsche
Telekom and uses a specific MPLS label for the prioritization function after-
wards. In general, the solution specifies the functions to be executed before IP
routing is done. The labels for the functions, which should be executed after
the IP routing (the subsequent labels for MPLS), have to be stored on the last
IP relay system. Consequently, this relay system requires classification states,
which specifies which packets should be relayed to which subsequent functions.
Again, these states require signaling in order to establish them. However, the
first explicit route gives the function user more control over the functions and
the selection of function providers.

Other workarounds using source routes with IP have security constraints.
[Rei07, ASNN07]

OverQoS is a typical overlay approach that introduces functions not sup-
ported by IP. It is capable of executing a limited set of functions (in this case:
smoothing losses, prioritization, and bandwidth control)2. OverQoS allows
the combination of functions from its set, but seems to assume that all overlay
nodes support the same set of functions. The routing and, thus, the placement
of functions in the overlay are not addressed by the OverQoS proposal directly.
In general, an overlay requires the end systems to be aware of the overlay
and to address the relay systems of the overlay. This adds addressing and
routing functions to the application and, thus, increases the complexity of
the application. Frameworks, such as SpoVNet [BHMW11, WCBH+08], take
over such burdens. The split between routing in the underlay and function

2 Other overlays are dedicated to other functions such as multicast.

58

3.1. Motivation and design

System B System A

IP

MPLS

IP

MPLS

Connection X: LSP1

Connection Y: LSP2

…

Connection X: LSP3

…

…

…

LSP1: L1, …, Ln LSP3: Ln+1, …, Lm

Figure 3.3.: Classification states required by IP to map connection to subsequent
MPLS LSPs

placement in the overlay limits the placement of functions since nodes that
are not part of the overlay are not available as location. For similar reasons,
routing in the overlay might be sub-optimal since it is not aware of the graph
of the underlay network. Such problems are known from peer-to-peer overlays
as well [RB11]. The stacking of an overlay on top of IP suffers from the same
state distribution limitations as the stacking of MPLS and IP mentioned before.
Moreover, OverQoS requires a per-flow state setup on relay systems (cp. Figure
4 in [SSBK03]).

Besides the protocol issues, current stack interfaces limit the ability of ap-
plications to specify requirements for connections. In most cases, applications
have to use an interface tailored for a specific set of functional requirements.
For example, the most common interface – the Berkeley socket API – offers
different functions for stream- (TCP) and datagram-based (UDP) communica-
tions. Without proper information about the requirements, it is difficult (or
even impossible) to decide about the assignment of a connection to functions.
Even if the requirements are known, a lack of deployed signaling protocols
hampers the usage of the requirements on relay systems.

With proper interfaces in place, the stack on end systems can be dynamically
adjusted according to the requirements. As discussed in Section 2.5, such
solutions mainly focus on the end systems and use the existing IP network to
relay packets between both. If relay systems are considered, the usage of IP or
MPLS/IP raises the same problems as discussed before.

3.1.3. Conclusions for new design
The key issues for a solution supporting all aspects of the use case are

59

3. Forwarding on Gates architecture

• the distribution of states between the function user and provider and

• the differentiation between requesting functions and using them.

Figure 3.4 shows three different state distributions including the information
exchanges between function users and providers. The upper two distributions A
and B are from the previously presented solution possibilities. The distribution
C is the one I propose.

A) Concentrated states: The function provider plays a dominate role. It stores
all mapping and function states and has to be contacted for all changes
and every new connection of a function user. This concentration leads to
the scalability problem regarding the number of states and the amount of
signaling. The IntServ approach is an example for this distribution.

B) Moved parameters: DiffServ moves the classification states and the prior-
ity parameter from the function provider to the user. Packets contain only
the function parameter in the TOS field3. The function itself – packet type
differentiation – is selected implicitly.4 This single header field is used for
all functions. Multiple parameters or different functions in various sub-
networks are not supported as stated in the previous section. However,
the idea of splitting responsibilities and to transmit the decision of the
function user to the function provider encoded in packets is promising.

C) Moved mapping states: The function user should be enabled to decide not
only about the parameter but about the functions and their parameters.
As shown in the lower part of Figure 3.4, this requires the selection of
functions in addition to the parameters at the function user as well as the
transmission of this selection to the function provider.

The flexible placement or movement of mapping states is the technical mech-
anism to implement the architectural delegation of the usage decision from
the function provider to the function user. Moreover, it leads to a scalable
system since the function user takes over states from the function provider.
The function provider can offer functions without having to store the map-
ping states. Furthermore, the movement enables the function user to decide
about the functions and their parameters used by connections. However, not
all these decisions are equally important for the function user. For Google,
the decision about the usage of the prioritization function in the network of
Deutsche Telekom may be much more important than the decision about the

3 The “differentiated services field” according to RFC 2474 [NBBB98].
4 If the bits of the TOS field are used as flags, they might select functions explicitly. However, the

approach supports only a limited set of pre-defined functions supported by all nodes. Thus, it
can be considered as one big function with one parameter.

60

3.1. Motivation and design

Classification Destination

Classification

Parameters

Function Destination

A
)

C
o

n
ce

n
tr

at
ed

st

at
es

B

)
M

o
ve

d

p
ar

am
et

er
s

Parameters

Function

C
)

M
o

ve
d

m

ap
p

in
g

st
at

es

Classification

Parameters

Function Destination

Function user Function provider

Figure 3.4.: Three state distributions: (A) the concentrated setup with all states
at the function provider, (B) the setup with moved parameters and
implicit function selection, and (C) the setup with moved mapping
states with explicit selection of function and parameters. States and
other information (the destination name) are depicted as ellipses in
the box of the function user or provider depending on where they
are stored. Arrows indicate which information is used to derive
which other information.

61

3. Forwarding on Gates architecture

functions used in the AT&T network. Google can, for example, decide about
the usage of the prioritization function on its own, but it can leave the decision
about the functions used in the AT&T network to others (e.g. to AT&T itself).
Consequently, a single function user is not the only contributor to a connec-
tion. Multiple function users decide about the concatenation of functions for
a connection. In the example, AT&T as well as Deutsche Telekom may want
to influence the decision about functions used for a connection as well. The
former may decide about the function implementing the transit relaying and
the latter may decide about subsequent functions checking for viruses and
relaying packets to end systems.

This flexibility is implemented by FoG with partial routes. A partial route
contains the already selected functions as “edges” and bridges “gaps” between
them by specifying node names. Multiple function users can decide whether
they contribute functions they know about to a route. By filling in more and
more edges, gaps are shrinking and, in the end, are filled up. For example,
Google can begin the construction of a route by bridging the gap between its
network and Deutsche Telekom by the gateway name of Deutsche Telekom,
by specifying the prioritization function, and, finally, bridging the gap to an
end system by specifying its name. Afterwards, AT&T has to fill the first and
Deutsche Telekom has to fill the second gap.

In order to transport these decisions, relaying PCI formats have to include
fields for storing decisions of multiple heterogeneous subnetworks. The prob-
lems surrounding the TOS field show that a short priority field is not flexible
enough to encode such decisions. As the example of a combined IP and MPLS
network shows, the key issue is a flexible change-over from route parts not
strictly defined and fixed route parts. The former requires a destination address
as used by destination-based relaying PCI formats. The latter requires a route
as in route-based relaying PCI formats. Consequently, a hybrid relaying PCI
format is required.

Routing and route discovery for hybrid relaying PCI formats differ signifi-
cantly from Internet routing. It requires more information about the network
and – at least for connections having complex requirements – different routing
algorithms. Consequently, the architecture has to ensure that the information
is provided and that the routing mechanism has the flexibility to use different
algorithms or strategies depending on the context.

Each subnetwork should be as independent as possible. An operator should
be able to adjust the setup of its subnetwork such as policies, functions and
addressing without relying on other subnetworks to support or even permit
such changes. The architecture has to ensure this autonomy and has to enable
a heterogeneous set of subnetworks. Since a totally independent subnetwork
might not be able to communicate with others, the architecture has to balance
the degree of freedom of subnetworks and the features of an inter-network
connecting these subnetworks.

62

3.1. Motivation and design

The networking history shows that there is always a new feature not included
in the original design. This is especially true, if application related functions
are “moving” from end systems to relay systems. Therefore, an architecture
should restrict the functions offered by networks as less as possible. Instances of
functions called functional blocks are introduced as level of abstraction5 in order
to support arbitrary functions in general. The architecture just operates with
them and puts little restrictions on how functional blocks look like internally.

Does the abstraction solve anything?
Or does it move the problems under the rug? First, the abstraction is
useful to align the handling (e.g. management) of elements covered
by the architecture. Second, by introducing the abstraction, the
architecture acknowledges that algorithms for solving problems
such as the mapping from requirements to functions are required.
Therefore, it provides a “logical place” for these algorithms (e.g. the
architecture enables the routing algorithm to access the information
required by the algorithm). And third, it does not restrict the
implementation of such algorithms. A network offering just a hand
full of functions and supporting only a limited set of requirements
does not require full featured algorithms. An algorithm could just
hard-wire a mapping from requirements to functional blocks. As the
implementation in Section 4.4.3 shows, some rules, like “if lossless
transmission is required, then use retransmission function” might
be sufficient for some. However, the architecture supports more
sophisticated approaches handling an unlimited set of dynamic
functions.

The research on dynamic stacks, presented in Section 2.5, focuses mainly
on flexible functions on end systems. FoG shifts the focus to relay systems,
which emphasizes two additional aspects. First, the functions that are needed
to satisfy requirements have to be distributed among multiple relay systems.
The problem of where to locate which functions arises. Second, the creation
and re-usage decision for functional blocks has to respect the policies of relay
subnetworks. As discussed before, this raises the problem of balancing the
relationship between function user and provider. In summary, the architecture
has to make sure that the implementation of algorithms for these problems is
feasible.

Function provisioning may become a business. Function users might have to
pay for the functions they are using. This seems to be a reasonable assumption
especially for the functions that are costly for the provider (e.g. video transcod-
ing), most useful for users, or both. As the telecommunication market itself,

5 Famous saying in computer science: “All problems can be solved by adding one more level of
indirection.”

63

3. Forwarding on Gates architecture

What about virtualization?
Virtualization is a nice tool for exploiting the multiplexing gain
for resources provided to multiple users. As such, virtualization
might help to deploy FoG implementations in a real network. The
virtualization would provide a guarded environment and enable a
test of the implementation without conflicting with other protocols
running in parallel. However, FoG itself does not use virtualization
techniques. Nevertheless, it might include virtualized elements in
an (inter-)network by representing them as functional blocks.

the “function business” might be subject to regulation issued by democratic
processes. Section 3.5 discusses this issue in more detail. The implications for a
design are twofold. First, the design should not force a payment for function
users. Second, it should not prevent payment, if it is required. A prerequisite
for accounting is authentication. Without authentication, a function provider
will not be able to account someone for its usage.

In addition to accounting, authentication is also required for authorization.
Authorization is required in two different contexts. First, a function provider
can decide to authorize some entities to create new functional blocks. The
decision can be influenced by the level of trust the provider associates with an
entity and by the amount of resources required to create a functional block. A
possible rule is the following: The less resources are requested, the lower the
minimal trust threshold can be. Second, the function provider has to decide
if an existing functional block is allowed to be changed or removed by an
entity. In typical situations, the decision is positive if the entity is the “owner”
of a function. The owner is the entity that had requested the creation of the
function.

In summary, authentication is the important mechanism that must be sup-
ported by the function provider as well as the function user. Thus, it should
be supported by the architecture. Authorization and accounting are optional
mechanisms that do not need to be part of an inter-network architecture. They
belong solely to the domain of a function provider and can be built on top of
an authentication.

The reference models, and thus, today’s networks, seem to provide little room
for real inter-networks. OSI introduces the inter-network layer by introducing
three sublayers for the network layer. Due to the late introduction of these
sublayers, this had no practical consequences. IP tends to ignore the inter-
network layer as well. It re-introduces the inter-network aspects through several
“back doors”. For example, “back door” QoS solutions are proposing “two-tier”
architectures splitting the network layer into a subnetwork and an inter-network

64

3.1. Motivation and design

layer. NAT splits the addressing in a subnetwork and an inter-network part.
The Locator/ID Separation Protocol (LISP) [FFML13] does it the other way around
and introduces different addresses for the inter-network. Mobility solutions are
classified as micro- and macro-mobility. The former handles the subnetwork
aspects while the latter the inter-network ones. In summary, recursive layers
provide a much better theoretical background for the design of an inter-network
layer. In particular, the name- and requirements-based interface of a recursive
layer provides a much better encapsulation of a layer. This encapsulation
provides a suitable basis for the new model and the flexibility of FoG.

3.1.4. Related motivations

With the advent of the Future Internet research programs, multiple statements
about the motivations for a new inter-network have been made. Some of them
are relevant for FoG as well.

David Clark et al. [CWSB02] discuss tussles between groups with contra-
dicting political or business goals. They argue that an inter-network has to be
designed “for variation in outcome, so that the outcome can be different in
different places, and the tussle takes place within the design, not by distorting
or violating it” [CWSB02]. Some of the tussles concern the distribution of
power between users and providers. The differentiation between function user
and function provider can be used to balance this tussles as discussed in Section
3.5. Moreover, they identified authenticity as a prerequisite for establishing
trust. The authentication service of FoG presented in Section 3.3.4 provides a
frame for implementing this.

Trossen summarized the discussion of the EIFFEL think tank in [Tro09].
The think tank opts for a design that supports tussles. It identified problems
regarding the “robustness to failures”, resource accountability, and inflexible
interfaces between applications and network stacks. FoG addresses reliability
with three repair algorithms described in Section 4.3.4, accounting with its
authentication service, and the interface issues with its recursive interface
defined in Section 3.3.1.

Feldmann acknowledges the importance of business aspects as well. She
points at scalability problems regarding routing in the Internet, missing mobility
support, reliability issues, and states that “it is still unclear how and where
to integrate different levels of quality of service into the architecture” [Fel07].
Since FoG can combine multiple different levels of QoS within a single chain of
functional blocks as described in Section 3.2, it seems to be prepared for use
cases with diverse non-functional requirements.

Some “visions” for future networks and their features are outlined by Clark
et al. in [CPB+05]. However, no researcher seems to be aware of a “killer
application” for a future inter-network.

65

3. Forwarding on Gates architecture

dependency

Encryption Relaying Decryption Virus check

Begin End

Figure 3.5.: Example chain of functional blocks. Gates are depicted as edges
and forwarding nodes as dots. Dependencies are shown with
dashed arrows.

3.2. Communication model
FoG builds upon the idea of using arbitrary functions for packet transmission.
Instances of functions are called functional blocks or just blocks. From an
object-oriented point of view, functions relate to classes and functional blocks
to objects. Only functional blocks are accessible for packets. Functions not
represented by blocks are not accessible. Section 3.2.1 defines functional blocks
in detail.

Functional blocks can be concatenated to chains in order to combine multiple
functions. Thus, the requirements of a connection are satisfied by concatenating
a suitable set of functional blocks to a chain of functions that all packets of
a connection have to pass. For example, a uni-directional connection that
should be encrypted requires at least three functions. First, a packet has to be
encrypted. Second, it has to be transmitted from the source to the destination.
Third, it has to be decrypted again. Figure 3.5 shows a small example of such a
chain. The order is important, since the encryption block has to be executed
before decryption block. The construction process for chains has to take such
dependencies between blocks into account.

Two classes of functional blocks called gates and forwarding nodes are in-
troduced. The forwarding nodes are responsible for multiplexing. The gates
represent the “real” functions doing the productive work. The classification
ensures that functional blocks can be depicted and handled like a graph. For-
warding nodes are the vertices of a graph and the gates are edges linking them.
In contrast to other approaches, this gives the edges of the graph – the gates
– an important meaning. The forwarding nodes – the vertices – provide their
multiplexing function, in order to enable an “outside” decision entity to select
a chain of blocks. This is the main differences to other approaches. Further
differences between the FoG communication model and related research work
is discussed in Section 3.2.4.

Each connection can be mapped to its own exclusive set of chains. However,

66

3.2. Communication model

the model allows the reuse of a block for multiple chains. For example, a block
representing the transmission of packets between two systems can be used by
all connections between these systems. Blocks can only be reused for multiple
chains, if all their dependencies are fulfilled in each chain. Details about the
“chaining” and the reuse prerequisites are given in Section 3.2.2.

Afterwards, Section 3.3 introduces the FoG layer architecture, which provides
a frame for implementing such a communication model in a distributed fashion.

3.2.1. Functional blocks
A function is an action a network supports. Such functions include classical
network functions, like sending a packet to a peer or calculate a checksum.
In addition to such classical functions, FoG allows arbitrary functions such
as video transcoding and encryption. A functional block is an instance of a
function with a specific location, a set of parameters, and states. A block takes
packets as input and performs its function on it. It has zero or more outputs,
which can be used to relay a packet to the next functional block attached to it.
For example, a block can represents a function that sends FoG packets over
Ethernet to a specific peer identified by a MAC address that is a parameter of
the block. Another block can encapsulate the encryption of packets according
to the Data Encryption Standard (DES) and a given key.

FoG classifies functional blocks in two categories according to their ability to
decide about the next functional block a packet has to travel through. In other
words, they are classified according to their number of outputs:

• Gates are functional blocks that do not decide about the next functional
block. They have exactly one output and, after processing packets, relay
them to it. Gates are expected to perform potentially complex or costly
operations.

• Forwarding nodes are functional blocks having a variable number of out-
puts. Each output is assigned a gate number that has to be bijective within
the scope of a forwarding node. For each packet, a forwarding node has
to decide about the output a packet is relayed to and, thus, about the
subsequent functional block. This multiplexing function depends neither
on the size of the packet nor on the data transported by the packet. For-
warding nodes are limited to the multiplexing function and not allowed
to execute arbitrary functions like gates.

3.2.1.1. States

Each functional block stores its function states, which are required to execute
and manage the function. Gates representing QoS-enabled links in a network

67

3. Forwarding on Gates architecture

How long is a gate number?
The length of a gate number in bit depends on the implementation.
As shown by the implementation described in Chapter 4, it is
reasonable to define a rather small length (e.g. 8 bit) and to cascade
forwarding nodes logically, if longer numbers are required. Thus, a
FoG entity can use gate numbers with a length of x ∗ 8 bit internally.
From the outside, these long numbers appear as x gates and x− 1
forwarding nodes in between. In summary, the length of a gate
number is a minor issue and it is possible to combine as many as
required.

have to store, e.g., timers, authentication information, priorities, queues, and
token bucket counter. Other gates may store the last I-frame of a video stream,
codec parameters, and keys.

Functional blocks neither store the mapping from packets to connections
nor the mapping from connections to sequences of functional blocks.These
classification states are delegated to a chain. A chain is a stack of gate numbers
as defined in more detail in Section 3.2.2. Moreover, a functional block can
“export” its parameters to the chain in order to avoid their local storage. The
parameters are encoded in the chain as one or more gate numbers. The gate
removes these numbers from the chain information when a packet passes by.
An example for parameters stored in a chain is given in the interoperability
example in Section 3.6.2.

3.2.1.2. Non-functional properties

The performance of functional blocks is described with non-functional proper-
ties. For classical functions transmitting packets to neighbors, non-functional
properties refer to the QoS provided by the technique used for transmission
such as delay and data rate. For other functions, the non-functional properties
refer to the performance of a local operation. For example, the delay of a
video transcoding function refers to the constant overhead of the transcoding
operation while the data rate refers to the computational delay according to
the video frame size. The same holds for other functions such as encryption
or calculating check sums. If these non-functional properties are not known,
best-effort behavior is assumed.

3.2.2. Chaining functional blocks
Functional blocks are concatenated to chains in order to provide a set of
functions to packets of connections. The concatenation has to take dependencies

68

3.2. Communication model

between blocks into account. They influence the order of blocks and the type
of blocks in a chain. Some functional blocks can be reused for multiple chains
in parallel in order to reduce the number of required blocks.

A chain is a sequence of functional blocks, like the one shown in Figure 3.5.
It is defined by a start forwarding node and a stack of gate numbers. The
sequence is defined by the stack and does neither depend on the state of the
blocks nor the content of a packet. The stack of gate numbers is sent along with
a packet and contains gate numbers for each forwarding node in a chain. Each
forwarding node removes the topmost gate number and determines the output
based on this gate number. Afterwards, the packet is relayed to the functional
block attached to this output. If the stack of gate numbers is empty, the packet
reached its destination forwarding node. Thus, only forwarding nodes can
represent connection end-points and can be used to interact with applications.

From a more abstract perspective, forwarding nodes provide their multiplex-
ing function to an “outside” decision entity. The decision entity defines a chain
of gates by defining a suitable stack of gate numbers. It can specify a chain
without the functional blocks knowing about that.

A chain is not equivalent to a connection. Chains provide the functions
required by connections; and connections are assigned to one or more chains.
There might be several connections mapped to a chain or parts of a chain.
Moreover, chains can be reused for subsequent connections, if they are no
longer required by the previous connection. The separation between both
enables a pro-active establishment of chains.

3.2.2.1. Dependencies

A gate can depend on other gates or functions that are required for its opera-
tions. These two types of dependencies are described in the following:

• Dependency to a specific gate: A gate requires a specific other gate, if
they share states. Depending whether the dependency apply to the same
chain or to a reverse chain, the following two cases occur:

– Same chain: A gate requires a peer gate in the same chain. For
example, a gate checking for lost packets requires exactly one other
gate numbering the packets as a predecessor in a chain. A gate
adding a header to the packet requires a peer gate that removes this
header again.

– Reverse chain: A gate requires a reverse gate in the reverse chain, in
which packets travel in the opposite direction. For example, the
feedback from the gate checking for lost packets has to reach the
gate with the packet buffer in order to request a retransmission.
Therefore, the gate with the buffer forces the reverse packets to

69

3. Forwarding on Gates architecture

…
A1 A-1

1

A2

A-1
2

…

…

…

…

peer gates chain 1

peer gates chain 2

reverse gates

Figure 3.6.: Example with two chains and dependencies within each chain (peer
gates; dashed arrows) and dependencies between the chains (re-
verse gates; dotted arrows) gate. Gates are depicted as continuous
arrows and forwarding nodes as dots.

travel through a reverse gate. Typically, such reverse gates have
internal “connections” to the gate that depends on them. Such a
“connection” is in most cases just a local reference to each other in a
shared memory. It enables the reverse gate to relay feedback from
the peer gate to the dependent gate.

• Dependency to a function: If a gate does not require a specific gate but
an arbitrary instance of a function, it depends on a function. For example,
a gate doing video decoding does not necessarily depend on a specific
peer gate but on a gate representing a function performing a compatible
encoding. In addition to the dependency to a function, a gate can depend
on specific parameter values of gates of this function.

Peer and reverse gates can be used to model the dependencies between two
protocol state machine instances such as two dependent transport protocol
instances (e.g. two TCP instances). Figure 3.6 shows a small example with two
gates called Ai and A-1

i per chain i. Gate A1 buffers packets, adds the transport
header, updates its states, and sends the packet along to its peer gate A-1

1.
Gate A-1

1 removes the header, updates its states as well, and sends the packet
to the next functional block. Moreover, it sends a feedback back to the reverse
gate of A1, which is gate A-1

2. Gate A-1
2 informs A1 about the feedback. The

access to the reverse chain is implementation specific. It can, for example, be
implemented via information within the block itself or via its own reverse gate
(A2 in the example). A more complex example for chains and dependencies is
given in Section 3.2.3.

Forwarding nodes do not have dependencies.

70

3.2. Communication model

N A S C

N-Header A-Header Payload

depend on each other

FN

Figure 3.7.: Chain with wrong order of gates (arrows) due to dependencies
(dashed lines). Gate numbers at the FNs (dots) are omitted. Packets
arriving at A-1 have a wrong header at the top of their stack.

3.2.2.2. Order of functional blocks

A dependency might restrict other dependencies by forbidding “interleaving”
dependencies. The dependency between two gates of a chain can forbid the
blocks in between the two dependent gates to have dependent blocks before or
after the two dependent blocks. Such a restriction is useful for blocks adding
or removing headers to the payload of a packet. Since the model assumes a
stack of headers, the order of adding and removing has to be ensured.

Figure 3.7 shows an example for a wrong gate combination. Gate A adds a
header with a packet number to the payload in order to number the packets.
This gate depends on gate A-1 sorting the packets at the receiver side. The
sorting gate expects such a header and removes it. If the chain should also
check for bit errors, gate B adds a header with a checksum. Gate B-1 removes
the header and checks the checksum. A chain “interleaving” the gates in the
order A, B, A-1, B-1 would result in an error in A-1, since the header of B is the
first one in the stack. No gate between A and A-1, and B and B-1, respectively,
is allowed to depend on a gate “outside” of the dependency.

3.2.2.3. Reuse

If each connection is assigned to one or more dedicated chains, the number of
functional blocks in the model depends on the number of connections, their
requirements, and the graph of the network. In order to enable setups with less
functional blocks, the model allows “overlapping” chains. Functional blocks of
one chain can be reused for another chain. More precisely, two chains being
actively used by connections can partly use the same functional blocks. This
reuse is an optimization and transparent for the connections.

71

3. Forwarding on Gates architecture

N

B1

S

F1

B2 F2

T1

T2

T3

T4

T5

1 1 1

2

1

1

2 1
1

2 1

Chain 1:
[1, 2, 1, 2, 1]

Chain 2:
[1, 2, 1, 1]

Chain 3:
[1, 1, 1]

FN1

FN2

FN3

FN4

FN5

FN6

FN7 FN8

FN9

T6

Figure 3.8.: Three chains with forwarding nodes FNi (vertices), gates (edges),
dependencies (dashed and dotted lines), and gate numbers. Start-
ing points of chains are marked with the chain information.

The reuse is limited by dependencies, the reusability of functional blocks,
and by the reuse algorithms. First, the dependency rules mentioned above must
be fulfilled for all functional blocks in all chains. Second, the implementation
of a function has to permit a reuse. If the states of a block depend on the data
transmitted by a single connection, it cannot be reused by multiple connections.
For example, a video transcoding function may depend on the last key frame
of a video and, thus, cannot handle multiple videos at the same time. A
forwarding node representing a specific connection end point is also not
reusable as connection end point for multiple connections at the same time.
Third, the algorithm deciding about the reuse has to balance its delay to find a
suitable chain and its probability that a reusable block is actually reused. An
example algorithm is outlined in the implementation chapter in Section 4.4.3.

3.2.3. Example
Chains of blocks can be depicted as graphs with forwarding nodes as vertices
and gates as unidirectional edges. Figure 3.8 illustrates an example with three
chains, by showing several gates concatenated for two connections. Dependen-
cies are drawn as in Figure 3.6 as dashed and dotted arrows. Two gates directly
concatenated are drawn as one long edge with two arrows (T4 and T5).

Chain 1 starts at forwarding node FN1 and concatenates the gates B1, T2, T1,
T6, and F1. Chain 2 represents the reverse direction, which starts at FN8 with
the gates B2, T5, T4, T3, and F2. The gates Bi may represent a calculation of a

72

3.2. Communication model

checksum and a buffer for sent packets. The gates Fi check the checksum and
provide feedback to Bi. If there is no feedback or a negative one, Bi can repeat
the transmission. The gates Ti represent functions for transporting packets
between systems.

Chain 3 is used by a uni-directional connection and ensures the order of
packets by numbering them in gate N and sorting them in gate S. It starts at
FN2 and concatenates the gates N, T1, and S.

Each chain is defined by a stack of gate numbers required by the forwarding
nodes. For example, FN3 will remove the topmost gate number in a packet
and use it to decide if the packet is relayed to gate T2 with number 2 or gate F2
with number 1.

The forwarding nodes FN3, FN4, FN6, and FN7 are reused for two chains
each. In addition, gate T1 is reused by chain 1 and chain 3. It represents the
transportation of packet between relay systems. The gate hides the details of
the transportation. Depending on the technique used for data transportation,
the implementation might differ. For Ethernet, T1 may send a packet to a MAC
address specified as gate parameter. For an IP network, T1 may represent a
TCP connection between two relay systems.

Chain 1 and 2 show a typical setup for a bidirectional connection requiring
functions with feedback mechanisms. Gate B1 depends on the feedback of
F1, which is send indirectly via F2. The “connection” between B1 and F2 is
implementation specific. In most cases, both gates reside in the same process
and share memory, which enables a fast communication between both.

3.2.4. Related work
Standard communication models include nodes and links connecting them.
In general, these models focus on the network and routing in particular (e.g.
Pathlet). The FoG communication model includes the layer specific parts of
the network stacks from end and relay systems as well. Its functional blocks
represent the traditional elements, such as links between nodes, in addition to
stack functions. Therefore, the new model provides a handle for the dynamic
placement of functions and for the location-routing problem attached to it.

The main difference to other models using functional blocks is the definition
of chains and how they are implemented. In models such as used by SelNet
[TG01], ANA [KHM+08], and SONATE [KSRM12], arbitrary functional blocks
contain multiplexing functionality resulting in more than one output of a
block. The multiplexing decisions of such blocks can depend on any value
in a packet (e.g. Ethertype and Protocol field value) or even on the state of
blocks. Thus, the entity defining a chain has to know the internal details of
each functional block doing multiplexing in order to define a suitable chain.
This is shown in the left part of Figure 3.9. The right part shows FoG’s
split between “real” functionality and its common multiplexing mechanism.

73

3. Forwarding on Gates architecture

(B) FoG’s gates and
 forwarding nodes

(A) Traditional functional blocks

Figure 3.9.: Differences in models using functional blocks. Functional blocks
and gates are depicted as box. The forwarding node is depicted as
circle. Arrows indicate potential subsequent functional blocks.

The common multiplexing mechanism introduces a standard way of defining
chains, which, in turn, enables the construction of chains without knowing the
internal multiplexing algorithm of each function. This advantage is achieved
by restricting the possible interconnections of functional blocks in a chain to
a sequence. Conditional branches and parallel structures known from other
approaches are not possible. For example, a chain cannot define a sequence of
blocks for the case that the load in the network is high and another sequence
in case the load is low. The chain cannot define to use an encryption gate if
the packet is not encrypted and to use another gates if it is. Although the
model does not allow such setups, they are implementable with workarounds.
For example, the decision entity can change the mapping from connections
to chains in order to react on changing load conditions. A gate can internally
switch between modes of operations depending on a packet. Thus, the decision
if a packet has to be encrypted can be done inside of a gate.

The model is close to the operations in today’s stacks. Each layer in today’s
stack combines the functions of at least one forwarding node and one gate. For
example, IP is performing its operations such as TTL counter modifications and
adding trace route information, which could be modeled as gate. Furthermore,
it decides about the next functional block based on its Protocol field. If this
field has the value 6, the packet is forwarded to TCP.6 This is equivalent to the
operation of a forwarding node.

The dependency model assumes that functions operate with a stack of header
information. The impact of using heap structures for header information as
proposed by the Role-based Architecture [BFH03] has not been analyzed. The

6 http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

74

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xml

3.3. Layer architecture

“roles” of this architecture are comparable to functional blocks. A common
aspect of both models is the “reflective role” (e.g. encrypt, decrypt), which is
similar to a peer gate. However, RoleIDs (and, thus, role addresses) are not
comparable to gate numbers because a RoleID contains an identifier for the
type of function.

The model does not specify the granularity of the functional blocks. Even
though the variety of functions implemented by forwarding nodes are strongly
limited, the functions implemented by gates are not. Thus, the granularity of
gates ranges from simple counter modifications via lower layer interactions to
a complex video transcoding. However, the state of the art shows the impact of
the granularity on the runtime complexity of the decision algorithm that sets
up chains. The implementation of FoG presented in Chapter 4 uses rather large
blocks such as EFCP blocks, encryption/decryption blocks, and transcoding
blocks.

The model shows certain similarities to models used by route-based relaying
PCI formats discussed in Section 2.3.1. If only functional blocks representing
packet transmission between nodes are considered, a chain is equivalent to an
index-based route. For example, a forwarding node is equivalent to a vnode
in Pathlet, a gate can emulate a pathlet, and a gate number is equivalent to
a pathlet forwarding identifier. As routes in Pathlet and all other approaches
with index-based routes, chains are constructed by concatenating numbers.
Such chains are also comparable to label stacks in MPLS. The non-functional
aspects can be integrated in MPLS by using a QoS-aware routing and resource
management, as provided by RSVP-TE. Some equivalent extensions are imagin-
able for Pathlet as well. However, the FoG communication model goes beyond
the features of both by integrating arbitrary functions and not just relaying
functions. This integration requires the consideration of dependencies in more
detail. Traditional index-based routes ensure only dependencies that are caused
by the graph structure of the functions. There should be no “gaps” in a route
and relaying functions have to be executed in the right order. The new model
extends this by taking dependencies between gates and functions into account.

3.3. Layer architecture
The communication model defines functional blocks, their interconnections, and
how they exchange packets. The distributed nature of networks leads to a graph
of functional blocks distributed over multiple FoG nodes. Implementations
have to manage such a distributed graph, find and create suitable chains
for connections in it, and relay packets through these chains. The FoG layer
architecture is the blueprint for all implementations of this communication
model and, thus, summarizes the invariances of all implementations. Its design
ideas for accomplishing flexibility and scalability for arbitrary functions are

75

3. Forwarding on Gates architecture

Transfer service

Setup

Routing service

Authentication service

Requir.
mapper

Binding Connection

Gates &
FNs

Plane

Inform.
base Route

constructor Manager

Policies

Signer & Checker Security
entities

Figure 3.10.: FoG layer architecture with its logical components drawn as rect-
angles and interfaces as ellipses. Arrows indicate important data
and control flows.

described in Section 3.1.3.
The three logical components transfer service, routing service, and authenti-

cation service of the FoG layer architecture are depicted in Figure 3.10.

• The transfer service is the “runtime environment” for the functional
blocks. It contains and manages them and is responsible for relaying
packets between them. Its details are presented in Section 3.3.2.

• The routing service determines chains through graphs defined by func-
tional blocks. It is the “external” logic mentioned in the model description,
which decides about how to combine functional blocks to chains. It is
described in Section 3.3.3.

• The authentication service secures the management operations and estab-
lishes a base for authorization and accounting. It provides the possibility
to sign packets and to check such signatures in order to verify the authen-
ticity of packets. Relay systems can sign packets additionally in order to
create “chains of trust”, which enable a system to rank the trustworthi-
ness of a packet based on multiple signatures. Section 3.3.4 outlines the
authentication service in detail.

The separation of the packet relaying in the transfer service from the route
computation in the routing service is an important feature of FoG. First, it

76

3.3. Layer architecture

enables the independent development of routing and transfer service. The
relaying PCI format used by the transfer service is in particular no longer
limited to a specific address format used by the routing service. Second,
the separation leads to a concentration of connectivity, capability, and QoS
information in the routing service. This enables routing services to take
full advantage of the holistic information base in order to optimize system
performance.

Transfer and routing service have to cooperate in order to create a chain
in a distributed graph of functional blocks. The computation of a complete
chain at a single end system seems to be the obvious solution along the lines
of the model. However, this strategy causes scalability problems and may
not even be possible at all for large inter-networks because this node would
require detailed information from all nodes of a network. The FoG layer
architecture introduces an incremental computation strategy. This so-called
incremental routing process uses partial chains. A partial chain is only a part of
a complete end-to-end chain of the communication model. Multiple partial
chains are subsequently concatenated by the incremental routing process in
order to constructs a complete chain. The process addresses the scalability
by enabling chain computations based on partial knowledge. A partial chain
reflects partial knowledge of the graph of functional blocks. Not a single entity
with global knowledge has to construct the complete chain but multiple entities
having partial knowledge. The process is flexible regarding the number of
entities involved and regarding their contribution. A contribution depends on
the requirements of a chain and can differ due to policies and capabilities of
each entity. The process respects the autonomy of subnetworks by integrating
different operators in the computation of a chain. Thus, an operator can
contribute a partial chain during the incremental routing process in order to
enforce its policies. More details about the process are given in Section 3.3.5.

The FoG layer architecture represents (partial) chains as routes. A route is a
stack of route segments. There are two types of segments:

• An explicit segment defines a (partial) chain. As defined in the model, it
contains a stack of gate numbers.

• A destination segment indicates a gap in the chain and enables the in-
cremental routing process. It contains information required to resolve
subsequent partial chains, which can fill the gap. The information com-
prises a destination name and the requirements for the chain to this
destination.

Usually, the incremental routing process transforms destination segments
subsequently to explicit segments. When and where the transformation takes
place depends on the configuration of the network. This increases the flexibility

77

3. Forwarding on Gates architecture

compared to IP, which defines the location of the transformation statically by
the deployment of network components.

Moreover, this process influences the location of functional blocks. Depend-
ing on the policies of the incremental routing process, functional blocks can be
placed either on end or on relay systems. The communication model enables
this flexibility by representing the transmission of packets between FoG nodes
and all other functions as functional blocks.

The FoG layer is accessed via an API hiding all its details from higher layers.
It provides the possibility for applications to specify their requirements for
connections explicitly. Its details are outlined in Section 3.3.1. Since FoG is
designed for a recursive layer stack, it uses the very same interface for accessing
lower layers. The interaction with these layers is described in Section 3.3.7.

Section 3.3.8 compares the FoG layer architecture with related research
proposals. A review of FoG in the context of the evaluation questions from
Section 3.1.1 can be found in Section 3.7.1. A comparison between FoG and its
recursive reference model is shown in Section 3.7.2.

3.3.1. Interface
Applications and higher layers access FoG’s service via an interface that focuses
on requirements, names, and events. The requirements influence the way FoG
is providing connections between higher layer entities. In order to enable
a flexible reaction on requirements, the networking details are hidden from
higher layers. For example, addressing details are hidden behind names chosen
by the higher layers themselves. Furthermore, only a single set of functions
for stream, datagram-stream7 and datagram communication is offered. Higher
layers are informed about asynchronous happenings within the layer, like
failures, via events. While the interface is designed especially for recursive
layers as described in [LHSS13], it adopts the naming and requirement aspects
of the GAPI.

The functions of the interface can be clustered in three logical subinterfaces,
which are shown as classes in the UML class diagram in Figure 3.11. The Layer
interface provides functions for registering for incoming connections and for
setting up connections to such registrations. The Binding and the Connection
interfaces provide control over a registration and a connection, respectively. All
subinterfaces shares the possibility to query for events. Therefore, they share a
common base interface called EventSource, which provides access to events.
The most important functions are outlined in the following. The complete
interface is described in Appendix B.

The Layer interface provides the function bind for higher layer instances
to register themselves. They bind themselves to a name chosen by them in

7 Analog to TP4: Stream, which preserves the delimiting of datagrams defined by higher layers

78

3.3. Layer architecture

Connection

+ read
+ write
+ close

Binding

+ getConnection
+ close

Layer

+ bind
+ connect
+ isKnown
+ getCapabilities
+ getNeighbors

EventSource

+ getEvent

Figure 3.11.: Simplified layer interface of FoG as UML class diagram (arrow
points to base class)

order to announce their accessibility for others. In addition to the name, the
higher layer can specify requirements that should be fulfilled for all incoming
connections established later on. The result of the bind function is a reference
to an object supporting the Binding interface. The function connect establishes
a connection with previously created Bindings. It requires the name of the
Binding that should be contacted and the requirements for the connection.
Both sets of requirements – the one given by the connect function and by the
bind function – have to be fulfilled in order to establish the connection. If they
cannot be satisfied, the connect function will return an error. If they can be
satisfied, two objects supporting the Connection interface are created. One is
returned to the caller of connect and the other is given to the caller of bind via
the Binding interface. Both can now exchange data via the Connection interface.
Failures causing a violation of the requirements during the communication
are signaled by the end-points via events. In order to reduce the probablity
for such errors, a higher layer can get an approximation or guided guess of
what may be possible via the getCapability function. This function proved
useful for a layer to estimate the opportunities provided by lower layers. Since
higher layers may register with identical names, the function getNeighbors is
useful to get a handle for multiple neighbors with the same name. The function
does not necessarily return all higher layer registrations matching some filter.
Instead, it may return only a subset known by a FoG node. Analog to the
information returned by the getCapability function, this information helps a
layer entity to get an overview about its situation and possible neighbors.

Higher layers operate only with names of their own name spaces. They

79

3. Forwarding on Gates architecture

are neither aware of any addresses nor of functional blocks. In general, FoG
allows multiple registrations with the same name. In case of connect requests
for such names, FoG treads them as any-cast names and selects one of them
as destination for the request. However, an implementation can reject such
registrations due to policy reasons. A FoG instance and a higher layer share a
label for a connection and a binding. These labels are only valid locally for a
single FoG instance. They are chosen by the FoG instance freely, like the socket
handles for Berkeley sockets.

Requirements are specified according to the proposal in [SM12], which is
also used by the GAPI. Each requirement is a triple with an effect, an operator,
and an attribute. The effect describes something observable that is limited by
the attribute. The type of limit is specified by the operator. Examples are:

• delay <= 120 ms: Limits the delay to a maximum of 120 ms.

• in-order = true: Requests the delivery of data in the order it has been
sent.

• video quality = 90%: Sets the quality parameter for video transmissions.

FoG adds the possibility to specify the direction of a connection the requirement
should apply to.

The interface provides a single set of functions for a connection-oriented
service. Although the service is connection-oriented, the implementation does
not necessarily need to be connection-oriented as well. The implementation
depends on the requirements for a connection and supports stream-, datagram
stream-, and datagram-oriented communication. If a connection requires
only datagrams, the implementation can use a connectionless protocol. This
design is enabled by the recursive model, which hides the choice of the EFCP
(comparable to transport or logical link control protocol in OSI) from higher
layers.

3.3.2. Transfer service
The transfer service is responsible for relaying packets between functional blocks
according to the FoG communication model. Furthermore, the transfer service
creates, configures, links and deletes the blocks. It comprises the transfer
service plane and the transfer service manager. The former implements the data
transfer of the recursive layer model with its tightly coupled mechanisms. The
latter contains the loosely coupled mechanisms of the data transfer controller.

3.3.2.1. Logical view

The transfer service plane contains the functional blocks of the FoG communi-
cation model. It provides the execution environment for the functional blocks

80

3.3. Layer architecture

and relays the packets between them. As long as a (partial) chain is defined
in a packet, the transfer service plane relays the packet between functional
blocks as defined by the chain. If no chain is given, the transfer service plane
requests it from the manager. The manager decides if the packet is allowed
to be forwarded. If the decision is positive, the manager contacts the routing
service in order to request a route for the packet.

The transfer service informs the routing service about its functional blocks,
their interconnections and supported functions. The routing service calculates
routes based on this information. It tries to reuses already available (reusable)
functional blocks for multiple routes. If the routing and transfer service are
operated by different operators and the transfer service does not fully trust
the routing service, the transfer service can hide (meaning: do not report)
functional blocks or gate numbers from the routing service. When the routing
service requests new gates, the transfer service can decide about the reuse
on its own. Moreover, the transfer service can hide non-reusable functional
blocks in order to reduce the interactions with the routing service. Examples
are blocks dedicated to a single chain, such as forwarding nodes representing
connection end point, and blocks that cannot be reused.

Bindings are represented by forwarding nodes, which are labeled with the
name of the binding. The transfer service reports the higher layer name to the
routing service in addition to the forwarding node. Thus, the routing service
knows the forwarding node that is responsible for the access to a higher layer
entity.

The transfer service plane delegates the decisions related to the setup of
blocks and chains to the transfer service manager. The manager is responsible
for the management decisions regarding the creation, linking, and deletion of
functional blocks. Moreover, it assigns a connection to one or more8 chains.
The decision, which blocks or functions are required for a chain, is taken by
the routing service.

The creation of new functional blocks can be requested from the transfer
service plane in multiple ways. First, they can be requested manually by an
operator. Second, a policy can cause the creation of gates in certain situations.
For example, a FoG node can automatically set up best-effort gates to all
detected neighbors. Third, signaling protocols can be used to trigger the
creation (or deletion) of gates from remote. In order to authenticate such
signaling messages, the authentication service is used.

The transfer service manager is influenced by policies defined by network
operators. Such a policy defines the guidelines for the decisions of a manager.
For example, it specifies which entity is allowed to set up which gates. Further-
more, it can limit the amount of reserved resources by functional blocks or the
set of functions available on a FoG node.

8 Typically two chains for a bidirectional connection

81

3. Forwarding on Gates architecture

3.3.2.2. Distributed view

The overall transfer service of a FoG network is distributed over multiple
transfer service entities. Each transfer service entity provides only a part of
the overall graph of functional blocks and stores only the states required for
its blocks. A transfer service entity resides in a FoG entity, which, in turn, is
located on a FoG end or relay system. The term FoG node refers to a FoG system
and assumes that there is only a single FoG entity on it. In most cases the
terms FoG node and FoG entity are used synonymously.

Without loss of generality, each transfer service entity has an associated
routing service entity. If no routing should be done on a node, the routing
service entity acts as a proxy for another remote routing service entity. Multiple
routing service entities can be hidden behind a single entity, which forwards
the announcements of the transfer service entity to all other routing service
entities.

As with today’s IP, the transfer service entities communicate via lower layers
(e.g. an Ethernet-based recursive layer; cp. Section 3.3.7), which enable a packet
exchange between them. The function for sending FoG packets to other transfer
service entities is encapsulated in gates. However, a new relaying PCI format
that supports the forwarding model of FoG is required for the exchange. This
format is described in Section 4.3.2.

3.3.3. Routing service
The routing service calculates routes, which are used by the transfer service to
relay packets. The calculation is influenced by various requirements of the
network as well as of the connection. Therefore, the routing service has to
derive the set of required functions from the requirements via its requirements
mapper component. Missing functions are requested from the transfer service.
The route calculation requires an information base that contains the information
reported from the transfer service. In general, it contains the graph of functional
blocks and the capabilities of the transfer service entities. According to the
recursive layer model, the routing service is independent of connections and,
thus, belongs to the layer management.

3.3.3.1. Logical view

The transfer service informs the routing service about functional blocks and
their interconnections. Furthermore, it reports its capabilities in terms of
available functions and non-functional parameters. Thus, the routing service
does not require any mechanism for discovery. It combines the information
from the transfer service to a graph of functional blocks available for reuse by
chains. The functional blocks not available for reuse are omitted. Such blocks

82

3.3. Layer architecture

cannot be integrated in chains but would enlarge the graph the routing service
has to manage.

Based on a source forwarding node and a destination name, the routing
service calculates a route through the graph of gates and forwarding nodes
with respect to various requirements. The destination name identifies the
destination forwarding node representing the binding with the same name.
The requirements introduce two different kind of constraints. First, the non-
functional requirements act as filter for the properties of existing blocks. A block
can only be included if it supports the non-functional requirements. Second, the
functional requirements force the routing service to include specific functions
in a chain. The requirements mapper component of the routing service translates
requirements to a list of required functions. Based on such a list, the routing
service constructs a chain, which includes functional blocks implementing the
listed functions. The construction has to take the dependencies between blocks
into account. It typically tries to reuse existing blocks in order to minimize
the amount of blocks and, thus, to reduce the states the whole network has to
handle. If the graph does not provide suitable functional blocks to satisfy the
requirements, the routing service determines missing functions and requests
them from the transfer service.

The requirements for a route calculation are defined by several sources. First,
the higher layer specifies its requirements for a connection via the connect
function of the Layer interface. Second, the binding of the higher layer that
the connection should connect to specifies its requirements for incoming con-
nections as well. Third, a routing service policy defined by the operator can
introduce requirements. The routing service has to combine and to satisfy all
of these requirements. If this is not possible, an error is returned. An example
is given in the following: A higher layer requests an encrypted connection
with a throughput of at least 10 Mbit/s. The higher layer binding requires all
connections to deliver data in order. The policy enforces a logging function for
accounting purposes of non-best-effort connections. In total, the routing service
has to construct a chain with functional blocks for encryption, decryption,
numbering, ordering, and logging. In addition, some relaying functions are
required to reach the remote binding. All these blocks have to support at least
the desired throughput. If there are no suitable blocks for reuse in the graph,
the routing service has to request new ones from the transfer service.

Typically, the routing service does not operate with the higher layer names
directly. In order to enable a more efficient specification of a location, it
introduces addresses. The mapping between the higher layer names and the
addresses is stored in the routing service information base. The format of such
addresses depends on the routing service and is not limited by the transfer
service. The transfer service provides variable length fields for the cases it
has to transport addresses in signaling messages. Depending on the scenario,
the routing service can shorten destination segments and, thus, routes by

83

3. Forwarding on Gates architecture

introducing addresses. This holds in particular for scenarios with long higher
layer names and short addresses.

3.3.3.2. Distributed view

The overall routing service of a FoG network is composed by multiple routing
service entities. Routing service entities exchange their knowledge about
transfer service entities with a routing protocol. The exchange establishes a
broader overview over the graph of the transfer service plane and enables the
calculation of chains to remote bindings and the reuse of remote functional
blocks.

A routing service has to balance two contrary aspects of the information
exchange. On the one hand, it requires the detailed information about the
transfer service in order to integrate existing functional blocks in chains. On the
other hand, this information cannot be distributed among all routing service
entities due to scalability. In order to reduce the amount of information, the
architecture allows routing service entities to aggregate their knowledge or hide
parts of it from others. One consequence is that one routing service entity may
not know all gates on the way to a binding and, thus, is not able to calculate
a complete chain for a connection. Therefore, routes returned from a routing
service entity are allowed to be partial routes. A partial route defines only a part
of the whole chain to the destination. Without loss of generality, such a route
ends at the border of the known area of a routing service entity. At this border,
another routing service entity knowing the parts beyond this border has to be
contacted. This “neighbor” routing service entity calculates the next partial
route towards the destination. The so-called incremental routing process, which
is described in Section 3.3.5, concatenates the partial routes incrementally to a
complete chain.

The incremental routing process assumes that several routing service entities
– each knowing only a part of the transfer service – have to cooperate in
order to create a complete chain. Thus, a routing service entity requires
detailed knowledge of only a part of the transfer service. In common scenarios,
the detailed graph is a connected graph of functional blocks representing
“the scope” of a routing service entity and its surrounding. However, the
incremental routing process assumes implicitly that a routing service entity
knows the direction towards a destination. More specific, it has to know
a forwarding node at the border of its detailed knowledge that is closer to
the destination than the source forwarding node. Consequently, the detailed
knowledge about a part of the transfer service is not sufficient. It has to be
expanded with more abstract information about the remaining parts of the
transfer service. The representation of the abstract direction information is
implementation dependent. In most cases, routing services introduce addresses,
which enable an efficient specification and aggregation of locations.

84

3.3. Layer architecture

The following steps are required to calculate a partial route at the routing ser-
vice entity RSa with its abstract information base Ia and its detailed information
base Id. Forwarding node S is the starting point of the chain and forwarding
node D is the destination.

1. RSa checks if S is in Id. This should be the case for normal configurations,
because the route request comes from a transfer service entity reporting
to S. However, if S is not known, no route can be calculated.

2. If D is not known by Id, RSa determines a forwarding node Z via Ia. By
definition, Z is closer to D and known in Id. If no Z for D is known, the
route calculation failed. If D is known by Id, Z is equal to D.

3. RSa calculates route R from S to Z. If Z is different from D, a partial route
segment with the information about D and the remaining requirements
is appended to R.

4. RSa returns R.

Another important cause for not distributing information about functional
blocks to others are reuse considerations. A routing service entity can decide
to distribute the knowledge about a gate to a set of other routing service
entities. Each of these entities can reuse the gate for routes. If the gate number
is distributed, they can decide about the reuse on their own without asking
the providers of the gate. If the gate number is hidden, they can at least
plan to reuse it and delegate the final decision to the routing service entity
knowing about the number. A routing service entity can monopolize the reuse
decision by hiding gate numbers. It can delegate the decision to other entities
by announcing them.

The logic of the hiding decision is similar to the logic the transfer service uses
to decide whether it should report a functional block to the routing service.

3.3.4. Authentication service
The management of FoG involves many automatic decisions such as the creation
of gates for connections. Most critical are decisions about gates representing
resource allocations since they reduce the remaining system capacity for others
and might be subject to accounting. Therefore, a security mechanism is required
to protect a FoG system from unauthorized resource usage. The authentication
service is the base for such a mechanism. It enables a sender to sign messages
and a receiver to check if received messages are authentic. Based on the
authentication, a receiver can perform authorization and accounting.

The main user of the authentication service is the transfer manager. It uses
the authentication service to validate signaling messages exchanged between

85

3. Forwarding on Gates architecture

transfer manager entities. In particular, requests to open gates with special
QoS requirements are signed in order to enable the receiving manager entity to
validate the identity of the sender.

3.3.4.1. Logical view

The authentication service manages security entities and their credentials. For
public-private-key systems, the authentication service stores the keys of the
entities. The entity names are not necessarily related to the names used in
the routing service or used by higher layers. The authentication service can
use a different name space for the security entities. A separate name space is
especially useful for scenarios, in which names change but security entities
should stay constant. For example, the address of a FoG node may change
in a mobile environment. However, a constant security entity simplifies the
authentication of signaling messages involved in handovers.

The authentication service provides the possibility to create signatures for
messages in the name of an entity. It uses the credentials of the entity in
combination with a checksum of the message to create a signature. Moreover,
it can check if a signature is valid for an entity and a given message.

3.3.4.2. Distributed view

A single authentication service entity typically does not know all security
entities of a large inter-network. The following cases occur:

• For its own “local” security entities, it can generate and check signatures.
In a public-private-key system, an authentication service entity knows
both keys for the security entities of its scope (e.g. for a subnetwork).

• Some remote security entities are known and their signatures can be
checked. In the example of a public-private key system, the authentication
service entity has exchanged public keys with other authentication service
entities or public keys have been installed manually.

• Some security entities are not known at all. A public-private key system
could try to resolve the public key of such entities in a reactive way.

In general, a request for resources is signed by the higher layer entity requesting
a connection. Its security entity typically has a rather limited scope and is
known only within its subnetwork. If a destination end system outside of
the subnetwork communicates regularly with the source, the entity might
be known to the destination end system as well. However, the entity will
most probably not be known to most relay systems. Therefore, a signed
packet can be signed again by a relay system in order to create a “chain of

86

3.3. Layer architecture

trust”. For example, a gateway system can add signatures in the name of the
subnetwork to outgoing packets. The gateway can most probably check the
signatures of outgoing packets, since they are signed by the users of its own
subnetwork. If they are valid, it adds a signature from a more general entity,
e.g., a security entity representing the subnetwork. The next relay system has to
know only the security entity of its neighbor subnetwork. If it can validate the
subnetwork signature and if it trusts its neighbor, it may also trust the users of
the subnetwork. If it trusts the chain of signature, it can add its own signature
before relaying the packet to the next relay system. This process continues
along the route of a packet. The destination end system receives a packet with
a list of signatures, which can be used to decide about the trustworthiness of
the packet content.

The “chain of trust” is used to reduce the number of security entities an
authentication service entity of a relay system has to know. It trades the
overhead in a packet for the memory required by an authentication service
entity and vice versa. In order to support the “chain of trust”, a relay system
has to add a signature if it knows that the next neighbor does not known
the last signing security entity. Consequently, a relay network can omit to
sign packets, if all its neighbor subnetworks are known to each other. This
is especially interesting for high-speed relay networks (“backbone”), which
are not capable to sign all packets due to the low relay times for individual
packets.

Are you again balancing memory and packet overhead?
Yes, the “chain of trust” is comparable to a chain of gate numbers
in this context. It balances data rate required to transport overhead
information in packets and memory required to store states on relay
systems.

Since subnetworks are autonomous, they can decide not to support a “chain
of trust”. Thus, an end or relay system can receive interrupted signature
sequences with the last signer unknown to the system. In such cases, the
authentication service entity can try to gather information about the last signer
from other authentication service entities. If such an information exchange
is possible or allowed, depends on the implementation of the authentication
service and its policy. If the authentication service can not verify the sequence of
signatures, it reposts an error to the caller that requested the check. Depending
on the content of the packet (e.g. a signaling message) and the required level
of trust to proceed, the caller can decide about its further actions.

87

3. Forwarding on Gates architecture

3.3.5. Incremental routing process

The interworking between the transfer service and the routing service is the
most important aspect of FoG. The incremental routing process for determining
chains is the key interaction between both and distinguishes it from other layer
architectures. In contrast to the creation of individual gates via dedicated sig-
naling messages, it provides a mechanism to create multiple gates along a path.
While the former is mainly used in a proactive way, the incremental routing
progress is mainly used (but not limited to) to create gates for connections
in a reactive way. The process is executed while sending a packet towards
its destination. This packet can contain a connection setup request of FoG’s
access protocol or the first higher layer data. The latter is especially useful
for implementing the exchange of short request/response datagrams. The key
point of the process is its flexibility when to switch between both services. The
switching defines the placement of states in a network. As long as transfer
service entities have sufficient information to relay a packet, their associated
routing service entities are not relevant. At the switching point, the states in the
transfer service are not sufficient any longer and the information of the routing
service entity at this point becomes important. The changeovers between both
services have performance and policy implications.

The changeovers influence the performance, because both services come
along with different cost. The routing service complexity is higher than the
complexity of the transfer service, since it decides how the transfer service has
to relay data. Its higher complexity leads to algorithms that are more costly in
terms of latency and resource usage. Changeovers allow balancing complex
decisions in the routing service with efficient and simple relaying in the transfer
service9. From a pure performance perspective, an average number of routing
service requests per relaying action near zero is the best case. It indicates that
a small number of routing service responses can be used for a large number
of relay actions. However, a high number of routing service requests does not
necessarily cause a slower network. As in IP networks, the hardware can be
optimized to handle such requests for most cases in line speed. Nevertheless,
the network equipment could be cheaper, if a different trade-off is selected.

9 The performance implication relates to the process of finding the next gate for a packet. The
complexity of the function of a gate and, thus, its performance requirements may be much
higher. However, the complexity of functions is not an issue of the FoG layer architecture.

88

3.3. Layer architecture

But prices in the real world. . .
Prices for hardware in the real world are not only a function of the
number of transistors. The name of the vendor and the number
of produced pieces are also important – or even more important
– aspects. However, the hardware itself would require fewer tran-
sistors and would be smaller. If all other factors stay constant, this
would enable the vendor to sell it to a cheaper price. Moreover, the
operational costs would be lower due to less energy consumption.

The switch between transfer and routing service does not only have perfor-
mance implications. Its state distribution aspect is more related to policies. The
more gates a routing service entity knows, the higher the probability that is can
reuse one of these gates. More reuse leads to “longer” explicit routes, which,
in turn, reduce the number of route requests by the transfer service. Whether
or not a routing service entity knows about gates depends on the policies of
the transfer service and of the routing service. Both have to allow the routing
service entity to reuse it. Performance considerations are one influence factor of
such decisions. Especially, the announcement of gates representing best-effort
connections between two FoG entities can reduce the routing service load. For
resource intense gates, however, the authorization aspects can dominate the
decision. If a routing service entity requests the creation of an expensive gate
requiring a lot of resources, it may not announce the gate to others in order to
monopolize the usage decisions for this gate. Thus, the system may accept a
high number of routing service requests in order to implement its policies.

3.3.5.1. Workflow

FoG forwards packets according to the route given in each packet. More
specific, forwarding nodes chose the next gate for packets according to the
topmost gate number of the packet’s route. If there are no more gate numbers
in a route, the forwarding node currently processing the packet has to take
further actions. If the route is empty, the packet reached its destination. If
not, the next route segment has to be a destination segment. It specifies the
destination the packet should be forwarded to. The forwarding node informs
the transfer manager about the packet without valid chain information. The
transfer manager requests the next partial route from the routing service, if
permitted by its policy. It uses the forwarding node as starting point and the
information given in the destination segment of the route as destination. If
the destination segment contains requirements, they are used as requirements
for the route request. If no requirements are given, best-effort is assumed.
The routing service calculates the route and returns it to the transfer manager.
The transfer manager replaces the destination segment of the original route
with the segments returned by the routing service. Afterwards, the manager

89

3. Forwarding on Gates architecture

injects the packet to the transfer plane by handing it over to the forwarding
node again. The forwarding node will restart its forwarding process with the
new topmost segment of the route. Details about the process are given in the
context of the implementation in Section 4.3.2.3.

There have to be precautions that this process will terminate and not loop
forever. Theoretically, the transfer manager has to check whether there is no
loop in the sequence of destination information. In practice, a limitation of the
number of subsequent requests for the same packet can be suitable as well.

The route the routing service returns to the transfer manager defines when
the transfer service has to contact the routing service again. Thus, the switch-
over from the transfer to the routing service can be adjusted flexibly by the
routing service. The explicit part of the route (meaning the gate numbers)
specifies a path to the border of the area known by the routing service entity.
The transfer service delivers the packet to the border by relaying the packet
along the path. The process assumes that another routing service entity at the
border takes over and that this other routing service entity knows the next part
of the route to the destination.

Precautions are required in case of lost and retransmitted packets that are
subject to the incremental routing process. Without them, each retransmitted
packet with a partial route may cause the creation of gates. If the gates are
required for a connection, the incremental routing process can resort to the
information transported by the access protocol. An example implementation
using an “at-most-once” sematic is described in Section 4.3.3.

3.3.5.2. Example

Figure 3.12 shows an example with two FoG nodes with their routing service
entities Ri and transfer service entities Ti. Gates and forwarding nodes are
depicted as in Figure 3.8. Black dotted lines represent abstract connectivity
information of a routing service entity exchanged with other routing service
entities.

The process of finding a route starts in the transfer service entity T1 at FN1.
In step 1, a packet with the destination address of FN4 is handed over to
FN1. Without loss of generality, the example assumes that the transfer service
manager has inserted the packet after getting a partial route from R1 before.
Since a destination segment is the topmost segment, FN1 informs its manager.
The manager resolves a route via the routing service entity R1 associated with
its transfer service entity T1. R1 returns a partial route in step 2, which is used
by FN1 to proceed. FN1 looks up the next gate according to the topmost gate
number and relays the packet to gate a. In this example, gate a transports the
packet to another nodes transfer service entity F2 by a lower layer in step 3.
The manager of FN2 of T2 has to request the next route due to the topmost
destination segment. R2 calculates a route to the forwarding node FN3 specified

90

3.3. Layer architecture

R2

R1 FN1 FN4

a

FN2

c d

FN3

b

FN3 FN2 FN5

T1

T2

FN1

FN4

a

FN2

FN3
b

d

FN5

c

2. r = [a, addr(FN3), b]

3. [addr(FN3), b]

4. r = [c, d]

6. [d, b]

5. [c, d, b]

7. []

1. [addr(FN4)]

Figure 3.12.: Incremental routing example with two FoG nodes. Gates are
depicted as arrows with gate numbers as small letters. The anno-
tations show the route of a packet during the steps of the example.

in the destination segment in step 4. The manager of FN2 adds the result to the
remaining route of the packet and hands it over to FN2 in step 5. FN2 continues
by using the topmost gate number and relays the packet to gate c. The process
continues until the route is empty and the packet reached its destination in
step 7.

The example assumes that the existing gates satisfy the requirements given
in the destination segments. If this is not the case, Ri has to request new gates
from Ti.

The destination segment is not necessarily the last segment in a route. As
in step 2 of the example, it can be used to specify intermediate nodes of the
route. Due to security considerations [Rei07], policies can limit the number of
destination segments.

3.3.5.3. Abstract perspective

From an abstract point of view, gate numbers represent decisions of the routing
service that are executed in the transfer service. Interpreting them as indices
in a gate vector of a forwarding node is just a basic example. In general,
gate numbers can be used to shift information from relay systems (e.g. gate
parameters) to end systems or relay systems hosting previous parts of a chain
without telling them about that shift.

For example, a FoG node has two alternatives to encode the address of the
next hop for an Ethernet broadcast domain. First, the node can create one gate

91

3. Forwarding on Gates architecture

that stores a MAC address per neighbor. Second, it may create only one gate
for the Ethernet interface and store the MAC addresses of the destination node
in routes. The gate would use the MAC address given in the route in order to
determine the next hop for a packet. In general, moving states enables stateless
gateways, which do not have to store an address mapping (e.g. between IP and
MAC addresses). The shift is transparent, since others just operate with lists
of gate numbers and do not need to know the meaning of each number. In
Section 3.6.2, interoperability solutions for IP exploit this shift to implement
stateless gateways.

If a transfer service entity would like to make it hard for others to guess
MAC addresses, the routing service can encrypt the address with a key known
only by the transfer service. The transfer service can now check, whether a
MAC address given in a route has really been provided by its routing service.
The scheme used to encode the decision of the routing service can be adapted
to the level of security, which is required by the network policy. Similarly, a
node can increase the cost for an attack that guesses gate numbers by avoiding
“simple” gate numbers such as 1 and 2 and by using random or encrypted gate
numbers with more bits (as much as the policy requires).

Knowing the representation of decisions and how they are secured, intro-
duces dependencies between the routing and transfer service. For example,
the scheme itself and its parameters, like keys, must be known to both. In an
inter-network scenario that requires both entities being operated by the same
administrative domain. Fortunately, the incremental routing process ensures
exactly this. By not announcing the gate c and d in the previous example, R1 is
forced to involve R2 in the end-to-end route calculation. R2 is therefore getting
the chance to insert self-generated route segments into the route. How R2 is
encoding its decision for T2, is not known by R1.

3.3.6. Report and request functional blocks
The transfer service has to report its capabilities and can report reusable
functional blocks to the routing service. These reports are not related to nor
triggered by connections. A transfer service entity can publish its capabilities
and blocks without waiting for a request. Requests for functional blocks are
also independent of connections in order to allow a proactive setup.

The base for reports and requests are bijective names (labels in most cases)
of the functional blocks of a transfer plane entity. They are assigned by the
transfer service and used to describe the transfer service plane to the routing
service. The routing service uses these names to describe where to add newly
requested gates. These names are only exchanged at the interface between
the routing service and the transfer service. In general, they are neither used
between two transfer service entities nor between two routing service entities.
Typically, the routing service assigns addresses to the forwarding nodes in

92

3.3. Layer architecture

order to hint at their location in the network graph. These addresses – not the
functional block names – are exchanged between routing service entities.

The creation of individual functional blocks on remote systems can be im-
plemented with a simple request/response signaling scheme. The creation of
multiple dependent functional blocks in several systems can be coordinated
with protocols comparable to RSVP. Moreover, the incremental routing pro-
cess can trigger the creation of multiple functional blocks on relay systems.
It efficiently combines the delivery of the first packet (e.g. some signaling
message or the first (and maybe only) data packet) with the creation of blocks.
The requirements that should be fulfilled by these blocks are stored in the
destination segment of a route.

3.3.7. Interaction with lower layers
Due to the recursive layer model, the lower layers are accessed via the same
interface FoG provides to higher layers. Analog to the encapsulation of the FoG
details, the interface hides the implementation of the lower layers from FoG.

The transfer manger uses the Layer interface functions bind and connect
to establish (N-1)-connections between transfer service entities. Since these
functions require names as parameters, the transfer manager uses names of
transfer service entities that have to be bijective in the scope of a lower layer.
Comparable to the identifiers for functional blocks required for the interface
between the transfer and the routing service, these names are only valid for
the interface between the transfer service and the lower layers. The names are
required to identify multiple FoG transfer service entities attached to the same
lower layer.

Gates represent (N-1)-connections in the FoG world. They use the read/
write functions provided by the Connection interface to send and receive
FoG packets via these connections. Thus, fragmentation of FoG packets has
to be done by the lower layer if required. The function getCapabilities is
used to request information about the capabilities of the lower layer. The
capability information can be reported by the transfer service to the routing
service directly. Alternatively, gates can be enriched with this information.
If such a gate is reported to the routing service, the routing service learns
about the capabilities implicitly. In particular, gates representing best-effort
(N-1)-connections are good candidates for the implicit announcement of non-
functional “link” capabilities.

In order to attach to a lower layer, a FoG node has to perform the following
steps:

1. The transfer manager is informed about a new lower layer by the operat-
ing system.

93

3. Forwarding on Gates architecture

2. The transfer manager requests a list of neighbor transfer service entities
reachable through the lower layer via the getNeighbors function. Such
instances are identified by a common name prefix, like “fog://”.

3. The transfer manager sets up (N-1)-connections to all neighbors on the
list via the connect function. In general, such connections will be bidirec-
tional. The contacted node will perform step 8.

4. These connections are represented as best-effort gates, which are reported
to the routing service.

5. In order to deal with dynamic changing networks, the transfer manager
can register for events, such as joining or leaving nodes. As reaction to
the events, the transfer manager can close old connections or create new
once.

6. The transfer manager determines a name for its point of attachment to
the lower layer. As mentioned above, the name has to be bijective in the
scope of the lower layer. Such names can be constructed by concatenating
the prefix mentioned before and a random suffix. If the generated name is
already used by another entity (test with function isKnown), the transfer
manager can retry to create another one. Since the length of these names
is not limited10, the namespace is sufficiently large that this algorithm
terminates.

7. The transfer manager calls bind with the name generated in step 6. The
binding announces the presence of the FoG entity in the lower layer.

8. Nodes that have not been contacted in step 3 may now contact the
entity by themselves. The transfer manager is informed about incoming
connections via events for its binding. It can accept such incoming
connection requests via the function getConnection and integrate these
connection analog to step 4.

Other orders of these steps are possible. In particular, steps 6 to 8 can be
performed at the start or parallel to the others. Systems acting purely as end
system can omit the steps 6 to 8, if the previous steps have been successful.
Different policies (e.g. connections/gates only to a specific subset of neighbors)
or manual system configuration are possible as well.

10 In practice it is of course limited. However, the memory limitations are typically not so severe
that they are relevant for names.

94

3.3. Layer architecture

3.3.8. Related work

An earlier version of the FoG architecture that was not designed for a recursive
reference model and that was focusing on gates representing lower layer
connections only is described in [LVMT12].

FoG shares its separation of transfer and routing service with the PFRI
[CGP07], which uses labeled “channels” and anonymous nodes to model the
available connectivity of lower layers. The channel labels are globally bijective.
Routes are loose source routes that contain the labels of the channels a packet
should traverse. Channels are comparable to FoG gates representing lower
layer connections. However, the PFRI channel labels are not comparable to
gate numbers, since gate numbers in FoG are only bijective in the scope of a
forwarding node. FoG prefers to name forwarding node and not gates. The
assumption is that a network graph has more edges than vertices, and thus,
less addresses are required if nodes are addressed. The typical Internet-like
graphs used in the performance studies support this assumption (cp. Section
5.1).

DRUID [TBD+11] is a proposal for a combined research project of eight
universities in the US. Since Joe Touch’s and Abraham Matta are part of the
project, their recursive approaches RNA [TP08] and RINA [Day08a, DMM08],
respectively, are the base of the recursive approach. DRUID used the three
components recursive block, translation table, and persistent state. The re-
cursive block represent protocol functions and is reused to implement layers
of different scopes. One single recursive block exists, which can adapt its
functionality (e.g., flow control, sequence control, compression, encryption, and
fragmentation) to support various requirements. The translation tables link the
recursive layer by mapping names between them and perform routing. The
persistent state is used by the recursive block in the context of the translation
tables. The project plan [TBD+11] gives an abstract overview without too many
details about the protocols or how functions within the network are supported.
DRUID is also supporting “the dynamic composition of services”, uses a “re-
cursion interface”, and satisfies requirements with the capabilities provided by
the system [TBD+11]. However, DRUID is proposing a single recursive block,
which is repeated to implement layers of different scopes. Reusing aspects and
the interworking between transfer and routing service are not explained. FoG
is a solution for layers with intra- and inter-network scope and not for arbitrary
scopes.

Pathlet [GGSS09] is a routing protocol, which operates over vnodes, pathlets,
and forwarding identifiers. As stated in Section 3.2.4, the communication model
is similar to FoG’s model. However, Pathlet focuses on the routing aspect and
provides source routes for packets. It does not include a special relaying
PCI format or an interworking between transfer and routing service. Reuse
aspects are implicitly included since it reuses pathlets for multiple connections.

95

3. Forwarding on Gates architecture

Again: Isn’t it just an MPLS plus IP re-mix?
A FoG-similar behavior might be achievable by stacking IP and
MPLS packets recursively. Let’s assume a FoG packet with a route
containing a destination segment followed by an explicit segment
followed by a second destination segment is mimicked with IP
and MPLS. This requires the creation of an IP packet containing
an MPLS packet that, in turn, contains a second IP packet. The
stacking is required to avoid states on the destination system of
the “outer” IP packet. The combination causes a lot of overhead
for the repeated IP header fields (e.g. source address). Moreover,
mechanisms to determine the stacking and the information required
for it (addresses and LSP labels) would be required. Furthermore,
all of the surrounding architectural questions, such as how to get the
requirements of a connection, would have to be resolved. Basically,
FoG is the solution for these problems. It builds upon the ideas of
IP and MPLS (and others); but it is a little bit more than just the
sum of its parts.

However, non-functional aspects of the reuse decision, state distribution of the
transfer service, and dependencies between pathlets are not part of Pathlet.
In particular, it is difficult to enforce policies restricting the set of customers,
which are allowed to use such links. For example, the authors of [GGSS09]
state that Pathlet would require a lot more states and cooperation between
autonomous systems about how to set up their forwarding structure in order
to enforce rules based on the upstream autonomous system/hosts. FoG uses
the incremental routing process to deal with such issues.

SILO is an architecture that allows the dynamic composition of building
blocks, called “services”, based on application requirements. A “method” is an
implementation of a service. A silo is a set of methods, which are constructed
by a “service agent” for a connection. Each method provides service interfaces,
called knobs, which allow the configuration of the methods by the service
agent. A method seems to be comparable to a FoG gate, a silo to a chain,
and the service agent to the transfer service manager. However, SILO and
FoG differ mainly in two aspects. First, FoG supports explicitly functional
blocks within networks by using a special hybrid relaying PCI format and
an incremental routing process. The SILO architecture description does not
mention such issues. Moreover, the authors use examples local to one system
(example in Section II.b in [DRB+07]). Second, the reuse of methods seems to
be not supported by SILO. Consequently, there is no class of functional blocks
comparable to the FoG forwarding nodes.

96

3.3. Layer architecture

The ANA framework defines Information Dispatch Points (IDP), which are ab-
stract placeholders for functional blocks and information channels [KHM+08].
An information channel represents lower layer connectivity between two ANA
nodes. A functional block sends packets to an IDP and the IDP relays the packet
to either another functional block or an information channel. The network can
re-configure the linking between IDP and functional block and information
channel, respectively, at runtime. FoG represents lower layer connectivity as
gates and information channels are not required. Moreover, the communi-
cation model differs in the way functional blocks are connected. While IDP
“identifiers” and gate numbers seems to be similar, ANA integrates the func-
tionality of forwarding nodes in its functional blocks. Thus, a chain can only be
constructed by knowing the implementation of the multiplexing functionality
within an ANA functional block. Consequently, the separation of relaying and
routing is difficult and not as easy as in FoG. Since each functional block in
ANA has to decide about the next hop for each packet, the state information
about connections have to be available at each functional block. In contrast,
FoG combines such information in a route.

The solutions for dynamic stacks mentioned in Section 2.5, NetLets and
SONATE, are mainly focusing on the selection and composition of stacks
on end systems. Both are proposing algorithmic solutions for deriving stack
“workflows” from application requirements. Thus, the protocol issues discussed
in this book are orthogonal aspects. The FoG layer architecture provides a
“place” for such algorithms in the routing service and collects input parameters
for them such as available functions, connection requirements, and lower layer
capabilities. However, FoG does not specify an implementation. The algorithm
defined in Section 4.4.3 supports the claim that FoG is implementable but do
not cover all aspects of the solutions in the state of the art. As discussed in the
outlook, a combination of FoG and, e.g., SONATE, seems to be very beneficial
in order to combine their advantages.

The Role-based Architecture (RBA) “provides a model for packet header pro-
cessing, not a mechanism for routing packets” [BFH03]. While the algorithm is
not defined by FoG as well, FoG defines the interaction between relaying and
routing. A FoG routing service knows about existing functional blocks and
system capabilities and can build its routing decision upon that information.
It is also responsible for enforcing “sequencing rules” that define the order of
functional blocks (“roles” in RBA). RBA does not define these issues required
for a complete layer architecture. It may be possible to use the FoG layer
architecture and modify the transfer service according to the RBA model.

The FoG layer architecture does not limit the mechanisms and protocols
used for setting up gates. In particular, it may be possible to adapt existing
QoS-signaling protocols such as RSVP and NSIS for this task. Moreover,
protocols specifically designed for QoS and SLA handling between ISPs such as
the Automated Bandwidth Allocation across Heterogeneous Networks (AutoBAHN)

97

3. Forwarding on Gates architecture

system [GÉA] may be useful to implement the gate setup.
A FoG route requires at least one node. It is either present explicitly as

destination segment or implicitly as source node, at which the route starts.
The route description of FoG degenerates to a list of concatenated edges
represented by one or more explicit segments. It degenerates also to IP since
even IP includes a single edge in form of the Protocol field. Forwarding a
packet to a destination node is a means to an end for IP to get the data to the
UDP/TCP connection end point.

3.4. Examples
The following three examples serve two different purposes. On the one hand,
they demonstrate the rather abstract issues discussed before in a practical
context. On the other hand, they emphasize the broad variety of supported
network configuration with FoG. Therefore, the examples illustrate the differ-
ences and similarities with current networks. The first example shows a setup
not possible with today’s networks. It takes up the motivating use case from
Section 3.1.1. The other examples show how FoG emulates an IP and a MPLS
network, respectively. IP and MPLS have been chosen for comparison because
they represent a connection-oriented and a connectionless network and are
both in practical use.

One of the most important features of FoG is its flexibility. FoG can be config-
ured in a way that it emulates current systems, such as IP and MPLS. If special
configurations are deployed on all nodes in a network, the network will act
like an IP and MPLS network, respectively. Without providing a mathematical
proof, these reductions to homogenous configurations show that IP and MPLS
are special cases of FoG. Moreover, the first example demonstrates that FoG
supports a configuration neither supported by IP nor MPLS. Consequently,
FoG’s set of supported configurations is a real superset of the configurations
from IP and MPLS.

Furthermore, the reduced FoG networks highlight possibilities for interop-
erability solutions, migration strategies, and implementation possibilities for
FoG itself. While the former two issues are discussed in Section 3.6, the latter
is the base for parts of the implementation presented in Chapter 4.

3.4.1. Motivating use case
The use case comprises an end system or an end subnetwork using functions
within another subnetwork. In this example, Google requested prioritized
relaying from Deutsche Telekom and relaying with guaranteed non-functional
properties from AT&T. Google wants to decide which traffic to map to these
transport capability. For example, live videos streams should be prioritized in

98

3.4. Examples

Google

Deutsche Telekom

FN1 FN3 ga

RG

FN4

FN4 FN2

gc

ga
FN3 gc

gd

High priority; 100 MBit/s

FN2

High priority

gd

gb

gb

AT&T
FN1

gr

5ms; 150 MBit/s

gr

gh

RDT RA

Figure 3.13.: FoG setup for use case. The available gates gi in the transfer
service are depicted as edges. Labels indicate the non-functional
properties of a gate, if they differ from best-effort. Dashed lines
indicate connectivity, for which the gate numbers are not known.
Forwarding nodes FNi are shown as vertices. The boxes Ri at-
tached to each network represent the routing service entity of a
subnetwork. The graph within the box represents the knowledge
of the routing service entity about the scenario. To enhance the
readability of the figure, the labels for the gate are not repeated,
even though they are known to RG.

order to improve the delay in networks with high load. Furthermore, all oper-
ators do not want to process signaling messages for each video transmission.
Such messages would delay the start of a video stream and would increase
the load of the relay systems in the networks of AT&T and Deutsche Telekom.
More details are given in Section 3.1.1.

Figure 3.13 depicts the scenario as an example FoG inter-network with
three subnetworks. The Google subnetwork uses functions provided by the
subnetworks of AT&T and Deutsche Telekom. For simplicity reasons, the figure
shows only the elements required for transmissions in one direction. The other
direction can be implemented by adding more gates. The routing assigns
addresses addr(FNi) to forwarding nodes if required.

The routing service entity RG of Google has been informed about gate ga
and gb by its own transfer service. Previous signaling with Deutsche Telekom
caused the creation of gates gc and gd. They are known to RG either because
RG initiated the creation or RG got informed by RDT. For the same reasons, RG
knows about the gate gr through the AT&T network.

The routing service entities of the function provider networks RA and RDT

99

3. Forwarding on Gates architecture

are not shown in detail. They delegated the usage decision about gr and gd to
RG. In addition, Deutsche Telekom announces a best-effort relaying function gc,
which can be used by others as alternative for gd. Gate gc may be visible not
only for Google but for other subnetworks as well. AT&T does not announce
the gate number of gh, which is its best-effort alternative for gr. Thus, Google
is forced to include the routing service of AT&T in best-effort routing decisions
between FN2 and FN3. The example assumes that the routing of AT&T has
enough information to calculate such routes.

3.4.1.1. Route opportunities

Without loss of generality, route requests from FN1 to FN4 are considered in the
following. Other forwarding nodes FNx beyond FN4 can be reached by adding
a destination segment with addr(FNx) to the routes. FNx may reside within
the subnetwork of Deutsche Telekom or outside. In the latter case, FN4 is a
“border” forwarding node and gate gc and gd represent lower layer connections
through the subnetwork.

RG knows various routes from FN1 to FN4. At least four routes can be
generated by combining ga or gb with gr and gc or gd. Even more routes are
possible, if partial routes are considered. Depending on the requirements of a
connection, the routing can choose one. Some alternatives are discussed in the
following:

1. [[gb, gr, gd]]: This explicit route (with a single explicit route segment)
provides the best QoS and could be used for live videos. Neither the
achieved delay nor the data rate is guaranteed.

2. [[ga], addr(FN3), [gd]] or [[addr(FN3), [gd]]: These are partial routes
using best-effort relaying for transporting the data to Deutsche Telekom.
Thereafter, the prioritized function in the network of Deutsche Telekom
is used.

3. [[gb], addr(FN3), [gd]]: This partial route uses prioritization from Google
and Deutsche Telekom and relies on overprovisioning in the AT&T net-
work. It might be an alternative for route 1 if the AT&T network is not
highly loaded.

4. [[ga], addr(FN4)]: This is a partial best-effort route that requires Deutsche
Telekom to decide about the usage of gate gc on its own.

5. [[gb], addr(FN4)+20 Mbit/s]: This partial route prompts AT&T and Deu-
tsche Telekom to setup additional gates supporting the non-functional
requirement of 20 Mbit/s. Since both function providers delegated the
usage decision of gr and gd, they are not allowed to map this new con-
nection to these gates.

100

3.4. Examples

Neither AT&T nor Deutsche Telekom tracks the connections that Google maps
to their gates. They just enforce the maximum throughput. Whether Google
does the bookkeeping depends on Google’s goals. Google could tread the gates
as virtual links and map connections to them without checking the remaining
capacity. Some kind of dynamic video encoding like Scalable Video Codec (SVC)
might take over the responsibility to deal with the limitations. If the QoS for a
connection is important, Google can decide to track the usage of these gates by
mapping the connections using them to gates local to its transfer service entity.
The local transfer service entity reports the current throughput of these local
gates back to the routing service entity, which can use these measurements
as approximation of the traffic traversing the remote gates. If, for example,
Google decides to use route 3 for all connections using gate gd, gate gb can
provide the approximation of the throughput. Exact throughput measurements
might be reported to RG by RDT, e.g., periodically. They differ from the local
approximation by the different packet sizes due to the variable packet header
size (e.g. added authentication information as discussed in Section 4.3.2.1). If
the throughput of single connections should be tracked, Google can create a
local gate per connection, which is neither reused nor announced by RG to any
other Ri.

3.4.1.2. Discussion

The technique used to implement a gate is hidden by the gate number and
the abstract gate description used by the routing service. For example, Google
does not know – and does not need to know – the subnetwork protocols and
algorithms used to enforce the non-functional properties for the gates in the
network of Deutsche Telekom. This is equivalent to IP that hides the link layer
technique. However, FoG additionally hides the non-functional aspects. In
contrast to IntServ and DiffServ for IP, there is only one mechanism to use such
QoS enhancements and not a combination of TOS field and classification states
on routers.

As function user, Google takes over the responsibility to map its connections
(and the connections for which Google participate in the incremental routing
process) to gates known by its routing service entity RG. No signaling is
required as long as the parameters of the functions (e.g. maximum throughput)
remain constant. The delegation ensures that Google can choose its rules for
the mapping without notifying the function providers. Moreover, Google can
decide whether to do bookkeeping on its own or to use the “virtual links” in a
best-effort fashion. This flexibility of the function user is a central benefit of
FoG.

The mapping states are separated from the function states. Google does not
signal any mapping states to AT&T and Deutsche Telekom. The two function
providers execute the function of their gates without knowing the connections

101

3. Forwarding on Gates architecture

Not even a small mapping state on FoG relay systems?
Well, a relay node must know that a gate number x refers to func-
tional block y. However, this mapping is omitted due to two reasons.
First, it does not require any memory, if it is implicitly given. In
particular, implementations using arrays of functional blocks and
gate numbers as indices for such arrays store this relationship im-
plicitly. Second, even if it is not so simple, a trivial mapping such
as “for gate number x use functional block y at position z of an
array/list” is expected to resolve this issue. The memory required
for expressing this knowledge is limited by the number of gate
numbers a functional block has. If functional blocks have a fixed
maximum number of aliases, the number of such rules is limited
by O(#functional blocks). Thus, it has the same complexity as the
function states themselves.

mapped to them. As intended by the design, they profit by not having to store
mapping states. The movement of mapping states is even possible if a route is
not explicitly defined for all hops. As shown by the partial route 3, addresses
can be integrated in routes.

Partial routes such as route 2 and 3 are not implementable with today’s
protocols as discussed for the stacking of MPLS and IP in Section 3.1.2. While
MPLS can take over the role of the first explicit route segment [gb]/[ga] and IP
the role of the destination segment addr(FN3), the last explicit route segment
[gd] cannot be stored in a packet directly. The transition from IP back to MPLS
requires mapping states at the IP router doing this transition. In this example,
it requires a mapping state on the IP node emulating FN3. In contrast, a FoG
route can include the functions after an intermediate address directly and,
thus, enables the placement of mapping states on systems at the edge of an
inter-network – at Google – or even on end systems. Since FoG operates over
abstract functions, the flexible placement is possible not only for relaying but
also for application-related functions.

In most cases, setting up gates requires signaling and takes time. If done in a
reactive way the delay for the setup is similar to the delay introduced by today’s
resource management protocols, like RSVP. However, if done proactively, no
signaling delay occurs and only the minimal delay for the route calculation is
introduced. The proactive setup is especially useful for connections having best-
effort requirements, since the routing can excessively reuse existing best-effort
gates as shown in the example.

Section 3.7.1 picks up the use case once again and reviews the fitness of the
FoG layer architecture for it in general.

102

3.4. Examples

FNL1
FNC

FNB

141.24.1.2

Entity prefix: 141.24/16

1.2.3.4
1

FNL2

141.24.1.1

141.24.1.3

4.3.2.1

2

3

4

5
6

7

tu-ilmenau.de

Figure 3.14.: Example routing service entity emulating IP forwarding

3.4.2. Emulation of IP

Only a subset of FoG’s features is required for an emulation of IP packet relay-
ing.11 Especially non-functional aspects and most functions on relay systems
can be omitted. Functional blocks on end systems are either representing
TCP- or UDP-functionality. Best-effort connectivity between two FoG entities is
represented as usual with gates representing (N-1)-connections. These gates
are reported to the routing service, which can use OSPF or BGP (or both) to
distribute the connectivity information among its entities.

The routing service uses IP addresses (either IPv4 or v6) as names for
the forwarding nodes. Since IP names the interfaces, FoG has to create one
forwarding node per lower layer attached to a transfer service entity. Figure 3.14
shows the routing service entity of a FoG node, which is attached to two lower
layer (in other words: have two network interfaces). The node has one central
forwarding node FNC, which connects the two “network interface forwarding
nodes” FNLi. The names of these “network interface forwarding nodes” can
also be used as binding names of the FoG entity at the corresponding lower
layer (cp. step 6 in Section 3.3.7). The forwarding node FNB represents a higher
layer binding with the name “tu-ilmenau.de”.

ARP and MAC-addresses are part of a lower layer encapsulating an Ethernet.
Both are not visible to FoG and – depending on the lower layer – may not be
present at all.

11The text focuses on the most important aspect of IP, which is the packet relaying. Other issues,
like fragmentation and ICMP, are not emulated. Maybe it is not possible to emulate all aspects
of IP with FoG. However, I wonder if it is a good sign that not all problematic design issues can
be emulated by FoG.

103

3. Forwarding on Gates architecture

3.4.2.1. Forwarding

If a higher layer entity requests a connection to a remote higher layer entity, it
specifies the name the remote entity used for its binding. The IP-like routing
service translates such names to IP addresses obtained from its information
base. Alternatively, it can access a DNS-like server. Depending on the available
IP addresses, two alternative FoG-enabled DNS implementations are possible:

1. Only the “network interface forwarding nodes” have IP addresses. These
addresses can be used to forward packets to the node. An extra name
is required to identify the forwarding node representing the binding
on the node. While the higher layer name would be suitable as extra
name, a shorter version analog to the port numbers of the IP bindings
would shorten the route. Even more efficient for FoG is the usage of
the gate numbers required to relay a packet from the “network interface
forwarding node” to the forwarding node representing the binding. In
the example shown in Figure 3.14, a FoG-enabled DNS answers as follows:
“tu-ilmenau.de” = [141.24.1.2, [2, 4]]

2. If the forwarding node representing the binding has its own IP address, a
FoG-enabled DNS answers as follows: “tu-ilmenau.de” = [141.24.1.1]

Independent of the two alternative implementations, relay systems have to
handle partial routes with at least one destination segment containing an IP
address. Since IP is doing hop-by-hop forwarding, each transfer service entity
has to contact its routing service entity, which just responses with the explicit
route through the node itself followed by the original destination segment
with the destination address. Thus, the routing service entity in Figure 3.14
might have the following FIB entry for FNL1: prefix(4.3/16) = [2, 5, 7]. For each
destination address 4.3.x.y with this prefix, the destination segment is replaced
by [[2, 5, 7], 4.3.x.y]. Consequently, an incoming packet at FNL1 traverses the
gates 2 and 5 on the node itself and leaves it through gate 7. The next node
receives a packet with a destination segment as topmost route segment.

The reverse route is set on the source system and is not traced on relay
systems. Analog to two alternative implementations of the FoG-enabled DNS,
the reverse route can contain either

1. the address of the “network interface forwarding node” and an explicit
segment with the route from this forwarding node to the forwarding
node representing the connection end point or

2. the address of the forwarding node representing the connection end
point.

104

3.4. Examples

3.4.2.2. Extensions

The basic emulation described before can be extended to model the IP behavior
more closely. For example, a route can contain multiple destination segments
with IP addresses of relay systems in order to emulate loose-source-routing. In
order to emulate strict-source-routing, the requirements fields of the destination
segments can be used to indicate that the destination segment specifies exactly
the next hop address. However, strict routes are expressed more efficiently
with explicit route segments.

The differentiation of traffic according to a priority field can be emulated
with requirements specified in the destination segment. In contrast to IP, this
even allows to set the priority for each part of the route individually.

3.4.3. Emulation of MPLS
In contrast to the IP emulation, the emulation of MPLS packet relaying is
focusing more on the explicit route segment, which contains the label stack of
MPLS. Gates represent one hop of LSPs. Despite the last gate of a LSP, they
put the gate number of the next gate of the LSP on top of the stack of gate
numbers12. Afterwards, they relay the packet through a lower layer connection
to the next FoG node. Thus, these gates are comparable to the best-effort gates
used in the emulation of IP with the extension regarding the route modification.
A packet that “entered” one gate of the LSP travels through the gates until the
end of the LSP without any routing service requests.

Not all these gates are reported to the routing service. The transfer service
reports one gate per LSP. It starts at the forwarding node before the first gate
and ends at the output forwarding node of the last gate.

3.4.3.1. Forwarding

Figure 3.15 shows an example network with one LSP consisting of three gates
gi. Gate gi adds the gate number of gi+1. Gate g3 is the last one, which does
not add a gate number. The routing service is informed about a single gate
representing the whole LSP.

As described for the examples before, a higher layer requests a connection
based on a destination binding name. MPLS itself does neither provide desti-
nation name nor a routing. It depends on a second protocol such as IP with a
destination-based relaying PCI format that provides the information required
to calculate an end-to-end path. As shown for the previous examples, such
a relaying PCI format is possible. Therefore, this example assumes that the

12 If the topmost segment of a route is a destination segment, the gates add an explicit route
segment in order to enable the storage of the gate number.

105

3. Forwarding on Gates architecture

Transfer service Routing service

FNS
g1 g2 g3 FND FNS

FND g1

Append g2 Append g3

Figure 3.15.: Gate setup emulating MPLS relaying

routing decides to route to a binding name “tu-ilmenau.de” by using the partial
route [[3], “tu-ilmenau.de”].

The packet starts at forwarding node FNs, which relays the packet to gate g1
by using the gate number from the explicit route segment. Gate g1 adds the
gate number of g2 to the route and relays the packet to the next forwarding
node. The process continues until g3, which do not add an additional gate
number. FND receives a packet with the partial route [“tu-ilmenau.de”] and
has to request the next partial route from the routing service via its manager.

3.4.3.2. Extensions

Label stacks are emulated naturally by multiple gate number in an explicit
route segment. If the route from the previous example should not stop after
the LSP with the starting label of g1 but go on with a LSP with the starting
label x, the route has to be modified as follows: [[g1, x], “tu-ilmenau.de”].

3.5. Political aspects
An inter-network architecture such as FoG is only subject to network neutrality
in a narrower sense as defined in Section 2.4.5. The bundling issues are non-
technical.

The features of an inter-network define “how much” traffic engineering it
supports. Supporters of a neutral best-effort network favor an inter-network
architecture, which does not support any traffic engineering at all. Since FoG
includes mechanisms for handling functional and non-functional requirements,
it may not be acceptable for them. However, the connection-oriented add-ons
for the Internet presented in Section 2.4.2.2 and the classification of relaying
PCI formats in Section 2.3.1 illustrate that it is very hard or even impossible to
design a network which does not support any traffic engineering. Even today’s
Internet can support QoS.

106

3.5. Political aspects

FoG seems to be more acceptable for a neutral-offering network. It is in
particular more suitable to implement a neutral-offering network than IP. This
claim builds upon on two reasons. First, FoG supports QoS in an integrated and
scalable way. A large number of QoS-enabled connections can be supported
without the overhead required in an IP network. This lowers the costs of
providing QoS, which, in turn, might lower the deployment hurdles discussed
in the next section. Second, FoG enforces the neutral offering of QoS by
covering its usage up. With FoG, a function user (e.g. an end user or a network
operator) can request a gate with non-functional properties without specifying
for which connection and, thus, service it is used. If the usage decision is
delegated to the routing service entity of the requester, the architecture does
not offer the provider of a gate a way to influence the usage of the gate any
longer. Nevertheless, an operator can try to gain some knowledge about the
connections based on the routes of packets traveling through a gate. Obviously,
different connections have different routes. However, the reverse is not true.
First, a route can contain variable gate parameters. Second, a function user
can mask its own multiplexing decisions by generating different routes for all
packets of one connection. This can be done, for example, by inserting random
gate numbers that are ignored in the transfer service.

Traffic classification by more or less deep packet inspection is also more
complicated as in IP. First, FoG does not use well-known port numbers. Thus,
an efficient way to classify traffic is eliminated. Second, the names of the source
and destination end systems can be hidden from relay systems easily by using
a specific routes structure. Such routes include explicit route segments for
defining the forwarding from the source to a relay gateway and from another
gateway to the destination. The route in-between both gateways is specified
by a destination segment. Since the routing service entities of relay networks
normally do not known the details of the end networks, the relay networks are
not able to determine the source or destination end systems based on explicit
routes. The relay systems are only aware of destination names used for the
part of the route between two gateways.

Besides the non-functional aspects of relaying, FoG enables a function user
(which may be the end user) to have better control over the path its packets
take. As outlined in [CWSB02, Sec. 3.1.4] and supported by the results of the
New Inter-Domain Routing Architecture (NIRA) [YCB07], this enhanced control
by users foster competition among network operators.

In summary, FoG masks natively the mapping between gates and services
using them. This puts a high burden on those who try to violate the “neutrality”.
However, FoG does not solve the political issues. Although it supports or even
suggests a “neutral offering” of gates, it does not enforce it. If the “neutral
offering” idea should be enforced, the regulator has to ensure that an operator
offers the same gate usage price to everyone. Furthermore, the prices for
gates usage and the fraction reserved for best-effort traffic has to be subject to

107

3. Forwarding on Gates architecture

political decisions.

3.6. Deployment and interoperability
The deployment of new protocols and migration strategies from existing pro-
tocols to new ones are important commercial issues. If legacy network or
applications should not be migrated, interoperability solutions become impor-
tant as well. A combination of all these aspects can slow down or even prevent
the introduction of new protocols. An example is the slow deployment of IPv6
[DFV07, CGKR10].

In this book, I am discussing a research proposal for a new inter-network
architecture. Support for legacy applications or migration strategies from
today’s Internet to FoG are not my focus. This book defines a goal and not the
“way” to this goal. If the goal fits the business and society needs, migration
strategies will be found. As the history of IP shows, even the migration strategy
of re-implementing applications for a new inter-network might be suitable in
such cases. The history of OSI shows the great impact of business and political
constraints. Technical aspects seem to play a minor role in the question whether
an inter-network approach is adopted in practice. Thus, FoG’s features that
support business and political goals seems to be very important.

By its connection-oriented aspects, FoG favors business cases such as the
motivating example introduced in Section 3.1.1. Its build-in authentication
service enables a secure, dynamic signaling. Since the authentication question
can be decided by the network automatically, the network can react to requests
much faster. Such fast reactions may even be required by some use cases. For
example, the ability to request QoS is much more useful for a user if it does
not have to wait a week until multiple subnetwork operators agree on how
to support its request. Furthermore, FoG supports the trend of providing
arbitrary functions in the network. By distributing small functional blocks all
over multiple subnetworks, it can be a base for a “distributed cloud”. With
a suitable configuration, FoG can enhance privacy since no source addresses
are required. Even explicit routes are not hampering privacy. To alter explicit
routes, a gateway can insert random gate numbers, which are ignored later on
in the transfer service. As discussed in Section 3.5, FoG also helps to create a
market for functions, which is neutral with respect to applications.

Whether all these aspects are sufficiently strong to open an opportunity
for FoG is not clear. According to Handley “fear or greed” [Han06] are the
main drivers for network operators to adopt new solutions. The question is
whether they will be great enough in the future. The diverse und uncertain
forecasts for the requirements of future applications (cp. Section 3.1.4) prevent
an answer. However, the slow adoption of innovations in the last decades (IPv6,
MobileIP, multicast, and more) indicate that the market forces are not as strong

108

3.6. Deployment and interoperability

as in the creation time of IP. Connectionless networks have been pushed by the
upcoming (personal) computers and by the bursty traffic pattern of their appli-
cations. Today, there seems to be no radical new traffic pattern that requires
a different kind of network13. However, the trend towards (video) streaming
applications seems to favor connection-oriented networks. FoG provides a
suitable middle ground, which can combine the best of the connection-oriented
and connectionless worlds.

Nevertheless, deployment and interoperability possibilities are important
for the acceptance of a new inter-network architecture. Thus, the following
discusses the influence factors for a real-world deployment of FoG. More details
are given in the report of the “G-Lab_FoG” project [LVMT13]. A production-
ready solution is not given and is subject for product development. Due to the
dominant position of IP, a deployment in an IP world and interoperability with
IP are considered, only.

3.6.1. Deployment
According to the general design of inter-networks (cp. Section 2.4.4), a FoG
inter-network is deployed by making all gateways between its subnetworks
FoG-aware. Internally, the subnetworks can use different network technologies,
like IP. A subnetwork has to deploy FoG on its end systems that communicate
via the inter-network as well, if interoperability scenarios should be avoided.

Gateways and end systems are updated regularly. Updates enhance either
hardware or software of operators and users and can include the deployment of
FoG. Operators have to buy new hardware regularly in order to provide suffi-
cient capacity to satisfy the increasing demand. Thus, FoG-enabled hardware
can be deployed in the long run via the regular update cycles for hardware. The
same applies for consumer hardware such as notebooks, tablets, and mobile
phones. For such devices, a pure software solution can be sufficient as well
because the computational overhead for processing FoG packets at end systems
is low. Updates for software are even faster than updates for hardware. For
example, operating systems support update mechanisms with regular intervals
of weeks or month. Special hardware is required only if the generation of
signatures done by the authentication service should be speed up.

Due to the size of the Internet, there will be no “flag day” at which the whole
Internet switches from IP to FoG. At least in the beginning, IP and FoG have
to coexist and the FoG deployment will be partial. A partial deployment has
to link FoG “islands” of various sizes through an IP-based inter-network. For
example, two FoG subnetworks can be linked via gates representing tunnels

13 The applications on mobile nodes show basically the same traffic patterns as the applications on
fixed nodes. Thus, mobility requires a more dynamic handling of mapping information but
does not influence the question whether it requires connections or not. Both are possible in
mobile networks as shown by GSM and UMTS networks.

109

3. Forwarding on Gates architecture

through the IP networks. This tunneling technique is used in the emulator
implementation to represent tunnels through Ethernet as well (cp. Section 4.6).
Moreover, it can be used by FoG end systems in order to connect to a FoG
subnetwork if its own subnetwork does not support FoG.

In general, IP is just another lower layer for FoG, which is used to connect
FoG entities. In other words, FoG operates as “overlay” over IP. However, the
term “overlay” refers to the layering in the OSI or IP reference model and does
not really apply to recursive layers. In recursive layer systems, every layer
above the lowest one is an “overlay”. FoG is not able to offer gates with all
kinds of non-functional properties for these IP tunnels. The variety of gates is
limited by the capabilities a best-effort IP provides.

The more FoG “islands” the more fine grain the “overlay” network. If two
FoG-enabled subnetworks are directly adjacent, the IP layer can be omitted
in favor of the lower layer encapsulating the link layer connecting both (e.g.
carrier-grade Ethernet). Thus, a FoG inter-network reduces its dependencies to
the IP layer gradually. If IP is deactivated or provided in parallel, depends on
the use case. Maybe FoG, IPv4, and IPv6 have to be provided in parallel.

3.6.2. Interoperability
The previous discussion assumes no interaction between FoG and IP end
systems. If both should interoperate, e.g., a FoG client requests data from an IP
server, additional mechanisms are required. The mechanisms implement the
interoperability either directly on end systems via an adaptation of interfaces
or on gateways within the network.

3.6.2.1. Interfaces

A FoG-enabled application does not depend on FoG itself but on the interface
for recursive layers. It can operate on an IP end system, if the IP suite is
providing the same interface. The standard IP interface is similar to the
Connection interface as outlined in Section 3.3.1. Its adaptation is a software
engineering task and not related to protocols. The other subinterfaces, however,
require additional protocols. The bind function requires a dynamic DNS-like
protocol [VTRB97] to update the mapping from names to addresses. The
neighbor-request operation requires a service discovery protocol (e.g. Multicast
DNS [CK13]) to inform nodes about joining or leaving nodes.

An IP application can operate on a FoG end system, if the end system
provides an adapter from the standard IP interface to the FoG layer interface
supported by FoG. The adapter must generate names and requirements for the
FoG layer interface. It can combine IP address, protocol field value, and port
numbers to names and derive requirements from the type of transport protocol
used.

110

3.7. Discussion

3.6.2.2. Gateways

If the transition between FoG and IP is done in the network, a gateway between
the FoG transfer service and the IP suite is required. Various implementations
with or without a termination of the transport connection are possible.

Thomas Volkert analyzed the interoperability for the IP suite (TCP/UDP/
ICMP) in detail [LV11]. His solution was used for the study with real network
equipment that is described in Appendix D. In the FoG network, it requires
a routing service that is aware of the gateway and that converts names of the
Internet to routes leading to the gateway. For example, the routing service
might translate the name “www.tu-ilmenau.de” to the route [addr(FNg), 141,
24, 4, 226, 6, 80]]. FNg is a forwarding node on the gateway and the remaining
parts are commands for the gateway to connect via TCP14 to port 80 of the IP
node with the interface 141.24.4.226. In the other direction, from the IP network
to FoG, the gateway has to announce the FoG bindings to IP. If the gateway is
the destination for all IP traffic with the prefix 141.24/16, it can, for example,
assign IP addresses with this prefix to the bindings available in FoG and report
them to the DNS used in the IP world.

3.7. Discussion
The definition of a route is a unique aspect of FoG. Traditionally, relay protocols
are designed for either a “route-based view” with a full source route or a “node-
based view” with just a destination name. They are combined by stacking
them. For example, a subnetwork uses MPLS and supports IP on top of it.
FoG does not stack protocols but integrates the ideas of both in a single route.
Instead of defining a whole route or defining a sequence of nodes, it picks
some edges. Gaps between these edges are filled with information (e.g. a node
name) required to forward a packet “over” the gap to the next known edge.
Thus, FoG is following an “edge-based view”.

This view includes the other two as extreme cases. If there are no gaps in a
FoG route, it is similar to a “route-based view”. If there are no explicit part and
“only gaps”, it reduces to a “node-based view”. Depending on the number of
edges specified, FoG supports both extreme cases and variations in between.
This is not just a combination of IP and MPLS but provides a real superset of
configurations. Thus, it can emulate IP- as well as MPLS-based forwarding (cp.
Section 3.4) and provides additional configurations neither supported by one
of these approaches nor by a combination of both (e.g. use case described in
Section 3.1.1).

14 Protocol field value 6 according to http://www.iana.org/assignments/protocol-numbers/
protocol-numbers.txt

111

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt
http://www.iana.org/assignments/protocol-numbers/protocol-numbers.txt

3. Forwarding on Gates architecture

Possible
solutions

Arbitrary
functions

Flexibility Scalability

C
om

bi
ni

ng

Lo
ca

ti
on

A
ut

on
om

y

St
at

es

Si
gn

al
in

g

FoG + + + + − to + − to +

Table 3.2.: Extension for Table 3.1 with the fitness of FoG for the use case

In the following, the FoG layer architecture is evaluated from two different
perspectives. First, FoG is reviewed in the context of the motivating use case
from Section 3.1. While an example solution was already outlined in Section
3.4.1, this section summarizes FoG’s fitness for the use case based on the
questions stated in Section 3.1.1. Second, FoG is discussed in the context of the
reference model defined in Section 2.2.4.

3.7.1. Review of evaluation questions
FoG fulfills the evaluation questions for the motivating use case listed in Section
3.1.1 as discussed in the following. Table 3.2 summarizes the discussion.

• Arbitrary functions: FoG supports arbitrary functions explicitly by using
functional blocks that take packets as input. The access to such functional
blocks is enabled by gate numbers, which are independent of the function
of a functional block.

• Flexibility:

– Combining functions: FoG allows the combination of different
functions by chaining functional blocks. Chains are implemented
with gate number stacks stored in explicit route segments. A FoG
packet indicates each functional block with a gate number in an
explicit route segment. The numbers are neither predefined like
“well known ports” nor do they require any negotiation with systems
other than the system hosting a functional block. Thus, the functions
represented by the functional blocks those gate numbers are listed in
an explicit route segment are transparent for relay systems. A relay
system cannot even derive the number of functional blocks chained
by an explicit route segment (e.g. there might be parameters in as
shown in Section 3.6.2).

– Location of functions: FoG provides function users the opportunity
to decide about the usage of gates known by their routing service.

112

3.7. Discussion

They are free to map any connection to any gates as long as the
dependencies of the communication model are fulfilled (cp. Section
3.2.2). The functions of the function provider handle only aggregated
traffic from several undistinguiable connections. Thus, function
providers have to give up some control. For example, Deutsche
Telekom can no longer decide which (e.g. web traffic instead of
video streams) and how many connections Google maps to the
priority function. The limitation of control is beneficial to restrict the
control of network operators due to regulatory issues (cp. Section
3.5). Moreover, the management protocol allows a function user to
contact function provider of its choice in order to request a function.
Partial routes allow a function user to direct its traffic to such a
requested function even if relay subnetworks do not support the
function.

– Autonomy of providers: A function provider can define the set of
functions supported by its systems autonomously. The capabilities
are announced to the routing service, which is responsible to satisfy
connection requirements with the capabilities of the systems. A
function provider can influence the decision of a function user via
its routing service policies. If it does not announce a gate or its gate
number, function users are forced to negotiate with the provider
about a function or to use a different provider.

• Scalability: FoG can provide scalable solution in case functions can be
reused. If a connection requires dedicated functional blocks on relay
systems, FoG performs only as good as an IntServ solution.

– States required for relaying: Depending on the use case, FoG can
move mapping states from function providers to function users. It
achieves the flexible placement by setting up gates independently
from connections and by encoding the states in routes, which are
sent along with each packet. In particular, FoG avoids states on
nodes those addresses are used in routes (as seen for the stacking of
MPLS and IP) by its flexible route definition based on segments. It
scales even better than an IntServ solution with aggregated states,
because FoG has a more fine-grained control over the reuse of blocks
in various chains.

– Signaling: FoG supports requests for functions15 independent from
connection establishment. Signaling between function user and
provider is required only for the setup of functional blocks. If
the routing service of a function user knows about a block and its

15And, thus, requests for resources

113

3. Forwarding on Gates architecture

gate number, it can be incorporated in a route without any further
signaling. In the best case, no signaling is required and a connection
is created at a peer implicitly via the first data packet. Similar
to the situation for IntServ with aggregated states, however, the
overall performance depends on the update/creation frequency of
functional blocks.

3.7.2. Comparison with reference model
The recursive reference model proved to be helpful for the design of a new
layer architecture. Most important is the enhanced isolation of a recursive layer,
which enables most of the features of FoG. The most important features are the
following:

• Selecting protocols and functions: The interface provides a higher layer
a single service access point that hides the implementation of a layer. A
layer is free to choose its implementation of bindings and connections.
FoG chooses its communication model based on functional blocks and
chains.

• Names and addresses: Since a higher layer operates on its own names
and is not aware of the names used in a layer below, a layer is free to
choose its addresses and the address format. FoG delegates this freedom
to its routing service. The transfer service is independent of the addresses
and provides a variable length field for transporting any address to come.
Thus, addresses are not only private to a FoG layer, but private to the
routing service of FoG.

• Data transfer and routing: The separation of both parts separates the fre-
quently used tightly coupled mechanisms from the less often used loosely
coupled ones. FoG follows the separation with its transfer and routing
service. The separation increases the flexibility of the route computation
and of the state distribution. The incremental routing process and the
route definition exploit this flexibility.

• Access protocol: The protocol separates the EFCP setup from the connec-
tion establishment and enables the reuse of EFCP entities. FoG uses this
concept in order to reuse already existing gates for chains. It also enables
the parallel usage of a gate for multiple connections. The separation
presents itself in the separation of the creation of gates and the usage
decision for such gates. The setup of new functions on relay systems is
implemented by the incremental routing process.

• Enrollment: The enrollment required for the routing and authentication
service seems to be implementation dependent (e.g. address assignment).

114

3.7. Discussion

The authentication service supports the enrollment of the transfer service
by ensuring the authenticity and correctness of signaling messages. The
authorization aspect of enrollment is part of the FoG gate setup. A
node willing to join a layer has to request the creation of gates towards
itself from other members. It will not receive any packets without such
gates. A lower layer connection does not automatically create such a gate.
A member of a layer has to create a gate representing the lower layer
connection in order to make it available for packet exchange. The gate
creation involves authorization.

FoG differs from the recursive model in the following points:

• Structure of management: The recursive layer architecture envisions a
resource information base used by various management tasks. The in-
formation base of the FoG routing service is close to this. Since FoG
combines the task of resource allocation and routing, most management
tasks use it. However, it is not the only information base. The security
aspects addressed by the authentication service seems to use an orthogo-
nal second information base storing authentication entities. Since routing
and authentication service operate independently they may use different
RIEPs. Moreover, a third information base seems to be required for the
policy rules. Transfer service entities (in particular those under the control
of a single operator) might require another RIEP to exchange such rules.

• Routes: The reference model expects only single destination addresses or
“sequences of (N)-addresses” [Day08a, Figure 7-19 (p. 276)]. It favors a
destination-based relaying PCI format for implementing a recursive layer.
However, FoG approaches routes in a different way by allowing explicit
routes or explicit route parts as well. This is the key issue that enables
a separation of states between the function provider and the function
user. Explicit gate sequences do not necessarily limit load balancing,
because a gate is not limited to represent a single (N-1)-connection. If
a layer entity has several (N-1)-connections to the same peer (maybe
even through different lower layers), a single gate can represent all these
connections and balance the load among them. A prerequisite is that the
non-functional capabilities of the (N-1)-connections can be aggregated
in a useful way (e.g. all best-effort connection to a single gate, two 10
Mbit/s connections to a 20 Mbit/s gate).

• EFCP: The reference model favors a single EFCP for a layer. The EFCP
is adjusted to the requirements by a policy. In FoG, however, the logic
of the EFCP is implemented by gates. Depending on the set of gates
supported by end systems, various different EFCPs might be in use in
a FoG inter-network in parallel. The downside of this flexibility seems

115

3. Forwarding on Gates architecture

to be that a special EFCP for the access protocol is required. The access
protocol of FoG requires a single homogenous EFCP in order to secure its
operations. In contrast to implementations of the reference architecture,
FoG implementations seem to end up with at least two EFCPs: One
supporting the access protocol and at least one encapsulated in gates.

• Functional blocks: The support for arbitrary functions increases the
complexity of FoG. Examples are the potentially duplicated EFCP and
the complex algorithm mapping requirements to functions. If application-
related functions are moved to their own layer, the complexity of FoG
could be reduced again. If this is a suitable solution for all functions (e.g.
multicast packet duplication, virus check), seems to be an open question.
In the worst-case, a function provided by all systems would require a
second layer that has to duplicate all routing, resource management,
and addressing aspects of the “original” FoG layer. However, even if
application-related functions are extracted, the relaying function will
remain in a layer. This reduces gates to “virtual links” that are combined
for connections (cp. Section 5.5.3 in [Tan03]). The ideas of FoG can
at least be used for the relaying functions and the QoS aspects. Most
studies in Chapter 5 meet these concerns and favor relaying functions to
demonstrate FoGs features.

• Distributed application name: FoG entities use a name with a common
prefix (cp. Section 3.3.7) for their bindings at (N-1)-layers instead of
a single distributed application name. FoG can find its peers via the
getNeighbors function of the Layer interface. Afterwards, a FoG entity
can decide which and how many neighbor entities it contacts in order
to join the FoG layer. It does not depend on a multicast semantic of the
names. The connect function of FoG’s recursive layer interface interpret
equal names as anycast name. A call of connect with such a name
establishes a connection to one of these bindings.

116

4. Implementation of FoG
The FoG Simulator/Emulator (FoGSiEm) is an implementation of the FoG archi-
tecture that proves the feasibility of the architecture. Its core is a full-featured
protocol simulator for FoG supporting large-scale simulations. Two important
features enhance the simulator for two use cases. First, a graphical user inter-
face can be attached to the simulator. It shows all details of a FoG network
graphically and allows the user to interact with the network. The user interface
is used for demonstration purposes. Second, the simulator can be switched
to a real-time mode and can be attached to real network interfaces in order to
exchange packets between computers physically. Thus, it can emulate a FoG
network directly on top of existing link layers such as Ethernet. This feature is
used to demonstrate FoG’s ability to replace IP in real networks. FoGSiEm is a
research-oriented implementation and not applicable for business. All its use
cases are outlined in Section 4.1 in more detail.

The flexibility to add extensions to the core FoG simulator is achieved by
a plug-in-based software architecture. FoGSiEm adopts the plug-in approach
of the Open Service Gateway Initiative (OSGi) as its base. The Eclipse Rich Client
Platform (RCP), which is also based on OSGi, is used as framework for the user
interface part. More details about the software architecture and the available
plug-ins are given in Section 4.2.

The Sections 4.3 to 4.5 present the implementations of the FoG services. Sec-
tion 4.3 focuses on the transfer service with its relaying PCI format, functional
block types, its access protocol, and error recovery algorithms. Moreover, a
mechanism for mobility support based on tunnels is introduced. Section 4.4
describes two routing service implementations and an example algorithm for
the requirement mapper component. The first routing service implementa-
tion simulates a real routing service without using a routing protocol. It is
suitable for large-scale experiments. The second one is derived from the BGP
implementation of the Scalable Simulator Framework (SSFnet) [SSF]. It provides a
full-featured routing service for best-effort requirements. Both routing serivces
utilize one algorithm that maps requirements to functional blocks by using a
modified context-free grammar. Section 4.5 outlines two basic authentication
service implementations. While the first one is just for simulation purposes,
the second one uses encrypted hash sums and operates with public and private
keys.

Section 4.6 describes the implementation of a second recursive layer, which
encapsulates the access to real network interfaces. It is independent of the

117

4. Implementation of FoG

implementation described before and adapts Ethernet to a recursive layer. It
is the base for emulating a FoG network directly over Ethernet without IP in
between.

The implementation was created in the context of the project “G-Lab_FoG”
and has been used for various demonstrations on workshops [VLBA12, VL12,
LVMT11, LVMT10] and from 2010 to 2012 at the trade-fair CeBIT [Pre11,
Weg10]. The software is available as open-source on the community plat-
form GitHub under the terms of either the Eclipse Public License or the GNU
Public License 2.0 [FoG]. Several colleague and students contributed to it. The
acknowledgments list all participants in detail. The software architecture, the
core FoG parts, the mapping algorithm, the simulated routing service, the
adaptation of the BGP implementation, the authentication services, and the
Eclipse integration have been created mainly by myself.

4.1. Use cases and design requirements

The implementation of FoG serves multiple purposes. First, it proves that
FoG is feasible and can be implemented. Second, the implementation enables
small-scale demonstrations of FoG. Such demonstrations have been required to
present the status of the research project “G-Lab_FoG” and to visually show
the features of FoG. Third, the implementation enables large-scale simulations
required to analyze FoGs performance in inter-network scenarios. The results
of the simulations are presented in Chapter 5.

These use cases are quite diverse. The first two use cases require an imple-
mentation considering all details of the protocols. In contrast, the third use case
favors a more abstract implementation with fewer details in order to enable
a larger network graph. Moreover, the requirements regarding a graphical
user interface differ. The third and maybe the first use case do not require
(or even exclude) a graphical user interface (GUI). Some statistical output is
sufficient. However, the second use case requires some graphical user interface
to literately show FoGs internals. In addition to a graphical user interface, a
convincing demonstration has to include multiple computers transmitting real
data over real links. Therefore, a pure protocol simulation is not sufficient. The
implementation has to interoperate with the environment in order to exchange
data physically between multiple FoG nodes.

The project “G-Lab_FoG” funded two persons for approximately three years
to work out the theory and to come up with an implementation for all three
use cases. The amount of features, the limited time, and the research charac-
teristic of the project lead to an implementation of a rapid prototype. A rapid
prototype trades runtime-performance for implementation time. Its features
are implemented as proof-of-concept and not with a focus on performance.

118

4.2. Software architecture

However, the performance has to be good enough for the demonstration use
case.

The programming language used for the rapid prototype has to enable
fast implementations. First, it has to provide high level build-in features to
avoid common implementation problems, like memory management. More-
over, libraries supporting the implementation have to be available for this
programming language. Libraries for graphical user interfaces, graph handling,
statistical output, and sending and receiving real packet directly via a link layer
are required in particular. In addition, libraries for those protocols that can be
reused to implement services and gates (e.g. BGP and TCP) are required.

4.2. Software architecture
FoGSiEm has a modular architecture based on components. The three use
cases are supported by constructing FoGSiEm for each use case individually
by selecting a suitable set of components. The component runtime system
is provided by the Eclipse RPC framework [Ecl], which extends the OSGi
framework [WHKL08]. An RPC application consists of a set of components,
called plug-ins. Depending on the set of installed plug-ins, a RPC application
provides different features. The composition of a set is limited by dependencies
between plug-ins. All plug-ins listed as dependencies of a plug-in have to be
included in a set in order to enable the dependent plug-in.

The plug-in structure of FoGSiEm follows a model-view architecture. The core
simulation of FoG is the model. It is located in the plug-in called fog, which
is described in Section 4.2.2. There are two views for this model. The first
view is a graphical user interface for demonstration and debugging purposes.
The second view is a pure command line one with textual status messages
and statistics. FoGSiEm can operate with none, one, or more than one view
depending on the installed plug-ins.

4.2.1. Plug-ins and extension points
The Eclipse RCP calls an enhanced OSGi bundle plug-in. While the difference
between plug-ins and bundles is important for licensing1, it is minor important
for the remaining parts of this book. Thus, the term plug-in is used although
some of them might actually be bundles.

Figure 4.1 shows the simplified dependencies of the FoGSiEm plug-ins that
are most important for this text. Plug-ins are depicted as rectangles, and their
names are shortened by the prefix “de.tuilmenau.ics” for better readability. A
plug-in depends on the plug-ins drawn below it. For example, the fog.bus.view

1This issue is described in [FoG]: https://github.com/ICS-TU-Ilmenau/fog/wiki/Licenses

119

https://github.com/ICS-TU-Ilmenau/fog/wiki/Licenses

4. Implementation of FoG

fo
g.b

u
s

OSGi

RPC

fog.emulator

fog

fog.launcher

n
ative
lib

s

fog.eclipse

fog.bus.view fo
g.ap

p

fo
g.ro

u
tin

g.b
gp

fog.importer

fog.eclipse.
launcher fo

g.vid
eo

Figure 4.1.: Simplified plug-in dependencies of important FoGSiEm plug-ins.
Black rectangles represent unmodified external dependencies. The
medium light rectangles represent the emulator, the light rectangles
the simulator, and the white ones the GUI parts. Rectangle sizes
have no meaning.

plug-in depends on the fog.bus plug-in and the fog.eclipse plug-in. The plug-ins
have the following purposes:

• fog: Core simulation of FoG entities as described in Sections 4.2.2. More-
over, the plug-in contains the FoG layer interface, a basic set of gates, all
forwarding nodes, requirements and capability descriptions, the mapping
algorithm, and basic implementations for all FoG services. The service
implementations are described in Sections 4.3 to 4.5.

• fog.app: Applications using the FoG layer interface. An example is the
stream client, which implements a constant bit rate data source.

• fog.bus: Abstract simulation of a lower layer. It simulates a broadcast
medium, which allows direct communication between all attached FoG
entities. The layer does not provide any functionality (like retransmission)
and packets are subject to delay (constant or according to data rate and
packet size), loss, and bit errors.

• fog.bus.view: Integrates graphical user interface extensions for the fog.bus
plug-in into Eclipse.

• fog.eclipse: Various extensions to the RCP environment in order to provide
views on a FoG simulation.

120

4.2. Software architecture

• fog.eclipse.launcher: Integrates the starter for simulations from the plug-in
fog.launcher in the Eclipse launch framework.

• fog.emulator: Lower layer implementation for the scope of a broadcast
domain that builds on Ethernet. It encapsulates FoG packets in Ethernet
frames directly without an IP header. It depends on native libraries,
which access the link layer of network interfaces via the operating system.
Details about the emulator part are given in Section 4.6.

• fog.importer: Provides functions for importing scenarios from various file
formats used by simulations. For example, it includes three importers for
the graphs listed in Section 5.1.

• fog.launcher: Starts a FoG simulation. It configures a scenario with the
help of an importer from the plug-in fog.importer.

• fog.routing.bgp: Routing service implementation for FoG based on BGP.
The BGP simulation builds on the implementation from the SSFnet simu-
lation framework. It has been adapted to FoG and, thus, uses the FoG
layer interface to open connections between BGP entities. Furthermore, it
reacts on gate reports from the transfer service. More details about the
adaptation can be found in Section 4.4.2.

• fog.video: Provides the gates that handle video streaming.

More details and a list of all plug-ins are given in the documentation on the
FoGSiEm homepage on GitHub [FoG].

A plug-in can provide extension points to other plug-ins. They enable other
plug-ins to provide an extension. An extension enhances some internal mech-
anism of a plug-in. A common example is a list shown by the plug-in that
provides the extension point. The list contains entries not from the plug-in
itself but provided by extensions from other plug-ins. [GB04]

FoGSiEm provides, for example, an extension point called “fog.gateFactory”,
which enables plug-ins to contribute new gates. A complete list of all extension
points of the FoGSiEm plug-ins can be found on the FoGSiEm homepage [FoG]
as well.

4.2.2. Event simulation
The fog plug-in contains a discrete event simulation of the FoG core logic. It
provides a detailed simulation of FoG, which follows closely the theoretical
description in Section 3.3. Performance is not its primary focus. On normal
computers, however, it is sufficiently fast for demonstration purposes as shown
in Appendix D. The emulator parts, the user interface extensions, and some
FoG applications add multithreading aspects to the event processing. Real-time

121

4. Implementation of FoG

critical aspects, such as receiving packets on real network interfaces, are done
in parallel. Simulation-time critical aspects are executed in the event thread.
The events can be executed in three modes:

• Stepwise: The events are handled stepwise. This mode is useful for
debugging purposes.

• Real-time: The events are handled close to real-time if the execution
duration of events allows it. It cannot guarantee real-time since the
execution duration of an event can neither be predicted nor be limited.
This mode is useful for interactions via the graphical user interface (e.g.
for demos), distributed scenarios, and emulation.

• Fast: The events are executed as fast as possible. This mode is typically
used for simulations without a graphical user frontend.

The simulator supports large scenarios by splitting a scenario to several smaller,
interconnected scenario parts. These parts are distributed over multiple simula-
tors running on different computers, which allow the usage of more CPUs and
– more important – more memory than provided by a single computer. These
advantages come along with slower communication between simulation ele-
ments because of inter-process communication. Such a distributed simulation
does not require any software from the emulator part. It sticks to the normal
simulation objects as provided by the plug-in fog.bus and links them via the
Java Remote Method Invocation (RMI) middleware Apache River (formally known
as JINI) [Apa]. The simulation times of the scenario parts are not synchronized
and depend on the real-time mode of the event handling. If one simulation
host is overloaded and not able to execute the events close to real-time for
a long time, other parts of the simulation detect a timeout and FoG will act
accordingly. If, for example, a gate is timed out since its creator, which resides
in the delayed part of the simulation, does not send updates, the gate will
be removed. If a packet would like to use this gate later on, the normal FoG
error handling is executed. However, the scenario importer tries to avoid such
long overload situations by distributing the FoG nodes of a simulation scenario
equally2 among the computers.

4.3. Transfer service
The transfer service is mainly implemented as described in the architecture chap-
ter. It supports dynamically instantiated gates and error recovery mechanisms.
It uses a simple request/response access protocol for prompting the creation

2 It assumes that the number of nodes is an indicator for the amount of memory and CPU
performance required for simulation.

122

4.3. Transfer service

FoG node

FoG entity

Routing service
entity

Authentication
service entity

Higher layer
entity 1

Lower layer
entity 1

Lower layer
entity n

…

FNL1

Transfer
service
entity

…

…

FNC

FNLn

FNB1 FNBm

Higher layer
entity k

…

Figure 4.2.: Setup of a FoG node in FoGSiEm. Edges represent gates and
vertices forwarding nodes.

of gates and connection end points on remote nodes. The management opera-
tions are secured by the authentication service. The transfer service supports
mobility with the help of gates implementing tunnels.

Each FoG node in a scenario has a single FoG entity, which includes one
entity of each service. The setup is depicted in Figure 4.2. Lower layer entities
can be attached to the FoG entity. For each of these lower layer entities, the
transfer service manager creates one forwarding node FNLx, at which all gates
representing lower layer connections are attached. This structure simplifies
the implementation but it is not required by FoG itself. The transfer service
manager creates gates representing best-effort connections to all neighbor FoG
entities reachable via a lower layer. These gates represent the capabilities of
the lower layers and are reported to the routing service. They are reused for
signaling messages and for best-effort connections. Each binding of one of the
higher layer entities is represented with one forwarding node FNBx. A central
forwarding node FNC connects all other forwarding nodes with a star topology
in order to enable transit traffic.

The basic operations of the transfer service are similar to the operations of a
label switching router of MPLS that can create LSPs to all neighbors discovered
via “hello” messages of the Label Distribution Protocol (LDP) [AMT07]. Such
“hello” messages are also part of the emulator implementation as described in
Section 4.6.

123

4. Implementation of FoG

Functional block

Gate Forwarding node

…

HorizontalGate

MultiplexerFN

ServerFN

ClientFN TransparentGate

DirectDownGate

Figure 4.3.: Important functional blocks and their class hierarchy as UML class
diagram

4.3.1. Functional blocks
Figure 4.3 shows a Unified Modeling Language (UML) class diagram with selected
functional blocks available in FoGSiEm. While all forwarding nodes are listed,
only the gates important for our discussion are included.

4.3.1.1. Forwarding nodes

In contrast to the FoG communication model, the implementation assumes that
forwarding nodes relay a packet to the next gate without delay. Thus, the delay
for processing the algorithm shown in Figure 4.6 and for requesting routes from
the routing service is neither reflected in the routing service nor in the delay
measurements of the simulation. The assumption is based on the observation
that the delay caused by gates dominates the overall forwarding delay. The
delay caused by forwarding nodes handling explicit routes can be neglected.
High-speed IP networks show that even a routing service lookup may not cause
high delays. Only if the routing service has to exchange information between
its entities in order to decide about the route, the delay is significant. In such
cases, the simulation delay measurements reflect the delay since the exchange
of packets between routing service entities is simulated3.

The following forwarding node implementations are available:

• MultiplexerFN: Normal forwarding node, which handles a set of outgoing
gates. It performs the algorithm as shown later on in Figure 4.6 and reacts
on signaling messages requesting the creation of gates.

3 If a suitable routing service such as the FoG-BGP routing service is used.

124

4.3. Transfer service

• ServerFN: Forwarding node representing a binding of a higher layer
entity. This forwarding node is labeled with the name given by the higher
layer. In addition to the MultiplexerFN, it reacts on signaling messages
requesting the creation of a connection. If permitted, it can trigger the
setup of connections implicitly.

• ClientFN: Forwarding node representing a connection end point. It
encapsulates SDUs from a higher layer in FoG packets and injects them
in the chain of functional blocks. On receiver side, the SDUs are extracted
from the packet and handed over to a higher layer. It reacts on signaling
messages regarding the termination of the connection and errors in the
transfer service. The ClientFN is not reported to the routing service since
it is dedicated to a single connection and cannot be reused for multiple
connections in parallel.

4.3.1.2. Gates

Gates contain a description that includes their characteristics and guarantees.
In other words, the nature of service and the QoS are both included in the
description. For example, a gate might support a data rate between 3 and 10
Mbit/s. The former is the guaranteed minimum data rate while the latter is the
maximum. Both may come along with probabilities indicating their reliability.
For example, the 3 Mbit/s can be guaranteed for only 99% of the time (“soft
guarantees”).

The functional description of a gate is given by its role to fulfill functional
requirements. The functional requirements fulfilled by a gate are listed in its
description.

The following subset of gate types is important for this book:

• DirectDownGate: DirectDownGates represent connections to other FoG
entities via a lower layer (“downwards” in the stack). Depending on the
lower layer, it can represent a connection through an Ethernet broadcast
domain, an IP tunnel interconnecting FoG islands in a partial deployment
scenario, and other transmission techniques.

• EncryptionGate/DecryptionGate: Both gate types implement an encryp-
tion of packets. They are an example for a dependent gate pair that
modifies the content of a packet without requiring reverse gates.

• HorizontalGate: A HorizontalGate represents a tunnel through multiple
other gates (“horizontal” within the same layer). It adds a (partial) route
stored in the gate to the routes of all packets passing by. Such gates are
used at the end systems of a connection to store the current route for
the connection. Moreover, mobility solutions can use such gates to setup

125

4. Implementation of FoG

tunnels between mobile nodes and anchor points in the network. The
tunnel semantic is also useful for hiding multiple intermediate functional
blocks and to shorten routes.

• NumberingGate/OrderAndCheckGate: Both gate types implement a loss-
free and in-order packet exchange. They are an example for functions
that can be placed on end or relay systems or on both and that requires
reverse gates. A NumberingGate adds a header that indicates the number
of a packet in a sequence of packets to the payload of a packet. Moreover,
it buffers the sent packets. An OrderAndCheckGate orders the packets
based on the number in the header. It acknowledges receives packets and
requests the retransmission of lost packets from its dependent Number-
ingGate. The feedback is implemented via its own reverse gate and the
reverse route in packets.

• RerouteGate: The RerouteGate is used as replacement for a failed gate. It
is derived from the HorizontalGate and acts as tunnel for a detour as long
as the original gate is failed. If the original gate is no longer in FAILED
state, the original gate replaces the RerouteGate again. Details are given
in Section 4.3.4.

• TransparentGate: TransparentGates are helper gates used to connect two
forwarding nodes within a transfer service entity. They hand over a packet
to the next functional block without modifying it. Their descriptions
indicate zero delay and infinity data rate.

• VideoDecodingGate: The VideoDecodingGate uses a C library in order
to decode a video stream. It supports several codes such as H.261 and
outputs uncompressed RGB video frames.

• VirusScanGate: Dummy gates, which actually does nothing. However, it
is used as an example function with a single gate without dependencies.

A gate is in one of the following states:

• START: The gate was created and is waiting for the start of the initializa-
tion.

• INIT: Gate is in the process of initialization. It may communicate with its
dependent gates in order to establish shared state.

• OPERATE: The gate is initialized and can provide its service.

• PAUSED: A temporary error occurred and the gate is not able to fulfill its
service. The gate will switch to the OPERATE state, if the error disappears
or is repaired.

126

4.3. Transfer service

INIT

SHUTDOWN

DELETED

Manager calls init

Gate ready

Gate
temp.
error

Gate ready
again

OPERATE
Manager

calls
shutdown

START

Gate released
or
Manager timeout

FAILED

PAUSED

Gate
out
of
order

Gate failed
to reactivate

Figure 4.4.: State diagram for gates. The first word of a transition label indicates,
who is initiating the transition.

• FAILED: A gate-internal error occurred and the gate it not able to fulfill
its service any longer.

• SHUTDOWN: A gate is in the process of terminating its service and
releasing its resources. It may communicate with its dependent gates in
order to inform them about the termination.

• DELETED: The gate is no longer active. The transfer service manager
will remove it from the transfer service plane.

The transitions from START to INIT and from any other state to SHUTDOWN
are initiated by the transfer service manager. All other transitions are initiated
by the gate itself. Figure 4.4 shows a state diagram with the conditions for
transitions.

4.3.1.3. Dependencies

Dependencies are more limited than in theory. Only a single dependent gate per
gate and direction (one peer and one reverse gate) are allowed. Dependencies
to gate types are handled in the creation process. Details about this process are
given in Section 4.4.3, which describes the algorithm that maps requirements
to gates. The access to reverse chains is implemented via reverse gates and the
reverse route of a packet. Therefore, the implementation ensures that a gate

127

4. Implementation of FoG

and its reverse gate share their previous and subsequent forwarding node as
shown in the example in Section 3.2.3.

4.3.2. Packet structure and relaying
In order to support the communication model and the requirements of the
architecture, a relaying PCI format that supports routes composed of multiple
segments is required. A FoG route contains elements from hop-by-hop for-
warding (destination segment) and explicit routing (route segment). According
to the classification introduced in Section 2.3.1, a hybrid relaying PCI format is
required for implementing the architecture.

The only known hybrid relaying PCI format used by PIP is not appropriate.
PIP is mixing information from different scopes. While the tunnel field in the
routing directive is used for tunneling through subnetworks, the routing hints
are used for inter-network relaying. These hints are all equally long and sepa-
rated by markers for changing hierarchy levels. They are intended particularly
for hierarchical routing. However, storing routes, names, and addresses with
significantly different sizes in this structure is inefficient. Moreover, the QoS
information fields (logical router and handling directive) are not enough to
encode arbitrary functional requirements. The protocol field is also not suitable
for a recursive layer. It has to name higher layer connections and not higher
layer types.

In summary, FoG requires a new relaying PCI format that supports its route
format efficiently without the overhead introduced by just “tunneling” or
“stacking” existing protocol headers. In the following, the FoG packet structure
with its relaying PCI is introduced. According to the classification introduced in
Section 2.3.1, it is a hybrid relaying PCI format due to its destination and route
segments. It provides orthogonal QoS fields since non-functional requirements
can be stored in optional fields in destination segments.

4.3.2.1. Packet structure

The FoG packet structure is shown in Figure 4.5. Its header comprises the
relaying PCI with all information required by a forwarding node to decide
about the next gate. It enables a forwarding node to make the forwarding
decision before the packet is received fully. The trailer is optional and contains
authentication information and a reverse route for answer packets.

The fields are defined as follows:

• Header

– Header length: Length of the header in octets. This field allows
accessing the payload directly. Furthermore, subsequent versions

128

4.3. Transfer service

H
ead

er
len

gth

Flags

M
o

d
ificatio

n

co
u

n
ter

P
aylo

ad

len
gth

Header Trailer

R
o

u
te

P
aylo

ad

A
u

th
en

ticatio
n

in

fo
rm

atio
n

*

R
everse

ro
u

te*

Figure 4.5.: FoG packet structure. Optional fields are marked with a star (*).

of the FoG protocol can add new header fields between the header
fields defined here and the payload.

– Flags: Indicating the presents of optional parts that are located in
the trailer. These flags are as follows:

* Reverse route: Indicates if a reverse route in the trailer is present.
It just indicates the presents of the field and does not indicate
that the route should be traced.

* Tracing reverse route: Indicates if a reverse route should be
traced.

* Signaling: Indicates if packet payload is a signaling message for
the transfer service manager.

* Authentication information: Indicates if the authentication in-
formation field in the trailer is present

* Authenticate packet: Indicates if relay systems should authenti-
cate the packet.

– Modification counter: Maximum number of remaining changes that
might lead to a relaying loop. Relay systems that do not change the
route or which extend the route must decrement the counter. If a
relay system removes gate numbers, it does not need to change the
counter. If the counter reaches zero, the packet must be dropped.

– Payload length: Length of the payload in octets. In combination
with the length of the header, it enables access to the trailer.

– Route (variable): Stack of route segments

• Payload

129

4. Implementation of FoG

• Trailer

– Authentication information (variable): Optional list of authentication
information

– Reverse route (variable): Optional reverse route

A route is encoded with a starting length field that indicates the number of
route segments. It is followed by the stack of route segments itself. Each
segment starts with a type field indicating its segment type. Afterwards, a
length field states the length of the segment in octets. The following list
summarizes the structure:

• Route length: Number of segments

• Stack of segments; Each segment:

– Segment type: Destination segment, explicit route segment, missing
gate segment

– Segment length: Size in octets
– Content (variable)

In addition to the two segments defined by the architecture, FoGSiEm uses
a third segment type called missing gate segment. Routing service entities use
this segment type to request additional gates from transfer service entities
requesting a route. This third segment type is an implementation artifact and
may not be present in other implementations. It can be avoided by introducing
another interface that can be used by the routing service to request gates from
the transfer service.

The authentication information is formated like routes as a list of signatures.
The structure is as follows:

• Authentication information length: Size in octets

• Stack of signatures:

– Signature type: Type of signature in oder to enable the authentication
service to use multiple types of signatures.

– Signature length: Size in octets
– Signature (variable)

The implementation uses a Java class with the fields mentioned above as packet.
The serialization of a packet is done via the default serialization supported by
Java. Since this mechanism adds some overhead (e.g. Java class names), no
length values for the constant parts are given. An example for this overhead is
shown in Appendix D.2. An optimized implementation can improve the length
of a serialization significantly by a customized serialization based on a more
detailed version of the packet structure.

130

4.3. Transfer service

4.3.2.2. Reverse route

The reverse route field contains the route from the receiver back to the sender
traced during the relaying process. It can be used by the receiver to send an
answer back to the sender. The main benefit of using a reverse route instead
of a source address is twofold. First, routing requests for answer packets are
avoided and, second, addresses for sending nodes are not required. The latter
is useful for systems those applications acting only as clients. A server can
send an answer back by using the reverse route without forcing the client to
have an address.

The reverse route is used to determine bidirectional routes for connections
with requirements. If an end system receives an answer packet with a traced
reverse route, it knows the route to the answerer. In most cases, this route
contains less destination segments and more explicit route segments as the
original request packet sent by the end system. Therefore, the end system can
use this route for subsequent packets in order to reduce the load for routing
and the delay for its packets.

The reverse route has to include the reverse gates required by the forward
route as described in the communication model. It does not need to be symmet-
ric to the forward route. However, most reverse routes in the implementation
run in parallel to the forward routes. An intermediate forwarding node that is
not able or allowed to record the reverse route can insert a destination segment
to the reverse route instead of a gate number.

4.3.2.3. Relaying process

Each forwarding node processes routes of packets in order to relay them to
the next gate. This process is part of the communication model described in
Section 3.2. In the following, the steps required by the implementation and
based on the new relaying PCI format are explained in detail. In order to
simplify the description, it does not differentiate between forwarding nodes
and transfer manager entities.

Figure 4.6 shows the actions of a forwarding node per input packet. If the
route is empty, the packet reached its destination. If the signaling flag is set,
the packet contains a signaling message in the payload. The signaling message
is handled by the local transfer manager in the context of the forwarding node.
If the signaling flag is not set and the forwarding node represents a connection
end-point, the payload is extracted and handed over to a higher layer entity.
If the route is not empty, the forwarding node checks the type of the topmost
segment. If it is a destination segment, it requests the next partial route from
the routing service. The response of the routing service replaces the destination
segment and the forwarding node restarts its relaying process. In order to
prevent loops in the routing service lookup process and in the incremental

131

4. Implementation of FoG

Route
empty?

Segment
type?

Process
locally

Call routing:
r = routing(this, S)

Insert r to route
of packet

yes

no

Destination

Explicit route

Pop gate number
and determine

next gate

Gate
numbers?

Forward
packet to

gate

Update reverse
route

Pop
segment

Pop segment S and
mod. counter--

yes
no

yes

no

Extract
payload

yes no

Signal-
ing?

yes

Drop
packet

Mod.
counter

> 0
no

Trace
reverse
route?

Figure 4.6.: Forwarding node procedure without error cases

routing process, the modification counter is decremented. If the counter reaches
zero, the packet is dropped. If the topmost segment is an explicit route segment,
the number of remaining gate numbers in the segment is checked. If there
are gate numbers left, the topmost is removed from the segment and used to
lookup the next gate. If no gate numbers are left, the segment is removed and
the process restarted.

The missing gate segment that was mentioned in Section 4.3.2.1 is omitted
in this description, because it is highly implementation specific. Basically, it
introduces one more option for the check of the segment type.

The reverse route of a packet is recorded if the reverse route flag in the
packet header is set. A forwarding node has to derive the reverse gate number
from the gate chosen for the forward direction. If the reverse gate cannot be
determined, a forwarding node inserts its routing service address as destination
segment. If it does not have one or is not allowed to reveal it, the next steps
depend on the topmost segment of the reverse route. If is a destination segment,
the forwarding node can relay the packet without further changes. In all other
cases, it has to remove the reverse route and re-set the flags.

132

4.3. Transfer service

4.3.2.4. Minimal relay process

The overall process is more complex than its pendant in a MPLS network. Thus,
the question arises if the relaying PCI format of FoG can be used by backbones.
Depending on the network setup, the actions of the relay process are performed
more or less often. By announcing all its gates, a FoG node can reduce the
number of partial routes ending at its transfer service entity.4 Consequently,
destination segments have to be handled less often and explicit route segments
more often. If gateways ensure that all incoming packets contain explicit routes
through their subnetworks, relay systems in the subnetwork do not have to
handle destination segments at all. Thus, the handling of topmost explicit route
segments determines the performance of backbones.

The first four header fields are fields with a fixed length, which can be
accessed directly. The route is the first field with a dynamic length. Since the
first fields of a route are also of fixed length, the first gate number of a topmost
explicit route segment can be found at a fixed offset. This gate number must be
removed and the route length value has to be decremented. If the packet has
to be available as a single memory block for sending, the “prefix” of constant
length before the gate number has to be shifted in memory by the length of
the gate number. Thus, the basic relay process has a complexity of O(1). Since
the gate number was chosen by the relay system itself, the system can choose a
gate number with a length suitable for its CPU and memory architecture. A
32 bit system may, for example, select a gate number with 32 bit length. The
required operations (moving, decrementing) seem to be simple enough that
the basic relay process can be implemented in hardware.

The reverse route update is more complex. If it is present, is determined by
the flags, which are at fixed offsets in the header. If the reverse route is encodes
in the same way as the forward route, the start offset of the reverse route can
be determined as follows:

Offset authentication information length = Header length + Payload length
(4.1)

Offset reverse route = Offset authentication information length+
Authentication information length

(4.2)

The revers gate number has to be added at the front of the route. If a
packet should be available as a single memory block, the variable length part
of the reverse route has to be moved and the reverse route length has to be

4 This is a simplified view. More details about this issue are given in the performance study
described in Section 5.3.

133

4. Implementation of FoG

incremented. In order to avoid this copy operation, it might be more efficient
to encode the reverse route in reverse order. Thus, the fixed length parts of the
route are at the end of the packet and adding a reverse gate number would be
as simple as removing a gate number from the forward route. End systems
would have to reverse the order of the gate numbers of the reverse route in
order to use it as forward route. The reverse operation requires the definition
of a standard gate number size in order to reverse the octets of an explicit route
segment. For example, the size of a gate number can be defined as one octet. If
a relay system requires larger gate numbers, like two octets, it has to insert the
octets in a way that the reverse operation arranges them correctly (e.g. correct
order for little/big endian).

4.3.3. Access protocol
The FoG access protocol is used to assign connections to chains and to maintain
functional blocks independently of connections. It is a simple request/response
protocol that includes relay systems by exploiting the incremental routing
process. The protocol does not support a negotiation of the requirements used
for a connection. In case the destination or a relay system participating in the
incremental routing process rejects a request, an indication about the reason
for the rejection is send back. Based on this error indication, a requester may
decide to initiate a subsequent modified request.

The access protocol follows an “at-most-once” sematic. The sender includes
a signaling process identifier in each request. The identifier combines the sender’s
authentication service name and a number, which acts as a local label for the
process. If the sender does not receive a response, it sends the request with
the same signaling process identifier once again. If the receiver receives a
request with a known identifier, it sends the response without performing the
requested action twice. Figure 4.7 shows a small sequence diagram with one
lost response message.

The EFCP for the access protocol is integrated in the access protocol. First,
the access protocol includes a message counter to separate different messages
for the same process. Second, the check for authenticity and the check sum
involved in it detect bit errors. Since the protocol is concerned with functional
block creation, the implementation stores the signaling process identifier and
the message counter in the signaling states of the gates created by the request.
The same signaling process identifier is also used in update, keep-alive or
release messages. However, a request with a known identifier is accepted only
if the message counter of the request is higher than the last message counter
stored by the receiver. This ensures a logical order of requests.

The two-way-handshake can be used to setup gates for bi-directional and
uni-directional communication. The behavior depends on the requirements
listed in the request message.

134

4.3. Transfer service

Node A
Manager

Node B
Manager

Node A
FNA

Node B
FNB

create gates

create gates

create gates

create gates

re-send response

timeout

relay packet to gates

…

Figure 4.7.: Sequence diagram for gate setup with one lost response message.
Dotted rectangles indicate point in time for lazy creation.

Depending on the policy of a node, it creates gates immediately or “lacy”. As
shown in the sequence diagram in Figure 4.7, node A can either create the gates
before sending its request or after a response from node B. The lacy creation
is preferable if a lot of gates have to be created and the rejection probability
is high. Node B may delay the creation of its gates to the arrival of the first
packet for its gates. However, it has to reserve gate numbers and resources
for the gate(s) immediately. If delay guarantees are involved, the lacy creation
must not exceed these guaranteed delays.

A node can trigger the start of a signaling process on another node by sending
a request for a gate requiring a peer or reverse gates without information about
these dependencies. If a node receives such a request, which does not include
any information about the peer/reverse gates located at the requester, the node

135

4. Implementation of FoG

will respond with a request for these gates on its own. This procedure extends
the normal two-way-handshake to a three-way-handshake. It is especially
useful for situations where intermediate gates should be set up but the route of
the first packet is subject to detours. Such detours occur, if the access protocol
has to determine the location of a binding by contacting nodes not on the direct
path between the source and the destination (cp. Section 2.3.3). The second
packet is assumed to take the best way back to the requester. However, a node
might refuse this procedure due to its policy.

The implementation supports gates with hard-states and soft-states. Gates
with soft-states are released if no keep-alive signaling message is received
during a time period. Gates of both types can be removed with release signaling
messages. This mixture of soft-states with the possibility of explicit release is
recommended in [JGKT07] as the most efficient strategy.

4.3.4. Error recovery
Layers using destination-based relaying PCI formats perform a late binding of
connections to routes. Each relay system decides about the next edge a packet is
send to at the latest point in time. Layers with route-based relaying PCI formats
perform an earlier binding since the route is generally chosen before a packet
reaches a relay system. Both layers react differently in case of a link or system
failure. Destination-based relaying PCI formats require all relay systems on
the alternative route to participate in a recovery. Each has to decide to relay a
packet on an alternative route. In particular, no relay system on the alternative
route should relay a packet back to the failed route. For example, if the first
relay system on the alternative route is sending packets not on an alternative
path but back to the failed path, the detector of a failure is not able to perform a
recovery. In general5, recovery is done by exchanging routing information and
to wait until the routing decisions of all systems converge again. Route-based
relaying PCI formats allow the specification of routes in advance and, thus,
can perform an additional recovery mechanism before routing converges. The
detector can specify an alternative route directly in the packet. The mechanism
is transparent for the relay systems on the alternative route, because they do
not have to be aware of the recovery process. However, the mechanism assumes
that the detector has enough information about the network graph to be able
to specify such an alternative route.

FoGSiEm provides three different recovery algorithms to handle single gate
failures. Forwarding node failures can only be handled under specific cir-
cumstances. The algorithms are known from literature [JG06] and have been
adapted to FoG. In the following, their reaction to a single gate failure (“stop-

5 An evaluation of alternative solutions for IP is given in [GRY07]. However, most of these
solutions tend to use “route-based ideas” in order to define a detour (e.g. an IP source route).

136

4.3. Transfer service

FNB

g

FNA

FND

local

from detector

global

Figure 4.8.: Repair algorithms in a small scenario. Bidirectional edges represent
gates in both directions.

fail errors”) is discussed. Afterwards, the failure of a FoG entity, which causes
a multiple gate and forwarding node failure, is discussed separately. Byzantine
failures and multiple gate and/or forwarding node failures that are indepen-
dent of each other have not been analyzed.

All algorithms assume that failed gates do not have any dependencies. The
algorithms are used in particular to repair failed gates that represent lower
layer connections as shown in the study in Section 5.4. Failures of gates with
dependencies are recovered by the source. It sets up a new connection after
getting an error signaling message (cp. global repair) or after an idle timeout.

In the following, the three algorithms are explained. Figure 4.8 depicts their
ideas based on a small example graph of functional blocks. It shows a detector
forwarding node FND that detects the failure of gate g, which is part of the
chain between FNA and FNB.

4.3.4.1. Local recovery

The local recovery algorithm tries to bypass a defect gate locally. It calculates
a route, which starts at the forwarding node FND and ends at the outgoing
forwarding node of the failed gate. This repair is transparent for the connection
end points FNA and FNB (ClientFN forwarding nodes). Figure 4.8 depicts the
idea with a dashed line with short spaces.

The algorithm depends on the routing service to calculate the bypass route.
Therefore, the transfer service reports the failure of the gate before it requests
the bypass route. The requirements for the bypass are derived from the
description of the failed gate. The name of the destination forwarding node of
the failed gate is used as destination name for the route request. This name
has either to be exchanged upfront during the gate setup or it has to be known
by the routing service entity of the transfer service entity hosting FND.

137

4. Implementation of FoG

If the policy of a FoG node allows it, it creates a RerouteGate and replaces
the failed gate with it. The replacing is executed as follows. A forwarding node
detaches the original gates from its gate number and attaches the ReroutingGate
to the very same gate number. The original gate is not terminated but no longer
directly accessible from a forwarding node. The RerouteGate acts as cache for
the bypass route and, thus, allows an efficient re-routing of multiple packets.
The RerouteGate checks the status of the failed gate. If the failed gate can be
repaired (e.g. by setting up the lower layer connection again), the RerouteGate
removes itself and restores the former gate again. If required, the restored gate
is reported to the routing service.

Due to its simplicity, the local repair is the default recovery algorithm of
FoGSiEm.

4.3.4.2. Recovery from detector

The from-detector recovery algorithm calculates a new route from the detector
forwarding node to the destination. Instead of locally bypassing the defect gate,
it searches for a new route directly to the destination FNB. This route replaces
the remaining route in a packet. Figure 4.8 depicts the idea with a dashed line
with large spaces.

This algorithm is applicable only for special individual packets. The prereq-
uisite is that the routing service is able to determine the destination of a packet.
There are two ways a routing service knows about the destination. First, it
can determine the destination forwarding node based on the explicit route
of the packet. It requires sufficient knowledge about the graph of functional
blocks in order to find out. For realistic network setups, most routing service
entities will not have enough information. Most probably, this method will
only be applicable to failures within a subnetwork for which a routing service
entity has the complete knowledge. Second, a packet can specify its destination
directly via a destination segment in its route. Thus, this recovery algorithm
is mainly suitable for the first packets of a connection that are subject to the
incremental routing process.

4.3.4.3. Global recovery

The global recovery algorithm does not try to repair a route locally. It drops
all packets that try to pass a failed gate. The source of the packet is informed
about the failure via a signaling message that is send along the reverse route.
This message is depicted with a straight line from FND to FNA in Figure 4.8.
The source has to request a route for its connection starting from the very
beginning.

If no reverse route is given in a packet, the detector forwarding node does
not send a signaling message. Moreover, the policy may restrict sending

138

4.3. Transfer service

signaling messages too often. For example, a transfer manager may send only
one signaling message per individual reverse route per time interval. Such
restrictions avoid sending too many signaling messages while the first one is
on its way to the source.

The algorithm assumes the routing service to converge fast enough that the
routing request initiated by the source can be answered without using the
failed gate. In case the routing service is not fast enough, the new route might
use the failed gate once again. This either leads to a second error response or
to a from-detector recovery.

4.3.4.4. Forwarding node failure

A forwarding node failure occurs, if the transfer service entity that hosts
the forwarding node fails. Thus, not only one forwarding node but also all
other forwarding nodes and all gates of the failed transfer service entity are
lost. Except the forwarding nodes representing end points of a connection or
bindings, the failure of the forwarding nodes themselves is a minor issue. Their
multiplexing functionality can be compensated in other transfer service entities
easily. More important are the gates attached to them. Thus, a forwarding node
failure is in most cases equivalent to the failure of all its gates. In other words,
a forwarding node failure triggers a multiple-gate failure. If a forwarding node
failure is reported to the routing service, it removes the forwarding node and
all adjacent gates from its graph.

It might be impossible for a detector to find the root cause of a failure. A
detector, which detects that a gate representing a lower layer connection failed,
may not be able to determine the state of the forwarding node “behind” the
gate. Basically, it depends on the implementation of the lower layer whether
a gate and a forwarding node failure can be distinguished. If the lower layer
entity on the detector still acknowledges the existence of the binding of the
remote transfer service entity, the detector has to assume that only the gate
(meaning the lower layer connection) failed. Thus, if FoGSiEm reports either
the gate or the remote forwarding node as failed depends on the lower layer.
Consequently, not all failed functional blocks may be detected. The more
failures are not detected, the higher the probability that repair actions fail or
trigger additional repair actions.

The global and the from-detector recovery algorithms do not require special
treatment of forwarding node failures. The local recovery fails because the
destination forwarding node of the bypass route is not available. Therefore, the
local repair algorithm of FoGSiEm uses the first forwarding node “behind” the
failed forwarding node as destination for the bypass. This is only possible, if
the routing service can determine the forwarding node based on the route of
the packet. The same limitations as described for the from-detector algorithm
apply here. Moreover, the result can no longer be cached with a RerouteGate.

139

4. Implementation of FoG

4.3.5. Mobility
The reference model treads mobility as dynamic multihoming. Systems change
their attachment points and reflect this by changing mappings. For example, if
a system gets a new address due to its new position in the (inter-)network, the
mapping from names to addresses is changed. Such changes are enabled by
encapsulating the addresses and the mapping within a layer. The performance
depends on the update performance of the mapping information base.

A transfer service support for mobility is required if the mapping update is
too slow or if it is not sufficient for already established connections because
they rely on cached addresses or explicit routes. Since mobility itself is not
part of the FoG communication model, the chains affected by a teardown of an
attachment point have to be adapted to the new location of the mobile system.
A straight forward solution, which mimics the behavior of MobileIP [Per10],
uses tunnels between the mobile system and a fixed “anchor point” in the
network. The tunnel is represented by one gate per direction. One of them has
to be included in every chain. A mobile system has to update the tunnel gates
once per handover in order to re-establish all its connections.

The transfer service implements the tunnel solution by providing “wrong”
information to the routing service. Figure 4.9 shows the setup for a mobile end
system M and a relay system A that acts as anchor point. The important point
is the difference between the transfer service entity TA and the routing service
entity RA in node A. TA reported a named forwarding node FNB reachable by
a gate gt to RA. However, the gate gt is a HorizontalGate representing a tunnel
to node M. If the routing service includes gt in a chain, each packet traversing
gt is redirected to the forwarding node FNB, which represents the real binding
on node M. The tunnel hidden by gt is not visible to the routing service. If
node M changes its point of attachment, it has to inform node A about the new
route for gate gt. Moreover, it has to update its own gate gh with the route to
node A in order to update its sending direction. The authentication service
ensures that only the mobile system that requested the creation of the tunnel is
able to update the route of the tunnel.

Like MobileIP, this scheme has some disadvantages. Most important, it
requires the tunnels in both directions. A “triangular routing” as in MobileIP
can be implemented with a destination segment in the reverse route, which is
traced on the way from a correspondent node to a mobile node. However, that
prevents the usage of gates with QoS capabilities and may lead to the same
security problems as known from MobileIP.

The location of the anchor point and, thus, the impact of the tunnel depends
on the scenario and the scope of the FoG layer. In a subnetwork scope, a
mobile system typically registers its named forwarding node at the gateway
of the subnetwork it is attached to. If the mobile system is communicating
with an end system in another subnetwork, the anchor point is on the route

140

4.4. Routing services

Anchor point

Mobile system

RM

RA

FNC FNB

gt

TA

TM

FNC

FNB

gt

HorizontalGate

Binding for
“tu-ilmenau.de”

tu-ilmenau.de

…

gh

Figure 4.9.: Gate and forwarding node setup for mobility

of the packets. Therefore, handovers within the subnetwork can be supported
efficiently. It may even be possible to introduce multiple smaller tunnels. For
scenarios combining MPLS and IP, I present an algorithm for optimizing the
location of anchor points in a subnetwork in [LBMT06]. Similar solutions may
be applicable for FoG. However, research in this direction is subject for future
work and not include in my thesis.

Since the mobility approach is so close to MobileIP, I desist from a quanti-
tative comparison. The qualitative discussion shows that mobility support is
possible although it was not a design goal.

4.4. Routing services
The implementation contains two routing services that are important for the
performance studies. The first one simulates a real routing service and does not
use a routing protocol. It is used for analyzing the amount of information a
routing service would have to store. This routing service is used for all studies
presented in Chapter 5. It stores the detailed and abstract information about
the transfer service in one graph each. Although is support a hierarchical ar-
rangement of information, it does not support addresses to aggregate location
information. The second routing service is an adapted BGP implementation
from the SSFnet simulator. It supports a full featured BGP protocol imple-
mentation. It was adapted to FoG by using the FoG layer interface to connect
to neighbors and by naming forwarding nodes with IP addresses. It uses a
graph for the detailed information and the structures known from BGP for the

141

4. Implementation of FoG

direction information. This implementation is used for emulator scenarios and
shows the feasibility of a real routing service with a routing protocol.

Further implementations outside of the scope of this book are available as
well. For example, a routing service implementation for the hierarchical routing
management [Osd12] is available on [FoG].

Although my thesis assumes that only a single routing service is used,
FoGSiEm supports multiple routing services in parallel. This differs from a
single routing service entity in two aspects:

• A transfer service entity reports its functional blocks not to a single
routing service entity but to all entities registered at it.

• A route is calculated by one entity out of the set of registered routing
service entities. The entity is determined by iterating over all entities and
using the first positive response.

Multiple routing services are especially useful to implement interoperability
solutions because the routing service entity responsible for the interoperability
can map the names of the external world (e.g. DNS names of IP) to names used
by FoG (e.g. binding name of interoperability gateways). Thus, interoperability
solutions can be implemented without modifying the original routing service.

4.4.1. Simulated routing service
The simulated routing service mimics a hierarchical routing service within one
FoG layer without a routing service protocol. It uses method calls within a
single memory address space to distribute its information between entities.
In a distributed environment, the RMI framework Apache River is used to
interconnect the objects.

The number of levels for the hierarchy depends on the setup of a scenario.
The following three levels represent a typical setup:

• Node level: A transfer service entity reports to a routing service entity
that is responsible for this entity only.

• Area level: Multiple routing service entities responsible for nodes report
to a higher level entity. This level can combine the knowledge from
nodes of multiple autonomous systems or from all nodes of a single
autonomous system.

• Global level: The highest level combines the abstracted knowledge of all
routing service entities responsible for areas.

These levels cluster the inter-network graph of a single FoG layer. Information
about the structure of lower layers (e.g. subnetwork graphs) is not included.

142

4.4. Routing services

Each entity that is not the highest level entity announces itself to the entity
in the next higher level. At the lowest level, the transfer service entities are
announcing themselves to their assigned routing service entities. Thus, each
routing service entity knows the lower level entities reporting to it. Each entity
reports at least the gates leading to a lower level entity that does not report
to it. The transfer service has to report at least its DirectDownGates. The
report includes not only the gate but also the source forwarding node and
the destination forwarding node of the gate. As discussed in the architecture
description of the routing service, each entity is free to report more gates and
forwarding nodes to the higher level. Since the simulated routing service uses
labels and no addresses for naming the forwarding nodes, the forwarding
nodes labeled with higher layer names must be reported to the higher level as
well. An implementation with hierarchical addresses would be able to derive
the location of such a forwarding node by its address and not by knowing it
explicitly.

Figure 4.10 shows an entity R1,n of an arbitrary level n. It contains the
knowledge about lower level entities Ri,n-1, which are depicted as small circles.
Forwarding nodes are drawn as dots and gates as edges. The functional blocks
drawn with dashed lines leave the areas of the entities and must be reported
to the next higher level. The forwarding node FNB represents a higher layer
binding and must be announced as well.

Figure 4.11 shows the views of the entities of the lower level R2,n-1 and R3,n-1.
R4,n-1 is not shown because it is not important for the following example. For
the example, n equals 1 and the levels n and n-1 correspond to the detailed
and abstract information bases, respectively. The entities of level n-2 are the
transfer service entities. At first, an example with best-effort requirements is
presented. Afterwards, the handling of requirement is described.

A route from forwarding node FNS to FNB is calculated as follows. First, the
transfer service entity hosting FNS sends a route request to its routing service
entity R2,n-1. The transfer service requests a route from FNS to the binding
with name “tu-ilmenau.de” without QoS requirements. R2,n-1 translates “tu-
ilmenau.de” to the label of FNB via its name mapping service. R2,n-1 does
not know FNB and, thus, forwards the route request to its higher level entity
R1,n. R1,n knows FNB, due to the report from R3,n-1. Since R1,n do not know
a complete route, it returns a partial route. The route contains the label of
the “outgoing” forwarding node FNO for R2,n-1 and the gate number of the
“outgoing” gate g3. Since the destination is not reached by the route, the
original destination label is added to the route. Thus, R2,n-1 receives the route:
[label(FNO), [g3], label(FNB)]. If R1,n do not decide about the “outgoing” gate,
it returns the alternative route: [label(FNI), label(FNB)]. FNI is known by
R2,n-1 since it had reported it to R1,n. However, for best-effort routes, the
implementation uses the “greedy” version and decides about gates as early as
possible. In this case, R2,n-1 can now calculate a route to FNO, since it is located

143

4. Implementation of FoG

R2,n-1

R3,n-1 “tu-ilmenau.de”

g1

g2
FNB

FNI

R1,n

R4,n-1

g3
FNO

Figure 4.10.: Entity R1,n of simulated routing service on level n with knowledge
from the lower level n-1 entities. Dotted elements have to be
reported to the higher level n+1.

R6,n-2

R5,n-2

R2,n-1

g3

FNS

g4
FNO

FNI

R3,n-1

FNO

FNI

“tu-ilmenau.de”

FNB
g2

g5

Figure 4.11.: Entity R2,n-1 and R3,n-1 of simulated routing service. Detailed view
related to Figure 4.10.

144

4.4. Routing services

in its area. If R2,n-1 does not know an explicit route it can request missing gates
from the transfer service. Assuming enough knowledge, the transfer service
receives a partial route that leads the packet to the area of the next routing
service entity R3,n-1. FNI detects the end of the explicit route segment and calls
the routing service once again. This time, R3,n-1 has to calculate a route from
FNI to FNB. It knows FNB and do not has to ask R1,n.

The same route request with non-functional requirements would lead to a
different result. If, for example, the transfer service requests a route supporting
10 Mbit/s with a maximum of 25 ms delay, the routing service has to decide
if the available functional blocks provide enough capabilities. In the example,
only best-effort gates are available. Thus, the routing service would react by
splitting the requirements and by requesting new gates. R1,n might return the
route: [label(FNI)+requ(10 Mbit/s, 10 ms), label(FND)+requ(10 Mbit/s, 15 ms)].
R2,n-1 is not able to route to FNI with the given sub-requirements because no
suitable gates are available. Consequently, R2,n-1 requests one new gate per
best-effort gate from the transfer service. The route is constructed in parallel to
the existing best-effort gates.

If multiple best-effort routes are available, the implementation uses the
shortest one. Obviously, that strategy is not optimal for routes with QoS
requirements because it does not take advantage of the capacity information
known by the routing service.

4.4.2. BGP for FoG
The FoG-BGP routing service implementation is based on the BGP implemen-
tation of the SSFnet [SSF] implemented in the context of the PhD thesis of
Premore [Pre03]. It does not support dependencies between gates and provides
only best-effort routes. However, the key contribution of this routing service
implementation is twofold. First, it proves that a full-featured routing protocol
can be used in a FoG layer. It shows in particular the boot-strapping of such a
service. Second, it illustrates that FoG routes can be calculated by traditional
routing services.

The adaptation of the original implementation showed the flexibility of the
FoG layer architecture. Since the routing service can choose its own addresses,
the FoG-BGP routing service uses IPv4 addresses without affecting other parts
of the implementation. Forwarding nodes are named with IPv4 addresses that
are taken from a manual configured IP address range. The range is given as IP
prefix, and BGP announces the same prefix to its peers.

The bootstrapping relies on the reports from the transfer service and bindings
of the FoG-BGP entities. An example is depicted in Figure 4.12. If the transfer
service announces a gate g, which starts at FNLA and leaves the area of the BGP
entity (meaning that the destination forwarding node FNLB has an address
with another prefix), the FoG-BGP entity starts automatically to set up a

145

4. Implementation of FoG

A B

TA

Lower layer

FNLA

FNCA

FNBA TB

FNLB

FNBA

FNLA

141.24.1.1

141.24.2.2

bgp://141.24.2.2

Prefix: 141.24/16

RB

FNLB

141.42.3.3

141.42.3.3
g

g

RA

Figure 4.12.: FoG with BGP routing service. Node A is shown in detail.

peering with a potential neighbor entity. The FoG-BGP entity uses the connect
function of the FoG interface in order to initiate a loss-free connection with
in-order packet delivery. Since the peer itself is not known, it specifies a
destination name, which can be mapped to the gate to the potential peer (e.g.
“bgp://mynewneighbor” or “bgp://141.24.3.3”). The transfer service will
request a route from the very same routing service entity by passing along
the destination name specified by the entity before. The FoG-BGP entity can
now return a route such as [addr(FNLA), [g], “bgp://141.24.3.3”] for its own
connection. The access protocol message signaling the connection setup leaves
the node via gate g and triggers a routing service request on the neighbor
node due to the last destination segment of the route. The FoG-BGP entity B
on the node “behind” gate g calculates a route to its binding with the name
“bgp://141.42.3.3”. Each FoG-BGP entity establishes such bindings for each
“border” forwarding node at startup. The forwarding node with the address
141.24.3.3 does not have to be the forwarding node representing the binding
with a similar name. For example, the binding “bgp://141.24.2.2” on node A
is represented by forwarding node FNBA, which has the address 141.24.1.1.

If a partial route ends on a node with a FoG-BGP entity, the entity searches the
longest prefix from its FIB matching the IP address in the destination segment.
An entry in the FIB contains the next forwarding node and the “outgoing”
gate number as direction information. A result may look like the following:
[addr(FNnext), [gateoutgoing], addr(destination)]. This mapping implements step
2 of the abstract algorithm described on page 85. The first destination segment
specifies the forwarding node Z that is “closer” to the destination.

146

4.4. Routing services

The detailed information level of the routing service is implemented like the
detailed level of the simulated routing service. For example, a route from FNLA
to FNBA through the local transfer service entity is calculated based on a graph
of functional blocks not related to BGP.

4.4.3. Mapping from requirements to gates
The requirements mapper subcomponent of the routing service determines
the functions required in order to satisfy a set of requirements. Based on the
dependencies of these functions, it composes a construction plan for intercon-
necting the functions. This plan is used by the routing service to construct a
chain that contains functional blocks implementing the functions proposed by
the plan. Depending on the available blocks and their dependencies, chains
can either be constructed by reusing existing blocks or by creating new ones.

The following description uses a “TCP-like function” as example. It imple-
ments loss- and error-free and in-order transmissions. This set of requirements
will be named “Transport” requirement later on.

4.4.3.1. Construction plan: From requirements to functions

The key idea of the algorithm is to interpret a word constructed by a context-
free grammar as a plan for a chain. Each terminal of the word represents
a function required for the chain. The order of the terminals in the word
represents the order of the functions in the chain. Thus, the production rules
(or short: “production”) for the grammar define the dependencies between the
functions. The basis is a context-free grammar, since it prevents “interleaving”
dependencies (cp. Section 3.2.2.2).

The grammar was extended by names for productions and the non-functional
impact of a production. Such an extended production contains the following
elements:

• Production rule name: The name indicates the requirement fulfilled by
the production. Named productions can only be used once per part of a
word as explained in the example later on.

• Variable: Non-terminal symbol which is replaced by this production.

• String of terminals and variables: This string replaces the variable.

• One or more names of non-functional requirements that indicate the
impact of a production.

The following four productions pick off the example with the TCP-like functions
and illustrate a typical usage pattern:

147

4. Implementation of FoG

1. Transport: S→ NSO

2. N→ TCP_sender_gate

3. O→ TCP_recv_gate

4. S→ *

Production 1 is a named production that defines how to satisfy the “Transport”
requirement. Productions 2 to 4 map variables to terminals. While Productions
2 to 3 define the mapping to terminals indicating functions for gates, Production
4 marks a separation between parts of a chain. The separation can be filled
with functions relaying packets between two end systems. Production 1 is the
important production rule that defines the order of the functions. N has to be
executed before O. Either both or none of them has to be included in a word,
since the productions do not allow the construction of a word using, e.g., N
only. In between N and O, a pipe transporting packets (S) is required. The
variable S represents such a pipe. It is also used as start variable, from which
the following words can be constructed with a normal grammar:

a) “*”

b) “TCP_sender_gate * TCP_recv_gate”

c) “TCP_sender_gate TCP_sender_gate * TCP_recv_gate TCP_recv_gate”

d) and so on

Words constructed by using Production 1 multiple times are not appropriate in
the context of function chains. Such rules represent a service constituted by sev-
eral functions satisfying a requirement. The service represented by Production
1 satisfies the requirement “Transport”. If a service fulfills a requirement, it is
not useful to include the service in a chain a second time.6 Thus, the modified
grammar used by the algorithm does not allow the repeated usage of named
rules. Only the word (a) and (b) are valid words of the modified grammar.

For grammars containing productions that introduce functions on relay
systems the usage of services has to be formulated more precisely. If the
following production is added to the grammar, the usage of services is restricted
to a “part” of a word.

5. Relay: S→ SS

Each S from the right hand side represents an independent part, which is
allowed to use a rule once. This enables the sequence (e) “NSONSO”. For each
S inside (e), Production 1 is forbidden since it was already used.

6 At least if it covers the same scope as in the example word (c).

148

4.4. Routing services

S
{}

S S

5

{5} {5}

1

N *
{5, 1a} {5}

S O
{5, 1} {5, 1}

N *
{5, 1} {5}

* O
{5, 1} {5, 1}

4

4

Figure 4.13.: Word creation with modified grammar. The list of produc-
tions used in the upper part of the tree is written below a
variable/terminal.

Figure 4.13 shows the steps for creating one word. For simplicity reasons, it
omits Production 2 and 3. The set below each variable/terminal of the word
contains the productions used in the upper part of the tree. On the one hand,
this set contains the named productions not permitted any more. On the other
hand, it indicates the requirements that are already fulfilled for this part of the
chain. The resulting chain fulfills the “Transport” requirement for the first three
functions. However, the requirement is not fulfilled for the last “*”. Thus, a
service has to specify if it fulfills a requirement once and for all or if it provides
a “partial” solution. A consequence is that not all words of a grammar are
useful plans for chains.

There may be several services fulfilling a requirement. For example, the
following second service fulfills the “Transport” requirement as well:

6. Transport: S→ NASRO | +Delay -Datarate

7. A→ Adding_forward_error_correction_information_gate

8. R→ Reconstruct_via_forward_error_correction_information_gate

In order to provide a base for choosing between Production 1 and Production
6, a service can indicate, if it supports (+) or hampers (-) the fulfillment of other
requirements. For example, Production 6 supports a better delay by avoiding
retransmission and hampers a data rate requirement since it introduces forward
error correction overhead.

Obviously, this is more a coarse hint rather than a detailed analysis. It does
not specify the relation between the delay improvement and the throughput
reduction. Such details are neglected in favor for a simpler algorithm.

149

4. Implementation of FoG

The whole grammar used in the implementation is listed in Appendix C.

4.4.3.2. Selecting a construction plan

The construction plans created by the modified context-free grammar described
before have to be evaluated in the context of a set of requirements R. A suitable
plan has to fulfill all functional requirements. If a requirement is fulfilled only
partially as shown in the previous example, the plan is not suitable. All plans
suitable for a requirements set form the set of suitable construction plans P.
The requirement mapper component computes a ranking for the elements of P
that indicates their fitness. The better the fitness the smaller the ranking is. The
plan with the smallest ranking is selected.

The following equation defines how the ranking is calculated:

∀w ∈ P : ranking(w, R) =
|fulfilled(w)|

|R| (4.3)

The function fulfilled(w) returns the set of requirements fulfilled by the
plan w. Thus, the ranking equals 1 in the best case and increases, if the plan
fulfills more requirements than necessary. For example, a plan fulfilling the
“Transport” and “Privacy” requirement would include more functions than
necessary for fulfilling only “Transport”.

4.4.3.3. Creating a chain: From a construction plan to a chain

After selecting the best plan, the routing starts to construct a chain. It iterates
the terminals in the word and selects or creates functional blocks providing
the function indicated by the terminal symbol. Additionally, the construction
process has to adapt the plan to the conditions in the transfer plane. It is
free to add forwarding nodes in between two functions defined by the plan.
Furthermore, it must replace the “*” terminal symbol with functional blocks
implementing the relaying of packets between systems. This involves three
steps:

1. The construction plan is split in the parts for the two end systems and in
the part for relay systems. The “*” terminal symbol marks the transitions.
For example, the plan (b) is split in the two parts “TCP_sender_gate”
and “TCP_recv_gate” for the end systems. The plan does not require any
specific functions on relay systems.

2. Each system processes its part and creates or reuses gates. For ex-
ample, the routing service at the sender checks if it already knows a
“TCP_sender_gate” that depends on a “TCP_recv_gate” at the receiver.
If it knows one and if it is allowed to reuse the gate, the gate will be

150

4.5. Authentication services

reused for the new chain by including its gate number in the route. If the
routing service does not know such a gate, it requests a new one from
the transfer service.

3. The routing service searches for gates, which can be reused to close the
gap between the “TCP_recv_gate” and the “TCP_sender_gate”. If no
non-functional requirements are given, it can reuse relaying gates with
best-effort capabilities for the chain. If non-functional requirements are
given, it searches for relaying gates that fulfill them. Otherwise, suitable
gates are again requested from the transfer service.

The access protocol is used to signal the required gates between the end systems.
The implementation uses the incremental routing process to create missing
gates on relay systems during the relaying process of the access protocol
messages. Since the algorithm for the requirement mapping is a deterministic
one, only the input requirements are signaled. It assumes that all nodes use
the same grammar. If this is not the case, the access protocol has to transport
the detailed plan.

4.4.3.4. Discussion

The proposed algorithm is a basic one that proves the feasibility of the require-
ments mapper component. However, it is not the only possible implementation
of the component. Other algorithms may be more flexible in satisfying require-
ments, use fewer gates, or be more efficient. For example, the mapping from
requirements to functions can directly take the available gates into account.
Adaptations of the solutions presented in Section 2.5, such as SONATE, may
provide a better trade-off between runtime and design-time complexity. Since
this topic is not the main focus of this thesis, the algorithm demonstrates a
basic solution. Its extension or the integration of other solutions is subject to
future work.

The algorithm does not limit the granularity of functions. However, its
memory complexity depends on the number of functions. Thus, it prefers a
small number of rather large functions. I used functions comparable to the
functions of an OSI layer. The TCP-like function is used as a single block and
is not split in multiple smaller once (e.g. a block for calculating the check sum
and a block for checking sequence numbers).

4.5. Authentication services
The authentication service is used mainly for signing signaling messages. A
receiver of a signaling message checks the list of signatures in order to verify its
authenticity. FoGSiEm provides two authentication service implementations:

151

4. Implementation of FoG

• Simple authentication service: The simple authentication service is for
simulation scenarios, which do not require real authentication. A “signa-
ture” just contains the name of the signing entity and has no dependency
to the signed message (in particular there is no (encrypted) checksum).
This authentication service does not introduce computational overhead
and is useful for fast simulations.

• Public-private-key authentication service: The public-private-key authen-
tication service uses asymmetric keys for creating and checking signatures.
The private key is used to encrypt a checksum of the payload of the packet
that should be signed. At the receiver, the public key is used to decrypt
the checksum. If this checksum equals a checksum calculated locally, the
verification of the authentication is considered to be successful. This im-
plementation provides an authentication service for simulation scenarios
including malicious nodes or emulation scenarios. The distribution of
keys is not part of this implementation and requires manual setup.

Authorization can be done based on the verified sender entity. However,
FoGSiEm’s authorization policy is simple:

• All entities are allowed to create new gates and forwarding nodes inde-
pendent from the requested non-functional capabilities.

• The creator of a gate or forwarding node (the entity that requested the
creation) is allowed to change or delete it.

• The function provider has “administrator rights” and is allowed to delete
any function provided by it. The function provider is in particular allowed
to delete gates that do not receive any refresh signaling messages from
its creator.

4.6. Emulator
FoGSiEm can operate as emulator and span a FoG network without IP. A lower
layer implementation that accesses a link layer directly enables an emulation of
a FoG network without IP being present. I use the term emulator to refer to
usage scenarios of the FoGSiEm software that replace IP with FoG.

The important aspect of the emulator implementation is that the core part
(plug-in fog) is not aware of the emulator aspects, which are added transparently.
Only the events have to be executed close to real-time. Thus, the term emulator
might be misleading regarding to two aspects. First, it depends on the set of
used plug-ins and not on different mechanism in the FoG core. Second, the
concept does not fit well in the recursive reference model. This is comparable

152

4.6. Emulator

to the concept of an overlay, which is discussed on page 110. FoG operates
always over lower layers regardless if such lower layers are implemented with
IP or Ethernet. Even the distributed simulation would fulfill the criteria of an
emulation.

Due to the recursive model, FoG requires lower layers supporting the FoG
layer interface (cp. Section 3.3.1). Since such implementations have not been
available, one has been implemented in cooperation with Thomas Volkert. It
is based on Ethernet and adds some mechanisms on top to support the FoG
layer interface. The implementation uses the library LibPCap [Libb] to receive
packets from a network interface and the library LibNet [Liba] to send packets.
Since both libraries are available as C code only, they are connected to FoGSiEm
via the Java Native Interface (JNI). The implementation assumes the network
interface to represent an Ethernet-like broadcast domain with MAC addresses
and a frame format including an indication about the higher layer type such
as the “EtherType” field of Ethernet. The implementation uses the EtherType
value of 0x6060. The value is not officially reserved for FoG. However, it is
not used in current networks and does not cause conflicts. The payload of
the frame contains a binary representation of a Java object that includes the
FoG packet fields specified in Section 4.3.2.1 as attributes. It is encoded with
the standard Java object serialization [Ora]. On the one hand, this encoding
causes larger packets compared to an optimized serialization since it contains,
e.g., Java class names. On the other hand, it reuses the stable standard de-
/serialization routines from Java in order to shorten the implementation time.
One consequence is that the packet sizes of FoGSiEm do not match the packet
sizes achievable with a productive implementation.

If the serialization of a FoG packet is too large for one Ethernet frame, it is
split in multiple fragments. Each fragment has an additional header, which
specifies if the fragment is the first, intermediate or last fragment of a packet.
All fragments of one packet are sent directly after another. A sender is not
allowed to interleave fragments of multiple packets for one receiver. If the last
fragment of a packet is received, the packet is reconstructed and the FoG Java
packet object deserialized. If fragments are missing (first fragment received
but no last fragment) or if the object creation failed (intermediate fragments
missing or bit errors), the packet/fragments are dropped silently. Successfully
reconstructed packets might contain bit errors in the FoG header and/or in
the payload. Thus, the implementation provides connections between two
FoG nodes with a loss and error rate higher than zero. This is reflected by
the gates representing those connections. If FoG requires loss- and error-free
lower layer connections, additional gates that handle these issues, e.g., with
retransmissions and checksums, have to be created.

The neighbor discovery aspects of the FoG layer interface are implemented
with an exchange of “hello” messages. Each Ethernet entity with a FoG entity
attached to it, broadcasts “hello” messages periodically. Each receiver of such a

153

4. Implementation of FoG

message adds the sender to its neighbor list. If no “hello” message is received
during a defined time period, the entry is removed from the list. Their behavior
is comparable to the behavior of LDP in MPLS networks. The “hello” messages
and their format are specific for the implementation of the Ethernet-based
lower layer and are not related to FoG.

154

5. Performance studies
An architecture represents a set of implementations and summarizes their
invariances. If two architectures should be compared, both sets of implemen-
tations have to be compared. Chapter 3 approached the comparison of FoG
with other architectures with qualitative arguments. Quantitative arguments
are more problematic, since they require performance measurements of the
best implementation of each architecture. Since the best implementation is, in
general, unknown, a representative subset of implementations is used. For new
architectures like FoG, there is no such set but a single implementation. The
lack is especially severe, since it is a rapid prototype of a three-year research
project, which is known to have performance drawbacks. The performance of
such an implementation cannot stand against, e.g., mature and highly opti-
mized IP implementations. In his keynote talk at the EuroView 2012, Hisashi
Kobayashi [Kob12] stated such a lack of quantitative arguments for this area of
research in general.

Even a comparison of two individual implementations – each from a different
architecture – has two main limitations. First, the set of setups, meaning
network graphs and implementation configurations, is too large to analyze all
of them. A grouping of setups requires grouping criteria. Due to uncertain
forecasts for Internet use cases (cp. Section 3.1.4), such criteria are highly
unreliable. I approached the problem by executing my simulations for a set of
network graphs representing different views on the current Internet. In order
to reduce the configuration space, I used only simple policies. Second, one
architecture may not support a setup that is supported by another. As shown
in Chapter 3, FoG supports setups not supported by IP. The advantage of FoG
is the support for these setups and not a better performance. The evaluation
whether it is beneficial for an architecture to support a setup faces the same
problems as the grouping criteria mentioned above. Basically, I assume that
it is beneficial to support functions within networks. The motivation for this
assumption is given in Chapter 1 and Section 3.1.

The performance studies presented in this chapter support the qualitative
arguments from Chapter 3 with quantitative results. The studies approach
the comparison by measuring abstract performance values revealing aspects
of architectures. Therefore, they focus on aspects of implementations that
are related to the architecture such as the number of states. They do not
measure, for example, the bytes of memory required for such states, since
this is highly implementation dependent. If FoG would be implemented with

155

5. Performance studies

the programming language C, it might be possible to store a state with less
bytes than required by the Java implementation. In contrast, the abstract
performance measurements hold for a large set of implementations. The
comparison goes a bit further and assumes that the measurements hold for
the complete set of an architecture. Thus, there is a thin line between too
abstract measurements that are not relevant any longer and measurements not
representing all implementations.

The following studies are exploring the possible trade-off between flexibility
and scalability that are enabled by FoG. Therefore, FoG is configured with
different policies that influence the placement of states in networks. The place-
ment influences mainly the transfer and the routing service. These influences
are studied separately for each service. If a configuration achieves similar fea-
tures as an IP setup, the results for both architectures are compared. Moreover,
the robustness of explicit routes is studied. It profits from the various repair
algorithms, which are enabled by the flexibility of the transfer service. The
studies can be summarized as follows:

• Scalability of transfer service: FoG can place states on end systems
in order to provide functions in a scalable way. The study in Section
5.2 compares this to an IP-based solution, which places them on relay
systems. It shows that the flexible placement of mapping states for
reusable functions leads to a more homogenous distribution of states in
a FoG network. In particular, it shows the dramatic reduction of states
stored in core relay systems. Additionally, it shows that the length of
pure explicit routes between end systems causes acceptable overhead
even for large inter-networks.

– Influencing factors:

* Architecture (Two-Tier reference architecture combining IntServ
& DiffServ vs. FoG)

* Network graph

– Metrics:

* Number of states (IP)

* Sum of gate numbers in routes (FoG)

* Route lengths (FoG)

• Scalability of routing service: The routing service policies of subnet-
works influence the number of routing service requests required by the
incremental routing process and the size of the routing service informa-
tion bases. The study in Section 5.3 shows that a hop-by-hop IP-like
configuration and a source routing configuration have the biggest rout-
ing information base. For the algorithms of FoGSiEm, a configuration

156

in between these both extremes is optimal. The study shows that the
optimal trade-off depends on the algorithms used by implementations
and that FoG’s flexibility allows a network to adjust its configuration to
this trade-off.

– Influencing factor:

* Routing service policy (Set of routing service entities that is
informed by another routing service entity); Special cases:

· IP-like hop-by-hop forwarding

· Source routing

– Metrics:

* Number of routing service requests

* Size of routing service graphs

• Robustness of connections: The explicit routes (or route parts) are a dis-
advantage of FoG, because they require an early binding of destinations
names to routes, which is vulnerable to failures. At the same time, how-
ever, these routes are an advantage of FoG since functions can be directly
selected. This gives a source more control over the path of a packet, which
can be used to define detours in case of failures. The study in Section
5.4 shows that explicit routes which are affected by failures of functional
blocks representing relaying functions can be repaired efficiently. FoG’s
flexibility enables various repair algorithms. Thus, the static nature of
explicit routes does not necessarily cause a less robust network.

– Influencing factors:

* Repair algorithm

* Network graph

– Metrics:

* Fraction of successfully repaired routes

* Length of original routes

* Length of repaired routes

* Number of hops for signaling messages

The studies had been executed with FoGSiEm in simulation mode. The simula-
tion setups are common for all studies and are described in Section 5.1.

The emulation performance of FoGSiEm had been measured as well. Since
these results are specific for the implementation and not for the architecture,
the results are minor important for my thesis. Nevertheless, the results are
shown in Appendix D.

157

5. Performance studies

Graph Number of
nodes

Number of
edges

Node degree
Maximum Median

GLP 5.000 12.721 262 1
DIMES 25.506 77.419 3.917 2
Ark 25.266 64.900 3.002 2

Table 5.1.: Sizes and node degree values of the graphs

5.1. Simulation setup
The networks for the simulations are constructed according to two types of
real Internet graphs and one randomly generated graph with comparable
characteristics. These graphs represent the structure of a large-scale inter-
network on subnetwork level by focusing on the interconnection of subnetworks
and not on the internal structure of the subnetworks. A vertex of such a graph
represents a subnetwork and an edge represents a bidirectional link between
two subnetworks. Table 5.1 summarizes the size of the following graphs:

• GLP graph: The Generalized Linear Preference (GLP) algorithm implemented
in BRITE [MLMB01] has been used to generate 10 random inter-network
graphs. The GLP algorithm ensures that such graphs have similar statisti-
cal characteristics as the real Internet graph. The parameters of the GLP
algorithm have been adjusted to the optimal values derived in [HFU+08].
Since their graph characteristics and initial simulation results do not differ
significantly, only one GLP graph was used for all studies. It has fewer
nodes than the other graphs in order to enable more extensive simulation
scenarios.

• DIMES graph: The DIMES project measures the graph of the Internet. It
uses results from ping and traceroute commands executed by multiple
agents hosted by volunteers. The simulations use the graph of the Internet
measured in February 2012. Since the original graph is partitioned, only
the biggest partition is used. [SS05]

• Ark graph: The Caida project measures the graph of the Internet as
well. Their Ark tool (formally known as Skitter), which runs on multiple
locations in the Internet, traces the routing advertisements and transforms
them into an inter-network graph. The simulations use the graph derived
at the 2nd/3rd of February 2012. Indirect edges of this graph (links
between two subnetworks with unknown intermediate subnetworks) are
treated as direct ones. [HHA+]

158

5.1. Simulation setup

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40

R
el

at
iv

e
fr

eq
u

en
cy

Node degree

GLP

DIMES

Ark

Figure 5.1.: Empirical distribution functions of node degrees for the three
Internet-like graphs

These graphs differ significantly. In particular, the measured graphs are not
identical due to the difficulty of measuring the graph of the Internet. They
approximate the real Internet graph. However, I assume that all three graphs
have an Internet topology and, thus, have similar characteristics as the current
and future Internet graphs.

The distribution of the node degrees1, which is shown in Figure 5.1, is
especially important for the studies. It shows that only a few nodes have a very
high node degree. These nodes have many direct neighbors and, thus, play a
major role in the inter-network. Since the axis is cut at a node degree of 40, the
maximum node degrees are given in Table 5.1. More details on the Internet
topology in general are given in the references stated above.

5.1.1. Representing subnetworks

Due to the focus of FoG on the inter-network scope, simulation scenarios focus
on inter-networks as well. They model the graph structure of inter-networks
and assume homogenous internal structures of subnetworks. Moreover, they
do not assume any specific subnetwork layer implementation (a subnetwork
might, e.g., use IP with DiffServ). Thus, the basic idea is to represent a

1 The node degree is the number of directly adjacent neighbor nodes.

159

5. Performance studies

Subnetwork A

FNA

Subnetwork B

Subnetwork C

Subnetwork D

FNB

FNC

FND

FNG1

FNG2

FNG3

FNG4

FNG5

FNG6

FNG7

FNG8

FNH

binding
name

Figure 5.2.: Example for a FoG setup that models an inter-network. Bidirec-
tional edges represent gates in both directions.

subnetwork with a node. Network interfaces of the node represent gateways of
the subnetwork. The detailed setup for FoG is described in the following.

Figure 5.2 shows a small inter-network example with four subnetworks and
how they are represented with FoG. A subnetwork is modeled with a single
central forwarding node representing the subnetwork as a whole (for example,
FNA represents subnetwork A in Figure 5.2). Gateways are modeled with
additional forwarding nodes FNGi. The central forwarding node connects all
gateway forwarding nodes in a star topology, which represents the connectivity
within the subnetwork. The model assumes that

• a subnetwork is not partitioned (meaning that all gateways can commu-
nicate with each other via the subnetwork) and that

• one gateway is connected to exactly one gateway of another subnetwork
(meaning that the lower layers between the subnetworks provide only
point-to-point connectivity).

Bindings (cp. Section 3.3.1) within a subnetwork are represented by forwarding
nodes as well (e.g. FNH). These forwarding nodes and their higher layer names
are reported to the routing service. They are treated as if they belong to end
systems located within subnetworks. Since the number of these forwarding
nodes depends on the number of bindings, the state analysis ignores them.

The above representation of a subnetwork is equivalent to the general setup of
a FoG node, which is described in Section 4.3. Thus, the simulation represents
each subnetwork with one FoG node that contains the forwarding nodes and

160

5.2. Scalability of transfer service

gates as described above. Links between FoG nodes represent the inter-network
edges between gateways of subnetworks. There is exactly one lower layer
instance from plug-in fog.bus per subnetwork link, which emulates a point-to-
point connection between two gateways. A FoG node creates one forwarding
node per attached lower layer. This forwarding node corresponds to the
forwarding node representing a gateway. The central forwarding node of a FoG
node represents a subnetwork. In summary, a scenario contains at least two
forwarding nodes, two best-effort DirectDownGates, and four TransparentGates
per inter-network edge and one forwarding node per subnetwork.

5.1.2. Network load and applications
Network load is generated by establishing connections between applications on
randomly chosen FoG nodes. The chain setup of each connection is tested by
sending data and checking the correctness of an echo response from the peer.

The random selection of nodes as source and destination was chosen, al-
though connections in the real Internet are not set up between random nodes.
However, there seems to be no statistical data about how the node degree of a
subnetwork correlates with the number of connection of its end systems.

The application requirements for connections depend on the scenario and
are described for each study separately. The simulations assume that all nodes
support all functions.

5.2. Scalability of transfer service
The following study investigates if the flexible state placement of FoG can be
used to enhance the scalability. FoG should place states in a more homogenous
way than other solutions that overload core relay system with states. In partic-
ular, function users should take over mapping states from function providers.
The drawback of this distribution of states is that the function user has to
transmit its decision about the usage of functional blocks along with packets.
Thus, the study analyses the overhead introduced by this transmission for large
inter-networks.

In this study, applications establish connections that should be treated with
a higher priority than other connections2. The networks described in Section
5.1 can provide these connections by creating functional blocks that represent a
prioritized packet transmission between nodes/subnetworks. These blocks can
handle the aggregated traffic of multiple connections and, thus, are reusable.
The number of states required for reusable functional blocks is dominated by

2Such low priority connections are not established, since the real non-functional characteristics
of the packet delivery are not important for this study. It is just concerned about the states
required to support a reusable function.

161

5. Performance studies

mapping states. Thus, the number of mapping states required on end and relay
systems is the metric used to evaluate the scalability. The function states (for
example buffers and scheduler parameters) are not measured, since they are
equivalent for both architectures.

The following two architectures are simulated:

• Reference: The reference architecture is a typical two-tier architecture
combining IntServ and DiffServ, which is described in Section 3.1.2. The
gateways of DiffServ-based subnetworks participate in an IntServ-based
inter-network. These gateways have to store classification states in order
to map packets to connections and connections to service classes used
in the DiffServ-based subnetwork. In the simulation, the numbers of
IntServ states per relay system are counted. They correspond to the states
required on the gateways of a subnetwork. The states on end systems
(e.g. socket states) are ignored, since they are of constant size.

• FoG: FoG is able to place mapping states on systems of function users
instead of relay systems of function providers. The simulation assumes
that FoG is allowed to place them on end systems3. Thus, end systems
store explicit routes that contain the selection of the prioritized transmis-
sion functions for each hop. The simulation sums the route lengths of all
routes an end system has to store. Since FoG has to transmit the states
from function users to function providers via its routes, the lengths of the
individual routes at the source are measured as well.

The reference scenario was simulated with FoGSiEm. Therefore, FoG was
configured to create per-connection states on all nodes along a path in order to
emulate the behavior of the reference architecture.

The priority requirement is just an example requirement that prompts the
usage of reusable functions. The results of this simulations hold for all other
requirements leading to the usage of other reusable functions as well.

In the following, the question whether the overhead induced by transmitting
routes of variable length in packets is reasonable in large-scale inter-networks
is answered. Afterwards, the state distribution is analyzed.

5.2.1. Packet overhead due to route length
Figure 5.3 shows the distribution of FoG route lengths of explicit routes in gate
numbers for the graphs. The sample contains 100,000 connections per graph.
The minimum route length is four gates, since two gate numbers are required
to leave the source system and two to reach the forwarding node representing

3Since a FoG node represents a subnetwork (cp. Section 5.1.1), an end system is equivalent to the
subnetwork a “real” end system is located in.

162

5.2. Scalability of transfer service

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 5 10 15 20 25

R
el

at
iv

e
fr

eq
u

en
cy

Route length in number of gates

 GLP

DIMES

Ark

Figure 5.3.: Empirical distribution functions of route length of explicit end-to-
end routes for the three Internet-like graphs with FoG

Average route length in GLP DIMES Ark
number of gates 11.95 11.12 11.82
number of hops 3.65 3.37 3.61

Table 5.2.: Average FoG route length for the three Internet-like graphs

a binding on the destination system. Since relay systems/subnetworks require
three gate numbers for encoding the route through them, the length values
increase in steps of three. Table 5.2 lists the average values in number of gates
and number of hops.

The routes are relatively short, because Internet-like graphs have a short
graph diameter between 3 and 4 subnetworks [MKF+06]. The diameter is
independent of the overall number of subnetworks in an inter-network.

In order to compare the overhead of FoG routes with, e.g., IP addresses,
an encoding for the elements of the FoG packet header is required. Since the
architecture does not define an encoding, it is a characteristic of an implemen-
tation and, thus, out of scope for an architectural comparison. However, an
encoding would have to be standardized in order to enable different vendors
to develop interoperable FoG equipment. Therefore, the encoding is important,
and a comparison would be of interest. In the following, I assume that a gate
number, the route length field, the route segment length field, and the route

163

5. Performance studies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

R
el

at
iv

e
fr

eq
u

en
cy

Number of mapping states on a node per 1000 connections

GLP

DIMES

Ark

Figure 5.4.: Empirical distribution functions for state information in reference
architecture. Maximum number of mapping states: GLP=112.3,
DIMES=399.9, Ark=392.3. A plot with the full x-axis is shown in
Appendix G.3.

0

50

100

150

200

250

300

350

400

450

0 1000 2000 3000 4000

N
u

m
b

er
 o

f
m

ap
p

in
g

st
at

es
 p

er
 n

o
d

e

Node degree

GLP

DIMES

Ark

Figure 5.5.: Node degree vs. number of mapping states for reference

164

5.2. Scalability of transfer service

segment type field from the FoG header (cp. Section 4.3.2.1) are encoded in one
octet each. That enables routes with a maximum of 255 route segments each
having a maximum of 255 octets.4 Based on this encoding, a complete average
route with one explicit route segment containing approx. 12 gate numbers (cp.
Table 5.2; three gate numbers per transit subnetwork) would require 12 octets
plus an overhead of three octets. Explicit routes that are equally long than one
IPv6 address (16 octets) would contain 13 gate numbers. According to Figure
5.3, at least 87% of the routes have exactly 13 or less gate numbers and are,
thus, equally long or shorter than one IPv6 address. Routes get even shorter
during the transmission of a packet. An average route during transmission is
only half the gate numbers long. That leaves some space for transit networks
inserting more than three gate numbers or for end systems requiring more gate
numbers to encode the route through their “stack”. Thus, the overhead for
large networks seems to be comparable with IPv6 or may be even smaller.

5.2.2. State distribution
Figure 5.4 shows the distribution of the number of mapping states on an IP
node (that represents a subnetwork) per 1000 connections for the reference
architecture. The sample contains 500,000 connections for the GLP graph and
100,000 connections for each of the other graphs.5 The overall number of states
per graph is only affected by the average route length of a graph. Since the
route lengths are similar as shown in the previous section, the overall number
of states is similar as well. However, the curves for DIMES and Ark differ from
the curve for GLP due to the different number of nodes in the graphs. A similar
number of states distributes over more nodes. Nevertheless, the distributions
of all graphs have similar characteristics. The number of states is relatively low
for nearly 75% of all nodes but increases rapidly for the last 5%. These few
nodes have to handle high numbers of connections and, thus, are expected to
have a “central” position in the network graph. Figure 5.5 shows that the node
degree correlates linearly with the number of states a node has to handle.6

It confirms that the scalability problem is most severe at transit subnetworks.
This result holds for all graphs of the Internet topology because the heavy tail
distribution of the node degree is a characteristic of the topology.

4These limits are not a problem for explicit routes, since they can easily be spread over multiple
segments. The limits are more important for destination segments. Maybe, such segments have
to be split in a “destination name segment” and a “destination requirements segment” in order
to have enough space to encode names and requirements. Another option would be to reserve
the value 255 or one bit of the octets or a bit of the segment type field for a flag indicating that
the next segment belongs to the current one.

5 The smaller number of connections for the large graphs is caused by the long simulation time.
Each simulation took approximately one month on an Intel Xeon CPU (X5660; 6 cores) with 2.8
GHz and 24 GB RAM.

6 Details about the correlation are given in Appendix F.

165

5. Performance studies

FoG places these states on end systems. There are no connection-specific
states at the relay systems any more. However, end systems have to store these
states in form of gate number in the routes for connections. Figure 5.6 shows
the distribution of the overall number of gate numbers a node has to store for
all its “own” connections per 1000 connections of the simulation. It shows the
much more homogenous distribution of states among the nodes.

At first glance, the distribution seems to be a normal distribution. This seems
to be an artifact of the random selection of the source and destination nodes. As
shown in Appendix E, the distribution, however, is not a normal distribution.
It has slightly more nodes with more gate numbers than nodes with less gate
numbers than in average. This tail seems to be caused by the distribution of
the route lengths, which has a positive skew as well. The differences between
the results for the GLP graph and the results for the other two graphs are
again caused by the different number of nodes in the graphs. There is no
linear correlation between the node degree and the number of gate numbers
as shown by Figure 5.7. However, the figure shows that “core” subnetworks
of an inter-network, which have a high node degree, can exploit their central
position and have to store shorter routes (in average) than nodes with a low
node degree at the “periphery” of an inter-network. More details about this
relationship are given in Appendix F.

In reasonable implementations, both states are not necessarily comparable.
An IntServ gateway would have to store at least the IP address tuple and
protocol type number (or flow label in IPv6) per connection. That sums up
to 9 octets and 35 octets for IPv4 and v6, respectively. Overhead for data
structures that might be required to store lists of connections is omitted. In
contrast, a gate number could be encoded with a single octet due to its small
context. Since such short gate numbers seems to be rather unrealistic for
traversing whole subnetworks, relay systems may use longer encodings or
multiple short gate numbers in order to encode a partial route through their
subnetwork. Due to the setup of forwarding nodes within a FoG node, the
FoGSiEm implementation requires three gate numbers to traverse a relay
system. If a relay system optimizes its gate number length according to its CPU
register size, 8, 16, or 32 bit per gate number seems to be reasonable. Thus,
an end system would have to store 3, 6, or 12 octets, respectively, per relay
subnetwork.

If we assume that three gate numbers are comparable to one IntServ state,
the values shown in Figure 5.8 are the result. It shows the values from Figure
5.6 divided by three in order to reflect the number of gates per subnetwork and
the unmodified values from Figure 5.4 in a single chart. The sum of all IntServ
states equals the scaled sum of all gate numbers stored in routes on FoG end
systems. The (empirical) maximum of 112.3 states per node in the reference
scenario is reduced significantly to 2.9. These states are now stored on the end
systems, which have to store more states than in the reference scenario. This

166

5.2. Scalability of transfer service

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10

R
el

at
iv

e
fr

eq
u

en
cy

Sum of gate numbers stored on a node
per 1000 connections

GLP

DIMES

Ark

Figure 5.6.: Empirical distribution function for the number of gate numbers
stored on a node. The value is calculated by counting all gate
numbers in all routes stored on a node.

0

1

2

3

4

5

6

7

8

9

10

0 1000 2000 3000 4000

Su
m

m
ed

 le
n

gt
h

 o
f

ro
u

te
s

fo
r

a
n

o
d

e

p
er

 1
0

0
0

 c
o

n
n

ec
ti

o
n

s

Node degree

GLP

DIMES

Ark

Figure 5.7.: Node degree vs. number of gate numbers on a node per 1000
connections for FoG configuration

167

5. Performance studies

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4

R
el

at
iv

e
fr

eq
u

en
cy

Number of states per node and per 1000 connections

Reference

FoG

Figure 5.8.: Empirical distribution functions for number of states per node
for FoG and reference architecture (for GLP graph). FoG values
are taken from Figure 5.6 and divided by three. Reference curve
reaches maximum value 1.0 at 112.3. FoG curve reaches maximum
value 1.0 at 2.9.

shows the “movement” of states from the 10% highly loaded nodes to the 90%
low loaded nodes. Even if the assumed scaling of the values from Figure 5.8 is
not correct (meaning: divisor is not equal to three), the types of distribution
still differ. The heavy tail of the reference result is cut by the FoG result for all
reasonable setups7.

5.2.3. Discussion

The results show that FoG’s flexibility regarding the placement of states has
a huge impact on the scalability of a network. The topology of inter-network
graphs with a heavy-tailed distribution of the node degree (cp. Section 5.1)
causes a central role of a few systems. IntServ overloads these core relay
systems with mapping states. As stated in Section 3.1.2, IP-based solutions
that preserve flexibility do not seem to be able to avoid this. FoG can avoid
overloaded core relay systems by storing mapping states at function users.
Thus, FoG achieves a much more homogenous distribution of states.

7 An average gate number requires less memory than approx. 10 IntServ states.

168

5.3. Scalability of routing service

FoG scales, because the homogenous distribution of states increases the
number of entities that can store states. The number of states in a FoG network
still depends linearly on the number of connections (multiplied with the fairly
constant graph diameter for inter-networks) and does not change to a, e.g.,
logarithmic dependency. However, the resources available for handling these
states increase as well. Subnetworks joining an inter-network do not just
increase the number of connections with the connections of their end systems
but take over some of the load of storing states. This is comparable to the
overall number of TCP states in the Internet, which increases linearly with
the number of connection as well. The scalability is ensured by the increasing
number of end systems storing these states. FoG is improving its scalability
for reusable functions in the same way by distributing the states among more
entities.

The study assumes the best case that connections require only reusable
functions. If the functions are not reusable, the mapping states are no longer
the dominating factor. Since each connection requires its own functional block
per hop, the function states get much more important. FoG cannot place
these states at different locations since they are bound to the function provider.
Thus, the per-connection states stored on relay systems for FoG and for the
reference architecture would be similar. A more realistic setup mixes reusable
and non-reusable functions. The ratio between both functions influences the
results, which are expected to be somewhere in between the two curves shown
in Figure 5.8.

How stable are the simulation results?
Besides the importance of the average route length as indicator for
the overhead, the metric serves as a reference for the stability of
the results from all simulations. The average route lengths of the
different simulations do not differ significantly. In particular, the
nearly identical average route lengths of the robustness study, which
includes only 20,000 connections for the large graphs, indicate that
the sample sizes of the simulations are reasonable. If a simulation
of a study is influenced by other important factors, the description
of this study contains some further comments on the reliability of
the statistic.

5.3. Scalability of routing service
The following study investigates the impact of routing service policies on the
network performance. The performance is influenced, in particular, by the
size of the routing service information base and the number of routing service
requests. Both can be balanced with the incremental routing process, which

169

5. Performance studies

bases on the ability to operate with partial routes. Partial routes are the key tool
for a routing service to reduce its routing service information base, since they
allow a routing service entity to limit its detailed knowledge about a network
to a small area. However, the smaller the areas are the more partial routes have
to be computed. The study analyses the trade-off between the sizes of the areas
and the number of requests in the context of the algorithm used by the routing
service.

The study explores the trade-off by varying the routing service policies of
subnetworks. The routing service entity of a subnetwork can announce gates
to other routing service entities, in order to delegate the usage decision and,
thus, the role of a function user to them. They have to store the information
in their routing graph. On the one hand, that increases their graphs and the
amount of memory required therefore. On the other hand, it increases their
knowledge about functional blocks available for reuse. This, in turn, enables
the calculations of routes over a “longer distance”, with more gate numbers,
and with a higher fraction of explicit route segments. The policies used in the
study are created based on a clustering of subnetworks. Section 5.3.1 describes
the creation of the policies and the assumptions of the creation.

The subsequent sections show the results, which are average values of
20 simulation runs. Each run reports average values for 20,000 established
connections with best-effort requirements8. Some figures show error bars
indicating the maximum and minimum average values of the 20 runs. Some
more results regarding the stability of the statistics are given in Appendix G.1.

The study has been executed only for the GLP graph. The other graphs
are too large to execute the study with all configurations in reasonable time.
However, their results are expected to be similar, since these graphs belong to
the same topology.

5.3.1. Creation of routing service policies and assumptions
In the study, the routing service policies are defined artificially by clustering
subnetworks to groups of subnetworks. All subnetworks of a cluster inform all
other cluster members about their graph of functional blocks. More specific,
the routing service entities of all cluster members inform all other entities about
their gates, gate numbers, and forwarding nodes. The larger a cluster the more
information each member has to store, the more gates can be reused, and the
longer the routes get.

A cluster is created by a subnetwork deciding to be a cluster head. A subnet-
work that is not a cluster head joins the cluster formed by the nearest cluster

8 A reusable function as in the study described in Section 5.2. If, e.g., prioritization is added as
second reusable function, the number of gates would double. The number of forwarding nodes
would stay constant.

170

5.3. Scalability of routing service

SN1

SN2

SN3

SN4

SN5

SN6

SN7

Cluster A

Cluster C

Figure 5.9.: Clustering example for an inter-network with seven subnetworks
SNi and three cluster heads depicted as black dots. The assignment
of SN4 and SN5 to Cluster A and Cluster B, respectively, bases on
random decisions.

head. If two or more cluster heads are available within the same distance, one
it chosen randomly. Figure 5.9 shows a small example with seven subnetworks
with the three cluster heads SN1, SN6, and SN7. The cluster head is just a
helpful construct to define the clusters and not of importance for the routing
itself. After the exchange of information, all the cluster participants have the
same routing information base and can calculate routes on their own. They do
not depend on the cluster head.

The study assumes the following:

• Each subnetwork decides whether it would like to become a cluster head
randomly at the start of a simulation run. If no subnetwork in the scenario
decides to become a cluster head, a single one is chosen randomly. Thus,
there is at least one cluster.

• The routing service entities of a cluster know each other.

• Routing service entities accept and store all information announced to
them.

• Routing service entities follow a greedy approach and try to calculate
explicit route segments that contain as many gate numbers as possible.

• The functional blocks are reusable for all connections (e.g. best-effort
relaying functions for connections without non-functional requirements).

Not all these assumptions hold for real inter-networks. A subnetwork in the
real world will most likely have a more sophisticated policy. It may decide
to delegate its routing only to specific neighbors. Furthermore, the choice is
not done randomly but with respect to a business plan. Since these factors are

171

5. Performance studies

hard to model, the main purpose of the assumptions is the simplification of
the scenario and the reduction of influencing factors.

The set of policies constructed by the clustering contains two important
policies known from today’s networks:

• Pure source routing (for route-based relaying PCI formats): The proba-
bility to become a cluster head is zero and there is only a single cluster
comprising the whole network. Thus, all subnetworks know the complete
graph of functional blocks and can compute explicit routes between end
systems. This configuration is equivalent to a source routing one.

• Pure hop-by-hop forwarding (IP-like): The probability to become a cluster
head is one and each subnetwork forms its own cluster. The subnetwork
and cluster levels are identical. A routing service entity can only de-
termine the next hop (from the inter-network point of view) via the
inter-cluster level and the route through its subnetwork. This configura-
tion is equivalent to IP routing.

Moreover, there is a broad variety of policies in between that lead to configura-
tions that are neither supported by IP nor by source routing approaches. These
configurations are enabled by FoG’s flexibility.

The study uses the simulated routing service with a hierarchy of three levels:

1. Subnetwork level: Contains only the information local to a subnetwork.
Routes requested on this level are routes between gateways of a sub-
network or from a gateway to a binding on an end system within the
subnetwork.

2. Cluster level: Contains the information of all subnetworks of a cluster. If
a route cannot be calculated on the subnetwork level, the routing service
tries to calculate it with the knowledge about the whole cluster an entity
belongs to. Such routes traverse the cluster or lead from the border of a
cluster to a binding within. The cluster level is an example for a detailed
information base Id mentioned in Section 3.3.3.2.

3. Inter-cluster level: Contains the connectivity information between the
clusters and provides the direction information required by a routing
service. It is an example for the abstract information base Ia mentioned
in Section 3.3.3.2. If a destination is not known on cluster level, the inter-
cluster connectivity information reveals the next cluster and its gateway
in the direction of the destination.

Since a node emulates a subnetwork, the setup is equivalent to the setup shown
in Section 4.4.1.

172

5.3. Scalability of routing service

0

1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

N
u

m
b

er
 o

f
re

q
u

es
ts

 p
er

 c
o

n
n

ec
ti

o
n

Probability to become a cluster head

Subnetwork

Cluster

Inter-cluster

Sum

Figure 5.10.: Average number of requests to the routing service levels per
connection. Error bars indicate the min./max. results.

5.3.2. Routing service requests
Figure 5.10 shows the average number of route calculations per routing service
level over the probability for a subnetwork to become a cluster head. The two
important special cases mentioned before are shown in the figure. On the left
hand side, the probability is zero (exactly one big cluster) and each source
subnetwork can calculate explicit routes to all destinations. This results in just
a single routing service request on cluster level. On the right hand side, the
probability is one (each subnetwork forms its own cluster) and each subnetwork
can only determine the next hop via the inter-cluster level. Consequently, the
source subnetwork and each relay subnetwork have to look up the next cluster
in their inter-cluster level, which results in 3.65 decisions per connection. As
shown in Section 5.2.1, that value marks the average number of hops per
connection in the GLP graph. For each of these calculations, a way through
a subnetwork has to be found. Moreover, the destination subnetwork has to
calculate the way from its gateway to the end system9. Both results in 4.65
requests per connection on subnetwork level. In this configuration, the cluster
level is not useful anymore and not contacted at all.

9 More specific: To the forwarding node representing the destination binding on an end system.

173

5. Performance studies

The sum of requests grows continuously with increasing probability. This
holds even if the requests from the subnetwork level are omitted. However, the
sum of requests is not an estimation of the cost regarding CPU and memory. A
better cost estimation has to weight each curve according to the complexity of
its algorithm. Moreover, the runtime of such an algorithm usually depend on
the size of the information base. This size is analyzed in the next section.

5.3.3. Size of routing service graphs
Figure 5.11 and Figure 5.12 depict the average size of the graphs on cluster
and inter-cluster level, respectively. The sizes of the subnetwork graphs are
independent of the probability and are equal to the size of the cluster graphs
at probability one. Forwarding nodes that represent bindings and the gates
required to reach them are not included since the number of bindings depends
on the number of higher layer entities willing to provide a service.

As expected, the cluster level graph reaches its maximum size with approx.
76k edges and 30k vertices in the source routing configuration with probability
zero. It shrinks disproportionally with increasing probability and converges to
the subnetwork graph sizes at probability one. The inter-cluster graph shows
the revers behavior and starts with size one (a single cluster) and increases
with increasing number of clusters. Its size increases disproportionally till a
probability of approx. 0.1 and continues to increase linearly to 76k edges and
30k vertices. The disproportionally increase is causes by the large number of
links between subnetworks and the heavy tail distribution of the node degree.

A routing service entity has to store its cluster graph and the overall inter-
cluster graph. The subnetwork graph is included in the cluster graph and is
not counted separately. Figure 5.13 shows the sizes of each graph as the sum
of edges and vertices. Moreover, it depicts the overall size as sum of both other
curves. A routing service entity has its biggest information base in the source
routing and in the hop-by-hop configurations. The minimum is at a probability
of 1.25% with an average of 60.3 clusters. An even better trade-off between
both graphs may be achievable with slightly less clusters. Even if such a small
amount of subnetwork clusters is not achievable in an inter-network due to
political and business constraints, all other configurations with a probability in
the range of [0.0125, 1) provide a better trade-off with a smaller overall graph
size than the hop-by-hop configuration.

5.3.4. Runtime performance and trade-off
The simulated routing service uses the Dijkstra algorithm in order to calculate
a route through a graph of relaying functional blocks. The runtime of the
algorithm depends on the number of edges E and number of vertices V of a
graph. Its worst-case complexity is O(E + V ∗ log(V)) [FT84]. For an optimal

174

5.3. Scalability of routing service

0

50

100

150

200

250

300

350

400

450

500

0 0.2 0.4 0.6 0.8 1

N
u

m
b

er

Probability to become a cluster head

Edges

Vertices

Figure 5.11.: Average number of edges and vertices of cluster level graphs.
Maximum numbers at probability zero are: 76k edges and 30k
vertices.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

90,000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

er

Probability to become a cluster head

Edges

Vertices

Figure 5.12.: Average number of edges and vertices of inter-cluster level graphs

175

5. Performance studies

0

20,000

40,000

60,000

80,000

100,000

120,000

0 0.2 0.4 0.6 0.8 1

G
ra

p
h

 s
iz

e

Probability to become a cluster head

Cluster

Inter-cluster

Total

Figure 5.13.: Average sizes (number of edges plus number of vertices) of routing
service entity graphs per entity in total

00

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

0 0.2 0.4 0.6 0.8 1

C
o

st
 v

al
u

e

Probability to become a cluster head

Cluster level

Inter-cluster level

Figure 5.14.: Cost approximation for runtime of Dijkstra algorithm for calculat-
ing routes for two routing service levels.

176

5.3. Scalability of routing service

system performance, the number of requests and the graph sizes have to be
balanced. In order to approximate the runtime cost of the Dijkstra algorithm, a
cost value C is derived from the number of requests per connection R and the
graph sizes shown before. The value is computed as follows:

C = R ∗ (E + V ∗ log(V)) (5.1)

Figure 5.14 depicts the cost values for the two important routing service
levels. Due to the high number of routing service requests per connection, the
cost for the inter-cluster calculations is 3.6-times the cost of the cluster level
calculations. The cost values for the subnetwork level are always below 126
and, thus, are negligible in relationship to the others. The sum of all three cost
values has a minimum again at a probability of 1.25% as shown in Figure 5.15.

However, the inter-cluster graph represents a lot of details that are not
necessary for determining the next hop. First, the graph contains a lot edges
per inter-cluster link (three gates per direction). Second, not all the inter-cluster
links are required for a shortest route10. For example, BGP stores routes (as list
of autonomous system numbers) to IP prefixes. These routes can be depicted as
graph with the IP prefixes attached to nodes representing subnetworks. Since a
BGP entity normally does not announce all its knowledge, its graph will be less
dense than the graphs of the simulated routing service entities in this study. A
minimal BGP graph has a tree topology and contains only the shortest path
to each subnetwork/prefix. Thus, the graph sizes of the study are an upper
bound for the size of a BGP graph.

Figure 5.16 shows the raw number of edges and vertices of the inter-cluster
graph without the overheads for gates and forwarding nodes. It shows the
number of clusters and the links between those clusters (each link represents
two gateways). The high connectivity among the core nodes of this inter-
network graph causes a high number of edges. Such a reduced graph cuts
the maximum cost dramatically to 54% of the maximum cost of the cluster
level. The total cost minimum is still at a probability of 1.25% as shown by the
“clusters and links” curve in Figure 5.15. If only a tree version of the graph
is stored, the number of edges reduces even more (to the number of clusters
minus one). The tree-version reduces the cost to 40% of the maximum cost
of the cluster level. This moves the total cost minimum to 5% probability as
shown by the “Tree” curve depicted in Figure 5.15.

5.3.5. Discussion
The results show the flexibility the FoG layer architecture offers to routing
services. Partial routes in combination with the incremental routing process
enable various routing service implementations and policies. Moreover, the
10 However, they are important for error recovery as shown by the next study.

177

5. Performance studies

00

10,000

20,000

30,000
40,000

50,000

60,000

70,000

80,000

90,000

100,000

0 0.05 0.1 0.15 0.2

C
o

st
 v

al
u

e

Probability to become a cluster head

FoG

Clusters and links

Tree

Figure 5.15.: Summed cost values of all three levels for different inter-cluster
level graphs. The "FoG" curve is the sum of both curves from
Figure 5.14 plus the small cost values for the subnetwork level.

architectural separation of detailed and abstract routing service information
bases proved to be useful for a more general approach to routing. In particular,
the study showed that hop-by-hop forwarding and source routing are two
extreme cases of how the abstract and the detailed information bases relate to
each other. FoG shows that other configurations are possible and that they may
be even more efficient than the two extreme cases.

The delegation policies influence the amount of routing information an
entity has to handle and the number of routing service requests. The study
reveals that hop-by-hop forwarding and source routing configurations cause
the biggest amount of routing information. Configurations between both
require less routing service information. Source routing configurations require
the least number of routing service requests, and the hop-by-hop forwarding
configurations require the most requests. In order to determine the optimal
configuration, both metrics – size of information base and number of request –
have to be combined with a cost function that depends on the routing algorithm.

The optimal configuration of a routing service depends on the algorithms
used by the service. The cost calculation presented in Section 5.3.4 is biased by
the Dijkstra algorithm, which is used by FoGSiEm for the route computation.
It requires an optimal configuration with few medium-size clusters. However,
different algorithms lead to different cost equations and to different trade-offs
between cluster and inter-cluster level. Most common are FIBs storing pre-
computed next hops for the inter-cluster level. The size of the FIB and its access
algorithm influence the runtime performance. In IP, the size of the FIB depends

178

5.4. Robustness of connections

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

0 0.2 0.4 0.6 0.8 1

N
u

m
b

er

Probability to become a cluster head

Inter-cluster links

Clusters

Figure 5.16.: Inter-cluster graph reduced to clusters and inter-cluster links

on the distribution of IP prefixes and how good they can be aggregated. The
access algorithm has to find the shortest prefix in the FIB matching a destination
address. Some more information and an enhanced algorithm are required for
supporting QoS. Since the simulated routing service does not support address
prefixes, an estimation of the FIB size and an estimation of the cost for accessing
it is subject to future work.

The study shows that the FoG layer architecture gives a routing service
enough degrees of freedom to adjust its configuration to an optimal one. Thus,
tussles (cp. Section 3.1.4) can be resolved within the bounds of the architecture.

5.4. Robustness of connections
This study investigates robustness of connections that uses explicit routes for
their packets in case of link failures. This is of special importance for FoG,
because the static nature of explicit routes may hamper their adaptation in case
of failures. The study analyses if FoG’s transfer service can compensate this
issue with its ability to repair routes of connections. The reparation bases on
explicit routes, since their static nature enables a repair without having to wait
for a convergence of the routing service.

An explicit route segment is the result of a routing service request for a
route towards a forwarding node named in a destination segment. It encodes
the routing service decision for a source and destination pair with respect to
some requirements and the current network graph. Since the route is normally
reused for multiple packets over a longer time, it is more static in nature than

179

5. Performance studies

the original destination segment. Unlike forwarding based on destination
segments, it does not “react” to changing conditions in a network and not to
failures in particular. The early binding of a destination name to an explicit
route trades reliability for relaying performance. However, the network can
react to failures in order to increase the reliability again. The three recovery
algorithms presented in Section 4.3.4 are able to coop with failures of functional
blocks representing relaying functions. The study presented in this section uses
these algorithms to recover from single link failures. The performance metrics
are the percentage of explicit routes that can be recovered and the overhead of
the recovery in terms of the length of route extensions.

The following steps have been executed 100,000 times for the GLP and 20,000
times for each of the other graphs:

• Two random nodes A and B are chosen and a connection with best-effort
requirements between a client on node A and a server on node B is
established. The length of the explicit route of this connection is used as
reference route length.

• For each recovery algorithm R, the following steps are executed:

• 1. “Break” a link in the middle of the route between A and B. The
element is marked as failed and will no longer relay packets. The
gates (type DirectDownGate) using the failed link switches in the
FAILED state.

2. A packet is send along the original route from A to B. At the detector
node, the packet is subject to the repair algorithm R. R tries to repair
the route.

3. The route length of the new route used by the packet in order to
reach B is measured and compared with the original one.

4. The failed element is reactivated again. All functional blocks are
re-established by the nodes.

Routes and, in particular, the detour routes are calculated by a routing service
entity knowing the complete network (best-case scenario; cp. probability equal
to zero in previous study). Therefore, the graph of the inter-network solely
determines if a repair action is successful or not. If the failure of an element
partitions the graph, the repair action fails.

I chose to break the element in the middle of a route as mentioned in step
1, since the middle of a route goes normally through the better connected
core nodes of an inter-network graph, this link-breaking strategy increases
the probability that the repair algorithms can succeed. The higher success
probability, in turn, increases the sample size of the successfully repaired
connections that is the statistical base for the results shown in the following.

180

5.4. Robustness of connections

0

1

2

3

4

5

6

7

8

9

Reference Global (+) Signaling Local (+) From-
detector

(+)

H
o

p
s

GLP

DIMES

Ark

Figure 5.17.: Routes length in hops calculated by global, local, and from-
detector repair algorithms in comparison to reference route length.
Values marked with (+) are relative to reference. Error bars indi-
cate minimal and maximal results.

This is a crucial issue due to the long simulation times. Some results for a
random selection of failed links in the GLP graph are shown in Appendix G.2.

Figure 5.17 shows the average hops (between nodes/subnetworks) a packet
has to travel for the three different graphs and for the three algorithms. The
reference is the number of hops a packet has to travel without failures analog
to the results presented in Section 5.2.1. Despite the number of hops a signaling
message from the global repair algorithm has to travel, the other numbers are
relative values to this reference. The average alternative route derived by the
global repair algorithm is between 0.27 to 0.32 hops longer than the original
shortest route. Its signaling messages have to travel between 1.04 to 1.12 hops
from the detector to the source. The local repair algorithm extends the routes
by 1.01 to 1.06 hops. The from-detector algorithm introduces detours with 0.41
to 0.47 more hops. Depending on the graph, 97 to 99% of the connections have
been successfully repaired.

The results show the promising opportunities a highly connected inter-
network core offers for repairing explicit routes. A relatively simple local
repair algorithm can fix most of the failures with one additional inter-network
hop. The complete route is approx. 29% longer as the original one. The
from-detector algorithm introduces only half the overhead by avoiding loops

181

5. Performance studies

(like the one depicted in Figure 4.8; gates right from destination forwarding
node of gate g used twice). However, the global recovery algorithm shows
that, in the best case, new routes are just 8.9% longer. Since the global recovery
algorithm may take too long to inform all sources using routes with the failed
gate, a combination of the global recovery algorithm with one of the other
two seems to promise the best performance for real setups. Since the from-
detector algorithm suffers from the limitations described in Section 4.3.4, a
combination of the local and global recovery algorithms seems to be a good
trade-off between performance and applicability.

182

6. Conclusions
In my thesis, I suggest a holistic layer architecture that combines a new com-
munication model for arbitrary functions with a new method to place states in
a flexible way. Its flexibility enables a broad variety of supported use cases and
scalable network configurations. It is based on the recursive reference model
from John Day (cp. Section 2.2.4), which provides a full encapsulation of a layer.
Thus, the FoG layer architecture comprises roughly the functionality of the OSI
network and transport layers. It is designed for the scope of an inter-network.

FoG opens extensive opportunities for new business models. For example,
FoG opens up a neutral market for functional blocks. Similar to today’s
app stores for smartphones, end users may select suitable functions for their
connections from a function store. The routing service would determine the
function providers that support the selected functions, select the “nearest”
suitable location (taking, e.g., load balancing aspects into account), request
the creation of such gates, and direct the traffic to them. End users as well as
network operators profit from such a function store. End users can, in particular,
select function providers of their choice. Since they have more control over
routes, they are able to direct the traffic to functional blocks important for
them. Network operator can influence these decisions by their policies and
by their function offers. Since FoG is flexible regarding the type of functions,
operators can even extend their offers with new functions dynamically. For
example, distributed clouds could represent their application-related functions
as gates in a FoG network. Thus, the competition among operators could focus
on innovative ideas for new functions instead of being limited to prices for bit
transport.

FoG comes along with new opportunities for algorithms as well. The most
prominent example is the FoG routing service, which has much more infor-
mation about a network, its capabilities, and its supported functions than
traditional routing services in the IP world. Moreover, its implementations
are much more flexible since they can define their own addressing, name-to-
address mapping, algorithms, and information bases. This book describes
already two very different routing service implementations. More implementa-
tions for QoS-enabled routing [VMT12, VOBMT13] or strict QoS-routing are
possible. Instead of optimizing the placement of functions and the routing in
between individually as in today’s networks, routing services in FoG can derive
both in a combined way. This enables truly optimal network configurations for
a holistic service provisioning by networks.

183

6. Conclusions

FoG reduces administrative overhead and operational expenditure by align-
ing the management of functions in networks and end systems. It operates
in a world constructed out of functional blocks and, thus, its management is
concerned with blocks only. This results in a single signaling protocol for all
functions. Moreover, FoG’s security features enable an automatic negotiation
with users and allow accounting.

The architecture has the following unique features:

• It supports large-scale inter-networks composed of multiple autonomous
subnetworks. The flexible placement of states and the incremental routing
process enable scalable implementations of the transfer and the routing
service, respectively. Autonomous subnetworks are enabled by giving
their operators the ability to define their own policies independently. The
operators can decide about their set of offered functions, their involvement
in routing decisions, and their level of security.

• Connection-specific mapping states can be distributed in a more homoge-
nous way than compared with a reference architecture that combines
IntServ and DiffServ. In particular, FoG is able to reduce the load of the
core relay systems of an inter-network significantly (cp. Section 5.2). The
overhead regarding the information required in packets is acceptable in
comparison to IP, due to the small diameter of inter-network graphs (cp.
Section 5.2.1). The placement of states works best for reusable functions
(see Section 3.7.1). Non-reusable functions are still a problem and FoG
cannot improve the scalability for them in comparison to the reference
architecture.

• Routing services are enabled to balance the number of requests with
their information base size in order to adjust to an optimal configuration.
Moreover, the routing information bases can contain a mixture of detailed
and abstract knowledge about a network. The optimal trade-off between
these three aspects depends on the algorithms used for routing. For
routing service implementations that use the Dijkstra algorithm without a
FIB neither hop-by-hop forwarding nor source routing are optimal. They
prefer a configuration in between (cp. Section 5.2).

• FoG offers a middle ground between connection-oriented and connection-
less communication (cp. Section 3.7). In contrast to the static nature of IP
and MPLS networks, FoG supports both extreme cases and variations in
between in one network at the same time. Network operators profit from
this flexibility, because they can select a suitable mixture for each kind of
application in order to support it in the most efficient way. In addition, it
allows nodes to participating in a network without having addresses.

184

An analysis of the broader applicability of the architecture reveals the following
results:

• Political: The FoG layer architecture can resolve tussles within its bounds
due to its flexibility. It is suitable for socio-economic environments
favoring neutral function offers by function providers. It is not applicable,
if political constraints forbid any non-best-effort relaying functions (e.g.
relaying with non-functional guarantees) in a network.

• Deployment: The success of a new architecture depends strongly on the
business opportunities and political constraints. Only if the enhanced
features and reduced operational expenditure due to less administrative
overhead open business opportunities, FoG has a change to be adopted.

• Interoperability: FoG can interoperate with IP either via adapted inter-
faces on end systems or by gateway systems connecting both worlds.
Various interoperability solutions lower the burden of a deployment by
integrating legacy networks and applications in a FoG network.

• Robustness: The architecture supports various algorithms for repairing
routes. Three different recovery algorithms known from literature have
been adapted to FoG. They increase the reliability of connections in case
of failures by repairing explicit routes in different ways. The study in
Section 5.4 shows the good performance of these algorithms in finding
short alternative routes in the core of an inter-network. In contrast to IP
networks, the algorithms do not depend on synchronized routing service
information bases.

• Security: The architecture enables network entities to check the authen-
ticity of messages and provides a base for authorization and accounting.
In contrast to the IP suite, the authentication is part of the FoG layer
architecture and, thus, integrated in a scalable way.

• Mobility: The architecture supports mobility by adjusting routing infor-
mation and by adapting the packet relaying. The latter is based on tunnels
and is comparable to MobileIP. The mobility support illustrates the strate-
gic advantages of the recursive reference model, which encapsulates a
layer and enables FoG to consider mobility as dynamic multihoming.

The feasibility of the architecture is shown by an implementation called FoG-
SiEm. FoGSiEm supports simulations of large-scale networks with more than
25,000 nodes. Moreover, it is able to replace IP in real networks by implement-
ing a FoG network directly on top of Ethernet. The software is available as
open source [FoG] and runs on Windows, Linux, and OSX.

185

7. Outlook
FoG is the base for various new research opportunities, which are only partially
covered by my work. In the following, some promising research questions are
highlighted.

The trade-off between the detailed and abstract information bases (in Section
5.3: cluster and inter-cluster level, respectively) was analyzed for one routing
service implementation that used the Dijkstra algorithm. The trade-off is of
interest for other routing service implementations as well. In particular, the
trade-off for a BGP-like routing service with FIBs is of interest in order to
evaluate if the Internet is configured in an optimal way. A comparison of the
trade-offs for multiple routing service implementations might reveal some new
aspects of implementation strategies for routing services in general.

The requirements mapper component of the routing service determines the
set of functional blocks that satisfy some requirements. My thesis includes a
basic implementation that proves its feasibility (cp. Section 4.4.3). However,
this component could be enhanced with more intelligent algorithms in order to
combine functional blocks more flexibly and to increase the reuse potential of
blocks. It seems to be beneficial to build upon other selection and composition
approaches, such as SONATE, and to extend them regarding the chain parts
(“workflows” in SONATE) required on relay systems. Moreover, the mapping
has similarities with at least two other problems. First, the mapping from
QoS to NoS ([Day08a] page 43/44) includes the same non-functional aspects.
Second, the mappings between physical, transport, and logical channels in
UMTS access networks (cp. Section 5.2 and 6.3.1 in [HT11]) seems to be a
special case. The invariances of these problems might reveal deeper insights
into the general problem of mapping higher layer requirements to lower layer
capabilities.

Ensuring the authenticity of messages is a first step towards a more secure
inter-network. The discussion about attacking a system by guessing gate
numbers on page 92 suggests that it is not the last step. A deeper analysis
of the security aspects surrounding the guessing or sniffing of gate numbers
is required. One extension of the current implementation could, for example,
encrypt the signaling messages and introduce a scheme for switching gate
numbers after some defined time. Thus, an attacker may sniff the initial gate
number, but it is not aware of the switch. If packets with the initial gate number
are received after the switching time (and if they are not just delayed), they
might be an indication for a function provider to watch out for attackers.

187

7. Outlook

Failures and performance degradations in a layer are signaled to upper
layers with events. FoGSiEm exploits this mechanism to notify upper layers,
for example, about failed repair actions or newly created bindings. Thus, FoG
is able to handle scenarios with links having a variable data rate as described
in [DEB12] for satellite links. Whether this mechanism is sufficient to handle
all problems related with wireless communications and, thus, to prevent “cross-
layer” information flow, is an open question. This could be investigated by
combining FoG with more complex wireless lower layers encapsulating, for
example, cognitive radio links.

Finally, the ideas of FoG can be transferred to networks not operating with
arbitrary functional blocks but relaying functions only. The comparison of
FoG with the reference model (in Section 3.7.2) raised already the question
if arbitrary functional blocks or application-specific layers are more suitable
for a use case. In such networks, gates would represent only transmission
capabilities of lower layers between FoG nodes. A comparison of FoG with
the expected results from the IRATI project mentioned in Section 2.2.4.1 may
answer this question. However, most results of the performance studies already
apply to networks with such a reduced set of functions.

188

A. Protocol control information
formats

The following list contains the format of the PCI of several protocols. The
payload is omitted if no trailer is present.

• ATM: Format for Network-Network-Interface (NNI) [MP02]

– Virtual path identifier (12 bit): Names a virtual path

– Virtual channel identifier (16 bit): Names a virtual channel

– Payload type (3 bit): User data or signaling payload

– Cell loss priority (1 bit): Priority in congestion cases

– Header error control (8 bit): Header check sum

• CIGALE / CYCLADES [Pou74a]:

– Header format (4 bits)

– Header length (4 bits)

– Text length (8 bits): Length of payload

– Packet identification (16 bits): Not altered by network; just used for
error reports

– Facilities, accounting (16 bits)

– Destination network (8 bits)

– Source network (8 bits)

– Destination host (16 bits)

– Source host (16 bits)

– [Time-out (3 bit): Planned for future version to prevent packets from
looping infinitely.]

• CLNP [Int86]:

– Network layer protocol identifier (8 bit): Equal to binary 1000 0001
for ISO 8473

– Length indicator (8 bit): Header length in octets

189

A. Protocol control information formats

– Version / protocol Id Extension (8bit): Version of the standard (equal
to one)

– Lifetime (8 bit): Remaining lifetime of the PDU in units of 500ms

– Flags (3 bit): Flags for segmentation and error reporting

– Type (5 bit): Type of PDU

– Segment length (16 bit): Length of the PDU

– Checksum (16 bit): Checksum over the whole PDU

– Destination address length indicator (8 bit): Length in octets

– Destination address (variable): NSAP address as defined in ISO
8348/DAD2

– Source address length indicator (8 bit)

– Source address (variable)

– Segmentation part (optional)

* Data unit identifier (16 bit): Identifies segments of a PDU

* Segment offset (16 bit): Relative position of segment in PDU in
octets

* Total length (16 bit): Total length of the initial PDU in octets

– Options part (optional): List of options such as padding, source
routing, security, route recording, QoS maintenance, and priority.
Each option is encoded as follows:

* Parameter code (8 bit): Type of the parameter

* Parameter length (8 bit): Length of the parameter value in octets

* Parameter value (variable)

• DDP [App94]: Long header (short header does not contain network
numbers) without link layer frame:

– Unused (2 bit)

– Hop count (4 bit)

– Datagram length (10 bit): Length in octets (maximum of 586 accord-
ing to implementation guide)

– DDP checksum (16 bit): Optional checksum (zero if not set)

– Destination network number (16 bit): Identifier of the destination
subnetwork

– Source network number (16 bit)

– Destination node ID (8 bit): Identifier of the destination node

190

– Source node ID (8 bit)

– Destination socket number (8 bit)

– Source socket number (8 bit)

– DDP protocol type (8 bit): Type of data transported by packet

• Ethernet [IEE08]:Without physical layer parts such as preamble, start of
frame delimiter, and interframe gap.

– Destination MAC address (48 bit)

– Source MAC address (48 bit)

– Ethertype or length (16 bit)

* Ethernet II: Ethertype indicates the higher layer protocol

* IEEE 802.3: Length of payload (max. 1500 octets)

– Payload (42-1500 octets): Includes optionally a 802.1Q tag (4 octets)

– Frame check sequence (32 bit)

• Frame relay [Sta93]:

– Flag (1 octet)

– Address (2-4 octets)

* DLCI (6 bit +4bit [+7 [+7]])

· DLCI = 0 is signaling to frame relay control point

· DLCI = 8191 is management

* Command/response (use is app specific) 1 bit

* Address field extension 1 bit at the start of each octet (1=end of
address)

* BECN backward explicit congestion notification

* FECN forward explicit congestion notification

– Information (variable): user data

– FCS 2 octet and frame sequence field as in LAPD and LAPB

– Flag (1 octet)

• IPv4 [Pos81]:

– Version (4 bit): Indicating the version of the IP protocol (equals 4)

– Internet Header Length (4 bit): Length of header in 32 bit words

– Type of service (TOS, 8 bit): Indicates the requirements and the
desired quality of service for the packet. It includes:

191

A. Protocol control information formats

* Precedence (3 bit)

* Delay (1 bit)

* Throughput (1 bit)

* Reliability (1 bit)

* Reserved (2 bit)

– Total length (16 bit): Length of datagram in octets

– Identification (16 bit): Aid for assembling fragments

– Flags (3 bit): Control flags for fragmentation

– Fragment offset (13 bit): Offset of a fragment in 64 bit steps

– Time to live (TTL, 8 bit): Remaining number of hops the packet
is allowed to remain in the Internet. Originally designed as time
limit in seconds. However, each node has to decrement the value
regardless the time it requires for relaying the packet.

– Protocol (8 bit): Indicates the higher layer protocol

– Checksum (16 bit): Checksum of the header

– Source address (32 bit)

– Destination address (32 bit)

– Options (variable): Various options, e.g., source routes, route record-
ing, stream identifier, and time stamps. Padding has to be used in
order to align header to next 32 bit boundary.

• IPv6 [DH98]:

– Version (4 bit): Indicating the version of the IP protocol (equals 6)

– Traffic class (8 bit): Support for “differentiated service” analog to
the TOS field of IPv4

– Flow label (20 bit): In combination with source address, the flow
label identifies a sequence of packets, which might be subject for
QoS.

– Payload length (16 bit): Length of the payload in octets

– Next header (8 bit): Identifies the next higher layer, like the protocol
field in IPv4. It might indicate the presents of IPv6 extension headers.
Such headers are located in the payload field and are following the
normal header.

– Hop limit (8 bit): Remaining number of hops the packet is allowed
to remain in the Internet.

– Source address (128 bit)

192

– Destination address (128 bit)

• IPv6 extension headers defined in RFC 2460 [DH98]:

– Hop-by-Hop Options

– Routing (Type 0): Source route

– Fragment: Datagram fragmentation done by source

– Destination Options

– Authentication

– Encapsulating Security Payload

• IPX (Chapter 31 in [FLSS99]): IPX names contain a 32 bit network name
and a 48 bit node name.

– Checksum (16 bit)

– Packet length (16 bit): Length of header and payload

– Transport control (8 bit): Number of routers passed (max. 16)

– Type (8 bit): Higher layer protocol (e.g. SPX)

– Destination name (80 bit)

– Destination socket (16 bit)

– Source name (80 bit)

– Source socket (16 bit)

• MPLS [RTF+01]:

– Label (20 bit): Name for the LSP

– Experimental use (3 bit): For example for traffic classes analog to
TOS field of IPv4

– Bottom of stack (1 bit): Indicates if this label is the last one of the
stack

– Time to live (8 bit): Remaining number of MPLS router the packet is
allowed to travel through.

• OvIP [FRM97]:

– OvIP protocol value (8 bit)

– Source route (variable): List of forwarding directives. The length of a
forwarding directive depends on the encoding of a routers decision
how to forward a packet. In general, it contains the outgoing network
interface, link layer encapsulations, and an indication if OvIP is
terminated.

193

A. Protocol control information formats

• PARIS [CG88]: Format without delimiters:

– Control (16 bit)

* Priority (2 bit)

* Copy bit (1 bit): Copy packet to network control unit for signal-
ing purposes

* Broadcast bit (1 bit): Copy packet to all outgoing links

– Automatic network routing (variable): List of two-or-more bit words.
Contains one entry per intermediate hop

• PIP [Tsu92]: PIP was developed in the IPng context. Later it was merged
with the Simple Internet Protocol to SIPP [Fra94].

– ID type (4 bit): Length and type of source and destination IDs in
octets

– Options length (4 bit): Number of 32 bit options

– Total length (24 bit): Total datagram size in octets

– Protocol (8 bit): Equivalent to protocol field in IPv4

– Handling directive (16 bit): Non-route-effecting QoS information
(e.g. congestion avoidance)

– Hop count (8 bit): Equivalent to hop limit in IPv6

– Routing directive

* Tunnel (32 bit): Override the routing hint within a domain. It
enables efficient “self-encapsulation”.

· Source Exit ID (16 bit): Source of tunnel in order to enable
error messages

· Destination Exit ID (16 bit): Destination of tunnel where the
routing directive ends

* Logical router (18 bit): Selects the logical role of a router (e.g.
the active FIB for a packet). It might include route-effecting
QoS information required by the routing hint (e.g. metrics and
selection of logical role of a router), hierarchy level, or multicast
indication.

* Routing hints

· Length (4 bit)

· Descriptor (10 bit)

Routing field offset (6 bit): Currently active hint Routing
field length (4 bit): Length of hints (all have the same length)

194

· Hints (variable): Used by routing if no tunnel in the routing
directive is given. It includes addresses, source-routes, and
virtual circuit information. Between to hints, a 2-bit routing
hind field relator indicates the hierarchical relation between
two entries (up, down, none).

– Options (variable): Optional

– Source and destination IDs (variable): Optional labels identifying
source and destination (with a reference to NIMROD)

– Padding to next 32 bit word boundary

• PUP [BSTM80]: PUP names contain an 8 bit network name and an 8
bit host name. The payload contains up to 532 octets. The designers
of PUP are aware of the short names and suggest prolonging them for
larger networks (from the perspective of 1979). It does not support
fragmentation. It supports explicit congestion notification (to sockets).

– Pup length (16 bit): Length of datagram in octets

– Transport control (8 bit): Includes hop count and options flags

– Pup type (8 bit): Format of Pup content

– Pup Identifier (16 bit): Used, e.g., for sequence numbers (included
in Pup in order to enable error messages related to an identifier)

– Destination name (16 bit)

– Destination socket (32 bit)

– Source name (16 it)

– Source socket (32 bit)

– Payload (variable between 0 and 532 octet)

– Software checksum (16 bit): Optional checksum

• SIPP [Hin94]:

– Version (4 bit): IP version number 6

– Flow label (28 bit)

* Reserved (1bit)

* Drop priority (3 bit): Relative priority in case of congestion

* Flow ID (24 bit)

– Payload length (16 bit): Length of payload following the header in
octet

– Payload type (8 bit): Equivalent to IPv4 protocol field

195

A. Protocol control information formats

– Hop limit (8 bit): Hop counter decremented by 1 per relay system

– Source address (64 bit)

– Destination address (64 bit): If the optional routing header is present,
it might be just an intermediate destination.

– Options (variable): Routing, fragmentation, authentication, security
encapsulation, and hop-by-hop options

• PFRI [BCG+06]:

– Forwarding directive (Where) [CGP07]:

* Partial path (variable): Specifies a sequence of link addresses
(nodes are not named) a packet should traverse. The list might
be “partial” meaning that is might contain gaps, which have to
be resolved by relay systems (like loose source-routing in IP).

* Current location: Current position in the partial path

* Flag: Indicates if a packet is a signaling packet or data packet

– Motivation (Why): Encodes why a relay system should relay a packet
(e.g. because the source is a customer of operator of a subnetwork).
Enables that the “customer-provider relationships can exist apart
from” a graph.

– Accountability (Who): Authenticates the entity responsible for a
packet.

– Knobs (How): Specify requirement for the packet transmission

– Dials (What): Transporting information about errors or states be-
tween layers in order to perform cross-layer optimization.

• Viper [Che89]: Viper is an implementation of Sirpent. It supports cut-
through relaying in addition to store-and-forward. Timestamps in trailer
of packet for transport layer protocols (e.g. VMTP) in order to avoid TTL
field and its modifications.

– Sequence of header segments (per intermediate router)

* Port info length (8 bit)

* Port token length (8 bit): Zero indicates that the token is not
present

* Port (8 bit): Identifies output port (multiple segments to model
larger port numbers)

* Flags (4 bit): E.g. congestion handling

* Priority (4 bit)

196

* Port token (variable): Optional authorization token for the port

* Port info (variable): Information required by the port. The
format depends on the network and/or the router. For Ether-
net network, it contains the information Ethernet requires to
transmit the packet (e.g. addresses).

– Payload (0 to 1500 octets)

– Trailer: Sequence of header segments tracing the return route

• X.25 Packet Layer Protocol: The X.25 Packet Layer Protocol is used
between the Data Terminal Equipment (DTE) and the Data Circuit-termi-
nating Equipment (DCE). In non-X.25 terms, the protocol is used between
a host and a network. Thus, it is a network access protocol and not the
protocol used within the network.

– General format identifier

* Qualified data bit (1 bit): Data for user or PAD

* Delivery confirmation bit (1 bit): Acknowledgment requested

* Protocol identification (2 bit): Defines if the packet has a module
8 or 128 or an extended sequence scheme.

– Logical channel identifier (12 bit): This field is composed of the
following subfields.

* Logical channel group number (4 bit)

* Logical channel number (8 bit): Logical channel number of the
DTE-DCE link in the channel group

– Packet type: The type of the packet depends on the command
exchanged between the host and the network. Examples are call
accept, call request, data packet, and reject. The format of this field
depends on the sequence scheme:

* Module 8:

· Packet receive sequence number (2 bit)

· More data bit (2 bit): Indicates that the packet belongs to a
sequence of packets

· Packet send sequence number (2 bit)

· Reserved (1 bit)

* Module 128:

· Analog to module 8 but with 7 bit sequence numbers and
only a 1 bit more data field.

197

B. FoG layer interface
The interface designed for the FoG layer architecture is a non-blocking name-
and requirements-based interface, which provides feedback via events. The
following Java classes show the most important functions of the interface. They
have been extracted from FoGSiEm. The full class definitions can be accessed
via the FoGSiEm homepage [FoG].

B.1. EventSource
The EventSource class (Listing B.1) is a base class for objects that informs
others about asynchronous events.

Listing B.1: EventSource
public i n t e r f a c e EventSource
{

/ * *
* R e g i s t e r s o b s e r v e r f o r t h e e v e n t s o u r c e .
*
* @param o b s e r v e r e n t i t y , which w i l l be i n f o r m e d

a b o u t e v e n t
* /

public void r e g i s t e r L i s t e n e r (EventLis tener
observer) ;

/ * *
* U n r e g i s t e r s o b s e r v e r f o r t h e e v e n t s o u r c e .
*
* @param o b s e r v e r e n t i t y , which s h o u l d be

removed from t h e o b s e r v e r l i s t
* @return t rue , i f o b s e r v e r had been

s u c c e s s f u l l y u n r e g i s t e r e d ; f a l s e o t h e r w i s e
* /

public boolean u n r e g i s t e r L i s t e n e r (EventLis tener
observer) ;

/ * *

199

B. FoG layer interface

* I n f e r f a c e f o r o b s e r v e r o f t h e e v e n t s o u r c e
* /

public i n t e r f a c e EventLis tener
{

/ * *
* C a l l e d i f an e v e n t i s o c c u r i n g a t t h e
* e v e n t s o u r c e . Th i s c a l l b a c k method i s
* not a l l o w e d t o b l o c k . I t must r e t u r n
* as f a s t a s p o s s i b l e s i n c e i t i t
* e x e c u t e d in t h e t h r e a d o f t h e e v e n t
* s o u r c e .
*
* @param s o u r c e Sourc e o f t h e e v e n t
* @param e v e n t Event i t s e l f
* @throws E x c e p t i o n On e r r o r ; E x c e p t i o n s

a r e i g n o r e d by t h e c a l l e r .
* /

public void eventOccured (Event event)
throws Exception ;

}

}

B.2. Layer
A Layer (Listing B.2) offers the possibility to announce own services to other
peers of a layer and to access services from others. Moreover, the class provides
methods for retrieving neighbor and capability information that may guide the
usage of a layer. All internal issues of the layer, like addresses, protocols, and
routes, are hidden. Users of a layer are not allowed to get knowledge about
such issues in order to preserve the encapsulation of a layer.

Listing B.2: Layer subinterface
public i n t e r f a c e Layer extends EventSource
{

/ * *
* R e g i s t e r s an e n t i t y wi th a g i v e n name a t t h e
* l a y e r . Af t e rwards , c l i e n t s can c o n n e c t t o
* t h i s s e r v i c e by us ing t h e same name . Th i s
* method d o e s not b l o c k . E r r o r s a r e i n d i c a t e d
* v i a e v e n t s o f t h e Bind ing o b j e c t .
*

200

B.2. Layer

* @param p a r e n t S o c k e t O p t i o n a l p a r e n t c o n n e c t i o n
(o p t i o n a l ; might be n u l l i f no)

* @param name Name f o r t h e s e r v i c e
* @param r e q u i r e m e n t s D e s c r i p t i o n o f t h e s e r v i c e

r e q u i r e m e n t s . Thes e r e q u i r e m e n t s a r e
e n f o r c e d f o r a l l c o n n e c t i o n s t o t h i s b i n d i n g .

* @param i d e n t i t y O p t i o n a l i d e n t i t y o f t h e
r e q u e s t e r o f t h e r e g i s t r a t i o n

* @return R e f e r e n c e t o t h e s e r v i c e r e g i s t r a t i o n
(! = n u l l)

* @throws NetworkExcep t i on On e r r o r
* /

public Binding bind (Connection parentSocket , Name
name , Descr ipt ion requirements , I d e n t i t y

i d e n t i t y) ;

/ * *
* Connec t s t o a Bind ing with t h e g i v e n name .
* The method d o e s not b l o c k . The e s t a b l i s h m e n t
* o f a c o n n e c t i o n i s s i g n a l e d with an e v e n t .
* A l l o t h e r f e e d b a c k s a r e g i v e n v i a e v e n t s a s
* w e l l . In p a r t i c u l a r , t h e e r r o r e x c e p t i o n s a r e
* not t r i g g e r e d by t h e method but handed o v e r
* v i a e v e n t s o f t h e Connec t i on o b j e c t .
*
* @param name Name o f t h e Binding , t o which

s h o u l d be c o n n e c t e d t o
* @param r e q u i r e m e n t s D e s c r i p t i o n o f t h e

r e q u i r e m e n t s o f t h e c a l l e r f o r t h e c o n n e c t i o n
* @param r e q u e s t e r O p t i o n a l i d e n t i t y o f t h e

c a l l e r . I t i s used f o r s i g n i n g t h e c o n n e c t
r e q u e s t .

* @return R e f e r e n c e f o r t h e c o n n e c t i o n (! = n u l l)
* /

public Connection connect (Name name , Descr ip t ion
requirements , I d e n t i t y r e q u e s t e r) ;

/ * *
* Checks whe the r o r not a Bind ing with t h i s
* name i s known by t h e l a y e r . Th i s d o e s not
* imply t h a t t h e c o n n e c t method can c o n s t r u c t
* a c o n n e c t i o n t o t h i s name .
*

201

B. FoG layer interface

* @param name Name t o s e a r c h f o r
* @return t rue , i f name i s known ; f a l s e

o t h e r w i s e
* /

public boolean isKnown (Name name) ;

/ * *
* Det e rmines t h e c a p a b i l i t i e s o f t h i s l a y e r .
* S i n c e t h e whole s e t o f c a p a b i l i t i e s may be t o o
* l a r g e , t h e r e q u e s t can be f i l t e r e d . P o s s i b l e
* f i l t e r s a r e t h e d e s t i n a t i o n name and some t e s t
* r e q u i r e m e n t s . I f such f i l t e r s a r e p r e s e n t , t h e
* method j u s t d e t e r m i n e s t h e c a p a b i l i t i e s
* r e g a r d i n g t h i s d e s t i n a t i o n and t h e s e t e s t
* r e q u i r e m e n t s .
*
* @param name O p t i o n a l d e s t i n a t i o n name t o f o c u s

t h e c a p a b i l i t y a n a l y s i s
* @param r e q u i r e m e n t s O p t i o n a l t e s t r e q u i r e m e n t s

(i f , e . g . , maximum bandwidth i s i n c l u d e d in
t h e t e s t r e q u i r e m e n t s , t h e method w i l l
d e t e r m i n e t h e p o s s i b l e bandwidth)

* @return C a p a b i l i t i e s o f t h e l a y e r (! = n u l l)
* @throws NetworkExcep t i on On e r r o r (e . g . f i l t e r

i n v a l i d)
* /

public Descr ipt ion g e t C a p a b i l i t i e s (Name name ,
Descr ipt ion requirements) throws
NetworkException ;

/ * *
* Det e rmines n e i g h b o r i n f o r m a t i o n a b o u t t h e
* B i nd i n g s r e a c h a b l e v i a t h i s l a y e r .
*
* @param n a m e P r e f i x O p t i o n a l f i l t e r f o r t h e

r e q u e s t . I f p r e s e n t , on ly n e i g h b o r s with a
name hav ing t h i s p r e f i x w i l l be l i s t e d .

* @return L i s t o f r e a c h a b l e n e i g h b o r s or n u l l i f
l o w e r l a y e r i s b r o k e n

* /
public NeighborList getNeighbors (Name namePrefix)

throws NetworkException ;
}

202

B.3. Binding

B.3. Binding

A Binding (Listing B.3) is an service offering to all peers with access to a layer.
It can be created at a layer via the method Layer.bind. Others can create
a Connection to a binding via Layer and with the name of the binding. A
binding provides methods for terminating the service offering and for retrieving
incoming connections for it.

Listing B.3: Binding subinterface

public i n t e r f a c e Binding extends EventSource
{

/ * *
* R e q u e s t s t h e nex t new incoming c o n n e c t i o n f o r
* a b i n d i n g . The method d o e s not b l o c k and w i l l
* r e t u r n nul l , i f no c o n n e c t i o n i s a v a i l a b l e .
*
* @return R e f e r e n c e t o a new incoming c o n n e c t i o n

or n u l l i f none w a i t i n g
* /

public Connection getIncomingConnection () ;

/ * *
* @return Number o f new c o n n e c t i o n s w a i t i n g in

queue
* /

public i n t getNumberWaitingConnections () ;

/ * *
* @return Name used f o r t h i s b i n d i n g
* /

public Name getName () ;

/ * *
* C l o s e s r e g i s t r a t i o n and makes t h e b i n d i n g
* u n a c c e s s i b l e f o r p e e r s . The method d o e s not
* b l o c k .
* /

public void c l o s e () ;
}

203

B. FoG layer interface

B.4. Connection
A Connection (Listing B.4) represents the possibility of two or more peers to
exchange data. It can be set up via a layer with the method Layer.connect.
Depending on the requirements used to set up the connection, the features of a
connection differ. The features may include (but are not limited to) encryption,
in-order data delivery and error-free transmission. Most important are the
methods for data exchange (read/write) and for terminating a connection.

Listing B.4: Connection subinterface
public i n t e r f a c e Connection extends EventSource
{

/ * *
* Check s t a t u s o f t h e s o c k e t .
*
* @return I f sendData can be c a l l e d w i t h o u t

e r r o r s
* /

public boolean isConnected () ;

/ * *
* @return The name o f t h e b i n d i n g t h e c o n n e c t i o n

was e s t a b l i s h e d t o .
* /

public Name getBindingName () ;

/ * *
* S i g n a t u r e s may be p r o v i d e d by r em ot e p e e r (s)
* t o v e r i f y t h e i r a u t h e n t i c i t y . Whether such
* s i g n a t u r e s a r e a v a i l a b l e depend on t h e r em ot e
* p e e r and which p a r a m e t e r i t used f o r i t s c a l l
* t o Layer . c o n n e c t .
*
* @return L i s t o f s i g n a t u r e s (! = n u l l) . I f no

s i g n a t u r e s a r e a v a i l a b l e an empty l i s t i s
r e t u r n e d .

* /
public LinkedList <Signature > getAuthent i ca t ion () ;

/ * *
* The r e q u i r e m e n t s f o r a c o n n e c t i o n a r e
* i n f l u e n c e d by t h e r e q u i r e m e n t s o f a Binding ,
* t h e r e q u i r e m e n t s o f t h e Layer . c o n n e c t c a l l ,

204

B.4. Connection

* and f u r t h e r r e q u i r e m e n t s added by t h e l a y e r
* management .
*
* @return S e t o f r e q u i r e m e n t s used f o r t h i s

c o n n e c t i o n
* /

public Descr ipt ion getRequirements () ;

/ * *
* Sends d a t a through t h e l a y e r t o a l l p e e r s o f
* t h e c o n n e c t i o n . The method b l o c k s as l ong as
* r e q u i r e d t o a c c e s s t h e b u f f e r o f t h e send
* d a t a . Depending on t h e i m p l e m e n t a t i o n , t h e
* method may r e t u r n a f t e r c o p y i n g t h e d a t a t o a
* b u f f e r , t o wa i t u n t i l such a b u f f e r i s f r e e ,
* o r t o wa i t u n t i l t h e d a t a was send . However ,
* i t n e v e r b l o c k s u n t i l an acknowledgment i s
* r e c e i v e d .
*
* @param d a t a Data t o send
* @throws NetworkExcep t i on On e r r o r dur ing

s e n d i n g (e . g . c o n n e c t i o n i s c l o s e d)
* /

public void write (S e r i a l i z a b l e data) throws
NetworkException ;

/ * *
* C a l l e d by a p p l i c a t i o n in o r d e r t o g e t new d a t a
* r e c e i v e d by t h i s s o c k e t . Th i s method d o e s not
* b l o c k and r e t u r n s n u l l i f no d a t a i s
* a v a i l a b l e .
*
* @return R e c e i v e d d a t a o b j e c t
* @throws NetworkExcep t i on On e r r o r (e . g .

c o n n e c t i o n i s c l o s e d)
* /

public Object read () throws NetworkException ;

/ * *
* @return Number o f a v a i l a b l e b y t e s (i f s t r e a m

i s used) o r o b j e c t s (i f r e a d i s used)
* /

public i n t a v a i l a b l e () ;

205

B. FoG layer interface

/ * *
* T e r m i n a t e s t h e p o s s i b i l i t y t o exchange d a t a
* v i a t h i s c o n n e c t i o n . I f t h e c o n n e c t i o n i s
* c l o s e d a t t h e o t h e r p e e r s depend on t h e
* r e q u i r e m e n t s o f a c o n n e c t i o n and t h e number
* o f p e e r s . The method d o e s not b l o c k .
* /

public void c l o s e () ;
}

206

C. Productions for mapping
requirements to functions

Section 4.4.3 introduces an algorithm that maps requirements to required
functions. The following modified context free grammar for describing valid
chains of gates has been used. Some variables structure the mapping by
representing the following ideas:

• Sa: Original stream from application and start symbol

• S f : Fragments of original stream, which might be transmitted several
times

• Sx: Not readable fragments (maybe encrypted)

The star (*) is a terminal symbol representing any other valid chain (in
particular of TransparentGates and DirectDownGates).

1. VirusFree: Sa → CSa | SaC

2. Transport: Sa → TdS f Tu

3. Encryption: Sa → EdSxEu

4. Sa → S f

5. Base64: S f → BdSxBu

6. VirusFree: S f → S f CS f

7. VideoOSD: S f → S f VOSDS f

8. VideoDecoding: S f → S f VdecS f

9. Intermediate: S f → S f S f

10. S f → Sx

11. Encryption: Sx → EdSxEu

12. Sx → *

207

C. Productions for mapping requirements to functions

The following productions translate variables to gate type names (terminals):

13. Bd → Base64EncoderGate

14. Bu → Base64DecoderGate

15. Ed → EncryptionEncoderGate

16. Eu → EncryptionDecoderGate

17. Td → NumberingGate

18. Tu → OrderAndCheckGate

19. C → VirusScanGate

20. Vdec → VideoDecodingGate

21. VOSD → VideoOSDGate

This and further examples for productions can be found at the FoGSiEm
home page [FoG].

208

D. Performance studies for
implementation

The following studies focus on the performance of the FoG implementation
FoGSiEm. In contrast to the studies in Chapter 5, they are not related to
architectural issues. They focus on the performance of FoGSiEm in the context
of the use case video streaming, which was defined by the SIG “Functional
composition”. It was chosen as an example application due to its growing
importance for the Internet [Cis12]. However, it is an open question whether
video streaming will be the “killer application” for a future Internet.

The studies verify that FoGSiEm is suitability for demonstration purposes.
They can be summarized as follows:

• Video streaming performance: Video streaming was defined as a com-
mon use case by the SIG “Functional composition”. FoGSiEm has to
support this use case. The study in Section D.2 shows the high influence
of the CPU load of the video handling on the emulator performance. The
demonstration setup can transmit and display up to three video streams
generated by a native IP application without degrading the video quality.

– Influencing factor:

* Number of parallel video streams

– Metrics:

* CPU load

* Data rate on link

• Throughput: In order to analyze the emulator performance without the
video processing overhead the maximum throughput on application level
without this overhead was measured. The study in Section D.3 shows
that the prototype achieves a throughput of 50 Mbit/s, which is sufficient
for demonstration purposes.

– Influencing factors:

* Architecture (UDP/IP vs. FoG)

* Size of payload in one packet

– Metric:

209

D. Performance studies for implementation

Figure D.1.: Picture of the emulator setup with two notebooks and a live video
stream.

* Maximum throughput

The studies had been executed with the software described in Chapter 4 in
emulation mode. Their network setup with real equipment is described in
Section D.1.

D.1. Emulation setup
FoGSiEm can emulate a FoG network directly on top of Ethernet as described
in Section 4.6. The studies regarding the performance of the emulation are
conducted with two Lenovo X220i notebooks (each with 4 GB RAM and an Intel
i3-2310M CPU with 2.1 GHz) with OpenSUSE 12.1 and Linux 3.1.0. Both are
directly connected to each other via a 1 GBit/s Ethernet link. The notebooks
had been chosen to create a mobile emulation setup that can be taken to
conferences and trade-fairs. Figure D.1 shows a picture from the setup.

The FoGSiEm emulator setup transports FoG packets directly over Ethernet.
IP is not involved for the transmission. The emulation uses the gateway

210

D.2. Video streaming performance

interoperability solution implemented by Thomas Volkert in order to connect
the IP applications to FoG. The interoperability uses a local loopback and does
not transmitting IP packet over the Ethernet link.

The emulator setup uses the FoG-BGP routing service with manually as-
signed address prefixes and autonomous system identifiers.

D.2. Video streaming performance
This study measures the performance of FoGSiEm in the context of a video
streaming use case that was defined by the SIG “Functional Composition”.
Therefore, it measures the number of parallel video streams FoGSiEm can
transmit without a degradation of the video stream.

A variable number of parallel video streams is transmitted through the FoG
network described in Section D.1. The details of the setup are depicted in
Figure D.2. The Homer-Conferencing software version 0.24.0 [Hom] captures
a live video from the webcam of the notebook Host 1 and streams the video
to a local IP port, which represents the interoperability gateway to FoG entity
A. FoG entity A is attached to one lower layer entity, which represents the
Ethernet. The entity sends FoG packets from the Java VM via the JNI to LibNet
as described in Section 4.6. During the setup, FoG entity A established a gate
to FoG entity B by setting up a connection through the Ethernet layer. On
Host 2, LibPCap captures the Ethernet packets and hands them over to FoG
entity B via JNI. The receiver is a FoG-enabled application, which receives FoG
packets directly. Since the viewer application runs in the same address space
as FoGSiEm, no further inter-process communication is required. The video
decoding is done by a VideoDecodingGate. This gate type was implemented by
Thomas Volkert in the plug-in fog.video [FoG]. The uncompressed RGB video
frames are handed over to the viewer via the Connection interface.

Homer-Conferencing is streaming a live video with the following character-
istics:

• Video size: 352x288

• Frame rate per second: 30

• Codec: H.261

• Quality: 100%

For the video transmission, it measured the following:

• IP bandwidth1: 2.064 Mbit/s

1 Estimation of Homer-Conferencing including IP header, UDP header and RTP header.

211

D. Performance studies for implementation

Host 2

Host 1

FoG A

Homer-
Conf.

IP/UDP Ethernet Ethernet

Interop

FoG B

LibPCap

Medium

JNI JNI

LibNet

Viewer app.
(FoG-enabled)

Video
Decoding
Gate

Figure D.2.: Setup for video throughput measurements

• Average packet size: 1100 bytes [min: 18, max: 1184]

Figure D.3 shows the average CPU load of some programs and the Ethernet
data rate required to transmit multiple streams. Homer-Conferencing con-
stantly requires 3% of the CPU on Host 1. The CPU load of the video decoding
and resizing to the size of the viewer is the limiting factor because it increases
with the number of transmitted parallel streams. Besides FoGSiEm A, the
X Window system of Host 2 generates significant CPU load. In total, three
streams lead to a CPU load of 60% at Host 2. Four parallel streams overload
its CPU, which causes dropped packets and missed video frames. Since the
output is not comparable any longer, the results for four streams are not shown
in the figure. The CPU load of FoGSiEm A increases as well but is far from
critical.

The transmitted data rate is much higher than the “IP bandwidth” approxi-
mated by Homer-Conferencing. The overhead is introduced by the encoding
of a FoG packet as serialized Java object. Since all packet elements such as
route segments, gate numbers, and authentication information are encoded
as Java objects, a typical FoG packet in this setup has a serialized size of 1238
bytes without payload. Including the average payload size of 1100 bytes, this
sums up to an average FoG packet size of 2338 bytes. Such FoG packets are
fragmented and transmitted with two subsequent Ethernet frames.

The video streaming performance of FoGSiEm is limited by the CPU rather

212

D.3. Application throughput

0

2

4

6

8

10

12

14

0%

5%

10%

15%

20%

25%

1 2 3

D
at

a
ra

te
 [

M
b

it
/s

]

C
P

U
 lo

ad

Parallel video streams

FoGSiEm A

FoGSiEm B

Host 2 X.org

Ethernet data rate

Figure D.3.: CPU load and Ethernet data rate required to transmit several
parallel video streams

than the data rate of Ethernet. Thus, faster computers would enable even
more paralell video streams. However, the emulator setup is fast enough for
demonstration purposes.

D.3. Application throughput
This study measures the maximum throughput an application can achieve with
FoGSiEm without video processing overhead. It uses a native IP application
for the measurements in order to use a common and reliable software for the
measurements.

The study measures the throughput that can be achieved via one connection
in the emulator setup described in Section D.1. It compares the maximum
throughput of FoGSiEm and IP. Since FoGSiEm is a rapid prototype, which
trades performance for implementation time, its performance is worse than the
performance of IP. However, FoGSiEm should be fast enough for demonstration
purposes as mentioned in Section 4.1. The study quantifies the performance
degradation of the FoG emulation in comparison to IP without the video over-
head of the previous study.

The IP tool Iperf version 2.0.5 [Ipe] is used for the throughput measurements2.
The Iperf instance S is sending data to the Iperf instance R as depicted in
Figure D.4. The sender side of the setup is comparable to the setup of the

2 Jperf 2.0.2 is used as graphical front end

213

D. Performance studies for implementation

Host 2 Host 1

FoG A

IPerf
S

IP/UDP Ethernet IP/UDP Ethernet

Interop

FoG B

Interop LibPCap

IPerf
R

Medium

JNI JNI

LibNet

Figure D.4.: Setup for Iperf measurements. Gates are shown with arrows.
Additional data flows are depicted with dashed arrows.

0

100

200

300

400

500

600

700

0

10

20

30

40

50

60

70

0 500 1000 1500 2000

M
ax

. d
at

a
ra

te
 U

D
P

 [
M

b
it

/s
]

M
ax

. d
at

a
ra

te
 F

o
G

Si
Em

 [
M

b
it

/s
]

Payload size

FoGSiEm

UDP

Figure D.5.: Maximum data rate of Iperf over FoGSiEm and UDP directly over
Ethernet. Values measured with Iperf averaged over 30 seconds.

214

D.3. Application throughput

study described in Section D.2. The receiver side of Host 2 is similar as well.
However, Host 2 contains a second interoperability gateway, which converts
the FoG packets back to UDP packets and delivers them to Iperf R. Thus, the
measurement includes two transitions between FoGSiEm and the Linux kernel
(to and from IP and Ethernet, respectively) and one transition through JNI
(from Java to C and C to Java, respectively) per notebook. Moreover, it includes
the physical transmission via Ethernet.

Figure D.5 shows the average maximum data rate measured with Iperf
averaged over 30 seconds. The size of the payload sent by Iperf is varied in
steps of 250 bytes in order to measure the overhead per packet and the impact
of the fragmentation. With a payload size of 1 byte, the overhead of processing
packets reduces the data rate to 600 kbit/s. It increases to a maximum value of
approximatly 50 Mbit/s. The data rate transmitted over Ethernet is significantly
higher due to the encoding of FoG packets (cp. previous study). For comparion
reasons, the maximum data rate with UDP/IP without FoGSiEm is depicted in
Figure D.5 as well. It uses the y-axis on the right hand side and is between 9 to
14 times higher than the maximum data rate achievable with FoGSiEm.

As in the video streaming study, the maximum throughput is limited by
the processing overhead and not by the data rate of the Ethernet link. The
optimized implementation of UDP (in particular its implementation in the
kernel) is able to achieve a much higher throughput. If FoG is implemented in
the kernel as well, it would result in a much better performance. Depending
on the setup, the performance might even be better than the performance of IP.
The minimal processing steps required per FoG packet are discussed in Section
4.3.2.4.

215

E. Analysis of state distribution for
FoG network

The distribution of the number of gate numbers stored on a FoG node shown in
Section 5.2.2 might be normal distributed. However, the following tests reveal
that this is not the case. Both tests are using values from Figure 5.8. Since these
values are only shifted, the results hold for the original data shown in Figure
5.6 as well.

• Chi-squared test: The values from the experimental sample are grouped
according to intervals. Each group has to have a frequency of at least
5% in order to be suitable for the test. The equidistant intervals are 0.06
broad, because this leads to a distribution with a high number of intervals
fulfilling this requirement. The border “intervals” include the tails (to
minus infinity and to plus infinity, respectively) in order to create a group
with a frequency of at least 5%. The frequencies are shown in Figure
E.1 graphically and in Table E.1 as values. Figure E.1 shows that the
sample seems not to be normal distributed, because it is shifted to the
left and has a longer tail on the right side. The high differences leads
to a high X2

S = 256.89. With a degree of freedom d f = 12− 1− 2 = 9,
P(X2 > X2

S) ≈ 0. According to the chi-squared test, the sample is not
normal distributed.

• Jarque-Bera test [JB87]: The Jarque-Bera test checks whether skewness
and kurtosis of a sample matches a normal distribution. The skewness
of the sample data is 0.546 (positive skew; meaning that the right tail is
longer) and the kurtosis is 3.581 (leptokurtic distributions: positive in
comparison to a normal distribution). Thus, a high JB = 319.327 with
d f JB = 2 results in P(X2 > JB) ≈ 0. Thus, the Jarque-Bera test also rejects
the assumption that the sample is normal distributed.

217

E. Analysis of state distribution for FoG network

0

100

200

300

400

500

600

700

B
e

lo
w

1
.3

2

1
.3

8

1
.4

4

1
.5

1
.5

6

1
.6

2

1
.6

8

1
.7

4

1
.8

1
.8

6

A
b

o
ve

N
u

m
b

er
 o

f
n

o
d

es

Number of states per node and 1000 connections

Sample

Expectation

Figure E.1.: Comparison of experimental and expected frequency according to
a normal distribution. X-axis shows mainly the centers of intervals.
The border bars include the tails. Sample size is 5,000.

218

In
te

rv
al

ce
nt

er
Be

lo
w

1.
32

1.
38

1.
44

1.
5

1.
56

1.
62

1.
68

1.
74

1.
8

1.
86

A
bo

ve
Sa

m
pl

e
27

4
26

0
44

1
59

0
61

4
57

2
45

8
40

1
33

5
28

6
24

8
52

1
Ex

pe
ct

at
io

n
42

2
25

2
33

9
42

5
49

5
53

5
53

7
50

1
43

5
35

0
26

2
44

8
D

if
fe

re
nc

e
-1

47
8

10
1

16
4

11
9

37
-7

9
-1

00
-9

9
-6

4
-1

4
73

Ta
bl

e
E.

1.
:V

al
ue

s
fo

r
Fi

gu
re

E.
1

219

F. Node degree correlation analysis
In Section 5.2.2, the relationship between the node degree and the number of
mapping states for a reference architecture is visualized in Figure 5.5. The
relationship between the node degree and the number of gate numbers on a
node in a FoG network is shown in Figure 5.7. In the following the linear and
non-linear correlation of both relationships is discussed in more detail.

The linear correlation coefficients R for both relationships are shown in
the middle column of Table F.1. The first relationship shows a very strong
positive linear correlation, while the second one shows a weak negative linear
correlation.

In order to check for non-linear correlations, Spearman’s rank correlation
coefficients RS (with ties) had been calculated as well. They are shown in
the right column of Table F.1. Since they are based on ranks and not on the
actual values, they only indicate whether there is a monotonic dependency.
The RS values indicate a strong correlation for the first relationship and a
medium correlation for the second one. According to the test equation given
in [Göh99, p. 113], the correlation values RS are both highly significant (since
n = 5000 > 20: 47.1 > 3.3 and 38.3 > 3.3, respectively).

Spearman’s rank correlation coefficients confirm the tendency from the linear
correlation coefficients. The first relationship seems to be really correlated ac-
cording to both coefficients. However, the correlation of the second relationship
is less clear. While the linear correlation is only weak, the RS seems to indicate
a non-linear correlation.

In order to analyze the correlation, Figure F.1 shows the experimental distri-
bution functions for eight different categories of nodes. They are categorized

Node degree vs: R RS

1. Number of map-
ping states (Refer-
ence)

0.975 0.666

2. Sum of gate
numbers (FoG) -0.348 -0.541

Table F.1.: Correlation coefficients for relationship between node degree and
two other measurements

221

F. Node degree correlation analysis

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

N
o

rm
al

iz
ed

 f
re

q
u

en
cy

Summed length of routes for a node per 1000 connections

node degree = 1

node degree = 2

node degree = 3

node degree = 4

node degree = 5

node degree = 6

node degree = 7

node degree = 8

Figure F.1.: Experimental distribution functions for different node degrees. One
distribution corresponds to one “vertical cut” in Figure 5.7. X-axis
depicts the centers of the equidistant intervals (0.25). Each curve is
normalized by the number of nodes having the same node degree.

according to their node degree. Only 9.5% of the nodes have a node degree
higher than eight and are not included in the figure. The figure shows that
the distribution seems to depend on the node degree: Nodes with a low node
degree are more located at the “periphery” of an inter-network and, thus,
have longer routes to other nodes of the inter-network. In contrast, nodes with
a high node degree are more located in the “core” of an inter-network and,
thus, have shorter routes to other nodes. Moreover, the distribution seems to
change from a distribution with a heavy tail to a normal distribution. End
users within “core” subnetworks1 seem to have an advantage compared to end
users located at the periphery. However, this assumes that the route length is
not influenced by the internal structure of subnetworks. An analysis regarding
the question whether this advantage is overcompensated by the larger internal
structure of such “core” subnetworks is subject to future work.

1 According to DIMES, e.g., AS7018 “ATT-INTERNET4 - AT&T Services, Inc.” with a node degree
of 1919, AS6680 “Deutsche Telekom AG” with a node degree of 785, and AS680 “DFN Verein
zur Foerderung eines Deutschen Forschungsnetzes e.V.” with a node degree of 147 would be
such core subnetworks.

222

G. Additional simulation results

This section contains additional results or different plots of results from the
simulations described in Chapter 5.

G.1. Statistical reliability of routing service graph
sizes

The routing service graph sizes depend strongly on the distribution of cluster
heads and, thus, of the clusters. The performance study in Section 5.3 used 20
simulation runs per probability in order to achieve a reliable average. However,
the smaller the probability to become a cluster head, the higher the variations
are. Especially the assignment of the core nodes with a high node degree to
clusters influence the cluster size significantly (in comparison to the assignment
of a node with just a single neighbor).

Originally, the simulations had been carried out three times with 10 simula-
tion runs per probability each. Their results did not differ significantly. Since
the first set of simulations had been carried out with an older version of the
simulator with a slightly different statistic output format, only the last two set
of simulations have been combined.

To confirm this stability, the average number of clusters (equal to number of
cluster heads) has been analyzed. Figure G.1 shows the difference between the
average number of clusters and the expectation value in percent of the expecta-
tion value. For 1.25%, the average value of 60.3 differs from the expectation
value of 62.5 (for 5000 nodes) by -3.52%. There have been runs with 37 up to 73
clusters resulting in high percentage values for the maximum and minimum
values. The higher the probability the more stable the results get.

In summary, the analysis reveals that the number of clusters remains below
the expected number of clusters. The absolute error remains below 0.3% for
most of the probabilities. Only higher differences at 1.25% (-3.52%), 2.5%
(-1.16%), and 10% (1.30%) decrease the overall average difference to -0.33%.
However, the error is rather small and does not seem to be significant for the
results of the simulations.

223

G. Additional simulation results

-50

-40

-30

-20

-10

0

10

20

0 0.2 0.4 0.6 0.8 1

D
if

fe
re

n
ce

 f
ro

m
 e

xp
ec

ta
ti

o
n

[%

 o
f

ex
p

ec
ta

ti
o

n
]

Probability to become a cluster head

Maximal

Average

Minimal

Figure G.1.: Average, maximal, and minimal number of routing service clusters
compared to the expected number of clusters

G.2. Error recovery for random link failures
In Section 5.4, only the results for failing links in the middle of a route are
shown. This error scheme allows repairing of 97 to 99% of the failed routes. If a
random link of a route fails, the proportion of successful repaired connections
in the GLP graph drops to 63%. In the remaining cases, the failure partitions
the network. Due to long simulation times and the less reliable sample size,
the study was not executed for the large graphs.

Figure G.2 shows the results for link failures in the middle of a route and
random link failures for the GLP graph. The study contains 100,000 connections
between random nodes per link-breaking strategy. The results are average
values from the successfully repaired failures. Thus, the sample size for the
random failures is smaller than the sample for the failures in the middle.

As expected, the reference route length did not change (cp. Section 5.2.1).
The global repair algorithm can still find equally short alternative routes. Its
signaling messages require 16% more hops. The local repair algorithm requires
a 14% higher overhead to deal with random failures. Since this value is relative
to the reference route length, the overall increase in comparison to the failures
in the middle is just 3%. The from-detector algorithm requires a 56% higher
overhead, which leads to an overall increase of 6%.

224

G.2. Error recovery for random link failures

0

1

2

3

4

5

6

7

8

9

Reference Global (+) Signaling Local (+) From-
detector

(+)

H
o

p
s

Middle

Random

Figure G.2.: Route length resulting from repair actions in GLP graph (further
explanation see Figure 5.17)

0.950

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

0 100 200 300 400

R
el

at
iv

e
fr

eq
u

en
cy

Number of mapping states on a node per 1000 connections

GLP

DIMES

Ark

Figure G.3.: Number of mapping states as shown in Figure 5.4 with a different
scale

225

G. Additional simulation results

G.3. Mapping states distribution
In addition to the figures shown in Section 5.2, Figure G.3 shows the same
results with different scales for the axes.

226

Nomenclature
ANA Autonomic Network Architecture
ANSI American National Standards Institute
API Application Programming Interface
ARP Address Resolution Protocol
ARPA Advanced Research Projects Agency
ATM Asynchronous Transfer Mode
AutoBAHN Automated Bandwidth Allocation across Heterogeneous

Networks
BGP Border Gateway Protocol
CCITT International Telegraph and Telephone Consultative Com-

mittee
CLNP Connectionless Network Protocol
CPU Central Processing Unit
DDP Datagram Delivery Protocol
DES Data Encryption Standard
DHCP Dynamic Host Configuration Protocol
DiffServ Differentiated Service
DNS Domain Name System
DRUID Dynamic Recursive Unified Internet Design
DSA Distributed System Architecture
EFCP Error and Flow Control Protocol
FIB Forward Information Base
FoG Forwarding on Gates
FoGSiEm FoG Simulator/Emulator
GLP Generalized Linear Preference
GMPLS Generalized Multi-Protocol Label Switching
GUI graphical user interface
ICMP Internet Control Message Protocol
IDP Information Dispatch Points
IMP Interface Message Processor
IntServ Integrated Service
IONL Internal Organization of the Network Layer
IP Internet Protocol
IPTO Information Processing Techniques Office
IPX Internetwork Packet eXchange
IRATI Investigating RINA as an Alternative to TCP/IP

227

G. Additional simulation results

ISO International Organization for Standardization
k Kilo
LAN Local Area Networks
LAPB Line Access Protocol Balanced
LDP Label Distribution Protocol
LISP Locator/ID Separation Protocol
LLC Logical Link Control
LSP Label Switched Path
M Mega
m Milli
MAC Medium Access Control
MCS Modular Communication Systems
MPLS MultiProtocol Label Switching
NAT Network Address Translation
NCP Network Control Protocol
NIRA New Inter-Domain Routing Architecture
NoS Nature of Service
NPL National Physical Laboratory
NSIS Next Step in Signaling
OSGi Open Service Gateway Initiative
OSI Open System Interconnection
OSPF Open Shortest Path First
OvIP Overpass IP
PCI Protocol Control Information
PFRI Postmodern Forwarding and Routing Infrastructure
PIP P Internet Protocol
PUP PARC Universal Protocol
QoS Quality of Service
RBA Role-based Architecture
RCP Eclipse Rich Client Platform
RFC Request for Comments
RIB Routing Information Base
RIEP Resource Information Exchange Protocol
RINA Recursive INternet Architecture
RMI Remote Method Invocation
RNA Recursive Network Architecture
RSVP Resource Reservation Protocol
s Seconds
SAP Service Access Point
SCORE Scalable Core
SDH Synchronous Digital Hierarchy
SDU Service Data Units
SIG Special Interest Group

228

G.3. Mapping states distribution

SIP Session Initiation Protocol
SIPP Simple Internet Protocol Plus
SNA Systems Network Architecture
SNMP Simple Network Management Protocol
SONATE Service Oriented Node Architecture
SSFnet Scalable Simulator Framework
SVC Scalable Video Codec
TCP Transmission Control Protocol
TOS Type of Service
UML Unified Modeling Language
UMTS Universal Mobile Telecommunications System
XTP Xpress Transfer Protocol

229

List of Figures

2.1. Layer at the N-th position in the stack with its entities, protocol
state machines, and service access points 12

2.2. OSI layer stack with sublayers . 19
2.3. Architecture of a single recursive layer 29

3.1. A function user decides to include functional block X to the
chain of a connection between the applications C and S 52

3.2. Sketch of motivating use case . 54
3.3. Classification states required by IP to map connection to subse-

quent MPLS LSPs . 59
3.4. Three state distributions . 61
3.5. Example chain of functional blocks 66
3.6. Example with two chains and dependencies within each chain

and dependencies between the chains 70
3.7. Chain with wrong order of gates due to dependencies 71
3.8. Three chains with forwarding nodes, gates, dependencies, and

gate numbers . 72
3.9. Differences in models using functional blocks 74
3.10. FoG layer architecture . 76
3.11. Simplified layer interface of FoG 79
3.12. Incremental routing example with two FoG nodes 91
3.13. FoG setup for use case . 99
3.14. Example routing service entity emulating IP 103
3.15. Gate setup emulating MPLS . 106

4.1. Simplified plug-in dependencies of important FoGSiEm plug-ins 120
4.2. Setup of a FoG node in FoGSiEm 123
4.3. Important functional blocks and their class hierarchy 124
4.4. State diagram for gates . 127
4.5. FoG packet structure . 129
4.6. Forwarding node procedure without error cases 132
4.7. Sequence diagram for gate setup 135
4.8. Repair algorithms in a small scenario 137
4.9. Gate and forwarding node setup for mobility 141

231

List of Figures

4.10. Entity R1,n of simulated routing service on level n with knowl-
edge from the lower level n-1 entities 144

4.11. Entity R2,n-1 and R3,n-1 of simulated routing service 144
4.12. FoG with BGP routing service . 146
4.13. Word creation with modified grammar 149

5.1. Empirical distribution functions of node degrees for the three
Internet-like graphs . 159

5.2. Example for a FoG setup that models an inter-network 160
5.3. Empirical distribution functions of route length of explicit end-

to-end routes for the three Internet-like graphs with FoG 163
5.4. Empirical distribution functions for state information in reference

architecture . 164
5.5. Node degree vs. number of mapping states for reference 164
5.6. Empirical distribution function for the number of gate numbers

stored on a node . 167
5.7. Node degree vs. number of gate numbers on a node 167
5.8. Empirical distribution functions for number of states per node

for FoG and reference architecture (for GLP graph) 168
5.9. Clustering example for an inter-network with seven subnetworks 171
5.10. Average number of requests to the routing service levels per

connection . 173
5.11. Average number of edges and vertices of cluster level graphs . . 175
5.12. Average number of edges and vertices of inter-cluster level graphs175
5.13. Average sizes of routing service entity graphs per entity in total . 176
5.14. Cost approximation for runtime of Dijkstra algorithm for calcu-

lating routes . 176
5.15. Summed cost values of all three levels for different inter-cluster

level graphs . 178
5.16. Inter-cluster graph reduced to clusters and inter-cluster links . . 179
5.17. Routes length in hops calculated by global, local, and from-

detector repair algorithms in comparison to reference route length181

D.1. Picture of the emulator setup with two notebooks and a live
video stream . 210

D.2. Setup for video throughput measurements 212
D.3. CPU load and Ethernet data rate required to transmit several

parallel video streams . 213
D.4. Setup for Iperf measurements . 214
D.5. Maximum data rate of Iperf over FoGSiEm and UDP directly

over Ethernet . 214

232

List of Figures

E.1. Comparison of experimental and expected frequency according
to a normal distribution . 218

F.1. Experimental distribution functions for different node degrees . 222

G.1. Number of routing service clusters compared to the expected
number of clusters . 224

G.2. Route length resulting from repair actions in GLP graph 225
G.3. Number of mapping states as shown in Figure 5.4 with a different

scale . 225

233

List of Tables

2.1. Classification of relaying PCI formats according to their fields . . 33

3.1. Fitness of possible solutions for the use case from an inter-
network perspective . 57

3.2. Extension for Table 3.1 with the fitness of FoG for the use case . 112

5.1. Sizes and node degree values of the graphs 158
5.2. Average FoG route length for the three Internet-like graphs . . . 163

E.1. Values for Figure E.1 . 219

F.1. Correlation coefficients for relationship between node degree
and two other measurements . 221

235

Listings

B.1. EventSource . 199
B.2. Layer subinterface . 200
B.3. Binding subinterface . 203
B.4. Connection subinterface . 204

237

Index

RSVP, 43

access protocol, 134
Access protocols, 37
Address Resolution Protocol, 39
addresses, 13
Advanced Research Projects Agency,

21
American National Standards Insti-

tute, 17
Apache River, 122
Application Programming Interface,

48
Ark graph, 158
Asynchronous Transfer Mode, 35
attribute, 80
authentication service, 85, 151
Automated Bandwidth Allocation

across Heterogeneous Net-
works, 97

Autonomic Network Architecture,
49

autonomous system, 10

Berkeley socket API, 48
Border Gateway Protocol, 15
bundle, 119

Central Processing Unit, 2
chain, 66, 69
chain of trust, 87
Classification states, 14
Click, 49
CLNP, 34

cluster, 170
cluster head, 170
connection, 13
connection-oriented, 40
connectionless, 39
Connectionless Network Protocol,

19

Data Encryption Standard, 67
Datagram Delivery Protocol, 34
dependencies, 69
deployment, 109
destination segment, 77
detector, 136
Differentiated Service, 3
DiffServ, 41
DIMES graph, 158
distributed application name, 31
Distributed IPC Facility, 28
Distributed System Architecture, 17
Domain Name System, 23
Dynamic Host Configuration Proto-

col, 39
Dynamic Recursive Unified Inter-

net Design, 27

Eclipse Rich Client Platform, 117
effect, 80
emulation, 152, 213
emulator, 152
end system, 10
entity, 11
Error and Flow Control Protocol, 30
error and flow control protocol, 37

239

Index

explicit segment, 77
extension, 121
extension points, 121

fog, 152
FoG entity, 82, 123
FoG layer architecture, 75
FoG node, 82, 123
FoG Simulator/Emulator, 117
fog.bus, 122
Forward Information Base, 15
Forwarding nodes, 67
Forwarding on Gates, 4
function, 67
function provider, 51
Function states, 15
function user, 51
functional block, 67

gate number, 67
Gates, 67
Generalized Linear Preference, 158
Generalized Multi-Protocol Label

Switching, 33
GLP graph, 158
graphical user interface, 118

hide, 81

incremental routing process, 77, 88
Information Dispatch Points, 97
Information Processing Techniques

Office, 22
Integrated Service, 2
inter-network, 10, 44
interface, 11
Interface Message Processor, 22
Internal Organization of the Net-

work Layer, 19
International Organization for Stan-

dardization, 16
International Telegraph and Tele-

phone Consultative Com-
mittee, 16

Internet Control Message Protocol,
19

Internet Protocol, 2
Internetwork Packet eXchange, 34
interoperability, 111
IntServ, 43
invariances, 3
Investigating RINA as an Alterna-

tive to TCP/IP, 27

Java, 122

Label Distribution Protocol, 123
Label Switched Path, 15
labels, 13
layer, 11
LibNet, 153
LibPCap, 153
Line Access Protocol Balanced, 19
Local Area Networks, 17
Locator/ID Separation Protocol, 65
locator/identifier split, 13
Logical Link Control, 17

Mapping states, 15
Medium Access Control, 17
missing gate segment, 130
mobility, 140
model-view architecture, 119
Modular Communication Systems,

16
MPLS, 35
MultiProtocol Label Switching, 13

names, 13
namespace, 13
National Physical Laboratory, 21
Nature of Service, 41
Netlets, 49
network, 10
Network Address Translation, 26
Network Control Protocol, 23
network neutrality, 45

240

Index

neutral-offering, 47
New Inter-Domain Routing Archi-

tecture, 107
Next Step in Signaling, 38
Next Step In Signaling (NSIS), 43

Open Service Gateway Initiative, 117
Open Shortest Path First, 15
Open System Interconnection, 3
operator, 80
OSI, 16
Overpass IP, 35

P Internet Protocol, 36
packets, 21
PARC Universal Protocol, 34
PARIS, 35
partial chain, 77
partial route, 84
Pathlet, 35, 95
peer gate, 69
plug-in, 119
Postmodern Forwarding and Rout-

ing Infrastructure, 34
production, 147
Protocol Control Information, 12
Protocol Data Unit (PDU), 12

QoS, 14
Quality of Service, 1

recovery algorithms, 136, 180
Recursive INternet Architecture, 27
Recursive Network Architecture, 27
relay system, 10
Relaying, 15
relaying PCI formats, 32
Remote Method Invocation, 122
Request for Comments, 23
requirement, 80
requirements, 14
requirements mapper, 83
Resource Information Exchange Pro-

tocol, 30

Resource information exchange pro-
tocols, 39

Resource Reservation Protocol, 14
reuse, 71
reverse chain, 69
reverse gate, 69
Role-based Architecture, 97
route, 77
Routing, 15
Routing Information Base, 15
routing service, 82, 141

Scalable Core, 42
Scalable Simulator Framework, 117
Scalable Video Codec, 101
Scheduling states, 14
segments, 77
Service Access Point, 12
Service Data Units, 12
Service Oriented Node Architecture,

49
Session Initiation Protocol, 45
signaling process identifier, 134
Signaling states, 14
SILO, 96
Simple Internet Protocol Plus, 34
Simple Network Management Pro-

tocol, 39
Sirpent, 35
socio-economic aspects, 45
soft-state, 43
Special Interest Group, 5
SpoVNet, 58
state, 14
subnetwork, 44
Synchronous Digital Hierarchy, 34
Systems Network Architecture, 17

terminal, 147
topology, 11
transfer service, 80, 122
Transmission Control Protocol, 23
Transport Protocolclass 4 (TP4), 20

241

Index

tussles, 65, 179
Type of Service, 36

Unified Modeling Language, 124
Universal Mobile Telecommunica-

tions System, 2

Xpress Transfer Protocol, 37

242

Bibliography
[ABE+04] Bengt Ahlgren, Marcus Brunner, Lars Eggert, Robert Hancock,

and Stefan Schmid. Invariants: a new design methodology for
network architectures. In Proceedings of the ACM SIGCOMM
workshop on Future directions in network architecture, FDNA ’04,
pages 65–70, New York, NY, USA, 2004. ACM. URL: http://doi.
acm.org/10.1145/1016707.1016719.

[AD11] Saamer Akhshabi and Constantine Dovrolis. The evolution of
layered protocol stacks leads to an hourglass-shaped architecture.
SIGCOMM Comput. Commun. Rev., 41(4):206–217, August 2011.

[Agu08] Rui L. Aguiar. Some comments on hourglasses. Computer Com-
munication Review, 38(5):69–72, 2008.

[AMT07] L. Andersson, I. Minei, and B. Thomas. LDP Specification. RFC
5036 (Draft Standard), October 2007. Updated by RFCs 6720, 6790.
URL: http://www.ietf.org/rfc/rfc5036.txt.

[Apa] Apache Foundation. Homepage Apache River. URL: http://
river.apache.org/ [retrieved 04/12/2013].

[App] Apple Computer Inc. Bonjour for developers. URL: https://
developer.apple.com/bonjour/ [retrieved 04/28/2013].

[App94] Apple Computer Inc. Inside Macintosh: Networking. Addison-
Wesley Longmann, 2 edition, 1994.

[ASNN07] J. Abley, P. Savola, and G. Neville-Neil. Deprecation of Type 0
Routing Headers in IPv6. RFC 5095 (Proposed Standard), Decem-
ber 2007. URL: http://www.ietf.org/rfc/rfc5095.txt.

[BBC+98] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Services. RFC 2475 (In-
formational), December 1998. Updated by RFC 3260. URL:
http://www.ietf.org/rfc/rfc2475.txt.

[BCG+06] Bobby Bhattacharjee, Ken Calvert, Jim Griffioen, Neil Spring, and
James Sterbenz. Postmodern internetwork architecture. Technical
report, Universities of Maryland, Kentucky and Kansas, February
2006.

243

http://doi.acm.org/10.1145/1016707.1016719
http://doi.acm.org/10.1145/1016707.1016719
http://www.ietf.org/rfc/rfc5036.txt
http://river.apache.org/
http://river.apache.org/
https://developer.apple.com/bonjour/
https://developer.apple.com/bonjour/
http://www.ietf.org/rfc/rfc5095.txt
http://www.ietf.org/rfc/rfc2475.txt

Bibliography

[BCS94] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: an Overview. RFC 1633 (Informational),
June 1994. URL: http://www.ietf.org/rfc/rfc1633.txt.

[BFH03] Robert Braden, Ted Faber, and Mark Handley. From protocol stack
to protocol heap: role-based architecture. SIGCOMM Comput.
Commun. Rev., 33(1):17–22, January 2003.

[BGT04] Tian Bu, Lixin Gao, and Don Towsley. On characterizing BGP
routing table growth. Comput. Netw., 45(1):45–54, May 2004. URL:
http://dx.doi.org/10.1016/j.comnet.2004.02.003.

[BHMW11] Roland Bless, Christian Hübsch, Christoph P. Mayer, and Oliver P.
Waldhorst. Future Internet Services and Service Architectures, chapter
SpoVNet: An Architecture for Easy Creation and Deployment of
Service Overlays. River Publishers, 2011.

[BIFD01] F. Baker, C. Iturralde, F. Le Faucheur, and B. Davie. Aggregation
of RSVP for IPv4 and IPv6 Reservations. RFC 3175 (Proposed
Standard), September 2001. Updated by RFC 5350. URL: http:
//www.ietf.org/rfc/rfc3175.txt.

[BM95] S. Bradner and A. Mankin. The Recommendation for the IP Next
Generation Protocol. RFC 1752 (Proposed Standard), January
1995. URL: http://www.ietf.org/rfc/rfc1752.txt.

[Boc97] S. Bocking. Object-oriented network protocols. In INFOCOM ’97.
Sixteenth Annual Joint Conference of the IEEE Computer and Commu-
nications Societies. Driving the Information Revolution., Proceedings
IEEE, volume 3, pages 1245–1252 vol.3, 1997.

[Bra89] R. Braden. Requirements for Internet Hosts - Communication
Layers. RFC 1122 (INTERNET STANDARD), October 1989. Up-
dated by RFCs 1349, 4379, 5884, 6093, 6298, 6633, 6864. URL:
http://www.ietf.org/rfc/rfc1122.txt.

[BSTM80] D. Boggs, J.F. Shoch, E. Taft, and R. Metcalfe. Pup: An internet-
work architecture. Communications, IEEE Transactions on, 28(4):612–
624, 1980.

[BZB+97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource
ReSerVation Protocol (RSVP) – Version 1 Functional Specification.
RFC 2205 (Proposed Standard), September 1997. Updated by
RFCs 2750, 3936, 4495, 5946, 6437, 6780. URL: http://www.ietf.
org/rfc/rfc2205.txt.

244

http://www.ietf.org/rfc/rfc1633.txt
http://dx.doi.org/10.1016/j.comnet.2004.02.003
http://www.ietf.org/rfc/rfc3175.txt
http://www.ietf.org/rfc/rfc3175.txt
http://www.ietf.org/rfc/rfc1752.txt
http://www.ietf.org/rfc/rfc1122.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt

Bibliography

[Car96] B. Carpenter. Architectural Principles of the Internet. RFC 1958
(Informational), June 1996. Updated by RFC 3439. URL: http:
//www.ietf.org/rfc/rfc1958.txt.

[CCI70] Report on CCITT meetings on New Data Networks, 23–27
of November 1970. URL: http://www.cs.utexas.edu/users/
chris/DIGITAL_ARCHIVE/NPL/Davies11.pdf.

[CCR+09] Vinton G. Cerf, Stephen D. Crocker, David P. Reed, Lauren
Weinstein, and Daniel Lynch. Open letter to Julius Genachowski
Chairman of Federal Communication Commission, October
2009. URL: http://voices.washingtonpost.com/posttech/
Net%20Pioneers%20Letter%20to%20Chairman%20Genachowski%
20Oct09.pdf.

[Cer06] Vinton G. Cerf. Prepared statement for U.S. senate committee
on commerce, science, and transportation hearing on "network
neutrality", February 2006. URL: http://www.commerce.senate.
gov/pdf/cerf-020706.pdf.

[CG88] Israel Cidon and Inder S. Gopal. Paris: An approach to integrated
high-speed private networks. International Journal of Digital Analog
Cabled Systems, 1(2):77–85, April-June 1988.

[CGKR10] Lorenzo Colitti, Steinar H. Gunderson, Erik Kline, and Tiziana
Refice. Evaluating ipv6 adoption in the internet. In Proceedings of
the 11th international conference on Passive and active measurement,
PAM’10, pages 141–150, Berlin, Heidelberg, 2010. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1889324.1889339.

[CGP07] K.L. Calvert, J. Griffioen, and Leonid Poutievski. Separating
routing and forwarding: A clean-slate network layer design. In
Broadband Communications, Networks and Systems, 2007. BROAD-
NETS 2007. Fourth International Conference on, pages 261–270, 2007.

[Che89] D. R. Cheriton. Sirpent: a high-performance internetworking ap-
proach. In Symposium proceedings on Communications architectures
& protocols, SIGCOMM ’89, pages 158–169, New York, NY, USA,
1989. ACM. URL: http://doi.acm.org/10.1145/75246.75263.

[Cis12] Cisco Systems. Cisco visual networking index: Forecast and
methodology, 2011-2016. White paper, Cisco Systems, May 2012.
URL: http://www.cisco.com/en/US/solutions/collateral/
ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.
pdf.

245

http://www.ietf.org/rfc/rfc1958.txt
http://www.ietf.org/rfc/rfc1958.txt
http://www.cs.utexas.edu/users/chris/DIGITAL_ARCHIVE/NPL/Davies11.pdf
http://www.cs.utexas.edu/users/chris/DIGITAL_ARCHIVE/NPL/Davies11.pdf
http://voices.washingtonpost.com/posttech/Net%20Pioneers%20Letter%20to%20Chairman%20Genachowski%20Oct09.pdf
http://voices.washingtonpost.com/posttech/Net%20Pioneers%20Letter%20to%20Chairman%20Genachowski%20Oct09.pdf
http://voices.washingtonpost.com/posttech/Net%20Pioneers%20Letter%20to%20Chairman%20Genachowski%20Oct09.pdf
http://www.commerce.senate.gov/pdf/cerf-020706.pdf
http://www.commerce.senate.gov/pdf/cerf-020706.pdf
http://dl.acm.org/citation.cfm?id=1889324.1889339
http://doi.acm.org/10.1145/75246.75263
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf
http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf

Bibliography

[CK13] S. Cheshire and M. Krochmal. Multicast DNS. RFC 6762 (Pro-
posed Standard), February 2013. URL: http://www.ietf.org/
rfc/rfc6762.txt.

[Cla88] David D. Clark. The design philosophy of the DARPA internet
protocols. SIGCOMM Computer Communication Review, 18(4):106–
114, August 1988.

[Cla05] David D. Clark. What is "architecture"?, November
2005. URL: http://find.isi.edu/presentation_files/Dave_
Clark-What_is_architecture_4.pdf.

[CPB+05] David D. Clark, Craig Partridge, Robert T. Braden, Bruce Davie,
Sally Floyd, Van Jacobson, Dina Katabi, Greg Minshall, K. K.
Ramakrishnan, Timothy Roscoe, Ion Stoica, John Wroclawski, and
Lixia Zhang. Making the world (of communications) a different
place. SIGCOMM Comput. Commun. Rev., 35(3):91–96, July 2005.

[CWSB02] David D. Clark, John Wroclawski, Karen R. Sollins, and Robert
Braden. Tussle in cyberspace: defining tomorrow’s internet. In
Proceedings of the 2002 conference on Applications, technologies, ar-
chitectures, and protocols for computer communications, SIGCOMM
’02, pages 347–356, New York, NY, USA, 2002. ACM. URL:
http://doi.acm.org/10.1145/633025.633059.

[Day95] John Day. The (un)revised OSI reference model. SIGCOMM
Comput. Commun. Rev., 25(5):39–55, October 1995. URL: http:
//doi.acm.org/10.1145/216701.216704.

[Day08a] John Day. Patterns in Network Architecture - A Return to Fundamen-
tals. Prentice Hall, 2008.

[Day08b] John Day. Why loc/id split isn’t the answer. Inter-
net, 2008. URL: http://pouzin.pnanetworks.com/images/
LocIDSplit090309.pdf.

[Day11] John Day. How in the heck do you lose a layer!? In Network of the
Future (NOF), 2011 International Conference on the, pages 135–143,
2011.

[DEB12] Philipp Drieß, Florian Evers, and Markus Brückner. The MoSaKa
QoS system: Architecture and evaluation. International Journal On
Advances in Telecommunications, vol 5, nr 3&4, 2012, 5(3&4):216–228,
September 2012.

246

http://www.ietf.org/rfc/rfc6762.txt
http://www.ietf.org/rfc/rfc6762.txt
http://find.isi.edu/presentation_files/Dave_Clark-What_is_architecture_4.pdf
http://find.isi.edu/presentation_files/Dave_Clark-What_is_architecture_4.pdf
http://doi.acm.org/10.1145/633025.633059
http://doi.acm.org/10.1145/216701.216704
http://doi.acm.org/10.1145/216701.216704
http://pouzin.pnanetworks.com/images/LocIDSplit090309.pdf
http://pouzin.pnanetworks.com/images/LocIDSplit090309.pdf

Bibliography

[Dee01] Steve Deering. Watching the waist of the proto-
col hourglass. Talk at IETF 51, August 2001. URL:
http://www.iab.org/wp-content/IAB-uploads/2011/03/
hourglass-london-ietf.pdf.

[Deu] Deutsche Telekom GmbH. Entertain. URL: http://www.telekom.
de/privatkunden/fernsehen [retrieved 04/12/2013].

[DF99] Christophe Deleuze and Serge Fdida. A scalable intserv architec-
ture through rsvp aggregation. Networking and information systems
journal, 2(5-6):665–681, 1999.

[DFV07] Mónica Domingues, Carlos Friaças, and Pedro Veiga. Is global
IPv6 deployment on track? Internet Research, 17(5):505–518, 2007.

[DH95] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 1883 (Proposed Standard), December 1995. Ob-
soleted by RFC 2460. URL: http://www.ietf.org/rfc/rfc1883.
txt.

[DH98] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6)
Specification. RFC 2460 (Draft Standard), December 1998. Up-
dated by RFCs 5095, 5722, 5871, 6437, 6564, 6935, 6946. URL:
http://www.ietf.org/rfc/rfc2460.txt.

[DMM08] John Day, Ibrahim Matta, and Karim Mattar. Networking is
IPC: a guiding principle to a better internet. In Proceedings of
the 2008 ACM CoNEXT Conference, CoNEXT ’08, pages 67:1–67:6,
New York, NY, USA, 2008. ACM. URL: http://doi.acm.org/10.
1145/1544012.1544079.

[DRB+07] Rudra Dutta, George N. Rouskas, Ilia Baldine, Arnold Bragg, and
Dan Stevenson. The SILO architecture for services integration,
control, and optimization for the future internet. In IEEE ICC,
pages 24–27, 2007.

[DSW09] Khaled Deeb, Sean P. O’Brien Sr., and Matthew E. Weiner. A
survey on network neutrality - a new form of discrimination
based on network profiling. Int. J. Netw. Virtual Organ., 6(4):426–
436, May 2009. URL: http://dx.doi.org/10.1504/IJNVO.2009.
025938.

[DWJ09] J. Domzal, R. Wojcik, and A. Jajszczyk. QoS-aware net neutral-
ity. In Evolving Internet, 2009. INTERNET ’09. First International
Conference on, pages 147–152, 2009.

247

http://www.iab.org/wp-content/IAB-uploads/2011/03/hourglass-london-ietf.pdf
http://www.iab.org/wp-content/IAB-uploads/2011/03/hourglass-london-ietf.pdf
http://www.telekom.de/privatkunden/fernsehen
http://www.telekom.de/privatkunden/fernsehen
http://www.ietf.org/rfc/rfc1883.txt
http://www.ietf.org/rfc/rfc1883.txt
http://www.ietf.org/rfc/rfc2460.txt
http://doi.acm.org/10.1145/1544012.1544079
http://doi.acm.org/10.1145/1544012.1544079
http://dx.doi.org/10.1504/IJNVO.2009.025938
http://dx.doi.org/10.1504/IJNVO.2009.025938

Bibliography

[Ecl] Eclipse Foundation. Homepage Rich Client Platform. URL:
http://www.eclipse.org/home/categories/rcp.php [retrieved
04/25/2013].

[ET12] Nicholas Economides and Joacim Tåg. Network neutrality on the
internet: A two-sided market analysis. Information Economics and
Policy, 24:91–104, August 2012.

[Fel07] Anja Feldmann. Internet clean-slate design: what and why?
SIGCOMM Comput. Commun. Rev., 37(3):59–64, July 2007.

[FFML13] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. The Locator/ID
Separation Protocol (LISP). RFC 6830 (Experimental), January
2013. URL: http://www.ietf.org/rfc/rfc6830.txt.

[FLSS99] Merilee Ford, H. Kim Lew, Steve Spanier, and Tim Stevenson.
Internetworking Technology Overview. Cisco Systems, Inc., June
1999. URL: ftp://www.nwstc.noaa.gov/IT/NetBasics.pdf.

[FoG] Homepage FoGSiEm on GitHub. URL: https://github.com/
ICS-TU-Ilmenau/fog/wiki [retrieved 04/12/2013].

[Fra94] P. Francis. Pip Near-term Architecture. RFC 1621 (Informational),
May 1994. URL: http://www.ietf.org/rfc/rfc1621.txt.

[FRM97] Gregory Finn, Craig Milo Rogers, and Rodney Van Meter. Data-
gram forwarding via stateless internetwork switching. In IEEE
Communications Society and NetWorld+Interop ’97, Engineers Confer-
ence on Broadband Access - Technologies, Systems and Services, May
1997.

[FT84] Michael L. Fredman and R.E. Tarjan. Fibonacci heaps and their
uses in improved network optimization algorithms. In Foundations
of Computer Science, 1984. 25th Annual Symposium on, pages 338–
346, 1984.

[GÉA] GÉANT2. Bandwidth on demand. URL: http://www.geant2.
net/server/show/conWebDoc.1018 [retrieved 04/12/2013].

[GB04] Erich Gamma and Kent Beck. Contributing to Eclipse: principles,
patterns, and plug-ins. Pearson Education, 2004.

[GGSS09] P. Brighten Godfrey, Igor Ganichev, Scott Shenker, and Ion Stoica.
Pathlet routing. SIGCOMM Comput. Commun. Rev., 39(4):111–122,
August 2009.

248

http://www.eclipse.org/home/categories/rcp.php
http://www.ietf.org/rfc/rfc6830.txt
ftp://www.nwstc.noaa.gov/IT/NetBasics.pdf
https://github.com/ICS-TU-Ilmenau/fog/wiki
https://github.com/ICS-TU-Ilmenau/fog/wiki
http://www.ietf.org/rfc/rfc1621.txt
http://www.geant2.net/server/show/conWebDoc.1018
http://www.geant2.net/server/show/conWebDoc.1018

Bibliography

[Göh99] Wilhelm Göhler. Formelsammlung höhere Mathematik. Verlag Harri
Deutsch, Frankfurt (Main), Germany, 14 edition, 1999.

[GRY07] Minas Gjoka, Vinayak Ram, and Xiaowei Yang. Evaluation of IP
fast reroute proposals. In IEEE COMSWARE, 2007.

[Han06] M. Handley. Why the internet only just works. BT Technology
Journal, 24(3):119–129, July 2006. URL: http://dx.doi.org/10.
1007/s10550-006-0084-z.

[Hea93] Nicholas Heap. An Introduction to OSI. Blackwell Science Pub-
lications Ltd, Oxford, United Kindom, 1993. Deutsche Überset-
zung: OSI Referenzmodell ohne Geheimnisse. Verlag Heinz Heise
GmbH & CO KG, Hannover 1994.

[HFU+08] Hamed Haddadi, Damien Fay, Steve Uhlig, Andrew Moore,
Richard Mortier, Almerima Jamakovic, and Miguel Rio. Tun-
ing topology generators using spectral distributions. In Pro-
ceedings of the SPEC international workshop on Performance Eval-
uation: Metrics, Models and Benchmarks, SIPEW ’08, pages 154–
173, Berlin, Heidelberg, 2008. Springer-Verlag. URL: http:
//dx.doi.org/10.1007/978-3-540-69814-2_11.

[HG05] Yaqing Huang and R. Guerin. Does over-provisioning become
more or less efficient as networks grow larger? In Network
Protocols, 2005. ICNP 2005. 13th IEEE International Conference on,
pages 11 pp.–235, 2005.

[HHA+] Young Hyun, Bradley Huffaker, Dan Andersen, Emile Aben,
Matthew Luckie, kc claffy, and Colleen Shannon. The
IPv4 routed /24 AS links dataset - 2nd/3rd february
2012. URL: http://www.caida.org/data/active/ipv4_routed_
topology_aslinks_dataset.xml.

[Hin94] R. Hinden. Simple Internet Protocol Plus White Paper. RFC 1710
(Informational), October 1994. URL: http://www.ietf.org/rfc/
rfc1710.txt.

[HKLdB05] R. Hancock, G. Karagiannis, J. Loughney, and S. Van den Bosch.
Next Steps in Signaling (NSIS): Framework. RFC 4080 (Infor-
mational), June 2005. URL: http://www.ietf.org/rfc/rfc4080.
txt.

[HL03] Katie Hafner and Matthew Lyon. Where Wizards Stay Up Late: The
Origins Of The Internet. Pocket Book, 2003.

249

http://dx.doi.org/10.1007/s10550-006-0084-z
http://dx.doi.org/10.1007/s10550-006-0084-z
http://dx.doi.org/10.1007/978-3-540-69814-2_11
http://dx.doi.org/10.1007/978-3-540-69814-2_11
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.caida.org/data/active/ipv4_routed_topology_aslinks_dataset.xml
http://www.ietf.org/rfc/rfc1710.txt
http://www.ietf.org/rfc/rfc1710.txt
http://www.ietf.org/rfc/rfc4080.txt
http://www.ietf.org/rfc/rfc4080.txt

Bibliography

[HMH13] M. Hoefling, M. Menth, and M. Hartmann. A survey of mapping
systems for locator/identifier split internet routing. Communica-
tions Surveys Tutorials, IEEE, PP(99):1–17, 2013.

[Hom] Homer Conferencing. Homepage. URL: http:
//www.homer-conferencing.com/en/index.html [retrieved
04/12/2013].

[HT11] Harri Holma and Antti Toskala, editors. LTE for UMTS: Evolution
to LTE-Advanced. John Wiley & Sons, Ltd, 2 edition, 2011.

[IAN13] IANA. Service name and transport protocol port number
registry, April 2013. URL: http://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.
txt.

[IEE08] IEEE. Std 802.3 - 2008 part 3: Carrier sense multiple access with
collision detection (CSMA/CD) access method and physical layer
specifications, 2008.

[IEE13] IEEE. Organizationally unique identifier. Webpage, February 2013.
URL: http://standards.ieee.org/develop/regauth/oui/oui.
txt.

[Int86] International Organization for Standardization. Final text of DIS
8473, Protocol for Providing the Connectionless-mode Network
Service. RFC 994, March 1986. URL: http://www.ietf.org/rfc/
rfc994.txt.

[ION88] Information technology - telecommunications and information ex-
changebetween systems - the internal organization of the network
layer, 1988. URL: http://www.iso.org/iso/catalogue_detail.
htm?csnumber=16011.

[Ipe] Iperf. Homepage. URL: http://sourceforge.net/projects/
iperf/ [retrieved 04/12/2013].

[IRA] IRATI project. Homepage IRATI - Investigating RINA as
an alternative to TCP/IP. URL: http://irati.eu/ [retrieved
04/12/2013].

[Jac88] Van Jacobson. Congestion avoidance and control. SIGCOMM
Computer Communication Review, 18(4):314–329, August 1988.

[JB87] Carlos M. Jarque and Anil K. Bera. A test for normality of
observations and regression residuals. International Statistical
Review, 55(2):163–172, August 1987.

250

http://www.homer-conferencing.com/en/index.html
http://www.homer-conferencing.com/en/index.html
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://www.ietf.org/rfc/rfc994.txt
http://www.ietf.org/rfc/rfc994.txt
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16011
http://www.iso.org/iso/catalogue_detail.htm?csnumber=16011
http://sourceforge.net/projects/iperf/
http://sourceforge.net/projects/iperf/
http://irati.eu/

Bibliography

[JG06] L. Jorge and T. Gomes. Survey of recovery schemes in MPLS
networks. In Dependability of Computer Systems, 2006. DepCos-
RELCOMEX ’06. International Conference on, pages 110–118, 2006.

[JGKT07] Ping Ji, Zihui Ge, Jim Kurose, and Don Towsley. A comparison
of hard-state and soft-state signaling protocols. IEEE/ACM Trans.
Netw., 15(2):281–294, April 2007. URL: http://dx.doi.org/10.
1109/TNET.2007.892849.

[KAI04] J. Kempf, R. Austein, and IAB. The Rise of the Middle and
the Future of End-to-End: Reflections on the Evolution of the
Internet Architecture. RFC 3724 (Informational), March 2004.
URL: http://www.ietf.org/rfc/rfc3724.txt.

[KHM+08] A. Keller, T. Hossmann, M. May, G. Bouabene, C. Jelger, and
C. Tschudin. A system architecture for evolving protocol stacks.
In Computer Communications and Networks, 2008. ICCCN ’08. Pro-
ceedings of 17th International Conference on, pages 1–7, 2008.

[KMC+00] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and
M. Frans Kaashoek. The click modular router. ACM Trans. Comput.
Syst., 18(3):263–297, August 2000. URL: http://doi.acm.org/10.
1145/354871.354874.

[Kob12] Hisashi Kobayashi. Keynote speech at euroview 2012. Internet
blog, August 2012. URL: http://hp.hisashikobayashi.com/
keynote-speech-at-euroview-2012/.

[KSRM12] R. Khondoker, A. Siddiqui, B. Reuther, and P. Mueller. Service
orientation paradigm in future network architectures. In Inno-
vative Mobile and Internet Services in Ubiquitous Computing (IMIS),
2012 Sixth International Conference on, pages 346–351, 2012.

[LBMT06] Florian Liers, René Böringer, and Andreas Mitschele-Thiel. Op-
timal placement of anchor points within large telecommuni-
cation networks. In Proceedings of the 4th international confer-
ence on Wired/Wireless Internet Communications, WWIC’06, pages
96–107, Berlin, Heidelberg, 2006. Springer-Verlag. URL: http:
//dx.doi.org/10.1007/11750390_9.

[LCPM85] Barry M. Leiner, R. Cole, J. Postel, and D. Mills. The DARPA
internet protocol suite. Communications Magazine, IEEE, 23(3):29–
34, 1985.

[LHSS13] Florian Liers, Markus Hager, Sebastian Schellenberg, and Jochen
Seitz. Recursive layering of forwarding on gates and traffic en-
gineering middleware for ethernet. In International Conference

251

http://dx.doi.org/10.1109/TNET.2007.892849
http://dx.doi.org/10.1109/TNET.2007.892849
http://www.ietf.org/rfc/rfc3724.txt
http://doi.acm.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
http://hp.hisashikobayashi.com/keynote-speech-at-euroview-2012/
http://hp.hisashikobayashi.com/keynote-speech-at-euroview-2012/
http://dx.doi.org/10.1007/11750390_9
http://dx.doi.org/10.1007/11750390_9

Bibliography

on Information Networking 2013 (ICOIN 2013), Bangkok, Thailand,
January 2013.

[Liba] sam-github / libnet. Github web page. URL: https://github.
com/sam-github/libnet [retrieved 05/27/2013].

[Libb] tcpdump & LibPCap. Project web page. URL: http://www.
tcpdump.org/ [retrieved 05/27/2013].

[LV11] Florian Liers and Thomas Volkert. Arbeitspunkt 1.5 - Spezifika-
tion Interoperabilität. Unpublished project report for work item
of project G-Lab_FoG, January 2011.

[LVM+11] Florian Liers, Thomas Volkert, Denis Martin, Helge Backhaus,
Hans Wippel, A. Erik Veith, Abbas Siddiqui, and Rahmatullah
Khondoker. GAPI: A G-Lab application-to-network interface. In
11th Würzburg Workshop on IP: Joint ITG and Euro-NF Workshop
"Visions of Future Generation Networks" (EuroView2011), Würzburg,
Germany, August 2011.

[LVMT10] Florian Liers, Thomas Volkert, and Andreas Mitschele-Thiel.
Demonstrating forwarding on gates with first applications. In 10th
Würzburg Workshop on IP: Joint ITG, ITC, and Euro-NF Workshop
"Visions of Future Generation Networks" (EuroView2010), Würzburg,
August 2010.

[LVMT11] Florian Liers, Thomas Volkert, and Andreas Mitschele-Thiel. Scal-
able network support for application requirements with forward-
ing on gates. In 11th Würzburg Workshop on IP: Joint ITG and
Euro-NF Workshop "Visions of Future Generation Networks" (Eu-
roView2011), Würzburg Germany, August 2011.

[LVMT12] Florian Liers, Thomas Volkert, and Andreas Mitschele-Thiel. The
forwarding on gates architecture: Merging intserv and diffserv.
In International Conference on Advances in Future Internet (AFIN)
2012, Rome, Italy, August 2012.

[LVMT13] Florian Liers, Thomas Volkert, and Andreas Mitschele-Thiel.
Schlussbericht G-Lab_FoG. Project report, 2013.

[MAB+08] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru
Parulkar, Larry Peterson, Jennifer Rexford, Scott Shenker, and
Jonathan Turner. Openflow: enabling innovation in campus net-
works. SIGCOMM Comput. Commun. Rev., 38(2):69–74, March
2008. URL: http://doi.acm.org/10.1145/1355734.1355746.

252

https://github.com/sam-github/libnet
https://github.com/sam-github/libnet
http://www.tcpdump.org/
http://www.tcpdump.org/
http://doi.acm.org/10.1145/1355734.1355746

Bibliography

[MKF+06] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Xeno-
fontas Dimitropoulos, k c claffy, and Amin Vahdat. The internet
AS-level topology: three data sources and one definitive met-
ric. SIGCOMM Comput. Commun. Rev., 36(1):17–26, January 2006.
URL: http://doi.acm.org/10.1145/1111322.1111328.

[ML02] Sanjeev Mervana and Chris Le. Design and Implementation of
DSL-Based Access Solutions. Cisco Press, Indianapolis, USA, 2002.

[MLMB01] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John
Byers. Brite: An approach to universal topology generation.
In Proceedings of the Ninth International Symposium in Modeling,
Analysis and Simulation of Computer and Telecommunication Systems,
MASCOTS ’01, pages 346–, Washington, DC, USA, 2001. IEEE
Computer Society. URL: http://dl.acm.org/citation.cfm?id=
882459.882563.

[MM02] Petar Maymounkov and David Mazières. Kademlia: A peer-to-
peer information system based on the xor metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems, IPTPS
’01, pages 53–65, London, UK, UK, 2002. Springer-Verlag. URL:
http://dl.acm.org/citation.cfm?id=646334.687801.

[MP02] David E. McDysan and Dave Paw. ATM & MPLS Theory &
Application: Foundations of Multi-Service Networking. McGraw-
Hill/Osborne, 2002.

[MR08] Paul Müller and Bernd Reuther. Future internet architecture -
a service oriented approach (Future Internet Architecture - Ein
serviceorientierter Ansatz). it - Information Technology, 50(6):383–
389, 2008.

[MW00] Jeonghoon Mo and J. Walrand. Fair end-to-end window-based
congestion control. Networking, IEEE/ACM Transactions on,
8(5):556–567, 2000.

[NBBB98] K. Nichols, S. Blake, F. Baker, and D. Black. Definition of the Dif-
ferentiated Services Field (DS Field) in the IPv4 and IPv6 Headers.
RFC 2474 (Proposed Standard), December 1998. Updated by RFCs
3168, 3260. URL: http://www.ietf.org/rfc/rfc2474.txt.

[Ope11] Openflow switch specification, February 2011. URL: http://www.
openflow.org/documents/openflow-spec-v1.1.0.pdf.

[Ora] Oracle. Java object serialization specification. URL:
http://docs.oracle.com/javase/6/docs/platform/
serialization/spec/serialTOC.html [retrieved 04/12/2013].

253

http://doi.acm.org/10.1145/1111322.1111328
http://dl.acm.org/citation.cfm?id=882459.882563
http://dl.acm.org/citation.cfm?id=882459.882563
http://dl.acm.org/citation.cfm?id=646334.687801
http://www.ietf.org/rfc/rfc2474.txt
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html
http://docs.oracle.com/javase/6/docs/platform/serialization/spec/serialTOC.html

Bibliography

[Osd12] Manuel Osdoba. Evaluierung eines hierarchischen routingsys-
tems im kontext des future internet ansatzes "forwarding on
gates". Master’s thesis, Technische Universität Ilmenau, Ilmenau,
July 2012.

[Per01] Radia Perlman. Myths, missteps, and folklore in protocol design.
In Proceedings of USENIX, 2001.

[Per10] C. Perkins. IP Mobility Support for IPv4, Revised. RFC 5944
(Proposed Standard), November 2010. URL: http://www.ietf.
org/rfc/rfc5944.txt.

[Pos81] J. Postel. Internet Protocol. RFC 791 (INTERNET STANDARD),
September 1981. Updated by RFCs 1349, 2474, 6864. URL: http:
//www.ietf.org/rfc/rfc791.txt.

[Pou] Pouzin Society. Homepage Pouzin Society. URL: http://pouzin.
pnanetworks.com/home.html [retrieved 04/13/2013].

[Pou74a] Louis Pouzin. Cigale, the packet switching machine of the cy-
clades computer network. In IFIP Congress, pages 155–159, 1974.

[Pou74b] Louis Pouzin. A proposal for interconnecting packet switching
networks. In EUROCOMP, pages 1023–1036, Brunel University,
May 1974.

[PPJ11a] J. Pan, S. Paul, and R. Jain. A survey of the research on future
internet architectures. Communications Magazine, IEEE, 49(7):26–
36, 2011.

[PPJ11b] Subharthi Paul, Jianli Pan, and Raj Jain. Architectures for
the future networks and the next generation internet: A sur-
vey. Comput. Commun., 34(1):2–42, January 2011. URL: http:
//dx.doi.org/10.1016/j.comcom.2010.08.001.

[Pre03] Prian J. Premore. An analysis of convergence properties of the Bor-
der Gateway Protocol using discrete event simulation. PhD thesis,
Dartmouth College, Hanover, New Hampshire, May 2003.

[Pre11] Pressestelle TU Ilmenau. TU Ilmenau präsentiert auf
der CeBIT 2011 Flugroboter für Katastrophenszenar-
ien, February 2011. URL: http://www.pressebox.de/
pressemitteilung/technische-universitaet-ilmenau/
TU-Ilmenau-praesentiert-auf-der-CeBIT-2011-Flugroboter-\
fuer-Katastrophenszenarien/boxid/407297.

254

http://www.ietf.org/rfc/rfc5944.txt
http://www.ietf.org/rfc/rfc5944.txt
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc791.txt
http://pouzin.pnanetworks.com/home.html
http://pouzin.pnanetworks.com/home.html
http://dx.doi.org/10.1016/j.comcom.2010.08.001
http://dx.doi.org/10.1016/j.comcom.2010.08.001
http://www.pressebox.de/pressemitteilung/technische-universitaet-ilmenau/TU-Ilmenau-praesentiert-auf-der-CeBIT-2011-Flugroboter-\fuer-Katastrophenszenarien/boxid/407297
http://www.pressebox.de/pressemitteilung/technische-universitaet-ilmenau/TU-Ilmenau-praesentiert-auf-der-CeBIT-2011-Flugroboter-\fuer-Katastrophenszenarien/boxid/407297
http://www.pressebox.de/pressemitteilung/technische-universitaet-ilmenau/TU-Ilmenau-praesentiert-auf-der-CeBIT-2011-Flugroboter-\fuer-Katastrophenszenarien/boxid/407297
http://www.pressebox.de/pressemitteilung/technische-universitaet-ilmenau/TU-Ilmenau-praesentiert-auf-der-CeBIT-2011-Flugroboter-\fuer-Katastrophenszenarien/boxid/407297

Bibliography

[RB11] Liz Ribe-Baumann. Combining resource and location aware-
ness in DHTs. In R. Meersman, T. Dillon, and P. Herrero, ed-
itors, OTM 2011, Part I, LNCS 7044, pages 385–402. Springer-
Verlag, 2011. URL: http://www.dbis.prakinf.tu-ilmenau.de/
publications/files/DBIS:Rib11.pdf.

[RCCD04] J. Rajahalme, A. Conta, B. Carpenter, and S. Deering. IPv6
Flow Label Specification. RFC 3697 (Proposed Standard), March
2004. Obsoleted by RFC 6437. URL: http://www.ietf.org/rfc/
rfc3697.txt.

[Rei07] A. Reitzel. Deprecation of source routing options in IPv4. In-
ternet Draft, August 2007. URL: http://tools.ietf.org/html/
draft-reitzel-ipv4-source-routing-is-evil-00.

[RIN] Rina webpage. URL: http://csr.bu.edu/rina/index.html [re-
trieved 04/25/2013].

[Ros90] Marshall T. Rose. The open book: a practical perspective on OSI.
Prentice Hall, Englewood Cliffs, NJ, 1990.

[RTF+01] E. Rosen, D. Tappan, G. Fedorkow, Y. Rekhter, D. Farinacci, T. Li,
and A. Conta. MPLS Label Stack Encoding. RFC 3032 (Proposed
Standard), January 2001. Updated by RFCs 3443, 4182, 5332, 3270,
5129, 5462, 5586. URL: http://www.ietf.org/rfc/rfc3032.txt.

[Sal82] Jerome H. Saltzer. On the naming and binding of network desti-
nations. In Local Computer Networks, pages 311–317, Amsterdam,
1982. Also published as RFC 1498.

[SDW92] W. Timothy Strayer, Bert J. Dempsey, and Alfred C. Weaver. XTP:
The Xpress Transfer Protocol. Addison-Wesley Pub, August 1992.

[SKM12] A. Siddiqui, R. Khondoker, and P. Muller. Template based compo-
sition for requirements based network stacks. In Telecommunication
Networks and Applications Conference (ATNAC), 2012 Australasian,
pages 1–6, 2012.

[SM05] V. Srivastava and M. Motani. Cross-layer design: a survey and
the road ahead. Communications Magazine, IEEE, 43(12):112–119,
2005.

[SM12] A.A. Siddiqui and P. Mueller. A requirement-based socket API for
a transition to future internet architectures. In Innovative Mobile
and Internet Services in Ubiquitous Computing (IMIS), 2012 Sixth
International Conference on, pages 340–345, 2012.

255

http://www.dbis.prakinf.tu-ilmenau.de/publications/files/DBIS:Rib11.pdf
http://www.dbis.prakinf.tu-ilmenau.de/publications/files/DBIS:Rib11.pdf
http://www.ietf.org/rfc/rfc3697.txt
http://www.ietf.org/rfc/rfc3697.txt
http://tools.ietf.org/html/draft-reitzel-ipv4-source-routing-is-evil-00
http://tools.ietf.org/html/draft-reitzel-ipv4-source-routing-is-evil-00
http://csr.bu.edu/rina/index.html
http://www.ietf.org/rfc/rfc3032.txt

Bibliography

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in
system design. ACM Trans. Comput. Syst., 2(4):277–288, November
1984. URL: http://doi.acm.org/10.1145/357401.357402.

[SS05] Yuval Shavitt and Eran Shir. DIMES: let the internet measure
itself. SIGCOMM Comput. Commun. Rev., 35(5):71–74, October
2005.

[SS06] B. Sardar and D. Saha. A survey of TCP enhancements for last-
hop wireless networks. Communications Surveys Tutorials, IEEE,
8(3):20–34, 2006.

[SSBK03] Lakshminarayanan Subramanian, Ion Stoica, Hari Balakrishnan,
and Randy H. Katz. OverQoS: offering internet QoS using over-
lays. SIGCOMM Comput. Commun. Rev., 33(1):11–16, January
2003.

[SSF] SSF Research Network. Homepage Scalable Simulation Frame-
work (SSF). URL: http://www.ssfnet.org/homePage.html [re-
trieved 04/12/2013].

[Sta93] William Stallings. Networking Standards - A Guide to OSI, ISDN,
LAN and MAN Standards. Addison-Wesley, 1993.

[SZ99] Ion Stoica and Hui Zhang. Providing guaranteed services without
per flow management. In Proceedings of the conference on Applica-
tions, technologies, architectures, and protocols for computer commu-
nication, SIGCOMM ’99, pages 81–94, New York, NY, USA, 1999.
ACM. URL: http://doi.acm.org/10.1145/316188.316208.

[Tan03] Andrew S. Tanenbaum. Computer Networks, volume 4. Pearson
Education Inc., 2003.

[TBD+11] Joe Touch, Ilia Baldine, Rudra Dutta, Gregory G. Finn, Bryan Ford,
Scott Jordan, Dan Massey, Abraham Matta, Christos Papadopou-
los, Peter Reiher, and George Rouskas. A dynamic recursive
unified internet design (DRUID). Comput. Netw., 55(4):919–935,
March 2011.

[TG01] Christian Tschudin and Richard Gold. Selnet: A translating
underlay network. Technical Report 2003-020, Uppsala University,
Uppsala, Sweden, November 2001.

[TGD+11] Eleni Trouva, Eduard Grasa, John Day, Ibrahim Matta, Lubomir T.
Chitkushev, Steve Bunch, Miguel Ponce de Leon, Patrick Phe-
lan, and Xavier Hesselbach-Serra. Transport over heterogeneous

256

http://doi.acm.org/10.1145/357401.357402
http://www.ssfnet.org/homePage.html
http://doi.acm.org/10.1145/316188.316208

Bibliography

networks using the RINA architecture. In Proceedings of the 9th
IFIP TC 6 international conference on Wired/wireless internet com-
munications, WWIC’11, pages 297–308, Berlin, Heidelberg, 2011.
Springer-Verlag.

[TP08] D. Joseph Touch and Venkata K. Pingali. The RNA metaproto-
col. In Computer Communications and Networks, 2008. ICCCN ’08.
Proceedings of 17th International Conference on, pages 1–6, 2008.

[Tro09] Dirk Trossen. Invigorating the future internet debate. SIGCOMM
Comput. Commun. Rev., 39(5):44–51, October 2009. URL: http:
//doi.acm.org/10.1145/1629607.1629617.

[TSS+97] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden. A survey of active
network research. IEEE Communications Magazine, 35:80–86, 1997.

[Tsu92] Paul F. Tsuchiya. Pip: The ’P’ internet protocol. Internet, May
1992. work in progress.

[TW11] Andrew S. Tanenbaum and David J. Wetherall. Computer Networks,
volume 5. Pearson Education Inc., 2011.

[VL12] Thomas Volkert and Florian Liers. Video transcoding and rerout-
ing in forwarding on gates networks. In 12th Würzburg Workshop
on IP: ITG Workshop "Visions of Future Generation Networks" (Eu-
roView), Würzburg Germany, August 2012.

[VLBA12] Thomas Volkert, Florian Liers, Martin Becke, and Hakim Adhari.
Requirements-oriented path selection for multipath transmission.
In 12th Würzburg Workshop on IP: ITG Workshop "Visions of Future
Generation Networks" (EuroView), Würzburg Germany, August
2012.

[VMEK+09] L. Volker, D. Martin, I. El Khayaut, C. Werle, and M. Zitterbart.
A node architecture for 1000 future networks. In Communications
Workshops, 2009. ICC Workshops 2009. IEEE International Conference
on, pages 1–5, 2009.

[VMT12] Thomas Volkert and Andreas Mitschele-Thiel. Hierarchical rout-
ing management for improving multimedia transmissions and
QoE. In Proceedings of 13th International Symposium on a World of
Wireless, Mobile and Multimedia Networks (WoWMoM), San Fran-
cisco, California, USA, June 2012.

257

http://doi.acm.org/10.1145/1629607.1629617
http://doi.acm.org/10.1145/1629607.1629617

Bibliography

[VMW+09] L. Völker, D. Martin, C. Werle, M. Zitterbart, and I. Khayat. Select-
ing concurrent network architectures at runtime. In Proceedings
of the IEEE International Conference on Communications (ICC 2009).
IEEE, June 2009.

[VOBMT13] Thomas Volkert, Manuel Osdoba, Martin Becke, and Andreas
Mitschele-Thiel. Multipath video streaming based on hierarchical
routing management. In Proceedings of 27th IEEE International
Conference on Advanced Information Networking and Applications
(AINA), Barcelona, Spain, March 2013.

[VPMK04] D. Vali, S. Paskalis, L. Merakos, and A. Kaloxylos. A survey of
internet QoS signaling. Communications Surveys Tutorials, IEEE,
6(4):32–43, 2004.

[VTRB97] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. Dynamic Updates
in the Domain Name System (DNS UPDATE). RFC 2136 (Pro-
posed Standard), April 1997. Updated by RFCs 3007, 4035, 4033,
4034. URL: http://www.ietf.org/rfc/rfc2136.txt.

[WCBH+08] Oliver P. Waldhorst, Christian C. Blankenhorn, Dirk Haage,
Ralph Holz, Gerald G. Koch, Boris Koldehofe, Fleming Lampi,
Christoph P. Mayer, and Sebastian Mies. Spontaneous Virtual
Networks: On the road towards the internet’s next generation.
it - Information Technology Special Issue on Next Generation Internet,
50(6):367–375, December 2008.

[Weg10] Bettina Wegner. CeBIT: TU Ilmenau treibt Internet der Zukunft
voran, February 2010. URL: http://idw-online.de/pages/de/
news357291.

[WHKL08] Gerd Wütherich, Nils Hartmann, Bernd Kolb, and Matthias
Lübken. Die OSGi Service Platform: Eine Einführung mit Eclipse
Equinox. dpunkt Verlag, 2008.

[YCB07] Xiaowei Yang, D.. Clark, and A.W. Berger. NIRA: A new inter-
domain routing architecture. Networking, IEEE/ACM Transactions
on, 15(4):775–788, 2007.

[Zit08] Jonathan L. Zittrain. The Future of the Internet and How
to Stop It. Yale University Press, New Haven & Lon-
don, 2008. URL: http://futureoftheinternet.org/static/
ZittrainTheFutureoftheInternet.pdf.

258

http://www.ietf.org/rfc/rfc2136.txt
http://idw-online.de/pages/de/news357291
http://idw-online.de/pages/de/news357291
http://futureoftheinternet.org/static/ZittrainTheFutureoftheInternet.pdf
http://futureoftheinternet.org/static/ZittrainTheFutureoftheInternet.pdf

	Introduction
	Research question
	Scientific contributions
	Research environment
	Restrictions on the scope
	Chapter overview

	Background
	Terms and definitions
	Network, subnetwork, and inter-network
	Layer and its architecture
	Name and address
	Connection, quality of service, and requirements
	States
	Routing, relaying, forwarding

	Layer models
	ISO/OSI
	IP suite
	Mixed versions
	Recursive layers

	Protocols
	Relaying protocol control information
	Error and flow control protocols
	Access protocols
	Resource information exchange protocols

	Connections, states and quality of service
	Connectionless networks and overprovisioning
	Connectionless networks with quality of service add-ons
	Connection-oriented networks
	Inter-network issues
	Political aspects and network neutrality

	Dynamic protocol stacks
	Service access points
	Stack construction and selection
	Stack runtime environment

	Forwarding on Gates architecture
	Motivation and design
	Use case with Google and Deutsche Telekom
	Possible solutions with today's Internet
	Conclusions for new design
	Related motivations

	Communication model
	Functional blocks
	Chaining functional blocks
	Example
	Related work

	Layer architecture
	Interface
	Transfer service
	Routing service
	Authentication service
	Incremental routing process
	Report and request functional blocks
	Interaction with lower layers
	Related work

	Examples
	Motivating use case
	Emulation of IP
	Emulation of MPLS

	Political aspects
	Deployment and interoperability
	Deployment
	Interoperability

	Discussion
	Review of evaluation questions
	Comparison with reference model

	Implementation of FoG
	Use cases and design requirements
	Software architecture
	Plug-ins and extension points
	Event simulation

	Transfer service
	Functional blocks
	Packet structure and relaying
	Access protocol
	Error recovery
	Mobility

	Routing services
	Simulated routing service
	BGP for FoG
	Mapping from requirements to gates

	Authentication services
	Emulator

	Performance studies
	Simulation setup
	Representing subnetworks
	Network load and applications

	Scalability of transfer service
	Packet overhead due to route length
	State distribution
	Discussion

	Scalability of routing service
	Creation of routing service policies and assumptions
	Routing service requests
	Size of routing service graphs
	Runtime performance and trade-off
	Discussion

	Robustness of connections

	Conclusions
	Outlook
	Protocol control information formats
	FoG layer interface
	EventSource
	Layer
	Binding
	Connection

	Productions for mapping requirements to functions
	Performance studies for implementation
	Emulation setup
	Video streaming performance
	Application throughput

	Analysis of state distribution for FoG network
	Node degree correlation analysis
	Additional simulation results
	Statistical reliability of routing service graph sizes
	Error recovery for random link failures
	Mapping states distribution

	Nomenclature
	Lists
	Index
	Bibliography

