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NON-SEMIBOUNDED CLOSED SYMMETRIC FORMS

ASSOCIATED WITH A GENERALIZED FRIEDRICHS

EXTENSION

ANDREAS FLEIGE, SEPPO HASSI, HENK DE SNOO, AND HENRIK WINKLER

Abstract. The theory of closed sesquilinear forms in the non-semibounded

situation exhibits some new features, as opposed to the semibounded situation.
In particular, there can be more than one closed form associated with the gen-

eralized Friedrichs extension SF of a non-semibounded symmetric operator S

(if SF exists). However, there is one unique form tF [·, ·] satisfying Kato’s sec-

ond representation theorem and, in particular, dom tF = dom |SF |1/2. In the

present paper another closed form tF [·, ·] is constructed which is also uniquely

associated with SF . The relation between these two forms is analyzed and it
is shown that these two non-semibounded forms can indeed differ from each

other. Some general criteria for their equality are established. The results

induce solutions to some open problems concerning generalized Friedrichs ex-
tensions and complete some earlier results about them in the literature. The

study is connected to the spectral functions of definitizable operators in Krĕın

spaces.

1. Introduction

The Friedrichs extension plays an essential role in the representation of closed
semibounded sesquilinear forms. An analog of the Friedrichs extension for nonsemi-
bounded forms has been proposed by A.G.R. McIntosh [19, 20, 21]. He introduced
a notion of closed nonsemibounded sesquilinear forms, established analogs of Kato’s
first and second representation theorems, and formulated some open problems; see
also [10, 11] for a more explicit framework. Another operator theoretic approach
(via associated Q-functions) to such generalized Friedrichs extensions was devel-
oped in [12, 13, 14], where a connection with extension theory was established,
solving some of McIntosh’s open problems. This operator theoretic approach was
augmented by a systematic study of associated sesquilinear forms via Krĕın space
methods in [7]. The present paper completes the last two approaches with solutions
to some open problems going back to [12]; cf. [19].

For motivation first recall the classical semibounded setting. In this case the
concepts of selfadjoint operators and of closed symmetric sesquilinear forms are
equivalent. More precisely, the following identity in Kato’s first representation
theorem

(1.1) t[u, v] = (Tu, v), u ∈ domT, v ∈ dom t,
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establishes a one-to-one correspondence between all closed semibounded symmetric
sesquilinear forms t[·, ·] and all semibounded selfadjoint operators T acting on a
Hilbert space (H, (·, ·)); cf. [17, Theorem VI-2.7]. Furthermore, Kato’s second
representation theorem shows that the domain of a closed semibounded form t[·, ·]
is given by

(1.2) dom t = dom |T | 12 ,

where T is the selfadjoint operator associated with t[·, ·] by (1.1); cf. [17, Theorem
VI-2.23]. If S is a closed densely defined symmetric and semibounded operator,
then the classical Friedrichs extension is given by the selfadjoint operator SF = T
associated with the closure t[·, ·] of the semibounded form

(1.3) s[u, v] := (Su, v), u, v ∈ dom s := domS,

[17, VI-2]. The form domain dom t is sometimes called the “energy space” generated
by S. It yields the characterization

(1.4) SF = { {f, g} ∈ S∗ : f ∈ dom t }

(using the notation of relations). Recall that a symmetric sesquilinear form t[·, ·],
semibounded from below, is closed if and only if for some λ ∈ R the form

(1.5) t[u, v]λ := t[u, v]− λ(u, v), u, v ∈ dom t,

defines a Hilbert space (dom t, t[·, ·]λ), which is continuously embedded in the un-
derlying Hilbert space (H, (·, ·)); cf. [17, Theorem VI-1.11].

In the non-semibounded situation there is a general approach to representation
theorems based on Krĕın space theory, cf. [7]. However, the connection between
forms and operators becomes more involved and requires a more delicate analysis.
A form t[·, ·] is now said to be closed if the inner product space (dom t, t[·, ·]λ)
(see (1.5)) is a Krĕın space. Whereas the first representation theorem remains
true, the second representation theorem is not true in the new setting; cf. [5], [7].
There may be closed non-semibounded forms associated with a non-semibounded
selfadjoint operator T by (1.1) which do not satisfy (1.2); cf. [7], [9]. A closed
form t[·, ·] for which the identity (1.2) is satisfied is said to be regular. The identity
(1.1) now defines a one-to-one correspondence between all regular closed forms t[·, ·]
and all selfadjoint operators T with spectrum σ(T ) 6= R; cf. [7]. The present paper
completes this theory and studies further analogies and differences with the classical
semibounded theory.

Let S be a closed densely defined symmetric, in general nonsemibounded, oper-
ator with defect numbers (1, 1). Furthermore, assume that the form s[·, ·] in (1.3)
is closable (now in the Krĕın space setting) and that S has a generalized Friedrichs
extension SF . Then, in analogy with the classical situation s[·, ·] has a regular clo-
sure tF [·, ·] (again in the Krĕın space setting) which is uniquely defined and SF is
the associated operator by the first repesentation theorem. In fact, similar to (1.4),
one has the characterization

(1.6) SF = { {f, g} ∈ S∗ : f ∈ dom |SF |
1
2 (= dom tF ) },

cf. [7, Theorem 7.2] (see Theorem 2.7). This paper presents a new construction of
a closed form, denoted by tF [·, ·], which is also uniquely defined and for which SF
is also the associated operator by the first representation theorem. Moreover, one
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has the characterization

(1.7) SF = { {f, g} ∈ S∗ : f ∈ dom tF }.

The construction of the form tF [·, ·] is based on the operator theoretic approach to
the generalized Friedrichs extension in [12], where domS is completed with respect
to a topology generated by a selfadjoint extension different from SF ; cf. [12].

The main open problem which arises from [12] is to describe the relation between

the “energy space” dom tF and the domain dom |SF |
1
2 appearing in (1.6) and (1.7);

in particular, the question going back to [12] is when these spaces are equal. Using
the present approach of closed nonsemibounded forms this problem is reduced to the
regularity of tF [·, ·]. The regularity of a closed form can be characterized in terms
of the regularity of the critical point ∞ of a certain definitizable operator; cf. [7].
Hence the present theory is connected to the study of a number of formally different
problems appearing in the spectral theory of definitizable operators in a Krĕın
space, such as the similarity problem of a nonnegative operator in a Krĕın space (cf.
[7, 2]) or the Riesz basis property of eigenfunctions of SF (cf. [5, Proposition 5], [9,
Theorem 2.6], [6, Theorem 2.8]). The present theory has applications in indefinite
Sturm-Liouville problems (cf. [1, 2, 3, 4, 5, 6, 7, 9, 18]); in particular, using the
approach from [9], the above closed forms tF [·, ·] and tF [·, ·] may then be described
more explicitly and an example shows that tF [·, ·] need not be regular. The present
paper shows that the situation, described in [9] for the indefinite Sturm-Liouville
setting, also appears in general.

2. Basic facts on closed forms and generalized Friedrichs extensions

The general theory of closed non-semibounded sesquilinear forms can be found
in [5], [7], and [9]. Here some basic facts from this theory are recalled for the
construction of the regular closed form associated with the generalized Friedrichs
extension (if it exists).

2.1. Closed symmetric sesquilinear forms and representation theorems.
Let t[·, ·] be a densely defined symmetric sesquilinear form in a Hilbert space
(H, (·, ·)). Assume for a moment that t[·, ·] is semibounded from below, i.e., the
inner product

(2.1) t[u, v]λ := t[u, v]− λ(u, v), u, v ∈ dom t,

is nonnegative for some λ ∈ R. Then the form t[·, ·] is closed in the classical
sense (cf. [17]) if and only if for some λ ∈ R the form domain dom t provided
with the inner product t[·, ·]λ in (2.1) is a Hilbert space which is continuously
embedded in (H, (·, ·)); cf. [17, Theorem VI-1.11]. In the following the assumption
of semiboundedness is dropped. Then, according to [7] the form t[·, ·] is said to be
closed if there exists a so-called gap point λ ∈ R such that dom t provided with the
inner product t[·, ·]λ in (2.1) is a Krĕın space which is continuously embedded in
(H, (·, ·)). The topology of the Krĕın space does not depend on the choice of the
gap point; see [7, Lemma 3.1]. A densely defined symmetric sesquilinear form s[·, ·]
in the Hilbert space (H, (·, ·)) is said to be closable if it has a closed extension t[·, ·],
such that dom s is dense in the Krĕın space (dom t, t[·, ·]λ) for some (and hence for
all) gap points λ ∈ R of t[·, ·]. In this case t[·, ·] is called a closure of s[·, ·].

The following two theorems from [7] generalize Kato’s Representation Theorems
[17, Theorem VI-2.1, Theorem VI-2.23] to the non-semibounded situation.
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Theorem 2.1 (First representation theorem). Let t[·, ·] be a densely defined closed
symmetric sesquilinear form in the Hilbert space (H, (·, ·)) with gap point λ ∈ R.
Then the following statements are true:

(i) There exists a unique selfadjoint operator Tt in (H, (·, ·)) such that domTt ⊂
dom t and

t[u, v] = (Ttu, v), u ∈ domTt, v ∈ dom t.

(ii) domTt is dense in the Krĕın space (dom t, t[·, ·]λ).
(iii) If u ∈ dom t, w ∈ H and t[u, v] = (w, v) for all v in a dense linear subspace

of the Krĕın space (dom t, t[·, ·]λ) then u ∈ domTt and Ttu = w.
(iv) The range restriction

At = { {u, Ttu} : u ∈ domTt, Ttu ∈ dom t }
of Tt is selfadjoint and definitizable in the Krĕın space (dom t, t[·, ·]λ).

(v) All gap points of t[·, ·] belong to the resolvent set of Tt.

The theory of definitizable operators in Krĕın spaces can be found in [18]. Ob-
serve that the critical points of definitizable operators may be regular or singular.

Theorem 2.2 (Second representation theorem). Let t[·, ·] be a densely defined
closed symmetric sesquilinear form in the Hilbert space (H, (·, ·)) with gap point
λ ∈ R and let Tt and At be the associated operators. Then

(2.2) dom t = dom |Tt|
1
2

if and only if ∞ is not a singular critical point of At. In this case the topology of
the Krĕın space (dom t, t[·, ·]λ) is induced by the graph inner product

(|Tt|1/2u, |Tt|1/2v) + (u, v), u, v ∈ dom |Tt|
1
2 ,

or, equivalently, by the inner product (|Tt − λ|
1
2u, |Tt − λ|

1
2 v).

A closed symmetric form t[·, ·] is said to be regular if (2.2) is satisfied. The
following result can be found in [7, Theorem 5.2].

Theorem 2.3. The mapping t[·, ·] → Tt defines a one-to-one correspondence be-
tween all regular densely defined closed symmetric forms in (H, (·, ·)) and all self-
adjoint operators in (H, (·, ·)) with spectrum different from the whole real axis R.

In [9, Proposition 2.5] it was shown that in (2.2) domain inclusion instead of
equality is enough for regularity.

Proposition 2.4. Let t[·, ·] be a densely defined closed symmetric sesquilinear form
in the Hilbert space (H, (·, ·)) and let Tt be the associated operator. Then the fol-
lowing statements are equivalent:

(i) dom t ⊂ dom |Tt|
1
2 ;

(ii) dom t ⊃ dom |Tt|
1
2 ;

(iii) dom t = dom |Tt|
1
2 .

It should be noted that another type of criterion for regularity already appears in
[19, 20], see also [10]. Furthermore in [10] there is a simple example of a selfadjoint
operator (being an infinite complex matrix) with an associated form which is not
regular.

According to [7, Proposition 5.1] the statement of Theorem 2.1 (v) can be sharp-
ened for regular closed forms:
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Proposition 2.5. The set of gap points of a regular closed form t[·, ·] coincides with
the real part of the resolvent set of its representing operator, i.e. with R ∩ ρ(Tt).

2.2. The generalized Friedrichs extension of a closed symmetric operator.
Let S be a closed densely defined symmetric operator in the Hilbert space (H, (·, ·))
with defect (1, 1). Associated with S is the following densely defined symmetric
sesquilinear form in the Hilbert space (H, (·, ·)):

(2.3) s[u, v] := (Su, v), u, v ∈ dom s := domS.

If the operator S is semibounded then s[·, ·] is closable and among all selfadjoint
extensions of S the selfadjoint operator associated with the closure of s[·, ·] is called
the Friedrichs extension, cf. [17, Theorem VI-2.11]. As in [7, Theorem 7.1] the
following alternative from [13, Theorem 2.1] is used to introduce the generalized
Friedrichs extension of S in the general non-semibounded case:

Theorem 2.6. Let S be a densely defined closed symmetric operator with defect
numbers (1, 1) in the Hilbert space (H, (·, ·)). Then, either for all selfadjoint exten-

sions T of S the domain domS is dense in the Hilbert space dom |T | 12 equipped with
the graph inner product

(|T |1/2u, |T |1/2v) + (u, v), u, v ∈ dom |T | 12 ,

or this is true for precisely one selfadjoint extension T of S, the so-called generalized
Friedrichs extension of S.

The following result rephrases the above alternative in terms of forms, see [7,
Theorem 7.2]. Recall the definition of the essential spectrum of S:

σe(S) := {λ ∈ R : ran (S − λ) is not closed or dim ker (S − λ) =∞}.

Theorem 2.7. Let S be a densely defined closed symmetric operator with defect
numbers (1, 1) in the Hilbert space (H, (·, ·)) and let the form s[·, ·] be defined by
(2.3). Then the following statements are equivalent:

(i) s[·, ·] is closable;
(ii) s[·, ·] has a regular closure;
(iii) there is a non-empty open interval I ⊂ R such that σe(S) ∩ I = ∅.

If a regular closure tF [·, ·] of s[·, ·] exists and is unique, then S has a generalized
Friedrichs extension SF which is given by the operator TtF associated with tF [·, ·]:

TtF = SF = { {f, g} ∈ S∗ : f ∈ dom tF }.

If a regular closure t[·, ·] of s[·, ·] exists but is not unique, then S does not have a
generalized Friedrichs extension and the mapping t[·, ·] → Tt defines a one-to-one
correspondence between all regular closures of s[·, ·] and all selfadjoint extensions of
S.

Remark 2.8. Note that condition (iii) of Theorem 2.7 implies ρ(T ) ∩ R 6= ∅ for
all selfadjoint extensions T of S and by Proposition 2.5 ρ(T ) ∩ R is the set of gap
points of the regular closed form t[·, ·] associated with T as in Theorem 2.3.

3. Some useful extensions of the general theory

This section contains some new results as additions to the facts explained in the
previous section.
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3.1. Uniqueness of closed forms. By Theorem 2.3 there is only one regular
closed form associated with a selfadjoint operator T with σ(T ) 6= R. It was already
shown in [7, Example 6.2] that there may be other (non-regular) closed forms
also associated with T by Theorem 2.1. It will now be shown that a closed form
associated with T is at least uniquely determined by its form domain. However,
first note the following useful fact.

Lemma 3.1. Let t1[·, ·] and t2[·, ·] be two densely defined closed symmetric sesquilin-
ear forms in the Hilbert space (H, (·, ·)) with gap points λ1 and λ2, respectively.
Then the following statements hold true:

(i) If dom t1 ⊂ dom t2 then the Krĕın space (dom t1, t1[·, ·]λ1
) is continuously

embedded in the Krĕın space (dom t2, t2[·, ·]λ2
).

(ii) If dom t1 = dom t2 then the topologies of the Krĕın spaces (dom t1, t1[·, ·]λ1)
and (dom t2, t2[·, ·]λ2) coincide.

Proof. It is enough to prove (i) since (ii) is a direct consequence of (i). Assume
dom t1 ⊂ dom t2. Then the embedding operator id from (dom t1, t1[·, ·]λ1

) to
(dom t2, t2[·, ·]λ2

) with id(u) = u is closed. To see this, let un, u ∈ dom t1, n ∈ N and
ũ ∈ dom t2 such that un → u as n→∞ in (dom t1, t1[·, ·]λ1) and id(un) = un → ũ
as n → ∞ in (dom t2, t2[·, ·]λ2). Then there is also convergence in (H, (·, ·)) since
both spaces are continuously embedded in (H, (·, ·)); consequently ũ = u(= id(u)).
Hence id is closed, and hence also continuous by the closed graph theorem. �

Proposition 3.2. Let t1[·, ·] and t2[·, ·] be two densely defined closed symmetric
sesquilinear forms in the Hilbert space (H, (·, ·)) with the same associated selfadjoint
operator, i.e. Tt1 = Tt2 . Then dom t1 ⊂ dom t2 implies t1[·, ·] = t2[·, ·].

Proof. According to [9, Lemma 2.4] the inclusion dom t1 ⊂ dom t2 is equivalent to
the equality dom t1 = dom t2. Then for u ∈ domTt1 (= domTt2) and v ∈ dom t1 (=
dom t2) one has

(3.1) t1[u, v] = (Tt1u, v) = (Tt2u, v) = t2[u, v].

By Theorem 2.1 domTt1 is dense in the Krĕın space (dom t1, t1[·, ·]λ1) and in the
Krĕın space (dom t2, t2[·, ·]λ2), where λ1 and λ2 are gap points. By Lemma 3.1 both
Krĕın spaces have the same topology and hence, equation (3.1) remains true for all
u, v ∈ dom t1 by continuity. �

3.2. A characterization of the generalized Friedrichs extension via defect
spaces. Let S be a closed densely defined symmetric operator in the Hilbert space
(H, (·, ·)) with defect numbers (1, 1). If the operator S is semibounded then the
Friedrichs extension T = SF of S satisfies

(3.2) ker (S∗ − λ) ∩ dom |T |1/2 = {0}, λ ∈ ρ(T ).

On the other hand, for all other selfadjoint extensions T of S one has

(3.3) ker (S∗ − λ) ⊂ dom |T |1/2, λ ∈ ρ(T ).

If S is not semibounded, then the generalized Friedrichs extension can be charac-
terized by means of the properties (3.2) and (3.3). For this the following result
is useful; it connects the property (3.3) with the denseness of domS in the Krĕın
space associated with the selfadjoint extension T of S in Theorem 2.3.
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Proposition 3.3. Let S be a densely defined closed symmetric operator with defect
numbers (1, 1) in the Hilbert space (H, (·, ·)) and assume that the form s[·, ·] defined
in (2.3) is closable. Let T be a selfadjoint extension of S and let t[·, ·] be the regular
closed form associated with T as in Theorem 2.3 (cf. Remark 2.8). Then for all
gap points λ (∈ ρ(T ) ∩ R) the following statements are equivalent:

(i) domS is not dense in the Krĕın space (dom t, t[·, ·]λ);
(ii) ker (S∗ − λ) ⊂ dom t.

If these conditions hold, then the subspaces ker (S∗ − λ) and domS are orthogonal
in the Krĕın space (dom t, t[·, ·]λ).

Proof. Recall that a linear subspace L ⊂ dom t is not dense in the Krĕın space
(dom t, t[·, ·]λ) if and only if there exists an element v0 6= 0, such that t[u, v0]λ = 0
for all u ∈ L.

(i) ⇒ (ii) Assume that domS is not dense in the Krĕın space (dom t, t[·, ·]λ) and
let v0 ∈ dom t be a nontrivial element such that t[u, v0]λ = 0 for all u ∈ domS.
Then

(3.4) ((S − λ)u, v0) = ((T − λ)u, v0) = t[u, v0]λ,

which shows that v0 ⊥ ran (S − λ) in the Hilbert space (H, (·, ·)). Therefore, v0 ∈
ker (S∗ − λ) and, consequently, ker (S∗ − λ) = span {v0} ⊂ dom t.

(ii)⇒ (i) Assume that ker (S∗−λ) ⊂ dom t and let 0 6= v0 ∈ ker (S∗−λ). Then
((S − λ)u, v0) = 0 for all u ∈ domS. Using (3.4) again this means that domS is
not dense in the Krĕın space (dom t, t[·, ·]λ). �

Using Proposition 3.3 and the result on the graph topology from Theorem 2.2
the alternative from Theorem 2.6 can be formulated as follows.

Theorem 3.4. Let S be a densely defined closed symmetric operator with defect
numbers (1, 1) in the Hilbert space (H, (·, ·)) and assume that the form s[·, ·] defined
in (2.3) is closable. Then, either for all selfadjoint extensions T of S and their
associated regular closed forms t[·, ·] (according to Theorem 2.3) one has

ker (S∗ − λ) ∩ dom t = {0}, λ ∈ ρ(T ) ∩ R,

or for all but one selfadjoint extensions T of S one has

(3.5) ker (S∗ − λ) ⊂ dom t, λ ∈ ρ(T ) ∩ R.

Precisely in the last case S has a generalized Friedrichs extension SF and it is given
by the exceptional extension not satisfying (3.5).

Remark 3.5. Recall that if the condition (3.5) holds for some selfadjoint extension
T of S, then it holds for all but one selfadjoint extensions T of S. In Theorem 3.4
the form s[·, ·] is assumed to be closable in order to obtain ρ(T )∩R 6= ∅ which then
allows to associate with T the regular closed form t[·, ·] with gap points λ ∈ ρ(T )∩R
(see Remark 2.8). In (3.5) one can equivalently use an arbitrary, not necessarily
real, point λ ∈ ρ(T ). For details see [12, Proposition 2.1], [16].

Lemma 3.1 allows the following slight extension of [9, Theorem 2.8] (see also
[12, Theorem 4.1]) on the invariance of the regular closed forms t[·, ·] associated by
Theorem 2.3 with the selfadjoint extensions T of S satisfying T 6= SF .
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Proposition 3.6. Assume that s[·, ·] has a unique regular closure and let T1 and
T2 be selfadjoint extensions of S such that Tj 6= SF ; j = 1, 2. Let tj [·, ·] be the
regular closed form with a gap point λj associated with Tj by Theorem 2.3. Then

dom t1 = dom t2

and, moreover, the topologies of the Krĕın spaces (dom tj , tj [·, ·]λj
) coincide.

Proof. The equality of the domains dom t1 and dom t2 was proved in [9, Theo-
rem 2.8]. Now apply Lemma 3.1 to conclude that the topologies of the Krĕın
spaces (dom tj , tj [·, ·]λ), j = 1, 2, are the same. �

4. A closed form associated with the energy space

Let again S be a densely defined closed symmetric operator in the Hilbert space
(H, (·, ·)) with defect numbers (1, 1). Assume that s[·, ·] has a unique regular closure
tF [·, ·] and hence S has a generalized Friedrichs extension SF . Now consider a fixed
selfadjoint extension T 6= SF of S and let t[·, ·] be the associated regular closed
form as in Theorem 2.3 (cf. Remark 2.8). Since the defect numbers of S are
finite, it follows from Theorem 2.7 (iii) that ρ(SF ) ∩ ρ(T ) ∩ R 6= ∅. Furthermore,
each λ ∈ ρ(SF ) ∩ ρ(T ) ∩ R is a gap point of the closed forms tF [·, ·] and t[·, ·]; cf.
Proposition 2.5. The form domain dom t (= dom |T |1/2) is a Krĕın space with the
inner product t[u, v]λ in (2.1). Let dom tF be the closure of domS in the Krĕın
space (dom t, t[·, ·]λ) and define the form tF [·, ·] as the restriction of t[·, ·] to dom tF :

(4.1) tF [f, g] = t[f, g], f, g ∈ dom tF .

Generalizing the classical terminology, dom tF is called the “energy space”.

Lemma 4.1. The energy space dom tF does not depend on the choice of the self-
adjoint extension T 6= SF of S.

Proof. According to Proposition 3.6 the topology of the Krĕın space (dom t, t[·, ·]λ)
is the same for all selfadjoint extensions T 6= SF of S. Therefore, the closure of
domS does not depend on the selfadjoint extension T 6= SF of S. �

The following statement gives an analog in the non-semibounded case of a decom-
position result in the nonnegative case; see [15, Proposition 2.3] and the references
therein. Recall that a linear subspace L of a Krĕın space is called degenerate if
there is an element 0 6= u ∈ L such that u is orthogonal to the whole subspace L
with respect to the inner product of the Krĕın space. Of course, a one-dimensional
subspace L is degenerate if and only if it is neutral, i.e. the inner product vanishes
on L.

Theorem 4.2. Let S be a densely defined closed symmetric operator in the Hilbert
space (H, (·, ·)) with defect numbers (1, 1) and assume that s[·, ·] has a unique regular
closure tF [·, ·]. Let T 6= SF be a selfadjoint extension of S, let t[·, ·] be the regular
closed form associated with T according to Theorem 2.3 with a gap point λ ∈ ρ(SF )∩
ρ(T ) ∩ R, and let tF [·, ·] be as in (4.1). Then the defect space ker (S∗ − λ) is a
one-dimensional non-degenerate subspace of the Krĕın space (dom t, t[·, ·]λ) and the
following decomposition

(4.2) (dom t =) dom |T |1/2 = dom tF + ker (S∗ − λ),

is a direct orthogonal sum in this Krĕın space.



NON-SEMIBOUNDED CLOSED SYMMETRIC FORMS 9

Proof. By assumption S is a densely defined symmetric operator with defect num-
bers (1, 1). Hence, for some h ∈ domT \domS there is a direct sum decomposition
domT = domS+ span {h}. Since domT is dense in the Krĕın space (dom t, t[·, ·]λ)
by Theorem 2.1 (ii), the co-dimension of the closure of domS, i.e. of the subspace
dom tF , is at most one. Since T 6= SF , Theorem 3.4 shows that ker (S∗−λ) ⊂ dom t.
Now it follows from Proposition 3.3 that the co-dimension of dom tF in the Krĕın
space (dom t, t[·, ·]λ) is at least one and hence equal to one.

Next it is shown that the sum in the right-hand side of (4.2) is direct. Assume
that v0 ∈ ker (S∗ − λ) belongs to dom tF . Thus v0 ∈ domS∗ ∩ dom tF and it
follows from (1.7) that v0 ∈ domSF (cf. [12, Proposition 3.5]). Since λ ∈ ρ(SF ),
one concludes that ker (S∗ − λ) ∩ domSF = {0} and, thus, v0 = 0. Therefore, the
sum in (4.2) is direct. Using the co-dimension argument from above this proves
the decomposition of dom t in (4.2). By Proposition 3.3 the subspaces ker (S∗−λ)
and domS (and hence dom tF ) are orthogonal in the Krĕın space (dom t, t[·, ·]λ).
Therefore, the defect space ker (S∗ − λ) cannot be degenerate, since otherwise the
whole space dom t is degenerate. �

Corollary 4.3. There is an element v0 ∈ dom t, t[v0, v0]λ 6= 0, such that

dom tF = {u ∈ dom t : t[u, v0]λ = 0}.

Theorem 4.4. Under the same assumptions as in Theorem 4.2 the form tF [·, ·] on
dom tF is closed with gap point λ and the associated operator is SF , i.e. SF = TtF .

Proof. By Corollary 4.3 dom tF is the orthogonal complement of v0 in the Krĕın
space (dom t, t[·, ·]λ). Since span{v0} is non-degenerate, dom tF remains a Krĕın
space with t[·, ·]λ and its topology is the restriction of the topology of (dom t, t[·, ·]λ).
This Krĕın space can be written as (dom tF , tF [·, ·]λ) with tF [·, ·]λ = tF [·, ·]−λ(·, ·)
and it is also continuously embedded in (H, (·, ·)); hence, tF [·, ·] is closed with gap
point λ. It follows from (1.7) that domSF ⊂ dom tF ; cf. [12, Proposition 3.5].
Now, let u ∈ domSF . Then for all v ∈ domS one has

(SFu, v) = (S∗u, v) = (u, Sv) = (u, Tv) = t[u, v] = tF [u, v].

Since domS is dense in (dom tF , tF [·, ·]λ) by definition of dom tF , Theorem 2.1 (iii)
implies that u ∈ domTtF and TtF u = SFu. Therefore, SF ⊂ TtF and, since both
are selfadjoint, the equality TtF = SF follows. �

Now Theorem 4.4 allows to extend the uniqueness of the form domain dom tF

according to Lemma 4.1 to the form tF [·, ·] itself by Proposition 3.2.

Corollary 4.5. The form tF [·, ·] does not depend on the choice of the selfadjoint
extension T of S if T 6= SF .

Since both closed forms tF [·, ·] and tF [·, ·] are associated with the generalized
Friedrichs extension SF , the following result is an immediate consequence of The-
orem 2.3.

Corollary 4.6. The equality tF [·, ·] = tF [·, ·] holds if and only if the form tF [·, ·] is
regular.
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5. Inclusions of square root domains

Assume the same situation as in the previous section. The next theorem gives a
new regularity criterion; it can be seen as an improvement of Proposition 2.4 with
regard to tF [·, ·].

Theorem 5.1. Under the same assumptions as in Theorem 4.2 the closed form
tF [·, ·] is regular if and only if

(5.1) (dom tF =) dom |SF |1/2 ⊂ dom |T |1/2 (= dom t).

Proof. (⇒) If tF [·, ·] is regular then by Corollary 4.6 dom tF = dom tF ⊂ dom t.
(⇐) Let dom tF ⊂ dom t. Then, by Lemma 3.1 the embedding of the Krĕın

space (dom tF , tF [·, ·]λ) in (dom t, t[·, ·]λ) is continuous where tF [·, ·]λ = tF [·, ·] −
λ(·, ·). Now consider the element v0 ∈ dom t according to Corollary 4.3. It satisfies
t[u, v0] − λ(u, v0) = 0 for all u ∈ domSF (⊂ dom tF ). However, by Theorem 2.1
domSF is dense in (dom tF , tF [·, ·]λ) since SF is the selfadjoint operator associated
with tF [·, ·]. Therefore one has also t[u, v0] − λ(u, v0) = 0 for all u ∈ dom tF by
continuity. Then (dom |SF |1/2 =) dom tF ⊂ dom tF follows from Corollary 4.3.
This is the regularity of tF [·, ·] by Proposition 2.4. �

The regularity criterion in Theorem 5.1 can be reformulated in a stronger form
by means of the decomposition result established in Theorem 4.2.

Corollary 5.2. The form tF [·, ·] is regular if and only if the following decomposition
holds true:

(5.2) (dom t =) dom |T |1/2 = dom |SF |1/2+ker (S∗−λ) (= dom tF +ker (S∗−λ)).

Proof. (⇒) If the form tF [·, ·] is regular, then dom tF = dom tF = dom |SF |1/2 and
hence the decomposition (4.2) in Theorem 4.2 can be rewritten as in (5.2).

(⇐) The decomposition (5.2) implies that dom |SF |1/2 ⊂ dom |T |1/2 and, there-
fore, the form tF [·, ·] is regular by Theorem 5.1. �

Proposition 2.4 and Theorem 5.1 together lead to the following result.

Corollary 5.3. The following statements are equivalent (each being equivalent to
the regularity of tF [·, ·]):

(i) dom |SF |1/2 = dom tF ;
(ii) dom |SF |1/2 ⊂ dom tF ;
(iii) dom |SF |1/2 ⊃ dom tF ;
(iv) dom |SF |1/2 ⊂ dom t.

Observe that (4.2) holds independent of tF [·, ·] being regular. In general tF [·, ·]
is not regular, so that (5.2) and the inclusion dom |SF |1/2 ⊂ dom |T |1/2 may fail to
hold. For an example of this situation see Section 6. The next proposition collects
all relations between square root domains of selfadjoint extensions of S from the
present paper combined with results from [12, Section 4].

Proposition 5.4. Let S be a closed densely defined symmetric operator in H with
defect numbers (1, 1) and let T1 and T2 be selfadjoint extensions of S. Assume that
the form s[·, ·] is closable. Then the following statements are true:

(i) If S has a generalized Friedrichs extension SF , then

dom |T1|1/2 = dom |T2|1/2 for all T1, T2 6= SF .
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(ii) If the inclusion dom |T1|1/2 ⊂ dom |T2|1/2 holds for some T1 6= T2 then S
has a generalized Friedrichs extension SF .

(iii) The inclusion dom |T1|1/2 ⊂ dom |T2|1/2 or dom |T2|1/2 ⊂ dom |T1|1/2 holds
for all selfadjoint extensions T1 and T2 of S if and only if SF exists and
the closed form tF [·, ·] associated with SF is regular.

(iv) If SF exists then dom |SF |1/2 6⊂ dom |T1|1/2 for some (equivalently for all)
T1 6= SF if and only if the closed form tF [·, ·] associated with SF is not
regular.

Proof. The statement (ii) follows immediately from [12, Theorems 4.1, 4.2]. The
rest is obtained from Proposition 3.6, (ii), and Theorem 5.1. �

Remark 5.5. The validity of the domain inclusion in (5.1) and some general crite-
ria for (5.1) to hold have been open problems on generalized Friedrichs extensions
(cf. [12, 13]). In particular, it was not clear how the sufficient condition (ii) for
the existence of SF (going back to [12]) could be modified into a necessary and
sufficient condition like (iii). Theorem 5.1 and Proposition 5.4 together with the
example in Section 6 below therefore provide a complete answer to these problems.

6. Closed forms associated with indefinite Sturm-Liouville
operators

The present theory can be illustrated by some Sturm-Liouville operators and
associated forms which were studied in detail in [8, 9]. Let −DpD be a Sturm-
Liouville expression on the compact interval [−b, b], whose real coefficient p satisfies
tp(t) > 0 almost everywhere and 1/p in L1[−b, b]. In the Hilbert space L2[−b, b]
this differential expression induces the densely defined closed symmetric minimal
differential operator Tmin by Dirichlet boundary conditions u(−b) = u(b) = 0 and
the additional interface conditions

(6.1) u(0+) = u(0−), (pu′)(0+) = (pu′)(0−) = 0.

The operator Tmin has defect numbers (1, 1) and a selfadjoint extension of Tmin is
given by the operator T∞, determined by the Dirichlet boundary conditions and
no interface condition. Using partial integration this extension induces the form
t∞[·, ·] given by

t∞[u, v] =

∫ b

−b
u′(t)v′(s)p(s) ds,

again subject to Dirichlet boundary conditions. Another selfadjoint extension T0
of Tmin is given by Dirichlet boundary conditions and by the interface conditions

(6.2) (pu′)(0+) = (pu′)(0−) = 0

allowing functions with a jump at 0 (i.e. u(0+) 6= u(0−)). Now, partial integration
leads to the form t0[·, ·] defined similarly to t∞[·, ·] but allowing also functions with
a jump at 0. By [9, Theorem 5.5, Proposition 6.1] the form t0[·, ·] is closed and
regular and T0 is the associated operator, i.e. T0 = Tt0 .

As in the definite situation (i.e. p(t) > 0) also here, T∞ is the generalized
Friedrichs extension of the non-semibounded minimal operator Tmin; cf. [8, Propo-
sition 4.3] and [9, Theorem 6.3].
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Theorem 6.1. Assume that the function p satisfies tp(t) > 0 almost everywhere
and 1/p ∈ L1[−b, b]. Let λ ∈ ρ(T0) ∩ ρ(T∞) ∩ R. Then for S = Tmin the form
tF [·, ·] defined in (4.1) (using T := T0) coincides with t∞[·, ·]. In particular, t∞[·, ·]
is closed with gap point λ and T∞ (= SF ) is the associated selfadjoint operator, i.e.
T∞ = Tt∞ .

Proof. Note that the domains domTmin, dom t∞, and dom t0 remain unchanged if
the function p is replaced by |p|. In this case (dom t0, t0[·, ·]) is a Hilbert space and
by [9, Proposition 4.6] the closure of domTmin (= domS) in this space is given by
the form domain dom t∞. Now, returning to the original function p, note that by [9,
Lemma 5.2] this is also the closure of domTmin in the Krĕın space (dom t0, t0[·, ·]λ)
for λ = 0 (∈ ρ(T0)) and hence also for λ ∈ ρ(T0)∩ρ(T∞)∩R. Since each of the forms
tF [·, ·] and t∞[·, ·] is a restriction of the form t0[·, ·], they coincide. By Theorem 4.4
the form tF [·, ·] is closed with gap point λ ∈ ρ(T0)∩ ρ(T∞)∩R, and the associated
operator is SF . Therefore the form t∞[·, ·] is closed. �

Remark 6.2. Define the function v0 on [−b, b] by

(6.3) v0(t) =

∫ t

−b

ds

p(s)
, t ∈ [−b, 0); v0(t) = −

∫ b

t

ds

p(s)
, t ∈ (0, b].

Then v0 ∈ dom t0 (= dom |T0|1/2) and v0 spans the kernel of T ∗min (= S∗), and
moreover

t0[v0, v0] =

∫ b

−b
|v′0(s)|2 p(s) ds =

∫ b

−b

ds

p(s)
.

Hence ker S∗ (= span{v0}) is non-degenerate in the Krĕın space (dom t0, t0[·, ·]) if
and only if

(6.4)

∫ b

−b

ds

p(s)
6= 0.

However, condition (6.4) is equivalent to 0 ∈ ρ(T∞) (= ρ(SF )); cf. [9, Lemma 3.2].
Therefore, under the additional condition (6.4) λ ∈ ρ(T0)∩ρ(T∞)∩R can be chosen
as λ := 0 and the (non-degenerate) element v0 in Corollary 4.3 can be chosen as
the function in (6.3). Then this allows the characterization

dom t∞ = {u ∈ dom t0 : t0[u, v0] = 0}.
In [9, Theorem 5.5] the function v0 was used to prove the closedness of the form
t∞[·, ·] under the additional condition (6.4); this condition has been relaxed in
Theorem 6.1.

Sufficient conditions on the function p for the regularity of the closed form t∞[·, ·]
can be found in [5, Corollary 11] 1 and in [6].

Explicit functions p which lead to non-regular forms tF [·, ·] were presented in [9,
Section 6.3] and [6], e.g.

p(t) =

 t log2 |t|, t ∈ [− 3
4 ,

1
4 ],

1
4 log2 4, t ∈ ( 1

4 , 1],
− 3

4 (log 3− log 4)2, t ∈ [−1,− 3
4 ),

cf. [6, Example 3.7]. Note that in [6] also the set difference between dom t∞ and

dom |T∞|
1
2 was discussed.

1The factor γ in h(x) of [5, Corollary 11] should be in the denominator.
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[10] L. Grubĭsić, V. Kostrykin, K. A. Makarov, and K. Veselić, “Representation theorems for
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