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SHARP EIGENVALUE ESTIMATES FOR RANK ONE PERTURBATIONS OF
NONNEGATIVE OPERATORS IN KREIN SPACES

JUSSI BEHRNDT, LESLIE LEBEN, FRANCISCO MARTINEZ PERIA, ROLAND MOWS,
AND CARSTEN TRUNK

ABSTRACT. Let A and B be selfadjoint operators in a Krein space and assume that the
resolvent difference of A and B is of rank one. In the case that A is nonnegative and / is an
open interval such that o(A) N1 consists of isolated eigenvalues we prove sharp estimates
on the numbers and multiplicities of eigenvalues of B in /. The general result is illustrated
with eigenvalue estimates for singular left definite Sturm-Liouville differential operators.

1. INTRODUCTION

Rank one and finite rank perturbations of selfadjoint operators in Hilbert spaces have
been considered in various papers and in many applications in theoretical physics, e.g. in
the investigation of singular perturbations in quantum mechanics, see [1, 2, 3, 11, 12, 25,
30, 31, 34, 36, 50, 60]. It is well known that an n-dimensional selfadjoint perturbation of a
selfadjoint operator preserves the essential spectrum and changes the spectral multiplicity
by at most n, that is, for a bounded interval / C R and (in general unbounded) selfadjoint
operators A, B in a Hilbert space .77 such that

(1.1) (A=2) ' = (B—2)!

is of rank n for some Ay € p(A) Np(B), the dimensions of the spectral subspaces of A and B
corresponding to the interval / differ at most by 7, and this estimate is sharp. In particular,
if I C p(A) then I contains at most n eigenvalues of B counted with multiplicities.

In the general non-selfadjoint case rank one and finite rank perturbations preserve the
essential spectrum but precise results on the number and multiplicity of the discrete spec-
trum do not exist. Without further assumptions on the structure of the operators or the
rank one perturbation the number of eigenvalues in a given interval can change arbitrarily,
see [49, Theorem 1]. If the operators A and B under consideration are not selfadjoint in a
Hilbert space but still selfadjoint in a Krein space, then several results on finite rank per-
turbations of different classes of operators exist; cf. [4, 5, 6, 8, 14, 24, 28, 38, 39, 40, 41].
However, these perturbation results are typically of qualitative nature and do not contain
explicit bounds or estimates on the numbers and multiplicities of eigenvalues after the per-
turbation. In the matrix case we refer to [57, 58, 59] where so-called generic perturbations
were investigated.

Our main objective in this paper is to obtain sharp bounds for the numbers and mul-
tiplicities of eigenvalues in the following Krein space perturbation problem: We assume
that A and B are selfadjoint with respect to some indefinite inner product [, -], that A is
nonnegative with respect to [-, ], and that the perturbation (1.1) is of rank one. In that case
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B is either nonnegative (kg = 0) or the form [B-, ] has one negative square (kg = 1). Let
I be an open interval such that all spectral points of A in [ are isolated eigenvalues and
poles of the resolvent of A; here also eigenvalues of infinite multiplicity are allowed. In
this setting our first main result (Theorem 3.5 below) states: The difference of the number
na(I) of distinct eigenvalues of A in I and the number ng(I) of distinct eigenvalues of B
in I can be estimated by the number n4 5(I) of common eigenvalues of A and B in I, and
a correction term which is at most 3. The correction term depends on the fact whether 0
is in the interval I and whether the operator B is nonnegative (kg = 0) or has one negative
square (kg = 1):
(i) If0 ¢ I then

1 ifkg=0,

I’lA(I) —I’lA7B(I) 1< nB(I) < nA(I)—I—nA,B(I)—&- {3 ifrp = 1.

(i) If 0 € I then

2 ifkg =0,
na(I) —nag(I) =2 < ng(I) < ns(I) +nap(l)+ 7
3 lfK'le.

It is remarkable that all the above estimates turn out to be sharp: There exist operators A and
B (which are in fact matrices) such that the inequalities in (i) and (ii) become equalities.
Moreover, we mention that the above estimates imply that the finiteness of the number
of distinct eigenvalues of A in a gap of the essential spectrum is preserved under a one
dimensional perturbation. This is a special case of a more general result from [14].

Our second main result are estimates of the total algebraic multiplicities m4(I) and
mp(I) of the eigenvalues of A and B in I. This leads to the following estimates in The-
orem 3.9 on the multiplicities of the eigenvalues which complement the results in Theo-
rem 3.5 on the number of distinct eigenvalues:

(i) If0 &I then

1 ifkp=0,
D —1<mp() < mu(l
ma(l) —mB()—mA(H{s if kg = 1.
(ii) 0 € 7 and 0 ¢ 6,(A) then
2 ifkg =0,
1) —2 < mp(l) < ma(I)+
ma(l) =2 < mp(l) < ma(l) {3 i iy — 1.
(iii) If0 €7 and 0 € 0,(A) then
4 ifkg=0,
D=4 < mp(l) < mu(l
ma(l) —mB()—mA()+{6 if kg = 1.

Here, at the possible eigenvalue 0, Jordan chains of A and B may occur which makes the
analysis more involved. In Theorem 3.8 we show that the dimension of the root subspaces
of A and B at 0 differ at most by two, that is,

[ma({0}) —ms({0})] <2,
and that this estimate is sharp. We emphasize that the sharp estimates in Theorems 3.5,
3.8, and 3.9 are also new for the case of A and B being matrices.
The paper is organized as follows. After the introduction we recall some definitions in
Section 2 and then provide a useful Krein type formula for the resolvent difference of two
selfadjoint operators A and B in a Krein space which differ by a rank one operator. Here
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the resolvent difference is expressed in a rank one perturbation term with a scalar Weyl
or Q-function M4. Roughly speaking the poles (zeros) of M, coincide with the isolated
eigenvalues of A (B, respectively). In the rest of Section 2 we explore the connections
between the sign types of the isolated spectral points of A and B, and the behaviour of the
function My at its poles and zeros. In Section 3 the special case of a nonnegative operator A
is investigated. This naturally leads to the function classes in Definition 3.2 studied by two
of the authors in [15, 16]. After some preparations in Section 3.1, we state and prove the
main results Theorem 3.5 and 3.9 and some special cases in Sections 3.2-3.4. The proof
of Theorem 3.8 on the multiplicity of the eigenvalue O requires different techniques and is
given in Section 3.5. Section 3.6 contains some simple matrix examples which illustrate the
sharpness of the estimates in Theorem 3.5 and Theorem 3.9. In Section 3.7 we show how
our general eigenvalue estimates can be applied to singular left definite Sturm-Liouville
operators, see also [13, 17, 18, 19, 21, 22, 42, 44, 45, 46, 61] for related work on left
definite Sturm-Liouville problems.

2. RANK ONE PERTURBATIONS AND SIGN TYPES OF EIGENVALUES

2.1. Preliminaries. A complex linear space .#” with a nondegenerate hermitian sesquilin-
ear form [, -] is called a Krein space if there exists a decomposition

H = Ao+ A

such that the subspaces (., £[-,]) are Hilbert spaces and orthogonal to each other with
respect to [+, -]. If Z_ is finite dimensional then (¢, [-,-]) is called a Pontryagin space. An
element x in the Krein space (¢, [-, ]) is positive (negative, neutral ) if [x,x] > 0 ([x,x] <0,
[x,x] = 0, respectively). For the general theory of Krein spaces we refer the reader to the
monographs [7, 20].

For a densely defined linear operator A in the Krein space (¢, [-,-]) the adjoint with
respect to the indefinite inner product [-,-] is denoted by A*. The operator A is called
selfadjoint if A = A" and symmetric if A C AT.

Let A be a selfadjoint operator in the Krein space (7, [, ]). We denote the point spec-
trum by ©,(A), the spectrum by 6 (A) and the resolvent set by p(A). The root subspace
UT_ ker (A — 1)/ at A is denoted by .Z; (A). A Jordan chain of A at € 6,(A) of length
n is a finite ordered set of non-zero vectors {xo,...,x,_1 } contained in the root subspace
Z(A) such that (A—A)xg =0and (A—A)x; =x;_1,i=1,...,n— 1. The elements of a
Jordan chain are linearly independent. The first n — 1 elements of a Jordan chain of length
n form a Jordan chain of length n — 1. In the sequel the following simple observation will
be used frequently: Let {xo,x; } be a Jordan chain of a selfadjoint operator A at some real
eigenvalue A of length 2. Then we have

2.1) [)CQ,X()] = [X(),(A —),)xl] = [(A —l)xo,xl] =0,

hence the eigenvector xo is a neutral vector in (JZ,[-,-]). A real isolated eigenvalue A
of A is called of positive (negative) type if all its corresponding eigenvectors are positive
(negative, respectively). In this case we write A € 041 (A) (A € 6__(A), respectively).
Observe (see (2.1)) that for an isolated eigenvalue of positive or negative type there is no
Jordan chain of length greater than one, that is, %) (A) = ker (A — 1), and the resolvent of
A has a pole of order one in such a point. We mention that the notion of spectral points
of positive and negative type can be extended to non-isolated eigenvalues and points in the
continuous spectrum; cf. [37, 53].
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2.2. Rank one perturbations and sign types of isolated eigenvalues. In the following
let A and B be selfadjoint operators in the Krein space (¢, [-,-]) such that p(A)Np(B) # 0
and

(2.2) dimran (A —2) ' = (B—20) ") =1

holds for some (and hence for all) Ay € p(A) Np(B). We express the difference of the
resolvents of A and B with two scalar functions which can be viewed as Weyl functions or
Q-functions corresponding to A and B, see [54] for the concept of Q-functions and, e.g.,
[8, 55] for similar considerations.

Proposition 2.1. Let A and B be selfadjoint operators in the Krein space (¥ ,][-,]) which
satisfy (2.2). Then there exist holomorphic functions My : p(A) — C, Mg : p(B) — C
symmetric with respect to the real line and vectors Q4, Qp in £ such that the following
holds.

(i) Forya(A) == (1+ (A —20)(A—A)" s, A € p(A), we have
My(A) —=Ma(@) = (A —@)[1a(A), a(@)], A, 0 € p(A).

(i) For yg(A):=(1+ (A —2X)(B—21)")op, A € p(B), we have
Mp(A) —Mp(@) = (A —@)[13(A), 13(@)], A, 0€p(B).

(iii) For A € p(A)Np(B) we have Mg(A) = _MA(M and

_ _ 1 = 1 =
(A=2)"' = (B-1) 1:m[',m(l)m(l):*m[',YB(K)]YB(M'

Proof. We make use of the theory of boundary triplets and their y-fields and Weyl func-
tions; cf. [23, 26, 27]. Consider S = AN B, which is a (possibly nondensely defined) closed
symmetric operator in (¢, [-,]) of defect one. As in [12, Corollary 2.5] it follows that
there exists a boundary triplet {C,[,I'1} for the adjoint S* such that A = ST | kerI
and B=S" | ker[';. Let ¥ and M be the corresponding y-field and Weyl function, and
define @4 := (). From the property (1) = (1+ (A —A9)(A— 1) Hy(X), A € p(A),
we see that y4 = 7 holds. Moreover, My := M satisfies the formula in (i). Observe that
{C,T'y,—Ty} is also a boundary triplet for ST. Let ¥ and M be the corresponding y-field
and Weyl function and define @p := ¥(Ag). As above it follows that y3 = y and Mp := M sat-
isfy the assertion in (ii). By the definition of the Weyl function corresponding to a boundary
triplet we have that M(A) = —M(2)~!, and hence M(1) = —M4 (1)1, A € p(A)Np(B),
as stated in (iii). Finally, the remaining resolvent formula in (iii) is a special case of [23,
Theorem 2.1] (see also [27, Theorem 3.1]). O

Corollary 2.2. Let A, B and My, Mp be as in Proposition 2.1. Then the following holds.
(i) For A € p(A) we have A € 6,(B) if and only if Ma(A) = 0.
(i) For A € p(B) we have A € 0,(A) if and only if Mg(A) = 0.

Proof. (i) Since the functions ¥4 and M, are holomorphic in a neighbourhood of A € p(A),
this follows from the resolvent formula in Proposition 2.1 (iii). Assertion (ii) follows in a
similar way. (I

From now on we will suppose that the following assumption holds.

Assumption (I). Let A and B be selfadjoint operators in the Krein space (¢, [-,]) such that
(2.2) holds for some (and hence for all) Ay € p(A)Np(B). Let I C R be an open interval
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and assume that p(B) NI # 0 and that 6(A) NI consists only of isolated eigenvalues which
are poles of the resolvent of A.

Assumption (I) yields the following statements.

Theorem 2.3. Let A, B and I be as in Assumption ().

(i) Any eigenvalue of infinite algebraic multiplicity of A in I is also an eigenvalue of

infinite algebraic multiplicity of B.

(ii) The set o(B) NI consists of eigenvalues which may only accumulate to the eigen-
values of infinite algebraic multiplicity or to the boundary of 1.

(iii) If u € p(A) NI then either u € p(B) or i € 0,(B) with dimker (B—u) = 1. If, in
addition, L € 6+ (B) then £, (B) = ker (B — ).

(iv) If u € p(B) NI then either p € p(A) or i € 0,(A) with dimker(A—u) = 1. If, in
addition, p € 614 (A) then £, (A) =ker (A — ).

Proof. Due to Assumption (I) an eigenvalue 1 € [ of A is a pole of the resolvent. Hence
A — u is either a Fredholm operator or dimker (A — i) = o, see [43, Theorem IV.5.28]. Due
to (2.2), the dimension of ker (A — u) and ker (B — ) differ at most by one, which implies
(i). Assertion (ii) follows from general perturbation results in [32, 43]. In order to verify
(iil) assume dimker (B — u) > 2. As the operator AN B is a one dimensional restriction
of B we obtain dimker (ANB — ) > 1 and, hence, dimker (A — ) > 1, a contradiction
to u € p(A). Eigenvectors with a Jordan chain of length greater than one are neutral (cf.
(2.1)) and, hence, (iii) is shown. Statement (iv) is proved analogously. ([l

In the next lemma we relate sign type properties of eigenvalues of B in p(A) with the
local behaviour of the function M4 from Proposition 2.1, see also [56, Theorem 3.3].

Lemma 2.4. Let A, B and I be as in Assumption (). Assume Ma (1) = 0 for some | €
p(A)N1. Then u € 0,(B) and dimker (B — ) = 1. Moreover, the following assertions
hold.
(i) u € 644 (B)ifand only if M), (1) > 0. In this case £y, (B) =ker (B— ).
(i) u € o__(B) ifand only if M)(1) < 0. In this case £y, (B) = ker (B— ).
(iii) u € 6,(B) has a neutral eigenvector if and only if My(u) = 0. In this case
Zu(B) # ker(B — 1) and there exist nonzero elements xy € ker(B — L), x| €
Zu(B) with (B— l)x1 = xo and (B — )xo = 0 such that

1
(2.3) [x0,x0] = My () =0 and [x1,x0] = EMX(M)'
Moreover, in this case, (£, (B),[-,-]) is a Krein space with at least one positive

and one negative element.

Proof. By Corollary 2.2 M () = 0 implies 1 € 6,(B) and dimker (B — u) = 1 follows
from Theorem 2.3. In order to show (i)—(iii) we start with the following observation.
For My, @g, ¥ as in Proposition 2.1 and A € p(A) N p(B) we conclude from Proposi-
tion 2.1 (iii):

M) 15(A) = Ma(A) (14 (A — o) (B—2)"") g
_1 1 —
My (‘PB+(7L%) ((Am «pBMwB,yA(A)m(M))

2.4) = (o —A)[@p, 1A a(A) +Ma(A) (1+ (A — ) (A— 1)) .
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Then M4 (1) =0and p € p(A) NR imply the existence of

x0 = }%MA(A)YB(A) = (Ao —u)[@p, va(1)]ya(1t).

The vector xg is nonzero. Indeed, for @ € p(A) Np(B), ® # U, it follows from Proposi-
tion 2.1 that

[0, ()] = Jim [Ma(2)16(2). %8(@)) = Jim My (1) M) = Mp(©)

A—u A—w
1 1 My(A)
_ 4+ —14+ 374 —
— lim My(A) B T IL®) M@ _ _—1
A=l A—®

—— = — #0.
Aoy A—® u—o 7
Furthermore xo € ker (B — ), since for @ € p(B) we have

(B 0)x0 = lim (5 0)~'My(1)15(2)

= Jim (B— @) Ma(A)(1+ (A ~20)(B=2)"")o

= Jim SR (- 0)(B— )+ (A=A (B-2)"
(2.5)
~(A—20)(B-0) ) oy
tim 22 (G- B-2) "~ (@ A0) (B 0) ) 9n
= lim Ma(2)

= X0-
Uu—o
Moreover, Proposition 2.1 (ii) and (iii) imply
1 1
4+
o.x0l = lim My (A)MA(@)[16(A), ()] = lim Ma(2)Ma(@) M) Ma(@)
Ao—u Ao—u A—®

M, —My(w My(A)—M
_ i MAQ)—Mp(@) L Ma(A) — Ma(u) _ M),
Ao—u A—w A= A— u
This yields (i), (ii) and the first statement in (iii). In order to show the remaining statements
of (iii) assume My (1) = M)y (1)

0. Relation (2.4) implies the existence of
x1 = lim (M (4)y8(1))'
A=l

— (@, Ya ()14 (1) +

‘We obtain

(A0 — 1) (@8, Ya ()] 7a (1) + (Ao — 1) (@8, ¥a ()] 74 (1)

(B—0)"x = lim (B— )" (s (A)1(2))
(2.6) 8

= lim (B~ @)~ My(A)1a(4) + (B~ @) My

M1s(2)) -

As in (2.5) one verifies

(8- 0) My (Rm(a) = 12 (1 2) - (@)
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and we have from Proposition 2.1 (ii) Y3(1) = (B—A)~!y3(A). Hence (2.6) takes the form

-0t = Jim (%) (3 @)+ (8- @) Ma(R)B- 1) 2 )

and with M} (1) = 0 we conclude

_x177_1X0:)C17x0
Thme Y e Tie e

This yields (B — pt)x; = xo. Moreover, Proposition 2.1 (ii) and (iii) imply

r1,%0] = lim [(Ma(2)15(A))" ,Ma(@)15(0)] = lim %[MA(MYB(MMA(@)YB(@)]

yO— [ A,o—u
1 1
. d T T | . d (Ma(A) —Mu (@)
= im 2 (MA(MMA(O’) 1o =, im Ao
BT d MA(A) T MA(A)(l_u)_MA(A) _1 1"
‘i‘l‘bdz(xu =i (- =Ml

where the last equality follows from the power series expansion of My in pu and M4 (1) =
M) (1) = 0. By [51, Proposition 1.3.2 and Theorem 1.5.2] the space (Z,(B),[-,-]) is a
Krein space and (iii) is shown. U

Lemma 2.5. Let A, B and I be as in Assumption (1) and let 4 € INo+4+(A) (L €IN
o__(A)) with u € p(B). Then the function Ma has a pole at [ of order one with

lim Mg (L) =40, lim My(A) = —oo

A u ANM

lim My (A)= —oo, lim My(A) = 4o tively ).

(Jim Ma(2)= —eo,  Jim Ma(2) = +eo, respeciively)
Proof. According to Theorem 2.3 %}, (A) = ker (A — i) is a one dimensional subspace.
The corresponding Riesz-Dunford projection onto ker (A — i) will be denoted by E. By
Proposition 2.1 (i) we have ¥4 (A9) = @4 and
Ma(A) = Ma(%0) + (A —20) [(1+ (A = 20) (A~ 1) ") 94, ¢a]
= Ma(Ro) + (A — 20)[@a, Pa] + (A — 20) (A — A0) [(A—2) " @a, 4]
holds for all A € p(A). Since [E@a, (I — E)@a] = 0 and the function
Ao (A=) (I —E)ga,(I - E)ga]

is holomorphic in a neighbourhood of the isolated eigenvalue  we conclude that My can
be written in the form

Ma(R) = h(A)+ (A —2)(X — Ao) [(A—2) 'E@a,Ea]
2.7 (A — _

IRYRNCE NS )

= |2

E(pA7E(PA]7
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where & is holomorphic in a neighbourhood of the point p. Here we have also used (A —
AM)'E@y = (u — A) "' E@, in the last equality.

Since by assumption g € p(B) we conclude from Corollary 2.2 (ii) that the function
Mp = fMA’1 has a zero at the point u, that is, M4 has a pole at u. As A is holomorphic
we obtain [E @4, E@a] # 0 from (2.7). Assume now that it € 6.4 (A) (U € 6__(A)). Then
[E@a,EQa] > 0 ([E@a,E@a] < 0, respectively) and the statements in Lemma 2.5 follow
from the representation (2.7). O

The preceding Lemmas 2.4 and 2.5 lead to the following interlacing of eigenvalues of
A and of B.

Proposition 2.6. Let A, B and I be as in Assumption (I). Let [y, € p(B) NI such that
(11, 42) C p(A).

() If Wi, 12 € 644 (A), then there exists )L € (L1, o) with U € 0,(B)\ 6__(B).
(i) If w1, 2 € 0__(A), then there exists L € (1, o) with 4 € 6,(B) \ 04+ (B).

Proof. (i) The function M, has poles of order one at u;, U, and its behaviour near these
poles is given by Lemma 2.5. Therefore, as M, is a holomorphic function on p(A), it is
continuous on (U, tz) C p(A) and there exists i € (1, tp) with My (p) =0 and M)y (1) >
0, hence (i) follows from Lemma 2.4. Statement (ii) is shown analogously. [l

Corollary 2.2 (ii) states the following: If u is an eigenvalue of A in p(B) then the
function M4 has a pole in pt. In the next proposition we prove the same conclusion under
a slightly different assumption: If u is an eigenvalue of A of positive or of negative type
and U is no eigenvalue of the symmetric operator S = A N B, then My has a pole in u (and,
moreover, U belongs to the resolvent set of B).

Proposition 2.7. Let A, B and I be as in Assumption (1), let S=ANB and let |l € I. Then
the following holds.

() If u € 644(A)\0,(S) then My has a pole of order one in |1 and 1 € p(B).

(i) If u € 04+ (B)\0,(S) then Mp has a pole of order one in L and L € p(A).

Proof. We verify assertion (i). The adjoint ST of S = AN B is a closed linear relation
with one dimensional multivalued part if dom S is not dense, or an operator otherwise. In
both cases ST is a one dimensional extension of A and B, and in both cases we regard S
as a linear relation and denote the elements in ST in the form {f, f'} where f € domS*
and f/ € ranST. Let Ay be as in (2.2) and let @4 € % be as in Proposition 2.1 (i). By
Proposition 2.1 (iii) we have for y € #
(A=2o) 'y —(B—20)" "y

1
= o) [y, @a]va(Lo)

and the left hand side (and, hence the right hand side) is zero if and only if y € ran (S — Ao).
Thus @4 € (ran (S — 4¢))*) = ker (S* — Ao) and we have the direct sum decomposition

ST =A+{a{ps,loes}: o€ C}.
Accordingly we write {f, f'} = {fa + a@a,Afs + tdo@s} € ST for some f4 € domA.
Suppose now that u is an eigenvalue of positive or negative type of A such that yu & 0,,(S),
let g, € ker (A — ) be nonzero and denote the orthogonal projection in (%', -, -]) onto the
Hilbert (or anti-Hilbert) space (ker (A — ), [-,-]) by Py. Since A is selfadjoint we obtain
[ gu) = [f Agu] = [Afa+ aho@a, gu] — [fa + apa, Agy]

= [OMO(PAagu] - [a(PAJlgu} = a(ao _nu)[Pli(pAagll}'
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Hence

(2.8) Pypa #0

as otherwise {g,,Agu} € ST7 =S and g, € domS and Sg, = pgy which is impossible
by u & G[,(S). On the other hand (see, e.g., [29, Proof of Theorem 1.1]), it follows for
A € p(A) from Proposition 2.1 (i)

(YA (A),74(A0)] — [@a, @A)
A=
My(A) My (o) (@4, Q4]

[(A=2)"'pa,04] =

S (A-X)A-%) (A-A)A-ho) Al
Thus, if the function M4 admits an analytic continuation into the point 1, then by the above
formula also the function A + [(A — A1)~ @4, @] admits an analytic continuation into g
and

1 _
[Pua, @a] = _%ﬁ@ [(A—=2)""a,p4]dA =0,

where the above contour integral is along a sufficiently small circle €}, containing . As
(ker (A —u),[,-]) is a Hilbert (or anti-Hilbert) space this implies P, ¢4 = 0; a contradiction
to (2.8). Thus My can not be continued analytically into u. As u € 61+ (A), this pole is of
order one.

The same reasoning applies to the first assertion in (ii). Hence every eigenvalue of
positive or negative type of B which is not an eigenvalue of S is a pole of first order of Mp.

In order to complete the proof of (i) we have to show u € p(B). As U & 0,(S) the
dimension of ker (B — ) is at most one. By the above reasoning My has a pole at i, hence
Mg = —M;l has a zero at y. It then follows from the first assertion in (ii) that yu ¢ o4 (B).
Thus it remains to exclude the possibility of a neutral eigenvector of B corresponding to
. In fact, if there is a neutral eigenvector there exists a Jordan chain of length greater
than one which results in a pole of at least second order of the resolvent of B at i. But as
U € 0+4(A) the resolvent of A, ¥4 and, as shown above, also M4 have poles of first order
at u. Therefore by Proposition 2.1 (iii) the resolvent of B has a pole of at most first order
at i; a contradiction. We have shown pt € p(B). O

3. RANK ONE PERTURBATIONS OF NONNEGATIVE OPERATORS AND EIGENVALUE
ESTIMATES

3.1. Nonnegative operators, operators with one negative square, and related classes
of functions. In this section we assume, in addition to (2.2), that A is nonnegative in the
Krein space (¢, [-,-]), i.e.

[Ax,x] >0, x € domA.

This implies, in particular, that c(A) C R. From the fact that AN B is a symmetric operator
which is a one dimensional restriction of A and B it follows that B is nonnegative or B has
one negative square, which is equivalent to [Bx,x] < 0 for some x # 0 in this setting. We
shall write kg = 0 if B is nonnegative and kp = 1 if B has one negative square. Clearly, if
kg = 0 then o(B) C R. If kg = 1 then the nonreal spectrum of B consists of at most one
pair of isolated eigenvalues symmetric to the real line; cf. [16, 21].

The following proposition provides additional information on the sign types of the (iso-
lated) spectral points of A and B; it is a special case of [16, Theorem 3.1], see also [51].
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We remark that the assertions extend to all positive and negative spectral points when sign
types are defined for points in the continuous spectrum as in [37, 53].

Proposition 3.1. Let A, B be selfadjoint operators in (A ,[-,-]) which satisfy (2.2) and
assume that A is nonnegative. Then the following holds.

(i) The isolated positive (negative) eigenvalues of A belong to 64 (A) (6-_(A), re-
spectively).
(ii) If kg = O then the isolated positive (negative) eigenvalues of B belong to 64 (B)
(0__(B), respectively).
(iii) If kg = 1 then there is at most one isolated eigenvalue u € R, u # 0, such that
uéo (B)NRYandpu ¢ o-_(B)NR".

In the present situation the functions M4 and Mp in Proposition 2.1 belong to special
classes of functions introduced and studied in [15, 16] and hence admit particular repre-
sentations in terms of Nevanlinna and generalized Nevanlinna functions with one negative
square. Recall first that a complex valued function N piecewise meromorphic in C\ R
and symmetric with respect to the real axis belongs to the class of generalized Nevanlinna
functions A% with k € Ny negative squares if the kernel

N(z) —N(z))
Zi —Zj
has k negative squares; cf. [47]. The class .4 is the class of Nevanlinna functions.
The following definition is taken from [15], see also [15, Theorem 2].

Definition 3.2. A complex valued function M meromorphic in C\ R and symmetric with
respect to the real axis belongs to the class % if for some, and hence for every, z in
the domain of holomorphy of M, there exists a generalized Nevanlinna function N € A4
holomorphic in z and a rational function g holomorphic in C \ {z,z} such that

A
(A —-2)(A-72)

holds for all points A where M, N and g are holomorphic. Here C denotes the extended
complex plane, C = CU {eo}.

3.1) M(A)=NA)+g(A)

Proposition 3.3. Let A, B be selfadjoint operators in the Krein space (' ,|-,-]) which
satisfy (2.2), assume that A is nonnegative, and let My and Mpg be as in Proposition 2.1.
Then

(3.2) My € 9 and Mg € DyU D).

Furthermore, the following holds.

() If Mg € Dy then all positive (negative) zeros | of M satisfy M} (p) >0 (M} (1) <

0, respectively).

(i) If Mg € 9| then with the possible exception of at most one point Uy all positive
zeros [ of My satisfy My (i) > 0 and all negative zeros | of M satisfy M)y (1) < 0.
If this exceptional zero Uy is in R\ {0}, then it is a zero of My of at most order
three. If it is a zero of order three then M)} (11o) > 0 for o € Rt and M)} (11o) < 0
Sfor np e R™.

(iii) If there is a positive (negative) zero |t of My such that My () <0 (M} (u) > 0,
respectively) then Mg € 2.
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Proof. We obtain the assertions in (3.2) as a consequence of [15, Lemma 7] and the proof
of Proposition 2.1. Since

Mg=—— on p(A)Np(B)

and p(A) Np(B) is a dense subset in C (since 0(A) C R and with the possible exception
of at most two points also 6(B) C R) the zeros of M4 correspond to the poles of Mg and
vice versa. The order of a zero of M} is equal to the order of the corresponding pole of M.
Moreover, if Mp has a pole of first order at y then the residue at y of Mp coincides with
W(lu) and p is a zero of first order of My.

By [15, Theorem 2 (iii)] all poles of Mg € Z; in Rt (R™) are of first order with neg-
ative (positive, respectively) residue and (i) is shown. Assertion (ii) follows in the same
way when taking into account that a function Mg € &, may have at most one pole which is
not of first order with negative (positive) residue in R™ (R™, respectively), see [15, Theo-
rem 2 (iii)]. Moreover, it also follows from [15, Theorem 2 (iii)] that this exceptional pole
Uo is of at most order three and that the limit

lim (2 — o) Ma(2)
A=t
exists and is nonpositive (nonnegative) if Lo is in R* (R~ respectively). This shows (ii).
Finally, if i is a positive (negative) zero of My with M)y (1) <0 (M (u) > 0, respectively)
then Mp has a pole in p which is not of first order with a negative (positive, respectively)
residue in R* (R, respectively). As Mg € 99U 2, by (3.2) we conclude Mg € 2, from
[15, Theorem 2 (iii)]. O

The next lemma provides some more properties of the function My at the point 0.

Lemma 3.4. Let the assumptions be as in Proposition 3.3. Then the following holds.

(1) If 0 is a pole of M4 then O is a pole of first or of second order. If 0 is a pole of
second order then

lim My (A) = lim My () = —co.
A0 ANO
(ii) If Mg € 9, and My, is holomorphic in O then

My (0) > 0.

(iii) Assume that My is holomorphic in 0 and let O be a zero of M. Then 0 is a zero of
at most second order and in this case we have

M4 (0) > 0.

Proof. (i) Let 0 be a pole of My. As My € 2 it follows from [15, Definition 3 and
Theorem 2 (iii)] that O is either a point of holomorphy or a pole of first order with a
negative residue at 0 of the function A — AMy4(A). Therefore 0 is a pole of at most order
two of My and, if O is a pole of second order of My, it satisfies

—oo < lim A2M4 (1) <0
A—0

and (i) is proved.

(ii) If Mp € 2, then [16, Theorem 2.4] implies that O is not a generalized zero of non-
positive type of A — AMy4(A). For the notion of a generalized zero of nonpositive type we
refer to [48, 52], see also [15, Section 3.1]. Under the assumption that My is holomorphic
in 0, this is equivalent to (ii), see, e.g., [15, Section 3.1] and [48, 52].
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(iii) Consider (3.1) with z =0,
(3.3) A~ My (L) = Na(A) +ga(R),
where Ny is a Nevanlinna function holomorphic in O and g4 is a rational function holomor-
phic in the extended complex plane with a possible pole in 0. Assume
(3.4) M4 (0) = M4 (0) =0.
Then the left hand side of (3.3) is holomorphic in 0 and hence g4 is equal to a real constant
¢, and (3.3) becomes
(3.5) My(A)=A(Na(A)+c¢).
We have M} (1) = Na(A) +c+ANj(A) and M} (A) = 2N, (A) + AN} (A). In particular
M, (0) =N4(0)+c and M} (0)=2N,(0).
It follows from (3.4) that the function Ny + ¢ vanishes at 0. It is well-known that non-
constant Nevanlinna functions have a positive derivative in real points of holomorphy.
Here, N4 + c is not identically zero, as this would, by (3.5), imply that M4 = 0, which
is a contradiction to Proposition 2.1 (iii). We conclude
M} (0) =2(Ny+c¢)'(0) >0,
and hence 0 is a zero of at most second order of Mj,. U

3.2. Main results: Eigenvalue estimates. For an interval / C R we denote the numbers
of distinct eigenvalues of A and B in I by n4 (1) and ng(I), respectively,

nma(l)=4{A : AL €Ino,(A)} and np(l)=4{A: A €lnc,(B)},
and we set
nA73(I) = ﬁ{l :Aeln GP(A) N GP(B)}.
Here, multiplicities of eigenvalues are not counted.

The next theorem provides sharp estimates from below and above on the number of
distinct eigenvalues of B in terms of the number of distinct eigenvalues of A. The last
assertion on the infinite number of distinct eigenvalues of A and B in / can be viewed as a
special case of [14, Theorem 4.3].

Theorem 3.5. Let A, B and I be as in Assumption (1) and assume, in addition, that A is
nonnegative. Then B is nonnegative or has one negative square and if ny(I) < oo then the
following estimates hold.
(1) If0 &1 then
1 ifxkg=0,
nal) = mas(1) 1 < np() < ma(D) +nan(+ L 77
3 lfK'B =1.
(i) If0 €1 then
2 ifkg=0,
na(l) —nap(I) =2 < np(I) <na(I) +nap(I) + f ’
3 lfK'B =1.
Each of the estimates in (i) and (ii) is sharp. Moreover, ns(I) = oo if and only if ng(I) = oo.
The upper and lower estimates in the next corollary follow from ns g(I) < na(I) and
—ng(I) < —ny p(I), respectively.

Corollary 3.6. Let the assumptions be as in Theorem 3.5. Then the following estimates
hold.
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(i) If0 &I then

na(l)—1 1 ifkp=0,
(i) If0 €I then

nA(I)—Z 2 l:fK‘B:O,

— < ng(I) SZHA(1)+{3 P

Each of the estimates in (i) and (i) is sharp.

The next corollary treats the case na (/) = 0 and will play an important role in the proof
of Theorem 3.9.

Corollary 3.7. Let the assumptions be as in Theorem 3.5 and assume, in addition, that
INo,(A)Noy(B) = 0. Then the following estimates hold.
(1) IfO &€ I then

1 l'fK'B =0,

na(l)—1<ng(Il) <ns(Il)+
a(l) =1 < np(I) <na(1) {3 A

(i) If0 €1 then

2 ifK‘B:O,

na(l) =2 < np(l) < na(l) + {3 ifkp=1.

Each of the estimates in (1) and (ii) is sharp.

In the following we provide in Theorem 3.9 a variant of Theorem 3.5, where the total
multiplicity mg(I) of the eigenvalues of B in [ is estimated by the total multiplicity m4 (1)
of the eigenvalues of A in I. We start by stating a theorem which focuses on the total
multiplicity of the eigenvalue 0.

Theorem 3.8. Let A, B and I be as in Assumption (1) and assume, in addition, that A is
nonnegative, 0 € I and that my ({0}) < eo. Then

Ima({0}) —mp({0})] <2
and the estimate is sharp.
The sharp estimate in Theorem 3.8 will be used in the proof of the next theorem.

Theorem 3.9. Let A, B and I be as in Assumption (1) and assume, in addition, that A is
nonnegative and that ma(I) < eo. Then the following estimates hold.

(i) If0 &I then

1 ifxg=0
mAu)—lsm(USmA(’)*{s ’fiil
(i) If0 el and 0 & o,(A) then
2 ifkg=0
mA(I)ZSmB(I)SmA(I)+{3 Zzizl
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(iii) If0 €l and0 € 6,(A) then

e <o g {170

Moreover, ma(I) = oo if and only if mg(I) = oo.

Remark 3.10. It follows immediately from Corollary 3.7 that the estimates in Theo-
rem 3.9 (i) and (ii) are sharp. It is not clear if estimate (iii) is sharp as well.

In the following subsections the proofs of Theorems 3.5, 3.8 and 3.9 will be given. The
proofs of Theorems 3.5 and 3.9 make use of similar techniques and are related; they are
presented in Sections 3.3 and 3.4. The proof of Theorem 3.8 is independent from the proofs
of Theorems 3.5 and 3.9, and therefore postponed to Section 3.5.

3.3. Proof of Theorem 3.5. Theorem 3.5 is proved in eight separate steps, the proof of
Theorem 3.9 is given afterwards. In Steps 1 and 2 the lower estimates are shown and in
Steps 3 - 5 the upper estimates are verified. The sharpness of the estimates is shown in
Steps 6 and 7 for two particularly interesting situations; from the construction it is clear
how the sharpness of the remaining estimates follows. Finally, in Step 8 we verify the
assertion on the infiniteness of the eigenvalues.

Step 1. Lower estimate in (). We verify the estimate
(36) I’lA(I)—nAﬁ(I)—l §n3(1).

By assumption 0 ¢ I and we have I C R™ or I C R™. We discuss the case I C R™ only; the
simple modifications for the case I C R™ are left to the reader. Then, as A is nonnegative, all
eigenvalues of A in I are of positive type, thatis 6(A) NI C 644 (A); cf. Proposition 3.1 (i).
As ng(I) < oo we have ng g(I) < eo. If na(I) — 1 —nap(I) < nap(I) then the estimate
(3.6) holds since na g(I) < ng(I). If na(I) — 1 —na p(I) > na p(I) then there exist at least
na(I) — 1 —2ny p(I) pairs of eigenvalues in 644 (A) N p(B) to which Proposition 2.6 (i)
can be applied. This leads to na(I) — 1 —2ny p(I) eigenvalues of B in p(A) N[ and since
there are also ny g(I) eigenvalues of B in 6(A) NI we obtain the estimate (3.6).

Step 2. Lower estimate in (ii). Let 0 € I and set I = INR*. In order to show the estimate

(37) I’lA(I)—I’lA’B(I)—Z S I’lB(I)
observe that by Step 1 the estimates
(38) na (Ii) — nA,B(Ii) —1 § nB(Ii)

hold. Clearly,

na(l) if0 & GP(A),
na(l)—1 ifOEGp(A)

and

nA,B(I) if0¢6p(A)mGp(B)a
nA3B(I)71 ifOEGp(A)ﬁGp(B).

S
>
&
~
+
~—
Jr
B
o
—
i~
—
I
—N—



EIGENVALUE ESTIMATES FOR NONNEGATIVE OPERATORS 15
Together with (3.8) this yields

_ {n3<1+>+n3<1> if0 ¢ 0,(5)

n(I) np(Le) +np(I_)+1 if0 € 6,(B),

na(l-) —nap(l-) =2 if 0 &€ 0p(B),
l’lA(I_) —I’lAyg(I_) —1 ifoe GP(B)7

2 if0¢ 0,(B), 0 ¢ 0,(A),
I)—npp(I)—3 if0 ¢0'17(B), 0e GP(A),
1 if0€o,(B),0&0,(A),
1 if0€o0,(B),0€0,(A).

It remains to show estimate (3.7) in the case 0 € 6,,(A) and 0 € 6,(B). Assume first that
I_No(A)isempty. Then ng(I_) > 0, na(I+) =na(I) — 1, and (3.8) yield

ng(I) > np(ly) > na(ly) —nap(ly) — 1 =na(I) —na p(I) - 2,

that is, (3.7) holds. A similar reasoning implies (3.7) for the case that I, N6 (A) is empty.
Now we assume /1 N6 (A) # 0. Denote by A_ the largest eigenvalue of A in I and by A,
the smallest eigenvalue of A in 1. Assume first A € 0, (B) and apply the lower estimate
from Step 1 to the intervals I; := (—o0,A_)NI_ and I :

np(I) = np(ly_) +np([A-,0]) +np(L;)
na(ly ) —nap(h ) =1+ np([A-,0]) +na(ly) —nap(ly) =1
=na(_ ) +na(ly) — (nap(ly_ ) +nap(ly)) +np([A-,0]) —2.

v

In the present situation we have

na(l) =na(Iy ) +na([A-,0]) +na(ly) =na(l ) +24na(ly)
nag(I) =nap(ly ) +nap([A-,0]) +nap(ly) =nap(lh )+ 1+nsp(ly)

and hence we obtain

np(l) > na(I) =2 — (nap(l) = 1) +np([A-,0]) =2
= I’ZA(I) —nA,B(I) +n3([l_70]) - 3.

Together with ng([A—,0]) > 1 we conclude (3.7). In a similar way the estimate (3.7) follows
if 24 € 0,(B). Thus it remains to show (3.7) for 0 € 6,(A), 0 € 0,(B), and A+ ¢ 0,(B).
For this we consider the function My : p(A) — C from Proposition 2.1 which is continuous
and real valued on p(A) NR. By Corollary 2.2 (ii) the point 0 is a pole of M4 and by
Lemma 3.4 (i) it is of first or of second order. If 0 is a pole of first order we conclude from
A_€0__(A), Ay € 044+(A), and Lemma 2.5 that My has a zero either in (1_,0) or in
(0,A), and hence an eigenvalue of B; cf. Corollary 2.2 (i). If 0 is a pole of second order,
then My has zeros (and, hence, eigenvalues of B) in both intervals (A_,0) and (0,44);
cf. Lemma 3.4 (i), Corollary 2.2 (i), and Lemma 2.5. Thus in both cases there is at least
one eigenvalue of B in the interval (A_, A, ). Therefore, for £ > 0 sufficiently small we
conclude

3.9 np([A-+€,A: —¢€]) > 1, A+e<0< Ay —e¢.
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Let us apply the lower estimate from Step 1 to [y ;= (—o0,A_+€)NI_and I}, , =
(A4 —€,00) N 1;. Then, with (3.9) we obtain

ng(I) = np(_i¢) +np([A-+€,A; —€])+np(l, _¢)
>na(lyye) —nap(ye) —1+np([A-+€ A, —¢]
+na(ly, —¢) —nap(l, —¢) —1
>na(h_ye) —nap(h_ye) +nally, —¢) —nap(lp, —¢)—1
=na(l) —na([A-+¢€, Ay —€]) — (nag(I) —na g([A- +€,A4 —g])) — L.

In the present setting we have nq([A_ +€,A4 —€]) =1 and ny p([A- + €, —¢]) = 0.
This implies the estimate (3.7).

Step 3. Upper estimate in (i) and (i1) if kp = 0. If B is nonnegative these two estimates
follow immediately from (3.6) and (3.7) by interchanging the roles of A and B.

Step 4. Upper estimate in (i) if kg = 1. We show that the inequality
(3.10) ng(I) <na(I)+nap(I)+3

holds if 0 ¢ I and B has one negative square. Let us again discuss the case I C R only;
the simple modifications for the case I C R~ are left to the reader. Since /N G(A) consists
of na(I) distinct eigenvalues the set I N p(A) consists of na(I) + 1 open subintervals Iz,
1 <k <na(I)+ 1. We use that My is continuous and real valued on each subinterval I,
and that by Corollary 2.2 (i) the zeros of My in I; coincide with the eigenvalues of B in .
As kg = 1 there is at most one point v € 6,,(B) NI with v € o (B) by Proposition 3.1 (iii).
If ve o,(A) then tNo(B), 1 <k <ns(I)+1,is contained in o4 (B) according to Propo-
sition 3.1 (iii) and each zero u in Iy of My satisfies M} (u) > 0 by Lemma 2.4 (i). Thus
in each subinterval I, 1 <k < n4(I) + 1, there is at most one eigenvalue of B so that the
set INp(A) contains at most nu(I) + 1 eigenvalues of B. Clearly, the set /N o (A) con-
tains n4 p(I) eigenvalues of B and hence ng(I) < ns(I) +na p(I) + 1. In particular, (3.10)
follows in the case v € 0,,(A). It remains to show estimate (3.10) in the case v € p(A).
Then v belongs to some subinterval /; for some j with 1 < j < na(I)+ 1 and the function
M, satisfies M, (v) < 0 by Lemma 2.4 (i). Since all other eigenvalues it of B in INp(A)
belong to 64 (B) it follows from Lemma 2.4 (i) that M} (1) > 0. Hence in I; there are at
most three eigenvalues of B and in each of the subintervals Iy, 1 <k <ns(I)+ 1, k # j,
there is at most one eigenvalue of B. Summing up it follows that the set /N p(A) contains
at most n4 (I) + 3 eigenvalues and, as / N 6(A) contains ny g(I) eigenvalues of B, (3.10) is
shown.

Step 5. Upper estimate in (ii) if kg = 1. In this step we discuss the case 0 € I and B has
one negative square. We verify the inequality

3.11) nB(I) §I’ZA(I)+HA,B(1)+3.

In order to show this we consider again the open subintervals i, 1 <k <nus(I)+ 1, as in
Step 4. Assume that 0 € 6,(A). Then the arguments used in the proof of Step 4 remain
valid and it follows that in at most one interval ; there might be at most three zeros of My,
in all other intervals i there is at most one zero. This implies (3.11) if 0 € 6,(4). Let us
now discuss the case 0 € p(A) so that 0 € [; for some j. If My has two or three zeros in one
of the other subintervals I, k # j, then according to Lemma 2.4 (i)-(ii) one of these zeros
is an eigenvalue y of B which does not belong to 6, (B) (6__(B)) if , CR™ (I, CR™,
respectively). Moreover, by Proposition 3.3 (iii) the function Mp belongs to the class 7,
and by Lemma 3.4 (ii) we have M4 (0) > 0. But this implies that there are no zeros of My
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in I; as otherwise M) (1—) > 0 for some u_ < 0 in I; or M, (t+) < 0 for some p; >0
in I; which is impossible by Proposition 3.3 (ii). Hence if 0 € I; and M4 has two or three
zeros in one of the other subintervals [, then (3.11) is valid. It remains to discuss the case
0 € I; and M, has at most one zero in each of the other subintervals I, k # j. Suppose that
M4 (0) > 0. By Proposition 3.3 (i) and (ii) there are at most two zeros of My in I and (3.11)
is true for M (0) > 0. In the case M4 (0) = O three other zeros in /; would imply Mp € 2
by Proposition 3.3 (iii) and hence M4(0) > 0 by Lemma 3.4 (ii). Thus only two zeros in
I;\{0} may exist and (3.11) holds also in the case M4 (0) = 0. Finally, if M4(0) < O then
again three zeros in /; would imply Mp € % by Proposition 3.3 (iii) and hence M4 (0) > 0
by Lemma 3.4 (ii). Thus also in this case there are at most two zeros of My in I;. We have
proved (3.11).

Step 6. Sharpness of the upper estimate in (i) if kg = 1. We discuss the case 0 & I. Our
aim is to show that the estimate

(3.12) np(1) < na(I) +nap(l)+3

is sharp. For this we show that there exist matrices A, B and an open interval / such
that Assumption (I) is satisfied and equality holds in (3.12). Here we give an idea how to
construct specific examples fitting to a given eigenvalue distribution. For explicit examples,
see Section 3.6. Let 0 < Ag < A1 < -+ < A, < A4 for some n € N and define [ :=
(A0, An+1). Choose a rational function M symmetric with respect to the real axis such that:

— M has poles of first order in 0 and in each A;. These are the only poles of M and
M is monotonously increasing in every interval (A1, 42), ..., (Ay, Ayy1)-

— M has three zeros [; < Up < Us in the interval (Ag, A1) such that M'(p;) > 0,
M'(1p) <0, and M’ (usz) > 0.

- limy_, 1 M(x) € R\{0}.

— M € % and the function A — —ﬁ belongs to ;.

We leave it to the reader to verify that such functions exist. An example for n = 0 is the
function M in Figure 1 in Section 3.6.

Then M belongs to the class of generalized Nevanlinna functions and according to [10,
Corollary 3.5] there exists a Pontryagin space (¢, [-,-]), a (possibly nondensely defined)
symmetric operator S with defect one and a boundary triplet {C, Ty, T’ } for the adjoint ST
such that the corresponding Weyl function coincides with M. Let A := S* | ker['g. The
operator S and the boundary triplet {C,Ty,T"; } can be chosen in such a way that %" is finite
dimensional, 6(A) coincides with the poles of M and, in particular, A has no multivalued
part as M has no pole at +oo, see also [35, 47]. It is important to note that 6(A) N/ consists
of the n distinct eigenvalues Ai,...,4,. As in the proof of Proposition 2.1 we make use
of the fact that {C,T"j,—~Ty} is a boundary triple for S* with Weyl function —M~!. Let
B := S | kerI';. Then B is a selfadjoint matrix with kg = 1 (see, e.g. [15, Lemma 7]).
As both A and B are selfadjoint extensions of the symmetric (nondensely defined) matrix
S with defect one the difference of A and B and of their resolvents is a rank one operator,
so that Assumption (I) is satisfied. Moreover, the zeros of M in [ coincide with (B) N 1.
Hence B has 3 eigenvalues in the interval (Ao,A;) and one eigenvalue in each of the n
intervals (A1,42),...,(An, Aus1), that is, ng(I) = n+ 3 and equality in (3.12) is shown
for the case ns g(I) = 0. In order to obtain a sharp estimate in the remaining cases add
orthogonally to A and B a nonnegative matrix C such that 6,(C) C 6,(A). Then,

(3.13) (13 g) and (Ig g)
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differ by a rank one matrix and have nc(I) common eigenvalues in the interval /. This
shows that (3.12) is sharp.

Step 7. Sharpness of the lower estimate in (ii). In order to show that for O € I the estimate
(314) nA(I)—I’lAA’B(I)—ZSHB(I)
issharplet g <0 < A; < --- < A, with n € N and consider a rational function M such that:

— M has poles of first order in each A;. These are the only poles of M and M is
monotonously increasing in every interval (A1,42),. .., (A—1,4).
— M is positive in the interval (g, 4;).
- limy_,1 o M(x) € R\{0} and M € %.
An example for such a function in the case n = 2 is given by M (1) := My(A) + 2, where
M, is the function in Figure 2 in Section 3.6.

The zeros of M in (A;,A;j11), j=1,...,n—1, are denoted by ;. As above it follows
that there exists a Pontryagin space and selfadjoint matrices A and B which differ by a
rank one matrix such that A;, i =0,...,n, are eigenvalues of A and uj, j=1,...,n—1, are
eigenvalues of B. Hence for € > 0 sufficiently small A has n+ 1 distinct eigenvalues in
the interval I = (A) — €,4, + €) and B has n — 1 eigenvalues in [, that is, (3.14) is sharp if
na p(I) =0. In the case na (1) > 0 one obtains that (3.14) is sharp by adding orthogonally
a suitable nonnegative matrix C as in (3.13).

Step 8. Proof of na(I) = oo if and only if ng(I) = co. If ng p(I) = oo then ng(I) = oo =ny(I)
and the assertion is true. If ng (I) = oo and ng p(I) < oo then there are infinitely many pairs of
eigenvalues in 4 (A) or 6__(A) to which Proposition 2.6 (i) or (ii) can be applied. This
yields ng(I) = oo. Conversely, if ng(I) = oo then the same reasoning implies n4 (I) = o and
the assertion is proved.

3.4. Proof of Theorem 3.9. The proof of Theorem 3.9 uses Corollary 3.7 and is done
in eleven steps. We decompose the space . into the spectral subspace related to the
common eigenvalues of A and B and its [-,-]-orthogonal companion. Then Corollary 3.7
can be applied to the restrictions of A and B to this [-,-]-orthogonal companion and we
prove the estimates in (i), (ii) and (iii).

Step 1. Decomposition of # for 0 ¢ I. Let us assume that I C R™. The spectral subspace
of A corresponding to I is an my4 (I)-dimensional Hilbert space by Proposition 3.1 (i). The
subspace &} spanned by the eigenvectors of the (possibly nondensely defined) symmetric
operator S = AN B in [ is invariant for S, and hence for A and B. As & is a subset of
the spectral subspace of A corresponding to I, the space (&, [,-]) is a (finite dimensional)
Hilbert space. Denote the restriction of S to &} by S. With respect to the decomposition

A= éi[—i—]&[f] we have

(S 0 _(S+ 0 _(S+ 0
S_<O S’)’ A_<O A') and B—<0 B’)’

with ' symmetric, 6,,(S") N1 =0, and A’ and B’ selfadjoint in the Krein space (é’f] [ -])-
Therefore

(3.15) ma(l) =ms, (I)+my(I) and mp(l) =ms, (I)+mp(I).

We claim that A’ and B’ satisfy the assumptions in Corollary 3.7. Indeed, it is easy to see
that A’, B’ and I satisfy Assumption (I) and since A is nonnegative in the Krein space ¢
the operator A’ is nonnegative in the Krein space ﬁf]. Furthermore, as ¢,(S') NI =0
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and all eigenvalues of A’ in I are in 6, (A’) by Proposition 3.1 (i), we conclude from
Proposition 2.7 (i) that

(3.16) o,(A")No,(B')NI=0.
Step 2. Lower estimate in (i). As I C R, all eigenvalues of the nonnegative operator A’

in I are of positive type and belong to p(B’). According to Theorem 2.3 (iv) each of these
eigenvalues is of multiplicity one and therefore

(3.17) (1) = my (D).
As ng(I) <mp(I), Corollary 3.7 (i) together with (3.15) imply the estimate
(3.18) ma(l) — 1< mg(I).

Step 3. Upper estimate in (i) if kg = 0. The estimate follows immediately from (3.18) by
interchanging the roles of A and B.

Step 4. Upper estimate in (i) if kg = 1. In this case kp = 1 and by Proposition 3.1 (iii) there
is at most one eigenvalue p of B' in I which is not of positive type. If i is of negative type
it has multiplicity one; cf. Theorem 2.3 (iii). All other eigenvalues of B’ in I are of positive
type, belong to p(A’) and hence have multiplicity one according to Proposition 3.1 (iii)
and Theorem 2.3 (iii). Therefore ng (I) = mg (I) and as ny/ (1) < my/(I), Corollary 3.7 (i)
together with (3.15) imply the estimate

(3.19) mp(I) <mu(I)+3.

It remains to show (3.19) in the case that i € o,,(B") N1 is not of positive and not of negative
type, that is, there exists a neutral eigenvector x. Then by Lemma 2.4 dimker (B’ — ) =1
and the multiplicity of p is larger than one. On the other hand it follows from [51] (see
also [16, Theorem 3.1 (ii)]) that the multiplicity of u is at most 3. We discuss the cases
dim.Z,,(B') =2 and dim.Z},(B') = 3 separately.

If dim %, (B’) = 3 then there exists a Jordan chain {xo,x;,x2} of B’ at  of length 3,
and (2.3) implies M, (1) = 0 and

(3.20) M (1) = 2[x1,x0] = 2[(B' — p)x2, x0] = 2[x2, (B' — p)xo] = 0.
By Proposition 3.3 (iii) we have Mp € 2, and Proposition 3.3 (ii) yields
(3.21) M7 (u) > 0.

As in Step 4 in the proof of Theorem 3.5 the set INp(A’) consists of ng/ (1) +1=my (I)+1
open subintervals I. We have u € p(A) (see (3.16)) and hence u € I; for some j with
1 < j<my(I)+ 1. Since all other eigenvalues of B’ in /N p(A’) belong to o4 (B') it
follows from Lemma 2.4 (i) that the derivative of M, in such an eigenvalue is positive.
This together with (3.21) shows that except for u there is no other eigenvalue of B’ in /;.
Moreover in each of the subintervals Iy, 1 < k < my (1) + 1, k # j, there is at most one
eigenvalue of B’. Summing up we have

mB/(I):nB/(I)JrZ and nB/(I)SnA/(I)Jrl

Together with (3.15) and (3.17) the estimate (3.19) follows if the multiplicity of u is 3.

It remains to consider the case dim.#,(B’) = 2. Relation (2.3) implies M), (i) =
[x0,x0] = 0. If M}, (1) = 0 then a similar reasoning as above implies (3.21) and the estimate
(3.19) follows in the same way. If M}, (1) # O then we consider again the open subinter-
vals [i from above, 1 <k <my (I)+ 1, and for some subinterval /; with 1 < j <my/(I)+1
we have [l € I;. Again, by Lemma 2.4 (i), the derivative of My is positive in all eigen-
values except in p. Hence in each Iy, k # j, there is at most one eigenvalue of B'. In /;
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the eigenvalue p has multiplicity 2 and Lemma 2.5 yields that there is precisely one more
eigenvalue of B’ (with multiplicity one) in /;. This implies

mg(I) =ng(I)+1 and ng(I) <ny(I)+2.
With (3.15) and (3.17) the upper estimate in (i) with kg = 1 follows.

Step 5. Lower estimate in (ii) and (iii). If 0 € I we apply the lower estimate in (i) to the
intervals I, = INR™ and I_ = INR~ separately. Taking into account the assumption
0 ¢ 0,(A) we obtain the lower estimate in (ii). If 0 € 6,(A) we obtain

ma(l) —2=ms(Iy) —1+ma(I-) — 1 +ms({0})
<mg(Ly) +mp(I-) +mp({0}) —mp({0}) +ma({0})
<mg(I) + |ma({0}) —mp({0})]

and the lower estimate in (iii) follows from Theorem 3.8.

Step 6. Decomposition of # if 0 € I. Asin Step 1 the spectral subspace of A correspond-
ingto I, =INR" (I_ =INR") is a Hilbert space (anti-Hilbert space, respectively); cf.
Proposition 3.1 (i). The subspace &} (&-) spanned by the eigenvectors of S=ANB in I}
(I-) is a subset of the spectral subspace of A corresponding to I (I_, respectively), and the
space & := & |+]&- is a Krein space. Denote the restriction of S to & by Se. With respect
to the decomposition .#” = &[+]&H we have

(Ss 0 (Ss 0 (Ss 0
S—(O S’)’ A—(O A’) and B—(O B
with §" symmetric, 6,(8") NI C {0}, A’ nonnegative, and B’ selfadjoint in the Krein space
(é"m, [-,-]). Again A/, B and I satisfy Assumption (I) and, as in (3.15), we have

(3.22) ma(l) =ms,(I)+ma(I) and mp(l) =ms,(I)+mg(I).

If 0 ¢ 6,,(A) then 0 ¢ 6,,(A") and we conclude from Proposition 2.7 (i) in the same way as
in Step 1 that

(3.23) 0,(A"YNo,(B)NI=0.

Step 7. Upper estimate in (ii) if kg = 0. In the case 0 ¢ 6, (B) the upper estimate in (ii) for
kg = 0 follows immediately from the lower estimate in Step 5 by interchanging the roles
of A and B.

Hence we consider the case 0 € 0,,(B). Then we also have 0 € 6,(B’). As 0 ¢ 0,(A’)
Theorem 2.3 (iv) implies ny/ (I) = my/(I) also for an interval which contains 0. The set
INp(A’) consists of ny (I) 4+ 1 = my/ (I) + 1 open subintervals I,. We have 0 € p(A’) and
hence 0 € I; for some j with 1 < j <my/(I)+ 1. As B and B’ are nonnegative operators
all eigenvalues of B' in I} (I_) belong to 6 (B’) (6__(B'), respectively). It follows from
Lemma 2.4 (i)—(ii) and (3.23) that the derivative of My, in eigenvalues of B’ in I, (I_)
is positive (negative, respectively) and the multiplicity of these eigenvalues is one. We
estimate the multiplicity of the eigenvalues of B’ in I;. Since 0 € 6,,(B') N p(A’) we have
My(0) = 0 and by Lemma 3.4 (iii) the point 0 is a zero of My, of at most order two. If it is
of order two, Lemma 3.4 (iii) and the above reasoning imply that O is the only zero in I;.
As B’ is a nonnegative operator, the (algebraic) multiplicity of the eigenvalue 0 is at most
two. If 0 is a zero of My of order one then the sign properties of M), at the other zeros
yield that there is at most one more eigenvalue of B’ in /;. As a consequence of Lemma
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2.4 (i)—(ii) the multiplicities of these two eigenvalues in I; are both one. Therefore in both
cases we have

mg (1) < my(I)+2.
Together with (3.22) the upper estimate in (ii) in the case kg = 0 is shown.

Step 8. Upper estimate in (ii) if kg = 1. We again make use of the open subintervals
I from Step 7 such that 0 € I;. We proceed in a similar way as in Step 5 of the proof
of Theorem 3.5. By Proposition 3.3 the function My has at most one zero y € I, in a
subinterval Iy, ko # j, with M), () <0 if >0 or M}, (u) > 0 if u < 0. If My has
such an exceptional zero, then by Proposition 3.3 (iii) My € 2; and, hence, M,/ (0) > 0 by
Lemma 3.4 (ii). Thus M,/ has no zero in /; and therefore B’ has no eigenvalue in / ;. Asin
Step 4 of the proof of Theorem 3.5 it follows that the total multiplicity of the eigenvalues
of B’ in Iy, is at most three. Moreover, in the other subintervals [, k # ko, k # j, B' has at
most one eigenvalue of multiplicity one. This yields the upper estimate in (ii).

It remains to discuss the case that M4 has at most one zero in each of the subintervals
Iy, k # j, with positive (negative) derivative at these zeros if they are in I, C R™ (I C
R~, respectively). We distinguish in this situation the cases My/(0) > 0, My/(0) = 0, and
M4 (0) <O.

Observe that in the first case there is no zero of My of third order in /; (Proposition 3.3
(i1)) and there may appear either one zero of M,/ of second order or two zeros of order one
in I;; cf. Proposition 3.3. Hence we have either one eigenvalue of B’ of multiplicity two
(cf. (3.20) in Step 4) or two eigenvalues of multiplicity one. If M4/ (0) = 0 then My € 2
by Lemma 3.4 (ii) and O is a zero of at most second order by Lemma 3.4 (iii). If 0 is a zero
of second order then MA’, (0) > 0, there are no other zeros of M in I; (Proposition 3.3 (1)),
and therefore 0 is an eigenvalue of B’ of multiplicity two (cf. (3.20) in Step 4). If 0 is a
zero of first order there is at most one other zero in /; of multiplicity one (Proposition 3.3
(1)); thus the total multiplicity of the eigenvalues of B’ in I; is at most two. If M4/ (0) < 0
then again My € % by Lemma 3.4 (ii) and it follows from Proposition 3.3 (i) that My, has
at most two zeros of first order in /;. Again, the total multiplicity of the eigenvalues of B’
in I; is at most two and the upper estimate in (ii) follows.

Step 9. Upper estimate in (iii) if kg = 0. The upper estimate in (iii) for kg = 0 follows
from Theorem 3.8 and from the upper estimate in (i) applied to the intervals 7, = INR*
and I_ =INR™ separately.
Step 10. Upper estimate in (iii) if kg = 1. From Proposition 2.7 (i) we conclude

o,(AYNo,(B)N(I-ULy) =0
and Theorem 2.3 (iv) implies

nyr (I, UI+) = my/ (I, UI+)

By Proposition 3.3 (ii) the function My has at most one zero p in I, (I-) with M), () <0
(M), (1) > 0, respectively). For simplicity, we assume that M}, has such an exceptional
zero U in I_. As in Step 4 of the proof of Theorem 3.5 it follows that the total multiplicity

of the eigenvalues of B’ in I_ exceeds the total multiplicity of the eigenvalues of A" in I
by at most 3, whereas in I it exceeds by at most 1, hence

mpr (I, UI+) S mA/(L UI+) +4
Together with Theorem 3.8 we obtain

mp (1) = mp (I-UL) +mp ({0}) <ma(I-ULy) +4+my({0}) +2 =my (1) +6
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and, together with (3.22) the upper estimate in (iii) is shown.

Step 11. Proof of ma(I) = oo if and only if mg(I) = oo. If my(I) = oo then either ny (I) = oo
in which case the assertion follows from Theorem 3.5, or n4(I) < e in which case there
exists at least one eigenvalue of A with infinite multiplicity and the assertion follows from
Theorem 2.3 (i). Conversely, if mpg(I) = oo then the same reasoning implies n14 () = oo.

3.5. Proof of Theorem 3.8. The proof of Theorem 3.8 is a consequence of four lemmas
which are also of independent interest. From now on let A and B be as in the assumptions
of Theorem 3.8. As A is nonnegative we have

(3.24) [Ax,x] =0 — x€kerA

for every x € domA. Indeed, the application of the Cauchy-Bunyakowski inequality to the
semi-definite inner product [A-,-] gives |[Ax,y]|> < [Ax,x][Ay,y] for all x,y € domA, and
(3.24) follows. Moreover, from Proposition 2.1 we find that

(B—To) '~ (A—To) " = A(llo)[-,%muo»

Observe that (B— o)~ and (A — A¢)~! coincide on {@4}!*) and define
M= (A=2o) {oa} = (B— o) " {gu}H.

Hence, M C domANdomB. Fory € M there exists x € {4} such that y= (A—4¢) " 'x=
(B—Ao)~'x and hence

Ay =x42A0(A—2A9) 'x=x+2Ao(B—2Ao) 'x=By.
Thus, A and B coincide on M and their domains decompose as
domA = (A—2o)"'# = (A—2Z0)" ({@a}!) @ span {Jga}) = Mtspan { £y},
domB = (B—20)"' A = (B—20)"" ({2} @ span {J@a}) = M+span {fz},
where J is a fundamental symmetry in the Krein space .#" and f4 := (A —Ao) " 'J@a # 0
and fp := (B— 49)~'J@a # 0. It follows, in particular, that M has codimension 1 in domA

and domB. Hence for x,y € domA (or x,y € domB) with y ¢ M there exists @ € C such
that

x—oyeM.
This observation will be used frequently in the following considerations.
Lemma 3.11. Let A and B be as in Theorem 3.8. Then the following assertions hold.

(1) A has Jordan chains at 0 of length at most 2.
(ii) B has Jordan chains at 0 of length at most 4.
(iii) If B has a Jordan chain at 0 of length 3 or 4 then ker B C kerA.

Proof. Assertion (i) is well known, see [51, Proposition I1.2.1]. In order to show (ii) as-
sume that B has a Jordan chain {xo,...,xs} at O of length 5. Then

[)Q,xﬂ = [Bzx4,x1] = [)C4,Ble] = [X4,0] =0
and, analogously, [xp,xo] = [x0,X1] = [x0,%2] = [x1,x1] = 0. If x, € M then

0= [xl,xz] = [sz,xz] = [A)Q,xﬂ,
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which, by (3.24), implies that x, € kerA N M C kerB; a contradiction to Bx; = x; # 0.
Hence, x, ¢ M and there exists & € C such that x; — ax; € M and

0= [XQ — O0X1,X] — ODCQ] = [B(xl — OCX2),X1 — ODCQ] = [A(x1 — ODCQ),xl — OCX2].

Again (3.24) implies x; — ax; € kerANM C kerB; a contradiction to B(x; — 0txy) = xo —
axy # 0 and (ii) follows.

It remains to check (iii). Assume that {xg,x;,x2} is a Jordan chain of B at 0 of length 3
(the proof for a Jordan chain of length 4 is the same), let y € ker B and assume y ¢ kerA.
Then y ¢ M and there exists & € C such that x; — oy € M and

[A(xl - ay)vxl - Oﬂy] = [B(xl - ay)7x1 - ay] = [xovxl - Ocy] = _[Bxlvay] =0.

Here we have used that [xo,x1] = [Bx2,x1] = [x2,B?x1] = 0. From (3.24) we then conclude
x; —ay € kerANM C kerB, but B(x; — aty) = x9 # 0; a contradiction. Thus we have
kerB C kerA. O

In the following lemma we collect some results on the dimensions of the kernel of B
(and its powers) compared with the corresponding dimensions of the kernel of A.

Lemma 3.12. Let A and B be as in Theorem 3.8. Then the following assertions hold.
(i) |dimkerA —dimkerB| < 1;
(ii) |dimkerA? —dimkerB?| < 2;
(iii) |dim (kerA?/kerA) —dim (kerB?/kerB)| < 1;
(iv) dim (kerB3 / kerBz) <1, that is, B has no two (linearly independent) Jordan chains
at 0 of length 3.

Proof. In order to show (i) assume that dimker B > dimkerA + 1. Then there exist n :=
dimkerA +2 linearly independent vectors {xi,...,x,} inkerB. If x; € M forall j=1,...,n
then Ax; = Bx; = 0 and x; € kerA, a contradiction. Hence there exists a vector xi, €
kerB\ M, 1 < ko < n. After reordering we can assume ko = n. Then there exist o € C
such that
g =X — OgXp €M, k=1,...,n—1.
Thus Azxy = Bz =0, k=1,...,n— 1, and we conclude that {z;,...,z,—1} is a linearly
independent set in kerA; a contradiction. Therefore, dimker B < dimkerA + 1. The same
considerations with A replaced by B show dimkerA — 1 < dimker B and hence (i) follows.
Observe that (ii) follows from (i) and (iii). In order to show (iii) assume

(3.25) n:=dim (kerB*/kerB) > dim (kerA®/kerA) +2.
and choose linearly independent vectors xy 1, ...,x1 , with
kerB?> = kerB+span{xj i,...,x1,}.
Define for 1 < j < n elements in ker B via
Xo,j = Bxy ;.

If xo ; € M holds for all 1 < j < n then there exists x; ,, ¢ M for some no with 1 <ng <n
as otherwise {xo1,X1.1},...,{X0,%1,,} are n Jordan chains of A at 0 of length 2, a contra-
diction to (3.25). Hence there exists o; € C with

Xi,j— X1y €M for1 < j<nmand j#nop.

Thus, {xo,j — 0jX0n:X1,j — ®jX1 4, } is a Jordan chain of A at 0 of length 2 for all j with
1 < j <nand j# ny which contradicts (3.25). From this we conclude that at least one
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of the elements x ; is not in M. We assume x ¢ M. Then for 1 < j <n— 1 there exist
Bj, Y; € C with

X().j—ﬁij’nEM and xlqj—ﬁjxlﬁn—’)/ij’nEM

and {xo,j — BjX0,1,X1,j — BjX1,n — ¥jX0,n } is a Jordan chain of A at 0 of length 2 for all j with
1 < j <n—1. Hence (3.25) is not valid, i.e. dim (ker B> /ker B) < dim (kerA? /kerA) + 1.
The same considerations with A replaced by B show dim (kerA? /kerA) < dim (ker B? /ker B) +
1 and (iii) follows.

It remains to prove (iv). Assume that there are linearly independent vectors x;,ys ¢
ker B? with

kerB® = ker B 4 span {x2,y}.
Define elements in ker B> and ker B, respectively, via
x1:=Bxy; x0:=Bx1;; y :=By; and yg:=By.

By Lemma 3.11 (iii) we obtain xg, yp € kerA. We find a € C such that x; — oy, or y, — axp
belongs to M. If x1,y; belong to M, then {xo — @y, x] — 0ty1,%2 — &y } or {yo — otxp,y1 —
ox1,y2 — 0xp } is a Jordan chain of A at 0 of length 3, a contradiction to Lemma 3.11 (i).
Hence, at least one of the vectors x;,y; does not belong to M. Let y; ¢ M. Then there exist
B,y € C with
x1—ByeEM and xx—By—y1 €M

and {xo — Byo,x1 — By1 — ¥vo,x2 — By> — yy1 } is a Jordan chain of A at O of length 3, a
contradiction to Lemma 3.11 (i) and Lemma 3.12 is shown. [l

By Lemma 3.11 (i) and (ii) we see .-%(B) = ker B*, £)(A) = kerA?, and with Lemma
3.12 (ii) we obtain

(3.26) ma({0}) —2 = dimkerA® — 2 < dimker B> < dimker B* = mp({0}).
For two special cases we prove the opposite bound in the next lemma.

Lemma 3.13. Let A and B be as in Theorem 3.8. Then the following assertions hold.
(i) If0 € p(A) then

[ma({0}) —mp({0})| = mp({0}) < 2.
(i) If‘gO(A) - gO(B) andA\go(A) = BL?()(A) then

ma({0}) —mp({0})] <2.

Proof. By (3.26) we only need to prove that mg({0}) < ma({0}) +2.

(i) If 0 € p(A) then B has Jordan chains at 0 of length at most 2. Indeed, assume that B
has a Jordan chain {xo,x1,x2} at 0 of length 3. Then [xo,xo] = [Bx1,x0] = 0 and [x,x0] =
[Bxa,x0] = 0. If x9 € M then 0 = Bxp = Ax; a contradiction to 0 € p(A). Consequently,
X0 ¢ M. Then there exists @ € C with 0 # x; — axp € M and

0= [xo,)q — OCX()] = [B(x1 — O()C()),xl — OC)C()] = [A(xl — OCX()),xl — Ot)C()].

Relation (3.24) implies that x; — o&txg € kerA; a contradiction to 0 € p(A). Therefore we
have .%(B) = ker B? and the claim follows by Lemma 3.12 (ii).

(ii) Since 0 is an isolated point in 6(A) we have % = Zy(A)[+]-Z(A), where both
(L (A),[-,-]) and (L(A)H,[-,-]) are Krein spaces; cf. [7, Theorem I1.2.20]. Since A and
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B coincide on .%(A) this subspace is invariant under A and B, and according to the chosen
decomposition of .#~ we obtain

(Ao O (Ao O
A‘(o A1>’ B‘(o B|>’

where A; is nonnegative, 0 € p(A;), By is selfadjoint and (B; — o) ! — (4] —A9) !isa
selfadjoint rank one operator in the Krein space (.%Z(A)™,[-,-]). Applying (i) to By and
A1, the claim follows. O

Lemma 3.14. Let A and B be as in Theorem 3.8. If {xo,x1,x2} is a Jordan chain of B at 0
of length 3 and B has no Jordan chain at 0 of length 4 then there exists a basis b of £y(B)
containing {x,x1,x} with

b\ {xl,)Q} C %A(A).
If B has a Jordan chain {xg,x1,x2,x3} at 0 of length 4 then there exists a basis b of £ (B)
containing {xo,x,x,x3 } with

b\{x13x2ax3} - XO(A)

Proof. We consider the case that there is a Jordan chain {xg,x;,x2} of B at 0 of length 3
and none of length 4. In this case we have [xq,x0] = [x1,%0] = 0. We show xop € M and
x1 € M. If xo ¢ M then there exists o € C such that x; — axp € M. Hence,

0= [xo,x1 — OCX()] = [B(x1 — O()Co),xl — (ZX()] = [A(xl — OCX()),xl — Otxo],

and (3.24) implies x; — oxg € kerANM C kerB; a contradiction to Bx; = xy # 0. Thus
X0 € M. If x; € M then [Ax|,x;] = [Bx1,x1] = [x0,x1] = 0. Hence by (3.24) x; € kerANM C
ker B; a contradiction. Consequently, x| ¢ M.

As ma({0}) < e by assumption it follows from Lemma 3.12 and Lemma 3.11 (ii)
that the dimension mp({0}) of the root subspace .%(B) is finite as well. If % (B) =
span{xg,x1,x2} then in view of Lemma 3.11 (iii) the assertion of Lemma 3.14 follows.
Let {xg,x1,X2,u3,...,u,} be a basis of £(B) for some n > 3. For 3 < k < n we define
Zx in the following way: If u; € kerB then by Lemma 3.11 (iii) also u; € kerA and we
set zx := uy. If uy ¢ kerB then by Lemma 3.12 (iv) we obtain uy € kerB? and we set
Yk := Buy # 0. As x| ¢ M there exist o € C such that z; := u; — ogx; € M and we have

Az; = Bzj = y; — oyxp € kerB CkerA and  z; € kerA? = % (A).

The elements xy,x1,X2,23,...,2, are linearly independent. Moreover, xo € M NkerB and
hence xo € kerA C Zy(A). Thus b := {x,x1,X2,23,...,2n} is a basis of .Z(B) with the
desired properties.

The case of a Jordan chain at O of length 4 is proved analogously. (]

Proof of Theorem 3.8. By Lemma 3.12 and Lemma 3.11 (ii) the root subspace %(B) is
finite dimensional. In regard of (3.26) it remains to prove

(3.27) mp({0}) < ma({0})+2.

By Lemma 3.12 (iv), B cannot have two linearly independent Jordan chains at O of length
3, so that B has at most a single Jordan chain at 0 of length 3 or 4. Hence, if dimkerB? <
dimkerA2 the claim follows. Therefore, assume that dimker B2 > dimkerAZ. If there is no
Jordan chain of B at 0 of length 3 the estimate follows from Lemma 3.12 (ii). Now assume,
that B has a Jordan chain {xo,x;,x2} at 0 of length 3 and none of length 4 (the case of a
Jordan chain at O of length 4 is analogous). By Lemma 3.11 (iii) we have ker B C kerA and
because of Lemma 3.12 (i) there are only two possible cases:
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My (N)

(A=2)(A=3)(A—4)

FIGURE 1. Schematic plot of the function M; (1) = — 0-DA-5)

(i) dimkerB = dimkerA: Hence, kerA = kerB. Then Lemma 3.12 (iii) and Lemma
3.11 imply that dim.%(A) = dimkerA? = dimkerB? — 1. Let b be the basis of
%(B) constructed in the proof of Lemma 3.14. Then b\ {x,} is a basis of ker B>.
Moreover, b\ {xi,x,} is contained in .%(A). But dim.%(A) = dimkerB? — 1
is the cardinality of b\ {xj,x2}. Thus % (A) = span{b\ {x1,x2}}. Recall that
b = {x0,x1,%2,23,...,2x} and zx € M, k =3,...,n; cf. the proof of Lemma 3.14.
Then A| ¢, (4) = B| ¢,(4) and (3.27) is a consequence of Lemma 3.13 (ii).

(i1) dimkerB = dimkerA — 1: Since kerB C kerA C kerA? we see

dim (ker B /kerB) > dim (kerA” /kerB) = dim (kerA® /kerA) + 1

in contradiction to Lemma 3.12 (iii).

It remains to show the sharpness of (3.27). For this consider the space C? with a funda-
mental symmetry J and operators A and B defined via

0 1 0 1
e (00, e (01).

It is easily seen that A and B satisfy Assumption (I), m4({0}) =0, and mp({0}) =2. O

3.6. Three examples. Define the function M; by

(A=2)A=3)(A-4)

M) == -1-3 °

cf. Figure 1. By Definition 3.2 (see also [15, Theorem 2]) M| belongs to the class & and

24 3 3

MA) =57~ 24—1) 10(A—5)

-1

From Proposition 3.3 (iii) we conclude that the function A — _ﬁ(l) belongs to Z,. The
Pontryagin space and the selfadjoint matrices A and B from Step 6 in the proof of The-
orem 3.5 can easily be computed with standard methods; cf. [33] and e.g. [9, Proof of
Theorem 4.6]. Here we equip C* with the indefinite inner product

(3.28) [xX,y] := —x1y| +X25 + X373, x=(x1,x2,x3) , y=(v1,2,33) ",
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and obtain the matrices

24 _ 6 _6
000 5 Vs 3
6 1 3
A=10 1 0 andB:T5 -3 7% |
005 6 3 4
5 V20 10
which are selfadjoint in the Pontryagin space ((C3, [-,-]) and differ by a rank one matrix.

Clearly 6(A) = {0,1,5} coincides with the poles of M; and the zeros of M; coincide with
o(B) = {2,3,4}. We also mention that A is nonnegative and it can be checked that B has
one negative square. Obviously the matrix B has three eigenvalues in the interval (1,5)
whereas A has no eigenvalues in (1,5); cf. the upper estimate in Theorem 3.5 (i) with
kg = 1. Moreover, in (—1,2) are no eigenvalues of B whereas A has two eigenvalues there;
cf. the lower estimate in Theorem 3.5 (ii). Similarly, any sufficiently small interval con-
taining a positive pole of M is an example for the lower estimate in Theorem 3.5 (i).

As a second example consider the function
A+1HA-1)(A-3)
A+2)(A—2)(A—4)’

which belongs to %; cf. Figure 2. Here the function A — — le( 7y belongs to 7y and we

have

My(A) = —

5 3 5

My(A) = - — —1.
2(%) 8(A+2) 8(A—2) 4(A—4)
We equip C3 with the indefinite inner product (3.28) and obtain the selfadjoint matrices

_u Vs _ 5

-2 0 0 8 8 W2

A=|10 2 0 and B= @ % -L/5

0 04 S5 _1. /15 11

e 3\ 2 4

as minimal realizations of the functions M, and —M; '; cf. Step 6 in the proof of The-
orem 3.5. It can be checked that in fact A — B is a rank one matrix, kg = 0, and that
6(A) = {-2,2,4} and o(B) = {—1,1,3} are the poles and zeros of M, respectively.
The matrix B has two eigenvalues in the interval (—2,2) whereas A has no eigenvalue
in (—2,2), which is the upper estimate in Theorem 3.5 (ii) with kg = 0. Similarly, any
sufficiently small interval containing a zero of M, is an example for the upper estimate in
Theorem 3.5 (i) with kg = 0.

Finally, in order to provide an example for the upper estimate in Theorem 3.5 (ii) with
Kg = 1, consider the function

A+1)(A=1)(A=2)(A-3)
(A +2)A2(A —4) ’
which is in 2 and A — —m is in Z1; cf. Proposition 3.3 (iii). Here we have
5 3 13 5
M) =202 a2 Tier 16 -4)

and if C* is equipped with the indefinite inner product

M3(A) = —

-1

[x,y] = X1Y1 - X2Yy — X3Y3 — X4Yy, X = (x17x27x37x4)T7 y= (ylay23y3ay4)Ta
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Mz ()

FIGURE 2. Schematic plot of the function Mp(A) = —

M3(N)

A+D(A=1)(A=2)(A-3)

FIGURE 3. Schematic plot of the function M3(1) = — (

then the selfadjoint matrices

59 V65 5
4 0 0 0 T 0 -8 NG
0o L 12 0 12 2 0
A— 13 13 d B= 13 13
= 1 12 an =] 65 _12  _23  _1 /65
0 5 5 O 16 i 208 iV 2
5 1 /65 1
0 o0 0o =2 v 0 i3 5

can be computed as minimal realizations of M3 and —M; !, respectively. Then A — B is a
rank one matrix, kg = 1 and 6(A) = {—2,0,4} and o(B) = {—1,1,2,3} are the poles and
zeros of M3, respectively. In the interval (—2,4) the matrix B has 4 eigenvalues whereas A
has one eigenvalue there; cf. the upper estimate in Theorem 3.5 (ii) with kp = 1.

3.7. An application: Left definite singular Sturm-Liouville operators. We conclude
this section by illustrating our eigenvalue estimates with a typical example involving a left
definite singular Sturm-Liouville operator; cf. [13, 17, 18, 19, 21, 22, 42, 44, 45, 46, 61].
Letr,p~lqc Lll(,C (R) be real valued, p > 0 and r # 0 a.e., and consider the differential
expressions

E*i _4 i+ and T*l _4 i+
7] dxlax 1 “r U
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We assume that ¢ is in the limit point case at 1-co and that the weight function has one sign
change at O such thatr. =r [RT >0andr_ =r [ R™ <0 ae.

Denote by L?(R, |r|) the space of all equivalence classes of complex valued measurable
functions f on R such that [ |f|?|r| < o. It is well known that £ gives rise to a selfadjoint
operator T in the Hilbert space L?(R,|r|), which is defined on the maximal domain con-
sisting of all locally absolutely continuous functions f € L?(R, |r|) such that pf’ is locally
absolutely continuous and ¢(f) € L*>(R,|r|). Let us assume that 7 is uniformly positive
and set 1 := min Gess(7T) and ny := ny((0,7m)). Since ¢ is in the limit point case at +eo
all eigenvalues are simple and hence ny = mzy((0,1)). Our aim is to obtain an estimate
on the number of eigenvalues in I = (—m,m) of the indefinite Sturm-Liouville operator
B :=sgn (r)T which corresponds to T = sgn (r)¢, i.e.

Bf:szvéﬂ—pfy+qﬂ, f € domB = domT.

Note that the operator B is selfadjoint in the Krein space (L*(R, |r|),[-,]), where

.6l = [ S0 rwdr. Sz e PR,

We introduce the selfadjoint realizations 7'y and 7_ of £ with Dirichlet boundary con-
ditions at 0 in the Hilbert spaces L*(R, |r |) and L?>(R, |r_|), respectively. It follows as in
[13, Lemma 2.2] that Ty are also uniformly positive, 7 < min Oess(7": ), and that the total
multiplicity mz, a7 ((0,7)) of the eigenvalues of the orthogonal sum 7'y © 7 in (0,71) is
ny —1,ny orny + 1. Hence

A:=T,®(-T-), domA:=domT; ®domT_,

has ny —1,n4 or ny + 1 distinct eigenvalues of multiplicity one in I = (—m,m) and 0 is not
an eigenvalue of A. Observe that A, B and [ satisfy Assumption (I), 0 € I, and 0 & 6,(A).
As T is uniformly positive and B := sgn (r)T we have kg = 0. Therefore Theorem 3.9 (ii)
implies

(3.29) ny —3 <ng(l) <ny+3.

This estimate is in accordance with [13, Theorem 4.1]. We remark that in the present
setting /N 6,(A)N0,(B) =1N0,(T+)No(—T-) =0 and hence the estimate (3.29) follows
also from Corollary 3.7 (ii).
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