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Abstract

We apply the worldline formalism and its numerical realization to composite operators.

Specifically, we compute the energy-momentum tensor induced by a quantum scalar field

which is subject to Dirichlet boundary conditions. The worldline formalism is a mapping

of quantum field theory amplitudes onto quantum mechanical path integrals. These path

integrals can be evaluated numerically very efficiently. Previous calculations were per-

formed for effective interaction energies. In this thesis we show that composite operators

like the energy-momentum tensor can be treated in the same way. We check our worldline

algorithms by comparing numerical and analytical results for the configurations of a single

plate and two parallel plates and provide a detailed analysis of numerical errors. We also

investigate the averaged null energy condition in boundary configurations that allow for

complete geodesics. This energy condition is fulfilled in all our calculations.

Zusammenfassung

Wir verwenden den Weltlinienformalismus und die Weltliniennumerik zur Berechnung von

lokalen Operatoren. Insbesondere berechnen wir den Energieimpulstensor eines quan-

tisierten Skalarfeldes, welches Dirichlet Randbedingungen unterliegt. Der Weltlinienfor-

malismus bildet Amplituden einer Quantenfeldtheorie auf quantenmechanische Pfadinte-

grale ab. Diese Pfadintegrale können sehr effizient numerisch ausgewertet werden. In

bisherigen Rechnungen wurden effektive Wechselwirkungsenergien berechnet. In dieser

Dissertation zeigen wir, dass lokale Operatoren wie der Energieimpulstensor genauso be-

handelt werden können. Wir überprüfen unsere Weltlinienalgorithmen durch den Vergle-

ich von numerischen und analytischen Ergebnissen für den Fall einer einfachen Platte und

zweier parallelen Platten und zeigen eine detaillierte Fehlerbetrachtung. Außerdem unter-

suchen wir die gemittelte Nullenergiebedingung für Randkonfigurationen, die vollständige

Geodäten erlauben. Diese Energiebedingung ist in allen unseren Rechnungen erfüllt.
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1 Introduction

Almost 65 years have passed since H.B.G. Casimir published his paper on the effect of

boundary conditions in quantum field theory [1]. He showed that fluctuations of the

quantized electromagnetic field result in a negative energy between infinite, perfectly con-

ducting plates in the vacuum, and that this energy gives rise to an attractive force between

the plates. This Casimir effect has since been studied for several kinds of quantized fields

with different boundary conditions and many geometric configurations of boundaries. It

has been measured, not only between two parallel plates, but also between a plate and

cylinder or sphere.

The theoretical understanding of the Casimir effect has become well developed too.

While there are several results known analytically, predicting the sign or the magnitude

of the Casimir energy from them has remained difficult. The calculation of the Casimir

energy for a sphere in [2] is an example for a positive energy and thus a repulsive force.

These results have, however, been questioned for some time, e.g., in [3,4]. More recently,

in [5], instead of idealized boundary conditions, the authors use the interactions with

an external potential and perturbatively renormalize divergences by calculating Feynman

diagrams. They find that the Casimir energy is finite for smooth potentials but diverges

in the perfect boundary limit. In general, Casimir energies are influenced by factors like

the parameters of the quantum field and its boundary conditions or temperature. Beyond

these, geometric factors like the dimension of spacetime and the shape of the boundaries

play an important role [6–9].

Despite all that is known, the Casimir effect is still a paradigmatic test case for the

exploration of a diversity of phenomena within quantum field theory. The interaction en-

ergies, pressures, and forces caused by imposing boundary conditions on quantum fields

are of particular interest. They represent phenomenological observables that can be di-

rectly related to experiments. Furthermore, the understanding of quantum effects gained
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1 Introduction

from such experiments has already found its way into technological applications. The

structures of microchips and integrated circuits, for example, have become so small that

quantum effects can no longer be neglected. In addition, micro-electro-mechanical systems

(MEMS) promise to open the door to many new applications because they are capable of

employing quantum effects directly [10–12].

From a theoretical perspective, the energy-momentum tensor is the quantity in which

crucial information about the quantum field is encoded. The energy-momentum tensor

(EMT) is also of interest because it is the source term for the gravitational field if the

quantum field is coupled to gravity. A study of the gravitational properties of the Casimir

energy can be found in [13–15]. Negative energy densities do not pose a problem for the

calculation of Casimir forces; they are very similar to negative binding energies in systems

with bound states. However, there may arise difficulties with negative energy densities

in conjunction with gravity. Since the energy-momentum tensor serves as the source

term for gravity, it determines the geometry of spacetime. Consequently, one finds that

negative energy densities allow for spacetime metrics in which it is possible to travel with

superluminal velocities or to construct time machines or wormholes [16–21]. In turn, it was

found that spacetime metrics that allow the construction of time machines, wormholes,

and superluminal travel require “exotic matter”, that is, matter with a negative energy

density.

One tries to avoid such “exotic” phenomena because they all violate causality, which

is one of the most essential principles of physics. Avoiding spacetime metrics that al-

low causality violations translates, via the Einstein equations of General Relativity, into

constraining the energy-momentum tensor. There exist several ways to constrain the

energy-momentum tensor in order to prevent causality violations, which usually have the

form of energy conditions. Such an energy condition is that the projection of the EMT

on a geodesic γ whose tangent vector is denoted by V µ be larger or equal to zero

TµνV
µV ν ≥ 0 .

If V µ is a null vector this condition is called the null energy condition (NEC) and if V µ is

timelike the condition is called the weak energy condition. Such an inequality states that

the sum of energy density and pressures that an observer measures while moving along

the geodesic γ is always non-negative at any point along the geodesic.

12



The Casimir effect violates both conditions, in contrast to classical physics, where both

conditions are obeyed. Therefore, neither the weak nor the null energy condition may be

used to rule out the violation of causality by the Casimir effect. There is, however, a some-

what weaker condition which still suffices to avoid the aforementioned exotic phenomena:

the averaged null energy condition (ANEC). It requires that the null energy condition

hold only when integrated along the complete geodesic γ. Therefore, ANEC allows for

TµνV
µV ν to be negative for some region along the geodesic as long as there are regions

with positive contributions to the integral which exceed the negative contributions. The

ANEC was found to be satisfied by all Casimir examples studied so far on flat Minkowski

space [22, 23], but it can be violated on compact flat or curved spacetimes [24–27].

It was shown in [28] that ANEC cannot be violated by a minimally coupled scalar field

in flat Minkowski spacetime for geodesics that do neither intersect nor asymptotically

approach the boundary. The reason for this is that the boundary cannot affect the causal

structure near the geodesic. Such a distant boundary can then only be observed, if one

sends a signal from the null geodesic to the boundary and receive it again later. This

is, however, not possible for a null geodesic in flat space. As a result, the measurement

only on the geodesic corresponds to the measurement in Minkowski spacetime, where the

ANEC is obeyed.

In [23] a new version of the ANEC, the achronal ANEC, was proposed. It requires

that the ANEC hold only for achronal geodesics. These are geodesics do not contain any

points connected by a time-like path. This condition, while weaker than the traditional

ANEC, seems to be still sufficient to rule out closed timelike curves and wormholes. The

investigation of ANEC remains nevertheless interesting and understanding ANEC in flat

space will help with the understanding of ANEC and its possible violations in realistic sit-

uations, that is, curved and non-idealized spacetimes with non-idealized physical systems,

matter, and interactions.

Since the calculation of the averaged null energy condition requires knowledge of several

components of the energy-momentum tensor along a complete geodesic, it may become

complicated to calculate particular Casimir configurations. However, the physically in-

teresting geodesics, which are those that collect negative energy densities, are typically

directed towards the bounding surfaces and thus ultimately hit the boundary. On the

boundary TµνV
µV ν acquires a generically large positive contribution from the surface

13



1 Introduction

itself, which might exceed the negative Casimir contributions. In order to avoid the

discussion of such large non-universal contributions, relevant configurations should have

holes that a geodesic can pass through. Indeed, the case of a single plate with a hole has

been found to respect the averaged null energy condition [22].

It is apparent from these considerations that a general study of energy conditions in

Casimir configurations demands a theoretical framework that is able to deal with the

energy-momentum tensor in arbitrary geometries of boundary surfaces. Current standard

computations of Casimir energy-momentum tensors are usually based on mode summation

or expansion, image charge methods, or similar techniques [29–32]. All of these have their

own merits and advantages, but they are generally not suited for arbitrary boundary

geometries.

In this thesis, we apply the worldline formalism to the energy-momentum tensor of a

scalar field that is subject to Dirichlet boundary conditions. The worldline formalism is

a mapping of expectation values in quantum field theory on quantum-mechanical path

integrals, whose paths can be understood as the paths, or worldlines, of quantum fluc-

tuations [33, 34]. It is by construction independent of the geometry of the boundaries

and the background potential and breaks no spacetime symmetries as a consequence. It

thus circumvents the difficult computation of the spectrum of the quantum fluctuations.

We use worldline numerics [35, 36] for our calculations, which has been used to discuss

a variety of nontrivial Casimir configurations and compute effective actions, interaction

energies, pressures and forces [37–44].

This thesis is intended to be a manual for the numerical computation of composite

operators using the worldline formalism. It is organized as follows: in Chapter 2 we apply

the worldline formalism to composite operators, specifically the energy-momentum tensor

of a Dirichlet scalar. We emphasize the similarities and differences between the formalism

for composite and non-composite operators or functionals like the effective action. In

Chapter 3 we test our numerical worldline algorithm by calculating components of the

energy-momentum tensor for a single plate with Dirichlet boundary conditions (DBCs)

analytically and numerically. In Chapter 4, the numerical calculation of the EMT and

of the NEC is presented for the parallel plate configuration. We compare our numerical

results with known analytical results and discuss the arising systematic and statistical

errors. Chapter 5 is devoted to the study of the averaged null energy condition for

14



configurations that allow for complete geodesics. We present three different setups of

boundaries, two of which are known analytically. We conclude with a summary of our

results and an outlook on future worldline calculations in Chapter 6.
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2 Worldline Formalism for composite

operators

In this chapter we apply the worldline formalism to composite operators. In quantum

field theory, composite, or local, operators are the local product of field operators and

their derivatives. These operators are distribution-valued and thus their product at the

same point in spacetime may not be well-defined and can give rise to divergences. Despite

that, such local operators can be used for calculations after these divergences have been

regulated. This is achieved, for example, by point-splitting, ζ function, or dimensional

regularization. In this thesis we investigate the energy-momentum tensor (EMT) of a

quantum scalar field. More precisely, we compute the vacuum expectation value of the

energy-momentum tensor operator, a composite operator constructed from the scalar

field operator and its derivatives. We will focus our calculations on two components of

the EMT and evaluate them using worldline numerics. A generalization to the remaining

components is then straightforward.

2.1 The energy-momentum tensor as a composite

operator

In our calculations, we follow the computations in [32]. There are only a few minor

differences. We study a quantum scalar field Φ̂(~x, t) that is a C∞ map from a domain D of

d+1-dimensional Minkowski spacetime M(d,1) to the linear space of self-adjoint operators

on the Fock space F

Φ̂(~x, t) : M(d,1) ∋ D → F .

17



2 Worldline Formalism for composite operators

Φ̂(~x, t) has mass m and is minimally coupled to a static classical background potential

σ(~x). The background potential will be used later to impose boundary conditions on

the fluctuations of Φ̂(~x, t). We use the d+ 1-dimensional Minkowski metric gµν with the

”mostly minus” signature (+,−, . . . ,−). From the Lagrangian density operator

L̂ =
1

2
∂µΦ̂(~x, t)∂

µΦ̂(~x, t)− 1

2

(
m2 + σ(~x)

)
Φ̂(~x, t)Φ̂(~x, t), (2.1)

we derive the equation of motion for Φ̂(~x, t),

(
∂λ∂

λ +m2 + σ(~x)
)
Φ̂(~x, t) =0, (2.2)

as well as its canonical energy-momentum tensor operator

T̂µν(~x, t) =
∂L̂

∂(∂µΦ̂(~x, t))
∂νΦ̂(~x, t)− gµνL̂

= ∂µΦ̂(~x, t)∂νΦ̂(~x, t)−
1

2
gµν

(
∂λΦ̂(~x, t)∂λΦ̂(~x, t)− (m2 + σ(~x))Φ̂(~x, t)Φ̂(~x, t)

)
.

(2.3)

The EMT operator in Eq. (2.3) contains products of field operators at the same spacetime

point that lead to divergences. We regulate them by a point-splitting procedure in the

spatial components ~x, that is, we apply the following replacement rules:

Φ̂(~x, t)Φ̂(~x, t) −→ Φ̂(~x, t)Φ̂(~x ′, t) ∂αΦ̂(~x, t)∂βΦ̂(~x, t) −→ ∂αΦ̂(~x, t)∂
′
βΦ̂(~x

′, t).

The point-split EMT operator is then

T̂µν(~x, t) = lim
~x ′→~x

[
∂µΦ̂(~x, t)∂

′
νΦ̂(~x

′, t)− 1

2
gµν
(
∂λ∂′λ −m2 − σ(~x)

)
Φ̂(~x, t)Φ̂(~x ′, t)

]
. (2.4)

As we mentioned before, the goal of this thesis is to compute the effects of boundary

conditions on the energy-momentum tensor. The energy conditions that the EMT fulfills

in such situations are of particular interest. Therefore, while all components of the energy-

momentum tensor are of physical interest, for specific boundary geometries, only some

may be required to compute energy conditions. We restrict ourselves to computing the

null energy condition (NEC) in the following chapters. For the sake of convenience,

we compute the NEC only in the z direction, where the z coordinate is always the dth

coordinate of our spatial vectors ~x = (x1, . . . , xd) = (x1, . . . , z). This null energy condition

18



2.1 The energy-momentum tensor as a composite operator

is then given by the vacuum expectation value of the projection of the EMT on a null

curve with the null tangent vector V µ = (1, 0, . . . , 0, 1),

0 ≤
〈
T̂µν(~x, t)V

µV ν
〉
=
〈
T̂00(~x, t) + T̂zz(~x, t)

〉
= T00(~x, t) + Tzz(~x, t), (2.5)

where 〈· · · 〉 denotes the vacuum expectation value. Since only T00(~x, t) and Tzz(~x, t)

are needed for the NEC in Eq. (2.5), all calculations will be performed with these two

components. However, all of these computations can be generalized straightforwardly to

other components.

In order to compute the vacuum expectation values of Eq. (2.4), we expand the field op-

erator Φ̂(~x, t) in momentum modes ψp(~x) and bosonic creation and annihilation operators

â†p and âp,

Φ̂(~x, t) =

∫
ddp

(2π)d
1√
2Ep

(
ψp(~x) e

iEpt âp + ψ∗
p(~x) e

−iEpt â†p
)
,

with E2
p = p2+m2 and

[
âp, â

†
q

]
= (2π)d δd (p− q). The ψp(~x) are defined as eigenmodes of

the Laplacian in the presence of the potential σ(~x), i.e., they obey the Helmholtz equation

(
−~∇2 − p2 + σ(~x)

)
ψp(~x) = 0. (2.6)

The vacuum expectation values in Eq. (2.5) are now written as

T00(~x, t)
∣∣
σ
=
〈
T̂00(~x, t)

〉
σ
= lim

~x ′→~x

∫
ddp

(2π)d

(
Ep

2
+

1

4Ep

~∇ ·
(
~∇+ ~∇′

))
ψp(~x)ψ

∗
p(~x

′),

Tzz(~x, t)
∣∣
σ
=
〈
T̂zz(~x, t)

〉
σ
= lim

~x ′→~x

∫
ddp

(2π)d

(
1

2Ep

∂z∂z′ −
1

4Ep

~∇ ·
(
~∇+ ~∇′

))
ψp(~x)ψ

∗
p(~x

′).

(2.7)

The term ψp(~x)ψ
∗
p(~x

′) in Eq. (2.7) is already very suggestive of the spectral representation

of a Green’s function. Indeed,

Gσ(~x, ~x
′, k) =

∫
ddp

(2π)d
ψp(~x)ψ

∗
p(~x

′)

p2 − k2 − iε
(2.8)

is the spectral representation of the Green’s function or the fundamental solution of

Eq. (2.6),

(
−~∇2 − k2 + σ(~x)

)
Gσ(~x, ~x

′, k) = δ (~x− ~x′) . (2.9)
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2 Worldline Formalism for composite operators

Before we can express Eq. (2.7) in terms of Gσ(~x, ~x
′, k), we insert unity in the form

1 =

∞∫

0

dk 2k δ
(
p2 − k2

)
=

∞∫

0

dk 2k lim
ε→0+

1

π
Im

(
1

p2 − k2 − iε

)
.

A subsequent exchange of the k and p integrations casts Eq. (2.7) in the following form:

T00(~x, t)
∣∣
σ
= lim

~x ′→~x

∞∫

0

dk
k

π

(
Ek +

1

2Ek

~∇ ·
(
~∇+ ~∇′

))
Im

∫
ddp

(2π)d
ψp(~x)ψ

∗
p(~x

′)

p2 − k2 − iε

Tzz(~x, t)
∣∣
σ
= lim

~x ′→~x

∞∫

0

dk
k

π

(
1

Ek

∂z∂z′ −
1

2Ek

~∇ ·
(
~∇+ ~∇′

))
Im

∫
ddp

(2π)d
ψp(~x)ψ

∗
p(~x

′)

p2 − k2 − iε
.

(2.10)

The integral inside the imaginary part is immediately recognized as the Green’s function

Gσ(~x, ~x
′, k). In general, a decaying exponential e−k/Λ must be inserted instead of unity

in order to construct local counterterms for renormalization (cf. [32]). Λ then serves

as a cutoff for large momenta k. This is, however, not necessary in our calculations

because we are going to evaluate the EMT only at points for which σ(~x) = 0, so that

all local counterterms, that is, all counterterms that depend on σ(~x), are automatically

zero. Furthermore, since the term ψp(~x)ψ
∗
p(~x

′) is in general complex, pulling it into the

argument of the imaginary part generates an additional term that is proportional to

Imψp(~x)ψ
∗
p(~x

′). We have not displayed this term and need not consider it because it

vanishes in the limit ~x→ ~x ′.

The effects of boundary conditions imposed on the field fluctuations by the potential

σ(~x) are described by the difference between the EMT with non-vanishing potential and

the EMT with σ(~x) = 0. So far, we have left the potential σ(~x) arbitrary to emphasize

that our calculations are independent of its specific properties. We can therefore repeat

all the above steps with a vanishing potential. The only changes that occur are the mode

functions ψp(~x) in Eq. (2.6). The corresponding Green’s function is not Gσ(~x, ~x
′, k) but

G0(~x, ~x
′, k), defined by Eq. (2.9) for vanishing potential. The vacuum expectation values
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2.1 The energy-momentum tensor as a composite operator

of the EMT components for vanishing potential are

T00(~x, t) = lim
~x ′→~x

∞∫

0

dk
k

π

(
Ek +

1

2Ek

~∇ ·
(
~∇+ ~∇′

))
ImG(~x, ~x ′, k),

Tzz(~x, t) = lim
~x ′→~x

∞∫

0

dk
k

π

(
1

Ek

∂z∂z′ −
1

2Ek

~∇ ·
(
~∇+ ~∇′

))
ImG(~x, ~x ′, k),

(2.11)

where we have used G(~x, ~x ′, k) = Gσ(~x, ~x
′, k) − G0(~x, ~x

′, k). The great advantage of

Eq. (2.11) is that these expressions are independent of any specific mode expansion of

Φ̂(~x, t). They only depend on the Green’s function G(~x, ~x ′, k), which is representation-

independent by definition. Therefore, any method for the computation of G(~x, ~x ′, k) can

be used at this stage, e.g., an optical approach in [32]. The subtraction of the vacuum

Green’s function G0(~x, ~x
′, k) also removes the divergent terms that are independent of

the potential σ(~x).

Before we apply the worldline formalism to compute T00(~x, t) and Tzz(~x, t), we will

make a change of variables in Eq. (2.11). This variable transformation allows us, at least

in part, to exchange the evaluation of the point-splitting limit and the derivatives. We

define common point variables by

~xcp :=
~x+ ~x ′

2
, ~∆ :=

~x− ~x ′

2

and replace the point-splitting limit ~x → ~x ′ by ~∆ → 0. The term common point stems

from the kind of closed worldlines or loops that we are going to use in our numerical

evaluations, which all have one point in common. The derivatives in Eq. (2.11) can then

be computed with the help of the mode functions ψp(~x)ψ
∗
p(~x

′). We find for the first term

lim
~x ′→~x

~∇ ·
(
~∇+ ~∇′

)
ψp(~x)ψ

∗
p(~x

′) = lim
~x ′→~x

[(
~∇2ψp(~x)

)
ψ∗
p(~x

′) +
(
~∇ψp(~x)

)(
~∇′ψ∗

p(~x
′)
)]

=
1

2
~∇2

cpψp(~xcp)ψ
∗
p(~xcp),

where ~∇2
cp is the second derivative with respect to the coordinate ~xcp. In the second term

we are not able to evaluate the limit ~∆ → 0 completely, but find

lim
~x ′→~x

∂z∂z′ψp(~x)ψ
∗
p(~x

′) = lim
~x ′→~x

[
∂zψp(~x)

][
∂z′ψ

∗
p(~x

′)
]

=
1

4
lim
~∆→0

(
∂2zcp − ∂2∆z

)
ψp(~xcp + ~∆)ψ∗

p(~xcp − ~∆).
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2 Worldline Formalism for composite operators

Here we have to act with the derivatives ∂∆z
before we evaluate the point-splitting limit.

Nevertheless, the transformation to common point variables allows for a little more com-

pact notation of our previous result

T00(~x, t) = lim
~∆→0

∞∫

0

dk
k

π

(
Ek +

1

4Ek

~∇2
cp

)
ImG(~x, ~x ′, k),

Tzz(~x, t) = lim
~∆→0

∞∫

0

dk
k

π

(
1

4Ek

(
∂2zcp − ∂2∆z

)
− 1

4Ek

~∇2
cp

)
ImG(~x, ~x ′, k),

(2.12)

where G(~x, ~x ′, k) needs to be evaluated at ~x = ~xcp + ~∆ and ~x ′ = ~xcp − ~∆.

2.2 The worldline representation of G(~x, ~x ′, k)

We use the propertime or worldline representation for the Green’s function G(~x, ~x ′, k) in

this thesis. Toward this end, we interpret G(~x, ~x ′, k) as the matrix element of an operator

Ĝ(k) and Eq. (2.6) as a quantum mechanical Schrödinger problem whose Hamiltonian is

H = −~∇2 + σ(~x). The function G(~x, ~x ′, k) then corresponds to a quantum mechanical

propagator, Fourier transformed to energy space, from which the free motion has been

subtracted. Hence, it can be written as a Feynman path integral in position space:

ImG(~x, ~x ′, k) = Im 〈~x ′| Ĝ(k) |~x〉

= Im i

∞∫

0

ds eisk
2 〈~x ′| e−is(−~∇2+σ(~x))− eis

~∇2 |~x〉 (2.13)

= Im i

∞∫

0

ds eisk
2

~x′=~x(s)∫

~x=~x(0)

D~x(τ) e
i

s∫
0

dτ ~̇x2

4

(
e
−i

s∫
0

dτ σ(~x(τ))
−1

)
(2.14)

= Im

∞∫

0

dT e−Tk2E

~x′=~x(T )∫

~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4


e

−
T∫
0

dτ σ(~x(τ))
−1


 . (2.15)

The matrix element in Eq. (2.13) is easily identified as quantum mechanical transition

amplitude of a fictitious particle moving from ~x at the fictitious time τ = 0 to ~x ′ at

τ = s with a Hamiltonian H = −~∇2 + σ(~x). The corresponding Feynman path integral
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2.2 The worldline representation of G(~x, ~x ′, k)

in position space is then straightforward to find. In the last step, we performed formal

Euclidean rotations in both the s and k planes, such that s = −iT and kE = ik, which

are consistent with causality. This casts G(~x, ~x ′, k) in its Euclidean form Eq. (2.15).

The variables s and T are called Minkowskian and Euclidean propertime, respectively.

Both describe the time evolution of the fictitious Schrödinger problem, but neither is a

physical, measurable time.

An analogous propertime representation for the effective action has been used in previ-

ous calculations of effective interaction energies for the Casimir effect and similar boundary

configurations [35, 39, 40]. The worldline representation of the effective action contains,

however, a path integral over closed loops, whereas for G(~x, ~x ′, k), open worldlines running

from ~x to ~x ′ must be computed.

The path integral in Eq. (2.15) is implicitly normalized in such a way that the free path

integral gives the standard free propagator,

~x′=~x(T )∫

~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4

=
e−

~∆2

T

(4πT )
d
2

, (2.16)

where again ~∆ = (~x− ~x ′) /2. From this normalization one derives the shorthand notation

for the path integral expectation value of an arbitrary operator O [~x(τ)]:

〈O [~x(τ)]〉~x,~x′ · e−
~∆2

T

(4πT )
d
2

:=

~x′=~x(T )∫

~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4 O [~x(τ)] . (2.17)

We use this notation to write the propagator G(~x, ~x ′, k) as

ImG(~x, ~x ′, k)
∣∣∣
k=−ikE

= Im

∞∫

0

dT

(4πT )
d
2

e−Tk2E e−
~∆2

T

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉

~x,~x′

. (2.18)

However, the EMT in Eq. (2.12) has the functional structure

T−−(~xcp, t) ∝
∞∫

0

dk f(k) Im




∞∫

0

ds eisk
2

g(s)


 . (2.19)

Due to the factor eisk
2

, the Euclidean rotations of s and k should not be performed

independently but simultaneously. To do so, we pull the k integral inside the argument
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2 Worldline Formalism for composite operators

of the imaginary part. We use the Minkowskian versions of Eq. (2.16) and Eq. (2.17) as

well as E2
k = m2 + k2 and thus find that only two different integrals (I1 and I2) occur in

Eq. (2.12):

I1 = Im


i

∞∫

0

ds
ei

~∆2/s

(4πis)d/2

〈
e
−i

s∫
0

dτ σ(~x(τ))
−1

〉 ∞∫

0

dk k
√
k2 +m2 eisk

2




= Im


−

∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉 ∞∫

0

dkE kE

√
m2 − k2E e−Tk2E




= −
∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉
Im

[
i

4T 3/2
e−m2T

(√
π − Γ

[
3

2
,−m2T

])]

m→0
= −

∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉
1

4T 3/2

√
π, (2.20)

I2 = Im


i

∞∫

0

ds
ei

~∆2/s

(4πis)d/2

〈
e
−i

s∫
0

dτ σ(~x(τ))
−1

〉 ∞∫

0

dk
k√

k2 +m2
eisk

2




= Im


−

∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉 ∞∫

0

dkE
kE√

m2 − k2E
e−Tk2E




= −
∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉
Im

[
e−m2T

√
π

4T

(
Erfi

[
m
√
T
]
− i
)]

m→0
=

∞∫

0

dT
e−

~∆2/T

(4πT )d/2

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉√
π

4T
. (2.21)

For both calculations we performed the substitution s = −iT and k = −ikE in the

integration variables and the rotation of the integral contours in the second line. We

assume m > 0 and T > 0 and take the massless limit only in the last line because the

results are greatly simplified as m → 0. We will hence consider the field Φ̂(~x, t) to be

massless from now on. The massless limit is, however, not a necessity and the following

calculations are easily generalized to the case of finite m.

With all these considerations, we are finally able to write down compact expressions

for the vacuum-subtracted vacuum expectation values of T̂00(~x, t) and T̂zz(~x, t) in the
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2.2 The worldline representation of G(~x, ~x ′, k)

worldline representation,

T00(~xcp, t) =
1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

4T
d+1

2

(
− 2

T
+ ~∇2

cp

)
e−

~∆2

T

〈
e
−

T∫
0

dτ σ(~x(τ))
−1
〉
~xcp,~∆

Tzz(~xcp, t) =
1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

4T
d+1

2

(
∂2zcp − ∂2∆z

− ~∇2
cp

)
e−

~∆2

T

〈
e
−

T∫
0

dτ σ(~x(τ))
−1
〉
~xcp,~∆

.

(2.22)

2.2.1 Worldline Numerics for worldline expectation values

The expectation value of the path integral in Eq. (2.22) is defined as

〈
e
−

T∫
0

dτ σ(~x(τ))
−1

〉

~xcp,~∆

:=

~x′=~x(T )∫
~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4


e

−
T∫
0

dτ σ(~x(τ))
−1




~x′=~x(T )∫
~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4

. (2.23)

This is an expectation value for worldlines ~x(τ) that start at ~x = ~x(0) and end at

~x ′ = ~x(T ). They are weighted with a Gaußian velocity distribution. For the numer-

ical calculations, it is convenient to rescale the worldlines ~x(τ) such that, in the limit

~x→ ~x ′, all paths have one common start and endpoint ~xcp = (~x+ ~x′) /2 (Fig. 2.1). These

worldlines are then referred to as common point loops or lines. The remaining path is

written in terms of a dimensionless unit loop ~y(t) with t ∈ [0, 1] and τ = T t. The unit

loop ~y(t) can itself be written as a straight path from ~y(0) = ~u to ~y(1) = ~v and some

deviation ~Z(t) that obeys ~Z(0) = 0 = ~Z(1). The origin of the ~y coordinate system is

chosen to lie at the point ~xcp. The points ~u and ~v then lie symmetrically around this

origin (~u = −~v), which suggests the substitution ~δ = (~u− ~v) /2,

~x(τ) = ~x(Tt) = ~xcp +
√
T~y(t) (2.24)

= ~xcp +
√
T
(
t~v + (1− t)~u+ ~Z(t)

)
(2.25)

= ~xcp +
√
T
(
(1− 2t)~δ + ~Z(t)

)
. (2.26)

In the limit ~δ → 0 the path ~y(t) becomes closed, thus justifying the name unit loop.
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2 Worldline Formalism for composite operators

Figure 2.1 Schematic depiction of the rescaling from the worldlines ~x(τ) to the unit loops

~y(t).

The main advantage of the rescaling to unit loops is that it makes the weight factor in

the path integral independent of T ,

~x′=~x(T )∫

~x=~x(0)

D~x(τ) e
−

T∫
0

dτ ~̇x2

4

e
−

T∫
0

dτ σ(~x(τ))
=⇒

~y(1)=~x ′/
√
T∫

~y(0)=~x/
√
T

D~y(t) e
−

1∫
0

dt ~̇y
2

4

e
−

1∫
0

dt σ(~xcp+
√
T~y(t))

.

(2.27)

This allows us to compute the expectation value in Eq. (2.23) by generating only one

ensemble of unit loops ~y(t), which are defined with respect to the same coordinate system.

We also immediately see the connection between the variables ~∆ and ~δ,

~∆√
T

=
~x− ~x′

2
√
T

= ~δ. (2.28)

This connection is crucial for the computation of the derivatives of the expectation value

with respect to ∆z.

We now compute the expectation values of these rescaled path integrals by replacing the

path integral with a sum over a finite number N of unit loops. These loops are themselves

approximated by a finite number nppl of points per loop ~yi with i ∈ {0, . . . , nppl}. The

points ~yi are random numbers which are distributed according to the Gaußian weight
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2.2 The worldline representation of G(~x, ~x ′, k)

factor in Eq. (2.27). As a result, the expectation value of an operator O is written as an

average,

〈
O
〉
~xcp,~∆

=
1

N

N∑

l=1

Ol(~yi), i ∈ {1, . . . , nppl}. (2.29)

The common point lines ~yi can be conveniently generated with the d loop algorithm [35],

which also works for open worldlines.

2.2.2 Dirichlet constraints on ∂D
The entire formalism that we have outlined so far works, of course, for arbitrary static

background field configurations σ(~x). In our calculations, we use

σ(~x) = λ

∫

∂D

dΣ δ (~x− ~x∂D) , ~x∂D ∈ ∂D, (2.30)

where dΣ is a surface element on ∂D. We then arrive at Dirichlet BCs in the limit λ→ ∞.

The subtraction of the vacuum Green’s function in Eq. (2.11) already removed all

divergences independent of σ(~x). Therefore, G(~x, ~x ′, k) can only diverge at points for

which the background potential is not zero. This means that Eq. (2.30) renders the

energy-momentum tensor in Eq. (2.22) finite on D, where the potential σ vanishes. The

remaining divergences are then located on the boundary ∂D. They can be related to the

infinite amount of energy which is necessary to constrain Φ̂(~x, t) on all momentum scales

in order to fulfill the Dirichlet boundary condition on ∂D.

The parametrization Eq. (2.30) and the subsequent Dirichlet limit greatly simplify the

expectation value of the path integral because now we have

〈
e
−

1∫
0

dt σ(~xcp+
√
T~y(t))

−1
〉
~xcp,~∆

=

{
−1 if ~xcp +

√
T~y(t) intersects ∂D

0 otherwise

}

= −
〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

.

(2.31)

Equation Eq. (2.31) states that only paths ~xcp+
√
T~y(t) which violate the boundary con-

ditions lead to deviations from the trivial vacuum and thus contribute to the expectation

value. We call the function F the intersection condition. It gives a geometric description

of how the worldlines intersect the boundary and for which values of T this happens.
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2 Worldline Formalism for composite operators

As long as the start and end point of the worldline are not on the boundary, that is, as

long as ~xcp± ~∆ /∈ ∂D, the intersection condition will always determine a minimal non-zero

value for the propertime Tmin > 0 for which the loop first intersects ∂D. Tmin denotes

the minimum propertime that is necessary for a worldline to propagate from the start to

the end point and intersect a boundary in between. For any T < Tmin deviations from

the straight line between ~x and ~x ′ are typically strongly suppressed. Only for sufficiently

large propertimes T ≥ Tmin does the diffusive Brownian motion process, described by

the path integral, create sufficiently large random detours that can intersect ∂D. In the

propertime integral, Tmin serves as a lower bound and removes the divergence which would

occur for T → 0. From a physics point of view, Tmin acts as an ultraviolet cutoff as small

propertimes correspond to large momenta. F may also provide an upper bound Tmax

in general. Tmax is then the propertime for which the worldlines no longer intersect the

boundary. This needs to be considered especially for configurations where the boundary

consists of objects of finite size. In many cases, however, Tmax is very large compared to

Tmin and we can use Tmax ≈ ∞ in the evaluation of the T integral.

2.2.3 Compact expressions of T00(~xcp, t) and Tzz(~xcp, t) for Worldline

Numerics

As we have seen the components of the energy-momentum tensor are completely finite

on D\∂D by virtue of Eq. (2.31). We may therefore decompose T00(~xcp, t) and Tzz(~xcp, t)

further and study the resulting, more compact, terms one by one.

We write T00(~xcp, t) = T00(~xcp, t)
∣∣
I
+ T00(~xcp, t)

∣∣
II

with

T00(~xcp, t)
∣∣
I

:=
1

2

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+3

2

e−
~∆2

T

〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

, (2.32a)

T00(~xcp, t)
∣∣
II

:= − 1

4

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+1

2

e−
~∆2

T ~∇2
cp

〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

.

(2.32b)

With Tzz(~xcp, t) we proceed accordingly and find two terms with partial derivatives and

one term with ~∇2
cp. All derivatives with respect to ~xcp or one of its components act only

on the Θ function. The ∆z derivatives, however, act on exp
(
−~∆2/T

)
too. As a result,
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2.2 The worldline representation of G(~x, ~x ′, k)

we define four parts for Tzz(~xcp, t):

Tzz(~xcp, t)
∣∣
Ia

:= − 1

4

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+1

2

e−
~∆2

T ∂2zcp

〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

,

(2.33a)

Tzz(~xcp, t)
∣∣
Ib
:=

1

4

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+1

2

e−
~∆2

T ∂2∆z

〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

,

(2.33b)

Tzz(~xcp, t)
∣∣
Ic
:=

1

4

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+1

2

(
∂2∆z

e−
~∆2

T

)〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

,

(2.33c)

Tzz(~xcp, t)
∣∣
II

:=
1

4

1

(4π)
d+1

2

lim
~∆→0

∞∫

0

dT

T
d+1

2

e−
~∆2

T ~∇2
cp

〈
Θ
[
F (~xcp +

√
T~y(t))

] 〉
~xcp,~∆

.

(2.33d)

We immediately see that Eq. (2.32b) and (2.33d) are identical, except for the sign. The

evaluation of ∂2∆z
exp

(
−~∆2/T

)
for ~∆ → 0, shows that Eq. (2.32a) and (2.33c) are iden-

tical except for the sign as well. These terms will cancel in the computation of the null

energy condition. Hence, only four independent quantities remain.

In Eq. (2.32a) we take ~∆ → 0, compute the propertime integral and the worldline

average. We do the same in Eq. (2.32b) and (2.33a), because the point-splitting limit and

the ~xcp derivatives commute since ~∆ and ~xcp are independent variables. The order of the

T integration and the differentiation for these terms is arbitrary for the examples that we

study, but the loop average is most conveniently performed last. This freedom of choice

can be used to minimize numerical errors in some cases.

In Eq. (2.33b) we compute the limit of the exponential for ~∆ → 0, but we cannot

exchange the limit with ∂2∆z
. Furthermore, the intersection condition F depends on T

because the loops ~y(t) depend on ~δ = ~∆/
√
T . This means that we can perform the

propertime integration only in the limit of closed loops. For this reason, the order of

computation in Tzz(~xcp, t)
∣∣
Ib

is completely fixed. We must act with ∂2∆z
on the step

function first. After that we can let ~∆ → 0 and integrate with respect to T . The

worldline average is again done in the last step.
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2 Worldline Formalism for composite operators

The decomposition outlined in this paragraph shows that only four different terms need

to be computed for T00(~xcp, t) and Tzz(~xcp, t). In order to actually perform the propertime

integration and differentiations in a very general way, we write the intersection condition

F as

Θ
[
F (~xcp +

√
T~y(t))

]
= Θ

(√
TM− 1

)
.

The function M now describes the geometrical conditions for a worldline to intersect the

boundary ∂D. It depends on ~xcp and on ~δ. Through the latter, it also depends on T , a

dependence that vanishes in the limit ~∆ → 0. We note that M is in general not a smooth

function of these parameters. In fact, it can be non-differentiable in either variable. Since

M depends on the shape of the boundary ∂D for the specific setup that is to be studied,

its functional properties must be investigated each time anew. In addition, there can

be several ways in which the intersection condition F may be written. These different

parameterizations can exhibit very different properties during numerical evaluation. Thus,

the following calculations should be understood as primarily formal.

In these formal computations, we take the function M to be twice differentiable in both

~xcp and ~δ. We additionally assume that all limits exist, that they can be evaluated and

that M only determines a lower bound Tmin on the propertime integral. In this case, we

have Tmin = M−2.

We start with T00(~xcp, t)
∣∣
I
in Eq. (2.32a) by exchanging the point-splitting limit with

the T integration and the worldline average. The function M thus no longer depends on

T and we substitute the integration variable using µ =
√
TM−1. Interchanging the loop

average with the integration results in an integral over the Θ function which is trivial to

evaluate,

T00(~xcp, t)
∣∣
I
=

1

2

1

(4π)
d+1

2

∞∫

0

dT

T
d+3

2

〈
Θ
(√

TM− 1
)〉

~xcp,~∆=0

=
1

(4π)
d+1

2

〈 ∞∫

−1

dµ

(µ+ 1)d+2
Md+1 Θ(µ)

〉

~xcp,~∆=0

=
1

(4π)
d+1

2

1

d+ 1

〈
Md+1

〉
~xcp,~∆=0

. (2.34)
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2.2 The worldline representation of G(~x, ~x ′, k)

The terms T00(~xcp, t)
∣∣
II
and Tzz(~xcp, t)

∣∣
Ia

in Eq. (2.32b) and (2.33a) have the same struc-

ture. This is why we will present only the calculation of Tzz(~xcp, t)
∣∣
Ia
. The calculation for

T00(~xcp, t)
∣∣
II

can be derived by replacing the partial derivatives ∂zcp with ~∇cp. As before,

we evaluate the point-splitting limit first in order to remove the implicit T dependence of

the unit loops. The differentiation, the propertime integration and the worldline average

are interchanged so that we can act with the derivatives on the Θ function:

Tzz(~xcp, t)
∣∣
Ia

= − 1

4

1

(4π)
d+1

2

∂2zcp

∞∫

0

dT

T
d+1

2

〈
Θ
(√

TM− 1
)〉

~xcp,~∆=0

= − 1

4

1

(4π)
d+1

2

〈 ∞∫

0

dT

T
d+1

2

∂zcp

[
∂zcp

(√
TM− 1

)
∂µΘ(µ)

]〉

~xcp,~∆=0

= − 1

2

1

(4π)
d+1

2

〈 ∞∫

−1

dµMd−2

(µ+ 1)d−1

[
∂2zcpM+

µ+ 1

M
(
∂zcpM

)2
∂µ

]
∂µΘ(µ)

〉

~xcp,~∆=0

= − 1

2

1

(4π)
d+1

2

〈 ∞∫

−1

dµ Md−2

(µ+ 1)d−1

[
∂2zcpM+

d− 2

M
(
∂zcpM

)2
]
∂µΘ(µ)

〉

~xcp,~∆=0

= − 1

2

1

(4π)
d+1

2

〈
Md−2 ∂2zcpM+ (d− 2)Md−3

(
∂zcpM

)2〉
~xcp,~∆=0

. (2.35)

There are two integrals, arising from integrating by parts, that we needed to discuss:

∞∫

−1

dµ

(µ+ 1)d−2
∂2µΘ(µ) = lim

r→−1

∂µΘ(µ)

(µ+ 1)d−2

∣∣∣∣
∞

r

+

∞∫

−1

dµ

(µ+ 1)d−1
(d− 2)∂µΘ(µ),

∞∫

−1

dµ

(µ+ 1)d−1
∂µΘ(µ) =

∞∫

−1

dµ

(µ+ 1)d−1
δ(µ) = 1

The boundary term for the first integration vanishes because ∂µΘ(µ) is zero everywhere

except at µ = 0. In the second integral we identify ∂µΘ(µ) = δ(µ) because the domain of

integration includes µ = 0. The evaluation of the integral is then trivial.

The calculation of Tzz(~xcp, t)
∣∣
Ib

is very similar. Unlike before, we cannot exchange the

differentiation and the point-splitting limit. However, we interchange the derivatives,

the propertime integration, and the worldline average. The derivatives now act on the Θ

function first. Since ~δ = ~∆/
√
T , we cannot integrate with respect to T until we have taken
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2 Worldline Formalism for composite operators

the limit ~∆ → 0. The T dependence of M = M(~y(~δ)) is not explicitly known. It thereby

unambiguously defines the order of our calculations. We must evaluate the point-splitting

limit before the propertime integration. Additionally, when substituting µ as integration

variable we must account for the T dependence of M unless we let ~δ → 0 before. After

evaluating this limit, the µ integration proceeds as in the previous calculation. Using a

prime ′ to denote the differentiation with respect to δz, one finds

Tzz(~xcp, t)
∣∣
Ib
=

1

4

1

(4π)
d+1

2

lim
~∆→0

∂2∆z

∞∫

0

dT

T
d+1

2

〈
Θ
(√

TM− 1
)〉

~xcp,~∆

=
1

4

1

(4π)
d+1

2

lim
~∆→0

〈 ∞∫

0

dT

T
d+1

2

∂∆z

[
1√
T
∂δz

(√
TM− 1

)
∂µΘ(µ)

]〉

~xcp,~∆

=
1

4

1

(4π)
d+1

2

lim
~∆→0

〈 ∞∫

0

dT

T
d+1

2

[
1√
T
M′′ ∂µΘ(µ) +M′M′ ∂2µΘ(µ)

]〉

~xcp,~∆

~∆→0
=

1

2

1

(4π)
d+1

2

〈 ∞∫

−1

dµ

(µ+ 1)d
Md−1

[ M
µ+ 1

M′′∂µΘ(µ) +M′M′∂2µΘ(µ)

]〉

~xcp,~∆=0

=
1

2

1

(4π)
d+1

2

〈
Md M′′ + dM′ M′ Md−1

〉
~xcp,~∆=0

. (2.37)

Upon integrating by parts we again encountered two integrals. They only differ from the

integrals we had to compute before in the power of the denominator,

∞∫

−1

dµ

(µ+ 1)d
∂2µΘ(µ) = lim

r→−1

∂µΘ(µ)

(µ+ 1)d

∣∣∣∣
∞

r

+

∞∫

−1

dµ

(µ+ 1)d+1
d ∂µΘ(µ),

∞∫

−1

dµ

(µ+ 1)d+1
∂µΘ(µ) =

∞∫

−1

dµ

(µ+ 1)d+1
δ(µ) = 1.

The boundary term in the first line again vanishes because ∂µΘ(µ) is only non-vanishing

at µ = 0 and the evaluation of the second integral is as straightforward as before.

In this derivation we interchanged several limits, which we now justify. First, we note

that all expressions we deal with are finite by construction due to the Dirichlet constraint

Eq. (2.31). Since this is valid for all ~∆, the limit ~∆ → 0 may be interchanged with all other

limits except ∂∆z
. Furthermore, since we approximate the worldline average by a finite

32



2.2 The worldline representation of G(~x, ~x ′, k)

sum, this average can be exchanged with other limits and be conveniently computed in the

end. We can also formally interchange propertime integration and differentiations because

T , ~xcp and ~∆ are independent variables. There is, however, the intersection condition F ,

which depends on all three variables. Picturing the worldlines as paths in space helps

examine the connection between these three parameters: we need not only compute the

intersection condition itself but also its derivatives, that is, we need to determine how the

intersection is altered if ~xcp or ~∆ are changed.

A derivative with respect to ~xcp can be viewed geometrically as moving the complete

worldline through space without changing its shape. On the other hand, a derivative

with respect to ~∆ corresponds to opening and closing the worldline at a fixed point

~xcp in space, changing its shape in the process. As a consequence, the derivatives of

F (~xcp +
√
T~y(t)), or more specifically of M, must be computed before the propertime

integration. The required order in which these manipulations of the worldline expressions

should be performed is then:

1. compute the derivatives of Θ
[
F (~xcp +

√
T~y(t))

]
with respect to zcp and δz,

2. let ~∆ → 0, that is, ~δ → 0,

3. perform the propertime integration, and

4. average the expression over all worldlines in the ensemble.

We now summarize the four terms that we will deal with in the remainder of this thesis

in their most compact form:

T00(~xcp, t)
∣∣
I

=
1

(4π)
d+1

2

1

d+ 1

〈
Md+1

〉
, (2.39a)

T00(~xcp, t)
∣∣
II

= − 1

2

1

(4π)
d+1

2

〈
Md−2

(
~∇2

cpM
)
+ (d− 2)Md−3

(
~∇cpM

)2〉
, (2.39b)

Tzz(~xcp, t)
∣∣
Ia

= − 1

2

1

(4π)
d+1

2

〈
Md−2

(
∂2zcpM

)
+ (d− 2)Md−3

(
∂zcpM

)2〉
, (2.39c)

Tzz(~xcp, t)
∣∣
Ib
=

1

2

1

(4π)
d+1

2

〈
Md M′′ + dM′ M′ Md−1

〉
. (2.39d)

The worldline average is here understood to be evaluated at ~xcp and ~∆ = 0. We state once

more that the above equations are still formal expressions. The issues of differentiability
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2 Worldline Formalism for composite operators

of M will be addressed separately for each case that we study. From the four compact

and general expressions in Eq. (2.39a)-(2.39d), the complete T00(~xcp, t) and Tzz(~xcp, t) can

be constructed

T00(~xcp, t) = T00(~xcp, t)
∣∣
I
+ T00(~xcp, t)

∣∣
II
, (2.40)

Tzz(~xcp, t) = Tzz(~xcp, t)
∣∣
Ia
+ Tzz(~xcp, t)

∣∣
Ib
+ Tzz(~xcp, t)

∣∣
Ic
+ Tzz(~xcp, t)

∣∣
II

= Tzz(~xcp, t)
∣∣
Ia
+ Tzz(~xcp, t)

∣∣
Ib
− T00(~xcp, t)

∣∣
I
− T00(~xcp, t)

∣∣
II
.

(2.41)

The null energy condition along the z axis now reduces to computing the sum

T00(~xcp, t) + Tzz(~xcp, t) = Tzz(~xcp, t)
∣∣
Ia
+ Tzz(~xcp, t)

∣∣
Ib
. (2.42)

2.3 Summary

In this chapter we showed how the worldline formalism can be applied to local operators

like the energy-momentum tensor of a scalar field Φ̂(~x, t) coupled to a static background

potential σ(~x). We were able to separate the time and spatial dependence of the field and

construct a Green’s function G(~x, ~x ′, k) that depends only on spatial coordinates. It was

then straightforward to find a worldline description of this Green’s function because it is

the fundamental solution of a Schrödinger-like differential operator. The potential σ(~x)

can be parameterized to impose Dirichlet boundary conditions on the field fluctuations.

This renders the vacuum-subtracted Green’s function G(~x, ~x ′, k) finite everywhere inside

D, but not on ∂D. The numerical approach to the worldline formalism can then be used to

calculate components of the EMT. The actual evaluation of these components for various

configurations of boundaries is the subject of the following chapters.
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3 The energy-momentum tensor for a

single plate

The numerical computation of T00(~x, t) and Tzz(~x, t) in d = 2 and d = 3 space dimensions

in the case that ∂D is a single d − 1-dimensional surface, i.e., a plate, is our first proof-

of-principle example. The plate imposes DBCs on the fluctuations of Φ̂(~x, t). It is placed

at z = 0 such that its normal is the z axis. The single Dirichlet plate configuration is also

sometimes referred to as the perfect mirror.

3.1 Analytic calculation for a single plate

Before we use worldline numerics, we compute the EMT for the single Dirichlet plate

analytically. For that, we use Eq. (2.12) and compute G(~x, ~x ′, k) by solving the equation

of motion Eq. (2.6) for different boundary conditions. Denoting the BCs by a superscript

σ, we must solve

(
−~∇ 2 − p2

)
ψσ
p (~x) = 0. (3.1)

Toward that end, we decompose any ~x ∈ D in the d− 1-dimensional vector ~x|| parallel to

the boundary ∂D and the z component of ~x. The solution of Eq. (3.1) in the half space

z > 0 with Dirichlet boundary conditions at z = 0 is then

ψσ
p (~x) =

√
2 sin (pzz) exp

(
i~p|| · ~x||

)

=

√
2

2i

(
eipzz − e−ipzz

)
exp

(
i~p|| · ~x||

)

=

√
2

2i

(
exp (i~p · ~x)− exp

(
i~p · ~̃x

))
(3.2a)
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3 The energy-momentum tensor for a single plate

with ~x =
(
~x||, z

)
and ~̃x =

(
~x||,−z

)
. In the derivation of this solution we assumed the

Sommerfeld radiation condition to hold true, that is, we assumed that there are only

outgoing waves at spatial infinity. In the same manner, the free solution without boundary

conditions is found to be

ψ0
p(~x) = exp (i~p · ~x) . (3.3)

Both solutions are normalized for z > 0 and z′ > 0,

∫
ddp

(2π)d
ψσ
p (~x)ψ

σ ∗
p (~x ′) = δd (~x− ~x ′) =

∫
ddp

(2π)d
ψ0
p(~x)ψ

0 ∗
p (~x ′).

The Green’s functions Gσ(~x, ~x
′, k) and G0(~x, ~x

′, k) are now computed according to

the spectral representation Eq. (2.8). We perform the momentum integration in polar

coordinates and find (see also [45–47])

Gσ(~x, ~x
′, k)

∣∣d=2
=

1

2π

(
K0(−ik|~x− ~x ′|)−K0(−ik|~x− ~̃x

′|)
)
,

G0(~x, ~x
′, k)

∣∣d=2
=

1

2π
K0(−ik|~x− ~x ′|),

Gσ(~x, ~x
′, k)

∣∣d=3
=

1

4π

(
eik|~x−~x ′|

|~x− ~x ′| −
eik|~x−~̃x

′|

|~x− ~̃x
′|

)
,

G0(~x, ~x
′, k)

∣∣d=3
=

1

4π

eik|~x−~x ′|

|~x− ~x ′| .

The functions K0 are modified Bessel functions of the second kind, sometimes called

MacDonald functions.

Eq. (2.12) can now be solved analytically and we can even use the decomposition of

T00(~xcp, t) and Tzz(~xcp, t) that we developed in Sec. 2.2.3. When we denote the distance

from the plate with zcp, we find for the EMT in d = 2

T00(~xcp, t)
∣∣d=2

I
=

1

32π

1

z 3
cp

, T00(~xcp, t)
∣∣d=2

II
= − 1

16π

1

z 3
cp

,

Tzz(~xcp, t)
∣∣d=2

Ia
= − 1

16π

1

z 3
cp

, Tzz(~xcp, t)
∣∣d=2

Ib+Ic
= 0.
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3.2 Worldline calculation for one Dirichlet plate

And in the case of 3 spatial dimensions the values for T00(~xcp, t) and Tzz(~xcp, t) are

T00(~xcp, t)
∣∣d=3

I
=

1

32π2

1

z 4
cp

, T00(~xcp, t)
∣∣d=3

II
= − 3

32π2

1

z 4
cp

,

Tzz(~xcp, t)
∣∣d=3

Ia
= − 3

32π2

1

z 4
cp

, Tzz(~xcp, t)
∣∣d=3

Ib+Ic
= 0.

The EMT components are rational functions that are proportional to z
−(d+1)
cp . Fur-

thermore, we see that T00(~xcp, t)
∣∣
II

= Tzz(~xcp, t)
∣∣
Ia
. We note that Tzz(~xcp, t)

∣∣
Ib

and

Tzz(~xcp, t)
∣∣
Ic

cannot be calculated separately in a direct manner since we used the func-

tional structure of the worldline representation of G(~x, ~x ′, k) to define these functions.

Despite that, we can always compute Tzz(~xcp, t)
∣∣
Ib
from the sum Tzz(~xcp, t)

∣∣
Ib+Ic

using the

fact that Tzz(~xcp, t)
∣∣
Ic
= −T00(~xcp, t)

∣∣
I
. Therefore,

Tzz(~xcp, t)
∣∣d=2

Ib
=

1

32π

1

z 3
cp

, Tzz(~xcp, t)
∣∣d=3

Ib
=

1

32π2

1

z 4
cp

.

According to Eq. (2.42) the NEC along the z axis is then violated

T00(~xcp, t) + Tzz(~xcp, t) =





− 1
32π

1
z 3
cp

for d = 2

− 1
16π2

1
z 4
cp

for d = 3

. (3.7)

The same value for the NEC was presented in [22].

3.2 Worldline calculation for one Dirichlet plate

The first step in all our worldline calculations is the determination of the intersection

condition F . For the single plate setup, F is easily determined from Fig. 3.1.

The loop ~y(t) starts at the point zcp and intersects the plate at z = 0 for all T that

fulfill
√
Ty− + zcp ≤ 0. We call the z component of the point on the loop that is closest

to the plate y−, which is negative for our choice of coordinates in the setup Fig. 3.1. We

thus find for the expectation value of the Θ function

√
Ty− + zcp ≤ 0

=⇒ Θ
[
F(~xcp +

√
T~y(t))

]
= Θ

(√
TM− 1

)
= Θ

(√
T
(−y−)
zcp

− 1

)
.
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3 The energy-momentum tensor for a single plate

Figure 3.1 Sketch of the single plate setup with an exemplary unit loop.

The aforementioned minimal value for the propertime is obviously Tmin = z2cp/(−y−)2,
where (−y−) is now the positive distance that measures the extension of the loop towards

the plate. It only depends on the z component of ~y(t) because the plate constrains the

propagation of ~y(t) only in the z direction. For this reason, and because the worldline

distributions factorize with respect to their position space components, we only need to

calculate 1-dimensional loops. Furthermore, only one point of every loop, the point y−,

needs to be found. There is in this case no Tmax that determines when the loop stops

intersecting the boundary because if the intersection condition is fulfilled for Tmin, it will

be fulfilled for all T > Tmin.

The 1-dimensional loop y(t) depends on T and ∆z through Eq. (2.26). The minimal

point y− carries the same dependence, because it is an extremal point on this loop, that

is, y− := y(t−). We have to understand this dependence in detail to be able to compute

T00(~xcp, t) and Tzz(~xcp, t). The defining equation for the extremum y− is

y− := y(t = t−, δz) =⇒ dy

dt

∣∣∣
t−

= ∂tZ(t)
∣∣
t−

− 2δz = 0. (3.8)

This is an implicit equation for t− which shows that t− is a function of δz. Consequently,

the minimal point depends on δz in an explicit and implicit way:

y− = y(t−(δz), δz). (3.9)
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3.2 Worldline calculation for one Dirichlet plate

With M = (−y−)/zcp we are immediately able to compute T00(~xcp, t) and Tzz(~xcp, t)

simply by inserting it into Eq. (2.39a)-(2.39d). In T00(~xcp, t)
∣∣
I
, only a power of M must

be computed, which is very straightforward to implement numerically. There are also no

difficulties in calculating T00(~xcp, t)
∣∣
II

and Tzz(~xcp, t)
∣∣
Ia

as M is obviously differentiable

in zcp. It turns out that both terms are identical since the intersection condition is only

1-dimensional. However, M is not differentiable with respect to δz. In fact, y(t) is not

differentiable at all because it describes a diffusive process. As a consequence, the equation

for Tzz(~xcp, t)
∣∣
Ib
is up to now a completely formal expression. The results for all four terms

are

T00(~xcp, t)
∣∣
I

=
1

(4π)
d+1

2

1

z d+1
cp

·
〈
(−y−)d+1

d+ 1

〉
, (3.10a)

T00(~xcp, t)
∣∣
II

= − 1

(4π)
d+1

2

1

z d+1
cp

· d
〈
(−y−)d−1

2

〉
, (3.10b)

Tzz(~xcp, t)
∣∣
Ia

= − 1

(4π)
d+1

2

1

z d+1
cp

· d
〈
(−y−)d−1

2

〉
, (3.10c)

Tzz(~xcp, t)
∣∣
Ib
=

1

(4π)
d+1

2

1

z d+1
cp

·
〈
(−y−)d(−y−)′′ + d(−y−)d−1(−y−)′(−y−)′

2

〉
.

(3.10d)

Despite its formal nature, we can use Eq. (3.10d) as a description for the computation

of (−y−)′ and (−y−)′′. With the help of Eq. (3.8) and (3.9), we find

(−y−)′ :=
d

dδz
(−y−)

∣∣∣
δz=0

= −1 + 2t−

∣∣∣
δz=0

, (3.11)

(−y−)′′ :=
d2

dδ2z
(−y−)

∣∣∣
δz=0

= 2
t−(δz + hδ)− t−(δz − hδ)

2hδ

∣∣∣∣
δz=0,hδ→0

. (3.12)

The constraint Eq. (3.8) allows for an analytical form of (−y−)′. For its computation only

the time parameter t−(δz = 0) must be determined. A similar closed form of (−y−)′′ does
not exist because the function t−(δz) is unknown. It can only be calculated numerically

by using the difference quotient in Eq. (3.12) with δz = 0 and sufficiently small hδ.

Acceptable values of hδ will be defined within the error discussion. At this point, we only

state that hδ must be much smaller than the average extension of a loop. A very rough

measure for the extension of a loop is the variance of its points 〈e2〉 = 1/6 [38] . We thus

set hδ ≈ 0.1 · 1/6 as a first estimate.
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3 The energy-momentum tensor for a single plate

For the NEC computations of derivatives with respect to δz are not necessary because

we know from the analytical results that Tzz(~xcp, t)
∣∣
Ib+Ic

= 0. The null energy condition

along the z axis is consequently

T00(~xcp, t) + Tzz(~xcp, t) = Tzz(~xcp, t)
∣∣
Ia
+ T00(~xcp, t)

∣∣
Ia
.

The calculation of the condition Tzz(~xcp, t)
∣∣
Ib
= T00(~xcp, t)

∣∣
Ia

is hence an additional check

of our algorithm.

3.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)

We now compare our numerical with the analytical results. Starting with the single plate

in d = 2 dimensions, we recall the terms of T00(~xcp, t) and Tzz(~xcp, t)

T00(~xcp, t)
∣∣d=2

I
=

1

32π

1

z 3
cp

· 4

3
√
π

〈
(−y−)3

〉 !
=

1

32π

1

z 3
cp

,

Tzz(~xcp, t)
∣∣d=2

Ia
= − 1

16π

1

z 3
cp

· 2√
π

〈(−y−)〉 !
=− 1

16π

1

z 3
cp

,

Tzz(~xcp, t)
∣∣d=2

Ib
=

1

32π

1

z 3
cp

· 2√
π

〈
(−y−)2(−y−)′′ + 2(−y−)(−y′−)2

〉 !
=

1

32π

1

z 3
cp

.

From these equations we immediately deduce the analytical values which our three world-

line averages must approach. Tab. 3.1 shows our numerical data in d = 2 dimensions for

an ensemble of 25 · 103 worldlines with 214 points per loop. Ensembles with such param-

eters have proved to give good first estimates while still allowing for fast computations.

Our worldline algorithms already yield results that are close to their analytical values

with these parameters. And the statistical errors given by the standard deviation of the

ensemble are well below 3%.

The d = 3 case is of course handled in the same manner. When we compare with the

analytical results, we find

T00(~xcp, t)
∣∣d=3

I
=

1

32π2

1

z 4
cp

· 1
2

〈
(−y−)4

〉 !
=

1

32π2

1

z 4
cp

,

Tzz(~xcp, t)
∣∣d=3

Ia
= − 3

32π2

1

z 4
cp

·
〈
(−y−)2

〉 !
=− 3

32π2

1

z 4
cp

,

Tzz(~xcp, t)
∣∣d=3

Ib
=

1

32π2

1

z 4
cp

·
〈
(−y−)3(−y−)′′ + 3(−y−)2(−y′−)2

〉 !
=

1

32π2

1

z 4
cp

,
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3.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)

1
2

√
π 〈(−y−)〉 ∆stat

0.886227 0.880224± 0.002944 0.33 %

3
4

√
π 〈(−y−)3〉 ∆stat

1.32934 1.32213± 0.01342 1.02 %

1
2

√
π

〈
(−y−)2(−y−)′′ + 2(−y−)(−y′−)2

〉
∆stat

0.886227 0.878668± 0.019890 2.26 %

Table 3.1 Numerical results for the single plate in d = 2 with an ensemble of 25 000 loops,

214 points per loop and hδ = 0.0166. The errors given are the standard deviations of the

ensemble. The systematic errors have not yet been included.

from which we can read off the continuum limits of our averages. In Tab. 3.2 we show how

1 〈(−y−)2〉 ∆stat

1.00000 0.991527± 0.006396 0.65 %

2 〈(−y−)4〉 ∆stat

2.000000 2.00568± 0.03032 1.51 %

1
〈
(−y−)3(−y−)′′ + 3(−y−)2(−y′−)2

〉
∆stat

1.000000 0.990381± 0.024271 2.45 %

Table 3.2 Numerical results for the single plate in 3 space dimensions with an ensemble

of 25 000 loops, 214 points per loop and hδ = 0.0166. The errors given are the standard

deviations of the ensemble. The systematic errors have not yet been included.

well our numerical calculation, using the same ensemble as in the d = 2 case, approaches

these limits. We see again a good agreement between the numerical and analytical values

for the EMT components. The statistical errors are also within a 3% margin. Although

there is still room for improvement by a detailed analysis of errors, we can already conclude

that our numerical algorithm works very well. It reproduces analytical results for the

single plate within a few percent for modest values of ensemble parameters.
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3 The energy-momentum tensor for a single plate

3.3.1 Error analysis for the computation of (−y−)

As with any Monte-Carlo method there are statistical and systematic errors. The statis-

tical error is determined by the number of loops N in the ensemble. Only for large N

does the arithmetic mean in Eq. (2.29) converge to the value of the expectation value of

the path integral. We use the standard deviation of the ensemble, which is proportional

to
√

1/N , as a measure for this statistical error. Since the computational costs of our

worldline algorithms scale linearly with N , the standard deviation is readily controlled.

The systematic errors in our calculations arise from two different sources. The first

comes from the discretization of the loops themselves. This error is controlled by the

number of points per loop nppl. The discretized loops become smoother and better ap-

proximate the continuous loops the larger nppl becomes. Since the worldines between two

points are approximated by straight lines, the discretized loops are “smaller” than the

continuous worldlines, and the the results of the continuum limit are approached from

below by the numerical data. In Fig. 3.2 we show this by plotting our worldline results for

〈(−y−)r〉 with r ∈ {1, 2, 3, 4} against 1/nppl. We see that for increasing number of points

per loop, the numerical data approach the analytical values. For nppl > 214 the numerical

values are within a 5 % margin of their analytical values. One can also observe that the

deviations from the analytical values are smallest for 〈(−y−)〉 and largest for 〈(−y−)4〉.
We fitted our worldline data with a function a + b/nppl, disregarding the error bars

as they do not vary much for different nppl. From these fits we derive the systematic

error as a difference between the analytical value and the fit. It can consume significant

computertime to minimize this error. Even though our algorithms scale linearly with

nppl, we can only change the number of points per loop in multiples of 2, since we use the

d loop algorithm for the generation of the loops. As a consequence, computation time

doubles for every increase in nppl. While the calculation of an ensemble of 25 000 loops

with nppl = 214 takes only a few minutes on any ordinary PC, it takes a few hours if nppl is

increased to 220. For larger nppl, it is therefore more suitable to split up the computation

of the worldline average into the “embarrassingly parallel” computation of several smaller

ensembles. Especially, if both N and nppl need to be increased, this parallelization is an

easy way to reduce the effective time of the calculation.

The second systematic error is introduced by the difference quotient used to compute the
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3.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)
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Figure 3.2 Systematic error of 〈(−y−)r〉 with r ∈ {1, 2, 3, 4} for nppl = 210 . . . 220. The

solid curves are fits and the dotted lines are the respective analytical values.

derivatives of the minimal point 〈(−y−)〉. From Eq. (3.12) we see that for the numerator

to be non-vanishing, hδ should be at least of the order of the average distance between

points. Only then are different points along the loop the extremal point closest to the

boundary. At the same time, hδ must be small compared to the extension of the entire

loop. The variance of the points of the loop 〈e2〉 = 1/6 gives a crude estimate of the

extension of the loop. For the average distance between points, we use
√√√√
〈

nppl∑

i=0

(yi+1 − yi)
2 /nppl

〉
∝
√
2/nppl.

It must be noted that both parameters are only rough measures and become good ap-
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3 The energy-momentum tensor for a single plate

proximations only for large N and nppl. Combining both requirements we find

hδ ≪
1

6
, hδ =

√
2

nppl

· f with f & O(1)

=⇒ f =
ε

6
·
√
nppl

2
with ε≪ 1. (3.14)

Since Eq. (3.14) is just a rough estimate, we determine f empirically and compute

〈(−y−)′′〉 for three different ensembles with 25 · 103 loops and nppl = 210 . . . 220 for several

values hδ = f
√
2/nppl. We expect to find large errors for small values of f , especially for

f ≤ 1 because these values violate our requirement Eq. (3.14). For intermediate values of

f there should be a acceptable plateau region beyond which the values of 〈(−y−)′′〉 deviate
non-linearly for too large f because a linearization is not a good enough approximation

for the derivative anymore.

Fig. 3.3 shows 〈(−y−)′′〉 for three ensembles with 210 points per loop. The solid line

in the plot is only for reference and comparison with the other plots, not an analytical

value. For values f < 1 we observe large deviations and also large statistical errors. For

f that small, the numerator in Eq. (3.12) is zero for too many loops and only very few

loops contribute to the worldline average. For larger f , the statistical errors decrease and

the results of all three ensembles agree very well, but they also drift from the values for

f = 1. The second plot in Fig. 3.3 shows this behavior for a larger domain of f values.

The numerical result of 〈(−y−)′′〉 decreases and drifts from initial and intermediate results

with increasing f . Here we also see that 〈(−y−)′′〉 is, as expected, not a linear function of

f . The values f = 1.0 . . . 1.5 seem to be an optimal choice for calculations with such small

N and nppl, even though a plateau is only barely observable. Due to the large systematic

errors for such a small number of points per loop, we consider 210 too small a value of

nppl to perform calculations. For a larger number of points per loop, 214 and above, the

systematic errors are smaller and we expect to be able to make a better estimate.

Indeed, we can see in Fig. 3.4 that 〈(−y−)′′〉 deviates less strongly for intermediate

values f = 1.0 . . . 4.0 if nppl = 214. In the region f < 1 the statistical errors are large as

before. For f > 1, however, the results are hardly drifting from the reference line. This

region can be considered a plateau and one can use f = 2.5 . . . 4.0 as a good estimate.

These values correspond to ε = 0.17 . . . 0.27 in Eq. (3.14) and hence fulfill the requirements

44



3.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)

we have set for hδ. If f is increased further, we observe the drift from the reference again,

even though it is not as pronounced as for nppl = 210. We conclude that 214 should be

the smallest number of points per loop used in our calculations. For smaller nppl it will

become increasingly difficult to estimate optimal values for f . Coincidentally, 214 is also

the minimal number of points per loop for which the systematic errors of the cumulants

of the minimal point are below 5%.
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Figure 3.3 Systematic errors of 〈(−y−)′′〉 computed with three ensembles of N = 25 · 103

and nppl = 210. The three sets of data points have been slightly shifted horizontally to be

distinguishable in the plot. The solid black line is only for reference and comparison between

different figures.

In order to gain a better overview of the behavior of f with increasing nppl, we study two

more sets of worldline ensembles, one with 217 (Fig. 3.5) and another with 220 (Fig. 3.6)

points per loop. For both of them we can reiterate our findings from above. If f ≤ 1

there are large errors and deviations among the three represented ensembles. Beginning

at around f ≈ 1 the errors and deviations decrease and we see a plateau region from

which an optimal value of f can be estimated for our calculations. This plateau region

extends to larger f for increasing nppl. For even larger values of f the numerical data

decrease and drift away from the common reference value. We estimate the optimal value

of f for nppl = 217 to be in the region f = 2.5 . . . 8.0 corresponding to ε = 0.059 . . . 0.188.

However, even for f = 21 we find a value of 〈(−y−)′′〉 closer to the common reference

value than for f = 21 with nppl = 214. In Eq. (3.14) f = 21 corresponds to ε = 1.39 for

nppl = 214, which violates the conditions for hδ, but ε = 0.49 for nppl = 217. The results
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Figure 3.4 Systematic errors of 〈(−y−)′′〉 computed with three ensembles withN = 25·103

and nppl = 214. The three sets of data points have been slightly shifted horizontally to be

distinguishable in the plot. The solid black line is only for reference and comparison between

different figures.

for nppl = 220 again look similar. The plateau region extends to even larger values of f .

From Fig. 3.6 we estimate f = 9.0 . . . 25.0 to be optimal values. And indeed these values

correspond to ε = 0.07 . . . 0.21. For even larger f the results drift from our reference

value.
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Figure 3.5 Systematic errors of 〈(−y−)′′〉 computed with three ensembles withN = 25·103

and nppl = 217. The three sets of data points have been slightly shifted horizontally to be

distinguishable in the plot. The solid black line is only for reference and comparison between

different figures.

From the figures above, we deduce optimal values for f as a function of nppl. Those
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Figure 3.6 Systematic errors of 〈(−y−)′′〉 computed with three ensembles withN = 25·103

and nppl = 220. The three sets of data points have been slightly shifted horizontally to be

distinguishable in the plot. The solid black line in only for reference and comparison between

different figures.

values are compiled in Tab. 3.3. We estimate the optimal f for those values of nppl

for which we have not run the actual calculation, such that the corresponding ε are

approximately 0.1. Those values are consistent with the constraint in Eq. (3.14).

We deduce the systematic errors of the cumulants of (−y−) from the fits in Fig. 3.2.

Similarly we determine the systematic errors of the averages which contain derivatives

of (−y−) by computing these terms for different values of nppl and the corresponding

optimal value of f . Fig. 3.7 shows the results of these calculations and concludes our

error discussion for the single Dirichlet plate. With the plots and optimal f values from

above, we are now able to rerun our numerical calculation with minimized errors.
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nppl allowed f allowed ε optimal f optimal ε

210 1.0 . . . 1.5 0.265 . . . 0.398 1.0 0.265

211 1.0 0.188

212 1.25 0.166

213 1.5 0.141

214 2.0 . . . 4.0 0.133 . . . 0.265 2.0 0.133

215 2.75 0.130

216 3.5 0.116

217 2.5 . . . 8.0 0.059 . . . 0.188 4.0 0.094

218 6.0 0.099

219 8.0 0.094

220 9.0 . . . 25.0 0.075 . . . 0.207 12.0 0.099

Table 3.3 The optimal values for f and ε, respectively. We determined them from Fig. 3.3-

3.6 or estimated them such that ε ≈ 0.1.
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Figure 3.7 Systematic error of the derivative terms in d = 2 and d = 3 for nppl =

210 . . . 220, N = 25 · 103 and f = 2.0. The solid curves are fits and the dotted lines are the

respective analytical values.
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3.3.2 Numerical results for minimized systematic and statistical

errors

In order to compute T00(~xcp, t) and Tzz(~xcp, t) with minimal errors we use an ensemble of

N = 5 · 105 worldlines with nppl = 220 points per loop and choose f = 12 (ε = 0.099).

The statistical errors are measured by the standard deviation. For the systematic error is

estimated by the difference between analytical values and fits for nppl → ∞. In Tab. 3.4

the worldline results are summarized for these optimized parameters.

1
2

√
π 〈(−y−)〉 ∆stat ∆sys ∆comp

0.88623 0.88502± 0.00065 0.073 % 0.339 % 0.412 %

1 〈(−y−)2〉 ∆stat ∆sys ∆comp

1.00000 0.99715± 0.00141 0.141 % 0.500 % 0.641 %

3
4

√
π 〈(−y−)3〉 ∆stat ∆sys ∆comp

1.32934 1.32337± 0.00289 0.218 % 0.527 % 0.745 %

2 〈(−y−)4〉 ∆stat ∆sys ∆comp

2.00000 1.98702± 0.00626 0.315 % 0.550 % 0.865 %

1
2

√
π

〈
(−y−)2(−y−)′′ + 2(−y−)(−y′−)2

〉
∆stat ∆sys ∆comp

0.88623 0.89190± 0.00452 0.507 % 1.467 % 1.974 %

1
〈
(−y−)3(−y−)′′ + 3(−y−)2(−y′−)2

〉
∆stat ∆sys ∆comp

1.00000 1.00103± 0.00561 0.560 % 1.300 % 1.860 %

Table 3.4 Numerical results for the single plate in 3 and 2 spatial dimensions with an

ensemble of 5 · 105 loops, 220 points per loop and f = 12, that is, hδ = 12 ·
√
2/nppl. The

statistical and systematic errors are shown explicitly as well as the complete error ∆comp.

We see that the statistical errors have decreased to well below 1%, due to the increase

in N , and the systematic errors are smaller than 1.5%. They are larger for higher powers

of (−y−). The errors of the derivative terms are generally larger. They contain not only

the systematic error for the point (−y−), determined by nppl, but also the error due to
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3 The energy-momentum tensor for a single plate

the linearization of the derivatives, determined by hδ.

3.4 Conclusions

We have shown that worldline numerics can be used to calculate expectation values of

composite operators. We presented in a detailed way how to calculate the EMT induced

by a fluctuating scalar field that is constrained by Dirichlet BCs on a single plate. The

single plate configuration constitutes our first proof-of-principle example. Contrary to the

computation of effective actions, for local operators not only powers but also derivatives

of loop variables need to be evaluated. The systematic and statistical errors arise due

to the discretization of the worldlines and the path integral can be controlled by the

number of loops N and the number of points per loop nppl. For large values of N and

nppl, these errors amount to about 1%. The linearization of derivatives introduces an

additional systematic error. We showed how one can estimate it by an extrapolation of

the numerical data for large nppl. This error is then also of the order of 1%. Keeping in

mind that the loop variables are, strictly speaking, non-differentiable functions, we regard

such a small error for the derivatives a success of our algorithm. If we consider the single

plate configuration as a first test, then our worldline algorithm has passed since it yields

high precision results at low cost in terms of computation time and memory.
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Casimir’s parallel plates

The second proof-of-principle example is the case of two parallel plates with Dirichlet

boundary conditions. This configuration corresponds to the original setup studied by

Casimir for the electromagnetic field [1]. As in the previous chapter, we compute T00(~x, t)

and Tzz(~x, t) in d = 2 and d = 3 space dimensions. With these terms, we can see if the

null energy condition is violated or fulfilled. The plates are placed symmetrically around

the origin z = 0. The z axis is perpendicular to the plates and their distance from one

another is denoted by a. The whole configuration is invariant under arbitrary translations

parallel to the plates.

4.1 Analytical calculation for two parallel plates

T̂µν(~x, t) for two parallel Dirichlet plates can be calculated analytically in the same way as

for the single plate, by applying the method of images and using the results of Sec. 3.1 for

the Green’s functions. The two plates at z = a/2 and z = −a/2 constitute the boundary

and decompose the domain D into three disjoint regions. In the outside region z > a/2,

we find the Green’s function for a single plate at z = a/2 and in the region and z < −a/2
the Green’s function of a single plate at z = −a/2. The Green’s function between the

plates is given by the method of images as an infinite series of image charges induced

on the plates by a point source. For arbitrary ~x and ~x ′ that lie between the plates, i.e.,

for which |z| < a/2 and |z ′| < a/2, we introduce the vectors ~xq :=
(
~x||, z + 2qa

)
and
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4 The energy-momentum tensor for Casimir’s parallel plates

~̃xq :=
(
~x||,−z + (2q + 1) a

)
. The Green’s functions are then

Gσ(~x, ~x
′, k)

∣∣d=2
=

1

2π

∞∑

q∈Z

(
K0(−ik|~xq − ~x ′|)−K0(−ik|~̃xq − ~x ′|)

)
,

G0(~x, ~x
′, k)

∣∣d=2
=

1

2π
K0(−ik|~xq=0 − ~x ′|),

Gσ(~x, ~x
′, k)

∣∣d=3
=

1

4π

∞∑

q∈Z

(
eik|~xq−~x ′|

|~xq − ~x ′| −
eik|~̃xq−~x ′|

|~̃xq − ~x ′|

)
,

G0(~x, ~x
′, k)

∣∣d=3
=

1

4π

eik|~xq=0−~x ′|

|~xq=0 − ~x ′| .

After inserting these Green’s functions into Eq. (2.12), we integrate with respect to k.

The result is further simplified by assuming ~x and ~x ′ to lie on the z axis, that is, ~x|| = ~x ′
||.

The various EMT components can now be written in the form of a series

ζ(s, f(zcp,∆z)) :=
∞∑

q=0

(f(zcp,∆z) + q)−s , (4.2)

which is a Hurwitz ζ function for Re (s) > 1 and Re (f(zcp,∆z)) > 0. While we always

have f(zcp,∆z) > 0, for d = 2 we find s = 1 in Tzz(~xcp, t). We solve this problem by

acting with the derivatives ∂zcp and ∂∆z
, which increases the exponent to s = 3.

In 2 spatial dimensions the EMT between the plates, that is, for |zcp| < a/2, is given

by the components

T00(~xcp, t)
∣∣d=2

I
=− 1

32πa 3

[
2ζ(3)− ζ

(
3,

1

2
+
zcp
a

)
− ζ

(
3,

1

2
− zcp

a

)]
,

T00(~xcp, t)
∣∣d=2

II
=− 1

16πa 3

[
ζ

(
3,

1

2
+
zcp
a

)
+ ζ

(
3,

1

2
− zcp

a

)]
,

Tzz(~xcp, t)
∣∣d=2

Ia
=− 1

16πa 3

[
ζ

(
3,

1

2
+
zcp
a

)
+ ζ

(
3,

1

2
− zcp

a

)]
,

Tzz(~xcp, t)
∣∣d=2

Ib+Ic
=− 1

16πa 3
2ζ(3).
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4.1 Analytical calculation for two parallel plates

The corresponding 3-dimensional results are

T00(~xcp, t)
∣∣d=3

I
=− 1

32π2a 4

[
2ζ(4)− ζ

(
4,

1

2
+
zcp
a

)
− ζ

(
4,

1

2
− zcp

a

)]
,

T00(~xcp, t)
∣∣d=3

II
=− 3

32π2a 4

[
ζ

(
4,

1

2
+
zcp
a

)
+ ζ

(
4,

1

2
− zcp

a

)]
,

Tzz(~xcp, t)
∣∣d=3

Ia
=− 3

32π2a 4

[
ζ

(
4,

1

2
+
zcp
a

)
+ ζ

(
4,

1

2
− zcp

a

)]
,

Tzz(~xcp, t)
∣∣d=3

Ib+Ic
=− 3

32π2a 4
2ζ(4).

As we mentioned before T00(~xcp, t)
∣∣
Ia

= −Tzz(~xcp, t)
∣∣
Ic

and as a result we can also write

the components

Tzz(~xcp, t)
∣∣d=2

Ib
=− 1

32πa 3

[
6ζ(3)− ζ

(
3,

1

2
+
zcp
a

)
− ζ

(
3,

1

2
− zcp

a

)]
, (4.5)

Tzz(~xcp, t)
∣∣d=3

Ib
=− 1

32π2a 4

[
8ζ(4)− ζ

(
4,

1

2
+
zcp
a

)
− ζ

(
4,

1

2
− zcp

a

)]
. (4.6)

We see once more that T00(~xcp, t)
∣∣
II

= Tzz(~xcp, t)
∣∣
Ia

because the Dirichlet BCs are a

constraint in one space dimension only. The EMT components diverge as the distance

from either plate goes to zero. The EMT for the electromagnetic field with perfect con-

ductor boundary conditions does not show those divergences, but instead is finite [29].

However, the electromagnetic EMT has zero trace because the electromagnetic field is

conformally invariant. A minimally coupled massless scalar field does not have this addi-

tional symmetry. In order to arrive at a finite EMT, we can either couple the scalar field

conformally to the background potential or compute the conformal complement [48].

The analytical NEC along the z axis between the plates is also violated in the case of

two parallel plates,

T00(~xcp, t) + Tzz(~xcp, t) =





−1
32πa 3

[
6ζ(3) + ζ

(
3, 1

2
+ zcp

a

)
+ ζ

(
3, 1

2
− zcp

a

)]
for d = 2

−1
16π2a 4

[
4ζ(4) + ζ

(
4, 1

2
+ zcp

a

)
+ ζ

(
4, 1

2
− zcp

a

)]
for d = 3

,

(4.7)

because the ζ-functions are positive and both expressions have a negative coefficient. Our

are identical to the ones in [30].

53



4 The energy-momentum tensor for Casimir’s parallel plates

4.1.1 The conformal complement of T̂µν(~x, t)

The energy-momentum tensor derived for a conformally coupled scalar field does not

diverge when approaching the boundary but it still yields the same total energy and

momentum. The difference between both energy-momentum tensors is the conformal

complement ∆T̂µν(~x, t) defined by [48]

∆T̂µν(~x, t) := −ξ
(
∂µ∂ν − gµνg

αβ∂α∂β
)
Φ̂(~x, t)Φ̂(~x, t),

where ξ = d−1
4d

. Adding the vacuum expectation value of the components of this conformal

complement operator to our canonical EMT removes the divergent terms of the latter.

Alternatively, one can write down a Lagrangian density similar to Eq. (2.1) in a general

curved spacetime and compute an energy-momentum tensor by varying with respect to

the metric. When the general metric in the new EMT is then replaced with the Minkowski

metric, the two energy-momentum tensors will differ in the term ∆T̂µν(~x, t).

We want to make some further remarks about these two energy-momentum tensors. One

obtains the total energy and momentum from the energy-momentum tensor by integrating

it over the entire spacetime volume. The canonical and conformal EMT define the same

total energy and momentum because they differ by a total derivative. Under the spacetime

volume integration this total derivative can be written as a boundary term at infinity

after an integration by parts. The boundary term then vanishes because the fields and

potentials fall off to zero when approaching infinity.

In the presence of boundary surfaces, that is, plates, this integration cannot be per-

formed as we would have to integrate “through” the boundary, where the integrand, that

is, the (canonical) EMT, diverges. In these cases we choose which EMT we want to

compute before we impose boundary conditions. However, when we compare different

energy-momentum tensors and interpret the physical meaning of their components, we

have to keep these subtleties in mind.

Another approach would be to replace the ideal boundaries with the interaction with

an external, non-dynamical, and smooth potential, which models the ideal boundary

conditions in a certain limit [49, 50]. Such a calculation was done in [5] for the Casimir

energy and in [51–53] for energy densities. Modeling the boundary with the interaction

with a potential leads to the renormalization of divergences that one usually encounters in

quantum field theory. To that end, the authors used perturbation theory and calculated
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4.1 Analytical calculation for two parallel plates

1-loop Feynman diagrams. The renormalized Casimir energy is then finite for smooth

potentials. In the limit when the potential becomes sharply located, i.e., becomes a δ-

function, and the coupling constant goes to infinity, the potential models perfect Dirichlet

boundary conditions. It was, however, shown that this limit leads to divergences that

cannot be absorbed with the help of renormalization. These divergences, which are located

on the boundary, can be interpreted as the infinite energy necessary to constrain the field

fluctuations on the boundary on all energy scales.

In a calculation with different energy-momentum tensors, the Casimir energy-momentum

tensors should be finite everywhere for a smooth and finite potential after renormaliza-

tion as well. Although, they can have different values locally, integrating the Casimir

EMTs over the spacetime volume should yield the same total energy and momentum.

This integration need not commute with the above mentioned Dirichlet limit: different

energy-momentum tensors can have a different divergence structure in this limit. This

would explain why, for perfect boundaries, the canonical EMT diverges on the boundaries

while the conformal EMT does not.

We would like to have an expression of the conformal complement in the worldline

formalism as well. Toward that end, we follow along the lines of the calculations performed

for T00(~x, t) and Tzz(~x, t) in Chapter 2. The resulting 00 and zz components of ∆T̂µν(~x, t)

are

∆T00(~x, t) = −4ξ

∫
dk

2π

k

Ek

~∇ ·
(
~∇+ ~∇′

)
ImG(~x, ~x ′, k)

= −4ξ · T00(~x, t)
∣∣
II

∆Tzz(~x, t) = −2ξ
(
(∂z + ∂z ′)2 − 2~∇ ·

(
~∇+ ~∇′

))∫ dk

2π

k

Ek

ImG(~x, ~x ′, k)

= −4ξ
(
Tzz(~x, t)

∣∣
Ia
− T00(~x, t)

∣∣
II

)
.

As a consequence, the conformal or improved energy-momentum tensor Θµν(~x, t) :=
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4 The energy-momentum tensor for Casimir’s parallel plates

Tµν(~x, t) + ∆Tµν(~x, t) is then not only finite but even constant:

Θ00(~x, t)
∣∣d=2

= − 1

32πa 3
2ζ(3),

Θzz(~x, t)
∣∣d=2

= −2
1

32πa 3
2ζ(3),

Θ00(~x, t)
∣∣d=3

= − 1

32π2a 4
2ζ(4),

Θzz(~x, t)
∣∣d=3

= −3
1

32π2a 4
2ζ(4).

Despite that, Θµν(~x, t) also violates the NEC

Θ00(~x, t) + Θzz(~x, t) =





− 6
32πa 3 ζ(3) for d = 2

− 8
32π2a 4 ζ(4) for d = 3

. (4.8)

Our results for Θµν(~x, t) match those in [30] where the general case of a massive scalar

field with DBCs in d spatial dimensions is presented. Since the conformal EMT Θµν(~x, t)

can always be constructed from its canonical counterpart Tµν(~x, t), we restrict our com-

putations to the latter.

We note that for a discussion of the ANEC we choose boundary configurations that

allow a complete geodesic (along the z axis) which does not intersect the boundary. Then

it does not matter which EMT we choose. Since both tensors only differ in a total

derivative, the respective values for the ANEC only differ in a boundary term at infinity.

However, this term is zero because both tensors fall off to zero when approaching infinity

along the z axis.

4.2 Worldline calculation for two parallel Dirichlet plates

The worldline calculation of the parallel plate configuration starts by finding the inter-

section condition from Fig. 4.1. This condition turns out to be very similar from the

condition we encountered for one plate. There are nevertheless also some novel features.

The worldlines have two possibilities to intersect the plates, which means we need to iden-

tify the two extremal points y− and y+ of each loop. More precisely, we need to determine

which point intersects one of the plates first. For any given loop this will depend on the
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4.2 Worldline calculation for two parallel Dirichlet plates

Figure 4.1 Sketch of the Casimir plates setup with an exemplary unit loop.

position zcp on the z axis. The intersection conditions are explicitly

√
Ty− + zcp ≤ −a

2

√
Ty+ + zcp ≥ a

2



 =⇒ Θ

[
F(~xcp +

√
T~y(t))

]
= Θ

(√
TM− 1

)

with M = max [M+, M−] := max

[
(y+)

a
2
− zcp

,
(−y−)
a
2
+ zcp

]
.

(4.9)

The condition in Eq. (4.9) is again 1-dimensional, so that 1-dimensional loops suffice for

the computation. However, the calculation, especially of the derivatives of M, is more

involved because M is the maximum function

M =
1

2
(M+ +M− + |M+ −M−|) . (4.10)

Due to the modulus, M is not twice differentiable at M+ = M−, in zcp nor in δz. Despite

that, we treat M as if it were differentiable. This allows us to derive formal expressions

for the various energy-momentum tensor components. In our numerical calculations these

expressions will be given a concrete meaning.

We make use of Eq. (2.39a)-(2.39d) and simply substitute M from Eq. (4.9). For

T00(~xcp, t)
∣∣
I
the result is straightforward,

T00(~xcp, t)
∣∣
I
=

1

(4π)
d+1

2

1

d+ 1

〈
max [M+, M−]

d+1
〉
.
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4 The energy-momentum tensor for Casimir’s parallel plates

Only the maximum function has to be evaluated in our algorithm for all points zcp between

the plates. Further manipulation of M is not required.

The situation is different for the other three terms. T00(~xcp, t)
∣∣
II

and Tzz(~xcp, t)
∣∣
Ia

are again identical due to the 1-dimensional condition of intersection. We will therefore

not write down T00(~xcp, t)
∣∣
II

explicitly. It can be derived from Tzz(~xcp, t)
∣∣
Ia

by replacing

partial derivatives ∂zcp with ~∇cp. The formal expression for Tzz(~xcp, t)
∣∣
Ia

is

Tzz(~xcp, t)
∣∣
Ia

= − 1

2

1

(4π)
d+1

2

〈
Md−2

(
∂2zcpM

)
+ (d− 2)Md−3

(
∂zcpM

)2〉
,

but we must shed light on the derivatives of M. The first derivative is

∂zcp max [M+, M−] =
1

2

[
(y+)(

a
2
− zcp

)2 − (−y−)(
a
2
+ zcp

)2

+ sgn [M+ −M−]

(
(y+)(

a
2
− zcp

)2 +
(−y−)(
a
2
+ zcp

)2

)]
.

(4.11)

Despite the sgn function in Eq. (4.11), this term can be implemented and evaluated

numerically without any problems. Possible discontinuities that occur for each single loop

vanish in the continuum limit. However, the second derivative of M poses a challenge

because the sgn function is not differentiable. The formal result of the second derivative

is

∂2zcp max [M+, M−] =
(y+)(

a
2
− zcp

)3 +
(−y−)(
a
2
+ zcp

)3

+ sgn [M+ −M−]

(
(y+)(

a
2
− zcp

)3 − (−y−)(
a
2
+ zcp

)3

)

+
1

2

(
(y+)(

a
2
− zcp

)2 +
(−y−)(
a
2
+ zcp

)2

)
∂zcp sgn [M+ −M−] .

(4.12)

In Eq. (4.12) only the last term is problematic. Formally, one has ∂x sgn (x) ∝ δ (x) whose

numerical evaluation under the worldline average is not trivial. We in fact tried several

versions of smeared-out δ-functions, but they all yielded unsatisfactory results with huge

errors. That is why we instead use a brute force approach and approximate ∂x sgn (x)

with a difference quotient. There exist a couple of possibilities to do this. For example,
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4.2 Worldline calculation for two parallel Dirichlet plates

one can consider sgn [M+ −M−] as a function of the variable M+−M− or as a function

of the two variables M+ and M−. The difference quotient of either option suffers from

problems. In the first version M+−M− can go to zero and will generate diverging terms.

The second version, while avoiding divergences and yielding better results, still carries a

large systematic error. The third possibility for a difference quotient relies on the fact

that both M+ and M− are positive. This allows us to write the sgn function as function

of the ratio M+/M−. The resulting difference quotient can thus be written as

∂zcp sgn [M+ −M−] = ∂zcp sgn

[M+

M−
− 1

]

= ∂M+

M−

sgn

[M+

M−
− 1

]
∂zcp

M+

M−

=
sgn

[
M+

M−
(1 + l)− 1

]
− sgn

[
M+

M−
(1− l)− 1

]

2l

M−
M+

∣∣∣∣∣
l→0

∂zcp
M+

M−
.

(4.13)

The parameter l in Eq. (4.13) must obey l ≪ 1 but must not be so small as to render the

numerator of the difference quotient equal to zero for too many loops in the ensemble.

The systematic error that is introduced by this linearization of a derivative is controlled

by l.

We note that if eitherM+ orM− should be zero then the ∂ sgn term vanishes. However,

this can only happen if either y− or y+ is equal to zero. Although such loops exist, their

number decreases with increasing nppl. For instance, with nppl = 214 on average only 2 out

of 10000 loops show this feature. Loops with y− = 0 and y+ = 0 at the same time cannot

exist because the worldlines are Gaußian random numbers. (Such worldlines would have

y(t) = 0 for all t ∈ [0, 1].)

In the calculation of Tzz(~xcp, t)
∣∣
Ib

the resulting expressions and difficulties are similar.

We use M from Eq. (4.10) in

Tzz(~xcp, t)
∣∣
Ib
=

1

2

1

(4π)
d+1

2

〈
Md M′′ + dM′ M′ Md−1

〉
.

While different powers of M are straightforward to evaluate, the derivatives with respect
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4 The energy-momentum tensor for Casimir’s parallel plates

to δz require some special consideration. The first and second derivative of M are

∂δz max [M+, M−] =
1

2

[
(y+)

′

a
2
− zcp

+
(−y−)′
a
2
+ zcp

+ sgn [M+ −M−]

(
(y+)

′

a
2
− zcp

− (−y−)′
a
2
+ zcp

)]
,

(4.14)

∂2δz max [M+, M−] =
1

2

[
(y+)

′′

a
2
− zcp

+
(−y−)′′
a
2
+ zcp

+ sgn [M+ −M−]

(
(y+)

′′

a
2
− zcp

− (−y−)′′
a
2
+ zcp

)]

+
1

2
∂δz sgn [M+ −M−]

(
(y+)

′

a
2
− zcp

− (−y−)′
a
2
+ zcp

)
.

(4.15)

All terms in Eq. (4.14) and (4.15) are familiar. The derivatives of (±y±) are calculated

as in the case of a single plate, that is,

(±y±)′ = ± (1− 2t±)
∣∣∣
δz=0

,

(±y±)′′ = ∓ 2
t±(δz + hδ)− t±(δz − hδ)

2hδ

∣∣∣∣
δz=0,hδ→0

.

The derivative of the sgn function is handled as in Eq. (4.13), that is, we calculate

∂δz sgn [M+ −M−] = ∂M+

M−

sgn

[M+

M−
− 1

]
∂δz

M+

M−

=
sgn

[
M+

M−
(1 + l)− 1

]
− sgn

[
M+

M−
(1− l)− 1

]

2l

M−
M+

∣∣∣∣∣
l→0

∂δz
M+

M−
.

(4.16)

The first term in Eq. (4.16) is the same as in Eq. (4.13) and we can compute it for l ≪ 1.

The second term reduces to terms containing (±y±)′ which we know how to calculate as

well. Indeed, except for the calculation of the difference quotient in Eq. (4.16) and (4.13),

the computation for two parallel plates resembles the one for a single plate.

4.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)

Just like in the case of the single Dirichlet plate, we calculate preliminary results for the

parallel plate configuration by running our algorithm with a worldline ensemble of 25 000
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4.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)

loops with 214 points per loop. For the derivatives l = 0.1 and the optimal value of

hδ corresponding to Tab. 3.3 are used. Our numerical worldline data is shown next to

the analytical results in Fig. 4.2. There is a very good agreement between both and the
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Figure 4.2 Comparison of analytical and numerical results for a worldline ensemble with

N = 25 · 103, l = 0.1, nppl = 214 and the corresponding optimal value of hδ.

remaining overall error can be estimated to about 10%. While this is already convincing

that our algorithm works, we analyze the errors in more detail to further improve our

results.
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4 The energy-momentum tensor for Casimir’s parallel plates

4.3.1 Determination and reduction of errors

Most sources of errors are already known. The statistical error is related to the number N

of loops in our ensemble and the number of points per loop nppl determines a systematic

error of the Monte Carlo integration. Furthermore, hδ controls the systematic error of

the derivatives (±y±)′ and (±y±)′′. Since the loop ensemble is spherically symmetric

in the continuum limit, the values of 〈(−y−)〉 and 〈(y+)〉 are identical and so are their

error estimates. Therefore, we can immediately use the optimized values of these three

parameters that we found in our study of the single plate configuration.

There is only one new systematic error. It originates from the linearization of the

derivative of the sgn function in ∂2M and is determined by l. In order to estimate an

optimal value of l, we compute the expectation value of ∂x sgn(x− 1) with x = M+/M−.

For that, we evaluate the difference quotient in Eq. (4.13) and (4.16) for different values

of l ≪ 1.0. In Fig. 4.3, we show the resulting function, which is positive with large values

around zcp = 0. The values of the function decrease to zero as we approach the plates

at zcp = ±a. This is easily understood because ∂x sgn(x − 1) with x = M+/M− is only

non-zero, if a worldline switches from intersecting one plate to intersecting the other plate

first. This happens more often when the worldlines are in the middle than when they are

close to one plate. One sees that for l = 0.1 and l = 0.075 the average of the derivative

is approaching a smooth function with small statistical errors. For smaller l the errors

increase and the fluctuations around the average value become large, as do the standard

deviations. This is due to the fact that for too small l the numerator of the difference

quotient tends to zero for too many loops in the average. l = 0.075 can thus be chosen as

an optimal value. The remaining errors are reduced by an increase of nppl and N .

We ascertain the overall systematic errors by determining how the values of T00(~xcp, t)

and Tzz(~xcp, t) converge to their analytic values for increasing nppl. We choose three

different values of zcp at which we evaluate the EMT components for N = 25 · 103,
nppl ∈ {10, . . . , 20} and the corresponding optimal value of hδ and l = 0.075. The plots of

these calculations can be found in the appendix in Fig. A.1 and A.2. We see that for more

than 214 points per loop the systematic errors and the fluctuations around the analytical

value become small. An estimate for the systematic error for large nppl is calculated by

fitting the worldline data to a function a+b/nppl. A compilation of the results is Tab. 4.1.
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4.3 Numerical results for T00(~xcp, t) and Tzz(~xcp, t)
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Figure 4.3 Worldline average of the derivative of the sign function for different values of

the parameter l.

The systematic errors vary with zcp and so we take the largest error, 2.5% as a general

estimate.

4.3.2 Optimized numerical results

To arrive at results with minimal errors we increase the number of loops to N = 5 · 105

and the number of points per loop to nppl = 220. This value corresponds f = 12 and

ε = 0.099 according to Tab. 3.3. We also choose l = 0.075. Fig. 4.4 shows our optimized

numerical data in comparison to the analytical result for both parts of Tzz(~xcp, t). The
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4 The energy-momentum tensor for Casimir’s parallel plates

zcp = 0.15 0.0 −0.35 0.15 0.0 −0.35

T00(~xcp, t)
∣∣
I

d = 2 d = 3

∆sys 1.2 % 0.7 % 0.6 % 1.8 % 1.0 % 0.8 %

Tzz(~xcp, t)
∣∣
Ia

d = 2 d = 3

∆sys 0.2 % 1.2 % 0.1 % 0.6 % 0.6 % 0.4 %

Tzz(~xcp, t)
∣∣
Ib

d = 2 d = 3

∆sys 1.5 % 1.0 % 1.4 % 2.5 % 0.5 % 0.5 %

Table 4.1 Systematic errors ∆sys for the original Casimir setup for N = 25 · 103 and

nppl → ∞.

differences between both are only minimal with statistical errors of less than 1% and the

aforementioned 2.5% systematic error. As a result the projection of the EMT on the z
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Figure 4.4 Tzz(~xcp, t) for the original Casimir configuration in d = 2 and d = 3 with

minimized errors.

axis is reproduced by our data extremely well, too (cf. Fig. 4.5). It is negative between

the plates and diverges near them. The statistical error of the worldline values is below

0.6% resulting in an overall error of our results of about 3%.
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Figure 4.5 Projection of the EMT on the z axis, i.e., the null energy condition for two

parallel Dirichlet plates in 2 and 3 spatial dimensions.

4.4 Conclusions

In this chapter we have seen how worldline numerics also passes the second proof-of-

principle test, the two parallel Dirichlet plates configuration. The worldline calculation

of the EMT for this setup of boundaries was shown to be very similar to the single plate

configuration. The divergent behavior of the EMT when approaching either plate was

calculated analytically and also numerically. The well-known violation of the NEC was

reproduced as well. Furthermore, we showed how the conformal energy-momentum tensor

can be constructed from the canonical EMT components. Our numerical algorithm proved

to be highly efficient, reproducing the analytic values within about 3% at computation

cost of no more than 1 CPU-day. The computation of Tzz(~xcp, t) includes the calculation

of derivatives of the worldline parameters (±y±) and a sgn function. Despite being non-
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4 The energy-momentum tensor for Casimir’s parallel plates

differentiable, numerical derivatives of both functions are shown to be achievable with

relatively small errors.
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5 Averaged Null Energy Condition for

configurations with complete

geodesics

In the previous chapters we demonstrated how composite operators, specifically the

energy-momentum tensor of a massless scalar, can be computed using worldline numer-

ics. We were able to reproduce analytically known results for EMT components with

high precision at low cost. Our focus now shifts more towards the computation of energy

conditions. The NEC is violated in both the single plate and parallel plates configura-

tion. However, in either setup of boundaries the calculation of the averaged null energy

condition for a null geodesic that is not parallel to the boundary is not possible. Such a

null geodesic would intersect ∂D and one cannot evaluate the EMT on the boundary, i.e.,

the plates. In the case of DBCs the EMT diverges on the plate as the potential σ(~x) goes

to infinite positive values. The ANEC is weaker than the NEC since it only requires that

the integral of
〈
T̂µν(~x, t)V

µV ν
〉
along a complete null geodesic γ with tangent vectors V µ

is larger or equal to zero. The ANEC along the z axis is

0 ≤
∫

γ

dλ
〈
T̂µν(~x, t)V

µV ν
〉
=

+∞∫

−∞

d z (T00(~x, t) + Tzz(~x, t)) ,

where γ is affinely parameterized by λ. We can therefore only integrate the NEC along

the z axis if ∂D has holes through which the z axis passes. In this chapter we study three

different, yet similar, configurations with the z axis as a complete geodesic.
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5 Averaged Null Energy Condition for configurations with complete geodesics

5.1 Averaged Null Energy Condition for a plate with a

hole in d = 2

The simplest boundary configuration which allows for complete geodesics that are not

parallel to ∂D is a punctured version of the single plate. We investigate this configuration

in d = 2 and d = 3. (Semi-)Analytical results for both setups were computed in [22]

where a cancellation between odd and even modes for different BCs was used.

Starting with the 2-dimensional case, the first step in the worldline computation is

finding the condition of intersection. To that end, we use Fig. 5.1, which shows a punctured

plate in two spatial dimensions. The symmetry axis of the hole is the z axis and the loop

is placed on it at a distance zcp from the center of the hole. The z coordinates of the

worldlines are denoted by yz(t) and the coordinates parallel to the boundary by y||(t).

Then y̺ =
√
y2||(t) + y2z(t) is the distance from the starting point zcp to the point of first

intersection and r =
√
a2 + z2cp is the distance to the closest point of the boundary, the

edge of the hole. The angles φ and θ between y̺ and r and the z axis are defined by

Figure 5.1 Sketch of a punctured plate in 2 spatial dimensions with an exemplary unit

loop.

tan(φ) = y||(t)/yz(t) and tan(Θ) = a/zcp, respectively. The only points of the worldline

that can intersect the plate are those for which |φ(t)| ≥ |θ|. The intersection condition is
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5.1 Averaged Null Energy Condition for a plate with a hole in d = 2

then

√
Tyz(t) + zcp ≤ 0

∣∣∣arctan
(

y||(t)

yz(t)

)∣∣∣ ≥
∣∣∣arctan

(
a
zcp

)∣∣∣



 =⇒ Θ

[
F(~xcp +

√
T~y(t))

]
= Θ

(√
TM− 1

)

with M = M1 = max

(
−yz(t)

zcp

)∣∣∣∣
|φ(t)|≥|Θ|

= − ŷz
zcp

or M = M2 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|≥|Θ|

=
ŷ̺
r
G.

(5.1)

M1 and M2 are two different parameterization of the same geometric intersection con-

dition. Both are obviously 2-dimensional conditions because they are functions of yz(t)

and φ(t). As a result, 2-dimensional worldlines must be computed.

Although M1 and M2 are identical for analytical calculations, they pose different

problems for numerical evaluation. M1 is a ratio of two functions that tend to zero when

zcp → 0. One can argue on physical grounds that the ratio must approach a finite value in

this limit because the distance to ∂D is finite and the only divergent terms are located on

∂D. However, we were not able to reproduce this finite value of the ratio in our numerical

computations with reliable precision. In M2 this problem is not solved but shifted. y̺(t)

and r are both positive. Their ratio can never diverge and is always positive or zero for

y̺ = 0. The ratio of cosines G shows the same numerical problems as M1. As zcp goes

to zero, |Θ| goes to π/2 and we know again on physical grounds that at the same time

|φ(t)| → π/2. This happens, however, only in the continuum limit. With finite precision,

the fluctuations in φ(t) are amplified by dividing with a small number cosΘ, which leads

to large statistical errors.

In order to circumvent these difficulties, we explore an approximate, simplifying ansatz

and set φ(t) = Θ, that is, G = 1. In this approximation the worldlines intersect the plate

always at the edge of the hole first. The result is a simplified intersection condition

M3 = max

(
y̺(t)

r

)∣∣∣∣
|φ(t)|=|Θ|

=
ŷ̺
r
. (5.2)

All three intersection conditions determine a minimal value Tmin for the propertime

integral. We neglect the case when worldlines cease to intersect ∂D at a finite value of
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5 Averaged Null Energy Condition for configurations with complete geodesics

the propertime Tmax. These loops do exist in the punctured plate configurations but the

determination of Tmax would increase the computation time considerably. Instead we

consider neglecting these worldlines as a systematic error, which we will include in our

error analysis.

In practice we generate 2-dimensional loops in Cartesian coordinates using the d loop

algorithm. In a second step we introduce a binning in the angular coordinate φ and

compute the maximal y̺ for each bin. The angular binning translates into a binning of

the z axis because |φ(t)| = |Θ| = |arccos(a/r)|. The bins for small zcp are consequently

smaller than those for large zcp. For the calculations presented in this thesis we used 120

angle bins, such that every bin is 3◦. Similar calculations and binnings of worldlines were

used in [36,39,40].

Figure 5.2 Sketch of the angular binning of a worldline (—). In each bin φq with

q ∈ {1, . . . ,# of angle bins} the maximal value of y̺ (⊣) is determined. The resulting map

y̺ = y̺(φq) describes an envelope of the worldline.

70



5.1 Averaged Null Energy Condition for a plate with a hole in d = 2

5.1.1 Numerical results for the simplified intersection condition

We compute the NEC and the ANEC first with the simplified condition Eq. (5.2). For

the calculation of Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

the derivatives of M3 with respect to zcp

and δz are needed. The first and second zcp derivatives of M3 are

∂zcp
ŷ̺
r

=
1

r

(
∂zcp ŷ̺

)
− zcp ŷ̺

r3

∂2zcp
ŷ̺
r

=
1

r

(
∂2zcp ŷ̺

)
− 2

zcp
r3
(
∂zcp ŷ̺

)
+
ŷ̺
r3

(
3 z2cp
r2

− 1

)
.

The point ŷ̺ is a local maximum of y̺(t) with the constraint φ(t) = Θ. For the cal-

culation of its derivatives we have to resort to difference quotients because we do not

know the function y̺(t) explicitly. The systematic error connected with this linearization

is controlled by hz in zcp ± hz. Normally, one would take hz to be a small multiple of

zcp. However, this is not possible here because zcp can go to zero. Instead the interval

hz is determined by considering zcp as a function of Θ, that is, zcp ± hz corresponds to

Θ±hΘ. Θ remains finite throughout our calculations and it measures the distance zcp via

tanΘ = a/zcp. We hence take hΘ ≈ 0.1Θ and, using the shorthand notation ±lz = Θ∓hΘ,
write the difference quotients as

∂zcp ŷ̺ =
ŷ̺|zcp(lz) − ŷ̺|zcp(−lz)

zcp(lz)− zcp(−lz)

∂2zcp ŷ̺ =

(
∂zcp ŷ̺

)∣∣
zcp(lz)

−
(
∂zcp ŷ̺

)∣∣
zcp(−lz)

zcp(lz)− zcp(−lz)
.

To be consistent for both sides of the plate, we use Θ when Θ > 0 and Θ ≤ π/2 or the

complementary angle when Θ > π/2 for defining hΘ.

Tzz(~xcp, t)
∣∣
Ib
contains derivatives of M3 with respect to δz. As we mentioned above, we

do not have sufficient information about the local maximum ŷ̺ to write down an analytic

expression for the derivative. In its place we have to use difference quotients, for which

we recast Tzz(~xcp, t)
∣∣
Ib

as

Tzz(~xcp, t)
∣∣
Ib
=

1

2

1

(4π)
d+1

2

1

rd+1

〈
ŷd̺ ŷ

′′
̺ + d ŷ′̺ ŷ

′
̺ ŷ

d−1
̺

〉
(5.3)

=
1

2

1

(4π)
d+1

2

1

rd+1

1

d+ 1

〈
∂2δz ŷ

d+1
̺

〉
. (5.4)
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5 Averaged Null Energy Condition for configurations with complete geodesics

The reason for this is that during our studies the derivatives in Eq. (5.3) turned out to

fluctuate so much that the results were not usable. The difference quotient of ŷd+1
̺ in

Eq. (5.4) is better behaved:

∂2δz ŷ
d+1
̺ =

ŷd+1
̺

∣∣
δz+2hδ

+ ŷd+1
̺

∣∣
δz−2hδ

− 2 ŷd+1
̺

4h2δ

∣∣∣∣∣
δz→0

.

Nevertheless, the fluctuations were still very large compared to those for the single plate

or parallel plates configuration when using the values of hδ from Sec. 3.3.1. As a result,

we refined our estimates for hδ, so that it is larger than the average distance between

consecutive points but still small compared to the extension of the loop. 〈e2〉 = 1/6 gives

a rough measure of the extension of the loop. A more precise estimate for d-dimensional

loops is
√

〈e2〉 =
√
d/6 > 1/6 and, as a consequence, the optimal values of hδ for the

single plate configuration are to be considered lower bounds. With the new estimate of

hδ, we have for 2-dimensional loops

hδ ≪
√
〈e2〉 =⇒ hδ = ν

√
1

3
= ν · 0.58 with ν ≪ 1.

We chose ν = 0.12 for our calculations because we found this value to be small enough

compared to 1 but not too small as to enhance the fluctuations in ŷ̺.

Despite the improved estimate for hδ, the statistical fluctuations in Tzz(~xcp, t)
∣∣
Ib
, es-

pecially for small zcp, proved to be huge in comparison to the single plate and parallel

plates results. For instance, the standard deviations near zcp = 0 were over 60% for an

ensemble of N = 104 worldlines. We increased the number of loops to N = 1.5 · 106 and

the number of points per loop to nppl = 216 to get reliable data for Tzz(~xcp, t)
∣∣
Ib
and reduce

the systematic error at the same time. Fig. 5.3 shows our numerical data for Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

in d = 2. For both functions the errors become larger for zcp → 0.

Tzz(~xcp, t)
∣∣
Ib

crosses below the z axis to negative values near the center of the hole at

zcp = 0. We believe this to be part of the error of the simplifying approximation for the

following reason. If the z extension were increased, that is, if the plate were made to

be thicker then the region inside the hole would approach the configuration of two plates

with the z axis parallel to them. Tzz(~xcp, t)
∣∣
Ia

would go smoothly to zero if the plates were

thick enough whereas Tzz(~xcp, t)
∣∣
Ib
should have the same value inside the thick plates as it

has now for the thin plates at zcp = 0. However, we have not yet checked this conjecture.

72



5.1 Averaged Null Energy Condition for a plate with a hole in d = 2

-0.003

0

0.003

0.006

0.009

0.012

-4 -3 -2 -1 0 1 2 3 4
zcp
a

Tzz

∣∣d=2

Ia

Tzz

∣∣d=2

Ib

Figure 5.3 Numerical results of Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

for the 2-dimensional plate

with a hole using the simplified condition of intersection

As we increased N to such a large number, the calculation takes a lot longer, which did

not allow us to increase nppl above 216 without increasing computation times beyond 3

CPU-days. The statistical errors are still about 2% and 20% at zcp = 0 for Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib
, respectively. On top of that we have a systematic error which is very

difficult to estimate since a calculation for different nppl and subsequent extrapolation is

unfeasible for such large ensembles.

Besides the individual terms Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

we also computed the null

energy condition, that is, the sum of both terms. Fortunately, summing both terms before

the worldline average reduces the statistical error to about 2% at zcp = 0. In Fig. 5.4 our

numerical data is shown along with the analytical results obtained by Graham and Olum

in [22]. The agreement between both data sets is already recognizable. However, the
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Figure 5.4 Null energy condition along the z axis for the punctured plate in d = 2 with

the simplified condition of intersection.

numerical estimate of ŷ̺/r is too small compared to the analytical value. The worldline

data stay below the analytical result for negative values and above for positive values

because Tzz(~xcp, t)
∣∣
Ia

is the negative second derivative of M3. Still, it seems from Fig. 5.4

that the numerical value of the ANEC is larger than the analytical.

The ANEC is the integral of the NEC along the z axis. We approximate this integral

by a sum of rectangles given by our numerical data for the NEC and our zcp bins. For

large distances |zcp| the punctured plate result approaches the NEC of the perfect mirror,

i.e., the single plate

T00(~x, t) + Tzz(~x, t) = − 1

32π

1

z 3
cp

. (5.5)

For values of zcp outside the region shown in Fig. 5.4 we integrated Eq. (5.5) over the
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5.1 Averaged Null Energy Condition for a plate with a hole in d = 2

corresponding values of zcp. The ANEC is hence

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) = (5.60± 0.35) · 10−3/a2, (5.6)

which is slightly larger than the analytical value 4.53 ·10−3/a2 in [22]. However, the errors

in Eq. (5.6) are only due to the statistical errors in our calculation. There are several

sources of systematic errors like a finite nppl, the linearization of derivatives with difference

quotients and first and foremost the approximation of the intersection condition. Despite

all that, the simplified intersection conditionM3 already gives a reasonable, though rough,

first estimate of the true result.

Since we reduce the statistical error to acceptable values by using a very large valueN , it

is not easily feasible to compute the NEC for increasing nppl and determine the systematic

error. We can, however, reduce the systematic error by using the exact intersection

condition M2. In order to do that, we have to find a parameterization of the factor G in

Eq. (5.1) that yields small numerical errors.

5.1.2 Numerical calculation with condition M2

The intersection M2 accounts for the case that the worldlines do not intersect the plate

exactly at the edge of the hole

M2 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|≥|Θ|

=
ŷ̺
r
G. (5.7)

We can make use of trigonometric relations between r, y̺(t), Θ and φ(t) in order to recast

the geometric factor G in a form that is suitable for numerical evaluation,

G =
cosφ(t)

cosΘ
(5.8)

=

(
cos2 Θ+

[
sinΘ +

sin(φ(t)−Θ)

cosφ(t)

]2)− 1

2

. (5.9)

In the limit zcp → 0 we know from physical considerations that φ(t) → Θ → π/2, but

also that G → 1. In this limit fluctuations in φ(t) give rise to large values of G and

consequently to large statistical errors in Eq. (5.8). On the other hand, in Eq. (5.9) a
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5 Averaged Null Energy Condition for configurations with complete geodesics

similar term, sin(φ(t)−Θ)/ cosφ(t), is isolated in the denominator. Large fluctuations in

this term do not cause large statistical errors for G.

In order to estimate the magnitude of the influence of G on the numerical results, we

compare in Fig. 5.5 the values of T00(~xcp, t)
∣∣
I
for the exact G according to Eq. (5.9) and

G = 1. T00(~xcp, t)
∣∣
I
has the advantage that it contains no derivatives and so systematic

errors are only due to a finite nppl. These errors are, however, identical for both versions

of intersection conditions, since we use the exact same worldline ensemble for both calcu-

lations. Fig. 5.5 shows that using the exact G results in larger values of T00(~xcp, t)
∣∣
I
. This

0
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0.009

-4 -3 -2 -1 0 1 2 3 4
zcp
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T00

∣∣d=2

I

exact G

G = 1

Figure 5.5 Comparison of T00(~xcp, t)
∣∣
I
for the 2-dimensional plate with a hole using the

intersection conditions M2 and M3. Both data sets were computed from the same worldline

ensemble of N = 1.5 · 106 worldlines with 216 points per loop.

difference becomes larger with increasing distance from the hole and amounts to about

10% at zcp = 1.0 and 20% at zcp ≈ 2.0.
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5.1 Averaged Null Energy Condition for a plate with a hole in d = 2

The computation of the components of Tzz(~xcp, t) proceeds as above and we only replace

ŷ̺ with ŷ̺G in all terms. The considerations for hz and δz, respectively, are not changed

by this replacement. The plot in Fig. 5.6 shows that the worldline data match better with

the analytical values. The numerical result is still somewhat larger than the analytical

for small zcp.

0

0.003

0.006

0.009

-4 -3 -2 -1 0 1 2 3 4
zcp
a

worldline NEC

analytical NEC

Figure 5.6 Null energy condition along the z axis for the punctured plate in d = 2 with

the precise condition of intersection using an ensemble with N = 1.5 · 106 and nppl = 216.

The integration of the NEC yields

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) = (5.04± 0.29) · 10−3/a2, (5.10)

a value that is still about 1.8 standard deviations larger than the analytical result. How-

ever, Eq. (5.10) only shows statistical, not systematic, errors. The overall systematic error

is estimated by computing the difference between the analytical and numerical data at
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5 Averaged Null Energy Condition for configurations with complete geodesics

the point closest to zcp = 0 for which we have analytical data. Using the central values

of our numerical result we find an error of 2% for the NEC. Since we integrate over both

sides of the plate for the ANEC this amounts to an additional error of 4%. The statistical

error in Eq. (5.10) corresponds to about 6%. The overall error ∆comp of the numerical

result of the ANEC is consequently of the order of 10% or

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) =

{
(5.04± 0.50) · 10−3/a2 worldline

4.53 · 10−3/a2 analytical [22]
.

This means that worldline numerics can replicate the analytical result of the ANEC for a

plate with a hole in 2 space dimensions within the margin of error.

We note that we estimated the systematic error in a rather crude manner. An in-depth

analysis will most likely increase the error bounds because our data points over-estimate

the analytical values throughout the region −1 ≤ zcp/a ≤ 1. We forgo such a detailed

investigation here and instead take a closer look at the sources of the errors because they

will appear in later calculations as well.

The errors from discretizing the path integral occur for all worldline numerics calcu-

lations. The statistical error can be reduced by increasing the number N of loops and

one systematic error can be decreased by using a larger number nppl of points per loop.

We showed how to control these errors in the previous chapters. The linearizations of

derivatives leads to additional systematic errors. These are controlled by the parameters

hz and hδ and we estimated reasonable values for them. Despite that, an analysis of those

systematic errors for large nppl was would require extensive computing time.

The binning of the angular coordinate φ leads to another systematic error. The an-

gular binning leads to a binning of zcp values and thus had to be incorporated in the

determination of hz. Furthermore, the φ bins illustrate the systematic error due to finite

nppl. We used 120 bins in our calculations, which means that there are less than 1% of

all points per loop in each bin. At zcp = 0 there are exactly two bins that contribute to

the expectation value, one above and one below the z axis. As a result, only about 2%

of all points of every loop determine the values of the various EMT components inside

the hole. The further we move away from the punctured plate, the more angular bins

can contribute to the worldline average. This systematic error is not very problematic

for T00(~xcp, t)
∣∣
I
or Tzz(~xcp, t)

∣∣
Ia
. For the former, we only compute ŷ̺G in each bin and
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5.2 Averaged Null Energy Condition for a plate with a hole in d = 3

for the latter we compute differences of these values between different bins. However, for

Tzz(~xcp, t)
∣∣
Ib

differences of values of ŷ̺G for different values of δz within one or between

different bins are computed.

We can now try to understand why we needed a very large N to reduce the fluctuations

in Tzz(~xcp, t)
∣∣
Ib

to an acceptable level. The derivatives with respect to δz correspond to

variations parallel to the z axis. These variations change the z coordinate of the points

along the worldlines but not y||. Hence, for angles |φ| near zero or π, the δz variations shift
the worldline points only in z direction within one bin and the observable ŷ̺G changes

along that direction. In contrast, for |φ| ≈ π/2, the variations in δz can shift the loop

points to other bins while we measure ŷ̺G along the direction of the bin which is now

orthogonal to the direction of variation. This leads to large fluctuations in the worldline

average, as we observed.

The assumption that all loops intersect the boundary for all T ≥ Tmin results also in a

systematic error.

5.2 Averaged Null Energy Condition for a plate with a

hole in d = 3

The second boundary configuration that we investigate is a plate with a hole in 3 spatial

dimensions. It is constructed by rotating the punctured plate in 2 dimensions around the

z axis. We show this setup in Fig. 5.7. There are now two coordinates parallel to ∂D
that are denoted by yx and yy. The whole configuration is axisymmetrical with respect

to the z axis and thus y||(t) =
√
y2x(t) + y2y(t) measures the orthogonal distance from this

symmetry axis. As a consequence, y̺, r, φ and Θ are defined the same way as in the

2-dimensional case.

The worldlines only intersect the punctured plate with points for which |φ(t)| ≥ |Θ|.
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5 Averaged Null Energy Condition for configurations with complete geodesics

Figure 5.7 Sketch of the punctured plate in d = 3 with an exemplary unit loop.

The intersection conditions are hence identical to the 2-dimensional conditions

M1 = max

(
−yz(t)

zcp

)∣∣∣∣
|φ(t)|≥|Θ|

= − ŷz
zcp
,

M2 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|≥|Θ|

=
ŷ̺
r
G,

M3 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|=|Θ|

=
ŷ̺
r
,

where M1 and M2 are exact while M3 is a simplifying approximation. Even though M1,

M2 and M3 are effectively 2-dimensional conditions, y|| already depends on yx and yy

so that the calculations must be performed with worldlines in three dimensions. We will

not consider M1 because of the same numerical challenges we faced in the case of the

punctured plate in d = 2. We start our investigation by a calculation with the simplified

condition of intersection M3.

5.2.1 Numerical results for the simplified intersection condition

We already know how to compute the derivatives of M3. The zcp derivative must be

expressed with a difference quotient with the parameters hz and hΘ. For the δz derivative

a new value for hδ is required because we have 3-dimensional loops now. From the
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5.2 Averaged Null Energy Condition for a plate with a hole in d = 3

condition that hδ be much smaller than the extension of a loop one finds

hδ ≪
√
〈e2〉 =⇒ hδ = ν

√
1

2
= ν · 0.71 with ν ≪ 1.

We choose again ν = 0.12 and run our algorithm with an ensemble of 1.5 · 106 worldlines

and 216 points per loop. Fig. 5.8 shows the resultant values of the individual parts of
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Figure 5.8 Numerical results of Tzz(~xcp, t)
∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

for the plate with a hole

in d = 3 using the simplified condition of intersection

Tzz(~xcp, t). The remaining statistical errors are still up to 20% at zcp = 0 despite the

improved estimate of hδ and the large value of N . We also observe that Tzz(~xcp, t)
∣∣
Ib

is negative near zcp = 0. Whether this is a true value or results from finite numerical

precision could not be decided yet and will be part of a a more detailed study.

The NEC along the z axis is shown in Fig. 5.9. Our numerical value for ŷ̺ is again

smaller than the analytical. For negative values our data points stay below and for
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Figure 5.9 Null energy condition along the z axis for the punctured plate in d = 3 with

the simplified condition of intersection.

positive values they stay above the analytical result. However, the standard deviation

at the center of the hole is only 2%. We conjecture that the numerical ANEC is larger

than the analytical. In order to check this conjecture, we integrate the NEC along the

complete z axis. For values of zcp outside the region of numerical data, we integrate the

single plate result

T00(~x, t) + Tzz(~x, t) = − 1

16π2

1

z 4
cp

. (5.11)

The averaged null energy condition for the punctured plate in 3 spatial dimensions is then

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) = (1.85± 0.14) · 10−3/a3, (5.12)
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which is as expected slightly larger than the analytical value of 1.63 · 10−3/a3 from [22].

Considering that we have not included systematic errors and that M3 is a simplified

intersection condition, Eq. (5.12) is a very reasonable estimate of the analytical ANEC.

5.2.2 Numerical results with the condition M2

The condition M3 is based on the assumption that the worldlines only intersect the plate

at the edge of the hole. The precise condition of intersectionM2 in Eq. (5.1) together with

the parameterization of G in Eq. (5.4) accounts for the fact that the loops can intersect

at arbitrary points on the plate. We compute T00(~xcp, t)
∣∣
I
for both conditions to assess

the difference between them. In Fig. 5.10 we plot both results, which look qualitatively

like those obtained for the punctured plate in d = 2. Using the exact value of G, that is,

using condition M2, leads to larger values for T00(~xcp, t). The difference increases with

larger zcp and is about 10% at zcp ≈ 1 and 30% at zcp ≈ 2.

The individual parts of Tzz(~xcp, t) and the NEC are computed for M2 by replacing ŷ̺

with ŷ̺G. We find a better agreement between numerical and analytical data, even though

the numerics still yields larger results (cf. Fig. 5.11). We furthermore observe relatively

large statistical errors especially for small values of zcp. These stem from fluctuations of

the factor G because they were not present for the simplified case G = 1.

The result of the ANEC, the integration of the single plate result Eq. (5.11) for zcp

values outside the plot in Fig. 5.11 included, is

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) = (1.76± 0.12) · 10−3/a3. (5.13)

This value is about 1 standard deviation larger than the analytical value. The statistical

error in Eq. (5.13) corresponds to about 7%. We would like to include the systematic

errors as well. For that, we calculate the difference between numerical and analytical

results for the smallest value of zcp for which we have data of both. Disregarding the

statistical errors and using only the central value of our worldline data, this error is about

1.2% for the NEC, that is, at least about 2.4% for the ANEC. Including both errors we
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Figure 5.10 Comparison of T00(~xcp, t)
∣∣
I
for the plate with a hole in d = 3 using the

intersection conditions M2 and M3. Both data sets were computed from the same worldline

ensemble of N = 1.5 · 106 worldlines with 216 points per loop.

find for the ANEC

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) =

{
(1.76± 0.17) · 10−3/a3 worldline

1.63 · 10−3/a3 analytical [22]
.

This means that we can reproduce the analytic ANEC for the plate with a hole in d = 3

with worldline numerics to within a 10% margin of error.
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Figure 5.11 Null energy condition along the z axis for the punctured plate in d = 3 with

the precise condition of intersection. We used an ensemble with N = 1.5 ·106 and nppl = 216.

5.3 Averaged Null Energy Condition for a plate with a

slit in d = 3

The case of an infinite Dirichlet plate in d = 3 with a slit is the third configuration for

which we study the ANEC. To our knowledge there are no analytic results published for

this boundary configuration. The plate with a slit is obtained from the punctured plate

in 2 dimensions by a translation along a third dimension. Another way to think of it

is to remove a strip from a plate in d = 3. A sketch of the general setup is shown in

Fig. 5.12. The configuration is translationally invariant in x direction. We use the same

parameters that we introduced for the the 2-dimensional plate with a hole. However, we

need to specify the variable y||. Despite having 3 spatial dimensions, we still only need
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2-dimensional loops because the x direction is an invariant direction. We have therefore

Figure 5.12 Sketch of the plate with a slit with an exemplary unit loop.

y|| = yy and the intersection conditions are truly 2-dimensional

M1 = max

(
−yz(t)

zcp

)∣∣∣∣
|φ(t)|≥|Θ|

= − ŷz
zcp
,

M2 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|≥|Θ|

=
ŷ̺
r
G,

M3 = max

(
y̺(t)

r
· cosφ(t)

cosΘ

)∣∣∣∣
|φ(t)|=|Θ|

=
ŷ̺
r
.

(As before, M1 and M2 are exact and M3 is an approximation.) This makes the plate

with a slit more closely related to the punctured plate in d = 2 from the point of view of

worldline numerics. Nevertheless, the EMT depends on the physical dimension of space

so that we should expect the values of the EMT and the NEC to show more similarities

with the results of the plate with a hole in d = 3.

It is now straightforward to compute T00(~xcp, t)
∣∣
I
, Tzz(~xcp, t)

∣∣
Ia

and Tzz(~xcp, t)
∣∣
Ib

and

the NEC along the z axis using the intersection conditions M2 and M3. The worldline

ensemble is the very same that we used for the plate with a hole in 2 spatial dimensions.
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For the δz derivatives we specify

hδ ≪
√

〈e2〉 =⇒ hδ = ν

√
1

3
= ν · 0.58 with ν = 0.12.

At first we compare the results of T00(~xcp, t)
∣∣
I
for the two different conditions of inter-

section M2 and M3 in Fig. 5.13. The worldline ensemble of 1.5 · 106 worldlines with 216

0
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G = 1

Figure 5.13 Comparison of T00(~xcp, t)
∣∣
I
for the plate with a slit using the intersection

conditions M2 and M3. Both data sets were computed from the same worldline ensemble

of N = 1.5 · 106 worldlines with 216 points per loop.

points per loop is identical to the one used for the punctured plate in d = 2. The results

using the exact value of G, that is, using M2 are 10 % larger at zcp = 1 and 20 % larger at

zcp ≈ 2 than the G = 1 result. This shows again that the approximation G = 1 becomes

increasingly bad for increasing distance from the plate.

Fig. 5.14 shows the NEC along the z axis in this configuration using the precise in-

tersection condition M2. For the ANEC we integrate those results along with the NEC
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Figure 5.14 Null energy condition along the z axis for slit plate configuration with the

precise condition of intersection. We used an ensemble with N = 1.5 · 106 and nppl = 216.

Eq. (5.11) of the single plate in d = 3 for zcp values outside the domain of our numerical

data. The results of that integration are

+∞∫

−∞

dzcp (T00(~x, t) + Tzz(~x, t)) =

{
(0.813± 0.119) · 10−3/a3 for G = 1

(0.819± 0.103) · 10−3/a3 for exact G
. (5.14)

Since there are no analytical values to compare with we have no benchmark point for

reading off a systematic error of our results. However, it will presumably be of the same

order of magnitude as the systematic errors of the two previous configurations, that is, at

least of the order of 5%. The ANEC for the plate with a slit in d = 3 dimensions is also

obeyed. Interestingly, its value is about half the value of the ANEC for the plate with a

hole in 3 spatial dimensions.
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5.4 Conclusions

We have computed the NEC and ANEC along the z axis for three different configurations

in which the z axis is a complete geodesic, using worldline numerics. The first two setups,

punctured plates in d = 2 and d = 3, served as tests for our numerical algorithm because

there exist analytic results with which we can compare. During this comparison we found

that the ANEC is reproduced with worldline numerics within a 10% error margin. The

numerical calculation results in larger values than the analytic calculation. We were also

able to extend the calculation of the NEC to region that are further away from the plates

and to zcp = 0. For the (semi-)analytical results in [22], values near zcp = 0 had to be

extapolated. This extrapolation may lead to uncertainties in the result for the ANEC.

However, our numerical algorithms, while they yield finite results near and at zcp = 0,

also show their largest systematic and statistical errors in that region. A reduction of

errors, especially for z values inside and near the hole, will improve the numerical ANEC

result.

For the third configuration, a plate with a slit in d = 3, there are no analytical results

known. The numerical values of the ANEC are of the same order of magnitude as in the

punctured plate case in d = 3, with the former about one half of the latter.

For the boundary configurations and the geodesic we chose, only two components of

the energy-momentum tensor contribute to the ANEC, T00(~x, t) and Tzz(~x, t). We were

able to decompose these components in more compact terms, which lead to cancellation

between terms of T00(~x, t) and Tzz(~x, t) in the calculation of the NEC and thus in the

ANEC as well. In fact, all that remains in the (A)NEC are two terms from the zz

component, Tzz(~x, t)
∣∣
Ia

and Tzz(~x, t)
∣∣
Ib
, that contain the derivatives with respect to zcp

and ∆z. In the worldline picture these two terms the change of the intersection condition

when moving the worldline along the z axis (change in zcp) and changing the shape of the

worldline (change in ∆z), respectively. In other words it is not so much the intersection

condition itself, which determines the value of the NEC at a certain point, but rather its

rate of change when zcp and ∆z vary.

While T00(~x, t) and Tzz(~x, t) correspond to the energy density and pressure, respectively,

Tzz(~x, t)
∣∣
Ia

and Tzz(~x, t)
∣∣
Ib

do not have a physical interpretation. We also refrain from

giving them such an interpretation since they are the result of a decomposition that is
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based on our convenience and not on physical grounds. This decomposition may not be

possible in other calculations of the EMT, with different representations and methods.

For all three boundary configurations, we find the NEC is violated for z values away

from the boundary; the term T00(~x, t) + Tzz(~x, t) goes to zero from negative values for

large distances from the boundaries. Near the plates the NEC shows a minimum and as

the distance from the plate shrinks further (“moving into the hole”) it becomes positve.

The finite maximum is reached at zcp = 0, that is, inside the hole (or slit). We also find

that the integral of the NEC along the z axis, that is, the ANEC, is positive because the

positive contribution near the hole outweigh the negative contributions.

The qualitative similarity of our results for these three boundary configurations also

allows for a thought experiment: we try to recover the results of the single plate configura-

tion by letting the hole radius or slit width a go to zero. All distances in our calculations

are scaled with a. For decreasing a, the minima move closer to the plate while their values

become increasingly negative. On the other hand, the value of the maximum becomes

more positive. Eventually, in the limit a → 0, there will be an infinite, positive value of

the NEC on the plate, while from the outside we have an infinite, negative value.

The numerical evaluation of these three boundary setups proved to be more involved

than the single plate or two parallel plates cases. There are also several new sources for

systematic errors whose reduction increased computation time to several CPU-days. A

more detailed analysis and precise estimation of these errors is still missing because of

that.

90



6 Summary and outlook

We succeeded at many steps in our worldline studies of the energy-momentum tensor for a

quantum scalar field with boundary conditions. As a first goal, we extended the numerical

worldline formalism to composite operators. The numerical evaluation of the worldline

averages requires the use of common point loops that are only closed worldlines in the

point-splitting limit ~x → ~x ′. Since the worldline expressions of the EMT components

are finite by construction, they allow a decomposition into independent parts that, while

having no explicit physical meaning, are often more compact in numerical calculations.

We also have to compute derivatives of functionals of the worldlines y(t). Although these

worldlines are non-differentiable because they describe the Brownian motion of a diffusive

process, we were able to compute derivatives of functionals of y(t) with relatively small

errors. The boundary configuration of the single Dirichlet plate and the two parallel

plates are the prime examples of this calculation. Numerical results for both boundary

configurations were computed with errors of generally less than 5%. Our algorithms still

proved to be very efficient, taking only about 1 CPU-day for such computations.

The calculation of energy conditions for boundary configurations allowing complete

geodesics was more involved. The conditions that determine the intersection of a worldline

with a boundary are two-dimensional for these cases, and we used polar coordinates to

parameterize them. The computations of derivatives proved to be more complicated than

for the single plate and parallel plate configurations. The very large statistical fluctuations

could only be reduced by an increase in the number of loops of our ensemble. This in

turn increased computation time, making a detailed self-contained analysis of systematic

errors unfeasible so far. Still, the current worldline data reproduce the analytically known

results within the margin of error, which is about 10%. We also extended the calculation

to values of zcp for which there are no analytical data. This includes the regions far away

from the plate, but especially the region inside the hole, at and near zcp = 0. The results
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of the plate with a slit are about one half of the punctured plate result in d = 3. We are

not aware of any analytical data for this particular configuration.

An in-depth analysis of the errors for the punctured plate and the plate with a slit is

the first goal of future numerical worldline calculations. This can be done in a brute force

approach, by simply increasing the number of loops and the number of points per loop.

However, it might also be possible to find another parameterization of the intersection

condition that is numerically stable and allows for better control over the individual terms

and their derivatives.

In a second step we would like to investigate other boundary geometries. The world-

line formalism is perfectly suited to investigate different geometric setups because it is

independent of the specific shape of the boundary surfaces. Especially curved surfaces

or boundaries with edges and corners are therefore interesting. One can also try to find

a geometry for which the ANEC has a minimal value. Intersection conditions similar to

the one we used in Chapter 5 can be used as first estimate. It yielded good results for

the NEC and ANEC, but the values for individual components carried large errors of

over 20%. This simplified intersection condition is, in some respects, reminiscent of the

proximity force approximation used in other Casimir effect calculations.

Another possibility is the inclusion of finite temperature effects, which is very easy to

do in worldline numerics. The interplay between finite temperature and new geometries

can lead to very interesting results for the Casimir effect [41].
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[42] M. Schäfer, I. Huet, and H. Gies, “Energy-Momentum Tensors with Worldline

Numerics,” International Journal of Modern Physics: Conference Series, vol. 14,

pp. 511–520, 2012.

[43] M. Schaden, “Dependence of the Direction of the Casimir Force on the Shape of the

Boundary,” Phys.Rev.Lett., vol. 102, p. 060402, 2009.

[44] K. Aehlig, H. Dietert, T. Fischbacher, and J. Gerhard, “Casimir Forces via Worldline

Numerics: Method Improvements and Potential Engineering Applications,” 2011.

[45] A. Sommerfeld, Vorlesungen über Theoretische Physik - Band VI - Partielle Differ-

entialgleichungen. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig,

4 ed., 1958.

96



Bibliography

[46] J. D. Jackson, Klassische Elektrodynamik. Walter de Gruyter, 2 ed., 1982.

[47] A. D. Polyanin and V. F. Zaitsev, Handbuch der linearen Differentialgleichungen.

Spektrum Akademischer Verlag, 1996.

[48] C. G. C. Jr., S. Coleman, and R. Jackiw, “A new improved energy-momentum ten-

sor,” Annals of Physics, vol. 59, no. 1, pp. 42 – 73, 1970.

[49] N. Graham, R. Jaffe, V. Khemani, M. Quandt, M. Scandurra, et al., “Casimir ener-

gies in light of quantum field theory,” Phys.Lett., vol. B572, pp. 196–201, 2003.

[50] N. Graham, R. Jaffe, V. Khemani, M. Quandt, O. Schroeder, et al., “The Dirichlet

Casimir problem,” Nucl.Phys., vol. B677, pp. 379–404, 2004.

[51] N. Graham and K. D. Olum, “Negative energy densities in quantum field theory with

a background potential,” Phys.Rev., vol. D67, p. 085014, 2003.

[52] K. D. Olum and N. Graham, “Static negative energies near a domain wall,”

Phys.Lett., vol. B554, pp. 175–179, 2003.

[53] D. Schwartz-Perlov and K. D. Olum, “Null energy conditions outside a background

potential,” Phys.Rev., vol. D68, p. 065016, 2003.

97





Appendix A

Systematic errors for two parallel plates

In Fig. A.1 and A.2 we show the systematic errors for the various components of the

energy-momentum tensor for the parallel plates configuration. We evaluate these compo-

nents at three different values zcp, using ensembles with 25 000 worldlines and from 210

up to 220 points per loop. The figures also show the corresponding analytical values and

one sees how our worldline results approach them. The systematic errors decrease like

1/nppl with increasing number of points per loop. We therefore fit our numerical data to

a function a+ b/nppl. In the limit nppl → ∞, the difference between the analytical result

and the parameter a is an estimate for the remaining systematic error. We display those

error estimates in Tab. 4.1.
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Figure A.1 Systematic errors of EMT components in d = 2 dimensions for zcp ∈
{0.15, 0.0 ,−0.35}. The solid lines are fits of our data and the dotted lines are analyti-

cal values.
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Figure A.2 Systematic errors of EMT components in d = 3 dimensions for zcp ∈
{0.15, 0.0 ,−0.35}. The solid lines are fits of our data and the dotted lines are analyti-

cal values.
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