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Abstract

The feedback stabilization problem is studied for time-varying real analytic systems. We investi-
gate structural properties of the zero dynamics in terms of a system operator over a skew polynomial
ring. The concept of (A,B)-invariant time-varying subspaces included in the kernel of C is used to
obtain a condition for stabilizability. This condition is equivalent to autonomy of the zero dynamics
in case of time-invariant systems. We derive a zero dynamics form for systems which satisfy an as-
sumption close to autonomous zero dynamics; this in some sense resembles the Byrnes-Isidori form
for systems with strict relative degree. Some aspects of the latter are also proved. Finally, we show
for square systems with autonomous zero dynamics that there exists a linear state feedback such
that the Lyapunov exponent of the closed-loop system equals the Lyapunov exponent of the zero
dynamics; some boundedness conditions are required, too. If the zero dynamics are exponentially
stable this implies that the system can be exponentially stabilized. These results are to some extent
also new for time-invariant systems.

Keywords: Time-varying linear systems, feedback stabilization, zero dynamics, strict relative degree,
Byrnes-Isidori form, geometric control theory, algebraic systems theory

1 Introduction

We study the class of linear time-varying systems with real analytic coefficients and m-inputs and
p-outputs of the form

ẋ = A(t)x+B(t)u(t) (1.1a)

y(t) = C(t)x(t) , (1.1b)

where (A,B,C) ∈ An×n×An×m×Ap×n; this class is denoted by Σn,m,p and we write (A,B,C) ∈ Σn,m,p

for short. The functions u : R → Rm and y : R → Rp are called input and output of the system, resp.
A trajectory (x, u, y) : R → Rn ×Rm ×Rp is said to be a solution of (1.1) if, and only if, it belongs to
the behaviour of (1.1):

B(1.1) :=

{

(x, u, y) ∈ ACn × PCm ×ACp

∣
∣
∣
∣

(x, u, y) solves (1.1)
for almost all t ∈ R

}

.
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Systems of the form (1.1) result from a linearization of nonlinear input/output systems

ẋ(t) = f(t, x(t), u(t)) , y(t) = h(t, x(t))

along a solution, where f and h are real analytic functions.
A fundamental problem for systems of the form (1.1) is to find a time-varying state feedback u(t) =
F (t)x(t) for some F : R → Rm×n such that, if applied to (1.1), the closed-loop system ẋ = (A(t) +
B(t)F (t))x is asymptotically stable. This problem was solved for time-invariant systems (A,B,C) ∈
Rn×n×Rn×m×Rm×n under the condition that the system has autonomous and asymptotically stable
zero dynamics (for the latter see Definition 2.1 and 5.1): see Corollary 5.4 in the present paper and [17,
pp. 298-300].
The guiding research idea of the present paper is to see how this stabilization result can be extended
to time-varying systems (1.1). To this end, it was necessary to combine different concepts:
The algebraic concept of the skew polynomial ring M[D], introduced in [15], is crucial for studying
time-varying linear systems in polynomial operator description. Hence, we frequently consider M[D]
with indeterminate D, real meromorphic coefficients, or A[D] with real analytic coefficients, and mul-
tiplication rule

∀ f ∈ M : Df = fD+ ḟ . (1.2)

The algebraic properties of M[D] and matrices over this ring will prove useful in our analysis, and we
have delegated the important properties of this ring needed in the present paper to Appendix A.
From the field of dynamical systems we require the concept of (asymptotically stable) zero dynamics.
The latter is the crucial assumption to resolve the stabilization problem. Zero dynamics was introduced
for time-invariant nonlinear systems in [7], see also the textbook [17, Sec. 4.3, 5.1, 6.1]. We think that
the importance of the concept of zero dynamics has been underestimated and we treat them in detail
for time-varying linear systems.
The geometric concept of (A,B)-invariant time-varying subspaces is important to understand the zero
dynamics. Geometric control theory was introduced by [2, 24] and for time-varying linear systems
by [12]. The geometric description of the zero dynamics allows for the derivation of the zero dynamics
form which is interesting in its own right and also essential for proving the stabilization result.
Different canonical forms for time-varying systems, such as the Byrnes-Isidori form [14], the zero
dynamics form (new), the Teichmüller-Nakayama form [8], and the Hermite form [10] are a recurrent
theme in the present paper. On the one hand they are instrumental for making connections between
algebraic, geometric, and dynamic objects; on the other hand we refine some of these forms where
needed for the stabilization result.
The concepts of stability and Lypunov exponents of time-varying linear systems, see e.g. [11], provide
the main technical tool to derive the stabilization result.
The concept of behaviour is the general framework in the present paper. See the textbook [20] for
time-invariant systems, and see [13] for time-varying systems and the ring M[D]. Note that if we set

R(D) =

[
DIn −A −B 0

−C 0 Ip

]

∈ A[D](n+p)×(n+m+p) , for (A,B,C) ∈ Σn,m,p,

then the behaviour can be written as kerACn×PCm×ACp R( d
dt) = B(1.1).

In Section 2, we investigate the zero dynamics; i.e., those dynamics which are not visible at the output.
It is shown that they are a dynamical system or, in other words, a behaviour. Autonomy and also
triviality of the zero dynamics are closely related to full column rank and left invertibility of an operator,
resp. The relations are depicted in Fig. 1.
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(H1) &

max(A,B; kerC)
eds
= {0}

Lem. 3.8
=⇒

[
DIn−A , −B

−C 0

]

is left invertible
over M[D]

Pr. 2.5
=⇒

⇐⇒ LTI

ZD(1.1) =
{(0, 0, 0)}

Pr. 4.2 ⇓ ⇓

(A,B,C) is
contr. & observ.

[
DIn−A , −B

−C 0

]

has full column
rank over M[D]

Pr. 2.4
⇐=

⇐⇒ LTI

(A,B,C) has
aut. zero dyns.

Fig. 1: Implications relating algebraic properties of (A,B,C) with properties of the zero dynam-
ics ZD(1.1). Arrows labeled with LTI point out stronger versions of the results in the linear
time-invariant case. For each unidirectional arrow there is a counterexample showing that the
converse implication is false.

In Section 3, we discuss (A,B)-invariant time-varying subspaces and their generators. Because of the
close relation to the zero dynamics we focus on the maximal (A,B)-invariant subspace included in the
kernel of C. A main step consists in the introduction of the assumptions (H1)-(H2), which require
(i) that the input matrix B as well as the generator of the maximal (A,B)-invariant subspace included
in the kernel of C to be of constant full rank and (ii) that these subspaces have trivial intersection.
This assumption is used to derive a zero dynamics form (3.15) and it is shown by example that these
assumptions cannot be weakened in a straightforward way. Furthermore, (H1)-(H2) guarantee the
existence of a vector space isomorphism between the zero dynamics and the maximal (A,B)-invariant
subspace included in the kernel of C. See Fig. 2.

Existence of the
Byrnes-Isidori form (B.4)

Existence of the zero
dynamics form (3.15)

⇑ Th.B.7 ⇑ Th. 3.9

(A,B,C) has
strict rel. degree

Pr. 3.7
=⇒ (H1)-(H2)

Pr. 3.14
=⇒

(A,B,C) has
aut. zero dyns.

Rem. 3.6 m LTI

C(sI −A)−1B ∈
Glm(R(s))

LTI
⇐⇒

Pr. 3.14

(A,B,C) has
aut. zero dyns.

Fig. 2: Implications relating relative degree, the assumptions (H1)-(H2) and autonomy of the
zero dynamics. Arrows labeled with LTI point out stronger versions of the results in the linear
time-invariant case. For each unidirectional arrow there is a counterexample showing that the
converse implication is false.
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The assumption of a strict relative degree is stronger than Assumptions (H1)-(H2) and allows to show
that the zero dynamics are a direct summand of the behaviour, and that the maximal (A,B)-invariant
subspace included in the kernel of C, or equivalently the zero dynamics, can be viewed as the kernel
of a certain matrix.
A further important aspect is that (H1)-(H2) imply the autonomy of the zero dynamics. For time-
invariant systems, these assumptions are even equivalent to the autonomy. This fact was not realized
in [17, pp. 298-300] although there (H1)-(H2) are used to derive the zero dynamics form in the time-
invariant case.
In Section 4, we exploit an operator characterization of controllability and observability of time-varying
systems [15] to show the relationship between triviality of the maximal (A,B)-invariant subspace
included in kerC and controllability and observability. See Fig. 1.
In Section 5 the stabilization problem is solved using the tools presented so far. For square systems, i.e.
p = m, it is shown that the Assumptions (H1)-H(2) – which are for time-invariant systems equivalent
to autonomous zero dynamics – together with exponential stability of the zero dynamics are sufficient
for the existence of an exponentially stabilizing feedback, provided we are dealing with bounded data.
The proof relies on the transformation to the zero dynamics form and the analysis of the system
in this simpler form. The result is also true for the problem of uniform exponential stabilization if
uniform stability properties are required for the zero dynamics form. It also gives a deeper and sharper
understanding in case of time-invariant systems.
Some basic algebraic facts about the ring M[D] are presented in Appendix A and in Appendix B we
study some aspects of the (strict) relative degree of time-varying systems and recall the definition of
the Byrnes-Isidori form and show some new aspects thereof.

We close the introduction with a list of nomenclature used in the present paper.

N, N0, R the set of natural numbers, N0 = N ∪ {0}, and real numbers, resp.

Rn×m the set of n×m matrices with entries in a ring R
Gln(R) the general linear group of invertible n× n matrices over R
‖x‖ =

√
x⊤x, the Euclidean norm of x ∈ Rn

‖A‖ = max
{
‖Ax‖

∣
∣x ∈ Rm, ‖x‖ = 1

}
, induced matrix norm of A ∈ Rn×m

A the ring of real analytic functions f : R → R

M the field of real meromorphic functions, i.e. the quotient field of A
Apw = { f : R \ I → R | f is real analytic and I ⊂ R a discrete set },

the set of piecewise analytic functions; a set I ⊆ R is called discrete if, and only if,
for any compact K ⊆ R, we have that K ∩ I is finite

AC the set of absolutely continuous functions f : R → R, see [11, Def. A.3.12]

PC the set of piecewise continuous functions f : R → R, i.e., f is left continuous every-
where, has only finitely many discontinuities on any compact subset of R, and the
right limits exist at the discontinuities

Cℓ the set of ℓ-times continuously differentiable functions f : R → R for ℓ ∈ N0 ∪ {∞}
L∞ the set of measurable, essentially bounded functions f : R → R

dom f the domain of definition of the function f

f |
I

the restriction of the function f to a set I ⊆ dom f

eds means “for all t ∈ R with the exception of a discrete set”, i.e., the respective statement
is valid for all t ∈ R \ I, where I ⊆ R is a discrete set

ΦA(·, ·) the transition matrix of ẋ = A(t)x for A ∈ An×n.
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2 Zero dynamics

In this section we introduce the crucial concept of zero dynamics for system (1.1) as well as the notion
of autonomous zero dynamics. The concept of zero dynamics has been introduced by Byrnes and
Isidori [7] and is well investigated for nonlinear systems [17, Sec. 4.3, 5.1, 6.1] and time-invariant linear
(differential-algebraic) systems [3, 5, 6]; for time-varying systems they have not yet been studied. The
zero dynamics are, loosely speaking, those dynamics which are not visible at the output. The concept
of autonomy stems from the behavioural approach, see [20, Def. 3.2.1]. Several algebraic criteria for
the autonomy of the zero dynamics are derived. Examples show the limitations of these criteria.

Definition 2.1 (Zero dynamics).
The zero dynamics of system (1.1) are defined as the set of trajectories

ZD(1.1) :=
{
(x, u, y) ∈ B(1.1)

∣
∣ y = 0

}
.

The zero dynamics ZD(1.1) are called autonomous if, and only if,

∀w1, w2 ∈ ZD(1.1) ∀ I ⊆ R an open interval : w1|I = w2|I =⇒ w1 = w2 . (2.1)

⋄

It will be advantageous to rewrite the zero dynamics as follows

∀ (x, u, y) ∈ ACn × PCm ×ACp : (x, u, y) ∈ ZD(1.1) ⇐⇒
[

d
dtIn −A −B

−C 0

] [
x
u

]

= 0 . (2.2)

Remark 2.2 (Autonomous zero dynamics).
By linearity of (1.1), the set ZD(1.1) is a real vector space. Therefore, the zero dynamics ZD(1.1) are
autonomous if, and only if, for any w ∈ ZD(1.1) which satisfies w|I = 0 on some open interval I ⊆ R,
it follows that w = 0. ⋄

Next we show that the zero dynamics carries in a certain sense the structure of a dynamical system.

Remark 2.3 (Zero dynamics as a dynamical system).
We now show that the zero dynamics of (A,B,C) ∈ Σn,m,p carries the structure of an R-linear dynam-
ical system as defined in [11, Defs. 2.1.1, 2.1.26]. For any (t0, x

0, u(·)) ∈ R × Rn × PCm there exists
a unique maximal solution of the initial value problem (1.1), x(t0) = x0, defined on R. Denote this
solution by ϕ(· ; t0, x0, u(·)) : R → Rn. Then the state transition map of (1.1) is the map defined on
its domain of definition

Dϕ := R× R× Rn × PCm by ϕ : (t, t0, x
0, u) 7→ ϕ(t, t0, x

0, u) ∈ Rn .

The output map of (1.1) is defined by

η : R× Rn × Rm → Rp, (t, x, u) 7→ C(t)x .

We now restrict ϕ to the set

D0
ϕ :=

{
(t, t0, x

0, u(·)) ∈ Dϕ

∣
∣ ∀ τ ∈ R : C(τ)ϕ(τ ; t0, x

0, u(·)) = 0
}
,

and by abuse of notation we write the same symbol for the restriction. It is readily verified that the
structure (R,Rm,PCm,Rn,Rp, ϕ, η), with the restricted state transition map ϕ : D0

ϕ → Rn satisfies all
the requirements of a linear dynamical system.
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The set D0
ϕ determines the zero dynamics in an equivalent manner. More precisely, for (x, u, y) ∈

ZD(1.1) we have for all t0, t ∈ R that (t, t0, x(t
0), u) ∈ D0

ϕ. Conversely, if we introduce an equivalence
relation on D0

ϕ by

(t, t0, x
0, u) ∼ (t′, t′0, x

1, u′) :⇔ ϕ(t′0; t0, x0, u) = x1 and u = u′,

then the equivalence classes [(t, t0, x
0, u)] correspond to maximal trajectories that generate an output

that is vanishing identically. So the equivalence classes are in one-to-one correspondence to the elements
of ZD(1.1). In this sense ZD(1.1) describes a dynamical system, as it is the space of trajectories of a
dynamical system. ⋄
The analysis of the zero dynamics via the differential operator in (2.2) is closely related to the algebraic

operator
[
DIn−A, −B

−C 0

]

∈ A[D](n+p)×(n+m). As a first step we show that the latter has full column rank

if the zero dynamics are autonomous.

Proposition 2.4 (Autonomous zero dynamics implies full column rank).
Let (A,B,C) ∈ Σn,m,p. Then

ZD(1.1) are autonomous
=⇒
⇐=6 rkM[D]

[
DIn −A −B

−C 0

]

= n+m,

and equivalence holds for time-invariant systems (A,B,C) ∈ Rn×n × Rn×m × Rp×n.

Proof: Let q := n+m, g := n+ p, R(D) :=
[
DIn−A, −B

−C 0

]

∈ A[D]g×q, and ℓ := rkM[D]R(D).

=⇒: Suppose that R(D) is in Teichmüller-Nakayama form (A.1). In view of (1.2), we may rewrite V (D)
in (A.1) as

V (D) =

(
N∑

k=0

Dk
nk
ij

dkij

)

i,j

for appropriate coprime nk
ij, d

k
ij ∈ A .

Let
γ ∈ A \ {0} be the product of all dkij , i, j ∈ {1, . . . , n}, k ∈ {0, . . . , N}.

Seeking a contradiction, assume that R(D) does not have full column rank, i.e., q− ℓ > 0. Now choose
z ∈ C∞ and an open interval I ⊆ R such that z|I = 0 and

w := V ( d
dt)

(

γ

[
0q−1

z

])

6= 0.

Note that w ∈ C∞(R;Rq) as the singularities in V are canceled by γ. Now we have for all t ∈ R that

R( d
dt)w(t) = U−1( d

dt) diag
{
Iℓ−1, r(

d
dt), 0(g−ℓ)×(q−ℓ)

}
(

γ(t)

[
0q−1

z(t)

])

= 0 ,

and hence
(
[In, 0]w, [0, Im]w, [C, 0]w

)
∈ ZD(1.1) and w|I = 0. But w 6= 0, which contradicts autonomy

of the zero dynamics.
⇐=6 : Consider the system (1.1) with

A(t) =

[
0 6t2 + 2
0 0

]

, B(t) =

[
0

3t2 + 2

]

, C(t) = [1,−t3], t ∈ R,

and define

u(t) :=

{
0, t ≤ 0

e−1/t2 , t > 0,
x1(t) := t6u(t), x2(t) := t3u(t), t ∈ R.
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It can be verified that u, x1, x2 ∈ C∞ and t3u̇(t) = 2u(t) for all t ∈ R. Furthermore, it is a simple
calculation that x := (x1, x2)

⊤, u, and y := 0 solve (1.1) for all t ∈ R, thus (x, u, y) ∈ ZD(1.1). However,
(x, u)|(−∞,0) = 0 and (x, u) 6= 0, hence ZD(1.1) is not autonomous. On the other hand,

R(D) =

[
DI2 −A −B

−C 0

]

=





D −6t2 − 2 0
0 D −3t2 − 2
−1 t3 0





has full column rank over M[D]. This may be seen by the factorization using

X(D) :=





D t3D − 3t2 − 2 t3

0 D 1
−1 0 0



 ∈ Gl3(M[D]), and R(D) = X(D)





1 −t3 0
0 1 −t3

0 0 t3D − 2



 .

⇐⇒ for (A,B,C) ∈ Rn×n ×Rn×m ×Rp×n: If R(D) ∈ R[D]g×q has column rank q over M[D], then by
Corollary A.2, R(D) has full column rank over R[D]. Autonomous zero dynamics can then be inferred
from [3, Prop. 3.6]. This completes the proof of the proposition.

We now strengthen the condition that
[
DIn−A, −B

−C 0

]

has full column rank to that of left invertibility

over M[D]; then we can show that the zero dynamics are trivial.

Proposition 2.5 (Left invertibility implies trivial zero dynamics).
Let (A,B,C) ∈ Σn,m,p. Then

[
DIn −A −B

−C 0

]

is left invertible over M[D]
=⇒
⇐=6 ZD(1.1) = {(0, 0, 0)},

and equivalence holds for time-invariant systems (A,B,C) ∈ Rn×n × Rn×m × Rp×n.

Proof: Let q := n+m, g := n+ p and R(D) :=
[
DIn−A, −B

−C 0

]

∈ A[D]g×q.

=⇒: Let (x, u, y) ∈ ZD(1.1) and w := (x⊤, u⊤)⊤. Then R( d
dt)w(t) = 0 for almost all t ∈ R. Since R(D)

is left invertible, there exists T (D) ∈ M[D]q×g such that T (D)R(D) = Iq, and hence T ( d
dt)R( d

dt)w(t) =
w(t) = 0 for almost all t ∈ R with the exception of the discrete set. The latter finding together with
(x, u) ∈ ACn × PCm yields (x, u) = 0 and proves that the zero dynamics are trivial.
⇐=6 : Consider the system (1.1) with

A =

[
0 1
0 0

]

, B =

[
0
1

]

, C(t) = [1, t], t ∈ R,

and observe that any (x, u, y) ∈ ZD(1.1) satisfies

x1(t) =
t2

2
u(t), x2(t) = − t

2
u(t), tu̇(t) = −3u(t), t ∈ R.

The latter differential equation implies that u(t) = ct−3 for some c ∈ R on both (−∞, 0) and (0,∞).
Since u is piecewise continuous this yields u = 0. Therefore, ZD(1.1) = {(0, 0, 0)}. However, the
Teichmüller-Nakayama form (A.1) is given by

R(D) =

[
DI2 −A −B

−C 0

]

=





D −1 0
0 D −1
1 t 0



 =





D −tD − 2 t/2
0 D −1/2
1 0 0









1 0 0
0 1 0
0 0 tD + 3









1 −t t2/2
0 1 −t/2
0 0 1



 ,
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and hence we see that R(D) is not left invertible.
⇐⇒ for time-invariant systems: This is a consequence of [3, Prop. 3.10] and the observation that any
left inverse of R(D) over R[D] is also a left inverse of R(D) over M[D]. This completes the proof of
the proposition.

Next we exploit the Byrnes-Isidori form, which is introduced in Appendix B, to show that the zero
dynamics are a direct summand of the behaviour B(1.1).

Proposition 2.6.
Suppose (A,B,C) ∈ Σn,m,m has strict relative degree ρ ∈ N. Then we have, for any t0 ∈ R and U(·)
from Theorem B.7, that

B(1.1) = ZD(1.1) ⊕
{
(x, u, y) ∈ B(1.1)

∣
∣ [0, ..., 0, In−ρm ]U(t0)x(t0) = 0

}
.

Proof: By Theorem B.7 (i), the parameter Γ(t) is invertible for all t ∈ R. It is then a direct consequence
of the Byrnes-Isidori form (B.4) that the zero dynamics are given by

ZD(1.1) =

{

(x, u, y) ∈ ACn × PCm ×ACp

∣
∣
∣
∣
∣

(x, u, y) =
(
U−1[0, . . . , 0, η⊤]⊤,−Γ−1Sη, 0

)

solves (1.1) for a.a. t ∈ R, where η̇ = Q(t)η

}

.

Now for any (x, u, y) ∈ B(1.1) we have

[0, ..., 0, In−ρm]U(t0)
(

x(t0)− U(t0)
−1[0, . . . , 0, η(t0)

⊤]⊤
)

= 0.

Thus, for η(·) defined by η̇ = Q(t)η, η(t0) = [0, ..., 0, In−ρm ]U(t0)x(t0), it follows that

(
x(·), u(·), y(·)

)

=

(

U(·)−1

[
0ρm
η(·)

]

,−Γ(·)−1S(·)η(·), 0
)

+

(

x(·)− U(·)−1

[
0ρm
η(·)

]

, u(·) + Γ(·)−1S(·)η(·), y(·)
)

.

Finally, the claim follows since by linearity B(1.1) is a vector space over R.

The next proposition is an immediate consequence of Proposition B.5.

Proposition 2.7 (Characterization of zero dynamics).
Suppose (A,B,C) ∈ Σn,m,m has strict relative degree ρ ∈ N. Then

(x, u, y) ∈ ZD(1.1) ⇐⇒

(i) y = 0 ,

(ii) u = −
[(

d
dtI +Ar

)ρ−1 (
C
)
B
]−1 (

d
dtI +Ar

)ρ (
C
)
x ,

(iii) x solves ẋ =

[

A−B
[(

d
dtI +Ar

)ρ−1 (
C
)
B
]−1 (

d
dtI +Ar

)ρ (
C
)
]

x .

3 (A,B)-invariant subspaces

The zero dynamics are the linear space of system trajectories that have zero output. In this section we
show that, given the assumptions (H1)-(H2) described below, this space is isomorphic to the supremal
(in fact maximal) (A,B)-invariant time-varying subspace which is included in kerC for almost all
times. As the main result of this section we derive the so-called zero dynamics form in Theorem 3.9.
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A basic tool in the analysis are time-varying subspaces V generated by a piecewise analytic matrix-
valued function V as introduced similarly in [12]. Given a time-dependent subspace of Rn denoted by
V =

(
V(t)

)

t∈R
and a matrix-valued function V : R \ I → Rn×k, where I ⊆ R is a discrete set, we write

V eds
= imV :⇐⇒ V(t) = imV (t) for all t ∈ R with the exception of a discrete set,

define

Wn :=

{

V =
(
V(t)

)

t∈R

∣
∣
∣
∣
∣

V(t) is a subspace of Rn for all t ∈ R and

∃ k ∈ N ∃V ∈ An×k
pw : V eds

= imV

}

,

and endow this set with the partial order

V1
eds⊂ V2 :⇐⇒ V1(t) ⊆ V2(t) for all t ∈ R with the exception of a discrete set.

The matrix V ∈ An×k
pw is called a generator of V ∈ Wn if, and only if, V eds

= imV . Note that the partial

order
eds⊂ and the equality

eds
= allow for the definition of equivalence classes [V] for V ∈ Wn as follows:

[V] :=
{

W ∈ Wn

∣
∣
∣ V eds

= W
}

.

Note also that V ∈ Wn does not have a unique generator, and different generators may have rank
drops and singularities at different points. However, among the set of all generators there is one
with piecewise constant rank. This is the content of the following straightforward modification of [12,
Prop. 2.6].

Lemma 3.1 (Piecewise constant rank generators).
For any k ∈ N and V ∈ An×k

pw there exist V̂ ∈ An×k
pw and a piecewise constant function r : domV → N0

such that

domV = dom V̂ ∧ imV
eds
= im V̂ ∧ rk V̂

eds
= r ∧

[

∀ t ∈ domV : imV (t) ⊆ im V̂ (t)
]

.

Now we introduce a concept of (A,B)-invariance for time-varying systems; it stems from [12, Sec. 4]
but is slightly different.

Definition 3.2 ((A,B)-invariance).
Let (A,B) ∈ An×n ×An×m and V ∈ Wn with generator V ∈ An×k

pw for some k ∈ N. Then V is called
(A,B)-invariant if, and only if,

∃N ∈ Ak×k
pw ∃M ∈ Am×k

pw :
(
d
dtI −A

)
V

eds
= V N +BM . (3.1)

⋄

Note that the set Apw of piecewise analytic functions includes in particular the set M of meromorphic
functions. The use of piecewise analytic N and M in Definition 3.2 is necessary as the following
example shows. Consider

V (t) =

[
0
t

]

, A = 02×2, B(t) =

[
1
0

]

, t ∈ R .

Then

∀ t ∈ R \ {0} :
(
d
dtI −A(t)

)
(V (t)) =

[
0
1

]

=

[
0
t

]

· t−1 +

[
1
0

]

· 0 .
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Note that the rank drop in V (0) leads to a coefficient matrix N(·) with a pole at zero.

Now we consider, for (A,B,C) ∈ Σn,m,p, the set of all (A,B)-invariant subspaces in Wn which are
included in the kernel of C; more precisely

L(A,B; kerC) :=

{

V ∈ Wn

∣
∣
∣
∣
V is (A,B)-invariant and V eds⊂ kerC

}

.

It is easy to see that this set is nonempty and closed under (pointwise) subspace addition. Hence it is

an upper semi lattice with partial order
eds⊂ . Using the existence of generators with piecewise constant

rank (see Lemma 3.1) it follows that there is a V ∈ L(A,B; kerC) with maximal, piecewise constant
dimension with the exception of a discrete set. That is, its piecewise analytic and piecewise constant
rank generator V (·) satisfies

rkV (t) ≥ rkW (t) for all t ∈ R, eds,

and any W ∈ L(A,B; kerC) with piecewise constant rank generator W . Similarly to the time-invariant
case, see [24, Lemma 4.4], we thus have the existence of a maximal element

max(A,B; kerC) := supL(A,B; kerC) = maxL(A,B; kerC) ∈ Wn;

this maximal element is unique relative to
eds
=. . In the following we will identify max(A,B; kerC) with

its equivalence class [max(A,B; kerC)].

The following proposition shows that max(A,B; kerC) has a simple representation if (A,B,C) has a
strict relative degree.

Proposition 3.3 (Representation of max(A,B; ker C)).
Let (A,B,C) ∈ Σn,m,m and use C as defined in Theorem B.7. Then we have

(A,B,C) has strict relative degree ρ ∈ N =⇒ max(A,B; ker C)
eds
= ker C.

Proof: Let U ∈ Gln(A) be as in Theorem B.7 and (Â, B̂, Ĉ) as in (B.8). On several occasions, we
will make use of the fact that

∀ t ∈ R : U(t) ker C(t) = ker
(
C(t)U(t)−1

)
. (3.2)

Note that this is a consequence of the invertibility of U(t) and does not depend on the special structure
of U or C.
Step 1 : We first show

max(A,B; ker C)
eds
= U−1 max(Â, B̂; ker Ĉ)

which is equivalent to

U max(A,B; ker C)
eds
= max(Â, B̂; ker Ĉ) . (3.3)

Let V ∈ Wn be any (A,B)-invariant time-varying subspace included in kerC and generated by V ∈
An×k

pw , k ∈ N. Then (3.1) holds for some N ∈ Ak×k
pw , M ∈ Am×k

pw and hence we have

(
d
dtI − Â

)
(UV )

eds
= U̇V + UV̇ − ÂUV

eds
=

(B.8)
U̇V + UV̇ − (UA+ U̇)V

eds
= U

(
d
dtI −A

)
(V )

eds
=

(B.8), (3.1)
(UV )N + B̂M.
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Since UV ∈ An×k
pw , UV =

(
U(t)V(t)

)

t∈R
is (Â, B̂)-invariant. Furthermore,

im(U(t)V (t)) = U(t) imV (t) ⊆ U(t) kerC(t)
(3.2)
= ker

(
C(t)U(t)−1

) (B.8)
= ker Ĉ(t)

for all t ∈ R, eds, and so “
eds⊂ ” in (3.3) follows. The proof of “

eds⊃ ” in (3.3) is analogous and omitted.
Step 2 : We show that

U−1 max(Â, B̂; ker Ĉ)
eds
= ker C

which, in view of (3.2) and (B.18), is equivalent to

max(Â, B̂; ker Ĉ)
eds
= X := im [0, ..., 0, In−ρm ]⊤ ∈ Wn . (3.4)

Step 2a: We show “
eds⊃” in (3.4). The family X is (Â, B̂)-invariant, since

(
d
dtI − Â

)








0
...
0

In−ρm








(B.9)
= −










0
...
0
S
Q










=








0
...
0

In−ρm







(−Q) +










0
...
0
Γ
0










(−Γ−1S) =








0
...
0

In−ρm







N + B̂M,

where N := −Q ∈ A(n−ρm)×(n−ρm) and M := −Γ−1S ∈ Am×(n−ρm). Furthermore,

∀ t ∈ R : im








0
...
0

In−ρm








(B.18)
= ker

(
C(t)U(t)−1

) (B.8)
= ker











Ĉ(t)
(
d
dtI +A(t)r

) (
C(t)

)
U(t)−1

...
(
d
dtI +A(t)r

)ρ−1 (
C(t)

)
U(t)−1











⊆ ker Ĉ(t)

and therefore X eds⊂ max(Â, B̂; ker Ĉ).

Step 2b: We show
eds⊂ in (3.4), i.e., that any (Â, B̂)-invariant time-varying subspace V̂ ∈ Wn included

in ker Ĉ satisfies V̂ eds⊂ X . Let V̂ ∈ An×k
pw , k ∈ N, and N ∈ Ak×k

pw , M ∈ Am×k
pw be such that

im V̂
eds⊂ ker Ĉ and

(
d
dtI − Â

)
V̂

eds
= V̂ N + B̂M . (3.5)

It suffices to show that
∀ j = 1, ..., ρ : SjV̂

eds
= 0 , (3.6)

where
Sj := diag {Im, . . . , Im

︸ ︷︷ ︸

j-times

, 0, . . . , 0} ∈ Rn×n, j = 1, ..., ρ.

We show (3.6) by induction. If j = 1, then

S1V̂
eds
=

(B.9)
Ĉ⊤ĈV̂

eds
=

(3.5)
0.

Suppose Sj V̂
eds
= 0 holds for some j ∈ {1, . . . , ρ− 1}, whence d

dtSj V̂
eds
= Sj

d
dt V̂

eds
= 0. Define

V̂i := diag {0m×m, . . . , 0m×m
︸ ︷︷ ︸

(i−1)-times

, Im, 0, . . . , 0}V̂ , i = 2, . . . , j + 1 .
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We obtain, using j ≤ ρ− 1 in the first and the last equality,














V̂2

...

V̂j+1

0
...
0














eds
=

(B.9)
SjÂV̂

eds
= −Sj

(
d
dtI − Â

)
(V̂ )

eds
=

(3.5)
−SjV̂ N − SjB̂M

eds
=

(B.9)
−Sj










0
...
0
Γ
0










M
eds
= 0 .

By continuity, we find Sj+1V̂
eds
= 0. The proof of Step 2 is complete, and the proof of the proposition

follows from Step 1 and Step 2.

For the remainder of this section we introduce the following assumptions for (A,B,C) ∈ Σn,m,p.

(H1) ∀ t ∈ R : rkB(t) = m,

(H2) ∃ k ∈ N0 ∃V ∈ An×k with constant rank k such that

imV
eds
= max(A,B; kerC) and ∀ t ∈ R : imB(t) ∩ imV (t) = {0} .

For time-invariant systems (A,B,C) ∈ Rn×n × Rn×m × Rm×n with the same number of inputs and
outputs, we will see that the Assumptions (H1)-(H2) are equivalent to invertibility of the transfer
function (see Remark 3.6) and also to the autonomy of the zero dynamics (see Proposition 3.14).
The following lemma is crucial. If Assumptions (H1)-(H2) hold and the largest (A,B)-invariant sub-
space included in the kernel of C is considered, then it is possible to require analyticity in the definition
of (A,B)-invariant subspaces.

Lemma 3.4.
Let (A,B) ∈ An×n ×An×m such that (H1)-(H2) are satisfied and let V ∈ An×k be as in (H2). Then
there exist N ∈ Ak×k and M ∈ Am×k such that

(
d
dtI −A

)
V = V N +BM . (3.7)

Proof: By (H2) we have that (im V (t))t∈R ∈ Wn is (A,B)-invariant, i.e., there exist N ∈ Ak×k
pw and

M ∈ Am×k
pw such that (3.1) is satisfied. As the left hand side of that equality is analytic, it follows from

the identity theorem, that V N + BM can be extended to an analytic function, so that the equality
holds for all t ∈ R. By (H2) it then follows that each of the summands V N and BM is analytic, as
singular points in one summand cannot be canceled by the other one. For the proof that then N , resp.
M are analytic we will use the full rank condition of V , resp. B. Clearly it is sufficient to do this once.
So assume that M in (3.7) is not analytic. By (H1) and [22, Thm. 1] there exists S ∈ Gln(A) such
that B⊤S = [F, 0], where F ∈ Glm(A). Therefore, we find that

[
F−⊤ 0
0 In−m

]

S⊤BM =

[
M
0

]

.

As the left hand side is analytic, this implies that M is analytic.
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In the following we show that if (A,B,C) is time-invariant, then max(A,B; ker C) has a time-invariant
generator.

Proposition 3.5 (Time-invariant systems and generators).
Let (A,B,C) ∈ Rn×n × Rn×m × Rp×n and let V∗ ⊆ Rn be the largest subspace of Rn such that

AV∗ ⊆ V∗ + imB ∧ V∗ ⊆ kerC. (3.8)

Then the sequence (Vi)i∈N0
defined by V0 := kerC and

∀ i ∈ N : Vi := A−1(Vi−1 + imB) ∩ kerC

is nested, terminates and satisfies

∃ k∗ ∈ N ∀ j ∈ N : V0 ) V1 ) · · · ) Vk∗ = Vk∗+j = A−1(Vk∗ + imB) ∩ kerC. (3.9)

Furthermore, we have that

V∗ = Vk∗
eds
= max(A,B; kerC).

Proof: It follows from [3, Lem. 3.4] that (3.9) holds and that V∗ = Vk∗ . In order to show

Vk∗
eds
= max(A,B; kerC), (3.10)

let V ∈ Rn×k be such that imV = Vk∗ and observe that by (3.8) there exist N ∈ Rk×k, M ∈ Rm×k

such that AV = V N +BM and CV = 0. This implies that

( d
dtI −A)V = V N +BM

and hence imV is (A,B)-invariant and by CV = 0, imV is included in kerC. Therefore, we find that

Vk∗
eds⊂ max(A,B; kerC).

In order to show maximality of Vk∗ let Ṽ ∈ An×q
pw , Ñ ∈ Aq×q

pw and M̃ ∈ Am×q
pw be such that

( d
dtI −A)Ṽ

eds
= Ṽ Ñ +BM̃ ∧ CṼ

eds
= 0. (3.11)

For future reference recall that for any f ∈
(
C1
)q
, an open set T ⊆ R and a subspace S ⊆ Rq we have,

as a simple consequence of the definition of ḟ via limits of difference quotients, that

(∀ t ∈ T : f(t) ∈ S) =⇒
(

∀ t ∈ T : ḟ(t) ∈ S
)

. (3.12)

Now let x ∈ Rq. Define y(·) := Ṽ (·)x ∈ Aq
pw and observe that y(t) ∈ kerC for all t ∈ dom Ṽ , thus,

by (3.12), ẏ(t) ∈ kerC for all t ∈ dom Ṽ . We may then infer from (3.11) that

y(t) ∈ A−1
(

ẏ(t)− Ṽ (t)Ñ (t)x−BM̃(t)x
)

∩ kerC ⊆ A−1(kerC + imB) ∩ kerC = V1

for all t ∈ dom Ṽ ∩ dom Ñ ∩ dom M̃ . As x ∈ Rq was arbitrary, this implies im Ṽ
eds⊂ V1. Also a further

application of (3.12) yields ẏ(t) ∈ V1 for all t ∈ R, eds. We may combine these properties using a

similar argument as above to obtain y(t) ∈ V2 for all t ∈ R, eds, hence im Ṽ
eds⊂ V2 and ẏ(t) ∈ V2.

Inductively, we obtain im Ṽ
eds⊂ Vk∗ and this shows (3.10).
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Remark 3.6 (Time-invariant systems).
If (A,B,C) is time-invariant, then max(A,B; ker C) has a generator which is a fixed subspace, inde-
pendent of time, by Proposition 3.5. Now [24, Excercise 4.4] and also [17, Rem. 6.1.3] yield that for
time-invariant systems with the same number of inputs and outputs we have

(H1)-(H2) hold ⇐⇒ C(sI −A)−1B is invertible over R(s).
⋄

In the next proposition we show that the existence of a strict relative degree implies that Assump-
tions (H1)-(H2) hold but not vice versa.

Proposition 3.7 (Strict relative degree implies (H1)-(H2)).
For (A,B,C) ∈ Σn,m,m we have:

(A,B,C) has strict relative degree ρ ∈ N =⇒ (H1)-(H2) hold ,

and the converse is false in general, even for time-invariant systems.

Proof: Let (A,B,C) have strict relative degree ρ ∈ N. We may assume, without restriction of gen-
erality due to Theorem B.7, that system (A,B,C) is in Byrnes-Isidori form (B.4). Then Assump-
tion (H1) follows since Γ(t) is invertible for all t ∈ R. Invoking Proposition 3.3, a (full rank) generator

V ∈ An×(n−ρm) for max(A,B; ker C)
eds
= ker C is given in Theorem B.7. Finally, Assumption (H2) is a

consequence of imV = ker C and the relation CB = [0, ..., 0,Γ⊤]⊤.

To show that the converse is false in general, consider (A,B,C) =
([

1 0 0
0 0 1
0 1 0

]

,
[
1 0
0 1
0 0

]

, [ 1 0 0
0 0 1 ]

)

. Then

CB = [ 1 0
0 0 ], and so (A,B,C) does not have strict relative degree. Furthermore, (H1) is satisfied and,

since kerC = im
(
[0, 1, 0]⊤

)
, we find that any generator V ∈ A3

pw of max(A,B; kerC)
eds⊂ kerC takes

the form V (·) = [0, v(·), 0]⊤ for some v ∈ Apw. Now, by (A,B)-invariance, we have

[ 0
v̇(t)
0

]

−
[ 0

0
v(t)

]

= V (t)N(t) +B(t)M(t) =
[
∗
∗
0

]

for all t ∈ R, eds.

Therefore, v
eds
= 0 and thus max(A,B; kerC)

eds
= {0}. So (H2) is satisfied and the system does not have

a strict relative degree.

Before we derive the main result of this section, we prove that if the maximal (A,B)-invariant subspace

included in kerC is trivial, then
[
DIn−A , −B

−C 0

]

is left invertible, and hence by Proposition 2.5 the zero

dynamics are trivial.

Lemma 3.8.
For any (A,B,C) ∈ Σn,m,p we have :

(H1) ∧ max(A,B; kerC)
eds
= {0} =⇒

[
DIn−A , −B

−C 0

]

is left invertible over M[D] .

Proof: The assumption max(A,B; kerC)
eds
= {0} is equivalent to:

∀ k ∈ N ∀Z ∈ An×k
pw , N ∈ Ak×k

pw ,M ∈ Am×k
pw :

[
d
dtI −A −B
−C 0

] [
Z
M

]

eds
=

[
ZN
0

]

=⇒ Z
eds
= 0. (3.13)

We use the factorization (A.1) and accompanying notation from the proof of Proposition 2.4. Set

1q−ℓ := (1, . . . , 1)⊤ ∈ Rq−ℓ and let

γ ∈ A \ {0} be the product of all dkij , i, j ∈ {1, . . . , n}, k ∈ {0, . . . , N}.
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Then by construction

w := V ( d
dt)

(

γ

[
0ℓ
1q−ℓ

])

∈ Aq .

Step 1 : We show that ℓ = q. Seeking a contradiction, assume that ℓ < q. Then we have

R( d
dt)w(t) = R( d

dt)

(

V ( d
dt)

(

γ(t)

[
0ℓ
1q−ℓ

]))

(A.1)
= U( d

dt)
−1diag

{
Iℓ−1, r(

d
dt), 0(g−ℓ)×(q−ℓ)

}
(

γ(t)

[
0ℓ
1q−ℓ

])

= 0

for all t ∈ R and hence k := 1, Z := [In, 0n×m]w, N := 0, M := [0m×n, Im]w satisfy the left hand
side of (3.13), thus Z = 0. This implies BM = 0 and by (H1) it follows M = 0. Therefore,

w =
[
Z⊤,M⊤

]⊤
= 0 and as V is unimodular it follows that γ = 0, a contradiction.

Step 2 : We show that r(D) = r ∈ M \ {0}. Seeking a contradiction assume that deg r(D) ≥ 1.
Then there exists z ∈ Apw \ {0} such that r( d

dt)z(t) = 0 for all t ∈ R, eds. It follows that for w :=

V ( d
dt)(0q−1, z)

⊤ ∈ Aq
pw we have R( d

dt)w(t) = 0 for all t ∈ R, eds. Now set k := 1, Z := [In, 0]w ∈ An×1
pw

and M := [0, Im]w ∈ Am×1
pw and observe that, similar to Step 1, (3.13) implies that Z

eds
= 0 and M

eds
= 0.

Thus we arrive at w
eds
= 0, whence the contradiction z

eds
= 0. This completes the proof of the lemma.

The Byrnes-Isidori form (B.4) is derived for systems with strict relative degree and is fundamental for
the analysis of the stabilization problem. The zero dynamics form (3.15) derived in the following for
systems satisfying Assumptions (H1)-(H2) is of equal importance. Note that (H1)-(H2) are weaker
than strict relative degree and in case of time-invariant systems they are equivalent to the autonomy
of the zero dynamics; see Fig. 2.
The zero dynamics form has been derived in [17, Rem. 6.1.3] for time-invariant ODE systems; however
it was not mentioned that it is based on the assumption of the autonomy of the zero dynamics,
although technically (H1)-(H2) are assumed. In the present paper the zero dynamics form is used
(i) to construct a vector space isomorphism between the zero dynamics of system (1.1) and the maximal
(A,B)-invariant time-varying subspace included in kerC, and (ii) for proving stabilization results in
Section 5.

Theorem 3.9 (Zero dynamics form).
Consider (A,B,C) ∈ Σn,m,p and suppose Assumptions (H1)-(H2) are satisfied. Let V ∈ An×k be given
by (H2), where k ∈ {0, . . . , n}. Then there exists W ∈ An×(n−k) such that [V,W ] ∈ Gln(A) and the
coordinate transformation

[
z1(t)
z2(t)

]

:= [V (t), W (t)]−1 x(t) (3.14)

converts (1.1) into the form

ż1 = A1(t) z1 + A2(t)z2

ż2 = B2(t)K(t) z1 + A4(t)z2 + B2(t)u(t)

y(t) = C2(t) z2(t)

(3.15)

where A1 ∈ Ak×k, A2 ∈ Ak×(n−k), A4 ∈ A(n−k)×(n−k), B2 ∈ A(n−k)×m, C2 ∈ Ap×(n−k), K ∈ Am×k

and
max(A4, B2; kerC2)

eds
= {0} ∧ ∀ t ∈ R : rkB2(t) = m.
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Proof: Step 1 : We show the form (3.15). First note that by (H2) we have k + m ≤ n. Then, by
Assumptions (H1)-(H2),

∀ t ∈ R : rk[V (t), B(t)] = k +m.

If k + m = n, define W := B. If k + m < n, then we find that by [22, Thm. 1] that there exist
X ∈ An×(m+k) and Y ∈ An×(n−m−k) such that [X,Y ] ∈ Gln(A) and

[
V ⊤

B⊤

]
[
X Y

]
=
[
F 0

]
,

where F ∈ Glm+k(A). In particular, the invertibility of F follows from the constant full column rank
of [V,B]. Let Z := [X,Y ]−⊤[0(n−m−k)×(m+k), In−m−k]

⊤ ∈ A(n−m−k)×n and observe that

[
V B Z

]
=

[
X⊤

Y ⊤

]−1 [
F⊤ 0
0 In−m−k

]

∈ Gln(A) .

We may thus define W := [B,Z]. Now in both cases

∀ t ∈ R : imB(t) ⊆ imW (t)

and the coordinate transformation (3.14) converts (1.1) into the form

ż1 = A1(t) z1 + A2(t) z2 + B1(t)u(t)

ż2 = A3(t) z1 + A4(t) z2 + B2(t)u(t)

y(t) = C1(t) z1(t) + C2(t) z2(t),

where
([

A1 A2

A3 A4

]

,

[
B1

B2

]

, [C1, C2]

)

=
(

[V,W ]−1A[V,W ]− [V,W ]−1[V̇ , Ẇ ], [V,W ]−1B,C[V,W ]
)

(3.16)

are partitioned appropriately. Therefore all entries of Ai, Bi ,and Ci are real analytic.

The equality C1 = CV = 0 is a consequence of imV (t)
eds
⊆ kerC(t). The claim B1 = 0 may be seen as

follows: Let t ∈ R and x ∈ Rm. Then B(t) = V (t)B1(t) +W (t)B2(t) together with imB(t) ⊆ imW (t)
gives V (t)B1(t)x = B(t)x−W (t)B2(t)x ∈ imW (t)∩ imV (t) = {0}. Since V (t) has full rank, we obtain
B1(t)x = 0, and so B1(t) = 0 as x was arbitrary. By (H1) it is then clear that rkB2(t) = m for all
t ∈ R.
Step 2 : We show that there exists K ∈ Am×k such that A3 = B2K.
The (A,B)-invariance of (imV (t))t∈R ∈ Wn together with Lemma 3.4 yield the existence of N ∈
Ak×k,M ∈ Am×k such that

( d
dtI −A)V = V N +BM.

From (3.16) we see V̇ −AV = −[V,W ]
[
A1

A3

]

and B = WB2. Inserting these relations in the previous

equation we obtain
−V A1 −WA3 = V N +WB2M

as an equality of analytic functions. Invoking imV (t) ∩ imW (t) = {0} for all t ∈ R and using the full
rank of V , resp. W , we arrive at

N(t) = −A1(t) ∧ B2(t)M(t) = −A3(t) ∀ t ∈ R. (3.17)
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The choice K := −M yields the assertion.
Step 3 : We show that max(A4, B2; kerC2) = {0}.
To this end consider an (A4, B2)-invariant subspace contained in kerC2. So let p ∈ N, Z ∈ A(n−k)×p

pw ,
X ∈ Ap×p

pw , Y ∈ Am×p
pw be such that

[
d
dtIn−k −A4 −B2

−C2 0

] [
Z
Y

]

=

[
ZX
0

]

.

Let V(t) := im[V (t),W (t)Z(t)] for t ∈ domZ and V(t) := {0} for t ∈ R \ domZ. Then V ∈ Wn

with generator [V,WZ] ∈ An×(k+p)
pw and we will show that V is (A,B)-invariant and included in kerC.

For M as in (3.17) we have

( d
dtI −A)[V,WZ]

eds
= [V̇ , d

dt(WZ)]− [V,W ]

[
A1 A2Z
A3 A4Z

]

− [V̇ , ẆZ]

eds
= [0,W Ż ]− [V,W ]

[
A1 A2Z
A3 A4Z

]

eds
= [−V A1 −WA3,W (A4Z + ZX +B2Y )− V A2Z −WA4Z]
eds
=

A3=−B2M
[−V A1,−V A2Z +WZX] + [WB2M,WB2Y ]

eds
= [V,WZ]

[
−A1 −A2Z
0 X

]

+ [V,W ]

[
0
B2

]

︸ ︷︷ ︸

=B

[M,Y ],

and
[
−A1 −A2Z
0 X

]
∈ A(k+p)×(k+p)

pw , [M,Y ] ∈ Am×(k+p)
pw . This shows the desired (A,B)-invariance.

It follows directly from

C[V,WZ]
eds
= [0, CWZ]

eds
= [0, C2Z]

eds
= [0, 0],

that V is included in kerC eds.
Now, since (im V (t))t∈R is (up to

eds
=) the largest (A,B)-invariant time-varying subspace included in

kerC, it follows that W (t)Z(t) ∈ imV (t) ∩ imW (t) = {0} for all t ∈ R, eds, and therefore, since W (t)

has full column rank for all t ∈ R, Z
eds
= 0. This implies the assertion and concludes the proof of the

theorem.

Note that for the counterexamples in Proposition 2.4 and 2.5, the Assumptions (H1)-(H2) are not
satisfied since imV (t) ∩ imB(t) 6= {0} for t = 0. The necessity of the latter for all t ∈ R is stressed
by the following example.

Example 3.10 (Necessity of (H2)).
Assumption (H2) states that the intersection of imV (t) and imB(t) must be trivial for all t ∈ R. In
fact, this assumption cannot, in general, be weakened to “for all t ∈ R, eds”. The following example
illustrates that the assumption

max(A,B; ker C) ∩ imB
eds
= {0} (3.18)

is not sufficient for the existence of a zero dynamics form. Consider (1.1) with

A(t) =

[
−1 −1
0 −1

]

, B(t) =

[
t
1

]

, C(t) = [t,−1], t ∈ R,

17



and note that B satisfies Assumption (H1). Then any Ṽ ∈ A2×2
pw with CṼ = 0 has the form

[
v1(t) v2(t)
tv1(t) tv2(t)

]

, where v1, v2 ∈ Apw, and clearly im Ṽ (t) ⊆ im[1, t]⊤ =: imV (t) for all t ∈ R, eds.

Furthermore, im V is (A,B)-invariant since

( d
dtI −A)V (t) =

[
1 + t
1 + t

]

=

[
1
t

]

· 1 +
[
t
1

]

· 1 = V (t)N +B(t)M.

Therefore, V is a generator of max(A,B; ker C) with constant rank. Now,

[V (t), B(t)] =

[
1 t
t 1

]

,

which is invertible for all t ∈ R with |t| 6= 1, hence (3.18) is satisfied, but (H2) is not. Clearly, [V,B]
does not constitute a basis transformation. Furthermore, (A,B,C) cannot be put into the form (3.15),
which can be seen as follows: Let T ∈ Gl2(A) be such that

(a) TB =

[
0
b2

]

and (b) CT−1 = [0, c2].

Then, by (a), T (t) =

[
α(t) −tα(t)
β(t) γ(t)

]

for all t ∈ R and some α, β, γ ∈ A. Therefore,

T (t)−1 =
(
detT (t)

)−1
[
γ(t) tα(t)
−β(t) α(t)

]

, t ∈ R,

and by (b) if follows β(t) = tγ(t). This implies that detT (t) = (1 − t2)α(t)γ(t) = 0 for |t| = 1, a
contradiction. ⋄

We are now in a position to characterize the zero dynamics of a system (1.1) in terms of the maximal
time-varying (A,B)-invariant subspace included in kerC.

Corollary 3.11 (Characterization of zero dynamics).
Let (A,B,C) ∈ Σn,m,p and suppose that Assumptions (H1)-(H2) hold. If (x, u, y) ∈ B(1.1), then

(x, u, y) ∈ ZD(1.1) ⇐⇒
[

x(t) ∈ max(A,B; ker C)(t) for all t ∈ R, eds
]

.

Proof: =⇒: Let (x, u, y) ∈ ZD(1.1). Applying the coordinate transformation (z⊤1 , z
⊤
2 )

⊤ = [V,W ]−1x
from Theorem 3.9 we find that

ż2 = A4z2 +B2(u+Kz1),

0 = C2z2.

Therefore (z2, u + Kz1, 0) ∈ ZD(A4,B2,C2), and since max(A4, B2; kerC2)
eds
= {0} it follows from

Lemma 3.8 that ZD(A4,B2,C2) = {(0, 0, 0)}. This yields z2 = 0 and u = −Kz1, thus x(t) = V (t)z1(t) ∈
imV (t)

eds
= max(A,B; kerC)(t) for all t ∈ R, eds.

⇐=: By assumption,

x(t) ∈ max(A,B; ker C)(t)
eds⊂ kerC(t) for all t ∈ R, eds .

Hence y(t) = C(t)x(t) = 0 for all t ∈ R by continuity, which gives (x, u, y) ∈ ZD(1.1).
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In the following corollary we show that max(A,B; kerC), i.e. the maximal (A,B)-invariant subspace
included in the kernel of C, is isomorphic to the zero dynamics ZD(1.1). However, some care is required
in the formulation of the isomorphism since max(A,B; kerC) is an equivalence class, see page 10.
Therefore we choose an appropriate generator of the equivalence class, namely V in Assumption (H2),
to formulate the isomorphism.

Corollary 3.12 (Vector space isomorphism).
Let (A,B,C) ∈ Σn,m,p satisfy Assumptions (H1)-(H2) and let V be as in (H2). Then, for all t0 ∈ R,
the linear map

Lt0 : imV (t0) → ZD(1.1)

x0 7→ (x(·), F (·)x(·), C(·)x(·)) ,
where F := −[K, 0] [V,W ]−1 for K,V,W as in Theorem 3.9
and x(·) solves ẋ = (A+BF )x, x(t0) = x0,

is a vector space isomorphism.

Proof: Step 1 : We show that Lt0 is well-defined. Thus we have to show that for arbitrary x0 ∈
imV (t0), the solution of

ẋ = (A+BF )x, x(t0) = x0 (3.19)

satisfies
(x, u, y) := (x, Fx,Cx) ∈ ZD(1.1). (3.20)

First note that A+BF ∈ An×n and hence x ∈ An. It is then immediate that (x, u, y) ∈ B(1.1), hence
it remains to show that y = 0.
Applying the coordinate transformation (z⊤1 , z

⊤
2 )

⊤ = [V,W ]−1x from Theorem 3.9 and invoking

BF = [V,W ]

[
0 0

−B2K 0

]

[V,W ]−1,

we find that
ż1 = A1z1 + A2z2,
ż2 = A4z2 .

Also the initial value satisfies

V (t0)z1(t0) +W (t0)z2(t0) = x(t0) ∈ imV (t0) .

Thus W (t0)z2(t0) = x(t0) − V (t0)z1(t0) ∈ imW (t0) ∩ imV (t0) = {0}. Then W (t0)z2(t0) = 0 and the
full column rank of W (t0) gives z2(t0) = 0 which yields z2 = 0. Therefore, x(t) = V (t)z1(t) ∈ im V (t) ⊆
kerC(t) for all t ∈ R with the exception of a discrete set and hence, by continuity, y = Cx = 0.
Step 2 : We show that Lt0 is injective. Let x1, x2 ∈ imV (t0) so that Lt0(x

1)(·) = Lt0(x
2)(·). Then

x1 = x2 because
(x1, ∗, ∗) = Lt0(x

1)(·)
∣
∣
t=t0

= Lt0(x
2)(·)

∣
∣
t=t0

= (x2, ∗, ∗).
Step 3 : We show that Lt0 is surjective. Let (x, u, y) ∈ ZD(1.1). Then Corollary 3.11 yields that x(t) ∈
max(A,B; ker C)(t) for all t ∈ R, eds. Hence, applying the coordinate transformation (z⊤1 , z

⊤
2 )

⊤ =
[V,W ]−1x from Theorem 3.9 to (1.1) gives V (t)z1(t) +W (t)z2(t) = x(t) ∈ imV (t) for all t ∈ R, eds,

and, similarly to Step 1, we may conclude z2
eds
= 0 and, by continuity, z2 = 0. Therefore,

ż1(t) = A1(t)z1(t),
0 = B2(t)K(t)z1(t) +B2(t)u(t)

(3.21)
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for all t ∈ R. Due to rkB2(t) = m for all t ∈ R the second equation in (3.21) now gives

u = −Kz1 = −K[I, 0][V,W ]−1x = Fx.

Finally, simple calculations show that x = V z1 satisfies ẋ = (A + BF )x and, clearly, x(t0) =
V (t0)z1(t0) ∈ imV (t0).

We record that Proposition 3.7 yields, in view of Corollary 3.12 and Proposition 3.3, that the zero
dynamics are isomorphic to a certain kernel.

Corollary 3.13 (Characterization of zero dynamics).
For any (A,B,C) ∈ Σn,m,m with strict relative degree ρ ∈ N we have, for C defined in Theorem B.7,

ZD(1.1)
∼= ker C(t0) for almost all t0 ∈ R .

We may also show that the Assumptions (H1)-(H2) imply that the zero dynamics of the system (1.1)
are autonomous.

Proposition 3.14 (Assumptions (H1)-(H2) imply autonomy).
For (A,B,C) ∈ Σn,m,p we have:

(H1)-(H2) hold
=⇒
⇐=6 ZD(1.1) are autonomous,

and equivalence holds for time-invariant systems (A,B,C) ∈ Rn×n × Rn×m × Rp×n.

Proof: =⇒: Let (x, u, y) ∈ ZD(1.1) and I ⊆ R an open interval such that (x, u)|I = 0. Applying the

coordinate transformation (z⊤1 , z
⊤
2 )

⊤ = [V,W ]−1x from Theorem 3.9 we may conclude, as in Step 3
of the proof of Corollary 3.12, that z2 = 0 and that z1 and u solve (3.21) for all t ∈ R. Then
z1|I = V x|I = 0 gives z1 = 0 and hence B2u = 0. The full rank of B2 finally yields u = 0.
⇐=6 : Consider ẋ(t) = x(t)+ tu(t), y(t) = x(t), which has trivial and hence autonomous zero dynamics,
but for which (H1) is not satisfied.
⇐⇒ for (A,B,C) ∈ Rn×n × Rn×m × Rp×n: (H1) follows from Proposition 2.4, hence kerB = {0}.
Now assume that (H2) does not hold. By Proposition 3.5 there exists V ∈ Rn×k with im V

eds
=

max(A,B; kerC). As imV is (A,B)-invariant, it is well known that there exists an F ∈ Rm×n such
that (A+BF ) imV ⊆ imV , [24]. Now suppose that imB ∩ imV 6= {0}. Fix

F ∈ Rm×n : (A+BF ) im V ⊆ imV and T = [T1, T2] ∈ Gln(R) with imT2 = imV .

Now imV ⊆ kerC yields

[
T−1 0
0 I

] [
A+BF −B

−C 0

] [
T 0
0 I

]

=





A11 0 B1

A21 Q B2

C1 0 0



 . (3.22)

Since imB ∩ imV 6= {0}, we may choose v ∈ Rm such that 0 6= Bv ∈ imV and so there exists

v ∈ Rm \ {0} and w ∈ Rk \ {0} such that 0 6= Bv = T
[
B1

B2

]

v = T2w = T [ 0w ]. This implies B1v = 0

and B2v = w. Proposition 2.4 together with Corollary A.2 yield that
[
sI−A , −B
−C 0

]

has full column rank

over R[s]. Hence there exists λ ∈ C such that
[
λI−A , −B
−C 0

]

has full column rank and λI−Q is invertible
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by (3.22). Finally,

[
T−1 0
0 I

] [
λIn −A −B
−C 0

] [
T 0
FT I

]




0
−(λI −Q)−1w

v





=





λI −A11 0 B1

−A21 λI −Q B2

C1 0 0









0
−(λI −Q)−1w

v



 = 0,

a contradiction. This completes the proof of the proposition.

If we relax Assumption (H1) in Proposition 3.14 to the requirement that rkMB = m, then we would
also need to assume (3.18) instead of (H2) as B does only have full rank almost everywhere. In this
case, however, we cannot obtain Proposition 3.14 with the presented proof, because the argument relies
crucially on the zero dynamics form (3.15) from Theorem 3.9. Assumption (3.18) is not sufficient to
derive this form, as shown in Example 3.10.

4 Controllability and observability

In this section we show that the triviality of the maximal (A,B)-invariant subspace included in kerC
is sufficient for controllability and observability. The converse is false. We first recall the definitions
for controllability and observability.

Definition 4.1 (Controllability and observability).
A system (A,B,C) ∈ Σn,m,p is called completely controllable if, and only if,

∀ t0 ∈ R ∀x0, x1 ∈ Rn ∃ t1 > t0 ∃ (x, u, y) ∈ B(1.1) : x(t0) = x0 ∧ x(t1) = x1. (4.1)

(A,B,C) is called completely observable if, and only if,

∀ t0 ∈ R ∃ t1 > t0 ∀ (x, u, y) ∈ B(1.1) :
(

u|[t0,t1] = 0 ∧ y|[t0,t1] = 0
)

=⇒ x|[t0,t1] = 0.
⋄

In the sequel we will not use the qualifying “completely” as we do not consider other concepts of
controllability or observability. Note that by linearity, controllability is equivalent to (4.1) with x1 = 0
at every instance, see [23, Lem. 3.1.7].
For system with identical input and output dimensions we are now in a position to show the rela-
tionship between trivial maximal (A,B)-invariant subspace included in kerC and controllability and
observability.

Proposition 4.2 (Trivial maximal (A,B)-invariant subspace included in kerC yields controllability
and observability).
If (A,B,C) ∈ Σn,m,p and (H1) holds, then

m = p ∧ max(A,B; kerC)
eds
= {0} =⇒ (A,B,C) is controllable and observable.

The converse implication is false in general, even for time-invariant systems, and the implication is
not true in general for m 6= p.
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Proof: Step 1 : Recall [15, Thm. 6.4 and Prop. 6.5] that (A,B,C) is controllable and observable if
[DIn −A,−B] is right invertible over M[D] and

[
DIn−A
−C

]
is left invertible over M[D].

Step 2 : Now suppose the presupposition holds. Then Lemma 3.8 yields that
[
DIn−A, −B

−C 0

]

is left

invertible over M[D], and hence invertible, and the implication follows from Step 1.
Step 3 : We show that the converse implication is not true in general. The time-invariant system
(A,B,C) = ([ 0 1

0 2 ] , [
1
1 ] , [ 1 0 ]) is controllable and observable by the well-known Kalman test, and for

F =
[
0 −1

]
we have A+BF = [ 0 0

0 1 ], which has a nontrivial invariant subspace contained in kerC.
Step 4 : We show that the implication is in general not true for m 6= p. Consider (A,B,C) =

([ 1 0
0 1 ] , [

1
0 ] , [

1 0
0 1 ]) . Since kerC = {0}, also max(A,B; kerC)

eds
= {0}. The system is observable but not

controllable.

5 Stabilization by state feedback

In this section we introduce the notion of (asymptotically and exponentially) stable zero dynamics and
show that any system (A,B,C) with analytic coefficients, satisfying (H1)-(H2) and with exponentially
stable zero dynamics, is stabilizable via state feedback. For time-invariant systems, this has been
mentioned as a short note in [17, Rem. 6.1.3] and for time-invariant, differential-algebraic systems this
is shown in [4], but apart from that this result is new. First we define the notions of stability we use
in this paper for behaviours, which can then be applied to both linear systems (A,B,C) and the zero
dynamics ZD(1.1).

Definition 5.1 (Stable behaviour).
Let B ⊆ PCp be a linear behaviour; i.e., for any w1, w2 ∈ B and α ∈ R it holds that αw1 + w2 ∈ B.
Then B is called

stable :⇐⇒ ∀ ε > 0 ∀ t0 ∈ R ∃ δ > 0 ∀w ∈ B s.t. w(t0) ∈ Bδ(0) :

∀ t ≥ t0 : w(t) ∈ Bε(0).

attractive :⇐⇒ ∀w ∈ B : lim
t→∞

w(t) = 0.

asymptotically stable :⇐⇒ B is stable and attractive.

exponentially stable :⇐⇒ ∃λ > 0 ∀ t0 ∈ R ∃M > 0 ∀w ∈ B ∀ t ≥ t0 :

‖w(t)‖ ≤ Me−λ(t−t0)‖w(t0)‖.
uniformly exponentially stable :⇐⇒ ∃M,λ > 0 ∀ t ≥ t0 ∈ R ∀w ∈ B :

‖w(t)‖ ≤ Me−λ(t−t0)‖w(t0)‖.

The Lyapunov exponent of a behaviour is defined as

kL(B) := inf
{

λ ∈ R
∣
∣
∣ ∃Mλ > 0 ∀w ∈ B ∀ t ≥ 0 : ‖w(t)‖ ≤ Mλ eλ t‖w(0)‖

}

∈ R ∪ {−∞,∞}.
⋄

The above concept sets us in a position to speak about stability of the zero dynamics, and to relate
this to linear systems of the form

ẋ = A(t)x (5.1)

where A ∈ An×n is bounded. The linear equation (5.1) (or, more precisely, the zero solution) is said
to be stable, resp. attractive, asymptotically stable, uniformly exponentially stable if, and only if, the
behaviour

{ x ∈ (C∞)n | ∀ t ∈ R : ẋ(t) = A(t)x(t) }

22



has the respective property. Note that for linear systems (behaviours) attractivity is equivalent to
asymptotic stability. The Lyapunov exponent becomes

kL(A) := inf
{

λ ∈ R
∣
∣
∣ ∃Mλ > 0 ∀ t ≥ 0 : ‖ΦA(t, 0)‖ ≤ Mλ eλ t

}

∈ R ∪ {−∞,∞} ,

and it is well-known that (5.1) is exponentially stable if, and only if, kL(A) ∈ [−∞, 0); see [11, Sect. 3.3]
for more details.
We require the following estimate for the constants λ,Mλ in the definition of the Lyapunov exponent.

Lemma 5.2.
Let A ∈ An×n be bounded. If kL(A) < λ for some λ ∈ R, then there exists M > 0 such that, with
c := ‖A‖∞ + |λ|,

∀ t1 ≥ t0 ∈ R : ‖ΦA(t1, t0)‖ ≤ Mec|t0|eλ(t1−t0) . (5.2)

Proof: By [11, Lemma 3.3.4] we have with a := ‖A‖∞ that ‖ΦA(t1, t0)‖ ≤ ea|t1−t0| for all t1, t0 ∈ R.
Since kL(A) ≤ λ there exists M > 0 such that ‖ΦA(t, 0)‖ ≤ Meλt for all t ≥ 0. Then using the cocycle
property of the evolution operator we obtain

∀ t1 ≥ t0 ∈ R : ‖ΦA(t1, t0)‖ ≤ ‖ΦA(t1, 0)‖ · ‖ΦA(0, t0)‖ ≤ Me(a+|λ|)|t0|eλ(t1−t0) .

This shows the assertion.

We are now ready to prove the main result of the present paper which concerns stabilizability of a
system with stable zero dynamics. The zero dynamics form will be a main tool in the proof. Here
an additional complication arises as the state transformations which leave the property of uniform
exponential stability invariant are the so-called Bohl transformations, see [11, Chapter 3]. In order
that we can infer from the stability properties of the transformed system those of the original system
we have to restrict ourselves to these transformations. In the following result we will use the slightly
more restrictive notion of a Lyapunov transformation [11, Chapter 3]. A time-varying transformation
S ∈ Gln(A) is called a Lyapunov transformation if, and only if, S, S−1 and Ṡ are bounded.
The following result that if a square system (1.1) satisfies Assumptions (H1)-(H2) (which is closely
related to the autonomy of the zero dynamics) and various boundedness conditions hold, then we may
choose a state feedback u(t) = F (t)x(t) for some F ∈ Am×n such that if applied to (1.1) the Lyapunov
exponent of the closed-loop system ẋ = [A(t) + B(t)F (t)]x is equal to the Lyapunov exponent of the
zero dynamics of (1.1).

Theorem 5.3 (Lyapunov exponents and state feedback).
Consider a square system (A,B,C) ∈ Σn,m,m and suppose

(α) A,B,C are bounded and Assumptions (H1)-(H2) hold,

(β) [V,W ] from Theorem 3.9 is a Lyapunov transformation and K from Theorem 3.9 is bounded.

If kL
(
ZD(1.1)

)
= −∞ (equivalently, the zero dynamics are trivial), then for all µ ∈ R there exists

F ∈ Am×n such that
kL(A+BF ) ≤ µ. (5.3)

If kL
(
ZD(1.1)

)
6= −∞, then there exists F ∈ Am×n such that the state feedback u(t) = F (t)x(t) applied

to (1.1) yields
kL(A+BF ) = kL

(
ZD(1.1)

)
. (5.4)
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Proof: Consider the transformation (3.14) and the decomposition (3.15). Note that by presupposi-
tion (β) every matrix in (3.15) is bounded. Furthermore, the Lyapunov exponent is invariant under
the transformation since [V,W ] is a Lyapunov transformation.

Step 1 : By Theorem 3.9, max(A4, B2; kerC2)
eds
= {0} and hence, in view of Proposition 4.2, (A4, B2, C2)

is controllable. We may thus apply [1, Theorem 3.6] to conclude that (A4, B2) is exponentially stabi-
lizable with arbitrary decay, i.e., for arbitrary λ > 0 there exists G ∈ Am×(n−k) such that

kL(A4 +B2G) < −λ. (5.5)

To be precise, in [1] the general case of system matrices over L∞ are considered; however, inspection
of the proof yields that for real analytic system matrices, the feedback matrix G may also be chosen
to be real analytic.
Step 2 : We show that kL(A1) = kL

(
ZD(1.1)

)
∈ R ∪ {−∞}.

Note that k = 0 if, and only if, the zero dynamics ZD(1.1) is trivial; and if this holds, then kL(A1) =
kL
(
ZD(1.1)

)
= −∞. If k > 0 , then kL(A1) ∈ R since A1 is bounded.

Step 2a: We show “≤”. Let z0 ∈ Rk and define z(·) := ΦA1
(·, 0)z0 ∈ (C∞)k and u := −Kz ∈ (C∞)m.

Then (3.16) yields, for K as in Theorem 3.9,

( d
dtI −A)V = −V A1 −WB2K = −V A1 −BK,

and therefore

d
dt(V z) = V̇ z + V ż = (V̇ + V A1)z = (AV −BK)z = A(V z) +Bu.

Furthermore, C(V z) = 0, thus (x, u, 0) := (V z,−Kz, 0) ∈ ZD(1.1). Since [V,W ], [V,W ]−1 and K are
bounded, the estimate

‖z(t)‖ =

∥
∥
∥
∥
∥
∥

[I, 0, 0]





I
0

−K(t)



 z(t)

∥
∥
∥
∥
∥
∥

≤

∥
∥
∥
∥
∥
∥





I
0

−K(t)



 z(t)

∥
∥
∥
∥
∥
∥

≤
∥
∥
∥
∥

[
[V (t),W (t)]−1 0

0 I

]∥
∥
∥
∥
·
∥
∥
∥
∥

(
x(t)
u(t)

)∥
∥
∥
∥

shows the claim.
Step 2b: We show “≥”. Let (x, u, 0) ∈ ZD(1.1) and observe that, as in Step 3 of the proof of Corol-

lary 3.12, x = V z1 for some z1 ∈ ACk and (z1, u) solve (3.21) for all t ∈ R. Since B2(t) has full column
rank for all t ∈ R we have B⊤

2 B2 ∈ Glm(A). Multiplying the second equation in (3.21) from the left
by (B⊤

2 B2)
−1B⊤

2 yields that u = −Kz1. Now ż1 = A1(t)z1 and the estimate

∥
∥
∥
∥

(
x(t)
u(t)

)∥
∥
∥
∥
≤
∥
∥
∥
∥

[
[V (t),W (t)] 0

0 I

]∥
∥
∥
∥
·

∥
∥
∥
∥
∥
∥





I
0

−K(t)





∥
∥
∥
∥
∥
∥

· ‖z1(t)‖

proves the assertion.
Step 3 : We show that (5.4) is satisfied if kL

(
ZD(1.1)

)
6= −∞. In this case, we have that k > 0 and we

choose F := [−K,G][V,W ]−1 ∈ Am×n, where G satisfies (5.5) with

λ > 2|kL(A1)|+ ‖A1‖∞ + 1.

First observe that

[V,W ]−1(A+BF )[V,W ]− [V,W ]−1[V̇ , Ẇ ] =

[
A1 A2

0 A4

]

+ [V,W ]−1B[0, G][V,W ]−1[V,W ]

=

[
A1 A2

0 A4 +B2G

]

,
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and the closed-loop system takes the form

ż =

[
A1(t) A2(t)
0 A4(t) +B2(t)G(t)

]

z . (5.6)

Step 3a: We show “≥” in (5.4). Since for any solution z1 ∈ (C∞)k of ż1 = A1(t)z1 the function
z = (z⊤1 , 0)

⊤ solves (5.6), the claim follows from Step 3.
Step 3b: We show “≤” in (5.4). Consider kL(A1) = kL

(
ZD(1.1)

)
∈ R and let µ ∈

(
kL(A1), kL(A1) + 1

)

be arbitrary. We may apply Lemma 5.2 and choose some M1 > 0 such that

∀ t ≥ t0 ≥ 0 : ‖ΦA1
(t, t0)‖ ≤ M1e

ct0eµ(t−t0),

where c = ‖A1‖∞ + |µ|. It is a simple calculation that λ+ µ− c > 0. Then, by (5.5),

∃M2 > 0 ∀ t ≥ 0 : ‖ΦA4+B2G(t, 0)‖ ≤ M2e
−λt.

Let (z1, z2) be any solution of (5.6). Then

∀ t ≥ 0 : ‖z2(t)‖ ≤ M2e
−λt‖z2(0)‖

and variation of constants yields, for all t ≥ 0, and in view of boundedness of A2,

‖z1(t)‖ =

∥
∥
∥
∥
ΦA1

(t, 0) z1(0) +

∫ t

0
ΦA1

(t, τ)A2(τ) z2(τ) dτ

∥
∥
∥
∥

≤ M1e
µt‖z1(0)‖ +M1M2‖A2‖∞

∫ t

0
ecτeµ(t−τ) e−λτ‖z2(0)‖dτ

and we continue, with M := max{M1,M1M2‖A2‖∞},

≤ Meµt‖z1(0)‖ +Meµt‖z2(0)‖
∫ t

0
e(c−µ−λ)τ dτ

≤ Meµt‖z1(0)‖ +
M

µ+ λ− c
eµt‖z2(0)‖.

Since [V,W ] is a Lyapunov transformation by (β) and −λ < µ, the above inequalities imply that
kL(A+BF ) ≤ µ. As µ > kL(A1) is arbitrary the claim is shown.
Step 4 : We show that (5.3) is satisfied if kL

(
ZD(1.1)

)
= −∞. In this case, in Step 3 (except for Step 3a)

the constant λ and the feedback F can be chosen in dependence of µ ∈ R and the argumentation remains
the same. This finishes the proof of the theorem.

Note that the proof of Theorem 5.3 is constructive. The matrix G can be obtained as described in [1].
Theorem 5.3 has been proved for time-invariant systems by Isidori [17, pp. 298-300]; however, it was
not realized that the Assumptions (H1)-(H2) are equivalent to the autonomy of the zero dynamics
and the explicit decay estimate was not given. Now, in view of Theorem 5.3, Proposition 3.14, and
the observation that in the time-invariant case a constant feedback F can be chosen, we are able to
refine [17, pp. 298-300] as follows.

Corollary 5.4 (Lyapunov exponents of time-invariant systems).
Let (A,B,C) ∈ Rn×n × Rn×m × Rm×n have autonomous zero dynamics and let V∗ be as in Proposi-
tion 3.5. Then

dimV∗ > 0 : ∃F ∈ Rm×n : kL(A+BF ) = kL
(
ZD(1.1)

)
,

dimV∗ = 0 : ∀µ ∈ R ∃F ∈ Rm×n : kL(A+BF ) ≤ µ.
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Proof: It is clear that kL
(
ZD(1.1)

)
= −∞ if, and only if, ZD(1.1) = {(0, 0, 0)}. By [3, Prop. 3.10], the

latter is equivalent to V∗ = {0} and rkB = m, hence the corollary follows from Theorem 5.3 and the
fact that a constant F can be chosen.

Theorem 5.3 in particular shows that exponentially stable zero dynamics imply existence of a feedback
such that the closed-loop system is exponentially stable. Provided that the two diagonal systems
in (5.6) are uniformly exponentially stable it is possible to show uniform exponential stabilizability.

Corollary 5.5 (Uniform exponential stabilizability).
Under the assumptions of Theorem 5.3: If, with the notation in (3.15), the system (A4, B2) is uniformly
exponentially stabilizable (i.e., there exists G ∈ Am×(n−k) such that ż = (A4 + B2G)z is uniformly
exponentially stable) and the zero dynamics ZD(1.1) are uniformly exponentially stable, then F may be
chosen so that ẋ = [A(t) +B(t)F (t)]x is uniformly exponentially stable.

Proof: We inspect the steps in the proof of Theorem 5.3. By assumption, in Step 1 G can be chosen
so that A4+B2G defines a uniformly exponentially stable system. In Step 2 we have in fact also shown
that ZD(1.1) is uniformly exponentially stable if, and only if, ż = A1(t)z is uniformly exponentially
stable. If G in Step 1 can be chosen so that A4 + B2G defines a uniformly exponentially stable
system and if the zero dynamics are uniformly exponentially stable, then the estimate in Step 3 can be
performed uniformly for all t0 ≥ 0; where t0 denotes the initial time, and t0 = 0 in Step 3. Moreover,
in this case the constant M is independent of t0 and we see that the coupled system (5.6) is uniformly
exponentially stable.

Remark 5.6 (Feedback and strict relative degree).
The following observation may also be worth knowing for time-invariant systems.
In view of Proposition 3.7, Theorem 5.3 is in particular applicable to systems (A,B,C) ∈ Σn,m,m with
strict relative degree ρ, and then the Byrnes-Isidori form allows to construct the stabilizing feedback F
in Theorem 5.3 explicitly.
Let U(·), U(·)−1 be given as in Theorem B.7 and assume that U is a Lyapunov transformation. Consider
the Byrnes-Isidori form (B.4) and let

p(s) = p1 + p2s+ . . .+ pρs
ρ−1 + sρ ∈ R[s]

be a Hurwitz polynomial. Then the feedback

u(t) = −Γ(t)−1
[
R1(t) + p1Im, . . . , Rρ(t) + pρIm, S

]

︸ ︷︷ ︸

=: G̃(t)

(
y(t)

η(t)

)

, where y(t) :=








y(t)

y(1)(t)
...

y(ρ−1)(t)








applied to (B.4) yields the closed-loop system

d
dty(t) =











0 Im 0 · · · 0

0 0 Im
...

...
. . .

. . . 0
0 0 · · · 0 Im

−p1Im −p2Im · · · −pρ−1Im −pρIm











︸ ︷︷ ︸

=:K

y(t)

η̇(t) = P (t) y(t) + Q(t) η(t) .

(5.7)
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Since det(sI−K) = p(s)m , it follows that K is Hurwitz. From the representation of the zero dynamics
in Proposition 2.6, the (uniform) exponential stability of the zero dynamics, and the boundedness of U
and U−1 it follows that η̇ = Q(t)η is (uniformly) exponentially stable with exponent λ > 0. We may
choose p(s) such that there exist M,L ≥ 0, and µ > λ > 0 satisfying

‖eK(t−t0)‖ ≤ Me−µ(t−t0) and ‖ΦQ(t, t0)‖ ≤ Le−λ(t−t0) for all t ≥ t0 ≥ 0 .

Now an application of variation of constants to (5.7) and invoking the boundedness of P it follows that

‖η(t)‖ =
∥
∥
∥ΦQ(t, t0)η(t0) +

∫ t
t0
ΦQ(t, s)P (s)y(s)d s

∥
∥
∥

≤ Le−λ(t−t0)‖η(t0)‖+
∫ t
t0
Le−λ(t−s)‖P (·)‖∞Me−µ(s−t0)‖y(t0)‖d s

≤ Le−λ(t−t0)‖η(t0)‖+ L‖P (·)‖∞M
µ−λ e−λ(t−t0) ‖y(t0)‖ .

and a straightforward calculation shows (uniform) exponential stability of (5.7). Finally, invoking
again the boundedness of U and U−1, the claim follows for F := G̃ U .

Appendix A Algebraic properties of the skew polynomial ring M[D]

We have chosen the multiplication rule (1.2) for the skew polynomial ring M[D]. This rule is a
consequence of the associative rule (Df)h = D(fh) for all differentiable functions f, h which yields
(Df)(h) = d

dtf · h + f · d
dth =

(
d
dtf + fD

)
(h). In contrast to the commutative ring R[D] used in

the time-invariant case, M[D] is non-commutative. It is obvious, that M[D] does not have any zero
divisors, allows a right and left division algorithm, and hence is a right and left Euclidean domain, and
even a principle ideal domain.
Matrices over this ring may be viewed as R(D) =

∑n
i=0 RiD

i ∈ M[D]g×q ∼= Mg×q[D]. The left row
rank (right column rank) of a matrix R(D) ∈ M[D]g×q is defined as the rank of the free left (right)
M[D]-module of the rows (columns) of R(D), resp. As a consequence of Theorem A.1, the row and
column rank coincide and hence we denote the rank of R(D) by rkM[D]R(D).

Theorem A.1 (Teichmüller-Nakayama canonical form [8, Sect. 8]).
For any R(D) ∈ M[D]g×q with rkM[D]R(D) = ℓ, there exist M[D]-unimodular matrices U(D) ∈
M[D]g×g, V (D) ∈ M[D]q×q and nonzero r(D) ∈ M[D] such that

R(D) = U(D)−1 diag
{
Iℓ−1, r(D), 0(g−ℓ)×(q−ℓ)

}
V (D)−1 , (A.1)

where the scalar r(D) is unique modulo similarity, that means for any other r̃(D) ∈ M[D] such
that r(D) a(D) = ã(D) r̃(D) for some a(D), ã(D) ∈ M[D], the only common left (right) divisors of
r(D), ã(D) (a(D), r̃(D)) are units.

An immediate consequence of Theorem A.1 is that the degree of r(D) is unique; and the diagonal
matrix in (A.1) is canonical if r(D) is chosen to be monic. See Remark B.9 for the definition of a
canonical form.
Another canonical form is the so called Hermite form, see e.g. [10, Thm. 2.4 and Thm. 6.1]. If instead
of M[D], the commutative ring R[s] is considered, then the Hermite form over R[s] is well known,
cf. [20, Thm. 2.5.14]. The following corollary is an immediate consequence of the two Hermite forms.

Corollary A.2.
Any R(s) ∈ R[s]g×q satisfies rkM[D]R(D) = rkR[s]R(s).
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Appendix B Relative degree and Byrnes-Isidori form

The Byrnes-Isidori form, exploited at several places of the present paper, is interesting in its own right.
We study the Byrnes-Isidori form for time-varying systems with strict relative degree. It is well-known
for time-invariant (nonlinear) systems [17, p. 137, 220], for time-invariant multi-input multi-output
systems [16], and for time-varying systems [14]. However, to the best of our knowledge, it has not been
investigated before in which sense the Byrnes-Isidori form is “close” to a canonical form.
Although we only consider real analytic systems in the preceding sections, the Byrnes-Isidori form is
studied in the more general setup of sufficiently smooth matrices. To this end, we introduce the notation
Σℓ
n,m for the class of systems (1.1) with (A,B,C) ∈ (Cℓ)n×n × (Cℓ)n×m × (Cℓ)m×n and ℓ ∈ N0 ∪ {∞};

we write (A,B,C) ∈ Σℓ
n,m.

As a technically useful notation (see [9, 14, 21] for time-varying linear systems), we introduce the
operator

(
d
dtI +A(t)r

)
, where the subscript r in Ar(C) indicates that A acts on C by multiplication

from the right:

Notation B.1 (The operator ( d
dtI +A(t)r)

k).
Let ℓ ∈ N0, A ∈ (Cℓ)n×n, and C ∈ (Cℓ)m×n. Set

∀ t ∈ R :
(
d
dtI +A(t)r

)0 (
C(t)

)
:= C(t) ,

∀ t ∈ R :
(
d
dtI +A(t)r

) (
C(t)

)
:= Ċ(t) + C(t)A(t) ,

∀ t ∈ R ∀ k ∈ {1, . . . , ℓ} :
(
d
dtI +A(t)r

)k (
C(t)

)
:=

(
d
dtI +A(t)r

) ((
d
dtI +A(t)r

)k−1 (
C(t)

))

.

⋄

The concept of relative degree is defined as follows, see [14, Def. 2.2, Thm. 2.7].

Definition B.2 (Relative degree).
Let ρ, ℓ ∈ N with ρ ≤ ℓ and (A,B,C) ∈ Σℓ

n,m. Then (A,B,C) is said to have strict relative degree ρ if,
and only if,

∀ t ∈ R ∀ k = 0, . . . , ρ− 2 :
(
d
dtI +A(t)r

)k (
C(t)

)
B(t) = 0m×m

∀ t ∈ R :
(
d
dtI +A(t)r

)ρ−1 (
C(t)

)
B(t) ∈ Glm(R) .






(B.1)

⋄

The concept of relative degree is well-known for time-invariant nonlinear SISO systems [17, p. 137],
time-invariant nonlinear MIMO systems [17, p. 220], [18], and for time-varying nonlinear MIMO sys-
tems [14, Def. 2.2]. It can even be generalized to differential-algebraic systems [3, App. B].

Remark B.3 (Relative degree for time-invariant systems).
If system (1.1) is a time-invariant system, i.e. (A,B,C) ∈ Rn×n × Rn×m × Rm×n, then it is straight-
forward to see that

∀ k ∈ N0 :
(
d
dtI +A(·)r

)k (
C(·)

)
B(·) = CAkB

and hence the conditions in (B.1) are equivalent to

CAρ−1B ∈ Glm(R) and ∀ k = 0, . . . , ρ− 2 : CAkB = 0 .
⋄
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Remark B.4 (Vector relative degree).
The notion ‘strict’ is superfluous for single-input single-output systems. However, even for multivariable
time-invariant systems, we may have CAkB = 0 for all k = 0, . . . , ρ − 2 and CAρ−1B 6= 0 but
CAρ−1B 6∈ Glm(R). In this case, one may introduce the concept of a vector relative degree: the vector
(ρ1, . . . , ρm) ∈ Nm collects the smallest number of times ρj one has to differentiate yj(·) so that the

input occurs explicitly in y
(ρj)
j (·). This is not considered in the present note, for further details see [17,

Sec. 5.1] and [3, 19]. ⋄

The relative degree ρ is the least number of times one has to differentiate the output y(·) so that the
input u(·) occurs explicitly in y(ρ)(·); this is well-known for time-invariant systems. That this also
holds for time-varying systems is made explicit in the following proposition.

Proposition B.5 (Relative degree and output representation).
Let ℓ ∈ N. Suppose (A,B,C) ∈ Σℓ

n,m has strict relative degree ρ ≤ ℓ. Then every (x, u, y) ∈ B(1.1)

satisfies the following:

∀ j = 0, . . . , ρ− 1 : y(j) =
(
d
dtI +Ar

)j (
C
)
x , (B.2)

y(ρ) =
(
d
dtI +Ar

)ρ (
C
)
x+

[(
d
dtI +Ar

)ρ−1 (
C
)
B
]

u . (B.3)

Proof: We show (B.2) by induction over j = 0, . . . , ρ − 1. For j = 0 the statement is clear. Suppose
it holds for some j ∈ {0, . . . , ρ− 2}. Then, invoking Definition B.2 we have, for all t ∈ R,

y(j+1)(t) = d
dt

[(
d
dtI +A(t)r

)j (
C(t)

)
x(t)

]

=
[
d
dt

(
d
dtI +A(t)r

)j (
C(t)

)]

x(t) +
(
d
dtI +A(t)r

)j (
C(t)

)
(A(t)x(t) +B(t)u(t))

=
[
d
dt

(
d
dtI +A(t)r

)j (
C(t)

)
+
(
d
dtI +A(t)r

)j (
C(t)

)
A(t)

]

x(t) +
(
d
dtI +A(t)r

)j (
C(t)

)
B(t)u(t)

(B.1)
=
(
d
dtI +A(t)r

)j+1 (
C(t)

)
x(t) .

Now we may derive that

∀ t ∈ R : y(ρ)(t) =
(
d
dtI +A(t)r

)ρ (
C(t)

)
x(t) +

(
d
dtI +A(t)r

)ρ−1 (
C(t)

)
B(t)u(t).

We now define the Byrnes-Isidori form and show its existence and uniqueness modulo transformations
of the zero dynamics under the assumption of a strict relative degree.

Definition B.6 (Byrnes-Isidori form).
(A,B,C) ∈ Σℓ

n,m, ℓ ∈ N, is said to be in Byrnes-Isidori form if, and only if, the matrices (A,B,C) are
of the form, for some ρ ∈ N,

A(t) =












0 Im 0 · · · 0 0
0 0 Im 0
...

. . .
. . .

...
0 0 · · · 0 Im 0

R1(t) R2(t) · · · Rρ−1(t) Rρ(t) S(t)
P (t) 0 · · · 0 0 Q(t)












, B(t) =












0
0
...
0

Γ(t)
0












, C(t) =












Im
0
...
0
0
0












⊤

(B.4)

and
R1, . . . , Rρ,Γ ∈ (C1)m×m, S, P⊤ ∈ (C1)m×(n−ρm), Q ∈ (C1)(n−ρm)×(n−ρm) . (B.5)

⋄
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One advantage of the form (B.4) is that it expresses the dynamical properties of the system by allow-
ing u only to affect the ρth derivative (ρ the relative degree) of the output and separating another part
of the dynamics which is only influenced by y. This decomposition of the system into a main part
(containing the relative degree and the high-frequency gain matrix) and an internal loop for y 7→ ŷ is
depicted in Figure 1.

ξ̇ρ =

ρ
∑

i=1

Riξi + ŷ

+ Γu

d
dt

· · · dρ−1

dtρ−1

η̇ = Qη + Py

ŷ = Sη

ξ1 = y y

ξ1

y

ŷ

u

ξ2· · ·ξρ

Figure 1: Byrnes-Isidori form

In the following theorem we show that for systems (1.1) with some strict relative degree a Byrnes-Isidori
form always exists, we also clarify in which sense the entries are uniquely defined.

Theorem B.7 (Byrnes-Isidori form).
Suppose (A,B,C) ∈ Σℓ

n,m, ℓ ∈ N, has strict relative degree ρ ≤ ℓ. Then there exists a coordinate
transformation U ∈ C1(R,Gln(R)) such that

(
ξ(t)
η(t)

)

:=










ξ1(t)
ξ2(t)
...

ξρ(t)
η(t)










:=










y(t)

y(1)(t)
...

y(ρ−1)(t)
η(t)










= U(t)x(t), (B.6)

transforms (1.1) into Byrnes-Isidori form (B.4) with initial condition

(
ξ(t0)
η(t0)

)

=

(
ξ0

η0

)

=








y(t0)
...

y(ρ−1)(t0)
η0








= U(t0)x(t0), t0 ∈ R. (B.7)

Set
B :=

[

B,
(
d
dtI −A

) (
B
)
, . . . ,

(
d
dtI −A

)ρ−1 (
B
)
]

∈ (C1)n×ρm,

C :=











C
(
d
dtI +Ar

) (
C
)

...
(
d
dtI +Ar

)ρ−1 (
C
)











∈ (C1)ρm×n,
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then uniqueness of the entries of the Byrnes-Isidori form holds as follows:

(i) the entries

Γ =
(
d
dtI +Ar

)ρ−1 (
C
)
B ∈ C1(R;Glm(R)),

[R1, . . . , Rρ] =
(
d
dtI +Ar

)ρ (
C
)
B(CB)−1 ∈ (C1)m×n

are uniquely defined,

(ii) the subsystem (Q,P, S) ∈ (C1)(n−ρm)×(n−ρm) × (C1)(n−ρm)×m × (C1)m×(n−ρm) is unique up to
(Z−1QZ − Z−1Ż, Z−1P, SZ) for any Z ∈ C1(R;Gln−ρm(R)).

A possible transformation (B.6) of (1.1) into Byrnes-Isidori form (B.4) is feasible by

U =

[
C
N

]

, where N := (V ⊤V )−1V ⊤
[
I − B(CB)−1C

]
∈ C1(R;R(n−ρm)×n)

and V ∈ L∞(R;Rn×(n−ρm)) ∩ C1(R;Rn×(n−ρm)) may be chosen such that

(V ⊤V )−1V ⊤ ∈ L∞(R;R(n−ρm)×n) ∧ ∀ t ∈ R : imV (t) = ker C(t), rkV (t)⊤V (t) = n− ρm.

If the coefficients of (A,B,C) are in A (in C∞), then the coefficients of C, B, N , V , U defined above
and of all entries in (B.4) are in A (in C∞).

Proof: The proof can be found in [14, Thm. 3.5] except for the uniqueness properties and the case of
coefficients in A and C∞. The latter however is a simple calculation. (i) is also a consequence of [14,
Thm. 3.5], so it remains to show (ii).
Let

(Â, B̂, Ĉ) :=
(
(UA+ U̇)U−1, UB,CU−1

)
(B.8)

for U =

[
C
N

]

. Then

Â =












0 Im 0 · · · 0 0
0 0 Im 0
...

. . .
. . .

...
0 0 · · · 0 Im 0
R1 R2 · · · Rρ−1 Rρ S
P 0 · · · 0 0 Q












, B̂ =












0
0
...
0
Γ
0












, Ĉ = [Im, 0, . . . , 0] (B.9)

holds (see [14, Thm. 3.5]) for Γ, Ri, S, P,Q given by [14, (3.6)-(3.12)].
Consider next

(Ã , B̃ , C̃) =
(
(WA+ Ẇ )W−1, WB , CW−1

)
(B.10)

for any W ∈ C1(R;Gln(R)) such that

Ã =












0 Im 0 · · · 0 0
0 0 Im 0
...

. . .
. . .

...
0 0 · · · 0 Im 0

R̃1 R̃2 · · · R̃ρ−1 R̃ρ S̃

P̃ 0 · · · 0 0 Q̃












, B̃ =












0
0
...
0
Γ
0












, C̃ = [Im, 0, . . . , 0] . (B.11)
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We show that

R̃i = Ri, S̃ = S Z−1, ∀ i = 1, . . . , ρ,

P̃ = ZP, Q̃ = Z QZ−1 + Ż Z−1 for some Z ∈ C1(R;Gln−ρm(R)).

}

(B.12)

Set

WU−1 =: Y =






Y 1

...
Y ρ+1




 = [Y1, . . . , Yρ+1] (B.13)

for Y i, (Yi)
⊤ ∈ C1(R;Rm×n), i = 1, . . . , ρ, and Y ρ+1, (Yρ+1)

⊤ ∈ (C1)(n−ρm)×n. Then (B.8) and (B.10)
together with d

dt(U
−1) = −U−1U̇U−1 yield

(Y Â+ Ẏ )Y −1 =
(
WAU−1 +WU−1U̇U−1 + ẆU−1 +W d

dt(U
−1)
)
UW−1

= WAW−1 + ẆW−1 = Ã .

Thus

(Y Â+ Ẏ )Y −1 = Ã, (B.14)

Y B̂ = B̃, (B.15)

Ĉ = C̃Y. (B.16)

This gives

Y 1 (B.16)
= [Im, 0, . . . , 0] and Yρ

(B.15)
=










0
...
0
Im
0










, (B.17)

and we proceed

[0, Im, 0, . . . , 0]
(B.9)
= Y 1Â+ d

dtY
1 (B.17)

= Y 1(Y Â+ Ẏ )
(B.14)
= Y 1ÃY

(B.13)
=

(B.11)
Y 2

[0, 0, Im, 0, . . . , 0]
(B.9)
= Y 2Â+ d

dtY
2 = Y 2(Y Â+ Ẏ )

(B.14)
= Y 2ÃY

(B.13)
=

(B.11)
Y 3

...

[0, . . . , 0, Im, 0]
(B.9)
= Y ρ−1Â+ d

dtY
ρ−1 = Y ρ−1(Y Â+ Ẏ )

(B.14)
= Y ρ−1ÃY

(B.13)
=

(B.11)
Y ρ.

Therefore, Y is of the form

Y =










Im 0 . . . 0 0
0 Im 0
...

. . .
. . .

...
0 . . . 0 Im 0

Yρ+1,1 . . . Yρ+1,ρ−1 0 Z










for some Z ∈ C1(R;Gln−ρm(R)).

Now consider the last n− ρm rows in Y Â+ Ẏ = ÃY , which read

[ZP + d
dtYρ+1,1, Yρ+1,1 +

d
dtYρ+1,2, . . . , Yρ+1,ρ−2 +

d
dtYρ+1,ρ−1, Yρ+1,ρ−1, ZQ+ Ż]

= [P̃ + Q̃Yρ+1,1, Q̃Yρ+1,2, . . . , Q̃Yρ+1,ρ−1, 0, Q̃Z],
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and comparing successively the ρth block, . . . , 1st block yields Yρ+1,ρ−1 = 0, . . . , Yρ+1,1 = 0. Finally,
Y = diag {Im, . . . , Im, Z} applied to (B.14)-(B.16) gives (B.12).

Remark B.8 (Byrnes-Isidori form).

(i) In the time-invariant case (A,B,C) ∈ Rn×n × Rn×m × Rm×n, all matrices in Theorem B.7 are
constant matrices over R.

(ii) The converse of Theorem B.7 is false in general even for time-invariant systems: any system (B.4)
with non-invertible Γ does not have a strict relative degree.

(iii) A formula for (Q,P, S) in terms of the transformation U =

[
C
N

]

is given in [14, (3.7)-(3.12)], but

unfortunately with a typo in formula [14, (3.10)] for Q; the correct formula is

Q = −(V ⊤V )−1V ⊤
[
( d
dtI −A)V +BΓ−1( d

dtI +Ar)
ρ(C)V

]
,

P = (−1)ρ(V ⊤V )−1V ⊤
[
I − B(CB)−1C

]
( d
dtI −A)ρ(B)Γ−1,

S = ( d
dtI +Ar)

ρ(C)V.

For its proof see the proof of [14, Thm. 3.5].

(iv) As a useful technicality we mention the fact that Theorem B.7 gives

∀ t ∈ R : C(t)U(t)−1 =
[
Iρm, 0ρm×(n−ρm)

]
∧ ker(C(t)U(t)−1) = im [0, . . . , 0, In−ρm]⊤. (B.18)

⋄
Remark B.9. (Canonical form) Recall the definition of a canonical form: given a group G, a set S,
a group action α : G× S → S, we write

s
α∼ s′ ⇔ ∃U ∈ G : α(U, s) = s′.

Then a map γ : S → S is called a canonical form for α if, and only if,

∀ s, s′ ∈ S : γ(s)
α∼ s ∧

[

s
α∼ s′ ⇔ γ(s) = γ(s′)

]

.

In words: the set S is divided into disjoint orbits (i.e., equivalence classes) and the mapping γ picks a
unique representative in each equivalence class. In the present setup, the group C1(R;Gln(R)) yields
an equivalence relation on the set Σℓ

n,m,p of systems (1.1) by state space transformation:

(A,B,C)∼(Â, B̂, Ĉ) :⇐⇒ ∃U ∈ C1(R,Gln(R)) :
(
Â, B̂, Ĉ

)
=
(
(UA+ U̇)U−1, UB,CU−1

)
.

Now it is clear that the Byrnes-Isidori form (B.4) is not a canonical form but “close” to a canonical
form: the only non-unique entries are (Q,P, S), but they describe an internal loop (see Figure 1) and
they are unique modulo a state space transformation. More precisely, the uniqueness of (Q,P, S) in
Theorem B.7 holds modulo (Z−1QZ−Z−1Ż, Z−1 P, S Z) for any Z ∈ C1(R;Gln−ρm(R)) corresponding
to a coordinate transformation of the subsystem (Q,P, S). This may also be viewed as the freedom
in choosing V such that the conditions in Theorem B.7 are satisfied. If V is replaced by V Z−1 for
arbitrary Z ∈ C1(R;Gln−ρm(R)), then an easy calculation shows that N becomes ZN and therefore
(Q,P, S) becomes (Z−1QZ − Z−1Ż, Z−1 P, S Z). ⋄
Acknowledgement: We thank Eva Zerz (RWTH Aachen) for providing the example in the proof of
Proposition 2.5.
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