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Zusammenfassung

Zusammenfassung

Das Ziel dieser Doktorarbeit ist es, die ersten Schritte zur Umsetzung einer neuen

Kalibriermethode für Durchflussmessgeräte zu beschreiben. Diese Forschungsarbeit wurde im

Fachbereich „Flüssigkeiten“ der Physikalisch-Technischen Bundesanstalt durchgeführt. Sie

realisiert ein dynamisches Wägeverfahren, welches es ermöglicht, den Massendurchfluss

mehrmals unter stationären und quasistationären Bedingungen zu messen. Eine somit verkürzte

Kalibrierzeit bringt einen wichtigen Vorteil für Durchfluss-Kalibrierlaboratorien, um ihre

Kalibrierkosten, den Energieverbrauch und die Arbeitsbelastung zu reduzieren.

Die vorgeschlagene Kalibriermethode beruht auf einer gründlichen Analyse der Wechselwirkung

zwischen den durchflussinduzierten Kräften im Messprozess und der Dynamik des Wäge-

Systems. Basierend auf dieser Analyse wird anschließend eine Reihe von

Signalverarbeitungstechniken angewandt, um sowohl die Stärke der unerwünschten, durch den

Durchfluss induzierten Kräfte zu verringern, als auch das Messrauschen im Ausgangsignal zu

dämpfen. Damit kann die Messgröße einerseits sehr genau und andererseits auch als Funktion

der Zeit ermittelt werden.

Die Wirksamkeit der neuen Kalibriermethode für Durchfluss-Messgeräte wird durch numerische

und experimentelle Tests validiert. Die Ergebnisse zeigen, dass eine Genauigkeit kleiner als

0,1 % erreichbar ist. Außerdem gibt die vorliegende Arbeit Empfehlungen, wie das

vorgeschlagene Messprinzip zukünftig noch weiter verbessert werden kann.



Abstract

Abstract

The aim of this dissertation is to describe the first steps made towards the realization of a new

calibration method for liquid flowmeters. Such the research work carried out at the liquid flow

department of the Physikalisch-Technische Bundesanstalt implements a dynamic weighing

approach, to estimate the mass flow rate several times under stationary and quasi-steady

conditions, thus shortening the calibration time. The latter statement represents a significant

benefit for flow calibration laboratories, which seek to reduce their calibration costs, energy

consumption, and workload.

The proposed calibration method relies on a thorough analysis of the interaction between the

acting flow-induced forces present in the measurement process, and the dynamics of the

weighing system. Then, a series of signal processing techniques based on such an analysis are

implemented in order to attenuate the magnitude of the undesired flow-induced forces as well as

the embedded measurement noise from the system´s output signal, so the measurand can be

determined as a time-varying state variable.

The effectiveness of this new flowmeter calibration method is validated by a series of numerical

and experimental tests in which, according to their results, it reveals that an accuracy level

smaller than 0,1% is attainable by applying the proposed method. Furthermore, this document

offers a guideline of how to improve the performance of the proposed measurement principle at a

future date.
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1. Introduction

1.1 The importance of fluid flow measurements
Liquid flow measurement technology is an important area of engineering that involves all

industrial sectors wherein fluids, such as water, hydrocarbons, bio-fuels, and so on, are

transported and/or traded. The main purpose of this area consists in providing reliable technology

that can technically assure the amount of fluid flowing through a conduit agrees with the

magnitude claimed by a system or an individual [1].

Flow measurement technology has significantly matured in the past decades because it is an

effective way to commercialize valuable fluids, and it improves the efficiency, quality, and

safety in any industrial or scientific process. Nowadays, the main tasks of this sector are focused

on the development of more precise flow measurement devices, the improvement of flow

calibration rigs in order to characterize flowmeters more accurately, the implementation of new

manufacturing as well as calibration methods that deliver more affordable and reliable flow

metering technologies to the industry.

A liquid flow calibration rig plays a fundamental role in all the tasks mentioned above, as this is

the only system capable to reproduce the unit of flow by itself. The latter is because the flow rate

unit is a derived quantity that is realized by the direct traceability to the fundamental units of

time, mass, length, and temperature. As a remark, such a primary standard can reproduce the

flow unit by either using a weighing approach to obtain mass flow (kg/s), or by dimensional

means to directly obtain the volumetric flow (m³/s). Once the primary standard is under

operation, it can proceed with its final goal of disseminating the measurand by the calibration of

flowmeters in different industry sectors.
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1.2 Motivation of the research work
The motivation for carrying out this dissertation is focused on the first steps made towards the

realization of a dynamic weighing method, which estimate the time-varying mass flow rate, and

allows the calibration of liquid flowmeters in a shorter time.

At present, the start-and-stop flowmeter calibration systems define the flow unit as an average

quantity, given by metering the difference between the initial and final quantity of the liquid and

the time taken for such a collection. One of the main goals of this research work is the

development of a measurement principle that allows using the existing gravimetric start-and-stop

flowmeter calibration facilities to determine the flow unit several times within a single

measurement run. This means, a calibration method that will measure the time-varying mass

flow rate (under stationary and quasi-steady flow conditions) by analyzing the fluid-mechanical

system dynamics, and the output signal response of the weighing system. The latter will benefit

the flow calibration laboratories in reducing their calibration time, and thus, the calibration costs,

energy consumption, and work load. Another important goal of this research work is to present

an alternative calibration method that can avoid the bypass valve timing error, which is

considered to be the most striking measurement uncertainty contributor, and one of the most

difficult components to characterize in a start-and-stop flowmeter calibration system.

1.3 Structure of the research work
The following research work is divided into six parts: Chapter 2 for instance presents a general

overview in the field of flow primary standards, and the state-of-the-art proposed by some

national measurement Institutes (NMIs) and calibration laboratories, in regards to weighing and

volumetric calibration methods. Then in Chapter 3, the manuscript depicts the main variables

(input) involved in the measurement process as well as a general numerical representation of the

liquid flow standard. Chapter 4 deals with the derivation and application of the process equation

to calculate the mass flow rate estimate via dynamic weighing as well as the performance

assessment of some filter algorithms to attenuate the measurement noise from the measurand.

The latter is with the aim to make the estimate calculations more accurate. The following part of

this research work (Chapter 5) describes the numerical simulation and sequence of the

measurement process, comprising the input variables of the process, the flow standard response

(system), the estimation of the mass flow rate, and the attenuation of measurement noise from

the measurand.
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Thereafter, the document describes in Chapter 6 the components of a prototype flow primary

standard used for the application of this new calibration method. Moreover, it shows a series of

experimental tests made in order to compare and to validate the results given by proposed

calibration method, with those results obtained by a PTB traceable transfer standard.

The final part of this work (Chapter 7) addresses the conclusions and remarks reached after

analyzing the new calibration method, numerically and experimentally. Additionally, an outlook

of the investigation is given in order to underline the advantages and limitations of the proposed

calibration method, and how the current results and experiences could help to improve it.
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2. Current situation and goal of the research work

2.1 Definition of mass and volumetric flow
The conservation of mass is a fundamental concept of macroscopic physics, which states that the

amount of mass existing in a defined or arbitrary space can neither be created nor destroyed.

Additionally, the mass is characterized for having two physical properties: its occupying volume

and density. For the case of a fluid mass enclosed in a conduit, it is agreed that its density,

volume, and its shape can move and change within the time domain. Furthermore, in accordance

to the continuity law (Eq. 2.1), it is established that the mass flow rate of a fluid entering INwm

and leaving OUTwm the finite volume tube is the same, as long as the finite volume remains

constant in time [1]. Note that the subindex w is used in the equation below to indicate that the

fluid in use is water.

IN IN OUT OUTIN OUT

w IN wOUT

w w=

m m

u A u A    

 
 

(2.1)

As a definition, the mass flow rate wm is a process variable in which its magnitude is equal to

arbitrary cross section of the tube A, wherein the fluid mass passes at an average velocity u , and

a density w (Fig. 2.1). Moreover, according to the equation of continuity, if there is a constant

volume flow rate for a given area change (change in pipe size), then the average velocity will

inversely change. On the other hand, the volumetric flow rate through the pipe (finite volume)

can be calculated by just multiplying the cross section area of the pipe A, and the average

velocity at that location, as shown in Eq. 2.2.

wV = u A (2.2)

Fig. 2.1 The mass/volume flow rate relationship to the tube cross sectional area and average fluid

velocity
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2.2 Definition of a flowmeter
A flowmeter is a device that measures the flow rate or the quantity of moving fluid in a closed

conduit, and it consists of primary and secondary elements. The flowmeter primary element is

a device mounted externally or internally to the fluid conduit. Therefore, it can produce a

signal that has a defined relationship to the fluid flow. The latter is in accordance with known

physical laws, which relate the interaction of the fluid with the presence of the primary

element. The secondary element is the part of the flowmeter that receives a signal from the

primary element and displays, records, and/or transmits it as a measure of either mass or

volumetric flow rate [2,3].

For the sake of explanation, the turbine flowmeter can be used to illustrate in practical terms the

tasks of these two elements. In Fig. 2.2, the turbine flowmeter depicts a multi-bladed rotor

(primary element) located in the central part of the fluid stream, so as the fluid impinges on the

blades, this causes the rotor to spin at an angular velocity approximately proportional to the flow

rate [4].

Each of these blades has an embedded ferromagnetic element in order to form a magnetic circuit

with the permanent magnet and pickoff coil (secondary elements) in the meter housing [5]. Then,

the voltage induced in the coil has the form of a sine wave whose frequency is proportional to the

angular frequency of the blades. Thereafter, the output signal is passed through a signal

conditioner in order to have a constant amplitude square wave signal of variable frequency.

Finally, such a square wave frequency signal and a meter factor are used to calculate the flow

rate.

Fig. 2.2 Example of primary and secondary elements of a flowmeter (turbine) [3, 5]
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The meter factor is a value used to scale the reading of a flowmeter into a quantity that

corresponds to the current magnitude of the measurand flow rate. Such a factor is determined

when comparing the flow metering device output signal to a flow calibration rig (flow standard)

of known accuracy and measurement uncertainty.

As for the different types of flowmeters, Table 2.1 presents a classification chart, wherein the

flow metering devices are divided into three groups depending on their sensing principle. These

are: mass, volume, and differential pressure.

As the name suggests, the mass and volumetric flowmeters are based on the measurement of

motion of mass or a volume quantity in a defined time. On the other hand, the measurement

principle of the differential pressure flowmeters is based on the pressure difference between

the upstream and downstream side of the meter (caused by the contraction/expansion of the

fluid), and its proportional response with the flow passing through the meter. The

determination of flow rate by means of using differential pressure flowmeters is given by a

theoretical equation, in which the dimensions and geometry of the meter body are taken into

account, as well as the pressure, temperature and fluid density. Additionally, the calculation is

corrected by an experimental factor called the discharge coefficient, which aims to include the

frictional flow factor, and a more realistic magnitude of the cross section area of the fluid into

the equation [4,6]. As a remark, the quantity yield by the differential pressure flowmeters can

be either calculated as mass or volumetric flow rate, as long as the fluid density is known.

Mass Volume Differential pressure

Thermal flowmeter
Positive

displacement
flowmeter

Orifice plate

Angular momentum
flowmeter

Turbine flowmeter Venturi nozzle

Coriolis flowmeter Vortex flowmeter Sonic nozzle
Electromagnetic

flowmeter
Variable area flowmeter

(Rotameter ®)

Ultrasonic
flowmeter

Pitot tube

Laminar flow element

Table 2.1 Flowmeter classification [7]
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Despite the given classification of flowmeters listed in Table 2.1, one must be aware that each

of those metering devices works with different physical principles, construction designs, fluids,

and installation conditions. A further description of this topic can be found in: Spitzer´s [5],

Baker´s [7], and Miller´s [8] flow measurement handbooks.

2.3 Traceability chain of fluid flow measurements
In order to ensure the accuracy level of a flowmeter in a measurement process, it is necessary

first to calibrate the device periodically against either a national flow standard or an accredited

flow calibration rig. Thus, after the calibration [9] has been carried out, the characterized

flowmeter can claim to be traceable [10]. By definition, traceability means that the result of a

flow measurement, no matter where it is made, can be related to a national flow measurement

standard as long as the so called traceability chain is not broken, and each of the different

standards involved have a stated uncertainty.

This concept can be exemplified in Fig. 2.3, wherein national flow standards have direct

traceability to the fundamental standards of mass, time, temperature and length, which are

necessary to define the flow unit. As shown in Fig. 2.3, such standards are located at the top of

the diagram, in order to emphasize their highest level of measurement accuracy. Moreover, for

the sake of metrological assurance, the national flow standards must undergo a periodical

measurement comparison program among other national flow labs with similar accuracy (i.e.,

NEL in the UK, NIST in the USA, and PTB in Germany), with the aim to ensure that the flow

unit is disseminated with the claimed measurement uncertainty [11].

Then, below the national standards are linked the state-approved primary and secondary flow

standards, which feature the lowest measurement uncertainty that a private calibration laboratory

or flowmeter manufacture can achieve. Finally, at the bottom of the diagram are the flowmeters

or flow measuring rigs, which hold a relatively low measurement accuracy (compared to the two

previous groups) but acceptable for industrial process applications. Note that the combined

measurement uncertainty level attained after calibrating the flowmeter will eventually depend on

the linearity, repeatability, reproducibility of the meter itself [12], but also in great part of the

standard used to characterize the measuring device.
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Fig. 2.3 Flow traceability chain and the hierarchy of measurement standards [13]

2.4 Working principle of a liquid flow primary standard
One very important characteristic of a primary flow standard already recalled in text is that

unlike secondary and working standards, the primary standard is capable to reproduce the flow

unit by itself, without reference to some other standard of the same quantity (but only to the

fundamental units) [12].

In terms of its conceptual design (Fig. 2.4), the primary flow standard is a hydraulic circuit in

which the liquid is driven by a pumping system, and a control valve is responsible of setting up

the operational flow rate as well as keeping it quasi steady during a calibration. Then, the

pumped liquid circulates through a pipeline of different diameter sizes and geometries, with the

goal to transfer the fluid from the meter under calibration to the mass or volume reference

standard.
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The Meter Under Calibration (MUC) section shown in Fig. 2.4 is a straight pipeline, which holds

the flowmeter to be calibrated and is long enough to allow the flow profile to be swirl-free [7]. In

some cases, due to high flow disturbances caused by the upstream fittings (i.e. valves), and/or

limited space to install a long pipeline, a flow straightener is used in order to guarantee an

uniform fully developed turbulent flow profile.

Fig. 2.4 Schematic diagram of the main components of a liquid flow primary standard

Once the circulating fluid passes the flowmeter, it is discharged by a bypass valve into a mass or

volume reference standard for effects of flow calculation. Thereafter, when the reference

standard reaches a certain level, the fluid is re-directed into a supply tank to continue the liquid

circulation. The outcome from this process is either an average flow rate resulting from the

totalized mass Totalm or volume TotalV contained in the reference standards and the time Totalt taken

to collect such an amount of fluid (Eq. 2.3 and Eq. 2.4).

Total

Total
w

mm =
t

 (2.3)

Total

Total
w

VV =
t

 (2.4)
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The mass flow rate can be converted into volumetric flow rate (or vice versa) if the fluid

density is known. In this case, a relationship between the liquid temperature and its density is

developed for this purpose by means of analyzing the density of a liquid sample at different

temperatures, consulting some standard temperature-density tables, or by installing an online

densitometer [14].

The calibration of flowmeters by using primary flow standards is based on the principle of mass

conservation applied to a control volume. The conservation of mass principle here states that

over a time increment, the change in the mass/volume contained in the reference standards is

equal to the mass/volume that flows through control volume defined by: the MUC, the

connecting pipe, and the mass/volume reference standard.

When performing a calibration, the primary flow standard must provide the most stable

conditions in terms of flow, temperature, and pressure, so that the MUC cannot be highly-

influenced by the pulsatile flow [2], fluid density gradients due to temperature variations and so

on. The ambient temperature is also an important process parameter in order to avoid slight

changes on the calibration factor due to the thermal expansion/contraction of the flowmeter body

(i.e. flowmeter internal diameter).

In some cases, the primary flow standards are equipped with heat exchangers in order to keep the

fluid temperature as constant as possible [14], and/or an air conditioning system to avoid large

temperature gradients among the MUC, connecting pipe, and the mass/volume reference

standards.

During the operation of a dynamic liquid flow primary standard is rather important to keep the

best possible conditions of quasi-steady and quasi-stationary flow and temperature, in order to

calibrate a flowmeter [15]. In this instance, the term quasi-steady flow implies a flow, wherein

the fluid temperature, pressure, and cross section area of the pipe may differ from point to point,

but the flow will slightly change with time. On the other hand, the term quasi-uniform flow

stands for the fluid velocity, which is nearly equal at all points along the straight and constant

cross section area of the meter-under-calibration pipeline.
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If a fully steady uniform flow were achieved by a liquid flow primary standard, the dynamic

measurements would be simply assumed to be the same at all times, and at any point of the

pipeline, and therefore equal to a mean value. In practice, this is not the case because, the flow is

in a turbulent regime, the pumping system and pipe fittings produced an inherent pulsating flow,

fluid temperature gradients are mostly present in the system, and so on.

2.5 Current situation
There are different approaches for the realization of the measurand flow. Table 2.2 serves as a

guide for the classification of the primary standards, categorizing the facilities by static and

dynamic, and subdividing them into gravimetric and volumetric. The dynamic weighing primary

standard is the new calibration approach, in which this investigation is concentrated on. The

accuracy issues of these types of facilities are not included in the classification, because the

metrological features of a standard depend upon the calibration requirements, and the

technological capabilities of each flow laboratory. A general description of each calibration

approach is given in the following sections.

Table 2.2 Classification of liquid flow primary standards [16]

2.5.1 Gravimetric and volumetric flying start-and-stop liquid flow primary standard

This type of primary standards (gravimetric and volumetric) comprise three main components for

the determination of flow rate: a bypass valve also known in the flow metrology field as a
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diverter valve [17], a collection vessel, and either a balance or a calibrated volumetric tank for

the determination of mass or volumetric flow rate, respectively (Fig. 2.5).

The method of operation consists in measuring the initial vessel mass or the volume before the

filling of liquid starts. At the same time, the fluid circulates through the system, until flow

reaches a quasi-steady flow condition (a). This requirement is mandatory for the accurate

measurement of flow rate, and thus, a reliable characterization of the MUC. When process

conditions are stable, a trigger signal is sent to activate the diverter valve, and thus driving the

liquid into the vessel, and to start counting the collection time by means of a timer (b). When a

certain amount of fluid is gathered into the weighing vessel or the volumetric tank, a second

trigger signal is sent to re-direct the liquid flow back to the supply tank, and to stop the timer (c).

Once the collected water reaches an equilibrium condition, the totalized mass or volume of liquid

is measured and divided by the collection time, in order to obtain the average mass or volumetric

flow rate [5,18].

Fig. 2.5 Gravimetric and volumetric flying start-and-stop primary standard
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2.5.2 Gravimetric and volumetric standing start-and-stop liquid flow primary standard

The gravimetric standing start-and-stop primary standard determines the average mass flow rate by

collecting an amount of fluid in the collection vessel within a fixed period of time, and then

measuring the collected mass or volume by a balance or a scaled volumetric tank, respectively [7,18].

In this type of systems, the measurement run starts by setting a reference fluid level with the

assistance of a weir (transfer point), as shown in Fig. 2.6(a). When the flow is stable and the

reference level is properly set, the block valve is opened; the fluid passes through the weirs, and

it gets into the vessel (b) [19]. After a defined period of time, the block valve is closed, and the

minor weir sets once again the fluid reference level by pouring the remaining water into the

collection vessel (c). As soon as the contained fluid reaches an equilibrium condition, a totalized

mass or volume is measured by a weighing system or scaled tank, respectively. The calculation

of mass or volumetric flow rate is in this case given as the quotient of the totalized mass or

volume, and the fixed collection time.

Fig. 2.6 Gravimetric standing start-and-stop primary standard
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For this kind of facility (either gravimetric or volumetric), it is essential to assure that the amount

of fluid passing through the MUC is the same as for the mass or volume reference standard, so

the continuity law can be applied.

Therefore, in order to accomplish this main requirement, particular attention is paid in the design

of weirs, which can guarantee that the start and stop reference levels triggered by the stop valve

coincide before and after the calibration run (Fig. 2.6(a) and Fig. 2.6(c)).

2.5.3 Dynamic level gauging volumetric liquid flow primary standard

This dynamic level gauging volumetric primary standard, also known as a piston prover [7] is

described as a circular cylinder of a known and uniform internal diameter, which encompasses a

sealed piston (Fig. 2.7). The determination of flow rate is based on the measurement of the fluid

volume out of the cylinder, which is equal to the product of the piston displacement ( Pistonx ) and

the crossed section area ( PistonA ), and the time taken for the piston to travel from one reference

point to another ( Pistont ) [20, 21]. Alternatively, the volumetric flow calculation by a piston

prover can be also seen as the product of the piston velocity ( Pistonx ), and the crossed section area

of the cylinder.

In practical terms, the piston prover operation [22] is graphically depicted in Fig. 2.7(a). At the

initial stage of the measurement (a), the poppet valve of the piston is opened to allow the

circulation of fluid through the cylinder, until quasi-steady flow conditions are achieved. The

measurement of flow rate starts when the poppet valve is closed and the piston is driven forward.

During the first stage of the stroke, the piston undergoes acceleration due to the inertial force of

the downstream fluid illustrated in Fig. 2.7(b). This is considered to be a small region wherein

the flow is suddenly increased, so that, it is preferred to skip it from the measurement process.

Shortly thereafter, the piston acceleration reduces basically to zero [23] and its velocity is fairly

constant, the actuator reaches the start switch and the calibration time begins (Fig. 2.7(b)).

Within the region of measurement, the length scale (linear encoder) is responsible for tracking

the displacement of the piston, and the system keeps time-stamped record for each length step.

At the last stage of the measurement, the actuator approaches the stop switch, which sends the

order to stop the timer, and to open the poppet valve (c).
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Fig. 2.7 Dynamic level gauging primary standard (Piston prover) [19]

2.5.4 ISO dynamic gravimetric liquid flow primary standard

At present, some of the liquid flow primary standards operate under the ISO definition of a

dynamic gravimetric liquid flow calibrator [18]. The main reason that encourages some primary

flow laboratories for the implementation of this method is to avoid the tedious characterization of

a bypass valve (diverter valve) [17], which is not longer required since the mass flow rate is

determined by the time taken to match the magnitude of a reference mass with the magnitude

given by the balance readout. This procedure is quite different to the static principle, which

considers the totalized liquid mass and the time taken to collect it.
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In this type of facility, exemplified in Fig. 2.8 [24], the liquid circulates until the flow is stable,

and a reference mass named as ISOm is placed upon the balance platform (a). As soon as the

quasi-steady flow condition is achieved, the drain valve is closed, and the liquid starts being

collected in the vessel (b). At some point during the filling, the collected liquid reaches a pre-set

initial mass denoted as Tr1m , and triggers a timer to begin the flow measurement (b). The liquid

continues being poured into the vessel until the fluid matches a second pre-set mass Tr2m , which

generates a trigger signal to lift the reference mass from the balance platform but carrying on

with the filling process (c). Finally, after some time during the collection, the pre-set initial mass

Tr1m is reached once again, and it gives the order to stop the timer as well as the filling process (d).

Thereafter, the average mass flow rate is calculated as the quotient of the reference mass ISOm ,

and the period of time between the triggering points ISOt [25].

The illustration of this type of liquid flow primary standard (Fig. 2.8) is based on an electronic

load cell as a weighing system. On the other hand, mechanical calibrators based on a lever

mechanism are also available for the determination of the flow unit [26, 27], and work under the

same ISO measurement principle depicted in the mass-time and flow-time graphs below.

Fig. 2.8 ISO dynamic gravimetric primary standard
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In the last paragraph is written the term average is used because despite this primary standard

operates during the filling process, it still relies on a reference mass for the calculation of a single

mass flow rate measurement, and it disregards the fluctuations of flow rate during ISOt .

2.5.5 Dynamic weighing liquid flow primary standard with immersed inlet pipe

This primary standard developed by the company Rota Yokogawa [28] features four main

components in its design: a weighing system, a flow control valve, a collection vessel, and an

immersed inlet pipe (Fig. 2.9). Unlike the recalled liquid flow calibrators, this primary standard

deals with the minimization of the flow-induced force effect upon the weighing system response,

so that the mass flow rate can be determined as a instant quotient of the balance readout and

time.

The first step of this measurement process is related to the designation of the operational mass

flow rate, taking into account that before starting a calibration run, the flow must be set at a

quasi-steady condition. Once the set up conditions are achieved, the filling process can take

place.

The second step addresses an inherent design problem, which is the counter pressure exerted by

the collected liquid to the discharging flow at the pipe outlet (Fig. 2.9). If this problem were not

treated, the primary standard would simply undergo a continuous decrement of mass flow rate,

and therefore a flowmeter calibration would be impossible to be carried out.

The solution found in order to overcome this problem is the installation of a flow control valve [26],

which can overcome in real time the increasing counter pressure at the pipe outlet, and hence,

assuring a nearly constant pressure and mass flow rate along the filling process.

Another remarkable part in the design of this primary standard is its ability to mechanically

attenuate the normal impacting force caused by the water jet. The mechanical concept consists in

placing inside the vessel, a vertical inlet pipe, which supplies the water mass flow, and it does

not have any contact with the vessel structure (Fig. 2.9). At the pipe outlet, a deflecting plate is

attached with the objective to redirect the normal fluid force into a radial direction, so that, the

water stream will spread out to the side walls of the vessel. The advantage of this application is a

radial fluid force that has a lower effect on the weighing system vibration and balance output
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signal, in addition to a faster dissipation of the water jet kinetic energy when spreading the water

throughout the collected water [29]. The other fluid forces taking place in the process are the

product of the continuous increment of liquid mass (desired output quantity), and the local

acceleration of gravity.

Finally, the measurand mass flow rate is calculated in a differentiation form between the balance

readout and time ̂m(t) . The hat symbol on the liquid mass variable is added to indicate that the

magnitude given by the weighing system is a close estimation of the real time-varying mass flow

rate. If none flow-induced forces were present at all in the process, the balance readout would be

equal to the time-varying liquid mass.

Fig. 2.9 Dynamic weighing liquid flow primary standard with immersed inlet pipe

2.5.6 Dynamic weighing liquid flow primary standard assisted by an in-line flowmeter

The U.S. National Institute of Standards and Technology (NIST) has proposed a dynamic

weighing concept for the calibration of liquid flowmeters, which uses the same provisions as for

a conventional static weighing system [30] (a collection vessel, a weighing system, and a bypass

valve), in addition to a flowmeter.

Such a dynamic flow measurement procedure can be described by the following sequence. First,

a calibrated flowmeter is installed upstream the reference weighing system, as illustrated in
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Fig. 2.10. Then, after the flow reaches a certain flow stability criterion, the bypass valve drives

the fluid stream into the collection vessel to start the filling process. During the collection, a data

acquisition system records the three main process variables: the output signal of the weighing

system, the flowmeter output signal, and time. The measurement run finishes as soon as the fluid

level matches a preset value defined by the user.

The criterion employed for the calculation of dynamic mass flow rate is divided into two parts:

the rough estimation of mass flow rate and the time-varying flow correction. The rough

estimation of mass flow rate is in this instance, the quotient of the difference between the two

fluid forces measured by the weighing system at a time tn and tn+1, and the local acceleration of

gravity. At this stage of the mass flow calculation, the influences of the water jet impact force as

well as the dynamic response of the weighing system have not yet been treated [31]. Therefore,

the calculated measurand is significantly affected in terms of its precision and accuracy.

Fig. 2.10 Dynamic weighing liquid flow primary standard assisted by an in-line flowmeter

The second part of the process model deals with the precision and accuracy issues mentioned in

the last paragraph, by analyzing separately the error attributed to the dynamic response of the

weighing system and the error originated by the water jet impact force. In order to overcome the

influence of the weighing system dynamics upon the flow measurement, such a primary standard

uses a flowmeter as an alternative form to correct the imprecision of the mass flow rate
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estimation. In other words, during a measurement run, the reference flowmeter delivers a value,

which is assumed to follow the time-varying mass flow rate [32]. On the other hand, the

unwanted force magnitude of the water jet impact force (which affects the measurement

accuracy) is estimated by an experimental function relating the water jet impact height, the

weighing system readout, mass flow rate (given by the flowmeter), and time.

2.6 The proposed dynamic weighing liquid flow primary standard
The characteristics of this new liquid flow calibration approach will be described in full detail in

Chapter 3 and Chapter 4. However, at this point it is appropriate to mention some unique

features of the proposed primary standard as well some similarities with its above mentioned

counterparts. For instance:

 Unlike the static primary standards and the ISO-based dynamic standard, the calibration time

by the proposed primary standard will be reduced, because the flow unit can be reproduced

several time during a single collection (Section 1.2),

 The fast actuation and thorough characterization of a diverter valve is not longer required,

since the measurand is a function of the system dynamics and flow-induced force, and not a

function of a totalized amount of mass and time,

 For the static primary standards as well as the ISO-based dynamic standard, the time-varying

mass flow rate is considered as an uncertainty contributor. For the proposed dynamic

weighing liquid flow primary standard, the time-varying mass flow rate is an inherent

characteristic of the measurand,

 The effect of fluid evaporation in the proposed primary standard will be relatively low, due to

the fact that the measurement is carried out in a shorter time, in comparison to the static

primary standards,

 The proposed dynamic weighing liquid flow primary can be implemented into a conventional

static-weighing liquid flow calibration system, and it does not imply any changes in its

mechanical design.
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In order to summarize all the recalled information, Table 2.3 offers an overview of the

measurement approaches for liquid flow, and a way to compare them (in terms of their

advantages and limitations) with the proposed dynamic weighing liquid flow primary standard.
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Measurement type Mass Volume Mass

Average flow rate Yes Yes Yes Yes Yes Yes Yes

Time-varying mass
flow rate

No No No No No Yes Yes

Time of calibration Long Long Long Long Medium Short Short

Fluid and mechanical
influences

Diverter error Yes No Yes No No No No

Flow-induced
forcedisturbance

No No No No Medium Low High

Connecting pipe Medium Medium Medium Medium Medium Medium Medium

Fluid evaporation Medium Medium Medium Medium Medium No Low

Flow instability Medium High Medium High Medium Low Medium

Air buoyancy effect Low Low Low Low Low No Low

Temperature variation Medium Medium Medium Medium Medium High Low

Mass Volume

Table 2.3 Characteristics of different liquid flow primary standards
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3. Input signal, modeling of the dynamic weighing liquid flow

standard, and the connecting volume effect

As a starting point of this research, it must be stated that the input signal of the measurement

process is a fluid force quantity. However, in order to make present the force quantity in this

dynamic process, it is necessary to produce fluid motion. Therefore, the mass flow rate wm (t) is

in this instance the core variable, or command input of the system [1]. For the sake of early

clarification, it is important to explain that mass flow rate is also the desired output signal of the

measurement process. However, due to the undergoing dynamic conditions in the liquid flow

standard, the system is unable to directly yield the measurand but an estimate value of wm (t)̂ (the

subindex w denotes water as a fluid in use). The term of estimate measurand is used to remark

that in practice, despite the treatment of fluid forces and the system instrumentation, part of the

magnitude of these variables will be unavoidably present in the measurand. Such fluid forces

present in the liquid flow standard are described in the following sections of this chapter, with

the purpose to understand their relevance in the measurement process, and ultimately, its impact

upon the measurand.

Fig. 3.1 describes in a block diagram the dynamic weighing liquid flow standard, wherein its

working principle is explained by three series-connected subsystems. The command input is in

this case the mass flow rate wm (t) . Then, the command input enters the first subsystem called

input elements. Such a block of input elements represents the summation of different mass

flow-induced fluid forces TF (t) that will interact with the next subsystem, the weighing system

(or balance). This second subsystem deals with the mechanical dynamic response of balance, and

the effect of such a behavior upon the fluid force measurement. The third subsystem known as

process model has the task to dynamically estimate the mass flow rate magnitude w nm (t )̂ based

on an inverse-problem approach [2]. In this case, the inverse-problem approach takes into

account the process parameters from the two previous subsystems (defined by theory and

experimental observations), in order to derive a model that can identify and attenuate the

unwanted process variables embedded in the system response Bal nF (t ) , and thus obtaining an



Chapter 3

23

accurate estimate of the measurand. The detail explanation of this last subsystem will be given in

the next Chapter 4.

Fig. 3.1 General block diagram representation of the dynamic weighing liquid flow primary

standard and its three main subsystems

Fig. 3.2 shows the dynamic weighing liquid flow standard prototype that will be used in this

investigation, with the aim to analyze the key variables involved in this measurement process

and to realize the level of accuracy that can be achieved by using the proposed calibration

method. Such a prototype comprises an air temperature, relative humidity, and absolute pressure

sensors that serve to calculate the air density, and subsequently to correct the mass reading from

air buoyancy effects. Additionally, a nozzle and a bypass valve (with no fast actuation) are used

to discharge the water mass and drive the fluid to either, a 10-L collection vessel or back to a

reservoir tank. In terms of fluid mass transfer, the prototype features a 25-mm pipeline, which

connects a flowmeter with direct traceability to the PTB primary flow standard to the weighing

system. The goal of the flowmeter (transfer standard) is to provide a reference of how the mass

flow rate is slightly fluctuating, within its claimed measurement uncertainty, and thus comparing

its results with the given by the prototype system for validation purposes (full description in

Chapter 6). In this case, the weighing system employed is a 30-kg electromagnetic force

compensation balance (section 3.2), which holds the collection vessel, and it features a

resolution of 0,1g, with a characterized linearity of ±0,4g, and a repeatability ±0,1g.

In relation to the process conditions, such a prototype uses the PTB primary standard’s pumping

system, which ensures a stationary and quasi-steady mass flow rate as well as fluid temperature.

In addition to these control provisions, an electro-pneumatic control valve is installed upstream

the collection vessel, in order to finely adjust the flow within a range from 3 kg/min to 8 kg/min.
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Moreover, the system features two auxiliary devices, a laser displacement sensor and an

accelerometer, which besides monitoring the system´s dynamic response, they serve as tools to

improve the accuracy of the mass flow rate measurement. A further description about the usage

of these auxiliary devices as well as the dedicated data acquisition system is given in Chapter 6,

which regards the experimental tests and results of the dynamic weighing calibration method.

Fig. 3.2 Dynamic weighing liquid flow primary standard prototype

3.1 Input signal

3.1.1 Collected water mass force

The first fluid force variable m(t)F is related with the collection of water mass inside the vessel

through the measurement run, and the effect of the local acceleration of gravity g [3]. In regards

to the water mass wm (t) , it is considered to be a time-varying variable due to the continuous

increment of its magnitude during the filling process. Moreover, this fluid mass variable is

agreed to behave as a ramp function (Eq. 3.1), because the mass flow rate wm (t) (seen as a

slope) is performed by the liquid flow primary standard under stationary and quasi-steady

condition. In this instance, the term stationary and quasi-steady flow refers to the highest level of
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stability that a primary standard can achieve. Therefore, in practical terms and for the purpose of

mathematical simplification, the mass flow rate can be assumed to be a constant variable

wm (t) const in the measurement process.

 

m
0

t

w

w 0

F (t) = m (t) g dt

m g t - t

 

  

 



(3.1)

In Eq. 3.1, the lower and upper limits of the integral correspond to the initial and current time of

the filling process, respectively.

3.1.2 Hydrodynamic force

The second variable involved in the measurement process is known as hydrodynamic force dF (t) ,

which is caused by the continuous impact of the falling water jet upon the water surface or the

vessel bottom at the initial stage of the collection. In the measurement process, the hydrodynamic

force can be represented in a simplified form as [4]:

d w iF (t) = m (t) u (t) (3.2)

where iu (t) stands for the normal impact velocity of the water jet, and in accordance to

Bernoulli´s law [5] this is equal to:

i
2
n iu (t) = u (t)+ 2 g h (t)  (3.3)

In Eq. 3.3, nu (t) and ih (t) denote respectively, the initial velocity of the falling water jet at the

nozzle outlet, and its impact height (see Fig. 3.3). As for nu (t), its magnitude will depend on the

constant crossed section area of the nozzle outlet nA , the density of the fluid wρ , and the mass

flow rate wm (t) (Eq. 3.4).
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w
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m (t)u (t) =
ρ A


(3.4)

The time-varying water jet impact height ih (t) can be depicted in a simplified form (Eq. 3.5) as

the difference between initial impact height ih (0) , and the continuously increasing height of the

water surface wh (t) . Thus,

i i wh (t) = h (0) - h (t) (3.5)

On the other hand, wh (t) is described by Eq. 3.6 as a related function of the current collected

water mass, the cross section area of the vessel vA , and the fluid density wρ . Hence,

0
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w
w v
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m (t) dt
h (t)

ρ A


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(3.6)

Therefore:

0

w

i i
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m (t) dt

h (t) = h (0) -
ρ A





 
(3.7)

Finally, after substituting Eq. 3.3, Eq. 3.4 and Eq. 3.7 into Eq. 3.2, it is found that the

hydrodynamic force is a dependent function of the mass flow rate, the fluid density, the local

acceleration of gravity as well as the dimensions and geometry of the nozzle outlet, the collection

vessel, and the constant initial water impact height (Eq. 3.8).
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3.1.3 Buoyancy force

So far, the forces recalled are related to the same direction given by the gravitational force.

Nevertheless, there is still one process variable called Buoyancy force bF (t) , which also acts

upon the collected water volume but in upward direction as shown in Fig. 3.3. This force is

caused by the lifting effect (or floating effect) the air has upon the water mass, it is agreed to be

equal to the product of the increasing displaced volume by the water wV (t) , the local acceleration

of gravity g, and the air density Aρ . Then, according to Eq. 3.9, the buoyancy force [6] is

expressed as:

b w A=F (t) V (t) ρ g  (3.9)

Alternatively, Eq. 3.9 can be expressed in terms of the liquid density and the mass flow rate in

order to yield:

0

t
A

wb w
F (t) = g m (t) dt

 
  
 

      (3.10)

3.1.4 Total fluid force and its block diagram representation

As seen in Fig. 3.3, the liquid flow primary standard cannot longer be treated as a static system

where the collected mass is totalized; but instead, as a dynamic system driven by the summed

fluid forces of the increasing collected mass force, the hydrodynamic force caused by the water

jet impact, and the upward-oriented force of buoyancy (Eq. 3.10). Hence, the total fluid force

TF (t) acting upon the system is:

T m d b= + -F (t) F (t) F (t) F (t) (3.11)

The second and third terms of Eq. 3.11 correspond to the hydrodynamic and buoyancy force,

which are considered in this measurement process as unwanted variables. In other words, these

are the variables that have to be minimized in their magnitude by the dynamic weighing liquid

flow standard, in order to estimate with a reasonable accuracy the real mass flow rate wm (t)̂ .
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The following Fig. 3.3 summarizes in a free body diagram and a block diagram, the graphical

representation of all considered forces and parameters involved in the measurement process.

Note that the block diagram representation of fluid forces resembles a feedforward loop, wherein

all input elements are primarily dependent of the command input, mass flow rate.

Fig. 3.3 Block diagram of the total fluid force representing the input signal of the

1-Degree-of-freedom weighing system [7]

3.2 The weighing system and its numerical representation
In general, it is understood that a balance is designed only to reproduce the unit of mass. In

principle this statement is correct, based on the fact that the weighing system manufacturers

provide an internal scale factor to convert the gravitational force exerted by a weighing object

into mass [8]. However, during the dynamic process of fluid mass collection, the utilization of

such a scale factor is not longer applicable, since the weighing system is unable to distinguish
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between the acting force attributed to the collected water mass (desired magnitude), and the

buoyancy, fluid motion and reacting system response forces [9]. Therefore, after this brief

explanation, it is understood that a weighing system is indeed a force measuring device, which

has to be re-characterized, in order to deliver a magnitude in Newtons.

For this research work, an Electromagnetic Force Compensation balance (EFC) is in use, and in

which its operational principle consists in inducing an electromagnetic force that can compensate

and equal the acting force exerted upon its weighing platform [10]. As illustrated in Fig. 3.4, the

EFC balance features an electric circuit comprising an inductive positioning sensor as well as an

oscillator and resistors R to provide a certain constant voltage V [11]. When the filling process

takes place, the fluid force causes the parallel levers to deflect or to move from its equilibrium

position. As this happens, the high-resolution inductive positioning sensor registers the current

z-axis beam location, and hence it generates a potential difference v .

Fig. 3.4 Working principle of an Electromagnetic Force Compensation (EFC) cell used as a

weighing system [11]
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Then, the potential difference magnitude is increased by a power amplifier, which delivers an

amount of current I to the coil (inserted into a permanent magnet), in order to immediately return

the beam into its zero position by changing the force of the electromagnetic field. Thereafter, an

A/D digital voltmeter acquires the voltage output signal vout , which is then filtered out by an

internal signal processing algorithm, scaled as a mass unit, and displayed.

Now, the main task in this section is to have a numerical representation of the recalled system,

which will allow a better understanding of why and how the balance responds in a certain way to

the given fluid-mechanical process conditions, and to identify the magnitude of some sources of

measurement noise. On the other hand, this model-based approach can be only valid if the

theoretical basis of the process (input, system, process model, and measurand as illustrated in

Fig. 3.1) shows a satisfactory level of agreement with the real measurement process, as

demonstrated in Chapter 5 and Chapter 6.

The proposed numerical model of the weighing system is based on Newton´s third law [12], and

it is restricted to a 1-Degree-of-Freedom (1-DoF), which is the normal axis of weighing (z axis).

Such a law states that the acting fluid forces involved in the process (Eq. 3.11), will generate an

equal but opposite response to the mechanical forces Mech(t)F exerted by the weighing system´s

elastic elements and its mass (Eq. 3.12). In other words, Eq. 3.12 says that the system struggles

at all times for an equilibrium position, due to the continuous alternation of upward and

downward forces in the process.

T Mech (t)F (t)= F (3.12)

In this instance, the balance will be represented as a system with a time-varying increasing mass,

and by two analogous elements, a damper and a spring, which simulate in a general basis the

sensing element of the balance (cell).

3.2.1 Spring force

As mentioned, one of the elastic elements employed to simulate the balance is defined by a

spring, in which its reacting force denoted by BalF (t) is equal to the product of the characterized
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balance stiffness coefficient Balk , and the displacement z undergone by the balance along the

measurement run (Eq. 3.13). This element can be also seen as the component dealing with the

storage of potential energy in the balance [13].

Bal Bal
=F (t) k z (3.13)

3.2.2 Inertial force and system total mass

The second element of the system deals with its mass, and it is agreed to be equal to the

summation of: the collection vessel mass ( vm ), the weighing platform mass ( pm ), the initial

amount of water mass ( wm (0) ), and the time-varying collected water mass ( wm (t) ). As a

remark, the mass element constitutes the main mechanism of kinetic energy storage in the

balance [14], and as described by Eq. 3.14, it will turn out to be larger in magnitude as the filling

process goes on (Fig. 3.5).

T p w wvm (t) = m + m + m (0)+ m (t) (3.14)

where Tm (t) constitutes the total mass held by the balance elastic elements.

When a dynamic weighing liquid flow measurement is taking place, the continuous alternation of

acting fluid forces and reacting mechanical forces causes the system´s total mass Tm (t) to

accelerate in an oscillatory form z . Therefore, the result of this dynamic condition is an inertial

force InertialF (t) exerted upon the system, and it is described by Eq. 3.15 [15].

TInertial =F (t) m (t) z  (3.15)

Here, it is important to underline, that such an inertial force is present in great part due to the

hydrodynamic force, which causes the balance to move. If the hydrodynamic force were not

present, the acceleration component in Eq. 3.15 will be zero, so that no inertial force would take

part in the process. In other words, the system would be considered as static. Furthermore, in the
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measurement process, the inertial force is subjected to decrease as the hydrodynamic force

diminishes.

3.2.3 Damping force

The third element of the weighing system model is related with the inherent characteristic of a

system to dampen (or to reduce) the oscillatory force amplitude. Or in other words, it is the

element responsible for the gradual dissipation of energy from the system [13]. In this case, the

damping force cF (t) can be determined as a product of the system z-axis velocity during a

measurement run, and the corresponding damping coefficient of the system Balc (t) (Eq. 3.16).

Subsequently, the system´s damping coefficient shown in Eq. 3.17 is agreed to be a function

dependent of the critical damping fraction  (Eq. 3.18), the current system´s natural angular

frequency n (t) (Eq. 3.19), and its total mass Tm (t) [13].

Balc =F (t) c (t) z  (3.16)

Bal T n= 2c (t) m (t) (t)     (3.17)

1 2
2

d

n

1 -
(t)


       

(3.18)

Bal
n

T

k
m (t)

(t) = (3.19)

As Eq. 3.18 and Eq. 3.19 suggest, the system damping coefficient can be alternatively expressed

in terms of the characterized spring coefficient Balk (t) , its mass Tm (t) , and the damped angular

frequency of the balance d , which is obtained (or characterized) as a function of the system

total mass Tm (t) via experimentation, then d T( m (t)) (see Chapter 5). Hence,
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m (t)
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m (t)

c (t) m (t)- 

               

 (3.20)

And after some algebraic simplifications in Eq. 3.20, the damping coefficient takes the following

form:

 2 2
Bal

1 2

Bal T d T T= 2 k m (t) ( m (t)) m (t)c (t) -    (3.21)

3.2.4 1-Degree-of-Freedom motion equation of the weighing system

Now, at this point, the number of reacting mechanical forces of the weighing system Mech(t)F

(right side of Eq. 3.12) can be represented as the summation of:

Intertial c BalMechF (t) F (t)+ F (t)+ F (t) (3.22)

Then, Eq. 3.22 can be substituted into the into the Newton’s third law equation (Eq. 3.12), in

order to yield the system´s 1-Degree of Freedom motion equation shown in Eq. 3.23.

m d b Intertial c Bal+ -F (t) F (t) F (t) F (t) + F (t)+ F (t)= (3.23)

Likewise, the recalled system´s 1-Degree of Freedom (1-DoF) motion equation can be written in

an extended form (Eq. 3.24), with the aim to see how the motion characteristics of the balance

( z , z , and z ), the acting fluid forces, its elastic properties, its mass, and its damped angular

frequency are related into a single mathematical expression.

Tm d b Bal Bal
+ -F (t) F (t) F (t) m (t) z + c (t) z + k z=     (3.24)

or

 2 2
T Bal T d T T Balm d b

1 2
+ - 2 k m (t) ( m (t)) m (t) kF (t) F (t) F (t) m (t) z + z + z-=      

  
 

(3.25)
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The sketch shown in Fig. 3.5 illustrates the meaning of Eq. 3.25, stating that the balance can be

treated as a dynamic fluid-mechanical system. This analogous system comprises a collection

vessel of mass vm , enclosing a time-varying water column of mass wm (t) , in addition to a

possible amount of collected water before the measurement run wm (0) , and it is being supported

by a platform of mass pm . Such a platform is mounted on two parallel elastic elements of

stiffness coefficient Balk , and damping coefficient Balc (t) , respectively. The upper end of the

water column is agreed to be limited by a free surface at a constant atmospheric pressure, and the

effect of the local acceleration of gravity g. Additionally, the fluid and mechanical forces in this

measurement process are limited to take place along the weighing axis, therefore, the system is

subjected to have 1-DoF. In relation to its source of motion, this is assumed to come from the

command input, mass flow [16].

Fig. 3.5 Free body diagram describing the water mass and elastic elements of the system as well as

the fluid (acting) and mechanical (reacting) forces involved in the process

Alternatively, the weighing system can be also represented in Fig. 3.6 as a block diagram, with

the purpose to graphically describe the motion equation shown in Eq. 3.25. According to the

block diagram, the input signal is the total fluid force TF (t) , and it acts upon the weighing

system. In practice, there are some additional fluid forces acting upon the weighing system, such

as the vortex axial force inside the collection vessel as well as the water wave oscillatory forces
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(denoted by qF (t) ). These forces, which despite not being treated in the current analysis, they

have to be mentioned and depicted in Fig. 3.6, as a reminder that they must be investigated and

included in a future model. From the numerical analysis perspective (Chapter 5), the effect of

qF (t) upon the measurand will be overlooked, because none descriptive equation has been

derived, and added into the input signal subsystem. On the other hand, the results of

experimental tests (Chapter 6) will be limited to state that the error in calculating the measurand

is in part, due to the lack of information to quantify qF (t) . Hence, qF (t) will be assumed in the

experimental analysis as a process noise variable.

As a result of such a fluid impact force, the current system with mass Tm (t) , brakes its static

condition, and accelerates with a certain magnitude z . Then, the acceleration is time-integrated

in order to describe the system´s motion in terms of velocity z and displacement z . In this

instance, the system velocity is related with the damping coefficient of the balance sensing

element, in order to yield the so called reacting damping force cF (t) . Whereas, the product of the

system displacement, and its stiffness coefficient will be equal to the reacting balance force

response BalF (t) . The behavior of these reacting forces is seen in the block diagram as a feedback

response.
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Fig. 3.6 Block diagram representation of the balance 1-DoF motion equation (Eq. 3.25)

The outcome (or actuating signal) of this acting fluid and reacting mechanical force interaction is

denoted by the system as an inertial force IntertialF (t) , which as previously mentioned is considered

to be a source of measurement noise. The term measurement noise is used in text to underline

that such an unwanted variable is a product of the measuring device (balance) dynamic response,

and not a physical process condition.

By looking at the block diagram (Fig. 3.6), it can be also observed, that in the following times t

of the measurement process, the system acceleration z will undergo a decrement. This is

because the system mass Tm (t) gets significantly larger in comparison to the magnitude of the

inertial force IntertialF (t) . Moreover, the weighing system will inherently decrease its oscillatory

velocity and displacement, due to the balance deceleration as well as the gradual dissipation of

system energy, seen as a damping force.
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In this case, BalF (t) is representing the balance force response (output signal) because it is the

variable that summarizes in its magnitude: the acting fluid forces (input), the damping force

effect of balance sensing element, and the unwanted inertial force the system is subjected during

a dynamic process.

3.2.5 Technical considerations in regards to the modeling of the weighing system

The numerical model considered in this chapter is an analogous representation of the weighing

system, wherein its dynamic response is simulated by coupling these basic mechanical elements,

known as: damper, spring, and masses. One must be aware that during the characterization of the

weighing system, the obtained elastic properties ( Balk and Balc (t) ) and the mass magnitude used

for the numerical model, might slightly differ from the real system. This is due to the fact, that

even high-accurate weighing systems are not absolutely linear, but quasi-linear in their

response [13]. Furthermore, the numerical model is described as a 1 DoF system, in which its

motion is restricted to the normal axis of the balance z (weighing axis). However, in the reality,

the weighing system responds in a multi-axis direction (angular and translational motion), so that

a set of partial differential motion equations (including the feedback positioning control loop of

the balance) would get closer to the real system response. The multi-axis system modeling is a

concept that should be kept in mind, in order to achieve a more thorough analysis of the system

and its measurement accuracy. Nonetheless, as demonstrated in Chapter 5 and Chapter 6, the

numerical and experimental results of a 1-DoF approach turned out to be accurate enough,

meaning that the most relevant system parameters and their magnitudes are taking place at the

weighing axis.

The following remarks describe some system´s aspects that must be taken into account, in order

to avoid some misinterpretation of data when the numerical model and the real process are

compared.

 The characterization of the spring coefficient Balk cannot be perfect, because the real system

may present slight non-linear force-displacement characteristics and even some hysteresis [17]

in its response. The consequence of this mechanical condition in the numerical model is a

balance force response, that might differ at some degree from the real response,
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 In mechanical terms, the magnitude of the characterized system mass Tm (t) is not absolute,

because in reality, there are some additional small balance components (i.e. bolts, nuts,

levers, etc), which cannot be taken apart and weighed, and therefore are disregarded. As a

consequence, the effect of overlooking this mass will generate a slight difference in the

inertial force magnitude, in comparison with the real system when looking at its related

variable, the acceleration z ,

 The characterized damping coefficient Balc (t) used in the numerical model is not exact but

approximately equal to the real system magnitude, because the natural angular frequency is a

dependent function of two other characterized system elements, Balk and Tm (t) (Eq. 3.19).

Furthermore, another reason that makes slightly different the numerical model from its

counterpart is, that the damping force is not merely produced by Balk and Tm (t) , but also by

the some small friction between balance components [13].

3.2.6 General representation of the weighing system internal filter and the discrete time

representation of its output signal

Most of commercial weighing systems used in the industry feature an internal filter, which is

responsible for minimizing the unwanted amplitude of the balance oscillatory force response, or

the inertial force as it has been discussed in the previous section. Such a type of filter can be

described in a general basis as a first-order low pass filter [18], which its aim is to allow passing

any oscillatory force response that is below to an established cutoff frequency (pass band). And

conversely, the low pass filter will eventually attenuate the amplitude of those oscillatory forces,

which are larger than the cutoff frequency (stop band).

Fig. 3.7 summarizes the low pass filter concept by presenting it in a Bode plot, in which the pass

band comprises any spectrum within a frequency ( d d 2πf ω ) lower than the cutoff frequency,

LPFf . On the other hand, as soon as the system oscillatory force equals the cutoff frequency, this

will start undergoing an attenuation in the order of -3 dB. Furthermore, if the system frequency

response is larger than the cutoff frequency, the amplitude will be reduced at a rate of 20 dB per

decade [19].
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In the practice, the internal filter of an industrial weighing system is more complex than a first-

order low pass filter. Nevertheless, due to the lack of information from the balance

manufacturers in regards to their established filter algorithms, it is in this case feasible to proceed

with a basis algorithm, which can yield a general but valid representation of what a pass/stop

frequency internal filter does.

Fig. 3.7 Bode plot representing the internal low pass filter used in the numerical model

According to Eq. 3.26, the first-order low pass filter can be simply expressed as the ratio of the

filtered output signal BalLPF dF (f ) to the input signal BalF (t) , which is equal to the level of

attenuation that the balance output signal will undergo after passing the filter. This magnitude is

known as gain factor LPF dG (f ) .

LPFBal

LPF
Bal

d

d
d

G f
F (f )

= ( )
F (f ) (3.26)

Commonly, the gain factor of the low pass filter is expressed in complex terms (Left side of

Eq. 3.27), because its operation is based on a frequency domain [18]. However, it is possible to

obtain its magnitude and phase shift  LPF t if the complex number is represented in a polar

form as shown in Eq. 3.27. Thus,
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(3.27)

Eq. 3.27 indicates that in practical terms, it is possible to apply the first-order low pass filter

because the cutoff frequency LPFω information is mostly provided by the balance manufacturers,

and the oscillatory frequency of the system d T( m (t)) can be experimentally obtained by

characterizing the oscillatory mechanical response of the balance.

Fig. 3.8 illustrates in a block diagram, the implementation of low pass filter (Eq. 3.26 and

Eq. 3.27), depicting that the continuous-time response of the balance BalF (t) stands for the input

signal of the internal filter. On the other hand, the block diagram describes the current frequency

of the oscillatory weighing system d T( m (t)) , and the cutoff frequency LPFω as the responsible

variables for tuning the gain of the filter. Finally, BalLPF
F (t) and  LPF t denote respectively, the

balance response after attenuating its oscillatory magnitude and phase shift.

Fig. 3.8 First-order low pass filter in a 1-Degree-of-Freedom weighing system model

At this stage of the process, the balance response signal has been presented in terms of a

numerical model, and its output signal is agreed to be attenuated in a continuous-time form by a

low pass filter. However, for an appropriate comparison and analysis of the weighing system, it
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is still required to represent the balance output signal response in a discrete-time form, as it is

delivered by the physical system.

Such a discrete-time conversion shown in Eq. 3.28 is carried out by first defining the

continuous-time output signal, which is BalLPF
F (t) . The second part of the equation comprises a

series of Dirac impulses, that acquire data only at constant time intervals along the measurement.

The impulse function for this application is described as the difference between a given time t

within the measurement, and the product of the data sampling number N and the system’s data

sampling time st . In other words, sδ(t - N t ) [18].

Bal BalLPFn s
N=0

F (t )= F (t) δ(t - N t )


  (3.28)

Fig. 3.9 describes the continuous-discrete time conversion in Eq. 3.28 as a block diagram, and it

illustrates the expansion of its cumulative sum in a cascade form.

Fig. 3.9 Continuous/discrete time conversion of the balance output response
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3.3 The connecting volume effect in liquid flow measurements
For the sake of explanation, the definition of mass and volumetric flow in a closed conduit

system was presented in Chapter 2 in terms of a simplified form of the continuity equation

(Eq. 2.1). However, in practice, if such a simplified equation were intended to be used in a liquid

flow primary standard, the expected result would be a mass flow rate calculation with reduced

measurement accuracy, as it neglects the storage effect from the connecting volume (pipeline

between the flowmeter under calibration and the weighing system). In other words, this effect

indicates that in a real system, the eventual temperature changes of the fluid and the pipeline

material will cause the fluid mass inside the connecting volume (CV) to change during the

measuring time, and as a consequence, the mass flow circulating through the installed flowmeter

will differ in some degree from the mass flow being discharged into the collection vessel and

measured by the liquid flow primary standard (Fig. 3.10).

In this instance, the general continuity equation shown in Eq. 3.29 is the basis equation

employed in flow calibration facilities to quantify the connecting volume effect in the

measurement [20]. The following equations and text below describe the background of this

equation. As written in Eq. 3.29, the continuity equation establishes that the summation of the

rate of change of mass inside a selected connecting volume CVV (first term), plus the mass flow

rate passing through an arbitrary area of the connecting volume CVA (second term) has to be

equal to zero, in order to comply with the law of mass conservation [20].

w_CV w_CV

CV CVV A

d ρ dV + ρ u( t ) dA= 0
dt

    (3.29)

Here, w_CVρ and u( t ) denote respectively the water density in the connecting volume (CV), and

the mean velocity of the fluid at an arbitrary region across the CV.

Now, for the purpose of applying the general continuity equation, Eq. 3.29 has to be derived in

terms of the boundary conditions of the liquid flow primary standard. First, since there is no

mass flow passing through the walls of the pipeline, it is inferred that the product u( t ) dA of the

integral for this portion of surface is equal to zero. On the other hand, the mass is indeed flowing
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in a normal direction to the cross section area of the flowmeter
Meter
A (inlet section) as well as the

cross section area of the nozzle outlet
nA (outlet section). Therefore, in accordance to the given

statements, Eq. 3.29 can be written for this specific case as [21]:

w_CV w_Meter w_nMeter

nMeterCV

IN OUT

n
V A A

+ +
d ρ dV - ρ u ( t ) dA ρ u ( t ) dA = 0
dt

 

 
   
 
 

  
 

(3.30)

In Eq. 3.30, w_Meterρ and w_nρ stand for the water density at the flowmeter and the nozzle outlet

location. Furthermore, the terms
Meter
u ( t ) and nu ( t ) represent the mean normal velocity of the

fluid at the flowmeter and nozzle outlet location. Moreover, the second and third term of

Eq. 3.30 correspond respectively to the inlet and outlet mass flow of the control volume. Note

that the minus sign at the inlet surface term is given, because the flow direction is opposite to the

pressure force direction exerted by the water enclosed in the connecting volume [22].

Fig. 3.10 The connecting volume of a liquid flow primary standard
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Moreover, in accordance to the law of mass conservation, it can be stated that the mass outflow

of the control volume (third term of Eq. 3.30) is equal to the mass flow rate delivered to the

dynamic weighing liquid flow standard ˆ
nwm ( t ) , as illustrated in Fig. 3.10. Likewise, the same

statement applies for the mass flow rate passing through the inlet section of the CV (second term

of Eq. 3.30), which in practical terms turns out to be equal to the mass flow rate measured by the

flowmeter Meter nm ( t ) . Thus,

ˆ
w_CV Meter

CV

n w n
V

( t ) ( t )
d

ρ dV m +m
dt

- = 0       (3.31)

In a more thorough description, Eq. 3.32 points out the two physical effects that cause the fluid

mass to change in the CV (first term of Eq. 3.31). One is originated by the pipeline volume

change due to the thermal expansion or contraction of its material in a certain time, and the

second effect is regarded to the fluid density variations inside the CV with respect to time.

 

   

w_CV CV

w_CV

CV

w_CVCV
CVw_CV

V

V

d ρ Vd ρ dV =
dtdt

d ρd= ρ V
dt dt




  


(3.32)

Then, in order to find out the practical-oriented solution to this analysis, the rate of mass change

depicted in Eq. 3.31 has to be represented as the limit of the nominal change of water mass

within a time interval Δt that approaches to zero. Hence,

0 0
lim lim

w_CV w_CV
t t

CV

CV w_CV
CV

V

d
ρ dV ρ V

dt t t

V ρ
=

   
   

 

  (3.33)

where the time interval is defined as:

Δ n n-1 st = t - t t (3.34)
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Therefore, due to a small temperature changes in the CV, and the thermal expansion properties

of the fluid and pipeline material, the nominal change of fluid density and CV volume are

assumed to be [23]:

Δw_CV w_CV w_CVw=ρ - ρ β   (3.35)

ΔCV CV CV CV=V V 3 α     (3.36)

As for the equations above, wβ denotes the volumetric thermal expansion coefficient of water

( -6207 10 / K ), and CVα is the linear expansion coefficient for the connecting pipe ( -617,3 10 / K ) [24].

Meanwhile, the variables Δ w_CV and Δ CV described in Eq. 3.35 and Eq. 3.36, correspond to

the undergone temperature difference of water (Eq. 3.37) and pipeline material (Eq. 3.38)

between the time step n-1t and nt . Hence,

   Δ n n-1w_CV w_CV w_CVt t     (3.37)

   Δ n n-1CV CV CVt t     (3.38)

Thus, after substituting Eq. 3.34, Eq. 3.35 and Eq. 3.36 into Eq. 3.33, the rate of change of mass

in the CV (connecting volume effect) can be determined by the following expression [23]:

 

 

Δ Δ

Δ Δ

CV CV CV CV w_CV w w_CVw_CV w_CV
V CV

CV CV CV w w_CVw_CV s

d ρ dV ρ 3 V α V ρ β tdt

ρ V 3 α β t

  

    

         

     


(3.39)

Finally, Eq. 3.39 can be substituted into Eq. 3.31, in order to yield a practical form of the

continuity equation (Eq. 3.40), which helps to correct the measurement error caused by the

storage effect of the connecting volume, and thus it allows comparing both measurement

approaches.
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 Δ Δˆ CV CV CV w w_CVw_CV
Meterw n n

s

ρ V 3 α β
m ( t )= m ( t ) -

t
      

  (3.40)

3.3.1 Accuracy considerations in relation to the connecting volume effect in dynamic

weighing liquid flow measurements

The significance of the discussed connecting volume effect upon the flow measurement accuracy

can depend not only on the fluid and pipeline material temperature, but also on the type of

primary standard in use. The following calculation examples shown in this section are made with

the purpose to illustrate the impact of the connecting volume effect in the measurand, when this

parameter is neglected either in a static weighing or in a dynamic weighing mass flow

measurement.

The first calculation is based on a measurement run performed by the liquid flow primary

standard, assuming this operates in a static-weighing mode at an average mass flow rate wm of

8 kg/min, with a collection time of 60s in a 10-L vessel. In this instance, the fluid and connecting

volume temperature variations during the collection time are respectively 50 mK and 200 mK,

based on data observations from a liquid flow primary standard. Additionally, the water density

is agreed to be 998,2 kg/m³ at 20°C [25], and with a nominal connecting volume of 0,7 L. Thus,

in accordance to Eq. 3.39, the magnitude of the connecting volume effect in a static-weighing

mode (for this example) is:

CV

-6 -6

w_CV
V

Static

-8

kg 1 1998,2 0,0007m 3 17,3 10 0,2K - 207 10 0,05K
m K Kρ dV

1min60s 60 s
kg= 2,096 10

min

³³
 
  
 

          
   

   



 (3.41)

Or in terms of its relative uncertainty:

  CV

w_CV
V

Static
CV Static

w
-7

ρ dV

U = 100%
m

= 2,62×10 %

 
 
   






(3.42)
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For the case of a dynamic weighing liquid flow measurement, the situation is rather different,

because the measuring time can be in the order of milliseconds. That condition implies that

during such a small period of time, only very small temperature variations of approximately ± 1

or 2 mK could take place (worst case scenario). On the other hand, it is important to mention that

in a real process, these variations can be basically equal to the uncertainty attributed to a

temperature sensor [26]. This means, that the recalled magnitude of temperature change could

not be entirely attributed to the heat exchange through the fluid and the pipeline material, but

also due to another factors, such as: temperature influence upon the measurement bridge

resistors, different temperature gradients along the sensor stem, sensor hysteresis, the internal

algorithm used to scale the electric output signal of the sensor into temperature units, and so

on [26]. Therefore, for the example of a sampling time of 4ms at 8 kg/min, the magnitude of the

connecting volume effect is:

-6 -6

w_CV

CVV
Dynamic

-3

kg 1 1998,2 0,0007m³ 3 17,3 10 0,002K - 207 10 0,001K
m³ K Kρ dV = 1min0,004s 60s

kg= -1,08 10
min

 
 
 

          
  

   





(3.43)
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 
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(3.44)

When looking at the result of the connecting volume effect in a dynamic weighing liquid flow

primary standard (Eq. 3.43 and Eq. 3.44), it turns out to be that its magnitude becomes larger.

The explanation to this quite significant increment is that despite the small temperature

increments, the measuring time is thousands of times smaller than the total collection time in a

static weighing primary standard, whereby the quotient gets larger. Eventually, the designated

measuring time can be increased, for instance to 25ms, which results in a lower relative

uncertainty of about 0,002%, but at the expense of most likely increasing the measurement

uncertainty when overlooking and extrapolating measurement data. In conclusion, the storage

effect of the connecting volume cannot be simply disregarded from a dynamic weighing primary
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standard. As suggested by these examples and in the following Chapter 5 and Chapter 6, this

effect can be considered as the third main uncertainty contributor in the measurement process

after the mass flow calculation model, and the process and measurement noise (Table 3.1).

According to reference [27] the connecting volume effect stands as the fifth uncertainty

contributor for static weighing calibration systems.

Table 3.1 Main uncertainty contributors of the static [27] and dynamic weighing liquid flow

primary standards
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4. Filtering techniques for the determination and accuracy of mass

flow rate (Process model)

In this chapter, a series of filters are presented with the aim of processing the acquired data from

the weighing system output signal Bal nF (t ) , and thus, delivering an estimate of the desired

measurand, mass flow rate.

The block diagram sketched in Fig. 4.1 stands for the recalled three main subsystems of the

dynamic weighing liquid flow primary standard. In Chapter 3, a description of the command

input as well the first two subsystems (Fluid force and weighing system) were presented. Now,

Chapter 4 will address with the third subsystem known as Process model, which has to be

expressed in a discrete-time form nt , due to the time constant of the balance output signal, and

data acquisition system involved in the real measurement process.

As seen in Fig. 4.1, the process model subsystem is divided into two subsystems called

respectively: Hydrodynamic force filter and Measurement noise filter. The Hydrodynamic force

filter has the task to analytically quantify and eliminate (or drastically reduce) the magnitude of

the disturbing state variables from the measurement process; so the measurand ˆ
nHFm (t ) can be

dynamically estimated with a higher accuracy [1]. As mentioned in Chapter 3, such disturbing

process variables are described as: the hydrodynamic force ( )d nF t driven by the impacting

water jet, and in a minor degree, the upward air buoyancy force ( )b nF t that causes an apparent

loss of collected mass force [2]. The latter occurs either under dynamic or static measurement

conditions.

The second subsystem known as measurement noise filter comprises a signal filter algorithm,

which deals with the identification and attenuation of the measurement noise [3], and it is

originated in great part by the reacting inertial force ( )Inertial nF t of the weighing system. The

task of this filter is to make the estimate measurements ˆ
nwm (t ) more precise [4], and to re-

enhance their accuracy.
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Fig. 4.1 General block diagram representation of the process model, its two subsystems, and the

treatment of the measurement data to estimate the mass flow rate

As shown in Fig. 4.1, ê denotes the estimated error, nwm (t ) is the true measurand value, f(m)

stands for the probability distribution of m [5], and ˆ
nBalm (t ) , which is the estimate value of

mass flow rate given by the direct response of the balance (Eq. 4.1). As a remark, it is important

to note that ˆ
nBalm (t ) is indeed an estimate measurand value, but it has not been treated by the

influence of the hydrodynamic and buoyancy forces, in addition to the measurement noise

induced by the dynamic response of the weighing system.

 
0

0

ˆ Bal Bal
Bal

n

n
n

F (t ) F (t )
g t t

m t -( )
 

 (4.1)
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4.1 Derivation of a filter for the attenuation of the hydrodynamic force effect

upon the balance output response and determination of mass flow rate
One form to derive an algorithm that can filter out the presence of the discrete-time

hydrodynamic and buoyancy force from balance output signal, consists in analyzing the

1-degree-of-Freedom motion equation derived in Chapter 3 (Eq. 4.2), because it is the equation

that relates the recalled unwanted fluid state variables, with the response of the balance used in

the process.

n n n n n nIntertial c Bal m d b+ -F (t ) + F (t ) + F (t ) F (t ) F (t ) F (t ) (4.2)

As mentioned in Chapter 3, it is agreed that Bal nF (t ) denotes the balance response because is

indeed the variable that summarizes in its magnitude: the acting fluid forces, the damping force

effect of the balance sensing element, and the inertial force the system is subjected during the

dynamic process (Section 3.2.4). Hence, the equation of motion can be expressed as Bal nF (t ) ,

equal to the summation of all involved acting-reacting forces (Eq. 4.3)

n n n n n nBal m d b Intertial cF (t ) F (t )+ F (t ) - F (t )- F (t ) - F (t ) (4.3)

In the real measurement process, the balance is unable to measure each of the fluid force

variables independently, but their summation represented by the variable called T nF (t ) , in

addition to the mechanical reacting forces of inertia and damping, as shown in Eq. 4.4.

n n n nBal T Intertial cF (t ) F (t ) - F (t ) - F (t ) (4.4)

Now, for the sake of obtaining a practical equation for the determination of mass flow rate, it is

necessary to simplify Eq. 4.4 based on the physical fact, that the balance force response Bal nF (t ) ,

and the acting fluid forces are estimated to be equal (Eq. 4.5) [6]. The explanation for this

assumption is the following.

�������� ≜ �
���� (4.5)
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Firstly, consider the Force-time graph shown in Fig. 4.2(a), wherein T nF (t ) is split into its three

components: collecting mass, hydrodynamic, and buoyancy force. On other hand, take a look to

Fig. 4.2(b), in which the path of a ramp-like response of T nF (t ) and Bal nF (t ) are basically

overlapping all along the filling process. In other words, the average slope magnitude is agreed

to be the same in both cases. However, the relatively small difference still remaining between

these two state variables T nF (t ) and Bal nF (t ) is due to the inertial force Intertial nF (t ) , damping

force ncF (t ) , in addition to the balance time response, the effect of the continuous-discrete time

conversion, and low pass filter upon the balance output signal. These signal-conditioned

unwanted state variables will be treated in the following section, regarding the measurement

noise filter and its application. Summarizing, Eq. 4.6 gathers the above statements in an

expression, describing that the balance output response can be equal to the summation of

estimated fluid force variables, denoted by a hat symbol “^”.

Fig. 4.2 Graphical representation of (a) acting fluid forces and (b) balance force response during

the filling process

Bal n m n d n b nF (t )= F (t ) F (t ) F (t ) ˆ ˆ ˆ (4.6)

After writing Eq. 4.6 as a function of mass flow rate in terms of the discrete time form nt , the

equation takes the following form:
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(4.7)

where the subindex HF stands for the mass flow rate estimate after applying the hydrodynamic

force filter, g is the local acceleration of gravity (9,8125 m/s²), and ˆi nu (t ) is the water jet impact

velocity.

Then, after substituting the hydrodynamic force equation (Eq. 3.8) in a discrete-time form into

Eq. 4.7, such an equation becomes:

ˆ ˆˆ 1

ˆ ˆ

HF HF
HF

1/ 2

n n nA
nBal n n

w

2

i
w n w v

n n ni

m (t ) m (t ) tF (t ) m (t ) g +2 g h (0)-
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  
                                             

 


 

(4.8)

As a remark, it is important to underline that in Eq. 4.8, the local acceleration of gravity g is

considered as a constant, due to the fact that the changing center of gravity of the water mass

during the filling process, and the effect it has upon the g value is relatively small [7]. Now, in

order to carry on with the equation to estimate the measurand ˆ
HF nm (t ) , it is necessary to express

Eq. 4.8 in a form that the square root of the impact velocity can be cancelled out, and thus

making the factorization easier. Hence,

2

2

ˆ

ˆ ˆˆ

A
Bal n HF n n

w

1/ 2

HF n HF n n
HF n

2

i
w n w v

F (t ) - m (t ) g 1 - t

m (t ) m (t ) tm (t ) + 2 g h (0) -
ρ A ρ A

           

                             



 


(4.9)
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And after some algebraic steps in Eq. 4.9, it turns out to be that the hydrodynamic force filter

equation is a polynomial equation of fourth order, and it is described in the following canonical

form:

2

ˆ ˆ ˆ

ˆ

HF HF HF
4 3 2A

n n n
w

A
Bal n n HF n Bal n

w

2
2 2n

i n2 2
w vw n

2 g t1 m (t ) m (t ) + 2 g h (0) g 1- t m (t )
ρ Aρ A

...+ 2 F (t ) g 1- t m (t ) F (t )=0

- ...

-

                               
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  



(4.10)

As Eq. 4.10 indicates, the determination of the measurand ˆ
HF nm (t ) cannot be obtained by simply

substituting the variables into the equation, as that occurs in a second-order equation, wherein its two

roots (not necessarily distinct) are obtained by simply using the so called Quadratic formula [8]. One

practical way to accurately solve Eq. 4.10 consists in implementing a numerical method that can

calculate the eigenvalues (or roots) of such a polynomial equation. In this instance, Eq. 4.11

shows the characteristic time-varying matrix nE [9] of the fourth order equation, wherein its

coefficients are contained.

( ) / ( ) ( ) / ( ) ( ) / ( ) ( ) / ( )
1 0 0 0
0 1 0 0
0 0 1 0

n n n n n n n n

n

b t a t c t a t d t a t e t a t    
 
 
 
 
 

E (4.11)

where the order of these coefficients in relation to Eq. 4.10 as well as its variable is written as:

n n n n n
4 3 2

n n n n np( (t )) a(t ) (t )+b(t ) (t )+c(t ) (t )+d(t ) (t )+e(t )= 0      (4.12)

In order to find out the eigenvalues of Eq. 4.10 for each time step nt , such an equation has to be

represented in an equivalent form, in which the determinant of its characteristic matrix nE minus

the dot product of the scalar values n(t ) and the identity matrix I is equal to zero, as shown in

Eq. 4.13. Likewise, this polynomial equation can be written in a factorial form, in order to

describe more clearly the eigenvalues nE .
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( ) ( ) ( ) ( ) 0n n n n n n n n

nn np( (t )) (t )
(t ) - (t ) (t ) - (t ) (t ) - (t ) (t ) - (t )

    
            

E I

(4.13)

In this instance, Eq. 4.13 is solved by a robust numerical method called QR algorithm [10 and

11], which is available in some technical computing software, such as MatLab®, and it allows a

fast and an effective iterative method to calculate the eigenvalues of the characteristic matrix nE .

Furthermore, it is important to note that in Eq. 4.12 and Eq. 4.13, the scalar n(t ) is

intentionally used to represent the main variable of the polynomial equation p( ) , instead of the

measurand ˆ
HF nm (t ) shown in Eq. 4.10. The reason is that after solving the determinant, the four

eigenvalues found 1 2 3, ,n n n(t ) (t ) (t )   and 4 n(t ) can be either equal or distinct among each

other (Eq. 4.14). In this case, only the real part of the complex number eigenvalue is taken into

account, and the selected eigenvalue is the one that gets closer to the average estimate mass flow

rate ˆ
nBalm (t ) yield by Eq. 4.1.

1 2 3 4
ˆ

HF n n n n nm (t )= (t ) (t ) (t ) (t )       (4.14)

where the symbols “  ” and “ ” stand respectively for the logical operators “and” and “or”.

As for the experimental determination of mass flow rate ˆ
HF nm (t ) , this follows in principle the

same methodology used for the numerical approach. Nevertheless, in the real process, additional

considerations have to be taken into account, because the water and air temperature ( w and A )

and consequently their densities, can change during the measurement run. Hence, the water and

air density variables are agreed to be temperature-depended variables denoted as w wρ ( ) and

A Aρ ( ) .

Another consideration to make during the experimentation is that the estimate impact height

component î nh (t ) described in Eq. 4.8 can yield to some calculation errors, due to the fact that

the cross section area of the collection vessel vA can significantly vary from its nominal value at
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different locations, especially at the vessel bottom. Therefore, in order to attain a better estimate

value of the impact height, a characterization will be carried out to get an equation that can relate

the changes of the water surface level wh , with the imminent displacement of the balance

platform z when the mass increases. In other words, the impact height will be experimentally

defined as a function of the balance platform displacement denoted as îh (z) .

It is worth to mention that an impact height equation via a characterized cross section area of the

vessel vA is also possible. However, it can be a quite challenging and time-consuming task in

terms of (i.e. cylindrical vessel) [12]: mounting a length standard inside the vessel, moving the

length standard not only in a translational but also in a rotational form, so the vessel diameter can

be characterized at different lengths and locations. In addition to the above mentioned issues, the

roundness errors can be also rather significant, for the fact that most vessels are designed and

manufactured as containers. Nevertheless, if the vessel were a high-accurate rounded-shape

cylinder, the characterization of vA would result in a better approach for calculating î nh (t ) , from

the point of view of reducing the number of process variables as well as the number of

measurement uncertainty contributors.

The details of the impact height characterization procedure via balance platform displacement

are described in Chapter 6, regarding the experimental setup of the prototype used as a dynamic

weighing liquid flow primary standard.

Hence, after considering the above statements, the experimental equation for the estimation of

the water mass flow rate can be written as follows:
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  

          

 
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(4.15)

As a remark, the eigenvalue method used to iteratively solve the numerical approach is also

employed to obtain the experimental estimate collected mass and flow rate from Eq. 4.15.
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4.2 Proposed filter algorithms for an improved mass flow rate calculation

based on the identification and reduction of measurement noise
So far, the hydrodynamic force filter (first process model subsystem) enables to represent some

physical phenomena that are implicit in the process, as well as depicting a mathematical model

that can help to separate, or at least to attenuate the unwanted process variables from the

measurand. Now, the second process model subsystem, known as Measurement noise filter is

dealing with one particular issue: The weighing system do not provide the exact desired quantity

w nm (t ) , because it introduces its own system dynamic response into the output signal HF nm (t )̂ ,

which adds in a major or a minor degree measurement noise nv(t ) (Eq. 4.16).

   HF n w n nm (t ) =m t v t ˆ (4.16)

For the treatment of the measurement noise in the liquid flow primary standard, three different

filter algorithms are proposed, with the aim to realize, which one delivers the most precise and

accurate estimate value (Fig. 4.3). These filters are:

1) Central moving average filter [13], which aims to smooth out the trend of the measurand by

creating a plot line of connected data subset averages, defined by a certain number of

measurement data before and after the current time step nt ,

2) Least-Mean-Square adaptive filter, which adapts to the input signal by iteratively tuning its

parameters (i.e. curve-fitting), in order to deliver an estimate value with a minimized signal

error [14 and 15], and

3) Linear Kalman filter algorithm that combines all available measurement data, plus prior

knowledge of the weighing system, in order to produce an estimate measurand, wherein its

error is statistically minimized, and it does not require to store and reprocess large amounts

of previous measurement data to deliver its output [16].
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Fig. 4.3 The measurement noise filter and the three selected filters for the analysis

4.2.1 Central moving average filter

The central moving average is a type of filter that estimates the value of the measurand by

averaging several values from a number of data subsets, and thus repeats the same procedure for

the whole measuring time of the process.

The moving average is the first filter considered in this work, due to its simplicity for its

implementation, but also because of its ability to drastically decrease the amplitude of

measurement noise from the input signal HF nm (t )̂ , while keeping a sharp step response to

changes in the measurand [17]. As an important remark, the central moving average filter in

use is indeed a data smoothing algorithm. This means, an algorithm that can prevent a large

erroneous shifting of the estimate values by not only considering the measurement data

before the reference time tn (as it is the case of an ordinary moving average) but also the data

after tn [18]. As illustrated in Fig. 4.4, this algorithm can be also represented as a

combination of two filters. In this instance, one of the filters averages all the a priori data to

time tn to produce an estimate ˆ )+
MA nm (t . This can be recalled as a forward filter. Meanwhile, the

second filter (backward filter) averages all the a posteriori data to time tn, and gets the second
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estimate ˆ )-
MA nm (t . Then, by putting together these two filters, a more accurate estimate ˆ )MA nm (t

of the measurand can be achieved (Eq. 4.17), when analyzing two different trends of mass flow

rate between time tn [19].
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(4.17)

According to Eq. 4.17, NMA denotes the number of data samples to average by the filter, and n

stands for the measurement sample to be smoothed out. Furthermore, one must be aware about

the appropriate designation of NMA, due to the fact that an excessive number of samples can

eventually produce a stiff filter output response, leading to a possible misinterpretation of the

measurand [19].

Fig. 4.4 Block diagram representing the central moving average filter algorithm [14]
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4.2.2 Least-Mean-Square adaptive filter

As the name suggests, this type of filter adapts to the performance of the input signal delivered

by the previous hydrodynamic force filter HF nm (t )̂ , with the aim to learn how to distinguish

between the measurement noise caused by the oscillatory motion of the balance, and the true

measurand. Then, such information is used to proceed with the removal (or high attenuation) of

the noise from its input signal, and thus, yielding an estimate of the measurand [15]. The general

concept about how this type of filter operates is graphically depicted in Fig. 4.5. Firstly, the

scheme in Fig. 4.5 refers to an input signal, wherein the true measurand value is corrupted with a

time-varying noise amplitude [20].

Secondly, making reference to Fig. 4.5, the filter incorporates in its structure a decorrelation

delay, followed by the basis Least-Mean-Square (LMS) algorithm of the adaptive filter. The

decorrelation delay is in this instance a useful statistical tool, which helps to identify the

measurand from the noisy input signal by comparing a version of the input signal HF nm (t )̂ with a

second version that has been delayed D intervals HF n-Dm (t )̂ . The decorrelation delay D is not a

number that can be given arbitrarily. On the contrary, it must be chosen so that the signal value

HF nm (t )̂ will not correlate either with HF n-Dm (t )̂ or with respect to  nv t . In other words, none

similarities or repeating patterns must appear between them [21].

The basic working principle of the LMS adaptive filter algorithm exemplified in Fig. 4.5 consists

in applying an iterative approximation technique, where its outcome AF nm (t )̂ is given by the

summation of convoluted filter coefficients h(k) , and the decorrelated input data (Eq. 4.18).

     HF

M -1

AF n n D k
k=0

m t = h k m t - - ˆ ˆ (4.18)

where M denotes the number of filter coefficients, and AF nm (t )̂ is the estimate measurand yield

by the adaptive filter (output signal).
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The filter coefficients recalled in Eq. 4.18 have the task to approach the measurand value by

attenuating the input signal amplitude (this means, narrowing the spread of the measurement

noise), and in this manner, making the estimates more accurate along the measuring time. As a

remark, the level of accuracy and convergence of the adaptive filter depends in many cases of the

number of filter coefficients used in the algorithm [22].

In regards to the iterative part of the LMS adaptive filter, this is based on the ongoing renewal of

its coefficients h(k) , so the measurand can be better estimated after each step [23]. As depicted

in Fig. 4.5, the numerical process of updating the filter coefficients consists firstly in using the

values of the previous step filter coefficients as current values called ch (k) . Thereafter, such

current filter coefficient values are sum up with the product of the feedback error signal value

( )AF ne t , the filter step size ΔAF , and the decorrelated delay input signal value m  HF n-D-km t̂ , in

order to yield a set of updated filter coefficients,  uph k (Eq. 4.19).

       Δ HFup c AF AF n n-k-Dh k = h k + e t m t  ̂ (4.19)
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Fig. 4.5 Block diagram of a delayed input Least-Mean-Square adaptive filter for noise removal

[20]

As observed in Eq. 4.20, Fig. 4.5, and Fig. 4.6, the feedback estimate error signal ( )AF ne t

reveals a particular feature of this filter, which unlike the adaptive filters for system

identification (see reference [24]), it seeks for the minimization of error by comparing the

difference between the estimate value ˆ ( )AF nm t , and the measurement input signal  HF nm t̂ [21].

In other words, ( )AF ne t can be referred as the estimate version of the measurement noise nv(t )ˆ ,

due to the fact that ˆ ( )AF nm t is also an estimate value of the true measurand value  w nm t .

     
 
HFAF n n AF n

n

e t =m t - m t

v t

 ˆ ˆˆ

ˆ (4.20)
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Fig. 4.6 Graphical explanation of the estimate error signal feedback [21]

The determination of filter step size ΔAF (Eq. 4.21) is another crucial task for the successful

implementation of the algorithm into the measurement process. Such a variable is responsible for

determining the amount of correction to be applied as the filter adapts from one iteration to the

next. In order to choose the appropriate step size, it is necessary to take into account the

following considerations [25 and 26]:

1) If the step size is too small, the time of convergence (based also on the number of filter

coefficients) can be too long, so that the estimate value might never reach an accurate enough

value,

2) If the step size is too large, that might cause the adaptive filter to diverge, and becoming

unstable.

Therefore, in order to ensure satisfactory convergence and stability in the filter, the step size ΔAF

must be within a recommended range [21]:

ΔAF
AF

10 < <
10 M P  (4.21)
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where M is the number of filter coefficients, and AFP is the average power of the input signal

data set, and it is described as:

 
AF

HF

N
2

AF n
AF n=0

1P =
N +1

m t ̂ (4.22)

Here, AFN represents the number of input signal data.

As a remark, it is recommended to start with small step sizes, so that the estimate values of the

filter can be more reliable in terms of its accuracy level, but at the expense of the taking some

additional time to adapt the filter into the measurand [23].

The delayed input signal LMS adaptive filter algorithm is not the only method employed by

adaptive filtering theory to remove noise. For instance, the Normalized Least-Mean-Square

adaptive filter (NLMS) can converge more quickly than the LMS due to its time-varying step

size that minimizes the instantaneous estimate error [23 and 27]. Moreover, the Recursive Least-

Square (RLS) [28] exhibits an even faster convergence speed than the LMS or NLMS, because

its time-varying estimate error uses a statistical factor, the Kalman filter will be described, with

the aim to analyze the effectiveness of such recursive filtering techniques in this particular

process [29]. Furthermore, despite the recalled enhanced performance of the NLMS and RLS in

relation to LMS, the LMS has three significant characteristics that makes it quite feasible for its

implementation. One is the fact that the LMS algorithm does not require high computational

resource as the RLS demands [30]. The second characteristic and advantage (in some cases) is

that the RLS the input signal is considered deterministic, while in the LMS it is considered

stochastic. This means, if the designated model of the RLS does not approach the true value, the

filter output might experience a poor tracking performance. The third relevant characteristic of

the LMS over the NLMS is that despite the fast convergence attributed to NLMS time-varying

estimate error, this sometimes presents problems to adjust its output signal with the

measurand [21, 23 and 25].
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4.2.3 Linear Kalman filter

The Kalman filter [31] is a computational algorithm that combines all available measurement

data HF nm (t )̂ , with the knowledge of the system, the statistical description of measurement

noise, and the initial conditions of the measurand, in order to estimate the mass flow rate variable

K nm (t )̂ . Another characteristic of the this filter is that, unlike other data processing algorithms,

the Kalman filter does not require all previous data to be kept in storage, and to reprocess them

every time step a new measurement is taken. This recursive approach [14] is also seen as a

remarkable advantage, especially when the large amount of processing data can significantly

increase the numerical complexity of a filter algorithm, or in the worst case, it makes the filter

unstable.

For the aim to estimate the magnitude of the measurand from the measurement data HF nm (t )̂ , it is

necessary first, to have a model depicting the general behavior of the mass flow rate Km , and the

measurement noise ( )K nv t , as shown in Eq. 4.23.

nHF n K Km (t ) = m + v (t ) ˆ (4.23)

In this instance, it is possible to agree that the measurand of the Kalman filter Km can be equal to

the average mass flow rate from hydrodynamic force filter, because this measurement process is

carried out at a quasi-steady flow condition. Furthermore, the given average or expected value

(Eq. 4.24) among the noisy measurement signal does not imply the true magnitude of the

measurand. Nonetheless, the average value has a much higher probability of getting closer to the

true measurand value [32 and 33], in comparison to the spread measurement data enclosed in a

broadband.

1

1 ˆ ( )
N

HF n
n

K N
m = m t



  (4.24)

In regards to the measurement noise K nv (t ) , it can be described in practical terms as a variable

with N number of data, that approaches to a normal probability distribution Kp(v ) , with a zero
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mean value, and a variance 2
K shown in Eq. 4.25 [34]. The variance is an important aspect in

this data processing algorithm, because it tells how dispersed the measurements are from the

expected value [35].

����� ~ � �0, �	
� (4.25)

 22

11

1 ( )
N

K K n
nN

= v t 0


   (4.26)

In practice, the true measurement noise variance cannot be exactly (or directly) determined,

however it can be fairly estimated by calculating the variance 2
HF (Eq. 4.27) of the filter input

data ˆ ( )HF nm t . The reason for stating an experimental estimation of the measurement noise

variance (and not an equality) is based on the fact that, 2
K is a direct function of the

measurement noise data (Eq. 4.26), and 2
HF is a function of the measurement data and its

average value, which stands within or near the narrowband probability distribution of the true

measurand values buried in the measurement data (Eq. 4.28).

 22

1

1 ˆ ( )
1

N

HF HF n K
n

= m t m
N 

  
    (4.27)

�	
 ≜ ��

 (4.28)

Filter algorithm

As illustrated in Fig. 4.7, the Kalman filter resembles a feedback loop structure, in which the

filter estimates the measurand at some time step nt , and on the other hand it obtains a feedback

signal in the form of a noisy measurement. For its implementation, the Kalman filter algorithm is

divided into two sets of matricial equations that make possible its recursive feature [14]. The first

set known as Time update equations is in charge for projecting forward (in time) the current

estimate -
nx̂ (Eq. 4.29) and the predicted estimate error covariance -

nP (Eq. 4.30), so an a priori

measurand estimate can be obtained for the next time step. On the other hand, the second set

known as Measurement update equations (Eq. 4.31, Eq. 4.32 and Eq. 4.33) is responsible for

correcting the predicted measurand estimate. Eq. 4.31 is in this case not only the main equation
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of the measurement update equations but also for the Kalman filter algorithm, because it handles

the three mechanisms of recursive signal filtering [29 and 36]. These are:

 The measurement residual  -
n n-y H x̂ , which reflects the difference between the current

measurement vector ny , and the predicted measurement estimate -
nx̂ ,

 The Kalman gain matrix nK (Eq. 4.32) is defined as a time-varying optimal weighting value

[16 and 32] based on the predicted error covariance (Eq. 4.30) and the measurement noise

covariance R , which helps to improve the a posteriori measurand estimate as well as

minimizing the a posteriori error covariance [36] (Eq. 4.33), and

 The corrected state estimate value nx̂ equal to the summation of the predicted 1nt  step

estimate -
nx̂ and its corresponding estimate correction  -

n n n- K y H x̂ .

Time update equations (predictor):
-
n n-1=x A xˆ ˆ (4.29)

- T
n n-1=P A P A (4.30)

Here, A is the so called transition matrix, which relates the state variables at the previous time

step 1nt  to the current time step nt [37]. On the other hand, -
nx̂ and n-1x̂ are the vectors denoting

the predicted state variable at the time step nt and the current state variable estimate at 1nt 

respectively.

Measurement update equations (corrector):

 = - -
n n n n n+ -x x K y H xˆ ˆ ˆ (4.31)

 -1- T - T
n n nK = P H HP H + R (4.32)

 = - -
n n nP I K H P (4.33)

Where H stands for the measurement matrix that relates the state variables to the measurement

ny . Note that the upper character “T” denotes a transposed matrix.
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Fig. 4.7 The Kalman filter cycle known also as Predictor-corrector algorithm [14 and 29]

Estimating the measurand

In the following pages, the Kalman filter is derived as a second order algorithm, due to the fact

that such a measurement process features two state variables, known as: collected mass

(primary), and mass flow rate (secondary). The primary variable is an important element in the

estimation process, because in order to deliver an accurate estimate of mass flow rate, it is

necessary first to accomplish the same condition for the collected mass. In terms of the

algorithm, the Kalman filter has to designate an estimate error covariance matrix, with the aim to

optimize the estimation of both state variables [37, 38].

First, it is necessary to define the estimate errors corresponding to each of the two state variables

of the measurement process. In this instance, the error denoted as ê is defined as the difference

between the estimate values ( ˆ Km and ˆ
Km ), and the current state values ( ˆ HFm and ˆ

HFm ). Note
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that the term estimate error is used instead error, to underline the fact that there is no absolute

certainty in the true measurand value. Therefore,

ˆ ˆ ˆ HFm Ke m m  (4.34)

ˆ ˆˆ f K HFe m m   (4.35)

As the Kalman filter algorithm implies matricial operations, the estimate error is represented as:

ˆ
ˆ

ˆ m

f

e
e

 
 
  

e (4.36)

Now, in order to use the knowledge of the state variable estimate errors for the accurate

estimation of the measurand, the Kalman filter uses the covariance matrix as a statistical measure

to realize the degree in which these two state variables change or vary together. From the

covariance analysis, three important statistical assumptions of state variable association can be

made [39]:

1) If the covariance turns out to be positive, then it is inferred that both state variables vary

together in the same direction relative to their expected values,

2) The covariance is negative, if one of the state variables tends to be above its expected value,

meanwhile the second state variable is below its expected value, and

3) If the covariance is zero, then the variables are said to be statistically independent.

Hence, the covariance of the two state variables is represented in a matricial form by Eq. 4.37,

wherein the diagonal of the matrix represents the variance of collected mass and mass flow rate.

2

2

ˆ ˆ

ˆ ˆ ˆ
ˆ ˆ ˆ

T

m m f

f m f

=

e e e
e e e

  
 
  

P e e

(4.37)
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As for the initial estimate error covariance matrix, this can be obtained by substituting the

collected mass 1 1
ˆ ( )HFm t t , mass flow rate 1

ˆ ( )HFm t at the time step 1 0t  , in addition to

reference values Km and Km ,into the estimate errors shown in Eq. 4.34 and Eq. 4.35. On the

other hand, at the initial stage of the filtering process, the covariance terms of the matrix are set

to 0. The latter is due to the lack of information to set an accurate correlation level at this

particular time, as well as giving a more conservative assumption of little or no correlation

between the state variables [40]. This is preferred to designating a relatively high covariance, that

in return could significantly delay the filter convergence. In any case, the Kalman filter algorithm

will predict and correct the variance and covariance terms of the matrix within the following

iterations.

1

1

2

1 2

ˆ ( ) 0
ˆ0 ( )

m

f

e t
=

e t
 
 
 

P (4.38)

The initial estimate of the primary state (water mass) could be agreed to be equal to zero,

assuming that the collection vessel is empty. However, in order to keep the mathematical

consistency in terms of the second variable derivative, it is preferred to assignate a small value,

such as 1Km t . For the second state variable, it is possible to designate an arbitrary value for the

initial mass flow rate. Nevertheless, the usage of the average mass flow rate value given by

hydrodynamic force filter (Eq. 4.24) turns out to be a good initialization.

  11ˆ Kx t = m t (4.39)

1
ˆ( ) Kx t = m  (4.40)

Then, according to Eq. 4.29, the predicted (a priori) state estimate can be described as:

=

= =S SK K K

K K

-
n n-1

n-1 n-1 n-1

n-1 n-1

m (t )1 t m (t )+m (t ) t
m (t )0 1 m (t )

    
   

     

x A x



 

ˆ ˆ
ˆˆ ˆ

ˆ ˆ
(4.41)
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In the current implementation of the Kalman filter, the measurement noise covariance R

(Eq. 4.42) is possible to be estimated, because the user is able to analyze the variance (Eq. 4.43,

Eq. 4.44 and Eq. 4.27) from data sets once the measurements are completed (off-line) [36 and

40]. Alternatively, such a standard deviation can be expanded in terms of its measurement

confidence interval [41], with the aim to increase the certainty in the estimate values.

2
m
2
f

σ
=

σ
 
 
 

R (4.42)

 
2

2

11

1 ˆ ( )
N

m HF n n K n
nN

m t t m t


       (4.43)

2 2
f HF  (4.44)

Now with all the necessary information gathered, it is possible to derive the predicted covariance

equation shown in Eq. 4.30 as well as the corrected measurement equations (Eq. 4.31, Eq. 4.32,

and Eq. 4.33). Fig. 4.8 illustrates in a scalar form, the estimation process of mass flow rate via

Kalman filter. Hence:

Therefore, the a priori state error covariance matrix is:

 
    

   
11 12

21 22

22 21 12 11 22 12

22 21 22

- T
n n-1

2
n-1 s n-1 n-1 s n-1 n-1 s n-1

n-1 s n-1 n-1

- -
n n

- -
n n

= =

p t + p + p t + p p t + p
=

p t + p p

p p

p p

   
 
   
 

  
  

P AP A

(4.45)

The Kalman gain factor that is defined as:

 
 
 

11 11

21 11

-1- T - T
n n n

-1
- - 2
n n m n

-1
- - 2 n
n n f

+

+

p p σ k
=

kp p σ

              

K = P H H P H + R

11

21

(4.46)
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The posteriori state error covariance matrix:

 
   

   

= -

11 11 11 12

21 21 11 22 21 12

-
n n n

- -
n n n n

- - - -
n n n n n n

1 - k p 1 - k p
=

p - k p p - k p

  
 
   

P I K H P

(4.47)

And the a posteriori state estimate is then:

 

 
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(4.48)

Fig. 4.8 Block diagram describing the estimation of mass flow rate via Kalman filter

(scalar form representation)
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4.3 Summary
In this chapter, an inverse-problem approach with two algorithms has been presented, in order to

estimate the time-varying mass flow rate. The first algorithm is in charge of filtering out the

negative influence of the hydrodynamic and the buoyancy force variables have upon the

measurand. In order to do this, the filter uses the balance signal response as input signal, in

addition to an analytical model to estimate the magnitude of such unwanted forces, based on the

physical properties of the fluid, the geometry and dimensions of the system, and time. The

second algorithm is a filter, which attenuates the measurement noise still embedded in the signal

coming from the first filter. In this research work, the measurement noise is assumed to be

greatly caused (but not entirely) by the fluid force-induced oscillatory motion of the weighing

system. In this case, three data processing algorithms (central moving average filter, least-mean-

Square adaptive filter, and linear Kalman filter) have been proposed for the treatment of

corrupted signal. The central moving average filter that smoothes out the trend of the measurand

by using a series of data subsets averages, which are defined by a number of measurement data

before and after the current time step nt . The Least-Mean-Square adaptive filter adapts to the

input signal by iteratively tuning its parameters (filter coefficients), in order to deliver an

estimate measurand value with a minimized feedback error signal. The linear Kalman filter

combines the knowledge of the weighing system output signal (i.e. variance) and its recursive

method to produce a mass flow rate estimate value. In the following Chapter 5, the performance

of the proposed measurement noise filters will be numerically assessed in terms of their

stabilization time, accuracy, precision, and their ability of reproducing consistent results at

different stationary and quasi-steady mass flow rates.
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5. Numerical determination of mass flow rate and the response of

the dynamic weighing liquid flow standard

The dynamic simulation of the weighing system is the basis for understanding or exemplifying,

which fluid and mechanical phenomena are taking place, finding out the sources of measurement

noise, the unwanted variables involved, and realizing which variables are the most relevant in the

measuring process. Furthermore, a comparison between the numerical and the real process

measurements is carried out, with the aim to validate the theoretical background of the

measurement process model as well as the mass flow rate calculation via dynamic-weighing.

The numerical analysis shown in this document firstly evaluates the system´s input signal, and its

frequency response. The next step comprises the simulation of the continuous time system

response (Chapter 3), followed by the oscillatory signal attenuation of the low pass filter, and

the discrete time representation of the output signal. The latter is compared with the balance

readout, in order to see the level of agreement. Afterwards, the effectiveness of the

hydrodynamic force filter is numerically evaluated, so then its contribution to the measurement

accuracy can be quantified.

The second part concerning to data processing techniques, addresses the performance of three

proposed measurement noise filters. The assessment is focused on their capabilities to enhance

the measurement accuracy and precision as well. Finally, the numerical analysis evaluates the

role that the data sampling frequency as well as the low-pass-filter cutoff frequency, play upon

the measurand estimates; and it suggests a possible way to re-enhance the accuracy. Fig. 5.1

summarizes in a block diagram all the recalled steps for the estimation of the mass flow rate via

dynamic weighing. As a reminder (Chapter 3), qF (t) denotes the fluid forces caused by the

vortex axial force inside the collection vessel and the oscillatory force of the water waves. In this

numerical analysis, qF (t) is not taken into account, because none equation has been derived to

describe their behavior. Nevertheless, it is reminder that such forces have to be considered in

subsequent investigations, so that a more thorough system model can be achieved.
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Fig. 5.1 Block diagram describing the steps made for the simulation of the mass flow rate estimate

via dynamic weighing

5.1 Fluid forces acting upon the weighing system (input signal)
As recalled, the input signal of the measurement process does not comprise a single physical

variable, but a summation of three predominant forces, which in part, dictate the dynamic

behavior of the system. In this instance, the simulations of time-varying fluid force magnitudes

are exemplified at the lowest and highest flow rates attained by the dynamic weighing liquid

flow primary standard prototype (Fig. 5.2), which is described in full detail in Chapter 6.

Additionally, the vessel is assumed to be empty, whereby the initial collected water mass is zero.

In regards to the hydrodynamic force dF (t) shown in Fig. 5.2, this exhibits a proportional

increment in its magnitude in relation to the operational mass flow rate, and an inverse response

to the level rise of the collected water.

As for the collected water mass force mF (t) , it can be described as a ramp-function like variable,

wherein its magnitude is the product of its slope (the current mass flow rate), the time t of the

measurement, and its initial value agreed to be zero. As a remark, the level of filling in these

simulations is carried out at 80% of the vessel nominal capacity (8 L).
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Fig. 5.2 Fluid forces acting upon the weighing system (Input signals)
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It is worth to highlight that, the time-varying mass flow rate data used to carry out all simulations

are extracted from the experimental data given by a flowmeter used as a reference standard. This

is intentionally done, with the aim to approximate the real conditions undergone by the physical

system (Chapter 6).

Concerning to the buoyancy force bF (t) , this acts as a function of the water mass and in an

upward direction, therefore its response is seen in Fig. 5.2 as a positive slope. Furthermore, in a

dynamic weighing condition, the buoyancy force is by no means influenced by the inertial mass

force, but only by the air density, water density, the local acceleration of gravity, and the

increasing collected water mass. For the sake of simplification, the density of air and water is

assumed to be constant at a reference temperature of 20°C.

The summation of these forces yields what is called, the total fluid force TF (t) . In Fig. 5.2, such

a variable is intentionally compared with the collected mass force, in order to show their

difference in terms of magnitude. As expected, the magnitude difference (or slope shift) between

TF (t) and mF (t) becomes more significant as the mass flow rate increases.

The two lower graphs at 3 kg/min and 8 kg/min in Fig. 5.2 also illustrate the magnitude ratio

between the hydrodynamic force - buoyancy force ( d bF (t) - F (t) ), and the collected mass force,

mF (t) . Such a ratio helps to visualize the considerable systematic error involved, when simply

considering the balance output response as an estimate mass to calculate the current flow rate.

Additionally, Fig. 5.2 shows that the influence of dF (t) and bF (t) are quite strong during the first

1/3 of the filling process, and especially at the highest flow rate. Thereafter, such a ratio curve

exhibits an exponential decay of the hydrodynamic and buoyancy force influence upon the

measurement process, which can be as low as 0,1% at 3 kg/min.

5.2 Frequency response of the weighing system
The aim of this task is to apply a Fast Fourier Transform (FFT) in order to find out the balance

frequency response upon its weighing axis (z axis), and how this behaves along the measuring

time. This kind of information is important to be known because in practice, the weighing system

features a low pass filter, which uses such frequency information, in order to define the

attenuation level of the output signal. As understood, the low pass filter is an algorithm, which
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balance manufacturers commonly use, with the purpose to diminish the amplitude of the system

oscillatory force from the output signal. The latter is an unwanted signal considered as

measurement noise. In the simulation work, the characterized balance oscillatory frequency will

be used by the low pass filter of the numerical model (Chapter 3), as an attempt to reproduce the

real attenuated output signal displayed by the balance readout.

The balance frequency characterization consists of applying a non-contact laser displacement

sensor (LDS) [1] to measure the oscillatory displacement of the balance platform at two different

planes, as depicted in Fig. 5.3. The reason for measuring at two different planes (XZ and YZ) is

in order to characterize the eigenfrequencies generated by the translational and angular motion of

the balance platform during the measurement process, and thus, to identify which one

corresponds to the z axis oscillatory motion [2]. Note that, if this eigenfrequency characterization

were carried out at one plane, the result might possibly lead to an overlooking of an

eigenfrequency, including the one belonging to the z axis, which could be only detected at one

particular plane. In addition to the non-contact laser displacement sensor, an accelerometer is

also mounted upon the balance platform and oriented along the z axis, with the goal to

corroborate the results from the first method (LDS), regarding the weighing axis frequency

identification.

Fig. 5.3 Setup of the weighing system frequency characterization test

After carrying out the experimental tests, the results revealed three frequency spectra that are

present in a bandwidth of 24 Hz, wherein the lower and upper limits are respectively, 9 Hz and

33 Hz. The explanation to the frequency response decay and magnitude observed in Fig. 5.4
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(regardless the motion axis) is predominantly based upon the stiffness coefficient of the

weighing system, and the continuous increment of the system mass caused by the collected

water.

Fig. 5.4 Three frequency spectra taking place during the filling process at 3, 5 and 8 kg/min and

their power spectral density at an estimated collected mass of 4 kg

As depicted in Fig. 5.4, such a frequency response is agreed to behave nearly in the same

manner, even if the weighing system operates at a low, medium, or large mass flow rate.
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Moreover, after comparing the results obtained by the non-contact displacement sensor and the

uniaxial accelerometer (Fig. 5.4), it points out that the eigenfrequency of the weighing axis (z

axis) is ranging between 33 Hz and 29 Hz, because of the near overlapping between the two

different measurement approaches. As a remark, the z axis eigenfrequency was detected at both

planes (XZ and YZ), and with a relatively higher amplitude of its spectrum, in comparison to the

other two eigenfrequencies (Fig. 5.4).

Note that the term estimated collected water mass in Fig. 5.4 is used, because the system

frequency characterization was carried out dynamically [3]. This means, that the

eigenfrequencies were tracked during the collection process, and the mass had to be calculated as

an estimate by using Eq. 5.1 (see Chapter 4) and Eq. 5.2.
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Another important conclusion made after analyzing the system´s mechanical frequency response

is the presence of the oscillatory transverse forces upon the x axis and y axis (Fig. 5.3 and

Fig. 5.4), produced by the radial spread of the submerged water jet [4]. This would indicate that

the system is subjected to move in more than one degree of freedom (rotational and/or

translational), and that not only the system´s mass but also the system´s moment of inertia

around the x and y axes, play a role in the dynamic response of the balance.

An additional assumption extracted from the results in Fig. 5.4 is the fact that at least two

oscillatory transverse forces are superimposed in the balance output signal [5]. Eventually, their

magnitudes are in principle much smaller, because as illustrated in Fig. 5.3 and Fig. 5.4, the

main driven force is acting upon the normal axis (z axis). On the other hand, from the point of

view of the balance sensing element, this will be able to measure exclusively (theoretically) the

force oriented upon the weighing axis (z axis). However, due to its inherent transverse sensitivity [6],

a small residual force (even negligible in some cases) from the flow-induced radial forces
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will be measured and displayed. The impact of the transverse sensitivity upon the balance

readout is mainly a function of the particular mechanical design of a weighing sensing element

(cell), the mechanical coupling between balance weighing platform and its cell, the magnitude of

the radial fluid forces, the balance positioning control system [7], the internal low pass filter and

the data sampling rate of the output signal. This characteristic of the system can be named as a

mechanical crosstalk effect, due to the fact that an unwanted signal(s), in the case of radial

forces, can be superimposed in the balance readout.

In this research work, one of the main goals was to find out the main phenomena (mechanical

and fluid aspects) that greatly affect the system, and an accurate estimation of mass flow rate.

For this reason, the system is analyzed with respect to the axis, wherein the main acting fluid

force and balance dynamic response is taking place, the z axis. Nevertheless, the mechanical

cross talk effect is intentionally mentioned in this chapter, as a hint for a future investigation

related to a more thorough understanding and accuracy enhancement of a dynamic weighing

liquid flow primary standard (Multi-axis weighing system model). Eventually, this further

investigation will have to include the identification task of the other two eigenfrequencies

(Fig. 5.4), with their corresponding system´s degrees of freedom.

5.3 Continuous time and discrete time response of the balance
Fig. 5.5 shows the balance simulated response during the filling process. As shown in the upper

graph of Fig. 5.5, the balance output response is depicted in its continuous time form. According

to the numerical calculations, the output signal follows the path of the total fluid force, in

addition to an oscillatory signal caused by the balance reacting dynamic response. The graphs

depict a nominal undesired oscillatory signal of 33 Hz (at the initial stage of the process), and

with a maximum amplitude of ±0,5 N at 8 kg/min, and ±0,2 N at 3 kg/min.

According to the weighing system signal conditioning, the continuous time balance response

must undergo a decrement in its oscillatory amplitude. Hence, a low pass filter uses the

frequency response upon the z axis to define the attenuation level of the signal [8]. In this

instance, the eigenfrequency ranging from 33 Hz to 29 Hz is out of the low pass filter pass band,

which features a cutoff frequency of 10 Hz [8].
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Fig. 5.5 Simulation of the continuous and discrete time dynamic response of the balance at
8 kg/min (upper graph) and 3 kg/min (lower graph)
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Moreover, the numerical outcome given by the low pass filter depicts a continuous time signal

that has been attenuated from -11 db to -9 db, due to the eigenfrequency decrement along the

filling process, and with a signal phase shift between 73° and 71°, as shown in Fig. 5.6. Herein,

the simulated original signal has continuously changed, not only in terms of its oscillatory

amplitude, but also in relation to its frequency and phase [9].

Fig. 5.6 Low pass filter gain and phase shift of the weighing system model

The last step before displaying the measured reacting force is to convert it into a discrete time

form. In this case, the designated data sampling frequency of the balance is 30 Hz [8] observed

in Fig. 5.5, the original continuous time balance output signal has experienced a serious aliasing

effect [10] after passing through the low pass filter, and the discrete time conversion.

Nevertheless, the signal is still valuable because it continues following the path (or slope change)

of the total fluid force
T

F (t) . As mentioned in Chapter 4, the total fluid force is one of the key

variables used in the process model (Hydrodynamic force filter) to calculate the mass flow rate

estimates.

Finally, the simulated output response of the weighing system is compared with its experimental

counterpart, the balance readout. For instance, Fig. 5.7 shows the start point of the measurement

process at 8 kg/min, wherein the experimental data depict an initial signal overshoot, greatly
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caused by the first shock of the water jet upon the vessel [11]. This overshoot response depicted

in Fig. 5.7 was not replicated by the simulation, nevertheless, the initial step and the subsequent

ramp response agree with the experimental part. Furthermore, the simulated signal in both mass

flow rates (8 kg/min and 3 kg/min) yields a discrete-time oscillatory response, which is fairly

similar in magnitude, with the one measured experimentally.

As mentioned, the numerical model uses the mass flow data provided by the PTB traceable

transfer standard (flowmeter), with the aim to replicate as close as possible the quasi-steady and

quasi-uniform mass flow rate.

Fig. 5.7 Numerical and experimental comparison of the balance weighing axis eigenfrequency and
its discrete-time output signal response at 8 kg/min (upper graph) and 3 kg/min (lower graph)
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5.4 Hydrodynamic force filter
In this instance, the hydrodynamic force filter is applied at three different mass flow rates, with

the goal to see its effectiveness in approximating to the average value of the true measurand, or

in other words, improving the measurement accuracy.

At 8 kg/min, two different calculation approaches are compared. One is the mass flow rate

obtained by directly using the force measurements given by balance readout, time, and the local

acceleration of gravity (Eq. 4.1). The result from this estimation method delivers a series of

measurements that are quite spread along its average value (±0,2 kg/min at 5s, or a maximum

relative error of ±2,43% with respect to its average value), but they gradually decrease until

±0,25% at 55s. As illustrated in Fig. 5.8, the difference between the average value obtained by

this approach and the average reference mass flow rate is 0,24%.

The second approach depicted in Fig. 5.8 is the outcome given by the Hydrodynamic force filter,

already described in Chapter 4. In regards to its performance, the data spread is similar to the

first approach (Balance readout), due to the fact that such a filter treats only the accuracy of the

whole measurement data, but not their precision. That is exactly the task of the measurement

noise filter, in which their numerical results are presented in the next section. According to the

attained results, the average value of hydrodynamic force filter output signal is able to get really

closer to the true measurand. The percent relative error found at this flow rate was 0,01%.

A similar output signal response takes place at the mid flow (5 kg/min), wherein the scattered

data at the initial stage of the measurement (10s) exhibit a percent relative error of 1,35%. As

demonstrated from the highest and mid flow rate, the degree of data scattering is proportional to

the operational mass flow rate. On the other hand, when comparing the outcome given by the

two measurement approaches, it is clear that the hydrodynamic force filter enhances the accuracy

of the mass flow rate estimate values about 5 times in relation to its counterpart.

The results at the lowest flow rate can be seen as an affirmation of the two filters response,

wherein the dispersion of data is lower (i.e. 0,67% relative error at 20s) as the mass flow rate

decreases. For a detailed explanation of this process condition, see Section 5.1 (specifically

Fig. 5.2), regarding to the fluid forces acting upon the weighing system.
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Fig. 5.8 Response of hydrodynamic force filter and its effect upon the measurement accuracy

enhancement at 8, 5 and 3 kg/min
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5.5 Proposed measurement noise filters

5.5.1 Central moving average filter

Fig. 5.9 shows the measurand tracking performance of the central moving average filter at the

highest mass flow rate (8 kg/min). In this figure, the results show that 23 of 28 estimating values

are moving along the average mass flow rate value (8,227 kg/min), and overlapping several

times the true time-varying mass flow rate. As a remark, the number of samples used to calculate

each of the estimate points was 490 samples.

A particular behavior observed from this filter output is that the estimate values are barely

following the path of the true mass flow rate, especially at the second half of the collection time.

However, this apparent limitation is compensated by the fact that the error band of the estimate

values with respect to the true measurand is in the order of ±0,025%.

At 5 kg/min, the central moving average filter converges after 12.5s, wherein 25 of 30 estimate

values are within an error band of ±0,02%, with relation to the true time-varying mass flow rate.

In this instance, the central moving average filter is able to only coincide with the average of the

measurand, but also to carry out a better tracking of the transient flow response.

With regard to the lowest mass flow rate, the central moving average took about 1/10 of the

measurement time to stabilize, and thus getting 54 of 58 estimate values within an error band of

±0,03%. Furthermore, it is worth to observe in Fig. 5.9, that despite the non-exact estimation of

the central moving average, it follows the ascending and descending path of the time-varying

mass flow rate.

One common characteristic found out after analyzing the response of the central moving average

(at three different mass flow rates) is: the overshoot response appearing at the initial stage of the

filter estimation process, which seems to have a strong correlation with the large measurement

variance (Hydrodynamic force filter output signal), originated by the dynamic mechanical

response of the weighing system. Moreover, the settling time of 12.5s was consistently repeated

at the three different flow rates, suggesting that this behavior might be independent of the

measurement data, but related to the filter algorithm and its parameters.
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Fig. 5.9 Performance of the central moving average filter at 8, 5 and 3 kg/min
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5.5.2 Least-Mean-Square adaptive filter

At the highest flow (8 kg/min), the adaptive filter presents an initial response delay of 2,5s

(Fig. 5.10), caused by the decorrelation of its input signal (Chapter 4, Section 4.2.2), and the

number of filter coefficients (500) used to minimize the measurement noise. On the other hand,

the adaptive filter uses as an initial estimate, the average mass flow rate magnitude yield by the

hydrodynamic force filter, which according to Fig. 5.10 turns out to have an accuracy of

approximatelyt 0,01%.

During the estimation process, the filter takes approximately 1/3 of the total measuring time

(20s) to smoothly reach an estimate within ±0,05%. As shown in Fig. 5.10, the non-overshoot

convergence response of the filter denotes a stable and reliable estimation process, which is

associated with the number of filter coefficients in use, and the designated stability fraction of

the signal error (Chapter 4, Section 4.2.2). Finally, the outcome given by the adaptive filter at

8 kg/min yields a set of 8750 estimate values.

As for the measurements carried out at 5 kg/min, the adaptive filter takes also 1/3 of the nominal

measuring time to converge, within ±0,04%, in relation to the average mass flow rate

(5.1815 kg/min). After the second half of the filling process, some of the estimate values are

overlapping and keeping a good tracking of the true measurand; especially between the time 50s

and 80s. According to the obtained results, the number of estimates after the filter stabilizes is

approximately 13750.

Concerning to the lowest flow, Fig. 5.10 points out that the adaptive filter required about 1/4 of

the total measuring time to stabilize with a non-overshoot response. After the first half of the

process time, the adaptive filter was able to obtain about 25000 estimates that mostly follow the

average mass flow rate of 3,279 kg/min, within a band of ±0,03%.

The adaptive filter as well as the moving average (Fig. 5.9 and Fig. 5.10) seems to be affected by

the influence of the relatively large measurement noise taking place at the first 1/3 of the process

time. One main reason of such a common behavior is that both algorithms utilize a weighted

sum, in order to determine their estimate values. In other words, the estimates at the initial part of

the process are subjected to deliver more inaccurate values, because of the large measurement

variance, and the low magnitude of its statistical weight (reliability).
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Fig. 5.10 Performance of the Least-Mean-Square adaptive filter at 8, 5 and 3 kg/min
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5.5.3 Linear Kalman filter

At 8 kg/min, the Kalman filter rapidly approaches to the true time-varying mass flow rate. The

largest difference found between both measurement data was 0,1% during the first second of the

estimation process (Fig. 5.11). A particular characteristic observed in the Kalman filter response

is that besides following the quasi-steady mass flow rate, its scattered data serve as a band that

covers the measurand all along the measuring time. The same type of response occurs for the two

following flow rates at 5 kg/min and 3 kg/min. From this numerical test, the Kalman filter was

able to perform an approximate of 11250 accurate estimates after 10s.

In relation to the mid flow, the estimate values as well as the true value were very relative more

uniform through the measuring time than the outcome data at 8 kg/min and 3 kg/min. In this

instance, the estimate data are spread in a range of ±0,02% after 30s. Moreover, as shown in this

graph and the one at 3 kg/min, the Kalman filter demonstrates its ability to rapidly minimize the

variance in its estimate error, as well as attenuating the large amplitude measurement noise

during the initialization phase.

At 3 kg/min, the reference measurements exhibit a clear decrement of 0,03% with respect to its

initial value. However, this process condition does not represent a major problem to the Kalman

filter algorithm, as it is capable to follow the same flow trend with a maximum relative

difference of only 0,02% at 50s.

The average mass flow rate (hydrodynamic force filter output signal) was used not only by the

adaptive filter algorithm, but also by the Kalman filter to set its initial estimate. Hence, as a

result, the estimate values can converge the reference data with less number of iterations. As

recalled, the last statement is applicable, because the process is intended to be performed at a

steady flow condition. Furthermore, when comparing the performance of the three proposed

filter, it is concluded that the Kalman filter delivers the largest number of estimate data with the

lowest relative error.
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Fig. 5.11 Performance of the Linear Kalman filter at 8, 5 and 3 kg/min
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A remarkable feature of the linear Kalman filter is its covariance matrix, which turns out to be an

effective way in minimizing the error in knowledge (model) of the system, and therefore it can

be used as a tool to statistically measure the uncertainty of the state variables [12, 13]. In this

case, the covariance term ,ˆ ˆm fE e e   in the matrix (Eq. 4.47) describes the degree of association

between the two state variables. On the other hand, it is more convenient to present the

covariance results in terms of their correlation coefficients (Eq. 5.3), so that the degree of

association can be assessed in a -1 to 1 scale. For instance, the correlation coefficient of 0,75 at

8 kg/min indicates a positive strong association between the state variables, meaning that both

follow the same incremental path (Fig. 5.12). A weak correlation coefficient of 0,2 was only

observed at the first 5s, assuming that this could be in part caused by the overshoot response of

the weighing system during the first water jet impact. As for the other two flow rates (5 and

3 kg/min), they show a moderate positive correlation coefficient of 0,58 and 0,52 respectively. A

possible explanation for the decrement of the correlation coefficient in comparison to the upper

flow can be attributed to relatively large standard deviations of the estimated collected mass and

flow error, m and f .

,
,

ˆ ˆ
ˆ ˆ m f

m f
m f

E e e
(e e )

  
 

  (5.3)

As shown in Fig. 5.12, the linear Kalman filter offers the possibility of simultaneously

evaluating the error from the states variables of the measurement process. However, in order to

keep the same line of analysis with the above mentioned filters, only the mass flow state variable

is discussed. Then, according to the covariance matrix results shown in Fig. 5.12, the linear

Kalman filter’s estimate error in calculating the time-varying mass flow rate is as follows:

Average mass
flow rate

Estimate
error

Relative
error

[kg/min] [kg/min] [%]
8,226 0,004 0,05
5,181 0,004 0,08
3,279 0,004 0,12

Table 5.1 Mass flow rate estimate error
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Fig. 5.12 Linear Kalman filter estimate error variance and correlation coefficient at

8, 5 and 3 kg/min



Chapter 5

95

5.5.4 Summary

Central moving average

 The highly corrupted measurement noise present in one or more samples enclosed in a data

set increases the measurement variance, and as a consequence, considerably affects the

accuracy of the central moving average calculation,

 The central moving average filter shows an initial overshoot, which is later overcome by a

smoother and more accurate estimation response,

 The moving average estimation process yields a limited number of estimate values in relation

to its counterparts, the LMS adaptive and the linear Kalman filter. However, such a number

can be sufficient or even larger, if compared with the number of data samples (usually from 5

to 10 measurement points) required in a regular calibration task [14].

LMS Adaptive filter

 As noted in the series of simulations, the adaptive filter features neither an overshoot nor an

unstable system response. This is achieved at the expense of a considerable time taken in

order to converge the reference values,

 The LMS adaptive filter as well as the moving average filter seem to be affected by the

influence of the relatively large measurement noise taking place at the first 1/4 of the process

time. One main reason of such a common behavior is that both algorithms utilize a weighted

average (with their corresponding filter coefficients) in order to determine their estimate

values. In other words, the estimates at the initial part of the process are subjected to deliver

more inaccurate values because of the large measurement variance, and hence a lower

statistical weight (reliability) [15].
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Linear Kalman filter

 As shown in the simulation results, the Kalman filter benefits from its recursive property

with no need of storing past measurements for the purpose of computing its present estimate

(but only its previous step). This feature makes possible the rapid minimization of the

variance in its estimation error, a less stiff response to sudden changes of the measurand, and

ultimately, more time-varying accurate estimates,

 The usage of the average mass flow rate magnitude (coming from the Hydrodynamic force

filter) as a basis for the measurand estimation is a key parameter the Kalman filter employs to

obtain a reliable estimate response in less iterative cycles. The last statement is applicable

because the process is intended to be performed at a quasi-steady and stationary flow

condition.

5.6 The influence of the data sampling frequency and the low pass filter

cutoff frequency upon the mass flow rate estimate values and its

measurement accuracy enhancement
When dynamic weighing mass flow measurements are performed experimentally, the outcome is

at some degree limited by the manufacturer design specifications. In this instance, it is referred to

the maximum data sampling frequency the balance readout can deliver, and the internal filter

algorithm (low pass filter) used to attenuate the undesired oscillatory response of the balance.

The following section analyzes numerically the effects of the data sampling frequency as well as

the low pass filter upon the measurand, by changing their parameters. The main goal of

comparing these results is to have some understanding about the factors that negatively

contribute in the determination of the measurand, and what can be done in practice, in order to

bring more accurate and precise mass flow rate measurements.

In principle, any of the recalled measurement noise filters could be used to evaluate the

measurand response under the different measurement parameters previously mentioned.

However, it is more appropriate to select in this case the Kalman filter, because according to the

numerical and experimental (Chapter 6) results, it is the one that stabilizes faster, it is accurate

in its response, and in general, it is capable to follow more effectively the time-varying mass

flow rate.
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The numerical analysis is divided into three aspects:

 The measurand response is evaluated at two different mass flow rates, at three different data

sampling frequencies, and at a low pass filter cutoff frequency of 10 Hz, which is equal to the

value set up in the balance (Fig. 5.13),

 The measurand response is assessed at two different data sampling frequencies, and at three

different low pass filter cutoff frequencies (Fig. 5.14 and Fig. 5.15), and

 To analyze the characteristics of a mass flow rate measurement at two different data sam-

pling frequencies, with the absence of a low pass filter (Fig. 5.16). 

 

In Fig. 5.13, the results of the mass flow rate estimate values are presented at 8 kg/min and

3 kg/min, with a data sampling frequency of 10 Hz, and a low pass filter cutoff frequency of

10 Hz (see upper graphs). In this example, both flow rates present a measurand response, which

lasted about 1/3 of the process time to converge the true mass flow rate value. The maximum

relative errors between the estimated values, and the true values at the first stage of the process

were in the order of 0,085% at 8 kg/min, and 0,092% at 3 kg/min. Remember, that the term true

value is valid (at least numerically), because it is a known input quantity introduced in the model.

This is a clear example of how not only the fluctuating flow but also a limited data sampling

frequency can affect the ability of a filter to estimate the measurand. This is especially a concern

in the regions where the amplitude measurement noise is relatively high.

The two mid graphs at 8 kg/min and 3 kg/min in Fig. 5.13 show the estimate values at a low pass

filter cutoff frequency of 10 Hz, and an increased data sampling frequency of 30 Hz. The 30 Hz

magnitude of the data sampling frequency is intentionally assessed in order to try to reproduce

the response of the system at its current set up. The graphs clearly describe a prompt

convergence of the estimate values, despite the larger data spread at the beginning of the process.

This initial behavior can be associated with the influence of the large measurement noise.

The two simulations carried out at a data sampling frequency of 90 Hz show a particular

behavior in terms of the fast stabilization time and the spread of the estimated data, which turn

out to be very homogeneous along the time (0,01%).
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Fig. 5.13 Simulation of the balance output signal response (8 kg/min and 3 kg/min) at a data

sampling frequency of 10 Hz, 30 Hz and 90 Hz, and a fix low pass filter cutoff frequency of 10 Hz
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As seen in Fig. 5.13, the response of the estimation process describes a quite similar behavior

regardless of the mass flow rate. Therefore, the analysis can be dedicated to one mass flow rate.

Fig. 5.14 summarizes the performance of the estimation task at three different low pass filter

cutoff frequencies (5 Hz, 10 Hz and 20 Hz) at 30 Hz in relation to its data sampling frequency.

The measurements performed at three different cutoff frequencies present a common response in

terms of estimation path. On the other hand, Fig. 5.14 also indicates that the level of coverage

from the estimate values (seen as data spread) is proportional to the cutoff frequency. This can be

expected, because the low pass filter yields higher attenuation levels at small cutoff frequencies,

as happens, for instance, at 5 Hz.

Fig. 5.15 describes the simulated response of the Kalman filter to estimate the mass flow rate

when the balance sampling frequency is significantly higher (90 Hz), and at three different cutoff

frequencies. The outcome indicates that the influence of the measurement noise is minimal in all

cases because the larger number of data samples allows the filter to reduce, in less iterations, the

measurement variance. The upper graph (at 5 Hz) in Fig. 5.15 underlines an important fact that

besides attenuating the unwanted balance oscillatory force, the low pass filter takes part of the

measurand data. The overriding of measurand data is clearly seen when comparing the different

cutoff frequencies of the system. The wider the low pass filter´s pass band, the more accurate the

estimation.
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Fig. 5.14 Simulation of the balance output signal response at three different low pass filter cutoff

frequencies (5 Hz, 10 Hz and 20 Hz) and a data sampling frequency of 30Hz

Fig. 5.15 Simulation of the balance output signal response at three different low pass filter cutoff

frequencies (5 Hz, 10 Hz and 20 Hz) and a data sampling frequency of 90Hz
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Fig. 5.16 exemplifies the filter response when the low pass filter is excluded from the output

signal conditioning process. In this example, the estimated values at a balance sampling

frequency of 30 Hz are satisfactory, despite the apparent influence of the measurement noise at

the beginning of the measurement. On the other hand, the performance of the filter is outstanding

when the system is able to sample data at 90 Hz. In this case, the estimate values converge in a

few seconds after the start point of the collection process. Additionally, the filter keeps tracking

the fluctuated mass flow rate, within a band of 0,05% with respect to the average magnitude.

The conclusion given by this analysis is that the accuracy and precision of the estimate values

can be re-enhanced, if the balance output signal could skip the low pass filter, and the sampling

frequency would be higher [16]. However, the criteria for an appropriate increment of the data

sampling frequency will be closely related, for instance, with the level of stationary fluctuating

flow at the primary standard and the balance time constant. Furthermore, as an important remark,

these specific output signal characteristics can be currently provided only by customized balances.

Fig. 5.16 Simulation of the balance output signal response at a data sampling rate of 30 Hz and

90 Hz without low pass filter
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6. Experimental results

The content of this chapter addresses the theoretical, mechanical, and data acquisition set up of a

prototype used as a dynamic weighing liquid flow standard. Furthermore, it presents a series of

measurements performed at different mass flow rates, with the aim to experimentally determine

the accuracy level of the process model algorithm described in Chapter 4.

For these series of tests, the reference system in use is a flowmeter with direct traceability to the

PTB national standard for low liquid flow measurements [1]. This means, a measurement

approach, in which a primary flow standard can provide a low-uncertainty characterization to the

flowmeter output signal, and at the same time, a flowmeter that is capable of tracking the

stationary and quasi-steady mass flow rate fluctuation in small time intervals, but within the

uncertainty claimed after its calibration. The description of the transfer standard is also given in

this chapter.

6.1 Transfer standard used for the liquid flow comparison
The transfer standard used for these experimental tests is a turbine flowmeter owned by the PTB

calibration laboratory, which complies with all metrological requirements of reproducibility,

repeatability, linearity, precision, and covers the measuring range demanded by the tests.

Regarding its working principle, the turbine flowmeter is a metering device, which converts the

mechanical angular velocity of the rotor (generated by the mass flow) into an electrical frequency

signal [2]. In other words, if the mass flow passing through the meter increases, the rotor angular

velocity as well as the electrical frequency measured by an external pickoff will raise in the same

manner (Fig. 6.1). Concerning its mechanical construction, the turbine rotor has to be held inside

the stream, whereby supports are added to position the rotor bearing in the pipe as shown in

Fig. 6.1. Additionally, such supports serve as a flow straightener that removes the swirls and/or

disturbing flows caused by upstream pipe fittings and valves. Another good feature of the turbine

meter is the high-sensitivity of the mechanical sensing element (rotor) to sudden changes of mass

flow rate during a measurement run [3 and 4], despite some small response delay attributed to a

retarding torque from the rotor [5].
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Fig. 6.1 Turbine flowmeter used as a transfer standard

The transfer standard is a 25-mm turbine flowmeter that has been previously calibrated by the

PTB primary standard of liquid flow, within 2 kg/min to 10 kg/min. The results of this

characterization are given in terms of a ratio called K factor, which represents the number of

pulses read by the pickoff during the transfer of 1 L of water through the flowmeter (Eq. 6.1).

The K factor of the transfer standard was defined to be equal to 12821 pulses/L, and on the other

hand, the region of linearity of this flowmeter was found between 3 kg/min and 8 kg/min. This is

the flow range that will be used during the measurement comparison, due to its relatively lower

measurement uncertainty levels and repeatable results.

Meter
Meter

PTB

f
K =

V (6.1)

Here Meterf denotes the turbine rotor frequency in Hz, and PTBV represents the volumetric flow rate

determined by the PTB primary flow standard during the characterization process. Meanwhile,

during the dynamic flow measurement tests, the turbine flowmeter will be able to calculate the

mass flow rate by using Eq. 6.2, which is a dependent function of the obtained turbine calibration

factor MeterK ,  nMeterf t , and the fluid density  Meterwρ  at its location.

     
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As for the measurement uncertainty attributed to the transfer standard, this can be determined by

the combined measurement uncertainty of the small PTB liquid flow primary standard

(
PTB

U 0,05% ) [1], in addition to the uncertainty of the transfer standard due to its repeatability

(
Meter_Rep

U 0,06% ). Both values are referring to a 95% confidence level.

   22

Meter PTB Meter_Rep
U = ± U + U

= ±0,078%
(6.3)

On the other hand, the measurement uncertainty of the Dynamic Weighing Liquid Flow Standard

prototype (DWLFS) is estimated by the combined uncertainty of the storage effect of the

connecting volume CVU (Chapter 3), and the uncertainty related to the time-varying estimate

error given by the process model algorithm  neU t .

      22
n nDWLFS CV eU t = ± U + U t (6.4)

6.2 Data acquisition system
The data acquisition system and signal synchronization for the dynamic weighing liquid flow

standard prototype (DAQ) is realized by a software written in Labview®, and a programmable

automation controller known as NI CompactRIO® [6]. Such equipment comprises a dedicated

400-MHz microprocessor that serves to acquire synchronous real-time measurement data.

Furthermore, the integrated high-performance FPGA (Field-Programmable Gate Array) allows

the user to generate a reconfigurable hardware circuitry between the customized I/O modules

(Table 6.1) connected to the measuring devices and the microprocessor. Moreover, a RS-232

serial port is employed to interface the high-precision balance to the CompactRIO®. The

interfacing of the prototype measuring devices as well as the DAQ system is depicted by Fig. 6.2.

The I/O data transfer between the modules and the NI CompactRIO microprocessor is carried out

by means of using a high-speed PCI bus for real-time analysis and data logging. Thereafter, the

acquired data are sent to a networked host computer for visualization through via Ethernet. As for

the acquired data, these are stored in an external hard disc plugged to a CompactRIO® full speed
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USB port. In this instance, the speed of DAQ system can be only limited by the implemented

sensors and the I/O modules, rather than its processing performance. For this application, the data

sampling rate for all acquired signals is 250 Hz.

Table 6.1 Technical specifications of data acquisition modules [7, 8 and 9]

Fig. 6.2 FPGA system used as a DAQ and controller for dynamic-weighing measurements

6.3 Implementation of an accelerometer to detect the initial time of the

measurement process
The task of the accelerometer mounted upon the balance platform is to monitor the z axis

(weighing axis) acceleration at the initial stage of the measurement. This is with the aim to trigger

out the start time of the filling process, when the water jet impacts for the first time the vessel.

The start time is a very important process variable, because it enables the hydrodynamic force

filter to calculate the estimate mass flow rate more accurately.
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This technique is based on the physical fact that the incoming water jet will generate an impact

on the balance platform, and eventually, the weighing system will have to react mechanically to

such an impulse force in terms of a sudden acceleration [10].

If the weighing system output response were used instead, as the basis to trigger out the start time

of the measurement process, then the estimate measurand values would take longer to stabilize.

The explanation to this phenomenon lie on an smaller time constant and higher data sampling

frequency of the accelerometer, in relation to its counterpart, the weighing system.

As a matter of definition, the difference in time between the EFC balance response and the

acceleration response to the first water jet impact will be denoted as time offset. In Section 6.5, an

experimental test exemplifies the magnitude of such a time offset effect.

The employed Brüel & Kjaer 4508 DeltaTron® accelerometer is a compact (1cm3), hermetic, and

a light-weight (4,8 g) piezoelectric transducer. One of the remarkable features of this

accelerometer is its low noise pre-amplifier [11] incorporated in the transducer, as well as the

low-impedance cable used to prevent erroneous measurements due to voltage drops. The

transducer is connected to a 4-Channel NI 9233 module [7], which is dedicated to serve as a

power supply, A/D converter, amplifier, and digital filter for the accelerometer output signal.

Concerning its mounting, the accelerometer and its cable have to be properly fastened to the

weighing platform in order to avoid measurement errors caused by the wiggle of the sensor and

the triboelectric noise induced by the cable movement [12 & 13]. According to the PTB

acceleration laboratory, the measurement uncertainty of this accelerometer is in the order of

±0,2% at a confidence level of 95%.
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6.4 Usage of a non-contact laser displacement sensor to characterize the

water jet impact height
The Micro-Epsilon NCDT 1710 Laser Displacement Sensor (LDS) is a measurement device

responsible of determining the water jet impact height  îh z , which is a key process variable for

the experimental estimation of mass flow rate via hydrodynamic force filter.

As shown in Fig. 6.3, the LDS is mounted over the weighing system platform to monitor its

oscillatory displacement with a resolution of 0,5 µm, at a data sampling frequency of 250 Hz, and

a measurement uncertainty of 2µm (95% confidence level). This device working under the

triangulation measurement principle [14 and 15] is an appropriate sensor for this application,

because it does not exert any undesired additional force upon the balance platform.

The characterization of the impact height  îh z was determined by filling the collection vessel at

10 different levels, measuring the corresponding distance between the nozzle outlet and the water

surface, and recording the displacement of the calibrated balance at each level by using the LDS.

Afterwards, these two variables are plotted to yield a characterization curve depicted by Fig. 6.3.

Thus, the current water jet impact height is a function of the balance displacement (z), wherein its

trend can be approximated by a quadratic curve-fitting equation, Eq. 6.5. The range of the water

jet impact height is between 520 mm (distance from nozzle outlet to vessel bottom) and 250 mm

(distance from nozzle outlet to the water surface at 10 L of the vessel capacity). As a remark, the

non-linear representation of Eq. 6.5 is due to the side wall shape of the vessel at the bottom.

2
ih (z)= -1339 z - 863,09 z+515,82  (6.5)
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Fig. 6.3 Water jet impact height characterization as a function of the EFC balance platform

displacement measured by the LDS
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6.5 Characterization of the weighing system´s stiffness and damping

coefficients
The characterization of the weighing system spring coefficient was carried out by applying PTB

reference masses upon the center of the balance platform (50 g, 100 g, 200 g, 500 g, 1 kg, 3 kg,

5 kg, 7 kg, 9 kg and 10 kg), and knowing the local acceleration of gravity to calculate the exerted

force. Note that the accorded maximum loading of 10 kg is related to the maximum capacity of

the collection vessel (10 L) used in the dynamic weighing liquid flow primary standard prototype,

and the density of the water ( 998,2 kg m³ 0,01 m³ = 9,982 kg ). Furthermore, the air

temperature, relative humidity, and atmospheric pressure were recorded, in order to calculate the

buoyancy force effect upon the reference masses.

After a set of reference masses are placed upon the balance, a laser displacement sensor records

the displacement of the weighing platform. Once the loading from 0 kg to 10 kg is completed, a

force-displacement graph is plotted (Fig. 6.4), and a curve fitting is applied in order to get a

second order equation (Eq. 5.3) that approximately describes the data path.

During the characterization test, the maximum balance displacement recorded at a nominal load

of 100 N was -42,7 10 m . Then, as a result of such a characterization, the balance force-

displacement curve shown in Fig. 6.4 and described by Eq. 6.6 depicts a slight non-linearity,

attributed to the deflection of the balance beam, the rubber supports of the balance, and in a very

minor degree due to the balance sensing element. Finally, the derivative of Eq. 6.6 yields the

weighing system stiffness coefficient (Eq. 6.7), wherein its magnitude covers a range from
52,774 10 N / m to 54,3 10 N / m .

8 2 5
RefF (z)= 2,9337 10 z +2,744 10 z +0,60935    (6.6)

Ref 8 5
Bal

dF (z)
k = = 5,8674 10 z+ 2,744 10dz    (6.7)
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Fig. 6.4 Characterization of the weighing system stiffness coefficient

The determination of the weighing system damping coefficient was calculated in accordance to

Eq. 6.8 (previously described in Chapter 3), wherein such a system parameter is a function of

the stiffness coefficient Balk , the total mass supported by the balance Tm (t) (Eq. 6.9), and the

characterized damped angular frequency of the balance along its weighing axis d T( m (t))

depicted in Fig. 5.4, Chapter 5. Thus, according to Fig. 6.5 the damping coefficient is within

0,12 N.s/m and 0,26 N.s/m.

 2 2ˆ ˆ ˆ
Bal

1 2

Bal T d T T= 2 k m (t) ( m (t)) m (t)c (t) -    (6.8)

ˆ ˆT v p w HFm (t)= m +m +m (0)+m (t) (6.9)
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Fig. 6.5 Characterization of the weighing system damping coefficient (Eq. 6.8)

6.6 Results
A very important stage during this research was to validate the process model used to determine

mass flow rate via dynamic-weighing. This task consisted in getting the results delivered by the

transfer standard (turbine flowmeter), and thereafter comparing such reference measurements

with the proposed approach. The set of experimental tests described in the following parragraphs

below, correspond to two stages carried out in order to obtain the measurand mass flow rate

(see Fig. 6.6).

1. Mass flow rate determination by means of an algorithm (Hydrodynamic force filter), which

takes as an input the acquired signal from the balance force response and time, and it is

responsible of quantifying and minimizing the effects from the hydrodynamic and buoyancy

force from the measurement,

2. A subsequent filter algorithm called Measurement noise filter, uses the outcome from the

Hydrodynamic force filter as an input signal, and deals with the attenuation of the

measurement noise caused by the dynamic response of the weighing system. In this analysis,

there are three different measurement noise filters proposed for this task (Moving average,

Least-mean-Square adaptive, and a Kalman filter), with the aim to compare their ability to get

rid of such a signal disturbance, and thus, delivering a more accurate estimate measurand.
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Fig. 6.6 Process model subsystem

6.6.1 Hydrodynamic force filter

In the measurement process, the hydrodynamic and buoyancy force have to be taken into account

in order to avoid a significant systematic error in the determination of mass flow rate via dynamic

weighing. With regard to the buoyancy force, this can be estimated by knowing the temperature-

dependent density from the air and water. On other hand, the hydrodynamic force induces a

larger undesired force magnitude to the measurement process caused by the time-varying force of

the water jet impacting the collection vessel. Fig. 6.7 describes an experimental test to prove the

influence of this variable, and to estimate its force magnitude. The experiment consisted of

starting the water collection process, and then bypassing the water jet from the collection vessel.

The result is a difference in force magnitude between the fluid in motion (collected mass force +

hydrodynamic force – buoyancy force), and the fluid at rest (collected mass force – buoyancy

force), which concludes in an estimated hydrodynamic force [16].

Fig. 6.7 exemplifies such an estimate at a nominal mass flow rate of 8 kg/min. In this instance,

the value of the hydrodynamic force at the initial stage of the filling process is 0,51 N, that

decreases to 0,4 N (or 20 %) at the final stage of the collection, because of the reduction of the

water jet impact height.
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Fig. 6.7 Experimental estimation of the hydrodynamic force at 8 kg/min
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6.6.2 Analytical and experimental estimation of the hydrodynamic force

The same type of experiment depicted in Fig. 6.7 was performed at 3 kg/min, 5 kg/min and

8 kg/min but additionally, the hydrodynamic force was quantified by Eq. 6.10 (Chapter 4,

Eq. 4.15) and Eq. 6.11, with the aim to compare the agreement between the experimental and

analytical approach. The results shown in Fig. 6.8, reveal that most of experimental measuring

points at five different levels of collection, overlap with the values obtained by analytical means.

The largest deviations between these two approaches to estimate the variable were: 1,7% at

3 kg/min, 1,4% at 5 kg/min, and 1,5% at 8 kg/min.
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wherein the estimate water jet impact height îh (z) can be calculated by Eq. 6.5.

It is important to remark that the data scattering yield by the analytical form is highly spread

during the first seconds of the process due to the balance reacting shock response. Nonetheless,

such data spread (originated by the oscillatory response of the balance) does significantly

decrease as the collected water level rises.
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Fig. 6.8 Analytical and experimental estimation of the hydrodynamic force at 8, 5 and 3 kg/min

6.6.3 Estimation of the collected mass force

The estimation of the collected mass force is a key step for determining how good the

measurement process model will approach to the real water mass collection, and subsequently the

mass flow rate. The experimental results illustrated in Fig. 6.9 show the balance force response at

8 kg/min. This signal, as previously demonstrated in Fig. 6.8, contains the undesired magnitude

of the hydrodynamic and buoyancy force. Therefore, the task of the hydrodynamic force filter is

to significantly reduce these dynamic process variables, thus yielding an estimate of the collected

water mass. The removal of these dynamic forces is clearly seen in Fig. 6.9 when comparing the

slope of the balance force response and the given by the hydrodynamic force filter algorithm. As

expected, the slopes are different because the attenuated dynamic variables vary in time. As

observed in Fig. 6.9, the slope percent change of the hydrodynamic force filter output signal with

respect to Balance output response (Non-treated process signal) at three different mass flow rates,

were in the order of: 0,35 % at 8 kg/min, 0,28% at 5 kg/min, and 0,20% at 3 kg/min. The results

here infer that the balance force response trends to converge the estimate collected mass force,
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either at the lowest flow rates or at high levels of the collection process, associated with the

shortened water jet impact height. Moreover, this outcome suggests a worthwhile design criterion

of reducing as much as possible the distance from the discharging nozzle to the collection vessel

bottom, with the goal to physically decrease the hydrodynamic force magnitude from the

measurement process.

It is appropriate to highlight the term slope in this analysis, because in this measurement process

the slope implies a mass flow rate calculation. Fig. 6.10 clearly highlights the difference when

the balance force response and hydrodynamic force filter output as quotients of time (mass flow

rate). Note that the local acceleration of gravity 9,8125 m/s² [17] has been employed in order to

present the data as an estimate of kg/min. The estimate mass flow rate obtained by the direct

quotient of the balance output and time reveals a relative error of about 0,2 % in relation to the

average reference value given by the transfer standard (Fig. 6.10).

On the other hand, a smaller relative error of 0,07% is attained by using the estimate collected

water mass (Hydrodynamic force filter) to calculate the flow unit. After analyzing the tests at 3,

5, and 8 kg/min, it was concluded that the filter enable the measurements to improve by a factor

between 2 and 3.

Fig. 6.9 Hydrodynamic force filter used to estimate the collected water mass at 8 kg/min
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Fig. 6.10 Comparison of the average mass flow rate measurements via hydrodynamic force filter

and balance output signal

As a remark, the scattered data seen in Fig. 6.10 (caused largely by the time-discrete oscillatory

response of the balance) will be treated by the following filter algorithm (see Fig. 6.6), which

tackles the attenuation of the measurement noise.

6.6.4 Time offset correction

The experimental results shown in Fig. 6.10 were possible because the data was corrected from

the time offset originated by the balance response (Section 6.4.2). Such a correction enables the

measurement process to recognize at which point the collection process indeed started, so then an

initial time (or time zero) can be set for the calculations of mass flow rate. As previously

discussed in Section 6.4.2, this technique works under the principle of sudden acceleration of the

weighing system caused by the first impact of the water jet impacts upon the collection vessel.

An example of this method is illustrated in Fig. 6.11, wherein an accelerometer mounted upon

the weighing axis (perpendicular axis to the balance platform) measures the right moment of the

impact at 2,616s instead of at 2,661s given by the balance readout. This means, 45 ms faster than

the first step of the balance output response. The observed time delay between the two systems is

will depend upon the accelerometer time constant, the internal filter of the balance, and the higher
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sampling frequency of the accelerometer DAQ module (250 Hz), in relation to a 25-Hz data

sampling frequency from the EFC balance.

In order to exemplify the relevance of this parameter, consider the first step response of the

balance output signal as a reference mark for the process initial time. In this circumstance, the

calculation of the estimated mass flow rate depicted in Fig. 6.12 (with no time-offset correction),

would nearly require half of its measurement time (29 s) in order to converge with the average

reference value. The latter value agrees within an error band of 0,3% at 8 kg/min. On the other

hand, the other two mass flow rates at 5 kg/min and 3 kg/min, depict an stabilization time at

approximately 40% and 28% of their total measurement time, respectively. These numbers

demonstrate that the time offset significantly affects the high mass flow rates, due to the relative

short time of collection to compensate the weighing system time delay. As for the time-offset

corrected signal, this would require about 2s to get stable (Fig. 6.12). Therefore, almost the entire

set of data can be worth for analyzing.

Fig. 6.11 Determination of the filling process initial time based on the sudden acceleration of

weighing system when the water jet impacts for the first time
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Fig. 6.12 Time-offset effect upon the hydrodynamic force filter´s mass flow rate estimate values

Fig. 6.13 summarizes the three mass flow rates performed in this experiment with sets of three

measurement points each. The aim of gathering this information is to observe how relevant is the

minimization of the hydrodynamic force as well as the buoyancy force for the accuracy

enhancement of the measurand. Below, there are some remarks extracted from these data.

At 8 kg/min, the mass flow rate values given by the balance readout are out of the ± 0,09%

uncertainty level of the transfer standard. Furthermore, the relative error yield by the

hydrodynamic force filter is nearly in the limit of the uncertainty value of the transfer standard.

However, when comparing the two calculation approaches: the Balance response ˆ ( )Bal nm t

(Eq. 4.1) and the hydrodynamic force filter ˆ ( )HF nm t , it is clear that the hydrodynamic force filter

has improved the measurement accuracy by a factor of 2.

The measurements taken from both measuring methods at 5 kg/min show closeness to the

reference value, within ±0,06% and ±0,025% for the balance readout and hydrodynamic force

filter, respectively. At 3 kg/min, both measurement approaches were also within the claimed

uncertainty level of ±0,1%,. However, the percent relative error between 0,02% and 0,05%

turned out to be a bit larger than expected, when compared with the previous higher flow rate at

5 kg/min (narrow range between 0,02% to 0,025%).
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Fig. 6.13 Measurement comparison of estimate mass flow rates by means of using a hydrodynamic

force filter and by direct balance output response
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The fluctuating mass flow rate can be another contributing factor in the average relative error

shown in Fig. 6.13, and particularly at 3 and 5 kg/min. This assumption can be explained by

when comparing the possible correlation existing between the average percent relative error

(Fig. 6.14), and the approximated level of fluid flow fluctuation measured by the transfer

standard (Fig. 6.14). Here, the highest data dispersion is found in both cases at the lowest and

highest flow rate (3 kg/min and 8 kg/min), and the smallest at the mid flow rate, 5 kg/min.

Fig. 6.14 Quasi-steady mass flow rate data measured by the transfer standard

The term average relative error is highlighted with the intention of illustrating how the estimate

fluctuating mass flow rate depicted in Fig. 6.14 can impact the measurand value of the transfer

standard or a flowmeter. This situation is present in a major or a minor degree, even if the

measurement process is intended to be carried out at a constant mass flow rate (an ideal condition

that cannot be achieved so far by any liquid flow calibration facility). These observations are

important to be kept in mind, especially in a static weighing system, which is unable to monitor

this non-steady parameter, and its implications in terms of the measurement accuracy of the

flowmeter under calibration.
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6.6.5 Summary

Fig. 6.15 presents the results of the different approaches used to estimate the time-varying mass

flow rate in the form of a histogram. Such approaches are listed below, in accordance to the block

diagram of the process model subsystem shown in Fig. 6.6.

1. Balance force response (Eq. 4.1),

2. Hydrodynamic force filter,

3. Three proposed measurement noise filters:

a) Central moving average,

b) Least-Mean-Square (LMS) adaptive filter, and

c) Linear Kalman filter,

4. Flowmeter used as a transfer standard (measurand reference)

For instance, in Fig. 6.15 the balance force response and the hydrodynamic force filter

approaches feature equally wide data distribution, which is due to the fact that both signals have

not been treated at this point by the influence of the measurement noise. As recalled, the

measurement noise is referred as the noisy signal embedded in the balance output response, and it

is considered to be mostly caused (but not entirely) by the dynamics of the weighing system, in

response to the existing measurement process fluid-mechanical conditions. On the other hand, the

difference seen between these two approaches is indeed in terms of their mean value, which in

case of the hydrodynamic force filter turns out to be closer to the reference mean value, because

its data have been corrected from the water jet impact force and the air buoyancy effects upon the

measurand. At the first glance, Fig. 6.15 could suggest that the percent relative difference

between the hydrodynamic force filter and the transfer standard mean values is proportional to

the operational mass flow rate. However, when looking more carefully at the percent relative

difference of the hydrodynamic force filter data at 5 kg/min (0,018%), it turns out to be smaller

than at 3 kg/min (0,03%), and therefore, it implies that such a statement cannot be simply taken

for granted.

One of the possible explanations about why this relative difference magnitude is not fully (or

necessarily) proportional to the mass flow rate can be related with the level of flow steadiness

and its stationary condition. For example, the measurements carried out at 3 kg/min and 8 kg/min

feature a multi-peak histogram, meaning that such mass flow rate data were not only quasi-steady
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in the process, but also slightly shifting (decreasing) from its nominal mean value (Fig. 6.14). In

this case, the given conditions imply that the largest peak in the data distribution corresponds to

the flow rate that lasted longer during the measuring run, and whereby its mean value will trend

to lie in that direction (out of the range midpoint as seen in Fig. 6.15). On the other, when looking

at the measurement data at 5 kg/min, one can be inferred that a more steady and stationary flow is

taking place, because the transfer standard reference data depict a more homogeneous

distribution.

As for the LMS adaptive filter performance, it is observed that besides attenuating the induced

measurement noise (compared to the hydrodynamic force filter), it turns out its mean value nearly

coincides with the mean value of the central moving average filter, as shown in Fig. 6.15. One

reason for this common behavior is that for this specific data processing task, both filter

algorithms obtained a similar weighted average magnitude (with their corresponding coefficients)

for the three selected mass flow rates.

Concerning the central moving average, it is demonstrated in Fig. 6.15 that despite its limited

number of estimate values, (in relation to its counterparts, LMS adaptive and Linear Kalman

filters), it is able to deliver precise and accurate results. The latter statement applies even if the

mean value of the central moving average was not overlapping the reference data at 8 kg/min

(with a relative difference of 0,09%). This is because, in practice, the true mass flow mean value

can lie within the claimed uncertainty of ±0,1%, in relation to the transfer standard mean value.

On the other hand, as already recalled in Chapter 5, the number of estimate values (17 at

8 kg/min, 22 at 5 kg/min, and 47 at 3 kg/min) given by the central moving average should not be

a limitation, because 5 to 10 measurements per mass flow rate can be statistically sufficient to

calibrate a flowmeter.
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Fig. 6.15 Histograms summarizing the different mass flow rate estimation processes
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In relation to the Linear Kalman filter, Fig. 6.15 shows two narrow and large data distributions at

8 kg/min and 5 kg/min, which indicate that most likely a slightly larger variance was assigned to

the measurement noise model of the filter. In other words, it is inferred that the estimate values

were relying more on the measurement noise model than on the measurements, Furthermore,

according to the narrow shape of the Kalman filter data distribution, it points out that the estimate

values are behaving in a linear trend. The Kalman filter histogram at 3 kg/min is a good example

of a more accurate designation of the measurement variance, and its effect upon the filter tracking

response (Fig. 6.15). Another interesting observation made after analyzing the histograms is the

apparent systematic difference between 0,02% to 0,03% is taking place between the Kalman filter

and the reference data, at 3, 5 and 8 kg/min. At this moment, there is no sufficient information

that could clarify such a consistent difference in magnitude. Nevertheless, a possible explanation

to this behavior might be that the Kalman filter has not yet included the process noise model into

its algorithm. In this instance, the process noise refers to the force effect of the internal flow-

induced forces inside the collection vessel upon the balance output signal.

Table 6.2 shows the level of measurement uncertainty of some published results of flow

calibration facilities which work within the frame dynamic gravimetric flow measurements:

Flow laboratory Type of system Type of
measurement Flow range (kg/min)

Measurement
uncertainty (95%
confidence level)

Small NIST Cox
bench [18] ISO definition Average flow 0,5 to 8,0 ± 0,12 %

Large NIST Cox
bench [18] ISO definition Average flow 5,3 to 916 ± 0,12 %

NIST water flow
primary standard

[18]
Dynamic weighing Time-varying flow 300 to 720 ± 0,036 %

PTB Berlin [19] ISO definition Average flow 500 to 3330 < ± 0,05 %

Rota Yokogawa
GmbH [20] Dynamic weighing Time-varying flow at 25 ± 0,05 %

PTB Braunschweig
(proposal) Dynamic weighing Time-varying flow 3,0 to 8,0 < ± 0,1 %

Table 6.2 Current primary flow standards working under the dynamic weighing measurement

principle
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7. Conclusions and outlook

In this research work, a new method for the calibration of liquid flowmeters was presented, for its

future application in liquid flow calibration laboratories. The characteristics, advantages and

limitations of this new method have been described in terms of its principle of functionality as

well as the next steps to be taken, in order to improve its current performance. This chapter

summarizes all the conclusions and remarks of this ongoing long-term investigation.

First, it was necessary and feasible to simulate the measurement process (Chapter 3), with the

aim to understand the system’s dynamic response, the main sources of noise in the process, their

source, the role and significance of different process variables, and to verify the consistency of

the experimental results. In this instance, the simulation applies to a 1 Degree-of-Freedom model,

which despite analyzing the normal weighing axis (z axis), it highlights the most striking fluid-

mechanical forces in the process: the water jet impact force, the collected mass force, the

buoyancy force acting upon the system normal axis, and the normal reacting force of the

weighing system

This calibration method can significantly reduce the calibration time, because it only requires a

single measuring run (one collection per calibration point), and at the same time is capable of

generating a large amount of measurement data for the characterization of a flowmeter. For ex-

ample, the factor of calibration time reduction could be agreed to be five, if one considers that

each calibration point (i.e. static weighing method) requires at least five measurements. This

number is based on some calibration procedures [1], which consider that amount of data as statis-

tically sufficient for a measurement uncertainty analysis (Section 1.2). Another advantage of this

calibration method is the possibility to implement it in a static weighing liquid flow primary

standard, without the necessity to modify the mechanical design of such a facility. This means

that the user can perform a flowmeter calibration, either in a static or in a dynamic weighing

mode by using a single facility. Moreover, in a dynamic weighing liquid flow primary standard,

the thorough characterization and fast actuation of a diverter valve (Chapter 2) is not longer a

system requisite, since the proposed calibration principle only requires the diverter valve to act as

an ordinary bypass valve, to directs the fluid into the vessel, and bypasses it back to a supply tank

when the collection is completed.
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In the hydrodynamic force filter, the effect and quantification of the water jet turbulence as well

as the viscous shear stress caused by the water jet-air interaction [2] were not included in the

current analysis, due to the complexity in deriving an analytical model. However, as

demonstrated in experimental tests, the simplified water jet impact force model (based on the

Bernoulli equation, geometry and dimensions of the system) proves to be good enough in

estimating the average impacting force of the water jet (Chapter 6). In this case, the average

impact force can be calculated, due to the fact that the turbulent flow is quasi-steady [3]. In

summary, even if such a force cannot be exactly quantified, it greatly helps in diminishing the

unwanted hydrodynamic force effect from the process. This is clearly seen in Chapter 5 and

Chapter 6, wherein such a filter is compared with a mass flow rate calculation that overlooks the

water jet impact force.

As for the three proposed measurement noise filters, the following observations were made. The

central moving filter yields a limited number of estimates in relation to the LMS adaptive and the

Kalman filter. Nevertheless, such a number can turn out to be sufficient and accurate enough, if

compared with the number of data samples required in a regular calibration procedure. In regards

to the LMS adaptive filter, it estimates the time-varying mass flow rate in a similar way the cen-

tral moving average does, except that the adaptive filter can reproduce more estimates than the

central moving average. On the other hand, in terms of their initial response, the LMS adaptive

filter and the central moving average require some time to converge the reference values, and to

overcome the high-amplitude overshoot response seen at the first 1/3 of the collection time. The

third proposed algorithm, the linear Kalman filter requires less computational power than the

LMS adaptive filter. Furthermore, as observed at the results in Chapter 5 and Chapter 6, the

Kalman filter seems to deal better with the high-amplitude measurement noise at the beginning of

the process, as well as tracking and estimating more effectively the fluctuating mass flow rate.

The usage of the average mass flow rate magnitude (obtained from the hydrodynamic force filter

data) turned out to be an appropriate estimation parameter for the Kalman filter and the LMS

adaptive filter because, as already mentioned, the process was carried out at quasi-steady flow

conditions. And, as demonstrated in numerical and experimental results, the Kalman filter deliv-

ers the largest number of estimates with the lowest percent of relative error. Therefore, it was

chosen as the measurement noise filter.
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As for the experimental tests, accuracy levels of less than ±0,1% are attainable by applying the

dynamic weighing liquid flow calibration approach. However, it is worth recalling that this

number is given in accordance to estimate mass flow rate values that stood within the claimed

accuracy of the PTB transfer standard (used in the comparison test). Another interesting

characteristic found in some experimental data was the similar time-varying mass flow rate

measured by the two different approaches (the process model and the transfer standard), which

suggests that in reality the flow might indeed follow such a particular path (Chapter 6).

Nonetheless, in order to confirm this observation, it is necessary to compare the proposed

calibration method with another high-accurate flow primary standard such as a piston prover

(Chapter 2) or a Laser Doppler Anemometer system (LDA) [4].

According to numerical tests, the accuracy and precision of the measurements could be signifi-

cantly enhanced if the data sampling frequency of the weighing system was increased, and the

low pass filter avoided. This also raises the conclusion that a customized balance for this particu-

lar application would be the ideal case, by allowing the user to acquire the balance analog output

signal without aliasing effects, understanding and treating more effectively the unwanted process

and measurement noisy signals from the acquired data, and thus, obtaining a more accurate mass

flow rate estimate. Furthermore, the concept of a customized balance would also help in the sense

of getting a closer numerical representation of the physical weighing system, in terms of studying

in depth the impact of the system dynamics upon the measurand determination (i.e. knowing the

algorithm of the balance positioning control loop).

According to the mechanical frequency analysis presented in Chapter 6, it is demonstrated that

the system is subjected to move not only along its weighing axis, but also to at least two

additional translational and/or rotational axes. From the previous observations made and in the

literature [5 and 6], it indicates that this behavior is caused by the acting radial fluid forces of a

generated vortex inside the collection vessel, and the reacting orthogonal forces of the balance

(due to the slight transverse sensitivity of its cell). To better understand this system condition and

its influence on the balance output signal (mechanical crosstalk effect), it is necessary to analyze,

in future, the system as a 2 or 3 Degrees-of-Freedom case. The process requires that the model

should include the time-varying acting moment (torque) generated by the normal and radial fluid

forces [7] and their location, and the reacting time-varying moment of inertia of the system

during its operation. In order to apply this concept, it is necessary to know (or to estimate) the
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magnitude of these acting forces. Therefore, it will be required to quantify their magnitudes by

using an experimental approach, such as the Particle Image Velocimetry (PIV) [8], and/or a

numerical analysis via Computational Fluid Dynamics (CFD) [5]. In terms of its application, this

process condition can be added into the Kalman filter; so that the algorithm will be able to take

into account some of the process noise generated by the fluid dynamics as well as the recalled

system measurement noise. This will benefit the calibration procedure in re-enhancing its current

accuracy and precision.

As a next step in this research work, the mechanisms for effective system´s energy dissipation [9]

have to be investigated. A liquid flow primary standard has to be designed in such a way that its

dimensional and geometrical characteristics (i.e. the vessel diameter and its height, the system´s

mass, the discharging nozzle cross section area, and its location), allow it to diminish the level of

disturbance caused by the stored kinetic energy in the system (The higher the rate of energy

dissipation, the lower the influence of the process and measurement noise upon the measurand).

In practical terms, this rate of energy dissipation can be correlated with the system´s inertial force

or its oscillatory acceleration.

The influence of the water surface waves in the collection vessel and the water jet mass have not

being treated in this research work. However, for the case of the water surface waves, this

phenomenon cannot be disregarded for a future analysis because, as visually observed, this is an

inherent process characteristic, which might influence (in some measure) the balance response [10].

On the other hand, it is more appropriate to first investigate the influence of the internal vortex

because this process variable, in addition to the water jet impact is responsible (cause) for

generating the surface waves (effect). Moreover, in accordance to the experiments carried out, the

influence of the water jet mass (interpreted as a water mass column) was not observed, as Shinder

et al. mention in its analysis [11]. However, this is not discarded, and it will be reconsidered in

future experiments, in order to ensure whether that variable takes place in the measurement

process or not.
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Nomenclature

A: Transition matrix

A: Arbitrary cross section area in a pipeline

CVA : Arbitrary area of the connecting volume wherein the mass flow passes through

Meter
A : Cross section area of the flowmeter

nA : Cross section area o the nozzle outlet

PistonA : Inner cross section area of a piston prover

vA : Cross section area of the collection vessel

Balc (t) : Damping coefficient of a mechanical system

nE : Characteristic time-varying matrix

( )AF ne t : Feedback error signal estimate (Adaptive filter)

bF (t) : Time-varying buoyancy force

BalF (t) : Balance reacting force due to its stiffness coefficient

BalLPF
F (t) : Time-varying oscillatory force response of the balance driven by the low pass

filter

cF (t) : Weighing system damping force

dF (t) : Time-varying hydrodynamic force caused by the water jet impact

InertialF (t) : Time-varying inertial force exerted by the weighing system

m(t)F : Fluid force due to time-varying collected mass and local acceleration of gravity

qF (t) : Additional fluid forced acting upon the weighing system (i.e. Vortex axial and

water wave oscillatory forces)

TF (t) : Time-varying total fluid force

Mech (t)F : Summation of weighing system mechanical forces

fd: Balance frequency response

LPFf : Low-pass filter cutoff frequency
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 nMeterf t : Turbine flowmeter rotor frequency

LPF dG (f ) : Low pass filter gain factor

g: Local acceleration of gravity
H : Measurement matrix

h(k) : Current k-number filter coefficient (Least-Mean Square adaptive filter)

ih (t) : Water jet impact height

ih (0) Initial water jet impact height

î nh (t ) : Discrete time-varying estimate of the water jet impact height

îh (z) : Water jet impact height estimate as a function of the balance displacement

 uph k : Update k-number filter coefficient (Least-Mean Square adaptive filter)

wh (t) : Increasing height of the water surface

I: Identity matrix

nK : Kalman gain matrix

MeterK : Turbine flowmeter calibration factor

Balk : Balance stiffness coefficient

M: Number of filter coefficients

̂m(t) : Continuous time-varying estimate mass flow rate

ˆ
nBalm (t ) : Average discrete time-varying mass flow rate

ˆ
nHFm (t ) : Hydrodynamic force filter estimate of time-varying mass flow rate

ISOm . Reference mass used by an ISO dynamic gravimetric liquid flow primary standard

Km : Mean mass flow rate (Kalman filter)

K nm (t )̂ : Discrete time mass flow rate estimate (Kalman filter)

ˆ )MA nm (t : Discrete time-varying mass flow rate estimate via moving average filter

ˆ )+
MA nm (t : A priori discrete time-varying mass flow rate estimate via moving average filter
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ˆ )-
MA nm (t : A posteriori discrete time-varying mass flow rate estimate via moving average

filter

Meter nm ( t ) : Mass flow rate measured by the flowmeter

pm
: Weighing platform mass

Totalm : Total fluid mass

Tm (t) : Continuous time-varying total mass held by the balance elastic elements

Tr1m : Reference-mass triggering point (Start) according to ISO dynamic gravimetric

liquid flow primary standard

Tr2m : Reference-mass triggering point (Stop) acc. to ISO dynamic gravimetric liquid

flow primary standard

vm : Collection vessel mass

wm : Mass flow rate

wm (t) : Continuous time-varying collected water mass

w nm (t )̂ : Discrete time-varying estimate mass flow rate

INwm : Mass flow rate of a fluid entering a finite volume

OUTwm : Mass flow rate of a fluid entering a finite volume

AFN : Number of input signal data

NMA: Number of data samples used by the moving average filter
-
nP : Predicted estimate error covariance matrix

AFP : Average power of the input signal data set (Adaptive filter)

p( ) : Eigenvalue polynomial equation
R : Measurement noise covariance

ISOt : Collection time according to ISO dynamic gravimetric liquid flow primary

standard

tn: Discrete time

Pistont : Piston stroke time

Totalt : Total collection time
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 neU t : Measurement uncertainty related to time-varying process model algorithm

CVU : Measurement uncertainty attributed to the connecting volume

u : Average fluid velocity at an arbitrary point

u( t ) : Mean velocity of the fluid at an arbitrary region across the connecting volume

Meter
u ( t ) : Mean normal velocity at the flowmeter location

iu (t) : Normal impact velocity of the water jet

nu ( t ) : Mean normal velocity at the nozzle location

CVV : Connecting volume between weighing system and meter under calibration

PTBV : Volumetric flow rate determined by the PTB primary flow standard

TotalV : Total fluid volume

wV (t) : Time-varying collected water volume

nv(t ) : Discrete time-varying measurement noise estimate

nv(t )ˆ : Discrete time estimate measurement noise

( )K nv t : Discrete time measurement noise (Kalman filter)
-
nx̂ : Current mass flow rate estimate vector

nx̂ : Corrected state estimate value

Pistonx : Piston displacement

Pistonx : Piston velocity

ny : Current measurement vector

z: Balance normal displacement
z : Weighing system velocity

z : Weighing system acceleration

Aρ : Air density

wρ : Water density

w_CVρ : Water density in the connecting volume

w_Meterρ : Water density at the flowmeter location
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w_nρ : Water density at the nozzle outlet

A Air temperature

w : Water temperature

d : Damped angular frequency of the balance

LPFω : Low-pass filter cutoff angular frequency

n (t) : Time-varying system´s natural angular frequency

 LPF t : Low pass filter phase shift
2
K : Mass flow rate variance (Kalman filter)

wβ : Volumetric thermal expansion coefficient of water

CVα : Linear expansion coefficient of the connecting pipe

n(t ) : Discrete time-varying eigenvalues

Δ AF : Adaptive filter step size
 : Critical damping fraction

Acronyms

ISO: Internation Standardisation Organisation

PTB: Physikalisch-Technische Bundesanstalt

NIST: National Institute of Standards and Technology

MUC: Meter Under Calibration

CV: Connecting Volume

LPF: Low Pass Filter

EFC: Electromagnetic Force Compensation

LMS: Least-Mean Square algorithm

MA: Moving Average filter

NLMS: Normal Least-Mean Square filter

HF: Hydrodynamic Filter

DWLFS: Dynamic Weighing Liquid Flow Standard
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