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Zusammenfassung

Fehlende Werte (missing data) sind in der psychologischen und empirischen Bildungs-

forschung ein ubiquitäres Problem. Seit Jahrzehnten herrscht eine kontroverse Diskus-

sion um die Frage, wie fehlende Werte in der psychologischen Diagnostik und der Leis-

tungsdiagnostik adäquat zu berücksichtigen sind. Selbst in renommierten internationalen

Forschungsprogrammen und Large Scale Assessments wie z. B. PISA (Program for In-

ternational Student Assessment), TIMSS (Third International Mathematics and Science

Study) oder PIRLS (Progress in International Reading Literacy Study) konnte bislang

keine allgemein akzeptierte Methodologie zur Berücksichtigung fehlender Werte etabliert

werden. Seit Ende der 90iger Jahre des letzten Jahrhunderts sind im Rahmen der Item Re-

sponse Theorie multidimensionale Modelle für fehlende Daten entwickelt worden. Diese

weisen jedoch den Nachteil einer hohen Modellkomplexität auf und beruhen zudem auf

Annahmen, die bisher kaum Gegenstand des wissenschaftlichen Diskurses waren. Betra-

chtet man die Problematik fehlender Werte formal auf der Basis statistischer Theorien,

so ist die korrekte Behandlung fehlender Werte indiziert, um die Effizienz der Param-

eterschätzungen zu steigern sowie Schätzfehler zu vermeiden. Ergebnisse empirischer

Untersuchungen weisen jedoch darauf hin, dass IRT-basierte Item- und Personenparam-

eterschätzer recht robust gegen fehlende Werte sind. Solche Befunde stellen den Nutzen

von komplexen IRT-Modellen für fehlende Werte zunächst in Frage.

Die vorliegende Arbeit besteht aus zwei Teilen. Nach Einführung der Theorie fehlen-

der Daten im Kontext der Testtheorie, wird im ersten Teil der Einfluss fehlender Werte auf

verschiedene Item- und Personenparameterschätzer in Messmodellen für dichtome Items

untersucht. Im zweiten Teil werden bestehende Ansätze zur Behandlung fehlender Werte

in Messmodellen untersucht und weiterentwickelt. Der Fokus dieser Arbeit liegt auf sys-

tematisch fehlenden Item-Antworten (nonignorable missing data). Die verschiedenen

Ansätze werden kritisch verglichen und Empfehlungen für die Anwendung gegeben.

Der Einfluss fehlender Werte auf verschiedene Item- und Personenparameterschätzer

wurde sowohl analytisch untersucht als auch empirisch unter Verwendung von simulierten

Daten demonstriert. Für systematisch fehlende Werte liesen sich deutliche Schätzfehler

für Personen- und Itemparameterschätzungen in IRT-basierten Messmodellen nachweisen.

IV



Diese Ergebnisse unterstreichen den Bedarf geeigneter Methoden zur Berücksichtigung

fehlender Item-Antworten. Es wurde gezeigt, dass einfache ad-hoc Methoden - wie bspw.

die Kodierung fehlender Werte als falsche Antworten oder als teilweise gelöst - theo-

retisch nicht zu rechtfertigen sind und zudem die Testfairness sowie die Validität der

Testergebnisse gefährden. Ein weiterer Ansatz zur Behandlung fehlender Werte stellt das

Nominal Response Modell (NRM) für fehlende Item-Antworten dar, bei dem das Fehlen

einer Item-Antwort als zusätzlich Antwortkategorie betrachtet wird. Die Wahrschein-

lichkeit fehlender Daten wird somit explizit modelliert, wodurch der Fehler in den Item-

und Personenparameterschätzern korrigiert werden soll. Es konnte jedoch analytisch

gezeigt werden, dass das NRM auf starken Annahmen beruht und seine Anwendung somit

auf wenige Anwendungsfälle beschränkt ist.

Multidimensionale IRT-Modelle (MIRT-Modelle) für fehlende Daten gehören zu den

modernen modellbasierten Ansätzen zur Behandlung fehlender Werte. Die theoretische

Fundierung dieser Modelle wurde detailliert dargestellt. Es konnte gezeigt werden, dass

MIRT-Modelle für fehlende Item-Antworten Spezialfälle von selection models und pat-

tern mixture models für systematisch fehlende Werte in Modellen für latente Variablen

sind. Es sind in den vergangenen Jahren verschiedene MIRT-Modelle für fehlende Werte

in der Literatur beschrieben worden, die zumeist als äquivalent betrachtet werden. Zwei

Klassen von Modellen können dabei unterschieden werden: between-item- und within-

item multidimensionale Modelle. In der vorliegenden Arbeit konnte gezeigt werden, dass

diese Modelle nicht per se äquivalent sind. Die Frage der Äquivalenz von Modellen wird

im wissenschaftlichen Diskurs zumeist hinsichtlich des Kriteriums der Modellpassung

diskutiert. In Modellen zur Behandlung fehlender Werte ist dieses Kriterium jedoch nicht

hinreichend. Die Konstruktion der latenten Variable, die von theoretischem Interesse

ist, sowie die Reduktion des Schätzfehlers aufgrund fehlender Werte müssen ebenfalls

berücksichtigt werden, um konkurrierende Modelle für fehlende Werte hinsichtlich ihrer

Äquivalenz beurteilen zu können. Es wird weiterhin ein allgemeines Rahmenkonzept für

MIRT-Modelle vorgeschlagen, in dem verschiedene between- und within-item multidi-

mensionale IRT-Modelle verortet und hinsichtlich der verschiedenen Aspekte der Mod-

elläquivalenz beurteilt werden können. Aufgrund ihrer einfachen Spezifizierbarkeit und

Interpretierbarkeit werden between-item multidimensional IRT Modelle für die Praxis

empfohlen.

Die Modellkomplexität der MIRT-Modelle für fehlende Item-Antworten hängt wesent-

lich von der Zahl der Items und der latenten Variablen im Modell ab. Für die stochastis-

che Modellierung des Fehlens von Werten verdoppelt sich nicht nur die Zahl der mani-
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festen Variablen sondern auch die Anzahl latenter Variablen im Messmodell nimmt zu.

Neben den latenten Dimensionen, die von theoretischem Interesse sind, wird eine la-

tente Antworttendenz (latent response propensity) eingeführt. In den meisten Anwendun-

gen wird angenommen, dass diese latente Antworttendenz eine eindimensionale Vari-

able ist. Dies ist jedoch eine sehr starke und oft ungeprüfte Annahme. Die Ergeb-

nisse dieser Arbeit zeigen, dass MIRT-Modelle den Schätzfehler nicht oder nur unzure-

ichend korrigieren, wenn die Dimensionalität der latenten Antworttendenz nicht kor-

rekt berücksichtigt wird. Leider sind hochdimensionale IRT-Modelle noch immer eine

numerische Herausforderung. Aus diesem Grund werden latenten Regressionsmodelle

und Mehrgruppen-IRT Modelle für fehlende Item-Antworten als sparsamere Alternativen

zu MIRT-Modellen dargestellt. Die Verbindung zwischen den verschiedenen Modellan-

sätzen wird ausführlich erläutert und die jeweils zugrunde liegenden Annahmen werden

diskutiert.

Abschließend konnte gezeigt werden, dass fehlende Werte aufgrund von Auslassun-

gen (omitted items) während des Tests im Vergleich zu fehlenden Item-Antworten am

Ende des Tests (bspw. aufgrund von Zeitmangel; not-reached items) unterschiedliche

stochastische Eigenschaften aufweisen. Diese Unterschiede haben Implikationen hin-

sichtlich der Behandlung der fehlenden Werte. Während Auslassungen durch MIRT-

Modelle adäquat berücksichtigt werden können, sind nicht erreichte Items am Testende

durch Regressionsmodelle oder Mehrgruppen-IRT Modelle zu berücksichtigen. Da fehlen-

de Werte aufgrund ausgelassener und nicht erreichter Items häufig gemeinsam auftreten

wurde ein Modell zur simultanen Modellierung beider Formen fehlender Werte abgeleitet.

In einer abschließenden Diskussion werden die Ergebnisse zusammengefasst, Einschränk-

ungen der verschiedenen Ansätze kritisch diskutiert und Empfehlungen für die Anwen-

dung gegeben. Bestehende Forschungsfragen und bislang ungelöste Probleme werden

diskutiert.
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Abstract

The question of how to handle missing responses in psychological and educational mea-

surement has been repeatedly and controversially debated for decades. Even in highly

respected international studies and large scale assessments, such as the PISA (Program

for International Student Assessment), TIMSS (Third International Mathematics and Sci-

ence Study), and PIRLS (Progress in International Reading Literacy Study) a generally

accepted methodology for missing data is still lacking. Since the late 1990s multidimen-

sional item response theory (MIRT) models for item nonresponses have been developed.

These models become quickly complex in application and rest upon assumptions that are

usually not critically addressed. Although statistical theory of missing data suggests ade-

quate handling of missing responses to avoid inefficient and biased parameter estimation,

there is empirical evidence that IRT-based parameter estimation is fairly robust against

missing responses. That may question the need for sophisticated IRT model-based ap-

proaches. For that reason this thesis consists of two major parts. After the introduction

of the missing data theory in the context of educational and psychological measurement,

the impact of item nonresponses to item- and person parameter estimates are examined

in the first part. In the second part existing approaches to handle missing responses are

scrutinized and further developed. The different methods are critically compared and rec-

ommendations will be given as to which approaches are appropriate. The considerations

are confined to dichotomous items that are still common in many tests and assessments.

The impact of missing responses to item and person parameter estimates was shown

analytically and empirically using simulated data. The results show clearly that ignoring

systematic missing data leads to biased item and person parameter estimates in IRT mod-

els. The findings highlight the need for appropriate methods to handle item nonresponses

properly. It could be shown that simple ad-hoc methods such as incorrect answer substitu-

tion (IAS) or partially correct scoring (PCS) are not justifiable theoretically and threaten

the test fairness and the validity of test results. The nominal response model (NRM) for

item nonresponses is an alternative approach that was examined. In this model item non-

response are regarded as an additional response category. However, the NRM rests upon

strong assumptions and, therefore, its applicability is limited.
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MIRT models for missing responses rank among modern model-based approaches.

The underlying rationale of these models is outlined in detail. It could be shown that

MIRT models for item nonresponses are special cases of selection models and pattern

mixture models for latent trait models with particular assumptions. Different MIRT mod-

els are discussed in the literature and are typically regarded to be equivalent. Two classes

of MIRT models can be distinguished: between- and within-item multidimensional IRT

models. In this thesis it is shown that these models are not equivalent per se. Typically, the

question of model equivalence is considered with respect to the model-fit. In models for

item nonresponses the criterion of model-fit is insufficient to judge equivalence of alterna-

tive models. The equivalence in the construction of the latent variable of interest and the

bias reduction are additional criteria that need to be considered. A common framework of

IRT models for item nonresponses is presented. Different between- and within-item mul-

tidimensional IRT models are rationally developed, taking the issue of model equivalence

into account. Between-item multidimensional models are easy to specify and to interpret

and are recommended as the models of choice.

The disadvantage of MIRT models for item nonresponses is their complexity. Besides

the latent variables of theoretical interest, a latent response propensity is introduced to

model the missing data mechanism. Typically, unidimensionality of the latent response

propensity is assumed in application. This is a strong and often untested assumption. It

could be demonstrated that MIRT models fail to correct for missing data if multidimen-

sionality of the latent response propensity is not taken into account. Hence, the number

of manifest and latent variables can become fairly large in MIRT models for item non-

responses. Unfortunately, high-dimensional MIRT models are still computationally chal-

lenging. For that reason more parsimonious and less demanding latent regression IRT

models and multiple group IRT models are derived as an alternative. The relationship be-

tween these models and the MIRT models is demonstrated. Finally, it is shown that miss-

ing responses due to omitted and not-reached items have different properties suggesting

different treatments of them in IRT measurement models. Whereas omitted responses can

be appropriately handled by MIRT models, not-reached items need to be taken into ac-

count by latent regression models. Since real data sets typically suffer from both, omitted

and not-reached items, a joint model is introduced that account for both types of missing

responses. The thesis ends with a final discussion in which the findings are summarized

and recommendations for real applications are given. Unsolved problems and remaining

research questions are outlined.
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1 Introduction

Missing data are an ubiquitous problem in most empirical sciences. Unfortunately, most

of the commonly used statistical models and their implementations in available software

do not allow for missing data (Schafer & Graham, 2002). Cases with incomplete data

are commonly excluded from the analyses. Although standard methods for data analy-

sis become applicable by deletion of incomplete data records (listwise deletion), valuable

information is wasted and the problem of missing data is even aggravated. Correct statis-

tical inference using listwise deletion rest on strong assumptions. A loss of efficiency and

potentially biased parameter estimates result. Enders stated that researchers slowly adopt

appropriate missing data methods (Enders, 2010) developed in the last decades. Neverthe-

less, missing data methods are becoming increasingly available in modern statistical soft-

ware. Furthermore, many textbooks give non-technical introductions to the issue of miss-

ing data and the approaches to handle them (Enders, 2010; McKnight, McKnight, Sidani,

& Figuerdo, 2007). For that reason missing data are more and more taken into account

in real applications. However, missing item responses in measurement models are much

less addressed and there seems to be considerable disagreement between researchers on

how to handle them. This work is intended to examine widely used methods to handle

missing responses in dichotomous items of measurement models used in psychological

and educational assessments. The different methods are scrutinized with respect to their

appropriateness considering the underlying, and often implicit, assumptions. There is a

major focus on systematic item nonresponses that result in biased item and person pa-

rameter estimates. Such nonignorable missing responses can be handled in advanced

model-based methods, such as multidimensional Item Response Theory (IRT) models for

missing data (Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko, Glas, Bosker, &

Luyten, 2008; Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose, von

Davier, & Xu, 2010). These models are extended and further developed. Unfortunately,

high-dimensional IRT models are still numerically and computationally challenging (Cai,

2010). Therefore, alternative less demanding models are derived. A common framework

for all these models will be introduced and the different modelling approaches will be

critically compared.
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Not only missing responses in itself but also their improper handling threatens relia-

bility of the results as well as test fairness and validity of the test results. This will be

demonstrated by examining traditional methods for item nonresponses critically. The de-

velopment of alternative methods for item nonresponses is vital in order to obtain reliable

results in psychological and educational testings. This is essential if test results serve as

a basis for far-reaching decisions. For example, in international educational effective-

ness studies, such as Program for International Student Assessment (PISA), the Trends

in International Mathematics and Science Studies (TIMSS), the National Assessment of

Educational Progress (NAEP), and other large scale assessments are used to quantify stu-

dents achievement. These studies are typically low-stakes assessments with significant

proportions of missing responses. Appropriate methods are required to ensure compara-

bility of test results and facilitate reliability of results.

Missing item responses in psychological and educational measurement In 1974 Lord

published a paper entitled „Estimation of latent ability and item parameters when there

are omitted responses“. He stated that simply to score omitted items as incorrect answers

is not appropriate. 37 Years later, in April 2011, Culbertson presented a speech at the

Annual Meeting of the National Council on Measurement in Education in New Orleans

entitled „Is It Wrong? Handling Missing Responses in IRT“. In this talk he concluded

„... the most pragmatic choice in high-stakes testing may be to continue to treat omitted

responses as incorrect and to encourage examinees to respond to all items.“ In fact the

question of how to treat missing responses has remained unanswered for more than four

decades. The best way to handle missing data is to prevent them from occurring by appro-

priate study designs, measurement instruments, and instructions (e. g. McKnight et al.,

2007). Especially in low-stakes assessments, however, an excellent study design and even

the best instruction will hardly prevent the occurrence of missing data. In fact, complete

data sets are extremely rare in empirical studies. Missing data occur for a variety of rea-

sons. They are more likely in some research areas than in others. For example, they are

more likely in surveys that focus on private issues such as relationship problems, money

matters or health problems. Questions or items addressing those issues might be regarded

as offensive or improper. Study participants may feel insecure about the data security,

leading to omissions of critical items. Therefore, the willingness to provide information

about such issues is typically limited. Apart from the subject of the study, longitudinal

studies suffer typically much more from missing data than cross-sectional studies due to

attrition or study drop-out (McKnight et al., 2007; Peugh & Enders, Winter 2004). In edu-
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cational testings the willingness to respond to all items of an achievement test is typically

higher in high stakes than in low-stakes assessments. Therefore, the omission rates are

commonly higher in low-stakes assessments. Especially in achievement tests the time to

process the items is usually limited resulting in not-reached items. Apart from unplanned

missing data due to omissions, not-reached items, or not codable responses, there are

planned missing data designs that are applied to lower respondents’ burden and to lower

costs (Graham, Taylor, Olchowski, & Cumsille, 2006; Graham, 2009). In educational

large scale assessments planned missing data are common due to multi-matrix designs,

where only a subset out of hundreds of items is presented to each test taker (Frey, Har-

tig, & Rupp, 2009; Mislevy, Beaton, Kaplan, & Sheehan, 1992; Thomas, Raghunathan,

Schenker, Katzoff, & Johnson, 2006). Almost all educational large scale assessments

such as PISA, TIMSS, and NAEP used multi-matrix designs. However, depending on the

test design and the choice of the model used for data analysis the handling of these kinds

of missing data is not per se trivial (Frey et al., 2009). To make matters worse, missing

responses in single items usually result from planned missing data as well as from omis-

sions and not reaching the end of the test. Hence, different kinds of missing data can occur

simultaneously in a single data set, and perhaps need to be treated differently.

Typology of missing data In general, missing data can be classified in many different

ways. Almost all research on missing data since the late 1970s rests upon the taxonomy

introduced by Rubin (1976). He distinguishes three different missing data mechanisms;

(a) missing completely at random (MCAR), (b) missing at random (MAR), and (c) miss-

ing not at random (NMAR). These kinds of missingness will be introduced in detail in

Chapter 2. In very simple terms, MCAR means that the missingness of variables is inde-

pendent of the variables considered in the study. If the missing data are MAR, missingness

depends exclusively on observable variables. If the missing data are NMAR, missingness

depends on unobservable but important variables of interest in the study. Item nonre-

sponses that are MCAR or MAR are called ignorable, whereas those that are MNAR are

nonignorable. As Schafer and Graham (2002) noted, the term missing data mechanism

refers neither to a process nor to the cause of missingness. Furthermore, ignorability of the

nonresponse mechanism does typically not mean that missing responses can be neglected

in data analyses. In fact most of modern missing data handling methods are appropriate to

account for ignorable instead of nonignorable missing data. Despite the disadvantage of

a somewhat confusing terminology used in Rubin’s framework, its great value has been

undoubtedly proven. A major advantage of his approach is that theory directly implies
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how to handle missing data appropriately. In fact, Rubin introduced not simply a typology

of missing data, but rather he proposed a framework of inference from incomplete data

(Schafer & Graham, 2002).

However, recently McKnight et al. (2007) proposed an alternative classification scheme

that is completely compatible with Rubin’s taxonomy. Referring to Cattell’s data box

(1966), these authors stated that three facets can be considered to describe missing data:

individuals, variables, and occasions. Missing data can occur with respect to each of

these facets. For instance, subgroups of individuals that refuse to participate in a study

or are not available can lead to missing data. This is called unit nonresponse. If par-

ticipants and nonparticipants differ systematically with respect to variables of interest,

unit-nonresponses result in unrepresentative samples, which threatens the generalizabil-

ity of results. If some items are refused to be answered, not-reached or not appropriately

answered (not codeable) the resulting missing data are denoted as item-nonresponses.

Finally, wave-nonresponses can result in longitudinal studies when participants are not

available at each measurement occasion. Many of these studies suffer from drop out of

participants over the course of the study. The differentiation of nonresponses in unit-,

item-, and wave-nonresponses does not contradict the missing data mechanisms intro-

duced by Rubin. In fact, each kind of nonresponses - unit-, item-, and wave-nonresponses

- can be MCAR, MAR, or MNAR.

Methods for missing data In data sets unit-nonresponse, item-, and wave-nonresponses

differ with regard to their appearance. Wave-nonresponses due to drop out over the study

period result in typical monotone missing data pattern with increasing proportions of

nonresponses over time(e. g. Little & Rubin, 2002; McKnight et al., 2007). Item-

nonresponses result in general non-monotone missing data patterns. The problem of unit-

nonresponses can even be present in seemingly complete data sets if study participants

in a survey respond to all items but are not representative with respect to the population

of interest. Due to the peculiarities missing data handling methods for unit-, item-, and

wave-nonresponses differ. Most of the common statistical models and their estimation

algorithms are developed for complete data, which cannot properly account for missing

responses. That is why inefficient missing data handling methods as listwise or pairwise

deletion are still widely used (Allison, 2001; Enders, 2010; Schafer & Graham, 2002).

Apart from traditional methods such as listwise and pairwise deletion, mean-imputation,

etc., modern methods have been developed that can be divided into (a) weighting ap-

proaches, (b) imputation based methods, and (c) model-based approaches (Lüdtke, Rob-
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itzsch, Trautwein, & Köller, 2007). Weighting methods are most appropriate to account

for unit-nonresponses (L. Li, Shen, Li, & Robins, 2011; Little, 1988a). In unrepresenta-

tive samples, cases are weighted in a way that the sampling of a representative sample is

emulated (e. g. inverse probability weighting; IPW). Item- and wave-nonresponses can

be better handled by imputation- and model-based methods. Imputation based methods

rest upon replacing missing data by expected, predicted, or plausible values. The filled-in

data sets are analyzed in a subsequent step by means of standard complete-data methods.

Among different imputation techniques, multiple imputation (MI) has become the method

of choice (Rubin, 1987, 1996; Schafer, 1997). Accordingly, most of the commonly used

software packages in social and behavioural sciences provide MI for continuous and cate-

gorical variables (Enders, 2010). Model-based methods directly account for nonresponses

in the stage of parameter estimation. Hence, a preceding data augmentation is not re-

quired. One of the most popular model-based approaches is Full Information Maximum

Likelihood (FIML) estimation (Arbuckle, 1996; Enders, 2001b), which is conceptually

close to multiple group (MG) approaches for missing data (Muthén, Kaplan, & Hollis,

1987). The Expectation Maximization (EM) algorithm is an alternative methods to obtain

unbiased ML estimates in presence of missing data (Dempster, Laird, & Rubin, 1977;

McLachlan & Krishnan, 2008). However, FIML, EM, MG-models, and MI require that

the missing data mechanism is MCAR or MAR. Only a few approaches exist to tackle the

problem of nonignorable missing data. Heckman (1976, 1979) proposed selection mod-

els (SLM) to handle nonignorable missing data in normally distributed variables. This

approach was extended to regression models with non-normal variables (Dubin & Rivers,

1989). Pattern mixture models (PMM) are an alternative class of models for missing that

are NMAR (Glynn, Laird, & Rubin, 1986; Little, 1993, 2008; Little & Rubin, 2002).

Both SLMs and PMMs are not frequently used (Enders, 2010). Whereas SLMs rely on

very strong distributional assumptions PMMs are not identified without restrictions on

unknown parameters. This might prevent popularity of models for nonignorable missing

data, although the ignorability assumption is hardly tenable in many applications.

Missing data in latent variable models To account for unreliability as well as situa-

tional effects, method effects, and other sources of variances in test data, the use of mea-

surement models is common in psychological and educational measurement (e. g. Bollen,

1989; Brennan, 2006; Eid & Diener, 2006; Embretson & Reise, 2000; Rost, 2004; Steyer,

1989; Steyer, Schmitt, & Eid, 1999; Steyer & Eid, 2001; Steyer, 2001). In measurement

models of Classical Test Theory (CTT) and Item Response Theory (IRT) latent variables
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are introduced. The individual values of these variables represent persons’ individual trait

level, free of measurement error. Latent variable models additionally include parameters

that describe the relationship between latent and manifest variables such as factor load-

ings, measurement intercepts, item difficulties, and item discriminations. In IRT models

such parameters are called item parameters in contrast to person parameters, which are

individual values of the latent variables. In most psychological and educational testings

both item and person parameters are aimed to be inferred from observed data. Unfortu-

nately, sample based estimates of item and person parameters can be seriously biased due

to missing data (e. g. Culbertson, 2011, April; de Ayala, Plake, & Impara, 2001; Glas,

2006; Rose et al., 2010). Given the nonresponse mechanism is MCAR or MAR, FIML

can be used for SEM with latent variables (Arbuckle, 1996; Enders & Bandalos, 2001).

In IRT, joint maximum likelihood (JML) estimation and marginal maximum likelihood

(MML) estimation can also be seen as full information ML estimation techniques, since

each observed response is included. Hence, both estimation techniques are reliable given

the missing data mechanism is ignorable. Sometimes the MAR assumption is only ten-

able if observable covariates are included that are related to missingness but which are

not part of the target model. The inclusion of such auxiliary variables without changing

the meaning of parameters of the target model is not trivial (e. g. Allison, 2003; de la

Torre, 2009; Graham, 2003). Alternatively, data augmentation methods as MI can be

used. With the introduction of multiple imputations by fully conditional specifications

(T. Raghunathan, Lepkowski, Van Hoewyk, & Solenberger, 2001; Van Buuren, 2007),

MI has become an alternative method to handle item-nonresponses in dichotomous and

other categorical items (2010). However, as previously noted, these methods require that

the missing data mechanism is ignorable. Methods and models for nonignorable missing

responses are of great interest in psychological and educational measurement. There is

strong evidence that item nonresponses due to omitted or not-reached items in tests are

related to unobserved person characteristics of test takers. For example, Rose, von Davier

and Xu (2010) showed that in PISA 2006 data the proportion of correctly answered items

is substantially correlated with the proportion of missing responses. Test takers with

lower proportions of correctly answered items had on average more missing responses.

Similarly, Culbertson (2011, April) found in high-stakes educational assessments that the

probability of omissions of items with short and open response formats increases with

decreasing proficiency levels. These findings indicate a relationship between missingness

and test performance, which suggests a stochastic dependency between the occurrence

of item nonresponses and persons’ proficiency. Hence, the missing data depends on un-
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observable variables, which is distinctive for a nonignorable missing data mechanism.

Korobko, Glas, Bosker, and Luyten (2008) found that self selection in examination sub-

jects and, therefore, in achievement tests result in nonignorable missing data as well.

Despite today’s heightened awareness of the problem of missing data and the ongoing

development of elaborate missing data methods, ad hoc methods such as scoring missing

responses as wrong or partially correct are still common in many educational assessments

(Culbertson, 2011, April; Rose et al., 2010). Interestingly, such questionable methods are

typically applied with full knowledge of the potentially detrimental effects due to external

pressures (e. g. Culbertson, 2011, April). This fact underlines the need for appropriate

methods for handling nonignorable item nonresponses in psychological and educational

measurement.

In recent years, IRT models for nonigorable missing data were introduced (Glas &

Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008; Moustaki & Knott, 2000;

O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). Multidimensional IRT (MIRT)

models and nominal response models (NRM;Moustaki & O’Muircheartaigh, 2000) for

item-nonresponses can be distinguished. In 2010 Rose et al. proposed latent regression

models and multiple group IRT models for nonignorable missing data in measurement

models. The same authors found that IRT based item and person parameter estimates

seemed to be quite robust to nonignorable missing responses if they are simply ignored.

This raises the question whether elaborate model-based approaches are really needed. In

fact, it was repeatedly found that incorrect answer substitution (IAS), partially correct

scoring (PCS) and other ad hoc methods results in even more biased parameter estimates

than ignoring missing responses even if they are NMAR.

Outlook This work focuses on nonignorable item nonresponses in IRT measurement

models for dichotomous items. In Chapter 2 Rubin’s typology of missing data will be

introduced and adapted to the context of psychological and educational measurement. In

a first step the different nonresponse mechanisms will be defined with respect to single

items. Since the missing data mechanisms can vary across items in a single test, the same

nonresponses mechanisms will be defined next with respect to the whole response vector

in a second step. In IRT measurement models the manifest items constitute a measure-

ment model of latent variables. What are the implications of the different missing data

mechanisms with respect to true score variables and the latent ability variable constructed

in the model? This will be studied analytically in the last part of Chapter 2.

In Chapter 3, the impact of item nonresponses to sample based item and person pa-
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rameter estimates will be studied. The considerations will be confined to the one- and

two parametric IRT models. Hence, the bias of estimated item difficulties and item dis-

criminations are studied. In IRT different person parameters exist. Here the bias of max-

imum likelihood (ML) estimates, weighted maximum likelihood (WML) estimates, and

expected a posteriori (EAP) estimates are studied. Unfortunately, the bias of IRT based

parameter estimates are difficult to study by analytical means. For that reason, the im-

pact of missing responses will also be studied priorly with respect to sum score and the

proportion correct score. Most tests constructed based on CTT uses the sum score or func-

tions of it as person parameter estimates. Expected values of items are commonly used

as population specific measures of item difficulty. Here the bias of the sum score, the

proportion correct score and the item means are examined. The reason is that the impact

of missing data to CTT based item and person parameter estimates can easily be studied

analytically. The results serve to generate hypotheses about biasedness of IRT based pa-

rameter estimates, which will be verified by means of data simulations. The demand for

appropriate models that account for item-nonresponses will be justified. Finally, it will

be studied how missing data affect measures of accuracy of person parameter estimates,

such as standard errors and the marginal reliability. The results of the study of biasedness

of item and person parameter estimates in Chapter 3 motivate the detailed examination

and the further development of IRT based methods for item nonresponses.

In Chapter 4 a short general introduction to existing missing data methods will be given.

Subsequently, traditional ad hoc methods such as incorrect answer substitution (IAS) and

partially correct scoring (PCS) will be examined with respect to their suitability to handle

missing responses. In the terminology of missing data theory, these methods are im-

putation based approaches. Accordingly, IAS and PCS will be studied with respect to

the theoretical assumptions underlying the respective imputation model. In a further step,

model-based approaches will be studied starting with the nominal response model for non-

ignorable missing data (Moustaki & Knott, 2000; Moustaki & O’Muircheartaigh, 2000).

It will be clarified under which conditions the NRM can be used to account for nonignor-

able missing responses. This work primarily focuses on MIRT models for nonignorable

missing data (Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008; Mous-

taki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). The rational

of these models will be outlined. The essential idea is the introduction of a latent response

propensity as a function of the persons that determine the specific item response propen-

sities. The underlying assumptions of these MIRT models and their implications will be

discussed critically. Based on these considerations, the range of MIRT models will be ex-
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tended to allow for less restrictive and more flexible MIRT models for missing responses.

In the existing literature between- (B-MIRT) and within item-multidimensional IRT (W-

MIRT) models for item nonresponses can be distinguished. The two classes of models

are typically considered to be equivalent (e. g. Holman & Glas, 2005; Rose et al., 2010).

In fact, Rose et al. (2010) could show that in one-parametric models B- and W-MIRT

models are equivalent. As it will be demonstrated here, this is not necessarily true for

two-parameter models. Furthermore, the interpretation of item and person parameters in

W-MIRT models is different compared to B-MIRT models. Here, two different W-MIRT

models will be rationally derived starting with the definition of latent variables in the

model. The implications of the definitions with respect to item parameters will be used

to derive constraints, required to specify the different models in existing software. The

question of which model should be preferred in applications will be discussed. The re-

sulting models are critically compared considering the issue of model equivalence. It will

be shown that equivalent model fit is not sufficient to regard two MIRT models for item

nonresponses as being equivalent. Unfortunately, MIRT models for nonignorable miss-

ing data are very complex. With IRT models including latent regression models (LRM)

and multiple group (MG) IRT models, simpler models have been proposed (Rose et al.,

2010). The relation between these models and the more complex MIRT models will be

explained. Advantages and disadvantages of each model are discussed and a common

framework of IRT model-based approaches to handle nonignorable item-nonresponses is

proposed.

Should omitted and not-reached items be treated differently? This question will be an-

swered in Section 4.5.6 considering the assumption underlying MIRT models for missing

data. A joint model for omitted and not-reached items will be introduced. Finally, in a

general discussion (Chapter 5), the findings of this work will be summarized and recom-

mendations for applied researchers will be given. Unanswered questions are discussed to

facilitate future research in this area.
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2 Theory

In 1976 Rubin provided a first comprehensive typology of missing data based on the so-

called missing data mechanism (Little & Rubin, 2002; Rubin, 1976). As Schafer (2002)

noted this taxonomy is widely used but less widely understood. Several different fac-

tors may contribute to this confusion. Most applied statisticians who deal with the topic

of missing data including Rubin do not clearly distinct between realized data and random

variables. On the one hand these authors emphasize that the term missing data mechanism

refers to the distribution of missingness, i. e. unconditional or conditional probabilities

of missing patterns (e. g. Schafer & Graham, 2002). Hence, the used terminology seems

to imply that Rubins definitions are based on stochastic dependencies between random

variables. However, Rubin (2009) noted: „These definitions [of the missing data mech-

anisms] are not simply jargon for conditional independence.“It is important to note that

Rubin is a Bayesian statistician. Scrutinizing his literature reveals that his definitions are

actually based on posterior distributions of unobserved values given a particular miss-

ing pattern in a concrete sample and given the observed values (Gelman, 2002; Rubin,

2009). This is rarely made explicitly. As common in Bayesian tradition, a distribution of

unknown quantities such as parameters and unobserved realizations of random variables

result from uncertainty given the current state of knowledge. This might explain why

missing data literature of Rubin and his colleagues might be somewhat confusing to non-

Bayesian statisticians and frequentists. To fill the gap Kenward and Molenberghs (1998)

discussed missing data mechanisms in frequentist’s terminology under common likeli-

hood inference. In the remainder of this work, likelihood inference as well as maximum

likelihood estimation theory will be of major importance. In order to yield a stringent

and consistent terminology, Rubin’s classification scheme is therefore adapted following

Kenward and Molenberghs (1998). The missing data mechanisms will be defined based

on stochastic relationships between random variables considered in a particular random

experiment. It is important to note that the definitions of MCAR, MAR and NMAR as in-

troduced in this section are consistent with Rubin’s taxonomy. That is, data of sufficiently

large samples drawn under a specific missing data mechanism as defined below will have

the properties that are implied by Rubin’s definitions.
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In psychological and educational assessments manifest variables often can be classified

into items Yi that constitute the measurement model of a latent variable, and covariates

Z j as background and context variables, which are not part of considered measurement

model. Due to this distinction, five missing data mechanisms can be distinguished instead

of three; including three different MAR conditions. In a first step, the missing data mech-

anisms will be defined with respect to single items Yi and subsequently with respect to

the complete response vector Y. Throughout this work, it is assumed that the covariates

do not suffer from missingness. Hence, in application all values of covariates are fully

observed. Before the typology of nonresponse mechanisms is introduced, the random

variables and the underlying random experiment are introduced formally. In the final sec-

tion of this Chapter, the implications of the different kinds of missing data with respect to

the distribution of latent variables in the measurement model will be examined.

2.1 Classification of missing data

The most simple case of missing data concerns only a single variable Y . There can be

many covariates constituting the multidimensional covariate Z = Z1, . . . ,ZJ. In order

to define the missing data mechanism with respect to Y , a response indicator variable

D needs to be introduced that indicates the observational status of Y . All variables are

random variables on the same probability space (Ω, A, P), with Ω the set of possible

outcomes given by

Ω = ΩZ1 × . . . ×ΩZ j
× . . . ×ΩZJ

×ΩD ×ΩY . (2.1)

A is a σ-algebra with the set of possible events and P is the probability measure on A.

Hence, Y , D, and Z are random variables in the same probability space, so that Y: Ω →
ΩY , D: Ω → ΩD, Z j: Ω → ΩZ j

, and Z: Ω → ΩZ = ΩZ1 × . . . × ΩZJ
. The covariates Z j

and the variable Y can be continuous or categorical variables. D is the response indicator

variable that indicates whether Y is observed or not.

D =


1, if Y is observed

0, if Y is not observed
(2.2)

Hence, the response indicator variable will be D = 1 if the variable Y is observed and

D = 0 if Y is missing. The probability space (Ω, A, P) refers to the following random

experiment: Draw randomly from the multivariate distribution of the random variables Y
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and Z. Register the values of the covariates Z1, . . . ,ZJ. If Y is observable, register the

observed value and assign D = 1. If Y cannot be observed then assign D = 0.

As previously noted the terms missing data mechanism and distribution or probabil-

ity of missingness are used interchangeably in missing data literature. The probability

of missing Y can be expressed by P(D = 0). In turn, the probability of Y being ob-

served is P(D = 1). The typology of missing data introduced here is based on condi-

tional stochastic (in)dependencies between the missing indicator variable D, the vari-

able Y , and the fully observed covariate Z. Hence we can consider the conditional

probability P(D = 1 |Y, Z) that Y will be observed given Y and Z. Since D is binary,

1 − P(D = 1 |Y, Z) = P(D = 0 |Y, Z) is the probability that Y is not observed given Y and

Z. At first sight it seems counterintuitive to talk about the probability of missing Y given

Y . Note, however, that Y and D are random variables with a joint distribution instead of

realized data. Accordingly, it is assumed that Y has a conditional distribution g(Y |D = 0)

even if it cannot be observed. For example, if an item was not answered by a particular

person it has, nevertheless, a conditional probability of being correctly answered given

the person’s proficiency level. Hence, we can consider different conditional distributions

g(Y |D = d, Z = Z). In particular, we can, at least theoretically, compare the conditional

distributions g(Y |D = 0, Z = Z) and g(Y |D = 1, Z = Z) as well as the conditional

regressions E(Y |D = 0, Z) and E(Y |D = 1, Z). This fact will be of crucial interest when

the implications of the different nonresponse mechanisms will be studied with respect to

the latent variables in measurement models (see Section 2.3). So far, it suffices to bear in

mind that Y has a distribution given it will be unobserved and that the probability of Y is

not being observed given Y is well defined. Based on these considerations, the following

missing data mechanisms can be defined.

• The probability of missingness with respect to variable Y is called missing com-

pletely at random (MCAR) if

P(D = 1 |Y, Z) = P(D = 1). (2.3)

That means that the probability of Y being observed is independent from the covari-

ate Z and the considered variable Y .

• The probability of missingness with respect to variable Y is called missing at ran-
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dom (MAR) if the following two conditions are met:

(1.) P(D = 1 |Y) , P(D = 1) (2.4)

(2.) P(D = 1 |Y, Z) = P(D = 1 | Z) (2.5)

Hence, D is stochastically dependent on Y (not MCAR). The probability of ob-

serving Y depends on the fully observable covariate Z. Given Z , however, D is

conditionally stochastically independent of Y .

• The probability of missingness with respect to variable Y is called missing not at

random (MNAR) if

P(D = 1 |Y, Z) , P(D = 1 | Z). (2.6)

Hence, D is not conditionally stochastically independent of Y given the covariate

Z. That means that the probability of observing Y depends on Y itself even when

controlling for Z.

Note that MAR does not mean that the occurrence of missing data is purely at random.

Quite contrary, there are stochastic dependencies between variables considered and miss-

ingness. The term MAR refers to a conditional stochastic independence between variables

and their observational status given observable variables. As outlined in the introduction,

here the traditionally used terminology will be retained to keep in line with existing lit-

erature. Due to the prevalence of Rubin’s terminology, it is to be feared that introducing

an alternative terminology causes even more confusion. So far, the definitions refer to

missingness of a single variable Y . The considered random experiment does not suf-

ficiently reflect the complexity of random experiment that underlies psychological and

educational testing. Additional variables need to be considered. The observational units

in these assessments are real persons who need to be formally considered by introduction

of a person variable. Person characteristics aimed to be measured are conceptualized as

theoretical constructs and are constructed as latent variables in appropriate measurement

models. Such measurement models typically consist of more than one manifest variable.

Hence, the nonresponse mechanisms need not only to be defined with respect to single

items but also with respect to the complete response vector. Accordingly, the response

indicator variable becomes multidimensional. In the following section the missing data

mechanisms are defined such that the complexity of psychological and educational mea-

surement is taken into account.

13



2.2 Missing Data in the Context of Measurement Theory

Although a comprehensive introduction to psychometrics and measurement theory is far

beyond the scope of this work, a few notes on these topics will point to the peculiarities

that need be considered when dealing with missing data in psychological and educational

measurement. For a comprehensive introduction to test theory and measurement see Bors-

boom (2005) , Hopkins (1998), McDonald (1999), Moosbrugger and Kelava (2011), Rost

(2004), Steyer and Eid (2001), and Thissen (2001).

Typically, in the process of measurement symbols are assigned to persons under study

that should represent the particular characteristic of interest. In most applications the

symbols are numerical values whose relationships reflect relationships of the character-

istics being measured. For instance, the intelligence of persons is expressed by their

intelligence quotient, possibly the best known standardized test score. Higher numerical

values should indicate higher levels of a person’s intelligence. Other well-known exam-

ples are tests developed to assess personality traits such as Openness, Conscientiousness,

Extraversion, Agreeableness, and Neuroticism, known as the Big Five (e. g. Costa & Mc-

Crae, 1985, 1987). The resulting test scores are also numbers. Therefore, psychological

and educational measurement comprises the assignment of numbers to observational units

according to some explicit rules1. This procedure is sometimes called scoring. There are

many different approaches to score test takers on the basis of their response behaviour -

sum scores, proportion correct scores, factor scores, etc. The use of a particular scoring

method is typically justified by testing a corresponding measurement model. For exam-

ple, if an IRT model - for example the Rasch model (Lord & Novick, 1968; Rasch, 1960)

- is utilized and maximum likelihood estimates are used as test scores, the fit of the Rasch

model to the observed data is tested. A good fit justifies the use of person parameter

estimates of this model as test scores. No matter which model is chosen in a concrete

application, the information used for scoring is given by persons’ behaviour in response

to a set of stimuli, which constitute the test. In most assessments stimuli are questions,

statements, graphs, or tasks presented alongside with an instruction how to answer these

items. The responses are scored. In the case of items in achievement tests, for example,

the answer to an item can be correct, incorrect, or sometimes partially correct depending

on the response format. The response pattern y = y1, . . . , yI consisting of the observed

item scores yi represents a person’s response behaviour according to the test. In this work

1These numbers can also represent ordered ore unordered categories indicating different types of persons
(e. g. latent class analysis; Rost, 2004) or skill levels (e. g. cognitive diagnostics models; von Davier,
2005; von Davier, DiBello, & Yamamoto, 2008).
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particular stimuli of a test are not considered. For brevity, the term item i denotes the

random variables Yi (see below). Typically a test consists of more than a single item. Ac-

cordingly, if there are I > 1 items the response pattern Y = Y1, . . . ,YI is an I-dimensional

manifest variable. Random variables are defined with respect to particular probability

space representing a concrete random experiment. In fact, most models of measurement

theories such as CTT and IRT are probabilistic models. The term probabilistic refers

at least to two aspects. First, the administration of a psychological or educational test

is conceptualized as a random experiment (e. g. Steyer & Eid, 2001). Second, the test

scores are considered to be fallible measures of latent unobserved variables constructed in

measurement models. The relationships between the latent variables and manifest items

or test scores are considered to be stochastic, which is formalized by the specification of

linear or nonlinear regressions. In the subsequent Section the issue of latent variables in

measurement models will be discussed in more detail.

Random experiment in psychological and educational testings Based on these con-

siderations the random experiment that formally underlies psychological and educational

assessments can be explicitly described considering the issue of potential missing data.

The random experiment is:

(a) Draw randomly a person from the population under study.

(b) Observe the values of all the covariates Z1, . . . ,ZJ.

(c) Administer the test consisting of I test stimuli. If item i is answered by the test taker

observe the respective item score yi and assign Di = 1. If item i is missing assign

Di = 0.

This random experiment is formally represented by the probability space (Ω, A, P) (Steyer,

2002; Steyer & Eid, 2001; Steyer, Nagel, Partchev, & Mayer, in press). Compared to

the random experiment described in the previous section (see Equation 2.1), additional

random variables are involved in educational and psychological measurement. First, the

person variable U:Ω→ ΩU is introduced since test takers are randomly selected. Second,

a test consists usually of many items, each a random variable Yi: Ω → ΩYi
. Accordingly,

the response pattern is the I-dimensional random variable Y: Ω → ΩY. The response

indicator variables are also random variables Di: Ω→ ΩDi
on the same probability space

with ΩDi
= {0, 1} (see Equation 2.2). All response indicators taken together yield the

missing indicator vector D: Ω → ΩD, which is also an I-dimensional random variable.
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Finally, the J covariates Z j: Ω→ ΩZ j
are combined to the multidimensional covariate Z:

Ω → ΩZ. Based on this set of random variables the set of possible outcomes in a single

unit trial is

Ω = ΩU ×ΩZ1 × . . . ×ΩZJ
×ΩD1 × . . . ×ΩDI

×ΩY1 × . . . ×ΩYI
(2.7)

= ΩU ×ΩZ ×ΩD ×ΩY.

In most but not all educational and psychological measurements covariates are present.

Therefore, sometimes a second slightly different random experiment will be considered in

this work as well, which does not include covariates Z1, . . . ,ZJ. This random experiment

can be described as

(a) Draw randomly a person from the population under study.

(c) Administer the test consisting of I test stimuli. If item i is answered by the test taker

observe the respective item score yi and assign Di = 1. If item i is missing assign

Di = 0.

The corresponding set of possible outcomes is

Ω = ΩU ×ΩD1 × . . . ×ΩDI
×ΩY1 × . . . ×ΩYI

(2.8)

= ΩU ×ΩD ×ΩY.

In applications, parameters are aimed to be estimated based on realized data. A data

set with N rows, which refers to the response pattern of the observational units, is the

realization of a sample of size N. Hence, the single unit trail as described above (see

Equation 2.7 and 2.8) needs to be repeated N times.

Taxonomy of missing data in the context of psychological and educational measure-

ment In Section 2.1 the classification of the missing data mechanisms was introduced.

All the definitions used here rest upon the conditional distributions P(D |Y, Z). In edu-

cational and psychological measurement, however, not a single variable Y is considered

but an I-dimensional random variable Y implying that the response indicator variable D

is multivariate as well. It seems straightforward defining the missing data mechanisms

on the basis of the conditional distributions of D given (Y, Z). However, in the case of

multidimensional Y, the case is more complex than this. Consider a very short test con-

sisting of two items Y = (Y1,Y2). Additionally, there is a covariate Z that is stochastically

16



independent of Y1 and Y2. There is no missing data mechanism with respect to Y1, so

that P(D1 = 1) = 1. The probability of missing Y2 depends stochastically on Y1, so that

P(D2 = 1 |Y1) , P(D2 = 1) and P(D2 = 1 |Y) = P(D2 = 1 |Y1). This implies D✚✚⊥ (Y, Z)

and D✚✚⊥Y | Z. Hence, the occurrence of missing data with respect to Y is uncondition-

ally and conditionally stochastically dependent on Y itself. One might be tempted to

conclude that the missing data mechanism is NMAR. However, in this example follows

D2 ⊥ Y2 | (Z,Y1), since item Y1 is never missing. D depends merely on completely observ-

able variables. Hence, the missing data mechanism is MAR. This trivial example reveals

that the definitions of missing data mechanisms are not trivial in the case of multidimen-

sional variables. The approach chosen here is to define the nonresponse mechanisms with

respect to each single item Yi in a first step, and then to derive appropriate definitions for

missingness with respect to Y in a second step.

Returning to the motivating example, the distinctive characteristics of the nonresponse

mechanisms become apparent. Recall that the missingness of item Y2 depends on a fully

observed item Y1 that would never suffer from missing data in application. Apart from

branched testing, such items rarely exist in real psychological and educational testing.

Rubin’s definition does not require that any variables exist that need to be necessarily

observed. The crucial point is that the probability of item nonresponses of a randomly

chosen observational unit depends exclusively on observable variables. If so, the miss-

ing data mechanism is MAR. If the probability of missing responses is independent of

any variable Yi or Z j considered in the random experiment the nonresponse mechanism is

MCAR. Finally, if the probability of missingness depends on unobserved variables con-

sidered in the random experiment, the missing data mechanisms is NMAR. If all items Yi

have a probability to be missing in application, so that P(Di = 1) < 1 (for all i = 1, . . . , I),

then it is also random which items will be observed and which will be missing. For that

reason Rubin partitioned the complete data y into the observed part yobs and the missing

part ymis. Accordingly, here the item vector is partitioned into Y = (Yobs,Ymis). In order to

define the missing data mechanisms with respect to a single item Yi, the (un)conditional

stochastic relationships between item i, the covariate Z, and observable and unobservable

items Yk,i are considered. Let Y−i = (Y1, . . . ,Yi−1,Yi+1, . . . ,YI) be the item vector without

item i that can also be partitioned into Y−i =
(
Y−i

obs
,Y−i

mis

)
. This partition can be different for

every respondent. In fact there are as many partitions of Y−i as possible missing patterns.

For the case of I items 2I−1 missing pattern with respect to Y−i exist. The nonresponse

mechanisms with respect to single items Yi can be defined as:

17



• The missing data mechanism w.r.t. Yi is missing completely at random (MCAR) if

P(Di = 1 |Y, Z) = P(Di = 1). (2.9)

• The missing data mechanism w.r.t. Yi is missing at random (MAR) given (Y, Z), if

P(Di = 1 |Yi) , P(Di = 1), (2.10)

and

P (Di = 1 |Y, Z) = P
(
Di = 1 |Y−i

obs
, Z

)
. (2.11)

• Two special cases can be considered in the context of psychological and educational

measurement satisfying Equation 2.11. The missing data mechanism w.r.t. Yi is

called missing at random given Z, if Equation 2.10 holds and

P (Di = 1 |Y, Z) = P (Di = 1 | Z) . (2.12)

• In contrast, the missing data mechanism w.r.t. Yi is called missing at random given

Y, if Equation 2.10 holds and

P (Di = 1 |Y, Z) = P
(
Di = 1 |Y−i

obs

)
. (2.13)

• The missing data mechanism w.r.t. Yi is called not missing at random (NMAR) or

non-ignorable if

P (Di = 1 |Y, Z) , P
(
Di = 1 |Y−i

obs
, Z

)
. (2.14)

Based on these definitions the nonresponse mechanism of the complete item vector Y can

be defined. It is important to note that the missing data mechanisms can vary across the

items within a single test. That is, nonresponses of some items can be MCAR or MAR

while missing responses to other items can be nonignorable. The following definitions

of the missing data mechanisms with respect to the complete measurement instrument

Y account for potentially different coexisting nonresponse mechanisms with regard to

single item. The definitions are built on the definitions of the missing data mechanism

with respect to Yi. The following missing data mechanisms with respect to Y can be
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defined.

• The missing data mechanism with respect to Y is missing completely at random

(MCAR) if Equation 2.9 holds for all items Yi, implying that

D ⊥ (Y, Z). (2.15)

• The missing data mechanism with respect to Y is missing at random (MAR) given

(Y, Z) if at least one of the following two conditions hold true:

1. ∃ i
(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) = P

(
Di = 1 |Y−i

obs
, Z

))

2. ∃ (i, j) with (i , j)(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) = P

(
Di = 1 |Y−i

obs

))
, and(

P(D j = 1 |Yi) , P(D j = 1) ∧ P
(
D j = 1 |Y, Z

)
= P

(
D j = 1 | Z

))
.

Additionally, it is required that

✓∃ i
(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) , P

(
Di = 1 |Y−i

obs
, Z

))
.

Hence, the probability of missingness of items depends on observable items and the

fully observable covariate Z but not on unobserved items. Hence,

D✚✚⊥ (Y, Z), and (2.16)

D ⊥ Ymis | (Yobs, Z). (2.17)

• The missing data mechanism with respect to Y is missing at random (MAR) given

Z, if two conditions hold:

1. ∃ i (P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) = P (Di = 1 | Z))

2. Additionally, it is required that

✓∃ i (P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) , P (Di = 1 | Z)).

In this case, Equations 2.16 and 2.17 hold true. Hence, this nonresponse mechanism

is a special case of the MAR mechanism given (Y, Z). Additionally, it applies

conditional stochastic independence

D ⊥ Y | Z. (2.18)

• The missing data mechanism with respect to Y is missing at random given (MAR)

Y, if two conditions hold:
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1. ∃ i
(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) = P

(
Di = 1 |Y−i

obs

))

2. Additionally, it is required that

✓∃ i
(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) , P

(
Di = 1 |Y−i

obs

))
.

Again, Equations 2.16 and 2.17 hold true. In fact, this nonresponse mechanism is

the second spacial case of the MAR condition given (Y, Z). Since the probability

of item nonresponses depends only on observable items it applies

D ⊥ Ymis |Yobs. (2.19)

• Finally, the missing data mechanism w.r.t. Y is non-ignorable or not missing at

random (MNAR) if

∃ i
(
P(Di = 1 |Yi) , P(Di = 1) ∧ P (Di = 1 |Y, Z) , P

(
Di = 1 |Y−i

obs
, Z

))
,

implying that

D✚✚⊥Ymis | (Yobs, Z). (2.20)

In the remainder of this work the terms MCAR, MAR, and NMAR will refer to these

definitions of the missing data mechanisms that are defined either with respect to single

items Yi or with respect to the item vector Y. In cases where one or more of the three MAR

conditions - MAR given (Y, Z), Z or Y - are discussed, the nonresponse mechanism will

sometimes simply be called MAR to facilitate the reading. Depending on the specific

context, one of the three MAR conditions will be addressed, otherwise statements will

apply to all three MAR conditions. It is important to note that two MAR conditions

cannot be defined with respect to the random experiment described by Equation 2.8. If

no covariate Z is involved only three missing data mechanism exist with respect to Yi

and the item vector Y. These are (a) MCAR, (b) MCAR given Y, and (c) NMAR. The

definitions of these three nonresponse mechanisms as introduced above hold in this case

as well. Simply the covariate Z needs to be omitted from the equations. Note that these

definitions do not require that all items have the same nonresponse mechanism. If the

missing data mechanism with respect to Y is called nonignorable, that implies that there

is at least one item having a missing data mechanism that is NMAR. The remaining items

can have nonresponse mechanism that are MAR or MCAR. Similarly, given the missing

data mechanism with respect to Y is MAR, some of the items can have a nonresponse
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mechanism that is even MCAR.

Relation to Rubin’s definitions As previously stated Rubin’s approach to handle miss-

ing data is deeply inspired by Bayesian thinking. This is also reflected in his definitions of

nonresponse mechanisms. Here the relation between the previously introduced definitions

used throughout this work and Rubin’s definitions (1976) will be briefly explained. Here

in this work the nonresponse mechanisms have been defined with respect to the single unit

trial. Rubin, however, considers a N× I data matrix Y = y, sometimes called the complete

data matrix. He partitions the data matrix into an observed part yobs and an unobserved

or missing part ymis. Hence y = (yobs, ymis). Table 2.1 shows an example with the sample

size N = 5 and I = 3 dichotomous items Y1, Y2, and Y3. In the general case ii is not distin-

guished between dependent and independent variables or covariates. Hence, Y3 in the data

example (see Table 2.1) is analogous to the fully observed covariate Z used in the defini-

tions here. Rubin defined the missing data mechanisms based on partitions yobs and ymis of

Table 2.1: Example of the Partitions of Complete Data y = (yobs, ymis) and the Corresponding Re-
sponse Indicator Matrix d.

observed unobserved
n y d yobs ymis

1 1 0 1 1 1 1 1 0 1 * * *
2 0 1 1 1 0 1 0 * 1 * 1 *
3 1 0 0 1 0 1 1 * 0 * 0 *
4 0 1 0 0 0 1 * * 0 0 1 *
5 0 1 1 0 1 1 * 1 1 0 * *
* indicates nonexistent elements in the respective partition.

the complete data matrix and the missing pattern D = d using factorization methods that

are close to factorization of joint probability or density functions and likelihood functions

(e. g. Barndorff-Nielsen, 1976; Cox & Wermuth, 1999; Cramér, 1949). Unfortunately, in

most missing data literature it is not clearly distinguished between data and random vari-

ables. Often it is written that missingness depends on observed or unobserved data. In turn

unobserved data are often said to be conditionally independent of missingness given the

observed data, or the distribution of missing data is discussed. This may be partly due to

the fact that the terms distribution and posterior distribution are often used synonymously.

However, from a frequentist?s perspective, the terms probability and density function are

meaningful with respect to random variables but not to data. However, this work is not

intended to criticize or to correct commonly used terminology. This section only aims

to connect the previously introduced definitions to Rubin’s framework. Rubin assumed a
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joint probability or density function g(Y = y, D = d) of the response indicator matrix and

the complete data matrix that can be written as g(Yobs = yobs,Ymis = ymis, D = d). The

joint probability can be factored into

g(Y = y, D = d) = g(Yobs = yobs,Ymis = ymis, D = d) (2.21)

= g(D = d |Yobs = yobs,Ymis = ymis)g(Yobs = yobs,Ymis = ymis).

Typically, two parameter vectors ι and φ are introduced. ι is the vector of parameters

referring to the target model of substantial interest. φ is a parameter vector indexing the

missing data model. For example, if D could be appropriately modelled by an I-variate

logistic regression P(D = d |Y), φ would be the vector of logistic regression coefficients

and intercepts. Including these parameterizations, Equation 2.21 can be written as

g(Y = y, D = d; ι,φ) = g(Yobs = yobs,Ymis = ymis, D = d; ι,φ) (2.22)

= g(D = d |Yobs = yobs,Ymis = ymis;φ)g(Yobs = yobs,Ymis = ymis; ι).

(2.23)

Given the missing data mechanism is MCAR the probability of a missing pattern equal to

that observed in the sample is independent of any random variable in the model. Hence,

Rubin defined the missing data mechanism to be MCAR if

g(Y = y, D = d; ι,φ) = g(Yobs = yobs,Ymis = ymis, D = d; ι,φ) (2.24)

= g(D = d;φ)g(Yobs = yobs,Ymis = ymis; ι).

In this work the missing data mechanisms were defined with regard to the single unit

trial. It can be shown that the resulting data matrices resulting from N repetition of the

single unit trial will have the properties described by Rubin if N → ∞. If there are N

independent single unit trials, Y and D become (N × I)-dimensional random variables

with a joint distribution g(Y, D). Under an explicit joint model of Y and D indexed by ι

and φ the joint probability is

g(Y, D; ι,φ) =
N∏

n=1

g(Yn, Dn; ι,φ) (2.25)

=

N∏

n=1

g(Yn;obs,Yn;mis, Dn; ι,φ).
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If the missing data mechanism w.r.t. Y is MCAR as defined previously (see Equation

2.15) it follows

g(Y, D; ι,φ) =
N∏

n=1

g(Dn;φ)g(Yn;obs,Yn;mis; ι). (2.26)

=

N∏

n=1

g(Dn;φ)

︸         ︷︷         ︸
g(D;φ)

N∏

n=1

g(Yn;obs,Yn;mis; ι)

︸                     ︷︷                     ︸
g(Yobs,Ymis,ι)

.

Following Rubin the probability of each event Y = y and D = d can be written as shown

in Equation 2.24.

Similarly, Rubin defined the nonresponse mechanism to be MAR if

g(Y = y, D = d; ι,φ) = g(Yobs = yobs,Ymis = ymis, D = d; ι,φ) (2.27)

= g(D = d |Yobs = yobs;φ)g(Yobs = yobs,Ymis = ymis; ι).

In this work, three different MAR conditions are distinguished due to the distinction be-

tween manifest variables in the measurement model and covariates. However, one can

directly compare the definition of the nonresponse mechanism with respect to Y based

on the single unit trial without covariates (see Equation 2.8). In this case, the missing

data mechanism with respect to Y was defined to be MAR if D ⊥ Ymis |Yobs holds in

the single unit trial. Again, in a sample of N single unit trials Y and D become (N × I)

dimensional random matrices with a joint distribution. Analogous to Equation 2.25 the

joint distribution under a model (ι,φ) is

g(Y, D; ι,φ) =
N∏

n=1

g(Dn |Yn;obs;φ)g(Yn;obs,Yn;mis; ι). (2.28)

=

N∏

n=1

g(Dn |Yn;obs;φ)

︸                   ︷︷                   ︸
g(D |Yobs;φ)

N∏

n=1

g(Yn;obs,Yn;mis; ι)

︸                     ︷︷                     ︸
g(Yobs,Ymis,ι)

.

Hence, the probability of each event Y = y and D = d under the defined missing data

mechanisms can be written according to Equation 2.27.

Finally, the missing data mechanism with respect to Y was defined to be nonignorable

based on the single unit trial if D✚✚⊥Ymis |Yobs (cf. Equation 2.20). The joint probability of
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(N × I) dimensional random matrices Y and D is then

g(Y, D; ι,φ) =
N∏

n=1

g(Dn |Yn;obs,Yn;mis;φ)g(Yn;obs,Yn;mis; ι). (2.29)

=

N∏

n=1

g(Dn |Yn;obs,Yn;mis;φ)

︸                            ︷︷                            ︸
g(D |Yobs,Ymis;φ)

N∏

n=1

g(Yn;obs,Yn;mis; ι)

︸                     ︷︷                     ︸
g(Yobs,Ymis,ι)

.

Therefore, the probability of each event Y = y and D = d as given by Equation 2.23

cannot be further simplified. If the missing data mechanism is MCAR or MAR, miss-

ingness depends only on observable variables. However, if the nonresponse mechanism

is NMAR the probability of the occurence of missing data also depends on unobserved

variables. The term ignorable and nonignorable missing data are also commonly used.

These statements are strictly speaking only meaningful with respect to a joint model of

Y and D indexed by ι and φ. The nonresponse mechanism is said to be ignorable if the

nonresponse mechanism is MAR or MCAR, and the joint parameter space Ω(ι,φ) of ι and

φ can be written as a cartesian product Ωι × Ωφ (Little & Rubin, 2002; Rubin, 1976).

If the missing data mechanism is NMAR and/or the parameter space is restricted so that

Ω(ι,φ) , Ωι ×Ωφ, the nonresponse mechanism is called nonignorable.

Informative and noninformative missingness Alternatively, the terms informative and

noninformative drop out or missingness are commonly used to indicate ignorable and non-

rignorable missing data mechanisms, respectively. In fact these terms may better reflect

the problem of missing data. If the nonresponse mechanism is ignorable, the missing data

are noninformative. Hence, missingness itself does not provide additional information

with respect to estimable parameters of interest. In other words, over and above the ob-

served data yobs, the missing pattern d is not informativ with respect to ι. In contrast, if

the missing data mechanism is nonignorable, missing data are informative. In this case d

contains information about unknown parameters in ι. Simply speaking the observed data

are non-representative. Inference exclusively resting upon yobs is then potentially biased,

since the sampling distribution of estimates ι̂ of ι differs even if N → ∞.

Multiple imputation (MI) is particularly suited to illustrate the difference between ig-

norable (noniformative) and nonrignorable (informative) missingness. Multiple imputa-

tion has become a widely used method to handle missing data occurring under an ignor-

able nonresponse mechanism (Enders, 2010; Graham, 2009; Little, 1988a; Rubin, 1987;

Schafer, 1997; Schafer & Graham, 2002). MI is also valuable for a better understand-
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ing of the missing data terminology used in Rubin’s framework, since it relies heavily on

Bayesian statistics. MI is a multi-step data augmentation method. In the imputation phase

missing data ymis are replaced by plausible values (PV) estimated from the observed data

yobs. In order to account sufficiently for variance due to imputations, multiple, typically

m = 5 , data sets are generated. In the analysis phase, each of the m filled-in data sets

can be analyzed with statistical standard methods for complete data. In the final pooling

phase the results of the m analyses are combined to yield single point estimates and as-

sociated statistics (e. g. standard errors). The joint distribution g(Y = y, D = d; ι,φ)

can be factored in various ways. Alternative to Equation 2.21 the joint distribution can be

factorized as follows:

g(Y = y, D = d; ι,φ) = g(Ymis = ymis |Yobs = yobs, D = d; ιmis)g(Yobs = yobs, D = d;φ)

= g(Ymis = ymis |Yobs = yobs, D = d; ιmis)g(D = d |Yobs = yobs;φ)

·g(Yobs = yobs; ιobs) (2.30)

The first factor g(Ymis = ymis |Yobs = yobs, D = d; ιmis) refers to the predictive distribution

of the missing data conditional on all observed data yobs and d (Little & Rubin, 2002;

Rubin, 1987; Schafer, 1997). Under MI, random draws from the predictive distribution

are drawn to fill in the incomplete observed data. The vector ιmis consists of the param-

eters of the imputation model, which could be regression coefficients, residual variances,

and covariances. ιobs is a parameter vector that describes the distribution of the observ-

ables, whereas φ refers to the missing data model conditional on observed values yobs.

Recall that in Bayesian statistics there is no difference between unknown model parame-

ters aimed to be estimated and missing data ymis (Gelman, Carlin, Stern, & Rubin, 2003).

These unobserved quantities have a distribution due to uncertainty about their true values.

In this work the missing data mechanism was defined by conditional stochastic indepen-

dence D ⊥ Ymis |Yobs (see Equation 2.18). This condition also holds true if the missing

data mechanism is MCAR. Hence, if the missing data mechanism is ignorable Equation

2.30 can be simplified and rearranged yielding

g(Y = y, D = d; ι,φ) = g(Ymis = ymis |Yobs = yobs; ιmis)g(Yobs = yobs; ιobs)

·g(D = d |Yobs = yobs;φ)

= g(Yobs = yobs,Ymis = ymis; ι)g(D = d |Yobs = yobs;φ)

(2.31)
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Two results are important to note: (a) If the nonresponse mechanism is ignorable then

missingness stochastically depends only on observable variables Yobs, and (b) the same

applies to the the predictive distribution of unobservable variables Ymis, which also de-

pends on Yobs exclusively. Hence, missingness indicated by D = d can be ignored, since

it is not informative with respect to unobserved variables over and above observable vari-

ables Yobs. A correctly specified imputation model-based on Yobs ensures unbiased and

consistent parameter estimates and valid sample based inference. In contrast, if the miss-

ing data mechanism is NMAR, different missing patterns D = d are associated with

different distributions of Ymis even conditional on observable variables Yobs. Hence, D

cannot be ignored in the imputation model since it is informative with respect to the pre-

dictive distribution of Ymis. Unfortunately, the parameters ιmis of the imputation model

are difficult to estimate without strong assumptions in the case of nonignorable missing

data. That is why the application of MI is typically limited to ignorable missing data.

Starting from these considerations, the implications of the different missing data mech-

anisms with respect to latent variables indicated by Y will be examined analytically in the

following section. The idea is quite simple. If the distribution of Y depends on D the

distribution of the latent variables indicated by Y potentially depends on D as well.

2.3 Implications With Respect to Underlying Variables

Before the implications of the different missing data mechanisms with respect to latent

variables will be discussed, some general notes are made with respect to commonly used

terms in measurement theory such as constructs, latent variables and scores. A compre-

hensive introduction to measurement theory is far beyond the scope of this work but can

be found in volumes such as Lord & Novick (1968), Rost (2004), Steyer (1989, 2001)

and Steyer & Eid (2001). This introduction merely aims to clarify how relevant terms are

used here in this work.

The term test scores, or simply scores, has already been clarified in section 2.2. They

result from scoring or scaling procedures. Independent of the particular used scoring

method, successful measurement means that the relations between scores reflect rela-

tions between observational units regarding the characteristics of interest. In most psy-

chological and educational assessments scaling procedures are model-based. That is, a

measurement model is proposed that models explicate the relation between latent and

observable variables (Steyer & Eid, 2001). The validity of measurement models has typ-

ically testable implications. The model fit assessed by many different indices and test
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statistics can be used to justify a particular scoring method empirically. Most probabilis-

tic measurement models used in educational and psychological assessments are models

of Classical Test Theory (Borsboom & Mellenbergh, 2002) (Skrondal & Rabe-Hesketh,

2004; Steyer & Eid, 2001; Steyer, 2002) or Item Response Theory (de Ayala, 2009; Em-

bretson & Reise, 2000; Hambleton, Swaminathan, & Rogers, 1991; Skrondal & Rabe-

Hesketh, 2004; Steyer & Eid, 2001). Within each of both theories a considerable number

of models have been developed. For example, in CTT the parallel test model, the model

of τ-equivalent variables, and the model of τ-congeneric variables are well known (e.

g. Steyer & Eid, 2001). τ refers to the true score variables or simply true scores de-

fined as the expected scores given the person. A more formal definition will be given

below. There is a growing number of IRT models that can be classified in different ways

(D. M. Thissen & Steinberg, 1986). It is far beyond the scope of this work to provide a

comprehensive overview of these models. However, uni- and multidimensional one-, two,

and three-parametric logistic or probit models are the most frequently used IRT models

for dichotomous items. Despite notable differences between the CTT and IRT, both have a

lot in common. Measurement models of both theoretical approaches are stochastic mod-

els that define manifest variables to be dependent variables in multivariate regressions

on latent variables that are not directly observable. In CTT these regressions are linear

whereas non-linear regressions are used in IRT.

Although latent variable models are common in psychology and educational research

and the term latent variable is routinely used, there are considerably different views about

what a latent variable is (e. g. Bollen, 2002; Borsboom, Mellenbergh, & Van Heerden,

2003; Borsboom, 2008; J. R. Edwards & Bagozzi, 2000). There is a common belief that

latent variables exist without a model and only need to be measured. As Steyer empha-

sized (Steyer & Eid, 2001), latent variables in measurement models are not a priori exis-

tent but are constructed in this particular measurement model. They are mathematically

well-defined with respect to a particular considered random experiment. It is important

to distinguish between constructs of theoretical interest and latent variables. As Bors-

boom and Mellenbergh (2002) complained, many authors simply equate latent variables

to the construct of interest. However, this is not only incorrect but inconsistent with some

definitions of CTT and IRT (Lord & Novick, 1968). For that reason Borsboom and Mel-

lenbergh distinguish between latent variable scores and construct scores to highlight that

the values of a latent variable in a specific measurement model are not per se equal to the

value on the construct of interest. This is intuitive considering the fact that, theoretically,

an infinite number of models exist to explain relations between variables. In each of these
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models the individual values of latent variables might differ whereas the construct scores

do not. Each model might assign different scores to the same observational unit due to

its specific response behaviour. Furthermore, latent variables in measurement models of

CTT and IRT are syntactic concepts (Borsboom & Mellenbergh, 2002). That is, they are

well-defined in mathematical terms. In contrast, construct scores refer to a semantic con-

cept which originates from substantial theories. The relation between construct scores and

latent variables scores is an issue of validity. As Borsboom and Mellenbergh stated, the

definition of constructs or construct scores is „generally difficult“. Consequently, the con-

cept of validity and the process of test validation is controversially discussed (Borsboom,

Mellenbergh, & Van Heerden, 2004; Borsboom, 2006). Nevertheless, in this work it is

unavoidable to address the issue of test validity. It will be repeatedly demonstrated that

item nonresponses and their treatment can affect the construction of latent variables in

measurement models such that the substantial interpretation of the latent variable can

change. This fact justifies the statement that validity is threatened by missing data and

their treatment even if a completely satisfying definition of validity is still lacking. Con-

struct scores will not be further considered here since, to the best knowledge of the author,

they cannot sufficiently be captured by mathematical terms yet. In order to study and to

illustrate effects of missing data and their handling, fictional and simulated data examples

will be used. The terms latent ability, latent proficiency, or latent trait refers to the latent

variable ξ constructed in a measurement model and not to constructs or construct scores.

In the remainder of this section the implications of the different nonresponse mecha-

nisms with respect to the distribution of latent variables underlying observed and missing

data will be studied. In the previous section the typology of missing data was introduced.

The nonresponse mechanisms were exclusively defined by the conditional and uncondi-

tional stochastic dependencies between manifest variables Yi, Di, Y, D and the covariate

Z. Latent variables underlying Y were not included in the definitions of missing data

mechanisms. The reason is that latent variables are not a priori existent but constructed

based on Y in a concrete random experiment. Hence, latent variables are always missing.

Accordingly, distributional parameters and individual values of latent variables needs to

be inferred from the data y. In IRT the values of latent variables are person parameters

aimed to be estimated with respect to each test taker. Hence, the values of latent variables

or at least distributional parameters of latent variables are part of the parameter vector ι

and are, therefore, not used her for defining nonresponse mechanisms. Instead, the im-

plications of the different missing data mechanisms with respect to distributions of latent

variables are examined. The aim is to demonstrate analytically why item and person pa-
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rameter estimates are potentially biased when the missing data are NMAR. At first, the

true scores τi are considered followed by the latent variable denoted by ξ.

Implications with respect to true score variables

In CTT the manifest variables Yi can be decomposed in a true score variable τi and the

residual εi. Although this decomposition is distinctive of CTT it does not contradict with

IRT. Regardless of whether the Yi is continuous or discrete it can be written as

Yi = τi + εi (2.32)

= E(Yi |U) + εi. (2.33)

The true score τi is defined as the regression E(Yi |U) of the manifest variable on the unit

variable U. εi is the residual of the regression E(Yi |U), defined as the difference Yi − τi.

The true score variable τi is a function fi(U) of the unit variable U. The conditional

expected values E(Yi |U = u) = τi(u) are the individual expected scores of a person u

with respect to test/item Yi. In the case of single items Yi the true score will also be

called the expected item score. τi is well defined even if the item or the test was never

presented. Hence, the conditional distribution of g(Yi |Di = 0) with the expected value

E(Yi |Di = 0) can be considered without theoretical inconsistencies. Furthermore, the

regression E(Yi |Di,Y
−i, Z) of test/items i on the response indicator and other test/items

and the covariate can be considered. Inserting the right-hand side of Equation 2.32 into

this regression yields

E(Yi |Di,Y
−i, Z) = E(τi + εi |Di,Y

−i, Z) (2.34)

= E(τi |Di,Y
−i, Z) + E(εi |Di,Y

−i, Z). (2.35)

When assuming regressive independence for the residual term, i.e, εi ⊢ (Di,Y
(−i), Z) it

follows that

E(Yi |Di,Y
−i, Z) = E(τi |Di,Y

−i, Z). (2.36)

Thus, the expected score on item Yi given the response indicator variable and all other

variables is equal to the expectation of the true score variable τi given these variables.

Implications of MCAR with respect to true scores Using the definition of MCAR

with respect to Yi, due to symmetry properties, stochastic independence P(Di = 1 |Y, Z) =
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P(Di) (see Equation 2.9) implies:

(a) P(Di = 1 |Yi) = P(Di = 1) (2.37)

(b) g(Yi |Di = di) = g(Yi) (2.38)

(c) ∀ (y−i, z) ∈ ΩZ ×ΩY−i g(Yi |Di = 1,Y−i = y−i, Z = z) = g(Yi |Y−i = y−i, Z = z)

(2.39)

Note that the definition of MCAR has no implications with respect to stochastic depen-

dencies between items Yi, the remaining items Y−i and the covariate Z. Of course, the

distribution of math items Yi, for example, can depend on background variables such as

socioeconomic status or other items in the test. Such relationships remain unaffected by

any missing data mechanism. However, under MCAR missingness of Yi is stochastically

independent of all considered variables. Therefore, responses to item Yi depend not on the

probability to respond to this item. Stochastic independence implies regressive indepen-

dence. In combinations with the assumptions of regressive independence of the residual

εi MCAR implies

E(τi |Di,Y
−i, Z) = E(τi | Z,Y−i) (2.40)

E(τi |Di) = E(τi). (2.41)

Equations 2.37 and 2.41 show that Yi is identically distributed regardless of the obser-

vational status. In application that means that the observed values of the item vector

y1i, . . . , yNi are a representative with respect to the unconditional distribution of Yi. Sim-

ilarly, conditional on (Y−i, Z) the observations y1i, . . . , yNi are representative with respect

to the conditional distribution g(Yi |Y−i = y−i, Z = z). Hence, the observed data yi;obs on

item i available for analyses are reduced by item non-responses but representative in all

subgroups and the complete sample. Equation 2.41 shows that the performance on item Yi

is on average equivalent for test takers who answer the items and those who have missing

responses. There is no systematic dropout with respect to the true scores. In the case of

dichotomous items this means that persons with higher or lower probabilities of a correct

answer are not more or less likely to not respond to item Yi.

Implications of MAR w. r. t True Scores If the missing data mechanism w.r.t. to item

Yi is MAR, the probability of item nonresponse to item i is stochastically dependent on

observed variables Z and Yobs (see Equations 2.11 - 2.13). A defining characteristic that
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distinguishes MAR w.r.t. Yi from MCAR is unconditional stochastic dependence between

the response indicator Di and Yi. Hence

P(Di = 1 |Yi) , P(Di = 1) ⇒ g(Yi |Di = 1) , g(Yi). (2.42)

In contrast to the case of MCAR, the distribution of the manifest test variable Yi is differ-

ent depending on the status of missingness. Hence, in application, all realizations of Yi

originate from the distribution g(Yi |Di = 1) that is different from the unconditional dis-

tribution g(Yi). The implications of Equation 2.42 with respect to the true score variables

depends on the distribution of Yi and the residual εi. Let Yi be a continuous variable with

εi normally distributed N[0,Var(εi)]. If independence εi ⊥ Di hold, then

(a) g(Yi |Di = 1) , g(Yi)⇒ g(τi |Di = 1) , g(τi) (2.43)

(b) Var(Yi |Di = 1) , Var(Yi)⇒ Var(τi |Di = 1) , Var(τi) (2.44)

(c) E(Yi |Di = 1) , E(Yi)⇒ E(τi |Di = 1) , E(τi) (2.45)

This work focuses primarily on dichotomous variables Yi which follow a Bernoulli dis-

tribution, with E(Yi) = P(Yi = 1) and Var(Yi) = P(Yi = 1)[1 − P(Yi = 1)]. Hence, the

distribution of the test variable is sufficiently described by the probability P(Yi = 1). The

expected value of Yi is the unconditional probability of solving item Yi that can be written

as

P(Yi = 1) = E[P(Yi = 1 |U)] (2.46)

= E(τi).

Additionally, for dichotomous Yi the residual variance is

Var(εi) = E[Var(εi |U)] (2.47)

= E[Var(Y |U)]

= E[τi(1 − τi)].

Thus, the distribution of dichotomous items Yi depends exclusively on the distribution

of the true score variables. Consequently, given the missing data mechanism w.r.t. Yi

is MAR, Equation 2.10 implies εi✚✚⊥Di and that Equations 2.43 - 2.45 hold true without

further assumptions.

Three different MAR definitions have been introduced here. Generally, MAR with
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respect to Yi has been defined as a conditional stochastic independence of response in-

dicators Di of
(
Yi,Y

−i

mis

)
given observable variables

(
Z,Y−i

obs

)
. Equations 2.10 and 2.11

implies ∀ (y−i

obs
, z) ∈ ΩY−i

obs

×ΩZ

g(Yi |Di = 1,Y−i

obs
= y−i

obs
, Z = z) = g(Yi |Y−i

obs
= y−i

obs
, Z = z) (2.48)

E(τi |Di,Y
−i

obs
, Z) = E

(
τi |Y−i

obs
, Z

)
(2.49)

There are two ignorable nonresponse mechanisms with respect to Yi that are special cases

of the MAR condition defined by Equations 2.10 and 2.11. If the missing data mecha-

nisms with respect to Yi is MAR given Z, then Equation 2.12 implies ∀ z ∈ ΩZ

g(Yi |Di = 1, Z = z) = g(Yi | Z = z) (2.50)

E(τi |Di, Z) = E(τi | Z). (2.51)

Equivalently, if the nonresponse mechanism with respect to Yi is MAR given Y as defined

above, then Equation 2.13 implies ∀ y−i

obs
∈ ΩY−i

obs

g(Yi |Di = 1,Y−i

obs
= y−i

obs
) = g(Yi |Y−i

obs
= y−i

obs
) (2.52)

E(τi |Di,Y
−i

obs
) = E(τi |Y−i

obs
) (2.53)

Thus, the distinctive feature of MAR is that the distribution of the manifest variables

Yi does not depend on the status of missingness given other observable test variables

Y−i

obs
and/or observable covariates represented by Z. Hence, within each subpopulation

represented by the values (Y−i

obs
, Z) = (y−i

obs
, z) the occurence of missing data with respect

to Yi is MCAR. As Equation 2.49 reveals, for each value (Y−i

obs
, Z) = (y−i

obs
, z) the true

scores do on average not differ between randomly drawn test takers who answer item i

and those that produce an item nonresponse. The same holds true for each value Z = z

if the missing data mechanism with respect to Yi is MAR given Z (see Equation 2.51).

Equivalently, for each value Y−i

obs
= y−i

obs
the true scores do on average not differ depending

on responding to item i or not.

Implications of NMAR w. r. t True Scores If the missing data mechanism is NMAR

missingness is called informative. In fact it can be shown that not only the distribution

of Yi varies depending on the observational status of item i but the underlying true score

as well. From Equation 2.14 it follows that the probability of non-response with respect

to item Yi depends stochastically on Yi even if all observable variables (Y−i

obs
, Z) are held
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constant statistically. Possibly, there are further unobserved variables such as motivation

to take the test that are related to the performance on the test as well as to the non-response

process of Yi. Given all these variables , Di and Yi would be conditionally stochastically

independent. However, if these variables are not observable in application, the missing

data mechanism is NMAR. In this case, Equation 2.14 implies ∃(y−i

obs
, z) ∈ ΩY−i

obs

×ΩZ

g(Yi |Di = 1,Y−i

obs
= y−i

obs
, Z = z) , g(Yi |Di = 0,Y−i

obs
= y−i

obs
, Z = z). (2.54)

Hence, in application the observed responses or values yi of Yi originate from a distri-

bution that is different from the conditional distribution of the unobservable Yi. Con-

sequently, sample based inference is potentially biased due to data that are not repre-

sentative with respect to the distributions of the manifest variables Yi. Consequences of

unconditional dependence Yi✚✚⊥Di with respect to the true score distribution of τi were

already examined in the previous section (see Equations 2.42 - 2.47). In the case of

a nonignorable missing data mechanism, even in subpopulations given by the values

(Y−i

obs
, Z) = (y−i

obs
, z), the true score distributions will likely differ depending on the ob-

servational status. Let Yi be a continuous normally distributed random variable with

N[0,Var(Yi |Y−i

obs
= y−i

obs
, Z = z)]. If conditional independence εi ⊥ Di | (Y−i

obs
, Z) holds

true then Equation 2.54 implies ∃(y−i

obs
, z) ∈ ΩY−i

obs

×ΩZ

g(τi |Di = 1,Y−i

obs
= y−i

obs
, Z = z) , g(τi |Di = 0,Y−i

obs
= y−i

obs
, Z = z) (2.55)

In the case of binary manifest variables Yi from Equation 2.54, it follows immediately that

Equation 2.55 holds as well, without additional assumptions with respect to εi. Hence,

even conditional on observable variables, test takers that tend to respond to item i differ

with respect to their true scores compared to those who tend to omit item i. When looking

at real data, typically, persons with on average lower proportions of correct answers and,

therefore lower true scores tend to omit items. As a consequence, in all subpopulations

formed by the values of (Y−i

obs
, Z) the observed responses to item i do not reflect the true

average performance on this item or sub-test. Inference with respect to Yi will not hold

unconditionally and conditionally on (Y−i

obs
, Z). The information in Di needs to be taken

into account to yield unbiased and consistent parameter estimates and valid sample based

inference.

Implications with respect to constructed latent variables Let ξ = (ξ1, . . . , ξM) be a

M-multidimensional latent variable constructed in the measurement model constituted by
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the items Y1, . . . ,YI . In CTT and IRT, the variable ξ is defined as a function ξ = f (U)

of the unit variable U. It is important to note that the true score variables are also latent

variables in the sense that they are unobservable. In fact, as Borsboom and Mellenbergh

(2002) stated, the latent variables ξ1, . . . , ξM and the true scores are strongly related and in

some measurement models they are equal. For example, in the case of a unidimensional

linear SEM for parallel tests with factor loading equal to one and measurement intercepts

equal to zero, it follows for all true score variables that τi = ξ. However, in IRT models

the conditional category probabilities P(Y = y | ξ) are non-linear functions of latent vari-

ables ξ1, . . . , ξM and not the true scores2. Generally, true scores are functions τi = f (ξ)

of the latent variable. In the most general case f () is any parametric or non-parametric

function. In models of CTT and parametric IRT models, f () is a parametric function

whose parameters (item parameters) are aimed to be estimated and tested in application.

In SEM these are the factor loadings and measurement intercepts, whereas in IRT mod-

els item difficulties or thresholds and the item discriminations are of interest. Since the

true scores are functions of the latent variables, it seems straight forward to conclude that

distributional differences of true scores between two or more conditions imply different

distributions of latent variables. However, this conclusion is only valid if the function

f () is invariant across these compared conditions. In other words there is measurement

invariance (Mellenbergh, 1989; Meredith, 1993; Lubke & Muthén, 2004) assumed with

respect to f (). Meredith (1993) defined measurement invariance on the basis of the con-

ditional distribution of the observed variables Yi given particular covariates. Therefore, Yi

is measurement invariant with respect to Z given that

Yi ⊥ Z | ξ. (2.56)

This means that the observed score distribution depends exclusively on the distribution of

the latent variable ξ. Conditional on ξ, Yi is not stochastically dependent on the covari-

ate Z. Measurement invariance is always defined with respect to particular conditioning

variables. Therefore it is possible that Yi is measurement invariant with respect to Z but

measurement invariance might not hold with respect to other covariates, for example W.

In the context of missing data methods, the response indicator variables Di can be con-

sidered covariates too. Returning to the example of a SEM for τ-congeneric variables

with a single latent variable ξ, suppose that g(Yi |Di = 1) , g(Yi |Di = 0). Hence, the

missing data mechanism with respect to Yi is MAR or even NMAR. Furthermore εi ⊥ Di

2Only in the case of dichotomous variables Yi, monotonicity of item characteristic curves and simple
structure ξm = f (τi) hold true, with f the link function.
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holds true in this example implying g(τi |Di = 1) , g(τi |Di = 0). To conclude that

g(ξ |Di = 1) , g(ξ |Di = 0) requires, however, that the factor loading and intercept are

measurement invariant with respect to Di.

In the remainder of this work the assumption of measurement invariance with respect

to (Z,Di) is assumed. That is

∀i ∈ {1, . . . , I} Yi ⊥ (Z,Di) | ξ. (2.57)

This also implies measurement invariance with respect to Di alone:

∀i ∈ {1, . . . , I} Yi ⊥ Di | ξ (2.58)

Additionally, we assume local stochastic independence for all manifest variables Yi, that

is

∀i ∈ {1, . . . , I} Yi ⊥ Y−i | ξ (2.59)

Finally, we assume that Yi is conditionally stochastically independent from (Z,Di,Y
−i)

given ξ:

∀i ∈ {1, . . . , I} Yi ⊥ (Y−i, Z, D) | ξ (2.60)

Note that Equation 2.60 follows neither from measurement invariance with respect to

(Z,Di) (see Equations 2.57) nor from local stochastic independence (see Equations 2.59).

Conversely, however, if Equation 2.60 holds then the Equations 2.57 - 2.59 will apply as

well.

Note that Equations 2.46 and 2.47 imply that the distribution g(Yi) is completely de-

termined by the distribution g(τi) of the true scores. This applies also in the conditional

case; The conditional distribution g(Yi |W) given any variable W is determined by the

conditional true score distribution g(τi |W). The true score τi is the function fi(ξ) imply-

ing that the distribution of the manifest items Yi is a composition g(Yi) = g[ fi(ξ)]. In the

conditional case that is g(Yi |W) = g[ fi(ξ) |W]. Measurement invariance means that fi(ξ)

is an invariant function over all values W = w. In this case differences of conditional

distributions of manifest items reflects necessarily differences of conditional distributions

of true scores and the latent variable ξ.

Hence, if the assumptions expressed by Equations 2.57 - 2.60 hold true the defini-

tions of the missing data mechanisms with respect to the items Yi imply (un-)conditional
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stochastic dependencies between ξ and the response indicators and covariates:

• If the missing data mechanism w.r.t. Yi is MCAR from Equation 2.44 follows

ξ ⊥ Di. (2.61)

Hence, the population of test takers that completed item Yi differs in their distribu-

tion of the latent ability compared to those that did not complete it. However, given

the missing data mechanism with respect to Yi is MAR given (Y, Z), then Equation

2.48 implies

ξ✚✚⊥Di. (2.62)

Hence, the population of test takers that completed item Yi differs in their distribu-

tion of the latent ability compared to those that do not complete it. However, given

the missing data mechanism with respect to Yi is MAR given (Y, Z), then Equation

2.48 implies

ξ ⊥ Di | (Y−i

obs
, Z). (2.63)

This implies that, although unconditional stochastic dependence between missing-

ness and the latent ability holds (see Equation 2.62), test takers with the same values

of observable variables (Yobs, Z) does not differ in their latent ability ξ regardless of

whether responding to item Yi or not.

• Similarly, if the missing data mechanism with respect to Yi is MAR given (Z),

although Equation 2.62 applies, from Equation 2.12 follows

ξ ⊥ Di | Z. (2.64)

• Given the missing data mechanism with respect to Yi is MAR given Y Equation

2.62 holds as well. However, the Equation 2.52 implies

ξ ⊥ Di |Y−i

obs
. (2.65)

• If the nonresponse mechanism w.r.t. Yi is NMAR the conditional distribution of

the latent ability given all observable variables depends on the observational status
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(Di). From the definition (see Equation 2.14) and Equation 2.54 follow

ξ✚✚⊥Di | (Y−i

obs
, Z). (2.66)

Thus, test takers who respond to Yi differs systematically in their underlying ability

levels from those who do not complete item i even if all observable variables are

held constant.

Recall that all these implications hold under the assumptions of measurement invariance

and local stochastic independence (see Equations 2.57 - 2.59). In the case of dichoto-

mous items the implications given by the Equations 2.61 - 2.66 do not require additional

assumptions with respect to the residual εi
3.

The assumption of measurement invariance is often made implicitly and seems rea-

sonable to hold true in application. It seems not obvious why missingness should be

related to parameters of the measurement model. However, examples can be constructed

that make the assumption of measurement invariance unlikely to hold. For instance, let

there be a mathematics test with a latent variable ξ representing mathematics proficiency.

Assume that the last item YI is a mathematical problem formulated in text form. Addi-

tionally, a constructed response needs to be given by test takers. Some of the examinees

might have a mother tongue different from the language used in the test. Therefore, they

are on average slower in completing the items and, therefore, more likely not to reach

the last item. Furthermore, they have on average a lower probability to solve YI . Let

Z be the covariate indicating whether test takers’ mother tongues are equal to the lan-

guage of the test (Z = 1) or not (Z = 0). This example implies that the probability of

missing item YI is P(DI = 1 |Z = 1) > P(DI = 1 |Z = 0). Additionally, we assumed

P(YI = 1 |Z = 1) > P(YI = 1 |Z = 0). The missing data mechanism w.r.t. YI is assumed

to be MAR given Z, that is DI ⊥ YI |Z. As a consequence, the item YI will be more fre-

quently answered by persons with a mother tongue equal to the language of the test. These

persons have also a higher probability to answer correctly. Assuming that persons with

a mother tongue different from the language of the test have on average the same math-

ematical ability, the lower probabilities to solve item I can be attributable to differential

item functioning (DIF) with respect to Z. Hence P(YI = 1 | ξ,Z) , P(YI = 1 | ξ). This

might be due to the demanding text. As a results the assumption of conditional stochastic

independence YI ⊥ (DI ,Z) | ξ (see Equation 2.57) is violated in this example. This has

3For normally distributed manifest variables Yi with linear functions fi(ξ), additional assumptions with
respect to εi are required.
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interesting consequences: Let P(YI = 1 | ξ,Z,DI) = P(YI = 1 | ξ,Z). Since, Z and DI

are stochastically dependent in this example, it follows P(YI = 1 | ξ,DI) , P(YI = 1 | ξ).
Hence, if a covariate Z exists that causes DIF and Z is also stochastically related to the

probability of non-response, then measurement invariance with respect to DI is unlikely

to hold. DIF is a common phenomenon as well as missing data. Hence, the short example

used for illustration seems not too unrealistic and should make aware that the assumption

of measurement invariance with respect to Di and (Di, Z) can be violated.

2.4 Summary

In this section the different missing data mechanisms were defined. Instead of three, five

different nonresponse mechanisms are distinguished (a) Missing completely are random

(MCAR), (b) missing at random given (Y, Z), (c) missing at random given Z, (d) missing

at random given Y, and (e) missing not at random (MNAR). The differentiation into three

MAR conditions result from the distinction between manifest variables Y = Y1, . . . ,YI

that constitute the measurement model and covariates Z = Z1, . . . ,ZJ. In this work it is

assumed that the covariates are fully observed in application. The nonresponse mecha-

nisms were defined with respect to single items Yi and, subsequently with respect to the

complete response vector Y. Following Rubin Y is decomposed in an observed part Yobs

and an unobserved part Ymis. In contrast to Rubin, missing data mechanisms were defined

here using random variables considered in a particular random experiment - the single

unit trial - instead of realized data. Hence, the definitions rest upon the joint distribution

g(Yobs,Ymis, Z, D). As Kenward and Molenberghs (1998) noted, the missing data mecha-

nisms as introduced in most statistical literature seems to be confusing for non-bayesian

statisticians and methodologists. Due to the adaption of the definitions in this work, con-

sistency with the pre-facto perspective and frequentists’ estimation theory, such as ML

estimation, has been achieved. Nevertheless, the essentials of Rubin’s definitions are pre-

served. It was shown in detail that data matrices resulting under the re-defined missing

data mechanisms will have the properties described by Rubin if the sample size becomes

large. Therefore, the definitions presented here have been formally adapted for reasons of

consistency but are in accordance with existing missing data literature.

In the final section of this Chapter the implications of the nonresponse mechanisms

regarding the latent variables underlying observed and unobserved data were examined

theoretically. It was explained why ignorable missing data mechanisms are called noni-

formative, whereas informative missingness refers to nonignorable missing data. It was
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shown analytically that the occurence of item nonresponses are completely at random if

MCAR w.r.t. Y holds true, and completely at random conditionally on all possible values

(z, yobs) if MAR w . r. t. Y applies. Hence, apart from a loss of efficiency inference with

respect to parameters ιwill be unbiased in the complete sample (MCAR) or in subsamples

formed by observed values (z, yobs) (MAR). In the latter case the information needs to be

appropriately aggregated including all observable variables across all missing patterns. In

fact, FIML can be regarded as aggregating information over all observed values (z, yobs)

in all observed missing pattern D = d. Accordingly, missingness expressed by D does not

provide additional information with respect to parameters of interest and can, therefore,

be ignored in sample based inference. This was also illustrated considering multiple im-

putation. Finally, it was shown that under particular assumptions of conditional stochastic

independence (see Equations 2.57 - 2.60) the distributions of the observed and unobserved

manifest variables differ, which implies that populations of the test takers who complete

an item compared to those who do not differs with respect to the latent variable ξ of in-

terest. This is the case when the missing data mechanism w.r.t. Yi is MAR or NMAR.

However, when one of the MAR conditions hold w.r.t. Y (see Equations 2.10 - 2.13), the

distribution of ξ underlying observed and unobserved manifest items Yi are conditionally

equal given each value (z, yobs). This is not true when the missing data mechanisms are

nonignorable. What does this mean for applied research? In the subsequent section the

effects of non-ignorable missing data to sample based inference will be examined. In gen-

eral it should be noted that in measurement models many manifest variables Y1, . . . ,YI are

considered contemporarily. Each item can be affected by a different missing data mech-

anism. As a consequence each item is potentially completed by a different population

even in a single test application. The missing data mechanism works as an item specific

selection mechanism.
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3 The Impact of Missing Data on Sample Estimates

Missing data might affect sample based inference in many different ways. A general de-

scription of the impact of missing data is difficult. Validity and accuracy of inference

under missing data might be affected differently depending on the particular research

question, the data, the missing data mechanism, and the applied models. That is an im-

portant reason why the problem of missingness has been studied separately in different

contexts and why specific approaches need to be developed. Of course these methods

and approaches can roughly be classified (e. g. Schafer & Graham, 2002; McKnight

et al., 2007; Graham, 2009). A brief overview is given in section 4.1 in order to inte-

grate the methods examined in this work. However, before the approaches tackling the

problem of missing data in measurement models will be examined in detail, the impact

of missing data will be illustrated. The focus is on non-ignorable missing data due to

nonresponses . However, the derivations and results will be repeatedly linked to cases

where the non-response mechanism is MAR or even MCAR. Nonresponses in educa-

tional and psychological testings can result from omitting items, providing answers that

are not meaningful and therefore not codable, or not reached items at the end of the test.

This work only marginally deals with unit-nonresponses. That does not mean that it is

not a serious problem in real applications. Therefore, this work deals with incomplete

data sets and how to account for the problems associated with them. However, many

of the illustrated problems due to item nonresponses are close to those caused by unit

nonresponses.

In this chapter, the impact of missing data will be studied with respect to person and

item parameter estimates. There are different measures to describe the items with respect

to their difficulty and discriminating power. Analogously, several measures or person pa-

rameters exist to quantify persons’ achievement in the test and/or to locate test takers with

respect to the latent variable constructed in the measurement model. The measures can be

classified into two groups. Most psychometrically developed tests are based on Classical

Test Theory (CCT) or Item Response Theory (IRT). The person parameters in CTT rest

upon (un-)weighted sum scores or (non-)linear functions of it. The difficulties of items

are expressed by the item means. Point-biserial and biserial correlations between single
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items and the test score serves as discrimination parameters. In IRT item parameters and

their meaning depend on the respective model chosen in a particular application. In the

1PL- and 2PL models, the most frequently used IRT models, the item discrimination pa-

rameter is equivalent to a logistic or probit regression coefficient and the item difficulty

is a transformed logistic or probit regression intercept. Person parameter estimates are

direct estimates of the persons’ individual values on the latent variable constructed in the

measurement model. CTT and IRT are quite different test theories (Embretson & Reise,

2000; Fan, 1998; Hambleton & Jones, 1993)CTT focus more on the test-score level than

on individual items (Hambleton & Jones, 1993) and measurement models of CTT are in-

appropriate for dichotomous items. Nevertheless, the study of the impact of missing data

regarding to CTT-based item and person parameter estimates in tests with binary items are

valuable in understanding harmful effects of item nonresponses. In this thesis, the effects

of missing data will be separately studied for CTT and IRT item and person parameter

estimates. The considerations will comprise analytical derivations and empirical illus-

trations by simulated data examples. There are two reasons for the use of simulations.

At first, the impact of missingness can be studied and quantified under varying condi-

tions. Secondly, for some of the parameter estimates no closed-form expressions exist for

the respective estimation equation. Hence, the bias is difficult to determine analytically.

Single model parameters needs to be estimated iteratively depending on other unknown

model parameters that are estimated contemporarily. This is in particular true for the IRT

models, where estimates of item difficulties and discriminations are mutually dependent.

At least hypotheses can be formulated about the expected bias due to the nonresponse

mechanism that can be supported or falsified by the simulated data. However, the impact

of missing data on sample estimates is studied analytically as far as possible.

A test typically consists of a set of stimuli, the items, that elicit a response behavior in

test taker. The item responses are indicative of the latent variable which is constructed

in the measurement model. A sound and well-founded test development comprises the

quantification of the quality of psychometric properties of the test with respect to certain

quality criteria. The objectivity, the reliability, and the validity are the so-called main qual-

ity criteria (Amelang & Zielinski, 2001). Additionally, a considerable number of further

quality criteria range from the theoretical foundation of the test construction to the layout

of the test and its manual (Amelang & Zielinski, 2001). Of course, missing data might

also influence the measures and indices used to quantify the psychometric quality of a

test. Here it is impossible to study all potential effects. The considerations are confined to

the impact of item-nonresponses on reliability and test fairness, knowing full well that the
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whole range of adverse effects is not covered. Different measures of reliability exist and

can also be attributed to the two major classes of test theories. Specifically, Cronbach’s α

(Cronbach, 1951) and Guttmann’s λ2 (Guttman, 1945) are widely used in CTT based test

development. These coefficients are suited when the manifest test variables are linearly

regressively dependent from the latent variable. For example, Cronbach’s α is appropriate

under the model of essentially τ-equivalent variables (Steyer & Eid, 2001). However, this

work focuses on dichotomous manifest variables. The regression E(Yi | ξ) considered in

the measurement model with categorical manifest variables is almost never linear. Hence,

Cronbach’s α and Guttmann’s λ2 are unsuitable coefficients of reliability and will not be

considered in this thesis. In IRT it is common to utilize the item information function

and/or the standard error function to describe the accuracy and/or the error of the per-

son parameter estimation. Insofar, IRT accounts for the fact that a test might be more

or less accurate for different test takers depending on their values of the latent variable.

This implies that the reliability varies accross the range of the latent variable. Neverthe-

less, summary measures of reliability have been developed in IRT and are widely used.

Typically, Andrich’s reliability (Andrich, 1988) or the EAP-reliability (Bock & Mislevy,

1982) are used. Both can be interpreted as mean reliability coefficients averaged across

the distribution of the latent variable. If the maximum likelihood estimators (MLE) or

Warm’s weighted maximum likelihood estimators (WLE) are used, Andrich’s reliabil-

ity is appropriate whereas the EAP-reliability is taken if the expected a posteriori (EAP)

estimators are chosen as person parameter estimates. The reliability coefficients are de-

termined based on item parameters and person parameters and its distribution. Thus, the

reliability might be affected in different ways due to nonresponses: Firstly, due to missing

information, and secondly, because of biased parameter estimates.

To sum up, in this chapter the impact of missing data on CTT-based and IRT-based

item and person parameter estimates are studied analytically and empirically. A consider-

able number of different IRT-models have evolved. Here, only the one-parameter Rasch-

Model (1PLM) and the two-parameter Birnbaum-Model (2PLM) will be considered. The

marginal reliability coefficients with respect to MLE, WLE, and EAP estimators are ex-

amined under different missing data situations. Against the background of these results

the matter of test fairness in presence of missing data will be critically discussed.

As previously mentioned, the theoretical examination of the bias due to missing data is

limited in some cases. The illustration of the effects of missing data with simulated data is

based on (a) a single simulated data set suffering from a high proportion of non-ignorable

missing data, and (b) a comprehensive simulation study with varying conditions.
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The simulated Data Example A with non-ignorable missing data The data set intro-

duced here will be used in the remainder of this thesis to demonstrate the harmful effects

due to ignoring missing data or the application of inappropriate missing data methods.

Furthermore, the suitability of the proposed methods for non-ignorable missing data will

be exemplified with this data set denoted by Data Example A in the remainder. The ap-

plication of a test consisting of I = 30 dichotomous items Yi was emulated. Hence, the

simulated data can be thought of as resulting from an application of a reading or mathe-

matics achievement test with the response category Yi = 0 indicating a wrong answer and

Yi = 1 the correct answer. The sample size was N = 2000. The latent ability variable ξ

was unit normally distributed with E(ξ) = 0 and Var(ξ) = 1. The item responses where

simulated using the 1PLM:

P(Yi = 1 | ξ) = exp(ξ − βi)

1 + exp(ξ − βi)
(3.1)

The item difficulties are equally spaced between −2.3 and 2.15. The difference between

two subsequent difficulties is 0.15. The probability of nonresponses was stochastically re-

lated to the latent variable ξ. In the realized data the sample correlation between the latent

variable ξ and the proportion of missing data was r = −0.719. The data were simulated

in that way such that the probability to omit items increases with lower values of ξ. This

emulates the often reported finding that the incidence of non-responses increases with de-

clining proficiency levels. Possibly, less proficient persons tend to respond to items they

judge to solve correctly. Furthermore, difficult items may require more cognitive efforts

especially for test takers with lower ability levels. Especially in low stakes assessments,

test takers might not be motivated and/or unwilling to make such efforts. This increases

also the probability of missing data with decreasing ability levels. Finally, the processing

time with respect to single items may prolonged with decreasing values of ξ resulting in

missing data due to not-reached items at the end of the test.

For all items in data example P(Di = 1) < 1 holds. The missing data mechanism with

respect to each item Yi was NMAR. Accordingly the nonresponse mechanism w.r.t. Y is

nonignorable (see Section 2.2). The individual probability P(Di = 1 |U = u) to respond

to item i was obtained by the introduction of a latent response propensity θ = f (U) as

a function of the person variable U. θ can be thought of as a tendency of the test takers

to complete the test items. The specific item response propensities P(Di = 1 |U = u) =

P(Di = 1 | θ) are a function of the latent variable θ. The probability to respond to item Yi,
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regardless of whether correctly or incorrectly, is given by

P(Di = 1 | θ) = exp(θ − γi)

1 + exp(θ − γi)
(3.2)

This equation is equivalent to the 1PLM. The parameters γi are the thresholds of the re-

spective response indicator variables Di. In the data example the parameters γi ranges

between −2.57 and 2.06. The data are generated under conditional stochastic indepen-

dence Di⊥ξ | θ and Yi⊥θ | ξ. Hence, in Data Example A, non-ignorability of the missing

data mechanism is implied by the correlation Cor(ξ, θ) = 0.8. For the single items Yi

Equation 2.14 holds. Thus, if a measurement model is exclusively estimated based on Y

item, then person parameters are potentially biased. In real applications of achievement

tests, it is a consistent finding, that more difficult items are generally more often skipped

(Rose et al., 2010). This implies that the parameters γi and βi are also related. For the

simulated data example, this dependency is presented graphically in Fig. 3.1. The higher

the values of βi are, the higher γi is. The means of the probabilities P(Yi = 1 | ξ) and

Figure 3.1: Item difficulties and thresholds used to generate Data Example A (left) and resulting means
τ̄i of true scores and item response propensities (right). The blue line is the regression line.

P(Di = 1 | θ) are plotted for each item i in the right panel of Figure 3.1. It can be seen

that the most difficult items are merely expected to be completed by ≈ 20%. The overall

proportion of missing data in the realized data was 47.83%. Across the items it ranges
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between 80.2% and 6.6% (Tab. 3.1). Compared with real applications, the conditions

Table 3.1: Item Parameters of Items Yi, Response Indicators Di and Marginal Probabilities P(Yi = 1)
and P(Di = 1) (Data Example A).

Items Response indicators

Yi βi P(Yi = 1) Di γi P(Di = 1)

Y1 -2.30 0.872 D1 -2.569 0.934
Y2 -2.15 0.857 D2 -2.440 0.926
Y3 -2.00 0.840 D3 -2.009 0.893
Y4 -1.85 0.821 D4 -1.768 0.871
Y5 -1.70 0.801 D5 -1.016 0.777
Y6 -1.55 0.780 D6 -1.597 0.853
Y7 -1.40 0.757 D7 -1.118 0.792
Y8 -1.25 0.733 D8 -1.450 0.836
Y9 -1.10 0.707 D9 -1.517 0.844
Y10 -0.95 0.680 D10 -1.363 0.825
Y11 -0.80 0.652 D11 -0.608 0.711
Y12 -0.65 0.623 D12 -1.081 0.787
Y13 -0.50 0.594 D13 -1.091 0.788
Y14 -0.35 0.563 D14 -0.615 0.712
Y15 -0.20 0.533 D15 -1.437 0.834
Y16 -0.05 0.502 D16 -0.838 0.749
Y17 0.10 0.471 D17 0.474 0.499
Y18 0.25 0.440 D18 -0.066 0.609
Y19 0.40 0.410 D19 0.950 0.402
Y20 0.55 0.380 D20 0.950 0.401
Y21 0.70 0.351 D21 0.861 0.419
Y22 0.85 0.323 D22 1.106 0.371
Y23 1.00 0.297 D23 2.054 0.208
Y24 1.15 0.271 D24 1.503 0.297
Y25 1.30 0.246 D25 1.589 0.282
Y26 1.45 0.223 D26 0.872 0.417
Y27 1.60 0.202 D27 1.905 0.230
Y28 1.75 0.182 D28 1.736 0.257
Y29 2.00 0.151 D29 2.078 0.205
Y30 2.15 0.135 D30 2.059 0.208

used for Data Example A may be exaggerated. For example, the PISA 2006 data were

re-analyzed by Rose et al. (2010). They modeled a latent response propensity allow-

ing to estimate the correlation between ξ and θ. In the PISA study a three-dimensional

latent variable ξ was constructed with the latent mathematic dimension ξmath,the latent
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reading dimension ξread, and the latent science dimension ξsci. The correlations between

these latent variables and the latent response propensity θ varied between 0.267 − 0.555

accross the 30 member states of the Organization for Economic Co-operation and Devel-

opment (OECD) considered in the study. The mean correlations were r̄(ξmath, θ) = 0.433,

r̄(ξread, θ) = 0.434 and r̄(ξsci, θ) = 0.453. Additionally, the means of the response indi-

cators and the standardized item means were positively correlated with r = 0.330 in the

PISA 2006 data. Hence, more difficult items were generally more often not answered than

less difficult items. Compared with these results, the conditions used for Data Example A

are accentuated for reasons of demonstrating the effects of non-ignorable missing data. In

real situations, the conditions as the total proportion of missing data, the sample size, the

number of items and the missing data mechanism might differ. Therefore, an additional

simulation study was conducted in order to quantify the impact of missing data under

different conditions.

The simulation study As noted previously, for some parameters, such as IRT item and

person parameters, the impact of missing data is difficult to examine analytically. The

simulation study aims to find general patterns of biases and to quantify the extent of

biasedness of different parameter estimates caused by item nonresponses. This is partic-

ularly of interest, since results of single simulated data examples by Rose et al. (2010)

might suggest that IRT parameter estimates are pretty robust under non-ignorable missing

data.

In the simulation study five factors were systematically varied. Three sample sizes N =

{500, 1000, 2000} were chosen. The effect size of the relation between the probability of

missing data and the latent variable ξ was controlled by different correlations Cor(ξ, θ) =

{0, 0.2, 0.5, 0.8}. Note, that the missing data mechanism is MCAR given that Cor(ξ, θ) =

0. Three different test length were simulated. The numbers of items were 11, 22 and

33. The relation between the item parameters γi and βi were varied as well with the

approximate values r(γ, β) = {0, 0.3, 0.5, 0.8}. In this case, r(γ, β) is computed in the

same way as the sample estimate of the Pearson-correlation. Of course, the parameters

γi and βi are not realizations of random variables. However, the value r(γ, β) is suited to

quantify the relation between the difficulty of an item and the unconditional probability

of non-response. In contrast, if r(γ, β) > 0 then βi > β j ⇒ P(Di = 1) < P(D j = 1). Thus,

the more difficult items are generally more likely to be not completed. Finally, the overall

proportion of missing data was varied by different sets of parameters γi. A constant term

was added to or subtracted from to all thresholds γi to yield average proportions of 10%,
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20%, 30%, 40%, and 50% missing data. Since the parameters γi were only shifted by

constants the correlation r(γ, β) remained unaffected. Table 3.2 summarizes the factors

and their levels used in the simulation study. In total there are 720 conditions in the

Table 3.2: Factors and Factor Levels Used for the Simulation Study.

Sample size N N = {500, 1000, 2000}
Number of Items I I = {11, 22, 33}
Correlation Cor(ξ, θ) Cor(ξ, θ) = {0, 0.2, 0.5, 0.8}
Parameter correlation r(γ, β) r(γ, β) = {0, 0.3, 0.5, 0.8}
Average proportion of missing data P̄Miss P̄Miss = {10%, 20%, 30%, 40%, 50%}

simulation study. 50 data sets were simulated within each condition.

The dependent variable in the simulation study was the biases of different IRT item

and person parameter estimates. In particular, the bias of estimated item difficulties and

item discrimination were studied as well as the bias of three person parameter estimates:

Maximum Likelihood (ML) estimates, Warm’s weighted Maximum Likelihood (WML)

estimates, and EAP estimates. The bias of a parameter estimate λ̂ is defined as the differ-

ence λ̂−λ. In a simulation study with Q trials per condition the bias of a single parameter

λ is

Bias(λ) =
1

Q

Q∑

q=1

(λ̂q − λ). (3.3)

However, in this simulation study there are I items and N person parameters. Hence,

there is a vector λ = λ1, . . . , λK of parameters. Accordingly, the mean bias Bias(λ) was

computed across all considered item or person parameter estimates. That is

Bias(λ) =
1

Q

Q∑

q=1

[ 1

K

K∑

l=1

(λ̂ql − λl)
]
. (3.4)

If the person parameters are considered K is the sample size N an λ = ξ1, . . . , ξN . For the

case of item parameters K is the number I of items with λ = α1, . . . ,αI and λ = β1, . . . , βI

respectively.

The software R (R Development Core Team, 2011) was used for data simulation. The

model parameters shown in Table 3.1 were used to simulate item responses and missing

data. The data were generated using the Rasch model (Rasch, 1960) and the Birnbaum

model (Birnbaum, 1968). In the latter, the item discrimination parameters were randomly
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drawn from a continuous uniform distribution U(0.5, 2.5). The parameters αi varied from

trial to trial but ranged always between 0.5 and 2.5. Mplus 6 (Muthén & Muthén, 1998

- 2010) was used to estimated parameters of the Birnbaum model. Unfortunately, only

EAPs are available in Mplus as person parameter estimates. The effects of missing data on

MLE and WLE person parameter estimates were studied under the 1PLM with ConQuest

(Wu, Adams, & Wilson, 1998).

3.1 Test Scores and Person Parameter Estimates

Based on the observed response patterns of test takers, many different measures can be

constructed that aim to quantify the persons’ values of latent variables. Within the frame-

work of CTT, the test scores are commonly based on the unweighted or weighted sum

score S or functions of S . In order to obtain meaningful values, the sums score is usually

standardized or tranformed in other ways. The standard scores (e. g. z-values, Stanine-

values, T-values) are linear transformations of the sum score. Alternatively, non-linear

transformations of S can be used such as the percent rank. However, in CTT the result-

ing test scores are only meaningful with respect to a particular population that serves as

a reference. For example, a z-score of a test is the difference between a test score and

the mean of the test scores in a certain population measured in standard deviations. CTT

based testings are norm-referenced assessment. Alternatively, the proportion correct P+

can be used instead of S . P+ is the relative frequency of correctly answered items given

the completed items instead of all presented items. If all persons answer the same items

and no missing data exist, P+ is simply a function of S . However, in presence of item-

nonresponses S and P+ are no longer deterministically related implying that both scores

are differently affected by missing data. In fact, in application P+ is typically preferred for

incomplete data because the number of completed items is taken into account. However

it needs to be answered whether P+ is always sufficient to account for missing responses

even when the nonresponse mechanism is MAR or NMAR. The impact of missing data

to the sum score S and the proportion correct P+ will be compared in Sections 3.1.1 and

3.1.2.

IRT based person parameters are differently constructed. Usually weighted or un-

weighted ML estimates or Bayesian estimates such as the EAP or maximum a posteriori

(MAP) are used as measures of a person?s ability. Instead of the CTT-based test scores,

the person parameters are values of the latent variable ξ and item difficulty parameters

are located on the same scale. Persons and items can directly be compared in terms of
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ability and difficulty. The values of the latent variables are also meaningful with respect

to items. Conclusively, IRT-based measurement is a criterion-referenced assessment. In

application typically neither item nor person parameters are known but need to be esti-

mated based on observed data. Both item and person parameter estimates are mutually

dependent. This is easy to see when Joint Maximum Likelihood (JML) estimation is con-

sidered where all item and person parameters are estimated simultaneously (e. g. Baker,

1987; Baker & Kim, 2004). Biased item parameter estimates will, most likely, result in

biased person parameter estimates. In turn biased person parameter estimates can cause

distorted item parameter estimates. Although less obvious, this also the case when using

Marginal Maximum Likelihood (MML) estimation (e. g. Baker, 1987; Baker & Kim,

2004; Bock & Aitkin, 1981; Bock & Lieberman, 1970). Using MML item parameters

are estimated separately avoiding simultaneous person parameter estimation1. However,

using the EM algorithm (Bock & Aitkin, 1981; Hsu, 2000) item parameter estimation

involves the calculation of probabilities P(ξq |Y = y; ι̂t) in the E-step for the evaluation

of the quadrature distribution g(ξq |Y = y; ι̂t) of each test taker. ξq is the q-th quadrature

point and ι̂t the vector of estimated item parameters in the t-th iteration. Hence, although

the point estimation of ξ is circumvented under MML estimation, the quadrature distri-

bution of the latent variable ξ is still involved. Using MML, the person parameters are

estimated in a second step with the estimated item parameters taken as fixed values. Due

to the interdependence of IRT item and person parameter estimates the analytical exam-

ination of their bias due to item nonresponses is not feasible. For that reason, the bias

of ML, WML, and EAP estimates are investigated by means of a simulation study. The

results will be shown in Section 3.1.3.

3.1.1 Sum score

The sum score S is defined as the sum S =
∑I

i=1 Yi over all I items. For dichotomous items

Yi it is the number of correctly answered items. That is why S is sometimes called number

right score. For theoretical reasons here it is distinguished between the sum score S in

absence of missing data and the sum score SMiss in presence of missing data. Although

both S and SMiss are number right scores, SMiss is the sum across the completed items

whereas S is the sum across all I items. Therefore, in presence of any previously defined

missing data mechanism w.r.t. to the items Yi the sum score SMiss for a randomly chosen

1Individual person parameters can be estimated subsequently based on the previously estimated item pa-
rameter estimates.
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observation is given by

SMiss =

I∑

i=1

Yi|Di=1. (3.5)

The condition Di = 1 reflects that in application only those items can be summed which

are observed. Hence, for each case the number of completed items is the upper bound of

the sum score variable. Note, that the number of completed items varies across the test

takers, the upper bound is itself a random variable given by
∑I

i=1 Di. This fact is not taken

into account when the sums score is used in real applications. Consider Data Example

A, which consists of 30 items. In presence of missing data the score S = 10 is related to

different events. For example, a test taker could have answered 10 items correctly while

20 items were answered incorrectly. Alternatively, a participant could have omitted 20

items but answered 10 items correctly. The sum score does not adequately account for

non-responses. It can be shown that the sum score implicitly recodes missing responses as

incorrect or more generally Yi = 0 regardless whether the items are omitted, notreached,

or even not presented by design. Formally, this can be represented by using the response

indicators Di as weights for Yi. The sum score SMiss as defined above can alternatively be

written as

SMiss =

I∑

i=1

Yi · Di. (3.6)

In this Equation, the sum is taken over all I items of the test. The sum score SMiss is then

a sum of a product variable Yi ·Di. The value of this variable is computed over all I items.

Each term Yi·Di becomes zero if either the item Yi is answered incorrectly or the item is not

completed. In many applications, especially in educational large scale assessments non-

responses are treated as wrong responses by assigning the value 0. Formally, a random

variable Y∗i can be defined as a function f (Yi,Di) that is given by the following assignment

rule:

Y∗i =


Yi, if Di = 1

0, if Di = 0
(3.7)

Interestingly, the product variable Yi · Di and Y∗i are equal proving that the use of the

sum score under any missing data mechanism means to recode missing data to wrong
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responses implicitly2. So, SMiss is considered instead of S . However, SMiss is the sum of Yi·
Di or Y∗i respectively instead of items Yi. Summing over different random variables results

in different sum scores with different distributions and potentially a different meaning. For

the case that each test taker has a positive probability to answer missing items correctly,

the sum score is expected to be negatively biased.

In order to study how non-ignorable missing data affects the sum score, the expectation

of SMiss is considered that can be written as

E(SMiss) = E

( I∑

i=1

Yi · Di

)
(3.8)

=

I∑

i=1

E(Yi · Di) (3.9)

=

I∑

i=1

E[E(Yi · Di |U)] (3.10)

Equation 3.10 shows that expected value of each product variable Yi ·Di is the expectation

of the regression E(Yi · Di |U) studied next. The regression of a product variable is given

by:

E(Yi · Di |U) = E(Yi |U) · E(Di |U) +Cov(Yi,Di |U) (3.11)

The last summand is the conditional covariance that can be written as:

Cov(Yi,Di |U) = E

(
[Yi − P(Yi = 1 |U)] · [Di − P(Di = 1 |U)] |U

)
(3.12)

= E(εYi
· εDi
|U) (3.13)

= Cov(εYi
, εDi
|U) (3.14)

In the subsequent derivations it is assumed that the conditional covariance Cov(εYi
, εDi
|U)

is zero. Hence, for dichotomous variables Yi Equation 3.20 can be simplified to

E(Yi · Di |U) = E(Yi |U) · E(Di |U) (3.15)

= P(Yi = 1 |U) · P(Di = 1 |U). (3.16)

2Note that this statement is only valid if Yi = 0 indicates a wrong response. For example SAT scoring is
different. Yi = −0.25 indicates a wrong response and Yi = 0. Under such a scoring missing responses
are not implicitly recoded to an incorrect answer.
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The term E(Yi ·Di |U) can also be expressed as the conditional probability P(Yi = 1∩Di =

1 |U). Thus, it can be seen that the assumption Cov(εYi
, εDi
|U) is equivalent to the as-

sumption of conditional stochastic independence of Yi = 1 and Di = 1 given the person

variable U.

Utilizing these derivations, we can consider the conditional expected sum score E(SMiss |U)

given any missing data mechanism under the assumption Yi ⊥ Di |U.

E(SMiss |U) = E

( I∑

i=1

Yi · Di

∣∣∣∣∣ U
)

(3.17)

=

I∑

i=1

E(Yi · Di |U) (3.18)

=

I∑

i=1

P(Yi = 1 |U) · P(Di = 1 |U) (3.19)

Here, it can directly be seen that the expected SMiss given the person projection U is

smaller under any missing data mechanism compared to the expected sum score E(S |U).

Only if no missing data mechanism exist, so that P(Di = 1 |U) = 1 (for all I = 1, . . . , I),

equality E(SMiss |U) = E(S |U) follows. The difference SMiss − S can be regarded as a

bias of the sum score resulting form missing data. Since Yi · Di ≤ Yi, the bias can never

be positive. The expected conditional bias E(SMiss − S |U) given the unit variable U can

be studied in more detail, starting with the following Equations.

E(SMiss − S |U) = E(SMiss |U) − E(S |U) (3.20)

=

I∑

i=1

P(Yi = 1 |U) · P(Di = 1 |U) −
I∑

i=1

P(Yi = 1 |U) (3.21)

=

I∑

i=1

P(Yi = 1 |U) · P(Di = 1 |U) − P(Yi = 1 |U) (3.22)

=

I∑

i=1

[P(Di = 1 |U) − 1] · P(Yi = 1 |U) (3.23)

= −
I∑

i=1

P(Di = 0 |U) · P(Yi = 1 |U) (3.24)

Evidently, the expected sum score of any person u of U will be biased if P(Di = 0 |U) > 0

for any item i. Equivalent to 3.19 this proves that the sum score is only expected to

be unbiased when no missing data exist. Of course, so far we assumed implicitly that
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each person has a positive probability P(Yi = 1 |U). In one-, two-, and three-parameter

logistic IRT models this is equal to the assumption that each u of U has a value ξ >

−∞. In fact, from Equations 3.19 and 3.24 follows that in presence of any missing data

mechanism the sum score is only unbiased if P(Yi = 1 |U) = 0. This is at least the case

if Yi ⊥ DI |U holds true. However, if conditional stochastic dependence Yi✚✚⊥DI |U exists,

then the derivations above are not correct. This case can be be studied by rewriting the

regression E(SMiss |U) =
∑I

i=1 P(Yi = 1,Di = 1 |U). Inserting this term into Equation

3.22 yields

E(SMiss − S |U) =
I∑

i=1

P(Yi = 1,Di = 1 |U) − P(Yi = 1 |U) (3.25)

=

I∑

i=1

P(Di = 1 |Yi = 1,U) · P(Yi = 1 |U) − P(Yi = 1 |U) (3.26)

=

I∑

i=1

[P(Di = 1 |Yi = 1,U) − 1] · P(Yi = 1 |U) (3.27)

= −
I∑

i=1

P(Di = 0 |Yi = 1,U) · P(Yi = 1 |U) (3.28)

= −
I∑

i=1

P(Di = 0,Yi = 1 |U) (3.29)

= −
I∑

i=1

P(Yi = 1 |Di = 0,U) · P(Di = 0 |U). (3.30)

Hence, in presence of any missing data mechanism with respect to at least one item i the

sum score is only unbiased if the probability to solve a missing item given U is zero. This

is implausible in almost all real applications and would have awkward implications. If

a latent trait model applied with ξ = f (U) exists, Equation 3.30 implies P(Yi = 1 |Di =

0, ξ) = 0 for all missing items irrespective of their item difficulty and the value of the

latent variable of the person. This, in turn, implies Yi⊥ξ |Di = 0. This is a very strong

form of differential item functioning since the model of Yi depends on Di. If Di = 1 the

latent trait model with P(Yi = 1 | ξ) holds. However, this model cannot be valid if Di = 0

unless ξ = −∞. In the latter case, however, all other observed item responses needs to

be zero given the model is correct. In other words, assuming that Equation 3.30 holds

means that any latent trait model is assumed only to be valid to observed responses. This
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implication is typically ignored. That is worrisome since scoring missing responses as

wrong is still commonly used in many assessments, which utilize IRT models. This so-

called Incorrect-Answer-Substitution (IAS) will be considered in more detail in Section

4.3.1 using the derivations from this section.

Figure 3.2 shows the expected sum scores E(S |U) and E(SMiss |U) of Data Example

A. The correlation Cor[E(S |U), E(SMiss |U)] = 0.964. Insofar, the high correlation in the

Figure 3.2: Comparison between the expected sum scores E(S |U) and E(SMiss |U) (left) and the sum
scores S and SMiss (right) in Data Example A. The grey dotted line is the bisectric and the
blue line is the regression line.

data example seems to suggest that the rank order is not affected. However, this is specific

for the conditions used to simulate this particular data example. The high correlation is

driven by the strong covariance between the ξ and θ. The lower Cor(ξ, θ) is, the higher

the probability is that even highly proficient persons show considerable proportions of

missing data. And the bias is expected to increase with increasing values of ξ since

the omitted items are more likely to be answered correctly due to higher probabilities

P(Yi = 1 | ξ). Non-responses in low proficient persons are less influential with respect to

the bias of the sum score. Their probabilities P(Yi = 1 | ξ) are comparably low. From

Equation 3.24 follows that the bias is generally small given P(Yi = 1 | ξ) is small. For

the purpose of illustration, two additional data examples with the same 30 items and the

same sample size were generated to show the effect of lower correlations between ξ and θ.
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Two conditions were simulated Cor(ξ, θ) = 0.5 and Cor(ξ, θ) = 0.2. Figure 3.3 illustrate

the effects graphically. The correlations Cor[E(S |U), E(SMiss |U)] of the expected sum

scores are 0.902 given Cor(ξ, θ) = 0.5 and 0.792 if Cor(ξ, θ) = 0.2. The correlations

were even lower for the realized sum scores in both simulations (r(S , SMiss) = 0.815

given Cor(ξ, θ) = 0.5; r(S , SMiss) = 0.723 given Cor(ξ, θ) = 0.2). Consequently, the

correlation Cor(SMiss, S ) decreases as well with decreasing values Cor(ξ, θ). This implies,

in turn, that the reliability decreases too. However, even if the correlation Cor(SMiss, S )

Figure 3.3: Comparison between expected sum scores E(S |U) and E(SMiss |U) given Cor(ξ, θ) = 0.5
(left) and Cor(ξ, θ) = 0.2 (right). The grey dotted line is the bisectric. The blue line is the
regression line.

is very high and the reliability and the rank order are hardly affected, the expected value

of the sum scores E(SMiss) can be considerably shifted. Since CTT is a norm-referenced

assessment, this threatens the interpretation of test scores. For example, assume that there

were two assessments of the same population: a low- and high-stakes assessment. As in

real testings, the rates of missing responses were much larger in low-stakes than in high-

stakes assessments. Data of the low-stakes assessment were used for standardization. If

the test scores SMiss or monotone functions f (SMiss) of the high-stakes assessment were

interpreted with respect to these test norms, the sample of the high-stakes assessment

would seem to be more proficient because of lower rates of item nonresponses. The

standardization group was tested under typical low-stakes conditions. If this is related to
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higher proportion of missing data, the test norms are not meaningful in the high stakes

assessment.

To summarize this section, simply to use the number right score as test score means to

consider different variables depending on the presence of missing data. The sum score S

in absence of non-responses and SMiss in presence of missing data are different random

variables with different distributions. Whereas S depends only on the items Yi, SMiss is a

sum of the I product variables (Yi · Di). It was shown that the sum score is always nega-

tively biased due to the implicit recoding of non-responses to Yi = 0. In achievement tests

this means that missing responses are treated as observed incorrect answers. From the

statistical point of view this ignores the positive probability of a correct response given

the latent ability even for omitted or not reached items. This was shown analytically

considering the conditional expected bias E(SMiss − S |U) given the person variable. As-

suming a latent response propensity θ the correlation Cor(SMiss, S ) decreases with lower

correlations Cor(ξ, θ) which results in lower reliabilities of SMiss. Finally, the test norms

become meaningless if the missing data mechanism and the distribution of D differs be-

tween the standardization group and the sample of interest, even if both are representative

samples with respect to the latent variable that is intended to be measured. It was noted

that the treatment of missing items as incorrect responses is implicit using the sum score

but is explicit when incorrect answer substitution is applied. This is still widely used in

applications of latent trait models and will be examined in more detail in Section 4.3.1.

3.1.2 Proportion correct

Using the sum score when missing data are present is equivalent to recoding non-responses

to zero. It was shown that in practically all real situations a negative bias will result unless

very strong and implausible assumptions hold true. Due to plausibility considerations, of-

ten the proportions correct score P+ is preferred to the sum score, because the number of

missing responses is taken into account. P+ is defined as

P+ =

∑I
i=1 Yi,Di=1∑I

i=1 Di

, (3.31)

given that at least one item is responded to (
∑I

i=1 Di ≥ 1). Suppose that two test takers u1

and u2 answered 10 items correctly but u1 completed 30 items whereas u2 answered 50

items. A comparison of the achievement between the two examinees based on the sum

score would suggest equal performance on the test. Taking into account that u1 answered
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only 30 items the proportion of correctly answered items is P+(u1) = 1/3 compared to

P+(u2) = 1/5 of person u2. Obviously, the conclusion would be different depending on

the test score S or P+. At first sight, it seems plausible to prefer P+, because P+ is a

individually standardized sum score. This can directly be seen in Equation 3.31. The

nominator is simply the sum score SMiss, that is scaled by the number of completed items
∑I

i=1 Di in the denominator of Equation 3.31. Therefore, P+ accounts for missingness and

does not implicitly convert missing values into Yi = 0. The question is whether the stan-

dardization by the number of completed items is sufficient to accomplish comparability

between test takers.

In order to answer this question, we could proceed similarly as in the case of the sum

score. That is, the expected proportion correct E(P+ |U) can be considered in absence

and in presence of a nonresponse mechanism. If no missing data mechanism exists, then

E(P+ |U) is simply I−1 ·E(S |U) since all response indicators are Di = 1. However, under

any missing data mechanism the number of answered items
∑I

i=1 Di is also a random

variable. Generally the regression E(P+ |U) can be written as the conditional expectation

of Equation 3.31 given U:

E(P+ |U) = E

(
1

∑I
i=1 Di

·
I∑

i=1

Yi,Di=1

∣∣∣∣∣ U
)

(3.32)

Let W = (
∑I

i=1 Di)−1 be the number of answered items. The nominator of Equation 3.31

is equal to SMiss (cf. Equation 3.17). Therefore, we can rewrite Equation 3.32 as

E(P+ |U) = E(W · SMiss |U) (3.33)

= E(W |U) · E(SMiss |U) +Cov(W, SMiss |U) (3.34)

Let εW and εSMiss
be the residuals of E(W |U) and E(SMiss |U) respectively. The condi-

tional covariance Cov(W, SMiss |U) equals the regression

E([W−E(W |U)][SMiss−E(SMiss |U)] |U). Because E(εW) = E(εSMiss
) = 0, this is the con-

ditional covariance Cov(εW , εSMiss
|U) of the residuals. Assuming Cov(εW · εSMiss

|U) = 0,

it follows:

E(P+ |U) = E(W |U) · E(SMiss |U). (3.35)

The first regression is the expected inverse number of answered items given the per-

son variable U. Unfortunately, from the Jensen’s inequality follows E[ f (
∑I

i=1 Di)] >
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f [E(
∑I

i=1 Di)] (Heijmans, 1999; Koop, 1972). Hence, Equation 3.35 can only be simpli-

fied to:

E(P+ |U) = E

[( I∑

i=1

Di

)−1∣∣∣∣∣ U
]
·

I∑

i=1

P(Yi = 1 |U) · P(Di = 1 |U) (3.36)

Nevertheless, this Equation is insightful with respect to the expected bias of the propor-

tion correct score. The regression E(SMiss |U) is a weighted sum. The true scores 3 are

weighted by the item response propensities P(Di = 1 |U). If easier items are more likely

to be answered, the values of the regression E(SMiss |U) will be higher than in situations

when difficult items are preferred to be answered. However, the expectation E(W |U) of

the reciprocal of the number of completed items given U does not account for differences

in characteristics of items that are more or less likely answered. From this point of view,

the proportion correct score can be positively or negatively biased. If easier items are

more likely to be completed by test takers while difficult items are preferentially omitted,

the proportion correct score is expected to be positively biased. In contrast, if there is a

tendency to skip easier items while preferring to answer difficult items, the P+ is most

likely negatively biased. If a person with a given ability chooses only easy items, the ex-

pected proportion correct will be higher than when completing a selection of only difficult

items.

In previous studies is has become evident that in educational low stakes assessments

preferentially more difficult items are omitted (Culbertson, 2011, April; Rose et al., 2010).

This might reflect psychological evaluative processes of test takers while completing the

test. At least in achievement tests, it seems that examinees judge the difficulty of the items.

More likely such items are completed that are expected to be answered correctly. As a

consequence, more difficult items are more likely skipped. In order to study the effects

of systematic selection of items depending on their difficulties, the mean test difficulty Tβ

can be considered. Tβ is the mean of the item difficulties of those items answered by a

test taker. That is

Tβ =

∑I
i=1 βi · Di∑I

i=1 Di

. (3.37)

Tβ can be calculated for each test taker. If no missing data mechanism exist Tβ is a

constant Tβ = I−1 ∑I
i=1 βi. However, if a nonresponse mechanism exists, Tβ is the mean

item difficulty of only the completed items and is a measure of the average difficulty of the

3Since P(Yi = 1 |U) = τi.
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test with item non-responses. If a test taker omitted only difficult items, Tβ will be low.

Omissions of only easy items result in a high value of Tβ. The average test difficulty can

and will most likely vary across the persons depending on the missing pattern. However,

the comparability of test scores is in doubt if each test taker composes his or her own

test consisting of different items. Tβ is of diagnostic value. It can be utilized to study

examinees choice behaviour of items with respect to its difficulty. If the item response

propensities P(Di = 1 |U = u) are known for each u of U, the weighted mean T
(w)
β

can be

computed and is given by

T
(w)
β
=

∑I
i=1 βi · P(Di = 1 |U)
∑I

i=1 P(Di = 1 |U)
. (3.38)

Whereas Tβ is a function f (β, D), T
(w)
β

is a function f (β,U) of the item difficulties and

the person variable U that can be interpreted as an approximation of the expected mean

test difficulty of a person4. As already noted, it is expected that Tβ and T
(w)
β

vary across

the persons. If easier items are generally preferred by test takers and Cor(ξ, θ) , 0, then a

systematic relationship between the latent ability ξ and Tβ as well as between ξ and T
(w)
β

is implied. Hence, examinees prefer to skip too-difficult items relative to their ability.

The test takers compose their own test with items they expect to respond to correctly.

Figure 3.4 shows Tβ and T
(w)
β

given the latent response propensity and the latent ability. In

Data Example A a latent response propensity θ as a function f (U) was used to determine

item response propensities. Therefore, P(Di = 1 |U) in Equation 3.38 was replaced by

P(Di = 1 | θ) implying that T
(w)
β
= f (β, θ) (red line in Figure 3.4). As expected the mean

test difficulty decreases with lowering values of the latent response propensity. Due to the

high correlation Cor(ξ, θ) = 0.8, the expected mean test difficulties T
(w)
β

and Tβ are also

strongly correlated with ξ (r(T (w)
β
, ξ) = 0.797 and r(Tβ, ξ) = 0.548).

However, the weighted mean test difficulty T
(w)
β

is not necessarily a strictly monoton-

ically increasing function of θ as in Data Example A. Equation 3.38 shows that T
(w)
β

is

determined by item difficulties βi and item response propensities P(Di = 1 |U). Consid-

ering the case where the item response propensities are a parametric function of a latent

response propensity θ with P(Di = 1 |U) = P(Di = 1 | θ), T
(w)
β

is a function f (β, γ, θ). In

this case γ denotes the vector of parameters of the model of D. In Data Example A this

is the vector γ = γ1, . . . , γI of thresholds (see Equations 3.2). In this case T
(w)
β

depends on

4Strictly speaking the expected mean test difficulty is E(Tβ |U) = E[(
∑I

i=1 Di)−1 ∑I
i=1 βi · Di |U) that is

again the expectation of a ratio and is not exactly equal to the weighted mean T
(w)
β

(Heijmans, 1999;
Koop, 1972).
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Figure 3.4: Relationship between individual mean test difficulties (Tβ and T
(w)
β

) and the latent variables

ξ and θ (Data Example A). The grey line represents the mean β̄. The blue line is the
regression line.

the three factors: (a) the latent response propensity, (b) the parameters of the regression

P(Di = 1 | θ), and (c) the item difficulties βi.

To study the influence of these factors on T
(w)
β

, different cases can be considered theo-

retically. First, it is assumed that all parameters γi are equal for all Di implying P(Di =

1) = P(D j = 1) (for all i and j in 1, . . . , I). Nevertheless P(Di = 1 | θ) may vary across

the persons due to interindividual differences in the latent response propensity. However,

given a particular person u with θ(u), the item response propensities are equal across the

items. In this case the index i can be omitted: P(Di = 1 | θ) = P(D = 1 | θ) (for all

i = 1, . . . , I). Equation 3.38 of the weighted mean test difficulty can be written as

T
(w)
β
=

∑I
i=1 βi · P(Di = 1 | θ = θ)
∑I

i=1 P(Di = 1 | θ = θ)
(3.39)

=

∑I
i=1 βi · P(D = 1 | θ = θ)
∑I

i=1 P(D = 1 | θ = θ)
(3.40)

=
P(D = 1 | θ = θ) ·∑I

i=1 βi

I · P(D = 1 | θ = θ) (3.41)

=

∑I
i=1 βi

I
. (3.42)
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Hence, if the parameters are equal for all items, then the weighted mean test difficulty

T
(w)
β

is constant and equal to the unconditional mean β̄ of item difficulties. If D ⊥ ξ | θ
this additionally implies that the weighted mean test difficulty is always β̄ regardless the

value of the latent ability ξ of the test takers. Hence, if a latent response propensity exist

the equality of parameters γi across the response indicators suggests that persons do not

tend to omit items in a way such that the average difficulty depends on the latent ability.

However, in realized data Tβ can vary depending on the realized missing data pattern

D = d.

A second case where T
(w)
β

is constant across persons is trivial. If the item difficulties

βi are equal for all items i in 1, . . . , I, then the index i can be omitted from difficulty

parameters β. Hence

T
(w)
β
=

∑I
i=1 β · P(Di = 1 | θ)
∑I

i=1 P(Di = 1 | θ)
(3.43)

=
β ·∑I

i=1 P(Di = 1 | θ)
∑I

i=1 P(Di = 1 | θ)
(3.44)

= β. (3.45)

Thus, if all i items have the same difficulty, then T
(w)
β
= Tβ = β.

The theoretical considerations highlight that the stochastic relation between Tβ and the

latent variable ξ is mainly driven by the correlation Cor(θ, ξ) and the parameters γ and β

of a parametric model for (Y, D). To illustrate these findings, additional data sets were

simulated. Figure 3.5 shows the results for different correlations Cor(ξ, θ) and varying

magnitudes of the relation between the parameters γi and βi. To express this relation-

ship between the parameter vectors by a single value, the sample correlation coefficient

r(β, γ) was used. It is important to note that the correlation is defined with respect to

two random variables. The parameter vectors γ and β are typically not considered to be

vectors of identical and independently distributed random variables. However, the sample

correlation coefficient r(β, γ) is computed in the same way as the sample estimate of the

correlation and is given by

r(β, γ) =

∑I
i=1(βi − β̄) · (γi − γ̄)√∑I

i=1(βi − β̄)2 ·
√∑I

i=1(γi − γ̄)2

. (3.46)

r(β, γ) is useful here to express the relationship between difficulties of items and their

overall chance to be answered or not, which is expressed by γi. In Equation 3.46 β̄ and γ̄
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are the means of the respective parameters βi and γi. The nine simulated data examples

were simulated with the same parameters βi as shown in Table 3.1. The parameters γi

are different but correlated with βi. The values 0, 0.5, and 0.8 were chosen for Cor(ξ, θ),

and 0.08, 0.46, and 0.95 were chosen for r(β, γ). Hence,the easier the items are, the

higher the unconditional probabilities of an item response are. The overall proportion of

missing data ranged between 47 − 49% similar to Data Example A. The direction of the

correlation r(β, γ) determines also the direction of the correlation Cor(Tβ, θ). The cor-

relation was always r(β, γ) > 0. The direction of the correlation Cor(Tβ, ξ) depends on

both Cor(Tβ, θ) and r(β, γ). If Cor(ξ, θ) > 0 and Cor(Tβ, θ) > 0 or if both are negative,

then Cor(Tβ, ξ) will be positive. If the correlations Cor(Tβ, θ) or r(β, γ) have oppositional

signs, then Cor(Tβ, ξ) will be negative. Figure 3.5 allows to conclude that the correlation

Figure 3.5: Nine simulated data sets with different values for Cor(ξ, θ) and r(β, γ). The blue line
represents the linear regression E(T (w)

β
| ξ). The gray line indicates the mean β̄ of the item

difficulties.

r(β, γ) is strongly related to the average drop of the mean test difficulty due to item selec-
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tion. Whereas, the correlation Cor(ξ, θ) drives the relationship between the latent ability

ξ and missingness, the relationship between β and γ determines how systematic item non-

responses are with respect to items? difficulties. If both Cor(ξ, θ) and r(β, γ) are high, the

mean test difficulty is strongly related to ξ. What are the implication of these results with

respect to the use of P+ in presence of missing data?

The findings demonstrated that the omission of items means that test takers compose

their own test. The P+ score does not account for this selection. This is problematic if

items are systematically skipped due to their characteristics such as the item difficulty. For

example, if preferably difficult items are omitted the average test difficulty Tβ decreases.

If contemporarily the response propensity of test takers is correlated with the ability, then

the mean test difficulty is also positively correlated with the latent ability ξ. Hence, the

lower the proficiency levels of a person is, the higher the probability of responding only to

easy items while skipping difficult items. Since the P+ score only accounts for the number

of omitted items but not which items are missing, the bias of P+ can be positive or nega-

tive. If Tβ > β̄, then the bias of P+ is expected to be negative. If Tβ < β̄, then the bias of P+

is expected to be positive. Data Example A was generated so that Tβ ≤ β̄ for all test takers.

This is in line with most empirical findings. Difficult items are most likely to be missing

and the tendency to produce item nonresponses and the persons’ proficiency is positively

correlated. In this case the bias of P+ should be positive especially for persons with lower

ability levels. The bias of the proportion correct score is given by P+ − S/I. Note that S/I

is the proportion correct without missing data which is typically not available in real ap-

plications with missing data. Additionally, the expected bias E(P+ |U)− I−1 ·E(S |U) can

be considered. As Equation 3.36 shows, the conditional expectation E(P+ |U) involves

the regression E[(
∑I

i=1 Di)−1 |U] whose values are difficult to obtain. For Data Example

A, the values E[(
∑I

i=1 Di)−1 |U = u] were approximated by simulating 1000 data sets with

the true person parameters of ξ and θ and the true item parameters β and γ. For each

test taker 1000 simulated missing patterns resulted. The means of the inverse sums of

completed items were used as estimates Ê[(
∑I

i=1 Di)−1 |U = u]. In the next step, these

values were inserted in Equation 3.36 to obtain approximations of E(P+ |U = u). Finally,

the expected bias of P+ was computed. Figure 3.6 shows the expected and the observed

bias of the proportion correct score as realized in Data Example A, in relation to θ ad ξ.

The bias increases with a lower willingness or tendency of the examinees to respond to

test items. As expected, only to complete easy items is beneficial for most test takers.

In other words, the omission of difficult items is rewarded when the proportion correct

is used as test scores. Note that persons with very low values of ξ will not profit from
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Figure 3.6: Expected and observed bias of the proportion correct score P+ given θ and ξ (Data Example
A). The red line represents a smoothing spline regression. The blue line denotes a linear
regression.

selecting easy items, since the probability of a correct responses are quite low even for

these items. Similarly, highly proficient persons also show very little bias because even

the difficult items, which most likely would be skipped, would be answered correctly by

most of these persons. Finally, in the left graph of Figure 3.6, the bias of the observed

data are shown in relation to the latent ability ξ.

It is important to note that some these results are specific for the investigated conditions

used for the simulation of Data Example A. However, in conjunction with the theoretical

derivations from above, the results allow for some general conclusions. Compared to the

sum score, P+ accounts for missing data by considering only completed items. However,

this is not sufficient if test takers create their own test by selecting items due to certain item

characteristics. If completed and missing items differ systematically, then the compara-

bility of the proportion correct scores across examinees potentially get lost. For example,

if items are picked out by test takers due to item difficulties, then the proportion correct

score P+ will be biased. Theoretically, the bias can be positive or negative depending on

whether easy or difficult items are preferentially omitted or not reached. Here the mean

test difficulty Tβ has been introduced to quantify item selection due to item difficulties. In

applications Tβ can easily be estimated using the item parameter estimates β̂i. This might
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be of diagnostic value in order to study systematics in selection of items. Data Example

A was simulated in accordance with empirical findings that report that preferentially dif-

ficult items are more likely skipped. In this case, P+ tends to reward the omission of items

since P+ is on average positively biased. This is all the more true, the stronger the relation

between the difficulties βi and P(Di = 0) is5. Since the proportion correct score P+ does

not account for systematic differences in observed and missing items, the use of P+ seems

questionable in most applications regardless of whether the missing data mechanism is

MCAR, MAR, or non-ignorable. There are only a few less realistic situations where the

use of P+ is unproblematic in presence of missing data. Only if all items have the same

item difficulties, then the proportion correct scores are comparable across persons with

different missing pattern. Hence, the use of P+ as the test score is not recommended

under any missing data mechanism.

3.1.3 IRT Based Test Scores: MLE, WLE, and EAP

Different estimation methods have been developed in order to obtain estimates for per-

sons’ individual trait levels as well as item parameters. The joint maximum likelihood

estimation (JML; e. g. Baker & Kim, 2004) has been developed first and has its roots in

the fundamental work of Birnbaum (Birnbaum, 1968). JML can be used for one-, two-,

and three-parametric IRT models. Unfortunately, the JML estimation suffers from incon-

sistent parameter estimates since the number of estimates increases with the number of

observations (e g. Little & Rubin, 1984; Baker & Kim, 2004). The problem of incon-

sistency can be circumvented using the conditional maximum likelihood (CML) method.

CML is based on the property that the sum score is a sufficient statistic with respect to

the latent person variable ξ in one-parameter models of the Rasch family6. Unfortunately,

CML is not applicable for two- and three-parameter models. With the marginal maximum

likelihood (MML) estimation method an alternative ML estimator has been developed for

one-, two-, and three-parameter models (Bock & Lieberman, 1970; Bock & Aitkin, 1981;

Baker & Kim, 2004). The problem of inconsistency is solved by assuming a distribu-

tion of the latent variable ξ that can be described parametrically. Instead of estimating

all person parameters, only the parameters of the distribution g(ξ) need to be estimated

jointly with the item parameters. The number of estimands is then independent of the

5In Data Example A P(Di = 0) depends on and the parameters γi relative to the distribution of the latent
response propensity. Therefore, the relationship between βi and P(Di = 0) is reflected by r(γ, β)

6The Rasch family subsumes models for dichotomous or polytomous items where the item discrimination
parameter equals one and the lower asymptote („pseudo-guessing parameter“) is zero.
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sample size. Usually, the (multivariate) normal distribution is assumed, which is suffi-

ciently specified by the vector of expected values E(ξ) and variance-covariance matrix

Σ(ξ). The advantage of consistent item parameter estimation under MML is offset by ad-

ditional estimation stages required to obtain individual person parameter estimates. These

are estimated in a subsequent estimation procedure taking the previously estimated item

parameters as known. Different ability estimators have been developed. Here the consid-

eration is confined to three estimators commonly used in educational and psychological

testings: (a) the ML estimate, (b) Warm’s weighted maximum likelihood (WML) esti-

mate, and (c) the expected a posteriori (EAP) estimate. Due to the outlined shortcomings

of inconsistent parameter estimates, JML estimation will be left out here. Hence, the bias

of ML, WML, and EAP person parameter estimates is confined to the case where item

parameters are estimated with MML ignoring missing data in a first step and subsequent

estimation of person parameters in a second step based on incomplete response pattern

Yobs = yobs. It should be noted that the generalizability of the results will be limited to

MML estimation, since the bias of item and person parameter estimates due to missing

data can be different depending on the estimation method, JML or MML (DeMars, 2002).

Since person parameter estimation under MML estimation is a two-step procedure that

involves fixed item parameter estimates in the second step, unbiasedness of the person pa-

rameters rest upon unbiasedness of item parameter estimates. Biases that arise in earlier

estimation stages are potentially transmitted to the subsequent person parameter estima-

tion. As already mentioned, item and person parameter estimates are mutually depen-

dent. That is, the ML estimators involves conditional response category probabilities

P(Yi = yi | ξ; ι) to estimate both item and person parameters that are themselves functions

of item parameters ι and person parameters represented by ξ. No closed-form expres-

sions exist for estimation equations of item difficulties, item discriminations, and person

parameters. Therefore, iterative estimation procedures such as the EM algorithm are re-

quired. As a consequence, in contrast to the sum score and the proportion correct score,

analytical studies of the bias of item and person parameter estimates are quite limited.

For that reason a simulation study was utilized to investigate potentially biased parameter

estimation due to item nonresponses. The chosen conditions in the simulation study are

described in the beginning of this chapter (see Chapter 3). Additionally, IRT parameter

estimates of Data Example A will be presented for illustration.

Bias of IRT person parameter estimates due to item nonresponses Generally, all

estimators under study were unweighted or weighted maximum likelihood or Bayesian
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estimators. Rubin (1976) and Little and Rubin (2002) demonstrated in detail that ML

and Bayesian estimators will be consistent and unbiased if the non-response mechanism

is MCAR or MAR (ignorable missing data). Glas (2006) confirmed unbiased parameter

estimation if the missing data mechanism w.r.t. Y is MAR given Y. De Mars (2002)

stated that unbiased parameter estimation requires the inclusion of Z into a joint model of

(Y, Z) if the missing data mechanism w.r.t. Y is MAR given (Y, Z). These issues will be

discussed in detail in Section 4.5. For now it suffices to note that especially nonignorable

item nonresponses are expected to result in biased parameter estimates. Therefore, the

simulation study was confined to compare different conditions with nonignorable missing

data and nonresponses that are MCAR. Covariates Z were not included. The degree of

nonignorability was varied by different values of Cor(ξ, θ). If Cor(ξ, θ) = 0, then the

missing data mechanism w.r.t. Y was MCAR. The stronger the correlation Cor(ξ, θ) was,

the stronger the implied stochastic dependency between Y and D was. In Section 2.3 it

was scrutinized that Y✚✚⊥ D implies stochastic dependence between D and ξ suggesting that

person parameter estimates are potentially biased. However, in contrast to the proportion

correct score, IRT person parameter estimation includes information of the items that were

completed. Hence, person parameter estimates are comparable across test takers even if

different sets of items have been answered. Interindividual differences in Tβ are not per se

a problem and are sometimes even intended in branched and adaptive testing7. Therefore,

neither the bias of the sum score nor the bias of the proportion correct score have direct

implications with respect to the bias of IRT estimates regarding to individual values of ξ.

Since person and item parameters have a common metric, the bias of the item parameters

is expected to result in similarily biased person parameter estimates. Taken together, the

following expectations can be formulated:

1. There is a systematic bias of ML, WML, and EAP estimates given the missing data

with respect to Y is MNAR.

2. The pattern of biases of item and person parameters are expected to be similar.

The second expectation implies that the biases of item and person parameter estimates are

correlated. Table 3.3 shows summary statistics of ML, WLM, and EAP estimates of Data

Example A. The results were obtained using ConQuest 2.0 (Wu et al., 1998) for item and

person parameter estimation.

7For example, in CAT Tβ is expected to be correlated with ξ.
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Table 3.3: Summary Information on ML-, WML-, and EAP Person Parameter Estimates Based on
Complete and Incomplete Data (Data Example A).

Estimator Mean Variance r(ξ, ξ̂) Rel(ξ̂) MSE r(bias, ξ)

Complete data

ML 0.005 1.320 0.908 0.834 0.233 0.089
WML 0.002 1.241 0.910 0.826 0.214 0.027
EAP 0.000 0.859 0.912 0.833 0.169 -0.378

Incomplete data (ignoring missingness)

ML -0.035 1.557 0.816 0.666 0.520 0.025
WML -0.088 1.349 0.827 0.641 0.427 -0.061
EAP -0.001 0.632 0.821 0.685 0.327 -0.608

Bias of ML person parameter estimates The ML estimation method is introduced in

detail in Section 4.2. Here, it is sufficient to note that the ML person parameter estimate

ξ̂ML of a unidimensional latent variable ξ is that value ξ ∈ Ωξ that maximizes the condi-

tional probability P(Y = y | ξ). Ωξ is the parameter space. ξ̂ML is estimated by maximizing

the response pattern likelihood L(yn; ι). The latter is proportional to the conditional prob-

ability P(Yn = yn | ξ; ι). The subscript n indicates that the response pattern likelihood is

independently maximized for each test taker n = 1, . . . ,N. Under the assumption of local

stochastic independence this is:

P(Yn = yn | ξ; ι) =
I∏

i=1

P(Yni = yni | ξ; ι) (3.47)

The pattern likelihood is a continuous differentiable function with respect to ξ. The

value that maximizes L(yn; ι) is the root of the first partial derivative of Equation 3.47

with respect to ξ. Due to theoretical and computational reasons, commonly the loga-

rithm ln[L(yn; ι)] = ℓ(yn; ι) of the likelihood functions is used which is proportional to

ln[P(Yn = yn | ξ; ι)] used for the estimation. For the case of dichotomous items Yi, the first

derivative of ℓ(yn; ι) with respect to the person parameter is

∂

∂ξ
ln[P(Yn = yn | ξ; ι)] =

I∑

i=1

αi[yni − P(Yni = 1 | ξ; ι)]. (3.48)

The estimation equation involves the I conditional probabilities P(Yni = 1 | ξ; ι) that are

themselves functions of the estimand ξ. Additionally, the item parameter indexed by ι are

68



involved. In application the MML item parameter estimates are used instead of the true

values ι. Hence, unbiased item parameter estimates are necessary for an accurate person

parameter estimation. So far no missing data were considered. However, nonresponses

reduce observed information for parameter estimation. In this case, only the likelihood

L(yn;obs; ι) of the observed response pattern is maximized. Formally, this can be expressed

by the inclusion of response indicators including Di in the Equations 3.47 and 3.53. The

pattern likelihood of Yn;obs = yn;obs is proportional to

P(Yn;obs = yn;obs | ξ; ι) =
I∏

i=1

P(Yni = yni | ξ)Di=di . (3.49)

Accordingly, the first derivative of ℓ(yn;obs; ι) is proportional to

∂

∂ξ
ln[P(Yn;obs = yn;obs | ξ; ι)] =

I∑

i=1

dniαi[yi − P(Yni = yni | ξ; ι)]. (3.50)

Hence, the response indicators work as selecting variables Di. Only the weighted dif-

ferences αi[yi − P(Yni = yni | ξ; ι)] of the responded items contribute to the estimation

of the person parameter. The loss of information should be reflected by increased stan-

dard errors. Furthermore, ML estimates are potentially biased. Figure 3.7 shows the

bias of the ML person parameter estimates in Data Example A given the latent vari-

able ξ (left) and the number of nonresponses (right). Surprisingly, the bias of the ML

estimates was uncorrelated with the latent ability (r = 0.025, t = 1.109, df = 1998,

p = 0.268), although the number of item nonresponses was strongly correlated with the

ξ (r = −0.719, t = −46.274, df = 1998, p < 0.001). Although difficult items are more

likely to be skipped, on average persons do not profit from preferentially responding to

easier items (see right graph of Figure 3.7). As expected, the variation of the ML esti-

mates increased with the number of nonresponses but no systematic bias could be found.

The correlation between the bias and the number of omitted items was not significant

(r = 0.025,t = 1.257, df = 1998, p = 0.209). Additionally, Table 3.3 shows that the

mean of the ML estimates is -0.035 (t = −1.261, df = 1999, p = 0.207). Since the latent

variable ξ used to simulate the data was unit normally distributed, and the model was

identified by fixing the scale of the latent variable to zero, the mean of ξ̂ML is equal to the

average bias of the ML estimator8. Hence, the average bias is not significantly different

from zero. However, as the results of the simulation study revealed, this is not generally

8E(ξ) = 0⇒ E(ξ̂ML) = E[ξ + Bias(ξ̂ML)] = E(ξ) + E[Bias(ξ̂ML)] = E[Bias(ξ̂ML)]
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Figure 3.7: Relationship between the bias of the ML person parameter estimates of Data Example
A and the latent variable ξ (left) and the number of non-responses (right). The red line
represents a smoothing spline regression.

the case. Figure 3.8 shows a systematic negative bias of ML person parameter estimates.

A largest bias was found if the correlation Cor(ξ, θ) was high and the overall proportion of

missing data was large. The graph indicates an interaction between these two factors. Fur-

thermore, there is a small positive bias if the missing data mechanism w.r.t. Y is MCAR

but the correlation r(β, γ) increases. Nevertheless, the correlation Cor(ξ, θ) and the overall

proportion of missing data seem to be the most influential factors determining the bias.

This could be confirmed using a saturated regression model with the bias as the dependent

variable and the factors shown in Table (see Table 3.2) as independent variables. Due to

interaction terms the number of parameters is very large (720). The consideration and

interpretation of single regression coefficients becomes challenging and may not facilitate

the understanding of the importance of single factors with regard to the bias of ML esti-

mates. Therefore, differences in R2-values between regression models with and without

particular factors are used to identify most important sources of the bias. To reduce the

number of possible models, the seemingly most important two factors - the correlation

Cor(ξ, θ) and the overall proportion of missing data - were given focus. Four saturated

regression models were computed with the bias of the parameter estimates as dependent

variable: (a) Model one (M1) that contained all five factors that were systematically varied

in the simulation study (see Table 3.2), (b) model two (M2) without the factor Cor(ξ, θ),
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Figure 3.8: Mean Bias of the ML person parameter estimates using the 1PLM (simulation study).

(c) model three (M3) where the overall proportion of missing data was not included as

independent variable, and (d) model four (M4) without both factors - Cor(ξ, θ) and the

overall proportion of missing data. The results are summarized in Table 3.4. 38.9 %

of the variation in the bias of ML person parameter estimates could be explained by all

five factors in the simulation study. This proportion reduces to 10.7 % if Cor(ξ, θ) was

not included as independent variable. 26.9 % explained variance was found in model M3

ignoring the overall proportion of missing data, and only 2.3 % of the variance of the

bias is explained if Cor(ξ, θ) and the overall proportion of missing data are excluded from

the model. The results confirm that the degree of nonignorability given by Cor(ξ, θ) and

the overall proportion of missing data are the most important factors that determine the

bias of ML person parameter estimates. Note that generalizability is limited in the sim-

ulation study. In real applications many other factors that were not considered here may

contribute to the bias.

Bias of Warm’s WML person parameter estimates Lord (1983b) described the bias

of ML estimates in tests consisting of a finite number of items. Warm (1989) proposed a
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Table 3.4: Determination Coefficients R2 of Saturated Regression Models M1−M4 for Mean Biases of
IRT Person and Item Parameter Estimates.

Dependent variable R2
M1

R2
M2

R2
M3

R2
M4

Mean Bias(ξ̂ML) 0.389∗∗∗ 0.107∗∗∗ 0.269∗∗∗ 0.024∗∗∗

Mean Bias(ξ̂WML) 0.410∗∗∗ 0.193∗∗∗ 0.240∗∗∗ 0.056∗∗∗

Mean Bias(ξ̂EAP) 0.019 / / /

Mean Bias(β̂i) 0.416∗∗∗ 0.121∗∗∗ 0.261∗∗∗ 0.023∗∗∗

Mean Bias(α̂i) 0.051∗∗∗ 0.035∗∗∗ 0.027∗∗∗ 0.022∗∗∗

weighted ML (WML) estimator that reduces the bias of traditional ML estimates. Many

authors found that the WML estimator should be preferred to traditional ML estimates (e.

g. Hoijtink & Boomsma, 1996). Warm (1989) suggested to weight the likelihood function

by the square root
√

I(ξ) of the item information function I(ξ). Hence, the weighted

ML estimate ξ̂WML is that value of Ωξ that maximizes the weighted pattern likelihood

L(w)(yn; ι) = L(yn; ι) ·
√

I(ξ). Hence

L(w)(yn; ι) = P(Yn = yn | ξ; ι)
√

I(ξ) (3.51)

=

I∏

i=1

P(Yni = yni | ξ; ι)
√

I(ξ). (3.52)

The first derivative of the weighted log-likelihood function ℓ(w)(yn; ι) is

∂

∂ξ
ln[ℓ(w)(yn; ι)] =

I∑

i=1

αi[yi − P(Yni = 1 | ξ; ι)] + ∂
∂ξ

ln
( √

I(ξ)
)
. (3.53)

In the case of the 2PLM for dichotomous items Yi, the second summand in Equation 3.53

is

∂

∂ξ
ln

( √
I(ξ)

)
=

1

2I(ξ)

I∑

i=1

α3
i P(Yni = 1 | ξ; ι)2P(Yni = 0 | ξ; ι). (3.54)

Setting Equation 3.53 to zero and solving for ξ yields the weighted ML estimate ξ̂WML. If

any missing data mechanism exists, only observed item responses can be used for person

parameter estimation . Hence, the weighted response pattern likelihood L(w)(yn;obs; ι) of

the observed items is maximized and only the information of the observed items Iobs(ξ)

is involved. Hence, under any missing data mechanism the pattern likelihood of the ob-
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served items is

L(w)(yn;obs; ι) = P(Yn;obs = yn;obs | ξ; ι)
√

Iobs(ξ) (3.55)

=

I∏

i=1

P(Yni = yni | ξ; ι)Di=di

√
Iobs(ξ). (3.56)

Accordingly, the first derivative of the logarithm of L(w)(yn;obs; ι) is

∂

∂ξ
ln[ℓ(w)(yn;obs; ι)] =

I∑

i=1

diαi[yi − P(Yni = 1 | ξ; ι)] + ∂
∂ξ

ln
( √

Iobs(ξ)
)
, (3.57)

with

∂

∂ξ
ln

( √
Iobs(ξ)

)
=

1

2Iobs(ξ)

I∑

i=1

diα
3
i P(Yni = 1 | ξ; ι)2P(Yni = 0 | ξ; ι). (3.58)

As in the case of the ML estimator, the estimation equation of the WML estimates con-

sists also on the conditional probabilities P(Yni = yni | ξ; ι) and model parameters. Hence,

the WML estimator is expected to be similarly affected by item nonresponses as the tra-

ditional ML estimate. This is the more since Warm proved that ξ̂ML and ξ̂WML are asymp-

totically equally distributed. Figure 3.9 shows the relationship between the bias of ξ̂WML

and the latent variable ξ as well as the number of non-responses (Data Example A). The

bias is weakly correlated to the ability (r = −0.061, t = −2.732, df = 1998, p = 0.006).

As Rost (2004) stated, it is a characteristic of the WML estimates that values at the lower

end of ξ tend to be overestimated while those at the upper end tend to be underestimated.

This shrinkage is typical for Bayesian estimators. Indeed, although WML is not con-

sidered to be a Bayesian estimator, Jeffrey (Jeffrey, 1961) proposed to use the square

root of the information function as a non-informative prior distribution. Insofar, Warms’

WML estimator can also be regarded as a Bayesian estimator (Held, 2008; Hoijtink &

Boomsma, 1996). Hence, the negative correlation between the bias and the latent variable

ξ may reflect the shrinkage effect rather than the bias due to item nonresponses since the

latent ability and the number of missing items were substantially negatively correlated

(r = −0.719). The bias of the WLM estimates and the number of non-responses were

slightly positively correlated (r = 0.063, t = 2.839, df = 1998, p = 0.005). Also, the mean

ξ̂WML = −0.088 of the WML estimates is significantly different from zero (t = −3.394, df

= 1999, p < 0.001) although the model was identified with E(ξ) = 0. The loss of informa-

tion due to item nonresponses is reflected by a considerably reduced marginal reliability
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Figure 3.9: Relationship between the bias of the Warm’s weighted ML estimates of Data Example A
and the latent variable ξ (left) and the number of non-responses (right). The red line is a
smoothing spline regression.

Rel(ξ̂WML) = 0.614 and a twofold higher mean squared error (MSE = 0.427) compared to

the complete data (see Table 3.3).

On average the bias pattern of WML estimates (see Figure 3.10) found in the simulation

study is rather similar to that of the ML estimate (cf. Figure 3.8). Again, the correlation

Cor(ξ, θ) and the overall proportion of missing data seem to be the most influential fac-

tors of the WML bias. Both factors interact with one another. That is, no systematic bias

could be found if the missing data mechanism was MCAR (Cor(ξ, θ) = 0), even for large

proportions of missing data. The higher the correlation Cor(ξ, θ) is, the more bias results

from increasing proportions of missing data. 41.0 % of the variance in the bias could be

explained by all factors in the models (see Table 3.4). This proportion dropped to 5.6 %

if the correlation Cor(ξ, θ) and the overall proportion of missing data were not included

in the regression. In Data Example A a small positive correlation between the bias and

the number of non-responses was found. The simulation study confirmed that biasedness

of WML estimates and the correlation between the latent ability and number of missing

items depends on the correlation Cor(ξ, θ), the overall proportion of missing data, and

correlation r(γ, β) (see Figure 3.11). Complex interactions between these factors seem to

exist. If r(γ, β) is low, the bias of the WLM-estimates is increasingly positive with rising

proportions of missing data and higher correlations Cor(ξ, θ). However, if r(β, γ) = 0.5
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Figure 3.10: Mean bias of Warm’s weighted ML person parameter estimates using the 1PLM (simu-
lation study).

or r(β, γ) = 0.8, then a negative correlation between the bias of the WLM estimates and

the number of nonresponses was found, particularly if the number of items is small and

the missing data mechanism w.r.t. Y was MCAR (Cor(ξ, θ) = 0). This is all the more

interesting since the WLM estimator was on average unbiased if the nonresponse mecha-

nism was MCAR (see Figure 3.10). The results suggest that the WML and traditional ML

person parameter estimates are similarly affected by item nonresponses. Despite minor

differences, both tend to be increasingly negatively biased with increasing proportions

of missing data and higher correlations between persons’ proficiency and their response

propensity.

Bias of EAP person parameter estimates The expected a posteriori person parameter

estimates ξ̂EAP, or simply EAPs, are Bayesian estimators. In the Bayesian framework the

parameters are regarded as random variables with a distribution. Thus, the model parame-

ters ι and the manifest variables Y have a joint distribution g(Y, ι) that can be factored into

g(Y, ι) = g(Y | ι)g(ι) with g(ι) as the prior distribution. Using MML estimation the item
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Figure 3.11: Correlation between the bias of Warm’s weighted ML person parameter estimates and
the number of non-responses (simulation study).

parameters are typically estimated first and then taken as fixed when estimating EAPs in

a second step. Hence, the joint distribution of the item responses and the latent variables

aimed to be estimated is g(Y, ξ; ι) = g(Y | ξ; ι)g(ξ). In this case ι consists of the item

parameters and is replaced by the vector ι̂ of sample estimates in real applications. The

first factor is simply the conditional distribution g(Y | ξ; ι) = P(Y = y | ξ; ι) that is also

involved in ML and WML estimation. All Bayesian inferences rest upon the posterior

distribution (e. g. Gelman et al., 2003; Held, 2008; Skrondal & Rabe-Hesketh, 2004).

That is the distribution of the estimand given the observed data and researchers? prior

belief expressed by the prior distribution. The posterior distribution of the latent variable

ξ of a randomly chosen person n is

g(ξ |Yn = yn; ι) =
P(Yn = yn | ξ; ι)g(ξ)∫
R

P(Yn = yn | ξ; ι)g(ξ)dξ
, (3.59)
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given Ωξ = R. The EAP is defined as the expected value of the posterior distribution. In

a unidimensional latent trait model this is

ξ̂EAP =

∫
R
ξ · P(Yn = yn | ξ; ι)g(ξ)dξ

∫
R

P(Yn = yn | ξ; ι)g(ξ)dξ
. (3.60)

The denominator is simply the unconditional probability P(Yn = yn; ι) given a particu-

lar model indexed by ι. In the nominator the pattern likelihood (see Equation 3.47) is

involved. Hence, Equation 3.60 can be written as

ξ̂EAP =

∫
R
ξ · L(yn; ι)g(ξ)dξ

P(Yn = yn; ι)
. (3.61)

However, under any missing data mechanism the EAPs are estimated only due to the

observed items yobs. The EAP estimator is then

ξ̂EAP =

∫
R
ξ · L(yobs; ι)g(ξ)dξ

P(Yn;obs = yn;obs; ι)
. (3.62)

The formulas of the EAP person parameter estimates shows that again the item parame-

ters are involved since the probabilities P(Yni = yni | ξ; ι) are included. For this reason, the

accuracy of EAPs depends also on the precision of item parameter estimates. In contrast

to ML and WML estimates, the prior g(ξ) is also influential. Generally, Bayesian esti-

mates suffer from the so-called shrinkage effect. That is, the estimates tend toward the

mean of the prior distribution. The shrinkage effect depends on the variance of the prior

distribution and the amount of information given by observed data. The less information

is available from observed data Yn;obs = yn;obs, the more impact the prior distribution has

in the calculation of ξ̂EAP (e. g. Gelman et al., 2003; Held, 2008). If the number of

answered items varies across test takers, then the shrinkage effect varies as well depend-

ing on amount of missing data. On average the shrinkage should be enhanced under any

missing data mechanism resulting in a variance reduction of the EAP estimates. Indeed,

as Table 3.3 shows, the variance of the EAPs with missing data is barely 0.632, compared

to 0.859 of the complete data. It can also be seen that the MSE of the EAPs are the lowest

compared to ML and WML estimates. However, the bias of the EAPs is correlated with ξ

even in the complete data (r = −0.378). This is a side effect of the shrinkage effect which

is considerably increased when missing data are present. In Data Example A the corre-

lation between the bias of EAPs of the incomplete data and ξ increased to r = −0.608

(see also Figure 3.12). Furthermore, the missing data mechanism in Data Example A was
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non-ignorable implied by Cor(ξ, θ) = 0.8. The negative correlation between the bias and

ξ on the one hand, and the positive correlation Cor(ξ, θ) = 0.8 on the other hand, imply

that the bias of EAPs should be positively correlated with the number of non-responses.

Figure 3.12 confirms a substantial relationship between the bias and the number of non-

responses. These results imply that, under certain conditions, the test takers may profit

Figure 3.12: Relationship between the bias of the EAP person parameter estimates of Data Example
A and the latent variable ξ (left) and the number of non-responses (right). The red line is
a smoothing spline regression.

from omitting items. Especially persons with low ability levels profit from the shrinkage

effect of the EAP estimator. In turn, highly proficient persons are affected adversely due

to non-responses. In a single data set the number of non-responses varies across the test

takers. Conclusively, the shrinkage effect varies as well. Here, it is argued that this un-

dermines the comparability of the Bayesian point estimates such as the EAP. Compared

with the ML and the WML estimators this seems to be a unique problem of Bayesian

estimates.

In the simulation study most findings from Data Example A could be confirmed to be

stable and systematic across considered conditions. As Figure 3.13 shows, the average

bias of the EAPs is the lowest of all considered estimators in this work that is consistent

with the lowest MSE and the lowest mean bias in Data Example A. Surprisingly, on

average there is almost no systematic bias of the EAPs. This distinguishes EAPs from

ML and WML estimates. However, there is a conditional bias given the latent variable
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ξ due to the shrinkage effect and given the number of non-responses when Cor(ξ, θ) ,

0. As Figure 3.14 shows, the correlation between the bias of EAPs and the number of

nonresponses is mainly driven by the Cor(ξ, θ). If the missing data mechanism is MCAR

due to Cor(ξ, θ) = 0, implying that ξ and the number of nonresponses are uncorrelated

as well, the correlation of the EAP bias and the number of item nonresponses is close to

zero. However, the higher the correlation Cor(ξ, θ), the stronger the negative correlation

between the bias of the EAPs and the number of nonresponses is. Values of r ≈ 0.6 are

reached if Cor(ξ, θ) = 0.8. Hence, from EAP scoring, especially, test takers with below-

average proficiency levels would profit from skipping difficult items because the increased

shrinkage effect results in higher scores closer to the mean of the prior distribution. In

turn, persons with above-average abilities will not profit from omission of even difficult

items, since the increasing shrinkage effect results in lower EAP estimates.
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Figure 3.13: Mean bias of EAP person parameter estimates using the 2PLM (simulation study).
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Correlation Between Bias of ξ
^

EAP and the Number of Non−responses
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Figure 3.14: Mean correlation between bias of the EAP estimates and number of omitted responses
(simulation study).

3.2 Item Parameter Estimates

3.2.1 Expected Values E(Yi)

In CTT models the true score variables τi are linear functions of each other and, typically,

linear functions of the latent variable ξ. Therefore, these models are mostly inappropriate

for single categorical items Yi
9. For that reason , CTT models are commonly based on test

scores, such as sum scores, of either complete tests or sub-tests (e. g. item parcels) instead

of single items. Nevertheless, it is common in CTT to provide measures of difficulty with

respect to single items Yi that constitute the test. Typically, the unconditional expected

values E(Yi) or conditional expected values E(Yi | Z = z) are estimated by the sample

item means ȳi and ȳi|z respectively. For categorical variables with K response categories

9There are some exceptions. For example the binomial model (Rost, 2004) for dichotomous items Yi with
equal item difficulties for all items allows for linearity.
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the expected value of E(Yi) is the weighted sum

E(Yi) =
K∑

y=0

y · P(Yi = y). (3.63)

In the case of dichotomous items E(Yi) is simply

E(Yi) = 0 · P(Yi = 0) + 1 · P(Yi = 1) (3.64)

= P(Yi = 1).

Since the true scores τi are regressions of Yi on the person variable U, equality E(Yi) =

E(τi) is implied (e. g. Steyer, 1989; Steyer & Eid, 2001; Steyer, 2002). In measurement

models including a latent variable ξ = f (U) and τi = fi(ξ) implying that τi = ( fi ◦ f )(U)

the expected value is E(Yi) = E[E(Yi | ξ)]. If Yi is dichotomous this is

E(Yi) = E[P(Yi = 1 | ξ)] (3.65)

=

∫

R

P(Yi = 1 | ξ)g(ξ)dξ

Hence, the expected values of the items depend on the distribution of the latent variable

ξ. That is why CTT based item difficulties are population specific measures. E(Yi) is not

purely a measure of the items difficulty but a measure of the difficulty with respect to a

particular population with a specific ability distribution of ξ. For that reason, several con-

ditional difficulties E(Yi | Z = z) in subpopulations given by Z = z can be estimated. Why

is this important in the context of missing data problems in psychological and educational

measurement? Consider the example where a representative sample has been drawn for

an assessment. The test takers, however, are unwilling or unable to complete all items of

the test. Hence, there are item nonresponses due to omitted or not-reached items. If the

item means are computed only by the observed item responses, then the expected values

E(Yi |Di = 1) is estimated instead of E(Yi). The sample mean can also be regarded as a

random variable Ȳi with a sampling distribution. Under any missing data mechanism the

item mean Ȳi;obs of the observed responses can be written as

Ȳi;obs =

∑N
n=1 Dni · Yni∑N

n=1 Dni

. (3.66)

If no missing data mechanism exists, then Dni = 1 (for all n = 1, . . . ,N). In this case

the nominator is simply
∑N

n=1 Dni · Yni =
∑N

n=1 Yni and the denominator is
∑N

n=1 Dni =

81



N, implying that Ȳi;obs = Ȳi. However, if P(Di = 1) < 1, then the observable values

yi of Yi are realizations from the conditional distribution g(Yi |Di = 1) instead of g(Yi)

and Ȳi;obs will be a consistent estimator of E(Yi |Di = 1) instead of E(Yi). In section

2.3 the implications of the different missing data mechanisms were scrutinized. If the

missing data mechanism w.r.t. Yi is MCAR then g(Yi |Di = 1) = g(Yi) (see Equation

2.38) implying equality E(Yi |Di = 1) = E(Yi) as well. In this case Ȳi;obs is an unbiased

estimator of E(Yi). Under any other missing data mechanism as defined here in this work

g(Yi |Di = 1) , g(Yi). Hence,E(Yi |Di = 1) , E(Yi). The mean Ȳi;obs will be an unbiased

estimator of E(Yi |Di = 1) instead of E(Yi). Furthermore, if measurement invariance of

the manifest variables Yi given Di hold true, in the case of dichotomous items, inequality

g(ξ |Di = 1) , g(ξ) of the distribution of the latent variable is implied (see Equation 2.61).

The expected value E(Yi |Di = 1) of an dichotomous item is given by

E(Yi |Di = 1) = E[P(Yi = 1 | ξ) |Di = 1] (3.67)

=

∫

R

P(Yi = 1 | ξ)g(ξ |Di = 1)dξ.

In other words if the missing data mechanism is not MCAR, then the observed values of

Yi are item responses given by test takers that are not representative with respect to the

latent ability distribution. As previously noted, CTT-based item difficulties expressed by

expected values of manifest items are only meaningful with respect to a particular pop-

ulation defined by its distribution of the latent variable ξ. Considering that the missing

data mechanism can be different for each item Yi, it is possible that the sample means

ȳi;obs are calculated based on different subsamples that are representative of different sub-

populations in terms of the distributions of the latent variable. Formally this means that

g(ξ |Di = 1) , g(ξ |D j = 1).

This can be illustrated using Data Example A. The sample in this example is represen-

tative with respect to the ability distribution. That is, all simulated cases are generated by

drawing values of the latent variable from unit normal distribution. However, there is a

high proportion of missing data. Due to the correlation Cor(ξ, θ) = 0.8, the missing data

mechanism w.r.t. each variable Yi is non-ignorable implying that g(ξ |Di = 1) , g(ξ).

Additionally, Data Example A was generated in such a way that more difficult items are

generally more likely omitted. Figure 3.15 shows the result of the item means (left) and

the estimated distributions g(ξ |Di = 1) of each item Yi (right). The left panel of Figure

3.15 compares the true means 1/N
∑N

n=1 P(Yi = 1 | ξ) and the observed means ȳi;obs com-

puted based on Equation 3.66. Apparently, there is a systematic bias. The item means
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Figure 3.15: Means of the true scores and item means ȳi;obs (right), and means and variances of ξ |Di =

1 for each item (Data Example A).

are increasingly positively biased, the more difficult the item was. In conjunction with the

theoretical considerations above, the right panel of Figure 3.15 makes clear why the bias

increases depending on the item difficulty. The more difficult the items were, the higher

the proportions of missing data were and the higher the average proficiency level of the

responding test taker was. Recall that in Data Example A test takers differed in their mean

test difficulties Tβ depending on ξ. This item selection process is also reflected at the item

level by the differences of the conditional distribution g(ξ |Di = 1) compared to the un-

conditional distribution g(ξ). This example illustrates that a representative sample can

become unrepresentative due to systematic missing data. The item means are estimates

of item difficulties with respect to subpopulations that are potentially different across the

items within a single test. Only if the missing data mechanism w.r.t. Yi is MCAR, then

ȳi;obs will be an unbiased estimate of E(Yi). However, if the missing data mechanism w.r.t.

Yi is MAR given Z, then equality E(Yi | Z,Di) = E(Yi | Z) is implied from Equation 2.50.

If Z is discrete, then the means of the observed item responses given the values Z = z are

unbiased estimators of E(Yi | Z = z). This allows to compute adjusted means based on the

regression E(Yi | Z) since E[E(Yi | Z,Di)] = E[E(Yi | Z)] = E(Yi). Hence, covariates can

be used as auxiliary variables to yield unbiased item means if the missing data mechanism

is MAR given Z.
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3.2.2 Threshold Parameters

In one-, two-, and three-parameter IRT models, threshold parameters describes the dif-

ficulty of an item. For dichotomous items the threshold βi, or simply the item diffi-

culty, is that value of ξ at which the probability P(Yi = 1 | ξ = βi) = 0.5 + (ci/2).

ci is the pseudo-guessing parameter of the three-parameter model. The Rasch and the

Birnbaum models can be regarded as special cases of the 3PLM with ci = 0 implying

P(Yi = 1 | ξ = βi) = P(Yi = 0 | ξ = βi) = 0.5. The higher difficulty parameters βi are,

the more difficult the items Yi are. The item difficulties and the latent variable ξ have a

common metric. That is, βi are locations on ξ. This is also true in multidimensional IRT

models with a simple structure (between-item-dimensional MIRT models) and a subtrac-

tive parameterization, where the logit is αi(ξm − βi) for all items i = 1, . . . , I. In within

item-dimensional MIRT models the logit is
∑M

m=1 αimξm − βi. In this case the threshold

parameters are not locations on a single latent dimension 10. For simplicity here only the

bias of item difficulty estimates β̂ in unidimensional 1- and 2PL models is considered. The

major advantage of parameters βi as measures of item difficulties compared to expected

values E(Yi) is their independence of the distribution of the latent variable ξ. Hence, IRT

item parameters describe items’ characteristics independently of a particular population.

From this property it follows that item parameters can even be estimated unbiasedly if the

sample of test takers is not representative with respect to the underlying ability distribu-

tion. Nevertheless, as demonstrated each item can be answered by a different subsample

of respondents due to item nonresponses. In this case the item parameter estimates are

potentially biased. Furthermore, since item difficulties are locations on the latent variable

and ML and WML person parameter estimates were found systematically biased by non-

ignorable missing data, estimates β̂i may be biased as well. That applies all the more since

the estimation equation involves also the person parameter estimates. The first derivative

of the log-likelihood ℓ(yobs; ι) of the observed data with respect to the item difficulties is

∂ℓ(yobs; ι)

∂βi

= −αi

N∑

n=1

dni

[
yni − P(Yni = yni | ξ; ι)

]
. (3.68)

If no missing data mechanism exists w.r.t. Yi, Dni = 1 for all n = 1, . . . ,N. Hence, the

response indicators Di can be omitted. In this case Equation 3.68 is a derivation of the

10Thus, even in within-item-dimensional MIRT models a multidimensional item difficulty can be con-
structed. Reckase (1985) proposed the distance between the origin of the multidimensional latent per-
son parameter space to the point of maximum slope in the multidimensional item response surface (de
Ayala, 2009; Reckase, 2009).
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complete data likelihood since Y = Yobs. In order to estimate βi Equation 3.68 is set equal

to zero. Since no closed-form expression exists, ML estimators are found iteratively by

means of numerical methods. Using MML estimation the estimation equation of βi is

slightly different. The integral over the distribution of the latent variable ξ is involved.

That is

∂ℓ(yobs; ι)

∂βi

= −αi

N∑

n=1

dni

∫

R

[
yni − P(Yni = 1 | ξ; ι)] g(ξ |Yn;obs = yn;obs; ι)dξ. (3.69)

. To reduce computational burdens due to numerical integration over the latent variable,

the distribution g(ξ) is replaced by a quadrature distribution g(ξq) with Q values ξq (e.

g. Baker & Kim, 2004). Hence, the continuous latent variables are discretized and the

integral in Equation 3.70 becomes a sum over the conditional quadrature distributions

g(ξq |Yn = yn; ι̂). Although MML does not require the estimation of individual values

of the latent variable, the conditional probabilities P(ξq |Yn = yn; ι̂) that test taker n has

the trait level ξq need to be estimated in the E-step. This calculation is required for each

test taker with respect to each quadrature point. Finally, the estimation equation can be

written as

∂ℓ(yobs; ι)

∂βi

= −αi

[ N∑

n=1

dni

Q∑

q=1

yniP(ξq |Yn;obs = yn;obs; ι) − (3.70)

N∑

n=1

dni

Q∑

q=1

P(Yni = 1 | ξq; ι)P(ξq |Yn;obs = yn;obs; ι)
]
.

The minuend is the expected number of correct answers assuming a specified latent dis-

tribution g(ξ) approximated by g(ξq). The subtrahend is the expected number of correct

answers given the same distributional assumption and the specified IRT model. Equa-

tion 3.70 illustrates why the prediction of the bias of IRT item parameters due to item

nonresponses is so difficult. Both terms - the minuend and the subtrahend - involve quan-

tities that depend on unknown model parameters indexed by ι. Even the calculation of

the conditional probabilities P(ξq |Yn;obs = yn;obs; ι) is affected by item parameters (e. g.

Baker & Kim, 2004). Using the EM algorithm the expected numbers of correct answers

in Equation 3.70 are calculated in the E-step using starting values or provisional estimates

ι̂. In the M-step the updated estimates ι̂ are computed, which are used again in the sub-

sequent E-step. This cycle is repeated until a previously specified convergence criterion

is reached. However, due to item nonresponses ι̂ can be biased resulting in biased es-
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timates of conditional probabilities P(Yni = 1 | ξq; ι) as well as P(ξq |Yn;obs = yn;obs; ι).

These biases, in turn, result in potentially biased estimates of ι̂ in the subsequent and final

iteration step after convergence. Furthermore, the estimation of P(ξq |Yn;obs = yn;obs; ι) in

the E-step depends not only on the observed item responses to item i but on all observed

item responses provided by test taker n. If preferably easy items are answered with higher

probabilities to be solved while difficult items are skipped, then these probabilities are

potentially estimated with a systematic bias even if provisional estimates ι̂ are unbiased.

Hence, although a clear prediction about biasedness of β̂i is difficult, it is most likely

that especially estimates β̂i of difficult items in Data Example A will be negatively biased.

The reason is that increasingly difficult items are answered by on average more proficient

persons. Hence, the items seem to be easier than they really are. In other words, corre-

sponding to the positive bias found in item means ȳi;obs, the estimates β̂i are expected to be

negatively biased. Note that the expected values E(Yi) are actually measures of item eas-

iness instead of item difficulty. Therefore, the IRT item difficulty estimates are expected

to be underestimated instead of overestimated.

Figure 3.16 compares the item difficulty estimates of Data Example A with the true item

difficulties used for data simulation. For reasons of comparison, the difficulty estimates of

the complete data are shown as well in the left graph, and the estimates of the incomplete

data are depicted in the right graph. The estimates of the complete data are practically

unbiased. The estimates resulting from the incomplete data reveal the expected pattern of

the bias. The slope of the linear regression of the estimates on the true item difficulties

is 0.934. That is significantly different from one (SE= 0.017, t = −3.700, p < 0.001)

indicating a systematic bias. Especially the more difficult items are increasingly underes-

timated. However, the bias is small compared to the item means ȳi;obs. In fact, Rose et al.

(2010) found as well that item parameter estimates are pretty robust even if the missing

data mechanism is MNAR. However, the results of the simulation study revealed that the

bias is systematically related to the missing data mechanism. As Figure 3.17 shows the

pattern of biases is very close to that of the ML and WML person parameter estimates

(cf. Figures 3.10 and 3.8). Generally the item difficulties tended to be underestimated.

Exceptionally in the case of small sample sizes of N = 500, positive biases occurred as

well with a nonsystematic pattern. The negative bias increases with stronger correlations

Cor(ξ, θ). This effect is moderated by increasing overall proportions of missing data. The

similarity of the biases of item difficulties and ML and WML person parameter estimates

suggests that they are related. Using biased item difficulty estimates will most likely result

in biased ML and WML person parameter estimation.
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Figure 3.16: Comparison of true and estimated item difficulties using complete (left) and incomplete
data (right) (Data Example A). The grey line is the bisectric. The blue line represents the
regression line.

3.2.3 Item Discriminations

Finally, the impact of missing data on sample based estimates of item discrimination

parameters αiin the Birnbaum model (Birnbaum, 1968) is studied. Again, neither closed

form expressions nor sufficient statistics exist for estimation of αi. ML estimation requires

iterative methods. The first derivative of the log-likelihood ℓ(y; ι) with respect to αi is

involved. For item i that is

∂ℓ(yobs; ι)

∂αi

=

N∑

n=1

dni(ξ − βi)
[
yni − P(Yni = yni | ξ; ι)

]
(3.71)

Using MML estimation the first derivatives of the log-likelihood with respect to αi is

∂ℓ(yobs; ι)

∂αi

=

N∑

n=1

dni

∫

R

(ξ − βi)
[
yni − P(Yni = yni | ξ; ι)

]
g(ξ |Yn;obs = yn;obs; ι)dξ. (3.72)

As discussed, for estimation of item difficulties g(ξ) is typically approximated by a quadra-

ture distribution g(ξq) to make numerical integration feasible. The estimation equation
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Figure 3.17: Mean bias of estimated item difficulties (simulation study).

using any discrete quadrature distribution g(ξq) can be written as

∂ℓ(yobs; ι)

∂αi

=

[ N∑

n=1

dni

Q∑

q=1

(ξq − βi)yniP(ξq |Yn;obs = yn;obs; ι) − (3.73)

N∑

n=1

dni

Q∑

q=1

(ξq − βi)P(Yni = 1 | ξq; ι)P(ξq |Yn;obs = yn;obs; ι)
]
.

This estimation equation is similar to that of the item difficulties. Again, the conditional

probabilities P(ξq |Yn;obs = yn;obs; ι) to have a latent trait level ξq given the observed re-

sponses Yn;obs = yn;obs are involved, and the conditional probabilities P(Yni = 1 | ξq; ι) to

solve item i given the latent ability is equal to trait level ξq. Equation 3.73 highlights that

the prediction of the bias of the discrimination estimates is difficult to predict. For this

reason biasedness was studied empirically. In Data Example A, the estimated discrimina-

tion parameters were found to be dependent on item difficulties even if the complete data

were used for parameter estimation (left graph of Figure 3.18). This was also found for

estimates α̂i obtained from incomplete data. The mean bias across the 30 items was not
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Figure 3.18: Estimated item discriminations using complete (left) and incomplete data (right) given
the true item difficulties (Data Example A). The grey line is the bisectric. The blue line
denotes the regression line.
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Figure 3.19: Mean bias of estimated item discriminations in the 2PLM (simulation study).
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significantly different from zero using both the complete and the incomplete data. How-

ever, the variability of discrimination estimates is higher when incomplete data were used

for parameter estimation (MSE = 0.014) compared to complete data (MSE = 0.008). In

the simulation study there was also no evidence for a systematic bias due to item nonre-

sponses (Figure 3.19). For a small sample size of N = 500 the item discrimination tends

to be overestimated especially when the number of variables is low and the proportion

of missing data is high. In sample sizes N = 1000 and N = 2000 a consistent positive

bias of α̂i was found if the correlation between the latent ability and the latent response

propensity was high Cor(ξ, θ) = 0.8. However, as Table 3.4 shows, all chosen factors var-

ied in the simulation study explained about 5 % of the variance in the mean bias of item

discrimination estimates. Furthermore, in contrast to the bias of estimates β̂i, the corre-

lation Cor(ξ, θ) and overall proportion of missing data was of minor importance. The

sample size and the number of items i in the measurement model seem to have more im-

pact. Indeed, a saturated regression model leaving out these two factors explains only 0.5

%. Hence, item discrimination parameters seem much less systematically biased due to

item nonresponses than estimates of item difficulties and ML and WML person parameter

estimates.

3.3 Standard Error Function and Marginal Reliability

Missing data are associated with a loss of information and are therefore expected to result

in larger standard errors. In IRT models the standard errors of person parameter estimates

are functions of the latent variables. The functional form of the standard error function

SE(ξ) of a unidimensional latent variable ξ is determined by the item parameters ι. Gen-

erally, the standard error function is SE(ξ) =
√

I(ξ)−1, with I(ξ) the test information

function that is given by the sum of the item information functions Ii(ξ) (e. g. de Ayala,

2009; Embretson & Reise, 2000). Hence, the standard error function can be written as

SE(ξ) =
(√∑I

i=1 Ii(ξ)
)−1

(3.74)

The item information functions Ii(ξ) = α2
i Var(Yi | ξ), with the conditional variance Var(Yi | ξ) =

P(Yi = 1 | ξ;αi, βi)P(Yi = 0 | ξ;αi, βi). Thus, the accuracy of the estimation of ξ by a

given test depends solely on the item parameters αi and βi. However, if a nonresponse

mechanism exists, then test takers select items randomly or systematically resulting in

lost information and, thus, in larger standard errors. The standard error SEobs(ξ) function
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given any missing data mechanism as defined above can be expressed using the response

indicator variables Di:

SEobs(ξ) =
( √

Iobs(ξ)
)−1

(3.75)

=

(√∑I
i=1 DiIi(ξ)

)−1

Note that SEobs(ξ) is only defined if at least one item is observable. SEobs(ξ) is based on the

observed item responses yobs. The missing pattern D is a random variables. Hence, there

is not a single standard error function but as many standard error functions as response

patterns exist minus one11. That is I2−1. Figure 3.20 shows the estimated standard errors

of different person parameter estimates in Data Example A. The blue line is the estimated

standard error function of the complete data without missing values. The black dots are

the standard errors for each simulated case with missing data, and the red line gives the

average standard error for each value ξ across the observed missing pattern approximated

by cubic smoothing spline. Figure 3.20 suggests that in presence of missing data the stan-

dard error function is not simply a function f (ξ) of the latent variable but rather a function

f (ξ, D) of the latent variable and the missing pattern. Each missing pattern is associated

with a different item subset that is completed by an individual test taker. As previously

noted, test takers create their own test due to omissions of items or not completing the

whole test in time. Each item subset can be regarded as a subtest with its own test infor-

mation function and standard error function. The mean standard error function (red lines

in Figure 3.20) is an estimator of the expected standard error of the latent variable ξ for a

randomly drawn missing pattern. As expected, the standard errors are larger in presence

of missing data compared to standard error that result from complete data. This increases

the marginal error variance Var(εξ̂) as well and, therefore, the marginal reliability Rel(ξ̂).

Generally, the marginal reliability quantifies the accuracy of person parameter estimation

by a single standardized coefficient, so that 0 ≤ Rel(ξ̂) ≤ 1. However, the standard error

function SE(ξ) expresses that the accuracy of person parameter estimation depends on

the latent variable. Therefore, the marginal reliability depends on the distribution of the

latent variable and can be regarded as an average accuracy across the latent variable (de

Ayala, 2009). Different marginal reliability coefficients have been proposed for different

estimators (e. g. Andrich, 1988; Bock & Mislevy, 1982; Wright & Stone, 1979). Here

the Andrich reliability is considered for ML and WML estimates, and the marginal EAP

11If D = 0, then the standard error function is not defined.
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Figure 3.20: Model-implied test information functions (upper-left) and standard error functions (blue
lines) based on item parameter estimates. The black dots represent ML-, WML- and EAP
point estimates and their standard errors obtained from incomplete data (Data Example
A). The red line approximates the mean standard errors.

reliability for EAP estimates. Andrich’s reliability is defined as

Rel(A)(ξ̂) = 1 −
Var(εξ̂)

Var(ξ̂)
, (3.76)

with εξ̂ = ξ̂−ξ the measurement error. Since the variance of the measurement error varies

depending on the estimand ξ, the marginal error variance is the expected value of the error

variance: Var(εξ̂) = E(E[(ξ̂ − ξ)2 | ξ]) = E[Var(εξ̂ | ξ)]. The conditional error variance

Var(εξ̂ | ξ) is the squared standard error function SE(ξ̂)2. In real applications, the marginal

error variance is estimated by the mean of the squared standard errors over all test takers
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in the sample. Hence, sample based estimate of Andrich’s reliability can be written as

R̂el
(A)

(ξ̂) = 1 −
1
N

∑N
n=1 ŜE(ξ̂n)2

s2(ξ̂)
. (3.77)

This equation reveals that the sample-based estimate of the Andrich reliability is poten-

tially affected by missing data in different ways. At first, person and item parameter

estimates are involved. It was shown previously that biased item parameter estimates can

result in biased person parameter estimates. Furthermore, the test information and stan-

dard error functions are potentially biased due to biased item parameter estimates. As the

upper left graph of Figure 3.20 shows, only small differences between the test information

functions estimated by item parameter estimates of complete and incomplete data were

found in Data Example A. However, in the beginning of this section it was shown that in

presence of missing data the standard error function is no longer a function of ξ alone, but

a function f (ξ, D) of the latent variable and the response indicator vector. Accordingly,

the Andrich’s reliability in presence of any missing data mechanism as defined in Section

2.2 is

R̂el
(A)

obs(ξ̂) = 1 −
1
N

∑N
n=1 ŜEobs(ξ̂n)2

s2(ξ̂)
. (3.78)

The Equations 3.77 and 3.78 seems to be almost identical. However, conceptually there

is an important difference. The estimated marginal error variance without a missing data

mechanism is Var(εξ̂) = E[Var(εξ̂ | ξ)], which is different from Var(εξ̂) = E[Var(εξ̂ | ξ, D)]

if a nonresponse mechanism exists. This implies that the meaning of the marginal relia-

bility is different depending on the existence of a nonresponse mechanism. The marginal

reliability is the mean reliability averaged over the distribution of the latent variable ξ

and the distribution of missingness given by D. This can be illustrated considering Data

Example A. As Table 3.3 shows, the difference between the marginal reliability coeffi-

cients of the complete and the incomplete data of Data Example A is more than 0.15.

However, the test information functions were only slightly different (see Figure 3.20). So,

the marginal reliability depends not only on the test and the distribution of ξ but also on

the nonresponse mechanism of the considered population. Why are these considerations

important? Consider the case where a single population is studied. Two representative

samples A and B are drawn. Sample A is assessed by a high-stakes assessment, data in

Sample B were obtained by means of a low-stakes assessment. As expected, the propor-

tion of missing data in Sample A is much lower than in Sample B. In this case the marginal
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reliability estimates will be considerably different even if person and item parameters can

be estimated unbiasedly in both samples. In this example the motivation to complete the

test affects the marginal reliability, while the test information function implied by item

parameters remains unaffected. Insofar, the marginal reliability is no longer a measure of

the mean accuracy of person parameter estimation by the test, but the mean accuracy of

person parameter estimation due to the test and the missing data mechanism.

This is also true for the marginal EAP reliability that was shown to be the variance ratio

Rel(ξ̂EAP) = Var(ξ̂EAP)/Var(ξ) (Adams, 2005; Mislevy et al., 1992). Due to missing data,

the variance Var(ξ̂EAP) decreases due to an increased shrinkage effect (see Table 3.3).

This results in lower marginal reliabilities.

Figure 3.21 shows the average marginal reliabilities observed in the simulation study. A

detailed analysis of the simulation results revealed that the sample size did not influence

the marginal reliabilities under the simulated conditions. For that reason, each cell of

Figure 3.21 gives the mean marginal reliabilitiy of 150 data sets simulated under three

sample size conditions (N = {500, 1000, 2000}). The attenuation of marginal reliabilities

caused by missing data is different for ML, WML, and EAP estimates. The correlation

Cor(ξ, θ) is of minor importance. Even if the missing data mechanism is MCAR, the

reliability decreases. The attenuation is mainly driven by the proportion of missing data

and the number of variables Yi in the measurement model. The marginal reliabilities of the

EAP estimates are generally less attenuated, while the reliability of the WML estimates

proofed to be mostly decreased by missing data.

3.4 Discussion

In this chapter the impact of missing data on sample-based estimates of item and person

parameters were studied twofold - analytically and by means of simulation. Results of

previous studies with real data suggested that IRT parameters might be pretty robust even

if the nonresponse mechanism w.r.t. Y is NMAR (Culbertson, 2011, April; Pohl, Gräfe,

& Hardt, 2011, September; Rose et al., 2010). Hence, it could be argued that ignoring

missing data is admissible. Indeed, IRT parameter estimates seem to be less sensitive

to missing data compared to CTT-based item and person parameter estimates. However,

it could be demonstrated that increasing proportions of nonignorable missing data also

result in biased IRT item and person parameter estimates. This highlights the need for ap-

propriate approaches to handle item nonresponses. In the following sections the findings

are briefly summarized.
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Marginal Reliabilities of ML−, WML−, and EAP Person Parameter Estimates
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Figure 3.21: Marginal reliabilities of ML-, WML-, and EAP- person parameter estimates (simulation
study).

3.4.1 Analytical Findings

Unfortunately, the use of analytical methods to study the impact of missing data is lim-

ited. Primarily, CTT-based item and person parameters can be studied analytically. Here

the expected values E(Yi) as measures of item difficulties and the sum score S and the

proportion correct score P+ as person parameter estimates were considered.

Sum score The sum score S or functions f (S ) are commonly used in CTT as person

parameter estimates. It could be shown that S of a completely observed response pattern

is a different random variable than SMiss, the sum score in presence of missing data. The

latter can formally be written as the sum of the I product variables Yi · Di, implying an
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implicit missing data handling. Item nonresponses are scored as Yi = 0. Generally, Yi · Di

and Yi are different variables with different distributions if P(Yi = 1 |Di = 0) > 0. Hence,

if there is a probability greater than zero to solve an omitted item, then the sum score is

generally negatively biased under any missing data mechanism. Particularly worrying is

that the implicit coding of item nonresponses as wrong responses leads to a confusion of

two pieces of information: (a) the performance on the test items expressed by the items

Yi, and (b) the willingness or ability to respond to item i indicated by Di. Hence, SMiss

in presence of missing data has a different meaning compared to S in absence of missing

data. These analytical findings have implications with respect to ad hoc methods used in

IRT models to handle item nonresponses. The coding of missing data as wrong responses,

called Incorrect Answer Substitution (IAS), is a well- known and still widely used ad hoc

method to handle item nonresponses. As in the case of SMiss, the items in the measurement

model Yi are replaced by Yi ·Di. This potentially changes the meaning of the latent variable

constructed in an IRT measurement model. These findings highlight that missing data and

their improper handling are a threat of validity of test results. The consequences of IAS

in IRT models will be examined in more detail in Section 4.3.1.

Proportion correct score The proportion correct score P+ can be regarded as an in-

dividually standardized sum score. The sum score SMiss is divided by the number of

completed items. By using a simulated data example, it could be demonstrated that the

bias is different compared to the sum score. Whereas the sum score can only be negatively

biased, the proportion correct score can be negatively or positively biased. However, here

it was argued that in most real applications P+ is expected to be positively biased. The

reason is that empirical findings support the hypothesis the intentionally omitted items

are not arbitrarily skipped. Typically more difficult items are omitted with higher prob-

abilities than easier items. Persons who tend to respond only to easier items will tend

to have higher a proportion of correct scores than equally proficient persons who answer

difficult items as well. This would lead to a positive bias of P+. In testings with time

limits, the bias of P+ due to not-reached items depends on the item difficulties of the last

items. Especially when extremely difficult or easy items are placed at the end of the test,

P+ will be positively or negatively biased. For example, when tests are applied with items

that are ordered due to their difficulties and the time of the test is limited, the proportion

correct score is not an appropriate test score. In summary, the proportion correct score

accounts for item nonresponses but not sufficiently, since differences between responded

and omitted items are not considered.
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Item means The item mean of item i computed by observed item responses to item i

are estimates of E(Yi |Di = 1) instead of E(Yi). If Yi✚✚⊥Di and measurement invariance

w.r.t. Yi given Di hold, then stochastic dependence Di✚✚⊥ξ and systematically biased item

means are implied. The reason is that the expected values E(Yi |Di = 1) are computed

by the integration over the conditional distribution g(ξ |Di = 1). The conditional distri-

butions g(ξ |Di = 1) and g(ξ |D j = 1) (i , j) can be different depending on the missing

data mechanism with respect to the single items Yi and Y j respectively. Thus, each item

of a single test is potentially answered by a different population when the missing data

mechanism is MAR or NMAR. Since the expected values are population specific mea-

sures of item difficulty, the sample-based item means are measures that refer to unknown

populations with respect to the distribution of the latent variable.

3.4.2 Simulation Study

Since IRT parameter estimates and their bias es can hardly be studied analytically, a simu-

lation study was used. The estimation equations used to obtain item and person parameter

estimates were considered. The interdpendence of unbiased item and person parameter

estimation was shown. Although the biasedness of IRT parameter estimates is difficult to

study theoretically, the analytical findings with respect to the bias of CTT-based item and

person parameter estimates suggest that IRT-based parameters are potentially affected by

item nonresponses as well.

IRT item difficulties When the missing data mechanism w.r.t. Y is NMAR, each item

is potentially answered by a different population of test takers who differ with respect

to their distribution of the latent ability ξ. It was expected to find negatively biased item

difficulties, if more difficult items are omitted with higher probabilities and the tendency to

omit items is positively correlated with the latent ability ξ. This expectation rests upon the

finding that more difficult items are answered by persons with, on average, higher ability

levels, while easier items are answered by persons with lower ability levels. The results

of the simulation study confirmed this hypothesis. The negative bias of the estimates β̂i

is mainly driven by the correlation between the latent response propensity and the latent

ability, and the overall proportion of missing data. These two factors explained 38 %

of the variance the mean bias. In contrast, no bias was found when the missing data

mechanism w.r.t. Y is MCAR even when the overall proportion of missing data was 50

%.
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IRT item discriminations The pattern of biases found in item discriminations is quite

different from that of the item difficulties. The most important factors determining the bias

of α̂i were the sample size and the number of items in the measurement model. Especially

when the sample size was small (N = 500), the item discriminations were on average

positively biased. The correlation Cor(ξ, θ) and the overall proportion of missing data had

much less impact on discrimination parameter estimates than on item difficulty and person

parameter estimates. Exceptionally, when the correlation between the latent ability and

the latent response propensity was high (Cor(ξ, θ) = 0.8), a small but consistent negative

bias of α̂i occurred even in large sample sizes N = 2000.

IRT person parameter estimates With respect to IRT-based person parameter esti-

mates no direct hypothesis could be derived from the analytical considerations of CTT-

based person parameter estimates S and P+. In unidimensional Rasch- and Birnbaum

models item difficulties are locations on the same scale as the latent variable ξ. Hence,

the bias of item and person parameter estimates are potentially correlated. Therefore,

negative bias of the estimated item difficulties may induce a negative bias in person pa-

rameters. This seemed to be likely especially if MML estimation is applied, because the

estimated item parameter estimates are taken as fixed values for the estimation of person

parameters. In fact, ML and Warm’s WML estimates turned out to be negatively biased

in the simulation study. The correlation of the mean biases between item and person pa-

rameter estimates was r = 0.815 for ML estimates, r = 0.846 for WML estimates, and

r = 0.604 for EAP estimates. Accordingly, the pattern of bias across the conditions used

in the simulation study is very similar between item difficulties and ML and WML es-

timates. The correlation of the latent response propensity and the latent ability, and the

overall proportion of missing data were found to be the most important factors of the bias.

Both explained 36 % (ML estimates) or 40 % (WML estimates) of the variance of the

mean bias. The stronger the correlation is and the higher the proportion of missing data

is, the more negative the bias of ML and WML estimates is. Since the bias of ML and

WML estimates is nearly uncorrelated with the proportion of item nonresponses, the bias

results mostly from biased item parameter estimates. Surprisingly, on average the EAP

estimates were unbiased in the conditions investigated in the simulation study. However,

the bias of the EAPs is negatively correlated with the latent ability intended to be esti-

mated. This correlation reflects the shrinkage effect, which is characteristic for Bayesian

estimates. However, with an increasing proportion of missing data the shrinkage effect

is intensified, resulting in a considerable variance reduction in the EAP estimates and
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potentially unfair test results.

Shortcomings of the simulation study As in each simulation study, the generalizability

of the results is restricted to the conditions under study. Here, tests with a small to medium

number of items and small to medium sample sizes were considered. In large scale as-

sessments the sample sizes are typically much larger. In high-stakes testings instruments

with more than thirty items are regularly used. The results cannot be generalized to such

applications. Furthermore, the nonignorability of missing data in the simulation study was

generated by using a latent response propensity that was correlated with the latent ability.

This approach allowed easily to vary the degree of stochastic dependency between Y and

D. However, there might be alternative data generating models in real applications that

do not involve a latent response propensity. Data Example A as well as the simulation

study emulate foremost the case where item nonresponses result from omissions instead

of not-reached items. The latter result if persons fail to complete all items in timed tests.

This results in a typical monotone missing pattern. The data generating models used for

Data Example A and the simulation study do not account for such item nonresponses.

This additionally limits generalizability of the results of this simulation study.

In the interpretation of the results of the simulation study, the identification of the model

needs to be taken into account. In all simulations the model was identified by fixing the

scale of the latent variable ξ. Generally the expected values was fixed to E(ξ) = 0 and

in the Birnbaum model the variance was constrained to be Var(ξ) = 1. Alternatively, the

models could have been identified by fixing an arbitrary item difficulty or the mean of the

item difficulties, and by fixing at least one of the item discriminations in the case of the

2PLM. The bias of parameter estimates will probably be different with these model spec-

ifications. The bias is potentially transferred to other parameter estimates such as those

describing the distribution of the latent variables. Conclusively, the ML and WML person

parameter estimates or EAPs could be biased differently. Therefore, which parameters

are estimated with a bias and the extent of the bias can depend on the identification of the

model.

Despite the lack of generalizability, the results highlight that item nonresponses should

be taken seriously in real applications when IRT models are used. This is all the more

important, the stronger the dependency between missingness (D) and the measurement

instrument (Y) is, and the higher the proportion of missing data is. This underlines the

importance of appropriate approaches to handle item nonresponses.
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3.4.3 Item Nonresponses and Test Fairness

Although there is a lack of a unique and widely accepted definition of test fairness (Kunnan,

2004), all approaches agree that construct-irrelevant sources of item and test difficulty

threatens comparability of test scores and therefore test fairness (Zieky, 2006). For exam-

ple, the analysis of differential item functioning and differential test functioning (Shealy

& Stout, 1993) aims to identify such sources. The study of the bias of the sum score

and the proportion correct score suggests that test fairness is also affected by item non-

responses. Hence, missing data and the way to handle them are potentially a source of

construct-irrelevant variance in test scores and person parameter estimates. The implicit

coding of item nonresponses to YI = 0 when the sum score S is used is a kind of penal-

ization of persons who tend to omit items or fail to reach the end of the test. If test takers

differ with respect to their tendency to respond to items in the test, then they will differ in

the expected sum score E(SMiss |U) even if they have the same value of the latent ability

ξ. On the one hand this reflects the change in the meaning of the sum score in presence

of missing data, on the other hand this can be seen as a lack of test fairness depending on

the intended meaning of the resulting test scores.

Although quite differently affected, the proportion correct score P+ proved to be most

likely biased in most applications. A prerequisite of comparability of proportion correct

scores between test takers is that they answered the same test. However, due to omis-

sion of items each test taker creates his or her own test. The most likely scenario was

considered exemplarily, where persons with lower ability levels prefer to answer easier

items while tending to skip more difficult items. In this case the mean test difficulty Tβ is

stochastically dependent on the latent ability and P+ are not comparable across persons.

This leads to a higher proportion correct scores for persons with item nonresponses com-

pared to those that complete all items even if they have equal proficiency levels. Insofar,

omitting o difficult items becomes an attractive and beneficial response alternative when

the proportion correct score is used as a test score. Similarly, EAP-scores tend to shrink

toward the mean. The shrinkage effect is stronger, the less data are available. Therefore,

the shrinkage effect varies across test takers depending on the proportion of item nonre-

sponses. Increasing correlations between the EAP-bias and the latent ability by increasing

proportions of missing data were found. This implies that below-average test takers would

profit from omissions of items while above-average persons would be penalized for item

nonresponses when EAP scores are used. Persons with ability levels below the average

will increasingly profit from the shrinkage effect with rising proportions of omitted or

not-reached items.
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ML and WML estimates do not suffer from the shrinkage effect. Furthermore, the bias

of both person parameter estimates is nearly uncorrelated with proportion of missing data.

The issue of test fairness is of minor importance when these person parameter estimates

are used.

3.4.4 Reliability

Reliability was examined with focus on IRT person parameter estimates. The standard

error function and the marginal reliability were considered.

Standard error function In absence of any missing data mechanism, the standard error

function is a function of the latent variable whose functional form depends solely on the

item parameters. In presence of missing data, standard errors depend additionally on

the missing pattern D. Strictly speaking, there exist as many standard error functions as

missing data pattern minus one. Each missing pattern is associated with a different subset

of items and, therefore, a different standard error function according to the corresponding

selection of items. Hence, if the test information function and the standard error function

are estimated based on item parameter estimates, the resulting functions only refer to

persons with complete response vectors. Both functions will be consistently estimated if

the item parameter estimates are unbiased. However, this item information and standard

error function are not meaningful with respect to persons with item nonresponses.

Marginal Reliability It was shown that that meaning of the marginal reliability changes

if a nonresponse mechanism exists w.r.t. Y. If no missing data mechanism exists, the

marginal reliability depends only on the items in the test and the distribution of the la-

tent variable ξ. If a missing data mechanism exists, then the marginal reliability depends

on not only on the distribution of ξ and the test items, but also on the distribution of D.

Accordingly, the interpretation of the marginal reliability is affected. Without missing-

ness, the marginal reliability can be interpreted as the average reliability of the person

parameter estimates with respect to a particular population with its specific distribution

of the latent variable. Under any missing data mechanism as defined in Section 2.2, the

marginal reliability is the average reliability of the person parameter estimates with re-

spect to a particular distribution of the latent variable and given the particular distribution

of missingness (D). Therefore, the marginal reliability can be substantially different be-

tween low-stakes and high-stakes assessments even if the same test would be applied to

same sample due to changes in the distribution of D. In high-stakes assessments the
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tendency to omit items is typically much lower. This reduces standard errors of person

parameter estimates and, therefore, increases the marginal reliability although neither the

distribution of the latent variable nor the item parameters have changed.

In summary The results of the bias analyses highlight that missing data affect different

parameter estimates differently and sometimes in an unexpected way. Furthermore, item

nonresponses are a construct-irrelevant source of variability in test scores implying that

test fairness as well as validity are potentially threatened. Although pretty robust, IRT

item and person parameter estimates were also found to be consistently biased if the non-

response mechanism w.r.t. Y is NMAR. This underlines the requirement of appropriate

approaches for item nonresponses.
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4 Missing Data Methods in Educational and

Psychological Testing

In the previous section the need for appropriate methods to handle item nonresponses was

demonstrated. In this section different approaches to handle missing data in educational

and psychological measurement will be studied. Most of these approaches are not distinc-

tive to the field of measurement. Rather they refer to well-known and widely used classes

of missing data handling methods, which are briefly introduced in the beginning. In ap-

plication IRT parameters can be estimated using ML estimation or Bayesian estimation

procedures. This work focuses on ML estimation, in particular MML estimation with and

without missing data. To clarify the terminology used in the remainder, ML estimation

will be reviewed in Section 4.2. Although often criticized, the treatment of item nonre-

sponses as incorrect answers is still common practice of achievement tests. Alternatively,

missing responses are regularly scored as partially correct. Both approaches are critically

examined in light of modern missing data handling methods in Sections 4.3.1 and 4.3.2.

More recently, it was proposed to consider missing responses as an additional response

category. The applicability of this approach is examined considering the implicit assump-

tions of this approach (see Section 4.4). The major focus of this work lies on multidimen-

sional IRT (MIRT) models for nonignorable item nonresponses which are scrutinized in

Section 4.5. This is done with the focus on the explicit and implicit underlying assump-

tions in these models. Typically, alternative MIRT models for item nonresponses have

been considered to be equivalent in the literature (e. g. Holman & Glas, 2005; Rose et al.,

2010). In fact, however, they are not necessarily equivalent. The conditions that ensure

that missing data models are equivalent will be outlined. Based on these considerations

alternative models will be derived. Furthermore, the classes of IRT models for nonignor-

able item nonresponses will be extended. Less restrictive MIRT models are proposed and

latent regression models (LRM) (see Section 4.5.4) and multiple group (MG) IRT models

(see Section 4.5.5) are introduced as alternatives to MIRT models for missing data. Fi-

nally, it will be demonstrated that item nonresponses due to omissions cannot equally be

treated as missing responses due to not-reached items in MIRT models. For this reason a
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joint model for omitted and not-reached items is introduced in Section 4.5.6.

This work focuses mainly on models for nonignorable missing data. The reason is that

well known approaches for ignorable item nonresponses have been developed. These will

be briefly reviewed in Section 4.5.2 using the example of computerized adaptive testing

(CAT) with and without a routing test. Although ignorable missing responses are of minor

interest here, especially models for item nonresponses that are MAR given Z are worth

considering due to their close relation to models for nonignorable missing data.

4.1 Introduction To Missing Data Methods

In this section a short review of existing methods to handle missing data will be given in

order to integrate methods used for item nonresponses in educational and psychological

measurements. Several classification schemes of missing data handling methods have

been proposed in the literature (Allison, 2001; Little & Rubin, 2002; Lüdtke et al., 2007;

McKnight et al., 2007; T. Raghunathan, 2004; Schafer & Graham, 2002), that are the basis

for the taxonomy used here. However, the list of methods considered in this classification

is not exhaustive. The considerations are confined to the most important approaches that

are relevant in the discussion about handling item nonresponses in measurement.

Analysis based on complete and available cases Simply to ignore the missing data

is still the most commonly used practice (McKnight et al., 2007). For instance, the so-

called complete case analyses include all of the observations without missing data while

discarding those observations with incomplete data. This is commonly referred to as

listwise deletion. This approach is not necessarily wrong with respect to biasedness of

parameter estimates. However, analyses of complete cases assume that the missing data

mechanism is MCAR. The advantage is that the reduced data set can be analyzed by stan-

dard estimation procedures for complete data. However, the amount of missing data is

actually increased by eliminating data of test takers with incomplete data. The waste of

a tremendous amount of useful and proverbially expensive information is unacceptable.

The problem of item-nonresponse is replaced by the problem of unit-nonresponse. Due

to the reduced sample size less information is available for estimating model parame-

ters. Thus, listwise deletion is not efficient and results in a loss of precision reflected by

larger standard errors. Complete case analysis becomes critical when the excluded per-

sons might systematically differ from the persons that remain in the analysis. In this case,

missing data mechanism is MAR or NMAR and listwise deletion can lead to seriously

104



biased parameter estimates. In educational and psychological measurement the crucial

questions is whether the probability of non-responses is related to the items Yi. Formally,

is there a stochastic relationship between Yi and Di? If so, the missing data mechanism

is not MCAR and potentially biased item and person parameter estimates result from

listwise deletion. The MCAR assumption is very strong and hardly tenable in most psy-

chological and educational measurements if missing responses result from omitted or not

reached items.

Furthermore, complete case analysis is simply not applicable to test designs with planned

missing data that are commonly used in many large scale assessments. For example, in

multi-matrix sampling designs a booklet with a selection of items is assigned to each

test taker. Due to not-administered items there are no cases with complete data and the

effective sample size using listwise deletion is zero.

Analysis based on available cases refers to pairwise deletion and is mostly discussed

in the context of linear regression analysis, factor analysis, and SEM where the model

parameters can be estimated based on summary statistics such as means, variances, and

covariances (Allison, 2001). Pairwise deletion means to use all observed data points in

the computation of these summary statistics. This can be regarded as listwise deletion in

the computation for each mean, variance, and covariance, separately. As a result, each

estimated summary statistic is based on a different subsample that potentially differs sys-

tematically if the missing data mechanism is not MCAR. Furthermore, the number of

observations used to calculate the summary statistics can vary considerably. Accordingly,

the estimation of test statistics and standard errors is challenging and biased in most avail-

able software packages regardless of the missing data mechanism. Unfortunately, covari-

ance matrices obtained by pairwise deletion are frequently not positive definite even if the

missing data mechanism is MCAR.

In IRT models, both, complete and available case methods, are of minor importance.

Commonly used ML estimation includes all observed item responses and is not based

on bivariate (tetrachoric) correlations. However, SEM for dichotomous and ordered cat-

egorical data (Muthén, 1984) is an alternative to estimate item and person parameters of

one- and two parameter probit models (Kamata & Bauer, 2008; Takane & de Leeuw,

1987). Model estimation with missing data rests upon uni- and bivariate frequency tables

and estimated tetra- and polychoric correlation matrices. In this approach, thresholds,

polychoric correlations, and probit regressions need to be fitted in the beginning of the

estimation process. As in traditional SEM, pairwise deletion is still commonly used since

an equivalent to FIML for those models is currently not available (Asparouhov & Muthén,
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2010).

Weighting procedures Different weighting procedures can be distinguished. The most

common strategies rest upon weighting cases with complete data to adjust for the se-

lection of observations due to the nonresponse mechanism. Following Little and Rubin

(2002), systematic missing data can be regarded as a selection problem, so that particular

subpopulations are underrepresented in the sample. This imbalance is removed by giving

observations from underrepresented populations more weight in the estimation process.

Weighting procedures are directly related to propensity score analysis conducted in other

fields (Guo & Fraser, 2009). Actually, weighting procedures are a modification of com-

plete case analyses (Little & Rubin, 2002). That is, in multivariate analyses the cases with

missing data are excluded. The remaining complete cases are appropriately weighted. A

popular method is inverse probability weighting (IPW; Kim & Kim, 2007; Little & Rubin,

2002; T. Raghunathan, 2004; Wooldridge, 2007), where the inverse response propensities

P(D = 1 |U = u)−1 are used as weights1. In real applications P(D = 1 |U = u) is typically

unknown. However, given the person variable U is conditionally stochastic independent

from D given the potentially multidimensional covariate Z, the response propensities are

P(D = 1 |U, Z) = P(D = 1 | Z). The weights P(D = 1 | Z = z)−1 may be known or can

be estimated for each case given the covariate Z using, for example, logistic regression

models. Note that conditional stochastic independence U ⊥ D | Z implies that the missing

data mechanism w.r.t. Y is MAR given Z. In fact, most commonly used weighting pro-

cedures require that the missing data mechanism is ignorable. Although point estimators

are simple to compute, the computation of correct standard errors in weighted estimation

procedures is sometimes difficult. This is one reason why weighting procedures are only

recommended, especially in large samples.

In most common weighting approaches, there is one weight assigned to each observa-

tional unit with complete data. This is appropriate in order to adjust for sample selection

biases due to unit nonresponses. However, this may fail to correct for item nonresponses.

In Section 2.3 it was demonstrated that each single item can be answered by a different

subsample that refers to a different subpopulation in terms of the distribution of the la-

tent ability variable. Furthermore, the item response propensities P(Di = 1 |U = u) can

differ within a single person. How does one assign a single weight to each test taker in

a joint measurement model of all items? Actually, each individual response needs to be

1The subscript i of the response indicator has been omitted, since each case has a single response propen-
sity that applies to all considered variables.
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weighted. Using IPW the weights are given by P(Di = 1 |U = u)−1. An I-dimensional

vector of weights {P(D1 = 1 |U = u)−1, . . . , P(DI = 1 |U = u)−1} result for each test

taker. Most statistical software, however, allow only for a single weight per observational

unit. Hence, weighting procedures are hardly applicable in multivariate analyses with

item nonresponses and have been rarely addressed in the literature (e. g. Moustaki &

Knott, 2000).

Imputation based methods Imputation based methods have become very popular in

the recent years (Graham, 2009; Rubin, 1996; Schafer & Graham, 2002). Especially

multiple imputation (MI) has proved to be an appropriate approach to account for missing

data. The underlying idea of all currently used imputation methods is to replace missing

responses by more or less plausible values. The completed filled-in data sets can be

analyzed with standard methods for complete data. Hence, MI is a stepwise procedure

consisting of (a) the augmentation of incomplete data sets, (b) the analyses of filled-

in data sets, and (c) the combination of the results from the multiply imputed data to

obtained point estimates and correct standard errors. Similarly, test statistics, such as the

likelihood-ratios and p-values, can be combined (Schafer, 1997). The last step is dropped

in single imputation methods. However, each imputation method starts with the modeling

task (Little & Rubin, 2002; Rubin, 1987) that requires the specification of an imputation

model. The imputation model specifies how to impute missing values based on observed

data Yobs = yobs. Unbiased sample based inference using imputation methods rests upon

the correct specification of the imputation model. For example, the imputation model

of MI with sequential regressions or chained equation (T. Raghunathan et al., 2001; Van

Buuren, 2007) consists of linear or nonlinear regressions of each variable with missing

data on the remaining variables in the data set and distributional assumptions with respect

to the residuals of these regressions. If the regressions are correctly specified and the

distributional assumptions hold true, the filled-in data sets can be seen as realizations y

of Y with the distribution g(Y). As shown in Section 2.2 (pp. 24 - 26), the latter can

be written as the joint distribution g(Ymis = ymis,Yobs = yobs) that can be factored into

g(Ymis = ymis |Yobs = yobs; ιmis)g(Yobs = yobs). The first factor is the predictive distribution

(e. g. Little & Rubin, 2002; Schafer, 1997). ιmis is the vector of regression coefficients

and residual variances and covariances. Using MI, imputed values are random draws from

the predictive distribution. Apart from MI, many imputation methods exist that differ

with respect to the complexity of the imputation model and the respective assumptions.

For example, there exist several naive approaches to handle item nonresponses such as
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item mean substitution and person mean substitution (Huisman, 2000). In these cases,

missing responses to item i are replaced by the item mean ȳi or the proportion correct

score P+ of the completed items. Hence, the imputation model is simply an assignment

rule. The frequently criticized but still often used incorrect answer substitution (IAS) is

also a naive imputation method preferentially applied in achievement tests. The missing

responses are scored as incorrect answers (Yi = 0). Obviously, the imputed data sets can

be very different depending on the used imputation method. Accordingly, the parameter

estimates and their statistics will differ as well. The variance of the results suggests that

the choice of the imputation method is essential. Given the missing data mechanism

w.r.t. Y is MAR, MI has proved to be an excellent method to handle missing data. With

the introduction of sequential or chained regressions (T. Raghunathan et al., 2001; Van

Buuren, 2007, 2010) MI has also become applicable in measurement models with binary

and categorical manifest variables. Recent simulation studies proved MI to be useful for

item nonresponses even if the proportion of missing data exceeds the proportion of the

observed data considerably (Van Buuren, 2010). Although Rubin (1987) discussed MI

for the case of nonignorable missing data as well2, most of the currently implemented

MI algorithms requires that the MAR assumptions hold true. In real applications omitted

and not-reached items are typically related to test performance and, therefore, to persons’

proficiency levels (Culbertson, 2011, April; Rose et al., 2010). Hence, the missing data

mechanism is most likely nonignorable and MI is not appropriate. For that reason MI is

not further considered in this work.

However, naive imputation methods are still commonly used even in large prestigious

educational assessments such as PISA (Culbertson, 2011, April; Rose et al., 2010). The

simplicity of such methods and their plausibility are tempting. For that reason, IAS and

scoring missing responses as partially correct (PCS) are examined with respect to the

implicit imputation model and the respective assumptions in Sections 4.3.1 and 4.3.2. The

questions of whether and when these methods are appropriate to handle item nonresponses

will be answered.

Model-based methods Model-based approaches estimate parameters of the target model

directly from the incomplete data set. Missing data are directly taken into account in the

model estimation. Compared to imputation methods model-based approaches are single

2If the nonresponse mechanism is NMAR, then the predictive distribution (see page 25) includes the re-
sponse indicator variables Di. Hence, g(Ymis = ymis |Yobs = yobs, D = d; ιmis). However, the estimation
of the parameters ιmis of the imputation model is difficult, limiting the application of MI for nonignor-
able missing data.
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step procedures. Nevertheless, many model-based approaches and imputation methods

are closely related. The basic idea is quite simple. Following Little and Rubin (2002),

missing data need not to be replaced by random draws from the predictive distribution. In-

stead, conditional expectations of missing values given observed values can be substituted

for item nonresponses directly into the estimation equations. The resulting ML estima-

tor comprises the estimation of the parameters of the target model and the parameters

that relate observable and missing variables. The latter are equivalent to the parameters

ιmis in an imputation model. Different ML estimators as well as Bayesian models have

been developed to account for item nonresponses. Well known examples are the full in-

formation maximum likelihood (FIML) estimation (Arbuckle, 1996; Enders, 2001b) and

the expectation-maximization (EM) algorithm (Dempster et al., 1977). Model based ap-

proaches have been developed for both ignorable and nonignorable missing data. For that

reason they are of major interest here in this work.

Strictly speaking, sample based inference in presence of missing data is conditional

given the observed missing pattern D = d. Since D is itself a random variable, sample

based inference needs to be based on a joint model of (Y, Z, D). Hence, the response

indicator variables need to be modeled jointly with Y and Z as the variables of the target

model. In fact, in Section 4.5.1 it will be shown in detail that the likelihood function

that accounts for missingness is proportional to the joint distribution g(Y, Z, D). Unfortu-

nately, the specification and identification of models including D is quite difficult in many

applications. Additionally, the model that reflects researchers’ theory does not typically

involve the response indicator variable D. Hence, the model becomes pretty complex.

Therefore, the statistical literature has extensively discussed the requirements that are

needed to skip D from the parameter estimation of the target model. In his seminal pa-

per, Rubin (1976) examined the weakest conditions that allow for ignoring D without

affecting sample based inference. He proved that D needs not to be included in ML and

Bayesian estimation if the missing data mechanism is ignorable (MCAR or MAR). If the

nonresponse mechanism is NMAR, then the missing data are nonignorable, meaning that

D cannot be ignored in ML and Bayesian parameter estimation. IRT models can be esti-

mated by ML or Bayesian methods. The latter will not be considered here. ML estimation

of IRT models with missing data will be examined in detail in Section 4.5.1. In general,

ML estimation is briefly reviewed and summarized in the subsequent section.

Selection models (SLM) (Heckman, 1976, 1979; Little, 2008; Winship & Mare, 1992)

and pattern mixture models (PMM; Little, 1993, 2008) are two classes of model based

approaches for nonignorable missing data. Both approaches rest upon a joint model of
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Y and the respective response indicator vector D. In this work it will be shown that IRT

models for nonignorable item nonresponses can be derived from SLMs or PMMs under

certain assumptions. Such models for missing responses in IRT measurement models will

be examined and further developed in Section 4.5.

4.2 Maximum Likelihood Estimation Theory

In the study of the bias of item and person parameter estimates (see Chapter 3) the terms

maximum likelihood estimation and likelihood function have already been used. In this

section, ML estimation is briefly reviewed in more detail since model based approaches

considered in the remainder of this work are based on ML estimation. First, ML esti-

mation with complete data is introduced. ML estimation in presence of different missing

data mechanisms will be examined in Section 4.5.1.

Let there be a I-dimensional random variable Y. N denotes the sample size. That is, the

number of repetitions of the single unit trial as described in Section 2.2 (see Equations 2.7

and 2.8). The data matrix y is then a realization of an N × I-dimensional random matrix

Y. Each row Yn (n = 1, . . . ,N) of Y represents a randomly drawn observational unit. For

example, in a psychological test that is the response vector Yn = Yn1, . . . ,YnI of the n-th

test taker. In the remainder, it is assumed that stochastic independence Yn ⊥ Ym (∀ n ,

m ∈ 1 . . .N) holds. That is, the single unit trials are conducted independently. Let there

be a parametric model with the parameter vector ι. The ML estimation of ι rests upon the

likelihood function L(y; ι) that can be derived from the conditional probability function

g(Y = y; ι). However, the function L(y; ι) is not required to be a probability function

(Enders, 2005; Held, 2008). It is sufficient that L(y; ι) is proportional to g(Y = y | ι).
Thus, the likelihood function or simply the likelihood of Y = y is proportional to the joint

distribution of the N response vectors g(Y1 = y1, . . . ,YN = yN; ι). If the rows of Y are

stochastically independent, then

L(y; ι) ∝
N∏

n=1

g(Yn = yn; ι). (4.1)

Let ι̂ be an estimator of ι. The defined set of values that ι̂ can take on is called the param-

eter space Ωι. The ML estimator ι̂ML of ι is defined as the value of the parameter space

Ωι that maximizes the joint probability density function and, therefore, the likelihood
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function L(y; ι):

ι̂ML = arg max
ι∈Ωι
L(y; ι) (4.2)

Since ι̂ML is the maximizer of L(y; ι), the estimation problem is equivalent to finding the

roots of the first derivative L′(y; ι) = ∂
∂ι
L(y; ι) with respect to ι. Typically, the natural

logarithm of the likelihood ℓ(y; ι) = log[L(y; ι)] is maximized instead of the likelihood3.

This is equivalent since the logarithm is a monotone transformation and the values ι ∈ Ωι
that maximizes L(y; ι) and ℓ(y; ι) are identical. Thus, parameter estimates are obtained

by setting the first derivative ℓ′(y; ι) = ∂
∂ι
ℓ(y; ι) equal to zero and solving for ι. In multi-

parameter estimation problems, ℓ′(y; ι) is a vector of the partial derivatives of ℓ(y; ι) with

respect to the single elements of ι = ι1, . . . , ιM.

ℓ′(y; ι) =
∂ℓ(y; ι)

∂ι
=



∂ℓ(y;ι)
∂ι1
∂ℓ(y;ι)
∂ι2
...

∂ℓ(y;ι)
∂ιM


(4.3)

ℓ′(y; ι) is also called the gradient or the score vector. The second derivative ℓ′′(y; ι) of the

log-likelihood is the M × M Hessian matrix.

ℓ′′(y; ι) =
∂2ℓ(y; ι)

∂ι2
=



∂2ℓ(y;ι)
∂ι21

∂2ℓ(y;ι)
∂ι1∂ι2

· · · ∂2ℓ(y;ι)
∂ι1∂ιM

∂2ℓ(y;ι)
∂ι2∂ι1

∂2ℓ(y;ι)
∂ι22

· · · ∂2ℓ(y;ι)
∂ι2∂ιM

...
...

. . .
...

∂2ℓ(y;ι)
∂ιM∂ι1

∂2ℓ(y;ι)
∂ιM∂ι2

· · · ∂2ℓ(y;ι)
∂ι2

M



(4.4)

The negative of the Hessian matrix is the observed information matrix I(ι) (Efron & Hink-

ley, 1978; Held, 2008). Inverting I(ι) gives an estimator of the variance-covariance matrix

ACOV(ι̂ML) of the estimator ι̂ML. In general, the ML estimator is consistent and, there-

fore, asymptotically unbiased, asymptotically efficient, and asymptotically normal, so that√
N(ι̂ML − ι)→ N(0, I(ι)−1) (e. g. Green, 2012). This implies ι̂ML → N

(
ι, I(ι)−1

)
for large

samples (e. g. Held, 2008). The standard errors of the estimates in ι̂ML are obtained by

the square root of the diagonal elements of ACOV(ι̂ML).

So far, ML estimation theory has been introduced for the case of completely observed

3In application, the value of L(Y; ι) becomes rapidly tiny potentially causing computational problems.
Additionally, the log-tranformed likelihood can be easier handled mathematically.
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data. This is sufficient to examine data augmentation methods such as incorrect-answer-

substitution and partially-correct-scoring of missing data as well as the use of the nominal

response model for missing responses. These approaches have in common that filled-

in data sets are used for parameter estimation. Hence, all missing values are replaced

or recoded and ML estimation methods for complete data are used. Consequently, ML

estimation with missing data is required for model-based approaches and is considered in

detail in Section 4.5.1. The suitability of these three methods for item nonresponses will

be critically studied next.

4.3 Data Augmentation Methods Used in IRT Models

Especially in educational testings there is strong evidence that item-nonresponses and the

latent ability of interest are stochastically dependent. It was repeatedly found that the pro-

portion of missing data decreases with increasing ability levels (Culbertson, 2011, April;

Rose et al., 2010). This is a typical finding especially in low-stakes assessments. For

instance, in the PISA 2006 data a substantial correlation of r = 0.33 was found between

the proportion correct score and the proportion of answered items (Rose et al., 2010). The

higher probability of missing data in persons with lower test scores seems to justify the

recoding of missing responses to incorrect responses (Yi = 0). In achievement testings

the method is also called incorrect answer substitution (IAS) (Huisman, 2000). Despite

criticism of this approach almost 30 years ago by Lord (1974), among others, IAS is still

widespread in large scale assessments as in PISA, (Rose et al., 2010). Obviously, IAS

has not lost any of its attractiveness, notwithstanding the persistent criticism against this

practice (e. g., Lord, 1974, 1983a; Ludlow & O’Leary, 1999; Rose et al., 2010). Apart

from the plausibility at first sight, the easy applicability of IAS might be responsible for

its wide use. Furthermore, some IRT programs might be tempting for applied researchers

to use IAS. For instance, in BILOG 3 (Zimowski, Muraki, Mislevy, & Bock, 1996) the

user can only choose between two alternatives to treat omitted responses in the parameter

estimation stage: (a) treating missing responses as wrong responses, or (b) as partially

correct. Applied researchers may unintentionally suggest that these two options are the

best practice to handle item nonresponses. Advocates of IAS often argue that it is not

important to consider why test takers fail to give the correct answer. From this perspec-

tive it is irrelevant to distinguish between a wrong response and a nonresponse when the

correct answer was not given by a test taker. This argumentation seems to be plausible at

first glance but is potentially incompatible with a chosen measurement model that reflects
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theoretical assumptions about the response process. Additionally, IAS is associated with

implicit assumptions that may unlikely hold in application. In this work, IAS is consid-

ered to be an imputation method. As previously discussed, imputation based methods are

appropriate if the imputation model is correctly specified and the underlying assumptions

hold true. IAS will be studied from this point of view.

As an alternative to IAS, Lord (1974, 1983a) proposed to treat missing data as partially

correct. The rationale of this method is that each test taker u has a positive probability

P(Yi |Di = 0,U = u) to solve an item even if no answer is observed. Partially correct

scoring (PCS) of item nonresponses as an alternative to IAS is also studied as an impu-

tation method, since missing responses are implicitly replaced by constants. This will be

demonstrated in Section 4.3.2. PCS is also commonly used in large scale assessments as

an alternative to IAS. It is implemented in some IRT software such as BILOG 3. Similarly,

the simplicity and plausibility of PCS as well as its implementation in existing software

is tempting for applied researchers. The underlying assumptions have rarely been made

explicit. This will be done here. In the next two sections IAS and PCS will be scrutinized

with respect to their assumptions, theoretical implications, and practical consequences. In

order to demonstrate its performance, both approaches will be applied to Data Example

A.

4.3.1 Incorrect Answer Substitution for Item Nonresponses

Following Huisman (2000), IAS is a naive or simple imputation method. A prerequisite

of correct sample-based inference is the correct specification of the imputation model.

That includes that the explicit and implicit assumptions of this model have to hold true in

application. That the imputation model used in IAS is unlikely to be appropriate is already

implied by the bias found in the sum score (see Section 3.1.1). Recall that the sum score

implicitly recodes missing responses into incorrect responses. It was found that the sum

score is only unbiased if the probability P(Yi = 1 |Di = 0,U = u) to solve a missing item

is equal to zero.

From a theoretical point of view it was shown that IAS means to replace the variables

Yi with new random variables Y∗i = Yi · Di (see Equation 3.7). Both variables Yi and Y∗i

have most likely different distributions and refer to different random experiments. Recall

that if no missing data mechanism exists, then the random experiment is to draw u of U,

administer a test consisting of the items Y1, . . . ,YI , and observe the item responses. In

contrast, the random experiment given the missing data are treated as wrong means to

draw a unit u of U randomly, administer a test consisting of the items Y1, . . . ,YI , observe
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the item responses of answered items, and recode item nonresponses to Yi = 0. Thus,

Y∗i is a function f (Yi,Di) of item i and the respective response indicator. In this case,

f (Yi,Di) is an assignment rule given by Equation 3.7. However, when IAS is considered

an imputation method it can be asked what the implicit assumptions are that need to hold

true in order to ensure unbiased item and person parameter estimation. Furthermore, the

theoretical implications of these assumptions can be examined.

Implicit assumptions underlying IAS and their implications What is the imputation

model under IAS? In contrast to MI, the imputed values depend not on other manifest

or latent variables. Missing values of each test taker are replaced by zeros regardless of

other item responses or covariates. Hence, IAS rests upon a deterministic model. The

imputed values depend only on the missing data indicators Di. The assignment rule (see

Equation 3.7) determines how to augment the incomplete data set. What are the implicit

assumptions underlying IAS? It is assumed that P(Yi = 1 |Di = 0) = 0. This implies

for each test taker u of U, so that P(Yi = 1 |U = u,Di = 0) = 0. In fact, in Section

3.1.1 it was shown that the sum score S Miss in presence of missing data is unbiased if

P(Yi = 1 |U = u,Di = 0) = 0 holds true (see Equation 3.30). Furthermore, in this case the

equality Yi = Y∗i is implied. Hence, although the measurement model under IAS consists

of I regressions P(Y∗i | ξ; ι) instead of P(Yi | ξ; ι), the construction of the latent variable re-

mains unaffected and item and person parameter estimates will be unbiased. Furthermore,

multiple imputations are not required since each imputed data set is completely the same

if P(Yi = 1 |U = u,Di = 0) = 0 holds true. Nevertheless, although this implicit assump-

tion justifies the use of IAS, it has considerable implications and causes serious theoretical

inconsistencies. Again, IAS assumes that P(Yi = 1 |Di = 0) = 0 implying that Yi is a con-

stant given Di = 0. A constant is always stochastically independent from any other ran-

dom variable. Consequently, Yi ⊥ U |DI = 0. If Yi is a dichotomous item in a latent trait

model with a latent variable ξ = f (U), then P(Yi = 1 |Di = 0, ξ) = P(Yi = 1 |Di = 0) = 0.

Thus, if the imputation model under IAS is correct, then the assumption of conditional

stochastic independence Yi ⊥ ξ |Di = 0 is implied. Hence, the probability to solve an

omitted or not-reached item is zero regardless of the proficiency levels of the test tak-

ers! This implicit assumption is untenable in most realistic applications. Interestingly,

IAS also assumes that P(Yi = 1 |Di = 1, ξ) = P(Yi = 1 | ξ). Hence, if an item response

is observed, then the respective IRT model applies. Apparently, there is a strong in-

teraction effect between Di and ξ with respect to Yi, implying measurement invariance

with respect to Di. Further interaction effects between Di and all other random variables
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are implied, which are stochastically dependent from Yi given Di = 1. In psychologi-

cal and educational testings there are many covariates captured in Z that are stochasti-

cally dependent on the achievement on the test and the test items, respectively. Hence,

P(Yi = 1 | Z) , P(Yi = 1). However, the assumption P(Yi = 1 |Di = 0) = 0 justifying IAS

implies that Yi ⊥ Z |Di = 0. Specifically, P(Yi = 1 |Di = 0, Z) = P(Yi = 1 |Di = 0) = 0.

In this case Di would moderate the stochastic relation between Z and Yi. This is also

true for any other item Y j,i. If Yi and Y j indicate the same latent variable, then they are

correlated if the latent ability variables have a non-zero variance. That is, Yi✚✚⊥Y j |Di = 1.

The implicit assumptions of the IAS imputation model, however, imply Yi ⊥ Y j |Di = 0.

Interestingly, the interactions between Di and Y j or Di and Z with respect to Yi implied

by IAS assumptions have also implications with respect to the missing data mechanism of

Yi. The item Yi and the response indicator Di cannot be stochastically independent, neither

unconditionally nor conditionally given Z or other observable items Y−i

obs
. Hence, if IAS

assumptions hold true, then the missing data mechanism is not allowed to be MCAR or

MAR unless P(Yi = 1 |Di = 1, Z) = P(Yi = 1 |Di = 1) = 0 and P(Yi = 1 |Di = 0) =

P(Yi = 1 |Di = 1) = 0. However, in this case the items would be constants (Yi = 0).

To sum up, from the implicit assumption P(Yi = 1 |Di = 0) = 0 of IAS follows that the

nonresponse mechanism cannot be MCAR or MAR. Even if the missing data mechanism

is NMAR, IAS implies that the items are stochastically independent of any other variable

given Di = 0, including the latent ability. In contrast, if item i is observable (Di = 0), then

a stochastic dependency between Yi and the persons’ proficiency is assumed, which is

described by the model equations P(Yi = 1 | ξ) of the measurement model. Hence, a very

strong form of DIF given Di is implied. Here the view is taken that none of these implica-

tions following from IAS are tenable in application. The theoretical inconsistencies make

the use of IAS obsolete. Nevertheless, in the remainder of this section the consequences

of using IAS with respect to item parameter estimation and the construction of the latent

variable will be demonstrated for the case of a measurement model with a unidimensional

latent variable ξ.

ML estimation under IAS As in any other imputation method, the filled-in data set

is analyzed by standard methods. Here ML estimation is considered. Using IAS, ML

estimation of model parameters is based on the variables Y∗i instead of Yi. Assuming local

stochastic independence and that no missing data mechanism exists, the likelihood of a
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unidimensional latent trait model with dichotomous variables Yi can be written as

L(y; ι) ∝
N∏

n=1

I∏

i=1

P(Yni = 1 | ξ; ι)yni P(Yni = 0 | ξ; ι)1−yni . (4.5)

The vector ι contains the model parameters aimed to be estimated. That is, the item and

person parameters. In presence of any missing data mechanism, however, the likelihood

under IAS can be written as

L(y∗; ι) ∝
N∏

n=1

I∏

i=1

{[
P(Yni = 1 | ξ; ι)yni P(Yni = 0 | ξ; ι)1−yni

]di

[
P(Y∗ni = 1 | ξ; ι)y∗

ni P(Y∗ni = 0 | ξ; ι)1−y∗
ni

]1−di
}
. (4.6)

Using the derivations from above, the likelihood can be simplified. Since IAS assumes

P(Yi = 1 |Di = 0) = 0 implying Yi ⊥ ξ |Di = 0, Equation 4.6 can be written as

L(y∗; ι) ∝
N∏

n=1

I∏

i=1

{[
P(Yni = 1 | ξ; ι)yni P(Yni = 0 | ξ; ι)1−yni

]di

[
P(Y∗ni = 0 |Di = 0)1−y∗

ni

]1−di
}
, (4.7)

with P(Y∗ni = 0 |Di = 0) = 1. In the first factor yni is used instead of y∗ni since yi =

y∗i |Di = 1. This likelihood is similar to a zero-inflated logistic regression mixture model

with known classes indicated by Di. Interestingly, the factor [P(Y∗ni = 0 |Di = 0)1−y∗
ni]1−di

reduces to P(Y∗ni = 0 |Di = 0)1−di and does not contain any estimand of the substan-

tive model and could actually be skipped without affecting the remaining ML estimates.

However, the theoretically implied likelihood given in Equation 4.7 is not used in real

applications. Using any IRT program under IAS means that the likelihood given by Equa-

tion 4.5 is used where the variables Yi are replaced by Y∗i . In fact, the following function

is maximized under IAS:

f (y∗; ι) =
N∏

n=1

I∏

i=1

[
P(Yni = 1 | ξ; ι)yni P(Yni = 0 | ξ; ι)1−yni

]di

P(Yni = 0 | ξ; ι)1−di , (4.8)

This is neither the likelihood function with respect to Y∗ = y∗ nor Y = y. Therefore, it

is only denoted as an estimation function f (y∗; ι). Note that the last factor that represents

the missing responses is now the same probability of an incorrect answer given the latent

ability as in the case of the observed item responses. Hence, the stochastic independence
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Yi ⊥ ξ |Di = 0 implied by IAS is not taken into account in this likelihood function. It

is not distinguished between zeros due to an incorrect answer and zeros due to item non-

responses. The derivations reveal that the implications from the underlying assumptions

in the construction of Y∗i are fundamentally ignored at the estimation stage. The wrong

estimation equation is maximized resulting in potentially strange estimators.

On the basis of these considerations the item parameter estimates under IAS are un-

likely to be equal to complete data. Furthermore, the construction of the latent variable is

potentially affected by replacing Yi with Y∗i . The latent variable might not only differ nu-

merically but also with respect to its meaning, thus threatening the validity of the test. In

a first step the effects of IAS on item parameters will be examined followed by the effects

with respect to the latent variable. Analytical derivations will be illustrated by empirical

results from Data Example A.

Effects of IAS to item parameter estimates Recall that under IAS the regressions

P(Yi = 1 | ξ; ι) are replaced by P(Y∗i = 1 | ξ; ι). Since only zeros are imputed for miss-

ing responses higher proportions of incorrect responses result that should mimic more

difficult items. Therefore, if a one- or two-parameter model is identified by fixing the

latent variable to E(ξ) = 04 it is expected that the item difficulties βi will be overestimated

in both models using IAS. Furthermore, it is expected that the item discriminations αi

in the two-parameter model will be biased depending on the missing data mechanism.

Given that the missing data mechanism is non-ignorable with Cor(ξ, θ) > 0, it is ex-

pected that item discriminations will be positively biased. In contrast, a negative bias

is expected if the missing data mechanism w.r.t. Yi is MCAR. At first the case of non-

ignorable missing data is considered. In the following derivations it is assumed that the

regressions P(Yi = 1 | ξ) and P(Di = 1 | θ) are monotonically increasing functions of the

latent variables with values between zero and one. Since the regressions can also be

nonparametric, the parameter vector ι will be omitted. Given that Cov(ξ, θ) > 0, then

Cov[ξ, P(Di = 1 | θ)] > 0. This implies that the probability of an item nonresponses in-

creases, the lower the latent ability ξ is. Since the response category Y∗i = 0 results not

only from incorrect answers to item i but also from nonresponses that are increasingly

likely with lower values of ξ, the ICC approaches faster to zero with decreasing values

of ξ. A positively biased item discrimination results. This can also be shown mathemati-

cally, using Y∗i . As examined in Equation 3.7, the regression P(Y∗i = 1 |U) can be written

4In the two-parameter model the variance Var(ξ) needs to be fixed as well for free estimation of all item
parameters.
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as E(Yi · Di |U). Given Cov(εYi
, εDi
|U) = 0 (see Equations 3.12 and 3.15) that is,

P(Y∗i = 1 |U) = P(Yi = 1 |U) · P(Di = 1 |U). (4.9)

Assuming a latent response propensity variable θ = f1(U) and the latent ability ξ = f2(U)

exist, the regression P(Y∗i = 1 |U) can be replaced by the regression P(Y∗i = 1 | ξ, θ) =
E(Y∗i | ξ, θ). The latter can be written as

E(Y∗i | ξ, θ) = E(Yi · Di | ξ, θ) (4.10)

= Cov(εYi
, εDi
| ξ, θ) + E(Yi | ξ, θ)E(Di | ξ, θ) (4.11)

Assuming that Cov(εYi
, εDi
| ξ, θ) = 0 and conditional stochastic independencies Yi ⊥ θ | ξ

and Di ⊥ ξ | θ hold true, it follows

E(Y∗i | ξ, θ) = E(Yi | ξ)E(Di | θ) (4.12)

= P(Yi = 1 | ξ)P(Di = 1 | θ). (4.13)

Using IAS only the latent variable ξ is included in the model. Hence, the measurement

model is constituted by the regressions P(Y∗i = 1 | ξ) that can be written as

P(Y∗i = 1 | ξ) = E[E(Y∗i | ξ, θ) | ξ] (4.14)

= E[E(Yi | ξ)E(Di | θ) | ξ]

= E(Yi | ξ) · E[E(Di | θ) | ξ].

From Di ⊥ ξ | θ follows E[E(Di | θ) | ξ] = E[E(Di | θ, ξ) | ξ] = E(Di | ξ) implying that

P(Y∗i = 1 | ξ) = P(Yi = 1 | ξ) · E[P(Di = 1 | θ) | ξ] (4.15)

= P(Yi = 1 | ξ)P(Di = 1 | ξ).

It can be seen that the regression P(Yi = 1 | ξ) is weighted by the regression of the response

indicator Di on ξ. The values of the regression P(Di = 1 | ξ) are probabilities ranging

between zero and one by definition. Therefore, the difference P(Yi = 1 | ξ) − P(Y∗i = 1 | ξ)
is always ≤ 0. This difference can also be written as P(Yi = 1 | ξ) − P(Yi = 1 | ξ)P(Di =

1 | ξ). If Cov[ξ, P(Di = 1 | θ)] > 0 implied by Cov(ξ, θ) > 0, then the ICC referring

to P(Y∗i = 1 | ξ) is steeper because it approaches faster to zero with decreasing values

of ξ. Taken together, it is expected that the ICCs will be shifted to the right due to an
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overestimated βi and are expected to be steeper because of the positively biased item

discrimination estimates α̂i.

Data Example A was used to confirm the expected biases of item parameter estimates.

Exemplarily, two items Y3 and Y28 are considered at first. Y3 is a comparably easy item

(β3 = −2.00) which is little affected by missing data. The overall response rate is D̄3 =

0.893. Item Y28 is a pretty difficult item with β28 = 1.750. The overall response rate

is much lower D̄3 = 0.257. Figure 4.1 shows the ICCs of P(Yi | ξ) and P(Y∗i | ξ) of both

items. The results for these two items show the expected result pattern. The ICCs are

right-shifted indicating positively biased item difficulty estimates. As Table 4.1 shows,

β̂3 = −1.114 which is higher than the true value β3 = −2.00. Similarly, β̂28 = 2.455 which

is higher than the true value β28 = 1.74. The item discrimination of item Y3 is close to

one (α̂3 = 1.029). However, item 28 with many missing responses showed a considerably

overestimated item discrimination of α̂28 = 1.765. Table 4.1 shows the item parameter
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Figure 4.1: Graphical comparisons of P(Yi = 1 | ξ) and P̂(Y∗
i
= 1 | ξ) for an exemplary item with

low difficulty and low proportion of missing data (Y3) and an exemplary item with high
difficulty and high proportion of missing data (Y28) using Data Example A.

estimates obtained of the 1PLM and the 2PLM using BILOG 3 with IAS. Columns two

to four give the results under the treatment of missing data as wrong. Columns five to

eight show the results under partial correct scoring (PCS) which will be discussed in the

subsequent section. As expected, the item difficulties were overestimated for all items

(see also Figure 4.2). The mean β̂i = 1.145 of the difficulty estimates is much higher
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than the true mean β̄ = −0.118 (t = 3.934; df= 29, p < 0.001), erroneously indicating

a considerably more difficult test. Using the 1PLM, the item fit measures indicated a

bad model fit for all 30 items although Data Example A was generated using the Rasch

model5. In real applications, the 2PLM could be chosen as a less restrictive alternative

model in such a situation. The bias of item difficulty estimates is very close between 1-

and 2PLM. As Figure 4.3 illustrates, the estimated item discriminations were increasingly

overestimated the higher the proportion of missing responses per item was. The mean
¯̂α = 1.206 of the estimated discrimination parameters deviates significant from the true

item discrimination α = 1 (t = 5.492, d f = 29, p < 0.001).

However, it is important to note that the estimates α̂i need not necessarily be positively

biased when IAS is used for item nonresponses. In Data Example A it was assumed

that the tendency to have item nonresponses is positively correlated with the latent ability

(Cor(ξ, θ) = 0.8). The bias might be different for other missing data mechanisms and

other relations between the variables. Exemplarily, the case is examined were the missing

data mechanism w.r.t. Yi is MCAR. Thus the Di is stochastically independent from Yi and

ξ, respectively. In this case it is still expected that the ICC would be right-shifted. Hence,

the item difficulties are overestimated in presence of missing responses. However, the

item discrimination is affected quite differently than for the case of non-ignorable missing

data with Cov(ξ, θ) < 0. This can be demonstrated studying the limits of P(Y∗i = 1 | ξ)
given by

lim
ξ→∞

P(Y∗i = 1 | ξ) = lim
ξ→∞

P(Yi = 1 | ξ) · P(Di = 1 | ξ) (4.16)

= lim
ξ→∞

P(Yi = 1 | ξ) · lim
ξ→∞

P(Di = 1 | ξ).

Equation 4.16 holds under any missing data mechanism considered in this work. If a latent

variable ξ and a latent response propensity θ exist with Cov(ξ, θ) > 0, and the regressions

P(Yi = 1 | ξ) and P(Di = 1 | θ) are monotonically increasing functions with the limits zero

and one, then the upper limit under IAS is

lim
ξ→∞

P(Y∗i = 1 | ξ) = lim
ξ→∞

P(Yi = 1 | ξ) · lim
ξ→∞

P(Di = 1 | ξ) (4.17)

= 1,

5The χ2-Test provided by BILOG indicated a significant deviation of the empirical ICCs from the model
implied ICCs of the 1PLM for all items in Data Example A.
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Table 4.1: Estimated item discriminations and item difficulties of the 1PLM and the 2PLM using IAS
and PCS (Data Example A).

IAS PCS
1PLM 2PLM 1PLM 2PLM

Item αi β̂i α̂i β̂i αi β̂i α̂i β̂i

Y1 1 -1.597 0.974 -1.581 1 -1.669 0.863 -2.161
Y2 1 -1.565 0.960 -1.565 1 -1.671 0.837 -2.215
Y3 1 -1.170 1.029 -1.114 1 -1.405 0.804 -1.929
Y4 1 -0.960 1.062 -0.895 1 -1.249 0.722 -1.871
Y5 1 -0.334 1.034 -0.319 1 -1.007 0.603 -1.754
Y6 1 -0.658 1.109 -0.596 1 -1.075 0.694 -1.664
Y7 1 -0.321 1.130 -0.288 1 -0.917 0.622 -1.555
Y8 1 -0.419 0.952 -0.424 1 -0.899 0.624 -1.520
Y9 1 -0.306 0.990 -0.302 1 -0.766 0.657 -1.237
Y10 1 -0.199 1.116 -0.181 1 -0.695 0.699 -1.066
Y11 1 0.308 1.080 0.278 1 -0.566 0.495 -1.160
Y12 1 0.265 1.037 0.244 1 -0.403 0.549 -0.748
Y13 1 0.196 1.084 0.175 1 -0.444 0.599 -0.767
Y14 1 0.682 1.260 0.564 1 -0.292 0.506 -0.575
Y15 1 0.395 0.956 0.387 1 -0.172 0.562 -0.298
Y16 1 0.776 1.052 0.718 1 -0.114 0.464 -0.223
Y17 1 1.561 1.368 1.226 1 -0.124 0.276 -0.396
Y18 1 1.243 1.194 1.060 1 -0.062 0.327 -0.146
Y19 1 2.049 1.236 1.704 1 -0.021 0.170 -0.035
Y20 1 2.237 1.342 1.768 1 0.048 0.146 0.427
Y21 1 2.257 1.277 1.837 1 0.072 0.125 0.693
Y22 1 2.645 1.507 1.947 1 0.105 0.096 1.235
Y23 1 3.458 1.335 2.716 1 0.070 0.027 3.164
Y24 1 2.914 1.422 2.212 1 0.111 0.090 1.389
Y25 1 3.182 1.394 2.437 1 0.144 0.055 2.848
Y26 1 2.807 1.249 2.310 1 0.244 0.040 6.327
Y27 1 3.538 1.250 2.899 1 0.101 0.014 8.279
Y28 1 3.687 1.765 2.455 1 0.189 1.490 2.627
Y29 1 3.740 1.448 2.784 1 0.115 1.169 3.056
Y30 1 3.950 1.561 2.803 1 0.136 1.109 3.170

Mean 1 1.145 1.206 0.842 1 -0.407 0.514 0.396
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Figure 4.2: True and estimated item difficulties using IAS and PCS in the 1PLM and 2PLM. The red
lines indicate the bisectric. The blue lines are smoothing spline regressions.

and the lower limit is

lim
ξ→−∞

P(Y∗i = 1 | ξ) = lim
ξ→−∞

P(Yi = 1 | ξ) · lim
ξ→−∞

P(Di = 1 | ξ). (4.18)

= 0

Hence, using IAS the ICCs can also be described by a monotonically increasing function,

with the lower asymptote equal to zero and the upper asymptote equal to one. However, if

the missing data mechanism is missing completely at random, the upper limit of P(Y∗i =

122



Proportion of

missing data

1.0 1.2 1.4 1.6

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

● ●

0
.2

0
.4

0
.6

0
.8

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

1
.0

1
.2

1
.4

1
.6

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

2PLM

using IAS

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0.2 0.4 0.6 0.8

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●●

●

●

●

●

0.0 0.5 1.0 1.5

0
.0

0
.5

1
.0

1
.5

2PLM

using PCS

Estimated Item Discriminations

Figure 4.3: Relationship between item difficulties and estimated item discriminations when IAS and
PCS is used in two-parameter models (Data Example A). The blue lines are smoothing
spline regressions.

1 | ξ) is

lim
ξ→∞

P(Y∗i = 1 | ξ) = lim
ξ→∞

P(Yi = 1 | ξ) · lim
ξ→∞

P(Di = 1 | ξ) (4.19)

= 1 · lim
ξ→∞

P(Di = 1)

= P(Di = 1).

Hence, the ICC of the variables Y∗i cannot be described by 1-,2- or 3-parametric IRT mod-

els because the upper limits of these three IRT models is equal to one. Consequently, if
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the missing data mechanism is MCAR and IAS is applied the measurement model will

generally be miss specified using the 1-, 2-, or 3PLM. Neverthless, if these theoretical

considerations are ignored and the 2- or 3PLM is used, then the item discrimination pa-

rameter will be negatively biased. To demonstrate this effect a single item with α = 1 and

β = −2 was simulated given the missing data mechanism is MCAR. The probability of

observing any value of Y was P(D = 1) = 0.7. Figure 4.4 shows the results which are in

line with the expectations derived theoretically. The red curve refers to a non-parametric

binomial regression based on a local likelihood approach (Bowman & Azzalini, 1997).

This curve approximates the true regression P(Y∗i = 1 | ξ) best. As Ramsey (1991) pro-

posed, non-parametric ICC estimation is an appropriate model technique when parametric

models fail to fit the data. The black curve of Figure 4.4 is obtained using the 2PLM. It

can be seen that the item difficulty is overestimated (β̂ = 0.692) and the estimated item

discrimination is considerably lower than one (α̂ = 0.348). With increasing values of

ξ, the non-parametric ICC approaches the theoretically implied upper limit of 0.7 (grey

dotted line). The discrepancy between the non-parametric and the model-implied ICC of

the 2PLM indicates that the Birnbaum-Model does not fit the filled-in data if IAS is used.

In summary, to treat missing data as incorrect responses leads not only to theoretical

inconsistencies but also results in biased item parameter estimates. Whereas item difficul-

ties are consistently overestimated depending on the proportion of missing data per item,

the item discrimination parameter estimates might be biased either positively or nega-

tively depending on the missing data mechanism and potentially many other factors. If

the missing data mechanism is MCAR, then an upper asymptote (P(Di = 1)) is implicitly

introduced, which is incompatible with 1-, 2, and 3PL IRT models. However, if the 2- or

3PLM is erroneously applied, then the item discrimination parameters will be underesti-

mated. Note that the aim of this investigation was not to study the bias of item parameters

under all possible conditions but to demonstrate that IAS most likely results in biased

parameter estimation in most real applications.

Effects of IAS on person parameter estimates Finally, the effect of IAS on person

parameter estimates will be investigated. Table 4.2 shows the variances, covariances, and

correlations between the true realized values of ξ underlying Data Example A and the ML

estimates from BILOG 3 using IAS. The estimates of the 1- and 2PLM were compared.

The differences between the MLEs of both models seem to be negligible although the

relation seems to be nonlinear (see Figure 4.5). The correlation between the estimates is
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Figure 4.4: Effect of IAS on the estimation of parametric (2PLM) and non-parametric ICCs given the
missing data mechanism is MCAR (true item parameters: α = 1 and β = −2).

close to one. The MLEs of both models have approximately the same correlation ≈ 0.87

with the true values of ξ. This is slightly lower than the correlation between ξ and the

ML estimates of the complete data (r = 0.910). This might imply that person parameter

estimates are not affected. However, the model was identified by fixing the distribution

of the latent variable to the values E(ξ) = 0 and Var(ξ) = 1 that were used for simu-

lation. It is important to note that the item difficulties as locations of the latent variable

considerably shifted. Hence, if item difficulties would be restricted to identify the model

and the moments of the distribution of the latent variable would be freely estimated, then

the results would be different. For example, if the mean of the item difficulties would be

fixed to the true value
∑I

i=1 βi = −3.55, then the distribution of the latent variable would

be left-shifted. Hence, the person parameters would be underestimated. The point is that

the item difficulties and the latent variable are shifted against each other. As a conse-

quence, the item- and test information functions and, therefore, the standard errors differ.

As discussed in Section 3.3, the functional form of item information functions Ii(ξ), the

test information function I(ξ), and the standard error function SE(ξ) depend on item pa-

rameters αi and βi (see Equations 3.74 and 3.75). The overestimation of item difficulties
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Table 4.2: Variances, Covariances and Correlations of the True Values of ξ and the MLE Estimates
for Complete Data and the Filled-in Data Using IAS (Data Example A). Correlations are
Marked by *.

True complete IAS (1PLM) IAS (2PLM)

True ξ (True) 1.002 0.910∗ 0.873∗ 0.868∗

ξ̂ML - complete data 1.041 1.307 0.886∗ 0.882∗

ξ̂ML - IAS (1PLM) 1.096 1.271 1.575 0.992∗

ξ̂ML - IAS (2PLM) 1.009 1.171 1.447 1.351

should result in a right-shifted test information function. For the case of positively biased

item discrimination estimates, the test information function is potentially overestimated.

Figure 4.6 shows the test information function and the standard error function based on

item parameter estimates of the 2PLM when IAS and PCS are used. PCS will be discussed

in the following section. As expected, the test information function is right-shifted. Due

to overestimated item discriminations the test information is also overestimated in wide

ranges of ξ. In application, one would mistakenly conclude that the test is more reliable

in the upper range of ξ. In situations where the item calibration is used to establish item

pools for computerized adaptive testing, this would be fatal. Especially if the missing data

mechanism and/or the treatment of missing data are different between the item calibration

and test application, then parameter estimation and standard errors can be biased. In the

case of CAT, the item selection can be inefficient and the point estimation and standard

errors can be biased. Biased item parameters and test information functions can also re-

sult in biased marginal reliability estimates. In Section 3.3 it was outlined that Rel(ξ̂) can

be interpreted as the average reliability over the distribution of the latent variable ξ. Thus,

the value of the marginal reliability depends on the test information function and the dis-

tribution of ξ. Optimal values of Rel(A)(ξ̂) result if the probability density function of ξ

and the test information function are proportional. Comparing the nonparametrically esti-

mated densities of the ML estimates (see Figure 4.7) with the respective test information

functions (see 4.6) reveals that the density of the latent variable and the test information

function implied by item parameter estimates under IAS are not proportional. In contrast,

the true density and the test information function based on true item parameters show that

the test fit the distribution of the latent variable appropriately. This means that the test in-

formation function and the density function are approximately proportional. The location

of the maximum of test information and the expected value E(ξ) are almost equal. The

item difficulties are optimally spread across the range of ξ. In this case the marginal relia-
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Figure 4.5: True person parameters compared to ML estimates in 1PL- and 2PL models when IAS and
PCS are used. Red lines indicate the bisectric and blue lines represent smoothing spline
regressions.

bility is close to the theoretical maximum. Using IAS, the maximum test information is in

a range with a lower density and the marginal reliability is potentially underestimated with

IAS. However, the results contradict the theoretical expectations. The marginal reliability

in the 1PLM using the complete data was Rel(A)(ξ̂ML) = 0.835. Using IAS, the marginal

reliabilities were Rel(A)(ξ̂ML) = 0.824 and Rel(A)(ξ̂ML) = 0.845 in the 1PL- and 2PLM.

The three coefficients are very close and the marginal reliability is nearly unaffected by

IAS. This might be due to the overestimated test information function. However, since the
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Figure 4.6: Estimated model-implied test information and standard error functions of the 1PLM and
2PLM using IAS.

latent variable seems to be estimated with a comparable accuracy for complete data and

with missing data handled by IAS, the determination coefficients R2
ξ̂|ξ of the regressions

E(ξ̂ | ξ) should be almost identical as well. In our simulated Data Example A we can use

the true values of latent variable ξ and the estimates ξ̂ of the different model to estimate

the regression E(ξ̂ | ξ) with R2
ξ̂|ξ = Var[E(ξ̂ | ξ)]/Var(ξ̂) as an alternative estimate of the

marginal reliability. Using the complete data R2
ξ̂|ξ was 0.828, which is very close to the

marginally reliability estimated in BILOG 3 (Rel(ξ̂ML) = 0.835). Using IAS, however,

the determination coefficient was R2
ξ̂|ξ = 0.762 for the 1PLM and R2

ξ̂|ξ = 0.753 for the

2PLM. Both coefficients are lower than the marginal reliabilities of ≈ 0.82 − 0.85. Such
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Figure 4.7: Non-parametrically estimated densities of ML person parameter estimates in the 1PLM
and 2PLM using IAS.

a discrepancy between estimated marginal reliabilities Rel(ξ̂) and the determination coef-

ficients R2
ξ̂|ξ under IAS has also been found for EAP person parameter estimates (Rose et

al., 2010). It seems to be a consistent finding regardless of the type of the estimator (ML

estimator or EAP). Here it is argued that the differences between R2
ξ̂|ξ and the marginal re-

liabilities reflects the different construction of the latent variable ξ when IAS is used. As

explained in detail at the beginning of this section, treating missing data as wrong means

to replace the manifest variables Yi in the measurement model with Y∗i . The filled-in data

set is treated as though no missing data would exist. Each value yi = 0 can result from

a wrong answer or a non-response to the item. As demonstrated above, the likelihood

function does not distinguish between missing responses and incorrect answers. There-

fore, the latent variables constructed in two measurement models using either the items

Y1, . . . ,YI or Y∗1 , . . . ,Y
∗
I are potentially different. In order to distinguish between these

two constructed latent variables, ξ∗ denotes the latent variable in the measurement model

based on Y∗i . ξ remains the latent variable in the measurement model constituted by Yi. As

previously discussed for the sum score, the variable Y∗i combines two pieces of informa-

tion. Y∗i is a function f (Yi,Di) expressed by the assignment rule of Equation 3.7. Hence,

information about performance with respect to the item Yi and the willingness or ability

to show this performance indicated by Di are confounded into Y∗i . From this point of view

it can be expected that the latent variable ξ∗ combines also information about a person?s

ability and the tendency to respond to the items. To proof this hypothesis Data Example
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A was used. The ML estimates obtained from the complete data (without missing data)

and the ML estimates when IAS was applied to incomplete data were regressed on the

true values of ξ and θ used in Data Example A. It was expected that the ML estimates

ξ̂ML based on the complete data are conditionally regressively independent from θ given

ξ. In contrast, the estimates ξ̂∗ML were expected to be conditionally regressively dependent

on θ given ξ. The results are shown in Table 4.3 for the ML estimates obtained from

the 1PLM and 2PLM. Six linear regression models were estimated: (a) the simple re-

Table 4.3: Regression Coefficients, t− and p−values for Simple (SR) and Multiple Regressions (MR)
of ML Person Parameter Estimates on the True Values of θ and ξ.

Independent variables
ξ θ

MLE from Model Coeff. t p Coeff. t p R2

Complete data SR 0.910 97.98 < 0.001 / / / 0.828
Complete data MR 0.924 60.02 < 0.001 0.018 -1.18 0.238 0.828

IAS (1PLM) SR 0.873 79.89 < 0.001 / / / 0.762
IAS (1PLM) MR 0.524 34.33 < 0.001 0.437 28.68 < 0.001 0.831

IAS (2PLM) SR 0.868 77.98 < 0.001 / / / 0.753
IAS (2PLM) MR 0.517 33.10 < 0.001 0.439 28.11 < 0.001 0.822

gressions (SR) E(ξ̂ML | θ) and E(ξ̂∗ML | θ); and (b) the multiple regressions E(ξ̂ML | ξ, θ) and

E(ξ̂∗ML | ξ, θ). The results confirmed the theoretical expectations. The ML estimates ξ̂∗ML

are not conditionally regressively independent from θ given ξ. In contrast, the standard-

ized partial regression coefficient of θ in the multiple regression (MR) of ξ̂ML estimated

from the complete data on (ξ, θ) is not significant. Additionally, the determination coeffi-

cients were higher in the multiple regressions E(ξ̂∗ML | ξ, θ) than in the simple regressions

E(ξ̂∗ML | ξ). However, θ does not explain additional variance in ξ̂ML given the true values

ξ. Note that in this data example the standardized partial regression coefficients of ξ and

θ in the regressions E(ξ̂∗ML | ξ, θ) are pretty close. Hence, the latent variable ξ∗ is a linear

combination of the latent ability ξ and the latent response propensity θ. The meaning of

the constructed latent variable using IAS is changed. ξ∗ represents no longer the latent

ability of interest but express both the latent ability and the tendency to respond to the test

items. If one is only interested in the latent ability, construct irrelevant variance is intro-

duced by IAS threatening the test fairness and the validity of the test scores. Thus, IAS

is not appropriate to handle item nonresponses if the test is intended to estimate only the

latent ability ξ. As the last column of Table 4.3 shows, the determination coefficients of

the multiple regressions E(ξ̂∗ML | ξ, θ) are close to the marginal reliabilities Rel(ξ̂∗ML) esti-
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mated by BILOG 3. Hence, the marginal reliabilities calculated based on item and person

parameter estimates (without true values ξ) are not biased but are reliabilities of estimates

ξ̂∗ instead of ξ̂.

In summary, to score item nonresponses as incorrect answers is associated with strong

implicit assumptions about the missing data mechanism. IAS is incompatible with MCAR

and MAR conditions. Even if the nonresponse mechanism is NMAR, IAS and the use of

one- and two-parameter IRT models with standard ML estimation result in theoretical

inconsistencies. Formally, this IAS means to replace the items Y1, . . . ,YI in the measure-

ment model with Y∗1 , . . . ,Y
∗
I . Implicitly, a different random experiment with a different

probability space is considered. As a consequence, the item parameter estimates are

biased in the sense that they do not estimate the parameters of the target model. The

item difficulties are overestimated resulting in right-shifted ICCs. The item discrimina-

tion parameters in 2PLM might be affected differently, depending on the missing data

mechanism. It was demonstrated that IAS introduces an upper asymptote if the missing

data mechanism is MCAR. In this case none of the 1- to 3PL IRT models are suited to

fit the data. If these models are nevertheless applied, then the item discrimination will

be underestimated compared to the true item discrimination. In contrast, if the missing

data mechanism is non-ignorable with a positive correlation between the latent ability and

the latent response propensity, then the item discrimination will be overestimated. There

might be many other conditions in presence of missing data not considered here that po-

tentially result in other biased patterns. Finally, it could be shown that the latent variable

is affected with respect to its meaning and interpretation. The variables Y∗1 , . . . ,Y
∗
I in the

IAS measurement model contain two pieces of information: performance in the test and

missingness. This is also reflected in the constructed variable ξ∗ that is different from the

latent ability ξ. The construction, the meaning, and, therefore, the interpretation of test

scores using IAS differs. In this respect the treatment of missing data is also a matter of

validity. The results show clearly that the implicit assumptions and implications of IAS

are (a) not taken into account in the commonly used IRT models and in the ML estima-

tion, and (b) not realistic for almost all real world applications. The treatment of missing

data as wrong should be avoided.

4.3.2 Partially Correct Scoring of Item Nonresponses

IAS is a deterministic imputation model. As such it was often criticised (Lord, 1974,

1983a; Ludlow & O’Leary, 1999; Rose et al., 2010). Lord (1974, 1983a) stated that

IAS is problematic using common ML estimation. This could be confirmed here. Lord
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proposed two alternative approaches to handle missing responses in test items. Both

account for the fact that test takers who omit an item Yi have a non-zero probability to

answer this item correctly even if a response is not observed. Lord suggested to make

plausible assumptions about the mechanism that leads to missing data and to adapt the

likelihood function accordingly. In his first approach introduced in 1974, Lord assumed

that the probability P(Yi = 1 |U,Di = 0) to answer item Yi is a constant c. Typically c is

chosen to be 1/A for multiple choice items with A as the number of response categories.

Thus, it is assumed that each person would answer omitted items completely at random,

so that each alternative is chosen with the same probability c = P(Yi = 1 |U,Di = 0) =

P(Yi = 1 |Di = 0). For dichotomous items that is c = 0.5. In this work PCS as proposed by

Lord (1974) is also regarded as an imputation method for two reasons. First, in his original

paper (1974) heproved that PCS is equivalent to the imputation of missing responses by

random draws from a Bernoulli distributed random variable with P(Yi = 1) = c if N → ∞.

Second, the pseudo-likelihood L•(Y; ι) reveals that PCS means to impute c for missing

values. The term pseudo-likelihood was used by Lord to underline the fact that the ML

function used under PCS is not simply the likelihood of the observed data.

L•(y; ι) =
N∏

n=1

I∏

i=1

{ [
P(Yni = 1 | ξ; ι)yni P(Yni = 0 | ξ; ι)1−yni

]dni

·
[
P(Yni = 1 | ξ; ι)cP(Yni = 0 | ξ; ι)1−c

]1−dni
}
. (4.20)

This estimation equation is nearly identical to the likelihood function L(y∗; ι) when IAS

is used (see Equation 4.6). In fact, IAS can be seen as a special case of PCS with c = 0

for all items. Accordingly, some implications of PCS are similar to that of IAS, such as

conditional stochastic independence Yi ⊥ U |Di = 0 and Yi ⊥ ξ |Di = 0. In fact, PCS

assumes that the probability to solve a missing item is always c regardless of the test

takers? ability and the difficulty of the items. Accordingly, the theoretical inconsistencies

of the use of standard IRT models in conjunction with PCS and IAS are very similar.

For example, the implications of conditional stochastic independence Yi ⊥ ξ |Di = 0 is

ignored in Lord’s pseudo-ML estimator. This can be shown considering the logarithm of

the pseudo-likelihood ℓ•(Y; ι) under PCS that can be written as

ℓ•(y; ι) =
N∑

n=1

I∑

i=1

{
dni ·

[
yni · P(Yni = 1 | ξ; ι) + (1 − yni) · P(Yni = 0 | ξ; ι)] (4.21)

+(1 − dni) ·
[
c · P(Yni = 1 | ξ; ι) + (1 − c) · P(Yni = 0 | ξ; ι)]

}
.
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The first summand within the curly braces refers to the observed values Yobs = yobs. It

can be seen that the responses yni = 1 or yni = 0 serve as selection variables. If item i was

solved (yni = 1), then the conditional probability P(Yni = 1 | ξ; ι) remains in the estimation

equation. If item i was not solved (yni = 0), then the counter probability P(Yni = 0 | ξ; ι)
is included. The second summand within the curly braces of Equation 4.21 refers to the

missing responses Ymis = ymis that are replaced by c. Since c is typically chosen to be

greater than zero and, therefore, 1−c is lower than one, the constants c and 1−c act more as

weights of P(Yni = 1 | ξ; ι) and P(Yni = 0 | ξ; ι) than selection variables. The consequences

with respect to item and person parameter estimates need to be studied separately for each

estimand. Here the analytical examination is confined to the person parameter estimation

of a unidimensional latent variable ξ based on the response vector Yn = yn using PCS.

As introduced in Section 3.1.3, the ML estimate ξ̂ML is found by maximizing the pattern

log-likelihood l(yn; ι). Hence, ξ̂ML is the value of the parameter space Ωξ = R for which
∂
∂ξ
ℓ(yn; ι) = 0. In application of PCS the first derivative of ℓ•(yn; ι) is set to zero instead

of ℓ(yn; ι), with

∂

∂ξ
ℓ•(yn; ι) =

I∑

i=1

dni · αi ·
[
yni − P(Yni = 1 | ξ; ι)] + (1 − dni) · αi ·

[
c − P(Yni = 1 | ξ; ι)] .

(4.22)

This equation can be divided into two parts, so that

∂

∂ξ
ℓ•(yn; ι) =

I∑

i=1

dni · αi ·
[
yni − P(Yni = 1 | ξ, ι)]

︸                                      ︷︷                                      ︸
∂
∂ξ
ℓ•(yn;obs;ι)

+

I∑

i=1

(1 − dni) · αi ·
[
c − P(Yni = 1 | ξ, ι)]

︸                                           ︷︷                                           ︸
∂
∂ξ
ℓ•(yn;mis;ι)

.

(4.23)

The first part ∂
∂ξ
ℓ•(yn;obs; ι) refers to the observed item responses and the second part

∂
∂ξ
ℓ•(yn;mis; ι) refers to the missing responses. Under common regularity conditions cer-

tain properties of ML estimates follow without further assumptions. For example, the

expectation E( ∂
∂ξ
ℓ(Y; ι)) = 0 is always zero (Green, 2012). Otherwise, the ML estimator

would be biased. In the case of person parameter estimation that means that the expected

value E( ∂
∂ξ
ℓ(Yn; ι)) needs to be zero for each test taker n in a sample of n = 1, . . . ,N.

For brevity, only the single unit trial is considered in the further derivations. Hence, the

subscript n can be omitted. Given the measurement model is correctly specified it follows

that the conditional expectation E( ∂
∂ξ
ℓ(Y; ι) | ξ) = 0. This means that if a test could be
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repeated infinitely to a single person with a particular fixed ability level, then the mean

of the first derivatives of the response pattern likelihoods would be zero. Mathematically,

that is,

E

(
∂

∂ξ
ℓ(Y; ι)

∣∣∣∣∣ξ
)
= E


I∑

i=1

αi · [Yi − P(Yi = 1 | ξ; ι)]
∣∣∣∣∣

 (4.24)

=

I∑

i=1

αi · E
[
Yi − P(Yi = 1 | ξ; ι) | ξ]

=

I∑

i=1

αi · [E(Yi | ξ) − P(Yi = 1 | ξ; ι)] = 0,

since E(Yi | ξ) = P(Yi = 1 | ξ; ι) given the measurement model is correctly specified6. This

property applies to each nonempty subset of items implying that E( ∂
∂ξ
ℓ•(Yobs; ι) | ξ, D)

should be zero as well. Note that Yobs = yobs is the response vector of that subset of items

which test taker n has answered, indicated by the missing indicator vector D = d. In

other words, the expectation of the first derivative should be zero given the ability and for

each missing pattern D , 0. The conditional expectation E( ∂
∂ξ
ℓ(Y; ι) | ξ, D) is equal to the

conditional expectation of Equation 4.23 given (ξ, θ). That is,

E

(
∂

∂ξ
ℓ•(Y; ι)

∣∣∣∣∣ξ, D
)
= E

(
∂

∂ξ
ℓ•(Yobs; ι)

∣∣∣∣∣ξ, D
)
+ E

(
∂

∂ξ
ℓ•(Ymis; ι)

∣∣∣∣∣ξ, D
)

(4.25)

= E


I∑

i=1

Di · αi ·
[
Yi − P(Yi = 1 | ξ, ι)]

∣∣∣∣∣ξ, D


+E


I∑

i=1

(1 − Di) · αi ·
[
c − P(Yi = 1 | ξ, ι)]

∣∣∣∣∣ξ, D
 .

The first conditional expectation can be written as

E

(
∂

∂ξ
ℓ•(Yobs; ι)

∣∣∣∣∣ξ, D
)
=

I∑

i=1

E
(
Di · αi ·

[
Yi − P(Yi = 1 | ξ, ι)] | ξ; D

)
(4.26)

6The functional form of the regression P(Yi = 1 | ξ; ι) determined by the item parameters in ι needs to be
correct. In this case the parametric regression P(Yi = 1 | ξ; ι) is equal to the true regression E(Yi | ξ).
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Since Di = f (D), it follows that

E

(
∂

∂ξ
ℓ•(Yobs; ι)

∣∣∣∣∣ξ, D
)
=

I∑

i=1

αi · Di · E[Yi − P(Yi = 1 | ξ, ι) | ξ, D]

=

I∑

i=1

αi · Di ·
[
E(Yi | ξ, D) − P(Yi = 1 | ξ; ι)] .

If no DIF exists so that Yi ⊥ D | ξ, then

E

(
∂

∂ξ
ℓ•(Yobs; ι)

∣∣∣∣∣ξ, D
)
=

I∑

i=1

αi · Di ·
[
E(Yi | ξ) − P(Yi = 1 | ξ; ι)] = 0, (4.27)

given E(Yi | ξ) = P(Yi = 1 | ξ; ι). The latter holds if the measurement model is correctly

specified. From these derivations it follows that the mean of the first derivatives of the

pattern likelihoods of a person with a given ability level and for each missing pattern

D = d is zero. Hence, the person parameters would be estimated unbiasedly using the

observed item responses if the true item parameters (ι) are known. However, the condi-

tional expectation of ∂
∂ξ
ℓ•(Ymis; ι) given (ξ, D) includes the constants c. For all D , 1 it

follows that

E

(
∂

∂ξ
ℓ•(Ymis; ι)

∣∣∣∣∣ξ, D
)
=

I∑

i=1

E
[
(1 − Di) · αi ·

[
c − P(Yi = 1 | ξ, ι)] | ξ; D

]
(4.28)

Since (1 − Di) = f (D) that is,

E

(
∂

∂ξ
ℓ•(Ymis; ι)

∣∣∣∣∣ξ, D
)
=

I∑

i=1

(1 − Di) · αi · E
[
c − P(Yi = 1 | ξ, ι) | ξ, D]

(4.29)

=

I∑

i=1

(1 − Di) · αi · [c − P(Yi = 1 | ξ, ι)].

This expression is not necessarily equal to zero if at least one item has been answered,

implying that the person parameter estimates using PCS are potentially biased. The reason

is that the weighted sum of the differences c − P(Yi = 1 | ξ, ι) appears in the likelihood

function, which is inconsistent with the assumption that test takers who omit items are

completely undecided about the correct answer. In other words, PCS assumes that test

takers would answer omitted items independently of their ability ξ by pure guessing.

Interestingly, this assumption implies that responses to missing items are absolutely non-
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informative with respect to the latent ability ξ. Furthermore, this assumption requires that

the differences c − P(Yi = 1 | ξ, ι) needs to be replaced by c − 1/A to yield the correct

estimation function. However, since c is chosen to be equal to 1/A this difference is

always zero. Hence, the part ∂
∂ξ
ℓ•(Ymis; ι) of the estimation equation would be a constant

that does not contribute to any estimand of the target model. In summary, the estimation

function used in conjunction with PCS is inconsistent with the underlying assumption

Yi ⊥ ξ |Di = 0. This assumption implies also that responses to missing items would not

contribute to parameter estimation.

So far, it was demonstrated that essential properties of the log-likelihood function and

their derivatives change if PCS is used. This implies biased ML parameter estimation.

Although only scrutinized for person parameter estimation, ML estimation of item pa-

rameters can be shown to be biased as well. The differences Yi − P(Yi = 1 | ξ, ι) and

c − P(Yi = 1 | ξ, ι) appear also in the estimation equations of the item parameters αi and

βI . Hence, the expected values E( ∂
∂αi
ℓ•(Ymis; ι)) and E( ∂

∂βi
ℓ•(Ymis; ι)) evaluated at the true

values of item and person parameters are also different from zero, implying that item pa-

rameter estimates are generally biased if PCS is used to handle item nonresponses. In the

next step it will be further examined how item and person parameters are biased start-

ing with an extreme example of a person u who is totally unwilling to answer any item.

Hence, d = 0. The first derivative of the pseudo-likelihood function of the completely

unobserved response vector is ∂
∂ξ
ℓ∗(Y; ι) = ∂

∂ξ
ℓ•(ymis; ι), which is given by

∂

∂ξ
ℓ•(ymis; ι) =

I∑

i=1

(1 − di) · αi ·
[
c − P(Yi = 1 | ξ; ι)]

=

I∑

i=1

αi · c −
I∑

i=1

αi · P(Yi = 1 | ξ; ι). (4.30)

This difference is set equal to zero in order to estimate the person’s latent ability. If the

items Yi are dichotomous, then c = 0.5. In the case of the Rasch model αi = 1, for all

i = 1, . . . , I. The minuend of Equation 4.30 is then 0.5 · I. In other words, the person with-

out any item response is assumed to have 50% correct item responses, regardless of the

difficulties of the test items and the proficiency levels of the test taker. The latent ability is

estimated, so that the weighted sum of the regressions - the subtrahend of Equation 4.30 -

is also 0.5 · I. Hence, for persons with low ability levels it is potentially beneficial to omit

difficult items, whereas highly proficient persons are expected to be penalized by PCS,

especially if the omitted items are easy. The fundamental problem is that the constant
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c is treated in the same way as an observed item response yi that results from cognitive

processing based on ξ. This contradicts the key assumption explicitly made by Lord that

examinees would respond completely at random to the omitted items if they were re-

quired to answer. Standard IRT models do not account for this assumption and are thus

inappropriate. The expected biases of person parameter estimates will be illustrated by

Data Example A. Recall that it is expected that especially persons with lower ability lev-

els will profit from PCS. In Data Example A the correlation Cor(ξ, θ) between the latent

ability and the latent response propensity was 0.8. Therefore, the proportions of miss-

ing responses decreased with higher proficiency levels. The lower the proportion of item

nonresponses are, the lesser PCS should affect person parameter estimation. Hence, the

expected negative bias in higher ability levels should be small in Data Example A. Figure

4.8 (left) shows the person parameter estimate obtained from estimating ξ based on true

item parameters. As expected, especially low proficient persons profit from omissions

of items. If the missing data mechanism w.r.t. Y is MCAR (implied by Cor(ξ, θ) = 0),

Figure 4.8: Comparison of true person parameters and ML person parameter estimates when PCS
was used. Results are displayed for nonignorable missing data (left) and missing data that
are MCAR (right). The grey lines are the bisectric. The blue lines are smoothing spline
regressions.

then the probability of item nonresponses is the same for all ability levels. In this case

the expected negative bias in person with high value of ξ could be confirmed as well. In

Figure 4.8 (right) the person parameter estimates are compared with the true values of ξ
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when the missing data mechanism is MCAR. This data example was simulated using the

same parameters as in Data Example A except for Cor(ξ, θ) which was chosen 0.87. The

bias of is on average positive for lower ability levels and negative for higher values of

ξ. A considerable shrinkage of the ML estimates results. The variance of the estimates

in Data Example A was merely 0.391 and s2(ξ̂) = 0.403 for the Data Example A in the

right graph of Figure 4.8. So far, the true item parameters were assumed to be known.

Typically, they need to be estimated form the data as well. The effect of PCS on item

parameter estimation will be examined next.

Impact of PCS on Itemparameter estimation In his original paper Lord proofed math-

ematically that PCS is equivalent to the imputation of random draws from a Bernoulli dis-

tributed random variable with P(Yi = 1 |Di = 0) = c if N → ∞. Interestingly, this proof

implies systematic bias of item parameter estimates if PCS is used for item nonresponses.

The random draws are stochastically independent of the test taker’s ability. Strictly speak-

ing, noise is imputed into the observed data. Accordingly, the sample estimates of the cor-

relation between item responses to item i and ξ should decrease with higher proportions of

missing data on item i. The item discrimination parameters αi quantify the strength of the

stochastic dependencies between the items Yi and the latent variable. Hence, the sample

estimates α̂i are expected to be systematically underestimated. The negative bias should

increase, the higher the proportion of item nonresponses is. If all responses to item i are

missing, the item vector consists of N repetitions of the constant c. In this case α̂i = 0.

Table 4.1 presents the item parameter estimates of Data Example A obtained with PCS.

The item difficulties are differently biased depending on whether the 1PL- or the 2PLM

was applied. The item difficulty estimates have a non-linear relation to the true param-

eters βi using the 1PLM (see Figure 4.2). Easier items have positively biased difficulty

estimates, whereas difficult items show negatively biased estimates β̂i. Using the 2PLM,

the estimates β̂i of the easier items Y1 to Y22 are pretty close to the true parameters. The

more difficult items with higher proportions of missing data are severely overestimated.

Some of these items (Y28 - Y30) show also extremely distorted item discrimination esti-

mates (see Figure 4.3), which may indicate numerical problems in the estimation proce-

dure. Apart from these items, the bias of the item discrimination estimates shows exactly

the expected bias: The underestimation of αi increases with higher proportions of missing

responses. For large proportions of missing data, α̂i tend toward zero caused by the im-

7The item parameters used for the the data example in the right graph of Figure 4.8 are given in Table 3.1.
The overall proportion of missing responses was 48%.
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putation of the constant c = 0.5. The mean of the estimated item discrimination is merely
¯̂αi = 0.397, which is significantly different from the true value ᾱi = 1, (t = −7.1653,

df= 29, p < 0.001).

In real applications using MML estimation, the item parameter estimates are typically

used for subsequent person parameter estimation. Biased item parameter estimates most

likely result in biased person parameter estimates. Figure 4.5 shows the ability estimates

obtained from PCS using the 1PL- and 2PLM in comparison to IAS and the true values of

ξ. In fact, a curvilinear stochastic relation could be found between the true values of ξ and

their estimates ξ̂PCS . A R2-difference test indicated that the regression model E(ξ̂PCS | ξ) =
β0+β1ξ+β2ξ

2 fits the data significantly better than a linear regression E(ξ̂PCS | ξ) = α0+α1ξ

(1PLM: R2
di f .
= 0.028, F = 186.13, df= 1, p < 0.001; 2PLM: R2

di f .
= 0.018, F = 124.28,

df= 1, p < 0.001). If the Rasch model is applied in combination with PCS, the item

discriminations are forced to be equal to one resulting in biased difficulty estimates β̂i

and person parameter estimates ξ̂PCS . Especially the variance was remarkably reduced,

(s2(ξ̂PCS ) = 0.244). In comparison, the variance was s2(ξ̂PCS ) = 2.258 when the 2PLM

was applied in conjunction with PCS. However, the person parameter estimates from

both models - 1- and 2PLM - are highly correlated (r = 0.954). Table summarizes the

variances, covariances, and correlations between the estimates ξ̂PCS and the true values ξ

underlying Data Example A.

Table 4.4: Variances, Covariances and Correlations of True Values ξ and ML Estimates of Complete
Data and Filled-in Data Using PCS (Data Example A). Correlations are marked by *.

True ξ̂ML - complete ξ̂PCS - 1PLM ξ̂PCS - 2PLM

ξ - true 1.002 0.910∗ 0.823∗ 0.825∗

ξ̂ML - complete data 1.041 1.307 0.897∗ 0.875∗

ξ̂ML - PCS (1PLM) 0.407 0.506 0.244 0.954∗

ξ̂ML - PCS (2PLM) 1.240 1.503 0.708 2.258

Biased item parameter estimates affects also the functional form of the test informa-

tion function I(ξ) and the standard error function SE(ξ), respectively. Figure 4.9 shows

the different functions I(ξ) implied by the item parameter estimates of 1- and 2PLM ob-

tained from Data Example A using PCS. The peaked test information function in the

Rasch model resulted from the strong shrinkage of the item difficulty estimates that

ranged merely between -1.669 and 0.244. Recall that the true item difficulties were cho-

sen between -2.30 - 2.15. In turn, the low test information function in 2PLM is caused

by the strongly negatively biased estimates α̂i. The marginal reliabilities estimated in
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Figure 4.9: Estimated model-implied test information and standard error function of the 1PLM and
2PLM using PCS.

BILOG 3 were both very low: Rel(ξ̂PCS ) = 0.368 (1PLM), and Rel(ξ̂ML) = 0.5681

(2PLM). This is even far below the squared correlations r2
1PLM

(ξ, ξ̂PCS ) = 0.677 and

r1PLM(ξ, ξ̂PCS ) = 0.680. In other words, the marginal reliabilities estimated in conjunction

with PCS are also not trustworthy and should not be interpreted. Of course, due to the

systematic bias implied by the non-linear relation between the estimates ξ̂PCS and ξ this

fact is of minor importance.

Finally, the impact of PCS with respect to the construction of the latent variable was

examined by means of regression analyses. The estimates ξ̂PCS from Data Example A

were regressed on the latent variables ξ and θ. If the estimator is unbiased, then the
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regression should be linear with an intercept equal to zero and the regression coefficient of

ξ equal to one. Additionally, ξ̂ should be stochastically independent of θ given ξ, implying

that the regression coefficient of θ in a multiple regression E(ξ̂PCS | ξ, θ) should be zero.

This was found for the ML person parameter estimates of the complete data (see Table

4.2). For the case of IAS it could be demonstrated that the person parameter estimates

are not regressively independent of θ given ξ. The results imply that the latent variable

constructed using IAS is a linear combination of ξ and θ and not simply ξ. The effects

on item parameter estimates were quite different between IAS and PCS the same might

be true with respect to the construction of the latent variable. In contrast to IAS, missing

response are not scored as wrong answers. Considering the filled-in data set under PCS

it can be distinguished whether the values result from completed items (yi = 0 or yi = 1)

or from item nonresponses yi = c. However, in the estimation procedures the imputed

values y = c are treated as regular responses as though test takers had proceeded the item

due to their ability. Similar to IAS, two pieces of information are mixed-up in the filled-in

data set using PCS: (a) performance in the test, and (b) willingness or ability to provide a

response. It is expected that the latent variable ξPCS constructed using PCS might reflect

this counfounding.

A multiple linear regression model was chosen to estimate the parameters of E(ξ̂PCS | ξ, θ).
The non-linear relationship found between ξ̂PCS and ξ was taken into account by includ-

ing the squared variables ξ2 and θ2. Additionally, the interaction term ξ · θ was included.

An interaction between ξ and θ with respect to ξ̂PCS is very likely since a quadratic rela-

tionship between ξ̂PCS and ξ is implied if (a) Cov(ξ, θ) , 0, and (b) an interaction between

ξ and θ exists 8. The results of the regression analyses are given in Table 4.5. Two re-

gression models were applied with (a) the estimates ξ̂PCS obtained from the 1PLM and

(b) from the 2PLM. In both regressions the person parameter estimates were found to be

stochastically dependent on θ given ξ. As expected, there was a significant interaction

effect between the latent variable ξ and θ with respect to ξ̂PCS . The contribution of the

quadratic term ξ2 is relatively small. The regression coefficient of the conditional regres-

sion of the estimator ξ̂PCS on its estimand ξ is moderated by the latent response propensity

θ. Recall that the person parameter estimates were increasingly positively biased by PCS

the lower the latent ability is (see Figures 4.5 and 4.8).

A multiple linear regression model was chosen to estimate the parameters of E(ξ̂PCS | ξ, θ).
The non-linear relationship found between ξ̂PCS and ξ was taken into account by including

the squared variables ξ2 and θ2. Additionally, the interaction term ξ · θ was included. An

interaction between ξ and θ with respect to ξ̂PCS is very likely since a quadratic relation-

8Since E(Y | X,Z) = E[E(Y | X,Z) | X]. In a linear multiple regression that is, E(α0 + α1X + α2Z +

α3XZ | X) = α0 + α1X + E(α2Z | X) + α3E(Z | X)X. Let E(Z | X) = β0 + β2X, then E(Y | X,Z) =
(α0 + α2β0) + (α1 + α2β1 + α3β0)X + α3β1X2.
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ship between ξ̂PCS and ξ is implied if (a) Cov(ξ, θ) , 0, and (b) an interaction between ξ

and θ exists 9. The results of the regression analyses are given in Table 4.5. Two regression

models were applied with (a) the estimates ξ̂PCS obtained from the 1PLM and (b) from the

2PLM. In both regressions the person parameter estimates were found to be stochastically

dependent on θ given ξ. As expected, there was a significant interaction effect between

the latent variable ξ and θ with respect to ξ̂PCS . The contribution of the quadratic term ξ2

is relatively small. The regression coefficient of the conditional regression of the estima-

tor ξ̂PCS on its estimand ξ is moderated by the latent response propensity θ. Recall that

the person parameter estimates were increasingly positively biased by PCS the lower the

latent ability is (see Figures 4.5 and 4.8). However, this is only valid if Kor(ξ, θ) > 0,

since the average proportion of missing data and, therefore, the bias due to PCS increases

with decreasing ability. Accordingly, the slope of the tangent to the regression curve ξ̂PCS

on ξ decreases with lower values of ξ. In contrast to IAS, the latent variable constructed in

a measurement model with PCS of missing responses is not a simple linear combination

of the latent ability and the latent response propensity. Rather, the regression E(ξ̂PCS | ξ, θ
is a nonlinear function of (ξ, θ)). However, ξPCS depends on both ξ and θ and is, therefore,

not a pure measure of the latent ability of substantial interest.

Table 4.5: Regression Coefficients, t− and p− Values of the Multiple Regression of ML Person Param-
eter Estimates (PCS) on the true values of θ and ξ (Data Example A).

Dependent Variable: ξ̂ML (PCS & 1PLM) ξ̂ML (PCS & 2PLM)
Est. SE t p Est. SE t p

Intercept -0.060 0.017 -3.463 < 0.001 -0.050 0.017 -2.898 0.004
ξ 0.831 0.020 41.831 < 0.001 0.715 0.020 35.876 < 0.001
θ -0.002 0.020 -0.125 0.901 0.147 0.020 7.249 < 0.001
ξ · θ 0.291 0.044 6.700 < 0.001 0.224 0.044 5.141 < 0.001
ξ2 -0.051 0.024 -2.164 0.031 -0.042 0.024 -1.761 0.078
θ2 -0.088 0.025 -3.541 < 0.001 -0.053 0.025 -2.129 0.033

In summary, PCS suffers from the same theoretical inconsistencies as IAS. Here PCS

was regarded as a data augmentation method, since the missing responses are simply re-

placed by numbers ci. The implicit assumptions underlying this naive imputation model

are as unrealistic as in the case of IAS. In fact, formally, IAS can be regarded as a special

case of PSC with c = 0 for all items. However, Lord proposed to choose ci = 1/Ai with

Ai as the number of response categories of item i. Here the considerations were confined

9Since E(Y | X,Z) = E[E(Y | X,Z) | X]. In a linear multiple regression that is, E(α0 + α1X + α2Z +

α3XZ | X) = α0 + α1X + E(α2Z | X) + α3E(Z | X)X. Let E(Z | X) = β0 + β2X, then E(Y | X,Z) =
(α0 + α2β0) + (α1 + α2β1 + α3β0)X + α3β1X2.
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to dichotomous items with c = 0.5 for all items i = 1, . . . , I. The rationale given by Lord

is intuitive at first glance. Each person u has a positive probability to solve an omitted

or not-reached item P(Yi = 1 |U = u). Unfortunately, he assumes further that item re-

sponses to missing items would result from pure guessing. Formally, that means that the

probability to solve an omitted item is a constant, which is always stochastically indepen-

dent of any random variable such as U or the latent ability ξ. The implicit assumption

of stochastic independence Yi ⊥ ξ |Di = 0 is ignored in the estimation equation of the

model parameters. Fundamental properties of the ML estimates do not hold if PCS is

used for missing responses. Accordingly, the item and person parameters were found to

be systematically biased. Despite the similarity between PCS and IAS, the biases of item

and person parameters estimates are quite different. The Rasch model leads to strongly

biased item difficulty estimates and a marked variance reduction in the person parameter

estimates. The item discriminations in the 2PLM are considerably underestimated de-

pending on the proportion of missing data per item. The person parameter estimates are

non-linearly related with the true latent variable ξ. The relation between the estimand ξ

and the estimator ξ̂PCS is moderated by the latent response propensity θ. Additionally, the

estimated test information function, the standard error function, and the marginal relia-

bility coefficient are heavily distorted. Due to the results PCS is not recommended as a

strategy to deal with item non-responses, regardless of the underlying missing data mech-

anism. Even if the missing data mechanism is MCAR, PCS produces biased parameter

estimates.

4.4 Nominal Response Model for Non-ignorable Missing Data

Bock (1972) proposed a latent-trait model for items with nominal response categories.

This model is suited if C > 2 mutually exclusive, exhaustive and non-ordered categories

exist (Baker & Kim, 2004). The nominal response model (NRM) rests upon the multi-

variate generalization of the logistic response function. It is strongly related to the multi-

nomial logistic regression model (e. g. Agresti, 2002). The measurement model in the

NRM is constituted by a set of I multinomial logistic regressions P(Yi = yi | ξ). The item

response category characteristic curve (IRCCC) are the conditional probability functions

P(Yi = yi | ξ) for each response category yi of Yi. Since the categories are exclusive and ex-

haustive it that follows
∑C−1

y=0 P(Y = y | ξ) = 1, implying that a response can and must occur

in only one of the C response categories. Furthermore, local stochastic independence is

assumed in the NRM. Bock proposed to apply the model to multiple choice items. For ex-
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ample, Thissen (1976) applied the NRM to Raven’s colored progressive matrices. When

he analyzed the test information function he found that incorrect responses are informa-

tive with respect to the underlying trait of interest. As a result lower standard errors were

obtained, especially in lower ranges of ξ. A missing response is also an incorrect answer

but potentially informative with respect to a person?s ability. Recall that nonignorable

missing data are also called informative missing responses. That is, the missing pattern

has information that needs to be appropriately included in parameter estimation to ensure

unbiased parameter estimates. The idea of using the NRM for item nonresponses is to

consider a missing response as an additional incorrect response alternative. Hence, there

are two distinct response behaviors resulting in an incorrect response - answering item i

incorrectly, or failing to respond to item i. Both are assumed to have information with

respect to the latent variable of interest. Against this background, it seems reasonable

to apply the NRM to dichotomous data with non-ignorable missing data. Moustaki and

O’Muircheartaigh (2000) suggested this approach first. To apply the NRM the manifest

items Yi are replaced by a new trivariate random variable Ri with a different domain and

a different distribution. Formally, Ri is defined as a random variable Ri: Ω → ΩRi
with

ΩRi
= {0, 1, 2}. The values of Ri exclusively depend on Yi and Di. Hence, Ri = f (Yi,Di).

The function f (Yi,Di) is given by the assignment rule

Ri =



0, if Yi = 0 and Di = 1

1, if Yi = 1 and Di = 1

2, if Di = 0.

(4.31)

Note that the categories of Ri do not have an inherent rank order. Prior to the examination

of the applicability of the NRM to model item nonresponses, important properties of the

model will be reviewed.

Initially, the NRM is considered without missingness. Accordingly, let Yi be the mani-

fest items with C > 2 unordered nominal response categories . The model equation of the

NRM is then

P(Yi = c | ξ) =
exp

(
α

(NR)
i0c
+ α

(NR)
i1c
· ξ

)

∑C−1
h=0 exp

(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

) (4.32)

In comparison to two-parametric models for ordered categorical response variables such

as the Graded Response Model (GRM; Samejima, 1969) or the Generalized Partial Credit

Model (GPCM; Muraki, 1992), there are two category specific parameters - the inter-
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cept α(NR)
i0y

and the discrimination parameter α(NR)
i1y

10. Restrictions are needed in order to

identify the model. The interpretation of the model parameters depends on the chosen

identification. Two different restrictions to identify the NRM are discussed in the liter-

ature (e. g. de Ayala, 2009). First, the sums
∑C−1

c=0 α
(NR)
i0c

and
∑C−1

c=0 α
(NR)
i1c

can be fixed to

zero. Second, the parameters α(NR)
i0c

and α(NR)
i1c

with respect to one response category c of

C needs to be fixed; typically α(NR)
i0c
= α

(NR)
i1c
= 0. In this case, the category c serves as

a reference category. This model is also called the baseline-category multinomial logit

model (Agresti, 2002). For example, if we choose α(NR)
i00 = α

(NR)
i10 = 0, then Yi = 0 is the

reference category with the conditional category probability

P(Yi = 0 | ξ) =
exp

(
α

(NR)
i00 + α

(NR)
i10 · ξ

)

exp
(
α

(NR)
i00 + α

(NR)
i10 · ξ

)
+

∑C−1
h=1 exp

(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

) (4.33)

=
1

1 +
∑C−1

h=1 exp
(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

) .

For a trivariate nominal response variable Yi, the conditional category probabilities given

ξ for the remaining two response categories are

P(Yi = 1 | ξ) =
exp

(
α

(NR)
i01 + α

(NR)
i11 · ξ

)

1 +
∑C−1

h=1 exp
(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

) (4.34)

P(Yi = 2 | ξ) =
exp

(
α

(NR)
i02 + α

(NR)
i12 · ξ

)

1 +
∑C−1

h=1 exp
(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

) . (4.35)

If a researcher decides to choose the NRM instead of the 1PLM or 2PLM to account for

item nonresponses, the question is how the item parameters of these models are related

theoretically. Therefore, can the item parameters of the 1PLM or 2PLM be estimated

using the NRM? In the NRM for missing responses in dichotomous items, the manifest

items Yi in the measurement model are replaced by Ri. Although the variables Yi and Ri

are different, the item parameters of the 2PLM are preserved in the NRM if Ri = 0 is the

reference category in the baseline-category multinomial logit model. In this case the odds

10In GRM and GPCM the item discrimination is constant across the response categories of an item Yi.

145



ratio of the response categories Ri = c (c ∈ {1, 2}) and Ri = 0 is

P(Ri = c | ξ)
P(Ri = 0 | ξ) =

exp
(
α

(NR)
i0c
+ α

(NR)
i1c
· ξ

)

1 +
∑C−1

h=1 exp
(
α

(NR)
i0h
+ α

(NR)
i1h
· ξ

)

1

1 +
∑C−1

h=1 exp(α(NR)
i0h
+ α

(NR)
i1h
· ξ)

(4.36)

= exp
(
α

(NR)
i0y
+ α

(NR)
i1y
· ξ

)
. (4.37)

The respective logit is

ln

(
P(Ri = c | ξ)
P(Ri = 0 | ξ)

)
= α

(NR)
i0c
+ α

(NR)
i1c
· ξ. (4.38)

For the case of dichotomous items Yi and, therefore, trivariate manifest variables Ri, two

non-redundant logits can be considered. The third logit is simply a function of the re-

maining logits. If Ri = 0 was chosen as the reference category, then the logarithm of the

two odds P(Ri = 1 | ξ)/P(Ri = 0 | ξ) and P(Ri = 2 | ξ)/P(Ri = 0 | ξ) can be written as

ln

(
P(Ri = 1 | ξ)
P(Ri = 0 | ξ)

)
= α

(NR)
i01 + α

(NR)
i11 · ξ (4.39)

ln

(
P(Ri = 2 | ξ)
P(Ri = 0 | ξ)

)
= α

(NR)
i02 + α

(NR)
i12 · ξ. (4.40)

From the assignment rule used to construct Ri (see Equation 4.31) follows that Yi =

Ri |Di = 1. Hence,

ln

(
P(Ri = 1 | ξ)
P(Ri = 0 | ξ)

)
= ln

(
P(Yi = 1 | ξ,Di = 1)

P(Yi = 0 | ξ,Di = 1)

)
. (4.41)

If Yi ⊥ Di | ξ holds true (no DIF exist with respect to Di) then

ln

(
P(Ri = 1 | ξ)
P(Ri = 0 | ξ)

)
= ln

(
P(Yi = 1 | ξ)
P(Yi = 0 | ξ)

)
(4.42)

= α
(NR)
i11 ·

(
ξ − β(NR)

i1

)
, (4.43)

with β(NR)
i1 = −α(NR)

i01 /α
(NR)
i11 . The logit in Equation 4.42 is the same as in the Birnbaum

model with the item difficulty βi = β
(NR)
i1 and the item discrimination αi = α

(NR)
i01 . Hence,

the item parameters of the 2PLM should be estimable using the NRM. In fact, if the latent

variable ξ is known, then the basline-category logit model can be used to obtain unbiased
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item parameters. In this case, the NRM is equivalent to a set of I multinomial logistic

regression models with Ri as dependent variables and ξ taken as manifest predictors. Fig-

ure 4.10 and table 4.6 shows the item parameter estimates of Data Example A. Although
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Figure 4.10: Item parameters of Data Example A estimated by multinomial logistic regression models
with known values of ξ.

the item discriminations are, on average, slightly underestimated ( ¯̂α = 0.940, t = −3.870,

df = 29, p = 0.001), the multinomial regression models recover the true item parameters

reasonably well. However, in real applications the underlying variable ξ is unknown and

needs to be inferred from the realized data as well.

Person parameter estimation in the NRM for item nonresponses Although the NRM

for non-ignorable missing data is different from naive imputation methods such as IAS

or PCS, there are some similarities between the methods. The NRM is also estimated

based on a data matrix R = r that is free of missing data. The variables Ri are functions

f (Yi,Di) of two variables - the items Yi and the response indicators Di. As in the case

of IAS and PCS, two pieces of information are combined in the manifest variables that

constitute the measurement model of the latent variable: (a) the performance on item i,

and (b) the information about the willingness or ability to complete the item, regardless of

whether correctly or incorrectly. Given that the latent response propensity θ and the latent

ability ξ exist with θ , ξ and Yi is stochastically dependent from ξ and Di is stochastically
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dependent from θ, then Ri is stochastically dependent from both θ and ξ. If ξ = f (U) and

θ = f (U), then it follows from the construction of Ri that

P(Ri = 0 |U) = P(Yi = 0 ∩ Di = 1 |U) (4.44)

= P(Yi = 0 |U,Di = 1)P(Di = 1 |U)

= P(Yi = 0 | ξ,Di = 1)P(Di = 1 | θ)

P(Ri = 1 |U) = P(Yi = 1 |U,Di = 1) (4.45)

= P(Yi = 1 |U,Di = 1)P(Di = 1 |U)

= P(Yi = 1 | ξ,Di = 1)P(Di = 1 | θ)

P(Ri = 2 |U) = P(Di = 0 |U) (4.46)

= P(Di = 0 | θ)

Note that if conditional independence Yi ⊥ Di | ξ holds true, then P(Yi = y | ξ,Di =

1) = P(Yi = y | ξ). If a parametric IRT model is valid, then the conditional probabili-

ties P(Yi = y | ξ) are given by the respective measurement model equations. The deriva-

tions show that the manifest variables Ri that constitute the measurement model in the

NRM for item nonresponses depends on both - the latent ability and the latent response

propensity. This can also be demonstrated empirically utilizing Data Example A. Here

the underlying realized values of the latent response propensity θ and the ability ξ are

known. Multinomial logistic regressions P(Ri | θ) and P(Ri | ξ) were used with Nagelk-

erke’s pseudo -R2 (Hu, Shao, & Palta, 2006; Nagelkerke, 1991) as a measure of the effect

size of the stochastic dependency between Ri and θ or ξ, respectively. Table 4.6 shows the

parameter estimates and Nagelkerke’s R2 for each variable Ri. On average, Nagelkerke’s

R2 of the multinomial logistic regressions Ri on ξ was 0.175, and 0.196 of the regressions

Ri on θ. The results confirm that the variables Ri are stochastically dependent from both,

the latent ability ξ and the latent response propensity θ. Why is this important? Using

the NRM for nonignorable missing data with Ri as manifest variables in the measurement

model, only one single latent variable is constructed. Does Ri indicate the latent ability ξ

or the latent response propensity θ, or even both? In other words, the meaning of the latent

variable ξNR constructed in the NRM is questionable. If the person variable is not equal

to ξ, then the item parameter estimates are also potentially different from the item param-

eters of the 2PLM. To emulate the real situation, the NRM for item nonresponses was

applied to Data Example A. Both - item and person parameters - were estimated based on

the manifest variables Ri. MULTILOG 7 (D. M. Thissen, Chen, & Bock, 2003) was used
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Table 4.6: Parameter Estimates and Nagelkerke’s R2 for Multinomial Logistic Regressions P(Ri =

ri | ξ) and P(Ri = ri | θ) (Data Example A).

Estimates of P(Ri = ri | ξ) Estimates of P(Ri = ri | θ)
Ri β̂

(NR)
i1 β̂

(NR)
i2 α̂

(NR)
i11 α̂

(NR)
i12 R2

Yi |ξ
1 β̂

(NR)
i1 β̂

(NR)
i2 α̂

(NR)
i11 α̂

(NR)
i12 R2

Yi |θ
1

R1 -2.420 -2.417 0.901 -0.054 0.152 -3.243 -0.805 0.626 -0.580 0.155
R2 -2.320 -0.992 0.980 0.127 0.151 -2.783 -0.521 0.764 -0.326 0.155
R3 -1.958 12.604 1.011 -0.016 0.188 -2.497 -0.095 0.734 -0.420 0.178
R4 -1.788 2.915 0.983 -0.057 0.192 -1.959 -0.134 0.848 -0.425 0.214
R5 -1.739 -14.337 0.985 0.073 0.181 -1.945 3.880 0.829 -0.234 0.199
R6 -1.668 2.348 0.923 -0.128 0.195 -2.075 0.171 0.692 -0.550 0.209
R7 -1.403 8.927 1.011 -0.069 0.215 -1.855 0.730 0.700 -0.562 0.229
R8 -1.445 1.863 0.882 -0.134 0.187 -1.820 0.225 0.658 -0.473 0.187
R9 -1.168 0.432 0.902 -0.097 0.185 -1.362 -0.253 0.722 -0.434 0.191
R10 -0.911 0.726 1.069 -0.072 0.227 -1.116 -0.293 0.786 -0.505 0.221
R11 -0.975 4.547 0.889 -0.156 0.196 -1.203 0.973 0.663 -0.596 0.231
R12 -0.581 -0.002 0.855 -0.244 0.194 -0.700 -0.202 0.653 -0.596 0.207
R13 -0.604 0.108 0.942 -0.177 0.207 -0.731 -0.221 0.705 -0.566 0.213
R14 -0.310 1.754 1.003 -0.248 0.232 -0.386 0.463 0.719 -0.697 0.254
R15 -0.172 -2.134 0.859 -0.243 0.185 -0.173 -0.996 0.648 -0.715 0.207
R16 -0.031 0.170 0.869 -0.245 0.187 0.012 -0.118 0.691 -0.661 0.224
R17 0.057 3.825 0.959 -0.317 0.210 0.098 1.777 0.780 -0.677 0.250
R18 0.187 1.318 0.871 -0.421 0.216 0.226 0.693 0.655 -0.752 0.243
R19 0.404 4.108 0.892 -0.348 0.177 0.504 2.045 0.651 -0.715 0.213
R20 0.679 3.791 0.876 -0.360 0.163 0.816 2.074 0.767 -0.669 0.210
R21 0.776 3.073 0.999 -0.420 0.196 0.932 1.758 0.790 -0.754 0.232
R22 1.083 2.882 0.958 -0.525 0.189 1.242 2.052 0.778 -0.761 0.212
R23 1.357 5.195 0.814 -0.430 0.111 1.577 3.504 0.686 -0.657 0.139
R24 1.033 7.240 1.120 -0.230 0.138 1.301 2.878 0.851 -0.594 0.169
R25 1.345 4.426 1.127 -0.385 0.149 1.570 2.700 0.913 -0.651 0.174
R26 1.522 2.525 0.919 -0.455 0.153 1.929 1.516 0.679 -0.792 0.199
R27 1.647 4.773 0.757 -0.443 0.102 2.167 2.834 0.546 -0.786 0.150
R28 1.961 3.111 1.024 -0.578 0.146 2.155 2.170 0.946 -0.873 0.201
R29 1.808 4.052 0.883 -0.533 0.123 2.359 2.956 0.592 -0.759 0.141
R30 1.979 4.309 0.944 -0.494 0.111 2.380 2.854 0.752 -0.782 0.152
1 Nagelkerke’s Pseudo-R2

to estimate model parameters. Item parameters were obtained by MML estimation with

non-adaptive quadrature. 19 quadrature points were chosen. The latent variable was fixed

to E(ξNR) = 0 and Var(ξNR) = 1. The person parameters were estimated in a second step

using the item parameter estimates as fixed. Figure 4.11 shows the ML person parameter

estimates ξ̂NR compared to the true values of ξ and θ underlying Data Example A. It can

be seen that the correlation between ξ̂NR and the latent response propensity is even higher

than the correlation of the latent ability and the ML person parameter estimates resulting

from the NRM. Additionally, the partial correlations r(θ, ξ̂NR.ξ) = 0.685 (t = 42.026, df

= 1998, p < 0.001) and r(ξ, ξ̂NR.θ) = 0.319 (t = 15.025, df = 1998, p < 0.001) deviate
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Figure 4.11: Relationship between ML person parameter estimates ξ̂ML of the NRM and values of the
latent ability (left) and the latent response propensity (right). The red lines indicate the
bisectric.

significantly from zero. Furthermore, the parameters of a multiple regression E(ξ̂NR | ξ, θ)
were estimated. Additionally, the determination coefficient was R2

ξ̂NR | ξ,θ
= 0.805. This is

significantly higher than the proportions of explained variances in the two simple regres-

sions E(ξ̂NR | ξ) with R2
ξ̂NR | ξ

= 0.633 (Rdi f f . = 0.172, F = 883.04, df1 = 2, df2 = 1996,

p < 0.001) and E(ξ̂NR | θ) with R2
ξ̂NR | θ

= 0.783 (Rdi f f . = 0.022, df1 = 2, df2 = 1996,

p < 0.001). As Table 4.7 shows, the partial standardized regression coefficients of both

latent variables are significantly different from zero. As expected, the latent variable con-

structed in the NRM based on the manifest variables Ri is also a linear combination of

the latent ability and the latent response propensity. As in the case of IAS, the confusion

of two different pieces of information given by the variables Yi and Di is reflected in the

latent variable in the NRM. Due to the substantial correlation r(ξ, ξ̂NR) = 0.796, it might

be tempting to conclude that the NRM recovers the ability ξ well. However, such a high

correlation cannot be generally expected. The missing data mechanism is essential for

the correlation Cor(ξ, ξNR). Since ξNR is a linear combination of ξ and θ, it is expected

that the correlation Cor(ξNR, ξ) decreases, the lower the correlation Cor(ξ, θ) is. Addition-

ally, it is hypothesized that the overall proportion of missing data affects Cor(ξNR, ξ) and,

therefore, the meaning of ξ̂NR. The higher the proportion of missing data is, the less in-
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Table 4.7: Estimated Regression Coefficients, Standard Errors (SE), t- and p-values for the Multiple
Regression E(ξ̂NR | ξ, θ).

Independent variable Coeff.1 SE t p

ξ 0.269 0.018 15.016 < 0.001
θ 0.765 0.018 41.978 < 0.001
θ ∗ ξ -0.008 0.009 -0.915 0.360
1 Standardized partial regression coefficients.

formation about the performance on the single items and the achievement at the complete

test from the response behavior result. Hence, the variables Ri are less informative with

respect to the latent ability ξ, which should be reflected by lower correlations Cor(ξNR, ξ).

Conversely, it is expected that with rising probabilities of the occurrence of missing data

the variables Ri are more informative with respect to the latent response propensity θ,

resulting in higher correlations Cor(ξNR, θ). Of course, additional factors, that were not

considered here, might influence the construction of ξNR and the correlation Cor(ξNR, ξ).

In a short simulation study with only two factors - the correlation Cor(ξ, θ) and the over-

all proportion of missing data - it could be shown that Cor(ξNR, ξ) varies considerably.

The correlation Cor(ξ, θ) was chosen to be 0, 0.2, 0.5, 0.8, and 1. The overall propor-

tions of missing data were approximately 10%, 20% and 50%. Note that a correlation

of Cor(ξ, θ) = 0 means the missing data mechanism is MCAR. In general, more difficult

items had higher probabilities to be omitted. The measurement model consisted of 30

dichotomous items. The item parameters used for simulation were the same as in Data

Example A (see Table 3.1). The sample size was N = 2000 for all simulated data exam-

ples. After the simulation of Y and D the manifest variables Ri were generated according

to Equation 4.31. The resulting 15 data sets were analyzed using the NRM implemented

in MULTILOG 7. The results are summarized in Table 4.8. Due to the small number of

simulated data sets, no statistical analysis of the results was conducted. In general, the

correlation r(ξ, ξ̂NR) was high given the proportion of missing data was small. The higher

the proportion of missing data was, the higher r(ξ, ξ̂NR) was, depending on the correla-

tion Cor(ξ, θ). For example, if the proportion of missing data was 30%, then r(ξ, ξ̂NR)

ranges between 0.428 and 0.918, depending on Cor(ξ, θ). For the case of 50% propor-

tion of missing data, r(ξ, ξ̂NR) dropped to 0.148 when Cor(ξ, θ) = 0 but remained high

(r(ξ, ξ̂NR) = 0.906) when Cor(ξ, θ) = 1. Thus, there is an interaction effect between the

overall proportion of missing data and Cor(ξ, θ) with respect to Cor(ξ, ξNR). On the other

hand, the correlation Cor(θ, ξNR) varied the most depending on Cor(ξ, θ) if the overall
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Table 4.8: Correlations and Partial Correlations of ML person Parameter Estimates of the NRM and
the True Values of ξ and θ Under Different Conditions.

% Miss-
ings

Cor(ξ, θ) r(ξ, ξ̂NR) r(θ, ξ̂NR) r(ξ, ξ̂NR.θ) r(θ, ξ̂NR.ξ) Rel(ξ̂NR)

10 0.0 0.842 0.153 0.864 0.385 0.805
10 0.2 0.830 0.461 0.843 0.517 0.828
10 0.5 0.874 0.637 0.831 0.467 0.847
10 0.8 0.903 0.831 0.700 0.384 0.860
10 1 0.921 0.921 / / 0.869

20 0.0 0.428 0.718 0.624 0.799 0.803
20 0.2 0.566 0.738 0.657 0.787 0.818
20 0.5 0.733 0.787 0.661 0.732 0.852
20 0.8 0.853 0.869 0.550 0.611 0.871
20 1 0.918 0.918 / / 0.885

50 0.0 0.148 0.862 0.321 0.874 0.839
50 0.2 0.356 0.850 0.344 0.848 0.835
50 0.5 0.589 0.865 0.355 0.814 0.849
50 0.8 0.768 0.888 0.239 0.717 0.863
50 1 0.906 0.906 / / 0.871

proportion of missing data was small (0.153 ≤ r(θ, ξNR) ≤ 0.921). Hence, there is also

an interaction effect between the overall proportion of missing data and Cor(ξ, θ) with

respect to Cor(θ, ξNR). Generally, in all data examples r(θ, ξNR.ξ) deviated substantially

from zero. This highlights that ξNR is indeed a linear combination of both underlying

latent variables - ξ and θ - plus a stochastic component (residual).

Two results are of major importance. First, the more the correlation between the la-

tent response propensity and the latent ability deviates from one, the more the correlation

Cor(ξ, ξNR) decreases. Absurdly, the NRM yields the worst parameter recovery when

the missing data Y is MCAR and yields the best parameter recovery if the missing data

mechanism is NMAR with the latent response propensity as a linear function of ξ. In this

particular situation the person parameter estimation is unbiased. Second, the marginal

reliabilities Rel(ξ̂NR) of the 15 data sets estimated with MULTILOG 7 were almost equal

across the simulated data sets regardless the correlations r(ξ, ξ̂NR). Neither the overall

proportion of missing data nor the correlation Cor(ξ, θ) between the latent ability and

the latent response propensity lowers the marginal reliability substantially. An applied

researcher may be lulled into a false sense of security in view of such good reliability co-

efficients in a seemingly valid and useful measurement model. Unfortunately, the problem
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can hardly be detected in real applications.

Item parameter estimation in the NRM for item nonresponses Finally, the coverage

of the item parameters of the 2PLM is considered if the NRM is used. In the beginning

of this section it was shown how the item parameters of the 2PLM and the NRM for

item nonresponses are related theoretically. It was also illustrated that the item parame-

ters could be estimated unbiasedly if the true values of the latent variable are known. In

real applications this is typically not the case. Rather, the individual values of ξ need to

be jointly estimated from the data with the item parameters. Since ξ and ξNR are most

likely not equal in real applications, the item parameters of the NRM are expected to be

different from those of the 2PLM as well. In Figure 4.12 the item parameter estimates

β̂NR
i1 and the discriminations α̂NR

i11 of three simulated data sets, with Cor(ξ, θ) equal to 0.2,

0.8 (Data Example A), and 1 are displayed in comparison to the true item parameters, βi

and αi. The item parameter estimates of two out of the 16 data sets from Table 4.8 with

an overall proportion of 50% missing data were used. If the NRM yields unbiased item

parameter estimates, then all estimates α̂NR
i11 should be close to one. Using a scatter plot,

the estimated values β̂NR
i1 and true difficulties should lie close to the bisectric. The item

difficulty estimates β̂NR
i1 were consistently overestimated in Data Example A. The mean

bias was 0.832, which differs significantly from zero (t = 12.312, df = 29, p < 0.001).

The mean of the estimated item discriminations was ¯̂αNR
11 = 0.831, which is significantly

lower than one (t = −3.175, d f = 29, p = 0.004). If the correlation Cor(ξ, θ) = 0.2,

then the item difficulties were, on average, even more overestimated, whereas the item

discriminations were, on average, more negatively biased. Unbiased item parameter esti-

mates were only found if Cor(ξ, θ) = 1 (lower two graphs of Figure 4.8). In this case, ξ

and ξNR are linear functions of each other. If the 2PLM and the NRM are identified in the

same way, for example if E(ξ) = E(ξNR) = 0 and Var(ξ) = Var(ξNR) = 1, then ξ = ξNR.

In this case, the estimates α̂NR
i11 and −α̂(NR)

i01 /α̂
(NR)
i11 of the NRM are unbiased estimates of

αi and βi of the 2PLM. However, the equality θ = f (ξ), with f (.) a linear function, has

some important implications, because in this case the response indicators Di could simply

be used as additional manifest indicators of the latent ability ξ. Put simply, the variables

Di can be used as additional items in a joint measurement model based on (Y, D) with

the assumption of local stochastic independence Yi ⊥ (D,Y−i) | ξ. The item- and person

parameter estimates of both, the NRM and the unidimensional IRT model based on Yi

and Di, should recover the true parameters equally well. Indeed, in the simulated data

example with ξ = θ the correlation between the ML estimates of ξ obtained by the uni-
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Figure 4.12: True and estimated item difficulties and discrimination parameters using the NRM in
three different conditions: Cor(ξ, θ) = 0.2, 0.8, and 1. The grey lines indicate bisectric
lines (left column) or the means ¯̂α (right column).
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dimensional IRT model with 60 items Y1, . . . ,YI ,D1, . . . ,DI) was r(ξ̂ML, ξ) = 0.967. This

value was even higher than r(ξ̂NR, ξ) = 0.935 using the NRM and r(ξ̂ML, ξ) = 0.910 using

the complete data Y = y for person parameter estimation.

Summary It could be shown that IAS, PCS, and the NRM for item nonresponses have

a common problem. The manifest variables used in the measurement model are different

form the original variables Yi. If both - item and person parameters - are unknown, then

parameter estimation will most likely be biased. Strictly speaking, the construction of the

latent variable is affected. The replacement of the manifest indicators Yi by Y∗i and Ri or

the imputation of c in PCS results in substantially different models with different param-

eters that have a different meaning. The item and person parameter estimates are biased

in the sense that they systematically differ from the parameters aimed to be estimated. As

in the case of IAS, the latent variable ξNR in the NRM for item nonresponses is a linear

combination of the latent ability and the latent response propensity. Unbiased parameter

estimates of the 2PLM can only be obtained by the NRM if the latent response propensity

is a linear function of ξ. In this case all item response propensities are functions of the

latent ability. However, in this case a unidimensional IRT model including both, the items

Yi and the corresponding response indicators Di, could be used alternatively. Neither the

existence of a latent response propensity nor the correlation between the latent variables ξ

and θ can be examined in the NRM. Thus, the question of whether the NRM is appropriate

to account for nonignorable missing data is directly related to the question of dimension-

ality in common measurement model based on Y and D. Interestingly, multidimensional

IRT models including a model of a latent response propensity have been proposed as a

model based approach for nonignorable missing data. Such models do not require that

Cor(ξ, θ) = 0. Furthermore, the flexibility of these models allow for multidimensional

latent variables ξ and θ. In the following sections, MIRT models for missing responses

that are NMAR will be of major interest.
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4.5 IRT Model Based Methods

In the previous section, it could be shown that naive imputation methods such as IAS

and PCS cannot be recommended to handle item nonresponses in most applications. The

NRM for item nonresponses can be regarded as a model-based method that yields unbi-

ased parameter estimates of the 2PLM if strong assumptions hold true. In this section,

less restrictive model based approaches for missing data in IRT measurement models will

be introduced and further developed. The major focus is put on models for nonignorable

item nonresponses. Of course, methods for missing responses in measurement models

that are MCAR or MAR are no less important but have been addressed in many publica-

tions and are already implemented in many mainstream software programs such as Mplus

6 (Muthén & Muthén, 1998 - 2010) or LISREL 8 (Jöreskog & Sörbom, 1997, 2006).

FIML estimation and parameter estimation by means of EM algorithms are the most pop-

ular among the model based approaches. Furthermore, multiple imputation of ignorable

item nonresponses in dichotomous items has been found to work very well even if the

proportion of missing data is substantial (Van Buuren, 2007, 2010). Methods to handle

nonignorable missing data, however, are much less commonly used.

In this chapter, ML estimation with missing data will be examined first considering

the different missing data mechanisms as defined in Section 2.1. Based on these general

derivations, appropriate IRT models for ignorable missing data will be briefly reviewed.

Then models for nonignorable item nonresponses in dichotomous items are introduced

and further developed. Outside the field of measurement, two major classes of models for

nonignorable missing data have been proposed: (a) selection models (SLM; Heckman,

1976, 1979; Little, 2008; Winship & Mare, 1992) and (b) pattern mixture models (PMM;

Heckman, 1976, 1979; Little, 2008; Winship & Mare, 1992). The IRT models examined

here will be derived from these models. The underlying assumptions are made explic-

itly. Finally, it will be shown how unbiasedly esimated IRT item and person parameter

estimates can be used to obtain corrected item means and sample distributions of the sum

score.

4.5.1 ML Estimation in IRT Models With Missing Data

In his seminal paper, Rubin (1976) explicated the conditions required to hold that sample

based inference in presence of missing data is valid. He considered inference based on

ML estimation as well Bayesian estimation methods. Here, the considerations will be

confined to ML estimation with missing data. In Section 4.2 ML estimation in the case
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of complete data was already introduced. Now, it will be extended to cases of incomplete

data following Rubin (1976), Little & Rubin (2002), Schafer (1997), and Mislevy & Wu

(1996).

As shown in Section 4.2, the ML estimate ι̂ML is found by maximizing the probabil-

ity g(Y = y; ι) of the observed data Y = y given the parameters ι. In application that

means that the likelihood function L(y; ι) (see Equation 4.1), which is any function that

is proportional to g(Y = y; ι), is maximized. If there is any missing data mechanism, the

observed data of Y = y reduces to Yobs = yobs. Accordingly, ML estimation based on

the observable data means to find the ML estimator by maximizing the likelihood func-

tion L(yobs; ι), which is proportional to g(Yobs = yobs; ι). As Rubin stated, sample-based

inference is then conditional given the particular missing pattern D = d. The decisive

question is, under which conditions sample-based ML estimates obtained from L(y; ι)

and L(yobs; ι) are asymptotically equal? If they are equal, then the following equation is

implied:

E(ι̂ML | D = d) = E(ι̂ML | D = 1) = ι (4.47)

D = 1 means there are no missing data. Hence, E(ι̂ML | D = 1) is the expected value

of the ML estimate in absence of missingness. If Equation 4.47 holds true, missing data

leads to increased uncertainty due to the loss of information with respect to the estimand ι,

reflected by larger standard errors. However, point estimates are asymptotically consistent

and unbiased. The sufficient conditions required to ensure valid sample based inference

in presence of missing data are also called ignorability conditions (Heitjan, 1994; Little

& Rubin, 2002; Rubin, 1976). Prior to the introduction of the ignorability conditions,

likelihood inference in presence of missing data is introduced.

Initially, the derivations are very general and not restricted to IRT measurement models.

It will not be distinguished between (in)dependent variables or covariates. Hence, let Y be

simply a (N × I) random matrix including the covariates with stochastically independent

rows. If the respective random experiment is repeated N times, then the realized data

matrix y results. If there is any missing data mechanism, then the observed missing pattern

d is a realization of the (N × I) random matrix D. The rows of D are also assumed to

be stochastically independent. Hence, the missing patterns between the test takers are

independent.

In order to study ML estimation with missing data, different likelihood functions are

distinguished: (a)L(y, d; ι,φ) the full likelihood of the complete data, (b)L(yobs, d; ι,φ)
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the full likelihood of the observed data, and (c) L(yobs; ι) denotes the observed data like-

lihood ignoring the missing data mechanism. The full likelihood L(y, d; ι,φ) refers to a

joint model of (Y, D). Recall that Y and D are both random variables defined on the same

probability space. The stochastic relationship between the response indicator variables Yi

of Y and Di of D was used to define the missing data mechanisms w.r.t. Yi. Similarly, the

stochastic relationship between the partitions Yobs and Ymis of Y and D was used to define

the missing data mechanism w.r.t. Y (see Section 2.1). The parameter vector ι consists

of the estimands of substantial interest. φ is the parameter vector of the model of D, for

example, parameters of logistic regression of variables Di on variables in Y. Hence, the

full likelihood functions refer to a joint model that includes the target model of interest

and the model of missingness, which is typically not of researchers? interest. However,

if the missing data mechanism is nonignorable, then the conditional distribution of the

missing part Ymis given the observable part Yobs depends on D. Missingness is then called

informative with respect to the model of Y given by the parameter vector ι. Accordingly,

D needs to be included in a joint model of (Y, D) to ensure unbiased parameter estimation

of ι if the the missing data mechanism is nonignorable. In contrast, if certain conditions

- the so called ingorability conditions - hold true, then D does not need to be modelled

jointly with Y. D can be ignored and the observed data likelihood L(yobs; ι) yields un-

biased parameter estimates. Direct likelihood inference is based on ratios of likelihoods

(Dempster, 1997; A. W. F. Edwards, 1972; Rubin, 1976). Two ignorability conditions

need to hold true to ensure valid direct likelihood inference: (a) the missing data mecha-

nism w.r.t. Y is MCAR or MAR, and (b) the common parameter space Ωι,φ can be written

as Ωι ×Ωφ. In a Bayesian sense, this implies that each (ι,φ) ∈ Ωι,φ has a non-zero proba-

bility. In other words, this means that regardless of the dependency between the manifest

variables Y and D, which define the missing data mechanism, the range of defined values

of ι must not be restricted given particular values of φ and vice versa. If these two condi-

tions (a) and (b) hold true, then the missing data mechanism is called ignorable (Rubin,

1976). ML estimation resting upon L(yobs; ι) instead of L(yobs, d; ι,φ) is sufficient. This

can be shown by considering the different likelihood functions introduced above and their

relationships.

Relationship between the full likelihood and the likelihood ignoring the missing data

mechanism The full complete data likelihoodL(y, d; ι,φ) = L(yobs, ymis, d; ι,φ) is pro-

portional to the joint distribution g(Yobs = yobs,Ymis = ymis, D = d; ι,φ). Factorizing the
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joint probability (Cramér, 1949; Cox & Wermuth, 1999) yields

L(y, d; ι,φ) ∝ g(Yobs = yobs,Ymis = ymis; ι)g(D = d |Yobs = yobs,Ymis = ymis;φ)

(4.48)

The full likelihood of the complete data can be considered theoretically but is never avail-

able in application since ymis is always unobserved. Any applicable ML estimator needs

to be based on the observable variables Yobs and D with the respective full observed data

likelihood L(yobs, d; ι,φ), which is the integral of the right hand side of Equation 4.48

L(yobs, d; ι,φ) ∝
∫

g(Yobs = yobs, D = d,Ymis; ι,φ)dYmis (4.49)

∝
∫

g(Yobs = yobs,Ymis; ι)g(D = d |Yobs = yobs,Ymis;φ)dYmis

As Mislevy & Wu (1996) stated, under local stochastic independence Yi ⊥ Y j | ξ for all

i , j Equation 4.49 is

L(yobs, d; ι,φ) ∝
∫

g(Yobs = yobs; ι)g(Ymis; ι)g(D = d |Yobs = yobs,Ymis;φ)dYmis

∝ g(Yobs = yobs; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs,Ymis;φ)dYmis.

(4.50)

In both Equations 4.49 and 4.50 the integral is taken over all possible values Ymis = ymis

under the given missing pattern D = d. If all variables Yi are discrete, then a finite number

of possible patterns Ymis = ymis in ΩYmis
exist with the probabilities P(Ymis = ymis; ι). The

integrals in Equations 4.49 and 4.50 become a sum over the values in ΩYmis

11. If the

missing data mechanism is MCAR or MAR, then conditional stochastic independence

D ⊥ Ymis |Yobs holds true. In this case, the conditional distribution g(D = d |Yobs =

yobs,Ymis = ymis;φ) = g(D = d |Yobs = yobs;φ), implying

L(yobs, d; ι,φ) ∝ g(Yobs = yobs; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs;φ)dYmis

∝ g(D = d |Yobs = yobs;φ)g(Yobs = yobs; ι)

∫
g(Ymis; ι)dYmis

∝ g(D = d |Yobs = yobs;φ)g(Yobs = yobs; ι) · 1. (4.51)

11For example, if all variables Yi are dichotomous, then ΩYmis
consists of 2Q possible pattern Ymis = ymis,

where Q =
∑N

n=1

∑I
i=1 Dni.
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Hence, if the missing data mechanism is MCAR or MAR, then the integral in Equa-

tion 4.50 is equal to the integral
∫

g(Ymis = ymis; ι)dYmis, which is always one. As a

result, the likelihood given by Equation 4.51 factors into two pieces that can be maxi-

mized separately in order to find the estimates of ι or φ. Hence, if only ι is of interest,

then it is sufficient to maximize the likelihood function L(yobs; ι), which is proportional

to g(Yobs = yobs; ι) (Rubin, 1976; Little & Rubin, 2002; Schafer, 1997; Mislevy & Wu,

1996).

In order to proof that direct likelihood inference is valid, the likelihoods are set to be

equal to the respective probability density functions. Let ι1 and ι2 be two vectors defined

in Ωι. The likelihood ratio of the observed data likelhood ignoring missing data with

respect to ι1 and ι2 is

L(yobs; ι1)

L(yobs; ι2)
=

g(Yobs = yobs; ι1)

g(Yobs = yobs; ι2)
. (4.52)

Given the missing data mechanism is ignorable, from Equation 4.51 follows that the like-

lihood ratio of the full likelihood of the observed data with respect to ι1 and ι2 is

L(yobs, d; ι1,φ)

L(yobs, d; ι2,φ)
=

g(D = d |Yobs = yobs;φ)g(Yobs = yobs; ι1)

g(D = d |Yobs = yobs;φ)g(Yobs = yobs; ι2)

=
g(Yobs = yobs; ι1)

g(Yobs = yobs; ι2)

=
L(yobs; ι1)

L(yobs; ι2)
(4.53)

Hence, the likelihood ratios of the full likelihood of the observed data and the likelihood

of the observed data ignoring missing data are equal. It is important to note that this

equality does not necessarily follow, if the missing data mechanism is nonignorable. Di-

rect likelihood inference is not generally valid in this case. A joint model of (Y, D) needs

to be built with a joint estimation of ι and φ even if the latter is not of substantial interest.

In less technical terms, that means that the information of the missingness given by D

with respect to ι needs to be included to ensure unbiased parameter estimation and valid

inference.

ML estimation with missing data in psychological and educational measurement In

this work, the taxonomy for missing data introduced by Rubin was extended (see Section

2.2). Due to the differentiation between Y the manifest variables in the measurement

model and Z a potentially multidimensional covariate, three different MAR conditions
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can be distinguished. In the remainder of this section, the ML estimation in measurement

models including covariates will be examined.

In the common missing data literature, it is not distinguished between covariates and

independent or dependent variables. In fact, such a distinction is not necessary for gen-

eral considerations and proofs as demonstrated previously. The following differentiation,

however, is quite useful to derive appropriate models that allow for valid likelihood infer-

ence depending on the respective missing data mechanism. If Z is included in the model,

then the likelihood function is proportional to the joint probability g(Yobs = yobs,Ymis =

ymis, D = d, Z = z; ι,φ), which can be factorized in many different ways. Similar to

Equation 4.48, one possible factorization is

g(Yobs = yobs,Ymis = ymis, D = d, Z = z; ι,φ) = g(Yobs = yobs,Ymis = ymis, Z = z; ι)

·g(D = d |Yobs = yobs,Ymis = ymis, Z = z;φ).

(4.54)

The vector ι contains not merely the item and person parameters of the measurement

model but additional parameters that describe the stochastic dependency between Y and

the covariate Z, For example, regression coefficients and residual variances and covari-

ances in a latent regression model E(ξ | Z). Since the person parameters are formally

estimands included in ι, local stochastic independence Yi ⊥ Y j | ξ (for all i , j) implies

g(Yobs = yobs,Ymis = ymis, D = d, Z = z; ι,φ) = g(Yobs = yobs, Z = z; ι)

·g(Ymis = Ymis |Yobs = yobs, Z = z; ι)

·g(D = d |Yobs = yobs,Ymis = ymis, Z = z;φ).

(4.55)

If Y ⊥ Z | ξ, meaning that no differential item functioning (DIF) with respect to Z exists,

then Equation 4.55 can be further simplified to

g(Yobs = yobs,Ymis = ymis, D = d, Z = z; ι,φ) = g(Yobs = yobs, Z = z; ι)g(Ymis = Ymis; ι)

·g(D = d |Yobs = yobs,Ymis = ymis, Z = z;φ).

(4.56)

The full likelihood L(yobs, d, z; ι,φ) of the observed data can be written as

L(yobs, d, z; ι,φ) ∝ g(Yobs = yobs, Z = z; ι) (4.57)

·
∫

g(Ymis; ι)g(D = d |Yobs = yobs, Z = z,Ymis;φ)dYmis.
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This equation refers to Equation 4.50, where no distinction was made between Y and Z.

The observed data likelihood L(yobs, z; ι) that ignores missing data is proportional to the

joint distribution g(Yobs = yobs, Z = z; ι). In order to answer the question whether Z needs

to be modelled jointly with Y to ensure valid item and person parameter estimation, the

likelihood L(yobs; ι) of the observed item responses is considered, which is proportional

to g(Yobs = yobs; ι). In the following, ML estimation in IRT models with covariates will be

examined for each missing data mechanism separately starting from Equation 4.57 to an-

swer the question under which conditions unbiased item and person parameter estimation

and valid likelihood inference is implied.

ML estimation in IRT models if the missing mechanism w.r.t. Y is MCAR If the

missing data mechanism w. r. t Y is missing completely at random, defined by stochastic

independence D ⊥ (Y, Z) (see Equation 2.15), then the full likelihood of the observed

data is

L(yobs, d, z; ι,φ) ∝ g(Yobs = yobs, Z = z; ι)

∫
g(Ymis; ι)g(D = d;φ)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d;φ). (4.58)

Hence, the observed data likelihood L(yobs, z; ι) ignoring missingness is sufficient for

unbiased ML estimation and valid direct likelihood inference. Furthermore, it can be

shown that the covariate Z needs not to be modelled jointly with Y for estimation of

parameters of the measurement model of ξ based on Y since

L(yobs, d; ι,φ) ∝ g(Yobs = yobs; ι)

∫
g(Ymis; ι)g(D = d;φ)dYmis

∝ g(Yobs = yobs; ι)g(D = d;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs; ι)g(D = d;φ). (4.59)

The observed data likelihood L(yobs; ι) of the observed item responses gives unbiased

item and person parameter estimates.

ML estimation in IRT models if the missing mechanism is MAR given (Y, Z) The

missing data mechanism w.r.t. Y has been defined to be missing at random given (Y, Z)

if conditional stochastic independence D ⊥ Ymis | (Yobs, Z) applies although conditional
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stochastic dependence D✚✚⊥Ymis | Z and D✚✚⊥Ymis |Yobs holds true (see Equations 2.17).

The full likelihood of the observed data is

L(yobs, d, z; ι,φ) ∝ g(Yobs = yobs, Z = z; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs, Z = z;φ)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d |Yobs = yobs, Z = z;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d |Yobs = yobs, Z = z;φ) (4.60)

Again, the observed data likelihood L(yobs, z; ι) ignoring the missing data mechanism is

sufficient for valid direct likelihood inference and unbiased ML estimation. However, in

contrast to MCAR, the covariate Z has to be included in a joint model of (Y, Z) to ensure

unbiased item and person parameter estimation. If Z is excluded, then the likelihood of

the observed item responses and the missing pattern L(yobs, d; ι,φ) is not proportional to

a simple product of factorized densities.

L(yobs, d; ι,φ) ∝ g(Yobs = yobs; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs,Ymis;φ)dYmis.

(4.61)

The term g(D = d |Yobs = yobs,Ymis;φ) referring to the model of missingness cannot be

brought out of the integral. ML estimation based on the observed item responses alone

using L(yobs; ι) is potentially biased and ML inference might thus be invalid.

ML estimation in IRT models if the missing mechanism is MAR given Z As a spe-

cial MAR condition, the missing data mechanism w.r.t. Y has been defined to be missing

at random given Z if conditional stochastic independence D ⊥ Y | Z applies (see Equation

2.18). Conditional stochastic independence D ⊥ Ymis | Z is implied by this definition al-

though conditional stochastic dependence D✚✚⊥Ymis |Yobs applies. The full likelihood can

then be written as

L(yobs, d, z; ι,φ) ∝ g(Yobs = yobs, Z = z; ι)

∫
g(Ymis; ι)g(D = d | Z = z;φ)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d | Z = z;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d | Z = z;φ). (4.62)

As in the case of MAR given (Y, Z), the observed data likelihood L(yobs, z; ι) is sufficient

for unbiased ML estimation with respect to the item and person parameters of the mea-

surement model of ξ. Here, as well, Z cannot be left out in the item and person parameter
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estimation since Equation 4.61 applies ML estimation as a statistical inference based on

L(yobs; ι) is not trustworthy.

ML estimation in IRT models if the missing mechanism is MAR given Y The third

MAR condition is the conditional stochastic independence D ⊥ Ymis |Yobs. In this case,

the missing data mechanism w.r.t. Y is called missing at random given Y (see Equation

2.19). The full likelihood of the observed data is

L(yobs, d, z; ι,φ) ∝ g(Yobs = yobs, Z = z; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d |Yobs = yobs;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs, Z = z; ι)g(D = d |Yobs = yobs;φ). (4.63)

Even if the covariate Z is left out, it follows

L(yobs, d; ι,φ) ∝ g(Yobs = yobs; ι)

∫
g(Ymis; ι)g(D = d |Yobs = yobs)dYmis

∝ g(Yobs = yobs; ι)g(D = d |Yobs = yobs;φ)

∫
g(Ymis; ι)dYmis

∝ g(Yobs = yobs; ι)g(D = d |Yobs = yobs;φ). (4.64)

Hence, both observed data likelihoods L(yobs; ι) and L(yobs, z; ι) including the covari-

ate are sufficient for valid direct likelihood inference and unbiased ML estimation with

respect to item and person parameters of the measurement model of ξ. Hence, the covari-

ate Z can be included if this is of the researcher’s substantial interest. However, is not

required to fit a joint model of (Y, Z) in order to obtain unbiased estimates of persons’

ability and item parameters.

ML estimation in IRT models if the missing mechanism is MNAR If the missing

data mechanism w.r.t. Y is missing not at random as defined in section 2.2, then condi-

tional stochastic dependence D✚✚⊥Ymis | (Yobs, Z) applies. Equation 4.57 cannot be further

simplified. The conditional distribution g(D = d |Yobs = yobs, Z = z,Ymis;φ) cannot

be placed outside the integral over ΩYmis
. Neither the use of the observed data likeli-

hood L(yobs; ι,φ) nor L(yobs, z; ι,φ) yield unbiased ML estimation. Statistical inference

is therefore not trustworthy. Systematic biases of parameter estimates as demonstrated in

Chapter 3 cannot be ruled out. If the missing data mechanism is MNAR, then the missing

data mechanism is nonignorable and D needs to be included in the model and the full data
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likelihood L(yobs, d; ι,φ) needs to be maximized.

4.5.2 IRT Models for Ignorable Missing Data

This work focuses on model-based methods for nonignorable missing data. Nevertheless,

it is worthwhile to consider models for missing data that are MAR because of their struc-

tural resemblance to models for nonignorable item nonresponses, which are developed

below. It was repeatedly stressed that the term ignorable is rather unfortunate. Strictly

speaking, missing data are always problematic and should never be ignored. As previ-

ously mentioned, the term noninformative is synonymous with ignorable. If a missing

data mechanism is noninformative, missingness does not contain additional information

about unobserved quantities such as missing data and the parameters aimed to be esti-

mated. For application, this implies that D needs not to be included in the parameter

estimation of ι to yield unbiased estimates. Hence, D can be ignored but not the missing

data itself. Even if the missing data mechanism is MCAR or MAR, appropriate missing

data methods are typically required to account for nonresponses. Even if the missing data

mechanism is MCAR, approaches such as listwise deletion may be not applicable since

no case with complete data exists. This is common in educational testings with planned

missing data due to item sampling designs(Frey et al., 2009; Johnson, 1992; T. E. Raghu-

nathan & Grizzle, 1995). With EM-algorithm (McLachlan & Krishnan, 2008, 2008) and

FIML estimation (Arbuckle, 1996; Enders, 2001a), techniques exist that allow for un-

biased parameter estimation if the missing data mechanism w.r.t. Y is MAR. In many

applications, researchers have to include covariates if the missing data mechanims w.r.t.

Y is MAR given Z. If these covariates are not part of the substantial model, which is

commonly the case, they are called auxiliary variables. A joint model of Y and auxiliary

variables Z needs to be specified that preserve the target model of Y. This modeling task

can be challenging. In SEM the so-called Spider model proposed by Graham (2003) is

a well-known and widely used model to include auxiliary variables in FIML estimation.

Covariates and auxiliary variables can be left out if the missing data mechanism w.r.t. Y

is MAR given Y. FIML will yield unbiased ML estimates based on the specified target

model alone. FIML has become a state-of-the-art method in linear SEM (Schafer & Gra-

ham, 2002). The term FIML is rarely used in the context of IRT parameter estimation with

missing data. However, standard JML and MML estimation methods as implemented in

most common IRT software can be regarded as FIML estimation. Using two examples,

this will be briefly explained here. First, computerized adaptive testing (CAT) is consid-

ered, and, second, two-stage testing with a routing test will be examined.
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Computerized Adaptive Testing (CAT) In computerized adaptive testings, only a sub-

set of items is answered by test takers until an a priori defined stop criterion is reached.

If the starting item is fixed for all test takers or randomly chosen out of an item bank,

then the missing data mechanism w.r.t. Y is MAR given Y (Mislevy & Wu, 1996). After

initial item responses, the following items are assigned depending on previous observed

response behavior. Hence, P(D = d |Y) = P(D = d |Yobs). As Glas (2006) showed,

IRT parameter estimation using common MML estimation is unbiased. Obviously, MML

estimators as implemented in standard IRT software functions as FIML estimators. The

reason is that MML estimation does not depend on bivariate summary statistics such as

covariances between the items. Each observed item response is included in the ML func-

tion. If the CAT was applied to a sample of N test takers, then the observed data likelihood

L(yobs; ι) ignoring the missing data mechanism (see Equation ) can be written as

L(yobs; ι) ∝
N∏

n=1

P(Yn;obs = yn;obs; ι) (4.65)

∝
N∏

n=1

I∏

i=1

P(Yni = yni | ξ; ι)Dni .

Hence, the response indicator variables Di function as selecting variables that determine

which elements of the complete data matrix Y = y are observable. From Equation 4.65

follows that JML estimation yields also unbiased parameter estimates. In MML esti-

mation, the unconditional probability of each observed response pattern is modeled by

integration over the distribution of the latent ability ξ. Hence, the MML function results

from Equation 4.65 by

L(yobs; ι) ∝
N∏

n=1

∫

Rm

I∏

i=1

P(Yni = yni | ξ; ι)Dnidξ.

It is important to note that the use of auxiliary information in CAT leads to a violation

of ignorability conditions in CAT. As Glas (Glas, 2006) demonstrated, item and person

parameter estimation is potentially biased if additional information such as educational

achievements, socioeconomic status, etc. are used to determine the starting items of the

CAT. In this case typically D✚✚⊥Ymis | yobs. Missingness depends also on additional vari-

ables that are used to choose initial items. Formally, these variables can considered to be

covariates Z in this CAT design, implying that D ⊥ Ymis | (yobs, Z). Hence, the missing

data mechanism w.r.t. Y is MAR given Z. ML parameter estimation based on L(yobs; ι)
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is potentially biased. ML estimation needs to be based on L(yobs, z; ι) to ensure unbiased-

ness. The covariate Z is an auxiliary variable. The target model - here the measurement

model of ξ - needs to be preserved in the joint model of (Y, Z). This problem is essen-

tially equivalent to the use of a routing test to determine the final test form for test takers

in paper and pencil tests. This example will be considered next.

Routing Tests The reliability of person parameter estimates using IRT models is not

merely determined by the number of administered items, but also influenced by the item

parameters. The test information I(ξ) is high and, therefore, the standard errors of ξ̂ are

small if the item difficulties and the persons’ ability levels are close together (see Section

3.3). This is the rationale underlying CAT as well as branched testing and multistage

testing (Lord, 1980). In contrast to CAT, the number of administered items is fixed in

multistage testing. However, the particular selection of items presented to each test taker

is not determined in advance. The simplest form is a two-stage testing design with a

routing test administered firstly to obtain a rough impression of persons’ ability levels

and to determine the appropriate final test form used for parameter estimation. Formally,

the routing test is an auxiliary variable. Together with other additional variables, the

test score of the routing test constitutes the covariate Z. The not-administered items

in the final test Y are missing depending on Z. The missing data mechanism w.r.t. Y

is MAR given Z, since D ⊥ Y | Z. From Equation 4.62 follows that ML estimation

needs to be based on L(yobs, z; ι) instead of L(yobs; ι). The crucial question is, how to

included Z in a joint model of (Y, Z) preserving the measurement model of ξ based on

Y. One approach is to include Z in a background model (DeMars, 2002). That is, a latent

regression model E(ξ | Z) is included. Using MML estimation, the parameter vector ι =

(α, β,Γ,Ψ) contains additional quantities: (a) the parameter Γ of regression coefficients

including the intercepts and (b) Ψ the variance-covariance matrix of latent residual ζ =

ξ−E(ξ | Z). However, the item parameters (α, β) remain estimable parameters in this joint

model. How can this model be justified theoretically? From Equation 4.62 merely follows

that the likelihoodL(yobs, z; ι) of the observed data is proportional to the joint distribution

g(Yobs = yobs, z; ι) that can be factorized in different ways. Assuming that the cases, and
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therefore the rows of Y, are independent, the following factorization can be considered:

L(yn;obs, z; ι) ∝
N∏

n=1

∫

Rm

g(Yn;obs = yn;obs, Zn = zn, ξ; ι)dξ (4.66)

∝
N∏

n=1

∫

Rm

g(Yn;obs = yn;obs | Zn = zn, ξ; ι)g(Zn = zn, ξ; ι)dξ.

If no DIF exists with respect to Z, that is

L(yobs, z; ι) ∝
N∏

n=1

∫

Rm

g(Yn;obs = yn;obs | ξ; ι)g(ξ | Zn = zn; ι)g(Zn = zn)dξ (4.67)

∝
N∏

n=1

g(Zn = zn)

∫

Rm

g(Yn;obs = yn;obs | ξ; ι)g(ξ | Zn = zn; ι)dξ

The covariate Z is purely exogenous in this model. As in any regression model, the

unconditional distribution of the predictor variables, here g(Zn = zn), can be left out

of the ML estimation equation. Essential is the model of the conditional distribution

of the endogenous variables given the independent variables. Assuming local stochastic

independence for all manifest variables Yi, the MML estimation equation can be written

as

L(yobs, z; ι) ∝
N∏

n=1

∫

Rm

g(Yn;obs = yn;obs | ξ; ι)g(ξ | Zn = zn; ι)dξ

∝
N∏

n=1

∫

Rm

I∏

i=1

P(Yni = yni | ξ; ι)Dnig(ξ | Zn = zn; ι)dξ. (4.68)

Hence, given no DIF exists, auxiliary variables can be included as independent variables

in a latent regression model. The regression parameters Γ and Ψ determines the condi-

tional distribution g(ξ | Z = z; ι). In application, it is commonly assumed that the latent

residual is multivariate normal with ζ ∼ (0,Ψ). Software like ConQuest(Wu et al., 1998)

or Mplus (Muthén & Muthén, 1998 - 2010) allow to estimate latent regression models

and measurement models contemporarily using Marginal ML estimation. Figure 4.13 il-

lustrates the model with a unidimensional latent variable ξ and a single covariate Z in a

latent regression model. It can be seen that measurement invariance with respect to Z is

assumed, so that Yi ⊥ Z | ξ for al Yi.

In Section 2.3, it was shown that Di⊥Yi | Z implies Di⊥ξ | Z given the missing data

mechanism with respect to Yi is MAR given Z and measurement invariance hold. Con-
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Figure 4.13: Path diagram of a latent regression model for item nonresponses that are MAR given Z.

sidering the whole test instead of single items, that is D ⊥ ξ | Z. If item nonresponses

result only from not-administered items due to the routing test, then this is trivial since

D is a function f (Z) of the auxiliary variables. Each value z is associated with a certain

missing pattern d. Based on these considerations it can be explained how the latent re-

gression model accounts for missing data. If Z includes a very reliable and valid routing

test, then ξ and Z will be strongly stochastically dependent. The stronger the stochas-

tic dependence is, the better the routing test works. This implies that ξ and D are also

strongly stochastically dependent on each other. The ability distributions will consider-

ably differ between the missing pattern D = d. If this information about the systematic

differences in the latent ability distribution dependending on the missing pattern is ig-

nored, then ML estimates of IRT parameters are potentially biased. The inclusion of a

latent regression model accounts for different distributions of ξ given D by allowing for

distributional differences of g(ξ | Z = z; ι) for different values Z = z. More specifically,

the values E(ξ | Z = z) of the latent regression vary depending on Z, allowing for differ-

ent average ability levels. However, only one variance-covariance matrix Ψ is estimated.

Thus, equal variance-covariance structures are assumed for all values Z = z. Multiple

group models might be a less restrictive alternative when Z is discrete.

However, CAT and missing responses due to item selection based on routing tests were

discussed exemplarily. Many other cases could be considered with ignorable missing data.

For example, Glas (1988) showed that MML estimation is unbiased in multistage testings

if the items of the routing test are indicators of exactly the same latent ability ξ as indicated

by Y. In this case, the measurement model of ξ can be based on (Y, Z), dispensing with

the need of the latent regression model. Unfortunately, missing responses are very likely

nonignorable in many applications. Omitted and not-reached items, for example, occur

more likely in persons with lower proficieny levels (Culbertson, 2011, April; Rose et al.,

2010). Hence, missingness depends most likely on unobserved variables such as the latent
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ability ξ. In such cases, the missing data mechanism w.r.t. Y is NMAR. In the following

sections, appropriate IRT model based approaches for non-ignorable missing data will be

examined and further developed.

4.5.3 Multidimensional IRT Models for Non-ignorable Missing Data

Given the missing data mechanism is MAR, a lot of approaches have been developed

in order to obtain unbiased estimates and correct statistics. In contrast, if the missing

data mechanism is non-ignorable, then only few approaches exist. It has turned out to be

challenging to find a general approach for non-ignorable missing data. Up to now, two

general classes of models have been proposed: (a) Selection Models (SLM) (Heckman,

1976, 1979; Amemiya, 1984; Little, 1993, 1995; Little & Rubin, 2002; Enders, 2010)

and (b) Pattern Mixture Models (PMM) (Glynn et al., 1986; Little, 1993, 1995; Little &

Rubin, 2002; Little, 2008). Since missingness is informative with respect to unobserved

variables Ymis and, therefore, to the unknown parameters ι underlying Y, the missing

indicator variable D needs to be included in a joint model of (Y, D). This is the underlying

rationale of both SLM and PMM. Hence, ML estimation in both classes of models is based

on the joint distribution g(Y, D) of these variables given a particular model.

In the recent years, MIRT models for nonignorable missing data have been proposed by

O’Muircheartaigh and Moustaki (1999), Moustaki and Knott (2000), Holman and Glas

(2005), Korobko et al. (2008), Glas and Pimentel (2008), and Rose, von Davier & Xu

(2010). These models can be derived from both SLM and PMM under particular as-

sumptions. In this chapter, MIRT models for missing responses are developed from the

general SLM. Heckman’s SLM (Heckman, 1976, 1979) for normally distributed variables

Y is used to introduce SLM in general. Based on these considerations, appropriate IRT

models for item nonresponses will be derived step by step.

4.5.3.1 MIRT Models as Likelihood Based Missing Data Method

In Section 4.5.1, ML estimation with missing data was scrutinized. It could be shown

that D can be ignored in ML estimation procedures if two ignorability conditions hold:

(a) the nonresponse mechanism w.r.t. Y is MCAR or MAR and (b) distinctness of the

parameter spaces Ωι and Ωφ12. In many applications, the ignorability assumptions are

unlikely to hold true. Classical examples are described in clinical trials, where attrition

12Cases can be constructed where the missing data mechanism w.r.t. Y is MAR but distinctness of Ωι and
Ωφ does not hold. These cases are not considered here.
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is often caused by severe aggravation or even death in study participants (e. g. Enders,

2010; Pauler, McCoy, & Moinpour, 2003). In educational assessments, strong empirical

evidence was repeatedly found that unplanned missing are associated with the persons’

proficiency levels (Rose et al., 2010; Culbertson, 2011, April; McCaffrey & Lockwood,

2011). Suited approaches to handle missing responses are required.

In educational and psychological large scale assessments, IRT models are commonly

used to obtain item parameters and to quantify persons’ proficiency levels. Maximum

likelihood estimation is the most popular method used for parameter estimation (Baker

& Kim, 2004). In Section 4.5.1, ML estimation with missing data was examined. The

Equations 4.49 - 4.51 illustrate the difference between ML estimation given the missing

data mechanism is MAR or NMAR. In the latter case, the likelihood function cannot

be factorized into two independent pieces, which refer to the target model of Y and the

missing data model of D. As a consequence, unbiased ML estimation of parameters ι

in presence of nonignorable missing data needs to be based on a joint model of Y and

D. The ML functions are then proportional proportional to the joint distribution g(Y =

y, D = d; ι,φ). This is the underlying rationale of SLMs as well as PMMs that will be

introduced next.

SLM versus PMM In general, the ML function is proportional to the joint distribution

that can be factorized in different ways. In contrast to classical literature, here it is dis-

tinguished between Y the items that constitute the measurement model of ξ and Z the

multidimensional covariate. If Z is a purely exogenous variable, then the joint distribu-

tion g(Y = y, D = d | Z = z; ι,φ) needs to be considered. The complete data likelihood

with respect to (ι,φ) is then proportional to

L(y, d, z;φ, ι) ∝ g(D = d |Y = y, Z = z;φ)g(Y = y | Z = z; ι), (4.69)

or alternatively

L(y, d, z;φ, ι) = g(Y = y | D = d, Z = z; ι) · g(D = d | Z = z;φ). (4.70)

The two likelihood functions refer to both major modelling approaches for nonignorable

missing data - SLMs are represented by Equation 4.69 and PMMs by Equation 4.70. It

can be seen that the two parameter vectors φ and ι refer to the two parts of the joint

model. ι is of substantive interest, whereas φ is a nuisance but required to be jointly es-

timated with ι. In applications, the conditional distributions are model by appropriately.
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Assuming there is only a unidimensional variable Y with its response indicator D, the

conditional distribution g(D = d |Y = Y, Z = z;φ) in SLM can be modeled by a probit or

logit regression P(D = 1 |Y = y, Z = z;φ). In this case, the parameter vector φ consists

of the regression coefficients and the threshold or the intercept term of the this regression

model. In PMMs, φ is of minor interest. The estimate ι̂ is obtained by averaging over

all pattern-specific estimates ι̂d. That is, in a first step the model parameters ι̂ are esti-

mated within each observed missing pattern D = d. Subsequently, the estimates ι̂d are

combined to a single estimate ι̂ (Enders, 2010). Little (Little, 2008) noted that PMMs are

notoriously underidentified. The estimates ι̂d are not estimable without restrictions rest-

ing upon typically untestable assumptions (2001; 2010). However, identification issues

are also challenging in many applications of selection models. In the classical normal

SLM proposed by Heckman, the model is only identified by very strong distributional as-

sumptions. A comprehensive comparison of SLMs and PMMs is beyond the scope of this

work. Little (Little, 2008) argued that the factorization underlying the joint distribution

that underlies SLMs are a more natural choice. For that reason SLMs are focused on here.

Derivation of the MIRT model for nonignorable missing data In this section, a mul-

tidimensional IRT model for nonignorable missing data will be derived, which can be re-

garded as a selection model. The classical SLM introduced by Heckman (Heckman, 1976,

1979) rests upon very strong normality assumptions. Furthermore, it is appropriate in re-

gressions with only a single manifest dependent variable Y . In IRT measurement models,

there is a multivariate dependent variable Y = Y1, . . . ,YI . Accordingly, the response indi-

cator variable D is multidimensional as well. Each item Yi is non-normally distributed. In

the case of dichotomous items, each Yi unconditionally and conditionally Bernoulli dis-

tributed. Hence, some generalizations and modifications of classical SLMs are required

to be appropriate for IRT measurement models. The parameter vector ι consists of the

item and person parameters in the case of JML, and of the item parameters and the pa-

rameters describing the distribution of ξ in the case of MML. The inclusion of a model for

D should correct for nonignorable missing data without changing the substantial model

of interest given by the parameter vector ι. A fundamental difference to commonly used

selection models is that the independent variable of the regressions P(Yi = 1 | ξ) is a latent

variable, which is always missing. As previously noted, ξ is constructed in a measurement

model rather than simply measured. The extension of the model by including a model for

D needs to preserve the measurement model of ξ in the sense that the construction of ξ

remains unaffected. Several generalizations of SLMs have already been introduced in the
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past. Dubin and Rivers (1989) generalized the Tobit model and Heckman’s SLM to the

case of discrete manifest variables Y (Dubin & Rivers, 1989). Generally, extensions of

SLM using ML estimation are natural for dependent variables with distributions of their

residuals that are among the exponential family (Barndorff-Nielsen, 1976). Therefore,

SLM can be extended to many models which belong to the class of generalized linear

models.

MIRT models for nonignorable missing data are a consequential further development of

SLMs for item nonresponses in measurement models with categorical manifest variables.

As mentioned above,in all SLMs and PMMs the model identification is a problematic

issue. PMMs are never identified without untestable assumptions. SLMs are weakly

identified (e. g. Little, 2008) and tend to suffer from convergence problems (e. g. Toomet

& Henningsen, 2008). The basic idea underlying MIRT models for nonignorable missing

data is the construction of a latent response propensity θ underlying the response indicator

variables D1, . . . ,DI (O’Muircheartaigh & Moustaki, 1999; Holman & Glas, 2005; Mous-

taki & Knott, 2000; Korobko et al., 2008; Glas & Pimentel, 2008). Like ξ, θ is defined

as a function f (U) of the person variable U. Hence, the MIRT model for nonignorable

missing responses is a joint measurement model of the latent ability ξ and the latent re-

sponse propensity θ based on (Y, D). The major advantage of this model is that it does not

suffer from identification problems. The model equations of the measurement model of

ξ are given by the parametric regressions P(Yi | ξ) (e. g. Rasch model, Birnbaum model,

or 3PL-model). Similarly, there are I regressions P(Di | θ) constituting the measurement

model of the latent response propensity. Typically, the 1PLM or the 2PLM is chosen to

model P(Di | θ).

The measurement model of θ can be utilized in two different ways : First, in order to

estimate item response propensities P(Yi | θ) for each examinee and each item that serve

to construct weights, which can be used in a subsequent estimation of the measurement

model of ξ. This approach belongs to weighting procedure. The problem is that each ob-

served item response needs to be weighted differently, even for a single test taker. How-

ever, to the best knowledge of the author no IRT software exists that allows for more than

one weight per observational unit. Therefore, the application of weighting procedures for

item nonresponses is not possible yet. Nevertheless, using weights for each single re-

sponse is possible at least theoretically and may be worth considering in future research.

A second approach is to include the measurement model of θ in a joint multidimen-

sional IRT model with θ and ξ. The data matrix used for estimation of this MIRT model

is the combined N × 2I matrix (Y, D) = (y, d) of the items and the respective response in-
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dicators. The weighting approach is a two-step procedure with the item response propen-

sities P(Yi = 1 | θ) taken as fixed in the estimation of the measurement model of ξ. In

contrast, the MIRT approach requires a more complex model but all parameters can be

estimated simultaneously in one step. Additionally, as by-product parameters, some of

the parameters in the MIRT model allow to quantify the relationship between the la-

tent variable ξ and the probability of item non-responses. Thus, this model can provide

additional diagnostic value as well. The univariate normal SLM was based on the fac-

torization g(Y,D |Z; ι,φ) = g(Y |Z; ι)g(D |Y,Z;φ). The MIRT model for nonignorable

missing data as proposed by O’Muircheartaigh and Moustaki (1999), Moustaki and Knott

(2000), Holman and Glas (2005), Korobko et al. (2008), and Glas and Pimentel (2008)

did not involve additional covariates Z. Rose, von Davier and Xu (2010) included cate-

gorical covariates using multiple group MIRT model for nonignorable missing data. For

the beginning, the covariate Z will be left out in order to introduce the basic MIRT model

for missing data that are NMAR. In this case, the model can be derived from the basic

factorization g(Y, D) = g(Y)g(D |Y). Similarly to univariate SLM, a parametric model is

chosen for the joint distribution so that g(Y, D; ι,φ) = g(Yι)g(D |Y;φ). Using the parti-

tion Y = (Yobs,Ymis), the observed data likelihood for a sample size of N with independent

cases n is

L(yobs, d; ι,φ) ∝
N∏

n=1

g(Yobs;n = yobs;n; ι)g(Dn = dn |Yobs;n = yobs;n;φ) (4.71)

The likelihood consists of two parts referring to the two models indexed by ι and φ.

Hence, Equation 4.71 seems to be equal to Equation 4.51. However, the relation between

the observed data likelihood and the theoretical complete data likelihood are different for

the different missing data mechanisms (cf. 4.51 and 4.50). The independent maximization

of the likelihood with respect to ι omitting the model of D would result in biased ML es-

timates given the missing data mechanism is nonignorable (see Section 4.5.1). Formally,

the latent variable ξ can be regarded as an estimable parameter of the vector ι. Similarly,

the latent response propensity can be considered to be part of the parameter vector φ 13.

In contrast, ξ and θ are treated as random variables in commonly used MML estimation

procedures. In the further derivations the person variables ξ and θ and parameter vectors

ι and φ are written separately to keep in line with commonly used notation for latent trait

13Considering individual values of the latent variables of each test taker as fixed and estimable model
parameter refers to the fixed effects approach that underlies JML and CML estimation.

174



models. Hence, Equation 4.71 can be written as

L(yobs, d; ι,φ) ∝
N∏

n=1

g(Yobs;n = yobs;n | ξ; ι)g(Dn = dn |Yobs;n = yobs;n, ξ, θ;φ) (4.72)

In contrast to most papers using MIRT models for missing data, here the latent response

propensity can be a p-dimensional latent variable θ = θ1, . . . , θp with Ωθ = R
p. In most

applications, θ is assumed to be unidimensional. In Section 4.5.3.4, it will be shown that

the correct dimensionality of the latent response propensity is of major importance and

needs to be carefully examined. Up to now, this issue has not been sufficiently addressed

in the literature. Existing MIRT models for nonigorable missing data rest upon the as-

sumption of local stochastic independence , similar to those of common IRT models. In

particular, these are:

Yi ⊥ (Y−i, D, θ) | ξ ∀i = 1, . . . , I (4.73)

Di ⊥ (D−i,Y) | (ξ, θ) ∀i = 1, . . . , I, (4.74)

The first assumption implies P(Yi = yi | ξ, θ; ι) = P(Yi = yi | ξ, ι). This assumption of

local stochastic independence is crucial, since it refers to the construction of ξ. Note that

the measurement model comprises not only test items Yi, but also response indicators Di.

The inclusion of the latter should correct for missingness in the estimation of model pa-

rameters ι but should not change the substantive meaning of item and person parameters.

Assumption 4.5.4 is necessary to ensure that ξ in the MIRT models for nonignorable miss-

ing data is constructed in same way as in the unidimensional IRT model if no missing data

exist. In conjunction with assumption 4.74, it follows that all manifest variables Di and Yi

are conditionally stochastically independent from each other given the latent variables in

the MIRT model. Based on these assumptions, Equation 4.72 can be written as

L(yobs, d; ι,φ) ∝
N∏

n=1

I∏

i=1

P(Yni = yni | ξ; ι)dni P(Dni = dni | ξ, θ;φ). (4.75)

Since ξ is a m-dimensional variable defined in Ωξ = R
m and θ is a P-dimensional variable

in Ωθ = R
p, the MML function of the observed data is given by

L(yobs, d; ι,φ) ∝
N∏

n=1

∫

Rm

∫

Rp

I∏

i=1

P(Yni = yni | ξ; ι)dni P(Dni = dni | ξ, θ;φ)g(ξ, θ),

(4.76)
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where the joint distribution g(ξ, θ) of the latent variables is typically chosen to be a mul-

tivariate normal. Note that the exponent dni selects the observed variables Yni that are

part of the observed data likelihood 14. Hence, only the observed item responses yni, in-

dicated by dni = 1, can be included in parameter estimation of the measurement model

of ξ. The likelihood functions 4.75 and 4.76 represent the general MIRT model for the

nonignorable model that was derived from the general SLM by the constrction of a la-

tent response propensity and certain assumptions given by Equations 4.5.4 and 4.74. As

O’Muircheartaigh and Moustaki (1999) demonstrated, the same MIRT model can alter-

natively be derived from the general PMMs based on the same assumptions.

Between- and within-item MIRT models for nonignorable missing data In the lit-

erature, different MIRT models for nonignorable item nonresponses have been developed

that can be broadly divided into between-item multidimensional IRT (BMIRT) models

and the within-item multidimensional IRT (WMIRT) models (Adams, Wilson, & Wang,

1997; Hartig & Höhler, 2008; Wang, Wilson, & Adams, 1997). Which of these mod-

els should be used in real applications? Here it is argued that both, BMIRT and WMIRT

models, account equally well for nonignorable missing data, but the interpretation of some

parameters differs between the two classes of models. Furthermore, it will be shown that

WMIRT models are not necessarily equivalent to BMIRT models. The issue of model

equivalence will be addressed in detail below. The general model equations of the man-

ifest variables Yi and Di in all MIRT models discussed in this work will be introduced

first. The multidimensional extension of the 2PLM for dichotomous items Yi is chosen as

the measurement model of both ξ and θ, which includes the multidimensional 1PLM as a

special case (e. g. Embretson & Reise, 2000; Reckase, 1997). The model equation of the

items Yi is given by

P(Yi = 1 | ξ; ι) = exp(αi
Tξ − βi)

1 + exp(αi
Tξ − βi)

. (4.77)

If ξ is a M-dimensional latent variable, then αi is a vector with M item discriminations15

αi1, . . . ,αim, . . . ,αiM. The model equation of the respective response indicators Di is

P(Di = 1 | θ, ξ;φ) =
exp(γi(ξ, θ)T − γi0)

1 + exp(γi(ξ, θ)T − γi0)
, (4.78)

14The model equations with respect to missing responses P(Yni = yni | ξ; ι)0 = 1 in the ML function do not
affect the observed data likelihood.

15In within-item MIRT models the item discriminations are actually partial logistic regression coefficients.
However, the term discrimination is conveniently retained here.
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with γi = γi1, . . . , γim, . . . , γiM, γi(M+1), . . . , γil, . . . , γi(M+P) as the vector of discrimination

parameters and the thresholds γi0. If the 1PLM is used, then the elements in αi and γi can

only take on the values zero and one. The choice between 1PLM or 2PLM needs to be

answered individually in a particular application, depending on theoretical considerations,

model fit, and potentially many other factors. For a clear distinction between the BMIRT

and different WMIRT models, a general model equation in matrix notation is introduced.

Let l(Y, D) = (l(Y1), . . . , l(YI), l(D1), . . . , l(DI)) be the vector of the logits in the MIRT

model and (ξ, θ) = (ξ1, . . . , ξP, θ1, . . . , θM) be the vector of latent variables. Λ is the 2I ×
(P + M) matrix of discrimination parameters, and (β, γ0) is the vector of item difficulties

and thresholds respectively. The multivariate logit model equation can be written as

l(Y, D) = Λ(ξ, θ)T − (β, γ0)T . (4.79)

Rewriting this Equation reveals that matrix Λ consists of four blocks:


l(Y)

l(D)

 =

α 0

γξ γθ



ξ

θ

 −

β

γ0

 . (4.80)

l(Y) = (l(Y1), . . . , l(YI))T and l(D) = (l(D1), . . . , l(DI))T are the vectors of the respective

logits. β = β1, . . . , βI and γ0 = γi0, . . . , γI0 are the vectors of the item difficulties or

threshold parameters of the variables Yi and Di. The matrix Λ consists of (a) α the I × M

matrix with the item discriminations αim; (b) the I×M matrix γξ consisting of the elements

γim which relates the components ξm to the response indicators Di; (c) the I × P matrix γθ

with the discrimination parameters γil that relate the latent dimensions θl and the response

indicators Di. In all MIRT models examined in this work, the upper right block inΛ needs

to be a I×P zero matrix. This is essential to ensure that ξ is constructed equivalently in all

MIRT models. Only in this case the meaning of ξ remain unchanged and the individual

values of ξ as well as item parameters (α and β) are comparable across alternative models.

This is important since the measurement model of ξ is the target model which needs to

be preserved as a part in a joint model of Y and D that accounts for missing data. Note

that the vector γi of discrimination parameters of item i in Equation 4.78 is the i-th row

of the submatrix γ = (γξ, γθ), which is simply the (M + i)-th row of Λ. In the following

sections, the different MIRT models will be derived step by step starting with the BMIRT

model for nonignorable missing responses. Afterwards, three equivalent WMIRT models

will be developed rationally.
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4.5.3.2 Between-item Multidimensional IRT Model for Nonignorable Missing Data

The terms between-item and within-item multidimensionality were introduced by Adams,

Wilson, and Wang (1997) and Wang, Wilson, and Adams (1997). Between-item dimen-

sionality is equivalent to simple structure in factor analytical terms. That is, each manifest

variable indicates only one single latent dimension. Within-item dimensionality allows

the items to be indicators of more than one latent dimension. Here in this work, the terms

between- and within-item dimensionality are also used but in a less restrictive way. In the

BMIRT model for nonignorable missing data, the assumption of conditional stochastic

independence given by Equation 4.74 is modified, so that

Di ⊥ (D−i,Y, ξ) | θ ∀i = 1, . . . , I. (4.81)

The second local stochastic assumption given by Equation 4.5.4 remains valid. From

both assumptions follows that D ⊥ ξ | θ and Y ⊥ θ | ξ, implying that matrix Λ of item

discriminations in Equation 4.80 is block diagonal, so that


l(Y)

l(D)

 =

α 0

0 γθ



ξ

θ

 −

β

γ0

 . (4.82)

Hence, γξ = 0. That is why this model is labeled between-item multidimensional. In

factor analytic terms; there are no cross factor loadings between ξ and the response indi-

cators Di due to conditional stochastic independence Di ⊥ ξ | θ. The model equation of

the response indicators given by Equation 4.78 can be simplified to

P(Di = 1 | θ;φ) =
exp(γi;θθ − γi0)

1 + exp(γi;θθ − γi0)
. (4.83)

It should be noted that within the measurement model of ξ the items Yi can indicate more

than one latent dimension ξm. Similarly, the response indicators Di can indicate more than

one latent dimension θl but none of the latent variables ξm. BMIRT models with such a

complex dimensionality will be discussed below in detail (see page 205). Figure 4.14

displays a fictional example of a BMIRT model with a simplex dimensionality. The latent

ability ξ = (ξ1, ξ2) and the latent response propensity θ = (θ1, θ2) are two-dimensional.

Each item Yi indicates only one latent dimension ξk, and each Di indicates only one di-

mension θl. This implies a strong simple structure in the terminology of factor analysis

(Thurstone, 1947). Note that the measurement model of θ needs not to mimic the mea-

surement model of ξ. Hence, the parameter matrices of the item discriminations αik and
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γil are not required to have the same structure or dimensionality. Even the number m of

dimensions of ξ and the number p of dimensions of θ are not required to be equal. The

number of latent response propensities underlying D may depend on several factors and

is not determined by the number of latent dimensions ξm as item positions, item types,

and so on. Here it is argued that the dimensionality of θ needs to be studied carefully. We

will return to this point in Section 4.5.3.4. The advantage the BMIRT models is the easy

Figure 4.14: Graphical representation of the BMIRT model.

interpretation of the latent variables and item parameters. All dimensions ξk are scaled

logits of the items Yi that indicate ξk. Similarly, all latent variables θl are scaled logits of

the respective response indicators Di, which indicate θl. Therefore, all θl can indeed be

interpreted as a latent response propensity in the sense that higher values of θl indicate a

higher tendency to response to items Di given γil > 0. The dimensions ξk are constructed

in the same way as in a model without missingness. The meaning of these variables is

unaffected. Higher values of ξk indicate higher probabilities to provide correct answers

to test items Yi if αik > 0. The ease of the interpretation of the latent variables facilitates

also the interpretation of the relationships between the latent dimensions. In commonly

used MIRT models estimated by MML estimation, the joint distribution g(ξ, θ) of the la-

tent variables is assumed to be multivariate normal with the expected value E(ξ, θ) and

the variance-covariance matrix Σξ,θ. In conjunction with the conditional stochastic in-
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dependencies of the manifest variables given by Equations 4.5.4 and 4.81, covariances

Cov(ξk, θl) , 0 imply unconditional stochastic dependence Y✚✚⊥ D. In turn, if the stochas-

tic dependencies between all latent dimensions ξk and θl are linear and the Cov(ξk, θl) = 0,

for all m = 1, . . . ,M and l = 1, . . . , P, then unconditional stochastic independence Y ⊥ D

is implied. In this case, the missing data mechanism is MCAR. In other words, if Σξ,θ is

block diagonal, so that

Σξ,θ =


Σξ 0

0 Σθ

 , (4.84)

then stochastic independence Y ⊥ D follows, indicating that the nonresponse mechanism

is MCAR.

This can also be shown by considering the likelihood function, which is generally given

by

L(yobs, d; ι,φ) ∝
N∏

n=1

I∏

i=1

P(Yni = yni | ξ; ι)dni P(Dni = dni | θ;φ). (4.85)

Using MML estimation, that is,

L(yobs, d; ι,φ) ∝
N∏

n=1

∫

Rm

∫

Rp

I∏

i=1

P(Yni = yni | ξ; ι)dni P(Dni = dni | θ;φ)g(ξ, θ),

(4.86)

which follows from of Equation 4.76 taking the assumption of conditional stochastic in-

dependence Di ⊥ ξ | θ into account. Given Σξ,θ is block diagonal since ξ ⊥ θ, Equation

4.85 becomes

L(yobs, d; ι,φ) ∝
N∏

n=1

∫

Rm

∫

Rp

I∏

i=1

P(Yni = yni | ξ; ι)dni P(Dni = dni | θ;φ)g(ξ)g(θ),

(4.87)

since g(ξ, θ) = g(ξ | θ)g(θ) = g(ξ)g(θ). This allows to write Equation 4.87 as

L(yobs, d; ι,φ) ∝
N∏

n=1

∫

Rm

I∏

i=1

P(Yni = yni | ξ; ι)dnig(ξ)
N∏

n=1

∫

Rp

I∏

i=1

P(Dni = dni | θ;φ)g(θ).

(4.88)
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Hence, the likelihood can be factorized into two independent pieces and D needs not to

be modeled jointly with Y (see Section 4.5.1). The missing data mechanism is ignorable.

The variance-covariance matrix Σξ,θ can be estimated using MML estimation. The

correlations between the latent dimensions ξm and θl allow to examine and to quantify

the strength of the dependencies between the occurrence of nonreponses and the latent

proficiency of interest. Hence, MIRT models for nonignorable missing data and especially

BMIRT models are of additional diagnostic value.

Application of the BMIRT model to Data Example A The BMIRT model was applied

to Data Example A. Two models were estimated with the BMIRT Rasch (1PL-BMIRT)

model using ConQuest (Wu et al., 1998) and the two-parameter BMIRT (2PL-BMIRT)

model using Mplus 6 (Muthén & Muthén, 1998 - 2010). Data Example A was generated

under the validity of the Rasch model. Hence, the choice of the 1PL-BMIRT model is

adequate. In this case, all discrimination parameters in α and γθ are fixed to zero or one. In

Data Example A, ξ and θ were unidimensional each, implying that α, γθ andΛ are identity

matrices. ConQuest allows for estimation of ML, WML, and EAP person parameter

estimates. Unfortunately, Mplus 6 allows only for EAP-person parameter estimation.

The primary goal of applying the 2PL-BMIRT model to Data Example A is to study the

affect of the model choice to item discrimination estimates compared to the model that

ignores missing data. Generally, all item and person parameter estimates of the 1PL- and

2PL-BMIRT models were compared with the true values, the estimates obtained from

the complete data using the undimensional IRT model of ξ based on Y, and the estimates

obtained from incomplete data using the undimensional IRT model of ξ based on Y, which

ignores missing responses.

At first, the estimated item difficulties are considered. The left graph of Figure 4.15

shows the estimated item difficulties obtained by the BMIRT Rasch model compared

to the true parameters respectively. Additionally, Table 4.9 gives the β̂i from different

models, including those of the BMIRT Rasch model. The mean bias of the 30 difficulty

estimates was 0.035. This is not significantly different from zero (t = 1.564, df = 29, p =

0.129). Recall that the mean bias of the estimated item difficulties in the unidimensional

IRT model that ignores missing data was significantly negative (Bias = −0.076, t =

−2.868, df = 29, p = 0.008). The bias reduction is also reflected by the MSE which

is 0.016 in the BMIRT Rasch model instead of 0.026 when missing data were ignored.

The slope of the regression of the estimates β̂i on the true values βiwas not significantly

different from one (Slope = 0.981, SE = 0.017 t = −1.130, p = 0.461). Hence, the
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remaining bias in the BMIRT Rasch model is unsystematic with respect to the estimands

βi although the item difficulties are strongly correlated with the the probability of item

nonresponse (P(Di = 0)). In contrast in the unidimensional model ignoring missing data

a systematic bias was found indicated by a slope significantly different from one (Slope

= 0.938, SE = 0.017 t = −3.700, p = 0.002). The reason is that more difficult items were

more likely answered by, on average, more proficient persons feigning easier items (see

Section 3.2.2). The 1PL-BMIRT model corrects for the systematic missing responses of

difficult items by less proficient persons.
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Figure 4.15: Comparison of true and estimated item difficulties of the BMIRT Rasch model (left) and
the WDi f MIRT Rasch model (right) for nonignorable missing data (Data Example A). The
grey dotted line is the bisectric. The blue line is the regression line.

Using Mplus 6, the item discrimination parameters were freely estimated in the 2PL-

BMIRT model. Data Example A was generated using the Rasch model for the items Yi

and the response indicators Di. However, in real applications a researcher does not know

the true data generating model and might favor the 2PLM. Furthermore, here the esti-

mates α̂i were compared between the 2PL-BMIRT model and the unidimensional model

that ignores missing data. For identification of the 2PL-BMIRT, the latent distributions

were fixed to E(ξ) = E(θ) = 0 and Var(ξ) = Var(θ) = 1. All parameters αi and γi;θ were

freely estimated. Figure 4.16 shows the discrimination estimates of the 30 items of Data

Example A obtained with the 2PL-BMIRT model (left). Compared with the discrimi-
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Table 4.9: True Parameters βi and Estimates β̂i and γ̂i0 for Different Models: the Unidimensional
IRT Model With Complete Data and With Incomplete Data, the BMIRT Rasch, and the
WDi f MIRT Rasch Model.

True Complete missing BMIRT Rasch WDi f MIRT Rasch
Item βi β̂i β̂i β̂i γ̂i0 β̂i γ̂i0

1 -2.300 -2.258 -2.209 -2.187 -2.520 -2.187 -2.520
2 -2.150 -2.238 -2.262 -2.242 -2.411 -2.242 -2.411
3 -2.000 -1.952 -1.964 -1.930 -1.997 -1.930 -1.997
4 -1.850 -1.756 -1.770 -1.726 -1.840 -1.726 -1.840
5 -1.700 -1.693 -1.728 -1.667 -0.918 -1.666 -0.918
6 -1.550 -1.520 -1.574 -1.517 -1.508 -1.517 -1.508
7 -1.400 -1.349 -1.441 -1.365 -1.092 -1.365 -1.092
8 -1.250 -1.274 -1.327 -1.273 -1.367 -1.273 -1.367
9 -1.100 -1.024 -1.081 -1.031 -1.445 -1.031 -1.445
10 -0.950 -0.951 -0.981 -0.921 -1.373 -0.921 -1.373
11 -0.800 -0.836 -0.922 -0.827 -0.579 -0.827 -0.579
12 -0.650 -0.486 -0.529 -0.456 -1.077 -0.456 -1.077
13 -0.500 -0.511 -0.595 -0.529 -1.121 -0.529 -1.121
14 -0.350 -0.285 -0.376 -0.271 -0.509 -0.271 -0.509
15 -0.200 -0.072 -0.163 -0.101 -1.448 -0.101 -1.448
16 -0.050 -0.043 -0.058 0.028 -0.775 0.028 -0.775
17 0.100 0.100 -0.039 0.100 0.521 0.100 0.521
18 0.250 0.309 0.105 0.213 -0.100 0.212 -0.100
19 0.400 0.428 0.279 0.437 0.914 0.437 0.914
20 0.550 0.608 0.523 0.681 0.952 0.681 0.952
21 0.700 0.818 0.625 0.777 0.909 0.777 0.909
22 0.850 0.980 0.886 1.052 1.223 1.052 1.223
23 1.000 1.123 1.065 1.254 2.071 1.254 2.071
24 1.150 1.174 0.937 1.119 1.455 1.119 1.455
25 1.300 1.450 1.232 1.408 1.570 1.408 1.570
26 1.450 1.520 1.289 1.456 0.975 1.456 0.975
27 1.600 1.514 1.262 1.445 2.001 1.445 2.001
28 1.750 1.840 1.786 1.971 1.751 1.971 1.751
29 2.000 1.958 1.519 1.709 2.080 1.709 2.080
30 2.150 2.183 1.694 1.898 2.117 1.898 2.117

Mean Bias - 0.043∗∗ −0.076∗∗ 0.035 - 0.035 -
MSE - 0.006 0.026 0.016 - 0.016 -

Note: * significant at 0.05 level (2-tailed); ** significant at 0.01 level (2-tailed).
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nation estimates of the unidimensional 2PL model that ignores missing data, only small

differences were found. The mean bias of α̂i obtained from the BMIRT model was 0.014,

which is not significantly different from zero (t = 0.636, df = 9, p = 0.530). Recall that

in the unidimensional model that ignores missingness the bias was also not different from

zero (Bias = -0.019, t = −0.888, df = 9, p = 0.382). Similarly, the mean squared errors

of the discrimination estimates of the two models were very close. In both models, the

2PL-BMIRT and the unidimensional model ignoring missing data, the MSE was about

0.014. Additionally, a correlation of r = 0.937 between the discrimination estimates of

the unidimensional model that ignores missing data and the 2PL-BMIRT highlight the

agreement of the results. In line with the findings of Rose et al. (2010), the item discrim-

ination parameters turned out to be less affected by nonignorable missing data as well as

choice of model to account for missing data. Hence, the application of the 2PL-BMIRT

model hardly changed discrimination estimates.
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Figure 4.16: Item discrimination estimates of the 2PL-BMIRT model (left) and the
2PL-WDi f MIRT model (right) for nonignorable missing data (Data Example A).
The grey dotted line indicates the true value αi = 1 and the blue line indicates the mean
¯̂αi.

Finally, the person parameter estimates were considered, starting with the ML and

WML person parameter estimates. Table 4.10 shows some summary statistics of the

ML-, WML-, and EAP-estimates obtained by the 1PLM-MIRT Rasch model. Due to
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identification of the model, the mean is approximately zero. The variances of the ML-

and WML-estimates are close to those of the unidimensional IRT model that ignores

missing data (see Table 3.3). As Figures 4.17 and 4.18 confirm, ML and WML estimates

of the BMIRT Rasch model and the unidimensional model ignoring missingness are al-

most identical. Accordingly, the correlations r(ξ, ξ̂ML) = 0.819 and r(ξ, ξ̂WML) = 0.830

in the BMIRT Rasch model are similar to r(ξ, ξ̂WML) = 0.816 and r(ξ, ξ̂WML) = 0.827 in

the unidimensional model that ignores missing responses. Recall that in Section 3.1.3 it

was demonstrated that the bias of ML- and WML-estimates depends strongly on the bias

of the item parameter estimates especially the item difficulties. In Data Example A, the

estimates β̂i were only slightly biased when missing data were ignored. In conjunction

with previous results of the simulation study presented in Chapter 3, the findings indicate

that ML- and WML-estimates of the unidimensional model that ignores missingness and

the BMIRT model for nonignorable missing data differs only when the item parameter

estimates will be reasonably different. This implies that the accuracy of ML- and WML-

Table 4.10: Summary Information of ML-, WLM-, and EAP Person Parameter Estimates for the
BMIRT Rasch Model for Nonignorable Missing Data (Data Example A).

Estimator Mean Variance r(ξ, ξ̂) Rel(ξ̂) MSE r(bias, ξ)

ML 0.052 1.610 0.819 0.673 0.540 0.052
WML -0.001 1.401 0.830 0.650 0.438 -0.029
EAP -0.001 0.759 0.883 0.771 0.222 -0.493

person parameter estimates cannot be increased by the BMIRT Rasch model. In fact, in

Data Example A, the standard errors of the ML- and WML estimates of the BMIRT and

the unidimensional model correlates approximately to one as well. In line with these find-

ings, the marginal reliabilities Rel(ξ̂ML) = 0.673 and Rel(ξ̂WML) = 0.650 under the BMIRT

Rasch model are close to Rel(ξ̂ML) = 0.666 and Rel(ξ̂WML) = 0.641 obtained by the uni-

dimensional model that ignores missing data. The mean squared errors confirm that the

bias reduction of the ML- and WML-person parameters was negligible in Data Example

A. The reason is that information given by the individual missing pattern Dn = dn or the

latent correlation Cor(ξ, θ) is not taken into account in ML and WML person parameter

estimation. This is an important difference to Bayesian persson parameter estimation.

EAP-person parameter estimates are Bayesian estimates that have different proper-

ties than ML and WML person parameter estimates. As Figure 4.19 shows, the EAPs

obtained under the unidimensional model ignoring missing data and the BMIRT Rasch

model are different. Although still high, the correlation of the EAPs of both models is
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Figure 4.17: True values of ξ and ML person parameter estimates obtained by different IRT models
(Data Example A). The red lines represent the bisectric. The blue lines are smoothing
spline regressions.
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Figure 4.18: True values of ξ and Warm’s weighted ML person parameter estimates obtained by dif-
ferent IRT models (Data Example A). The red lines represent the bisectric. The blue lines
are smoothing spline regressions.
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substantially lower than one (r(ξ, ξ̂EAP) = 0.934). The variances of the EAPs obtained

from these two models differ as well. The variance is Var(ξ̂EAP) = 0.759 in the BMIRT

Rasch model, compared to Var(ξ̂EAP) = 0.632 in the unidimensional model that ignores

missing responses. Recall that the variance was Var(ξ̂EAP) = 0.859 when the complete

data were used in the unidimensional model (cf. Table 3.3). Generally, the less informa-

tion is available, the stronger the impact of the prior distribution on parameter estimation

is, and, therefore, the stronger the shrinkage toward E(ξ) is. Missing data means a loss

of observed information with respect to the estimand ξ resulting in a substantial variance

reduction compared to the complete data model. The BMIRT Rasch model as well as

the 2PL-BMIRT model reduce the shrinkage of EAPs using the information of D with

respect to ξ. As a result, the correlation between the latent variable ξ and the bias of

the EAP-estimates reduces. In the BMIRT Rasch model it was r(ξ, BiasEAP) = −0.493,

compared to r(ξ, BiasEAP) = −0.608 in the unidimensional model ignoring missing data.

Finally, Table 4.10 reveals that the MSE of the EAP drops from MS E(ξ̂EAP) = 0.327

when the missing data were ignored to MS E(ξ̂EAP) = 0.222 in the BMIRT Rasch model.

The accuracy of the EAPs was reasonably improved in the BMIRT Rasch model.

How does EAP person parameter estimation use the information about the latent abil-

ity of interest that is given by missingness? For the estimation of individual values of

a single latent dimension in a multidimensional latent trait model, ML and WML esti-

mators use only the information from that manifest variables Yi that directly indicate the

measurement model of this latent dimension. Latent covariances as well as information

of covariates in the background model are not used for person parameter estimation. In

the case missing data, that means that only the observed response vector Yn;obs = yn;obs is

used for estimation of individual values of ξ of each case n. In contrast, EAP estimation of

person parameters accounts for the latent covariances Cov(ξm, θl) by the prior distribution

g(ξ, θ) that is involved in the estimation procedure. Furthermore, all information given by

the observed data (Yn;obs, Dn) = (yn;obs, dn) is exploited for estimation of persons’ latent

ability ξ. The gain of information due to manifest variables that are not direct indicators

of a latent dimension increases, the higher the correlations between the latent variables

are. For that reason, EAP and MAP estimates are typically preferred in multidimensional

adaptive testings with correlated latent abilities (Segall, 1996, 2000; Frey & Seitz, 2009).

For deeper understanding, the estimation equation of ξ̂EAP is considered. In Data Example
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A, ξ and θ are each unidimensional. In this case, the EAP of the latent ability is given by

ξ̂EAP =

∫
R
ξ ·

∫
R

g(Yobs = yobs | ξ; ι)g(D = d | θ;φ)g(ξ, θ)dξdθ
∫
R

∫
R

g(Yobs = yobs | ξ; ι)g(D = d | θ;φ)g(ξ, θ)dξdθ
. (4.89)

The joint distribution of the latent variables in the nominator of Equation 4.89 can be

factorized, so that g(ξ, θ) = g(ξ | θ)g(θ). Hence, different values of ξ are more or less likely,

given the values of θ. In most applications, a bivariate normal distribution is assumed

for g(ξ, θ), which is sufficiently described by the vector of expected values - here E(ξ)

and E(θ) - and the covariance matrix Σξ,θ. If ξ and θ are linearly regressively dependent

,then the conditional distribution g(ξ | θ) in the normal model can be characterized by a

linear regression E(ξ | θ) and a normally distributed residual εξ = ξ − E(ξ | θ). In terms

of probability, the more a value of ξ deviate from the expected values E(ξ | θ = θ), the

less likely this value and more extreme values are. In fact, if θ would be known, then the

ability estimates would not shrink toward the mean E(ξ) but to the individual conditional

expected values E(ξ | θ = θ)16. Nevertheless, the shrinkage effect due to item nonresponses

can be considerably reduced if ξ and θ are reasonably correlated and if θ can be reliably

estimated based on D. This was also found in Data Example A. Table 4.10 shows that

the variance of the EAPs is Var(ξ̂EAP) = 0.759. In the unidimensional model that ignores

missing data, the variance was Var(ξ̂EAP) = 0.632 (see Table 3.3). The increas in the

variance of the EAPs marks the reduced shrinkage effect and, therefore, an increased

reliability Rel(ξ̂EAP) = 0.771. As Figure 4.19 illustrates, the EAPs of the unidimensional

model that ignores missing data and the BMIRT Rasch model are different. A careful

inspection reveals that the EAP estimates are especially downward corrected in cases with

below-average proficiency levels where the proportions of missing data were on average

higher.

These findings can be generalized to cases with m-dimensional latent abilities ξ and

P-dimensional latent propensities θ. With MML estimation, a multivariate normal distri-

bution g(ξ, θ) is assumed inmost applications. The covariance matrix Σξ,θ describes the

mutual linear relations between all latent variables ξm and θl. In this case, information

from all other latent dimensions θl and ξk,m is taken into account for EAP estimation of a

16In application θ is typically unknown as well and the estimates θ̂EAP shrink in turn to E(θ | ξ = ξ). As a
consequence, there is a shrinkage of (ξ̂EAP, θ̂EAP) toward the vector of expected values E(ξ) and E(θ).
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Figure 4.19: True values of ξ and EAP person parameter estimates obtained by different IRT models
(Data Example A). The red lines represent the bisectric. The blue lines are smoothing
spline regressions.
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single dimension ξm. Equation 4.89 can be generalized to

ξ̂m;EAP =

∫
R
ξm ·

∫
Rm−1

∫
Rp P(Yobs = yobs | ξ)P(D = d | θ)g(ξ, θ)dξdθ

∫
Rm

∫
Rp P(Yobs = yobs | ξ)P(D = d | θ)g(ξ, θ)dξdθ

. (4.90)

This implies that not only information of missingness is used, but also information from

all other ability dimensions ξk that are correlated with ξm. Furthermore, manifest covari-

ates Z = Z1, . . . ,ZJ that are predictive with respect to the latent dimensions ξm or which

are informative with respect to missingness can also be included in a latent regression

model with E(ξ | Z) and E(θ | Z). In this case, the prior distribution used for EAP estima-

tion in Equation 4.90 is replaced by the conditional distribution g(ξ, θ | Z). Informative

covariates are useful twofold: (a) They reduce the shrinkage effect, and (b) they can im-

prove parameter estimation (Mislevy, 1987, 1988).

In summary, the BMIRT model was derived as an example of MIRT models for non-

igorable missing responses. Applied to Data Example A, the systematic bias of item

difficulties caused by nonignorable missing responses was removed. Item discrimination

estimates were found to be unbiased when missing responses are ignored. Hence, with

the 2PL-BMIRT model, similar discrimination estimates were obtained. The three differ-

ent person parameter estimates - ML, WML, and EAP - showed considerable differences.

ML and WML estimation of latent dimensions ξm depends only on item parameter esti-

mates and item responses to those items Yi that directly indicate ξm. Neither responses to

other indicators Y j not indicating ξm, nor correlations of latent dimensions Cor(ξm, θl), nor

informative background variables Z have any affect on ML and WML estimation. All cor-

rections of these estimates in the BMIRT model is a result of corrected item parameters in

the measurement model of ξ. In light of these findings, Bayesian estimates such as EAPs

may be superior to ML and Warm’s weighted ML person parameter estimates, since ad-

ditional diagnostic information is utilized for ability estimation17. Most importantly, EAP

estimation includes prior information given by the distribution g(ξ, θ) of the latent ability

and the latent response propensity. The latter is indicated by the missing indicator vector

D. In this way, the information of missingness is used for person parameter estimation. In

conjunction with the results of the simulation study in Chapter 3, it can be concluded that

ML and WML person parameter estimates obtained by the MIRT model for nonignorable

missing data only differ compared to that of the model that ignores missing data when the

17The same is true for Maximum A Posteriori (MAP) estimates. MAPs were not examined here. However,
EAPs and MAPs rest upon the same individual posterior distributions and have, therefore, very similar
properties.
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item parameters in the measurement model of Y differ. This implies that ML and WML

estimators of ξ do not make use of additional information provided by the missing pattern

D. Bayesian estimators such as the EAP uses this information by integrating over the

joint distribution g(ξ, θ) of the latent variables.

4.5.3.3 Within-item Multidimensional IRT Models for Nonignorable Missing Data

Within item dimensional models have become popular for scaling tests consisting of items

that require more than one latent ability to provide a correct response (e. g. Ackerman,

1994; Ackerman, Gierl, & Walker, 2003; Hartig & Höhler, 2009; Reckase, 1985; Wang et

al., 1997). Hence, in these models, stochastic dependencies of single items on more than

one latent variable can be modeled appropriately. Especially in cognitive psychology, the

process of solving an item may depend on several skills. Furthermore, IRT models for

within-item multidimensional items are useful for applications to repeated measurements.

Items repeatedly presented to test takers can be assumed to be stochastically dependent on:

(a) the initial ability level at the first measurement occasion and (b) the change in the la-

tent ability that potentially has taken place between the first and subsequent measurement

occasions. Hence, latent change IRT models can also be regarded as within-item multidi-

mensional IRT models (Embretson, 1991; Meiser, 2007; von Davier, Xu, & Carstensen,

2011). There might be many other applications where it is theoretically required to model

stochastic dependencies of an item with more than one latent dimension.

Within-item multidimensional MIRT models have also been proposed as alternative

models for BMIRT models for nonignorable missing responses (Holman & Glas, 2005;

Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). Typi-

cally, BMIRT and WMIRT models for missing responses are considered to be equivalent.

Indeed, for the case of the Rasch model, Rose et al. (2010) demonstrated that both models

- the 1PL-BMIRT and the 1PL-WMIRT model - are equal in terms of model fit and with

respect to the model parameters ι. Hence, the item difficulties βi are equal and the person

variable ξ is equivalently constructed in both models. However, the item parameters re-

ferring to the measurement model based on D as well as the meaning of the latent variable

θ changes fundamentally. In general, the interpretability of item and person parameters

in WMIRT models can become challenging. Recall that latent variables are constructed

in a measurement model. Accordingly, the meaning and the interpretation of parameters

depends strongly on the model specification. Hitherto, barely much attention was paid

to this fact. This is all the more remarkable as several competing WMIRT models for

nonignorable missing data can be derived. Can all theses model be used interchangeably?
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Are all of these models equally suited to account for missing responses? To answer these

questions, the different 1PL- and 2PL-WMIRT models will be derived step by step. It

will be shown that the applicability of a particular WMIRT model introduced below de-

pends a priori on the decision for either the 1PL- or the 2PL-MIRT model. Note that the

decision for using the Rasch model or the Birnbaum model is often made in the run-up of

educational and psychological testings. This decision may limit the range of applicable

WMIRT models for item nonresponses. For that reason, the different WMIRT models

will be derived separately for the 1PLM and the 2PLM. The issue of model equivalence

is explicitly taken into account in the derivations of the different WMIRT models.

Model equivalence in MIRT models for nonignorable missing data The issue of

model equivalence was repeatedly addressed in SEM (e. g. Raykov & Penev, 1999;

Raykov & Marcoulides, 2001). Typically, measurement models are considered to be

equivalent if they have the same model fit and, therefore, the same statistical fit indexes

(Raykov & Marcoulides, 2001). However, as Raykov and Marcoulides emphasized, the

substantial meaning of two equivalent models can be very different. Considering that

MIRT models for item nonresponses should correct for missing responses without altering

the meaning of the latent ability variable ξ and the model parameters ι, the term model

equivalence is used here in a stricter sense. Let there be two models: Model A and Model

B. Both can be equivalent with respect to three criteria:

1. The latent ability variables in Models A and B are constructed in exactly the same

way as in the target model, which is the measurement model of ξ based on Y.

2. The bias of item and person parameters due to missing responses is equally reduced

in both models.

3. Both models fit given empirical data equally well.

The first criterion is essential. If ξ is not identically constructed, then the models do not

simply correct for item nonresponses but consist of parameters with a different meaning.

If Model A, Model B, or both are not equivalent to the target model they cannot be used

to correct for item nonresponses. Even if A and B are equivalent in the construction of

ξ, they may differ regarding the reduction of the missing-induced bias. In this case the

two models are not equivalent in terms of bias adjustment, indicating that one model is

superior to the other model and should be preferred in application. The third criterion,

the equivalence of model fit, is the least important criterion, which can be used for model
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diagnosis. Many different measures have been proposed to quantify the fit of models

to observed data. Such fit indices typically rest upon two pieces of information: (a)

the discrepancy between observed data and expected data (residuals) given the sample

estimates, and (b) model complexity. Hence, if A and B are not equivalent in terms of

model fit, this indicates that one of the models is superior to the other model in terms of

lower residuals and/or parsimony. However, if all three criterions are fullfilled, Models A

and B can be used interchangeably. Both imply the same joint distribution g(Y, D; ι,φ)

with ι equal in both models. However, φ can be different.

In the following, it will be demonstrated that at least two WMIRT models can be de-

rived that are equivalent to the BMIRT model introduced above. In the first model, de-

noted by WDi f MIRT, a potentially mulidimensional latent difference variable θ∗ is defined.

In the second model, the WResMIRT model, θ̃ is constructed as a latent residual. In both

approaches, the construction of ξ is unchanged and the parameter vector ι remains un-

affected. Hence, the target measurement model is preserved in the joint model based on

(Y, D). It will be studied whether the bias due to nonignorable missing data is equally

reduced by the different models. Furthermore, the applicability of the alternative models

will be examined. At first, the WMIRT Rasch (1PL-WMIRT) models are derived and ap-

plied to Data Example A. The 2PL-WMIRT models will be developed and demonstrated

afterwards.

Within item multidimensional Rasch model The WMIRT Rasch model requires that

the conditional independence assumptions given by Equations 4.5.4 and 4.74 hold. Es-

pecially, the conditional stochastic independence Yi ⊥ (Y−i, D) | ξ is essential to en-

sure equivalence in the construction of the latent variable ξ. The second assumption

Di ⊥ (D−i,Y) | (ξ, θ) allows the response indicators Di not only to be stochastically de-

pendent on ξ. Accordingly, the general model equation of the logits (see Equation 4.80)

allows the discrimination parameters γξ to be different from zero. In that case, the re-

sponse indicators are conditionally stochastically dependent on ξ given θ∗18. This is the

distinctive characteristic of all WMIRT models described here. Recall that in BMIRT

models D ⊥ ξ | θ follows from Equation 4.81. Note that the latent variables θ∗ or θ̃ in the

WMIRT models are marked by the symbols ∗ or ∼. Similarly, some model parameters,

such as γ∗ξ or γ̃∗ξ, are flagged with these symbols. This notation is used to highlight that

alternative WMIRT models are specified differently, which result in a different construc-

tion of latent variables. Whereas the latent variable ξ is constructed equivalently in all

18Strictly speaking, D✚⊥ ξ | θ∗ is implied if γξ , 0 and γθ , 0
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MIRT models, θ can only be interpreted as a latent response propensity in BMIRT mod-

els. Hence, in within-item mulidimensional IRT models for nonignorale missing data,

conditional stochastic dependency D✚✚⊥ ξ | θ∗ or D✚✚⊥ ξ | θ̃ is modeled, with θ∗ and θ̃ as latent

variables different from θ of the BMIRT model. Rose et al. (2010) derived the WMIRT

Rasch model rationally starting form the BMIRT Rasch model for the case of unidimen-

sional variables ξ and θ. They demonstrated that in an equivalent WMIRT model, θ∗ is

constructed as a latent difference variable θ − ξ. Accordingly, this model is denoted as

WDi f MIRT Rasch model or the 1PL-WDi f model. The derivations of that model given by

Rose et al. are briefly described here. Subsequently, the model will be generalized to the

case of m-dimensional latent abilities ξ and p-dimensional latent variables θ∗.

In the 1PL-WDi f MIRT model with unidimensional variables ξ and θ, the logits l(Yi) and

l(Di) of the items Yi and the response indicators Di are

l(Yi) = ξ − βi (4.91)

l(Di) = θ − γi0 (4.92)

Solving for the latent variables gives simply

ξ = l(Yi) + βi (4.93)

θ = l(Di) + γi0. (4.94)

Hence, the latent variables are the logits plus a constant given by the item difficulty or

the threshold of the manifest variables Yi and Di. Due to model equivalence with respect

to the construction of the latent ability ξ, Equations 4.91 and 4.93 applies also to the

WDi f MIRT model. The model equations of the logits l(Di), however, differ between the

1PL-BMIRT and 1PL-WDi f MIRT model. In the latter, that is,

l(Di) = θ
∗ + ξ − γi0. (4.95)

It is important to note that the logits l(Di) the 1PL-BMIRT and the 1PL-WDi f MIRT model

are equal. The person’s log-odd to respond to an item i does not change by the choice of

the model. Due to this equality, the right hand side of Equation 4.92 from the 1PL-BMIRT

model can be inserted into Equation 4.95 yielding

θ − γi0 = θ
∗ + ξ − γi0. (4.96)
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Solving for θ∗ and rearranging gives

θ∗ = θ − ξ − γi0 + γi0 (4.97)

= θ − ξ.

θ∗ is not a latent response propensity but a function f (ξ, θ) of the latent response propen-

sity and the latent ability. More specifically, θ∗ is constructed as a latent difference vari-

able. Inserting Equations 4.93 and 4.94 into Equation 4.97 gives

θ∗ = l(Di) + γi0 − (l(Yi) + βi) (4.98)

= l(Di) − l(Yi) + γi0 − βi. (4.99)

Thus, in the two-dimensional WDi f MIRT Rasch model, θ∗ is a latent difference variable

of the logits l(Di) and l(Yi) plus the constant γi0 − βi. The interpretation of some parame-

ters in the model is more difficult compared to the 1PL-BMIRT model. If the correlation

Cor(ξ, θ) is positive, then the correlation Cor(ξ, θ∗) in the 1PL-WDi f MIRT model is usu-

ally negative. Information about the strength of the relationship between the tendency to

respond to the test items and the latent ability is not directly given in the WDi f MIRT Rasch

model.

Application of the 1PL-WDi f MIRT model to Data Example A The BMIRT Rasch

model was identified by the restriction E(ξ) = E(θ) = 0, while all parameters βi and γi0

were freely estimated. Similarly, the WDi f MIRT Rasch model was identified by E(ξ) =

E(θ∗) = 0. ConQuest (Wu et al., 1998) was used for parameter estimation. A comparison

of the parameter estimates of the 1PL-BMIRT and the 1PL-WDi f MIRT model shows that

item and person parameter estimates of both models are practically the same. The item

difficulties βi and the respective estimates are given in Table 4.9. Furthermore, Figure

4.15 illustrates the approximate equality of the estimates β̂i. Accordingly, the MSE =

0.016 of the difficulty estimates in the 1PL-WDi f MIRT model was the same as in the 1PL-

BMIRT. Similarly, ML, WML, and EAP person parameter estimates were nearly identical

between the BMIRT and the WDi f MIRT Rasch model. This can be seen in Figures 4.17

- 4.19. Small but negligible differences between estimates of the two models were only

found in WML estimates. For that reason, a detailed description of the results is not

repeated here. From the results, it is concluded that the reduction of the missing-induced

bias in the 1PL-WDi f model is the same as in the BMIRT Rasch model. The value of the

log-likelihood of the 1PL-WDi f model and the BMIRT Rasch was -46535.706. Since the
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number of parameters was also equal (npar = 63), the BIC of both models was identical

as well (BIC = 93550.267; see Table 4.11). The results confirm that the two models are

equivalent with respect to three criteria introduced previously: (1) the construction of ξ,

(2) the adjustment for nonignorable missing responses, and (3) the model fit.

Extending the 1PL-WDi f MIRT model to multidimensional variables ξ and θ Com-

pared to the BMIRT Rasch model, not only the interpretability of some model parameters

model parameters but also the model specification becomes increasingly challenging if

the number of latent dimensions rises. This problem is exemplified here using the model

that is graphically represented in Figure 4.14. If all non-zero item discriminations in this

model are αim = γil = 1, then a four-dimensional 1PL-BMIRT model results. The specifi-

cation of an equivalent WDi f MIRT model is intricate in this example. One problem is that

the factorial structure of θ underlying D does not mirror the factorial structure of ξ un-

derlying Y. It might be intuitive that the response indicators of those items that constitute

a distinct latent dimension ξm establish a distinct latent response propensity dimension θl

as well. However, this is an assumption that does not need to hold in application. There

might be other characteristics of the item which also determine the probability of a re-

sponse, such as the response format. As Rose et al. (2010) found, items with open or

constructed responses are generally more likely omitted than multiple choice items. If

such item characteristics, which are independent of the item content, interact with person

characteristics, then a complex multidimensional structure of θ can result, which is poten-

tially quite different from that of ξ. Here it is argued that such a situation is very likely in

real applications. Therefore, the BMIRT and WMIRT models will be generalized to cases

with a multidimensional latent variable ξ and θ. Hence, the crucial question is: How does

one specify an equivalent WDi f MIRT model for non-ignorable missing data in general?

Again, the term equivalent refers to three aspects: (1) ξ is constructed as in the complete

data target model of Y, (2) the adjustments of the item and person parameter estimates

for missing responses is identical, and (3) the goodness-of-fit is equivalent. For the case

of the 1PL-BMIRT and the 1PL-WDi f MIRT models, this was easy to show when θ and ξ

were each unidimensional. However, the idea of constructing θ∗ as a difference ξ − θ (see

Equation 4.97) needs to be adapted to cases with multidimensional latent variables ξ and

θ. The idea presented here is to define a p-dimensional variable θ∗ = θ∗1, . . . , θ
∗
P with each

dimension defined as the difference

θ∗l = θl −
M∑

m=1

ξm. (4.100)
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θl refers to the l-th dimension of θ as defined in the equivalent BMIRT Rasch model. It

was shown that θl = l(Di) + γi0. Inserting this expression in Equation 4.100 gives

θ∗l = l(Di) + γi0 −
M∑

m=1

ξm. (4.101)

Thus, θ∗
l

is a difference of the logit l(Di) and the sum of the latent ability dimensions

ξm. In order to obtain the specification rules of the general 1PL-WDi f MIRT model for

multidimensional latent variables, Equation 4.100 needs to be solved for l(Di), yielding

l(Di) = θ
∗
l +

M∑

m=1

ξm − γi0. (4.102)

In general, the logit of a within-item dimensional item in the 1PLM is the weighted sum

of the latent variables. The weights are the item discriminations that can only be zero or

one in this model. Hence, they serve as indicator variables determining whether or not

a particular item is conditionally stochastically dependent on a certain latent dimension.

Accordingly, the logit l(Di) of each response indicator is modeled as the weighted sum

of all M latent dimensions ξm and the latent difference variable θ∗
l
. The resulting model

equation for the response indicators Di is

P(Di = 1 | ξ, θ∗l ) =
exp(θ∗

l
+

∑M
m=1 ξm − γi0)

1 + exp(θ∗
l
+

∑M
m=1 ξm − γi0)

. (4.103)

Since the construction of ξ needs to be unaffected by the choice of a particular model,

the model equations for the items Yi remain the same as in the complete data model of

Y as well as the BMIRT and the WDi f MIRT Rasch model for nonignorable missing data

(Equation 4.77). Finally, the model equation of the complete vector of logits l(Y, D) can

be written as


l(Y)

l(D)

 =

α 0

1 γθ



ξ

θ

 −

β

γ0

 . (4.104)

Hence, all elements of the (I × M)-dimensional sub-matrix γ∗
ξ

of Λ (cf. Equation 4.80)

are γ∗im = 1. The asterisk „∗“ is used to differentiate the parameters of the WDi f MIRT

model from that of the BMIRT model. In other words γξ = 0 designates the BMIRT

Rasch model and γ∗
ξ
= 1 the 1PL-WDi f MIRT model. The sub-matrices α and γθ are equal

in both models and do not need to be distinguished.
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Returning to the hypothetical example presented in Figure 4.14, the 1PL-WDi f MIRT

Rasch model, which is equivalent to a 1PL-BMIRT Rasch model, is graphically depicted

in Figure 4.20. Except for the latent covariances, all drawn paths are fixed to be one. In

both the BMIRT and the WDi f MIRT Rasch model, the elements of Λ are not estimable

parameters but are fixed to zero or one in advance. Note that this model is generally

Figure 4.20: Graphical representation of the WDi f MIRT Rasch model. All discrimination parameters
represented by single-headed arrows are fixed to one.

applicable if the response indicators Di in the equivalent BMIRT Rasch model indicate

only a single latent dimension θl. The model specification becomes more difficult if the

variables Di are indicators of more than one latent response propensity θl. Such cases with

a complex dimensionality will be examined below (see page 205).

The alternative Rasch-equivalent WResMIRT model for uni- and multidimensional

variables ξ and θ Note that all latent dimensions in the 1PL-WDi f MIRT model are al-

lowed to be correlated. Otherwise, inappropriate restrictions are introduced in the model,

since difference variables do typically correlate with the subtrahend and the minuend.

Some authors proposed an alternative WMIRT model with the correlation Cor(ξ, θ̃) = 0

(e. g. Holman & Glas, 2005; Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki,

1999). Indeed, such a model can also be derived. At first this will be done for the case

of 1PL models. The resulting model is called the Rasch-equivalent WResMIRT model.

The altered notation θ̃, instead of θ or θ∗, indicates that the latent variable constructed in

this model is different from that in the previous models. The restriction Cor(ξm, θ̃l) = 0

does not mean that the resulting model is more restrictive than the 1PL-BMIRT or the

1PL-WDi f MIRT model. Rather θ̃ is defined as variable, which is always regressively in-

dependent and therefore uncorrelated with all variables ξm (with m = 1, . . . ,M): The
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residual of the regression E(θ | ξ)19. The definition of latent variables as residuals is not

new. A well-known application is to model method effects as latent residuals in confir-

matory factor analysis (e. g. Geiser & Lockhart, 2012, February 6). A residual is only

defined with respect to a particular regression. In the case of WMIRT models for nonig-

norable missing data, that is the regression of the latent response propensity on the latent

ability. In the remainder, this model will be denoted as WResMIRT model. The concrete

model specification is easy in the case when ξ and θ are each unidimensional, but might

be less obvious in models where ξ and θ are multidimensional variables. The different

model specifications will be derived next, starting with the Rasch-equivalent WResMIRT

model for the case of undimensional latent variables ξ and θ.

A distinctive property of the BMIRT and WDi f MIRT Rasch model examined previously

is that all discrimination parameters αim and γil are equal to one. It can be shown that this

restriction is incompatible with the construction of θ̃ as a residual. At least some of the

discrimination parameters need to be freely estimable parameters, while the Cor(ξ, θ̃) is

fixed to be zero. For that reason, the model derived here is denoted as the Rasch-equivalent

WResMIRT model. The general model equation of the logit vector l(Y, D) in this model is

also given by Equation 4.80. If the measurement model of ξ based on Y without missing

data is the Rasch model, then α is the same in all three models - the 1PL-BMIRT model,

the 1PL-WDi f model, and the Rasch-equivalent WResMIRT model. Hence, all αim are set to

zero or one in advance. Note that the equality of α in all equivalent models is a necessary

but insufficient condition to ensure the equivalent construction of ξ. The derivation of the

Rasch-equivalent WResMIRT model reveals that the restriction Cor(ξ, θ̃) = 0 requires that

the elements γ̃im of γ̃ξ of Equation 4.80 are estimable parameters. Note that the symbol

∼ denotes the parameters of the Rasch-equivalent WResMIRT model that differs from that

if the alternative BMIRT- and WDi f MIRT Rasch model. Let θ = E(θ | ξ) + ζ, with the

linear regression E(θ | ξ) = b0 + b1ξ and the residual ζ = θ − E(θ | ξ). Inserting the model

equation of the latent response propensity into the logit equation of the manifest response

indicators gives

l(Di) = θ − γi0 (4.105)

= E(θ | ξ) + ζ − γi0 (4.106)

= b0 + b1ξ + ζ − γi0. (4.107)

19In general a regression E(Y | X) and the residual ε = Y − E(Y | X) are always uncorrelated. For a proof
see (Steyer & Eid, 2001; Steyer, 2002)
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Defining θ̃ = ζ and setting b1 = γ̃iξ gives

l(Di) = θ̃ + γiξξ − (γi0 − b0), (4.108)

with γ̃i0 = γi0 − b0 as the thresholds of the response indicator variables in the Rasch-

equivalent WResMIRT model. This equation applies to all response indicators Di Hence,

the discrimination parameters γiξ are equal for all I response indicators. Hence, all pa-

rameters γ̃iξ, with i = 1, . . . , I, need to be equal but freely estimable in application. That

requires constrained parameter estimation with respect to the elements of γ̃ξ. Hence,

equality constraints needs to be specified in the model.

Before this alternative model is also applied to Data Example A, the Rasch-equivalent

WResmodel will be generalized to multidimensional latent variables ξ and θ. In that case,

the regression E(θ | ξ) is multivariate. If θ is P-dimensional, then the regression E(θ | ξ)
consists of P regressions E(θl | ξ), with l = 1, . . . , P. If the latent dimensions θl and ξm

are linearly regressively dependent, then the covariances Cov(θl, ξm) can alternatively be

modeled by the P multiple linear regressions E(θl | ξ) = b0 +
∑M

m=1 blmξm. Hence, let

θl = E(θl | ξm) + ζl with ζl the residual. Replacing θl in Equation 4.92 by the regression

and its residual yields

l(Di) = E(θl | ξm) + ζl − γi0 (4.109)

= b0 +

M∑

m=1

blmξm + ζl − γi0. (4.110)

Analogous to Equation 4.108, θ̃l = ζl and blm = γ̃im. Hence,

l(Di) =
M∑

m=1

γimξm + θ̃l − γ̃i0. (4.111)

with the thresholds γ̃i0 = b0 − γi0. Accordingly, the model equation for the response

indicators is

P(Di = 1 | θ̃l, ξ) =
exp(

∑M
m=1 γ̃imξm + θ̃l − γ̃i0)

1 + exp(
∑M

m=1 γ̃imξm + θ̃l − γ̃i0)
. (4.112)

This equation holds for all response indicators that indicate the latent dimension θl. Hence,

all discrimination parameters γ̃im of the response indicators that constitute the measure-

ment model of θl in the 1PL-BMIRT model are equal to blm in the Rasch-equivalent

WResmodel. Therefore, the parameters γ̃im need to be constrained to be equal in appli-
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cation. However, only those elements in γ̃ξ that indicate the same latent dimension θl are

equal. This is at least the case if there is a simple structure in the measurement model of

θ based on D alone. Hence, if the response indicators Di indicate more than one latent

dimension θl in the BMIRT model, then the implied restrictions and equalities are more

complex. Such cases with complex dimensionality will be considered below (see page

205).

For illustration, the equivalent WResMIRT Rasch model of the hypothetical model given

by Figure 4.14 and 4.20 is displayed in Figure 4.21. In this example, two latent variables

θ̃1 θ̃2 are required, which are defined as the residuals ζ1 and ζ1 of the two multiple regres-

sions

E(θ1 | ξ1, ξ2) = b10 + b11ξ1 + b12ξ1 (4.113)

E(θ2 | ξ1, ξ2) = b20 + b21ξ1 + b22ξ1 (4.114)

Due to the equality blm = γ̃im for all response indicators constituting the measurement

model of θl, the following equalities result for the hypothetical example displayed in Fig-

ure 4.21:

b11 = γ̃11 = γ̃21 (4.115)

b12 = γ̃12 = γ̃22

b21 = γ̃31 = γ̃41 = γ̃51 = γ̃61

b22 = γ̃32 = γ̃42 = γ̃52 = γ̃62

In applications, these equalities need to be imposed by the use of equality constraints. In

contrast, the sub-matrices α and γθ of Λ do not consist of estimable parameters. They

must be priorly set to zero or one as in the BMIRT Rasch model. Additionally, all covari-

ances Cov(ξm, θ̃l) need to be fixed to zero. In contrast, there are no restrictions with respect

to the covariances Cov(ξm, ξw) (m , w) and Cov(θ̃l, θ̃k) (l , k) that are freely estimable

parameters.

Application of the Rasch-equivalent WResMIRT model to Data Example A The

Rasch-equivalent WResMIRT model is Rasch-equivalent but strictly speaking not a mul-

tidimensional Rasch model since the discrimination parameters γ̃im , 1 need to be es-

timated. Therefore, software for two-parameter models are required that allow for con-

strained parameter estimation. If the Rasch-equivalent WResMIRT is equivalent to the
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Figure 4.21: Graphical representation of the Rasch-equivalent WResMIRT model.

1PL-BMIRT and 1PL-WDi f model, then the item and person parameter estimates in these

models should be equal and the goodness-of-fit should be identical. Mplus (Muthén &

Muthén, 1998 - 2010) was used for parameter estimation. The input file for Data Example

A is shown in Appendix B (see Listing A.3). Not all available software for MIRT allow for

imposing equality constraints with respect to the item discriminations. In this situation, a

relaxed version of the WResMIRT Rasch model can be applied alternatively. In this model,

the equality constraints are left out. If the 1PL-BMIRT Rasch model is appropriate and the

equality-constraints of the Rasch-equivalent WResMIRT model are not specified, then the

estimates ˆ̃γim are freely estimated but should be close to the theoretically implied values,

which are the regression coefficient blm. Hence, the relaxed Rasch-equivalent WResMIRT

model is unnecessarily liberal. In turn, however, if the Rasch-equivalent WResMIRT Rasch

model does not fit to the data, then substantial differences in the parameter estimates

may result since the relaxed WResMIRT Rasch model is less restrictive. For the sake of

comparison, the relaxed Rasch-equivalent MIRT model was also applied to Data Exam-

ple A. The number of estimated parameters is higher in this model and has, therefore,

less degrees of freedom. Accordingly, the relaxed WResMIRT Rasch model cannot be

equivalent to the 1PL-BMIRT or the 1PL-WDi f MIRT model in terms of model fit. Table

4.11 gives goodness of fit indices of the four different models applied to Data Exam-

ple A: (1) the BMIRT Rasch model, (2) the WDi f MIRT Rasch model, (3) the WResMIRT
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Rasch model and (4) the relaxed WResMIRT Rasch model. Apparently, the deviation of

the estimates of model implied and true response pattern probabilities are equal for the

BMIRT Rasch model, the WDi f MIRT Rasch model, and the Rasch-equivalent WResMIRT

model. Since the relaxed Rasch-equivalent WResMIRT model is less restrictive, the log-

likelihood is higher, indicating better model fit. However, the model is unnecessarily

complex, indicated by higher information criteria, compared to the more restrictive but

more parsimonious MIRT Rasch models and the Rasch-equivalent WRes-MIRT model.

The estimated item difficulties of 1PL-BMIRT and Rasch-equivalent WResMIRT were al-

Table 4.11: Goodness-of-fit Indices of the BMIRT-, WDi f MIRT-, the Rasch-Equivalent WResMIRT-,
and the Relaxed Rasch-equivalent WResMIRT Model (Data Example A).

Model log-ℓ npar AIC BIC

BMIRT Rasch -46535.705 63 93197.410 93550.267
WDi f MIRT Rasch model -46535.705 63 93197.410 93550.267
Rasch-eq. WResMIRT model -46535.706 63 93197.411 93550.268
Relaxed Rasch-eq. WResMIRT model -46519.046 92 93222.092 93737.375

Note: npar = Number of estimated parameters.

most identical. Only one item (Y3) showed a difference in the third decimal place. The

estimates β̂i obtained in the relaxed Rasch-equivalent WResMIRT model were also very

close to those of the 1PL-BMIRT model. The absolute differences between the estimates

of both models ranged between zero and 0.019 with the mean of 0.006. Hence, the esti-

mates are practically the same. Mplus was used for parameter estimation of the (relaxed)

Rasch-equivalent WResMIRT model. This program allows only for EAP person parameter

estimation. For that reason, the equivalence of the construction of ξ in these models are

demonstrated using EAPs exclusively. In Figure 4.22, the EAPs obtained by the Rasch-

equivalent WResMIRT model and the relaxed version of this model are compared with the

EAPs estimated in the 1PL-BMIRT model. The correlation is close to one in both cases.

The MSE of the EAPs was 0.222 in the Rasch-equivalent WResMIRT model and 0.223 in

the relaxed Rasch-equivalent WResMIRT model. The mean of the absolute difference in

the EAPs of the latent residual θ̃ estimated in both models was 0.029. The correlation was

r = 0.999. Hence, the estimates were practically identical as well.

Due to the results, it is concluded that the 1PL-BMIRT model, the 1PL-WDi f MIRT

model, and the Rasch-equivalent WResMIRT model are equivalent with respect to (a) the

construction of ξ, (b) the adjustment of bias due to missing responses, and (c) the model

fit. The relaxed Rasch-equivalent WResMIRT model is only equivalent with respect to (a)

204



●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Rasch−equivalent WRes−MIRT model

1
P

L
−

B
−

M
IR

T
 m

o
d

el

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

−
2

−
1

0
1

2

Relaxed Rasch−equivalent WRes−MIRT model

1
P

L
−

B
−

M
IR

T
 m

o
d

el

EAP estimates − Data Example A

Figure 4.22: Comparison of EAP person parameter estimates of the BMIRT Rasch model, the Rasch-
equivalent WResMIRT model (left) and the relaxed Rasch-equivalent WResMIRT (right).
The blue line are the regression lines.

and (b), but not in terms of model fit.

Two-parameter MIRT models for nonignorable missing data with complex dimen-

sionality In this section, the MIRT models for nonignorable missing data are general-

ized to (a) two-parameter models and (b) to cases with complex dimensional structure of

ξ and θ. The term complex dimensional structure refers to within-item multidimension-

ality of items Yi in the measurement model of ξ and within-item multidimensionality of

Di in the measurement model of θ. Such a case is illustrated by the artificial example

displayed in Figure 4.23. Compared with Figure 4.14, some of the response indicators Di

indicate more than one latent dimension θl. Similarly, there are test items Yi indicating

more than one latent ability ξm. Hence, within item-multidimensionality with respect to

some manifest variables exists, even if the measurement models of ξ and θ are considered

separately. The general model equations of Yi and Di given by the Equations 4.77 and

4.78 remain valid in such cases. Note that the abbreviation BMIRT model does not mean

that the items Yi and Di are between-item dimensional. This term refers to the condi-

tional stochastic independencies Y ⊥ θ | ξ and D ⊥ ξ | θ reflected by the structure of Λ

with γξ = 0 in BMIRT models (see Equations 4.80 and 4.82). Hence, the matrix Λ of

discrimination parameters is block-diagonal. Only the sub-matrices α and γθ consist of
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estimable parameters. The interpretation of the latent variables θl is essentially the same

as in the BMIRT model with a simple structure. Given that γil ≥ 0, higher values of θl

means higher probabilities to respond to those items i whose response indicators Di in-

dicate θl given the other dimensions θh,l. However, the parameters γil are nothing else

than partial logistic or probit regression coefficients, and it is generally possible that some

parameters γil < 0, indicating that the probability of an item response decreases when

θl increases given the other dimensions θh,l. Despite such peculiarities, θ is interpreted

as a multidimensional latent response propensity variable in the 2PL-BMIRT model. In

Figure 4.23: MIRT model with within-item multidimensional items Yi and response indicators Di

(2PL-BMIRT model).

contrast to the BMIRT Rasch model, not all elements αim and γil are fixed to zero or one

prior to the analysis. Only some of these parameters are fixed to zero if the respective

item Yi or response indicator Di does not indicate the latent dimension ξm or θl directly.

The 2PL models need additional restrictions for model identification. At least one of the

discrimination parameters αim is fixed to a particular value, or the variance Var(ξm) is
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fixed. Accordingly, at least one γil is fixed, or the variance Var(θl) is fixed to a value

greater than one. As in the 1PL-models, the location of the latent variables is identified

by fixing at least one threshold per dimension or assigning a arbitrary value to E(ξm)

and E(θl). Hence, the application and specification of 2PL-BMIRT models in cases with

complex dimensionality is straightforward and does not require further clarification. This

is quite different for equivalent 2PL-WMIRT models that are derived next. In order to

demonstrate the application of 2PL-BMIRT and 2PL-WMIRT models in Mplus a further

simulated data example, which is called Data Example C, was used. Data Example C is

described in detail in Appendix 3. Mplus input files as well as summaries of essential re-

sults are presented in Appendix 3. The specification of the 2PL-BMIRT model of Figure

4.23 is shown in Listing A.9.

As in the case of one-parameter MIRT models for nonignorable missing data, equiva-

lent 2PL-WMIRT models are rationally derived, starting from the 2PL-BMIRT model. In

a first step, this will be done specifically for the hypothetical model displayed in Figure

4.23. Afterwards, general specification rules will be derived for equivalent 2PL-WDi f MIRT and

2PL-WResMIRT models.

Derivation of the 2PL-WResMIRT model considering complex dimensionality As in

the Rasch-equivalent WResMIRT model, the p-dimensional latent variable θ̃ = (θ̃1, θ̃2)

is defined as the multivariate residual ζ = ζ1, . . . , ζP, with ζl = θl − E(θl | ξ). In the

hypothetical example given in Figure 4.23, the two regressions

E(θ1 | ξ1, ξ2) = b10 + b11ξ1 + b12ξ2 (4.116)

and

E(θ2 | ξ1, ξ2) = b20 + b21ξ1 + b22ξ2 (4.117)

are involved. Thus, in a joint bivariate regression, the two-dimensional residual is ζ =

(ζ1, ζ2). An alternative 2PL-WResMIRT model can be derived setting θ̃ = ζ with θ̃l = ζl.

If the dimensional structure is complex since manifest variables Yi and Di indicator more

than one latent dimension ξm or θl respectively, then the logit equations of l(Yi) and l(Di)

207



in the 2PL-BMIRT model are

l(Yi) =
M∑

m=1

αimξm − βi (4.118)

l(Di) =
P∑

l=1

γilθl − γi0. (4.119)

Hence, the logits are linear combinations of the respective latent dimensions. The model

equations of l(Yi) are the same as in the target model which is the measurement model of

ξ based on Y. In order to derive the equivalent 2PL-WResMIRT model, the latent response

propensity dimensions θl in Equation 4.119 are replaced by the respective regressions

E(θl | ξ) + ζl. In the further derivations it is assumed that all θl are linear in ξ1, . . . , ξM
20.

In that case, the joint distribution g(ξ, θ) of the latent variables can be modelled by P

multiple linear regression E(θl | ξ) and the respective residuals ζl, with l = 1, . . . , P. Re-

turning to the example of Figure 4.23, there are response indicators that are between-item

multidimensional as D1 and two response indicators, D2 and D3, that are within-item mul-

tidimensional. For the further derivations, the first and the second response indicators are

used exemplarily. According to Equation 4.119, the logit equations of these two variables

are

l(D1) = γ11θ1 − γ10 (4.120)

l(D2) = γ21θ1 + γ22θ2 − γ20. (4.121)

The latent propensity dimensions θ1 and θ2 can be replaced by their constituting parts -

the regressions given in Equations 4.116 and 4.116 and the corresponding residuals ζ1 and

ζ2, yielding

l(D1) = γ11[E(θ1 | ξ1, ξ2) + ζ1] − γ10 (4.122)

= γ11[b10 + b11ξ1 + b12ξ1 + ζ1] − γ10

= γ11b11ξ1 + γ11b12ξ2 + γ11ζ1 − (γ10 − γ11b10),

20Unfortunately, currently available software packages do not allow for non-linear regressions between
latent variables in MIRT models.
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and

l(D2) = γ21[E(θ1 | ξ1, ξ2) + ζ1] + γ22[E(θ2 | ξ1, ξ2) + ζ2] − γ20 (4.123)

= γ21[b10 + b11ξ1 + b12ξ2 + ζ1] + γ22[b20 + b21ξ1 + b22ξ2 + ζ2] − γ20

= γ21b11ξ1 + γ21b12ξ2 + γ21ζ1 + γ22b21ξ1 + γ22b22ξ2 + γ22ζ2

−(γ20 − γ22b20 − γ21b10).

To obtain an applicable model, the equations need to be rearranged so that each latent

variable appears once. This condition is already met for the first response indicator since

D1 is between-item multidimensional in the 2PL-BMIRT model. However, rearranging

the terms of logit equation of the second response indicator gives

l(D2) = (γ21b11 + γ22b21)ξ1 + (γ21b12 + γ22b22)ξ2 + γ21ζ1 + γ22ζ2 (4.124)

−(γ20 − γ22b20 − γ21b10).

To obtain the final 2PL-WResMIRT model, the variables ζl are replaced by θ̃l. The final

logit equations of the model are

l(D1) = γ11b11︸︷︷︸
γ̃11

ξ1 + γ11b12︸︷︷︸
γ̃21

ξ2 + γ11θ̃1 − (γ10 − γ11b10)︸          ︷︷          ︸
γ̃10

(4.125)

l(D2) = (γ21b11 + γ22b21)︸              ︷︷              ︸
γ̃12

ξ1 + (γ21b12 + γ22b22)︸              ︷︷              ︸
γ̃22

ξ2 + γ21θ̃1 + γ22θ̃2 (4.126)

− (γ20 − γ22b20 − γ21b10)︸                      ︷︷                      ︸
γ̃20

.

It can be seen that the parameters γ̃im of γ̃ are functions of both the parameters γil of γθ and

the regressions coefficients blm. Furthermore, the thresholds γ̃i0 are functions of γi0, γil,

and the intercepts bl0. These functional dependencies between the model parameters need

to be taken into account in application of the 2PL-WResMIRT model by specification of

non-linear constraints. The increased complexity due to within-item multidimensionality

becomes obvious when comparing Equations 4.125 and 4.126. With increasing numbers

of latent dimensions θl that are indicated by a response indicator Di, and increasing latent

dimensions ξm, the more complex the implied non-linear constraints with respect to γ̃im

and γ̃i0 are. The general form of these non-linear constraints will be derived next for

the case of a P-dimensional latent variable θ̃ and an M-dimensional latent ability ξ. In

this case, there are P multiple linear regressions E(θl | ξ) = bl0 +
∑M

m=1 blmξm and the P-
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dimensional residual ζ = ζ1, . . . , ζP. Inserting θl in Equation 4.119 by the E(θl | ξ) + ζl
gives

l(Di) =
P∑

l=1

γil

[
E(θl | ξ) + ζl

]
− γi0

=

P∑

l=1

γil

[
bl0 +

M∑

m=1

blmξm

]
+

P∑

l=1

γilζl − γi0

=

P∑

l=1

M∑

m=1

γilblmξm +

P∑

l=1

γilζl +

P∑

l=1

γilbl0 − γi0. (4.127)

Finally, the notation is adapted. In the 2PL-WResMIRT model, ζl = θ̃l. The general model

equation of the logits of the response indicators Di is then

l(Di) =
M∑

m=1

γ̃imξm +

P∑

l=1

γilθ̃l − γ̃i0, (4.128)

with the discrimination parameters

γ̃im =

P∑

l=1

γilblm, (4.129)

and the thresholds

γ̃i0 = γi0 −
P∑

l=1

γilbl0. (4.130)

The parameter estimation in the 2PL-WResMIRT model requires for constrained optimiza-

tion with respect to the parameters in the likelihood L(yobs, d; ι,φ). The non-linear con-

straints with respect to elements of γξ of Λ (see Equation 4.80) and the thresholds γ̃i0 are

given by the Equations 4.129 and 4.130. In application, it is recommended to identify the

model in a way that simplifies the model-implied constraints. For example, if the expected

values are fixed to E(ξm) = E(θl) = 0, then all intercepts bl0 are zero as well. It follows

that γ̃i0 = γi0. In this case, only the constraints with respect to the item discrimination

parameters, that involve the partial regression coefficients, need to be specified. Software,

such as Mplus, allows to define the coefficients blm implicitly as new parameters. This

is illustrated by the Mplus input file (see Listing A.10) in Appendix 5.3, which refers to

the fictional model depicted in Figure 4.24. The regressions E(θl | ξ) are not depicted in
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the graph. Note that all covariances Cov(ξm, θ̃l) are equal to zero. This restriction must

also be made explicitly in Mplus. If the equality constraints with respect to elements of

Figure 4.24: Graphical representation of the 2PL-WResMIRT model.

γ̃ are not specified, so that all parameters γ̃im are freely estimable parameters, the relaxed

2PL-WResMIRT model results. This model is applicable in software packages that do not

allow for the specification of non-linear constraints. As in the case of the relaxed Rasch-

equivalent WResMIRT model, the relaxed 2PL-WResMIRT model is less restrictive and,

therefore, not equivalent to the 2PL-BMIRT and the 2PL-WDi f MIRT model in terms of

model fit. However, if the latter fit the data well the item and person parameter estimates

of all MIRT models including the relaxed 2PL-WResMIRT model should be close.

Derivation of the 2PL-WDi f MIRT model considering complex dimensionality A gen-

eralized two-parameter model can be derived with a latent difference variable θ∗ instead

of a latent response propensity θ or the latent residual θ̃. In the WDi f Rasch model, the

idea has been developed to define θ∗ = θ∗1, . . . , θ
∗
P as a multidimensional latent differ-

ence variable with θ∗
l
= θl −

∑M
m=1 ξm for all l = 1, . . . , P. Following this approach,

a 2PL-WDi f MIRT model can be derived which is equivalent to the 2PL-BMIRT model.
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As the 2PL-WResMIRT model, the general 2PL-WDi f MIRT model allows for complex di-

mensionality due to within-item multidimensionality in response indicators Di. Again,

the model can be derived from the 2PL-BMIRT model. The model equation of the log-

its l(Di) is given in Equation 4.119. In the 2PL-WDi f MIRT model, the latent response

propensity dimensions θl are replaced by the difference variables θ∗
l

as defined above, so

that

l(Di) =
M∑

m=1

γ∗imξm +

P∑

l=1

γilθ
∗
l − γ∗i0. (4.131)

Since each dimension θ∗
l

is defined as the difference θl −
∑M

m=1 ξm, this expression can be

inserted into Equation 4.131, yielding

l(Di) =
M∑

m=1

γ∗imξm +

P∑

l=1

γil

[
θl −

M∑

m=1

ξm

]
− γi0 (4.132)

=

M∑

m=1

γ∗imξm +

P∑

l=1

γilθl −
P∑

l=1

M∑

m=1

γilξm − γi0. (4.133)

In this equation, the logit l(Di) is a function of θ and ξ. Since the resulting 2PL-WDi f MIRT model

should be equivalent to the 2PL-BMIRT model, the conditional stochastic independence

Di ⊥ ξ | θ needs to be true. That means that l(Di) is only a function of θ but not of ξ.

Furthermore, the equality of Equation 4.133 with Equation 4.119 needs to be preserved.

This is the case if γ∗im is set equal to the sum
∑P

l=1 γil. Inserting this expression in Equation

4.133 for all γ∗im gives

l(Di) =
M∑

m=1

P∑

l=1

γilξm +

P∑

l=1

γilθl −
P∑

l=1

M∑

m=1

γilξm − γi0 (4.134)

=

P∑

l=1

γilθl − γi0. (4.135)

This is exactly the equation of the logit l(Di) in the 2PL-BMIRT model. Conclusively, the

2PL-WDi f MIRT model is obtained if all parameters γ∗im of γξ are constraint, so that

γ∗im =

P∑

l=1

γil. (4.136)
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The thresholds γi0 are the same in both models and can be freely estimated respec-

tively. Similarly to the 2PL-WResMIRT model, the functional relation between the model

parameters γ∗im and γil needs to be imposed in the model for parameter estimation in

real applications. This requires the specification of linear constraints with respect to

γ∗im, which are given by Equation 4.136. In Appendix 5.3, the Mplus input file of the

2PL-WDi f MIRT model is provided (see Listing A.11), which is graphically represented in

Figure 4.25. This model refers to the hypothetical example, which is also illustrated in

Figures 4.23 and 4.24.

Figure 4.25: Graphical representation of the 2PL-WDi f MIRT model. The covariances are represented
by grey double-headed arrows.

Interim conclusion Here a brief summary of this section is given. Different MIRT mod-

els that account for nonignorable missing data have been developed. For the case of the

Rasch-MIRT model for nonignorable missing data, three 1PL-WMIRT models have been

derived that are equivalent to the the 1Pl-BMIRT model. These are (a) the 1PL-WDi f MIRT

213



model, (b) the Rasch-equivalent WResMIRT model, and (c) the relaxed Rasch-equivalent

WResMIRT model. The models (a) and (b) are equivalent with respect to three criteria

which have been turned out to be essential in missing data models. These are (1) equiva-

lent construction of ξ, (2) equivalent adjustment for missing data, and (3) equal model-fit

. The relaxed Rasch-equivalent WResMIRT model is only equivalent with respect to the

criteria (1) and (2) but not in terms of model fit, given the 1PL-BMIRT model and 1PL-

WDi f model fit the data. In this case, the relaxed Rasch-equivalent is unnecessarily liberal

since more parameters than required are freely estimated. In a subsequent step, the 2PL-

MIRT models for missing data were developed starting form the 2PL-BMIRT model. It

was emphasized that the term between-item dimensional MIRT models is used here in

a slightly different way. It refers to the conditional stochastic independence of the re-

sponse indicators Di of the latent ability ξ given the latent response propensity θ. This

is the distinctive feature of the BMIRT models compared to the derived WMIRT models.

Finally, three 2PL-WMIRT models were derived: (a) the 2PL-WDi f MIRT model, (b) the

2PL-WResMIRT model, and (c) the relaxed 2PL-WResMIRT model. The models (a) and

(b) are equivalent to the 2PL-BMIRT model with respect to the three criteria of model

equivalence in IRT models for missing data. The relaxed 2PL-WResMIRT model is only

equivalent with respect to the construction of ξ and the adjustment for missing data but

not in terms of model fit. This is analogous to the relaxed Rasch-equivalent WResMIRT

model. In general, the WMIRT models differ from the BMIRT models in the construction

of the latent variables. Whereas only in the BMIRT models a potentially multidimen-

sional latent response propensity is constructed, a latent difference variable or a latent

residual is constructed in the WDi f MIRT and the WResMIRT models respectively. To al-

low for complex dimensional structures underlying Y and D, the difference variable θ∗ in

the WDi f MIRT models was defined as the multidimensional difference variable θ∗1, . . . , θ
∗
P

with θ∗
l
= θl −

∑M
m=1 ξm. The latent residual θ̃ in the WResMIRT models was defined as the

residual ζ = θ − E(θ | ξ). Hence, θ̃l = ζl = θl − E(θl | ξ). The question may arise which of

these models should be preferred in application. One of the major purposes of this work

was to show under which circumstances the models are equivalent. If they are equiva-

lent, then it does not matter which model is chosen. In real applications, the available

software may limit the model choice. To the best knowledge of the author, only Mplus

allows to fit all the strongly equivalent models introduced here. The BMIRT models do

not require non-linear constraints and are, therefore, applicable in most MIRT software.

For example, the 1PL-BMIRT model can also be applied using ConQuest. Additionally,

BMIRT models are easy to specify and the parameters are easy to interpret. Therefore,
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this class of models is be recommended for most applications. However, MIRT soft-

ware for bi-factor analysis allows only for uncorrelated latent variables. In such cases, at

least the WResMIRT models are applicable. If the specification of non-linear constraints

are impossible, then the resulting models refer to the relaxed Rasch-equivalent WMIRT

or the relaxed 2PL-WResMIRT model. Note, that the results and parameter estimates

of the BMIRT models and the respective relaxed Rasch-equivalent WMIRT or relaxed

2PL-WResMIRT model will only substantially differ if the models are misspecified.

Here it is argued that the BMIRT models should be preferred for three reasons. First,

these models are the easiest to specify, since they do not require for linear or non-linear

constraints. Second, only in the BMIRT models can the latent variables θl of θ be in-

terpreted as latent response propensities. The correlations between the latent ability di-

mensions ξm and θl might be of additional diagnostic value. The same information is

also contained in the WMIRT models but much harder to extract especially in mod-

els with a complex multidimensionality. Third, Hooker, Finkelman, and Schwartzman

(2009) demonstrated, mathematically and empirically, that statistical correct estimation

procedures of MIRT models without a simple structure can produce paradoxical results

especially in the person parameter estimates obtained by within-item multidimensional

models. These findings were confirmed by Hooker (2010) and Finkelman, Hooker, and

Wang (2010). To avoid such results, which are nearly impossible to detect in real applica-

tions, the BMIRT models should be preferred. In all models discussed here, it is essential

that the dimensionality of θ is appropriately taken into account. In almost all publictions

of MIRT models for nonignorable missing data, unidimensionality of the latent response

propensity is assumed. However, here it is argued that an ignored multidimensionality

can mask the nonignorability of the missing data mechanism and can impede adjustment

for missing responses. This will be demonstrated in the subsequent section.

In conclusion, because of the simplicity, clearness, and its ease of use, the BMIRT

Rasch model and its generalization, the 2PL-BMIRT model, are recommended in real

applications. But even these models require knowledge about the measurement model of θ

based on D which should be carefully examined, especially with respect to the underlying

dimensionality. This will be examined next.

4.5.3.4 Dimensionality of the Latent Response Propensity

In the previous derivations of the MIRT models for nonignorable missing responses, it

was is emphasized that the latent response propensity θ and, therefore, the latent dif-

ference variable θ∗ and the latent residual θ̃ are potentially multidimensional. Why is
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that? In most published applications the latent response propensity was assumed to be

unidimensional (Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008;

Moustaki & Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). In

none of these publications did the dimensionality underlying D seem to be critically chal-

lenged. However, here it is argued that the appropriate model of D is essential to correct

for nonignorable missing data in Y. In this section, it will be demonstrated that a joint

measurement model of (Y, D) fails to correct for nonignorable missing data, if unidimen-

sionality of θ is falsely assumed although a multidimensional latent variable θ underlies

D. For that reason, a further data example was simulated, denoted as Data Example B in

the remainder. I = 30 manifest dichotomous items Yi were simulated with a single latent

variable ξ. The Rasch model was chosen for all items Yi with the same item difficulties

as in Data Example A (see Table 3.1). The latent response propensity θ was chosen to

be two-dimensional in Data Example B. The response indicators D1 − D20 constitute the

measurement model of θ1, and D21 − D30 indicate θ2. Thus, the measurement model of

θ follows a simple structure. The thresholds γi0 of the response indicators were the same

as in Data Example A (see Table 3.1). All item discriminations γi1 were fixed to one.

As in Data Example A, item nonresponses are generally more likely for more difficult

items than for easier items. The joint distribution g(ξ, θ) of the three latent variables was

specified as a multivariate normal distribution, with



ξ

θ1

θ2


∼ N





0

0

0


,



1 0 0.8

0 1 0

0.8 0 1




. (4.137)

Hence, only the second latent dimension θl was correlated with the latent ability ξ. Due

to stochastic independence of all manifest variables given the latent variables, it follows:

ξ ⊥ θ1 ⇒ Yi⊥Di for i = 1, . . . , 20. This implies that the missing data mechanism with

respect to the first 20 items is MCAR. In contrast, the items Y21 − Y30 suffer from a

nonignorable missing data mechanism, since ξ✚✚⊥ θ2 ⇒ Yi✚✚⊥Di. Hence, only the probability

of missing responses in the last 10 items is stochastically dependent on the latent ability ξ.

However, this implies a nonignorable missing data mechanism w.r.t. Y since conditional

stochastic independence D✚✚⊥Ymis |Yobs results. The sample size was N = 1000.

The overall proportion of missing data in Data Example B was 46.97%. The response

rates per item ranged between 19.50 - 99.00% (M = 53.03%, SD = 21.34%). The cor-

relation between the proportion correct P+ and the proportion of answered items D̄ was

r = 0.193 (t = 6.216, df = 998, p < 0.001). In real application, this would be strong ev-
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idence for non-ignorability of the missing data mechanism. However, the model-implied

correlation between P+ and D̄ of only the first 20 items is zero. In Data Example B, the

sample correlation is even slightly negative r = −0.122 (t = -3.877, df = 998, p < 0.001)

due to sampling error . According to the positive correlation cor(ξ, θ2) = 0.8, the sample

correlation between P+ and D̄ of the last 10 items is r = 0.329 (t = 10.679, df = 941,

p < 0.001).

In order to study the effect of ignoring the dimensionality of θ, four models were ap-

plied. At first, the unidimensional complete data model based on Y = y for reasons

of comparison. The same model was applied to the incomplete data Yobs = yobs. In

this model, the nonignorability of the missing data mechanism was not taken into ac-

count. The third model was the between-item multidimensional IRT model based on

(Yobs, D) = (yobs, d), with only a single latent variable θ. Hence, the measurement model

of the latent response propensity was misspecified in this model. Finally, the correct mea-

surement model with three latent variables ξ, θ1 and θ2 was fitted to the data (yobs, d). The

2PLM was chosen for data analysis to study the impact of the model choice with respect

to the discrimination parameters. In none of the four models was the mean bias of the

estimates α̂i significantly different from 121. The mean squared error of α̂i was the lowest

in the complete data model (MSE = 0.009). In both, the unidimensional 2PLM ignoring

missing data and the 2PL-BMIRT models, the MSE was 0.040. In the correct specified

measurement model with a two-dimensional latent response propensity, the MSE was

0.033. The results are in line with the findings presented in Section 3.2.3; The item dis-

crimination estimates are not systematically biased even if the missing data mechanism

was NMAR. Therefore, the estimates α̂i will not be further considered here. In contrast,

the item difficulties were found to be biasedly estimated in presence of nonignroable

missing responses (see Section 3.2.2). Hence, in Data Example B, the estimates β̂i were

expected to be underestimated as well. The upper triangle of the matrix plot in Figure 4.26

compares the true and the estimated item difficulties of the four models applied to Data

Example B. The unfilled circles refer to the items Y1−Y20 with ignorable missing data. The

filled triangles indicate the true and estimated item difficulties of the items Y21 − Y30 with

nonignorable missing data. In general, the bias was small in all four models. However, the

expected systematic underestimation in the last ten items with nonignorable missing data

could be confirmed when the missing data where ignored. The mean bias Bias(β̂) was

21Complete data model: Bias(α̂) = −0.002 (t = −0.144, df = 29, p = 0.887); 2PLM ignoring missing
data: Bias(α̂) = 0.013 (t = 0.346, df = 29, p = 0.732); Misspecified 2PL-BMIRT: Bias(α̂) = 0.013
(t = 0.360, df = 29, p = 0.721; Correctly specified 2PL-BMIRT: Bias(α̂) = 0.002 (t = 0.076, df =

29, p = 0.940)
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Figure 4.26: Comparison of the true values of ξ and βi for Data Example B with corresponding esti-
mates obtained by different models. The red lines represent the bisectric. The blue lines
are smoothing spline regressions.
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significantly different from zero in (a) the unidimensional model ignoring missing data

(Bias(β̂) = 0.061 (t = 2.103, df = 29, p = 0.044), and (b) the misspecified 2PL-BMIRT

model (Bias(β̂) = 0.060 (t = 2.049, df = 29, p = 0.049). In contrast the mean bias in

the correctly specified 2PL-BMIRT was Bias(β̂) = 0.023 (t = 0.963, df = 29, p = 0.344)

and the MSE has been reduced to 0.028. For reasons of comparison, the mean bias of the

complete data model was Bias(β̂) = 0.002 (t = 0.107, df = 29, p = 0.915) and the MSE

= 0.007.

The most remarkable finding is that the item and EAP person parameter estimates of the

undimensional model that ignores missing data and the misspecified 2PL-BMIRT model

are practically identical (see upper triangle of the matrix plot in Figure 4.26). The joint

model of Y and D seems not to have any effect on parameter estimation. Why is that? A

closer look revealed that the the discrimination estimates γ̂21;θ − γ̂30;θ in the misspecified

2PL-BMIRT model ranged only between −0.081 and 0.156. The mean -0.034 was not

significantly different from zero (t = −1.337, df = 9, p = 0.214) and none of the single

estimates γ̂21;θ − γ̂30;θ were significantly different from zero. In contrast, the estimates

γ̂1;θ − γ̂20;θ ranged between 0.958 and 1.340, with the mean 1.071 (t = 50.926, df = 19,

p < 0.001). This is close to the true value 1 that was used for data simulation. The

results imply that the single latent variables θ in the misspecified undimensional 2PL-

BMIRT model is almost exclusively constructed based on the response indicators D1 to

D20. As a consequence θ mostly represents θ1 and not θ2. Accordingly, the estimated

correlation between ξ and θ in the misspecified 2PL-BMIRT model was r = 0.020 (SE

= 0.062, t = 0.325,p = 0.745). If ξ and θ are independent, then parameter estimation

hardly benefits from the joint model of Y and D. This is obvious considering EAP person

parameter estimation. The prior g(ξ, θ) used in the EAP estimation (see Equation 4.90)

can be written as g(ξ | θ)g(θ). Given ξ⊥θ, it follows that g(ξ | θ)g(θ) = g(ξ)g(θ). The

distribution of ξ is equal for each value of θ. Hence, D and therefore θ do not contain

any additional information with respect to ξ given Y. In other words, the misspecified

2PL-BMIRT model in this example works as though the missing data would be MCAR.

In fact, in real application an applied researcher could be tempted to conclude that the

missing data mechanism is ignorable, since the estimated correlation between θ and ξ

was not significantly different from zero. If the model would be correctly specified, then

that implies stochastic independence between Y and D.

In the simulated Data Example B, especially the EAP estimates profited from the cor-

rect specification of the measurement model of θ. The estimated correlations in the cor-

rectly specified 2PL-BMIRT were r(ξ, θ1) = 0.036 (SE = 0.042, t = 0.855,p = 0.392),
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r(ξ, θ2) = 0.738 (SE = 0.031, t = 24.148,p < 0.001), and r(θ1, θ2) − 0.038 (SE = 0.043,

t = −0.875,p = 0.382). Accordingly, the prior used to estimate persons’ EAPs ξ̂ in this

particular example is g(ξ, θ1, θ2). Since, ξ⊥θ1 and θ1⊥θ2 it follows

g(ξ, θ1, θ2) = g(ξ | θ1, θ2)g(θ1, θ2) (4.138)

= g(ξ | θ2)g(θ2)g(θ1) (4.139)

It can be seen that the conditional distribution of ξ differs depending on θ2. Hence, the

EAP estimates ξ̂ shrink approximately toward the conditional expected values E(ξ | θ2 =
θ2) in the correct 2PL-BMIRT model instead of toward E(ξ). θ2 is indicated by D21 −
D30. That is why D is informative with respect to the latent variable ξ. Exploiting this

information leads to the correlation r(ξ, ξ̂) = 0.857 that is larger than r(ξ, ξ̂) = 0.816 in the

misspecified model or the simple 2PLM that ignores missing data. It should be noted that

the missing induced bias is comparably small in Data Example B. This is because of the

20 items in the test with missing responses that are MCAR. Observed responses to these

items provide a lot of valuable information for item and person parameter estimation and

limit the negative effects of nonignorable missing responses in the last ten items.

Based on Data Example B, it could be shown that the inclusion of D in a joint model of

(Y, D) needs to be done appropriately. Disregarding the correct dimensionality of θ will

potentially lead to an MIRT model that can fail to correct the bias due to nonignorable

missing data although D is included in the model. In application, the correct model for D

needs to be found. Here it is argued that this task should involve all sources of information

including explorative procedures to determine the number of dimensions θl. The reason

is that the response indicators Di are not items of a rationally constructed test. The num-

ber of dimensions underlying D and their substantial meaning can hardly be anticipated

prior to application. In this respect, variables Di differ from items Yi that are constructed

theoretically driven. Of course, practical experiences in applied testings and theoretical

considerations may help to develop ideas about the dimensionality of the latent response

propensity. For example, Rose et al. (2010) found that item characteristics can be re-

lated to the willingness to complete test items in PISA 2006. Whereas the mean response

rates per item and the item means were correlated in open constructed-response items,

this relation was negligible in multiple choice items, which show generally high response

rates. This does not necessarily imply multidimensionality. However, if the willingness

to respond to different item types varies across persons depending on the response for-

mat, then the resulting item-by-person interaction (2009) implies multidimensionality of
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θ. The dimensionality of ξ might also provide information about the dimensionality of θ.

Especially if the dimensions ξm and ξk,m are only weakly correlated but the probability

to omit items is strongly correlated with the respective latent ability, then the dimension-

ality of θ might mimic the dimensionality of ξ. In any case, the dimensionality of the

latent response propensity should be checked and a suited model with respect to θ needs

to be specified. In Data Example B, for instance, a explorative factor analysis (EFA) for

dichotomous variables (Jöreskog & Moustaki, 2000; Mislevy, 1986; Muthén, 1978) re-

vealed the wrong dimensionality. The EFA provides eigenvalues, χ2-values, root mean

squared error of approximation (RMSEA), and further fit statistics that help to determine

the number of required dimensions underlying D. The difference between the EFA for

continuous versus dichotomous manifest variables lies in the correlation matrix used for

model estimation. Instead of Pearson correlations, the matrix of tetrachoric correlations

is used in the case of dichotomous variables. Furthermore, suited least square estimators

are used to estimate model parameters (Muthén, 1978, 1998 - 2004; Muthén, do Toit, &

Spisic, 1997; Wirth & Edwards, 2007).

The EFA for dichotomous variables was applied to the data matrix D = d of Data

Example B. Mplus 6 (Muthén & Muthén, 1998 - 2010) was used for model estimation.

The mean and variance adjusted weighted least square (WLSMV) estimator was applied.

Three models were fitted with one to three latent dimensions θl. Promax was used as the

rotation method in order to allow for correlated factors. Table 4.12 gives the goodness

of fit indices and Figure 4.27 shows the scree plot with the eigenvalues of the estimated

tetrachoric correlation matrix of the 30 response indicators Di. Note that the EFA with

Table 4.12: Model fit statistics for EFAs of the tetrachoric correlation matrix of response indicators
(Data Example B).

Factors χ2 df p-value RMSEA RMSR

1 1394.283 405 < 0.001 0.049 0.107
2 390.434 376 0.293 0.006 0.062
3 336.801 348 0.657 0.000 0.054

Note: RMSEA = Root mean squared error of approximation; RMSR = Root mean squared residual.

only one latent dimension is equivalent to a unidimensional CFA model identified by

E(θ) = 0 and Var(θ) = 1. In line with the data generating models used in Data Example B,

the two-dimensional model shows a considerable better model fit than the unidimensional

model. The scree plot supports a solution with two factors. Additionally, in the two-

factor model, the matrix of factor loadings approximately follows a simple structure with
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the exception of D1, which loads on both latent dimensions (λ11 = 0.557, λ21 = 0.468).

The loadings of the response indicators D2 − D20 pertaining to the first latent dimension

ranged between 0.415 − 0.575, and between −0.132 − 0.053 with respect to the second

latent dimension. Conversely, the loadings of the variables D21−D30 were located between

−0.070 − 0.089 with respect to the first dimension, and 0.410 − 0.556 with regard to the

second dimension. In the three factor solution only the single variable D1 had a substantial

factor loading on the third dimension λ31 = 1.077. The pattern of loadings with respect

to the first two factors was preserved. This is in line with the existing literature. As

Reckase (2009) found, the factor structure of a model with too many dimensions embeds

the dimensional structure with the required number of dimensions. However, EFA for

0 5 10 15 20 25 30

0
1

2
3

4
5

6

Scree Plot (EFA − Data Example B)

1:30

E
ig

en
v
al

u
es

 o
f 

th
e 

te
ra

ch
o
ri

c 
co

rr
el

at
io

n

m
at

ri
x
 o

f 
th

e 
re

sp
o
n
se

 i
n
d
ic

at
o
rs

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

Figure 4.27: Screeplot based on the tetrachoric correlation matrix of response indicators (Data Exam-
ple B).

categorical vaiables is only one approach to study the dimensionality in IRT measurement

models. Many other methods for the empirical assessment of the underlying dimensional

structure of a test consisting of dichotomously or ordered categorical scored items have

been developed (Jasper, 2010; Reckase, 2009; Roussos, Stout, & Marden, 1998; Stout et

al., 1996; Tate, 2003). It is far beyond the scope of this work to review these methods here.

The major focus of this section was to illustrate the importance of the correct specification

of the measurement model of θ. However, increased dimensionality in joint measurement

models of (Y, D) can become numerically challenging. The development of simpler but

sufficient model-based approaches for nonignorable missing data would be of great value.

The latent regression model and a multiple group model for nonignorable missing data can
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be alternatives to MIRT models in some applications. In these models, the measurement

model of θ can be omitted. Nevertheless, both approaches - the latent regression models

and the multiple group IRT models - require knowledge about the required number of

dimensions that sufficiently explain the stochastic dependencies between the response

indicators Di.

4.5.4 Latent Regression IRT Models for Nonignorable Missing data

The major disadvantage of different between- and the within-item multidimensional IRT

models is their complexity. The number of manifest variables is doubled due to the inclu-

sion of the response indicators Di in a joint measurement model of (Y, D). If additionally

the underlying dimensional structure of ξ and θ is complex and the number of latent di-

mensions ξm and θl is high, then the analysis becomes computationally demanding and

very time consuming. As Cai (2010) stated, high dimensional MIRT models are still

computationally challenging. Less complex models for nonignorable missing responses

might be preferable in such situations. Using the PISA 2006 data, Rose, von Davier, and

Xu (2010) could show that substantially simpler models can reduce the bias due to nonig-

norable missing data equally well. They proposed a latent regression model (LRM) and a

multiple group (MG) IRT model for item nonresponses that are NMAR. Both approaches

are justified and examined here in more detail. The relation of these methods to the MIRT

models introduced above will be outlined. Furthermore, the LRM and MG-IRT models

for missing responses are also conceptually close to IRT models for missing responses

that are MAR given a covariate Z (see Section 4.5.2). The basic idea is to use functions

f (D) of the response indicator vector as covariates in an LRM or as grouping variable in

an MG-IRT model. Although D is taken into account to adjust for nonignorable missing

data, the measurement model is considerably slimmed down to the measurement model

of ξ based on Y. Therefore, the LRM and the MG-IRT models are much less complex

compared to the MIRT models described previously. The two approaches are developed

step by step starting with the LRM.

The general LRM for nonignorable missing data In the LRM proposed by Rose et

al. (2010), the proportion of completed items D̄ was used as predictor in a latent regres-

sion E(ξ | D̄), with D̄ = I−1 ∑I
i=1 Di, which was computed for each test taker. Formally, D̄

is a function f (D) of the response indicator vector D. Other functions such as the sum

score
∑I

i=1 Di might also be suited. The choice of the function f (D) depends on many

factors. For example, if there are several sub-tests that refer to different domains, then
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the use of a single proportion of completed items can be improper. Instead, the propor-

tion of responded or omitted items can be determined for each sub-test. In this case the

latent regression model for item nonresponses becomes a multiple linear regression with

the functions f j(D) of f (D) = f1(D), . . . , fJ(D) as regressors. For the case of a multi-

dimensional latent variable ξ, the most general form of the structural model of the latent

regression approach for missing responses proposed here is

E[ξ | f (D)]. (4.140)

It is important that the parameters ι of the measurement model of ξ are jointly estimated

with the parameters of the latent regression model.

Relation to MIRT models for nonignorable missing data The latent regression model

and the MIRT models for nonignorable missing data are theoretically closely related. This

will be demonstrated for the case of the between-item multidimensional MIRT model.

From the basic model assumption of the MIRT models for nonignorable models (see

Equations 4.5.4 - 4.74) follows, in general, D⊥Y | (ξ, θ), and in B-MIRT models D⊥Y | θ
holds. Assuming that the latent response propensity θ would be a manifest variable in-

cluded in the model as an auxiliary variable, the missing data mechanism w.r.t. Y would

be MAR given θ. In this case, θ would be a covariate like other variables represented by

Z. In Section 4.5.2, it was shown that the LRMs can be used to account for missing data

that are MAR given Z. Accordingly, an LRM with E(ξ | (θ)) would sufficiently account

for item nonresponses if the B-MIRT model assumptions hold true. Furthermore, if (θ)

were observable, then it were not required to be measured by D. Hence, the response

indicator vector D could be ignored. This can also be shown more formally considering

ML estimation. Assuming that θ is given, the full likelihoodL(y, d, θ; ι,φ) is proportional

to the joint distribution of (D,Y, θ), so that

L(y, d, θ; ι,φ) ∝ g(Y = y, D = d, θ = θ; ι,φ). (4.141)

Using the factorization Y = (Yobs,Ymis) (see Section 4.5.1) that is

L(yobs,Ymis, d, θ; ι,φ) ∝ g(Yobs = yobs,Ymis = ymis, D = d, θ = θ; ι,φ). (4.142)

224



As shown in Section 4.5.1, the likelihood of the observed data results from integrating

over the distribution of Ymis. In this case, that is,

L(yobs, d, θ; ι,φ) ∝
∫

g(Yobs = yobs,Ymis, D = d, θ = θ; ι,φ)dYmis, (4.143)

which can be written as

L(yobs, d, θ; ι,φ) ∝
∫

g(D = d |Yobs = yobs,Ymis, θ = θ;φ)g(Yobs = yobs,Ymis, θ = θ; ι)dYmis

∝ g(Yobs = yobs, θ = θ; ι)

∫ {
g(D = d |Yobs = yobs,Ymis, θ = θ;φ)

g(Ymis |Yobs = yobs, θ = θ; ι)
}
dYmis (4.144)

If the MIRT model assumptions hold true, from conditional stochastic independence

D⊥Y | θ implied by Equations 4.5.4 - 4.74 and local stochastic independence Yi⊥Y j | ξ
holds, it follows that the observed data likelihood can be simplified to

L(yobs, d, θ; ι,φ) ∝ g(Yobs = yobs, θ = θ; ι)

∫
g(D = d | θ = θ;φ)g(Ymis; ι)dYmis

∝ g(Yobs = yobs, θ = θ; ι)g(D = d | θ = θ;φ)

∫
g(Ymis; ι)dYmis

(4.145)

In this case, the integral is
∫

g(Ymis; ι)dYmis = 1, implying that the observed data likeli-

hood is proportional to the product of the joint distribution of the observed partition of

Yobs and θ and the conditional distribution of D given θ. This is

L(yobs, d, θ; ι,φ) ∝ g(Yobs = yobs, θ = θ; ι)g(D = d | θ = θ;φ). (4.146)

Hence, the likelihood can be factorized into two independent pieces with different sets of

model parameters ι and φ. Given the parameter spaces Ωι and Ωφ are distinct, so that

Ωι,φ = Ωι × Ωφ the ignorability conditions hold in a joint model of (Y, θ). Therefore, in

application it is sufficient to maximize the observed data likelihood L(yobs, θ; ι), which is

proportional to g(Yobs = yobs, θ = θ; ι), in order to obtain unbiased parameter estimates.

Thus, if θ would be available the inclusion of the complete response indicator D super-

fluous. Unfortunately, θ is not observable in real applications. Nevertheless, a practical

solution is to replace θ by fallible measures of the true latent response propensity. Such

proxies of θ can be used as independent variables in the LRM for nonignorable missing
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data. However, in a strict sense, it is assumed that D is conditionally stochastically inde-

pendent of Y given the respective proxy of θ. Of course, it is possible that this assumptions

does not hold even if D⊥Y | θ. However, if an appropriate proxy of θ can be found, the

remaining conditional stochastic dependency between D and Y given this proxy becomes

negligible. Real data analyses have shown that the LRM for nonignorable missing data

yields almost identical results compared to the MIRT models for nonignorable missing

data. Furthermore, in the simulated Data Example C (see Appendix C) highly unreliable

EAP estimates of two latent response propensities θ1 and θ2 have been used in an LRM.

The resulting item and person parameter estimates turned out to be almost identical to the

estimates of the 2PL-BMIRT model (see Figure 5.1).

Choosing functions f (D) in the LRM for nonignorable missing data There are sev-

eral candidates which could serve as proxies of θ. If θ is unidimensional latent variable

constructed in a 1PLM or 2PLM based on D, then the sum score SD =
∑I

i=1 Di or the mean

D̄ = I−1 ∑I
i=1 Di can simply be used (Rose et al., 2010). The larger the number of items

is, the higher correlation between θ and SD or D̄ is, due to the increased reliability. D̄ and

SD are simply the manifest test scores indicating the tendency to complete the items of

the test. Thus, they serve as fallible measures of θ transformed into a different metric22.

However, in the current work it was emphasized that θ can be multidimensional. In such

cases, the use of SD or D̄ might be an inappropriate oversimplification. To justify the suit-

ability of the regressions E(ξ | SD) or E(ξ | D̄), one needs knowledge of the dimensional

structure underlying D. Therefore, a stepwise procedure is recommended. First, the di-

mensionality of θ is analyzed. Second, the appropriate functions f (D) are chosen due to

the result of the model for D. If undimensionality holds true, then SD or D̄ can be used

in the LRM. However, SD or D̄ can also be replaced by person parameter estimates θ̂ in

the LRM since θ̂ = f (D). This is the recommended choice if θ is multidimensional with

a complex dimensional structure. If θ is p-dimensional, then the estimate θ̂ = θ̂1, . . . , θ̂p

is used in a multiple latent regression E(ξ | θ̂). If all response indicators are between-item

multidimensional, so that each Di is indicator of only a single dimension θl, then P sum

scores SDl may be a viable alternative, where SDl is the sum of those response indicators

Di that are indicators of θl. It should also be mentioned that the regression E(ξ | D) is a

special case of Equation 4.140. Hence, the latent ability can be regressed on all response

indicators. In this case, the dimensionality of θ needs not be studied. However, if the

22∑I
i=1 Di =

∑I
i=1 P(Di = 1 | θ) + ∑I

i=1 εDi
, with

∑I
i=1 P(Di = 1 | θ) as the expected number of completed

items which is a function f (θ). εDi
is the residual of the regression P(Di = 1 | θ). Equivalently, D̄ =

I−1 ∑I
i=1 P(Di = 1 | θ) + I−1 ∑I

i=1 εDi
, with I−1 ∑I

i=1 P(Di = 1 | θ) = f (θ).
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number of variables becomes large, then the number of regression coefficients inflates

and the model tends to be unnecessarily complex.

Note that the LRM allows for nonlinear regressions. Hence, the model can easily be

extended to cases including polynomials of the functions f (D). In this respect, the LRM

is superior to the MIRT models discussed previously.

ML estimation of the LRM for nonignorable missing data So far, ML estimation in

the LRM was only considered in order to demonstrate the relation to MIRT models for

nonignorable missing data and the IRT models for missing data that are MAR given Z.

Now, ML estimation in the LRM for nonignorable missing data is generally considered.

The derivations are quite close to the case where θ was assumed to be known. Instead

of the latent response propensity, a function f (D) is considered. Accordingly, ML esti-

mation rest upon the joint distribution of (Y, D, f (D)). Note that conditional stochastic

independence Y ⊥ f (D) | D always holds true, whereas the assumption Y ⊥ D | f (D)

needs not necessarily be true. The general complete data likelihood is

L(y, d, f (d); ι,φ) ∝ g(Y = y, D = d, f (D) = f (d); ι,φ) (4.147)

∝ g(Yobs = yobs,Ymis = ymis, D = d, f (D) = f (d); ι,φ).

The observed data likelihood is again proportional to the integral over the missing variable

Ymis. That is,

L(yobs, d, f (d); ι,φ) ∝
∫

g(Yobs = yobs,Ymis, D = d, f (D) = f (d); ι,φ)dYmis. (4.148)

The joint distribution can be factored yielding

L(yobs, d, f (d); ι,φ) ∝
∫ {

g(D = d |Yobs = yobs,Ymis, f (D) = f (d);φ) (4.149)

g(Yobs = yobs,Ymis, f (D) = f (d); ι)dYmis

}

∝ g(Yobs = yobs, f (D) = f (d); ι)

∫ {
g(D = d |Yobs = yobs,Ymis, f (D) = f (d);φ)

g(Ymis |Yobs = yobs, f (D) = f (d); ι)
}
dYmis (4.150)

Further, it is assumed that local stochastic independence Yi⊥Y j | ξ holds true for all i ,

j. Additionally, if conditional stochastic independence D ⊥ Ymis | (Yobs, f (D)) can be
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assumed, then the observed data likelihood can be simplified to

L(yobs, d, f (d); ι,φ) ∝ g(Yobs = yobs, f (D) = f (d); ι) (4.151)

·
∫

g(D = d |Yobs = yobs, f (D) = f (d);φ)g(Ymis; ι)dYmis

∝ g(Yobs = yobs, f (D) = f (d); ι)g(D = d |Yobs = yobs, f (D) = f (d);φ)

·
∫

g(Ymis; ι)dYmis.

In this case, the last factor is
∫

g(Ymis; ι)dYmis = 1 and does not affect ML parameter

estimation. The likelihood can be factorized into two independent parts that can be maxi-

mized independently to yield unbiased parameter estimates ι̂ and φ̂, respectively. Hence,

unbiased item and person parameters can be obtained by maximizing the reduced ob-

served data likelihood

L(yobs, f (d); ι,φ) ∝ g(Yobs = yobs, f (D) = f (d); ι), (4.152)

which merely includes the function f (D) instead of D. The most important characteristic

is that the model of D represented by the parameter vector φ is not involved anymore,

which simplifies the model considerably. Since f (D) is included as an exogenous variable

in a regression, it is sufficient to model the conditional distribution g(Yobs = yobs | f (D) =

f (d); ι) instead of the joint distribution g(Yobs = yobs, f (D) = f (d); ι). If the test takers

answered independently and local stochastic independence holds true, then the general

MML function is

L(yobs, f (d); ι,φ) ∝ g(Yobs = yobs | f (D) = f (d); ι) (4.153)

∝
N∏

n=1

∫

RM

I∏

i=1

P(Yni = yni | ξ; ι)dnig(ξ | f (Dn) = f (dn))dξ

This ML equation is valid if conditional stochastic independence Y ⊥ f (D) | ξ holds

true. This means that no DIF exists with respect to the function f (D). This is no ad-

ditional assumption, because it follows immediately from the general assumption given

by Equation 2.60. Comparing Equation 4.153 with the MML equation of the B-MIRT

model (see Equation 4.86) highlights the close relationship between the two models.

There are two differences: (a) The item response propensities P(Di = yi | θ;φ) are not

involved, and (b) the joint distribution g(ξ, θ) is replaced by the conditional distribution

g(ξ | f (Dn) = f (dn)). Hence, whereas θ represent the information of D with respect to the
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estimands ι and ξ in the B-MIRT model, this information is replaced by f (D) in the LRM

model. Recall that if the missing data mechanism is nonignorable, then missingness is

informative. It is essential that the information in D is sufficiently summarized in LRMs

by finding the appropriate function f (D). If such a function can be found, then the model

of D can be left out and ML inference based on a conditional model of Y given f (D) is

sufficient. However, what is an appropriate function f (D)? This is easy to answer at the

theoretical level; Using ML estimation procedures, the appropriateness of the function

f (D) is given if conditional stochastic independence D ⊥ Ymis | (Yobs, f (D)) holds true.

In application, however, this is not testable. The best practice might be to find an appro-

priate model for D and to use summary measures containing the essential information,

which most likely approximate the required conditional stochastic independence assump-

tion. The use of sum scores SD means that D̄ or estimates θ̂ are examples of such an

approach.

In application of MML estimation in IRT models with latent regressions, distributional

assumption needs to be made with respect to g(ξ | f (D)). Typically, it is assumed that the

M-dimensional latent residual ζ = ζ1, . . . , ζM of the regression E(ξ | f (D)) is multivariate

normal with ζ ∼ N(0,Σζ). The matrix Σζ is the variance-covariance matrix of the residual

ζ. In the LRM, homogeneity of variance and covariances is assumed with respect to all

dimension ζm, so that Var(ζm | f (D)) = Var(ζm) and Cov(ζm, ζk,m | f (D)) = Cov(ζm, ζk,m).

Person parameter estimation in LRM for nonignorable missing data As in the case

of the MIRT models, ML and WML person parameter estimates are not directly affected

by the latent regression model. These estimates depend exclusively on the observed re-

sponses Yobs = yobs and the item parameter estimates. Differences between the person

parameter estimates between the model that ignores missing responses and the LRM fol-

lows from differences in item parameter estimates exclusively. This is not the case in

Bayesian estimates such as the EAP and the MAP. Here, the information of background

variables affects the individual posterior distribution of the ξ and the point estimates re-

spectively. The EAP in the LRM for nonignorable missing data is given by

ξ̂m;EAP =

∫
R
ξm ·

∫
Rm−1 P(Yobs = yobs | ξ; ι)g(ξ | f (D))dξ

∫
Rm P(Yobs = yobs | ξ; ι)g(ξ | f (D))dξ

. (4.154)

The prior is the conditional distribution g(ξ | f (D)) instead of g(ξ) in the simple model

that ignores missing data. In general, if independent variables in a LRM are predictive of

the latent ability then g(ξ | f (D)) , g(ξ). In this case the locations of the individual prior
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distributions are the expected value E(ξ | f (D)) which can be different across test takers

depending on the values f (D) = f (d). Hence, EAP estimates ξ̂m;EAP shrink toward the

expected values E(ξm | f (D)) instead of E(ξm). This should reduce the shrinkage effect of

EAPs and increase the EAP-reliability. Comparing Equations 4.90 and 4.154, once more

reveals the conceptual proximity of the B-MIRT model and the LRM. Both equations

differ only in replacing θ by f (D). If the latent response propensity estimates are unbiased

and sufficiently reliable the EAPs ξEAP obtained from the LRM and the MIRT models for

nonignorable missing data should be approximately equal.

Note that the estimate θ̂ is also a function f (D). This is counter-intuitive at first sight

since any estimate is typically written as θ̂ = θ + εθ. In this case εθ is the measurement

error. Similarly, the variable D of θ can also be written as D = f (θ) + εD. If the function

f () is correctly specified in real applications, all measurement error εθ in the estimate θ̂

result from measurement error εD in the response indicators. Hence θ̂ = f (D). The esti-

mates of the latent variable depend merely on the indicators in the measurement model,

which in turn depend stochastically on the latent variable. From this point of view the

general Equation of the LRM for missing responses (see Equation 4.140) holds also when

the estimate θ̂ is chosen as predictor in the LRM.

Application of the LRM to Data Example A The LRM for nonignorable missing data

was also applied to Data Example A. Two LRMs were included with (a) the linear regres-

sion E(ξ | SD) and (b) the linear regression E(ξ | θ̂). For the latter, EAPs were obtained in

a unidimensional measurement model of θ based on D alone. In a subsequent step, the

item and person parameters of the measurement model of ξ based on Yobs = yobs were

estimated including the respective LRM. Altogether, four models were estimated using

Mplus 6 (Muthén & Muthén, 1998 - 2010) - two 1PL-LRMs and two 2PL-LRMs - since

the 1PLM and the 2PLM were applied as measurement models of ξ. The bias of the esti-

mates β̂i and α̂i of the item difficulties and the item discriminations were analyzed. EAPs

were chosen as person parameter estimates which were compared with the EAPs of the

complete data model, the simple model that ignores missing data, and the B-MIRT Rasch

model. The estimated standardized regression coefficients of the regression E(ξ | SD) were

b̂z = 0.706 (SE = 0.016, t = 44.503, p < 0.001) in the 1PL-LRM, and were b̂z = 0.706

(SE = 0.016, t = 44.307, p < 0.001) in the 2PL-LRM. When the regression E(ξ | θ̂)
were used in the LRM instead of E(ξ | SD),then the standardized regression coefficients

were practically identical in both models (1PLM: b̂z = 0.706, SE = 0.016, t = 44.781,

p < 0.001; 2PLM: b̂z = 0.706, SE = 0.016, t = 44.523, p < 0.001). The standardized
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regression coefficient is equal to the correlation Cor(ξ, θ̂). Recall that Data Example A

was simulated with a correlation Cor(ξ, θ) = 0.8. The underestimation of the standardized

regression coefficients reflects unreliability in both SD and θ̂. The marginal reliability of

the EAPs of θ̂ was Rel(θ̂) = 0.871. Accordingly, the attenuation corrected standardized

regression coefficient is given by 0.706 ·
√

0.871−1 = 0.781. This value is close to the true

value Cor(ξ, θ) = 0.8. Unfortunately, it is difficult to predict the effect of unreliability in

θ̂ on bias reduction in item and person parameters, and a general answer cannot be given

here. The effect was only studied empirically using Data Example A.

The mean bias of the estimated item difficulties β̂i was 0.057. This is not signif-

icantly different from zero (t = 1.931, df = 29, p = 0.063). Furthermore, the re-

gression coefficient of E(β̂ | β) is not significantly different from one (Slope = 1.011,

t = 0.472,SE = 0.023, p = 0.637), implying that the bias is independent of the true

item difficulties. Recall, in the unidimensional model ignoring missing data the bias of

β̂i was uncorrelated with the estimand23. The MSE of the estimates β̂i was 0.016. This

is exactly the same value as found in the MIRT models applied to Data Example A (see

Section 4.5.3.2). Figure 4.28 shows the estimated item difficulties from the both one-

parameter LRMs including either E(ξ | SD) or E(ξ | θ̂) respectively, compared to the true

values βi. Apparently, the estimates of both models are practically identical. Furthermore,

in Figure 4.29 (left graph), the equality between the estimated item difficulties of the LRM

and the B-MIRT model is shown. In the right graph of Figure 4.29, it can be seen that the

increased underestimation of item difficulties if missing data are ignored was corrected

using the LRM. The 2PL-LRM was also applied to study the estimation of the discrimi-

nation parameters in the LRM. The simulation study reported in Section 3 revealed that,

on average, the estimation of αi is not systematically biased. So, the focus here is on the

comparison between the estimates α̂i of the different models applied to the data. The esti-

mates were, on average, unbiased. The mean of the estimated discrimination parameters

was ¯̂α = 1.017 in the LRM using E(ξ | SD) and ¯̂α = 1.014 with the regression E(ξ | θ̂).
This is not significantly different from one in both cases (2PL-LRM with E(ξ | SD): Bias

= 0.017, t = 0.786, df = 29, p = 0.438; 2PL-LRM with E(ξ | θ̂): Bias = 0.014, t = 0.648,

df = 29, p = 0.522). Figure 4.30 shows that the estimates α̂i of both LRMs are very

close, which is also reflected by the similar mean squared errors of MSE = 0.015 with

E(ξ | SD) and MSE = 0.014 with E(ξ | θ̂). This is close to the values of the MIRT models

applied to Data Example A. Accordingly, Figure 4.31 illustrates that the estimated item

23Recall that in the simple model that ignores missing data the bias was dependent on the true item diffi-
culties (see Section 3.2.2).
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Figure 4.28: Estimated item difficulties in the 1PLM including the latent regression model with
E(ξ | SD) (left) and E(ξ | θ̂) (right). The grey dotted lines indicate bisectric lines. The
blue lines are regression lines.

discriminations of the LRM with E(ξ | SD) and the 2PL-BMIRT model differ only negligi-

bly. Finally, the EAP estimates from the different models were compared 24. Figure 4.32

compares the EAPs of different models including the two 1PL-LRMs with either E(ξ | SD)

or E(ξ | θ̂). Not only are the EAPs of the two LRMs almost equal, but the correlation with

the EAPs obtained using the B-MIRT Rasch model was very close to one as well. It can

be seen that the bias toward the mean, especially in the lower range of ξ, was consider-

ably reduced in both the 1PL-LRMs and the 1PL-B-MIRT model. An identical pattern

was found in for the EAPs of the 2PL-LRM and the 2PL-BMIRT model. Therefore, a

detailed presentation of the results was renounced.

Model equivalence In Section ,three criteria were introduced to judge equivalence with

respect to IRT models for (non)ignorable missing data. These are (a) equivalence in the

construction in the latent variable ξ, (b) equivalence in bias reduction of item and person

parameter estimates, and (c) same model fit. If MIRT models for nonigorable missing

data and LRMs including f (D) are compared with respect to these criteria, then the two

24As in the case of MIRT models, the WML and ML estimates are hardly affected by the LRM and have
been left out here.
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Figure 4.29: Comparison of item difficulty estimates obtained by the 1PL-LRM, with the regression
E(ξ | SD), with the BMIRT Rasch model (left), and the unidimensional IRT model ignor-
ing missing data (right). The grey dotted lines represent the bisectric. The blue lines are
regression lines.
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Figure 4.30: Estimated item discriminations in the 2PLM including the latent regression model with
E(ξ | SD) (left) and E(ξ | θ̂) (right). The grey dotted line indicates the true value αi = 1 and
the blue line indicates the mean ¯̂αi

approaches turned out to be equivalent with respect to (a). The target model, here the mea-

surement model of ξ based on Y is equally preserved in both - MIRT models and LRMs.

Furthermore, the two approaches are also equivalent with respect to the bias reduction

parameter estimates if three conditions are met. First, the assumptions of the MIRT

model must hold true, especially the conditional stochastic independence assumptions

(see Equations 4.5.4 and 4.74). Second, an appropriate function f (D) must be found so

that conditional stochastic independence D ⊥ Ymis | (Yobs, f (D)) is met. Third, the regres-

sion E[ξ | f (D)] must be correctly specified. The stronger the violation of the conditional

stochastic independence assumption , and the more the latent regression is misspecified,

the stronger the lack of equivalence in the bias reduction. In turn, the LRM potentially

outperform MIRT models in the bias reduction of parameter estimates if certain assump-

tions of the MIRT models are not met. For example, if the latent ability dimensions ξm

and the latent response propensities θl are non-linearly related, then the MIRT model can

fail to adjust the bias. The LRM, however, allows for multiple polynomial regressions

based on the estimates θ̂l. The question regarding which approach - MIRT model or LRM

- should be preferred needs to be answered in accordance to the particular application.

If f (D) , D, then MIRT models and LRMs are neither nested nor do they include
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Figure 4.31: Comparison of the estimated item discriminations of the 2PL-LRM with E(ξ | SD) and
the 2PL-BMIRT model (left), and the unidimensional IRT model ignoring missing data
(right). The grey dotted lines denote the bisectric. The blue lines are regression lines.

the same variables. Therefore, it is difficult to judge equivalence in terms of model fit.

Information criteria are the only measures to compare MIRT models and LRMs. However,

depending on the chosen function f (D) and the specification of the latent regression,

LRMs can be much more parsimonious than MIRT models. Instead of the parameters

of the measurement model of θ, only the parameters of the latent regression need to be

estimated. For that reason, information criteria might tend to favour LRMs. Of course,

this does not imply that LRMs are the better choice to adjust for nonignorable missing

data. Model fit criteria are not sensitive to the bias correction. Differences highlight only

that MIRT models and LRMs are not equivalent in terms of model fit.

Extentions of the LRM for nonignorable missing data Further extensions of the LRM

are possible and in some applications even required. For example, let there be different

test booklets as in many large scale assessments. In PISA or NEAP, a balanced incomplete

block design was chosen so that each student only answered a small portion of the com-

plete item pool (e. g. von Davier et al., 2006; D. Li et al., 2009). It is nearly impossible to

create equivalent test booklets: Differences in the stimulus material such as different text

length might occur. Or it might happen that the booklets vary with respect to the average
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Figure 4.32: Comparison of the true values of ξ underlying Data Example A with the respective EAP
person parameter estimates obtained from different models including the LRM I with
E(ξ | SD) and LRM II with E(ξ | θ̂). The red lines represent the bisectric. The blue lines
are smoothing spline regressions.

of the items difficulties. This can result in different distributions of f (D) and can lead to

interaction effects between the test booklet and D with respect to Y and ξ, respectively.

More formally, let there be k booklets. A vector IB = IB=1, . . . , IB=k of indicator variables

of the single booklets B can be created. IB can moderate the regressive dependency be-

tween ξ and f (D). This can easily be taken into account using conditional regressions

E(ξ | f (D), IB) = f0(IB) + f1(IB) · f (D) that allow for interaction effects. Alternatively, a
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multiple group IRT-LRM can be used, with the booklet as the grouping variable. The pa-

rameters of the conditional regression of ξ on f (D) are allowed to vary across the groups

(booklets). Of course, this is only one specific example underlining the importance as

well as the flexibility of the correct inclusion of f (D) in the latent regression. It is impor-

tant to note that the correct specification of the latent regression with f (D) is inevitable

to account for missing responses properly. Other extensions might also be plausible or

required in order to account for missing data depending on the study design and other

factors that need to be considered in a particular application. The major advantage of

LRMs is their flexibility that allows to include additional variables and interaction terms

that reflect the complexity of the study and the design. Unfortunately, many commonly

used IRT software packages such as BILOG-MG (Zimowski et al., 1996), PARSCALE

(Muraki & Bock, 2002), or MULTILOG (do Toit, 2003) do not allow for the inclusion of

a LRM. Multiple Group IRT (MG-IRT) models for nonignorable missing data might be a

solution, if a discrete function f (D) can be found. This approach is discussed in the next

section.

4.5.5 Multiple Group IRT Models for Nonignorable Missing Data

The multiple group IRT (MG-IRT) models for nonignorable missing data are discussed

here as a special case of latent regression models for nonignorable missing data introduced

in the previous section. Rose, von Davier, and Xu (2010) came up with the idea to account

for nonignorable missing data by stratification of D̄. They reanalyzed the PISA 2006

data and used a multiple group model including three strata of D̄ which referred to test

takers with low, medium, and high proportions of missing responses. In the previously

introduced terminology, the stratified variable D̄ is also a function f (D) that can be used

either as a predictor in a LRM or, alternatively, as a grouping variable in a MG-IRT model.

Let X = f (D) be a categorical variable that serves as a grouping variable in the MG-

IRT model. Considering ML-estimation in LRM for nonignorable missing responses,

the conditional stochastic independence assumption D ⊥ Ymis | (Yobs, f (D)) was found

to be sufficient to account for missing data that are NMAR. Since the MG-IRT model is

conceptually equivalent to the LRM in cases of discrete functions X = f (D), conditional

stochastic independence

D ⊥ Ymis | (Yobs, X) (4.155)

is assumed respectively.
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ML estimation in MG-IRT models for nonignorable missing data A detailed deriva-

tion of the ML estimator of the MG-IRT model is renounced here, due to theoretical

equivalence of LRM and MG-IRT models. Since X is a discrete function of the response

indicator vector D, the term f (D) in Equation 4.153 needs to be replaced by X to yield

the MML estimation function of the MG-IRT model for non-ignorable missing data given

by

L(yobs, x; ι) ∝
G∏

x=1

Nx∏

nx=1

∫

RM

g(Yn;obs = yn;obs | ξ; ι)g(ξ | Xn = xn; ι)dξ, (4.156)

with G as the number of groups and Nx as the sample size in group X = x. Hence,

N =
∑G

x=1 Nx. If local stochastic independence Yi ⊥ Y j | ξ (for all i , j) holds true, then

Equation 4.156 can be written as

L(yobs, x; ι) ∝
G∏

x=1

Nx∏

nx=1

∫

RM

I∏

i=1

P(Yni = yni | ξ; ι)dnig(ξ | Xn = xn; ι)dξ. (4.157)

The conditional distributions g(ξ | X = x; ι) are typically assumed to be multivariate nor-

mal with

ξ | X = x ∼ N[E(ξ | X = x),Σξ | X=x]. (4.158)

Hence, the variance-covariance matrices can vary across groups X = x.

Comparison between the LRM with E(ξ | X) and the MG-IRT model If X has H

values, then a single group IRT model with a LRM using H − 1 indicator variables IX=x

is conceptually equivalent to a MG-IRT model with H groups. However, in typical im-

plementations of latent regression models in IRT software, such as Mplus (Muthén &

Muthén, 1998 - 2010) or ConQuest (Wu et al., 1998), variances and variances are assumed

to be equal. That is, only one variance-covariance matrix Σζ of the residual ζ = ζ1, . . . , ζM

is estimated across the groups in the LRM. If the variance-covariance structure is identi-

cal in all groups x of X, then Σζ = Σξ | X=x, for all x = 1, . . . ,H. Therefore, the MG-IRT

model is less restrictive and might be preferred provided that an appropriate discrete vari-

able X = f (D) can be found. Furthermore, in the LRM it is implicitly assumed that no

DIF exists with respect to f (D). In MG-IRT models the item parameters are explicitly

constraint to be equal across the groups x of X to establish a common metric in all groups.

It should be noted that each missing pattern D = d could be considered a group in

238



an MG-IRT model. This model is equivalent to a pattern mixture model with certain as-

sumptions such as measurement invariance with respect to D. Unfortunately, there are

different problems with this approach. In all groups, the single items Yi are either com-

pletely observed or completely missing. Furthermore, there are theoretically 2I missing

patterns. Hence, in cases with a realistic number of items, the sample size needs to be

large in order to have sufficient numbers of cases for each observed missing pattern.

Person parameter estimation in the MG-IRT models for nonignorable missing data

ML and WML person parameter estimation depends exclusively on the observed re-

sponses Yobs = yobs and the item parameter estimates. Therefore, the bias reduction in

person parameter estimates rests upon bias reduction in item parameter estimates. In con-

trast, EAP person parameter estimation allows one to take additional information into

account. For example, informative background variables can be included in an LRM. The

term informative variables refers to variables that are stochastically dependent on the es-

timand ξ. Recall that D is informative regarding ξ and the item parameters in the case

of nonignorable missing data. For that reason functions f (D) are used in LRMs for non-

ignorable missing responses. In the MG-IRT model for item nonresponses the grouping

variable X is a discrete function f (D). The group membership expressed by the values

x of X is informative with respect to item end person parameters and is, therefore, taken

into account in EAP estimation. In technical terms, that means that each group X = x, has

their own prior distribution g(ξ | X = x) of the latent variable. Generally, the EAP in the

MG-IRT model is defined as

ξ̂m;EAP =

∫
R
ξm ·

∫
Rm−1 P(Yobs = yobs | ξ; ι)g(ξ | X = x)dξ

∫
Rm P(Yobs = yobs | ξ; ι)g(ξ | X = x)dξ

. (4.159)

Recall that in the simple unidimensional model that ignores missing data, the uncondi-

tional distribution g(ξ) is taken as the prior distribution. If X✚✚⊥Y, which is implied by

X✚✚⊥ ξ under local stochastic independence, then the differences in the latent proficiency

levels between persons with different missing patterns expressed by group membership x

of X are taken into account by the priors g(ξ | X = x). As a consequence, the shrinkage is

reduced since the EAPs shrink toward the expected values E(ξm | X = x) instead of the un-

conditional means E(ξm). The stronger the stochastic relation between X and ξ, the more

informative the missingness with respect to the estimand ξ is, and the more the shrinkage

effect is reduced in the MG-IRT model compared to ignoring missing responses.
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Model equivalence The MG-IRT model is a special case of the LRM for nonignorable

missing data. Accordingly, the issue of model equivalence is analogous to the LRM as

well (see page 232). In summary, the MG-IRT model is equivalent with respect to the

construction of the latent variable ξ, implying that the item parameters are also equivalent

to the target model. The MG-IRT model is not expected to be equivalent to B-MIRT

and LRM models with continuous functions f (D). However, if an appropriate function

X = f (D) can be found that preserves the essential information of D with respect to

the estimands in the target model, then the bias reduction will be close to that of B-

MIRT models and LRMs for missing responses that are NMAR. Looking in more detail

at the the sufficient condition D ⊥ Ymis | (Yobs, X) underlying MG-IRT models reveals that

this assumption will most hold if the number of groups is large or the latent response

propensity is discrete. Indeed, at least theoretically, D can result from latent classes

that refer to typical missing patterns. To use latent class analysis to model D is not

considered here. However, this approach is theoretically close to pattern mixture models

and potentially worthwhile to pursue. If a continuous latent response propensity θ exists, it

might be difficult to find an appropriate discrete function f (D) that can serve as a grouping

variable in an MG-IRT model. In such cases, the MG-IRT model is likely to reduce

the bias less compared to MIRT models or LRMs with continuous functions. MG-IRT

models include different variables than MIRT models. As LRMs, multiple group models

are difficult to compare with MIRT models in term of model fit. Since the measurement

model of θ based on D is not included in the MG-IRT model, the latter is typically much

more parsimonious unless the number of groups is extremely high. If information criteria

are used to compare MIRT and MG-IRT models, then more parsimonious models are

typically preferred. Recall that this does not mean that the more parsimonious model

accounts better for missingness.

MG-IRT models as an alternative to high-dimensional MIRT models for nonignor-

able missing data For the reanalysis of the data of PISA 2006, Rose, von Davier, and

Xu (2010) simply created three strata based on D̄. This approach might be justifiable if a

unidimensional latent variable θ can be constructed based on D. As outlined in the pre-

vious section, D̄ or SD can be seen as manifest test scores that are increasingly correlated

with θ when the number of items increases. Hence, the grouping variable for the MG-

IRT model that is generated using D̄ or SD is constructed by fallible measures of θ. The

situation becomes difficult if θ underlying D is multidimensional, especially with low cor-

relations Cor(θl, θk). If between-item multidimensional holds for the measurement model
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of θ, then groups can be formed as combinations of all stratified variables S Dl, where S Dl

is the sum of only those response indicators Di that constitute the measurement model of

θl. Additionally, if within-item multidimensionality exists in the measurement model of

θ,then the use of S Dl is critical. Alternatively, the estimates θ̂l can be estimated in a first

step fitting an MIRT model to f (D). In a second step, the combinations of all stratified

estimates θ̂l can be used as a grouping variable in the MG-IRT model. This approach

is recommended if LRMs are not available. This approach avoids the use of high di-

mensional MIRT models and can also reduce the missing-related bias substantially. The

determination of the number of groups might depend on several factors such as the sample

size, the number of dimensions θl, and the desired accuracy. The more fine-grained the

stratification, the more precise is the adjustment of the bias due to missing data. Fortu-

nately, the empirical results of Rose et al. (2010) suggest that stratification can be pretty

rough. They used only three strata and yielded nearly identical results compared to the

between-item multidimensional IRT model. This will be demonstrated next, applying the

MG-IRT model to Data Example A.

Application of the MG-IRT model to Data Example A In Data Example A, the la-

tent response propensity is known to be unidimensional. The sum score SD was used

to form groups. Three strata were determined in such a way that the resulting groups

are similar with respect to the group sizes. Group 1 consisted of n1 = 676(33.8%) with

13 or less answered items. Test takers with 14 - 17 completed items were in group 2

with n2 = 722(36.1%). Group 3 consisted of cases with more than 18 item responses

(n3 = 602(30.1%)). Two MG-IRT models were applied: The MG-IRT Rasch model

(1PL-MG-IRT model) and the MG-IRT Birnbaum (2PL-MG-IRT model). The item and

person parameter estimates were compared with the true values underlying Data Exam-

ple A and with the respective estimates of the MIRT models and LRMs for nonignorable

missing data. Mplus was used for parameter estimation. The input file is given in Listing

A.8 in Appendix 5.3. In order to obtain comparability of the estimates from the different

models, the expected value E(ξ) over the groups was fixed to one using nonlinear con-

straints. Hence, the weighted sum of the three group means E(ξ | X = x) was set to zero.
25. The distribution of the ξ differs considerably. The estimated means were ξ̄1 = −0.735

(s2
1(ξ) = 0.579) in group one, ξ̄2 = 0.007 (s2

2(ξ) = 0.507) in group two, and ξ̄3 = 0.816

(s2
3(ξ) = 0.599) in the third group. Due to Cohen’s d, the effect sizes of the pairwise mean

25E(ξ) = E[E(ξ | X)] =
∑3

x=1 P(X = x)E(ξ | X = x). The probabilities P(X = x) were replaced by the
relative frequencies of the three groups.
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differences were large. Using the pooled standard deviation (spool(ξ) = 0.748) to deter-

mine Cohen’s dxx′ between group X = x and X = x′, the effect sizes were d21 = 0.991,

d32 = 1.081, and even d31 = 2.074. This reflects the strong dependency between the pro-

portion of missing data and the underlying variable ξ. Large effect sizes were also found

in real data analyses. For example, Rose et al. (2010) applied the MG-IRT model to

the PISA 2006 data with the stratified response rate as grouping variable. They reported

effect sizes of dxx′ ≈ 1 in the mean differences of the latent variables. These differences

in the latent ability distribution between groups of different proportions of missing data

are taken into account in the parameter estimation in MG-IRT models. This corrects for

nonignorable missing responses. In turn, if the strata do not vary with respect to the

distribution of ξ or ξ, in the multidimensional case, and the assumption of conditional

stochastic independence given by Equation 4.155 hold then the missing data mechanism

is ignorable.

The estimated item difficulties obtained by the 1PL-MG-IRT model were compared

with the true item difficulties. Figure 4.33 reveals that β̂i from the 1PL-MG-IRT model

and the B-MIRT model are nearly identical. A comparison with the true values βi shows

that the systematic bias found in unidimensional model of ξ that ignores missing data

has vanished. Accordingly, the slope of the regression of the estimates β̂ on the true

item diffulties was not significantly different from one (slope = 0.970, SE = 0.017, t =

−1.742,p = 0.174), and the intercept was very close to zero (intercept < 0.001, SE =

0.022, t = 0.027,p > 0.999). Accordingly, the mean bias of the estimates β̂i in the MG-

IRT model is 0.004. This is also not significantly different from zero (t = 0.179, df = 29,

p = 0.859). The mean squared error was MSE = 0.016 and, therfore, exactly the same

as in the B-MIRT Rasch model. In the lower two graphs of Figure 4.33 the estimates α̂i

of the item discriminations are shown. As expected, the estimates of the 2PL MG-IRT

model and the 2PL B-MIRT model are very similar. The mean item discrimination was
¯̂α = 1.014. This is not significantly different from one (t = 0.633, df = 29, p = 0.532).

The mean squared error was the same as in the 2PL B-MIRT model (MSE = 0.014).

Finally, the EAP estimates have been compared with the true values of ξ and EAPs

obtained with other IRT models applied to Data Example A. Figure 4.34 summarizes the

results. The colors black, red, and blue in Figure 4.34 mark the three strata of SD which

served as grouping variables in the MG-IRT model. The ellipsoids in the upper left graph

are drawn so that all cases pertaining to the respective group are inside. The correlation

between ξ and the EAPs from the MG-IRT model was r(ξ, ξ̂EAP) = 0.867. This is slightly

lower than in the 1PL-B-MIRT model (r(ξ, ξ̂) = 0.883) and the 1PL-LRM (r(ξ, ξ̂) =
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Figure 4.33: True and estimated item difficulties of the MG-IRT and the 1PL-BMIRT model (up-
per row), and true and estimated item discriminations of the 2PL-MG-IRT and the
2PL-BMIRT model (lower row) using Data Example A.
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0.882). This illustrates the distributional differences of ξ across the strata for both the true

values of ξ and the EAP estimates. The bias reduction of the EAP estimates becomes

Figure 4.34: EAP estimates from the 1PL-MG-IRT model compared with the true values of ξ (upper
left), and the EAP estimates from alternative models applied to Data Example A. The
grey lines represent the bisectric.

obvious in the upper right graph of Figure 4.34. Here, the estimates of two models, the

unidimensional 1PLM that ignores missing data and the 1PL-MG-IRT model, are plotted.

The variance s2(ξ̂EAP) = 0.632 in the model that ignores missing data is considerably

lower than s2(ξ̂EAP) = 0.706 in the MG-IRT model. As explained previously, this is due
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to including the conditional distribution g(ξ | X = x) in the EAP estimation. Since X =

f (D), the distributional differences of ξ given D are taken into account. The additional

information of D with respect to ξ is reflected by the reduced shrinkage effect. The

EAPs tend toward the respective exptected value E(ξ | X = x) instead of the unconditional

expected value E(ξ).

In the introduction of this section it was argued that the LRM and the MG-IRT model

are conceptually equivalent. Both rest upon the inclusion of functions f (D). In the MG-

IRT model these functions have to be discrete, whereas (quasi-)continuous26 functions can

be used in the LRM. Therefore, the correlation between the EAPs of the 1PL-LRM model

and the 1PL-MG-MIRT model is r = 0.985. However, the impact of the categorization

of SD can be seen graphically in the lower two graphs of Figure 4.34. Recall that the

correlation between the EAPs of the B-MIRT Rasch model and the 1PL-LRM was r >

0.999. Obviously, the use of a roughly categorized function of SD lowers the correlation

with the true latent variable ξ as well as with the EAP estimates from the MIRT models

and the LRM. On average, the effect seems negligible, but at the individual level the

differences may be substantial for some cases. The largest difference between the EAP

estimates of the 1PL-LRM and the 1PL-MG-IRT model in Data Example A was 0.376.

Considering that the standard deviation of ξ within the strata is on average spool(ξ) =

0.747, this difference corresponds to half a standard deviation. Especially in cases of

the strata with a maximum of 13 answered items, non-negligible differences between the

EAP estimates occurred. Insofar, the LRM and the MIRT models seem to be superior to

the MG-IRT model with respect to Bayesian person parameter estimates at the individual

level.

4.5.6 Joint Modelling of Omitted and Not-reached Items

So far, in this work differences in item nonresponses resulting from not-administered

items, omissions, and not-reached items at the end of the test have not been addressed

in detail. However, these differences have implications regarding the suitability of the

different model-based approaches that were examined in the previous sections. Planned

missing data result from not-administered items due to the item design, such as balanced

incomplete block design or multi-matrix sampling (Frey et al., 2009; Van der Linden,

Veldkamp, & Carlson, 2004). Since planned missing data are typically MCAR, they are

26 D is a discrete variable with 2I values - the missing patterns. Hence, strictly speaking, the functions D

are always discrete. However, if the function f (D) has a large number of possible values, then it can be
treated as continuous variable in a LRM.
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not further considered here. However, they need to be distinguished from omitted and

not-reached items. Note that if the booklets are randomly assigned to test takers in a

multi-matrix sampling design, then planned missing data due to not-administered items

are stochastically independent of the person variable U and, therefore, of any function

f (U) such as the latent ability ξ and θ. However, missingness due to omitted or not-

reached items are potentially related to the U and (ξ, θ) respectively. If D is used as an

indicator of a latent response propensity in IRT models for missing responses, then the

indicators Di should only indicate the responses or nonresponses of the items actually

administered to the respective test taker. Otherwise, Di should be regarded as missing as

well. In this case, it is ensured that D is an indicator of a person?s tendency to respond

to test items not confounded by information of test design independent of the test takers.

The remaining question is whether missing responses due to omitted or not reached items

can be treated equally or not. This question will be answered in the remainder of this

section.

4.5.6.1 Differences Between Omitted and Not-reached Items

In both cases - omitted and not-reached items - the resulting missing responses w.r.t. Yi

can be MCAR, MAR, or NMAR. However, there is some empirical evidence that the

probability of omissions and the probability not to reach the end of the test are related.

Culbertson (2011, April) found that the tendency to omit items increases with lower pro-

ficiency levels, whereas the probability of not reaching the end of the test decreases with

lower ability levels. Possibly, test takers with high omission rates reach the end of the

test faster. Hence, the more omitted responses, the less not-reached items. Especially

in timed tests, such relations can be expected. In such cases, it seems inappropriate to

handle omitted and not-reached items equally. For example, it seems suitable to assume a

single latent response propensity in a B-MIRT model for nonignorable missing responses

is inconsistent with a negative correlation between the probability of omissions and the

probability not to reach the end of the test. Apart from empirical evidence suggesting

different treatments of omitted items and not-reached items, there are important formal

differences.

To illustrate the difference between missing data due to omissions of items and missing

data due to not-reached items, a small data example D = d with N = 40 test takers and

I = 10 items was simulated. Three conditions were considered: (a) missing responses re-

sulting from not reached items, (b) missing responses due to omissions, and (c) item non-

responses due to omissions of items and failing to reach the end of the test. The resulting
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indicator matrices d with the missing data patterns are presented graphically in Figure

4.35. The persons are ordered according to their number of reached items. The items are

ordered with respect to their position in the test. If missing responses occur solely due

to not-reached items, then the response indicator matrix shows a perfect Guttman pattern

(Andrich, 1985; Guttman, 1950). In terms of missing data theory, this is a monotone

missing pattern (Little & Rubin, 2002; McKnight et al., 2007) that is often found in lon-

gitudinal studies due to attrition over time. In contrast, the second graph in Figure 4.35

gives the missing data pattern when the time to complete the test was unlimited. Hence,

all test takers completed the test and missing responses resulted only from omissions. In

this case, the pattern of the indicator matrix is non-monotone. Interestingly, the different

Figure 4.35: Missing data patterns due to not-reached items, omitted items, or both.

missing patterns have implications with respect to the appropriateness of missing data

methods to handle item nonresponses. In the case of not-reached items, D can always be

arranged to follow a perfect Guttman pattern. Such a pattern indicates particular depen-

dencies between the missing indicator variables Di. Let the index i indicate the position

of the items in the test. If item i is the first item not reached by a test taker, then the

probability to complete item Yi+1 is zero. Hence, P(Di+1 = 1 |Di = 0) = 0. In contrast,

P(Di−1 = 1 |Di = 0) = 1. This is trivial since Yi−1 is always reached if item i is the first
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not-reached item. Without further assumptions, this implies conditional stochastic inde-

pendence Di,k ⊥ U |Di as well as Di,k ⊥ (ξ, θ) |Di since (ξ, θ) = f (U). This violates the

essential assumption of conditional stochastic independence Di ⊥ (D−i,Y) | (ξ, θ) in all

MIRT models for nonignorable missing data discussed in this dissertation. Consequently,

not-reached items should not be used as indicators in stochastic measurement models of

latent response propensity. Only missing responses due to omissions can be appropriately

handled by MIRT models for nonignorable missing data, since no deterministic relations

between response indicator variables are implied in this case. The underlying conditional

stochastic independence assumptions can potentially be met if the appropriate dimension-

ality of θ is found and the correct model is specified.

Modelling not-reached items Conclusively, nonignorable missing responses due to

not-reached items need to be taken into account in a different way. Glas and Pimentel

(2008) proposed a special MIRT model for speeded tests, which typically suffer from

substantial proportions of not reached items. This model is not considered in detail here.

It should only be noted that the vector D is modeled by a sequential model (Tutz, 1997),

which is closely related to the steps model for ordinal items (Verhelst, Glas, & De Vries,

1997). In both models it is assumed that the items consist of more than two ordered

response categories and that each item is solved step by step. In the steps model , each re-

sponse category is regarded as a Rasch-like item, where the item indicating response cat-

egory h is only administered if h−1 was solved successfully. According to this idea, Glas

and Pimentel adapted the matrix of indicator variables where only the first not-reached

item is Di = 0, all previous response indicators are D j<i = 1, and all D j>i are treated

as missing values. Hence, the matrix of response indicators contains missing data. Ad-

ditionally, certain restrictions with respect to the thresholds in the sequential model are

required. For more details of this model, see Glas and Pimentel (2008). The advantage

of this approach is that the violation of local stochastic independence is taken into ac-

count. Unfortunately, the combination of sequential models and 1- or 2PLMs are hardly

available in existing software.

In Section 4.5.4 a latent regression IRT model with E[ξ | f (D)] was proposed as an

alternative to complex MIRT models. If the same set of items is applied to all test takers

and missing data result exclusively from not-reached items, then the number of possible

missing patterns D = d is equal to I + 1, with I as the number of manifest items Yi. That

is, the number of responded items can range from zero to I. Since D always follows a

perfect Guttman pattern (see Figure 4.35), all information of the missing pattern D = d is
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already given by the number of reached or not-reached items. Hence, the sum score SD of

the response indicators can be used as an appropriate function f (D) in a latent regression

model E(ξ | SD). In the case of not-reached items, not only c = f (D) but also D = f (SD),

implying conditional stochastic independence D ⊥ Ymis | (SD,Yobs). From Equation 4.151

follows that ML estimation is unbiased given no DIF exists in the measurement model of

ξ depending on SD.

If ξ is M-dimensional, then the regression E(ξ | SD) consists of M univariate regres-

sions E[ξm | SD], with m = 1, . . . ,M. In real applications, each of these regressions need

to be correctly specified. Possible non-linear dependencies can be taken into account by

polynomial regressions E[ξ | SD] = b0 + b1SD + . . . + bkS
k
D

. As shown in Section 4.5.4,

the LRM can easily be extended (see page 235). For example, further covariates repre-

sented by Z can be included in a multiple latent regression E[ξ | SD, Z]. More complex

item designs, such as balanced incomplete block designs can be taken into. Since each

booklet consists of a different selection of items, the distribution of SD as well as the

stochastic relationship between ξ and SD might vary across the test booklets. In this case,

the booklet itself serves as a moderator variable. This can be taken into account by the

inclusion of indicator variables I1, . . . , IH of the test booklets 1, . . . , h, . . . ,H and interac-

tion terms D · I1, . . . ,D · IH in the latent regression. Alternatively, a multiple group model

can be applied where the assigned booklets are used as the grouping variable. Under the

assumption of measurement invariance, the item parameters are constrained to be equal

across the groups. Additionally, group-specific regression Eh(ξ | SD) are specified whose

parameters are allowed to vary across groups to account for interaction effects between

the assigned booklet and SD with respect to ξ. This model is less restrictive than the single

group model with E(ξ | SD, I1, . . . , IH) since heterogeneous variances and covariances of

the latent residuals ζm are allowed across groups.

The model proposed by Glas and Pimentel as well as the LRM and its extensions dis-

cussed here are limited to situations where item nonresponses result purely from not-

reached items. However, in most real educational and psychological testings, missing

data arise from both - intentional omissions of items and failing to complete the test due

to time limits or a lack of motivation. Such situations result in complex missing data

patterns such as the graphically represented one in the right graph of Figure 4.35. Here

it is argued that missingness needs to be modeled differently depending on the reason of

item nonresponse - omitted or not-reached items. A required joint model for omitted and

not-reached items is proposed that accounts for respective peculiarities of both kinds of

item nonresponses.
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4.5.6.2 Developing a Joint Model of Omitted and Not-reached Items

In order to develop a joint model of omitted and not reached items, it is necessary to

distinguish between D(O) and D(N). D(O) is the I-dimensional response indicator variable

with the elements D
(O)
i

which indicates whether item i is omitted or not, so that

D
(O)
i
=


1, if Yi is not omitted

0, if Yi is omitted.
(4.160)

D(N) is the I-dimensional response indicator variable with the elements D
(N)
i

which indi-

cate whether item i is reached or not. That is,

D
(N)
i
=


1, if Yi is reached

0, if Yi is not reached.
(4.161)

Note that neither D
(O)
i

nor D
(N)
i

indicate the observational status of Yi that is given by Di

(see Equation 2.2). An item response is only observable if the item is reached and not

omitted by the test taker. Hence, Di is a function f (D(O)
i
,D

(N)
i

) given by the following

assignment rule

Di =


1, if D

(O)
i
= 1 and D

(N)
i
= 1

0, if D
(O)
i
= 0 and/or D

(N)
i
= 0.

(4.162)

Accordingly, the probability to observe an item response to item i is

P(Di = 1) = P(D(O)
i
= 1 ∩ D

(N)
i
= 1), (4.163)

and the counter-probability of a missing response is

P(Di = 0) = P(D(O)
i
= 0 ∪ D

(N)
i
= 0). (4.164)

In section 4.5.1 it was examined that D needs to be modeled jointly with Y if the missing

data mechanism is NMAR. Instead of D, the variables D(O) and D(N) are included in

the model, which cover both the information about missingness and the reason of item

nonresponses - omitted or not-reached. Hence, ML estimation is based on a the joint

distribution g(Y, D(O), D(N)). An adequate model for omitted and not-reached items can

be derived considering some peculiarities of the variables in the model.
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Let there be a sample of N test takers answering the same set of items in the same order.

That is, the single unit trial (see Equation 2.8) is repeated N times. The matrix of item

responses Y = y as well as D(O) = d(O) and D(N) = d(N) are N × I-matrices. The general

ML estimator of the complete data is

L(y, d(O), d(N); ι,φ) ∝ g(Y = y, D(O) = d(O), D(N) = d(N); ι,φ) (4.165)

∝ g(Yobs = yobs,Ymis = ymis, D
(O)

obs
= d

(O)

obs
, D

(O)

mis
= d

(O)

mis
, D(N) = d(N); ι,φ)

Due to factorization, this can be written as

L(y, d(O), d(N); ι,φ) ∝ g(D
(O)

obs
= d

(O)

obs
, D

(O)

mis
= d

(O)

mis
|Yobs = yobs,Ymis, D

(N) = d(N);φ)

·g(Yobs = yobs,Ymis = ymis | D(N) = d(N); ι,φ)

·g(D(N) = d(N);φ). (4.166)

The first conditional distribution refers to the model of the indicator vector D(O) depend-

ing on Y and D(N), the second conditional distribution refers to the target model of Y

which is of substantial interest, and the last distribution refers to the distribution of the

indicator vector D(N). Interestingly, this model is kind of a mixture of a selection model

and a pattern mixture model. However, Equation 4.166 serves only as a starting point in

order to derive the final model for omitted and not-reached items. In the beginning of his

section it was shown that the indicators D
(N)
i

of D(N) should not be used in a probabilistic

measurement model that indicates a latent response propensity. However, it could also be

demonstrated that all information of D(N) is already given by the sum score S (N), which is

a function f (D(N)). Hence, S (N) can be used in a LRM. On the other hand, MIRT models

for item nonresponses as derived in Section 4.5.3 are appropriate for omitted responses.

Hence, omitted responses could be appropriately taken into account by a measurement

model of a latent response propensity θ based on D(O). Hence, a joint model for nonig-

norable item nonresponses due to omitted and not-reached items is an MIRT model with

two latent variables ξ = ξ1, . . . , ξM and θ = θ1, . . . , θP indicated by D(O) that includes a

latent regression model with S (N) as the independent variable. Note that θ represents the

person?s tendency to respond to test items irrespective of whether the items are reached

or not. Hence, missing data potentially occur not only in manifest variables Yi but also

in D
(O)
i

if not-reached items exist. The black squares in the right graph of Figure 4.35

indicate missing data in both y and d(O). As in the case of Y, it is important to know

whether the missing data mechanism w.r.t. D(O) is ignorable or not. It is likely that the

number of not-reached items and the probability to omit a particular item are stochasti-
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cally dependent. For example, let there be a timed achievement test. The tendency to omit

items might be related to the probability to answer the items correct, implied by stochastic

dependency between the latent ability and the latent response propensity. It is reasonable

to assume that persons with lower ability levels need more time to process single items,

leading to a lower number of items that can be reached within the time limit. In this

case, the proportion of omitted items and the number of not-reached items are positively

correlated. Nevertheless, there might be applications where the omission rate increases

with decreasing numbers of not-reached items. For example, in low-stakes assessment,

persons with lower proficiency levels might show higher rates of omissions. If test takers

quickly decide to omit the items, then they might reach the end of the test even faster than

more proficient test takers who try to answer items carefully. In this case, the correlation

of the proportion of not-reached items with the latent ability as well as with the omission

rate would be negative. The tendency to omit items, however, would still be positively

correlated with the persons’ latent ability. Other conditions might be plausible as well.

In any case, the missing data mechanism w.r.t. D(O) should be expected to be dependent

on the number of not-reached items, suggesting nonignorable missing data in d(O). The

missing data mechanisms w.r.t. D(O) can be equivalently defined as in the case of Y. The

only difference is that Y = (Yobs,Ymis) needs to be taken into account. Considering the

joint distribution of (D
(O)

obs
, D

(O)

mis
,Yobs,Ymis, S

(N)), the missing data mechanism w.r.t. D(O)

is

(a) MCAR if D(O) ⊥ (S (N),Y),

(b) MAR if D
(O)

mis
⊥ S (N) | (D

(O)

obs
,Yobs), and

(c) NMAR if D
(O)

mis
✚✚⊥ S (N) | (D

(O)

obs
,Yobs).

If additional observed covariates are included (i. e. in a background model), then the

definitions are quite close; The missing data mechanism w.r.t. D(O) is

(a) MCAR if D(O) ⊥ (S (N),Y, Z),

(b) MAR if D
(O)

mis
⊥ S (N) | (D

(O)

obs
, Z,Yobs), and

(c) NMAR if D
(O)

mis
✚✚⊥ S (N) | (D

(O)

obs
,Yobs, Z).

For reasons of clarity, however, covariates are not included in the following derivations. In

a joint model for missing responses due to omitted and not-reached items, the missingness

252



in Y and D(O) needs to be taken into account. The LRM with E(ξ | S (N)) was found to be

appropriate to account for item-nonresponses in Y due to not-reached items. Based on the

same rationale, the LRM with E(θ | S (N)) accounts for missing data in D(O) given certain

assumptions hold true. In particular, it is assumed that there is no DIF with respect to

the manifest variables Yi and D
(O)
i

depending on S (N) and other manifest variables in the

model. Furthermore, local stochastic independence of all Yi and Di, with i = 1, . . . , I, is

assumed. Formally, that means that

Yi ⊥ (Y−i, D, θ, S
(N)) | ξ ∀i = 1, . . . , I, (4.167)

and

D
(O)
i
⊥ (D

(O)

−i
,Y, S (N)) | θ ∀i = 1, . . . , I. (4.168)

The MML estimator of the complete data is then

L(y, d(O), s(N); ι,φ) ∝
N∏

n=1

∫

RM×P

[
g(D

(O)

n;obs
= d

(O)

n;obs
, D

(O)

n;mis
= d

(O)

n;mis
| θ;φ) (4.169)

·g(Yn;obs = yn;obs,Yn;mis = yn;mis | ξ; ι)g(ξ, θ | S (N)
n = s(N)

n ;φ)
]
d(ξ, θ).

Compared to the Equations 4.165 and 4.166, the distribution g(D(N) = d(N);φ) has been

skipped from the MML estimatior since D(N) is replaced by S (N), which is used as a

purely exogenous variable in the two latent regression models E(ξ | S (N)) and E(θ | S (N)).

As in common regression models, the distribution of the independent variables are not

required to be modeled. Following the ideas of the MIRT models for omitted responses,

the conditional distributions and g(D
(O)

obs
= d

(O)

obs
, D

(O)

mis
= d

(O)

mis
| θ;φ) are replaced by I model

equations for the response indicators D
(O)
i

. Here, the one- and the two-parameter models

are proposed, so that

P(D(O)
i
= 1 | θ;φ) =

exp(γi;θθ − γi0)

1 + exp(γi;θθ − γi0)
. (4.170)

Alternatively, one of the within-item multidimensional 1- or 2PL models as proposed

in Section 4.5.3.3 can be used. In this case, the assumption given by Equation 4.168

is modified so that conditional stochastic independence D
(O)
i
⊥ (D

(O)

−i
,Y, S (N)) | (ξ, θ) is

253



assumed for all i = 1, . . . , I

P(D(O)
i
= 1 | θ∗, ξ;φ) =

exp(γi(ξ, θ∗)T − γi0)

1 + exp(γi(ξ, θ∗)T − γi0)
. (4.171)

The conditional distribution g(Yobs = yobs,Ymis = ymis | ξ; ι) refers to the target model,

that is, the measurement model of the latent ability ξ. Accordingly, the respective model

equations of the IRT measurement model used for the items Yi, such as the uni- or multidi-

mensional one- or two-parameter models, are used. The observed data likelihood results

from the complete data likelihood by integrating over all possible values of (Ymis, D
(O)

mis
)

that are consistent with the observed missing data pattern D = d (see Section 4.5.1).

Inserting the model equations of the items Yi and the indicators D
(O)
i

, the observed data

likelihood L(yobs, d
(O)

obs
, s(N); ι,φ) of the joint model for omitted and not-reached items can

be written as

L(yobs, d
(O)

obs
, s(N); ι,φ) =

N∏

n=1

∫

RP×M

{ I∏

i=1

P(Yni = yni | ξ, ι)d
(O)
ni
·d(N)

ni P(D(O)
ni
= d

(O)
ni
| θ;φ1)d

(N)
ni

g(ξ, θ | S (N)
n = s(N)

n ;φ2)
}
dξdθ. (4.172)

Because of the exponents d
(O)
ni
· d(N)

ni
and d

(N)
ni

, only the observed responses of Yi and D
(O)
i

remain in the observed data likelihood function. Note that the parameter vector φ has been

divided into two parts φ1 and φ2. φ1 consists of the parameters of the model of D(O), such

as γ and the thresholds γi0. The parameters inφ2 consist of the parameters of the two latent

regressions E(ξ | S (N)) and E(θ | S (N)), which are the regression coefficients, intercepts and

residual variances Var(ζξm) and Var(ζθl), and covariances Cov(ζξm , ζξ j,m
),Cov(ζθl , ζθk,l

) and

Cov(ζξm , ζθl). ζξm is the residual of the latent regression E(ξm | S (N)), and ζθl is the residual

of the latent regression E(θl | S (N)). The basic idea is that the conditional distribution

g(ξ, θ | S (N)
n = s

(N)
n ;φ2) is modeled by a multivariate distribution of the latent variables with

the expected value E[(ξ, θ) | S (N)]. It is assumed that (ξ, θ) is conditionally multivariate

normal given S (N), so that the latent residual ζ = (ξ, θ)T − E[(ξ, θ)T | S (N)] is normally

distributed with ζ ∼ N(0,Σζ). Σζ is the variance-covariance matrix of ζ. In this form,

the joint model for omitted and not-reached items can be estimated in available software

packages that allow for estimating multidimensional IRT models with latent regressions,

such as Mplus (Muthén & Muthén, 1998 - 2010). Alternatively, other distributions than

the multivariate normal distribution of ζ could be chosen when MML estimation is used.
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Example For illustration, the hypothetical example of the 2PL-BMIRT model depicted

in Figure 4.23 is extended here to account for missing data due to omitted items and not-

reached items. The resulting model is shown in Figure 4.36. Comparing the two models

(cf. Figures 4.23 and 4.36) highlights the differences between the MIRT model for omitted

items and the joint model for omitted and not-reached items. In the latter, the indicators

D
(O)
i

instead of Di constitute the measurement model of the latent response propensity

θ. Furthermore, a latent regression model has been added with the number of reached

items S (N) as predictor. Four linear27 regressions E(ξ1 | S (N)), E(ξ2 | S (N)), E(θ1 | S (N)),

Figure 4.36: Graphical representation of the joint MIRT model for omitted and not-reached items.

and E(θ2 | S (N)) are included. It is common in SEM and latent trait models to combine

these regressions to multivariate regression E[(ξ, θ)T | S (N)], with (ξ, θ) = (ξ1, ξ2, θ1, θ2).

27The LRM can easily be extended to the case of non-linear regressions by the inclusion of polynomial
functions of S (N) as predictors in the LRM.
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Accordingly, the vector of latent variables can be written as

(ξ, θ)T = E[(ξ, θ)T | S (N)] + ζ. (4.173)

In the case of linear regressions, that is,

(ξ, θ)T = b0 + b1S (N) + ζ (4.174)

ξ1

ξ2

θ1

θ2


=



b10

b20

b30

b40


+



b11

b21

b31

b41


S (N) +



ζξ1

ζξ2

ζθ1

ζθ2


. (4.175)

The non-diagonal elements in the covariance matrix Σζ are equal to the conditional co-

variances Cov(ξm, ξ j,m | S (N)), Cov(θl, θk,l | S (N)), and Cov(ξm, θl | S (N)), which are depicted

as grey lines in Figure 4.36. If the model is correctly specified, and the model assump-

tions hold true, then the covariances Cov(ξm, θl | S (N)) can be used to study the conditional

stochastic independence between the tendency to omit items and the latent ability given

the number of not-reached items which are implied by the stochastic dependencies be-

tween latent variables θ and ξ. The regression coefficients of E(ξ | S (N)) are informative

with respect to the regressive dependency of the latent ability on item nonresponses due

to not-reached items. Hence, the parameters of the regressions as well as the covariance

structure of the latent residuals are informative about the missing data mechanism. If all

conditional covariances Cov(ζθl , ζξm | S (N)) = 0 and the assumptions 4.167 and 4.168 are

valid, then conditional regressive independence Yi ⊥ D(O) | S (N) is implied for all vari-

ables Yi
28. In this case, missing data resulting from omissions of items are not required

to be modeled jointly with Y if the regression E(ξ | S (N)) is included. The measurement

model of θ based on D(O) can be left out, which may simplify the model considerably.

Caution is required in order to decide whether S (N) can be left out of the model, since

regressive independence between ξ and S (N) is not sufficient. Recall that the missing data

mechanism w.r.t. D(O) is potentially nonignorable regardless of the stochastic relationship

between ξ and S (N). This is the case if the number of reached items and the tendency for

omissions indicated by D(O) are stochastically dependent. The missing data mechanism

w.r.t. D(O) is then potentially MAR or even NMAR. S (N) needs to be included in the la-

tent regression E(θ | S (N)) to ensure unbiased parameter estimation in the model of D(O),

28In the case of dichotomous variables, this conditional regressive independence implies conditional
stochastic independence Y ⊥ D(O) | S (N).
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which is essential to account for nonignorable missing response w.r.t. Y due to omissions.

Thus, given the missing data mechanism w.r.t. Y is NMAR due to omitted responses,

S (N) can be left out only if two conditions hold true: (a) Ymis ⊥ S (N) | (Yobs, Dobs) and (b)

D
(O)

obs
⊥ S (N) | (Yobs, Dobs). Unfortunately, these conditions cannot be tested in application.

It is recommended to skip the LRM with S (N) only if all regression coefficients of the

multivariate regression E[(ξ, θ)T | S (N)] are zero. Even though this assumption is stronger,

it is testable in application.

Extensions of the model As in any regression model, valid inference depends on the

correct specification of the model. Nonlinear regressions E(ξm | S (N)) and E(θm | S (N)) us-

ing polynomial regressions might be required to model the stochastic dependencies appro-

priately. Alternatively, a saturated model using the indicator variables for the number of

reached items could be used instead of S (N). However, this might result in unnecessarily

complex models if the number of items becomes large. The model can also be extended

by inclusion of additional covariates Z j in the background model so that E(ξm | S (N), Z)

and E(θm | S (N), Z). As previously explained, this also allows to account for not-reached

items in more complex test designs. For example, in balanced incomplete block designs,

indicator variables for the different test booklets could be used. If the booklet moderates

the stochastic dependency between the latent variables in the model - here ξ and θ - then

interaction terms with the indicators of the booklets and the number of not-reached items

can be included in the latent regression model. Alternatively, the joint model for omitted

and not-reached items can be combined with a multiple group model with the assigned

test booklet as the grouping variable. Under the assumption of measurement invariance,

the item parameters are constrained to be equal across the groups. The parameters of the

regressions E(ξ | S (N)) and E(θ | S (N)), however, can be different across groups to allow for

interaction between the assigned booklet and S (N) with respect to the latent variable.

Practical recommendations Many other variants, combinations, and extensions of the

models are thinkable, which were not discussed here. It should only be noted that a

considerable flexibility exists in combining different models such as MIRT models, latent

regression models, and multiple group models. In application, the aim is to find the

most parsimonious but sufficient model that accounts for item nonresponses. This might

become an increasingly challenging task in complex measurement models and complex

test designs. In real applications it is strongly recommended to approach the final model

step by step starting with exploring D and D(O) respectively and finding an appropriate
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model for the response indicator vector. The findings should be taken into account in the

joint model of (D,Y) or (D(O), D(N),Y) respectively. If the model becomes too complex,

then the model complexity can be reduced. For example, instead of modeling (D(O),Y)

jointly by a measurement model with two latent variables ξ and θ and the latent regression

model including S (N), person parameter estimates θ̂ can be estimated in a first step using

only the measurement model of θ based on D(O) including the latent regression E(θ | S (N)).

In a second step, only the measurement model of ξ based on Y is estimated including

the latent regression E(ξ | θ̂, S (N)). In this case, D(O) can be left out in the second step.

This may substantially reduce the number of manifest and latent variables and the model

complexity, respectively.

4.6 Discussion

The results of Chapter 3 clearly stressed the importance of appropriate methods to han-

dle item nonresponses in IRT measurement models. In this chapter, existing ad-hoc and

model based methods for item nonresponses have been studied in detail. These methods

have been considered in light of missing data theory and well-known missing data meth-

ods, such as imputation methods and ML estimators for missing data. These methods are

well-developed and are regarded as state-of-the-art (Schafer & Graham, 2002). It could

be shown that ad-hoc methods, such as incorrect answer substitution (IAS) and partially

correct scoring (PCS) of item nonresponses, can be regarded as deterministic single im-

putation methods with very strong assumptions not tenable in light of modern missing

data theory. Although especially IAS has often been criticized (Lord, 1974, 1983a; Rose

et al., 2010), it is still commonly used even in prestigious international large scale assess-

ment, such as PISA 2006 (Organisation for Economic Co-operation and Development,

2009b, 2009a). For this reason, IAS was once more addressed here in this thesis. PCS

was initially introduced as an alternative to IAS (Lord, 1974). However, IAS and PCS are

very similar. In fact, IAS can formally be seen as a special case of PCS. To consider an

item nonresponse as an additional response category in a nominal response model (NRM

Moustaki & O’Muircheartaigh, 2000) is a more recent alternative approach also critically

examined here. In a number of papers, multidimensional IRT models for nonignorable

missing data have been discussed in the last years (Glas & Pimentel, 2008; Holman &

Glas, 2005; Korobko et al., 2008; Moustaki & Knott, 2000; O’Muircheartaigh & Mous-

taki, 1999; Rose et al., 2010). These models are of major interest, since strong evidence

exists that item nonresponses are related to the latent ability intended to be measured by
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the test. In this case, the missing data mechanism w.r.t. Y is NMAR. Apart from ed-

ucational and psychological measurement, selection models (SLM) and pattern mixture

models (PMM) have been developed to account for nonignorable missing data. In this

work it was shown that MIRT models for missing responses that are NMAR can be de-

rived from both classes of models under certain assumptions. In multidimensional IRT

(MIRT) models, a distinction is made between within- and between-item multidimen-

sionality. This terminology is also used to classify MIRT models for item nonresponses.

Between-item (B-MIRT) and within-item multidimensional IRT (B-MIRT) models were

typically considered to be equivalent. As shown here, that is not per se true. Consider-

ing the issue of model equivalence, different 1PL- and 2PL-W-MIRT models were the-

oretically derived. The meanings of the latent variables in the different models were

compared. With latent regression models (LRM) and multiple group (MG) IRT models

resting on functions f (D), more parsimonious and computationally less demanding ap-

proaches have been discussed. These approaches were introduced by Rose et al. (2010).

Here the underlying rational is given in detail. MIRT- and MG-IRT models as well as

LRMs are strongly related. It was emphasized that the underlying dimensional structure

of D should be examined carefully, even if LRMs or MG-IRT models are used in order

to find adequate functions f (D) used as independent variables in the LRM or as grouping

variables in MG-IRT model.

In MIRT models, local stochastic independence of the manifest variables Yi and Di is

assumed. The assumption of local stochastic independence Di ⊥ D j | θ is only reason-

able for item nonresponses due to omitted items but necessarily violated in the case of

not-reached items. Hence, MIRT models are only appropriate to account for omissions.

Missing responses caused by not-reached items can be properly handled using LRMs.

Since item nonresponses typically result from both, omitted and not-reached items, a

joint model has been introduced to account for these two reasons of missing responses.

The main results and conclusions of this chapter are summarized next.

4.6.1 Ad-hoc Methods for Item Nonresponses

Ad-hoc techniques to handle item nonresponses are still commonly used in psychological

and educational measurement. IAS and PCS are such methods. Unfortunately, these

methods seem to be very plausible, which may explain their popularity. Nevertheless,

especially IAS was repeatedly criticized (e. g. Culbertson, 2011, April; Lord, 1974,

1983a; Rose et al., 2010). For that reason, both IAS and PCS were once more scrutinized

analytically and by means of simulated data.
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Incorrect answer substitution (IAS) In Chapter 3 it could be demonstrated that IAS is

implicitly applied when the sum score is used as a test score. The alarming results with

respect to bias, validity, and test fairness of the sum score under any missing data mecha-

nism suggest that IAS similarly affects IRT-based item and person parameters. Following

Huisman (2000), IAS can be seen as a naive imputation technique. It is well known that

the unbiasedness of sample-based parameter estimates depends fundamentally on the va-

lidity of the imputation model (e. g. Rubin, 1987; Schafer, 1997; Schafer & Graham,

2002). The imputation model underlying IAS is quite simple; each item nonresponse is

recoded to an incorrect answer. This naive imputation model is correct if the assumption

P(Yi = 1 |Di = 0) = 0 holds true. However, a closer examination reveals that this assump-

tion is hardly tenable in real applications. Test takers have different strategies to answer a

test. Persons may change the order in which they respond to the items. Some start with

answering easier items and processing more demanding items afterwards. Especially in

timed tests, this can result in missing data. However, the persons have a probability

P(Yi = 1 |Di = 0) = P(Yi = 1 | ξ) to solve the item given their proficiency levels. Further-

more, in low-stakes assessments, the willingness for exertion is, on average, pretty low.

Items that are demanding are more likely to beleft out. However, this does not necessarily

imply that the test takers would have had no chance to answer the item correctly if they

had tried to answer it seriously. Proponents of IAS argue that persons decide to omit

items if they feel that they cannot solve an item. Even in this case, IAS is highly ques-

tionable, because IAS implicitly assumes that test takers process items completely and

can perfectly judge whether the result is correct or not. That is, if they „know“ that the

result is incorrect, then they decide to skip the item. This seems unrealistic. Persons may

have a feeling about their performance in the test and on particular items but rarely have

a perfect knowledge about the correctness of their item responses. Apart from these more

informal considerations, IAS is even more dubious considering the formal implications.

The implicit assumption of conditional independence P(Yi = 1 |Di = 0) = 0 under IAS

conflicts with the IRT model that is aimed to be estimated. This was shown in detail by

analytical means. The IRT model equation describes the probability P(Yi = 1 | ξ) regard-

less of the observational status of Yi. Given that no DIF exist with respect to Di, it follows

that P(Yi = 1 | ξ,Di = 1) = P(Yi = 1 | ξ,Di = 0) = P(Yi = 1 | ξ). This is incompatible

with Yi ⊥ ξ |Di = 0 implied by P(Yi = 1 |Di = 0) = 0 under IAS. Finally, it could

be demonstrated that standard ML estimation of item and person parameters applied to

filled-in data sets does not account for the implications of IAS. Conclusively, item and

person parameter estimates are biased. It could be shown that the functional form of ICCs
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under IAS strongly depends on the missing data mechanism w.r.t. Yi when IAS is used. If

the nonresponse mechanism is MCAR, then an upper and a lower asymptote are implied,

so that none of the one- to three-parametric IRT models are appropriate.

In the considerations of the sum score, it was already shown that IAS can also be seen

as a replacement of items Yi by the product variables Y∗i = Yi · Di. If the assumption

P(Yi = 1 |Di = 0) = 0 does not hold true, the variables Yi and Y∗i as well as their dis-

tributions are different. Strictly speaking, a different random experiment (see Section

2.1) is considered if IAS is used that includes an additional step: When Yi is not observ-

able, assign Di the value 0 and set Yi = 0. To change the random experiment means to

consider a different measurement model based on different manifest variables. Since the

latent variable ξ is constructed in a measurement model rather than simply measured, the

meaning of the latent variable may change. Indeed, it could be shown that the variables

Y∗i confound information about test performance and willingness/ability to respond to the

items. Accordingly, the latent variable ξ∗ constructed in a measurement model based on

Y∗i is a mixture of the latent proficiency ξ intended to be measured, and the latent response

propensity θ. The findings were illustrated by simulated data and highlight that missing

responses as well as the handling of them are potentially a threat of validity. Due to the re-

sults of this thesis, IAS cannot be recommended in any application because of unrealistic

assumptions and theoretical inconsistencies with stochastic IRT measurement models.

Partially correct scoring (PCS) To overcome the implausible assumptions of IAS,

Lord (Lord, 1974) proposed a scoring of item nonresponses as partially correct. He as-

sumed that each person that did not process an item i has a positive probability P(Yi =

1 |Di = 0) = c to answer this item. Unfortunately, PCS suffers from similar inconsisten-

cies as IAS. In fact, here it could formally be shown that IAS is a special case of PCS with

c = 0. PCS also assumes Yi ⊥ ξ |Di = 0 implicitly. This is implied by the two underlying

assumptions explicitly made by Lord: (a) a nonresponse occurs only if a test taker does

not know the answer and (b) if a test taker would have answered the missing item, he or

she would have guessed. This reflects Lord’s assumption that a person who did not an-

swer item i is totally undecided which response category is the correct one. Consequently,

the potential response is purely at random, so that c = 1/k is a constant for all persons

regardless of their proficiency level. k is the number of response categories. Considering

the likelihood function, it reveals that PCS is equivalent to replace nonresponses by c. For

that reason, PCS is also a naive imputation method. In his original paper, Lord proofed

that PCS scoring is equivalent to impute missing responses by random draws of Yi with
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the probability c for each response category if N → ∞. However, such random draws

introduce noise into data and may lower stochastic dependencies between variables. Ac-

cordingly, it was hypothesized that item discriminations are increasingly underestimated

with higher proportions of item nonresponses if PCS is used. This could be confirmed

by simulated data. The item discriminations were negatively biased and tend toward zero

with rising proportions of missing responses. The latent variable ξ̂PCS is also constructed

differently. Under the conditions considered here, ξ̂PCS is nonlinear function of both the

latent ability ξ of interest and the latent response propensity θ. Finally, it was shown that

standard ML estimators of IRT parameters used in combination with PCS have improper

characteristics. As in the case of IAS, standard ML estimation methods do not account

for the implications of PCS.

Therefore, PCS as well as IAS have been proved to be inappropriate in almost all real

applications. Due to theoretical inconsistencies as well as implausible assumptions, the

use of IAS and PCS is generally not recommended.

Nominal Response Model To consider an item nonresponse as an additional response

category is an approach that ranges between data augmentation methods and model based

methods. With data augmentation methods it shares the property that the data matrix used

for model parameter estimation does not contain missing data anymore. The approach can

also be seen as model based method, since an explicit stochastic model for item nonre-

sponses is included. This approach seems to be promising since missing data are modeled

by an additional response category and allows for stochastic dependencies between Di and

ξ. In fact, by means of simulated data, it could be shown that the item parameters of the

measurement model of a unidimensional latent variable ξ can be estimated unbiasedly

when the values of ξ are known. This is unrealistic in almost all real application. If both

item parameters and individuals values of the latent ability are unknown and aimed to be

estimated, then similar problems arise as in the case of IAS and PCS. The reason is that

the manifest items Yi are replaced by a new random variable - here denoted by Ri. If Yi is

dichotomous, then the variables Ri used in NRM have three response categories: Ri = 0

indicates a wrong response, Ri = 1 indicates a correct answer, and Ri = 2 when the item

response is missing. Therefore, Ri is a function f (Yi,Di). As in the case of IAS, the mani-

fest variables in the measurement confound two types of information: the performance in

the test given by correct and incorrect responses and the willingness or the ability to pro-

vide any response. Recall that the latent variable is not simply measured but constructed

on the basis of the manifest variables that refer to a particular random experiment. In the
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NRM, the constructed latent variable is also a kind of linear combination of ξ and the la-

tent response propensity θ. This reflects the fusion of two different variables Yi and Di into

Ri, the variables in the measurement model of ξNRM. It could be shown analytically and

empirically that the NRM will be useful in one particular case. That is, if the correlation

of the latent response propensity θ and the latent variable ξ is equal to one. That means

that the tendency to respond to item i depends solely on the latent ability. However, in

this case the use of the NRM is without any added value, since the response indicators Di

could also be used as additional items indicating ξ directly. If the latent response propen-

sity θ and the latent variable ξ are not linear functions of each other, then the NRM will

fail to estimate the correct item and person parameters. Note that the term „biased“ pa-

rameter estimates might be misleading here. The problem is not that the sample based

estimates suffer from inconsistency. Rather, the true model parameters in the IAS and

NRM are different from those in the measurement model of ξ based on Y, which are actu-

ally of interest and aimed to be estimated in application. The measurement models using

Y, Y∗, or R consist of different manifest variables with different distributions, leading to

differently constructed latent variables. Thus, strictly speaking, the model parameters and

their sample-based estimates become incomparable. From these findings it is concluded

that the use of the NRM based on Ri is also questionable in many real applications. The

implicit assumption of a perfect correlation between the tendency to respond to the items

and the latent ability is very strong. Less restrictive model-based approaches should be

preferred.

4.6.2 Model Based Approaches

In the literature of missing data methods, it is generally distinguished between traditional

methods (e.g. listwise and pairwise deletion), imputation methods (e.g. regression im-

putation, multiple imputation), and model based methods (e.g. FIML) (Lüdtke et al.,

2007). These classifications can also be used for approaches to handle item nonresponses

in measurement models. As previously noted, IAS and PCA are naive imputation meth-

ods. With multiple imputation (MI) elaborated data augmentation methods have been

developed, which have proved to be useful in IRT measurement models as well even if

the proportion of missing data is large (Van Buuren, 2010). However, MI requires that

the missing data mechanism w.r.t. Y is MAR29. Standard ML estimation methods, such

as JML and MML, can be regarded as an FIML estimator, since each observed item re-

29The missing data mechanism w.r.t. Y can be MAR given Y, MAR given Z, or MAR given (Y, Z). In the
latter two cases, Z needs to be included in the imputation model.
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sponse is included. Accordingly, IRT parameters can be estimated unbiasedly from the

incomplete data matrix if the missing data mechanism w.r.t. Y is MAR given Y. This

was demonstrated by Glas (2006) using data from computerized adaptive testing. Given

the missing data mechanism w.r.t. Y is MAR given (Y, Z) or only given Z, the covari-

ates need to be included in the estimation of the measurement model. For example, a

routing test can be included in a latent regression model (LRM) or a multiple group IRT

model (e. g. DeMars, 2002). These approaches can be seen as method-based approaches

for item nonresponses. All of these methods are well studied and appropriate when the

missing data mechanism is ignorable (e.g. Allison, 2001; Little & Rubin, 2002; Rubin,

1976; Schafer, 1997). For that reason, they were not discussed in detail here in this work.

However, these approaches are not sufficient for nonignorable item nonresponses.

More recently, MIRT models for nonignorable item nonresponses have been introduced

(Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008; Moustaki & Knott,

2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). Here, the derivation of

these MIRT models from selection models (SLM) (Allison, 2001; Dubin & Rivers, 1989;

Heckman, 1976, 1976; Little & Rubin, 2002; Little, 2008) was demonstrated with em-

phasis on the underlying assumptions. Starting from these MIRT models, further models

were developed such as the LRM and the MG-IRT model for item nonresponses that are

NMAR. The latter was proposed by Rose et al. (2010). In this chapter, the underlying

rationale of LRM and the MG-IRT models was outlined in detail. These two model-based

approaches are proposed as more parsimonious alternatives to MIRT models since the

measurement model of the latent response propensity can be left out. Nevertheless, the

LRM and the multiple group IRT model for missing responses were derived starting from

the MIRT model, which highlight the close relation between the different models.

MIRT models for item nonresponses As shown in Section 4.5.1, a joint model of

(Y, D) needs to be estimated when the missing data mechanism w.r.t. Y is NMAR. In

MIRT models for nonignorable missing data, it is assumed that a latent response propen-

sity θ is a function f (U) of the person variable U exists which determines the item re-

sponse propensities P(Di = 1 | θ). Typically, θ is assumed to be unidimensional. This

is a very strong assumption that can potentially be wrong in real applications. In Section

4.5.3.4 it was demonstrated that MIRT models can fail to correct for nonignorable missing

data if the multidimensionality of θ is ignored. Here it is argued that the dimensionality of

θ needs to be studied carefully in real application. In contrast to the items Yi, the response

indicators Di are not deliberately generated items of a rationally constructed test. There-
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fore, exploratory methods are recommended to check the number of latent dimensions

required to model D appropriately. In addition to theoretical considerations, exploratory

analyses such as item factor analysis might help in finding the appropriate model for D.

For applied researchers it might be confusing that different between- and within-item

MIRT models for nonignorable missing data have been proposed (Holman & Glas, 2005;

Rose et al., 2010). Which model should be preferred in a concrete application? In the

context of MIRT models for nonignorable missing data, the two classes of models differ

in the construction of the latent variables. The latent ability variable ξ, however, is con-

structed equivalently in all alternative models. It is essential that the measurement model

of ξ based on Y needs to be preserved within the joint model of Y and D). Otherwise, the

resulting model is not suited to correct for missing data but is a completely new model

with different item and person parameters that no longer represent the parameters of the-

oretical interest. However, the latent variable θ can be constructed differently. This fact

was highlighted by the different notations θ, θ∗ and θ̃ that refer to different MIRT mod-

els. Only in the B-MIRT model can the latent variable θ = θ1, . . . , θP be interpreted as a

multidimensional latent response propensity. Different specifications of W-MIRT models

for nonignorable missing data have been introduced in this dissertation. It was shown that

θ∗ = θ∗1, . . . , θ
∗
P can be defined as a latent difference variable, so that θ∗

l
= θl −

∑M
m=1 ξm, or

as a latent residual θ̃ = θ̃1, . . . , θ̃P with θ̃l the residual of the regression E(θl | ξ).

Depending on the choice of the parametric model (1PLM or 2PLM) and the dimension-

ality of ξ and θ, different B-MIRT and W-MIRT models result. In order to classify the

models developed here, a general matrix equation of the logits of all manifest variables

Yi and Di was introduced, given by l(Y, D) = Λ(ξ, θ) − (β, γ0). All the different models

can be differentiated due to the matrix Λ of the item discrimination parameters. Λ can be

divided into four blocks. The upper left block α is a I × M matrix containing the item

discrimination parameters for the model equations of Yi. The upper right block is nec-

essarily a I × P zero matrix in all considered B- and W-MIRT models. This is essential

to ensure the equivalent construction and, therefore, the equivalent meaning of ξ. The

lower left block γξ is an I ×M matrix of item discrimination parameters that specifies the

conditional regressive dependencies between D and ξ given θ, θ∗ or θ̃. In turn, the lower

right block γθ refers to the I × P matrix of item discrimination parameters that specifies

the conditional regressive dependencies between D and θ, θ∗ or θ̃ given ξ. Table 4.13

shows how the different models can be distinguished based on characteristics of Λ and

associated constraints.

Which of these models should be used in application? In addition to theoretical consid-
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Table 4.13: Classification of 1PL- and 2PL-BMIRT and WMIRT Models for Item Nonresponses Based
on the Matrix of Discrimination Parameters (Λ).

Model Λ Constraints

General

(
α 0

γξ γθ

)

MIRT Rasch models

B-MIRT Rasch model

(
1 0

0 1

)
αim ∈ {0, 1} and γil ∈ {0, 1}

WDi f -MIRT Rasch model


1 0

γ∗
ξ

1

 γ∗
im
=

∑P
l=1 γil ⇒ γ∗im ∈ {0, 1, . . . , P}

Rasch-equivalent WRes-MIRT model

(
1 0

γ̃ξ 1

)
γ̃im =

∑P
l=1 γilblm ⇒ γ̃im ∈ R,

with ∀(l,m) Cov(ξm, θl) = 0

2PL-MIRT models

2PL-BMIRT Model

(
α 0

0 γθ

)
αim ∈ R and γil ∈ R

2PL-WDi f MIRT Model


α 0

γ∗
ξ
γθ

 γ∗
im
=

∑P
l=1 γil ⇒ γ∗im ∈ R

2PL-WResMIRT Model

(
α 0

γ̃ξ γθ

)
γ̃im =

∑P
l=1 γilblm ⇒ γ̃im ∈ R,

with ∀(l,m) Cov(ξm, θl) = 0
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erations, different goodness-of-fit (GoF) statistics could be used as a decision aid to find

the most appropriate model. GoF indices rest upon on the discrepancy between observed

data and the model implied joint distribution of the variables in the model. Here it was

argued that GoF statistics are only one criterion to decide between alternative models.

A distinctive characteristic of models for nonignorable missing data is that they consist

of two parts: (a) the model of substantive interest, which reflects theoretical hypothesis

(target model), and (b) a model that corrects for potential biases due to missing data. It

is not sufficient to consider GoF statistics in these models. The bias reduction is also an

essential criterion. Furthermore, the target model needs to be preserved in the joint model

of (Y, D) or (Y, D, Z) if covariates are also part of the target model. In IRT models, that

is the measurement model of ξ based on Y with the parameter vector ι. To preserve the

target model means that the inclusion of a model for D affects neither the construction of

ξ nor the parameter vector ι, which becomes a sub-vector in the parameter vector (ι,φ) of

the joint model. Based on these considerations, the term model equivalence in models for

missing data was adapted. Typically, two or more models are regarded to be equivalent

if goodness of fit statistics indicate the same model fit (Raykov & Penev, 1999; Stelzl,

1986). However, in more precise terms, equality of fit indices is just the consequence of

model equivalence. As Stelz (1986), in the context of SEM, noted, models are equiva-

lent when they imply the same variance-covariance structure. Generally, models can be

regarded to be equivalent if the model-implied joint distribution of manifest variables is

equal. However, considering the principal objective of using MIRT models for missing

data, the equality of model implied distributions is insufficient to regard two or models

as equivalent. Additional criteria have been included. In this thesis, it was proposed to

consider two or more models for item nonresponses to be equivalent if three criteria are

fulfilled: (a) the latent variable ξ is constructed equivalently, (b) the bias due to item

non-responses is reduced equivalently, and (3) the models imply the same distribution of

manifest variables (Y, D) and, therefore, have the same model fit. If these three crite-

ria are met, none of these models are superior with respect to the accuracy of parameter

estimates of the target model, here the measurement model of ξ.

The different W-MIRT models were rationally derived from the B-MIRT model, tak-

ing the issue of model equivalence into account. Accordingly, the resulting between- and

within-item dimensional MIRT models for missing responses are equivalent with respect

to the three aforementioned criteria. Differences between the models concern the latent

variable θ, which is a latent response propensity in the B-MIRT models and a latent dif-

ference variable or a latent residual in the respective W-MIRT models. The 1PL- and
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2PL-B-MIRT models are the easiest to specify and to apply. Additionally, the interpreta-

tion of the model parameters is rather simple, compared to W-MIRT models. Therefore,

this model is recommended for real applications.

Latent regression models for item nonresponses Up to now, MIRT models with a

large number of latent dimensions are computationally demanding (Cai, 2010). Missing

data theory implies that correct inference in presence of nonignorable missing data re-

quires to model (Y, D) jointly. In this work, the idea was developed to use functions f (D)

instead of the complete vectors D to simplify the model. Rose et al. (2010) proposed the

joint estimation of the measurement model of ξ based on Y and latent regression mod-

els (LRM) E(ξ | D̄), with D̄ = I−1 ∑I
i=1 Di as the proportion of answered items. Hence,

D̄ = f (D). Other functions, such as the sum score SD =
∑I

i=1 Di, can be used as indepen-

dent variables in a LRM. In this thesis, the underlying rationale and the assumptions of

LRMs for nonignorable missing data were outlined in detail. The basic idea is the inclu-

sion of the latent regression E(ξ | f (D)). The parameters ι of the measurement model of ξ

and the parameters of the latent regression need to be estimated simultaneously in a joint

model. Although much more parsimonious, LRMs are closely related to MIRT models

for nonignorable missing responses. The 2PL-BMIRT model served even as a starting

point to derive this class of models. Another less formal way to understand LRMs is

through their close relation to models for missing responses that are MAR given Z. If

a variable that determines the response propensities is observable and available, then it

can be included in the model as a covariate. In this case, the missing data mechanism is

MAR. Such auxiliary variables are widely used in FIML estimation (e. g. Baraldi &

Enders, 2010; Graham, 2003). Under the assumption that there is no DIF in the items Yi

depending on the auxiliary variables, an LRM with E(ξ | Z) can be included with Z the

auxiliary variables. If the latent response propensity θ were known, then the missing data

mechanism would be MAR given θ. The inclusion of a latent regression E(ξ | θ) would

be sufficient and D could be left out. Some functions f (D) can be considered as fallible

measures of θ used in the latent regression. For example, given θ is unidimensional, the

sum score SD or the mean D̄ are fallible measures of the latent response propensity. If θ is

a P-dimensional latent variable, then a single sum score is not sufficient. Either multiple

sum scores S Dl are used as proxies of θl or person parameter estimates θ̂ = θ̂1, . . . , θ̂P

are taken as independent variables in a multiple regression E(ξ | θ̂). In application it is

essential to find an appropriate function f (D) that summarizes the information of D ap-

propriately. Hence, even if the LRM is used instead of MIRT models, then the appropriate
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model for D should be investigated in an initial step. If a latent response propensity is

assumed, then the dimensionality of θ should be carefully studied. Typically, it is easy to

obtain estimates θ̂ in this stage of the analysis that can be used in subsequent analyses.

The major advantage of LRMs for nonignorable missing data is the reduced model com-

plexity compared to MIRT models. The concurrent estimation of the measurement model

of θ based on D is avoided. Another benefit is the flexibility. For example, nonlinear rela-

tions between the functions f (D) and ξm can be modeled, including polynomials f (D)r in

the regression model. Finally, here it was argued that LRMs are the methods of choice for

item nonresponses resulting from not-reached items. The disadvantage is the unreliability

of the functions f (D) if they are proxies of latent response propensities θl. The question

is whether and to which extent the estimations of ι and ξ are affected by the unreliability,

if, for example θ̂, SD or D̄ are used as functions f (D). This question should be addressed

in future research.

Multiple group IRT models for item nonresponses The use of the LRMs as an al-

ternative for MIRT models for nonignorable missing data is limited by the restricted

number of available software that allow for concurrent estimation of measurement mod-

els and latent regression models. Mplus and ConQuest can be used for applications of

LRMs. However, many traditional IRT programs as BILOG-MG (Zimowski et al., 1996),

PARSCALE (Muraki & Bock, 2002), and MULTILOG (D. M. Thissen et al., 2003) do

not allow for LRMs. Additionally, these programs can only estimate unidimensional IRT

models. Even if such programs are used for item calibration, nonignorable missing re-

sponses can be taken into account if appropriate discrete functions f (D) can be found

that serve as grouping variables in multiple group IRT models. Rose et al. (2010) applied

MG-IRT models to account for nonignorable missing item responses first. In this work,

the underlying rationale for this approach was given and strong relation to MIRT models

and LRM for nonigorable missing data were shown. Instead of specifying a latent regres-

sion E(ξ | f (D)), the regressor f (D) is discrete or stratified to form groups in MG-IRT

models. The item parameters are constrained to be equal across the groups/strata, while

the distributions of ξ can vary across the groups. The MG-IRT model for nonignorable

missing data allows for heterogeneous variances and covariance structures as well as non-

linear relations between ξ and f (D). The disadvantage of this approach is once more the

unreliability of the discrete functions f (D) if used as a proxy of a latent response propen-

sity. Especially if D can be appropriately modeled by a multidimensional latent response

propensity θ, it might be challenging to find an appropriate discrete function f (D) for the
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MG-IRT model. In cases of a undimensional latent response propensity θ, the estimates θ̂

or SD can be used for stratification. The number of strata depends on the sample size and

practicability. However, the approach is sensitive to the choice of f (D) and the number

of groups respectively.

Combined models for omitted and not reached items As outlined in Section 4.5.6,

the assumption of mutual local stochastic independence of the response indicators Di

given the latent variables will not hold in the case of not-reached items. Therefore, MIRT

models for nonignorable missing data are appropriate for item nonresponses due to omis-

sions but inappropriate for item nonresponses due to not-reached items. However, it is

reasonable to assume that both - omitted and not-reached items - result in non-ignorable

missing data. A joint model for omitted and not reached items has been developed here.

The basic idea is to define two vectors of indicator variables D(O) = D
(O)
1 , . . . ,D

(O)
I

and

D(N) = D
(N)
1 , . . . ,D

(N)
I

. D
(N)
i
= 1 indicates that item i was reached by the test taker, and

D
(N)
i
= 0 indicated that the item was not reached. D

(O)
i
= 1 indicates that item i was not

omitted, whereas D
(O)
i
= 0 means that item i was omitted. An item will be responded to

if it is reached and not omitted by the test taker (Di = D
(O)
i
· D(N)

i
). Unfortunately, the

vector D(O) will also suffer from missing data some items are not reached. The missing

data mechanism w.r.t. D(O) can also be MCAR, MAR, or NMAR. It was shown that item

nonresponses due to not-reached items can appropriately be modeled by latent regres-

sions models E[ξ | D(N)]. In the same way, missingness in D(O) can be taken into account

by an LRM with E[θ | D(N)], where the measurement model of θ is given by D(O). The

combination of an MIRT model of (ξ, θ) based on (Y, D(O)) with the multivariate latent

regression E[(ξ, θ) | D(N)] accounts for both - omitted and not-reached items. Fortunately,

all information of D(N) is already given by the sum S (N) =
∑I

i=1 D
(N)
i

, which is simply the

number of reached items given all test takers answered the same items in the same order.

The reason is that the number of not-reached items might strongly depend on the order

of processing test items. Test takers who start to answer easy items will potentially reach

a higher number of items than those who prefer to begin with difficult items. Given that

multiple test forms, such as different test booklets h, are administered, indicator variables

Ih of the test form or booklet should be included as moderator variables in the regressions

E(ξ | S (N), Ih), and E(θ | S (N), Ih). Alternatively, a multiple group model can be used with

the test form or booklet as a grouping variable. Unfortunately, in most paper-and-pencil

tests it cannot be ruled out that test takers choose the order of items by themselves. In this

case, the valid identification of not-reached items becomes difficult. However, this is not
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a problem of the model used to deal with not-reached items and can only be solved by the

test design, the type of data collection and documentation. For example, computerized

testings allow for registering information, such as the order of answered items and the

end of the test session. This allows for valid identification of not-reached items.
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5 General Discussion

IRT based scaling procedures have become state-of-the-art in educational large scale

assessments and are increasingly popular in many psychological tests with categorical

items. Item nonresponses due to omitted or not-reached items occur in almost every ap-

plication, especially in timed tests and low-stakes assessments. In the early 1970s, Lord

showed that incorrect answer substitution (IAS) is inappropriate. Alternative methods,

such as partially correct scoring (PCS), have been proposed. Since the late 1990s, multi-

dimensional IRT models have been developed to account for item nonresponses that are

NMAR (Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008; Moustaki

& Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). In fact, there

is strong empirical evidence that missing responses are nonignorable in many applica-

tions. The tendency to omit items or not to reach the end of a test is often substantially

correlated with indicators of persons’ proficiency, which is intended to be measured (e.

g. Culbertson, 2011, April; Rose et al., 2010). As Enders (2010) stated, models for

nonignorable missing data rest upon strong and often untestable assumptions, discourag-

ing applied researchers to use them. They rather prefer to assume that the missing data

mechanism is MAR to justify the use of FIML or multiple imputation - the missing data

methods currently considered as state-of-the-art (Schafer & Graham, 2002). However, it

is difficult to decide which assumption is more critical: the assumption of an ignorable

missing data mechanism, or the model assumptions of a model that account for nonig-

norable missing data. Of course, there is no ultimate answer to this question. However,

especially in educational and psychological measurement, if test performance and miss-

ingness are substantially related, then it seems implausible to assume that missingness

depends merely on observable item and test scores instead of the latent ability needed to

answer the test. However, the latent ability of interest is always missing and the miss-

ing data mechanism with respect to the test items is then NMAR. With MIRT models

for nonignorable missing data, a class of appropriate but rather complex models has been

introduced to handle item nonresponses in IRT-based measurement models. Surprisingly,

IRT parameter estimates were found to be pretty robust against missing responses that

are NMAR (e. g. Pohl et al., 2011, September). The need to account for nonignorable
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missing data is at hand from the theoretically point of view, but seemed not to be re-

quired from the practical standpoint, at least if IRT models are used. In fact, simply to

ignore even nonignorable item nonresponses results in much less biased parameter esti-

mates than IAS (e. g. Culbertson, 2011, April; Rose et al., 2010). Nevertheless, IAS

and other ad-hoc methods are still commonly used even in prestigious large scale assess-

ments, such as PISA. This thesis tried to answer different questions. First, is there a need

for model-based approaches for item-nonresponses? Second, why not use ad-hoc meth-

ods, such as IAS or PCS instead of complex MIRT models for nonignorable missing data?

Finally, the IRT model-based approaches for nonignorable missing data were considered

in detail. The underlying assumptions of these models were explicitly considered and a

common framework was given. Hence, the presented thesis consists of three major parts:

(a) theory, (b) analyses of the impact of item nonresponses to item and person parame-

ter estimates in psychological and educational measurement, and (c) the examination and

further development of model-based approaches for missing nonresponses.

In the theoretical part, the missing data mechanisms were defined in the context of

psychological and educational measurement following Rubin’s taxonomy (1976). In the

second part, the impact of missing data to different item and person parameter estimates

was demonstrated in order to motivate the further development of missing data methods

in the third part. Ad-hoc methods and model-based methods were considered. Following

Huisman (2000), IAS or PCS are considered as naive imputation methods that were ex-

amined here in light of modern missing data theory and elaborated imputation methods.

Subsequently, the nominal response model was studied with respect to its suitability to

handle item nonresponses. Finally, MIRT models were scrutinized and further developed.

Latent regression models and MG-IRT models were proposed as simpler alternatives to

complex MIRT models. A common framework of these models was introduced, taking

issues of model equivalence into account. The relationship between the alternative mod-

els has been outlined in detail. Strengths and weaknesses of the different models were

discussed. Additionally, it was shown how these models can be combined in order to

account for both omitted and not-reached items, even in complex item and test designs.

In this chapter, a short summary of the most important results will be given. Advantages

and limitations of the different approaches will be discussed and recommendations for

applied researchers will be given. Finally, remaining questions and unsolved problems

are outlined that should be addressed in future research.
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5.1 Summary and Conclusions

In Chapter 2 the classification of missing data introduced by Rubin (Rubin, 1976) was

adapted to the context of psychological and educational measurement. Rubin distin-

guished between three different missing data mechanisms: (a) missing completely at ran-

dom (MCAR), (b) missing at random (MAR), and (c) not missing at random (NMAR).

In the latter case, the missing data are also termed nonignorable, whereas missing data

that are MCAR or MAR are called ignorable. The terms informative and noninformative

missing data are sometimes used alternatively. Missing data that are MCAR or MAR are

called noninformative since missingness itself does not provide additional information

about parameters of interest over and above the observable variables. For that reason,

missingness is ignorable. In contrast, if the missing data mechanism is NMAR, then

missingness provides additional information with respect to the parameters aimed to be

estimated from sample data. This information needs to be included in parameter esti-

mation to ensure unbiased parameter estimation and valid statistical inference. Hence,

missing data are informative if the missing data mechanism is nonignorable.

In most educational and psychological assessments it is distinguished between items

that constitute the measurement model of a latent variable and covariates, such the so-

cioeconomic status and other background variables. Due to the distinction of the manifest

variables in Y = Y1, . . . ,YI , the vector of test items, and Z = Z1, . . . ,ZJ the multivari-

ate covariate, three different MAR conditions were distinguished. Hence, five missing

data mechanisms were defined twofold: (a) with respect to single items Yi and (b) for the

complete response vector Y. The reason is that the item nonresponses of an item i can

be MCAR while MAR or even NMAR for another item j , i. Accordingly, the three

missing data mechanisms MCAR, MAR, and NMAR were defined with respect to single

items Yi in a first step. In a second step, these definitions were used to define the missing

data mechanisms regarding the complete item vector Y = Y1, . . . ,YI .

The definitions of the missing data mechanisms are based on unconditional and condi-

tional stochastic dependency between the following random variables: (a) the items Yi and

the response vector Y respectively, (b) the response indicators Di that constitute the vector

D = D1, . . . ,DI , and (c) the covariate Z. The latter is assumed to be completely observ-

able. Altogether, five different missing data mechanisms have been proposed Yi and Y: (a)

MCAR, (b) MAR given Y, (c) MAR given Z, (d) MAR given (Y, Z), and (e) NMAR. This

classification is reasonable since typical examples exist for each missing data mechanism.

Furthermore, the methods to handle nonresponses differ between the missing data mech-
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anisms. Table 5.1 gives and overview of the defined nonresponse mechanisms, including

examples and proper missing data handling methods respectively. Note that the list of

methods in the last column of Table 5.1 is by no means exhaustive. For example, special

multiple imputation approaches have also been proposed for nonignorable missing data

(Durrant & Skinner, 2006; Rubin, 1987). However, since MI is currently almost exclu-

sively used as a data augmentation method for ignorable missing data, it is not listed as a

method for item nonresponses that are NMAR. Instead of providing a complete overview

of missing data methods, Table 5.1 serves primarily as a summary of suited approaches

considered here in this work.

In IRT measurement models, latent variables are constructed based on manifest vari-

ables Y1, . . . ,YI . In the last section of Chapter 2, the implications of the different missing

data mechanisms with respect to the distribution of true score variables τi and latent vari-

ables ξ were studied. It could be shown that test takers who answer an item and those

who do not complete this item differ systematically with respect to their true scores and

latent ability if the missing data mechanism is NMAR. The results imply that potentially

each item is answered by a different sub-sample that is representative for a different pop-

ulation with respect to the distribution of the latent variable. Especially more difficult

items are more likely skipped by persons with lower ability levels. Hence, these items are

completed by test takers with, on average, higher ability levels. This might be especially

problematic in norm-referenced assessment based on CTT but can also cause biased pa-

rameter estimation in IRT models. The impact of item nonresponses to item and person

parameter estimates was analyzed in detail in Chapter 3.

Bias of item and person parameter estimates due to item nonresponses From miss-

ing data theory follows that ML and Bayesian inference is invalid if the missing data

mechanism is nonignorable, unless a model for missingness represented by D is in-

cluded in parameter estimation. Surprisingly, results of real data analyses suggested that

IRT parameters are pretty robust against nonignorable missing data (Pohl et al., 2011,

September; Rose et al., 2010). It was repeatedly found that the use of ad-hoc methods,

such as IAS or PCS, result in even more biased parameter estimates than ignoring item

nonresponses that are NMAR. Therefore, the question was raised whether IRT models

are robust enough simply to ignore missing data even if the nonresponse mechanism is

actually nonignorable. In this case, neither ad-hoc methods nor complex model-based

approaches would be required. The bias of sample estimates of item difficulties, item

discriminations, and different person parameter estimates (Sum score, proportion correct

275



Table 5.1: Overview of Missing Data Mechanisms with Typical Examples and Potential Solutions.

Missing data

mechanism

Example Appropriate missing data methods

MCAR Planned missing by design (i.e. bal-
anced incomplete block designs and
multimatrix sampling with randomly
assigned test booklets)

Item nonresposnes can be ignored. Even listwise deletion is al-
lowed. However, to increase efficiency, multiple imputation can
be used.

MAR given Y Computerized adaptive testing (CAT)
with fixed starting items or randomly
chosen initial items

Item nonresposnes can be ignored in JML and MML estimation.
Multiple imputation might increase efficiency in item parameter
estimation from CAT data.

MAR given Z Two-stage testing using background
variables or routing tests (Z) to deter-
mine the assigned test form Y.

Using a joint model for (Y, Z) e.g. latent regression model with
E(ξ | Z), or multiple group IRT models (for discrete or catego-
rized continuous Z). Alternatively, multiple imputation can be
used with Z in the imputation model.

MAR given (Y, Z) CAT using background variables or
routing tests (Z) to determine the start
items of the actual test (Y).

Joint model for (Y, Z) e.g. latent regression model with E(ξ | Z),
or multiple group IRT models (for discrete or categorized contin-
uous Z). Alternatively, multiple imputation that requires both Z

and Y in the imputation model.

NMAR The probability of item nonresponses
depends on persons proficiency and,
therefore, on the latent variable ξ.

A joint model for (Y, D) is required. Omitted items can
be controlled using MIRT models such as B-MIRT and W-
MIRT Rasch models, 2PL-BMIRT -, 2PL-WDi f MIRT -, and
2PL-WResMIRT model, latent regression models E[ξ | f (D)], or
multiple group IRT models with groups formed by discrete func-
tions f (D). Not-reached items can be handled by latent regres-
sion models and MG-IRT models. Combinations of the models
can be used (i.e. MIRT model with LRM for omitted and not-
reached items).

27
6



score, ML-, Weighted ML-, and EAP estimates) due to missing data were studied ana-

lytically and empirically to highlight the need for appropriate missing data methods for

nonignorable item nonresponses. The purpose of the detailed bias analysis was threefold.

First, it should be demonstrated that different measures typically used in psychological

and educational measurement, such as the sum score S and the proportion correct score

P+, are affected quite differently by missing data depending on the missing data mecha-

nism. Second, analytical examinations of missing induced biases is easy in observed test

scores S and P+ and the expected values E(Yi), such as population specific measures of

item difficulty. The findings from these analytical considerations have been used to derive

hypotheses about biasedness of IRT-based person and item parameter estimates, which is

difficult to investigate by analytical means. Third, the extent of the bias of IRT parameter

estimates was studied using a simulation study.

In many test applications, the sum score or number correct score S is used as a test

score to quantify persons’ characteristics of interest. Here it was demonstrated that S

will be negatively biased under any missing data mechanism. The reason is that the

use of the number correct score is identical to scoring missing responses as incorrect

or Yi = 0 respectively. Thus, there is an implicit missing data scoring when S is used

that introduces biases even if the missing data mechanism is MCAR. More formally,

it could be demonstrated that the sum score under any missing data mechanism SMiss

is equal to the sum score of product variables Yi · Di. Hence, SMiss is a new random

variable different from S . Apart from distributional differences, both variables differ in

their meaning. SMiss combines two pieces of information: (a) the test performance and (b)

the ability or willingness to respond to test items. Hence, SMiss is not purely a measure of

test performance but reflects other persons or design characteristics as well. The variance

of the sum score contains construct-irrelevant variance, jeopardizing test fairness as well

as the validity of the number correct score. The sum score is essentially equivalent to

incorrect answer substitution still commonly used to handle item nonresponses in IRT

measurement models. The findings imply that IAS means to replace the items Yi by the

product variables Yi ·Di. As a consequence, the latent variable in one- and two-parameter

IRT models are constructed differently, which in turn affects the interpretation of person

parameters. Under IAS, the latent variable is a linear combination of the latent variable of

interest and the latent response propensity. The results highlight impressively that missing

data and inappropriate methods to handle them are a thread of validity.

At first glance, the proportion correct score P+ seems to overcome the problem of the

number correct score in presence of missing data, because P+ can be seen as a stan-
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dardized number correct score, where S is standardized individually by the number of

answered items. However, item nonresponses due to omitted and not-reached items typ-

ically occur not randomly. A detailed analysis of item nonresponses of the PISA 2006

data revealed that more difficult items are preferably skipped, while easier items are more

likely to be completed (Rose et al., 2010). Furthermore, Culbertson (2011, April) found

that omission rates in items with an open response format increases with lower ability

estimates. But not only the number of completed items decreases typically with lower

proficiency levels, but each test taker creates his or her own test. If preferably difficult

items are not answered while easier items are completed, then the whole test becomes

easier. To quantify this effect, the individual mean test difficulty Tβ has been introduced,

which is the mean of the item difficulties of only those items that are answered by a test

taker. It could be shown that P+ is no longer comparable between test takers if Tβ is

correlated with the latent variable of interest. It is important to note that stochastic in-

dependence between Tβ and ξ is necessary but not sufficient to ensure comparability of

P+ between test takers. The only sufficient condition is the equality of item difficulties

βi = β j for all items i and j. Hence, although the proportion correct score accounts for

item nonresponses, the comparability is only ensured if all items are equal with respect

to item difficulty. Otherwise, P+ is not comparable across the different test forms, which

test takers implicitly create by item nonresponses.

Although the number correct score and the proportion correct score seem to be closely

related, the bias patterns found in both are quite different. Whereas the number correct

score is always negatively biased under any missing data mechanism since SMiss ≤ S ,

P+ can also be positively biased when preferably easy items are proceeded while difficult

items are skipped. In both cases, the bias is stochastically dependent on the latent variable

ξ when the tendency to omit items is also correlated with ξ. This implies that missing

data and the way to deal with it are very critical with regard to test fairness. Whereas

nonresponses are always penalized using the number correct score, omissions of difficult

items are beneficial when the proportion correct score is used. Due to these differences, it

can be concluded that test takers with missing data are potentially penalized or privileged,

depending on the choice of the test score. Due to these findings, neither S nor P+ can be

recommended as test scores under any missing data mechanism.

The number correct score and the proportion correct score or functions of both are com-

monly used as person parameter estimates in tests developed based on classical test theory

(CTT). It is also common to provide item parameters in CTT, such as the expected values

E(Yi) as population specific measures of the item difficulty. E(Yi) is estimated by the sam-
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ple means ȳi. In presence of missing data, the sample mean is an estimate of E(Yi |Di = 1)

instead of E(Yi). Since Yi and Di are dichotomous, stochastic independence Yi⊥Di is nec-

essary and sufficient to ensure that E(Yi |Di = 1) = E(Yi). If Yi✚✚⊥Di and no DIF exists in

items Yi depending on the response indicators Di, then stochastic dependence between Di

and ξ is implied. Using a simulated data example, it could be demonstrated that each item

is completed by a different sample that that refers to a different subpopulations regarding

the distribution of the latent variable ξ. For example, in a timed test the first item i may be

completed by almost all test takers, while a difficult item j at the end of the test is more

likely reached and completed by test takers with on average higher proficiency levels. It

is misleading to talk about a single sample in application if each item is answered by a

different subsample due to a item nonresponses that are MAR or NMAR. In that case,

each item can be completed by an unrepresentative subsample even if the whole sample

drawn for test application was originally representative.

Although difficult to show analytically, this fact may complicate IRT item and per-

son parameter estimation based on observable item responses Yobs. For example, using

the EM algorithm for MML estimation, in the E-step the expected number of cases of the

sample is estimated that correctly answer item i, which is used in the M-step to obtain pro-

visional and final item parameter estimates. The effect of systematic differences between

test takers who answer single items is unclear. Analytical analyses of the bias in IRT

item and person parameter estimates are quite difficult. Therefore, a simulation study was

used. As noted earlier, the analytical considerations of the bias found in S , P+, and E(Yi)

served for the derivations of hypotheses about the bias of sample estimates of IRT item

and person parameter estimates. The study was confined to one- and two-parametric IRT

models. Three-parameter models, including pseudo guessing parameters (e. g. de Ayala,

2009; Embretson & Reise, 2000), have been left out here. The bias of estimated item dif-

ficulties, item discriminations, as well as three different person parameter estimates (ML-,

WML-, EAP estimates) were investigated. The conditions that systematically varied in

the simulation study were: (a) the overall proportion of missing data, (b) the correlation

between the tendency to process the items and the latent ability (Cor(ξ, θ)), (c) the depen-

dency between item difficulties and the mean response rate to the items, (d) sample size,

and (e) the number of items Yi in the measurement model. The conditions were chosen

to emulate data constellations typically found in real applications. That is, only positive

values of the correlation between the latent ability and the latent response propensity were

chosen (0 ≤ Cor(ξ, θ) ≤ 0.8). Hence, persons with higher proficiency levels have, on av-

erage, higher probabilities to complete items. Furthermore, difficult items are more likely
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to be omitted than easier items, as typically found in educational testings (e. g. Rose et al.,

2010). It was expected that IRT item difficulty estimates are similarly biased as the item

means under the conditions used in the simulation study. Particularly, it was expected that

difficult items seem to be easier since they are completed by, on average, more proficient

test takers. The results of the simulation study confirmed the systematic underestimation

of βi. The extent of the bias mainly depends on the correlation between the latent ability

and the response propensity and the overall proportion of item nonresponses in the data.

The higher the correlation Cor(ξ, θ) and the higher the overall proportion of missing data,

the more bias was found in the estimators β̂i. Both factors interact with respect to the

bias. Given ξ and θ are uncorrelated, the bias of β̂i is close to zero even for large propor-

tions of missing data. However, the higher the correlation Cor(ξ, θ), the stronger the bias

depending on the overall proportion of missing data. The sample size is also influential,

albeit to a much lesser extent. With increasing sample sizes, the bias decreases. It is

important to note that the results imply that β̂i can also be positively biased if the latent

response propensity and ξ are negatively correlated. However, a preference of difficult

items coupled with a negative correlation Cor(ξ, θ) seems to be implausible in most real

applications. Accordingly, this condition was not included in the simulation study.

Surprisingly, the bias of discrimination parameter estimates α̂i was only weakly depen-

dent on the correlation Cor(ξ, θ) and the overall proportion of missing data. The most

influential factor was the sample size. With N = 500, the discrimination parameters were

on average overestimated. Only in the case of a strong correlation Cor(ξ, θ) = 0.8 was a

consistent negative bias of α̂i found, even if sample sizes were N = 1000 or N = 2000.

The systematic bias found in item difficulty estimates β̂i suggests that person parameter

estimates could be biased as well, since βi are locations on ξ. The bias of three different

IRT person parameter estimates was studied: (a) maximum likelihood (ML) estimates, (b)

Warm’s weighted maximum likelihood (WML) estimates, and (c) expected a posteriori

(EAP) estimates. On average, ML and WML person parameter estimates were found to

be negatively biased. The mean bias of the estimated item difficulties were strongly cor-

related with the mean bias of ML and WML person parameter estimates (ML: r = 0.815,

WML: r = 0.846). Again, the overall proportion of missing data, the correlation Cor(ξ, θ),

and the interaction between these two factors mainly determined the biases of person pa-

rameter estimates. As in the case of item difficulty estimates, the bias was more negative,

the higher the correlation Cor(ξ, θ) and the higher the overall proportion of missing data

were. Due to the interaction effect, the impact of Cor(ξ, θ) was stronger, the higher the

overall proportion of missing data was. Interestingly, a slightly positive but consistent
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bias was found in ML estimates when preferably more difficult items were omitted but

the missing data mechanism Y was MCAR (Cor(ξ, θ) = 0). This particular bias could

not be confirmed for Warm’s weighted ML estimates. Apart from this exception, the bias

patterns of ML- and WML estimates were very similar.

In contrast, EAP person parameter estimates were affected quite differently. The mean

bias of the EAPs was found to be close to zero in almost all conditions of the simula-

tion study. However, as Bayesian estimates, EAPs suffer from the shrinkage effect. That

is, the more the estimand ξ deviates from E(ξ), the larger the absolute value of the ex-

pected bias. The shrinkage effect additionally increases, the less observed information is

available and, therefore, the higher the proportion of missing responses is. The shrinkage

effect leads to a negative correlation between ξ and the bias of the EAPs even in absence

of missing data but is increased by any loss of information such as item nonresponses.

The more item nonresponses occur, the stronger the effect of the prior distribution on pa-

rameter estimation, and the more the EAPs shrink toward the expected value of the prior.

This is reflected by a decreased variance of the EAP estimates. From that point of view,

there is a systematic bias at the individual level if the person?s value ξ differs from E(ξ).

This bias is considerably increased by missing data even if the missing data mechanism

is MCAR. Moreover, when EAPs are used as test scores, the omission of items can be

advantageous for some persons while disadvantageous for others. Especially low profi-

cient persons tend to produce item nonresponses. The combination of skipping difficult

items while responding to easy items and the shrinkage toward the mean leads to a pos-

itive bias in persons with below-average proficiency levels. In turn, persons with values

of the latent variables above the expected value E(ξ) show an increasingly negative bias

with increasing proportions of item nonresponses. Since the EAP was, on average, nearly

unbiased, the positive and negative biases cancelled each other out. Hence, the omission

of items might be beneficial for some and unfavorable for others depending on the latent

variable ξ and the nonresponse behavior. This is highly questionable in terms of fairness.

Once more, missing data turn out to be a matter of test fairness.

Finally, the effect of missing data on the standard errors and on the standard error

function, respectively, and the marginal reliability was studied. It could be shown that

under any missing data mechanism, the marginal reliability is no longer a function of

item parameters and the distribution of the latent variable, but depends on the missing

data pattern too. Strictly speaking, there are as many standard error functions as missing

data patterns D = d exist. Hence, each value of ξ is estimated with a different accuracy

depending on the missing data pattern. Since the marginal reliabilities of ML- and WML-
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estimates are calculated on the basis of the standard errors, the interpretation changes. In

presence of missing data, the marginal reliability is the average reliability with respect to

a particular population with its specific distribution of the latent variable and its specific

nonresponse mechanism. Hence, the same population under study assessed with the same

set of items can result in quite different marginal reliability estimates if the proportion

of missing data differs. The results apply for ML-, WML-, and EAP person parameter

estimates.

Ad hoc methods for item nonresponses The findings with respect to the impact of

missing data on sample-based person and item parameters confirmed the need for appro-

priate approaches to handle item nonresponses. In a short overview, existing methods for

missing data were reviewed. Analysis of complete cases (listwise deletion) or available

cases (e. g. pairwise deletion) cannot be recommended in most applications. Weighting

procedures are appropriate in many applications. However, in measurement models in-

verse probability weighting seems to be appropriate in cases of unit nonresponses but -

although theoretically possible - is difficult to implement. The reason is that each item

response within a response pattern is required to be weighted individually. This would

be the case if each item is answered by a different population in terms of the underlying

distribution of ξ. Additionally, the question is how to calculate such individual item spe-

cific weights in real applications. In fact, IRT models for nonignorable missing data allow

to estimate such person specific item response propensities πni under certain assumptions
1. Hence, the estimation of the weights needed for weighting procedures require model-

based methods. Furthermore, estimation procedures are required that allow for weighting

individual item responses rather than weighting complete response patterns.

Data augmentation methods have become popular methods among missing data han-

dling procedures. In this thesis, the term data augmentation methods subsumes all ap-

proaches that complete the observed data that suffer from missing data in a first step and

to apply standard methods to filled-in data sets in a second step. Recently, multiple im-

putation for item nonresponses in dichotomous items used in IRT measurement models

has been proved to work very well even if the proportion of missing data is large (Van

Buuren, 2007, 2010). Unfortunately, most of the currently implemented algorithms for

MI require that the missing data mechanism Y needs to be MCAR or MAR2. Hence,

nonignorable item nonresponses cannot be properly handled by MI. There exist further

1In Section 3 it was shown how πni can be used to correct item means.
2If the missing data mechanism Y is MAR given Z or MAR given (Y, Z), then the covariate Z needs to be

included in the imputation model.
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much simpler data augmentation methods than incorrect answer substitution (IAS). To

score missing responses as partially correct (PCS), as proposed by Lord (Lord, 1974),

can also be seen as an imputation method. Huisman (2000) denoted such methods as

naive imputation methods. In this dissertation, these two methods were also objects of

research. The reason is that both IAS and PCS seem to be very plausible at first sight.

The simplicity and the superficial plausibility of both methods seem to be tempting for

applied researchers to use them. Although often criticized, this might be the reason why

both methods are still recommended (Culbertson, 2011, April) and widely used, even in

prestigious large scale assessments such as PISA (e. g. Rose et al., 2010). Once again,

here it was demonstrated that IAS and PCS are highly critical for at least three reasons.

First, it could be shown analytically that the implicit assumptions of IAS are unlikely to

hold in almost all real applications. For example, under IAS it is assumed that the proba-

bility to solve an omitted or not-reached item is zero, which implies conditional stochastic

independence Yi⊥ξ |Di = 0. Second, theoretical inconsistencies with stochastic measure-

ment models aimed to be applied (e.g. the 1PL- and 2PL-IRT models) result with both

methods, IAS and PCS. As a result, item characteristic curves of 1PL- and 2PL- and 3PL

models become incompatible with ICCs implied by IAS and PCS. For instance, given

the nonresponse mechanism Yi is MCAR, a lower and an upper asymptote different from

zero and one, respectively, are implied. Third, the standard maximum likelihood estima-

tion procedures applied to the filled-in data sets do not account for the implications of the

imputation model underlying IAS and PCS. Recall that IAS and PCS were regarded as

single imputation methods. For example, Lord (1974) noted that PCS is asymptotically

equivalent to the imputation of random draws of a binomially distributed variable with

P(Yi = 1 |Di = 0) = 1/ci. Lord stated as well that the underlying assumption is that test

takers would poorly randomly choose one of the ci response categories for each omitted

or not-reached item i. Hence, conditional stochastic independence Yi ⊥ ξ |Di = 0 is

implicitly assumed. Conclusively, PCS implies that two alternative mechanisms underlie

the item response process: (a) solving items due to the latent ability of interest and (b)

guessing. Accordingly, a mixture model would fit the resulting filled-in data set properly.

Instead, for each item nonresponse, the difference 1/ci − P(Yni = 1 | ξn) is minimized.

The reason is that PCS means to replace missing responses by item-specific constants,

typically 1/ci, and to treat these imputations like item responses that result from cogni-

tive processing instead of guessing. It was further outlined that IAS and PCS are closely

related. Alterations of PCS exist where the imputations of the item nonresponses are

different from 1/ci. Other values can be chosen. For example, De Ayala et al. (2001)
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recommended to choose P(Yi = 1 |Di = 0) = 0.5 even for polytomous items with more

than two response categories. If P(Yi = 1 |Di = 0) is set to zero, then IAS results. Hence,

IAS can be regarded as a special case of PCS. Therefore, the ML estimation used under

IAS is also incorrect. However, the biases with respect to the item difficulties and item

discriminations are quite different. With simulated data it was shown that item difficul-

ties and item discriminations are overestimates under IAS. In contrast, with increasing

proportions of missing responses item discriminations tend toward zero when PCS is ap-

plied. Since accuracy of person parameter estimates rest upon unbiased item parameter

estimates, IAS and PCS lead to biased person parameter estimates as well.

However, the term bias might be inappropriate for the systematic deviations between

the true values of ξ and the person parameter estimates ξ̂ using IAS. Given the imputation

model is incorrect, IAS means to replace the manifest variables Yi in measurement model

by different variables (Y∗i ) with a different distribution. Furthermore, Yi and Y∗i refers to

different random experiments, since the use of Y∗i additionally includes the recoding of

missing responses to zero. As a result, the values Y∗i = 0 can indicate two different events:

(a) the item is answered incorrectly or (b) the item is missing. However, the variables Y∗i

do not allow to distinguish between the two events. Hence, two pieces of information are

mixed up: (a) the performance in the test expressed by the item responses Yi and (b) the

willingness/ability to answer the item i indicated by Di. In fact, it could be shown that Y∗i

is a function f (Yi,Di), since Y∗i = Yi · Di. As found for the sum score Smiss, this confusion

can result in person parameters with different meanings. In fact, when a latent response

propensity θ exists that determine the probability to answer an item and Cor(ξ, θ =, 0,

then the latent variable constructed in a standard one- or two-parametric IRT model based

on Y∗1 , . . . ,Y
∗
I is a linear combination of θ and ξ. Thus, the confusion of information in

Y∗i is reflected in the constructed latent variable. The change in the meaning of the latent

variable under IAS also explains the discrepancy between the relatively large marginal

reliability compared to the low squared correlation Cor(ξ, ξ̂)2 that was consistently found

in simulated data (Rose et al., 2010). The findings highlight that IRT item and person

parameters are fairly sensitive to item nonresponses and their treatment. Surprisingly,

simply to ignore non-ignorable missing responses seems to be less fatal in some situations

than the use of ad-hoc methods.

In summary, IAS and PCS cannot be justified theoretically and cannot be recommended

for handling item nonresponses regardless of the underlying missing data mechanism.

The findings here strongly support the view that neither IAS nor PCS should be applied

in educational and psychological measurement.

284



Nominal response model (NRM) for item nonresponses Some authors (Moustaki &

Knott, 2000; Moustaki & O’Muircheartaigh, 2000) proposed to consider an item non-

response as an additional response category and to apply the nominal response model

(NRM) (Bock, 1972) for parameter estimation. The basic idea is to exploit the informa-

tion about the latent variable ξ indicated by the items Y1, . . . ,YI by simultaneously model-

ing the conditional probability of an item nonresponse given the ξ in a single measurement

model. In this respect, this is a model-based approach. However, item nonresponses are

considered to be an additional response category. Accordingly, the manifest variables Yi

are replaced by a new variables - here denoted as Ri. In the case of dichotomous items Yi,

Ri is trichotomous respectively, with Ri = 0 if Yi = 0, Ri = 1 if Yi = 1, and Ri = 2 if Yi

is missing (Di = 0). To model Ri instead of Yi has an important property in common with

data augmentation methods - the data matrix R = r used for parameter estimation does not

contain missing data anymore. In this respect, the use of the NRM for item nonresponses

can be regarded as a data augmentation method. Accordingly, the standard ML estimation

methods for complete data can be used for estimating parameters of NRM. In contrast to

IAS and PCS, however, there are two response categories indicating that test takers failed

to produce the correct answer: the wrong response (Ri = 0) and the missing response

(Ri = 2). Missingness is explicitly modeled, since P(Ri = 2 | ξ) = P(Di = 0 | ξ). Hence, if

the probability to answer an item depends stochastically on the latent ability, then this is

taken into account by the NRM. In fact, by means of simulated data it could be shown that

the item parameters of a unidimensional IRT model can be estimated unbiasedly when the

individual values of ξ are known. However, that is unrealistic in application. Quite the

contrary, the latent variable is constructed in a measurement model rather than simply

measured. To replace the variables Yi with Ri in the measurement model potentially af-

fects the construction of the latent variable. As in the case of IAS and PCS, this can

change the meaning of the latent variable and potentially jeopardizes the validity of the

test.

Recall that the variables Ri used in NRM for nonignorable missing data are functions

f (Yi,Di) of the items and the response indicators. Note the similarity to IAS, where items

Yi are replaced by the variables Y∗i which are also functions f (Yi,Di). In both approaches,

IAS and the NRM for item nonresponses, the measurement model is constituted by new

random variables that have different distributions and, more importantly, different mean-

ings. Both variables, Y∗i and Ri, confound two pieces of information: missingness and

test performance. The NRM for nonignorable missing data is unidimensional. As in the

case of IAS and PCS, it was shown that the latent variable in the NRM is also a kind of
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a mixture of the ability variable ξ and the latent response propensity θ reflecting the con-

flation of Yi and Di into a single variable Ri. It could be demonstrated that the NRM for

nonignorable missing data is appropriate in one particular case, if Cor(θ, ξ) = 1. In other

words, when the tendency to respond to each of the items Yi merely depends on the latent

ability, then the NRM yields unbiased item and person parameter estimates. However, if

Cor(ξ, θ) = 1, then the response indicators Di could simply be used as additional regular

items, such as the items Yi, in a common unidimensional Birnbaum model. The implicit

assumption of Cor(θ, ξ) = 1 in the NRM means that the probability of an item nonre-

sponse of a persons is completely determined by the latent ability and that the logit of Di

is linear in ξ. These assumptions are very strong and implausible in many applications.

Furthermore, they cannot be tested in the NRM. Since the NRM will fail to estimate the

correct item and person parameters if Cor(ξ, θ) < 1, its application is quite limited and

needs to be justified.

Already in the introduction of this thesis it was mentioned that the term „biased“ is am-

biguous. If IAS, PCS, and NRM are used to handle item nonresponses, then the construc-

tion of the latent variables in the IRT models is changed unless the implicit assumptions

of these methods are met. Hence, if the assumptions are violated, then systematic dif-

ferences in numerical values of true parameters and parameter estimates reflect implicit

theoretical differences due to changed measurement models based on different random

variables rather than biased parameter estimation. Strictly speaking, different random ex-

periments are considered. From this point of view, inappropriate missing data methods

may unpredictably change the estimands rather than produce inconsistent estimates. In

other words, the true item and person parameters under IAS, PCS, and NRM are different

from those in the measurement model of ξ based on Y. Nevertheless, the term bias was

consistently used for differences between parameters and their estimates throughout this

work. This is reasonable from the practical point of view. In order to derive practical

recommendations, it does not matter at all whether the estimand changes implicitly or the

estimate is biased. Both threaten test fairness and the validity of test results.

In summary, the results of the analytical considerations and simulated data examples

revealed that not only missing data but also the way to handle them are potentially a

threat of accuracy, reliability, test fairness, and validity. Even the meaning of the latent

variable can be affected if ad hoc methods are used thoughtlessly. Furthermore, ad hoc

methods such as IAS and PCS conflict with the assumptions of most IRT models aimed

to be applied. Theoretical inconsistencies and distorted parameter estimates result. The

NRM for nonignorable missing data is a model-based approach resting upon very strong
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implicit assumptions, so that the applicability is quite limited. However, the basic idea

of the NRM is to include a model for the probability of missingness of items. This is

a distinctive feature of all model-based approaches for non-ignorable missing data. The

IRT models for item nonresponses considered in detail in Chapter 4.5 of this thesis rest

upon this fundamental idea. Nevertheless, the NRM as well as IAS and PCS cannot be

recommended. The implicit assumptions underlying these approaches are unlikely to hold

in most psychological and educational assessments.

MIRT models for nonignorable item nonresponses In most applications, it is as-

sumed that the missing data mechanism Y is MAR given Y or Z or both. This assumption

is not testable in application. However, this assumption allows to choose between differ-

ent methodologically-sound and well-established approaches, which are implemented in

many statistical software packages. For example, multiple imputation (MI) and full infor-

mation maximum likelihood (FIML) estimation are regarded as state-of-the-art methods

but require that the missing data mechanism is MAR (Schafer & Graham, 2002). Suitabil-

ity of these methods for measurement models has also been studied. FIML is routinely

used in SEM with missing data (Arbuckle, 1996; Enders, 2001b; Enders & Bandalos,

2001). MI for categorical items is an appropriate method to handle missing responses in

IRT measurement models even if the number of item nonresponses is large (Van Buuren,

2007, 2010). Furthermore, commonly used JML and MML estimations as implemented

in the most statistical software can be regarded as full information ML estimators since

each observed item response is taken into account. Accordingly, Glas (2006) showed that

unbiased IRT parameter estimates can be obtained by simple IRT models given the miss-

ing data mechanism Y is MAR given Y. No adoptions of the estimators or the estimation

algorithms are required in this case. If the missing data mechanism Y is MAR given Z

or (Y, Z), then the covariate Z can be included in an LRM or, in the case of discrete

covariates, MG-IRT models can be applied alternatively. In other words, if the MAR

assumptions are met, then many different approaches exist to handle missing responses.

However, only a few methods exist for nonignorable missing data that typically rest on

strong assumptions.

Although the MAR-assumption is tempting, there is strong empirical evidence that

missingness is nonignorable in many applications. For example, the rates of omitted or

not-reached items at the end of a test were often found to be dependent on the test perfor-

mance. The latter is a fallible indicator of the latent ability, and it is reasonable to assume

that the item non-responses stochastically depends on the latent ability ξ, which is per se
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missing. In this case, the missing data mechanism Y is very likely NMAR. Neither the

currently implemented MI procedures nor FIML ensure unbiased parameter estimation in

this case. Suited methods are required that account for nonignorable item nonreponses.

There is a certain similarity between model-based approaches for missing data that are

MAR given Z or (Y, Z) and models for nonignorable missing data. In both cases, the

target model of interest, here the measurement model of ξ constituted by Y, needs to be

extended to include auxiliary variables Z that account for missing data. If the missing

data mechanism Y is MAR given Z or (YZ) ,then a joint model for (Y, Z) needs to be

specified. Similarly, a joint model for (Y, D) is required if the missing data mechanism is

NMAR. As outlined by Rubin (1976), likelihood-based and Bayesian inference are con-

ditional on D when the nonresponse mechanism is nonignorable. This implies in turn that

the missing pattern D is informative with respect to the parameters of the target model.

Using this information reduces the bias due to missing data. This is the rationale un-

derlying model-based approaches for nonignorable missing data. The essential question

is how to specify a common model for (Y, D) that preserves the target model as a sub-

model. Unfortunately, there is no unique answer for all classes of models. In general, two

broad classes of models were proposed to handle nonignorable missing data - selection

models (SLM) (Dubin & Rivers, 1989; Heckman, 1976, 1979; Little, 1993, 1995, 2008;

Puhani, 2000; Winship & Mare, 1992) and pattern mixture models (PMM) (Little, 1993,

1995, 2008). SLMs and PMMs were originally developed outside the context of educa-

tional and psychological measurement. Multidimensional IRT models for nonignorable

missing responses have been proposed to handle nonignorable missing responses as test

items (Glas & Pimentel, 2008; Holman & Glas, 2005; Korobko et al., 2008; Moustaki

& Knott, 2000; O’Muircheartaigh & Moustaki, 1999; Rose et al., 2010). These models

were scrutinized and further developed here in this thesis. At the beginning it was shown

that these MIRT models can be regarded as SLMs with certain assumptions. However, the

same models could alternatively be derived from PMMs under the same assumptions. The

essential idea underlying MIRT models for nonignorable item nonresponses is to model

the stochastic dependency between Y and D by a common latent variable model. The

existence of a latent response propensity θ is assumed. The vector response indicators

D = D1, . . . ,DI constitute the measurement model of θ. The measurement model of the

latent ability ξ based on Y is the target model preserved in the joint measurement model

of (ξ, θ) based on (Y, D). An important assumption in this model is the local stochastic

independence of all Yi and Di. More specifically, it is assumed that Yi ⊥ (Y−i, D) | ξ and

Di ⊥ (Y, D−i) | (ξ, θ). In application, violations of the assumptions of local independence
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results often from ignored multidimensionality of the latent variable.

For example, let there be groups of items that differ with respect to the item format

(multiple choice versus open-constructed) or the content (mathematics versus biology).

If test takers differ with respect to their tendency to omit items between these domains,

then the latent response propensity will be multidimensional. In such a case, the two-

dimensional latent response propensity would underlie D. However, the issue of the di-

mensionality of the latent response propensity is typically ignored in the literature. In

most applications, the latent response propensity is assumed to be unidimensional. In this

thesis, it could be demonstrated that MIRT models for nonignorable missing data poten-

tially fail to account sufficiently for item nonresponses when unidimensionality of θ is

assumed erroneously. In contrast to the items Yi, the response indicators Di are not theo-

retically constructed items. Typically, there are only ad-hoc hypotheses about the dimen-

sionality of the latent response propensity. Therefore, here it is argued that exploratory

methods, such as item factor analysis (e. g. Tate, 2003; Wirth & Edwards, 2007) and item

clustering (e. g. Reckase, 2009), should complement theoretical considerations to find

the appropriate model for D. The assumption of unidimensionality of the latent response

propensity should be studied in application.

A closer examination of existing literature of MIRT models for item nonresponses re-

vealed that different alternative MIRT models have been proposed. In general, between-

item multidimensional IRT (B-MIRT) models and within-item multidimensional IRT (W-

MIRT) models for item nonresponses can be distinguished. Typically, the models are con-

sidered to be equivalent. Holman and Glas (2005) showed analytically how these models

are related. However, the substantive meaning of some model parameters differs between

the models. Rose et al. (2010) demonstrated the differences between one-parametric B-

and W-MIRT models for nonignorable missing data. They showed that differences in the

model of D result in differently constructed latent variables. A latent response propensity

is only constructed in B-MIRT models. In W-MIRT models a latent difference variable

(θ − ξ) is constructed. In fact, in one-parameter models with θ and ξ unidimensional

each, the B- and W-MIRT model are also equivalent in terms of models fit. However,

as shown here, this is not necessarily the case for two-parameter models. Furthermore,

W-MIRT model for nonignorable missing data requires additional restriction for model

identification. Depending on the particular restriction chosen to identify the model, differ-

ent W-MIRT models result. The models differ in complexity and interpretation of model

parameters. Which of these models should be used in application? Is there any benefit

from using W-MIRT models instead of B-MIRT models or vice versa?
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Here, it was shown how the W-MIRT models can be analytically derived starting from

the B-MIRT model. This was done separately for one- and two-parameter models. The

class of models was extended to include cases with a complex multidimensional structure

of latent abilities ξ = ξ1, . . . , ξM and latent response propensities θ = θ1, . . . , θP.

Two different W-MIRT models were derived theoretically, starting with the definition

of latent variables. It was shown that only in the B-MIRT model is a latent response

propensity constructed. Two alternative W-MIRT models have been derived where the la-

tent response propensity is replaced by functions f (ξ, θ). The resulting models are struc-

turally similar to latent change models (e. g. Steyer, Eid, & Schwenkmezger, 1997;

Steyer, Krambeer, & Hannover, 2004) and recently proposed correlated-trait-correlated-

method factor models (e. g. Eid et al., 2008; Geiser, Eid, Nussbeck, Courvoisier, & Cole,

2010; Geiser & Lockhart, 2012, February 6; Pohl & Steyer, 2010). In the derivation of

alternative MIRT models based on (Y, D) needs to preserve the target model - the mea-

surement model of ξ. In other words, the construction of ξ needs to be unaffected, so

that the person parameters and the item parameters with respect to Yi are equal. Under

this condition four different W-MIRT models could be derived. In the WDi f MIRT Rasch

model and the 2PL-WDi f MIRT model, the latent response propensity θ is replaced by a

multidimensional latent difference variable θ∗ = θ∗1, . . . , θ
∗
P with θ∗

l
= θl −

∑M
m=1 ξm (for all

l ∈ 1, . . . , P). In the WResMIRT Rasch model and the 2PL-WResMIRT model, θ is replaced

by a latent residual θ̃ = θ̃1, . . . , θ̃P with θ̃l = θl − E(θl | ξ). All these alternative models

were rigorously mathematically developed starting from the B-MIRT Rasch model and

the 2PL-BMIRT model respectively. This allowed for the derivation of model implied

constraints with respect to the item discrimination parameters in the different one- and

two parametric W-MIRT models.

A general model equation has been introduced that allows to distinguish the different

MIRT models for nonignorable missing data formally (see Equations 4.79 and 4.80). The

structure of the matrix Λ of item discrimination parameters and the constraints imposed

for the single elements in Λ are distinctive for the MIRT models considered here (see

Table 4.13). Under these constraints, B-MIRT and W-MIRT models turned out to be

equivalent in terms of model fit. Hence, GoF cannot serve as a decision aid to determine

the most appropriate model. The fit of a model to the data is only one criterion and,

possibly, not the most important one to choose the best missing data model in a real

application. For example, it is easy to specify a model for (Y, D) that is equivalent or

even better in terms of model fit but practically of no use since the target measurement

model is not preserved. Recall that the nonresponse model (model of D) is actually a
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nuisance (Enders, 2010). The only reason to include D is for the reduction or elimination

of bias with respect to the parameter estimates of the target model. In IRT models, the

measurement model of ξ based on Y with the parameter vector ι is of crucial interest. Here

it was outlined that two alternative missing data models can be regarded to be equivalent

- in the sense that they are equally suited to be applied - if they equally reduce the bias

in parameter estimates ι̂. Common concepts of model equivalence that focus on model fit

(e. g. Raykov & Penev, 1999; Stelzl, 1986) are not sufficient when missing models are

considered. In this work, it was argued to consider two or more missing data models to be

equivalent if three criteria are fulfilled: (a) the latent variable ξ is constructed equivalently

as in the complete data model, (b) the bias due to item non-responses is reduced to the

same extend, and (3) the models imply the same distribution of manifest variables (Y, D),

and, therefore have the same model fit. Only if these three criteria are met, then none

of these models are superior with respect to the quality of parameter estimates of the

measurement model of ξ.

The W-MIRT models rationally derived in this work have been shown to be equivalent

to the respective B-MIRT models with respect to the three criteria. The parameter vec-

tor ι is the same in all models. The vector φ of parameters referring to the probability

model of D are different, implying interpretational differences in this part of the model.

Simulated data example confirmed that the 2PL-BMIRT , the 2PL-WDi f MIRT , and the

2PL-WResMIRT models are equivalent in the sense defined here. The same applies for the

B-MIRT-, the WDi f -, and the WResMIRT Rasch model. Differences between the models

exist with regard to the practicability. WResMIRT Rasch models and 2PL-WDi f MIRT and

2PL-WResMIRT models require the specification of nonlinear constraints. Many IRT pro-

grams allow for equality constraints but only a few allow to specify complex nonlinear

constraints. However, Mplus (Muthén & Muthén, 1998 - 2010) is very flexible and al-

lows to estimate all models considered in this work. Example input files are given in

the Appendix (see 5.3). Unfortunately, the number of constraints increases rapidly with

the number of items Yi and latent dimensions ξm and θl in the model. This makes the

use of 2PL-WDi f MIRT and 2PL-WResMIRT models difficult. If the constraints with re-

spect to the item discrimination parameters of the 2PL-WResMIRT model are simply ig-

nored, then the relaxed 2PL-WResMIRT model results. This model has been proposed as

an alternative model to the B-MIRT model (Holman & Glas, 2005; O’Muircheartaigh

& Moustaki, 1999). Here it was shown that the relaxed 2PL-WResMIRT model is not

equivalent to the 2PL-BMIRT model in terms of model fit since more model parameters

need to be estimated. However, if the assumptions of the 2PL-BMIRT model are met,
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then the relaxed 2PL-WResMIRT model is equivalent in terms of the construction of ξ and

the bias reduction in item and person parameter estimates. In other words, the relaxed

2PL-WResMIRT model is overparameterized but equally suited to account for nonignor-

able item nonresponses. Despite the lack of parsimony, the advantage of this version of

the model is its applicability in programs that allow for bifactor analysis, such as TEST-

FACT (Bock et al., 2003).

The between-item multidimensional models such as the 2PL-BMIRT Model and the

B-MIRT Rasch Model are much easier to handle and do not require the specification of

non-linear constraints. The interpretation of latent variables and their correlations is much

easier. The latent variable θ is a multidimensional latent response propensity instead of

a function f (ξ, θ), such as θ∗ or θ̃. Accordingly, the correlations Cor(ξm, θl) are infor-

mative with respect to the strength of the dependencies between the missingness of item

responses and the person’s ability . The stochastic dependencies between the items Yi and

the response indicators Di are implied by the latent covariance structure between ξ and θ.

Insofar, the applications of MIRT models for nonignorable missing data are of diagnostic

value. The extent to which nonresponses and ability are related under a certain test design

can be studied. Of course, the same information can be extracted from W-MIRT models

with difficulty. However, due to their practicability and easier interpretation, B-MIRT

models are recommended as the MIRT model of choice to handle omitted responses that

are NMAR.

The disadvantages of MIRT models become clear when the assumptions are considered.

That is the assumption of local stochastic independence Yi ⊥ (Y−i, D) | (ξ) of the items

and the response indicators Di ⊥ (Y, D−i) | (ξ, θ). Due to the latter, MIRT models are not

appropriate to handle not-reached items. This was shown analytically in Section 4.5.6.

Furthermore, all stochastic dependencies between the items Yi and Di are implied by

the stochastic dependencies between the latent variables ξ and θ. Hence, an appropriate

model for D is a prerequisite. It was demonstrated that ignoring multidimensionality of θ

can make MIRT models for missing responses ineffective. For that reason, it was argued

that the dimensionality underlying D should be carefully studied, including exploratory

methods, such as item factor analysis.

In most current implementations, only linear stochastic dependencies between latent

variables in MIRT models can be taken into account. A latent variance-covariance ma-

trix of the latent dimensions or latent residuals is used to describe the unconditional and

conditional multivariate normal distribution respectively. Furthermore, only linear regres-

sions between the latent dimensions scan be specified. However, if non-linear relations
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exist between dimensions ξm and θl, then the MIRT models for nonignorable missing data

potentially fail to adjust for missingness.

Latent regression models and multiple group IRT model for item nonresponses An

important drawback of all MIRT models examined here is their complexity. The number

of manifest variables doubles when the response indicator vector D is included. Espe-

cially in large scale assessments with multimatrix sampling designs, the measurement

models contain far more than a hundred items Yi. Hence, a joint model of (Y, D) can

easily comprise several hundred manifest variables. Accordingly, the number of latent

variables in the model may increase as well. Given that both latent variables, ξ and

θ, are multidimensional, the models become computationally demanding. As Cai (Cai,

2010) noted, high dimensional IRT models remain numerically challenging. Therefore,

simpler models would be helpful. Missing data theory implies that correct inference in

presence of nonignorable missing data requires to model (Y, D) jointly. In this work, the

idea was developed to use functions f (D) instead of the complete vector D. Rose et al.

(2010) were the first to propose the inclusion of latent regression model (LRM) including

E(ξ | D̄), with D̄ = I−1 ∑I
i=1 Di. The parameters of this regression need to be estimated

jointly with the parameter of the measurement model (ι). Here the underlying rationale

of this approach was outlined. Each regression E[ξ | f (D)] can be used if an appropriate

function f (D) can be found. In some cases, the number of responded items SD =
∑I

i=1 Di

or the proportion of responded items D̄ can be sufficient. If D underlies a multidimen-

sional latent response propensity θ with a complex structure, then individual estimates θ̂

can be generated in a first step based on a model of D alone. The estimates can be used

as independent variables in a LRM in the second step that includes estimation of ι. The

functions f (D) should be chosen as parsimoniously as possible and with the minimal loss

of information. Here it was shown that in the case of 30 items, the sum score SD used

as a function f (D) in a LRM results in nearly identical item and person parameter esti-

mates (EAPs) as in the 2PL-BMIRT model. However, the number of parameters and the

computational demand is considerably lower when the LRM is used.

However, theoretically the LRM for item nonresponses and the 2PL-BMIRT model are

closely related. In the latter, the latent response propensity is included by the measure-

ment model based on D. If the local independence assumptions hold true and θ is an

observable variable, then the missing data mechanism Y would be MAR given θ. ML

and Bayesian inference based on a joint model of (Y, θ) would be valid and D could be

ignored. Generally, covariates can be taken into account in an IRT measurement model as
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independent variables in an LRM. The joint estimation of parameters of the measurement

model of ξ and the latent regression E(ξ | θ) using MML estimation would be equivalent

to FIML estimation with auxiliary variables (Graham, 2003; Mislevy, 1987, 1988). Of

course, in real applications the latent response propensity is unobservable. Therefore,

here it was proposed to use estimates θ̂ or other functions f (D), such as SD or D̄, which

can be considered as proxies of a latent response propensity. However, in the case of a

multidimensional latent response propensity, the use of a single sum score SD or propor-

tion of answered items D̄ is questionable. For that reason, the dimensionality of the latent

response propensity should also be taken into account in the choice of the potentially

multidimensional function f (D). For example, sum scores S Dl
can be used, that are cal-

culated by summing only that items Di that indicate θl. Hence a multiple latent regression

can be specified with several sum scores S Dl as independent variables. Alternatively, the

person parameter estimates θ̂ = θ̂1, . . . , θ̂P can be used. Since the initial analysis of the

dimensionality underlying D is recommended in each case, the estimates θ̂ can easily be

obtained as a by-product and can further be used in a LRM. A special case is the use of the

identity function f (D) = D so that each single response indicator is included in the latent

regression E(xi | D). If no other appropriate function f (D) can be found, then this is the

least restrictive LRM. However, the number of estimands in the model increases with the

number of items in the measurement model, especially if interaction effects between Di

and D j (i , j) exist with respect to ξ.

It was shown that the LRM is the method of choice to account for item nonresponses

due to not-reached items. The assumption of local stochastic independence Di ⊥ (Y, D−i) | (ξ, θ)
in MIRT models for item nonresponses is always violated in the case of not-reached items.

If all missing responses result exclusively from not-reached items, then all information

about D is given by the number of reached or not-reached items since D always follows

a perfect Guttman-pattern. In this case, S D is always an appropriate function f (D) for the

LRM. If item nonresponses result from both, omitted and not-reached items, then more

complex models, as proposed in Section 4.5.6, are required. These models are summa-

rized below.

The major advantage of using the LRM for nonignorable missing data is the reduc-

tion of model complexity compared to the MIRT models, given suited functions f (D)

can be found. The concurrent estimation of the measurement model of θ based on D is

avoided. Furthermore, nonlinear relations between the f (D) and ξm can be modeled by in-

clusion of polynomials and interaction terms. Given the estimates θ̂ are used, non-linear

relationships between the latent dimensions ξm and θl can be approximated. Further-
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more, interactions between f (D) and other covariates can be included. Exemplarily, it

was demonstrated how to include f (D) in a booklet design when the booklet (indicator

variables of the booklets) moderates the dependency between missingness and the latent

ability.

In the derivation of the LRM for missing responses the underlying assumptions where

explicated. It was shown that D can be ignored if conditional stochastic independence

D |Ymis | ( f (D),Yobs) holds true. This assumption is only warranted to hold true if f (D) =

D. If other functions than the identity function are used, then it is important that all infor-

mation in D with respect to Ymis is preserved in f (D). Unfortunately this is untestable and

will only approximately be achieved in real applications. However, theoretical consider-

ations underline the importance of the deliberate choice of the function f (D). Therefore,

a careful examination of D should always precede the application of the LRM for item

nonresponses. In some applications it may be difficult to find appropriate functions D. In

such cases, the applicability of the LRM is limited.

If the functions f (D) can be regarded as proxies of a latent response propensity, then

the impact of measurement error with respect to bias reduction remains unclear. It is

well known that unreliability leads to biased regression coefficients and correlations. Lit-

tle is known about the impact of unreliability in auxiliary variables with respect to bias

reduction. Especially when the number of manifest variables is low, it is expected that

unreliability of f (D) derogates the bias reduction. Further research is needed to study the

robustness and suitability of the LRM with different functions ( f D) in different testing

designs.

Unfortunately, the number of available software that allow for concurrent estimation of

a measurement models and a LRM is limited. For example, Mplus (Muthén & Muthén,

1998 - 2010) and ConQuest (Wu et al., 1998) can be utilized to apply LRMs for nonignor-

able missing data. However, many traditional IRT programs, such as BILOG (Zimowski

et al., 1996), PARSCALE (Muraki & Bock, 2002), and MULTILOG (D. M. Thissen et

al., 2003), do not allow for the inclusion of LRMs. Furthermore, these programs can only

estimate unidimensional IRT models. Hence, neither LRM nor MIRT models for nonig-

norable missing data can be applied. However, multiple group IRT models can be fitted

in these software packages. Rose et al. (2010) applied MG-IRT models to account for

nonignorable item nonresponses. This approach is straightforward and closely connected

to the LRMs for missing responses. Stratification is widely used in linear regression anal-

ysis (e. g. Quesenberry & Jewell, 1986). The MG-IRT model results if a discrete function

f (D) can be found, for example, by stratification of the proportion of completed items.
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Indicator variables of the resulting strata can be used in ordinary linear regression models.

Instead of using a latent regression E(ξ | f (D)), a multiple group model can be used with

f (D) as the grouping variable. Rose et al. (2010) stratified the mean response rate D̄ in

order to account for missing responses in the PISA 2006 data. They formed three groups

so that the number of cases in each stratum were similar. The item parameters in the

MG-IRT model were constrained to be equal across the strata, to ensure a common met-

ric. The distributions of ξ, however, could vary across the groups. The MG-IRT model

for nonignorable missing data allows for heterogeneous variances and captures nonlinear

relations between ξ and f (D). Distributional differences with respect to the latent ability

across the groups indicate that the missingness stochastically depends on ξ. The advan-

tage of MG-IRT models for missing responses is their simplicity and applicability even in

software that allow neither for estimating MIRT models nor the inclusion of LRMs.

Theoretically, this approach is very close to pattern mixture models, where each miss-

ing pattern forms a group. Regarding the MG-IRT models as a special case of the LRMs

implies that the unreliability of the functions f (D) is also a potential threat in MG-IRT

models. If a latent response propensity exists, then the use of a discrete function f (D)

with too few levels can be an oversimplification. Hence, to form the groups appropriately

can be a nontrivial task. Again, the analysis of D should precede the application of the

MG-IRT model for item nonresponses. If a MIRT model can be fitted to the data D = d,

then the estimates θ̂ can be stratified to form groups of the MG-IRT model. This is recom-

mended especially in cases with a complex dimensional structure of θ. In general, applied

researchers should be aware that the MG-IRT model is sensitive to the choice of grouping.

As in the case of LRM for nonignorable missing data, further research is needed to study

the robustness of the approach under different test designs.

A joint model for omitted and not-reached items Considering the local stochastic

independence assumptions of MIRT models for nonignorable missing data as well as

the properties of response indicators Di revealed that MIRT models are appropriate for

omitted responses but inappropriate to handle nonignorable missing responses due to

not-reached items. The reason is that response indicators Di and D j (i , j) indicating

reached or not-reached items are deterministically dependent. The probability to answer

an item i + 1 after the first not-reached item i is always zero and the probability to reach

an item i − 1 prior to the first not-reached item i is always equal to one. This violates

the assumption Di ⊥ (Y, D−i) | (ξ, θ) of conditional stochastic independence of all MIRT

models considered in this work. It was shown that LRMs are the method of choice to
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handle nonigorable missing responses due to not-reached items. MIRT models however

are suited for omitted responses. In most real applications, missing responses in a sin-

gle item i result from both failing to reach the end of the test and omissions of items.

How does one model nonignorable missing responses if omitted and not-reasched items

needs to be treated differently? In Section 4.5.6 a joint model for omitted and not-reached

has been developed that combines a MIRT model with an LRM. In order to distinguish

between omitted and not-reached items, D was replaced by two vectors of indicator vari-

ables: D(O) = D
(O)
1 , . . . ,D

(O)
I

and D(N) = D
(N)
1 , . . . ,D

(N)
I

. D
(N)
i
= 1 indicates that item i

was reached by the test taker and D
(N)
i
= 0 otherwise. D

(O)
i
= 1 indicates that item i

was not omitted by the test taker and D
(O)
i
= 0 otherwise. An item responses is observed

if the item i is reached (D(N)
i
= 1) and not omitted by the test taker (D(O)

i
= 1). Hence

Di = f (D(N)
i
,D

(O)
i

) and D = f (D(N), D(O)) respectively. The final model consists of a

joint measurement model of ξ and θ based on (Y, D(O)) and an LRM with two, potentially

multivariate regressions E(ξ | S (N)) and E(θ | S (N)). The latter is important since the vector

D(O) will also suffer from missing data if items in the end of the test are not reached. The

model of D(O) is the measurement model of θ with the I regressions P(D(O)
i
= 1 | θ). θ

is the general tendency not to omit the items i. Items can only be completed or omitted

by the test takers when they are reached in time. Not-reached items lead to missing data

in both the items Yi and the indicators D
(O)
i

. Given that the number of not-reached items

and the omission of items is stochastically dependent, the missing data mechanism D(O)

is also NMAR. The latent regression E(θ | S (N)) accounts for these nonignorable miss-

ing data. Item nonresponses in Y will be appropriately taken into account by both the

regression E(ξ | S (N)) and the joint model of (Y, D(O)).

In application there are some difficulties in modeling not-reached items, since their

identification can be difficult. Typically, the connected sequence of missing responses

at the end of the test is assumed to be a result of failing to reach the end of the test.

However, it cannot be ruled out that these items have been intentionally omitted. Fur-

thermore, the current identification rules for not-reached items assume that all test takers

answer the items in the presented order. However, in paper-and-pencil tests, test takers

potentially choose the order of items by themselves. In this case, not-reached items and

omitted become indistinguishable. Fortunately, the use of computerized testings allow

for the registration of the order of answered items and a valid detection of both omitted

and not-reached items. This potentially facilitates the model-based approaches for item

nonresponses in psychological and educational testings.
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5.2 Recommendations for Real Applications

Based on the results of this work and in line with previous research, different recommen-

dations for applied researchers in the field of educational and psychological measurement

can be derived. At first it is strongly recommended never to use ad hoc methods such as

IAS or PCS to handle item nonresponses. Simply to ignore missing data in IRT models

seems to be less harmful than using such ad hoc methods (e. g. Culbertson, 2011, April;

Lord, 1974; Rose et al., 2010).

In order to find the most appropriate missing data method in a particular application,

some questions should addressed. First, the appropriate approach to handle item nonre-

sponses depends on the missing data mechanism. Therefore, the first question is, what

is known about the missing responses? It needs to be kept in mind that nonresponses in

a single item can result from not-reached items or omitted items, or they can be due to

the design. The latter are planned missing data. If the design implies that planned miss-

ing data are ignorable, then only missingness due to omitted and not-reached items is of

concern. This is typically the case in multimatrix-designs if the booklets are randomly as-

signed. If unplanned missing data exist, then it needs to be answered whether observable

variables determine the missing pattern. This is difficult to answer in most applications.

However, in CAT the missing data mechanism is MAR given Y or MAR given (Y, Z) if

covariates Z are used to determine the starting items. In these cases, item and person pa-

rameters can be estimated unbiasedly based on MML estimation including Z respectively

(Glas, 2006). Item imputation methods can be alternatively applied in these cases (Van

Buuren, 2007, 2010). The covariates Z need to be included in the imputation model given

the missing data mechanism Y is MAR given Z or (Y, Z).

If the test design does not allow to infer about the missing data mechanism, then the

plausibility of the MCAR and the MAR assumptions should be questioned. Whereas

the MCAR assumption can be tested (Chen & Little, 1999; Little, 1988b), no satisfying

approaches exist to test the MAR assumptions. Hence, if the assumption of missing

data being MCAR is not tenable, it should be deliberately decided whether the MAR

assumptions are reasonable or not. Since no test is available, missingness and its relation

with observed data should be scrutinized. The resulting statistics together with theoretical

considerations are the basis to decide which procedure is justifiable to handle missing

responses.

In order to study the plausibility of the MAR assumption, the missing pattern can be

examined. It should be carefully studied which items preferably have been omitted or
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not-reached. Do omissions occur more in items with certain response formats? Are there

more nonresponses in items that address certain issues or topics? Are the omission rates

in the items dependent on item characteristics, such as item difficulty or the position or the

context in which the item was presented? Depending on the study there might be further

questions that should be answered.

Furthermore, the relationship of the response rates of the test takers with other person

variables can be studied. If covariates exist that are stochastically related with miss-

ingness, then the strength of these associations is important. Such covariates could be

included in the parameter estimation. It should be asked then, how plausible the assump-

tion of MAR given the covariate is. To gain a good first impression, descriptive statistics

should be used that quantify the relationship between D, Y and other covariates Z. For ex-

ample, the relationship between the proportion correct score and the proportion of omitted

and not-reached items can be analyzed 3. For example, Rose et al. (2010) found a cor-

relation of r = 0.33 in the PISA 2006 data, indicating a relationship between proficiency

and missingness. If covariates Z exist, then they should also be studied in their relation to

the response indicators Di. Depending on the scales of the variables ZJ in Z, contingency

tables, χ2-tests, t-tests, logistic regressions, etc., and graphical procedures can be used.

It is also important to consider the existence of latent variables, which are inherently

missing. If the number of item nonresponses is related to the performance in items that

have been answered, then the missing data mechanism is only MAR if missingness is

conditionally stochastically independent of the latent ability given the observed item re-

sponses and other covariates. Here it is argued that this seems unlikely in many appli-

cations. A relation between missingness and test performance is more likely implied by

the stochastic dependency between missingness and the latent ability intended to be mea-

sured. In this case, the missing data mechanism is most likely nonignorable. If there is

doubt that the missing data mechanism Y is MAR, then models for nonignorable miss-

ing responses should be applied. These methods can also be used in sensitivity analyses

comparing models for missing data that are MAR and NMAR.

If missing data mechanism is assumed to be nonignorable, then an appropriate method

or model needs to be chosen to handle item nonresponses. The applicability of the differ-

ent model-based approaches depends on several factors, such as

1. The distinction between not-administered items (planned missing data), omitted

3Note, however, that the proportion correct score is itself affected by missing data and the relationship
with the proportion of missing data might be biased and should only be used as a starting point for
further analyses.
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responses, and not-reached items.

2. The proportion of unplanned missing response per item (proportion of nonresponses

in item i due to omission or not-reached items).

3. The number of items Yi.

4. The number of items with a significant number of unplanned missing data.

5. The model complexity of the target model - the measurement model of ξ based on

Y.

6. The complexity of the model for D and/or the availability of appropriate functions

f (D)

7. Sample size

8. Software capabilities

The distinction between nonresponses due to not-administered, omitted, or not-reached

items is essential. Here it was shown that omitted and not-reached items need to be treated

differently even if both result in nonignorable missing data. It has been proposed to dis-

tinguish between D
(O)
i

, the response indicator variables for (non-)omissions, and D
(N)
i

the

indicator of reached items. It is important to note that D, D(O), and D(N) suffer itself from

missing data if planned missing data exist due to not-administered items. If an item i was

not presented, then it is unknown whether a test taker would have reached and answered

the item or not. Hence D
(N)
i

, D
(O)
i

, and Di, respectively, are missing. In all models dis-

cussed in this work, planned missing data due to not-administered items were assumed

to be MCAR. This is reasonable in most real applications. In this case, the missing data

mechanism w.r.t. D is MCAR as well. However, if the administration of booklets and

items depends on covariates, such as pre-tests, type of schools, or other factors, then these

variables need to be included since the missing data mechanism is then MAR given Z. As

outlined in Section 4.5.6, missing data in D(O) result not only from not presented items

but also from not-reached items. If a not-reached item would have been reached, then it is

unknown whether it was answered or omitted. If the tendency to omit items depends on

the number of not-reached items, then missingness in D(O) is also nonignorable. In this

case, an appropriate model for D(O) or a suited function f (D(O)) needs to be found first.

If a latent response propensity is modeled based on D(O), then functions f (D(N)) should

be included in the background model (LRM). In a next step, a joint model for omitted
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and not-reached items can be used, that combines an MIRT model and a latent regression

model. However, if the number of items Yi as well as the number of latent dimensions

ξm are large, then the estimates θ̂ should be used together with f (D(N)) as independent

variables in a latent regression E[ξ | θ̂, f (D(N))]. The complexity of both sub-models of Y

and D can lead to a joint model with too many parameters, which is simply too compli-

cated for application. Model complexity is a limiting factor especially for small sample.

Unfortunately, there is scarcely any experience with all the proposed models for nonig-

norable missing responses, so that no clear recommendations can be given with respect

to sample size requirements. LRMs and MG-IRT models for item nonresponses are more

parsimonious than MIRT models for nonignorable missing data and might be preferred

in moderate sample sizes. The model complexity can also be reduced by skipping all re-

sponse indicators Di from D that have no or very small proportions of missing responses.

The item parameters of these indicators are difficult to estimate unless the sample size is

very large. D can be partitioned in such cases, so that response indicators of items with

substantial proportions of nonresponses are used as indicators in a measurement model of

θ, whereas functions of the remaining indicators are used as independent variables in an

additional LRM or as a grouping variable in multiple group MIRT models.

In order to find the best suited model and/or appropriate functions f (D) or f (D(O)), it

is strongly recommended to examine D by means of exploratory methods, such as item

clustering (e. g. Reckase, 2009) or item factor analysis (e. g. Wirth & Edwards, 2007).

The response indicators are not rationally constructed items, therefore the purely theoreti-

cal determination of the dimensionality of θ is questionable. For example, Mplus (Muthén

& Muthén, 1998 - 2010) allows for exploratory factor analysis with dichotomous items

based on tetrachoric correlations. Further methods for assessing the underlying dimen-

sionality in the case of dichotomous items have been proposed (Jasper, 2010; Reckase,

2009; Roussos et al., 1998; Stout et al., 1996; Tate, 2003).

No exploratory or confirmatory factor analytical models should be utilized for D(N),

since the essential assumption of local stochastic independence is violated. If the items

are answered in the same order the sum of reached items, then S (N) is always sufficient.

All information of D(N) is given by S (N). Of course, if the order of items varies, then

S (N) does not preserve all information of D(N) any more. If the information about the

order of responded items is known, then S (N) can still be used. For example, if the item

order depends on the booklet, then indicator variables Ih of the booklets h = 1, . . . ,H

can be included. Interactions between S (N) and the booklet indicators in a latent regres-

sion E[(ξ, θ) | S (N), I1, . . . , IH] are appropriate to account for different item orders and/or
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different sets of presented items in the booklets.

In general, the possibility of non-linear relations between f (D), f (D(N)), f (D(O)) or θ

and ξ should be considered. If interactions and nonlinearities are expected, then LRMs

can be superior to MIRT models that allow only for linear relations between the dimen-

sions ξm and θl4.

Limited software capabilities might also limit the range of applicable models. Mplus

is the only program that can estimate all models presented here. However, MG-IRT mod-

els and LRMs for nonignorable missing data are closely related. Hence, even if MIRT

models or LRM cannot be applied in a particular software, MG-IRT models based on

discrete functions f (D) can considerably reduce the bias due to item nonresponses (Rose

et al., 2010). Many MIRT software packages do not allow to specify complex nonlinear

constraints with respect to item discrimination parameters. Additionally, bi-factor anal-

ysis is commonly used to reduce computational burden in MIRT modelling (Gibbons &

Hedeker, 1992; Gibbons et al., 2007). In such cases, the relaxed 2PL-WResMIRT model

can still be applied. This model is not equivalent to the 2PL-BMIRT model in terms of

model fit, but yields unbiased item and person parameter if the model assumptions hold

true. There might be other limitations in the available software. However, most IRT

software packages allow at least for one of the model-based approaches discussed in this

work: MIRT models, LRMs, MG-IRT models, or combinations of these approaches.

To sum up, the final missing data model should be established stepwise. If it can be

assumed that the missing data mechanism is MCAR or MAR, then D needs not to be

included in the model. If the missing data mechanism is MAR given Z or (Y, Z), then the

covariate Z needs to be included in the model. If the nonresponse mechanism is suspected

to be nonignorable, then D needs to be included in a joint model (Y, D). If both - omitted

and not-reached items - needs to be considered, they need to be treated differently in a

joint model including functions f (D(N)) and an appropriate model of D(O).

5.3 Future Research

In this work, existing ad-hoc missing data methods were critically examined and existing

model-based methods especially for item nonresponses have been extended. The ini-

tial examination of ad-hoc missing data methods, such as IAS and PCS, was motivated

by their widespread use that contradicts the persistent criticism against their application.

4In this section, future research, the possibility of mixture MIRT models for latent interactions between ξ
and θ will be discussed.
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Its plausibility is tempting but nevertheless misleading. A closer analytical examination

revealed the strong assumptions underlying these methods and the inconsistencies with

stochastic IRT measurement models commonly applied in educational and psychological

assessments. These results underlined that elaborate missing data methods are required.

Data augmentation methods and model-based procedures have been proved promising in

many applications when missing data needs to be taken into account. Data augmentation

methods for item nonresponses in dichotomous items works well given the missing data

mechanism is MAR. Appropriate model-based approaches have been developed for situ-

ations when the missing data is MAR or NMAR. Models for item nonresponses that are

MAR were only briefly reviewed here. The focus was clearly on models for nonignor-

able item nonresponses. Since the late 1990s and the first decade of this new millennium,

MIRT models have been proposed to handle missing responses that are NMAR. Here

these models were related to existing models for missing data such as SLM and PMM.

Furthermore, the relation between different existing between- and within- item multidi-

mensional MIRT models were examined, and a common framework for these models was

introduced. With these class of models, nonignorable missing data can be taken into ac-

count in many available software packages that do not allow for multidimensional IRT

modeling.

However, there remain unsolved problems and unanswered questions that should be

addressed in future research. In this work, only dichotomous items Yi were considered.

Many results and conclusions in this work cannot simply be generalized to polytomous

items. It can be expected that the model-based approaches examined here work well

with 1PL- and 2P-IRT models for ordinal items Yi. In three-parameter models, parameter

estimation is generally difficult even in absence of missing data but might become even

more challenging due to nonignorable missing responses. The effect of item nonresponses

and the inclusion of D in a joint model need to be investigated in future studies.

But even for the case of dichotomous items, there are still unanswered questions. All

models discussed and developed here have restrictions reflecting certain assumptions,

which can be questionable and not justifiable in some applications. For example, MIRT

models rest upon the assumption of local stochastic independence of all manifest vari-

ables Yi and Di. Specifically, it is assumed that Di ⊥ (Y, D−i) | (ξ, θ). This implies

Di ⊥ Yi | (ξ, θ). From the B-MIRT model follows that conditional stochastic indepen-

dence Di ⊥ (Yi, ξ) | θ is assumed. In other words, the probability to respond to item i

is independent of the item response (right or wrong) and the latent proficiency given the

latent response propensity θ. In other words, in the MIRT models a latent variable un-
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derlying D is constructed that completely explains all stochastic dependencies between

each Di and Yi as well as each Di and ξ, respectively. Similarly, all pairwise stochastic

dependencies between Di and Yi are implied by the latent covariance structure of ξ and θ.

Why are these assumptions critical? For example, if the persons tendency to respond to a

particular item i depends on their subjective expectation of giving the (in)correct answer,

then test takers tend more to omit an item if they expect to answer incorrectly, while they

tend more to respond to an item if they feel to answer correctly. If it is further assumed

that this subjective judge of correctness of the answer is not completely wrong, then local

stochastic independence Di ⊥ Yi | (ξ, θ) is violated. Even in this case it is expected that

the MIRT models for nonignorable missing data will reduce the bias since information of

Di with respect to test performance is taken into account. However, the model is actually

misspecified and potentially the bias may not be eliminated completely. Further research

and simulation studies including conditional stochastic independence between items and

response indicators are required. The robustness of the MIRT models, LRM, and MG-

IRT models under local stochastic dependence needs to be investigated. Additionally, the

development of less restrictive and more advanced models that allow for local stochastic

dependencies would be an important step. As long as such models are not available, here

it is argued that the latent variable model underlying D is as flexible as possible.

There are many more plausible models that might be worth to be considered in future

research. For example, so far it was assumed the latent response propensity is a uni- or

mulitdimensional continuous variable. Alternatively, it can be assumed that latent classes

exist with typical missing data patterns. In this case, latent class models would be an

appropriate choice to model D. In fact, mixture modeling as implemented in Mplus

(Muthén & Muthén, 1998 - 2010) allows for concurrent estimation of an LCA based on D

and an IRT measurement model of a continuous uni- or multidimensional latent variable

ξ. Alternatively, mixture models that combine continuous latent response propensities

and unobserved heterogeneity in θ and the measurement model based on D might be a

reasonable choice.

The MIRT models discussed here allow only for additive effects. However, inter-

actions between latent variables with respect to the response indicators are thinkable.

For example, the tendency to respond to item i depends on a general latent response

propensity θ and the interaction between the latent ability ξ and θ. For example, let

P(Di = 1 | ξ, θ) = G[γ0i + γ1iξ + (γ2i − γ3iξ)θ], with G[] as the response function. In

this case, the probability to answer to item i depends more strongly on the latent response

propensity, the lower the ability is. IRT models that allow for interactions between latent
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variables with respect to the manifest variables of the measurement models were recently

introduced (Rizopoulos & Moustaki, 2008). However, apart from ltm (Rizopoulos, 2006)

there is hardly any software that allow to fit such models. Insofar, the development of less

restrictive models for nonignorable missing data depends also on the further development

of IRT models and their implementation in available software.

Finally, it should be noted that data augmentation methods have also been discussed for

missing data that are NMAR (Durrant & Skinner, 2006; Rubin, 1987). Multiple impu-

tations with an imputation model that accounts for nonignorability of missingness would

dispense with the need for joint model of Y and D in the estimation of the target mea-

surement model. Multiple imputations for ignorable item nonresponses rest upon little

assumptions with respect to the dimensional structure underlying Y and result in unbi-

ased item and person parameter estimates even if the proportion of missing data is large

(Van Buuren, 2010). If appropriate imputation models could be developed for nonig-

norable missing responses, then MI could become an interesting alternative to complex

model-based approaches.

This work has broadened the range of models that are appropriate in many applications.

Bias in item and person parameter estimates can be eliminated if the assumptions are met.

Even if the assumption of local stochastic independence of the response indicators is

violated, it is expected that the bias can be reduced. However, more research is required

for a further development of missing data methods to handle situations in which existing

approaches with their specific assumptions are inappropriate.
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Appendix A

In Chapter 3 the impact of missing data on item and person parameter was studied using

a simulation study. Details of the simulation study can be found in Chapter 3 (see page

46). In this Appendix the results of the simulation study are presented in detail. Table 5.2

shows the mean bias Bias(λ), as defined in Equation 3.4, of item parameter estimates β̂i

and α̂i as well as the ML-, WML-, and EAP person parameter estimates.

Table 5.2: Mean bias of estimated item difficulties β̂i and item discriminations α̂i and person parameter

estimates ξ̂ML, ξ̂WML, and ξ̂EAP.

Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 11 0 -2 0 -0.001 0.036 0.011 -0.003 0

500 11 0 -2 0.25 -0.003 0.046 0.017 -0.007 -0.006

500 11 0 -2 0.5 0.007 0.027 0.024 -0.003 0.005

500 11 0 -2 0.8 0.009 0.037 0.022 -0.006 0

500 11 0 -1.5 0 0.001 0.032 0.006 -0.008 -0.004

500 11 0 -1.5 0.25 0.005 0.055 0.018 -0.008 -0.004

500 11 0 -1.5 0.5 0 0.046 0.017 -0.015 0

500 11 0 -1.5 0.8 0.009 0.041 0.02 -0.014 0.001

500 11 0 -1 0 -0.002 0.05 0.004 -0.01 -0.006

500 11 0 -1 0.25 0.002 0.029 0.025 -0.004 0.001

500 11 0 -1 0.5 0.006 0.072 0.004 -0.033 -0.004

500 11 0 -1 0.8 0.003 0.049 0.017 -0.025 -0.002

500 11 0 -0.5 0 -0.011 0.038 -0.006 -0.021 -0.007

500 11 0 -0.5 0.25 -0.001 0.054 0.029 -0.002 0.01

500 11 0 -0.5 0.5 0.01 0.071 0.003 -0.036 0.012

500 11 0 -0.5 0.8 0.007 0.106 0.004 -0.044 0

500 11 0 0 0 0.003 0.073 -0.006 -0.018 -0.002

500 11 0 0 0.25 -0.01 0.125 0.013 -0.019 0.001

500 11 0 0 0.5 -0.002 0.112 -0.035 -0.077 0

500 11 0 0 0.8 0.014 0.033 -0.01 -0.059 0.01

500 11 0.3 -2 0 -0.023 0.009 -0.005 -0.018 -0.003

500 11 0.3 -2 0.25 -0.01 0.034 0.013 -0.01 0.006

500 11 0.3 -2 0.5 -0.044 0.032 -0.01 -0.039 -0.012
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 11 0.3 -2 0.8 -0.012 0.003 0.006 -0.021 -0.002

500 11 0.3 -1.5 0 -0.036 0.02 -0.016 -0.03 -0.002

500 11 0.3 -1.5 0.25 -0.04 0.052 -0.007 -0.034 -0.01

500 11 0.3 -1.5 0.5 -0.027 0.029 -0.008 -0.039 -0.002

500 11 0.3 -1.5 0.8 -0.025 0.013 0.001 -0.033 -0.002

500 11 0.3 -1 0 -0.054 0.047 -0.025 -0.042 -0.005

500 11 0.3 -1 0.25 -0.035 0.049 -0.01 -0.041 -0.011

500 11 0.3 -1 0.5 -0.039 0.051 -0.011 -0.05 0.003

500 11 0.3 -1 0.8 -0.042 0.022 -0.004 -0.047 -0.001

500 11 0.3 -0.5 0 -0.05 0.056 -0.027 -0.043 0.006

500 11 0.3 -0.5 0.25 -0.032 0.054 0.002 -0.03 0.009

500 11 0.3 -0.5 0.5 -0.054 0.096 -0.032 -0.077 0.005

500 11 0.3 -0.5 0.8 -0.05 0.054 -0.024 -0.075 -0.004

500 11 0.3 0 0 -0.078 0.098 -0.036 -0.057 0.009

500 11 0.3 0 0.25 -0.077 0.059 -0.012 -0.05 0.004

500 11 0.3 0 0.5 -0.062 0.382 -0.062 -0.11 0.007

500 11 0.3 0 0.8 -0.065 0.088 -0.057 -0.113 -0.004

500 11 0.5 -2 0 -0.031 0.021 -0.021 -0.032 -0.003

500 11 0.5 -2 0.25 -0.021 -0.001 0.006 -0.016 0.01

500 11 0.5 -2 0.5 -0.032 0.007 -0.01 -0.035 0.003

500 11 0.5 -2 0.8 -0.037 0.013 -0.013 -0.041 -0.012

500 11 0.5 -1.5 0 -0.059 0.002 -0.036 -0.05 -0.008

500 11 0.5 -1.5 0.25 -0.048 0.018 -0.019 -0.046 -0.011

500 11 0.5 -1.5 0.5 -0.063 0.004 -0.019 -0.052 0.001

500 11 0.5 -1.5 0.8 -0.037 0.003 -0.01 -0.042 0

500 11 0.5 -1 0 -0.045 0.037 -0.026 -0.041 0.014

500 11 0.5 -1 0.25 -0.056 0.025 -0.014 -0.044 0.003

500 11 0.5 -1 0.5 -0.075 0.036 -0.039 -0.079 -0.004

500 11 0.5 -1 0.8 -0.05 0.052 -0.018 -0.06 0.004

500 11 0.5 -0.5 0 -0.088 0.029 -0.041 -0.061 0.013

500 11 0.5 -0.5 0.25 -0.072 0.035 -0.018 -0.053 0.008

500 11 0.5 -0.5 0.5 -0.092 0.073 -0.048 -0.096 0.005

500 11 0.5 -0.5 0.8 -0.075 0.037 -0.042 -0.093 -0.003

500 11 0.5 0 0 -0.137 0.078 -0.077 -0.104 0.003

500 11 0.5 0 0.25 -0.103 0.051 -0.033 -0.072 0.002

500 11 0.5 0 0.5 -0.144 0.166 -0.094 -0.148 -0.003

500 11 0.5 0 0.8 -0.106 0.922 -0.07 -0.13 0.004

500 11 0.8 -2 0 -0.052 0.012 -0.03 -0.041 0.006

500 11 0.8 -2 0.25 -0.051 0.009 -0.018 -0.04 0.002

500 11 0.8 -2 0.5 -0.066 0 -0.038 -0.062 -0.006
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 11 0.8 -2 0.8 -0.041 0.008 -0.018 -0.042 0

500 11 0.8 -1.5 0 -0.094 0 -0.056 -0.07 -0.006

500 11 0.8 -1.5 0.25 -0.071 -0.003 -0.022 -0.048 0.005

500 11 0.8 -1.5 0.5 -0.105 0.007 -0.057 -0.089 -0.01

500 11 0.8 -1.5 0.8 -0.062 -0.024 -0.031 -0.062 -0.001

500 11 0.8 -1 0 -0.112 -0.034 -0.067 -0.083 0.005

500 11 0.8 -1 0.25 -0.107 -0.021 -0.055 -0.087 -0.013

500 11 0.8 -1 0.5 -0.116 0.005 -0.056 -0.097 0.005

500 11 0.8 -1 0.8 -0.099 0.025 -0.047 -0.089 -0.005

500 11 0.8 -0.5 0 -0.153 0.02 -0.092 -0.117 0.006

500 11 0.8 -0.5 0.25 -0.113 0.013 -0.042 -0.077 0.016

500 11 0.8 -0.5 0.5 -0.157 0.035 -0.078 -0.131 0.009

500 11 0.8 -0.5 0.8 -0.139 -0.026 -0.067 -0.123 -0.003

500 11 0.8 0 0 -0.211 0.121 -0.127 -0.161 0.004

500 11 0.8 0 0.25 -0.18 0.205 -0.076 -0.121 -0.007

500 11 0.8 0 0.5 -0.221 0.063 -0.121 -0.185 0.006

500 11 0.8 0 0.8 -0.168 0.011 -0.098 -0.164 0.011

500 22 0 -2 0 0.01 0.013 0.014 0.01 0.009

500 22 0 -2 0.25 -0.004 0.009 0.009 0 -0.001

500 22 0 -2 0.5 0.013 0.012 0.021 0.01 0.012

500 22 0 -2 0.8 -0.006 0.024 0.011 -0.004 -0.003

500 22 0 -1.5 0 -0.005 0.04 -0.001 -0.006 -0.005

500 22 0 -1.5 0.25 0.005 0.026 0.013 0.003 0.004

500 22 0 -1.5 0.5 -0.008 0.029 0.012 -0.003 -0.002

500 22 0 -1.5 0.8 -0.003 0.022 0.017 -0.003 -0.002

500 22 0 -1 0 0.002 0.035 0.013 0.007 0.007

500 22 0 -1 0.25 0 0.026 0.014 0 0.001

500 22 0 -1 0.5 0.007 0.018 0.017 -0.002 0.001

500 22 0 -1 0.8 0.006 0.037 0.025 -0.001 0.003

500 22 0 -0.5 0 0.005 0.037 0.007 0.001 0

500 22 0 -0.5 0.25 -0.004 0.04 0.017 0 -0.002

500 22 0 -0.5 0.5 0.01 0.067 0.019 -0.006 -0.001

500 22 0 -0.5 0.8 0.01 0.036 0.025 -0.01 0.002

500 22 0 0 0 0.001 0.047 0.007 0.001 0.002

500 22 0 0 0.25 0.005 0.063 0.019 -0.002 -0.002

500 22 0 0 0.5 0.007 0.084 0.019 -0.013 0.007

500 22 0 0 0.8 -0.005 0.038 0.022 -0.024 0.001

500 22 0.3 -2 0 -0.006 0.007 -0.004 -0.006 0.005

500 22 0.3 -2 0.25 -0.019 0.012 -0.015 -0.022 -0.013

500 22 0.3 -2 0.5 -0.018 0.031 -0.009 -0.018 -0.004
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 22 0.3 -2 0.8 -0.012 0.019 0.002 -0.009 0.003

500 22 0.3 -1.5 0 -0.018 0.011 -0.017 -0.018 -0.002

500 22 0.3 -1.5 0.25 -0.015 0.011 -0.005 -0.012 0.002

500 22 0.3 -1.5 0.5 -0.018 0.037 -0.011 -0.022 -0.003

500 22 0.3 -1.5 0.8 -0.006 0.017 0 -0.015 0.003

500 22 0.3 -1 0 -0.028 0.007 -0.027 -0.028 -0.004

500 22 0.3 -1 0.25 -0.015 0.019 -0.01 -0.018 0.003

500 22 0.3 -1 0.5 -0.035 0.024 -0.014 -0.03 -0.004

500 22 0.3 -1 0.8 -0.032 0.032 -0.005 -0.027 0

500 22 0.3 -0.5 0 -0.044 0.041 -0.027 -0.029 0.008

500 22 0.3 -0.5 0.25 -0.042 0.02 -0.015 -0.027 0

500 22 0.3 -0.5 0.5 -0.04 0.043 -0.017 -0.04 0

500 22 0.3 -0.5 0.8 -0.052 0.041 -0.014 -0.047 -0.007

500 22 0.3 0 0 -0.06 0.017 -0.039 -0.044 -0.001

500 22 0.3 0 0.25 -0.045 0.059 -0.02 -0.036 0.001

500 22 0.3 0 0.5 -0.06 0.035 -0.024 -0.054 0.002

500 22 0.3 0 0.8 -0.033 0.04 -0.011 -0.052 0.01

500 22 0.5 -2 0 -0.012 -0.006 -0.019 -0.019 0

500 22 0.5 -2 0.25 -0.022 0.025 -0.013 -0.018 0

500 22 0.5 -2 0.5 -0.027 0.028 -0.021 -0.028 -0.006

500 22 0.5 -2 0.8 -0.03 0.023 -0.016 -0.026 -0.007

500 22 0.5 -1.5 0 -0.025 0.011 -0.023 -0.021 0.008

500 22 0.5 -1.5 0.25 -0.031 0.003 -0.021 -0.026 -0.002

500 22 0.5 -1.5 0.5 -0.018 0.027 -0.012 -0.019 0.014

500 22 0.5 -1.5 0.8 -0.028 0.027 -0.011 -0.024 0.005

500 22 0.5 -1 0 -0.05 -0.011 -0.046 -0.044 -0.002

500 22 0.5 -1 0.25 -0.036 0.026 -0.029 -0.035 -0.002

500 22 0.5 -1 0.5 -0.056 0.022 -0.028 -0.041 0.003

500 22 0.5 -1 0.8 -0.055 0.025 -0.031 -0.051 -0.009

500 22 0.5 -0.5 0 -0.064 0.003 -0.057 -0.056 0.002

500 22 0.5 -0.5 0.25 -0.067 0.04 -0.042 -0.051 -0.005

500 22 0.5 -0.5 0.5 -0.073 0.048 -0.043 -0.062 0.002

500 22 0.5 -0.5 0.8 -0.066 0.045 -0.029 -0.056 0.005

500 22 0.5 0 0 -0.093 0.027 -0.067 -0.069 0.003

500 22 0.5 0 0.25 -0.087 0.038 -0.044 -0.057 0.004

500 22 0.5 0 0.5 -0.104 0.036 -0.055 -0.084 0.002

500 22 0.5 0 0.8 -0.09 0.032 -0.047 -0.087 0

500 22 0.8 -2 0 -0.038 -0.004 -0.035 -0.032 -0.003

500 22 0.8 -2 0.25 -0.033 0 -0.03 -0.031 -0.004

500 22 0.8 -2 0.5 -0.031 0.009 -0.028 -0.031 0.003
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 22 0.8 -2 0.8 -0.043 0.012 -0.033 -0.039 -0.009

500 22 0.8 -1.5 0 -0.059 -0.012 -0.057 -0.053 -0.006

500 22 0.8 -1.5 0.25 -0.053 -0.009 -0.04 -0.043 -0.005

500 22 0.8 -1.5 0.5 -0.065 -0.01 -0.056 -0.062 -0.012

500 22 0.8 -1.5 0.8 -0.048 0.001 -0.034 -0.042 0.003

500 22 0.8 -1 0 -0.075 -0.011 -0.068 -0.061 0.007

500 22 0.8 -1 0.25 -0.065 -0.004 -0.054 -0.055 0.001

500 22 0.8 -1 0.5 -0.094 -0.01 -0.067 -0.077 -0.008

500 22 0.8 -1 0.8 -0.094 -0.015 -0.063 -0.078 -0.01

500 22 0.8 -0.5 0 -0.116 -0.034 -0.1 -0.096 -0.003

500 22 0.8 -0.5 0.25 -0.118 -0.006 -0.081 -0.086 -0.013

500 22 0.8 -0.5 0.5 -0.119 -0.014 -0.076 -0.091 0.007

500 22 0.8 -0.5 0.8 -0.108 -0.002 -0.07 -0.092 0

500 22 0.8 0 0 -0.169 -0.015 -0.125 -0.126 -0.002

500 22 0.8 0 0.25 -0.146 0.004 -0.092 -0.102 -0.001

500 22 0.8 0 0.5 -0.151 -0.016 -0.101 -0.127 0.002

500 22 0.8 0 0.8 -0.151 -0.024 -0.097 -0.134 -0.005

500 33 0 -2 0 -0.005 0.005 -0.003 -0.004 -0.006

500 33 0 -2 0.25 -0.002 0.024 -0.002 -0.005 -0.007

500 33 0 -2 0.5 -0.004 0.017 0.004 -0.003 -0.004

500 33 0 -2 0.8 0.009 0.009 0.011 0.003 0.002

500 33 0 -1.5 0 0.001 0.026 0 0 0

500 33 0 -1.5 0.25 0.005 0.012 0.006 0.002 0.001

500 33 0 -1.5 0.5 -0.004 0.022 0.006 -0.004 -0.004

500 33 0 -1.5 0.8 0.001 0.024 0.01 -0.002 -0.001

500 33 0 -1 0 -0.003 0.02 0 -0.001 -0.001

500 33 0 -1 0.25 0.008 0.025 0.016 0.01 0.01

500 33 0 -1 0.5 0.013 0.025 0.024 0.011 0.011

500 33 0 -1 0.8 -0.003 0.016 0.014 -0.004 -0.003

500 33 0 -0.5 0 0.001 0.051 -0.005 -0.006 -0.007

500 33 0 -0.5 0.25 -0.001 0.031 0.002 -0.007 -0.004

500 33 0 -0.5 0.5 0.004 0.062 0.02 0 0.001

500 33 0 -0.5 0.8 -0.002 0.042 0.021 -0.007 -0.001

500 33 0 0 0 -0.007 0.039 -0.005 -0.006 -0.005

500 33 0 0 0.25 0.002 0.053 0.004 -0.008 -0.003

500 33 0 0 0.5 0 0.039 0.016 -0.01 -0.003

500 33 0 0 0.8 0.001 0.075 0.034 -0.004 0.006

500 33 0.3 -2 0 -0.01 0.012 -0.013 -0.011 -0.003

500 33 0.3 -2 0.25 -0.002 0.027 -0.004 -0.004 0.007

500 33 0.3 -2 0.5 -0.004 0.025 0.003 -0.001 0.008
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 33 0.3 -2 0.8 -0.015 0.018 -0.008 -0.013 -0.005

500 33 0.3 -1.5 0 -0.003 0.02 -0.004 -0.002 0.012

500 33 0.3 -1.5 0.25 -0.026 0.025 -0.03 -0.03 -0.015

500 33 0.3 -1.5 0.5 -0.008 0.017 0 -0.006 0.009

500 33 0.3 -1.5 0.8 -0.01 0.024 -0.002 -0.011 0.003

500 33 0.3 -1 0 -0.014 0 -0.02 -0.016 0.005

500 33 0.3 -1 0.25 -0.031 0.032 -0.021 -0.024 -0.005

500 33 0.3 -1 0.5 -0.025 0.026 -0.007 -0.016 0.005

500 33 0.3 -1 0.8 -0.032 0.025 -0.014 -0.028 -0.008

500 33 0.3 -0.5 0 -0.03 0.024 -0.033 -0.029 0

500 33 0.3 -0.5 0.25 -0.029 0.037 -0.018 -0.022 0.006

500 33 0.3 -0.5 0.5 -0.035 0.034 -0.021 -0.034 -0.002

500 33 0.3 -0.5 0.8 -0.038 0.016 -0.015 -0.037 -0.007

500 33 0.3 0 0 -0.049 0.019 -0.041 -0.038 0

500 33 0.3 0 0.25 -0.046 0.034 -0.024 -0.032 0.006

500 33 0.3 0 0.5 -0.059 0.07 -0.026 -0.047 -0.003

500 33 0.3 0 0.8 -0.056 0.036 -0.021 -0.055 -0.011

500 33 0.5 -2 0 -0.021 0.007 -0.022 -0.019 -0.005

500 33 0.5 -2 0.25 -0.025 0.021 -0.021 -0.021 -0.005

500 33 0.5 -2 0.5 -0.009 0.025 -0.012 -0.014 0.002

500 33 0.5 -2 0.8 -0.016 0.009 -0.013 -0.017 -0.003

500 33 0.5 -1.5 0 -0.013 0.034 -0.021 -0.017 0.007

500 33 0.5 -1.5 0.25 -0.026 0.014 -0.024 -0.023 0.001

500 33 0.5 -1.5 0.5 -0.038 0.012 -0.026 -0.03 -0.005

500 33 0.5 -1.5 0.8 -0.03 0.012 -0.018 -0.024 -0.003

500 33 0.5 -1 0 -0.047 0.005 -0.042 -0.035 -0.001

500 33 0.5 -1 0.25 -0.034 0.012 -0.024 -0.024 0.009

500 33 0.5 -1 0.5 -0.038 0.022 -0.03 -0.036 -0.001

500 33 0.5 -1 0.8 -0.026 0.017 -0.007 -0.018 0.015

500 33 0.5 -0.5 0 -0.055 0.001 -0.054 -0.047 0

500 33 0.5 -0.5 0.25 -0.053 0.038 -0.045 -0.045 0.004

500 33 0.5 -0.5 0.5 -0.074 0.015 -0.047 -0.057 -0.008

500 33 0.5 -0.5 0.8 -0.04 0.022 -0.016 -0.034 0.012

500 33 0.5 0 0 -0.068 0.022 -0.063 -0.056 0.009

500 33 0.5 0 0.25 -0.076 0.05 -0.059 -0.064 0.001

500 33 0.5 0 0.5 -0.073 0.033 -0.043 -0.059 0.009

500 33 0.5 0 0.8 -0.072 0.039 -0.038 -0.066 0.002

500 33 0.8 -2 0 -0.035 0.002 -0.042 -0.038 -0.014

500 33 0.8 -2 0.25 -0.038 0.016 -0.041 -0.039 -0.013

500 33 0.8 -2 0.5 -0.025 -0.008 -0.022 -0.021 0.005
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

500 33 0.8 -2 0.8 -0.03 0.005 -0.027 -0.029 -0.006

500 33 0.8 -1.5 0 -0.042 -0.006 -0.053 -0.046 -0.008

500 33 0.8 -1.5 0.25 -0.038 -0.009 -0.038 -0.034 0.005

500 33 0.8 -1.5 0.5 -0.047 0.011 -0.039 -0.039 0.001

500 33 0.8 -1.5 0.8 -0.027 0.002 -0.025 -0.028 0.006

500 33 0.8 -1 0 -0.048 0.005 -0.049 -0.039 0.015

500 33 0.8 -1 0.25 -0.072 -0.011 -0.065 -0.061 -0.007

500 33 0.8 -1 0.5 -0.067 0.001 -0.06 -0.06 -0.002

500 33 0.8 -1 0.8 -0.036 -0.016 -0.032 -0.037 0.015

500 33 0.8 -0.5 0 -0.088 -0.02 -0.098 -0.086 -0.008

500 33 0.8 -0.5 0.25 -0.1 -0.018 -0.086 -0.083 -0.002

500 33 0.8 -0.5 0.5 -0.095 -0.011 -0.083 -0.087 -0.006

500 33 0.8 -0.5 0.8 -0.08 0.007 -0.06 -0.071 0.003

500 33 0.8 0 0 -0.126 -0.028 -0.118 -0.104 0.005

500 33 0.8 0 0.25 -0.141 -0.023 -0.116 -0.117 -0.01

500 33 0.8 0 0.5 -0.14 -0.018 -0.096 -0.106 0.005

500 33 0.8 0 0.8 -0.106 -0.005 -0.075 -0.095 0.011

1000 11 0 -2 0 -0.002 0.006 0.016 0.003 0.005

1000 11 0 -2 0.25 0.002 0.016 0.023 0 0.003

1000 11 0 -2 0.5 0.021 0.015 0.029 0.003 0.012

1000 11 0 -2 0.8 0.015 0.014 0.031 0.003 0.01

1000 11 0 -1.5 0 -0.011 0.017 -0.001 -0.016 -0.011

1000 11 0 -1.5 0.25 0.007 0.012 0.024 -0.002 0.001

1000 11 0 -1.5 0.5 0 0.014 0.014 -0.018 -0.002

1000 11 0 -1.5 0.8 -0.002 0.025 0.026 -0.009 0.003

1000 11 0 -1 0 0.005 0.01 0.009 -0.005 0.003

1000 11 0 -1 0.25 0.004 0.019 0.028 0 0.005

1000 11 0 -1 0.5 0.001 0.029 0.005 -0.033 -0.004

1000 11 0 -1 0.8 -0.007 0.015 0.013 -0.03 -0.005

1000 11 0 -0.5 0 -0.001 0.049 0.001 -0.013 0.001

1000 11 0 -0.5 0.25 -0.001 0.01 0.018 -0.014 0

1000 11 0 -0.5 0.5 0.002 0.031 -0.003 -0.044 0.005

1000 11 0 -0.5 0.8 -0.001 0.014 0.01 -0.037 0.003

1000 11 0 0 0 0.003 0.071 -0.003 -0.015 0.003

1000 11 0 0 0.25 0.005 0.044 0.016 -0.016 0.002

1000 11 0 0 0.5 0.003 0.06 -0.041 -0.082 -0.006

1000 11 0 0 0.8 0.003 0.046 -0.021 -0.072 -0.001

1000 11 0.3 -2 0 -0.018 0.003 -0.006 -0.018 -0.001

1000 11 0.3 -2 0.25 -0.017 0.009 0.006 -0.017 -0.001

1000 11 0.3 -2 0.5 -0.024 0 0.003 -0.024 0.002
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 11 0.3 -2 0.8 -0.02 0.017 0.005 -0.024 -0.003

1000 11 0.3 -1.5 0 -0.03 0.007 -0.011 -0.025 0.003

1000 11 0.3 -1.5 0.25 -0.028 0.009 0.008 -0.019 0.004

1000 11 0.3 -1.5 0.5 -0.032 0.018 -0.001 -0.034 0.003

1000 11 0.3 -1.5 0.8 -0.017 0.021 0.014 -0.019 0.013

1000 11 0.3 -1 0 -0.041 0.012 -0.025 -0.041 -0.003

1000 11 0.3 -1 0.25 -0.039 0.011 -0.001 -0.032 -0.001

1000 11 0.3 -1 0.5 -0.048 0 -0.02 -0.06 -0.004

1000 11 0.3 -1 0.8 -0.025 -0.003 0 -0.042 0.004

1000 11 0.3 -0.5 0 -0.059 0.018 -0.04 -0.058 -0.007

1000 11 0.3 -0.5 0.25 -0.036 0.034 -0.006 -0.039 0.001

1000 11 0.3 -0.5 0.5 -0.058 0.018 -0.03 -0.075 0.004

1000 11 0.3 -0.5 0.8 -0.057 0.017 -0.02 -0.071 0

1000 11 0.3 0 0 -0.079 0.052 -0.048 -0.068 0.001

1000 11 0.3 0 0.25 -0.069 0.043 -0.02 -0.057 -0.002

1000 11 0.3 0 0.5 -0.071 0.075 -0.065 -0.114 0.003

1000 11 0.3 0 0.8 -0.065 0.048 -0.049 -0.106 -0.001

1000 11 0.5 -2 0 -0.046 0.006 -0.024 -0.037 -0.007

1000 11 0.5 -2 0.25 -0.032 0.015 -0.006 -0.029 -0.002

1000 11 0.5 -2 0.5 -0.052 0 -0.019 -0.045 -0.006

1000 11 0.5 -2 0.8 -0.032 0.013 -0.007 -0.034 -0.005

1000 11 0.5 -1.5 0 -0.053 0.014 -0.032 -0.045 -0.004

1000 11 0.5 -1.5 0.25 -0.045 -0.011 -0.006 -0.032 0.004

1000 11 0.5 -1.5 0.5 -0.05 0.001 -0.023 -0.055 -0.002

1000 11 0.5 -1.5 0.8 -0.047 0.014 -0.016 -0.05 -0.007

1000 11 0.5 -1 0 -0.068 -0.015 -0.043 -0.059 -0.003

1000 11 0.5 -1 0.25 -0.056 0.016 -0.015 -0.046 -0.001

1000 11 0.5 -1 0.5 -0.082 -0.007 -0.038 -0.079 -0.004

1000 11 0.5 -1 0.8 -0.051 -0.003 -0.014 -0.056 0.006

1000 11 0.5 -0.5 0 -0.107 -0.002 -0.059 -0.081 -0.003

1000 11 0.5 -0.5 0.25 -0.081 0.011 -0.032 -0.067 -0.007

1000 11 0.5 -0.5 0.5 -0.095 -0.004 -0.047 -0.095 0.006

1000 11 0.5 -0.5 0.8 -0.08 0.021 -0.042 -0.094 -0.005

1000 11 0.5 0 0 -0.136 -0.011 -0.082 -0.109 -0.006

1000 11 0.5 0 0.25 -0.108 0.014 -0.039 -0.079 -0.002

1000 11 0.5 0 0.5 -0.131 0.047 -0.091 -0.145 0.001

1000 11 0.5 0 0.8 -0.115 0.043 -0.074 -0.135 0.001

1000 11 0.8 -2 0 -0.059 -0.033 -0.036 -0.047 -0.003

1000 11 0.8 -2 0.25 -0.048 -0.016 -0.024 -0.046 -0.007

1000 11 0.8 -2 0.5 -0.071 -0.013 -0.028 -0.053 0.003
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 11 0.8 -2 0.8 -0.037 -0.031 -0.015 -0.039 0.003

1000 11 0.8 -1.5 0 -0.083 -0.034 -0.06 -0.073 -0.01

1000 11 0.8 -1.5 0.25 -0.076 -0.002 -0.033 -0.059 -0.005

1000 11 0.8 -1.5 0.5 -0.086 -0.035 -0.044 -0.075 0.001

1000 11 0.8 -1.5 0.8 -0.064 -0.023 -0.027 -0.058 0.003

1000 11 0.8 -1 0 -0.118 -0.047 -0.073 -0.092 -0.003

1000 11 0.8 -1 0.25 -0.094 -0.034 -0.042 -0.073 -0.002

1000 11 0.8 -1 0.5 -0.125 -0.04 -0.064 -0.105 -0.003

1000 11 0.8 -1 0.8 -0.086 -0.034 -0.044 -0.084 0.003

1000 11 0.8 -0.5 0 -0.162 -0.007 -0.097 -0.123 0

1000 11 0.8 -0.5 0.25 -0.131 -0.028 -0.058 -0.095 -0.003

1000 11 0.8 -0.5 0.5 -0.172 -0.012 -0.084 -0.138 0.004

1000 11 0.8 -0.5 0.8 -0.132 -0.024 -0.065 -0.119 0.003

1000 11 0.8 0 0 -0.225 -0.038 -0.133 -0.168 0

1000 11 0.8 0 0.25 -0.166 -0.051 -0.066 -0.112 0.006

1000 11 0.8 0 0.5 -0.217 0.367 -0.123 -0.186 0.006

1000 11 0.8 0 0.8 -0.188 -0.01 -0.105 -0.173 0.003

1000 22 0 -2 0 0.001 0.004 0.006 0.002 0.001

1000 22 0 -2 0.25 -0.006 0.018 0.002 -0.007 -0.008

1000 22 0 -2 0.5 0.001 0.008 0.011 0 0

1000 22 0 -2 0.8 0.005 0.004 0.016 0.002 0.002

1000 22 0 -1.5 0 0 0.017 -0.001 -0.005 -0.006

1000 22 0 -1.5 0.25 -0.001 0.007 0.01 -0.001 -0.001

1000 22 0 -1.5 0.5 0.008 0.006 0.022 0.007 0.008

1000 22 0 -1.5 0.8 0.002 0.01 0.017 -0.002 0

1000 22 0 -1 0 -0.003 0.014 0 -0.005 -0.004

1000 22 0 -1 0.25 -0.004 0.02 0.009 -0.005 -0.005

1000 22 0 -1 0.5 0.007 0.011 0.024 0.005 0.008

1000 22 0 -1 0.8 -0.001 0.012 0.022 -0.005 -0.001

1000 22 0 -0.5 0 0.006 0.012 0.005 0 0.002

1000 22 0 -0.5 0.25 0.002 0.014 0.012 -0.004 -0.001

1000 22 0 -0.5 0.5 0.001 0.021 0.017 -0.009 -0.001

1000 22 0 -0.5 0.8 0.001 0.021 0.026 -0.01 0.001

1000 22 0 0 0 0.002 0.019 0.001 -0.005 -0.003

1000 22 0 0 0.25 0.017 0.03 0.021 0.003 0.008

1000 22 0 0 0.5 0.006 0.033 0.013 -0.018 0.001

1000 22 0 0 0.8 0.002 0.04 0.022 -0.023 0.003

1000 22 0.3 -2 0 -0.015 0.005 -0.013 -0.015 -0.005

1000 22 0.3 -2 0.25 -0.011 -0.003 -0.005 -0.011 -0.001

1000 22 0.3 -2 0.5 -0.009 0.018 -0.001 -0.008 0.005
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 22 0.3 -2 0.8 -0.008 0.017 -0.002 -0.012 0

1000 22 0.3 -1.5 0 -0.022 0.003 -0.015 -0.016 0

1000 22 0.3 -1.5 0.25 -0.015 -0.009 -0.005 -0.012 0.002

1000 22 0.3 -1.5 0.5 -0.026 0.005 -0.014 -0.025 -0.006

1000 22 0.3 -1.5 0.8 -0.017 0.005 -0.008 -0.023 -0.005

1000 22 0.3 -1 0 -0.034 0.005 -0.027 -0.028 -0.003

1000 22 0.3 -1 0.25 -0.021 0.024 -0.005 -0.014 0.006

1000 22 0.3 -1 0.5 -0.034 0.019 -0.013 -0.029 -0.001

1000 22 0.3 -1 0.8 -0.021 0.014 -0.001 -0.023 0.004

1000 22 0.3 -0.5 0 -0.048 0 -0.039 -0.042 -0.007

1000 22 0.3 -0.5 0.25 -0.033 0.009 -0.019 -0.031 -0.003

1000 22 0.3 -0.5 0.5 -0.044 0.019 -0.014 -0.036 0.005

1000 22 0.3 -0.5 0.8 -0.032 0.011 -0.011 -0.042 -0.001

1000 22 0.3 0 0 -0.047 0.006 -0.032 -0.036 0.008

1000 22 0.3 0 0.25 -0.057 0.012 -0.024 -0.04 -0.001

1000 22 0.3 0 0.5 -0.057 0.007 -0.028 -0.059 -0.002

1000 22 0.3 0 0.8 -0.053 0.005 -0.02 -0.063 0

1000 22 0.5 -2 0 -0.02 0.001 -0.019 -0.019 0

1000 22 0.5 -2 0.25 -0.016 -0.002 -0.008 -0.013 0.004

1000 22 0.5 -2 0.5 -0.026 0 -0.02 -0.027 -0.005

1000 22 0.5 -2 0.8 -0.018 0.005 -0.009 -0.018 0.002

1000 22 0.5 -1.5 0 -0.034 0.001 -0.027 -0.026 0.001

1000 22 0.5 -1.5 0.25 -0.037 0.009 -0.019 -0.025 -0.001

1000 22 0.5 -1.5 0.5 -0.042 0.001 -0.027 -0.036 -0.004

1000 22 0.5 -1.5 0.8 -0.038 0.003 -0.024 -0.037 -0.007

1000 22 0.5 -1 0 -0.049 -0.013 -0.041 -0.039 0.002

1000 22 0.5 -1 0.25 -0.029 -0.012 -0.02 -0.025 0.01

1000 22 0.5 -1 0.5 -0.055 -0.001 -0.037 -0.05 -0.004

1000 22 0.5 -1 0.8 -0.043 0.002 -0.02 -0.038 0.003

1000 22 0.5 -0.5 0 -0.074 -0.004 -0.06 -0.06 -0.004

1000 22 0.5 -0.5 0.25 -0.064 0.004 -0.042 -0.051 -0.004

1000 22 0.5 -0.5 0.5 -0.072 -0.003 -0.04 -0.06 0.004

1000 22 0.5 -0.5 0.8 -0.064 -0.006 -0.031 -0.059 0.002

1000 22 0.5 0 0 -0.109 0.006 -0.079 -0.083 -0.005

1000 22 0.5 0 0.25 -0.089 0.012 -0.047 -0.06 0.001

1000 22 0.5 0 0.5 -0.104 0.01 -0.063 -0.092 -0.007

1000 22 0.5 0 0.8 -0.092 0.002 -0.048 -0.09 -0.001

1000 22 0.8 -2 0 -0.03 -0.019 -0.027 -0.024 0.006

1000 22 0.8 -2 0.25 -0.035 -0.008 -0.027 -0.029 -0.003

1000 22 0.8 -2 0.5 -0.034 -0.011 -0.025 -0.028 0.006
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 22 0.8 -2 0.8 -0.029 -0.005 -0.022 -0.027 0.003

1000 22 0.8 -1.5 0 -0.055 -0.021 -0.054 -0.049 -0.002

1000 22 0.8 -1.5 0.25 -0.041 -0.015 -0.035 -0.036 0.003

1000 22 0.8 -1.5 0.5 -0.056 -0.025 -0.043 -0.047 0.002

1000 22 0.8 -1.5 0.8 -0.051 -0.001 -0.036 -0.045 -0.001

1000 22 0.8 -1 0 -0.071 -0.036 -0.069 -0.062 0.007

1000 22 0.8 -1 0.25 -0.071 -0.015 -0.051 -0.053 0.003

1000 22 0.8 -1 0.5 -0.086 -0.021 -0.061 -0.07 0

1000 22 0.8 -1 0.8 -0.075 -0.029 -0.053 -0.066 0.001

1000 22 0.8 -0.5 0 -0.123 -0.043 -0.104 -0.1 -0.006

1000 22 0.8 -0.5 0.25 -0.095 -0.037 -0.071 -0.074 0

1000 22 0.8 -0.5 0.5 -0.119 -0.023 -0.08 -0.095 0.004

1000 22 0.8 -0.5 0.8 -0.105 -0.019 -0.068 -0.091 0.005

1000 22 0.8 0 0 -0.161 -0.051 -0.126 -0.127 0

1000 22 0.8 0 0.25 -0.127 -0.04 -0.086 -0.094 0.004

1000 22 0.8 0 0.5 -0.159 -0.049 -0.103 -0.129 0.005

1000 22 0.8 0 0.8 -0.162 -0.025 -0.1 -0.136 -0.006

1000 33 0 -2 0 0.005 0.014 0.003 0.003 0.002

1000 33 0 -2 0.25 0.003 0.007 0.007 0.005 0.005

1000 33 0 -2 0.5 -0.002 0.009 0.004 -0.002 -0.003

1000 33 0 -2 0.8 0.009 0.016 0.016 0.008 0.009

1000 33 0 -1.5 0 0 0.001 0.002 0.002 0.001

1000 33 0 -1.5 0.25 0.003 0.014 0.002 -0.002 -0.003

1000 33 0 -1.5 0.5 0 0.015 0.005 -0.005 -0.005

1000 33 0 -1.5 0.8 -0.003 0.01 0.007 -0.005 -0.005

1000 33 0 -1 0 -0.002 -0.001 -0.002 -0.003 -0.003

1000 33 0 -1 0.25 -0.003 0.007 0 -0.007 -0.006

1000 33 0 -1 0.5 0 0.015 0.013 -0.001 0

1000 33 0 -1 0.8 -0.01 0.017 0.01 -0.009 -0.007

1000 33 0 -0.5 0 -0.005 0.015 0.004 0.002 0.001

1000 33 0 -0.5 0.25 -0.004 0.007 0.008 -0.001 -0.001

1000 33 0 -0.5 0.5 0.004 0.008 0.018 -0.002 0.001

1000 33 0 -0.5 0.8 -0.002 0.021 0.019 -0.008 -0.003

1000 33 0 0 0 0 0.01 -0.004 -0.005 -0.003

1000 33 0 0 0.25 -0.007 0.032 0.004 -0.008 -0.005

1000 33 0 0 0.5 -0.008 0.026 0.01 -0.016 -0.01

1000 33 0 0 0.8 -0.004 0.01 0.021 -0.016 -0.006

1000 33 0.3 -2 0 -0.002 0.001 -0.004 -0.002 0.006

1000 33 0.3 -2 0.25 -0.007 0.003 -0.008 -0.009 0.001

1000 33 0.3 -2 0.5 -0.006 0.012 -0.001 -0.005 0.006
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 33 0.3 -2 0.8 0.003 0.008 0.004 -0.001 0.008

1000 33 0.3 -1.5 0 -0.014 0.01 -0.015 -0.013 0.001

1000 33 0.3 -1.5 0.25 -0.009 0.005 -0.007 -0.008 0.005

1000 33 0.3 -1.5 0.5 -0.019 0.007 -0.014 -0.019 -0.004

1000 33 0.3 -1.5 0.8 -0.015 0.01 -0.006 -0.015 -0.001

1000 33 0.3 -1 0 -0.023 0.005 -0.024 -0.021 -0.001

1000 33 0.3 -1 0.25 -0.031 0.01 -0.026 -0.029 -0.007

1000 33 0.3 -1 0.5 -0.022 0.009 -0.013 -0.022 0

1000 33 0.3 -1 0.8 -0.015 0.008 -0.001 -0.014 0.007

1000 33 0.3 -0.5 0 -0.04 0.013 -0.036 -0.032 -0.004

1000 33 0.3 -0.5 0.25 -0.038 0.014 -0.029 -0.034 -0.004

1000 33 0.3 -0.5 0.5 -0.035 0.025 -0.018 -0.032 -0.003

1000 33 0.3 -0.5 0.8 -0.026 0.016 -0.005 -0.027 0.003

1000 33 0.3 0 0 -0.057 -0.003 -0.045 -0.042 -0.005

1000 33 0.3 0 0.25 -0.062 0.022 -0.043 -0.052 -0.012

1000 33 0.3 0 0.5 -0.049 0.026 -0.026 -0.046 -0.002

1000 33 0.3 0 0.8 -0.055 0.012 -0.017 -0.05 -0.007

1000 33 0.5 -2 0 -0.014 -0.003 -0.018 -0.016 -0.001

1000 33 0.5 -2 0.25 -0.019 0.005 -0.016 -0.016 0

1000 33 0.5 -2 0.5 -0.021 0.006 -0.014 -0.017 0

1000 33 0.5 -2 0.8 -0.014 0.005 -0.011 -0.015 -0.001

1000 33 0.5 -1.5 0 -0.023 0.011 -0.028 -0.023 -0.001

1000 33 0.5 -1.5 0.25 -0.025 0.002 -0.021 -0.019 0.005

1000 33 0.5 -1.5 0.5 -0.032 -0.002 -0.025 -0.028 -0.003

1000 33 0.5 -1.5 0.8 -0.022 0.001 -0.011 -0.017 0.005

1000 33 0.5 -1 0 -0.045 -0.001 -0.048 -0.042 -0.009

1000 33 0.5 -1 0.25 -0.038 -0.003 -0.037 -0.037 -0.002

1000 33 0.5 -1 0.5 -0.043 0.007 -0.035 -0.04 -0.004

1000 33 0.5 -1 0.8 -0.032 0.002 -0.019 -0.03 0.003

1000 33 0.5 -0.5 0 -0.066 -0.006 -0.063 -0.056 -0.008

1000 33 0.5 -0.5 0.25 -0.055 -0.001 -0.046 -0.047 0

1000 33 0.5 -0.5 0.5 -0.061 0.003 -0.045 -0.055 -0.004

1000 33 0.5 -0.5 0.8 -0.05 0.004 -0.028 -0.046 0.002

1000 33 0.5 0 0 -0.075 -0.008 -0.066 -0.058 0.005

1000 33 0.5 0 0.25 -0.075 -0.002 -0.058 -0.062 0.002

1000 33 0.5 0 0.5 -0.075 0.003 -0.044 -0.06 0.009

1000 33 0.5 0 0.8 -0.08 0.012 -0.044 -0.072 -0.002

1000 33 0.8 -2 0 -0.029 -0.021 -0.031 -0.027 -0.003

1000 33 0.8 -2 0.25 -0.026 -0.014 -0.029 -0.026 0.001

1000 33 0.8 -2 0.5 -0.033 -0.007 -0.028 -0.029 -0.002
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

1000 33 0.8 -2 0.8 -0.021 -0.005 -0.019 -0.021 0.002

1000 33 0.8 -1.5 0 -0.045 -0.026 -0.05 -0.043 -0.006

1000 33 0.8 -1.5 0.25 -0.044 -0.011 -0.04 -0.036 0.002

1000 33 0.8 -1.5 0.5 -0.051 -0.016 -0.048 -0.048 -0.008

1000 33 0.8 -1.5 0.8 -0.042 -0.007 -0.035 -0.038 -0.002

1000 33 0.8 -1 0 -0.059 -0.031 -0.066 -0.056 -0.001

1000 33 0.8 -1 0.25 -0.067 -0.031 -0.06 -0.056 0

1000 33 0.8 -1 0.5 -0.062 -0.025 -0.052 -0.053 0.003

1000 33 0.8 -1 0.8 -0.057 -0.021 -0.047 -0.053 0

1000 33 0.8 -0.5 0 -0.092 -0.039 -0.092 -0.079 -0.001

1000 33 0.8 -0.5 0.25 -0.088 -0.022 -0.077 -0.073 0.006

1000 33 0.8 -0.5 0.5 -0.091 -0.038 -0.07 -0.073 0.007

1000 33 0.8 -0.5 0.8 -0.087 -0.022 -0.066 -0.078 -0.003

1000 33 0.8 0 0 -0.134 -0.043 -0.12 -0.108 -0.001

1000 33 0.8 0 0.25 -0.126 -0.037 -0.105 -0.104 0.003

1000 33 0.8 0 0.5 -0.14 -0.028 -0.102 -0.113 -0.003

1000 33 0.8 0 0.8 -0.122 -0.031 -0.082 -0.103 0.004

2000 11 0 -2 0 0.008 0.003 0.017 0.003 0.006

2000 11 0 -2 0.25 0 0.014 0.018 -0.006 -0.002

2000 11 0 -2 0.5 0 0.003 0.019 -0.008 0.001

2000 11 0 -2 0.8 -0.001 0.004 0.021 -0.009 -0.001

2000 11 0 -1.5 0 -0.001 0.014 0.01 -0.004 -0.001

2000 11 0 -1.5 0.25 -0.003 0.01 0.022 -0.005 0

2000 11 0 -1.5 0.5 -0.001 0.02 0.015 -0.017 -0.001

2000 11 0 -1.5 0.8 -0.007 0.009 0.018 -0.018 -0.005

2000 11 0 -1 0 -0.001 0.019 0.005 -0.009 -0.002

2000 11 0 -1 0.25 0 0.003 0.019 -0.011 -0.002

2000 11 0 -1 0.5 0 0.014 0.004 -0.033 -0.004

2000 11 0 -1 0.8 0.005 0.016 0.025 -0.017 0.006

2000 11 0 -0.5 0 0 0.011 0.002 -0.011 0.001

2000 11 0 -0.5 0.25 -0.004 0.007 0.016 -0.016 -0.004

2000 11 0 -0.5 0.5 -0.004 0.006 -0.002 -0.043 0.004

2000 11 0 -0.5 0.8 0.002 0.022 0.004 -0.044 -0.002

2000 11 0 0 0 0.003 0.016 -0.005 -0.017 -0.001

2000 11 0 0 0.25 0.001 0.015 0.012 -0.019 0

2000 11 0 0 0.5 0.007 0.029 -0.028 -0.069 0.007

2000 11 0 0 0.8 0.004 0.019 -0.015 -0.065 0.006

2000 11 0.3 -2 0 -0.02 0.004 -0.005 -0.018 0

2000 11 0.3 -2 0.25 -0.013 0.001 0.007 -0.015 0.001

2000 11 0.3 -2 0.5 -0.017 -0.005 0.006 -0.02 0.005
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 11 0.3 -2 0.8 -0.018 0.002 0.004 -0.023 -0.004

2000 11 0.3 -1.5 0 -0.024 -0.002 -0.013 -0.026 0

2000 11 0.3 -1.5 0.25 -0.011 0.007 0.009 -0.016 0.007

2000 11 0.3 -1.5 0.5 -0.03 -0.008 -0.001 -0.033 0.004

2000 11 0.3 -1.5 0.8 -0.025 0.001 0.005 -0.029 0.001

2000 11 0.3 -1 0 -0.04 0.002 -0.02 -0.035 0.001

2000 11 0.3 -1 0.25 -0.029 0.002 -0.001 -0.03 0.001

2000 11 0.3 -1 0.5 -0.044 0.009 -0.016 -0.055 -0.001

2000 11 0.3 -1 0.8 -0.037 0.007 -0.006 -0.049 -0.001

2000 11 0.3 -0.5 0 -0.061 0.007 -0.033 -0.051 -0.001

2000 11 0.3 -0.5 0.25 -0.048 0.006 -0.006 -0.04 0.001

2000 11 0.3 -0.5 0.5 -0.061 0.011 -0.036 -0.082 -0.001

2000 11 0.3 -0.5 0.8 -0.042 0.008 -0.018 -0.068 0.004

2000 11 0.3 0 0 -0.08 0.015 -0.047 -0.067 0.002

2000 11 0.3 0 0.25 -0.065 0.014 -0.017 -0.054 -0.002

2000 11 0.3 0 0.5 -0.08 0.021 -0.064 -0.113 0.004

2000 11 0.3 0 0.8 -0.07 0.015 -0.052 -0.109 0

2000 11 0.5 -2 0 -0.033 -0.011 -0.017 -0.029 0

2000 11 0.5 -2 0.25 -0.032 -0.008 -0.003 -0.026 0

2000 11 0.5 -2 0.5 -0.041 -0.001 -0.012 -0.038 -0.001

2000 11 0.5 -2 0.8 -0.036 -0.008 -0.005 -0.032 -0.004

2000 11 0.5 -1.5 0 -0.052 -0.022 -0.031 -0.045 -0.005

2000 11 0.5 -1.5 0.25 -0.042 -0.002 -0.008 -0.034 0.001

2000 11 0.5 -1.5 0.5 -0.063 0 -0.024 -0.057 -0.005

2000 11 0.5 -1.5 0.8 -0.04 -0.006 -0.01 -0.043 -0.001

2000 11 0.5 -1 0 -0.075 -0.006 -0.043 -0.06 -0.002

2000 11 0.5 -1 0.25 -0.06 -0.011 -0.017 -0.048 -0.002

2000 11 0.5 -1 0.5 -0.072 -0.011 -0.033 -0.073 0

2000 11 0.5 -1 0.8 -0.063 0 -0.023 -0.066 -0.004

2000 11 0.5 -0.5 0 -0.096 -0.011 -0.056 -0.077 0.002

2000 11 0.5 -0.5 0.25 -0.084 -0.01 -0.029 -0.065 -0.004

2000 11 0.5 -0.5 0.5 -0.116 0.006 -0.064 -0.113 -0.008

2000 11 0.5 -0.5 0.8 -0.087 -0.002 -0.038 -0.091 0.002

2000 11 0.5 0 0 -0.14 -0.024 -0.086 -0.112 -0.005

2000 11 0.5 0 0.25 -0.114 -0.002 -0.044 -0.084 -0.006

2000 11 0.5 0 0.5 -0.137 0.007 -0.094 -0.149 -0.004

2000 11 0.5 0 0.8 -0.114 -0.01 -0.069 -0.13 0.003

2000 11 0.8 -2 0 -0.06 -0.027 -0.037 -0.048 -0.002

2000 11 0.8 -2 0.25 -0.05 -0.026 -0.021 -0.042 -0.003

2000 11 0.8 -2 0.5 -0.067 -0.033 -0.033 -0.057 -0.002
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 11 0.8 -2 0.8 -0.04 -0.019 -0.017 -0.041 0

2000 11 0.8 -1.5 0 -0.078 -0.038 -0.051 -0.064 -0.001

2000 11 0.8 -1.5 0.25 -0.06 -0.024 -0.027 -0.051 0.004

2000 11 0.8 -1.5 0.5 -0.091 -0.038 -0.046 -0.077 -0.002

2000 11 0.8 -1.5 0.8 -0.064 -0.031 -0.027 -0.058 0.002

2000 11 0.8 -1 0 -0.116 -0.063 -0.07 -0.088 0.001

2000 11 0.8 -1 0.25 -0.097 -0.036 -0.044 -0.075 -0.003

2000 11 0.8 -1 0.5 -0.121 -0.056 -0.057 -0.098 0.004

2000 11 0.8 -1 0.8 -0.098 -0.036 -0.045 -0.087 0

2000 11 0.8 -0.5 0 -0.165 -0.054 -0.096 -0.122 0.001

2000 11 0.8 -0.5 0.25 -0.134 -0.048 -0.057 -0.095 -0.002

2000 11 0.8 -0.5 0.5 -0.16 -0.048 -0.084 -0.137 0.001

2000 11 0.8 -0.5 0.8 -0.136 -0.031 -0.069 -0.124 0.001

2000 11 0.8 0 0 -0.219 -0.044 -0.126 -0.161 0.004

2000 11 0.8 0 0.25 -0.177 -0.039 -0.071 -0.116 -0.001

2000 11 0.8 0 0.5 -0.215 0.004 -0.123 -0.187 0.004

2000 11 0.8 0 0.8 -0.194 -0.025 -0.11 -0.179 -0.004

2000 22 0 -2 0 -0.002 0.007 0.002 -0.002 -0.003

2000 22 0 -2 0.25 0.004 0.013 0.014 0.005 0.004

2000 22 0 -2 0.5 -0.001 0.006 0.01 -0.002 -0.001

2000 22 0 -2 0.8 0.001 0.003 0.016 0.002 0.003

2000 22 0 -1.5 0 0 0.008 0.003 -0.001 -0.001

2000 22 0 -1.5 0.25 -0.004 0.002 0.01 -0.001 -0.001

2000 22 0 -1.5 0.5 0.004 0.002 0.016 0.001 0.003

2000 22 0 -1.5 0.8 -0.004 0.002 0.011 -0.009 -0.007

2000 22 0 -1 0 -0.004 0.011 0.002 -0.003 -0.003

2000 22 0 -1 0.25 -0.003 0.015 0.012 -0.002 -0.001

2000 22 0 -1 0.5 0 0.006 0.015 -0.004 -0.001

2000 22 0 -1 0.8 0 0.004 0.021 -0.006 -0.002

2000 22 0 -0.5 0 -0.002 0.011 0.002 -0.004 -0.003

2000 22 0 -0.5 0.25 0 0.013 0.013 -0.003 -0.002

2000 22 0 -0.5 0.5 -0.007 0.008 0.012 -0.014 -0.006

2000 22 0 -0.5 0.8 -0.001 0.008 0.023 -0.013 -0.002

2000 22 0 0 0 0 0.012 0.001 -0.005 -0.001

2000 22 0 0 0.25 0.008 0.012 0.021 0.003 0.007

2000 22 0 0 0.5 -0.001 0.008 0.009 -0.022 -0.003

2000 22 0 0 0.8 0.002 0.007 0.017 -0.028 -0.002

2000 22 0.3 -2 0 -0.013 -0.002 -0.011 -0.013 -0.001

2000 22 0.3 -2 0.25 -0.007 0.003 -0.002 -0.008 0.002

2000 22 0.3 -2 0.5 -0.013 -0.002 -0.003 -0.011 0.001
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 22 0.3 -2 0.8 -0.014 0.003 -0.003 -0.014 -0.002

2000 22 0.3 -1.5 0 -0.019 -0.004 -0.016 -0.017 0

2000 22 0.3 -1.5 0.25 -0.025 -0.002 -0.009 -0.017 -0.003

2000 22 0.3 -1.5 0.5 -0.022 0.002 -0.007 -0.019 0

2000 22 0.3 -1.5 0.8 -0.013 0.001 0.001 -0.014 0.004

2000 22 0.3 -1 0 -0.032 0.003 -0.024 -0.025 0

2000 22 0.3 -1 0.25 -0.033 0.003 -0.019 -0.029 -0.008

2000 22 0.3 -1 0.5 -0.034 -0.001 -0.017 -0.032 -0.003

2000 22 0.3 -1 0.8 -0.033 0.007 -0.011 -0.033 -0.005

2000 22 0.3 -0.5 0 -0.048 -0.003 -0.035 -0.038 -0.003

2000 22 0.3 -0.5 0.25 -0.033 0.004 -0.015 -0.027 0.002

2000 22 0.3 -0.5 0.5 -0.04 -0.006 -0.016 -0.038 0.002

2000 22 0.3 -0.5 0.8 -0.039 0.003 -0.01 -0.042 0.001

2000 22 0.3 0 0 -0.06 0.005 -0.041 -0.046 -0.001

2000 22 0.3 0 0.25 -0.044 0 -0.018 -0.033 0.005

2000 22 0.3 0 0.5 -0.061 0.003 -0.03 -0.06 -0.001

2000 22 0.3 0 0.8 -0.051 0.008 -0.017 -0.059 0.002

2000 22 0.5 -2 0 -0.022 0.004 -0.02 -0.02 -0.001

2000 22 0.5 -2 0.25 -0.018 -0.007 -0.008 -0.012 0.005

2000 22 0.5 -2 0.5 -0.02 -0.004 -0.014 -0.02 0.001

2000 22 0.5 -2 0.8 -0.022 -0.004 -0.012 -0.021 -0.002

2000 22 0.5 -1.5 0 -0.033 -0.005 -0.031 -0.029 -0.001

2000 22 0.5 -1.5 0.25 -0.03 -0.012 -0.019 -0.024 0

2000 22 0.5 -1.5 0.5 -0.037 -0.006 -0.022 -0.031 0.001

2000 22 0.5 -1.5 0.8 -0.033 -0.008 -0.015 -0.028 0.001

2000 22 0.5 -1 0 -0.046 -0.019 -0.042 -0.04 0.001

2000 22 0.5 -1 0.25 -0.049 -0.004 -0.032 -0.038 -0.004

2000 22 0.5 -1 0.5 -0.045 -0.007 -0.026 -0.039 0.005

2000 22 0.5 -1 0.8 -0.045 -0.008 -0.02 -0.039 0.003

2000 22 0.5 -0.5 0 -0.068 -0.017 -0.054 -0.054 0.003

2000 22 0.5 -0.5 0.25 -0.061 -0.007 -0.036 -0.045 0.001

2000 22 0.5 -0.5 0.5 -0.071 -0.001 -0.041 -0.061 0.001

2000 22 0.5 -0.5 0.8 -0.063 -0.005 -0.033 -0.061 0.001

2000 22 0.5 0 0 -0.096 -0.015 -0.07 -0.074 0.002

2000 22 0.5 0 0.25 -0.082 -0.006 -0.043 -0.056 0.004

2000 22 0.5 0 0.5 -0.108 -0.01 -0.059 -0.089 -0.002

2000 22 0.5 0 0.8 -0.09 0.002 -0.043 -0.083 0.003

2000 22 0.8 -2 0 -0.039 -0.013 -0.038 -0.036 -0.005

2000 22 0.8 -2 0.25 -0.029 -0.019 -0.023 -0.024 0.003

2000 22 0.8 -2 0.5 -0.037 -0.021 -0.03 -0.033 0.001
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 22 0.8 -2 0.8 -0.036 -0.019 -0.026 -0.032 -0.002

2000 22 0.8 -1.5 0 -0.048 -0.027 -0.05 -0.045 0.001

2000 22 0.8 -1.5 0.25 -0.052 -0.025 -0.041 -0.043 -0.004

2000 22 0.8 -1.5 0.5 -0.059 -0.03 -0.045 -0.05 0

2000 22 0.8 -1.5 0.8 -0.051 -0.027 -0.038 -0.046 -0.001

2000 22 0.8 -1 0 -0.083 -0.041 -0.069 -0.064 0

2000 22 0.8 -1 0.25 -0.066 -0.028 -0.048 -0.049 0.005

2000 22 0.8 -1 0.5 -0.081 -0.025 -0.066 -0.074 -0.002

2000 22 0.8 -1 0.8 -0.076 -0.028 -0.052 -0.065 0

2000 22 0.8 -0.5 0 -0.116 -0.053 -0.093 -0.089 0.003

2000 22 0.8 -0.5 0.25 -0.098 -0.036 -0.07 -0.073 0.001

2000 22 0.8 -0.5 0.5 -0.118 -0.042 -0.081 -0.096 0.002

2000 22 0.8 -0.5 0.8 -0.103 -0.048 -0.066 -0.088 0.005

2000 22 0.8 0 0 -0.163 -0.06 -0.121 -0.122 0.003

2000 22 0.8 0 0.25 -0.135 -0.036 -0.086 -0.094 0.005

2000 22 0.8 0 0.5 -0.168 -0.04 -0.107 -0.133 0

2000 22 0.8 0 0.8 -0.156 -0.039 -0.095 -0.131 -0.002

2000 33 0 -2 0 0 0.006 0.001 0 0

2000 33 0 -2 0.25 0 0.009 0.002 0 -0.001

2000 33 0 -2 0.5 -0.002 0.005 0.007 0 0

2000 33 0 -2 0.8 0.002 -0.003 0.011 0.003 0.003

2000 33 0 -1.5 0 0.004 0 0.003 0.002 0.001

2000 33 0 -1.5 0.25 -0.001 0.01 -0.001 -0.006 -0.006

2000 33 0 -1.5 0.5 0.004 0.008 0.014 0.005 0.004

2000 33 0 -1.5 0.8 0.002 0.004 0.012 0 0.001

2000 33 0 -1 0 -0.003 0.006 0.001 0 -0.001

2000 33 0 -1 0.25 0.003 0.007 0.005 -0.001 -0.001

2000 33 0 -1 0.5 0.003 0.011 0.014 0.001 0.001

2000 33 0 -1 0.8 0.004 0.004 0.021 0.002 0.004

2000 33 0 -0.5 0 0.002 0.011 0.006 0.005 0.005

2000 33 0 -0.5 0.25 -0.004 0.001 0.005 -0.004 -0.004

2000 33 0 -0.5 0.5 0.007 0.011 0.021 0.002 0.005

2000 33 0 -0.5 0.8 -0.002 0.012 0.019 -0.009 -0.005

2000 33 0 0 0 0.002 0.015 0.003 0.002 0.001

2000 33 0 0 0.25 0.003 0.012 0.007 -0.005 -0.001

2000 33 0 0 0.5 0.004 0.004 0.016 -0.009 -0.001

2000 33 0 0 0.8 -0.005 0.01 0.023 -0.015 -0.003

2000 33 0.3 -2 0 -0.009 0.008 -0.009 -0.008 0.001

2000 33 0.3 -2 0.25 -0.007 0.004 -0.008 -0.009 0.001

2000 33 0.3 -2 0.5 -0.007 0.004 -0.004 -0.008 0.002
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 33 0.3 -2 0.8 -0.007 0.001 -0.002 -0.007 0.002

2000 33 0.3 -1.5 0 -0.013 0.007 -0.017 -0.015 -0.002

2000 33 0.3 -1.5 0.25 -0.015 0.008 -0.01 -0.011 0.003

2000 33 0.3 -1.5 0.5 -0.024 0.003 -0.016 -0.022 -0.007

2000 33 0.3 -1.5 0.8 -0.012 -0.001 -0.004 -0.012 0.002

2000 33 0.3 -1 0 -0.028 -0.007 -0.026 -0.023 -0.002

2000 33 0.3 -1 0.25 -0.022 -0.004 -0.017 -0.019 0.001

2000 33 0.3 -1 0.5 -0.025 0.003 -0.014 -0.023 -0.001

2000 33 0.3 -1 0.8 -0.021 0.007 -0.006 -0.02 0

2000 33 0.3 -0.5 0 -0.032 -0.002 -0.031 -0.027 0.002

2000 33 0.3 -0.5 0.25 -0.034 0.004 -0.024 -0.028 0

2000 33 0.3 -0.5 0.5 -0.038 -0.003 -0.02 -0.034 -0.002

2000 33 0.3 -0.5 0.8 -0.027 0.011 -0.007 -0.028 0.003

2000 33 0.3 0 0 -0.049 0.004 -0.042 -0.038 0

2000 33 0.3 0 0.25 -0.049 0 -0.035 -0.043 -0.001

2000 33 0.3 0 0.5 -0.052 0.012 -0.03 -0.05 -0.004

2000 33 0.3 0 0.8 -0.05 0.017 -0.016 -0.048 -0.003

2000 33 0.5 -2 0 -0.018 -0.005 -0.021 -0.018 -0.003

2000 33 0.5 -2 0.25 -0.022 -0.009 -0.02 -0.02 -0.003

2000 33 0.5 -2 0.5 -0.016 0.003 -0.014 -0.016 0.001

2000 33 0.5 -2 0.8 -0.012 -0.007 -0.004 -0.008 0.006

2000 33 0.5 -1.5 0 -0.027 -0.002 -0.028 -0.024 -0.001

2000 33 0.5 -1.5 0.25 -0.034 -0.012 -0.029 -0.028 -0.004

2000 33 0.5 -1.5 0.5 -0.026 0.003 -0.019 -0.022 0.003

2000 33 0.5 -1.5 0.8 -0.021 -0.006 -0.012 -0.018 0.004

2000 33 0.5 -1 0 -0.039 -0.014 -0.042 -0.036 -0.002

2000 33 0.5 -1 0.25 -0.046 -0.003 -0.039 -0.039 -0.005

2000 33 0.5 -1 0.5 -0.036 -0.005 -0.026 -0.031 0.004

2000 33 0.5 -1 0.8 -0.036 -0.003 -0.022 -0.032 0

2000 33 0.5 -0.5 0 -0.05 -0.014 -0.052 -0.044 0.004

2000 33 0.5 -0.5 0.25 -0.06 -0.002 -0.048 -0.049 -0.001

2000 33 0.5 -0.5 0.5 -0.061 -0.003 -0.04 -0.051 0

2000 33 0.5 -0.5 0.8 -0.048 -0.007 -0.032 -0.049 -0.002

2000 33 0.5 0 0 -0.081 -0.011 -0.074 -0.067 -0.002

2000 33 0.5 0 0.25 -0.078 -0.014 -0.062 -0.067 -0.002

2000 33 0.5 0 0.5 -0.081 -0.007 -0.053 -0.069 -0.001

2000 33 0.5 0 0.8 -0.074 -0.005 -0.041 -0.069 0

2000 33 0.8 -2 0 -0.027 -0.01 -0.03 -0.026 -0.002

2000 33 0.8 -2 0.25 -0.031 -0.012 -0.034 -0.032 -0.006

2000 33 0.8 -2 0.5 -0.029 -0.01 -0.025 -0.025 0.002
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Design Mean Bias

N I Cor(ξ, θ) Miss. r(β, γ) β̂i α̂i ξ̂ML ξ̂WML ξ̂EAP

2000 33 0.8 -2 0.8 -0.023 -0.023 -0.018 -0.02 0.004

2000 33 0.8 -1.5 0 -0.04 -0.03 -0.046 -0.039 -0.002

2000 33 0.8 -1.5 0.25 -0.048 -0.015 -0.049 -0.046 -0.008

2000 33 0.8 -1.5 0.5 -0.043 -0.014 -0.04 -0.04 0

2000 33 0.8 -1.5 0.8 -0.036 -0.017 -0.029 -0.032 0.003

2000 33 0.8 -1 0 -0.061 -0.026 -0.065 -0.055 0

2000 33 0.8 -1 0.25 -0.065 -0.028 -0.06 -0.056 0

2000 33 0.8 -1 0.5 -0.068 -0.029 -0.06 -0.061 -0.004

2000 33 0.8 -1 0.8 -0.059 -0.029 -0.047 -0.052 0

2000 33 0.8 -0.5 0 -0.096 -0.042 -0.095 -0.083 -0.002

2000 33 0.8 -0.5 0.25 -0.093 -0.039 -0.083 -0.079 0

2000 33 0.8 -0.5 0.5 -0.089 -0.036 -0.071 -0.075 0.005

2000 33 0.8 -0.5 0.8 -0.08 -0.03 -0.062 -0.073 0.002

2000 33 0.8 0 0 -0.132 -0.057 -0.121 -0.109 0

2000 33 0.8 0 0.25 -0.138 -0.049 -0.109 -0.109 -0.003

2000 33 0.8 0 0.5 -0.131 -0.037 -0.095 -0.105 0.005

2000 33 0.8 0 0.8 -0.124 -0.048 -0.085 -0.106 -0.001
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Appendix B

In this Appendix, the input files of ConQuest (Wu et al., 1998) and Mplus (Muthén &

Muthén, 1998 - 2010) are listed that were used for the analyses of Data Example A.

Comments in the ConQuest syntax starts with „/*“ and ends „*/“ . In Mplus comments

starts with „!“.

One-parameter and Rasch-equivalent MIRT models The B-MIRT Rasch model can

be applied using software for multidimensional Rasch-models, such as ConQuest. Listing

A.1 shows the ConQuest input file of the B-MIRT Rasch model used for Data Example

A. The ConQuest input file of WDi f -MIRT Rasch model is given in Listing A.2. Note

that this model can only be specified in ConQuest if all parameters γ∗im of γ∗
ξ

are zero or

one. However, in general, γ∗im =
∑P

l=1 γil in the WDi f Rasch model. Hence, γ∗im is only

zero or one if all variables Di indicate only one latent response propensity θl. If at least

a single indicator variable Di indicates more than one latent dimension θl, then γ∗im = j,

with j ∈ {2, . . . , P}. In this case, software for two-parameter MIRT models needs to be

used.

Listing A.1: ConQuest input file for the B-MIRT Rasch Model (Data Example A).

1 datafile DataExampleA.dat;

2 format id 1-5 responses 6-65;

3 codes 0,1;

4 set update=yes,warnings=no;

5 score (0,1) (0,1) ( ) ! items(1-30); /* Items Yi*/

6 score (0,1) ( ) (0,1) ! items(31-60); /* Response Indicators Di*/

7 model items;

8 /* Model parameter estimates */

9 export parameters >> between.prm; /* Item difficulties */

10 export covariance >> between.cov; /* latent (co-)variances */

11 /* Starting estimation & call for item fit (In-/Outfit) */

12 estimate , fit=yes;

13 /* Person parameter estimates */

14 show cases ! estimates = latent >> between.lat; /* EAPs & PVs */

15 show cases ! estimates = mle >> between.mle; /* ML estimates */

16 show cases ! estimates = wle >> between.wle; /* WML estimates*/

17 /* Output */

18 show ! estimates=latent, tables=1:2:3:4 >> between.shw;

19 quit;
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Listing A.2: ConQuest input file for the WDi f -MIRT Rasch Model (Data Example A).

1 datafile DataExampleA.dat;

2 format id 1-5 responses 6-65;

3 codes 0,1;

4 set update=yes,warnings=no;

5 score (0,1) (0,1) ( ) ! items(1-30); /* Items Yi*/

6 score (0,1) (0,1) (0,1) ! items(31-60); /* Response Indicators Di*/

7 model items;

8 export parameters >> withinres.prm;

9 export covariance >> withinres.cov;

10 /* Starting estimation & call for item fit (In-/Outfit) */

11 estimate , fit=yes;

12 /* Person parameter estimates */

13 show cases ! estimates = latent >> withinres.lat; /* EAPs & PVs */

14 show cases ! estimates = mle >> withinres.mle; /* ML estimates */

15 show cases ! estimates = wle >> withinres.wle; /* WML estimates*/

16 /* Output */

17 show ! estimates=latent, tables=1:2:3:4 >> withinres.shw;

18 quite;

In the Rasch-equivalent WResmodel, the item parameters in γ̃ξ are also not fixed to zero

or one prior to model estimation. Therefore, the application of this model requires soft-

ware for two-parameter MIRT models. Listing A.3 shows the Mplus input file of the

Rasch-equivalent WResmodel used to analyse Data Example A. In line 9, the parameters

γ̃im of γ̃ξ are constrained to be equal using the constraint name ’equal’ placed in paren-

theses. This is implied by the general restriction γ̃im =
∑P

l=1 γilblm. In Data Example

A, that reduces to γ̃i = b1 since θ and ξ are unidimensional each and γi1 = 1 for all

i = 1, . . . , I. b1 is the regression coefficient of E(θ | ξ) = b0 + b1ξ. Hence, all elements γ̃i

of γ̃ξ have the same value, which is equal to b1.

Listing A.3: Mplus input file of the WRes-MIRT Rasch model (Data Example A).

1 DATA: FILE IS DataExampleA.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 d1-d30;

4 USEVARIABLES ARE i1-i30 d1-d30;

5 CATEGORICAL ARE i1-i30 d1-d30;

6 MISSING IS all (9);

7 ANALYSIS: Estimator=MLR;

8 MODEL: XI BY i1-i30@1

9 d1-d30(equal); ! Equality Constraint

10 RP BY d1-d30@1;

11 [XI@0]; ! Restriction: E(xi) = 0

12 [RP@0]; ! Restriction: E(xi) = 0

13 XI WITH RP@0; ! Restriction: Cov(xi,RP) = 0

14 OUTPUT: ...

θ̃ is defined as the residual ζ = θ− E(θ | ξ). The expected value E(ζ) and the covariance

Cov(ξ, ζ) are always zero. This is considered in the model specification in line 13 of
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the input file by setting Cov(ξ, θ̃) = 0. In line 12, the expected value E(θ̃) is fixed to

zero. Furthermore, the expected values E(ξ) and E(θ̃) are set equal to zero to identify the

measurement model of ξ. All thresholds are freely estimated by default in Mplus.

Two-parameter MIRT models: The 2PL-BMIRT model The two-parameter MIRT

models for nonignorable missing data were also applied to Data Example A. The Mplus

input file of the 2PL-BMIRT model is given by Listing A.4. The model was identified by

fixing the scale of the latent variables with Var(ξ) = Var(θ) = 1 (line 10) and E(ξ) =

E(θ) = 0 (line 11).

Listing A.4: Mplus input file of the 2PL-BMIRT model (Data Example A).

1 DATA: FILE IS DataExampleA.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 d1-d30;

4 USEVARIABLES ARE i1-i30 d1-d30;

5 CATEGORICAL ARE i1-i30 d1-d30;

6 MISSING IS all (9);

7 ANALYSIS: Estimator=MLR;

8 MODEL: XI BY i1* i2-i30; ! Item discrimination

9 RP BY d1* d2-d30; ! Item discrimination

10 ! Model identification

11 XI@1 RP@1; ! Var(xi) = Var(theta) = 0

12 [XI@0 RP@0]; ! E(xi) = E(theta) = 0

13 OUTPUT: ...

The 2PL-WDi f MIRT model The Mplus input file of the 2PL-WDi f MIRT model is given

by Listing A.5. The model was identified by the restriction Var(ξ) = 1 (line 14) and

E(ξ) = E(θ) = 0 (line 15). The variance Var(θ∗), however, was freely estimated. The

reason is that Var(θ∗) = Var(θ − ξ). The variance of a difference variable is Var(θ − ξ) =
Var(ξ) + Var(θ) − 2 · Cov(ξ, θ). Since Var(ξ) = 1 due to model identification, Var(θ∗)

needs to be freely estimated. Therefore, the discrimination parameter γi was fixed to be

equal to one (line 11). The restriction γ∗i = 1 (line 9) is not due to identification but

follows from the equality constraint γ∗im =
∑P

i=1 γil. Since ξ and θ are undimensional each,

that is γ∗i = γi. Hence, the equality γ∗i = 1 is implied by the restriction γi = 1.

The 2PL-WResMIRT model The Mplus input file of the 2PL-WResMIRT model is given

by Listing A.6. The model was identified by the restriction Var(ξ) = 1 (line 14) and

E(ξ) = E(θ̃) = 0 (line 15). Furthermore, the variance Var(θ̃) was fixed to one for reasons

of model identification. Since Var(θ̃) = Var(ζ), with ζ = θ − E(θ | ξ), the variance of

θ is implicitly affected. This affects the parameters γi and γ̃i respectively. However, the
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item parameters of the measurement model of ξ as well as the construction and the metric

of ξ remain unaffected. From the derivation of the 2PL-WResMIRT model follows that

γ̃im =
∑P

i=1 γilblm.

Listing A.5: Mplus input file of the 2PL-WDi f MIRT model (Data Example A).

1 DATA: FILE IS DataExampleA.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 d1-d30;

4 USEVARIABLES ARE i1-i30 d1-d30;

5 CATEGORICAL ARE i1-i30 d1-d30;

6 MISSING IS all (9);

7 ANALYSIS: Estimator=MLR;

8 MODEL: XI BY i1* i2-i30 ! Item discrimination

9 d1@1

10 d2-d30(a2-a30);! Equality constraints

11 RP BY d1@1 ! Model identification

12 d2-d30(a2-a30);! Equality constraints

13 ! Model identification

14 XI@1; ! Var(xi) = 0

15 [XI@0 RP@0]; ! E(xi) = E(theta*) = 0

16 OUTPUT: ...

Since both latent variables ξ and θ are unidimensional, the constraint simplifies to γ̃i =

γib1. Again, b1 is the regression coefficient of E(θ | ξ) = b0 + b1ξ. This coefficient is

implicitly specified as an additional parameter denoted by RegC (line 18) in the model

constraint section (lines 17 - 48). The constraints with respect to each parameter γ̃i of γ̃ is

specified in the lines 19 - 48 of Listing A.6. Since Cov(θ̃, ξ) = Cov(ζ, ξ) = 0, by definition

the covariance is fixed to be zero in line 16.

Listing A.6: Mplus input file of the 2PL-WResMIRT model (Data Example A).

1 DATA: FILE IS DataExampleA.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 d1-d30;

4 USEVARIABLES ARE i1-i30 d1-d30;

5 CATEGORICAL ARE i1-i30 d1-d30;

6 MISSING IS all (9);

7 ANALYSIS: Estimator=MLR;

8 MODEL: XI BY i1* i2-i30 ! Item discrimination

9 d1* (a1) ! Constraint names

10 d2-d30(a2-a30);! Constraint names

11 RP BY d1* (g1) ! Constraint names

12 d2-d30(g2-g30);! Constraint names

13 ! Model identification

14 XI@1 RP@1; ! Var(xi) = Var(zeta) = 0

15 [XI@0 RP@0]; ! E(xi) = E(zeta) = 0

16 XI WITH RP@0; ! Cov(xi,zeta) = 0

17 Model Constraint:

18 new(RegC);
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19 a1 = RegC*g1;

20 a2 = RegC*g2;

21 a3 = RegC*g3;

22 a4 = RegC*g4;

23 a5 = RegC*g5;

24 a6 = RegC*g6;

25 a7 = RegC*g7;

26 a8 = RegC*g8;

27 a9 = RegC*g9;

28 a10 = RegC*g10;

29 a11 = RegC*g11;

30 a12 = RegC*g12;

31 a13 = RegC*g13;

32 a14 = RegC*g14;

33 a15 = RegC*g15;

34 a16 = RegC*g16;

35 a17 = RegC*g17;

36 a18 = RegC*g18;

37 a19 = RegC*g19;

38 a20 = RegC*g20;

39 a21 = RegC*g21;

40 a22 = RegC*g22;

41 a23 = RegC*g23;

42 a24 = RegC*g24;

43 a25 = RegC*g25;

44 a26 = RegC*g26;

45 a27 = RegC*g27;

46 a28 = RegC*g28;

47 a29 = RegC*g29;

48 a30 = RegC*g30;

49 OUTPUT: ...

The relaxed 2PL-WResMIRT model was also applied to Data Example A. In Mplus, this

model can simply be specified by skipping the lines 16 to 47 from Listing A.6. Accord-

ingly, the constraint names are not required in the input file.
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The LRM for nonignorable missing data The latent regression model was applied to

Data Example A with different functions f (D). Here the Mplus input file of the LRM is

shown with the number of completed items (S D) as the regressor (see Listing A.7).

Listing A.7: Mplus input file of the LRM (Data Example A).

1 DATA: FILE IS DataExampleA_SD.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 S_D;

4 USEVARIABLES ARE i1-i30 S_D;

5 CATEGORICAL ARE i1-i30;

6 MISSING IS all (9);

7 ANALYSIS: Estimator=MLR;

8 MODEL: XI BY i1* i2-i30; ! Item discrimination

9 ! Latent regression model

10 XI ON S_D (b1);

11 ! For model identification

12 XI (res); ! Variance of the latent residual

13 [XI] (int); ! Intercept

14 Model Constraint: ! for model identification

15 ! Variance of XI is set to one

16 0 = b1**2*XI + res -1;

17 ! Expected value of XI is set to zero

18 0 = int + b1*in1;

19 OUTPUT: ...

The MG-IRT model for nonignorable missing data In Mplus multiple group IR mod-

els can be applied using mixture IRT models with the KNOWNCLASS-option. Listing A.8

shows the input file of MG-IRT model for missing responses that was used for Data Ex-

ample A. The grouping variable strata is the stratified response rate. The model was

identified by the restriction E(ξ) = 0. The group specific means m1, m2, and m3, however,

were freely estimated. Since D is informative with respect to the item and person param-

eters, the means were expected to be different across the groups. The restriction E(ξ) = 0

was achieved by setting the mean of the group specific means m1 to m3 equal to zero (line

28). In all previous models the variance of the latent variable was fixed to Var(ξ) = 1

in order to identify the model. This is difficult in multiple group models. Therefore, the

mean of the item discriminations was set to one (lines 29-31). Furthermore, the item

discriminations were constrained to be equal across the groups by using group-invariant

constraint-names (lines 16, 20, and 24).
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Listing A.8: Mplus input file of the LRM (Data Example A).

1 DATA: FILE IS ObservedMplusWithStrata.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE id i1-i30 d1-d30 strata;

4 USEVARIABLES ARE i1-i30;

5 CATEGORICAL ARE i1-i30;

6 CLASSES = c (3);

7 KNOWNCLASS = c (strata=1 strata=2 strata=3);

8 MISSING IS all (9);

9 ANALYSIS: TYPE IS MIXTURE;

10 ALGORITHM = INTEGRATION;

11 MODEL: \%OVERALL\%

12 XI BY i1-i30;

13 [XI*];

14 XI;

15 \%c#1\%

16 XI BY i1-i30 (d1-d30);

17 [XI*] (m1);

18 XI;

19 \%c#2\%

20 XI BY i1-i30 (d1-d30);

21 [XI*] (m2);

22 XI;

23 \%c#3\%

24 XI BY i1-i30 (d1-d30);

25 [XI*] (m3);

26 XI;

27 MODEL CONSTRAINT: ! for identification

28 0 = 0.338*m1 + 0.361*m2 + 0.301*m3;

29 0 = (d1+d2+d3+d4+d5+d6+d7+d8+d9+d10+

30 d11+d12+d13+d14+d15+d16+d17+d18+d19+d20+

31 d21+d22+d23+d24+d25+d26+d27+d28+d29+d30)/30;

32 OUTPUT: ...
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Appendix C

In Sections 4.5.3.2 and 4.5.3.3, multidimensional IRT models for nonignorable missing

data were further developed to cases with a complex underlying dimensionality. Here in

this dissertation, the term complex dimensional structure refers to the fact that either the

items Yi or the response indicators Di or both are within-item multidimensional. That is,

the probabilities P(Yi = 1 | ξ) depend on more than one latent dimension ξm of ξ and/or

some item response propensities P(Di = 1 | θ) depend on more than one latent dimension

θl of θ. The 2PL-BMIRT -, 2PL-WDi f MIRT -, and 2PL-WResMIRT models are equivalent

models for nonignorable missing responses. However, model specification especially of

2PL-WDi f MIRT - and 2PL-WResMIRT models become more and more difficult with in-

creasing model complexity. In this Appendix, the Mplus (Muthén & Muthén, 1998 -

2010) input files of the three alternative MIRT models are presented using a simulated

data example, denoted as Data Example C, with a complex dimensional structure. This

data set consists of responses to six items Yi that constitute the measurement model of a

two-dimensional latent ability ξ. The latent response propensity θ underlying the six re-

sponse indicators Di is also two-dimensional. Data Example C was simulated according

to the path diagram depicted in Figure 4.23. Accordingly, the specified 2PL-BMIRT -

, 2PL-WDi f MIRT -, and 2PL-WResMIRT models in the following Mplus input files are

graphically represented as path diagrams in the Figures 4.23, 4.24 and 4.25.

Note that the number of items Yi is very small and not recommended for real appli-

cations. However, Data Example C has only been chosen for didactic reasons to show

model specification in Mplus and to demonstrate model equivalence of MIRT models for

item nonresponses.

Data Example C The dichotomous items Y1, . . . ,Y6 constitute the measurement model

of ξ = (ξ1, ξ2). The items Y1 − Y4 indicate ξ1 and Y2 and Y4 − Y6 indicate ξ2. Hence, there

is within-item multidimensionality in the items Y2 and Y4. The latent response propensity

θ = (θ1, θ2) is also a two-dimensional latent variable. The response indicators D1 − D3

constitute the measurement model of θ1 and D2 −D6 indicate θ2. Hence, the items D2 and

D3 are also within-item multidimensional manifest variables in the measurement model
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of θ. All latent dimensions are correlated, implying that the missing data in Data Example

C are nonignorable. The true and estimated correlations underlying Data Example C are

given in Table 5.3. The positive correlations Cor(ξm, θl) imply that the tendency to respond

to the items increases with the persons proficiency levels in ξ1 and ξ2.

The sample size was N = 5000. The true item parameters can be seen in the model

equation of the logits in Equation 5.1. This Equation refers to the general model equation

given by the Equations 4.79 and 4.80. The four partitions of Λ refer to α, 0, γξ and γθ.

Accordingly, the vector of threshold parameters are partitioned into β, the vector of item

difficulties, and γ0, which are the thresholds of the response indicators.



l(Y1)

l(Y2)

l(Y3)

l(Y4)

l(Y5)

l(Y6)

l(D1)

l(D2)

l(D3)

l(D4)

l(D5)

l(D6)



=



1.0 0.0 0.0 0.0

0.5 0.6 0.0 0.0

1.2 0.0 0.0 0.0

0.6 0.4 0.0 0.0

0.0 1.4 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 2.0 0.0

0.0 0.0 0.5 0.4

0.0 0.0 0.5 0.5

0.0 0.0 0.0 1.0

0.0 0.0 0.0 1.2

0.0 0.0 0.0 2.0





ξ1

ξ2

θ1

θ2


−



−2.2

−1.0

0.0

0.5

1.0

1.5

−1.8

−0.8

−1.3

0.7

−0.8

1.2



(5.1)

The overall proportion of missing data was 40.7%. The proportion of missing responses

per item ranged between 23.3% and 66.1%5.

The item means ȳi and ȳi;obs of the complete data and the observed data with miss-

ing data can be found in columns two and three of Table 5.4. Due to systematic item

nonresponses depending on the latent ability, the item means of the observed data are

slightly positively biased, whereas estimated item difficulties β̂i are negatively biased if

item nonresponses are ignored. In contrast, the estimated item difficulties of the three

MIRT models and the LRM are nearly unbiased.

Table 5.5 shows the true and estimated item discriminations of Data Example C. On

average, the item discriminations were slightly underestimated when missing responses

are ignored. A small positive bias can be found in discrimination estimates of the MIRT

models and the LRM. In Section 3.2.3 it was demonstrated that discrimination parameter

estimates are not systematically biased. Insofar, the small biases in the estimated dis-

5The proportions of missing responses in the items Y1 to Y6 were 25.4%, 31.1%, 23.3%, 63.5%, 34,9%,
and 66.1%.
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Table 5.3: True and Estimated Correlations of Latent Variables Underlying Data Example C.

True correlations

ξ1 ξ2 θ1 θ2

ξ1 1.000
ξ2 0.400 1.000
θ1 0.800 0.600 1.000
θ2 0.600 0.800 0.500 1.000

Estimated correlations 2PL-BMIRT model

ξ1 ξ2 θ1 θ2

ξ1 1.000
ξ2 0.518 1.000
θ1 0.832 0.552 1.000
θ2 0.593 0.831 0.447 1.000

Estimated correlations 2PL-WDi f MIRT model

ξ1 ξ2 θ∗1 θ∗2

ξ1 1.000
ξ2 0.521 1.000
θ∗1 0.259 -0.411 1.000
θ∗2 -0.356 0.049 -0.839 1.000

Estimated correlations 2PL-WResMIRT model

ξ1 ξ2 θ̃1 θ̃2

ξ1 1.000
ξ2 0.510 1.000
θ̃1 - - 1.000
θ̃2 - - -0.479 1.000

crimination parameters should not be interpreted cautiously. Note the similarity of the

estimates α̂im of the three MIRT models, which underlines model equivalence.
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Table 5.4: Item Means, True and Estimated Item Difficulties for Data Example C.

Item means Item difficulties

Item ȳi ȳi;obs True Ignore 2PL-BMIRT 2PL-WDi f MIRT 2PL-WResMIRT LRM

1 0.870 0.901 -2.2 -2.568 -2.306 -2.290 -2.308 -2.302
2 0.705 0.738 -1.0 -1.100 -1.002 -0.992 -1.002 -0.995
3 0.495 0.522 0.0 -0.083 0.063 0.080 0.065 0.085
4 0.397 0.473 0.5 0.234 0.565 0.561 0.563 0.565
5 0.322 0.384 1.0 0.759 1.075 1.065 1.078 1.080
6 0.225 0.325 1.5 0.939 1.429 1.428 1.424 1.439

Mean
bias

<0.001 0.056 - -0.230 0.004 0.009 0.003 0.012

Table 5.5: True and Estimated Item Discriminations for Data Example C.

Estimated item discriminations

Parameter True Ignore 2PL-BMIRT 2PL-WDi f MIRT 2PL-WResMIRT LRM

α11 1.0 1.102 1.369 1.311 1.357 1.295
α21 0.5 0.360 0.506 0.501 0.504 0.483
α31 1.2 1.296 1.210 1.234 1.225 1.277
α41 0.6 0.560 0.510 0.505 0.518 0.535
α22 0.6 0.420 0.445 0.454 0.452 0.469
α42 0.4 0.379 0.537 0.535 0.533 0.533
α52 1.4 1.655 1.518 1.497 1.530 1.527
α62 1.0 0.731 0.919 0.918 0.918 0.934

Mean bias - -0.025 0.039 0.032 0.042 0.044
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Application of IRT models for item nonresponses to Data Example C Five IRT

models were applied to Data Example C: (a) the two-dimensional IRT model based

on Y that ignores missing data, (b) the 2PL-BMIRT model based on (Y, D), (c) the

2PL-WDi f MIRT model based on (Y, D), (d) the 2PL-WResMIRT model based on (Y, D),

and (e) the latent regression model with the two latent regressions E(ξ1 | θ̂1, θ̂2) and E(ξ2 | θ̂1, θ̂2).

The model specifications of the different models in Mplus are given in the Listings A.9 -

A.12. According to the Mplus syntax rules, comments start with „!“. The latent dimen-

sions θl, θ∗l or θ̃l are denoted by ’rp1’ and ’rp2’ respectively.

2PL-BMIRT model

The 2PL-BMIRT model can easily be specified in Mplus (see Listing A.9). No con-

straints are required with respect to item discrimination parameters in γξ and γθ. In real

applications, the difficulty is to find the dimensional structure underlying D prior to the

application of the model. The 2PL-BMIRT model can be identified in different ways.

Here the means and the variances of all latent variables were fixed to zero and one (lines

8-11 of Listing A.9). Hence, E(ξm) = E(θl) = 0 and Var(ξm) = Var(θl) = 1, with l ∈ {1, 2}
and m ∈ {1, 2}. All discrimination parameters and item difficulties were freely estimated.

Alternatively, at least one item discrimination per latent dimension could be fixed and the

variances could be freely estimated. Similarly, the expected values of the latent dimen-

sions could be estimated if at least one threshold of a manifest variable that indicates a

latent dimension is fixed. Note that model identification can become more intricate in

cases of within-item multidimensionality.

Listing A.9: Mplus input file of the 2PL-BMIRT model (Data Example C).

1 DATA: FILE IS DataExampleC.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE i1-i6 d1-d6;

4 USEVARIABLES ARE i1-i6 d1-d6;

5 CATEGORICAL ARE i1-i6 d1-d6;

6 ANALYSIS: Estimator=MLR;

7 MODEL: ! Item discrimination parameters

8 xi1 BY i1* i2-i4;

9 xi2 BY i2* i4-i6;

10 rp1 BY d1* d2 d3;

11 rp2 BY d2* d3-d6;

12 ! Model identification

13 xi1@1 xi2@1 rp1@1 rp2@1;

14 [xi1@0 xi2@0 rp1@0 rp2@0];

15 OUTPUT: ...
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2PL-WResMIRT model

In Listing A.10 the Mplus input file of the 2PL-WResMIRT model is shown. There are

two types of constraints that need to be imposed in this model to ensure correct model

specification and model identification: (a) The item discrimination parameters of γ̃ξ and

γθ are constrained to be γ̃im =
∑P

i=1 γilblm, and (b) the latent covariance Cov(ξm, θ̃l) needs

to be fixed to zero since θ̃l is defined as the latent residual ζl of the regression E(θl | ξ).
The constraint estimation of the item discrimination parameters are specified in Mplus

using constraint names gx11 to gx62 and gt11 to gt62 in lines 8-29. The constraints

with respect to γ∗im require the regression coefficients of the latent regressions E(θ1 | ξ) =
b10 + b11ξ1 + b12ξ2 and E(θ2 | ξ) = b20 + b21ξ1 + b22ξ2. The four regression coefficients are

specified as additional parameters in line 41. Therefore, the latent regression needs not to

be specified explicitly in the model command. The constraint with respect to each of the

12 parameters γ∗im are specified in the lines 42-53. The four covariances Cov(ξm, θ̃l) are

set to zero in lines 35-38.

Listing A.10: Mplus input file of the 2PL-WResMIRT model (Data Example C).

1 DATA: FILE IS DataExampleC.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE i1-i6 d1-d6;

4 USEVARIABLES ARE i1-i6 d1-d6;

5 CATEGORICAL ARE i1-i6 d1-d6;

6 ANALYSIS: Estimator=MLR;

7 MODEL: ! Item discrimination parameters

8 xi1 BY i1* i2-i4

9 d1(gx11)

10 d2(gx21)

11 d3(gx31)

12 d4(gx41)

13 d5(gx51)

14 d6(gx61);

15 xi2 BY i2* i4-i6

16 d1(gx12)

17 d2(gx22)

18 d3(gx32)

19 d4(gx42)

20 d5(gx52)

21 d6(gx62);

22 rp1 BY d1*(gt11)

23 d2(gt21)

24 d3(gt31);

25 rp2 BY d2*(gt22)

26 d3(gt32)

27 d4(gt42)

28 d5(gt52)

29 d6(gt62);

30
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31 ! Model Identification

32 xi1@1 xi2@1 rp1@1 rp2@1;

33 [xi1@0 xi2@0 rp1@0 rp2@0];

34

35 xi1 WITH rp1@0;

36 xi1 WITH rp2@0;

37 xi2 WITH rp1@0;

38 xi2 WITH rp2@0;

39

40 MODEL constraint:

41 new(b11 b12 b21 b22);

42 gx11 = gt11*b11;

43 gx21 = gt21*b11 + gt22*b21;

44 gx31 = gt31*b11 + gt32*b21;

45 gx41 = gt42*b21;

46 gx51 = gt52*b21;

47 gx61 = gt62*b21;

48 gx12 = gt11*b12;

49 gx22 = gt21*b12 + gt22*b22;

50 gx32 = gt31*b12 + gt32*b22;

51 gx42 = gt42*b22;

52 gx52 = gt52*b22;

53 gx62 = gt62*b22;

54

55 OUTPUT: ...

2PL-WDi f MIRT model

The specification of the 2PL-WDi f MIRT model in Mplus is shown in Listing A.11. As

in the case of the 2PL-WResMIRT model, constraint parameter estimation is required.

In particular, the discrimination parameters γ∗im and γil of γ∗
ξ

and γθ respectively. In

lines 35 - 42 of Listing A.10, each element of γ∗
ξ

is constraint to be γ∗im =
∑P

i=1 γil.

Model identification is given by E(ξ1) = E(ξ2) = E(θ∗1) = E(θ∗2) = 0 and Var(ξ1) =

Var(ξ2) = 1. The variances Var(θ∗1) and Var(θ∗2) were not fixed since both dimen-

sions θ∗
l

are defined as latent difference variables θl − (ξ1 + ξ2). Hence, the variances are

Var(θ∗
l
) = Var(θl)+

∑2
m=1[Var(ξm)−2Cov(θ, ξm)]+2Cov(ξ1, ξ2), with θl the latent response

propensity as defined in the 2PL-BMIRT model. The restriction Var(ξ1) = Var(ξ2) = 1

for identification of the measurement model of ξ contradicts with a fixed variance of θ∗
l
.

Therefore, the discrimination parameters γ11 and γ62 were alternatively fixed to one to

identify the measurement model of θ∗ (see lines 21 and 28 of Listing A.10). Accordingly,

the parameters γ∗11, γ∗61, γ∗12, and γ∗62 were fixed to one (lines 8, 13, 15, and 20). This is

not an additional restriction but follows directly from the constraints with respect to the

parameters γ∗im of γ∗
ξ

derived in the 2PL-WDi f MIRT model (see above).
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Listing A.11: Mplus input file of the 2PL-WDi f MIRT model (Data Example C).

1 DATA: FILE IS DataExampleC.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE i1-i6 d1-d6;

4 USEVARIABLES ARE i1-i6 d1-d6;

5 CATEGORICAL ARE i1-i6 d1-d6;

6 ANALYSIS: Estimator=MLR;

7 MODEL: ! Item discrimination parameters

8 xi1 BY i1* i2-i4

9 1@1

10 d2 (gx21)

11 d3 (gx31)

12 d4 (gx41)

13 d5 (gx51)

14 d6@1;

15 xi2 BY i2* i4-i6

16 d1@1

17 d2 (gx22)

18 d3 (gx32)

19 d4 (gx42)

20 d5 (gx52)

21 d6@1;

22 rp1 BY d1@1 ! Model identification

23 d2 (gt21)

24 d3 (gt31);

25 rp2 BY d2*(gt22)

26 d3 (gt32)

27 d4 (gt42)

28 d5 (gt52)

29 d6@1; ! Model identification

30

31 ! Model identification

32 xi1@1 xi2@1;

33 [xi1@0 xi2@0 rp1@0 rp2@0];

34

35 MODEL constraint:

36 gx21 = gt21 + gt22;

37 gx31 = gt31 + gt32;

38 gx41 = gt42;

39 gx51 = gt52;

40 gx22 = gt21 + gt22;

41 gx32 = gt31 + gt32;

42 gx42 = gt42;

43 gx52 = gt52;

44

45 OUTPUT: ...

Latent Regression Model

The LRM for missing responses consists of two parts that need to be specified in the

Mplus input file: (a) the measurement model of ξ and (b) the latent regression model with
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E[ξ1 | f (D)] and E[ξ2 | f (D)]. The measurement model of ξ is described in lines 7-10 of

Listing A.12. The EAP estimates of the latent response propensities θ1 and θ2 were used as

independent variables in the latent regression model and were generated in a previous step

using a two-dimensional two-parameter IRT model for the response indicators D1, . . . ,D6.

The measurement model of θ was specified according to the true data-generating model.

Note that the appropriate model for D needs to be explored in real applications to ensure

bias correction (see Section 4.5.3.4). In Listing A.12, the EAP estimates of θ1 and θ2 are

denoted by eap1 and eap2. The two latent regressions E[ξ1 | θ̂1, θ̂2] = b10 + b11θ̂1 + b12θ̂2

and E[ξ2 | θ̂1, θ̂2] = b20 + b21θ̂1 + b22θ̂2 are specified in lines 18 and 19.

To compare the item and person parameter estimates across different IRT models, a

common metric of the latent variables ξ1 and ξ2 needs to be established in all IRT models.

The simple IRT model that ignores missing responses as well as the MIRT models for

nonignorable missing data were identified by setting E(ξ1) = E(ξ2) = 0 and Var(ξ1) =

Var(ξ2) = 1. In Mplus, the variance and the expected value of dependent variables in

regression models cannot directly be fixed to certain values. Instead, the specification of

nonlinear constraints are required. The variance of ξm (with m =∈ {1, 2}) in Data Example

C is Var(ξm) = b2
l1Var(θ̂1) + b2

l2Var(θ̂2) + 2bl1bl2Cov(θ̂1, θ̂2) + Var(ζm). If the variance is

fixed to one, then 0 = b2
l1Var(θ̂1) + b2

l2Var(θ̂2) + 2bl1bl2Cov(θ̂1, θ̂2) + Var(ζm) − 1. This

expression can be used as a nonlinear constraint in Mplus (lines 22-23). Similarly, the

expected values are E(ξm) = bm0 + bm1E(θ̂1) + bm2E(θ̂2). Therefore, the left sight of this

equation was set to zero in lines 25 and 26. In Mplus, the specification of nonlinear

constraints requires constraint names, which are placed in parentheses in Listing A.12.

Listing A.12: Mplus input file of the LRM (Data Example C).

1 DATA: FILE IS DataExampleC.dat;

2 TYPE IS INDIVIDUAL;

3 VARIABLE: NAMES ARE i1-i6 d1-d6 eap1 eap2;

4 USEVARIABLES ARE i1-i6 eap1-eap2;

5 CATEGORICAL ARE i1-i6 eap1-eap2;

6 ANALYSIS: Estimator=MLR;

7 MODEL: ! Item discrimination parameters

8 xi1 BY i1* i2-i4;

9 xi2 BY i2* i4-i6;

10 ! Latent variables

11 [xi1 xi2](al1-al2); ! Intercepts

12 xi1 xi2(res1-res2); ! Residual variances

13 ! Independent variables of the LRM

14 eap1-eap2 (v1-v2); ! Variances

15 [eap1-eap2] (in1-in2); ! Means

16 eap1 WITH eap2 (cov); ! Covariance

17 ! Latent Regression model

18 xi1 ON eap1 eap2 (g1-g2);

358



19 xi2 ON eap1 eap2 (b1-b2);

20 Model Constraint: ! for model identification

21 ! Variances of both latent dimensions are set to one

22 0 = g1**2*v1 + g2**2*v2 + 2*g1*g2*cov + res1 -1;

23 0 = b1**2*v1 + b2**2*v2 + 2*b1*b2*cov + res2 -1;

24 ! Expected values of both latent dimensions are set to zero

25 0 = al1 + g1*in1 + g2*in2;

26 0 = al2 + b1*in1 + b2*in2;

27 OUTPUT: ...

Model Fit (Data Example C)

The 2PL-BMIRT -, the 2PL-WDi f MIRT -, the 2PL-WResMIRT model, and the LRM as

specified in the Listings A.9 - A.12 were applied to Data Example C. The estimates α̂im

and β̂i are given in the Tables 5.4 and 5.5. In Table 5.6, different goodness-of-fit statistics

and the number of estimated parameters (npar) in the respective model are shown. The

three alternative MIRT models were nearly identical in terms of model fit. The item and

person parameter estimates of the LRM are also close to that of the MIRT models, which

reflects model equivalence in the construction of the latent variables and the reduction of

bias. However, the number of parameters is substantially lower in the LRM. The model

fit indices of the LRM are quite different from that of the MIRT models and cannot be

compared. Recall that the LRM and the MIRT models are not equivalent in terms of

model fit (see Section 4.5.4).

The EAP person parameter estimates of ξ1 and ξ2 are shown in Figure 5.1. The corre-

lations are shown within the single scatter plots. The EAPs of the different IRT models

for item nonresponses are very close to each other but differ substantially from the EAPs

of the model that ignores missing data. The EAPs from the MIRT models and the LRM

correlates substantially higher with the true value of ξ1 and ξ2 than the EAPs obtained by

the IRT model that ignores item nonresponses.

Table 5.6: Goodness-of-fit Indices of (M)IRT models for Nonignorable Missing Responses Applied to
Data Example C.

Model Log-Lik. npar AIC BIC

2PL-BMIRT model -27357.638 34 54783.276 55004.861
2PL-WResMIRT model -27357.666 34 54783.331 55004.916
2PL-WDi f MIRT model -27358.933 34 54785.866 55007.451
LRM -18440.700 24 36929.401 37085.813

Note: npar = Number of estimated parameters.
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Figure 5.1: Person parameters ξ1 and corresponding EAP estimates (above diagonal) and person pa-
rameters ξ2 and corresponding EAP estimates (below diagonal) using Data Example C.
The red lines indicate the bisectric. The blue lines are regression lines.
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