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Zusammenfassung

Das Ziel der vorliegenden Arbeit ist die Erweiterung der Lorentzkraft-
Anemometrie (LKA oder LFV) um die Geschwindigkeitsmessung mit
kleinen Permanentmagneten, die sich durch stark inhomogene Mag-
netfelder auszeichnen. Trotz ihres unendlich ausgedehnten Feldes
liefern die kleinen Magnete Informationen über das Strömungsfeld in
ihrer unmittelbaren Umgebung (Einflussbereich). Die Untersuchung
stützt sich hierbei auf die numerische Modellierung der magneto-
hydrodynamischen Interaktion des Magnetwürfels mit einer Metall-
strömung, welche durch einen Kanal mit quadratischem Querschnitt
fließt. Die bei der Wechselwirkung entstehende Lorentzkraft wird
durch eine Kombination der Simulationsprogramme COMSOL und
FLUENT ermittelt.

Der den Programmen zugrundeliegende Code wird in dieser Arbeit
verifiziert und durch Laborexperimente bestätigt. Anschließend wird
mit einem RANS (Reynolds-Averaged Navier Stokes) -Turbulenzmod-
ell der Einfluss verschiedener Geometrien sowie verschiedener elek-
tromagnetischer Kontrollparameter auf die Lorentzkraft geprüft. Die
Untersuchungen beziehen sich hierbei auf drei spezielle Strömungsregi-
mes. Das erste ist das kinematische Regime, in dem die Rückwirkung
der Lorentzkraft auf die Strömung vernachlässigbar ist. In diesem
Regime wurde eine universelle Abhängigkeit der Kraft vom Mag-
netabstand gefunden. Die beiden anderen Regimes sind dynamische
Regimes bei sehr niedrigen sowie hohen Reynolds-Zahlen. In diesen
verändert der Magnet das Strömungsfeld. Die dynamischen Unter-
suchungen zeigen eine gute Übereinstimmung mit den durchgeführten
Experimenten.

Der letzte Teil der vorliegenden Arbeit beschäftigt sich mit LES (Large
Eddy Simulations):
(i) Es werden die Fehler in den verschiedenen LES-Modellen analysiert
und mit denen der unteraufgelösten DNS (direkten numerischen Sim-
ulation) verglichen. Die numerische Dissipation zeigt ein ähnliches
Verhalten wie die subskaligen Spannungen, was den Einsatz spezifis-
cher LES-Modelle überflüssig macht.
(ii) Die Korrelation zwischen den Fluktuationen der Lorentzkraft und
der Strömungsgeschwindigkeit legt eine starke Kausalität zwischen
den beiden Größen nahe. Dies könnte für zukünftige Arbeiten auf dem
Gebiet der lokalen Geschwindigkeitsmessung mittels Lorentzkraft-Ane-
mometrie relevant sein.
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Abstract

This thesis focusses on a modified version of the non-contact flow
measurement technique, Lorentz Force Velocimetry (LFV), by con-
sidering small permanent magnets characterised by strongly inhomo-
geneous magnetic fields. Owing to their rapidly decaying magnetic
fields, such magnets can provide information about the flow field in a
small sub-space of the total fluid volume thereby extending the tech-
nique of LFV to local flow measurement. With that motivation in
mind, the main aim of this study is to provide fundamental insights
into the magnetohydrodynamic interaction of such magnetic fields
with liquid metal flows. To that end, numerical simulations are per-
formed by considering the liquid metal flow in a square duct exposed
a cubic permanent magnet.

A reliable numerical methodology is developed by coupling general
purpose codes COMSOL and FLUENT, and by verifying and validat-
ing the results with laboratory experiments. Subsequently, paramet-
ric analyses are performed using a Reynolds-Averaged Navier Stokes
(RANS) turbulence model to quantify the effect of various geomet-
ric and electromagnetic control parameters on the integral Lorentz
force. For this analysis, three flow regimes are considered. The first is
the kinematic regime where the action of Lorentz force on the flow is
neglected. In this regime, the Lorentz force displays a universal depen-
dence on the magnet position. The last two are the dynamic regimes
at low and high Reynolds numbers which are both characterised by
a modification of the flow by the Lorentz force. Furthermore, in such
regimes the magnet is observed to act as a magnetic obstacle by ex-
pelling streamlines from its immediate vicinity. All the numerical
results demonstrate a good agreement with the experiments.

The final part of the thesis focusses on the numerical investigations
using Large Eddy Simulations (LES). The aim of this study is two-
fold:
(i) Firstly, to analyse the modelling errors in different LES models
by comparing with under-resolved direct numerical simulations. The
results demonstrate that for the employed grid resolution, explicit
modelling of sub-grid scale stresses is redundant.
(ii) Secondly, to analyse the correlation between fluctuations of Lorentz
force and velocity. The results show a strong causality between both
these variables thereby providing reference data for future work on
local flow measurements using LFV.
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Chapter 1

Introduction

In this chapter we provide an introduction to liquid metal flows and their

industrial importance. We also review the impact of magnetic fields in the pro-

cessing of liquid metal flows with particular emphasis on electromagnetic flow

measurement. Later, we present the main motivation, aims and objectives of

the current research.

Industrial revolution (1750-1850) was a cornerstone for many advances in the

field of science and technology. For instance, the science of metal manufacturing

and shaping was mechanised for the first time to cater for the rising demand

for metallic materials. A few such industrial production methods were casting

and powder processing–where molten metal was used in the manufacturing pro-

cess (Figure 1.1). The next 100 years then saw an astronomical growth in the

range of metallic materials and their alloys that can be manufactured using all

these batch production methods. In spite of this growth, the understanding of

these complex multi-physical1 manufacturing processes remained rather primi-

tive [Smallman and Bishop, 1999]. Therefore, any efforts to improve the quality

of finished products and the efficiency of manufacturing would need both the

qualitative and quantitative understanding of the production process.

As an example, the quality of industrial metallic materials and their alloys

strongly depends, among other things, on the quantity of individual molten metal

components going into the production process. Therefore, for the precise control

it is desirable to perform flow rate measurements of the liquid metal at several lo-

cations in the production process. Since liquid metals in metallurgy are often hot

1These processes encompass a wide range of scientific disciplines like metallurgy, fluid me-
chanics and heat transfer.

1
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(a)

Molten Metal

Finished product

Shape casting Processing into powder

Powder consolidation

Bulk deformation

Sheet deformationHeat treatment

Joining Machining

Continuous casting Ingot casting

(b)

Figure 1.1: (a) A typical manufacturing process of continuous casting of steel (courtesy of
SMS Concast). (b) Flowchart illustrating the metal shaping process during secondary

manufacturing [Beddoes and Bibby, 1999].

and aggressive, traditional flow measurement techniques such as pitot tubes and

hot wire anemometry involving mechanical contact between the flow measuring

device and the liquid metal, cannot be applied. Also, optical measurement sys-

tems such as particle image velocimetry, laser Doppler anemometry [Baker, 1992]

cannot be employed due to the high opacity of the metal melts. To overcome

this disadvantage a number of innovative flowmeters have been invented–most of

which work on the principles of magnetohydrodynamics.

1.1 Motivation

Magnetohydrodynamics (MHD) is a science that comprises of both electro-

dynamics and fluid mechanics. In particular, MHD1 deals with the flow of elec-

trically conducting fluids under the influence of an external magnetic field. Such

flows are ubiquitous, and are related to many natural phenomena like the mag-

netic field of the Earth, auroras, solar flares, etc. MHD also plays an important

role in many technological applications such as metallurgy, material processing,

flow measurement, nuclear fusion, etc. However, in this work we will focus on

1The author highly recommends the reader to watch 1961 educational movie by Arthur
Shercliff’s on the basic principles of MHD: http://web.mit.edu/hml/ncfmf.html

2
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Figure 1.2: Schematic illustrating the working principle of an electromagnetic induction
flowmeter [Crabtree, 2009]. The conductive liquid flow across the magnetic field induces

voltage that is measured by the sensing electrodes.

electromagnetic flow measurement aspect of MHD flows.

From the theory of electrodynamics it is well known that the motion of an

electrically conducting material across magnetic field lines induces electric cur-

rents in the conductor. This principle of electromagnetic induction was first used

for flow measurement, albeit unsuccessfully, in 1832 by Michael Faraday. Faraday

performed his famous experiment at Waterloo bridge to measure the flowrate of

river Thames by immersing a pair of electrodes in the water and subsequently

trying to measure the induced voltage due to the flow of the river1 across the

magnetic field lines of Earth. However, it wasn’t until 1952 that a Dutch com-

pany called Tobi-Meter commercialised such a flow measurement device for the

first time using artificially applied magnetic fields. In spite of this successful

implementation, these devices still suffered from the drawback of requiring a me-

chanical contact with the liquid or the conducting walls of the conduit (see Figure

1.2 for working principle of the electromagnetic induction flowmeter).

To overcome this apparent disadvantage of mechanical contact, Arthur Sher-

cliff proposed a variety of electromagnetic flow measurement devices and de-

scribed them in detail in his classical textbook [Shercliff, 1962]. One such device

was the force flowmeter. This device has the advantage that there is no mechan-

ical contact between the measurement system and the fluid flow or walls of the

conduit– thereby making it suitable for high temperature applications like metal-

lurgy. The force flowmeter has since undergone so much further development that

1River water is a weak electrical conductor.
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Figure 1.3: Schematic illustrating the working principle of a single magnet rotary flowmeter
[Priede et al., 2009]. The conductive liquid flow induces a torque on the permanent magnet

subjecting it to rotation which can be measured.

it was successfully employed for flow measurement through works by [Bucenieks,

2000, 2002; Priede et al., 2009; Thess et al., 2006, 2007]. An example of such a

device, a rotary flowmeter, is shown in figure 1.3.

Another version of such a non-contact flow measurement technique developed

by Thess et al., is referred to as Lorentz Force Velocimetry (LFV) and it will

be the main focus of this research. LFV relies on the fundamental principle

of measurement of Lorentz forces acting on a magnet system due to the eddy

currents induced in a liquid metal flow when exposed to its magnetic field (Figure

1.4). Typically, large and complex magnet systems producing strong forces are

used in the design of Lorentz force flowmeters for the measurement of volume

flux [Kolesnikov et al., 2011].

Nonetheless, many metallurgical processes also require the knowledge of local

flow fields to optimise product quality and to control crucial physical processes

such as heat transfer, passive scalar transport, and heat treatment [Eckert et al.,

2003]. For instance, it would be desirable in secondary aluminium production to

be able to measure the local velocity near the bottom of the launder (the open

channel used to transport molten metal from the melting to the holding furnace)

in addition to the total mass flux in order to assess the filling level as well as the

magnitude of erosion of the refractory material.

Therefore, in this work we modify the Lorentz force flowmeter to include small

4
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(a)-

(a)

(b)-

(b)

(c)-

(c)

(d)-

(d)

Figure 1.4: Schematic of the working principle of Lorentz force velocimetry. Figures 1.4a–1.4d
illustrate the generation of eddy currents in the fluid due to the magnetic field of a permanent
magnet and the subsequent generation of Lorentz forces in the fluid and on the magnet which

are measured using a force sensor (courtesy of Institute of Thermodynamics and Fluid
Mechanics, Ilmenau University of Technology).

permanent magnet systems with a motivation that such systems, characterised

by highly localised magnetic fields, can possibly extend the technique of LFV to

local flow measurement.

1.2 Aims and Objectives

The main aim of the project is to numerically study the feasibility of extending

the principle of LFV such that it provides information about the local flow fields

through the use of small permanent magnets. Such an endeavour is a two-fold

process involving measurement of both mean velocity and turbulent fluctuations.
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Figure 1.5: Graph illustrating the scope of this work in terms of ranges of magnetic field
strengths and flow velocities. The study combines well with direct numerical simulations

[Tympel, 2013] and laboratory experiments [Heinicke, 2013].

The use of small dipole-type permanent magnets has already been considered in

a number of publications where the authors analysed the effect of magnetic field

on the fluid flow [Votyakov et al., 2007; Votyakov, 2008]. However, the systematic

evaluation of Lorentz forces acting on the magnet taking into account the impact

of various flow and magnetic field parameters is a new contribution. The results

from this study combined with the experiments [Heinicke, 2013] and Direct Nu-

merical Simulations (DNS) [Tympel, 2013] provide a symbiotic representation for

understanding the mutual influence of turbulent fluid flow and Lorentz forces due

to a strongly inhomogeneous magnetic field (see Figure 1.5).

To this end, the aim is divided into a number of objectives:

1. Development of reliable numerical modelling methodology to understand

the mutual effect between a strongly inhomogeneous magnetic field of a

small permanent magnet and the turbulent liquid metal flow in a duct.

Such a methodology will be capable of modelling flows in arbitrarily complex

geometries, as usually found in industrial applications of LFV.

2. Quantifying the scaling behaviour of total Lorentz force with respect to

various geometric and magnetohydrodynamic parameters such as

(a) Mean flow velocity.

(b) Magnetic field strength of the permanent magnet.

6
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(c) Relative position of the magnet with respect to the fluid.

(d) Magnet size.

3. Evaluation of the dependence of Lorentz force on the mean velocity pro-

file and turbulent fluctuations through the use of Large Eddy Simulations

(LES).

1.3 Overview of the Thesis

To accomplish the aims and objectives of the project, the entire thesis has

been structured as follows.

In chapter 2, we will provide the basic theory and state of the art in liquid

metal magnetohydrodynamics. In chapter 3, we present the numerical method

adapted to solve the governing equations of the problem within framework of

liquid metals interacting with strongly inhomogeneous magnetic fields. We also

provide detailed information about the meshing and turbulence modelling ap-

proaches. In the same chapter we present the verification and validation of the

numerical methodology by performing grid sensitivity studies and experimental

comparison, respectively.

In chapter 4 we present the results from the parametric studies performed

to understand the influence of various geometric and magnetohydrodynamic pa-

rameters on the liquid metal flow in a square duct. In chapter 5, we discuss

capabilities of LFV to measure mean flow profile and turbulent fluctuations. We

also explain in detail various large eddy simulations (LES) models employed in

FLUENT for the unsteady CFD simulations by comparing the results with those

from under-resolved direct numerical simulations (UDNS).

Finally in chapter 6, we present some concluding remarks of the research and

also provide a few ideas for future work.
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Chapter 2

Theory and State of the Art

The focus of this chapter is on the basic theory of magnetohydrodynamic

(MHD) flows. Therefore, we present all the governing mathematical equa-

tions and the relevant non-dimensional parameters. We finally culminate the

chapter with the state of the art in numerical modelling of liquid metal mag-

netohydrodynamics.

2.1 General Theory of Magnetohydrodynamics

Magnetohydrodynamics (MHD) deals with the interaction of electrically con-

ducting fluids with magnetic fields. Therefore, the physical laws governing such

phenomena are a combination of both Maxwell’s laws of electromagnetism and

Navier-Stokes equations dealing with conservation of mass and momentum. All

these fundamental physical laws are explained in great detail in many textbooks

on electrodynamics or MHD [Davidson, 2001; Moreau, 1990; Roberts, 1967]. Nev-

ertheless, we still elucidate them in this section for the reasons of completeness

of this work.

MHD basically encompasses those phenomenon where, in an electrically con-

ducing fluid, the velocity field u⃗ and the magnetic field B⃗0 are coupled [Moreau,

1990]. The movement of this conducting fluid in the magnetic field ensues elec-

tric currents (also called eddy currents) J⃗ in the fluid which are governed by the

Ohm’s law :

J⃗ = σ(E⃗ + u⃗× B⃗). (2.1)

Here σ is the electrical conductivity of the fluid, E⃗ is the induced electric field

and B⃗ is the total magnetic field.

9



2. THEORY AND STATE OF THE ART

The electric field E⃗ is generated in the liquid metal either due to a time

varying magnetic field or due to the motion of the conducting fluid across the

magnetic field lines. This fact is governed by the Faraday’s law of induction and

is given by,

∇× E⃗ =
−∂B⃗
∂t

. (2.2)

The total magnetic field in the Ohm’s law is the sum of the primary/imposed

magnetic field B⃗0 and a secondary/induced magnetic field b⃗ i.e., B⃗ = B⃗0+b⃗ . This

modification of the primary magnetic field is by the eddy currents themselves and

is given by Ampere’s law as,

µ0J⃗ = ∇× B⃗. (2.3)

Here µ0 is the permeability of free space and is equal to 4π × 10−7N/A2. As is

evident from the above equation, the displacement currents are neglected in the

Ampere’s law. This is due to the high electrical conductivity of the fluids which

leads to the absence of free electrical charges thereby making them electrically

neutral. This nature of the eddy currents is expressed through the divergence of

equation (2.3) as,

∇ · J⃗ = 0. (2.4)

By combining equations (2.1), (2.2) and (2.3), along with the equation for the

solenoidal nature of the magnetic field (∇ · B⃗ = 0), we obtain the equation that

demonstrates the spatial and temporal evolution of the magnetic field for a given

velocity field. This is referred to as the magnetic induction equation and is given

by,

∂B⃗

∂t
= ∇× (u⃗× B⃗) + η∇2B⃗. (2.5)

Here the quantity η is the magnetic diffusivity, given by,

η =
1

σµ0

. (2.6)

The magnetic diffusivity for liquid metals is of the order of 1m2/s, which

is about 106 times larger than the kinematic viscosity, ν. In fact this ratio of

kinematic viscosity and magnetic diffusivity is represented by a non-dimensional

parameter known as magnetic Prandtl number, Pm – which for liquid metals ≪ 1.

The other effect of the coupling between the magnetic field and the velocity

10
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field, is the generation of an electromotive force that acts on the fluid flow. This

force known as Lorentz force acts on each unit volume and is given by,

f⃗ = J⃗ × B⃗. (2.7)

This force is manifested as an additional body force in the Navier-Stokes

equations thereby modifying the flow dynamics,

∇ · u⃗ = 0, (2.8)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −

(
1

ρ

)
∇p+ ν∇2u⃗+

(
1

ρ

)
(J⃗ × B⃗). (2.9)

Here ρ is the density of the fluid.

Liquid Metal Magnetohydrodynamics

For the typical applications of liquid metal flows, the convection-diffusion

equation for the magnetic field transport can be simplified to a purely diffusive

form. To explain this simplification, let us consider the example of the flow of

an electrically conducting fluid (liquid metal) with mean velocity Ū in a square

duct with a characteristic length scale L (half-width of the duct) (Figure 2.1).

All the walls of the duct are electrically insulating and non-magnetic so as to be

consistent with the experiments where all the walls are made of Plexiglass. Let

such a liquid metal flow be exposed to a steady external magnetic field B⃗0 of a

cubic permanent magnet with edge length D located at a distance H from the

liquid.

Firstly, let us non-dimensionalise the induction equation using the character-

istic scales, L, Ū and L/Ū for length, velocity and time as,

Rm
∂ ⃗̃B

∂t
= Rm∇̃ × (⃗̃u× ⃗̃B) + ∇̃2 ⃗̃B, (2.10)

where tilde indicates the dimensionless quantities, and

Rm = µ0σŪL. (2.11)

is the magnetic Reynolds number. It provides a rough estimate for the

strength of the induced magnetic field with respect to the external magnetic field.

Physically, however, Rm is the ratio of the time scales of diffusion (τd = L2µ0σ)

and advection (τa = L/Ū , where Ū is the mean flow velocity) of the magnetic

11
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Figure 2.1: Setup of a square duct with (a) streamwise cross-section, and (b) transverse
cross-section. The mean velocity Ū of the duct flow points in the positive x-direction, the

magnetisation direction of the permanent magnet is along the positive z-axis. The edge length
of the magnet is denoted as D, the distance between magnet center and fluid surface as H.

The characteristic length scale is chosen to be the half-width L of the duct.

field due to the motion of the conducting material across its field lines. For liquid

metal flows in laboratory and industry, we have Rm ≪ 1 as they generally have

a rather low electrical conductivity of the order of 106 S/m.

Now let us simplify the induction equation using this low Rm assumption and

the fact that the imposed magnetic field is steady. To accomplish that firstly

consider E⃗0, J⃗0 along with external magnet field B⃗0 as the fields which would

exist when the fluid is at rest i.e., u⃗ = 0. The presence of a very small velocity

field creates infinitesimal perturbations in each of these three fields. Let these

perturbations in E⃗, J⃗ and B⃗ be denoted by e⃗, j⃗ and b⃗, respectively (see Davidson

[2001]). Using these quantities Faraday’s and Ampere’s law can be written as1,

∇× E⃗0 = 0, (2.12a)

J⃗0 = σE⃗0, (2.12b)

∇× e⃗ =
−∂b⃗
∂t

. (2.12c)

j⃗ = σ(e⃗+ u⃗× B⃗0). (2.12d)

Here the second order term u⃗ × b⃗ in equation (2.12d) has been neglected.

From a simple scaling argument, Faraday’s equation gives e⃗ ∼ u⃗ b⃗ and therefore

1interested readers can refer to Boeck [2010] for a thorough derivation of the quasi-static
equations using regular perturbation expansion in magnetic Reynolds number
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the perturbation in the electric field may also be neglected in equation (2.12d).

Finally, the Ohm’s law can be modified to the form,

J⃗ = J⃗0 + j⃗ = σ(E⃗0 + u⃗× B⃗0). (2.13)

However, from equation (2.12a), it can be seen that the electric field is ir-

rotational and can therefore be represented by the gradient of a scalar called

electrical scalar potential. Using these modifications, the final version of Ohm’s

law for low-Rm MHD becomes,

J⃗ = σ(−∇ϕ+ u⃗× B⃗0). (2.14)

The governing Poisson equation for the electric potential can then be obtained

by taking the divergence of the above equation and making use of the law of

conservation of charge.

∇2ϕ = ∇ · (u⃗× B⃗0). (2.15)

Finally, the Lorentz force density that acts on the fluid flow can be written

only in terms of magnetic field of the permanent magnet as,

f⃗ = J⃗ × B⃗0. (2.16)

Non-Dimensional Governing Equations and Boundary Conditions

With all the assumptions defined, we can finally write the mathematical model

for the liquid metal MHD flow in a conduit in a dimensionless form as,

∇ · u⃗ = 0, (2.17)

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −∇p+ 1

Re
∇2u⃗+

(
Ha2

Re

)
(⃗j × B⃗0), (2.18)

∇2ϕ = ∇ · (u⃗× B⃗0). (2.19)

These equations are characterised by the following boundary conditions,

13
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• No-slip boundary condition for the walls of the conduit,

(u⃗)walls = 0. (2.20)

• Since the present study deals with duct walls that are perfectly electrically

insulating and non-magnetic, the electric currents must close inside the fluid

and therefore cannot penetrate the duct walls. In other words,

j⃗ · n⃗ = 0 |walls. (2.21)

This expression along with the Ohm’s law leads to the following expression

for the electric potential ϕ,

=⇒ ∂ϕ

∂n
= (u⃗× B⃗0)walls · n⃗, (2.22)

where ∂/∂n is the wall-normal derivative. Combining equation 2.22 with

the no-slip boundary condition, we get the following boundary condition

for the electric potential

=⇒ ∂ϕ

∂n
= 0 |walls. (2.23)

In equation (2.18), Re and Ha represent the Reynolds number and Hartmann

number, respectively. These are given by,

Re =
LŪ

ν
. (2.24)

Ha = BmaxL

√
σ

ρν
(2.25)

The Reynolds number is the ratio of the inertial forces to the viscous forces

in the fluid. While the Hartmann number represents the strength of the mag-

netic field and Ha2 is the ratio of the electromagnetic forces to the viscous forces.

Whereas there is a unique definition of the Hartmann number in the case of a

uniform magnetic field, the definition of Ha in the present case of an inhomo-

geneous magnetic field involves some ambiguity. Therefore, we chose to define

Ha based on the maximum of the magnetic flux density Bmax that occurs at the

upper boundary of the fluid just below the permanent magnet. It should be noted

that in general Bmax is a complicated function of magnet distance, magnet size

14
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and strength. For the sake of generality, however, we define Ha only in terms of

Bmax rather than in terms of magnetic moment and position of the magnet.

There is third non-dimensional parameter that provides the ratio of the elec-

tromagnetic forces to the inertial forces and is the referred to as the interaction

parameter or the Stuart number N (Equation 2.26).

N =
Ha2

Re
(2.26)

In addition to the magnetohydrodynamic parameters, we have two geometric

parameters, namely, distance of the magnet from the duct (H) and magnet size

(D). For consistency we non-dimensional these parameters using the character-

istic length scale of duct (L) as follows,

h =
H

L
, (2.27)

d =
D

L
, (2.28)

where h and d are the dimensionless distance and size, respectively.

For the ease of parametrisation, we represent the total Lorentz force by imag-

ining that the permanent magnet plays the role of a magnetic obstacle1. We then

invoke the analogy between the flow of a liquid metal about a magnetic obstacle

and the flow of an ordinary liquid around a solid obstacle. Further details about

the analogy between a solid and a magnetic obstacle can be found in Votyakov

and Kassinos [2009]. Similar to characterizing the drag force on a solid body with

a drag coefficient, we introduce an electromagnetic drag coefficient, CD defined

as

CD =

∫
V
(⃗j × B⃗0)x dV

1
2
ρŪ2A

. (2.29)

This representation of the force is chosen to satisfy the intuitive understanding

of the magnet being dragged along by the flow and therefore, resembling an

obstacle in the flow. As in pure hydrodynamics, the drag coefficient is large if

the magnet feels a strong force. Here the numerator is the total x-component

of Lorentz force in newtons, A is the streamwise cross-sectional area of the duct

and Ū is the mean flow velocity. By using the non-dimensional parameters, the

1The neologism ”magnetic obstacle” was coined by Kolesnikov in 1970’s in Riga to indicate
the obstacle like properties possessed by a magnetic field.
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Dimensionless Parameters Range of values
Reynolds Number (Re) 10−2 − 104

Hartmann Number (Ha) 10− 500
Magnet Size (d) 0.4− 2
Distance of the Magnet (h) 0.4− 1

Table 2.1: Table presenting the range of control parameters used for the numerical modelling
of liquid metal flow exposed to a small permanent magnet.

coefficient can be rewritten as,

CD =
N

2

∫
[(−∇ϕ+ u⃗× B⃗0)× B⃗0]xdV. (2.30)

Summary

In the previous section, we presented the governing partial differential equa-

tions for MHD flows within the context of inhomogeneous magnetic fields. For

a given magnetic field B⃗0, we can now numerically determine the velocity field

u⃗(x, y, z, t), pressure field p(x, y, z, t), electric potential ϕ(x, y, z, t) and the elec-

tric current density j⃗(x, y, z, t) from equations (2.19), (2.17), (2.18) using the

appropriate boundary conditions for velocity and electric potential. From these

solutions the function CD(h, d, Re,Ha) can be computed, which is the central

object of this investigation. The values of the control parameters considered in

this work are summarised in table 2.1.

2.2 State of the Art

In this section we review the literature pertaining to the analysis of conduct-

ing fluids exposed to magnetic fields. The amount of research that has undergone

over the years on magnetohydrodynamic flows is quite overwhelming. Therefore,

a complete overview is beyond the scope of this thesis. Instead, we will only

review selected publications and no claim is made here to give a comprehen-

sive overview. Furthermore, we also refrain from discussing MHD phenomenon

relating to astrophysical applications as they fall under the realm of high mag-

netic Reynolds number flows. The main aim here is to review some important

results that were obtained in liquid metal MHD. Since very little research has

been performed in the case of a spatially varying magnetic fields, we will restrict

the discussion to only those numerical investigations that have been performed
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in the presence of uniform of magnetic field. Although the results from the previ-

ous works presented in this section are not directly incorporated into the current

research, they still show the variety where numerical simulations are used to

gain fundamental insights into the physics of MHD especially those pertaining to

turbulence phenomenon in liquid metal flows.

Davidson [2001] phrased rather elegantly in his book that magnetohydrody-

namic flows are very attractive as they present an opportunity to grab hold of

the interior of the fluid and to manipulate the flow. These manipulations of fluid

turbulence are predominantly manifested in two different ways. One one hand,

the Joule dissipation associated with the Lorentz force, proportional to B0
2, alters

the flow dynamics by acting on all the scales of motion. This is quite unlike the

action of viscosity which is only dominant at small scales of motion. On the other

hand, the magnetic field damps the fluid turbulence and this action of the field

on the fluid flow is preferential (see, e.g.. Davidson [1995, 1997]). In other words,

it induces strong anisotropy of the turbulent fluid flow by elongating the vortices

in the direction of the field. However, this elongation only occurs when the inter-

action parameter is greater than 1 as the vortices need to overcome the viscous

dissipation caused by their own stretching. In fact when the imposed magnetic

field is strong enough then the suppression of initially three-dimensional turbu-

lence can lead to a quasi-two-dimensional state (see, e.g., Alemany et al. [1979];

Buehler [1996]; Moffatt [1967]; Sommeria and Moreau [1982]).

Numerical Investigations

The numerical analysis of MHD flows can be broadly divided in four cate-

gories, namely, Direct Numerical Simulations (DNS), Reynolds-Averaged Navier

Stokes (RANS) simulations, Large Eddy Simulations (LES) and approximate

methods. Although not up-to-date, a very nice overview of results from the first

three numerical methodologies can be found in the review paper by Knaepen and

Moreau [2008]. An overview of the use of approximate methods for MHD flows

can be found in the article by Buehler [2007].

DNS studies resolve all scales of motion and therefore are used to investigate

the flow to a very high degree of accuracy that is comparable, if not better, to

the experiments. Therefore, over the years, DNS have been used to understand

the fundamental nature of MHD phenomenon such as freely decaying MHD tur-

bulence Schumann [1976], and forced MHD turbulence in periodic boxes (see,

e.g., Hossain [1991]; Schumann [1976]; Thess et al. [2007]; Vorobev et al. [2005];
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Zikanov and Thess [1998]), channels (see, e.g., Boeck et al. [2007]; Krasnov et al.

[2004, 2008a,b]; Lee and Choi [2001]) and ducts (see, e.g., Krasnov et al. [2011];

Smolentsev and Moreau [2006]; Sterl [1990]). The focus of some these studies was

on understanding the anisotropy and quasi-two-dimensionality of the turbulent

flow due to the action of magnetic field, especially those pertaining to high Hart-

mann numbers – as is the case for nuclear fusion applications. While the other

DNS studies focussed on understanding the transition to turbulence due to the

action of the magnetic field. However, all the DNS studies were limited to low or

medium Reynolds numbers owing to the high resolution needed for the numerical

simulations.

To overcome the huge computing cost of DNS, researchers have dedicated

several works to the development of LES for MHD turbulence. LES basically

involves resolving only the large scales of motion with the smaller scales being

modelled using sub-grid scale models. Therefore, these studies tend to be very

relevant to various industrial applications. However, the LES models for MHD

flows need to account for the action of Joule dissipation into the sub-grid scale

models. Such modifications to the traditional hydrodynamic LES modelling were

proposed in various recent works (see, e.g., Knaepen and Moin [2004]; Shimomura

[1991]; Vire et al. [2011]; Vorobev and Zikanov [2007]; Vorobev et al. [2005];

Yoshizawa [1987]). We will review some these works in the context of this research

in chapter 5.

The other numerical modelling methodology are the RANS simulations that

are far less accurate in terms of resolution compared to DNS and LES. Never-

theless, they provide an opportunity to analyse the complex nature of flows en-

countered in many practical applications, like in most metallurgical applications.

This complexity especially arises due to the fluid interaction with a strongly inho-

mogeneous magnetic field, as considered in this work. However, in spite of their

rather simpler implementation, even RANS models need certain modifications to

account for the action of the magnetic field on fluid flow. The need for such mod-

ification is especially important at higher Ha numbers, as is the case in fusion

applications. These RANS modification initially were incorporated directly into

the governing equations for turbulent kinetic energy and dissipation as additional

damping terms (see, e.g., Ji and Gardner [1997]; Kenjereš and Hanjalić [2000];

Kenjereš et al. [2004]; Smolentsev et al. [2002]). However, as pointed by Knaepen

and Moreau [2008], such modifications suffer from the fact the damping terms

tend to be universal without accounting for the anisotropy of MHD turbulence.

To overcome this disadvantage, Widlund [2000]; Widlund et al. [1998] proposed
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a model that includes an additional transport equation that accounts from the

length scale anisotropy and the tendency towards two-dimensionality. In spite

of all the advantages provided by the modification of RANS models, we still use

only the standard models in our study. This is primarily due to the fact the

magnetic field of a small permanent magnet is highly localised and apart from a

small region, is virtually non-existent in the rest of the fluid. As was observed by

Boeck et al. [2007], MHD effects are negligible in regions where the local interac-

tion parameter is small. This certainly is the case in our study as the magnetic

field is only confined to the region close to wall where the fluid velocity is smaller

than the bulk.

Finally, let us finish the review of numerical methodologies for MHD flows

with a method known as core flow approximation. As the name suggests, it is an

approximate method whose use came about from the need to numerically solve

wall-bounded MHD flows for nuclear fusion applications. MHD flows in such

applications are associated with very high Hartmann and Stuart numbers. The

core flow approximation assumes that the inertial and viscous forces in the bulk

of the flow are negligible and also the viscous Hartmann layers can be excluded.

Using these assumptions, Kulikovskii [1968] proposed a modelling procedure that

involves transforming the original governing equations to a set of linear equations

that can be solved analytically. Numerical implementation of such a procedure

can found in Buehler [1995] and its comparison with the full MHD equations can

be found in McCarthy et al. [1991].
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Chapter 3

Numerical Modelling of Wall

Bounded Liquid Metal MHD

Flow

In this chapter, we present details about the numerical methodology used to

perform the liquid metal MHD simulations. Initially, we verify the numerical

code by performing grid sensitivity studies to quantify the discretisation er-

rors. Finally, we validate the numerical results by comparing them with those

obtained from laboratory experiments. Both the procedures set the confidence

limits in terms of the numerical accuracy of the simulations.

Numerical modelling of liquid metal flow exposed to the strongly inhomoge-

neous magnetic field of a small permanent magnet is performed using general-

purpose numerical codes. In particular, we use ANSYS FLUENT 13.0 and COM-

SOL Multiphysics for the MHD and electrostatic simulations, respectively. In this

chapter, we will endeavour to explain the implementation of numerical models in

both these numerical tools.

To that end, let us consider the example of flow of liquid metal in a duct of

rectangular cross-section with electrically insulating and non-magnetic walls, as

sketched in Fig. 3.1. The duct is characterised by its width B, height 2L and

length L0. We study the interaction of the flow with a cubic permanent magnet

of edge length D with the magnetisation in the z-direction and the mean flow in

the x-direction. The liquid metal considered for the analysis is a eutectic alloy

of GaInSn with material properties consistent with the measurements performed

by [Heinicke, 2013]. It must be emphasised here that although we consider the
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geometry of a rectangular duct, the same numerical methodology can be applied

to ducts of different cross-sections (see chapter 4).

B=108mm

x

y

L =10000 mm

H
D

U

(a)

(b)

Figure 3.1: Schematic of (a) top and (b) side views of the rectangular duct through which the
liquid metal flows. The figure also illustrates the position and dimensions of the permanent

magnet that is exposed to the fluid flow.

3.1 Numerical Modelling in FLUENT

In this section, we will present the details of the numerical method and the

computational mesh used for the MHD simulations in FLUENT. FLUENT is a

finite volume method based commercial software package that employs a multi-

grid based iterative solver to obtain the numerical solution for the liquid metal

flow. The turbulent fluid flow simulations in FLUENT can be performed using a

wide variety of turbulent models. In particular, they can be broadly divided into

three major categories, namely: Reynolds Averaged Navier-Stokes Simulations

(RANS), Large Eddy Simulations (LES) and Detached Eddy Simulations (DES).

In this work, we focus only on the first two turbulence modelling approaches.

All these models can be used for both steady and unsteady simulations. How-

ever, in this work, for all the steady state simulations of liquid metal flows we

focus on turbulence modelling using RANS approach. Whereas all the unsteady

simulations, in the final part of the work in chapter 5, are performed using LES.

The RANS equations represent transport equations for only the mean flow

quantities, with all the scales of the turbulent motion being modelled. This
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approach of permitting a solution for the mean flow variables greatly reduces

the computational effort. In spite of the simplified nature of RANS simulations,

they do help in providing information of the scaling behaviour of various MHD

parameters on the Lorentz force acting on a small permanent magnet. The basic

philosophy of RANS simulations can be summarised as follows:

• The three-dimensional instantaneous velocity field (ui(x)) is decomposed

into a time-averaged velocity field (ui(x)) and a fluctuating field (ui
′(x)),

ui(x) = ui(x) + ui
′(x), (3.1)

where the velocities are written in Einstein notation.

• This decomposition reduces the Navier-Stokes equations to a time-averaged

form with the fluctuating components acting on the momentum balance

through the action of the Reynolds stress tensor.

∂

∂xi
(ui) = 0, (3.2)

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = − ∂p

∂xi
+ µ

∂2

∂xj∂xj
(ui)−

∂τ rij
∂xj

, (3.3)

where τ rij is the Reynolds stress tensor given by ρui′uj ′.

• The closure of the averaged Navier-Stokes equation is obtained through the

computation of Reynolds stress tensor using methods such as the turbulent-

viscosity hypothesis (also known as Boussinesq hypothesis1) [Hinze, 1975].

The Boussinesq hypothesis relates the Reynolds stresses to the mean veloc-

ity gradients,

τ rij = µtSij, (3.4)

Here, µt is the turbulent viscosity and Sij is the mean strain rate tensor,

given by,

1In spite of the similarity in the name, this is different compared the Boussinesq approxi-
mation in thermal convection.
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Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

). (3.5)

3.1.1 k−ω Shear Stress Transport (SST) Turbulence Model

There are different Boussinesq hypothesis based RANS models available in

FLUENT. Most of them involve solution to some additional transport equations

for turbulent quantities such as turbulent viscosity (µt), turbulent kinetic energy

(k), turbulence dissipation rate (ϵ), specific dissipation rate (ω). However, in

this present work we use k − ω Shear Stress Transport (SST) turbulence model

[Menter, 1993, 1994] for the simulations. This model works by utilising a blending

function that switches between standard k−ω in the viscous boundary layer and

k − ϵ in the bulk of the flow [Wilcox, 1993].

The governing equations for k and ω in SST model have a similar form to

normal k−ω model except that it accounts for the transport of the principle shear

stress thereby making it appropriate for flows with adverse pressure gradients and

strong body forces. The exact governing equations for k and ω in FLUENT are

represented by,

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj
[(µ+

µt

σk

)
∂k

∂xj
] + µt

∂uj
∂xi

− ρkω, (3.6)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj
[(µ+

µt

σω

)
∂ω

∂xj
] + µt

ω

k

∂uj
∂xi

− ρω2. (3.7)

Here µ is the fluid viscosity, and σk, σω are turbulent Prandtl numbers for k

and ω, respectively. Both the turbulent Prandtl numbers in FLUENT are fixed

to be equal to 1.

Finally, the turbulent viscosity is evaluated by using the turbulent kinetic

energy and specific dissipation rate,

µt = ρ
k

ω
. (3.8)

3.1.2 Numerical Method and Boundary Conditions

The averaged Navier-Stokes equations are discretised in FLUENT using a

collocated scheme, whereby pressure and velocity are both stored at cell centres.

Subsequently, pressure at the cell face is interpolated using a PRESTO (PREs-

sure STaggering Option) scheme. This procedure utilises a discrete continuity

24



3. NUMERICAL MODELLING

balance for a staggered control volume about the cell face to compute the stag-

gered pressure. Then FLUENT employs the SIMPLE (Semi IMPlicit Method for

Pressure Linked Equation) algorithm proposed by [Patankar and Spalding, 1972]

for pressure velocity coupling. This algorithm is based on a predictor-corrector

approach which employs the relationship between velocity and pressure correc-

tions to enforce mass conservation and to obtain the pressure field (see FLUENT

[2011] for details). Subsequently, all the spatial derivatives for the convective

terms are solved using a second order upwind scheme and for the diffusive terms

using a second order central differencing scheme. For the boundary conditions,

we prescribe the flow into the duct using a constant velocity distribution (plug

profile) corresponding to the Reynolds number. The mean shear is set by no-

slip boundary conditions for the duct walls. The duct outlet is represented by a

constant pressure boundary condition corresponding to the atmospheric pressure.

The inlet conditions for k and ω equations are prescribed through a fixed tur-

bulent intensity and hydraulic diameter. In this work, we fix the inlet turbulent

intensity at 15% as the inlet conditions in the experiments are expected to be

highly turbulent.

For the MHD part of the simulations, the Lorentz force is added to the aver-

aged momentum equation as a volume source. This force is computed in FLUENT

by a solution to the electrodynamic equations. These are available in FLUENT

through an add-on module. Here, the solver provides an option to choose either

a Poisson equation for electrical potential or the full magnetic field induction

equation. However, as mentioned in section 2.1, we focus our attention only on

the electrical potential equation (Equation 2.19). The Poisson equation for elec-

trical potential is solved using a second order central differencing scheme1 with

electrical insulation boundary condition for all the duct walls. The flux of the

electric potential across both the inlet and outlet boundaries is fixed at zero.

Moreover, to solve the electric potential equation, FLUENT requires the val-

ues for all the three components of the primary magnetic field. This is supplied to

FLUENT from COMSOL (see section 3.2) on a uniform structured grid through a

one-way coupling mechanism (Figure 3.2). Fluent then invokes built-in functions

to linearly interpolate the magnetic field vector from the uniform grid onto the

non-uniform computational grid.

1Readers recreating these simulations must bear in mind that, although FLUENT uses
CDS similar to how it treats the diffusion terms in any generic convection-diffusion equation,
the discretisation options for the convective terms are not disabled in the drop-down menu in
the solver setting for this special case of a Poisson equation. Therefore it does not matter what
spatial discretisation option one chooses from the FLUENTs drop-down menu
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COMSOL Multiphysics

Magnetostatic
simulations:
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ANSYS FLUENT

Turbulent MHD
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Figure 3.2: Schematic illustrating the one-way coupling between COMSOL and FLUENT.
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End

Grid Point Location

l /l =i+1 i α (Stretching factor)

Figure 3.3: Schematic illustrating the phenomenology of grid stretching employed by
GAMBIT.

3.1.3 Mesh: Fluid Dynamics

One of the most important considerations for the numerical simulations is the

mesh resolution employed to discretise the computational domain. In this work,

we use GAMBIT 4.0 for the generation of the volume mesh required for the CFD

simulations in FLUENT. In GAMBIT, this volume mesh for the rectangular duct

is generated by using a bottom up approach starting with edge meshing. In other

words, all the edges of the duct are provided with a specified number of mesh

points with a pre-defined distribution. This distribution is controlled through

the specification of the ratio of the length of any two successive edge divisions

(Figure 3.3), also known as the grid stretching factor (α). GAMBIT then joins

these meshed edges to generate a three-dimensional volume mesh.

It is well known that turbulent flows are significantly affected by the presence

of strong velocity gradients near the walls due to the viscous boundary layers.

In these boundary layers, viscous stresses dominate over the Reynolds stresses,

and viscosity (ν) and wall shear stress (τw) are the only relevant parameters.

Therefore, all flow quantities are generally represented in terms of viscous units

(see e.g., Pope [2000]). These are friction velocity,

uτ =

√
τw
ρ
, (3.9)
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Figure 3.4: Schematic of the structure of the turbulent boundary layer expressed in viscous
units.

and viscous length scale,

δν =
ν

uτ
, (3.10)

Using these relations, the fluid velocity (u) and wall normal distance (y) are

non-dimensionalised as,

u+ =
u

uτ
, (3.11)

y+ =
y

δν
, (3.12)

For fully developed turbulent wall-bounded flows, the structure of the bound-

ary can be represented in terms of y+ as shown in figure 3.4. The boundary layer

is broadly divided into two parts, inner and the outer layer. The inner layer is

further divided into three parts, namely (i) laminar sub-layer (y+ < 5) – where

the u+ ∼ y+, buffer layer (5 < y+ < 30), logarithmic layer (y+ > 30) – where

u+ ∼ ln(y+). Furthermore, it is well known from the seminal works of Julius

Hartmann in 1937 [Hartmann, 1937; Hartmann and Lazarus, 1937] that the ac-

tion of magnetic field on a viscous incompressible flow bounded by two flat plates

gives rise to another type boundary layer which is referred to as the Hartmann

layer. They are generally found at walls where the magnetic field has a non-zero

component perpendicular to the wall. The theoretical thickness of this thin layer

scales as ∼ Ha−1 (see e.g., Müller and Bühler [2001]). Along the same lines, in

spite of the strongly decaying magnetic field considered in this work, we can still
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Z

Y

Figure 3.5: Computational mesh in the streamwise cross section of the rectangular duct. The
grid points have strongly clustered near the walls (y+ ∼ 1) to resolve both viscous and

Hartmann boundary layer.

expect a tendency towards development of a Hartmann layer close to the top wall

of the duct.

Therefore, for accurate simulation of such flows, near wall grid resolution plays

a very important role. Normally, most RANS turbulence models employ wall

functions to avoid very fine grid resolution required to resolve all the velocity

gradients in the boundary layer. However, to make an accurate prediction of

the flow, it is most desirable to have a mesh that is fine enough to resolve all

the sub-layers within the boundary layer. Therefore, for the present study, we

employ non-uniform clustering of grid points along y and z directions (Ny and

Nz, respectively) such that the mesh distribution close to the duct walls is fine

enough (y+ ∼ 1) to resolve the laminar sub-layer (Figure 3.5). This meshing

approach ensures that the k − ω SST turbulence model in FLUENT does not

employ wall functions for the velocity behaviour in the boundary layer.

Apart of the boundary layer resolution, it is also important to resolve the

strong magnetic field gradients in the region under the magnet. Therefore, we also

employ grid stretching in the streamwise direction (x- direction) with a specified

grid distribution (Nz). This strategy finally generates a structured volume mesh

with total number of grid points (N), given by Nx × Ny × Nz. The exact mesh

details are provided in the subsequent sections.

3.2 Numerical Modelling in COMSOL

The general purpose finite element based software package Comsol Multi-

physics is used to calculate the magnetic field of the cubic permanent magnet

required for the MHD simulations in FLUENT.

In COMSOL, the permanent magnet is characterised by a specified constant

remanence Br. For most part of the work, we employ a remanence corresponding

with the NdFeB permanent magnet employed in the experiments [Heinicke, 2013].

The difference in the COMSOL simulations compared to those in FLUENT lies
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Figure 3.6: Schematic illustrating the sub-domains used in COMSOL; namely, outer air
region, duct and the permanent magnet.

in the fact that the magnetic field is continuous across the duct boundaries.

Therefore the computational domain for the simulations should include the outer

air region (Figure 3.6). The size of this outer domain, in general, is dictated

by the decay rate of the magnetic field. Since, it is very important to have the

right domain configuration to avoid any unnecessary computational effort due to

a larger domain, we investigated a wide range of spherical domain configurations

and finally chose the appropriate domain size with a diameter which is 3 times

the length L0 of the duct.

The mesh required for the simulations is generated in such a way that the

duct region is resolved using a fine structured mesh with extra refinement near

the region of strong magnetic field. The outer air domain, however is resolved

using a course unstructured mesh to reduce the computational time (Figure 3.7).

The simulations are then performed by treating the duct as a solid stationary

body without any liquid metal flow. This helps to simplify the problem by not

having to solve for the induced eddy currents in the duct. For this so-called

magnetostatic problem, it is possible to represent magnetic field using a magnetic

scalar potential, ψ (Equation 3.13), as the field is irrotational. This idea is

analogous to the definition of electric potential presented in equation 2.14.

B = −µ0∇ψ. (3.13)

By combining the above relation and the law of conservation of magnetic field
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Figure 3.7: Mesh used for the magnetostatic simulations in COMSOL for the calculation of
the magnetic field of the small permanent magnet

∇ · B⃗ = 0, we get

−∇ · (µ0∇ψ −Br) = 0. (3.14)

Br is zero in all regions of the computational domain except in the region of

the magnet–where it is kept constant. Equation 3.14 is then solved using the

magnetic field continuity for all the boundaries of the duct and the magnet. On

the boundary of the air region is treated using a magnetic insulation boundary

condition (B⃗ · n⃗ = 0).

3.3 Verification of the Numerical Code

Verification and validation are an integral part of any numerical simulations

as they help in understanding the accuracy and reliability of the computational

results [Oberkampf and Roy, 2010]. Therefore, in the next two sections, we will

endeavour to perform these procedures to quantify the numerical uncertainties

within the framework of our numerical models presented in the previous section.

Society for computer simulation defines verification as substantiation that

a computerised model represents a conceptual model within specified limits of
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Parameters Grid 1 Grid 2 Grid 3 (Finer magnetic field grid)
Nx 217 217 217
α(+x) 1 1.2 1.2
α(−x) 1 1.2 1.2
Ny 73 73 73
α(+y) 1.1 1.1 1.1
α(−y) 1.1 1.1 1.1
Nz 31 31 31
α(+z) 1.2 1.2 1.2
α(−z) 1.1 1.1 1.1
CD 3.84× 10−3 4.16× 10−3 4.36× 10−3

Table 3.1: Table of dimensionless Lorentz force from the mesh resolution studies performed on
three different mesh types. The number of mesh points in each Cartesian direction are also

indicated.

accuracy. Generally, such a procedure is a two-fold process. Firstly, the numerical

code is be verified such that it produces no programming errors. Secondly, it

must be ensured that the code solves all the governing equations correctly i.e.

the solution should approach the continuum solution of PDEs as the grid size

tends to zero. Given the fact that we use general-purpose commercial codes, we

only focus on the latter aspect of code verification.

To that end, we perform two sets of grid sensitivity studies to quantify the

discretisation errors due to the preferred grid resolution in both FLUENT and

COMSOL. All these simulations are performed at Reynolds number ∼ 3529 with

the magnetic located at a distance, h = 1.3. We use the dimensionless Lorentz

force as the comparison metric (f) for the mesh study. The obtained results are

intended to answer the following questions,

• what is the effect of streamwise grid clustering in the region under the

magnetic field?

• what is the effect of the total grid size?

To answer the first question, we perform simulations on two different grids.

Both grids have identical total numbers of grid points. However, for the first grid

we maintain a uniform grid distribution in the streamwise direction (Grid 1) but

for the second grid, we cluster the streamwise grid points near the center of duct

so that the region under the magnet is finely resolved (Grid 2). The details of

stretching factors and grid points are summarised in table 3.1. For both grids 1

and 2, we use a uniform grid of 3 million points to supply the magnetic field from

COMSOL to the non-uniform computational grid of FLUENT.
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From the results it can be observed that error in CD between the two grids

is 7.7%. A major source of this error is the linear interpolation employed by

FLUENT to convert the magnet field from COMSOL. Therefore, we increase the

number of grid points used in COMSOL’s uniform grid for the supply of magnetic

field to 5 million (Grid 3). With this increase, the error in CD is reduced to 4.5%.

The results for all the three different types of grids are presented in table (3.1).

To answer the second question, we perform grid sensitivity studies on two

different grid resolutions. For both these grids, we employ a stretching factor in

all the three Cartesian directions consistent with the previous study. For the error

evaluation, we use Richardson’s extrapolation – which links the exact solution of

the governing equations to the solution due to the presence of a grid using Taylor

series expansion [Roache, 1997]. This is accomplished by first computing the

results on the preferred computational grid and then on a finer grid. The finer

grid solution is then used to quantify the uncertainty in the actual preferred

computational grid (Equation 3.15).

Ecourse =
rp(ffine − fcourse)

1− rp
, (3.15)

where ffine, fcourse are the fine mesh and course mesh solutions of CD, respec-

tively. r is the refinement ratio between the fine and course grids and p is the

order of the accuracy of the numerical algorithm – which is second-order in our

simulations. Ecourse is the uncertainty in the numerical results obtained on the

courser of the two computational meshes. This courser mesh resolution is then

used for experimental validation through parametric studies, as shown in section

3.4.

Grid Nx Ny Nz CD

Course Mesh 217 73 31 4.36× 10−3

Fine Mesh 261 89 37 4.38× 10−3

Table 3.2: Table of dimensionless Lorentz force from the mesh resolution studies performed on
two different mesh sizes. The number of mesh points in each Cartesian direction is also

indicated.

For the error evaluation, we use a refinement ratio, r ∼ 1.2 for the number

of mesh points in each Cartesian direction. As shown in table 3.2, the observed

error in the course mesh solution is 1.25%.
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3.4 Validation of the Numerical Code

The verification of the numerical codes presented in the previous section only

deals with the solution accuracy of the governing equations but does not provide

any information about the accuracy of the simulations in relation to the physical

problem. Therefore, in this section we endeavour to address that issue.

Validation is the process of determining the degree to which a numerical model

accurately represents the physical world [Roache, 1998]. It is widely understood

that physical world refers to the real world data obtained through experiments.

For the validation, we experimentally and numerically compare the dimensionless

Lorentz force acting on a permanent magnet when exposed to a liquid metal flow

in the benchmark geometry of the rectangular duct. The experimental results

[Heinicke, 2013] are obtained using a high resolution force measurements when

flow in a liquid metal channel filled with eutectic alloy GaInSn is exposed to the

magnetic field of a 1 cm3 NdFeB permanent magnet1. Furthermore, these results

not only help in validation but also provide first reference data about the effect

of different magnetohydrodynamic parameters on the Lorentz force acting on a

permanent magnet exposed to a liquid metal flow.

To this end, we perform two sets of simulations, namely, kinematic and dy-

namic simulations. For the kinematic simulations, we solve the Navier-Stokes

equations without the Lorentz force source term in which case the computation

becomes a purely hydrodynamic problem. In other words, the Lorentz force is

numerically calculated but does not act on the fluid flow. In spite this rather

non-physical assumption, this case is of considerable practical importance since

in most metallurgical applications the influence of the Lorentz forces exemplified

by the electromagnetic interaction parameter N = Ha2/Re is indeed weak. More

specifically, with Reynolds numbers of the order 105 and Hartmann numbers of

the order 102 we have N ≈ 0.1 which demonstrates that the inertial forces domi-

nate over the Lorentz forces in metallurgical flows. Dynamic simulations, on the

other hand, solve the full Navier-Stokes equations along with the Lorentz force

term. For both approaches, kinematic and dynamic, we perform steady state

calculations of the turbulent liquid metal flow using k-ω SST Menter [1993] tur-

bulence model on the course grid with streamwise grid stretching, as presented

in the previous section.

Figure 3.8 summarises the main result of the present work. It shows the vari-

ation of the dimensionless Lorentz force (expressed by the electromagnetic drag

1Due to the complex nature of the magnetic field, direct comparison of these results with
direct numerical simulations was not performed in this work
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Figure 3.8: Variation of electromagnetic drag coefficient, CD, with non-dimensional magnet
distance h as obtained from experiments (CD = 0.015 ∗ h−3.6), kinematic numerical

simulations (CD = 0.01 ∗ h−3.15) and dynamic numerical simulations (CD = 0.006 ∗ h−3.1) at
Re = 3529 in comparison with the results from Kirpo et al. [2011]. Inset illustrates the plot of

CD × h3 against h.

coefficient) with distance of the magnet from the duct for a given velocity. Figure

3.8 is the first experimental demonstration of the feasibility of performing LFV

measurements with a small static permanent magnet. Both the experimental and

numerical curves in figure 3.8 demonstrate that the Lorentz force is a monotoni-

cally decreasing function of the distance between the magnet and the wall of the

duct. Observe that the Lorentz force for the largest distance h is in the range

of several micro-newtons and would have been impossible to measure using com-

mercial force-measurement equipment. In particular, these results demonstrate

the following features: (i) the experiments show an effective power-law exponent

of decay of roughly h−3.6, and (ii) our kinematic simulations are closer to the

experiments than the dynamics simulations. Regarding the latter feature of the
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results, as the kinematic simulations do not consider the effect of Lorentz forces

on the flow dynamics, the velocities are higher in the region of the magnetic field

(see Fig. 3.10) as compared to the dynamic simulations. This leads to higher

forces on the magnet from the kinematic simulations. Furthermore, the high

uncertainty in the experiments precludes any precise quantitative comparison of

the experiments with the simulations. Therefore, it is not possible to interpret

the reason for the discrepancy between dynamic simulations and experiments.

However, a proper comparison of dynamics and kinematic simulations with high

resolution experiments is presented in the next chapter.

The exponent of −3.6 is close to the results obtained by [Kirpo et al., 2011],

as can be seen in the plot of CD × h3 against h in the inset of figure 3.8. They

analysed the scaling behaviour of the Lorentz force due to the interaction of a

solid translating bar of square cross-section with a magnetic point dipole and

observed that the force decays as h−3 and h−7 for h < 1 and h > 2, respectively.

For a turbulent flow, one would expect the Lorentz force to be lower than that of

a solid bar at close magnet distances due to the presence of a viscous boundary

layer and then to reach the same value as a solid bar for far away distances.

Nevertheless, the exact scaling behaviour of the force with distance is not yet

known for a turbulent flow at such close distances. Furthermore, it is also not

possible to determine this scaling behaviour in the present work due to the finite

size of the permanent magnet and the presence of the duct walls which prevent

the magnet from being placed very close to the flow. We can therefore conclude

that the obtained scaling behaviour of h−3.6 depicts an effective exponent which

lies in the cross-over region between the regimes of low and high h as seen by the

deviation from the h−3 line in Fig. 3.8.

In addition to the results shown in figure 3.8 we have verified that the Lorentz

force is proportional to the velocity of the liquid metal (Figure 3.9). This implies

that the electromagnetic drag coefficient depends on the mean velocity Ū and

on the distance h between the liquid and the magnet as cD ∼ v/h3.6. Taking

into account the localised nature of the force, as shown in figure 3.10, our results

demonstrate that the small permanent magnet could act as a combined velocity-

and-wall-thickness sensor.

It has been observed for LFV with large permanent magnet systems and mag-

netic fields which are nearly homogeneous in the cross-section that the measured

Lorentz force is only weakly affected by the shape of the velocity profile [Thess

et al., 2007]. In contrast, for a small permanent magnet the shape of the velocity

profile plays a significant role in the measured force. This is because the volume of
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Figure 3.9: Variation of electromagnetic drag coefficient, CD, with Reynolds number Re as
obtained from experiments (CD = 12.3 ∗Re−0.99), kinematic numerical simulations

(CD = 10 ∗Re−0.95) and dynamic numerical simulations (CD = 6.6 ∗Re−0.95) at h = 1.3.
Inset illustrates a plot of CD ×Re against Re, which demonstrates the increase in force due to

transition of the flow from laminar to turbulent at Re = 2000

fluid contributing to the Lorentz force is limited to a small percentage of the total

flow volume, namely, the region close to the magnet (see figure 3.10). This leads

to a slight deviation from the predicted linearity (corresponds to CD ∼ Re−1) in

the variation of force with flow Reynolds number (Figure 3.9). This deviation is

attributed to the effect of the change of flow profile from laminar to turbulent

mean profile (Figure 3.9).

We will conclude this section with an analogy to aerodynamics. The drag

coefficient on a sphere and cylinder exposed to a free stream flow changes from

0.4 to 0.1 and 1 to 0.3, respectively, due to transition from a laminar to turbulent

flow regime [Anderson, 2005]. In contrast, for a small permanent magnet the

electromagnetic drag coefficient slightly increases due to transition to turbulence

at Re = 2000, as can be observed in the inset in figure 3.9. This is due to the fact

that turbulent mean flow has higher velocities near the top wall of the duct than
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Figure 3.10: Localised nature of the Lorentz force produced by a single small permanent
magnet: numerically computed magnetic field (a) and Lorentz force (b) in a cross-sectional

slice at a streamwise position under the magnet and inside the rectangular duct with
electrically insulating walls. The figure illustrates (a) the distribution of magnitude of the
magnetic field of the small permanent magnet, and (b) the highly localised distribution of
Lorentz force density produced by virtue of the induced eddy currents in the liquid metal

flow. The centre of the magnet is at a distance of 13mm from the top wall of the duct and the
fluid flow is into the paper.

a laminar velocity profile and thereby leading to a higher force on the magnet.

Quantifying this increase would require simulations to be performed for a fixed

flow rate but with different mean velocity profiles.

Summary

In this chapter, the numerical modelling methodology in FLUENT and COM-

SOL was explained in detail by considering the fundamental problem of a liquid

metal flow in a rectangular duct exposed to a 10mm edge length permanent

magnet. The numerical results from FLUENT were both verified and validated

using the experimental results. Furthermore, we performed parametric analyses

to provide reference results for the scaling behaviour of Lorentz force to magnet

position and flow velocities.

In the next chapter we will present results for flow in a duct of square cross-

section to provide detailed information on the effect of other flow and magnetic

parameters on the total Lorentz force. These results will also help in explaining
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the discrepancy between the kinematic and dynamics simulations. Finally, the

observed ability of flowmeter to provide force data in spite of the inhomogeneous

magnetic field and the small size of the permanent magnet is a useful result – as

such a magnet has the distinct advantage of getting affected by only parts of fluid

flow thereby paving the way for local flow measurement capabilities of LFV.
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Chapter 4

Results: Reynolds Averaged

Navier-Stokes Simulations1

The focus of this chapter is on quantifying the influence of various geo-

metric and MHD parameters on the Lorentz force acting on the permanent

magnet using Reynolds Averaged Navier Stokes Simulations (RANS).

In this chapter, we utilise the numerical modelling methodology, presented in

chapter 3, to perform RANS simulations in order to provide both qualitative and

quantitative information about the influence of the four control parameters – Re,

Ha, h and d – on the total Lorentz force acting on the permanent magnet.

The scope of such an endeavour can be best demonstrated through aHartmann-

Reynolds (Ha−Re) parameter space. The graph illustrates a wide set of physical

parameters encompassed by different Hartmann and Reynolds numbers that are

typically encountered in various industrial applications of LFV. It should be noted

that the boundaries between the three regimes in figure 4.1 are only qualitative

because their accurate location depends also on the distance between the magnet

and the duct as well as on the size of the magnet.

In particular, we intend to answer the following three questions in this chapter,

each corresponding to each of the three regimes in the Ha−Re space:

• How does the force on the magnet depend on its distance from the duct (h),

on its size (d) and the flow velocity (Re) provided we neglect the influence

of the braking Lorentz forces on the metal flow? Such an analysis is termed

kinematic simulations, as shown in figure 4.1.

1Majority of the work presented in this chapter has been published in [Heinicke et al.] in
which this author is one of the contributors.
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Figure 4.1: Ha−Re parameter space illustrating the MHD flow regimes. The kinematic
regime is valid for very weak magnetic fields where the magnet has no influence on the fluid
flow. The low Reynolds number dynamic regime is valid when fluid inertia is negligible. The
high Reynolds dynamic regime is a more ”realistic regime” that occurs in most industrial

flows. The kinematic and the high Re regimes are separated from each other by the condition
Ha ∼ Re1/2 which corresponds to the condition that the interaction parameter N ∼ 1.

• How does the force on the magnet depend on its distance from the duct (h),

on its size (d) and strength (Ha) when the liquid metal flow velocity is very

small (Re). Such an analysis is termed as low Reynolds number dynamic

simulations as shown in figure 4.1.

• How does the force on the magnet depend on the distance from the duct

(h), on its size (d) and on its strength (Ha), and the flow velocity (Re)

when the flow inertia can no longer be neglected? This question pertains to

the area in figure 4.1 marked high Reynolds number dynamic simulations.

4.1 Computational Domain

To answer the above questions, let us consider the fundamental problem of

flow of liquid metal in a square duct exposed to the inhomogeneous magnetic

field of a small permanent magnet of edge length d positioned at a distance h.

The fluid is characterised by its usual materials properties (see chapter 3). We

mesh this computational domain by adopting a similar methodology to the one

explained in the previous chapter. In particular, we employ grid stretching in all

the three Cartesian directions to resolve both the boundary layers and to cluster

additional grid points in the region under the magnet. However, the parametric

studies involving variation of Hartmann number require different grid resolutions
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(a)

(b)

Figure 4.2: Schematic of (a) top and (b) side views of the square duct through which the
liquid metal flows. The figure also illustrates the position and dimensions of the permanent

magnet that is exposed to the fluid flow.

in order to resolve the Hartmann layers in all the cases.

To that end, we firstly generate a reference grid for Re = 10000 andHa = 146.

This resolution is later increased for higher Hartmann numbers i.e., Ha > 146.

However, for the cases with low Reynolds and Hartmann numbers, the reference is

maintained the same for the ease of parametrisation. Ideally at higher Hartmann

numbers, the number of grid points under the magnet need to be increased by a

factor corresponding to the scaling of the Hartmann layer thickness. However, in

this study, we only improve the resolution by increasing the stretching factor near

the magnet towards the top wall of the duct (+z) and total number of grid points

in y and z directions by a factor of 1.2 for each step-wise increase of Hartmann

number by a factor of 1.5. This approach is employed to avoid any dramatic

increase in the computational cost at high Hartmann numbers. The exact grid

point distributions for the meshes employed for the computational domain are

summarised in table 4.1.

The main object of the analyses is the computation of the function CD(Re,Ha, h, d)

using a symbiotic combination of experiments, direct numerical simulations (DNS)

and Reynolds Averaged Navier Stokes (RANS) simulations 1. The direct numer-

ical simulations are performed by [Tympel, 2013] on a in-house finite difference

code. For the DNS studies in the kinematic regime, a variety of grid resolutions

are employed. In particular, for large magnet dipole distances with h between 50

1Only the RANS simulations have been performed by this author. On the other hand, all
experiments and DNS have been performed by [Heinicke, 2013] and [Tympel, 2013] as part of
their respective doctoral researches
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Parameters Ha = 146 Ha = 225 Ha = 340 Ha = 450
Nx 210 210 210 210
α(+x) 1.2 1.2 1.2 1.2
α(−x) 1.2 1.2 1.2 1.2
Ny 50 60 72 100
α(+y) 1.15 1.15 1.15 1.15
α(+y) 1.15 1.15 1.15 1.15
Nz 50 60 72 100
α(+z) 1.15 1.2 1.25 1.3
α(−z) 1.15 1.15 1.15 1.15

Table 4.1: Table presenting the grid details employed for computational domain used in
RANS simulations.

and 500, 10240× 2562 grid points are employed in x, y and z directions, respec-

tively. For short distances, on the other hand, 1024× 6402 grid points are used.

All the DNS studies at low Re dynamic regime are performed at 1024× 962 grid

points

4.2 Kinematic Simulations

Let us start the discussion with the kinematic simulations. As explained in the

previous chapter, these simulations pertain to a class of analyses where the action

of Lorentz force on fluid flow is neglected. Therefore, the analyses can treated to

be purely hydrodynamic and the force function becomes CD(Re, 0, h, d).

Furthermore, within the framework of the kinematic approximation several

properties of CD(Re, 0, h, d) can be derived without any numerical computation.

Since the flow is unaffected by the magnetic field, the integral in equation 2.30

depends only on the Reynolds number and on the geometry of the magnetic field

which is in turn determined by the distance parameter. Hence, CD is a product

of a pre-factor Ha2/Re and a function that depends only on Re and h. This

shows that the magnitude of the electromagnetic drag is primarily controlled by

the electromagnetic interaction parameter N = Ha2/Re.

This property of CD combined with the fact that N is independent of fluid

viscosity leads to a rather interesting and useful conclusion that CD of the fluid

flow can be directly compared to that of a solid electrically conducting bar, as

studied by [Kirpo et al., 2011]. This idea has been extended by Tympel [2013]

by considering a point magnetic dipole and expressed as dimensionless Lorentz

force through a so-called intrinsic Hartmann number (M) that is independent of
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its distance, h, from the fluid.

M =
µ0m

L2

√
σ

ρν
, (4.1)

CD =
M2

Re
cRe(h). (4.2)

Here m is magnetic moment of the magnetic point dipole. The parameter M

is related to the Hartmann number though,

Ha =
M

2πh3
, (4.3)

The function cRe(h) depends only on Reynolds number (through the shape of

the mean velocity profile) and on the distance parameter (through the shape of

the magnetic field).

Therefore, this function can be divided into three regimes based on the Reynolds

number. For example for the laminar flow cRe(h) is independent of Reynolds num-

ber due to the fact that the shape of velocity profile for a laminar flow linearly

stable for all values of Re. By contrast, if the flow is turbulent, its mean velocity

profile depends on Re and CD is governed by the dependence of cRe on Re. The

case of a translating solid body [Kirpo et al., 2011] can be formally considered

as a flow with Re −→ ∞ and is denoted by c∞. Therefore, the scaling of the

electromagnetic drag coefficient in the kinematic case is as follows:

CD =
M2

Re
c0(h) for laminar flow (4.4)

CD =
M2

Re
cRe(h) for turbulent flow (4.5)

CD =
M2

Re
c∞(h) for solid body translation (4.6)

4.2.1 Influence of Magnet Distance and Reynolds number

Laminar flow analysis performed by Tympel [2013] at Re = 2000 for M =

461.052 for a point magnetic dipole demonstrates, as one would intuitively ex-

pect, that the electromagnetic drag is a monotonically decreasing function of the

distance between the liquid metal and the magnetic dipole. Furthermore, a clear

trend was observed by Tympel [2013] in the variation of CD with h. In particular,

the decay composed of three distinct regions, namely the short-distance region
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Figure 4.3: Scaling of the electromagnetic drag coefficient in the kinematic regime: (a) CD as
a function of h for an arbitrarily chosen Re=2000 and M = 461.052 as obtained from DNS
simulations [Tympel, 2013]. For h ≪ 1 a powerlaw of the form c0(h) ∼ h−2 has been found.

The scaling for large distances (h ≫ 1) can best be estimated by a CD ∼ h−7 dependence. For
distances roughly equal to the characteristic length scale – the regime covered by experiments

– the scaling can be described by a Batchelor fit as discussed in the text.

h ≪ 1, the long-distance region h ≫ 1 and the transition region h ∼ 1 (Figure

4.3).

In the short distance region they found a scaling according to CD ∼ h−2

whereas the long distance region was characterised by CD ∼ h−7. This scaling

in the long-distance range is the same as the scaling in the case of the solid bar

observed by [Kirpo et al., 2011]. A thorough derivation of the (−2)-powerlaw

can be found in [Tympel, 2013]. The scaling in the transition region h ∼ 1 is

described by a Batchelor interpolation formula [Batchelor, 1951]of the form:

c0(h) ≈
0.0084 · h−2(

1 +
(

h
1.63

)1.2)5/1.2
. (4.7)

This short distance scaling behaviour of −2 is in contrast to the scaling −3

for the solid bar and for a moving unbounded electrically conducting plate [Thess

et al., 2007; Votyakov and Thess, 2012]. From this it can be concluded that a

dipole interacts stronger with a solid body than with a flow. This is because the

magnet is influenced by the metal flow on the magnet side of the duct significantly

stronger than by metal on the opposite site. Immediately adjacent to the wall,

the velocity is zero and increases approximately linearly in the vicinity of the wall

in contrast to the moving bar where the velocity is non-zero at the boundary.

Although the laminar velocity profile in a square duct is linearly stable for all
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Reynolds numbers [Tatsumi and Yoshimura, 1990], finite-amplitude perturbations

render the flow turbulent for Reynolds numbers exceeding values of the order of

2000. In the turbulent regime the Lorentz force acting upon the magnetic dipole

is time-dependent. However, due to the linearity of the dependence of CD on the

velocity distribution apparent from equation (2.30) the mean Lorentz force and

thereby cRe(h) is determined by the profile of the mean longitudinal velocity.

The analytic formula derived by [Tympel, 2013] shows a linear dependence

of the Lorentz force on the slope of the velocity profile for small distances. One

consequence is that the force on the magnet is higher for turbulent than for

laminar flow. This is also true for intermediate distances, i.e. h ∼ 1.

The small permanent magnet, as considered in this work (d = 0.4), has a

very localised, strongly decaying magnetic field. These magnets are thus mostly

influenced by fluid motion close to them. When a flow becomes turbulent, while

the mean velocity and therefore the Reynolds number are kept constant, the

velocities in the vicinity of the wall become higher at the expense of the maximum

velocity. Higher velocities in the area of strong magnetic field lead to an increase

in the Lorentz force on the magnet, the decrease in force contribution due to a

reduced velocity further away from the magnet being negligible. The increase in

force solely due to the change in flow behaviour was determined by DNS to be

between 30% and 60% depending on the Reynolds number.

Figure 4.4a shows the dependence of CD on the distance parameter h for

different Reynolds numbers for the small permanent magnet. As expected, the

drag coefficient for the turbulent flow is higher than for the laminar flow. However,

it obeys the same scaling laws for the limiting cases h≪ 1 and h≫ 1. It is also

seen that the drag for the turbulent flows is always smaller than the drag for the

solid body translation. Notice that we do not attempt to investigate the question

as to when the flow actually becomes turbulent. Although a duct flow hardly

is turbulent for Re < 2000, we extend the flow regime past its boundaries in

figure 4.4b. This not only avoids prescribing an unnatural sharp shift from the

laminar regime to turbulence, but also allows to see the change in Lorentz force

purely due to the flow regime.

In figures 4.4b and 4.4c we show the drag for a finite-size magnet with cube

magnet with d = 0.4. The forces for turbulent flow are higher than for laminar

flow (see figure 4.4b) as could already be seen in figure 4.4a. The obtained

factor between the Lorentz forces of laminar and turbulent flows is changing

depending on Reynolds number (figure 4.4c). This change may explained partly

by the differences in the mean velocity profile for turbulent flow. The higher the
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(a)

(b) (c)

Figure 4.4: Dimensionless force for turbulent flow; (a) CD as obtained from RANS simulations
for turbulent flow in the presence of a permanent magnet with d = 0.4 at Re = 9279. This
compared with DNS for a point dipole for laminar flow [Tympel, 2013] and with the solid
body motion [Kirpo et al., 2011] for a point dipole. The DNS and solid body results are

re-scaled using 4.4 and 4.6 to match the turbulent Reynolds number for a permanent magnet.
Inset shows same curve magnified at small distances. (b) CD for Ha = 147 as a function of the
Reynolds number as obtained from RANS simulations in kinematic regime with a permanent
magnet of finite size d = 0.4, (c) ratio of CD with turbulent and laminar profile, same data as

in 4.4b, values for Re = 2000 and higher are based on the theoretical 1/Re-scaling.
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Reynolds number, the steeper the velocity gradient at the wall becomes. This

gradient Ω is a linear factor to the Lorentz force in case of small distances. In the

presented data in figure 4.4, the distance of the cube magnet was chosen in the

intermediate regime, with h = 0.4. Thus the factor does not undergo the same

strong rise as the velocity gradients, but is also influenced by the bulk region

of the flow profile. These dependencies of the Lorentz force on the flow profile

and thus, on the Reynolds number as well as on the distance, complicates the

estimation of the Lorentz force for h ∼ 1.

4.2.2 Influence of Magnet Size

In addition to the cube magnet, RANS calculations are performed for a mag-

netic dipole. The comparison of the turbulent flows past the dipole and the

permanent magnet of d = h = 0.4 shows how well the magnet cube can be ap-

proximated by a dipole. The Lorentz forces differ by a maximum of 8.7% for low

and 2.5% for high Reynolds number, respectively. A thorough study on the size

of magnet, i. e. on d, is presented for dynamic case in section 4.3 and 4.4.

To summarise, at close distances the Lorentz force on a small magnet that is

placed beside a laminar liquid metal flow will decrease with increasing distance

by CD ∼ h−2. At large distances, this behaviour changes to CD ∼ h−7, with a

transition region around h = 1. Numerical simulations with turbulent flows and

small permanent magnet are in this transition region. The change from laminar

to turbulent flow behaviour increases the drag force on the magnet by a factor

that is strongly dependent on the Reynolds number and the distance h.

4.3 Low Reynolds Number Dynamic Simulations

In the previous section we investigated the behaviour of the Lorentz force in

the kinematic regime when the flow is not altered by the magnetic field. But it is

well known since the pioneering works of Hartmann [Hartmann, 1937; Hartmann

and Lazarus, 1937] that the Lorentz force modifies the flow field of a liquid metal.

This impact of Lorentz force on flow dynamics must be taken into account if

striving for a profound understanding of LFV. Therefore in the following sections,

we will discuss the effect of Lorentz force on the flow dynamics. As a fundamental

case, we start the discussion for flows where fluid inertia is negligible, i.e. at very

low Reynolds numbers.

Here, we restrict ourselves to such values of h and Ha that could in principle

be obtained in experiments, even though the velocities presented here are much
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too small to be amenable to the experiments [Heinicke, 2013]. In what follows

we will present results for the point dipole (d = 0) for Re = 10 and for the cubic

magnet with d = 0.4 for Re = 0.01. The simulations for Re = 10 are performed

by Tympel [2013] using the DNS-code. Since it is inappropriate to denote a

simulation with Re = 10 as a DNS, we shall use the term ”inhouse code” instead.

The simulations for Re = 0.01 are performed using the FLUENT (without any

turbulence models) by this author. For the same reason as with the DNS these

simulations shall be denoted as simulations using the ”commercial code”.

At low Reynolds numbers the velocity distribution in the duct is symmetric

and therefore it is easier to quantify the modification of flow dynamics due to the

action of the non-uniform magnetic field. Furthermore, for such a flow regime

the interaction parameter N = Ha2/Re is high (∼ 104...106) leading to a strong

deformation of the flow field.

Figure 4.5a illustrates this flow transformation at Re = 0.01 due to a small

permanent magnet with d = 0.4 located at h = 0.8. In the region of strong

magnetic field close to the top wall there is a pronounced asymmetry of the

velocity distribution in the z-direction. This asymmetry is characterized by the

suppression of fluid flow near the top corners of the duct and by an acceleration

zone directly near the middle of the top wall. This acceleration region can be

interpreted as a localized Hartmann layer, which appears on account of the eddy

currents generated due to a significant wall-normal magnetic field component (see

Figure 4.5b) . Furthermore, there is a strong acceleration of the bulk flow due to

conservation of mass to compensate for the retarded flow in the corner regions,

and the maximum of the velocity field is shifted away from the dipole. This

asymmetry of the flow field is expected to increase with increase in Hartmann

number. In order to quantify this dependence, we consider the quantity

∆u(x) =

∫
|u− ulam| dA∫
ulam dA

. (4.8)

where u(x, y, z) is the longitudinal component of the computed velocity field,

ulam(y, z) is the laminar profile known from ordinary hydrodynamics [Pozrikidis,

1997] and dA = dydz refers to integration over the cross section of the duct. The

quantity ∆u(x) is a local measure of the deviation of the longitudinal velocity

profile from its unperturbed shape. Integrating this quantity over the length of

the duct according to

⟨∆u⟩ =
∫ outlet

inlet

∆u(x) dx (4.9)
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Flow Direction

(a)

(b)

Figure 4.5: (a) The small permanent magnet as a magnetic obstacle: Contours of streamwise
velocity at various positions along the duct, illustrating the effect of a small permanent

magnet on the flow dynamics at Re = 0.01. The magnified image shows the velocity profile
under the magnet. (b). The direction of eddy currents generated in the duct due to the
inhomogeneous magnetic field of the small magnet. The magnified image shows the eddy

current loops in the plane under the magnet.
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provides a single non-dimensional number which we call the deformation index

and which we will use to characterize the flow.

The variation of the deformation parameter with Hartmann number is shown

in figure 4.6a for the case of point dipole at Re = 10 as obtained from DNS

by Tympel [2013]. For Hartmann numbers up to approximately Ha = 20 the

deformation parameter remains virtually unchanged. For higher Hartmann num-

bers, the flow profile is increasingly modified by the Lorentz force. This is also

seen in the difference between the kinematic and dynamic simulations shown in

figure 4.6b. The figure shows that the drag coefficient for the dynamic case is

higher than for the kinematic. This reflects the fact that in the dynamic case

the magnet acts similar to a magnetic obstacle [Votyakov et al., 2007; Votyakov,

2008] thereby increasing the drag. As explained in the previous section, the drag

coefficient increases like Ha2 in the kinematic case. At first glance it may seem

that the same Ha2-scaling applies to the dynamic case since both curves in figure

4.6b seem to increase as the square of the Hartmann number. A more detailed

inspection of the curves shows that the latter is not true because in the dynamic

case the integral in the definition of CD also depends on the Hartmann number

through the changing velocity profile. It shows that the slope of the curve for the

dynamic case becomes slightly lower than Ha2 for Hartmann numbers exceeding

20. In figure 4.6d we plot the ratio between the kinematic and the dynamic elec-

tromagnetic drag coefficient. In the creeping flow regime the difference between

the two approaches becomes relevant for Hartmann numbers of the order 20. For

high Reynolds numbers the relevant parameter for the transition between the

kinematic and the dynamic regime is the electromagnetic interaction parameter

N = Ha2/Re.

4.3.1 Influence of Magnet Position and Hartmann Num-

ber

In Figure 4.7 we study the dependence of the electromagnetic drag coefficient

on the Hartmann number for a cubic magnet. A cubic magnet demonstrates

a lower scaling exponent. For d = 0.4 located at h = 0.4 it is observed that

CD ∼ Ha1.5. On moving the magnet away from the duct we expect this exponent

to reach a value of 2 consistent with that of a point dipole. This is because of

the fact that at far distances the magnetic field of a cubic magnet resembles that

of the point dipole. This distance dependence on the total Lorentz force is best

characterised from the simulations for a fixed Hartmann number. As already seen

in section 4.2, the Lorentz force decreases with distance of the magnet from the
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(a) (b)

(c) (d)

Figure 4.6: Effect of Ha on the flow dynamics for a point dipole at Re = 10 as obtained from
simulations using the inhouse-code [Tympel, 2013]. (a) Deformation index as defined by eq.

(4.9) as a function of Ha. The deformation is negligible for Ha < 25 and varies approximately
linear with Ha for higher Hartmann numbers. (b) CD versus Ha in a linear-linear

representation for both kinematic and dynamic numerical simulations, (c) same data but in a
double-logarithmic representation, (d) ratio of kinematic drag coefficient to dynamic drag

coefficient versus Hartmann number. At Ha = 20 the ratio becomes less than 0.99.

51



4. RESULTS: RANS

Figure 4.7: Electromagnetic drag for a finite-sized magnet: Dependence of drag coefficient on
the Hartmann number for a cubic permanent magnet with d = 0.4 at Re = 0.01. The

simulations are performed for three different distances of the magnet h = 0.4, h = 0.6 and
h = 0.8. Depending on the distance, different power laws are observed:

CD ∼ Ha1.5,CD ∼ Ha1.6 and CD ∼ Ha1.7, respectively.

duct but with a different exponent (Figure 4.8).

4.3.2 Influence of Magnet Size

The inhomogeneity of the magnetic field plays an important role in any at-

tempts to use LFV for local flow resolution. To understand the effect of magnetic

field distribution on the fluid flow, we evaluate the total Lorentz force as a func-

tion of the magnetic size d. With increasing d, the total Lorentz force decreases

linearly with the magnet volume as shown in Figure 4.9). This is due to the

reduction of the magnetic field strength inside the liquid metal as we reduce

the magnetisation density M in order to keep the magnetic moment m = MD3

constant for a given magnet volume.

4.4 High Reynolds Number Dynamic Simula-

tions

After having elucidated how the electromagnetic drag coefficient of a single

permanent magnet behaves in the kinematic regime and in the low-Reynolds

number dynamic regime, let us now address the general case when the flow is

turbulent and the back-reaction of the Lorentz force on the flow can no longer be
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Figure 4.8: Distance dependence of the drag coefficient for a permanent magnet cube of edge
length d = 0.4. Simulations are performed for a fixed strength of the magnet at Re = 0.01.

The fit is a Batchelor fit as discussed in the previous section in the following form:
CD = 559h1.6/(1 + (h/0.63)9)1/6.

2.4

Figure 4.9: Dependence of Lorentz force on the magnet size for Re = 0.01 and h = 2.4. The
force decreases linearly with increasing volume, CD = −4.4d3 + 137.4. Note: The total
magnetization is kept constant at 1A/m, leading to a decrease in Hartmann number for

increasing magnet sizes
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neglected. The high-Reynolds number regime considered in the present section is

particularly important because the Reynolds number in virtually all metallurgical

applications is beyond 104 [Kolesnikov et al., 2011].

4.4.1 Influence of Reynolds Number

The experimental results for CD(Re) and CD(h) are summarised in figures

4.10 and 4.11, respectively. Figure 4.10a shows the raw data corresponding to a

typical experimental run at constant distance parameter h and variable Reynolds

number Re. As can be clearly seen from figure 4.10a, the mean force increases

with increasing velocity. Readers interested in exact details of the measurement

procedure are advised to read the thesis work of [Heinicke, 2013].

Although the behaviour of the mean force is the main focus of the present

chapter, it is interesting to note that the intensity of the fluctuation of the Lorentz

force with time also increases with increasing Re. It is noteworthy that not

only the absolute magnitude of the fluctuations increases but also its intensity

in relation to the mean force. This feature becomes evident if one compares

the fluctuation amplitude for the lowest (non-zero) and the highest velocity in

figure 4.10a. The force measurement system is mechanically decoupled from the

flow channel so that the increasing amplitude of the fluctuations is indeed due to

the turbulent flow. This result shows that Lorentz force velocimetry is not only

capable of measuring the mean flow of a turbulent liquid metal but can be also

exploited for the investigation of turbulent properties.

Figure 4.10b summarises the time-averaged values of the Lorentz force as

a function of the mean velocity. The experimental data is recorded for both

increasing and decreasing Reynolds numbers. The results show that except for

very low velocities (due to thermal drift causing a deviation in the zero signal)

the Lorentz force is a nearly linearly increasing function of the velocity. The

weak deviations from the linear behaviour are likely due to the Re-dependence of

the slope of the near-wall velocity profile and to the back-reaction of the Lorentz

force on the flow.

In figure 4.10c we plot our RANS results for CD(Re) and compare them with

the results of the experiments with identical parameters. The results show that

experiment and simulation are in agreement. However, the quantitative level of

agreement considerably varies with Re. More precisely, the experimental and nu-

merical values of the electromagnetic drag coefficient differ by 97% at lowest and

by 11.9% at highest Reynolds numbers of 531 and 9795, respectively. Moreover, it

can be observed that the RANS simulation systematically underestimates CD as
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compared to the experimental values. As yet there is no satisfactory explanation

for this observation. On the contrary, we had initially expected that RANS would

overestimate CD. This is because the dynamic RANS simulations are performed

with non-periodic streamwise boundary conditions using a constant velocity in-

let. This leads to an under-developed flow profile in the zone of the magnetic

field causing higher velocities close to the wall of the duct where the magnet is

located. This would have suggested that the measured Lorentz forces should be

lower than the simulated ones. Since there are no experimental results pertaining

to the local velocity profile near the magnet, it is not possible to quantify the

above hypothesis.

A separate comment is in order here regarding the dependence of CD on Re.

For the kinematic case the scaling is close to CD ∼ Re−1 with weak deviations

from the scaling exponent −1 being due to the Re-dependence of the shape of the

velocity profile. The linear fits in the inset in figure 4.10c correspond to scaling

exponents of roughly −0.8 for the experiment and −0.9 for the simulation. The

reason for these deviations could be due to the Re-dependence and also due to

the high level of turbulence at the duct inlet. A deeper understanding of these

differences requires measurements of the local velocity profiles and highlights the

necessity of combining LFV with ultrasonic Doppler velocimetry for any future

experiments.

4.4.2 Influence of Magnet Position

After having presented the dependence of the electromagnetic drag coefficient

on the Reynolds number, we now turn to the second set of experiments where

we investigate the influence of the distance parameter. The distance parameter

h plays an important role in understanding the sensitivity of the flowmeter at

high Reynolds numbers to the position of the magnet. In the experiments the

magnet is gradually moved away from the duct walls at regular intervals. The

experimental data is recorded twice with increasing and decreasing h. Owing to

the finite size of the permanent magnet, the closest distance that could be reached

in our experiment around h = 0.4 (1 cm) whereas the largest distance h = 1

(5 cm) is determined by the smallest force that the force measurement system

can resolve. The results of the measurements are shown in figure 4.11a. Figure

4.11a shows that the force decreases monotonically with increasing distance and

is in agreement with the discussion of the kinematic regime in section 4.2. In

figure 4.11b we plot both the experimental and numerical results in dimensionless

representation as CD(h). The plot shows that the results are in good agreement
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(a) (b)

(c)

Figure 4.10: Comparison of experiment [Heinicke, 2013] and numerical simulation in the
dynamic regime for variable Re: (a) raw data from the experiment showing the Lorentz force
(in mN) as a function of time (in h). During the experiment the velocity is increased stepwise.
(b) Time-averaged Lorentz force as a function of velocity (in cm/s) as obtained by stepwise
averaging the data shown in (a). (c) Comparison of the electromagnetic drag coefficients as
functions of Re between the experiments (diamonds) and the RANS simulations (circles).

Inset shows the same data but in a double-logarithmic representation. The linear fits shown in
the inset correspond to the power laws CD = 15.3Re−0.8 for the simulations and to

CD = 40.1Re−0.9 for the experiments. Parameters are Ha = 146, d = 0.4 and h = 0.4.
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(a) (b)

Figure 4.11: Comparison of experiment [Heinicke, 2013] and numerical simulation in the
dynamic regime for variable h: (a) Variation of the time-averaged Lorentz force (in mN) with
distance of the magnet from the duct (in cm) at constant mean velocity. To each distance in

the plot belong three force measurements that were recorded for both increasing and
decreasing distances to exclude hysteresis effects. The curve is best fitted by fit equation:
CD = 1.65h−3.3. (b) Comparison of the electromagnetic drag coefficients as functions of h
between the experiments (crosses) and the RANS simulations (circles). Both experimental
and numerical data agree well with the fit CD = 5.4× 10−4h−3.3. Parameters are Re = 9279

and d = 0.4.

with both results fitting to a single curve. The electromagnetic drag coefficient

shows a monotonic decrease with h. If we approximate CD(h) with a local power

law of the form CD ∼ h−α as shown in figure 4.11b, we obtain an effective scaling

exponent α = 3.3 which lies in the transition region between α = 2 for h ≪ 1

and α = 7 for h≫ 1 (cf. figure 4.3 in section 4.2).

4.4.3 Influence of Hartmann Number

After having demonstrated that the RANS simulation is in good agreement

with the experiment, we can use our numerical tool to investigate some aspects of

the dynamic regime at high Re that are not amenable to the experiments. Figure

4.12 shows the results of simulations where the Hartmann number is increased

to values that cannot be realised with currently existing rare earth permanent

magnets, let alone with resistive coils. As expected, increasing the magnetic field

strength leads to a stronger force on the magnet, as illustrated in figure 4.12. The

slope of this increase (∼ 1.6) is similar to the creeping flow regime (∼ 1.5) when

the magnet is at h = 0.4. Nevertheless, the absolute value of the coefficient of

Lorentz force is quite low for the creeping flow regime owing to the very low flow

velocities.
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Figure 4.12: Variation of the electromagnetic drag coefficient with Hartmann number: CD(h)
as obtained from RANS simulations with Re = 9279 (squares) and Re = 0.01 (circles) for

h = 0.4 and d = 0.4.

4.4.4 Influence of Magnet Size

Another aspect that can be conveniently investigated using numerical simu-

lation is the influence of the size of the magnet, described by the dimensionless

parameter d. Figure 4.13 shows the result of a series of simulations where d has

been increased while keeping the magnetic moment of the permanent magnet

constant. It must be kept in mind that, in this case the Ha-number reduces with

magnet size. This is because of the fact that bigger magnets have a lower mag-

netisation strength due to the imposed constant magnetic moment. Furthermore,

the magnet size influence on the drag coefficient does not depend on the flow set-

tings, as in the creeping flow case the drag coefficients obtained vary linearly with

the magnet volume, i.e. with the cube of the edge length of the magnet (figure

4.13). This decrease is mainly due to widening of the magnet field distribution

in the fluid.

In conclusion, we found the drag force component of the Lorentz force on a

cubic magnet for realistic flow velocities to be increasing with Ha1.6. At constant

Ha, an increase in flow velocity results in an increase in Lorentz force slightly

less than linear. The distance variation differs significantly from the creeping flow

case, but lies comfortably in the transition zone found in section 4.2. An increase

in magnet volume at constant magnetisation leads to a linear decrease in the drag

coefficient of Lorentz force.
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Figure 4.13: Variation of electromagnetic drag coefficient with magnet size: Compensated plot
of CD ×Re as a function of d as obtained from the RANS simulations with Re = 9279

(squares) and Re = 0.01 (circles) for h = 2.4. Linear fits correspond to
CD = −6.9×10−6d3+2.0×10−4 for high Re and CD = −4.4×10−2d3+1, 4×10−4 for low Re

Summary

At the beginning of the chapter we asked the question of how the Lorentz

force on a permanent magnet located beside a liquid metal flow depends on the

distance between the magnet and the liquid metal, on the size of the magnet, on

the Reynolds number and on the Hartmann number. Although the investigations

covered a broad range of parameters, it must be concluded that there is no single

all embracing expression for the electromagnetic drag coefficient CD(h, d, Re,Ha).

We have rather uncovered several particular scaling relations involving some but

not all of these parameters.

For the kinematic regime (i.e. N = Ha2/Re ≪ 1), where the deformation of

the flow by the Lorentz force is negligible, the electromagnetic drag coefficient

scales as Ha2. This scaling law is universal because the computation of CD for the

kinematic regime is merely a post-processing of the velocity field obtained from

an ordinary hydrodynamic computation. Since applications of Lorentz force ve-

locimetry in metallurgy involving small magnets are characterised by turbulent

flow and N ≪ 1, we may conclude that the simulation of many real-life Lorentz

force flowmeters does not require the simulation of the full equations of mag-

netohydrodynamics unless it is necessary to predict the drag coefficient with
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uncertainties below a few percent. Hence, optimisation procedures for finding

particular shapes of magnet systems can be performed on the basis of velocity

fields obtained from independent CFD-simulations.

The case of low Reynolds numbers has been investigated in the present paper

for two reasons. First, there is a growing interest to extend the applicability of

Lorentz force velocimetry to highly viscous fluids like glass melts [Wegfraß et al.,

2012]. Such flows are characterised by low Reynolds numbers. And second, the

interaction of a dipole with a laminar flow represents a fundamental problem

which is interesting in its own right. For low Reynolds numbers we find that the

electromagnetic drag coefficient becomes very large, even though the Lorentz force

itself is comparatively weak. We find that the flow is suppressed near the magnetic

dipole and in the corners of the duct whereas it is accelerated in the bulk as

compared to the kinematic case. The distance dependence of the electromagnetic

drag coefficient is similar to that in the transition region between small and large

distances of the magnet to the duct for the kinematic case. We also find that

an increase in magnet volume leads to a decrease in the drag coefficient which is

nearly linear if d ≪ 1 and the total magnetisation is kept constant. This stays

true if velocities are increased to realistic values in the dynamic simulations and

experiments.

The main focus of this chapter has been to understand the electromagnetic

drag coefficient in the dynamic case at high Reynolds number as sketched in

figure 4.1. At realistic flow velocities and magnetic fields the electromagnetic drag

coefficient behaves similar to the two explained idealised cases, albeit with some

deviations. An increase in flow velocity leads to a decay of the drag coefficient

slightly less than with the inverse of the Reynolds number as would be expected

from the kinematic case. This is due to the fact that the flow deceleration in the

vicinity of the magnet becomes increasingly pronounced. The influence of the

magnetic flux density is found to be with the square of the Hartmann number,

other than in the very low velocity case. The drag coefficient dependence on the

distance is much stronger than for the creeping flow case. It also corresponds to

the transition region of the different distance regimes. Similar to the kinematic

case, a change in velocity profile from laminar to turbulent results in a significantly

higher drag coefficient.

The strong decay of the Lorentz force with growing distances and the al-

most linear dependence on the flow velocity that we have verified represents the

first demonstration that Lorentz force velocimetry cannot only be used for global

flow measurement but is also suitable to perform measurements of local veloci-
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ties in liquid metals. The potential advantage of Lorentz force velocimetry over

ultrasonic Doppler velocimetry for local velocity measurement in liquid metals

[Andreev et al., 2009; Timmel et al., 2010] is that it can simultaneously pro-

vide several velocity components if the force measurement system attached to

the permanent magnet measures more than one force component or additionally

torques.

Finally, in this chapter our attention was focused on the time-averaged Lorentz

forces acting upon magnets. However, as figure 4.10a already indicates, a small

magnet experiences Lorentz forces which significantly fluctuate with time. To fur-

ther understand this dependence, in the next chapter, we will perform numerical

simulations for flow in a duct using Large Eddy Simulations (LES). LES results

are expected to provide information about the correlation between the Lorentz

force time signal and turbulent flow structures.
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Chapter 5

Results: Large Eddy Simulations

In this chapter, we analyse the performance of different sub-grid scale

LES models in FLUENT. The LES results are then compared with those from

under-resolved DNS–which are also performed in FLUENT. Finally, we use

the best LES model to provide information about the correlation between the

Lorentz force time signal and flow velocity in the region of influence of the

magnetic field.

5.1 Introduction

RANS approach considered in the previous chapters provided information

about the mean statistics, such as mean velocity and force profiles, while the effect

of turbulent fluid motion on the mean flow was modelled using eddy viscosity

based closure model– k−ω SST. However, in this chapter, we employ an approach

known as Large Eddy Simulation (LES) to understand the transient behaviour

of Lorentz force acting on the small permanent magnet. In other words, we are

interested in answering the question of whether the time oscillation of Lorentz

force signal provides any information about turbulence flow present in the liquid

metal flow.

LES allows the capture of dynamics of large turbulent length scales (known

as resolved scales) with only the smallest scales being modelled (known as sub-

grid scales) [Berselli et al., 2005; Davidson, 2004; Ferziger and Peric, 1999]. This

makes LES computationally more expensive than the RANS approach but far

less expensive than direct numerical simulations (as employed in [Tympel, 2013])

as the immense cost involved in modelling all the way down to the smallest scales

(Kolmogorov microscale) is avoided (Fig. 5.1).
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Figure 5.1: Schematic of turbulence energy spectrum illustrating the general idea of large
eddy simulations.

The basic philosophy LES can be summarised as follows [Pope, 2000],

• The time dependent fluid velocity field is decomposed into a filtered com-

ponent and a sub-grid scale component using a filtering operation.

ũi(x) =

∫
ui(x

′)G(x,x′)dx′, (5.1)

where, ũi is the filtered time dependent velocity field written in Einstein

notation. The integration in the expression is performed over the entire

fluid volume using the filter function G – which determines the scale of the

resolved turbulent motion.

• The Navier-Stokes equations for the resolved velocity field (see below) are

then numerically solved with an additional sub-grid scale stress tensor in

the momentum equation. This sub-grid scale stress tensor arises from the

motion of the small unresolved eddies.

∂

∂xi
(ũi) = 0, (5.2)

∂

∂t
(ρũi) +

∂

∂xj
(ρũiũj) = − ∂p̃

∂xi
+ µ

∂2

∂xj∂xj
(ũi)−

∂τij
∂xj

, (5.3)

where, τij is sub-grid scale stress tensor given by, ρũiuj − ρũiũj.
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• The sub-grid scale stress tensor then is explicitly modelled using sub-grid

models such as those based on Boussinesq hypothesis.

5.2 Implementation of SGS Models in FLUENT

The sub-grid scale models in FLUENT are implemented through Boussinesq

hypothesis. This is similar to the approach employed for the RANS simulations.

In particular, the sub-grid scale stress is represented as,

τij −
1

3
τkkδij = −2µtS̃ij. (5.4)

Here, µt is the turbulent viscosity and S̃ij is the resolved strain rate tensor,

given by,

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
. (5.5)

The isotropic part of the sub-grid stress (τkk) is added to the resolved pressure

term. On the other hand, four different models are used in FLUENT for the

calculation of turbulent viscosity required for the evaluation of the deviatoric

part of the sub-grid scale stress (τij). Each of these models is explained briefly

in the following sections. Although all the models and their implementation in

FLUENT can be found in [FLUENT, 2011; Kim, 2004], we still present them

here for reasons of continuity and clarity.

5.2.1 Classical Smagorinsky Model (SM)

The earliest and most simplest sub-grid scale model was proposed by Smagorin-

sky [1990]. In this model, the turbulent viscosity is represented by,

µt = Cs∆
2|S̃ij|. (5.6)

Here, |S̃ij| is the modulus of the resolved strain rate tensor and ∆ is the filter

width given by the square root of the local mesh volume. Cs is a model constant

that is provided to FLUENT a priori. Although, there is no universal value for

Cs, in this work, we employ the widely accepted value of 0.1. In fact the need

to provide a single value of Cs is what makes the classical Smagorinsky model

inappropriate for most flows of general interest.
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5.2.2 Dynamic Smagorinsky Model (DSM)

In order avoid the need for a priori specification of the Smagorinsky constant,

Germano et al. [1991] and later Lilly [1992] proposed a modified modelling ap-

proach. In this approach, the model constant is computed dynamically based on

the information from the resolved scales of motion. In particular, the dynamic

procedure involves the use of second filter that further separates the resolved

scales of motion into large and small scales leading to a so-called sub-test scale

stress. It then invokes a dynamic similarity between the sub-test scale and sub-

grid scale stress. The exact governing equations and their implementation in

FLUENT can be found in Kim [2004].

Nevertheless, it must be mentioned here that the computed local value of Cs

has a broad range and is a function of space and time. In FLUENT, however,

this value is restricted to the range between 0 and 0.23 for reasons of numerical

stability. This clipping is done in spite of the fact that a negative Cs is generally

assumed to represent the flow of energy from the sub-grid scales to the resolved

scales through a phenomenon known as back-scatter.

5.2.3 Wall-Adapting Local Eddy-Viscosity Model (WALE)

In the WALE model the turbulent viscosity is represented as a function of

strain rate and rotation rate [Nicoud and Ducros, 1999], given by:

µt = ρLs
2

(Sd
ijS

d
ij)

3/2

(SijSij)5/2 + (Sd
ijS

d
ij)

5/4
, (5.7)

where Ls and S
d
ij are defined by,

Ls = min(κd, CwV
1/3), (5.8)

Sd
ij =

1

2
(g̃2ij + g̃2ji)−

1

3
δij g̃

2
kk, (5.9)

g̃ji =
∂ũi
∂xj

. (5.10)

In this work, the WALE model constant Cw is provided with a value of 0.5

based on the work by Bricteux [2008]. WALE model has the advantage that

it captures the correct near wall asymptotic behaviour (∼ y3) for wall bounded

flows.
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5.2.4 Dynamic Kinetic Energy Sub-Grid Scale Model (DKEM)

The classical and dynamic Smagorinsky models are essentially algebraic mod-

els in which sub-grid scale stresses are represented using the resolved scales. The

underlying assumption is the local equilibrium between the transferred energy

through the resolved scales and the dissipation of kinetic energy at small sub-

grid scales. The sub-grid scale turbulence can be better modelled by accounting

for the transport of the sub-grid scale turbulence kinetic energy. To this end,

FLUENT implements the model proposed by Kim and Menon [1997]. In this

model the sub-grid scale kinetic energy is given by,

ksgs =
1

2
(ũk2 − ũk

2). (5.11)

The turbulent viscosity is then evaluated as follows,

µt = Ckksgs
1/2δ. (5.12)

The sub-grid kinetic energy required for the computation is obtained by solv-

ing the following additional transport equation,

∂ρk̃sgs
∂t

+
∂

∂xj
(ũj k̃sgs) = −τij

∂ũi
∂xj

+ Cϵ
ksgs

3/2

δ
+

∂

∂xj
(
µt

σk

∂ksgs
∂xj

). (5.13)

The model constants, Cϵ and Ck, in the above equations are computed dy-

namically. Whereas the constant, σk, is fixed by FLUENT to be 1. It must

be mentioned here that, the SGS turbulent kinetic energy transport model ac-

counts for the history and non-local effects and is thus useful for flows with

non-equilibrium turbulence.

5.2.5 Under-Resolved Direct Numerical Simulations (UDNS)

One of the aims of this work, is to assess the perform of all the sub-grid

scales models implemented in FLUENT. To that end, we perform LES without

the presence of any model on the same grid. These simulations are referred to as

under-resolved direct numerical simulations (UDNS). Since, FLUENT does not

provide a direct means of performing UDNS, we employ a indirect method of

performing simulations by explicitly reducing the Smagorinsky constant, Cs, to a

very low value of ∼ 10−9. This leads to the decoupling the momentum equation

from the sub-grid scale model by setting the sub-grid scale stress, τ |ij to almost
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zero.

5.2.6 Numerical Method and Boundary Conditions

The filtered Navier-Stokes equations are discretised in FLUENT using a col-

located scheme, whereby pressure and velocity are both stored at cell centres.

Subsequently, pressure at the cell face is interpolated using a PRESTO (PREs-

sure STaggering Option) scheme. This procedure utilises a discrete continuity

balance for a staggered control volume about the cell face to compute the stag-

gered pressure. Then FLUENT employs the SIMPLE (Semi IMPlicit Method for

Pressure Linked Equation) algorithm proposed by [Patankar and Spalding, 1972]

for pressure velocity coupling. This algorithm is based on a predictor-corrector

approach which employs the relationship between velocity and pressure correc-

tions to enforce mass conservation and to obtain the pressure field (see FLUENT

[2011] for details). All the spatial derivatives are solved using a bounded sec-

ond order central differencing scheme which is generally known for low numerical

diffusion. Finally, the temporal dicretisation is performed using a second order

implicit method.

For the LES inflow conditions, we prescribe the flow into the duct using a

constant velocity distribution (plug profile) corresponding to the Reynolds num-

ber. Perturbations are then super-imposed on this mean profile. We employ one

of methods used by FLUENT for the generation of perturbations, known as the

vortex method (see Sergent [2002] for details). This method generates a time

dependent inlet condition through a two dimensional fluctuating vorticity field

in the plane normal to the streamwise direction. In particular, a number of vor-

tex points with specified circulation and spatial distribution are created on the

inlet surface. The circulation is calculated using the number of vortex points,

inlet area and turbulent kinetic energy. For this work, we use 200 points and a

inlet turbulent intensity at 15%. The spatial distribution, on the other hand, is

prescribed by a Gaussian-like distribution. Finally, these vortices are convected

randomly and carry information about the vorticity field.

With these inlet conditions, the mean shear in the duct is set by no-slip

boundary conditions for the duct walls. The duct outlet is represented by a

constant pressure boundary condition corresponding to the atmospheric pressure.

Finally. as in the case of RANS, the Poisson equation for electrical potential is

solved using a second order central differencing scheme with electrical insulation

boundary condition for all the duct walls. The flux of the electric potential across

the inlet and outlet boundaries is fixed at zero.
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Figure 5.2: Schematic of (a) top and (b) side views of the computational domain used for the
large eddy simulations. The figure illustrates the virtual fluid zones that are created to control

the distribution of mesh points in the streamwise direction.

5.3 Sub-Grid Scale Modelling Errors

5.3.1 Computational Domain

In spite of the apparent advantage of LES to capture the large scales of motion,

the numerical results from finite volume LES models can be physical misleading

due to the presence of large numerical errors when the mesh resolution is course.

As noted in [Vire et al., 2011], the differentiation and interpolation errors in such

a situation may be very significant and could become of equal importance as

the model contribution itself. A lot of modifications to sub-grid models have

been proposed by a number of authors that help to reduce both the modelling

and discretisation errors [Carati et al., 2001; Ghosal, 1996, 2003]. However these

have been done on relatively simple configurations. Therefore in this work, we

endeavour to assess the effect of sub-grid scale models and compare these results

with simulations without any model – under-resolved direct numerical simulations

(UDNS). In particular, we compare the results terms of mean velocity profiles,

Reynolds stress tensors, eddy viscosities and local dissipation rates. It must be

mentioned here that this work acts as an extension to the earlier work done by

Vire et al. [2011] on a periodic channel flow with a homogeneous magnetic field by

considering a non-periodic duct flow in the presence of strongly inhomogeneous

magnetic fields.

For the computations, we consider the same physical problem as in the earlier
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Parameters Values
x length in region 1 (m) 0.5
x length in region 2 (m) 0.1
x length in region 3 (m) 0.25
x grid points in region 1 121
x grid points in region 2 70
x grid points in region 3 35
y grid points 64
z grid points 64
Time step size (sec) 0.000875
Total time steps 20000

Table 5.1: Table presenting the grid and simulation details employed for all the large eddy
simulations including under-resolved DNS.

chapters i.e. turbulent liquid metal flow in a square duct in the presence of a

small magnet. However, unlike the earlier RANS simulations where the meshing

in streamwise direction was governed by a single stretching factor, here we divide

the fluid domain in the streamwise direction into three regions, namely: entry

zone, magnet zone and exit zone. The length of the entry region leading upto to

the magnet is maintained the same as compared to the RANS simulations but the

length of the exit region has been reduced by a factor of 2 to reduce the compu-

tational expense of the simulations (Fig. 5.2). The exact grid point distribution

for the computational domain and the simulation details are summarised in ta-

ble 5.1. Grid sensitivity studies could not be performed for these investigations

owing the very high computational time required for the large eddy simulations

at higher grid resolutions.

5.3.2 Results

In this section we present the results from a posteriori comparison of the LES

models and UDNS for the interesting case of the turbulent duct flow interacting

with a small permanent magnet. On one hand, the problem has the added com-

plexity of 3 inhomogeneous directions unlike a plane channel flow. On the other

hand, it has the action of a strongly inhomogeneous magnetic field that creates

strong velocity gradients in the fluid. For the comparison, we express the results

in terms of mean velocity profiles, diagonal components of Reynolds stress tensor

and local dissipation rates.

Figure 5.3 shows the mean velocity profiles at x = 0.5m (magnet upstream

with no magnetic field and Lorentz force) and at x = 0.55m (under the magnet)

along the z-direction. The velocity profiles at both these positions are char-
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(a) (b)

Figure 5.3: Comparison of results from different LES models and UDNS. Mean streamwise
velocity profile is plotted in wall units for Re = 10000 and Ha = 146 at (a) before the magnet
region (x = 0.5m) and (b) under the magnet (x = 0.55m). All values are non-dimensionalised
using uτ from UDNS. The exact values of uτ from all the simulations can be found in table 5.2

Model Ha Re Nx ×Ny ×Nz Reτ
Classical Smagorinsky (SM) 146 10000 64× 64× 256 632
Dynamic Smagorinsky (DSM) 146 10000 64× 64× 256 602
Wall-Adapting Local Eddy Viscosity (WALE) 146 10000 64× 64× 256 607
Dynamic Kinetic Energy Sub-Grid Scale (DKEM) 146 10000 64× 64× 256 588
Under-Resolved DSN (UDNS) 146 10000 64× 64× 256 615

Table 5.2: Simulations control parameters along with the friction Reynolds number a the top
wall under the magnet obtained from each of the LES models using: Reτ = uτLc/ν.

acterised by three regimes: laminar sub-layer, buffer layer and the logarithmic

layer. Additionally, in the region under the magnet the action of the magnetic

field reduces the width of logarithmic layer. This is consistent with the case of a

homogeneous magnetic field for a channel flow, as demonstrated by Boeck et al.

[2007]. In the case of homogeneous field the width of the logarithmic layer de-

creases with increasing Re/Ha. However, to observe any trend for the present

case of an inhomogeneous magnetic field would require further simulations in the

Ha − Re parameter space and that is beyond the scope of the present work.

Nevertheless, the interesting aspect of these results is the fact that UDNS and all

the LES models produce identical results. The only exception is the SM, which

clearly deviates from the rest of the results. Although, this discrepancy could

reduce if the grid resolution of the simulations is increased.

The other important parameter in LES simulations is the diagonal component

of the Reynolds stress tensor. The Reynolds stress for LES simulations is divided

into the resolved and sub-grid scale stress. In most incompressible flows, only the

71



5. RESULTS: LES

(a) (b)

Figure 5.4: Comparison of results from different LES models and UDNS. Time averaged
diagonal streamwise components of (a) Resolved Reynolds stress, and (b) sub-grid scale stress
plotted for Re = 10000 and Ha = 146 at x = 0.55m. All values are non-dimensionalised using

u2
τ from UDNS.

deviatoric part of the stress tensor is modelled. Figure 5.4 shows the deviatoric

streamwise component of the Reynolds stress from all the LES models and UDNS.

Apart from illustrating the relative roles played by the resolved and sub-grid

scale stresses in the turbulent momentum transfer, the results also show the

difference between all the LES models and UDNS. For comparison, all the results

are normalised using u2τ taken from UDNS. All the models show nearly similar

results for the Resolved stress except the SM, which under-predicts the near wall

resolved stress. This behaviour is consistent with the results obtained by Krasnov

et al. [2008b] for channel flow under a spanwise magnetic field. The sub-grid scale

stress, on the other hand, also shows a similar behaviour except when using the

SM. Rather interestingly, the SM model computes a negative stress in the near

wall region. This could be due to the near wall modelling approach used by

FLUENT and therefore has no physical significance.

To extend the analysis of sub-grid modelling errors, we analyse the effect of

magnetic field on the dissipation rates. In particular, we verify the sub-grid mod-

els by analysing the accuracy with which the models reproduce the dissipation

rates. Such accuracy is generally considered one of the most important character-

istics of an LES model’s performance [Krasnov et al., 2009]. The local dissipation

rate terms appear in the equation for the local kinetic energy balance along with

the terms for energy transport. The viscous dissipation rate is given by,

ϵν = τ νijS̃ij/ρ, (5.14)
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(a) (b)

(c) (d)

Figure 5.5: Comparison of results from different LES models and UDNS. (a) Viscous
dissipation rate, (b) sub-grid scale dissipation rate, (c) Joule dissipation rate, and (d) y

component of eddy currents plotted for Re = 10000 and Ha = 146 at x = 0.55m. All values
are non-dimensionalised using u4

τ/ν from UDNS.
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where τ νij are the viscous stresses. The Joule dissipation rate is given by,

ϵµ = J2/σρ, (5.15)

where J is the magnitude of the local eddy currents induced in the fluid. The

additional dissipation rate is due to the sub-grid scale stresses (τij) and is given

by,

ϵSGS = τijS̃ij/ρ. (5.16)

We now focus on the distribution of the individual time-averaged dissipation

rates and their transformation due to the strongly inhomogeneous magnetic field.

For the analysis, all the dissipation rates are normalised by uτ
4/ν, where uτ is

taken from UDNS. The relative contribution of the dissipation rates to the kinetic

energy budget can be seen in figure 5.5. For a purely hydrodynamic flow, the

near wall region is generally dominated by the action of viscosity and therefore,

the viscous stresses alone balance the kinetic energy [Pope, 2000]. However, in

the case of the MHD flow, the sum of viscous and joule dissipation dominate

in the near wall region. This is due to suppression of turbulent fluctuations by

the action of the magnetic field. The contribution of the SGS stresses and, thus,

the importance of the LES modelling, in the near wall region is generally very

low. All the LES models and UDNS reproduce this behaviour in the near wall

region except the SM (figures 5.5a, 5.5b). SM computes the SGS stresses to be

almost of the same magnitude as the viscous stresses. The joule dissipation apart

from being high in the near wall region reduces before increasing again near the

bulk of the fluid flow (Figure 5.5c). This rather interesting behaviour of Joule

dissipation can be attributed to change in the direction eddy currents by moving

from the Hartmann layer to the bulk of the flow. As can be seen in figure 5.5d,

the y-component of electric currents are negative everywhere except in the near

wall region where they are positive due to the closing of the current loops inside

the Hartmann layer.

5.3.3 Summary

The comparison of the different LES models and UDNS for the interaction

of a strongly inhomogeneous magnetic field on a turbulent fluid flow has yielded

some interesting results. For the regimes investigated, we found that the all the

LES models and UDNS produced nearly identical results except for the classical

Smagorinsky model. The most striking behaviour, as seen from UDNS results,
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is the fact the finite volume numerical dissipation seems to mimic the explicit

contribution of the subgrid-scale terms. All the results, however, need to be

addressed with caution. The reasons for this could be multi-fold. Firstly, the fluid

flow in the simulations is still under-developed (due to the ”plug” profile used as

an inlet boundary condition). Secondly, the numerical resolution employed for

simulations has not been verified by grid sensitivity studies. Finally, the results

need to compared with fully resolved direct numerical simulations to understand

the exact nature of LES modelling. All these will be a part of future work and

therefore is beyond the scope of this present thesis. Nevertheless, for the set-up

considered it rather clear that UDNS produces accurate results than the SM.

Therefore, we will focus on UDNS results in the next section to understand the

correlation between velocity and Lorentz force.

5.4 Transient Behaviour of Velocity and Force

In this section, we will focus on the dynamical aspects of total Lorentz force

and velocity. The highly localised nature of the magnetic field limits the fluid

volume contributing to the total Lorentz force to a small sub-space of the en-

tire domain (Figure 5.6), referred to as the volume of influence. Therefore, we

only consider the fluid velocity in this volume of influence by taking a volume

average of the streamwise velocity. The basic idea is to understand the transient

behaviour of this averaged x-velocity and the total Lorentz force with a motiva-

tion that such an analysis can used in the measurements of turbulent fluctuations

using LFV. For such an endeavour, LFV with a small permanent magnet has an

inherent advantage that it does not strongly modify the flow features and can

therefore be used for absolute measurements. This is in contrast to other non-

contact measurement techniques for conducting fluids like magnetic-distortion

probes [Miralles et al., 2011].

To obtain a closer look at the temporal behaviour, we analyse the time series

of both the volume averaged velocity and total Lorentz force. For the ease of

comparison, we normalise the signals by removing the mean and dividing by their

respective standard deviations. As can be seen from the figure 5.7a, there is clear

correlation both the signals. This correlation is quite strong at low frequencies

before becoming chaotic at higher frequencies as seen from the power spectral

density in figure 5.7b. Furthermore, theoretically one would expect a more high

frequency oscillations in the velocity signal than the Lorentz force. To gain further

insight into this behaviour of the signals would require numerical simulation with
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Volume contributing to 99%
of the total Lorentz force

Figure 5.6: Schematic of the duct illustrating the influence volume of the Lorentz force due to
the strongly inhomogeneous nature of the magnetic field. The highlighted region is right

under the permanent magnet and indicates the fluid volume contributing to 99% of the total
Lorentz force.

(a) (b)

Figure 5.7: Normalised streamwise velocity, volume averaged in the region of influence and
the normalised integral Lorentz force plotted in terms of (a) time series, and (b) power

spectral densities.

a higher spatio-temporal accuracy.

Nevertheless, to understand the exact nature of the correlation, we first plot

a scatter plot of both velocity and force. As can be seen from figure 5.8a, there is

high degree of correlation between both the signals. In fact the linear correlation

coefficient between the signals is around ∼ 0.93. To further the understanding of

the coherence. we compute the spectral coherence between velocity and Lorentz

force. In figure 5.8b, this spectral coherence can be seen as a function of nor-

malised frequency. As evident from the graph, the both the signals depict a high

degree of correlation between at lower frequencies before the curve drops down

at lower frequencies. In fact this trend should continue further but the coherence

increases further at higher frequencies. As with the power spectral density, it

would require higher resolution simulations to provide further insights.
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(a) (b)

Figure 5.8: Correlation between normalised streamwise velocity volume averaged in the region
of influence and the normalised integral Lorentz force plotted in terms of (a) a scatter plot,

and (b) spectral coherence.

5.4.1 Summary

In above section, we tried to provide insights into the correlation between

streamwise flow velocity and the integral Lorentz force. From the analysis, it

was shown that there is a certain degree of causality between both the parame-

ters, especially at low frequencies. Nevertheless, any endeavour to use LFV for

the measurement of turbulent fluctuations in the fluid would require knowledge of

the exact quantitative nature of the correlation. This would firstly require numer-

ical simulations with high spatio-temporal accuracy and subsequent experimental

validation.
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Chapter 6

Conclusions and Outlook

This thesis reported the numerical modelling of turbulent liquid metal flow in

a duct exposed to a strongly inhomogeneous and highly localised magnetic field of

a small permanent magnet. In particular, the main focus was on understanding

both the steady and transient behaviour of total Lorentz force acting on the small

permanent magnet with an motivation that these results can provide reference

data that could pave the way for future studies on local flow measurement using

Lorentz force velocimetry. As a result of the study, the following objectives were

accomplished.

Conclusions: Numerical Modelling

A reliable numerical methodology was established that involves using a one-

way coupling mechanism between general purpose solvers COMSOL Multiphysics

and ANSYS FLUENT. To evaluate the accuracy of the results, the numerical code

FLUENT was firstly verified using grid sensitivity studies and later validated us-

ing the results from the liquid metal flow experiments. Finally, it can be concluded

that this numerical approach is an effective tool for accurate simulations of MHD

duct flows with inhomogeneous magnetic fields at low magnetic Reynolds num-

bers. In fact the generic nature of the numerical methodology, makes it easy to

apply the approach for flows in arbitrary geometries under the action of magnetic

fields of any distribution making it ideal for industrial applications.

Conclusions: Time-Averaged Lorentz Force

The other main issue was focussed on understanding the impact of geometric

and MHD parameters on the scaling behaviour of time-averaged integral Lorentz

79



6. CONCLUSIONS AND OUTLOOK

force. To that end, using a RANS-based turbulence model, comprehensive para-

metric studies were performed at different,

• Reynolds numbers,

• Hartmann numbers.

• Distances of the magnet from the surface of the duct, and

• magnet sizes.

The results from the analysis were complemented by direct numerical simula-

tions [Tympel, 2013] and experiments [Heinicke, 2013]. In spite of the simplicity

of the turbulence modelling, some rather interesting conclusions were drawn, as

presented in the report. However, an important result that needs mentioning

here is that there is no universal scaling behaviour of the force and it strongly

depends on different flow regimes as encountered in the Ha−Re parameter space.

Conclusions: Lorenz Force Fluctuations

The final aim of the study was on understanding the transient behaviour of

the Lorentz force. To this end, large eddy simulations (LES) were performed.

However, the use of LES opened up an interesting sub-domain for the work –

which focussed on evaluating the modelling errors in different LES models avail-

able in FLUENT. Therefore, simulations were performed and compared between

different LES models and under-resolved direct numerical simulations (UDNS).

The most striking behaviour of the results was the fact the numerical dissipation

in the solution mimics the explicit contribution of the modelling terms. There-

fore, for the employed grid resolution, explicit modelling of sub-grid scale stresses

was observed to be redundant. As a result, UDNS was used to evaluate the cor-

relation between the Lorentz force fluctuations and velocity fluctuations. The

results showed a certain degree of correlation between the two, especially at low

frequencies.

Outlook

A fair bit of modelling assumptions were made throughout the work which

could possibly affect the accuracy of the numerical solutions. Therefore, to un-

derstand the exact nature of these assumptions, the following recommendations

are made for the future work.
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• RANS simulations were performed without modelling changes in terms of

joule dissipation. Although, the effect of joule dissipation is expected to be

negligible, it would still provide quantitative information if the simulations

are to be performed with the inclusion of additional terms in RANS models

to cater for joule dissipation.

• Large eddy simulations in the work were performed without grid sensitiv-

ity studies and with a flat velocity profile at the inlet. But to understand

the exact nature of the modelling errors, simulations need to be performed

for fully developed turbulence at higher spatio-temporal accuracy and com-

pared with fully resolved direct numerical simulations. These results could

also help in understanding the quantitative correlation between Lorentz

force and velocity fluctuations at higher frequencies.
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