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Abstract

In many examples of de Branges spaces symmetry appears naturally. Pres-
ence of symmetry gives rise to a decomposition of the space into two
parts, the ‘even’ and the ‘odd’ part, which themselves can be regarded as
de Branges spaces. The converse question is to decide whether a given
space is the ‘even’ part or the ‘odd’ part of some symmetric space, and,
if yes, to describe the totality of all such symmetric spaces. We con-
sider this question in an indefinite (almost Pontryagin space) setting, and
give a complete answer. Interestingly, it turns out that the answers for
the ‘even’ and ‘odd’ cases read quite differently; the latter is significantly
more complex.
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1 Introduction

In the 1960’s L.de Branges axiomatically introduced a particular kind of Hilbert
spaces of entire functions and developed their structure theory, cf. [dB68]. These
spaces can be viewed as weighted analogues of the Paley-Wiener spaces of
Fourier transforms of square integrable functions supported on a compact in-
terval1. Ever since, de Branges’s spaces were intensively studied, and interest is
still growing. Besides the intrinsic beauty of the theory, one reason is that they
appear in many places in complex analysis, functional analysis, or differential
equations. For example, when dealing with power moment problems and Jacobi
operators ([BS99, Akh61]), classical functions like Gauß hypergeometric func-
tions or Dirichlet L-functions ([dB68, Lag06]), bases of exponentials in weighted
L2-spaces ([OCS02]), Beurling-Malliavin type theorems ([HM03a, HM03b]),
Schrödinger operators ([Rem02]), and many others. De Branges’ structure the-
ory has important implications to all these fields. In particular, it can be seen as
the mother of several inverse spectral theorems for different kinds of differential
equations.

Over the past decade a generalization of de Branges theory to an indefinite
setting was developed, cf. [KW99a]–[KW10]: The axioms of a de Branges space
H remain the same, only the requirement that H is a Hilbert space is weak-
ened to assuming that H is an almost Pontryagin space (that is, a direct and
orthogonal sum of a Hilbert space with a finite-dimensional negative semidef-
inite space). On first sight this may seem a minor generalization; for several
reasons it is not: (1) Passing to the indefinite situation creates a deep theory;
significant effort is needed to establish the analogues of de Branges’ theorems.
(2) The indefinite theory has a broad variety of applications, e.g., to indefinite

1This fact, already stated by L.de Branges, recently was made explicit in [LS02].
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versions of power moment problems ([KL79, KL80]2), or differential equations
with inner singularities or singular endpoints ([LW]). (3) Some classical, i.e.,
‘positive definite’, questions can be solved by making a detour via the indefinite
world (e.g. [Wor12]).

A de Branges almost Pontryagin space Q is called symmetric, if the assign-
ment

i : F (z) 7→ F (−z)

maps Q isometrically into itself (since i is involutory and has closed graph, it
thus induces an isometric isomorphism of Q onto itself). This notion appeared
already at a very early stage, cf. [dB62]. Symmetry arises for example from func-
tional equations (e.g. [KW05, Example 3.2]), or in the context of Schrödinger
operators or Krĕın strings where symmetry is implemented in the construction
by writing the spectral parameter as ‘λ2’.

Due to the presence of the isometric involution i, a symmetric de Branges
space decomposes into the direct and orthogonal sum of its subspaces Qe and
Qo consisting of all even or odd, respectively, functions in Q. It is an important
fact that Qe and Qo themselves can be considered as de Branges spaces: Set

Qev :=
{
H(

√
z) : H ∈ Q, H even

}
, [F,G]Qev := [F (z2), G(z2)]Q ,

Qod :=
{ 1√

z
H(

√
z) : H ∈ Q, H odd

}
, [F,G]Qod := [zF (z2), zG(z2)]Q .

Then one can show that Qev and Qod are de Branges spaces. By their definition,
they are isomorphic to Qe and Qo.

A converse question suggests itself: Given a de Branges space P, does there
exist a symmetric de Branges space Q with Qev = P (or with Qod = P, respec-
tively)? If yes, what is the totality of all such spaces?

In the present paper we give a complete answer to these questions. Our main
results are Theorem 3.3 and Theorem 4.3. Comprehensively formulated, these
results state the following: Let P be a de Branges almost Pontryagin space.

(1ev) There exists Q with Qev = P if and only if the quadratic form

[F,G]s := [zF (z), G(z)]P , (1.1)

defined for all F,G ∈ P with zF (z), zG(z) ∈ P, has a finite number of
negative squares.

(2ev) The set of all spaces Q with Qev = P forms a one-parameter family
{Qτ : τ ∈ R ∪ {∞}}.

(1od) Just the same as for the ‘ev’-case3: There exists Q with Qod = P if and
only if the quadratic form (1.1) has a finite number of negative squares.

(2ev) The set of all spaces Q with Qod = P forms a two-parameter family
{Ql,q : l ∈ R, q ∈ R ∪ {∞}}.

2Making explicit the connection with de Branges almost Pontryagin spaces is work in
progress.

3The fact that the conditions (1ev) and (1od) coincide expresses strong symmetry. Respon-
sible for its presence is that we consider the indefinite situation. In the positive definite setting
the answers would be quite different.
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Some partial results in this direction have already been obtained in earlier
work. First, in the Hilbert space situation this was done (in the language
of Hermite-Biehler functions) already in [dB68]. Second, (1ev) was shown al-
ready in [KWW06a], where also a description of all spaces Q with Qev = P was
given. However, this description is very implicit. Third, if all considerations
are restricted to nondegenerated spaces P and Q, the facts corresponding to
the above mentioned ones can be deduced rather easily from some results on
indefinite Hermite-Biehler functions shown in [KWW06a] and [PW07] (though
this is not stated explicitly there).

The main achievements and novelties of our present work are that: (1) We
obtain full understanding of degenerated spaces; (2) We exhaustively treat the
‘od’-case (which is the more complex one); (3) We obtain explicit descriptions
of the families as indicated in (2ev) and (2od).

The organisation of the manuscript is straightforward. In Section 2 we recall
some facts about de Branges spaces, and provide some preliminaries concern-
ing perturbations of inner products which are extensively used throughout. In
Section 3 we deal with the ‘ev’-case. This case is simpler than the ‘od’-case,
however, the methods are similar and the discussion may serve as a model for
the proof of the ‘od’-case. The most extensive part of the paper is Section 4,
where we then settle the ‘od’-case.

2 Preliminaries

a. Symmetric and seminbounded dB-spaces.

Before we can state the definition of a de Branges space, we need to recall the
notion of reproducing kernel almost Pontryagin spaces. Denote by H(C) the
linear space of all entire functions, and let χw, w ∈ C, be the point evaluation
functional

χw :

{
H(C) → C

F 7→ F (w)
.

2.1 Definition. Let L be a linear space and [., .] an inner product on L.

(i) Assume that O is a Hilbert space topology on L. Then the triple
〈L, [., .],O〉 is called an almost Pontryagin space, if [., .] is O×O-continuous,
and if there exists an O-closed linear subspace M of L with finite codi-
mension, such that 〈M, [., .]〉 is a Hilbert space.

(ii) The inner product space 〈L, [., .]〉 is called a reproducing kernel almost
Pontryagin space of entire functions, if L ⊆ H(C) and if there exists a
Hilbert space topology O on L, such that 〈L, [., .],O〉 is an almost Pon-
tryagin space and that each point evaluation functional χw|L, w ∈ C, is
O-continuous.

�

For a given inner product space 〈L, [., .]〉, there may exist several different Hilbert
space topologies which turn L into an almost Pontryagin space. Uniqueness
prevails only if L is nondegenerated. However, if L ⊆ H(C), then there exists
at most one Hilbert space topology on L which in addition makes all point
evaluations continuous, cf. [KWW05, §5]. This says that the topology of a
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reproducing kernel almost Pontryagin space is uniquely determined by its inner
product (and hence there is no need to include it into the notation).

Let 〈L, [., .]〉 be a reproducing kernel almost Pontryagin space of entire func-
tions. If L is nondegenerated, there exists a reproducing kernel in the classical
sense, i.e. a family of elements K(w, .) ∈ L, w ∈ C, with the property that

[F,K(w, .)] = F (w), F ∈ L, w ∈ C .

If L is degenerated, such a family clearly cannot exist.

2.2 Definition. An inner product space 〈P, [., .]〉 is called a de Branges space
(dB-space, for short), if it satisfies the following axioms.

(dB1) 〈P, [., .]〉 is a reproducing kernel almost Pontryagin space of entire
functions.

(dB2) If F ∈ P, then the function F#(z) := F (z) belongs to P. Moreover,

[F#, G#] = [G,F ], F,G ∈ P .

(dB3) If F ∈ P and z0 ∈ C \ R with F (z0) = 0, then

z − z0
z − z0

F (z) ∈ P .

If additionally G ∈ P with G(z0) = 0, then

[z − z0
z − z0

F (z),
z − z0
z − z0

G(z)
]

= [F,G] .

In the present paper, we always require the additional condition

(dB4) For each t ∈ R there exists F ∈ P with F (t) 6= 0.

The set of all dB-spaces will be denoted by DB.
Moreover, we denote by SP the operator of multiplication by the independent

variable in the dB-space P with maximal domain, i.e. domSP := {F ∈ P :
F (z), zF (z) ∈ P}. �

Recall that the presence of (dB4) implies that the space P is invariant with
respect to division of real zeros, see, e.g., [KW99a, Lemma 4.1].

Next, we specify the subclasses of DB which are under investigation; namely
symmetric and semibounded dB-spaces.

2.3 Definition. Let 〈P, [., .]〉 be a dB-space.

(i) We say that P is symmetric, if the map i : F (z) 7→ F (−z) leaves P

invariant and i|P is isometric with respect to the inner product of P.

(ii) We say that P is semibounded, if the inner product on domSP defined as

[F,G]s := [SPF,G], F,G ∈ domSP ,

has a finite number of negative squares.
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The subclass of DB containing all symmetric dB-spaces is denoted as DBsym,
the subclass containing all semibounded ones by DBsb. �

Nondegenerated dB-spaces can be generated from entire function having certain
properties.

2.4 Definition. Denote by HB<∞ the set of all entire functions E, such that
E and E# have no common nonreal zeros, E−1E# is not constant, and the
reproducing kernel

KE(w, z) :=
i

2

E(z)E(w)− E#(z)E(w)

z − w

has a finite number negative squares. Moreover, in the present paper, we always
require the following two additional properties:

E(x) 6= 0, x ∈ R and E(0) = 1 .

�

If E ∈ HB<∞, we denote the actual number of negative squares of the kernelKE

by ind− E. Each function E ∈ HB<∞ generates a reproducing kernel Pontryagin
space via the kernel KE ; we denote this space by P(E). The fact that E ∈ HB0

if and only if E ∈ HB<∞ and ind− E = 0, is well-known, see, e.g. [dB68].
Throughout this paper, we agree on a generic notation applied to Hermite-

Biehler functions: If we speak of functions E,A,B (or Ẽ, Ã, B̃, or similar), these
functions always shall be related as

A :=
1

2
(E + E#), B :=

i

2
(E − E#) .

Using this notation, the reproducing kernel KE can be rewritten as

KE(w, z) =
B(z)A(w)−B(w)A(z)

z − w
. (2.1)

2.5 Remark. Let E be an entire function. Then E ∈ HB<∞ if and only if the
functions A and B are linearly independent, have no common zeros, and the
function B

A
belongs to N<∞. �

Next, we specify two subclasses of HB<∞; the classes of symmetric and semi-
bounded Hermite-Biehler functions.

2.6 Definition. Denote

HBsym
<∞ :=

{
E ∈ HB<∞ : E#(z) = E(−z)

}

HBsb
<∞ :=

{
E ∈ HB<∞ : A has only finitely many zeros on (−∞, 0)

}

�

The relation between dB-spaces and Hermite-Biehler functions is the following,
cf. [KW99a, Theorem 5.3, Corollary 6.2], [KWW06a, Proposition 4.3, Proposi-
tion 4.4].

2.7 Remark.
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(i) Let E ∈ HB<∞. Then the space P(E) is a de Branges Pontryagin space.

(ii) Let P be a nondegenerated dB-space. Then there exists a function E ∈
HB<∞ such that P = P(E). The function E in this realization is not
unique. It is uniquely determined only up to real scalar multiples of B
(remember here that we included the requirement that ‘E(0) = 1’ in the
definition of the Hermite-Biehler class).

(iii) We have P ∈ DBsym if and only if there exists a function E ∈ HBsym
<∞

such that P = P(E). In this case, the function E ∈ HBsym
<∞ in this

representation is unique.

(iv) We have P ∈ DBsb if and only if there exists a function E ∈ HBsb
<∞ such

that E ∈ HBsb
<∞.

�

b. A perturbation of inner products.

In the sequel it is important to be more precise when talking about equality of
de Branges spaces, since we often face the situation that two de Branges spaces
P1 and P2 contain the same functions, but carry different inner products.

2.8 (Notation). Let P1 and P2 be two inner product spaces. Then we write
‘P1 = P2’, if P1 and P2 contain the same elements and their inner products

coincide. We write ‘P1
set
= P2’ if P1 and P2 contain the same elements (but

their inner products might be different).
The same notation applies to inclusions instead of equalities. �

Next we introduce certain perturbations of the inner product on a de Branges
space.

2.9 Definition. Let a dB-space 〈P, [., .]P〉, points t1, . . . , tn > 0 and weights
γ1, . . . , γn ∈ R, ε ∈ R, be given. Then we define perturbed inner products on P

as

JF,GKP := [F,G]P +

n∑

i=1

γiF (ti)G(ti) , (2.2)

JF,GKevP := [F,G]P +
n∑

i=1

γi
2

(

F (
√
ti)G(

√
ti) + F (−

√
ti)G(−

√
ti)
)

, (2.3)

JF,GKodP := [F,G]P +

n∑

i=1

γi
2ti

(

F (
√
ti)G(

√
ti) + F (−

√
ti)G(−

√
ti)
)

, (2.4)

JF,GKεP := [F,G]P + εF (0)G(0) . (2.5)

�

By [KW99a, Lemma 3.2] each of

〈P, J., .KP〉, 〈P, J., .KevP〉, 〈P, J., .KodP 〉, 〈P, J., .KεP〉

is again a dB-space.
Let us show that the perturbations (2.2)–(2.5) are compatible with notions

related to symmetry.
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2.10 Lemma. Let 〈P, [., .]P〉 and 〈Q, [., .]Q〉 be dB-spaces, and let points
t1, . . . , tn > 0 and weights γ1, . . . , γn ∈ R, ε ∈ R, be given.

(i) We have
〈P, [., .]P〉 ∈ DBsb ⇐⇒ 〈P, J., .KP〉 ∈ DBsb .

(ii) We have

〈Q, [., .]Q〉 ∈ DBsym ⇐⇒ 〈Q, J., .KevQ〉 ∈ DBsym

⇐⇒ 〈Q, J., .KodQ 〉 ∈ DBsym

⇐⇒ 〈P, J., .KεQ〉 ∈ DBsym .

(iii) Assume that Q ∈ DBsym. Then

〈Q, [., .]Q〉ev = 〈P, [., .]P〉 ⇐⇒ 〈Q, J., .KevQ〉ev = 〈P, J., .KP〉
〈Q, [., .]Q〉od = 〈P, [., .]P〉 ⇐⇒ 〈Q, J., .KodQ 〉od = 〈P, J., .KP〉

⇐⇒ 〈Q, J., .KεQ〉od = 〈P, [., .]P〉

Proof. To show (i) it is enough to note that J., .Ks and [., .]s are finite rank
perturbations of each other. In fact,

JSPF,GKP = [SPF,G]P +

n∑

i=1

γitiF (ti)G(ti), F,G ∈ domSP .

For (ii), assume first that 〈Q, [., .]Q〉 ∈ DBsym. Since 〈Q, [., .]Q〉 set
= 〈Q, J., .KevQ〉,

and i maps Q into itself, it is enough to check isometry. We compute

JiF, iGKevQ = [iF, iG]Q+

+

n∑

i=1

γi
2

(

(iF )(
√
ti)(iG)(

√
ti) + (iF )(−

√
ti)(iG)(−

√
ti)
)

=

= [F,G]Q +

n∑

i=1

γi
2

(

F (−
√
ti)G(−

√
ti) + F (

√
ti)G(

√
ti)
)

= JF,GKevQ

Thus 〈Q, J., .KevQ〉 is symmetric.
If we apply this fact with the points t1, . . . , tn and the weights γ1

t1
, . . . , γn

tn
,

we obtain the implication ‘〈Q, [., .]Q〉 ∈ DBsym ⇒ 〈Q, J., .KodQ 〉 ∈ DBsym’. For the
implication ‘〈Q, [., .]Q〉 ∈ DBsym ⇒ 〈Q, J., .KεQ〉 ∈ DBsym’ compute

JiF, iGKεQ = [iF, iG]Q + ε(iF )(0)(iG)(0) =

= [F,G]Q + F (0)G(0) = JF,GKεQ .

Applying the already proved implications with the points t1, . . . , tn and the
weights −γ1, . . . ,−γn or −ε, respectively, gives the converse implications.

It remains to show (iii). In order to establish the first asserted equivalence,
it is enough to show that the map F (z) 7→ F (z2) is J., .KP-to-J., .KevQ–isometric.
However, we compute

JF (z2), G(z2)KevQ = [F (z2), G(z2)]Q+

7



+

n∑

i=1

γi
2

(

F ((
√
ti)

2)G((
√
ti)2) + F ((−

√
ti)

2)G((−
√
ti)2)

)

=

= [F (z), G(z)]P +
n∑

i=1

γiF (ti)G(ti) .

Similar computations show that the map F (z) 7→ zF (z2) is J., .KP-to-J., .KodQ – and
[., .]P-to-J., .KεQ–isometric, and this gives the other asserted equivalences. ❑

c. Structure of symmetric dB-spaces.

Next, we state some facts on the structure of symmetric dB-spaces. Remember
our convention that E ∈ HB<∞ includes the requirement that E(0) = 1. Due
to this, we have E ∈ HBsym

<∞ if and only if A is even and B is odd.

2.11 Lemma. Let E ∈ HBsym
<∞. Then

domSE 6= P(E) ⇐⇒
(

A ∈ P(E) ∨B ∈ P(E)
)

If in addition domSE is nondegenerated, then

A ∈ P(E) ⇐⇒
(

domSE 6= P(E) ∧ domSE
od

= P(E)od
)

B ∈ P(E) ⇐⇒
(

domSE 6= P(E) ∧ domSE
ev

= P(E)ev
)

Proof. Since i(zF (z)) = −zi(F (z)), symmetry of P(E) implies that domSE

is invariant under the isometric involution iDB . Hence, also the orthogonal
companion P(E)[−]domSE has this property.

Assume that domSE 6= P(E). Then there exists α ∈ [0, π) such that
P(E)[−]domSE = span{A cosα+B sinα}. It follows that, for some λ ∈ C,

A(z) cosα−B(z) sinα = A(−z) cosα+B(−z) sinα = λ
(
A(z) cosα+B(z) sinα

)
.

Evaluating at z = 0 gives cosα = 0 or λ = 1. In the first case, B ∈ P(E). In
the second case, it follows that sinα = 0 and hence A ∈ P(E). The converse
implication is clear.

If domSE is nondegenerated, then it spans together with its orthogonal
complement the whole space. Hence, the asserted equivalences are immediate
from what we just showed and that fact that A is even and B is odd. ❑

The characterizations in this lemma do not depend on the inner product under
consideration. Hence, we obtain the following corollary.

2.12 Corollary. Let E1, E2 ∈ HBsym
<∞, and assume that P(E1)

set
= P(E2), and

that domSE1
is a nondegenerated subspace of P(E1) and domSE2

is a non-
degererated subspace of P(E2). Then

A1 ∈ P(E1) ⇐⇒ A2 ∈ P(E2), B1 ∈ P(E1) ⇐⇒ B2 ∈ P(E2)

❑
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An important fact in the structure theory of de Branges spaces is that isometric
inclusions of nondegenerated spaces can be characterized via certain entire ma-
trix functions. We denote by M<∞ the set of all entire 2× 2-matrix functions
W , which satisfy detW (z) = 1, z ∈ C, and W (0) = I, and have the property
that the reproducing kernel

HW (w, z) :=
W (z)JW (w)∗ − J

z − w

has a finite number of negative squares. Here J denotes the signature matrix

J :=
(
0 −1
1 0

)

.

If W ∈ M<∞, we denote the actual number of negative squares of the
kernel HW by ind− W . Each function W ∈ M<∞ generates a reproducing
kernel Pontryagin space via the kernel HW ; we denote this space by K(W ). For
the afore mentioned relation bewteen isometric inclusions and matrix functions
of the class M<∞ see [KW99a, Theorem 12.2].

In the present context we need the following observation:

2.13 Lemma. Let E, Ẽ ∈ HBsym
<∞ be given. Assume that P(E) ⊆ P(Ẽ), and

that each dB-space P with P(E) ( P ( P(Ẽ) is degenerated. Let W ∈ M<∞

be the unique matrix function with

(Ã, B̃) = (A,B)W, ind− W = indP(Ẽ)− ind− P(E) .

Then W is of the form

W =

(
1 p
0 1

)

or W =

(
1 0
−p 1

)

, (2.6)

where p is a polynomial of degree dimP(Ẽ)/P(E), and p(0) = 0.
If P is a dB-space with P(E) ⊆ P ⊆ P(Ẽ), then

P = P(E)[+̇] span
{
C(z)zk : 0 ≤ k < dimP/P(E)

}
,

where C = A or C = B, depending whether in (2.6) the first or the second case
takes place.

Proof. Assume that W is not a matrix polynomial. Consider the dB-space
P(EW ) associated with W as in [KW11, §2.e]. Then dimP(EW ) = ∞, and
hence P(EW ) contains a nondegenerated subspace which is itself a dB-space.
Correspondingly, there exists a factorization W = W1W2 with ind− W =
ind− W1+ind− W2 andW1 6= I, W2 6= I. Setting (Â, B̂) := (A,B)W1, we obtain
a nondegenerated dB-space P with P(E) ( P ( P(Ẽ), namely P := P(Ê).
This is a contradiction, and we conclude that W must be a matrix polynomial.

For α ∈ [0, π) denote Nα :=
(

cosα sinα
− sinα cosα

)

. Again since W cannot be non-

trivially factorized, it must be of the form

W = Nα

(
1 0
−p 1

)

N−α

with some α ∈ [0, π) and some polynomial p, p(0) = 0, see, e.g., [KW06b, The-
orem 3.1]. The space K(W ) is spanned by the functions (ξα := (cosα, sinα)T )

ξα, zξα, . . . , z
d−1ξα ,
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where d := deg p. The Gram matrix of its inner product with respect to this
basis is of the form

GMK(W ) =









0 . . . 0 c1
... . .

.
. .
. ...

0 . .
. ...

c1 . . . . . . cd









with some numbers ci ∈ R, c1 6= 0, see, e.g., [KW11, Proposition 2.8]. The map
(
f+
f−

)

7→ Af+ +Bf−

is an isometry of K(W ) onto P(Ẽ)[−]P(E). In particular, we see that d =
dimK(W ) = dimP(Ẽ)/P(E), and that

P(Ẽ)[−]P(E) = span
{
C(z)zk : k = 0, . . . , d− 1

}
,

where C(z) := cosαA(z) + sinαB(z). By Lemma 2.11 we must have either
C = A or C = B, i.e. either α = 0 or α = π

2 .

To show the last assertion, let a dB-space P with P(E) ⊆ P ⊆ P(Ẽ) be
given. Let n be the maximal integer such that P contains a function F of the
form

F (z) = C(z) ·
(

zn +

n−1∑

k=0

αkz
k
)

.

Write zn +
∑n−1

k=0 αkz
k =

∏n
l=1(z − zl), then each of the functions

Fm(z) := C(z)

m∏

l=1

(z − zl), m = 0, . . . , n ,

belongs to P. Hence, span
{
C(z)zk : 0 ≤ k ≤ n

}
⊆ P[−]P(E). The converse

inclusion holds trivially, and we conclude that dimP/P(E) = n+ 1. ❑

2.14 Lemma. Let Q ∈ DBsym, and assume that Q is degenerated but domSQ

is nondegenerated. Write domSQ = P(E). Then

Q◦ = span{A} or Q◦ = span{B} .

Proof. Choose points t1, . . . , tn > 0 and weights γ1, . . . , γn ∈ R such that the
corresponding perturbation J., .KevQ turns Q into a Hilbert space. Choose a sym-
metric dB-Hilbert space Q1 with

〈Q, J., .KevQ〉 ⊆ Q1, dimQ1/Q = 4n .

Such a choice is possible by successively appending indivisible intervals of the
types 0 and π

2 to 〈Q, J., .KevQ〉, cf. the construction in [KW03, Proof of Theorem
2.3].

Now we return to the original inner product on Q. Denote Q2 :=
〈Q1, J., .K

ev

Q1
〉, where J., .KevQ1

is the perturbation constructed with the points
t1, . . . , tn and weights −γ1, . . . ,−γn. Then we have

P(E) ⊆ Q ⊆ Q2 ,
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and dimQ2/Q = 4n.
The chain of dB-spaces P with Q ⊆ P ⊆ Q2 consists of 4n+1 spaces, each of

them contained in the next larger one with codimension 1. Since J., .KevQ1
is a (at

most) 2n-dimensional perturbation of the Hilbert space inner product [., .]Q1
,

the dimension of the isotropic part of each member of this chain cannot exceed
2n. By [KW03, Theorem 2.3], the length of a subchain of subsequent members
which are all degenerated is at most 4n. Hence, there exists a nondegenerated
dB-space P(Ẽ) with Q ⊆ P(Ẽ) ⊆ Q2. Without loss of generality, assume that
P(Ẽ) is the smallest one with this property.

By Lemma 2.13, we have (Ã, B̃) = (A,B)W where W is one of the matrices
(2.6), and, depending which case takes place

Q = P(E)[+̇] span{A} or Q = P(E)[+̇] span{B} .

It follows that Q◦ is spanned either by A or by B. ❑

3 The ‘ev’-case

As we have already indicated in the introduction, we are going to show that for
each space P ∈ DBsb there exists a symmetric dB-space Q with Qev = P, and
that the totality of all such spaces is described as a one-parameter family.

Let us define one-parameter families of spaces in a general setting.

3.1 Definition. Let L be a reproducing kernel almost Pontryagin space of
entire functions, and let C be an entire function which does not belong to L.
Then, for each parameter τ ∈ R∪ {∞}, we define an inner product space Lτ as
follows: If τ = ∞, we set L∞ := L. If τ ∈ R, the underlying linear space is

Lτ :
set
= L+̇ span{C} ,

and the inner product [., .]τ of Lτ is defined by means of its Gram matrix with
respect to this direct sum decomposition as

GM[.,.]τ :=

(
[., .]L 0
0 τ

)

.

Moreover, the space Lτ is endowed with the product topology of the topology
of L and the euclidean topology of C. �

3.2 Remark. For further reference, we state some immediate geometric proper-
ties of the family Lτ , τ ∈ R ∪ {∞}.
(i) The space Lτ is an almost Pontryagin space.

(ii) For each τ ∈ R we have Lτ = L[+̇] span{C}.

(iii) Assume that L is nondegenerated. Then Lτ is degenerated if and only if
τ = 0. In this case, L◦

0 = span{C}.

(iv) For τ ∈ R, the inner product [., .]τ depends continuously on τ .

(v) If τ, τ ′ ∈ R ∪ {∞} are such that Lτ = Lτ ′ , then τ = τ ′.

�
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3.3 Theorem. Let P ∈ DBsb be given. Then there exists a symmetric dB-
Hilbert space Q̊ = P(E̊), points t1, . . . , tm > 0, and weights ω1, . . . , ωm ∈ R,
such that the following statement holds.

For each inner product space 〈Q, [., .]Q〉, the properties (i) and (ii) are equiv-
alent:

(i) Q ∈ DBsym and Qev = P.

(ii) There exists a parameter τ ∈ R ∪ {∞}, such that

Q = 〈Q̊τ , J., .K
ev

Q̊τ
〉 ,

where the family Q̊τ is constructed with the dB-Hilbert space Q̊ and the
function B̊, and J., .Kev

Q̊τ
is the perturbation of the inner product of Q̊τ

buildt with the points t1, . . . , tm and weights ω1, . . . , ωm.

For each τ ∈ R we have domSQ̊τ
= Q̊∞.

Assume in addition that:

(A) The family of all symmetric dB-spaces Q with Qev = P contains a
Hilbert space.

Then Q̊ can be chosen such that no perturbation is necessary (i.e., m = 0).

We can thus picture the totality of symmetric dB-spaces Q with Qev = P as

τ ∈ R

•
τ = ∞

〈Q̊∞, J., .Kev
Q̊∞

〉

(

〈Q̊τ , J., .Kev
Q̊τ

〉

c
o
d
im

e
n
s
io
n

1

If P has property (A), we have the refined picture

τ ∈ R

•

◦

τ = ∞
Hilbert space

τ
=

0
d
e
g
e
n
e
r
a
t
e
d

τ < 0
nondegenerated

ind−Q̊τ = 1

τ > 0
Hilbert space

Q̊∞

(

Q̊τ

c
o
d
im

e
n
s
io
n

1

In the rest of the section we give the proof Theorem 3.34. Let us start with
recalling three known facts5. First, the content of [KWW06a, Theorem 4.5,
(iia), (iib)].

4Compared with the ‘od’-case treated in the next section, the ‘ev’-case is rather simple.
However, the proof for the ‘od’-case proceeds along the same lines and use the same ideas.
Hence, it is worth to be explicit also in the ‘ev’-case.

5We state these facts in exactly this way, in order to even more stress the analogy with the
later argument for the ‘od’-case.
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3.4 Remark. Let E ∈ HBsb
<∞ be given. For γ ∈ R set

(Aγ(z), Bγ(z)) :=
(
A(z2), B(z2)

z

)
(

1 0
−γz 1

)

. (3.1)

(i) For each γ ∈ R the function Eγ belongs to the class HBsym
<∞, and we have

P(Eγ)
ev = P(E).

(ii) If Ẽ ∈ HBsym
<∞ is such that P(Ẽ)ev = P(E), then there exists a unique

parameter γ ∈ R with Ẽ = Eγ .

(iii) If γ, γ′ ∈ R, then the functions Eγ and Eγ′ are related as

(
Aγ′ , Bγ′

)
=
(
Aγ , Bγ

)
(

1 0
−(γ − γ′)z 1

)

.

�

Second, the structure of the reproducing kernel space generated by a matrix as
in (3.1), see [KW11, Proposition 2.8] or [dB68].

3.5 Remark. Let l ∈ R \ {0}, and consider the matrix function

T (z) :=

(
1 0

−lz 1

)

. (3.2)

Then T ∈ M<∞,

ind− T =

{

0 , l > 0

1 , l < 0
,

and the space K(T ) is given as

K(T ) = span
{(0

1

)}

,
[(0

1

)

,

(
0

1

)]

K(T )
=

1

l
.

�

Finally, the behaviour of dB-Pontryagin space, when (A,B) is multiplied with
a matrix of the form (3.2), cf. [KW99a, Theorem 12.2, Proposition 13.5].

3.6 Remark. Let E ∈ HB<∞ and l ∈ R be given, and set

(
Ã(z), B̃(z)

)
:=
(
A(z), B(z)

)
(

1 0
−lz 1

)

.

Then Ẽ ∈ HB<∞. Moreover, we have:

(i) Assume that B 6∈ P(E). Then

P(El) = P(E)[+̇]El
span{B}, [B,B]El

=
1

l
.

(ii) Assume that B ∈ P(E). Then

domSE ⊆ P(Ẽ)
set
=

{

domSE

P(E)
,

where the bracket on the right just means that either the first or the second
case takes place.
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For later reference, let us remark that the analogous statements hold when
considering

(
Ã(z), B̃(z)

)
:=
(
A(z), B(z)

)
(
1 lz
0 1

)

,

provided the function B is replaced everywhere by the function A. �

Proof (of Theorem 3.3; Part 1: Reduction). We show that we may without loss
of generality restrict to the case that P has property (A).

Choose points t1, . . . , tn > 0 and weights γ1, . . . , γn > 0, such that the
corresponding perturbation J., .KP of [., .]P turns P into a Hilbert space. Write
〈P, J., .KP〉 = P(E) with E ∈ HBsb

<∞, ind− E = 0, cf. Lemma 2.10, (i), and let
the function E0 ∈ HBsym

<∞ be defined by (3.1) with γ = 0. Then

〈P(E0), [., .]E0
〉ev = 〈P, J., .KP〉 ,

cf. Remark 3.4, (i).
Next, choose points tn+1, . . . , tm > 0 and weights γn+1, . . . , γm > 0 such

that the corresponding perturbation J., .KevE0
of [., .]E0

turns P(E0) into a Hilbert
space. Moreover, let J., .K′P be the perturbation of J., .KP on P using tn+1, . . . , tm
and γn+1, . . . , γm. Then, by Lemma 2.10, (iii),

〈P(E0), J., .K
ev

E0
〉ev = 〈P, J., .K′P〉 . (3.3)

Assuming it is already proved that the totality of all symmetric dB-spaces Q′

with (Q′)ev = 〈P, J., .K′P〉 is described by a family Q̊τ , τ ∈ R ∪ {∞}, we may
return to the original inner product on P by performing the perturbation with
points t1, . . . , tn and weights −γ1, . . . ,−γm, and in this way obtain the desired
description of the family of all symmetric dB-spaces Q with Qev = 〈P, [., .]P〉.
By (3.3), the space 〈P, J., .K′P〉 satisfies the additional condition. ❑

From now on we assume that (A) holds, and fix a dB-Hilbert space Q̊ with Q̊ev =

P. Since Q̊, and hence also P is a Hilbert space, we may choose E̊ ∈ HBsym

and E ∈ HBsb with ind− E̊ = ind− E = 0, such that Q̊ = P(E̊) and P = P(E).
Let γ̊ ∈ R be the unique parameter, such that E̊ = Eγ̊ , cf. Remark 3.4, (ii).

If B̊ ∈ P(E̊), the space P(Ê) with

(Â, B̂) := (Å, B̊)

(

1 0
1

[Å,Å]E̊
z 1

)

is again a dB-Hilbert space, in fact, P(Ê) = domSE̊ . It again has the property

that P(Ê)ev = P. Hence, we may assume from the start that B̊ 6∈ Q̊.

Proof (of Theorem 3.3; Part 2: Properties of Q̊τ ). If τ = ∞, we have Q̊τ = Q̊,
and hence this case is trivial. Next we deal with the case that τ ∈ R \ {0}. By
Remark 3.4, we have E̊ = Eγ̊ with some γ̊ ∈ R. Consider the space P(Eγ̊+ 1

τ
).

Since
(
Aγ̊+ 1

τ
, Bγ̊+ 1

τ

)
=
(
Aγ̊ , Bγ̊

)
(

1 0
− 1

τ
1

)

,

we obtain from Remark 3.6, (i), that

P(Eγ̊+ 1
τ
) = Q̊[+̇] span{B̊}, [B̊, B̊] = τ .
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Comparing with the definition of Q̊τ , we conclude that

Q̊τ = P(Eγ̊+ 1
τ
), τ ∈ R \ {0} . (3.4)

It follows from Remark 3.4 that Q̊ev
τ = P. Clearly, Q̊τ is a Hilbert space if

τ > 0, and a Pontryagin space with negative index 1 if τ < 0 (a maximal
negative subspace being spanned by B̊).

It remains to consider the case that τ = 0. However, we have Q̊0
set
= Q̊τ ,

τ ∈ R \ {0}, and
[F,G]0 = lim

τ→0
[F,G]τ , F,G ∈ Q̊0 .

This implies that Q̊0 is a dB-space, and that Q̊ev
0 = P. Moreover, obviously, Q̊0

is degenerated (its symmetric part being spanned by B̊). ❑

Proof (of Theorem 3.3; Part 3: The family Q̊τ exhausts all). Let a symmetric
dB-space Q with Qev = P be given. The case that Q is nondegenerated is
easily settled: By Remark 3.4 there exists a parameter γ ∈ R with Q = P(Eγ).

If γ = γ̊, we have Q = Q̊∞. Otherwise, by (3.4),

P(Eγ) = Q̊ 1
γ−γ̊

.

From now on assume that Q is degenerated. This case is more involved.

Case ‘Q degenerated’; Q as a set: Choose points s1, . . . , sn > 0 and weights
δ1, . . . , δn > 0, such that the correspondingly perturbed inner product J., .KevQ

turns Q into a Pontryagin space. Set
m

Q := Q̊1, then
m

Q is a Hilbert space

and
m

Q
ev

= P. Since all weights δi are positive, the corresponding perturbation

J., .Kev
m

Q
〉 of [., .] m

Q
turns 〈

m

Q again into Hilbert space. Let J., .KP be the correspond-

ing perturbation of [., .]P, then we can write

〈P, J., .KP〉 = P(E+) with E+ ∈ HBsb
<∞, ind− E+ = 0 ,

〈Q, J., .KevQ〉 = P(Ẽ+) with Ẽ+ ∈ HBsym
<∞,

〈
m

Q, J., .Kev
m

Q
〉 = P(

m

E+) with
m

E+ ∈ HBsym
<∞, ind−

m

E
+

= 0 .

By Lemma 2.10, (iii),

P(Ẽ+)ev = P(
m

E+)ev = P(E+) .

From Remark 3.4 we obtain parameters γ̃ ∈ R and
m

γ ∈ R, such that Ẽ+ = E+
γ̃

and
m

E+ = E+
m

γ
, and hence

(Ã+, B̃+) = (
m

A+,
m

B+)

(

1 0

−(γ̃ − m

γ)z 1

)

.

Since B̊ 6∈ Q̊, we have
m

B ∈
m

Q. By Corollary 2.12, thus also
m

B+ ∈ P(
m

E+). We
may apply Remark 3.6, (ii), and it follows that

domS m

E+
⊆ P(Ẽ+)

set
=

{

domS m

E+

P(
m

E+)
.
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Returning to the unperturbed inner products, yields that

Q̊ ⊆ Q
set
=

{

Q̊
m

Q
.

Case ‘Q degenerated’; Finish of proof: If we had Q
set
= Q̊, we would in fact have

Q = Q̊. This contradicts the fact that Q is degenerated. Hence, Q
set
=

m

Q, and
domSQ = Q̊ is nondegenerated. Lemma 2.14 implies that either Q◦ = span{Å}
or Q◦ = span{B̊}. The first case is ruled out since Qev = P = Q̊ev. We see that
Q = Q0. ❑

4 The ‘od’-case

Interestingly, the situation for the ‘od’-branch is much more complex. Again, let
us first introduce two-parameter families of inner product spaces on a general
level.

4.1 Definition. Let L be a reproducing kernel almost Pontryagin space of
entire functions, let p ∈ R \ {0}, and let C and D be entire functions with
C(0) = 1, D(0) = −1 which are linearly independent modulo L. Then, for each
pair of parameters l ∈ R, q ∈ R ∪ {∞}, we define an inner product space Ll,q

as follows.

(i) The underlying linear space of Ll,q is

Ll,q :
set
=

{

L+̇ span{C} , q = p
1−pl

L+̇ span{C}+̇ span{D} , q 6= p
1−pl

where p
1−pl

is understood as ∞ if l = 1
p
.

(ii) The inner product [., .]l,q of Ll,q is defined by means of its Gram matrix
with respect to the direct sum decomposition written in (i):

GM[.,.]l,q :=







(

[., .]L 0

0 1
p
− l

)

, q = p
1−pl






[., .]L 0 0

0 1
p
− l l

0 l q(l2p)+(1+pl)
q(1−pl)−p




 , q 6= p

1−pl

where, in the second case, the right lower entry takes its natural (limit-)
value if q = ∞.

Moreover, the space Ll,q is endowed with the product topology of the topology
of L and the euclidean topology of C or C2, respectively. �

4.2 Remark. Again, let us immediately state some simple geometric properties
of the family Ll,q, l ∈ R, q ∈ R ∪ {∞}.

(i) The space Ll,q is an almost Pontryagin space.
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(ii) Assume that L is nondegenerated. Then Ll,q is degenerated if and only if
q = ∞. We have

L◦

l,∞ =

{

span{C} , q = p
1−pl

span{lC + (l − 1
p
)D} , q 6= p

1−pl

(iii) The inner product [., .]l,q depends continuously on (l, q), if (l, q) varies in
either of the sets

Ms :=
{

(l, q) ∈ R× (R ∪ {∞}) : q =
p

1− pl

}

,

Mb :=
{

(l, q) ∈ R× (R ∪ {∞}) : q 6= p

1− pl

}

.

(iv) We have Ll,q
set
= Ll′,q′ whenever (l, q) and (l′, q′) either both belong to Ms,

or both belong to Mb. If (l, q) ∈ Ms and (l′, q′) ∈ Mb, then Ll,q

set
⊆ Ll′,q′

and dimLl′,q′/Ll,q = 1. If, in addition, l = l′, then Ll,q ⊆ Ll′,q.

(v) If l, l′ ∈ R and q, q′ ∈ R ∪ {∞} are such that Ll,q = Ll′,q′ , then l = l′ and
q = q′.

(vi) For l ∈ R denote by q̊(l) ∈ R∪{∞} the unique number such that (l, q̊(l)) ∈
Ms. Then

[., .]l,q|Ll,q̊(l)×Ll,q̊(l)
= [., .]l,q̊(l), q ∈ R ∪ {∞} .

If l 6= l′, then [., .]l,q̊(l) 6= [., .]l′,q̊(l′).

�

4.3 Theorem. Let P ∈ DBsb be given. Then there exists a reproducing kernel
Hilbert space L of entire functions, a number p > 0, even entire functions C and
D with C(0) = 1, D(0) = −1, which are linearly independent modulo L, points
t1, . . . , tm > 0 and weights ω1, . . . , ωm ∈ R, such that the following statement
holds.

For each inner product space 〈Q, [., .]Q〉, the properties (i) and (ii) are equiv-
alent:

(i) Q ∈ DBsym and Qod = P..

(ii) There exist parameters l ∈ R, q ∈ R ∪ {∞}, such that

Q = 〈Ll,q, J., .K
od

Ll,q
〉

where the family Ll,q is constructed from L, p, C,D, and J., .KodLl,q
is the

perturbation of the inner product of Ll,q buildt with the points t1, . . . , tm
and weights ω1, . . . , ωm.

The choice of L, p, C,D can be made such that

L =

{

ranSLl,q
, (l, q) ∈ Ms

ranSLl,q
∩ domSLl,q

, (l, q) ∈ Mb

and, in case (l, q) ∈ Mb,

ranSLl,q
= L+̇ span{C +D}, domSLl,q

= L+̇ span{C} .
Assume in addition that:
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(A) The family of all symmetric dB-spaces Q with Qod = P contains a
Hilbert space.

Then the choice of L, p, C,D can be made in such a way that no perturbation is
necessary.

We can thus picture the totality of symmetric dB-spaces Q with Qod = P as

l

q
•

1
p

Ms

q = ∞

If P satisfies (A), we have the following refinement of this picture:

l

q
•

1
p

Ms

q = ∞, degenerated

ind
−
L l,q

=
0

ind
−
L l,q

=
1

ind
−
L l,q

=
2

dimL◦

l,∞
= 1

n
o
n
d
eg

en
era

ted
q
6=

∞
,

For the proof of this theorem, we mimic the proof of the ‘ev’-case. First, the
required replacements of Remark 3.4–Remark 3.6.

4.4 Lemma. Let E ∈ HBsb
<∞ be given. For γ, δ ∈ R set

(
Aγ,δ(z), Bγ,δ(z)

)
:=
(
A(z2), zB(z2)

)
(
1 δz
γ
z

1 + δγ

)

. (4.1)

Then the following hold:

(i) For each γ, δ ∈ R the function Eγ,δ belongs to the class HBsym
<∞, and we

have P(Eγ,δ)
od = P(E).

(ii) If Ẽ ∈ HBsym
<∞ is such that P(Ẽ)od = P(E), then there exist unique pa-

rameters γ, δ ∈ R with Ẽ = Eγ,δ.
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(iii) Let γ, δ ∈ R and γ′, δ′ ∈ R be given. Then the functions Eγ,δ and Eγ′,δ′

are related by

(
Aγ′,δ′ , Bγ′,δ′

)
=
(
Aγ,δ, Bγ,δ

)

(
1− δ(γ′−γ) z

[
(δ′−δ)− δδ′(γ′−γ)

]

γ′
−γ
z

1 + δ′(γ′−γ)

)

.

Proof. Let γ, δ ∈ R be given. Clearly, Aγ,δ is even and Bγ,δ is odd. We can
rewrite

Bγ,δ(z)

Aγ,δ(z)
= δz −

[

−
[

z
B(z2)

A(z2)

]−1

− γ

z

]−1

.

Using notation and results of [KWW06b, Theorem 4.1], since B
A

∈ N ep
<∞, it

follows that
Bγ,δ(z)
Aγ,δ(z)

∈ N<∞. The matrix on the right hand side of (4.1) has

determinant 1 for all z ∈ C \ {0}, and hence Aγ,δ and Bγ,δ have no common
zeros in R \ {0}. Moreover, Aγ,δ(0) = 1 and Bγ,δ(0) = 0. It follows that
Eγ,δ ∈ HBsym

<∞.
From [KWW06a, Proposition 4.9] we obtain that the space P(Eγ,δ)

od is
generated by the function Eod

γ,δ with

Aod

γ,δ(z
2) = Aγ,δ(z), Bod

γ,δ(z
2) =

Bγ,δ(z)

z
−B′

γ,δ(0)Aγ,δ(z) .

Substituting the definitions of Aγ,δ and Bγ,δ, and remembering that B′

γ,δ(0) = δ,
gives

(
Aod

γ,δ, B
od

γ,δ

)
= (A,B)

(
1 0
γ 1

)

,

and hence P(Eod

γ,δ) = P(E). This finishes the proof of (i).

For the proof of existence in (ii), let a function Ẽ ∈ HBsym
<∞ with P(Ẽ)od =

P(E) be given. Since P(E) = P(Ẽ)od = P(Ẽod), there exists a number γ ∈ R

with

(Ãod, B̃od) = (A,B)

(
1 0
γ 1

)

.

This gives
Ã(z) = Ãod(z2) = A(z2) + γB(z2) ,

B̃(z)

z
− B̃′(0)Ã(z) = B̃od(z2) = B(z2) .

The second relation rewrites as

B̃(z) = zB(z2)+zB̃′(0)
(
A(z2)+γB(z2)

)
= zB̃′(0)A(z2)+

(
1+ B̃′(0)γ

)
zB(z2) ,

and we see that Ẽ = Eγ,B̃′(0).

For the proof of uniqueness, assume that γ, δ ∈ R and γ′, δ′ ∈ R are such that
P(Eγ,δ) = P(Eγ′,δ′). This implies that Eγ,δ = Eγ′,δ′ , remember Remark 2.7,
(iii). We obtain the equations

A(z2) + γB(z2) = A(z2) + γ′B(z2) ,

δzA(z2) + (1 + δγ)zB(z2) = δ′zA(z2) + (1 + δ′γ′)zB(z2) .

The first equation implies that γ = γ′ (note that B cannot vanish identically,
cf. Remark 2.5). Since (again Remark 2.5) the functions A and B are linearly
independent, the second equation implies δ = δ′.

The formula asserted in (iii) follows by a straightforward computation. ❑
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4.5 Lemma. Let a, b, c, d ∈ R with ad− bc = 1 be given, assume that not both
of b and c are equal to zero, and consider the matrix function

T (z) :=

(
a bz
c
z

d

)

, z ∈ C \ {0} .

Then the kernel

KT (w, z) :=
T (z)JT (w)∗ − J

z − w
, z, w ∈ C \ {0} (4.2)

has a finite number of negative squares, in fact,

ind− T =







0 , c = 0, ab > 0 ∨ b = 0, cd > 0 ∨
b, c, d 6= 0, sgn b = sgn c = sgn d

1 , c = 0, ab < 0 ∨ b = 0, cd < 0 ∨
b, c, 6= 0, d = 0 ∨
b, c, d 6= 0, sgn b 6= sgn c

2 , b, c, d 6= 0, sgn b = sgn c 6= sgn d

.

The reproducing kernel space K(T ) generated by the kernel KT is given as

K(T ) =







span
{(

1
0

)}
, b 6= 0, c = 0

span
{(

0
1
z

)}
, b = 0, c 6= 0

span
{(

1
0

)
,
(
0
1
z

)}
, b 6= 0, c 6= 0

. (4.3)

Its inner product is given by

[(1

0

)

,

(
1

0

)]

K(T )
=

1

ab
if c = 0,

[(0
1
z

)

,

(
0
1
z

)]

K(T )
=

1

cd
if b = 0 ,

and by the Gram matrix

GM[.,.]K(T )
=

(
d
b

−1
−1 a

c

)

if b, c 6= 0.

Proof. A computation shows that

KT (w, z) =

(
ab bc

w
bc
z

cd
zw

)

, z, w ∈ C \ {0} .

Hence,

span
{

KT (w, .)

(
α

β

)

: α, β ∈ C
}

= span
{

b

(
a
c
z

)

, c

(
b
d
z

)}

,

and we see that (4.3) holds. In particular, KT has at most 2 negative squares.
In order to show the required formula for the Gram matrix of the inner

product of K(T ), we distinguish the three cases.
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Case 1; c = 0: In this case we have KT (w, z) =
(
ab 0
0 0

)

, and hence

[(1

0

)

,

(
1

0

)]

=
1

(ab)2

[(ab

0

)

,

(
ab

0

)]

=
1

(ab)2

[

KT (1, .)

(
1

0

)

,KT (1, .)

(
1

0

)]

=

=
1

(ab)2
·
(
1

0

)∗

KT (1, 1)

(
1

0

)

=
1

ab
.

Case 2; b = 0: In this case we have KT (w, z) =
(
0 0
0 cd

zw

)

, and hence

[(0
1
z

)

,

(
0
1
z

)]

=
1

(cd)2

[( 0
cd
z

)(
0
cd
z

)]

=
1

(cd)2

[

KT (1, .)

(
0

1

)

,KT (1, .)

(
0

1

)]

=

=
1

(cd)2
·
(
0

1

)∗

KT (1, 1)

(
0

1

)

=
1

cd
.

Case 3; b, c 6= 0: From KT (1, z)
(
1
0

)
= b
(
a
c
z

)
and KT (1, z)

(
0
1

)
= c
(
b
d
z

)
, we obtain

that

[

b

(
a
c
z

)

, b

(
a
c
z

)]

= ab,
[

b

(
a
c
z

)

, c

(
b
d
z

)]

= bc,
[

c

(
b
d
z

)

, c

(
b
d
z

)]

= cd .

We have
(
1

0

)

=
d

b
· b
(
a
c
z

)

− c

(
b
d
z

)

,

(
0
1
z

)

= −b

(
a
c
z

)

+
a

c
· c
(
b
d
z

)

,

and hence

[(1

0

)

,

(
1

0

)]

=
(d

b

)2

· ab− 2
d

b
· bc+ cd =

d

b
,

[(1

0

)

,

(
0
1
z

)]

=− d

b
· ab+ d

b

a

c
· bc+ bc− a

c
· cd = −1 ,

[(0
1
z

)

,

(
0
1
z

)]

=ab− 2
a

c
· bc+

(a

c

)2

· cd =
a

c
.

It remains to compute the negative index of K(T ). If b = 0 or c = 0, this is
immediate. If b, c 6= 0, we apply Gundelfinger’s rule, see, e.g., [Ioh74, p.48f.]:
The sequence of principal minors (in this rule the minor of order zero is formally
understood as +1) of the Gram matrix is

+1,
d

b
,

1

bc
,

and hence the desired formula follows. ❑

4.6 Lemma. Let E ∈ HBsym
<∞ with P(E)od 6= {0} be given, and set p := B′(0).

Moreover, let q ∈ R and l ∈ R be given, and set

(Ã, B̃) := (A,B)

(
1− pl z

[
(q − p)− pql

]

l
z

1 + ql

)

Then Ẽ ∈ HBsym
<∞.
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(i) Assume that p 6= 0 and (q − p)− pql = 0. Then

P(Ẽ)
set
= ranSE+̇ span

{B(z)

z

}
set
= P(E) .

The Gram matrix of the inner product [., .]Ẽ with respect to this decompo-
sition is (

[., .]E 0
0 p(1− pl)

)

(ii) Assume that p 6= 0, A 6∈ P(E), and (q − p)− pql 6= 0, 1− pl 6= 0. Then

P(Ẽ)
set
= ranSE+̇ span

{B(z)

z

}

+̇ span
{
Ã
} set
= P(E)+̇ span

{
A
}
.

The Gram matrix of the inner product [., .]Ẽ with respect to this decompo-
sition is 



[., .]E 0 0
0 p(1− pl) 0

0 0 1−pl
(q−p)−pql





(iii) Assume that p 6= 0, A 6∈ P(E), and (q − p)− pql 6= 0, 1− pl = 0. Then

P(Ẽ)
set
= ranSE+̇

(

span
{
Ã
}
+̇ span

{ B̃(z)

z

})
set
= P(E)+̇ span

{
A
}
.

The Gram matrix of the inner product [., .]Ẽ with respect to this decompo-
sition is 



[., .]E 0 0
0 0 1
0 1 q





(iv) Assume that A ∈ P(E). Then

ranSE ∩ domSE ⊆ P(Ẽ)
set
=

{

domSE

P(E)

Proof (of Lemma 4.6; Part 1: Preparation). Set

T (z) :=

(
1− pl z

[
(q − p)− pql

]

l
z

1 + ql

)

Since B(0) = 0, the functions Ã and B̃ are entire. Clearly, Ã is even, B̃ is odd,
and B̃(0) = 0. Moreover, we have

Ã(0) = (1− pl) + lB′(0) = 1 .

Since detT (z) = 1, z ∈ C \ {0}, the functions Ã and B̃ have no common zeros
in C \ {0}. Denote by KT the kernel function (4.2), and by KE and KẼ the
respective kernel functions (2.1). Then we have

KẼ(w, z) = KE(w, z) + (A(z), B(z)) ·KT (w, z) · (A(w), B(w))∗
︸ ︷︷ ︸

=:K(w,z)

.
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Since P(E)od 6= {0}, the functions A(z) and B(z)
z

are linearly independent.
Thus the map

(
α
β
z

)

7→ αA(z) + β
B(z)

z
,

(
α
β
z

)

∈ K(T ) ,

is an isometric isomorphism of K(T ) onto the reproducing kernel space K gen-
erated by the kernel K.

It already follows that KẼ has a finite number of negative squares, and hence

that Ẽ ∈ HBsym
<∞. ❑

To carry out the required closer analysis, recall how P(Ẽ) can be described
considering that the kernel KẼ is the sum of the two the reproducing kernels
KE and K, see, e.g., [Wor11, Proposition 2.2].

4.7 Remark. Denote by [., .]+ the sum inner product on P(E)× K, and set

D :=
{
(F,−F ) : F ∈ P(E) ∩ K

}
.

Then the map Λ : (F,G) 7→ F + G is a continuous and surjective isometry of
〈(P(E) × K)[−]+D, [., .]+〉 onto P(Ẽ). The spaces P(E)[−]E(P(E) ∩ K) and
K[−]K(P(E) ∩ K) are isometrically contained in P(Ẽ) as orthogonal subspaces.

�

Proof (of Lemma 4.6; Part 2: Calculations). If l = 0 and q = p, then Ẽ = E
and thus the assertions are all clear. Hence, from now on, we exclude this
case. Moreover, let us notice that the assumption ‘p 6= 0’ in (i)–(iii) implies

P(E) = ranSE [+̇] span{B(z)
z

}.
Item (i): In the present situation, we have (1 − pl)(1 + ql) = 1. Moreover, if
l = 0 then p = q, and this case was excluded. Thus, l 6= 0. The space K(T ) is
given as

K(T ) = span
{(0

1
z

)}

,
[(0

1
z

)

,

(
0
1
z

)]

K(T )
=

1

l(1 + ql)
=

1

l
− p .

The space K is thus given as

K = span
{B(z)

z

}

,
[B(z)

z
,
B(z)

z

]

K
=

1

l
− p .

We see that K
set
⊆ P(E), and that

P(E)× K =
(
ranSE × {0}

)
[+̇]+

(
K× K

)
.

Moreover,

D=span
{(B(z)

z
,−B(z)

z

)}

,
[(B(z)

z
,−B(z)

z

)

,
(B(z)

z
,−B(z)

z

)]

+
=

1

l
6= 0 .

and
(
P(E)× K

)
[−]+D =

(
ranSE × {0}

)
[+̇]+

(
(K× K)[−]+D

)
.

It already follows that

ranSE ⊆ P(Ẽ)
set
= P(E) ,
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and that
P(Ẽ) = ranSE [+̇]+Λ

(
(K× K)[−]+D

)
.

To compute inner products, consider the element (B(z)
z

, 0) − pl(B(z)
z

,−B(z)
z

) ∈
K× K. We have

[(B(z)

z
, 0
)

− pl
(B(z)

z
,−B(z)

z

)

,
(B(z)

z
,−B(z)

z

)]

+
=

=(1− pl)
[B(z)

z
,
B(z)

z

]

E
− pl

[B(z)

z
,
B(z)

z

]

K
=

=(1− pl)p− pl(
1

l
− p) = 0 , (4.4)

i.e. this element belongs to (K × K)[−]+D. Its image under Λ equals B(z)
z

, and
hence

[B(z)

z
,
B(z)

z

]

Ẽ
=

=
[(B(z)

z
, 0
)

− pl
(B(z)

z
,−B(z)

z

)

,
(B(z)

z
, 0
)

− pl
(B(z)

z
,−B(z)

z

)]

+
=

=(1− pl)2
[B(z)

z
,
B(z)

z

]

E
+ (pl)2

[B(z)

z
,
B(z)

z

]

K
= p(1− pl) . (4.5)

Item (ii): The space K is given as

K = span
{

A(z),
B(z)

z

}

, G =

( 1+ql
(q−p)−pql

−1

−1 1
l
− p

)

, (4.6)

where G is the Gram matrix of the inner product [., .]K with respect to the
written basis.

We see that

P(E) ∩ K = span
{B(z)

z

}

, D = span
{(B(z)

z
,−B(z)

z

)}

,

Since p 6= 0, we have

P(E) = ranSE [+̇]E span
{B(z)

z

}

.

Moreover, we have Ã(z) = (1− pl)A(z) + lB(z)
z

, and hence

[

Ã(z),
B(z)

z

]

K
= (1− pl)

[

A(z),
B(z)

z

]

K
+ l
[B(z)

z
,
B(z)

z

]

K
= 0 .

Since 1− pl 6= 0, thus

K = span
{B(z)

z

}

[+̇]K span{Ã} .

The same computation as carried out in (4.4) gives

span
{B(z)

z

}

× span
{B(z)

z

}

= span
{(B(z)

z
, 0
)

− pl
(B(z)

z
,−B(z)

z

)}

[+]+D .
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Altogether, it follows that (P(E)× K)[−]+D can be written as

(
P(E)× K

)
[−]+D =

(
ranSE × {0}

)
[+̇]+

[+̇]+ span
{(B(z)

z
, 0
)

− pl
(B(z)

z
,−B(z)

z

)}

[+̇]+

[+̇]+
(
{0} × span{Ã}

)
.

Applying the isometry Λ, gives that ranSE ⊆ P(Ẽ), span{Ã} ⊆ P(Ẽ), and

P(Ẽ) = ranSE [+̇]Ẽ span
{B(z)

z

}

[+̇]Ẽ span{Ã} .

The same computation as in (4.5) gives [B(z)
z

, B(z)
z

]Ẽ = p(1 − pl). Finally, we
compute

[Ã, Ã]Ẽ =[Ã, Ã]K =
[

(1− pl)A(z) + l
B(z)

z
, (1− pl)A(z) + l

B(z)

z

]

K
=

=(1− pl)2
1 + ql

(q − p)− pql
− 2l(1− pl) + l2

(1

l
− p
)
=

=(1− pl)
1 + [(q − p)− pql]l

(q − p)− pql
− l(1− pl) =

1− pl

(q − p)− pql
.

Item (iii): The space K is given by (4.6), and hence we have (remember that
p 6= 0)

P(E) ∩ K = span
{B(z)

z

}

, P(E) = ranSE [+̇]E span
{B(z)

z

}

,

D = span
{(B(z)

z
,−B(z)

z

)}

,
[(B(z)

z
,−B(z)

z

)

,
(B(z)

z
,−B(z)

z

)]

=
1

l
.

It follows that

(
P(E)×K

)
[−]+D =

(
ranSE×{0}

)
[+̇]+

((
span

{(B(z)

z
,−B(z)

z

)

×K
)
[−]+D

)

,

Λ
((

span
{(B(z)

z
,−B(z)

z

)

× K
)
[−]+D

)

= K .

This already implies that ranSE ⊆ P(Ẽ) and P(Ẽ) = ranSE [+̇]ẼK. We have

Ã(z) = l
B(z)

z
,

B̃(z)

z
=
[
(q − p)− pql

]
A(z) + (1 + ql)

B(z)

z
,

and hence K = span
{
Ã(z), B̃(z)

z

}
. Moreover,

[Ã, Ã]Ẽ =[Ã, Ã]K = l2
[B(z)

z
,
B(z)

z

]

K
= 0

[

Ã(z),
B̃(z)

z

]

Ẽ
=Ã(0) = 1

[ B̃(z)

z
,
B̃(z)

z

]

Ẽ
=B̃′(0) =

[
(q − p)− pql

]
+ (1 + ql)p = q
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Item (iv): The space K is given by (4.6). Hence K
set
⊆ P(E), and

D = span
{(

A(z), A(z)
)
,
(B(z)

z
,
B(z)

z

)}

.

It follows that

(
P(E)× K

)
[−]+D =

(
(ranSE ∩ domSE)× {0}

)
[+̇]+

(
(K× K)[−]+D

)
.

This already shows that

(ranSE ∩ domSE) ⊆ P(Ẽ)
set
⊆ P(E) .

Since P(Ẽ) is itself a dB-space, and is closed as a linear subspace of P(E), we

must have either P(Ẽ)
set
= P(E) or P(Ẽ)

set
= domSE . ❑

Proof (of Theorem 4.3; Part 1: Reduction). Again our first aim is to show that
we may restrict without loss of generality to the case that the additional condi-
tion stated in Theorem 4.3 is satisfied.

Choose points t1, . . . , tn > 0 and weights γ1, . . . , γn > 0, such that the
corresponding perturbation J., .KP of [., .]P turns P into a Hilbert space. Write
〈P, J., .KP〉 = P(E) with E ∈ HBsb

<∞, ind− E = 0, and let the function E0,0 ∈
HBsym

<∞ be defined by (4.1) with γ = δ = 0. Then

〈P(E0,0), [., .]E0,0
〉od = 〈P, J., .KP〉 ,

cf. Lemma 4.4.
Next, choose points tn+1, . . . , tm > 0 and weights γn+1, . . . , γm > 0 such that

the corresponding perturbation J., .KodE0,0
of [., .]E0

turns P(E0,0) into a Hilbert

space. Moreover, let J., .K′P be the perturbation of J., .KP on P using tn+1, . . . , tm
and γn+1, . . . , γm. Then, by Lemma 2.10, (iii),

〈P(E0,0), J., .K
od

E0,0
〉od = 〈P, J., .K′P〉 .

Once it is proved that the totality of all symmetric dB-spaces Q′ with (Q′)od =
〈P, J., .K′P〉 is described by a family Ll,q, l ∈ R, q ∈ R ∪ {∞}, we may return
to the original inner product on P by performing the perturbation with points
t1, . . . , tm and weights −γ1, . . . ,−γm, and in this way obtain the desired de-
scription of the family of all symmetric dB-spaces Q with Qod = 〈P, [., .]P〉.
The space 〈P, J., .K′P〉, however, satisfies the additional property stated in The-
orem 4.3. ❑

From now on we assume that there exists a dB-Hilbert space Q̊ = P(E̊), E̊ ∈
HBsym

<∞, ind− E̊ = 0, with Q̊od = P. If Å ∈ P(E̊), the space P(Ê) with

(Â, B̂) := (Å, B̊)

(

1 − 1
[Å,Å]E̊

z

0 1

)

is again a dB-Hilbert space, in fact, P(Ê) = domSE̊ . It again has the property

that P(Ê)od = P. Hence, we may assume without loss of generality that Å 6∈ Q̊.
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We denote by
m

Q the symmetric dB-Hilbert space
m

Q := P(
m

E) with

(
m

A,
m

B) := (Å, B̊)

(
1 z
0 1

)

.

Then we have

dim
m

Q/Q̊ = 1, Q̊ = domS m

Q
, ranSQ̊ = ranS m

Q
∩ domS m

Q
,

and
m

A ∈ P(
m

E), and
m

Qod = P.
We define data as required in Theorem 4.3 as

L := ranSE̊ , p := B̊′(0), C(z) := −1

p

B̊(z)

z
, D(z) := Å(z) ,

and consider the family Ll,q constructed with this data. Note that, whenever
(l, q) ∈ Mb and (l′, q′) ∈ Ms, we have

Ll,q
set
=

m

Q

II
II

I

tt
tt

tD D−pC

Ll′,q′
set
= Q̊ ranS m

Q

ranSE̊

LLLLL
sssssC C+D

Since Q̊ is a Hilbert space, also the space P is. Hence, it can be written as
P = P(E) with E ∈ HBsym

<∞, ind− E = 0. Lemma 4.4 provides us with two real

parameters γ̊, δ̊, such that E̊ = E
γ̊,̊δ

. Thereby, in fact, δ̊ = p.

Proof (of Theorem 4.3; Part 2: Sufficiency). First we deal with the case that
q 6= ∞. Our aim is to show that

Ll,q = P(Eγ̊+l,q), (l, q) ∈ R× R . (4.7)

Once this is known, Lemma 4.4 will imply that Ll,q ∈ DBsym and Lod

l,q = P. In
order to prove (4.7), we distinguish three cases. Set γ := γ̊ + l.

Case 1; (l, q) ∈ Ms: The computation Lemma 4.4, (iii), gives

(Aγ,q, Bγ,q) = (Å, B̊)

(
1− pl z[(q − p)− pql]

l
z

1 + ql

)

.

Since (l, q) ∈ Ms and q 6= ∞, we have (q − p) − pql = 0 and 1 − pl 6= 0.
Lemma 4.6, (i), implies that

P(Eγ,q)
set
= ranSE̊+̇ span{C} ,

and that the Gram matrix of [., .]Eγ,q
with respect to this direct sum decompo-

sition is

GM[.,.]Eγ,q
=

(
[., .]E̊ 0
0 1

p
− l

)

Comparing with the definition of Ll,q, we see that indeed Ll,q = P(Eγ,q).
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Case 2; (l, q) ∈ Mb and 1 − pl 6= 0: Since (l, q) ∈ Mb and q 6= ∞, we have
(q − p)− pql 6= 0. Thus Lemma 4.6, (ii), can be applied, and we obtain that

P(Eγ,q)
set
= ranSE̊+̇ span

{ B̊(z)

z

}

+̇ span
{
Aγ,q

}
.

We have

Aγ,q(z) = (1− pl)Å(z) + l
B̊(z)

z
= −lpC(z) + (1− pl)D(z) ,

D(z) = − l

1− pl

B̊(z)

z
+

1

1− pl
Aγ,δ(z) ,

and hence

ranSE̊+̇ span
{ B̊(z)

z

}

+̇ span
{
Aγ,q

} set
= ranSE̊+̇ span{C}+̇ span{D} .

We compute

[C,C]Eγ,δ
=
[

− 1

p

B̊(z)

z
,−1

p

B̊(z)

z

]

Eγ,q

=
1

p2
· p(1− pl) =

1

p
− l ,

[C,D]Eγ,δ
=
[

− 1

p

B̊(z)

z
,

−l

1− pl

B̊(z)

z
+

1

1− pl
AEγ,q

(z)
]

Eγ,q

=

=
l

p(1− pl)
· p(1− pl) = l ,

[D,D]Eγ,δ
=
[ −l

1−pl

B̊(z)

z
+

1

1−pl
Aγ,δ(z),

−l

1−pl

B̊(z)

z
+

1

1−pl
AEγ,δ

(z)
]

Eγ,q

=

=
l2

(1− pl)2
· p(1− pl) +

1

(1− pl)2
· 1− pl

(q − p)− pql
=

=
l2p[(q − p)− pql] + 1

(1− pl)[(q − p)− pql]
=

q(l2p) + (1 + pl)

(q − p)− pql
.

Thus, again, Ll,q = P(Eγ,q).

Case 3; (l, q) ∈ Mb and 1− pl = 0: Clearly, (q− p)− pql 6= 0, and hence we can
apply Lemma 4.6, (iii). This gives

P(Eγ,q)
set
= ranSE̊+̇ span

{
Aγ,q

}
+̇ span

{Bγ,q(z)

z

}

.

We have

C(z) = −1

p

B̊(z)

z
= −Aγ,q(z),

Bγ,q(z)

z
= −pÅ(z) + (1 + ql)

B̊(z)

z
,

D(z) = Å(z) = (1 + ql)Aγ,q(z)− l
Bγ,q(z)

z
.

Hence

ranSE̊+̇ span
{
Aγ,q

}
+̇ span

{Bγ,q(z)

z

}
set
= ranSE̊+̇ span{C}+̇ span{D} ,
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and we can compute

[C,C]Eγ,q
=[−Aγ,q, Aγ,q]Eγ,q

= 0

[C,D]Eγ,q
=
[

−Aγ,q, (1 + ql)Aγ,q(z)− l
Bγ,q(z)

z

]

Eγ,q

= l

[D,D]Eγ,q
=
[

(1 + ql)Aγ,q(z)− l
Bγ,q(z)

z
, (1 + ql)Aγ,q(z)− l

Bγ,q(z)

z

]

Eγ,q

=

=− 2l(1 + ql) + l2q = −2l − l2q .

On the other hand, we have

q(l2p) + (1 + pl)

q(1− pl)− p
=

ql + 2

−p
= −ql2 − 2l .

Thus also in this case Ll,q = P(Eγ,q).
The proof of (4.7) is finished, and hence the case that q 6= ∞ is settled. The

case that q = ∞ is treated with a limit argument.
If 1 − pl 6= 0, then we have for all sufficiently large values of q′ ∈ R that

(l, q′) ∈ Mb. Moreover, for such values of q′,

Ll,∞
set
= Ll,q′ , [F,G]Ll,∞

= lim
q′→∞

[F,G]Ll,q′
, F,G ∈ Ll,∞ .

It follows that Ll,∞ ∈ DBsym and that Lod

l,∞ = P.
If 1 − pl = 0, we have (l,∞) ∈ Ms. For l′ ∈ R \ {l}, consider the value

q̊(l′) := p
1−pl′

, so that q̊(l′) 6= ∞ and (l′, q̊(l′)) ∈ Ms. We have

Ll,∞
set
= Ll′,q̊(l′), [F,G]Ll,∞

= lim
l′→l

[F,G]Ll′,q̊(l′)
, F,G ∈ Ll,∞ ,

and again conclude that Ll,∞ ∈ DBsym, Lod

l,∞ = P. ❑

Proof (of Theorem 4.3; Part 3: Necessity). Let a symmetric dB-space Q with
Qod = P be given. The case that Q is nondegenerated is simple: By Lemma 4.4
there exist parameters γ, δ ∈ R with Q = P(Eγ,δ), and by (4.7) thus

P(Eγ,δ) = Lγ−γ̊,δ .

From now on assume that Q is degenerated. Again, this situation requires more
effort.

Case ‘Q degenerated’; Q as a set: Choose points s1, . . . , sn > 0 and weights
δ1, . . . , δn > 0, such that the correspondingly perturbed inner product J., .KodQ

turns Q into a Pontryagin space. Since all weights δi are positive, 〈
m

Q, J., .Kod
m

Q
〉

is also a Hilbert space. Let J., .KP be the corresponding perturbation of [., .]P,
then we can write

〈P, J., .KP〉 = P(E+) with E+ ∈ HBsb
<∞, ind− E+ = 0 ,

〈Q, J., .KodQ 〉 = P(Ẽ+) with Ẽ+ ∈ HBsym
<∞,

〈
m

Q, J., .Kod
m

Q
〉 = P(

m

E+) with
m

E+ ∈ HBsym
<∞, ind−

m

E+ = 0 .
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By Lemma 2.10, (iii),

P(Ẽ+)od = P(
m

E+)od = P(E+) .

From Lemma 4.4 we obtain parameters γ̃, δ̃ ∈ R and
m

γ,
m

δ ∈ R, such that Ẽ+ =

E+

γ̃,δ̃
and

m

E+ = E+
m

γ,
m

δ
, and hence

(Ã+, B̃+) = (
m

A+,
m

B+)

(

1− pl z[(q − p)− pql]
l
z

1 + ql

)

with
p :=

m

δ, q := δ̃, l := γ̃ −
m

δ .

By Corollary 2.12, we have
m

A+ ∈ P(
m

E+), and hence we may apply Lemma 4.6,
(iv). It follows that

ranS m

E+
∩ domS m

E+
⊆ P(Ẽ+)

set
=

{

domS m

E+

P(
m

E+)
.

Returning to the unperturbed inner products, yields that

ranSQ̊ = ranS m

Q
∩ domS m

Q
⊆ Q

set
=

{

Q̊
m

Q
.

Case ‘Q degenerated’; We show that Q = ranSQ+̇Q◦: Since Qod = P is non-
degenerated, we have Q◦ ⊆ {F ∈ Q : F even} and dimQ◦ = 1, cf. [KWW06a,
Lemma 2.4]. It follows that the equality Q = ranSQ+̇Q◦ is equivalent to
Q◦ 6⊆ ranSQ and further equivalent to Q◦ ∩ ranSQ = {0}.

Assume first that Q
set
= Q̊. Since ranSQ̊ is positive definite and ranSQ̊ ⊆ Q,

we have Q◦ ∩ ranSQ̊ = {0}. However, in the present case ranSQ̊ = ranSQ.

Next, assume that Q
set
=

m

Q and Q◦
set
⊆ Q̊. We have 〈Q̊, [., .]Q〉od = P and

〈Q̊, [., .]Q〉◦ ⊇ Q◦. By what we showed in the above paragraph, thus Q◦ ∩
ranSQ̊ = {0}. Since Q◦ ⊆ Q̊, ranS m

Q
∩ Q̊ = ranSQ̊, and ranS m

Q
= ranSQ, this

implies that Q◦ ∩ ranSQ = {0}.
Finally, consider the case that Q

set
=

m

Q and Q◦
set

6⊆ Q̊. Then we have Q
set
=

Q̊+̇Q◦. Since dimQ◦ = 1, thus domSQ = 〈Q̊, [., .]Q〉 is nondegenerated. Write

〈Q̊, [., .]Q〉 = P(Ê) with some Ê ∈ HBsym
<∞. Then, by Lemma 2.14, Q◦ either

equals span{Â} or span{B̂}. Since Q◦ contains only even functions, the second
possibility is ruled out. We see that again Q◦ ∩ ranSQ = {0}.

Let us note explicitly that the relation Q = ranSQ+̇Q◦ implies that ranSQ

is nondegenerated.

Case ‘Q degenerated’; Finish of proof: For each parameter ε ∈ R \ {0} consider
the perturbed inner product J., .KεQ on Q, cf. (2.5). By Lemma 2.10,

〈Q, J., .KεQ〉 ∈ DBsym, 〈Q, J., .KεQ〉od = P .

Let us show that J., .KεQ is nondegenerated: To this end write Q◦ = span{L},
where L is an even function with L(0) = 1. Let G ∈ 〈Q, J., .KεQ〉◦ be given, and
write G = G0 + λL with G0 ∈ ranSQ and λ ∈ C. For each F ∈ ranSQ we have

[G0, F ]Q = [G,F ]Q = JG,F KεQ = 0 .

30



Since ranSQ is nondegenerated, thus G0 = 0, i.e. G = λL. Next,

0 = JG,GKεQ = JλL, λLKεQ = |λ|2 · ε ,

and hence λ = 0. It follows that 〈Q, J., .KεQ〉◦ = {0}.
By Lemma 4.4 and (4.7), there exist γ(ε), δ(ε) ∈ R with

〈Q, J., .KεQ〉 = P(Eγ(ε),δ(ε)) = Lγ(ε)−γ̊,δ(ε), ε ∈ R \ {0} .

Thus

Q
set
=

{

ranSE̊+̇ span{C} , (γ(ε), δ(ε)) ∈ Ms

ranSE̊+̇ span{C}+̇ span{D} , (γ(ε), δ(ε)) ∈ Mb

,

and the Gram matrix of the inner product J., .KεQ with respect to this decompo-
sition is given as

GMJ.,.Kε
Q
=







[., .]E̊ 0 0
0 1

p
− (γ(ε)− γ̊) γ(ε)− γ̊

0 γ(ε)− γ̊
δ(ε)
(
(γ(ε)−γ̊)2p

)
+
(
1+p(γ(ε)−γ̊)

)

q
(
1−p(γ(ε)−γ̊)

)
−p







,

where the last row and column is present only if (γ(ε), δ(ε)) ∈ Mb.
We pass to the limit ‘ε → 0’. The fact that limε→0J., .K

ε
Q = [., .]Q, says

nothing else but
GM[.,.]Q = lim

ε→0
GMJ.,.Kε

Q
.

In particular, the limit γ := limε→0 γ(ε) exists.

If Q
set
= Q̊, so that the third row and column is not present, we see that γ

must equal γ̊ + 1
p
, since otherwise [., .]Q would be nondegenerated. This shows

that 〈Q, [., .]Q〉 = Lγ,∞.

Consider the case that Q
set
=

m

Q. Since [., .]Q is degenerated, the determinant
of the right lower 2× 2-block of GM[.,.]Q must be equal to zero. This rules out

the possibility that γ = γ̊ + 1
p
, since in this case the mentioned determinant

were 1
p2 . Moreover, it follows that

lim
ε→0

δ(ε)
(
(γ(ε)− γ̊)2p

)
+
(
1 + p(γ(ε)− γ̊)

)

q
(
1− p(γ(ε)− γ̊)

)
− p

=
(γ − γ̊)2

1
p
− (γ − γ̊)

.

We see that 〈Q, [., .]Q〉 = Lγ0,∞. ❑

The proof of Theorem 4.3 is complete.
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[KW10] M. Kaltenbäck and H. Woracek. Pontryagin spaces of entire func-
tions. VI. Acta Sci. Math. (Szeged), 76(3-4):511–560, 2010.
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