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1
Introduction

"Sabemos o que somos, mas não

sabemos o que poderemos ser."

William Shakespeare

Since the first experimental findings of semiconducting effects in the early years of the

19th century, the research for new materials with interesting electric and optical properties

has become an important field in both theoretical and experimental physics. Although no-

ticed in the literature that the term semiconducting or materials of semiconducting nature

had been already used by Alessandro Volta [1, 2], one century before, only after the experi-

mental discovery of basic effects− Semiconducting properties in Galena (PbS) by T. J. Seebeck

(1821) [3] and − Dependence of the temperature with conductivity in Silver Sulfide (Ag2S) by

M. Faraday (1833)[4] the new field had, indeed, an impetus and was established in the sci-

entific community. From there, the development of the research on semiconductors was

mainly driven by experimental findings. By 1885, three important properties of the semi-

conductors had been observed - the rectification of alternating current [5], the generation of

a photo-voltage [6], and the increase of conductivity in the presence of light [7]. These find-

ings, although notable, were not immediately appreciated and remained unexplained for

long time due to the lack of consistent theories.

By the end of the 19th century and the beginning of the 20th century, J. J. Thomson in the

Cavendish Laboratory in Cambridge and Rutherford in Manchester, respectively, discovered

the electron and its positive counterpart, the nuclei. Their findings caused great impact on

the scientific community and gave rise to questions that could be answered only with the

formulation of a new theory. Then a new era considering the electron as a fundamental par-

ticle constituent in matter started and emerged into a new research field, electronic structure

of matter. Several theories were developed and new experiments were performed in order

to explain the phenomena of conduction of electricity based on electrons. In fact, this field

3
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became so comprehensive and complex that, in 1914, J. Königsberger suggested to divide

solid-state materials in three different classes[1, 8]. However, only in the 1930s with the work

of A. W. Wilson [9, 10] all crystals were classified into the three classes metals, semiconduc-

tors, and insulators according to their conductivity.

For a long time, the theoretical description and understanding of the electronic structure

of atoms as well as molecules and solids were very troublesome and obscure. Significant ad-

vantages occurred especially in the early years of the 20th century when theoretical physics

overcame the critical divergences and countless doubts on the explanation of the electrical

conduction in matter. In 1911 Niels Bohr, based on Planck’s postulate of 1900, investigated

the electronic structure of atoms and the radiation emanating from them. As a consequence

he discovered basic laws of a new theory − the quantum mechanics. Later, between 1923

and 1925, after the advent of Bohr’s idea, Louis de Broglie, Erwin Schrödinger and Werner

Heisenberg developed a novel theoretical formalism that revolutionized the physics and has

become one of the pillars of modern physics. Until nowadays, the quantum mechanics be-

came a key role in the solution of many physical phenomena, especially for many-body sys-

tems such as matter, that the classical physics has not been able to explain sufficiently. Con-

comitantly, significant progress was possible in understanding of the electronic structure of

atoms, molecules and solids.

Interestingly, indeed in the late thirties of the last century, when the theoretical and ex-

perimental advances of the basic research on new materials were enhanced and established,

the semiconductor technology took a giant leap forward. High investments occurred dur-

ing World War II, especially in the research for semiconducting properties of germanium

and silicon for application in radar technology. Already at that time, researchers started to

grow group-IV semiconductors with a high degree of purity. As a consequence, the transis-

tor based on Ge has been discovered [11]. In the 1960s and 1970s silicon-based electronic

circuits with an increasing integration according to Moore’s law have been developed. This

fact was the starting point for an ongoing revolution in society, economy, and, finally, also of

theoretical physics. A new field, computational physics is rapidly developing.

This also holds for theoretical studies of the electronic structure of matter. However, the

progress in the development of the computational hardware was also accompanied by rapid

advances in computational methods. Parameter-free calculations based on ab-initio meth-

ods, for instance the density functional theory (DFT)[12, 13] or many-body perturbation the-

ory (MBPT)[14], become a promising complement to experiments. Theoretical studies allow

the investigation of not only crystal structures but also arbitrary arrangements of atoms. Now

they can help to understand or predict properties of many materials using feasible methods.

Nevertheless, the solution of the underlying many-body problem and the treatment of cor-

relation among electrons were, are, and will be challenges for the theoretical description of

the physics of electronic structure. Several theoretical and numerical approaches have been
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developed in order to describe the electronic properties of the solids including the corre-

lation among electrons. DFT together with local or semilocal approximations of exchange

and correlation (XC) is now the method of choice to treat energetic, structural and elastic

properties of materials. The most successful approximations used to compute the electronic

excited-state properties of solids such as single-particle band structures and related spectra

are based on the concept of quasiparticles (QPs) whose mathematical description is based

on studies of the single-particle Green function (G). The exact determination of G requires

complete knowledge of the QP self-energy (Σ) which, however, can be calculated only ap-

proximately in practice. Because of the high computational costs, the enormous progress in

the application of such many-body methods in the last 15 years was only possible with new

generations of computers and silicon-based processors.

About 20 years after the first silicon transistor a new group of semiconducting materials,

the group-III nitrides and their alloys, stand out due to their promising properties for appli-

cation in electronic, especially optoelectronic, semiconductor devices such as light emitting

diodes (LEDs), laser diodes (LDs), high-power amplifiers, and solar cells. Aluminum nitride

(AlN), gallium nitride (GaN) and indium nitride (InN) nowadays play a key role in devices op-

erating in the spectral range from the deep ultraviolet to the near infrared wavelength region.

Currently, the high quality of the sample growth by molecular beam epitaxy (MBE) or met-

alorganic vapor phase epitaxy (MOVPE)[15–17] provides the possibility to combine binary

III-nitrides in ternary alloy systems AlxGa1−xN, InxGa1−xN, and InxAl1−xN whose direct band

gap energies in wurtzite (w z) structures can be tailored from∼0.64 eV (InN)[15–17] to 3.52 eV

(GaN) [18] or 6.24 eV (AlN) [18] at room temperature. These alloy systems are promising can-

didates for fabrication of highly-efficient multijunction solar cells [19], terahertz quantum

cascade lasers operating at room temperature via intersubband transitions [19], chemical

sensors [20], and even green laser diodes by the use of In-rich InxGa1−xN quantum wells

(QWs)[20].

Among these ascending III-nitride ternary alloys, particular attention has been addressed

to the InxGa1−xN and InxAl1−xN systems, owing their novel properties that cover the gaps left

by the binary compounds, especially for band-gap engineering in optoelectronic devices.

However, so far, the majority of their properties, e. g. structural, electronic and optical ones,

are not very well understood and fully explored. This specially holds for the relation of the

microscopic structure, e. g. the cation distribution in the alloys, to the resulting properties.

Despite the fact that recently research groups [21] have achieved "direct" green laser diodes

based on InxGa1−xN alloys, the performance of these devices is still lower when compared

with the red and blue semiconductor LD counterparts. In order to achieve high performance

of green LDs, Hiroaki et al. [22] suggest that the research should focus on improving the in-

ternal quantum efficiency (IQE) of green spontaneous emission from InxGa1−xN quantum

wells. Furthemore, for high electron mobility transistors (HEMTs) based on InxAl1−xN, high
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power operation has been demonstrated using GaN active layers without lattice mismatch

in an InN composition of about 17% [23]. Then, the properties of the applied alloy layers

need a deeper understanding in order to be better exploreded.

Despite to the already explored wide range of interesting properties and applications,

still there are many challenges for theoretical and experimental researchers on In-containing

ternary nitride alloys still remain. It is known [24] that emission efficiency of LEDs and LDs

can be varied as a function of the In-atom molar fraction in the III-nitride active layers [25].

Notwithstanding, the high density of defects, e. g. threading dislocations, lattice mismatch,

atom clustering, and segregation occurring in the active layers still reduce the performance

of the devices. The intense research and the commercial interest in the nitride semicon-

ductors will, however, give rise to substantial further progress. For instance, a remarkable

breakthrough in the growth of InN films by means of molecular beam epitaxy (MBE) has

been recently achieved which makes luminescence and absorption studies of pure InN pos-

sible. Theory and computational physics, however, also give rise to significant progress in

the field. One prominent example in the last years was the theoretical prediction of an InN

gap of about 0.7 eV and its experimental confirmation [15–17]. However, still electronic band

parameters such as fundamental gaps, effective electron and hole masses, valence-band dis-

persions (as well as their variation with strain), and wave-vector-induced band splittings due

to spin-orbit interaction are less precisely known for the binary nitride materials. Moreover,

the nitride alloys are still a playground for theoretical numerical methods.

The present work is motivated to bridge the lack of knowledge for group-III nitrides and

their alloys. It is based on systematic theoretical studies using state-of-the-art of ab-initio

methods and theoretical spectroscopy techniques to describe the properties of ground and

excited states of these compounds and their alloys. In chapter 2, the fundamental methods

and approximations are described. All formalisms necessary to predict and understand the

properties of the semiconducting materials under consideration are described. In chapter 3,

different XC functionals and QP approach are used to obtain structural and electronic prop-

erties of binary AlN, GaN, and InN polytypes. The properties of these binary compounds

combined in different ternary alloys are described in chapters 4, 5, and 6. Pseudoternary

isostructural InxGa1−xN and InxAl1−xN alloys are analysed for wurtzitic starting geometries.

The influence of the cation distribution in the alloys on energetics, geometries and electronic

structures is studied. The modeling covers different distributions of In and Ga/Al atoms on

the cation sublattices in order to simulate different growth conditions. The electronic prop-

erties, especially the fundamental gaps and their bowing are investigated in chapter 5. The

chapter 6 is focused on optical properties and excitonic effects. The DFs, absorption spectra,

and dielectric constants are studied in details. Results of the QP method and the solution of

the Bethe-Salpeter equation are combined with statistical treatment of the alloys. Finally,

chapters 7 and 8 contain a brief summary and future perspectives.



2
First-principles methods and approximations

"Estou convencido das minhas

próprias limitações - e esta convicção

é minha força "

Mahatma Gandhi

The great power of the most modern first-principles methods and approximations on

electronic structure of matter are based on the density functional theory for the ground state

of an inhomogeneous electron gas [12, 13] and Hedin’s GW approximation (GWA) for the XC

self-energy of excited electrons. [26] It is due their asset to provide new insights and also a

better understanding of relevant critical problems in solid-state physics, particularly semi-

conducting bulk crystals, surfaces, nanostructures, and alloys. In addition, taken together

they have created a new perspective of research, not only in solid-state but in all fields of

physics making it possible to treat many body interactions in real electron systems, as found

in nature, as well as idealized model problems for ground and excited states.

With the advance in computing technology that occurred during the last decades, these

methods and approximations have consolidated to be reliable and tractable tools in the field

of theoretical condensed matter physics. However, even with the ample successes of theses

theoretical approaches, some challenges still remain. Actually, e. g., the biggest challenge for

theoretical research in electronic structure is to provide universal methods that accurately

describe the electronic structure and related properties of systems with arbitrary bonding,

including Van der Waals and hydrogen-bridge bonding [27, 28].

This chapter reports a brief discussion of the first-principles methods and approxima-

tions applied to modeling electronic ground states and excited state properties of the group-

III nitrides alloys.

7



8 2.1 Ground-state properties

2.1 Ground-state properties

2.1.1 Many-body problem

In quantum mechanics, all possible information about a given system is contained in

their wavefunction Ψ. In atom-, molecule- and solid-like systems, the nuclear degrees of

freedom are taken into account only in the form of an external potential vext(r) acting on the

electron at position r. It contains the positions Ri of the nuclei if several nuclei are present

or only one. The so-called Born-Oppenheimer approximation is applied [29]. A time inde-

pendent single-particle state ψ(r) depends only on the coordinate r of an electron and can

be calculated directly from the Schrödinger equation,

Hψ(r) =
[
− �2

2m
∇2 + v(r)

]
ψ(r) = εψ(r). (2.1)

Here, H is the Hamiltonian for a single electron, ε the eigenvalues of the system, and v(r) is

the potential acting on the electron. It contains the external potential. However, for a system

with N-electrons a more accurate and realistic calculation of the electronic properties must

be the Schrödinger equation for N-particles that accounts for all N-electrons of the system

as

ĤΨ0(r) =
[ N∑

i=1

(
− �2

2m
∇2

i + v(ri )
)
+
∑
i< j

U (ri ,r j )

]
Ψ0(r1, . . . ,rN ) = EΨ0(r1, . . . ,rN ). (2.2)

N is the total number of electrons and U (ri ,r j ) accounts for the Coulomb interaction be-

tween the electrons which correlates the motion of the electrons, such that

Û =
∑
i< j

U (ri ,r j ) =
∑
i< j

v(ri ,r j ), (2.3)

where v(r) = e2

|r| and e is electron’s charge. Now, the external potential v(r) depends on the

positions Ri of all nuclei in the system. It may be the equilibrium coordinates or arbitrary

ones.

As a consequence, the so-called many-body problem for N-electrons emerges. The ex-

act description of Ψ0(r) in real-space representation is computationally complex. Ψ0(r) be-

comes a function of 3N coupled spatial coordinates (neglecting spin, and taking Ψ0(r) to

be real). For instance, in a macroscopic system whose the number of electrons N is ≈ 1023

electrons/cm3 (Avogadro’s number) the solution of Eq. (2.2) becomes impossible. Even us-

ing symmetry conditions the wavefunction remains unaccessible for real systems and the

solution of Eq. (2.2) should be approximate.
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2.1.2 Density functional theory (DFT)

Many powerful theoretical methods in order to solve exactly or approximately Eq. (2.2)

have been developed during decades of efforts handling with the many-body problem. Though

the solution of Eq. (2.2) has been possible for simple systems, e. g., hydrogen atoms, for

many-electron systems such as solids the exact description of their electronic structure by

means of Eq. (2.2) remains somewhat challenging or impossible. According W. Kohn [30],

it holds owing the exponential increase of parameters and informations contained in the

interacting N -electrons wavefunction that cannot adequately be described without ≈ 1023

parameters, and it has also the complication of possessing a phase as well as a magnitude.

A modern theory called Density Functional Theory (DFT), based on Hohenberg-Kohn

theorems [12], is actually the simplest and most effective state-of-the-art method that over-

comes the many-body problem for ground-state properties. It is based on ground-state elec-

tronic density ρ0(r) constituting a special role as "basic variable" of the problem. Thus, all

information and properties of an electronic system can be considered as unique function-

als of ρ0(r) [31] providing an enormous simplification of the problem. However, even as an

exact theory for ground-state properties, the Hohenberg-Kohn theorems [12] do not provide

an explicit mathematical form for systems of N interacting electrons influenced by vext(r),

and approximations are still necessary.

The DFT’s fundamentals of quantum systems started in the early twentieth century with

L. H. Thomas and E. Fermi. [32, 33] Their theories predicted the electronic kinetic energy

per unit volume of an idealized electron system following the ideas of Lord Kelvin and Paul

Drude of treating electrons in metal as electrons gas. The Thomas-Fermi models were ideal-

ized for a homogeneous non-interacting electron-gas, whose electronic density ρ0(r) is the

same in any point of the system. This approximation was, however, the most rudimentary

and crude form of DFT due to neglect XC interaction among electrons, becoming of little

avail for complex systems. Years later, concomitantly, Dirac [34] introduced XC formulat-

ing the local approximation for exchange and Slater showed that the Hartree-Fock method

applied to metals gives the exchange energy density proportional to ρ
1
3 [35].

By the 1964’s-1965’s the works "Inhomogeneous Electron Gas" of Hohenberg-Kohn [12]

and "Self-Consistent Equations including Exchange and Correlation Effects" of Kohn-Sham[13]

were the pillars of contemporary DFT. Its formalism was developed based on Hohenberg-

Kohn and Kohn-Sham concepts and implemented in several codes largely used in solid state

physics until now.

2.1.2.1 Hohenberg-Kohn theorems

The concept of Hohenberg and Kohn is the fundament for an exact theory describing the

ground-state of N interacting electrons. Two theorems have made possible this theory in

order to find the exact ρ0(r) and total energy E0 of N interacting electrons in vext(r) (cf. Eq.
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(2.2) and Eq. (2.3)). In their first theorem, Hohenberg and Kohn prove the equivalence of

Ψ0(r) and ρ0(r) for any system consisting of electrons moving under the influence of vext(r).

In other words, the ground-state ρ0(r) and the ground-state Ψ0(r) can be used alternatively

as full description of the ground state of the system. With that, Hohenberg-Kohn mean that,

if the density of electrons [31]

ρ0(r) = 〈Ψ0(r)|ρ̂|Ψ0(r)〉
〈Ψ0(r)|Ψ0(r)〉 = N

∫
d 3r2 · · ·d 3rN ρ̂(r)|Ψ0(r, · · · ,rN )|2∫

d 3r1d 3r2 · · ·d 3rN |Ψ0(r1, · · · ,rN )|2 , (2.4)

and the total energy is the expectation value of the Hamiltonian

E0 =
〈Ψ0(r)|Ĥ |Ψ0(r)〉
〈Ψ0(r)|Ψ0(r)〉 ≡ 〈Ĥ〉 = 〈T̂ 〉+〈Û 〉+

∫
d 3r vext(r)ρ0(r), (2.5)

where the expectation value of the external potential is explicitly written as integral over

ρ0(r). For the proof one can suppose in a opposite way. We consider two different exter-

nal potentials vext(r) and v ′
ext(r) that differ from each other by more than a constant and

lead to the same ground-state ρ0(r). These two potentials vext(r) and v ′
ext(r), however, lead

to two different Hamiltonians Ĥ and Ĥ ′ that have ground-state wave functions Ψ0(r) and

Ψ
′
0(r) that, by hypothesis, describe the same ground-state ρ0(r). Then, since Ψ

′
0(r) does not

describe the ground state of Ĥ ,

E0 = 〈Ψ0(r)|Ĥ |Ψ0(r)〉 < 〈Ψ′
0(r)|Ĥ |Ψ′

0(r)〉. (2.6)

From the last term in Eq. (2.6) and assuming that the ground state is non-degenerate, the

inequality strictly holds. Due the identical ρ0(r) for the two Hamiltonians, one can write the

expectation value in Eq. (2.6) as

〈Ψ′
0(r)|Ĥ |Ψ′

0(r)〉 = 〈Ψ′
0(r)|Ĥ ′|Ψ′

0(r)〉+〈Ψ′
0(r)|Ĥ − Ĥ ′|Ψ′

0(r)〉

= E′
0 +
∫

d 3r
[

vext(r)− v ′
ext(r)

]
ρ0(r).

(2.7)

In Eq. (2.7), the difference among Ĥ and Ĥ ′ is also an operator. Therefore its matrix elements

can be expressed exactly via the electron density ρ0(r) corresponding to Ψ
′
0(r), and Eq. (2.6)

can be written as

E0 < E′
0 +
∫

d 3r
[

vext(r)− v ′
ext(r)

]
ρ0(r). (2.8)

Similarly we can write E ′
0 as

E′
0 < E0 +

∫
d 3r

[
v ′

ext(r)− vext(r)
]
ρ0(r). (2.9)

Adding Eq. (2.8) and Eq. (2.9) one finds the following inconsistency,

E0 +E′
0 < E′

0 +E0. (2.10)
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From Eq. (2.10), by contradiction, one concludes that the same density ρ0(r) can not satisfy

different external potentials. Then, vext(r) is uniquely determined by ρ0(r) to within a con-

stant. Therefore, it means that ρ0(r) can be taken to be the principal variable. On the second

theorem the density ρ(r) that minimizes the energy E0 of the system is the exact ρ0(r). In

other words, the E0 that is obtained from the ρ0(r) is the lowest energy compared to any

other density ρ(r). It can be shown that the energy E as a functional of the electron density

ρ(r) can be written in terms of the vext(r) as

E
[
ρ(r)

]= F
[
ρ(r)

]+∫d 3rρ(r)vext(r), (2.11)

where F
[
ρ(r)

]
is an unknown universal functional of the density ρ(r) that includes all inter-

nal energies, kinetic and potential, of the interacting electron system, i. e., according Eq.

(2.5) and (2.11)

F
[
ρ(r)

]= 〈T̂ 〉+〈Û 〉 (2.12)

with 〈T̂ 〉 the kinetic energy of the system. From the first theorem, Ψ0(r) is a functional of the

ρ0(r), then, the expectation value of F̂ = 〈T̂ 〉+〈Û 〉 is also a functional of ρ0(r), i. e.,

F
[
ρ0(r)

]= 〈Ψ0(r)|F̂ |Ψ0(r)〉. (2.13)

Writing Eq. (2.11) as a functional of density ρ′(r) we thus have

E
[
ρ′(r)

]= F
[
ρ′(r)

]+∫d 3rρ′(r)vext(r). (2.14)

According to the variational principle and taking into account that,

E
[
ρ0(r)

]= 〈Ψ0(r)|Ĥ |Ψ0(r)〉 (2.15)

and

Ĥ = F̂ + v̂ext (2.16)

we obtain

〈Ψ′(r)|F̂ |Ψ′(r)〉+〈Ψ′(r)|v̂ext |Ψ′(r)〉 > 〈Ψ0(r)|F̂ |Ψ0(r)〉+〈Ψ0(r)|v̂ext |Ψ0(r)〉. (2.17)

Combining Eq. (2.13) with Eq. (2.17) one obtains

F
[
ρ′(r)

]+〈Ψ′(r)|v̂ext |Ψ′(r)〉 = F
[
ρ′(r)

]+∫d 3rρ′(r)vext(r) >

F
[
ρ0(r)

]+〈Ψ0(r)|v̂ext |Ψ0(r)〉 = F
[
ρ0(r)

]+∫d 3rρ0(r)vext(r).
(2.18)

From Eq. (2.18) and Eq. (2.14) one identify the inequality,

E
[
ρ′(r)

]> E
[
ρ0(r)

]
. (2.19)
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Thus, the ground-state density ρ0(r) minimize the functional E
[
ρ0(r)

]
and the minimum is

the ground-state electronic energy.

2.1.2.2 Kohn-Sham method

The realistic and practical treatment of DFT was provided by Kohn and Sham in 1965

[13]. Their ansatz was a formulation of DFT that maps the problem of N interacting elec-

trons using a fictitious system of N non-interacting "electrons" moving in an effective po-

tential so-called Kohn-Sham potential (vKS(r))[26]. This vKS(r) was constructed in such way

that the ρKS(r) of fictitious N non-interacting "electrons" is the same ρ0(r) of N interacting

electrons. Otherwise, the two systems are directly related by the same electron density ρKS(r)

= ρ0(r). However, the vKS(r) and v(r) are not the same. These fundaments provide a set of

independent-fictitious "electron" equations for the fictitious Kohn-Sham system that can be

solved exactly [31].

The Thomas-Fermi model, as said before, fails to provide the total kinetic energy as a

functional of density T
[
ρ(r)

]
. Indeed, the most complete model describing the total ki-

netic energy T
[
ρ(r)

]
of one system is that which accounted by the kinetic energy of non-

interacting "electrons" (TKS
[
ρ(r)

]
) and the difference between the total kinetic energy and

the kinetic energy of non-interacting "electrons". The remaining part taken by that differ-

ence gives a contribution to electron correlation,

Tc
[
ρ(r)

]= T
[
ρ(r)

]−TKS
[
ρ(r)

]
. (2.20)

However, TKS
[
ρ(r)

]
is not exact known as a functional of ρ(r) but can be expressed in terms

of single-particle orbitals φi (r) so-called Kohn-Sham orbital of non-interacting system with

density ρ(r). The total kinetic energy of this system is given by the sum over all individual

kinetic energies [36] as

TKS
[
ρ(r)

]=− �2

2m

N∑
i=1

∫
d 3rφ∗

i (r)∇2φi (r). (2.21)

The Eq. (2.21) is an implicit equation related to ρ(r), but explicit in orbital functional, since

the orbitals φi are functionals of ρ(r). Thus, the kinetic energy can be expressed as

TKS
[
ρ(r)

]= TKS
[
φi
[
ρ(r)

]]
. (2.22)

Here, TKS
[
ρ(r)

]
depends on the complete set of occupied orbitals φi in that each orbital is a

functional of ρ(r). Then, it follows from Eqs. (2.11) and (2.12) that, we have

E
[
ρ(r)

]= T
[
ρ(r)

]+U
[
ρ(r)

]+ v
[
ρ(r)

]
(2.23)
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or,

E
[
ρ(r)

]= TKS
[
φi
[
ρ(r)

]]+UH
[
ρ(r)

]+Exc
[
ρ(r)

]+ v
[
ρ(r)

]
, (2.24)

with

Exc
[
ρ(r)

]=U
[
ρ(r)

]−UH
[
ρ(r)

]+Tc
[
ρ(r)

]
(2.25)

where the exchange-correlation energy Exc
[
ρ(r)

]
contains Tc (cf. Eq. (2.20)) energy and the

classical Hartree energy UH
[
ρ(r)

]
of the electrons is introduced.

From Eq. (2.24) TKS is not a direct functional of ρ(r). Its minimization directly with re-

spect ρ(r) is not possible. However, the Kohn-Sham method [13] is a tool that apply the

minimization via functional derivation of Eq. (2.24) by

δE
[
ρ(r)

]
δρ(r)

= δTKS
[
φi
[
ρ(r)

]]
δρ(r)

+ vH(r)+ vxc(r)+ vext(r) = 0, (2.26)

where vH (r) is the Hartree potential defined by

vH (r) = e2
∫

d 3r ′ ρ(r′)
|r−r′| (2.27)

that describes the Coulomb repulsion between the electrons. In Eq. (2.26) the XC potential

(vxc(r)) can be formally defined as a functional derivative of the exchange-correlation energy
δExc [ρ(r)]

δρ(r) . However, that functional derivative has no explicit form and approximations are

necessary.

According Kohn-Sham, if ones consider a non-interacting "electrons" system moving in a

potential vKS(r), the procedure is simple since the electron-electron does not explicitly occur

due non-interacting "electrons". Then,

δE
[
ρ(r)

]
δρ(r)

= δTKS
[
ρ(r)

]
δρ(r)

+ δvKS
[
ρ(r)

]
δρ(r)

= δTKS
[
ρ(r)

]
δρ(r)

+ vKS(r)

= 0.

(2.28)

If we assume that the potential vKS(r) containing the sum

vKS(r) = vext (r)+ vH (r)+ vxc (r), (2.29)

the Eqs. (2.26) and (2.28) have the same solution and

ρKS(r) ≡ ρ0(r) ≡ ρ(r). (2.30)

Clearly the solution of Eq. (2.26) and Eq. (2.28) also points out that one can compute ρ(r)

described by Eq. (2.2) solving the equations of a system of non-interacting "electrons" in

vKS(r).
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The Schrödinger-like equation to find the orbitals φi (r) is the Kohn-Sham equation[
− �2

2m
∇2 + vKS(r)

]
φi (r) = εiφi (r), (2.31)

where εi represent Lagrange multipliers, which guarantee that the wave functions are nor-

malized. For a Kohn-Sham system of non-interacting "electrons" the equation

ρ(r) ≡ ρKS(r) =
N∑
i
|φi (r)|2 (2.32)

and Eqs. (2.28)-(2.31) are considered, with the constrain (cf. Eq. (2.29)) Kohn-Sham[13]

equations. This procedure replaces the problem of minimizations of the total energy of a

system of N interacting electrons by that solving the Schrödinger equation of a system of

non-interacting "electrons".[26, 31, 36]

2.1.2.3 Spin-polarized DFT

Spin-polarized calculations within the framework of DFT constitute a powerful tool in

order to describe the magnetic properties of matter. So far, we have not taken spin into

account, only solution for single electron in a non-relativistic Hamiltonian.

In spin-density DFT, the two basic variables, electronic density ρ(r) and vector of mag-

netization density m(r) are replaced by a 2×2 matrix whose spin density ραβ(r) is taken into

account. α and β are the spin indices that can have two values, either (+) spin up or majority

spin and (−) spin down or minority spin.

In the framework of the Hohenberg-Kohn-Sham spin density functional the Eq. (2.24) is

given by [37, 38]

E
[
ραβ(r)

]= Ts
[
ραβ(r)

]+UH
[
ραβ(r)

]+Exc
[
ραβ(r)

]+ v
[
ραβ(r)

]
, (2.33)

with

ραβ(r) = 1

2

(
ρ(r)δαβ+mx(r)σαβ

x +my (r)σαβ
y +mz(r)σαβ

z

)
(2.34)

and the electron density ρ(r) as well as the vector of the magnetization density

ρ(r) =
∑
α

ραα(r), m(r) =
∑
αβ

σ
αβραβ(r). (2.35)

Here, the upper greek symbols (αβ) describe the elements of the vector σ = (σx ,σy ,σz) of

the 2 × 2 Pauli spin matrices

σx =
(

0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (2.36)

For validation of Eq. (2.33) by means of single-particle wave functions, one can compute the
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energy minimum. Taking spin up (+) and spin down (−) orbitals into account that leads to

the following Kohn-Sham equations

[
− �2

2m
∇2(r)+ v±

KS(r)
]
φ±

i (r) = ε±i φ
±
i (r). (2.37)

The spin-density-functional theory, in principle, is exact. However, the XC functional Exc

and the XC potential v±
xc contained in v±

KS are not known and need to be approximated as

within the spin-less DFT.

In a few cases, specially discussing the valence band structure, the spin-orbit interaction

is taken into account. In principle, it requires the inclusion of non-collinear spins. However,

in the used VASP code [39, 40] it only occurs in spheres around the nuclei. There, locally one

can restrict the treatment to collinear spins. The axis of quantization of the spin is assumed

to be the same at all points in space. Other so-called scalar relativistic effects, such as the

mass and Darwin terms, are taken into account by their inclusion in the pseudopotentials

describing their action for the atom case.

2.1.3 Exchange and correlation

As pointed out before, the main problem to calculate the electronic structure of matter is

related to electrons interacting in a many-body system whose wave function is given by Eq.

(2.2). For this system the Eq. (2.23) is, in principle, formally exact. However, by definition,

in the Eq. (2.24) the term Exc[ρ(r)] contains all Coulomb exchange and correlation effects

beyond the Hartree approximation and also part of correlation owing the difference among

T of a interacting and TKS of a non-interacting kinetic energies. Although Hohenberg-Kohn

theorems guarantee that Exc(r) is a functional of ρ(r), it is not explicitly known.

Decomposing Exc(r) in exchange Ex and Ec energies

Exc [ρ(r)] = Ex[ρ(r)]+Ec [ρ(r)], (2.38)

the Pauli principle is directly related with Ex . Then, using the results of a Kohn-Sham scheme,

we can express Ex by the so-called exact exchange energy for spin-parallel electrons and oc-

cupied states [31]

Ex
[{
φi
[
ρ(r)

]}]=−e2

2

∑
j k

∫
d 3r
∫

d 3r ′φ
∗
j (r)φ∗

k (r′)φ j (r′)φk (r)

|r−r′| , (2.39)

which is based on the Fock term for exchange. However Eq. 2.39 is no functional of ρ(r),

rather an orbital-dependent functional. The Ec case more complicated because there are no

known expressions in terms of φi or ρ(r).

In the following it is analyzed the most used approximation to the XC and the spin de-

pendence is omitted. Many ideas and concepts in order to improve correlation beyond the
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usual approaches are also mentioned.

2.1.3.1 Local density approximation (LDA)

Up to now, the idea was to looking for consistent XC approximations where both terms

are treated in a consistent way. The simplest and successful approach is the so-called Local

Density Approximation (LDA) proposed by Kohn-Sham [13] that considers a system of corre-

lated electrons based on the homogeneous electron gas. A simplified model used in metallic

systems that is widely used nowadays.

The XC energy functional Eq.(2.24) such that

Exc[ρ(r)] =
∫

d 3rρ(r)εxc(r, [ρ(r)]) (2.40)

is related to the XC energy εxc = εx + εc per electron with a exchange contribution given by

εx =−3
4

(
3
π

)1/3∫
d 3rρ(r)4/3 [41]. Within the LDA εc (r, [ρ(r)]) is replaced by the corresponding

quantity of the homogeneous electron gas εhom
c (ρ) with the local replacement ρ = ρ(r).

Many approximations for εc have raised as a consequence of different treatment for the

exact correlation energy [38, 42]. For a three-dimensional homogeneous electron gas Ceper-

ley and Alder [43] have determined the functional dependence εhom
c (ρ) on ρ by means of

quantum Monte Carlo calculations (QMC). Later this dependence has been parametrized by

Perdew and Zunger [44]. Therefore, the functional

E LD A
xc

[
ρ(r)

]=∫d 3rρ(r)εxc(ρ)|ρ=ρ(r) (2.41)

is available.

It easily allows a generalization to the case with spin polarization. The additional depen-

dence on the fractional spin polarization is then usually determined by an interpolation, e.

g. that suggested by von Barth and Hedin [45].

2.1.3.2 Generalized gradient approximation (GGA)

Several functionals have been developed in order to overcome the known failure of the

LDA approximation [46–48]. Among them, the Generalized Gradient Approximation (GGA)

has been considered to highlight due to improve LDA approximations taking partly into ac-

count the inhomogeneity of the electronic density ρ(r), for instance, in molecules and sur-

faces. Although the term generalized implies in a general formulation for variations of ρ(r),

it provides a way of improvements of the desired properties or, at least agree with LDA when

the inhomogeneity is very low.
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The generalized form of Eq. (2.41) in GGA approximation takes the form,

E GGA
xc

[
ρ(r)

]=∫d 3rρ(r)εxc(ρ(r),∇ρ(r))

≡
∫

d 3rρ(r)εhom
x (ρ(r))F (ρ(r),∇ρ(r)),

(2.42)

F is a dimensionless function and ∇ρ(r) the gradient of the electron density.

The several GGA approximations differ each other by the choose of the function F . Actu-

ally, the simplest and most widely used by physicists is the so-called Perdew-Burke-Ernzerhof

form (PBE-GGA) [49]. This PBE functional accounts for the exchange part as

Fx(s) = 1+k − k

1+ μs2

k

(2.43)

with s ∼∇ρ(r), so the term s = 0 guarantee that Fx(0)=1 the LDA is recovered or Fx → constant

if s is too large. The quantity k is chosen in order to guarantee the Lieb-Oxford rule[50], and

μ is chosen to cancel the term from correlation[31, 49].

In case of correlation, Fc , it is based on exact properties, and do not take into account

empirical parameters. Also, it is expressed in terms of the local correlation in addition of

terms that depends on the gradients as

Ec
(
ρ(r),∇ρ(r)

)=∫d 3rρ(r)
[
εhom

c +H(rs , t )
]
, (2.44)

whith

t =
∣∣∇ρ(r)

∣∣
2ρks

, ks =
√

4k f

π
, k f =

(9π

4

)1/3
rs , rs =

( 3

4πρ

)1/3
(2.45)

and

H(rs , t ) = γlog
(
1+ β

γ
t 2
[ 1+ At 2

1+ At 2 + A2t 4

])
(2.46)

where

A = β

γ

[
exp(εhom

c /γ)−1
]−1. (2.47)

rs is the local value of density parameter and t is scaled by the screening wave number ks .

2.1.3.3 AM05 functional

With the aim of overcome several of the problems unsolved or introduced by LDA or

GGA-PBE approaches, the field of research in new XC approximations for electronic struc-

ture of matter became huge. Then, several modified functionals were developed. The novel

AM05 functional, despite to be a GGA-based functional, it is based on ideas to divide the

system in subsystems. This functional improves some lack of LDA and GGA-PBE.

The idea to develop an improved and more comprehensive XC functional than LDA and
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GGA started in 1998 with the work −Edge Electron Gas − of Kohn and Mattson [51]. In this

work, they considered the variations of ρ in different regions of a physical systems, mainly

that with electronic edge surface-like regions where the exponentially decay of the electron

concentration accounts for a reduction of ρ [52]. So far, the homogeneous electron gas had

been, the start point for LDA and all GGA-based functionals. However, in real physical sys-

tems this approach is somewhat unrealistic.

According Eq. (2.38) and Eq. (2.41) the treatment of XC can be separated into exchange

(X) and correlation (C) parts and treated individually. In such way Kohn and Mattsson[51]

concomitantly developed a suitable model for electronic surfaces so-called Airy gas that was

expressed by means of electrons in a linear potential. Following that ideas Armiento and

Mattsson, some years latter, formalized and generalized the AM05 XC functional [53] using

the idea of subsystem functionals. Its involves two subsystem models: i) regions locally bulk-

like for which the uniform electron gas based on the LDA scheme is used and ii) regions

locally surface-like, for which the Airy gas combined with jellium surfaces provides a surface

functional.

Using the, Local Airy Approximation (LAA), an XC functional was developed such that

the equation,

εLAA
x

(
r;
[
ρ
])= εLDA

x

(
ρ
(
r
))[

X+ (1−X
)
F LAA

x

(
s
)]

, (2.48)

is the exchange energy, and

εLAA
c

(
r;
[
ρ
])= εLDA

c

(
ρ
(
r
))[

X+ (1−X
)
γ
]
, (2.49)

is the correlation energy.

In Eq. (2.48) F LAA
x is a refinement function

F LAA
x (s) = (cs2 +1

)
/
(
cs2/F b

x +1
)

(2.50)

where c is a least-square fit to the true Airy gas exchange [53], s is the scaled density gradient

computed as

s =
∣∣∇ρ(r)∣∣/[2(3π2)1/3

ρ4/3(r)] (2.51)

and F b
x is an analytical interpolation constructed in order to satisfy two known limits of the

Airy refinement function [53]. The parameter X from Eq. (2.48) and Eq.(2.49) is a density

index as

X = 1−αs2/
(
1+αs2) (2.52)

that depends on γ, a scaling factor, and α. Both quantities are obtained from the XC jellium

surface energies.

A realistic approximation for Exc should use an Ec that also fitted from the Airy gas system

instead of the jellium surface. However, there is no available data in such way. So far, the
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more compatible way adopted in [53] was to derive a semicompatible surface correlation

from the XC data available for jellium surfaces model that have worked very well in that

approximation.

In this work, we will show the efficiency of AM05 subsystem functional, at least for struc-

tural properties of the AlN, GaN and GaN, over the pure LDA and GGA-PBE functionals. The

AM05 is found for geometries to be as accurate as the most advanced hybrid functionals.

[54]

2.1.3.4 Hybrid functional (HSE)

The combination of orbital-dependent Hartree-Fock description and explicit density func-

tionals raised a new class of XC functionals called hybrid functionals. By means of this com-

bination, the approximated solution of the many-body problem via "pure" local or semi-local

functionals is improved and more realistic owing spatial non-locality of XC is being taken

into account. Usually, in these functionals, the hybrid screened Coulomb potential over-

comes the exact exchange problem allowing the delocalization of the exchange hole [55].

Based on arguments of Becke [56, 57] for hybrid functionals, Perdew-Ernzerhof-Burke[58]

proposed a new XC expression

Exc = Eβ
xc +

1

4

(
E HF

x −Eβ
xc

)
, (2.53)

where β = LDA or GGA (or a mix of them) XC energy and 1
4 is the contribution of Hartree-Fock

exchange that is taken into account.

A different form was presented by Ernzerhof and Scuseria [59], and Adamo and Barone

[60], the so-called PBE0 hybrid functional. This functional was based on the GGA-PBE XC

parametrized by Perdew et. al [49] such that,

E PBE0
xc = aE HF

x +
(
1−a

)
E PBE

x +E PBE
c (2.54)

whose parameter a is 1
4 estimated by perturbation theory [56, 57].

Heyd et. al [55] applying arguments of long range (LR) and short range (SR) on the screen-

ing Coulomb potential proposed the HSE03 hybrid functional expressed as

E HSE03
xc = aE HF ,SR

x (ω)+
(
1−a

)
EωPBE,SR

x (ω)+EωPBE,LR
x (ω)+E PBE

c , (2.55)

whose range-separation parameter ω accounts for the LR and SR terms taken the error func-

tion [55] into account. If ω = 0 it provides the full Coulomb operator, otherwise if ω→∞, the

GGA-PBE is achieved. For semiconductors the reliable band gap value is accounted using

ω� 0.15 a−1
0 that provides accuracy and satisfactory time computer consuming.[61]

In practice, the Coulomb potential v(r) is replaced by v(r)erfc(μ|v |) with μ = 0.3 Å−1 or

slight modifications [see discrimination in HSE06 by J. Paier et al. in [62] and [63]].
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In the present work the hybrid functionals HSE03/HSE06 is used but not to perform

ground state calculations. Rather, the eigenvalues and eigenfunctions of the Kohn-Sham

equation Eq. (2.31) with a non-local potential, the Kohn-Sham equation of the so-called gen-

eralized DFT [61, 64] are used as starting electronic structure to describe electronic single-

particle and neutral pair excitations. Due to the spatial non-locality of the XC potential one

important feature of the XC self-energy is already taken into account.

2.1.3.5 LDA+U method

Calculating optical properties the required density of mesh points for the sampling of the

Brillouin zone is too high, so that, the necessary quasiparticle computations starting with a

non-local potential derived from an hybrid functional are forbidden owing of the computa-

tional effort. In order to describe, at least, partially the limitations in XC due the LDA and

possible self-interaction corrections for the Ga-3d and In-4d electrons, inspired by the Hub-

bard model [65], a different approach has been developed, which is to add a Hubbard like

on-site repulsion on top of the usual Kohn-Sham Hamiltonian using an effective U parame-

ter. This gives rise to an orbital-dependent modification of the DFT total energy

E LDA+U = E LDA + U

2

∑
m

[∑
i

nm
ii −
∑
i,j

nm
ij nm

ji

]
(2.56)

with nm
ij as the elements of the density matrix of the corresponding d-shell for a given spin

orientation m. In practice we use a scheme proposed by Dudarev et al. [66]. All d-states

derived from Kohn-Sham levels are shifted by an energy −U (nm
ij − 1

2δij).

2.2 Excited electronic state properties

In spite of DFT to be an exact theory for ground state properties, there are failures in the

description of the excited states properties. It means that the energy differences between oc-

cupied and empty states in the quasiparticle bandstructures and optical properties are sig-

nificantly underestimated in the framework of the DFT (see Aulbur et al. [26]). For instance,

the eigenvalues computed into the Kohn-Sham formalism [13] and also, excitations energies

are determined by the static charge density. However, It is known that excitation processes

can lead to perturbations of the system introducing changes in the electron density.

The electronic system reacts to the excitations with a redistribution of electrons whose

consequences can be described by screening of the Coulomb interaction. These effects [67]

can be treated within the framework of many-body perturbation theory [26, 68–70]. This

leads to an accurate numerical modeling of theoretical quasiparticle bandstructures con-

tained in several spectroscopies and optical properties.[67] It is usually based on the so-

called GW approximation, in that G denotes the Green’s function of the system and W ac-

counts to the screened Coulomb interaction derived from the bare Coulomb interaction and
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represents the response of the system owing an excitation.

2.2.1 Green’s function

The many-body properties of the excited state of a system such a semiconductors consti-

tuted of strongly interacting particles can be approximated by means of properties of weakly

interacting "particles" so-called quasiparticles. The figurative term quasiparticle describes

the bare electron and the positive screening charge that surrounds its owing the presence of

an other electron. The quasiparticle lifetime is finite due the approximated eigenstate char-

acter of the N -electron Hamiltonian in Eq. (2.2). Several properties of the quasiparticles that

are defined by expectation values, for instance, their density and even the total energy of a

many-body system can be evaluated by means of the single-particle Green function [26, 71].

However, in spite of G to be known exactly [72] and to give much more information than the

electronic density, its application to ground state properties is somewhat rare.

The main variable is the time-ordered Green function G(rt ,r′t ′) whose poles yield exci-

tation energies and also the excitation lifetimes. The single-particle Green function [26] is

defined as

G
(
rt ,r′t ′

)= −i 〈Ψ0|T̂
[
ψ̂(rt )ψ̂†(r′t ′)

]|Ψ0〉

=
{ −i 〈Ψ0|ψ̂(rt )ψ̂†(r′t ′)|Ψ0〉, t > t ′,

i 〈Ψ0|ψ̂(rt )ψ̂†(r′t ′)|Ψ0〉, t ′ > t ,

(2.57)

with |Ψ0〉 the ground state of the N -electron Hamiltonian (cf. Eq. (2.2)), T is the Wick time-

ordering operator,

ψ̂(rt ) = exp(i Ĥ t )ψ̂(r)exp(−i Ĥ t ) (2.58)

is the Fermion annihilation operator and ψ̂†(rt ) the corresponding creation operator. Ac-

cording to Eq. (2.57) the propagation of particles (antiparticles) or still the dynamics of exci-

tations in N -electrons system is given by G taking for t > t ′(t < t ′). It means the probability

to find the particle at time t and position r after its creation at time t ′ and position r′ (or

vice-versa).

Interestingly, the Fourier-transformed G is related to experimental photoemission spec-

tra [26] via its imaginary part,

A
(
r,r′;E

)=π−1|ImG
(
r,r′;E

)|. (2.59)

Eq. (2.59) defines the so-called spectral function A, i. e., the density of the excited (or quasi-

particle) states that contribute to the electron or hole propagation. Especially quasiparticles

can be identified in the spectral function due their narrow peak that by means of position and

width can account to the energy and inverse lifetime of the quasiparticles. Experimentally

those properties of quasiparticles are measured by direct or inverse photoemission spec-
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troscopy by adding to or taking out an electron of the system.[26]

2.2.2 Self-energy

The treatment of electronic single-particle excitations is based on the knowledge of the

single-particle Green function G .

Using the Heisenberg equation of the motion for an electron (annihilation) field operator

ψ(x) =ψ(r, t) we have

i
∂ψ̂(x)

∂t
= [ψ̂(x), Ĥ ] (2.60)

with Ĥ as the many-electron Hamiltonian Eq. 2.2 rewritten in second quantization [73]

Ĥ =
∫

d 3r ψ̂†(r)h0(x)ψ̂(r)+ 1

2

∫
d 3r d 3r ′ψ̂†(r)ψ̂†(r′)v(r−r′)ψ̂(r′)ψ̂(r), (2.61)

where h0 is the kinetic operator of an individual electron plus a local external potential v(r).

Then, we obtain the equation of the motion for the Green function Eq. (2.57) such as[
i
∂

∂t
−h0(x)

]
G(x, x ′)−

∫
d x ′′M(x, x ′′)G(x ′′, x) = δ(x −x ′). (2.62)

Here M is an operator so-called mass operator that contains the Hartree potential Eq. (2.27)

and the XC self-energy. It is defined as∫
d x1M(x, x1)G(x1, x ′) = −i

∫
d 3r1v(r−r1)×

× 〈Ψ0|T [ψ̂†(r1, t )ψ̂(r1, t )ψ̂(r, t )[ψ̂†(r′, t ′)]|Ψ0〉
(2.63)

The right side, it is accounted for a special case of the Green function for two-particles [74]

G2(1,2,3,4) = (i )2〈Ψ0|T [ψ̂(1)ψ̂(3)ψ̂†(4)ψ̂†(2)]|Ψ0〉 (2.64)

where 1 ≡ x1 = (r1, t1), etc.

From Eq. (2.64), the vH (r) Eq. (2.27) is obtained and the Σ can be defined as

Σ= M − vH (r)δ(r−r′). (2.65)

The equation of motion (cf. Eq. 2.62) is replaced by[
i
∂

∂t
−H0(x)

]
G(x, x ′)−

∫
d x ′′

Σ(x, x ′′)G(x ′′, x) = δ(x, x ′) (2.66)

with

H0 = h0 + vH (r). (2.67)
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From Eq.(2.66) it follows formally

G−1 = i
∂

∂t
−H0 −Σ. (2.68)

Using the functional derivative method [75, 76] we introduce a varying fieldφ(r, t ) used as

mathematical tool in order to evaluate the Σ and it will be set to zero once the Σ is obtained.

[74] It follow, in Dirac notation, that

|ψD (r, t )〉 = Û (t , t0)|ψD (r, t0)〉 (2.69)

the Û operator counts for the time development by

Û (t , t0) = T exp[−i
∫t

t0

dτφ̂(τ)] (2.70)

and

φ̂(τ) =
∫

d 3rφ(r,τ)ψ̂†
D (r,τ)ψ̂D (r,τ). (2.71)

According Heisenberg and Dirac representation,

ψ̂(r, t ) = Û †(t ,0)ψ̂D (r, t )Û †(t ,0). (2.72)

The field operator ψ̂ satisfies

i
∂

∂t
ψ̂D = [ψ̂D , Ĥ(φ= 0)]. (2.73)

The Eq. (2.73) agrees with Heisenberg operator for unperturbed conditions where φ = 0.

Then, the Green function can be written in such way

iG(1,2) =
〈Ψ0|T [Û (∞,−∞)ψ̂D (1)ψ̂†

D (2)]|Ψ0〉
〈Ψ0|Û (∞,−∞)|Ψ0〉

. (2.74)

Applying the functional derivative of G related to φ we obtain

δG(1,2)

δφ(3)
=G(1,2)G(3,3+)−G2(1,2,3,3+)

∣∣∣
φ=0

. (2.75)

Using the identity

∂

∂φ
(G−1G) =G−1∂G

∂φ
+ ∂G−1

∂φ
G = 0 → G

φ
=−G

δG−1

δφ
G (2.76)

By means of δG−1

δφ , one a the set of integro-differential equations, the so-called Hedin’s equa-

tions.

In principle the exact self-energy can be determined iteratively combining the five integro-

differential equations: (here: using the short-hand notation 1 := (r1, t1), 1+ = (r1, t1+δ), δ> 0
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infinitesimal, v(1,2) the bare coulomb interaction)

Σ(1,2) = i
∫

d(3,4)G(1,4)W (1+,3)Γ(4,2;3), (2.77)

W (1,2) = v(1,2)+
∫

d(3,4)W (1,3)P (3,4)v(4,2), (2.78)

P (1,2) =−i
∫

d(3,4)G(2,3)G(4,2)Γ(3,4;1), (2.79)

Γ(1,2;3) = δ(1,2)(1,3)+
∫

d(4,5,6,7)
δΣ(1,2)

δG(4,5)
G(4,6)G(7,5)Γ(6,7;3), (2.80)

where both quantities P and Γ satisfy Bethe-Salpeter equation with P the irreducible polar-

izability and Γ the vertex function. The fifth equation is the equation of motion Eq. 2.66.

The Dyson Eq. 2.66 or Eq. 2.68 can be rewritten starting from the Green function G .

G−1
0 = i

∂

∂t
−H0 − vxc , (2.81)

which partly combines XC effects in a XC potential vxc . It follows

G−1 =G−1
0 −Σ+ vxc (2.82)

where Σ accounts for all XC effects beyond the Hartree aproximation.[26] The poles of G

yield the excitation energies. G0 is also a Green’s function beyond the Hartree approximation,

where XC is already included via an approximate potential vxc .

Neglecting the XC self-energy in a first step of interaction Eq. (2.80) is reduced to the

first term, such as Γ(1,2:3) = δ(1,2)(1,3). It results Hedin’s GW approximation for the XC self-

energy

Σ(1,3) =G(1,2)W (1+,2), (2.83)

which may be interpreted as a linear expansion of the XC self-energies in terms of the dy-

namically screened Coulomb potential W . [71]

In these work, we are mainly interested in energetical quasiparticle properties, especially

in QP band structures. Therefore, we neglect satellite structures in the spectral function Eq.

(2.59) and replace it approximately by one δ-function at the corresponding QP energy. In-

stead of solving the full Dyson equation Eq. (2.81) we only solve the so-called QP equation

[26]

[h0(r)+ vH (r)]φQP
i (r)+

∫
dr′σ(rr′,εQP

i )φQP
i (r′) = ε

QP
i φi (r) (2.84)

with the XC self-energy usually taken within the GW approximation Eq. 2.83. Its solution

depends on the quasiparticle self-energy (Σ) that is a non-local, non-Hermitian and energy-

dependent operator [26]. We solve this equation iteratively. In a first step we replace Σ by vxc

from the HSE06 hybrid functional [for details see Ref. [64]] to determine the starting elec-

tronic structure and compute the changes of the QP eigenvalues by first order perturbation
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theory.

2.2.3 Bethe-Salpeter equation (BSE)

The electron-hole interaction or excitonic effects are essential to improve the descrip-

tion of the spectral behavior of response functions, especially if they are related to neutral

electronic excitations. This especially holds for optical spectra and hence the frequency-

dependent dielectric function Including excitonic effect by means of the BSE, the evaluation

of the macroscopic DF in order to compute measurable quantities, e. g., absorption and

energy-loss spectra are much closer to the experimental ones. The BSE can also describe the

bound-states of two-particle electron-hole excitations.

Using the definition of the polarization P Eq. (2.79) the BSE for the vertex function Γ

Eq. (2.80) can be rewritten to a BSE for P . Commonly, its kernel is further approximated

within the GW approximation Eq. (2.83). One nearly sets δΣ/δG ∼−W . Terms related to the

functional derivative of W are neglected. In addition, also the dynamics of the screening in

W is omitted [70].

However, the resulting polarization function P only yields the microscopic dielectric func-

tion, ε= 1− vP . Instead the macroscopic dielectric function εM (ω) also accounts for optical

local field effects (LFEs). For translational invariant systems with reciprocal lattice vectors

G,G’ it can be written in the optical limit q→0 in the form [77, 78]

εM (q̂,ω) = q̂εM (ω)q̂ = lim
q→0

1

ε−1(q+G,q+G′;ω)

∣∣∣∣
G=G′=0

(2.85)

with q̂ = q
|q| , where ε is the macroscopic dielectric function. The effect of the LFEs can be also

described by a modified kernel of the BSE (for a modified P , the polarization function of the

macroscopic dielectric function) which contains besides the attractive screened interaction

-W of the excited electrons and holes also an unscreened Coulomb repulsion v whose short

range part has been omitted with respect to v [79, 80].

The inhomogeneous BSE derived from Eq. (2.80) is numerically difficult to handle. For

that reason the appearing space and energy dependences are usually expressed by the ap-

propriate solutions εQP
i , φQP

i or εi , φi of the QP equation (2.84), even using only a zero’th or-

der approximation for the XC self-energy. In this work only translational invariant systems,

e. g. zinc-blende and wurtzite crystals as well as systems whose unit cell consists of several

wurtzite cells. The singe-particle eigenstates can be described by Bloch functions |νk〉 and

Bloch energies εν(k) with band index ν (conduction band index ν = c, valence band index ν

= v) and Bloch wave vector k of the corresponding Brillouin zone.
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2.2.4 Excitonic Hamiltonian

In the Bloch representation the inhomogeneous BSE for the modified P function, in prac-

tice can be solved by the diagonalization of the two-particle Hamiltonian (excitonic Hamil-

tonian) Ĥ(cvk,c ′v ′k′). The corresponding Schrödinger-like equation is

Ĥ(cvk,c ′v ′k′)AΛ(c ′v ′k′) = EΛAΛ(cvk), (2.86)

which provides excitonic eigenvalues (EΛ) and eigenstates (AΛ). It can be also interpreted as

a homogeneous BSE.

In Eq. 2.86 the excitonic Hamiltonian can be expressed for single pairs as [81, 248]

Ĥcvk,c ′v ′k′ = (εQP
ck −ε

QP
vk )δcc ′δv v ′δkk′ −W c ′v ′k′

cvk +2vc ′v ′k′
cvk . (2.87)

The first term on the right side of Eq. (2.87) describes the non-interacting quasielectron-

quasihole pairs, the second term represents the screened Coulomb attraction of pairs cvk

and c ′v ′k′ as

W c ′v ′k′
cvk = 4π

Ω

∑
GG′

ε−1
GG′(q)

|G|2 〈ck|ei (q+G).r|c ′k′〉〈v ′k′|e−i (q+G′).r|vk〉, (2.88)

while the third contribution describes their electron-hole exchange interaction and, hence,

the LFEs as

vc ′v ′k′
cvk = 4π

Ω

∑
G�=0

1

|G|2 〈ck|ei G.r|vk〉〈v ′k′|e−i G.r|c ′k′〉, (2.89)

The direct diagonalization of the excitonic Hamiltonian is expensive in both memory and

computer time owing the high number of electron-hole states given by N = N v ×N c×N K P ,

with numbers N v of all VBs, N c all CBs, and N K P all k points. Eq. (2.87) can be solved

numerically by several different methods. One is the iterative-diagonalization scheme where

optical properties from lowest optical transitions can be evaluate [64].

In this work we use the time-development method [83], where instead of Eq. (2.86) the

corresponding time-dependent Schrödinger equation is solved. The Fourier transformation

directly gives the optical spectra, more precisely the frequency-dependent dielectric func-

tion. The advantage of the method is related to the reduced computational cost since the

method only scales quadratically with the rank of the matrix (2.87), since only matrix-vector

operations occur. The disadvantage of the method is that the pair eigenvalues EΛ and pair

eigenstates AΛ(cvk) are not anymore directly be computed.

2.2.5 Dielectric function

In order to describe linear optical properties the frequency-dependent macroscopic di-

electric function (DF), ε⊥,∥(ω), has to be computed.
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Using the relation of P to εM (q̂,ω) and the described Bloch representation, the compo-

nents of the dielectric tensor ε̂(ω) can be directly determined in the limit of vanishing photon

wave vectors. Here, we usually study uniaxial hexagonal systems with two independent ten-

sor components for ordinary/extraordinary light polarization e⊥/∥ perpendicular parallel to

the c-axis.

The eigenvalues EΛ and eigenvectors AΛ(cvk) of the pair Hamiltonian in Eq. (2.87) lead

to the macroscopic DF [81]

ε⊥,∥(ω) =1+ 8πe2�2

V m2

∑
Λ

∣∣∣∣ ∑
c,v,k

〈ck
∣∣e⊥,∥ · p̂

∣∣vk〉
εck −εvk

A∗
Λ

(cvk)

∣∣∣∣2×
×
∑

k=+,−

1

EΛ−k�(ω+ iγ)

(2.90)

with the momentum operator p̂. V denotes the crystal volume, whereas γ describes the

inverse electron-hole pair lifetime chosen to be γ= 0.1 eV.

2.3 Alloy description

This theoretical approach is devoted to the underlying properties of pseudoternary alloys

and their constituent compounds. It is based on the cluster expansion method [84, 85] that

provides the necessary background for a comprehensive and detailed study of alloys using

statistical models. Here the cluster statistics is described within the so-called generalized

quasi-chemical approximation model (GQCA) [86] and their limiting cases the strict-regular

solution model (SRS) and the microscopic decomposition model (MDM).

2.3.1 Cluster expansion

The cluster expansion method [87, 88] is one of the central descriptions of chemically

disordered solids such as isostructural AxB1−xC alloys. An alloy AxB1−xC consists of N atoms

on the C anion sublattice and a total of N cations of type A or B on the other sublattice. For

the cluster expansion the macroscopic alloy is divided into M clusters, each of which con-

sists of 2n atoms (n anions and n cations) [85, 89, 90] (see Fig. 2.1). Consequently, the total

number of cations and anions is N = nM . Due to the symmetry of the crystal lattice, all pos-

sible clusters can be grouped into J +1 different classes. Each class j ( j = 0, ..., J ) comprises

g j clusters of the same total energy ε j . The number of cations of species A in each class is de-

noted by n j . The macroscopic alloy is built of a set of {M0, M1, ...M j } clusters. Hence, a single

class j contributes with its cluster fraction x j = M j /M . Since the x j describe the statistical

weights of all clusters, it holds Σ
J
j=0x j = 1. For the wz polymorph of the nitrides studied in

this work 16-atom supercells (n = 8) are constructed from four wurtzite cells (see Fig. 2.2)

and used to simulate the clusters. Thus, 256 clusters occur in total for each ternary nitride
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M

x x x x

n

Figure 2.1: Illustration of the cluster expansion. The macro-

scopic alloy is divided into an ensemble with M clusters,

each of which consists of 2n atoms (n anions (C) and n

cations (A),(B) or (A+B)).

and are grouped in J +1 = 22 classes due to their point-group symmetries. More specifically,

the atomic geometries described in Appendix A.1 are employed in this work. The 16-atom

cell (see Fig. 2.2) can be chosen in such a way that in the case of InxGa1−xN and InxAl1−xN

mostly N atoms occupy the surface sites of the cell (see Fig. 2.2). Since the N sublattice (al-

though somewhat deformed after atomic relaxation) is present in all cluster materials, the

clusters with such a surface may roughly be considered to be statistically independent.

Within this framework any property P of the macroscopic alloy is connected to the re-

spective properties P j of the individual clusters via the Connolly-Williams formula [89, 91]

P (x,T ) =
J∑

j=0
x j (x,T )P j , (2.91)

and fluctuations around the configurational averages can be described via the mean-square

deviations

ΔP (x,T ) =
√√√√ J∑

j=0
x j (x,T )P 2

j −P 2(x,T ). (2.92)

Such a property P j for a certain cluster class could be, e. g. one component of the dielectric

tensor. Since the weights x j (x,T ) depend on the average composition x of the alloy as well as

under certain circumstances on the temperature T , it is possible to account for the influence

of different preparation conditions [84]. Here three cluster statistics are distinguished: i)

Generalized Quasichemical Approximation and their limiting cases ii) Strict-regular solution

model, and iii) Microscopic decomposition model.

2.3.2 Generalized Quasichemical Approximation

In this approach, the thermodynamic equilibrium is described by cluster fractions that

lead to a minimum of the Helmholtz free energy F (x,T ). In this case, the so-called gener-

alized quasi-chemical approximation [85, 89], the weights xGQCA
j can be derived from the
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Figure 2.2: Illustration of atomic sites in the 16-atom clusters

consisting of four w z cells. Anions (N atoms) are depicted as

blue (small) balls, cations (In, Ga, or Al atoms, respectively) as

green (large) balls with labels. The cell boundaries are indicated

by thin solid lines.

free-energy contribution of the solution
/

at the mixture

ΔF
(
x,T

)=ΔU
(
x,T

)−TΔS
(
x,T

)
, (2.93)

where ΔS
(
x,T

)
is the mixing entropy and ΔU

(
x,T

)
is the contribution of the mixing internal

energy obtained from the ensemble with M clusters as

ΔU
(
x,T

)= J∑
j=0

M jε j −M
[(

1−x
)
ε0 +xεJ

]
= M

(∑
Δε j x j

)
,

(2.94)

whose term Δε j accounts for the excess energy for each class j as

Δε j = ε j −
(n j

n
εJ +

n −n j

n
ε0

)
. (2.95)

According Eq. (2.93) it is also necessary an expression to the ΔS in order to compute of the

free-energy of the alloy system. Then, the mixing entropy can be calculated using the Boltz-

mann definition

ΔS = kB lnW (2.96)

with W the number of possible configurations of cation arrangements.

In a cluster expansion the set of clusters whose Σ
J
j=0x j = 1 constraint is fulfilled, have a W

that counts for all possible ways of arranging all A and B atoms in one given set on the, N =
NA +NB cation sites. To determine W , the number of ways of arranging the M0, M1, ..., MJ

clusters to form the alloy, the number of probability M !/
∏J

j=0 M j !, needs to be multiplied by

the number of possibilities of arranging the cations in each cluster. Since one cluster of class

j can be occupied by cations in g j ways, all M j clusters lead to g
M j

j possibilities. Ones have

W = M !∏J
j ′=0 M j !

J∏
j ′=0

g
M j ′
j ′ . (2.97)

Combining Eq. (2.96) with Eq. (2.97) and taking the Stirling limit, it follows for the mixing

entropy

ΔS
(
x,T

)=−kB

{
N
[

xlnx +1
(
1−x

)
ln
(
1−x

)]+M
J∑

j=0
x j ln

(x j

x j
0

)}
. (2.98)
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Thus, In the GQCA the x j are determined by the requirement that ΔF (x,T ) takes a mini-

mum with respect to the cluster distribution, i.e., ∂ΔF (x,T )/∂x j = 0. Hence, the Lagrange

formalism with the constraint ΣJ
j=0x j = 1 yields

xGQCA
j (x,T ) = g jη

n j eβΔε j

Σ
J
j ′=0g j ′η

n j ′ e−βΔε j ′
, (2.99)

where β = 1/kB T , Δε j is the excess energy of cluster j , and η is determined by minimizing

ΔF (x,T ) with respect to x under the constraint ΣJ
j=0n j x j = nx [84, 89]. The excess energies

are defined by relation of the cluster energy ε j with respect to the end components ε j ( j = 0

and j = J ) with n = 8 and J = 21 as described in Eq. 2.95.

2.3.3 Limiting cases

Besides the thermodynamic equilibrium described above, the experimental situation

also suggests the studying of certain non-equilibrium preparation conditions, for which the

actual cluster statistics may be modified by kinetic barriers, frozen high-temperature states,

as well as interface or surface influences. In order to simulate a dependence of the cluster

distribution on the preparation conditions we study two limiting cases of Eq. 2.99 [92].

2.3.3.1 Strict-regular solution model

Within the strict-regular solution model [85] the ideal fractions,

x0
j = g j xn j (1−x)n−n j , (2.100)

are employed, which arise from a purely stochastic distribution of the clusters. They are in-

dependent of the temperature and the clusters’ excess energies. This case can be interpreted

as the high-temperature limit of the GQCA. The degeneracy factor in each cluster class is

given by g j =
( n

n j

)
leading to a total number

∑J
j=0 g j = 2n .

2.3.3.2 Microscopic decomposition model

The microscopic decomposition model assumes that the cations of type In (Ga, Al) are

more likely to occur close to cations of the same type In (Ga, Al). This is realized by cluster

fractions that interpolate linearly between the binary end components, i.e.,

xMDM
j =

⎧⎪⎪⎨⎪⎪⎩
1−x for j = 0

x for j = J

0 otherwise

. (2.101)

Within the MDM mixing does not lead locally to a gain of internal energy, which can be the

case under certain preparation conditions. The MDM represents the low-temperature limit
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of the GQCA.

2.4 Numerical approaches

In this work, a systematic study of the group-III nitrides and their alloys are performed

using DFT-based methods as implemented in the Vienna Ab initio Simulation Package (VASP)[39,

40], more specifically the version 5.1.39. The solution of the Kohn-Sham (KS) equation of

DFT (cf. sec. 2.1.2.2) provides the ground-state electron density of the interacting electrons

as well as eigenvalues and eigenstates of non-interacting KS particles. However, experimen-

tal techniques such as photoelectron emission, inverse photoelectron spectroscopy, or tun-

nel spectroscopy, that measure band structures or densities of states (DOS), involve elec-

tronic excitations and rather probe single-QP energies. Also in transport experiments, QP

phenomena of charged carriers (electrons or holes) and, therefore, electronic excitation ef-

fects, may play a role, e.g. via the carrier masses.

DFT, however, suffers from the so-called band-gap problem: The KS gaps calculated

for semiconductors and insulators significantly underestimate the QP gaps derived from

measurements.[26] The band-gap problem is here solved within the framework of the many-

body perturbation theory,[70] which yields a QP equation[26] that properly includes the

XC self-energy of the electrons and, hence, accounts for the excitation aspect. The non-

Hermitian, non-local, and energy-dependent self-energy is usually described by means of

Hedin’s GW approximation[68, 69], (cf. sec. 2.2.2). The computation of properties of the ex-

cited states within the MBPT is possible combining this technique with DFT and PAW meth-

ods in the VASP code. In a last step the single-particle results are used to describe electron-

hole pair excitations.

2.4.1 PAW method

In molecules and solids there are different atomic species, each one constituting of both

ion cores and valence electrons. Owing the very deep Coulomb potential of the nuclei the

wavefunctions of the core electrons are very localized around the nuclei occupying a very

small volume. However, their KS eigenvalues εi Eq. (2.31) are large and negative. Con-

comitantly, on the other hand, the valence electrons experience a much weaker Coulomb

potentials due the nuclei because they are screened by the core electrons. Consequently,

the valence electrons possess more spread wavefunctions. Thus, in ensemble of bonded

atoms one may approximate the change of the single-particle potentials in almost constant.

It means that one may also consider that the changes in one-electron energies of the core

electrons are almost vanishing. Hence, the core wavefunctions for a given atomic specie in a

molecule or solid are approximately the same as for the isolated atomic species. Then, in the

so-called frozen-core approximation the wavefunctions of the core electrons are assumed to
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be identical to that of the isolated atoms, while the wavefunctions of the valence electrons

are considered variationally. [93]

However, the frozen-core approximation leads to complications concerning to the or-

thogonality of the valence electrons related to the core electrons, i. e., the valence wavefunc-

tions tend to have rapid oscillations in the ion cores region due to the requirement that they

be orthogonal to core states. In other words, in the atomic core regions the valence electron

orbitals have oscillations minima, maxima and nodes. This entails that a huge number of

plane waves (PWs) φK+G(r) = 1�
V

ei (K+G)r have be used in order to reproduce the correct os-

cillations within the ion core regions with short length scale. If all PWs with large values of

the reciprocal lattice vector (G) such that |G| ≤ Gmax where Gmax is accounted by the cut-

off energy, Ecut = �2G2
max

2m , are included, the total number of PWs will be scaled by G3
max. The

accompanying numerical efforts make forbidden the use of PWs to expand core electron

wavefunctions and true valence electron wavefunctions in the core regions. Consequently,

pseudopotentials methods are applied which lead to pseudowavefunctions for the valence

electrons. However, such techniques based on energy-independent pseudopotentials either

denominate "hard" (norm-conserving)[94, 95] or "ultrasoft" [96] pseudopotentials fail in or-

der to restore the actual valence wavefunctions. The pseudofunctions ψ̃v are chosen to be

smooth inside the ion core regions, i. e., ignoring its oscillation there. However, in the same

time they should be identical to the actual wave functions outside the atomic core regions.

Since this is the necessary condition for correct description of the chemical bonding in order

to ensure the realistic predictions of the electronic properties of materials.

Based on that, Blöch [31, 93, 97, 98] suggested a new methodology for "exact" wavefunc-

tions of valence electrons, the so-called Projector Augmented-Wave (PAW) method that is a

generalization of the pseudopotential and linear augmented-plane-wave methods (LAPW).

The underlying Blöch’s idea rised from the exact partitioning of the wavefunctions [31, 93,

97, 98] and brought new concepts in pseudopotential methods owing their advantages. For

instance, the accuracy of the description of full wavefunctions is high and comparable in the

same quality of all-electrons methods. Also it has high computational benefits owing the

very small number of PWs required to expand the smooth part of the full wavefunctions of

the electrons in the valence regions. Such exact partitioning splits the true wavefunction ψv

into three parts
ψv = ψ̃v +χv − χ̃v , (2.102)

where ψ̃v is smooth in everywhere, but exact outside the core regions. The function χv is

exact inside the ion core regions, usually called "augmentation regions" in the PAW method,

but smooth tending to zero in the valence regions. It means that all necessary nodes of the

true all-electron function ψv will be incorporated. By the end, the function χ̃v in the "aug-

mentation regions" and the same as χv outside of them [93, 97]. This approach accounts for

the χv and χ̃v as a highly localized functions inside the core and tending to zero outside of
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Figure 2.3: Hexagonal (wurtzite) and cubic (zincblende) crys-

tal structures and their respective Brillouin zone [99]. Non-

primitive cells that contain four primitive one, in wurtzite

case, are displayed. The lattice parameters and high symmetry

points are denoted.

them, whereas the ψ̃v is a pseudowavefunction that can be expanded in PWs. In praxis, to

combined the wavefunctions in the PAW sphere regions a projector-technique using wave-

functions from all-electron calculations for free atoms is applied. [40, 97]

In this work the PAW method [40, 97] is used in order to generate the atomic pseudopo-

tentials taking the interaction among core-valence electrons into account. In the region be-

tween the atomic cores, the wavefunctions are expanded into plane waves up to 400 eV for

the cutoff energy. It is sufficient to yield converged results for wurtzite and zinc-blende AlN,

GaN and InN polytypes, as well as InxAl1−xN and InxGa1−xN pseudobinary alloys. Moreover

the N 2s, N 2p, In 4d , In 5s, Ga 3d , Ga 4p, Al 3s and the Al 3p electrons are included in the

valence shells of the pseudopotentials for N, In, Ga, and Al, respectively, for the calculation

of the structural, electronic, and optical properties of the III-nitride alloys as well as their

binaries end components.

2.4.2 Brillouin zone sampling

The exact description of the ground state and excited state properties, in part, depends

on the sampling of the Brillouin zone (BZ) Fig. 2.3. Here, in order to obtain converged results

for the ground state properties for binaries end components as well as pseudobinary alloys,

different k point meshes were used. A 8×8×8 (8×8×6) Monkhorst-Pack (MP) [100] meshes

have been used for zb-AlN (wz-AlN) and 16×16×16 (16×16×12) meshes for zb-GaN and zb-

InN and (wz-GaN and wz-InN). In the case of the InxAl1−xN and InxGa1−xN alloys with16-

atom supercells the BZ was sampled using a 2×2×2 meshe in order to compute the total

energy of the 22 cluster classes. However, to ensure converged results for the QP energies,

the BZ is sampled by a finer 3×3×3 k-point mesh.

For optical properties the calculations of the dielectric function in a wide energy range

including excitonic effect require much more refined k-point meshes in Eq. (2.90) where for
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all these mesh points the excitonic matrices Eq. (2.87) have to be constructed. The accuracy

requirements are much higher[64, 101] compared to the independent-quasiparticle approx-

imation (IQPA)[102]. At least 10 times more k-points is needed. The excitonic effects are

usually more important for not too high interband and hence low photon energies near the

absorption edge. This especially holds for excitonic bound states. Their treatment asks for

a further refinement of the BZ sampling. In praxis, in this energy range the calculation of

the DFs can be performed for hybrid meshes with varying densities [64]. More in detail: (i)

Many MP k-mesh points of a 9×9×9 mesh are employed for pair energies below the absorp-

tion edge 3.5 eV (6.3 eV) of GaN in InGaN (of AlN in InAlN), respectively. (ii) Up to 10 eV,

the DFs are sampled by 6×6×6 MP k-mesh points and, (iii) all higher excitations up to 20

eV are computed using a less dense 4×4×4 MP k-mesh. In addition, all k meshes that are

used for the calculation of the DFs were shifted by a small random vector. This shift of the

entire mesh lifts symmetry induced degeneracies inherently present in MP k-point sets and,

therefore, improves the convergence of the respective optical quantities [103]. Together with

the huge number of conduction bands this leads to excitonic Hamiltonians with ranks of up

to 150000. Direct diagonalization of such matrices is prohibitively expensive and, hence, we

make use of the time-evolution method [83] instead, where only matrix-vector multiplica-

tions occur.

2.4.3 Exchange and correlation

Ground-state properties such as the structural, energetic and elastic are derived from

total-energy minimizations within DFT[12, 13]. Both the local density approximation (LDA)

and the semi-local generalized-gradient approximation (GGA) for the XC functional are common,[13]

but, according to the test calculations the choice of the XC functional affects the total energy

and consequently the atomic geometry of the system. It has been found that the LDA tends

to an overbinding, i.e., leading to lattice constants that are ≈ 1 % smaller than found in ex-

periment, whereas the used GGA functional underestimates the binding and yields too large

lattice constants (by up to 2 %) as will be demonstrated in the next chapter.

In contrast, the recently developed AM05 XC functional seems to overcome some of the

shortcomings related to earlier versions of the GGA. It has been designed to treat systems

with varying electron densities (for instance systems that are composed of bulk- and surface-

like regions) by exploiting the subsystem functional scheme (cf. sec. 2.1.3.3). In this work,

the LDA, PBE type GGA and AM05 XC functionals were used in order to compute the ground

state properties of the end components AlN, GaN, and InN. More in detail, we have used the

Ceperley-Alder parametrization [43] for PAW-LDA whereas for AM05 and GGA the PAW-PBE

by Perdew, Burke, and Ernzerhof [49] is applied.
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2.4.4 HSE06 hybrid functional

In Sec. 3.2 it was mentioned that computing QP energies by means of first-order of

perturbation theory, an initial electronic structure is needed that is closer to the final self-

consistent QP solution than the KS eigenvalues and eigenstates computed within LDA or

GGA. We followed the idea of Fuchs et al. [61] and used the HSE06 electronic structure as a

starting point for the computation of the QP corrections. The HSE06 range parameter ω =

0.15 a.u.−1 combined with the one quarter (α = 0.25) of the nonlocal Hartree-Fock exchange

and with the three quarters of the local exchange of the PBE-GGA functional has proven to

work well for nitrides. [61]

2.4.5 Spin-orbit interaction and cristal-field splitting

There is an enormous number of calculations of the crystal-field splittings in semicon-

ductors in geral based on the DFT within the LDA or including GGA. However, only in a few

DFT-LDA or -GGA treatments of nitrides [104–107] spin-orbit interaction has been included.

In addition, the DFT calculations exhibit the above-discussed band gap problem due to the

neglect of the excitation aspect. One has to taken into account QP excitation effects within

Hedin’s GW approximation as well as the spin-orbit interaction. However, a DFT+SOC+GW

approach demands high computer costs because non-collinear spins have to be taken into

consideration. The spin is not anymore conserved and the Green function as well as the

self-energy have to be replaced by 2×2 matrices. In order to avoid the related complications

we have used an approximate inclusion of SOC effects in the computation of the QP band

structures. In the case of group-III nitride (see Sec. 3.2.4) the changes in the DFT eigenvalues

due spin-orbit interaction are smaller than, e. g., In(P, As, Sb) in group III-V semiconduc-

tors [108]. It means that the SOC influence on the XC self-energy matrix elements and W

is small. Furthermore, the used HSE06 method for the zero-order approximation at the QP

eigenvalues can be easily handled together with SOC. Hence, the corresponding QP energies

including SOC are computed applying a QP shift obtained from the HSE06+GW calculation

over the HSE06 eigenvalues computed taking SOC in consideration.[109, 110]

2.4.6 Screening in W

The screened potential W in the XC self-energy (see Eq. 2.83) is computed with matrices

of the inverse dielectric function that have been computed by means of HSE06 wavefunc-

tions and eigenvalues within the independent-particle approximation. Explicitly we use the

implementation described in Ref. [111].

The description of the screening of the attractive electron-hole interaction that enters W

in Eqs. (2.87) and (2.88) by means of a model dielectric function[112, 113] requires the static

electronic dielectric constant ε∞ for each cluster material. Here we use the values calculated
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within the random-phase approximation using the DFT+U scheme (see below) and averaged

over the two independent components of the dielectric tensor.

2.4.7 Number of bands

Within the QP approach the number of bands is essential and must be taken into ac-

count. Especially in the case when computing the dielectric matrices for the GW approxi-

mation of the Σ. Based on that, in this work, it was used a number of 1250 bands in order

to compute the ground state properties and QP bandstructures of the AlN, GaN and InN

binaries end components, as well as the InxAl1−xN and InxGa1−xN pseudobinary alloys in

16 atom supercells. However, taken optical properties in account, this number of bands to-

gether to the dense k-point mesh, e. g., 9×9×9 leads to too large excitonic Hamiltonians Eq.

(2.86) and hence is extremely expensive in both memory as well as computer time. Then, a

number of up to 210 conduction bands was use in order to predict the optical properties for

systems with 16-atom supercells. In this case the excitonic Hamiltonians rank up to 150000

and by means of the time evolution method [83].

2.4.8 Equation of state

The Murnaghan equation of state (EOS) [114] used in this work is a useful and widely

used tool in the treatment of pressure effects on the properties of solids state in the low-

compression range. By fitting the calculated Etot(V) with Etot as the total energy of the elec-

tronic system Eq. (2.24), but increased by the energy of the core-core repulsion. Its deriva-

tive with respect to volume (V ) one obtains the theoretical equilibrium unit cell volume V0

and some other properties, such as the isothermal bulk modulus B0, and its first derivative

B ′
0 with respect to pressure. In paxis the total energy is computed by DFT for several cell

volumes and fit the resulting volume dependence of the total energy. In each case, it was

computed fully relaxed atomic positions, i.e., optimized lattice constants and internal cell

parameters, ensuring that the forces acting on the ions are below 5 meV/Å.

2.4.9 LDA+U +Δ scheme

In order for the LDA+U +Δ scheme to work, the DFT+U gap has to be finite for all the

cluster materials. Unfortunately this is not the case when the AM05 functional is used for

InN [115]. Even, increasing the U parameter to unrealistic values a fundamental gap cannot

be opened. For that reason we use the LDA, as parametrized by Ceperley and Alder [43], to

describe the XC functional in the LDA+U method. This procedure opens a gap for InN from

LDA, however, the resulting gap values are still too small in comparison to the HSE+G0W0

results. This discrepancy is described by a scissors operator Δ.

The scissors operator Δ to shift rigidly the conduction bands toward higher energy is
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adjusted for each cluster j so that the fundamental gap is identical with the HSE+G0W0 result

for each cluster published elsewhere [116].Indeed for each cluster class j such a scissors shift

Δ j has been computed. The shifts vary non-linearly with n j (cf. Appendix A.3).

2.4.10 Excitonic effects

Concerning to the optical properties, the excitonic and local field effects are essential

in order to describe the mutual electron-hole Coulomb interactions. These effects are com-

puted by means of the solution of the BSE as implemented in VASP 4.4, whose solution of the

excitonic Hamiltonian as well as the eigenvalues and eigenfunctions depends on the VASP

5.1.39 inputs such as wave functions, optical-transitions matrix elements and QP energies.

Details are described in Ref. [117] and references therein.
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AlN, GaN and InN polytypes as binary end

components: Influence of exchange and

correlation on structural and electronic properties

"Ser profundamente amado por

alguém nos dá força; amar alguém

profundamente nos dá coragem"

Lao-Tse

For modeling III-nitride alloys, in principle, it is necessary to understand the main prop-

erties of their constituents. Even though the basic semiconductor alloy concepts are under-

stood at this time, the determination of many properties has been hampered by a lack of

definite knowledge of many parameters of their end components. Thus, group III-nitrides

compounds and their alloys have received a lot of attention along the last years . The intense

research have driven a substantial progress in the knowledge of their properties and material

quality from the experimental point of view.[18]

The three group-III nitrides AlN, GaN, and InN crystallize in the wurtzite (w z) struc-

ture under ambient conditions, which corresponds to the P63mc (C 4
6v ) space group for van-

ishing strain in the samples. They can also be grown in the cubic zinc-blende (zb) struc-

ture with space group F 43m (T 2
d ) by means of different epitaxy techniques such as MBE or

MOVPE.[15–17] However, even though high-quality films of AlN, GaN and InN have been

synthesized, research and applications were limited since large single crystals cannot be

grown. Therefore, existing experimental studies are usually restricted to investigations of

epitaxial layers and, hence, may be influenced by the respective substrate, the interfaces,

and spontaneous as well as piezoelectric fields. Correspondingly, a large variety of experi-

mental results exists. [15–17]

Recently, remarkable progress in the determination of band gaps, effective masses, and

k ·p parameters has been made for the nitrides by applying quasiparticle electronic-structure

theory (based on the OEPx+G0W0 approach[118] or the self-consistent GW method[119]).

However, these calculations have not taken spin-orbit coupling (SOC) into account neither

38
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for the w z nor the zb polytype. Such calculations are now possible [54]. For different group-

II oxides the influence of SOC has been successfully included in calculations of the electronic

structure and proven to be important.[92, 110, 120]

For this purpose, this chapter provides a systematic study of structural energetic and

electronic properties of AlN, GaN and InN binary end components. They have been per-

formed using the most modern state-of-art quasiparticle methods upon inclusion of the

SOC. The influence owing different XC functionals on w z and zb polytypes of the group-

III nitrides AlN, GaN, and InN are investigated and also, lattice parameters obtained from

three different approximations to XC within DFT [54] are employed

The resulting lattice parameters a0 (for zb polytype) as well as a, c, u, and c/a (for w z

polytype) as derived from the DFT calculations using three different local and semilocal ap-

proximation for the XC functional are reported along with the bulk moduli B0 and their pres-

sure derivatives B ′
0 in Table 3.1. From comparison to experimental values[121–124, 126] it

is confirmed that the LDA leads to an overbinding for the group-III nitrides; the optimized

lattice constants are smaller than the measured values. In contrast, the lattice parameters

turn out to be larger when the PBE-GGA is used to describe XC, which corresponds to the

underbinding mentioned before.

Interestingly, the AM05 functional indeed yields lattice constants in close agreement to

experiment [121, 123, 124] for AlN and GaN polytypes. The small overestimation of < 0.6 %

for the a0, a, and c lattice constants obtained for InN using the AM05 functional can be a

consequence of the fact that the layers used in the measurements might not be completely

unstrained, defect-free, and polytype-pure. Thus, the excellent agreement of the AM05 lat-

tice constants with measured values for AlN and GaN leads us to believe that this functional

also gives reliable lattice constants for InN.

In contrast to what is observed for the lattice constants a and c of the w z crystals, the

c/a ratio and the u parameter are rather independent of the description of XC (cf. Table 3.1).

There are only very small changes along the functionals LDA, AM05, and PBE-GGA. Along

the row w z-AlN, w z-GaN, and w z-InN u takes a less pronounced minimum for GaN. The

experimental u parameter decreases monotonously towards the ideal tetrahedron value of

u = 0.375, in agreement with the fact that this parameter is almost indirectly proportional to

the bond ionicities calculated as charge asymmetry coefficients g = 0.794 (AlN), 0.780 (GaN),

and 0.853 (InN)[127]. The non-monotonous behavior of the c/a ratio for both computed and

measured values when going from AlN over GaN to InN is because GaN and InN (as opposed

to AlN) have shallow d electrons. The values remain below the ideal ratio c/a = 1.633 in

agreement with the theoretical prediction [128] that for c/a < 1.633 a compound crystallizes

in w z structure under ambient conditions. A similar non-monotonous behavior is observed

for the stability of the polytypes as described by the total energy differences between zb and

w z, ΔEtot = Etot(zb)−Etot(w z). The ΔEtot (cf. Table 3.1) exhibit a minimum for GaN, indicat-
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AM05 LDA PBE-GGA Expt.

zb-AlN a0 4.374 4.343 4.402 4.37[121]

Ωpair 20.922 20.482 21.328

B0 204.7 212.0 193.2 202[122]

B ′
0 4.38 3.22 4.16

ΔEtot 47 46 41

zb-GaN a0 4.495 4.465 4.547 4.49[123]

Ωpair 22.710 22.257 23.509

B0 181.9 188.8 172.0 190[122]

B ′
0 4.07 4.44 3.36

ΔEtot 15 14 18

zb-InN a0 5.005 4.959 5.059 4.98[121]

Ωpair 31.346 30.493 32.371

B0 130.8 144.7 120.2 136[122]

B ′
0 4.07 4.95 4.10

ΔEtot 24 24 70

w z-AlN a 3.112 3.088 3.129 3.11[124]

c 4.976 4.946 5.018 4.978[124]

c/a 1.599 1.601 1.603 1.601[124]

u 0.380 0.379 0.379 0.382[124]

Ωpair 20.869 20.420 21.276

B0 202.3 210.8 187.2 185[125]

B ′
0 4.36 3.95 4.02 5.7[125]

w z-GaN a 3.181 3.158 3.217 3.19[124]

c 5.180 5.145 5.241 5.166 – 5.185[124]

c/a 1.628 1.629 1.629 1.627[124]

u 0.376 0.376 0.376 0.377[124]

Ωpair 22.698 22.219 23.488

B0 183.2 197.4 172.2 188[125]

B ′
0 4.17 4.23 4.63 4.3[126]

w z-InN a 3.549 3.517 3.587 3.54[126]

c 5.736 5.685 5.789 5.718[124]

c/a 1.616 1.616 1.613 1.613[126]

u 0.378 0.377 0.378 0.375[122]

Ωpair 31.293 30.451 32.253

B0 131.3 145.3 120.9 125.5[126]

B ′
0 4.76 4.52 5.37 12.7[126]

Table 3.1: The cubic lattice constant a0 (in Å) and the hexagonal lattice pa-

rameters a, c (in Å) as well as c/a and the internal parameter u are given

for AlN, GaN and InN polytypes. The volume per cation-anion pair Ωpair

(in Å3) is also listed. In addition, also the bulk moduli B0 (in GPa) and

their derivatives with respect to pressure B ′
0 as derived from fits to the Mur-

naghan equation of state are given. The difference of the total energies

ΔEtot in (meV/pair) between the zb and the w z polymorphs is included.

Results are derived from calculations using the LDA, PBE-GGA, and AM05

XC functionals and, for comparison, experimental values are listed.

ing that zb-GaN most likely can be grown not too far from equilibrium, whereas that would

be more difficult for AlN and InN from an energetical point of view. The ΔEtot in Table 3.1

are in rough agreement with values obtained from DFT-LDA.[128]

3.1 Energetic, structural and elastic ground-state parameters

The pair volumes Ω
zb
pair = 1/4 a3

0 and Ω
w z
pair =

�
3/4 a2c, that are occupied by one cation-

anion pair, are practically the same for the zb or w z polytypes of each material. In addition,

it is found that they increase along the row AlN, GaN, InN (for instance Ω
zb
pair=20.9, 22.7, and

31.3 Å3 as derived using the AM05 functional), which matches the trend of an increasing sum

of the covalent radii of the anion and the cation: 1.93, 2.01 and 2.19 Å.[129] Moreover, due to

the aforementioned overbinding, the volumes of the unit cells calculated using the LDA are

smaller than the ones obtained with the AM05 functional. The PBE-GGA leads to the largest

unit-cell volumes, which is in agreement with the underbinding mentioned above.

Still analyzing the ground state parameters, the inverse compressibility B0 increases along

the row InN, GaN, and AlN when the same XC functional is used. B0 of one and the same
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material also increases when going from PBE-GGA over AM05 to LDA (cf. Table 3.1). Fur-

thermore, there is an influence of the polytype on B0: In the case of AlN the values for zb are

larger than the w z ones, while the opposite is true for GaN and InN. This seems again to be a

consequence of the contributions of the Ga 3d or In 4d electrons, respectively, to the chem-

ical bonding. Comparing the calculated B0 to experimental values [125, 126] shows that the

agreement is quite good for the zb polymorphs when AM05 is used. For the w z polymorphs

of GaN and InN the measured values are in between the PBE-GGA and AM05 ones. The

pressure coefficients B ′
0 vary between 3 – 5 and no clear trend for different XC functionals or

materials is spotted. The large value of B ′
0 = 12.7 measuredfor w z-InN [126] arises probably

due to sample-quality issues.

3.2 Quasiparticle electronic structure

Usually it is sufficient to treat the self-energy effects within first-order-perturbation theory.[130]

This approach of calculating QP eigenvalues ε
QP
ν (k), where ν is the band index and k the

Bloch wave vector in the BZ, is called G0W0. For relatively homogeneous electronic systems

the G0W0 corrections to the KS eigenvalues from DFT-LDA or DFT-GGA lead to electronic

band structures (see Fig. 3.1) that are in reasonable agreement with measurements.[26]

However, for compounds with first-row elements, such as the nitrides, the LDA/GGA+G0W0

procedure still underestimates the band gaps. [61] The idea of an iterative solution of the QP

equation seems to be more promising,[130, 131] unfortunately it is inherently linked to a

much higher computational cost. Therefore, computing the QP energies from one step of

perturbation theory, based on an initial electronic structure that is closer to the final self-

consistent solution than the KS eigenvalues and eigenstates are, is an efficient alternative.

Here we use an improved starting point by solving a generalized KS equation with a spatially

non-local XC potential.[61, 71] More precisely the HSE hybrid functional (cf. sec. 2.1.3.4) is

used to be the start point to the GW calculations. It has proven to work well for AlN, GaN,

and InN polytypes.[61, 109] It effectively simulates the screened-exchange contribution to

the GW self-energy in the zero’th approximation. This contribution substantially opens gaps

and other interband distances.

In the precedent section has been shown that the atomic geometries obtained using the

AM05 XC functional agree better with measured results than the LDA or PBE-GGA ones.

Hence, only results for the electronic QP energies based on the AM05 geometries are pre-

sented.

In Bechstedt et al.[133] and Riefer et al.[101] the HSE+G0W0 approach has been applied to

the DFT-LDA geometries of InN (AlN). According to Table 3.1, the LDA or PBE-GGA geome-

tries are used to study atomic structures that are hydrostatically strained with respect to the

AM05 equilibrium geometries. In these cases the indirect influence of the XC functional used

in the ground-state studies within DFT on the electronic structure (via the atomic geometry)
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 X  L W K   K H A M L 

Figure 3.1: QP band

structures and DOS with-

out spin-orbit interaction

for zb-AlN, zb-GaN, and

zb-InN. The numbers

indicate the irreducible

representations at the

respective high-symmetry

points using the notation

according to Bouckaert,

Smoluchowski and

Wigner (see Yu et al.[132]).

The Γ15 VB maximum is

used as energy zero. The

fundamental band gap is

indicated by the shaded

region.

and the direct influence of XC according to the GW self-energy are discussed together.

3.2.1 Band structures and DOS

The QP band structures of AlN, GaN, and InN calculated for the zb (w z) AM05 atomic

geometries are shown along with the corresponding DOS in Fig. 3.1. Since the spin-orbit

splittings are small, they are not shown in this figure and the notations of the irreducible

representations are given accordingly.[132, 134, 135] All band structures show a pronounced

minimum of the lowest conduction band (CB) near the BZ center Γ. The dispersion of this

band around Γ increases along the row AlN, GaN and InN, thereby closing the fundamental

energy gap. This can be explained by the In 5s and Ga 4s levels being lower in energy than the

Al 3s one[115] and the reduction of the interatomic interaction along the row AlN, GaN, and

InN.[136] The strong CB dispersion is also visible by the low state density in the lowest part of

the empty DOS (see Fig. 3.1). Another reason that the gaps of InN and GaN are much smaller

than the one of AlN is the remarkable pd hybridization in both materials.[137] This effect

causes a strong pd repulsion at Γ which is not present for AlN and hence renders zb-AlN an

indirect semiconductor with a CB minimum situated at the X point.

As can be seen in Fig. 3.1, the d electrons also influence the VB structure. More specifi-

cally, it is observed that the ionic gap between the uppermost three (twofold spin degenerate)

p-like VBs and the lowest (twofold spin degenerate) s-like VB does not follow the trend of the

charge asymmetry coefficients g .[127] The reason for this behavior is the energetic overlap
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Figure 3.2: Band line-ups for cubic inclusion embedded in hexagonal environ-

ment from QP calculations. The branch-point energy (here: energy zero) and

the values from Table 3.2 have been used for alignment. The shaded areas illus-

trate the fundamental gaps in the regions of the cubic inclusions.

of the N 2s states and the Ga 3d or In 4d states, respectively, the so-called sd hybridization.

This effect is symmetry-forbidden at Γ,[138] however, for zb-GaN and zb-InN it leads to a

splitting into a lower and an upper split-off band for all k-points away from the BZ center.

In addition, four dispersionless low-lying bands appear at −16 eV (GaN) or −15 eV (InN). All

these bands give rise to pronounced peaks in the DOS which are clearly visible in photoe-

mission experiments.[139]

3.2.2 Band alignment and cubic inclusion in wurtzitic structures

Recently it has been demonstrated experimentally that nitride nanowires (NWs) (e.g.

made by GaN) can be grown as cubic polytype by plasma-assisted MBE despite the w z

favorization in bulk.[140] The corresponding luminescence lines in zb-GaN are shifted to-

wards lower energies by 0.2 eV with respect to w z-GaN. However, there is also an intense

luminescence peak in between which is attributed to excitons bound to stacking faults that

form at the cubic-hexagonal interface. Stacking changes have been also observed by other

groups.[141]

The observation of a stacking variation in [0001]/[111] direction suggests the possibility

of polytypic superlattices or, in general, heterocrystalline structures [142] also for the group-

III nitrides. Their properties are determined by the electronic states in the entire system and

the line-up of the allowed empty or occupied bands at the interface between the w z and

zb polytypes depicted in Fig. 3.2. The key questions concern the magnitude and sign of the

band discontinuities between w z matrix and cubic inclusion, especially the localization of

the highest occupied or lowest empty electronic states in a heterocrystalline but homoma-

terial system.

In this section these questions are answered using our approach to the ab initio elec-

tronic structure. We calculate the natural band discontinuities ΔEv and ΔEc between the va-

lence bands and conduction bands, respectively, of zb and w z nitrides (cf. Tabela 3.2). The

positive sign of ΔEv (or ΔEc ) indicates that the embedded cubic inclusion represents a quan-

tum well for holes (or electrons) in the cubic regions. Thereby, ΔEv ·ΔEc > 0 describes a type-
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Eg EBP Ec Ev ΔEc ΔEv

AlN zb (Γ-Γ) 6.271 3.422 2.849 -3.422 0.108 -0.069

zb (Γ-X ) 5.198 1.776 1.181

w z 6.310 3.353 2.957 -3.353

GaN zb 3.427 2.366 1.061 -2.366 0.170 0.062

w z 3.659 2.428 1.231 -2.428

InN zb 0.414 1.487 -1.073 -1.487 0.131 0.093

w z 0.638 1.579 -0.941 -1.579

Table 3.2: Energy gap Eg and branch-point energies EBP (with respect

to the valence-band maximum) for zb and w z nitrides. For zb-AlN be-

sides the direct Γ-Γ gap also the smaller indirect Γ-X gap is listed. The

resulting absolute positions of the conduction band minimum Ec and

valence band maximum Ev as well as the natural band discontinuities

ΔEc and ΔEv between zb and w z are also given. The energy values have

been derived from the QP eigenvalues computed within the HSE06+GW

approach [71].

I hetero(crystalline)structure while ΔEv ·ΔEc < 0 gives rise to a type-II hetero(crystalline)

structure. Here we use a "macroscopic" approach [143] which only requires the calculation

of the QP band structures of the corresponding bulk compounds. The energy alignment of

the two band structures for the cubic and hexagonal nitride polytypes asks for a common

universal reference level. Frensley and Kroemer [144] suggested to use an internal reference

level which may be pinned at the interface in the presence of virtual gaps states. It may

be identified with the branch-point energy.[145, 146] In the spirit of the Shockley-Anderson

model [147] the vacuum level takes over the role of the reference level if no interface states

are present. The vacuum level is however strongly influenced by the electrostatic potential.

In a first step the branch-point energy EBP of each material as common energy zero was

applied. At the branch-point energy the band states change their character from predomi-

nantly acceptor-like (usually valence-band states) to mostly donor-like (usually conduction-

band states) electronic states. According to Tersoff [145] the related charge transfer leads

to an intrinsic interface dipole that tends to line-up the energy bands at both sides of an

interface in a way that the dipole itself vanishes. We compute the reference levels EBP ac-

cording to an approximate method which was successful for several material combinations.

[143, 146] The calculations have been performed using the QP band structure resulting from

the full HSE06+GW scheme (Fig. 3.2). Although ionization energies and electron affinities

are not explicitly derived, instead only the positions of the band edges Ec and Ev with re-

spect to V̄ are determined. This procedure yields the same results as the Shockley-Anderson

model with the vacuum-level alignment. [147] We find that the displacements ΔV̄ due to the

potential differences between zb and w z are small, ΔV̄ = 0.15 eV (AlN), 0.01 eV (GaN), and

0.03 eV (InN). The second type of "natural" band discontinuities ΔEc and ΔEv arises from

the absolute band-edge positions with respect to V̄ in both polytypes.

The results for the band discontinuities ΔEc and ΔEv are given in Table 3.2 and Fig.3.2

together with those for the fundamental energy gap Eg and the corresponding relative posi-

tions Ec and Ev of the conduction-band minimum (CBM) and the valence-band maximum

(VBM), respectively. In the case of zb-AlN the indirect Γ-X gap and the conduction band po-

sition Ec at the X point are listed in addition to the direct Γ-Γ gap. The computed values are

slightly different from those given in Ref. [143] mostly due to the different atomic geometries

used. The geometries optimized here by means of the AM05 XC functional are closer to the

experimentally determined structures (cf. Table 3.1). We find that the band discontinuities

ΔEv and ΔEc between zb and w z are relatively small. Only the CBM at X in zb-AlN exhibits
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a large distance of about 1 eV to the CBM at Γ of w z-AlN. Thereby the absolute values of the

band discontinuities are in general much larger in the conduction-band case whereas the va-

lence bands are almost aligned (cf. Table 3.2 ). The important information is that the values

weakly dependent on the procedure. The average deviation of ΔEc (ΔEv ) amounts to 36 meV

for GaN and 32 meV for InN. Only for AlN the variation approaches larger values up to 0.1 eV

for Γ-Γ or 0.2 eV for Γ-X . The positive signs indicate type-I heterocrystalline structures apart

from the AlN case where the holes should not be localized within the cubic inclusion. In the

case of the AlN cubic inclusions represent heterocrystalline structures of type-II where only

the electrons are localized in the zb layers. The strength of the localization depends on the

Γ or X character of the electrons. The almost vanishing valence band offsets between cubic

and hexagonal group-III nitrides do not indicate the validity of the common anion rule. [148]

On the contrary, Fig. 3.2 clearly shows large valence band offsets between two different w z

group-III nitrides of about 0.93 eV (AlN-GaN) and 0.84 eV (GaN-InN) using the HSE06+GW

and the BP alignment of the order of measured values [149, 150] despite the common anion.

The computed energy values in Table 3.2 are in rough agreement with other band struc-

ture calculations, especially for AlN and GaN. Examples are the values ΔEc =0.162 eV (AlN)

and 0.154 eV (GaN) atΓ obtained from DFT-LDA computations without QP corrections. [151]

Similar values of ΔEc =0.150 eV (GaN) and 0.120 eV (InN) have been obtained by Yeh et al .

[152] The absolute values for the valence-band offsets are much smaller and may vary in

sign. For instance, Murayama and Nakayama [151](assuming that no dipole potential exists

across the interface) found ΔEv =-56 (AlN) and -34 (GaN) meV. Dalpian and Wei derived a

value of ΔEv = -22 meV for GaN [153] by using the (KS) eigenvalues of the core levels as cal-

culated within DFT-GGA. These valence band discontinuities indicate a type-II heterocrys-

talline behavior which is different from the findings based on the alignment via the branch-

point energy (cf. Table 3.2). However, this difference can most likely be attributed to the QP

corrections which are missing in Ref.[153] Using the KS eigenvalues of the Ga3d states (cal-

culated within GGA) to perform the energy alignment, we also found ΔEv<0 in agreement

with Dalpian and Wei. We state that the inclusion of the quasiparticle effects is important.

Using the averaged electrostatic potentials to achieve the energy alignment of the w z

and zb band structures, contradictory but also similar results have been derived for the dis-

continuities within DFT-LDA. Stampfl and Van de Walle [154] predicted a type-II character

with ΔEc =0.27 eV and ΔEv =−0.07 eV for GaN. The DFT-LDA superlattice calculations of Ma-

jewski and Vogl [155] qualitatively agree with our findings for AlN and GaN (cf. Table 3.2 and

Fig. 3.2). They also report a band line-up for zb/w z leading to a type-I junction. [140] The

values obtained by Majewski and Vogl including (neglecting) atomic relaxations of the inter-

faces are ΔEv =0.02 (−0.10) eV and ΔEc =1.30 (1.40) eV for AlN and ΔEv =0.04 (0.02) eV and

ΔEc =0.12 (0.14) eV for GaN. The small differences between the values outside and inside the

parenthesis indicate a weak sensitivity to the details of the computations. Nevertheless, for
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unrelaxed interfaces with (ΔEv =−0.10 eV) [155] they also found a type-II heterocrystalline

character for AlN, in contrast to the relaxed case. In a supercell calculation with slightly

strained zb-GaN Majewski and Städele [156] confirmed the previous results with ΔEc = 175

meV and ΔEv = 35 meV for a type-I system. The results for GaN by Bandić et al . [157] are

shifted with respect to those of Majewski and Vogl [155] since the interface dipole contribu-

tion described by the difference in electrostatic potentials is not taken into account.

Taking the accuracy of the band-structure and alignment methods into account, one has

to point out that no final conclusion can be made for the valence-band line-up between

cubic and hexagonal AlN . We have to point out that our results for GaN and InN, do not

follow the simplified argument that the VBM of a pure compound in w z structure is usually

higher than that in the zb structure.[153] This should be due to the crystal-field splitting

which moves the uppermost occupied w z level toward higher energies. Indeed, this effect is

present. However, we claim that the discussion of the band structures of isolated polytypes

is insufficient. Rather, one needs an alignment via a reference level that accounts for the

electrostatics at the interface.

Thereby, the manifold first-principles results ask for some comments: (i) In general, the

(natural) valence-band offsets ΔEv between zb and w z for the three nitrides are small, |ΔEv |
≤ 0.1 eV, independent which approach has been used for this estimation.[158] Most impor-

tant is the treatment of XC in the underlying electronic structure calculations. Conventional

DFT results using GGA or LDA functionals are less reliable on predicting valence-band offsets

than hybrid functionals or, much better, hybrid-functional based QP calculations. [159–161]

(ii) The positive or negative values ΔEv may depend on the internal or external reference

level used to align the bulk bands on both sides of the zb/w z interface.

At first glance, the values ΔEv>0 in Table 3.2 seem to violate the rule that the VBM in

wurtzite should usually be higher in energy than that in zb crystals due to the crystal-field

splitting and intervalence band repulsion that exist in w z. [153] However, the same align-

ment procedure and electronic structure calculations lead to values ΔEv<0 for conventional

III-V compounds GaAs, InP, InAs, and InSb. [162] We conclude that the crystal field itself with

lattice parameters c/a > 1.633 and u < 0.375 for conventional III-V compounds (crystalliz-

ing in zb under ambient conditions) in wurtzite geometry and c/a ≤ 1.663 and u > 0.375

for III-nitrides (usually crystallizing in w z) obviously determines the sign of the small |ΔEv |
values.

3.2.3 Fundamental gaps and their volume/pressure dependence

The fundamental gaps at the Γ point of the BZ for AlN, GaN, and InN in the zb and the w z

structure are summarized in Table 3.3. They separate CB states of Γ1c type from VB states of

Γ15v type for the zb crystals as well as Γ1c -like CB states from Γ5v -like (w z-GaN, w z-InN) or

Γ1v -like (w z-AlN) VB states. Here, the denotation is changed back from Fig. 3.1 (Γ6 Rashba
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Geometry: Geometry: Geometry:

AM05 LDA PBE-GGA Expt.

zb-AlN Eg 6.271 6.659 6.071 5.93[163]

(5.198) (5.265) (5.164) (5.3)[163]

αV −10.11

(−2.40)

αP 49.4

(11.7)

zb-GaN Eg 3.427 3.609 3.158 3.3[123]

αV −8.60 −7.9[123]

αP 47.3 40 – 46[123]

zb-InN Eg 0.414 0.540 0.264 0.61[164]

αV −4.48

αP 34.2 3[123]

w z-AlN Eg 6.310 6.553 6.144 6.28[165]

αV −10.07

αP 49.8 49[123]

w z-GaN Eg 3.659 3.847 3.366 3.51[165]

αV −8.52

αP 46.5 37 – 47[123]

w z-InN Eg 0.638 0.765 0.494 0.7[165],[15]

αV −4.56

αP 34.7 22 – 30[123]

Table 3.3: Energies Eg (in eV) of the fundamental band gaps at Γ ob-

tained within HSE+G0W0. For the AM05 equilibrium geometry, the hy-

drostatic pressure coefficients αP (in meV/GPa) and the volume defor-

mation potentials αV (in eV) of the fundamental band gap are given. In

the case of zb-AlN the values in parenthesis refer to the indirect gap be-

tween Γ and X . The gaps resulting for the LDA and GGA geometries in

Table 3.1 are also listed.

notation[135]) to the textbook version (Γ5 Ref.[132]).

In addition, also the indirect fundamental gap of zb-AlN between X1c -like and Γ15v -like

states is given in Table 3.3. These results clearly demonstrate that the approach applied in

this work, i.e., calculating QP energies within the GW approximation based on an initial

electronic structure from HSE, gives excellent fundamental gaps for the nitrides. While this

is true for the atomic geometries obtained using the AM05 XC functional, the ones calculated

based on the LDA (PBE-GGA) lead to an overestimation (underestimation) of the direct gaps

in comparison to measured values. Thereby, it is found that the relative variation of the gap

with the cell volume is most drastic for InN, while the influence on the indirect gap of zb-

AlN is much weaker. This is a consequence of the opposite shifts of the Γ1c and X1c levels in

zb-AlN when the volume changes.

Using the changes of the unit-cell volume due to the different XC functionals (cf. Table

3.1) and the fundamental band gaps, the hydrostatic band-gap deformation potentials αV =
δEg/δ lnV are derived (cf. Table 3.3). They are slightly larger than values from an equally

sophisticated QP approach.[118] The hydrostatic pressure coefficients αp = −αV /B0 follow

with the bulk moduli in Table 3.1. The results for αV and αp are in excellent agreement with

measured values (see e.g. collection in Rinke et al.[118]).

In Table 3.4 the fundamental band gaps of the zb mononitrides are given as calculated

based on the different equilibrium geometries (cf. Table 3.1) and using different levels of ap-

proximation for the XC self-energy. These numbers confirm that the KS eigenvalues obtained

using a local/semi-local XC functional are smaller compared to the more sophisticated ap-

proximations. InN even turns out to be a zero-gap semiconductor in these cases since the

ordering of the Γ1c and the Γ15v levels is inverted.[166] Including the screened-exchange

contribution[69] by using the spatially non-local HSE functional shifts the electron and hole
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XC self-energy AM05 LDA PBE-GGA

zb-AlN (semi-)local 3.198 2.977 3.312

HSE 4.333 4.354 4.316

HSE+G0W0 5.198 5.265 5.164

zb-GaN (semi-)local 1.843 1.925 1.572

HSE 2.844 2.972 2.590

HSE+G0W0 3.427 3.609 3.158

zb-InN (semi-)local ≈ 0.0 ≈ 0.0 ≈ 0.0

HSE 0.325 0.416 0.206

HSE+G0W0 0.414 0.540 0.264

Table 3.4: Fundamental band gaps Eg (in eV) of zb-AlN, zb-GaN,

and zb-InN calculated for the LDA, PBE-GGA, and the AM05

equilibrium geometries. Three different approximations for the

XC self-energy are compared: (i) “(semi-)local” means that the

same XC functional as for the calculation of the atomic geometry

has been used. In addition, the gaps calculated using (ii) the HSE

functional, and (iii) the HSE+G0W0 approach are included.

eigenvalues in opposite directions.[26] Consequently, the gaps are by about 1 eV (AlN, GaN)

or 0.3 eV (InN) larger than the KS gaps (cf. Table 3.4). In a next step, the correct screening (in-

cluding its dynamics) as well as the Coulomb hole contribution[69] are taken into account

by calculating QP energies within the G0W0 approximation. This leads to an additional in-

crease of the gaps by about 0.9 eV (AlN), 0.6 eV (GaN), and 0.1 eV (InN), which corresponds

to roughly 20 % of the true fundamental gap. Therefore, we find that eigenvalues obtained in

an HSE calculation significantly improve over the DFT-LDA/DFT-GGA ones. However, only

the full XC self-energy (as approximately calculated within the G0W0 approach) leads to QP

gaps that are in good agreement with measured values.

3.2.4 Valence band splittings and spin-orbit interaction

The SOC is taken into account via a non-collinear description[132] within the calculation

of the HSE electronic structure.[110, 120, 167] Currently, we have not fully developed a full

HSE+GW approach including non-collinear spins, moreover, the replacement of wave func-

tions by spinors is not enough because of the coupling of orbital and spin motion. Hence,

since the spin is not conserved,[81] a simple generalization of the available codes is dif-

ficult. However, since all orbital contributions to the mixed states are mostly p-like the

same influence of the QP corrections can be expected for the spin-orbit-split band ener-

gies at a given Bloch wave vector. Consequently, the SOC should be almost uninfluenced

by the QP effects. This especially holds for the small shifts starting from HSE close to the

QP ones. The accuracy of this efficient approximation has been demonstrated for group-II

monoxides.[110, 120, 167]

Without SOC (cf. Fig. 3.4) the VB maximum of the zb nitrides is a threefold degenerate

state with Γ15v symmetry which splits into a Γ8v (fourfold degenerate) and a Γ6v (twofold de-

generate) level in the presence of the spin-orbit interaction .[132] The corresponding Δso =
ε(Γ8v )−ε(Γ6v ) are compiled in Table 3.5. These numbers show that the choice of the XC func-

tional indirectly influences the splittings via the atomic geometry. However, there is no clear

trend with the (overestimated or underestimated) lattice constants, since also the mixing of

the p and d like levels changes and, hence, affects the SOC splitting (see below). Moreover,

the values for Δso do not vary strongly for the different cubic group-III nitrides. The results in

Table 3.5 agree well with values from previous DFT-LDA calculations[105] from which 20.0,
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Figure 3.3: Characteristic splittings and shifts

due to the crystal-field splitting and the spin-

orbit interaction for (a) AlN, (b) GaN, and (c) InN.

The absolute energy values (in meV) are given in

parenthesis. The threefold degenerate Γ15 level

of the zb polymorphs is used as energy zero.

18.5, and 12.6 meV was derived for AlN, GaN, and InN, respectively. Also the values Δso = 19,

17, and 5 meV which have been recommended by Vurgaftman and Meyer[168] are very close.

In the case of GaN and InN the Δso are so small compared to AlN since the atomic spin-

orbit splittings [169] for the Ga 4p (98 meV) and Ga 3d (-537 meV) electrons or the In 5p (264

meV) and In 4d (-958 meV) states, respectively, partially compensate each other became of

the different signs [105]. This compensation arises due to the pd hybridization of atomic-

like p and d states and leads to the values given in Table 3.5. Interestingly, for GaN and

InN the spin-orbit splittings between L4,5 and L6 states, Δso(L), are larger than the respective

splittings at the Γ point. In contrast to AlN, the rule[105] Δso(L)/Δso(Γ) = 2/3 is violated for

GaN and InN. A similar effect has been observed for other tetrahedrally coordinated III-V

compounds with relatively large differences of the covalent radii, for instance InP.[170]

For w z crystals, in Fig. 3.4, the VB structure is more complex due to the hexagonal crys-

tal field which leads to a crystal-field splitting. Hence, without SOC one finds the twofold

degenerate Γ5v and the non-degenerate Γ1v states at the VB maximum. Thereby, we use the

Bouckaert, Smoluchowski and Wigner notation[132, 134] Γ15v which leads to Γ5v and Γ1v in-

stead of Γ6v and Γ1v as in the Rashba denotation [135] applied in Fig. 3.1. The Γ5v state splits

into Γ9v and Γ7v levels and Γ1v becomes a level with Γ7v symmetry in the presence of SOC.

The values for the crystal-field splittings Δcf in Table 3.5 indicate a small influence of the

GW corrections on the crystal-field splittings: the QP shifts towards lower band energies are

larger for the Γ5v states than for the Γ1v states. Consequently, the QP corrections reduce the

crystal-field splitting for w z-GaN and w z-InN by about 3 – 7 meV. In the case of w z-AlN an

enlargement of the absolute value by about 17 – 20 meV is computed due to the negative sign
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ofΔcf. The absolute splittings in Table 3.5 are somewhat larger than the values recommended

by Vurgaftman and Meyer.[18] However, the sign and, hence, the ordering of the Γ5v and Γ1v

states are the same. Moreover, the values calculated in this work are in good agreement with

other ab-initio calculations, e.g. collection in Bechstedt et al.[115] and references therein.

The QP calculations without SOC in Rinke et al.[118] tend to overestimate the absolute values

for Δ0
cf.

Within k ·p theory the energy differences of the uppermost valence levels in a wz crystal,

ΔE1 = ε(Γ9v )−ε(Γ7+v ) and ΔE2 = ε(Γ9v )−ε(Γ7−v ), can be described by[171]

ΔE1/2 = ε (Γ9v )−ε (Γ7+/−v )

= 1

2

(
Δcf +Δso‖

)∓ 1

2

√(
Δcf −

1

3
Δso‖

)2

+ 8

9
Δ

2
so⊥.

(3.1)

In Eq. (3.1), 3iΔso‖ = 〈y |Hsz |x
〉

and 3iΔso⊥ = 〈z |Hsx | y
〉 = −〈z

∣∣Hs y
∣∣x〉 are the spin-orbit

splitting parameters; the spin-orbit interaction Hso is divided according to Hso = Hsxσx +
Hs yσy +Hszσz by means of the Pauli spin matrices σ (cf. section 2.1.2.3). Therein, |x〉,

∣∣y〉,
and |z〉 describe the p like basis functions at Γ. In addition, Δcf represents the differences in

the VB eigenvalues of the |x〉 (
∣∣y〉) and the |z〉 states.

However, Eq. (3.1) indicates a complication for both theory as well as experiment. In

band-structure calculations and also in all spectroscopies only energy differences such as

ΔE1 and ΔE2 are determined. Hence, only two numbers are available to determine the three

band-structure parameters Δcf, Δso‖, and Δso⊥ from Eq. (3.1). If no additional assumption

is made, the lack of one parameter for the determination of Δcf, Δso‖, and Δso⊥ leads to a

parameter field Δso∥ = Δso∥(Δcf) and Δso⊥ = Δso⊥(Δcf) which is visualized in Fig. 3.4. One

possible additional assumption to fix all parameters is the quasicubic approximation Δso‖ =
Δso⊥ =Δ

qc
so and Δcf =Δ

qc
cf . Interestingly, whenΔcf > 0 (as found for GaN and InN) the resulting

Δ
qc
cf are not very different from the values computed in the absence of SOC (cf. Table 3.5).

For Δcf < 0 (AlN) a further increase of the absolute values is observed. In any case the

quasicubic spin-orbit splitting constant Δqc
so is by nearly a factor of 2 (1.5) smaller than its

zb value for InN (GaN), while there is no such deviation for AlN, which has no d electrons.

This has recently been discussed for the first time,[109] and, according to the results of the

present work, the recommendation[168] to choose the same spin-orbit splittings for w z and

zb fails for compounds with shallow d electrons. Another additional assumption can be

derived by identifyingΔcf =Δ
0
cf which leads toΔso‖ �=Δso⊥. Moreover, theΔE1 andΔE2 values

in Table 3.5 indicate that Δcf, as computed using the eigenvalues without SOC, is almost in

agreement with the average distance 1
2 [ε(Γ9v )+ ε(Γ7+v )− ε(Γ7−v )] = 1

2 [ΔE1 +ΔE2] between

the valence levels including SOC. Therefore, the choice Δcf =Δ
0
cf seems to be reasonable. For

a more detailed comparison of theoretical and experimental values, the reader is referred to

Carvalho et al. [109].
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AM05 LDA PBE-GGA Expt.

zb-AlN Δso(Γ) 21.8 21.9 21.8 19[121]

Δso(L) 16.9 17.0 16.8

zb-GaN Δso(Γ) 20.2 19.4 21.6 17[121]

Δso(L) 31.3 31.2 31.6

zb-InN Δso(Γ) 17.4 14.4 20.7 5[121]

Δso(L) 53.7 53.0 54.3

w z-AlN Δ
0
cf −257.2 −242.7 −217.2 −169[123]

(−275.7) (−260.0) (−234.3)

ΔE1 −250.4 −235.9 −210.5

(−268.9) (−253.2) (−227.6)

ΔE2 14.9 (14.9) 14.9 (14.9) 14.9 (14.9)

Δ
qc
cf

−257.3 −242.7 −217.3 −230[123]

(−275.8) (−260.1) (−234.4)

Δ
qc
so 21.8 (21.8) 21.7 (21.8) 21.7 (21.7) 19[123]

Δso∥ 21.7 (21.7) 21.7 (21.7) 21.6 (21.6)

Δso⊥ 22.7 (23.5) 22.1 (22.8) 22.5 (23.3)

w z-GaN Δ
0
cf 32.2 (26.4) 40.9 (34.5) 32.0 (27.3) 10[123]

ΔE1 8.4 (8.4) 8.7 (8.7) 9.0 (9.0)

ΔE2 41.8 (36.0) 49.3 (42.9) 42.6 (37.9)

Δ
qc
cf

35.3 (28.5) 43.1 (36.1) 35.3 (29.6) 39[123]

Δ
qc
so 14.9 (15.9) 14.9 (15.5) 16.3 (17.3) 17[123], 8[123]

Δso∥ 18.0 (18.0) 17.1 (17.1) 19.6 (19.6)

Δso⊥ 22.0 (19.7) 21.5 (19.6) 23.2 (21.3)

w z-InN Δ
0
cf 34.6 (31.7) 41.3 (38.5) 25.1 (22.1) 40[123]

ΔE1 6.3 (6.3) 5.4 (5.4) 6.3 (6.3)

ΔE2 42.8 (39.9) 47.4 (44.7) 36.5 (33.5)

Δ
qc
cf

38.6 (35.6) 44.1 (41.3) 32.0 (28.8) 39[123]

Δ
qc
so 10.5 (10.6) 8.7 (8.8) 10.8 (11.0) 5[123]

Δso∥ 14.5 (14.5) 11.5 (11.6) 17.7 (17.7)

Δso⊥ 22.4 (21.4) 20.1 (19.7) 24.7 (23.2)

Table 3.5: Different energy splittings (from HSE calculations) of the

uppermost VB states of the nitrides in three different equilibrium

geometries are given in meV: The spin-orbit splitting constants at

the BZ center Γ, Δso = ε(Γ8v )− ε(Γ6v ), and at the L point, Δso(L) =
ε(L4,5)−ε(L6), for zb polymorphs as well as ΔE1 = ε(Γ9v )−ε(Γ7+v )

and ΔE2 = ε(Γ9v )−ε(Γ7−v ) for w z polymorphs are calculated from

the HSE eigenvalues including SOC. The crystal-field splittings Δ0
cf =

ε(Γ5)−ε(Γ1) (in the absence of SOC) are also given. The values Δ
qc
cf

are derived within the quasicubic approximation. The spin-orbit in-

teraction constants Δso∥ as well as Δso⊥ are derived using Δ
0
cf for the

crystal-field splitting (see text). The respective HSE+G0W0 results

are provided in parenthesis.

Recently, by means of quasiparticle self-consistent GW calculations, Punya and Lam-

brecht [172] computed a negative Δso for InN. They attributed this negative spin-orbit inter-

action to the symmetry inversion of the Γ7+ and Γ9 valence band states owing the contribu-

tion of the In-4d orbital to the effective spin-orbit splitting.

3.2.5 Band dispersions

In Fig. 3.5 the large impact of the spin-orbit and crystal-field splittings on the dispersion

of the uppermost valence bands around Γ is shown for the Γ – X and the Γ – L directions in

the fcc BZ as well as the Γ – A and the Γ – M directions in the hexagonal BZ. Fig. 3.5(a) illus-

trates the splittings of the six uppermost VBs of the zb polymorphs: while the degeneracy of

the heavy-hole (hh) bands, which belong to the Λ4 and Λ5 irreducible representations [173],

is lifted along the Γ – L direction, the light hole (lh) and the spin-orbit split-off (so) bands

remain twofold degenerate.

The degeneracy of the L4 and L5 representations occurs due to the time-reversal sym-

metry. These effects are well known for other zb crystals[170, 174, 175] as well as for the

nitrides.[105] The splitting of the hh bands near Γ along the [111] direction can be described

by the relation[170] ΔEhh =−2
�

2Ck ·k. Using our ab-initio results we derive values of Ck =
−0.005, −0.063 and −0.178 eVÅ for AlN, GaN and InN which are in qualitative agreement with

the trends found for group-V compounds containing Al, Ga, and In.[170] The strong increase
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Figure 3.4: Geometric solution of Eq. (3.1) to relate the ΔE1/2 values

(cf. Table 3.5) and Δcf, Δso‖, and Δso⊥ for w z-GaN. The black line

represents Δso‖ while the blue ellipsoid gives Δso⊥. The two crossings

indicate the two possible solutions within the quasicubic approxima-

tion.

of the Ck going from AlN to GaN or InN can be traced back to the presence of the shallow d

states that contribute to the top of the VBs in GaN and InN.[105, 176]

Figure 3.5(b) illustrates the SOC-induced splitting effects for the VBs of the w z nitrides

along theΓ – M direction in the BZ. In this case all the irreducible representations compatible

with spin are singly degenerate (except for the BZ center and the BZ boundary). In contrast

to that, no spin splitting of the three VBs appears along the hexagonal Γ – A direction since

the small point group of these k points is C6v . Hence, the irreducible representations that

are compatible with spin are twofold degenerate like Γ9, Γ7+ and Γ7− in the BZ center.[177]

Indeed, for GaN and InN a clear splitting of the lh bands is visible in Fig. 3.5(b), whereas the

splittings for the other bands are small.

However, as can be seen for w z-GaN and w z-InN in Fig. 3.5(b), the interpretation of the

VBs can be more complex due to state mixing and band crossings near the Γ point. For these

materials the definition of spin splittings that are linear in the k vector is impossible. For

that reason the spin-orbit splittings of the hh, lh, and ch bands along the Γ – M direction are

compared to the corresponding splitting of the lowest CB in Fig. 3.6. This shows that the

influence of the SOC on the hh band and the lowest CB remains relatively small. Contrary,

the impact on the lh and the ch bands is much larger. As observed for the zb polymorphs,

there is a clear chemical trend of increasing SOC splittings along the row AlN, GaN, and InN.

For InN the k-vector-induced splittings even approach the order of magnitude of Δso (cf.

Table 3.5). The non-monotonous behavior of the wave-vector-induced splittings of the lh

and ch bands of w z-GaN and w z-InN is a consequence of the corresponding band crossings

along Γ – M in Fig. 3.5(b).

3.2.6 Effective masses

The band dispersions and curvatures away from Γ in Fig. 3.5 depend not only on the

splittings of the valence states but also on the coupling between the lowest CB and the up-

permost VBs. Within k ·p theory[132, 171] this coupling is governed by the interaction of the

s-like CB state |s〉 and the p-like valence wave functions |x〉,
∣∣y〉, |z〉 at Γ, mediated by the

momentum operator p. The respective matrix elements P⊥ = �

m0

〈
s
∣∣px
∣∣x〉 = �

m0

〈
s
∣∣py
∣∣ y
〉

or

P∥ = �

m0

〈
s
∣∣pz
∣∣z〉 give rise to relatively large values. In units of energy, the Kane parameters

Ep⊥/∥ = 2m0
�2 P2

⊥/∥ calculated using the HSE wave functions are Ep = 15.86 / 13.26 / 9.50 eV for
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Figure 3.5: The HSE+SOC results for the uppermost VBs of

AlN, GaN, and InN in (a) the zb and (b) the w z structure are

shown along two high-symmetry directions in the BZ. Up to

1/16 of the paths Γ – X , Γ – L, and Γ – M in the BZ is shown,

as well as 1/12 of the Γ – A path. The heavy-hole (hh), light-

hole (lh), spin-orbit split-off (so), and crystal-field split-off

(ch) bands are labeled and the top of the VBs is used as en-

ergy zero.

zb-AlN / zb-GaN / zb-InN or Ep⊥ = 15.78 / 12.83 / 9.39 eV and Ep∥ = 15.92 / 14.79 / 10.52 eV

in the w z case. These values are close to those derived from experimental data for InN[178,

179] but seem to underestimate the values suggested for GaN.[181, 262] The agreement with

theoretical values[118] calculated from the OEPx wave functions is good. However, the agree-

ment is worse when comparing to results for GaN that take the GW corrections into account.[119]

The effective electron and hole masses are extracted from the HSE band-structure calcu-

lations (including spin-orbit interaction), assuming that the influence of the QP corrections

on the band dispersion is small. Thereby, the complex curvature of the VBs shown in Fig.

3.5 renders the determination of the effective masses difficult. To avoid these complications,

the lifting of degeneracies of the lh and the hh bands occurring away from the Γ point due to

SOC are neglected by using averages over the k-vector-induced spin-orbit-split band pairs.

In addition, it is essential to employ only the close proximity of Γ for the determination

of the effective masses. The use of a larger k-point region would give rise to larger effective

masses of the lh band otherwise due to the significant non-parabolicity of the corresponding

bands (cf. Fig. 3.5(a)). Moreover, the strong warping of the hh and the lh bands observed for

the zb polymorphs is taken into account. In the w z case only wave vectors that are closer to

the Γ point than the band-crossing points are taken into consideration. Figure 3.5(b) shows

that especially the lh masses along the Γ – M direction may sensitively depend on the wave-

vector range chosen for their determination. This is not merely a shortcoming of the theo-

retical description but also holds for their experimental determination by varying the hole
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Figure 3.6: The spin-orbit-induced split-

tings for the w z nitrides in the proximity of

Γ are shown along the Γ – M direction. The

hh (red open circles), the lh (blue triangles),

and the ch (green squares) bands are given.

For comparison the splittings for the lowest

CB (black circles) are included.

concentrations. For the electron masses the situation is less complex as illustrated by the

band structures in Fig. 3.1. The effective masses of the uppermost three VBs and the lowest

CB are given for the zb polytypes in Table 3.6. While the HSE+SOC results describe the elec-

tron masses for zb-GaN quite well, they slightly overestimate them for zb-InN in compari-

son to measured values. Nevertheless, the numbers given in Table 3.6 confirm the extremely

small electron mass for InN found in experiments. Overall, the results in the present work are

closer to experimentally determined masses than found in previous calculations.[182, 183]

The values of me⊥(X ) = 0.30m0 and me∥(X ) = 0.53m0 calculated for the CB minimum of zb-

AlN in this work agree well with me⊥(X ) = 0.33m0 and me∥(X ) = 0.52m0 as derived within the

LDA using the experimental lattice parameters.[107] The same holds for the effective masses

of AlN and GaN at the CB minimum at the Γ point.[107] Especially for AlN and GaN the hole

masses agree very well with the fully relativistic LDA calculations of Ramos et al.[184], as well

as with other first-principles calculations based on local or semilocal XC functionals[107],

empirical-pseudopotentials[182] or the OEPx+G0W0 approach.[118] In general and also in

our studies, no clear trend of the hole masses with the different XC functionals is found.

The electron masses at the Γ point decrease along the row AlN, GaN, and InN. Qualita-

tively they nearly agree with the values of 0.29, 0.20, and 0.04 obtained using the relation

me(Γ)/m0 = 1/[1+Ep /Eg]. The hole masses of the spin-orbit split-off VBs in Table 3.6 are

isotropic and also decrease from AlN over GaN to InN. The values in Table 3.6 show that the

masses of the lh band are by a factor of mhh/mlh = 3 – 27 lighter than the hh ones. The masses

of the lh bands approach values on the order of the electron effective mass. The fact that the

hh and the lh masses (Table 3.6) are different in the three directions confirms the well-known

warped isoenergy surfaces of the Kane model.[132]
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m[100]
hh

m[100]
lh

m[110]
hh

m[110]
lh

m[111]
hh

m[111]
lh

mso me(Γ)

zb-AlN

This work 1.32 0.44 2.32 0.39 3.98 0.38 0.55 0.30

[184] 1.44 0.42 3.03 0.37 4.24 0.36 0.63 0.28

[182] 1.02 0.37 1.89 0.32 2.64 0.30 0.54 0.23

[182] 1.33 0.47 2.63 0.40 3.91 0.38 0.32

[107] 0.33

zb-GaN

This work 0.83 0.28 1.59 0.25 1.95 0.23 0.34 0.19

[184] 0.86 0.21 1.65 0.19 2.09 0.19 0.30 0.14

[182] 0.84 0.22 1.52 0.20 2.07 0.19 0.35 0.14

[182] 0.81 0.27 1.38 0.23 1.81 0.22 0.19

[107] ] 0.19

Expt.[185] 0.15

zb-InN

This work 0.91 0.079 1.55 0.065 1.89 0.070 0.11 0.052

[182] 0.84 0.080 1.37 0.078 1.74 0.077 0.054

[183] 1.26 0.100 2.22 0.097 2.74 0.096 0.19 0.066

Expt.[186] 0.041

Table 3.6: Effective heavy-hole (hh), light-hole (lh),

spin-orbit split-off hole (so), and electron (e) masses (in

units of the free-electron mass m0) as derived from the

HSE band structure (including SOC) of zb-AlN, zb-GaN

and zb-InN. While hh and lh masses along the [100],

[110], and [111] directions are given, only the isotropic

mass for the so case is included. The values for the hh

and lh masses represent averages along Γ – L and Γ – K .

For AlN, longitudinal and transverse electron masses are

included also for the X point. The results are compared

with values from other calculations and experiment.

The six different hh and lh masses given in Table 3.6 contain more information than is

included in the Kane model of the three uppermost VBs. In the Kane model these bands are

characterized by three Luttinger parameters γ1, γ2, and γ3.[107, 262] Using the HSE+SOC

values, we determine the Luttinger parameters along the Γ – X and the Γ – L directions us-

ing the assumptions γ1 = m0
4 (1/m[111]

hh + 1/m[111]
lh + 1/m[001]

hh + 1/m[001]
lh ), γ2 = m0

4 (1/m[001]
lh −

1/m[001]
hh ), and γ3 = m0

4 (1/m[111]
lh − 1/m[111]

hh ). Using the masses given in Table 3.6 we obtain

γ1 = 1.478 / 2.409 / 7.143, γ2 = 0.379 / 0.592 / 2.890, andγ3 = 0.595 / 0.959 / 3.439 for AlN / GaN / InN.

We find a dramatic increase of the Luttinger parameters from AlN via GaN to InN. The present

results are close to the results of an OEPx+G0W0 calculation (neglecting SOC).[118] However,

for InN we obtain somewhat larger Luttinger parameters.

In the case of the w z polymorphs the band anisotropy is influenced by the lower crystal

symmetry. The uppermost VBs are isotropic in the plane perpendicular to the c-axis due to

the lift of the degeneracy at Γ. Therefore, the curvatures of the bands along the Γ – M and the

Γ – K directions are nearly the same, whereas they differ from the dispersions along the Γ – A

direction.

As can be seen from the masses for the w z polytypes given in Table 3.7, the overall agree-

ment (especially for the hh VB as well as the CB) with other calculations[106, 107, 118] for

AlN and GaN (see Table 3.7) is much better than in the zb case. This also holds for the com-

parison with masses derived from measurements for w z-GaN[189, 190]. It has to be pointed

out again that due to the non-parabolicity especially of the lh band its mass in the plane per-

pendicular to the c-axis is sensitive to the k region chosen for its calculation. Consequently,

if larger k regions play a role in the measurement, an increase of the lh mass is expected (cf.

Fig. 3.5(b)).

As shown for GaN and InN in Fig. 3.6 the averages of the lh and ch in-plane masses are in-

fluenced by the spin-orbit splitting of the corresponding VBs. For example the two lh masses

are 0.44 and 0.24 m0 for GaN or 0.15 and 0.06 m0 for InN instead of 0.31 m0 or 0.09 m0 in Ta-
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m A
hh m A

lh m A
ch m A

e mM ,K
hh

mM ,K
lh

mM ,K
ch

mM ,K
e

w z-AlN

This work 3.31 3.06 0.26 0.32 6.95 0.35 3.47 0.34

[182] 2.37 2.37 0.21 0.23 3.06 0.29 1.20 0.24

[106] 3.68 3.68 0.25 0.33 6.33 0.25 3.68 0.25

[107] 3.53 3.53 0.26 0.35 11.14 0.33 4.05 0.35

[187] 0.29 0.34

Expt.[118] 0.29-0.45 0.29-0.45

w z-GaN

This work 2.00 1.22 0.20 0.21 0.57 0.31 0.92 0.21

[107] 2.00 1.19 0.17 0.35 0.34 0.35 1.27 0.35

[188] 1.76 1.76 0.14 0.19 1.69 0.14 1.76 0.17

[118] 1.88 0.92 0.19 0.19 0.33 0.36 1.27 0.21

Expt. 2.20[189] 1.10[190] 0.30[118] 0.20 [118] 0.42[118] 0.51[118] 0.68[118] 0.20[118]

w z-InN

This work 1.98 1.02 0.08 0.06 0.44 0.09 0.18 0.06

[182] 2.44 2.44 0.14 0.14 2.66 0.15 3.42 0.14

[188] 1.56 1.56 0.10 0.11 1.68 0.11 1.39 0.10

[191] 1.39 1.39 0.10 0.12 1.41 0.12 1.69 0.11

Expt. [118] 0.07 0.07

[192] 0.055 0.055

Table 3.7: Effective heavy-hole

(hh), light-hole (lh), crystal-

field split-off hole (ch), and

electron (e) masses (in units

of the free-electron mass m0)

as derived from the HSE band

structure including SOC of w z-

AlN, w z-GaN and w z-InN. The

masses are evaluated along the

Γ – A, Γ – M , and Γ – K direction

in the BZ. The results are com-

pared with values from other

calculations and experiments.

ble 3.7. Furthermore, the in-plane hole masses calculated in this work for w z-InN are much

smaller than previous predictions.[182, 188, 191] This is traced back to the more accurate

band-structure calculations with respect to the gap value and the inclusion of SOC.

It is observed that the effective masses decrease along the row w z-AlN, w z-GaN, and w z-

InN (cf. Table 3.7). For the electron masses this tendency can be explained again by the cou-

pling of s- and p-states, Ep⊥/∥, and the gaps, Eg or Eg+Δcr. Using the estimates me∥(Γ)/m0 =
1/[1+Ep∥/Eg +Δcr] and me⊥(Γ)/m0 = 1/[1+Ep⊥/Eg][132] one finds me∥(Γ)/m0 = 0.28, 0.20,

and 0.06 and me⊥(Γ)/m0 = 0.29, 0.22, and 0.06 based on the computed energy values. In-

deed, these estimated values are not too far from the results of the full calculations in Table

3.7 and, hence, explain the chemical trend and the symmetry-induced mass splitting.
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InAlN and InGaN alloys: Energetics, structures, and

cation distribution

"Aceite seus limites sem jamais

desacreditar na sua capacidade de

superação"

Caleidoscópia

The ternary, isostructural, wurtzite-derived group-III mononitride alloys InxGa1−xN and

InxAl1−xN are studied within a cluster expansion approach. Using density functional the-

ory together with the AM05 exchange-correlation functional, the total energies and the op-

timized atomic geometries of all 22 clusters classes of the cluster expansion (cf. Appendix

A.2) for each material system are calculated. The combination of various local configura-

tions with an alloy statistics and the calculation of QP energies is a computational challenge

which is however possible nowadays.[92]

So far, the limitation of most of the previous electronic-structure calculations for alloys

is the use of just one atomic configuration to model an alloy with a given average compo-

sition x. Investigating only a certain fixed atomic geometry or an ordered structure cannot

correctly describe the details of the cation distribution (clustering, ordering, composition

fluctuation, etc.) in an alloy on a nm-scale. Hence, the corresponding results for alloy prop-

erties, such as the energy gap for a defined composition x, have a rather limited validity.

Instead, the probability of the occurrence of such local structures has to be taken into ac-

count in a rigorous theoretical study; it is imperative to account for different configurations

within a statistical scheme [90], i.e. a certain alloy statistics has to be used.

In this chapter, the alloy system is modeled by taking all possible combinations of In and

Ga/Al atoms on the cation sublattice into account that arise when 16-atom cells with local

wz geometry are assumed. For each of these clusters the equilibrium atomic geometry is cal-

culated and, subsequently, the respective alloy properties are computed as configurational

averages.

57
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Figure 4.1: Ball-and-stick models for two cluster classes (a) In6X2N8 ( j = 4) and

(b) In2X6N8 ( j = 17). The unit cell is indicated by black solid lines. The tetra-

hedra N-Ini X4−i (blue areas) that belong to the N atoms (small blue circles) in

the unit cell are illustrated. The Cartesian axes a, b, and c correspond to the

directions [112̄0], [1̄21̄0], and [0001], respectively. Large green (medium yellow)

circles represent In (Ga,Al) cations.

4.1 Cluster approach and alloy statistics

The cluster expansion method combined with alloy statistics [87, 88] is one of the cen-

tral approaches to describe isostructural ternary alloys. For cluster expansion and statistical

methods, in this work, cf. section 2.3 as well as Appendices A.1 and A.2.

The clusters for the nitride alloys in w z structure are modeled by 16-atom supercells (i.e.

n = 8 ) as depicted in Fig. 2.2. Due to the point-group symmetry of w z, the total number

of 2n = 256 clusters is grouped into J + 1 = 22 classes.[84, 90] A complete treatment of all

classes of larger clusters, e. g. of 32-atom clusters with n = 16 would increase the CPU time

too much because of the 2n = 65 536 clusters needed to study. The 16-atom cell can be

constructed in such a way that N atoms occupy the top and bottom surfaces of the cell (cf.

Fig. 2.2). Since the N sublattice (although somewhat deformed after atomic relaxation) is

present in all cluster materials, the clusters with such surfaces may roughly be considered to

be statistically independent, at least in c-axis direction.

All classes j represent more or less ordered systems along the three crystallographic di-

rections [112̄0], [1̄21̄0], and [0001], giving rise to a- and c-planes in the unrelaxed starting

geometries. Superlattices of ordered bilayers in [0001] direction are of special interest; the

most pronounced one is the class j = 8 with In4X4N8 clusters (cf. Appendices A.1). The clus-

ter material consists of In-N and X-N bilayers with the axis parallel to [0001]. In the class

j = 12, with n j = 4 each cation layer consists of alternating rows of In and X atoms in each

c-plane in [112̄0] direction (cf. Appendices A.1).

4.2 Structural and thermodynamic properties

While the tendencies for ordering and/or clustering in an alloy can intuitively be under-

stood, it is, however, difficult to describe them quantitatively. It is also necessary to dis-
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Figure 4.2: Degree of clustering D j for all classes j (num-

bers given in parenthesis) of w z-Inn j X8−n j
N8 versus the mo-

lar fraction n j /8. The blue (red) dotted lines connect cluster

classes j with lowest (highest) total energy per cation-anion

pair.

tinguish between short-range and long-range ordering. By means of the Warren-Cowley

parameter[193], the degree of short-range ordering in an alloy can be quantified and one

can differentiate the atom distribution in a perfect random alloy from the clustered situ-

ation. The definition of this parameter can be easily applied to ternary systems based on

zinc-blende crystals with 12 structurally equivalent second-nearest neighbor positions, as

recently demonstrated for the ternary cubic nitrides.[194, 195] Since the geometry is dif-

ferent for wurtzitic systems with six second-nearest neighbors and two other cations in a

slightly different distance, we introduce a novel approach to characterize ordering in non-

cubic but tetrahedrally coordinated alloys.

First, for each of the eight N anions in a given cluster j , we count how many of the four

nearest neighbors on the tetrahedral positions are In cations; this leads to five possible types

of tetrahedra N-Ini X4−i with i = {0,1,2,3,4} (see the two examples given in Fig. 4.1). By αji

we denote the numbers of tetrahedra of type i that occur in the cluster class j for which it

holds αji = {0,1,2,3,4,6,8}. It can be verified that the αji fulfill the relations

4∑
i=0

αji = 8 (4.1)

and
1

4

4∑
i=0

αji · i = n j . (4.2)

The first relation, Eq. (4.1), arises from the fact that there is a total of eight tetrahedra for each

cluster cell. Equation (4.2) expresses that the total number of In atoms in cluster j equals n j ;

the prefactor of 1/4 ensures the correct counting of the In atoms. Note that the small pertur-

bations of the ideal w z structure due to the relaxations of the atomic positions do not affect

the assignment of the atoms to tetrahedra. Second, based on the αji as introduced above,

we define a parameter D j which describes the tendency of clustering on an atomic length

scale for the cations of the class j . D j is defined as the averaged mean-square deviation of

the number of In atoms in a given tetrahedron, i , from the number of In atoms per tetrahe-

dron, n j /2, that corresponds to a uniform distribution of In over the cation positions in the
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class j n j g j D j ε j c j a j V j B0, j Eg, j EBP, j

(eV/pair) (Å) (Å) (Å3/pair) (GPa) (eV) (eV)

0 0 1 0.0 −12.503 5.17 3.18 22.66 184.2 3.571 2.358

−14.877 4.97 3.12 20.94 200.6 6.328 3.409

1 1 8 0.25 −12.258 5.24 3.23 23.63 179.0 3.322 2.308

−14.314 5.08 3.17 22.07 189.4 5.151 3.079

2 2 12 0.50 −12.019 5.31 3.26 24.62 169.0 2.580 2.122

−13.760 5.19 3.20 23.28 180.6 3.999 2.550

3 2 12 0.50 −12.033 5.29 3.27 24.58 169.7 2.692 2.212

−13.787 5.15 3.23 23.21 180.2 4.280 2.833

4 2 4 0.0 −12.052 5.31 3.27 24.58 170.9 2.684 2.192

−13.815 5.19 3.21 23.20 181.6 4.441 2.916

5 3 8 0.75 −11.783 5.39 3.32 25.68 161.7 2.123 1.994

−13.210 5.31 3.27 24.52 171.8 3.322 2.381

6 3 24 0.25 −11.831 5.37 3.31 25.58 162.7 2.243 2.065

−13.291 5.27 3.26 24.37 174.1 3.525 2.523

7 3 24 0.75 −11.812 5.35 3.31 25.59 161.4 2.194 2.025

−13.262 5.23 3.26 24.36 172.6 3.331 2.393

8 4 2 1.0 −11.550 5.49 3.36 26.43 151.4 1.644 1.814

−12.661 5.44 3.31 25.87 156.5 2.571 2.049

9 4 8 1.0 −11.592 5.43 3.37 26.67 154.9 1.799 1.924

−12.732 5.34 3.33 25.66 158.9 2.751 2.260

10 4 24 0.50 −11.612 5.44 3.36 26.66 155.6 1.803 1.919

−12.764 5.37 3.32 25.65 162.2 2.813 2.274

11 4 6 1.0 −11.609 5.40 3.35 26.59 154.3 1.759 1.866

−12.761 5.36 3.31 25.52 157.8 2.588 2.097

12 4 6 0.0 −11.647 5.44 3.34 26.59 157.1 1.857 1.946

−12.823 5.37 3.30 25.56 163.0 2.986 2.399

13 4 24 0.50 −11.627 5.42 3.36 26.60 156.1 1.840 1.937

−12.789 5.33 3.32 25.56 160.2 2.831 2.285

14 5 24 0.75 −11.411 5.48 3.40 27.65 150.4 1.431 1.791

−12.283 5.41 3.37 26.85 152.9 2.147 2.021

15 5 24 0.25 −11.422 5.50 3.40 27.66 151.0 1.481 1.836

−12.314 5.45 3.37 26.87 154.6 2.343 2.182

16 5 8 0.75 −11.392 5.53 3.41 27.78 147.9 1.381 1.777

−12.233 5.49 3.37 27.05 152.4 2.123 1.993

17 6 4 0.0 −11.269 5.57 3.45 28.74 143.0 1.150 1.746

−11.878 5.55 3.42 28.16 151.3 1.841 2.060

18 6 12 0.50 −11.249 5.55 3.46 28.72 141.0 1.168 1.727

−11.827 5.50 3.43 28.13 149.1 1.682 1.918

19 6 12 0.50 −11.234 5.58 3.45 28.81 138.2 1.119 1.688

−11.801 5.54 3.42 28.26 147.1 1.600 1.835

20 7 8 0.25 −11.075 5.65 3.50 29.96 129.9 0.737 1.587

−11.360 5.61 3.49 29.58 137.0 1.119 1.735

21 8 1 0.0 −10.916 5.73 3.55 31.18 126.8 0.638 1.580

Table 4.1: Properties of the 22 cluster classes

for Inn j Ga8−n j
N8 (first line for each j ) and

Inn j Al8−n j
N8 (second line for each j ). Each

class j is characterized by the number n j of In

atoms and the degeneracy g j of the class. The

degree D j of the isotropic clustering (see text),

the total energy per cation-anion pair ε j (in eV/-

pair), the effective lattice constants c j and a j

(in Å), the volume per cation-anion pair V j (in

Å3/pair), and the bulk modulus B0, j (in GPa) are

given for each j . In addition, the fundamental

QP gap Eg, j and the branch-point energy EBP, j

with respect to the energy of the highest occu-

pied state are listed.

supercell. Due to the normalization to the total number of tetrahedra, Eq. 4.1, the quantity

D j =
∑4

i=0αji
(
i − 1

2 n j
)2∑4

i=0αji

= 1

8

4∑
i=0

αji

(
i − 1

2
n j

)2
(4.3)

varies in the interval 0 ≤ D j ≤ 1.

Table 4.1 contains the D j values for the 22 cluster classes. The value D j = 0 occurs for the

binary end components and indicates a tendency for no clustering and uniform distribu-

tion. However, it is also found for the cluster classes j = 4,12,17 which contain only N-In1X3,

N-In2X2, and N-In3X1 tetrahedra, respectively, i.e. only tetrahedra with n j /2 In atoms are
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Figure 4.3: Spinodal and binodal phase diagrams for Inx Al1−x N (a) and

Inx Ga1−x N (b) alloys in wurtzite structure computed from ΔF , Eq. 2.93 as a

function of the temperature.

present in these cases. The maximum of D j = 1 appears for the classes j = 8,9,11 with 4 In

atoms. The classes j = 8 and 11 contain only tetrahedra of the type N-In1X3 and N-In3X1 and,

hence, deviate from the uniform distribution of n j /2 = 2. For j = 9, six N-In2X2 tetrahedra

appear, which correspond to a uniform In distribution, however, the remaining two (N-In4

and N-X4) indicate strong clustering. Figure 4.2 clearly shows that the degree of clustering

tends to maximum values for n j = 4 and decreases towards n j = 0 and n j = 8. However, for a

given n j different D j may occur (see Fig. 4.2).

The energetics of the clusters j with a given number of In atoms n j seems to be clearly

correlated to the tendency for clustering as described by D j (cf. Eq. (4.3)). The energeti-

cally most favored class j = 12 is characterized by D j = 0 (no tendency for clustering), while

the less favored one j = 8 leads to D j = 1 (large tendency for clustering). More specifically,

the maximum values of the excess energies of 20.0 meV/pair (In4Ga4N8) or 29.4 meV/pair

(In4Al4N8) occur for the cluster class j = 8. This relation between energetics and tendency

for clustering is also found for the classes j = 4

(n j = 2) and j = 17 (n j = 6). They are exclusively composed of N-In1X3 or N-In3X1 tetra-

hedra due to the alternating rows of X-X (or In-In) and X-In atom pairs in [112̄0] direction in

both m- and c-planes. At the same time, they are the energetically most favorable ones of all

classes j for the given n j = 2 or 6 and are characterized by D j = 0 (cf. Table 4.1).

The total energies ε j per cation-anion pair of the Inn j Ga8−n j N8 and Inn j Al8−n j N8 clusters

in Table 4.1 show a monotonous decrease with the number n j of the In cations. Figure 4.4

shows the excess energies (cf. Eq. (2.95)) and the mixing enthalpies (as the configurational

averages of the excess energies). From this figure it becomes clear that the excess energies

of InAlN are generally larger than those of InGaN with similar trends for the composition

dependence for both alloys. In addition, as common for isovalent and isostructural alloys,

all excess energies and, hence, also the mixing enthalpies, are positive. This indicates that

such alloys can be thermodynamically miscible only at temperatures T high enough for the

entropy term −TΔS (with ΔS being the mixing entropy) to be sufficiently negative.[85, 196,

197]

Within the GQCA (cf. section 2.3.2) in Fig. 4.3 we computed critical temperatures for the
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Figure 4.4: Excess energies Δε j (triangles) and mixing en-

thalpies Δε(x) obtained using the SRS statistics (solid lines) ver-

sus fraction n j /8 or composition x for InGaN (blue) and InAlN

(red). The classes j = 8 ( j = 12) are indicated.

miscibility of Tc = 1914 K at xc = 0.40 for InxGa1−xN and Tc = 2610 K at xc = 0.36 for InxAl1−xN.

They are in good agreement with other more recent theoretical studies [90, 198]. The dif-

ferent covalent radii can lead to different strains in the layers causing deviations from the

homogeneity of the sublattice. According to Zunger and Mahajan[87], this can also give rise

to variations in the structural properties affecting the phase separation and/or the atomic

ordering.

4.3 Bowing parameters

P (x) = xP (InN)+ (1−x)P (XN)−x(1−x)Pb(x). (4.4)

The most simple case, Pb(x) ≡ 0, is represented by the MDM in this work for which the vari-

ation with the composition is linear. If P corresponds to lattice constants, this situation is

known as Vegard’s rule [199].

For Pb(x) �= 0 the property P (x) in Eq. (4.4) shows a bowing as it is found, for instance,

for the fundamental energy gaps. The parameter Pb itself may also depend on the average

composition x. In this work the form [200]

Pb(x) = Pb,0/(1+Pb,1x2) (4.5)

for the composition dependence is assumed and values for Pb,0 as well as Pb,1 are derived.

The dependence of an alloy property P on the average composition x can be related to the

values of the property for the binary end components, P (InN) and P (XN), by introducing a

bowing parameter Pb(x) according to

4.4 Lattice parameters and bulk modulus

The optimization of the atomic coordinates in the Inn j Ga8−n j N8 and Inn j Al8−n j N8 clus-

ter cells with an initial atomic geometry corresponding to four primitive w z unit cells (cf.

Fig. 2.2) leads to the results compiled in Table 4.1. From these results we calculate values
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of 12.9 % (11.0 %) and 14.2 % (10.3 %) for the mismatches of the a and c lattice parame-

ters of binary InN and AlN (GaN). Our results are in good agreement with the experimental

values[124, 201, 202] of 13.0 % (10.5 %) and 14.5 % (9.7 %), respectively, which shows that the

internal local strain in the alloys due to the different In-N and Ga-N (Al-N) bond lengths is

correctly described.

The configurational averages for the lattice parameters a and c, calculated using the SRS

cluster statistics (cf. Eq. (2.100)) as well as the MDM (cf. Eq. (2.102)), are given in Fig. 4.5. As

discussed above, the MDM results correspond to a linear interpolation between the binary

end components (i.e., Vegard’s rule[199] for a and c). The deviations of the SRS results from

the straight MDM line are small. Consequently, Fig. 4.5 shows at first glance that Vegard’s rule

describes the situation fairly well. This has also been observed by other authors.[90, 203]

More in detail, Vegard’s rule is better fulfilled for the a lattice constant than for c in

InxGa1−xN. The opposite is true for InxAl1−xN where the c lattice constant varies nearly lin-

early with the composition x. These findings suggest to use a(x) for InxGa1−xN but c(x)

for InxAl1−xN when determining the average composition x via Vegard’s rule. Locally much

stronger deviations from the linear interpolation as derived from Vegard’s rule may occur;

this is suggested by the lattice parameters of the individual cluster materials in Fig. 4.5.

In addition as can be seen from Fig. 4.5, the bowing for alloys described within the SRS

model is small. Note that the composition dependence of the lattice constant c for InxAl1−xN

shows a concave instead of a convex behavior. Assuming a composition-independent bow-

ing (cf. Eq. (4.4)), we find ab = 0.021 (0.064) Å and cb = 0.067 (0.048) Å for InxGa1−xN (InxAl1−xN).

Taking the composition dependence of the bowing into account (cf. Eq. (4.5)) leads to val-

ues of ab,0 = 0.022 (0.063) Å, ab,1 = 0.100 (−0.073) and cb,0 = 0.050 (−0.117) Å, cb,1 = −0.856

(5.837) for InxGa1−xN (InxAl1−xN). Even though the bowing is small for the composition de-

pendence of the lattice constants, it may influence the determination of the average compo-

sition x using measured lattice parameters along with Vegard’s rule. A maximum deviation

of 0.02 Å from the linear interpolation leads to a maximum uncertainty of the composition

of about 0.5 %.

The classes j = 11,12 for In4Ga4N8 and j = 8,12 for In4Al4N8 exhibit the strongest devia-

tion from the linear interpolation: c(x = 0.5) = 5.44/5.37 Å and a(x = 0.5) = 3.36/3.32 Å, as

computed from Table 4.1. These classes are characterized by superlattice-like structures; the

j = 8 material, for instance, consists of alternating c-plane bilayers in [0001] direction and in

the case of the class j = 11 the superlattice is formed by m-plane bilayers in [11̄00] direction.

Interestingly, both classes show the same high degree of clustering, D8 = D11 = 1, with four

tetrahedra of type N-In3X1 and four of type N-In1X3. It is noticeable that, in average, these

classes show merely tetrahedra of type N-In2X2 as class j = 12 whose clustering degree is

D12 = 0. It is likely that, tetrahedra N-In2X2 exhibit the strongest deviations from the ideal

situation due to the high lattice mismatches between InN-AlN and InN-GaN.
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Figure 4.5: Lattice parameters c [(a) and (b)] and a [(c) and

(d)] of Inx Ga1−x N [(a) and (c)] and Inx Al1−x N [(b) and (d)]

alloys in wz geometry versus compositionx for MDM (dot-

dashed blue lines) and SRS statistics (red solid line). The

black dotted lines indicate the mean-square deviation within

SRS. The dots represent the results versus the fraction n j /8 of

the individual cluster materials.

Figure 4.6: Bulk modulus B0 of Inx Ga1−x N (a) and

Inx Al1−x N (b) alloys in wz geometry versus compositionx

for MDM (dot-dashed blue lines) and SRS statistics (red solid

line). The black dotted lines indicate the mean-square devi-

ation within SRS. The dots represent the bulk moduli of indi-

vidual cluster materials.

Figure 4.6 depicts the configurational averages for the bulk moduli of InxGa1−xN and

InxAl1−xN as obtained within the MDM and the SRS model. As for the lattice parameters,

the SRS model leads to deviations of the elastic properties from the linear interpolation. The

composition-independent bowing parameters amount to Bb = 0.88 / 2.19 GPa for InxGa1−xN

/ InxAl1−xN. In addition, Fig. 4.6 shows that the strongest deviations of B0 from the linear

interpolation occur in the composition range 0 < x ≤ 0.5. They mainly follow the deviation

of the lattice parameter a, as can be seen from a comparison with Fig. 4.5.
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InAlN and InGaN alloys: Quasiparticle electronic

structure

"Três elementos são capazes de fazer

feliz uma pessoa: DEUS, um amigo e

um livro."

Lacordaire

Recently it has been found experimentally that the incorporation of small amounts of In

leads to an enhancement of the light emission intensity in light-emitting diodes as well as

laser diodes with respect to devices made from pure GaN or AlN[204]. This may be related

to In clustering as well as composition fluctuations[205]. However, also the short radiative

lifetimes measured for alloys that contain In have been traced back to atomic condensates of

In-N bonds[25]. This variety of results shows that a good grasp of the incorporation and dis-

tribution of In in the InxGa1−xN or InxAl1−xN alloys is crucial for both the device operation

as well as the physical understanding of the material.

Indeed, the local structural patterns of an alloy system determine its electronic proper-

ties [194, 203]. Since the (optical) gap of an alloy can be measured by photoluminescence

or optical absorption experiments, the majority of theoretical studies focused on the band

gaps and, in particular, their non-linear variation with the average composition x (see e.g.

Refs. [89, 194, 203, 206–210]). However, most of these electronic-structure studies rely on

the density functional theory [211, 212] together with the local density approximation or the

generalized-gradient approximation to describe exchange and correlation. In these approx-

imations the fundamental energy gap of a semiconductor is significantly underestimated

[203, 206–208] due to the missing quasiparticle effects [26]. Understanding the electronic

structure and the optical properties of the alloys requires a more sophisticated approach,[92]

for instance, most modern QP calculations.

In this chapter, we pursue an approach which relies on the picture of Fermi-level pin-

ning; in this case the natural level of reference for the QP energies for different cation ar-

rangements and In
/

Ga or In
/

Al ratios is the branch-point energy [103, 145, 158, 213–215]. At

the BPE the electronic states change their character from predominantly acceptor-like (usu-

65
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ally valence states) to donor-like (usually conduction states). Therefore, it is assumed that

the global Fermi level of the electrons is pinned near at the BPE. Here, the BPEs are com-

puted for each cluster material using a modified Tersoff approach [103] taking the lowest

eight conduction bands and the highest sixteen valence bands into account. The computed

BPEs (cf. Table 4.1) indicate that the branch point is located in the conduction bands for

In-rich clusters up to about n j = 5 (n j = 4) for Inn j Ga8−n j N8 (Inn j Al8−n j N8).

5.1 Energy zero and alignment

For each of the 22 cluster classes of the InxGa1−xN and InxAl1−xN alloys, the QP band

structure is calculated using the HSE06+G0W0 method. However, the definition of an aver-

age band structure for a given composition x and its calculation by means of the Connolly-

Williams formula,[91] Eq. (2.91), is difficult [216] because the energy zeros of the cluster

classes are different and the size of the BZ varies from class to class. However, for ener-

gies at the Γ point such an average is possible since the symmetries of the corresponding

energy states can be related to each other. This holds e. g. for the energies of the lowest

conduction-band state Ec j and highest valence-band state Ev j .

The configurational average Eq. (2.91) is however possible for the density of states (DOS)

after alignment of the individual energy scales. When comparing single-QP energies of dif-

ferent cluster materials j one has to consider a common absolute energy scale, i.e. an inter-

nal reference level to which the individual QP energy scales of the individual cluster classes

can be aligned. The space-averaged electrostatic potential (or sometimes the total KS po-

tential) can provide such a level of reference. Alternatively, deep (atomic) levels such as the

semicore d states can be used for the alignment. Here we use the BPE as internal reference

level.

5.2 Density of states

The calculated QP electronic structures lead to significantly different DOSs of the individ-

ual cluster materials. Some features of the individual clusters remain conserved in an alloy.

The strongly dispersive conduction band found for the nitrides (see Fig. 3.1), in particular for

InN, leads to a slowly increasing tail of the density of the conduction-band states. Since all

clusters contribute within the SRS model, the configurational averages of these tails render

a definition of the band edges Ev (x) and Ec (x) in the lowest conduction-band and highest

valence-band, respectively, very difficult (see Fig. 5.1). The background is that an alloy with

chemical and structural disorder is not anymore a translationally invariant system. So in

general, the definition of a bandstructure is impossible.[216] Therefore, we added the lines

corresponding to Ev (x) and Ec (x) to Fig. 5.1 to indicate where the Lorenzian-broadened DOS

of the occupied and empty states becomes smaller than 0.01 (eV·pair)−1. These lines provide
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Figure 5.1: DOS in (eV·pair)−1 (green areas) of the

Inx Ga1−x N (a and b) and Inx Al1−x N (c and d) alloys versus

energy (in eV), as a function of the composition x. The BPE

has been used as energy zero (black dashed line). The curves

are calculated as configurational averages using the cluster

fractions from the SRS model (a and c) or the MDM (b and

d). The DOS of the binary end components is shown for the

compositions x = 0.0 and x = 1.0. The Lorentzian broadening

parameter amount to 0.1 eV. In addition, as guide to the eye

(see text), the black solid lines indicate where the DOS in the

gap region decreases to 0.01 (eV·pair)−1.

insight into the composition dependence of the conduction-band and valence-band edges

in the mixed crystals. Interestingly, they indicate for Ec (x) at intermediate compositions

x, that clusters with a fundamental gap Eg, j (cf. Table 4.1) close to the one of InN signifi-

cantly contribute to the alloy. The DOS differences between the GaN - (a,b) and AlN - (c,d)

containing alloys are not only visible in the gap regions but also for low energies due to the

occurrence of Ga 3d states.

Figure 5.1 also depicts the influence of the cluster statistics on the composition depen-

dence of Ec (x) and Ev (x): While the MDM leads to a linear transition between the binary end

components, the SRS statistics yields a significant non-linearity. In the case of the SRS model

the DOS of all the cluster materials contribute to the peaks which is visible especially in the

conduction-band region, where the DOS for intermediate compositions x significantly dif-

fers from the one of the binary end components. In the case of the MDM the linear transition

between the DOSs of the binary end components is visible and mainly affects the heights of

the peaks. The lower part of the uppermost p-like valence band region also differs signifi-

cantly between the two statistics for both alloys. This striking difference in the composition

dependence should be useful for the characterization of the cluster statistics and distribu-

tion by means of spectroscopic methods such as the investigation of the occupied DOS by

means of X-ray photoemission (see e.g. Ref. [217]).
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Figure 5.2: QP energy levels around the fundamental band gap for each

cluster class j . In (a) the lowest conduction-band (Ec, j ) and the high-

est valence-band (Ev, j ) states are plotted. In (b) the two uppermost

valence levels at the Γ point are shown as calculated for each cluster j

in the HSE06+G0W0 approximation. For the binary end components in

w z structure these states are of Γ5 (red) or Γ1 (blue) type. The twofold

degeneracy of the Γ5 levels is lifted due to the deviations from the C 4
6v

symmetry at intermediate compositions. The configurational averages

resulting within the SRS statistics are shown as guide to the eyes. The

BPE has been used as energy zero.

5.3 Aproximate band edges

In Fig. 5.2(a) the QP energies of the lowest conduction-band level, Ec, j , and of the highest

valence-band level, Ev, j , are plotted for all cluster classes of the InxGa1−xN and InxAl1−xN

alloys. In addition, the respective configurational averages, Ec (x) and Ev (x), as calculated

within the SRS model, are shown. This figure indicates a non-linear variation of the band

edges with the composition x of the alloys. It also shows that the gaps of the different cluster

classes, that have the same number of In cations, vary significantly. More specifically, this

variation can be on the same order of magnitude as the change that is observed when in-

creasing or decreasing the number of In cations by one [see e.g. x = 0.25 or x = 0.5 in Fig.

5.2(a)].

In the light of the cluster ordering, for a given n j we find that the energetically most un-

favorable clusters with the highest tendency D j for clustering give rise to the smallest energy

distances Eg, j = Ec, j −Ev, j . This observation, which is in agreement with other theoretical

studies,[203] becomes clear, for instance, for j = 2 or j = 19 in comparison to classes 3, 4

or 17, 18: In both cases the clusters are ordered (D j = 0.5) with the same type of cations

in c-planes with alternating bilayers. In addition, these cluster materials have the lowest

conduction-band and highest valence-band states of all clusters for fixed n j = 2 or n j = 6,

respectively. For n j = 4 the situation is similar. The classes j = 8,9, and 11 with D j = 1.0 yield

the smallest gaps.
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The top of valence band states is studied in Fig. 5.2(b) in more detail. The three upper-

most valence states are depicted versus the cluster fraction n j /8 for each cluster class. Their

average values using the SRS statistics versus the average composition x are also shown, de-

spite the difficulties to identify the symmetry of the states due to the cation-site occupation

and atomic relaxation. An additional problem appears in the InxAl1−xN case. For the bi-

nary end components these states possess Γ5 and Γ1 symmetry (w z-InN and w z-GaN) or Γ1

and Γ5 symmetry (w z-AlN).[109] The reason for the different ordering of the valence-band

symmetries is the sign of the crystal-field splitting: It is positive (35.6 meV for InN and 28.5

meV for GaN) for the two nitrides with d electrons, but negative (−275.8 meV) for AlN. As a

consequence of this change of the band ordering, the valence levels in InxAl1−xN cross at a

certain fraction n j /8 or composition x in order to guarantee the different signs of the crystal-

field splitting as shown in Fig. 5.2(b). However, the situation is even more complicated, since

for the cluster classes 0 < j < 21 the symmetry of the atomic basis is significantly reduced.

Therefore, the uppermost valence levels do not have the Γ5 or Γ1 symmetries. For these rea-

sons it is difficult to describe the evolution of the Γ5 and Γ1 levels for varying compositions

x and we pursue an approximation instead: In the case of InxGa1−xN we assume the same

energetic ordering of the levels as found for GaN and InN. This procedure leads to the three

lines plotted in the Fig. 5.2(b). Instead, in the case of InxAl1−xN the ordering shown in Fig.

5.2(b) is only justified for x → 0 and x → 1. In addition, we have assumed the crossing of the

Γ5 and Γ1 levels to occur between x = 0.125 and x = 0.25.

5.4 Fundamental gap and its bowing

In Fig. 5.3, the results for the fundamental band gaps Eg, j (cf. Table 4.1) of all cluster

materials are depicted together with the configurational averages Eg(x) as a function of the

composition x for both alloys. As discussed for the highest total energy (cf. Sec. 4.2), there

is also a correlation of the fundamental band gap with the vertical ordering of the In and

the Ga/Al atoms along the c-axis: The lowest gap appears for the highest degree of order-

ing D j = 1 for n j = 4. In the case of the ordered geometries, such as the (InN)1(XN)1(0001)

superlattices (see discussion above), the majority of In-N and X-N bonds are practically un-

strained. These In-N bonds lead to a lowering of the gap in the cluster material towards the

value of bulk InN.

As shown in Fig. 5.3, the gaps of the individual cluster materials clearly indicate a strongly

nonlinear variation with the composition. Composition-independent bowing parameters

(cf. Eq. (4.4)) obtained within the SRS statistics roughly amount to Eg,b = 1.57 eV (InxGa1−xN)

and Eg,b = 3.03 eV (InxAl1−xN). The physics underlying to the bowing parameter has been

discussed in detail elsewhere.[218, 219] When a possible composition dependence of the

bowing parameter is taken into account (cf. Eq. 4.5), we obtain Eg,b0 = 1.42 (2.24) eV and

Eg,b1 = −0.348 (−0.875) for InxGa1−xN (InxAl1−xN). These numbers for the composition-
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Figure 5.3: Quasiparticle energy gap of Inx Ga1−x N and Inx Al1−x N al-

loys in w z geometry versus composition x as computed using the MDM

(dot-dashed green line) and the SRS model (black solid line). The dots

represent the band gaps of the individual clusters.

dependent bowing parameters Eg,b indicate a stronger bowing for InN-rich alloys in com-

parison to the XN-rich alloys.

Comparing the bowing parameters calculated in this work to results computed by other

authors (see Refs. [89, 203, 207, 220] and references therein) shows the same order of magni-

tude. Vurgaftman et al.[18] recommend values of Eg,b = 1.4 eV (InxGa1−xN) and Eg,b = 2.5 eV

(InxAl1−xN) which are close to the ones predicted in this work. The calculated results slightly

overestimate the experimental ones, which can be the consequence of the fact that the SRS

model gives an upper limit for the bowing. The deviation of experimental parameters for

InxAl1−xN may also be traced back to the use of only AlN-rich samples.[200]

In addition, Fig. 5.3 shows that clustering can lead to a substantial increase of the bowing,[203]

especially for InxAl1−xN: Several gap values Eg, j appear below the configurational average

obtained within the SRS model. Assuming that the cluster material which has the smallest

gap for n j = 4 (Eg, j = 1.644 eV for In4Ga4N8 and Eg, j = 2.571 eV for In4Al4N8) determines the

alloy properties at x = 0.5, we obtain increased bowing parameters of 1.84 eV (InxGa1−xN)

and 3.65 eV (InxAl1−xN). However, these values are still smaller than those predicted by Gor-

czyca et al.[203] for the “clustering” scenario. In any case, the significant bowing of the gap

found in experiment and in the calculations shows that a linear interpolation is not valid for

both alloys.

In Fig. 5.4, the configurational averages for the band gaps are compared to optically mea-

sured results for InxGa1−xN and InxAl1−xN. For both alloys, most of the measured gap val-

ues appear within the area defined by the lines Eg(x) and Eg(x)−ΔEg(x), i.e. the configura-

tional average reduced by the mean-square deviation. The few exceptions e.g. the absorp-

tion measurements of Wu et al.[178] or the values derived by Naoi et al.[221] for InN-rich

InxGa1−xN alloys, however, approach (for x → 1) a gap which is larger than the theoretical

gap of Eg = 0.64 eV computed for InN within this work.

For a more detailed comparison, we divide the measured data into two groups: In Figs. 5.4(a)

and (c) we compare to results derived from absorption measurements and in Figs. 5.4(b) and

(d) energies obtained from photoluminescence are used. Therefore, we claim that extrapo-
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Figure 5.4: Quasiparticle energy gaps of

Inx Ga1−x N (a, b) and Inx Al1−x N (c, d) al-

loys in w z geometry versus composition x

computed using the MDM (dot-dashed blue

line) and the SRS model (red solid line). The

black dotted line describes the band gap re-

duced by the mean-square deviation, Eg(x)−
ΔEg(x). In the panels (a, c) we compare with

absorption data (different symbols) while the

experimental gaps (different symbols) in the

panels (b, d) have been derived from lumi-

nescence measurements: (a) Refs. [178, 204,

222–224], (b) Refs. [17, 225–230], (c) Refs.

[107, 200, 221, 231–234], and (d) Refs. [200,

235, 236].

lating the absorption edge in a random alloy to the limit of vanishing absorption defines an

average gap of the system. The absorption onset can be affected by larger regions of the al-

loy, hence, it is better represented by the configurationally averaged band gaps. Contrary, in

the case of the photoluminescence or cathode luminescence, the excited electron-hole pairs

diffuse and relax until they reach domains with the smallest local gaps as long as the time

constants for diffusion and relaxation are smaller than the lifetime of the excited electron-

hole pairs. Consequently, the luminescence results should not be compared to Eg(x), but

to Eg(x)−ΔEg(x) instead, i.e., to the configurational average reduced by the mean-square

deviation.

The comparison of Eg(x) to absorption data (cf. Fig. 5.4(a)) suggests that the SRS model

seems to correctly describe the dependence of the measured absorption onsets on the aver-

age composition x for InxGa1−xN. Especially the values of Nakamura et al.[204] are in good

agreement. The results of McCluskey et al.[223] and O’Donnell et al.[224] indicate a devia-

tion of Eg(x) towards Eg(x)−ΔEg(x) which may be a consequence of stronger composition

fluctuations in the samples. This trend is found to be more pronounced for absorption stud-

ies of InxAl1−xN (cf. Fig. 5.4(c)) which might be related to larger composition fluctuations

due to the increased internal strain caused by the bigger bond-length difference between In-

N and Al-N in comparison to Ga-N. Ordered structures play a less important role since their

gap values are closer to the Eg(x) curve than the measured values.

The physical picture derived from the luminescence measurements is less clear. For

InxGa1−xN (cf. Fig. 5.4(b)) the experimental points are further away from the Eg(x) curve

than the ones in Fig. 5.4(a). However, only a few measurements, e.g. those of Davydov et

al.[17] and Kim et al.[229], follow the Eg (x)−ΔEg (x) line. Deviations found in other mea-

surements may be a consequence of the actual alloy samples with local appearance of or-
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dered structures and/or composition fluctuations. Measured values for InxAl1−xN (cf. Fig.

5.4(d)) can be described by Eg(x) (those of Onuma et al.[236]) as well as Eg(x)−ΔEg(x) (those

of Sakalauskas et al.[200]). The ones by Carlin et al.[235] are in between the two theoretical

curves. The mean-square deviations computed within the SRS statistics seem to describe an

upper limit for the difference in the absorption onset and the luminescence line. This differ-

ence is usually identified with the Stokes shift, but it is caused by the chemical (and partly

structural) disorder in this work.[207]

Taking the mean-square deviation (cf. Eq. 2.92) for the fundamental band gaps into ac-

count can increase the bowing from 1.6 eV (see above) to 3.6 eV (InxGa1−xN) or from 3.0 eV

(see above) to 7.5 eV (InxAl1−xN) when going from Eg(x) to Eg(x)−ΔEg(x). These results in-

dicate that the wide spread of bowing parameters found in the literature can be related to

the different experimental methods and sample preparation techniques. Interestingly, our

actual bowing-parameter values are almost embedded by values of 1.7 . . . 2.8 eV / 2.5 . . . 6.5

eV (InxGa1−xN) or 2.1 . . . 6.2 eV / 3.9 . . . 14 eV (InxAl1−xN) computed by Gorczyca et al.[203]

assuming a more uniform / a more clustered distribution of the In atoms.



6
InAlN and InGaN alloys: Excitonic effects and

optical properties

"Acredite que você pode, assim você já

está no meio do caminho."

Theodore Roosevelt

In the last decade enormous progress has been made in the ab-initio description of op-

tical properties of bulk semiconductors [237, 238] and insulators [238, 239], but also of sur-

faces [240], nanostructures [241] and molecules [242]. This development is based on cal-

culations which take the full quasiparticle (QP) electronic structure and the excitonic and

local-field effects into account (see Refs. [81, 242] and references therein). The many-body

effects drastically influence the lineshape, peak positions and peak intensities, especially of

the optical absorption spectra. In the first step, going from the independent-particle approx-

imation to the independent-QP approximation [102], the optically excited non-interacting

electron-hole pairs are described by non-interacting quasielectron-quasihole pairs. In gen-

eral, the optical absorption spectra are significantly blue-shifted while the lineshape is less

influenced [83]. The spectral picture based on critical points and van Hove singularities in

the interband transitions between occupied QP valence bands and empty QP conduction

bands [243] remains valid. In the second step the screened attractive and unscreened re-

pulsive exchange interaction of quasielectrons and quasiholes is taken into account. This

usually leads to a drastic redistribution of oscillator or spectral strength from higher to lower

photon energies combined with a certain redshift, which make the picture of van Hove sin-

gularities questionable [101]. In addition, the absorption edge may be significantly modified

by the formation of bound excitonic states [64, 92, 244], a phenomenon which may also ap-

pear in resonance with higher optical transitions [101].

Such calculations have been also carried out for group-III nitrides crystallizing in wurtzite

or zinc-blende structure [101, 133, 166, 244–248]. The resulting absorption coefficients and

imaginary parts of the dielectric function are able to explain the experimental findings. The

main peak structures, even in the range of higher interband transitions, are well described.
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Figure 6.1: Joint QP band structure and joint density of states (in eV−1) for w z-

AlN (a), -GaN (b), and -InN (c) as obtained within a HSE + GW approach. The

colors are related to the six highest valence bands and the arrows show lowest

interband minima or maxima in the Joint QP band structure and its equivalent

peak in the Joint density of states.

This holds not only for their positions but also for their intensities independent of the crys-

tal structure. The latter result is especially remarkable since the dielectric functions of the

nitrides [101, 133, 166, 244–248] are much smaller than those of other semiconductors, e.g.

silicon [83], attributed to the fact that the interband transitions cover a wider spectral range

up to about 18 eV. However, well-converged calculations of optical spectra including quasi-

particle and excitonic effects together with optical transitions matrix elements based on all-

electron(-like) wave functions also allow an accurate description of nonmetals with small

oscillator strengths.

Meanwhile, there exist optical measurements, mainly due to spectroscopic ellipsometry,

in a wide spectral range also for alloys of hexagonal group-III nitrides such as InxGa1−xN

[249–251], InxAl1−xN [200, 231], and AlxGa1−xN [252]. The variation of the lineshape with

the composition x, but especially of the peak positions and intensities of absorption spec-

tra, allow deep insight in the distribution of the group-III atoms over the cation sublat-

tice, the strength of composition fluctuations, and the appearance of clustering phenomena

(see Refs. [116, 203] and references therein). This is especially true when such measured

spectra can be compared with theoretical ones including quasiparticle, excitonic, and LFEs

[81, 83, 101] and a reasonable description of the alloying [84, 92, 116].

In this chapter, a combination of such calculations of electronic structures and opti-

cal spectra for alloys is used to study the frequency-dependent DF of w z-InxGa1−xN and

-InxAl1−xN for different light polarizations and cluster statistics. The success of the meth-

ods used is demonstrated for the end components InN, GaN, and AlN as well as for w z-

InxGa1−xN and -InxAl1−xN alloys. The influence of the alloy statistics and the composition
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is studied by means of the absorption peaks, excitonic effects, and also dielectric properties

of these materials.

6.1 Frequency-dependent dielectric function

In order to describe the optical properties of alloys in this work, their frequency-dependent

macroscopic dielectric function (DF) ε⊥,∥(ω) is studied as central quantity (cf. Sec. 2.2.5).

We performed such calculations including all the necessary interactions. For converged

calculations too many electron-hole pairs cvk and optical transitions |vk〉 → |ck〉 have to

be taken into the computation. However, the computational costs for the calculation of the

starting HSE + GW electronic structure and the exciton Hamiltonian (cf. Eq. 2.87) become too

high for all the 44 cluster calculations with 16-atom supercells, contrary to the restriction to

one binary end component with two or four atoms in an unit cell, e.g. AlN [101].

In order to circumvent this problem, we follow the procedure of Schleife et al. [92]. The

HSE + G0W0 QP eigenvalues and wave functions are mimicked by those of a LDA + U ap-

proach (cf. section 2.1.3.5) with an additional scissors shift Δ [64, 81, 92, 133].

6.2 LDA+U +Δ as start approach

As described in section 2.4.9, the parameter U which describe an additional interaction

on the Ga 3d or In 4d shell, is determined in such a way that the corresponding semicore

binding energies approach the HSE + G0W0 values. The two U values, U = 5.7 eV (Ga 3d)

and U = 3.7 eV (In4d) are fixed in all clusters because of the strong localization of the d

states. Here, the LDA + U scheme of Dudarev et al. [66] is used.

This procedure not only opens a gap from LDA values < 0.0, 2.099, and 4.385 eV to LDA+U

values 0.386, 2.474, and 4.385 eV for w z-InN, -GaN, and -AlN. The resulting gaps values are

still too small in comparison to the HSE+G0W0 results. A scissors operator Δ, as described in

section 2.4.9, is applied in order to achieve the QP gaps 0.638, 3.571 and 6.328 eV mentioned

before in Table 4.1. The resulting interband structures and JDOS computed in LDA+U +Δ

approach are very similar to those displayed in Fig. 6.1 computed from HSE06+G0W0 calcu-

lations. In that case, it is illustrated the HSE+G0W0 QP results obtained in [54] for AlN, GaN,

and InN (c.f. Fig. 3.1). In Fig. 6.1 we show the joint band structure together with the joint den-

sity of states (JDOS) for interband transitions ε
QP
ck −ε

QP
vk from the uppermost six VBs (ν = v)

into the CBs (ν= c). The interband extrema related to van Hove singularities are clearly visi-

ble; besides the minima at Γ and A, such extrema also occur, for instance, between M and L.

The lowest interband minima out of Γ give rise to an M0-type onset of the JDOS and the low-

est interband maxima on the L – A line are the reason for a pronounced peak-like structure

in the JDOS. In [101] a more detailed discussion of critical points in AlN is presented.

According to the Appendix A.3, for each cluster class j such a scissors shift Δ j used in the
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Figure 6.2: Imaginary part of (a) ordinary and (b) extraordinary

dielectric function of w z-GaN calculated for 4-atom cells (red

solid line) and 16-atom cells (black line).

LDA+U +Δ approach has been computed. They vary non-linearly with n j between 0.252 eV

(InN) and 1.097eV (GaN) or 1.943 eV (AlN).

6.3 Spectra of the binary-end components

The quality of the procedure described for the computation of the DFs of the individ-

ual cluster materials has to be checked by comparison with spectra computed for group-III

nitrides in wurtzite geometry and experimental spectra.

Examples are illustrated in Figs. 6.2 and 6.3. In Fig. 6.2 we compare the result of our

computational procedure for the DF of w z-GaN in a 16-atom cell with them of calculations

using a 4-atom cell of the wurtzite geometry and hence more bands but a smaller BZ. In the

case here the k-point density near the lowest minimum of the joint band structure in Fig. 6.1

has been increased to a 9×9×9 mesh for pair energies below 3.5 eV. The two spectra roughly

agree. Only some peak positions and intensities are slightly modified. The same holds for

higher photon-energy regions with only a small variation between the two DFs. The main

reason for the discrepancies is the different sampling of the BZs and interband transitions.

Together with the band folding the different BZs lead to a different sampling of the band

pairs. Apart from slight changes in the JDOS also the interference of individual valence band

- conduction band transitions weighted by the electron-hole pair amplitude AΛ(cvk) in Eq.

(2.90) is modified with sometimes significant consequences (see the discussion in Ref. [101])

In Fig. 6.3, the imaginary parts of the DF of w z-AlN, -GaN, and -InN, calculated for or-

dinary and extraordinary light polarization and using the 16-atom cells, are compared to

spectra measured by spectroscopic ellipsometry [82, 253–257]. There is general agreement

between theoretical and experimental spectra apart from small variations in the peak heights

and positions. The biggest variations happen above the absorption onsets and in the region
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Figure 6.3: Imaginary part of the DF for ordinary (left pan-

els) and extraordinary (right panels) light polarization of w z

crystals of AlN (a,b), GaN (c,d), and InN (e,f). Red solid

curves are calculated for the 16-atom supercells used in

this work. The spectra are compared to experimental re-

sults (black solid lines) for InN [82, 253], GaN[254–256], and

AlN[254, 255, 257].

of higher-energy interband transitions.

Nevertheless, Fig. 6.3 also indicates that the majority of measured peaks can be really

identified within the theoretical investigations. This holds especially for the most pronounced

absorption peak E1. The only exception for ordinary polarization and InN is related to the

general underestimation (or overestimation in experiment) of the optical absorption in the

5-10 eV range of photon energies. In all others cases, the redistribution of spectral strength

and the Coulomb enhancement due to the excitonic effects are obviously correctly described.

The structures E2, . . . , E6 are mainly due a mixture of individual interband transitions near

the BZ boundary of wurtzite as illustrated in Table 6.1. The theoretical spectra show wriggling

structures just above the absorption onset. The reason is most easily explainable in the InN

case where experimental spectra show an almost plateau-like region. The simulation of such

a constant region in the imaginary part of the DF requires a further increase of the k-point

density in order to sum up over a sufficient number of broadened δ-functions. Small shifts

of the peak positions E2 and E3 for GaN between theory and experiment may be interpreted

as a consequence of the one and the same scissors shift for all interband transitions. In the

case of InN the agreement is much better compared to previous computations [166]. Small

changes to recent studies of AlN [101] mainly indicate the use of slightly modified atomic ge-

ometries. Figures 6.2 and 6.3, show different spectra in comparison to the joint DOS in Fig.

6.1 and, hence, indicate the importance of excitonic/LFEs on one hand and of optical dipole

matrix elements on the other hand. The influence of the optical oscillator strength is obvi-

ous. Apart from the mixing of individual quasiparticle transitions in Eq. (2.90) they also lead
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Figure 6.4: Imaginary part of the ordinary (a, c) and

extraordinary (b, d) dielectric function ε⊥/‖(ω) of w z-

Inx Ga1−x N for varying averaged In compositions x. Re-

sults for two different alloy statistics, SRS (a, b) and MDM

(c, d) model, are plotted.

to the decrease of the optical absorption for higher photon energies in order to guarantee

the ω−2 tails of the imaginary parts [258].

6.4 Overall absorption spectra

For both light polarizations, i.e., ordinary and extraordinary, both alloy statistics SRS and

MDM, and both alloys InxGa1−xN and InxAl1−xN the configurationally averaged dielectric

functions ε⊥/∥(ω) have been computed according to Eq. (2.91) and expression (2.90). Their

imaginary parts describing mainly the optical absorption are plotted in Figs. 6.4 and 6.5 for

molar fractions 0� x � 1 over a wide range of photon energies. One observes a development

of pronounced peak structures versus photon energy with the In composition x in the actual

alloy. Thereby, the behavior of the lineshape development with x and the spectra resulting

for a given x depend significantly on the alloy statistics.

The MDM spectra in Figs. 6.4(c), 6.4(d), 6.5(c), and 6.5(d) can be easily traced back to

the spectra of the respective binary end components x = 0 and x = 1. The peak positions

remain fixed at the values already found for the binary systems in Figs. 6.2 and 6.3. However,

their intensities are clearly weighted by the probabilities (1− x) for GaN or AlN and x for

InN. As a consequence, the absorption onsets exhibit a linear behavior in x. These findings

clearly contradict the observations by means of room-temperature spectroscopic ellipsom-

etry [200, 231, 250, 251, 255] that the variation of the optical gaps, the positions of absorption

edge and the interband critical points show a nonlinear behavior with x. Tough the weighted
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Figure 6.5: Imaginary part of the ordinary (a, c) and

extraordinary (b, d) dielectric function ε⊥/‖(ω) of w z-

Inx Al1−x N for varying averaged In compositions x. Re-

sults for two different alloy statistics, SRS (a, b) and MDM

(c, d) model, are plotted.

combination of the two spectra for x = 0 and x = 1 gives rise to a seemingly nonlinear vari-

ation of the absorption edge in Figs. 6.4(c), 6.4(d), 6.5(c) and 6.5(d) the clear conclusion is

that the spectra measured for real alloy samples cannot be explained by a mixing model,

independent of the possible characteristic microscopic, mesoscopic or even macroscopic

length scale for regions with x = 0 and x = 1. Therefore, we focus our investigation of the

alloy spectra on results obtained within the SRS statistics. This is also supported by the de-

tailed studies of the fundamental gaps of nitride alloys elsewhere [116].

The random distribution of the clusters with weights corresponding to those of a regular

solution (cf. section 2.3.3.1) gives rise to peak variations with x which are nonlinear in posi-

tion and height in Figs. 6.4(a), 6.4(b), 6.5(a), and 6.5(b). Several peaks can be even followed

over a wide range of compositions. Ones has the impression of a continuous variation of the

lineshapes. However, this observation but also similar ones for the measured spectra cannot

be interpreted in the sense that only one and the same optical transition contributes to such

an individual peak structure. Apart from the intermixing of interband transitions by exci-

tonic effects, which already occurs for the binary components [101], the alloying makes such

an analysis practically impossible. Still within the cluster approach for each cluster material

a band structure and a BZ can be depicted. However, due to the atomic relaxation within

each 16-atom cell (which represents structural disorder) and the configurational average

(which accounts for chemical disorder) such a symmetry analysis is practically impossible

because of the random cation distribution and the related non-uniform modifications of the

atomic positions. We cannot be sure that electronic states of nearly the same symmetry con-
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tribute to a certain peak with varying position and weight. We come back to this point in the

next section.

Starting from InN (x = 1) the increasing influence of the second nitride, GaN (Figs. 6.4(a)

and 6.4(b)) or AlN (Figs. 6.5(a) and 6.5(b)), is obvious toward x → 0. This behavior is not only

visible in the range of the absorption edge, which can still clearly be identified for an alloy,

but also for the frequency range of the higher interband transitions. Thereby, the compo-

sition dependence is much more pronounced in InxAl1−xN compared to InxGa1−xN due to

the larger fundamental band gap of AlN and the bigger range of absorption with minor fre-

quency variation between the edge and the first main peak in GaN. The variation of the main

peak near 7.0 eV (GaN) or 7.5 eV (AlN) is weak. The details of the higher interband transitions

will be discussed below.

The differences of the SRS spectra for the different polarization directions are more strik-

ing near the end compounds x = 0 and x = 1. However, as can be seen from the comparison

of (a) and (b) in Figs. 6.4 and 6.5 for intermediate compositions x these differences are some-

what smeared out for several reasons. The structural disorder in the alloy modifies the dipole

selection rules. Symmetry-related selection rules cannot anymore be formulated for inter-

mediate compositions. Only the global hexagonal anisotropy, which has been taken into the

alloy simulation, e. g. in the hexagonal shape of the 16-atom cells, is visible as a depen-

dence on the light polarization. However, near to the end components InN and GaN or AlN

the wurzite symmetry becomes dominant for both light polarizations with different dipole

selection rules.

6.5 Interband critical points

The absorption lineshapes in Figs. 6.4 and 6.5 with their pronounced peak structures

suggest an analysis of the composition dependence of the peaks, at least of their positions,

similar to that done interpreting experimental spectra. [200, 231, 250, 251, 255, 259] In prin-

ciple, Eq. (2.90) for the DF can be approximately replaced by a sum of oscillators j with given

energy E j , oscillator strength C j , and damping parameter Γ j . Eq. (2.90) suggests such a di-

vision into individual oscillators. Historically, such an approach is driven by the idea that

interband transitions govern the DF and because of the pecularities in the joint density of

states (see Fig. 6.1) in the vicinity of critical points of the joint band structure, so-called van-

Hove singularities [243]. According to the nature of the critical points such a picture can

be additionally refined also if excitonic effects are taken into account [260]. Using this or a

similar procedure the composition dependence of several characteristic energies E A/B , EC ,

E1, . . . , E6 [200, 231, 250, 251, 259] has been derived from measured spectra.

Here, we follow this idea despite the limitations of the van-Hove singularity picture due

to selection rules and, in particular, excitonic effects [101]. For the binary end components

with x = 0 and x = 1, we use the direct relationship of the peak positions E1, . . . , E6 to inter-
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Peak Transition Polarization AlN GaN InN

E1 U4 −U1 ⊥,‖ – 6.57 4.63

M4 −M1 ⊥,‖ 8.36 6.90 5.26

L1,3 −L1,3 | 8.58 7.26 5.27

E2 M2 −M1 ⊥ 9.80 8.12 6.08

K3 −K2 ‖ 9.27 8.49 6.92

E3 H3 −H1,2 ‖ 10.56 9.38 7.29

K3 −K3 ⊥ – 10.97 8.81

K3 −K2 ⊥ 11.81 10.94 8.64

L1,3 −L1,3 ⊥ – 10.59 9.10

E4 L1,3 −L1,3 ⊥ 12.55 10.57 8.43

L1,3 −L1,3 ⊥,‖ 12.93 10.59 9.10

L2,4 −L1,3 ⊥ 12.66 10.58 8.48

A5,6 − A1,6 ‖ – 12.16 9.74

E5 A5,6 − A1,6 ‖ – 12.16 10.27

H3 −H3 ‖ 14.23 12.15 –

A1,3 − A5,6 ‖ – 13.51 10.87

E6 A1,3 − A1,6 ⊥,‖ 16.75 15.41 13.11

Table 6.1: Characteristic interband energies (in eV) related to the peak

positions E1, ...,E6 in Figs. 6.4 and 6.5 for ordinary (⊥) and extraordi-

nary (‖) light polarization. The symmetry character and the position in

the BZ of the valence and conduction band determining the interband

energy are indicated. The interband energies follow from the LDA + U

+ Δ approach and hence can slightly differ from the HSE + GW values

in Fig. 6.1.

band transitions at high-symmetry points Γ, M , K , A, L, and H of the hexagonal BZ. Our

strategy of identification and labeling of such structures in the theoretical spectra however

takes into consideration that these structures can be approximately related to one or more

interband transitions that can be identified for the binary end components as illustrated in

Table 6.1. Thereby, we restrict ourselves to the most visible peaks and their variation with the

composition. As a first structure we follow the position E A/B and EC of the absorption edge,

which however is somewhat higher in energy than the average fundamental gap (see Ref.

[116]). The indices A, B , and C refer to the uppermost valence bands which still can be iden-

tified for the cluster materials [54]. Because of the neglected small spin-orbit splittings A, B

refer to the uppermost Γ9 and Γ7 bands while the lower Γ7 band leads to C . This classifica-

tion is possible for InxGa1−xN and InxAl1−xN for x � 0.25. For AlN-rich InxAl1−xN alloys the

average crystal-field splitting becomes negative and valence bands cross [109, 116]. In this

limit the higher Γ7 band [116] is related to C in Figs. 6.4 and 6.5. Nevertheless we keep the

labeling according to the dipole selection rule for light polarization parallel to the hexagonal

axis.

The other labels 1,. . . ,6 are simply related to the energetical ordering of the peak struc-

tures. The corresponding results from LDA+U +Δ approach in Table 6.1 allow us at least an

identification that is correct for InN and GaN or AlN. Thereby, we assume that the related

interband energies are slightly higher than the peak energies in order to account for the gen-

eral excitonic redshift. In Table 6.1 we have listed LDA+U +Δ results since this electronic

structure approximation has been used to compute the spectra in Figs. 6.4 and 6.5. Table

6.1 shows that the peak identification E1, . . . , E6 and the relation of the peaks to certain in-

terband transitions is sometimes difficult. In some cases several transitions from different

high-symmetry points may contribute. For InxAl1−xN it is difficult to identify transitions

with the same symmetry which contribute to a particular peak varying from x = 0 to x = 1.

If at all it is possible close to the binary end components, especially for InxGa1−xN close

to InN and GaN. However, already for intermediate compositions such an identification is
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Figure 6.6: Interband transition energies taken from Figs. 6.4 and

6.5 for Inx Ga1−x N (a,b) and Inx Al1−x Al1−x N (c,d) versus composi-

tion x. Energies taken from the ordinary (a,b) (extraordinary (b,d))

spectrum. The dots indicate corresponding energies for individual

clusters. The dotted lines in (c,d) indicate the mentioned difficul-

ties to identify the symmetry of the interband transitions.

questionable because of the complete loss of translational and point-group symmetries in

the alloys. The situation is worse for InxAl1−xN because of the stronger internal strains. Nev-

ertheless, the development of selected peak structures can be followed with the composition

also in the intermediate range of x where many classes of clusters contribute to the spectra.

An example for which the identification can be done is the E1 peak in InxAl1−xN (InxGa1−xN)

for ordinary polarization. It varies from 8.1 eV (7.2 eV) (x = 0) to about 5.2 eV (x = 1). Ac-

cording to Table 6.1 and Fig. 6.1 the main contributions may be due to the lowest interband

transitions on the LM line of the BZ. The identification seems to be obvious. However, for

intermediate and small x a second peak occurs for both InxAl1−xN and InxGa1−xN which

can be described by a strong non-linear composition-dependent bowing parameter (see be-

low). Another interpretation in terms of a huge joint density of states at these energies of the

Al-rich or Ga-rich clusters Inn j X8−n j N8 is also possible, but will not demonstrate here.

The results for the peak positions in Figs. 6.4 and 6.5, i.e., energy E j versus composition

x, are summarized in Fig. 6.6. The corresponding peak positions of the individual cluster

materials are also given. Because of the above discussed difficulties to relate all peaks for the

entire composition interval in the case of InxAl1−xN, we focus the discussion on the compo-

sition dependence in the case of InxGa1−xN.

In general, the composition dependence of the peak maxima in Fig. 6.6(a) and Fig. 6.6(b)

exhibits a significant bowing which may be described by Eq. (4.4) in P = Ei , with a composition-

dependent bowing parameter bi (x). The general bowing has been discussed in detail for the

absorption edges and emission lines before [116]. In this work, we have suggested a non-

linear composition dependence according to Eq. (4.5).

Here, we apply this formula also to the higher interband transitions. The fits of Eq. (4.4)

to the curves in Fig. 6.6(a) and Fig. 6.6(b) lead to the coefficients bi 0 and bi 1 of the bow-

ing parameter bi (x) for the higher interband transitions in InxGa1−xN as given in Table 6.2.

The values in Table 6.2 clearly indicate by bi 0 a bowing of the same order of magnitude or

a somewhat larger bowing (with exception of E5) as for the fundamental gap [116]. The

non-linearity of the bowing indicated by bi 1 in Table 6.2 is small. Only for the lowest ab-
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Transition ordinary extraordinary

i bi 0 bi 1 bi 0 bi 1

1 4.43 -0.25 3.81 0.17

2 2.85 -0.44 3.98 -0.25

3 2.35 -0.34 3.51 -0.42

4 3.67 -0.43 3.83 -0.63

5 0.90 -0.54 5.16 -0.25

6 2.45 0.57 2.54 -0.43

A/B , C 2.07 1.16 3.82 1.47

Table 6.2: Coefficients of the bowing parameter

(Eq. 4.4) for higher interband transitions in the op-

tical absorption spectra of Fig. 6.4 for Inx Ga1−x N.

Values for both light polarizations are listed.

sorption peaks at E A/B or EC remarkable values bi 1 are predicted. The order of magnitude

of the bowing parameters agrees with such derived from measured spectra [231, 251] but

the theoretical values are somewhat larger. The strongest deviations from a constant bowing

parameter bi (x) = bi 0 occurs for the absorption edges. For higher interband transitions the

composition dependence of the bowing parameters can be nearly neglected.

The bowing parameters bi derived for higher energy peaks E1,. . . , E2 from measured data

[231, 251] are in general somewhat smaller than the values in Table 6.1. The seemingly over-

estimation of the bowing parameters by our calculations with respect to experimental values

[231, 251] may be a consequence that the data in Table 6.2 have been derived from spectra in

Figs. 6.4(a) and 6.4(b) which have been computed for one limiting case of the cluster statis-

tics, the strict-regular solution model. Small contributions from other distributions of the In

atoms which locally may approach the MDM statistics instead of the SRS one would lead to a

significant reduction of the bowing. This explanation is somewhat in contrast to the findings

for the fundamental absorption edge in Sec. 5.4 which have clearly indicated that the com-

position dependence of the fundamental gap, especially its bowing, measured by absorption

(instead of photoluminescence) can be approximately explained using the SRS limit of the

cluster statistics. However, there it is also clearly illustrated that fluctuations of observable

quantities may influence the bowing for a given average composition.

6.6 Excitonic effects

We focus on InxAl1−xN alloys. Because of the smaller dielectric constants of AlN, stronger

excitonic effects are expected for not too large In molar fractions, i.e., for x → 0. This focus

is supported by the larger binding energies of the band-edge excitons of 58 meV in AlN [261]

compared to the values of about 26 meV in GaN [? ] and 4 meV in InN [64]. In order to

illustrate the excitonic effects in Fig. 6.7 we plot the difference of Im ε⊥/∥(ω) with and with-

out excitonic and LFEs for InxAl1−xN for the two limiting cases of cluster statistics, SRS and

MDM.

We show only positive differences. Negative values of the differences are ignored. In such

a way the most important excitonic effects due to bound exciton states, Coulomb enhance-

ment of the absorption edge, and redistribution of spectral strength from higher to lower

photon energies are illustrated. The small vertical arrows indicate the QP gaps of the cluster
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configurations of class j and n j In atoms which significantly contribute to the spectrum for

a given average composition x. This is essentially important for the case of the SRS cluster

statistics in Figs. 6.7(a) and 6.7(c) because bound excitons may occur in each cluster mate-

rial. They belong to the corresponding local quasiparticle gap and, therefore, may appear as

resonance states in the alloy spectra for intermediate compositions x. However, such bound

state are only visible in Fig. 6.7 for AlN-rich alloys since the time-evolution technique [83]

used for the calculation of the spectra does not resolve bound states with too small binding

energies down to the InN value (see discussion in Ref. [64]).

The two difference spectra in Figs. 6.7(b) and 6.7(d) for the MDM statistics exhibit char-

acteristic excitonic effects in different spectral regions. For lower frequencies they indi-

cate a redistribution of spectral strength and some Coulomb enhancement [243] in the InN-

dominated part of the spectra but no bound excitons, at least within the numerical descrip-

tion used. In the higher energy range around 6 eV for both light polarizations a peak related

to excitonic bound states is visible in the spectra below the QP gap of w z-AlN belonging

to the Γ5 or Γ1 valence-band maximum. Because of the MDM statistics the strength of the

bound states are weighted by (1−x), the AlN content.

In the case of the other limit of the alloy statistics, the SRS model, in Figs. 6.7(a) and

6.7(c) the spectral distributions are completely different for intermediate compositions x.

There is a continuous variation of the absorption edge modified by excitonic effects from

x = 0 to x = 1. In the AlN-rich region of the alloy spectra, in contrast to the InN-rich spectra,

still excitonic effects at the absorption edges E A/B and EC (more precisely, below the local

quasiparticle gap) are observable. In order to illustrate these effects the fundamental energy

gaps of the most contributing cluster materials are indicated by arrows. The spectral features

below these arrows may be identified with bound exciton states below the corresponding QP

gaps in the cluster materials, which may form resonant states in the global alloy spectrum

for a given composition x. Indeed such features are visible, but seemingly not significantly

shifted by varying the average composition x of the random alloy.

Such a ’bound’ exciton peak indeed occurs below the edge of the n j = 1 In1Al7N8 cluster

material for both light polarizations. The energy position is rather fixed whereas its intensity

is drastically reduced with rising composition x. For the n j = 2 edges such peaks are also

resolvable. In principle, all these peaks represent resonance states since they appear at pho-

ton energies where clusters with another composition already generate some absorption.

The excitonic features occurring in the spectra of Figs. 6.7(a) and 6.7(c) however represent

only one possible type in alloys. They belong to a class of Wannier-Mott excitons [243] in a

random alloy which are not influenced by confinement effects. In our description using the

configurational average Eq. (2.91) and the calculation of spectra for isolated cluster mate-

rials only such Wannier-Mott excitons whose Bohr radius is smaller than the extent of char-

acteristic composition fluctuations Δx are correctly described. Thereby, the Bohr radii may
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Figure 6.7: Difference of imaginary parts of dielectric

function ε⊥,∥(ω) with and without excitonic/local-field

effects of Inx Al1−x N for (a,b) ordinary and (c,d) extraor-

dinary polarization and two different cluster statistics,

SRS (a,c) and MDM (b,d). The arrows indicate the QP

gaps for Inn j Al8−n j
N8 cluster materials.

vary in a range of about 1 nm (AlN-rich) until about 10 nm (In-rich) if a rough effective-mass

approximation [243] is applied to estimate the exciton binding.

We have to inform the reader that our cluster-expansion method and computation of

the alloy spectra according to the Connolly-Williams formula (2.91) cannot describe all ex-

citonic phenomena in an alloy. When clustering and/or composition fluctuations [116, 166]

occur with characteristic length scales smaller than the Bohr radii, then our approach can-

not anymore correctly describe the exciton effects. Due to the calculation of the spectrum for

each individual cluster material as a periodic structure with 16-atom cells local confinement

effects on the electrons and/or holes are not taken into account. Quantum confinement re-

lated to strong composition fluctuations on a few nm-length scale and corresponding small

InN-rich areas in the alloy are not included in the present alloy description.

6.7 Dielectric properties

The real part of the calculated DF at vanishing frequency, Reε⊥/∥(ω = 0) = ε∞⊥/∥, de-

scribes the tensor of the macroscopic electronic dielectric constant that has two indepen-

dent components ε∞⊥ and ε∞∥ in hexagonal systems. The results of the corresponding con-

figurational average are plotted in Fig. 6.8 as functions of the average composition x in the

limit of the strict-regular solution model. In order to illustrate the influence of the local ge-

ometries, also the dielectric constants for the individual cluster materials Inn j X8−n j N8 (X

= Ga, Al) are depicted in Fig. 6.8. The dielectric constants are calculated including exci-

tonic and local-field effects using the procedure described in section 2.2.5. In contrast to
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Figure 6.8: The independent components ε∞⊥ (perpen-

dicular to the c-axis, blue lines) and ε∞∥ (parallel to the c-

axis, red lines) are plotted versus the average composition

x for (a) Inx Ga1−x N and (b) Inx Al1−x N alloys described

within the SRS model. The values for the individual clus-

ter materials are indicated by dots.

many other theoretical values presented in the literature here really macroscopic dielectric

constants and not only such within the independent-particle or independent-quasiparticle

approach [102] have been computed.

The values calculated for the end components at x = 0 and x = 1 with wurtzite structure

are in excellent agreement with measured data[263, 264].Our values are ε∞⊥ = 4.12, 5.11, and

7.86 and ε∞∥ = 4.32, 5.30, and 8.74 for AlN, GaN, and InN, respectively. The corresponding

experimental values [263, 264] are ε∞⊥ = 4.14, 5.19, and 7.83 and ε∞∥ = 4.28, 5.32, and 8.03.

The agreement is excellent for all nitrides only for InN the theory slightly overestimates the

electronic dielectric constant in the parallel case. Two reasons may be mentioned. The small

discrepancy of 0.7 for ε∞∥ in the InN case may be a consequence of the numerical treatment,

for instance the used LDA+U +Δ method, but also due to difficulties to measure precisely the

dielectric constant for light polarization parallel to the c-axis in real samples. Moreover, an

influence of strain and free carriers cannot be fully excluded.

The plots of the dielectric constants calculated for the SRS statistics versus composition

x in Fig. 6.8 indicate some bowing similar to the fundamental energy gaps[116]. We there-

fore describe the variation of the dielectric constants with the composition according to Eq.

4.4 with P = ε∞⊥/∥ and Pb = Δε∞⊥/∥ the composition-independent bowing parameters. The

strongest bowing of the dielectric constants happens for the InxAl1−xN alloy. The values

amount to Δε∞⊥ = 2.54 and Δε∞∥ = 3.77 while roughly Δε∞⊥ = 0.09 and Δε∞∥ = 1.05 is de-

rived for InxGa1−xN. Thereby, the almost vanishing ordinary value of Δε∞⊥ is a result of a

curve in Fig. 6.8(b) that is not concave and, hence, difficult to determine. The calculated

composition dependence of ε∞⊥(x) for AlN-rich InxAl1−xN alloys is close to measured vari-

ations [200]. Changes in the cluster statistics influence the bowing. If, for instance, only the

22 cluster classes indicated in Fig. 6.8 are averaged, one obtains Δε∞⊥ = 2.97 and Δε∞∥ =
4.20 (InxAl1−xN) or Δε∞⊥ = 0.14 and Δε∞∥ = 1.16 (InxGa1−xN).



7
Summary

"Sorrir não significa necessariamente

que você está feliz. Às vezes significa

apenas que você é forte."

Cazuza

In this work, we modeled properties of group-III nitrides and their alloys by means of

ab initio methods. The ground-state (energetic, structural, elastic) and excited-state (energy

bands and band parameters) properties of the zb and the w z polytypes of AlN, GaN, and InN

have been investigated using modern parameter-free approaches. From the comparison of

different approximations of XC it has been shown that the AM05 XC functional gives rise to

atomic geometries in excellent agreement with experimental data and, therefore, circum-

vents the overbinding (underbinding) of the LDA (PBE-GGA). Since the atomic positions are

an important prerequisite for calculating the excited-state properties, all this work is based

on the AM05 geometry results.

The electronic structure has been calculated by solving a QP equation which includes

the XC self-energy of the electrons and holes within the G0W0 approximation, based on HSE

eigenvalues and wave functions. The resulting gaps are in excellent agreement with experi-

mental values. The influence of hydrostatic strain has been studied for the gaps. Especially

the fundamental energy gap of InN varies dramatically with the strain as indicated by the

large volume deformation potential.

The calculation of the natural band discontinuities ΔEc and ΔEv and the corresponding

band line-up yields type-I hetero(crystalline) structures for zinc-blende and wurtzite poly-

types of InN and GaN, while a type-II character has almost been found for AlN. Thereby the

quantum wells of the electrons are relatively deep with ΔEc = 0.1 - 0.3 eV. For X electrons

in AlN with almost vanishing wave vectors the value ΔEc =1.4 eV is significantly increased.

The situation for holes is completely different. The quantum wells in the cubic inclusions

are rather flat for GaN and InN with ΔEv = 0.06 or 0.09 eV. For AlN the value of ΔEv is not

exactly fixed and can even have a changed sign. However, the small |ΔEv | do not indicate the

validity of the common anion rule.
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Also the influence of the relative QP corrections to the HSE eigenvalues on the VBs around

Γ is small. The inclusion of the spin-orbit interaction into the HSE calculations allowed us

to study the corresponding energy splittings and to determine k ·p parameters. Thereby,

the validity of the quasicubic approximation for w z-GaN and w z-InN has been found to be

questionable, especially due to the influence of the semicore d electrons.

In addition, the effective electron and hole masses are calculated. In the case of the VBs

(especially for w z polytypes) band crossings render a parabolic description unfeasible for

too large k regions. Treating XC within the HSE approach, tends to increase the masses and,

hence, to lower the band dispersion near Γ. We demonstrate the importance of the spin-

orbit interaction for the dispersion and the splittings of the bands around the BZ center and,

hence, for the exact band masses. The comparison with measured effective masses shows

good agreement with the computed values especially for GaN. For InN polytypes trustable

effective masses have been derived.

The structural and electronic properties of w z-derived isostrutural InxGa1−xN and InxAl1−xN

alloys are calculated using a cluster expansion approach together cluster weighs derived

from the extremum condition for the mixing free energy, the so-called GQCA. We mainly

discussed its limiting cases for the cluster statistics, the strict-regular solution and the mi-

croscopic decomposition model. The total-energy optimizations of the cluster materials

are also performed within density functional theory using the gradient-corrected AM05 XC

functional. In order to obtain the electronic structures, a recently developed quasiparticle

method, based on the hybrid HSE06 XC functional and subsequent G0W0 corrections and

successfully applied for the binary end components before, is used. The branch-point ener-

gies of all individual clusters are used to align the quasiparticle energies of all clusters on a

common energy scale.

We find that the cluster materials that are structurally ordered (mostly in c-axis direction)

are energetically less favorable. The lowest energies are computed for the cluster classes

with a high tendency for clustering, i. e., large deviation of the actual cation-site occupa-

tion of the tetrahedra from the average value n j /2 and, hence, D j → 1. The influence of the

cluster statistics on the structural properties is rather weak and we conclude that the devia-

tions from Vegard’s rule are small but measurable, especially for InxAl1−xN. In the case of the

bulk modulus, the deviations are slightly larger. Overall, the energetic, structural, and elastic

properties of the alloys are less sensitive to the details of the local distribution of the cations.

The electronic properties, however, are much more sensitive to the distribution of the

cations over the alloy. For the two limiting cluster statistics studied in this work, the variation

of the quasiparticle DOS (peak positions as well as peak intensities) with the composition x

is completely different. Composition-dependent band edges as well as the positions of the

three uppermost valence bands at the Γ point (along with their splittings) are derived. In this

context, the difficulties, that arise from the lower symmetry of the clusters with intermediate



7. Summary 89

compositions as well as from the different band ordering in InN and AlN, are discussed.

Comparing the calculated energy gaps to measured data, clearly shows that the strict-

regular solution statistics seems to yield a more realistic picture than the macroscopic de-

composition model. Since the large variety of results for band gaps from optical measure-

ments falls between the curves for the average gap Eg(x) and the one reduced by the mean

square deviation, Eg(x)−ΔEg(x), we conclude that composition fluctuations in the alloys

play an important role at least for absorption edges and emission lines. The measured ab-

sorption onsets appears close to Eg(x), whereas the luminescence data approaches Eg(x)−
ΔEg(x). The latter fact is in agreement with the picture that excited electron-hole pairs prefer

to radiatively recombine in the domains of the alloy that have the lowest band gap.

The optical properties of wz InxGa1−xN and InxAl1−xN alloys have been described in the

framework of two basic approximations. (i) The alloys are modeled by a cluster expansion

method. Each alloy is divided into clusters of artificial materials each of which is represented

by a hexagonal crystal containing 16 atoms in the unit cell. The number of cations, In and X

= Ga, Al atoms, varies between 0 and 8. The cluster statistics is described by the results of two

limiting cases, a complete regular solution or a complete decomposition on a microscopic

length scale. The probabilities to find a certain cluster material in the alloy have been used to

perform the configurational average. It allows the computation of the configurationally av-

eraged frequency-dependent dielectric function for a given light polarization from the func-

tions calculated for the individual cluster materials. (ii) In order to derive these individual

dielectric functions we have applied the most sophisticated many-body approaches. In a

first step the quasiparticle electronic structure has been derived for each cluster material. In

order to fulfill the conditions for an extremely dense k-point sampling calculating the optical

spectra including excitonic effects in the next step an approximate QP scheme LDA + U +Δ

has been adapted. Screened Coulomb attraction of quasielectrons and quasiholes as well as

unscreened electron-hole exchange interaction are taken into account.

The variation of the resulting absorption spectra with the average alloy composition x

seems to indicate that optically the cation distribution in the chemically (and hence some-

what structurally) disordered ternary compounds is better described by the cluster statistics

of a strict regular solution. Close to the end components InN and GaN or AlN the most im-

portant spectral features can be still explained by critical points in the interband band struc-

ture. However, for intermediate average compositions x such a relation between electronic

structure and optical absorption peaks becomes difficult or even impossible for InxAl1−xN.

The bowing of such higher interband transitions energies seems to be larger than that found

for the absorption edge. Excitonic and local-field effects influence the entire spectra. How-

ever, despite alloying also bound excitons remain visible below the absorption edge, espe-

cially for AlN-rich InxAl1−xN alloys.
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"É necessário que as coisas acabem,

para que coisas novas aconteçam."

Eckhart Tolle

Owing the high scientific interest in new technologies the research field on semicon-

ductors based on novel materials especially nitrides, began more than three decades ago.

Despite of its trouble history, especially for GaN, it became so challenging that attracted a

widespread attention. Concomitantly, the modeling of semiconducting alloys whose struc-

tural, electronic and optical properties can be totally tailored blossomed as a promising area

of solid-state-physics. From the theoretical point of view, along these years the evolution of

computers and potential performance of softwares made possible an intense and deep re-

search in alloys and their binary end components using the most-modern theoretical meth-

ods combined with theoretical spectroscopy techniques, inclusion of one or two particles

excitations, and also many-body effects as being treated by means of many-body perturba-

tion theory.

In a technological way, the constructions of heterojunctions composed of binary, ternary

and quaternary group-IIII nitrides alloys have provide great freedom in optimize device struc-

tures. However, nitride-based transistors for microwave power systems still fail. They are a

dare due to the problems with manufacturing and high cost of their constituents.

So far, the lack of efficient LEDs that emits in the yellow-green range part of the spec-

trum the, so-called green-gap, it is among the biggest challenges in group-III nitrides alloys.

Although theoretically it is possible to perform green LEDs emitting in the wavelength range

from 500 nm to 570 nm, their practical realization is a challenge. Another issue is the so-

called drop-problem. Here, the efficiency of the green-LEDs drops when the electrical power

input increases. Another problems such as presence of free carriers and their influence on

absorption and emission as well as Auger recombinations are not yet clarified. Defect levels

as carrier scattering and non-radiative recombination process also increase the problems of

group-III nitrides specially when we come to the green-gap region or think in laser diodes.

Actually these problems have been traced back by research groups in all word, however still
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remains open.

Theoretically, to predict the solution of such problems is also difficult and is still under

debate. The most modern ab initio techniques of electronic structures and powerful com-

puters are the tools which may be used to circumvent these problems. However, actually it

is not clear, if group-III nitrides and their alloys will be treated in such way, to cover the wide

range spectra. In this case, the problems are different from those accounted and faced by

II-VI or III-V group semiconductors. It means that a deep knowledge of III-nitrides group

still needs new strands combined with that acquired actually.

Also it is important to note that collaboration between theoretical and experimental re-

searches are fundamental in order to result opportunities and experiences. Concomitantly

it is shared knowledge providing skills beyond of the achieved until nowadays.

Thus, many properties and applications of group-III nitrides and their alloys are stab-

lished. However, as aforementioned, there are still many open questions in III-group nitrides

and their alloys. Up to now, many possible paths have been highlighted, which can possibly

inspire new projects for new researches. Furthermore, the results presented here can be

also starting point for future applications and novel models based on many-body problems

treated by ab initio methods.



A
Appendix

A.1 Atomic arrangement of the 22 cluster classes

The atomic arrangement of the 22 cluster classes j = 0, ...,21 are presented with number

of indium contents n j . In Table 4.1, the properties of the 22 cluster classes for Inn j Ga8−n j N8

and Inn j Al8−n j N8 are given.

j = 0, n j = 0

j = 1, n j = 1

A.1



A.1 A.1 Atomic arrangement of the 22 cluster classes

j = 2, n j = 2 j = 3, n j = 2 j = 4, n j = 2

j = 5, n j = 3 j = 6, n j = 3 j = 7, n j = 3

j = 8, n j = 4 j = 9, n j = 4 j = 10, n j = 4

j = 11, n j = 4 j = 12, n j = 4 j = 13, n j = 4
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j = 14, n j = 5 j = 15, n j = 5 j = 16, n j = 5

j = 17, n j = 6 j = 18, n j = 6 j = 19, n j = 6

j = 20, n j = 7

j = 21, n j = 8



A.2 A.2 Cluster expansion for the wurtzite alloys

A.2 Cluster expansion for the wurtzite alloys

In this work, in order to predict the configurational average for structural, electronic and

optical properties of group-III nitride alloy, it was used ab initio methods combined with

alloys statistics, more specifically SRS and MDM, limiting case of GQCA. In this sense, for

a more realistic results it is necessary a reasonable number of samples of each property in

order to obtain the average. Though the smallest hexagonal crystal structure contains 4-

atoms unit cell, here it have used 16-atoms supercell (cf. Fig. 2.2) that include a considerable

local correlation. Considering the pseudo ternary alloy AxB1−xC with A = Al, Ga or In, we

account for a huge possibility of configurations due the arrangement of the cations. The

total number accounts taking the combinatory

(
8

nj

)
where nj is, e. g., the number of A cations

[84, 90].

Taking all possibilities of arrangements into account, we obtain by

8∑
n j=0

(
8

nj

)
(A.1)

256 possibles configurations. However, by arguments of symmetry and energy degeneracy,

that 256 possibilities can be grouped in 22 ( j ) different classes as described below in Table

A.2

j nj gj number of cations (A)
0 0 1 -
1 1 8 1
2 2 12 1,2
3 2 12 1,5
4 2 4 1,8
5 3 8 1,2,3
6 3 24 1,2,7
7 3 24 1,2,5
8 4 2 1,2,3,4
9 4 8 1,2,3,5

10 4 24 1,2,4,5
11 4 6 1,2,5,6
12 4 6 1,2,7,8
13 4 24 1,2,5,8
14 5 24 3,4,6,7,8
15 5 24 3,4,5,6,8
16 5 8 4,5,6,7,8
17 6 4 2,3,4,5,6,7
18 6 12 2,3,4,6,7,8
19 6 12 3,4,5,6,7,8
20 7 8 2,3,4,5,6,7,8
21 8 1 1,2,3,4,5,6,7,8

Table A.2: Class j , number of cations n j and g j the degeneracy factor for a 16-atom unit cell in wurtzitic crystal structure. For each class j the number n j of
A cations, the degeneracy g j of the class, and the cation sites occupied with A-type atoms (for one representative of the class) are given.
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A.3 Parameters of calculations

A.3.1 Scissors operator (Δ)

j Δ j (eV) for Inn j Ga8−n j N8 Δ j (eV) for Inn j Ga8−n j N8

0 1.097 1.943
1 1.291 1.708
2 1.004 1.444
2 0.982 1.472
4 0.942 1.456
5 0.832 1.279
6 0.851 1.309
7 0.834 1.241
8 0.687 1.081
9 0.661 1.018

10 0.672 1.049
11 0.679 1.034
12 0.703 1.158
13 0.683 1.069
14 0.526 0.845
15 0.537 0.901
16 0.514 0.845
17 0.377 0.692
18 0.499 0.639
19 0.42 0.641
20 0.204 0.344
21 0.252 0.252

Table A.3: scissors operators Δ j for each cluster class j in Inn j Ga8−n j
N8 and Inn j Al8−n j

N8 pseudobinary alloy.
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