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urn:nbn:de:gbv:ilm1-2012000326



1. Gutachter: Prof. Dr. rer. nat. habil. Rüdiger Goldhahn
(Otto-von-Guericke-Universität Magdeburg)

2. Gutachter: Prof. Dr. Norbert Esser
(Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V.)

3. Gutachter: Priv. Doz. Dr. Stefan Krischok
(Technische Universität Ilmenau)

Tag der Einreichung: 7. März 2012
Tag der wissenschaftlichen Aussprache: 2. Oktober 2012



Dedicated to my parents





Abstract

In this work, the optical properties of wurtzite InN and related ternary InGaN and
AlInN as well as quaternary AlInGaN alloys are investigated. The main focus is put
on the spectroscopic ellipsometry characterization. The InN films grown on Si(111)
substrates and carbon doped InN sample series are investigated from the mid-infrared
up to vacuum-ultraviolet range. A carrier concentration is estimated by solving a self-
consistent problem that consists of the infrared spectroscopic ellipsometry data analysis
and the absorption onset fitting. The intrinsic strain-free band gap for InN samples
is determined by taking into consideration the band-gap renormalization, the Burstein-
Moss shift and the strain influence. The k·p method is employed in order to evaluate a
strain-induced band-gap shift. It is shown that by increasing the flux of a carbon dopant
CBr4 during the molecular beam epitaxy growth process, the electron concentration
increases in the grown InN samples. The In-related alloys are investigated in the spectral
range from the near infrared up to vacuum ultraviolet. The analytical model permitting
to describe the dielectric function of the alloys in the range 1-10 eV is presented. By
applying the analytical model to the experimental dielectric function, the band-gap and
high-energy inter-band transition energies are determined. The strain-free band-gap
bowing parameters for ternary InGaN and AlInN are determined. It is found that the
bowing parameter for AlInN alloy is composition dependent. With the knowledge of
the ternary alloys bowing parameters, the empirical expression permitting to estimate
the band gap of the quaternary alloys is developed. All the experimental band gaps
determined for the alloys by spectroscopic ellipsometry are supported by the state-of-
the-art ab initio data.
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1 Introduction

Since the revision of the indium nitride (InN) band gap in the years 2002-2003 [11,

12], this material and its related alloys have attracted a lot of attention of scientific

community. A wurtzite InN with its narrow fundamental band gap of 0.675 eV [13] and

high electron mobility [14] is considered as a promising material for the applications in

the near-infrared opto-electronic and high-speed electronic devices, sensors as well as

terahertz emission [15–23].

The ternary InGaN alloys are already widely used in the commercial devices such

as LDs and LEDs (used for TV, LCD monitor and mobile display back-lighting and

solid state lighting applications). The band gap of the InGaN alloys can be tuned from

0.675 eV [13] to 3.435 eV [24] at room temperature. Due to this wide spectral range

covering almost the whole solar spectrum, the InGaN system is a promising candidate

for high-efficiency multi-junction solar cells applications [25–29].

The ternary AlInN alloys with band gaps at room temperature ranging from 0.675 eV

[13] to 6.03 eV [30] are promising materials to improve the performance of optoelectronic

and electronic devices. The Al1−xInxN has its unique property that it is lattice-matched

(LM) to GaN with x=17-18%, i.e., this allows to grow high quality stress-free AlInN

epilayer on the GaN. The AlInN/GaN heterostructures are employed for high-electron-

mobility transistors (HEMTs) fabrication used for high-frequency and high-power mi-

crowave applications [31–33]. High-quality distributed Bragg reflectors dedicated for

vertical-cavity surface-emitting lasers can also be produced by using LM AlInN and

GaN [34,35]. Recently, Tong et al demonstrated promising thermoelectric properties of

AlInN material [36].

The quaternary AlInGaN alloys (QNAs) offer a couple of advantages for the develop-

ment of advanced devices such as blue-green and blue-violet laser diodes (LDs) [37–39],

UV-LDs [40], UV/DUV light-emitting diodes (LEDs) [41–48], photodetectors [49, 50],

and high-electron mobility transistors (HEMTs) [51–53]. Lee et al [54] applied a qua-

ternary AlInGaN as a protective layer to suppress a thermal damage of InGaN multiple

quantum layers. QNAs with an appropriate composition ratio can be grown lattice-

1



1 Introduction

matched to GaN, i.e., this enables a reduction of strain-induced defects and piezoelec-

tric polarisation related built-in electric fields. Additionally, QNAs allow to adjust the

band gap and the strain state independently. Moreover, quaternary alloys containing

an indium have a strongly enhanced photoluminescence intensity in comparison with

AlGaN alloys [55, 56]. The incorporation of indium allows to tune a lattice parameter,

band gap, and thermal conductivity. Recently, Wang et al [57] have demonstrated that

AlInGaN used as a quantum barrier for UV LEDs can significantly reduce the efficiency

droop at high injection currents.

A lot of research studies have been devoted on the InN material and related alloys.

However, the carbon doping in the InN material, the band gap as a function of alloy

composition, strain influence on the band gap and optical constants for the In-related

alloys still remain open questions. For example, according to the recent published results

(of the Year 2010), the estimated AlInN alloy band-gap bowing parameter values varies

in the broad range from 3.4 eV [58] up to 10.3 eV [59].

A software-based modelling allows precisely simulate device operation and reduce

R&D costs. Therefore, the determination of the complex dielectric function (DF) ε̄ =

ε1+iε2 (or optical constants N̄ = n+ik =
√
ε̄) and precise band-gap bowing parameters

are needed for the In-related alloys.

The aims of this work are:

• To investigate the optical properties of unintentionally doped InN films grown on

Si(111) substrates;

• To investigate the optical properties of carbon doped InN samples;

• To determine the DFs (or optical constants) for the In-related alloys;

• To obtain an analytical representation of the DF for the In-related alloys;

• To estimate the band-gaps and high-energy inter-band transitions for the In-

related alloys by applying the analytical DF model;

• To calculate a strain influence on the band gap by using the k·p method;

• To determine a strain-free band gap and high-energy inter-band transitions bowing

parameters for the ternary InGaN and AlInN alloys;

• To develop an empirical expression that allows to determine the band gap and

high-energy inter-band transitions for the quaternary AlInGaN alloy.

2



The introduction to the band structure will be provided in Chapter 2. The DF

and its analytical models are discussed in Chapter 3. The spectroscopic ellipsometry

will be introduced in Chapter 4. The epitaxial growth techniques used to grow the

investigated samples will be described in Chapter 5. A comprehensive determination of

optical properties for unintentionally and carbon doped InN films will be presented in

Chapter 6. The results obtained for Ga-rich InGaN alloys are reported in Chapter 7. In

Chapter 8, the Al-rich AlInN samples are investigated. Finally, the optical properties

of quaternary AlInGaN alloys will be discussed in Chapter 9.
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2 Band structure

Theoretical calculations of the electronic structures are usually based on the density

functional theory (DFT). The DFT calculations with local density approximation (LDA)

taking into account In 4d valence electrons give the negative band-gap for wurtzite

structure InN [60, 61]. This effect is caused by an overestimation of the p-d repulsion

between p valence states and shallow d core states. In order to get a positive band gap,

a method is proposed to freeze the In 4d electrons in the core and use a construction of

pseudo-potentials and self-energy corrections (SIC) [62,63].

Recently, de Carvalho et al [64] applied an AM05 exchange-correlation (XC) func-

tional to calculate the band structure of the wurtzite InN and its structural and elec-

tronic parameters. Figure 2.1 shows the calculated band structure and the density of

states for the wurtzite InN. The calculated lattice parameters yielded a0=3.549 Å and

c0=5.736 Å that are close to the experimental values 3.53774 Å and 5.70374 Å, re-

spectively, as obtained from the work of Paszkowicz et al [65]. The fundamental band

(a) (b)

Figure 2.1: Quasi-particle band structure for wurtzite InN calculated using DFT with AM05
exchange-correlation functional without spin-orbit interaction [64]. Vertical arrows indicate
the inter-band transitions allowed for a configuration E⊥c. Courtesy of L. C. de Carvalho.
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2 Band structure

gap of wurtzite InN was calculated to be 0.638 eV that is close to the experimentally

determined value of 0.64 [12]. The vertical arrows in Fig. 2.1 indicate the inter-band

transitions allowed for a configuration E⊥c (will be discussed in Chapter 3).

Wurtzite structure III-V nitride semiconductors are direct band gap materials. The

conduction band minimum (CBM) and the valence band maximum (VBM) are in the

center of the BZ at the Γ point. The Bloch wave function of the conduction band (CB)

and the valence band (VB) are described by s-states and p-states, respectively. In the

wurtzite structure semiconductors a crystal-field splitting appears owing to the struc-

tural anisotropy. Due to a crystal-field splitting (∆cf) and spin-orbit (∆so) interaction,

the VB is splitted into one Γv
9 and two-fold degenerate Γv

7 VBs. The spin-orbit and

crystal-field energies for GaN [66] amount to 18.9 meV and 9.2 meV, respectively. For

an InN, values of ∆so=13 meV [67] and ∆cf=19 meV explain the splitting between the

ordinary and extraordinary absorption edge, as it was measured by ellipsometry [7, 68].

In contrast to the two latter binaries, an AlN [30] exhibits a large negative crystal-

field splitting energy of -212 meV, while the spin-orbit energy of 16 meV is only slightly

larger than for an InN and a GaN. According to the quasi-cubic model [69], the energetic

position of the bands is given by

Γc
7 = ∆cf +

∆so

3
+ EA, (2.1)

Γv
9 = ∆cf +

∆so

3
, (2.2)

Γv
7+ =

∆cf

2
− ∆so

6
+

1

2

√

(∆cf +∆so)
2 − 8

3
∆cf∆so, (2.3)

Γv
7− =

∆cf

2
− ∆so

6
− 1

2

√

(∆cf +∆so)
2 − 8

3
∆cf∆so. (2.4)

The energy difference Γc
7−Γv

9 = EA for strain-free material is always used as a reference

point for the analysis of inter-band absorption. The relative VB ordering as a function

of the crystal-field splitting energy and ∆so=13 meV is shown in Fig. 2.2. One can notice

that the VB crossing occurs at ∆cf = 0 meV and for an AlN the topmost valence band

is Γv
7+, while for an InN and a GaN the topmost VB is Γv

9. By using the k·p method

developed by Chuang and Chang [70], it is possible to calculate a band structure near

the Γ point. At k=0 the VB and CB Hamiltonians are described separately if the band

6



gap is large and the the interaction between VB and CB Hamiltonians can be neglected.

The CB Hamiltonian is described by 2×2 matrix:

Hcc =

[

Ec 0

0 Ec

]

. (2.5)

While the VB Hamiltonian is described by 6×6 matrix:

Hvv =























F −K∗ −H∗ 0 0 0

−K G H 0 0 ∆

−H H∗ λ 0 ∆ 0

0 0 0 F −K H

0 0 ∆ −K∗ G −H∗

0 ∆ 0 H∗ −H λ























. (2.6)

The Hamiltonian elements are determined as follows:

Ec = Eg +∆1 +∆2 +
~
2k2z

2me,‖
+

~
2(k2x + k2y)

2me,⊥
+ αczǫzz + αct(ǫxx + ǫyy), (2.7)

F = ∆1 +∆2 + λ+ θ,

G = ∆1 −∆2 + λ+ θ,

K =
~
2

2m0
A5(kx + iky)

2 +D5(ǫxx + 2iǫxy − ǫyy),

H =
~
2

2m0
A6kz(kx + iky) +D6(ǫzx + iǫyz),

λ =
~
2

2m0

[

A1k
2
z +A2k

2
t

]

+D1ǫzz +D2(ǫxx + ǫyy),

θ =
~
2

2m0

[

A3k
2
z +A4k

2
t

]

+D3ǫzz +D4(ǫxx + ǫyy),

∆ =
√
2∆3.

where, Eg is a band gap of the material. The ∆1, ∆2 and ∆3 are related to the

spin-orbit and crystal-field splitting energies. The parameters Di and αi correspond

to the deformation potentials for the VB and CB, respectvely. The effective masses

parallel and perpendicular to the c-axis are indicated as me,‖ and me,⊥, respectively.

The parameters Aj define the contribution of the remote bands. In the quasi-cubic

approximation: ∆1 = ∆cf and ∆2 = ∆3 = ∆so/3, D3=D2-D1, D4=-D3/2, ∆2 = ∆3.
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2 Band structure

Table 2.1: Parameters used in k·p calculations for InN, GaN, and AlN at RT.

Parameter InN GaN AlN

EA (eV) 0.675 [13] 3.435 [24] 6.24 [30]
EB (eV) - - 6.03 [30]
∆cf (meV) 19 [68] 9.2 [67] -212 [30]
∆so (meV) 13 [67] 18.9 [67] 16 [30]
α (eV) -7.2 [75] -44.5 [71] -20.5 [75]
D1 (eV) -3.7 [76] -41.4 [71] -17.1 [76]
D2 (eV) 4.5 [76] -33.3 [71] -8.7 [76]
D5 (eV) -4 [76] -4.7 [71] -3.4 [76]
a0 (Å) 3.53774 [65] 3.1894 [74] 3.112 [74]
C13 (GPa) 92 [76] 114 [72] 108 [76]
C33 (GPa) 224 [76] 381 [72] 373 [76]

For a GaN, the following deformation-potential parameter values are employed:

α⊥ = α‖ = α = −44.5 eV, D1=-41.4 eV, D2=-33.3 eV, and D5=-4.7 eV [71]. The

stiffness constants C13=114 GPa and C33=381 GPa are taken from Ref. 72. For an

InN (AlN), the deformation potentials α=-7.2 eV (-20.5 eV), D1=-3.7 eV (-17.1 eV),

D2=4.5 eV (-8.7 eV), and D5=-4.0 eV (-3.4 eV) as well as the stiffness constants

C13=92 GPa (108 GPa) and C33=224 GPa (373 GPa) were used from Ref. 73. The

strain-free lattice constants of aInN0 =3.5377 [65], aGaN
0 =3.1894 [74], and aAlN

0 =3.112 [74]

for an InN, a GaN, and an AlN, respectively, were employed. For clarity, the used pa-

rameters are summarized in Table 2.1. The in-plane strain is described by using the

following equation:

ǫxx = ǫyy =
a− a0
a0

, (2.8)

while the out-of-plane strain is described by

ǫzz =
c− c0
c0

= −2C13

C33
ǫxx , (2.9)

where a0 (c0) and a (c) are the lattice parameters for a strain-free and strained material,

respectively. From the k·p calculations it is possible to estimate the strain induced

band-gap shift and relative oscillator strengths for the transitions A (Γv
9 → Γc

7), B (Γv
7+

→ Γc
7) and C (Γv

7− → Γc
7). Figure 2.3(a) and (b) show the calculated relative oscillator

strength as a function of crystal-field splitting energy for the configuration E⊥c and

configuration E‖c, respectively.

8



Figure 2.2: The relative VB energy as a function
of crystal-field splitting energy. ∆so is fixed to
13 meV.

(a) (b)

Figure 2.3: Relative oscillator strength for configuration E⊥c (a) and configuration E‖c
(b) as a function of crystal-field splitting energy.

9





3 Dielectric function

3.1 Introduction to the dielectric function

The dielectric function (DF) describes the linear response of a material to the electro-

magnetic wave. The important information is obtained about semiconductor electronic

properties from the optical spectrum. The DF is a complex function consisting of the

real and imaginary parts. The imaginary part represents the absorption of the material,

while the real part describes how strong the material is polarized.

The electric field induces the dipole moments in the dielectric material, which are

described by the electric polarization P. The electric displacement D is related to the

electric field vector E via the following expression:

D = ε0E + P, (3.1)

where ε0 is a vacuum permittivity. Employing the following equations

P = ε0χeE, (3.2)

εr = 1 + χe, (3.3)

where εr is a relative permittivity and χe is an electric susceptibility, the Eq. 3.1 can be

re-written as

D = ε0εrE =
↔
εE. (3.4)

The D and E are related through the dielectric tensor
↔
ε (ω). For isotropic material

(space group F43m(T 2
d )) the dielectric tensors are equal in all directions. The strain-free

hexagonal group-III-nitride material (space group P63mc(C4
6v)) are optically uniaxial

materials. The optical axis is parallel to a crystallographic c-axis and perpendicular

to x-y plane. For uniaxial crystals a light velocity varies depending on a propagation
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3 Dielectric function

direction. This phenomenon is called birefringence. The dielectric tensor is described

in the following form:

↔
ε =







ε̄x 0 0

0 ε̄y 0

0 0 ε̄z






=







ε̄o 0 0

0 ε̄o 0

0 0 ε̄e






. (3.5)

The ε̄o and ε̄e correspond to the ordinary and extraordinary components of the

dielectric tensor that describe the material’s interaction with an electromagnetic wave

having an electric field vector configurations E ⊥ c and E ‖ c, respectively. Both

components are complex and depend on a photon energy. The optical properties of

a semiconductor (i.e., the description of a material’s and an electromagnetic wave’s

interaction) is described by a complex DF. The DF ε̄j(ω) with its real (ε1,j(ω)) and

imaginary (ε2,j(ω)) part is given by

ε̄j(ω) = ε1,j(ω) + iε2,j(ω); (j = o, e). (3.6)

The real part and imaginary part of the DF are related through Kramers-Kronig relation:

ε1,j(ω) = 1 +
2

π
P

+∞
∫

0

ω′ · ε2,j(ω′)

ω′2 − ω2
dω′ , (3.7)

ε2,j(ω) = −2ω

π
P

+∞
∫

0

ε1,j(ω
′)

ω′2 − ω2
dω′ , (3.8)

where P is Cauchy integral’s main value. The complex DF and complex optical constants

for non magnetic material are related through the following expressions:

N̄j(ω) = nj(ω) + iκj(ω) =
√

ε̄j(ω), (3.9)

ε1,j(ω) = n2
j (ω)− κ2j (ω), (3.10)

and

ε2,j(ω) = 2nj(ω)κj(ω), (3.11)

with nj and κj corresponding to the real and imaginary part, respectively, of the complex

refraction index N̄j .
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3.1 Introduction to the dielectric function

Spectroscopic ellipsometry (described in Chapter 4) is a common technique to de-

termine a sample’s complex DF. The spectroscopic ellipsometer measures an optical

response under a certain angle of incidence and the obtained ellipsometric parameters Ψ

and ∆ reflect mainly the spectral dependence of the ordinary DF for the (0001)-oriented

films. The deviations around the band gap are only found if the material exhibits sharp

excitonic resonances for both polarization directions [77, 78]. Further, in this work, the

DF determined from the (0001)-oriented samples will be called an isotropic DF. In the

non-polar sample case, the c-axis is on the surface plane. Therefore, by measuring the

sample by ellipsometry at two different configurations (i.e., the c-axis perpendicular to

the plane of incidence and c-axis parallel to the plane of incidence), both ordinary and

extraordinary DFs can be extracted. For comparison, Figure 3.1 shows the isotropic

(solid black line), ordinary (dashed black line), and extraordinary (dashed dotted red

line) imaginary parts of the DF obtained for the wurtzite structure InN. It is observed

that the isotropic DF is close to the ordinary DF, i.e., the energetic positions of charac-

teristic features (peaks and shoulders) of the ε2 are at the same energetic positions.

An absorption coefficient αj(ω) is related to the imaginary part of the DF through

an expression:

αj(ω) =
ω

nj(ω)c0
ε2,j(ω) . (3.12)

It is important to emphasize that αj(ω) depends not only on the imaginary part of the

DF - ε2,j(ω), but also on the refractive index nj(ω) that is not a constant. Therefore,

by extrapolating a linear region of the squared absorption coefficient, one must take a

refractive index into consideration. An absorption of the photon with an energy ~ω ≥ E0
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Figure 3.1: Experimental isotropic (black
solid line), ordinary (black dashed line),
and extraordinary (red dashed-dotted line)
imaginary part of the DF for the wurtzite
InN.
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3 Dielectric function

causes the electron transition from the VB to the CB. Disregarding in the first step the

electron-hole interaction (exciton effects), the transition probability is described as

Wj(ω) =
1

V

2π

~

(

eA0

2m0

)2
∑

kc,kv

|ePvc,j |2δ(Ec(k)− Ev(k)− ~ω), (3.13)

where A0 is a vector potential amplitude, V is a volume of the unit cell, m0 is an

electron mass and e is an elementary charge. The optical anisotropy will be determined

by the direction dependent momentum matrix element |ePvc,j |2 [79], which connects

the VB and CB Bloch states. The absorption coefficient αj(ω) is related to Wj(ω) via

the following expression:

αj(ω) =
2~

ε0c0njωA2
0

Wj(ω). (3.14)

The impulse of a photon is very small in comparison with a wave vector k within the

first BZ. Therefore, it is assumed that a transition takes place in a vertical direction

(kv = kc). A sum of all kv and kc can be replaced by the integration over all k-vectors

in the first BZ. Then, the imaginary part of the DF can be expressed as

ε2,j(ω) =
πe2

ε0ω2m2
0

|ePvc,j |2
2

8π3

∫

BZ

δ(Ec(k)− Ev(k)− ~ω)d3k . (3.15)

Here, the joint density of states (JDOS) ρcv(ω) is introduced

ρcv(ω) =
2

8π3

∫

BZ

δ(Ec(k)− Ev(k)− ~ω)d3k

=
2

8π3

∫

E=Ec−Ev=konst

dS

|∇k(Ec(k)− Ev(k))|
,

(3.16)

where the integration over all k-vectors in the first BZ also over constant energies takes

place. From Eq. 3.16 it is evident that JDOS depend on the CB and VB alignment.

The density of states possesses the singularities at points where |∇k(Ec(k) − Ev(k))|
vanishes. These points are called the critical points (CPs) of the band structure and the

corresponding singularities in the JDOS are called van Hove singularities [80]. The peaks

and shoulders in the imaginary part of the DF are attributed to van Hove singularities.

However, according to the recent state-of-the-art many body ab initio calculations

from the work of Riefer et al [81], the JDOS is not necessarily large at a critical point.

For example, the JDOS is zero at M0 point that indicates the absorption onset and

14



3.1 Introduction to the dielectric function

rises proportionally to the square root of the energy for parabolic bands. Some peaks

in the imaginary part of the DF can be assigned to bound excitonic states at M0 or

M1 critical points [81]. It is known that the shape of imaginary part of the DF (ε2) is

influenced by the electron-hole interaction. Already in 1957, Elliott developed a method

for the analysis of the Wannier excitons [82]. Due to Coulomb attraction of electrons

and holes, the hydrogen-like states are formed below a single-particle gap. The energies

of the hydrogen states are discrete and depend on the effective Rydberg constant

R∗
y =

µe4

2(4πε0εr~)2
, (3.17)

where µ = (m−1
e + m−1

h )−1 with me and mh electron and hole masses, respectively.

However, in order to prove if the Coulomb interaction makes an influence in the high-

energy range, the theoretical studies, which includes the Coulomb correlated electron-

hole pairs, are needed. The theoretical calculations of the DF for InN and AlN from

the works of Furthmüller et al [62] and Riefer et al [81], respectively, have shown that

excitonic effects make influence to the DF at high energy range. Figure 3.2 compares

the InN experimental imaginary part of the isotropic DF (that is close to the ordinary

DF) and the the calculated ordinary imaginary part of the DF with excitonic effects

(red dashed curve) and without excitonic effects (blue dotted curve) from the work of

Furthmüller et al [62]. There is a clear tendency for a redistribution of peaks to lower

photon energies due to the Coulomb attraction and the peak positions are very close
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Figure 3.2: Experimental isotropic imaginary DF for the wurtzite InN in comparison with
calculated ordinary DFs [62]: with included excitonic effects (red dashed line) and without
excitonic effects (blue dashed dotted line).
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3 Dielectric function

Table 3.1: InN high-energy inter-band transitions allowed for a configuration E⊥c. Courtesy
of L. C. de Carvalho.

Transition notation corresponding points in the Brillouin zone
D Av

5,6 −→ Ac
1,3

E1 Uv
1 −→ Uc

4

E2 Mv
4 −→ Mc

3

E3 Mv
2 −→ Mc

3

E4 Kv
1 −→ Kc

2

E5 Lv
1,3 −→ Lc

1,3

E6 Kv
3 −→ Kc

2

to the positions of the experimental DF, as it can be observed, as it can be observed

in Fig.3.2. The CPs of the band structure D, E1, E2, E3, E4, E5, and E6 are denoted

by arrows in Fig. 3.2 and their corresponding inter-band transitions allowed for the

configuration E⊥c are indicated in Fig. 2.1 (see previous Chapter). In addition, the

transitions D, E1, E2, E3, E4, E5, and E6 with the corresponding points in the Brillouin

zone are summarized in Table 3.1.

3.2 Analytical representation of the dielectric function

In this section, two analytical models will be described. The first model based on the

parametric oscillators allows to present the DF in the wide spectral photon energy.

This model was developed by Goldhahn et al [83] based on the experimental data

for a GaN [84], and an AlN [83] from 1 up to 9.5 eV. It completely reproduces all

peculiarities of the DFs, i.e., the contributions from the free excitonic transitions and

the excitonic continuum around the band gap as well as the pronounced features due

to the high-energy critical points. In Chapters 8-9 it will be demonstrated that the

model is also suitable to describe the DFs of ternary and quaternary In-related alloys.

The second simplified model developed by Shokhovets et al [85], allows to describe

the dispersion below the band gap and extract the high-frequency dielectric constant.

Accurate analytical form of the DF is necessary for device modelling and analysis of the

material optical properties.
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3.2 Analytical representation of the dielectric function

3.2.1 Analytical representation in the wide spectral range

The imaginary part of the DF can be separated in two parts:

ε2 = ε2,low + ε2,high, (3.18)

where the term ε2,low describes ε2 in the band gap region and the second term ε2,high -

in the higher energy range. They are expressed as follows:

ε2,low =
∑

j=A,B,C

ABS~ωΓBS

((Ej −R)2 − ~2ω2)2 + (~ωΓBS)2

+
∑

j=A,B,C

ACS

~ω

1 + erf[(~ω − Ej)/ΓCS]

1− exp(−2π
√

R/|~ω − Ej|)
;

(3.19)

ε2,high =
∑

j=1,2,3

Aj~ωΓj

(E2
j − ~2ω2)2 + (~ωΓj)2

×

×
[

Θ(Ej − ~ω)
~ω − EA

Ej − EA
+Θ(~ω − Ej)

]

.

(3.20)

The real part of the damped harmonic oscillators (DHOs) in the first term of ε2,low

(Eq. 3.19) represents the bound exciton states below the band gap, while the exciton

continuum is represented by the second term. DHOs with the Heaviside step function

Θ in Eq. 3.20 describe the high-energy critical points (CPs). The real part of the DF is

described by

ε1 = b+
∑

j=A,B,C

(

ABS((Ej −R)2 − ~
2ω2)

((Ej −R)2 − ~2ω2)2 + (~ωΓBS)2

)

+
1

π
ℜ
(

A0 ln
E2

P − (~ω + iΓ0)
2

E2
A − (~ω + iΓ0)2

)

+
1

π
ℜ
(

APEP

E2
P − (~ω + iΓ0)2

)

+
∑

j=1,2,3

Aj(E
2
j − ~

2ω2)

(E2
j − ~2ω2)2 + (~ωΓj)2

. (3.21)
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Figure 3.3: Experimental isotropic DF (black solid lines) and its analytical representation
(red open circles) for the (0001)-oriented AlInGaN sample (Al 28% and In 4%). The blue
lines represent the separate damped harmonic oscillators of the imaginary part of the DF as
described by Eq. 3.18.

The bound excitonic states and high-energy CPs in Eq. 3.21 are represented by the

DHOs, while the excitonic continuum is modeled by a logarithmic function and b is a

constant term.

The analytical expressions (Eq. 3.18 and Eq. 3.21) are fitted simultaneously to the

experimentally obtained real and imaginary parts of the DF using a least square method.

The fit yields the transitions EA or EB and the high-energy inter-band transitions E1,

E2, and E3. For example, the experimental isotropic DF and its analytical form for the

(0001)-oriented AlInGaN sample (with Al 28% and In 4% content) are represented in

Fig. 3.3. The separate oscillators are shown with the blue solid lines in Fig. 3.3 for the

imaginary part of the DF, as described by Eqs. 3.19-3.20. The harmonic oscillator 1

represents the bound exciton states below the band gap, while the harmonic oscillator

2 represents the excitonic continuum. The oscillators 3, 4 and 5 represent high-energy

CPs.

It is important to emphasize that DF modelling permits to determine more ac-

curately the band-gap energy. Many studies use linear interpolation of the squared

absorption coefficient to determine the gap. As it is seen in Figure 3.3, the excitonic

peak is appearing. A linear interpolation of the squared absorption coefficient allows to

determine only the excitonic transition. With the knowledge that AlN exciton binding

energy is ∼55 meV [86], the interpolation of the squared absorption coefficient could
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3.2 Analytical representation of the dielectric function

lead to the band-gap estimation error of several tens of milli-electronvolts for Al-rich

alloys.

3.2.2 Dispersion below the band gap and high-frequency diel ectric
constant

The dispersion of ε1 in the transparent region (below the band gap) is expressed by the

analytical expression developed by Shokhovets et al [85] and described as

ε1(~ω) = 1 +
2

π

(

AG

2
ln

E2
H − (~ω)2

E2
G − (~ω)2

+
AHEH

E2
H − (~ω)2

)

, (3.22)

where energies EG and EH denote an average band-gap and high-energy transitions,

with their amplitudes AG and AH , respectively. The high-frequency dielectric constant

(ε∞) is obtained by fitting the experimentally determined ε1 below the band gap with

the analytical expression (3.22) and by extrapolating this expression to zero photon

energy (~ω → 0).

For example, Fig. 3.4 shows the experimental and modelled (by using Eq. 3.22) real

part of the isotropic DF for the AlInGaN sample (Al 28% and In 4%).
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Figure 3.4: Experimental ε1 (black solid lines)
and its analytical representation (red open circles)
in the transparent region (below the band gap) for
the AlInGaN sample (Al 28% and In 4%).
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3.3 Model for the mid-infrared range dielectric function

Due to the low Γ-point conduction band minimum that is significantly below the charge

neutrality level, the InN material possesses a surface electron accumulation layer [87–

93]. Therefore, the conventional Hall measurement estimates only an average carrier

concentration (which is normally higher than a bulk carrier concentration).

However, the infrared spectroscopic ellipsometry (IR-SE) measurements allow to

estimate accurately a carrier concentration. The electron concentration is obtained

from the analysis of the mid-infrared DF. A plasmon-phonon coupling is observed in a

mid-infrared range. The anisotropic DF for the materials with free carriers is described

using the factorized model based on the anharmonic coupling effects between free-carrier

plasmons and longitudinal-optical phonons [94]:

ε̄j(ω) = ε∞,j

2
∏

n=1

(

ω2 + iγLPP,njω − ω2
LPP,nj

)

(ω2 + iγp,jω)
(

ω2 + iγTO,jω − ω2
TO,j

) . (3.23)

where ωLPP,nj and γLPP,nj is the frequency and broadening, respectively, of the n-th

longitudinal-phonon-plasmon (LPP) mode. The parameter γp,j is the plasma excita-

tion broadening parameter. The frequency and the broadening of the TO phonons are

denoted by ωTO,j and γTO,j , respectively. The high-frequency dielectric constant is de-

noted as ε∞,j . The frequency ωLPP,nj is related with TO phonon frequency ωTO,j and

the plasma frequency ωp,j via the following expression:

ω2
LPP,nj =

1

2

[

ω2
LO,j + ω2

p,j + (−1)n
√

(ω2
LO,j + ω2

p,j)
2 − 4ω2

p,jω
2
TO,j

]

. (3.24)

From the model fit, the plasma frequency is obtained that is related to the carrier

concentration through the following expression:

ω2
p,j =

Nee
2

ε0ε∞,jm∗(Ne)
. (3.25)

One can observe in Eq. 3.25 that only the ratio Ne/m
∗(Ne) can be determined. Thus, the

problem must be solved self-consistently by analyzing the IR-SE data and the imaginary

part of the DF (ε2) around the band gap, as it will be demonstrated in Chapter 6.
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4 Spectroscopic ellipsometry

A spectroscopic ellipsometer is a powerful characterization tool used at research labora-

tories as well as in microelectronics and solar industries. An ellipsometry measurement

is dedicated to characterize thin films and bulk materials. A determination of materials’

optical constants and layer thickness is the most common application of the spectroscopic

ellipsometry. Accurate complex optical constants (N̄j(ω) = nj(ω)+ iκj(ω)) or dielectric

function (ε̄j(~ω) = ε1,j(ω)+iε2,j(ω)) in the visible and ultraviolet (UV) regions are nec-

essary for opto-electronic device design and modelling. Moreover, the ellipsometry data

analysis provides the information concerning a surface (or interface) roughness, optical

anisotropy, alloy composition, and crystallinity. The advanced ellipsometer with an in-

tegrated rotating compensator allows also to determine film thickness non-uniformity.

An integrated in-situ ellipsometer in a molecular beam epitaxy or metalorganic vapour

phase epitaxy reactor can also be used to determine the growth ratio of the epitaxial

layers.

At the beginning of this chapter, the basics of spectroscopic ellipsometry will be

introduced. Then, three types of spectroscopic ellipsometer setups, used for sample inves-

tigations, will be briefly described; starting with an infrared spectroscopic ellipsometer

(IR-SE) covering the spectral range 300 - 2000 cm−1 (0.04 - 0.25 eV), a variable angle

spectroscopic ellipsometer permitting to work in the photon energy range 0.56-6.4 eV

and finishing with a synchrotron ellipsometer enabling to conduct measurements in the

high-energy range 5-20 eV. At the end of this chapter, an ellipsometry data analysis is

discussed.

4.1 Principles of ellipsometry

An ellipsometer uses a polarized light and measures its polarization state of the reflected

(or transmitted, depending on the ellipsometer configuration) light. The experimental

data are usually expressed in terms of the parameters Ψ and ∆ that are related to a

ratio of the Fresnel reflection coefficients. This ratio is a complex number and contains a

phase information. This makes a measurement very sensible. Moreover, an ellipsometer
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4 Spectroscopic ellipsometry

measures the ratio of two values and makes a measurement very accurate. It is important

to understand that ellipsometry does not measure sample parameters directly. Therefore,

to estimate sample parameters (e.g., thilm thicknes or optical constants), it is necessary

to solve an inverse problem by modelling the measured experimental data, as it will be

discussed in section 4.5.

The electromagnetic plane wave is describe as

E(r,t) = E0e
i(kr−ωt). (4.1)

The plane wave can be divided in the two components perpendicular and parallel to

the plane of incidence (POI). The perpendicular component is denoted as Es and the

parallel component is denoted as Ep. A column vector describes both components:

E =

(

Ēp

Ēs

)

. (4.2)

As it is depicted in Fig. 4.1, the linearly polarized light with a polarization angle χ (angle

between the POI and electric field vector) shines a sample at the angle of incidence ϕ0

and the polarization state of the reflected beam becomes in general case elliptically

polarized, since the perpendicular and parallel components of the reflected light are not

in phase. For example, Fig. 4.2(a) and (b) show the polarization states of the reflected

linearly polarized light with polarization angles of 30◦ and 45◦, respectively, and with

different phase shift values ∆. The reflected and transmitted perpendicular and parallel

Ep,i

Es,i

j0

c

Ei

Y

Ep,r

Es,r

Sample

D

rprs

Figure 4.1: Basic principle of ellipsometry. Linear polarized light becomes elliptically polar-
ized after a reflection.
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Figure 4.2: Polarization states of the reflected linearly polarized light with polarization
angles of 30◦ (a) and 45◦ (b) and different phase shift values ∆.

components of the plane wave at medium interfaces are described as follows:

(

Ēp

Ēs

)

r

=

(

r̄p 0

0 r̄s

)(

Ēp

Ēs

)

i

, (4.3)

(

Ēp

Ēs

)

t

=

(

t̄p 0

0 t̄s

)(

Ēp

Ēs

)

i

. (4.4)

The indices i, r and t denote an incident, a reflected, and a transmitted wave components,

respectively. The (2×2) matrices contain the complex reflexion and transmission Fresnel

coefficients. Using these matrices, it is possible to describe the reflected or transmitted

wave from the incident wave:

r̄p ≡ Ēp,r

Ēp,i
, (4.5)

t̄p ≡ Ēp,t

Ēp,i
, (4.6)

r̄s ≡
Ēs,r

Ēs,i
, (4.7)

t̄s ≡
Ēs,t

Ēs,i
. (4.8)

23



4 Spectroscopic ellipsometry

The Fresnel coefficients can be calculated as follows:

r̄p =
N̄1 cosϕ0 − N̄0 cos ϕ̄1

N̄1 cosϕ0 + N̄0 cos ϕ̄1
, (4.9)

r̄s =
N̄0 cosϕ0 − N̄1 cos ϕ̄1

N̄0 cosϕ0 + N̄1 cos ϕ̄1
, (4.10)

t̄p =
2N̄0 cosϕ0

N̄1 cosϕ0 + N̄0 cos ϕ̄1
, (4.11)

t̄s =
2N̄0 cosϕ0

N̄0 cosϕ0 + N̄1 cos ϕ̄1
, (4.12)

where ϕ0 is the angle of incidence and N̄j (j=0,1,2) is the complex index of refraction

for respective mediums.

In general case, a sample consists of several layers and the multiple reflections from

the layer interfaces must be considered. A schematic sample structure consisting of a

substrate and a thin layer with a thickness d is represented in Fig. 4.3. The incident

wave in the medium 0 reaches the surface of the medium 1 with the different refractive

index. One part of this wave is reflected and the other is refracted, then, the latter is

transmitted in the medium 1. If the layer (medium 1) is transparent, the beam is again

reflected from the interface between medium 1 and medium 2. The refracted part of the

beam enters the medium 2. For such a sample, the multiple reflections and refractions

Medium 2: substrate (n , k )2 2

Medium 1: layer (n , k )1 1

Ei

d

Medium 0: air (n , k )0 0

Er,total

j0

j1

Et,total
Figure 4.3: Multiple reflections in the thin
film.
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4.1 Principles of ellipsometry

occur at the layer interfaces. Because of the different optical paths, the reflected beams

will differ in phases. An optical path difference has a phase shift β:

β = N̄1d · k cos ϕ̄1 = kd · N̄1

√

1− sin2 ϕ̄1 = kd · N̄1

√

1− N̄2
0 sin

2 ϕ0

N̄2
1

=
2π

λ
d ·
√

N̄2
1 − N̄2

0 sin
2 ϕ0.

(4.13)

Assuming that for an incident medium κ0=0, the total reflected field strength is obtained

by summing up phase shifted separate beams [95]:

Ēr,total =

(

r̄01 + t̄10t̄01e
i2β

∞
∑

ν=2

(r̄10)
ν−2 (r̄12)

ν−2 e−i2νβ

)

· Ēe, (4.14)

where r̄ and t̄ indicate reflection and transmission, respectively, complex Fresnel coef-

ficients and their indices indicate the interfaces between the respective mediums. The

summation term in Eq. 4.14 build up a convergent series and yields

Ēr,total =

(

r̄01 + r̄12e
−i2β

1 + r̄01r̄12e−i2β

)

· Ēe. (4.15)

The pseudo-reflection Fresnel coefficients are described:

〈r̄p〉 ≡
Ēp,r,total

Ēp,i
=

r̄p,01 + r̄p,12e
−i2β

1 + r̄p,01r̄p,12e−i2β
, (4.16)

〈r̄s〉 ≡
Ēs,r,total

Ēs,i
=

r̄s,01 + r̄s,12e
−i2β

1 + r̄s,01r̄s,12e−i2β
. (4.17)

From the pseudo-reflection Fresnel coefficients the ellipsometric parameters (Ψ and ∆)

are derived

ρ̄ =
〈r̄p〉
〈r̄s〉

=
|〈r̄p〉|
|〈r̄s〉|

· ei(δp−δs) ≡ tanΨ · ei∆, (4.18)

where δp and δs are the phase difference between the reflected and incident electric fields

for parallel and perpendicular components, respectively, and ∆ is the phase difference

between the latter.
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4 Spectroscopic ellipsometry

4.2 Infrared ellipsometer

An infrared spectroscopic ellipsometer (IR-SE) is used to investigate the vibrational

properties of the material. Sentech company’s IR-SE covering the spectral range from

300 cm−1 to 2000 cm−1 is used. An experimental setup of the IR-SE is shown in

Fig. 4.4. An infrared light is emitted from a glowing black-body source. The Michelson

interferometer is employed to produce an interferogram that passes the polarizer P1,

reflects from a sample and a retarder (with the known phase shift δ), passes a polarizer

P2 and enters a detector. A measured signal is digitized and a Fourier transformation is

performed. Finally, an infrared spectrum is obtained. In order to obtain ellipsometric

parameters Ψ and ∆, measurements are performed at four different polarizator P1 angles

α = 0◦, 45◦, 90◦ and 135◦, while the polarizator P2 is fixed at angle α2 [96]. After

P1

j0

IR source

Retarder

(a )1

Polarisator

Polarisator

P2
(a )2 fixed

Detector

Fixed mirror

Moving mirrorBeam splitter

I( )w,a1

Wavenumber - w

Interferogram

Fourier
transformation

Y & D

Michelson interferometerEllipsometer

X

X

i(X ),a1

Figure 4.4: Schematic sketch of the IR spectroscopic ellipsometer setup.
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4.2 Infrared ellipsometer

applying the Fourier transformation, the measured intensity is expressed by the following

relation:

I(ω,α1) =
1

2
(r2x cos

2 α2 + r2y sin
2 α2)(1− cos 2Ψ′ cos 2α1 + sin 2Ψ′ cos∆ sin 2α1)F (α1),

I(ω,α1) =
1

2
(s0 + s1 cos 2α1 + s2 sin 2α1)F (α1), (4.19)

where s0, s1 and s2 are the Fourier coefficients and are calculated from the ratio I(ω,α1)/

F (α1). The factor F (α1) is determined from the calibration measurements without any

sample. For calibration measurements cos2Ψ=0, cos∆=1, and rx=ry=1. By fixing

polarizer’s P2 angle at α2=45◦ and choosing α1=0◦, 45◦, 90◦, the factor F (α1) is the

measured intensity:

I0(ω,α1) =
1

2
(1 + sin 2α1)F (ω,α1). (4.20)

For different polarizer P1 angles α1, the factor F (ω,α1) is expressed as follows:

F (ω,0◦) = 2I0(ω,0
◦), (4.21)

F (ω,45◦) = I0(ω,45
◦), (4.22)

F (ω,90◦) = 2I0(ω,90
◦). (4.23)

Using Eqs. 4.21-4.23, the measured intensities in Eq. 4.19 are normalized:

Ī0 =
I(ω,0◦)

2I0(ω,0◦)
=

1

2
(s0 + s1), (4.24)

Ī1 =
I(ω,45◦)

2I0(ω,45◦)
=

1

2
(s0 + s2), (4.25)

Ī2 =
I(ω,90◦)

2I0(ω,90◦)
=

1

2
(s0 − s1). (4.26)

For the three polarizer azimuths, the ellipsometric parameters Ψ and ∆ are determined:

cos 2Ψ′ = −s1
s0

=
I2 − I0
I2 + I0

, (4.27)

sin 2Ψ′ cos∆ =
s2
s0

=
2I1

I2 + I0
− 1, (4.28)

tanΨ′ =
tanΨ

tanα2
. (4.29)

In the extended measurements mode 0◦ ≤ ∆ ≤ 360◦, it is necessary to use an

additional polarizer angle α1=135◦ [96].
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4 Spectroscopic ellipsometry

4.3 Variable angle ellipsometer

A commercial variable angle rotating analyzer ellipsometer from J.A. Woollam Co, Inc.

company is used to conduct measurements in the spectral range 0.56-6.42 eV. A variable

angle of incidence permits to obtain more accurate measurements, since the modelling of

the Ψ and ∆ parameters measured at different angles of incidence reduces a correlation

between the optical constants and film thickness. A simplified schema of a variable

angle rotating analyzer spectroscopic ellipsometer is presented in Figure 4.5. A high-

pressure xenon lamp is used as a light source. First, the light from the xenon lamp

shines on a monochromator. Then, the monochromatic light reaches a collimator via an

optical fiber cable. After passing a polarizer, it becomes linearly polarized. In addition,

a compensator (as an optional element) can be used for the advanced ellipsometry

measurements. The polarized light shines a sample, then, reflects, passes through a

rotating analyzer and, finally, reaches an InGaAs or a Si diode detector (depending in

which spectral range a measurement is conducted). A signal intensity in the detector is

described as

ID ∝ 1 + α cos(2A) + β sin(2A), (4.30)

PC Controller Monochromator
Xe lamp

Sample

Collimator

Optical
fiber

Detector

Polarizer

Compensator

Rotating
analyser

φ φ

Figure 4.5: Schematic representation of the rotating analyzer ellipsometer setup.

28



4.3 Variable angle ellipsometer

where A is an azimuthal angle of the analyzer. Both measured parameters are the

Fourier coefficients α and β that are expressed as

α =
tan2Ψ− tan2 P

tan2Ψ+ tan2 P
and (4.31)

β =
2 tanΨ cos∆ tanP

tan2Ψ+ tan2 P
, (4.32)

where P is an azimuthal angle of the polarizator. From the obtained Fourier coefficients,

the ellipsometric parameters Ψ and ∆ are derived by using the following relations:

tanΨ =

√

1 + α

1− α
· | tanP | , (4.33)

cos∆ =
β√

1− α2
· tanP

| tanP | . (4.34)

Before conducting the measurements, an ellipsometer is calibrated in order to de-

termine the parameters A0 and P0 (absolute angles of the analysator and polarizator,

respectively) as well as η representing a calibration parameter equal to the relative atten-

uation of the AC component of the detector signal with respect to the DC component.

The experimentally determined α and β are corrected with A0 and η. The corrected

Fourier coefficients are expressed as

α′ = η(αcos2A0 + βsin2A0) , (4.35)

β′ = η(βcos2A0 − αsin2A0) . (4.36)

Then, the equations (4.33) and (4.34) are transformed to

tanΨ =

√

1 + α′

1− α′
· | tan(P − P0)| , (4.37)

cos∆ =
β′

√
1− α′2

· tan(P − P0)

| tan(P − P0)|
. (4.38)

By employing the expressions (4.35) - (4.38), the ellipsometric parameters Ψ and ∆ are

derived.

29
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4.4 Synchrotron ellipsometer

A synchrotron ellipsometer setup attached at the Berlin electron storage ring (BESSY

II) is a large-scale facility at Helmholtz-Zentrum Berlin (HZB) and provided by the

research group of prof. N. Esser and dr. C. Cobet from the ISAS Berlin. The synchrotron

ellipsometer is designed to serve researchers from universities, research institutions and

industry. Figure 4.6 shows the bird’s eye view of the BESSY II synchrotron ring.

The ellipsometer uses a synchrotron light obtained from the TGM4 or 10m-NIM

beam lines and covering the spectral range from 3 up to 30 eV photon energy. This

synchrotron ellipsometer, permitting to investigate the materials in such a wide photon

energy range, is unique worldwide.

The synchrotron ellipsometer setup and its simplified schematic sketch are shown in

Fig. 4.7 and Fig. 4.8, respectively. All optical components of the ellipsometer setup are

mounted in an ultra-high vacuum (UHV) chamber, since an air (nitrogen) absorbs the

light with photon energies above ≈6.5 eV(≈9.5 eV). Where are no transparent materials

which can be used as window in the chamber above 10 eV photon energy. For this reason,

the vacuum chamber of the ellipsometer has to be connected with the UHV system of

the electron storage ring. The base pressure of 2 × 10−10 mbar is created in the main

ellipsometer’s chamber where the sample is mounted. The synchrotron ellipsometer is

based on a rotating-analyzer ellipsometry design.

Figure 4.6: BESSY II synchrotron ring.
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4.4 Synchrotron ellipsometer

Figure 4.7: Synchrotron ellipsometer setup.

UHV chamber

sample

Monochromator

Mirrorr

BESSY electron storage ring

Analyzer -
Mg F Rochon Prism

68
o

2

Si photodiodes

Dipole

Analyzer - 45
Triple-Gold-Reflection

o

Figure 4.8: Simplified schematic representation of the synchrotron ellipsometer setup.

As it is indicated in Fig. 4.8, the incoming linearly polarized synchrotron light

reflects from a grating monochromator, then, the monochromatic light beam shines on

a sample mounted in the UHV chamber and after reflection from the sample enters

an analyzer chamber. Depending on the measured photon energy range, the angle of

incidence is chosen at 45◦ or at 68◦. Each analyzer chamber is equipped with a rotating
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4 Spectroscopic ellipsometry

analyzer and a Si-photodiode detector. For the energies below 10 eV the MgF2 polarizer

is used in the analyzer chamber tilted at 68◦, while for the energies above 10 eV the

triple reflection gold-Si-gold polarizer is used in the analyzer chamber tilted at 45◦. In

order to remove the surface contaminations on the sample, the annealing of the sample

is performed in the UHV chamber. More detailed description about this synchrotron

ellipsometer can be found elsewhere [97,98].

4.5 Ellipsometry data analysis

For an arbitrary sample, a so called pseudo DF is obtained from the equation

< ε̄ >= sin2ϕ

[

1 + tan2ϕ

(

1− ρ̄

1 + ρ̄

)2
]

, (4.39)

where ϕ is an angle of incidence. Equation 4.39 yields a true DF only for a semi-

infinite isotropic bulk crystal with a perfect surface. It is important to understand

that the investigated samples are not ideal and contain a thickness non-uniformity,

interface and surface roughness. To extract the true DF of the investigated sample, the

ellipsometry experimental data are needed to be simulated. An optical multilayer model

[99], which includes a substrate, interfaces, investigated layer, and surface roughness

overlayer, is applied. The optical constants of the the substrate and the layers, which

are below the top layer, are taken from the database or measured separately. The surface

roughness is taken into account by including an over-layer for which the DF is given by

the Bruggeman effective medium approximation (EMA) [100] assuming 50% air voids in

the top layer matrix. In order to reduce a correlation between a layer thickness and a DF,

ellipsometric parameters Ψ and ∆ are recorded at several different angles of incidence.

All data are fitted together to get the layer thicknesses and the DF of the investigated

top layer. The experimental values (Ψmeas and ∆meas) and model generated values

(Ψmodel and ∆model) are fitted using the Levenberg-Marquardt algorithm to minimize

the mean square error (MSE):

MSE =
1

N −M

N
∑

i=1

[

(

Ψi
model −Ψi

meas

σi
Ψ

)2

+

(

∆i
model −∆i

meas

σi
∆

)2
]

, (4.40)

where N is the number of Ψ and ∆ pears and M is the number of the fitted parameters

in the model. The standard deviation of the experimental data is defined by σ. Fig. 4.9
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4.5 Ellipsometry data analysis

shows a typical result of the fitting procedure; the measured and simulated (using a

multi-layer model) ellipsometric parameters Ψ and ∆ as well as <ε1> and <ε2> values
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(b)
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Figure 4.9: Measured (black dashed line) and fitted (red solid line) ellipsometric parameters
Ψ (a) and ∆ (b) as well as <ε1> (c) and <ε2> (d) as a function of photon energy for
AlInGaN (Al 56% and In 3%)) sample. The data refer to an angle of incidence of 67◦.
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are shown in Fig. 4.9(a), (b), (c), and (d), respectively, as a function of photon energy for

the (0001)-oriented quaternary AlInGaN film (grown on GaN/AlN/sapphire substrate)

at the angle of incidence of 67◦. No assumption is made concerning the spectral shape

of the DF, i.e., ε1 and ε2 were fitted separately for each photon energy followed by a

proof of Kramers-Kronig consistency between two quantities. The multi-layer consists

of the sapphire substrate, the AlN and GaN buffer layers (with the already known

DFs), and finally, the AlInGaN film which is of particular interest. The peculiarities

for three ranges (transparent, around the band gap, and at high photon energies) are

well reproduced. Fabry-Perot like oscillations with small energy spacing appear in the

range below 3.4 eV for which the thick GaN film becomes transparent. The long-period

envelop reflects the contribution from the much thinner AlN buffer and AlInGaN layer.

The next feature is found around 3.4 eV where Ψ exhibits a sharp dip, it is unambiguously

attributed to the band gap of AlInGaN. Because the thick GaN layer is already opaque

in this range, the fit is very sensitive to the DF of AlInGaN. Finally, the features above

7 eV arise from contributions related to the high-energy critical points of the band

structure, as it can be observed in <ε2> shown in Fig.4.9(d).

As ellipsometry is not a direct deductive method (only the parameters Ψmeas and

∆meas are measured directly and the optical constants and film thickness are obtained

indirectly via modeling), it is also worth to check the investigated film thickness or

surface roughness with other characterization tools, e.g., XRD, SEM, or TEM (for a

film thickness) and AFM (for a surface roughness).

In the following example, it will be demonstrated that a free-carrier concentration

absorption modelling with the Drude oscillator significantly improves a multilayer model

for the InN sample. It is known that an InN material has an electron accumulation

at the surface [87–93] and at the interface (between an InN and a buffer layer or a

substrate) [101]. Using high-resolution electron-energy-loss spectroscopy (HREELS),

Veal et al [101] found that the surface sheet density at the InN/GaN interface is to be

in the the order of 1013 cm−2. The free electrons exhibit a distinctive optical absorption

that can be described by using the Drude model (this is a special case of a single Lorentz

oscillator with the center energy fixed at zero).

Fig. 4.10 shows two different multilayer models used for the experimental ellipsome-

try data fitting for the InN sample (indicated as sample C0 in Chapter 6). On the left

side of the figure, the multilayer model consisting of a sapphire substrate, a GaN buffer

layer, an InN layer, and an overlayer (EMA layer consisting of 50% of InN material

and 50% air voids). A multilayer model presented on the right side of the Fig. 4.10, in
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4.5 Ellipsometry data analysis

addition, has a 10 nm thick interlayer that contains the Drude oscillator and the known

InN parametric oscillator model [2].

Below the schematic multilayer representations the experimental and fitted Ψ pa-

rameters as well as the obtained DF together with the point-by-point DF are shown. It

is clearly seen that by inserting the interlayer that contains the Drude oscillator, the

model fit improves significantly.
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Figure 4.10: Optical multilayer model without (model No. 1) and with (model No. 2) an
interlayer.
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5 Epitaxial growth

Several techniques are used to grow III-V nitride materials: metalorganic vapour phase

epitaxy (MOVPE), molecular beam epitaxy (MBE), hydrogen vapour phase epitaxy

(HVPE), and remote plasma chemical vapour deposition (RPCVD) [102]. For industrial

production of the nitride based optoelectronic devices, the MOVPE equipments are

widely used. The MOVPE allows high growth ratios, high wafer throughput and precise

in-situ temperature and growth monitoring. With the MOVPE system it is possible to

grow relatively thick films (several micrometers), to control the layer thickness in the

nanometer range and the composition in the alloy. This is necessary to grow high quality

quantum structures used in LEDs. Alternative epilayer growth techniques are MBE,

HVPE, and RPCVD. The MBE allows a better control of the film thickness and the alloy

composition. However, the MBE growth needs ultra-high vacuum and the growth rates

are very slow, therefore, it is more used at the research scale. The HVPE offers very high

growth rates, permitting to grow very thick films (several millimeters). A disadvantage

of the HVPE is that it is difficult to control a film thickness and it is not possible to grow

very thin quantum structures that are necessary for LEDs production. The RPCVD

technique allows to grow films at lower temperatures. This is very promising for the

growth of high quality In-rich InGaN alloys.

All investigated samples in this work were grown by MOVPE or MBE, therefore,

theses techniques will be shortly introduced in the next sections.

5.1 MOVPE epitaxial growth

In this section, the basic principles of the MOVPE process and equipment setup will be

briefly described. Fig. 5.1 demonstrates the MOVPE growth process. A gas mixture

consisting of the precursors passes over a heated substrate. The precursor molecules

pyrolyze. The atoms bind to a substrate surface and a new crystalline epilayer is grown.

The precursors for III-V nitrides are group III metals such as an aluminum (Al), a

gallium (Ga), and an indium (In) as well as group V element nitrogen (N). The stan-

dard metalorganic precursors are a trimethylgallium (TMGa), a trimethylalliuminium
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Figure 5.1: MOVPE growth process.

(TMAl), and a trimetylindium (TMIn). A schematic drawing of the TMGa molecule is

shown in Fig. 5.2. The ammonia (NH3) is used as a precursor for the group V element

nitrogen. The reaction is described by equation

R3Mgas + EH3(gas) = ME(solid) + 3RH(gas), (5.1)

where R is an organic alkyl, M is the group III metal, and E is the group V element.

A temperature of the substrate controls an adsorption, a surface kinetics, and a

desorption. The growth rate in a logarithmic scale as a function of inversed substrate

temperature TS is shown in Fig. 5.3. Three growth regimes are distinguished: kinetic

limited, transport limited and desorption.

The n-type doping in III-V compounds is achieved by using hydride precursors

silane (SiH4) and germane (GeH4). The p-type doping is obtained by using a Cp2Mg.

A residual oxygen and moisture are presenting in the ammonia. Therefore, the oxygen

is incorporated in the grown epilayers [103]. A highly corrosive chemical ammonia is

(CH ) Ga3 3

Figure 5.2: Schematic drawing of the
TMGa molecule.
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believed to react with a stainless steel that causes the contaminations in the epilayers.

Transition metals (iron, chromium, and vanadium) are also detected in grown layers

[104]. A carbon, which comes from the metalorganics, is very common contaminant in

the epilayers [104,105].

Stacking faults and dislocations in an epilayer are caused due to a lattice mismatch.

A thermal mismatch causes the epilayer to crack during cooling process. III-V nitride

semiconductors an InN, a GaN, and an AlN as well as their related alloys are commonly

grown on a sapphire substrate. The growth on c-plane and a-plane sapphire yields a

c-plane orientation, while growth on r-plane sapphire yields an a-plane orientation of the

epilayer. Other more common substrates are a SiC and a Si(111). A silicon substrate

is promising as being very cheap and commercially viable. Recently, Dadgar et al [106]

demonstrated a crack-free highly conductive GaN (doped with Ge) epilayer grown on

a Si substrate. A free-standing GaN prepared by HVPE is very expensive substrate.

However, for high reliability devices a low concentration of threading dislocations is

required, therefore, a homoepitaxy is needed.

5.1.1 MOVPE setup

MOVPE systems are widely used in research as well as in industrial sector. With

increasing LED market, the MOVPE system manufacturers already sell the equipments

adapted for 8-inch wafers. The main elements in the MOVPE system are a reactor, a

gas storage unit and a control unit. Fig. 5.4 shows a schematic representation of the

AIXTRON Close Coupled Showerhead system. Precursor source flows are stabilized

by using a vent line. Just before the growth process, the 5/2 valves switch the source

stream to the run lines. The flow rates are controlled by mass flow controllers. The
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Figure 5.4: Schematic sketch of the MOVPE system.

group III and V precursors arrive at reactors’ shower head in two separated plenum

chambers. They are mixed inside the reactor chamber and deposits on the hot wafer. In

order to have a better epilayer uniformity, a susceptor is rotating together with a wafer

on it. The heater is installed below the susceptor. The exhaust gases are pumped out

and neutralized in the scrubber.

A constant pressure is kept in the reactor. A partial pressure of the gaseous pre-

cursor is expressed as [107]

Pgp =
Qgp

Qtot
Pr, (5.2)

where Qgp, Qtot, Pr are a flow of the precursor, a total flow, and a total reactor pressure,

respectively. The metalorganics are kept in the so called bubbles that assure stable

temperature. The stability of the temperature and, consequently, the stability of the
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5.1 MOVPE epitaxial growth

vapour pressure is very important, because only defined precursor quantities must be

provided in the reactor. A vapour pressure of the metalorganic is expressed as

log10(P ) = B − A

T
, (5.3)

where P is a pressure in Torr, T is the temperature in Kelvin, A and B are the coefficients

for the group III metalorganics listed in Table 5.1.

Table 5.1: Vapour pressure for the group III metalorganics (data from AkzoNobel).

Metallorganic Molecular formula A B Vapour pressure @10◦ (Torr)
TMAl (CH3)3Al 2134 8.224 6.57
TMGa (CH3)3Ga 1703 8.07 113.6
TEGa (C2H5)3Ga 2162 8.083 2.80
TMIn (CH3)3In 3204 10.98 0.46

Carrier gases are used to transport the metalorganics from the bubblers to the

reactor. A hydrogen (H) or a nitrogen (N) of very high purity (9N=99.9977777%) are

used as carrier gases. The carrier gas flows to the bublers, then, the gas mixture of the

metalorganics and the carrier gas is obtained and transfered to the reactor via pipelines.

The piplines are separated for the group III metals and the group V element (ammonia).

To achieve a high quality epilayers and reduce an oxygen incorporation, the high purity

precursors are required. Even the highest purity ammonia (6.0 equivalent to 99.9999%)

contains a moisture and foreign residual substances. Additionaly, the purification units,

which contain catalytic metal filters, are used in the gas lines, as it is shown in Fig. 5.4.

5.1.2 In-situ optical monitoring

An in-situ monitoring is very important for the growth control in the MOVPE reactor.

A growth rate, a layer thickness, a wafer curvature as well as a growth temperature can

be monitored in-situ in the MOVPE reactor. Here, an example of the in-situ monitoring

will be shown for the InN sample growth. The commercial company’s Laytec in-situ

reflectance, temperature, and curvature measurement system, installed in the MOVPE

reactor, was used for a growth monitoring. A detailed description of the Laytec in-situ

system can be found elsewhere [108].

A sample consisting of a substrate and a thin layer with incident and reflected

beams is depicted in Fig. 5.5. The incident light intensity is denoted as Ii and the
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Substrate (n, k)

Layer (n , k )1 1

Ii Ir

d

Figure 5.5: Schematic drawing of
the sample consisting of a substrate
and a thin film. The arrows indi-
cate incident and reflected beams.

reflected light intensity is denoted as Ir. In short, the reflectance is described as the

ratio of the incident and reflected light:

R =
Ir
Ii
. (5.4)

Assuming that an ambient medium has a refractive index n0=1 and the normal incidence

of the light beam, the reflectivity from the first interface (ambient-layer) is expressed as

follows:

R =
(n1 − 1)2 + κ21
(n1 + 1)2 + κ21

, (5.5)

where n1 is a refractive index and κ1 is an extinction coefficient of the top layer. However,

if the thin layer deposited on the substrate is transparent for the used light wavelength,

the multiple reflections from the surface and interface will occur. By growing an epilayer,

its thickness will increase with a time and the Fabry-Perot oscillations will be observed

in a signal of the reflected light. The growth rate is determined from the Fabry-Perot

oscillations period [109]:

r =
λ/n1

2 ·∆t
, (5.6)

where ∆t is an oscillation period, n1 is a refraction index of the epilayer at wavelength

λ.

For example, Fig. 5.6(a) shows in-situ process (black line) and true (blue line) tem-

peratures for the InN layer grown on an AlN and a GaN buffer layers with a sapphire

substrate. Here, the process temperature is called a temparature measured with a ther-

mocouple installed near the heating element below a subsceptor. The true temperature

is called a temperature obtained from the emissivity-corrected pyrometry. A detailed de-
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Figure 5.6: In-situ temperature (a) as well as reflectance at the wavelength of 405.6 nm (b)
and 950.4 nm (c) measured for the InN sample grown on GaN/sapphire template.

scription of the emissivity-corrected pyrometry is given elsewhere [110]. For the in-situ

growth analysis, the high-temperature optical constants of GaN and AlN were used from

the database (provided in the commercial Laytec software). However, the optical con-
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stants for the InN were not provided in the database, therefore, the room temperature

InN optical constants, determined by spectroscopic ellipsometry, were employed. The

room temperature optical constants for the InN sample (indicated as sample B0 in Chap-

ter 6) are shown in Fig. 5.7. Drago et al [111] measured the optical constants at various

temperatures and demonstrated that significant deviation from room temperature opti-

cal constants occurs only in the photon energy range above 3 eV (or below 413.3 nm).

From the fit of the Fabry-Perot oscillations, it was possible to determine the growth rate

of the epilayer. Fig. 5.6(b) and (c) show the reflectance measurements at 405.6 nm and

950.4 nm, respectively. The low-temperature (LT) AlN buffer layer growth rate was de-

termined to be 0.16 nm/s from both 405.6 nm and 950.4 nm wavelength reflectance. The

high-temperature (HT) AlN layer growth temperature was determined to be 0.15 nm/s

from the 405.6 nm wavelength reflectance. The GaN and high-pressure (HP) GaN buffer

layers growth rates were determined to be 1.12 nm/s and 0.66 nm/s, respectively, from

InN      140 nm

HP GaN   1188 nm

GaN   2016 nm

HT AlN   360 nm

LT AlN   480 nm

sapphire Figure 5.8: Schematic multilayer represen-
tation of the grown sample.
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5.1 MOVPE epitaxial growth

the 950.4 nm wavelength reflectance. And finally, the InN layer growth rate was de-

termined to be 0.026 nm/s and 0.029 nm/s from 405.6 nm and 905.4 nm wavelength

reflectance, respectively. With the knowledge of the growth time and growth ratio, it is

possible to calculate the layer thickness. A schematic grown multilayer structure with

the indicated layer thicknesses is represented in Fig. 5.8.

It is also important to control a curvature of a wafer in the MOVPE growth process

[112]. Where are several reasons causing the curvature of the wafer. The in-plane lattice

parameter of the epilayer normally differs to that of the substrate. The wafer will become

convex or concave depending on a tensile or a compressive strain of the deposited layer.

The wafer is heated and the bottom of the wafer is hotter than the top (the top of

the wafer is cooled by the process gases). A formed vertical temperature gradient leads

to the different thermal expansions of the top and bottom layers. The hotter bottom

surface expands more, therefore, the concave curvature is formed. Too large concave

or convex wafer curvature will create a gap between the wafer and susceptor. This

induces a temperature variations on the wafer surface plane. Consequently, it will

lead to the epilayer thickness non-uniformities [113]. For a convex wafer a center is

expected to be cooler, while for a concave wafer the edges are cooler. A control of

the wafer bowing is especially important for the InGaN based LED fabrication with a

homogeneous wavelength emissivity, since the indium incorporation is very sensible to

the temperature. This issue becomes more crucial for a large diameter wafers. Therefore,

the in-situ curvature control plays an important role in the LEDs production.

A curvature radius R is obtained by measuring the distance between the spots of

the reflected (from the wafer’s surface) two parallel laser beams. The curvature K is

expressed as an inverse of radius K = 1
R . It consists of three components [114]:

1

R
=

1

Rinitial
+

1

Rthermal
+

1

Rgrowth
, (5.7)

where 1
Rinitial is an initial curvature of the wafer. The second curvature component

induced by a thermal gradient is expressed as

1

Rthermal
(T ) = αs

Tback − Tfront

ds
, (5.8)

where αs is a substrate’s thermal expansion coefficient and ds is a substrate thickness.

The temperature of the wafer’s top and bottom are denoted as Tfront and Tback, re-
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spectively. Finally, the third curvature component caused by the growth is expressed

as
1

Rgrowth
(T ) = − 6df

d2sas

Mfǫ

Ms
, (5.9)

where Mf and Ms is a biaxial elastic modulus of the film and substrate, respectively. A

strain is denoted as ǫ and an epitaxial film thickness is denoted as df . The substrate’s

lattice parameter is expressed as as=as(T )=aRTs (1+αs(T -TRT)), where TRT is a room

temperature. The approximation in Eq. 5.9 is valid only for df/ds ≪ 1. Fig. 5.9 shows

a measured curvature for a grown InN film on the 2 inch sapphire wafer. At high

annealing temperatures, reached during desorption process, the wafer curvature radius

amounts to ∼90 km−1. This is caused due to a vertical thermal gradient in the wafer. At

annealing temperature, the curvature is positive, therefore, the wafer becomes concave.

When the wafer is cooled down to the GaN nucleation temperature, the curvature radius

decreases to 30 km−1. Again, when the temperature is increased to the temperature of

GaN crystallization and GaN growth, the wafer curvature increases to ∼75-100 km−1.

Finally, when the temperature is cooled down to the InN growth temperature, the

curvature decreases to ≈-50 km−1. It remains similar during all InN growth period.

After cooling down to RT, the curvature still decreases to a huge ≈-115 km−1 value.

This curvature corresponds to a large convex wafer bowing.
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5.2 MBE epitaxial growth

5.2 MBE epitaxial growth

In MBE systems, thin films are grown in the UHV environment on a heated substrate.

The advantages of the MBE system is the growth of abrupt interfaces, a low contami-

nation (UHV 10−11 Torr), an in-situ growth control by using a reflection high energy

electron diffraction. The plasma-assisted (PA) MBE has also an advantage in growing

high-quality InN and In-rich alloys at lower temperatures. In the PA-MBE setup, the

nitrogen radicals are generated separately in a plasma source, while for the MOVPE the

NH3 pyrolysis on the wafer surface requires much higher temperatures. The group III

sources (In, Ga, Al) used in the MBE system are in solid form and evaporated thermally

from the effusion cells (Knudsen cells). A nitrogen source is an ammonia that thermally

decomposes on the sample surface or a nitrogen radicals (for the PA-MBE setup) that

are activated by RF source. Source elements are heated in Knudsen cells. The directed

beams of molecules or atoms on the heated substrate are created. They react with the

atomic or ionic nitrogen on the substrate surface and epilayer starts to grow. For n- or

p-type doping the Si and Mg, respectively, are evaporated. Fig. 5.10 depicts a schematic

MBE setup representation.

Pump

Heating
element

RHEED Gun

RHEED Screen

Substrate

Load Chamber

Gate ValveDopants (Si, Mg)

Solid Source: In

Solid Source: Ga

Pyrometer

Ammonia

Shutters

Figure 5.10: Schematic sketch of the MBE setup.
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In the first part of this chapter, optical properties of the (0001)-oriented unintention-

ally doped InN films grown on the Si(111) substrate with different nucleation/buffer

layers will be compared to the results obtained for a film grown on a sapphire substrate.

In previous studies, Schley et al [13] investigated wurtzite structure InN samples with

carrier concentration in the range of 1018 cm−3 by using a spectroscopic ellipsometry

and obtained an intrinsic strain-free band-gap of 0.675 eV. In this work, the InN films

grown on the Si(111) exhibit one order of magnitude higher carrier concentration. The

isotropic DFs are obtained in the range from 0.56 eV to 9.5 eV. Taking into consideration

the strain influence on the band gap, the Burstein-Moss shift (BMS), and the band-gap

renormalization (BGR), a strain-free intrinsic band gap will be estimated. Moreover, in

the second part, the series of a carbon doped (0001)-oriented InN samples will be investi-

gated. Recently, theoretical studies from Ramos et al [115] and Duan and Stampfl [116]

claimed that a carbon is a possible p-type dopant in the InN material. The p-type

InN doping is still critical and limiting device applications. So far, only Mg doping has

shown evident p-type doping in the InN material [117, 118]. However, from the IR-SE

and SE investigations presented here, it will be proved that a carbon doping leads to an

increased electron concentration in the InN material. The isotropic DFs for the carbon

doped InN samples will be presented in the extended energy range up to 17 eV. It will

be shown that the characteristic features in the high-energy part of the imaginary part

of the DF for different samples remain at the same energetic positions.

Figure 6.2 and 6.3 in this chapter are reprinted with permission from Sakalaus-

kas et al, Physica Status Solidi A, Vol. 207, Page 1066, (2010). Copyright 2010, John

Wiley & Sons, Inc.

6.1 Description of the investigated InN samples

Two InN samples grown by PA-MBE on the Si(111) substrates are denoted as A1 and

A2, while the sample with a sapphire substrate (used as a reference) is denoted as B0.

These samples were provided by dr. J. Grandal from ISOM, Technical University of
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6 Optical properties of InN

Madrid. The sample A1 consists of a 50 nm thick AlN nucleation layer grown on Si(111)

substrate at a temperature of 890 ◦C under stoichiometric conditions. The InN layer

of 390 nm thickness (as determined by SE) was directly grown on the nucleation layer

under slightly N-rich condition at 450 ◦C. The InN film of the second sample (A2) was

grown at the same conditions as sample A1. Additionally, sample A2 contains a GaN

buffer layer of 250 nm thickness deposited under stoichiometric conditions at 730 ◦C.

The InN layer thickness for sample A2 amounts to 412 nm. The third sample (B0)

has the following multi-layer structure: A commercial Lumilog n-type GaN:Si (doping

2×1018 cm−3) template layer of 3500 nm thickness grown by MOVPE on a sapphire

substrate served as a template. PA-MBE started with the growth of a 80 nm thick GaN

buffer layer under slightly Ga-rich conditions at 700 ◦C. Finally, the InN film of 688 nm

thickness was deposited at 470 ◦C under slightly N-rich conditions.

For the purpose of a carbon doping analysis in the InN material, a series of ∼1 µm

thick (0001)-oriented InN films were grown by PA-MBE on a sapphire/GaN templates.

The carbon doped InN samples were provided by dr. A. Knübel from Fraunhofer IAF.

A gaseous CBr4 was used as a carbon doping source. A supply pressure of gaseous

~1 m InN:C (MBE)m

50 nm GaN (MBE)

1.5 mm GaN (MOVPE)

Al O (0001)2 3

sample seriesC

688 nm  InN (MBE)

80 nm GaN (MBE)

3.5 mm GaN:Si (MOVPE)

Al O (0001)2 3

sample B0

750 nm  InN (MBE)

Si (111)

sample A1

412 nm  InN (MBE)

250 nm GaN (MBE)

sample A2

390 nm  InN (MBE)

50 nm AlN (MBE)

Si (111)

50 nm AlN (MBE)

Figure 6.1: Schematic representation of the investigated InN samples.
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CBr4 was varied for different samples. The CBr4 supply was varied by a mass flow

controller. The investigated samples are labeled from C0 to C4 according with increase

of carbon CBr4 supply pressure in the samples. The sample labeled as C0 is the reference

sample grown without CBr4 source supply. The different CBr4 pressures of 5, 20, 50,

and 80 mTorr were used for the growth of samples labeled as C1, C2, C3, and C4,

respectively. When the CBr4 molecule reaches a hot substrate, it cracks and then carbon

is incorporated in the InN material. The bromine is desorbed due to its relatively high

vapour pressure, thus, its incorporation can be neglected. All C series samples were

grown at 470 ◦C temperature. The flux ratios In/N for samples were chosen at slightly

In-rich condition in order to get smooth surfaces. Due to the slightly In-rich growth

conditions, the In droplets were accumulated on the the top of the sample surface. After

the growth, the In droplets were etched using HCl.

6.2 Structural properties of the investigated InN samples

The structural properties were characterized by X-ray diffraction (XRD) measurements

(provided by the growth groups). All samples exhibit (0001)-orientation, i.e., the c-axis

oriented along the growth direction. Rocking curves of the symmetric (0002) reflections

revealed a full width at half maximum (FWHM) of 917 (A1), 973 (A2), and 512 arcsec

(B0). The FWHM values of the symmetric (0002) reflections for C0 to C4 samples were

determined to be 331, 320, 288, 295, and 299 arcsec. The lattice parameters a and c

were obtained from the reciprocal space maps. The structural characterization results

of the investigated InN samples are summarized in Tab. 6.1. It is important to note

that the InN film grown directly on the AlN nucleation layer (sample A1) experiences a

Sample a c ǫxx ǫzz E
H

2 FWHM (0002)

(Å) (Å) (10−4) (10−4) (cm−1) (arcsec)

A1 3.554 5.700 46.9 -6.5 490.6 917

A2 3.528 5.707 -27.3 6.0 491.8 973

B0 3.516 5.709 -62.2 9.8 494.8 512

C0 3.5259 5.7153 -33.36 20.34 - 331

C1 3.5237 5.7157 -39.57 21.04 - 320

C2 3.5267 5.7153 -31.09 20.34 - 288

C3 3.5266 5.7160 -31.38 21.56 - 295

C4 3.5208 5.7178 -47.77 24.72 - 299

Table 6.1:
Structural pa-
rameters of the
investigated InN
samples.
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B0 B0

Figure 6.2: Raman spectra in the range of

the EH
2 (a) and A1(LO) (b) phonon modes.

tensile in-plain strain. The insertion of a GaN buffer leads to a compressive strain that

is most pronounced if a sapphire substrate is used (sample B0).

In addition, the strongly different ǫxx values for the samples A1, A2, and B0 are

emphasized by Raman studies; corresponding spectra are shown in Fig. 6.2. They were

measured in backscattering geometry employing the 514 nm line of an argon ion laser.

The symmetry-allowed EH
2 high mode in Fig. 6.2(a) shifts in agreement with other

studies [119] to larger wavenumbers (see Tab. 6.1) with increasing in-plane compressive

strain. It is expected that the longitudinal A1(LO) phonon couples to the plasmons

giving rise to mixed plasmon-LO-phonon excitations. As it can be seen in Fig. 6.2(b),

a signal appears around 585 to 595 cm−1 which corresponds to the expected position

of the unscreened A1(LO) frequency. This observation is attributed to the scattering

of virtual electron-hole pairs on structural defects of the lattice violating wave vector

conservation [120]. The larger broadening of the feature for samples A1 and A2 indicates

more defects than for sample B0.

6.3 Analysis of the unintentionally doped InN samples

The isotropic DFs of the investigated unintentionally doped InN samples A1, A2, and

B0 in the photon energy range from 0.56 eV to 9.5 eV are presented in Figure 6.3(a),

(b), and (c), respectively. The general shape is consistent with previous results [68,121].

First of all, the attention will be focused at the DF around the band gap. The DFs

around the band gap are compared for sample A1 and B0 in Fig. 6.4. The absorption

onset (imaginary part of the DF-ε2 around the gap) is blue-shifted for sample A1 with
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6.3 Analysis of the unintentionally doped InN samples

respect to the absorption onset of sample B0. Following the Kramers-Kronig relation,

the real part of the DF (ε1) for sample A1 is also shifted to higher energies. Applying

the Eq. 3.22 presented in Chapter 3.2, the high-frequency dielectric constant ε∞ for

each sample was obtained and summarized in Tab. 6.2. The shift of the absorption

edge towards higher energies lowers ε∞, i.e., this quantity becomes sample dependent.

In order to explain the obtained different absorption edge for the degenerated wurtzite

structure InN samples and to evaluate the intrinsic strain-free band gap, the following

effects must be taken into consideration:

• Band-gap renormalization;

• Burstein-Moss shift;

• Strain influence on the band gap.

The first effect, the band-gap renormalization, is caused due to many body interaction

that induces a band-gap reduction. The second effect, the Burstein-Moss shift [122,123],

is due to degenerated Fermi gas with Fermi level that is above the conduction band

minimum. The third effect to be considered, is a strain influence on a band gap. The

InN films are normally grown on a sapphire or Si wafers with different buffer layers.

The different thermal expansion coefficients as well as lattice mismatch between a buffer

and an InN epilayer lead to the tensile or compressive InN layer strain. All these effects
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Figure 6.4: Isotropic DFs for sample A1 (dashed
lines) and B0 (solid lines) around the gap region.

must be taken into consideration in order to obtain an intrinsic strain-free band-gap of

InN material.

The following approach is used to estimate the band-gap renormalization. The

presence of high electron concentrations in a narrow band-gap semiconductor leads to

characteristic changes of the band structure around the Γ-point of the Brillouin zone.

A carrier induced many-body interaction causes a shrinkage ∆BGR of the intrinsic gap

E0, as denoted in Fig. 6.5. Recent studies [13, 121] emphasized the approach given in

Ref. [11] for calculating ∆BGR. Therefore, this approach is also applied in this work.

The lower or renormalized gap is denoted by Eren and indicated in Fig. 6.5. The gap

renormalization enhances the non-parabolicity of the conduction band and, thus, the

characteristic electron effective mass [121]. Wu et al [11] proposed to describe the

band-gap renormalization shift ∆BGR as the sum of electron-electron and electron-ion

interaction contributions:

∆BGR = ∆Ee−e +∆Ee−i . (6.1)

The electron-electron interaction component is described as follows:

∆Ee−e = − 2e2kF
4π2ε0εr

− e2kTF

8πε0εr

[

1− 4

π
arctan

(

kF
kTF

)]

, (6.2)

where kF = (3π2Ne)
1/3 is the Fermi wave-vector, kTF=(kF/aB)

1/2 is the inverse of

Thomas-Fermi screening length, and aB = 0.53 × 10−10εrm0/m
∗
e(Ne) is the effective
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6.3 Analysis of the unintentionally doped InN samples

Bohr-radius. For the effective mass m∗
e(Ne) calculation, the approach proposed by

Schley et al [121] is employed. Schley et al [121] considered the non-parabolic CB of InN

and proposed to use an effective mass m∗(Ne) described by the following equation [124]:

1

m∗(Ne)
=

1

12π3~2Ne

∫

dk
∂2Ec(k)

∂k2
f(Ec) . (6.3)

The integral runs from the renormalized gap Eren over all occupied states in the CB.

The Fermi-Dirac distribution function f(Ec) at temperature T is described as

f(Ec) =
1

1 + e
Ec(k)−EF

kBT

, (6.4)

where Ec(k) = ~ω + Ev(k) and Ev(k) are conduction and valence-band energy, re-

spectively. Moreover, Schley et al [121] proposed to use the renormalized band-gap

(Eren = E0 + ∆BGR) instead of intrinsic band-gap E0 in the Kane’s two-band k·p
model [125]:

Ec(k) =
Eren

2
+

~
2k2

2m0
+

1

2

√

E2
ren + 4EP

~2k2

2m0
. (6.5)

The second component that describes the electron-ion interaction is given by [11]

∆Ee−i = − e2Ne

ε0εraBk3TF

. (6.6)
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Figure 6.5: Schematic band dia-
gram illustrating the influence of
many-particle effects.
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6 Optical properties of InN

The Burstein-Moss shift can be explained as follows: In the degenerated semicon-

ductors, the Fermi level EF, which depends on the electron concentration Ne, is localized

above the CBM (∆Ec(kF)) as it is depicted in Fig 6.5. The electron concentration is

described with an integral

Ne =

∞
∫

Eren

f(Ec)D(E)dE , (6.7)

where D(E)= [k(E)]2

π2 · dk(E)
dE is a density of states of CB electrons. Due to the conduction

band filling, the absorption occurs near the Fermi wave-vector kF. Under assumption

that T=0 K, all states up to the Fermi level are occupied. According to the Pauli

exclusion principle, the excitation of electrons from the valence band to the conduction

band in the wave vector range 0 ≤ k ≤ kF is forbidden. With increasing a carrier

concentration, an absorption onset shifts to higher energies and occurs at EF(kF). At the

kF, the valence band also makes a small contribution ∆Ev(kF) to the BMS (∆Ecv(kF) =

∆Ec(kF)−∆Ev(kF) = EF(kF)− Eren), as it is indicated in Fig. 6.5. The dispersion of

the valence band is assumed to be parabolic and described with the effective mass of

m∗
h = 0.5m0 [76]:

Ev(k) =
~
2k2

2m∗
h

. (6.8)

In order to estimate the intrinsic band gap of InN, a self-consistent problem (in-

volving the IR-SE and the imaginary part of the DF-ε2 data analysis) must be solved.

The quantities Eren, EF, ∆Ecv(kF) and m∗(Ne) depend on the carrier concentration.

The carrier concentration is determined from the IR-SE analysis by employing the mid-

infrared DF model (presented in Chapter 3, section 3.3) that gives the plasma frequency

ωp,j [124]:

ω2
p,j =

Nee
2

ε0ε∞,jm∗(Ne)
, (6.9)

where the averaged effective mass m∗(Ne) is calculated from Eq. 6.3 and the high-

frequency dielectric constant ε∞,j is estimated from Eq. 3.22 (presented in Chapter 3).

As it is evident from Eq. 6.9, only the ratio Ne/m
∗(Ne) is determined from the plasma

frequency. Therefore, the problem must be solved self consistently, the IR-SE data

are analyzed together with the imaginary part of the DF (ε2) around the band gap

(absorption onset). The imaginary part of the DF is given by

ε2(~ω) ∼
1

(~ω)2
2

(2π)3

∫

BZ

|Pcv|2[1− f(Ec)]× δ(Ec(k)− Ev(k)− ~ω) d3k. (6.10)
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6.3 Analysis of the unintentionally doped InN samples

Table 6.2: Obtained parameters for the investigated samples A1, A2, and B0.

Parameter Sample A1 Sample A2 Sample B0
ωp (cm−1) 2144 2088 766
Ne (cm−3) 3.1×1019 3.0×1019 3.5×1018

ε∞(Ne) 6.75 6.88 7.52
m∗(Ne)/m0 0.0898 0.0903 0.0717
EF(kF) (meV) 988 995 743
∆Ecv(kF) (meV) 509 498 133
Eren (meV) 479 497 610
∆Estrain (meV) -26 15 34
∆BGR (meV) -180 -178 -77
E0 (meV) 685 660 653

The conduction band non-parabolicity is introduced by using Eq. 6.5. The integration

takes place in reciprocal space (k) in the whole BZ. Figure 6.6(a) and (b) show the IR-SE

measured (dashed black line) and fitted (solid red line) Ψ data for samples A1 and B0,

respectively. Figure 6.7 displays the fitted ε2 around the band gap with indicated EF

positions for samples A1 and B0, demonstrating a good agreement. After solving the

self-consistent problem, the quantities Ne, ωp, Eren, ∆Ecv(kF), ∆BGR, and m∗(Ne) are

determined, as listed in Tab. 6.2. The transition energy at Fermi wave-vector is found

from

EF(kF) = Eren +∆Ecv(kF), (6.11)

where ∆Ecv(kF) = ∆Ec(kF) − ∆Ev(kF) denotes the BMS with the CB and VB com-

ponent, ∆Ec and ∆Ev, respectively. Figure 6.8 shows the transition energy values at

the Fermi wave vector EF(kF) (determined by solving a self-consistent problem) for

samples A1, A2, and B0 (denoted by open triangles) and the theoretically calculated

Eren=E0+∆BGR (with E0=0.675 eV [13]) and EF=Eren+∆Ecv(kF) values as a function

of carrier concentration. The obtained EF(kF) match well with the calculated values.

The determined carrier concentrations are 3.1×1019, 3×1019 and 3.5×1018 cm−3 for

samples A1, A2, and B0, respectively, as listed in Tab. 6.2. Positively charged nitrogen

vacancies along dislocations [126] and point defects [127] are considered as sources of high

carrier concentration in the InN material. Consistent with the Raman data (presented

in section 6.2), a larger density of those defects for both InN films on Si substrate seems

likely leading to the one order of magnitude higher electron concentration.
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Figure 6.6: IR-SE experimental and fitted Ψ values for sample A1 (a) and sample B0 (b).
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6.3 Analysis of the unintentionally doped InN samples

The knowledge of Eren and ∆BGR allows now to estimate the intrinsic strain-free

band gap that is given by

E0 = Eren −∆BGR −∆Estrain, (6.12)

The term ∆Estrain accounts for the band-gap energy shift due to the in-plain biaxial

strain (ǫxx) and is calculated by applying the k·p model presented in Chapter 2. The

obtained intrinsic strain-free band gaps are 685, 660, and 653 meV for samples A1, A2,

and B0, respectively.

In addition to the gap structure, the characteristic features (peaks and shoulders)

are resolved in the high-energy part of the DF, as observed in Fig. 6.3. This confirms a

good crystalline quality of the InN films. Figure 6.9 compares the imaginary parts of the

isotropic DFs of the investigated samples (represented by red curves) together with the

imaginary part of the isotropic DF of the wurtzite structure InN sample (represented

by dotted curve) from Ref. [121]. The vertical dashed lines indicate the positions of the

critical points of the band structure (their energies amount to 4.81, 5.38, 6.12, 7.95, and

8.57 eV and are denoted as D, E1, E2, E3, and E4, respectively, as was determined in

Ref. [121]). Despite the different strain present in the InN films, no pronounced shift of

the characteristic features in the imaginary part of the DF (i.e., peaks or shoulders) is

observed.
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Figure 6.9: Imaginary part of the isotropic
DFs in the high-energy range obtained for
samples A1, A2 and B0. For comparison,
the dotted curve represents the imaginary
part of the isotropic DF for the wurtzite
structure InN sample from Ref. [121]. The
vertical dashed lines indicate the positions
of the critical points of the band struc-
ture, as it was determined from Ref. [121].
For clarity, the curves are vertically shifted
from each other.
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6.4 Analysis of the carbon doped InN samples

Secondary ion mass spectroscopy (SIMS) and ion channeling characterizations were

conducted at Evans Analytical Group to determine the carbon concentration (NC) and

the percentage of the substitutional carbon incorporation in the InN lattice, respectively.

Table 6.3 lists the CBr4 pressure, the obtained carbon concentration and the content of

the substitutional carbon in the InN lattice for samples C0, C1, C2, and C4. The SIMS

results indicate that the increased CBr4 pressure increases a carbon concentration (NC).

For example, the sample C4 grown with CBr4 pressure of 80 mTorr has one order of

magnitude larger carbon concentration compared to the sample C1 with CBr4 pressure

of 20 mTorr. The ion channeling analysis has shown that ∼90% of carbon atoms are

incorporated on substitutional InN lattice sites.

The isotropic DFs around the band gap for the investigated carbon doped samples

are presented in Fig. 6.10(a). It is observed that for samples with increased carbon

dopant source (CBr4) pressure, the absorption onset shifts to higher energies, indicating

an increasing electron concentration. In addition, the SE ellipsometry measurements

were performed in the extended energy range up to 17 eV for samples C0, C2, and

C4 and their determined isotropic DFs are shown in Fig. 6.10(b). The shape of the

DFs above the band gap for all samples have a similar character. The characteristic

peaks and shoulders are observed in the imaginary part of the DF energy range 4-12 eV.

These characteristic peaks and shoulders correspend to the critical points of the band

structure denoted as D, E1, E2, E3, E4, E5, and E6 in Fig. 6.10(b). In the energy range

above 12 eV, only a plateau with a decreasing slope is observed. The imaginary parts

of the DFs (ε2) in the range 4.5-9.5 eV for samples C0, C2, C4, and A1 (investigated

in previous section) are compared in Fig. 6.11. The vertical dashed lines in Fig. 6.11

indicate the positions of the critical points D, E1, E2, E3, and E4, as determined in

Ref. [121]. No significant shift of the characteristic peaks in the imaginary part of the

DF is observed for different samples.

Sample CBr4 pressure NC Substitutional carbon

(mTorr) (cm−3) (%)

C0 0 3-4×1017 88

C1 20 4-5×1017 92

C2 50 1-2×1018 92

C4 80 3-4×1018 93

Table 6.3: Carbon bulk con-
centration NC and the per-
centage of carbon substitu-
tionals in the InN matrix ob-
tained for carbon doped InN
samples C0, C1, C2, and C4.
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Figure 6.10: Isotropic DFs near the band-gap region (a) and in the extended energy range
up to 17 eV (b) extracted for the carbon doped InN samples.
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After solving the self-consistent problem (as presented in previous section), the elec-

tron concentration and the intrinsic strain-free band-gap values (listed in Tab. 6.4) were

estimated for the investigated carbon doped samples. According to the summarized

results in Tab. 6.4, the electron plasma frequency (ωp) and the electron concentration

(Ne) increase for samples with increasing carbon dopant source (CBr4) pressure during

the growth process. As it was explained in previous section, the self-consistent problem

consists of the IR-SE and the absorption onset (ε2 around the band gap) analysis. Fig-

ures 6.12(a)-(e) show the IR-SE measured experimental (dashed black curve) and fitted

(solid red curve) Ψ data. Figures 6.12(f)-(j) depict the calculated (solid red curve) and
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6 Optical properties of InN

Table 6.4: Obtained parameters for the investigated carbon doped InN samples.

Parameter Sample C0 Sample C1 Sample C2 Sample C3 Sample C4
CBr4 (mTorr) 0 5 20 50 80
ωp (cm−1) 363 391 519 677 783
Ne (cm−3) 7.4×1017 8.7×1017 1.6×1018 2.6×1018 3.5×1018

ε∞(Ne) 7.64 7.63 7.60 7.40 7.28
m∗(Ne)/m0 0.066 0.067 0.068 0.070 0.071
EF(kF) (meV) 645 661 688 715 733
∆Ecv(kF) (meV) 35 42 73 110 135
Eren (meV) 610 619 615 605 598
∆Estrain (meV) 19 22 17 18 27
∆BGR (meV) -43 -45 -56 -70 -77
E0 (meV) 634 642 654 657 648

experimental (dashed black curve) ε2. Fig 6.13 shows an electron concentration as a

function of CBr4 pressure. One can observe a linear increase of the electron concentra-

tion by increasing the CBr4 pressure. Refering to the SIMS data presented in Tab. 6.3,

one can conclude that the carbon doping in the InN material causes an increase of

electron concentration. This experimental result contradicts the results obtained in the

theoretical studies from Ramos et al [115] and Duan and Stampfl [116].

In analogy to the InN samples investigated in the previous section, the transition

energies at the Fermi wave-vector EF(kF) obtained from the self-consistent problem

solution and denoted by open circles are compared with the calculated EF(kF) values in

Fig. 6.8. One can observe that sample C0 has smaller EF(kF) value and deviates from

the theoretically calculated curve. If one compares the absorption onsets for all samples

in Fig. 6.10(a), one can see that the absorption onset is much broader for sample C0. In

Chapter 4 the ellipsometric data modelling example was presented for sample C0. It was

shown that a good ellipsometric data modelling for sample C0 was obtained by using a

multilayer optical model with an interlayer containing the Drude oscillator that accounts

for the effects of an interface electron accumulation layer. Perhaps, the sample with a

very low bulk electron concentration and with the present high carrier concentration at

the surface or interface prohibits to obtain an accurate absorption onset leading to lower

EF values and, consequently, to lower intrinsic band-gap E0. The intrinsic strain-free

band gap values were evaluated to be 634, 642, 654, 657, and 648 meV, for samples C0,

C1, C2, C3, and C4, respectively.
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6.5 Summary of Chapter 6

The (0001)-oriented InN films sample series grown on Si(111) substrate and carbon

doped InN sample series were investigated by IR-SE and SE. After solving the self-

consistent problem that includes the IR-SE data analysis and the absorption onset

fitting, the carrier concentrations were determined in the investigated samples. Taking

into account the effects of the Burstein-Moss shift and the band-gap renormalization as

well as a strain influence, the strain-free intrinsic band gap of InN was evaluated to be

∼0.65 eV. It was shown that by increasing the carbon dopant CBr4 pressure during the

MBE growth process and, consequently, the carbon concentration in the InN material,

the electron concentration increases.
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In this chapter, two sets of the (0001)-oriented InxGa1−xN samples with 0.15<x<0.19

grown by MBE and MOVPE will be investigated. The isotropic DFs are determined in

the energy range from 1 up to 10 eV and the analytical forms of the DFs are presented.

Moreover, the sample with an In content of x=15.2% will be investigated in the extended

photon energy up to 18 eV. The band gaps of the investigated InGaN films are estimated

from the fit of the analytical model to the experimental DFs. The strain induced shift is

claculated by applying the k·p formalism. In the previous studies of Schley et al [121],

the band gaps were determined for In-rich InGaN alloys and the band-gap bowing

parameter of 1.72 eV was estimated. By combining the latter results and the results

obtained in this work for the Ga-rich samples, the strain-free band gap and high-energy

inter-band transition bowing parameters will be proposed. The obtained experimental

bowing curve is in a good agreement with the ab initio data [128].

Fig. 7.3 and Fig. 7.5 in this chapter are reprinted with permission from Sakalauskas

et al, Physica Status Solidi B, Vol. 249, Page 485, (2012). Copyright 2012, John Wiley

& Sons, Inc.

7.1 Description of the investigated InGaN samples

The MOVPE grown InGaN samples provided by Ö. Tuna (AIXTRON SE) are denoted

as SX1 and SX2. The InGaN films were deposited on a GaN/sapphire template at

600 mbar pressure with TMIn/TMGa ratio of 3 at 740 C◦ and 726 C◦ for samples

SX1 and SX2, respectively. The RF-MBE grown InGaN samples provided by A. Kraus

(TU Braunschweig) are denoted as SB1 and SB2. A sapphire substrate is used with

the MOVPE grown GaN and Al0.05Ga0.95N buffer layers, with thicknesses of 2 µm and

1.2 µm, respectively. Prior to the InGaN epitaxy, a GaN buffer layer of approximately

15 nm thickness was deposited in order to prepare a reproducible surface. The growth

details for SB series samples can be found elsewhere [9]. The InGaN layer thicknesses are

47 nm, 49 nm, 56 nm, and 50 nm for samples SX1, SX2, SB1, and SB2, respectively, as

determined by SE. The in-plane lattice parameters obtained from XRD measurements
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7 Optical properties of InGaN alloys

are a=3.2249 Å and a=3.2311 Å for sample SX1 and SX2, respectively. The GaN buffer

lattice parameter is aGaN=3.186 Å, which yields a partial relaxation of 10% and 12% for

samples SX1 and SX2, respectively. The InGaN layers for samples SB1 and SB2, with

a=3.1847 Å and a=3.1844 Å, respectively, are almost fully strained on GaN buffer with

aGaN=3.185 Å. The In content in the InGaN alloys was estimated from the HRXRD

measurements. A schematic representation of the investigated samples is demonstrated

in Fig. 7.1.

50-56 nm  InGaN (MBE)

~ m2 m GaN (MOVPE)

Al O (0001)2 3

sample SB series

1.2 m AlGaN (MOVPE)m

15 nm GaN (MBE)

47-49 nm  InGaN (MOVPE)

~ m3.5 m GaN (MOVPE)

Al O (0001)2 3

sample SX series

Figure 7.1: Schematic representation of the investigated InGaN samples.

7.2 InGaN dielectric function and its analytical

representation

Figure 7.2(a) and (b) show real and imaginary parts of the isotropic DF, respectively,

obtained in the photon energy range 1-18 eV at RT for sample SB1 (15.2% In content)

together with a GaN ordinary DF (used for comparison). An absorption onset (imagi-

nary part of the DF around the band gap) for the SB1 sample is red shifted with respect

to a GaN. Due to the Kramers-Kronig relation, the ε1 peak also shifts to lower energies

and, therefore, the ε1 values below the band gap (or refractive index n =
√
ε1) are

higher in comparison with GaN. At higher photon energies the characteristic peaks in

the imaginary part of the DF are observed and they are denoted as E1, E2, E3, E4, and

E5, at the photon energy positions 6.6, 7.6, 8.7, 10.8, and 12.6 eV, respectively. As it

was already mentioned in Chapter 2, the energetic positions of the characteristic peaks

correspond to the inter-band transitions occurring near the van Hove singularities in the

JDOS. The high-energy inter-band transitions E1, E2, and E3 are red shifted, while E4

and E5 remain almost at the same position with respect to GaN.
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(a) (b)

Figure 7.2: Real (a) and imaginary (b) parts of the isotropic DF for sample SB1. The GaN
DF [98] (dashed black lines) is shown for comparison.
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Figure 7.3: DFs around the band gap for the in-
vestigated samples.

Figure 7.3 shows the DFs around the band gap for the investigated InGaN samples

and GaN for comparison. The absorption onset red shifts with increasing In content. By

fitting the obtained experimental DFs with the analytical model (described by Eq. 3.18

and Eq. 3.21 in Chapter 3.2), the band-gap values EA of the investigated samples were

estimated. The obtained band-gap values EA (energy splitting between the uppermost

valence band with Γ9
v symmetry and the Γ7

c conduction band) are listed in Table 7.2.

The analytical form of the InGaN DFs together with the experimental DFs are plotted

in Figure 7.4(a) and (b) for samples SB1 and SB2, respectively. The DF analytical

model parameters are listed in Table 7.1.
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Figure 7.4: Experimental DFs (black lines) together with the analytical forms of the DFs
(red circles) for samples SB1 (a) and SB2 (b).

Table 7.1: Fitting parameters for the DF analytical model.

Parameter SB1 (15.2 %) SB2 (18.6 %)

A0 1.21 1.42
A1 (eV2) 17.49 44.69
A2 (eV2) 73.73 32.50
A3 (eV2) 135.14 90.66
ABS (eV2) 0.30 0.38
ACS (eV) 0.65 0.75
AP (eV) 102.4 100.02
E1 (eV) 6.71 6.69
E2 (eV) 7.45 7.70
E3 (eV) 9.67 9.24
EA (eV) 2.91 2.79
EB (eV) EA+0.013 EA+0.013
EP (eV) 14.25 13.38
Γ0 (eV) 0.047 0.058
Γ1 (eV) 0.74 1.41
Γ2 (eV) 2.37 1.77
Γ3 (eV) 3.96 3.05
ΓBS(eV) 0.25 0.29
ΓCS (eV) 0.13 0.13
R (meV) 12 15
b -1.38 -1.17
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7.3 InGaN band-gap and high-energy inter-band transition bowing parameters

7.3 InGaN band-gap and high-energy inter-band transition

bowing parameters

First of all, the strain influence on the band gap must be taken into consideration

before evaluating the bowing parameter. The k · p method (described in Chapter 2)

was used to calculate the strain induced band-gap shift ∆Estrain
A . The SE measured

InGaN layer thickness dthick, the estimated in-plane strain values ǫxx, the calculated

strain induced energy shift ∆Estrain
A , and strain-free band-gap values Erelax

A are listed in

Table 7.2. The large in-plane strain values ǫxx and, consequently, large strain induced

band-gap shifts (∆Estrain
A ) are obtained for fully pseudomorphically grown SB sample

series. Figure 7.5(a) shows the extracted Erelax
A values for the investigated InGaN sam-

ples in this work together with the experimental data for In-rich InGaN from Ref. [121].

Employing the end-point values of EInN
A =0.675 eV [13] and EGaN

A =3.435 eV [24], the

compositional dependence can be represented by a strain-free band-gap bowing param-

eter of 1.65±0.07 eV. In addition, the obtained experimental strain-corrected band-gap

values are compared with the strain-corrected band-gap values from the work of Mc-

(a) (b)

Figure 7.5: (a) Experimentally determined band-gap and high-energy inter-band transition
energies (full squares) as a function of In content (x). The data points for In-rich InGaN
alloys were taken from Ref. [121]. For comparison, the experimental band-gap values for
0.05<x<0.36 were taken from the Ref. [129] (triangles), Ref. [130] (stars), and Ref. [131]
(diamonds). (b) the experimental band-gap bowing curve is compared with the ab initio

data for uniform (full circles) and clustered (open circles) alloy from Ref. [128] as well as
with the DFT+HSE06 calculated band gap (open trinagles) from Ref. [132].
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7 Optical properties of InGaN alloys

Cluskey et al. [129], Pereira et al. [130], and Kudrawiec et al. [131], as it is indicated

in Fig. 7.5(a) by triangle, star, and diamond symbols, respectively. All the compared

experimental data show good agreement with the obtained experimental bowing curve.

The experimental bowing curve determined in this work is consistent with the

ab initio calculated band-gap values for uniform (not clustered) InGaN alloys [128], as

demonstrated in Fig. 7.5(b) (full circles). The calculated values for clustered materials

(indicated with open circles in Fig. 7.5) are always much lower than for an uniform distri-

bution. In addition, the band-gap values (expressed with respect to the average valence

band) from the the work of Moses et al. [132], obtained by using the density functional

theory (DFT) calculations with the HSE06 hybrid exchange-correlation functional, are

presented by triangles in Figure 7.5. The DFT+HSE06 calculations show good agree-

ment in the In-rich region, while in the Ga-rich region the theoretical values are slightly

below the experimental bowing curve, since the GaN band gap of 3.23 eV was used in

the DFT calculations. Moses et al. [132] proposed to use a compositional dependent

bowing parameter and made calculations at specific alloy compositions: b=2.29 eV for

x=6.125% and b=1.79 eV at x=12.5%. If one calculates the band-gap values for the same

alloy compositions x=6.125% and x=12.5%, by employing the mentioned theoretically

calculated bowing parameters (b=2.29 eV and b=1.79 eV) and using the end-point val-

ues of EInN
A =0.675 eV [13] and EGaN

A =3.435 eV [24], and compares the values calculated

with the experimental bowing parameter 1.65 eV, one can observe that the differnce

between the latter is only 37 meV and 15 meV, respectively. With the knowledge that

GaN exciton binding energy is ∼20 meV [133], one can make an error within 20 meV for

Ga-rich InGaN alloy by estimating experimentally the excitonic transition and not the

band-to-band transition. The composition estimation in the alloy, the strain-correction

estimation of the band gap can also contribute to the experimental error of several

mili-electronvolts.

However, very often the InGaN epilayers are grown fully-strained on the GaN.

Therefore, it is useful to know the band gap for the fully strained material. Assum-

Sample dthick ǫxx EA ∆Estrain
A Erelax

A

nm ×10−2 (eV) (meV) (eV)

SX1 (15.9%) 47 -0.61 2.84 46 2.79

SX2 (17.9%) 49 -0.64 2.81 47 2.76

SB1 (15.2%) 56 -1.77 2.91 132 2.78

SB2 (18.6%) 50 -2.08 2.79 154 2.64

Table 7.2: InGaN sample layer
thickness in-plane strain ǫxx, band
gap EA determined by SE, strain
induced energy shift ∆Estrain

A , and
strain-free band-gap value Erelax

A .
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7.3 InGaN band-gap and high-energy inter-band transition bowing parameters

ing that GaN buffer layer is fully relaxed (aGaN
0 =3.1894 Å [74]) and InGaN epilayer

with 0 < x < 0.2 is fully strained on the GaN, the band gap is calculated as

Estrain
A = Erelax

A + 0.79× x, (7.1)

where Erelax
A = 0.675× x+ 3.435× (1− x)− 1.65× x× (1− x).

The high-energy inter-band transitions were evaluated by using the third derivative

method as described in Ref. [134]. Figure 7.6 shows experimental (solid lines) and fitted

(open circles) third derivative of ε1×E2, ε2×E2 for sample SB1. The high-energy inter-

band transitions obtained from the third derivative method for sample SB1(SB2) were

obtained to be 6.62 eV(6.52 eV), 7.59 eV(7.54 eV), and 8.74 eV(8.66 eV) for transitions

E1, E2, and E3, respectively. In addition, the transition D for sample SB1 was obtained

to be 5.88 eV. The transition energies E1 and E2 obtained from the third derivative

method are in a good agreement with a values obtained from the DF model fitting (listed

in Tab. 7.1). The high-energy inter-band transitions bowing parameters were estimated

to be 1.09, 1.06, 0.99, and 1.04 eV for transitions D, E1, E2, and E3, respectively. As it

was demonstrated in Chapter 6 for the InN material, no strain induced shift is observed

on the high-energy inter-band transitions.

5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

E3E2

E1

 d3/dE3 expt.

 d3/dE3  expt.

 d3/dE3 fitted

 d3/dE3  fitted

  

 

Photon energy (eV)

d3 /d
E3 (

1E2
d3 /d

E3 (
2E2

a.
u.

D

Figure 7.6: Experimental (solid lines) and
fitted (open circles) third derivative of ε1 ×
E2 and ε2 × E2 for sample SB1.

Moreover, the PL measurements were conducted by using an excitation wavelength

of 337.1 nm and excitation power of 200 kW/cm2 on the samples SX1 and SX2 at room

temperature. The PL data were provided by the research group of prof. G.P. Yablonskii

from Stepanov Institute of Physics, National Academy of Science Belarus. The PL

intensities of the investigated samples as a function of photon energy are shown in
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Figure 7.7: The PL intensities obtained at
room temperature for samples SX1 (black
line) and SX2 (red line) as a function of
photon energy. The dashed lines represent
the PL peak energy (EPL) positions.

Fig. 7.7. One can observe that PL intensity is weaker and the PL curve is broader for

sample SX2 with respect to the sample SX1. The PL peak values (EPL) were determined

to be of 2.82 eV and 2.77 eV, respectively. According to the optical selection rules for

wurtzite structure semiconductors with a positive crystal-field splitting energy (∆cf>0),

a transition from the topmost valence band (Γv
9) to the conduction band (Γc

7) is strongly

allowed for configuration E⊥c, as it is shown in Fig. 7.8. Therefore, if the PL peak value

corresponds to the band-to-band transition from the conduction band to the topmost

valence band, the transition energies obtained from the SE and PL should be the same

(if where is no strong compositional fluctuation in the alloy). Indeed, the obtained EA

(listed in Tab. 7.2) and EPL values for samples SX1 and SX2 are very close to each other.
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Figure 7.8: Simplified
scheme of transitions A,
B, and C (for ∆cf > 0).
Symbols ⊥ and ‖ indicate
strong transition proba-
bility, meanwhile symbols
(⊥) and (‖) indicate weak
transition probability for
the respective polarization
states.
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7.3 InGaN band-gap and high-energy inter-band transition bowing parameters

In addition, the sample SX1 was investigated by using a confocal scanning laser

microscopy. The confocal microscopy is useful technique to investigate the submicron-

scale spatial inhomogeneities of PL intensity and spectra that allow to observe band

edge inhomogeneities of InGaN alloys [135,136]. The spatial inhomogeneities of optical

properties are caused by fluctuations of the In content in the InGaN alloy [137–139] and

the carriers created by a photo-excitation or an electron injection are localized in the

In-rich areas [140, 141]. Fig. 7.9(a) and (b) show the spectral-integrated PL intensity

mapping and the peak wavelength mapping, respectively, obtained by using a confocal

scanning laser microscopy for sample SX1. It is observed that bright peaks corresponding

to a higher intensity in Fig. 7.9(a) correlates well with the longest wavelength (red-yellow

areas) in Fig. 7.9(b). The separate PL peak intensities at positions 1 and 2 (as denoted

in Fig. 7.9) are shown in Fig. 7.10. The PL peak position at point 1 is at ∼510 nm,

while the peak position at point 2 is at ∼480 nm.

(a) (b)

#1
#2

Figure 7.9: Spectral-integrated PL intensity mapping (a) and peak wavelength mapping (b)
obtained by confocal scanning laser microscopy for sample SX1.
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Figure 7.10: PL intensities at point 1 and
2 for sample SX1.
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7.4 Summary of Chapter 7

The (0001)-oriented InxGa1−xN samples with 0.15<x<0.19 were investigated and the

isotropic DFs were determined in the energy range 1-10 eV. Moreover, the InxGa1−xN

sample with an In content of 15.2% was investigated in the extended energy range 10-

18 eV and the critical points of the band structure were observed. The analytical form

of the DFs in the energy range 1-10 eV was presented. The band-gap and the high

energy inter-band transitions were determined from the fit of the analytical model to

the experimental DF. The strain influence on the band gap was calculated using the

k·p method. The strain-free band gap bowing parameter was evaluated to be 1.65 eV

and the high-energy inter-band transitions were estimated to be ∼1 eV. The obtained

experimental band-gap values from the SE measurements were supported with the ab

initio data.
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In this chapter, the AlInN alloy films nearly lattice matched to GaN will be investigated.

The isotropic DFs and their analytical representations of the investigated samples are

obtained in the photon energy range 1-10 eV. The band-gap values and high-energy inter-

band transitions are estimated from the fit of the analytical model to the experimental

DFs. In previous studies of the In-rich AlInN alloys, Goldhahn et al [142] determined

the band-gap values, which are in excellent agreement with the values from the work of

Jones et al [143], and estimated the bowing parameter of 4 eV. By combining the latter

results and results obtained in this work, the composition dependent bowing parameter

permitting to describe the AlInN band gap in the whole compositional range will be

presented. The extension of the studies towards higher energies (above 10 eV) is also

of strong interest. Cobet et al [98] determined the DFs of hexagonal GaN up to 20 eV

by applying the SE with synchrotron radiation (BESSY II) and detected the features

attributed to the critical points (CPs) of the band structure above 10 eV. Schley et al [7]

analysed the hexagonal InN in the photon energy range 0.56-15 eV and also observed

several CPs in the range above 10 eV. Therefore, it is expected to detect CPs for the

investigated AlInN alloys above 10 eV. The determination and interpretation of the DF

in the range extended up to 18 eV is presented. In the last section an a-plane AlInN

sample will be investigated. The c-axis of the non-polar sample is on the surface plane,

therefore, by measuring the sample by SE at two different configurations (i.e., the c-axis

perpendicular to the plane of incidence and c-axis parallel to the plane of incidence),

both ordinary and extraordinary DFs can be extracted.

Figures 8.2, 8.3, 8.4, 8.6, and 8.13 as well as Tables 8.2 and 8.4 are reprinted with

permission from Sakalauskas et al, Journal of Physics D: Applied Physics, Vol. 43,

Page 365102, (2010). Copyright 2010, IOP Publishing Ltd. Figure 8.5 is reprinted with

permission from Sakalauskas et al, Physica Status Solidi A, Vol. 208, Page 1517, (2011).

Copyright 2011, John Wiley & Sons, Inc. Figures 8.14 and 8.15 as well as Table 8.5

are reprinted with permission from Sakalauskas et al, Physica Status Solidi A, Vol. 209,

Page 29, (2012). Copyright 2012, John Wiley & Sons, Inc.
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8 Optical properties of AlInN alloys

8.1 Description of the investigated AlInN samples

Two sets of AlInN samples are investigated. The first set provided by H. Behmenburg

(AIXTRON SE) consists of samples labeled as SA1, SA2, SA3, and SA4 with 14.3%,

17.5%, 19.0%, and 22.8% In content, respectively. The hexagonal (0001)-oriented AlInN

epilayers were deposited by MOVPE on sapphire substrates with 3.5 µm GaN buffer

layer by varying the temperature from 715 ◦C to 795 ◦C. The measured AlInN layer

thicknesses by SE and XRD ranges from 73 to 80 nm.

The second set provided by M. Wieneke (OvGU Magdeburg) consists of samples

labeled SI1 and SI2. The AlInN epilayers were grown by MOVPE on Si(111) substrate.

The MOVPE growth started as follows: an AlN seed layer, a high-temperature AlN layer,

a GaN buffer layer, a low-temperature AlN layer dedicated for strain compensation, a

900 nm thick GaN buffer, and finally an AlInN layer. The growth conditions of the

alloys are described in detail in Ref. [144]. The layer thicknesses amount to 48 and 54

nm, as determined by SE.

In addition, the non-polar AlInN sample provided by M. Wieneke (OvGU Magde-

burg), denoted as SN, was grown by MOVPE on r-plane sapphire substrate leading to

an a-plane ([11-20]) orientation of nitride films. Before growing the GaN buffer layer, a

∼65 nm thickness AlGaN nucleation layer was deposited on the substrate at 1145 ◦C

with TMGa and TMAl flows of 5 and 15 sccm, respectively. The GaN buffer layer was

grown at 1065 ◦C with TMGa flow of 25 sccm. The epitaxy of AlInN layer was car-

ried out at 780 ◦C with TMAl and TMIn flows of 80 and 400 sccm, respectively. The

NH3 flow was kept constant at 500 sccm during all growth processes. The AlInN layer

and the GaN buffer layer thicknesses were determined by SE to be 49 nm and 2 µm,

respectively. The scanning electron microscopy characterization was performed and the

AlInN layer thickness of ∼45 nm was estimated which is in good agreement with the

value determined by SE.

The schematic representation of the investigated samples is sketched in Figure 8.1.

8.2 Structural properties of the investigated AlInN samples

The structural properties of the films were examined by a high-resolution X-ray diffrac-

tion (HRXRD). Detailed XRD measurements (symetric diffraction of (0002) planes and

grazing incidence in-plane diffraction of (10-10) planes) were performed by the growth

groups in order to determine the lattice constants and mosaicity of both the AlInN
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Figure 8.1: Schematic representation of the investigated AlInN samples.

films and the GaN buffer layer for sample SA and SI series. Figure 8.2(a) shows the

experimental and simulated data of symmetric diffraction (0002) for sample SA1. The

reciprocal space maps of the (10-15) reflection for the SA sample series are shown in

Figure 8.2(b). The AlInN and GaN peaks are aligned in the Qz axis, indicating that

AlInN is pseudomorphically growm on a GaN buffer.

The XRD measurements were used for an In content determination. The Vegard’s

law is assumed for alloys lattice parameter interpolation. The GaN lattice parameters

of a=3.183 Å and c=5.189 Å are found for the films on a sapphire substrate indicating

a slight compressive in-plane strain which is typical for the growth on this substrate.

Mosaic twist and tilt amount to less than 0.1◦ emphasizing good quality of the layers.

The films on Si(111) exhibit, in contrast, a weak tensile strain as indicated by the lattice

parameters of a=3.193 Å and c=5.182 Å.

(a) (b)

Figure 8.2: (a) Experimental and simulated data of symmetric diffraction (0002) for sample
SA1 (14.3%); (b) Reciprocal space maps of the (10-15) reflection for SA sample series.
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8 Optical properties of AlInN alloys

The In content in the non-polar Al1−xInxN sample SN was also evaluated from X-

ray diffraction measurements. The measured GaN buffer layer lattice parameters were

aGaN = 3.1922 Å, mGaN = 2.7572 Å, and cGaN = 5.1782 Å, while the strain-free lattice

parameters are aGaN
0 = 3.189 Å and cGaN

0 =5.185 Å [145]. The measured AlInN lattice pa-

rameters were aAlInN=3.1934 Å, mAlInN=2.7588 Å, and cAlInN=5.1758 Å as determined

by high resolution X-ray diffraction at the symmetric (11-20) Bragg reflection, and

grazing incidence in-plane X-ray diffraction at the (1-100), and (0002) Bragg reflections,

respectively. The strain-free AlInN lattice parameters aAlInN
0 and cAlInN

0 are extrapolated

linearly from the binary InN and AlN lattice parameters: aAlInN
0 = aInN0 ·x+aAlN

0 ·(1−x)

and cAlInN
0 = cInN0 ·x+ cAlN

0 · (1−x). The strain free-lattice parameters for InN and AlN:

aInN0 =3.537 Å [146] and cInN0 =5.703 Å [146], aAlN
0 =3.112 Å [145] and cAlN

0 =4.982 Å [145].

The elastic stiffness constants CAlInN
ij (i=1,2,3; j=1,2,3) for AlInN alloy are also derived

linearly from the binary InN and AlN elastic stiffness constants. The InN elastic stiff-

ness constants CInN
11 = 223 GPa, CInN

12 = 115 GPa, CInN
13 = 92 GPa, and CInN

33 = 224 GPa

were taken from Ref. [146, 147], while AlN elastic stiffness constants CAlN
11 = 411 GPa,

CAlN
12 = 149 GPa, CAlN

13 = 99 GPa, and CAlN
33 = 389 GPa were taken from Ref. [148].

The strain in the AlInN layer is evaluated by using the following equations:

ǫxx = ǫa =
aAlInN − aAlInN

0

aAlInN
0

(8.1)

ǫyy = ǫm =
mAlInN −mAlInN

0

mAlInN
0

(8.2)

ǫzz = ǫc =
cAlInN − cAlInN

0

cAlInN
0

(8.3)

Assuming that the stress σxx=0 in the growth direction and solving the equation:

σxx = CAlInN
11 · ǫxx + CAlInN

12 · ǫyy + CAlInN
13 · ǫzz, (8.4)

the In content x≈20% was obtained. The obtained strain in the growth direction (out-

of-plane) is ǫxx = −1.1 × 10−3, while the in-plane strain mounts to ǫyy = −3.6 × 10−3,

and ǫzz = 9.6 × 10−3 with x, y, and z being parallel to the [11-20], [1-100], and [0002]

directions, respectively.

A smooth surface morphology, which is essential for the accuracy of the SE results,

was revealed by AFM measurements (provided by the growth groups). Scans of 5×5 µm2

area for the first set of samples and 10×10 µm2 for the second set of samples were
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8.3 AlInN dielectric function and its analytical representation

Sample surface roughness (nm) alloy thickness (nm)

AFM SE XRD SE

SA1 (14.3%) 1.1 2.0 72 73

SA2 (17.5%) 1.2 2.2 75 74

SA3 (19.0%) 1.4 2.4 78 77

SA4 (22.8%) 1.4 3.6 80 80

SI1 (17.4%) 2.1 6.2 47 48

SI2 (24.2%) 1.4 1.9 55 54

SN (20.0%) 2.5 4.2 - 45

Table 8.1: Values for the
surface roughness and the
AlInN layer thickness as
determined by AFM, SE,
and XRD.

performed. The root-mean square (rms) roughness values are summarized in Tab. 8.1.

They range typically between 1.1 and 1.4 nm, only sample SI1 showed a slightly higher

value of 2.1 nm which is not critical for the ellipsometry studies. The surface roughness

for SN sample was obtained to be 2.5 nm. In addition, the surface roughness obtained

from SE simulations together with the AlInN epilayer thickness determined from XRD

and SE are listed in Table 8.1. The obtained layer thickness from both characterisation

techniques are in excellent agreement.

8.3 AlInN dielectric function and its analytical

representation

First of all, optical selection rules will be considered prior to the interpretation of the

DF. It starts from the VB ordering around the Γ point of the Brillouin zone and the

symmetry of the wave functions. As it was discussed in Chapter 2, crystal field (∆cf)

and spin-orbit interaction (∆so) split the VB maximum into three two-fold-degenerate

VBs with Γv
9, Γ

v
7−, and Γv

7+ symmetry. The energy difference Γc
7 − Γv

9 = EA for strain-

free material is used as a reference point for the analysis of inter-band absorption. This

definition is essential, because the compositional dependence of transition energies is

considered. InN has a spin-orbit energy of 5 meV and crystal-field splitting energy of

19 meV [149]. The AlN has a slightly larger spin-orbit energy of 16 meV and a large

negative crystal-field splitting energy of -212 meV [30]. It is important to emphasize

that the sign of crystal field energy inverts the valence band ordering as it was shown in

Chapter 2, in Fig. 2.2. Therefore, the band crossing will occur for InxAl1−xN alloy at

∆cf=0 eV (approximately at x=0.92, if a linear crystal-field splitting energy interpolation

is used). The transitions from Γv
9 valence band to the Γc

7 conduction band (labeled A)
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8 Optical properties of AlInN alloys

and from Γv
7− to Γc

7 (labeled C) exhibit strong relative oscillator strengths only for the

configuration E⊥c. Thus, by measuring c-plane AlInN samples with an ellipsometer

(almost E⊥c), these transitions will dominate the optical response. In contrast, the

transition from Γv
7+ to Γc

7 (labeled B) is strongly allowed only for the configuration E‖c.

The transition B stems from the topmost valence band, but its oscillator strength is

weak for the configuration E⊥c.

The obtained isotropic DFs of samples SA1, SA2, SA3, and SA4 in the spectral

range from 1 to 10 eV are shown in Fig. 8.3. Pronounced features attributed to the

critical points of the band structure are found in the high-energy range of ε2. They have

a strong impact on the dispersion of ε1 at lower energies. For the second set of samples

(AlInN/Si(111)), data are only available for the range from 1 to 6.42 eV. Figure 8.4(a)

and (b) show the results around the band gap for the AlInN/sapphire and AlInN/Si(111)

samples, respectively. It is clearly seen that with increasing In content, the absorption

onset (imaginary part of the dielectric function - ε2) redshifts. Following the Kramers-

Kronig relation, the ε1 peak also shifts to the lower energies. Fig. 8.4(b) also shows the

DF of AlN for comparison. The InxAl1−xN sample SA1 with In content of 14.3% was

investigated in the extended energy range. The isotropic DF of sample SA1 in the range

1-18 eV is shown in Figure 8.5(b). The appearing features (e.g., peaks or shoulders)

in the shape of the DF components ε1 and ε2 are related to the inter-band transitions

due to the peculiarities of the joint density of states in the vicinity of CPs of the band

structure [150]. Three critical points are observed in the 7-10 eV range. In the 10-14 eV
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Figure 8.4: Isotropic DFs of AlInN around the band gap: for AlInN/sapphire samples (a)
and AlInN/Si(111) samples together with data for AlN (b). Ordinary DF of AlN used for
comparison is taken from Ref. [77].

range, the broad shoulder in ε2 and broad peak in ε1 are observed and in the 14-18 eV

range, the decreasing plateau in ε2 and broad shoulder in ε1 are observed. Following

the method as presented in [134] the CPs denoted E4, E5, and E6 were evaluated to be

∼10.6 eV, ∼12.5 eV, and ∼14.2 eV, respectively. For comparison purpose, the isotropic

DF of InN and ordinary DF of AlN [77] are also provided in Fig. 8.5(a) and Fig. 8.5(c),

respectively. The CPs of the band structure for the InN are present in the range from

4-12 eV, as it is indicated by arrows in Figure 8.5(a). In the AlN case, three CPs are

observed in ε2 below 10 eV. Above 10 eV, the theoretical ε2 data [151] calculated using

a first-principle technique, which includes the electron-hole interaction, is provided.

By fitting simultaneously experimentally obtained real and imaginary parts of the

DF with the analytical expressions (Eqs. 3.18-3.21, described in Chapter 3.2), it is

possible to determine the band-gap energies EA and high-energy inter-band transitions

E1, E2 and E3. The fitting parameters for Eq. 3.18 and Eq. 3.21 are listed in Tab. 8.2.

The difference between transition energy EA and EC was kept fixed at 13 meV, which

corresponds to the linearly interpolated spin-orbit splitting energy at x=0.18. The

critical point energies E1, E2, and E3 obtained by fitting the analytical DF model are
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Figure 8.5: Isotropic DFs for (a) InN
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AlN (1-10 eV) [77] together with the the-
oretical ε2 in the extended energy range
9-18 eV [151]. Arrows indicate the CPs
of the band structure.

in good agreement with the energies determined from the third derivative method [134]

(summarized in Tab. 8.3 for the AlInN/sapphire sample set). The experimental and

calculated (using the Eq. 3.18 and Eq. 3.21 and parameters from Tab. 8.2) complex DF

as well as complex index of refraction for sample SA1 are shown in Fig. 8.6(a) and (b),

respectively.

SE measurements for the AlInN/Si(111) sample set were conducted only up to

6.4 eV. The transition energy EA (transition from Γv
9 valence band to the Γc

7 conduc-

tion band) values of 4.34 eV and 3.85 eV were determined for samples SI1 and SI2,

respectively.

8.3.1 Strain influence on the band gap energy

The strain influence on the band gap must be taken into consideration before evaluating

the bowing parameter for the AlInN alloys. A six-band k·p model [70] is used to calculate

the strain influence. The k·p parameters used for the calculations are presented in

Chapter 2, in Table 2.1.
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8.3 AlInN dielectric function and its analytical representation

Table 8.2: Fitting parameters for the DF analytical model.

Sample SA1 (14.3%) SA2 (17.5%) SA3 (19.0%) SA4 (22.8%)

A0 1.24 1.08 1.05 0.99
A1 (eV2) 44.85 43.63 42.74 43.31
A2 (eV2) 37.01 50.13 47.84 55.82
A3 (eV2) 70.76 79.52 74.84 82.98
ABS(eV2) 5.8×10−3 1.5×10−2 9.2×10−3 0.46
ACS(eV) 1.5 1.26 1.33 0.78
AP (eV) 158.05 189.02 172.88 270.09
E1 (eV) 7.42 7.37 7.33 7.30
E2 (eV) 8.20 8.20 8.17 8.20
E3 (eV) 8.94 9.06 9.07 9.21
EA (eV) 4.57 4.35 4.30 4.04
EC (eV) EA+0.013 EA+0.013 EA+0.013 EA+0.013
EP (eV) 15.54 15.33 15.45 16.27
Γ0 (eV) 4.4×10−2 4.4×10−2 5.2×10−2 5.4×10−2

Γ1 (eV) 1.21 1.27 1.33 1.41
Γ2 (eV) 1.31 1.47 1.52 1.65
Γ3 (eV) 1.89 2.07 2.15 2.33
ΓBS(eV) 3.3×10−2 0.13 0.13 2.78
ΓCS (eV) 0.1824 0.20 0.28 0.19
R (meV) 29 31 35 17
b -1.9 -2.7 -2.2 -4.18

(a) (b)

Figure 8.6: Experimental and calculated complex DF (a) and complex index of refraction
(b) of sample SA1 (In content 14.3 %).

The strain-induced band-gap energy shifts ∆Estrain
A calculated from the k·p model

around the Γ point of the Brillouin zone, transition energies EA obtained from the DF
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Figure 8.7: Experimental band-gap EA val-
ues (full circles) obtained from SE for SA
sample series. The black solid line repre-
sents the linear fit of the experimental data
values, while the red dashed line represents
the calculated strain-free band-gap values.

(influenced by strain), and strain-corrected band-gap Erelax
A = EA −∆Estrain

A values are

summarized in Table 8.3. The following should be noticed. Pseudomorphic AlInN films

with low In-content experience tensile strain leading to a red-shift of the experimental

data for the EA transition. For high In-content, a strain-induced blue shift is found

to be up to ∼65 meV for the layers studied here. It is obvious that this effect has

to be taken into account for determining the strain-free band-gap bowing parameters.

Figure 8.7 shows the experimental band-gap EA values (full circles) determined by SE

for sample SA series. The solid black line is a linear fit of the experimental values. The

red dashed line represents the calculated band-gap values for the relaxed material. For

Sample EA ∆Estrain
A Erelax

A E1 E2 E3

(eV) (meV) (eV) (eV) (eV) (eV)

SA1 (14.3%) 4.57 -26 4.60 7.40 8.11 8.81

SA2 (17.5%) 4.35 9 4.34 7.31 8.15 8.80

SA3 (19.0%) 4.30 25 4.27 7.28 8.12 8.80

SA4 (22.8%) 4.04 65 3.98 7.18 8.08 8.79

SI1 (17.4%) 4.34 -18 4.36 - - -

SI2 (24.2%) 3.85 54 3.80 - - -

Table 8.3: Estimated band
gap EA, calculated strain
induced band-gap shift
∆Estrain

A , strain-free band
gap Erelax

A and estimated
critical point energies E1,
E2, and E3 (from third
derivative method).
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8.3 AlInN dielectric function and its analytical representation

the SA sample series with a GaN buffer layer having a lattice constant of a=3.183 Å, the

AlInN layer would be lattice matched at ∼17%. Below or above 17% the layer becomes

tensile or compressive strained, respectively. In the tensile (compressive) strain region

measured experimental band-gap values are smaller (larger) in comparison with the

values for the relaxed material.

8.3.2 AlInN alloy band-gap and high-energy inter-band tran sition bowing
parameters

In order to evaluate accurately a band-gap EA (transition Γv
9−→Γc

7) bowing parameter,

experimental data in a wider compositional range are needed. In addition, the data

determined by SE from the work of Goldhahn et al [142] for the In-rich AlInN alloys

and AlN were employed. The strain-corrected band-gap values Erelax
A for AlInN samples

together with the experimental data points obtained for the AlN, the InN and the In-

rich AlInN alloys [142] are shown in Fig. 8.8(a). The fitted bowing parameter (bA)

(a) (b)

Figure 8.8: Experimental band-gap energies of Al1−xInxN as a function of In content: (a)
The blue solid curve represents the bowing curve with a bowing parameter of 4 eV obtained
for In-rich AlInN alloys from the work of Goldhahn et al [142], while the red solid curve
represents the bowing curve with a bowing parameter of 5.36 eV by fitting all data points,
i.e., obtained in this work (quadrates) and in the work of Goldhahn et al [142] (diamonds); (b)
bowing curve obtained by fitting the experimental data (denoted by quadrates and diamonds)
with a compositional dependent bowing parameter bA(x). The data points for InN and AlN
were taken from Ref. [142] (denoted by diamond symbols). For comparison, the experimental
data points from the work of Jones et al [143] for In-rich AlInN alloys were also included
(denoted by open circles).
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8 Optical properties of AlInN alloys

for the transition energy EA yields a value of 5.36 ± 0.36 eV (with endpoint energies

of EInN = 0.675 eV for InN [13] and EAlN = 6.24 eV [30] for AlN). This obtained

value is consistent with the value of 5.3 eV obtained in Ref. [152] and the value of

4.96 ± 0.28 eV obtained in Ref. [153] within the error interval. Goldhahn et al [142]

fitted the data points in the In-rich region and obtained the bowing parameter of 4 eV

(the bowing curve for bA=4 eV represented with a blue line in Fig. 8.8). For comparison,

the transition energy EA values from the work of Jones et al [143] obtained by modeling

optical absorption data for the high quality AlInN samples are represented with the

open circles in Fig. 8.8(a).

One can observe that the fitted band-gap curve with a bowing parameter of 5.36 eV

does not describe well the experimental data points in Fig. 8.8(a). Therefore, to have

a better agreement between the experimental band-gap data and fitted bowing curve, a

new empirical expression is proposed:

EAlInN
A = EInN

A · x+ EAlN
A · (1− x)− bA · (1− x) · x, (8.5)

where a bowing parameter bA is expressed as a non-linear function of In content (x):

bA = bA(x) =
A

1 + C · x2 . (8.6)

The fitted Eq. 8.5 to the experimental strain-corrected band-gap data points (EA)

yielded the parameters A=6.24±0.13 eV and C=1.13±0.14. As it is clearly seen in

Fig. 8.8(b), the composition dependent bowing parameter describes much better the

experimental band-gap values EA. The experimental AlInN band-gap bowing curve to-

gether with the calculated ab initio data for uniform (not clustered) AlInN alloys from

the work of Gorczyca et al [128] are compared in Fig. 8.9. The obtained bowing param-

eter bA(x) ranges from 2.93 to 6.24 eV and yields the value of 4.87 eV for x=0.5, which

is in good agreement with the ab initio calculated bowing parameter for the uniform

(not clustered) AlInN case, which ranges from 2.1 to 6.2 eV, and is equal to 4.4 eV for

x=0.5 [128].

Moreover, the PL measurements were conducted by the research group of prof. G.P.

Yablonskii (Stepanov Institute of Physics, National Academy of Science Belarus) on

the AlInN/sapphire sample series with slightly different In contents (13.5%, 16.7%, and

19.2%). PL measurements were conducted at RT by using 5th harmonic of Nd:YAG laser

with λexc=213 nm and Iexc=1.7 MW/cm2. Additionally, the PL data for the InxAl1−xN

samples with x=0 and for x>0.7 are employed from the work of Kamimura et al [154].
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8.3 AlInN dielectric function and its analytical representation

The PL peak energies from Kamimura work were obtained from the AlInN columns,

therefore no residual strain was present. The AlInN films with 13.5%, 16.7%, and

19.2% were pseudomorhically grown on GaN/sapphire substrates, therefore, the strain

correction must be done. After k·p calculations, it was found that a strain induced

shift for transition B (∆Estrain
B ) is -92 meV, ∼0 meV, and 72 meV, for samples with In

composition 13.5%, 16.7%, and 19.2%, respectively. Using the expresion Erelax
PL =EPL −

∆Estrain
B the strain corrected PL peak values were obtained and presented in Fig. 8.10

together with the strain-free band-gap values (EA) obtained from SE. One can note

that PL values are slightly below SE values. Refering to the valence band splitting,

ordering and optical selection rules in the wurtzite structure semiconductors, as it was

disscused in Chapter 2, and assuming that PL peak corresponts to the band-to-band

transition from the conduction band to the topmost valence band, a simple schematic

representation of the transitions for AlInN with a negative crystal field splitting energy

(∆cf < 0) can be done, as it is shown in Figure 8.11. One must note that from the SE

measurements, the transition energy is evaluated from the absorption onset, therefore

the determined transition value for the alloy (which normally possesses the composition

fluctuations) will correspond to the average value. Here, the investigated samples are

(0001)-oriented, therefore, only the transition A and C will be detected from the SE

measurements. If the alloy composition fluctuations are not very large, one can expect

that the PL band-to-band peak value should be very close to the transition B. The

difference between transitions A and B is denoted as ∆EAB. In previous studies, the
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Figure 8.9: AlInN band-gap experimental
values and experimental band-gap bowing
curve with a composition dependent bow-
ing parameter bA(x) compared with the
ab initio calculated data for uniform AlInN
alloy from the work of Gorczyca et al [128].
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Figure 8.11: Schematic representation of
the transition energies for the wurtzite semi-
conductor with negative crystal-field split-
ting energy ∆cf<0. Transitions A, B and
C represent the transitions allowed for the
configurations E⊥c, E‖c, andE⊥c, re-
spectively. Transition PL indicates the
band-to-band transition from the CB to
the topmost VB. The horizontal dashed
lines represent the average level of the CB
or VBs for the alloy with a compositional
fluctuations.

optical anisotropy was investigated and the splitting between the transitions A and

B were determined to be ∼−210 meV [30, 77] and ∼25 meV [68], for AlN and InN,

respectively. By using the interpolation for the determined splitting values for AlN and
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8.3 AlInN dielectric function and its analytical representation

InN and introducing the bowing factor of 0.83 eV [5], it is possible to determine the

∆EAB in the whole compositional range. Now, the transition EB can be expressed as

EAlInN
B = EAlInN

A +∆EAlInN
AB (8.7)

where EAlInN
A is expressed by Eq. 8.5 and ∆EAlInN

AB = −0.21 × (1 − x) + 0.03 × x −
0.83 × x × (1 − x). The calculated curve of the transition EB is shown in Fig. 8.10

and describes well the PL data from Kamimura et al [154]. However, the PL data for

the pseudomorphically grown AlInN films are slightly below this curve (possibly due

to strong composition fluctuations in the alloy; no spacial resolution PL studies were

performed on these samples).

By using the determined high-energy transitions from the work of Goldhahn et al

[142] for In-rich AlInN alloys together with the values obtained in this work, the bowing

factors b1, b2, and b3 for the high-energy critical points E1, E2, and E3 were found to

be 1.59 ± 0.07 eV, 2.52 ± 0.26 eV, and ∼0, respectively. The high-energy inter-band

transitions together with the band-gap values as a function of In content are depicted

in Figure 8.12.
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8.3.3 Dispersion below the band gap and high-frequency diel ectric
constant

In this section, the real part of the isotropic DF below the band gap for the investigated

SA and SI sample series will be presented in the analytical form as well as the values of

high-frequency dielectric constants ε∞ and its linear interpolation will be deduced.

The dispersion of ε1 for AlInN samples in the transparent region (below the band

gap) can be presented in the analytical form by using a simplified analytical expression

(3.22) from Chapter 3.2. The high-frequency dielectric constants (ε∞) are obtained by

fitting experimentally obtained ε1 below the band gap with the analytical expression

(3.22) and by extrapolating this expression to zero photon energy (~ω → 0). Their values

together with the fitted parameters are listed in Tab. 8.4. By extrapolating obtained

ε∞ values for x<0.2, the following expression of high frequency dielectric constant as a

function of In content for AlInN alloys is obtained:

ε∞ = 2.78× x+ 4.12 (8.8)

By employing the parameters from Tab. 8.4 and applying the Eq. 3.22, ε1 values

below the band gap are generated, as it is shown in Fig. 8.13 together with the AlN

and GaN ε1 values used for comparison. The precise ε1 (or refractive index n1 =
√
ε1)

values below the band gap are needed for the optoelectronic device development.

Sample ε∞ AG EG AH EH

(eV) (eV) (eV)

AlN 4.11 2.91 6.16 34.90 10.26

SA1 (14.3%) 4.54 1.53 4.52 40.01 8.81

SA2 (17.5%) 4.61 1.82 4.38 38.85 8.82

SA3 (19.0%) 4.65 1.47 4.21 41.15 8.87

SA4 (22.8%) 4.71 1.40 4.02 41.63 8.82

SI1 (17.4%) 4.61 2.47 4.37 36.71 10.43

SI2 (24.2%) 4.67 2.34 3.85 36.73 11.31

Table 8.4: High-frequency dielectric con-
stant for the investigated (0001)-oriented
AlInN samples and fitted parameters of
Eq. (3.22).
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for comparison.

8.4 Optical anisotropy of a-plane Al 0.8In0.2N

In previous section 8.3, the isotropic DFs of the AlInN alloys were determined in the en-

ergy range 1-10 eV and the extended energy range up to 18 eV. In these studies, however,

c-plane samples were investigated by ellipsometry (almost a configuration E⊥c) and,

thus, only so called isotropic DFs were determined. Now, by investigating an a-plane

Al0.8In0.2N sample SN and measuring it by ellipsometry at two configurations (i.e., the

c-axis is perpendicular and parallel to the plane of incidence), it is possible to determine

both ordinary and extraordinary DFs.

The following notations indicate the transitions from VBs to CB are used: A (Γv
9

→ Γc
7), B (Γv

7+ → Γc
7) and C (Γv

7− → Γc
7). According to the optical selection rules

for an unstrained material with ∆cf<0, the transitions A and C are dominated for

configuration E⊥c, while transition B is dominated for configuration E‖c.

The complex ordinary and extraordinary DFs obtained for a non-polar sample SN

are shown in Figure 8.14. A pronounced optical anisotropy is observed in the whole

investigated photon energy range 1-6 eV. If one looks closer near the band gap region,

one can notice that the absorption onset for the extraordinary imaginary part of the DF

is red-shifted with respect to absorption onset of the ordinary imaginary part of the DF.

This is fully consistent with the VB ordering for the materials with a negative crystal field

splitting energy ∆cf<0 such as in AlN [77] but opposite to the polarization anisotropy of

InN [7] with ∆cf>0. The difference between transition energies EA and EC is very small
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8 Optical properties of AlInN alloys

∼13 meV, therefore, it is not resolved. From the fit of the analytical model (described

by Eqs. 3.21-3.18 in Chapter 3.2) to the ordinary and extraordinary experimental DFs,

the inter-band transitions EA=4.44 eV and EB=4.24 eV (fundamental band gap) are

determined, which correspond to the transition energies A and B, respectively. The

difference between transition EA and EB amounts to ∆EAB=EB-EA=∼−200 meV.

The ordinary and extraordinary DFs describe the optical response of the material

for configurations E⊥c and E‖c, respectively. According to the optical selection rules

for unstrained Al-rich AlInN alloy the transition A is allowed for configuration E⊥c,

while transition B for E‖c. By using the k·p method [70] and employing the parameters

from Tab. 2.1 in Chap. 2, the relative oscillator strengths for the strained AlInN layer are

evaluated: for configuration E‖x fAx =0.89, fBx=0.01, and fCx=0.10; for configuration E‖y
fAy =0.10, fBy =0.01, and fCy =0.89; for configuration E‖z fAz =0, fBz =0.99, and fCz =0.01. The

calculated relative oscillator strengths indicate that for the configuration E⊥c (i.e. E‖x
or E‖y) the transition B probability is almost zero, while for the configuration E‖c (i.e.

E‖z ) the transition B probability is almost 1. The strain-free energy difference ∆Erelax
AB

was evaluated to be ∼−296 meV. By using a linear interpolation for the determined

splitting values for AlN of ∼−210 meV [77] and InN of ∼25 meV [68], the ∆EAB is

obtained to be −163 meV at x=20%. Only, by introducing a bowing factor of 0.83 eV,

the splitting value of −296 meV is obtained.

The analytical forms of the real part of the ordinary and extraordinary DFs (ε1,o
and ε1,e) in the transparent region (below the band gap) are needed for optoelectronic
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Figure 8.14: Complex ordinary and ex-
traordinary DFs for Al0.8In0.2N alloy.
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8.5 Summary of Chapter 8

DF ε∞ AG EG AH EH

(eV) (eV) (eV)

ε1,o 4.57 3.04 4.13 28.56 11.79

ε1,e 4.80 3.16 4.01 29.64 12.48

Table 8.5: Ordinary and extraordinary high-
energy dielectric constants for sample SN and
fitting parameters of Eq. (3.22).

device design. The dispersion of ε1 for non-polar AlInN sample in the transparent region

(below the band gap) is expressed by the Eq. 3.22, as it was described in Chapter 3.2.

The ordinary and extraordinary high-frequency dielectric constants (ε∞,o and ε∞,e)

values together with the model parameters are represented in Tab. 8.5. By using the ex-

pression n1,j =
√
ε1,j (j=e,o) (which is valid in the transparent region) and Eq. (3.22), we

present the refractive indices n1,o and n1,e for Al0.8In0.2N as a function of photon energy

together with GaN and AlN for comparison in Fig. 8.15. The extraordinary refractive

indices for AlInN as well as for GaN and AlN have a higher values in the transparent

region, indicating the positive birefringence. The difference ne-no for Al0.8In0.2N was

found to be 0.068 at photon energy of 3 eV. The GaN extraordinary and ordinary refrac-

tive indices cross approaching the band gap, while the indices for AlInN alloy diverge,

as it can be observed in Fig. 8.15.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

no

AlN
ne

no

ne
no

GaN

 

 

R
ef

ra
ct

iv
e 

in
de

x 
- n

Photon energy (eV)

Al0.8In0.2N

ne

Figure 8.15: Ordinary and extraordi-
nary refractive indices dispersion for
Al0.8In0.2N alloy. For comparison,
dashed and dash dotted lines show the
refractive indices for GaN [155] and AlN
[77], respectively.

8.5 Summary of Chapter 8

The optical properties of the AlInN films nearly lattice matched to a GaN were investi-

gated. The isotropic DFs and their analytical representations were demonstrated in the

photon energy range 1-10 eV. The isotropic DF was also measured in the extended energy
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8 Optical properties of AlInN alloys

range up to 18 eV for InAnN sample with 14.3% In content. The critical points of the

band structure were observed in the high-ernergy range. The fit of the analytical model

to the experimental DFs allowed to estimate the band gap EA, i.e., the transition from

Γv
9 valence band to the Γc

7 conduction band. The strain-corrected band-gap values were

obtained after applying the k·p method. The strain-free band-gap EA bowing param-

eter was found to be composition dependent and is expressed as bA=6.24/(1+1.13·x2),
where x is an In content. The investigation of an a-plane AlInN sample with In content

of 20% gave an access to both ordinary and extraordinary DFs. The strong optical

anisotropy was observed for the a-plane sample in the whole investigated range 1-6 eV.

The difference between the estimated band gaps for two configurations E⊥c and E‖c
was found to be ∼200 meV.
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AlInGaN alloys

In previous Chapters, the strain-free band-gap bowing parameters, which allow to deter-

mine the band gap in the whole compositional range, were determined for the ternarnary

InGaN and AlInN alloys. Now, the question arises: is it possible to find a band-gap

bowing parameter for the quaternary alloy? The AlxInyGa1−x−yN band gap can be

tuned with a higher degree of freedom by changing the Al, In, or Ga content. Moreover,

the composition determination in the quaternary alloy becomes more complicated by

applying HRXRD. Alternative characterization techniques are needed (e.g., Rutherford

backscattering spectroscopy analysis). In this Chapter, the isotropic DFs and their an-

alytical representations of the (0001)-oriented AlInGaN films will be presented in the

energy range from 1 eV up to 10 eV. By employing the known bowing parameters of the

ternary alloys, the empirical expression will be developed that allows to calculate the

band-gap and high-energy inter-band transitions for the quaternary AlInGaN alloys in

the whole compositional range. The calculated AlInGaN band-gap values will be com-

pared with both experimental data obtained by SE and the ab initio calculated data

for uniform alloy.

Figures 9.1-9.7, 9.9 and Tables 9.2-9.4, 9.9 are reprinted with permission from

Sakalauskas et al, Journal of Applied Physics, Vol. 110, Page 013102, (2011). Copyright

2011, American Institute of Physics.

9.1 Description of the investigated samples

The MOVPE was used to grow (0001)-oriented AlxInyGa1−x−yN samples with Al con-

tent 0.23<x<0.64 and In content 0.02<y<0.13. The samples are denoted as S1 to S6

representing increasing Al content in this ordering. Samples S2, S4, and S6 provided by

L. Rahimzadeh Khoshroo (RWTH Aachen University) were grown on c-plane sapphire

substrate with 350 nm AlN buffer, 3.5 µm thick GaN buffer, and 1 nm AlN interlayer,

as follows. Samples S1, S3, and S5 provided by B. Reuters (RWTH Aachen University)
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9 Optical properties of quaternary AlInGaN alloys

were grown analogically, except that GaN buffer thickness amounts to 3 µm and AlN

interlayer is not applied. The AlInGaN layer thickness varies from 77.5 to 140.6 nm as

determined by SE. The HRXRD measurements revealed pseudomorphic growth of the

AlInGaN films on GaN/sapphire templates. Lattice parameters of GaN buffer layers, as

determined by HRXRD, were evaluated to be a=3.182 Å and c=5.190 Å. The Ruther-

ford backscattering spectroscopy (RBS) analysis was performed to determine the alloy

composition (x, y), as listed in Tab. 9.1. The growth details of these studied samples

can be found elsewhere [10,156].

9.2 Optical selection rules for quaternary AlInGaN alloys

Before interpreting the DF, optical selection rules for quaternary AlInGaN material will

be considered. First of all, the VB ordering around the Γ point of the Brillouin zone

will be discussed. The valence band maximum (VBM) is splitted by the crystal field

(∆cf) and spin-orbit interaction (∆so) into three two-fold-degenerate VBs with Γv
9, Γ

v
7−,

and Γv
7+ symmetry, as it was discussed in Chapter 2.

Because the ∆so values for the binaries are almost identical, only special attention

should be paid to the crystal field. Valence band crossing for the AlxInyGa1−x−yN alloy

occurs at ∆cf=0 eV. Assuming that the AlxInyGa1−x−yN crystal-field splitting energy

is interpolated by using the following expression:

QAlInGaN(x,y) = (1− x− y) ·QGaN + x ·QAlN + y ·QInN, (9.1)

where QInN, QGaN, and QAlN correspond to InN, GaN, and AlN crystal-field splitting

energies, respectively, the crystal-field splitting energy is obtained -144 meV<∆cf<-

28 meV, as indicated with dashed lines in Fig. 9.1(a) for the investigated samples (0.23 <

x < 0.64 and 0.02 < y < 0.13). The band ordering for the alloys studied here is the

same as for AlN, i.e., the uppermost VB is characterized by Γv
7+ symmetry as shown in

Fig. 9.1(b).

By applying the k·p method, it is possible to calculate the relative valence band

energy and the oscillator strengths for AlInGaN alloys. All parameters used in the cal-

culations are interpolated from Eq. 9.1 by using the GaN, AlN, and InN endpoint values.

The k·p method is described in Chapter 2 and the parameters for k·p calculations are

employed from Table 2.1 in Chapter 2.

For the investigated AlInGaN samples, the transitions from the Γv
9 valence band

to the Γc
7 conduction band (labeled A) and from Γv

7− to Γc
7 (labeled C) exhibit strong
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9.2 Optical selection rules for quaternary AlInGaN alloys

(a) (b)

Figure 9.1: VB ordering for the AlInGaN alloy system as a function of crystal-field splitting
energy (∆so=13 meV). The dashed lines indicate the calculated crystal-field splitting energy
range for studied AlInGaN samples (a); Simplified scheme of transitions A, B, and C (for
∆cf < 0). Symbols ⊥ and ‖ indicate strong transition probability, meanwhile symbols (⊥)
and (‖) indicate weak transition probability for the respective polarization states (b).

relative oscillator strengths only for the configuration E⊥c. Thus, by measuring c-plane

AlInGaN samples with an ellipsometer (almost E⊥c), these transitions dominate the

optical response. In contrast, the transition from Γv
7+ to Γc

7 (labeled B) is strongly

allowed only for the configuration E‖c. The simplified valence band ordering scheme

sketched in Fig. 9.1(b) shows that transition B stems from the topmost valence band,

but its oscillator strength is weak, thus, it is hardly detectable in the ordinary and

isotropic DFs.

It is important to mention that an in-plane strain in the AlInGaN films can also

induce VB order and oscillator strength changes. Figure 9.2(a) shows the deduced

relative valence band ordering as a function of in-plane strain ǫxx for sample S2. The

VB crossing occurs at an in-plane strain of ≈-0.005. By increasing a compressive strain,

the relative oscillator strength for transition C decreases, while it increases for the

transition B as presented in Figure 9.2(b).

The in-plane strain values (ǫxx) are listed in Table 9.1. The determined ǫxx values

vary from -9.82×10−4 to 8.08×10−3. According to the assumption that the parameters

used in k·p calculations were interpolated using the Eq. 9.1 and considering the eval-

uated in-plane strain values, one can postulate that for the investigated samples the

transition A and C will dominate the optical response detected by SE.
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9 Optical properties of quaternary AlInGaN alloys

(a) (b)

Figure 9.2: Relative VB ordering (a) and oscillator strength for configuration E⊥c (b) as a
function of in-plane strain (sample S2).

9.3 AlInGaN dielectric function and its analytical

representation

The obtained isotropic DFs for samples S1, S3, and S5 are presented in Fig. 9.3. Pro-

nounced features attributed to critical points of the band structure are found in the

high-energy range of ε2. They have a strong impact on the dispersion of ε1 at lower en-

ergies. It is clearly seen in Fig. 9.3 that with decreasing Al content in the AlInGaN alloy,

the absorption onset (imaginary part of the dielectric function - ε2) redshifts. Following

the Kramers-Kronig relation, the ε1 peak also shifts to the lower energies.

Accurate analytical form of the DF is necessary for device modeling and analysis

of the material optical properties. In this section, it will be shown that the DFs of

Sample x/y (RBS) ǫxx

S1 0.23/0.02 1.08·10−3

S2 0.28/0.04 1.09·10−4

S3 0.41/0.03 4.39·10−3

S4 0.41/0.05 2.20·10−3

S5 0.56/0.03 8.08·10−3

S6 0.64/0.13 -9.82·10−4

Table 9.1: Al/In composition values (x/y)
evaluated by RBS as well as calculated in-
plane strain values.
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Figure 9.3: Isotropic DFs for sam-
ples S1, S3, and S5.

AlInGaN can be represented analytically by using the analytical model presented in

Chapter 3.2 (as it was already demonstrated in previous chapters for ternary AlInN and

InGaN alloys).

The analytical expressions (Eq. 3.18 and Eq. 3.21 in Chapter 3.2) were fitted simul-

taneously with the experimentally obtained AlInGaN real and imaginary parts of the

DF using the least square method. By fitting the analytical model to the experimental

DF, the band-gap (EA) and high-energy inter-band transitions (E1, E2, and E3) were

obtained. The parameter EC was fixed to be EA + 0.013 eV. The fitting parameters

are listed in Tab. 9.2. The experimental complex DF and its analytical form for sample

S3 are represented in Fig. 9.4.
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9 Optical properties of quaternary AlInGaN alloys

Table 9.2: Fitting parameters for the DF analytical model.

Fitting Sample
parameter S1 S2 S3 S4 S5 S6

A0 1.73 1.21 1.86 1.14 1.43 0.53
A1 (eV2) 45.90 44.09 46.02 39.86 42.93 39.18
A2 (eV2) 22.26 47.69 32.39 46.45 38.77 70.38
A3 (eV2) 65.26 87.32 46.44 91.90 58.97 91.16
ABS eV2) 2.7·10−1 6·10−2 2·10−4 2.5·10−1 5.8·10−2 6.5·10−1

ACS (eV) 1.17 1.07 1.20 1.05 1.68 0.61
AP (eV) 216.52 176.32 154.81 208.28 231.45 273.86
E1 (eV) 7.06 7.09 7.20 7.17 7.39 7.49
E2 (eV) 7.99 7.99 8.12 8.03 8.25 8.40
E3 (eV) 9.05 9.12 9.05 9.09 9.03 9.48
EA (eV) 3.74 3.74 4.06 3.95 4.56 4.27
EC (eV) EA+0.013 EA+0.013 EA+0.013 EA+0.013 EA+0.013 EA+0.013
EP (eV) 19.61 15.38 17.14 16.28 18.40 16.46
Γ0 (eV) 2.6·10−2 4.2·10−2 0.11 5.5·10−2 3.7·10−2 1.5·10−2

Γ1 (eV) 0.92 0.89 1.11 0.94 1.07 1.18
Γ2 (eV) 0.84 1.32 1.29 1.40 1.33 1.65
Γ3 (eV) 1.99 2.11 1.81 2.30 1.91 2.46
ΓBS(eV) 0.09 0.07 1.72 1.66 6.84 1.63
ΓCS(eV) 0.05 0.14 0.12 0.21 0.12 0.12
R (meV) 12 19 12 19 29 23
b -2.43 -2.45 -1.79 -2.85 -2.84 -4.05

9.3.1 Compositional dependence of the characteristic tran sition
energies

In this section, the empirical expression, which allows to describe the band-gap EA

and high-energy inter-band transitions E1, E2, and E3 of quaternary AlInGaN alloys in

the whole composition range (x, y), will be proposed. By employing the ternary alloy

bowing parameters and binary endpoint values, determined in previous studies (listed

in Tab. 9.3 and 9.4, respectively), and applying the following expressions [57]:
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9.3 AlInGaN dielectric function and its analytical representation

EAlInGaN
j=A,1,2,3 = (1− x− y) · EGaN

j + x · EAlN
j

+y · EInN
j − bAlGaN

j · x · (1− x)

−bInGaN
j · y · (1− y)− bxy · x · y,

(9.2)

bxy = bAlInN
j − bAlGaN

j − bInGaN
j , (9.3)

the band-gap (EA) and high-energy transition energies (E1, E2 and E3) are calculated.

9.3.1.1 Band gap

The studied AlInGaN films were pseudomorphically grown on GaN buffer layers, there-

fore, they experience compressive or tensile strain (depending on the alloy composition)

which causes the strain induced band-gap shift ∆Estrain
A . The strain induced band-gap

shift ∆Estrain
A is calculated by applying k·p method, as it was described in Chapter 2.

All AlxInyGa1−x−yN parameters (spin-orbit, crystal-field splitting energy, deformation

potentials, lattice parameters, and elastic stiffness constants) used for k·p calculations

are deduced from InN, GaN and AlN parameters by using a linear interpolation accord-

ing to Eq. 9.1.

The strain-induced energy shift ∆Estrain
A calculated from the k·p model around the

Γ point of the Brillouin zone, transition energy EA obtained from the DF (influenced

by strain), and derived unstrained transition energy Erelax
A = EA −∆Estrain

A values are

summarized in Table 9.5.

Now, the band-gap values will be calculated from Eq. 9.2 and will be compared with

both ab initio and experimental data. The transition EA endpoint values are 0.675 eV,

bA (eV) b1 (eV) b2 (eV) b3 (eV)

InGaN 1.65 1.06 0.99 1.04

AlGaN 0.9 [84] 0.2 [84] 0.1 [84] 0.5 [84]

AlInN bA(x)= A
1+C· x2 1.59 2.52 0

A=6.24; C=1.13

Table 9.3: Bowing parameters
for ternary alloys.
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9 Optical properties of quaternary AlInGaN alloys

EA (eV) E1 (eV) E2 (eV) E3 (eV)

InN 0.675 [121] 5.38 [121] 6.12 [121] 7.95 [121]

GaN 3.435 [24] 6.99 [84] 7.96 [84] 9.25 [84]

AlN 6.24 [30] 7.97 [84] 8.95 [84] 8.84 [84]

Table 9.4: Endpoint values.

Sample expt. EA ∆Estrain
A Erelax

A calc. EA

(eV) (eV) (eV) (eV)

S1 (0.23/0.02) 3.74 -0.01 3.75 3.82

S2 (0.28/0.04) 3.74 ∼0 3.74 3.83

S3 (0.41/0.03) 4.06 -0.04 4.10 4.20

S4 (0.41/0.05) 3.95 -0.02 3.97 4.09

S5 (0.56/0.03) 4.56 -0.06 4.62 4.61

S6 (0.64/0.13) 4.27 0.01 4.26 4.32

Table 9.5: Experimental and
calculated transition energies
EA.

3.435 eV, and 6.24 eV for InN, GaN, and AlN, respectively, as listed in Tab. 9.4. The

bowing parameter values (bA) for ternary alloys are employed from Tab. 9.3. By using

EA endpoint values and ternary alloy bowing parameters (bA) in Eq. 9.2, it is possible

to generate the band-gap values in the whole compositional range (x, y), as shown in

Figure 9.5.

The calculated AlInGaN band-gap values from Eq. 9.2 together with the experi-

mentally determined band-gap values are summarized in Table 9.5. The calculated and

experimental values are in good agreement. Figure 9.6 shows the band gap as a func-

tion of x and y in colour map. The black circles indicate the experimentally determined

values from SE.

The ab initio calculated band-gap values for the uniform (not clustered) Al0.62−yIny

Ga0.38N alloy in the work of Gorczyca et al. [128] are also in good agreement with the

generated values from Eq. 9.2, as shown in Figure 9.7.

Table 9.6: Experimental PL peak values EPL, band-gap values determined from ellipsometry

EA, calculated difference Erelax
A , and calculated difference ∆EAB from ical expression (9.4).

Sample EPL Erelax
PL Erelax

PL -Erelax
A ∆EAB (Eq. 9.4)

(eV) (eV) (eV) (eV)
S1(0.23/0.02) 3.69 3.71 -0.04 -0.044
S3(0.41/0.03) 3.96 4.05 -0.05 -0.090
S5(0.56/0.03) 4.32 4.49 -0.13 -0.127
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Figure 9.6: Colour map of the AlInGaN
band gap as a function of Al content (x)
and In content (y) generated using Eq. 9.2.
Black circles indicate the experimental data
points determined from SE for samples S2,
S4, and S6.

Additionally, the PL measurements were performed by the research group of prof.

G.P. Yablonskii (Stepanov Institute of Physics, National Academy of Science Belarus)

at RT for samples S1, S3, and S5 by using an excitation wavelength λ=213 nm and

excitation power of ∼300 kW/cm3. Fig. 9.8 shows the PL peak values obtained at RT

(indicated by triangles) together with the band-gap values determined from SE at RT

(indicated with squares) as a function of lattice parameter a. In order to have a better

comparison, PL peak values (EPL) and strain-corrected PL values (Erelax
PL ) together with

the calculated difference (Erelax
PL -Erelax

A )) are listed in Table 9.6. One can observe the

difference between PL and SE values, it even mounts up to -130 meV for sample S5 with

the highest Al content. To understand this difference between PL and SE values, the

same explanation will be taken as it was done for AlInN samples in Chapter 8, section
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RT as a function of lattice parameter a.

8.3.2. It is assumed that the PL peak value corresponds to the band-to-band transition

from the conduction band to the topmost valence band. For the investigated AlInGaN

alloys the crystal-field splitting energy is negative ∆cf < 0. The topmost valence band

is Γv
7+. The following expression to calculate the difference between the transitions A

and B (∆EAB = EB − EA) is proposed:

∆EAB(x,y) = 0.01 · (1− x− y) + (−0.21) · x+ 0.03 · y − 0.83 · x · y. (9.4)

Here, the ∆EAB bowing parameter of 0.83 eV for the AlInN alloy is employed, as

it was determined from Chapter 8, section 8.4. The endpoint ∆EAB values of ∼0.01 eV

[155], ∼-0.21 [30,77], and ∼0.03 [68] are used for binary GaN, AlN, and InN. Table 9.6
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9.3 AlInGaN dielectric function and its analytical representation

x/y EPL@RT calc. EA (Eq. 9.2)

(eV) (eV)

0.08/0.01 3.61 [157] 3.56

0.08/0.02 3.48 [157] 3.51

0.08/0.015 ∼3.54 [157] 3.53

0.05/0.01 3.508 [158] 3.499

0.075/0.04 3.39 [159] 3.41

0.06/0.15 2.90 [160] 2.90

0.01/0.08 3.20 [160] 3.12

0.1/0.001 3.55 [160] 3.64

0.02/0.08 3.14 [161] 3.14

Table 9.7: Experimental PL peak values
measured at RT by different groups and cal-
culated transition energies EA from Eq. 9.2.

compares the calculated ∆EAB with the Erelax
PL -Erelax

A values and good agreement is

found for samples S1 and S5.

Moreover, several band-to-band PL peak data for AlxInyGa1−x−yN with x<0.1

(measured at RT by other research groups) were collected and listed in Table 9.7. Since

Al content in these samples is low (x<0.1), thus, the crystal-field splitting energy will

be small for these samples. Consequently, the PL peak value is expected to be very

close to the transition EA. Table 9.7 compares the PL peak values with the calculated

transition energy EA values. Indeed, the PL peak values are very close to the calculated

EA values. It is important to mention that for the PL peak values presented in Tab. 9.7,

the strain influence was not taken into consideration.

9.3.1.2 High-energy inter-band transitions

In this section, the experimentally determined high-energy inter-band transitions (E1,

E2, and E3), which correspond to the CPs of the band structure, will be compared with

the calculated values from Eq. 9.2. It is worth to emphasize that in previous ellipsometry

studies conducted on binary nitrides [1,68], the strain influence on the high-energy inter-

band transitions was not noticed. Therefore, we assume that the high-energy inter-band

transitions for quaternary alloys will not be influenced by strain.

By employing the transition energies E1, E2, and E3 endpoint values (listed in

Tab. 9.4) and the bowing parameters of ternary alloys (listed in Tab. 9.3) in Eq. 9.2,

it is possible to describe the transition energies in the whole composition range (x, y).

The calculated values are in good agreement with the experimental values (summarized

in Table 9.8).
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9 Optical properties of quaternary AlInGaN alloys

Table 9.8: Experimental (obtained from the DF modelling) and calculated (from Eq. 9.2)
high-energy inter-band transition energies E1, E2, and E3.

Sample expt. E1 calc. E1 expt. E2 calc. E2 expt. E3 calc. E3

(eV) (eV) (eV) (eV) (eV) (eV)
S1 (0.23/0.02) 7.06 7.13 7.99 8.11 9.05 9.03
S2 (0.28/0.04) 7.09 7.11 7.99 8.09 9.12 8.96
S3 (0.41/0.03) 7.20 7.26 8.12 8.24 9.05 8.91
S4 (0.41/0.05) 7.17 7.20 8.03 8.17 9.09 8.88
S5 (0.56/0.03) 7.39 7.40 8.25 8.38 9.03 8.85
S6 (0.64/0.13) 7.49 7.21 8.40 8.10 9.48 8.71

9.3.2 Dispersion below the band gap and high-frequency diel ectric
constant

In this section, the high-frequency dielectric constants ε∞ will be derived for the inves-

tigated AlInGaN samples. The dispersion of ε1 for AlInGaN samples in the transparent

region (below the band gap) is expressed by the analytical expression as described in

Chapter 3.2 by Eq. 3.22.

The high-frequency dielectric constants together with the fitted parameters of Eq.

3.22 are represented in Tab. 9.9. In Figure 9.9, the ε1 values are presented as a function

of photon energy for AlInGaN samples together with AlN and GaN for comparison.

The precise ε1 (or refractive index - n) values are needed for optoelectronic device

development.
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Figure 9.9: Real part of the DF (ε1) for
samples S1, S3, and S5 in the transparent
region (below the band gap).
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9.4 Summary of Chapter 9

Sample ε∞ AG EG AH EH

(eV) (eV) (eV)

S1 4.93 1.89 3.67 38.74 8.42

S2 4.90 2.20 3.76 38.05 9.08

S3 4.82 1.96 4.07 41.72 9.68

S4 4.85 1.49 3.87 41.80 8.60

S5 4.46 2.04 4.57 36.35 8.96

S6 4.55 2.25 4.47 39.12 11.01

Table 9.9: High-frequency dielectric constant
and fitted parameters.

9.4 Summary of Chapter 9

The isotropic DFs and their analytical representations were presented for the (0001)-

oriented quaternary AlInGaN alloys in the photon energy range 1-10 eV. Critical points

of the band structure E1, E2, and E3 were observed in the high-energy range. With the

knowledge of the ternary InGaN, AlInN, and AlGaN alloy band-gap bowing parameters,

the empirical expression was developed that allows to calculate the band-gap and high-

energy inter-band transitions for the quaternary AlInGaN alloy. The band-gap values

calculated from this empirical expression are in good agreemnent with both experimental

SE and the ab initio data.
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10 Summary

In this work, optical properties of wurtzite structure InN and related alloys were in-

vestigated. The spectroscopic ellipsometer (SE) was used as the main characterization

tool for the analysis of the optical properties. The mid-IR range (300 - 2000 cm−1) was

investigated by applying an IR-SE. A commercial variable angle ellipsometer together

with a synchrotron ellipsometer allowed to cover the spectral range from the near IR up

to VUV (0.56 - 18 eV).

The dielectric functions (DFs) as well as the layer thicknesses of the investigated

samples were obtained by applying the multilayer optical model. The so called ellipso-

metric parameters Ψ and ∆ obtained from the SE measurements are fitted by using a

multilayer model. A multilayer model includes a substrate and buffer layers with the

known optical constants. The surface or interface roughness is taken into consideration

by applying an effective-medium approximation. By analyzing the polar sample (i.e.,

c-axis is perpendicular to the sample’s surface plane), the so called isotropic DF is ob-

tained that is very close to the ordinary DF [78]. For non-polar samples (i.e., the c-axis

is parallel to the sample’s surface plane) it is possible to extract both ordinary and

extraordinary DFs.

The DF reflects optical properties of the investigated sample, e.g., a band gap

and critical points (CPs) of the band structure (high-energy inter-band transitions).

However, a band gap, can not be extracted directly from the absorption onset (imaginary

part of the DF around the gap). For example, an InN material is a low band gap

degenerate semiconductor with the Fermi level above the conduction band minimum.

The effects, such as the band-gap renormalization and the Burstein-Moss shift, must be

taken into consideration. The optical selection rules also must be considered. The crystal

field and spin-orbit interaction split the valence band maximum into three two-fold-

degenerate valence bands with Γv
7+, Γv

7−, and Γv
9 symmetry. For instance, by measuring a

polar sample by SE, the configuration is almost E⊥c. Therefore, only transitions allowed

for this configuration are determined for polar samples. Meanwhile, by measuring the

non-polar sample, one can determine the transitions allowed for both configurations
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10 Summary

E⊥c and E‖c. And finally, the strain influence on the band gap must be accounted

for. The investigated InN and In(Al,Ga)N samples are grown on the different substrates

and different buffer layers. Due to a lattice mismatch and different thermal expansion

coefficients, the grown epilayer experience compressive or tensile strain. A k·p method

is used to calculate the strain induced band-gap shift.

Moreover, the analytical DF model developed by Goldhahn et al [162] was suc-

cessfully applied for the ternary InGaN and AlInN alloys as well as for the quaternary

AlInGaN alloys in the energy range from 1 eV up to 10 eV. The fit of the analytical

model to the experimental DFs allows to determine the band gap (EA, EB) as well as the

high-energy inter-band transitions (E1, E2, and E3). The estimated high-energy inter-

band transition energies are in good agreement with the values determined from the

third-derivative method developed by Aspnes [134]. For the analytical representation of

the DF in the transparent range and the high-frequency dielectric constant estimation,

the analytical model developed by Shokhovets et al [85] is applied.

The intrinsic band gap and the carrier concentration for the unintentionally and car-

bon doped (0001)-oriented InN samples are evaluated by solving a self-consistent prob-

lem that includes the IR-SE ellipsometry data analysis and the imaginary DF around the

band gap calculation, as it was proposed by Schley et al [121]. The intrinsic strain-free

fundamental band gap for the investigated InN samples was evaluated to be ∼0.65 eV.

From the analysis, it was shown that for the carbon doped samples the electron con-

centration increases linearly by increasing the CBr4 dopant pressure during the MBE

growth process. For the unintenionally doped InN samples the isotropic DFs were ex-

tracted up to 9.5 eV. Characteristic peaks of the band structure denoted as D, E1, E2,

E3 and E4 were observed. For the selected carbon doped InN samples, the isotropic

DFs were determined in the extended range up to 17 eV. The additional CPs of the

band-structure E5 and E6 were observed in the extended energy range. Despite the

different in-plane strain in the different InN epilayers, no shift of the energetic positions

of the CPs were observed.

For the (0001)-oriented InxGa1−xN samples with 0.15<x<0.19, the isotropic DFs

were obtained in the range 1-10 eV. From the fit of the analytical model to the exper-

imental DFs, the fundamental band gaps were estimated. The band gap values were

strain corrected by applying the k·p formalism. Combining the results for In-rich In-

GaN samples obtained in the work of Schley et al [121], the strain-free band-gap bowing

parameter was estimated to be 1.65±0.07 eV. The high-energy inter-band transitions E1,

E2, E3 were also obtained from the analytical model fit and the bowing parameters were
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evaluated to be ∼1 eV. Moreover, the sample with In content of 15.2% was measured

by SE in the extended energy range up to 17 eV and the critical points E4 and E5 were

observed at energies of 10.8 eV and 12.6 eV, respectively.

An attention must be paid for the optical selection rules of the Al-rich AlInN and

AlInGaN alloys. Since the AlN has a huge negative crystal-field splitting energy of

∆cf=-212 meV [30], it is expected that the Al-rich AlInN and AlInGaN alloys will have

a large splitting between Γv
7+ and Γv

9, Γ
v
7− VBs at the Γ point. For the material with

a negative crystal field energy, the transition from the top-most valence band Γv
7+ to

the conduction band Γc
7 (denoted as EB) is strongly allowed for a configuration E‖c.

While the transitions from the VBs Γv
9 and Γv

7− to the conduction band Γc
7 (denoted as

EA and EC, respectively) are strongly allowed for a configuration E⊥c. The splitting

between Γv
9 and Γv

7− caused by a spin orbit-interaction is very small, therefore it is not

resolved in the spectroscopic ellipsometry measurements and only a transition EA can

be probed.

For the series of polar Al-rich AlInN films nearly lattice matched to GaN, the

transitions EA (Γv
9 −→ Γc

7) are determined from the fit of the analytical model to the

experimental isotropic DF. The strain induced band gap shift was calculated by using

the k·p method. By combining the latter data and the data obtained for In-rich AlInN

alloys from the work of Goldhahn et al [142], the strain-free band gap (EA) bowing

parameter was obtained to be 5.36±0.36 eV. However, it was noticed that the bowing

curve with a bowing parameter of 5.36 eV does not describe well the experimental data

points in the whole compositional range. Therefore, the new composition dependent

bowing parameter bA = bA(x) = 6.24/(1 + 1.13 × x2) was proposed. The composition

dependent bowing parameter bA(x) describes very well the experimental data points

and is in a good agrrement with the ab initio calculated band gap values from the work

of Gorczyca et al [128]. The high-energy inter-band transitions were also determined

from the fit of the analytical model. The bowing parameters for high-energy transitions

E1, E2, and E3 were obtained to be 1.59 eV, 2.52 eV, and 0 eV, respectively. One AlInN

sample with In content of 14.3% was measured in the extended energy range up to

18 eV, and the CPs E4, E5 and E6 were observed at ∼10.6 eV, ∼12.5 eV, and ∼14.2 eV,

respectively.

In addition, a non-polar (11-20)-oriented Al0.8In0.2N was investigated and the or-

dinary and extraordinary DFs were determined in the spectral range between 1 eV and

6 eV. The strong optical anisotropy was observed in the whole investigated range. The

extraordinary refractive indices for AlInN have a higher values in the transparent region,
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indicating a positive birefringence. The difference ne-no for Al0.8In0.2N was found to be

0.068 at photon energy of 3 eV. The transitions EA and EB (fundamental band gap)

were determined to be 4.44 eV and 4.24 eV, respectively. The difference between the

transition EA and EB was estimated to be ∆EAB=EB-EA=-200 meV, as it was expected

for an Al-rich alloy due to the large negative crystal-field splitting energy of AlN [30].

Analogously as for the ternary alloys, the strain-free transition energies EA and

high-energy inter-band transitions E1, E2, and E3 were determined for the (0001)-

oriented quaternary AlxInyGa1−x−yN alloys with 0.16<x<0.64 and 0.02<y<0.13. With

the knowledge of the bowing parameters of ternary alloys InGaN, AlInN, and AlGaN [84],

it was possible to develop an empirical equation that allows to determine the transition

energy EA as well as the high-energy inter-band transitions E1, E2, and E3.
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