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Kurzfassung

Allgegenwirtige Begleiter von Hauptreihensternen sind die sogenannten Triimmerschei-
ben. Sie sind Uberreste der Planetenentstehung und bestehen aus Planetesimalen, wel-
che in gegenseitigen Kollisionen kleinen Staub produzieren. Und es ist dieser Staub,
welcher entweder im Streulicht des Sterns oder durch thermische Emission beobachtet
werden kann. Durch Modellierung kénnen dann Riickschliisse vom Staub auf den staub-
produzierenden Planetesimalgiirtel gezogen werden und es besteht durchaus sogar die
Moglichkeit, Zwangsbedingungen an die Existenz von Planeten in solchen Systemen zu
kniipfen. Der dominierende Teil der Triimmerscheibe des Sonnensystems ist der Kui-
pergiirtel (EKB), in dem die Situation umgekehrt ist. Hier kennen wir die Mutterkdrper
des Staubes, die transneptunischen Objekte (TNOs), und die Planeten. Jedoch ist das Wis-
sen iliber den Staub begrenzt, da eine Detektion auf Grund der starken Emission des Zo-
diakallichtes unmoglich ist. Unter Anwendung derselben Kollisionsmodelle fiir extraso-
lare Triimmerscheiben auf das Sonnensystem, jedoch von Planetesimalen zu Staub, ist es
moglich, die Verbindung zwischen Planetesimalen und Staub besser zu verstehen. Dieses
Modell kann dann als Referenzmodell fiir alle Triimmerscheiben verwendet werden.

Zu diesem Zwecke wird die Datenbank der TNOs neu analysiert und ein Algorithmus
zur Beseitigung des Entfernungs- und Inklinationsfehlers entwickelt. Aus der bekannten
Population der TNOs wird so die ,,wahre“. Dessen Masse betriagt Mgxg = 0,12Mg und ist
damit zirka 15 mal so schwer wie die Masse der bisher bekannten Objekte.

Mit diesem Ergebnis wird der Staub mittels unseres Kollisionscodes erzeugt. Der Ein-
fluss von gravitativer Streuung und des Resonanzeinfangs von Planeten wurde in die re-
sultierenden Staubverteilungen genauso eingearbeitet, wie der Vorgang der Sublimation.

Den grofiten Einfluss auf die Menge und die Verteilung des Staubes haben die subkilo-
metergroen Objekte. Diese sind jedoch nicht beobachtbar und auch Kollisionsmodellie-
rung ist nicht moglich, da sich Objekte, die groBer als 10...60 m sind, nicht im Kollisi-
onsgleichgewicht befinden. Um weitere Einschrinkungen zu finden, werden Messungen
der New Horizons Sonde verwendet. Wir zeigen, dass ein Knick in der GroBenverteilung
bei s < 70 km dringend notwendig ist, um konsistent mit den Messungen zu bleiben. Soll-
te dieser Knick ebenso bei anderen Triimmerscheiben vorhanden sein, wire die Gesamt-
masse der Planetesimale in vorangegangenen Untersuchungen unterschétzt worden. Trotz
der Einschriankungen existieren weiterhin verschiedene Modelle, den nahezu konstanten
Staubfluss in der Nidhe der Gasriesen zu rekonstruieren, welche auch die Zwangsbedin-
gungen des COBE-Teleskops nicht verletzen. Die resultierende Kuipergiirtelstaubscheibe
ist entweder transportdominiert oder an der Grenze zwischen transport- und kollisionsdo-
miniert. Die parallele optische Dicke betrigt 7(r > 10 AU) ~ 107° und die partielle
Leuchtkraft f; ~ 1077. Es zeigt sich, dass Planeten und Sublimation nur einen Kklei-
nen Einfluss auf den Staub- und thermischen Fluss haben. Die spektrale Energievertei-
lung des Kuipergiirtels, gesehen von einer Entfernung von 10 pc hitte ihr Maximum bei
40...50um mit F = 0,5mly, was weniger als 1% des Photospherenflusses bei diesen
Wellenlidngen entspricht. Daraus schlieen wir, dass EKBs mit dhnlichen Eigenschaften
selbst mit dem aktuellen Herschel/PACS Instrument nicht entdeckbar sind.



Abstract

Debris disks are commonly found around main-sequence stars. As remnants of planet
formation, they consist of left-over planetesimals that produce small debris in mutual
collisions. It is these dust-sized fragments that can be observed in scattered stellar light or
through thermal radiation. Modelers then can draw conclusions from the dust on the dust-
producing planetesimal ring and it may even be possible to infer the existence of planets
in such systems. The dominant part of the Solar System’s debris disk is the Edgeworth-
Kuiper belt and the situation is reverse. Here, we know the parent bodies of dust, the
transneptunian objects, and the planets, but there is only sparse knowledge of the dust,
because it eludes detection due to the strong foreground emission of the zodiacal cloud.
Modelling the debris disk of the Solar System with the same collisional models as used
for other debris disks, but from planetesimals to dust, will help to understand the link
between planetesimals and dust. This model can serve as a natural reference model for all
debris disks.

Therefore, we re-analyze the current database of known TNOs and employ a new
algorithm to eliminate the inclination and the distance selection effects in the known
TNO populations to derive expected parameters of the “true” EKB. Its estimated mass
is Mgxg = 0.12Mg, which is larger by a factor of ~ 15 than the mass of the TNOs de-
tected so far.

Treating the debiased population of TNOs as parent bodies, we generate the dust with
our collisional code. The resulting dust distributions are modified to take into account the
influence of gravitational scattering and resonance trapping by planets on migrating dust
grains as well as the effect of sublimation.

The amount and distribution of dust are largely determined by sub-kilometer-sized bod-
ies. These are directly unobservable and their properties cannot be determined through
collisional modeling because objects larger than 10...60m in the present-day EKB are
not in a collisional equilibrium. To place additional constraints, we use in-situ mea-
surements of the New Horizons spacecraft within 20 AU. We show that, to sustain a
dust disk consistent with these measurements, the TNO population has to have a break
in the size distribution at s < 70km. If such a break is present in other debris disks
as well, than the total mass of planetesimals in these disks has been underestimated in
previous studies. However, even this still leaves us with several models that all cor-
rectly reproduce the nearly constant dust impact rates in the region of giant planet or-
bits and do not violate the constraints from the non-detection of the EKB dust thermal
emission by the COBE spacecraft. The modeled EKB dust disks, which conform to the
observational constraints, can either be transport-dominated or intermediate between the
transport-dominated and collision-dominated regime. The in-plane optical depth of such
disks is 7(r > 10 AU) ~ 107® and their fractional luminosity is f; ~ 107’. Planets and
sublimation are found to have little effect on dust impact fluxes and dust thermal emission.
The spectral energy distribution of an EKB analog as seen from 10 pc distance peaks at
wavelengths of 40...50pum at F' = 0.5 mJy, which is less than 1% of the photospheric
flux at those wavelengths. Therefore, EKB analogs cannot be detected with present-day
instruments such as Herschel/PACS.

Vi



1. Introduction

“Astronomy taught us our insignificance in Nature.”

Ralph Walw Cmerlon (1803:1882)

1.1. The (Outer) Solar System

When one asks people what they know about the Solar System, most of them surely know
about the Sun and a few planets. Fewer will remember that some of these planets have
moons and they saw comets and meteoroids in form of shooting stars. And very few
people have heard about the existence of an asteroid and Kuiper belt!. However, that is
only the big picture, the details are enormous.

Approximately 580 000 known objects are orbtiting the Sun in the main belt>. Another
~ 700 Atens, = 4300 Apollos, ~ 3600 Armors, ~ 5200 Trojans, ~ 170 Centaurs, ~ 1300
Edgeworth-Kuiper belt objects (EKBOs)® , and ~ 3200 comets* are known in the Solar
System. For all of these objects, e.g., size, albedo, color, surface features, and chemical
composition can be studied individually. The effort to acquire this knowledge reaches
from Earth-based surveys over space telescopes and space missions to spacecraft that fly
to an object, land on it, take samples, and bring them back to Earth like the Stardust or
the Hayabusa mission (see, e.g., Brownlee et al., 2006; Nakamura et al., 2011).

Why do we do this? Knowing the composition of different classified objects can help
to understand the history of each class and therefore the formation history of the Solar
System as a whole. But at first, we have to build the basic components of a planetary

system: the planet(esimal)s.

'The Kuiper belt is also known as Edgeworth-Kuiper belt (EKB). Both names and the abbreviation are
used synonymously in this thesis.

ZNamed, e.g., Asterix, Obelix, Idefix, Hansa, Mecklenburg, Jena, Thuringia, and Gerhardmuller. Find all
of them at http://ssd. jpl.nasa.gov/?sb_elem (last accessed on 29 June 2012).

3Find Apollos, Armors, Trojans, Centaurs and EKBOs at
http://www.minorplanetcenter.net/iau/lists/MPLists.html, last accessed on 29 June
2012. Note that the scattered disk objects are listed with the Centaurs, but they are counted as EKBOs
here.

4Some of these comets are Sun-grazers and do not exist anymore (http://ssd.jpl.nasa.gov/?sb_
elem, last accessed on 29 June 2012).
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1.2. Planet Formation and the Nice Model

The formation mechanism of planetesimals and planets is still a matter of debate in mod-
ern astronomy. Here I try to summarize the state-of-the-art theories. When a protostellar
cloud collapses because of its self-gravity and the protostar forms, the sphere-like en-
velope composed of dust and gas (the ratio between dust and gas is usually assumed to
be 100:1, Hildebrand 1983) eventually will collapse into a disk. At a few AU it takes
only 10°-10* yr for tiny dust grains to settle to the disk mid-plane. There, the dust grains
collide with each other with low relative velocities and electrostatic and intermolecular
forces lead to sticking and therefore to the formation of larger particles with millimeter-
and centimeter-sized grains (e.g., Safronov, 1969; Dominik & Tielens, 1997; Wurm &
Blum, 1998; Blum et al., 2000)°.

Increased relative velocities between larger grains then hamper further growth because
the efficiency of sticking decreases (Blum & Wurm, 2008), but the net result is still
growth. A critical size is reached for meter-sized bolders®. At 1 m migration toward the
star due to gas drag is most efficient and impact onto the star occurs within 100. .. 1000 yr
from 1 AU at a density of 1 Minimum Mass Solar Nebula (MMSN Weidenschilling, 1977,
1980; Hayashi, 1981). Since the gas drag is size-dependent the relative velocity of dif-
ferent sized grains can increase to several meters per second and agglomeration becomes
inefficient. Due to gas turbulence in the protoplanetary disk even equal-sized particles
have non-zero relative velocities. The highest relative velocities for equal-sized objects
are between meter-sized objects (e.g., Cuzzi & Weidenschilling, 2006; Dominik et al.,
2007, and references therein) at which destruction is more likely to appear than sticking
(Wurm et al., 2005). Therefore, the so-called meter-barrier is twofold.

Although the formation of supra-meter objects is still an unsolved problem, nature
somehow overcomes the meter-barrier, obviously. Once this happened, collisional coag-
ulation among planetesimals will lead to further growth, resulting in increased gravity
of the objects which in turn results in an increased collisional cross section (Safronov,
1969; Greenzweig & Lissauer, 1992). At first, a protoplanetary disk is dynamically cold,
i.e. the eccentricities and inclinations of objects are very low. Thus, the relative velocities
between objects are small and for planetesimals even smaller than their escape velocities

which results in a rapid accretion of material. The so-called runaway growth (Green-

During this process not all encounters lead to sticking. Some collisions have to be fragmenting, otherwise
tiny dust grains would be underabundant or even nonexistent, which is in contradiction to observations
around T Tauri stars (Dullemond & Dominik, 2005).

®Note that this critical size is dependent on the distance to the star and the density.
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berg et al., 1978; Wetherill & Stewart, 1989) begins. This phase is most effective for
the largest bodies, they grow the fastest. With increasing size and therefore gravity the
disk is dynamically heated by the largest bodies. This stirring leads to increased eccen-
tricities and relative velocities become higher. A changeover from the runaway growth
to the oligarchic growth (1da & Makino, 1993) occurs when eccentricities become high
enough that relative velocities between two objects are in the same order of magnitude
as the escape velocities. The rapid growth for the largest objects is slowed down, but
not stopped. During this phase the influence of (outer) planetary perturbers have to be
considered (Thébault & Brahic, 1998; Thébault et al., 2002; Raymond et al., 2006). After
both phases planetary embryos have formed.

However, the formation of planets is not finished at this point. To build gas giants
two conditions have to be fulfilled. First, to start rapid gas accretion a critical core mass
of 10Mg (Mizuno, 1980) is needed. Second, gas in the protoplanetary disk vanishes
within 3...6 Myr (Haisch et al., 2001; Hernandez et al., 2009), i.e. gas giants have to have
formed by this time. Here the so-called timescale-problem arises for the Solar System.
The density of the MMSN at the location of Neptune and Uranus is too low to form a
10Mg, core in 10 Myr (e.g., Safronov, 1969; Lissauer, 1987; Kenyon & Bromley, 2008)’.
The model of the MMSN can be applied to extrasolar multi-planetary systems. Kuchner
(2004) constructed Minimum Mass Extrasolar Nebulas analog to the MMSN and showed
they are consistent with each other.

By assuming an initial mass of 10 MMSN and planetesimals of 100km in radius
Kobayashi et al. (2011) showed that the critical core mass can be reached at least in
the Jupiter-Saturn region by taking into account tenuous atmospheres of mars-sized plan-
etary embryos. As an alternative, Boss (1997) suggested that gas giants can form directly
through gravitational instability, but with a moderate solid core.

At this point, there are two unsolved problems. How to overcome the meter-barrier
and how to build Neptune and Uranus at their current location? For the first problem an
alternative scenario which bypasses slow growth by accretion and therefore the meter-
barrier is proposed: the gravitational instability. Even before the knowledge of the exis-
tence of this critical barrier Toomre (1964); Safronov (1969); Goldreich & Ward (1973)
showed that local overdensities of dust can cause a (gravitational) collapse and lead to
rapid formation of kilometer-sized planetesimals within 10 AU. To create these overden-
sities turbulence is suggested (Rice et al., 2004; Johansen et al., 2007; Cuzzi et al., 2008).
In this turbulence (e.g., caused by magneto-rotational instability, Balbus & Hawley 1992)

"This is also true for the largest transneptunian objects, they could not have formed there.
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the gas drag pushes solid particles to the maximum of the gas density. Although the gas
density changes fast in turbulences, the maxima life long enough to concentrate a huge
amount of submeter-sized objects, which eventually leads to growth of objects with even
a few times the mass of Ceres (~ 1000 km, Johansen et al. 2006; Johansen et al. 2007).
Furthermore, Cuzzi et al. (2008) showed that in some cases it is possible that chondrule
concentrations can become dense enough to form clumps. Although the internal gas pres-
sure counteracts further compression, the clumps can gradually concentrate, leading to
formation of planetesimals of 10... 1000 km in radius. Morbidelli et al. (2009) pointed
out that if these scenarios are true, then kilometer-sized planetesimals are strongly under-
abundant and “asteroids were born big”. In their simulations they could reconstruct the
size frequency distribution of the asteroid belt only by assuming planetesimals with sizes
of initially ~ 100 km to several 100 km. In addition, there is some observational evidence
for a break in the size distribution in the Kuiper belt at several tens of kilometers which is
the same argument for born big planetesimals (Bernstein et al., 2004; Fraser, 2009).

Still, the second problem of building Neptune and Uranus at their current location is
not yet solved completely. The Nice® model shows promising results in solving it’ (see,
e.g., Morbidelli, 2010, for a recent review), being able to explain many of the observed
properties of the Solar System. In the Nice model, the four giant planets (and the largest
EKBOs) have formed closer in where the material density was higher. Gomes et al. (2005)
suggested a compact initial configuration of the giant planets and the Kuiper belt. Jupiter,
Saturn, Neptune, and Uranus are located at 5.45 AU, 8.18 AU, 11.5AU, and 14.2 AU,
respectively!® and a 35Mg mass EKB is placed between 15.5 AU and 34 AU. Due to in-
teractions with planetesimals, Jupiter and Saturn migrate outwards, finally crossing their
mutual 2:1 orbital resonance which causes a short-lasting period of dynamical instabil-
ity, mirroring the geologically recorded event of the so-called Late Heavy Bombardment
(LHB) and placing the giant planets and the EKB to their current positions. This event
not only re-arranged the planets and the EKB but also reduced the mass of the latter to
~ 0.1Mg (see Chapter 3). Furthermore, Morbidelli et al. (2005) showed that the Nice
model is capable of explaining the population of the Jovian Trojans to a good extent.
Another success is the reproduction of the amount and size distribution of the irregular
satellites of the giant planets (Nesvorny et al., 2007; Bottke et al., 2010). Finally, Levison

8Named after the city in France in the Provence-Alpes-Cdte d’ Azur (43°42' N, 7°16” E), where the institute
that developed the model is based.

See Goldreich et al. (2004) for an alternative solution not involving the Nice model.

10Note that this is only one example of possible initial conditions that are able to reconstruct the current
structure in the Solar System. In this model Neptune and Uranus switched positions during the instabil-
ity phase.
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et al. (2008) showed that an initially empty EKB can be filled during the high-eccentricity
phase of Neptune after the LHB. The MMSN and the Nice model are capable of explain-
ing numerous observations of the Solar System, therefore a goal is to join these models
self-consistently (e.g., Desch, 2007; Crida, 2009).

1.3. Debris Disks and the EKB in Context

In the region of the Kuiper belt our Solar System contains planetesimals that have sur-
vived planetary formation (and the LHB). Similar belts of small bodies around other stars
are expected, too. These are the natural aftermath of the evolution of dense protoplanetary
disks that may or may not result in formation of planets (see, e.g., Wyatt, 2008; Krivov,
2010, for recent reviews) and are called debris disks. Indeed, they are known to be ubiqui-
tous around main-sequence stars and are composed of left-over planetesimals and smaller
debris produced in mutual collisions, and it is the tiniest, dust-sized fragments that are
evident in observations through thermal radiation and scattered stellar light.

Our Solar System’s debris disk contains two dust parent belts. The main asteroid belt
between two groups of planets, terrestrial and giant ones, where the strong perturbations
by the nearby Jupiter prevented the formation of a planet (e.g., Safronov, 1969; Wetherill,
1980), and the EKB, where the density of the outer Solar nebula was too low for planet
formation (see Sec. 1.2). Both the asteroid belt and the Kuiper belt have dense internal
structure due to the gravitational influence of giant planet(s) on the dynamics of the bod-
ies, predominantly by Jupiter and Neptune, respectively. They include non-resonant and
resonant families, as well as various objects in transient orbits ranging from detached and
scattered Kuiper belt objects through Centaurs to Sun-grazers. Short-period comets, an-
other tangible population of small bodies in the inner Solar System, must be physically
related to the Kuiper belt that acts as their reservoir (Quinn et al., 1990). Asteroids and
short-period comets together are sources of interplanetary dust, observed in the plane-
tary region, although their relative contribution to the dust production remain uncertain
(Griin et al., 2001). This complex system structure was likely quite different in the past.
As described above it is argued that the giant planets and the Kuiper belt have originally
formed in a more compact configuration (Gomes et al., 2005), and that it went through a
short-lasting period of dynamical instability.

As the amount of material and spatial dimensions of the EKB surpass by far those of
the asteroid belt and the population of short-period comets, it is the EKB and its presumed

collisional debris that should be referred to as the debris disk of the Solar System (see also
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discussion in Sec. 6.3). Ironically, the observational status of the Solar System’s debris
disk is the opposite of that of the debris disks around other stars. In the former case, we
can observe the planetesimals, but there is no certain detection of their dust at least in
thermal emission so far (Gurnett et al., 1997; Landgraf et al., 2002). In the latter case, as

mentioned above, it is dust that can be observed.

An obvious difference between the debris disks detected so far around other stars and
our Solar System’s debris disk is the total mass (and thus, also the amount of dust). Miiller
et al. (2010) for example infer several Earth masses as the total mass of the Vega debris
disk, whereas the Kuiper belt mass is reported to be below one-tenth of the Earth mass
(Bernstein et al., 2004; Fuentes & Holman, 2008). As a result, were the Solar System
observed from afar, its debris dust would be far below the detection limits (see Chapter 5).
However, a number of debris disks around Sun-like stars that are coeval with or even
older than the Sun have been detected. Booth et al. (2009) analyze “dusty consequences”
of a major depletion of the planetesimal populations in the Solar System at the LHB
phase. They point out that the pre-LHB debris disk of the Sun would be among the
brightest debris disks around solar-type stars currently observed. Future, more sensitive
observations (for instance, with the Herschel Space Observatory; Pilbratt et al., 2010)
should detect lower-mass disks, reducing (but not yet bridging) the gap between dusty

debris disks around other stars and tenous debris disks as in the present-day Solar System.

The observational evidence for the EKB dust is limited to scarce in-situ detections of
dust in the outer Solar System by a few spacecraft (Voyager 1 and 2, Pioneer 10 and 11,
and New Horizons), partly with uncalibrated “chance detectors” (Gurnett et al., 1997;
Landgraf et al., 2002; Poppe et al., 2010). In addition, there are rough upper limits on
the amount of dust from the non-detection of thermal emission of the EKB dust on a
bright zodiacal light foreground (Backman et al., 1995). Dikarev et al. (2009) explored
the question whether the flux of the EKB dust can contribute to the anomalies found by
the WMAP (Wilkinson Microwave Anisotropy Probe) mission in the cosmic microwave
background radiation maps. They estimated that about one third of the magnitude of the
anomalous flux can indeed stem from the EKB dust. The results of a similar analysis of
the WMAP data made by Ichikawa & Fukugita (2011) show that small bodies in the Solar
System can contribute to the multipole coefficients of the cosmic microwave background
anisotropy, however, no positive detection of this contribution was found. Therefore, it
was possible to put constraints on the total mass of the EKB to Mgxg < 0.2Mg (with a bulk
density of ¢ = 2.5 gcm™). Furthermore, Teplitz et al. (1999) used different assumptions
for albedo, particle size and distances to investigate the mass limits of the total EKB mass
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and the dust mass, including the spectrum shape produced by the dust. They found ranges
of the values for the total mass of a factor of 30 and for the dust mass even a factor of 70.
Their results include estimates of the depletion of dust due to a passage of the sun through
a giant molecular cloud. Greaves & Wyatt (2010) give constraints on the non-detection
of the EKB dust flux for COBE at 70 um.

1.4. Aims

Given the lack of observational data, the only way to access the properties of the EKB
dust is by modeling. This modeling takes the known EKB populations to be parent bodies
for dust and uses collisional models to generate dust distributions (Stern, 1995, 1996;
Kuchner & Stark, 2010).

The main goal of this work is to develop a more realistic model of the EKB dust disk
than was done before (e.g., Stern, 1995, 1996).

Instead of modeling from dust to planetesimals, as done for extrasolar debris disks,
we model from planetesimals to dust, using the same kind of collisional models. Hence,
the modeling of the Solar System’s debris disk can help to understand the link between
planetesimals and dust (and vice versa) and so serve as a natural reference model for all
debris disks. Furthermore, the role of the parent bodies can be investigated in more detail
which may provide useful information for planet formation theories.

The first step to accomplish this task is to analyze the currently known objects in the
EKB and work out an algorithm to correct their distributions for observational selection
effects and try to reconstruct the properties of the expected “true” EKB. Advantage is
taken of the fact that — unlike with other debris disks and unlike at the time when the
first collisional models of the EKB dust were devised — more than a thousand EKB
objects, acting as dust parent bodies of the Solar System’s debris disk, are now known.
This is done in Chapter 3.

Second, the objects of the “true” EKB are treated as dust parent bodies. In Chapter 4
we use the common modeling attempt where all objects in the EKB are in collisional equi-
librium and simulate the dust production and evolution with a statistical code. A detailed
analysis of the influence of the mass of the parent bodies and the Poynting-Robertson
effect is made and the results are presented. We show that this modeling attempt violates
the upper non-detection limit by the COBE spacecraft. As a consequence, an EKB in full

collisional equilibrium can be rejected.
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Therefore, in Chapter 5 a different extrapolation ansatz for objects smaller than ~ 10 km
is made. In addition, the influence of planets (resonant trapping and gravitational scatter-
ing) is estimated and implemented into the outcome of the numerical simulations as well
as the possible effect of ice sublimation. Finally, a detailed comparison of the model
with the spacecraft in-situ measurements is done, including the first results of New Hori-
zons (Poppe et al., 2010; Han et al., 2011). The thermal emission constraints by COBE
(Greaves & Wyatt, 2010, and references therein) are not violated. Conclusions, a discus-

sion and a scientific outlook are presented in Chapter 6.



2. Theoretical Background

“It is the theory that decides what can be observed.”

Aleet Cinjtein (1879:1955)

The orbital elements and conversions introduced in Section 2.1 are used to develop the
debiasing algorithm described in Chapter 3. Subsequent effects and forces explained in
Section 2.2 are important to unterstand the orbital motion of dust grains exposed to stellar
radiation. They are implemented in the simulations (Chapters 4 and 5). Since collisions
are the main source of dust, Section 2.3 is the key to understand our collisional simulations
and therefore is used to obtain the results of Chapters 4 and 5. The technique described in

Section 2.5 is used to calculate thermal fluxes from the disk models in Chapters 4 and 5.

2.1. Keplerian Orbits

All bound objects in the Solar System revolve around the Sun (or another bound object) in
an elliptic orbit. To characterise this ellipse in space and the current position of an object
on this ellipse, a set of six orbital elements has to be defined. The set of these elements
is not unique, and the set presented here in Fig. 2.1 was chosen and used by the virtue of

being the set best suited to address the dynamical problems addressed in this thesis:

I. The semimajor axis a is the half of the longest diameter of the ellipse.

II. The (numerical) eccentricity e is the ratio of the distance between the center and the
focus of an ellipse and the semimajor axis and can be interpreted as the deviation

of the ellipse from a circle.

III. The inclination i is the angle between the orbital plane and the ecliptic plane in the

Solar System.

IV. The longitude of the ascending node 2 is the angle between the direction to a ref-
erence point, which is the vernal equinox 7", and the ascending node §} measured

in the ecliptic.
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V. The argument of pericenter w denotes the angle between the direction to the peri-

center (pericentric distance g = a(l — e)) and the ascending node.

VI. Finally, the true anomaly ¢ gives the angle between the direction of the pericenter
and the current position of the object measured from the Sun. To simplify some

calculations, other anomalies like the eccentric or mean anomaly E or M are used.

/
/

/

v

vernal equinox

Figure 2.1.: An example of a general orbit in three dimensions with orbital elements a
(semimajor axis), e (eccentricity), i (inclination), Q (longitude of the ascend-
ing node), w (argument of pericenter), and ¢, E (true, eccentric anomaly,
respectively)

With this set the Cartesian position vector of an object is found to be

cos Q cos(w + ¢) — sin Q sin(w + ¢) cos i
_a(l-é?)

= m sin Q cos(w + ¢) + cos Qsin(w + @) cosi|. 2.1)

sin(w + @) sin i

10
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The absolute distance from the Sun is given by

1= 2
r = u =a(l —ecoskE), (2.2)
I +ecosyp

with the conversion from true to eccentric anomaly

® I+e E
tan = = tan —. 2.3
s 1—e¢ 07 2.3)

Obviously, ¢ = E for e = 0. For bound objects the eccentricity is 0 < e < 1, reaching
e = 1 for an unbound parabolic orbit and exceeding unity for unbound hyperbolic orbits.
Due to interaction with the stellar radiation and wind (see Sec. 2.2) it is possible that the

orbit is opened outward from the star and the eccentricity becomes e < —1.

2.2. Effects and Forces on Dust Grains

For big objects like planets, moons, or planetesimals life is quite easy, revolving around
the Sun, feeling its heat and gravity and the gravity of the other bodies. Small dust grains,
however, are not only heated by the Sun’s radiation but affected on their orbital motion.
This section gives an overview over the important forces and effects implemented in this
thesis. Additional effects like the Lorentz, the Yarkovski force or the YORP-effect (e.g.,
Gustafson, 1994; Bottke et al., 2000; Lowry et al., 2007, and references therein) affect
mostly very small s < 1 um or big objects s > 1 m on very long timescales and were not

taken into account.

2.2.1. Gravity

The fundamental (but though the weakest) force in the Universe is the gravity. Newton’s
law (Newton, 1687) describes the force on a particle with mass m in the gravitational field

of a central body with mass M,

r. (2.4)

That leads to bound orbits of planets and planetesimals around a star. G is the newtonian
gravitational constant and r the distance of the particle to the star.
Planetary (gravitational) effects are scattering, which can result in gaps in the disk,

warping or stirring, trapping into mean-motion resonances, €.g., the 3:2 resonance of

11
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Neptune with Pluto, and secular perturbations. These effects can result in observable
signatures in the debris (or protoplanetary) disk and conclusion of embedded planets can
be drawn (e.g., Liou & Zook, 1999; Ozernoy et al., 2000; Wolf et al., 2002a; Freistetter
et al., 2007; Wolf et al., 2007; Wolf, 2008).

2.2.2. Interaction of Grains with Radiation

Photons (or radiation) can interact with grains in two different ways: they can be scat-
tered or absorbed. If a photon is scattered, its direction of motion is changed and if it is
absorbed, its energy is dissipated into thermal energy, the grain is heated and eventually
will re-emit photons with a characteristic spectrum.

To determine the extinction cross section Cgy, for grains, one can simply use the su-
perposition of the scattering cross section Cy., and the absorption cross section Cyy to
Cext = Csca + Cabs.

Usually, the efficiencies for extinction, scattering and absorption are used, which are
defined as Qexiscaabs = CextscaabsO |+ With o = 7s? being the geometrical cross section for
spherical particles with radius s.

The measure of momentum transfer from photon to particle, the radiation pressure

efficiency, reads

Qpr = Qext — (cos 19>Qsca- (25)

The factor (cos }), the asymmetry parameter, distinguishes between forward (0 < (cos }) <
1) and backward scattering (—1 < (cos ¢#) < 0). @, is a function of the wavelength and the
shape (radius) of the particle. Gustav Mie (1868—1957) used the assumption that particles
are spherical, homogeneous, and isotropic. With this assumption he found an analytic so-
lution for the interaction between radiation and spherical particles. This solution is known
and referred to as Mie theory. Obviously, such perfect grains do not exist in reality. A
real object usually is not a perfect sphere, but can be porous, crystalline or amorphous.
The absorption and emission properties of such grains depend on the internal energy lev-
els and are too complex for an analytical treatment, so Mie theory fails to reproduce the
measured spectra from amorphous and crystalline materials. The wavelength averaged
dependency of Q,, on the size for different materials is shown in the left panel of Fig. 2.2.
A “typical” material composition for transneptunian objects (TNOs) is difficult to find.
For a number of bright EKBOs the surface composition has been measured (see, e.g.,
Barucci et al., 2008, for a recent review). These objects turned out to have surfaces with

very different spectral reflectances (i.e. colors, e.g., Trujillo & Brown, 2002; Doressoundi-

12
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ram et al.,2005; Jewitt et al.,2007; Peixinho et al., 2008; see also Thébault & Doressoundi-
ram, 2003). Some objects show no diagnostic spectral bands, while others have spectra
showing signatures of various ices (such as water, methane, methanol, carbon monoxide,
and nitrogen). The diversity in the spectra suggests that these objects represent a sub-
stantial range of original bulk compositions, including ices, silicates, and organic solids.
As a compromise, the material used in this work is the so-called Astronomical Silicate
(astrosil), which is a synthetic material (Laor & Draine, 1993), together with ice (War-
ren, 1984) in a volume ratio of 1:1 (Chapter 5). For optical constants of other materials
the reader is referred to the Heidelberg-Jena-St. Petersburg Database of Optical Constants
(Henning et al., 1999).

1.4 . —— . . 1.4
astrosil & ice —
10| cont. ice 1 112
’ astrosil | e )
1 s olivine | I
Dl blackbody —
_ 08} + 08
o
(@] @
06 ™~ 0.6
04 r 0.4
0.2 r 0.2
0 3 2 . 0 - -2 -3 - = 0 1 2 30
10 10 10 10 10 10 10 10 10 10 10 10 10

s [um] S [um]

Figure 2.2.: Left: Dependency of O, on the size for different materials averaged over
wavelengths. When Q,, ~ 1 the material can be assumed to be a blackbody
radiator. The volume ratio of astrosil & ice is 50% astrosil and 50% ice, and
for contaminated ice 10% astrosil and 90% ice. Right: SB-value for different
sizes and the same materials as in the left panel. Grains in the gray shaded
area have § > 0.5 and are unbound.

2.2.3. Radiation Pressure and Poynting-Robertson Drag

The direct radiation pressure force acts radially away from the star and carries momentum
(and energy) onto particles, counteracting the star’s gravity. The ratio between radiation

pressure and gravity is denoted and defined by

18yl
&l

B: (2.6)
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The advantage of this definition is that (in an optically-thin disk) the so-called g-ratio is
independent of the distance to the star, since both forces are proportional to 2. Following
Burns et al. (1979), 8 can be written as

3L, (Opr)

= — =" 2.7
167GM ,.cso 27

where L, is the luminosity of the star, (Q,,) is the radiation pressure efficiency of a spher-
ical grain averaged over wavelength and size, o the bulk density of the particle, and c the

speed of light.

If Q) = 1, i.e. a particle absorbs all incident radiation, it is called blackbody. This is

a good approximation as long as the particle’s size is large compared to the wavelength.
Then S can be written as

L, My 1gcm™ 1um

B=0574 =% =2

2.8
Lo M 0 S 28)

with L and M, being the luminosity and mass of the Sun, respectively. As stated above,
the radiation pressure counteracts gravity and with help of the § ratio the resulting gravi-

tational force reads
mM,(1 —p) .

3

(GYtotal = (’gG + CE'rp =-G 2.9

The particle “sees” the reduced, effective stellar mass M.g = M, (1 — ). For different
values of 8 the grain can move on bound orbits (ellipses), parabolae and hyperbolae.
If B > 1 the effective mass becomes Mg < 0, i.e. the particle moves on a anomalous
hyperbola. Fig. 2.3 shows the possible orbits of a S-particle when released from a parent
body. The value 8 = 0.5 is often referred to as the blowout limit because the eccentricity
of such a particle (when released from a parent body with e = 0) becomes 1. Such grains
are often called S-meteoroids. Typical g-values for different materials are shown in the

right panel of Fig. 2.2.

As stated previously, “the radiation pressure force acts radially from the star”. Since
the speed of light is finite, radiation pressure also has a tangential component, dependent
on the velocity of the particle. A vivid explanation is that the particle feels a “headwind”,
that reduces its energy and forces the particle to spiral inward. This drag force is named
after John Henry Poynting (1852-1914) and Howard Percy Robertson (1903-1961), who
first introduced and calculated this effect in terms of special relativity!!. The resulting

Poynting descripted the effect in terms of the aether theory.
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<— Release point <— Release point

B>1 04<B<1] B>1

Figure 2.3.: Possible orbits of S-particles, released from the pericenter of a parent body.
Left. The eccentricity of the parent body is e, = 0. Right. The parent body’s
eccentricity is e, = 0.2.

Poynting-Robertson drag force (P-R force or P-R effect) is expressed by

GmM ey o
B =~ |24 2. 2.10)
r crr C
In total, the radiative force reads (Burns et al., 1979)
GmM AN 2 |
rad = 2*ﬁ [(1——)———] (2.11)
r clr ¢

Most of the debris disks observed to date (Wyatt, 2005) are very massive and the lifetime
of particles are determined by collisions rather than transport effects like P-R drag. There-
fore, dust transport via drag forces is usually neglected. However, facilities like the Her-
schel observatory are able to detect debris disks in which transport effects “play a notable
role”, e.g., in the debris disk around HD 207129 (Lohne et al., 2012). Collision-dominated
debris disks have been extensively modeled both analytically and numerically (Thébault
et al., 2003; Krivov et al., 2006; Strubbe & Chiang, 2006; Thébault & Augereau, 2007;
Wyatt et al., 2007; Lohne et al., 2008; Miiller et al., 2010). As we will see later (Chapter 5)
the situation in the Solar System is different. The total mass of the Kuiper belt is small,
transport becomes important and cannot be neglected anymore. This holds especially for
small particles like dust, because the P-R drag is size dependent and more effective for

small objects.
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2.2.4. Stellar Wind Drag

A similar drag effect on particles is the stellar wind drag. 1t is caused by the same reason
as the P-R force, but with (charged) particles instead of photons. Therefore, a S ratio
analog to Eq. 2.6 can be defined as

o Bl 30
VT el 16nGM,se

(2.12)

The velocity of the wind particles in the Solar System is vy, = 300...800kms™! and the
stellar mass loss rate is My = 2 x 107*Mg yr~! (Allen, 1973). As corpuscular analog to

Eq. 2.11 the wind drag force can be written as

GmM, By i
Fow = m—z* [(1 - L)E _ i] (2.13)

In the Solar System the wind drag is approximately 30% of the P-R drag (Gustafson,
1994). For late type stars or stars with a strong stellar wind the wind drag becomes more
effective and overpowers the P-R drag. Reidemeister et al. (2011) showed for ¢ Eridani,

a K2V star, that strong transport mechanisms can be important even for its massive disk.

2.3. Collisions

In the protoplanetary disk phase of a system gas and dust is canonically assumed to be
present in a ratio of 100:1 (Hildebrand, 1983). The gas damps the relative velocities of the
dust particles, so collisions are not disruptive and agglomeration can occur, planetesimals
or even giant planets can form (cf. Sec. 1.2). This gas, however, is removed from the
system approximately 3...6 Myr after stellar birth (e.g., Haisch et al., 2001; Herndndez
et al., 2009). Within this time planet formation has to be finished and sticking collisions
will become cratering or even completely disruptive. Hence, smaller fragments are pro-
duced. Such a fragmenting collisional event on an asteroid/comet (P/2010 A2 LINEAR)
was reported by Snodgrass et al. (2010), Jewitt et al. (2011), and Hainaut et al. (2012).
There are several different collisional possibilities which can be summarized as follows:
I. Disruptive collision. The target and the projectile are destroyed.
II. Cratering collision.  The target is cratered and the projectile is destroyed.
III. Cratering collision.  The target and the projectile are cratered.
IV. Bouncing collision.  Both colliders stay intact and are separated again.

V. Sticking collision. The colliders are bound together.
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Now, we want to describe these possibilities in more detail. For a collision, indepen-
dent of whether it is cratering, desruptive or sticking, at least two colliders are needed.
Following the notation of Krivov et al. (2005) and using index “t” for target and “p” for
projectile the impact energy of two colliders with masses m; and m,, is given by

1 mgn,

Eimp = v (2.14)

imp

2mg +m,

where v, is the impact velocity, which can be approximated with the keplerian velocity
vk roughly to

Vimp = €VK. (2.15)

A collision is called disruptive (or destructive) when the largest fragment’s mass is smaller
than half of the target’s mass. Thus, a critical (dispersal) impact energy can be defined

where a collision becomes disruptive:
Eimp > Ep. (2.16)

To eliminate the mass dependence on the impact energy the specific energy for dispersal

E*
0p = —= (2.17)
Mi/p

is introduced, which is dependent on the radius s of the object and the material. This

dependency can be expressed as the sum of two power laws (Benz & Asphaug, 1999):

These two regimes are denoted as strength (index s) and gravity (index g) regime. The
former is dominated by inter-molecular forces, e.g., covalent-, dipole-, hydrogen bounds,
and van-der-Waals forces. The gravity regime, corresponds to larger objects (typically
s > 300 m) where self-gravity is the dominating force of material bounding. For basalt
A;=06...1.7x107ergg™, A, =0.5...0.9 x 10" ergg™!, b, ¥ —0.12, and b, ~ 0.45.
For ice A; = 0.3...09 x 107ergg™", A, = 0.17...0.22 x 10" ergg™!, b, ~ —0.13, and
b, ~ 0.41 (Benz & Asphaug, 1999). In this work we use values thought to be typical
of low-temperature ice: A, = 10%ergg™, A, = 2 x 10°ergg™", 3b, = —0.37 and 3b, =

1.38. A disadvantage of this assumption is that it does not take into account the velocity
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dependence on Q7. For detailed description for a velocity dependent Q7 the reader is
referred to Stewart & Leinhardt (2009).

To describe the outcome of a collision several parameters have to be defined. One is the
mass of the largest fragment'? m,, for which impact experiments yielded to an empirical

function . * ¢
m l mQp(my) + m, Qf (my) ’ (2.19)
my +mg 2 Eimp

where the slope ranges from ¢ = 1.24 for basalt (Fujiwara et al., 1977) to ¢ = 0.91 for ice
(Arakawa, 1999).

If the impact energy does not exceed the critical energy for disruption then the target
stays intact except for a crater with the ejected mass mejec which escapes to infinity. The
same holds for the projectile, if the impact energy is smaller than its dispersal threshold.
Thus, these events are called cratering collisions. According to the model of Wyatt &
Dent (2002) and Thébault & Augereau (2007) the ejected mass for large craters, compa-

rable with the size of the target reads

E imp
o5

(2.20)

meject = 0.5

To obtain a mass distribution after the collisional event the remnant mass m,.,, and the

ejected mass mje are defined. Obviously the total mass is conserved
Mg + My = Myery + Meject- 2.21)

For a cratering collision the mass of the largest remnant is defined as

2 —
my = Meject 77- (2.22)
n—1

Dependent on the collisional regime, remnant and excavated mass can be calculated as

follows:
mg + my, in a sticking collision, (2.23)
0 in a disruptive collision, (2.24)
Hrem = My — Meject target cratered, projectile destroyed, (2.25)
Mg + My — Mejecit — Mejectp target and projectile cratered, (2.26)

12Meant literally, i.e. there is only one largest fragment.
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and
0 in a sticking collision, (2.27)
my + my in a disruptive collision, (2.28)
Miefect = My + Meject ¢ target cratered, projectile destroyed, (2.29)
Meject,t + Mejectp target and projectile cratered. (2.30)

Then the fragment distribution g(m) can be written as
my\7 1
g(m) = (2 - n)(meject) (Z) %G)(mx - m) + 5(1’]’1 - mrem) (231)

with the Heaviside and Dirac functions ®(x) and §(x)'?, respectively. The normalization

of g(m) is
my \2 1
m Meject (?) form < m,
M(< m) = f gmym’ dm’ = { mejeq, for m, < m < My, (2.32)
0 my, + ny for m > myen,.

Krivov et al. (2005) showed that < 2, while impact experiments of Fujiwara (1986, and
references therein) give values for the parameter i between 1.5 ...2.0 with = 1.83 being
the “classical” value which corresponds to a differential size distribution of N(s)ds o
5733 ds. This slope is the value of the (differential) size distribution of a debris disk in

collisional equilibrium (Dohnanyi, 1969).

There are other collisional outcomes when the impact energy is decreased even fur-
ther. Bouncing or bounding interactions between two colliders can occur. Both objects
are neither destroyed nor cratered, and depending on the impact velocity and energy are
separated from each other or stick together. Laboratory experiments by Beitz et al. (2011,
and references therein) show that head-on bouncing is only possible for centimeter-sized
objects at velocities below 0.4 ms~!. Bouncing can also occur in grazing collisions or in a
rather unlikely event of head-on bouncing where the momenta are reversed. Both objects

would suffer high stress in such an incident.

13See Eq. 2.42.
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2.4. Kinetic Theory

Although computational power increased drastically in the last years, physical models of
stellar systems cannot be calculated by numerical N-body integrations alone. Some mod-
els require statistic approaches like the axisymmetric modeling of debris disks and their
spatial and size distribution of objects as done in this work. Of course N-body integrations
and statistical models have advantages and disadvantages. N-body simulations allow us
to follow individual objects, for example, in stability analysis of planetary systems (e.g.,
Reidemeister et al., 2009) with, e.g., the Mercury6 code (Chambers, 1999). Wada et al.
(2007, 2008, 2009) performed N-body integrations to investigate (head-on) collisions of
two individual objects which are each composed of numerous particles. Also, structures
in disks caused by planetary perturbations can be investigated (e.g., Wyatt, 2003, 2006;
Kuchner & Stark, 2010, and references therein). In contrast to that, a statistical approach
has to be used to model a complete debris disk with objects ranging in size from sub-
micrometer up to several thousands of kilometer. A summary of the detailed description
of the statistical approach used in Krivov et al. (2000, 2005); Léhne (2008) is given in this
Section.

All concepts and ideas introduced here are the heart of our collisional code (ACE, see
description in Section 4.1). Therefore, this Section gives an overview of the equations
ACE solves numerically to simulate the Edgeworth-Kuiper belt debris disk (Chapters 4
and 5).

2.4.1. Number Density and Phase Space Variables

At first, a general quantity “phase space number density” is defined n(p, s, t), which is de-
pendent on the cartesian coordinates and the corresponding velocities p = (x,y,z, X, y, 2),
the radius of an object s, and the time ¢. More descriptively, n(p, s, f) dp ds ist the number
of particles with arguments [p, p + dp] and [s, s + ds]. Another important quantity is the
number density denoted with the same letter n but with different dependencies. n(s, ) is

simply obtained by integrating n(p, s, t) over p:

n(s,t) = fn(p, s, 1) dyp. (2.33)

A straightforward definition is the total number of objects N(¢) with

N(t) = fn(s, t)ds. (2.34)
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In celestial mechanics it is useful to work with orbital elements (as defined in Sec. 2.1)
instead of cartesian coordinates. The translation into other coordinate systems is achieved

the usual way by multiplying n(p, s, t) with the corresponding Jacobian J
n(p, s, t) = Jn®', s, 1), (2.35)

with p’ = (a, e, i, Q, w, ¢) and without changing relations 2.33 and 2.34. The Jacobian for
the conversion from cartesian coordinates to orbital elements (using the mean anomaly M

instead of the true anomaly ¢) is'*

o(x,y,2,%,9,2) 1 o
J = = — GM 3 , 236
oa,e, i, w, M) D) \/ﬁe sin i ( )

with the mass of the star M,.

By using the transformation relation 2.35 it is easy to tansform n(p, s, t) into the mass

density n(p, m, t) in the following way

d

.m0 =[S (o5, (237)
dm

As phase space variables the grain size s and the orbital elements vector p are used,

following Krivov et al. (2005). In order to reduce the set of 8 variables to 4, (i, Q, w, )

are averaged over. This assumption leads to the simplification of an azimuthally and

vertically symmetric disk. The phase space density then reads

n(a,e, s, t) = ffffn(p, s, 1) di dQ dw de. (2.38)

pwQi

2.4.2. The Master Equation

Having defined the important variables and the number density the focus in this Section is

centered on the evolution of the latter quantity. For that purpose the “master equation”!>

has to be solved
dn(p, s,1)

dn dn
div(np) = | — — . 2.3
dr ’ IV(np) (dl )gain T (dt )loss ( 9)

“Note that this is the formal way to calculate the Jacobian. In praxis it is calculated the way described in
the appendix of Krivov et al. (2006). In the code used in this thesis (ACE, see introduction in Sec. 4.1)
we use the pericenter g instead of a to avoid issues at the boundary of the grid.

SWithout the divergence it is sometimes referred to as the Boltzmann-Smoluchowski equation.
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The right hand side reflects the collisional gain and loss of particles, the divergence term
is needed to handle transport mechanisms like the Poynting-Robertson drag (see Sec. 2.2).
The derivation of the gain and loss term is a long business with a lot of integrals, functions,
substitutions, and derivatives and shall not be presented here, instead the results are given.

The gain term can be written as

d b b
( n(zts t)) = fff f(pa s, pt’ St, pp, sp)Vimp(U(pt)’ U(pp))O'(st’ sp)
gain

Sp Pp St P

X (P, St NPy, p, DO((Pp) — () dp ds dp,ds,.  (2.40)

The new introduced function f(p, s, Py, 5i, Py, sp) is the so-called fragment generating func-
tion. The impact velocity vy, shows dependencies on the position vectors in space of two
colliders. o (s, s,) represents the cross section of the target and the projectile and can be

calculated for spherical particles simply by
o (51, 8p) = (s + 5p)° (2.41)

(Krivov et al., 2006). For Dirac’s ¢-function the usual definition is used (valid for all
functions f(x))

f f@®)6(x — &) dx = {f@ fore € ) (2.42)

0 else.

In a similar way the loss term can be written as

(W) B f f Vimp(0(), (P, (s, 5p)
loss

Pp Sp

X n(p, s, Hn(P,, sp, HO(X®,) — v(P)) dp, ds,,. (2.43)

2.4.3. Orbital Elements of Fragments

In a disruptive collision the fragments inherit the sum of the momenta of the target and the
projectile. Assuming maximum collisional damping, the fragments are moving in roughly
one direction with zero relative velocity. The resulting momentum then is described by

two conservation laws in the two-dimensional case (radial and angular component, Krivov
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et al. 2005; 2006):

(mp + m)i- = myip + myiy, (2.44)

(mp + m)rg Mpr@, + mirgy. (2.45)

Once these equations are solved one has to take into account that the smallest produced
grains (B-particles as introduced in Sec. 2.2.3) interact with stellar radiation, which has to
be included into the calculation for the orbital elements of the collisional fragments. To
accomplish this task Krivov et al. (2006) made use of the equation of the conic section
(Eq. 2.2) and the derivatives

rg = —, (2.46)
mr
o= £(lﬂ) (2.47)
mr \r 0p
with
L = m+pGM,(1-p), (2.48)
Tor _ | 1(2—5—3), (2.49)
r op p a r
p = a(l-¢€% (2.50)

p 1s the so-called “semilatus rectum”. Finally, to cut a long algebra short, the result is

T, ™ 1—ﬁp(2_i) m? 1—/&(2_1)

a (mp +m)> 1-p a, B (m, +m)> 1-p a

mgm, A= BT =B [ 1
- Z(mp ) -8 [; VPpPt

. \/(z_al_%)(z_al_%) , 2.51)
P t
~ I m 1-p m  1-p,
e_il1_5(<mp+mt>21—Bp"+<mp+mt>21—ﬁpt
o OB =B :
+2<m:11n:nt>2 Y 1ﬁ 5 : ‘/p"_pﬂ ' =
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Note that the sign of e matches that of (1 —f), yielding for 8 > 1 to anomalous hyperbolae
(see Fig. 2.3). Note that scattering in mutual collisions will increase the inlcination of

small particles (Thébault, 2009) which is not taken into account here.

2.4.4. Evolution of Debris Disks

By ignoring transport mechanisms for the moment it is possible to calculate the time
dependent change of the number of particles with phase space variables p and size s with
Eq. 2.39. While the total number of particles changes with respect to p and s, they stay
constant relative to each other. If this condition is fulfilled, such a disk is called guasi-
steady state or disk in collisional equilibrium. For brevity, the adjective “quasi” is often

omitted. In an equilibrium the evolution of n(p, s, t) can be expressed as
n(w, s, 1) = i, s) (1) (2.53)

(Lohne et al., 2008). Hence, the total mass of the disk can be written as
M ik (1) = ff n®, s,tHym(s)dpds = f(¢) ff (P, s)ym(s)dp ds, (2.54)

which leads to the straightforward conclusion that

Mgk = ffﬂ(v, s, m(s)dpds = f(1) ffﬁ(n, sym(s)dpds = f(O)M, (2.55)

where f(0) = 1. M, denotes the initial mass of the disk and m(s) is the mass of the
particle (for spherical grains it is simply m(s) = 4/3mos?). Lohne et al. (2008) found that
Mgige o< f(t) and Mgg < £2(¢) so that £(¢) < f2(¢). Integration yields

f@ = (2.56)

1+t¢t/t

The integration constant 7 is the characteristic lifetime of a particle with size s. It increases

with size and distance from the star. Only for
r>T (2.57)

the system is in a steady-state. Since 7 is a function of size and distance large particles
need more time to reach a steady-state, the same holds for particles at larger distances.

Hence, it is useful to define an equilibrium up to certain sizes Seq.i. In a steady-state disk
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lost grains are replaced by collisions of larger ones which have to be replaced by still
larger ones. This chain goes up to the largest planetesimals and eventually the total mass
of the disk reduces. Numerical simulations of Lohne et al. (2008) showed that

M ik o 2345 o A3 (2.58)

xr

Note that in tenuous disks where transport mechanisms are important, Mg /Mg is pro-
portional to 2 (Dominik & Decin, 2003). Wyatt et al. (2007); Krivov et al. (2008); Lohne
et al. (2008) found useful scaling laws which can be used for collision-dominated disks.
For any quantity F'(M,, r, t), which is directly proportional to a certain amount of material

in any size regime, the following analytical scaling rule applies
F(xMy,r,t) = xF(My, r, xt) (x> 0). (2.59)

The quantity F can stand, e.g., for the total disk mass, the mass of dust or the total cross
section. Increasing the initial disk mass speeds up the evolution and amplifies F. In
another scaling law one can shift the disk toward other distances from the star instead of

changing its mass which leads to
F(My, xr,t) ~ F(Mo, r, x*°1). (2.60)

In contrast to Eq. 2.59 this equation is approximate. At larger distances the disk’s evolu-
tion is slowed down. This can be compensated by increasing the initial mass at the same

time. It is also possible to find a relation between the dust mass and the time
Mdust(MO, 7, xt) ~ x_(0.3m0.4)Mdust(M0’ r, t) (261)

The denotation “dust” is usually used for particles s < 1 mm, but this scaling law is also

valid for grains s < 100 m, i.e. material in the strength regime.

2.5. Thermal Emission of Debris Disks

For the calculation of the thermal emission of debris disks it is assumed that the embedded
grains are in thermal equilibrium with it surroundings. That means that they absorb the
same amount of radiation which they emit. An implicit equation to calculate the equilib-

rium temperature 7T, for spherical particles at a given distance r from the star is given by
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(e.g., Backman & Paresce, 1993; Wolf & Hillenbrand, 2003):

” Qubs(4, $)F (4, T,) dA
_&Jfo Qus(4, FA(4, T) .

r = - ’
2 f() Qabs(/l, S)B(/l, Tg) dAa

where R, is the radius, F, (4, T ) the flux, A the wavelength, and T, the effective tempera-
ture of the star. B(4, T,) is the Planck function. Considering a rotationally symmetric disk
with distance D from the observer, the total flux at a given wavelength can be calculated
via (see Krivov et al., 2008)

Tg(rmin) Smax
2 dr(Tg) )
Fioa () = P r(Ty)B(A4, Tg)dT dT, | N(r,5)Qupss (4, s) ds. (2.63)
8
Tg(rmax) Smin

Here, N(r, s) is defined as the surface number density of grains, similar to Sec. 2.4.1.
Interestingly, the fluxes are calculated with respect to the wavelength F (1) whereas the
measured fluxes usually are given in terms of frequency F(v) with the conversion relation
da A
F(v)=|—|F) =—FQ). (2.64)
dv c
A common unit for flux is the Jansky (Jy) with 1 Jy = 1072 Js~' m~> Hz™'. As an example,
the fluxes at 70 um and 160 um for the first four debris disks, also known as the “fabulous

four”, are given in Table 2.1.

Table 2.1.: Typical fluxes for different wavelengths of some selected debris disks.

Star 70um’ 160 wm" Reference Instrument
B Pictoris  16.0Jy 5.1Jy Vandenbussche et al. (2010)* (PACS)

€ Eridani 1.5Jy 09y Backman et al. (2009)* (IRAS ,MIPS)
Fomalhaut 10.8Jy 6.2Jy Acke et al. (2012)* (PACS)
Vega 9.3Jy 24Jy Heinrichsen et al. (1998)* (ISOPHOT)

* And references therein. © The fluxes for Vega are at 60 um and 170 wm, respectively.
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3. Planetesimals in the Kuiper belt

“If we knew exactly what to expect throughout the Solar
System, we would have no reason to explore it.”

Poul William Anweelon (1926:2001)

The following Chapter is based on the paper Vitense et al. (2010). The analyses and re-
sults in this Chapter are the contribution of the author of this thesis. Discussions with
Alexander Krivov, Torsten Lohne, Martin Reidemeister, and Sebastian Miiller were ap-

preciated.

3.1. Observations and Their Biases

The EKB was predicted more than sixty years ago by Edgeworth and Kuiper and it took
forty years until the first member, QB 1, was discovered (Jewitt et al., 1992). More
than 1300 TNOs orbiting the Sun beyond the orbit of Neptune have been discovered
to date. Table 3.1 lists most of the surveys published so far, in which new TNOs have
been discovered, and key parameters of these surveys. One parameter is the area €2 on the
sky searched for TNOs. Another one is the limiting magnitude ms, that corresponds to
the detection probability of 50%. As the detection probability drops rapidly from 100%
to zero when the apparent magnitude m “crosses” msj, we simply assume that an object
will be detected with certainty if m < msy and missed otherwise. Finally, the maximum
ecliptic latitude € and ecliptic longitude a covered by each survey are listed. Where it
was not given explicitly in the original papers, we estimated them to be £ = VQ/2 and
a = VQ, assuming that the surveyed area was centered on the ecliptic. Table 3.1 shows
that all campaigns can be roughly divided into two groups: deeper ones with a small sky
area covered (“pencil-beam” surveys) and shallower ones with a larger area, but a smaller
limiting magnitude.

The orbits of TNOs are commonly characterized by six orbital elements: semimajor
axis a (or perihelion distance g), eccentricity e, inclination i, argument of pericenter w,
longitude of the ascending node €2, and mean anomaly M (see Fig. 2.1). In addition,
each object itself is characterized by the absolute magnitude H, which is defined as the

apparent magnitude the object would have if it was 1 AU away from the Sun and the Earth,
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Chapter 3. Planetesimals in the Kuiper belt

Table 3.1.: A list of campaigns where TNOs were found. The sky area covered (), the
number of the objects discovered (N), the limiting magnitude (ms;), an es-
timated half-opening angle & (if not explicitly given in the paper), and the
ecliptic longitude coverage a are given. Papers that provide enough data for
objects discovered in that survey to identify them in the MPC database are
marked with an asterisk.

Q[deg’] N Mso e[°] al°] Reference
0.7 2 23.5 042 0.84 Irwin et al. (1995)*
1.2 7 24.85 055 1.1 Jewitt & Luu (1995)
3.9 12 24.2 0.99 1.97 Jewitt et al. (1996)*
4.4 3 23.2 1.05 2.1 Jewitt et al. (1996)*
0.35 1 24.6 0.30 0.59 Gladman et al. (1998)
0.049 4 25.6 0.11 0.22 Gladman et al. (1998)*
0.075 0 25 0.14 0.27 Gladman et al. (1998)
51.5 13 23.4 3.6 7.2 Jewitt et al. (1998)
0.01 2 27.94 0.05 0.1 Chiang & Brown (1999)
20.2 3 23.6 225 45 Trujillo et al. (2000)
1.5 24 249...259 0.61 1.22 Allen et al. (2001)*
0.012 0 26.7 0.06 0.11 Gladman et al. (2001)*
0.31 17 25.93 0.28 0.56 Gladman et al. (2001)*
73 86 24.0 425 85 Trujillo et al. (2001a)*
164 3 21.1 6.40 12.8 Trujillo et al. (2001b)*
5108 19 20.7 10 2554 Truyjillo & Brown (2003)*
0.02 3 28.7 0.07 0.14 Bernstein et al. (2004)*
550 183 22.5 5 55 Elliot et al. (2005)*
8000 1 big 20...21 10 400 Larsen et al. (2007)*
3.0 70 26.4 0.87 1.73 Fraser et al. (2008)
2.8 82 25.7 1.67 1.67 Fuentes & Holman (2008)
0.255 20 26.76 025 0.5 Fuentes et al. (2009)
0.33 36 26.8 0.29 0.57 Fraser & Kavelaars (2009)

and depends on the object radius and albedo. We take the orbital elements and the absolute
magnitudes of all known objects from the Minor Planet Center (MPC) database'® rather
than from discovery papers listed in Table 3.1, because the MPC data include follow-up
observations and thus provide more precise ephemerides.

Planet formation theory implies that the TNO orbits strongly concentrate towards the

ecliptic plane, if the formation and evolution was unperturbed by, e.g., a passing star. Ac-

16http ://www.cfa.harvard.edu/iau/lists/TNOs.html and http://www.minorplanetcenter.
net/iau/lists/Centaurs.html — For Fig. 3.1 (and corresponding description) the last access was
on 15 June 2012. For the debiasing and the modeling we used the data from 12 October 2009 (plot and
description with these data are shown in Fig. 1 of Vitense et al. 2010).
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Figure 3.1.: Known TNOs in the a—e plane (top) and a—i plane (bottom). Different groups
are shown with different symbols: 865 classical objects with dots, 235 reso-
nant TNOs with pluses, and the remaining 160 scattered objects with crosses.
Solid lines separate classical and scattered objects in our classification. Four
objects with i > 90° are outside the lowest panel, but are marked with arrows

in both panels. Notice that the linear scale turns into a logarithmic scale at
100 AU.

cordingly, in order to increase the detection probability, the majority of the observations
were made near the ecliptic, and only a few surveys covered high ecliptic latitudes. Our
sample, given in Table 3.1, contains surveys with £ up to 10° (e.g., Trujillo et al., 2001a;
Trujillo & Brown, 2003; Elliot et al., 2005; Petit et al., 2006; Larsen et al., 2007). How-
ever, TNOs with higher orbital inclinations exist as well. Since Brown (2001) it is known
that the inclination distribution of TNOs has a second component with higher inclinations
(i=17°+3°).

Several objects with very high inclinations, including four retrograde ones with i > 90°,
were detected. Clearly, the fact that observations are done near the ecliptic plane decreases

the probability to detect such extreme objects, because it is only possible twice per orbital

29



Chapter 3. Planetesimals in the Kuiper belt

period, close to the nodes. Thus there is an obvious selection effect in favor of TNOs
in low-inclination orbits that needs to be taken into account. Equally obvious is another
selection effect, which is that objects are predominantly discovered at smaller heliocentric
distances. This reduces the probability to discover TNOs with large semimajor axes and
high eccentricities, because these are too faint all the time except for the short period of

time when they are near perihelion.

3.2. Classification of TNOs

2 (13

Many classifications of TNOs into “classical”, “resonant”, “excited”, “scattered”, “de-
tached” etc. groups have been proposed, based on the orbital elements and taking into
account dynamical arguments (e.g., Jewitt et al., 1998; Chiang & Brown, 1999; Luu & Je-
witt, 2002; Delsanti & Jewitt, 2006; Jewitt et al., 2009, among others). Classifications by
different authors are similar, but not identical. In this thesis we use the following working

classification:

1. Resonant objects (RES): objects in a mean-motion commensurability with Neptune,
where we only consider the three most prominent first-order resonances 4:3, 3:2 and
2:1. To identify the objects as resonant, we use the resonance “widths” from Murray
& Dermott (2000). For example, the width of the 3:2-resonance at e = 0.1 is Aa =
0.012 AU. The width increases with increasing eccentricity and with decreasing
distance to Neptune.

2. Classical Kuiper Belt (CKB) objects: objects with a < 50 AU, which are neither

resonant nor Neptune-crossers (¢ > aneptune)-

3. Scattered disk objects (SDO): objects with a > 50 AU, as well as Neptune-crossers

((l > aNeptune and q< aNeptune)-

Figure 3.1 depicts all known TNOs, using different symbols for each of the three groups.
This classification is intentionally made simpler than many others in common use, in or-
der to facilitate the analysis below. For instance, in our classification, the known detached
objects (those with perihelia well outside Neptune’s orbit, g > 40 AU) fall into the “scat-
tered” category. By any account, the parameters of the entire EKB and its dust that we will
derive will not depend on the way in which the TNOs are classified into various groups.
On the other hand, this classification roughly reflects different formation history of differ-
ent populations in the EKB, as well as different modes of their gravitational interaction

with Neptune at present.
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3.3. Debiasing Procedure

Because of the obvious selection effects of inclined and faint objects, statistical models
were developed to estimate a true distribution of orbital elements and numbers of the
TNOs. Brown (2001) calculated an inclination distribution. He assumed circular orbits
and derived a relation between the inclination and the fraction of an object’s orbit that it
spends at low ecliptic latitudes. Donnison (2006) calculated the magnitude distribution
for the classical, resonant, and scattered objects for absolute magnitudes H < 7, using
maximum likelihood estimations, and showed that the samples were statistically different.
Furthermore, Kavelaars et al. (2009) used CFEPS (Canada-France Ecliptic Plane Survey),
which they describe in a great detail. They made several different statistical approaches
to analyze the one-dimensional orbital element distribution (a, e, i) of different classes in
the EKB'.

Here we propose another debiasing method'® to estimate the “true” distribution of the
TNOs, based on the obervational surveys listed in Table 3.1. We start with calculating
the probability to find an object with the given parameters {a, e, i, w, Q, H} for each given
survey. To this end, we estimate the time fraction of the object’s orbit that lies within
the maximum ecliptic latitude & covered by the survey, as well as the fraction of the
orbit which is observable at the given limiting magnitude ms,, and find the intersection
of the two orbital arcs. Once the probability to detect the object in each of the surveys
has been calculated, we compute the probability that it would be detected at least in one
of the surveys made so far. Finally, we augment the number of objects with that same
orbital elements as the object considered to a 100% probability, e.g., an object with 20%

probability is counted five times.

We now explain this procedure in more detail. The first effect is the inclination bias.
Observing in the ecliptic plane lowers the detection probability of highly inclined objects,
which leads to this bias. In calculating the orbital arc that lies in the observable latitudinal
zone, we make the assumption that we observe from the Sun. The observable area on the
sky is thus a belt |b| < &, where b is the heliocentric ecliptic latitude. The orbit crosses

the boundary of the observed belt, |b| = &, at four points. At these intersection points, the

"They use a more detailed classification of objects, e.g., they divide the classical belt into the cold and hot
subgroups.

8Note that there are several other debiasing attempts. Nevertheless, the advantage of the algorithm pre-
sented below is that we can debias all orbital elements and the size distribution simultaneously. Addi-
tionally, the results are optimized for implementation to our collisional code (see Chapters 4 & 5).
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true anomaly ¢ takes the values

-2

sin“e

@; = xarccos|£4[1 — — - w. (3.1
sin

Due to our approximation that we observe from the Sun, the longitude of the ascending

node does not appear in this formula.

The second effect is the distance bias (or eccentricity bias). The maximum distance at

which an object is detectable is given by (Irwin et al., 1995)

Fnax = 100.1("150—H). (32)

Then we combine both observability constraints, from inclination (Eq. 3.1) and eccen-
tricity (Eq. 3.2), into one, to find the orbital arc (or arcs) that lie both in the observable
latitudinal belt and the observable sphere. Typical geometries are sketched in Fig. 3.2,
assuming that the pericenter is inside (I. .. IX) and outside (X. .. XVIII) the observing lat-
itudinal belt. The intersection points of the orbit with the visibility sphere r = ry.x are
denoted by Ej, those with the visibility circle |b| = +& by I; (indices k increase with in-
creasing true anomaly). The point E; can lie before /;, between I, and I,, or between I,
and I3, giving three possibilities. On the other hand, the point E; can reside between I,
and I3, between I3 and 14, or after I,. Furthermore, the pericenter can lie inside or outside
the observing latitudinal belt. This yields 2 X 3 x 3 = 18 possibilities in total, denoted
by [...XVIII. Additionally, there are special cases. One is i < &, where the entire orbit
is inside the observable belt, so that the points /; ... I, do not exist (exemplified by case
XIX, where also the entire orbit is in the observable sphere and E1,E, do not exist). Oth-
ers are where the entire orbit is inside or outside the observable sphere, so that the points
E, and E, do not exist (exemplified by case XX, where the entire orbit is outside of the
observable sphere and E,E, do not exist, but the orbit is partly outside the observable
belt).

As an example, we take ellipse number III. The object starts at the pericenter (where it
is visible) and moves toward I;. Between I; and I, it is outside the observed latitudinal
belt and is invisible. Although it has a sufficiently low ecliptic latitude up to I3, it is only
detectable up to E;, because it gets too faint beyond that point. Between /3 and I, the
object is too far from the ecliptic, and it stays outside the limiting sphere until it reaches

E,. Starting from E,, the object is visible again.
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Figure 3.2.: Observable arc(s) of a TNO orbit that satisfy the distance and the inclination
restrictions. Smaller points denoted with E; and E, are intersection points
of the orbit with the sphere r = ry.x. Bigger points [, ... I, are intersection
points of the orbit with the circles b = +¢& on the sky. Solid and dashed arcs
represent observable and non-observable parts of the orbit, respectively.

Having found the observable arcs, we compute the fraction f of the object’s orbital
period it spends in these arcs for a given survey. If the survey had a full (360°) coverage

of the ecliptic longitudes, that fraction would directly give us the probability to detect the
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object. However, the survey is confined to the longitude range with a certain width a. This
width is often given in the papers, and where it is not, we simply take @ = VQ = 2¢, where
Q is the observed sky area. Thus the detection probability is f multiplied by a/360°. This
estimation assumes that all the observations are done within a period of time that is much
shorter than the orbital period of the TNO, so that its proper motion can be neglected.
This is the case for all the surveys we consider. However, the same estimation assumes a
uniform azimuthal distribution of the TNOs. For plutinos, for instance, this is no longer
valid, as they concentrate preferably in two azimuthal zones ahead and behind Neptune’s
location. Thus our algorithm may underestimate the detection probability of resonant
objects, at least in surveys targeted at parts of the ecliptic where such objects are more

numerous.

In this way, for each of the known TNOs, we can calculate the detection probability in
any survey. We then calculate the probability P; that an object i would be detected in any

of the Ngyryeys SUrveys:

N, surveys

P=1-|]a-prw, (3.3)

k=1
where P; is the probability to detect an object i in a survey k. The advantage of equa-
tion 3.3 is that 1 — P; gives the probability not to detect an object, “shallower” surveys
make little contribution to the product and thus to the total detection probability of very

faint objects. Therefore, it is deep surveys that dominate the result for faint objects.

Given the discovery probability P; of a given object, we can augment the observed
Kuiper belt to the “true” one by counting that object P;' times. In other words, we debias
the observed Kuiper belt by setting the number of TNOs with the same orbital elements

as the known object to P;'.

The number of surveys in Table 3.1 iS Ngneys = 23. However, only nearly half of
the 1260 TNOs contained in the MPC database were found in these campaigns. Another
~ 600 objects were discovered in other observations, some serendipitously in surveys
that did not aim to search for TNOs. The circumstances of those observations have not
been published in all cases. What is more, even for the campaigns listed in Table 3.1,
it is problematic to identify which particular set of ~ 600 objects out of 1260 in total
was found in those surveys. Indeed, the papers that give a specific, identifiable list of
newly discovered objects (marked with an asterisk in Table 3.1) only cover = 400 TNOs.
We do not know under which circumstances the remaining two-thirds of the TNOs were
detected. In other words, there is no guarantee that the parameters of those unknown

surveys (msg, € etc.) are similar to those listed in Table 3.1. Furthermore, some of the
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surveys in our list may not have reported their discoveries to the MPC. As a result, it
is difficult to judge how complete the MPC database is. We can even suspect that there
have been surveys not listed in Table 3.1 that have discovered TNOs not listed in the
MPC. Therefore, it does not appear possible to compile a complete version of Table 3.1
that would cover all known TNOs and all discovery observations (together with their
Q, msy, and &). Nor is it possible to get a complete list of all known TNOs together
with their orbital elements, along with information in which particular survey each of the
known TNOs was discovered. To cope with these difficulties, we make two assumptions.
First, we assume that the surveys listed in Table 3.1 are representative of all surveys that
discovered TNOs. Second, we assume that, conversely, the TNOs listed is the MPC!
are respresentative of all the objects discovered in surveys listed in Table 3.1. These two

assumptions represent the main shortcoming of our debiasing approach.

To check them at least partly and proceed with the debiasing, we employed two dif-
ferent methods. In the first method, we have randomly chosen 600 TNOs out of the full
list of known objects and assumed that it is these objects that were discovered in the cam-
paigns listed in Table 3.1. We tried this several times for different sets of 600 TNOs and
found that the results (e.g., the elemental distributions and the total mass of the “debiased
EKB”) are in close agreement. In the second method, we have made an assumption that
another set of 23 similar surveys with similar detection success rate would have likely led
to a discovery of all known TNOs. So we simply counted each survey twice and replaced
Eq. (3.3) by

Nsurveys

Pi=1- ] a-ru2. (3.4)
k=1

Again, the results turned out to be very close to those found with the first method.

Figure 3.3 illustrates the probabilities Py, to observe known TNOs in a fiducial survey
with msy = 25mag, a latitudinal coverage of € = 5°, and a longitudinal coverage of
360°. Let us start with an artificial case where all objects are in circular orbits. If they
were bright enough to be observed (or equivalently, in the limiting case msy, — o), they
would all lie on the curve overplotted in Fig. 3.3. In particular, their detection probability
would be 100% for i < &, and it would be £/90° = 5.6% for i = 90°. If they are too
faint for detection, their detection probability will be zero regardless of the inclination.

The case of eccentric orbits is more complicated. Then, the vast majority of objects

9Note that the eccentricity of some objects is assumed to be zero in the MPC due to insufficient data. This
applies to classical belt objects only which usually have a small eccentricity anyway. Therefore, this
assumption plays a very minor role.
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still are on the curve but, as seen in the figure, there are many that lie below. Either
these are objects whose pericenter is outside of the latitudinal belt |b| < & or these are
objects that cannot be observed over the entire orbits, even when they have sufficiently
low ecliptic latitude, because in some low-latitude parts of their orbits they are too faint to
be visible. In fact, a mixture of both cases is typical. Finally, a few objects lie above the
curve. These are rare cases of objects in highly-eccentric orbits, whose aphelia fall into
the observable latitudinal belt, and whose apocentric distances are not too large. Such
objects spend much of their orbital period near aphelia and are detectable there, which
raises their detection probability.
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Figure 3.3.: The detection probability of all known TNOs (as function of their orbital in-
clinations) in a fiducial survey with a full coverage of a belt on the sky within
e = 5° ecliptic latitude and the limiting magnitude of msy = 25 mag. The
curve is the formal detection probability of objects in circular orbits in the
msy = oo limit, but it approximates well the detection probability of many
known TNOs in eccentric orbits in our fiducial survey. Objects which are be-
low the curve are either those affected by the distance bias or have arguments
of pericenters which are outside of our viewing field. Objects above the curve
correspond to rare cases where the orbital eccentricity is high, aphelion lies
in the observable belt, and the object is not too faint even near the aphelion.
These are mostly scattered objects.

Although the average detection probability in Fig. 3.3 is quite high, this only holds for
a complete coverage of the |b| < £ band on the sky. In reality, only a limited range of the

ecliptic longitude is covered. The resulting detection probability P; of all known TNOs in
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all 23 surveys, calculated with Eq. (3.4) that takes into account actual latitudinal coverage
of the observational campaigns, is plotted in Fig. 3.4. Typical values are within ~ 20%

for near-ecliptic orbits and drop to a few percent for inclinations above 10°.
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Figure 3.4.: The final detection probability of the known TNOs, calculated with Eq. (3.4).
Included are all surveys from Table 3.1.

3.4. Orbital Element Distributions of the EKB Objects

Having applied the debiasing procedure, we compared and analyzed the distributions of
orbital elements of the known and the “true” EKB — separately for each class.

Figures 3.5 and 3.6 show the distributions in terms of numbers (for s > 75km) and
masses (for s < 400km) of objects per element’s bin before and after debiasing. The
distribution in terms of numbers depicted in Fig. 3.5 emphasizes smaller, more numerous,
TNOs. It is directly related to observational counts of TNOs and is also useful to alleviate
comparison with similar work by the others. In contrast, the distribution of TNO’s mass in
Fig. 3.6 is dominated by larger objects. It demonstrates more clearly where the wealth of
the EKB material is located, which aids placing the EKB in context of extrasolar debris
disks. Objects with s < 75km were excluded from Fig. 3.5, because detections of the
smallest objects are the least complete, which would lead to a highly uncertain, distorted
distribution. Conversely, we excluded the biggest objects with s > 400 km from Fig 3.6

to avoid large bin-to-bin variations stemming from a few individual rogues. Failure to
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do this would lead, for example, to a pronounced peak in the eccentricity distribution of
resonant objects at e = 0.15...0.20 produced by a single object, Pluto.

As seen in Figs. 3.5 and 3.6 for the classical Kuiper belt, debiasing increases the total
number and mass of objects, but the position of the maximum remains at a = 44 AU.
The same holds for the semimajor axis distribution of resonant objects, whose peaks are
preserved at known resonant locations. In contrast, for the scattered objects, here are indi-
cations that a substantial unbiased population with larger semimajor axes of 80...120 AU
might exist. Some of them may be “detached” (¢ > anepwne), While some others may not
(since the eccentricities of these TNOs are also large, see middle panels in the bottom
rows of Figs. 3.5 and 3.6). These conclusions should be taken with caution, because the

statistics of scattered objects are scarce and their debiasing factors are the largest.

The eccentricity distribution in Figs. 3.5 and 3.6 shows moderate values (e < 0.2) for
the classical belt and reveals a broad maximum at e = 0.1 ...0.3 for the resonant objects
(Kavelaars et al., 2009 found a maximum at ¢ = 0.2). The maximum for the scattered

objects appears to be located around e ~ 0.5...0.6.

As far as the inclination distribution (right panels in Figs. 3.5 and 3.6) is concerned, our
analysis confirms the result by Brown (2001) who identified two distinct subpopulations
in the classical Kuiper belt, a cold one with low inclinations and a hot one with high
inclined orbits. The maxima of 0°...5° and 20°...25° that we found are consistent with
his results of 226*02. and 17° +3°. Simulations of Kuchner et al. (2002) showed that long-
term interaction with the four outer planets results in removing low-inclination objects,
raising the mean value of the inclination. However, this does not explain the second

maximum in the distribution.

The inclination distribution of the resonant objects reveals a broad maximum around
~ 15°. For comparison, Brown (2001) found a maximum at 10°2*3-3.. A second maximum
visible ati = 30°...35° in the number distribution (Fig. 3.5) is due to small objects with a
large debiasing factor, which are still big enough not to fall under the s < 75 km criterion.

That is why in Fig. 3.6 the same peak is barely seen.

A clear difference between the number and mass distributions can be seen in the bottom
right panels of the two figures, too, which show the inclination distribution of the scattered
objects. A large number of scattered TNOs can be found at 25°...30° (Fig. 3.5), whereas
their mass peaks at 15°...20° (Fig. 3.6). Interestingly, a recent paper by Gulbis et al.
(2010) yielded 19° 1f§:22, which is close to the maxima we find here.
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Figure 3.5.: Distribution of classical (top row), resonant (middle row), and scattered ob-
jects (bottom row), in terms of numbers of objects. Left column: semimajor
axes, middle: eccentricities, right: inclinations. Dark and light bars in each
panel represent the expected (debiased) and observed populations, respec-
tively. The numbers of the observed TNOs are magnified by 20 (classical
and resonant objects) and 50 (scattered objects) for better visibility. Num-
bers are given in 1000 for intervals with a width of Aa = 1 AU (classical
and resonant), Aa = 10 AU (scattered objects), Ae = 0.1 and Ai = 5° for all
populations.

3.5. Albedos and Sizes of the Kuiper Belt Objects

To estimate the TNO sizes, we employed the V-band formula from Kavelaars et al. (2009):

H = mg + 42.38 — 2.51g(4ps?), (3.5)
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Figure 3.6.: Same as Fig. 3.5, but in terms of mass contained in TNOs.

where mg, = —26.74 mag is the apparent V-magnitude of the Sun, p the albedo and s the
radius of an object in kilometers. Solving for radius, we find

—02H
s=671.5x%

km. (3.6)

\p
With this equation and albedo measurements from Noll et al. (2004), Stansberry et al.
(2008), Brucker et al. (2009), Santos-Sanz et al. (2012), Mommert et al. (2012), Vilenius
et al. (2012), and Pal et al. (2012), we calculated the radius of objects with known albedo
(Fig. 3.7).

Albedos inferred for a handful of big objects with H < 3 turned out to be high, which
is indicative of a strongly reflecting surface material. For instance, the surface of Haumea
was found to be covered with > 92% pure water ice (Pinilla-Alonso et al., 2009). Dumas
et al. (2007) reported for Eris 50% methane ice on its surface along with nitrogen and

water ices, and ice tholin. Smaller objects are coated with darker carbonaceous layers, so
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their albedo is lower. Note that objects between 6 < H < 7 have a very strong scatter,
the reason for that being unknown. Albedos of the smallest TNOs with 7 < H < 9 are
typically close to = 0.05, and there have been no measurements beyond H = 9. However,
since the EKB is known to act as a reservoir of short-period comets, we can use the
measurements of cometary nuclei with sizes of ~ 1-10km as a proxy for the reflectance
properties of the smallest TNOs. (The obvious caveat is that comets may have altered their
original surface properties as a result of their long residence in the inner Solar System.)
The typical albedo values of the nuclei range from 0.02 to 0.06 (Lamy et al., 2004).

On these grounds, to eliminate the dependence on albedo (which is not known for most
of the Kuiper belt objects) from Eq. (3.6), we have fitted the sizes of the TNOs with
known albedo by an exponential function at H < 6 and assumed p = 0.05 for all TNOs

with H > 6. This yielded a formula where s is only a function of H:
s=882x 107" km (H <6) (3.7)

and
s =3000x%x 107" km (H > 6). (3.8)

The smallest object found so far is a scattered object with H = 15 mag which corresponds
to a size of only s = 3km. The smallest resonant object has a radius of s = 9.9km
(H = 12.4 mag) and the smallest classical one has s = 12.5km (H = 11.9 mag).

3.6. Mass of the Kuiper Belt

To translate the TNO sizes into masses requires an assumption regarding their (composi-
tion and) bulk density. In this section the commonly used value of o = 1 gcm™ is taken.

All masses given here can simply be translated for different bulk densities by

M(o) = Mo = 1gem™). (3.9)

0
lgem™3

The resulting mass and number of objects in resonant, classical, and scattered populations
and in the entire Kuiper belt are listed in Table 3.2. Note that the numbers are given there
for objects s > 75 km. The deduced “true” masses are several times higher than in Fuentes
& Holman (2008) who inferred Mckg = (0.008 £ 0.001)Mg, Mspo = 0.010*505 Mg, with

a total of My, = 0.020*000* M. However, they considered the mass within +3° around
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Figure 3.7.: Absolute magnitude — radius relation for objects with known albedo. The
biggest objects are labeled with their names. The thick solid line is a fit
to this relation, Egs. (3.7)—(3.8). Thin lines correspond to equal albedos of
p = 0.05; 0.10; 0.20; 0.50; 1.00.

the ecliptic. Since we investigated the full range of ecliptic latitudes, we deem the results

consistent with each other.

One issue about the deduced mass of the entire EKB and its populations is the influence
of the uncertainties of the orbital elements inferred from the observations. In many cases,
the elements are known only roughly. How could a change in the orbital elements of
an object affect the debiasing procedure and the final estimates of the parameters of the
“true” EKB? Obviously, if a true value of one of the three elements of a TNO (a, i,
or the absolute magnitude H) is larger than the one given in the database, the detection
probability will be overestimated and the estimated number of similar objects in the “true”

EKB underestimated. The eccentricity plays a special role in this case. Increasing it would
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Table 3.2.: Masses and numbers of objects in the Kuiper belt. CKB is the classical Kuiper
belt, RES are the resonant objects, and SDO denotes the scattered disk objects.

before debiasing after debiasing

Mcxg [0.001Ms] 2.7 43
Mggs [0.001Mg] 1.2 8
Mcxgres [0.001Mg] 39 51
Mspo [0.001Mg] 1.9 63
Mtotal [OOOlMEB] 5.8 114
Ncks (S > 75 km) 715 33400
Nggs (s > 75 km) 154 6360
Ncks+res (s > 75 km) 869 39860
Nspo (s > 75km) 122 45200
Ntotal (S > 75 km) 991 84960

not automatically lead to a lower detection probability, the pericenter distance decreases
while the apocenter increases, so that the total detection probability depends also on a.
However, a combined variation of two or more elements may alter the results in either
direction. As an example, let us consider a scattered object with a = 1057 AU and e =
0.977, which has a pericenter distance of ¢ = 24.3 AU. Decreasing, for instance, both a
and e by 5% would lead to a pericenter at ¢ = 72 AU, which would result in a significantly
lower detection probability and therefore in a higher contribution of that object to the
estimated total mass. In contrast, we may consider a classical object with a = 40 AU and
e = 0.2, which cannot be observed near the apocenter. Again, decreasing both values
by 5% would now reduce the aphelion distance to detectable values, so that the detection
probability would increase.

From published observational results, we assume 5—-10% as a typical error for the or-
bital elements. To quantify possible effects, we used the following Monte-Carlo proce-
dure. We assumed that the orbital elements and the absolute magnitude {a, e, i, H} are
known with a standard deviation o (for simplicity, the same for all four elements). Then,
we randomly generated {a, e, i, H}-sets for each of the known TNOs assuming that each
element of each object is normally distributed around its cataloged value. For this hy-
pothetical EKB, the debiasing procedure was applied and the expected masses of objects
in the “true” Kuiper belt were evaluated. This procedure was repeated 10, 000 times (for
10, 000 realizations of the observed Kuiper belt, that is to say). The results for several
o values between 5% and 15% are listed in Table 3.3. Since this variation of the ele-
ments lead to numerous huge outliers, only the mean value and the median of the results

is shown and the standard deviations are not reported.
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Interestingly, the net effect for the CKB and RES of the increasing o is that the mean
TNO detection probabilities decrease, which leads to somewhat higher estimates for the
mass of the EKB populations and the whole Kuiper belt up to a factor of 4, while the
median nearly stays constant. For the subpopulation of the SDOs any conclusion about
the mass is brave, since an uncertainty of 20% would alter the mean total mass of the
SDOs by a factor of 70. This either shows that the given values for the elements are very
accurate or if they are not, there is a lot of mass hidden in the population of the scattered

objects.

Table 3.3.: Masses of objects in the Kuiper belt, as a function of the assumed standard
deviation o, with which orbital elements of TNOs were deduced from obser-
vations. Abbreviations and units are as in Table 3.2.

o %] Mcxs Myes McxB+rES Mspo
mean median mean median mean median mean median
5 454 433 8.4 7.6 543 512 2250 64.4
10 61.4 43.1 9.7 7.6 739 513 3120 86.1
15 107.4 425 16.9 7.5 121.8  51.7 3589 1494
20 162.9 425 28.5 7.5 203.0 51.2 4235  206.7

3.7. Size Distribution of the Kuiper Belt Objects

We now come to the size distribution of EKBOs. The exponents g of the differential
size distribution N(s)ds o s 9 ds after debiasing were derived with the size-magnitude
relation (3.7)—(3.8). In doing so, we have chosen the size range S0km < s < 170km
(89 > H > 6), and we determined the size distribution index separately for different
populations of TNOs and their combinations. For the CKB, the result is ¢ = 4.3 + 0.2.
The resonant objects reveal a steeper slope of 5.1 + 0.1, with plutinos (in 3:2 resonance
with Neptune) having 5.3 £0.1 and twotinos (2:1 resonance) having 4.0 +0.1. This results
in 4.4+0.2 for classical and all resonant objects together. In contrast, the scattered objects
have 2.8 + 0.1. Altogether, we find 3.6 + 0.1 for the entire EKB (classical, resonant, and
scattered TNOs).

Our results are largely consistent with previous determinations (Table 3.4). For the
CKB, for instance, the range between 3.6+0.1 (Chiang & Brown, 1999) and 4.8J_r8:g (Glad-
man et al., 1998) was reported. In this comparison, one has to take into account that dif-
ferent authors dealt with somewhat different size intervals. Chiang & Brown (1999) con-
sidered objects between 50...500 km, Gladman et al. (2001) and Trujillo et al. (2001a)
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between 50... 1000 km, and Donnison (2006) between 120...540km (7 > H > 2). For
the SDOs, our results are also consistent within the error bars with Donnison (2006).

However, for the resonant objects our result departs from his appreciably.

Table 3.4.: Size distribution index of the Kuiper belt populations.

CKB RES SDO reference
43+02 5.1+0.1 2.8+0.1 this work

48402 Gladman et al. (1998)
40+0.5 Jewitt et al. (1998)
3.7+0.2 Luu & Jewitt (1998)
3.6+0.1 Chiang & Brown (1999)
44+03 Gladman et al. (2001)

4.01’82 Trujillo et al. (2001a)
4.05+0.2 Bernstein et al. (2004)

397+0.15 3.30+0.37 3.02+0.32 Donnison (2006)

Figure 3.8 shows cumulative numbers of the expected Kuiper belt objects larger than a
given size. In agreement with Donnison (2006), the profile flattens for objects s < 60 km
(H < 7). Without further investigation (see Chapter 5) the break in the size distribution
at radii of several tens of kilometers reported by some authors, e.g., at s * 30km by
Bernstein et al. (2004) and Fraser (2009) can neither be clearly identified nor ruled out
with our debiasing algorithm at this point.
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Figure 3.8.: Cumulative numbers of the expected and known Kuiper belt objects with a
As = 5 km resolution. For an easier orientation, straight lines show the slopes
that would correspond to the differential size distribution indices of ¢ = 3, 4,
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4. Model of the EKB Debris Disk in
Collisional Equilibrium

“I have looked further into space than any human being did
before me.”

Sie William Berldyel (17384822)

This Chapter is based on Vitense et al. (2010). The analyses and results presented here
were obtained in conjunction with Alexander Krivov and Torsten Lohne and are used here

with their permission.

In the case of Vega’s debris disk, whose mass is estimated to be ~ 10Mg, for objects s <
100 km (Miiller et al., 2010) collisions are dominant over all drag forces and therefore the
disk is collision-dominated. That means that drag forces do not modify the size and radial
distribution significantly. A disk can usually be considered to be collision-dominated if
the optical depth 7 > vk /c (Kuchner & Stark, 2010). Reidemeister et al. (2011) showed
for the massive disk of & Eridani, however, that drag forces, in form of the stellar wind

drag can make even a massive disk transport-dominated.

This difference is a combination of circumstances. First, the spectral type of the host
star is important. & Eridani, for example, is a K2 main sequence star with a high stellar
mass loss rate and therefore high efficiency of the stellar wind drag. In addition, the mass
of the disk is an important factor. For £ Eridani the total disk mass is lower than for Vega

which makes the collisional timescales longer and therefore drag more effective.

In this Chapter the influence of our debiasing algorithm and the Poynting-Robertson
drag on the radial and size distribution is analysed and explained and a first, simplified
model of the EKB debris disk is developed.

At this point we make the following definitions. The known EKB consists of all objects
found in the MPC (and produced dust with these objects), i.e. before applying our debi-
asing algorithm. Hence, the expected EKB defines the EKB (and its dust) after applying

our algorithm.
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4.1. Setup of the Collisional Simulations

To obtain the dust distributions in the present-day EKB, which is the goal of this thesis, we
now move from the observable “macroscopic” objects in the EKB to the expected debris
dust in the transneptunian region. Therefore, we used the collisional code ACE (Analysis
of Collisional Evolution; Krivov et al., 2000, 2005, 2006, 2008; Lohne et al., 2008; Miiller
et al., 2010). The code was developed by Alexander Krivov, Miodrag Sremcevi¢ and
Torsten Lohne. The author of this thesis made some minor contribution. It simulates the
evolution of orbiting and colliding solids, solving the Boltzmann-Smoluchowski kinetic
equation (Eq. 2.39) using a mesh of sizes s, pericentric distances ¢, and eccentricities e
of objects as phase space variables (cf. Sec. 2.4). It includes the effects of stellar gravity,
direct radiation pressure, Poynting-Robertson force, stellar wind, and several collisional
outcomes (sticking, rebounding, cratering, and disruption), and collisional damping. For
the critical specific impact energy Eq. 2.18 is used with the constants given in Sec. 2.3.
Gravitational effects of planets in the system are not simulated with ACE directly. The
code outputs, among other quantities, the size and radial distribution of disk solids over a
broad size range from sub-micrometers to hundreds of kilometers at different time steps,

and the code is fast enough to evolve the distribution over gigayears.

In the ACE simulations for this Chapter, we used the following size—pericentric dis-
tance—eccentricity mesh. The minimum grain radius was set to 0.1 um and the variable
mass ratio in the adjacent bins between 4 (for largest TNOs) and 2.1 (for dust sizes). The
pericenter distance grid covered 41 logarithmically-spaced values from 4 AU to 200 AU.
The eccentricity grid contained 50 linearly-spaced values between —5.0 and 5.0 (eccen-
tricities are negative in the case of smallest grains with 8 > 1, whose orbits are anomalous
hyperbolas, open outward from the star, see Sec. 2.2.3). The distance grid used by ACE to
output distance-dependent quantities such as the size distribution was 100 values between

4 AU and 400 AU. The semi-opening angle was set to i = 8°.

In many previous studies, the initial radial and size distributions of dust parent bod-
ies — planetesimals — were taken in the form of power laws, with normalization factors
and indices being parameters of the simulations. Here, we use a different approach. To
take advantage of our knowledge of the (largest) parent bodies, TNOs, we directly filled
the (m, g, e)-bins at the beginning of each simulation with the objects of the “true” Kuiper
belt. For comparison, we also made a run, where we populated the bins with known TNOs

only (without debiasing).
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As already described, our “true” distribution hardly contains any objects with radii
smaller than ~ 10km, because no or very few EKBOs of that sizes have been discov-
ered. Given the lack of information on these objects, we chose to extrapolate the size
distribution to smaller objects with a power law dN o« s79ds with the unknown expo-
nent g. The extrapolation was done the following way: For every object that resides in a
bin {s;, g}, ek}, the bins {s;, g}, e} are populated with (s;/5)'74 (I < i) objects (assuming
logarithmic size bins). That means that we simply assumed that these objects inherit the
pericentric distance and the eccentricity from their parent bodies.

As a first approximation, we extrapolated the contents of the filled bins towards smaller
sizes with a slope of g = 3.03 for objects between 100m < s < 75km (in the gravity
regime) and g = 3.66 for objects smaller than 100 m (in the strength regime), following
O’Brien & Greenberg (2003). Note that the adopted slope in the gravity regime is roughly
consistent with Fig. 3.8. The break at radii of several tens of kilometers reported by
Bernstein et al. (2004) and Fraser (2009) was not included.

In the course of the collisional evolution, this artificial distribution corrects itself until
it comes to a collisional quasi-steady state. The latter is assumed to have been reached,
when the size distribution no longer changes its shape and just gradually moves down as
a whole as a result of collisional depletion of parent bodies (Lohne et al., 2008). We find
that after < 100 Myr a collisional quasi-steady state sets in for all solids in the strength
regime (i.e. smaller than ~ 100 m).

Finally, we have to adopt the material properties, which necessitate assumptions about
the chemical composition. The surface composition of a number of bright EKB objects
has been measured (Barucci et al., 2008, see also discussion in Sec. 3.5). For the sake of
simplicity, for the collisional simulation in this Chapter we choose an ideal material with

0 = 1 gem™ and geometric optics, leading to the radiation pressure efficiency Q,, = 1.

4.2. Results of the Collisional Simulations

Size Distribution of Dust. Figure 4.1 depicts the simulated size distribution of the
EKB dust with all objects being in collisional equilibrium. We present three cases: for
the debiased EKB without (top panel) and with P-R included (middle), as well as for
the known EKB objects with P-R effect, for comparison (bottom). To explain the gross
features of the size distributions shown in Fig. 4.1, the reader shall be reminded to the ratio
of radiation pressure to gravity, S8 (see Sec. 2.2.3). If a small dust grain is released after a

collision from a nearly circular orbit, its eccentricity is e ~ 8(1 —8)~! o s~!'. This implies
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Figure 4.1.: Size distribution of the Kuiper belt dust at different distances. The vertical
axis gives the cross-section density per size decade.

higher eccentricities for smaller grain sizes. The orbits of sufficiently small grains with 8
exceeding ~ 0.5 are unbound. Accordingly, the grain radius that corresponds to 8 = 0.5 is

commonly referred to as blowout limit (see introduction of the S-ratio in Sec. 2.2.3). The
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blowout size for the assumed material in the Solar System is spjow = 1.2 um. Typically, the
amount of blowout grains instantaneously present in the steady-state system is much less
than the amount of slightly larger grains in loosely bound orbits around the star. This is
because the dust production of the grains of adjacent sizes is comparable, but the lifetime
of bound grains (due to collisions) is much longer than the lifetime of blowout grains
(disk-crossing timescale). This explains a drop in the size distribution around the blowout

size which is seen in all three panels of Fig. 4.1.

Another generic feature of the size distribution is that it becomes narrower at larger
distances from the Sun. Were the parent bodies all confined to a narrow radial belt, the
distribution far outside would appear as a narrow peak composed only of small, high-g3,
barely bound grains sent by radiation pressure into eccentric orbits with large apocentric
distances. However, in the case of the EKB this effect is somewhat washed out, since
the spatial distribution of parent bodies themselves (mostly, of scattered objects) is ex-
tended radially, as discussed below. As a result, the size distribution even at relatively
large distances (e.g. 76 AU) is a superposition of such a narrow distribution and a back-
ground broad distribution of particles produced at those distances directly. Only at largest
distances, at which hardly any parent bodies are present (see 240 AU curve), the size

distribution transforms to a predicted narrow peak adjacent to the blowout size.

A direct comparison of our two simulations for the debiased EKB, without and with P-
R effect, reveals some differences. One obvious — and expected — difference is the one
between the 24 AU curves. At this distance (and all the others inside the main belt) parent
bodies are nearly absent; there are only some scattered TNOs, see Fig. 3.1. Accordingly,
without P-R nearly no dust is present there. However, a substantial amount of small
particles is present there in the P-R case, because these are transported there by the P-R

drag.

Outside ~ 30 AU, the size distributions without and with P-R show more similarities
than dissimilarities. In particular, the maximum of the cross section at s = 2 um is nearly
the same. At sizes s > 1 mm, the curves roughly follow a classical Dohnanyi’s law (cross
section per size decade o< s7°). The main difference is a dip of the size distribution in
the region of the classical EKB that occurs at sizes of s = 100 um in the P-R case, which
is easy to explain. The 100 pm grains in the classical EKB region stay in nearly-circular
orbits, because their § ratio is small and radiation pressure-induced eccentricities are low.
These grains are mainly destroyed in collisions with most abundant smaller grains, several
um in size. In the non-P-R case, the latter grains have their pericenters within the classical

belt. Thus the collisions are “grazing”, the collisional velocities relatively low, and the
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collisional desctruction of 100 wm grains relatively inefficient. When the P-R effect is
switched on, this changes. The P-R transport lowers the pericenters of smaller projectiles,
and in the classical belt, they collide with 100 um grains at higher speeds, which enhances
their destruction and produces the dip. Note that this effect is absent farther out from
the Sun. At a distance of 76 AU, for example, the collisions between smaller grains
and 100 um particles always occur far from the pericenter. Thus the P-R effect has little
influence on the collisional velocities, and the size distribution in the non-P-R and P-R
cases is similar.

However, the dust distributions computed with P-R effect, but for debiased EKB and
known EKB, which are shown in middle and bottom panels of Fig. 4.1, exhibit a striking
difference. The P-R effect has only a moderate influence on dust produced by the debi-
ased EKB, but a strong one on dust generated solely by known TNOs. This needs to be
explained. The debiasing and extrapolation procedure makes the EKB more densely pop-
ulated, and the resulting increase in the dustiness shortens collision timescales to make
them comparable with the P-R transport timescales. The resulting optical depth of the dust
disk is such that it lies roughly between the collision-dominated and transport-dominated
regimes. Without debiasing the parent body population, the dustiness of the disk is by
two orders of magnitude lower, and so is the optical depth of the dust disk. At that optical
depth level, the EKB dust disk would be transport-dominated below s < 100 um (but still
collision-dominated at larger sizes). This is illustrated by the lowest panel in Fig. 4.1
that presents the size distribution of dust that would be produced by known TNOs. It
is seen that the size distribution in such a transport-dominated disk differs from that in
a collision-dominated one qualitatively. From s ~ 100 um down to blowout limit, the
size distribution flattens and turns over. This is because the smaller the grains, the faster
their inward P-R drift. This transport removes small grains from the collisionally active
region and thus they are present in smaller amounts. As a result, the maximum of the

cross-section density shifts towards s ~ 100 um particles.

Radial Distribution of Dust. Figure 4.2 presents the radial distribution of dust parent
bodies and their dust, the latter simulated without and with P-R transport.

We start with the radial distribution of parent bodies, TNOs themselves, shown in
Fig. 4.2a. In contrast to Fig. 3.6, we plot here the total cross section of the TNOs instead
of the mass they carry, because it is the cross section that characterizes the efficiency
of TNOs as dust producers. Besides, we use the distance from the Sun instead of the

semimajor axis as an argument. Specifically, we plot the cross section in the 80 km-sized
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Figure 4.2.: Radial distribution of parent bodies ((a), from 64 km to 100 km in radius) and
different-sized dust grains without (b) and with P-R drag (c). The vertical
axis is the cross-section density per size decade.

TNOs, but the radial profile for larger objects look similar. As expected, the distribution
peaks in the region of the main belt (40-50 AU), where about 90% of the cross section
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comes from the classical EKB objects. Outside ~ 60 AU, the cross section is solely due
to scattered objects. The distribution of the latter is quite extended radially, it is nearly
flat over a wide distance range from ~ 35 AU to more than 100 AU.

We now move to a discussion of the radial distribution of dust. As noted above,
smaller grains with higher 8 ratios acquire higher orbital eccentricities. As the eccen-
tricities of particles slightly above the blowout limit are the highest, their radial distribu-
tion is the broadest, whereas larger particles stay more confined to their birth regions. In
Fig. 4.2b this effect can be seen from how the curves gradually change from the largest
(s = 110um) to the smallest bound grains (2 um). The former essentially follow the
distribution of the parent bodies, while the latter exhibit a more extended, flatter radial
profile. Finally, blowout grains (e.g., those with s = 0.15 um have an oc =2 distribution,
as expected for a set of hyperbolic orbits streaming outward from their birth locations.

Including the P-R drag (Fig. 4.2¢) does little with largest grains, but modifies the profile
of smaller ones (~ 1 um) substantially. The P-R transport inward steepens their profile.
Besides, small particles are now present in high amounts at smaller distances, even where

no parent bodies are present, in contrast to the case without P-R.

Coupled Size-Radial Distribution. Another view of the EKB dust can be achieved by
plotting its combined radial and size distribution (Fig. 4.3). Besides presenting the same
salient features as those discussed before, it emphasizes that radial and size distribution
of dust in a debris disk are intrinsically coupled and cannot be treated independently of

each other.

Optical Depth. The radial profile of the normal geometrical optical depth is shown in
Fig. 4.4. In the case of a disk dominated by the P-R effect, Strubbe & Chiang (2006)
calculated analytically the exponent of the optical depth profile T « r~ to be @ = 2.5 and
a = 0 in the outer and inner regions, respectively. Without P-R effect, i.e. for a collision-
dominated disk, no dust is present interior to the parent bodies, and the outer slope should
be close to @ = 1.5.

These slopes are in qualitative agreement with our simulations (Fig. 4.4). Taking the
known EKB objects as dust sources and including the P-R effect, we find a nearly constant
optical depth in the inner region and a slope of @ ~ 3.0 in the outer disk, close enough
to predictions for a transport-dominated disk. For the debiased EKB dust disk and with
the P-R effect taken into account, the result is intermediate between what is expected for

transport-dominated and collision-dominated disks. This is seen from the inner profile
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Figure 4.3.: The distribution of the cross-section density of the EKB dust as a function of
distance and grain sizes. The panels are as in Fig. 4.2.
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which is gently decreasing inward (cf. Fig. 1 of Wyatt, 2005), and from the outer slope
of @ = 2.0. Finally, for the debiased EKB dust disk, but with the P-R effect switched
off, the profile is the one expected for collision-dominated disks. The optical depth drops
sharply inward from the main belt, whereas in the outer region the slope is @ ~ 1.1. That
it is somewhat flatter than the analytic value @ = 1.5, traces back to a rather broad radial
distribution of scattered TNOs that make a considerable constribution to the overall dust

profile.
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Figure 4.4.: Normal optical depth of the debiased Kuiper belt with and without P-R drag.
Uranus and Neptune are shown for orientation, but were not included in the
simulations. The optical depth for the known EKB is amplified by a factor of

100.

For the debiased EKB and with P-R effect included, the normal optical depth peaks at
~ 40 AU at a level of ~ 6 x 107°. Besides the normal optical depth shown in Fig. 4.4,

we have calculated the in-plane optical depth to 7 < 2 X 107 outside 30 AU. We finally
note that the dust production rate for the debiased EKB in collisional equilibrium was

calculated to < 1.7 x 108 gs7!.
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4.3. Thermal Emission

The numerical tool for calculating the spectral energy distribution is called SEDUCE
(Spectral Energy Distribution Utility for Circumstellar Environments) and was developed
by Sebastian Miiller (Miiller, 2007). Some minor changes in the code were done by the
author of this thesis.

The equilibrium temperatures of dust and their thermal emission were calculated in a
standard way as described, for instance, in Krivov et al. (2008). In these calculations we
computed the Solar photospheric spectrum with the NextGen grid of models (Hauschildt
et al., 1999), assuming a G2V star of Solar metallicity. To get a rough idea of how the
thermal flux is affected by (unknown) chemical composition of dust, we tested four dif-
ferent cases: ideal material (blackbody absorption and emission), astrosilicate from Laor
& Draine (1993), contaminated ice with 10% volume fraction of astronomical silicate
and “dirty ice” with a 50 — 50 composition of ice and astrosilicate (Warren, 1984; Laor
& Draine, 1993). For brevity we use “ice” for the 10% astrosilicate-contaminated ice
and “dirty ice” for the 50% astrosilicate-contaminated ice. This is similar to what, for
instance, Yamamoto & Mukai (1998b) adopted in their calculation of thermal emission
of the EKB dust. The refractive indices of the adopted ice were calculated by means
of the Maxwell-Garnett theory and for the “dirty ice” the Bruggeman mixing rule was
used. With a standard Mie algorithm, we then computed the absorption efficiency Qs as
a function of size and wavelength. Since most of the emission comes from small particles
we limited the calculation of the flux to particles between 0.1 ...3000 um. For particles
larger than 3000 wm the size parameter 2rs4™! > 3x10* for A = 0.5 um (which is the peak
emission wavelength of the Sun) and numerical solutions of Mie theory are not appropiate
anymore (Wolf & Voshchinnikov, 2004).

4.3.1. Spectral Energy Distribution

The resulting SEDs of the simulated (extrasolar) EKB dust disk, as it would be seen
from a 10 pc distance, are presented in Fig. 4.5. Three different curves correspond to the
materials blackbody, astrosilicate and ice as described above. Pure astrosilicate and the
ice produce SEDs of similar shape and height, peaking at 50—70 um with a maximum flux
at a level of several mJy. On the ice curve, a typical water ice feature at ~ 60 um is seen.
This feature may have been detected in the disk of a young debris disk star HD 181327
(Chen et al., 2008). The fact that the feature is located near the peak of the SED may help

finding water ice in other debris disks by future observations.
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Figure 4.5.: Infrared excess of the Kuiper belt dust. (a): the debiased EKB, without P-
R effect; (b): the debiased EKB, with P-R effect; (c): known EKB objects
only, with P-R effect (amplified by a factor of 100). Three curves and the
gray shades area in each panel (a) to (c) are based on the same ACE runs, but
the thermal emission was calculated for four different materials: blackbody,
astrosilicate, ice, and “dirty ice”. For comparison, observed SEDs of three
other old Sun-like stars are shown with symbols. The triangle shows the
upper non-detection limit at 70 um (amplified by 100 for the known EKB).
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Finally the gray shaded areas correspond to the “dirty ice”. Different grayshades cor-
respond to different distances. For the known EKB the radial distances are written into
the plot. For the debiased EKB the same grayshades represent the same distances as for
the known belt. Obviously, nearly all of the flux of the EKB without P-R drag stems from
r > 40 AU since no mechanism transports material inward and therefore no material can
contribute to the flux. A different result can be seen for the debiased EKB with transport
included. Although collision-dominated for all sizes and distances only ~ 60% of the
maximum flux stems from outside 40 AU. As a straightforward result, 