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Abstract

This manuscript is on the theory and numerical procedures of vector op-

timization w.r.t. various ordering structures, on recent developments in this

area and, most important, on their application to medical engineering.

In vector optimization one considers optimization problems with a vector-

valued objective map and thus one has to compare elements in a linear space.

If the linear space is the finite dimensional space R
m this can be done com-

ponentwise. That corresponds to the notion of an Edgeworth-Pareto-optimal

solution of a multiobjective optimization problem. Among the multitude of

applications which can be modeled by such a multiobjective optimization

problem, we present an application in intensity modulated radiation therapy

and its solution by a numerical procedure.

In case the linear space is arbitrary, maybe infinite dimensional, one may

introduce a partial ordering which defines how elements are compared. Such

problems arise for instance in magnetic resonance tomography where the num-

ber of Hermitian matrices which have to be considered for a control of the

maximum local specific absorption rate can be reduced by applying proce-

dures from vector optimization. In addition to a short introduction and the

application problem, we present a numerical solution method for solving such

vector optimization problems.

A partial ordering can be represented by a convex cone which describes the

set of directions in which one assumes that the current values are deteriorated.

If one assumes that this set may vary dependently on the actually considered

element in the linear space, one may replace the partial ordering by a variable

ordering structure. This was for instance done in an application in medical

image registration. We present a possibility of how to model such variable

ordering structures mathematically and how optimality can be defined in such

a case. We also give a numerical solution method for the case of a finite set

of alternatives.
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1 Introduction

In classical optimization one considers a scalar-valued objective function f : X → R

with X some real linear space and one searches for the minimal value of f over some
nonempty set S ⊆ X, i.e. one aims on solving

min
x∈S

f(x). (1)

An element x̄ ∈ S is a minimal solution of (1) if f(x̄) ≤ f(x) for all x ∈ S. The
unique minimal value of (1) is then f(x̄).

However, many applications, plenty of those also in the area of medical engi-
neering, require to minimize more than one objective function at the same time. If
m ≥ 2 objectives fi : X → R, i = 1, . . . , m have to be minimized simultaneously one
speaks of a multiobjective or multicriteria optimization problem

min
x∈S







f1(x)
...

fm(x)






(MOP)

with a vector-valued objective function f : X → Rm with f(x) := (f1(x), . . . , fm(x)).
Using the componentwise partial ordering, the values of this objective function f

can be compared and it can be defined what an optimal solution is. We discuss such
optimization problems together with an application to intensity modulated radiation
therapy in Section 2.

Multiobjective optimization problems are a special case of vector optimization
problems. There, one assumes to have a vector-valued objective map f : X → Y

mapping in an arbitrary real linear space Y . The space Y may be partially ordered
(for the definition of a partial ordering see Definition 3.1). Using this partial order-
ing, several optimality notions can be defined. In Section 3 we give an introduction
to vector optimization in partially ordered spaces. The discussed concepts and a
numerical solution procedure will be illustrated on an application in magnetic reso-
nance tomography. There, a subset of a finite set of Hermitian matrices has to be
determined for allowing a fast control of the maximum local specific absorption rate
(SAR).

A partial ordering can be represented by a convex cone which is a set with a spe-
cial structure (for the definition see p.12) and which describes the set of directions
in which one assumes that the current values are deteriorated. If one assumes that
this set may vary dependently on the actual element in the linear space, one may
replace the partial ordering by a variable ordering structure. This was for instance
necessary for being able to model an application problem in medical image regis-
tration. We present a possibility of how to mathematically formulate such variable
ordering structures and how optimality can be defined in such a case together with
a numerical solution procedure in Section 4.

This manuscript is not intended to be a comprehensive review of the theory
of vector optimization and its application to problems in medical engineering, but
to provide a survey on the different possibilities to model preferences in vector
optimization and to present case studies in medical engineering which give examples
for the different ordering structures.
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2 Componentwise Ordering and an Application

in Intensity Modulated Radiation Therapy

In the following, we assume that we have m ≥ 2 objective functions fi : X → R,
i = 1, . . . , m which have to be minimized all at the same time over some nonempty
subset S ⊆ X of the linear space X. For instance, X = Rn and S may be given by
inequality and equality constraints. Recall that maximizing some objective function
fi leads to the same optimal solutions (and the same absolute optimal value) as
minimizing −fi. Thus we can restrict ourselves to minimization in this section. We
consider in the following the optimization problem as defined in (MOP) which is
denoted a multiobjective or a multicriteria optimization problem with the vector-
valued objective function f : X → Rm, f(x) := (f1(x), . . . , fm(x)).

Applications which are modeled by such multiobjective optimization problems,
next to the one discussed in Subsection 2.3, are for instance in chemotherapy con-
trol the maximization of the tumor cell killing while minimizing the toxicity and
achieving a tolerable drug concentration [2] or in medical image registration the
maximization of intensity similarity while minimizing the energy required to accom-
plish the transformation [1].

2.1 Multiobjective Optimization with the Componentwise

Ordering

In the applied sciences F.Y. Edgeworth (1881, [13]) and V. Pareto (1906, [42]) were
probably the first who introduced an optimality concept for multiobjective opti-
mization problems. Therefore, optimal points are called Edgeworth-Pareto optimal
points in the modern special literature, see [26].

Definition 2.1. A point x̄ ∈ S is called an Edgeworth-Pareto optimal (EP optimal)
solution of (MOP) if there exists no other x ∈ S with

fi(x) ≤ fi(x̄) for all i = 1, . . . , m,
and fj(x) < fj(x̄) for at least one j ∈ {1, . . . , m} .

Hence, some point x̄ ∈ S is EP optimal, if
(

{f(x̄)} − R
m
+

)

∩ f(S) = {f(x̄)}. (2)

For Definition 2.1 the elements of the linear space Rm are compared componentwise.
This ordering is also called the natural ordering: for all a, b ∈ Rm

a ≤ b :⇔ ai ≤ bi, i = 1, . . . , m ⇔ b− a ∈ R
m
+ .

Then x̄ ∈ S is an EP optimal solution of (MOP) if ȳ := f(x̄) is a minimal element
of the image set f(S) := {f(x) ∈ R

m | x ∈ S} in the sense of

y ≤ ȳ, y ∈ f(S) ⇒ y = ȳ.

For an illustration see Fig. 1.
Also weaker and stronger optimality notions are known in the literature, see for

instance the books [14, 41] for a collection of notions.
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Figure 1: The point ȳ := f(x̄) is a minimal element of f(S) ⊆ R2 and thus x̄ is an
EP-optimal solution of (MOP).

Definition 2.2. (i) A point x̄ ∈ S is called a weakly EP optimal solution of
(MOP), if there exists no other x ∈ S with fi(x) < fi(x̄) for all i = 1, . . . , m.

(ii) A point x̄ ∈ S is called a strongly EP optimal solution of (MOP), if fi(x̄) ≤
fi(x) for all i = 1, . . . , m and all x ∈ S.

Thus x̄ is weakly EP optimal if and only if

(

{f(x̄)} − int(Rm
+ )

)

∩ f(S) = ∅ , (3)

with int(·) denoting the interior, and x̄ is strongly EP optimal if and only if

f(S) ⊆ {f(x̄)} + R
m
+ . (4)

Of course, any strongly EP optimal solution is also EP optimal and any EP
optimal solution is also weakly EP optimal. If there is a strongly EP optimal solution
x̄ then x̄ simultaneously minimizes all objective functions fi and hence the objectives
are not concurrent. The weakly EP optimal solutions which are not also EP optimal
are not desirable from the point of view of applications, as for these solutions still an
improvement w.r.t. at least one objective function is possible without deteriorating
the others. The notion of weakly EP optimal solutions is more of interest from a
theoretical point of view, see for instance the comments in [35] and the following
section on numerical procedures for solving (MOP).

Example 2.1. Let fi : R2 → R be defined by fi(x1, x2) = xi, i = 1, 2 and let S =
[1, 2] × [1, 2]. Then f(S) = S. The set {x ∈ S | x1 = 1} ∪ {x ∈ S | x2 = 1} equals
the set of all weakly EP optimal solutions of minx∈S f(x). The unique EP optimal
solution is x = (1, 1) which is at the same time a strongly EP optimal solution.

It is easy to proof that the image f(x̄) of an EP optimal solution is always an
element of the boundary ∂f(S) of f(S):

Lemma 2.1. If x̄ ∈ S is an EP optimal solution of (MOP), then f(x̄) ∈ ∂f(S).

Hence, in numerical procedures, one can concentrate on determining elements of
the boundary of f(S).
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2.2 Numerical Procedures

Many numerical procedures for solving multiobjective optimization problems pre-
suming the componentwise ordering are proposed in the literature. Most of these
approaches are based on the formulation of a parameter dependent scalar-valued
optimization problem to the multiobjective optimization problem (MOP). Such a
problem is for instance the weighted-sum scalarization

minx∈S w1f1(x) + . . .+ wmfm(x) (5)

with nonnegative weights wi, i = 1, . . . , m. A survey over such scalarization ap-
proaches is for instance provided in [45] or [32]. Other approaches are based on
evolutionary algorithm, for a survey see for instance [9, 10, 50, 56], or on the New-
ton’s method [28].

In opposition to optimizing a scalar-valued optimization problem as the one
in (1), the set of images of the optimal solutions of a multiobjective optimization
problem, i.e.

E := {y = f(x) ∈ R
m | x is an EP optimal solution of (MOP)},

is in general not a singleton, but infinitely many EP optimal solutions x and cor-
respondent points f(x) ∈ Rm exist. Especially in engineering problems, one is in
general not interested in one EP optimal solution only but in the complete set E ,
which is also denoted the efficient set.

As this, in general infinite, set can in most cases not be determined, one aims
on calculating an approximation of it. Such an approximation can be gained by
solving a parameter dependent scalarization problem for a choice of parameters.
Thereby it is in general the aim to approximate the complete set E concisely with
almost equidistant approximation points and to avoid to neglect some parts of the
set E . Thus, an important question is how to choose the parameters appropriately
in advance, as especially in application problems the solution of one scalarization
problem may be very costly.

We present in the following a procedure for an adaptive parameter control using
sensitivity information [18] and that is based on a scalarization known in the litera-
ture as ε-constrained method. This procedure was also used to solve the application
problem in Section 2.3. The advantage of the ε-constraint scalarization compared
with the weighted-sum scalarization mentioned above is that it is also applicable for
non-convex problems. If the set f(S)+Rm

+ is not convex, it might happen that even
by varying the weights arbitrarily, not all EP optimal solutions might be found by
solving the problem (5), see for instance [35] for a discussion.

The ε-constraint problem to the multiobjective optimization problem (MOP) is
defined by

min fm(x)
s. t. fi(x) ≤ εi, i = 1, . . . , m− 1,

x ∈ S

(6)

with parameter ε ∈ Rm−1. Thus we minimize only one of the m objectives and con-
vert the other objective functions into constraints. For this scalarization approach
we have the following results. For proofs see e. g. [41, Ch. 3.2].
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Theorem 2.1. (a) If x̄ is a solution of (6), then x̄ is a weakly EP optimal solution
of (MOP).

(b) If x̄ is a unique solution of (6), then x̄ is an EP optimal solution of (MOP).

(c) If x̄ is an EP optimal solution of (MOP), then it is also a solution of (6) with
εi := fi(x̄), i = 1, . . . , m− 1.

For the case of only two objective functions we have the following stronger result
[18]:

Lemma 2.2. Let m = 2 and let x̄1 be a minimal solution of minx∈S f1(x) and x̄2

be a minimal solution of minx∈S f2(x). If x̄ is an EP optimal solution of (MOP)
then there exists a parameter ε ∈ R such that x̄ is a minimal solution of (6) and
f1(x̄

1) ≤ ε ≤ f1(x̄
2).

In case of three or more objective functions we cannot give such strong boundaries
for the parameter ε, but we may reduce the parameter space to a compact set (for
f(S) compact), for instance in the case m = 3 by the following: Solve minx∈S fi(x)
for i = 1, 2 with minimal solutions xmin,i and minimal values fi(x

min,i) =: εmin
i as

well as maxx∈S fi(x) for i = 1, 2 with maximal solutions xmax,i and maximal values
fi(x

max,i) =: εmax
i . Then for every EP optimal solution x̄ of (MOP) there exists an

ε ∈ R2 such that x̄ is a minimal solution of (6) and εmin
i ≤ εi ≤ εmax

i , i = 1, 2.
For the remaining of this section we concentrate on the case m = 2, i.e. on the

biobjective case. It still remains to clarify how to choose the parameters ε from the
interval [f1(x̄

1), f1(x̄
2)]. We assume that the objective functions f1 and f2 are twice

continuously differentiable. In addition to that, suppose that we have already solved
the problem (6) for some parameter ε0 ∈ R with x0 := x(ε0) a minimal solution with
Lagrange-multiplier µ0 ≥ 0 to the constraint f1(x) − ε0 ≤ 0 and that the point x0

satisfies some first- and second-order optimality conditions and nondegeneracy is
given. For more details on the assumptions needed to be satisfied for the following
algorithm, we refer to [17, 18, 19]. The point x0 is by Theorem 2.1 a weakly EP
optimal solution and f(x0) serves as an approximation point of the efficient set E .
Next we want to find a parameter ε1 with

‖f(x(ε1)) − f(x0)‖ = α (7)

for a given value α > 0. Throughout, let x(ε) denote an optimal solution of the
problem (6) for some ε ∈ Rm−1. We suppose that the constraint f1(x) ≤ ε0 is active
in x0, i. e. it is fulfilled with f1(x

0) = ε0. Otherwise we can easily find a parameter
ε̃0 with f1(x

0) = ε̃0. Under the above assumptions, the local minimal value function
τ δ : R → R,

τ δ(ε) := inf{f2(x) | f1(x) ≤ ε, x ∈ S, x ∈ Bδ(x
0)} ,

with Bδ(x
0) a closed ball around x0 with radius δ for some small δ > 0, is differen-

tiable on a neighborhood of ε0 with

(τ δ)′(ε0) = −µ0 ,
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see [17, Theorem 6], [18]. Using the derivative of the local minimal value function for
a Taylor approximation (assuming this is possible) and assuming that the constraint
f1(x) ≤ ε remains active, we obtain

f2(x(ε
1)) ≈ f2(x

0) − µ0(ε1 − ε0) .

As a consequence, the equation (7) is approximately satisfied for

ε1 = ε0 ± α
(

√

1 + (µ0)2

)−1

.

This leads to the procedure summarized as Algorithm 1.

Algorithm 1 Approximation of the efficient set for m = 2

Require: distance α > 0, starting distance β ∈ (0, α)
1: solve min

x∈S
f2(x) with minimal solution x1

2: set ε2 := f1(x
1) − β and l := 2

3: solve min
x∈S

f1(x) with minimal solution xE

4: while εl ≥ f1(x
E) do

5: solve (6) for the parameter εl with minimal solution xl and Lagrange-
multiplier µl

6: set
εl+1 := εl −

α
√

1 + (µl)2

and l := l + 1
7: end while

8: return the set A := {f(x1), . . . , f(xl−1), f(xE)} is an approximation of E

A generalization of these results to the case m ≥ 3 for generating locally equidis-
tant points can be done easily, but for an equidistant approximation of the complete
efficient set problems occur as discussed in [18]: as we have seen we cannot give as
strong boundaries for the parameter ε as given in Lemma 2.2 for the case m = 2.
An additional difficulty is that if we want to use sensitivity information to deter-
mine a new approximation point, we have to know which points are neighbors of
the new point. We give the idea of a procedure for generating locally equidistant
approximation points in the next paragraph.

Assume we have solved problem (6) for a parameter ε0 ∈ Rm−1 with minimal
solution x0 and Lagrange multiplier µ0 ∈ Rm−1 to the constraints fi(x) − ε0

i ≤ 0,
i = 1, . . . , m− 1 (assuming the constraints to be active in x0) and we now want to
find a new parameter ε1 ∈ R

m−1 with ε1 := ε0+s·v for s ∈ R in a given direction v ∈
Rm−1. Similarly as discussed above we approximatively get ‖f(x(ε1))− f(x0)‖ = α

for
s = ±

α
√

‖v‖2 + (µ0⊤v)2
. (8)

One can use as directions v one or all of the (m − 1)-dimensional unit vectors
e1, . . . , em−1. For more details we refer again to [17, 18, 19].
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Figure 2: (a) and (b) Coronar and axial CT-cut (Figure courtesy of Dr.R. Janka,
Institute of Diagnostic Radiology, Univ. Erlangen-Nuremberg). (c) Schematic axial
body cut.

2.3 Application to Intensity Modulated Radiation Therapy

In this section, we present an optimization problem in intensity modulated radiation
therapy and apply Algorithm 1 to it. The task is to find an irradiation plan for a
patient with a cancer tumor to destroy the tumor while to spare the surrounding
healthy organs. For a survey on the optimization problems arising in intensity
modulated radiation therapy see [15]. The tasks which have to be considered in this
context include the selection of beam angles (geometry problem), see for instance
[16], the computation of an intensity map for each selected beam angle (intensity
problem), and finding a sequence of configurations of a multileaf collimator to deliver
the treatment (realization problem) [15].

We consider here the intensity problem which we model as a multiobjective
optimization problem, see also for instance [37, 11, 12, 33]. The aim is to find an
irradiation plan for a patient with prostate cancer. The tumor is irradiated with five
equidistant beams which can be decompounded in 400 distinct controllable beamlets.
We assume that the beam geometry is fixed. The relevant part of the patients body
is mapped with the help of a computer tomography (CT) (see Fig. 2(a), (b)) and
according to the thickness of the slices dissected into cubes, the so-called voxels.

With a clustering method [37], [46] where voxels with equal radiation exposure
are collected, the very high number of 435 501 voxels can be reduced to 11 877 clus-
ters cj, j = 1, . . . , 11 877. Then each cluster is allocated to one of the interesting
volume structures V0, . . . , V6 by a physician. In our example these are the tumor
(volumes V0, V1), the rectum (V2), the left (V3) and the right (V4) hip-bone, the
remaining surrounding tissue (V5) and the bladder (V6) (see Fig. 2(c)). Exami-
nations have shown that the bladder and the rectum are opponents whereas the
other critical organs follow these dominating organs in their stress caused by dif-
ferent irradiation plans. The emission by the beamlets Bi (i ∈ {1, . . . , 400}) in the
clusters cj (j ∈ {1, . . . , 11 877}) at one radiation unit is described by the matrix
P = (Pji)j=1,...,11 877,i=1,...,400. Let x ∈ R400 be the intensity profile. Then Pjx with
Pj the j-th row of the matrix P denotes the irradiation dose in the cluster cj caused
by the beamlets Bi, i = 1, . . . , 400.

For evaluating and comparing the radiation stress in the organs we use the
concept of the equivalent uniform dose by Nimierko based on p-norms (here with
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Table 1: Critical values for the organs at risk.
number of organ (k) pk Uk Qk N(Vk)

rectum 2 3.0 30 36 6 459
left hip-bone 3 2.0 35 42 3 749
right hip-bone 4 2.0 35 42 4 177
remaining tissue 5 1.1 25 35 400 291
bladder 6 3.0 35 42 4 901

respect to the clustered voxels):

EUDk(x) =
1

Uk





1

N(Vk)

∑

{j|cj∈Vk}

N(cj) · (Pjx)
pk





1

pk

− 1, k = 2, . . . , 6.

The scalar pk ∈ [1,∞[ is an organ depending constant reflecting the more parallel
or more serial structure of the organ, N(Vk) is the number of voxels in organ Vk

and N(cj) is the number of voxels in cluster cj, thus
∑

{j|cj∈Vk}
N(cj) = N(Vk). The

value Uk is a dose limit for each organ which should not be exceeded and it is a
statistical evaluated value which, in our example, can be taken from Table 1.

A feasible treatment plan has now to satisfy several constraints. First, a danger-
ous overdosing of the critical tissue should be avoided and thus, the maximal value
Qk must not be exceeded for all organs at risk Vk, k = 2, . . . , 6, i. e.

Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6.

These restrictions can be restated as

∑

{j|cj∈Vk}

N(cj)(Pjx)
pk ≤ Q

pk

k ·N(Vk) k = 2, . . . , 6.

It is also important that the dose in the tumor tissue remains below a maximal value
to avoid injuries in the patients body and to achieve homogeneity of the irradiation.
Besides, to have the desired effect of destroying all tumor cells, a certain curative
dose has to be reached. Here, we differentiate between the so-called target-tissue V0

and the boost-tissue V1, which is tumor tissue that has to be irradiated especially
high. Those conditions result in the following constraints for every cluster of the
target and the boost volume:

L0(1 − ε0) ≤ Pjx ≤ L0(1 + δ0), ∀j with cj ∈ V0

and L1(1 − ε1) ≤ Pjx ≤ L1(1 + δ1), ∀j with cj ∈ V1,
(9)

where L0, L1, ε0, ε1, δ0 and δ1 are constants given by the physician and tabulated
in Table 2.

The target-tissue is pieced together by 8 593 clusters and the boost-tissue by 302
clusters which leads altogether to 17 790 additional constraints. Furthermore, it has
to be assured that the intensity of the beams is nonnegative. Summarizing this we
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Table 2: Critical values for the tumor tissues.
number of organ (k) Lk δk εk

target-tissue 0 67 0.11 0.11
boost-tissue 1 72 0.07 0.07

Table 3: Values of the approximation points and distances.
app.point i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8
EUD2(x

i) 0.2000 0.1600 0.1203 0.0805 0.0421 0.0069 -0.0183 -0.0197
EUD6(x

i) 0.0159 0.0164 0.0186 0.0283 0.0425 0.0782 0.1356 0.2000
δi 0.0400 0.0398 0.0410 0.0410 0.0501 0.0627 0.0644 -

have the following feasible set

S = {x ∈ R400
+ | Uk(EUDk(x) + 1) ≤ Qk, k = 2, . . . , 6,

L0(1 − ε0) ≤ Pjx ≤ L0(1 + δ0), ∀j with cj ∈ V0,

L1(1 − ε1) ≤ Pjx ≤ L1(1 + δ1), ∀j with cj ∈ V1}

with 17 795 constraints and 400 variables. The aim is now to keep the dangerous
overdosing of the organs at risk, the rectum (V2) and the bladder (V6), as low as
possible, i. e. our two objectives are a minimization of the functions EUD2 and
EUD6. Investigations [38] have shown, that these two organs are the dominating
organs and that the other organs at risk follow in the level of their EUD-values these
organs with a lower value.

Thus the bi-objective optimization problem can be written as

min
x∈S

(

f1(x)
f2(x)

)

= min
x∈S

(

EUD2(x)
EUD6(x)

)

.

As described in the preceding section we use the ε-constraint method as scalarization
approach. This leads to the scalar-valued optimization problems

min EUD6(x)

s. t. EUD2(x) ≤ ε,

x ∈ S

with parameter ε ∈ R. We first solve the problems minx∈S fi(x), i = 1, 2 and we
get, according to Lemma 2.2, that it is sufficient to consider parameters ε ∈ R with
ε ∈ [−0.0197, 0.2000].

We apply Algorithm 1 with α = β = 0.04. This results in the parameters
ε ∈ {0.2000, 0.1600, 0.1203, 0.0805, 0.0421, 0.0069,−0.0183, −0.0197} and the ap-
proximation shown in Fig. 3(a). The values of the approximation points and the
distances δi := ‖f(xi+1) − f(xi)‖2 between these points are tabulated in Table 3.

The physician can now choose one of the calculated, at least weakly, EP optimal
solutions, can increase the fineness of the approximation by decreasing the value α
and run the algorithm again, or can choose a point y determined by interpolation
between existing approximation points and solve problem (6) again for ε = y1, see
also [49, p. 70].
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Figure 3: (a) Approximation of the efficient set of the biobjective problem for
α = 0.04, and the parameters (ε, 0). (b) Approximation with locally equidistant
approximation points of the efficient set of the multiobjective problem with three
objective functions.

It is also of interest to include the additional target of homogeneity of the irra-
diation of the tumor in the problem formulation. This aim can be modeled by the
objective function

H(x) :=

√

√

√

√

∑

{j|cj∈V0}

N(cj) (Pjx− L0)2 +
∑

{j|cj∈V1}

N(cj) (Pjx− L1)2

N(V0) +N(V1)
→ min!

Here, N(V0) = 13 238 and N(V1) = 2 686. The target of homogeneity competes
with the previous objectives EUD2 and EUD6. Thus one may also investigate the
following multiobjective optimization problem with three objective functions

min
x∈S





f1(x)
f2(x)
f3(x)



 = min
x∈S





EUD2(x)
EUD6(x)
H(x)



 .

The corresponding scalarization approach is

min H(x)

s. t. EUD2(x) ≤ ε1,

EUD6(x) ≤ ε2,

x ∈ S.

The parameters (ε1, ε2) can be determined according to (8). An approximation of
the efficient set can be seen in Fig. 3(b). For more details we refer to [17].

3 Partial Orderings and an Application in Mag-

netic Resonance Tomography

As discussed in the introduction, multiobjective optimization problems, i.e. opti-
mization problems with the objective function mapping in the real linear space
Y = R

m, can be seen as a special case of a vector optimization problem with an ob-
jective map mapping in an arbitrary real linear space Y . For comparing elements in

11



Y a binary relation has to be defined. Often, it is assumed that this binary relation
is reflexive, transitive, and compatible with the linear structure of the space and thus
a partial ordering. In this section we consider such vector optimization problems
where the objective space is equipped with a partial ordering. Such optimization
problems arise for instance in a data reduction problem in magnetic resonance to-
mography.

3.1 Vector Optimization with a Partial Ordering

First, we define the notion of a partial ordering.

Definition 3.1. Let Y be a real linear space.

(i) A nonempty subset R of the product space Y × Y is called a binary relation
R on Y . We write yRz for (y, z) ∈ R.

(ii) A binary relation ≤ on Y is called a partial ordering on Y , if for arbitrary
w, x, y, z ∈ Y
(reflexivity) x ≤ x,
(transitivity) x ≤ y, y ≤ z ⇒ x ≤ z,
x ≤ y, w ≤ z ⇒ x+ w ≤ y + z,
x ≤ y, α ∈ R+ ⇒ αx ≤ αy .

(iii) A partial ordering ≤ on Y is called antisymmetric, if for arbitrary y, z ∈ Y

y ≤ z, z ≤ y ⇒ y = z.

A real linear space equipped with a partial ordering is called a partially ordered
linear space. If ≤ is a partial ordering, then the set

K := {y ∈ Y | y ≥ 0Y }

is a convex cone. Recall that a set K ⊆ Y is a cone if λy ∈ K for all λ ≥ 0 and
y ∈ K. And a cone is convex if K +K ⊆ K. Also, any convex cone K ⊆ Y defines
by

≤K := {(y, z) ∈ Y × Y | z − y ∈ K}

a partial ordering on Y . Such a cone is then also called an ordering cone. A cone
satisfying K ∩ (−K) = {0Y } is called pointed, otherwise non-pointed. An ordering
cone is pointed if and only if the associated partial ordering is antisymmetric.

For any element y ∈ Y , the set ({y} + K) \ {0Y } = {z ∈ Y | z ≥ y, z 6=
y} is the set of elements, which are considered to be worse than y, while the set
({y} − K) \ {0Y } = {z ∈ Y | y ≥ z, z 6= y} describes the set of elements which
are preferred to y. If Y = Rm and K = Rm

+ , then K defines the componentwise
(natural) ordering in Rm as used in Section 2. But also other convex cones can be
used to define a partial ordering in Rm as for instance the lexicographic ordering
cone

Klex := {y ∈ R
m | y1 = . . . = yk = 0, yk+1 > 0 for some k ∈ {0, . . . , m−1}}∪{0Rm}

12



or the ice-cream cone, also known as Lorentz cone,

KL := {y ∈ R
m | ‖(y1, . . . , ym−1)‖2 ≤ ym}.

The vector optimization problems, which we are considering in the following, are

minK f(x)
such that
x ∈ S

(VOP)

with real linear spaces X, Y , a nonempty subset S ⊆ X, a vector-valued map
f : X → Y , and the linear space Y partially ordered by ≤K with K ⊆ Y a pointed
nontrivial (i.e. K 6= {0Y }, K 6= Y ) convex cone. The index K after min determines
the convex cone and thus the partial ordering w.r.t. which the elements in Y are
compared. In Section 2.1 we have seen that for deciding whether some x ∈ S is
an EP-optimal solution of (MOP) only the points f(x) with x ∈ S, i.e. of the set
f(S), have to be compared. We thus first define what a (weakly, strongly) efficient
element of a set w.r.t. a partial ordering is.

Definition 3.2. Let Y be partially ordered by some pointed convex cone K ⊆ Y

and let A be a nonempty subset of Y .

(i) An element ȳ ∈ A is an efficient element of the set A if

({ȳ} −K) ∩ A = {ȳ} . (10)

(ii) An element ȳ ∈ A is a strongly efficient element of the set A if

A ⊆ {ȳ} +K . (11)

(iii) Additionally, let Y be a topological space and the interior of the cone K,
int(K), be nonempty. An element ȳ ∈ A is a weakly efficient element of the
set A if

({ȳ} − int(K)) ∩ A = ∅ . (12)

In the following, if we speak of weak notions which are defined based on the
interior of the cone K, we always assume the linear space Y to be a topological
space and the cone K to have a nonempty interior. Note, that similar weak notions
can also be defined in a linear space based on the algebraic interior of K, see for
instance [35].

The notions “efficient” and “weakly efficient” are closely related. To see that,
take an arbitrary weakly minimal element ȳ ∈ A of the set A, i.e. ({ȳ}−int(K))∩A =
∅. The set K̂ := int(K) ∪ {0Y } is a convex cone and it induces another partial
ordering in Y . Consequently, ȳ is also a minimal element of the set A with respect
to the partial ordering induced by K̂. In terms of lattice theory a strongly efficient
element of a set A is also called zero element of A. It is a lower bound of the
considered set. As this notion is very restrictive it is often not applicable in practice.

Definition 3.3. Let the vector optimization problem (VOP) be given. An element
x̄ ∈ S is a (weakly/stronlg) efficient solution of (VOP) if f(x̄) is a (weakly/stronlg)
efficient element of the set f(S).
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Of course, for Y = Rm and K = Rm
+ the notion of (weakly/strongly) EP optimal

solutions and (weakly/stronlgy) efficient solutions coincide.
In the following we collect some basic results on efficient elements (and thus on

efficient solutions) of a vector optimization problem. For proofs we refer to [35, 26].
The first result relates the different optimality notions.

Lemma 3.1. (a) Every strongly efficient element of the set A is also an efficient
element of A.

(b) Every efficient element of the set A is also a weakly efficient element of the
set A.

Efficient elements of some set A are an element of the boundary ∂A of the set
A, compare for Y = R

m and K = R
m
+ with Lemma 2.1:

Lemma 3.2. If ȳ ∈ A is a weakly efficient element of A, then ȳ ∈ ∂A.

In (5) we have stated the weighted-sum scalarization for multiobjective opti-
mization problems with the componentwise ordering. This scalarization can be
generalized e.g. to real topological linear spaces with a partial ordering. For that
we need the definition of the dual cone. The dual cone K∗ ⊆ Y ∗, with Y ∗ the linear
space of all continuous linear functionals y∗ : Y → R, to some convex cone K is
defined by

K∗ := {y∗ ∈ Y ∗ | y∗(y) ≥ 0 for all y ∈ K} .

The set
K# := {y∗ ∈ Y ∗ | y∗(y) > 0 for all y ∈ K \ {0Y }}

is denoted the quasi interior of the dual cone. For Y = Rm the definitions read
as K∗ = {w ∈ Rm | w⊤y ≥ 0 for all y ∈ K} and K# = {w ∈ Rm | w⊤y >

0 for all y ∈ K \ {0Rm}}. For K = Rm
+ we obtain

(Rm
+)∗ = R

m
+ and (Rm

+)# = int(Rm
+) .

We first collect sufficient conditions [35].

Theorem 3.1. (a) If there is some l ∈ K∗ such that x̄ ∈ S is a unique minimal
solution of

min
x∈S

l(f(x)) , (13)

then x̄ is an efficient solution of (VOP).

(b) If there is some l ∈ K# such that x̄ ∈ S is a minimal solution of (13), then x̄

is an efficient solution of (VOP).

(c) If there is some l ∈ K∗ \ {0Y ∗} such that x̄ ∈ S is a minimal solution of (13),
then x̄ is a weakly efficient solution of (VOP).

For obtaining necessary results, we need convexity assumptions.

Theorem 3.2. Let the set S +K be convex. If x̄ ∈ S is a weakly efficient solution
of (VOP), then there is some l ∈ K∗ \ {0Y ∗} such that x̄ ∈ S is a minimal solution
of (13).
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As every efficient solution is also a weakly efficient solution, this theorem delivers
also a necessary condition for efficient solutions of (VOP).

For avoiding the need of a convex set f(S)+K, nonlinear scalarization functionals
can be used. Allowing two parameters a ∈ Y and r ∈ Y \ {0Y }, one can consider
the following nonlinear scalarization function ψa,r : Y → R ∪ {±∞},

ψa,r(y) := inf{t ∈ R | a+ t r − y ∈ K} for all y ∈ Y . (14)

This function was used as separational functional by Gerstewitz (Tammer) [29], see
also [30], and is denoted smallest monotone map in [40]. It was used in vector
optimization by Pascoletti and Serafini [43] and was already studied by Rubinov
[44]. Its properties are well studied, see for instance [31, Theorem 2.3.1, Corollary
2.3.5], [8, Prop. 2.1] and [47]. For an illustration see Fig. 4.

Figure 4: Illustration of the function ψa,r with t̄ := ψa,r(y).

Any minimal solution of
min
x∈S

ψa,r(f(x))

is an at least weakly efficient solution of (VOP). Any weakly efficient solution x̄

of (VOP) is a minimal solution of this scalar problem if for instance a = f(x̄) and
r ∈ int(K). For more results on this scalarization we refer to [18]. Note that for
Y = Rm, K = Rm

+ , a = (ε1, . . . , εm−1, 0)⊤ and r = (0, . . . , 0, 1)⊤, minx∈S ψa,r(f(x))
is equivalent to the ε-constraint problem discussed in (6).

3.2 Numerical Procedures

In case of a finite set A = f(S) of the vector optimization problem the most simple
approach for determining all optimal solutions is a pairwise comparison of all ele-
ments in A. This may be very time consuming, especially if the evaluation of the
binary relation ≤ is costly. For that reason numerical methods as the Jahn-Graef-
Younes method have been developed for reducing the numerical effort by reducing
the number of necessary pairwise comparisons. For Rm partially ordered by the
natural ordering, i.e. K = R

m
+ , this procedure was given by Jahn in [36], see also

[35, Section 12.4], based on a procedure firstly presented by Younes in [53] and
an algorithmic conception by Graef [35, p. 349]. In the following we present this
algorithm for arbitrary linear spaces Y with some ordering cone K ⊆ Y .
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Algorithm 2 Jahn-Graef-Younes method in partially ordered spaces

Require: A = {y1, . . . , yk}, K ⊆ Y

1: put U = {y1} and i = 1
2: while i < k do

3: replace i by i+ 1
4: if yi 6∈ {u} +K for all u ∈ U then

5: replace U by U ∪ {yi}
6: end if

7: end while

8: put {u1, . . . , up} = U

9: put T = {up} and i = p

10: while i > 1 do

11: replace i by i− 1
12: if ui 6∈ {t} +K for all t ∈ T then

13: replace T by {ui} ∪ T
14: end if

15: end while

16: return the set T is the set of efficient elements of A

Theorem 3.3. Let A be a finite subset of Y and let U and T denote the sets gained
by Algorithm 2.

(a) If ȳ is an efficient element of A, then ȳ ∈ U and ȳ ∈ T .

(b) The set T is exactly the set of all efficient elements of A.

Proof. The proof for Y = Rm and K = Rm
+ can be found in [35]. (a) Assume ȳ is

an efficient element of A but is not in U . Then there exists some y ∈ U ⊆ A, y 6= ȳ,
with ȳ ∈ {y} + K in contradiction to ȳ an efficient element of the set A. Next,
assume ȳ is an efficient element of A but is not in T . According to the first part of
the proof, ȳ ∈ U . Thus there exists some y ∈ T ⊆ A, y 6= ȳ, with ȳ ∈ {y} + K in
contradiction to ȳ an efficient element of the set A.

(b) Let T =: {t1, . . . , tq} with q ≤ p ≤ k and tj ∈ T be arbitrarily chosen with
1 ≤ j ≤ q. We assume the elements of the sets to be ordered in the way they are
generated in the algorithm. According to the first while-loop, tj 6∈ {ti}+K for all i
with 1 ≤ i < j and according to the second while-loop, tj 6∈ {ti} +K for all i with
j < i ≤ q. Hence, tj is an efficient element of T .

According to (a), it remains to be shown that the elements of T are all also
efficient elements of A. Let y ∈ T and y be not an efficient element of A. Then
there exists an efficient element ȳ of A with y ∈ {ȳ} +K \ {0Y }. According to (a),
ȳ ∈ T in contradiction to y an efficient element of T .

In case of a non-finite set f(S) for instance the scalarization (14) can be used
for a numerical solution method using a procedure for the choice of the parameter
a, while r ∈ K \ {0Y } can be chosen as constant [18].
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3.3 Application to Magnetic Resonance Tomography

Parallel transmission (pTx) in magnetic resonance tomography uses multiple exci-
tation coils driven by independent RF pulse waveforms. For the application of such
systems, the management of local and global power deposition measured as specific
absorption rate, SAR, in human subjects is a fundamental constraint [39]. So it is
necessary to provide methods to enforces the satisfaction of local SAR constraints
[34].

Based on a precalculated electrical field vector distribution from a unit voltage
for each transmission channel, the local SAR in a region ν can be calculated by

SAR(Sν) =

∫

∆t

UH(t) · Sν · U(t)dt

with Uk(t) for all t ∈ ∆t the complex-valued waveform of the transmit channel k
at the time t in some time interval ∆t and Sν an Hermitian n× n matrix. Typical
values for n are n = 2, 4, 8, 16. In [23], n = 8 was assumed. The number m of
subvolumes ν = 1, . . . , m which have to be taken into account vary around 300 000
up to over 1 000 000.

The goal is to replace the precalculated SAR model (i.e. the set of matrices Sν)
by a smaller set of so-called virtual observation points Aj, j = {1, . . . , N} such that
for all ν ∈ {1, . . . , m} there exists some j ∈ {1, . . . , N} satisfying

∫

∆t

UH(t) · Sν · U(t)dt ≤

∫

∆t

UH(t) · Aj · U(t)dt . (15)

Then

max
ν=1,...,m

∫

∆t

UH(t) · Sν · U(t)dt ≤ max
j=1,...,N

∫

∆t

UH(t) · Aj · U(t)dt .

If {Aj | j = 1, . . . , N} ⊆ {Sν | ν = 1, . . . , m}, then equality holds. Thereby, (15)
is satisfied for arbitrary U : R → Cn, if for all ν ∈ {1, . . . , m} there exists some
j ∈ {1, . . . , N} such that

Aj − Sν is positive semidefinite.

Hence, among the set M := {S1, . . . , Sm} one can determine the set of efficient
elements E w.r.t. K := −Sn

+ with Sn
+ the cone of positive semidefinite Hermitian

matrices. Then, if S ∈ M \ E , there exists some matrix A ∈ E such that S ∈
{A}+K = {A}−Sn

+, i.e. such that A−S is positive semidefinite. For determining
the efficient elements of the finite set M , in [23] Algorithm 2 was proposed.

However, it turned out that almost all matrices in M also belong to E . Ex-
aminations with randomly generated 8 × 8 matrices show, that this happens also
for such sets of matrices, but there are some few matrices which are not efficient.
Therefore, in [23, 24] another approach was proposed to determine a smaller set of
virtual observation points. New matrices A1, . . . , AN , which are not an element of
M , are determined such that these new matrices are exactly the efficient matrices
of the enlarged set

M̃ := {S1, . . . , Sm, A1, . . . , AN}.

Evaluating then maxj=1,...,N

∫

∆t
UH(t) · Aj · U(t)dt leads to an overestimation

of the maximum local SAR. So the determination of the new matrices A1, . . . , AN
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has to be performed in such a way, that this overestimation is as small as possible
using at the same time as few matrices (number N) as possible. This is again a
multiobjective optimization problem.

For this biobjective optimization problem, an approach as given in (6) was cho-
sen, known as ε-constraint method: in [23] an upper bound on the overestimation
was chosen while to minimize the number N . The proposed procedure is given in
Algorithm 3.

Algorithm 3 Data reduction by extending the efficient set

Require: M := {S1, . . . , Sm}, u > 0
1: put k = 1, N = 1
2: while M 6= ∅ do

3: choose Sk∗ ∈ argmax{‖Sj‖ | Sj ∈M}
4: sort all matrices Sj ∈ M w.r.t. λmin(S

k∗ − Sj) in decreasing order, i.e.
Sk∗ = S1, . . . , Snk (nk ∈ N, nk := |M |) with

λmin(S
k∗ − S1) = 0 ≥ . . . ≥ λmin(S

k∗ − Snk)

5: set l := 1, Z̄ := 0Cn×n, εk := 0 and Ck := ∅
6: while ‖Z̄‖ ≤ u and l ≤ nk do

7: set εk := −λmin(S
k∗ − Sl), Zk := Z̄, Ck := Ck ∪ {Sl} and l := l + 1

8: if l ≤ nk then

9: determine

Z̄ ∈ argmin{‖Z‖ | Sk∗ + Z − Sj ∈ Sn
+ ∀Sj ∈ Ck ∪ {Sl}, Z ∈ Sn

+}

10: end if

11: end while

12: set M := M \ Ck, N := k and k := k + 1
13: end while

14: return clusters Ck, matrices Ak := Sk∗ + Zk, k = 1, . . . , N

There, the matrices S1, . . . , Sm are clustered based on the following similarity
criteria: S is similar to a core matrix S∗ for some given ε ≥ 0 if

λmin(S
∗ − S) ≥ −ε

with λmin denoting the smallest eigenvalue. Then for arbitrary U : R → C
n the

SAR-value of S is bounded from above by
∫

∆t

UH(t) · S · U(t)dt ≤

∫

∆t

UH(t) · S∗ · U(t)dt+ ε

∫

∆t

‖U(t)‖2dt.

The clusters are generated iteratively: a core matrix S∗ is chosen with largest norm
among the remaining matrices. Then similar matrices are added to the cluster
enlarging the similarity ε ≥ 0 as long as the overestimation which results from a
new-to-define matrix A for each cluster (see the next paragraphs) is bounded within
a predefined bound u. For an illustration of the clusters see Fig. 5.
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Figure 5: Clustering visualized in the human body with different gray scales. (a)
coronal plane (b) transversal plane with N = 62.

For all matrices in a cluster around a core matrix S∗, a new matrix A is deter-
mined by solving

min{‖Z‖ | S∗ + Z − Sj ∈ Sn
+ ∀Sj ∈M with λmin(S

∗ − Sj) ≥ −ε,
Z a Hermitian n× n matrix} ,

(16)

with ‖ · ‖ some matrix norm for instance consistent with the Euclidean norm, with
minimal solution Z̄. Then A := S∗ + Z̄ is the only efficient matrix in the set

{Sj ∈M | λmin(S
∗ − Sj) ≥ −ε} ∪ {A}

and it holds
∫

∆t

UH(t) · A · U(t)dt−

∫

∆t

UH(t) · S∗ · U(t)dt ≤ ‖Z̄‖

∫

∆t

‖U(t)‖2dt.

Algorithm 3 determines ε ≥ 0 for each cluster in such a way, that ‖Z̄‖ ≤ u for
some predefined u > 0 for all generated clusters, i.e. such that the overestimation is
bounded.

Different choices of u result in different sizes of clusters and hence in different
numbers N of clusters and thus of new matrices

Ak := S∗k + Zk, k = 1, . . . , N ,

with S∗k the core matrix and Zk the minimal solution of (16), see Fig. 6. The
matrices Ak, k = 1, . . . , N serve now as virtual observation points which satisfy
(15).

For different human models and different landmark positions, resolution compres-
sion factors between 1 126 and 13 109 where reached. For instance 241 032 matrices
where replaced by 214 virtual observation points and 891 418 matrices by 68.

4 Variable Ordering Structures and an Applica-

tion in Medical Image Registration

In vector optimization one assumes in general, as we have seen in the previous
subsections, that a partial ordering is given by some nontrivial convex cone K in the
considered space Y . But already in 1974 in one of the first publications [54] related
to the definition of optimal elements in vector optimization also the idea of variable

19



Figure 6: Number of virtual observation points N for different chosen upper limits
u for the allowed maximum overestimation of the local SAR, i.e. the spectral norm
of the complementing matrices ‖Zk‖.

ordering structures was given: to each element of the space a cone of dominated
(or preferred) directions is defined and thus the ordering structure is given by a
set-valued map. In [54] a candidate element was defined to be nondominated if it
is not dominated by any other reference element w.r.t. the corresponding cone of
this other element. Later, also another notion of optimal elements in the case of a
variable ordering structure was introduced [5, 6, 7]: a candidate element is called a
minimal (or nondominated-like) element if it is not dominated by any other reference
element w.r.t. the cone of the candidate element.

Recently, there is an increasing interest in such variable ordering structures mo-
tivated by several applications for instance in medical image registration [20], see
the next subsection, or in portfolio optimization [21, 3].

4.1 Application in Medical Image Registration

For modeling preferences of a totally rational decision maker in medical image reg-
istration, it turned out that a variable ordering structure better reflects the problem
structure [51]. In medical image registration it is the aim to merge several medical
images gained by different imaging methods as for instance computer tomography,
magnetic resonance tomography, positron emission tomography, or ultrasound. For
two data sets A and B a transformation map t, also called registration, has to be
found (from a set T of allowed maps) such that some similarity measure comparing
t(A) and B is optimized. For some applications it is important that this transfor-
mation map is found automatically without a human decision maker. The quality
of a transformation map, i.e. the similarity of the transformed data set to the target
set, can be measured by a large variety of distance measures fi : (t, A,B) → R,
i = 1, . . . , m (m ∈ N). They all evaluate distinct characteristics like the sum of
square differences, mutual information or cross-correlation. Different measures may
lead to different optimal transformation maps. Some measures fail on special data
sets and can lead to mathematical correct but useless results. Thus it is important
to combine several measures. Possible approaches are a weighted sum of different
measures. But difficulties appear as badly scaled functions or non-convex functions.
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Instead, the problem can be viewed as a multiobjective optimization problem
[51, 52] by arranging the several distance measures in an objective vector f :=
(f1, . . . , fm)⊤. Then, for given data sets A and B, the vector optimization problem

min
t∈T

f(t, A,B)

has to be solved. For incorporating in the preference structure that some of the
measures may fail on the given data sets, depending on the values y ∈ Rm in the
objective space a weighting vector w(y) ∈ Rm

+ is generated. This weight can be
interpreted as some kind of voting between the different measures. Also a weight
component equal to zero is allowed which corresponds to the negligence of the cor-
respondent measure, because it seems for instance to fail on the data set. This
weight may also depend on gradient information, conformity and continuity aspects
and reflects therefore the preferences of a totally rational decision maker who puts
a higher weight on promising measures dependent on the value y = f(t, A,B).

To such a weight at a point y ∈ Rm a cone of more or equally preferred directions
is defined by

P(y) :=

{

d ∈ R
m

∣

∣

∣

∣

m
∑

i=1

sgn(di)wi(y) ≤ 0

}

where

sgn(di) :=







1 if di > 0,
0 if di = 0,
−1 if di < 0.

Then y is considered to be better than ȳ if y ∈ {ȳ}+P(ȳ). Note that for nonnegative
weights w(y) ∈ Rm

+ it holds Rm
+ ⊆ D(y) := −P(y) for all y.

For this special problem formulation Wacker proposed a solution procedure in
[51].

4.2 Vector Optimization with Variable Ordering Structures

For a study of vector optimization problems with a variable ordering structure it
is important to differentiate between the two optimality concepts mentioned in the
introduction to this section as well as to examine the relation between the concepts.
In view of applications it is important to formulate characterizations of optimal
elements, for instance by scalarizations, for allowing numerical calculations.

In the following we assume Y to be a real topological linear space and A to be
a nonempty subset of Y . Let D : Y ⇉ Y be a set-valued map with D(y) a pointed
convex cone for all y ∈ Y and let D(A) :=

⋃

y∈A D(y) denote the image of A under
D.

Based on the cone-valued map D one can define two different relations: for
y, ȳ ∈ Y we define

y ≤1 ȳ if ȳ ∈ {y} + D(y) (17)

and
y ≤2 ȳ if ȳ ∈ {y} + D(ȳ) . (18)

We speak here of a variable ordering (structure), given by the ordering map D,
despite the binary relations given above are in general not transitive nor compatible
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with the linear structure of the space, to express that the partial ordering given by
a cone in the previous sections is replaced by a relation defined by D.

Relation (17) implies the concept of nondominated elements originally defined in
[54, 55]. We also state the definitions of weakly and strongly nondominated elements
which can easily be derived from the original definition of nondominated elements.

Definition 4.1. (a) An element ȳ ∈ A is a nondominated element of A w.r.t. the
ordering map D if there is no y ∈ A\{ȳ} such that ȳ ∈ {y}+D(y), i.e., y 6≤1 ȳ

for all y ∈ A \ {ȳ}.

(b) An element ȳ ∈ A is a strongly nondominated element of A w.r.t. the ordering
map D if ȳ ∈ {y} − D(y) for all y ∈ A.

(c) Let D(y) have a nonempty interior, i.e. int(D(y)) 6= ∅, for all y ∈ A. An
element ȳ ∈ A is a weakly nondominated element of A w.r.t. the ordering map
D if there is no y ∈ A such that ȳ ∈ {y} + int(D(y)).

Example 4.1. Let Y = R2, the cone-valued map D : R2
⇉ R2 be defined by

D(y1, y2) :=

{

cone conv{(y1, y2), (1, 0)} if (y1, y2) ∈ R2
+, y2 6= 0,

R2
+ otherwise,

and
A := {(y1, y2) ∈ R

2 | y1 ≥ 0, y2 ≥ 0, y2 ≥ 1 − y1} .

Here cone and conv denote the conic hull and the convex hull, respectively. Then
D(y1, y2) ⊆ R

2
+ for all (y1, y2) ∈ R

2 and one can check that {(y1, y2) ∈ A | y1+y2 = 1}
is the set of all nondominated elements of A w.r.t. D and that all elements of the set
{(y1, y2) ∈ A | y1 + y2 = 1 ∨ y1 = 0 ∨ y2 = 0} are weakly nondominated elements
of A w.r.t. D.

In Definition 4.1 the cone D(y) = {d ∈ Y | y + d is dominated by y} ∪ {0Y } can
be seen as the set of dominated directions for each element y ∈ Y . Note that when
D(y) ≡ K, where K is a pointed convex cone, and the space Y is partially ordered by
K, the concepts of nondominated, strongly nondominated and weakly nondominated
elements w.r.t. the ordering map D reduce to the classical concepts of efficient,
strongly efficient and weakly efficient elements w.r.t. the cone K, compare Definition
3.2. Strongly nondominated is a stronger concept than nondominatedness, as it is
not only demanded that ȳ ∈ {y} + (Y \ {D(y)}) for all y ∈ A \ {ȳ}, but even
ȳ ∈ {y}−D(y) for all y ∈ A\ {ȳ} for ȳ being strongly nondominated w.r.t. D. This
can be interpreted as the requirement of being far away from being dominated.

The second relation, relation (18), leads to the concept of minimal, also called
nondominated-like, elements [5, 6, 7].

Definition 4.2. (a) An element ȳ ∈ A is a minimal element of A w.r.t. the or-
dering map D if there is no y ∈ A \ {ȳ} such that ȳ ∈ {y}+D(ȳ), i.e., y 6≤2 ȳ

for all y ∈ A \ {ȳ}.

(b) An element ȳ ∈ A is a strongly minimal element of A w.r.t. the ordering map
D if A ⊆ {ȳ} + D(ȳ).
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Figure 7: The element ȳ ∈ A is a minimal element of A w.r.t. the ordering map D
whereas ȳ is not a nondominated element of A w.r.t. the ordering map D because
of ȳ ∈ {y′} + D(y′) \ {0Y }.

(c) An element ȳ ∈ A with int(D(ȳ)) 6= ∅ is a weakly minimal element of A w.r.t.
the ordering map D if there is no y ∈ A such that ȳ ∈ {y} + int(D(ȳ)).

Definition 4.2.(a) is equivalent to saying that ȳ is a minimal element of A if and
only if

({ȳ} − D(ȳ)) ∩ A = {ȳ}.

For an illustration of both optimality notions see Figure 7.
The concepts of strongly minimal and strongly nondominated elements w.r.t. an

ordering map D are illustrated in the following example.

Example 4.2. Let Y = R2, the cone-valued map D : R2
⇉ R2 be defined by

D(y1, y2) :=

{

R2
+ if y2 = 0,

cone conv{(|y1|, |y2|), (1, 0)} otherwise,

and
A := {(y1, y2) ∈ R

2 | y1 ≤ y2 ≤ 2y1} .

One can check that (0, 0) ∈ A is a strongly minimal and also a strongly nondomi-
nated element of A w.r.t. D.

The cone D(y) for some y ∈ Y as used in the definition of the minimal elements
is related to the set of preferred directions. First, one defines a set-values map
P : Y ⇉ Y with

P(y) := {d ∈ Y | y + d is preferred to y} ∪ {0Y }.

Then ȳ is a minimal element if there is no preferred element, i.e. if

({ȳ} + P(ȳ)) ∩ A = {ȳ}.

For a unified representation (and as done in [6]) we set D(y) := −P(y) which leads
to Definition 4.2.(a). Note that the concepts of preference and of domination are
two basically different approaches and that in general

{d ∈ Y | y+d is dominated by y}∪{0Y } 6= −{d ∈ Y | y+d is preferred to y}∪{0Y }.

Observe that ȳ is a minimal element of some set A ⊆ Y w.r.t. D if and only if it
is an efficient element of the set A with Y partially ordered by K := D(ȳ).

The following example illustrates that the concepts of nondominated and of
minimal elements w.r.t. an ordering map D are not directly related.
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Example 4.3. Let Y = R2, the cone-valued map D1 : R2
⇉ R2 be defined by

D1(y1, y2) :=

{

cone conv{(−1, 1), (0, 1)} if y2 ≥ 0,
R2

+ otherwise,

and
A := {(y1, y2) ∈ R

2 | y2
1 + y2

2 ≤ 1} .

Then (−1, 0) is a nondominated but not a minimal element of A w.r.t. D1.
Considering instead the cone-valued map D2 : R

2
⇉ R

2 defined by

D2(y1, y2) :=

{

cone conv{(1,−1), (1, 0)} if y2 ≥ 0,
R

2
+ otherwise,

then (0,−1) is a minimal but not a nondominated element of A w.r.t. D2.
Considering instead the cone-valued map D3 : R2

⇉ R2 defined by

D3(y1, y2) :=







R2
+ if y ∈ R2 \ {(0,−1), (−1, 0)},

{(z1, z2) ∈ R
2 | z1 ≤ 0, z2 ≥ 0} if y = (0,−1),

{(z1, z2) ∈ R2 | z1 ≥ 0, z2 ≤ 0} if y = (−1, 0),

then all elements of the set {(y1, y2) ∈ R2 | y2
1 +y2

2 = 1, y1 ≤ 0, y2 ≤ 0} are minimal
elements of A w.r.t. D but there is no nondominated element of the set A w.r.t. D.

The two optimality concepts are only related under strong assumptions on D:

Lemma 4.1. (a) If D(y) ⊆ D(ȳ) for all y ∈ A for some minimal element ȳ of A
w.r.t. D, then ȳ is also a nondominated element of A w.r.t. D.

(b) If D(ȳ) ⊆ D(y) for all y ∈ A for some nondominated element ȳ of A w.r.t. D,
then ȳ is also a minimal element of A w.r.t. D.

These results are a direct consequence of the definitions.
Besides considering optimal elements of a set, all concepts apply also for a vector

optimization problem with the linear space Y equipped with a variable ordering
structure analogously to Definition 3.3.

For both optimality concepts, for minimal and for nondominated elements w.r.t.
an ordering map D, and for the related concepts of strongly and weakly optimal
elements, we can easily derive the following properties.

Lemma 4.2. (a) Any strongly nondominated element of A w.r.t. D is also a non-
dominated element of A w.r.t. D. Any strongly minimal element of A w.r.t.
D is also a minimal element of A w.r.t. D.

(b) If D(A) is pointed, then there is at most one strongly nondominated element
of A w.r.t. D.

(c) Let int(D(y)) 6= ∅ for all y ∈ A. Any nondominated element of A w.r.t. D is
also a weakly nondominated element of A w.r.t. D. Any minimal element of
A w.r.t. D is also a weakly minimal element of A w.r.t. D.
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(d) If ȳ is a strongly nondominated element of A w.r.t. D, then the set of minimal
elements of A w.r.t. D is empty or equals {ȳ}. If D(A) is additionally pointed,
then ȳ is the unique minimal element of A w.r.t. D.

(e) If ȳ ∈ A is a strongly minimal element of A w.r.t. D and if D(ȳ) ⊆ D(y) for
all y ∈ A, then ȳ is also a strongly nondominated element of A w.r.t. D.

For proofs we refer to [20].
A common result is that the efficient elements of a set in a partially ordered

space are a subset of the boundary of that set, see Lemma 3.2. The result remains
true for variable ordering structures – at least under some assumptions.

Lemma 4.3. (a) (i) Let int(D(y)) 6= ∅ for all y ∈ Y . If ȳ ∈ A is a weakly
minimal element of the set A w.r.t. the ordering map D, then ȳ ∈ ∂A.

(ii) If ȳ ∈ A is a minimal element of the set A w.r.t. the ordering map D and
D(ȳ) 6= {0Y }, then ȳ ∈ ∂A.

(b) (i) If
⋂

y∈A int(D(y)) 6= ∅ and ȳ ∈ A is a weakly nondominated element of the
set A w.r.t. the ordering map D, then ȳ ∈ ∂A.

(ii) If
⋂

y∈A D(y) 6= {0Y } and ȳ ∈ A is a nondominated element of the set A
w.r.t. the ordering map D, then ȳ ∈ ∂A.

The following example demonstrates that we need for instance in (b)(i) in Lemma
4.3 an assumption like

⋂

y∈A

int(D(y)) 6= ∅ . (19)

Example 4.4. For the set A = [1, 3]× [1, 3] ⊆ R2 and the ordering map D : R2
⇉ R2,

D(y) :=

{

R2
+ for all y ∈ R2 with y1 ≥ 2,

{(z1, z2) ∈ R2 | z1 ≤ 0, z2 ≥ 0} else,

the point ȳ = (2, 2) is a weakly nondominated element of A w.r.t. D but ȳ 6∈ ∂A.

Next, we give some scalarization results for (weakly) nondominated and minimal
elements w.r.t. a variable ordering structure. A basic scalarization technique in
vector optimization is based on continuous linear functionals l from the topological
dual space Y ∗, see Theorem 3.1. Then one examines the scalar-valued optimization
problems

min
y∈A

l(y) .

We get the following sufficient conditions for (weakly) optimal elements w.r.t. a
variable ordering [27, 20]:

Theorem 4.1. Let ȳ ∈ A.

(a) (i) If for some l ∈ (D(ȳ))#

l(ȳ) ≤ l(y) for all y ∈ A ,

then ȳ is a minimal element of A w.r.t. the ordering map D.
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(ii) Let int(D(y)) 6= ∅ for all y ∈ A. If for some l ∈ (D(ȳ))∗ \ {0Y ∗}

l(ȳ) ≤ l(y) for all y ∈ A ,

then ȳ is a weakly minimal element of A w.r.t. the ordering map D.

(b) (i) If for some l ∈ (D(A))#

l(ȳ) ≤ l(y) for all y ∈ A ,

then ȳ is a nondominated element of A w.r.t. the ordering map D.

(ii) Let int(D(y)) 6= ∅ for all y ∈ A and let D(A) be convex. If for some
l ∈ (D(A))∗ \ {0Y ∗}

l(ȳ) ≤ l(y) for all y ∈ A ,

then ȳ is a weakly nondominated element of A w.r.t. the ordering map D.

Because of (D(A))∗ ⊆ (D(ȳ))∗ and (D(A))# ⊆ (D(ȳ))# for any ȳ ∈ A it it is
also possible for simplicity to consider functionals l in (D(A))∗ and in (D(A))# in
(a), respectively. A necessary condition for the quasi interior of the dual cone of a
convex cone to be nonempty is the pointedness of the cone [35, Lemma 1.27]. This
shows the limitation of the above results if the variable ordering structure varies too
much, i.e., if D(A) is no longer a pointed cone. Then the quasi-interior of the dual
cone (D(A))# is empty and the above characterizations can no longer be applied.
For that reason also nonlinear scalarization have to be considered, compare [25, 21].

Under the additional assumption that A is a convex set also necessary conditions
for weakly optimal elements and hence also for optimal elements w.r.t. a variable
ordering can be formulated with the help of linear functionals [20].

Theorem 4.2. Let A be convex and let int(D(y)) 6= ∅ for all y ∈ A.

(a) For any weakly minimal element ȳ ∈ A of A w.r.t. the ordering map D there
exists some l ∈ (D(ȳ))∗ \ {0Y ∗} with

l(ȳ) ≤ l(y) for all y ∈ A .

(b) Set

D̂ :=
⋂

y∈A

D(y)

and let int(D̂) be nonempty. For any weakly nondominated element ȳ ∈ A of
A w.r.t. the ordering map D there exists some l ∈ D̂∗ \ {0Y ∗} with

l(ȳ) ≤ l(y) for all y ∈ A .

The necessary condition for weakly nondominated elements w.r.t. the ordering
map D is very weak if the cones D(y) for y ∈ A vary too much, because then the
cone D̂ is very small (or even trivial) and the dual cone is very large.
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Example 4.5. Let Y = R2 and let D and A be defined as in Example 4.4. The
unique nondominated element w.r.t. D is (2, 1) and all the elements of the set

{(2, t) ∈ R
2 | t ∈ [1, 3]} ∪ {(t, 1) ∈ R

2 | t ∈ [1, 3]}

are weakly nondominated w.r.t. D. Further, D(A) = {(z1, z2) ∈ R2 | z2 ≥ 0} and
thus (D(A))∗ = {(z1, z2) ∈ R2 | z1 = 0, z2 ≥ 0}, i.e. (D(A))# = ∅.

Let l ∈ (D(A))∗ \ {0R2} be arbitrarily chosen, i.e. l1 = 0, l2 > 0, and consider
the scalar-valued optimization problem

min
y∈A

l⊤y .

Then all elements of the set {(t, 1) ∈ R2 | t ∈ [1, 3]} are minimal solutions and hence
are weakly nondominated elements of A w.r.t. D according to Theorem 4.1.(b)(ii).
All the other weakly nondominated elements w.r.t. D cannot be found by the suffi-
cient condition. Because of int(D̂) = ∅, the necessary condition of Theorem 4.2.(b)
cannot be applied.

4.3 Numerical Procedures

Algorithm 2 can also be applied to try to determine the optimal elements w.r.t. a
variable ordering structure: of course in lines 4 and 12 the binary relation ≤1 or
≤2, respectively, has to be used. However, Algorithm 2 may even then determine
only a superset of the set of optimal elements. By adding a third while-loop, the
exact set of optimal elements can be determined. We present in the following such
an algorithm for the notion of nondominatedness. For a more general discussion as
well as an example that a third while loop is necessary we refer to [22].

Theorem 4.3. Let A be a finite subset of Y and let U , T and V denote the sets
gained by Algorithm 4.

(a) If ȳ is a nondominated element of A w.r.t. D, then ȳ ∈ U and ȳ ∈ T .

(b) The elements of the set T ⊆ A are all nondominated elements of T w.r.t. D.

(c) If ≤1 is a transitive and antisymmetric binary relation, then the set T is exactly
the set of all nondominated elements of A w.r.t. D.

(d) The set V is exactly the set of all nondominated elements of A w.r.t. D.

Proof. The proof of (a) and (b) is similar to the proof of part (a) and the first part
of (b) of Theorem 3.3.

(c) We first show that for all y ∈ A there exists a nondominated element ȳ of A
w.r.t. D with y ∈ {ȳ} + D(ȳ). For that, let y ∈ A be arbitrarily given. If y is a
nondominated element of A w.r.t. D then the assertion is proven. Now, let y be not
a nondominated element of A w.r.t. D, i.e. there exists some y1 ∈ A with y1 ≤1 y,
y1 6= y. If y1 is nondominated we are done. Otherwise there is some y2 6= y1 with
y2 ≤1 y

1 and by the transitivity also y2 ≤1 y, y
2 6= y. If y2 is not a nondominated

element we can find y3 ∈ A\{y, y1, y2} with y3 ≤1 y
2 ≤1 y

1 ≤1 y and so on. As A is
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Algorithm 4 Jahn-Graef-Younes method for nondominated elements

Require: A = {y1, . . . , yk}, D(y) for all y ∈ A

1: put U = {y1} and i = 1
2: while i < k do

3: replace i by i+ 1
4: if yi 6∈ {y} + D(y) for all y ∈ U then

5: replace U by U ∪ {yi}
6: end if

7: end while

8: put {u1, . . . , up} = U

9: put T = {up} and i = p

10: while i > 1 do

11: replace i by i− 1
12: if ui 6∈ {u} + D(u) for all u ∈ T then

13: replace T by {ui} ∪ T
14: end if

15: end while

16: put {t1, . . . , tq} = T

17: put V = ∅ and i = 0
18: while i < q do

19: replace i by i+ 1
20: if ti 6∈ {y} + D(y) for all y ∈ A \ T then

21: replace V by V ∪ {yi}
22: end if

23: end while

24: return the set V of nondominated elements of A w.r.t. D.
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finite and ≤1 is antisymmetric, this procedure stops with a nondominated element
ȳ ∈ A of A w.r.t. D with ȳ ≤1 y.

According to (a) and (b) all nondominated elements of the set A w.r.t. D are
an element of T and all the elements of T are nondominated elements of T w.r.t.
D. It remains to be shown that the elements of T are also nondominated elements
of A w.r.t. D. Let y ∈ T and y be not a nondominated element of A w.r.t. D. As
we have shown above, there exists a nondominated element ȳ of A w.r.t. D with
y ∈ {ȳ}+D(ȳ)\{0Y }. According to (a), ȳ ∈ T in contradiction to y a nondominated
element of T w.r.t. D.

(d) This is a direct consequence of (a), (b) and the definition of nondominated
elements.

Conditions ensuring the transitivity and the antisymmetry of ≤1 are given in
[22].

Example 4.6. Let the set

A = {(x1, x2) ∈ [0, π] × (0, π] | x2
1 + x2

2 − 1 − 0.1 cos
(

16arctan(x1

x2

)
)

≥ 0,

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5} ⊂ R2,

which was originally defined by Tanaka [48], be given. It holds infy∈A yi > 0, i = 1, 2.
For the variable ordering structure we define the ordering map by

D(y) = {u ∈ R
2 | ‖u‖2 ≤ ℓ(y)⊤u}

with

ℓ(y) :=
2

mini=1,2 yi

y for all y ∈ A.

Next, we generate a discrete approximation D of the set A with 5 014 points by

D := A ∩ {(x1, x2) ∈ R
2 | x1 ∈ {0, 0.01, 0.02, . . . , π}, x2 ∈ {0.01, 0.02, . . . , π}},

compare the set of dots in Figure 8.
The first while-loop of Algorithm 4 selects 27 points (the set U) of the set D

as candidates for being nondominated. For that, 61 128 evaluations of the binary
relation defined by D have been necessary. The second while-loop reduces these 27
points to 12 points, the set T , compare Figure 8, by only 222 additional evaluations
of the binary relation. By comparing these remaining points with all other 5 014
points of the discretization in the third while-loop (additionally, 60 156 evaluations
of the binary relation) verifies that these 12 points are exactly the nondominated
elements of the discretization set D w.r.t. D. A total of 121 506 evaluations of the
binary relation are thus needed.

A pairwise comparison of all 5 014 points with all other points (till it is shown
that an element is dominated by another point or nondominated w.r.t. all) needs
4 472 290 evaluations of the binary relation, i.e. a reduction of around 97% is reached.

In addition to the above algorithm, also other numerical procedures have been
developed to determine the optimal elements w.r.t. a variable ordering structure
based on different ideas from vector optimization in partially ordered spaces. The
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Figure 8: The sets D, U and T in light gray, dark gray and black, respectively.

first numerical procedure designed especially for the application problem presented
in Subsection 4.1 was given in [51]. For a method for determining the minimal
elements using a steepest descent method we refer to [4]. Also based on Algorithm
1 an algorithm for differentiable problems was developed assuming R2

+ ⊆ D(y) for
all y ∈ R2. Not all points of the generated set A will be weakly nondominated, so
an additional while-loop which selects only the weakly optimal elements has to be
added. For a discussion of the method also in a more general setting we refer to
[22].
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[37] Küfer, K.-H., Scherrer, A., Monz, M., Alonso, F., Trinkaus, H., Bortfeld, T.,
and Thieke, C.: Intensity-modulated radiotherapy - a large scale multi-criteria
programming problem. OR Spectrum 25, 223–249 (2003).
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