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Preface 

 

This monograph is dedicated to the memory of Prof. Ing. Anton 

Vrban, CSc. 

Professor Anton Vrban was a respected scientific researcher and 

pedagogue in the area of automation and control. He supervised doctoral 

studies as well as the study program itself, introduced new topics and 

created a new focus in engineering studies. 

He was a well respected professional in his field not only in Slovakia 

but internationally as well. He participated in both basic and applied 

research and developed his own method for the identification of systems, 

which has been named after him and used throughout the world. He 

published articles and papers in the most respected forums and was 

a member of several national and international committees and editorial 

boards. 
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Abstract 

 

This publication deals with the sensitivity, tolerance and robustness of 

dynamic systems. It brings general approach to solve specific issues in the 

field of presented topic. This approach is unusual, as it does not consist of 

partial solutions and summarization of knowledge, but it offers new 

methodology for problem solving, which is targeted to the nature of the 

problem. The methodology is designed to be well applicable. The textbook 

is useful for studying topics related to sensitivity, tolerance and robustness 

in dynamic systems. It can be also used by the designers of various complex 

dynamic systems and also as the stimulus for further theoretical, algorithmic 

and software supported development in the field of presented topic. 

 

Key words 

 
sensitivity, tolerance, robustness, linear dynamic systems 
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1.  INTRODUCTION 

 
The development of science, technology, computer science and 

informatics allows for increasingly sophisticated automated production 

machines, equipment, control systems, manipulators and robots whose 

properties are gradually approaching the characteristics of intelligent 

systems. Although the problems associated with the development of 

“intelligent systems” (especially in the areas of algorithms and computer 

programs) involves artificial intelligence, study of the immanent properties 

of mechanisms (mechatronic systems) that determine the skills, capabilities 

and behavior in the desired mode of function, at acceptable changes in 

external and internal parameters, are needed more than ever. Rapid 

development of computer science, as well as the existence of powerful 

computing resources, creates new opportunities for the effective use of 

methods for examining the properties of dynamic systems (computer 

simulations). The existence of these options, parallel with the trend to 

develop “intelligent systems” also evokes the need for closer inspection of 

such properties (or characteristics) of dynamical systems, which is an 

analogous system with natural intelligence, in which the effectiveness of 

their cooperation culminates. Such characteristics include the sensitivity, 

tolerance and robustness of the system. Although in theory, this problem 

has been given generous attention, especially in the measurement of 

physical quantities (and recently also to the sensitivity and robustness of 

economic and financial system), in the area of examining internal dynamic 

changes of the systems structure and their impact on external changes, 

computer simulations are not possible to use, and thus it was not possible to 
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effectively research and implement these relations. Therefore it is desirable 

to update the problem area and look for methods and procedures for its 

solution, by which the use of computer simulations provide new theoretical 

insight and practical results which deepens the knowledge of “more 

intimate” properties of dynamic systems, reflected in their behavior, 

especially in the dynamic mode. This publication is the authors own 

contribution to the solution of this problem, which is directed at the 

formulation of goals within the area of linear dynamic systems. In the work 

the achieved results are partially annotated can be useful in analyzing the 

properties of the system, operation monitoring, design of adaptive systems 

for the diagnosis of mechatronic systems of known structure, as well as for 

educational purposes. Therefore, the structure of this publication is 

characterized as a hybrid between textbook and monograph presented with 

the results of the authors own research. Articles in which the results of some 

original solutions are presented, can be found in the list of publications (2, 

3, 11, 13, 15, 17, 18, 19, 20).  
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2.  GENERALLY 

 
The general system is understood as the purposeful definition (created) 

of the final and bounded set of definite elements. A={a1,a2,…,ak,…,an} and 

many (simple and multiple)mutual relations (relationships, constraints) 

between them R={ri,j} for I = 1,…,n; j= 1,…,n. The physical character of 

the elements, their essential properties, and organization of the sets of 

mutual constraints between them, together generate the internal structure of 

the system, which determines its immanent properties and also the methods 

(possibilities, abilities) behavior in the interaction with the important 

existential surroundings. If the system definition is capable, in the presence 

of time-varying effects of the surroundings (stimulations, actions), to depict 

the time-varying responses (reactions) also, then the dynamic system (DS) 

is undergoing the so-called dynamic process. It is clear that the DS’s 

waveform of reaction to the input (inputs) will not only depend on the 

surroundings instantaneous action (with respect to time), but will also 

depend on the instantaneous state of its structure (elements, their parameters 

and constraints). If we define the initial state of the DS (initial conditions), 

state of the surroundings, explicit excitation function (input signal), and 

assume that the constraints between elements of the system remain 

unchanged, then the reaction of the system (output) will be dependent only 

on the properties (parameters) of its elements. Any change in the parameters 

of the system is more or less reflected in its behavior. Therefore it is 

necessary and useful to analyze the effects of changing DS element 

parameters. That is, to predict the behavior of the system when these 
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parameters change, and apply this knowledge in creating and monitoring 

activities (operational) of the dynamic (mechatronic) system. 

  The best mathematical described and theoretically analyzed class of 

systems consist of linear dynamic systems (LDS), in which the dynamic 

behavior is expressed by a system of linear differential equations (in the 

continuous waveform of the process), that is a system of linear differential 

equations ( in the discrete waveform of the process), or their integral 

transforms. If the properties (parameters) of the system do not change with 

time, then we consider a system of linear differential/ differential equations 

with constant coefficients. Such systems are known as stationary (time 

invariant). The properties of the system obviously change if the value of the 

constants change, arising in the need to examine, analyze and evaluate the 

effects of these changes. For this analysis we base our mathematical model 

on the linear stationary system (LSS) and this model will also be used in 

examining the properties of the system with changes in element parameters.  

For easier physical interpretation, we will base the analysis on the 

linear stationary system with one input and one output, which will be 

known as the linear system (LS). The LS consists of only linear functional 

elements (members), among which there are fixed (unchanging over time) 

internal constraints.  Linear elements can be understood as elements, in 

which the dependence of the output variable y(t) on the input variable u(t) 

is linear, that is: for input u(t) and output y(t) of the nth element forming the 

LS the following applies: 

( ) ( ){ },tuLty inn =      where  Ln  is linear operator. 
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The operator is linear if the following property is true: 

( ) ( ){ } ( )∑=∑=












∑
i

tiytiu
i

L
i

tuiL  

( ){ } ( ){ } ( )tiyktiuLktuk ==i L                                                           

The first equation expresses what is known as the principle of 

superposition, by which the transformation of the sums of independent 

input signals u1, u2, …, ui, … is given by the sum of linear transforms for 

each individual signal. The second condition requires that the first condition 

for any value of real or complex constants k is met (interval for constant 

values where the linear system is an interval (region) of linearity; 

linearization). In real systems this condition is rarely met, and the linearity 

of models from real systems is limited only for definite region of the input 

signals amplitude – region of linearization. Equation [2.1] and its resulting 

conclusions can be used to confirm the linearity of the examined system.  

  

[2.1] 
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3.  LINEAR DYNAMIC SYSTEM 

 
To have continuity in the description of issues from the presented 

problems, we introduce some well-known themes in the behavior of linear 

dynamic systems. From the properties of the system we describe their 

characteristics. These characteristics (external) describe the behavior of the 

dynamic system from the observer’s point of view, which monitors the 

feedback of the system output on the defined input excitation (signal) with 

known initial state of the system. 

 

3.1  Image and frequency transfer 

 
If the input signal u(t) of a one-dimensional LS is a continuous (that 

is, continuous in parts) function of argument t (time), then the input signal 

y(t) will also be a continuous function of the same argument. The 

dependence between changes in input variables and output variables for a 

linear dynamic system, whose structure doesn’t change with time (LSS) is 

described by linear differential equations with constant coefficients, which 

can be written in the following form 

∑∑
=µ

µ

µ

µ
=ν

ν

ν

ν =
mn

dt
udb

dt
yda

00´

,                                                     [3.1] 

in which m ≤ n for real systems. 

Let us consider then a LSS, with its input excited by a regular 

continuous signal u(t), for which the following is true: If u(t) = 0 for t < 0, 

and y(t) and all of its derivatives up to (n-1) degrees for t < 0 are zero, then 
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we have a passive system in steady state.  We can then apply the unilateral 

Laplace transformation to signals u(t) and y(t)  

( ){ } ( ) ( )

( ){ } ( ) ( )∫

∫
∞

−

∞
−

==

==

0

0

pYdtetytyL

pUdtetutuL

pt

pt

                                      [3.2] 

Where U(p) is the Laplace image (L) of u(t), Y(p) is the Laplace image of 

y(t), and p = c+jω is a complex argument, where ω physically defines the 

angular frequency. 

Application of the Laplace transformation on equation [3.1] when 

considering zero initial conditions and taking into account the principle of 

superposition, we can write: 

( ) ( )∑∑
=µ

µ
µ

ν

=ν
ν =

mn

pbpUpapY
00

                                                [3.3] 

where (for a real system) m ≤ n. 

The ratio of L-image output signal y(t) on the L-image input signal u(t) 

with zero initial conditions, is defined as the image transformation of the 

LSS: 

N(p)
M(p)

pa

pb

U(p)
Y(p)

{u(t)}
{y(t)}G(p) n

ν

ν
ν

m

μ

μ
μ

====

∑

∑

=

=

0

0

L
L                           [3.4] 

If we apply the Fourier transformation on signals u(t) and y(t) 
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Then the ratio  
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( )
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!

n

ν
ν
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===ω
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∑

=
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=

0

0
                                     [3.6] 

Gives the so called frequency transfer of the LSS. 

Comparing equations [3.4] and [3.6] shows that: 

( ) ( ){ } ω==ω jppGjG                              [3.7] 

Because coefficient av, are dependent on properties (parameters) of system 

elements and how they connect, with the structure of the system, expresses 

the transfer function, or the explicit frequency transfer of the dynamic 

properties for the given LSS.  

 

3.2  Frequency characteristics 

 
As we can see from relation [3.6], the frequency transfer is a complex 

function of argument ω (angular frequency). The geometric image of the 

frequency transfer in the gauss complex plane for 0≤ω≤∞ is the 

frequency characteristic (fig. 3.1), which for every value of the frequency 
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ω=ωk gives the real Pk(ω) and imaginary Qk(ω) coordinate of the frequency 

transfer, that is its module ( ) ( )kk fjG ω=ω   and phase ( )kωΦ . 

Obviously it applies 

( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( )kj

kkk
k

k

k

k
k eWjQP

jN
jM

jU
jY

jG ωΦω=ω+ω=
ω
ω

=
ω
ω

=ω     [3.8] 

where  

)()()( 22
kkk QPG ω+ω=ω  

)(
)()(

k

k
k P

Qarctg
ω
ω

=ωΦ   

For k = 1,2,3,… give the values of the module and phase of the frequency 

characteristic. 

 

Representing points of the frequency transfer (module coordinates 

and phase, which are the real and imaginary components) in the gauss 

complex plane for changing argument ω, creates the continuous hodograph 

of parametric curves, which we call the frequency (or sometimes the 

amplitude-phase frequency, or Nyquist frequency) characteristic. The 

path of the Nyquist characteristic for a system with the transformation 

)(
)(

6116
6)( 231 pN

pM
ppp

ppG =
+++

+
= , 

or the frequency transfer 
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{ } ω==ω jppFjF )()( 11  

Using the MATLAB software the representation can be seen in figure 3.1 
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Fig. 3.1  Nyquist characteristic G1(p) 

Point characteristics 

These characteristics represent the transfer (amplitude and phase) of 

properties LDS in a steady state, with harmonic excitation of the input 

signal. They are defined with the help of frequency transfer of the system 

G1(jω) in the logarithmic scale of angular frequency ω. Amplitude-

logarithmic frequency characteristic is defined by the relation 

( ) ( ){ }ω=ω loglog20 1 fjG      [dB]                                               [3.9] 
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And the phase by relation 

( ) { }ωϕ=ωΦ log         [ rad], resp. [deg]                                  [3.10] 

Usually, both characteristics are given together. Characteristic of the 

system transfer 

 ( ) ( )
( )pN

pM
ppp

ppG =
+++

+
=

20144
205

232
, 

and the frequency transfer 

 ω==ω jppGjG )()( 22  

Are represented in fig. 3.2  
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Fig. 3.2  Bode characteristics of a linear system 
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3.3  Time characteristics 
 

Characterizing the behavior of the dynamic system in time is the 

definition of two basic functions and their corresponding (graphical 

representation) characteristics, which express the behavior of the dynamic 

systems feedback on the input excitation, and thus their properties, and 

immediate state, or change in internal states and properties of the analyzed 

system. 

 

Transfer function and characteristic 

The transfer function of the LDS is the time response on individual step 

signals applied on the input of the system, which is in steady state (zero 

initial conditions) and is the graphical image of the transfer function h(t), 

which is the original Laplace-Wagner transfer function G(p), that is 

h(t)= ( ){ }pGW 1−       for ≥t  0                         [3.11] 

Impulse function and characteristic 

The impulse function g(t) is the time response of the system on the Dirac’s 

impulse with zero initial conditions. It is given by the original Laplace 

transfer function G(p), thus 

g(t)= ( ){ }pGL 1−          for ≥t 0                                               [3.12] 

and its graph is the impulse characteristic. 

The time characteristic of a real, stable, linear, stationary system are 

continuous curves, that always initially begin at (t = 0), and for increasing t 

steadily (a periodic or periodically damped) change, and for t  ∞ the 
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transfer function ends at the value of static gain of the system 

K0={G(p)}p=0, and the impulse ends with a value of zero. The impulse 

function is the derivation of the transfer function with respect to time. 

Transfer and impulse characteristics of the LDS given by the transfer 

function G1 are represented in fig. 3.3, the transfer function G2 can be seen 

in fig. 3.4. 
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Fig. 3.3 Time characteristic of the system G2(p) 
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Fig. 3.4 Time characteristics of system G2(p) 
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4.  SENSITIVITY OF A DYNAMIC SYSTEM 

 
Sensitivity of the dynamic system in the broader sense, is understood 

as the change of behavior under the influence of elementary changes of the 

surroundings state, as well as the changes in value of variables, which 

characterize the physical properties (parameters) of its elements, or the 

properties of its internal constraints. Changes to the systems output 

variables, which display its reaction to changes in input parameters, 

characterize the behavior of the system. Changes in state, and the 

corresponding system behavior when elementary parameters change with 

respect to its elements, will be known as parametric sensitivity of the 

dynamic system, this will be kept in mind for future considerations. 

 

4.1  Sensitivity functions   

  

Because the waveform of a dynamic process can be described, in 

general, by a system of ordinary or partial differential equations whose 

shape reflects the arrangements and constraints of its elements, where their 

coefficients implicitly or explicitly include the parameters of the elements. 

Then these differential equations, or their transformation, can serve as a 

mathematical model of the system. 

For simplicity of the mathematical description, we consider the 

dynamic system with input u(ξ) with the reaction y(ξ). The input-output 

image will be given by the equation 

( ) ( ){ }ξαξ=ξ uuFy ,,, 0                                                 [4.1] 
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where F{ξ,α} represents the display, or that is, the system function of 

argument ξ, whose shape and coefficients α={α1, α2, …, αk, …, αn}depend 

on the internal structure of the system.  

Absolute differential sensitivity (sensitivity function) of the given 

dynamic system for changes in the kth parameter (parametric sensitivity) is 

defined by the relation 

( ) ( ){ }αξ
α∂
∂

=αξ ,, FS
k

kk
                                                           [4.2] 

Relation [4.2] gives the absolute sensitivity function within its definite 

domain (sensitivity function). Its dimension is given as the ratio between 

the dimension of the function with respect to the dimension of the parameter 

α. 

Absolute sensitivity of the function on the relative change in parameter 

values is given by 

k
k

k

k
ka

FFS α
α∂

αξ∂
=

α
α∆

αξ∆
=αξ →α∆

),(),(lim),( 0
                 

It is the function of argument ξ, whose dimension is identical with that of 

the natural function G(ξ,αk). 

Relative differential sensitivity is defined by the relation 

 ( ) ( ) ( )
( ) ( ) ( )kk

kk

kk
kr S

FF
FFS αξ

αξ
α

=
αξ

α
α∂

αξ∂
=

α∂
αξ∂

=αξ ,.
,,

,,,
ln

ln                [4.3] 
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It describes the change in values of the systems function [%] with 

respect to the one-percentile change of the parameter. Its value is a 

dimensionless number. At the same time, relation [4.3] gives the 

dependence between the absolute and relative differential sensitivity. 

As can be seen in relations [4.2] and [4.3], the defined sensitivity, with 

parameters of α, and shape of the system function, are all dependent on the 

argument ξ (in the real form of time “t”, or the frequency ω) and determine 

the effect of changing the parameters of individual system elements on the 

waveform of the dynamic process. For the permissible (or allowed) change 

in behavior of the system, we can also determine the tolerable changes – 

tolerance coefficient. Creating a system function as a mathematical model 

of its internal properties and resulting external behavior is generally very 

complex. It is relatively easier with linear dynamic systems (LDS) since 

their structure is described by linear differential equations, and its behavior 

for any given initial conditions and excitation are expressed by the solution 

of these equations. Although there exist a number of solutions for partial 

problems of sensitivity, it is desirable to generalize the knowledge for 

individual types of systems and systematically organize and create an 

appropriate method of solution, which would be “tailored” to be used in 

computer simulation programs and computer simulations in general. This 

work will describe, comment, and document some results, in logical form, 

achieved in the previous term, as well as in the solution of research tasks. 
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4.2  Sensitivity on additional parameters 

 

The systems sensitivity on a parameter of any element is the specific 

property of the system relative to that specific element. Understanding 

sensitivity this way is generally not a variable with the additive properties, 

even though the figurative meaning often refers to the whole set of property 

changes of the elements, or the properties of the surroundings (for example; 

the sensitivity of the mechanism, or organism on the climate conditions, 

etc…). In terms of the systems behavior, which is characterized only by the 

change of some of its defined parameters, or characteristics, we can 

investigate the effect of element sensitivity on the changes of these 

parameters (for example; gain, frequency oscillators, changes in start-up 

characteristics of the drive, etc…). 

The total differential system function F(ξ,α) from argument ξ (usually 

time) with coefficients (or more precisely, element parameters) α=α1, α2, …, 

αk, …, αn which indicate the change of values with elementary changes of 

the coefficients will be 

 ∑
=

α
α∂

αξ∂
=α

α∂
∂

++α
α∂

∂
++α

α∂
∂

=αξ
n

k
k

k
n

n
k

k

dFdFdFdFdF
1

1
1

),(........),(  

from which the overall change in value of the system function can be 

written 

kk

n

k
kk

n

k k
i SFF δαξα=δ⋅

α∂
αξ∂

α≅αξ∆ ∑∑
==

),(),(),(
11

;   for k = 1,2,....,i,....,n 
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where αk – are values of the coefficients for the model (containing element 

parameters), 

k

k
k α

α∆
=δ – are relatively small changes in coefficient values of the 

model and 

k
k

FS
α∂

αξ∂
=αξ

),(),( ) – is the system functions absolute sensitivity on 

the coefficient αi. 

Because individual members within expression [4.4] can have different 

signs, the value of ΔF(ξ,α) cannot be a measure of the integral (total) system 

sensitivity on the changes in element parameters. Considering the changes 

in parameter values to be independent we can evaluate the total change of 

the system function by the following relation 

( )[ ]∑
=

δαξα=αξ∆
n

k
kkkk SF

1

2,),(                                                               [4.4] 

The value (waveform) of relative changes in system function against the 

original (original values of element parameters α=α01, α02,…, α0i,…, α0n ) 

will be then expressed by relation 

[ ]

αξ

δαξα
=

αξ
αξ∆

=αξδ
∑

=

,(

),(

),(
),(),( 1

2

F

S

F
FF

n

i
kkk

k                           [4.5] 

The value of expression [4.5] in relation to values of argument ξ (time, 

frequency), with possible changes in value of individual elements, can serve 

to identify the “most sensitive intervals” (phase), activity of the observed 

dynamic system, as well as the assessment of total sensitivity (or more 
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precisely, instability). It is not however, a guarantee of the correct 

functioning of the system (stability, process characteristic, etc…). Therefore 

the possibility of these states, particularly in the areas of increased 

sensitivity (for example; the critical start-up of a machine, etc…), should be 

checked. At the same time δF(ξ,α) can be a measure (criteria) of quality 

(and robustness) of the overall design of the proposed or implemented 

dynamic system. 

For a robust system it is an obvious desire to achieve the lowest possible 

value for the relative change of the system function δF (ξ, α) over the whole 

mode of operation (parameter ξ). 

 
4.3   Sensitivity of the frequency transfer and frequency 

characteristic 
 

For the sensitivity analysis of a linear one-dimensional system, it is 

suitable to use as the system function – transfer function G(p), defined by 

the ratio between the feedback of the Laplace image Y(p) with the image of 

excitation U(p), with zero initial conditions. Or more accurately; the 

frequency transfer G(jω), defined by 

( ) ( )
( ) ( ){ } ( )

( )αω
αω

=ω=α=
αω
αω

=αω
,
,,

,
,,

jN
jMjppG

jU
jYjG                          [4.6] 

The characteristic simulation, it is suitable to use the frequency transfer 

(4.6) in exponential form, where we indicate the dependence on parameter 

α=α1, …, αχ, …, αn as well.  

( ) ( ) ( )αωΦ⋅αω=αω ,,, jeGjG                                                            [4.7] 
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If relation [4.3] is now applied to the frequency transfer [4.7] we can write 

the relative parametric sensitivity of the frequency transfer on 

coefficient αk as 

( ) ( ) ( )
( )

( )
=α⋅

∂α
αωΦ∂

+
αω

α
⋅

∂α
αω∂

=
α∂

αω∂
=ω k

k

k

kk

k
r j

G
GjGjS ,

,
,

ln
,ln  

( ){ } ( ){ }ω+ω= jS.ImjjSRe k
r

k
r

                                                              [4.8] 

where                    

( ){ } ( )
( ) ( )k

k
r

k

k
k

k
r S

G
GjSRe αω=

αω
α

δα
αωδ

=αω ,
,
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is the real part of the relative sensitivity of the frequency response, which 

describes the relative change of its model attributable to the elementary 

relative change in the value of the kth coefficient αk, that is: the relative 

differential sensitivity of the frequency transfer module, and 

( ){ } ( ) ( )kak
k

k
r SjSIm αω=α

δα
αωΦδ
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Is the imaginary part of the relative sensitivity of the frequency response, 

which describes the change in phase with elementary relative change in 

the value of the kth coefficient αk, that is the absolute phase sensitivity for 

relative unit change in value of coefficient αk. 

In terms of equation [4.7] and [4.8] and considering [4.9] and [4.10] results 

in the frequency transfer [4.6] able to directly derive relations for the 

relative sensitivity of the module  ( )k
k
rS αω,  and the phase sensitivity  



 27 

( )krS αωφ ,  on the elementary relative change in value of any arbitrary 

coefficient aγ, bμ frequency transfer of a linear system. 

Consider the frequency transfer of a LDS in the form 
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where  β=β0, β1, β2, …, βμ, …, βm are polynomial coefficients in the 

numerator of the transfer and 

α=α0, α1, α2, …, αγ, …, αn are polynomial coefficients  in the 

denominator of the transfer where m ≤ n. 

If we apply relation [4.3] on the frequency transfer in the form of [4.11], 

with respect to [4.9] and [4.10] we can derive relations for: 

• relative differential sensitivity of the amplitude function (also 

characteristic) on polynomial coefficients in the numerator βμ and 

denominator αγ by 
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• and for the semi-logarithmic phase sensitivity of the frequency 

transfer by  
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Relations [4.12] and [4.13] reflect the sensitivity of the module and the 

system phase frequency transfer on the change in coefficient values of the 

frequency transfers numerator polynomial bμ, and denominator polynomial 

aγ [4.11]. It is a routine affaire to graphically model these relations on a 

computer using suitable software (Matlab, Mathcad, and others), the results 

are informative and very useful, even indispensible, in the design of 

dynamic (mechatronic) systems. From the waveform of the phase and 

amplitude sensitivity characteristic of the analyzed (modeled) dynamic 

system on each individual coefficient by expression [4.12] and [4.13] we 

can assess the effect of changes in their values on the transfer properties of 

the system. This has great significance not only in audiovisual and 

telecommunications systems, but also in assessing the changes in behavior 

of the dynamic (mechatronic) systems when changes in values of 

parameter elements occur. 

In designing a dynamic system, the designer can assess the effects that 

sensitivity analysis has on individual elements of its structure, and through 

modification, negative or undesirable effects can be avoided or eliminated 

altogether. In particular, it is necessary to know the sensitivity of dynamic 

systems with consideration for its stability. Characteristics of sensitivity 
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(mainly the module sensitivity) point directly the coefficients (elements) 

whose change represents the greatest impact for the emergence of instability 

(weight). From knowledge about how changes in coefficient values (and 

parameters) effect the waveform of the process, It is possible to assess the 

internal causes (diagnostics). The aforementioned method for determining 

sensitivity of the frequency characteristic for the LDS was published in 

literature [2, 17]. The relations derived can be graphical illustrated in the 

example. 

Illustrating the waveform of the sensitivity for the amplitude and 

frequency characteristic with respect to the given relations, the parametric 

sensitivity of the frequency characteristics on the transfer coefficients, for 

the third order system with aperiodic step response, can be given by the 

transfer 
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Fig 4.1 Step response of the system 
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The waveform of the relative differential system sensitivity on individual 

coefficients in the numerator of the transfer (characteristic equation) 

dependent on frequency ω (in the transfer band of the system) is represented 

in fig. 4.2 and the waveform of the phase sensitivity can be seen in fig. 4.3.  
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Fig. 4.2 Relative differential sensitivity of the module G(jω)                                   

on the coefficients a0, a1, a2, a3 
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The waveform of the systems sensitivity functions on the change in 

coefficients is dependent on the waveform of the system characteristics at 

original (unchanged) values of coefficients (parameters of individual 

elements). The waveforms of these functions are different with a monotone, 

or aperiodic waveform of the original transfer characteristic. The described 

methodology and derived relations for simulating the sensitivity 

characteristic are generally applicable for one-dimensional linear systems 

and we can also use them for the analysis of sensitivity for multi-

dimensional systems with known structure. 

Using the method for the analysis of parametric sensitivity of linear 

dynamic systems, published in articles and papers (see literature), it is 

possible to quantitatively determine the sensitivity of the system on the 

change in coefficients in its mathematical model given by differential 

equations, or transfer function G(p). 

It is important to know the sensitivity of a dynamic system when there 

is a change in its elements parameters, at the stage of creation (design, 

construction), in order to be able to choose its appropriate (desirable) 

structure with respect to the operational properties and requirements of the 

system. Because the properties (behavior of the system) present themselves 

in a dynamic regime, it is desirable to know, in detail, the effects of these 

changes have on the waveform of the transfer events. The differential 

equation, transfer function (in terms of Laplace transform), transfer function 

and frequency transfer, give complete information about the dynamic 

properties of the system. Therefore, all relations established for the analysis 

are formulated in such that they can be directly applied for calculation, or 
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in better words; for the computer simulation of the sensitivity 

characteristics in appropriate programs (such as MATLAB).  

The derived relations allow for the determination of the waveform of 

parametric sensitivity within the frequency and time domain.  Because the 

coefficients of the transfer function implicitly contain element parameters of 

the dynamic system, it is apparent that with this methodology the sensitivity 

on any arbitrary parameter (parametric sensitivity) can be determined. By 

the same procedure, it is possible to establish the effects of sensitivity in a 

closed-loop control system on changes in parameters and controller of the 

system. 

 

4.4  Sensitivity on the parameter element structure 

 

Because parameter λk of the real systems individual elements are 

implicitly contained in the coefficients of the dynamic model, that is 

αv=f(λk), with known relative sensitivity )( ναG
rS  on coefficient αv, in which 

parameter λk is implicitly contained, the relative sensitivity of the module 

on the relative change in parameter λk can be expressed by 

 









λ∂
α∂

α∂
αω∂

αω
λ

= ν

ν

λ

k

kG
r

jG
jG

ReS k
),(

),(
)( )( ναν

ν λ∂
α∂

α
λ

= G
r

k

k S            [4.14] 

And the phase sensitivity on the relative change in values of parameter 

element λk 
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where values of sensitivity on coefficient α are determined by relations 

[4.12, 4.13]. According to these relations and with the known mathematical 

model of the system, we can compute and graphically represent the 

sensitivity of the linear dynamic system on element parameters of its 

structure, with the use of appropriate software (such as Matlab). 

Graphically representing the waveform of the parametric sensitivity of 

characteristic functions, or in better words, the characteristic of the designed 

or known dynamic system (control loop on element parameters) can 

qualitatively assess the effect of changing parameter values, or control 

parameters, on the behavior of the system. That is to use the control loop, in 

the waveform of the dynamic process, and obtained information for the 

design, operation, noninvasive diagnostic of faults of the complex dynamic 

system (system made-up of sub-systems).  

 
4.5   Sensitivity analysis of the structure 

 
Series structure 

We begin with the simple series structure created by “i” sub-components 

with transfer Gi(p), for i=1,2,3.., k, …N. The transfer of such a structure is 
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                                     [4.16] 

The relative sensitivity for the transfer of the structure on the kth 

coefficient of the ith component will be 
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For the complex sensitivity of the frequency transfer (for the structure in 

series) on the kth coefficient of the ith component, will then be 
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The relative differential sensitivity of the amplitude transfer (for the 

structure in series) on the kth coefficient of the ith component, will then be 
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and the absolute phase sensitivity of series connection on the relative 

change in the kth parameter of the ith component will be  
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From relations [4.19, 4.20] results in 

• the Relative sensitivity of the frequency transfer module of the 

structure in series (system) on the kth coefficient of the only ith 

component, is equal to the real part of the relative sensitivity of the 

ith member on its kth coefficient. Each displays the percentual 

change in amplitude of the amplitude-frequency characteristic of 
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the system corresponding to the one-percentile change in parameter 

value of the kth element, ith component. 

• Absolute sensitivity of the phase frequency transfer (of a structure 

in series) on the relative change in value of parameter of the kth 

element, ith component is given by the imaginary value of the 

relative sensitivity of the ith component on its kth coefficient. Each 

displays the phase change percentage of the system on the one-

percentile change in parameter value of this element. 

Because the probability that parameters of independent system 

elements changing at the same time is small, for the analysis of the system, 

it is suitable to determine the sensitivity on individual elements separately. 

According to this, we can determine the elements which the system is most 

sensitive to and pay extra attention to them.  

Knowledge of the sensitivity on individual coefficients (on parameter 

elements within the domain of the transfer band) allows for the prediction 

of the systems behavior as a result of changes in individual coefficients 

(element parameters). It also allows for the compensation in unwanted 

changes of critical elements, or a more appropriate design of the system 

structure.  

Parallel structure   

Let us consider a system consisting of parallel cell combination with the 

transfer Gi(p,α) for i =1, 2, . , n. the resulting structure is 
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The relative sensitivity of the system transfer on the kth parameter, ith cell 

can be determined 
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The relative sensitivity of the frequency transfer module of the parallel 

structure on the kth parameter, ith cell will be  
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For the phase sensitivity of the system transfer on the kth coefficient of the 

ith cell, we can then write 
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Comparing relations [4.17] with [4.22] for relatively complex sensitivity of 

the structure formed by the same elements for any element “i” of coefficient 

“k” for the structure in series and parallel it follows 
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Relation  [4.25] shows that: 

• The ratio between the frequency transfer sensitivity of the structure 

in series on the transfer coefficient of the selected cell, to the 
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sensitivity of the parallel structure on the coefficient of the same 

cell connected in a parallel structure, is (for frequencies lying 

within the transfer band) given by the ratio between the frequency 

transfer of the parallel structure and the transfer of this cell. It 

then follows, that changes in the parameter of an element 

connected in a series structure will always have a significantly 

larger effect on the response of the system when compared to the 

same change in parameter of the same element connected in the 

parallel system (creation of stable circuits).  

Graphic representation of relations [4.19, 2.10] and [4.23, 4.24] illustrate 

the waveform of the sensitivity on a series or parallel system with respect to 

either, the transfer coefficients of the sub-cells, or by using [4.14, 4.15] on 

parameters of individual structure elements (if they are known). 

For the illustration of the preceding results we include the solution of a 

series and parallel connection of two, first order astatic systems to 

determining the relative sensitivity of both structures on the same parameter 

of the same element.  

Transfer of elements:  
1

)(
1

1
1 +τ

=
p

KpG ; 
1

)(
2

2
2 +τ

=
p

KpG ; 

Transfer of series structure: )()()( 21 pGpGpGs ⋅=  

Transfer of parallel structure: )()()( 21 pGpGpGp +=  

Relative sensitivity of the amplitude characteristic on the time constant 

τ1 for a series structure  
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Choosing the value of the parameters to be: K1=5; K2=10; τ1=2; τ2=1. 

The sensitivity function for each structure are represented in figure 4.4 
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Fig. 4.4 Relative sensitivity of the frequency transfer module                                   
of each structure 

 
The upper curve represents the relative sensitivity for parallel connected 

elements, while the lower curve represents the relative sensitivity for 

elements connected in series. From this graphical representation of the 
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sensitivity functions on the same element parameter, once in series and then 

in parallel connections, we can see that in this case, the relative sensitivity 

within the frequency transfer band are 5 times greater than connections 

in parallel.  

 

4.6  Sensitivity of a reciprocal system function 

 

Let us consider the general complex system function, which describe 

the static and dynamic properties of the system in the form of frequency 

transfer for the LDS 
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where  ω   is an argument of the function (usually frequency), and 

α   is a coefficient of the frequency transfer (element parameter of 

the system). 

 

The relative differential sensitivity for the concrete parameter αk is defined 

by relation 
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is the reciprocal system function of function G(jω, αk), then for the 

sensitivity of the reciprocal system function H(jω,αk) we can derive the 

relations: 

• For the relative sensitivity of module H(ω,αk) 
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• For the absolute sensitivity of the phase ψ(ω,αk) 
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Relations [4.28 and 4.29] show the direct correlation between the relative 

sensitivity of the system function and its reciprocal function. 

• The relative sensitivity on the same parameters of the reciprocal 

function to the system function of the LDS is taken to be negative 

with respect to the relative sensitivity of the system function on this 

parameter  

From the sensitivity of the amplitude and phase of the system function 

according to relations [4.29 and 4.28] it is possible to easily determine the 

sensitivity of the reciprocal system function, which can be important in 

special cases.  

The derived expressions can be applied, for example, to the sensitivity 

analysis of the series resonant R, L, C circuit. 
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The reciprocal value for the impedance, that is for the admittance 

G(p),from Kirchhoff’s laws we can derive the following relation for such a 

circuit 
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According to the known relations [4.17, 4.22] we can derive for the relative 

sensitivity of the admittance module on parameters R, L, C by the 

following relations: 
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Fig 4.5 Waveform of the module and phase admittance 
for the series R, L, C circuit 

 

The waveform of the module and phase admittance (conductivity) circuit 

with element values R=100Ω, L=1H, C=1μF is represented on figure (4.5). 

For the relative impedance sensitivity on individual elements R, L, and C it 

is possible, either classically through relations 4.17 and 4.22, or with 

respect to relations 4.29, 4.30 to derive relations for the calculation of the 

sensitivity of admittance G(jω,α) and circuit impedance Z(jω,α)=1/G(jω,α) 

on individual circuit elements which will then be: 
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and their waveform is represented on fig. 4.6 and 4.7. 
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Fig 4.6 Relative sensitivity of circuit admittance on elements R, L, and C  
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Fig. 4.7 Relative sensitivity of the impedance on elements R, L, and C 

From figures [4.6, 4.7] it is possible to determine some facts about the 

series resonant circuit: 

• The circuit admittance in the the resonant state results in a sharp 

maximum, which is equal to the reciprocal value of the ohmic 

resistance R, 

• The phase admittance in resonance is zero and the circuit behaves 

as an ohmic one, 

• In the state below resonance, a large portion of energy is 

concentrated in the electric field of the capacitor and the circuit 

behaves as in capacitance, in the state above resonance a 

substantial part of energy is within the magnetic field of the coil, 

and the circuit behaves inductively, 
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• Because, at low frequency, the voltage is largely influenced by the 

capacitance, the sensitivity of the circuit on the resistance and 

inductance is zero at these frequencies, 

• In the lower area close to the resonant frequency, the value of the 

sensitivity on both reactance elements (L and C) grows, obtains its 

maximum, then shrinks to zero at the resonant frequency, changes 

its sign, and obtains its maximum once again in the upper area 

close to the resonant frequency,     

• over the resonant state, the sensitivity of admittance on R and on C 

approaches zero as the  frequency increases, and the sensitivity on 

L approaches -1, 

• It is clear, that the value of the resonant frequency is also sensitive 

to the change in values of inductance and capacitance.    

Because the resonant frequency of the RLC circuit (series and parallel) is 

given by the relation 

LC
1

0 =Ω  

the relative value of the sensitivity of this frequency on the capacitance C 

is given by 

C
C

CSr ⋅
Ω∂

Ω∂
=Ω

0

0 1)(0  

and on the inductance L 
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L
L

LSr ⋅
Ω∂

Ω∂
=Ω

0

0 1)(0  

After substituting into the expressions we get 

2
1)()( 00 −== ΩΩ CSLS rr  

This relation shows that the relative change of inductance or capacitance by 

1% causes a 0.5% relative change in resonant frequency of the circuit Ω0.  

 

4.7  Multi-parametric sensitivity  

 

In the sensitivity analysis of a complex structure consisting of 

additional elements with more parameters, the formulation of relations for 

the study of systems in the general context, can become confusing (complex 

expressions).  

System with known structures can usually be composed and 

decomposed into appropriate subsystems. We can first derive relations for 

the determination of the systems sensitivity, created by the structure 

consisting of i=1, 2, 3, …, N chosen elements (subsystems) with sensitivity 

on one parameter of the ith coefficient on the transfer of the series structure.   

  

Series structure 

Analysis of the serial structure sensitivity, we can derive for the relative 

change in amplitude of the system transfer, after neglecting the product of 

the differences, formed by the serial structure of the elements (or 
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subsystems) for relative changes in coefficient values of the transfer 

function for the elements structure  
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where αi,k  is the value of the kth transfer function coefficient of the element 

of the structure Gi(p,α), 

δi,k  is the relative change in value of the kth coefficient of the ith 

element of the structure (+).  
G

rr ,∆ (ω,α)s  is the relative amplitude change of the frequency 

transfer for a serial structure 

  

Parallel structure 

 

The sensitivity analysis of the parallel structure can be, by analogues 

procedures, derived the relation for the relative change in value of the 

frequency transfer amplitude 
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where  ∑
=

α=
N

i
i pGpG

1
),()(  

is the transfer of the parallel structure composed of N elements. 

According to expression [4.30 and 4.31] it is possible to determine the 

waveform of the resulting amplitude deviation of the system transfer in 
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series, or elements of the parallel structure, or subsystems, within the 

transfer band of the system. If we consider the same relative change in value 

for all elements, then the expressions indicate the relative change in the 

system transfer amplitude for the specified (desired, allowable) tolerance, or 

change in value of their parameters.   

Complex structures can then be analyzed for the composition or 

decomposition of their serial/parallel branches. 

Series – parallel structure 

We will analyze the structure in fig. 4.8. 
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Fig. 4.8  Circuit structure 
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Neglecting higher order differences the relative deviation of the resulting 

transfer module for a series-parallel structure, we can derived the useful 

relationship 
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( )

( ) ( ) ( ) ( )
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where 

δk(jω) -  is a complex function of the relative change in frequency transfer 

of the kth element on the nominal transfer of the structures parallel 

part,  

Gs(jω) – is the frequency transfer of the series part of the structure 

δi(jω) –  is a complex function of the relative change in frequency transfer 

of the ith element on the nominal transfer of the structures series 

part, 

Gi(jω) – is the frequency transfer of the series structure’s ith element. 

For illustration of a series-parallel connection see fig. 4.9 
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Fig. 4.9 Serial-parallel structure 
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For the relative change in amplitude of the frequency transfer structure 

according to fig. 4.9 we can derive the expression 
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If we substitute K5, δT = 0.05, T=0.1 then 
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the waveform of the relative change in module of the frequency transfer 

structure over a 5% change in value of the time constant T can be seen in 

fig. 4.10 
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Fig. 4.10 Waveform of the frequency characteristics change in amplitude 
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Using the derived relations [4.31] and [4.32] it is possible to analyze the 

arbitrary structure, consisting of series and parallel connections between 

elements (blocks). 

 

4.8  Sensitivity of the time characteristic 

 
Change in parameter values (and thus coefficients also) of the LDS 

impacts the time character of the transfer effects within the system. The real 

waveform of these effects in time represent the transfer and impulse 

functions (their corresponding characteristics). These characteristics directly 

depend on the characteristics defined within the complex regions, such as in 

the transfer function G(p) and frequency transfer G(jω). Transfer 

characteristic h(t) is the Laplace – Wagner original and impulse 

characteristic g(t) is the Laplace original transfer function of the system 

G(p). The relative sensitivity of the transfer function on the coefficient 

(parameter) can be defined as the relative change of the function by an 

elementary change in the differential equations coefficient (transfer 

function). 
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is the absolute sensitivity ξ(t,αk) of the transfer function on the change in 

coefficient value αk and has the physical dimension defined by the 

proportion of the transfer functions amplitude on the size of the coefficient.  

If we consider that the transfer function has the form 

( ) ( )
( )pN
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0 ==
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ν
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µ        

then the absolute sensitivity of the transfer characteristic on coefficient bμ 

will be  
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And the coefficients of the polynomial in the denominator av will be 
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For the growth in the amplitude of the systems transfer characteristic 

Δh(t,αk) with transfer G(p,αk)on the perceptual change  
k

k

α
α∆ [%] = δk of 

coefficient αk, we can be easily derive the expression 
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For the coefficients of the polynomial in the numerator of the transfer bμ 

and denominator av will then be    



 53 







δ

=∆
µ

−µµ
µ )(

.
100

[%].
),( 1

pN
pW

b
bth                                              [4.37] 








−

δ
=∆

ν
−νν

ν )(
)(

.
100

[%].),( 1 pG
pN

pWaath                                   [4.38] 

To illustrate, we introduce the waveform of the transfer characteristics 

sensitivity of the system (fig. 4.8) 
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Fig. 4.11 Sensitivity of the transfer characteristics amplitude on the 
coefficients a0, …, a3 
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The displayed functions give the growth, or voltage loss of the transfer 

characteristics amplitude within the waveform of the transfer process for a 

given change in coefficient value. 

The change in the absolute value of the transfer characteristics amplitude 

for the one-percent change in the coefficient values of the denominator can 

be seen in fig. 4.12. 

 

Fig. 4.12 Difference in the transfer characteristic at a one-percent change 
in coefficient value (in the transfer denominator) 

 

The absolute sensitivity η(t, α) of the impulse function g(t), which is the 

derivation of the transfer function with respect to time, for individual 

coefficients of the transfer function, we can substitute the original Wagner 

W-1 with the original Laplace L-1 to obtain  
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A more detailed analysis of the transfer function sensitivity, which 

characterizes the effects of changing values in individual coefficients on 

the waveform of the transfer process, we can sense the change in 

waveform of the transfer process. On the other hand, from the observed 

changes of the transfer process (start-up for example) we can judge the 

change in parameters of some coefficient (element directly) which is 

possible to use in the diagnostics.  

Using the proposed analysis method for the parametric sensitivity of a 

linear dynamic system, partly published in articles (literature L) and given 

in this work, it is possible to quantitatively identify and evaluate the 

sensitivity of the system on the change in coefficients of its mathematical 

model given in the form of the transfer function G(p), as well as directly 

on the change in parameter value of its functional elements.  

It is very important to know the sensitivity of a dynamic system on the 

change in parameters of its elements already at the design stage of the 

system in order to choose the appropriate (desired) structure in respect with 

the operating properties and requirements. Because the properties present 

themselves in the dynamic regime, it is desirable to understand these effects 

mainly on the waveform of the transfer effects. The dynamic properties of 

the system gives complete information about the transfer function and 

transfer (impulse) function/characteristic. Therefore all relations 



 56 

determined for the analysis are formulated in such a way that they can be 

used directly for calculation or computer simulation. 

The derived relations allow us to determine the waveform of the 

parametric sensitivity within the frequency and time domain (argument) 

on the polynomial coefficients of the numerator and denominator, that is; 

directly on the element parameters of the transfer for simple and complex 

linear systems (whether open or with feedback). According to the 

presented methodology it is possible to analyze relatively complex systems 

and control circuits as well. The application of the methodology 

procedures is useful also for the design of adaptive and robust systems 

and controllers. 
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5.   SENSITIVITY OF THE CONTROL CIRCUIT 

 
Assuming a control circuit with the structure in fig. 5.1, in which S(p,α) 

represents the transfer function of the controlled system with coefficients 

α=(α1, …, αk, …), R(p,β) and the transfer of the controller with coefficients 

β=(β1, β2, …, βk, …). U(p) is the image of the action (input variables), 

Y(p) is the image of the output variables (feedback), and W(p) is the image 

of the desired output variables. 

Transfer of the desired value on the output value will be 
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Fig. 5.1 Structure of the control circuit 

5.1  Determining the sensitivity 

 
The relative transfer sensitivity of the control circuit G(p,α,β) on the 

systems αk
th coefficient will be defined by relation 
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After substituting G(p,α,β) we obtain 
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For the relative sensitivity of the control circuits frequency transfer it then 

becomes 
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The relative sensitivity of the amplitude of the control circuit’s frequency 

response on the αk
th coefficient of the systems control model will be given 

by relation 
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Analogically with the relative sensitivity of the amplitude of the control 

circuits frequency transfer on the βk
th coefficient of the controller it follows 
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According to the derived relations [5.5 and 5.6], for the regular control 

process we can determine the relative sensitivity of the frequency transfer 

module of the closed circuit on any transfer coefficient  of the controlled 

system and controller.   

 

To illustrate the derived expressions, the waveform of the amplitude-

frequency characteristic’s relative sensitivity of the control circuit created 

by the first order static system S(p) with time constant T and controller R(p) 

with time constant τ can be represented. 
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Transfer of the desired values W(p) on the control variable is 

     
    ,1 pRpS

pRpS
pG


  where   ;

1


pT

K
pS s      ;

1


p

K
pR r  

and their values Ks=8; Kr=10; T=3; τ=1.  

Scheme of the analyzed circuit: 
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Fig. 5.2 Logarithmic amplitude and phase characteristic                                
of the control circuit 
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From these it can be seen that in the region of angular frequency 

(approximately 5 rad/s) the amplitude-frequency characteristic of the circuit 

achieves its maximum (the circuit has the tendency to vibrate). Also In the 

region of this frequency, the relative sensitivity of the circuit on the values 

of the time constants and controller are most significant (fig. 5.3). 
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Fig. 5.3 Relative sensitivity of the circuit’s frequency transfer module                       
on the system’s time constant T and controller τ 

5.2    Behavior of the control circuit 

 
To assess the effects in changing time constants of the controller on the 

transfer properties (ability) of the control circuit we pre-analyze the 

sensitivity of the transfer characteristic on the ratio change between the 

time constants. For the assessment we will assume the control circuit 

whose transfer characteristic is aperiodic.  
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Transfer of the closed control circuit is 
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where Ko=Ks=Kr is the gain of the control circuit, T is the time constant of 

the system and τ is the time constant of the controller. 

If we denote  ξ=
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 Characteristic equation of the control circuit 
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In terms of (6), the process will be stable and aperiodic in the circuit if 

0)1(4)1( 0
2 =+ξ−ξ+ K                                                          [5.11] 

The time constant of the controller (fast or slow) has a significant impact on 

the waveform of the control process for the given transfer of the system 

S(p). Therefore we will analyze sensitivity of the process on the constants 

of the controller. The waveform of the sensitivity depends however, also on 

the character of the process, therefore the analysis will be performed for the 
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case where the control circuits transfer characteristic will be aperiodic (just 

below the boundary that the formation of the aperiodic process occurs). 

For the aperiodic waveform of the transfer characteristic from relation 

[5.11] for amplified Ko depending on the ratio of the controller’s and 

system’s time constants ξ results in  

1
4
11)1(

4
1 2

0 −η=−
ξ
ξ+

≤K                                               [5.12] 

Corresponding values of the variables according to relation (5.12) are given 

in the following table. 

 

VALUES OF THE RATIO BETWEEN TIME CONSTANTS                         
AND GAIN FOR THE APERIODIC RESPONSE                          Table 5.1  
ξ  1 2 4 5 10 20 30 50 100 

η  4 4,5 6,25 7,2 12,1 22,05 32,03 52,02 102 

Ko 0 0,25 0,56 0,8 2,03 4,62 7,01 12 24,5 

 

In respect to relation [5.12] we can create the graph Ko=f(ξ), (fig. 5.4) in 

which, for the chosen value ξ ≥ 1 we can subtract the desired gain of the  

control circuit for the aperiodic response 
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Fig. 5.4 Dependence of the control circuit gain Ko on the ratio  
of the time constant ξ 

 

Sensitivity on the time constant of the controller 

In the sensitivity analysis we will be based upon the transfer function of a 

closed loop control circuit G(p). The inputs of the desired values of the 

control variables are in the form [5.7], and through the definition of 

sensitivity, we will gradually find relations for the determination and 

graphical representation for the sensitivity of the frequency characteristic, 

with differing values for the ratio of the controller time constants and values 

of time constants for the dynamic delay of the control system. This analysis 

allows us to assess the values of sensitivity for the control circuit and the 

waveform of the sensitivity for the control variables on the change in time 

constant within individual phases of the transfer function (21). 



 64 

We will define the relative sensitivity of the frequency transfer with the 

help of the transfer function [5.7] 
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The relative sensitivity of the control circuit transfer defined this way is a 

dimensionless number and gives the relative change in value of the transfer 

corresponding to the relative value of the elementary change in time 

constants of the controller τ. 

The module |Sτ(jω,τ)| represents the amplitude sensitivity,  which will 

describe the sensitivity of the frequency transfer module on the change in 

time constant of the controller at individual frequencies within the band-

pass of the control circuit. This dependence, for different values of the 

controller’s time constants, is assessed with the waveform of the amplitude 

characteristic. 

If we substitute [5.7] into relation [5.13] for G(p,τ) and we perform the 

relative operations such that we can assess the effects of changing the time 

constant of the controller τ against the given time constant of the system T 

by means of coefficient ξ, then for the absolute value of the frequency 

transfer sensitivity for the chosen time constant ratio ξ = T/τ we get   
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For the graphical illustration let us choose the value of the time constant for 

the system T=1 s. For differing values of τ we will determine the gain of Ko 

for the aperiodic waveform of the process (Tab. no.1) and will calculated 

and represent the sensitivity of the frequency characteristic for different  

ratios of ξ=T/τ. For the value of coefficient ξ=T/τ let us choose: ξ1=2 

(τ1=0.5); ξ2=5 (τ2=0.2); ξ3=10 (τ3=0.1). The waveform of the sensitivity of 

the amplitude-frequency characteristic for the control circuit is represented 

on fig. 5.5.  

In terms of the waveform of the function, it can be seen that the frequency 

characteristic amplitude of the control circuit for the chosen value of the 

system’s time constant becomes sensitive early (at lower frequencies) for 

the circuit with smaller values of ξ (greater values of τ). In other words, 

control with relatively greater values of the controller time constant is 

more sensitive to the change in the system’s time constants already at 

lower frequencies of the signal’s transfer spectrum. 
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Fig. 5.5 Relative sensitivity of the control circuit’s amplitude characteristic 
for different values of ξ 

  

The methodology for analyzing the sensitivity of linear dynamic system, 

given in this part of the work, is based on the basic description of the 

system structure in the form of differential equations (transfer function) 

whose coefficients also implicitly inherit the values of the element 

parameters of the system. Because the properties of the systems behavior 

(external character) are sensitive on the change in parameters, it is logical to 

study the sensitivity of these characteristics on the element parameters 

which form the structure of the analyzed system. The advantages of the 

given methodology is that expression for the calculation or simulation of 

the sensitivity on individual parameters can be relatively easily derived 
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from the description of the system’s structure in the form of the transfer 

function or the transfer of its subsystems as well. The description of the 

dynamic structure is mainly transformed into the field where most 

operations with the transfer function or the frequency transfer are 

performed by algebraic procedures and the functional dependence in 

time, is obtained by the inverse transformation (Laplace, Wagner or 

Fourier) which are part of mathematical software in PC’s. With the 

known structure of the dynamic system it is not needed to solve for 

differential equations, but the description in the form of the transfer function 

can be (with an understanding in the transfer of elements and the laws of the 

transfer composition) created directly “in terms” of the structure of the 

object.   

Sensitivity of the complex dynamic system depends on the properties of its 

elements and their mutual physical, and also informational, constraints 

(automatically controlled system). This property is not only significant for 

mechanical systems (mechanisms), but also for living (biological) systems 

(organisms). The dynamic behavior is dependent on the sensitivity of the 

system to changes in internal parameters (caused also by external effects), 

that is to say the auto-controlled processes and the external manifestation of 

their incorrect function, such as: malfunction, instability, change in 

performance, incorrect response to external stimulations, as well as the 

overall manifestation of the systems behavior. The effect of parametric 

sensitivity on the behavior of dynamic systems is also addressed in further 

parts of this work. 
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6.  TOLERANCE OF THE DYNAMIC SYSTEM 

 
The ability of a system to meet the desired (defined) function even with the 

occurrence of relatively small changes in element values of its parameters is 

known as the system tolerance. In the following chapter we will have in 

mind the tolerance with small changes in element parameters or parameter 

of the medium (for example in hydraulic systems). Requirements on the 

system behavior can be generally varied, and thus can be formulated in 

different ways. We will consider “a priori” that the analyzed system with 

given (original) structure is capable of implementing the demands on its 

behavior. 

Originating from the input-output representation of the DS described by 

the system function G(ξ,α), where ξ is an argument of the function and 

α=(α1, α2, …, αk, …, αn) are coefficients of the system function (element 

parameter of its structure). The change in response on the elementary 

change of the kth parameter, at the defined initial state of the system and 

waveform of excitation, will be expressed in the form 
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If the permitted (allowable, desired) change in response on the change of 

the kth parameter is written as Δy(ξ)k, then from relation (6.1) the tolerance 

of parameter αk becomes 
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Where Sk(ξ) is the absolute differential sensitivity of the system on the 

change of the kth parameter.  

At the same time, relation (6.2) also results in: the tolerance of the kth 

parameter for the allowable change in reaction (response) of the system, 

is directly proportional to the reciprocal value of the differential sensitivity 

on the change of this parameter. 

With the same methodology (procedure) and application of basic relations 

for the sensitivity and tolerance of the frequency transfer of the linear 

system, the newly formulated method which, with the use of computer 

simulations allows us to determine, with relative accuracy, the tolerance for 

the coefficient values of the original’s transfer function of the stable system 

in the region of its stability (14). This is true also within the band where the 

transfer characteristic changes from aperiodic to the optimal waveform (in 

terms of the criteria of the optimal module) (15). 

6.1  Tolerance of coefficients in the region of stability 

 
Unwanted changes in the system’s element parameter values and with it, the 

coefficients of its mathematical model as well, can cause instability of the 

system. Therefore it is useful (mainly for the designer) to recognize the 

range of allowable changes in coefficient values, in which the originally 

stable system remains stable. This interval will dictate the tolerance of 

coefficients in the region of stability. 
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Stability of the linear system depends on the roots of the characteristic 

equation, which for changes in the vth coefficient of a value Δαv will have 

the form 

( ) ( ) =∆+=++∆++++ ν
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n 01

1 ........ 0   [6.3] 

For the roots laying in the left half of the gauss complex plane (GCP) (in 

limit cases, on the imaginary axis) and must fulfill the condition 
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In which for Δαv it follows 
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In order to represented the waveforms defined by curves in the GCP for 

( )∞∈ω ,0  to have a finite dimension, we express the reciprocal value of the 

relative coefficient tolerance, that is 

( )
( ) ( ){ }ω=

δ
=









ω
ω

−≤
∆ ν

ν

ν
ν

ν

ν jK
ajN

ja
a

a Re1Re                                     [6.5] 

The geometric image of K(jω) within the GCP for the continuous change 

in value  ω ∈ <0, ∞ ) are continuously oriented (similar in shape) curves, 

which for ω=0 start either at the beginning (for v=1…, 2…, …, n), or at -1 

(for v=0), with growing ω continuing in the clockwise direction and for ω 

 ∞ end (for v=0, …, 1, n-1) in the early stages, or at -1 (for v=n), in 

which their intersections with the real axis defines the limit of allowable 
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changes in the relative reciprocal values of the corresponding coefficient 

with respect to relation (6.5).  Fig6.1 illustrates the situation  
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Re 
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Fig. 6.1 Typical waveform of the curve Kv(jω) for v=n-1=3 

 

With the coordinates of the intersections P1 and P2 of the curve Kv(jω) with 

real positive GCP axis, with respect to relation [6.5] we can define the 

range of allowable relative changes in values of individual coefficients Δav 

in which the originally stable system will remain stable. 
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Application of this method on the determination of allowable coefficient 

tolerance, as well as system and controller parameters for the second order 

system controlled by the proportional controller with first order dynamic 

delay in the general analytical form, can be seen in literature (15). A 

program for the calculation of tolerance and at the same time, its graphical 
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representation throughout the waveform of the transfer function, is created 

to automate the solution procedure on a PC in the MATLAB program (3). 

As such, for a stable, non-static third order system with an aperiodic 

waveform of the transfer function given by the transfer 
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we can calculate the interval of allowable changes in coefficient values and 

suitably represent the waveform of the transfer characteristic for their 

allowable change. In fig. 6.2 and 6.3 are the 2D and 3D representations for 

the waveform of the transfer characteristic at allowable changes in 

coefficient a3 respectively, and for the change in coefficient a0 in fig. 6.4. 

 
Fig. 6.2 The band which represents the change in transfer characteristic    

for the tolerance of coefficient a3 
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Fig. 6.3 Waveform of the characteristic within the tolerance band                 

of coefficient a3 

 
Fig. 6.4 Waveform of the characteristic within the tolerance band                          

of coefficient a0  
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6.2  Tolerance of the coefficients for optimal response 

 
In the proposal (design) of dynamic systems, it is usually required that their 

transfer characteristic is aperiodic, or that (mainly for control) it meets the 

requirements of an optimal module. These requirements resulted in the 

pursuit to create a method for the definition of allowable changes 

(tolerance) of individual coefficients of the system’s transfer function, in 

which the original aperiodic and stable transfer characteristic turns into 

the optimal characteristic. The result of these efforts is the original 

method, which allows us (through the use of computer simulation) to 

determine the tolerance or boundary for coefficient values in which the 

transfer characteristic will stall have the optimal waveform.  The method 

is based upon the requirements for the optimal model imposed on the 

waveform of the amplitude-frequency characteristic. In the detailed analysis 

on the dependence of the waveform of these characteristics on the change in 

coefficient values of the characteristic polynomial of the frequency transfer, 

as well as the use of information from simulations of the defined curves 

within the GCP, a relation can be found for the determination of allowable 

changes in original coefficient values, in which the transfer characteristic of 

the system moves within the band defined from the aperiodic to the optimal 

waveform. The method has been presented on the scientific conference (14, 

17) and published in the journal (15). 

We will suggest the procedure for deriving this method, based upon the 

changes in transfer function, or frequency transfer, with a change of any 

coefficient av of the characteristic equation, or characteristic polynomial of 

the transfer function.  



 75 

Frequency transfer of the LDS will be described in component form 
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The module (absolute value) of the frequency transfer G(jω) will be 
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The optimal module criterion for the optimal waveform of the transfer 

characteristic of the system requires that the following conditions be met: 
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After application of the second condition in [6.9] on G(ω) within expression 

[6.8] we obtain 
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where, for the real part of the system’s frequency transfer with optimal 

response (i.e. at the transfer of the frequency characteristic of the real axis) 

meets the following condition: 
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If we describe the transfer of the system G(jω) in the form [6.7], we must 

consider the change in coefficient of the characteristic polynomial with a 

value of Δav, and we apply the condition [6.11] on the changed frequency 

transfer 
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After carrying out the operations in relation [6.13] and adjusting the derived 

expressions, we can derive for the allowable change in the vth coefficient of 

the characteristic polynomial in the direction of its lower boundary  
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where values for P1, P2, P3, and P4 give the coordinates of the 

intersections defined by the curves with real positive axis in the GCP, 

specifically: 
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The curves K1(jω), and K2(jω) at ω=0 begin at the relative positive axis of 

the GCP at points P1 and P2 (as long as the transfer polynomial are at least 

of the first degree), with rising frequency they continue in the clockwise 

direction and for ω  ∞ end at the beginning of the coordinates or at the 

real positive axis of the GCP (curve K3 for v=n). Coordinates of the 

intersection of these curves with real positive axis determine the values of 

coefficients P3 and P4.   

For determining the allowable value of growth for coefficient av we use the 

second of the conditions in [6.10] in view of relation [6.11] we can write 
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from which the allowable deviation (growth) in value of the coefficient is 
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The allowable range of the vth coefficient of the LDS’s characteristic 

polynomial, according to the performed analysis using [4.15] and [4.16], 

can then be determine by the following relation 
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where 
va  are values in which the coefficient can grow from their original 

values so that the system’s transfer characteristic, with changes in 
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coefficient values, will be aperiodic, or in better words, have the optimal 

waveform (in terms of the criteria for the optimal module).  

Along with the conditions arising from the requirements of the optimal 

module, the conditions for stability were also used in deriving the relations 

for determining the tolerance of the coefficients. Therefore the method for a 

stable system with aperiodic transfer characteristic with no overshot, 

determines the tolerance of the transfer coefficients for the waveform of the 

characteristic within the monotone to the optimal band. 

Because the method analyzes the one-dimensional LDS regardless of its 

structure, it is useable for open systems as well as control circuits and in 

the analysis of multidimensional systems. Procedures for realization of the 

method through computer programs such as MATLAB were performed by 

Ing. R. Halenarom [2] and allow for the elegant computation for the 

solution of tolerance as well as the graphical representation of the transfer 

characteristic in 2D and 3D subject to changes in coefficient values within 

the calculated tolerance interval. Examples of the applied method, together 

with the simulation of the transfer characteristic’s waveform, for systems 

with aperiodic transfer characteristic without overshot and the transfer  
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are seen in fig. 6.4 to 6.7.  
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Fig. 6.5 Transfer characteristic for changes in coefficient a0 

 

Fig. 6.6 Transfer characteristic within the interval of change for coefficient a1 
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Fig. 6.7 Transfer characteristic within the interval of change for coefficient a2 

 

 
Fig 6.8 Transfer characteristic within the interval for change a3  
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General solution of the inverse problem, that is to define equations for the 

tolerance of coefficient values on the desired output of the waveform, or 

response is not a simple task, and whether it be an algebraic or differential 

system it is practically unsolvable. The proposed procedure for determining 

the tolerance of coefficients therefore is based on the originally defined 

(given) structure of the dynamic system and allows for the determination of 

tolerance for individual coefficients (element parameters) of the differential 

equations, with the assumption that original values of the other coefficients 

are maintained for the defined change in system response (behavior from 

the stable to unstable and from the aperiodic to the optimal).  It was 

necessary to modify the mathematical procedure in the theoretical 

determination and modification of relations, regarding the determination of 

the tolerance, such that the calculation procedure could be realizable for the 

determination of the result. Thus the solution methodology has its benefits: 

in the area of theoretical analysis as well as in the area of synthesis of 

systems and their subsequent implementation in to software such as 

MATLAB. 

The use of the results is interesting (if not necessary) for the designer 

(creator of the dynamic system) for the analysis of the dynamic behavior 

of the system subject to changes in some dominant parameter 

(robustness), which for known system structures allows us to judge, for 

the changes in behavior, the unwanted change in a specific functional 

element (non-mounted diagnostics) and also the deeper understanding of 

a dynamic system’s properties (region of knowledge). 
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6.3  Tolerance of element parameters of the control circuit 

  

Examining tolerance intervals of individual coefficients of the dynamic 

system is necessary especially in control where, for known parameter values 

of the system, it is desirable to know the allowable tolerance of the 

controller parameters. A simple illustration of a possible procedure can be 

shown through the example for identifying the tolerance of control 

parameters for the control circuit of a 1st order dynamic system, with 

proportional controller and first order delay, proposed for the aperiodic 

waveform of the controller transfer characteristic (see chapter 5.1). For a 

given time constant of the system T, chosen ratio T/τ = ξ≥1 and circuit gain 

K0 for aperiodic waveform of the control circuit’s transfer characteristic, we 

pre-analyze instances for the time constant of the controlled system T = 1, 

and values ξ = 2 and ξ = 10. Transfer of the circuit has the form: 
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To illustrate the properties of the given control circuit, we can derive 

tolerance coefficients from the results of its analysis from the mathematical 

model (transfer function) for the allowable change in the control 

characteristic’s waveform.   

If we use the method described in chapter 6.1 created by Vrban including 

the program module created by Halenar (3, 15) we can then determine the 

tolerance intervals of individual coefficients (as well as values of parameter 

elements), in which the transfer characteristic of the control circuit remains 
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within the aperiodic to optimal limits of the waveform, and illustrate the 

waveform of the control characteristic.  

The graphical illustrations of the characteristic are shown in fig. 6.9, 6.10, 

6.11, 6.12, 6.13, 6.14. 

 

 

Fig. 6.9 Characteristic for the change in coefficient a0; for ξ = 2, K0 = 0.25 
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Fig. 6.10 Characteristic for the change in coefficient a1; for ξ = 2, K0 = 0.2 

 

Fig. 6.11 Characteristic for the change in coefficient a2; for ξ = 2, K0 = 0.25 
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In comparing the interval of allowable change in value of the coefficients, 

then after calculation of the allowable change in time constant for the 

allowable interval change in time constant of the controller τ will show 

0.5 ≤ τ ≤ 2 

 

Fig. 6.12 Characteristic for the change in coefficient a0; for ξ = 10, K0 = 2.03 
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Fig. 6.13 Characteristic for the change in coefficient a1; for ξ = 10, K0 = 2.03 

 

Fig. 6.14 Characteristic for the change in coefficient a2; for ξ = 10, K0 = 2.03 
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For the tolerance of the controller’s original time constant value τ=0.1, 

change in the transfer characteristic from aperiodic to optimal (in terms of 

the optimal module) we obtain 

0,09 ≤ τ ≤ 0,16 

From the calculated tolerance coefficient Δav it is possible to determine the 

tolerance band for individual element parameters and we can consider the 

real change and at the same time, from the waveform of shown 

characteristic, assess the waveform of the control process. This allows us 

to more deeply pre-analyze the properties and increase the quality of 

complex control designs.  
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7.  ROBUSTNESS OF LINEAR DYNAMIC SYSTEMS 

 
The term “robust” or rather, robustness within the theory of systems, are 

used mainly in relation with automatic control (Robust Control System). 

Robustness can also be understood as one of the immanent properties of the 

system existing within a given real environment. With that said, particular 

importance of the concept itself is obviously dependent on the internal 

properties of the system, which have (in terms of its desired determination 

and behavior) relevant importance 

We understand robustness of the system in a broader sense as an internal 

property of the system to perform the required functions (behaving in a 

desirable way) also for the relatively significant changes in parameters of its 

structure as well as the negative effects of its surroundings. It is clear that 

intervals of allowable changes in parameter values of the structure and its 

surroundings to maintain the systems functions are limited. 

Understanding the above we can then also discuss the internal (immanent) 

robustness of the system that is manifested by its ability to meet function 

requirements even with significant changes in the element parameters and 

constraints (for example: aging, wear, damage etc...) . We can also discuss 

external robustness, which presents itself as the resistance of system 

behavior to the surroundings (temperature, humidity, etc…). The system’s 

capacity to maintain its functional abilities when subject to negative 

physical effects of the surroundings will be known as the resistance. The 

ability to respond in an intentional manner (meet its function) even with 

undesirable changes in parameter values of its own elements and structure is 

known as ‘robust behavior’ or just ‘robustness of the system’. Because the 
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robust behavior of a complex, automatically controlled dynamic system is 

usually achievable through the appropriate choice of controller, that is to 

say the use of compensation through feedback control (in various 

modifications), we are talking about robust control of systems, or in other 

words the ‘Robust Control Problem’. Robust control, in the field of 

automatic control theory, has gained increased attention [1, 4, 6, 7, 9, 10, 

22] especially in the fields of space, aviation, military, information 

technology and control of energy resources (mainly nuclear). 

 

7.1  System Robustness 

 
Let us now focus our attention on the robustness as an internal property of 

the dynamic system, which reflects its external behavior. Even in viewing 

the structure qualitatively the properties and behavior of the dynamic 

system result in the clear and very close relationship between its sensitivity, 

tolerance and robustness. Even if all of these properties characterize the 

behavior of the system (mechanisms, machines, automated machine) for its 

use, there are a number of specific operational properties and parameters 

which greatly affect its usefulness (quality, reliability, security, etc…). This 

problem, however, belongs to another category, therefore it is not further 

discussed. 

In the designer’s perspective, it is essential to define the sensitivity, 

tolerance and resistance (otherwise known as the robustness of the 

designed system), at the initial stages of the equipments development and 

with respect to its intended use. In the following stages it is then necessary 

to continuously analyze, review and correct the design such, that the 
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system truly meets the requirements. When designing open systems 

without feedback, it is possible to determine the degree of the system’s 

robustness behavior by using the internal compensation structure, which is 

used quite often in electronic circuits and networks. However, in 

mechanical (machine) systems this procedure is usually more difficult to 

implement (more expensive). Also, it is practically impossible to achieve 

such compensation which would completely counter the effects of aging 

and degradation. 

The robustness of the system is generally not a constant variable. It 

obviously depends on the duration of use (even if this effect can, within the 

normal life span, be neglected), but also significantly on the properties and 

parameters of the environment in which the system is operating (system 

working on earth may not be as robust in space). Therefore, in order to 

characterize the robustness of some quantity (quantitative characteristic), 

it is necessary to specify the time interval that represents the normal life 

span of the system as well as the interval of values for parameters of the 

environment and conditions in which the system will operate. Clearly, it is 

necessary to define the system’s situation where its behavior must be 

robust and properties (characteristic) which in respect, must be robust 

(robust system in one situation in the perspective of certain external 

properties, they may not be robust in other situations and in terms of other 

properties or characteristic). 

Robustness of the system’s behavior can be, in terms of mathematical or 

graphical representation, described and mathematically characterized (for 

example: in the phase area) in which the image of the trajectory indicate 
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the system’s dynamic properties and thus also their change with varying 

parameters. Let us describe the robustness of the system’s behavior in more 

detail. 

A Dynamic system (in terms of its behavior) will be robust if for small 

enough changes in its parameter retain the topological structure of phase 

trajectories, for which the coordinates of each points trajectory changes 

by an arbitrarily small value. In this description the area of parameters 

(coefficients) of the dynamic system created by regions where each point in 

the system, in terms of the defined requirements, is robust. The boundaries 

between these regions create the bifurcation surfaces on which the system 

ceases to be robust. 

To illustrate the above defined robustness, we characterize the portrait of 

the phase trajectories of the linear dynamic system for its robustness on its 

stability. The linear system will be robust on the stability in the range in 

which for such a change in parameters (coefficients) that the topological 

structure (portrait) of the phase trajectories will correspond to the stability 

of the system. This means that the phase trajectories, which start from the 

initial state point, proceed through the state space to its starting point in 

time. They meet at this (singular) point in the time t  ∞ without ever 

really intersecting.    

Quantitative evaluation and expression of the robustness, which includes 

the synergy effects of different elements in the general structure, which 

could serve as a parameter for comparison between different (in terms of 

complexity and function) dynamic systems, is generally difficult to express 
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clearly. As a comparison figure for information as to the robustness of the 

system with similar physical base elements, comparable complexity, 

structurally related and with the same intention (for example: automobiles) 

we relate to the same characteristic properties of the system. Thus, it 

appears that we can define the “robustness parameter” using the sensitivity 

and tolerance of essential (dominant) system elements. The dominant 

elements, in terms of robustness, we consider as those whose small change 

in parameters causes a significantly adverse effect in the behavior of the 

system. 

Let us consider a general dynamic, purpose (to fulfill the required 

functions) created by a functional system consisting of N dominant 

elements, which have a significant effect on its desired behavior (function), 

located in the normal environment and with normal operational conditions 

(normal situation). The effects of changing parameter values of relevant 

(dominant) elements on the change in the desired system behavior 

(properties) are expressible by the sensitivity of the system on these 

elements and the tolerance of the change in their parameters. With this it is 

obvious that robust systems are required to have relatively low sensitivity 

and sufficient tolerance to undesirable changes in parameters of the 

structure. On the basis of these dependencies it is possible, as comparative 

information for specific ‘related’ types of systems with typical dynamic 

characteristics, to define the robustness parameter whose value 

characterizes the robustness of the system in terms of the given properties 

(for example: brake system). This parameter can represent an important 

indicator for assessing the quality of the dynamic (mechatronic) system. We 
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will attempt to define such a parameter in terms of the robustness of linear 

systems. 

It is obvious that the dynamic system will be, in a specific regime of 

function, more robust when its behavior will not deviate from its predefined 

limits (desired tolerance), while the deviation of the system from these 

limits will be effected by the most sensitive and least tolerant (critical) 

parameters of the system (its mathematical model). 

To assess the robustness of the system operating in a given (desired) 

regime, defining also the allowable (acceptable) changes in properties can 

be made to consider all of the parameters, which will quantify the 

robustness of the system. This parameter will be defined as the minimum in 

the ratio between the relative value of the tolerance parameter of actual, 

dominant elements (coefficients) of the corresponding mathematical model, 

to the maximum value of the relative sensitivity of the system’s 

characteristic function on the change in these parameters (coefficients). It is 

clear that this value will be minimum for a critical (in terms of robustness, 

crucial) element which at the same time can be found by this method. In 

accordance to [3.1] we consider a mathematical model of the system in the 

form G(ξ,α), where ξ represents the argument of the system function and α 

= [α1,…, αk,…, αn] is the vector from values of the coefficients 

(parameters), then the robustness coefficient of the system (in terms of the 

defined properties) can be defined by relation 
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Where max|Rk(ξ)| describes the maximum value of the relative sensitivity 

of the system’s characteristics on the kth parameter of the selected 

dominant element. 

Expression Δαk/αk gives the relative value of the tolerance parameter 

(coefficient) for the allowable change in the system’s defined properties 

(behavior). This value can be found by implementing a suitable method (for 

example [3, 15]) if such a method is available. The value of expression 

max|Rk(ξ)| represents the maximum value of the relative sensitivity of the 

kth coefficient in the waveform of the transfer process, that is to say within 

the transmission frequency band of the analyzed dynamic system. For the 

robustness coefficient of the system we consider the number Ωs, which for 

some dominant elements, results in the minimum value (robustness of the 

system determines the least robust element).  

In terms of relation [7.1] it is seen that Ωs is a non-dimensional real, 

positive number which can result in a value from zero (for infinite 

sensitivity, zero tolerance) to an infinite value (for zero sensitivity). 

Physically it gives the relative value of the allowable change in magnitude 

of element parameters attributable to the relative value of the change in 

amplitude of the system’s observed characteristic with unit change in value 

of the corresponding coefficient (parameter). The value of the parameter for 
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the robustness of the system for varying device structures intended for the 

same function can be useful comparative indicator of their robust behavior 

in terms of the preferred operational properties. Similarly, the structural 

analysis of the designed (modeled) system on the robustness in terms of its 

desired behavior (properties), can also significantly affect the workload on 

the designer and thus ensure achievement of the robustness for the desired 

behavior. 

To illustrate this methodology on determining the robustness in relation to 

previous chapters (4 and 6) where, on the basis of simulation results and 

calculation of the sensitivity and tolerance, the effect of individual 

coefficients given in the LDS on the robustness of its behavior in terms of 

the optimal waveform of the transfer response, we determine the value of 

such a defined robustness coefficient of the system with the transfer        
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The robustness parameter of the system is determined by using the 

following relation 
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 for ν=1,  2,  3, .. 

From the results of the simulation (15) and relations defined within, it is 

possible to determine required information, create a table and determine 

robustness parameters of the system for allowable change in the transfer 

response (characteristics). 
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Coefficient av 8vd 0vh A av/av maxRv(i;) Q 

 ao 6 3,14 12 1,50 0,16 9,2 
ai 11 7,77 21 1,21 0,06 21,2 
B2 6 5,4 11,45 1,00 0,07 14,3 
a3 1 0,58 2,00 1,42 0,24 5,9 

 

Values of the tolerance coefficients given in the third and fourth column of 

the table above are specified for the given system, as the ratio of their 

tolerance to the original value and the value of Rv(τ) represents the 

maximum value of the absolute sensitivity for its corresponding coefficient. 

Because the system’s robustness parameter, with respect to our definition, 

depends on the sensitivity of its characteristics properties on the change in 

value of the corresponding parameter and also on the allowable tolerance 

value of the coefficient, in order to maintain the allowable change in 

characteristic properties (behavior), then as it is defined from the robustness 

parameter; the “robustness” of the system depends on the robustness of 

parameters of its individual, dominant elements (only dominant 

parameters).  In terms of such a definition for the robustness of a system, it 

is only obvious that its robustness is determined by the robustness of critical 

elements, for which the coefficient value is minimum. Determining In such 

a way the parameter from the group (family) of related systems shows that 

a greater value expresses a greater robustness of a particular system. In 

the case of structure analysis, we are talking about coefficient a3 which 

obtains the minimum value which we assume to be the robustness value of 

its parameter. 
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Analogically, as in an open system, we can also understand robustness of a 

closed control circuit, where we relate the robustness of the behavior to the 

waveform of the controller when changes in parameters of the control 

system occur. 

7.2 Control sensitivity 

 
We will understand control sensitivity as the change in response of the 

control circuit as a result of the control signal for elementary changes in 

transfer of the controlled system with allowable change in parameters 

(perturbation of the system) described by its transfer function S(p). we can 

then express the absolute sensitivity. 

Transfer of the classic closed control circuit on the control is 

)()(1
)()()(
pRpS

pRpSpG
+

=  

Absolute sensitivity Cs(p) will be 
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Absolute sensitivity within the frequency band ω 
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Relative sensitivity of the control circuit transfer on the change in system 

transfer will be 
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from which results; for greater values of R(p) (also for amplified 

controller) the sensitivity of the controller is lower and thus the control 

circuit is more robust. It applies, of course, only in the limits of stability. 

 

7.3 Control Robustness 

 
Assuming now that the transfer function of the control circuit (control 

transfer) has the form: 

)().(1
)().()(
pRpS

pRpSpG
+

=  

Where G(p) is the transfer of the controlled system and R(p) is the control 

transfer. 

If the control circuit, with the control system G(p,α) and controller R(p,β), 

have such properties that with small changes in the system’s parameters 

Δα as well as small changes in parameters of the controller R(p,β) 

correspond to the allowable (negligible) change of the transfer function of 

the control G(p), then such a circuit can be said to be robust (in terms of 

control). In other words it is to say that such a control will be known as 

robust control.  

For the change in transfer function G(p), which is a function of change in 

parameters of the control system and controller, we can write: 
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In which the transfer G(p) 
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Substituting into [7.3]we get: 
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                       [7.5] 

We require that ΔG(p) for small changes in ΔR(p) and ΔS(p) are small 

(ideally zero). Then from relation [7.5] we obtain: 

 { } 0)()()()( →∆+∆ pSpRpRpS                                      [7.6] 

From which ( ) ( ) ( ) ( )pSpRpRpS ∆−⇒∆  

A more appropriate relation is to modify [7.6] into the form: 
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And for the frequency transfer: 
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Because R(jω) and S(jω) are complex expressions, we can write: 
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From relation [7.8] we can deduce: 

If the control circuit is to become a robust control system (small 

dependence of the control process on changes in element parameters 

which are members of the control circuit) then, theoretically and at the 

same time they should also somewhat satisfy the following conditions:  

• Relative change of the controllers frequency transfer module must 

be proportionally or equally as large as (but contrary to) the 

relative change of the transfer module of the controlled system 

within the whole range of its transfer band. 

• Change in phase of the controller’s frequency transfer must be 

approximately opposite as the change in phase of the system’s 

frequency transfer 

As an interpretation of this assumption we presume the Nyquist stability 

criterion, which allows for a certain margin of stability δ: 

;1)()( πδ−=ωω jejRjS 10 <δ<   
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Lets say that S(jω) is the frequency transfer of the system and R(jω) is the 

frequency transfer of the controller. 

We require that; for changes in values of the system’s transfer and 

controller, the stability reserve remains relatively unchanged: 

[ ][ ] [ ] πωψ∆+ωψ+ωϕ∆+ωϕ δ−=ω∆+ωω∆+ω jj eeRRSS 1)()()()( )()()()(   

For the transfer module of open control circuit with the transition into the 

negative, real axis, the following should apply: 

[ ] [ ] )()()()()()( ωω≅ω∆+ω⋅ω∆+ω SRRRSS = δ−1                    [7.9] 

After multiplication and neglecting small 2nd order variables within the 

product (ΔR.ΔG) we then get  
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A change in phase in the relation will results in: 

π+ωψ+ωϕ=ωψ∆+ωψ+ωϕ∆+ωϕ )()()()()()(  

where: 

)()( ωϕ∆−π=ωψ∆  
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From the aforementioned, it follows that the stability reserve is retained if 

the relative change in the module of the system’s frequency transfer will 

meet an equally sized (but oppositely oriented) relative change in the 

control module and the phase change of the controller’s transfer will be 

in reverse to the change in phase of the system’s transfer. 

 It is obvious (without detailed analysis) that the general fulfillment of the 

mentioned conditions is practically impossible through a simple control 

circuit. However it is achievable by using an adaptive system (at least for 

the controller), which corrects its parameters in accordance to the 

formulated conditions depending on the change in system parameters (or 

transfer). In this case it is necessary to add more members to the control 

circuit which would determine generated changes in parameters of the 

system and adapt the parameters of the controller depending on the change 

in parameters of the controlled system (then we are talking about an 

adaptive system). Without the use of adaptation it is possible to obtain, to 

an extent, the robustness of the control circuit, mainly in the appropriate 

choice of control parameters. Solving this problem, that is, to design such 

a control structure which for any given control system, ensures the robust 

control (for example: robust stability or quality of the process) belongs to 

the problem of robust control (1, 4, 6, 9, 19). Systems which are resistant 

to changes in parameters (caused either by the change in surrounding 

effects, aging and degradation, as well as other undesirable effects) must be 

designed especially where these changes can result in extensive material 

losses or life endangering (nuclear plants, chemical complexes, navigation 

and control systems in aviation and transportation, space programs, etc…). 
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When designing robust control systems, with the assumption that the 

robustness of the controlled object cannot be increased, as a result of 

technical reasons, then the solution of the problem depends only on the 

robustness of the control system.  

7.4 Perturbation of Linear Dynamic Systems 

 
A process operating within the control circuit with permissible changes in 

action and fault variables as well as its input depends on the dynamic 

properties of the control system and properties of the controller. If the 

properties of the system change then the change in waveform of the control 

process and control deviations are inevitable. On the change caused by the 

perturbation (small change or deviation) value of parameters (the 

characteristic of the controlled system within certain limits) the controller 

should react in such a way, that we limit the undesirable effect of these 

changes on the required waveform. Then we can consider a controller to be 

robust when its sets (family) of possible controllers is capable of best 

satisfying the desired task within the defined (considered)  range of the 

control systems operational conditions. As a criterion of the control 

process, we frequently consider the stability and desired quality of the 

control process. For the family of perturbation systems resulting from the 

original system (for given constant, original parameter values) we consider 

all systems belonging to the bounded region of the expected change in 

parameters (characteristic of the original system). It is clear that the control 

of the perturbation system can be secured only if it is possible to create a 

controller, that is to say a control system, which is capable, for given or 
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expected region of change in the properties of the system, to implement a 

process which ensures that the conditions are met (without adaptation of 

parameters!).   

Although the problem of robust control has recently been widely 

elaborated, in terms of prior considerations focusing on the area of 

sensitivity analysis of the system, we introduce only some remarks, 

procedures and solutions where information from previous sections can be 

used.  

Change (perturbation) in properties of the control system can be understood 

as the uncertainty of immediate parameter values of its structure, or the 

uncertainty of the response (behavior, characteristic). In this respect, we are 

then referring to the structured and unstructured uncertainty. 

Interval of uncertainty 

In the analysis of structured uncertainty, we usually base off of the system’s 

description in the form of transfer functions, whose coefficients can change 

continuously within definite interval values (we assume upper and lower 

limits) – interval of uncertainty. Such a perturbation system is then 

described by an infinite number of transfer functions within the finite 

region. To verify the stability of such a system in respect to classical 

criteria, we must perform an analysis of an infinite number of transfer 

functions, which is of course, impossible. Solving problems of stability for a 

finite number of operations can be performed using Kharitonov’s theorem 

(4), which states that: for the assessment of stability of perturbed system, it 

is enough to have four Kharitonov polynoms (complex) prepared from 
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coefficients of the polynomial in the denominator of the perturbed system 

which satisfies the algebraic conditions for stability. 

Let us assume the characteristic transfer polynomial of the perturbed 

system in the form 
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Kharitonov’s polynomial for the 6th order system will have the form 
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If we denote 
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then the coordinates of points K1(jωi),..,K4(jωi) for frequencies ωi create 

rectangles in the gauss complex plane (GCP) and for the changing 

frequency of ω, sets of rectangles (area) are created, shown in fig 7.1 
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[www.polyx.com/_robust], where all possible values (end points) of the 

polynomials in the interval of uncertainty of coefficient ai lay.    

 

Fig. 7.1 Region of values of polynomials with an interval of uncertainty 
within the GCP 

 

Polynomials of type (10) are stabile if their roots lay in the left quadrant 

of the gauss complex plane. In this case all polynomial coefficients ai are 

non zero and have the same sign. The phase of the polynomials is 

continuous and the frequency ω is a monotonously growing function. 

If all four Kharitonov polynomials are stable within a specific range of 

the systems function, then the system is robust and stable within this 

range (for example: within the frequency transfer band). 
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The problem of designing a controller which accommodates a robust control 

process, within a desired band of its dynamics, requires the design of such a 

controller (if feasible) which will, for given (desired) perturbation 

coefficients of the system’s transfer, ensures a stable and quality course of 

the control process. In solving such problems we use knowledge from the 

areas of stability, quality and optimal control, as well as the properties of 

the algebraic polynomials. A more detailed solution of these problems are 

presented at, for example: www.polyx.com/robust. 

Multiplicative uncertainty 

Intervals of uncertainty, displayed in the intervals of changing coefficients 

of the transfer, is not possible to describe if we do not have a model of the 

system’s behavior, i.e. in the form of the frequency characteristic. It is then 

advantageous to display the perturbation of the characteristic i.e. relative 

change in amplitude of the frequency characteristic within the frequency 

band of the system’s operation. 

We describe the frequency transfer of the perturbed system S(jω) depending 

on the frequency ω 

[ ])(1)()( 0 ωδ+ω=ω jjSjS                                                          [7.12] 

where G0(jω) is the frequency transfer of the original system and δ(jω) is its 

relative change 
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If, for example, we assume the relative change in amplitude δ(jω)=0.5 for 

30 )1(
5.2)(
+ω

=ω
j

jG  then the area bound by circles for individual values of 

frequency ω displayed within the GCP creates the pattern in fig. 7.2 

[Polyx] in which lay the frequency characteristics of the perturbed system. 

Fig. 7.2 Region of the frequency characteristic in the GCP 

In the analysis and synthesis of robust control, different types of 

descriptions for the unstructured uncertainty are used. Yet they always point 

to the solution of designing control circuits such, that for the widest band 

of parameter perturbation, to ensure the course of the control process 

within allowable tolerances. The design of such control requires knowledge 

from control theory, mainly in the field of stability, quality, optimization, 

filtering, algorithms, sensitivity and robustness of continuous and discrete 

control systems. The design of a robust control cannot be achieved without 

the intensive use of computers and appropriate software such as MATLAB, 

Mathcad SIMULINK etc… 
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7.5  Robust controller with a simple system model 

 

Based on the assumption that if, for the given control circuit, a change in 

parameters of the system occurs then its dynamic characteristics also change 

and this results in a change in its behavior (feedback). 

  

)p(X  )p(Y  
    S(p)       
     

   M(p) 

    

    R(p) 
     

)p(E  

)p(Q  

)p(W  

 
Fig. 7.3 Control circuit with the model of the system 

To improve the control we offer the solution where the controller has 

information about the change in transfer of the system against the nominal 

state. This idea brings about the proposal of a controller with a nominal 

model of the system. 

The structure of the control circuit will be composed from the control 

system S(p), the nominal model M(p)=S0(p) and controller R(p) (fig. 7.3)  

The structure of the control circuit is expressed by the model M(p)=S0(p) of 

the nominal transfer of the controlled system (part of the control circuit) at 

the original values of its parameters. 

With changes in parameters of the system the difference between the input 

of the perturbation system S(p) and model M(p) is subtracted from the 
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control signal W. the feedback signal Q for the control transfer will be zero 

if S(p)=S0(p). The controller then reacts to differences between the output of 

the perturbed system and its model. The following relations then apply: 
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The control transfer of the control circuit for the perturbed system S(p) will 

be 
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Transfer of the perturbed system with simple controller (without model) is 
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At nominal transfer of the system  S0(p) = M(p) the control transfer of the 

control circuit with a model will be 

 ==
)(
)()(0 pW

pYpG M )()(0 pRpS      

which represents the frequency transfer within the frequency domain 

 )(0 ωjG M { } ω== jppG M )(0 = )()(0 ωω jRjS                        [7.16] 
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We will now consider the uncertainty of the perturbed system with a 

multiplicative model according to [7.12] and in the form 

[ ]{ } ωδ+=ω jpppSjS ,)(1)()( 0  

where S0(p) is the transfer of the nominal system and δ(p) is the relative 

change in transfer of the perturbed system against the transfer of the 

nominal system. The task of the controller using this model is ensure, with 

sufficient quality, meeting the requirements for control, that is 

Y(jω)W(jω), within the required band of desired function. 

Frequency transfer of the controller within the control circuit for a system 

with multiplicative uncertainty, subbing [7.12] into [7.14] obtains 
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Let us analyze some important properties of the control circuit with a 

model. 

Sensitivity of transfer 

The absolute transfer sensitivity of the control circuit with a model on the 

change in transfer S(jω) of the perturbed system will be 

=
ω∂
ω∂

=ω
)(
)()(

jS
jGjC

M
M
S

[ ]
[ ]{ }2)()()(1

)()(1)(
ω−ωω+
ωω−ω
jMjSjR
jMjRjR           [7.18] 

In terms of expression [7.18] it turns out that when the condition 
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1)()()()( 0 =ωω=ωω jSjRjMjR                                            [7.18*] 

is met then the control sensitivity on the change in transfer of the system 

will be zero. 

However, this condition is difficult to meet because, for the feasible 

system, often times the controller is unfeasible (and vice versa). Although 

it is possible to request its compliance to a steady state, which leads to the 

requirement, that the sum of the amplified controller and model must equal 

1. From this we can determine the required gain of the controller. 

For the perturbed system S(p) we can express the transfer sensitivity of the 

control circuit on the transfer of the controller by relation 
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For the multiplicative perturbed model [7.12] the control sensitivity will 

be 
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From this relation, and for known situations (the original system, 

perturbation) we can assess the choice of the controller when respecting 

the conditions for stability. 

Control error 

The image of the real error e(t) (difference between the real and desired 

value of the control circuit with system model output) will be 
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for the system with multiplicative model, the control error will be 
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and the steady value of the control error 
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From relation [7.22] it follows that choosing such a controller where 

R(p).M(p) = 1, the value of the steady control error will then be zero. 

Stability 

 The control stability is the most important property of the control process 

and a necessary condition for its implementation. Because system’s with 

parametric uncertainty the dynamic properties of the system in a certain 

interval change, it is necessary to study the conditions for control stability in 

the region of these changes. The general criterion for stability, whether it 

be algebraic of frequency (Ljapunov criteria) for control process are true 

for the instantaneous transfer of the perturbed system. But it is necessary 

to study the conditions to fulfill these criteria for the considered range of 
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perturbed parameters, or in other words; characteristic of the system for a 

concrete control process. 

For known values in the interval of change of the coefficients transfer 

function (that is, the differential equation) of the perturbed system, the 

analysis of the algebraic criteria was derived by Kharitonov and is known 

as the algebraic condition for stability (4). From this we can verify the 

stability of the system as well as the control process by the stability of the 

four Kharitonov polynomials [7.11]. 

The analysis of the stability for a system with multiplicative uncertainty 

according to [7.12] will be described in more detail 

From relation [7.17] and according to the Nyquist frequency criteria, for the 

transition of the frequency characteristic of an open control circuit with 

perturbed system with negative real axis in the GCP, the following 

condition must be met 

[ ].)(1).()( 0 ωδ+ωω jjSjR < 1                                             [7.23] 

If we indicate S0(jω).R(jω)=F0(jω) which is the transfer of the open control 

loop for the original system, then the control process will be stable with the 

transition of the frequency characteristic F0(jω) in the axis of the GCP 

(Gauss Complex Plane) then (fig. 7.4) will apply 

[ ]{ }ωδ+ω jjF (1(Re 0 > -1                                             [7.24] 

for all ω from the transmission band of the control system (see fig. 7.4) 
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Fig. 7.4 Control stability for the perturbed system 

Illustration: 

For the stable system of the third order with transfer function 

6116
62)( 23 +++

+
=
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and multiplicative uncertainty according to [7.12] with a value of 

|δ(jω)|=0.5 are shown in fig. 7.5 illustrating its frequency characteristic 

while fig. 7.6 illustrates the waveform of its bode characteristic. Fig. 7.7 

illustrated the waveform of the controller on the required value W=1 of the 

same perturbed system using a classic statically proportional controller with 

gain K=1 and fig. 7.8 shows the waveform of the controller with an internal 

model M.  
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Fig. 7.5 Transfer characteristic of the perturbed system 

From fig. 7.5 is can be seen that the perturbation of the system manifests 

itself at 60% of the steady value of its transfer characteristic. For the control 

of a classical controller, the relative change of the control error’s steady 

value against the nominal shows at about 20%. 
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Fig. 7.6 Bode characteristic of the perturbed system 
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Fig. 7.7a Control characteristics for classical control   
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Fig. 7.7b Control characteristic for control with a model 

In terms of the waveform of the control characteristic shown on fig. 7.7a 

(classic controller) and on fig. 7.7b (controller with internal model), the 

significant change in control quality can be seen, mainly in the decrease 

in relative change of the continuous control error. 

7.6  Control circuit with model and additional controller 

Another type of control circuit which decreases the sensitivity of changes in 

the perturbed system against the classical controller is the control circuit 

with a model and additional controller, whose structure can be seen in fig. 



  120

7.8. The additional controller H can change the properties of the control 

system S that even with the perturbation of the system , the transfer of the 

bounded region (dashed line) of the control circuit follows as closely as 

possible to the desired original transfer of the system S0. 

 

Fig. 7.8 Control circuit with an additional controller 

For the control transfer we can derive a relation from the analysis of the 

circuit structure 

 
)]()()()()()[(1

)()(1)()(

)(

)(
)(

pHpRpMpHpRpS

pMpHpRpS

pW

pY
pGw 


    7.25 

In terms of the structure of the transfer function we can assess and solve a 

range of problems with the selection of individual circuit elements such, 
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that for the desired waveform of the perturbation parameters (characteristic) 

system reaches the best possible waveform of the control process. 

Sensitivity of the circuit: 

In terms of our reason for monitoring the properties of the circuit it is 

important to determine (derive relations)  for the absolute sensitivity of the 

circuit on the change in transfer of the control system S(p)  

 2)]()()()()()[(1

)]()(1)[(
)(

pRpHpMpRpHpS

pHpMpR
pCs 


       7.26 

The relation can be used in the design of the control circuit and in choosing 

a controller R and H in the expectation to achieve the smallest amount of 

sensitivity (greatest robustness) for the allowable change in transfer of the 

system and maintaining the quality control process. 

Requirements for controller H: 

 If the control circuit (fig. 7.8) is to insure robust control, then it should also 

partially compensate for change in the transfer of the system S, which 

brings us to the requirement that the transfer Z(p) on Y(p) be as close as 

possible to the model of the original system M(p)=S0(p), so 

 
)(

)()(1

)()(1)(
)( 00, pSS

pHpS

pMpHpS
pG zy 




                                7.27 
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After substituting for S(p) from 7.12 for the selection of the controller’s 

frequency transfer H(jω) results in the requirement 

   )()()(1

)(
)(

0 



jMjSj

j
jH                               7.28 

Equation 7.28 results in a paradoxical (but real) requirement, to ensure 

condition 7.27, small differences between the nominal transfer of the 

system S0(jω) and the model M(jω) requires a larger gain from the control 

H(jω) such that the condition for process stability is conserved. Larger gain 

values of the controller H (permissible in terms of stability) also causes a 

decrease in steady value of the control error. 

Process Stability: 

 From the transfer of the control circuit 7.25 and considering the Nyquist 

criteria for stability results in the condition that  

              1 jHjRjMjHjRjSRe           7.29 

throughout the complete activity within the frequency band ω. We can then 

use relation 7.29 as a criterium for stability for the control process with a 

robust controller illustrated in the schematic (fig. 7.8). 

Illustration: 

The waveform of the control characteristic of a perturbed system with 

transfer according to 7.24-P, the model M=S0(p), controller gain 
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R(p)=K=3, H=5 and perturbation δ(p)=0.4, for a controller with structure 

according to fig. 7.8 is illustrated on fig 7.9 with the use of MATLAB. 

From the waveform of the control characteristic, it is possible to interpret 

that the relative change of controlled variables for the significant relative 

change (perturbation) of the amplified system (80%), is only 10%. 
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Fig. 7.9 Control characteristic of the control circuit in fig. 7.8 
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7.7 Modification of the internal model of the control system 

 

The purpose of the controller with internal model is to monitor the change 

in transfer of the controlled system against the nominal model, and from its 

instantaneous values, create an additional control signal. We will present the 

controller with internal model in fig. 7.10. 

 

Fig. 7.10 Controller with internal model 

 

Meaning of the symbols in the scheme above: 

R – controller W – requested output value 
S – controlled object (system) e – control error 
M – model of the nominal system  X – control signal 
F – fault transfer d – fault signal 
Z - feedback Y – output variable 
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A robust controller is created by a controller R, bridged by the positive 

feedback by means of the nominal system model M. Input of the controller 

is created by the difference between the input of the system’s nominal 

model and the difference between the desired and actual value of the 

control system’s output. 

For the input of the image Y(p) depending on the requested value W(p) and 

error variable D(p) we can derive the relation 

( ) ( ) ( )
( ) ( ) ( )[ ] ( ) ( ) ( )

( ) ( ) ( )[ ] ( )pD
pMpSpR

pRpMpW
pMpSpR

pRpSpY .
1

1.
1 −+

−
−+

=    [7.30] 

If we neglect the effects of the error variable (input noise), then for the 

determination of important properties of the controller for the perturbed 

system, it is enough to analyze just the transfer G(p) of the desired value 

W(p) of input (controlled) variables Y(p) 

( ) ( ) ( )
( ) ( ) ( )[ ]pMpSpR

pRpSpG
−+

=
1

                                             [7.31] 

Comparing the transfers of 7.31 and 7.14 it can be seen that the controller 

on fig. 7.3 and 7.10 are, in terms of control, identical even though their 

schematics represent different structures. Both schematics represent a 

robust internal model control. 

If we consider the model of the perturbed system in the form of [7.12], and 

the transfer of this model to be equal to the nominal transfer of the system 

(S0=M) then the frequency transfer of the internal model control circuit M 

will be 
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( ) ( ) ( ) ( )[ ]
( ) ( ) ( )ω∂ωω+

ω∂+ωω
=ω

jjSjR
jjRjSjG

0

0

1
1                                   [7.32] 

Process stability 

For the stable course of the control process with the transfer function (7.31) 

the following conditions must be met 

)()()(1 ωδωω+ jjMjR > 0                                 [7.33a] 

That is ( ) ( ) ( )[ ] 10 −〉ωδωω jjSjRRe                                                   [7.33b] 

Considering the Nyquist criteria for stability, with increasing ω in the 

transmission of the frequency characteristics N(jω)=R(jω)S0(jω)δ(jω) in 

the negative real axis of the gauss plane, then the point (-1+j0) must lay 

on the left side of fig. [7.11]. 
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Fig. 7.11 Nyquist characteristic of the stable control circuit 

According to relation [7.33], for known transfer of the original system 

S0(jω) and model of perturbation δ(jω) can control the transfer of the 

controller R(jω). 

Control error 

The image of the actual values of the control error in the control of 

perturbed systems, controllers given by fig. 7.10 are described by the 

difference between the output image and desired values of the control 

variables, E(p) = Z(p) - W(p). After substitution into [7.29] and neglecting 

external noise, we assuming the perturbation with respect to (7.12] and 

selecting the model M(p)=S0(p) we get 
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   ( ) ( ) ( )
( ) ( ) ( ) ( )pW
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1                                              [7.34] 

The steady value of the control error with respect to [7.34] will be 

 ( ) ( ) ( )
( ) ( ) ( ) ( ) utt

pW
ppRpS

pRpSlimtlim ε=
δ+
−

=ε
∞→∞→

0

0

1
1                                   [7.35] 

From the conditions for zero control error and from the transfer [7.34]  

1)()( 0 →ωω jSjR                                                                     [7.36] 

Relation [7.36] can be useful for choosing the controller which must 

control the stable process with respect to [7.33]. 

We will illustrate the function of this modification to the structure of the 

internal model controller on a specific case of the control process. 

Illustration of the control process: 

The waveform of the classical control circuit response (control 

characteristic) for the system with original transfer 

( )
6116

6
230 +++
+

=
ppp

ppS  

amplified by controller R=1, and gain of the system’s perturbation

4.0±=δ , is illustrated in fig. 7.1   



 129 

Time (sec.)

A
m

pl
itu

de

Step Response

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
 

 

A
m

pl
itu

de
 

 

Time (sec.)

A
m

pl
itu

de

Step Response

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4
 

 

A
m

pl
itu

de
 

 
Fig. 7.12 Control process in the limits of perturbation for the classical 

controller 
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Fig. 7.13 Control characteristics of the IMC controller 

 

In fig. 7.13 is the waveform of the control of the same IMC controller for 

optimally selected controller parameters and model R(p) = 1, M(p) = 1. 

(steady state control error is zero!) 

 From the analysis performed in section 7.5 and 7.6, as well as the 

comparison of schematics on fig. 7.3 and 7.10 shows that the structure of 

the control circuit in terms of its function (transfer properties) are 

equivalent. 

 

 



 131 

7.8 Problems of Robust control 

 
The time course of physical or technological processes within real dynamic 

systems and environments is influenced by a range of legitimate and 

random effects occurring within the elements themselves. That is to say, 

within the mutual connections between system elements as well as effects in 

the close and distant environment, as well as the legitimate change in 

element properties as a result of aging, wear, overloading etc… In doing so 

we usually require that the course of events and processes when these 

effects are in action remain within the requested limits (the product of the 

technological process shows properties within the required tolerance 

parameters. The desired course of the process is ensured mainly in 

automatic control in simpler cases and automatic control of feedback 

control systems (controllers). If we succeed in directing the course of the 

control system process, even with small (not very large) changes in the 

system structure’s parameters or environment, we are referring to the robust 

control of the system parameters or process. It is evident that achieving 

robust control depends primarily on the robustness of the control system 

itself as well as the control process. Only after this does it depend on the 

ability of the robust controller (control system). It is also evident that the 

concept, or definition of robustness is determined by the behavioral 

properties of the control system, characterizing its functionality, process 

quality or usefulness. In the control of the dynamic system’s process, we 

typically try to achieve, or maintain, the required (allowable) course of the 

dynamic characteristics, which show the “quality” of the controlled process. 

Robustness of the control systems behavior is one of the basic 
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requirements for the design of systems with automatic control. The design 

of an automatically controlled system is based upon knowledge (analysis) 

of the structure, static and dynamic properties (characteristics and their 

tolerance) of the controlled system, continues with the analysis of the 

internal and external environment in terms of their effects on the change in 

parameters of the system, studies the tolerance region of the control 

process of the control characteristic, for which the process meets the 

specified requirements on its course. The next phase in the design is to 

propose a suitable structure for the controller and it parameters such, that 

it is capable of ensuring the course of the process even with perturbation of 

the parameters of the system, as well as perturbation of the controller’s 

parameters themselves. The final phase of the design should be a reliable 

simulation of the process in the proposed system (correction of the 

structure and parameters of the controller), 

Even in the aforementioned procedures we can criticize a range of problems 

in the design of robust control. Situations may arise that for a given system 

it is not possible, with known structure of the controller, to achieve the 

requirements for the course of the dynamic process. In this case it is 

necessary to carry out either a revision of the given requirements, or (more 

frequently) proceed with the reconstruction of the controlled system. 

Within the design itself of robust control there are many influences whose 

effects are not describable by definite values, in other words the value of the 

process variables can change within certain (allowable) limits. In the control 

of such processes it is preferable to use fuzzy controllers, which are 
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oftentimes much easier to implement as opposed to a controller with 

concrete characteristics. 

The development of theory and application in the areas of robust control 

represents a new philosophy for control, which is an inevitable continuation 

of previous approaches. We can remember situations where, for the 

implementation of proper machine operation, waveform of the process and 

even the correct computer operation (relay and electronic tube structure) use 

a strict set of “operational conditions” which must be met. Robustness of 

the system within a limited area of parameter changes of the internal and 

external environment must guarantee relatively independent behavior of 

the system from these changes. 
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8. CONCLUSIONS  

 
The analysis of a dynamic system’s properties, in its own definitions of 

“sensitivity”, “tolerance” and “robustness” evokes the comparison with 

identical concepts used to describe the properties of organisms (generally), 

as well as the properties which characterize the behavior of a human being. 

It is interesting to follow these interdependencies of properties defined for 

mechanisms and organisms alike (understood in cybernetics). If we abstract 

from specifications that include these concepts in organisms and humans 

(i.e. change in structure and properties of organisms over their life, fertility, 

metabolism, homeostasis, natural intelligence and a range of properties 

effecting a living organism, and are dependent on it), then we can find 

common general rules applicable to mechanisms and organisms which must 

be known, and with expected (desired) behavior (its guidance and control) 

to respect and benefit from.  

Amongst these properties we can include, i.e. the principle of equilibrium 

state, which the mechanism or organism is trying to achieve for the given 

environment and conditions for its activity. In this, the laws of equilibrium 

and conservation are achieved (by the simple laws of mechanics, 

conservation laws throughout regions in the matter of the elementary 

structure, all the way to the conservation laws in the universe).Disturbing 

the equilibrium state, whether statically but mainly dynamically, leads to the 

sudden change in behavior of the system, in nonlinear systems to the 

unclear change in state, bifurcation (without process control) all the way to 

the chaotic state. Awareness of these facts in terms of the properties and 

possible behavior of living or social systems and complexes, considering 
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the negative effects of the internal and external structure (environmental and 

existence), the environment requires not only to accept these laws but also 

to respect and use them for the control of social systems. 

In this respect, the study of mutual dependencies of mechanical and 

organic properties characterized by concepts of sensitivity, tolerance and 

robustness can be of benefit in the areas of controlling living and social 

systems. 

Sensitivity and tolerance, in terms of behavior of living systems, is given 

by its genetic structure and development within the existing environment 

and can be affected by the healthy development of individuals and creation 

of a suitable existential condition. The area of control has generally valid 

principles, especially in social systems. However, in many cases they are 

not respected or even deliberately ignored (i.e. environmental disasters, 

inhumane living conditions, etc…). In these cases, the behavior of the 

control structure can be compared to the behavior of an insensitive and 

intolerant robot and while acting “robustly” it is not within the interests 

of preservation (increase in quality of existing living conditions for the 

society as a whole).   

One of the basic control principles in the area of control processes within 

systems and complexes, is to consider principle of necessary variety 

(Ashby W. R.) which says: to cope with the control of the system (limiting 

its variety) the available variety of control actions must be equal or greater 

than the variety of possible undesirable states of the controlled system. 

Ignoring this generally applicable principle, either in the creation of the 
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control structure or in its operation, will always lead to faults within the 

control system. In order for the controlled system to function or “viable” 

even for the time bound imperfect control, it must also hold an acceptable 

dose of tolerance and robustness. 

Sensitivity analysis, which should result in the determination of the most 

sensitive system elements, allows for the more advanced knowledge on the 

behavior when exposed to the external, but mainly internal, environment. 

When designing the system, such an analysis will uncover the weak and 

critical areas whose negative effects on the behavior of the system is 

possible to reconstruct (to weaken system reorganization or eliminate 

altogether, this way we can improve its robustness). Such an analysis should 

be applied more intensively also in the control process of organisms (area of 

medicine) and also in the control of social systems.  

Tolerance of the non-living dynamic system depends on the ability of its 

elements (material and surroundings) to retain their parameters within a 

definite range of change of the external and internal environmental 

properties. As far as we consider the effects of the property changes in the 

external environment, these changes reflect on the change in behavior of the 

system (response). If this change in behavior, for non-negligible and 

bounded fluctuation of the external environments properties, is relatively 

small, then we are referring to the tolerance of the system with respect to its 

surroundings. If the change in the systems behavior for significant changes 

in parameter values of the system’s elements and constraints results in only 

a slight change in behavior, we are referring to a robust system. It is evident 

that these characteristics for non-living systems actually convene with 
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similar characteristics of the organism and also of the social system. Even if 

in living systems we use not only the physical meaning of these concepts 

and relations, but we must also consider the effects of the emotional, 

spiritual, intellectual and control properties and abilities (homeostasis, 

adaptation). Significant findings which say, that every system can have 

tolerant behavior within a bound range of negative effects, can also have 

general validity. 

In the study of general dynamic systems, it is necessary to examine the 

individual properties and their mutual dependencies, in respect to their 

compliance with the requirements for their determination and behavior 

within the internal environment and existential surroundings. It is therefore 

necessary to apply a systematic approach in a narrower or wider scale. 

While in a closed physical (non-living) system, the law of entropy growth 

applies and the system is directed to the “numb” equilibrium state, 

organisms also within social systems as a result of energetic and 

informational interactions with the surrounding environment, results in the 

existence of a definite degree of awareness and the resulting guidance 

(control) of its own behavior, the effect of this law are applied significantly 

less. In living and social systems, in the perspective of different goals for 

the control of one’s own life, result in the concepts of sensitivity, tolerance 

and robustness as well as other strange dimensions (i.e. individualism, 

desire for power etc…) for which the laws of statistical dynamics, as well as 

the laws of preservation and other laws, disagree and do not apply. In any 

case it is necessary to consider and respect the synergistic effect and the 

consequences of violating the laws of nature, not only in mechanisms and 
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organisms, but also in dynamic development (within the very existence of 

human society). 

When considering relations between the properties of mechanisms, 

problems amongst organisms and people also emerge, such as formation, 

realization, the use and “cooperation of robots” as “helpers” to substitute 

human actions where the properties of the dynamic systems, which this 

publication deals with, results in particular importance. The concepts of 

sensitivity, robustness and tolerance transfer to the area of neural networks 

in solving problems of artificial intelligence. Therefore, our contribution to 

processing these problems can be considered useful and even 

inspirational for a wide variety of readers and students. 
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