
Effective Decision Support for
Semantic Web Service Selection

Dissertation

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

vorgelegt dem Rat der Fakultät für Mathematik und Informatik

der Friedrich-Schiller-Universität Jena

von Diplom-Informatikerin Friederike Klan

geboren am 26.06.1978 in Jena

Gutachter

1. Prof. Dr. Birgitta König-Ries

Friedrich-Schiller-Universität Jena, D-07743 Jena

2. Prof. Dr. Sonja Buchegger

KTH Royal Institute of Technology Stockholm, SE-100 44 Stockholm

3. Prof. Dr. York Sure-Vetter

Universität Koblenz-Landau, D-56070 Koblenz

Tag der öffentlichen Verteidigung: 29. August 2012

Ehrenwörtliche Erklärung

Hiermit erkläre ich,

• dass mir die Promotionsordnung der Fakultät bekannt ist,

• dass ich die Dissertation selbst angefertigt habe, keine Textabschnitte oder Ergeb-
nisse eines Dritten oder eigenen Prüfungsarbeiten ohne Kennzeichnung übernom-
men und alle von mir benutzten Hilfsmittel, persönliche Mitteilungen und Quellen
in meiner Arbeit angegeben habe,

• dass ich die Hilfe eines Promotionsberaters nicht in Anspruch genommen habe und
dass Dritte weder unmittelbar noch mittelbar geldwerte Leistungen von mir für Ar-
beiten erhalten haben, die im Zusammenhang mit dem Inhalt der vorgelegten Dis-
sertation stehen,

• dass ich die Dissertation noch nicht als Prüfungsarbeit für eine staatliche oder andere
wissenschaftliche Prüfung eingereicht habe.

Bei der Auswahl und Auswertung des Materials sowie bei der Herstellung des Manuskripts
haben mich folgende Personen unterstützt:

• Prof. Dr. Birgitta König-Ries

Ich habe die gleiche, eine in wesentlichen Teilen ähnliche bzw. eine andere Abhandlung
bereits bei einer anderen Hochschule als Dissertation eingereicht: Ja / Nein.

Jena, den 12. Juni 2012

[Friederike Klan]

To Hans and Luise

Acknowledgments

This thesis would have never been initiated nor completed without the encouragement,
inspiration and support given by other people to whom I owe a debt of gratitude.

In the first place, this is Prof. Dr. Birgitta König-Ries, who supervised my work. I would
like to thank her for believing in me and my abilities, for creating the environment and for
providing the financial support that were required to accomplish this work. I would also
like to thank her for her patience and for allowing me to approach things in my own way
and time frame.

My thanks also go to my colleagues Aygul, Fedor, Mohamed, Torsten and Uli. They have
always been a great source of joy and motivation and provided me with advice and help, if
needed. I had a great time with all of you!

I’m also thankful to all the people that contributed to the advancement of this thesis. I
would like to particularly thank Markus Frömerth for his commitment in improving this
work, as well as Maciej, Ivonne, Ulrike and many others for giving critical comments and
valuable insights. Special thanks also go to Christian Wozar, who assisted me with the
implementation required for the simulative evaluation of part of my work, and to all those
who volunteered as a test person for my user studies. I really appreciate their willingness
to spent time assessing my work and for their enthusiasm.

My thanks also go to Prof. Dr. Sonja Buchegger and Prof. Dr. York Sure-Vetter, who
served as external reviewers for my dissertation. I would like to thank them for their effort
and for reviewing this work in time.

More than to everyone else, I’m in dept of gratitude to my parents and all my family,
who continuously supported and encouraged me wherever they could and who worked and
work hard to make all this possible. In particular, I would like to thank my mum, who
wholeheartedly backs up everything I do and who bought me time, where it was missing.
I’m also thankful to my sister Ines and to Andreas, who proofread this dissertation very
thoroughly and quickly and who improved it by giving valuable feedback. Very special
thanks go to my husband Daniel and to my children Josephine and Quentin. Thank you for
your support and encouragement, for your honesty and all you give to me. Thank you for
being there and making my life brighter.

I dedicate this work to my dad Dr. Hans Lauth and to my grandma Dr. Luise Lauth who
I have always admired. The fact, that they cannot see this all happen fills me with deep
sadness.

vii

Deutsche Zusammenfassung

In den frühen 1990er Jahren veröffentlichte Tim Berners-Lee seine Vision des Semantis-
chen Webs. Diese beinhaltet, dass im Internet verfügbare Informationen mit einer wohl-
definierten und maschinenverständlichen Beschreibung ihrer Bedeutung versehen werden,
um auf diese Weise die Kommunikation und Kooperation zwischen Mensch und Com-
puter zu ermöglichen. Die Idee des Semantischen Webs beschränkt dabei nicht nur auf
Informationen, sondern lässt sich auch auf über das Internet bereitgestellte Funktionalität
in Form von Webdiensten übertragen. Letztere stellen die bekannteste und am weitesten
verbreitete Realisierung einer sogenannten Dienstorientierten Architektur (engl. Service
Oriented Architecture (SOA)) dar, welche flexible und adaptive verteilte Anwendungen
basierend auf lose gekoppelten, gekapselten, mit einer wohl-definierten Schnittstelle verse-
henen und über das Internet zugänglichen Diensten realisiert. Webdienste, welche mit
einer maschinenverständlichen, semantischen Beschreibung der durch sie bereitgestellten
Funktionalität versehen sind, werden als Semantische Webdienste (engl. Semantic Web
Services (SWSs)) bezeichnet. Basierend auf einer semantischen Beschreibung der Dien-
stanforderungen eines Dienstsuchenden können geeignete Semantische Webdienste daher
automatisch und effektiv gefunden werden, indem die gegebene Dienstanfrage mit den
verfügbaren semantischen Dienstangebotsbeschreibungen verglichen wird. Passende Di-
enste können dann automatisch konfiguriert, kombiniert und schließlich über das Internet
genutzt werden.

Während Webdienste als Grundbaustein agiler Geschäftsprozesse in Unternehmen weit
verbreitet sind, beschränkten sich die Aktivitäten um Semantische Webdienste lange Zeit
ausschließlich auf Forschungsprojekte. In letzter Zeit ist jedoch zu beobachten, dass füh-
rende IT-Unternehmen wie Amazon.com oder Google.com ihre in Form von Diensten
bereitgestellten Dienstleistungen über proprietäre Web-APIs oder klassische Webdienste
öffentlich zugänglich machen. Dies beinhaltet beispielsweise Dienste, die zur Buchung von
Flügen, zur Reservierung von Veranstaltungskarten oder zur Routenplanung für eine Reise
benötigt werden. Führende Wissenschaftler und Fachleute erwarten, dass sich dieser Trend
fortsetzt, sodass die Zahl der öffentlich verfügbaren Webdienste in den nächsten Jahren
exponentiell steigen wird. Sie sagen eine Transformation des gegenwärtigen „Internets
der Informationen“ hin zu einem „Internet der Dienste“, einer globalen, nutzerzentrierten
SOA basierend auf einfach zugreifbaren Webdiensten, voraus. Semantischen Technolo-
gien kommt in diesem Zusammenhang eine bedeutende Rolle zu, da sie das automatisierte
Auffinden und Kombinieren sowie die automatische Vermittlung zwischen Diensten er-
möglichen.

In der vorliegenden Arbeit argumentieren wir, dass das entstehende „Internet der Dien-
ste“ einen neuen Weg eröffnet benötigte Funktionalität in Form von Webdiensten zu find-
en und zu nutzen. Dieser bietet gegenüber den gegenwärtig vorherrschenden Such- und
Nutzungsschemata für Endanwender, d.h. Dienstnutzer, einige entscheidende Vorteile.

• Durch die Verfügbarkeit von semantischen Dienstbeschreibungs- und Dienstvergle-
ichstechniken verspricht Semantic-Webservice-Technologie das Problem der inef-
fektiven Dienstsuche durch stichwortbasierte Suchmaschinen zu lösen.

ix

Deutsche Zusammenfassung

• Darüber hinaus stellen semantische Beschreibungen verfügbarer Dienste und deren
Eigenschaften die Informationen zur Verfügung, welche benötigt werden, um Dien-
stnutzern umfassende Entscheidungsunterstützung bei der Auswahl eines geeigneten
Dienstes aus der sehr großen Menge potentiell passender und über das Internet ver-
fügbarer Dienste zu bieten.

• Die automatische oder halbautomatische Konfiguration und Kombination von Dien-
sten, sowie deren automatischer Aufruf bei Bedarf ermöglichen eine effizientere, be-
quemere und damit benutzerfreundlichere Art der Nutzung von Funktionalität über
das Internet.

Gegenwärtig stehen diesen Vorteilen jedoch eine Reihe von Unzulänglichkeiten existieren-
der Ansätze aus dem Bereich der Semantischen Webdienste entgegen, welche die Real-
isierung der vorgestellten Vision bislang verhindern.

• Obwohl Semantic-Webservice-Technologie geeignete Mittel zur semantischen Be-
schreibung von angebotener und gewünschter Dienstfunktionalität zur Verfügung
stellt, erfordert diese, dass Benutzer ihre Dienstanforderungen in einer formalen,
Logik-basierten Sprache formulieren, welche für Endanwender nicht geeignet ist.

• Darüber hinaus berücksichtigen bestehende Ansätze aus dem Bereich der Semantis-
chen Webdienste nicht, dass Benutzer zum Zeitpunkt des Aufkommens eines Dienst-
wunsches typischerweise keine genaue Vorstellungen davon haben, welche Funk-
tionalität von ihnen benötigt wird. Genaue Dienstanforderungen werden vielmehr
sukzessive im Zuge des Kennenlernens verfügbarer Dienste und deren Eigenschaften
konstruiert. Dies macht Verfahren zur inkrementellen Anforderungserhebung sowie
zum Dienstvergleich basierend auf unvollständigen und/oder ungenauen Dienstan-
forderungen als Teil einer umfassenden Entscheidungsunterstützung zu einer unum-
gänglichen Voraussetzung für benutzervermittelte Dienstauswahl.

• Da angesichts der Vielzahl der über das Internet verfügbaren Angebote sowie der
breit gefächerten Anbietergemeinde Webdienste nicht notwendig von bekannten und
vertrauenswürdigen Anbietern offeriert werden, muss davon ausgegangen werden,
dass veröffentlichte Dienstangebotsbeschreibungen die von einem Dienst bereitge-
stellten Leistungen nicht immer korrekt beschreiben. Daher sind Dienstauswahlent-
scheidungen auf Basis der im Angebot offerierten Diensteigenschaften mit einem
gewissen Risiko verknüpft. Um dennoch fundierte Auswahlentscheidungen zu er-
möglichen, müssen Dienstnutzer über Art und Umfang dieses Risikos in Kenntnis
gesetzt werden.

Ziel der vorliegenden Arbeit ist es die Realisierbarkeit der Vision des „Internets der Dien-
ste“ auf Basis von Semantischen Webdiensten zu demonstrieren, indem ein Ansatz vorge-
stellt wird, welcher die identifizierten Unzulänglichkeiten bestehender Ansätze, vor allem
hinsichtlich ihrer Eignung für den Gebrauch durch Endanwender, behebt. Im Detail, schla-
gen wir einen Ansatz zur Auswahl von Semantischen Webdiensten vor, welcher Di-

enstkonsumenten, d.h. Endanwendern, effektive Entscheidungsunterstützung bei der

x

Deutsche Zusammenfassung

Auswahl von Semantischen Webdiensten bietet. Der zu entwickelnde Ansatz soll An-

wender insbesondere in die Lage versetzen sachkundige, ausgewogene und konsis-

tente Dienstauswahlentscheidungen auf effiziente Weise zu treffen. Diese Art der Un-

terstützung soll trotz der aus ungenauem und unvollständigen Wissen über die tat-

sächlichen Dienstanforderungen eines Dienstkonsumenten und über die tatsächlichen

Leistungen angebotener Dienste resultierenden Unsicherheit über die Eignung einzel-

ner Dienstangebote erbracht werden. Der zu entwickelnde Ansatz hat die durch den
Endanwender vermittelte Auswahl von Semantischen Webdiensten zum Ziel. Mögliche
Anwendungsfälle finden sich im Bereich des E-Commerce, beschränken sich aber nicht
auf diesen. Der Schwerpunkt der Arbeit liegt auf der Nutzbarmachung von Semantic-
Webservice-Technologien für den Endanwender. Die Entwicklung effektiver und effizien-
ter Techniken für die Internet-weite Suche von Semantischen Webdiensten ist orthogonal
zu dieser Fragestellung und übersteigt den Rahmen der vorliegenden Arbeit.

Einen wesentlichen Beitrag der vorliegenden Arbeit bildet ein von Example-Critiquing-
Empfehlungssystemen inspirierter Ansatz zur inkrementellen und interaktiven Erfassung
von Dienstanforderungen sowie zur Auswahl von Diensten. Dieser wechselt zwischen
Phasen in denen dem Benutzer potentiell geeignete Dienstangebote präsentiert werden
und Phasen in denen der Anwender Dienstanforderungen informell, auf Basis der präsen-
tierten Dienstangebote, oder vermittelt durch eine modifizierbare graphische Repräsenta-
tion der bereits erfassten Dienstanforderungen spezifizieren kann. Während dieses Prozess-
es entwickelt der Benutzer schrittweise seine Dienstanforderungen und Präferenzen und
trifft schließlich eine Auswahlentscheidung. Als integralen Bestandteil dieses Systems
beschreiben wir ein Modell, welches die Dienstanforderungen und Präferenzen eines Dien-
stkonsumenten sowie die aus fehlendem oder fehlerhaftem Wissen resultierende Unsicher-
heit über diese genau beschreiben kann. Dieses wird benötigt, um die Benutzer effektiv bei
der Durchführung ihrer Aufgaben unterstützen und anleiten zu können. Darüber hinaus er-
läutern wir ausführlich wie das Anforderungsmodell eines Benutzers basierend auf dessen
Interaktionen mit unserem System kontinuierlich aktualisiert wird, um hinzukommendes
Wissen über die Dienstanforderungen und Präferenzen des Benutzers genau abzubilden.
Wir erklären ferner, wie geeignete Dienstangebote basierend auf dem mit Unsicherheit
behafteten Anforderungsmodell eines Dienstkonsumenten ermittelt werden können und
wie diese in geeigneter Weise präsentiert werden können. Weiterhin legen wir dar, wie es
dem Anwender ermöglicht wird wünschenswerte Diensteigenschaften basierend auf den
präsentierten Dienstangeboten anzugeben. Wie wir in unserer Arbeit zeigen werden, kann
ein um wenige Aspekte erweitertes, bereits existierendes Vergleichsverfahren für seman-
tische Dienstbeschreibungen verwendet werden, um potentiell geeignete Dienstangebote
basierend auf unvollständigem und/oder ungenauem, d.h. unsicherem, Wissen über die
Dienstanforderungen eines Nutzers zu ermitteln. Schließlich zeigen wir, wie der Prozess
der Anforderungserhebung und der Dienstauswahl gesteuert und fokussiert werden kann,
um Modellunsicherheit effektiv zu reduzieren und damit zur Effizienz des Dienstauswahl-
prozesses beizutragen.

Um Informationen über das tatsächlich zu erwartende Ergebnis der Ausführung eines ver-
fügbaren Webdienstes und damit über das mit dieser verbundenen Risikos bereitstellen

xi

Deutsche Zusammenfassung

zu können, schlagen wir ein flexibles Feedback-System vor, welches sich die von Di-
enstnutzern bereitgestellten Rückmeldungen über das Ergebnis einer Dienstausführung
zunutze macht. Der Schwerpunkt unserer Arbeit liegt hierbei auf der Frage, wie verfüg-
bares Nutzerfeedback effektiv genutzt werden kann, um das zu erwartende Resultat einer
Dienstausführung vorhersagen zu können. Im Detail stellen wir ein Feedback-Modell zur
Verfügung, welches das Ergebnis der Ausführung eines Webdienstes hinsichtlich seiner
zahlreichen Facetten detailliert beschreiben kann. Dieses wird um ein Verfahren ergänzt,
welches Dienstkonsumenten effektiv bei der Bereitstellung dieser Art von Feedback un-
terstützt und sich dabei der Bereitschaft des Nutzers Informationen zur Verfügung zu
stellen anpasst. Wir werden zeigen, dass auf diese Weise geeignete, umfassende und aus-
sagekräftige Rückmeldungen über das Resultat einer Dienstausführung erfasst werden. Das
vorgestellte Verfahren berücksichtigt darüber hinaus auch die Anforderungen eines Be-
nutzers hinsichtlich seiner Privatsphäre, in dem es ihm gestattet den Detaillierungsgrad der
bereitgestellten und mit anderen Nutzern ausgetauschten Informationen genau zu kontrol-
lieren. Es verwendet eine Verschleierungstechnik, um die Übermittlung aussagekräftiger
Feedbackinformationen zu ermöglichen und zugleich so wenig wie möglich persönliche
Informationen preiszugeben. Schließlich zeigen wir, dass verfügbares Konsumentenfeed-
back effektiv genutzt werden kann, um den Grad und die Art des mit der Ausführung
eines verfügbaren Dienstes verbundenen Risikos vorherzusagen. Ferner legen wir dar, wie
diese Informationen bei der Sortierung der verfügbaren und passenden Dienstangebote
geeignet berücksichtigt werden können. Die vorgeschlagene Lösung berücksichtigt, dass
Konsumentenfeedback sowohl subjektiv als auch kontextabhängig ist und verwertet Kon-
sumentenfeedback, welches in einem Nutzungskontext erhoben wurde, um Wissen über
das Ergebnis einer Dienstausführung in einem anderen Nutzungskontext abzuleiten. Das
vorgestellte Verfahren weist den Benutzer auf das mit der Ausführung eines gegebenen Di-
enstes verbundene Risiko hin, indem auf Basis von Konsumentenfeedback gewonnene In-
formationen auf effektive, intuitive und personalisierte Weise präsentiert werden. Fragestel-
lungen wie das Erkennen nicht wahrheitsgetreuer Nutzerrückmeldungen und der Schutz
vor Feedbackmanipulationen sind ausführlich in anderen Forschungsbereichen, beispiel-
sweise im Gebiet der Vertrauensbildungs- und Reputationssysteme oder im Bereich der
Empfehlungssysteme, diskutiert worden und werden in dieser Arbeit nicht berücksichtigt.

Abschließend stellen wir eine Implementierung unseres Ansatzes zur Verfügung, um dessen
Realisierbarkeit zu demonstrieren. Im Gegensatz zu vielen anderen Lösungen im Bereich
der semantischen Webdienste, haben wir unsere Arbeit ausführlich und gründlich evaluiert
und die daraus resultierenden Ergebnisse umfassend dokumentiert. Letztere belegen die
Effizienz und die Effektivität unseres Ansatzes. Die Arbeit schließt mit einer Zusammen-
fassung und der Diskussion möglicher weiterführender Fragestellungen, die sich aus den
vorliegenden Forschungsergebnissen ergeben.

xii

Abstract

In the early 1990s, Tim Berners-Lee published his vision of the Semantic Web. By provid-
ing information with a well-defined and machine-comprehensible meaning, the Semantic
Web was expected to enable communication and cooperation between humans and com-
puters. This idea is not restricted to information, but has been also applied to functionality
offered through the Internet as Web Service. The latter is the most prominent implementa-
tion of a Service Oriented Architecture (SOA), which has become increasingly popular as a
powerful way of designing flexible and adaptive distributed applications based on loosely
coupled, standalone services that are accessible through the Internet via a well-defined
interface. Web Services provided with a machine-processable, semantic description of
their capabilities are called Semantic Web Services. Based on a semantic description of a
service requester’s service requirements, suitable service offers can be automatically and
effectively retrieved by comparing (matching) the given service request with available of-
fer descriptions. Services might be automatically configured and composed and finally
invoked over the Internet. While Web Services at the heart of agile business processes
are widely used in enterprises, activities around Semantic Web Services have long been re-
stricted to research projects. However recently, we observe a trend of leading IT-companies
such as Amazon.com or Google.com to open up their internal functionality encapsulated as
business services and make it accessible via proprietary Web-APIs or classic Web Services.
This includes services such as required for booking a flight, making a ticket reservation or
getting directions for a trip. Leading researchers and practitioners in the field expect an
exponential growth of the number of publicly available Web Services and forecast a shift
from the current Internet of Information to an Internet of Services, a global, user-centric
SOA based on easily accessible Web Services. Semantic technologies are expected to play
a central role in the realization of this vision, since they enable automatic discovery, com-
position and mediation of services.

In this thesis, we argue that the emerging Internet of Services based on Semantic Web
Services will offer a new way of retrieving and using functionality over the Internet, which
has clear advantages over prevalent retrieval and usage schemes that are employed by end-
users, i.e. service consumers.

• Through the use of semantic service description and matchmaking techniques, Se-
mantic Web Service technology promises to solve the problem of ineffective Web
Service retrieval that existing keyword-based search engines currently have.

• Moreover, semantic descriptions of available services and their characteristics will
furnish the information that are required to provide sophisticated support for select-
ing an appropriate service among the huge number of potentially fitting services
offered over the Internet.

• Automatic or semi-automatic configuration, composition and on-demand invocation
of services will enable the efficient, convenient and thus more user-friendly use of
functionality offered over the Internet.

xiii

Abstract

However, though existing approaches to (Semantic) Web Service retrieval offer many ad-
vantages, they are not well-suited to this new usage scenario. This currently hampers the
realization of the outlined vision.

• Though Semantic Web Service technology provides adequate means to semantically
describe service capabilities and in particular service needs, it requires users to for-
mulate their service requirements at a formal, logic-based level that is not appropriate
for end-users.

• Moreover, existing approaches to Semantic Web Service selection do not account
for the fact, that, at the time a service selection problem arises, users typically do
not have a complete picture of the service functionality they desire. Service require-
ments are rather constructed over time as the user becomes familiar with available
service alternatives and their properties. Hence, support for incremental require-
ments elicitation and matchmaking based on incomplete and/or inaccurate service
requirements, as part of sophisticated decision support are necessary prerequisites
for user-mediated service selection.

• Since today services are no longer offered by known and trusted providers, service
offer descriptions describe a service’s capabilities not necessarily correctly. Thus,
service selection decisions on the basis of the properties promised in offer descrip-
tions are associated with a certain risk. To still allow for well-founded selection
decisions, service consumers need to be informed about this risk.

The objective of this thesis is to demonstrate the feasibility of the vision of the Internet
of Services based on Semantic Web Services by suggesting an approach that overcomes
the identified shortcomings of existing approaches, particularly those that hamper their ap-
plication by end-users. More specifically, we propose an approach to Semantic Web Ser-
vice selection that effectively supports service consumers, i.e. end-users, in efficiently

making well-informed, balanced and consistent service selection decisions in the pres-

ence of uncertainty arising from inaccurate and incomplete knowledge about both, a

consumer’s service requirements and the capabilities of offered services. The system
targets to enable end-user mediated Semantic Web Service selection as required in, but not
restricted to an E-Commerce setting. The focus of our work is on making Semantic Web
Service technology usable for end-users. Developing effective and efficient techniques for
Web-scale Semantic Web Services retrieval is orthogonal to this issue and out of the scope
this thesis.

Our main contribution is an incremental and interactive approach to requirements elicita-
tion and service selection that is inspired by example critiquing recommender systems. It
alternates phases of intermediate service recommendation and phases of informal require-
ments specification based on the presented service alternatives or by using a modifiable
graphical requirements representation. During that process, the user incrementally de-
velops his service requirements and preferences and finally makes a selection decision.
As part of this system, we describe a model of the consumer’s service requirements and
preferences that is maintained to effectively support and guide the user in his tasks. We

xiv

Abstract

explain how uncertainty about the service consumer’s true requirements and preferences,
that is caused by missing and/or inaccurate knowledge, is explicitly represented within
this model and how the model is continuously updated based on the user’s interactions to
accurately reflect the systems’s growing knowledge about the user’s service requirements
and preferences. We also explain how suitable service offers can be retrieved based on the
requirements model and how they can be appropriately displayed. Moreover, we discuss
how users can be enabled to indicate desirable service characteristics based on the pre-
sented alternatives. As we demonstrate in our work, standard matchmaking with a minor
extension can be applied to retrieve potentially matching service offers based on incom-
plete and/or inaccurate, i.e. uncertain, service requirements. Finally, we demonstrate how
the requirements elicitation and service selection process can be directed and focused to
effectively reduce model uncertainty and thus to contribute to the efficiency of the service
selection process.

To acquire information about the actual performance of available services and thus about
the risk that is associated with their execution, we propose a flexible feedback system, that
leverages reported consumer experiences made in past service interactions. In this context,
the focus of our work is on how to effectively utilize feedback information to evaluate a
service’s expected performance. In particular, we provide means that allow to detailedly
describe a service’s performance with respect to its multiple facets. This is supplemented
by a user-adaptive method that effectively assists service consumers in providing such
feedback. As we will demonstrate, this method supports the user in supplying appropriate,
comprehensive and meaningful feedback and thereby adjusts to his willingness to provide
feedback. The mechanism also accounts for the privacy requirements of the user by al-
lowing him to customize the detailedness of the feedback information that are elicited and
shared with others. It makes use of an obfuscation technique to enable the propagation
of meaningful feedback while at the same time revealing as little personal information as
possible. Finally, we demonstrate that available consumer feedback can be effectively ex-
ploited to assess the degree and kind of risk that is associated with the execution of an
offered service and show how these information can be appropriately considered during
the process of service ranking. The suggested solution accounts for the subjective and
context-dependent nature of consumer feedback and exploits consumer experiences made
in one context to infer knowledge about a service’s behavior in another context. It makes
the user aware of the risk that is associated with the execution of a service by presenting
feedback-derived information in an effective, intuitive and personalized manner. Aspects
such as detecting dishonest feedback and counteracting feedback manipulation have been
extensively discussed in other research areas, such as trust and reputation systems and
recommender systems research and are out of the scope of our work.

Finally, we provide a proof of concept implementation of our solution to demonstrate its
feasibility. In contrast to many other approaches related to Semantic Web Service tech-
nology, we performed an extensive and thorough evaluation of our contribution and doc-
umented its results. These show the effectiveness and efficiency of our approach. The
thesis concludes with a summary and a discussion of future research directions related to
the considered area.

xv

Contents

I. Introduction 1

1. Motivation & Overview 3

1.1. Motivation . 3
1.2. Usage Scenario . 8
1.3. Thesis Objective . 11
1.4. Solution Design . 12

1.4.1. Problem Formulation . 14
1.4.2. Problem Evaluation . 15
1.4.3. Appraisal . 16
1.4.4. Operational Objectives . 16

1.5. Thesis Outline . 18

2. Background 21

2.1. Service Oriented Architectures and Semantic Web Services 21
2.2. Decision Making and Decision Support 24

II. Decision Support for Semantic Web Service Selection 27

3. Overview 29

4. Underlying Service Description Language 33

4.1. Choice of the Service Description Language 33
4.2. DIANE Service Description Language 36
4.3. DIANE Matchmaker . 40
4.4. Assumptions . 42

5. Modeling and Elicitation of Consumer Requirements for Service Se-

lection 45

5.1. Requirements . 45
5.2. Related Work . 51

5.2.1. Recommender Systems . 51
5.2.2. Utility Elicitation . 62
5.2.3. Semantic Web Service Selection 64
5.2.4. Summary and Open Research Issues 71

5.3. Interactive and Incremental Requirements Elicitation and Service Selec-
tion - Basic Idea . 74

5.4. Request Model . 75
5.4.1. Type Conditions . 76
5.4.2. Uncertain Direct Conditions . 76

xvii

Contents

5.4.3. Attribute Conditions and Uncertain Connecting Strategies 79
5.5. Visualizing Service Requirements . 81

5.5.1. Graphical Representation . 82
5.5.2. Advanced User Support . 84

5.6. Matching Uncertain Requirements . 89
5.7. Presenting Matching Service Offers and their Characteristics to Encourage

Requirements Specification . 93
5.7.1. Presenting Matching Service Offers and their Characteristics . . . 93
5.7.2. Enabling Requirements Specification Based on Presented Service

Alternatives and their Characteristics 95
5.8. Determining Promising Interaction Opportunities 100

5.8.1. Measuring Model Uncertainty 101
5.8.2. Selecting Promising Interaction Opportunities 106

5.9. Model Update . 106
5.9.1. Explicit Model Interactions . 107
5.9.2. Implicit Model Interactions . 115

6. Modeling, Elicitation and Usage of Consumer Feedback 123

6.1. Requirements . 123
6.2. Related Work . 128

6.2.1. Collaborative Filtering . 128
6.2.2. Product Reviews . 131
6.2.3. Trust and Reputation Systems 133
6.2.4. Experience-Based Service Provider Selection 139
6.2.5. Summary and Open Research Issues 143

6.3. The Feedback Mechanism - Basic Idea 146
6.4. Consumer Feedback . 146

6.4.1. Creating Appropriate, Comprehensive and Meaningful Multi-Aspect
Consumer Feedback . 146

6.5. Effective Elicitation of Consumer Feedback 152
6.5.1. Determining Valid Feedback Structures 154
6.5.2. Feedback Structure Suitability 156
6.5.3. Request Model Similarity . 161
6.5.4. Dynamically adjusting α . 166

6.6. Utilizing Feedback to Predict a Service’s Future Performance 167
6.6.1. Determining Feedback Relevance 169
6.6.2. Rating Prediction Based on Coarse-Grained Similarity Information 173
6.6.3. Rating Prediction Based on Fine-Grained Similarity Information . 175

6.7. Customizable Feedback-Aware Service Ranking and Presentation of Feed-
back Information . 180
6.7.1. Presentation of Feedback Information 181
6.7.2. Customizable Feedback-Aware Service Ranking 184

xviii

Contents

III. Implementation and Evaluation 187

7. System Implementation 189

8. Evaluation of the Requirements Elicitation and Service Selection Mech-

anism 193

8.1. Evaluation Objectives . 193
8.2. Partial Validation of Requirements Achievement 195

8.2.1. Appropriateness of the Requirements Model 195
8.2.2. Appropriate Kind of the Requirements Elicitation and Service Se-

lection Procedure . 196
8.3. Evaluation of the Requirements Elicitation Process 196

8.3.1. Evaluation Methodology . 197
8.3.2. Test Data and Test Setting . 199
8.3.3. Results . 202

8.4. Evaluation of the Graphical Model Representation 218
8.4.1. Evaluation Methodology . 218
8.4.2. Test Setting . 218
8.4.3. Results . 220

8.5. Summary and Conclusions . 223

9. Evaluation of the Feedback Mechanism 227

9.1. Evaluation Objectives . 227
9.2. Partial Validation of Requirements Achievement 229

9.2.1. Elicitation of Appropriate, Comprehensive and Meaningful Multi-
Attribute Feedback . 229

9.2.2. Appropriate Quality of Shared Information 231
9.2.3. Effective and Personalized Feedback Presentation 232

9.3. Evaluation of the Judgment Target Recommendation Mechanism 232
9.3.1. Evaluation Methodology . 233
9.3.2. Test Data . 234
9.3.3. Tests and Results . 236
9.3.4. Discussion . 245
9.3.5. Summary . 246

9.4. Evaluation of the Performance Prediction Mechanism 247
9.4.1. Evaluation Methodology . 248
9.4.2. Test Data . 249
9.4.3. Test Settings . 256
9.4.4. Results . 259
9.4.5. On the Influence of Inaccurate Requirements Models 274
9.4.6. Prediction Confidence . 276
9.4.7. Discussion . 278
9.4.8. Summary . 279

9.5. Summary and Conclusions . 280

xix

Contents

IV. Final Considerations 283

10.Summary and Conclusions 285

11.Future Work 289

11.1. Modeling and Elicitation of Service Requirements 289
11.2. Visualization of Service Requirements and Interaction Opportunities . . . 290
11.3. Elicitation of Consumer Feedback . 291
11.4. Performance Prediction . 291
11.5. Practical Deployment and Social Implications 292

Appendix 311

A. Ontology for the Computer Items Domain 313

B. Questionnaire for the Evaluation of the Requirements Elicitation and

Service Selection Mechanism 317

B.1. Pre-System-Usage Questionnaire . 318
B.2. Post-System-Usage Questionnaire . 320
B.3. Post-Browsing Questionnaire . 327
B.4. Questionnaire Requirements Representation 328

C. Questionnaire for the Evaluation of the Judgment Recommendation

Mechanism 329

xx

List of Tables

5.1. Requirements to the requirements model, the requirements elicitation and
service recommendation mechanism and the presentation of requirements-
and service-related information . 72

5.2. Available interaction opportunities . 108

6.1. Requirements to the elicitation, propagation, usage and presentation of
feedback information . 144

8.1. Demographic information and background knowledge of the test participants199
8.2. Evaluation results related to Requirement U.6 204
8.3. Evaluation results related to Requirement U.8 205
8.4. Evaluation results related to Requirement U.9 209
8.5. Evaluation results related to Requirement U.11 212
8.6. Time required to model requirements specification 1 and 2 (in minutes) . 221

9.1. Extracted computer items - their category and properties 250
9.2. Request generation - basic parameter configuration 253
9.3. Parameters of the prediction procedure, their abbreviations and possible

values . 258
9.4. Fitted parameter values . 277

xxi

List of Figures

1.1. Howard’s decision analysis process (taken from [How88]) 13
1.2. Problem formulation (taken from [How88]) 13

2.1. Service Oriented Architecture- basic structure 22

3.1. Main features of the suggested solution 31

4.1. DSD service request . 37
4.2. DSD service descriptions - basic structure 40

5.1. Burke et al.’s FindMe approach (taken from [BHY96]) 55
5.2. Reilly’s dynamic critiquing approach (taken from [Rei05]) 57
5.3. Viappiani’s example application Flat Finder (taken from [VPF08]) 59
5.4. Chen et al.’s hybrid recommender system (taken from [CP07b]) 60
5.5. Colucci et al.’s interface for assisted query refinement (taken from [CNS+06]) 67
5.6. Noppens et al.’s interface for personalized semantic service discovery (taken

from [NLL+06]) . 68
5.7. Service query in structured natural language generated from the require-

ments given in the lower part of the screenshot (taken from [sec06]) . . . 70
5.8. Possible preference functions over a range of instances 77
5.9. Graphical model representation . 82
5.10. Elements of the graphical request model representation 83
5.11. Subtree recommender (a) and subtype dialog (b) 86
5.12. Results view . 94
5.13. Likelihood functions LpMinI

(moves min-slider|minI) (a) and LpMinI
(moves

it to newInst|minI) (b) . 111
5.14. Likelihood functions LpWacj

(adjusts weight of acj |w) (a) and LpWacj
(ad-

justs it to newWeight|w) (b) . 114
5.15. Likelihood functions LpWacj

(critiqued|w) (a) and LpWacj
(compromised|w)

(b) . 116
5.16. Adjustment of the parameters lmin and lmax 118
5.17. Likelihood functions LpMinI

(more than offValue|minI) (a) and LpMaxI
(less

than offValue|maxI) (b) . 120

6.1. Product review on the reviewing site Buzzillions.com 132
6.2. Feedback structure (blue part) and the request (model) where it originates

from (blue and gray parts) . 148
6.3. Judgment aggregation using the semantic matchmaker 151
6.4. Judgment view . 153
6.5. Determining valid feedback structures 155

xxiii

List of Figures

6.6. Conditional probability Pnum(r�, fs�|r, fs) of choosing a feedback structure
fs� based on r� (a) and similarity simnum(fs�, fs) of two feedback structures
with respect to the numbers m� and m of service aspects they require to be
judged (b) . 158

6.7. Determining the semantic similarity of two request model subtrees rooted
at the attribute productType . 163

6.8. User-based collaborative filtering . 169
6.9. Feedback matrix FMF . 171
6.10. Determining the feedback provider similarity 172
6.11. Feedback extraction . 174
6.12. Feedback aggregation based on coarse-grained similarity information . . 175
6.13. Rating prediction based on coarse-grained (a) and fine-grained (b) similar-

ity information . 177
6.14. Feedback aggregation based on fine-grained similarity information 181
6.15. Customizable feedback-aware service ranking and presentation of feed-

back information . 183

7.1. System architecture providing components for the elicitation of consumer
requirements and for service selection (ReqElComp), for semantic match-
making (UMatchComp) and for the elicitation and usage of consumer feed-
back (FbComp) as well as a graphical user interface 190

8.1. Evaluation methodology - the dark blue boxes refer to information that
are system-generated and/or provided, light blue boxes refer to informa-
tion that are user-generated and/or provided, the green lines indicate which
information have to be compared to verify the indicated requirement . . . 198

8.2. Questionnaire statements/questions and results related to Requirement U.6 203
8.3. Questionnaire statements/questions and results related to Requirement U.8 206
8.4. Questionnaire statements/questions and results related to Requirement U.14

and Requirement U.17 . 208
8.5. Questionnaire statements/questions and results related to Requirement U.12 214
8.6. Questionnaire statements/questions and results related to Requirement U.13 215
8.7. Questionnaire statements/questions and results related to Requirement U.15 216
8.8. Questionnaire statements/questions and results related to Requirement U.16 217
8.9. Questionnaire statements/questions and results related to the graphical re-

quirements representation . 222

9.1. Questionnaire - example request model 235
9.2. Questionnaire - example request model where the test person highlighted

the service aspects that he is willing to judge (blue-colored aspects) . . . 236
9.3. Correlation between simreq(r, r�) and simattr(fs, fs�) of the considered re-

quest model pairs . 238
9.4. Correlation between simreq(r, r�) and simnum(fs, fs�) of the considered re-

quest model pairs . 239

xxiv

List of Figures

9.5. Mean number of judged service aspects 240

9.6. Weighted mean of the mean correlation between simreq(r, r�) and simnum(fs, fs�)
and the mean correlation between simreq(r, r�) and simattr(fs, fs�) over all
test data request model pairs and all test users depending on the parameters
α and β . 241

9.7. Mean correlation between simreq(r, r�) and simnum(fs, fs�) over all test
data request model pairs and all test users depending on the parameter a . 242

9.8. Results of test HomDesk . 244

9.9. Results of test HomDigi . 244

9.10. Results of test Het . 245

9.11. Ontology for the computer items domain (excerpt) 251

9.12. Test data model . 252

9.13. Preference functions for the attributes price (a) and hard disc size (b) . . . 253

9.14. Example of a generated DSD service request 255

9.15. Parameters of the rating prediction procedure 257

9.16. Evaluation results for test data configuration 1 - homogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right) . . 261

9.17. Relevance charts for test data configuration 1 - homogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with
fixed feedback provider relevance thresholds depending on the minimal
service relevance of the feedback items that have been used for the pre-
diction (left), mean absolute prediction error based on test runs performed
with fixed service relevance thresholds depending on the minimal feed-
back provider relevance of the feedback items that have been used for the
prediction (right) . 262

9.18. Evaluation results for test data configuration 2 - homogeneous requests,
heterogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right) . . 264

9.19. Relevance charts for test data configuration 2 - homogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with
fixed feedback provider relevance thresholds depending on the minimal
service relevance of the feedback items that have been used for the pre-
diction (left), mean absolute prediction error based on test runs performed
with fixed service relevance thresholds depending on the minimal feed-
back provider relevance of the feedback items that have been used for the
prediction (right) . 265

xxv

List of Figures

9.20. Evaluation results for test data configuration 3 - heterogeneous requests,
homogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right) . . 266

9.21. Relevance charts for test data configuration 3 - heterogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with
fixed feedback provider relevance thresholds depending on the minimal
service relevance of the feedback items that have been used for the pre-
diction (left), mean absolute prediction error based on test runs performed
with fixed service relevance thresholds depending on the minimal feed-
back provider relevance of the feedback items that have been used for the
prediction (right) . 267

9.22. Evaluation results for test data configuration 4 - heterogeneous requests,
heterogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right) . . 268

9.23. Relevance charts for test data configuration 4 - heterogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with
fixed feedback provider relevance thresholds depending on the minimal
service relevance of the feedback items that have been used for the pre-
diction (left), mean absolute prediction error based on test runs performed
with fixed service relevance thresholds depending on the minimal feed-
back provider relevance of the feedback items that have been used for the
prediction (right) . 269

9.24. Influence of the number of feedback items on the base mean prediction
error (a) and the lowest mean prediction error that is achieved when using
relevance filters (b) . 270

9.25. Mean absolute prediction error for the attributes entity.entity, entity.entity.weight,
entity.entity.model and entity.entity.manufacturer 272

9.26. Mean absolute prediction error depending on the similarity threshold and
the number of feedback items used per prediction 277

xxvi

List of Symbols

wf, a(r, s) attribute- and feedback-item-specific relevance weight of feedback item
f for the performance prediction of service s with respect to the request
r and attribute a

wf (r, s) feedback-item-specific relevance weight of feedback item f for the per-
formance prediction of service s with respect to the request r

wfb(a) feedback weight of attribute a

ac attribute condition

FSr(a) set of all valid feedback structures that can be derived from the request
(model) subtree rooted at attribute a of request (model) r

pathr(a) path of attribute a in the request (model) r

RI range of the instance set I

V spec
a the set of values that have been considered in the direct condition speci-

fied for the request (model) attribute a

a request (model) attribute

A set of request (model) attributes

attrSimprovider(f, r, a) attribute-specific feedback provider similarity of feedback item f
and service request r with respect to the request (model) attribute a

attrSimservice(f, s, a) attribute-specific service (offer) similarity of feedback item f and
service s with respect to the request (model) attribute a

attrSim(f, r, s, a) attribute-specific similarity of feedback item f with respect to service
request r, service s and request (model) attribute a

v an attribute value

Va the set of values that the request (model) attribute a might take

conf (R) confidence of an association rule R

c service consumer

conv(R) conviction of an association rule R

Pref cond
I (i) . . . random variable, indicating the user’s preference for the service instance

i w.r.t. the condition cond specified for the set I

pref cond
I (i) the user’s preference for the service instance i w.r.t. the condition cond

specified for the set I

C set of attribute-specific and user-specified critiques

cs connecting strategy

dc direct condition

E set of judgment experiences

xxvii

List of Figures

f feedback item

FMF feedback matrix over the feedback items in F

fs feedback structure

F set of feedback items

Afs set of attributes considered in the feedback structure fs

AIa set of attributes defined for the target set Ia of request (model) attribute a

Ta target type of attribute a

fsjudged judged feedback structure

fsrec recommended feedback structure

mva(r, o) matching value for the request (model) r and the offer o with respect to
the attribute a

MVI(r, i) expected matching value for the request (model) r and the instance i with
respect to the instance set I

name(I) name of the attribute condition whose target set is I

in in-condition

i service instance

I set of service instances

InI
i random variable for the instance i of instance set I , indicating whether i

is acceptable or not

os offer of service s

type(I) type of the instance set I
»

MRa(r,
#»

O) vector of matching results for the request (model) r and the offers in the
vector of offers

#»

O with respect to the attribute a

Ajudged

fs
. set of attributes that has to be judged according to the feedback structure

fs

rata mean rating provided for the request (model) attribute a

mv(r, o) (overall) matching value for the request (model) r and the offer o

notIn not-in-condition

NotInI
i random variable for the instance i of instance set I , indicating whether i

is not acceptable or not

O set of service offers

ovSimprovider(f, r) overall feedback provider similarity of feedback item f with respect
to request r

ovSimservice(f, r, s) overall service similarity of feedback item f with respect to request
r and service s

xxviii

List of Figures

ovSim(f, r, s) . overall similarity of feedback item f with respect to request r and service
s determined based on the attribute-specific similarity values of f

P acc
a (v) probability of the attribute value v being acceptable with respect to the di-

rect condition(s) that have been specified for the request (model) attribute
a

pacc
a (v) probability distribution indicating for each attribute value v its probability

of being acceptable with respect to the direct condition(s) that have been
specified for the request (model) attribute a

pattr(r, fs) probability distribution indicating for each feedback structure fs derived
from r the likelihood of the user being willing to judge the kinds of ser-
vice aspects as required by it

pInI
i

. probability distribution over possible values of InI
i

pjudges(r, fs; α) parameterized probability distribution indicating for each feedback struc-
ture fs derived from r the likelihood of being judged

pMaxI
. probability distribution over possible values of MaxI

pMinI
. probability distribution over possible values of MinI

pNotInI
i

. probability distribution over possible values of NotInI
i

pnum(r, fs) probability distribution indicating for each feedback structure fs derived
from r the likelihood of the user being willing to judge as many service
aspects as is required by it

pref cond
I (i; par1, . . . , parn) preference function over instances i of instance set I depend-

ing on the parameters par1, . . . , parn w.r.t. the condition cond

�rata(r, s) predicted rating for request (model) attribute a with respect to the service
s and the request (model) r

p service provider

pWac probability distribution over possible weights of an attribute condition ac

range range condition

rata(f) rating provided for request (model) attribute a by feedback item f

r request (model)

ra request (model) subtree rooted at the attribute a in r

MaxI maximum of the range for instance set I (random variable)

maxI maximum of the range for instance set I

MinI minimum of the range for instance set I (random variable)

minI minimum of the range for instance set I

root(r) root attribute of the request (model) r

s service

xxix

List of Figures

simattr(fs, fs�) . similarity of two feedback structures fs and fs� with respect to the kinds
of service aspects they require to be judged

simdc(ra, r�
a�) . similarity of the given request model subtrees’ root attributes a and a�

w.r.t. the uncertain direct conditions that have been specified on their
target sets (direct condition similarity)

simnum(fs, fs�) similarity of the two feedback structures fs and fs� with respect to the
number of service aspects they require to be judged

simprovider(f, r) feedback provider similarity of feedback item f and service request r

simreq(r, r�) . . . semantic similarity of two requests (request models) r and r�

simservice(f, s) service (offer) similarity of feedback item f and service s

simsub(ra, r�
a�) similarity of the given request model subtrees’ root attributes a and a�

w.r.t. their child trees (subtree similarity)

simtype(ra, r�
a�) similarity of the given request model subtrees’ root nodes a and a� with

respect to their ontological type (type similarity)

supp(X) support of an itemset or association rule X

tc type condition

Ia target set of the request (model) attribute a

w∗
r,a total weight of request (model) attribute a in the request (model) r

U(Pref ∗
I(i)) . . . uncertainty about the uncertain preference value Pref ∗

I(i)

Wr,ac uncertain weight of an attribute condition ac in the request (model) r

wr,a weight of request (model) attribute a in the request (model) r

xxx

Part I.

Introduction

1

1
Motivation & Overview

In this chapter, we will motivate our work and demonstrate its relevance by providing a
possible usage scenario (Section 1.2). Based on this scenario, we will derive the overall
goal of the thesis (Section 1.3) and identify a set of operational objectives, whose achieve-
ment will lead to the fulfillment of this goal (Section1.4). We will also provide the reader
with necessary background information related the topic at hand (Chapter 2) and finally
will give an outline of the thesis (Section 1.5).

1.1 Motivation

Since its early beginnings in the 1990s, the World Wide Web has become an integral part of
our everyday life. Today, it serves not just as a global platform for social interactions, but
is also increasingly used as a medium for commercial activities such as purchasing goods
or using paid services. According to Nielsen, one of the world’s leading companies for
marketing research, the proportion of Internet users that had ever made an online purchase
tremendously increased from 10% in 2005 to 84% in 2010, which amounts to a number of
875 million people [Com08, Com10]. Though the focus is still on purchasing products such
as books or clothing, now services become more and more attractive to online consumers.
In a survey conducted in 2010, 32% of the 27,000 respondents indicated that they intent to
book a flight online, 26% said that they will make a hotel reservation. This is an increase
of 7% and 9% respectively, compared to 2009 [Com10]. People were also not afraid of
making costly purchases such as buying electronic equipment, computer hardware or cars
or booking a trip [Com10].

This increasing popularity of online shopping can be mainly explained by two facts. Firstly,
shopping anywhere and at any time with products delivered directly to the customer is con-
venient and time-saving. Secondly, compared to brick and mortar stores, the World Wide
Web offers easy, fast and cheap access to more detailed information about a wider range
of products and services, information that are required to research and compare available
offers and that would have had otherwise to be assembled laboriously from a number of
physical stores or would not have been available at all [Cha05]. The latter particularly

3

CHAPTER 1. MOTIVATION & OVERVIEW

refers to consumer recommendations and reviews, which are considered to be highly im-
portant by the majority of the customers, especially when it comes to purchase costly prod-
ucts or services such as cars, consumer electronics and airline tickets or those that affect
personal welfare and health such as medication, cosmetics and insurances [Com10].

These facts are in contrast to the finding, that just a small fraction of the customers makes
use of these information to identify the good or service that is most suitable to them. 37%
of the Internet users employ search engines, 19% use shopping comparison websites and
32% rely on personal recommendations [Com08]. However, the vast majority, 60% of
the users [Com08], does not research and compare available offers and simply buys from
the site they regularly use [Com08]. The reason for this is that available information are
scattered across the Web and that their amount is huge. Search engines leave the task of col-
lecting, weighting and structuring these information completely to the user and thus make
research related to a certain purchase decision mentally demanding and time-consuming.
In contrast to that, shopping comparison sites such as Shopping.com or Kelkoo.com search
multiple online stores at a time and aggregate information related to a desired product or
service. Since they are explicitly dedicated to product and service search, they can lever-
age structured data feeds from the retailers or focused crawlers and thus can provide more
relevant information than general search engines. However, the provided information are
typically restricted to the product or service price and to product or vendor ratings and
reviews. Basic decision support in terms of browsing facilities is offered, but in general
limited to brands, shop names and simple product categories. Finally, the effectiveness
of both, search engines and shopping comparison engines, as a research assistant is re-
stricted, since they solely offer keyword-based search and thus have to rely on information
extraction techniques to acquire relevant information, which are imprecise per se. This
is particularly true for search queries referring to transactional needs, i.e. Web-mediated
activities, such as using a service [Bro02, HCG01, TT08].

Hence, compared to traditional shopping, buying from home might be convenient, but
due to the lack of sophisticated assistance for product and in particular service research
is still tedious and time-consuming. Moreover, it requires the customer to employ a two-
step shopping approach comprising of a preceding research phase and the actual purchase
[DZN+06]. For the latter, the user has to explicitly navigate to the website of the product
or service provider, has to manually input required payment and shipping information and
finally has to commit the purchasing transaction. This is particularly annoying, if the user’s
shopping need, requires the invocation of a number of related services that are spread
over several websites, such as buying a train ticket and booking a hotel for a single trip.
These findings do not just apply to commercial activities, but also to other Web-mediated
activities such as downloading a file or getting directions to a location.

Beside the growing interest in E-Commerce from both, the consumer and the business side,
we observe another trend in the World Wide Web. In the early 1990s, Tim Berners-Lee
published his vision of the Semantic Web as ”an extension of the current one, in which
information is given well-defined [and machine-comprehensible] meaning, better enabling
computers and people to work in cooperation” [BLHL01]. Since those days, sophisticated

4

1.1. MOTIVATION

semantic technologies have been developed and implemented that bring us closer to the re-
alization of this vision [SLH06]. However, the idea is not restricted to information, but has
been also applied to functionality offered through the Internet as Web Service. The latter
is the most prominent implementation of a Service Oriented Architecture (SOA), which
has become increasingly popular as a powerful way of designing flexible and adaptive
distributed applications based on loosely coupled, standalone services that are accessible
through the Internet via a well-defined interface. Web Services provided with a machine-
processable, semantic description of their capabilities are called Semantic Web Services
[Yu07, CS06, FLP+07]. Based on the semantic description of a service requester’s ser-
vice requirements, suitable service offers can be automatically and effectively retrieved by
comparing (matching) the given service request with available offer descriptions. Services
might be automatically configured and composed and finally invoked over the Internet.

While Service Oriented Architectures as a means to integrate heterogeneous business ap-
plications into agile business processes based on loosely coupled Web Services are widely
used in enterprises, activities around Semantic Web Services have long been restricted to
research projects. Hence, though Semantic Web Services are an active area of research
and are on the focus of numerous EU funded research projects 1, up to now virtually no
real-world applications that use this technology are available [BF08]. However recently,
we observe a trend of leading IT-companies such as Amazon.com or Google.com to open
up their internal functionality encapsulated as business services and make it accessible via
proprietary Web-APIs or classic Web Services. This includes services such as required for
booking a flight, making a ticket reservation or getting directions for a trip. According
to the Web Service Search Engine Seekda2, there are about 28,000 Web Services publicly
available on the Internet today. Leading researchers and practitioners in the field expect this
number to exponentially grow as other companies will follow the current trend and provide
access to their internal business services [FFST11]. They forecast a shift from the current
Internet of Information to an Internet of Services [SJ07, BDB05], a global, user-centric
SOA based on easily accessible Web Services. Semantic technologies are expected to play
a central role in the realization of this vision, since they enable automatic discovery, com-
position and mediation of services [FFST11]. Hence, to date, a number of research projects
such as the EU-funded projects SOA4All3 and INSEMTIVES4 have been launched to pro-
vide the technology that is required to create, retrieve and use Semantic Web Services at a
large scale.

In this thesis, we argue that the emerging Internet of Services based on Semantic Web Ser-
vices will offer a new way of retrieving and using functionality over the Internet, which
has clear advantages over prevalent retrieval and usage schemes that are employed by end-
users, i.e. service consumers. In particular, Semantic Web Service technology promises to

1For related European research projects of the Sixth and Seventh Research Framework Program refer to
http://cordis.europa.eu/fp7/ict/ssai/fp6_en.html and http://cordis.europa.eu/fp7/ict/ssai/projects_en.html,
respectively.

2http://webservices.seekda.com/
3http://www.soa4all.eu
4http://www.insemtives.eu

5

CHAPTER 1. MOTIVATION & OVERVIEW

solve the problem of ineffective Web Service retrieval that existing keyword-based search
engines currently have. Moreover, semantic descriptions of available services and their
characteristics will furnish the information that are required to provide sophisticated sup-
port for selecting an appropriate service among the huge number of potentially fitting ser-
vices offered over the Internet. Automatic or semi-automatic configuration, composition
and on-demand invocation of services will enable the efficient, convenient and thus more
user-friendly use of functionality offered over the Internet.

However, though existing approaches to (Semantic) Web Service retrieval offer many ad-
vantages, they are not well-suited to this new usage scenario. This currently hampers the
realization of the outlined vision. Since the emphasis of previous Semantic Web Service
research was on Web Services as basic building blocks of enterprise integration architec-
tures, existing approaches in this area mostly target to support application developers and
experienced business processes designers. Hence, though Semantic Web Service technol-
ogy provides adequate means to semantically describe service capabilities and in partic-
ular service needs, it requires users to formulate their service requirements at a formal,
logic-based level that is not appropriate for end-users, i.e. the service consumer in an E-
Commerce setting. Basic tools that support this task exist, but mainly address Web Service
developers. Virtually, no end-user support for specifying service requirements is avail-
able. To complicate matters, when intending to purchase online, service consumers are
typically unfamiliar with the often complex and interdependent characteristics of available
products and services and thus have no clear-cut requirements. Moreover, they usually
have complex preferences, that are not known in advance, but are rather constructed while
learning about the product or service space [JWP93]. Current Semantic Web Service so-
lutions do not account for these facts. They implicitly assume that semantic descriptions
of a consumer’s service requirements are readily available and do not consider incremen-
tal and interactive requirements elicitation as well as sophisticated decision support as
necessary prerequisites for user-mediated service selection in a Web-scale. The latter is
particularly important, since researching the often huge space of products and services that
are offered over the Internet is mentally demanding and time-consuming, but worthwhile,
especially when it comes to costly purchases. In addition, existing approaches presume
that request descriptions perfectly describe a consumer’s actual requirements. However, as
already argued, this is not the case. In fact, the system’s knowledge about a consumer’s
requirements is incomplete and often inaccurate and has to be incrementally extended as
additional requirements emerge. As a consequence, there is uncertainty about a user’s true
requirements. This fact should be considered when matching and ranking available service
alternatives to allow for adequate service selection decisions.

Another restraint to the vision of Semantic Web Service enabled E-Commerce applications
is that traditional approaches to semantic matchmaking evaluate the suitability of available
service offers exclusively by comparing the published offer descriptions with a given re-
quest description [TT08]. Hence, they implicitly assume that offer descriptions describe a
service’s capabilities correctly. However, since in a today’s E-Commerce setting services
are not necessarily offered by known and trusted providers, this assumption is no longer
valid. In addition, service descriptions are necessarily incomplete and incorrect to some

6

1.1. MOTIVATION

degree [GMP06] and thus may not accurately describe a service’s capabilities. To date, this
problem is even amplified, since the creation of complex offer descriptions is left to the ap-
plication developer without much assistance. As a consequence, service selection decisions
on the basis of the properties promised in offer descriptions is associated with uncertainty
about the actual outcome of a service invocation. Existing approaches to service selection
typically either ignore this fact or exclusively consider Quality of Service aspects. How-
ever, to allow for well-founded selection decisions, service consumers need and, as already
argued, demand to be informed about the risk that is associated with a certain selection de-
cision. Thereby, risk assessment should not be restricted to non-functional aspects such as
response time, but should rather refer to functional aspects of the delivered service, which
are far more relevant to the consumer in an E-Commerce context [LMRD09].

However, the issues raised above are not entirely new and have been partly addressed in
other research areas. For example in case-based reasoning and recommender systems re-
search [Smy07], solutions for incremental requirements elicitation already exist. However,
those approaches lack the powerful knowledge representation and matchmaking capabil-
ities provided by Semantic Web Service technology. Moreover, they do not sufficiently
address the issue of uncertainty about consumer requirements. Evaluating the trustworthi-
ness of service providers is also an active research topic mainly discussed in the context of
trust and reputation systems research [JIB07]. However, existing solutions typically make
a number of simplifying assumptions about services and the behavior of their providers
and thus are not directly applicable to a Semantic Web Service based E-Commerce sce-
nario, where we have complex and richly described services. We think that Semantic Web
Service research can benefit from this work and in return will generate helpful insights and
input to those areas.

In this thesis, we will therefore suggest a framework that utilizes this knowledge from re-
lated research areas to address the deficiencies of traditional Semantic Web Service frame-
works as identified above. The envisioned framework targets to enable end-user mediated
Semantic Web Service selection as required in, but not restricted to an E-Commerce setting.
In particular, the proposed solution will account for the constructive nature of consumer
requirements and will consider the uncertainty arising from incomplete and inaccurate
knowledge about both, consumer requirements and service capabilities. The envisioned
system, is intended to effectively support consumers in efficiently making well-informed,
balanced and consistent service selection decisions in the presence of uncertainty.

We believe that Semantic Web Service research will benefit from such an approach in
several ways. In particular, it addresses the following major research challenges identified
by leading researchers and practitioners in the area 5:

5We mainly considered research priorities for the 6th [eu206] and 7th [nes09] European Research Framework
Program as highlighted by the European Technology Platform on Software Architectures and Services In-
frastructures, NESSI, as well as the findings of a comprehensive Delphi study on the potential of Semantic
Web Services as a basis for integration architectures conducted with leading practitioners and researchers
in 2007 [BF08].

7

CHAPTER 1. MOTIVATION & OVERVIEW

• Semantic Web Service frameworks should provide ”intelligent” end-user support
[eu206], ”so that these can easily be utilized by human users with only little IT
literacy” [nes07]. This includes effective and intelligent tool-, retrieval- and service
management support [Agr06, AMLM07, KMSF09, nes07, TT08].

• Service-based systems should provide mechanisms to ”achieve end to end security
and trust” [nes09] and ensure Quality of Service [BF08, eu206, nes09].

• The Semantic Web Service community requires ”pilot applications focusing on every-
day needs of consumers, citizens, industry etc., which can demonstrate the benefits
of using semantics” [AMLM07, BF08].

1.2 Usage Scenario

Using a typical real world usage scenario from the E-Commerce domain, we will demon-
strate the relevance of Web-scale Semantic Web Service selection and emphasize the need
for effective decision support to enable this. In particular, we will illustrate the shortcom-
ings of using online services as it is performed and supported today, especially with respect
to the quality of decision making. We will discuss how Semantic Web Service technology
and the emerging Internet of Services can be leveraged to overcome these problems and
will identify what is currently missing, but required to actually implement this. This will
motivate the overall goal of the thesis, which is presented in the subsequent section.

Scenario Max, a PhD student at the university in Jena got a paper accepted at a con-

ference in Lyon, France. He is starting to make arrangements for travel and accommoda-

tion and researches the Web for available offers. In a first attempt, he enters the search

terms "book", "trip", "Jena" and "Lyon" at Google.de. The top result that is returned by

Google.de is a video interview in the Look Book series of the New York Magazine with

Jenna Lyons, the creative director of the apparel retailer J.Crew. Since all other links

provided at the first result page refer to Jenna Lyons as well, Max decides to try another

combination of keywords and inputs "book flight Lyon". As a result, Google.de returns

a list of links referring to flight offerings from several airlines. Max selects the first one,

which takes him to the website of British Midland International. As Max soon finds out,

the airline offers flights to Lyon, but not from Germany.

Slightly irritated, he is calling his colleague, who recommends the travel website Expe-

dia.de to make his arrangements and to compare available offers. After that, Max points

his browser to Expedia.de. To save money, he looks for combined offers of flight and hotel.

After having completed the query form, he receives a list of 129 flight and hotel packages.

While indecisively scrolling through the list, it comes to his mind that it would be good to

have a hotel close to the conference location. Since Expedia.de does not provide means to

search for hotels nearby a certain location, Max decides to use Google Maps6 to search for

6http://maps.google.de

8

1.2. USAGE SCENARIO

appropriate hotel offers. He enters the conference location extracted from the conference

website and looks for hotels nearby. As a result, he is provided with a map displaying a

number of 10 close-by hotels. Max decides in favor of a hotel that is fairly close to the

conference location and fits to his budget. Since Google Maps does not offer a review or

rating for the selected hotel, Max copies the hotel name and enters it at Expedia.de. As he

finds out, Expedia.de users rated the hotel with 3.8 out of 5 stars. Curious about the rea-

sons for the downgrade, he checks the detailed ratings, which are available for the aspects

"cleanliness of the rooms", "service and staff", "room comfort" and "hotel condition". As it

turns out the staff is not particularly obliging, but Max does not care about that. However,

due to bad experiences in previous conference trips, he would like to know whether the

breakfast that is offered is ok. Since a detailed rating for that aspect is not available, he

reads through the 14 available textual reviews to find the desired information. Finally, Max

books the selected hotel. To take advantage of the discount for bundles of hotel and flight

provided by Expedia.de, he takes the flight that is offered with the selected hotel.

Two month later, Max starts on his journey one day before the conference. As he arrives

in Lyon, he notices that the hotel does not offer W-LAN access to his guests, which is

inconvenient, since he can neither check emails from the hotel nor talk to his girlfriend via

voice over IP. When planning his route to the conference location for the next day, Max

realizes, that the closest metro station is 15 walking minutes away, which adds up to 30
minutes to get to the conference every day. On the next day, as if it all were not annoying

enough, he meets a conference participant, who stays at a hotel that is further away from

the conference location than that of Max, but is cheaper and next to the metro, which takes

him conveniently to the conference venue within 20 minutes. Finally, Max gets to know that

a colleague of him traveled to the conference by train, which was 50 e cheaper, took all in

all about the same time and was more convenient.

In order to evaluate the quality of the decision making process particularized in the given
scenario, i.e. the process of choosing services to make arrangements for travel and accom-
modation for a conference trip, and in order to evaluate the quality of the decision support
that was provided, we first need to define the abstract term "decision making quality" more
precisely and operationally, i.e. in terms of verifiable characteristics. For that purpose, we
adopt the following definition by Payne et al. [PBS99]:

"[Effective decision making] is based on thorough processing of information
(reason and reflection) that is transparent and in proportion to the importance
of the question at hand [...]. Such processing should include consideration of
a range of alternative courses of action, consideration of the full range of ob-
jectives to be fulfilled, thorough consideration of the information most critical
to the individual, the making of tradeoffs, and careful review of responses to
detect inconsistencies."

The definition identifies three types of information that have to be taken into account in
order to make a good decision: information about relevant decision alternatives, i.e. the
service alternatives, information about the decision maker’s objectives, i.e. his service

9

CHAPTER 1. MOTIVATION & OVERVIEW

requirements, and knowledge about how to resolve conflicting requirements. Those
information have to be acquired, thoroughly processed and evaluated to make a service
selection decision that is optimal or close to optimal with respect to the service consumer’s
service requirements and the available service alternatives.

Definition 1.1. (Decision making effectiveness) The process of service selection is effec-

tive, if the resulting decision is

• well-informed, i.e. taken in consideration of relevant service alternatives and their

properties,

• balanced, i.e. taken after deliberate resolution of conflicting service requirements,

and

• consistent, i.e. made in consciousness of the user’s service needs and optimal or

close to optimal with respect to these needs and the available service alternatives.

Evaluating the introduced scenario with respect to these standards, leads to the conclusion
that the described decision making process is not effective. This is due to the following
facts:

• The selection decision was not made in consideration of an appropriate range of
available service alternatives, since Max was not aware of the fact, that he could
have traveled by train much cheaper and more conveniently.

• It was also not the result of a careful resolution of conflicting requirements, since
although Max’s hotel selection was a tradeoff between the distance to the conference
location and price, it did not trade off between price and commuting time.

• Finally, the decision did not account for all of Max’s requirements, since he selected
a hotel that did not offer W-LAN access, which was important to Max.

Hence, the resulting selection decisions that were made, i.e. booking of a certain hotel
and a flight, are not (close to) optimal with respect to Max’s service requirements and with
respect to the available service alternatives.

The decision making process was also not efficient, since it was tedious and overly time-
consuming, particularly in light of the decision quality.

Definition 1.2. (Decision making efficiency) The process of service selection is efficient,

if a selection is made within an appropriate period of time and with adequate mental effort.

Appropriateness thereby refers to the (subjective) importance of the service selection task

at hand.

There are two major reasons for this:

10

1.3. THESIS OBJECTIVE

• Ineffective and inefficient retrieval: Required knowledge about relevant services
and their properties was scattered over different websites and could not be effec-
tively and efficiently acquired using available keyword-based retrieval techniques.
This made the process of knowledge acquisition difficult and time-consuming and
hampered the comparison of different decision opportunities.

• Lack of sophisticated decision making support: Max was not appropriately sup-
ported in making the decision that was complex, both, in terms of the number of
available decision alternatives and in terms of the number of interrelated require-
ments that had to be considered. Assistance was neither available for effectively and
efficiently processing those information, nor for evaluating them with acceptable
mental effort.

As already argued, we believe that the emerging Internet of Services based on Semantic
Web Services, that is propagated by leading researchers, can be leveraged to overcome
these shortcomings and will pave the way for a new generation of E-Commerce based on
Semantic Web Services. This is for the following reasons:

• Semantic Web Service technology can solve the problem of ineffective and ineffi-
cient retrieval. This is due to the fact, that semantic service description languages
allow for the precise and machine-comprehensible specification of service require-
ments. Those semantic requirements descriptions can then be leveraged to effec-
tively and automatically retrieve, configure, compose and invoke on-demand appro-
priate functionality offered through the Internet as standalone Web Services.

• Semantic Web Service solutions can provide sophisticated decision support for ser-
vice selection, since they benefit from the availability of semantic service descrip-
tions, that provide rich and machine-comprehensible information about available
service alternatives and their characteristics.

While the issue of effective and efficient Semantic Web Service retrieval in a Web-scale is
addressed by current research, the provision of sophisticated decision support for Semantic
Web Service selection has been neglected so far.

1.3 Thesis Objective

The previous section motivates the overall objective of this thesis, which is the creation of
a system, that provides effective end-user support for making both, effective and efficient,
service selection decisions. Such a system shall be applicable, but is not restricted to,
service selection decisions, as they arise in an E-Commerce setting.

As already argued, consumer requirements are constructive by nature and information re-
sources on the Web are not necessarily trustworthy. Hence, the envisioned system has to
account for the fact that, both, knowledge about the consumer’s service requirements as

11

CHAPTER 1. MOTIVATION & OVERVIEW

well as knowledge about the capabilities of available service offers might be inaccurate
and incomplete, i.e. is uncertain.

The overall objective of this thesis can be formulated as follows:

Objective 1. (Thesis objective) Develop a system that effectively supports service con-

sumers in efficiently making well-informed, balanced and consistent service selection

decisions in the presence of uncertainty arising from inaccurate and incomplete knowl-

edge about a consumer’s service requirements and the capabilities of available services.

Appropriate targets of such a system are decision problems that are

• complex, in terms of the number of available service alternatives and/or in terms of
the number of interrelated service requirements that have to be considered, and

• important in terms of resulting in some kind of (not necessarily monetary) loss for
the decision maker, if not solved properly.

Otherwise, providing sophisticated decision support is not required and/or not appropriate.

1.4 Solution Design

In the previous sections, we motivated and formulated the thesis objective of providing
effective decision support for service selection and compiled a list of criteria that allow
for the verification of its fulfillment. However, we did not provide any specific actions to
take in order to achieve this goal. In this section, we will derive those actions in terms of
operational objectives, indicating how to implement the envisioned system. An in-depth
analysis of service selection as a class of decision problems will deliver those objectives.

Howard [How88], who coined the term decision analysis for that process, suggested a 3-
step iterative analysis cycle to perform this task (Figure 1.1). The first step, termed Problem

formulation, comprises the process of formally modeling the considered decision problem
at hand. According to Howard, this includes the specification of three main components:
the decision alternatives, the preferences of the decision-maker and the information that is
relevant for for making the decision (Figure 1.2). The latter refers to “any models, rela-
tionships or probability assignments that may be important in characterizing the connection
between decisions and outcomes”. Based on the resulting model, which is referred to as
decision basis, the optimal decision alternative is determined (Evaluation phase). In a last
step, called Appraisal, it is assessed whether the acquired decision is convincing or not.
In the latter case, a refinement or reformulation of the decision problem and thus another
pass of the analysis cycle, is required. The appraisal step often involves a sensitivity analy-
sis, which investigates the robustness of the optimal decision against slight changes of the

12

1.4. SOLUTION DESIGN

Figure 1.1.: Howard’s decision analysis process (taken from [How88])

Figure 1.2.: Problem formulation (taken from [How88])

problem model. The cycle stops if the problem model is “requisite“, i.e. “its form and con-
tent are sufficient to solve the problem”. In particular, this means that “everything required
to solve the problem is represented in the model or can be simulated by it” [Phi84].

In the remainder of this section, we analyze service selection as a class of decision prob-
lems and derive essential components of a system that assists consumers in making such
decisions. Adopting the presented 3-step analysis procedure, we start by defining and
formulating service selection as a decision problem to identify and characterize the type
of knowledge that is required to solve it (Section 1.4.1). After that, we determine the
components that are necessary to evaluate this knowledge in order to identify promising
decision alternatives and to enable effective and efficient decision making based on it (Sec-
tion 1.4.2). Finally, required means to evaluate the robustness of a decision in terms of the
reliability and completeness of the information it is based on as well as means to deter-
mine relevant, but missing knowledge, to contribute to the quality of a decision are derived
(Section 1.4.3).

13

CHAPTER 1. MOTIVATION & OVERVIEW

1.4.1. Problem Formulation

We provide a very general definition of service selection.

Definition 1.3. (Service selection) Service selection is the problem of choosing a service

out of a set of alternative services that best fits to a consumer’s potentially conflicting

service requirements.

This definition implies that service selection is in fact a decision problem. However, it
should be noted, that while aiming at providing decision making support for service se-
lection, we actually do not have to deal with a single decision problem, but with a class
of decision problems. Thus, when modeling service selection as a decision problem, we
have to provide generic models that can be instantiated to characterize a particular decision
situation. More specifically, we have to model decision alternatives, i.e. services and their
capabilities, and the user’s objectives, i.e. his service requirements including his prefer-
ences. The latter will allow us to compare and rank service alternatives according to their
suitability.

Modeling service requirements A model of the consumer’s requirements should
cover a specification of the service functionality that is required by the consumer as well as
a model of his preferences regarding the properties of alternative service offers. However,
in general we cannot assume to have an accurate and complete model of those requirements
readily available. In fact, at the time a service selection problem arises, users typically do
not have a complete picture of the functionality they desire and an even vaguer idea of
their preferences. Those requirements are rather constructed over time as the user becomes
familiar with available service alternatives and their properties [JWP93]. This fact should
affect both, the way knowledge about service requirements is modeled and elicited. In par-
ticular, knowledge about the user’s service requirements cannot be merely elicited from the
user, it rather has to be interactively acquired and incrementally refined as it is constructed
by the user. Since service requirements and preferences are constructed when being faced
with available service alternatives, the two processes of requirements elicitation and ser-
vice selection cannot be separated, they rather have to be interwoven into a process of
incremental requirements elicitation and service selection that alternates phases of inter-
mediate service recommendation based on partially known requirements and requirements
refinement based on the presented service alternatives. The fact, that the system’s knowl-
edge about the consumer’s requirements is incomplete and potentially inaccurate, i.e. un-
certain, should be considered when making service recommendations and when providing
personalized assistance. Hence, model uncertainty has to be explicitly represented within
the requirements model.

Modeling service capabilities In order to assess the suitability of available service
alternatives with respect to the consumer’s service requirements, a rich model of the func-
tionality provided by those services is required. Those models are typically published by

14

1.4. SOLUTION DESIGN

the service providers in terms of service offer descriptions. However as already argued
(Section 1.1), we cannot be sure about the validity of those information. Hence, service
selection decisions based on the properties promised in published offer descriptions are
associated with uncertainty about the actual outcome of a service invocation. Uncertainty
per se is not bad. However, if the outcome of a service interaction is worse than promised,
service execution is also associated with some kind of loss and thus with a certain risk
[Hub07]. Awareness and knowledge about this risk is essential for making well-founded
service selection decisions. To acquire this knowledge, information about the actual out-
come of available service alternatives are required. However, in general, a single consumer
has experiences with just a few service providers at his disposal and thus lacks sufficient
knowledge. As a solution to this problem, collaborative feedback mechanisms have been
proposed in the literature (see [JIB07] for an overview). This type of approaches has been
successfully and widely used [JIB07, Del02] and allows to predict a service’s future per-
formance. It thus enables risk assessment. In order to assess the risk that is associated with
the execution of a service, we have to devise such a feedback mechanism. This includes the
design of a model, that is capable of describing feedback referring to multi-faceted service
interactions, and the development of an effective mechanism for eliciting this feedback.

1.4.2. Problem Evaluation

In order to support the user in identifying service offers, that can fulfill his requirements,
there is a need for a mechanism that is capable of matching the requirements encoded in
the requirements model to the capabilities offered by available services as described in
their capabilities models, i.e. the service offer descriptions, and finally rank matching of-
fers according to their suitability. This requires both, requirement and capability models
to be constructed in a way that allows for such a comparison and ranking in an effective
and efficient way. As discussed earlier, this functionality is already provided by existing
semantic matchmakers. However, since the knowledge about a consumer’s service require-
ments is potentially inaccurate and incomplete, existing matchmaking functionality has to
be appropriately extended to be capable of retrieving matching service offers based on un-
certain requirements. In order to support the user in making well-informed, balanced and
consistent service selection decisions, we have to provide means to educate him about the
characteristics of available services and have to encourage him to explicitly resolve con-
flicting requirements. We already argued, that due to the fact that service offer descriptions
are potentially inaccurate and incomplete, the outcome of a service interaction might not
be as promised in the offer and thus might result in some kind of loss, e.g. in case a service
provides “less than expected” by the consumer. Hence, to enable well-informed decisions,
the user should be made aware of the risk that is associated with the execution of a certain
service. This requires the development of both, a procedure that effectively leverages avail-
able consumer feedback to predict a service’s future performance and thus the risk that is
associated with its execution, and means to effectively communicate this knowledge to the
user. Thereby, the latter should account for different risk attitudes.

15

CHAPTER 1. MOTIVATION & OVERVIEW

1.4.3. Appraisal

The aim of the formulation phase is the construction of a requisite model of the decision
problem. Such a model should have an appropriate form and should consider all aspects
that are relevant for the decision problem at hand. Sensitivity analysis is the instrument
that helps to decide whether an existing model is requisite or not. In terms of our problem,
this means that in order to make robust decisions, we have to ensure: 1) that requirement
models and service offer descriptions take an appropriate form, 2) that they are based on
a domain model that is provided in an appropriate format and allows to describe the ser-
vice aspects that are relevant for service selection decisions in a certain domain and 3)
that they are complete, i.e. include all service aspects that are relevant in the context of a
certain service selection decision. While the fulfillment of the requirements 1) and 2) can
be verified at development time, this cannot be done for the third one. In fact, for service
offer descriptions, the fulfillment of requirement 3) cannot be guaranteed at all, since their
creation is in the responsibility of the service provider. The completeness and accuracy of
the consumer’s requirements model is essential for making well-informed and consistent
service selection decisions and has to be ensured by both, the system and the user at run-
time, when a specific requirements model is available. To enable this, we have to provide
means to identify knowledge gaps related to the maintained requirements model and means
to to acquire required knowledge. This will effectively reduce model uncertainty and thus
contributes to the efficiency of the decision making process. However, effectively closing
knowledge gaps requires the service consumer to be able to communicate his service re-
quirements to the system. Empowering end-users to do so, requires the provision of means
to specify service requirements in an intuitive and informal way.

1.4.4. Operational Objectives

The summarize the above discussion, we can state, that the thesis objective of effectively
supporting service consumers in efficiently making well-informed, balanced and consis-
tent service selection decisions (Objective 1), can be achieved by accomplishing the two
subsequent objectives.

16

1.4. SOLUTION DESIGN

Objective 2. (Modeling, elicitation and usage of consumer feedback) Devise a feed-

back mechanism that is both, effective in terms of acquiring knowledge about the risk

that is associated with the execution of a service and effective in terms of its ability to

support service selection in the presence of this risk. This includes

• the design of a model, that is capable of describing feedback referring to multi-

faceted service interactions,

• the development of an effective mechanism for eliciting this feedback,

• the provision of a procedure that effectively leverages available consumer feed-

back to predict a service’s future performance and thus the risk that is associated

with its execution, and

• a means to effectively communicate this knowledge to the user and thereby ac-

counting for different risk attitudes.

Objective 3. (Modeling and elicitation of consumer requirements for service selec-

tion) Develop an incremental and interactive method for requirements elicitation and

service selection that effectively supports service consumers in making well-informed,

balanced and consistent service selection decisions and enables them to do this effi-

ciently. This includes

• the design of a requirements model, that is capable of describing a user’s service

requirements and preferences and explicitly represents model uncertainty,

• the development of a mechanism that is capable of retrieving matching service

offers based on uncertain requirements encoded in the requirements model,

• the provision of means to educate the user about the characteristics of available

services and means to encourage him to explicitly resolve conflicting require-

ments,

• the provision of means to effectively reduce uncertainty about the consumer’s ser-

vice requirements, and

• means to specify service requirements in an intuitive and informal way.

This thesis will complement research results related to the following issues, which them-
selves are not considered by this work:

• service mediation

• service composition

• effective Semantic Web Service retrieval at a large scale

17

CHAPTER 1. MOTIVATION & OVERVIEW

• detecting and counteracting dishonest consumer feedback

• efficient feedback propagation and retrieval

1.5 Thesis Outline

To provide the reader with a quick overview, the basic structure of the thesis is depicted
and briefly explained below.

I. Introduction
1. Motivation & Overview
2. Background

II. Decision Support for Semantic Web Service Selection
3. Overview
4. Underlying Service Description Language
5. Modeling and Elicitation of Consumer Requirements for Service Selection
6. Modeling, Elicitation and Usage of Consumer Feedback

III. Implementation and Evaluation
7. System Implementation
8. Evaluation of the Requirements Elicitation and Service Selection Mechanism
9. Evaluation of the Feedback Mechanism

IV. Final Considerations
10. Summary and Conclusions
11. Future Work

Appendix
A. Ontology for the Computer Items Domain
B. Questionnaire for the Evaluation of the Requirements Elicitation and Service

Selection Mechanism
C. Questionnaire for the Evaluation of the Judgment Recommendation Mechanism

Subsequent to this section, the introductory part of the thesis (Part I) will be completed
by providing background information related to the thesis topic (Chapter 2). This involves
a brief introduction to Service Oriented Architectures and Web Services as well as an
introduction to human decision making and decision support systems. The parts II and III
make up the main part of the thesis and each are basically structured according to the two
main objectives of this thesis, i.e. requirements elicitation and service selection as well
as elicitation and usage of consumer feedback, as identified in Section 1.3. They provide

18

1.5. THESIS OUTLINE

a detailed discussion of our approach to support consumers in making service selection
decisions (Chapters 3-6), its implementation (Chapter 7) and evaluation (Chapters 8 and 9).
This also includes an analysis of research efforts related to each of the considered topics.
Finally, Part IV summarizes our contribution and highlights future research directions. The
Appendix contains supplementary information on selected aspects of the thesis.

19

2
Background

This thesis aims at the provision of decision support for service selection (cf. Section 1.3).
We will therefore introduce Service Oriented Architectures as a flexible way of organizing
and using distributed functionality (Section 2.1). We will detail on services as the basic
building block of Service Oriented Architectures and explain how they are typically used.
We will discuss the challenges that arise from the change in scale and target audience of
Service Oriented Architectures induced by their Web-scale use and emphasize the role of
semantics in addressing those challenges. We will provide background information on
human decision making and its shortcomings, particularly when facing complex decision
problems as they arise when being required to make service selection decisions at a Web-
scale (Section 2.2). Finally, we will introduce Decision Support Systems and discuss their
role in mitigating these shortcomings.

2.1 Service Oriented Architectures and Semantic Web Ser-

vices

Service Oriented Architecture refers to a particular way of

"organizing and utilizing distributed capabilities that may be under the

control of different ownership domains. It provides a uniform means to offer,

discover, interact with and use capabilities to produce desired effects consis-

tent with measurable preconditions and expectations" [OAS06]).

More specifically, in a Service Oriented Architecture distributed capabilities are organized
as network-accessible, standalone services, that provide an encapsulated and loosely cou-
pled piece of functionality, i.e. that are self-contained and make no or little assumptions on
other system components. Those services are offered by service providers and can be used
by service consumers, who require a certain functionality (cf. Figure 2.1). Thereby, service
capabilities can range from simple currency converters to complex business services that
can be e.g. used to make a hotel reservation. In addition to the service itself, the service
provider publishes a description of the service’s capabilities in a service registry, which

21

2.1. SERVICE ORIENTED ARCHITECTURES AND SEMANTIC WEB

SERVICES

interfaces and UDDI 5 as XML-based service registry are commonly used in enterprises
[Sho08, Res10].

The advantageous properties of Service Oriented Architectures predestinates Service Ori-
entation as the underlying design principle for offering and using functionality over a huge
and heterogeneous network such as the Internet. In fact, we recently observe an increasing
number of services being published on the Internet as more and more companies start to
offer their internal business functionality as Web Services. Experts expect this trend to con-
tinue and envision the emergence of an Internet of Services [SJ07, BDB05], a Web-scale,
user-centric SOA based on easily accessible Web Services.

"The Internet of Services is a vision of the Internet of the Future where

everything that is needed to use software applications is available as a service

on the Internet, such as the software itself, the tools to develop the software,

the platform (servers, storage and communication) to run the software. [...]

Anybody who wants to develop applications can use the resources in the In-

ternet of Services to develop them."6

Compared to existing SOAs, the Internet of Services imposes challenges with respect to
both, scale and target audience. In particular, we face a huge number of service providers
that are no longer known and trusted and that offer services that are even more hetero-
geneous than in an intra- or inter-enterprise setting. Moreover, while up to now Web
Services have been typically retrieved and used by system developers to create end-user
applications, now end-users shall be enabled to perform this task. This requires scalable
techniques for service discovery and matchmaking at a large scale and in particular a high
degree of automation of these and other service-related tasks such as service mediation. At
the same time, involving end-users in the SOA process, necessitates effective support to
enable this.

Semantic technologies will play a major role in addressing these challenges [BDB05,
FFST11]. Thereby, semantic service descriptions that unlike, e.g. a WSDL-document,
do not just describe the interface of a service, but also the effect of a service in a machine-
comprehensible way have the potential to enable automatic service discovery that goes
beyond pure interface matching. They also provide the information that are needed for
automatic composition of services, for automatic service binding, mediation and execution
as well as for sophisticated end-user support. Though, e.g. with WSMO7 and OWL-S8

semantic approaches to service description and matchmaking have been proposed, these
have not yet been adopted in practice [BF08]. End-user support for formulating service
requirements and user-mediated service selection are hardly considered yet [Agr06].

5Universal Description, Discovery and Integration, http://uddi.org/pubs/uddi_v3.htm
6http://cordis.europa.eu/fp7/ict/ssai/home_en.html
7http://www.w3.org/Submission/WSMO/
8http://www.w3.org/Submission/OWL-S/

23

CHAPTER 2. BACKGROUND

2.2 Decision Making and Decision Support

Decision making is the process of selecting an option out of a set of alternative courses
of action that considering the current state of nature results in an/the outcome that is most
valuable for the decision maker. Thereby, the outcome of a decision is not necessarily
known in advance, since a taken action might have several possible outcomes depending
on the state of nature (decision making under uncertainty). If the probabilities with which
possible outcomes occur are known, we speak of decision making under risk [Kni21]. The
value of a certain decision outcome depends on the personal preferences of the decision
maker, i.e. his utility function. The best choice to be taken in a given decision situation
under risk depends on both, the decision makers utility function and his risk attitude. A
rational decision maker would then choose the decision that maximizes the expected utility
of the outcome [JvN53].

However, human choices are typically far from being rational. This lies in the way humans
construct their preferences, the way they process information required to make a decision
and in the way they are actually making a choice based on these information. In particu-
lar, if a decision task is complex, e.g. in terms of the number of available alternatives or
the number of involved attributes, or just appears to be complex, e.g. since the alterna-
tives and their properties are presented in a format that is difficult to read, a wide range
of heuristics simplifying the decision process are applied (see [PBS99] for an overview).
This is due to the fact, that humans’ capabilities as an information-processor are limited
[JWP93]. As a result, decision makers typically consider an (unnecessarily) narrow range
of alternatives, do not account for/are not aware of all of their objectives and all possi-
ble states of nature when making a decision (myopic decision frame). They make highly
selective use of information such as focusing on the information that is most salient, but
not necessarily most relevant. Moreover, they base their selections on simple heuristics
to minimize cognitive effort. In particular, making explicit tradeoffs is avoided. Instead
non-compensatory decision heuristics such as selecting the obvious or the alternative that
is typically selected are applied. Human decisions are also often guided by other goals
than just making accurate decisions, such as reducing negative emotions or easing the jus-
tification of a decision [BLP98]. Finally, human choices are context-dependent, i.e. the
value of a given alternative depends on the characteristics of other alternatives (similar-
ity of alternatives, dominance relationships between them or the comparability of choices)
(see [JWP93] for an overview). As a consequence, human decisions ”generally reflect both
the decision maker’s basic values for highlighted attributes [...] and the particular (contin-
gent) heuristics or processing strategies used to combine information selectively in order
to construct the required response to a particular situation” [PBS99]. Though this might
be acceptable for decisions that are of minor relevance, it can lead to significant finan-
cial losses and/or can have serious impacts on personal or general welfare if it refers to
important management or governmental decisions.

Decision Support Systems (DSSs) are a class of computer-based applications that have
been developed to improve human decision making by mitigating its shortcomings and
thus promise to solve the discussed issue. In particular,

24

2.2. DECISION MAKING AND DECISION SUPPORT

"[Decision Support Systems] provide knowledge and/or knowledge-processing

capability that is instrumental in making decisions or making sense of decision

situations. They enhance the processes and/or outcomes of decision making.

A Decision Support System (DSS) relaxes cognitive, temporal, spatial and/or

economic limits on the decision maker. The support furnished by the system

allows a decision episode to unfold

• in more-productive ways (e.g., faster, less expensively, with less effort),

• with greater agility (e.g., alertness to the unexpected, higher ability to

respond),

• innovatively (e.g., with greater insight, creativity, novelty, surprise),

• reputably (e.g., with higher accuracy, ethics, quality, trust), and/or

• with higher satisfaction by decisional stakeholders (e.g., decision partic-

ipants, decision sponsors, decision consumers, decision implementers)

versus what would be achieved if no computer-based decision support were

used" [Hol08].

Decision Support Systems provide sophisticated assistance for the single steps to take in or-
der to make decisions in a real world setting, i.e. problem formulation (formally modeling
the considered decision problem), evaluation (determining the optimal decision alternative)
and appraisal (assessing if the preferable decision is convincing) [How88]. This is achieved
in multiple ways, e.g. by providing support for structuring a decision problem at hand, as-
sessing required probabilities, performing a sensitivity analysis, by allowing to assess the
value of acquiring additional information, by summarizing information and by presenting
them in a format that is appropriate for human processing [DF02]. In particular, Decision
Support Systems provide support for making a decision that is reasonable in light of the
given information and in light of the values of the decision maker. Thereby, a single De-
cision Support System typically does not perform all of these tasks, but is domain-specific
and focuses on a certain kind of support. Service selection decisions made at a Web-scale
are particularly complex and thus require effective decision making support provided by
means of a Decision Support System that accounts for the peculiarities of such decisions.

25

Part II.

Decision Support for Semantic

Web Service Selection

27

3
Overview

The objective of this thesis is to create a system that effectively supports service consumers
in efficiently making well-informed, balanced and consistent service selection decisions in
the presence of uncertainty (Objective 1). The decision analysis performed in Section 1.4
identified the system components and their main properties that are required to achieve this
goal. In this chapter, we will provide an overview about our solution that is based on this
system design. We will introduce its main features and their intended usage.

As required by the operational Objective 3, we suggest a solution that implements service
selection as an incremental and interactive process that alternates phases of intermediate
service recommendation and requirements refinement. During that process, the user incre-
mentally develops his service requirements and preferences and finally makes a selection
decision. To effectively support him in these tasks, the system maintains an internal model
of the consumer’s requirements and preferences, which we call request model. Uncertainty
about the service consumer’s true requirements and preferences, that is caused by missing
and/or inaccurate knowledge, is explicitly represented within this model. During the re-
quirements elicitation and refinement process, the request model is continuously updated to
accurately reflect the systems’s growing knowledge about the user’s service requirements
and preferences. Inspired by the incremental and interactive recommendation strategy em-
ployed in example critiquing recommender systems [Smy07], we propose to implement
service selection in a similar fashion. Starting with a request model that is constructed
from the user’s initial requirements, the user is provided with a set of service alternatives
that fit to these requirements. These service alternatives are determined by transforming
the internal request model into a semantic service request that reflects the requirements
specified in the model, but also take the system’s uncertainty about this model into ac-
count. As we will demonstrate (Chapter 5), standard matchmaking with a minor extension
can be applied to retrieve those matching service results sorted by their expected matching
degree. After viewing intermediate service recommendations, the user may critique the
presented service alternatives and thereby indicate desirable service characteristics. For
instance, he might indicate that a certain service alternative is well suited to his needs,
but is too expensive. The system then determines whether there are service offers that
are cheaper and if this is the case, which compromise on other service aspects the user

29

CHAPTER 3. OVERVIEW

has to accept in return. Moreover, the system suggests service aspects and attribute sub-
types that have not been considered yet, but which have been specified in the presented
service offers and thus might be worth to be taken into account by the user. As we will see
(Chapter 8), those facilities serve as a means to educate the user about available service
alternatives, their characteristics and necessary tradeoffs and allow him to specify desir-
able service characteristics in an indirect and intuitive manner. Beside of criticizing the
presented service alternatives, the user may view and directly modify the internal request
model via a graphical representation. The intention behind this feature is manifold. As
we will demonstrate (Chapter 8), it allows the user to correct the system, if necessary,
helps him to comprehend and become aware of his requirements and thus enables him to
actively develop them. This in turn fosters consistency between the request model and
the user’s actual requirements and preferences. However, it is unrealistic to assume that
a non-expert-user is able to understand the internal request model or even make modifi-
cations to it that reflect his changing requirements. To mitigate that problem, we suggest
an editable graphical requirements representation, that provides an abstract view to the in-
ternal model. This view hides and simplifies different aspects of the model and presents
model-intern relationships and dependencies in an intuitive way. Effective visualizations
enable the user to understand relevant aspects of the model and qualify him for making
appropriate modifications (cf. Chapter 8). To keep the request model up to date, all user
interactions trigger appropriate model changes. Once a set of modifications has been taken
place, the user may decide to see service results fitting to the updated requirements. The
process continues until the user finds an appropriate service among the presented alterna-
tives or until he decides to stop without making a selection. To enable the development
of well-constructed preferences and to contribute to the coherence of the refinement pro-
cess, we advocate that the specification of service requirements, whether direct or indirect,
should be user-initiated and not imposed by the system. However, to still being able to
focus and direct the refinement process, we suggest to guide the user by emphasizing in-
teraction opportunities that point to promising refinement directions. This leads to both,
an effective and efficient, refinement process (Chapter 8). This is due to the fact, that the
system leaves the user the opportunity to express those service needs that are important to
him, while at the same time encouraging him to focus on those aspects that are relevant in
light of the available service opportunities and in light of the service requirements that are
already known. Those promising interaction opportunities are determined by leveraging
knowledge about the current request model and the uncertainty related to it.

To acquire information about the actual performance of available services, our solution
to service selection will provide a flexible feedback system, where consumers may report
about their experiences with a specific service (Objective 2). In this context, the focus of
our work is on how to take advantage of the full potential of feedback and how to effectively
utilize those information to evaluate a service’s expected performance. In particular, we
will provide means that allow to detailedly describe a service’s performance with respect
to several service aspects. In addition, we will devise a user-adaptive method that assists
the consumer in providing such feedback. As we will demonstrate (Chapter 9), this method
supports the user in supplying appropriate, comprehensive and meaningful feedback and

30

CHAPTER 3. OVERVIEW

nations and visualizations to present information in a compact and easily perceivable way.
Figure 3.1 summarizes the main features of the solution.

In the subsequent chapters, we provide a detailed description of our approach. We will start
by introducing required background information about the service description language
that underlies our approach (Chapter 4). The two subsequent chapters constitute the main
part of our thesis and cover the description of our suggested solution. The presentation is
structured along the system’s main elements: requirements elicitation (Chapter 5) as well
as elicitation and usage of consumer feedback (Chapter 6).

32

4
Underlying Service Description

Language

Considering the operational objectives (Objectives 2 and 3) derived in Section 1.4, we
decided to base our solution on the semantic service description language DSD (DIANE
Service Description) [KKR04, KKRM05, KKRKS07] and its mechanisms for completely
automatic semantic service matching, selection and binding, which were developed within
the DIANE project1 and build up the DIANE middleware. In this chapter, we will there-
fore briefly introduce DSD and the capabilities of the DIANE semantic matchmaker to
provide the foundations for the further discussion (Sections 4.2 and 4.3). In particular,
we will expand on the advantages of the chosen service description framework compared
to other potential candidates (Section 4.1) and point to the assumptions about the service
descriptions that underlie our approach (Section 4.4).

4.1 Choice of the Service Description Language

Though DSD might not be as expressive as prominent logic-based semantic service de-
scription models such as OWL-S2 or WSMO3, its light-weighted approach turned out to be
sufficiently expressive and well-suited to many practical application scenarios4. Moreover,
it exhibits a number of properties that are desirable in light of the identified requirements.
In the following, we will detailedly explain the rationale for our choice by emphasizing
those properties.

Ontology-based descriptions Like many other service description models, DSD is
ontology-based. More specifically, this means that the concepts used to describe ser-
vices, valid constraints to them as well as valid relationships among those concepts
are defined in an ontology that is shared among the system participants. In doing so,

1http://fusion.cs.uni-jena.de/DIANE
2http://www.w3.org/Submission/OWL-S/
3http://www.w3.org/Submission/WSMO/
4http://sws-challenge.org/wiki/index.php/Main_Page#Most_Recent_Aggregated_Certification_Results

33

CHAPTER 4. UNDERLYING SERVICE DESCRIPTION LANGUAGE

the meaning of service descriptions is made explicit and machine-comprehensible.
Those properties are basic requirements for any service description language, since
they enable independent creation, comparability and computer-based comparison of
service descriptions. By uniquely relating consumer feedback to parts of ontology-
based service descriptions, it also receives a well-defined meaning. Hence, feedback
provided by different consumers can also be automatically compared and related to
each other by a computer program. Finally, ontologies provide a powerful instru-
ment for computer-based assistance of humans, e.g. when formulating their service
requirements.

Semantic descriptions DSD descriptions characterize a service in terms of its effect(s),
i.e. semantically, and not just in terms of its interface. This is in accordance to hu-
man thinking, since when looking for service functionality, consumers (in particular
those with a non-computer-science background) do not think in terms of inputs and
outputs, but rather in goals that need to be achieved. Moreover, often services that
provide a required functionality do not exactly offer the desired interface, and hence
would not be discovered by a purely interface-based matchmaking procedure.

Besides those properties that the DIANE approach has in common with WSMO, OWL-S
and other semantic service description approaches, it also exhibits a number of desirable
characteristics that are not shared by other solutions.

Highly structured descriptions Logic-based service description models are very ex-
pressive, but give the user too much freedom in creating descriptions. Hence, they
often lack the necessary guidance for requirements formulation and thus make the
request creation process difficult and error-prone. Moreover, they complicate the
comparison of descriptions. They also do not allow for creating service requests
and offers independently from each other and independently from a certain service
implementation. The latter is an essential requirement in dynamic service environ-
ments. In contrast to that, DSD service descriptions are based on a layered stack of
ontologies and their graphs are trees. This eases the formulation of service descrip-
tions and at the same time provides an expressiveness that is sufficient for the most
real world applications. Moreover, the tree-structure can be effectively explored to
enable efficient and automatic matchmaking. In opposition to other semantic service
description approaches, the DIANE matchmaker is not overly complex and considers
all language elements when comparing descriptions. The structured nature of DSD
descriptions induces further desirable characteristics, which will be subsequently
discussed.

Availability of partial matching results Due to its graph-based matchmaking approach,
the DIANE matchmaker is able to provide partial matching results referring to dif-
ferent aspects of a description. This property makes it possible to explain matching
results. In particular, it allows to explicate, why a certain match failed and thus pro-
vides a valuable foundation for assisting the user in the requirements formulation
process.

34

4.1. CHOICE OF THE SERVICE DESCRIPTION LANGUAGE

Hierarchical descriptions DSD descriptions are hierarchical, i.e. service aspects at
the top of the description tree are refined in lower levels of the tree. This description
design perfectly fits to the constructive nature of consumer requirements by support-
ing an incremental refinement process. Moreover, hierarchical descriptions allow to
relate consumer feedback to service aspects on different abstraction levels. As we
will see, this allows for a comprehensive and at the same time user-adaptive feed-
back mechanism. Furthermore, hierarchical descriptions allow for the aggregation
of consumer feedback that is related to several service aspects up to levels of differ-
ent granularities. Aggregating feedback information reduces their detailedness and
thus enables privacy-aware feedback propagation. Finally, formulating and match-
ing service requirements in a hierarchical manner allows to locate uncertainty about
the user’s service requirements, i.e. allows to detect knowledge gaps and to identify
the type of information that has to be acquired to fill them.

Intuitive description representation DSD provides an intuitive and comprehensible
representation of service request and offer descriptions as a tree. This facilitates
the knowledge transfer between the system and the user. It thus makes suggestions,
that are provided by the system, comprehensible, allows to scrutinize the system and
enables the user to provide meaningful responses.

Explicit preference model Service consumers have individual preferences about ser-
vice characteristics, which have to be considered when matching their service re-
quirements to available service offers and ranking the latter in a personalized way.
Moreover, knowledge about a service requester’s preferences is required to assess the
relevance and thus the value of missing requirements information, i.e. to quantify un-
certainty. DSD accounts for those facts, by providing language elements that allow
to specify preferences related to different service aspects. Those preferences are con-
sidered during service matchmaking and are utilized to individually rank matching
services. In this context, it is advantageous that DSD models preferences in a way
that is compatible with common preference representations used in multi-attribute
utility theory (MAUT) [KR93].

We would like to note that with the WSML variant WSML-MX [Kau06, KKK08] an-
other semantic service description approach exists, that implements recursive matchmak-
ing based on hierarchical descriptions5. However, this approach does not model user pref-
erences and hence does not fulfill one of our basic requirements.

After having clarified the reasons for choosing DSD as the service description language
that shall underlie our approach, we use the subsequent sections to briefly introduce the
DIANE service description language and the DIANE matchmaking approach.

5As indicated by the authors, the approach was inspired by DSD and the DIANE matchmaker.

35

CHAPTER 4. UNDERLYING SERVICE DESCRIPTION LANGUAGE

4.2 DIANE Service Description Language

DSD is an ontology-based and purely state oriented description language. The latter means
that the functionality a service provides as well as the functionality required by a service
consumer is described by means of the required state(s) of the world before (precondi-

tion(s)) and the resulting/required states after (effect(s)) the service execution. In the ser-
vice request depicted in Figure 4.1, the desired effect is that a product is owned after service
execution. In DSD, preconditions and effects are represented by declarative instance sets,
where a single element of such a set corresponds to a particular precondition required by a
service or the effect that is produced by a particular instantiation of a service (service in-

stance), respectively. Sets are configurable via variables symbolizing inputs and outputs of
a service. In doing so, the relationship between the parameters of a service and its effect(s)
is made explicit. DSD descriptions are build on a layered stack of ontologies. While the
upper service ontology defines the basic structure of service descriptions, as depicted in
Figure 4.2, a relatively small set of category ontologies categorizes and defines possible
states of the world. Finally, a wide range of specific domain ontologies, that provide the
concepts to characterize services and their properties in the various fields of application,
is available. This ontology design forms the foundation for both, a structured and flexible,
service description mechanism.

The service descriptions that are created by service providers and service requesters usually
differ in their precision. Whereas a service provider describes the service instances he is
able to offer, a requester typically does not know about available services and is rather
interested in a certain functionality, but not in a particular service. DSD takes this into
account by modeling service offers and requests in slightly different, but compatible, ways.
Service offer descriptions describe the set of service effects that can be produced by a
service, e.g. the set of mobile phones that can be owned after executing a certain phone
selling service, as well as the preconditions for its correct execution, e.g. the availability
of valid credit card information. In addition to that, service offer descriptions specify
the information that are required for the service execution and those that are delivered
afterwards as a result. This is done by placing appropriate IN(put)- and OUT(put)-variables
in the effect description. After service execution, exactly one of the producible effects has
been achieved and the promised information are provided.

In contrast to that, service request descriptions declaratively characterize the set of service
effects that are desirable for the service consumer and specify the information that shall
be accessible after the service execution. The latter, is again done by placing appropriate
OUT-variables in the request description. In the service request depicted in Figure 4.1,
acceptable effects are the ownership of a mobile phone that is cheaper than 50$ (or slightly
higher), that is either silver or black, is of bar or slider style and is either from Nokia or
Sony Ericsson. However, typically, different service effects are not equally desirable for
a service consumer. Therefore, in a service request, the set used to describe acceptable
service effects can be fuzzy, where a given effect’s membership value directly maps to
the user’s preference value for it. Membership and thus preference values are real-valued

36

4.2. DIANE SERVICE DESCRIPTION LANGUAGE

and range from 0.0 to 1.0. A membership/preference value of 1.0 indicates that the service
effect is contained in the set of desirable effects and is totally acceptable, while a preference
value of 0.0 means that the effect is not contained in the effect set and is not acceptable at
all. Values between 0.0 and 1.0 indicate acceptable service effects, where a higher value
indicates a higher preference, i.e. higher desirability. Preference values induce an order
over the available service effects.

price

Product

MobilePhoneType

Model

Owned

:ServiceProfile

productType

style colorphoneType

manufacturer model

product

effect

Battery

battery

...

Company

in {nokia[1.0], sonyEricsson[0.8]}

in {bar, slider}

MobilePhoneStyle Color

in {silver, black}

Price

Currency

==usd

Double

~<=50

currency

amount

MobilePhone

0.3 * (battery * style * color) +

0.7 * (phoneType * battery * color)

OUT

Figure 4.1.: DSD service request

Hierarchical characterization of service effects After having introduced DSD’s
approach to model services in general, we will particularize on its specific mechanism to
declaratively and hierarchically characterize (desirable) service effects and their properties
using the notion of an instance set. In contrast to a class, which represents all instances of
a certain type, an instance set comprises of an arbitrary collection of instances. DSD offers
a number of language elements to declaratively define those instances, each representing a
service effect. In the remainder of this section, we will give a brief overview about those
elements.

In DSD, a set is characterized by its type condition, that indicates the ontological type of
the instances that are valid members of the set. For instance, the effect set in Figure 4.1 is
of type Owned. By default, only instances that share the specified type of a set or one of

37

CHAPTER 4. UNDERLYING SERVICE DESCRIPTION LANGUAGE

its subtypes can be members of the set. However, DSD allows for alternative crisp (super,

super[n,1]) and fuzzy (super[n,f]) type check strategies, which extend the set of valid el-
ements by those having a supertype of the specified type. The type check strategies super

and super[n,1] refer to crisp sets and indicate that valid elements can be of any supertype
or of a supertype differing from the specified type by at most n levels in the type hierarchy,
respectively. The alternative type check strategy super[n,f] is the counterpart of super[n,1]

for fuzzy sets. It differs from the latter by the fact, that an instance’s membership value
with respect to its type is 1.0 for instances of the indicated type or one of its subtypes. It is
0.0 for elements that are instantiated from a supertype that differs from the indicated type
by more than n hierarchy levels and is fk, 0 ≤ f ≤ 1, for instances of a supertype that
differs from the indicated type by k ≤ n levels.

A set specification may be supplemented by direct conditions on its members and/or addi-
tional attribute conditions. Direct conditions directly constrain the elements of a set. For
that purpose, the standard comparison operators >, >=, <, <=, ==, ! = and their fuzzy
counterparts ∼>, ∼>=, ∼<, ∼<=, ∼==, ∼! = can be used. For instance, the direct con-
dition ∼<= 50 on the price amount in the example (Figure 4.1) indicates that only prices
lower than 50$ are acceptable. As expressed by the preceding ∼, slightly higher prices
are also acceptable, but with a preference value lower than 1.0. As demonstrated for the
Company attribute in Figure 4.1, the operator in and its fuzzy version allow to directly
enumerate the elements of a set. The values in squared brackets indicate the preference
value of each element. A set may have any number of direct conditions, each defining
a membership function and thus a preference function over the set’s elements 6. In that
case, the preference values of the different direct conditions are conjunctively combined,
i.e. multiplied.

Sets of non-primitive types may specify conditions on the attributes of its potential in-
stances. These attribute conditions refer to valid attributes defined for the ontological type
that has been specified in the type condition of the set. They inherit the name of the cor-
responding attribute defined in the ontology and have a target set they refer to. Both, valid
attributes of a type and valid target set types, are specified in the service ontology. An in-
stance can be an element of a given set, if the attributes specified in the attribute conditions
of the set are specified for that instance and their values are elements of the corresponding
target sets. A missing strategy specified for a given attribute condition modifies this seman-
tics. It allows to assign a predefined, non-zero preference value with respect to an attribute
condition to instances that do not specify the attribute required by this condition. The pre-
defined preference value is 1.0, if the missing strategy assume_fulfilled has been specified.
It is n, if the missing strategy assume_value[n] has been specified and it is ignored7, if
the strategy ignore is applied. Attribute conditions allow for the nested specification of
declarative sets and induce a hierarchical, more and more fine-grained characterization of
(desirable) service effects. For instance, the set MobilePhone in Figure 4.1 is constrained

6For sets of primitive types (Integer, Double, String, Boolean, Date, Time, DateTime, Duration), all operators
are defined. As an exception Boolean and String do not support fuzzy comparison operators. For sets of
non-primitive types, the operators ==, ! =, in and fuzzy in are allowed.

7We refer to [KKRM05] for further details.

38

4.2. DIANE SERVICE DESCRIPTION LANGUAGE

by conditions on its attributes battery, style, phoneType and color. The set MobilePhone-

Type characterizing the attribute phoneType is constrained in turn by conditions on its
attributes manufacturer and model. The (defining8) attributes of a set uniquely define its
elements. For example, in Figure 4.1, all mobile phones with an attribute configuration
from the set {bar, slider} × {nokia, sonyEricsson}× {silver, black} are contained in
the set MobilePhone. Moreover, the target sets of the attribute conditions assign a prefer-
ence value to each of its elements. However, how are those values resulting from a set’s
attribute conditions combined to a preference value for the elements of the conditioned set?
For instance, how are the preference values for the elements of the set MobilePhoneType

in Figure 4.1 derived from each element’s preference value resulting from the evaluation
of its attributes manufacturer and model? By default, the preference values resulting from
the evaluation of an instance’s attribute conditions are conjunctively combined, i.e. multi-
plied. For example, in Figure 4.1, for any mobile phone from Nokia, the preference value
with respect to the set MobilePhoneType is 1.0 (with respect to Company) · 1.0 (with
respect to Model) = 1.0. However, a set may specify an alternative connecting strategy,
that indicates how the preference values resulting from the evaluation of the single attribute
conditions shall be combined. It thus encodes the preferences of the user with respect to the
relative importance of the specified attribute condition. Thereby, any syntactically correct
mathematical expression over the attribute conditions of a set, that can be created using the
operators add, multiply, min, max, weighted sum or power is a valid connecting strategy.
As an example, consider the attribute productType in Figure 4.1. The depicted connecting
strategy applies the weighted sum operator to the product of the attributes battery, style and
color, and to the product of the attributes phoneType, battery and color. It expresses that
the user prefers a certain mobile phone type (indicated by the weight 0.7), but that he is
also willing to accept any other mobile phone with lower preference (weight 0.3), if it has
the indicated style. Color and battery of the phone are important in any case. Operators
applied to preference expressions result in a combined preference value from the interval
[0, 1].

Finally, the target set of an attribute condition can be a variable, which is a special set
that needs to be filled with a value. That value has to be a valid element of the set. After
filling, a variable behaves like a standard DSD set (comprising of a single element). As
mentioned, DSD distinguishes between IN(put)-variables, which have to be filled before
service execution, and OUT(put)-variables, that are filled after service execution. In service
offers, IN-variables serve as a means to provide the service with the information that are
required for its execution. OUT-variables in service offers indicate output information that
can be delivered by the service. In a service request, OUT-variables (such as the attribute
model in Figure 4.1) are used to indicate the information need of the service consumer,
while IN-variables can be used to create parameterized requests.

DSD also supports a number of additional language elements to characterize sets (see
[KKR04, KKRM05, KKRKS07] for more information). However, in the context of our

8Two instances that share the same values with respect to their defining attributes are identical. The values
of any other attribute of an instance can be inferred from the values of its defining attributes.

39

CHAPTER 4. UNDERLYING SERVICE DESCRIPTION LANGUAGE

work, we assume that service descriptions are exclusively based on the described elements.
In particular, we do not allow for language elements that break the tree structure of DSD
descriptions, e.g. by introducing dependencies between service aspects such as multi at-
tribute conditions [KKR09]. This is due to the fact that the strictly hierarchical structure of
service descriptions is a basic prerequisite at several points of our solution.

The general structure of service requests and offers Having elaborated on the
language elements that DSD uses to characterize service requirements and service offers,
we provide a brief overview about the structure of DSD service request and offer descrip-
tions. The basic structure of DSD descriptions is depicted in Figure 4.2. As already men-
tioned, the graph of a DSD description is a tree. The root element of this tree is an instance
of type Service representing the description as a whole. Its attributes indicate the name of
the service provider9, the ServiceProfile, which provides an abstract description of what
the service does/is required to do, and the ServiceGrounding9, mapping the abstract de-
scription of the service in the ServiceProfile to the actual, executable functions that make
up the service and indicates how they can be accessed. The ServiceProfile constitutes
the main part of a service description. It characterizes the precondition(s)9 (if any) and
the (desired) effect(s) of a service in a hierarchical fashion using the mechanisms detailed
above. Thereby, the root of the effect description is given by the effect-operator that points
to a set of type State. A service description might be supplemented by a description of
(desired/offered) non-functional service aspects. In case of a service offer description, the
ServiceProfile also specifies the name of the provided service.

:ServiceProfile

precondition

:Service

:ServiceGrounding

presents

"providerName"

providedBy supports

"serviceName" State1 State2

serviceName

nonfunctional
effect

...

...
...

Figure 4.2.: DSD service descriptions - basic structure

4.3 DIANE Matchmaker

As demonstrated in [KKRKS07], DSD service and request descriptions can be efficiently
compared in a completely automatic fashion. Given a service request, the DIANE semantic

9only in service offer descriptions

40

4.3. DIANE MATCHMAKER

matchmaker determines a/the offered service or a combination of services that best fits to
the requirements which have been specified in the request. How is this achieved? Since a
request describes an ordered set of desirable service instances (by means of their effects)
and a service offer describes a set of provided service instances (from which the service
provider can choose one to provide), the matchmaker has to check if the offered instances
are contained in the instance set that is described in the request. As suggested by the tree
structure of DSD service descriptions, the comparison of the effect(s) (precondition(s))
described in the request and those described in the offer description is recursive and guided
by the request. Starting from the root set of type State (or one of its subtypes) referenced
by the effect-operator of the request, the matchmaker checks in each step, whether the
instances (service effects) described in the offer fulfill the conditions in the request. To
illustrate the procedure, imagine that the request depicted in Figure 4.1 is compared to
a given offer. The matchmaker would first check whether the effects described in the
offer match to the type Owned as indicated in the request. If this is true, the attribute
condition product is checked. Recursive proceeding to the leaves of the request results in a
mismatch or match. In case of a match, a matching degree or matching value with respect
to each attribute condition is returned. These values indicate how well the considered
service offer fits to the required functionality as described by those attribute conditions.
The matching degree with respect to a certain attribute condition is computed as the lowest
value among the offered instances’ membership (preference) values with respect to that
attribute condition. Thereby, the single membership values are determined as the product
of the preferences resulting from the type condition, the direct conditions and the attribute
conditions that have been specified for the considered attribute condition’s target set. In
a final pass from the leaves to the root of the effect description, those matching degrees
are aggregated as indicated by the connecting strategies specified for the intermediate (i.e.
non-leaf) request nodes. The comparison algorithm outputs an aggregated matching degree
from [0, 1] for the offer. That is, a lower bound for the preference value the user would
assign to the offered service, if executed. This is reasonable, since we do not know in
advance which of the offered service instances will be selected for execution by the service
provider. An advantage of the described approach is, that during the recursive calculation
of the (overall) matching degree, an aggregated partial or intermediate matching degree

for each of the attribute conditions that has been specified in the request description is
computed.

While the described procedure can be directly applied to offers that do not contain any
variables, offers that are parameterized with IN-variables need to be configured first, by
filling its variables. The matchmaker automatically determines an optimal variable assign-
ment resulting in the highest possible matching degree. Service offer descriptions that offer
more than one service instance fitting to a particular configuration are called ambiguously

specified. In some cases, it is infeasible or undesirable to provide detailed information
about all offered service instances within the service offer description, e.g. if the number
of offered instances is large or frequently changes, such as the trips that can be booked via
a travel agency. As a result, a valid configuration of such an offer might not necessarily
point to an existing service instance. Hence, though matchmaking based on those underde-

41

CHAPTER 4. UNDERLYING SERVICE DESCRIPTION LANGUAGE

termined offer descriptions can determine the best fitting service configuration(s), it cannot
guarantee that the service configured this way is executable. To counteract that problem,
the service matchmaker can gather additional information about an offer during the match-
making process. For that purpose, the matchmaker needs to fill specific IN-variables of the
offer (so-called estimation variables) with information about the user’s particular service
request and in return receives more detailed information about the offered service instances
provided via specific estimation OUT-variables of the offer. The matchmaker might per-
form several of those estimation steps to acquire all required information.

Based on the matching degrees returned by the matchmaker, fitting service offers might be
ranked and presented to the service consumer for selection. The service(s) corresponding
to a/the selected offer(s) may then be invoked by the DIANE middleware without requir-
ing additional human intervention (if the preconditions are fulfilled). After the service
execution, the matchmaker uses the information provided in the configured service offer
description and the filled OUT-variables of the offer to fill the OUT-variables of the request
with the information desired by the user.

For a detailed discussion of DSD and the DIANE matchmaker we refer to [KKR04, KKRM05,
KKRKS07].

4.4 Assumptions

The basic assumption underlying any predictive algorithm is that the events that have been
observed in the past are equal to or at least similar to the events, which will occur in a simi-
lar situation in the future. That is, to unfold their predictive power, those algorithms require
(relevant) knowledge about the circumstances of the past observations that are leveraged
for making a prediction. This equally applies to any procedure that makes predictions
about a service’s future performance based on consumer judgments referring to the out-
come of past service invocations, as will be proposed in this thesis. This implies, that
meaningful predictions about the future performance of a service can only be made, if the
service instance a consumer judgment refers to is known. This is only true, if we presume,
that any available service offer is either uniquely specified, i.e. for any configuration of this
offer, the service instance that will be executed by the service provider can be uniquely
identified, or if the service instance that has been executed can be inferred by leveraging
the information that is provided by the filled OUT-variables of the user’s service request.

Assumption 4.1. (Availability of information about an executed service instance) Let

i be any service instance that has been invoked by a service consumer. We presume that,

at the time the outcome of this invocation is judged by the service consumer, the semantic

description of this instance is known to the system.

While the DIANE-matchmaker was originally intended to enable completely automatic
service discovery, selection, binding and invocation based on known service requirements,

42

4.4. ASSUMPTIONS

the approach proposed in this thesis aims at the elicitation of unknown, yet to be con-
structed service requirements and user-mediated service selection. This requires detailed
information about available service offers and their properties, since as argued in Sec-
tion 1.4.1, users construct their preferences and requirements over time when facing choices
to be made. Hence, we presume that the required information about potentially matching
service offers are available to the user/matchmaker. In particular, we assume that any avail-
able service instance is either completely determined (i.e. the corresponding service offer
description is not underdetermined) or required knowledge about the service instance can
be completely acquired during an estimation phase. Looking at contemporary online plat-
forms for flight/trip booking (e.g. Expedia.com) or product purchasing (e.g. Amazon.com),
which already fulfill this requirement, this assumption is not particularly restrictive.

Assumption 4.2. (Availability of detailed information about available service instances)
Let i be any available service instance that might be suitable to the service requirements

of a consumer. We presume that detailed knowledge about the properties of this instance

in terms of a semantic description of its attributes is available to the system.

43

5
Modeling and Elicitation of Consumer

Requirements for Service Selection

This chapter introduces the requirements elicitation and service selection process that is
part of our approach. As argued in Section 1.4, such a component is an essential part of
any solution that aims at providing effective support for service selection. However, so far
we owe an analysis of the conditions under which it will both, effectively support service
consumers in making well-informed, balanced and consistent service selection decisions
and enables them to do this efficiently (Objective 3). This chapter starts with the miss-
ing analysis (Section 5.1), followed by a thorough investigation of related research efforts
and their limitations with respect to the identified requirements (Section 5.2). The remain-
der of the chapter is dedicated to the presentation of the devised requirements elicitation
and service selection mechanism. After outlining the basic idea of the developed solution
(Section 5.3), we will describe our internal request model (Section 5.4) and its graphical
representation (Section 5.5). We will also explain how suitable service offers can be re-
trieved based on this model (Section 5.6), how they can be appropriately displayed and
how the user can be enabled to indicate desirable service characteristics based on the pre-
sented alternatives (Section 5.7). Finally, we will argue how the requirements elicitation
and service selection process can be directed and focused to contribute to its efficiency
(Section 5.8) and elucidate how the request model is updated based on the interactions of
the user (Section 5.9). The contributions of this chapter have been partially published in
[KKR11].

5.1 Requirements

The goal of this thesis is to develop a system that effectively supports consumers in mak-
ing well-informed, balanced and consistent service selection decisions (Objective 1). To
be able to perform this task, the system requires a model of the user’s service require-

ments and preferences. While the former allow to identify appropriate service offers, the
latter enable the comparison and ranking of those service alternatives according to their

45

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

suitability. To allow for effective matchmaking, the mechanism that is used to model ser-
vice requirements should provide means to semantically and richly describe desired

service effects. Since service requirements might refer to various service domains, that
mechanism should also be flexible enough to represent requirements related to differ-

ent target domains.

However, as noted earlier (Section 1.4.1), research results from behavioral decision theory
indicate, that service consumers often do not have clear-cut requirements and preferences
when looking for service functionality. People rather construct them instantaneously when
facing choices to be made [PBJ92, JWP93, Slo95]. This particularly holds for decision
situations that are complex and unfamiliar [JWP93], such as those arising in a service
selection scenario. As March argues, the reason for this might be that humans lack the
cognitive resources to precompute and store requirements and preferences for many deci-
sion situations [Mar78]. As a consequence, a system that supports users in making service
selection decisions cannot merely elicit existing requirements and preferences from the
user, it rather has to interactively acquire and incrementally refine those information as
they are constructed by the user. Moreover, since service consumers construct their re-
quirements and preferences when being faced with available service alternatives, the two
processes of requirements elicitation and service selection cannot be separated, they rather
have to be interwoven into a process of incremental requirements elicitation and ser-

vice selection that alternates phases of intermediate service recommendation based on

partially known requirements and requirements refinement based on the presented

service alternatives. A system that is intended to assist users in making service selection
decisions should therefore have the ability to provide this kind of service recommenda-
tions and should support the described way of specifying service requirements and making
a service selection.

Due to the constructive nature of consumers’ service requirements and preferences, the
system’s as well the user’s knowledge about them is typically incomplete. Furthermore,
it is potentially inaccurate. The reasons for this are twofold. On the one hand, the user
might provide inconsistent information. On the other hand, the system’s knowledge about
the user’s requirements and preferences is not directly drawn from the user’s mind, but
derived by interpreting human choices and other input and thus is potentially incorrect. As
a consequence, the fact, that the system cannot be sure about its knowledge about the

consumer’s requirements, should be considered when making service recommenda-

tions and when providing personalized assistance. To enable this, uncertainty about

the consumer’s actual service requirements and his preferences has to be explicitly

represented, measured and located within the requirements model. As we will see
later on, this knowledge is also essential for identifying knowledge gaps and actively clos-
ing them by acquiring missing information.

Indispensable for any system, that is supposed to provide meaningful recommendations
and personalized assistance with service selection, is its ability to maintain a require-

ments model that is consistent with the actual requirements developed by the user.
This means, that the system has to be aware of all the service requirements established by

46

5.1. REQUIREMENTS

the user so far and correctly reflects them. Likewise, it is required that the user is aware

of all his requirements. This is to ensure that the user is able to comprehend and accept
service recommendations made by the system (see [CP02] for similar ideas) and is es-
sential for enabling him to make well-informed and consistent service selection decisions.
However, absolute consistency between the user’s mental requirements model and its coun-
terpart maintained by the system will never be achieved. Hence, the user himself should

be involved in the model construction process and should be enabled to interactively

contribute to the quality of the system’s requirements model [Tin07, NM90, Shn98].
This could for instance be done by allowing him to directly adjust model parameters or by
allowing him to indirectly modify the system’s requirements model, e.g. by critiquing the
service alternative(s) proposed by the system (scrutability of the model) and would give the
user a feeling of control and thus would contribute to his confidence in the system’s abili-
ties [Shn98]. However, service consumers are typically not able to formulate their service
needs in a formal or semi-formal service description language. Offering an effective model
visualization and informal interaction opportunities would enable them to do so [NM90].
Visualized service requirements would also make already constructed preferences more
perceivable for the user and thus would contribute to the user’s comprehension and

awareness of his service requirements. This is essential for making well-informed and
consistent service selection decisions, since evaluating available service alternatives based
on vague and ill-defined requirements will cause service consumers to make choices that
are based on irrelevant values which are not in compliance with their actual objectives
[PBS99, Kee92].

As indicated in [PBS99, Kee92] (see also Section 1.2), thoughtful selection decisions are
characterized by the fact that they are made in awareness and consideration of all the ser-
vice requirements and preferences that are important to the decision maker and relevant
in light of the available service alternatives. Moreover, they should result from a process,
where conflicts between requirements have been resolved by making explicit tradeoffs in-
stead of being based on the application of non-compensatory heuristics as often performed
by decision makers. Hence, as argued in [PBS99] and [Kee92] and empirically shown in
[Che08], the effectiveness of the requirements elicitation and refinement process is largely
determined by the system’s ability to provide incentives for thinking about and subse-

quently expressing preferences and requirements and by its ability to encourage deci-

sion makers to think thoroughly about and finally make tradeoffs. This means not only
to stimulate the user to make preferential statements and express his service requirements,
but also to make them correctly. In particular, it is not advisable to prompt or enforce a
consumer to provide preferential statements he is not able or not willing to provide, e.g.
because he simply does not (yet) have a certain requirement. Hence, we advocate that
expressions of preference and requirements should be user-initiated and not predeter-
mined by the system (see [VPF08, Kee92] for similar thoughts).

At the same time, the process of service selection should be efficient, i.e. made within
an appropriate period of time and with adequate mental effort (cf. Definition 1.2). To
ensure this, the process of requirements and preference elicitation should be directed and

47

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

focused in a way that effectively reduces uncertainty about the service consumer’s re-

quirements. However, in this context it is important to focus on parts of the model

that are relevant in light of the available service options and in light of the user’s

requirements and preferences. Consider for example a ticket booking scenario. If all
available services offer free delivery of the purchased tickets, then there is no need to know
whether the user would also accept some fee for delivery. As well, if the price is not rel-
evant for a consumer’s decision, it is not useful to explore in detail which prices are more
desirable for this user. Results from critiquing-based recommender systems indicate that
purely user-initiated approaches lack this ability [Che08]. Instead, user-initiated prefer-

ence expression paired with effective guidance will enable both, efficient requirements
elicitation and well-constructed requirements [Che08]. However, effective guidance of the
refinement process should exhibit some sort of coherence, i.e. should adjust to the user’s
intention and the context of the task at hand rather than forcing the user to follow a certain
sequence of requirements specification.

Definition 5.1. (Coherent guidance) Guidance is coherent, if it adjusts to the user’s in-

tention and the context of the task at hand.

This is essential for enabling the user to understand and adjust to the refinement process
and thus motivates and enables him to provide useful information.

In their article on a building code for well-constructed preferences, Payne et al. [PBS99]
emphasize that, in addition to stimulate users to reveal preferences, it is crucial to edu-

cate them about relevant service alternatives and their characteristics and to motivate

them to consider this knowledge when making a selection, i.e. to make well-informed
decisions (cf. Definition 1.1). This is required, since consumers tend to base their deci-
sions on a narrow range of options (myopic decision frame) without considering relevant
and potentially more desirable service alternatives.

Results from behavioral decision theory also suggest that the main reason for making sub-
optimal decisions lies in the fact that humans’ capabilities as an information-processor are
limited [JWP93] and hence, a wide range of heuristics simplifying the decision process
are applied. To counteract this phenomenon, they argue that important information should
be appropriately presented to the user to reduce mental effort. This particularly means
that decision support systems should emphasize relevant and important information

to avoid information overflow and should present them in a format that makes them

easy to perceive and easy to comprehend [PBS99].

Finally, it might happen that although a service consumer has well-constructed preferences
and requirements in mind, he fails in making an optimal decision. A system that assists
users in making thoughtful selection decisions should avoid that by supporting the user

in making a selection that is consistent with his requirements, i.e. optimal or close

to optimal with respect to the user’s requirements and preferences and the available

service alternatives (cf. Definition 1.1). According to [PBS99], the major causes for
inconsistent selection decisions are compatibility issues between the scale of an aspect

48

5.1. REQUIREMENTS

of the user’s requirements and the corresponding attribute of the service alternatives as
well as cognitive biases in scale usage such as anchoring effects (tendency of humans to
overly rely on a certain, ”anchored” aspect). As a means to mitigate those undesirable
effects, Payne et al. [PBS99] suggest that decision support systems should facilitate the
easy comparability of requirements and service alternatives and thus allow decision makers
to correctly translate their preferences and requirements into a selection, i.e. to make a
consistent selection without any biases.

The identified requirements to the requirements model, the requirements elicitation and
service recommendation process as well as to the presentation of information constitute
the criteria with respect to which the quality of the user-modeling and service selection
mechanism that will be introduced in the subsequent sections will be measured (Chapter 8).
They can be summarized as follows:

Requirements to the Requirements Model

☛
✡

✟
✠Requirement U.1. (Model contents) The requirements model should comprise of

knowledge about the consumer’s service requirements and his preferences.✛

✚

✘

✙
Requirement U.2. (Descriptive power) The mechanism used to model service require-

ments should provide means to semantically and richly describe desired service effects

and should be flexible enough to represent requirements related to different target do-

mains.✓
✒

✏
✑

Requirement U.3. (Model uncertainty) Uncertainty about the consumer’s actual ser-

vice requirements and his preferences should be explicitly represented, measured and

located within the requirements model.

Requirements to Requirements Elicitation and Service Recommendation

☛
✡

✟
✠Requirement U.4. (Service recommendation) The system should be able to provide

service recommendations and personalized assistance based on uncertain requirements.☛
✡

✟
✠Requirement U.5. (Model construction) The processes of requirements elicitation and

service selection should be unified and incremental.✓
✒

✏
✑

Requirement U.6. (Incentives) The system should provide incentives to think about

and to express (correct) preferences and requirements and should encourage decision

makers to think thoroughly about and to make tradeoffs.☛
✡

✟
✠Requirement U.7. (Requirements specification) The system should allow for require-

ments specification based on presented service alternatives.

49

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION☛
✡

✟
✠Requirement U.8. (Requirements awareness) The system should contribute to the

user’s comprehension and awareness of his service requirements.✓
✒

✏
✑

Requirement U.9. (Model Consistency) The system should maintain consistency be-

tween the requirements model and the user’s actual service requirements and prefer-

ences.✓
✒

✏
✑

Requirement U.10. (User involvement) The user should be involved in the model con-

struction process and should be enabled to interactively contribute to the quality of the

system’s requirements model.✛

✚

✘

✙
Requirement U.11. (Uncertainty reduction) The system should effectively reduce un-

certainty about the consumer’s service requirements. It should thereby focus on parts

of the model that are relevant in light of the available service options and in light of the

user’s requirements and preferences.☛
✡

✟
✠Requirement U.12. (User-initiated actions) Expressions of preferences and require-

ments should be user-initiated and should be effectively guided by the system.☛
✡

✟
✠Requirement U.13. (Process coherence) Guidance should result in a process of re-

quirements elicitation and service selection that is coherent.✓
✒

✏
✑

Requirement U.14. (User education) The system should educate users about relevant

service alternatives and their characteristics and motivate them to consider this knowl-

edge when making a selection.☛
✡

✟
✠Requirement U.15. (Selection efficiency) The process of service selection should be

efficient, i.e. made within an appropriate period of time and with adequate mental effort.

Requirements to the Presentation of Information

✓
✒

✏
✑

Requirement U.16. (Information presentation) The system should emphasize rele-

vant and important information and present them in a format that makes them easy to

perceive and easy to comprehend.☛
✡

✟
✠Requirement U.17. (Selection consistency) The system should support the user in

making a selection that is consistent with his requirements.

50

5.2. RELATED WORK

5.2 Related Work

In this section, we will analyze related research efforts with respect to the list of require-
ments that has been compiled in the last section and identify open research issues. We
focus our analysis on recommender systems (Section 5.2.1), selected approaches to utility
elicitation (Section 5.2.2) and Semantic Web Service selection (Section 5.2.3). We con-
clude with a brief summary of the analysis results (Section 5.2.4).

5.2.1. Recommender Systems

Recommender systems are closely related to Semantic Web Service based retrieval, both
in purpose and functionality, and hence should be discussed in this section and be com-
pared with our requirements. Similarly to Semantic Web Service retrieval, recommender
systems are designed to assist users in finding items of interest in domains with huge and
complex item spaces, such as in an e-commerce scenario. They guide consumer deci-
sions by providing item recommendations. In the last 20 years recommender systems
have been an active area of research resulting in a huge number of approaches employing
many different recommendation strategies. According to the source of knowledge they
exploit to make recommendations, existing systems can be classified into collaborative
filtering, content-, demographic-, utility- and knowledge-based systems [Bur02, Bur07].
The appropriateness of a certain type of recommender system for a certain recommenda-
tion task strongly depends on the characteristics of the application domain’s users and items
[SFHS07, Bur02, Zan09]. The strengths and weaknesses of each technique in different sce-
narios, such as the cold-start problem in collaborative filtering systems, are well-known.
Recently, so called hybrid recommender systems, that try to combine several recommen-
dation techniques to improve recommendation performance, gain more and more interest
[Bur02, Bur07].

However, our evaluation of related research efforts in the area of recommender systems will
focus on utility- and knowledge-based systems, since similarly to Semantic Web Service
solutions, they employ explicit domain knowledge to richly describe items and consumer
requirements. Moreover, they focus on similar application domains. In this section, we
will first describe the basic architecture of those systems and subsequently explain how
they operate. In particular, we will provide a brief overview about the techniques usually
applied to represent knowledge about items and user requirements and will explain how
this knowledge is used to generate recommendations. Moreover, we look at how existing
approaches construct requirements models and analyze their strengths and weaknesses.

Utility- and knowledge-based recommender systems are particularly suitable for domains,
where items are relatively heterogeneous and richly described, where user needs frequently
change and the number of items usually exceeds the number of users [SFHS07]. They rely
on an explicit model of a user’s requirements and his preferences as well as on an explicit
model of the available items to generate recommendations. Instead of eliciting customer

51

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

requirements directly in a preceding interview, they typically operate as conversational

recommender systems [Smy07] that construct a consumer model step-by-step during an
iterative and interactive recommendation dialog with the user.

Knowledge Representation and Recommendation Strategy

Conversational recommender systems originate from conversational case-based reasoning
and hence most of the approaches in this area implement case-based recommendation. A
second line of research employs constraint-based techniques to generate recommendations.
Finally, utility-based recommenders are a third group of approaches, that can be seen as an
extension to constraint-based methods.

Case-based recommenders [Smy07, LR05] rely on items (cases) represented by a well-
defined set of attributes with values in a well-defined domain. Those attributes represent the
properties of the items. User requirements (user queries) may not have this structured form
and may take different shapes. Recommendations are generated based on domain-specific
similarity knowledge that allows to assess the similarity between items and the user query.
Similarity is usually assessed at the attribute level and then aggregated to identify the most
similar items for recommendation. Similarity knowledge is typically created manually or
automatically learned. Due to their similarity-based retrieval strategy, case-based recom-
menders often faced the problem of providing the user with resembling recommendations
and thus failed in presenting real alternatives. Several methods improving the diversity of
recommendations while preserving relevance to the query have been proposed since then
to mitigate this problem (see [Smy07] for an overview).

Similar to case-based recommender systems, items in constraint-based recommenders [FB08]
are modeled as a set of attribute variables, whose possible values are well-defined. Item
characteristics are encoded via constraints on those variables, that restrict possible in-
stances, e.g. the attribute variable price of type integer might be restricted to 20$ for
a certain item. Similarly, user requirements are represented by constraints over a set of
requirements variables. Compatibility constraints restrict possible instances of those vari-
ables and thus ensure the consistency of consumer requirements. If, for instance the value
of the requirements variable price is smaller than 100$, then the value of the requirements
variable quality may be at most ’medium’. The relationship between consumer require-
ments and items is encoded by filter constraints. More specifically, filter constraints are
rules that describe which item variable values are consistent with which requirements vari-
able values of the user. For instance, a filter constraint might indicate, that the value of
the item variable price has to be lower or equal to the value of the requirements variable
maxprice. The task of recommendation calculation can be seen as a Constraint Satisfac-
tion Problem [Tsa95], where those items are recommended, whose item constraints allow a
value assignment to the user and item variables that is consistent with the item constraints,
the customer’s requirements constraints and the filter constraints.

A limitation of the constraint-based approach is that it does not provide an ordering rela-
tion over the recommended items. Utility-based recommenders mitigate this problem by

52

5.2. RELATED WORK

allowing recommendations to be ordered according to their utility. For that purpose, di-
mensions of user interest are identified, e.g. dimensions corresponding to the requirements
variables. Multi Attribute Utility Theory [Cle91] is then used to calculate the utility, i.e.
the fitting degree, of an recommended item with respect to the consumer requirements.

Knowledge Acquisition

As noted earlier, most knowledge-based recommender systems today are implemented as
conversational recommenders. Those systems engage the consumer in a dialog, analo-
gously to a real world sales conversation. During this conversation the system guides the
user through the item space and incrementally constructs and refines a model of the user’s
requirements. Conversational recommender systems employ two major types of conver-
sational styles. Adopting the classification of Shimazu [Shi01, SSN01, Shi02] we can
differentiate between Navigation-by-asking and Navigation-by-proposing. Systems sup-
porting Navigation-by-asking ask the user a series of questions to learn more about his
requirements and preferences. The asking sequence can be defined by the user, who picks
out interesting item attributes on his own, or can be defined by the recommender system.
Order, number and type of the questions that are asked strongly influence the effective-
ness and efficiency of those approaches [BC02, Smy07]. Question selection techniques
range from entropy-based methods, that effectively reduce the number of possible recom-
mendations by asking questions with a high information gain, to solutions that employ
more user-centered question orderings and/or provide natural language support. More-
over, a number of approaches, so-called mixed-initiative systems, have been developed
that combine different styles of conversation and feedback acquisition [Smy07, FB08]. In
our opinion Navigation-by-asking has two major drawbacks. On the one hand, questions
are abstract and not related to a concrete item. This might make it difficult for consumers to
answer those questions and limits the user’s possibilities to learn more about the item space
and to build a mental model of his requirements and preferences. On the other hand, leav-
ing the user mainly in a reactive position without explaining why the system asks certain
questions and how these will help to select an item, does not motivate the user to answer
those questions. Moreover, due to the lack of system transparency the user might loose his
confidence in the system’s ability to be helpful in the item selection process.

Systems adopting a Navigation-by-proposing style learn more about a user’s requirements
by engaging him in sequence of recommendation phases. In each round, the user is pro-
vided with some interim recommendations (sample items). He is then asked to provide
feedback about the presented items. Those feedback information are used to revise the
system’s knowledge about the user’s requirements and to provide better recommendations
in the next round. The process finishes as soon as the user found the desired product among
the recommendations. According to Smyth [Smy07], two major types of feedback can be
distinguished. One type which requires only little knowledge and mental effort by the user
is preference-based feedback, where the user simply states a preference of one item over
the others. However, this advantage comes at a cost, since it is often not clear why a user

53

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

preferred an option. Hence, the usefulness of this type of feedback for learning a model of
the user’s requirements is limited. A type of feedback that has been shown to effectively
guide the user’s navigation and selection process [CP06], while at the same time requiring
limited domain knowledge from the user, is critique-based feedback. A critique is a di-
rectional constraint over one (unit critique) or several item attributes (compound critique)
applied to the intermediate recommendations of the recommender system and serves as a
recommendation filter in the next round. For instance, when looking for a computer, the
compound critique ”cheaper and faster” with respect to the attributes price and CPU speed

of a certain recommended item, indicates that the user is interested in computers that are
cheaper than the recommended item and have a higher CPU clock speed. In the context
of those iterative, critiquing-based recommendation strategies, called example critiquing,
compound critiques seem to be very promising and are an active area of research. This is
particularly due to two properties. Firstly, compound critiques allow for constraints on mul-
tiple features at a time [CP06] and thus facilitate the effective acquisition of requirements
information [CP06]. Secondly, by presenting applicable critiques, the system provides the
user with explanatory feedback that makes dependencies between item or product features
explicit [PC06, MRMS04]. Hence, in the subsequent analysis of related research efforts
from the area of recommender systems, we will focus on example critiquing approaches
that use compound critiques. We center our discussion on representative solutions that
mark cornerstones of the progress in this area.

Representative Approaches

Burke et al.’s FindMe approach [BHY96, BHY97] was the first that used example cri-
tiquing as a means to assist the user in searching and browsing complex product spaces.
He implemented several variants of his approach for different domains such as cars (CAR
NAVIGATOR), movie videos (VIDEO NAVIGATOR, PICKAFLICK), rental apartments
(RENTME), restaurants (ENTREE) and for configuring home audio systems (KENWOOD).
In his approach, a user’s product requirements as well as product characteristics are mod-
eled as a set of low-level features. In contrast to this, user requirements are specified on a
more abstract level, e.g. by allowing the user to provide an example product that is close
to his needs or by allowing him to choose a suitable category of products. This relieves
the user from having to deal with low-level features. In order to find products that meet
the user-specified requirements, the system maps the abstract requirements definition to a
set of features. It then retrieves all items that contain one or more of those features. Fi-
nally, a hierarchical sort of the retrieved items is performed. In the course of this process,
items are iteratively ranked according to the user’s preferences. Preferences are predefined
within the system and are expressed as goals that refer to one low-level feature, such as
”as cheap as possible”. For each goal, the system provides a discrete domain-dependent
similarity metric that compares items according to this goal. The approach assumes a fixed
and ordered list of goals, e.g. in the restaurant finder ENTREE the order cuisine > price

> atmosphere > quality is assumed. Items are then iteratively sorted according to those
goals starting with the most important one. The process finishes when all goals have been

54

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

by tradeoff explanation features. If the user chooses an impossible feature combination
that violates feature constraints, the system explains, that he needs to compromise here.
However, again, the knowledge about required tradeoffs has to be manually provided by a
knowledge engineer. Moreover, the guidance provided by the system is limited in that the
refinement process itself is not directed and not focused on promising directions. This is
partially attributed to the fact that uncertainty about the user’s requirements is not modeled
and hence an important ingredient for enabling a directed refinement process is missing.
Finally, a major drawback of the suggested approach is that, to the best of our knowledge,
it has never been formally evaluated, hence it remains open, whether the elicited require-
ments and preferences comply with the user’s actual requirements, whether the suggested
approach contributes to the user’s awareness of his requirements and whether the recom-
mended items are relevant for the user. It is also not known, if the system successfully
assists consumers in making informed and consistent selections.

Reilly et al. [RMMS04, Rei05, RSMM05, RZM+07] proposed a case-based conversa-
tional recommender. A user’s requirements are modeled as a vector of constraints over a
set of attributes, that is predefined for a certain domain. Preferences are not considered.
Item retrieval is similarity-based. To assist the user in the selection process, Reilly et al.
employ a critiquing approach. After posing an initial query, the user is provided with a
textual description of the item recommendation that best fits to his requirements, i.e. with
the item (case) that is most similar to his query. In a subsequent step, he may criticize this
item (cf. Figure 5.2). The provided critique works as an item filter in the next retrieval
phase, where the item that is most similar to the previous recommendation and compatible
with the critique is proposed. Critiques are either unit critiques, which are user-initiated,
or compound critiques, that are system-proposed and thus can break the coherence of the
refinement process. In contrast to the solution of Burke et al., compound critiques are
dynamically generated at runtime considering available items and their properties. To
emphasize this characteristic, Reilly called his approach ”dynamic critiquing”. Critique
generation works as follows. In a first step, item vectors, i.e. cases, are transformed into
vectors of attribute-related critiques that characterize the considered items relative to the
current recommendation. For instance, if an item is cheaper, but of less quality than the
recommended item, the resulting critique vector would be �↑, ↓�, indicating that the first
attribute’s value was improved and the latter’s declined. In a second step, recurring critique
patterns are identified utilizing the Apriori-algorithm [AIS93] for frequent itemset and as-
sociation rule mining. The resulting set of frequent critique patterns is typically large. For
that reason, Reilly proposed to present just 5 of those critiques to the user. This is done by
providing a textual description of the critiquing pattern (cf. Figure 5.2), which, according
to [RZM+07], was easy to understand for the majority of the test users. Critique selec-
tion is guided by the support of the mined critique, indicating the proportion of items to
which the pattern applies. Though dynamic critiquing educates the user about available
products and their characteristics and encourages the user to make tradeoffs, it is limited in
that the suggested compound critiques do not necessarily meet the user’s intention and thus
do not necessarily provide relevant information, that is required for making an informed
selection. This is confirmed by Reilly’s evaluation results [RZM+07] and attributed to

56

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

context, it was not analyzed and thus remains open, whether the suggested approach also
contributes to the user’s awareness of his requirements and whether the final item selection
was consistent with the user’s requirements.

The previous approaches have in common, that they enforce users to express their re-
quirements and preferences over a fixed set of attributes. However, as already argued,
users actually might not have preferences on all attributes. Hence, by obligating to pro-
vide non-existing preferences, those approaches might elicit incorrect preferences, which
in turn might lead to inconsistent consumer models. The solution of Viappiani et al.

[VFP06, VPF07, VPF08] mitigates that problem. It allows the user to state initial pref-
erences on fundamental attributes and then motivates him to freely state further, hidden,
preferences by showing him challenging example items. Since the user is not forced to
state preferences, this method stimulates correct preference expressions. As Viappiani et
al. argue, stimulating item suggestions should be reasonable choices under the current
requirements model and should provide a high probability of being optimal after an addi-
tional preference has been added. The authors implemented a conversational recommender
system based on this policy, which they called lookahead principle. For the implemen-
tation, Pareto-optimality was chosen as the optimality concept. Consumer requirements
and preferences are modeled as a set of attributes each associated with a parameterized
preference function. Uncertainty about the existence of certain preferences is encoded by
probability distributions. Uncertainty about the kind of preferences is encoded via proba-
bility distributions over the actual values of the preference functions’ parameters. Once the
user has provided some initial preferences, he is given several relevant item recommenda-
tions that differ in a possible preference. Those recommendations are not already optimal
for the stated preferences, but have the highest likelihood to become Pareto-optimal when
adding a new preference and thus stimulate preference expression. The latter is facilitated
by presenting the recommended items in a table containing a column for each attribute
(cf. Figure 5.3). This allows for an easy comparison of the single items’ attribute val-
ues. The set of shown example items is chosen in a way that maximizes the probability
that at least one of the suggestions in this set will become optimal due to the user having
specified a yet unstated preference. Since explicit optimization is combinatorial complex,
an approximate solution is provided. Users may state additional preferences as long as
they think it gets them to a better choice. After that, the probability distributions are up-
dated based on the user’s reaction to the shown examples. Finally, a new set of recom-
mendations based on the updated requirements model is presented. The process finishes
successfully when the user has found the desired item among the recommendations. As
shown in [VPF08], by choosing item recommendations following the lookahead principle,
the introduced approach to requirements and preference elicitation stimulates correct pref-
erence expressions, contributes to the user’s awareness of his requirements and motivates
informed selections. However, it remains open, whether the elicited model is consistent
with the user’s actual requirements and whether the suggested approach facilitates con-
sistent selections. In the course of the elicitation process, model uncertainty is effectively
reduced in the sense that preferences about yet unconsidered attributes are added. However,
this does not hold for uncertainty associated with already stated preferences that might be

58

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

is particularly annoying in cases where the proposed critiques do not correspond well to
the user-intended tradeoff criteria. Hence, offering only system-suggested critiques can
discourage the user and/or can lead to incorrect preference expressions. As a solution to
this problem, Chen et al. proposed a hybrid system that supports both, user-initiated as
well as system-suggested compound critiques (Figure 5.4). However, Chen’s system does
not actually integrate both styles of critiquing. Instead, the user can either choose to pro-
vide a self-initiated critique or can select a system-suggested compound critique during a
single recommendation phase. As for self-initiated critiques, the user may change condi-

Figure 5.4.: Chen et al.’s hybrid recommender system (taken from [CP07b])

tions on single attributes, change attribute weights or add additional preferences. More-
over, he may perform tradeoffs by indicating attributes that should be optimized and those
that may be compromised to achieve this (see Figure 5.4). As a result of those critiques,
the requirements model is updated accordingly. The update strategy triggered by user-
initiated critiques, is heuristic and directly adjusts model parameters to reflect the user’s
feedback. For instance, in case of a tradeoff, the weights of the optimized attributes are
increased and those of the compromised are decreased. After user-initiated critiquing, the
system starts a new recommendation phase, where a number of matching items is pre-
sented to the user. For that purpose, the set of available items is first reduced by applying
an elimination-by-aspect procedure [JWP93]. This eliminates those items that do not sat-
isfy certain attribute-related thresholds. To inform the user about possible tradeoffs, the
system then determines among those items those that maximally satisfy subsets of the
stated preferences and presents them to the user. The items are ranked by their overall
preference value. However, since the user is not guided in composing compound critiques,

60

5.2. RELATED WORK

the described process can lead to an empty result set, if the user’s requirements are too
restrictive.

In addition to user-initiated critiques, the system can suggest compound critiques to the
user. Those critiques represent tradeoffs that are required in light of the available items
and that are likely to be acceptable for the user. For example, the system might indicate
that there are a number of items that are cheaper, but of worse quality than the current top
item and that there are also items that are more expensive, but of higher quality (see also
Figure 5.4 for examples from the domain of digital cameras). By being presented those
patterns, the user learns that he has to compromise between price and quality. By choosing
one of the suggested critiques, the user actually makes a compromise by weighting one at-
tribute over the other. As shown in [Che08], this contributes to the user’s awareness of his
requirements. Like Reilly et al., Chen et al. apply the Apriori-algorithm [AIS93] for fre-
quent itemset mining to find potential critiquing patterns related to the top item. To reduce
computational effort, the set of input items is reduced to 50 by applying heuristic selection
strategies. From the set of frequent critique patterns produced by the Apriori-algorithm,
a subset is chosen which fulfills some heuristically defined properties. For instance, all
patterns that refer to more than 3 attributes are dropped. Finally, 4 critiques are selected
and presented to the user. In contrast to the approach of Reilly et al., critique selection
is not just guided by the characteristics of the available items, but also by the system’s
knowledge about the user’s preferences and requirements. More specifically, critique pat-
terns are chosen in a way that maximizes the tradeoff utility of the selected patterns as
well as their diversity in terms of shared attributes and the items they are applicable to.
Thereby, tradeoff utility is a heuristically defined measure, indicating the degree of confor-
mance between the critique pattern and the consumer’s requirements. Finally, the critique
patterns presented to the user are labeled. The label explains which improvements relative
to the top-ranked item are achieved by applying this critique, but also which compromises
have to be accepted. Hence, the label is a means to educate and support the user. The
selection of a certain critique pattern by the user triggers a model update and starts a new
recommendation phase. As Chen’s evaluation results indicate [CP07b], the consideration
of a user’s requirements and preferences, when proposing promising critique patterns and
the usage of explaining critique labels improved decision accuracy, i.e. led to an increased
proportion of informed selections. It also reduced decision making effort and improved the
critique prediction accuracy (indicating how well the suggested critiques suit to the user’s
critiquing intention) compared to the one achieved with the approach of Reilly et al.

However, though the solution of Chen et al. exhibits some major advantages, it requires
improvements with respect to a number of aspects. First of all, the proposed procedure for
critique selection excludes many item opportunities that might be interesting for the user.
Moreover, it shows just a very small subset of interesting critique patterns and thus is likely
to miss those that meet the user’s critiquing intention. As Chen’s evaluation results indi-
cate [CP07b], the user’s critiquing intention was met in just about 44% of the cases. Hence,
though the suggested critiques motivate active participation and provide guidance for mak-
ing tradeoffs, the refinement process is not coherent (in case system-suggested critiques
are chosen). This observation is also supported by the evaluation results of Chen [CP07b].

61

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

Though proposed critique patterns were chosen more often than in a system implementing
Reilly’s algorithm, still half of the critiquing interactions were self-initiated. This is par-
ticularly regrettable, since, as noted earlier, the proposed system does not assist the user in
providing self-initiated critiques. This results in a low decision accuracy of about 33% for
self-initiated critiques, whereas the decision accuracy when exclusively choosing system-
suggested critiques was at about 67%. Unfortunately, it was not evaluated whether these
decisions were consistent with the user’s actual requirements. Another drawback of Chen’s
approach is, that uncertainty about the consumer’s requirements is not taken into account.
As a result, the model refinement process is not driven by the desire to reduce uncertainty
about the user’s requirements and preferences and hence lacks an important feature. Fi-
nally, contrary to Viappiani et al., the authors assume that a user has preferences on all the
predefined item attributes. Hence, by implicitly assuming preferences over attributes for
which no preferences exist or by enforcing preference expressions over those attributes,
the system elicits incorrect preferences. This leads to inconsistent requirements models.
Unfortunately, this aspect was not evaluated by the authors.

5.2.2. Utility Elicitation

Expected utility theory [Ber54, JvN53] assumes that a decision maker’s preferences with
respect to uncertain outcomes can be described by a mathematical relation, called utility.
Thereby, utility accounts not only for the payout size of an outcome, but also for the risk
attitude of the decision maker and the fact that a certain payout might have a different value
for different people. According to the theory, when facing risky choices, rational decision
makers choose the decision strategy that maximizes the expected utility of the outcome.
However, in order to actually make decisions in accordance with this principle, knowl-
edge about the likelihood and the user-specific utilities of possible outcomes is required.
While the process of acquiring the probabilities is well-known [CKP00], the elicitation of
a decision maker’s utility function 1 is problematic. This is for several reasons. Tradi-
tional approaches to utility elicitation (see [Cle91] for an overview) require individuals to
answer a large number of cognitively hard questions and hence are error-prone and time-
consuming. Due to the complexity of many real world decision problems, the application
of those methodologies is often even not feasible at all. In those cases, the amount of utility
information that can be acquired is limited and hence, the decisions based on those infor-
mation are not optimal. In general, the more we know about a user’s utility function, the
higher is the decision accuracy that will be achieved. However, different aspects of a utility
function might have a different impact on the decision quality. Hence, elicitation questions
should be chosen carefully. In the following, we analyze two prominent, non-traditional
approaches to utility elicitation that consider this issue and investigate how they fit to our
requirements. Though expected utility theory makes a number of assumptions that are
hardly given in many real world decision situations and though the process of utility elic-
itation is not feasible for our purposes, closer inspection of the mentioned approaches is

1A utility function maps outcomes to real numbers, the utilities.

62

5.2. RELATED WORK

advisable. This is due to the fact, that they achieve a significant reduction of the number of
required elicitation questions by considering uncertainty about the elicited utility function.

The approach of Chajewska et al. [CKP00] aims at eliciting the utility function of a
decision maker by posing as few as possible elicitation questions, while at the same time
ensuring a good decision quality. The proposed solution presumes that the standard gamble
approach to utility elicitation [JvN53] is used. This means, the used elicitation questions
are of the type ”Given the choice between outcome o for sure and a lottery which gives
the best outcome with probability s and the worst with probability 1 − s, which will you
choose?”. Uncertainty about the utility function to be elicited is encoded by modeling out-
come utility as a random variable. The proposed elicitation algorithm works as follows.
It first computes the optimal decision based on the current (uncertain) utility model, then
asks the elicitation question with the highest value of information and finally updates the
utility model according to the answer. The process stops, if the expected utility loss, that
is caused by taking a sub-optimal instead of the optimal decision (due to incomplete utility
information), falls below a predefined threshold. Since computing the expected utility loss
exactly is impractical, it is approximated by using Monte Carlo methods. In this context,
the optimal decision based on a given uncertain utility function, is the one that has the high-
est expected expected (mean) utility over all possible outcomes. The value of information
is defined as the difference between the posterior expected utility of the optimal solution
and the expected utility of the currently optimal solution considering the likelihood of both
possible answers to the elicitation questions. The algorithm determines which outcome o
and which probability s to choose in the next elicitation question. The solution achieves
a significant reduction of the number of elicitation questions that are required. Having
a threshold of 0.05 for the expected utility loss and 108 possible outcomes, the average
number of questions was between 2.3 and 3.9 . The proposed solution is also applicable to
correlated decision outcomes. However, it is myopic in the sense of not accounting for the
value of future questions and hence may underestimate the value of information gained by
asking a certain elicitation question.

Boutilier [Bou02] extends the approach of Chajewska et al. in that he considers not only
the value of the current elicitation question, but also the value of future questions when de-
termining the next elicitation question. This is achieved by modeling the elicitation process
itself as a sequential decision problem, in which a sequence of elicitation questions has to
be chosen in a way that balances elicitation effort and decision accuracy. Boutilier formu-
lates this decision problem as a partially-observable Markov decision process (POMDP).
However, due to the continuous state and action spaces of the resulting POMDPs, standard
techniques cannot be applied to solve it. As a solution, Boutilier provides an algorithm
that computes an approximately optimal solution. The runtime of this procedure is high.
However, most of the calculation can be done offline.

The introduced approaches explicitly model uncertainty about a user’s preferences (and his
risk attitude) and impressively demonstrate how this knowledge can be leveraged to effec-
tively direct and focus the preference refinement process. The resulting elicitation process
is adaptive to the elicited knowledge about the user’s preferences and considers available

63

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

decision alternatives. The applied techniques are generic in the sense, that they can be
easily applied to several domains or application scenarios, but are restricted to the standard
gamble approach to utility elicitation. Since elicitation questions are directly posed to the
user, the method stimulates preference expression. By the selection of appropriate elici-
tation questions the system guides the user and directs the elicitation process. However,
the proposed techniques exhibit a disadvantage they share with many other approaches to
utility elicitation. They leave no control to the user and impose a purely reactive position
on him. More precisely, the sequence of elicitation questions chosen, is purely system-
defined. Since the rationale behind the selection of the elicitation questions is not explained
to the user, the posed questions must appear arbitrarily chosen. Moreover, the elicitation
questions which are posed are rather abstract and their relation to the actual decision al-
ternatives and to the user’s preferences remains unclear. This is likely to discourage the
user, makes him unable to construct a mental model of his preferences and unable to de-
velop a clear picture of the available alternatives and their characteristics. Hence, though
the system might be able to present a decision strategy that is optimal with respect to the
available alternatives and the user’s elicited requirements, the user itself is unable to make
a selection that is informed and that is consistent with his service requirements. Moreover,
since the proposed elicitation procedure is not coherent, it makes it difficult for the user to
adjust to the elicitation process and thus to provide correct preferences. As a consequence,
it is likely that the elicited preferences are incorrect to some degree.

5.2.3. Semantic Web Service Selection

In this section, we will investigate how existing approaches to Semantic Web Service selec-
tion fit to our requirements which have been discussed in Section 5.1. In our analysis, we
will discuss solutions that solely facilitate the creation of formal semantic request descrip-
tions by providing tool-support and those that provide advanced assistance in specifying
service requirements.

Assisted Request Creation

The need for tool support [Agr06] that enables end-users to actually use Semantic Web
Service technologies has long been recognized by the research community. To this end,
a number of standalone tools, integrated development environments and service engineer-
ing frameworks aiming at the support of developers in the full Web Service development
lifecycle, have been launched. Among the most prominent representatives are the Web
Service Modeling Toolkit (WSMT) for WSMO-based service descriptions [KMSF09], the
INFRAWEBS Integrated Framework (IIF) [AMLM07, LPN+07] and the OWL-S editors
by Elenius et al. [EDM+05] and Scicluna et al. [SAM04]. However, those efforts are
mainly targeted at service providers and application developers and only marginally ad-
dress the end-users, i.e. service consumers, who require assistance in expressing their
service needs and support in the subsequent process of service selection. Typically, the

64

5.2. RELATED WORK

approaches [AMLM07, soa08] assume that application providers create generic request
templates, that cover frequent service needs in a certain application domain, at design time.
Later on, those templates are instantiated by end-users to specify their needs. For that pur-
pose, the user has to provide the missing data in order to complete the template. [soa08]
propose a menu-based interface to support this process. However, typically this task is left
to the developers of end-user applications. The focus of the efforts is on assisting develop-
ers in the process of template creation and management. To this end, a palette of tools, such
as goal editors, validators, visualizers and browsers as well as tools for ontology visual-
ization and management have been developed [KMSF09, AMLM07, EDM+05, SAM04].
Though, a number of graphical goal editors (INFRAWEBS Designer [Agr06, LPN+07],
OWL-S editor [SAM04]) have been proposed to facilitate that process, still substantiated
knowledge about the underlying description language is required. Typically, such as in the
case of WSMO-based descriptions, this also premises a comprehensive understanding of
mathematical logic. To ease the creation process and to foster reuse of existing descrip-
tions, the INFRAWEBS Integrated Framework [Agr06, AMLM07, LPN+07] developed a
case-based memory that allows template designers to find semantic service descriptions
(or parts of it) and ontologies that are related to a certain template under construction to
reuse them in a copy and paste manner. However, the developer is neither supported in
the process of identifying typical service needs in a certain application domain nor sup-
ported in the task of adequately modeling them. Hence, it is very unlikely, that later on an
end-user’s abstract service needs are appropriately transfered into a formal request, which
is then used to discover suitable services. This similarly applies to approaches that use
Natural Language Processing in order to transfer service desires given in natural language
into formal requests [soa08, BVMC05] and those that rely on wizards for request creation
[soa08]. The more surprising it is, that uncertainty about a user’s service requirements
is not considered in any of the mentioned approaches. Moreover, none of the solutions
accounts for the constructive nature of consumer requirements by supporting incremental
requirements specification and none of the approaches considers actually available service
offers and their characteristics during that process. Requests are created in advance without
this knowledge, before service selection takes place.

Assisted and Personalized Service Selection

In this paragraph, we will look at user-centered approaches to requirements elicitation and
service selection. They differ from those that have been introduced in the previous para-
graph in that they provide advanced assistance in the specification of service requirements.

Colucci et al. [CNS+06, CNS+04] propose a visual interface for assisted creation and re-
finement of OWL-based service requests, which was also ported to mobile devices [RNSS08].
At the beginning of the query formulation process, the user has to create an initial request.
The system supports him in that task by providing ontology browsing facilities and by
graphically visualizing the request. Initially, the user sees the most generic classes of the
domain ontology. As he choses a particular concept, the system displays available sub-
classes as well as all roles having the selected class as a domain. If possible, classes and

65

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

roles are visualized by an illustrative icon. Elements from the ontology may be added
to (or removed from) the request, which is visualized in a separate panel of the applica-
tion. This query panel shows the part of the request that is currently focused. A history
bar allows for bottom-up-navigation. All requirements that have been specified in the ini-
tial service request are assumed to be strict, i.e. not negotiable. Preferences related to
service characteristics cannot be expressed. Once the user decided to pose the created
request, a ranked list of matching service offers is displayed. Matchmaking applies sub-
sumption and satisfiability inference services provided by description logic reasoners to
identify offers that are compatible with the given request. Depending on their compati-
bility properties, offers are classified into (worst to best) partial, potential, full and exact
matches (see [CNS+06, CNS+04] for more information). Though exact and full matches
indicate suitable offers, potential and partial matches might also be appropriate choices and
are encountered more frequently. Hence, the request refinement process proposed by the
authors is driven by the desire to upgrade those matches by eliciting additional consumer
requirements. In particular, a user might relax certain requirements to make a partial match
to a potential match and might specify additional requirements to reach a full match from
a potential match. Colucci et al. propose two non-standard inference services, namely
concept contraction and concept abduction [CNS+04], to assist the user in that process.
Concept abduction allows to suggest additional features that are contained in the matching
offers and might be added to the user’s request. Concept contraction allows to identify
features that might be marked as negotiable by the user to achieve a potential match. Dur-
ing the refinement process, those information are displayed in addition to a ranked list of
matching offers. Moreover, explanations on the matching results as well as a verbalization
of the matching offers’ OWL descriptions are provided (see Figure 5.5). Equipped with
those information as well as with a visualization of his query (as a set of features), the user
is free to refine his request by changing the specified requirements. After that, he may ini-
tiate another matchmaking phase. The refinement process stops, if the user finds a suitable
service offer among the presented results.

By showing suitable service offers and their characteristics and by suggesting promising
modifications to the user’s requirements, the proposed approach educates the consumer
about available service alternatives and stimulates requirements expression. Unfortunately,
support for trading off conflicting service requirements is not provided. Since the user
freely makes changes to his requirements and is not enforced to do so, the resulting require-
ments refinement process is coherent. However, uncertainty about a consumer’s service
requirements is not considered and the process of requirements elicitation is not driven by
the goal to reduce model uncertainty. Though the authors indicated, that they performed
preliminary tests of the system, we are not aware of a publication that presents their re-
sults. Hence, it remains open, whether the elicited requirements and preferences comply
with the user’s actual requirements and whether the suggested approach contributes to the
user’s awareness of his requirements. It is also not known, whether the system successfully
assists consumers in making informed and consistent selections.

With MobiXpl, Noppens et al. [NLS07, NLL+06, WLN+04] propose a mobile user inter-
face for personalized semantic service discovery. In their approach, services are classified

66

5.2. RELATED WORK

Figure 5.5.: Colucci et al.’s interface for assisted query refinement (taken from [CNS+06])

with respect to several categories, e.g. services offering music streams might be classified
with respect to their program format and their location. Each category is characterized by
an OWL-based is-a-hierarchy of aspects related to this category. For instance, the program
format might be sports, music and so on. Music might be further classified into Classical,
Rock and so on. A service request is a set of preferences over service aspects related to
the given categories. Preferences are expressed in terms of orderings between service as-
pects within a category, which results in partially ordered aspect sets. In particular, the user
might express a preference of one aspect over another, indifference between aspects and
dislike of an aspect. To assist the user in specifying those preferences, the system provides
zoomable, graph-based visualizations of the category ontologies that can be browsed by
the user. Interesting aspects can then be selected and organized in a preference graph (see
Figure 5.6). To facilitate the aspect selection process, the system performs a preselection of
aspects and provides ontology views for typical usage patterns. Moreover, preferences are
checked before they will be established to avoid redundant and/or inconsistent preference
expressions. Preferences are directly handled for service retrieval. In this context, Pareto
accumulation and preference prioritization are applied to compare combinations of prefer-
ences related to different categories and to weight categories according to their importance.
Preference prioritization is done automatically by the system and cannot be performed by
the user. For instance, it is assumed that a category with more detailedly described prefer-
ences is more important to the user than one with less detailedly specified preferences. To
avoid empty result sets caused by too restrictive preferences, the authors propose ontology-
based preference relaxation techniques, where preference aspects are gradually relaxed to
super aspects until they can be fulfilled.

67

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

Figure 5.6.: Noppens et al.’s interface for personalized semantic service discovery (taken
from [NLL+06])

The proposed approach uses qualitative preferences, that allow for intuitive preference
formulation. Unfortunately, it relies on simple category-based service descriptions and
does not allow to richly describe functional service requirements. Hence, its application
is restricted to scenarios, where services of a known type need to be discovered, e.g. ser-
vices that provide music streams as in this case. The presented interface motivates and
guides self-initiated preference specification. However, the assistance is limited in that
available service alternatives are not considered. Moreover, the proposed solution imple-
ments a single shot approach, where preferences cannot be refined after viewing matching
results. This is in contrast to the constructive nature of preferences and thus avoids the
establishment of well-constructed preferences. Finally, the suggested approach has been
implemented [NLL+06], but to the best of our knowledge, has never been formally eval-
uated. Hence, it remains open, whether the suggested solution contributes to the user’s
awareness of his requirements and whether it maintains a consistent model of the user’s
service requirements. In addition, it is not known whether the finally selected service is
consistent with the user’s requirements and whether it is chosen after having thoroughly
reviewed relevant service alternatives.

Users typically do not know the characteristics of available services and thus might formu-
late service requests that do not allow to discover all services that potentially suit to their
needs. To address this issue, Balke et al. [BW03b, BW03a, BW04] propose a cooperative
approach to service selection and discovery. The main idea is, that instead of taking a user’s
request as it is, the system behaves cooperatively by automatically rewriting and expanding
this request to retrieve additional services that might potentially fit to the user’s needs. The
authors suggest several techniques to achieve this. Firstly, they expand and rewrite a given

68

5.2. RELATED WORK

service request based on knowledge about the anticipated usage situation (usage pattern).
This accounts for the fact, that a certain service type might be used for different purposes
and in different contexts, each of which is associated with typical preferences and different
categorizations used to classify services according to their characteristics. For instance,
restaurants might be classified according to their cuisine and their location. However, in
some usage situations, cuisine categorized by nationality is used, while in others a cate-
gorization by taste might be preferred. In this context, the authors also propose to rely
on different conceptual views to the ontologies that serve as service classifications. Those
views are clippings from the full ontologies and represent user-specific views to the service
categorizations. Finally, Balke et al. suggest to expand requests with soft constraints taken
from a user’s profile or from general domain knowledge. However, applying too many
constraints might result in an empty result set. To deal with that issue, the authors propose
a strategy for the incremental relaxation of requests, i.e. a generalization of the required
service class(es) along the lines of the associated conceptual view(s). The developed pro-
cedure avoids deep relaxation of single constraints and accounts for the relative importance
of different conceptual views as well as for their granularity. Starting with the minimal pos-
sible relaxation, the algorithm incrementally creates and processes requests resulting from
increasing relaxations, until the user is satisfied with the presented service alternatives. The
actual matchmaking is carried out by transferring requests into preference-based database
queries and applying cooperative database technology [BW03a, Min98]. To enable this,
the DAML-S based service descriptions are stored in a classic relational database. An en-
hanced UDDI repository, which also holds usage patterns and OWL/DAML+OIL based
service ontologies, performs the cooperative search.

Though the approach models consumer preferences and accounts for the fact that initial
consumer requests might be incomplete, it does not actively involve the user in the refine-
ment process, but restricts his contribution to triggering additional relaxations and stopping
the process, if desired. This prevents the user from actively constructing his requirements
and is likely to produce query relaxations that are not compliant with the user’s actual
requirements. However, since those aspects have not been evaluated, we will not know,
whether the discussed approach contributes to the user’s awareness of his requirements
and whether it maintains a consistent model of his service requirements. Moreover, it re-
mains open whether the finally selected service is consistent with the user’s requirements
and whether it is chosen after having thoroughly reviewed relevant service alternatives.
The authors also did not provide any information about the user interface that was used to
elicit service requirements and preferences and did not comment on how matching services
are presented to the user.

Within the EU-project SeCSE, Zachos et al. [ZZMJ06, ZMHM08, sec06] developed a ser-
vice discovery environment that supports software engineers in the identification of system
requirements when building applications that integrate services from different providers
(service-centric systems). Though the approach is not targeted to (direct) service con-
sumers, it uses iterative service selection and requirements refinement as a means for both,
building service-centric applications by discovering appropriate services and for refining

69

5.2. RELATED WORK

and provides them with relevant services2, it is not directly applicable to our scenario.
Since the system is based on natural language descriptions, its possibilities for effective
matchmaking and for refinement support are limited. Moreover, due to the specific ap-
plication scenario, the type of assistance that is provided by the system is different to that
required in our scenario. Finally, it was not evaluated whether the suggested solution elicits
correct software requirements and whether it maintains a consistent requirements model.
In addition to that, it remains open whether the finally selected services are consistent with
the identified requirements and whether they are chosen by the software engineers after
thorough inspection of relevant service alternatives.

5.2.4. Summary and Open Research Issues

Table 5.1 summarizes the results of our analysis. The entries in the table indicate whether
the corresponding approach partially (�) or completely (+) fulfills the considered require-
ment. We also indicated, if an approach does not fulfill a certain requirement (-), if a
requirement is not applicable to an approach (/) or if it is not known whether the require-
ment is fulfilled or not (?). In some cases, an explanatory footnote has been added. In the
remainder of this section, we will summarize our findings.

With example critiquing, recommender systems provide an intuitive and also effective
mechanism that allows consumers to incrementally and interactively develop their require-
ments and preferences. The effectiveness of this type of approaches primarily arises from
three facts. Firstly, example critiquing systems manage to effectively educate the user about
available items, their characteristics and necessary tradeoffs between them. Secondly, with
critiquing, they provide an intuitive mechanism to interact and communicate with the sup-
porting recommender system. This stimulates and motivates the user and allows for an easy
knowledge transfer between the user and the system. Finally, critiquing systems demon-
strate that the requirements refinement process can be effectively directed and focused by
leveraging knowledge about available items and the consumer’s requirements. Unfortu-
nately, the latter is achieved by letting the system take much of control, while restricting
the user’s opportunities, e.g of which critiques to pose [CP07b, CP07c, CP07a] or which
item alternatives to view [VFP06, VPF07, VPF08]. In addition, there is no single system
that joins all the beneficial characteristics described. Though knowledge about model un-
certainty is available in some of the systems, it is not leveraged to focus the refinement
process and to reduce model uncertainty.

In a sense, the solutions to utility elicitation, that we considered in our analysis, are com-
plementary to those approaches. They actually do maintain knowledge about model un-
certainty and also demonstrated how this information can be leveraged to effectively focus

2In the former case, the results are based on an assessment provided by 4 test persons, in the latter, they are
grounded on a single test query. Hence their validity is questionable.

2Clearly, this depends on the underlying service description language.
3In the former case, the results are based on an assessment provided by 4 test persons, in the latter, they are

grounded on a single test query. Hence their validity is questionable.

71

C
H

A
P

T
E

R
5

.
M

O
D

E
L

IN
G

A
N

D
E

L
IC

IT
A

T
IO

N
O

F
C

O
N

S
U

M
E

R

R
E

Q
U

IR
E

M
E

N
T

S
F

O
R

S
E

R
V

IC
E

S
E

L
E

C
T

IO
N

Recommender Systems Utility El. SWS Retrieval

Bur. Reil. Viapp. Chen Cha./Bout. Tools Col. Nopp. Bal. Zach.

Requirements Model

includes requirements and preferences (R U.1) � � � + + +2 - + + �

semantic/rich/domain-ind. descr. mech. (R U.2) - - - - - + + - � -
represents/measures/locates uncertainty (R U.3) - � + - + - - - - -

Requirements Elicitation and Service Rec.

considers uncertainty about reqs. (R U.4) - + + - + / - - - -
unified/incremental process (R U.5) + + + + - - + - + +
stimulates correct pref./requ. expr. (R U.6) ? ? + � - - ? - - ?
encourages to make/consider tradeoffs (R U.6) � + - + + - - - - -
alternative-based requirements spec. (R U.7) + + + + - - - - - -
contributes to requirements awareness (R U.8) ? ? + ? - - ? ? ? +3

maintains model consistency (R U.9) ? ? ? ? ? - ? ? ? ?
enables user to correct the model (R U.10) + + + + - + + + - +
effectively reduces model uncertainty (R U.11) - � � - + - - - - -
user-initiated req./pref. exp. (R U.12) - � + � - + + + � +
coherent elicitation process (R U.13) � � ? � - + + + - +
educates about relevant services (R U.14) ? � � � - - + � � +3

motivates informed selection (R U.14) ? � + + - / ? ? ? ?

Presentation of Information

emph. relevant/important information (R U.16) + + + + - + + + ? +
easy to perceive/comprehend format (R U.16) + + + + - - + + ? +
facilitates consistent selection (R U.17) ? ? ? ? - / ? ? ? ?

Table 5.1.: Requirements to the requirements model, the requirements elicitation and service recommendation mechanism and the pre-
sentation of requirements- and service-related information 7

2

5.2. RELATED WORK

and direct the refinement process. However, this is at the cost of leaving no control to the
user and imposing a purely reactive position on him. As a consequence, the user is not
able to acquire knowledge about available opportunities and their characteristics and is not
able to build a mental model of his requirements. This might lead to poor motivation and
prevents the user from making well-informed and consistent decisions.

Approaches to Semantic Web Service Selection use little of the techniques and knowledge
established in the two mentioned areas. Their capabilities are typically limited to provide
assistance with the creation of service requests or to provide more sophisticated assistance
with the definition of preferences and requirements. Unfortunately, the latter, more ad-
vanced type of solutions [NLS07, NLL+06, WLN+04, BW03b, BW03a, BW04] is not
build upon rich semantic descriptions. The introduced approaches also neither account for
the constructive nature of consumer requirements, nor consider knowledge about available
service alternatives. One exception is the solution of Colucci et al. [CNS+06, CNS+04],
which provides means for incremental query refinement based on intermediate service rec-
ommendations and devise mechanisms that support the user in this process. Unfortunately,
they do not consider consumer preferences and still require considerable knowledge and
capabilities of their users. For example, they do not allow for requirements specification
based on the presented service alternatives. Moreover, none of the approaches to Seman-
tic Web Service selection considers model uncertainty. Finally, it should be noted, that
none of the mentioned solutions to assisted requirements specification has been adequately
evaluated, if at all. Hence, it remains open whether those systems stimulate correct prefer-
ence and requirement expressions, whether they maintain model consistency, whether they
make the user aware of his requirements and whether they effectively assist the user in
making well-informed and consistent selections. This is disappointing, particularly in case
of the work presented by Zachos et al. [ZZMJ06, ZMHM08, sec06], that was accomplished
within the EU-project SeCSE, which was funded with e 8,800,000.

Hence, the challenging questions of how to effectively support service consumers in in-
crementally developing their service requirements and preferences and how to assist them
in making well-informed and balanced decisions remain. Thereby, the following research
questions are of particular importance:

• How to educate the user about available service opportunities, their characteristics
and necessary compromises with respect to them?

• How to support the user in constructing and correctly specifying his service require-
ments and preferences and how to do this in a way that results in well-constructed,
i.e. true, preferences and requirements? Can the techniques that have been success-
fully applied in example critiquing systems be leveraged to achieve this?

• How to keep the system’s knowledge about the consumer’s requirements consistent
with the user’s actual requirements?

• How to effectively reduce uncertainty about the service consumer’s requirements
and preferences and how to do this while leaving the user in control of what to do?

73

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

• How to effectively assist the user in making well-informed and consistent service
selection decisions?

• How to adequately evaluate a system for Semantic Web Service selection with re-
spect to the requirements that have been identified in Section 5.1?

5.3 Interactive and Incremental Requirements Elicitation

and Service Selection - Basic Idea

In compliance with the Requirements U.5 and U.10, we suggest a solution that implements
requirements elicitation and service selection as a unified, incremental and interactive pro-
cess that alternates phases of intermediate service recommendation and requirements re-
finement. During that process, the user incrementally develops his service requirements
and preferences and finally makes a selection decision. To effectively support him in these
tasks, the system maintains an internal model of the consumer’s requirements and prefer-
ences (Requirement U.1), which we call request model. Uncertainty about the service con-
sumer’s true requirements is explicitly represented within this model (Requirement U.3).
During the refinement process the request model is continuously updated to accurately
reflect the system’s growing knowledge about the user’s service requirements and pref-
erences. Starting with a generic request model, the system determines a set of service
alternatives that fit well to this requirements (Requirements U.14 and U.17). These ser-
vice alternatives are determined by transforming the internal request model into a semantic
service request that reflects the requirements specified in the model, but also the system’s
uncertainty about this model. We will demonstrate that standard matchmaking with a mi-
nor extension can be applied to retrieve matching service results sorted by their expected
matching degree (Requirement U.4). The user may then critique the presented service
alternatives and thereby indicate desirable service characteristics (Requirements U.7 and
U.10). He can also directly specify new service requirements by modifying the internal
request model via its graphical representation (Requirement U.16). This will allow him
to correct the system if necessary (Requirements U.9 and U.10), will help him to become
aware of his requirements (Requirement U.8) and will enable him to actively develop these
(Requirements U.6 and U.10). All user interactions trigger appropriate model changes
(Requirement U.9). Once a set of modifications has been made, the user may decide to
see service results fitting to the updated requirements. The process continues until the
user finds an appropriate service among the presented alternatives or until he decides to
stop without making a selection. To effectively reduce uncertainty about the user’s ser-
vice requirements (Requirement U.11) and thus to make the process of service selection
more efficient, the system directs and focuses the process of requirements elicitation by
suggesting those interaction opportunities to the user that have a high potential to increase
the knowledge about the consumer’s service requirements (Requirements U.12 and U.13).
It thereby focuses on parts of the model that are relevant and promising in light of the
available service options and in light of the requirements and preferences that have been

74

5.4. REQUEST MODEL

already specified (Requirement U.11). In the subsequent sections, we provide details on
our approach.

5.4 Request Model

We propose a request model that builds on DSD request descriptions (see Section 4.2)
and that is in compliance with their semantics. Later on, this will allow us to use the
DIANE matchmaker to compare the user’s (uncertain) requirements with the offered ser-
vice functionality. Though DSD descriptions are well suited for flexibly modeling service
requirements and preferences (Requirements U.1 and U.2), they are not capable of repre-
senting uncertainty associated with the model. To compensate for that, we will propose
appropriate extensions that allow to represent uncertainty about DSD’s direct conditions
and connecting strategies by means of probability distributions (Requirement U.3). At this
time, we do not model uncertainty about type and attribute conditions, i.e. we assume that
the types of acceptable service instances as well as their required attributes as specified
in the request model reflect the user’s true requirements3. Like DSD request descriptions,
request models declaratively describe the set of service instances that are acceptable to a
user by means of nested fuzzy sets. Thereby, the fuzzy membership value of an instance is
interpreted as the user’s preference for this instance. However, in contrast to DSD requests,
there is uncertainty about a service consumer’s actual preference for a certain service in-
stance. As a consequence, a service instance’s membership or preference value assigned
to it by a request model is not a single, certain value as for standard DSD requests, but a
random variable. This variable may take different values with certain probabilities. These
probabilities indicate the likelihood of the service requester assigning a certain preference
value to the given service instance. More formally, a request model is defined as follows.

Definition 5.2. (Request model) A request model declaratively describes the set of ser-

vice instances (service effects) that are acceptable to a service consumer by means of

nested fuzzy sets. To each service instance, it assigns a probability distribution over pos-

sible membership or preference values from [0, 1] indicating the user’s preference for this

instance. More specifically, the preference value of a service instance with respect to a

request model is given by a random variable that takes values from [0, 1]. Thereby a pref-

erence value (membership value) of 0 means not acceptable (i.e. not a member of the set)

and a preference value of 1 means totally acceptable. Preference values from (0, 1) indi-

cate different preference levels. The higher the value, the stronger the preference. The set

of acceptable service instances and their corresponding preference values can be specified

by using the following descriptive elements, which will be subsequently defined: type con-

ditions, uncertain direct conditions, attribute conditions as well as uncertain connecting

strategies.

3Nonetheless, we consider the fact, that attribute conditions that are relevant to the user might be not yet
considered in the request model. This has been done by having appropriately defined the uncertainty
measure that will be introduced in Section 5.8.

75

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

5.4.1. Type Conditions

As in DSD descriptions, a set defined in a request model has to specify a type condition,
which indicates the ontological type of the instances that are elements of the set. As already
noted, we do not consider uncertainty about the type of acceptable service instances, i.e. we
assume, that the type indicated in the type condition is stated correctly. Hence, the random
variable Pref tc

I (i) indicating the user’s preference for a service instance i with respect to the
type condition tc specified for a given set I takes a single value with probability 1.0. This
value is 1.0, if the considered instance i is of the type specified in the type condition or a
subtype of this type and otherwise is 0.0. More formally, in compliance with the semantics
of DSD, a type condition is defined as follows:

Definition 5.3. (Type condition) Let I be a set of instances. A mandatory type condition

tc of I specifies the type of instances that belong to I . The preference PreftcI (i) for a service

instance i with respect to tc of I is defined to be

PreftcI (i) =

�
1.0 if i is derived from the type specified in tc

0.0 otherwise

Valid types are specified in the service ontology.

We also allow for alternative crisp (super, super[n,1]) and fuzzy type conditions (su-

per[n,f]) as available in DSD (cf. Section 4.2). The definition of the random variable
Pref tc

I (i) for those cases is straightforward and therefore omitted.

5.4.2. Uncertain Direct Conditions

The request model supports three kinds of uncertain direct conditions, i.e. direct con-
straints on the instances of a set I (not on its attributes): uncertain range conditions as
well as uncertain in- and not-in-conditions. An uncertain range condition defines a range
of acceptable instances, e.g. a range of acceptable price values, by means of a preference
(membership) function pref

range
I (i; minI , maxI) that assigns a preference value to each po-

tential instance i. The preference function is parameterized with the minimum minI and
the maximum value maxI of the range. We do not make any assumptions about the type of
this preference function. However, it should appropriately model the user’s preferences.

Figure 5.8 shows two examples of preference functions over a range of instances. While
the function depicted in Figure 5.8(a) assigns a preference value of 1.0 to all instances that
lie in the range of acceptable instances, i.e.

pref
range
I (i; minI , maxI) =

�
1.0 if (minI ≤ i < maxI)
0.0 otherwise,

✞✝ ☎✆5.1

76

5.4. REQUEST MODEL

1

0

min
I

max
I

p
re

f I

 (v

a
lu

e
; m

in
I,m

a
x

I)
ra

n
g

e

i

(a)

1

0

i

min
I

max
I

p
re

f I

 (v

a
lu

e
; m

in
I,m

a
x

I)
ra

n
g

e

min'
I

max'
I

(b)

Figure 5.8.: Possible preference functions over a range of instances

the preference function shown in Figure 5.8(b) assigns a preference value lower than 1.0
to instances that lie close to the limits of the range of acceptable instances, i.e.

pref
range
I (i; minI , maxI) =

1.0 if (min�
I ≤ i < max�

I)
i−minI

min�

I−minI

if (minI ≤ i < min�
I)

maxI−i
maxI−max�

I

if (max�
I ≤ i < maxI)

0.0 otherwise,

✞✝ ☎✆5.2

where min�
I = minI + x · |maxI − minI | and max�

I = maxI − x · |maxI − minI | and
x ∈ [0, 1] can be freely chosen. For x = 0, we obtain the preference function depicted in
Figure 5.8(a) as a special case of the function shown in Figure 5.8(b).

The request model considers uncertainty about the parameters of the preference function,
but not about the type of function. For that purpose, both, the minimum and the maximum
of the range are modeled as random variables MinI and MaxI , respectively, for which
the request model maintains separate probability distributions pMinI

and pMaxI

4. The
probabilities pMinI

(i) and pMaxI
(i) provide the likelihood of a certain instance i being

the minimum and the maximum of the range, respectively.

Uncertain (not-)in-conditions allow the user to specify instances that are (not) acceptable
(preference value of (0.0) 1.0) to him. In case of an uncertain in-condition, the user can
also specify an alternative preference value for each acceptable instance. For example,
he might indicate that he requires a printing service that delivers colored or black-and-
white printouts, where the preference value for colored printouts is 0.8 and 0.2 for black-
and-white printouts. Uncertainty about in-conditions is modeled by means of a discrete
probability distribution pInI

i
for each potential instance i, where the probability pInI

i
(true)

provides the likelihood of instance i being acceptable to the user (preference value of 1.0)

4The range RI of potential minima and maxima is extracted from available service offers by using knowledge
services.

77

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

and pInI
i
(false) = 1 − pInI

i
(true) provides the likelihood of i being not acceptable (pref-

erence value of 0.0). By default, pInI
i
(true) = 0.0 for all potential instances of a set for

which an in-condition has been specified, i.e. in compliance with the semantics of DSD’s
in-conditions, we assume that a given instance is not contained in the set, if we do not
have any information about the instance’s set membership5. Alternative preference values
{pref in

I (i)|pInI
i
(true) �= 0.0} for acceptable instances are user-provided. We do not con-

sider uncertainty about the preference value of an instance. Similarly, uncertainty about
not-in-conditions is modeled by maintaining a discrete probability distribution pNotInI

i
for

each possible instance i of I , where the probability pNotInI
i
(true) provides the likelihood of

instance i being not acceptable to the user and pNotInI
i
(false) = 1−pNotInI

i
(true) provides

the likelihood of i being acceptable. By default, pNotInI
i
(true) = 0.0 for all possible in-

stances of a set for which a not-in-condition has been specified, i.e. in compliance with the
semantics of DSD’s direct conditions of type != instance, we assume that a given instance
is contained in the set, if we do not have any information about the instance’s set member-
ship5. The preference value for instances that are not acceptable is 0.0, otherwise 1.0. A set
may either specify a single uncertain in-condition or a single uncertain not-in-condition6.

There may be more than one uncertain direct condition specified for a set. In those cases,
an instance’s (overall) preference value with respect to all direct conditions that are pro-
vided for the set is given by the product of this instance’s preference values with respect
to the single direct conditions. This is in accordance with the semantics of DSD, where an
instance’s preference values resulting from the evaluation of the different direct conditions
that have been specified for a set are conjunctively combined, i.e. multiplied. This means,
that an instance can only be an element of a given set, if it fulfills all direct conditions that
have been specified for that set. If for a given instance set no direct conditions have been
specified, the instance’s (overall) preference value with respect to the direct conditions that
have been specified for that set is 1, since unless proven to the contrary, we assume that all
possible instances of the considered set are acceptable.

We formally define an uncertain direct condition as follows:

Definition 5.4. (Uncertain direct condition) Sets may specify uncertain direct conditions,

i.e. uncertain direct constraints on its instances. An uncertain direct condition dcj of a set

I specifies whether and to what degree potential instances of the set fulfill the constraint

given by dcj . The preference value Pref
dcj

I (i) of a service instance i with respect to dcj of

I is defined depending on the kind of direct condition.

5This relieves us of having to maintain a probability distribution for each potential instance.
6Specifying both, an uncertain in- and an uncertain not-in-condition for a single set is not reasonable, since

by default all instances that are not considered in a specified in-condition are not contained in the set
and instances that are not considered in a specified not-in-condition are contained in the set. While in
DSD, i.e. the certain case, specifying both types of direct conditions for a single set is not harmful (we
either just provide redundant information or inconsistent information that lead to a preference value of
0.0 for the considered instance), it can lead to unresolvable inconsistencies in the request model, e.g.
p

InI
i
(true) �= p

NotInI
i
(false), in case of uncertain direct conditions.

78

5.4. REQUEST MODEL

• The preference value Pref
dcj

I (i) of an instance i with respect to an uncertain range

condition dcj of a set I is given by

Pref
dcj

I (i) = pref
range
I (i; minI , maxI) if (MinI = minI) and (MaxI = maxI),

✞✝ ☎✆5.3

where pref
range
I (i; minI , maxI) is the system-specified range preference function for

the set I with the minimum of the range being minI and the maximum of the range

being maxI .

• The preference value Pref
dcj

I (i) of an instance i with respect to an uncertain in-

condition dcj of a set I is given by

Pref
dcj

I (i) =

�
prefinI (i) if (InI

i = true)

0.0 otherwise.

✞✝ ☎✆5.4

• The preference value Pref
dcj

I (i) of an instance i with respect to an uncertain not-in-

condition dcj of a set I is given by

Pref
dcj

I (i) =

�
0.0 if (NotInI

i = true)

1.0 otherwise.

✞✝ ☎✆5.5

A set may either specify a single uncertain in-condition or a single uncertain not-in-

condition. The preference value Prefdc
I (i) of an instance i with respect to all uncertain

direct conditions that are specified for I is defined to be

Prefdc
I (i) =

�
1.0 if no direct conditions have been specified for I
�

dcj specified for I Pref
dcj

I (i) otherwise, ✞✝ ☎✆5.6

5.4.3. Attribute Conditions and Uncertain Connecting Strategies

As in DSD request descriptions, sets of non-primitive types (cf. Section 4.2) may specify
conditions on the attributes of its potential instances. These attribute conditions refer to
valid attributes defined for the ontological type that has been specified in the type condition
of the set. They inherit the name of the corresponding attribute defined in the ontology and
have a target set they refer to. Both, valid attributes of a type and valid target set types
are specified in the service ontology. An instance can be an element of a given set, if the
attributes specified in the attribute conditions of the set are specified for that instance and
their values are elements of the corresponding target sets. Attribute conditions allow for the
nested specification of declarative sets. By default, the preference values resulting from the
attribute conditions that are specified for a set are conjunctively combined, i.e. multiplied.
However, alternative connecting strategies might be specified.

79

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

Definition 5.5. (Attribute condition) Sets of non-primitive types may specify attribute

conditions, i.e. conditions on the attributes of its potential instances. They refer to at-

tributes of the ontological type that has been specified in the type condition of the set and

have a target set they refer to. The preference Pref
acj

I (i) of the instance i with respect to

the attribute condition acj of I is given by

Pref
acj

I (i) =

�
0.0 if acj is not specified in i
Prefov

Ij
(i) otherwise,

✞✝ ☎✆5.7

where Prefov
Ij

(i) is the (overall) preference value of the instance i with respect to the target

set Ij of attribute condition acj , which will be subsequently defined.

We also allow for the specification of missing strategies (assume_fulfilled, assume_value[n])
as available in DSD (Section 4.2). Those strategies modify the semantics of attribute con-
ditions by allowing to assign a predefined, non-zero preference value with respect to an
attribute condition to instances that do not specify the attribute required by this condition.
The definition of the random variable Pref

acj

I (i) for those cases is straightforward and
therefore omitted.

A set may specify an uncertain connecting strategy that indicates how the preference values
resulting from the evaluation of the single attribute conditions shall be combined. It thus
encodes the user’s preferences with respect to the relative importance of the specified at-
tribute conditions. At this time, the request model implementation supports only weighted
sum as a connecting strategy, where equal weights are assumed, if no connecting strategy
has been explicitly specified. Such an additive connecting strategy (additive preference

function) is appropriate to model a user’s preferences with respect to a set of attribute con-
ditions, if the latter are mutually preferentially independent [KR93]. More specifically, this
means that for any subset of those attribute conditions, the preference order over service
instances with varying preference values with respect to the subset conditions does not
change, if the preference values with respect to the remaining attribute conditions change.
The advantage of an additive preference model is that the single additive components of
such a model can be treated separately. This allows for an efficient computation of pref-
erence values. Though mutual preferential independence is not a valid assumption for all
decision problems, it is appropriate for many real-world decisions and works well in prac-
tice [KR93, FGE05]. As Keeney et al. argued, its applicability less depends on the decision
problem itself, but rather on the appropriate choice of the objectives and attributes used to
solve the problem [KvW07, Kee05]. Hence, restricting ourselves to connecting strategies
of type weighted sum is a reasonable choice.

Though we presume, that the type of connecting strategy for a certain attribute is weighted
sum, the parameters of the strategy, i.e. the weights, are unknown. Uncertainty about those
parameters is again modeled by interpreting a connecting strategy’s weights Wac1

, · · · , Wacn

as random variables. For each weight Wacj
, a probability distribution pWacj

over the pos-
sible weights of attribute condition acj is maintained. Weights are absolute and taken
from [0, 1]. The probability pWacj

(w) provides the likelihood of the weight for attribute
condition acj being w.

80

5.5. VISUALIZING SERVICE REQUIREMENTS

Definition 5.6. (Uncertain connecting strategy weighted sum) A set I may specify an

uncertain connecting strategy of type weighted sum that indicates how the preference val-

ues resulting from the single attribute conditions shall be combined. Based on this con-

necting strategy, the preference value Prefac
I (i) of an instance i with respect to all attribute

conditions that are specified for I is defined to be

Prefac
I (i) =

�
acj specified for I

Wacj
· Pref

acj

I (i)

�
ack specified for I

Wack

,
✞✝ ☎✆5.8

where Pref
acj

I (i) is the preference value of the instance i with respect to the attribute con-

dition acj of I . Prefac
I (i) is defined to be 1, if no attribute conditions have been specified

for I .

The overall preference value of an instance with respect to a given set I is defined as the
product of its preference values given by the type condition, the uncertain direct conditions
and the attribute conditions specified for I . This is again in accordance with the semantics
of DSD, where an instance’s preference values resulting from the type condition, the direct
conditions and the attribute conditions that have been specified for a set are conjunctively
combined, i.e. multiplied.

Definition 5.7. (Overall preference) The (overall) preference value Prefov
I (i) of the in-

stance i with respect to the set I is defined to be

Prefov
I (i) = PreftcI (i) · Prefdc

I (i) · Prefac
I (i).

✞✝ ☎✆5.9

As a result, the preference value of a service instance with respect to a request model is
given by its overall preference value with respect to the effect-set of the request model.

5.5 Visualizing Service Requirements

As argued in Section 5.1, requirements establish a user’s interest in a decision situation
and thus should guide the valuation of available decision opportunities. Clarifying those
requirements and making them explicit prevents decision makers from basing their de-
cisions on irrelevant, incomplete and/or ill-defined requirements and thus is essential for
making thoughtful and reasonable decisions that are consistent with the user’s actual objec-
tives (Requirements U.8 and U.17). Systems aiming at the provision of support for service
selection require profound and accurate knowledge about a user’s known requirements in
order to be able to provide effective assistance in that process (Requirement U.9). Ensuring
this necessitates the decision maker’s involvement in the knowledge acquisition process as
well as his active participation in scrutinizing and correcting the system’s requirements
model if necessary (Requirement U.10). To enable this, internal knowledge about the

81

5.5. VISUALIZING SERVICE REQUIREMENTS

ability of the presented information, to avoid information overflow and to facilitate their
manipulation, the proposed model visualization simplifies it by hiding unnecessary details
and, if possible, applies visual metaphors to illustrate different aspects (Requirement U.16).
Figure 5.9 shows our model visualization using the example of a request model referring
to a printing service. Attribute conditions are displayed as boxes containing the attribute
name in the menu bar and the type of the target set as a string in the box (Figure 5.10).
We introduced user-friendly terms for both, attribute and type names, to abstract from the
concept and role names in the ontology that are sometimes difficult to comprehend.

Users can refine the type of an attribute condition’s target set, i.e. restrict it to a subtype.
On pressing the appropriate button (see the key displayed in the upper left corner of Fig-
ure 5.9) in the considered attribute condition’s toolbar (Figures 5.9 and 5.10), a dialog with
an alphabetically sorted list of possible subtypes (as defined in the underlying ontology)
appears, from which the user can select (cf. Figure 5.11(b)). Straight lines emanating from
the attribute condition boxes indicate nested attribute conditions. They can also be added
by the user. By pressing the corresponding button in the considered attribute condition’s
toolbar (Figure 5.9), a dialog with an alphabetically sorted list of potential conditions (as
defined within the underlying ontology) appears. Subtypes and attribute conditions that do
not actually appear in the available offers are hidden from the user, since they do not qual-
ify for evaluating and comparing available service alternatives and thus are not relevant in
the given decision context.

attribute
condition

name

target set
type

toolbarset box

Figure 5.10.: Elements of the graphical request model representation

Graphical representations of uncertain range-, in- and not-in-conditions as implemented
within the request model are also displayed and means to specify them in a graphical way
are provided. Uncertain range conditions are visualized by a range slider and a label indi-
cating the boundaries of the acceptable range (attribute condition amount in Figure 5.9).
The latter are determined by the instances that are most likely to be the minimum and
the maximum of the range, respectively. In case of having more than one instance that
qualifies as a minimum or maximum, we choose the boundaries in a way that maximizes
the acceptable range, since we simply do not know whether the range should be more re-
stricted. Editable black- and whitelists are used to represent uncertain (not-)in-conditions.

83

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

As an example, consider the attribute condition color in Figure 5.9, that defines acceptable
printout colors within a whitelist. As can be seen, such a list is visualized as a box, that
the user can fill with (potentially) acceptable instances, i.e. instances with pInI

i
(true) �= 0.

This is either done by pressing the +-button or the edit-button (see attribute condition uri

in Figure 5.9). If any named instances of a certain target set type are specified in the ontol-
ogy, pressing the +-button will provide a list of those instances for selection. By pressing
the edit-button, the user can specify user-defined instances. The latter makes only sense
for value types, i.e. types, where arbitrary values of this type or any combination of at-
tribute values form a valid instance. For instance, the set of acceptable URIs (attribute
condition uri in Figure 5.9) is of type String and any character string will form a valid
instance (at least with respect to the underlying ontology). For the purpose of clarity and
to avoid information overflow, only a user-defined number of whitelist-/ blacklist-elements
is visualized at once. The total number of elements is indicated in brackets after the word
Include (whitelists) or Exclude (blacklists). The whole list can be scrolled by using the
scroll buttons on the lower right corner of the list box. Users can also express preferences
over the list elements. By double-clicking on a list element its preference value is increased
by a certain amount. A higher preference is indicated by a larger font size. Consider for
instance the attribute condition color in Figure 5.9, where the value colored is preferred
over blackWhite.

We already emphasized (Section 5.1), that among all kinds of preferences covered in the
request model, those that weight different attributes conditions against each other, i.e. those
expressed in the connecting strategies, are of particular importance and should be presented
to the user. This is because they enable the user to make explicit compromises between
service aspects (Requirement U.6). As already mentioned, at this time, we just support
weighted sum as an uncertain connecting strategy. In the graphical representation, the most
likely values of the attribute conditions’ weights are displayed and encoded by the width
of the line ending at the considered attribute condition. Thicker lines indicate a higher
absolute weight. By double-clicking a certain connection, the weight of the corresponding
attribute condition is increased. In doing so, a user can indicate the relative importance of
attribute conditions in a user-friendly way (Requirement U.10). For example in the request
model visualization depicted in Figure 5.9, the user indicated that price is three times as
important as color. Finally, by double-clicking on a certain attribute condition box, users
can collapse and expand subtrees of the request model to save space and keep track of the
essential parts of the request model (Requirement U.16).

5.5.2. Advanced User Support

The presented model visualization tries to reduce the mental effort and knowledge that
is required to specify and modify service requirements maintained in a request model by
restricting available model elements to a manageable number and by allowing to describe
service requirements on an informal level (Requirement U.16). Nonetheless, the typi-
cal end-user might still have difficulties with finding out how to model a certain service

84

5.5. VISUALIZING SERVICE REQUIREMENTS

requirement. In our opinion, this is mainly due to two reasons. Firstly, the number of
ontological types that attribute conditions’ target sets might have is often large. Hence,
when refining a target set’s type, the number of subtypes the user has to choose from is
sometimes high, which makes it difficult to find the most appropriate selection. Secondly,
though the number of available model elements is restricted, it sometimes might not be
clear how a certain requirement can be modeled. This is particularly true for users that are
not familiar with ontologies and ontology-based modeling. Our graphical representation
comes with two recommendation tools intended to help users to alleviate the mentioned
problems, a subtype recommender and a subtree recommender. In the remainder of this
section, we will describe those recommenders in more detail.

Subtype Recommender

The subtype recommender leverages knowledge extracted from request models that have
been created by a service consumer (or other service consumers, if permitted) in the past to
recommend subtypes to a certain target set’s type that might be appropriate in the context of
the present model. Those subtypes are presented to the user in addition to the alphabetically
sorted list of all applicable subtypes (cf. Figure 5.11(b)). In doing so, scrolling through a
potentially large list of subtypes can be avoided in many cases. In the following, we will
describe the recommendation algorithm in more detail.

Let r be the request model under construction and I a set that is referenced in r and whose
type type(I) shall be refined, i.e. subtyped. Let further pathr(I) = �[name(I1), type(I1)].
· · · .[name(In), type(In)]� be the path of this set in r comprising of the sequence of pairs
[name(Ik), type(Ik)], 1 ≤ k ≤ n, where name(Ik) is the name of the kth attribute con-
dition lying on the tree path from r’s effect-set to I and type(Ik) is its type. Thereby, I1

corresponds to the effect-set of r and In corresponds to the considered set I (cf. Defini-
tion 6.4). The basic idea of the recommendation algorithm is to recommend those valid
and occurring (in an available service offer) subtypes of type(I) that have been assigned
to a set Ipast referenced in a past request model and whose path differs from that of I just
by the type type(Ipast) of Ipast. However, recommendations are not restricted to the types
that directly appeared in past request models, but may also refer to their sub- and super-
types as defined in the ontology. Thereby, the semantic similarity of the past request model
that contributed a certain type and that of the request model under construction, i.e. the
usage context of the type, is considered. Let Ssubtype be the set of session data referring
to the creation of past request models and comprising of pairs (r�, t�), where r� is a past
request model that references a set Ipast whose path differs from that of I just by the type
t� = type(Ipast). Then Tcand, given by

Tcand = {t|∃(r�, t�) ∈ Ssubtype with t� = t ∧ t� is an occurring subtype of type(I)},✞✝ ☎✆5.10

is the set of candidate types that qualify for being recommended as a subtype of type(I).

85

5.5. VISUALIZING SERVICE REQUIREMENTS

of the elements in Tcand as defined in the ontology are also valid recommendation candi-
dates. To each of them we assign a suitability value that is equal to that of its supertype
contained Tcand. The reason behind that choice is that if a certain type is suitable to de-
scribe a user’s requirements, then all of its subtypes have the potential to be equally suitable
as well. As an example, consider a past request model referring to a file download. Imag-
ine, there was a specified attribute condition restricting the type of files that were acceptable
candidates for downloading to those of the type ImageFile. Having a present model also
referring to a file download, that does not yet restrict acceptable kinds of files further than
to those of type File, the type ImageFile is certainly a good subtype candidate. All of
its subtypes would also be good candidates. However, we simply do not know, which of
ImageFile’s subtypes, e.g. Jpg, Png or Gif, are preferred by the user. This argument does
not hold for supertypes, i.e. the fact that ImageFile is a suitable choice for the user does
not necessarily imply that its supertype File is equally suitable. However, if ImageFile

is an appropriate type, then also some of its siblings, e.g. VideoFile, might be suitable.
Hence, supertypes of types that have been applied in the past are also a good choice for
recommendation. However, the larger the ontological distance between the supertype and
the type that has been applied, the less likely it is that many of its subtypes are suitable
choices as well. Hence, the weight of supertypes should decrease with the distance from
the type that has been directly applied. We propose the following approach. Let T super

cand be
the set of supertypes defined for the elements in Tcand which are also subtypes of type(I).
Let further tsuper ∈ T super

cand be a supertype of t ∈ Tcand. Then its suitability is defined to
be

vsuit(tsuper) = vsuit(t) ∗ 0.5j ,
✞✝ ☎✆5.12

where j is the number of levels that lie between tsuper and t in the type hierarchy (including
tsuper).

Once Tcand, T sub
cand and T super

cand are determined, we select those of its elements that have
the highest suitability value assigned and recommend them to the user7. The list of rec-
ommended types is sorted by decreasing suitability. Note, that instead of or in addition to
base the recommendation algorithm on knowledge derived from past requests models, we
can also apply it to a set of request model templates provided by an application designer.

Subtree Recommender

Sometimes users might not know how to model a certain aspect of their requirements, e.g.
considering the price of a desired service as depicted in Figure 5.9, it might not be clear how
to actually model a certain price constraint. In those situations, the subtree recommender
can be helpful. Given a set referenced in the request model under construction, the subtree
recommender suggests potential model subtrees, i.e. potential attribute conditions, for that
set. For instance, the attribute conditions depicted in Figure 5.11(a) might be suggested

7Should a type be element of more than one of the sets, its suitability is given by the highest suitability value
assigned to it with respect to one of the sets.

87

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

for the price-set of a given request model. The recommendations are based on knowledge
about attribute conditions that have been added to that set in past request models when
having similar service requirements. As in case of the subtype recommender, we may
consider just those request models that have been created by the user in the past or also
those contributed by other users. We may also use request model templates provided by
an application designer as a knowledge base. The subtree recommendation feature does
not only help to overcome difficulties with how to model a certain requirement, it also
fosters unified modeling by reusing past models. Moreover, it has the potential to fasten
the requirements specification process by adding whole subtrees with a single click.

Let r be the request model that is currently under construction and let I be the set refer-
enced in r for which a subtree recommendation is required. Let further Ssubtree be the
set of session data referring to the creation of past request models and comprising of pairs
(r�, st�), where r� is a past request model that references a set Ipast that shares the same
path in r� as I in r and st’ is the request model subtree rooted at Ipast in r�. Then Tcand,
given by

Tcand = {st|∃(r�, st�) ∈ Ssubtree with st� = st },
✞✝ ☎✆5.13

is the set of candidate subtrees that qualify for being recommended as a subtree of I in
r. To each candidate subtree st ∈ Tcand, we assign a value vsuit(st) ∈ [0, 1] indicating
st’s suitability as a subtree of I in r. It is defined as the average semantic similarity of the
request model r that is currently constructed and the past request models that contributed
the considered subtree st, i.e.

vsuit(st) =

�
r� with ∃(r�,st�)∈Ssubtree∧st�=st simreq(r�|st�, r)

|{r�|∃(r�, st�) ∈ Ssubtree ∧ st� = st}|
,

✞✝ ☎✆5.14

where simreq is the request model similarity measure already used in the subtype recom-
mender and r�|st� the past request model that contributed st� without the subtrees rooted
at the root node of st�. The rationale behind the definition is, that a candidate subtree is
the more suitable, the more similar the usage contexts (i.e. the request models) in which
it was applied in the past are to the present. The suitability values induce an order on the
recommendation candidates. The higher the value, the more promising the candidate.

Once subtree candidates and their suitability values are determined, we select those that
have the highest suitability and recommend them to the user. The list of recommended
subtrees is sorted by decreasing suitability (see Figure5.11(a)). A user can open the subtree
recommender by pressing the ?-button in the toolbar of the box representing the considered
set. Finally, we like to mention, that considering knowledge derived from past request
models created by third parties would raise serious privacy issues, if we had access to
complete request models of those users. Hence, past request models are anonymized by
removing all direct conditions and clearing all connecting strategies before providing them
to others. The latter means, that all sets referenced in the contributed request model specify
a connecting strategy of type weighted sum, that assigns equal weights to the attribute
conditions that have been specified for it. Note, that in doing so, contributed request models

88

5.6. MATCHING UNCERTAIN REQUIREMENTS

as well as recommended subtrees do not contain knowledge about consumer preferences
and thus reveal less sensitive information of its contributor. This is not only desirable
from a privacy perspective, but also in light of the fact that it is unlikely that a particular
constellation of direct conditions and connecting strategies will be applicable to the current
request model. Moreover, due to the amount of information provided, comparing such
detailed subtrees to make a selection would be more difficult for the user than merely
comparing different subtree structures without any direct conditions. We would also like
to remark that the introduced graphical representation as well as the recommendation tools
can be easily adjusted to work with standard DSD requests instead of request models. An
appropriate measure indicating the semantic similarity of DSD service requests has been
suggested and published in [FK10].

5.6 Matching Uncertain Requirements

To understand how matchmaking based on uncertain requirements as specified in a re-
quest model can take place (Requirement U.4), we first have to recap how certain, i.e.
standard DSD service requests, are compared with available service offers. For a detailed
discussion of this topic see Section 4.3. As already mentioned, we consider matchmak-
ing of offered service instances rather than matchmaking of arbitrary service offers. In
the DIANE matchmaker, the comparison of the acceptable service effect(s) described in
a service request r and that of an offered service instance i is recursive and proceeds as
follows. Starting from the effect-set of the request, the matchmaker checks in each step,
whether the service effect described in the offer fulfills the conditions in the request. Pro-
ceeding to the leaf sets of the request results in preference values for the offered instance
with respect to those sets. In a final pass, those values are incrementally aggregated to an
overall preference value pref ov

Ieffect
(i) for the offered service instance, i.e. to a preference

value with respect to the effect-set Ieffect of the request8. This preference value is returned
as matching value mv(r, i) of the request and the offered service instance. It is recursively
defined as the product of the instance’s preference value pref tc

Ieffect
(i) with respect to the

type condition tc specified for the effect-set, the instance’s preference value pref dc
Ieffect

(i)

with respect to the direct conditions that have been specified for the effect-set and the in-
stance’s preference value pref ac

Ieffect
(i) with respect to the attribute conditions specified for

Ieffect. While pref dc
Ieffect

(i) is determined as the product of the instance’s preference values

with respect to the single direct conditions that have been specified for the effect-set, the
latter is an aggregate of the offered instance’s preference values with respect to the target
sets of the attributes that have been specified for Ieffect. It is determined by the connecting
strategy that has been specified for the effect-set.

In contrast to those in a DSD request, the service requirements specified in the request
model are uncertain. In particular, there is uncertainty about the constraints and preferences

8For the sake of clarity, we omit an index indicating the request model that references the set.

89

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

specified in the direct conditions as well as uncertainty about the importance of attribute
conditions, i.e. the weights of the connecting strategies (cf. Section 5.4). Hence, uncertain
matchmaking can only deliver an expected matching value IE[MV(r, i)] = IE[Pref ov

Ieffect
(i)]

for an offered service instance i and a given request model r. In the remainder of this
section, we will show that the DIANE matchmaker can be utilized to determine this value
and that only minor changes to the matchmaking mechanism are required to implement
this.

Let I be a set that is referenced in the request model r. Then the partial matching degree
MVI(r, i) of a given service instance i and r with respect to I is given by

IE[MVI(r, i)] = IE[Pref ov
I (i)] ✞✝ ☎✆5.15

Using Definition 5.7 as well as the facts that Pref tc
I (i) is certain and as such a constant and

that Pref dc
I (i) and Pref ac

I (i) are statistically independent, we obtain

IE[Pref ov
I (i)] = IE[Pref tc

I (i) · Pref dc
I (i) · Pref ac

I (i)]

= Pref tc
I (i) · IE[Pref dc

I (i) · Pref ac
I (i)]

= Pref tc
I (i) · IE[Pref dc

I (i)] · IE[Pref ac
I (i)]. ✞✝ ☎✆5.16

This is due to the linearity of the expectation operator and the fact that the expected value of
the product of two statistically independent random variables can be written as the product
of the variables’ expected values.

Let {dcj |1 ≤ j ≤ m} be the direct conditions that have been specified for I . Using the fact

that Pref
dcj

I (i) and Pref
dck

I (i) are statistically independent for any two direct conditions dcj

and dck of I with j �= k9, we obtain that the expected preference value IE[Pref dc
I (i)] of a

given instance i with respect to the direct conditions that have been specified for I is given
by

IE[Pref dc
I (i)] = IE[

m�

j=1

Pref
dcj

I (i)]

=
m�

j=1

IE[Pref
dcj

I (i)]. ✞✝ ☎✆5.17

Let {acj |1 ≤ j ≤ n} be the attribute conditions that have been specified for I . Using
Definition 5.6 and the facts that the normalized weight of any attribute condition acj is

9We implicitly assume here that a given instance i is constrained by at most one of the direct conditions that
have been specified for a given set.

90

5.6. MATCHING UNCERTAIN REQUIREMENTS

statistically independent from an instance i’s preference value Pref
acj

I (i) with respect to
that condition and that the weights of any two attribute conditions acj and ack of I with
j �= k are also statistically independent, it can be easily shown that the expected preference
value IE[Pref ac

I (i)] of a given instance i with respect to the attribute conditions that have
been specified for I is given by

IE[Pref ac
I (i)] = IE[

�n
j=1(Wacj

· Pref
acj

I (i))
�n

k=1 Wack

]

=
n�

j=1

IE[
Wacj�n

k=1 Wack

· Pref
acj

I (i)]

=
n�

j=1

(IE[
Wacj�n

k=1 Wack

] · IE[Pref
acj

I (i)])

=
n�

j=1

(IE[
1�n

k=1
Wack

Wacj

] · IE[Pref
acj

I (i)])

=
n�

j=1

(
1

IE[
�n

k=1
Wack

Wacj
]

· IE[Pref
acj

I (i)])

=
n�

j=1

(
1

�n
k=1,k �=j

IE[Wack]

IE[Wacj]
+ 1

· IE[Pref
acj

I (i)]),
✞✝ ☎✆5.18

where IE[Wacj
], 1 ≤ j ≤ n, is the expected absolute weight of attribute condition acj

and IE[Pref
acj

I (i)] is the expected preference value of i with respect to that condition. This
is again due to the linearity of the expectation operator and its multiplicativity in case of
statistically independent random variables.

Hence, assuming that the DIANE matchmaker is provided with the expected preference
values {IE[Pref

dcj

I (i)] | 1 ≤ j ≤ m} of i with respect to the direct conditions that have been
specified for I , it will return the desired expected partial matching degree IE[MVa(r, i)] =
IE[Pref ov

I (i)] of service instance i and r with respect to I , when receiving a standard DSD
service request that specifies a connecting strategy of type weighted sum for the set I
whose weights {wacj

|1 ≤ j ≤ n} for the attribute conditions that have been specified for
I are defined by

wacj
=

1
�n

k=1,k �=j
IE[Wack]

IE[Wacj]
+ 1

.
✞✝ ☎✆5.19

This is convenient, since we achieve the desired matchmaking functionality by simply
transforming the given request model into an appropriate standard DSD request r�. We do
not have to make any changes to the matchmaker’s implementation. Unfortunately, it will
turn out that the expected preference values {IE[Pref

dcj

I (i)]|1 ≤ j ≤ m} of i with respect
to the direct conditions that have been specified for I cannot always be computed by using
available matchmaking functionality.

91

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

Let dcj be an uncertain in-condition specified for I (Definition 5.4). The expected prefer-

ence value IE[Pref
dcj

I (i)] of i with respect to dcj is given by

IE[Pref
dcj

I (i)] = pInI
i
(true) · pref in

I (i) + pInI
i
(false) · 0.0

= pInI
i
(true) · pref in

I (i).
✞✝ ☎✆5.20

Consequently, the desired matchmaking functionality can be accomplished by adding for
each uncertain in-condition an appropriate DSD direct condition to the DSD request r� that
is generated from the input request model r. Let dcj be an uncertain in-condition specified

for the set I in r. Since pInI
i
(true) = 0 and thus IE[Pref

dcj

I (i)] = 0 holds for all instances

that have not been considered in dcj , it is sufficient to add a direct condition dc�
j of type IN

{i1[pref(i1)], . . . , it[pref(it)]} to the set I of r�, where {i1, . . . , it} are the instances that
have been considered in the uncertain in-condition dcj , and {pref (i1), . . . , pref (it)} are
their corresponding preference values with pref (i) = pInI

i
(true) · pref in

I (i).

Unfortunately, this does not work for uncertain not-in-conditions (Definition 5.4). Let dcj

be an uncertain not-in-condition specified for I . The expected preference value IE[Pref
dcj

I (i)]
of i with respect to dcj is given by

IE[Pref
dcj

I (i)] = pNotInI
i
(true) · 0.0 + pNotInI

i
(false) · 1.0

= pNotInI
i
(false).

✞✝ ☎✆5.21

Since DSD does not provide a fuzzy !=-operator, we would have to implement the required
matchmaking behavior by adding for each uncertain not-in-condition an appropriate DSD
direct condition using the IN-operator to the DSD request r� that is generated from the input
request model r. Since by default, IE[Pref

dcj

I (i)] = pNotInI
i
(false) = 1 for all instances that

are not considered in an uncertain not-in-condition, the generated direct condition would
have to list all potential instances of the set for which the uncertain not-in-condition has
been specified. Usually, this is not feasible. As a consequence, we had to introduce a new
operator uNOT_IN to the DIANE matchmaker that implements the desired matchmaking
functionality for not-in-conditions as given by Formula 5.21.

Finally, let dcj be an uncertain range condition specified for I (Definition 5.4). Presuming
that the system-specified range preference function pref

range
I (i; minI , maxI) for the set I is

given by the function defined in Equation 5.1, the expected preference value IE[Pref
dcj

I (i)]
of i with respect to dcj is given by

IE[Pref
dcj

I (i)] = Prob(MinI ≤ i < MaxI) · 1.0 + (1 − Prob(MinI ≤ i < MaxI)) · 0.0

= Prob(MinI ≤ i < MaxI)

= Prob(MinI ≤ i) · Prob(i < MaxI)

=

� i

z=min(RI)
pMinI

(z)dz · (1 −
� i

z=min(RI)
pMaxI

(z)dz).
✞✝ ☎✆5.22

92

5.7. PRESENTING MATCHING SERVICE OFFERS AND THEIR

CHARACTERISTICS TO ENCOURAGE REQUIREMENTS SPECIFICATION

Since it is not feasible to precalculate this value for all instances that might potentially
appear in an offer, we have to supply the matchmaker with another new operator-routine
uRANGE that computes this preference value for arbitrary instances to implement this.

Summarizing, we can state that matching uncertain service requirements as specified in the
request model can be implemented by generating a standard DSD service request with the
properties detailed above and matching it with a slightly modified version of the standard
matchmaker. The overall matchmaking procedure can be outlined as follows:✬

✫

✩

✪

Matching uncertain requirements

1. transform the given request model r into a DSD service request r�

a) create a service request r� that inherits the sets referenced in r including their
type and attribute conditions

b) for each uncertain connecting strategy specified in r, add an appropriate
connecting strategy of type weighted sum to r�

c) for each uncertain in-condition specified in r, add an appropriate direct con-
dition to r� using DSD’s IN-operator

d) for each uncertain not-in-condition specified in r, add an appropriate direct
condition to r� using the new uNOT_IN-operator

e) for each uncertain range condition specified in r, add an appropriate direct
condition to r� using the new uRANGE-operator

2. match the generated service request r� using the modified DIANE matchmaker
supporting the new operators uNOT_IN and uRANGE

5.7 Presenting Matching Service Offers and their Charac-

teristics to Encourage Requirements Specification

After having particularized how potentially matching service offers can be determined
based on uncertain requirements, the focus of this section is on how those offers can be
appropriately presented to the user (Section 5.7.1) and how the user can be enabled to
specify additional service requirements based on the displayed service alternatives and
their characteristics (Section 5.7.2).

5.7.1. Presenting Matching Service Offers and their Characteristics

Once the service offers, that match to the requirements which are encoded in the request
model, have been retrieved, the list of those offers sorted by their expected matching value

93

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

is presented to the user (see Figure 5.12 left). Thereby, the most relevant offers, i.e. those
receiving the highest expected matching degree, are displayed on top (Requirement U.14).
The top ten results are highlighted. This is to focus the decision maker’s attention to highly
desirable alternatives, which, according to [Kee92], stimulates thinking about relevant and
beneficial service characteristics and thus about potential service requirements. The de-
picted results table contains a row for each matching service alternative, which includes
the name of the offered service and a column for the target set of each attribute condi-
tion that has been specified within the request model and is visible, i.e. non-collapsed,
in the graphical request model representation. By using elements of the request model to
structure and describe available service opportunities, we facilitate the comparison of re-
quirements and service alternatives and thus support decision makers to correctly translate
their preferences and requirements into a selection [PBS99], i.e. to make a consistent se-
lection without any biases (Requirement U.17). The cells of a results table column show

Figure 5.12.: Results view

either the instances that are members of the column’s corresponding set, as specified in the
depicted offer’s description, or the type of the set, if its instances have not been restricted.
To facilitate decision making, columns can be sorted to ease the comparison of available
alternatives with respect to the considered attribute conditions and can be collapsed to en-
able users to hide unimportant information or temporarily focus their attention to a subset
of the presented alternatives’ properties (Requirement U.16). The latter enables decision

94

5.7. PRESENTING MATCHING SERVICE OFFERS AND THEIR

CHARACTERISTICS TO ENCOURAGE REQUIREMENTS SPECIFICATION

makers to screen large numbers of available alternatives, which otherwise would impose
too much mental effort [Kee92].

5.7.2. Enabling Requirements Specification Based on Presented
Service Alternatives and their Characteristics

Besides viewing matching service offers, the user may indicate desirable service charac-
teristics based on the presented alternatives (Requirement U.7). The system supports three
ways of doing this: (1) by adding a not yet specified attribute condition to the request
model, (2) by refining, i.e. subtyping, an attribute condition’s target set type and (3) by
critiquing one of the listed service offers. To implement the first two interaction opportu-
nities, the system provides the user with a list of potential attribute conditions, that have
not yet been included into the request model, but might be added to it, as well as with a
list of subtypes that can replace existing attribute conditions’ target set types (Figure 5.12
right). Potential attribute conditions and subtypes are retrieved from the set of matching
service offers. The suggested attribute conditions are restricted to those that can be di-
rectly added to one of the instance sets that are already part of the request model. They
are displayed sorted by their ability to reduce the system’s uncertainty about the service
consumer’s service requirements (cf. Section 5.8). Next to each recommended attribute
condition or subtype a value in brackets indicates the percentage of offers that specify the
considered attribute condition/subtype. This is to encourage the user to think thoroughly
about choices that are highly restrictive. As soon as the user selects an attribute condition
or a type, the request model is updated accordingly. Matching offers are retrieved and
presented to the user.

In addition to these interaction opportunities, the user may select a service offer from the
presented list, that fits reasonably well to his requirements. He may then indicate desir-
able service properties relative to this offer by critiquing it. For example, the user might
indicate that the offer is fine, but too expensive (see Figure 5.12 left). This can be done
by simply clicking on the referenced attribute value. Based on the indicated property and
the properties of the available service alternatives that fulfill this requirement, the system
produces a list of tradeoff alternatives on other service aspects that the user has to accept
when insisting on the indicated requirement. For example the system might indicate that
the user has to accept that he cannot get a PDA from Dell when critiquing on the price of a
computer offer (Figure 5.12 right). The system also indicates the percentage of offers that
fulfill an applied critique as well as for each tradeoff alternative, the percentage of those
offers that require the user to accept the considered tradeoff. Different tradeoff types are
color-coded to make the presented tradeoff opportunities more perceivable. After having
viewed the presented alternatives, the user can decide to abandon his requirement, to spec-
ify an additional requirement on the same service offer or he indicates that he is willing to
accept one of the presented tradeoff alternatives by simply clicking it. While the second
option will lead to another set of tradeoff alternatives that are produced by taking both re-
quirements of the user into account, the third option will result in a model update reflecting

95

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

the information provided by the user (cf. Section 5.9). In this context, tradeoffs do not
necessarily refer to service aspects that have been already considered in the request model,
but may also refer to service attributes that have not yet been specified by the user. The pre-
sented feature encourages the user to make compromises where necessary and helps him
to identify yet unconsidered, but important service aspects (Requirements U.6 and U.12).
The former is particularly important, since it challenges the user to reconsider attribute
constraints. According to [Kee92], this fosters the identification of promising service al-
ternatives, that otherwise would not have been considered. In the remainder of this section,
we will provide details on the features of the introduced critiquing mechanism and on its
implementation.

Determining Tradeoff Alternatives

The proposed critiquing and tradeoff mechanism extends previous work in the area of rec-
ommender systems [RMMS04, CP07b] and is implemented as follows. Assume the user
selected a service offer ocrit for critiquing which matches to the request model r that is
maintained for the user and fits reasonably well to his actual service requirements. Let a
be an attribute of this offer and let offValue be the value of the offer taken with respect to
that attribute. The types of critiques which can be applied to that attribute depend on the
type of the attribute. If the attribute a is of a numerical type, such as Integer or Double, the
user might provide either a critique of type more than offValue, indicating that he is only
willing to accept a-values that are larger than offValue, a critique of type less than offValue,
indicating that he is only willing to accept a-values that are lower than offValue, or no cri-
tique at all. If a is a nominal attribute such as Color, a critique of type !=offValue, meaning
that the user does not accept the value offValue for a, or no critique at all can be specified.
Based on the input critique C, the system proceeds as follows to identify tradeoff opportu-
nities. In a first step, a copy r� of r is created, where the type of the visible (in the graphical
request model representation introduced in Section 5.5) instance sets that are referenced in
r is replaced by that of the corresponding sets of the critiqued offer ocrit

10. Subsequently,
the service offers OM that match to r� are retrieved by using the matchmaking mechanism
described in Section 5.6. Since by choosing the offer ocrit for critiquing, the user indicated
that he is interested in offers of the selected type11, OM \ ocrit constitutes the set of service
offers to which alternative tradeoff opportunities refer to and from which they should be
extracted. Thereby, a tradeoff opportunity indicates a set of compromises (relative to the
critiqued offer ocrit) on the offers OC that fulfill the provided critique C, which have to be
accepted by the user, if insisting on the provided critique. Several alternative tradeoff pat-
terns each applying to a fraction of the offers in OC might exist. Since in the worst case, an
exponential (in the number of different attributes that occur in the matching offers) number
of tradeoff patterns exists, we are interested in those that are shared by large subsets of

10These are valid subtypes of the corresponding types in r, since otherwise ocrit would not have matched to
r.

11This is due to the fact, that we do not maintain uncertainty about the type of service attributes.

96

5.7. PRESENTING MATCHING SERVICE OFFERS AND THEIR

CHARACTERISTICS TO ENCOURAGE REQUIREMENTS SPECIFICATION

the offers in OC . As suggested in [RMMS04], those frequent tradeoff patterns can be ex-
tracted from OM using the Apriori-algorithm [AS94] for frequent itemset and association

rule mining, which is typically used to analyze the shopping behavior of customers based
on recorded purchasing transactions. Thereby, frequent itemset mining is used to find sets
of items which are frequently bought by customers. Based on those sets, subsequent as-
sociation rule mining allows to identify items which are usually bought together, e.g. the
association rule beef roulade ⇒ dill pickle, bacon states that customers who purchased
beef roulade often also bought dill pickles and bacon. Thereby, the frequency with which
an itemset X occurs in a certain set of transactions T is called the support of X in T .

Definition 5.8. (Support and frequent itemset) The support supp(X) of an itemset X in

a set of transactions T is the percentage of transactions that contain X . A frequent itemset

is an itemset whose support exceeds a certain user-defined threshold. The support of an

association rule X ⇒ Y in T is given by supp(X ∪ Y), i.e. provides the percentage of

transactions that comply with that rule.

To identify recurring tradeoff patterns using the Apriori-algorithm, each offer o ∈ OM ’s
attribute values are compared to those of the critiqued offer ocrit. As a result, a vector
comprising of the tradeoffs relative to ocrit that apply to each of o’s individual attributes
is determined. Valid attribute-specific tradeoffs are less than offValue (↓) and more than

offValue (↑) for numerical attributes and !=offValue for nominal attributes. Moreover, ?

indicates that o did not specify the considered attribute or its value. For instance, the vec-
tor �price ↓, quality ↓� refers to offers described by the two attributes price and quality

and indicates that compared to the critiqued offer, the considered offer refers to a service
that is less expensive, but also of lower quality. Each tradeoff vector is interpreted as a
purchasing transaction and each of the single attribute-specific tradeoffs as an item. Tak-
ing the tradeoff vectors P of the offers in OM as an input, the Apriori-algorithm delivers
those tradeoff patterns that occur frequently in the provided vectors and thus in the offers
OM . Based on that patterns, applying association rules can be derived. Rules of the form
C ⇒ Tradeoff indicate tradeoff patterns Tradeoff that frequently occur in those offers that
fulfill the user-provided critique C, i.e. the consequents of those rules provide the searched
for tradeoff alternatives. Depending on the structure of the available offers and the type of
critiques that have been applied, a large number of rules and thus a large number of tradeoff
patterns is generated. Presenting all those patterns is ineligible, since this would overstrain
the user. Hence, selecting a subset of the determined tradeoff alternatives for presentation
is required. This should happen with particular care, since only a small fraction of the po-
tentially large set of generated alternatives can be finally selected. Two different selection
strategies have been suggested in the literature. While Reilly et al. [RMMS04] used the
support of a rule as a measure for its relevance, Chen et al. [PC07] used support-based
prefiltering combined with a selection on the basis of a measure that preferred those trade-
off alternatives that were promising in light of the user’s stated requirements and diverse
in terms of the involved attributes and the offers they apply to. However, they did not
consider the fact that particularly at the beginning of the requirements elicitation process,
the uncertainty about the validity of the maintained requirements model is high and thus

97

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

the selected alternatives might be inappropriate. This is even likely, since the initial model
suggested by the authors is based on default values. As a result, both strategies are limited
in their ability to select those tradeoff alternatives for presentation that are most promising
in terms of the user’s requirements and in terms of the knowledge gain they provide, if
selected (Requirement U.11). In this thesis, we therefore suggest an alternative approach
to tradeoff selection that does not have that drawback. In addition, we will show that the
number of generated association rules can be reduced before the actual selection process
without loosing potential tradeoff candidates. This is due to the fact, that Apriori can pro-
duce frequent itemsets and thus association rules that are redundant. To see this, assume
that for a given critique C all offers that require the user to accept the set of tradeoffs Y1

also require him to accept the set of tradeoffs Y2, then among others, Apriori will produce
the two rules C ⇒ Y1 and C ⇒ Y1 ∪ Y2. However, the rule C ⇒ Y1 is redundant and
can be removed, since both rules apply to the same set of offers and C ⇒ Y1 is implied
by C ⇒ Y1 ∪ Y2. Moreover, C ⇒ Y1 incompletely describes the commonalities of the
offers it applies to and thus Y1 should not be presented as a tradeoff opportunity to the user.
These considerations lead to the concept of frequent closed itemsets [PBTL99].

Definition 5.9. (Closed itemset) An itemset X is closed with respect to a set of transac-

tions T , if none of its supersets has the same support as X in T .

It can be easily verified, that basing association rule mining on the subset of frequent
itemsets that are closed, will result in a set of association rules that is equivalent to the set
of frequent rules, but does not contain redundant rules of the type that has been described
above. As demonstrated in [PBTL99], the number of non-closed rules is particularly high
for correlated and dense data as can be expected in a service selection scenario. This
results not only in a massive reduction of rules, but also in a lower time complexity of their
computation. As shown by Uno et al. [UKA04], all closed frequent itemsets for a given
data set can be computed in a time that is linear in the number of frequent closed itemsets.
In our approach, we therefore use Uno et al.’s algorithm12 for frequent closed itemset and
association rule mining to determine all frequent closed association rules applying to the
input patterns given by the tradeoff vectors P of the offers in OM \ ocrit. We restrict
ourselves to rules whose support exceeds a certain threshold (10% in our implementation).
This step is done once, if the user decides to critique a certain offer and is not required
to be repeated if another attribute-related critique with regard to the same offer is added.
Once association rules have been mined, we search for those rules that have the critique C
specified by the user as an antecedent. Those rules’ consequents indicate sets of tradeoffs
that often occur in the offers that fulfill the user’s critique. However, not all tradeoffs given
by the filtered rule’s consequents are actually implied by the user-specified critique, but
occur independently from it. Those tradeoff alternatives should not be presented to the
user. Hence, we have to find a means to identify those rules C ⇒ Y that indicate true
implications. A commonly used measure for the quality or interestingness of a rule is its
confidence.

12The implementation provided by the authors can be found at http://fimi.ua.ac.be/src/fimi03b.tgz.

98

5.7. PRESENTING MATCHING SERVICE OFFERS AND THEIR

CHARACTERISTICS TO ENCOURAGE REQUIREMENTS SPECIFICATION

Definition 5.10. (Confidence) The confidence conf(X ⇒ Y) of a rule X ⇒ Y in a set of

transactions T is the probability of that rule being correct, i.e. the probability of observing

Y in a given transaction t ∈ T that also contains X . That is

conf(X ⇒ Y) = Prob(Y |X) = Prob(X∧Y)

Prob(X)
=

supp(X⇒Y)
supp(X) .

Is the confidence measure suitable to identify those rules that indicate implications? Un-
fortunately, the answer is no. This is due to the fact, that rules having a consequent with
high support, i.e. a consequent that is frequent, will be assigned a high confidence, though
the occurrence of the items given by the rule’s antecedent might be completely unrelated to
that of those in the consequent. To account for that issue, Brin et al. [BMUT97] introduced
conviction as a measure indicating to what degree a given association rule really states an
implication.

Definition 5.11. (Conviction) The conviction conv(X ⇒ Y) of a rule X ⇒ Y in a

set of transactions T is the ratio of the probability of that rule being incorrect, i.e. the

probability of not observing Y in a given transaction t ∈ T that contains X , if X and ¬Y
were independent, to the observed probability of that rule being incorrect. That is

conv(X ⇒ Y) = Prob(X)Prob(¬Y)

Prob(X)Prob(¬Y |X)
= Prob(X)(1−Prob(Y))

Prob(X)(1−Prob(Y |X)
=

1−supp(Y)

1−conf(X⇒Y)
.

As can be seen, the measure takes a value of 1, if X and Y are independent. Values greater
than 1 indicate that incorrect predictions of that rule occur less often than this would be the
case if X and Y were independent, i.e. suggest that X indeed implies Y . Conviction is
maximal for perfect implications.

Using conviction as a measure, we determine those rules whose conviction value exceeds
a certain threshold (2 in our implementation13) and rank the tradeoff opportunities they
encode. Thereby, a higher conviction of the corresponding rule indicates a higher rank. We
also rank the tradeoff opportunities given by the consequents of the identified rules with
respect to their ability to reduce the system’s uncertainty about the user’s request model
(cf. Section 5.8). The greater the ability to reduce uncertainty, the higher the rank. Finally,
we sort the determined tradeoff alternatives by their mean rank and present the k best (10 in
our implementation) to the user. Thereby, the attribute-specific tradeoffs included by each
tradeoff opportunity are listed. They are described by the name of the attribute they refer
to and by the kind of tradeoff that has to be accepted, e.g. the attribute-specific tradeoff
quality ↓ indicates that a lower quality has to be accepted. If the attribute that is referred
to in the tradeoff is not yet considered in the request model, its value/its type is shown next
to the tradeoff type (cf. Figure 5.12). Again, a value in brackets, that is displayed next
to each tradeoff alternative, indicates the percentage of offers that will match to the user’s
requirements, if the considered interaction opportunity is selected. The overall procedure
to identify promising tradeoff opportunities is summarized in Listing 5.1.

13This indicates that a given rule X ⇒ Y would be incorrect 100% more often, if X and Y were independent.
The threshold is incrementally decreased, if less than 10 rules are found.

99

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION✞
1 Tradeoffs generateTradeoffs(Critique C, Offer ocrit, RequestModel r) {

2 if(ocrit has not been critiqued before) {

3 - get a copy r� of r, where the type of the visible instance sets

that are referenced in r is changed to that of the corresponding

sets of the critiqued offer ocrit

4 - retrieve the set OM of service offers matching to r�

5 - remove the critiqued offer ocrit from OM

6 - determine the set P comprising of each matching service offer

o ∈ OM’s tradeoff pattern with respect to ocrit

7 - determine the set F of frequent closed itemsets from P that

exceed a certain minimal support

8 - determine the set R of association rules from F
9 }

10 - filter the rules R according to the user’s critiquing wishes C
11 - rank the tradeoff opportunities given by the rules in R (whose

conviction exceeds a certain threshold) by their rules’ conviction-

values

12 - rank the tradeoff opportunities by their ability to reduce the system

’s uncertainty about the user’s request model

13 - return the tradeoff k opportunities that are best w.r.t. their mean

rank

14 }✡✝ ✆
Listing 5.1: Determining tradeoff opportunities based on a user’s current request model r

and the critiques C that he applied to a matching service offer ocrit

5.8 Determining Promising Interaction Opportunities

Effectively reducing uncertainty about the consumer’s service requirements, which results
from incomplete and inaccurate knowledge, is key to the performance of the requirements
elicitation process. To achieve this, we propose to direct and focus the process of require-
ments refinement by emphasizing those interaction opportunities that have a high potential
to increase the system’s knowledge, i.e. to reduce its uncertainty, about the consumer’s
service requirements. Thereby, knowledge acquisition concentrates on those aspects of the
user’s requirements that are relevant in light of the available service options and in light of
the user’s known requirements (Requirement U.11). Consider for example a flight book-
ing scenario. If all available services offer food during the flight, then there is no need to
know whether the user would also accept flight offers without this service. As well, if price
is not relevant to a consumer’s service selection decision, then to explore in detail which
prices are more desirable for this user is pointless. Necessary prerequisites for the outlined
approach are a requirements model that explicitly represents and locates uncertainty about
a consumer’s service requirements (Requirement U.3) as well as a measure that quantifies
that uncertainty. While the required model was introduced in Section 5.4, this section is
dedicated to the presentation of an uncertainty measure that covers the described notion of
uncertainty (Section 5.8.1). Moreover, a procedure that leverages the proposed measure in
order to identify promising interaction opportunities is presented (Section 5.8.2).

100

5.8. DETERMINING PROMISING INTERACTION OPPORTUNITIES

5.8.1. Measuring Model Uncertainty

The goal of the requirements elicitation process is to sort available service offers according
to their suitability with respect to the consumer’s service requirements. The latter is indi-
cated by an offered instance’s matching degree, i.e. the user’s overall preference for this
instance. In the remainder of this section, we will propose a measure that quantifies the
system’s uncertainty about the user’s preferences for the available offers based on a given
request model and thus indirectly and inversely measures the quality of the offer ranking
produced by the system. As such, it qualifies as a means to identify promising interaction
opportunities, that, if taken, lead to more accurate request models, thus decrease uncer-
tainty associated with the computed matching degrees and finally result in more accurate
service offer rankings.

The request model introduced in Section 5.4 represents uncertainty about a service con-
sumer’s requirements by means of probability distributions over potential and mutually
exclusive consumer requirements, which concern the importance of desired service prop-
erties (encoded by uncertain connecting strategies) as well as direct constraints on the
values of the latter (encoded by uncertain direct conditions). Uncertainty about the true
matching degree of an offer, i.e. the true overall preference for it, is the higher the more
plausible and mutually exclusive requirements that affect it exist, i.e. the more alternative
service properties and direct constraints might be valid with a non-negligible probability.
An uncertainty measure that covers this notion of uncertainty and therefore is a suitable
choice for our purposes is the Shannon entropy [Sha48] S(X) of a random variable X and
its associated probability distribution14. It is given by

S(X) = −
n�

j=1

Prob(xj) · log2(Prob(xj)),
✞✝ ☎✆5.23

where x1, . . . , xn are the alternative values of X . The value of the entropy is zero, meaning
no uncertainty, if there is exactly one alternative X = x with probability Prob(x) = 1 and
is maximal, meaning maximal uncertainty, for equally likely alternatives. Using Shannon
entropy to measure the system’s uncertainty about the validity of potential direct conditions
and connecting strategies as covered in a given request model, we are able to derive a
measure indicating the system’s uncertainty about the overall preference for a service offer
with respect to a given request model. Since the maximal entropy may differ for each
of the involved random variables, we utilize Shannon’s entropy measure normalized to
the interval [0, 1]. Normalization is done by dividing the measure S(X) by the maximal

14Shannon entropy is only applicable to random variables taking discrete values. Continuous extensions to
the measure have been suggested in the literature (see e.g. [AK06]), but are not discussed in this thesis.
This is due to the fact that all probability distributions that are associated with request model elements and
that are considered in this thesis are either discrete by nature or are maintained in discretized form.

101

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

entropy that can be achieved with respect to X , i.e. the entropy that results, if all potential
values of X are equally likely. The normalized measure SN is given by

SN (X) =
S(X)

− �n
j=1

1
n · log2(1

n)

=
S(X)

log2 n
.

✞✝ ☎✆5.24

The resulting uncertainty values range between 0 and 1, where a higher value indicates
higher uncertainty.

Uncertainty about the Preference with Respect to the Direct Conditions Us-
ing Shannon entropy as an uncertainty measure, the uncertainty U(Pref

dcj

I (i)) ∈ [0, 1]

about the preference Pref
dcj

I (i) for an instance i with respect to the user’s in-conditions on
the instance set I as covered by the uncertain in-condition dcj is given by

U(Pref
dcj

I (i)) = SN (Pref
dcj

I (i))

= − (pInI
i
(true) · log2(pInI

i
(true)) +

(1 − pInI
i
(true)) · log2(1 − pInI

i
(true))).

✞✝ ☎✆5.25

Similarly, the uncertainty U(Pref
dcj

I (i)) ∈ [0, 1] about the preference Pref
dcj

I (i) for an
instance i with respect to the user’s not-in-conditions on the instance set I as covered by
the uncertain not-in-condition dcj is given by

U(Pref
dcj

I (i)) = SN (Pref
dcj

I (i))

= − (pNotInI
i
(true) · log2(pNotInI

i
(true)) +

(1 − pNotInI
i
(true)) · log2(1 − pNotInI

i
(true))).

✞✝ ☎✆5.26

Finally, the uncertainty U(Pref
dcj

I (i)) ∈ [0, 1] about the preference Pref
dcj

I (i) for an in-
stance i with respect to the user’s range condition on the instance set I as covered by the
uncertain range condition dcj

15 is given by

U(Pref
dcj

I (i)) = SN (Pref
dcj

I (i))

= − (Prob(MinI ≤ i < MaxI) · log2(Prob(MinI ≤ i < MaxI)) +

(1 − Prob(MinI ≤ i < MaxI)) · log2(1 − Prob(MinI ≤ i < MaxI)))

= − (IE[Pref
dcj

I (i)] · log2(IE[Pref
dcj

I (i)]) +

(1 − IE[Pref
dcj

I (i)]) · log2(1 − IE[Pref
dcj

I (i)])),
✞✝ ☎✆5.27

15While uncertainty about the validity of all potential (not-)in-conditions a user might have is covered by
a single uncertain (not-)in-condition, an uncertain range condition just maintains uncertainty about the
validity of all potential single range conditions. A (single) uncertain range condition is not capable of
managing uncertainty about the validity of several concurrent range conditions a service requester might
have.

102

5.8. DETERMINING PROMISING INTERACTION OPPORTUNITIES

where the third equation results from Formula 5.22 in Section 5.6.

According to Definition 5.4, the preference Pref dc
I (i) for an instance i with respect to all

uncertain direct conditions dcj , 1 ≤ j ≤ n, that have been specified for the instance set

I is given by the product of the preference values Pref
dcj

I (i), 1 ≤ j ≤ n, resulting from
the single uncertain direct conditions. Uncertainty about the value of a product is low, if at
least one of its factors is known to be low or if all factors are known. The subsequent fuzzy
logic expression adequately describes that fact and therefore is a reasonable definition for
the system’s uncertainty U(Pref dc

I (i)) about the preference Pref dc
I (i). It is given by

U(Pref dc
I (i)) = 1−(

n�

j=1

(1 − IE[Pref
dcj

I (i)]) · (1 − U(Pref
dcj

I (i))) ⊕

n�

j=1

(1 − U(Pref
dcj

I (i)))

),
✞✝ ☎✆5.28

where a ⊕ b = a + b − a · b is the fuzzy or-connective and · is the fuzzy and-connective.
The formula indicates that the uncertainty U(Pref dc

I (i)) about the value Pref dc
I (i) is low, if

at least one of the preference values {Pref
dcj

I (i)|, 1 ≤ j ≤ n} is known to be low, i.e. if

there exists a j, 1 ≤ j ≤ n, with IE[Pref
dcj

I (i)] → 0 and U(Pref
dcj

I (i)) → 0 (first n terms

of Formula 5.28), or if all preference values {Pref
dcj

I (i)|1 ≤ j ≤ n} are known, i.e. if

U(Pref
dcj

I (i)) → 0 holds for all j, 1 ≤ j ≤ n, (last term of Formula 5.28). In particular, the
definition implies that acquiring information about other uncertain direct conditions is not
required, if for a given instance, the user’s preference with respect to one of the uncertain
direct conditions is known to be low. This is in compliance with Requirement U.11. Since
preference values take values from the interval [0, 1], the resulting uncertainty values range
between 0 and 1, where a higher value indicates higher uncertainty. Finally, we define the
uncertainty U(Pref dc

I (i)) to be 1, if no uncertain direct conditions are maintained for I .
This is consistent with the fact, that in such a case, no information about potential direct
conditions of the user have been acquired yet.

Uncertainty about the Overall Preference with Respect to an Instance Set

Let I be an instance set referenced in a request model. According to Definition 5.7, the
overall preference Pref ov

I (i) for an instance i with respect to I is given by the product
of the preferences Pref tc

I (i), Pref dc
I (i) and Pref ac

I (i) resulting from the user’s type condi-
tion, his direct conditions and the attribute conditions associated with I . Following the
above argumentation about the uncertainty of a product of values, the system’s uncertainty

103

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

U(Pref ov
I (i)) ∈ [0, 1] about the user’s overall preference for a given instance i with respect

to I can be adequately and recursively described by the expression

U(Pref ov
I (i)) = 1−(

(1 − Pref tc
I (i)) ⊕

(1 − IE[Pref dc
I (i)]) · (1 − U(Pref dc

I (i))) ⊕
(1 − IE[Pref ac

I (i)]) · (1 − U(Pref ac
I (i))) ⊕

(1 − U(Pref ac
I (i))) · (1 − U(Pref dc

I (i)))

),
✞✝ ☎✆5.29

where the user’s uncertainty U(Pref ac
I (i)) with respect to his attribute conditions on the in-

stance set I is the recursive component and is subsequently defined. The formula indicates
that the uncertainty about the product U(Pref ov

I (i)) is low, if at least one of its contribut-
ing factors Pref tc

I (i), Pref dc
I (i) or Pref ac

I (i) is known to be low, i.e. if Pref tc
I (i) → 0,

IE[Pref dc
I (i)] → 0 and U(Pref dc

I (i)) → 0 or IE[Pref ac
I (i)] → 0 and U(Pref ac

I (i)) → 016

(first three terms of Formula 5.29), or if all the values Pref tc
I (i), Pref dc

I (i) and Pref ac
I (i)

are known, i.e. if U(Pref dc
I (i)) → 0 and U(Pref ac

I (i)) → 0 (4th term in Formula 5.29).
The definition implies that, if a user’s preference for an instance i with respect to its type,
its value or its attributes related to a given instance set is known to be low, acquiring in-
formation about other requirements he might have with respect to that instance and that
instance set is not required. This is again in compliance with Requirement U.11.

Let I � be the corresponding instance set of I in i and let {pWacj
|1 ≤ j ≤ n} be the weight

distributions maintained for the attribute conditions acj , 1 ≤ j ≤ n, specified either for I
or I �. Thereby, the distribution pWacj

is defined to be a uniform distribution over possible
weights (encoding missing knowledge), if the attribute condition acj has been specified in
I �, but not in the corresponding set I of the request model. The preference Pref ac

I (i) for
the instance i with respect to its attributes that have been specified for I � is given by the
weighted sum of the preferences {Pref

acj

I (i)|1 ≤ j ≤ n} for the single attributes that have
been specified for I or I �, normalized to the interval [0, 1] (Definition 5.6). The value of
a (normalized) weighted sum is known, if the single addends are known and do not differ
much (in this case the weights have only a marginal impact on the value of the sum and
thus are not needed to be known) or if both, the single weighted addends and their weights,
are known. Hence, the uncertainty U(Pref ac

I (i)) about the preference value Pref ac
I (i) is

appropriately described by the logic expression

U(Pref ac
I (i)) = 1−(

n�

j=1

(1 − U(Pref
acj

I (i))) · (1 − STDEVk(IE[Pref
ack

I (i)])) ⊕

n�

j=1

(1 − U(Sj
I (i))) ·

n�

j=1

(1 − U(Wacj
))

16As already mentioned, we do not maintain uncertainty about the type of acceptable service instances (cf.
Section 5.4.1), thus Pref tc

I (i) is always known.

104

5.8. DETERMINING PROMISING INTERACTION OPPORTUNITIES

),
✞✝ ☎✆5.30

where Sj
I (i) := Wacj

·Pref
acj

I (i), IE[Sj
I (i)] is its corresponding expected value and STDEVk(

IE[Pref
ack

I (i)]) is the standard deviation of the single expected preferences {Pref
ack

I (i)|1 ≤
k ≤ n}. The uncertainty U(Pref ac

I (i)) is defined to be 0, if no attribute conditions have
been specified for I � and I , since in that case, knowledge about the user’s preferences for
potential attributes is not required. As can be seen, Formula 5.30 expresses that the uncer-
tainty about the value Pref ac

I (i) is low, if the single preferences {Pref
acj

I (i)|1 ≤ j ≤ n} are
known and do not differ much, i.e. STDEVk(IE[Pref

ack

I (i)]) → 0 and U(Pref
acj

I (i)) → 0
holds for all acj , 1 ≤ j ≤ n (first term of Formula 5.30), or if the single contributions
{Sj

I (i)|1 ≤ j ≤ n} to the sum as well as their weights {Wacj
|1 ≤ j ≤ n} are known, i.e.

U(Sj
I (i)) → 0 and U(Wacj

) → 0 holds for all j, 1 ≤ j ≤ n (second term of Formula 5.30).

Thereby, the uncertainty U(Sj
I (i)) about the value of the product Wacj

· Pref
acj

I (i) is given
by the expression

U(Sj
I (i)) = 1−(

(1 − IE[Wacj
]) · (1 − U(Wacj

)) ⊕
(1 − IE[Pref

acj

I (i)]) · (1 − U(Pref
acj

I (i))) ⊕
(1 − U(Wacj

)) · (1 − U(Pref
acj

I (i)))

).
✞✝ ☎✆5.31

According to that formula, the uncertainty U(Sj
I (i)) is low, if the weight Wacj

of the con-
sidered attribute condition is known to be low, i.e. if IE[Wacj

] → 0 and U(Wacj
) → 0

(first term of Formula 5.31), the preference Pref
acj

I (i) with respect to the latter is known to
be low, i.e. IE[Pref

acj

I (i)] → 0 and U(Pref
acj

I (i)) → 0 (second term of Formula 5.31), or

both of those values are known, i.e. U(Wacj
) → 0 and U(Pref

acj

I (i)) → 0 (third term of
Formula 5.31). The uncertainty U(Wacj

) about the weight Wacj
of an attribute condition

acj is given by its normalized Shannon entropy SN (Wacj
), i.e.

U(Wacj
) = SN (Wacj

)

= −
�n

k=1 Prob(wk) · log2(Prob(wk))

log2 n
,

✞✝ ☎✆5.32

where the number and selection of the discrete values {wk|1 ≤ k ≤ n} for which Prob(wk)
is maintained depends on the discretization of pWacj

. Finally, the uncertainty U(Pref
acj

I (i))

about the preference Pref
acj

I (i) for the instance i with respect to the specified attribute
condition acj is defined to be

U(Pref
acj

I (i)) =

0.0 if acj is not specified in i
1.0 if acj is not specified for I
U(Pref ov

Ij
(i)) otherwise,

✞✝ ☎✆5.33

where Pref ov
Ij

(i) is the (overall) preference value of the instance i with respect to the target
set Ij of attribute condition acj in the request model. This definition is reasonable, since

105

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

knowledge about a user’s preference with respect to a certain attribute is not required, if
that attribute is not specified in the considered service instance (line one of Definition 5.33).
Moreover, uncertainty about the user’s preference with respect to an attribute that has been
specified in the considered service instance, is maximal, if nothing is known about that
preference (line two of Definition 5.33)17. In compliance with Requirement U.11, the
Formulas 5.30 to 5.33 indicate that, if it is known that the user’s preferences for the single
attributes of a given service instance do not differ much, knowledge about these attributes’
importance is not required. Besides, if the importance (the weight) of an attribute is known
to be low, information about the user’s requirements with respect to that attribute are not
needed.

Given a request model, that represents the user’s known service requirements, the system’s
uncertainty about the user’s true (overall) preference for a given service instance i with
respect to the given model is determined by recursively computing U(Pref ov

Ieffect
(i)) for the

effect set Ieffect of the model.

5.8.2. Selecting Promising Interaction Opportunities

Based on the proposed measure, we can determine those interaction opportunities, i.e.
those subtypes, subattributes and trade-off alternatives, that, when selected, have the high-
est potential to reduce the system’s uncertainty about the consumer’s preferences for the
offered services, and emphasize them to increase their visibility to the user. For that pur-
pose, we determine for each of the interaction opportunities the request model that would
result, if the user made use of this option. After that, we calculate the mean uncertainty
about the k best offer’s matching degrees (cf. Section 5.6) with respect to the resulting
request model. Finally, the interaction opportunities are sorted by their resulting mean
uncertainty and are displayed in ascending order18. This step is done separately for each
type of interaction opportunity. Determining the uncertainty about a user’s service require-
ments and thus about his preference for potential service offers exclusively with respect
to existing and available offers is in compliance with Requirement U.11. By emphasizing
promising interaction opportunities, but at the same time not concealing those that seem to
be non-auspicious, the process of requirements elicitation as implemented in our approach
is guided, but does not constrain the user’s potential choices (Requirement U.12).

5.9 Model Update

As argued, user interactions with the system should lead to appropriate request model up-
dates to maintain consistency with the user’s evolving service requirements and preferences

17If a given attribute has not been considered in the request model, this might suggest that the attribute is not
important to the user. However, we do not know that, so, assuming maximal uncertainty is reasonable.

18In some cases, additional sorting criteria are used. This is indicated and detailedly explained in the corres-
ponding paragraphs of Section 5.7.

106

5.9. MODEL UPDATE

(Requirement U.9). However, so far we owed to explicate what kind of model changes are
performed upon a given interaction and how they are accomplished. In this section, we
make up for that and provide an overview about the update operations performed on the
request model. The expositions are structured along the available interaction opportunities
that have been detailedly described in the previous sections (most notably Sections 5.5 and
5.7). Those include explicit model interactions performed via the graphical representation
(Section 5.5) of the request model (Section 5.9.1) as well as user actions that implicitly
trigger model updates, but are not directly intended to change the model (Section 5.9.2).
While the former typically refer to single model elements such as to an attribute condition
or an attribute condition’s weight, the latter typically affect several model elements. Ta-
ble 5.2 provides an overview about the interaction opportunities offered by our system and
indicates the probability distributions that they affect if performed.

5.9.1. Explicit Model Interactions

This section is concerned with user interactions explicitly aiming at changing the re-
quest model in a certain way. Those include attribute-condition-, direct-condition- and
connecting-strategy-related interactions performed via the graphical representation of the
request model (Section 5.5). Since the user’s intention behind those interactions is known,
it is typically clear how the model and in particular the probability distributions that are
associated with it have to be updated to meet the user’s goal.

Attribute-condition-related Interactions

Upon the specification of an attribute condition via the graphical model representation,
an appropriate attribute condition is added to the request model. Name and target set
type of this condition are chosen according to the corresponding attribute name and target
set type as defined in the ontology. In addition to that, the connecting strategy of the
set to which the newly created attribute condition acj refers to is appropriately adjusted
by adding a probability distribution pWacj

maintaining the system’s knowledge about the
absolute weight Wacj

∈ [0, 1] of the added condition. The distribution is initialized as a
uniform distribution, since upon creation time, knowledge about the attribute condition’s
weight is not available and thus all potential weights are equally likely.

Instead of specifying a single attribute condition, a user might also apply the subtree rec-
ommender (Section 5.5.2) to provide a whole subtree of nested attribute conditions that
shall be added to a given set referenced in the request model. The sets referred to in the
subtree, that is provided by the recommendation tool, are already valid model elements, i.e.
the nesting of the given attribute conditions is in compliance with the attribute and target set
type constraints specified in the ontology. Moreover, each set provides a connecting strat-
egy of type weighted sum that assigns equal weights to all attribute conditions specified for
that set, i.e. for each condition’s weight, a uniform probability distribution is maintained.

107

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

Interaction Opportunity Affected Probability Distribu-

tion(s)

Explicit Model Interactions

Attribute-condition-related Interactions

add/remove attribute condition weight distribution of the attribute
condition

refine target set type -
add/remove request model subtree weight distributions of the af-

fected attribute conditions
Direct-condition-related Interactions

Range-condition-related Interactions

add/(remove) range condition minimum and maximum distribu-
tion of the range

adjust range minimum or maximum distribu-
tion of the range

In-condition-related Interactions

add/(remove) in-condition -
add/remove instance to/from in-condition In-distribution of the instance
increase/decrease preference for an in-
condition-instance

In-distribution of the instance

Not-in-condition-related Interactions

add/(remove) not-in-condition -
add/remove instance to/from not-in-
condition

NotIn-distribution of the instance

Connecting-strategy-related Interactions

add connecting strategy (automatically) -
increase/decrease attribute condition
weight

weight distribution of the attribute
condition

Implicit Model Interactions

critique attributes of a service offer and
choose compromise

weight distributions of the at-
tribute conditions that refer to
the critiqued and compromised
attributes, direct-condition-related
distributions that refer to the cri-
tiqued attributes

Table 5.2.: Available interaction opportunities

108

5.9. MODEL UPDATE

As discussed in Section 5.5.2, to none of the sets a direct condition is assigned. Hence,
upon the provision of a request model subtree for addition, just the attribute conditions
{acj |1 ≤ j ≤ n} specified for the subtree’s root set have to be added to the corresponding
set of the request model19. In addition, for each of those conditions a uniform probability
distribution pWacj

for its weight Wacj
is created. In case of a single attribute condition’s or

more generally, a request model subtree’s removal, the concerned attribute conditions as
well as their weight distributions are simply deleted.

Finally, a user might indicate his willingness to refine the type of a set that is already
referenced in the considered request model (cf. Section 5.5). As a consequence, the type
of the referenced set is set to the specified subtype (presuming that it is a valid subtype of
the set’s present type).

Direct-condition-related Interactions

As discussed in Section 5.4, the request model supports three kinds of uncertain direct
conditions: uncertain range conditions, uncertain in-conditions as well as uncertain not-
in-conditions. All types of those conditions can be specified and edited via the graphical
model representation, that has been introduced in Section 5.5. Altering actions trigger dif-
ferent update operations on the model, which will be detailedly described in the remainder
of this section.

Range-condition-related Interactions The creation of an uncertain range condi-
tion, indicating a range of acceptable instances of a set I , that is referenced in the request
model, is either explicitly prompted by the user via the graphical model representation or
implicitly triggered by a critiquing-and-compromise-operation. It involves the initializa-
tion of two probability distributions pMinI

and pMaxI
that maintain knowledge about the

minimum MinI and the maximum MaxI of the range. Due to missing information about
the actual minimum and maximum at creation time, the probability distributions are ini-
tialized as uniform distributions over the interval RI of potential minima and maxima. The
latter is extracted from available service offers by using knowledge services.

Information about the actual minimum and maximum of the range are acquired from rele-
vant system interactions performed by the user. They are integrated into the corresponding
distributions by using Bayesian inference. Thereby, the posterior probability distribution
pMinI

(minI |interaction), taking a certain interaction into account, is given by

pMinI
(minI |interaction) = cinteraction

pMinI
· LpMinI

(interaction|minI) · pMinI
(minI),✞✝ ☎✆5.34

19The set of the present request model that shares the path (Definition 6.4) of the recommended subtree’s root
set in the contributing request model.

109

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

where pMinI
(minI) is the prior probability distribution before considering the interaction

and cinteraction
pMinI

is a normalizing constant ensuring that pMinI
(minI |interaction) is in fact

a probability distribution. The likelihood function LpMinI
(interaction|minI) indicates the

likelihood of the user interaction given MinI = minI
20. This analogously holds for the

posterior probability distribution pMaxI
(maxI |interaction).

The likelihood function differs depending on the considered distribution (either pMinI
or

pMaxI
) as well as depending on the type of interaction that has been performed by the

user. Relevant actions, i.e. those providing information about the minimum or the max-
imum of an acceptable range of instances, include the user having moved the minimum-

or the maximum-slider in the corresponding range condition’s graphical representation

and the user having critiqued attributes of a service offer that has been recommended

by the system. Consider the former type of interaction. W.l.o.g., assume that the user
moved the minimum-slider of a range condition that has been specified for the set I refer-
enced in the request model under construction. Then, given MinI = minI , the likelihood
LpMinI

(moves min-slider to newInst|minI) of the user moving the minimum-slider of the
considered range condition’s graphical representation to a new instance newInst is deter-
mined by the likelihood LpMinI

(moves min-slider|minI) of the user ever moving the slider
and the likelihood LpMinI

(moves it to newInst|minI) of moving it to newInst. In particular,
LpMinI

(moves min-slider to newInst|minI) is given by

LpMinI
(moves min-slider to newInst|minI)

= LpMinI
(moves min-slider ∧ moves it to newInst|minI)

= LpMinI
(moves min-slider|minI) · LpMinI

(moves it to newInst|minI).
✞✝ ☎✆5.35

Since both, LpMinI
(moves min-slider|minI) and LpMinI

(moves it to newInst|minI), are un-
known, we have to estimate them appropriately. Following the intuition that users are
more inclined to adjust the position of the minimum-slider, if the discrepancy between the
range’s actual minimum and the minimum that is displayed in the model visualization is
large, rather than if it were low, we set

LpMinI
(moves min-slider|minI) =

(lmax − lmin) · |minI − shownInst|

|RI |
+ lmin,

✞✝ ☎✆5.36

where shownInst is the instance indicated by the minimum-slider in the graphical repre-
sentation, i.e. is the most probable minimum of the range (cf. Section 5.5), lmin ≥ 0
is the likelihood of the user moving the minimum-slider, even if it is positioned correctly
and lmax ≥ lmin is the likelihood of the user moving the minimum-slider, if it is posi-
tioned as far away as possible from the actual minimum. The likelihood function depends
on the distance between the minimum instance indicated by the position of the minimum-
slider and the actual minimum. It is depicted in Figure 5.13(a). Note, that any two of

20Note, that likelihood values do not indicate the probability of events, but are proportional to it. In particular,
if related to each other, they provide the ratio of two event’s probabilities.

110

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

and those referring to a small range have a narrow peak. This models the fact that users
exhibit a higher adjustment sensitivity, if the range of potential minima and maxima is
smaller. That is, given for example a small range of price values, it is likely that the user
will specify the minimal acceptable price more precisely than he would, if being provided
with a wide range of potential price values. At this point, we would like to remark, that
both, an appropriate choice of s in Formula 5.37 as well as an appropriate choice of the
parameters lmin and lmax in Formula 5.36 might be user-specific and might depend on the
type of the considered set I and the importance of the attribute condition it is target set of.
In our implementation, we did not account for those facts and decided in favor of the more
viable likelihood estimations presented above. The evaluation results that will be provided
in Chapter 8 indicate, that the request models constructed based on those likelihood func-
tions describe the user’s actual service requirements reasonably well and thus are sufficient
for our implementation.

The foregoing argumentation analogously holds, if the user adjusts the maximum-slider of
a range via the graphical model representation. We therefore relinquish a detailed discus-
sion of this interaction type. Range-condition-related updates implicitly triggered by the
user having critiqued attribute values of a service offer, that has been recommended by the
system, are discussed in Section 5.9.2.

(Not-)in-condition-related Interactions Via the graphical request model represen-
tation, users may specify uncertain (not-)in-conditions on an attribute’s target set I . Upon
the addition of an instance i to an uncertain in-condition, the probability pInI

i
(true) of that

instance being acceptable for the user is set to 1.0. Its preference value pref in
I (i) is set

to 0.5 by default. Similarly, if an instance is added to a not-in-condition, the probability
pNotInI

i
(true) of that instance being not acceptable for the user is set to 1.0. This means,

if the user explicitly adds an instance to an in- or not-in-condition, we assume, that he is
confident of the stated requirement. Upon the removal of an instance i from either a not-
in- or an in-condition, the probabilities pInI

i
(true) and pNotInI

i
(true), respectively, are set

to 0.021. In case of an in-condition, the corresponding preference value is discarded.

Users may also increase or decrease the preference value of an instance i that is considered
in an in-condition. This is done in steps of +/−0.2 via the graphical model representation
and triggers appropriate Bayesian updates of the probability distribution pInI

i
. The posterior

probability pInI
i
(true|interaction) of i being acceptable after having observed an increase-

or decrease-interaction is given by

P (interaction|true) · pInI
i
(true)

P (interaction|true) · pInI
i
(true) + P (interaction|false) · (1 − pInI

i
(true))

,
✞✝ ☎✆5.38

where P (interaction|true) is the probability of the interaction being performed, given that
InI

i in fact is true, P (interaction|false) is the probability of the interaction being per-
formed, given InI

i = false, and pInI
i
(true) is the prior probability, i.e. the probability

21Since this is the default for non-considered instances, we can simply remove the maintained probability.

112

5.9. MODEL UPDATE

of the considered instance i being acceptable before taken the evidence given by the in-
teraction into account. Thereby, we assume that an increase interaction is very likely, if
in fact InI

i = true, and very unlikely, if InI
i = false. This inversely holds for decrease

interactions. In particular, we choose

P (interaction|true) =

�
0.9 if interaction is increased preference of i
0.1 if interaction is decreased preference of i

and P (interaction|false) = 1 − P (interaction|true), since InI
i is a binary variable. The

probability pInI
i
(false|interaction) of i being not acceptable after the observation of an

increase- or decrease-interaction is given by 1 − pInI
i
(true|interaction).

Connecting-strategy-related Interactions

As discussed in Section 5.9.1, connecting strategies can not be explicitly specified by the
user. Instead, they are automatically initialized, when the user adds a new attribute con-
dition to the request model. However, users may either explicitly or implicitly change an
attribute condition’s expected weight by performing model interactions that cause an up-
date of the attribute condition’s weight distribution, i.e. the probability distribution that
maintains the system’s knowledge about the condition’s absolute weight. Weight distri-
butions are affected by two types of interactions, namely, either because the user directly
adjusts the weight of an attribute condition via the graphical representation of the request
model or since he chooses a compromise after having critiqued one of the recommended
service offers. In both cases, a Bayesian update of the affected weight distribution(s) is per-
formed. Considering the weight Wacj

of an attribute condition acj , the updated distribution
taking a given interaction into account is given by

pWacj
(w|interaction) = cinteraction

pWacj
· LpWacj

(interaction|w) · pWacj
(w),

✞✝ ☎✆5.39

where pWacj
(w) is the prior weight distribution before the update, LpWacj

(interaction|w)

is the likelihood function indicating the likelihood of observing the interaction when the
attribute’s true weight is w and cinteraction

pWacj
is a normalizing constant.

Similar to the likelihood function that is used for updates caused by the adjustment of a
range slider (cf. Formula 5.35), the likelihood LpWacj

(adjusts weight of acj to newWeight|w)

of the user changing the weight of attribute condition acj to the new weight newWeight via
the graphical representation of the request model is given by

LpWacj
(adjusts weight of acj to newWeight|w)

= LpWacj
(adjusts weight of acj |w) · LpWacj

(adjusts it to newWeight|w),

i.e. the product of the likelihood LpWacj
(adjusts weight of acj |w) of the user ever adjusting

the weight of acj and the likelihood LpWacj
(adjusts it to newWeight|w) of changing it to

newWeight, in case of making an adjustment.

113

5.9. MODEL UPDATE

As discussed before, an appropriate choice of s in Formula 5.41 as well as an appropriate
choice of the parameters lmin and lmax in Formula 5.40 might be user-specific. Moreover,
both likelihood functions might depend on the displayed weights of other attribute condi-
tions that have been specified in the request model. Our implementation is based on the
likelihood estimations presented above, which do not account for those facts, but are more
viable. The evaluation results that will be presented in Chapter 8 indicate, that the request
models constructed based on those likelihood functions describe the user’s actual service
requirements reasonably well and thus are sufficient. A discussion of weight-related model
updates caused by the user having chosen a compromise is presented in the subsequent sec-
tion.

5.9.2. Implicit Model Interactions

Users may indicate desirable service characteristics relative to the properties of a match-
ing service offer that is presented in the results table (cf. Section 5.7). This is done by
critiquing the attribute values of the displayed offer and in return accepting a set of com-
promises on other attribute’s values by choosing one of the available tradeoff alternatives
determined by the system. System interactions of the described type provide valuable in-
formation about both, the involved attributes’ importance, i.e. the corresponding attribute
conditions’ weights in the request, as well as about the user’s constraints on potential values
of those attributes, i.e. information about direct conditions on the corresponding attribute
conditions’ target sets. In the remainder of this section, we will explicate how those in-
formation are acquired based on the observed critique-and-compromise-interactions and
how they are integrated into the corresponding probability distributions by using Bayesian
inference.

Having detected a critique-and-compromise-interaction performed by the user based on a
given service offer, the type of the visible (in the graphical request model representation
introduced in Section 5.5) instance sets that are referenced in the current request model is
replaced by that of the corresponding sets of the critiqued offer22. This is to account for
the fact, that by choosing the critiqued offer as a reference, the user indicated that he is
interested in offers of the selected type23. In addition to these type adjustments, the weight
distributions of the attribute conditions that correspond to the critiqued and the compro-
mised attributes are adjusted according to Formula 5.39. Attribute conditions that have not
yet been considered in the request model are created and corresponding weight distribu-
tions are initialized. Since it can be expected that a user is likely to critique an attribute
that is important to him, i.e. that has a high weight, the likelihood LpWacj

(critiqued|w) of

an attribute aj being critiqued, if its true weight is w, is chosen to be linearly increasing
with w (see Figure 5.15(a)). Similarly, it can be assumed that a user is rather likely to

22As already mentioned, these are valid subtypes of the corresponding types in the current request model,
since otherwise the critiqued offer would not have matched to the request model.

23This is due to the fact, that as mentioned before we do not maintain uncertainty about the type of service
attributes.

115

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

compromise those attributes, that are not important to him, i.e. that have a low weight,
than those that are important to him. Hence, the likelihood LpWacj

(compromised|w) of an

attribute aj being compromised, if its true weight is w, is chosen to be linearly decreasing
in w (see Figure 5.15(b)). More specifically, LpWacj

(critiqued|w) is estimated by
L

p

 (
cr

it
iq

u
e

d
|

w
)

w

0
10

W
ac

j

lmax

lmin

(a)
L

p

 (
co

m
p

ro
m

is
e

d
|

w
)

w

0
1

lmin

lmax

0

W
ac

j
(b)

Figure 5.15.: Likelihood functions LpWacj
(critiqued|w) (a) and LpWacj

(compromised|w)

(b)

LpWacj
(critiqued|w) = (lmax − lmin) · w + lmin

✞✝ ☎✆5.42

and LpWacj
(compromised|w) by

LpWacj
(compromised|w) = (lmin − lmax) · w + lmax,

✞✝ ☎✆5.43

where w is the true weight of the attribute condition acj corresponding to the critiqued/-
compromised attribute aj , lmin ≥ 0 is the likelihood of the user critiquing/compromising
the attribute, if the true weight of its corresponding attribute condition is lowest/highest
possible, and lmax ≥ lmin is the likelihood of the user critiquing/compromising the at-
tribute, if the true weight of its corresponding attribute condition is highest/lowest possible.
In our implementation, we chose lmin = 0.05 and lmax = 1.

As stated in Section 4.2, DSD provides means to specify nested attribute(s) (conditions),
which allow for a more and more fine-grained characterization of service effects and their
properties. For instance, the printout delivered by a printing service can be described by a
nested attribute printout, which might be characterized more precisely by nested attribute
conditions location, color and resolution specifying the printout location, color and reso-
lution. The latter might in turn be detailed by attribute conditions value and unit indicating
the offered printout resolution(s) as well as the unit in which the resolution is provided.

116

5.9. MODEL UPDATE

Critique-and-compromise-interactions also provide information about the importance, i.e.
the weight, of those nested attributes, if their constituent attributes have been critiqued or
compromised. In particular, it can be expected that a user is likely to critique a constituent
of a nested attribute, if the latter is important to him, i.e. has a high weight, and is likely
to compromise a constituent of a containing attribute that is not important to him, i.e. that
has a low weight. This is attributed to the fact, that the individual facets of a(n) (non-
)important attribute are likely to be also (non-)important to the user. However, the validity
of this statement is relativized with increasing nesting level of the constituent attribute.
The reason for this is, that constituent attributes at a high nesting level refer to a minor part
of the requirements encoded by the nested, i.e. compound, attribute and thus are likely
to be of no or limited relevance to them. Hence, drawing conclusions about the impor-
tance of such an attribute from knowledge about the containing attribute’s importance is
not meaningful. For instance, considering again the printing service example, it is likely
that, if the delivered printout is important to the service requester, e.g. in contrast to the
price of the provided service, its constituent attributes location, color and resolution are
also important, since they make up the main properties of the delivered printout. How-
ever, importance of the printout-attribute does not necessarily imply that, e.g. a particular
resolution unit is also a feature that is important to the user. To account for that, a cri-
tiquing or compromise interaction performed on a given service attribute, not just triggers
an update of the affected attribute condition’s weight distribution, but also a cascade of
updates on the weight distributions referring to the nested attribute conditions containing
the attribute condition that corresponds to the critiqued or compromised attribute. For in-
stance, critiquing or compromising the attribute unit in our example, results in an update
of the weight distribution referring to the unit-attribute’s corresponding attribute condition
as well as in cascading updates of the weight distributions assigned to the nested attributes
resolution and printout’s weight distributions. Thereby, the impact of the update is re-
duced with increasing distance between the attribute condition, which is affected by the
interaction and that, whose weight distribution is updated.

Consider the update of the nested attribute condition acj’s weight distribution. In compli-
ance with the Formulas 5.42 and 5.43, the likelihood LpWacj

(constituent condition ack cri-

tiqued|w) of acj’s constituent attribute condition ack being critiqued, if the true weight of
acj is w, is estimated by

LpWacj
(constituent condition ack critiqued|w)

= (lmax,nl(acj ,ack) − lmin,nl(acj ,ack)) · w + lmin,nl(acj ,ack).
✞✝ ☎✆5.44

The likelihood LpWacj
(constituent condition ack compromised|w) of acj’s constituent at-

tribute condition ack being compromised, if the true weight of acj is w, is estimated by

LpWacj
(constituent condition ack compromised|w)

= (lmin,nl(acj ,ack) − lmax,nl(acj ,ack)) · w + lmax,nl(acj ,ack).
✞✝ ☎✆5.45

117

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

The impact of the update is reduced with increasing nesting level nl(acj , ack) of the af-
fected attribute condition ack with respect to acj by successively halving the ratio lmax

lmin
in

the utilized likelihood functions. More specifically, we set

lmax,j+1 = max(
lmax,j

2
, lmin,j)

lmin,j+1 = lmin,j ,

lmin,0 = lmin and lmax,0 = lmax. Figure 5.16 exemplary illustrates that for the likelihood
function LpWacj

(constituent condition ack critiqued |w). Note, that the Formulas 5.42 and

5.43 are special cases of the Formulas 5.44 and 5.45, respectively, where the affected at-
tribute condition and that condition, whose weight distribution is updated, coincide, i.e.
j = k.

L
p

 (
co

n
st

it
u

e
n

t
co

n
d

it
io

n
 a

c k
 c

ri
ti

q
u

e
d

|
w

)

w

10

W
ac

j

lmax,0

lmin,0
= lmin,1
= ...

lmax,1

Figure 5.16.: Adjustment of the parameters lmin and lmax

Critique-interactions do not only provide information about the importance of attributes,
but also knowledge about their target set type as well as about the user’s constraints on their
values. While the former can be modeled by means of proper type conditions, the latter
have to be integrated into the request model by adding suitable direct conditions and/or
adjusting them appropriately. Thereby, the type condition, that needs to be added to the
critiqued attribute’s target set, directly emerges from the type of the critiqued attribute. The
kind of direct condition related knowledge that can be acquired from a critiquing interac-
tion and thus the kind of updates that are triggered on the model level differs depending
on the target type of the critiqued attribute as well as on the kind of critique that has been
applied.

Let a given attribute be of a numerical type, such as Integer or Double, and let there be a
critiqued offer taking the value offValue with respect to that attribute. Then either a critique
of type more than offValue, a critique of type less than offValue or no critique at all can be
provided with respect to that attribute (cf. Section 5.7). All three kinds of interactions

118

5.9. MODEL UPDATE

convey knowledge about the minimal and the maximal acceptable value of the considered
attribute, i.e. information about the range of acceptable instances that are member of the
target set I referred to by the attribute condition corresponding to that attribute. It can
be modeled by means of an appropriate range condition on the set I and thus triggers
updates of the probability distributions pMinI

and pMaxI
. If necessary, those distributions

are created and initialized first, as described in Section 5.9.1.

As discussed in Section 5.9.1, the posterior probability distribution over possible range
minima pMinI

(minI |interaction) taking the evidence provided by an interaction, here a
critiquing interaction or the absence of a critiquing interaction on a given attribute, into
account is given by Formula 5.34. This analogously holds for pMaxI

(maxI |interaction),
the posterior probability distribution over possible range maxima. Given that the true min-
imum of the range of acceptable instances that are member of the set I is minI , the like-
lihood of the interaction more than offValue is high, if offValue is lower than minI . It is
the higher the larger the distance between offValue and the true minimum is. The reason
for this is, that whenever an offered attribute value is lower than acceptable, the user has
an incentive to indicate that. The incentive is the stronger and thus the likelihood of inter-
action is the higher, the larger the discrepancy between the offered value and the required
minimum level of the critiqued attribute is. If offValue is higher than minI , the likelihood
of the interaction more than offValue is low. It is the lower, the larger the distance between
offValue and the true minimum is. This is due to the fact, that the user has little or no
incentive to state that a certain attribute value is too low, if he is willing to accept a lower
value. The incentive is particularly low, if the attribute value is much higher than the min-
imal acceptable value. Those remarks inversely hold for a given maximum of a range and
interactions of type less than offValue. We use logistic likelihood functions of the form

f(offValue; µ, s) =
1

1 + e−(offValue−µ)/s

to model the described behavior, where µ is a location parameter and s is a scale parameter.
In particular, given the true minimum minI and the true maximum maxI , we set the like-
lihood LpMinI

(more than offValue|minI) of the user performing the interaction more than

offValue on a given attribute of the service offer selected for critiquing to

LpMinI
(more than offValue|minI) = f(offValue; minI ,

|RI |

4 · ln (l
1−l)

)

and the likelihood LpMaxI
(less than offValue|maxI) of the user performing the interaction

less than offValue on that attribute and offer to

LpMaxI
(less than offValue|maxI) = f(offValue; maxI ,

|RI |

4 · ln (1−l
l)

).

The scale parameter s is chosen in a way ensuring that the likelihood of interaction is lower
or equal to l, if offValue ≥ µ+ |RI |

4 or offValue ≤ µ− |RI |
4 , respectively. If l is set close to 0

(0.05 in our implementation), it is ensured that the likelihood of interaction for offer values

119

CHAPTER 5. MODELING AND ELICITATION OF CONSUMER

REQUIREMENTS FOR SERVICE SELECTION

lower than minI − |RI |
4 (maxI − |RI |

4) is close to maximal (minimal) and that of values larger

than minI + |RI |
4 (maxI + |RI |

4) is close to minimal (maximal). The resulting likelihood
functions LpMinI

(more than offValue|minI) and LpMaxI
(less than offValue|maxI) are de-

picted in Figure 5.17.

offValue

0
min(R

I
)0 max(R

I
)

L
p

 (
m

o
re

 t
h

a
n

 o
f f

V
a

lu
e

|
m

in
I)

M
in

I

minI

(a)

offValue

0
min(R

I
)0 max(R

I
)

L
p

 (
le

ss
 t

h
a

n
 o

ff
V

a
lu

e
|

m
a

x
I)

M
ax

I

maxI

(b)

Figure 5.17.: Likelihood functions LpMinI
(more than offValue|minI) (a) and LpMaxI

(less

than offValue|maxI) (b)

Beside of the fact that a critiquing interaction has been performed on a certain attribute of a
critiqued offer, also the observation that those interactions have not been carried out on that
attribute contributes knowledge about the minimum and the maximum of the range of ac-
ceptable values of that attribute. Thereby, the likelihood LpMinI

(¬more than offValue|minI)
of the user not performing the interaction more than offValue on a given attribute of a cri-
tiqued service offer is given by

LpMinI
(¬more than offValue|minI) = 1 − LpMinI

(more than offValue|minI)

= f(offValue; minI ,
|RI |

4 · ln (1−l
l)

)
✞✝ ☎✆5.46

and the likelihood LpMaxI
(¬less than offValue|maxI) of the user not performing the inter-

action less than offValue on that attribute is given by

LpMaxI
(¬less than offValue|maxI) = 1 − LpMaxI

(less than offValue|maxI)

= f(offValue; maxI ,
|RI |

4 · ln (l
1−l)

).
✞✝ ☎✆5.47

Note, that the provided likelihood estimations are based on the assumption that the cri-
tiquing behavior of the user is exclusively determined by the value of the considered at-
tribute. However, a user might also decide to not critique a certain attribute value, since

120

5.9. MODEL UPDATE

a similar critique has been already provided. In such a case, using the likelihood estima-
tions provided above (Formulas 5.46 and 5.47) would lead to the undesirable conclusion
that the critique has not been provided, since the offered attribute value was acceptable.
This in turn would result in inappropriate updates of the probability distributions pMinI

and pMaxI
. Nonetheless, we argue that using the suggested likelihood estimations is still

feasible, since it is unlikely that a user is challenged to provide a certain critique or similar
critiques more than once. This is due to the fact, that the model update triggered by a
former critiquing operation causes offers with similar attribute values to be ranked low.

Beside of the discussed critiques, which refer to numerical attributes, users may also ap-
ply critiques of type !=offValue, indicating that the instance offValue provided by the cri-
tiqued offer is not acceptable. The application of this kind of critique is restricted to nom-
inal attributes such as Color (cf. Section 5.7). Let there be a critiqued offer taking the
value offValue with respect to a given nominal attribute. Then the critique !=offValue pro-
vides knowledge about non-acceptable attribute values with respect to the corresponding
attribute condition’s target set I . This can be modeled by means of an appropriate in- or
not-in-condition on the set I and triggers an update of the involved probability distributions
pInI

offValue
and pNotInI

offValue
, respectively. Given the critique !=offValue, we have to distin-

guish several cases depending on the type of direct condition(s) that have been already
specified for I in the request model. If there is an in-condition that has been already defined
for the set I , we have to check whether pInI

offValue
(true) �= 0 or pInI

offValue
(true) = 0. In the

latter case, nothing needs to be done, since the performed interaction does not provide any
additional information. In the former case, we perform a Bayesian update of pInI

offValue
ac-

cording to Formula 5.38 with P (!=offValue|true) = 0.1 and P (!=offValue|false) = 0.9.
This means, the probability of observing the interaction !=offValue is high, if offValue

is in fact not acceptable and low otherwise. Instead of an existing in-condition, there
might have been a not-in-condition already specified with respect to the set I . In case
of pNotInI

offValue
(true) �= 0, we perform a Bayesian update analogously to Formula 5.38,

with P (!=offValue|true) = 0.9 and P (!=offValue|false) = 0.1, i.e. the probability of
observing the interaction !=offValue is high, if offValue is in fact not acceptable and low
otherwise. In case of pNotInI

offValue
(true) = 0, we set pNotInI

offValue
(true) = 1, since in con-

trast to the former case, we did not yet observe any evidence for NotInI
offValue = false24.

Finally, if neither a not-in- nor an in-condition has been already specified with respect to
I , we create a direct condition of type not-in and proceed as already described.

24We know that, since p
NotInI

offValue
(true) = 0 is the default for not yet considered instances, which due to

the choice of P (!=offValue|true) and P (!=offValue|false) cannot result from a Bayesian update.

121

6
Modeling, Elicitation and Usage of

Consumer Feedback

Enabling well-informed and balanced service selection decisions in an environment where
knowledge about service capabilities might be inaccurate and incomplete, requires to make
potential service consumers aware of the risk that is associated with the execution of a ser-
vice. As argued in Section 1.4, a feedback mechanism is able to provide the knowledge
that is necessary to perform this task. However, so far we owe an analysis of the conditions
under which it will be both, effective in terms of acquiring the demanded information and
effective in terms of its ability to support service selection (Objective 2). This chapter, starts
with the missing analysis (Section 6.1) followed by a thorough investigation of related re-
search efforts and their relation to the identified requirements as well as an analysis of open
research issues (Section 6.2). The remainder and main part of the chapter is dedicated to the
presentation of our own collaborative feedback mechanism that is part of our solution and
has been designed to fulfill the identified requirements. After outlining the basic idea of the
developed solution (Section 6.3), we will introduce its underlying feedback model (Sec-
tion 6.4) as well as its feedback elicitation approach (Section 6.5). We will also detailedly
explain how available feedback is effectively exploited to predict the future performance
of a service and thus to assess the risk that is associated with its execution (Section 6.6).
Finally, we will describe how those information can be visualized and used to rank avail-
able service alternatives in a user-specific way (Section 6.7). The contributions presented
in this chapter have been partially published in [KKR08, FK10, KKR10a, KKR10b].

6.1 Requirements

Collaborative feedback mechanisms are an active area of research (see [JIB07] for an
overview) and have been widely and successfully used to establish ”stability in otherwise
very risky trading environments” [Del02]. However, the diversity and multi-faceted nature
of Semantic Web Services imposes special requirements on such a mechanism, if applied
to assess the risk that is associated with the execution of inaccurately and incompletely
described services. As we will show, these are only partially met by existing solutions

123

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

(Section 6.2). In the following, we will specify those requirements. Thereby, the focus of
our analysis and also of this thesis is on enabling effective elicitation and usage of truthful
feedback. Aspects such as dealing with false or dishonest consumer feedback are orthog-
onal to our work and out of scope. See [JIB07] for further information and solutions on
these topics.

Consumer feedback is subjective, since it reflects a service’s performance as observed
through a certain consumer’s eyes. Hence, feedback is biased by personal expectations and
preferences about the invoked service, which are encoded in the service request1 that was
posed (request or feedback provider context). For instance, a ticket booking service might
have been used to buy group tickets for a school class or to buy a single ticket. The subjec-
tive performance of the invoked service is likely to differ depending on the kind of request
that was posed, e.g. in the first case, the availability of a price discount for groups might
have a positive impact on the perceived performance, while, in the second usage scenario,
this fact has no influence. Moreover, a service provider’s performance is typically depen-
dent on the type of service that is offered (service (offer) context) [Del02, Mui02, Sab05].
For instance, a service provider might perform well, when offering to make train reserva-
tions, but performs badly when offering to book trips. Effective feedback mechanisms for
Semantic Web Services should account for those facts by taking the request and service

context, in which a judgment was made, into account when using feedback to predict a
service’s future performance.

To enable its effective usage, feedback has to be meaningful. In particular, this means
that the request and the service context underlying an expression of feedback should

be clear. We illustrate this issue with an example. Suppose provider p offers a printing
service. Imagine that we are provided with consumer feedback that refers to p and that
consists of a single rating, indicating that the service provided a good printout quality.
Unfortunately, this information alone will not allow us to infer that p will provide printouts
of good quality to another consumer. This is due to the fact, that we do not know enough
about the context in which the quality judgment was made, e.g. to which type of printing
service the quality judgment refers to, and about the preferences and expectations of the
judgment provider. Consequently, to obtain meaningful feedback, we need to model and
record the context in which a provided judgment was made. In addition, it should be
evident whether and how feedback made under one circumstance can be used to infer
about a service provider’s performance in another situation or even when providing another
service. In short, feedback is meaningful, if it contains all information that are necessary
to exploit it effectively.

We would also like to emphasize the necessity of feedback to be as detailed as possible,
i.e. comprising of judgments referring to various aspects of a service interaction. The
reasons for this are manifold. Firstly, feedback, judging the quality of a provided service
as a whole, is of limited significance, since as an aggregated judgment it provides not more
than a rough estimate of a service’s performance. Secondly, risk attitudes might differ

1This service request could be either a manually created service request or, in case of our approach, the
request that was generated on base of the request model (cf. Section 5.6).

124

6.1. REQUIREMENTS

among users. For instance, while one consumer is risk averse with respect to the delivery
time of a service and risk neutral with respect to other service aspects, another one is
risk averse with respect to the service’s quality, but not with respect to its delivery time.
Feedback mechanisms that are based on aggregated judgments do not allow to consider
risk attitudes at the attribute level by combining and considering feedback information
in a user-defined way and thus can only partly adjust to different risk attitudes. Finally,
aggregated feedback tends to be inaccurate. The reason for this is that humans are bad
at integrating information on different aspects, such as delivery time, price or quality of a
service, as they appear in a multi-faceted service interaction, in particular if those aspects
are diverse and incomparable [Daw79, Slo72]. As a consequence, one can expect that
aggregated feedback referring to the performance of a multi-faceted service interaction
will be inaccurate to some degree.

In the context of detailed, i.e. multi-aspect, consumer feedback additional aspects related
to the meaningfulness of judgments arise. In particular, meaningful judgments should

refer to the consumer’s service requirements, i.e. the service aspects that have been
specified in the service request (model). Otherwise, it would be neither clear which as-
pects of a service interaction were considered in a judgment nor according to which scale
they were judged. This in turn is a prerequisite for the comparability of judgments and thus
for the assessment of their relevance when making predictions as well as for the assessment
of the risk that is associated with the execution of a service. Moreover, meaningful means,
that the concepts used to describe service aspects and thus the concepts used to de-

scribe judged aspects, valid constraints on them as well as valid relationships among

them are shared among the system participants. In doing so, the meaning of judged
service aspects is made explicit, consistent among the judgment providers and machine-
comprehensible. This property is essential for effective and efficient feedback usage, since
it enables the comparability of judgments provided by different users and for different
services as well as their automated processing.

Detailed feedback should also be comprehensive, which means that all service aspects

that are relevant to a feedback provider should be judged. This is due to the fact, that
inferred judgments based on incomplete information might be incorrect. We illustrate this
with an example. Suppose a service provider p offers a shipping service. A consumer
who used this service experienced a good performance with respect to the delivery time,
but a bad performance with respect to the price, which was quite high. Leveraging just
the provided positive delivery time judgment for a service’s performance prediction, could
possibly lead to undesired conclusions about the performance of the service, e.g. that the
service offers fast delivery for a low price. Hence, judgments for both price and delivery
time should be elicited. Finally, the judged service aspects should be appropriate, i.e.
meaningful in the context of the considered service interaction, even if the services and
requests (request models) that might be involved in service interactions are diverse and
potentially refer to different application domains. For instance, it makes sense to judge an
aspect ”taste” when referring to a wine selling service, but not when assessing the perfor-
mance of a ticket booking service. The system should be able to automatically determine

125

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

those service aspects that are appropriate judgment targets in the context of a specific ser-
vice interaction.

Another problem we encounter when dealing with consumer feedback on the basis of ser-
vice interactions is feedback scarcity. Since the services and requests (request models) that
are involved in service interactions are diverse, feedback related to a certain request context
and a particular service is rare and typically not available at all. Moreover, available feed-
back is based on a single sample of a service’s performance. Hence, feedback is scarce

and has to be exploited effectively. In particular, service experiences related to different,
but similar request contexts and those related to other, but similar, services of a considered
provider (a different service (offer) context) have to be leveraged. Due to feedback scarcity
and diversity, the provision of a confidence measure, indicating how sure the system is
about the predicted performance, is indispensable.

Using second-hand feedback also means sharing own feedback as well as interaction-
related data with others. Since those information may be used to infer personal knowledge
about a consumer, such as his service requirements and preferences, a feedback system
should carefully select the information that are propagated to other system participants.
Only necessary information and those only in a quality that is required to allow for a

desired prediction accuracy, should be shared. Nonetheless, the privacy restrictions of
the system participants may be different and may vary depending on the request context.
For example, a user might have strong privacy restrictions when using a service to purchase
pharmaceuticals, but weak restrictions when using a printing service. Hence, the quality

of the shared information should be adjustable to account for differing privacy needs.

However, to be able to unfold the full potential of consumer feedback, particularly when
using multi-aspect feedback, it is required that users provide meaningful responses. To en-
sure this, the process of feedback elicitation should not just take care of elicited feedback

being comprehensive, appropriate and meaningful in the context of a certain service in-
teraction, but should also consider a consumer’s willingness to provide feedback. This is
important, since asking a consumer for a number of judgments he is not willing to provide
will result in no or bad quality feedback [JIB07, LK10]. Since the willingness to judge a
certain set of service aspects is likely to be context-dependent and user-specific, an effec-
tive feedback elicitation mechanism should flexibly and automatically adjust to different

judgment preferences. Finally, a feedback system should ensure that all information

that are required for the effective exploration of consumer feedback are recorded

(meaningfulness of feedback). This should happen automatically and transparently for
the user.

Though knowledge about the actual performance of available service alternatives is essen-
tial for enabling consumers to make well-informed service selection decisions, it is of little
use, if it is not communicated and appropriately presented to the user. In particular, it is
necessary to make the user aware of the risk that is associated with the execution of

a service by presenting feedback information in an effective and intuitive way. Since risk
attitudes vary among users and request contexts, the presentation of those information

should be adjustable.

126

6.1. REQUIREMENTS

The identified requirements to consumer feedback, its elicitation, propagation, usage and
presentation set the standards for the evaluation (Chapter 9) of the feedback mechanism
that will be introduced in the subsequent sections. They can be summarized as follows:

Requirements to Feedback Elicitation

★

✧

✥

✦

Requirement F.1. (Feedback quality) A feedback mechanism for Semantic Web Ser-

vices should ensure that elicited feedback is detailed, comprehensive and appropriate in

the context of a certain service interaction and that elicited feedback is meaningful, even

if the services and requests (request models) that are involved in the service interactions

are diverse and potentially refer to different application domains.

Thereby, meaningful is defined as follows:

Definition 6.1. (Meaningfulness of consumer feedback) Consumer feedback is mean-

ingful, if

• the provided judgments refer to the consumer’s service requirements,

• the concepts used to describe service aspects and thus the concepts used to describe

judged aspects, valid constraints on them as well as valid relationships among them

are well-defined and shared among the system participants,

• the request and the service context underlying an expression of feedback are modeled

and recorded and

• if it is evident whether and how feedback made in one context can be used to infer

about a service provider’s performance in another context.

☛
✡

✟
✠Requirement F.2. (Adaptive elicitation) The process of feedback elicitation should

flexibly and automatically adjust to a consumer’s willingness to provide feedback.

Requirements to Feedback Propagation

✛

✚

✘

✙
Requirement F.3. (Quality of shared information) Shared feedback should only com-

prise of necessary information being of a quality that is required to allow for a desired

prediction quality. The quality of the shared information should be adjustable to account

for differing privacy needs.

127

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

Requirements to the Performance Prediction

✛

✚

✘

✙
Requirement F.4. (Effective exploitation) Consumer feedback should be effectively

exploited to predict a service provider’s future performance, even if available feedback

refers to service interactions that are diverse with respect to the services and requests

(request models) that were involved.✛

✚

✘

✙
Requirement F.5. (Context dependency) A feedback mechanism for Semantic Web

Services should account for the context-dependent nature of service performance and

service judgments by taking the request and service context, in which a judgment was

made, into account when using feedback to predict a service’s future performance.☛
✡

✟
✠Requirement F.6. (Prediction confidence) A feedback mechanism for Semantic Web

Services should provide a confidence measure for its performance predictions.

Requirements to the Presentation of Feedback-Derived Information

✓
✒

✏
✑

Requirement F.7. (Effective presentation) Feedback information should be presented

in a way that makes the user aware of the risk that is associated with the execution of a

service.☛
✡

✟
✠Requirement F.8. (Adjustable presentation) Feedback information should be pre-

sented in a way that is adjustable to different risk attitudes.

6.2 Related Work

In this section, we will analyze related research efforts with respect to the list of require-
ments that has been compiled in the previous section and identify open research issues.
The focus of our analysis is on collaborative filtering systems with an emphasis on multi-
criteria rating recommenders [AMK11] (Section 6.2.1), product reviews (Section 6.2.2),
trust and reputation systems (Section 6.2.3) and previous efforts on experience-based ser-
vice provider selection (Section 6.2.4). We conclude the section with a short summary of
the analysis results (Section 6.2.5).

6.2.1. Collaborative Filtering

The main intention of collaborative filtering systems (see [Ado05, SFHS07] for an overview)
is to recommend promising products or other items to potential consumers. In contrast to

128

6.2. RELATED WORK

Semantic Web Service retrieval techniques, recommendations are computed indirectly by
leveraging consumer-provided item ratings and typically do not rely on explicit models of
consumer requirements and item properties. Recommendations are generated by estimat-
ing unknown item ratings based on available consumer ratings and then recommending the
item(s) with the highest estimated rating(s). Though the mechanisms underlying collabora-
tive filtering (CF) systems differ from those required in our scenario, their main objective,
namely predicting an item’s or service’s suitability based on consumer feedback, is the
same and therefore we consider them in this section.

While traditional CF systems base their recommendations on overall ratings, where con-
sumers judge an item as a whole, some preliminary research on multi-criteria rating rec-
ommenders (MCRRs) [AMK11], that utilize detailed feedback in terms of multiple criteria
ratings, has been done. Though choosing an appropriate set of aspects to judge by the user
has been identified as an important and challenging topic [AMK11], research on this is-
sue has not been done yet. MCRRs typically operate on a single domain with predefined
aspects, such as "actors", "story" or "special effects" in the domain of movie recommen-
dations. Consumers are asked to judge items based on those aspects. Comprehensiveness
of the provided judgments is not enforced. The consumer’s willingness to judge certain
aspects is not taken into account. In this context, Lousame et al. [LS09] propose an al-
gorithm that recommends views, i.e. a set of item features, that might be interesting for a
user. However, they do not use the acquired knowledge to support rating elicitation.

A basic assumption of collaborative filtering systems is that consumer ratings are sub-
jective, i.e. depend on a person’s personal preferences. When estimating unknown item
ratings this fact is taken into account. In (user-based) collaborative filtering, this is done
by considering a rating provider’s neighborhood to the target user, whose unknown rating
has to be predicted. In traditional CF systems, the strength of a neighborhood relationship
is determined by the similarity of the users’ rating profiles. It is assumed that users who
rated the same items similarly, will also produce similar ratings for other items. Neither
the context in which a judgment was provided nor the requirements of the user are taken
into account. This is problematic in two ways, particularly in domains with heterogeneous
items. Firstly, since a user might judge a single item differently when having different
expectations and preferences, i.e. in different contexts or having different requirements,
two users having provided similar ratings with respect to a certain set of products may not
necessarily share the same taste. The other way round, having different rating profiles,
i.e. different tastes for a certain set of products, does not necessarily imply different tastes
in general. Hence, discarding feedback of users with a dissimilar rating profile, means
discarding potentially valuable feedback that could have been exploited.

Adomavicius et al. [Ado05] consider this fact by incorporating contextual information in
recommender systems. In their approach, ratings are given in a certain context, that is
(explicitly!) modeled adopting the multi-dimensional data model used for OLAP appli-
cations in databases. A rating may for example refer to a movie, seen at a specific place
with a specific person, where, e.g. place and accompanying person, may be interpreted
as usage context. For rating estimation in a certain context, one may then consider only

129

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

those ratings that have been provided in the same context. However, the approach oper-
ates on predefined context attributes in a single domain and does not consider multi-aspect
ratings. It only partially addresses the problem of leveraging rating information in one
context to estimate a rating in another context. Berkovsky et al. [BAH+06, BKR08] made
a first attempt to deal with this issue. They suggest an approach that supports cross-domain
recommendations as well as inference between judgments that have been provided in dif-
ferent contexts. In a similar vein, several extensions to traditional CF-based recommenders
that provide richer models of users and items have been suggested. While the majority of
approaches, so-called content-based recommenders [PB07], extract item features by using
data mining methods, some more sophisticated solutions that make use of taxonomies or
ontologies to describe and categorize items and user interests have also been suggested
[CK04, Zan09, SMB10]. In [BKR08] and [JZ09] ontological knowledge is also used to
provide cross-domain recommendations. However, those approaches have not been ex-
tended to make use of multi-criteria ratings.

This is unfortunate, since multi-criteria rating recommenders have proven to produce more
accurate recommendations than traditional CF systems, that are based on overall ratings,
[GA07, LWG08, MC07, SKDC06]. Though CF systems perform well in many applica-
tion scenarios, they have shown to suffer from a number of problems such as the cold-start
problem, that arises from the fact, that for new items or users no ratings are available and
thus purely CF-based approaches do not provide meaningful recommendations [SFHS07].
Besides providing recommendations, many CF systems also provide a measure indicating
their confidence in a recommendation. So-called probabilistic or model-based CF systems
[SFHS07, BHK98] maintain a probability distribution over possible rating values for each
unknown rating and thus can compute the likelihood of a certain rating value being correct
as a very natural measure of confidence. Non-probabilistic or heuristic-based collaborative
filtering systems have to fall back on heuristic confidence measures, e.g. taking into ac-
count the similarity of neighbors and the number of co-rated items between the user and his
neighbors. However, confidence information are typically not communicated to the user.
As a consequence, consumers are not able to assess the risk that is associated, e.g. with the
purchase of a recommended product.

CF systems typically "just" rely on user provided ratings to make recommendations which
are shared with others. Hence, compared to systems that share explicit models of a user’s
requirements, they propagate information that are of a quality which makes it harder to
infer personal information from it. Nonetheless, e.g. Ramakrishnan et al. [RKM+01]
have shown that a user’s rating profile can be used to infer about his identity and to derive
personal details when combined with additional information. In case of a context-aware
system, even additional explicit information about the context in which a rating was pro-
vided are shared. Finally, we are not aware of a CF approach that allows to adjust the
quality of the shared information to account for differing privacy needs.

130

6.2. RELATED WORK

6.2.2. Product Reviews

Beside the scientific approaches to recommender systems, there are numerous commer-
cial solutions providing reviewing and recommendation facilities. Those come either as
customizable standalone recommendation engines, e.g. Powerreviews.com or Bazaar-
voice.com, that can be integrated into existing e-commerce sites, or are specifically de-
signed for a certain online store such as Amazon.com or a commercial product reviewing
site such as Epinions.com.

Nearly every online store offers reviewing or rating facilities. However, the capabilities of
the underlying recommendation engines do not differ much 2. Usually, those tools allow
the consumer to provide a single overall rating for a given product or service provider,
typically on a 5-star scale or, rarely, continuously with a slider. Additionally, some sys-
tems allow consumers to judge single aspects of a product or service provider interaction.
However, those aspects are either fixed for all products or predefined per product category
and hence are either generic, i.e. not product-specific, or not appropriate for all products.
For instance, Epinions allows its users to judge movies with respect to the aspects Action

Factor, Special Effects and Suspense. Those might make sense for Action Movies, but do
not fit when considering other movie categories offered by Epinions like Children Movies,
Education or Comedy. Epinions also allows to review online stores. They can be rated in
terms of the aspects Ease of Ordering, Customer Service, On-Time Delivery and Selection.
Those aspects are very general and do not allow to judge shop-specific characteristics. In
any case, aspect ratings are supplementary in the sense that they do not have any influence
on a product’s overall rating.

Alternatively, some reviewing engines such as those provided by Bazaarvoice or Power-
reviews, offer more flexible reviewing facilities based on tagging. Those systems allow
consumers to create tags describing the pros and contras of a given product. These tags
can then be reused by other users. As an example consider the bike review taken from the
Buzzillions.com web site 3, depicted in Figure 6.1. In the pros and cons columns, one can
see which tags and also how often each tag was assigned by other users. Tagging provides
a very intuitive and flexible mechanism that allows for product-specific judgments. Users
can freely choose the product characteristics they want to judge (and that are appropriate
in the given product context) providing as much information as they are willing to provide
and spending as much effort as they are willing to spend. Since tags may be reused, a
tagging mechanism also introduces some kind of coherence and comparability in the con-
sumer judgments. Moreover, tag re-usage supports the user in the judgment process, since
it allows him to choose from a selection of already available tags. However, the high flex-
ibility of the approach is at the cost of the judgments’ meaningfulness. This is due to the
fact that tags do not have a clear semantics. In particular, the relationship between differ-
ent tags is unknown and thus makes them incomparable. Moreover, the system does not

2However, they do differ much in their ability to provide incentives for feedback provision as well in their
ability to avoid and detect dishonest feedback. See Josang et al. [JIB07] for more information about this
topic.

3Buzzillions uses the Powerreviews engine as underlying reviewing tool.

131

6.2. RELATED WORK

reviewers who provided them. The latter factors provide a simple measure of the system’s
confidence in the provided reviews. However, confidence information are not well com-
municated to the user. For example, the product browsing view on Ebay.com holds only
information on whether an offer is provided by a top-rated seller or not. To get detailed
information on a sellers rating profile, one has to select a product first and then has to open
the sellers rating profile. As a consequence, consumers are not able to assess the risk that
is associated with the purchase of a product that is offered by a certain seller. Moreover,
the systems are not adjustable to a consumer’s risk attitude. For instance on Ebay.com, the
only option is to restrict offers to those of top-rated sellers.

None of the approaches mentioned above, allows for effective feedback usage and thus
effective rating prediction across domains. Often this is simply not required, such as when
predicting the rating for a specific product (e.g. on Buzzillions). In other cases, such as
on Ebay, where sellers are rated, the ratings, that typically refer to very different purchase
situations, are simply aggregated without considering the context in which they have been
provided. In general, most of the information, that are acquired by the mentioned systems,
are not considered when ranking products. This is particularly remarkable in consideration
of the fact that reviewers reveal various (personal) information, such as what products
they purchased, when they purchased it, which aspects they liked and which not. Often,
reviewing systems such as Epinions allow other users to freely access a reviewers profile,
that provides an overview about all reviews written by that particular reviewer. However,
each user decides on his own how much information he is willing to reveal.

6.2.3. Trust and Reputation Systems

Trust and reputation systems gained much research interest over the last years resulting
in a multitude of approaches in this area. The purpose of those systems is to assess the
trustworthiness of potential transaction partners in a system by aggregating user feedback
about their behavior in former transactions. The aim is to support system participants in
deciding whether or not to run into a transaction with a considered entity in the future.

Trust and reputation systems typically rely on experiences a party has directly made with
a considered transaction partner as well as on second-hand experiences reported by other
entities in the system. In addition, information about observed interactions as well as
sociological information, such as group membership [SS01], social roles and relationships
[SS02], are considered.

Reputation systems typically assume feedback to be objective, i.e. invariant to taste, and
provide global reputation scores, reflecting the overall opinion of a community about their
members. In contrast, trust systems derive local and subjective trust scores, i.e. different
members of a community may derive different trust values for the same entity. More-
over, trust systems often consider transitive trust relationships, while reputation systems
normally compute reputation scores based on direct and publicly available feedback from
their members [JIB07, JBXC08].

133

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

In trust and reputation systems, the performance of a transaction partner is evaluated in
terms of ratings, indicating whether or to what degree the outcome of a transaction met
the expectations of the user. Those ratings come in several flavors. Often a single binary
rating or a set of discrete graded levels is used [ARH00, JH07]. Other approaches take
continuous ratings as input [SS01, JLC08]. However, evaluating interactions this way,
requires that both parties know and agreed upon a set of actions that has to be performed
in the context of a certain transaction, i.e. a contract. Most of the approaches assume that
this is implicitly given and do not explicitly model transaction contracts. In those cases the
performance of a service provider is typically judged in terms of a single rating assessing
the outcome of an interaction as a whole. It remains unclear, what was actually judged
and how the judgment relates to the requirements and the contracted aspects. In many
scenarios, particularly in multi-agent systems, this is justified, since the actions that may
be accomplished by the system participants are simple and very restricted. However, in a
scenario with rich service interactions or scenarios where agents perform complex tasks,
contracts covering the various facets of a transaction are required and have to be explicitly
modeled. Consumer feedback should also account for that fact and judge an interaction
with respect to multiple dimensions.

There is some work that is in line with this requirement [SS01, SS02, WV03, Gri05,
GDFB06, RRRJ07b, RRRJ07a]. The approaches in [WV03, Gri05, GDFB06] focus on
a fixed set of Quality of Service aspects, such as timeliness or download speed, that
may be judged after a service interaction. Though this kind of feedback accounts for
the multi-faceted nature of service interactions, the aspects to be rated are generic and do
not cover non-quality aspects. More sophisticated ideas have been proposed by Sabater

et al. [SS01, SS02] and Reece et al. [RRRJ07b, RRRJ07a]. Both approaches explicitly
model contracts as a set of attributes covering several dimensions of an interaction. Those
attributes may vary depending on the type of interaction. While in [RRRJ07b, RRRJ07a]
attributes do not have a clear semantics, [SS01, SS02] use hierarchically organized at-
tributes defined within an ontology. However, they do not capture the context in which
an attribute has been judged. For instance, they do not distinguish between a quality rat-
ing given after purchasing a bottle of wine and a quality rating provided after using some
network service. Both approaches do not explicitly enforce comprehensive feedback that
covers all aspects touched by a contract, but can be easily extended in this way. However,
in that case a user has to provide a rating for each attribute covered in the contract. Hence,
the approaches may either adapt to the user’s willingness to provide ratings, by allowing
him to rate just a subset of the contracted attributes or enforce comprehensiveness of the
provided feedback, but cannot do both at the same time.

Once a trust or reputation system has acquired sufficient feedback about a certain entity,
it computes a trust or reputation score from those information. Using this value, a user
should be able to make an informed decision about whether to run into a transaction with
this provider or not. However, the concrete semantics and representation of the trust or
reputation measure depends on the approach considered. When we refer to trust scores,
the following definition of Gambetta [Gam88] is often cited: ”[Trust] [...] is a particular
level of the subjective probability with which an agent assesses that another agent or group

134

6.2. RELATED WORK

of agents will perform a particular action, both before he can monitor such action [...] and
in a context in which it affects his own action [...].” Several techniques have been pro-
posed to model trust and/or reputation. The spectrum ranges from measures that simply
add or average ratings to more sophisticated approaches like Bayesian-, Belief-, Fuzzy- or
Flow Models. See [JIB07] for an overview. As manifold the proposed trust metrics are,
as manifold are the proposed measures that indicate how reliable the computed trust score
is. Often, heuristic measures considering e.g. the number of experiences, the reliability
of the experience providers or the age of the information are considered. There are also
more theoretically founded measures. For instance, belief models [Jøs01] represent trust
as opinions expressing the relying party’s belief in the truth of a certain statement. Three
parameters b, d and u ∈ [0, 1] are reserved to represent belief, disbelief and uncertainty
respectively, where b + d + u = 1. Trust models based on probability distributions, e.g.
Bayesian models [Jøs02], may use for instance the variance of the distribution as a con-
fidence measure. Fuzzy models such as in [CMD02] may use the inverse of the width of
the fuzzy set as a measure of confidence. To the best of our knowledge, the trust-and rep-
utation systems community did not address the issue of how to effectively and intuitively
display trust and confidence information. However, in commercially used systems, such
as on various question-and-answer, social networking and e-commerce web sites, trust in-
formation is typically displayed in form of a trust value (e.g. Stackoverflow.com) or some
graphical equivalent (e.g. Expedia.com). Detailed information can be depicted on demand.
Sometimes, available interaction partners can be filtered according to their trust score (e.g.
Expedia.com). However, often this option is either not supported or allows just for a coarse
classification of transaction partners, even if trust plays an important role in the considered
environment, such as on crowdsourcing web sites, where people perform paid tasks for
others. For instance on Freelancer.com, a work-seeking user can sort offer providers by
Featured, Full Time, Non-Trial, Trial and Gold Members Only, on Amazon Mechanical
Turk 4 there is even no option to sort potential employers by their trustworthiness.

Reputation scores are typically aggregations over all experiences and thus represent the
general or average opinion across all system participants. However, as we have argued,
feedback is subjective and biased by the feedback provider’s expectations and preferences.
Hence, when computing a trust score from available feedback, some experiences, namely
those from parties that provide ratings that are similar those we would provide in the same
situation, are more valuable. Trust systems account for that fact by individually and se-
lectively aggregating feedback to a subjective trust value. There are several strategies that
achieve this. Some systems, e.g. [Mar94], solely rely on direct experiences an individ-
ual has made and simply do not use second-hand information. Though this relieves us
from the task of identifying relevant feedback, it confronts us with the problem of feed-
back scarcity. Other approaches use second-hand information in addition, but give a higher
weight to own experiences. Often researchers, use techniques similar to those applied in
collaborative filtering to assess the usefulness of potential feedback providers. For that pur-
pose, they compare the feedback an entity has provided for a certain service with their own
experience when actually using this service. The outcome of this comparison indicates the

4www.mturk.com

135

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

usefulness of a feedback provider and is either used to adjust (e.g. [ARH00]) or to weight
(e.g. [WV03]) second-hand experiences accordingly. Sabater et al. [SS02] proposed a
substantially different approach that analyses the social relationships between system par-
ticipants to assess their usefulness as experience providers. Usually, the term referral trust
is used to indicate a party’s usefulness as feedback provider. As the name suggests, it is
typically not distinguished whether a feedback provider is not useful, because his taste is
different or because he provides dishonest feedback. However, those strategies are only
applicable in scenarios, where two parties interact repeatedly. In an e-commerce setting
this is typically not the case. To deal with that problem, Wang et al. [WV03] proposed to
directly compare the internal trust values that two parties assign to other members of the
community to assess their similarity when judging other entities. However, this approach
raises serious privacy issues.

As has been emphasized by the trust and reputation systems community, trust is not just
subjective, but is also related to a certain context or scope 5 [Mar94, ARH97, GS00, Mui02,
Sab05, MMS05, JHP06, JIB07]. To say it with the words of Jøsang et al. [JHP06], in a
trust relationship "the trusted party is relied upon to have certain qualities, and the scope
is what the trusting party assumes those qualities to be." For instance, I may trust an entity
when purchasing a bottle of wine, but not when buying a car. As Sabater et al. [SS01]
mentioned, those qualities could be explicitly agreed upon in a contract, but they could be
also qualities the trusting party implicitly assumes the trusted party to have. However as
already said, contracted aspects are typically implicitly assumed and not explicitly repre-
sented. As Jøsang [Jos08] indicated, this is particularly unsatisfying in light of the fact,
that a non or partially fulfilled contract is usually associated with some sort of harm to
the trusting party. Therefore, it would be desirable to describe more precisely what may
potentially go wrong and to what degree.

Though many authors acknowledge the context-dependent nature of trust, little work has
actually been done in developing sophisticated multi-context trust models. Often, trust
systems are single context systems or deal with a finite set of scopes. For example, it is
common to distinguish between referral trust and functional trust, where the first refers
to an entity’s trustworthiness as a feedback provider and the latter to its trustworthiness
as a service provider. Other approaches consider more than two trust categories [ARH97,
ARH00, EC01]. However, contexts are typically not explicitly specified and are treated
independently, i.e. trust values are maintained per context. The latter point is particularly
critical, since consumer feedback is usually scarce and even scarcer per context. Moreover,
contexts may be multitudinous. The mentioned approaches do not address the question of
how and under which circumstances experiences made in one context might be used to
infer about a party’s trustworthiness in another context and how context can be precisely
described.

Some attempts have been made to answer those questions. Among the first was Marsh

[Mar94]. He introduced the notion of situational trust and remarked that experiences made

5In the literature, among others, the terms trust context, trust scope, trust purpose, subject matter and trust
category are synonymously used.

136

6.2. RELATED WORK

in one situation may be used to infer trust in another, in case those situations are similar
or identical. However, he did not exactly determine what he means with situation and
similarity.

Mui et al. [MMA+01, Mui02] proposed to describe context as a set of values for a
well-defined set of attributes. He noticed that the interest matching approach described
in [KM01] may be used to infer about trust relationships referring to different contexts, but
did not detail how this could be done.

The REGRET-system suggested by Sabater et al. [SS01, SS02] supports contracts that
allow to specify and rate various aspects of an interaction. Those atomic aspect ratings
may then be combined to obtain judgments for more complex compound aspects in a user-
specified way. For instance, a person might be a good seller, if delivery date, product
price and product quality were as promised. The focus of the work is on how to build
more complex contexts based on atomic contexts, but does not answer the question of how
experiences referring to one contract may be used to infer about an entity’s behavior in the
context of another contract.

Wang et al. [WV03] model trust in the domain of file sharing using a naive Bayesian
network. The root of the network represents the overall trust an entity has into another
party, while the leaves represent different trust aspects such as the quality or type of a
downloaded file. A provider’s trustworthiness in a certain context, e.g. with respect to
a certain file type and quality, may then be determined by calculating the corresponding
conditional probability. For example, a user might be interested in the probability that a
party will be trustworthy in providing high quality music files. The described approach is
very flexible and effective and allows to use experiences made in one context to infer trust
in another context. Unfortunately, it assumes that contexts can be described by a fixed set
of attributes and that those attributes are independent.

As part of their attempt to build a general model of trust relationships Zhao et al. [ZVB06]
define trust context (scope label in their terminology) as a combination of two sets. These
are a set of conditions for a certain trust relationship and a set of properties, i.e. the priv-
ileges the trust relationship offers to the trusted party. They also define three rules that
allow to compare different contexts according to their strictness. However, they do not
indicate how those rules may be used to infer about trust relationships referring to different
contexts.

Toivonen et al. [TLU06] model trust scope using two sets of attributes, namely a set of
quality attributes representing information that are essential for deciding whether to trust
or not, and a set of context attributes, that represent additional information. Whether a cer-
tain attribute is a quality or a context attribute may differ from scope to scope. For instance,
when considering the trustworthiness of a network component, the fact that the component
provides encrypted communication may be a quality attribute in the context of a payment
application, but a context attribute in a game application. The authors propose to use qual-
ity attributes to calculate a trust score using one of the existing trust computation methods
and to use context attributes as additional information that either increases or decreases

137

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

this value by a certain amount. The specific amount is defined by a parameterized func-
tion, whose concrete instantiation is user-specific. Toivonen et al. use knowledge about the
ontological relationships between context attributes to estimate function parameters that
are unknown for a certain user. Though this is an interesting approach, its understanding
of trust differs from ours in that it does not evaluate trust based on ratings of a community,
but based on certain properties of the trusted party.

Jøsang et al. [JHP06] developed a consistency criterion for trust scopes in trust networks.
They argued that a transitive trust relationship between two entities that are connected by
a sequence of trust relationships can only be derived, if "there exists a trust scope which is
a common subset of all trust scopes in the path. The derived trust scope is then the largest
common subset."

Nobarany et al. [NHC08] proposed that people may tag expressions of trust. Those tags
may then be used to evaluate trust on a per tag basis. Though tagging provides a simple,
but flexible mechanism to describe the context of a trust relationship, it lacks the semantics
that is necessary to infer about trust relationships among different contexts.

Recently, Ries [Rie09] argued that trust computation in Bayesian trust models may become
context-aware by changing parameters of the computation algorithm, such as initial trust
value, aging factor, etc., depending on the context. However, they neither indicate how to
represent context, nor how to perform inferences between different contexts.

As we have seen, trust and reputation systems have to collect and share user information
about past interactions to evaluate the system participants’ trustworthiness. Additionally,
they require that those data can be related to an identity of an individual. Though, in con-
trast to collaborative filtering systems, the shared interaction data do not directly contain
preference expressions like "I liked this aspect of service A to degree x", they still pro-
vide some of those information indirectly, for instance by telling other parties with whom
and how often a person ran into a transaction. To mitigate that problem it was proposed
to use pseudonyms instead of real world identities. However, that raises the problem that
individuals may easily switch pseudonyms and thus may misbehave without paying the
consequences. Friedman et al. [FR01] argued that trust in pseudonyms is still possible,
if starting with a new pseudonym is tied to some costs. This could be achieved for in-
stance by letting newcomers start with a low reputation or by letting participants pay for a
new pseudonym. However, even when using pseudonyms, we still risk loosing anonymity,
when pseudonyms and their associated user profiles can be matched to the corresponding
real world identities. This may for instance happen when two entities communicate with
each other. In [KTR05], Kinateder et al. proposed a solution for that problem. However,
profiling on the basis of pseudonyms is still possible, but necessary to establish trust rela-
tionships. In general, the more information we have, the more accurately trustworthiness
can be assessed, but the less privacy is left to the entities. Referring to this fact, Seigneur et

al. [SJ04] argue depending on the outcome of a trust relationship, trusted parties are will-
ing to trade part of their privacy for increased trustworthiness to different degrees. Hence,
an adaptive approach to make this trade-off is required. As a solution the authors propose a

138

6.2. RELATED WORK

model based on the linkability of information. In the considered scenario, users may have
several pseudonyms, which in turn may have several pieces of information associated with
them. If the information available under one pseudonym is insufficient to evidence an en-
tity’s trustworthiness, this entity might allow to link more information to this pseudonym
in order to improve its trustworthiness and thus its chance to run into a transaction with
a desired partner. Additionally, pseudonyms may be linked with each other. This careful
disclosure of links enables a fine-grained trade-off process. However, the proposed mech-
anism solely deals with privacy issues concerning the trusted party, but not with privacy
issues that arise, when providing experiences about service interactions. In particular, it
remains open how the quality of provided feedback information itself can be adjusted to
compromise between a user’s privacy issues and the accuracy of the trust assessment.

6.2.4. Experience-Based Service Provider Selection

Evaluating a service’s performance based on experiences that consumers made in former
service interactions has a long tradition in the research areas discussed in the previous
sections. Recently, we observe a growing interest to apply similar techniques in the con-
text of service selection. Often experience-based techniques are used to complement tra-
ditional service selection approaches that identify services matching a user’s functional
requirements by comparing machine readable request and offer descriptions. Typically
experience-based approaches assume that a list of services functionally matching a certain
request is already available [MP05, WLH07, VHA05, VPHA07, MS02, MS05, Ker06].
The outcome of an experience-based evaluation of these services’ performance is then used
as an (additional) ranking criterion. Different strategies have been developed to perform
this evaluation.

A considerable share of work [VHA05, VPHA07, MS02, MS05, CBGS07, CBGS06, WLH07,
YS02, SPg+07] investigated experience-based techniques to evaluate a service’s non-func-
tional, i.e. Quality of Service (QoS), properties such as throughput, availability or trust.
In this context, only a few approaches [VHA05, VPHA07, MS02, MS05, SPg+07] con-
sider detailed consumer feedback that judges those quality aspects. The collected feedback
is utilized to predict a value indicating a service’s overall conformance to the advertised
QoS in future transactions. For that purpose, different techniques such as linear regression
[VHA05, VPHA07] or weighted mean [MS02, MS05] have been employed. Sensoy et al.

[SPg+07] also consider functional service characteristics. They use a weighted average of
the provided qualities as an indicator for the quality that will be provided in future transac-
tions, but also propose to use statistical classification to predict whether a service will be
satisfying or not in the future. In this context, they do not exclusively use feedback pro-
vided for the considered service, but also utilize feedback made in other, similar, service
contexts. Similarity is determined by comparing the service demands that led to a service
usage with the subsequent feedback. The similarity measure is customizable and described
via SWRL-rules. Unfortunately, their approach requires explicit sharing of service requests
to determine relevant feedback. In our mind this divulges too much personal information
of the consumers.

139

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

The mentioned approaches typically require a user to rate a set of quality attributes. Often
the number of the required judgments is considerable. Neither the user’s willingness to
provide those ratings, nor his ability to do so are considered. However, as already men-
tioned most of the solutions exclusively consider QoS aspects, which form a subset of
service attributes that in general is automatically measurable and where commonly agreed
upon measuring methods exist. Hence, monitoring components may and often do auto-
matically examine service quality and thus take on most of the user’s burden. This also
justifies the assumption that underlies most of the solutions (all except [MP05, WLH07]),
namely that consumer feedback is objective. However, we argue that only accounting for
non-functional aspects, when judging a service’s performance, is not sufficient. Functional
service characteristics have to be considered as well. Since those aspects usually cannot be
measured automatically, such an extension would involve explicit user-provided feedback
and hence mechanisms that cope with the subjectivity inherent in this type of feedback.
Moreover, in our mind, (central) monitoring components that collect consumer informa-
tion including entire requests are problematic in terms of privacy protection. Another point
is, that the set of attributes to be rated is typically fixed per service. Since knowledge about
relationships between attributes is not available, judgments referring to one service cannot
be used to infer knowledge about another service’s performance. This is a viable solution
as long as we can expect to have a sufficient number of observations per service and thus
do not have to rely on feedback referring to similar services of a provider to make accu-
rate predictions of his services’ future behavior. However, in an e-commerce setting this
assumption no longer holds. Vu et al. [VHA05, VPHA07] address part of this problem
by defining hierarchical relationships between quality attributes that are considered when
integrating judgments referring to different quality attributes. However, they do not con-
sider the context of an attribute judgment, e.g. whether the execution time was judged for
a weather service or for a service that offers the latest stock prices.

However, most of the work does not consider detailed consumer feedback at all and relies
on single ratings judging the outcome of a service as a whole. As already argued, this will
provide only a rough picture of a service’s quality. Three different techniques have been
applied in this context. Manikrao et al. [MP05] and Wang et al. [WLH07] for example,
proposed to use collaborative-filtering-based approaches in addition to traditional match-
making to cope with QoS aspects that are not objectively perceivable. While Manikrao
et al. employ an item-based approach, Wang et al. propose to use user-based collabora-
tive filtering. More specifically, Manikrao et al. presented a solution that solely relies on
own ratings to estimate a user’s rating for a certain service. Rating estimation is done by
computing the weighted mean of all ratings the user provided for similar services. The
weights reflect the degree of similarity of a particular service to the considered one and is
computed by comparing the rating profiles of the services. Wang et al. use the weighted
average of the ratings that different users provided for a certain service as an indicator for
its quality. The weights indicate how similar the rating provider’s ratings are to those of
the user who provided the ratings. While Manikrao et al. deal with the issue of integrating
feedback made in different service contexts, Wang et al. tackle the problem of integrating
subjective feedback. Unfortunately, none of the authors considers both issues. Moreover,

140

6.2. RELATED WORK

as collaborative-filtering-based approaches, the mentioned solutions inherit all the disad-
vantages those types of approaches have. For instance, item-based recommenders, such
as proposed by Manikrao et al., require that a user has rated a sufficient number of simi-
lar services to achieve a good prediction quality. User-based approaches, such as used by
Wang et al., require that the users that should be compared co-rated a sufficient number of
services. We also argued already, that two users who produce similar ratings in average,
do not necessarily provide similar ratings for a particular service. However, the other way
round, there may be users who would produce similar ratings for the considered service,
but do not provide similar ratings in average and thus are not considered valuable for the
rating estimation. Hence, feedback could have been exploited more effectively.

In addition to collaborative recommendation methods, techniques known from trust and
reputation systems have been applied to service selection [CBGS07, CBGS06, BHOC07,
YS02]. Caballero et al. [CBGS07, CBGS06] define trust for a certain service as the
product of the promised degree of QoS satisfaction (the matching degree obtained when
comparing the request description with the service advertisement) and the extend to which
this promise has been kept in former transactions. For that purpose, the authors propose
to describe requests (tasks in their terminology) and service offers in terms of attribute
sets and present several ways to compare them to compute a matching degree. The degree
of actual user satisfaction is determined using consumer feedback, where the authors bor-
row from existing trust system solutions, such as REGRET [SS01] and SPORAS [Zac99].
Caballero et al. also consider the problem of having no or little experiences with a given
service and suggest to additionally utilize experiences that users made with similar services
in those situations. The degree of similarity is determined by comparing the attributes in
the corresponding service descriptions using Tversky’s measure [RE03, Tve77]. However,
as it is the case in the work of Sensoy et al. [SPg+07], this solution requires consumers
to share task descriptions, which is not desirable from a privacy perspective. Moreover,
the approach is limited in that a service’s quality is judged with a single rating. Detailed
consumer feedback is not considered. In addition, we believe that the suggested approach
could be improved when considering more expressive service descriptions.

In contrast to the discussed solution, Billhardt et al. [BHOC07] as well as Yu et al. [YS02]
propose purely trust-based solutions to service selection. Both take single consumer rat-
ings as input and use them to assess a service provider’s trustworthiness. While Billhardt
et al. choose a weighted mean approach to combine feedback, Yu et al. propose to use
Dempster-Shafer theory of evidence for that purpose. Billhardt et al. also consider ratings
made for similar services when evaluating a service provider’s trustworthiness. Service
similarity is determined by the closeness of the services’ categories within a service tax-
onomy. However, both approaches do not account for the subjective nature of feedback.
Moreover, they make not clear how trust is related to the promised service quality. Finally,
it should be mentioned that among all approaches considered in this survey, only Caballero
et al. as well as Yu et al. provide some kind of a confidence measure for their predictions.
As common in trust and reputation systems, Caballero et al. propose a measure based
on the amount and variability of experiences, while the belief-based solution of Yu et al.
naturally provides a notion of confidence (see Section 6.2.3). However, to the best of our

141

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

knowledge, none of the approaches mentioned in this section address the issue of how
to effectively and intuitively present experience-based information as well as the systems
confidence about them.

The approaches mentioned so far, have in common that they leverage consumer feedback
that is provided after the service invocation, to evaluate a service’s ability to perform a
certain task. The service selection strategies proposed by Kerrigan [Ker06], Kokash et

al. [KBD07] and Averbakh et al. [AA09, AAS09] differ from those in that they elicit
feedback during the (manual) service selection phase and later use it to improve service re-
trieval. Feedback is either directly elicited by allowing consumers to judge the results pro-
vided by the semantic matchmaker [AA09, AAS09] or indirectly by learning from a con-
sumer’s service selection decisions in the past [Ker06, KBD07]. All approaches presume
a semi-automatic selection process, where consumers manually choose a service from a
list of suitable service offers provided by a service matchmaker. For each consumer-goal-
preference-constellation, Kerrigan records how often each available service was chosen.
Those information are then utilized to rank available services based on their frequency of
usage in the context of a given goal-preference-constellation. In our opinion, this approach
suffers from a main drawback. It does not consider whether the user was finally satisfied
with his selection decision or not and thus the computed service ranking might not reflect
the actual suitability of the available services for the considered goal. Moreover, elicit-
ing direct consumer feedback before the actual service invocation presumes that users are
able to decide about the suitability of a service being only provided with its formal of-
fer description, which is unlikely. However, the solution accounts for the subjectivity of
selection decisions by considering not just the user’s goal, but also his preferences when
ranking services. Unfortunately, it provides no means for comparing different goals or
preferences. This would be desirable, since it is very unlikely that a given task-preference-
combination has been already posed in former transactions, whereas similar combinations
are more likely to occur. Similar to Kerrigan, Kokash et al. protocols information about
consumer requests and subsequent manual selections. In opposition to Kerrigan, they con-
sider whether a service was successfully invoked or not and allow for optional consumer
feedback. Given a consumer request, the system proposes a suitable service by leveraging
this interaction data. The implemented strategy borrows ideas from case-based reason-
ing. First, the given request is compared with previous requests in the records. Finally,
the service chosen for the most similar request is recommended. In this context different
similarity measures might be implemented. Unfortunately, the authors just present a so-
lution, where service requests are textual descriptions of the required service functionality
and define a similarity measure based on the comparison of term-frequencies. It would be
interesting to see how their approach could be enriched by using semantic service descrip-
tions. Kokash et al. also do not explain how their approach could benefit from using direct
feedback. Finally, the design of the approach does not allow to acquire detailed feedback
and does not consider user preferences. Averbakh et al. suggest a hybrid matchmaking ap-
proach that considers several matching functions to assess the suitability of service offers.
In particular, they use the matching functions provided by the OWLS-MX [KFS06] service
matchmaker as well as user feedback in terms of ratings. Those ratings are collected dur-

142

6.2. RELATED WORK

ing the process of service selection and indicate the suitability of a retrieved service. The
consumer rating for a given service request and offer is determined from existing feedback
that was contributed by users that share a similar taste with the target user. Similarity is
calculated using standard collaborative filtering techniques. Since as in [Ker06] feedback
is acquired before the actual service invocation, this approach inherits the disadvantages
that are associated with this fact.

6.2.5. Summary and Open Research Issues

Table 6.1 summarizes the results of our analysis. The entries in the table indicate whether
there exists at least one approach in the considered research area that partially (�) or com-
pletely (+) fulfills the considered requirement. We also indicate, if none of the approaches
in a domain fulfills a certain requirement (-).

As can be seen in the table, the elicitation of multi-aspect consumer feedback is consid-
ered in all of the analyzed research areas, which emphasizes its importance. However,
more flexible and adaptive mechanisms to elicit and describe this type of feedback, partic-
ularly when used across domains such as in Semantic Web Service retrieval, are required.
Especially, the question of how to describe multi-aspect feedback meaningfully has been
hardly considered. Another issue that has been only partially addressed is that of eliciting
comprehensive, appropriate and meaningful feedback. Just a few solutions from the field
of product reviews consider the problem of adapting the elicitation process to the user’s
willingness to provide feedback by offering more flexible tag-based feedback strategies.

Though privacy issues have been discussed in the considered research areas, feedback
mechanisms that allow to flexibly trade off the prediction accuracy and the quality of the
shared feedback information have not been devised.

The context-dependent nature of consumer feedback and its context-aware usage have been
addressed quite well in collaborative filtering systems. It is desirable to apply and adjust
the techniques that have been developed in this area to allow for feedback-aware Semantic
Web Service retrieval and to extend them by leveraging the powerful semantic description
mechanisms that are offered by Semantic Web Service technology. In particular, more
attention has to be paid to the question of how to effectively use experiences made in one
context to infer knowledge about a service provider’s performance in another context.

The strengths of solutions from the fields of trust and reputation systems, collaborative fil-
tering systems and experience-based service provider selection are the effective exploita-
tion of consumer experiences and the accurate prediction of a service’s future performance.
Approaches from the domain of product reviews lack those capabilities. This is due to the
fact, that their predictions are typically based on simple heuristics and non-semantic tech-
niques that are applied to just a small fraction of the elicited data. On the other hand,
tag-based solutions from this area are far more flexible with respect to the type of services
and service aspects for which detailed feedback can be acquired than those from other

143

C
H

A
P

T
E

R
6

.
M

O
D

E
L

IN
G

,
E

L
IC

IT
A

T
IO

N
A

N
D

U
S

A
G

E
O

F
C

O
N

S
U

M
E

R

F
E

E
D

B
A

C
K

Exp.-based Service Trust & Reputation Collaborative Product

Provider Selection Systems Filtering Reviews

Feedback Elicitation

elicits appropriate feedback (R F.1) + + - +
elicits comprehensive feedback (R F.1) � + - -
elicits detailed feedback (R F.1) + + + +
elicits meaningful feedback (R F.1) � � � -
adjusts to the user’s willingness (R F.2) - - - �

Feedback Propagation

shares information only in required quality (R F.3) - � � -
quality of shared information is adjustable (R F.3) - � - �

Performance Prediction

explores feedback effectively (R F.4) � � + -
considers the request context (R F.5) � � + �

considers the service context (R F.5) � � + -
provides a confidence measure (R F.6) + + + �

Feedback Presentation

makes aware of the risk assoc. with a service exec. (R F.7) - � - -
adjustable to different risk attitudes (R F.8) - - - -

Table 6.1.: Requirements to the elicitation, propagation, usage and presentation of feedback information

1
4
4

6.2. RELATED WORK

fields. The challenging question is whether it is possible to integrate ideas from both types
of approaches into a solution that is both, flexible and effective.

Another aspect we noticed is that most of the solutions aiming at the provision of experience-
based support for service selection simply adopt techniques from trust and reputation sys-
tems or collaborative filtering systems to complement standard matchmaking and ranking
approaches. They typically do not really integrate and adjust existing solutions to meet
the special requirements imposed by Semantic Web Services. In addition, we found that
though solutions for some of the identified problems exist in other research areas, they have
not yet been adopted in the context of Web Service selection. This is especially true for
issues such as modeling feedback context and designing flexible description techniques for
multi-aspect feedback. While the first aspect has been considered in the context of trust and
reputation systems and in collaborative filtering systems, the latter has been successfully
addressed in the domain of product reviews.

The issue of how to effectively and intuitively communicate feedback-derived information
about the risk that is associated with the execution of a service has not been sufficiently
addressed in any of the domains. It also remains open how those information can be pre-
sented in a way that accounts for different risk attitudes. These findings are particularly
surprising in light of the fact that some of the considered research areas yield powerful and
effective prediction algorithms whose full potential remains unused if the information that
are produced by them are not appropriately announced to the user.

The most pressing research questions that remain open are:

• How can multi-aspect feedback be described in a flexible and meaningful way that
allows for its effective exploitation to make accurate predictions about a service’s
future performance?

• How can consumers be flexibly supported in providing appropriate, comprehensive
and meaningful multi-aspect feedback?

• How can the quality of feedback be reduced, while still allowing for its effective
exploitation to make accurate predictions? In particular, how can feedback providers
be enabled to flexibly trade off the prediction accuracy and the quality of shared
feedback?

• How can the context in which consumer feedback is provided be described and how
can those information be leveraged to make effective predictions about a service’s
future performance? In particular, how to effectively use experiences made in one
context to infer knowledge about a service’s behavior in another context?

• How can feedback-derived information be effectively communicated to make poten-
tial service consumers aware of the risk that is associated with the execution of a
service and how can this be done in a way that is adaptive to to different risk atti-
tudes?

145

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

6.3 The Feedback Mechanism - Basic Idea

In the subsequent sections, we will introduce a collaborative feedback mechanism that
allows to predict a service’s performance in future interactions. Since performance judg-
ments are subjective, i.e. dependent on the expectations and preferences of the judgment
provider, and since misbehavior in service provision might depend on the type of service
that was offered, the performance prediction is done with respect to the given service re-
quirements, i.e. the service request that has been posed, and with respect to the offered
service (Requirement F.5). The prediction is based on judgments provided by consumers
that interacted with the considered service’s provider in the past. For that purpose, con-
sumers may judge the quality of a service interaction after service invocation by provid-
ing attribute-specific ratings for selected aspects of the interaction. To foster high-quality
feedback, the system supports the user in that process. In particular, it ensures that elicited
feedback is comprehensive, meaningful and appropriate in the context of the considered
service interaction (Requirement F.1). It also accounts for the consumer’s willingness to
provide judgments (Requirement F.2). This is done by suggesting a set of service aspects
for judgment that is likely to be judged by the consumer (Sections 6.4 and 6.5). The elicited
judgments are propagated to other service consumers and are leveraged to infer knowl-
edge about a service provider’s future behavior with respect to those aspects (Section 6.6,
Requirement F.4). Thereby, the user can flexibly trade off the performance prediction ac-
curacy and the detailedness of the shared feedback information (Requirement F.3). An
appropriate confidence measure for the predictions will be derived as part of the evalua-
tion of our approach (Requirement F.6, Section 9.4.6). If desired by the user, feedback-
derived information can be used as a supplementary criterion when ranking semantically
matching services and is visualized in addition to the ranked service results (Section 6.7,
Requirement F.7). Service consumers may personalize the ranking mechanism’s outcome
according to their individual risk attitude (Requirement F.8).

6.4 Consumer Feedback

In this section, we will demonstrate how semantic service descriptions can be leveraged to
create feedback that is detailed, meaningful, comprehensive and appropriate for character-
izing a considered service interaction.

6.4.1. Creating Appropriate, Comprehensive and Meaningful
Multi-Aspect Consumer Feedback

Our approach is based on the elicitation of multi-aspect consumer feedback, which means
that service consumers provide attribute-specific, i.e. detailed, judgments for a service
interaction (Requirement F.1). In the context of our work, we presume that those judgments
are numerical ratings taking values from the interval [0, 1]. Thereby, a rating of 0 means

146

6.4. CONSUMER FEEDBACK

not acceptable at all and a rating of 1 means completely acceptable. Ratings from (0, 1)
indicate different grades of acceptance.

By our approach, it is ensured that judged service aspects are appropriate in the context
of a considered service interaction (Requirement F.1). As we will see, this is achieved
by recruiting potential judgment targets from the service aspects, i.e. the attributes, that
are covered by the user’s request model. This is reasonable, if we assume, that the request
model that led to a service judgment covers all service aspects that are important to the con-
sumer. However, the feedback mechanism is independent of the requirements elicitation
procedure and as such is applicable to manually created service requests as well.

Assumption 6.1. (Accuracy of the request (model)) The request (model) that led to a

service judgment accurately reflects the requester’s actual service requirements and pref-

erences.

This premise is even stronger than necessary at the moment, but is required later on. It is
certainly not true at the beginning of the incremental requirements elicitation process that
has been introduced in Chapter 5, but should ideally be valid at the time a service is invoked
(and finally judged). Otherwise, the user would have missed to specify a requirement that is
crucial to him. As shown in Chapter 8, our user modeling component effectively supports
the user in specifying his service requirements and ensures in fact that all service aspects
that are important to a user are covered in the system-maintained request model.

Potentially, all service aspects that are considered in the request (model) are relevant to
the service consumer and thus are appropriate judgment targets that might be rated. More
specifically, a judgment referring to a certain aspect of the request (model) indicates the
performance of the invoked service with respect to this aspect as experienced by the judg-
ment provider. In conformance with the semantics of DSD, judgments referring to inter-
mediate, i.e. non-leaf, attributes of the request (model) indicate the service’s aggregated
performance with respect to those attributes’ child aspects (and thus with respect to all
aspects covered by the request (model) subtree rooted at the judged aspect). Consider for
example the request (model) depicted in Figure 6.2. By providing a rating for the ser-
vice aspect productType, a judgment provider indicates the aggregated performance of the
invoked service with respect to the service aspects battery, style, phoneType and color.

Letting judgments reference service aspects that are covered in the request (model) is ad-
vantageously. By coupling (parts of) the consumer’s semantically described requirements
with the provided judgments, we provide judgments with a well-defined and commonly
agreed upon meaning (Requirement F.1). This is due to the fact that service aspects cov-
ered in the request (model) refer to concepts in the service ontologies, which define not
only valid service aspects and valid constraints on them, but also valid relationships among
them. This ensures that there is an agreed upon meaning of the judgments provided by
different service consumers and thus allows for the comparability of judgments provided
by different users and for different services. This in turn, is an essential prerequisite for
enabling the usage of feedback made under one circumstance, i.e. in one context, to infer

147

6.4. CONSUMER FEEDBACK

the feedback structure’s leaves should cover all leaves of the request (model) tree. This
guarantees that all service aspects considered in the request (model), i.e. all aspects that
are relevant to the service consumer, are either directly or indirectly (by providing an ag-
gregated rating) judged (comprehensiveness of feedback, Requirement F.1). The feedback
structure depicted in Figure 6.2 fulfills this requirement and thus is valid. Omitting, e.g.,
the aspect phoneType would result in an invalid structure, since the aspects phoneType,

manufacturer and model would not be judged.

Definition 6.3. (Validity of a feedback structure) Let r be a request (model) and fs a

feedback structure derived from it. The feedback structure fs is valid, if and only if the

request (model) subtrees of r rooted at the request (model) nodes that correspond6 to the

feedback structure’s leaf nodes cover all leaves of the request (model) tree r.

Note, that we are still flexible in the choice of the feedback structure and hence in the
choice of the attributes that have to be judged by the service consumer. For example, a
consumer might provide a single rating for productType instead of judging battery, style,

phoneType and color separately. Providing just a single overall rating to judge a service
interaction as a whole is also a valid option when using this scheme. In this case, the
feedback structure comprises of a single node corresponding to the request (model)’s root
node. Obviously, there is a trade-off between the detailedness and thus the number of the
provided judgments, the rating effort and the user’s privacy concerns (Requirements F.1,
F.2 and F.3). The more detailed the provided judgments are, the higher is the quality that
we can expect of the performance prediction. However, providing detailed judgments im-
poses a higher judgment effort on the user and reveals more (personal) information about
his requirements. A strength of the proposed solution is that, by letting judgment providers
freely choose the feedback structure to judge, it enables them to make this compromise ac-
cording to their personal judgment preferences and privacy restrictions (Requirements F.2
and F.3). However, the effectiveness and flexibility of the approach strongly depends on
the quality of the underlying ontology. This is attributed to the fact, that the set of valid
feedback structures for a given request (model) is determined by the ontological concepts
that can be used to describe service requirements as well as by valid relationships among
them.

Besides ensuring the appropriateness and comprehensiveness of judgments, a feedback
structure contains most of the information that is required to effectively utilize the provided
judgments. In particular, it encodes the paths of the judged service aspects.

Definition 6.4. (Path of a service aspect) Let a be a service aspect that is considered

in the request (model) r and let (a1, a2, . . . , an), a1 = root(r) and an = a, be the se-

quence of nodes, i.e. service aspects, that lie on the request (model) tree r’s path from

its root node root(r) to a. We define the path pathr(a) of service aspect a in r to be

[name(a1), type(a1)]. [name(a2), type(a2)]. · · · . [name(an), type(an)], where name(ai) is

the name of the service aspect ai and type(ai) is the type of its target set in r.

6The corresponding node or attribute of a request (model) node is the node of the feedback structure that lies
on the same tree path.

149

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

As an example, consider the service attribute color in Figure 6.2. Its path is [effect, Owned].
[product, Product]. [productType, MobilePhone]. [color, Color]. For the sake of clarity, we
omit the name of the referenced request (model), if it is clear. We also omit target set
types, if they are not relevant and also (partially) omit the names of the preceding at-
tributes, if the resulting path name of the considered attribute is unique. That is, the ex-
pressions effect.product.productType.color and color are also valid notations for color’s
path. Recording the paths of the judged service aspects is important, since they provide
information about the context in which the judgments were made (Requirement F.1). Con-
sider for instance two price judgments, referring to different service interactions, e.g. an
interaction with a ticket booking service and an interaction with a wine selling service.
Without having knowledge about the judged aspect’s paths, the judgments are meaning-
less, since we do not know in which context they have been made and thus cannot decide
whether they are comparable or not. However, recording just the paths of the judged service
aspects is not sufficient, since this means that we would have omitted valuable information
about the entire request (model) of the judgment provider, in particular information about
his preferences. As we will see, those are required for determining relevant judgments, i.e.
those that have been made in a similar context, when leveraging feedback from past ser-
vice interactions to infer about a service provider’s future performance in another context
(Section 6.6). However, sharing complete requests (request models) with other system par-
ticipants is out of question, since this would divulge a massive amount of sensitive personal
information such as the consumer’s preferences and requirements. Instead, we propose to
share indirect information about the judgment provider’s request (model) context given by
the (partial) matching results for the request (model) and the available and matching offers.
Note, that in case of a request model, those matching results are expected matching degrees
(cf. Section 5.6).

Definition 6.5. (Indirect context information) Let r be the request (model) of the judg-

ment provider and OM the set of service offers that matched to r. Presume that one of

the services described by the offers in OM was invoked and finally judged. Let fs be the

feedback structure on which the judgment provider’s judgments are based. We refer to

the set {MRai
(r, OM)|ai ∈ Afs} as indirect context information, where MRai

(r, OM) =

{mvai
(r, o)|o ∈ OM } is a set containing the (partial) matching degrees of the request

(model) subtree rooted at the service attribute ai with the corresponding parts of the offers

in OM and Afs is the set of attributes considered in fs.

In doing so, distributing service requests (request models) and thus providing easily acces-
sible personal information can be avoided (Requirement F.3) while at the same time sharing
information that are sufficient to effectively determine the relevance of feedback items. As
we will demonstrate in Section 9.4, collaborative filtering techniques can be successfully
applied to achieve this. Details on this approach will be presented in Section 6.6.

Please note, that the required partial matching results are computed anyway during the
matchmaking process, when determining suitable, i.e. matching, service offers based on r.
Hence, determining indirect context information causes no additional computational effort.

150

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

Definition 6.6. (Feedback item) We refer to the entirety of information that characterize

a service interaction as feedback item. Those information are passed to other service con-

sumers to infer knowledge about a considered service’s performance in future interactions.

They include

• the provided judgments,

• the feedback structure on which the judgments are based,

• the (automatically) aggregated judgments for the feedback structure’s intermediate

nodes,

• the indirect context information related to the service interaction,

• the identifier of the judged service, its offer description and the identifier of its

provider as well as

• the starting date and time of the service interaction.

Starting date and time of the service interaction are required to discount the influence of
older and thus possibly out-dated judgments on the rating prediction7.

6.5 Effective Elicitation of Consumer Feedback

In the previous section, we discussed how consumer feedback can be described in a way
that ensures its comprehensiveness, appropriateness and meaningfulness and identified
necessary constraints to it. However, so far we owe to explicate how service consumers can
be assisted in actually providing the desired judgment information. In particular, we did
not explain how feedback quality can be ensured by accounting for a consumer’s judgment
preferences, i.e. his willingness to provide certain ratings, when eliciting judgment infor-
mation and how such a process can flexibly and automatically adjust to different judgment
preferences (Requirement F.2). In this section, we will suggest an elicitation mechanism
that satisfies those requirements (Section 9.3).

Assume, that given a certain request (model), an appropriate service was selected and in-
voked and now its performance shall be judged by the consumer. In a first step, we utilize
the provided request (model) to determine valid feedback structures as defined in the pre-
vious section. Subsequently, the structure that is most likely to be judged by the user, i.e.
in the context of the given request (model), fits best to the consumer’s personal judgment
preferences, is selected and graphically displayed to the user (Figure 6.4). The required
knowledge about the user’s judgment preferences is learned from his behavior in previ-
ous judgment sessions. The presented feedback structure represents a careful compromise

7This aspect is not considered in our work, since it has been sufficiently addressed in other research areas,
such as trust and reputation systems (cf. [JIB07]).

152

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

Figure 6.4.: Judgment view

between the consumer’s competing judgment preferences and as such typically cannot per-
fectly meet all his judgment requirements. It is just a recommendation to the user and
thus, if required, might be adjusted by him to match his actual judgment needs. This can
be done by expanding and/or collapsing feedback structure nodes. Nodes are expanded
level-wise by simply clicking on the considered attribute node and collapsed completely
upon clicking on an expanded node. Thereby, maximally expanding the displayed feed-
back structure will result in the attribute structure given by the request (model) tree. As an
example consider the feedback structure depicted in Figure 6.4. The user might expand the
node phoneType to judge its subaspects manufacturer and model. He might also collapse
the root attribute, to provide just a single overall judgment for the service. After having
customized the recommended feedback structure according to his needs, the user finally
judges all leaf attributes of the structure by providing a rating. This is done by simply
moving the slider that is shown for those attributes (Figure 6.4). The default rating is 1.0
(”requirement completely fulfilled”). This is to encourage the user to adjust the rating, if
it does not comply with the actual situation. In addition to the slider position, the value
of the provided rating is color-encoded in the slider bar. While the fraction of the bar that
corresponds to the rating value is colored green, i.e. positive, the fraction that is missing
to a rating of 1.0 is colored red. As an example, consider again the feedback structure
depicted in Figure 6.4. The user indicated that the service performance with respect to
the attributes price, phoneType and style was as required (rating of 1.0), whereas battery

and the color were not as desired (rating lower than 1.0). Once, the consumer submits his
judgments, the system takes care of storing all relevant feedback information and session
data for future recommendations. In particular, it is recorded which and how many service

153

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

aspects were judged by the consumer and which request (model) led to the judgment. The
acquired information are used later on to identify the feedback structure that is most likely
to be judged by the user in future judgment sessions.

As already mentioned, there exist typically numerous valid feedback structures for a given
request (model). However, usually they do not fit equally well to the consumer’s judgment
preferences. Hence, beside a procedure that allows to identify valid feedback structures, a
mechanism that assesses the likelihood of a certain structure to be judged by the user and
thus enables the identification of the/a feedback structure among the possible structures that
best fits to the user’s judgment preferences is required. In this context, we like to note that
it is not necessary to assess the actual likelihood of being judged for each valid feedback
structure. It is sufficient to be able to sort feedback structures according to their likelihood
and thus to be able to find the one that is most likely. While the problem of identifying
valid feedback structures is addressed in the subsequent section (Section 6.5.1), the aspect
of determining a feedback structure’s likelihood to be judged is considered in Section 6.5.2.

6.5.1. Determining Valid Feedback Structures

In this section, we describe a procedure that allows to determine all valid feedback struc-
tures that can be derived from a given request (model). The algorithm is outlined in
Listing 6.1. It recursively constructs the set of valid feedback structures for the request✞
1 FeedbackStructures determineValidStructures(RequestModelAttribute a) {

2 /∗ add a feedback structure comprising just of your own path ∗/

3 feedbackStructures.add(new FeedbackStructure(path(a)))
4

5 /∗ if this is not a leaf attribute of the request (model) tree ∗/

6 if(!a.isLeaf()) {

7 /∗ determine valid feedback structures for the subtrees rooted at a’s children ∗/

8 for(child attribute a� of a) {

9 possChildStructures.add(determineValidStructures(a�))

10 }

11

12 /∗ determine valid feedback structures based on valid child structures ∗/

13 feedbackStructures.add(join(possChildStructures))

14 }

15 return feedbackStructures

16 }✡✝ ✆
Listing 6.1: Determining valid feedback structures for the request (model) subtree rooted

at the attribute a (feedback structures are identified by the paths of their leaf
attributes)

(model) subtree rooted at the attribute provided as input. Hence, calling the algorithm with
the root attribute of a given request (model) r as an argument will deliver valid feedback
structures for the request (model). Thereby, feedback structures are uniquely described by
means of their leaf attributes each identified by its path (Definition 6.4). For example, the

154

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

set {product.price, product.productType} of leaf aspects, uniquely identifies the blue-
colored feedback structure in Figure 6.5. The feedback structure construction algorithm
works as follows. It first adds the superficial feedback structure comprising just of the
input attribute itself to the output set. In case of a non-leaf attribute, it then recursively
determines valid feedback structures for the subtrees rooted at the children of the input at-
tribute in r. Let a be the input attribute and FSr(a1), . . . , FSr(an) the sets of valid feedback
structures constructed for the subtrees rooted at its child attributes a1, . . . , an. The algo-
rithm identifies non-superficial feedback structures for the request (model) subtree rooted
at a by determining FSr(a) = {fs1 ∪ . . . ∪ fsn|fsi ∈ FSr(ai) for all 1 ≤ i ≤ n}. Recursion
stops at the leaf attributes of the subtree rooted at the input attribute. Finally, we end up
with an output set comprising of all valid feedback structures of the subtree rooted at the
input attribute.

{{currency}}

{{amount}}

{{battery}}

{{style}} {{color}}

{{manufacturerer,model},{phoneType}}

{{model}}{{manufacturer}}

{{battery,style,phoneType,color},

{battery,style,manufacturer,model,color},

{productType}}
{{currency,amount},{price}}

product

price productType

currency amount battery
style phoneType

color

manufacturer model

{{battery,style,phoneType,color,price},

{battery,style,manufacturer,model,color,price},

{productType,price},

{battery,style,phoneType,color,currency,amount},

{battery,style,manufacturer,model,color,currency,amount},

{productType,currency,amount},

{product}}

{{effect},

 …,

{product}}

Figure 6.5.: Determining valid feedback structures

Figure 6.5 illustrates how the algorithm works, exemplary for the request (model) depicted
in Figure 6.2. Starting from the request’s (request model’s) root attribute (effect), the
algorithm first adds the feedback structure comprising just of the root attribute to the output
set. It then recursively computes the set of feedback structures for the subtree rooted at its
child attribute product, which in turn is determined by creating all possible combinations of
an element from the feedback structure set determined for the subtree rooted at price and an
element from the feedback structure set determined for the subtree rooted at productType

and so on.

155

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

6.5.2. Feedback Structure Suitability

Users might have various reasons for preferring to judge certain service aspects to others,
e.g. one might be willing to judge aspects that are important and might not be willing
to judge aspects that are unimportant or private. Though those issues might be interest-
ing from a psychological perspective, we only marginally consider them here (see Sec-
tion 9.3.4). In fact, our approach to feedback structure recommendation is purely behav-
ioral, i.e. it considers the effect of a consumer’s judgment preferences, namely the resulting
judgment behavior, but does not try to explain it. In particular, we assess the likelihood of
a certain feedback structure to be judged by a user by considering his judgment behavior
in past judgment sessions. The likelihood is estimated based on two behavioral indica-
tors, namely the number of service aspects and the kind of service aspects that have been
judged in the past. We do not consider other factors that might influence the likelihood of
a feedback structure to be judged (see Section 9.3.4 for a short discussion on this topic).
As already argued, a consumer’s judgment preferences might vary for different service re-
quirements, e.g. the user’s judgment preferences after having booked a flight might differ
from those after having purchased a book. We account for that fact by considering not
just a user’s past judgment behavior, but also the semantic similarity of the current request
(model) and the requests (request models) that led to the past judgments. In this context,
we presume, that a user’s future judgment behavior will be similar to its past, if it refers to
a similar judgment situation, i.e. a similar request (model). More specifically, we make the
following two assumptions.

Assumption 6.2. (Number of judged service aspects) Let r� be a past request (model)

that led to the judgment of feedback structure fs� and let r be a future request (model) that

is semantically similar to r�. Since the user was willing to judge as many service aspects

as required by fs�, it is likely that he is willing to judge a similar number of service aspects

after the service interaction that is based on r. As a consequence, it is likely that he is

willing to judge any feedback structure fs that is based on r and requires him to judge a

number of service aspects that is similar to the number of aspects that had to be judged

according to fs�. The similarity of the number of service aspects that had to be judged

according to fs� and the number of aspects the user is willing to judge after a service

interaction that is based on r is the higher, the more similar the involved requests (request

models) are.

Assumption 6.3. (Type of judged service aspects) Let r� be a past request (model) that

led to the judgment of feedback structure fs� and let r be a future service request (model)

that is semantically similar to r�. Since the user was willing to judge the kinds of service

aspects required by fs�, it is likely that he is willing to judge similar kinds of service aspects

after the service interaction that is based on r. As a consequence, it is likely that he is will-

ing to judge any feedback structure fs that is based on r and requires him to judge service

aspects that are similar to those that had to be judged according to fs�. The similarity of

the kinds of service aspects that had to be judged according to fs� and the kinds of aspects

the user is willing to judge after a service interaction that is based on r is the higher, the

more similar the involved requests (request models) are.

156

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

We think that those assumptions are reasonable and valid in the context of our scenario.
This particularly holds for the latter assumption, since similar requests (request models)
induce similar service attributes of interest and thus a similar set of service aspects that
might be potentially judged. As we will see, our evaluation results will support this hy-
pothesis (see Section 9.3.3). We do not consider other situational aspects that might have
an impact on a user’s judgment behavior. By doing so, we make the implicit assumption
that the reasons for a service consumer’s judgment behavior exclusively lie in his service
requirements, which might not be true (see again Section 9.3.4 for a discussion on this
topic).

In the remainder of this section, we will provide details on how the likelihood of a given
feedback structure to be judged by the user is determined. We start with a discussion on
how the probability that the user is willing to judge as many service aspects as required
by a given feedback structure can be assessed, followed by remarks on how the likelihood
that the user is willing to judge the kinds of service aspects as required by a given feed-
back structure can be estimated. Finally, we will explicate how those probabilities can be
leveraged to assess the likelihood of a certain feedback structure to be judged by the user.

Likelihood with Respect to the Number of Service Aspects

Consider a user having posed the request (model) r and having invoked an appropriate ser-
vice s after the retrieval of matching offers based on r. Let FSr be the set of valid feedback
structures that can be derived from r and that might be used to judge the performance of
s with respect to r. Let further E = {(r�, fs�)| fs� was judged after having posed r�} be the
set of information on the user’s past judgment behavior, each characterized by the feedback
structure fs� that was judged and the request (model) r� that led to the judgment. We refer to
the probability distribution, indicating for each feedback structure fs ∈ FSr the likelihood
of the user being willing to judge as many service aspects as is required by fs as pnum(r, fs)
(for the sake of clarity, we omit an index referring to FSr). It is determined by Bayesian
inference using the evidence provided in E, i.e. the information about the user’s behavior
in past judgment sessions. We start with a uniform prior distribution, i.e. when having
no past judgment information, we simply assume that all feedback structures fs ∈ FSr are
equally likely to be judged. The posterior probability distribution pnum(r, fs|r�, fs�), taking
the past judgment information (r�, fs�) ∈ E into account, is given by

pnum(r, fs|r�, fs�) = cnum · Pnum(r�, fs�|r, fs) · pnum(r, fs),
✞✝ ☎✆6.1

where pnum(r, fs) is the prior distribution before taking the observation (r�, fs�) into ac-
count and cnum is a normalizing constant chosen in a way ensuring that pnum(r, fs|r�, fs�)
is in fact a probability distribution. The probability Pnum(r�, fs�|r, fs) indicates the likeli-
hood of the user being willing to judge as many service aspects as required by the feedback
structure fs� derived from r�, if fs derived from r would have already been judged. It can
be estimated using Assumption 6.2.

157

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 0.2

 0.4

 0.6

 0.8

 1

Conditional probability Pnum(r’,fs’|r,fs) of choosing a feedback structure fs’ based on r’

simreq(r’,r)

simnum(fs’,fs)

 0

 0.2

 0.4

 0.6

 0.8

 1

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

s
im

n
u
m

(f
s
’,
fs

)

|m’-m|

Similarity function simnum(fs’,fs)

(b)

Figure 6.6.: Conditional probability Pnum(r�, fs�|r, fs) of choosing a feedback structure fs�

based on r� (a) and similarity simnum(fs�, fs) of two feedback structures with
respect to the numbers m� and m of service aspects they require to be judged
(b)

Let fs be a feedback structure that was judged by a user in a past judgment session after
having posed request r and having invoked an appropriate service. Let further be r� the
current request (model) and fs� a valid feedback structure that might be judged by the user.
Let simreq(r�, r) ∈ [0, 1] denote the semantic similarity of the requests (request models)
r� and r, indicating how similar the service requirements encoded in the request (model)
r� are to those in the request (model) r. A similarity value of 1 indicates that the two
requests (request models) are semantically identical, while values lower than 1 indicate
decreasing semantic similarity. A detailed discussion on how to compute this similarity
will be provided in Section 6.5.3. Let further simnum(fs�, fs) ∈ [0, 1] be the similarity of
the feedback structures fs� and fs with respect to the numbers m� and m of service aspects
they require to be judged. A similarity value of 1 indicates that the values m� and m are
identical, while values lower than 1 indicate increasing distance between the two values.
Then, according to Assumption 6.2, the following holds. The likelihood Pnum(r�, fs�|r, fs)
of the user being willing to judge as many attributes as required by the feedback structure
fs� provided that he already judged fs is 1, if the requests (request models) r and r� are
semantically identical, i.e. simreq(r�, r) = 1, and the number m� of service aspects that
has to be judged according to fs� is equal to the number of service aspects m that has been
judged based on fs, i.e. if simnum(fs�, fs) = 1. If the numbers m and m� maximally differ,
i.e. simnum(fs�, fs) = 0, then Pnum(r�, fs�|r, fs) = 0. This does not hold, if the two requests
(request models) r and r� totally differ, i.e. simreq(r�, r) = 0. In this case, we cannot draw
any conclusions about the user’s willingness to judge as many service aspects as required
by fs� from the fact that he judged fs. Hence, Pnum(r�, fs�|r, fs) is set to 0.5 to indicate that
both, judging fs� and not judging fs� is equally likely. The more similar the requests (request
models) r and r� are, the more similar the user’s feedback structure selection behavior will

158

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

be to that exhibited in the past judgment session, i.e. when judging fs. The following
estimation of the probability Pnum(r�, fs�|r, fs) is in compliance with those considerations
and depicted in Figure 6.6(a).

Pnum(r�, fs�|r, fs) = 0.5 + ((simnum(fs�, fs) − 0.5) · simreq(r�, r))
✞✝ ☎✆6.2

A natural measure for the similarity simnum(fs�, fs) of two feedback structures with respect
to the numbers m� and m of service aspects they require a user to judge is based on the dis-
tance |m� − m| between m� and m. As argued, the similarity should be 1 for |m� − m| = 0
and should decrease to 0 with increasing distance, i.e. lim|m�−m|→∞ simnum(fs�, fs) = 0.
In our implementation, we use the following similarity measure that fulfills those require-
ments:

simnum(fs�, fs) =
1

a
√

|m�−m|
.

✞✝ ☎✆6.3

The real number a can be freely chosen and determines how fast the similarity value de-
creases with increasing distance. For example, choosing a = 1.6325 causes the similarity
value to be halved for a distance of 2. The resulting similarity function is depicted in
Figure 6.6(b).

Note, that we do not necessarily have to consider all information in E to determine the
probability distribution pnum(r, fs|r�, fs�). Instead, we might restrict ourselves to the past
judgment experience(s) that is/are most similar to the current judgment situation in terms of
the request (model) that was posed, i.e. to {(r�, fs�) ∈ E|¬∃(r��, fs��) ∈ E with simreq(r, r�) <
simreq(r, r��)}. This is particularly reasonable, if it would turn out that the Assumptions 6.2
and 6.3 just hold for very similar judgment situations. In our evaluation (Section 9.3), we
considered the latter variant, since it delivered more accurate results than the former.

Likelihood with Respect to the Kinds of Service Aspects

Consider again a user having posed the request (model) r and having invoked an appro-
priate service after the retrieval of matching offers based on r. Let FSr be the set of valid
feedback structures that can be derived from r and let E be the set of information on the
user’s past judgment behavior. We refer to the probability distribution, indicating for each
feedback structure fs ∈ FSr the likelihood of the user being willing to judge the kinds of
service aspects as required by the feedback structure fs as pattr(r, fs) (again, we omit an
index referring to FSr for the sake of clarity). It is also determined by Bayesian inference
using the evidence provided in E. It is initialized as a uniform distribution assigning equal
probabilities to all valid feedback structures fs ∈ FSr. The posterior probability distribu-
tion pattr(r, fs|r�, fs�), taking the past judgment information (r�, fs�) ∈ E into account, is
given by

pattr(r, fs|r�, fs�) = cattr · Pattr(r�, fs�|r, fs) · pattr(r, fs),
✞✝ ☎✆6.4

where pattr(r, fs) is the prior distribution before taking the observation (r�, fs�) into account
and cattr is a normalizing constant chosen in a way ensuring that pattr(r, fs|r�, fs�) is in

159

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

fact a probability distribution. The probability Pattr(r�, fs�|r, fs) indicates the likelihood of
the user being willing to judge the kinds of service aspects as required by the feedback
structure fs� derived from r�, if fs derived from r would have already been judged. It can
be estimated similar to Pnum(r�, fs�|r, fs) by making use of Assumption 6.3.

Pattr(r�, fs�|r, fs) = 0.5 + ((simattr(fs�, fs) − 0.5) · simreq(r�, r))
✞✝ ☎✆6.5

The value simattr(fs�, fs) ∈ [0, 1] indicates the similarity of the set of attributes Ajudged

fs� that

has to be judged according to the feedback structure fs� and the set of attributes Ajudged

fs
that

has to be judged according to the feedback structure fs. As a measure for simattr(fs�, fs),
we use Jaccard’s similarity coefficient [Jac01] that is often used for comparing sample sets
with respect to their elements. In particular, we define

simattr(fs�, fs) =
|Ajudged

fs� ∩ Ajudged

fs
|

|Ajudged

fs� ∪ Ajudged

fs
|
.

✞✝ ☎✆6.6

The similarity value is 0, if the two attribute sets Ajudged

fs� and Ajudged

fs
do not share any

attributes, and increases with increasing number of shared attributes up to 1 for sets that
contain the same attributes.

Again, we do not necessarily have to consider all information in E to determine the proba-
bility distribution pattr(r, fs|r�, fs�), but might restrict ourselves to the past judgment expe-
rience(s) that is/are most similar to the current judgment situation in terms of the request
(model) that was posed. In our evaluation (Section 9.3), we considered the latter variant.

Likelihood of a Feedback Structure to Be Judged

Let r be the request (model) encoding the user’s requirements. We define the probability
distribution pjudges(r, fs; α), that indicates the likelihood of the feedback structures fs ∈
FSr to be judged, to be

pjudges(r, fs; α) = α · pnum(r, fs) + (1 − α) · pattr(r, fs).
✞✝ ☎✆6.7

The parameter α with α ∈ [0, 1] determines the influence of the probabilities pnum(r, fs)
and pattr(r, fs), respectively. An appropriate value for α might vary from one user to
another. In Section 6.5.4, we will demonstrate how it can be learned from a consumer’s
past judgment behavior.

Valid feedback structures fs ∈ FSr of r can now be compared with respect to pjudges(r, fs; α),
i.e. their likelihood of being judged by the user. The most likely feedback structure is
selected and presented to the user. Listing 6.2 summarizes the overall recommendation
procedure.

160

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

✞
1 FeedbackStructure recommendStructure(Request(Model) r, Experiences E) {

2 /∗ determine all valid feedback structures for r ∗/

3 validFeedbackStructures = determineValidStructures(root(r))
4

5 /∗ retrieve the judgment experience that is most similar w.r.t. to the request (model) it is based on ∗/

6 experience = retrieveMostSimilarExperience(E,r)
7

8 /∗ determine the likelihood of being judged for each valid feedback structure ∗/

9 pNum.initialize(validFeedbackStructures)

10 pNum.bayesianUpdate(experience)

11

12 pAttr.initialize(validFeedbackStructures)

13 pAttr.bayesianUpdate(experience)

14

15 pJudges = experience.getAlpha · pNum + (1−experience.getAlpha) · pAttr

16

17 /∗ return the feedback structure that is most likely to be judged by the user ∗/

18 return getMostLikelyFeedbackStructure(pJudges)

19 }✡✝ ✆
Listing 6.2: Determining the feedback structure that is most likely to be judged by a user

having posed the request (model) r when being provided with the experiences
E about the user’s past judgment behavior

6.5.3. Request Model Similarity

As mentioned earlier, a consumer’s judgment preferences might depend on his service
requirements encoded in his request (model). To allow for a comparison of the service
requirements that underlie a set of judgments and thus to allow for determining the rele-
vance of a user’s judgment behavior exhibited in a past judgment session for the prediction
of its current judgment preferences, a measure for the semantic similarity of two requests
(request models), i.e. the similarity of the service requirements they encode, is required. In
this section, we will propose such a measure. Thereby, we restrict ourselves to the compari-
son of request models. A similarity measure for DSD request descriptions (cf. Section 4.2)
has been also proposed and has been published in [FK10].

The semantic similarity simreq(r, r�) of two request models r and r� is recursively defined.
It is computed by determining the similarity simreq(rroot(r), r�

root(r�)) of the request model
subtrees rooted at the involved model’s root attributes root(r) and root(r�). More specif-
ically, the similarity simreq(ra, r�

a�) of two request model subtrees ra and r�
a� rooted at

the attributes a and a� in r and r�, respectively, is calculated by computing the similarity
simtype(ra, r�

a�) of their root attribute’s ontological type (the type similarity), the similarity
simdc(ra, r�

a�) of their root attributes with respect to the direct conditions they have spec-
ified (the direct condition similarity) and the aggregated similarity simsub(ra, r�

a�) of the
request model subtrees rooted at their root nodes’ child attributes (the subtree similarity).
More specifically, we define simreq(ra, r�

a�) to be the weighted mean of these three values,
i.e.

simreq(ra, r�
a�) = α · simtype(ra, r�

a�) + β · simsub(ra, r�
a�) + γ · simdc(ra, r�

a�),
✞✝ ☎✆6.8

161

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

where the values α, β and γ with α + β + γ = 1 determine the weights and thus the influ-
ence of the three similarity terms on the (overall) similarity of two request model subtrees.
In the remainder of this section, we will explain the rationale behind the three involved
similarity measures and particularize on how they are determined. Possible similarity val-
ues simreq(ra, r�

a�) are from the interval [0, 1], where a similarity value of 0.0 means ”not
similar at all” and a value of 1.0 means that the service requirements encoded by the two re-
quest models are semantically identical. Values lying inbetween indicate different degrees
of semantic similarity.

Determining the type similarity The type similarity simtype(ra, r�
a�) ∈ [0, 1] of two

request model subtrees ra and r�
a� indicates how similar their root attributes a and a� are

with respect to the ontological type of their target sets Ia and I �
a� . To measure this similarity,

we adopt again the idea of Jaccard’s index [Jac01]. In particular, we define

simtype(ra, r�
a�) =

|AIa ∩ AI�

a�

|

|AIa ∪ AI�

a�

|
,

✞✝ ☎✆6.9

where AIa is the set of attributes that the service ontology defines for the type of a’s target
set in ra and AI�

a�

is the set of attributes that it defines for the type of a�’s target set in r�
a� .

The rationale behind this choice is, that two ontological types are the more closely related,
the more attributes they share.

As an example, consider Figure 6.7. Presuming that battery, phoneType and color are all
attributes that are defined for the ontological type Phone and the attributes battery, phone-

Type, color and style are all attributes that are defined for its subtype MobilePhone, the
type similarity of the subtrees rooted at the productType-attributes of the depicted request
model subtrees rproductType and r�

productType is |{battery,phoneType,color}|
|{battery,phoneType,color,style}| = 0.75.

Determining the direct condition similarity The direct condition similarity
simdc(ra, r�

a�) ∈ [0, 1] of two request model subtrees ra and r�
a� indicates how similar their

root attributes a and a� are with respect to the uncertain direct conditions that have been
specified on their target sets. In Section 5.4, we introduced three types of uncertain di-
rect conditions, namely in-conditions, not-in-conditions and range conditions, for request
model attributes, that allow to restrict acceptable values of a service attribute. A natural
measure for the similarity of two attributes with respect to those conditions is their similar-
ity in terms of the values they consider (not) acceptable. However, such a measure should
account for the uncertainty that is associated with direct conditions on request model at-
tributes, i.e. should take the probability with which a certain direct condition is fulfilled
into account. Hence, as a measure for the similarity of two attributes with respect to their
direct conditions we choose the expected probability of a valid attribute value being either
acceptable with respect to both attributes or not acceptable with respect to both attributes.

162

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

MobilePhoneType

productType

style colorphoneType

Battery

battery

...

in {bar, slider}

MobilePhoneStyle Color

in {silver, black}

MobilePhone

...

productType

color

Battery

battery

...

Color

in {black}

Phone

request model subtree r
productType

:

request model subtree r'
productType

:

Figure 6.7.: Determining the semantic similarity of two request model subtrees rooted at
the attribute productType

Thereby, we assume that attribute values occur with equal probability in the available ser-
vice offers8. We do not consider preferences over attribute values. More specifically, we
define

simdc(ra, r�
a�) = IE[P acc

a (v) · P acc
a� (v) + (1 − P acc

a (v)) · (1 − P acc
a� (v)]

=

�
v∈Va∪Va�

[P acc
a (v) · P acc

a� (v) + (1 − P acc
a (v)) · (1 − P acc

a� (v)]

|Va ∪ Va� |
,✞✝ ☎✆6.10

where Va and Va� are the sets of valid values that a and a� might take and P acc
a (v) and

P acc
a� (v) are the probabilities of a certain attribute value v being acceptable with respect to

the direct condition(s) that have been specified for the target sets Ia and I �
a� of a and a�,

respectively.

The calculation of this expected value differs depending on the type of direct condition(s)
that are involved. If the direct condition that has been specified for the target set Ia of

8The estimation of the expected probability would be more precise if we would consider only those attribute
values that actually occur in one of the available service offers. This would also allow for a better estima-
tion of the probability of occurrence of a certain attribute value. However, it would introduce additional
computational effort for determining occurring attribute values, which in light of the accuracy of the de-
scribed judgment recommendation algorithm is unnecessary (cf. Section 9.3).

163

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

a certain attribute a is an in-condition, the probability P acc
a (v) is given by P acc

a (v) =
P (InIa

v = true). If the specified direct condition is a not-in-condition, P acc
a (v) is given

by P acc
a (v) = 1 − P (NotInIa

v = true) (cf. Section 5.4). Note, that the computational
effort for calculating the expected value only depends on the number of values that have
been either considered in the direct condition on Ia or I �

a� . This is due to the fact that
P acc

a (v) = P (InIa
v = true) = 0 for attribute values v that have not been specified in an

in-condition and P acc
a (v) = 1 − P (NotInIa

v = true) = 1 − 0 for attribute values that
have not been specified in a not-in-condition. Hence, valid attribute values that have not
been considered in the direct conditions have to be simply counted and jointly considered
to compute the expected value. For example, having two attributes a and a� whose target
sets Ia and I �

a� both specify an in-condition, the direct condition similarity simdc(ra, r�
a�) is

given by
�

v∈V spec

a,a�

[P acc
a (v) · P acc

a� (v) + (1 − P acc
a (v)) · (1 − P acc

a� (v))] + |(Va ∪ Va�) \ V spec
a,a� |

|Va ∪ Va� |
,

where V spec
a,a� is the set of attribute values that have been considered in the direct condition

specified for Ia or I �
a� . This similarly works if both target sets specified a not-in-condition,

if one target set specified an in- and the other a not-in-condition and if one target set spec-
ified an in- or not-in-condition and the other did not specify any direct condition.

As an example, consider again the request model subtrees depicted in Figure 6.7. As-
sume that valid values for the attribute color include silver, black, anthracite and white

and that each of the attribute values silver and black, that have been considered in the in-
conditions is acceptable with probability 0.5. Then, the direct condition similarity for the
subtrees rooted at the color-attributes in the depicted request model subtrees rproductType

and r�
productType is (0.5·0+0.5·1)+(0.5·0.5+0.5·0.5)+2

4 = 0.75.

We also consider the calculation of the direct condition similarity for target sets that both
specify a range condition. Let RIa and RI�

a�

be the ranges from which values of Ia and

I �
a� can be taken and let |RIa ∪ RI�

a�

| be the length of the range that results by joining the
ranges RIa and RI�

a�

. Then analogously to Formula 6.10, the direct condition similarity

simdc(ra, r�
a�) is given by

�
v∈RIa ∪RI�

a�

(pacc
a (v) · pacc

a� (v) + (1 − pacc
a (v)) · (1 − pacc

a� (v)))dv

|RIa ∪ RI�

a�

|
,

✞✝ ☎✆6.11

where pacc
a (v) is a probability distribution indicating for each attribute value v its proba-

bility of being acceptable with respect to the direct condition(s) that have been specified
for the target set Ia and pacc

a (v) is given by pacc
a (v) = Prob(MinIa ≤ v < MaxIa) =� v

z=min(RIa) pMinIa
(z)dz · (1 −

� v
z=min(RIa) pMaxIa

(z)dz)9 (cf. Section 5.4). This simi-
larly works, if one of the target sets specifies a range condition and the other one does not
specify a direct condition.

9Since in our implementation continuous distributions are discretized, the computation of the integral can be
done with reasonable effort.

164

6.5. EFFECTIVE ELICITATION OF CONSUMER FEEDBACK

If none of the target sets Ia and I �
a� specifies a direct condition, the direct condition similar-

ity is defined to be 1.0. For instance the request model subtrees depicted in Figure 6.7 both
do not specify conditions on the attribute battery. Hence, the direct condition similarity for
the subtrees rooted at the battery-attributes in the depicted request models is 1.0. At this
time, similarity calculation for pairs of subtrees, one of which’s root attribute’s target set
specifying a range condition and the other specifying an in- or not-in-condition, as well as
for pairs where target sets specify more than one direct condition is not supported.

Determining the subtree similarity The similarity value simsub(ra, r�
a�) ∈ [0, 1] of

two request model subtrees ra and r�
a� indicates how similar their root attributes a and a�

are with respect to their child trees and allows for the recursive calculation of the request
model similarity. Let A be the set of attributes defined in the service ontology, either for
the type of a, the type of a� or for both types and let {simreq(rai

, r�
ai

)|ai ∈ A} be the set
of request model similarity values for the corresponding subtrees of ra and r�

a rooted at
the attributes ai ∈ A. Inspired again by Jaccard’s index, the subtree similarity, i.e. the
aggregated similarity of two request model subtrees with respect to the subtrees rooted at
their root attributes is defined as the weighted sum of the request model similarity values
divided by the weighted sum of the maximal similarity values that can be achieved for each
pair of corresponding subtrees (1.0).

simsub(ra, r�
a�) =

�
ai∈A wai

· simreq(rai
, r�

ai
)

�
ai∈A wai

✞✝ ☎✆6.12

Thereby, the weights wai
, ai ∈ A are defined to be

wai
= max(wra,ai

, wr�

a�
,ai

),
✞✝ ☎✆6.13

where wra,ai
and wr�

a�
,ai

are the expected (relative) weights of ai in the request model sub-

trees ra and r�
a� rooted at the attributes a and a� as defined in Section 5.6 (Formula 5.19).

The rationale behind that choice is that the similarity of two corresponding attribute sub-
trees is the more important and thus should have the more influence on the subtree simi-
larity, the more important (indicated by a high weight) the attribute is in at least one of the
request model subtrees ra and r�

a� . Consider for example an attribute price, if the price-
weight is low with respect to both compared request model subtrees, then the similarity of
the corresponding subtrees rooted at the price-attribute is rather unimportant.

Since attributes in A are not necessarily defined for both, the type of the target set Ia and
the target set I �

a� , we set simreq(rai
, r�

ai
) = 0.0, if the attribute ai ∈ A is not defined

for one of the types. Attributes in A might also not be specified for one or both of the
target sets Ia and I �

a� . If an attribute ai ∈ A is not specified for both target sets, we set
simreq(rai

, r�
ai

) = 1.0, else, if ai is specified for just one of the target sets, simreq(rai
, r�

ai
)

is defined to be simreq(rai
, t�) or simreq(t, r�

ai
), respectively, where t is a request model tree

comprising of a single target set, having the most generic type defined for ai’s target set in
the service ontology.

165

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

We illustrate the recursive computation of the subtree similarity by means of the product-

Type-subtrees depicted in Figure 6.7. The type of the productType attribute in rproductType

is MobilePhone, while that in r�
productType is Phone. Assume, that the ontology defines the

attributes battery, phoneType and color for the type Phone and an additional attribute style

for the type MobilePhone, which is assumed to be a subtype of Phone. The subtree sim-
ilarity of the two corresponding productType-subtrees is determined by the similarity of
their root attributes’ corresponding child trees for the attributes A = {battery, phoneType,

color, style}. The subattributes battery and color are specified in both depicted subtrees.
Hence, the similarity values simreq(rbattery, r�

battery) and simreq(rcolor, r�
color) can be com-

puted by determining the request model similarity for the corresponding request model
subtrees rooted at the battery-attributes and those rooted at the color-attributes. The at-
tribute style is only defined for the type MobilePhone, hence simreq(rstyle, r�

style) = 0.0.
The attribute phoneType is defined for both types, MobilePhone and Phone, but is only
specified in rproductType. Hence, r�

phoneType := t�, where t� is a subtree comprising of a single
node having the most generic type defined for the target set of attribute phoneType. Thus
the required request model similarity simreq(rphoneType, r�

phoneType) is determined by com-
puting simreq(rphoneType, t�), where rphoneType is the subtree of rproductType rooted at the node
of type MobilePhoneType.

6.5.4. Dynamically adjusting α

As discussed earlier, the parameter α that weights the influence of the probabilities pnum(r, fs)
and pattr(r, fs) on the (overall) likelihood pjudges(r, fs; α) of a feedback structure being
judged by a user, might vary from user to user (cf. Section 6.5.2). In this section, we will
demonstrate how this value can be learned from a consumer’s past judgment behavior.

Initially, i.e. without having information about a user’s previous judgment behavior, we do
not know anything about the parameter’s value, so α could be any value from the interval
[0, 1]. Hence, for the purpose of computing the probability distribution pjudges(r, fs; α)
that indicates the likelihood of being judged for the valid feedback structures fs of r, we
equally weight the probabilities pnum(r, fs) and pattr(r, fs), i.e. we set α = 1 − α = 0.5.
Once having determined the feedback structure fsrec that is most likely to be judged, we
present it to the consumer, who has the opportunity to change it by expanding and/or
collapsing attributes. Finally, the consumer provides judgments for the resulting feed-
back structure’s leaf attributes. Let the feedback structure that was finally judged by
the user be fsjudged. Inspired by the idea of maximum-likelihood estimation, we de-
termine how α should have been chosen to make the judgment of feedback structure
fsjudged most likely according to pjudges(r, fs; α). This can be easily done using knowl-
edge about the set of valid feedback structures FSr that can be derived from r and knowl-
edge about the feedback structure fsjudged that was actually judged. More specifically,
we know that for each unjudged feedback structure fs ∈ FSr \ {fsjudged}, the inequality
pjudges(r, fs; α) ≤ pjudges(r, fsjudged; α) must hold. Using Formula 6.7, we find that

α ≤
pjudges(r, fsjudged; α) − pattr(r, fs)

pnum(r, fs) − pattr(r, fs)

✞✝ ☎✆6.14

166

6.6. UTILIZING FEEDBACK TO PREDICT A SERVICE’S FUTURE

PERFORMANCE

for pnum(r, fs) > pattr(r, fs) and

α >
pjudges(r, fsjudged; α) − pattr(r, fs)

pnum(r, fs) − pattr(r, fs)

✞✝ ☎✆6.15

for pnum(r, fs) < pattr(r, fs). Using those information, we can adjust, i.e. shrink the
range of α correspondingly. For example, if α ≤ 0.8 holds, we adjust the interval to
[0, 0.8]. Redundant information, such as if α ≤ 0.8 holds, when already having α ∈
(0.5, 0.7], are simply ignored. Information about the range that has been determined for
α is stored with the other information about the judgment session and can be leveraged to
recommend a suitable feedback structure in a future session. This is done as follows. Given
the request model rcurr, for which a feedback structure shall be recommended, we retrieve
information about the past judgment session that is based on a request model rpast that is
most similar to rcurr, i.e. for all request models r that led to past judgment sessions, the
inequality simreq(r, rcurr) ≤ simreq(rpast, rcurr) holds. If more than one past judgment
session with this property exists, we select the most recent one. The parameter α that
has been determined based on the user’s judgment behavior in the selected session (the
midpoint of the determined range) is used in the recommendation process of the current
judgment session.

6.6 Utilizing Feedback to Predict a Service’s Future Per-

formance

The focus of this section is on how to effectively use elicited consumer feedback to infer
knowledge about a service’s future performance and thus about the risk that is associated
with its execution. Before elaborating on the prediction procedure itself, we will define
our notion of service performance more precisely and will exactly specify the goal of the
performance prediction.

Definition 6.7. (Service Performance) Service performance is a subjective term that in-

dicates to what degree a given service’s outcome fulfills the service requirements of a user.

It is measured in terms of (a) rating(s) the user provides after service execution.

Imagine, a service consumer c has posed a service request (which is derived from a request
model, if the requirements elicitation procedure described in Chapter 5 has been used) for
which a number of matching service offers have been retrieved. The goal of the perfor-
mance prediction is to anticipate the actual performance of those services with respect to
the consumer’s service requirements. More formally, given a matching service offer for
service s, we would like to know how c would judge the performance of s (possibly with
respect to several service aspects) when actually executing it. Let p be the provider of
service s. We propose to leverage feedback provided by consumers that interacted with
services of p in the past to predict the required judgment. Since feedback referring to a

167

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

particular service is typically scarce and since it is very unlikely that if such feedback ex-
ists, it was made in the context of a request that is equal to ours, we suggest to consider not
just feedback that is related to the considered service and request, but any feedback related
to services offered by provider p (Requirement F.4).

However, as argued before, feedback items are of different value for the judgment pre-
diction. In particular, judgments referring to a service that offers a functionality which is
similar to that offered by s, i.e. that have been made in a similar service (offer) context,
are more valuable for the prediction than those that refer to a completely different kind of
service. This is due to the fact that a service provider is likely to behave similarly when
offering a similar service, i.e. when being in a similar service (offer) context. Hence, we
can infer from a service provider’s behavior in one service (offer) context about his behav-
ior in a similar offer context. The more similar the offered service functionality, the more
similar the behavior we can expect. Moreover, judgments which are made by consumers
that had similar service requirements as c, i.e. that posed a similar request and thus were
in a similar request context, are more valuable for the prediction than those that are based
on completely different requirements. The reason for this is that users with similar require-
ments are likely to judge the same service interaction similarly. Hence, we can infer from
a user’s judgment made in one request context about another user’s judgment in a similar
request context. The more similar the users’ service requirements and thus the posed re-
quests, the more similar the judgment behavior we can expect. Hence, a feedback item is
the more relevant and thus the more valuable for the prediction of a given judgment, the
more similar the request and the service (offer) context it was made in are to the given
request and service (offer) context. The relevance of a feedback with respect to the request
and the service (offer) context in which it was made is covered by the notions of feedback

provider and service (offer) similarity.

Definition 6.8. (Feedback provider and service (offer) similarity) Let r be a service

request that was posed and s of service provider p a service whose offer matches to r.

Consider the rating prediction for s. The service (offer) similarity simservice(f, s) of a

certain feedback item f (referring to an interaction with p) and the service s indicates the

similarity of the functionality offered by the service that was judged in f and the function-

ality offered by s. The feedback provider similarity simprovider(f, r) of f and the request r
indicates the similarity of r and the request on which f is based.

Hence, the higher the feedback provider and the service (offer) similarity of a feedback
item, the higher its relevance for the prediction of a considered judgment. Please note, that
by defining feedback provider similarity in the specified way, we implicitly assume that
the service request (and as a prerequisite the request model from which it is derived) accu-
rately reflects a service consumer’s service requirements and in particular his preferences
(Assumption 6.1). More specifically, we presume that the feedback provider similarity,
which is based on the similarity of requests, indicates the similarity of the service require-
ments the providers of those requests have. As already argued, we cannot presume that this
assumption is entirely fulfilled. Hence, in Chapter 9, we will analyze how a relaxation of
the required assumption impacts the quality of a service’s performance prediction.

168

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

satisfaction, since it wants to retain its customers. To achieve this, the video rental service
might allow its customers to rate watched movies on a 5-star-scale and might offer per-
sonalized movie recommendations based on those ratings. Recommendations for a certain
customer could e.g. be generated by predicting the considered customer’s unknown ratings
for each movie and then recommending the 10 highest rated movies to him. The required
unknown movie ratings could be determined by using collaborative filtering techniques.
Figure 6.8 demonstrates how this works. It shows an example matrix (top) containing the
movie ratings of the rental service users and the ratings provided by the target customer,
whose rating shall be predicted (middle). Imagine, we attempt to predict the customer’s
rating for the movie moviej . To accomplish this, we extract all users that rated the movie
moviej in the past. As a prediction for the unknown movie rating, we can use some ag-
gregate, e.g. a weighted mean, of the ratings those user’s provided for movie moviej . To
personalize the prediction, we should assign higher weights to users whose taste is similar
to that of the target user. In user-based collaborative filtering, the weight for each user’s
rating is determined by comparing this user’s and the target user’s judgments for those
items that have been co-rated by them. In the literature, various similarity measures have
been proposed to perform this comparison (examples will follow below).

How can this principle be applied to determine the relevance of a feedback item? Let again
r be a service request that was posed and s of service provider p a service whose offer
matches to r. Consider the rating prediction for s. As already argued, a feedback item
referring to a service interaction with p is the more relevant, the more similar the service
requirements and thus the service request of the feedback provider is to that of the target
user (high feedback provider similarity) and the more similar the functionality offered by
the service that was judged is to that offered by s (high service similarity). We suggest to
apply user-based collaborative filtering to determine the required feedback provider sim-
ilarity. More specifically, the similarity of the feedback provider’s and the target user’s
service requirements is determined by comparing the ratings they would provide for the
available service offers OM that match to both the feedback provider’s and the target user’s
request. However, we do not have those ratings at our disposal. To solve this problem, we
make use of the fact, that we have explicit models of both, the service requirements of
the feedback provider and the service requirements of the target user, namely the service
requests they have posed, as well as explicit models of the matching service offers. Hence,
we can employ semantic matchmaking to determine those judgments. Let r be the service
request of the target user and rf be the past request of the feedback provider. To determine
how similar the requirements of the feedback provider are to those of the target user, we
compare the matching values of the service offers in OM calculated with respect to rf

with those that have been computed with respect to r. A similar technique, item-based
collaborative filtering [SFHS07], is applied to determine the similarity of the functionality
offered by the service that was judged by the feedback provider and that offered by service
s, whose future performance shall be predicted. For that purpose, we have to compare the
matching values provided for the two services’ offers with respect to different requests.
The more similar those values are, the more similar is the functionality offered by the two
services. Note, that we already have all the required matching information available, since

170

6.6. UTILIZING FEEDBACK TO PREDICT A SERVICE’S FUTURE

PERFORMANCE

and the cosine-based similarity measure introduced in [BHK98]

simMeasure(�x, �y) =

�n
i=1 xiyi��n

i=1 x2
i

��n
i=1 y2

i

✞✝ ☎✆6.20

and evaluated how well they perform in the context of our approach (Section 9.4). Both
measures take values from the interval [0, 1], where a similarity value of 0 means not
similar at all and a value of 1 means equal. Similarity values from (0, 1) indicate different
grades of similarity. Once the similarity information for each feedback item in F have
been calculated, the future performance of the considered service s, possibly with respect
to several service aspects, can be predicted by leveraging the similarity information as well
as the attribute judgments provided by each feedback item. In the subsequent section we
will detailedly describe this process. In particular, we will answer the challenging question
of how to integrate feedback items that are based on various feedback structures to infer
knowledge about a service’s future performance.

6.6.2. Rating Prediction Based on Coarse-Grained Similarity
Information

Let r, depicted in Figure 6.11 left, be the service request (request model) that was posed
and s the service for which attribute ratings shall be predicted. Consider a single feedback
item f , which is based on the feedback structure fs, depicted in Figure 6.11 right. Imagine,
we would like to know how s, if executed, would perform with respect to the service
aspect product according to the judgments provided in f . To answer this question, we
have to check whether the feedback structure fs contains the aspect product within the
same context, i.e. the same path (Definition 6.4), as the aspect product in r. Thereby,
we consider the paths of the two service aspects to be the same, if they share the same
attribute names, but not necessarily the same types. Though this might mean to infer a
service aspect’s performance from a judgment that refers to a different service aspect, it is
ensured that those aspects are closely related. The strength of this relationship is accounted
for by considering the feedback provider similarity of the feedback item f and the request
(model) r. If fs would not contain the aspect product within the same path, fs would not
provide any information about this aspect. Fortunately, the opposite is true. However, the
judgment provider did not directly rate the service aspect product. Hence, we have to rely
on the aggregated product-rating stored in fs. As can be seen in the feedback structure,
this judgment does not consider the service aspect style, which has been specified in r.
However, this fact is again accounted for by considering the feedback provider similarity
of the feedback item f and the request (model) r.

The described procedure is repeated for all service aspects that are considered in a given
feedback structure and for all feedback items f ∈ F that are available and relate to service
interactions with the provider of s. Ultimately, we end up with a set of attribute ratings
for each service aspect that was specified in the request (model). Those ratings stem from

173

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK✞
1 PredictedRatings ratingPredictionCoarse(Request r, Service s) {

2 /∗ get feedback items ∗/

3 - get all feedback items f ∈ F that refer to interactions with the

provider p of s
4

5 /∗ create feedback matrix ∗/

6 - create a feedback matrix FMF from the feedback items f ∈ F
7

8 /∗ determine the similarities using the feedback matrix ∗/

9 for(feedback item f ∈ F) {

10 serviceSimilarities.add(f,determineServiceSimilarity(s,f,FMF))

11 providerSimilarities.add(f,determineProviderSimilarity(r,f,FMF))

12 }

13

14 /∗ extract judgments from the feedback items ∗/

15 for(feedback item f ∈ F) {

16 for(service aspect a ∈ f) {

17 judgments.get(a).add(getJudgment(a,f))
18 }

19 }

20

21 /∗ predict ratings ∗/

22 for(attribute a of r) {

23 predictedRatings.add(a, aggregateRatings(judgments.get(a),
serviceSimilarities,providerSimilarities))

24 }

25

26 return predictedRatings

27 }✡✝ ✆
Listing 6.3: Leveraging coarse-grained similarity information to predict attribute-specific

ratings for the service s with respect to the request (model) r

offered by the service, whose rating shall be predicted, and that offered by the judged ser-
vice as a whole as well as to the posed service request (model) and the request (model)
with respect to which the judgment was provided as a whole. However, this strategy does
not account for the fact that, when predicting the unknown rating for a given service aspect,
the judgments stemming from those feedback items, that refer to service interactions that
were similar with respect to this service aspect, are more valuable for the rating prediction
and thus should be weighted higher. As an example, consider a wine purchasing request
(model) r. Let s be a matching service offer, whose unknown ratings shall be predicted,
and f a feedback item, referring to a past service interaction with the provider of s. Imag-
ine, that f also refers to a service interaction, where a bottle of wine was purchased. The
wine that was sold during that interaction (moderately) differed from the wine that is of-
fered by service s, but both wines have nearly the same price. Consider the prediction of
the unknown rating for the service aspect price. Since the offered wines differ, the service
similarity of f and thus its weight is not too high and consequently, the price judgment
contributed by it will have a relatively low impact on the result of the rating prediction.
Though giving low weights to the judgment contributions of f might be reasonable when
predicting ratings for other service aspects that are specified in r, the weight of the price
rating contributed by f should be high, since both, the offered and the purchased wine are

176

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

and the request r with respect to the service aspect a indicates the similarity of r and the

request on which f is based when compared with respect to the attribute a.

Calculating attribute-specific similarity values. Attribute-specific similarity val-
ues are determined by maintaining an individual feedback matrix for each request (model)
attribute (Figure 6.14). Let r be a service request (model) that was posed and s of service
provider p a service whose performance with respect to r shall be predicted. Assume, that
the set of feedback items F , that contains judgments that refer to past service interactions
with services of p, is provided to perform this task. Just as the feedback matrix defined
in the previous section (Definition 6.9), aspect-specific feedback matrices contain a row
for each available feedback item f ∈ F and a column for each service offer o ∈ OF,a,
where OF,a is the set of offers o for which at least one of the feedback items in F pro-
vides matching information with respect to a. Let FMF,a be the feedback matrix for the
service attribute a that has been specified in r. Suppose that the feedback item f was based
on the request rf . Then, instead of storing an (overall) matching value, the matrix entry
FMF,a(f, o) stores the (partial) matching value mva(rf , o) of rf and o with respect to a, i.e.
the matching degree of the request and service subtrees rooted at a. The required (interme-
diate) matching degrees are part of the indirect context information (Definition 6.5) that are
delivered with each feedback item. If a matching degree is not known, the corresponding
matrix entry is marked as unknown.

Definition 6.11. (Attribute-specific feedback matrix) The attribute-specific feedback

matrix FMF,a for the service aspect a, that is derived from a set of feedback items F ,

is defined by

FMF,a = [FMF,a(f, o)|f ∈ F ∧ o ∈ OF,a ∧ FMF,a(f, o) = mva(rf , o)],
✞✝ ☎✆6.23

where OF,a =
�

f∈F Of,a and Of,a is the set of service offers that match to rf with respect

to a, i.e. the set of service offers for which f provides matching information with respect to

a. If a matching degree mva(rf , o) is not known, the corresponding matrix entry is marked

as unknown.

Let
#»

OF,a be the vector of offers from OF,a as sorted in the feedback matrix and let fur-
ther

»

MRa(r,
#»

OF,a) be the vector of (partial) matching degrees for a that we obtain for the
request r and the offers in

#»

OF,a. To determine the attribute-specific feedback provider
similarity attrSimprovider(f, r, a) of f and r with respect to the service aspect a, i.e. the
similarity of the a-ratings the provider of f and the target user give for the same services,
we have to compare the row FMF,a(f, ∗) of the feedback matrix with

»

MRa(r,
#»

OF,a), i.e.

attrSimprovider(f, r, a) = simMeasure(FMF,a(f, ∗),
»

MRa(r,
#»

OF,a)),
✞✝ ☎✆6.24

where unknown (due to missing matching information) entries are ignored.

Similarly, to determine the attribute-specific service (offer) similarity attrSimservice(f, s, a)
of f and s with respect to the service aspect a, i.e. the similarity of the functionality of-
fered by the rated service sf and that of service s, we are interested in, with respect to a,

178

6.6. UTILIZING FEEDBACK TO PREDICT A SERVICE’S FUTURE

PERFORMANCE

we compare the column for the service offer osf
of sf and the column for the offer os of s,

i.e.

attrSimservice(f, s, a) = simMeasure(FMF,a(∗, osf
), FMF,a(∗, os)),

✞✝ ☎✆6.25

where again, unknown entries are ignored. In both formulas, simMeasure is either the
correlation-based similarity measure (Formula 6.19) or the cosine-based similarity measure
(Formula 6.20), that has been introduced in Section 6.6.1. If attribute-specific similarity
information for a given feedback item f ∈ F and a given attribute cannot be obtained, we
assume the similarity to be 0.

Determining the weights for the rating prediction. Let r be the request that was
posed and s the service, whose ratings with respect to r shall be predicted. Consider
the prediction of the unknown rating for service aspect a. As detailed in Section 6.6.2
(Listing 6.3), the predicted attribute rating �rata(r, s) is an aggregate of the judgments for
service aspect a that are provided by the feedback items Fa that refer to interactions with
the service provider of s and contribute a judgment for a. As already argued, the function
6.21 can be used as the aggregation function. However, instead of weighting each feedback
item f ∈ Fa with its (overall) similarity as proposed in the previous section, we introduce
attribute- and feedback-item-specific relevance weights wf, a(r, s). The weight wf, a(r, s)
for the judgment of a that was contributed by feedback item f is defined to be the product of
f ’s overall similarity ovSim(f, r, s) and the attribute-specific similarity attrSim(f, r, s, a)
of f with respect to service aspect a, i.e.

wf, a(r, s) = ovSim(f, r, s) · attrSim(f, r, s, a).
✞✝ ☎✆6.26

The attribute-specific similarity attrSim(f, r, s, a) of f with respect to service aspect a
indicates the relevance of the feedback item f with respect to the service aspect a and
is determined as the product of the attribute-specific feedback provider similarity and the
attribute-specific service similarity of a, i.e.

attrSim(f, r, s, a) = attrSimprovider(f, r, a) · attrSimservice(f, s, a).
✞✝ ☎✆6.27

The proposed weighting scheme ensures that an attribute judgment is weighted high, if and
only if both, the similarity of the feedback item as a whole and its similarity with respect to
the rated aspect are high. Our evaluation shows that leveraging individual similarity values
for each attribute rating results in significant improvements of the prediction quality when
predicting attribute-specific ratings (Section 9.4).

Similar to the feedback-item-specific relevance weight wf (r, s), that was used in the pre-
vious section (Listing 6.3, Definition 6.21), ovSim(f, r, s) denotes to the overall similarity
of the feedback item f , i.e. its similarity with respect to the complete request r and service
offer s, determined as the product of f ’s overall service similarity ovSimservice(f, r, s) with
respect to s and its overall feedback provider similarity ovSimprovider(f, r) with respect to
r, i.e.

ovSim(f, r, s) = ovSimprovider(f, r) · ovSimservice(f, r, s).
✞✝ ☎✆6.28

179

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

However, in contrast to wf (r, s), its calculation is not based on the comparison of (overall)
matching values (i.e. by using a single feedback matrix), but on fine-grained similarity
information in terms of the available attribute similarities. As indicated in [GA07] and
shown in our evaluation (Section 9.4), this leads to more accurate similarity estimates
and thus significantly improves the prediction quality. We tested and implemented two
algorithm variants for calculating the overall service and feedback provider similarity: (1)
determining the overall service/feedback provider similarity of a feedback item f as the
mean of the attribute-specific service/feedback provider similarities over the set Ar of all
service aspects that are considered in r (attribute-specific similarity mean), i.e.

ovSimservice(f, r, s) =

�
a∈Ar

attrSimservice(f, s, a)

|Ar|

ovSimprovider(f, r) =

�
a∈Ar

attrSimprovider(f, r, a)

|Ar|
, ✞✝ ☎✆6.29

and (2) determining the overall service/feedback provider similarity of a feedback item f
as the weighted mean of those similarities (weighted attribute-specific similarity mean),
i.e.

ovSimservice(f, r, s) =

�
a∈Ar

w∗
r,a · attrSimservice(f, s, a)

�
a∈Ar

w∗
r,a

ovSimprovider(f, r) =

�
a∈Ar

w∗
r,a · attrSimprovider(f, r, a)

�
a∈Ar

w∗
r,a

. ✞✝ ☎✆6.30

In the latter case, w∗
r,a refers to the total weight of a service aspect a in request r, i.e. the

weight that is given by the product of the weights that are assigned to the request attributes
that lie on the path (Definition 6.4) of a in r as specified by the corresponding connecting
strategies. As can be easily seen, the weight w∗

r,a indicates to what degree the matching
value of service aspect a influences the overall matching value of r11. This weighting
scheme ensures that the similarity value of the service aspects, that are more important to
the user, obtain a higher weight. Listing 6.4 and Figure 6.13(b) summarize the introduced
procedures for feedback extraction and rating prediction. Figure 6.14 exemplary shows the
data that are involved in this process.

6.7 Customizable Feedback-Aware Service Ranking and

Presentation of Feedback Information

In the previous sections, we dealt with effective feedback elicitation (Section 6.5) and
the utilization of the collected information to predict a service’s performance in future

11We assume, that the connecting strategies are of the type weighted sum.

180

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK✞
1 PredictedRatings ratingPredictionFine(Request r, Service s) {

2 /∗ get feedback items∗/

3 - get all feedback items f ∈ F that refer to interactions with the

provider p of s
4

5 /∗ create feedback matrices ∗/

6 for(service aspect a of r) {

7 - create a feedback matrix FMF,a from the feedback items f ∈ F
8 }

9

10 /∗ determine the similarities using the feedback matrices ∗/

11 for(feedback item f ∈ F) {

12 for(attribute a of r) {

13 serviceSimilarities.add(f,a,determineServiceSimilarity(s,f,FMF,a

))

14 providerSimilarities.add(f,a,determineProviderSimilarity(r,f,
FMF,a))

15 }

16 }

17

18 /∗ extract judgments from the feedback items ∗/

19 for(feedback item f ∈ F) {

20 for(service aspect a ∈ f) {

21 judgments.get(a).add(getJudgment(a,f))
22 }

23 }

24

25 /∗ predict ratings ∗/

26 for(attribute a of r) {

27 predictedRatings.add(a, aggregateRatings(judgments.get(a),
serviceSimilarities,providerSimilarities))

28 }

29

30 return predictedRatings

31 }✡✝ ✆
Listing 6.4: Leveraging fine-grained similarity information to predict attribute-specific

ratings for the service s with respect to the request r

However, judgment prediction is based on experiences made by other service consumers
in other service (offer) and request contexts and thus might produce inaccurate predictions,
that differ from the judgments a consumer would provide when actually executing a con-
sidered service. This effect is even enhanced, since the suggested prediction algorithm
presumes that service requests accurately reflect the service requirements and in particular
the preferences of the service consumers who posed them (Assumption 6.1). This is an
assumption that cannot be entirely fulfilled. Though we will demonstrate that the accuracy
of the provided predictions is still sufficiently high (Chapter 9), it is unrealistic to assume
that there will be a one-to-one correspondence between the predicted judgments and those,
the user would provide when actually judging a service interaction. This is particularly
true, at the beginning of the incremental feedback elicitation process presented in Chap-
ter 5 of this thesis, where the conformance between the service consumer’s request that is
generated from the request model and his actual service requirements is likely to be low.
To account for this problem, we decided to assign each service aspect of an offer to a class

182

6.7. CUSTOMIZABLE FEEDBACK-AWARE SERVICE RANKING AND

PRESENTATION OF FEEDBACK INFORMATION

Figure 6.15.: Customizable feedback-aware service ranking and presentation of feedback
information

based on its predicted judgment. Instead of coloring cells in the result table according to
the predicted judgment of the corresponding service attribute, we color them as indicated
by the attribute’s class. The classification is based on the value of the predicted judgment
�rata(r, s) for the considered service attribute a with respect to the request (model) r and
the offer s (Definition 6.21) and the confidence in this prediction (Section 9.4.6). We dis-
tinguish the following 4 classes:

• class 0 - no prediction information available due to none or non-sufficient feedback
information (low confidence)

• class 1 - low suitability, i.e. �rata(r, s) < θlow, with high confidence

• class 2 - neither nor, i.e. θhigh > �rata(r, s) ≥ θlow, with high confidence

• class 3 - high suitability, i.e. �rata(r, s) ≥ θhigh, with high confidence

Since the suitability that is acceptable for a service consumer is user-specific, the thresh-
olds θlow and θhigh, with θlow < θhigh, are consumer-specific and can be adjusted by the

183

CHAPTER 6. MODELING, ELICITATION AND USAGE OF CONSUMER

FEEDBACK

user. Also the confidence threshold that distinguishes high confidence from low confidence
results can be adjusted (Requirement F.8). By referring to classes instead of single ratings,
we achieve that prediction errors are hidden to some degree. Moreover, it can be avoided
that the user is overwhelmed by being provided with too much information. The 4 classes
are represented by different colors. Because of its commonly known interpretation, we use
the traffic light color scheme, i.e. red to mark low suitability (class 1), green to denote high
suitability (class 3) and yellow for ratings in between (class 2). The color white is used to
indicate that no or insufficient feedback information are available (class 0) (cf. Figure 6.15
left).

By providing feedback information on a per attribute basis, the user can exactly locate
the risk that is associated with service execution (Requirement F.7). If an offer is ranked
high, due to its description having received a high matching degree with respect to the con-
sumer’s request (model), but at the same time the results of the feedback-based judgment
prediction indicate a low matching degree, then the risk, that is associated with the execu-
tion of the service this offer refers to, is high. This is due to the fact, that it is unlikely,
that the service will provide the functionality that has been offered and likely that it will
perform worse than expected.

6.7.2. Customizable Feedback-Aware Service Ranking

Besides simply presenting feedback information, we also provide a mechanism that promises
to facilitate decision making by allowing feedback information to influence the ranking of
available service offers. However, as argued earlier, risk attitudes and thus the impact that
feedback information shall have on this ranking differ among users. While one consumer
is risk averse with respect to the price of a service, another one is willing to the take risk of
having a higher price than offered, if the delivered quality is as promised. To account for
this fact, we allow service consumers to specify their risk attitude very precisely, namely
attribute-wise, and enable personalized, feedback-aware service ranking based on those
preferences. The specified risk preferences control to what degree the predicted judgment
for a certain attribute and the matching value will influence the final rank of a service of-
fer. While risk averse people will base their decisions mainly on the predicted judgments
(large impact of feedback information on an offer’s rank), risk seeking persons will put
more trust in the matching value provided by the semantic matchmaker (low impact of
feedback information on an offer’s rank). This is due to the fact that feedback information,
if confidable, provide knowledge about a service’s actual performance, whereas the match-
ing degree might be based on the matchmaking of inaccurate service offers and thus might
be inaccurate too. Since the ranking mechanism considers attribute-specific feedback in-
formation in the user-defined way, it is personalized and customizable to risk attitudes that
might vary between different users and even between different request (model) contexts
of a single user (Requirement F.8). In the remainder of this section, we will detailedly
describe how service consumers can specify their attribute-specific risk attitude and how
this is considered when ranking service alternatives.

184

6.7. CUSTOMIZABLE FEEDBACK-AWARE SERVICE RANKING AND

PRESENTATION OF FEEDBACK INFORMATION

As illustrated in Figure 6.15 (right), users can specify their risk attitude for each service
aspect by indicating to what degree (0−100%) the predicted judgment for this aspect shall
influence an offer’s rank with respect to this attribute. The value specified per attribute
is called the feedback weight of this attribute. Necessary adjustments can be done via a
slider that is provided for each service aspect, that is specified within the request (model).
As an example, consider the service aspect price in Figure 6.15. Since the user whose
personalized ranking scheme is depicted is risk averse with respect to the price of a service,
he indicated that the predicted price-judgment shall have a large influence on a service
offer’s rank with respect to the attribute price, namely 70%, while the matching value
only marginally influences it (30%). By adjusting the feedback weights, a user might also
indicate that the ranking should be exclusively based on the predicted judgments (feedback
weight of 100% for all leaf aspects of the request (model)) or not at all (feedback weight
of 0% for all service aspects). The latter is the default, if no feedback weight has been
specified.

Feedback-aware service ranking is implemented by slightly modifying the uncertain match-
making procedure introduced in Section 5.6 and sorting alternative service offers according
to their resulting modified and feedback-aware matching degrees. In particular, given a ser-
vice request (model) r as well as a service aspect a and its feedback weight wfb(a), the
(expected) matching value MVa(r, os) of service offer os with respect to the attribute a and
the request (model) r is adjusted as follows

MVa(r, os) = (1 − wfb(a)) · MVa(r, os) + wfb(a) · �rata(r, s),
✞✝ ☎✆6.31

where os is the offer of service s. The adjusted attribute-specific matching degree is then
provided to the matchmaker and further processed as usual. Obviously, this also works, if
we perform standard matchmaking based on DSD requests. The presented ranking mech-
anism indicates, that the specification of feedback weights has to be restricted as follows.
If a user specifies a feedback weight for a certain attribute, he is not allowed to specify a
feedback weight for one of its parent attributes in the request (model) tree. This is due to
the fact, that the matching degree of the parent attribute is already partly determined by
the predicted judgment for the subattribute (which is also an indirect (partial) judgment for
the parent attribute) and thus the actual feedback weight for the parent attribute would be
higher than required by the user.

Changes to the feedback weights immediately affect the service ranking. The proposed
mechanism facilitates a fine-grained specification of a user’s risk attitude on the attribute
level, but also allows to specify it coarsely, e.g. just for the complete request (model), i.e.
the root attribute or not at all.

185

Part III.

Implementation and Evaluation

187

7
System Implementation

The developed and implemented service selection and decision support solution, whose ar-
chitecture is outlined in Figure 7.1, comprises two main components corresponding to its
major tasks as identified in Section 1.4. Those are a Requirements Elicitation and Service

Selection Component (ReqElComp) and a Feedback Component (FbComp). Its imple-
mentation should be understood as proof of concept and as such does not natively support
service invocation, i.e. it is supposed that an Invocation Component is made available by
external providers. The proposed approach is build on top of the DIANE service descrip-
tion framework and borrows corresponding matchmaking and service discovery function-
ality from it. The system is implemented as an Eclipse Rich Client Application (RCP)1,
which enables fast development and ensures extensibility and portability of the provided
software. Moreover, if required by the usage context, the application can be converted into
a Rich Ajax-enabled Web-Application (RAP)2 with moderate effort. This is due to the fact
that both, the Eclipse Rich Client Platform, as well as the Rich Ajax Platform allow to
develop applications following the Eclipse development model and share substantial parts
of the application programming interface. In the remainder of this section, we will give a
brief overview about the basic components of the implementation.

As indicted by its name, the Requirements Elicitation and Service Selection Component

manages the process of requirements elicitation and service selection that has been intro-
duced and detailedly described in Chapter 5. It assists the consumer in specifying service
requirements via the graphical requirements representation (cf. Section 5.5.1) and/or based
on the properties exhibited by the matching service offers that are presented to him. As
detailed in Section 5.5.2, the former kind of support is provided by suggesting potential
service requirements for consideration to the user. Required information are thereby de-
rived from knowledge about the user’s past service needs as stored in the Request Model

Database. The latter kind of support is accomplished by educating the user about recur-
ring properties of the available service alternatives and allowing him to specify not yet
considered attribute conditions, refining, i.e. subtyping, an attribute condition’s target set
type and/or by critiquing one of the listed service offers on the basis of this knowledge

1http://www.eclipse.org/rcp/
2http://www.eclipse.org/rap/

189

The Requirements Elicitation and Service Selection Component works closely together
with the Uncertain Semantic Matchmaking Component (UMatchComp), that relates char-
acteristics of the available services to the user’s uncertain service demands. As indicated,
the system leverages external matchmaking and service discovery functionality provided
by the DIANE semantic matchmaker for that purpose. As has been discussed in Sec-
tion 5.6, the latter has been slightly extended to support uncertain matchmaking. The
matchmaker’s functionality is made accessible to the system by the Match Result Provider,
which transforms the internal request model into a specific DSD service request description
that can be consumed by the matchmaker (cf. Sections 4.2 and 5.6) and finally transfers
the results delivered by the matchmaker into a format that is comprehensible for the sys-
tem. Beside of the Match Result Provider, other, user-specified providers, contributing
additional types of information about available service offers, which might be relevant in
the context of the request model under construction, can be implemented and registered
with the Result Manager. The implementation supports nesting of those providers.

In addition to the matching characteristics and the properties of the retrieved service offers,
that are extracted using their semantic service descriptions, the system also provides the
user with information about the trustworthiness of those offers derived from consumer-
provided service judgments referring to past service interactions (cf. Section 6.7). Those
judgments are elicited by the Feedback Component described in Chapter 6. Judgment
information provided by other system participants is made available by the implementation
of a Feedback Provider, that delivers consumer feedback related to the current request
model and the matching service offers, and has been registered with the Result Provider.
To perform the task of feedback elicitation, the Feedback Component utilizes information
related to the request model as well as knowledge about the user’s judgment preferences
acquired during past judgment sessions. The latter is derived from information about the
context of each feedback provision (cf. Sections 6.4 and 6.5.2), comprising for instance
information about the type and number of judgments provided by the user as well as of
information about the underlying request model, which are stored in a Feedback Context

Database and are maintained by the Feedback Context Manager. The Feedback Manager

is responsible for storing and maintaining the elicited consumer feedback and manages
feedback propagation to and acquisition from other users.

The graphical user interface of the implementation is structured along the main tasks of
the system - requirements elicitation and service selection as well as acquisition and usage
of consumer feedback - and offers appropriate system views and interaction opportuni-
ties related to those tasks. In particular, it allows to create, browse, load, store and delete
request models. It also supports editing of loaded request models via their graphical rep-
resentation (cf. Section 5.5.1) in the Direct Editing Perspective and allows for exploring
retrieved service alternatives and their characteristics (Section 5.7) via the Service Selection

Perspective. Based on the presented service offers and their properties, the user can spec-
ify additional requirements related to those characteristics. He can also control whether
information derived from consumer-provided service judgments shall be displayed and
to what degree they shall influence the relevance ranking of the displayed service offers

191

CHAPTER 7. SYSTEM IMPLEMENTATION

(Section 6.7). Finally, the user can judge an invoked service via the Service Judgment

Perspective as explicated in Section 6.5.

192

8
Evaluation of the Requirements

Elicitation and Service Selection

Mechanism

In this chapter, we will evaluate the requirements elicitation and service selection mecha-
nism that has been suggested in Chapter 5 of this thesis. We start by recalling the evalua-
tion objectives (Section 8.1), which arise from the list of requirements on the model of the
user’s service needs, on the process of requirements elicitation and service recommenda-
tion and on the presentation of information that has been compiled in Section 5.1. While
the achievement of some of those objectives can be verified theoretically, for others a user
study is required. In the remaining sections of this chapter, we will present the results of
those evaluations. In particular, we will theoretically argue that the requirements that have
been put on the requirements model, on the specific type of requirements elicitation and
service selection procedure, on the way of specifying requirements and on service match-
making are fulfilled (Section 8.2). After that, we will present the results of two user studies
demonstrating the effectiveness and efficiency of our requirements elicitation and service
selection procedure (Section8.3) and of the process of specifying service requirements us-
ing the graphical requirements representation that has been suggested (Section 8.4). We
conclude with a summary of the evaluation results in Section 8.5.

8.1 Evaluation Objectives

The requirements elicitation and service selection procedure that has been introduced in
Chapter 5 is supposed to support service consumers in efficiently making well-informed,
balanced and consistent service selection decisions (Objective 3) and thus promises to be
a key contribution to the achievement of the thesis goal. In Section 5.1, we compiled
a list of requirements that need to be satisfied by such a mechanism in order to be able
to perform this task and in order to do this effectively. In the following, we will recap
those requirements that set the standards for the evaluation of the suggested approach to
requirements elicitation and service selection.

193

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

Requirements to the Requirements Model

☛
✡

✟
✠Requirement U.1. (Model contents) The requirements model should comprise of

knowledge about the consumer’s service requirements and his preferences.✛

✚

✘

✙
Requirement U.2. (Descriptive power) The mechanism used to model service require-

ments should provide means to semantically and richly describe desired service effects

and should be flexible enough to represent requirements related to different target do-

mains.✓
✒

✏
✑

Requirement U.3. (Model uncertainty) Uncertainty about the consumer’s actual ser-

vice requirements and his preferences should be explicitly represented, measured and

located within the requirements model.

Requirements to Requirements Elicitation and Service Recommendation

✓
✒

✏
✑

Requirement U.4. (Service recommendation) The system should be able to pro-

vide service recommendations and personalized assistance based on uncertain require-

ments.☛
✡

✟
✠Requirement U.5. (Model construction) The processes of requirements elicitation and

service selection should be unified and incremental.✓
✒

✏
✑

Requirement U.6. (Incentives) The system should provide incentives to think about

and to express (correct) preferences and requirements and should encourage decision

makers to think thoroughly about and to make tradeoffs.☛
✡

✟
✠Requirement U.7. (Requirements specification) The system should allow for require-

ments specification based on presented service alternatives.☛
✡

✟
✠Requirement U.8. (Requirements awareness) The system should contribute to the

user’s comprehension and awareness of his service requirements.✓
✒

✏
✑

Requirement U.9. (Model consistency) The system should maintain consistency be-

tween the requirements model and the user’s actual service requirements and prefer-

ences.✓
✒

✏
✑

Requirement U.10. (User involvement) The user should be involved in the model

construction process and should be enabled to interactively contribute to the quality of

the system’s requirements model.

194

8.2. PARTIAL VALIDATION OF REQUIREMENTS ACHIEVEMENT

✛

✚

✘

✙
Requirement U.11. (Uncertainty reduction) The system should effectively reduce un-

certainty about the consumer’s service requirements. It should thereby focus on parts

of the model that are relevant in light of the available service options and in light of the

user’s requirements and preferences.☛
✡

✟
✠Requirement U.12. (User-initiated actions) Expressions of preferences and require-

ments should be user-initiated and should be effectively guided by the system.☛
✡

✟
✠Requirement U.13. (Process coherence) Guidance should result in a process of re-

quirements elicitation and service selection that is coherent.✓
✒

✏
✑

Requirement U.14. (User education) The system should educate users about relevant

service alternatives and their characteristics and motivate them to consider this knowl-

edge when making a selection.✓
✒

✏
✑

Requirement U.15. (Selection efficiency) The process of service selection should be

efficient, i.e. made within an appropriate period of time and with adequate mental ef-

fort.

Requirements to the Presentation of Information✓
✒

✏
✑

Requirement U.16. (Information presentation) The system should emphasize rele-

vant and important information and present them in a format that makes them easy to

perceive and easy to comprehend.☛
✡

✟
✠Requirement U.17. (Selection consistency) The system should support the user in

making a selection that is consistent with his requirements.

8.2 Partial Validation of Requirements Achievement

In this section, we will theoretically verify that the requirements model that has been sug-
gested in Section 5.4 fulfills the requirements that have been put on it (Requirements U.1-
U.3). Moreover, we will show that the requirements elicitation and service selection pro-
cedure that has been proposed in this thesis is designed in the required way, i.e. fulfills the
Requirements U.4, U.5 and U.7.

8.2.1. Appropriateness of the Requirements Model

As an extension of standard DSD request descriptions, the requirements model that has
been introduced in Section 5.4 of this thesis inherits the properties of the latter and as such

195

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

is capable of semantically and richly describing a consumer’s service requirements in terms
of desirable service effects. It also offers language constructs for specifying preferences
(over attribute values and preferences referring to the importance of service aspects) (Re-
quirement U.1) and is flexible enough to model service requirements related to different
target domains (given that appropriate domain ontologies are available) (Requirement U.2).
Uncertainty about the consumer’s service requirements and his preferences is explicitly
represented and located in the requirements model and measured (Requirement U.3). In
particular, uncertainty about the acceptability of certain attribute values and the relative
importance of attributes is modeled by means of probability distributions (cf. Section 5.4).
By attaching these to the respective attribute or requirement they refer to, uncertainty can
be located within the model. Finally, a measure has been presented in Section 5.8.1 that
quantifies the uncertainty related to a given request model. Hence, summarizing, we can
state, that the requirements model that has been suggested in this thesis fulfills the require-
ments that have been put on it (Requirements U.1-U.3).

8.2.2. Appropriate Kind of the Requirements Elicitation and Service
Selection Procedure

The requirements elicitation and service selection procedure that has been introduced in
Chapter 5 is unified and incremental (Requirement U.5) in the sense of interweaving re-
quirements elicitation and service selection into a joint process, which aims at incremen-
tally acquiring knowledge about the service consumer’s service requirements and pref-
erences by alternating phases of intermediate service recommendation based on partially
known requirements and phases of requirements specification and refinement based on the
presented service alternatives (Requirement U.7). The latter feature is detailedly discussed
in Section 5.7. The described way of specifying service requirements and making service
selections is enabled by the system’s ability to provide service recommendations and per-
sonalized assistance based on uncertain requirements (Requirement U.4). While the former
is implemented by the matchmaking procedure that has been discussed in Section 5.6, the
latter is grounded on the mechanisms that have been particularized in the Sections 5.7 and
5.8. They allow to determine and suggest interaction opportunities, i.e. service aspects and
subtypes to choose for consideration as well as selectable tradeoff opportunities that are
promising in light of the user’s known requirements and promising in light of the available
service options. As a result, we can state, that the requirements elicitation and service se-
lection procedure, that has been proposed in this thesis, fulfills the Requirements U.4, U.5
and U.7.

8.3 Evaluation of the Requirements Elicitation Process

In the evaluation of our approach, we wanted to find out, whether end-users were able to
formulate their service needs by using our system, whether they were able to find the ser-
vice functionality they desire and whether they feel supported in that task. In particular,

196

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

we were interested in whether the proposed system helped users to effectively construct
their service requirements and whether this was possible within an appropriate period of
time. In the remainder of this section, we will first introduce the methodology that has
been applied to evaluate our requirements elicitation and service selection approach (Sec-
tion 8.3.1). After that, we will describe the user study and the underlying test data that
have been used for the evaluation (Section 8.3.2). Finally, we will detailedly discuss the
evaluation results (Section 8.3.3).

8.3.1. Evaluation Methodology

The methodology that has been used to evaluate our approach to requirements elicitation
and service selection is an extension of the evaluation design applied in [CP07b]. Fig-
ure 8.1 provides an overview about the approach that proceeded as follows. The test users
were first asked to think about a specific service they would like to use. They were not
completely free in their choice, but had to choose from given service categories. The
participants were then provided with a questionnaire (Pre-System-Usage-Questionnaire)
containing questions related to their background (age, gender, knowledge, ...) and about
their initial service requirements with respect to the chosen service (MMinit in Figure 8.1).
After a 5-minutes introduction to our system, the users were asked to use it to learn more
about their requirements with respect to the service they would like to use and to iden-
tify the service offer that best suits to these service requirements (Seluse in Figure 8.1).
Thereby, the test users specified their service requirements exclusively based on the pre-
sented service alternatives, i.e. did not use the graphical requirements representation to
directly specify service requirements, and selected a service out of a given collection of
service offers. To make the choice more difficult, all offers presented to the user were
taken from the selected service category. The users started with an empty request model,
i.e. no specified attributes. Once a user selected an offer, he was asked to complete a
second questionnaire (Post-System-Usage-Questionnaire) comprising of questions about
his (updated) service requirements (MMuse in Figure 8.1), his confidence in the specified
requirements and the appropriateness of the selected service and questions related to the
usefulness of the provided system.

In order to verify the quality of the elicited service requirements and the service selection
decision that has been made by the user, we provided him with a scrollable table contain-
ing a list of all available service offers and all of their properties (all that are known to
the system). Thereby, each column corresponded to a particular service property and was
sortable. The participant was then asked to look through this list and check whether there
is an offer other than the selected that fits better to his requirements (Selexh in Figure 8.1).
Note, that this offer has not necessarily to be the offer that best suits to the user’s service re-
quirements. We are just interested in whether the user selected another offer or not. In case
of a switch, the user was asked about the reasons for this (Post-Browsing-Questionnaire).
Note, that this could be either due to a yet unconsidered service alternative or due to a yet
unconsidered service requirement that the user became aware of by browsing through the

197

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

verify different properties of the proposed system and thus decide, if the requirements that
have been stated in Section 5.1 are fulfilled. The subjective impressions of the test users
acquired using the questionnaires supplement these results.

8.3.2. Test Data and Test Setting

Following a preliminary evaluation of our approach with 4 participants that has been pub-
lished in [KKR11], we performed an evaluation with 10 test users (6 males and 4 females).
9 of them previously used services via the Web, but only 2 of them were familiar with Web
Services. Table 8.1 summarizes the demographic information about the test participants as
well as information about their background knowledge.

Aspect of concern Frequency/Range

demographic information

age 25 − 58 years
gender 6 male, 4 female

background knowledge/skills

scientific background 90%
computer science background 70%
previously use services via the Web 90%
familiar with

computer items and their properties 80%
Web Services 20%
object-oriented programming 70%
generalization/specialization 100%
taxonomy 60%
ontology 70%

Table 8.1.: Demographic information and background knowledge of the test participants

Data set Evaluating our approach to service selection required a set of service offers
from which to select. This offer set should ideally comprise of

• real world services with corresponding semantic offer descriptions and

• should refer to kinds of services that are typically used by end-users.

To emphasize the advantages of our approach compared to the traditional research and
online purchasing approach and to demonstrate its effectiveness (cf. Section 1.3), service
offers should

199

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

• refer to a service domain that is complex in terms of the number of service properties
and their potential interdependencies and

• complex in terms of the number of available service alternatives.

• Moreover, the selection decision should be important in terms of resulting in some
kind of loss for the decision maker, if not solved properly.

Finally, to derive information about the quality of the requirements model created by our
system, which are required for the evaluation of the performance prediction procedure that
has been proposed in Chapter 6 (Section 9.4.5), we had to base both evaluations on the
same set of services (cf. Sections 9.4.1 and 9.4.2).

Though a few Semantic Web Service test data collections for evaluation purposes exist
(e.g. OWLS-TC 1, they did not meet our requirements. In particular, they often comprise
of a relatively small set of rather simple services (e.g. converter or location services) that
are also sometimes somewhat unrealistic and artificial. Hence, to evaluate our approach,
we had to create a new data set, that served as a base for our user study. To have at least
a realistic set of services, we extracted structured information about computer items from
a major online seller to generate semantic descriptions of services selling computer items.
We chose this kind of services, since it is typically used by end-users. Moreover, it is
sufficiently complex in terms of the number of available service alternatives and in terms
of the number of interrelated service properties that have to be considered and important
in terms of resulting in monetary loss if not selected properly. One could argue that using
a very specific class of services, i.e. those selling products, for our evaluation affects the
significance of our results. However, our approach does not make any assumptions on
the type of services it is applied to. Hence, as long as the underlying service domain can
be appropriately described using DSD service descriptions, our approach is applicable as
well. Nonetheless, it would be worthwhile to evaluate our approach with test data from a
more service-focused domain such as flight booking or hotel reservation. Unfortunately, at
the time of our evaluation, structured data from these domains were hard to obtain. This
recently changed, which offers new opportunities for future research.

For the purpose of our evaluation, we generated service offers from the 8 categories desktop

PC, server, digital watch, e-book reader, PDA, organizer, notebook and electronic dictio-

nary (cf. Section 9.4.2 for details). The test users were allowed to choose one of these
categories and were asked to think about desirable properties of a service that sells a com-
puter item of the selected category. During the test, the study participants had to choose
from a collection of 200 services from the selected category. This number was chosen to
make the decision sufficiently difficult to demonstrate the effectiveness of our approach,
but at the same time keeping the mental effort required for the exhaustive search that had
to be performed after system usage at an acceptable level.

1http://projects.semwebcentral.org/projects/owls-tc

200

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

Questionnaire formulation and evaluation Questions in the questionnaires were
formulated as statements, where the users had to indicate their level of agreement using
the scale −2 (strongly disagree), −1 (disagree), 0 (neither agree nor disagree), 1 (agree),
2 (strongly agree). The presented evaluation results refer to the percentage of users that
agreed/disagreed with a considered statement, which is indicated in brackets, where nec-
essary. This percentage is accompanied with the significance level p, i.e. the probability
of the result being not statistically significant, resulting from a chi-squared test2. If the
same statement had been posed several times during the evaluation (this holds for exam-
ple for statement U8-4 referring to the user’s confidence about his service requirements),
we also used a chi-squared test to assess whether there is a significant difference in the
answer distributions. In those cases, the significance level is also given in brackets. The
questionnaires have been carefully designed to avoid typical biases in the responses (see
e.g. [FA99, Fra96, TP98, CP05] for a discussion). In particular, some of the statements
were stated multiple times, but in a different way to avoid framing effects, i.e. a bias of the
answers caused by the formulation of the statements. Hence, note, that depending on the
way a statement is given, agreement or disagreement of the test users has to be interpreted
differently with regard to the fulfillment of a certain system property. Finally, the rating
scale (a Likert-type scale [lik32]) was chosen and presented in a way that reduces biases in
the judgments. The complete questionnaires can be found in Appendix B.

Acquisition of the test users’ service requirements As already mentioned, we
acquired knowledge about the study participants’ service requirements at several stages of
the evaluation procedure, namely once at the beginning of the study (MMinit in Figure 8.1),
once after a participant used our system to select a service (MMuse in Figure 8.1) and once
after having looked through the entire list of available services (MMexh in Figure 8.1).
For this purpose, the users were asked to indicate the service aspects that are important
to them. They were also asked whether they have specific requirements on these aspects,
such as “the price should be lower than 1000 e ” or ”the more the better”. We did not
restrict the users in the way and type of these requirements. Finally, we asked the partici-
pants to weight the indicated service aspects against each other. Since simply assigning a
numerical weight to each of these aspects is likely to result in an inconsistent and rather
arbitrary weighting, we used an approved procedure that is typically used in the Analytic
Hierarchy Process [Saa08] to acquire the desired weights. This approach is based on pair-
wise comparisons of the importance of the considered service aspects and results in a more
consistent weight assignment. We used the analysis tool Java Analytic Hierarchy Process
(JAHP)3 by Maxime Morge to acquire the desired weights.

Ranking the available service alternatives based on the requirements models acquired this
way was done by evaluating the services with respect to the service aspects that were
considered as relevant by the test users. More specifically, we assessed for each relevant

2The null hypothesis was a uniform distribution of the judgments. The resulting significance level was
inverted, i.e. p = 1− significance level of the null hypothesis.

3http://www.lifl.fr/ morge/software

201

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

service aspect to what degree the user’s requirements on this aspect were fulfilled by the
considered offer and then weighted those degrees using the acquired weights to compute
the overall rank of the service offer. In particular, the degree of fulfillment was 1 if a certain
constraint of the type ”attribute value </<=/>/>=/!=/= value” was fulfilled and 0 other-
wise. For preferences of the type ”the more/less/bigger/... the better”, we used a linearly
increasing/decreasing preference function over the entire range of values of the considered
attribute as occurring in the data set referring to the selected service category. Thereby, a
fulfillment degree of 0 was assigned to the range minimum and a degree of 1 was assigned
to the range maximum. The fulfillment degrees resulting from several constraints/prefer-
ences referring to a single service aspect were multiplied. Rankings based on the recorded
system models were calculated using the uncertain matchmaking approach suggested in
this thesis (cf. Section 5.6).

8.3.3. Results

In the remainder of this section, we will discuss the results of our evaluation that has been
performed using the methodology and test data described above. In particular, we will
conclude, whether the required system properties that have been discussed in Section 5.1
are fulfilled or not.

Incentives for requirements construction and expression As indicated by the
test users (Figure 8.2), the system succeeded in facilitating the specification of service
requirements. The questionnaire respondents agreed, that it was easy to indicate service
aspects that are of interest to them (90% agreed with statement U6-1, p < 0.01), that it was
easy to refine the type of a service aspect (100% agreed with statement U6-2, p < 0.01)
and that it was easy to specify constraints on a service aspect’s values by critiquing a se-
lected service alternative (90% agreed with statement U6-3, p < 0.01). The test users
clearly disagreed with the statement of having not been able to specify the requirements
and preferences they wanted to express (90% disagreed with statement U6-4, p = 0.01).
An inspection of the logged session interactions reveals that the proposed system suc-
ceeded in stimulating the test users to construct and specify service requirements. In the
course of requirements specification, the test users expressed requirements on averagely
4.4 ± 0.84 service aspects, refined the type of averagely 1.8 ± 0.26 service aspects and
made use of the opportunity to critique available service alternatives 3.7 ± 0.51 times in
average (cf. Table 8.2). Among the means for requirements specification that are offered
by the proposed system, the respondents considered the provided tradeoff opportunities to
be most helpful to identify yet unconsidered, but important service requirements (30% of
the participants), followed by the displayed service attributes (20% of the participants)4.

However, we wanted to find out, if the test users not just expressed service requirements,
but indicated correct requirements. To verify that, we compared the service requirements

450% of the participants did not comment on this issue.

202

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

U6-1

U6-2

U6-3

U6-4

U6-5

U6-6

U6-7

U6-8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U6

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U6-1 It was easy to add a new service aspect to my requirements.
U6-2 It was easy to refine the type of a service aspect.
U6-3 It was easy to specify constraints on an attribute’s values by critiquing a se-

lected service alternative.
U6-4 I was not able to specify the requirements and preferences I wanted to express.
U6-5 The service aspects recommended for consideration pointed me to service as-

pects that are important to me and that I did not yet consider.
U6-6 The recommended type refinements for already specified service aspects

pointed me to yet unconsidered requirements.
U6-7 The recommended tradeoff alternatives induced me to balance between my

competing requirements.
U6-8 The presented service alternatives induced me to indicate additional require-

ments and preferences.
U6-9 Which recommender was most helpful to you?

Figure 8.2.: Questionnaire statements/questions and results related to Requirement U.6

that had been indicated by the study participants after having inspected all available ser-
vice alternatives based on all of their known properties (MMexh in Figure 8.1), and the
requirements expressed during the system interaction. Thereby, we restricted ourselves to
those participants that did not change their requirements after having looked through the

203

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

Aspect of concern Frequency

use of interaction opportunities

specified service aspects 4.4 ± 0.84
type refinements 1.8 ± 0.26
choosing a tradeoff opportunity 3.7 ± 0.51

correctness of the expressed requirements

% of the specified service aspects that are in fact relevant 84% ± 11%
% of the specified constraints that are in line with the user’s
requirements

91% ± 13%

% of the chosen tradeoff opportunities that are in line with the
user’s requirements

100% ± 0%

Table 8.2.: Evaluation results related to Requirement U.6

entire list of available services (90% of the test users). The latter ensures, that the model
to which the user’s expressed requirements are compared to is correct and complete. As
it turned out, the questionnaire respondents did not just express service requirements, but
thought thoroughly about them and subsequently specified correct service requirements,
i.e. those they actually have. In particular, 84% ± 11% of the service aspects that had been
specified using the system were in fact relevant to the user, 91% ± 13% of the specified
constraints and all tradeoff opportunities that had been chosen during the test sessions were
in conformance with the user’s actual service requirements (cf. Table 8.2).

The evaluation results clearly indicate that the proposed system effectively stimulates the
construction of correct service requirements. The questionnaire responses confirm that,
but reveal that not all presented information and interaction opportunities supported the
users equally well in that task. The recommendation of service aspects for consideration
and the critiquing tool were considered most helpful. In particular, 80% of the test users
agreed with the statement that the service aspects recommended for consideration pointed
them to yet unconsidered but important service aspects (80% agreed with statement U6-5,
p = 0.02) and 70% indicated that the recommended tradeoff alternatives induced them
to balance between competing service requirements (70% agreed with statement U6-7,
p = 0.03). However, only 50% agreed that the recommended type refinements for already
specified service aspects pointed them to yet unconsidered requirements (50% agreed with
statement U6-6, p = 0.26) and only 60% agreed with the statement of being encouraged
to indicate additional requirements and preferences by viewing the presented service alter-
natives (60% agreed with statement U6-8, p = 0.16). Agreement to these two statements
was also not significant.

We argue that the suggested approach to requirements elicitation effectively stimulated the
test users to think thoroughly about and to construct their service requirements, that it en-
couraged and enabled the respondents to express correct requirements and preferences and
did not hamper this task by making it difficult to perform. It thus fulfills Requirement U.6.

204

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

Contribution to the comprehension and awareness of service requirements

A comparison of the initial requirements specified by the participants (MMinit in Fig-
ure 8.1) and those they provided after having chosen a service by using the tool (MMuse

in Figure 8.1) reveals that the proposed system successfully contributed to the test users
awareness of their service requirements. After having made their final choice, the respon-
dents were able to indicate requirements on averagely 1.55 ± 0.87 service aspects, they
have not been aware of before. They abandoned requirements on averagely 0.34 ± 0.46
service aspects, that turned out to be of marginal relevance in light of the available service
alternatives, were able to indicate additional constraints on averagely 1.11 ± 0.51 service
aspects and, in average, revised constraints on 0.78 ± 0.85 service aspects. 70% of the
participants changed the relative importance of their requirements related to the values of
the considered service aspects (cf. Table 8.3). Just one of the questionnaire respondents

Aspect of concern Frequency

ability to indicate requirements

indication of previously non-aware-of service aspects 1.55 ± 0.87
detection of irrelevant service aspects 0.34 ± 0.46
indication of additional constraints 1.11 ± 0.51
revision of constraints 0.78 ± 0.85
change of requirements importance 70%

Table 8.3.: Evaluation results related to Requirement U.8

detected additional requirements (on a single attribute) after having inspected all available
service alternatives based on all of their known properties. This strongly indicates that the
proposed system successfully educated the respondents about the service requirements that
are important to them and contributed to their comprehension and awareness of these.

The subjective impression of the degree of support provided by the system reflected this
fact (cf. Figure 8.3). The test users clearly agreed with the statement of having learned
more about their service requirements and preferences by using the system (80% agreed
with statement U8-1, p = 0.06). Finally, we indirectly assessed whether the system con-
tributed to the test users’ awareness of their requirements by asking them how confident
they are about their requirements and if they believe that the requirements they are aware
of are complete, i.e. if there are no missing requirements. As it turned out, 70% of the
respondents agreed that using the system contributed to the users’ confidence in their re-
quirements (70% agreed with statement U8-3, p = 0.21). However, this result was not
significant. This is reconfirmed by the fact that the respondents’ confidence in their re-
quirements before using the system (80% agreed with statement U8-4a, p = 0.06) had
increased after using the system (90% agreed with statement U8-4b, p = 0.01). However,
due to the fact, that the test user’s confidence in their requirements was high, even before
using the system (even though this was not justified, as we demonstrated), this result was
not significant (p = 0.29). The respondents’ confidence about their service requirements
was significantly (p < 0.01) higher than initially after having viewed all available service

205

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

alternatives (90% agreed with statement U8-4c, p < 0.01), i.e. having viewed all available
service offers and their properties further increased the test users’ confidence. Looking

U8-1

U8-2a

U8-2b

U8-2c

U8-4a

U8-4b

U8-4c

U8-3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U8

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U8-1 By using the system, I learned more about my requirements and preferences.
U8-2 There might be additional requirements that are important to me and that I am

not aware of yet.
U8-3 I feel more confident about my requirements than before using the system.
U8-4 I feel confident about my requirements.

Figure 8.3.: Questionnaire statements/questions and results related to Requirement U.8

at the test users’ subjective impression of the completeness of their constructed require-
ments, we observed a much more distinct effect. When asking the survey participants
whether they believe that there are additional requirements that are important to them, but
that they are not aware of yet, 70% clearly agreed before using the system (70% agreed
with statement U8-2a, p = 0.1). After having used the system to select a service only
20% agreed with that statement (80% disagreed with statement U8-2b, p = 0.16). Hence,
the system was successful in convincing people of the fact, that they are aware of all their
requirements (p < 0.01). Viewing all available service alternatives and their properties,
again further contributed to the users’ confidence in the completeness of their requirements
(90% disagreed with statement U8-2c, p = 0.01), but not significantly (p = 0.16).

206

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

We have shown that the system effectively contributes to the test users’ comprehension and
awareness of their service requirements and that these requirements are in fact correct and
complete. Hence, Requirement U.8 is fulfilled.

Effective consumer education and selection consistency By displaying the
service attributes and subtypes that have been specified in the available service offers (along
with the percentage of offers that specifies them), the decision support system, that has
been proposed in this thesis, educates the user about service aspects and subtypes that are
worthwhile to be considered. It also points the user to those of his service requirements that
might be conflicting with respect to the available offers by informing him about common
properties of the offers that fulfill a certain critique. Moreover, the system assigns a high
rank to offers that are relevant to the user, i.e. that best fit to his known requirements and
therefore should be considered. The sortable results table, that presents available service
alternatives and their properties, is structured according to the service aspects that are of
interest to the user and thus facilitates the comparison of service alternatives with respect
to the user’s standards. It therefore supports him in making selection decisions that are
consistent with the user’s service requirements.

In fact, 90% of the test users confirmed, that the system made it easy to compare available
service alternatives and their characteristics with respect to their standards (90% agreed
with statement U17-1, p < 0.01). After having viewed all available service alternatives,
just one of the test persons switched to another service due to having found a service al-
ternative that better fits to his requirements than the originally selected (comparison of
Seluse and Selexh in Figure 8.1). This strongly indicates, that the test participants have
been effectively educated about available service alternatives by the system. The subjec-
tive impression of the test users confirms this. As can be seen in Figure 8.4, 90% of the
users agree with being educated about relevant service alternatives and their characteristics
after using the system (90% agreed with statement U14-1, p = 0.01), 70% agree that the
offered tradeoff opportunities educated them about conflicting requirements (70% agreed
with statement U14-2, p = 0.1). At this point, we would like to note, that the latter does
not mean that 30% of the test users did not consider the offered tradeoff opportunities as
helpful. The reason for this is, that the system aimed at educating the user about common
characteristics of the service offers that fulfill a given critique. Those characteristics might,
but not necessarily do conflict with the user’s service requirements. As it turned out, those
users that did not agree with statement U14-2 considered the critiquing tool as helpful, but
simply did not encounter conflicting requirements by using it.

However, effective decision making does not only require the user to consider relevant ser-
vice alternatives and their properties and to carefully resolve conflicting service require-
ments, it also necessitates the decision maker to evaluate available offers with respect to
his service requirements and finally make a selection the that fits well to these require-
ments (Definition 1.1). To find out, whether the test participants’ selection decisions were
in fact consistent with their service requirements, we determined the rank of the offer that
had been selected by a test user using our system (Seluse in Figure 8.1) with respect to the

207

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

U14-1

U14-2

U17-1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U14 and U17

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U14-1 I feel well educated about relevant service alternatives and their characteristics.
U14-2 The presented tradeoff alternatives educated me about conflicting require-

ments.
U17-1 It was easy to compare available service alternatives and their characteristics

with respect to my standards.

Figure 8.4.: Questionnaire statements/questions and results related to Requirement U.14
and Requirement U.17

user’s actual service requirements, i.e. those indicated by the user after having used the
system (MMuse in Figure 8.1). We restricted ourselves to those users, that did not had hid-
den requirements they discovered after having viewed all available service offers and their
characteristics (90% of the study participants), since decisions made on partially known
requirements are inconsistent by definition (Definition 1.1). As it turned out, the test user’s
selection decisions were in fact consistent with their service requirements. More specif-
ically, the mean rank of the selected service alternative with respect to the user’s actual
requirements was 8.33 ± 5.33 (out of 200).

This shows, that the system successfully educates service consumers about relevant ser-
vice alternatives and their characteristics, motivates them to consider this knowledge when
selecting a service and effectively supports them in making a selection that is consistent
with their service requirements. Thus, the Requirements U.14 and U.17 are fulfilled.

Model consistency As a result of our evaluation, we found that the conformance be-
tween the user-specified requirements indicated after system usage (MMuse in Figure 8.1)
and the system-maintained requirements model at the selection time (SMfinal in Fig-
ure 8.1) was high (cf. Table 8.4). In all cases, the internal request model covered all
service aspects that were important to the user. Also the conformance between the relative
importance of those aspects as indicated by the test person and that, which was documented
in the model, was high. We used two different measures to evaluate the consistency of the

208

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

importance weights: (1) the mean difference of the service aspects’ relative weights in the
user-provided model and the system model and (2) the weighted mean difference of the
specified service aspects’ rank in the user specified model and in the system-maintained
model (we assigned the ranks 1 (highest), 2, . . .). Thereby, service aspects where weighted
by the inverse of their rank, i.e. 1/rank. This means, the penalty for a wrong rank was
higher for service aspects that were more important to the users. As it turned out, the mean
weight discrepancy was 0.12 ± 0.03, the mean difference between the user specified and
the modeled ranks was 1.06 ± 0.48.

Aspect of concern Value

model consistency

attribute coverage 100%
mean weight discrepancy 0.12 ± 0.03
mean difference of attribute rank 1.06 ± 0.48
mean rank difference of top ten offers 30.98 ± 8.50
mean rank difference of top ten offers (CR < 0.1) 23.04 ± 7.88
mean rank difference of top ten offers (CR > 0.1) 38.92 ± 11.89

weighting consistency

mean consistency ratio before system usage 0.21 ± 0.10
mean consistency ratio after system usage 0.14 ± 0.07

Table 8.4.: Evaluation results related to Requirement U.9

Much more interesting than the discrepancies between the models themselves is the effect
these inconsistencies have on the ranking of available service alternatives, i.e. its effect
on the recommendation quality of the system. To assess this, we determined the top ten
offers with respect to the user-indicated requirements model (MMuse in Figure 8.1), i.e.
the service alternatives that actually fit best to the user’s service needs, and calculated the
mean difference between these offers’ rank with respect to the user-indicated model and the
system-maintained model (SMfinal in Figure 8.1). As we found, the mean rank difference
was 30.98 ± 8.50, i.e. about 15% of the maximal possible rank difference (200). Though
this result shows, that there is in fact a high degree of consistency between the models and
the resulting rankings, it implies that relevant service alternatives can be assigned such a
low rank by the system that causes them to be out of the user’s viewing range in the results
table (in the test setting, the first 28 service alternatives were visible without scrolling).

Investigating the origin of the inconsistency in both, models and rankings, revealed, that
it lies in the inconsistency of the relative weights that the test users assigned to the single
service aspects of interest and that have been retrieved using the Analytic Hierarchy Pro-
cess (AHP) [Saa08] (cf. Section 8.3.2). Though weights that are elicited using the AHP,
i.e. by pairwise comparing the importance of service aspects, are typically more consistent
than weights that have been acquired by simply asking the user to indicate a weight for
each service aspect, they are still inconsistent to some degree. For instance, a user might

209

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

indicate that aspect A is much more important than aspect B and aspect C is slightly less
important than aspect B. Finally, indicating that A is slightly more important than C is
not consistent with the two former statements. Saaty, who proposed the AHP, provided
a measure for the consistency of weightings derived using the AHP, the consistency ratio

CR. The lower the CR-value, the more consistent the determined weighting. According to
Saaty, the consistency ratio should not exceed 0.1 to be usable for decision making [Saa08].
Though by using our system the mean consistency ratio over all user-indicated weightings
(those of MMuse, not the system-determined!) decreased from 0.21 ± 0.10 (MMinit) to
0.14 ± 0.07 (MMuse), 50% of the weightings exceed the CR-threshold of 0.1, i.e. were
too inconsistent to be usable. Hence, though the above results referring to the ranking
consistency indicate a tendency, they are of limited significance. To find out, whether the
observed inconsistency between the service rankings based on MMuse and SMfinal arise
from the inconsistency of the user-provided weightings (i.e. the users’ inability to express
their true preferences related to the relative importance of service aspects) or is in fact
due to the inconsistency of the system-maintained requirements model, we determined the
mean rank difference of the top ten service alternatives separately for the 5 fairly consistent
(CR < 0.1) and the 5 inconsistent weightings obtained by asking the test users after system
usage. As it turned out, the mean rank difference was lower, namely 23.04 ± 7.88, for the
more consistent weightings and higher than that determined over all obtained weightings,
namely 38.92 ± 11.89, for the inconsistent weightings. This seems to indicate, that the
observed ranking difference does not exclusively result from model inconsistency, but is
partially attributed to the test users’ inability to express the true relative importance of the
service aspects in terms of (consistent) weights. Thus, the actual consistency between the
rankings is supposed to be higher. This hypothesis is supported by our finding (see above),
that people actually found their desired service by using our system. However, due to the
lack of appropriate means to precisely measure the test users’ true service requirements
and preferences (with reasonable effort5), it cannot be verified.

Summarizing our findings, we can state, that there is in fact a high degree of consistency
between the user’s actual service requirements and preferences and the system-created
requirements model, both, in terms of aspect coverage and in terms of the resulting service
rankings. However, due to the fact, that a user’s requirements, particularly the relative
importance of service aspects, cannot be accurately acquired with reasonable effort, the
actual degree of conformance cannot be precisely determined. Hence, the fulfillment of
Requirement U.9 can only be partially verified.

Effective uncertainty reduction In Section 5.8, we provided a measure that quan-
tifies the uncertainty about the actual matching degree of an offer with respect to a given
requirements model that results from missing knowledge about a user’s service require-
ments. We already argued, that this measure is designed in a way that accounts for the
relevance of information in light of a user’s known requirements and in light of the avail-
able service offers’ properties. This means, if given a user’s known service requirements,

5see e.g. [Cle91] for other weight assessing methods

210

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

a certain piece of requirements information is of minor relevance for the calculation of an
offer’s matching degree with respect to the user’s requirements, the uncertainty resulting
from the lack of this information is low. Similarly, if given the system’s knowledge about a
certain service offer, a certain piece of requirements information is of minor relevance for
the calculation of this offer’s matching degree with respect to the user’s requirements, the
uncertainty resulting from the lack of this information is low. Thereby, a piece of informa-
tion is relevant for the calculation of a matching degree, if it has the potential to contribute
a large amount to it. By emphasizing those interaction opportunities that, if applied, de-
crease the measured uncertainty of a given requirements model with respect to the k best,
i.e. highest ranked and thus most promising, service offers by a large degree, we encour-
age the user to choose those interaction opportunities and thus to effectively reduce model
uncertainty.

However, we wanted to find out whether uncertainty reduction also resulted in savings in
terms of steps to take to identify the offer that is most suitable to a user. In particular, we
wanted to compare (1) the number of interaction steps with the system (number of add
attribute/compromise/refine type interactions) that were required to identify a certain offer
when always following the system’s most promising interaction suggestion (that complies
with the user’s requirements) with (2) the number of steps required, if always the least
promising (in terms of its ability to reduce model uncertainty) choice was taken and (3)
with the number of steps that were actually required by the test users. Since it would have
imposed an unacceptable effort to the test users, if we had asked them to perform the same
service selection task three times, we let a program perform the service selection tasks (1)
and (2) automatically. In particular, taking a given test participant’s final selection as the
target choice6, the program interacted with the system in the indicated way. If both, a type
refinement or adding an attribute could be performed, we randomly selected one of them
with equal probability. A critiquing interaction was always performed, if applicable and
always referred to the top-ranked offer. Finally, we measured the number of interaction
steps, that were required to have the target offer ranked among the top ten.

As it turned out, choosing always the most promising option recommended by the system
significantly reduced the mean number of required interaction steps from 5.8 to 4.5 (cf.
Table 8.5) for the tests that always took the least promising interaction option (t-test with
significance level 0.07). The number of required steps was not just decreased in average.
Also the maximal number of steps that was required for any test run could be reduced (from
10 to 6) as well as the variation among the number of required steps for the single target
offers fell, i.e. the standard deviation significantly decreased from 2.44 to 1.08 (F-test with
significance level 0.05). This is desirable, since it indicates that by following the system’s
suggestions (if compliant with the user’s requirements), the number of interaction steps to
take is reliably reduced to a low level.

However, we were also interested in whether the test users actually followed the system’s
suggestions (if compliant with their service requirements) and thus benefited from them.

6We could not rely on the requirements model indicated by the test participants (MMuse), since as argued in
the previous paragraph, it did not perfectly comply with the user’s actual requirements.

211

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

Aspect of concern Value

mean number of interaction steps

when always choosing the least promising interaction 5.8 ± 2.44
when always choosing the most promising interaction 4.5 ± 1.08
taken by the test users 9.9

maximal number of interaction steps

when always choosing the least promising interaction 10
when always choosing the most promising interaction 6

chosen interactions

list of recommended service aspects
upper part 67%
lower part 33%

list of recommended tradeoff opportunities
upper part 63%
lower part 37%

Table 8.5.: Evaluation results related to Requirement U.11

If this were true, the users would more frequently choose recommendations in the upper
half of the list of recommended interaction opportunities (i.e. those the system considers
most promising). Otherwise, we would expect to have the selected interaction opportuni-
ties uniformly distributed over the two halves of the list. As it turned out, for the list of
recommended service aspects, there had been 67% of the items selected from the upper
part and 33% from the lower part, which are significantly more items from the upper part
(chi-squared test, significance level 0.02). As for the recommended tradeoff opportunities,
there had been 63% of the items selected from the upper part of the list and 37% items
from the lower part. However, this result was not significant (chi-squared test, significance
level 0.14). The lists with potential type refinements were too short to draw meaningful
conclusions. As a result, we can conclude, that the test users in fact considered the system’s
recommendations.

Finally, note, that the number of steps that were actually taken by the test users, 9.9 in av-
erage, was higher than the number of required steps as measured in the two automatically
performed test runs. This is due to the fact, that though a suitable service might have been
ranked high after a certain number of user interactions (as in the automatic test runs), the
test participants had to verify whether the considered offer was in fact the best choice (e.g.
by checking how well the offer suits to their requirements with respect to a yet unconsid-
ered, but relevant service aspect). Moreover, in contrast to the automatically performed
test runs, were the target offer was known right from the beginning, the test users had to
successively discover their service requirements.

Summarizing, we can state, that the suggested system is in fact able to identify those inter-
action opportunities that are most promising in terms of their ability to reduce uncertainty

212

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

about the service consumer’s requirements and thereby focuses on parts of the model that
are relevant in light of the available service options and in light of the user’s requirements
and preferences. Moreover, we have shown, that by taking these interaction opportunities,
the number of interaction steps required to identify the offer that is most suitable can be
significantly reduced. Finally, we demonstrated, that the test participants actually consid-
ered the system’s recommendations and thus benefited from these effects. Thus, we can
conclude that Requirement U.11 is fulfilled.

User autonomy and effective and coherent guidance Expressions of prefer-
ences and requirements as given by a potential service consumer that uses our system are
user-initiated and not forced by the system. In particular, critiques applied to the properties
of available service offers are self-initiated and might refer to any of the available offers.
Moreover, the user can freely choose from the selection of service aspects and subtypes
that is recommended to him for consideration. The presented list of opportunities is also
complete, i.e. comprises of all applicable alternatives. This is in conformance with the test
users’ subjective perception (cf. Figure 8.5). The participants felt not forced by the system
to state requirements and/or preferences they do not have (70% disagreed with statement
U12-1, p = 0.1), and agreed, that they were free to express the preferences and require-
ments they have (90% agreed with statement U12-2, p < 0.01).

As indicated by the survey participants, the system not just allowed for user-initiated ex-
pressions of preferences and requirements, but also effectively guided the user in that pro-
cess (cf. Figure 8.5). In particular, the users felt guided in the process of thinking of and
expressing requirements and preferences (100% agreed with statement U12-3, p < 0.01),
they felt supported in exploring and comparing available service alternatives and their char-
acteristics in a systematic manner (100% agreed with statement U12-5, p < 0.01; 100%
disagreed with statement U12-6, p < 0.01) and finally felt guided in the process of selec-
ting a service that fits to their preferences and requirements (100% agreed with statement
U12-4, p < 0.01).

The guidance provided by the system was also coherent, i.e. adjusted well to the user’s
intention and the context of the task at hand (cf. Definition 5.1). In particular, service
attributes and subtypes recommended for consideration are restricted to those that directly
refer to the service aspects that have been already considered by the user (those that can be
directly added to the hierarchical requirements model) and thus are relevant in the context
of the user’s stated requirements. Offered tradeoff opportunities are displayed on demand
and are relevant to the task at hand. This is due to the fact, that they directly refer to a
given critique that has been specified by the user. These findings are confirmed by the test
users. As can be seen in Figure 8.6, 90% of the survey participants agreed that the service
aspects, type refinements and tradeoff alternatives provided by the system were relevant in
the context of the task they intended to perform (90% agreed with statement U13-1, p <
0.01; 100% disagreed with statement U13-3, p < 0.01) and did not indicate a particular
type of recommendations provided by the system that was not relevant to them (question

213

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

U12-1

U12-2

U12-3

U12-4

U12-5

U12-6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U12

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U12-1 The system forced me to state requirements and/or preferences I do not have.
U12-2 I felt free to express the preferences and requirements I have.
U12-3 The system guided me in the process of thinking of and expressing require-

ments and preferences.
U12-4 The system guided me in the process of selecting a service that fits to my

preferences and requirements.
U12-5 The system helped me to explore and compare available service alternatives

and their characteristics in a systematic manner.
U12-6 I got lost in the process of service selection.

Figure 8.5.: Questionnaire statements/questions and results related to Requirement U.12

U13-2). Finally, 100% of the test users agreed that the service alternatives presented by the
system were relevant to them (100% agreed with statement U13-4, p < 0.01).

Summarizing the discussed evaluation results, we state that expressions of preferences and
requirements as provided by a user of our system are user-initiated and are effectively and
coherently guided by the system. Thus, the Requirements U.12 and U.13 are fulfilled.

Service selection efficiency According to Definition 1.2, the process of service se-
lection is efficient, if a selection is made within an appropriate period of time and with
adequate mental effort. Thereby, appropriateness refers to the importance of the service
selection task at hand. However, both, the importance of a service selection task and the
appropriateness of the effort and time spent to perform it, are subject to the personal per-
ception of a user. Hence, the efficiency of the decision making process when supported by

214

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

U13-1

U13-3

U13-4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U13

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U13-1 The service aspects, type refinements and tradeoff alternatives provided by the
system were relevant in the context of what I intended to do.

U13-2 If you do not agree, which recommendations were not relevant?
U13-3 The interaction opportunities (i.e. the selectable service aspects, type refine-

ments and tradeoff alternatives) offered by the system rendered it impossible
for me to do what I intended to do.

U13-4 The service alternatives presented by the system were relevant to me.

Figure 8.6.: Questionnaire statements/questions and results related to Requirement U.13

the proposed system could not be evaluated in terms of objective measures, the test users
had to be rather asked for their subjective impression.

When asked about those issues, the respondents agreed that the amount of time that was
required to identify the service that best fits to their preferences and requirements was
acceptable (90% agreed with statement U15-1, p < 0.01). They even agreed, that by using
the system, it took them considerably less time than it usually takes (80% agreed with
statement U15-2, p = 0.02). Finally, the test users indicated, that the task of selecting an
appropriate service alternative was not mentally demanding (90% agreed with statement
U15-3, p < 0.01). Hence, the proposed system effectively supports service consumers in
making service selection decisions efficiently and thus fulfills Requirement U.15.

Effective presentation of relevant information Information provided by the sys-
tem are presented in a plain format to make them easy to perceive and easy to compre-
hend. Relevant and important information are emphasized, dispensable information are
hidden. In particular, matching service alternatives are displayed in a simple table where
the columns refer to the service aspects that are of interest to the user. Relevant service
alternatives are placed on top. The top 10 service offers are additionally highlighted. To
avoid information overflow and to ease the processing of relevant information, attribute-
related information in the results table can be hidden, if not required. Service aspects and

215

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

U15-1

U15-2

U15-3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U15

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U15-1 The amount of time that was required to identify the service that best fits to my
preferences and requirements was acceptable for me.

U15-2 By using the system, it took me considerably less time to identify a suitable
service than it usually takes.

U15-3 It was easy to identify the service alternative that fits best to my preferences
and requirements.

Figure 8.7.: Questionnaire statements/questions and results related to Requirement U.15

attribute subtypes recommended to the user for consideration are sorted by their usefulness
and are restricted to those that have been specified in the available service offers and that
are applicable in the context of the user’s request model. Thereby, the recommendations
that are considered to be most useful by the system are placed on top. Applicable critiques
and resulting tradeoff opportunities are displayed on demand. The different item types of
a tradeoff opportunity are color-coded to facilitate comprehension.

As indicated by the test users, system-provided information were in fact easy to compre-
hend and relevant information were easy to identify (cf. Figure 8.8). In particular, 90% of
the survey participants said, that the presented information about available service alterna-
tives and their characteristics were easy to understand (90% agreed with statement U16-1,
p < 0.01). Both, the meaning of provided information as well as the purpose and way of
using of offered interaction opportunities were clear and comprehensible for the test users.
More specifically, the purpose of critiquing was apparent to all survey participants (100%
disagreed with statement U16-2, p < 0.01). Though the meaning of the presented tradeoff
opportunities was intelligible for the majority of the users, it remained incomprehensible to
one of the participants (80% disagreed with statement U16-4, p = 0.02). All were able to
make use of the recommended attribute subtypes (100% disagreed with statement U16-3,
p < 0.01). To the vast majority of the test users, the amount of information presented by
the system was acceptable (70% disagreed with statement U16-5, p < 0.01), but could be
further reduced. As the users indicated, information such as the name of a service as well

216

8.3. EVALUATION OF THE REQUIREMENTS ELICITATION PROCESS

U16-1

U16-2

U16-3

U16-4

U16-5

U16-7

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U16

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U16-1 The presented information about available service alternatives and their char-
acteristics were easy to understand.

U16-2 I did not understand what critiquing is for.
U16-3 I did not understand what the presented attribute types are for.
U16-4 I did not understand what the presented tradeoff alternatives mean.
U16-5 The amount of information presented by the system overwhelmed me.
U16-6 If you agree, which information should not be presented?
U16-7 It was easy to identify information that are important to me.

Figure 8.8.: Questionnaire statements/questions and results related to Requirement U.16

as units of measurement, if clear from the context, should not be presented at all (question
U16-6). Finally, most of the test users agreed that it was easy to identify information that
are important to them (70% agreed with statement U16-7, p = 0.03).

Summarizing, we can state that the system introduced in this thesis, was successful in pre-
senting information in a format that makes them easy to perceive and easy to comprehend.
Though the visibility of relevant and important information could be further improved, the
majority of the test users were able to easily identify the information that are important to
them. Hence, Requirement U.16 is fulfilled. Presentation issues related to the graphical
requirements representation are discussed in Section 8.4.

217

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

8.4 Evaluation of the Graphical Model Representation

By using the graphical requirements representation introduced in Section 5.5, the user shall
be involved in the model construction process by directly specifying service requirements
and shall be enabled to interactively contribute to the quality of the system’s requirements
model by correcting the system-maintained model, if necessary (Requirement U.10). In
this section, we evaluated whether the test users were in fact able to perform these tasks,
i.e. were able to create a request model that expresses their service needs, whether the test
users considered the proposed requirements representation as useful and how they judge
its usability. In the remainder of this section, we will first introduce the methodology
that has been applied for the evaluation (Section 8.4.1). After that, we will describe the
evaluation setting (Section 8.4.2). Finally, we will detailedly discuss the evaluation results
(Section 8.4.3).

8.4.1. Evaluation Methodology

To evaluate the usability of our graphical requirements representation, we performed a user
study adopting the Thinking-aloud Protocol [Lew82], an approved technique for usability
testing. During a series of tests, users were provided with our graphical requirements
representation. Given two requirements specifications in natural language, they were then
asked to create two request models based on these specifications by using the graphical
requirements representation. The test participants were requested to comment on their
thoughts while trying to perform this task. By observing this process, we gained valuable
insights on how users perceived the interface of the graphical requirements representation
and whether they were able to accomplish the given tasks effectively. In particular, we
could examine, whether users approached the given tasks in the intended way and if not,
where and why they had difficulties.

8.4.2. Test Setting

The main difficulty in the context of our evaluation, was the selection of a set of require-
ments specifications whose creation is manageable in a single test session and in an ap-
propriate period of time and that is representative in the sense that it covers all modeling
constructs that are required in a real world scenario. To meet those requirements, we con-
structed a set of two requirements specifications by extracting relevant pieces from the set
of test requirements used by the Semantic Web Service Challenge7, an approved initia-
tive aiming at the evaluation of Semantic Web Service technologies. The basic idea of
the challenge is to provide a set of scenario-based discovery, mediation and choreography
problems that have to be solved by the participants. Each scenario includes a set of request
descriptions in natural language and list of Web Services that match to it. Correct solutions

7http://sws-challenge.org

218

8.4. EVALUATION OF THE GRAPHICAL MODEL REPRESENTATION

must retrieve the correct services for each request and rank them in the specified order.
The solutions are verified and certified by the challenge staff. For the purpose of our eval-
uation, we considered the request specifications contained in the Shipment Discovery and
Hardware Purchasing scenario of the challenge, since they refer to service domains that
are comprehensible for end-users and cover a wide range of discovery problems. Though
the set of requirements specifications in the scenario covered various aspects from a match-
making perspective, it was redundant with respect to the modeling elements that were used.
Hence, we extracted and (partially extended) relevant pieces from the scenario request de-
scriptions and combined them into the following requirements specifications for our test,
formulated in natural language:

Requirements specification 1

You’d like to ship a package ...

from: ... address ...

to: ... address ...

package dimensions: (l/w/h) 10/2/3 (inch)

package weight: 20 pounds

price: less than 120$

pickup: within two working days

Requirements specification 2

You want to own a computer, namely a ...

Apple Mac Book 13” with

at least Intel Duo Core Processor 2.0 GHz

at least 1100 MB RAM

at least 120 GB Hard Disc Size

color: white or black, but black is more desirable

for at most 1500 $

price and color are most important to you, price is two times more impor-

tant than color

We omitted parts of the challenge’s test requirements collection that referred to multi at-
tribute conditions and to the specification of multiple effects at a time, since those are
aspects that can be expressed in DSD, but are currently not supported by our request model
implementation and the graphical requirements representation.

The user study was performed with 4 persons, which is the recommended number of partic-
ipants for this kind of study [Nie93]. The procedure of a test session with a single user was
as follows. At the beginning of the session, we gave a 5 minutes introduction to the main
features of our graphical requirements representation using the specification of a request

219

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

model for a printing service as an example. After that, the user was provided with the two
verbal requirements descriptions to create. He was asked to use the graphical requirements
representation to create two request models that appropriately model the service require-
ments specified in the verbal descriptions and to comment aloud on the actions taken to
perform this task. During the test, we recorded how the user approached the task, where
problems arose and how much time it took to perform the task. After the test session, we
discussed the problems that were encountered during the test and also asked the test user
to suggest improvements to the graphical requirements representation’s interface. Finally,
we asked the user to complete a questionnaire related to the usability of the graphical re-
quirements representation (cf. Figure 8.9). Again, questions in the questionnaire were
formulated as statements, where the users had to indicate their level of agreement using a
scale from −2 (strongly disagree) to 2 (strongly agree). The presented evaluation results
refer to the percentage of users that agreed/disagreed with a considered statement and are
accompanied with the significance level p resulting from a chi-squared test. The complete
questionnaire can be found in Appendix B.

The recommendations provided by the subtree and subtype recommender, that were pro-
vided during the test, were based on two request model specifications that had been created
as a sample solution to the model creation tasks that had to be performed by the test users.
To not overly simplifying the test task, the depth of the request model subtrees that could
be created by using the subtree recommender was restricted to 1. All the test persons were
neither familiar with the semantic service description language DSD, nor with the underly-
ing service ontology or ontologies in general. Two of the study participants were computer
scientists, two were not.

8.4.3. Results

All of the 4 test participants were able to create the two request models by using the graph-
ical requirements representation. Though the users had some difficulties when starting to
model the first requirements specification, they understood the modeling approach quickly
and applied the basic features of the graphical requirements representation correctly, usu-
ally after having modeled the first one or two service aspects. Table 8.6 shows the results.
The depicted table indicates how much time (in minutes) the test users required in average
to model the two test requirements specifications. The two additional rows indicate how
much time an expert user required for the same task with (expert with rec.) and without
(expert) using the subtree recommender. As can be seen, the expert required 11.75 minutes
to model requirements specification 1 and 4.5 minutes to model requirements specification
2. In our opinion, the amount of time required by the expert user is acceptable, in partic-
ular, when considering that a user’s service requirements typically are not as complex as
those specified in requirements specification 1. Moreover, employing the conversational
approach to service selection proposed in this thesis, relieves the user from directly provid-
ing all his service requirements and encourages the user by presenting intermediate service
results. However, the time required by the test users (21.25±4.58 minutes for requirements

220

8.4. EVALUATION OF THE GRAPHICAL MODEL REPRESENTATION

req. spec. 1 req. spec. 2

expert 11.75 4.5
expert with rec. 8 3
test users (avg) 21.25 ± 4.58 11.38 ± 1.62

Table 8.6.: Time required to model requirements specification 1 and 2 (in minutes)

description 1 and 11.38 ± 1.62 minutes for requirements description 2), though acceptable
in case of the second description, was too much. The comments provided by the users as
well as the discussions following the tests revealed the reasons. As it turned out, the main
problem was caused by the modeling of the underlying ontology and not by the interface
of the graphical requirements representation. While the test users did not have problems
with modeling their service requirements in terms of service effects, they were confused
by the fact that a single service aspect could be modeled differently. For instance, the type
of a processor can be modeled as a subtype of Processor or as an attribute. As a conse-
quence the users often had to try which of both, subtyping or adding a subattribute, was the
appropriate option. As a solution to that problem they proposed to gray out options that
are not applicable. In doing so, it becomes obvious which option to choose. In addition
to this ontology-related problem, the users remarked that they found it annoying to create
separate subattributes for amounts and units, e.g. as they are required when specifying the
price of a service or the weight of the package in requirements description 1. Instead, they
would like to have the opportunity to input those information at once. A final remark was
related to the representation of the attribute importance via the thickness of the connect-
ing line. While the users appreciated to specify attribute importance this way, they found
it difficult to compare different line widths to assess the relative importance of attributes.
As a solution, they proposed to label the connecting line with a number indicating the
importance.

The subtype recommender and in particular the subtree recommender were considered to
be very helpful by the test users. While users did not make use of this option when they
started to model requirements description 1, they made increasing use of this feature once
they used it for the first time. However, we observed that the users often tried to model
the required service aspects on their own and used the subtree recommender just in case
they had no idea of how to model a certain aspect, which luckily happened not that often.
With one exception, the users did not explicitly use the subtree recommender to accelerate
the request model creation process, though as indicated by the results in Table 8.6, the
amount of time that could have been saved by this is considerable. Finally, the possibility
to collapse parts of the request model tree to save space was considered as positive.

These findings comply with the opinions expressed by the test users when completing the
questionnaire (cf. Figure 8.9). In particular, the participants confirmed, that by using the
graphical requirements representation, they were able to specify the service requirements
they wanted to express (100% disagreed with statement U10-1, p = 0.08), that they were

221

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

U10-1

U10-2

U10-3

U10-4

U10-5

U10-6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Questionnaire results: Requirement U10

strongly agree agree neither nor disagree strongly disagree

degree of agreement

s
ta

te
m

e
n

t

ID Statement/Question

U10-1 I was not able to specify the requirements and preferences I wanted to express.
U10-2 It was easy to specify requirements and preferences using the tool.
U10-3 The graphical requirements representation is intuitive and easy to understand.
U10-4 The graphical requirements representation allowed me to adjust my require-

ments and preferences as desired.
U10-5 The subtree recommender is helpful.
U10-6 The subtype recommender is helpful.
U10-7 What type of requirements/preferences, if any, were not easy to specify?

Figure 8.9.: Questionnaire statements/questions and results related to the graphical require-
ments representation

able to adjust their requirements and preferences as desired (100% agreed with statement
U10-4, p = 0.08) and that this task was easy to perform (100% agreed with statement
U10-2, p = 0.08)8. The study participants also indicated that the graphical requirements
representation was intuitive and easy to understand (100% agreed with statement U10-3,
p = 0.08). Both, the subtype recommender and the subtree recommender were considered
to be helpful (100% agreed with statement U10-5, p = 0.08; 100% agreed with statement
U10-6, p = 0.08). Note, that these results only supplement the observations made during
the user study and should be understood as a general trend, rather than significant results,
since they reflect the answers of 4 test persons.

We have demonstrated, that by using the graphical requirements representation the test
users were able to directly specify and/or modify service requirements. Thus, they are

8Question U10-7 was not answered by any of the study participants.

222

8.5. SUMMARY AND CONCLUSIONS

involved in the model construction process and can interactively contribute to the quality
of the system’s requirements model by correcting the latter, if necessary. Hence, Require-
ment U.10 is fulfilled.

8.5 Summary and Conclusions

In the previous sections, we have shown that the requirements related to the requirements
elicitation and service selection procedure that has been proposed in this thesis (Require-
ments U.1 to U.17) that have been compiled in Section 5.1 are fulfilled.

• In particular, we developed an incremental and interactive method for requirements
elicitation and service selection (fulfillment of Requirement U.5 as shown in Sec-
tion 8.2).

• We also designed a requirements model, that is capable of semantically and richly
describing a user’s service requirements and preferences by means of the desired ser-
vice effects (fulfillment of Requirement U.1 as shown in Section 8.2), that is flexi-
ble enough to represent requirements related to different target domains (fulfillment

of Requirement U.2 as shown in Section 8.2) and that explicitly represents and
locates uncertainty about the consumer’s actual service requirements and his pref-
erences by means of probability distributions (fulfillment of Requirement U.3 as
shown in Section 8.2).

• We also developed a mechanism that is capable of retrieving matching service of-
fers and of providing personalized assistance based on the uncertain requirements
encoded in this requirements model (fulfillment of Requirement U.4 as shown in
Section 8.2).

• By presenting these offers and their properties as well as by suggesting occurring
service aspects and possible type refinements for consideration, the devised system
makes the user aware of his hidden service requirements (fulfillment of Require-

ment U.8 as shown in Section 8.3), stimulates thorough consideration (fulfillment

of Requirement U.6 as shown in Section 8.3) and subsequent expression of these in
an intuitive and informal manner based on the matching service alternatives that are
presented by the system (fulfillment of Requirement U.7 as shown in Section 8.2).

• In particular, the system encourages decision makers to explicitly resolve conflicting
requirements by thinking thoroughly about and to make tradeoffs (fulfillment of

Requirement U.6 as shown in Section 8.3). This is achieved by allowing the user
to critique attributes of the displayed service alternatives and asking him to accept
required tradeoffs on other attributes in turn or to abandon his critique.

• The suggested solution does not prompt or enforce a consumer to provide prefer-
ential statements he is not able or not willing to provide, i.e. expressions of pref-
erence and of requirements are user-initiated and not pre-determined by the system
(fulfillment of Requirement U.12 as shown in Section 8.3).

223

CHAPTER 8. EVALUATION OF THE REQUIREMENTS ELICITATION AND

SERVICE SELECTION MECHANISM

• As has been shown, this results in the expression of correct preferences and service
requirements (fulfillment of Requirement U.6 as shown in Section 8.3).

• It has been also demonstrated, that the process of requirements elicitation and service
selection is effectively guided by the system (fulfillment of Requirement U.12 as
shown in Section 8.3).

• The provided guidance is coherent, i.e. adjusts well to the user’s intention and the
context of the task at hand rather than forcing the user to follow a certain sequence
of requirements specification. It thus enables the user to understand and adjust to the
service selection process and motivates and enables him to provide useful informa-
tion (fulfillment of Requirement U.13 as shown in Section 8.3).

• By presenting matching service offers, the proposed system also educates the user
about relevant service alternatives and their characteristics (Requirement U.14).

• Finally, the suggested solution to service selection successfully encourages decision
makers to consider the acquired knowledge about their service requirements as well
as about relevant service alternatives and their characteristics when making a selec-
tion (fulfillment of the Requirements U.14 and U.17 as shown in Section 8.3). It
therefore effectively supports service consumers in making well-informed, balanced
and consistent service selection decisions.

• Effective decision support is particularly enabled by two properties of the system.
Firstly, its ability to emphasize relevant and important information and to present
them in a format that makes them easy to perceive and easy to comprehend (fulfillment

of Requirement U.16 as shown in Section 8.3) and secondly, its ability to maintain
consistency between the internal requirements model and the user’s actual service
requirements and preferences (fulfillment of Requirement U.9 as could be only
partially verified in Section 8.3). The latter is essential for the provision of meaning-
ful and personalized support.

• The achievement of the second property is partly attributed to the fact, that the user is
involved in the model construction process and thus is enabled to interactively con-
tribute to the quality of the system’s requirements model by correcting it if necessary
using the graphical requirements representation that has been suggested in this thesis
(fulfillment of Requirement U.10 as shown in Section 8.4).

• As has been shown, the suggested solution not just supports service consumers in
effectively making service selection decisions, but also enables them to make those
decisions efficiently, i.e. within an appropriate period of time and with adequate
mental effort (fulfillment of Requirement U.15 as shown in Section 8.3).

• This is achieved by the provision of means to measure (fulfillment of Require-

ment U.3 as shown in Section 8.2) and effectively reduce uncertainty about the con-
sumer’s service requirements and thereby focusing on parts of the model that are
relevant in light of the available service options and in light of the user’s require-
ments and preferences (fulfillment of Requirement U.11 as shown in Section 8.3).

224

8.5. SUMMARY AND CONCLUSIONS

Hence, we conclude that the operational goal of developing an incremental and interac-

tive method for requirements elicitation and service selection that effectively supports

service consumers in making well-informed, balanced and consistent service selection

decisions and that enables them to do this efficiently (Objective 3) is fulfilled.

225

9
Evaluation of the Feedback Mechanism

This chapter is dedicated to the evaluation of the feedback mechanism that has been pro-
posed in Chapter 6 of this thesis. It will start with a recap of the evaluation objectives
(Section 9.1), which manifest themselves in the list of requirements on the process of feed-
back elicitation, on feedback propagation, on the performance prediction procedure as well
as on feedback presentation that has been compiled in Section 6.1. While the achievement
of some of those objectives can be verified theoretically, for others a user study or a sim-
ulative evaluation is required. In the remaining sections of this chapter, we will present
the results of those evaluations. In particular, we will theoretically verify that feedback
elicited according to the proposed feedback mechanism is detailed, appropriate, compre-
hensive and meaningful. We will also show that only those feedback information that are
required to allow for a good prediction quality are shared and that the quality of those in-
formation is adjustable to account for differing privacy needs. Finally, we will argue, that
feedback-derived information are presented in a way that makes the user aware of the risk
that is associated with the execution of a service and thereby accounts for different risk
attitudes (Section 9.2). After that, we will present the results of a user study demonstrating
the effectiveness of our feedback structure recommendation algorithm (Section 9.3). The
evaluation of the performance prediction procedure has been done simulatively. The re-
sults are presented in Section 9.4. Finally, we conclude with a summary of the evaluation
results in Section 9.5.

9.1 Evaluation Objectives

As argued in Section 1.4, a feedback mechanism is able to provide the knowledge that
is required to make potential service consumers aware of the risk that is associated with
the execution of a service and thus promises to contribute to the thesis goal of enabling
well-informed and balanced service selection decisions in an environment where knowl-
edge about service capabilities might be inaccurate and incomplete. In Section 6.1, we
compiled a list of requirements that need to be satisfied by such a mechanism in order
to actually meet those expectations by being both, effective in terms of acquiring the de-
manded information and effective in terms of its ability to support service selection. In the

227

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

following, we will recall those requirements which set the standards for the evaluation of
the feedback mechanism introduced in Chapter 6.

Requirements to Feedback Elicitation

★

✧

✥

✦

Requirement F.1. (Feedback quality) A feedback mechanism for Semantic Web Ser-

vices should ensure that elicited feedback is detailed, comprehensive and appropriate in

the context of a certain service interaction and that elicited feedback is meaningful, even

if the services and requests (request models) that are involved in the service interactions

are diverse and potentially refer to different application domains.☛
✡

✟
✠Requirement F.2. (Adaptive elicitation) The process of feedback elicitation should

flexibly and automatically adjust to a consumer’s willingness to provide feedback.

Requirements to Feedback Propagation

✛

✚

✘

✙
Requirement F.3. (Quality of shared information) Shared feedback should only com-

prise of necessary information being of a quality that is required to allow for a desired

prediction quality. The quality of the shared information should be adjustable to account

for differing privacy needs.

Requirements to the Performance Prediction

✛

✚

✘

✙
Requirement F.4. (Effective exploitation) Consumer feedback should be effectively

exploited to predict a service provider’s future performance, even if available feedback

refers to service interactions that are diverse with respect to the services and requests

(request models) that were involved.✛

✚

✘

✙
Requirement F.5. (Context dependency) A feedback mechanism for Semantic Web

Services should account for the context-dependent nature of service performance and

service judgments by taking the request and service context, in which a judgment was

made, into account when using feedback to predict a service’s future performance.☛
✡

✟
✠Requirement F.6. (Prediction confidence) A feedback mechanism for Semantic Web

Services should provide a confidence measure for its performance predictions.

228

9.2. PARTIAL VALIDATION OF REQUIREMENTS ACHIEVEMENT

Requirements to the Presentation of Feedback Information

✓
✒

✏
✑

Requirement F.7. (Effective presentation) Feedback information should be presented

in a way that makes the user aware of the risk that is associated with the execution of a

service.☛
✡

✟
✠Requirement F.8. (Adjustable presentation) Feedback information should be pre-

sented in a way that is adjustable to different risk attitudes.

9.2 Partial Validation of Requirements Achievement

In this section, we will theoretically verify that the feedback mechanism which has been
suggested as part of our thesis (Chapter 6), fulfills the Requirements F.1, F.3, F.7 and
F.8. In particular, we will argue, that consumer feedback that is elicited according to the
proposed mechanism is detailed, appropriate, comprehensive and meaningful (Require-
ment F.1). We will also show that only those feedback information that are required to
allow for a good prediction quality are shared and that the quality of those information is
adjustable to account for differing privacy needs (Requirement F.3). Finally, we will ar-
gue, that feedback-derived information are presented in a way that makes the user aware
of the risk that is associated with the execution of a service and presented in a way that is
adjustable to different risk attitudes (Requirements F.7 and F.8).

9.2.1. Elicitation of Appropriate, Comprehensive and Meaningful
Multi-Attribute Feedback

As detailedly discussed in Section 6.4, consumer ratings might refer to any service aspect
that is specified in the service request (model) that led to the judged service interaction
and thus provide detailed information about the actual performance of a service. Since
potential judgment targets are recruited from the request description (request model), it is
ensured that they are appropriate in the context of a considered service interaction. This
is true independent from the type of service request (model) which was posed and thus
independent from the type of service interaction that has to be judged. Elicited consumer
feedback is also comprehensive, i.e. judges all service aspects that, from the perspective
of the judgment provider, are relevant in the context of a certain service interaction. This
property is guaranteed, since our solution ensures that feedback provision is based on valid
feedback structures (Definitions 6.2 and 6.3). As already argued in Section 6.4, the latter
assures that the service consumer, either directly or indirectly (by providing an aggregated
rating), judges all service aspects that are considered in the request (model). However, this
argumentation is only valid, if the request (model) that led to a service judgment actually
covers all service aspects that are important to the consumer (Assumption 6.1). Though

229

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

this assumption cannot be guaranteed, we will show that at the time a service is invoked
(and finally judged) our solution ensures that it is fulfilled at least to a degree which is
sufficiently high to achieve a good prediction quality (Section 9.4).

To verify that consumer feedback, which is elicited according to the feedback mechanism
that has been proposed in this thesis, is meaningful (Definition 6.1), we will argue

• that the provided judgments refer to the consumer’s service requirements,

• that the concepts used to describe service aspects and thus the concepts used to de-
scribe judged aspects, valid constraints on them as well as valid relationships among
them are well-defined and shared among the system participants,

• that the request and the service context underlying an expression of feedback are
modeled and recorded and

• that it is evident whether and how feedback made in one context can be used to infer
about a service provider’s performance in another context.

As already detailed, consumer judgments refer to the consumer’s service requirements.
This is due to the fact, that potential judgment targets reference the service aspects that
are specified in the service request (model), which encodes the service consumer’s re-
quirements with respect to the service interaction that is judged (Section 6.4). Moreover,
by coupling judgment targets with the consumer’s semantically described service require-
ments that have been specified in the service request (model), we provide judgments with
a well-defined and commonly agreed upon meaning. This is due to the fact that service as-
pects covered in the request (model) refer to concepts in the service ontologies, which de-
fine not only valid service aspects and valid constraints on them, but also valid relationships
among them and are shared among the system participants. A feedback item comprises all
information that are required to effectively utilize the provided judgments. In particular,
it contains the feedback structure underlying an expression of feedback, which encodes
the paths of the judged service aspects and thus ensures the comparability of judgments
referring to the same service aspect, but not necessarily to the same context. As described
in Section 6.4, the request and the service (offer) context underlying a feedback item are
recorded indirectly by means of the (partial) matching results for the posed request and
the available offers (indirect context information, Definition 6.5). As we will demonstrate
in Section 9.4, the collaborative-filtering-based techniques described in Section 6.6 can be
successfully applied to this type of information in order to determine feedback relevance
and by this means allows for the effective exploitation of feedback provided in one context
to infer about a service’s performance in another context. Our experimental results will
also evidence that a good prediction quality can be achieved, even if the judgments that
are utilized for the prediction refer to service interactions that are diverse and pertain to
different, but related application domains (Section 9.4).

Summarizing this argumentation, we state, that consumer feedback which is elicited ac-
cording to the feedback mechanism proposed in this thesis is detailed, appropriate, com-
prehensive and meaningful. Thus Requirement F.1 is fulfilled.

230

9.2. PARTIAL VALIDATION OF REQUIREMENTS ACHIEVEMENT

9.2.2. Appropriate Quality of Shared Information

Using consumer feedback to predict a service’s future performance requires that consumers
share the experiences they have made in past service interactions. This always implicates
that the involved parties reveal sensitive information such as with whom they interacted and
how they liked the outcome of these interactions. This is particularly true for context-aware
approaches. As we have seen (Section 6.2), those typically produce more accurate predic-
tions, but this comes at the cost of having to share and thus divulge additional information
about the context of a judged (service) interaction. However, the amount and quality of
the revealed information and the achieved prediction quality largely differ among existing
approaches. As seen, context-aware trust and reputation systems (Section 6.2.3) as well as
context-aware collaborative filtering systems (Section 6.2.1), typically share explicit infor-
mation about the context of a service interaction. Context-aware approaches to experience-
based service provider selection even require to share complete service request descriptions
(Section 6.2.4). Our solution overcomes this problem by solely relying on the exchange of
indirect context information given by the (partial) matching results for the posed request
and the available offers. In doing so, distributing explicit context information and thus pro-
viding easily accessible personal information can be avoided. Compared to traditional, i.e.
non-context-aware, systems more personal information are shared, but, as we will show,
at the gain of a significantly improved prediction quality (Section 9.4). Summarizing, we
can say that compared to existing context-aware approaches that are similarly powerful,
less personal information are revealed when using the performance prediction procedure
suggested in this thesis. It remains an open question, whether the amount and quality of the
shared information can be further reduced while maintaining a similar prediction quality.

As already argued, there is a conflict of interest between the detailedness, i.e. the number
and type, of the judged service aspects and the user’s privacy concerns. The more detailed
the provided judgments are, the higher is the quality that we can expect of the performance
prediction (Section 9.4). However, providing more detailed judgments reveals more ex-
tensive (personal) information about the consumer’s request (model) and his satisfaction
with the delivered service. A strength of the proposed solution is that, by letting judg-
ment providers freely choose the feedback structure to judge, it enables them to make this
compromise according to their personal privacy restrictions. However, the effectiveness
and flexibility of the approach strongly depends on the quality of the underlying ontology.
An ontology that provides appropriate concepts for a fine-grained description of service
requirements, will also allow for fine-grained tradeoffs.

As a result of our discussion, we state that the suggested approach requires the user to share
only those feedback information that are needed to allow for a good prediction quality.
Thereby, the quality of those information is adjustable to account for differing privacy
needs. Thus Requirement F.3 is fulfilled.

231

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

9.2.3. Effective and Personalized Feedback Presentation

As detailedly discussed in Section 6.7.1, a service’s predicted matching degrees with re-
spect to its single attributes are color-coded and displayed in the results table in addition to
the service properties. Presenting feedback-derived information this way makes the user
aware of the risk that is associated with the execution of a service. This is due to the
fact, that if an offer is ranked high, since its description having received a high matching
degree with respect to the consumer’s request (model), but at the same time the results
of the feedback-based judgment prediction indicate a low matching degree, then the risk,
that is associated with the execution of the service this offer refers to, is high. Hence, it
is unlikely, that the service will provide the functionality that has been offered and likely
that it will perform worse than expected. The user can easily identify those risky choices
among the most promising service offers, since they are marked red. Thus requirement F.7
is fulfilled.

As argued in Section 6.7.2, the devised feedback presentation also accounts for differ-
ent risk attitudes. In particular, it allows service consumers to specify their risk attitude
precisely at the attribute level and enables personalized, feedback-aware service ranking
based on those preferences. The specified risk preferences control to what degree the
predicted judgment for a certain attribute and the matching value will influence the final
rank of a service offer in the results table. Moreover, thresholds for the acceptability of
predicted matching degrees and the required confidence level of predictions can be cus-
tomized. Hence, we conclude that Requirement F.8 is fulfilled.

9.3 Evaluation of the Judgment Target Recommendation

Mechanism

We already argued, that leveraging multi-aspect consumer feedback to predict a service’s
future performance has several benefits compared to the usage of single judgment feedback
(cf. Section 6.1). On the other hand, providing such feedback can impose considerable time
and effort on the user. To ensure feedback quality, the process of eliciting multi-aspect con-
sumer feedback should therefore flexibly and automatically adjust to a judgment provider’s
willingness to accept this (Requirement F.2). In this section, we will demonstrate that the
feedback elicitation mechanism with its judgment recommendation component that has
been proposed in this thesis (Section 6.5) fulfills this requirement.

In the remainder of this section, we will first introduce the methodology that has been
applied to evaluate our approach (Section 9.3.1) as well as the test data that have been
used (Section 9.3.2). After that, we will describe the tests that have been performed and
detailedly discuss their results (Section 9.3.3). The section concludes with a discussion of
the evaluation results (Section 9.3.4) and a short summary (Section 9.3.5).

232

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

9.3.1. Evaluation Methodology

The goal of this evaluation is to analyze the quality of the recommendations produced
by the algorithm, i.e. to investigate how well the suggested feedback structures fit to the
users’ judgment preferences. Since we cannot draw on a productive system with service
consumers actually requesting for services and service providers offering service function-
ality, we could not run online tests, but had to perform our evaluations on a real-world or
at least a realistic set of service judgment data. An advantage of this methodology is, that
it allowed us to run the recommendation algorithm with various parametrizations whose
resulting quality can be compared. However, the main problem of finding an adequate set
of real world service judgments, that can be used as a basis for the evaluation remained.
This data set should ideally comprise

• real world or at least realistic service judgment information1 that are detailed, i.e.
attribute-specific,

• information about the services that have been judged as well as

• information about the user’s service requirements which gave rise to the service
interaction that was judged.

The latter were required to analyze whether and how the judgment behavior of service
consumers depends on the interaction context and how well the algorithm adjusts to this
behavior.

• Moreover, the judgment data should follow the judgment scheme that is an integral
part of our algorithm. In particular, this means that judgments should refer to service
requirements and that service providers should be allowed to provide aggregated
judgments for a set of judgments.

• Finally, the data set should be sufficiently large to allow for statistical evaluations.

Though real-world data sets of judgment data exist, they typically comprise of single over-
all service or product ratings. In contrast, data sets based on multi-criteria judgments are
rare [AMK11]. Nonetheless, several online platforms such as Epinions.com, Ebay.com
or Movies.yahoo.com elicit and use detailed service judgments and thus might serve as
a source of such data. However, they lack necessary information about the judgment
providers’ service requirements, which are essential for our recommendation algorithm
and thus are important for our evaluation. They also do not provide ratings that follow
the judgment scheme that is required by our algorithm. They rather offer judgments that
refer to a selection of non-related service aspects from which the user can choose. As a
consequence, we could not draw on an existing data set for the purpose of our evaluation,
but had to retrieve the required data from test users.

1For the purpose of this evaluation, information about what service aspects have been judged are sufficient.
The actual ratings are not required, though they might also provide valuable insights into a service con-
sumer’s judgment behavior.

233

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

We identified two alternative ways of performing this task. One could either ask test users
to create their own service requests (request models) and finally indicate which aspects
to judge or could alternatively provide test users with predefined service requests (request
models) and ask them to mark the aspects they would like to judge. An advantage of the
first strategy is that the service requests (request models), on which the judgment decisions
are based, are realistic, since they are user provided. However, on the other hand, eliciting
judgment information this way would require users to have the ability to create service
requests (request models). Even if the test persons were capable of performing this task2,
creating a number of service requests (request models) that is sufficiently large for a statis-
tical evaluation would still be very time-consuming and annoying and thus might affect the
quality of both, the provided requests (request models) and the judgment decisions that are
made. Finally, the judgment information provided by the test users would refer to differ-
ent service requests (request models) and thus would be incomparable, even if we would
restrict potential requests (request models) to a certain service domain.

The second strategy, where users are provided with a set of predefined service requests
(request models) and are asked to indicate which aspects to judge, does not exhibit this
disadvantages. In particular, the effort that is burdened on the test persons is acceptable.
Moreover, providing users with predefined requests (request models) allows us to influ-
ence and vary the characteristics of the test data and thus to compare the recommendation
algorithm’s performance under different conditions. However, this advantage is at a cost.
Requests (request models) are no longer user-provided and thus might be artificial to some
degree. Users might also have difficulties to identify themselves with the provided requests
(request models) and thus might produce factitious responses. Nonetheless, we are con-
vinced that the advantages of the second opportunity outweigh its disadvantages and hence
pursued this strategy to elicit test data for our evaluation. Finally, we would like to remark
that both of the suggested strategies require the test users to indicate the aspects they are
willing to judge without being provided with an actual service response. The reason for
this is that we do not have those information at our disposal. Nonetheless, they might affect
a user’s response. We will discuss this issue in Section 9.3.4.

9.3.2. Test Data

The test data were obtained using a number of 11 test users aged between 25 and 30 years
(7 male and 4 female), of which 6 had a computer science background and 5 not. The
elicitation procedure was as follows. Each test person was provided with a questionnaire
comprising 12 service request models3 covering typical requirements of consumers looking
for computer items. 6 of the request models referred to services that offer desktop PCs and
another 6 asked for services that offer digital watches. We chose these types of request

2As shown in Chapter 8, users are in fact able to create a request model that encodes their service require-
ments.

3The involved test data as well as the testing procedure are based on the usage of request models, but can be
easily applied to DSD service requests. In the latter case, similar evaluation results can be expected.

234

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

models, since the test users were familiar with buying and rating products online as well
as with the product domain itself. Moreover, the two request model types share common
attributes, e.g. for both kinds of request models an attribute price could be specified, and
thus allow to demonstrate the recommendation procedures ability to infer about a judgment
providers rating preferences across service domains.

Figure 9.1 shows a sample request model from the questionnaire. The complete form can
be found in Appendix C. As can be seen, request models of a single type varied with re-

Desktop Request 1
You want to buy a computer, namely a ...

Desktop PC from IBM, Lenovo or Apple with
at least two 2.0 GHz processors
and a height of at most 20 inches
for at most 2000 $

the price is very important to you, more than all other aspects

product computer

price

whole
service

currency

amount

processor

size

manufacturer

number of
processors

clock speed

value

unit

height value

unitname

Figure 9.1.: Questionnaire - example request model

spect to the attributes that were specified, with respect to the attribute values that were
acceptable and with respect to the requester’s preferences related to these values and at-
tributes. Each request model was given in terms of a textual description (Figure 9.1 left).
The actual request model that was used for the tests, was derived from this description by
creating a request model with the indicated properties via the graphical editor that has been
introduced in Section 5.5. Thus, test users were not required to have knowledge about a
certain service description language or the request model editor. In addition to each request
model, the corresponding request model tree, comprising only the request model attributes
that might be potentially judged, was provided (Figure 9.1 right).

Before being asked to complete the questionnaire, the test persons were given a short in-
troduction on how to read and how to proceed with the form. In particular, the test users
were instructed to imagine that they had posed the service request models provided at the
left side of the form and shall highlight the service aspects they are willing to judge after
service interaction in the request model tree on the right side of the form (blue-colored
attributes in Figure 9.2)4. It was also pointed out that judging a parent attribute means
providing an aggregated judgment for its subattributes and that just one attribute per tree
path shall be judged to avoid redundant and potentially inconsistent judgments. Finally, it
was indicated that the set of judged service aspects should either directly or indirectly (by
providing an aggregated rating) cover all leaves of the request model tree.

4In doing so, users were not misled into choosing a feedback structure they do not want to judge, just because
of being provided with a recommended structure.

235

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

Desktop Request 1
You want to buy a computer, namely a ...

Desktop PC from IBM, Lenovo or Apple with
at least two 2.0 GHz processors
and a height of at most 20 inches
for at most 2000 $

the price is very important to you, more than all other aspects

product computer

price

whole
service

currency

amount

processor

size

manufacturer

number of
processors

clock speed

value

unit

height value

unitname

Figure 9.2.: Questionnaire - example request model where the test person highlighted the
service aspects that he is willing to judge (blue-colored aspects)

For each user and request model, it was recorded which and how many service aspects
were judged. As a result of the data elicitation process, all questionnaires were answered
correctly. Where the judged service aspects did not cover all leaf aspects of the tree (be-
cause in rare cases the test persons omitted ratings), we marked additional attributes as
judged. More specifically, we additionally highlighted the minimal set of attributes that
was required to fulfill the desired property, while at the same time keeping all attributes
marked by the test person. As an example, consider the request model tree depicted in
Figure 9.2. Assume that the test person indicated that he is willing to judge the attributes
that are highlighted blue. To cover the attributes manufacturer.name, price.currency and
price.amount that have not been covered by the user, we have to mark the attributes man-

ufacturer and price (highlighted red in Figure 9.2) in addition to those attributes that are
already highlighted by the user.

9.3.3. Tests and Results

In this section, we will report about the tests that have been performed using the elicited
test data described in the previous section and will detailedly discuss their results. The first
part of the present section provides a statistical analysis of the test data to empirically verify
the validity of the assumptions that underlie the judgment recommendation algorithm to be
evaluated (Assumptions 6.2 and 6.3). It is also concerned with the selection of appropriate
values for the parameters of the algorithm. The second part of this section is dedicated to
the evaluation of the recommendation quality, indicating how well the suggested feedback
structures fit to the users’ actual judgment preferences.

Validity of the assumptions As stated in Section 6.5, the proposed recommendation
algorithm is based on the assumption that a user who judged a certain number of service

236

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

aspects in a past judgment session is likely to be willing to judge a similar number of ser-
vice aspects in a future judgment session, if the session refers to a similar request model
(Assumption 6.2). Similarly, it is presumed that a user that judged a certain kind of service
aspects in a past judgment session is likely to be willing to judge similar kinds of service
aspects in a future judgment session, if the session refers to a similar request model (As-
sumption 6.3). The similarity of the number and kind of service aspects that have been
judged in a past judgment session to those the user is willing to judge after a future service
interaction is the higher, the more similar the involved request models are. In this section,
we will empirically verify those assumptions using the elicited test data. In particular, to
verify Assumption 6.2, we investigated whether there is a linear relationship (correlation)
between the request model similarity simreq(r, r�) of any two test data request models r and
r� and the similarity of the number of service aspects that have been judged with respect
to those models (simnum(fs, fs�) of the judged feedback structures fs and fs�). To validate
Assumption 6.3, we evaluated whether there is a linear relationship between the request
model similarity simreq(r, r�) of any two test data request models and the similarity of the
kinds of service aspects that have been judged with respect to those models (simattr(fs, fs�)
of the judged feedback structures fs and fs�). Existence and strength of these relationships
were analyzed separately for each test user and with respect to different subsets of the test
data. Correlation was measured in terms of Pearson’s sample product-moment correlation
coefficient

corr(�x, �y) =

�n
i=1(xi − x̄)(yi − ȳ)��n

i=1(xi − x̄)2
�n

i=1(yi − ȳ)2
,

✞✝ ☎✆9.1

where the pairs (xi, yi), 1 ≤ i ≤ n, are the observed samples of the random variables
X and Y whose relationship shall be investigated. This means, in the context of our
evaluation xi = simreq(ri, r�

i) for a given pair of test data request models ri and r�
i and

yi = simnum(fsi, fs�
i) or yi = simattr(fsi, fs�

i), respectively. The correlation coefficient
corr(�x, �y) takes values from the interval [−1, 1]. A value of corr(�x, �y) = 1 signifies a per-
fect positive linear relationship between the involved variables, i.e. values from Y increase
as the values from X increase, while a value of −1 denote a perfect negative linear relation-
ship, i.e. values from Y decrease as the values from X increase. A value of corr(�x, �y) = 0
indicates that there is no linear! relationship between the variables. However, this does
not necessarily mean that there is no non-linear relationship between the variables. Values
between −1 and 1 denote different degrees of correlation between the variables. The closer
the value is to 0 the weaker is the correlation, the closer it is to −1 or 1, the stronger is
the correlation. Finally note, that correlation between variables does not necessarily imply
causality, since there might be other underlying causes for the correlation. However, it can
point to a potential causal relationship.

The Figures 9.3 and 9.4 show the results of our correlation analysis. They depict the
Pearson correlation between the request model similarity simreq(r, r�) of any two test data
request models r and r� and the similarity of the kinds of service aspects that have been
judged with respect to those models (simattr(fs, fs�) of the judged feedback structures fs and
fs�, Figure 9.3) and the similarity of the number of service aspects that have been judged
with respect to those models (simnum(fs, fs�) of the judged feedback structures fs and fs�,

237

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

Figure 9.4). The correlation is given separately for each test user and for 3 different subsets
of the test data, namely, the set of request models that refer to services offering desktop PCs
(desktop PC request models), the set of request models that refer to services offering digital
watches (digital watch request models) and the complete set of request models comprising
both, the desktop PC and digital watch request models (mixed). In case of the latter, we
only considered heterogeneous pairs of request models, i.e. those that referred to different
kinds of services. In addition to the correlation coefficients, their 95% confidence interval
is depicted. The presented results refer to the parameter configuration α = 0.05, β = 0.75
and γ = 0.2 for the request model similarity measure simreq and a value of a = 1.1 for
the parameter of the similarity measure simnum. As we will show in the remainder of the
section, this parameter configuration is close to be optimal with respect to the strength of
the correlation relationships. Nonetheless, the presented results are representative, since
though for alternative parameter configurations the resulting correlation coefficients differ,
they exhibit the same trend (c.f. Figure 9.6).

-1

-0.5

 0

 0.5

 1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10user11

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n

Correlation between simreq(r,r’) and simattr(fs,fs’) of the considered request model pairs

desktop PC request models
digital watch request models

mixed

Figure 9.3.: Correlation between simreq(r, r�) and simattr(fs, fs�) of the considered request
model pairs

Figure 9.3 indicates, that the semantic similarity of request models and the similarity of
the kinds of service aspects that have been judged with respect to them correlate. This
means, that the service aspects that have been judged by a user were the more similar,
the more similar the request models they were based on have been. We also observe that
the degree of correlation is typically higher for highly similar request models, i.e. request
models of the same type (red and orange bars in Figure 9.3), and lower for request models
of different types (blue bars in Figure 9.3). These results empirically evidence the validity

238

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

-1

-0.5

 0

 0.5

 1

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10user11

P
e

a
rs

o
n

 c
o

rr
e

la
ti
o

n

Correlation between simreq(r,r’) and simnum(fs,fs’) of the considered request model pairs

desktop PC request models
digital watch request models

mixed

Figure 9.4.: Correlation between simreq(r, r�) and simnum(fs, fs�) of the considered request
model pairs

of Assumption 6.35. However, as the results for user 4 and user 6 indicate, the assumption
is not valid for every user. Moreover, the strength of correlation is user-dependent.

In contrast, there is typically no correlation between the number of service aspects that have
been judged with respect to two request models and their semantic similarity (Figure 9.4).
The reason for this is revealed by a look at Figure 9.5. It shows the mean number of service
aspects that have been judged with respect to request models of type desktop PC (red bars)
and the mean number of service aspects that have been judged with respect to request
models of type digital watch (orange bars) accompanied by their standard deviation. As
can be seen, for a given user, the number of judged service aspects does not vary much
among the request models of a given type. It typically differs by at most 1. However,
there are usually larger differences in the number of judged aspects if we consider request
models of different types. This means, that there is indeed a relationship between the
semantic similarity of two request models and the number of service aspects that have
been judged with respect to them, but at a more coarse-grained level than in case of the
similarity referring to the kinds of aspects that have been judged. Hence, the results also
support Assumption 6.2. However, as well as for Assumption 6.3, the results indicate, that
the assumption is not valid for every user, i.e. every user is different! For example, the
number of aspects that have been judged with respect to request models of type desktop

5In fact, correlation shows more than we require. Since in addition to the fact that as the similarity between
two request models increases, the similarity between the kinds of service aspects that have been judged
with respect to them increases, it also implies that if the similarity between two request models decreases,
the similarity between the kinds of service aspects that have been judged with respect to them decreases.
The latter is not required.

239

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

user1 user2 user3 user4 user5 user6 user7 user8 user9 user10 user11

m
e

a
n

 n
u

m
b

e
r

o
f

ju
d

g
e

d
 s

e
rv

ic
e

 a
s
p

e
c
ts

Mean number of judged service aspects

desktop PC request models digital watch request models

Figure 9.5.: Mean number of judged service aspects

PC and the number of aspects that have been judged with respect to request models of type
digital watch do not differ largely for test users 4 and 6. Also interestingly, other than for
the remaining test users, the number of aspects judged by user 3 differed largely among the
request models of type digital watch (Figure 9.5). However, there is a (weak) correlation
between the similarity of the request models and the similarity of the number of aspects
that have been judged with respect to them (cf. Figures 9.4 and 9.5).

Determining appropriate parameter values The similarity measures introduced
in Section 6.5 depend on several parameters, which might influence the accuracy of the
feedback structure recommendation algorithm proposed in Section 6.5. These are the pa-
rameters α, β and γ = 1 − (α + β) of the request model similarity measure simreq,
that determine the influence of the type similarity, the subtree similarity and the direct
condition similarity on the request model similarity (cf. Section 6.5.3), as well as the pa-
rameter a of the measure simnum indicating the similarity of the number service aspects
that have been judged (cf. Section 6.5.2). Since the algorithm’s accuracy can be expected
to increase as the strength of the correlation between the semantic similarity of the re-
quest models and the number and kind of service aspects that have been judged based on
them increases, we chose optimal parameter values for α, β, γ and a in a way that max-
imizes the correlation between the semantic similarity simreq(r, r�) of any two test data
request models r and r� and the similarity of the kinds of service aspects that have been
judged with respect to them (simattr(fs, fs�) of the judged feedback structures) as well as
the similarity of the number of service aspects that have been judged with respect to them
(simnum(fs, fs�) of the judged feedback structures). For that purpose, we determined the

240

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.01

0.02

0.03

0.04

0.05

a

m
e

a
n

 c
o

rr
e

la
t i

o
n

Mean correlation between sim
req

 and sim
num

depending on the parameter a

Mean correlation between sim
req

(r,r') and sim
num

(fs,fs')

over all test data request models and all test users
depending on the parameter a

Figure 9.7.: Mean correlation between simreq(r, r�) and simnum(fs, fs�) over all test data
request model pairs and all test users depending on the parameter a

Figure 9.7 depicts the mean correlation coefficient between simreq(r, r�) and simnum(fs, fs�)
over all test data request model pairs and all test users depending on the parameter a of
simnum(fs, fs�). As can be seen, the mean correlation increases as a approaches 1. How-
ever, the increase in the strength of correlation is only marginally. For the purpose of
evaluation, we therefore chose a = 1.1.

Recommendation accuracy To evaluate the accuracy of our rating structure recom-
mendation algorithm, we ran a number of tests with different subsets of the test data elicited
from each test user. The basic procedure for each test was as follows. Starting with no in-
formation about a user’s previous judgment behavior, several judgment sessions were per-
formed. During each session, one of the test data request models was selected. After that,
the system proposed a feedback structure using the algorithm suggested in Section 6.5
provided with knowledge about the user’s judgment behavior in the previous judgment
sessions of the test. After being provided with the recommended feedback structure, the
suggested structure was adjusted according to the structure that has been judged by the test
user (as indicated in the questionnaire). This was done by expanding/collapsing feedback
structure nodes. By clicking on a leaf node, all its direct children were expanded. By
clicking on any other node, the complete subtree rooted at this node was collapsed.

The quality of the proposed feedback structure was measured as the edit distance between
the recommended feedback structure and the feedback structure that was judged by the
test user. More formally, we counted the number of expand/collapse operations the user
would have to perform to create the structure whose leaves he finally judged. The rationale
behind this measure is, that the edit distance is a direct measure of the user’s effort to

242

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

produce the desired structure and thus, in our opinion, is a good measure for the quality of
the recommended structure.

For each test user, we performed 3 separate test runs using different subsets of the test data
elicited from the user. Those were

• two tests HomDesk and HomDigi, each based on a set of request models that were
homogeneous in the sense that the involved request models referred to services of-
fering the same type of computer item, and

• a test Het, that was based on a set of heterogeneous request models which referred
to services offering different types of computer items.

While test HomDesk referred to the set of desktop PC request models that have been judged
by the test users, test HomDigi referred to the set of digital watch request models for
which judgment data have been elicited. During the tests, each request model was consid-
ered twice and processed in the sequence given by the questionnaire (Appendix C). More
specifically, the processing sequence of test HomDesk was desktop PC request model 1,

. . ., desktop PC request model 6, desktop PC request model 1, . . ., desktop PC request

model 6 and the processing sequence of test HomDigi was digital watch request model 1,

. . ., digital watch request model 6, digital watch request model 1, . . ., digital watch request

model 6. Test Het considered both, the desktop PC and the digital watch request models
judged by the test users, where request models referring to desktop PCs and request mod-
els referring to digital watches were processed alternately and in the sequence given by the
questionnaire. The resulting processing sequence was desktop PC request model 1, digital

watch request model 1, . . ., desktop PC request model 6, digital watch request model 6.

The Figures 9.8, 9.9 and 9.10 show the results of our tests. While the blue curve(s) of each
figure indicate(s) the mean edit distance over all test users for each judgment session of
a test, the red curve(s) refer(s) to the mean edit distance that would result, if the system
would always suggest to provide a single overall judgment for the invoked service (default,
if no experiences about past judgment sessions are available). The error bars indicate the
95% confidence interval for the mean edit distance.

The Figures 9.8 and 9.9 show the evaluation results for the tests HomDesk and HomDigi.
The first half of the curves depicted in those figures refers to sessions were the request mod-
els are judged for the first time, while the second half shows the edit distance resulting from
sessions that refer to request models which have been already judged, i.e. where the user’s
judgment behavior with respect to that model is known to the system. Consider the first
part of the curves presented in Figure 9.8. As can be seen, the edit distances resulting from
the recommended feedback structures are lower than that resulting from always suggesting
the default structure and decrease as the knowledge acquired in previous judgment sessions
increases. This indicates that the test users’ judgment behavior in future judgment sessions
was successfully inferred from their past judgment behavior that referred to similar request
models. The mean number of editing operations required to be performed by the users to
create the desired feedback structure was 0.4 ± 0.6 (after the 6th judgment session). This

243

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

desktopPC1
desktopPC2

desktopPC3
desktopPC4

desktopPC5
desktopPC6

desktopPC1
desktopPC2

desktopPC3
desktopPC4

desktopPC5
desktopPC6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Test HomDesk - desktop PC request models

w ith recommendation w ithout recommendation

request model

m
e

a
n

 e
d

it
 d

is
t a

n
c

e

Figure 9.8.: Results of test HomDesk

digiWatch1
digiWatch2

digiWatch3
digiWatch4

digiWatch5
digiWatch6

digiWatch1
digiWatch2

digiWatch3
digiWatch4

digiWatch5
digiWatch6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Test HomDigi - digital watch request models

w ith recommendation w ithout recommendation

request model

m
e

a
n

 e
d

it
 d

is
t a

n
c

e

Figure 9.9.: Results of test HomDigi

is a reduction by 2.3 ± 1.3 operations. As expected, the edit distance further decreases to
0 during the second part of the test. This is due to the fact that knowledge about the users’
judgment preferences with respect to the involved request models is already available. The
results show that the proposed recommendation mechanism typically correctly references
this knowledge, i.e. by comparing the similarities of the involved request models chooses
the right judgment experience to generate a recommendation. This does not hold for desk-

top PC request model 5, which is not correctly referenced. Instead, a judgment experience
that was based on a similar request model was leveraged for the recommendation. As a
result, we observe an edit distance larger than 0 for this model.

The results for test HomDigi performed with the digital watch request models are depicted
in Figure 9.9. The behavior that can be observed is similar to that during test HomDesk.

244

9.3. EVALUATION OF THE JUDGMENT TARGET RECOMMENDATION

MECHANISM

However, the determined edit distances are lower. The latter is due to the fact, that digital
watch request models are less complex than desktop PC models, i.e. due to less attributes,
the depth of the involved request model trees is lower and thus potential edit distances are
smaller. The mean number of editing operations required to be performed by the users to
create the desired feedback structure was 0.7 ± 0.8 (after the 6th judgment session). This
is a reduction by 1.9 ± 0.9 operations. Again, the edit distance decreases to 0 during the
second part of the test. However, as can be seen, digital watch request model 1 is not
correctly referenced.

desktopPC1
digiWatch1

desktopPC2
digiWatch2

desktopPC3
digiWatch3

desktopPC4
digiWatch4

desktopPC5
digiWatch5

desktopPC6
digiWatch6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
Test Het - desktop PC and digital watch request models

desktop PC request models w ith recommendation digital w atch request models w ith recommendation

desktop PC rquest models w ithout recommendation digital w atch request models w ithout recommendation

request model

m
e

a
n

 e
d

it
 d

is
t a

n
c

e

Figure 9.10.: Results of test Het

Figure 9.10 shows the evaluation results for test Het involving both types of request mod-
els. As can be seen, the curves depicted in this figure coincide with the first half of the
corresponding curves shown in the Figures 9.8 and 9.9. Hence, the fact that judgment
experiences referring to different kinds of request models are available to the recommen-
dation mechanism, has no negative impact on its accuracy, i.e. judgment experiences refer-
ring to different types of request models are referenced correctly. Instead, we notice that
the mean edit distance observed for digital watch request model 1 is even lower than that
observed during the homogeneous test. This implies that, in contrast to the first session
of test HomDigi, where we cannot draw on previous judgment experiences, the knowl-
edge acquired from the first desktop PC session was successfully exploited to improve the
recommendation accuracy for digital watch request model 1.

9.3.4. Discussion

The results of our evaluation indicate, that a user’s future judgment behavior can be inferred
from knowledge about the kind and number of service aspects the user judged in past
judgment sessions. However, beyond those purely behavioral findings, it would be worth
investigating the psychological reasons that underlie this behavior. In particular, there

245

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

might be other aspects that have an impact on the user’s choice to judge certain service
aspects, which are not covered by the two considered factors. For instance, judgment
decisions might depend on the quality of the service that was finally provided, e.g. if the
delivery time of a service was particularly good or bad the user might want to indicate that.
At this time, we cannot investigate this issue, since due to the fact that knowledge about
the (mis-)behavior of service providers is not available, test persons have to indicate their
judgment decisions without having information about the actual outcome of the invoked
service. In addition to that, a user’s judgment behavior is likely to be inconsistent and
arbitrary to some degree and thus might be unpredictable to a certain extent. It would be
also interesting to analyze that issue.

We also found that judgment behavior is highly individual, i.e. user-specific. However,
the evaluation results also suggest that there are classes of judgment providers who share
behavioral patterns (stereotypes). For instance, while the future judgment behavior of the
test users 4 and 6 did not depend on the kind of service aspects they judged in the past, the
remaining test users’ behavior was highly contingent on this factor. Identifying stereotypes
and classifying users according to these would facilitate judgment recommendation and is
likely to further improve its accuracy.

Finally, it would be interesting to investigate, whether the fact that a certain feedback
structure was recommended to the user has an impact on his judgment decision.

It would be very promising to explore these and other issues more closely. Since this
topic is strongly related to human behavior, follow-up work in this line of research should
involve methods and results from psychology and human-computer interaction and should
be conducted in collaboration with researchers from these fields.

Beside those additional research issues, extensions to the presented evaluation are required
to ensure the validity and increase the reliability of its results. This should include the elic-
itation of test data related to a larger number and wider range of request models. Ideally,
the utilized test data should be gathered from a productive system that applies the sug-
gested recommendation mechanism. This would require minimal effort by the (test) users
and would deliver realistic data. An evaluation performed on those data would therefore
provide highly significant results.

9.3.5. Summary

The key findings of our evaluation are:

• As a result of a correlation analysis of the elicited test data, we found that a user who
judged a certain kind of service aspects in a past judgment session is likely to be
willing to judge similar kinds of service aspects in a future judgment session, if the
sessions refer to similar request models. The similarity of the kind of service aspects
that have been judged in the past judgment session to those the user is willing to

246

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

judge after the future service interaction is the higher, the more similar the involved
request models are. This even held for very similar request models, i.e. for models
of the same type. As a consequence, Assumption 6.3 of the proposed feedback
structure recommendation algorithm is fulfilled.

• We also found that a user who judged a certain number of service aspects in a past
judgment session is likely to be willing to judge a similar number of service aspects
in a future judgment session, if the sessions refer to similar request models. The
similarity of the number of service aspects that have been judged in the past judgment
session to the number of aspects the user is willing to judge after the future service
interaction is the higher, the more similar the involved request models are. Therefore,
Assumption 6.2 of the proposed feedback structure recommendation algorithm is
also fulfilled. As we found, this assumption is only true for judgment sessions that
are based on request models of different types. The number of judged service aspects
with respect to request models of a single type did not vary much and thus is easy to
predict.

• Though the test users’ judgment behavior could be mainly explained by these two
factors, for a few test users these factors were irrelevant or less relevant, i.e. the way
users choose the service aspects to judge is highly individual.

• Our evaluation results indicate that the test users’ judgment behavior in a future judg-
ment session could be successfully inferred from their past judgment behavior that
referred to similar request models, which resulted in a high recommendation accu-
racy. This even held, if the past experiences referred to request models of different
types.

• For the desktop PC request models, the mean number of editing operations required
to be performed by the test users to create the desired feedback structure was 0.4±0.6
(after the 6th judgment session). This is a reduction by 2.3±1.3 operations compared
to a recommender with no knowledge about a user’s previous judgment behavior.

• For the digital watch request models, the mean number of editing operations required
to be performed by the test users to create the desired feedback structure was 0.7±0.8
(after the 6th judgment session). This is a reduction by 1.9±0.9 operations compared
to a recommender with no knowledge about a user’s previous judgment behavior.

Summarizing we state, that by recommending feedback structures the user is willing to
judge, the suggested recommendation mechanism has proven to flexibly and automatically
adjust to a consumer’s willingness to provide feedback and thus enables effective feedback
elicitation. Therefore, Requirement F.2 is fulfilled.

9.4 Evaluation of the Performance Prediction Mechanism

Effectively exploiting consumer feedback to predict the future performance of available
services is crucial for enabling service consumers to make well-informed service selection

247

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

decisions in a setting where service capabilities might be inaccurately and incompletely
described. In this section, we will verify that the performance prediction procedure sug-
gested in this thesis (Section 6.6) fulfills this requirement (Requirement F.4). We will show,
that this is true, even if available feedback refers to service interactions which are diverse
with respect to the services and requests (request models) that were involved. As we will
demonstrate, this is enabled by both, leveraging detailed consumer feedback and taking
the request and service (offer) context in which a judgment was made, into account when
using feedback to predict a service’s future performance (Requirements F.1 and F.5). How-
ever, the quality of the performance prediction strongly depends on the kind and accuracy
of available consumer feedback. Based on our evaluation results, we will thus derive and
present a confidence measure indicating the reliability of the predictions produced by the
proposed algorithm (Requirement F.6).

The remainder of this section is structured as follows. After having commented on the
methodology (Section 9.4.1) and the test data (Section 9.4.2) on which the evaluation is
based and after having provided details on the test configurations that have been run (Sec-
tion 9.4.3), we will detailedly discuss the evaluation results. In a first step (Section 9.4.4),
we will have a look at the evaluation results that have been derived under the assumption,
that service requests (in case of a request model, the generated request) accurately reflect
a requester’s actual service requirements (Assumption 6.1). After that, we will investigate
how those results change, if requirements models are inaccurate (Section 9.4.5). Finally,
we will derive and present a confidence measure taking our evaluation results into account
(Section 9.4.6). The section concludes with a discussion (Section 9.4.7) and a short sum-
mary of the main evaluation results (Section 9.4.8).

9.4.1. Evaluation Methodology

Evaluating the accuracy of the proposed prediction procedure requires a data set on which
it can be performed and tested with differing parametrizations. This data set should ideally
comprise

• real world or at least realistic services with corresponding semantic offer descrip-
tions,

• semantic service requests, each matching to a fraction of those services, and

• detailed, i.e. attribute-specific, consumer judgments that refer to interactions with
the test data services and are based on the test data requests.

The latter serve as both, an input for the prediction procedure and an indicator for the
accuracy of the predictions that it produces.

• The data set should be sufficiently large to allow for statistical evaluations.

248

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

• To demonstrate the advantages of our approach in a cross-domain scenario with
complex service requirements, services and requests should be sufficiently complex,
richly described and

• should refer to different, but related service domains.

In contrast to other research areas, where real world data sets for testing purposes are
available (e.g. the Netflix Prize data set 7 in the area of collaborative filtering systems), we
could not draw on such data. Though a few Semantic Web Service collections for evalu-
ation purposes exist (e.g. OWLS-TC 8, the Semantic Web Service Challenge scenarios 9

or the Jena Geography Dataset 10), they do not meet our requirements. In particular, they
often comprise a relatively small set of rather simple services (e.g. converter or location
services) which are also sometimes somewhat unrealistic and artificial. They typically do
not contain service requests at all or service requests that match only to a small fraction of
the services that are contained in the collection [Küs10]. Finally, we are not aware of a test
collection that offers attribute-specific relevance judgments.

Hence, to evaluate our approach, we had to create a (semi-)artificial data set, that served
as a base for our tests. To have at least a realistic set of services, we extracted struc-
tured information about computer items from a major online seller to generate semantic
descriptions of services selling computer items. We chose this service category, since it
comprises services that are sufficiently complex and refer to distinct, but related item do-
mains. Moreover, real world data for other types of services in a number that is sufficient
for statistical evaluations are hard to obtain. Since real user data, in particular real world
service requests as well as information about the cheating behavior of service providers,
are not available, we had to appropriately model those aspects to generate the required test
data. Though a generated data set has the undesirable property that it is artificial to some
degree, a generation-based approach also has the advantage that it allows to influence and
vary the characteristics of the resulting test data and thus to evaluate their influence on the
prediction quality.

9.4.2. Test Data

For the purpose of evaluation, we extracted information about 6, 888 computer items and
their attributes from a major online seller. Each of these items belonged to one of the 8
categories desktop PC, server, digital watch, e-book reader, PDA, organizer, notebook and
electronic dictionary. Table 9.1 provides an overview about the number of extracted items
per category and the attributes that were considered.

7http://developer.netflix.com/docs
8http://projects.semwebcentral.org/projects/owls-tc
9http://sws-challenge.org/wiki/index.php/Scenarios

10http://fusion.cs.uni-jena.de/professur/jgd

249

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

Category # items Attributes

desktop PC 2,576 size (length, width, height), manufacturer, model,
processor (clock speed, type), platform (producer,
type), memory (size, type), #processors, floppy
disc, graphics card, hard disc, #memory slots,
system bus, secondary cache, display (size, res-
olution), modem, ethernet

digital watch 1,143 size (length, width, height), manufacturer, model
electronic dictionary 663 size (length, width, height), manufacturer, model
e-book reader 24 size (length, width, height), manufacturer, model,

battery, platform (producer, type), memory (size,
type)

PDA 809 size (length, width, height), manufacturer, model,
processor (clock speed, type), platform (producer,
type), memory (size, type), battery, display (size,
resolution), modem

notebook 824 size (length, width, height), manufacturer, model,
processor (clock speed, type), platform (producer,
type), memory (size, type), battery, display (size,
resolution), modem, floppy disc, graphics card,
hard disc, #memory slots, #processors, secondary
cache, system bus

organizer 157 size (length, width, height), manufacturer, model,
battery, platform (producer, type), memory (size,
type)

server 692 size (length, width, height), manufacturer, model,
processor (clock speed, type), platform (producer,
type), memory (size, type), #processors, floppy
disc, graphics card, hard disc, #memory slots,
system bus, secondary cache

Table 9.1.: Extracted computer items - their category and properties

From each item, we created a DSD service offer description (cf. Section 4.2) referring to
a service (instance) offering this item. For that purpose, we created an ontology appro-
priately modeling the computer items domain(s) and complementing DSD’s upper service
ontology as well as the category ontologies. Figure 9.11 depicts the most important con-
cepts and their attributes that are defined in this ontology. The entire ontology can be found
in Appendix A. Note, that the 8 computer item categories give rise to 8 distinct, but related
service domains, i.e. to 8 different, but related types of services (Figure 9.11). Service of-
fers were randomly assigned to service providers, where the offers were uniformly chosen
from the available offers in each category. We generated several kinds of service providers,

250

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

top

PhysicalEntity
E

Device
E

size: DimensionMeasure
manufacturer: Company

Computer
E

model: Model

AllPurposeComputer
E

processor: Processor
platform: OS
memory: Memory

OnePurposeComputer
E

StationaryComputer
E

numberOfProcessors: Integer
floppyDisc: FDD
graphicsCard: GraphicsCard
hardDisc: HDD
numberOfMemorySlots: Integer
systemBus: SystemBus
secondaryCache: SecondaryCache

PortableComputer
E

battery: Battery
display: Display
modem: Modem

DesktopPC
E

display: Display
modem: Modem
ethernet: Ethernet

Server
E

Notebook
E

floppyDisc: FDD
graphicsCard: GraphicsCard
hardDisc: HDD
numberOfMemorySlots: Integer
numberOfProcessors: Integer
secondaryCache: SecondaryCache
systemBus: SystemBus

PDA
E

DigitalWatch
E

EBookReader
E

battery: Battery
platform: OS
memory: Memory

ElectronicDictionary
E

Organizer
E

battery: Battery
platform: OS
memory: Memory

Figure 9.11.: Ontology for the computer items domain (excerpt)

where a provider was characterized by the type of services (service instances) he offered
and the type of (mis-)behavior he exhibited. Regarding the type of the offered services, we
distinguished between homogeneous and heterogeneous service providers. While homoge-
neous providers offered services of a single type (however with differing attribute values),
such as only services selling desktop PCs or only services selling notebooks, heteroge-
neous providers offered services from different categories. For our test runs, we chose the
following configurations:

• Homogeneous providers offered 40 services each selling a desktop PC.

• Heterogeneous providers offered 5 services per service type (= 40 services in total).

To simulate misbehavior, we generated modified versions of the service offers of a provider.
This was done as follows. Each of a service offer’s numerical attribute values was changed
with a certain probability and by a certain amount of the original attribute value (that was
indicated in the original offer description). The altering direction differed as it was appro-
priate for the type of service attribute. For instance, the value of the attribute price was
increased, since higher prices are typically less desirable than lower prices, and the hard

disc size was decreased, since a lower hard disc size is usually less preferable than a larger
disc size. A nominal attribute’s value changed with a certain probability, where the new at-
tribute value was uniformly chosen from the values that occurred in the generated original
offers. While the service offer descriptions that were created based on the original items
represented a provider’s promised services and were used to determine an offer’s matching
degree with a given request, the actual output of a service was determined by the modified

251

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

matches). By default, attributes that were specified in the request, but not in the offer were
assumed to not match (cf. default missing strategy assume_failed Section 4.2). For each
request attribute, we changed that behavior with a certain probability (probability ignore

missing attribute), by adding the alternative missing strategy assume_value[missing at-

tribute matching value] (cf. missing strategy assume_value[n] Section 4.2). This means,
with a certain probability we indicated that a missing attribute shall match with the pre-
defined matching degree missing attribute matching value. Our test runs were performed
with the parameter configuration depicted in Table 9.2.

Parameter Value

probability attribute filled 0.7
min attribute matches 40%
probability ignore missing attribute 0.2
missing attribute matching value 0.3

Table 9.2.: Request generation - basic parameter configuration

Consumer preferences, i.e. direct conditions, over single numerical attributes were mod-
eled using an item-type-dependent decreasing/increasing (depending on the attribute type)
linear preference function over the attribute’s range of acceptable values. As an example,
consider the preference functions for the attributes price and hard disc size, depicted in
Figure 9.13.

price

1

0
minPrice

[itemType]

maxPrice

[itemType]

price1/3

[itemType]

price2/3

[itemType]

maximal

acceptable price

p
re

fe
re

n
ce

 v
a

lu
e

 [
it

e
m

T
y

p
e

]

(a)

p
re

fe
re

n
ce

 v
a

lu
e

 [
it

e
m

T
y

p
e

]

hard disc size

1

0
minHDSize[itemType] maxHDSize[priceCat, itemType]

minimal acceptable

hard disc size

(b)

Figure 9.13.: Preference functions for the attributes price (a) and hard disc size (b)

In case of the price attribute, the preference value linearly decreased from 1 for the low-
est possible price minPrice[itemType] (the lowest price value among those of the gener-
ated offers that referred to the requested computer item type) to 0 for the maximal ac-
ceptable price and remained 0 for higher prices (Figure 9.13(a)). The maximal accept-
able price was uniformly chosen from a price range defined by the (item-type-dependent)
price category of the request. The price ranges were defined as follows. Price category 0

[itemType] contained prices in the range [minPrice[itemType], price1/3[itemType]), where

253

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

minPrice[itemType] was the lowest price value among those occurring in the generated of-
fers that referred to the requested computer item type and 1/3 of those service offers had
a price lower than or equal to price1/3[itemType]. Price category 1 [itemType] comprised
prices in the range [price1/3[itemType], price2/3[itemType]), where 2/3 of the created ser-
vice offers that referred to the requested computer item type had a price lower than or
equal to price2/3[itemType]. Finally, price category 2 [itemType] contained prices in the
range [price2/3[itemType], maxPrice[itemType]], where maxPrice[itemType] was the high-
est price value among those occurring in the generated offers that referred to the requested
computer item type.

As a second example, consider the preference function for the attribute hard disc size (Fig-
ure 9.13(b)). The preference value linearly increased from 0 for a disc size value that was
randomly chosen from the range [minHDSize[itemType], maxHDSize[priceCat, itemType]]
of hard disc size values defined by the disc size values of the generated service offers that
referred to the requested computer item type and had a price that was lower than the upper
bound of the desired price category priceCat, to 1 for the upper bound of this range. The
lowest acceptable hard disc size for a given request, i.e. the lowest hard disc size with a
non-zero preference value, was determined in a way which ensured that at least a certain
percentage (min attribute matches) of the offers that referred to the requested computer
item type and had a price lower than the upper bound of the desired price category had a
larger hard disc size and thus a positive matching value with respect to the attribute hard

disc size as specified in the request.

Preferences over nominal attributes were modeled by indicating acceptable attribute values
with the in-operator for direct conditions (cf. Section 4.2). The set of acceptable values for
a certain attribute comprised a fraction of those values for this attribute that were present
in the generated offers which referred to the requested computer item type and whose price
was lower than the upper bound of the desired price category. This fraction of attribute
values was again chosen in a way which ensured that at least a certain percentage (min

attribute matches) of the generated offers whose price was lower than the upper bound
of the desired price category and that referred to the requested computer item type had
a positive matching value with respect to the attribute. Preference values for acceptable
attribute values were randomly assigned. While a certain percentage of those attribute val-
ues (depending on min attribute matches) received a matching degree of 1, the remaining
attribute values received a matching degree uniformly chosen from the interval (0, 1]. The
lower min attribute matches, the more of the acceptable attribute values were assigned a
matching degree of 111.

Individual attribute matching degrees were aggregated according to the connecting strate-
gies of type weighted mean (cf. Section 4.2), that were specified for each request attribute.
Thereby, the importance of the price attribute was low for users which were willing to

11A percentage of x = min(min attribute matches, (1 − min attribute matches)) of the attribute values re-
ceived a matching degree of 1, a percentage of (min attribute matches − x) of the values received a match-
ing degree uniformly chosen from (0, 1].

254

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

price

Owned

:ServiceProfile

entity

manufactureer

sizeweight

val unit

entity

effect

...

Currency

in {usd}

Double

<=1500

currency amount

name
length

width
height

LengthMeaure LengthMeaure LengthMeaure

Product

0.7 * price + 0.3 * entity

0.5 * currency + 0.5 * amount

Price

 0.4 * manufacturer

+ 0.3 * weight + 0.3 * size

Notebook

Company

in {IBM, Apple}

String

<=3.3

Double

in {pound}

WeightUnit

0.5 * val + 0.5 * unit

WeightMeasure

0.33 * length + 0.33 * wiidth + 0.33 * height

DimensionMeasure

... ...

Figure 9.14.: Example of a generated DSD service request

accept high prices (requests of price category 2) and high for users that asked for a ser-
vice that offers a cheap computer item (requests of price category 0). More specifically,
the price weight for requests of price category 0 was uniformly chosen from [0.66, 1], the
price weight for requests of price category 1 was uniformly chosen from [0.33, 0.66) and
the price weight for requests of price category 2 was uniformly chosen from [0, 0.33). The
weights for the other (specified) attributes were Gaussian distributed and normalized af-
terwards. Thus, we assigned medium weights with high probability and extremely high
or low weights with low probability. Figure 9.14 shows a typical example of a generated
DSD request, here for services that offer notebooks.

For our experiments, we generated two types of request sets, a homogeneous and a hetero-

geneous request set.

• The homogeneous request set contained 48 expert requests for services offering
desktop PCs of price category 212.

• The heterogeneous request set contained an expert and a non-expert request per price
category and considered service offer type (= 2 × 3 × 8 = 48 in total).

We would like to mention, that we are aware of the fact that this kind of test data is artificial
to some degree. However, we argue that the service providers and requests contained in

12We chose expert requests, since they typically specify more attributes than non-expert requests and thus
can be expected to be better suited to demonstrate the advantages of utilizing attribute-specific judgment
information.

255

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

the generated test data set are much more diverse than those one would expect in reality
and thus make it even harder rather than easier for our prediction algorithm to weight the
single feedback contributions correctly and thus to make accurate predictions.

9.4.3. Test Settings

To evaluate the performance prediction procedure devised in this thesis as well as its vari-
ants, we ran a large number of tests with varying data sets and parameter configurations.
The test data for each test comprised one of the request sets introduced above (either a ho-

mogeneous or heterogeneous request set) and a set of 5 providers, either all homogeneous

or all heterogeneous, and, either all of type weak deceiver or all of type heavy deceiver

(= 2 × 2 × 2 = 8 different data sets in total).

The basic procedure of a test was as follows. For each request and matching offer of the
utilized test data, we determined the (partial) matching results (using the original service
offer description) and noted the actual performance of the corresponding service, i.e. the
ratings the requester would have given for each of the single service attributes after service
execution, given by the (partial) matching results of the selected service offer’s modified
version. For 100 uniformly chosen pairs of request and matching service offer, we used
the proposed prediction procedures to predict the corresponding service’s performance,
i.e. the ratings for the service with respect to the given request and the specified service
attributes, thereby leveraging a (test-dependent) fraction of the generated test data ratings
for the provider of the considered service. As a measure for the quality of the provided pre-
dictions, we utilized the most commonly used statistical accuracy metric in collaborative
filtering, the Mean Absolute Error (MAE). More specifically, we compared the predicted
rating for a request-service-pair with respect to a specific attribute with its actual rating,
i.e. the matching value of the corresponding modified service instance and determined
the absolute difference between those two values (absolute prediction error). The error
was averaged over all 100 pairs of request and matching service offer (separately for each
service attribute). The lower the mean absolute prediction error, the better the (mean) pre-
diction quality. At this point, we want to note that the number of providers in the test data
set had no influence on the prediction quality (just the number of offers per provider), since
for a prediction only provider-specific feedback was considered. However, the number of
service providers in a test data set had an impact on the number of test runs over which the
prediction quality could be averaged. We would also like to note, that the described testing
procedure is only valid under the assumption, that the service request (in case of a request
model, the generated service request) that led to a service judgment accurately reflects the
requester’s actual service requirements (Assumption 6.1). In Section 9.4.5, we will intro-
duce a modified version of the testing procedure in order to analyze how a relaxation of
this assumption impacts the quality of the performance prediction.

We tested our prediction procedure with different parameter configurations. The following
parameters (also cf. Sections 6.6.2 and 6.6.3) were varied:

256

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

Parameter Value

similarity mea-
sure

• correlation-based similarity measure (Def. 6.19)
• cosine-based similarity measure (Def. 6.20)

maximum num-
ber of feedback
items

• any integer value (as far as the generated test data contained enough
feedback)

feedback aggre-
gation function

• simple mean (as a reference) - SimpM

• adjusted weighted mean (Form. 6.21) - AdjM

overall similar-
ity measure

• similarity w.r.t. the request’s root attribute (Equ. 6.22) - RootSim

• attribute-specific similarity mean (Equ. 6.29) - AttrSimM

• weighted attribute-specific similarity mean (Equ. 6.30) - WAttrSimM

relevance mea-
sure

• overall similarity (Eqs. 6.22 and 6.28) - OvSim

• product of attribute-specific and overall similarity (Equ. 6.26) - Sim-

Prod

Table 9.3.: Parameters of the prediction procedure, their abbreviations and possible values

service and the feedback provider exceeded certain thresholds, were used for the pre-
diction (cf. Figure 9.15). In particular, a feedback contribution’s service relevance was
given as that factor of its relevance weight which referred to its service similarity. A feed-
back contribution’s feedback provider relevance was given as that factor of its relevance
weight which referred to its feedback provider similarity. That is, in cases where a feed-
back item’s relevance with respect to a given request-service-pair and a given attribute
was determined as its overall similarity (OvSim), its service relevance/feedback provider
relevance was equal to the feedback item’s overall service/feedback provider similarity
(cf. Equations 6.22 and 6.28). In cases where a feedback item’s relevance was calculated
as the product of its attribute-specific similarity and its overall similarity (SimProd), ser-
vice relevance/feedback provider relevance was determined as the product of the feedback
item’s overall service/ feedback provider similarity and its attribute-specific service/feed-
back provider similarity (cf. Equation 6.27). The generated test data as well as the test
runs itself are reproducible, since the random number seed that was utilized by the random
number generator which was used throughout the tests was provided as an additional test
set generation and test parameter.

258

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

9.4.4. Results

In this section, we will present evaluation results that have been derived under the as-
sumption, that a service request that leads to a service judgment accurately reflects the
requester’s actual service requirements (Assumption 6.1). We start with an analysis of our
algorithm’s performance when being used for the prediction of a given service’s overall
judgment with respect to a certain request. We will also investigate whether and to what
extent the number of feedback items that are leveraged for this prediction affects the predic-
tion quality. The final part of this section is dedicated to the evaluation of our algorithm’s
predictive performance when estimating attribute-specific ratings.

The Figures 9.16, 9.18, 9.20 and 9.22 illustrate the main results of our tests. Depicted
is the mean absolute prediction error of the predicted overall rating, i.e. the error of the
predicted rating for the request root attribute, accompanied with the 95% confidence in-
terval as a measure for the reliability of the estimated prediction error and the significance
of the results. While the left side of each chart shows the mean absolute prediction error
when having used feedback contributions of arbitrary relevance for the prediction (base

prediction quality), i.e. when having not applied any relevance filters, the right side de-
picts the lowest mean absolute prediction error that was achieved when having used only
highly relevant feedback items for the prediction (best prediction quality), i.e. when having
uniformly chosen the allowed number of feedback items from a fraction of the generated
feedback items, whose service and feedback provider relevance exceeded certain thresh-
olds. Remember, that the procedure which is used to determine service and feedback
provider relevance differs for each parameter configuration of the prediction algorithm.
Hence, the set of leveraged feedback items also differed among the parameter configura-
tions. The thresholds that resulted in the lowest prediction error differed depending on the
used parameter configuration and also depending on the used test data. This is due to the
fact, that the distribution of the feedback items’ relevance values is specific for each set of
test data and each parameter configuration.

In our evaluation, we considered the following 4(×2) test data configurations:

• configuration 1: homogeneous requests and homogeneous providers (Figure 9.16),

• configuration 2: homogeneous requests and heterogeneous providers (Figure 9.18),

• configuration 3: heterogeneous requests and homogeneous providers (Figure 9.20)
and

• configuration 4: heterogeneous requests and heterogeneous providers (Figure 9.22),

each with weak (upper part of each figure, i.e. figure parts (a) and (b)) or heavy deceiving
providers (lower part of each figure, i.e. figure parts (c) and (d)). We ran tests with both,
the correlation-based similarity measure (left side of each figure, i.e. figure parts (a) and
(c)) and the cosine-based similarity measure (right side of each figure, i.e. figure parts (b)
and (d)), each with several parameter configurations (Table 9.3). Parameter configurations

259

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

are denoted by a code comprising of 3 dash-separated parts, the abbreviation for the value
of the feedback aggregation function that was used, the abbreviation for the value of the
relevance measure that was used and the abbreviation for the value of the overall similarity
measure that was used (refer to Table 9.3 for an overview of possible parameter values and
their abbreviations). As an example, consider the code AdjM-OvSim-AttrSimM. It refers to
a test configuration that used adjusted weighted mean as the feedback aggregation func-
tion, a feedback item’s overall similarity as its relevance measure and attribute-specific
similarity mean as the overall similarity measure. Sometimes it was useful to refer to a
class of parameter configurations that share certain parameter values and may differ with
respect to others. We used the symbol * to indicate that members of the class may take any
value of a considered parameter. For example, the code AdjM-*-* refers to the class of all
parameter configurations which have in common that they use adjusted mean as the feed-
back aggregation function. Tests with parameter configuration SimpM served as a baseline
for our evaluation. In those cases, the predicted judgment was determined by simply av-
eraging the single feedback item’s rating contributions, i.e. no relevance information was
considered. All depicted results are based on test runs performed with at most 5 feedback
items used per prediction. This value was chosen, since, as we will show later on in this
section, further increasing the number of feedback items that are leveraged for the predic-
tion will not improve the best prediction quality that can be achieved when using the test
data configuration that lead to the worst prediction quality (configuration 4).

The charts depicted in the Figures 9.17, 9.19, 9.21 and 9.23 complement those in the Fig-
ures 9.16, 9.18, 9.20 and 9.22. For each of the 4(×2) test data configurations, they depict
two charts. Again, the upper part of each figure shows the results for the test data configu-
ration with weak deceiving providers and the lower part of each figure presents the results
for the test data configuration with heavy deceiving providers. The left charts (figure parts
(a) and (c)) of each figure depict the mean absolute prediction error for fixed feedback
provider relevance thresholds, depending on the minimal service relevance of the feedback
items that have been used for the prediction. The right charts of each figure (figure parts
(b) and (d)), show the mean absolute prediction error for fixed service relevance thresh-
olds, depending on the minimal feedback provider relevance of the feedback items that
have been used for the prediction. In each case, the depicted results refer to test runs that
were based on the correlation-based similarity measure and were performed using adjusted
weighted mean as the feedback aggregation function. The relevance weights were given
by the overall similarity of each feedback item, determined as the mean of the single at-
tribute similarities (parameter configuration AdjM-OvSim-AttrSimM in the Figures 9.16,
9.18, 9.20 and 9.22).

As can be seen in the Figures 9.16, 9.18, 9.20 and 9.22, the correlation-based measure al-
most always either outperformed the cosine-based similarity measure, i.e. produced lower
prediction errors, or at least delivered equally good results. Hence, in the subsequent dis-
cussion, we will refer to the results produced by the correlation-based similarity measure.

260

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

correlation-based similarity cosine-based similarity
w

e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: homogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: homogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: homogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r
Requests: homogeneous, providers: homogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(d)

Figure 9.16.: Evaluation results for test data configuration 1 - homogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right)

Configuration 1 - homogeneous requests, homogeneous providers Figure
9.16 depicts the main results for this test data setting. Figure 9.17 shows the correspond-
ing relevance charts. As can be expected in a purely homogeneous setting, the base mean
prediction error, i.e. when applying no relevance filters (left side of the charts in Fig-
ure 9.16), is relatively low (about 0.13 for the test data configuration with weak deceivers
and 0.15 for the configuration with heavy deceivers). However, as can be seen, leveraging
only those feedback items that have a high relevance with respect to the service and the
request for which a rating shall be predicted, results in a much lower prediction error (right
side of the charts in Figure 9.17). As Figure 9.17 illustrates, this is attributed to the fact,
that though having homogeneous providers, both, service and feedback provider relevance,

261

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

fixed feedback provider relevance fixed service relevance

w
e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: homogeneous, providers: homogeneous, weak deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8
provRel 0.9

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: homogeneous, providers: homogeneous, weak deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: homogeneous, providers: homogeneous, heavy deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: homogeneous, providers: homogeneous, heavy deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(d)

Figure 9.17.: Relevance charts for test data configuration 1 - homogeneous requests, homo-
geneous providers, weak deceivers (upper part)/heavy deceivers (lower part):
mean absolute prediction error based on test runs performed with fixed feed-
back provider relevance thresholds depending on the minimal service rele-
vance of the feedback items that have been used for the prediction (left), mean
absolute prediction error based on test runs performed with fixed service rel-
evance thresholds depending on the minimal feedback provider relevance of
the feedback items that have been used for the prediction (right)

have a large impact on the prediction quality. The reason for this is, that the test data re-
quests are homogeneous in the sense that they all refer to the same computer item type, but
are still quite different with respect to the requirements specified for the single attributes.
The same holds for the service relevance. As can be seen, the prediction quality increases
with both, increasing threshold for feedback provider and service relevance. We also see,
that just increasing both, the threshold for the feedback provider and the service relevance

262

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

leads to the best prediction quality that can be achieved for this test data set. Hence we can
conclude, that both types of relevance information, i.e. both types of context information,
that have been elicited can be successfully leveraged to increase the prediction quality and
complement each other. For very high relevance thresholds, we observe that the predic-
tion error suddenly increases (e.g. Figure 9.17(b)). This is due to the fact that only a low
number of feedback items yield such a high relevance value and thus less than 5 feedback
items were used for the prediction. This in turn resulted in a worse prediction quality. The
influence of the number of feedback items, that are leveraged for the prediction, on the pre-
diction quality will be analyzed later on in this section. The results depicted in Figure 9.16,
indicate that the parameter configurations *-*-AttrSimM and *-*-WAttrSimM, that used
fine-grained, i.e. attribute-specific similarity information (Section 6.6.3), to determine the
relevance of the single feedback items for the prediction, significantly outperformed pa-
rameter configurations AdjM-OvSim-RootSim, which leveraged only overall similarity in-
formation (Section 6.6.2). This does not hold for configuration AdjM-OvSim-WAttrSimM,
which used the weighted attribute-specific similarity mean as an overall similarity measure.
While tests performed with the parameter configurations AdjM-OvSim-AttrSimM, AdjM-

SimProd-AttrSimM, AdjM-SimProd-RootSim and AdjM-SimProd-WAttrSimM achieved a
reduction of the mean prediction error close to 0.0, the tests performed with the configura-
tions AdjM-OvSim-RootSim and AdjM-OvSim-WAttrSimM reduced the mean error to about
0.05.

Configuration 2 - homogeneous requests, heterogeneous providers The
main results for this test data configuration are depicted in Figure 9.18. Figure 9.19 shows
the corresponding relevance charts. At first sight, it seems to be surprising that the base
mean prediction error for this data set is even lower than that for the purely homogeneous
configuration 1 (it is about 0.1), although the test data services are heterogeneous. The
explanation for this is, that most of the test data offers do not fit very well to the test data
requests and thus most of the request-offer pairs yield a very low matching degree (those
who refer to different computer item categories). In fact, they just might match with re-
spect to the price requirements specified in the request, but do not match with respect to
the required computer item characteristics. Hence, the effect of cheating behavior on these
pairs’ actual matching degree, i.e. the consumer rating, is only marginally (in terms of ab-
solute values). As a consequence, the consumer ratings for those request-offer pairs are all
relatively low. This leads to low prediction errors, even when using no relevance informa-
tion at all. The charts depicted in Figure 9.19 support this argumentation. As can be seen,
the service relevance has only a low impact on the prediction quality (see Figures 9.19(b)
and 9.19(d)). As in the case of test data configuration 1, the results for this test data con-
figuration (Figure 9.18), indicate that parameter configurations that used fine-grained, i.e.
attribute-specific similarity information, to determine the relevance of the single feedback
items for the prediction, significantly outperformed those which leveraged only overall
similarity information. Parameter configuration AdjM-OvSim-WAttrSimM, that used the
weighted attribute-specific similarity mean as an overall similarity measure, again per-
formed worse than all other parameter configurations that were based on fine-grained

263

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

correlation-based similarity cosine-based similarity

w
e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r
Requests: homogeneous, providers: heterogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: heterogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: heterogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: homogeneous, providers: heterogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(d)

Figure 9.18.: Evaluation results for test data configuration 2 - homogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right)

similarity information. While tests performed with the parameter configurations AdjM-

*-AttrSimM and AdjM-SimProd-WAttrSimM achieved a reduction of the mean prediction
error close to 0.0, the tests performed with the configurations AdjM-*-RootSim reduced the
mean error to about 0.05.

Configuration 3 - heterogeneous requests, homogeneous providers Figure
9.20 depicts the main results for this test data setting. Figure 9.21 shows the corresponding
relevance charts. As in the results for test data configuration 2, the base mean predic-
tion error is low (about 0.15). However, it is slightly higher for this test data setting. In

264

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

fixed feedback provider relevance fixed service relevance
w

e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: homogeneous, providers: heterogeneous, weak deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: homogeneous, providers: heterogeneous, weak deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: homogeneous, providers: heterogeneous, heavy deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: homogeneous, providers: heterogeneous, heavy deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(d)

Figure 9.19.: Relevance charts for test data configuration 2 - homogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with fixed
feedback provider relevance thresholds depending on the minimal service
relevance of the feedback items that have been used for the prediction (left),
mean absolute prediction error based on test runs performed with fixed ser-
vice relevance thresholds depending on the minimal feedback provider rele-
vance of the feedback items that have been used for the prediction (right)

fact, the situation is quite similar to that of configuration 2 (having heterogeneous request-
s/providers and homogeneous providers/requests). However, due to the heterogeneity of
the test data requests, the price requirements specified in those requests vary much more
than in test data configuration 2 and as a consequence, the consumer provided ratings
are more diverse. This in turn results in both, a higher base mean prediction error and a
higher mean prediction error when leveraging relevance information. Similar to the test

265

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

correlation-based similarity cosine-based similarity

w
e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r
Requests: heterogeneous, providers: homogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: homogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: homogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: homogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(d)

Figure 9.20.: Evaluation results for test data configuration 3 - heterogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right)

data configurations 1 and 2, the test results indicate that parameter configurations using
fine-grained, i.e. attribute-specific similarity information, to determine the relevance of
the single feedback items for the prediction, outperformed those which leveraged only
overall similarity information. Again, this does not hold for parameter configurations that
used the weighted attribute-specific similarity mean as an overall similarity measure (*-

*-WAttrSimM). However, in contrast to the previously considered test data configurations,
the result was not significant and the achieved mean prediction errors for the parameter
configurations AdjM-*-AttrSimM were higher (about 0.05). As can be also seen, there is
no advantage of using the product of attribute-specific similarity and overall similarity as
a relevance measure instead of simply using the overall similarity as an indicator for feed-

266

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

fixed feedback provider relevance fixed service relevance
w

e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: heterogeneous, providers: homogeneous, weak deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8
provRel 0.9

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: heterogeneous, providers: homogeneous, weak deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: heterogeneous, providers: homogeneous, heavy deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8
provRel 0.9

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: heterogeneous, providers: homogeneous, heavy deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(d)

Figure 9.21.: Relevance charts for test data configuration 3 - heterogeneous requests, ho-
mogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with fixed
feedback provider relevance thresholds depending on the minimal service
relevance of the feedback items that have been used for the prediction (left),
mean absolute prediction error based on test runs performed with fixed ser-
vice relevance thresholds depending on the minimal feedback provider rele-
vance of the feedback items that have been used for the prediction (right)

back relevance. This was expected, since the charts depict the prediction error with respect
to the predicted rating for the root attribute. Hence, the attribute-specific similarity of a
feedback item, i.e. in this case its similarity with respect to the root attribute, coincides
with the feedback item’s overall similarity. Again, computing the overall similarity of a
feedback item as the weighted attribute-specific similarity mean is not just not superior to

267

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

determining it as the simple attribute-specific similarity mean, but even inferior (however,
not significantly).

correlation-based similarity cosine-based similarity

w
e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: heterogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: heterogeneous, weak deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: heterogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

Requests: heterogeneous, providers: heterogeneous, heavy deceiver

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(d)

Figure 9.22.: Evaluation results for test data configuration 4 - heterogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with the
correlation-based measure (left) and the cosine-based measure (right)

Configuration 4 - heterogeneous requests, heterogeneous providers The
main results for this test data configuration are depicted in Figure 9.22. Figure 9.23 shows
the corresponding relevance charts. As can be expected for a purely heterogeneous test
data configuration, the base mean prediction error is much higher than for the other test
data configurations (about 0.25). As for the test data configurations 1-3, we observe that
the mean prediction quality increases with both, increasing threshold for feedback provider
and service relevance. However, the impact of the service relevance on the prediction qual-

268

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

fixed feedback provider relevance fixed service relevance
w

e
a

k
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: heterogeneous, providers: heterogeneous, weak deceiver

provRel 0.0
provRel 0.2
provRel 0.4
provRel 0.6
provRel 0.8
provRel 0.9

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: heterogeneous, providers: heterogeneous, weak deceiver

servRel 0.0
servRel 0.2
servRel 0.4
servRel 0.6
servRel 0.8
servRel 0.9

(b)

h
e

a
v
y
 d

e
c
e

iv
e
rs

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal service relevance

Requests: heterogeneous, providers: heterogeneous, heavy deceiver

provSim 0.0
provSim 0.2
provSim 0.4
provSim 0.6
provSim 0.8
provSim 0.9

(c)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

minimal provider relevance

Requests: heterogeneous, providers: heterogeneous, heavy deceiver

servSim 0.0
servSim 0.2
servSim 0.4
servSim 0.6
servSim 0.8
servSim 0.9

(d)

Figure 9.23.: Relevance charts for test data configuration 4 - heterogeneous requests, het-
erogeneous providers, weak deceivers (upper part)/heavy deceivers (lower
part): mean absolute prediction error based on test runs performed with fixed
feedback provider relevance thresholds depending on the minimal service
relevance of the feedback items that have been used for the prediction (left),
mean absolute prediction error based on test runs performed with fixed ser-
vice relevance thresholds depending on the minimal feedback provider rele-
vance of the feedback items that have been used for the prediction (right)

ity is much lower (e.g. cf. Figures 9.23(a) and 9.23(b)). Similar to the other test data
configurations, the results indicate that parameter configurations that used fine-grained
similarity information to determine the relevance of the single feedback items for the pre-
diction, outperformed those which leveraged only overall similarity information. Again,
this does not hold for parameter configurations of type AdjM-*-WAttrSimM, that used the
weighted attribute-specific similarity mean as an overall similarity measure. However, this

269

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

result is not significant. In particular, tests performed with the parameter configurations
AdjM-*-AttrSimM achieved a reduction of the mean prediction error to about 0.01 for the
test data configuration with weak deceivers and 0.03 for the configuration with heavy de-
ceivers. Tests performed with the configurations AdjM-*-RootSim reduced the mean error
to about 0.07 for the test data configurations with weak and heavy deceivers.

In any case, the quality of the rating prediction relies on the availability of sufficiently de-
tailed similarity information. The more fine-grained the similarity information, the higher
the prediction quality. Due to his privacy concerns, a user might not be willing to share
fine-grained similarity information for each request attribute. Hence, the prediction quality
that will be achieved in a real world scenario, will lie between the quality that was achieved
based on the test setting AdjM-OvSim-RootSim, which leveraged just the overall matching
degree for the similarity calculation (rating prediction based on coarse-grained similarity
information (Section 6.6.2)), and the quality that was achieved based on the best test set-
ting, AdjM-OvSim-AttrSimM, which assumed that similarity information for every single
aspect of a service interaction (rating prediction based on fine-grained similarity informa-
tion (Section 6.6.3)) is available. Hence, e.g. in case of test data configuration 4, the actual
mean absolute prediction error would lie in the interval [0.033 − 0.037, 0.070 +0.032], i.e.
with probability 0.95 will be below 0.102.

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 0.34

 0 5 10 15 20 25 30

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

number of feedback items per prediction

Influence of the number feedback items per prediction

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 2 4 6 8 10 12 14 16

m
e
a
n
 a

b
s
o
lu

te
 p

re
d
ic

ti
o
n
 e

rr
o
r

number of feedback items per prediction

Influence of the number feedback items per prediction

(b)

Figure 9.24.: Influence of the number of feedback items on the base mean prediction error
(a) and the lowest mean prediction error that is achieved when using relevance
filters (b)

Influence of the number of feedback items on the prediction quality The
charts depicted in Figure 9.24 illustrate the influence of the number of feedback items that
are used for the prediction of a single rating on the prediction quality. They show the mean
absolute prediction error for the overall judgment depending on the number of feedback
items used for the prediction. Depicted are the results for test runs performed with the
correlation-based similarity measure on test data configuration 4 (heterogeneous requests

270

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

and providers) with heavy deceivers13 and the parameter setting AdjM-OvSim-AttrSimM,
which performed best for all test data configurations. While the chart depicted in Fig-
ure 9.24(a) shows the mean prediction error that was achieved when having used feedback
contributions of arbitrary relevance for the prediction, the chart depicted in Figure 9.24(b)
displays the lowest mean prediction error, that was achieved when having used only highly
relevant feedback items for the prediction, i.e. when having used relevance filters.

As Figure 9.24(a) illustrates, weighting feedback contributions by their relevance had a
positive influence on the prediction quality. The higher the number of feedback items, the
higher the influence of the relevance weighting and thus the higher the prediction quality.
However, just weighting feedback items according to their relevance was not sufficient in
order to achieve a good prediction quality. The best prediction quality (mean prediction
error of about 0.17) achieved just by weighting feedback contributions was for test runs
that used 20 feedback items for the prediction. Further increasing the number of feedback
items did not result in a better prediction quality. As can be seen in Figure 9.24(b), hav-
ing only used highly relevant feedback items for the prediction, i.e. completely discarding
non-relevant feedback items instead of assigning a low weight to them, much more effi-
ciently reduced the mean prediction error (to about 0.025). As was expected, the number
of feedback items had nearly no impact on the best prediction quality that was achieved.
This is due to the fact that all leveraged feedback items were highly relevant. For a number
of 5 feedback items, the best prediction quality was achieved and did not further improve
by using more feedback contributions.

Attribute-specific prediction quality Figure 9.25 exemplarily illustrates the attribute-
specific evaluation results and their characteristics. It depicts the attribute-specific pre-
diction quality (the mean absolute prediction error) for the attributes entity.entity, en-

tity.entity.weight, entity.entity.model and entity.entity.manufacturer (cf. Figure 9.14), per-
formed with the correlation-based similarity measure on test data configuration 4 (hetero-
geneous requests and services) with heavy deceivers13.

When looking at attribute-specific judgment prediction, the attribute-specific relevance of
feedback items becomes an important factor for the prediction quality. This is evidenced
by the attribute-specific evaluation results, depicted in Figure 9.25. As can be seen particu-
larly in the charts for the attributes entity.entity.model and entity.entity.manufacturer (Fig-
ures 9.25(c) and 9.25(d)), the parameter configurations AdjM-SimProd-*, that considered
the attribute-specific similarity of feedback items, i.e. those that used the product of overall
and attribute-specific similarity as a measure of feedback relevance, performed better than
those that considered only the overall similarity of a feedback item (AdjM-OvSim-*). This
effect is less apparent for attributes that make up a large part of the request tree, such as
entity.entity (cf. Figures 9.25(a) and 9.14), since in those cases the overall similarity is
a good estimation for the attribute-specific similarity. Among the test settings that con-
sidered attribute-specific similarity when weighting the different feedback contributions,

13We chose this test data configuration, since it resulted in the worst prediction quality for the predicted overall
rating and thus seems to be the most challenging test data configuration.

271

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

entity.entity

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(a)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

entity.entity.weight

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(b)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

entity.entity.model

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(c)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

base best

m
e

a
n

 a
b

s
o

lu
te

 p
re

d
ic

ti
o

n
 e

rr
o

r

entity.entity.manufacturer

AdjM-OvSim-AttrSimM
AdjM-OvSim-RootSim
AdjM-OvSim-WAttrSimM
AdjM-SimProd-AttrSimM

AdjM-SimProd-RootSim
AdjM-SimProd-WAttrSimM
SimpM

(d)

Figure 9.25.: Mean absolute prediction error for the attributes entity.entity, en-

tity.entity.weight, entity.entity.model and entity.entity.manufacturer

test configuration AdjM-SimProd-AttrSimM, that used the mean of the attribute-specific
similarities as an overall similarity measure resulted in the lowest prediction error.

Comparing the attribute-specific prediction errors with those that result when predicting
the overall judgment for a given request-service-pair (i.e. the judgment the user would
provide for the root attribute) based on the same test data set, we observe that attribute-
specific predictions are subject to higher base mean prediction errors. This particularly
holds for less complex attributes such as entity.entity.weight, entity.entity.model and en-

tity.entity.manufacturer (cf. Figures 9.25(b), 9.25(c) and 9.25(d)), that have either a small
number of subattributes or no subattributes at all (cf. Figure 9.14). For example, the base
mean prediction error for the attribute entity.entity.model is about 0.4, while the base mean
overall prediction error for the same test data is 0.25 (cf. Figure 9.22(c)). The reason for
this is, that attribute-specific judgments for a given set of service requests and offers typ-
ically vary much more than their overall judgments and hence result in higher prediction
errors when aggregated for the purpose of prediction. This is particularly true for non-

272

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

complex attributes with nominal values. We illustrate this with an example. Consider the
attribute entity.entity.model in a request for services that offer desktop PCs. Users explic-
itly list acceptable attribute values, i.e. acceptable models, and specify a matching value
for each of those values. Then possible judgments for the attribute range from 0 for those
offers that provide non-acceptable models to a typically high rating for those offers that
provide acceptable models. This effect is less pronounced with increasing complexity of
the attribute (increasing number of subattributes), since the judgments for the single sub-
attributes are aggregated in various request-specific ways (see e.g. attribute entity.entity in
Figure 9.25(a)).

When looking at nominal attributes, the observation that attribute-specific predictions are
subject to higher prediction errors than the predictions of overall judgments, does not only
hold for the base mean prediction error, but also for the best prediction error that was
achieved when having used only a fraction of highly relevant feedback items (those that
exceeded certain relevance thresholds). The reason for this lies in the way we modeled
misbehavior and preferences (cf. Section 9.4.2). In the case of numerical attributes such
as entity.entity.weight the modified values of service instances that have similar values,
i.e. that have a high service relevance, are likely to be also similar and thus, due to the
continuous nature of the preference functions for those attributes, are likely to be judged
similarly by the same requester. This does not hold for nominal attributes, where the
modified attribute value is uniformly chosen from the set of possible values and thus is
rather arbitrary. This also holds for the resulting judgment. As a consequence, service
relevance has no impact on the prediction accuracy for nominal attributes, which results in
higher prediction errors. Nonetheless, modeling similar preferences and a similar type of
misbehavior for similar service instances of nominal attributes is not an option. The reason
for this is, that this would be rather hard and time-consuming, since it would require that
we are provided with functions that indicate the similarity of different attribute values.
Considering our test data, these functions would be rather hard to obtain, e.g. we would
require a similarity function for different desktop PC models and different desktop PC
manufacturers. Moreover, it would be unrealistic to assume that if we had such similarity
functions at our disposal, they would be appropriate for each user. Consider for instance
the attribute entity.entity.manufacturer. It is unlikely that any two service consumers share
the same similarity function for desktop PC manufacturers, e.g. that any two consumers
consider Asus to be similar to Samsung. Hence, modeling the test data in the desired way
would require to have not only a realistic similarity function for each nominal attribute, but
for each pair of request and nominal attribute.

Unfortunately, none of the presented results is statistically significant. The reason for this
is that just a fraction of the requests, that were contained in the test data set, specified the
depicted attributes. Hence, the results are based on a relatively low number of test runs (20
runs per parameter configuration).

Finally, we would like to comment on a fact that is related to the availability of relevant
feedback, rather than to the characteristics of the prediction quality when sufficient feed-
back is available. Providing very detailed, i.e. attribute-specific feedback information

273

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

implies a high judgment effort and reveals a high amount of personal information. As a
consequence, it is less likely that a user will provide a large number of attribute-specific
judgments and is willing to provide fine-grained, i.e. attribute-specific similarity infor-
mation, particularly for attributes that refer to minor aspects of the consumer’s service
requirements. Hence, in a real world setting, we can expect to have a worse prediction
quality for attribute-specific judgments than that achieved for our (semi-)artificial test data.
However, this is not as unsatisfactory as it seems, since the less important a service as-
pect is, the less likely it is that the user is actually interested in the result of the judgment
prediction.

9.4.5. On the Influence of Inaccurate Requirements Models

Performance predictions as introduced in this thesis are based on consumer judgments as
well as on similarity information derived from the (partial) matching degrees between a
judgment provider’s service request and the available service offers. So far, we assumed,
that a user’s service request perfectly describes his service requirements. However, in
our solution, service requests are derived from a system-maintained requirements model.
As shown in Section 8.3, this model complies quite well with the user’s actual service
requirements, but does not perfectly describe them. This might affect the quality of the
similarity information that is used for the judgment prediction and thus the quality of the
performance predictions made by the system. In this section, we will therefore investigate
this issue.

Evaluation methodology To account for the inaccuracy of requirements models and
thus the inaccuracy of the derived service requests, we had to modify our original test data
model that has been introduced in Section 9.4.2. Consider the original data model. So
far, we assumed that the service request derived from the user’s request model corresponds
with the user’s actual service requirements and thus both, the posed request and the actual
requirements, could be modeled by the same, single request. Inaccuracy of service offer
descriptions was simulated by deriving a modified offer description from each offer, which
was considered to describe the actual outcome of the service described by the original offer
description. The matching degree between the user’s request and a given offer was then
determined by matching the request with the original offer description. Consumer ratings
for a certain service based on a given request were derived by matching the request with
the modified service instance.

By abandoning the assumption that a user’s request perfectly describes his service require-
ments, consumer ratings can no longer be determined by matching the request with the
modified service instance. They rather have to be derived by matching the user’s actual
service requirements with the modified service offers. However, doing so would require to
deeply analyze how the system-maintained model and the service consumer’s actual ser-
vice requirements differ and how this can be simulated. Particularly the latter is hardly

274

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

possible and would introduce additional assumptions about the applicability of the eval-
uation results. Hence, rather than modeling a user’s actual service requirements, we still
determined consumer ratings by matching a user’s service request with the judged offer’s
modified offer description and then accounted for the difference between this matching
degree and the judgment the user would actually provide. This was done by randomly
changing the determined matching degree by a certain amount to derive the desired con-
sumer judgment.

However, to be able to perform the evaluation in this way, we had to know by which amount
the matching degree between the service request derived from a user’s final request model
(i.e. the system-maintained request model at the time the user makes his selection) and
a certain service offer differed from that of the user’s actual service requirements and the
considered offer. We acquired this information by leveraging the data retrieved from the
test users when evaluating our requirements elicitation and service selection mechanism
(Chapter 8). In particular, for each test person, we had the final request model main-
tained by the system (SMfinal in Figure 8.1) and a model of his actual service requirements
(MMuse in Figure 8.1). Using these models, we determined the mean absolute deviation
of an offers matching degree with respect to SMfinal and that with respect to MMuse and
also the resulting standard deviation from this mean. The offer descriptions that were used
to determine this value were the same as in the previous tests. As argued before (Sec-
tion 8.3.3), MMuse does not perfectly comply with the user’s actual service requirements,
which is mainly due to the test user’s inability to correctly indicate the importance of their
single requirements by means of importance weights. While some of the user-provided
importance weights were sufficiently consistent (and thus also the resulting requirements
models), some were not. For determining the mean deviation of the matching degrees, we
therefore restricted ourselves to the fairly consistent models (those with a consistency ratio
≤ 0.1, i.e. 5 models out of 10).

As it turned out, the mean matching degree deviation measured was 0.21 with a variance
of 0.05 (i.e. a standard deviation of 0.23). Hence, when generating consumer ratings in
our evaluation, we changed the matching degree of the generated request and a given mod-
ified service offer by adding a random value taken from a normal distribution with mean
0.21 and standard deviation 0.23. The effects of model inaccuracy on the prediction qual-
ity were studied for the test performed with the correlation-based similarity measure on
test data configuration 4 (heterogeneous requests and services) with heavy deceivers. We
chose this test data configuration, since it resulted in the worst prediction quality for the
predicted overall rating and thus seems to be the most challenging test data configuration.
The evaluation was performed for the prediction procedure that leveraged coarse-grained
similarity information, i.e. the parameter configuration AdjM-OvSim-RootSim, since infor-
mation about the matching value discrepancy with respect to single service aspects could
not be retrieved. This is due to the fact that not all test persons considered all service
aspects. Hence, we would get either no or no reliable information about the deviation of
attribute-specific matching degrees.

275

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

Results As it turned out, when accounting for the inaccuracy of the system-maintained
request model, the prediction error increased from 0.08 ± 0.08 to 0.14 ± 0.03, i.e. by 0.06
in average. This was expected, since by relying on inaccurate requirements models, the
quality of the derived similarity information was reduced. This value is still acceptable
in the sense that predictions of this quality still allow to assess the risk that is associated
with the execution of a certain service at a relatively fine-grained level. Moreover, the
quality of predictions that are based on fine-grained similarity information is even likely
to be better, since their quality under the assumption of absolute model consistency was
better. Moreover, the evaluation was performed for the test setting that resulted in the worst
prediction quality. Hence, its results refer to the worst case. However, we lack means to
verify these hypotheses. We also cannot assess how the inaccuracy of requirements models
affects the prediction quality of attribute-specific judgments.

9.4.6. Prediction Confidence

Confidence in a prediction is the higher, the lower the prediction error is. The latter de-
pends on several parameters such as the number of feedback items used per prediction and
the similarity threshold for the leveraged feedback items (cf. Section 9.4.4). Devising a
confidence measure requires a function for the prediction error depending on the indicated
parameters. We determined such a function for the mean absolute prediction error of an
overall judgment, exemplarily for test data configuration 4 (heterogeneous requests and
services) with heavy deceivers.

Based on the evaluation results presented in Section 9.4.4, we assumed a logarithmic func-
tion of the form −a ln x + b, a, b ∈ R, for the dependency of the absolute prediction error
from the number of feedback items used per prediction. As can be seen in Figure 9.24, the
parameters of this function differed depending on the similarity threshold14 that was set for
the feedback items. We modeled this by assuming a linear dependency of the parameter
values from the similarity threshold. This means, for the error function err(t, n), returning
the mean absolute prediction error depending on the chosen similarity threshold t and the
number n of feedback items used per prediction, we assumed the following form

err(t, n) = −(a1t + a2) ln n + (b1t + b2),
✞✝ ☎✆9.2

a1, a2, b1, b2 ∈ R. We fitted this function to the values retrieved for the considered test
data configuration using least-squares fitting. The resulting function as well as the original
data (the measured mean prediction errors for the similarity thresholds 0.0 and 0.9 and
various numbers of feedback items per prediction as depicted in Figure 9.24) is depicted
in Figure 9.26. The fitted parameter values are shown in Table 9.4. As it turns out, the
quality of the predicted prediction error is quite high. The mean absolute deviation of the
predicted mean prediction error from the actual mean prediction error of the test data is
0.0032 ± 0.0020.

14the similarity threshold for both, the feedback provider and the service similarity

276

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

Parameter Fitted value

a1 −0.0348599 ± 0.003417 (9.803%)
a2 0.0321678 ± 0.002005 (6.234%)
b1 −0.281587 ± 0.0073 (2.593%)
b2 0.27865 ± 0.004526 (1.624%)

Table 9.4.: Fitted parameter values

 0
 0.2

 0.4
 0.6

 0.8
 1 0

 5

 10

 15

 20

 25

 30

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

mean absolute
prediction error

similarity threshold

feedback items
per prediction

mean absolute
prediction error

Figure 9.26.: Mean absolute prediction error depending on the similarity threshold and the
number of feedback items used per prediction

A possible confidence measure conf (t, n) ∈ [0, 1] based on the prediction error is

conf (t, n) = 1 − min(1, err(t, n)),
✞✝ ☎✆9.3

where a larger value indicates a higher confidence. Applying our approach to a given real
world setting requires the determination of an appropriate parameter configuration for the
suggested confidence measure. This has to be derived from example data acquired from
the considered application domain.

Finally, we would like to remark, that the devised confidence measure provides the mean
confidence in predictions with a given similarity threshold and a given number of lever-
aged feedback items. If needed, one can derive an upper bound for the confidence in an
individual prediction by accounting for the variance of the prediction errors as measured
for the test data. We would also like to note, that the prediction error might depend on

277

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

other parameters than those that have been considered, such as the number of elements in
the feedback matrix used to determine the similarity of an feedback item. Moreover, the
prediction error depends on the attribute for which a judgment shall be predicted. This
implies that one has to either provide an attribute-specific function for the prediction error
or can derive a function for the upper bound of the prediction error. However, we did not
investigate both of these aspects in this evaluation, since this would have gone beyond the
scope of this thesis.

9.4.7. Discussion

Though we have extensively evaluated our performance prediction approach, we could
not consider any aspects that might have an impact on the achieved prediction quality. In
particular, we did not investigate the effect of context-dependent misbehavior of service
providers. This would have required an intensive study of misbehavior in service provi-
sion, which would have gone beyond the scope of this thesis. Since the proposed prediction
procedure takes the service and feedback provider context of leveraged feedback into ac-
count, we expect it to deal well with this kind of behavior. Hence, it would be worthwhile
to investigate those issues more deeply.

Another issue concerning the generalizability of our evaluation results is, that the predic-
tion quality that can be achieved by our approach depends on the similarity of the leveraged
feedback information to the specific service selection task at hand. The more similar the
judged service interactions are to the service selection task at hand, the better the predic-
tion quality. Hence, whether the prediction quality that has been observed in our test runs
can be achieved in a certain real world setting, depends on the availability of feedback that
refers to service interactions that are sufficiently similar to a considered service interaction.
This means, for each type of service interaction in a given real world setting, a sufficient
number of service interactions should refer to a similar kind of service and should be based
on similar service requirements. Whether this requirement can be fulfilled or not depends
on the specific application scenario at hand.

A related issue is that our similarity-based approach to assess feedback relevance relies
on a certain degree of stability in the set of available offers, i.e. the set of available ser-
vices must not change very frequently. Otherwise, the feedback matrices derived for a
certain feedback item would be scarce, which would have a negative effect on the qual-
ity of the similarity information inferred from these matrices. Hence, our approach to
assess feedback relevance is not applicable in scenarios, where the entire set of services
frequently changes. This is a problem it has is common with all collaborative-filtering-
based mechanisms. However in contrast to these, our prediction procedure is able to derive
meaningful context information for each service interaction that has been judged, whereas
in collaborative-filtering systems those information can be only derived, if two considered
users co-rated a sufficient number of services. This is a much more restrictive requirement.

Finally, it would be interesting to investigate whether our evaluation results can be con-
firmed for other datasets or possibly in real world settings. In any case, such a project

278

9.4. EVALUATION OF THE PERFORMANCE PREDICTION MECHANISM

would involve the determination of an appropriate parameter configuration for the sug-
gested confidence measure. In case of a real world setting, this had to be derived from
example data acquired from the considered application domain.

9.4.8. Summary

The key findings of our evaluation are:

• The mean prediction error for overall judgments was at most 0.07 (for the best pa-
rameter configuration).

• It was achieved by leveraging just 5 (relevant) feedback items.

• Since the quality of the rating prediction relies on the availability of fine-grained
similarity information, the prediction quality achieved in a real world scenario, will
be slightly worse. It will lie below 0.102.

• The mean prediction error for attribute-specific judgments using 5 feedback items
was at most 0.09(+0.134) for the attributes that were considered in the test data. A
larger test data set would be required to provide more accurate results.

• The low overall prediction error was achieved in a purely homogeneous setting as
well as in settings with heterogeneous service providers and service requests.

• It was achieved for both, for service providers with heavy and weak deceiving be-
havior.

• Leveraging fine-grained similarity information to determine feedback relevance re-
sulted in the lowest prediction errors.

• Weighting judgment contributions according to their relevance when making predic-
tions had a positive but low impact on the prediction quality. Completely discarding
non-relevant contributions was much more effective and resulted in low prediction
errors.

• Both, information about the service relevance and the feedback provider relevance of
the feedback items, that were used for the prediction, were successfully leveraged to
increase the prediction quality and complemented each other. The higher the service
relevance and the higher the feedback provider relevance of the leveraged feedback
items, the better the prediction quality.

• Using the overall similarity of the feedback items that are used for the prediction as a
relevance measure delivered good prediction results for the overall service judgment.
When predicting attribute-specific judgments, the product of attribute-specific and
overall similarity as a relevance measure delivered better prediction results.

279

CHAPTER 9. EVALUATION OF THE FEEDBACK MECHANISM

• Weighting attribute-specific similarities to determine the overall similarity of a feed-
back item did not result in an improvement of the prediction quality.

• Relaxing the assumption of perfect compliance between the system-maintained re-
quest model and the user’s actual requirements, results in a slight increase of the
mean absolute prediction error for the overall judgment by 0.06, which is still ac-
ceptable. The result refers to the worst case scenario and the prediction procedure
that is based on coarse-grained similarity information.

Summarizing these results, we conclude that the feedback mechanism that has been pro-
posed in this thesis (Section 6.6) has been demonstrated to effectively exploit consumer
feedback to predict the future performance of available services. This has been shown
to be true, even if available feedback refers to service interactions that are diverse with
respect to the services and requests (request models) that were involved (fulfillment of Re-
quirement F.4). We also demonstrated, that this is enabled by both, leveraging detailed
consumer feedback and taking the request and service (offer) context, in which a judgment
was made, into account when using feedback to predict a service’s future performance (ful-
fillment of the Requirements F.1 and F.5). Finally, using our evaluation results, we derived
a confidence measure indicating the reliability of the predictions produced by the proposed
prediction algorithm (fulfillment of Requirement F.6).

9.5 Summary and Conclusions

In the previous sections, we have shown that the requirements related to the feedback
mechanism that has been proposed in this thesis (Requirements F.1 to F.8), which have
been compiled in Section 6.1, are fulfilled.

• In particular, based on the concept of a feedback structure, we designed a model, that
is capable of describing consumer feedback referring to multi-faceted service inter-
actions and developed an effective mechanism for eliciting this kind of feedback.
As has been shown, this elicitation mechanism flexibly and automatically adjusts to
a consumer’s willingness to provide feedback (fulfillment of Requirement F.2 as
shown in Section 9.3).

• We also demonstrated that both, the devised model and the elicitation procedure, en-
sure that elicited feedback is detailed, comprehensive, meaningful and appropriate in
the context of a certain service interaction, even if the services and requests (request
models) that are involved in the service interactions are diverse and refer to different
application domains (fulfillment of Requirement F.1 as shown in Section 9.2).

• By solely relying on the exchange of indirect information about the context of a
judged service interaction, sharing of easily accessible personal information can be
avoided. Moreover, the judgment providers themselves decide about the detailedness
of the judgments they provide and thus about the amount of sensitive information that
they are willing to share (fulfillment of Requirement F.3 as shown in Section 9.2).

280

9.5. SUMMARY AND CONCLUSIONS

• We also provided a procedure that effectively exploits elicited consumer feedback to
predict a service’s future performance and thus to assess the risk that is associated
with its execution. It accounts for the context-dependent nature of service perfor-
mance and service judgments by taking the request and service context, in which
a judgment was made, into account (fulfillment of Requirement F.5 as shown in
Section 9.4).

• As has been shown, the devised procedure is even effective, if available feedback
refers to service interactions that are diverse with respect to the services and requests
(request models) that were involved (fulfillment of Requirement F.4 as shown in
Section 9.4).

• We also provided a confidence measure, indicating how sure the system is about the
predicted performance (fulfillment of Requirement F.6 as shown in Section 9.4.6).

• Finally, we contributed means to effectively communicate feedback-derived knowl-
edge to the user. In particular, feedback information are presented in a way that
makes the user aware of the risk that is associated with the execution of a service
(fulfillment of Requirement F.7 as shown in Section 9.2.3), thereby accounting for
different risk attitudes (fulfillment of Requirement F.8 as shown in Section 9.2.3).

Hence, we conclude that the operational goal of devising a feedback mechanism that

is both, effective in terms of acquiring knowledge about the risk that is associated

with the execution of a service and effective in terms of its ability to support service

selection in the presence of this risk by effectively communicating this knowledge to

the service consumer (Objective 2), is fulfilled.

281

Part IV.

Final Considerations

283

10
Summary and Conclusions

We introduced Service Oriented Architectures (SOAs) as a powerful way of designing
flexible and adaptive distributed applications based on loosely coupled, standalone ser-
vices. We argued that beside the popularity of this principle for flexible, quick and low-cost
application development in enterprises and for the integration of existing enterprise appli-
cations, there is recently an increasing trend of using Service Orientation based on Web
Services as the underlying principle for offering and using functionality over the Internet.
As has been indicated, experts expect this trend to continue and envision the emergence
of an Internet of Services, a global, user-centric SOA based on easily accessible services
offered over the Internet. In this thesis, we argued that the emerging Internet of Services
has the potential to offer a new way for end-users, i.e. service consumers, to retrieve and
use functionality over the Internet, that, particularly if complemented with semantic tech-
niques, promises to be more effective and convenient than prevalent retrieval and usage
schemes based on keyword search. However as discussed, existing approaches to (Seman-
tic) Web Service retrieval are not well-suited to this new usage scenario, since they do not
provide effective decision support for user-mediated service selection, which is required to
enable well-founded service selection decisions at a large scale.

Thesis objective Therefore, the overall objective of this thesis was to develop a sys-
tem that effectively supports service consumers, i.e. end-users, in efficiently making well-
informed, balanced and consistent service selection decisions (Objective 1). In this con-
text, we pointed out, that due to the fact that consumer requirements are constructive by
nature and that information resources on the Internet are not necessarily trustworthy, the
envisioned system has to account for the fact that, both, knowledge about the consumer’s
service requirements as well as knowledge about the capabilities of available service offers
might be inaccurate and incomplete, i.e. is uncertain.

In Part I of the thesis, we argued that this thesis goal can be achieved by accomplishing the
following two operational objectives:

• Firstly, dealing with uncertainty arising from inaccurate and incomplete knowledge
about offered service capabilities requires the conception of a feedback mechanism

285

CHAPTER 10. SUMMARY AND CONCLUSIONS

that is both, effective in terms of acquiring knowledge about the risk that is associated
with the execution of a service and effective in terms of its ability to support service
selection in the presence of this risk (Objective 2).

• Secondly, a method for requirements elicitation and service selection that incremen-
tally and interactively acquires knowledge about a user’s evolving service require-
ments and by leveraging this knowledge effectively supports service consumers in
making well-informed, balanced and consistent service selection decisions in an ef-
ficient manner, is required (Objective 3).

Contributions In the course of this thesis (Part II), we designed and detailedly de-
scribed a system for requirements elicitation and service selection, that meets these objec-
tives and thus fulfills the thesis goal. In particular, we devised an incremental and inter-
active approach to requirements elicitation and service selection, which alternates phases
of intermediate service recommendation and phases of informal requirements specification
based on the characteristics of the presented service alternatives or by using a modifiable
graphical requirements representation. During that process, the user incrementally devel-
ops his service requirements and preferences and finally makes a selection decision. As
part of this system, we described a model of the consumer’s service requirements and
preferences that is maintained to effectively support and guide the user in his tasks. We ex-
plained how uncertainty about the service consumer’s true requirements and preferences,
that is caused by missing and/or inaccurate knowledge, is explicitly represented within this
model. Moreover, we detailed on how the model is continuously updated based on the
user’s interactions to accurately reflect the systems’s growing knowledge about the user’s
service requirements and preferences. We also explained how suitable service offers can
be retrieved based on this uncertain requirements model and how they can be appropriately
displayed to enable effective decision making. Finally, we argued how model uncertainty
can be effectively reduced to contribute to the efficiency of the requirements elicitation and
service selection process.

In addition to that, we provided a feedback mechanism, that allows to assess the risk that
is associated with the execution of a service. This includes the specification of a feed-
back model that is capable of detailedly and meaningfully describing consumer feedback
related to service interactions, the development of a user-adaptive, flexible and privacy-
aware method for the elicitation of such feedback and a prediction algorithm that effec-
tively exploits available consumer feedback to assess the degree and kind of risk that is
associated with the execution of an offered service. Thereby, the suggested solution ac-
counts for the subjective and context-dependent nature of consumer feedback and exploits
consumer experiences made in one context to infer knowledge about a service’s behavior
in another context. Finally, we explained how feedback-derived information can be lever-
aged to make users aware of the risk that is associated with the execution of a service and
thereby accounting for different risk attitudes.

286

Implementation, evaluation and conclusion We also implemented and extensively
evaluated our approach (Part III). In particular, we theoretically verified the appropriate-
ness of the requirements model and the kind of requirements elicitation and service se-
lection procedure that have been devised. We also provided the results of two extensive
user studies that show the effectiveness of the devised requirements elicitation and service
selection mechanism in terms of its ability to provide decision support for well-founded
and efficient service selection (fulfillment of Objective 3). In addition to that, we evaluated
the developed feedback mechanism. More specifically, we theoretically argued in favor of
the appropriateness of the devised feedback model and demonstrated the effectiveness of
the devised feedback elicitation procedure by means of a user study. Moreover, we sim-
ulatively demonstrated the effectiveness of the devised performance prediction procedure
based on a real world data set, showed that these results are even valid if the model of
the feedback provider’s service requirements is inaccurate to some degree and derived a
confidence measure for the predictions delivered by the procedure. Finally, we theoreti-
cally showed that feedback-derived information are presented in a way that makes the user
aware of the risk that is associated with the execution of a service and thereby accounts for
different risk attitudes (fulfillment of Objective 2).

As a result of these evaluations, we verified that the two operational objectives of this

thesis (Objective 2 and 3) are fulfilled (Sections 8.5 and 9.5) and thus the overall the-

sis objective of developing a system that effectively supports service consumers in

efficiently making well-informed, balanced and consistent service selection decisions

(Objective 1) has been achieved. We hope, that by indicating a way to effective end-user
support for Semantic Web Service selection, we could both, contribute to the realization of
the emerging Internet of Services and to the practical adoption of Semantic Web Service
technology.

287

11
Future Work

The aim of this thesis was to demonstrate the feasibility of end-user-mediated Semantic
Web Service selection at Web-scale and by this means to illustrate the benefits and the po-
tential of using Semantic Web Service technology. Fulfilling this task required to consider
a large number of different research issues and involved the application of a wide range of
techniques to approach these. Discussing all these issues in detail would have exceeded the
scope of a PhD thesis by far. Hence, the contributions of this thesis have to be understood
as proof of concept and as such can be extended and improved in several ways. In addition
to that, they raise new, complementary research issues and open up possibilities for new
application scenarios, which shall be discussed in this chapter.

11.1 Modeling and Elicitation of Service Requirements

A number of possible improvements and extensions to the proposed approach refer to the
requirements model that has been introduced in Section 5.4 of this thesis. As already dis-
cussed, the request model implementation supports only weighted sum as a connecting
strategy, i.e. presumes that a user’s preferences with respect to a set of attribute conditions
are mutually independent (cf. Section 5.4.3). Though this is a valid assumption for many
real-world service selection scenarios [KR93, FGE05], there are service requirements that
cannot be expressed using an additive model, e.g. a user looking for a flower delivery ser-
vice might want to indicate that he does not consider a certain service offer as acceptable, if
it cannot deliver at a given, user-provided day, even if it is very cheap. A possible extension
to the proposed request model would therefore provide support for additional connecting
strategies that allow to express interdependent preferences, e.g. by allowing to multiply
preference values as possible in DSD.

Moreover, there might be other types of preference functions that better describe a user’s
preferences over a range of instances than those discussed in Section 5.4.2. This partic-
ularly holds, if another application scenario is considered. It would be thus worthwhile
to investigate how human preferences in a certain domain can be appropriately modeled
and to finally implement these models as an extension to the system. In addition to the

289

CHAPTER 11. FUTURE WORK

mentioned preference-related features, there are other features offered by the Diane Ser-
vice Description Language, that are worth to be considered in our implementation, but are
not yet supported by our system. This includes e.g. support for specifying multiple effects
or for specifying multi attribute conditions, i.e. direct conditions that reference several
attributes.

Beside of those extensions that affect the expressiveness of the requirements model, there
are possible enhancements concerning the model’s ability to represent uncertainty about
a service consumer’s requirements. As discussed in Section 5.4, the introduced request
model does not account for uncertainty about the type of acceptable service instances as
well as for uncertainty about the user’s preference for a certain instance that has been spec-
ified in an in-condition. Leveraging knowledge about these types of uncertainty has the
potential to improve decision making support, but would also introduce additional com-
plexity to the system and thus might affect its efficiency. Hence, a deeper investigation of
these issues is required.

Another set of possible enhancements does not refer to the requirements model itself, but
rather to the process of learning this model from the user’s interactions with the system.
The effectiveness of the latter strongly depends on both, the learning procedure’s ability to
infer knowledge about a user’s service requirements from its various interactions with the
system and its ability to interpret a system user’s actions correctly, i.e. by appropriately
modeling the likelihood of a certain interaction given a specific requirement. Hence, it
would be worthwhile to analyze how a human’s service requirements affect its interactions
with the available system elements to further improve the behavioral models in terms of
likelihood functions that have been used in the introduced approach (cf. Section 5.9).
Moreover, it would be promising to consider interaction types other than those that have
been discussed in this work (cf. Section 5.9) to infer additional knowledge about a user’s
service requirements. For instance, one could draw conclusions from the fact, that a user
sorted the presented service offers with respect to a certain attribute, or from the fact, that
a certain recommended tradeoff opportunity was not chosen.

11.2 Visualization of Service Requirements and Interac-

tion Opportunities

By enhancing its visualization features, the usability and effectiveness of the proposed
system for requirements elicitation and service selection can be further improved. This
involves the consideration of other/additional information filtering and summarizing tech-
niques to identify relevant information, the use of other/additional visualization techniques
and metaphors as well as the implementation of additional visualization features such as
zooming or overview. Specific visualization issues related to the graphical requirements
representation include the question of how large requirements models can be presented in
a clear way and how importance weights can be visually encoded to allow for their easy
comparison (cf. Section 8.4). In addition to that, several improvements to the critiquing

290

11.3. ELICITATION OF CONSUMER FEEDBACK

and tradeoff support offered by the system come to mind. These involve the considera-
tion of other visualization techniques that further improve the comprehensibility of recom-
mended tradeoff opportunities as well as the application of yet unconsidered data mining
and filtering techniques to extract common properties of the matching service offers more
effectively and efficiently. Moreover, the set of possible tradeoff types might be extended,
e.g. to allow for more fine-grained critiques such as "slightly more" and "much more".

To further improve the system’s support for requirements specification, additional features
such as automatic completion, e.g. of unique attribute values, or disabling non-applicable
interaction opportunities can be added. This could also involve support for automatic ex-
tension and refinement of the user’s request model based on the current usage context as
proposed and discussed in [Kla06].

11.3 Elicitation of Consumer Feedback

As discussed in Section 9.3.4, there are a number of issues related to human judgments
and their effective elicitation, that promise to initiate a particularly interesting line of mul-
tidisciplinary research. Among others, these include an in-depth analysis of the situational
and psychological aspects that affect a user’s choice to judge a certain service aspect, such
as the consumer’s satisfaction with the invoked service’s performance on that aspect or
simply the fact, that this aspect has been recommended as a judgment target. In this con-
text, it would be helpful to identify classes of judgment providers that share behavioral
patterns (stereotypes), since this would dramatically simplify the recommendation of judg-
ment targets and would allow for helpful recommendations, even if knowledge about a
user’s previous judgment behavior is missing. Other issues refer to the consistency of
human judgments and the service consumers’ willingness to provide detailed judgments.
Since the outlined field of research touches on topics pertaining to both, human behavior
and computer science, it should be jointly addressed by researchers from these fields.

11.4 Performance Prediction

A major advantage of the feedback mechanism that has been proposed in Chapter 6 is, that
it elicits and shares meaningful consumer feedback while at the same time revealing only
little personal information. In this context, the question arises, if the amount and quality
of the shared judgment information can be further reduced while maintaining a similar
prediction quality. Nonetheless, the quality of the performance predictions that can be
achieved by our approach is strongly affected by the availability of consumer feedback that
is sufficiently detailed, refers to similar kinds of services and that is based on similar service
requirements (cf. Section 9.4.4). It should therefore be examined more closely whether this
requirement can be fulfilled in a certain service domain and application scenario.

291

CHAPTER 11. FUTURE WORK

Finally, examining whether and how context-dependent misbehavior of service providers
impacts on the prediction quality that can be achieved by the proposed approach would
have gone beyond the scope of this thesis. Nonetheless, this is an issue worth to be consid-
ered more deeply, particularly, since the proposed prediction procedure takes the service
and feedback provider context of leveraged feedback into account and thus can be expected
to deal well with context-dependent behavior.

11.5 Practical Deployment and Social Implications

As indicated on many occasions throughout this thesis, it would be desirable to deploy our
approach in a real world system. This would have several benefits. Firstly, it would allow
us to evaluate our solution to Semantic Web Service selection in a real world setting, i.e.
based on consumers’ actual service needs, under realistic usage circumstances and with
a larger number and wider range of test users. This not just applies to the approach pre-
sented in this thesis. A running application that uses our solution to Semantic Web Service
selection would also furnish the test data that are urgently required to evaluate other ap-
proaches that are based on Semantic Web Service technology under realistic conditions.
However, the semantic information produced by such a real world system would not just
be valuable from a evaluation perspective, but could also serve as a foundation for new
and innovative applications that leverage semantic data. Moreover, semantic information
about consumers’ service requirements as well as detailed, semantically described con-
sumer feedback would deliver valuable knowledge about typical service needs in a given
usage scenario, about human judgment behavior and about misbehavior in service provi-
sion. Finally, a real world application based on Semantic Web Service technology would
demonstrate the benefits of using extensive semantical knowledge and thus would gener-
ate incentives for enterprises to invest time and money in the creation and use of semantic
information. In this context, it would be desirable to investigate whether the approach
proposed in this thesis can be applied to other semantic service description frameworks,
whether this generates additional benefits or whether this is impracticable. This would
help to assess the degree of semantics that is actually needed to enable ”computers and
people to work in cooperation” [BLHL01] as envisioned by Tim Berners-Lee.

The availability of extensive semantic data provides not just benefits, but also raises seri-
ous privacy issues. This is due to the fact, that semantic information can be interpreted and
processed automatically, which makes it much easier to acquire and combine user-specific
information, that otherwise had to be derived by analyzing unstructured data using impre-
cise data mining techniques. Discussing possible social implications of an increased use
of semantic technologies should therefore be also part of future research.

292

References

[AA09] Dimitrios Skoutas Anna Averbakh, Daniel Krause. Recommend me a ser-
vice: Personalized semantic web service matchmaking. In Andreas Nauerz
David Hauger, Mirjam Köck, editor, Workshop on Adaptivity and User Mod-

eling in Interactive Systems (ABIS 2009), 2009.

[AAS09] Daniel Krause Anna Averbakh and Dimitrios Skoutas. Exploiting user feed-
back to improve semantic web service discovery. In 8th International Se-

mantic Web Conference (ISWC 2009), 2009.

[Ado05] Gediminas Adomavicius. Incorporating contextual information in recom-
mender systems using a multidimensional approach. ACM Transactions on

Information Systems, 23(1):103, 2005.

[Agr06] Gennady Agre. Infrawebs designer - a graphical tool for designing semantic
web services. In Jérôme Euzenat and John Domingue, editors, AIMSA 2006,
volume 4183, pages 275–289. Springer, 2006.

[AIS93] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-
ciation rules between sets of items in large databases. In Peter Buneman
and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-

national Conference on Management of Data, pages 207–216, Washington,
D.C., FebruaryJune–FebruaryAugust 1993.

[AK06] Bilal M. Ayyub and George J. Klir. Uncertainty Modeling and Analysis in

Engineering and the Sciences. Chapman and Hall/CRC, 2006.

[AMK11] Gediminas Adomavicius, Nikos Manouselis, and YoungOk Kwon. Multi-
criteria recommender systems. In Recommender Systems Handbook, pages
769–803. 2011.

[AMLM07] Gennady Agre, Zlatina Marinova, Tomás Pariente Lobo, and András Micsik.
Towards semantic web service engineering. In Tommaso Di Noia, Rubén
Lara, Axel Polleres, Ioan Toma, Takahiro Kawamura, Matthias Klusch,
Abraham Bernstein, Massimo Paolucci, Alain Leger, and David L. Martin,
editors, SMRR CEUR Workshop Proceedings, volume 243. CEUR-WS.org,
2007.

[ARH97] Alfarez Abdul-Rahman and Stephen Hailes. A distributed trust model. In
NSPW ’97: Proceedings of the 1997 workshop on New security paradigms,
pages 48–60, New York, NY, USA, 1997. ACM.

[ARH00] Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual com-
munities. Hawaii International Conference on System Sciences, 6, 2000.

293

References

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Jorge B. Bocca, Matthias Jarke, and
Carlo Zaniolo, editors, VLDB’94, Proceedings of 20th International Confer-

ence on Very Large Data Bases, September 12-15, 1994, Santiago de Chile,

Chile, pages 487–499. Morgan Kaufmann, 1994.

[BAH+06] Shlomo Berkovsky, Lora Aroyo, Dominik Heckmann, Geert-jan Houben,
Er Kröner, Tsvi Kuflik, and Francesco Ricci. Predicting user experiences
through cross-context reasoning. In 14TH WORKSHOP ON ADAPTIVITY

AND USER MODELING IN INTERACTIVE SYSTEMS, 2006.

[BC02] Ralph Bergmann and Padraig Cunningham. Acquiring customers’ require-
ments in electronic commerce. Artif. Intell. Rev., 18(3-4):163–193, 2002.

[BDB05] Alistair P. Barros, Marlon Dumas, and Peter D. Bruza. The move to web
service ecosystems. BPTrends, 3(3), December 2005.

[Ber54] Daniel Bernoulli. Exposition of a new theory on the measurement of risk.
Econometrica, 22(1):23, 1954.

[BF08] Daniel Bachlechner and Kerstin Fink. Semantic web service research: Cur-
rent challenges and proximate achievements. International Journal of Com-

puter Science and Applications, 5(3b):117–140, 2008.

[BHK98] John S. Breese, David Heckerman, and Carl Kadie. Empirical analysis of
predictive algorithms for collaborative filtering. pages 43–52. Morgan Kauf-
mann, 1998.

[BHOC07] H. Billhardt, R. Hermoso, S. Ossowski, and R. Centeno. Trust-based ser-
vice provider selection in open environments. In 22nd ACM Symposium on

Applied Computing, pages 1375–1380, Seoul, 2007.

[BHY96] Robin D. Burke, Kristian J. Hammond, and Benjamin C. Young. Knowledge-
based navigation of complex information spaces. In AAAI/IAAI, Vol. 1, pages
462–468, 1996.

[BHY97] Robin D. Burke, Kristian J. Hammond, and Benjamin C. Young. The findme
approach to assisted browsing. IEEE Expert, 12:32–40, 1997.

[BKR08] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Mediation of user
models for enhanced personalization in recommender systems. User Model-

ing and User-Adapted Interaction, 18(3):245–286, aug 2008.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific

American, May 2001.

[BLP98] James r. Bettman, Mary frances Luce, and John w. Payne. Constructive con-
sumer choice processes. Journal of Consumer Research, 25(3):187–217,
December 1998.

294

References

[BMUT97] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dy-
namic itemset counting and implication rules for market basket data. In
SIGMOD 1997, Proceedings ACM SIGMOD International Conference on

Management of Data, pages 255–264, Tucson, Arizona, USA, May 1997.

[Bou02] Craig Boutilier. A pomdp formulation of preference elicitation problems.
In Eighteenth national conference on Artificial intelligence, pages 239–246,
Menlo Park, CA, USA, 2002. American Association for Artificial Intelli-
gence.

[Bro02] Andrei Broder. A taxonomy of web search. SIGIR FORUM, 36(2):3–10,
2002.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments. User

Modeling and User-Adapted Interaction, 12(4):331–370, November 2002.

[Bur07] Robin Burke. Hybrid web recommender systems. pages 377–408. 2007.

[BVMC05] Alessio Bosca, Giuseppe Valetto, Roberta Maglione, and Fulvio Corno. Lec-
ture notes in computer science. In Boualem Benatallah, Fabio Casati, and
Paolo Traverso, editors, ICSOC, volume 3826, pages 588–593. Springer,
2005.

[BW03a] Wolf-Tilo Balke and Matthias Wagner. Cooperative discovery for user-
centered web service provisioning. In ICWS, pages 191–197, 2003.

[BW03b] Wolf-Tilo Balke and Matthias Wagner. Towards personalized selection of
web services. In WWW (Alternate Paper Tracks), 2003.

[BW04] Wolf-Tilo Balke and Matthias Wagner. Through different eyes: assessing
multiple conceptual views for querying web services. In WWW (Alternate

Track Papers & Posters), pages 196–205, 2004.

[CBGS06] A. Caballero, J. A. Botía, and A. F. Gómez-Skarmeta. A new model for trust
and reputation management with an ontology based approach for similarity
between tasks. In MATES 2006: 4th German Conf. on Multiagent System

Technologies, 19-20 Sep 2006, Erfurt. Germany, pages 172–183, 2006.

[CBGS07] A. Caballero, J. A. Botía, and A. F. Gómez-Skarmeta. On the behaviour of
the trsim model for trust and reputation. In 5th German Conf. on Multiagent

System Technologies, Leipzig, pages 182–193, 2007.

[Cha05] Joshua Chang. Online shopping: Advantages over the offline alternative.
http://www.arraydev.com/commerce/JIBC/0311-07.htm, 2005.

[Che08] Li Chen. User Decision Improvement and Trust Building in Product Recom-

mender Systems. PhD thesis, EPFL, Lausanne, Switzerland, Ecole Polytech-
nique Federale de Lausanne, August 2008.

295

References

[CK04] Y. H. Cho and J. K. Kim. Application of web usage mining and product
taxonomy to collaborative recommendations in e-commerce. Expert Systems

with Applications, 26(2):233–246, feb 2004.

[CKP00] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational deci-
sions using adaptive utility elicitation. In AAAI/IAAI, pages 363–369, 2000.

[Cle91] Robert T. Clemen. Making Hard Decisions: An Introduction to Decision

Analysis. P.W.S.-Kent Publishing Co.,U.S., 1991.

[CMD02] J. Carbo, J. Molina, and J. Davila. Comparing predictions of sporas vs. a
fuzzy reputation agent system. In Third International Conference on Fuzzy

Sets and Fuzzy Systems, Interlaken, pages 147–153, 2002.

[CNS+04] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Marina
Mongiello, and Francesco M. Donini. Concept abduction and contraction
for semantic-based discovery of matches and negotiation spaces in an e-
marketplace. In ICEC ’04: Proceedings of the 6th international conference

on Electronic commerce, pages 41–50, New York, NY, USA, 2004. ACM.

[CNS+06] Simona Colucci, Tommaso Di Noia, Eugenio Di Sciascio, Francesco M.
Donini, Azzurra Ragone, and Raffaele Rizzi. A semantic-based fully visual
application for matchmaking and query refinement in b2c e-marketplaces. In
ICEC, pages 174–184, 2006.

[Com08] The Nielsen Company. Trends in online shopping a global nielsen consumer
report, February 2008.

[Com10] The Nielsen Company. Global trends in online shopping a nielsen global
consumer report, June 2010.

[CP02] Giuseppe Carenini and David Poole. Constructed preferences and value-
focused thinking: Implications for ai research on preference elicitation. In
AAAI’02 Workshop on Preferences in AI and CP: Symbolic Approaches, Ed-

monton, Canada, 2002.

[CP05] Bernard C.K. Choi and Anita W.P. Pak. A catalog of biases in questionnaires.
Prev. Chronic Dis., 2(1), 2005.

[CP06] Li Chen and Pearl Pu. Evaluating critiquing-based recommender agents. In
AAAI. AAAI Press, 2006.

[CP07a] Li Chen and Pearl Pu. The evaluation of a hybrid critiquing system with
preference-based recommendations organization. In RecSys, pages 169–172,
2007.

[CP07b] Li Chen and Pearl Pu. Hybrid critiquing-based recommender systems. In
IUI, pages 22–31, 2007.

296

References

[CP07c] Li Chen and Pearl Pu. Preference-based organization interfaces: Aiding user
critiques in recommender systems. In User Modeling, pages 77–86, 2007.

[CS06] Jorge Cardoso and Amit Sheth, editors. Semantic Web Services, Processes

and Applications. Springer-Verlag, Heidelberg, 2006.

[Daw79] Robyn M. Dawes. The robust beauty of improper linear models in decision
making. American Psychologist, 34(7):571–582, 1979.

[Del02] Chrysanthos Dellarocas. Goodwill hunting: An economically efficient on-
line feedback mechanism for environments with variable product quality. In
AMEC, pages 238–252, 2002.

[DF02] Marek J. Druzdzel and Roger R. Flynn. Encyclopedia of Library and In-

formation Science, chapter Decision Support Systems. Marcel Dekker, Inc.,
New York, 2002.

[DZN+06] Honghua K. Dai, Lingzhi Zhao, Zaiqing Nie, Ji R. Wen, Lee Wang, and Ying
Li. Detecting online commercial intention (oci). In WWW ’06: Proceedings

of the 15th international conference on World Wide Web, pages 829–837,
New York, NY, USA, 2006. ACM.

[EC01] B. Esfandiari and S. Chandrasekharan. On how agents make friends: mech-
anisms for trust acquisition. In Proceedings of the Fourth Workshop on De-

ception, Fraud and Trust in Agent Societies 2001, pages 27–34, 2001.

[EDM+05] Daniel Elenius, Grit Denker, David Martin, Fred Gilham, John Khouri,
Shahin Sadaati, and Rukman Senanayake. The owl-s editor - a development
tool for semantic web services. In ESWC, pages 78–92, 2005.

[eu206] Software, services and complexity research in the ist programme framework
programme vi (2002-2006) - an overview, 2006.

[FA99] Hershey H. Friedman and Taiwoo Amoo. Rating the rating scales. Journal

of Marketing Management, 9(3):114–123, 1999.

[FB08] A. Felfernig and R. Burke. Constraint-based recommender systems: tech-
nologies and research issues. In ICEC ’08: Proceedings of the 10th inter-

national conference on Electronic commerce, pages 1–10, New York, NY,
USA, 2008. ACM.

[FFST11] Dieter Fensel, Federico Michele Facca, Elena Paslaru Bontas Simperl, and
Ioan Toma. Semantic Web Services. Springer, 2011.

[FGE05] J. Figueira, S. Greco, and M. Ehrgott. Multiple Criteria Decision Analysis:

State of the Art Surveys. Springer Verlag, Boston, Dordrecht, London, 2005.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California, Irvine, 2000.

297

References

[FK10] Birgitta König-Ries Friederike Klan. Supporting consumers in providing
meaningful multi-criteria judgments. In In Proceedings of the International

Workshop on the Practical Use of Recommender Systems, Algorithms and

Technologies (PRSAT 2010) in conjunction with RecSys2010, Barcelona,

Spain, 2010.

[FLP+07] Dieter Fensel, Holger Lausen, Axel Polleres, Jos de Bruijn, Michael Stoll-
berg, Dumitru Roman, and John Domingue. Enabling Semantic Web Ser-

vices: The Web Service Modeling Ontology. Springer, 2007.

[FR01] E. J. Friedman and P. Resnick. The social cost of cheap pseudonyms. Journal

of Economics & Management Strategy, 10(2):173–199, 2001.

[Fra96] Robert B. Frary. Hints for designing effective questionnaires. Practical

Assessment, Research and Evaluation, 5(3), 1996.

[GA07] YoungOk Kwon Gediminas Adomavicius. New recommendation techniques
for multi-criteria rating systems. IEEE Intelligent Systems, 22(3), 2007.

[Gam88] Diego Gambetta. Can we trust trust? In Trust: Making and Breaking Coop-

erative Relations, pages 213–237. Basil Blackwell, 1988.

[GDFB06] N. Gujral, D. DeAngelis, K. Fullam, and K. S. Barber. Modeling multi-
dimensional trust. In Proceedings of The Workshop on Trust in Agent Soci-

eties at The 5th International Conference on Autonomous Agents and Multi-

agent Systems, pages 35–41, 2006.

[GMP06] Stephan Grimm, Boris Motik, and Chris Preist. Matching semantic service
descriptions with local closedworld reasoning. In The Semantic Web: Re-

search and Applications, 3rd European Semantic Web Conference, ESWC

2006, Budva, pages 575–589. Springer, 2006.

[Gri05] Nathan Griffiths. Task delegation using experience-based multi-dimensional
trust. In AAMAS ’05: Proceedings of the fourth international joint confer-

ence on Autonomous agents and multiagent systems, pages 489–496, New
York, NY, USA, 2005. ACM.

[GS00] Tyrone Grandison and Morris Sloman. A survey of trust in internet applica-
tions. IEEE Communications Surveys and Tutorials, 3(4), 2000.

[HCG01] David Hawking, Nick Craswell, and Kathleen Griffiths. Which search engine
is best at finding online services? In WWW Posters, 2001.

[Hol08] Clyde W. Holsapple. Dss architecture and types. In Frada Burstein and
Clyde W. Holsapple, editors, Handbook on Decision Support Systems 1,
pages 163–189. Springer Berlin Heidelberg, 2008.

[How88] Ronald A. Howard. Decision analysis: Practice and promise. Management

Science, 34(6):679–695, 1988.

298

References

[Hub07] W. Douglas Hubbard. How to measure anything finding the value of ’intan-

gibles’ in business. John Wiley & Sons, Hoboken, N.J., 2007.

[Jac01] Paul Jaccard. Étude comparative de la distribution florale dans une portion
des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles,
37:547–579, 1901.

[JBXC08] Audun Jøsang, Touhid Bhuiyan, Yue Xu, and CliveCombining Cox. Com-
bining trust and reputation managament for web-based services. In Steven
Furnell, Sokratis K. Katsikas, and Antonio Lioy, editors, TrustBus, volume
5185, pages 90–99. Springer, 2008.

[JH07] Audun Josang and Jochen Haller. Dirichlet reputation systems. In ARES ’07:

Proceedings of the The Second International Conference on Availability, Re-

liability and Security, pages 112–119, Washington, DC, USA, 2007. IEEE
Computer Society.

[JHP06] Audun Josang, Ross Hayward, and Simon Pope. Trust network analysis with
subjective logic. In ACSC ’06: Proceedings of the 29th Australasian Com-

puter Science Conference, pages 85–94, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

[JIB07] Audun Josang, Roslan Ismail, and Colin Boyd. A survey of trust and repu-
tation systems for online service provision. Decis. Support Syst., 43(2):618–
644, 2007.

[JLC08] Audun Josang, Xixi Luo, and Xiaowu Chen. Continuous ratings in discrete
bayesian reputation systems. 263:151, 2008.

[Jøs01] Audun Jøsang. A logic for uncertain probabilities. Int. J. Uncertain. Fuzzi-

ness Knowl.-Based Syst., 9(3):279–311, 2001.

[Jøs02] Audun Jøsang. The beta reputation system. In In Proceedings of the 15th

Bled Electronic Commerce Conference, 2002.

[Jos08] Audun Josang. Online reputation systems for the health sector. Electronic

Journal of Health Informatics, 3(1), 2008.

[JvN53] Oskar Morgenstern John von Neumann. Theory Of Games And Economic

Behavior. Princeton University Press., 1953.

[JWP93] Eric J. Johnson John W. Payne, James R. Bettman. The adaptive decision

maker. Cambridge University Press, 1993.

[JZ09] Markus Jessenitschnig and Markus Zanker. A generic user modeling com-
ponent for hybrid recommendation strategies. pages 337–344, jul 2009.

299

References

[Kau06] Frank Kaufer. Wsmo-mx: A logic programming based hybrid service match-
maker. In 2006 European Conference on Web Services (ECOWS 06), page
161, 2006.

[KBD07] N. Kokash, A. Birukou, and V. D’Andrea. Web service discovery based on
past user experience. In BIS, volume 4439, pages 95–107. Springer, 2007.

[Kee92] Ralph L. Keeney. Value-Focused Thinking - A Path to Creative Decisionmak-

ing. Harvard University Press, Cambridge, Massachusetts, London, England,
1992.

[Kee05] Ralph L. Keeney. Advances in Decision Analysis: From Foundations to Ap-

plications, chapter Developing Objectives and Attributes, pages 104–128.
New York: Cambridge University Press, 2005.

[Ker06] M. Kerrigan. Web service selection mechanisms in the web service execution
environment (wsmx). In 21st ACM Symposium on Applied Computing, pages
1664–1668, Dijon, 2006.

[KFS06] Matthias Klusch, Benedikt Fries, and Katia Sycara. Automated semantic
web service discovery with owls-mx. In AAMAS ’06: Proceedings of the

fifth international joint conference on Autonomous agents and multiagent

systems, pages 915–922, New York, NY, USA, 2006. ACM.

[KKK08] Matthias Klusch, Patrick Kapahnke, and Frank Kaufer. Evaluation of wsml
service retrieval with wsmo-mx. In Proceedings of the 2008 IEEE Interna-

tional Conference on Web Services, ICWS ’08, pages 401–408, Washington,
DC, USA, 2008. IEEE Computer Society.

[KKR04] Michael Klein and Birgitta König-Ries. Coupled signature and specification
matching for automatic service binding. In Proc. of the European Conference

on Web Services (ECOWS 2004), Erfurt, Germany, September 2004.

[KKR08] Friederike Klan and Birgitta König-Ries. A personalized approach to
experience-aware service ranking and selection. In Proceedings of the

2nd International Conference on Scalable Uncertainty Management (SUM

2008), Naples, Italy, October 2008.

[KKR09] Ulrich Küster and Birgitta König-Ries. Semantic service discovery with di-
ane service descriptions. In Charles Petrie, Tiziana Margaria, Holger Lausen,
and Michal Zaremba, editors, Semantic Web Services Challenge, volume 8,
chapter Semantic Web and Beyond, pages 199–216. Springer US, 2009.

[KKR10a] Friederike Klan and Birgitta König-Ries. Enabling Trust-Aware Seman-
tic Web Service Selection - A Flexible and Personalized Approach. Je-
naer Schriften zur Mathematik und Informatik, Math/Inf/02/10, Friedrich-
Schiller-University Jena, August 2010.

300

References

[KKR10b] Friederike Klan and Birgitta König-Ries. Enabling trust-aware semantic web
service selection - a flexible and personalized approach. In Proceedings of

the 12th International Conference on Information Integration and Web-based

Applications & Services (iiWAS), Paris, France, November 2010, 2010.

[KKR11] Friederike Klan and Birgitta König-Ries. A conversational approach to se-
mantic web service selection. In EC-Web, pages 1–12, 2011.

[KKRKS07] Ulrich K"uster, Birgitta K"onig-Ries, Michael Klein, and Mirco Stern. Di-
ane - a matchmaking-centered framework for automated service discovery,
composition, binding and invocation. In Proceedings of the 16th Interna-

tional World Wide Web Conference (WWW2007), Banff, Alberta, Canada,
May 2007.

[KKRM05] M. Klein, B. König-Ries, and M. Müssig. What is needed for semantic
service descriptions?: A proposal for suitable language constructs. Int. J. of

Web and Grid Services, 1(3/4):328–364, 2005.

[Kla06] Friederike Klan. Context-aware service discovery, selection and usage. In
18th GI-Workshop on the Foundations of Databases, Wittenberg, Saxony-

Anhalt, 2006.

[Kle05] Michael Klein. Automatisierung dienstorientierten Rechnens durch emantis-

che Dienstbeschreibungen. PhD thesis, Friedrich-Schiller-Universität Jena,
2005.

[KM01] Waikit Koh and Lik Mui. Ceur workshop proceedings. In Alexander Maed-
che, Steffen Staab, Claire Nedellec, and Eduard H. Hovy, editors, Workshop

on Ontology Learning, volume 38. CEUR-WS.org, 2001.

[KMSF09] Mick Kerrigan, Adrian Mocan, Elena Simperl, and Dieter Fensel. Modeling
semantic web services with the web service modeling toolkit. Journal of

Network and Systems Management, 17(3):326, 2009.

[Kni21] Frank H. Knight. Risk, Uncertainty and Profit. University of Chicago Press,
1921.

[KR93] R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences

and Value Trade-offs. Cambridge University Press, Cambridge, 1993.

[KTR05] Michael Kinateder, Ralf Terdic, and Kurt Rothermel. Strong pseudonymous
communication for peer-to-peer reputation systems. In Proceedings of the

2005 ACM Symposium on Applied Computing (SAC ’05), pages 1570–1576,
New York, NY, USA, 2005. ACM Press.

[Küs10] Ulrich Küster. An Evaluation Methodology and Framework for Semantic

Web Services Technologies. PhD thesis, Friedrich-Schiller-University Jena,
Jena, Germany, June 2010.

301

References

[KvW07] R. Keeney and D. von Winterfeldt. Advances in Decision Analysis: From

Foundations to Applications, chapter Practical value models, pages 232–252.
New York: Cambridge University Press, 2007.

[Lew82] C. H. Lewis. Using the "thinking aloud" method in cognitive interface de-
sign. Technical Report RC-9265, IBM, 1882.

[lik32] A technique for the measurement of attitudes. Archives of Psychology,
140:1–55, 1932.

[LK10] Tsoukiàs A. Lakiotaki K., Matsatsinis N. Multi-criteria user modeling in
recommender systems. IEEE Intelligent Systems, 2010.

[LMRD09] Philipp Leitner, Anton Michlmayr, Florian Rosenberg, and Schahram Dust-
dar. Selecting web services based on past user experiences. In APSCC, pages
205–212, 2009.

[LPN+07] Tomás Pariente Lobo, Alejandro Lopez Perez, Joachim Nern, Gennady Agre,
Zlatina Marinova, Tatiana Atanasova, Andràs Micsik, James Scicluna, Janne
Saarela, and Elpida Tzafestas. Infrawebs integrated framework user guide,
version 2.0, dated 21/02/2007, 2007.

[LR05] Fabiana Lorenzi and Francesco Ricci. Case-based recommender systems:
A unifying view. In Bamshad Mobasher and Sarabjot S. Anand, editors,
Lecture Notes in Computer Science, ITWP, volume 3169, pages 89–113.
Springer, 2005.

[LS09] Fabián P. P. Lousam and Eduardo Sánchez. View-based recommender sys-
tems. In Proceedings of the third ACM conference on Recommender systems,
RecSys ’09, pages 389–392, New York, NY, USA, 2009. ACM.

[LWG08] Qiudan Li, Chunheng Wang, and Guanggang Geng. Improving personalized
services in mobile commerce by a novel multicriteria rating approach. In
Proceeding of the 17th international conference on World Wide Web, WWW
’08, pages 1235–1236, New York, NY, USA, 2008. ACM.

[Mar78] J. G. March. Bounded rationality, ambiguity, and the engineering of choice.
The Bell Journal of Economics, 9(2):587–608, 1978.

[Mar94] Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD
thesis, University of Stirling, April 1994.

[MBBW07] Bamshad Mobasher, Robin Burke, Runa Bhaumik, and Chad Williams. To-
ward trustworthy recommender systems. ACM Transactions on Internet

Technology, 7(4):23, 2007.

[MC07] Nikos Manouselis and Constantina Costopoulou. Experimental analysis
of design choices in multiattribute utility collaborative filtering. IJPRAI,
21(2):311–331, 2007.

302

References

[Min98] Jack Minker. An overview of cooperative answering in databases. In FQAS

’98: Proceedings of the Third International Conference on Flexible Query

Answering Systems, pages 282–285, London, UK, 1998. Springer-Verlag.

[MMA+01] L. Mui, M. Mohtashemi, C. Ang, P. Szolovits, and A. Halberstadt. Ratings
in distributed systems: A bayesian approach, 2001.

[MMS05] Glenn Mahoney, Wendy J. Myrvold, and Gholamali C. Shoja. Generic relia-
bility trust model. In PST, 2005.

[MP05] U. S. Manikrao and T. V. Prabhakar. Dynamic selection of web services with
recommendation system. In Intl. Conf. on Next Generation Web Services

Practices, pages 117–121, Washington, DC, 2005. IEEE Computer Society.

[MRMS04] K. McCarthy, J. Reilly, L. McGinty, and B. Smyth. Thinking positively - ex-
planatory feedback for conversational recommender systems. In P. Cunning-
ham and D. McSherry, editors, European Conference on Case-Based Rea-

soning (ECCBR-04) Explanation Workshop, pages 115–124, 2004. Madrid,
Spain.

[MS02] E. M. Maximilien and M. P. Singh. Conceptual model of web service repu-
tation. SIGMOD Rec., 31(4):36–41, 2002.

[MS05] E. Michael Maximilien and Munindar P. Singh. Agent-based trust model
involving multiple qualities. In AAMAS ’05: Proceedings of the fourth in-

ternational joint conference on Autonomous agents and multiagent systems,
pages 519–526, New York, NY, USA, 2005. ACM.

[Mui02] Lik Mui. Computational Models of Trust and Reputation: Agents, Evolu-

tionary Games, and Social Networks. PhD thesis, MIT, 2002.

[nes07] Nessi strategic research agenda: Vol. 2 strategy to build nessi, March 2007.

[nes09] Nessi strategic research agenda: Nessi research priorities for fp7, May 2009.

[NHC08] Syavash Nobarany, Mona Haraty, and Dan Cosley. Geputtis: General pur-
pose transitive trust inference system for social networks. In Proceedings of

the AAAI Spring Symposium on Social Information Processing (AAAI-SIP-

08), Menlo Park, California, 2008. AAAI.

[Nie93] J. Nielsen. Usability Engineering. Academic Press, 1993.

[NLL+06] Olaf Noppens, Marko Luther, Thorsten Liebig, Matthias Wagner, and Mas-
simo Paolucci. Ontology-supported preference handling for mobile music
selection. In Proceedings of the Multidisciplinary Workshop on Advances in

Preference Handling, Riva del Garda, Italy, august 2006.

303

References

[NLS07] O. Noppens, T. Liebig, and P. Schmidt. Mobixpl - a svg-based mobile user
interface for semantic service discovery. In Proceedings of the 5th Interna-

tional Conference on Scalable Vector Graphics (SVG Open 2007), 2007.

[NM90] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In
Proceedings of the SIGCHI conference on Human factors in computing sys-

tems: Empowering people, CHI ’90, pages 249–256, New York, NY, USA,
1990. ACM.

[OAS06] OASIS. Reference model for service oriented architecture 1.0. OASIS Stan-
dard, October 2006.

[PB07] Michael J. Pazzani and Daniel Billsus. Content-based recommendation sys-
tems. In Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors,
The Adaptive Web: Methods and Strategies of Web Personalization, vol-
ume 4321, chapter Content-Based Recommendation Systems, pages 325–
341. Springer, Berlin, Heidelberg, 2007.

[PBJ92] J. W. Payne, J. R. Bettman, and E. J. Johnson. Behavioral decision research -
a constructive processing perspective. Annual Review of Psychology, 43:87–
131, 1992.

[PBS99] John W. Payne, James R. Bettman, and David A. Schkade. Measuring con-
structed preferences: Towards a building code. Journal of Risk and Uncer-

tainty, 19(1-3):243–70, December 1999.

[PBTL99] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discover-
ing frequent closed itemsets for association rules. In ICDT, pages 398–416,
1999.

[PC06] Pearl Pu and Li Chen. Trust building with explanation interfaces. In IUI,
pages 93–100, 2006.

[PC07] P PU and L CHEN. Trust-inspiring explanation interfaces for recommender
systems. Knowledge-Based Systems, 20(6):542, 2007.

[Phi84] Lawrence D. Phillips. A theory of requisite decision models. Acta Psycho-

logica, 56:29–48, 1984.

[RE03] M. Rodriguez and M. Egenhofer. Determining semantic similarity among
entity classes from different ontologies. IEEE Trans. on Knowledge and

Data Eng., 15(2):442–456, 2003.

[Rei05] James Reilly. Incremental critiquing. Knowledge-Based Systems, 18(4-
5):143, 2005.

[Res10] TechTarget/Forrester Research. State of soa survey for 2010, 2010.

304

References

[Rie09] Sebastian Ries. Extending bayesian trust models regarding context-
dependence and user friendly representation. In SAC ’09: Proceedings of

the 2009 ACM symposium on Applied Computing, pages 1294–1301, New
York, NY, USA, 2009. ACM.

[RIS+94] P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. Grouplens:
An open architecture for collaborative filtering of netnews. pages 175–186,
Chapel Hill, North Carolina, 1994. ACM.

[RKM+01] Naren Ramakrishnan, Benjamin J. Keller, Batul J. Mirza, Ananth Y. Grama,
and George Karypis. Privacy risks in recommender systems. IEEE Internet

Computing, 5(6):54–62, nov 2001.

[RMMS04] James Reilly, Kevin McCarthy, Lorraine McGinty, and Barry Smyth. Dy-
namic critiquing. In ECCBR, pages 763–777, 2004.

[RNSS08] Michele Ruta, Tommaso Di Noia, Eugenio Di Sciascio, and Floriano Scios-
cia. A semantic-based fully visual application for context-aware matchmak-
ing and request refinement in ubiquitous computing. In ICCSA (2), pages
259–274, 2008.

[RRRJ07a] Steven Reece, Stephen Roberts, Alex Rogers, and Nicholas R. Jennings. A
multi-dimensional trust model for heterogeneous contract observations. In
AAAI, pages 128–135, 2007.

[RRRJ07b] Steven Reece, Alex Rogers, Stephen Roberts, and Nicholas R. Jennings. Ru-
mours and reputation: evaluating multi-dimensional trust within a decen-
tralised reputation system. In AAMAS ’07: Proceedings of the 6th interna-

tional joint conference on Autonomous agents and multiagent systems, pages
1–8, New York, NY, USA, 2007. ACM.

[RSMM05] James Reilly, Barry Smyth, Lorraine McGinty, and Kevin McCarthy. Cri-
tiquing with confidence. In Héctor Muñoz-Avila and Francesco Ricci, edi-
tors, Lecture Note IN Computer Science, ICCBR, volume 3620, pages 436–
450. Springer, 2005.

[RZM+07] James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and Barry Smyth.
Evaluating compound critiquing recommenders: a real-user study. In EC

’07: Proceedings of the 8th ACM conference on Electronic commerce, pages
114–123, New York, NY, USA, 2007. ACM.

[Saa08] Thomas L. Saaty. Relative measurement and its generalization in decision
making: Why pairwise comparisons are central in mathematics for the mea-
surement of intangible factors - the analytic hierarchy process. RACSAM,
102(2):251–318, 2008.

[Sab05] Jordi Sabater. Review on computational trust and reputation models. Artifi-

cial Intelligence Review, 24(1):33, 2005.

305

References

[SAM04] J. Scicluna, C. Abela, and M. Montebello. Visual modelling of owl-s ser-
vices. In IADIS International Conference WWW/Internet, 2004.

[sec06] Secse deliverable a2.d5 secse requirements process v2.0, 2006.

[SFHS07] J. Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. Collab-

orative Filtering Recommender Systems, volume 4321 of Lecture Notes in

Computer Science, pages 291–324. Springer, Berlin, Heidelberg, 2007.

[Sha48] C. E. Shannon. A mathematical theory of communication. Bell system tech-

nical journal, 27, 1948.

[Shi01] Hideo Shimazu. Expert clerk: Navigating shoppers’ buying process with the
combination of asking and proposing. In Proceedings of the 17th Interna-

tional Joint Conference on Artificial Intelligence (IJCAI’01), pages 1443–
1450, August 2001.

[Shi02] Hideo Shimazu. Expertclerk: A conversational case-based reasoning tool
fordeveloping salesclerk agents in e-commerce webshops. Artif. Intell. Rev.,
18(3-4):223–244, 2002.

[Shn98] Ben Shneiderman. Designing the User Interface - Strategies for Effective

Human-Computer Interaction. Addison-Wesley Longman, Reading, MA,
3rd edition, 1998.

[Sho08] D. Sholler. 2008 soa user survey: Adoption trends and characteristics, 2008.
No. G00161125.

[SJ04] Jean-Marc Seigneur and Christian D. Jensen. Trading privacy for trust. pages
93–107. 2004.

[SJ07] Christoph Schroth and Till Janner. Web 2.0 and soa: Converging concepts
enabling the internet of services. IT Professional, 9(3):36–41, may 2007.

[SKDC06] Nachiketa Sahoo, Ramayya Krishnan, George Duncan, and James P. Callan.
Collaborative filtering with multi-component rating for recommender sys-
tems. In 16th WI Workshop on Information Technologies and Systems, Mil-
waukee, 2006.

[SLH06] N. Shadbolt, Tim B. Lee, and W. Hall. The semantic web revisited. IEEE

Intelligent Systems, 21(3):96–101, 2006.

[Slo72] P. Slovic. Limitations of the Mind of Man: Implications for decision making

in the nuclear age. Los Alamos Scientific Laboratory, 1972.

[Slo95] P. Slovic. The construction of preference. American Psychologist,
50(5):364–371, May 1995.

306

References

[SMB10] Ahu Sieg, Bamshad Mobasher, and Robin Burke. Improving the effective-
ness of collaborative recommendation with ontology-based user profiles. In
Proceedings of the 1st International Workshop on Information Heterogeneity

and Fusion in Recommender Systems, HetRec ’10, pages 39–46, New York,
NY, USA, 2010. ACM.

[Smy07] Barry Smyth. Case-based recommendation. In The Adaptive Web, pages
342–376, 2007.

[soa08] Soa4all deliverable d2.2.1 service consumption platform design, 2008.

[SPg+07] M. Sensoy, F. C. Pembe, H. Zirtilou glu, P. Yolum, and A. Bener. Experience-
based service provider selection in agent-mediated e-commerce. Eng. Appl.

Artif. Intell., 20(3):325–335, 2007.

[SS01] J. Sabater and C. Sierra. Regret: Reputation in gregarious societies. In
AGENTS ’01: Proceedings of the 5th Intl. Conf. on Autonomous agents,
pages 194–195, New York, NY, USA, 2001.

[SS02] Jordi Sabater and Carles Sierra. Reputation and social network analysis in
multi-agent systems. In AAMAS ’02: Proceedings of the first international

joint conference on Autonomous agents and multiagent systems, pages 475–
482, New York, NY, USA, 2002. ACM.

[SSN01] Hideo Shimazu, Akihiro Shibata, and Katsumi Nihei. Expertguide: A con-
versational case-based reasoning tool for developing mentors in knowledge
spaces. Appl. Intell., 14(1):33–48, 2001.

[Tin07] Nava Tintarev. A survey of explanations in recommender systems. In 2007

IEEE 23rd International Conference on Data Engineering Workshop, page
801, 2007.

[TLU06] Santtu Toivonen, Gabriele Lenzini, and Ilkka Uusitalo. Context-aware trust
evaluation functions for dynamic reconfigurable systems. In MTW, 2006.

[TP98] Ellen Taylor-Powell. Questionnaire design: Asking questions with purpose.
G3658-2 program development and evaluation, University of Wisconsin,
1998.

[Tsa95] Edward Tsang. Foundations of Constraint Satisfaction. Academic Press,
1995.

[TT08] Richard Taylor and Chris Tofts. Enabling the web of services. Hpl-2008-14,
2008.

[Tve77] A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.

[UKA04] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In FIMI, 2004.

307

References

[VFP06] Paolo Viappiani, Boi Faltings, and Pearl Pu. Preference-based search us-
ing example-critiquing with suggestions. Journal of Artificial Intelligence

Research (JAIR), 27:465–503, 2006.

[VHA05] L. H. Vu, M. Hauswirth, and K. Aberer. Qos-based service selection and
ranking with trust and reputation management. In Intl. Conf. on Cooperative

Information Systems, volume 3760(1), pages 446–483, Agia Napa, 2005.

[VPF07] Paolo Viappiani, Pearl Pu, and Boi Faltings. Conversational recommenders
with adaptive suggestions. In RecSys ’07: Proceedings of the 2007 ACM

conference on Recommender systems, pages 89–96, New York, NY, USA,
2007. ACM.

[VPF08] Paolo Viappiani, Pearl Pu, and Boi Faltings. Preference-based search with
adaptive recommendations. AI Communications, 21(2-3):155–175, April
2008.

[VPHA07] L. H. Vu, F. Porto, M. Hauswirth, and K. Aberer. An extensible and per-
sonalized approach to qos-enabled service discovery. In 11th Intl. Database

Engineering & Applications Symposium, Banff, 2007.

[WLH07] H. C. Wang, C. S. Lee, and T. H. Ho. Combining subjective and objective qos
factors for personalized web service selection. Expert Syst. Appl., 32(2):571–
584, 2007.

[WLN+04] Matthias Wagner, Thorsten Liebig, Olaf Noppens, Steffen Balzer, and Wolf-
gang Kellerer. Towards semantic-based service discovery on tiny mobile de-
vices. In Proceedings of the Workshop on Semantic Web Technology for Mo-

bile and Ubiquitous Applications, pages 90–101, Hiroshima, Japan, Nove-
mer 2004.

[WV03] Yao Wang and Julita Vassileva. Bayesian network-based trust model. In WI

’03: Proceedings of the IEEE/WIC International Conference on Web Intelli-

gence, Washington, DC, USA, 2003. IEEE Computer Society.

[YS02] Bin Yu and Munindar P. Singh. Distributed reputation management for elec-
tronic commerce. Computational Intelligence, 18(4):535–549, 2002.

[Yu07] Liyang Yu. Introduction to the Semantic Web and Semantic Web Services.
Chapman & Hall/CRC, 1 edition, 2007.

[Zac99] G. Zacharia. Collaborative reputation mechanisms for online communities.
Master’s thesis, Masschusetts Institute of Technology, 1999.

[Zan09] Markus Zanker. Case-studies on exploiting explicit customer requirements
in recommender systems. User Modeling and User-Adapted Interaction,
19(1-2):133, 2009.

308

References

[ZM08] Konstantinos Zachos and Neil Maiden. Inventing requirements from soft-
ware: An empirical investigation with web services. In Proceedings of the

2008 16th IEEE International Requirements Engineering Conference, pages
145–154, Washington, DC, USA, 2008. IEEE Computer Society.

[ZMHM08] Konstantinos Zachos, Neil A. M. Maiden, and Rhydian Howells-Morris. Dis-
covering web services to improve requirements specifications: Does it help?
In REFSQ, pages 168–182, 2008.

[ZVB06] Weiliang Zhao, Vijay Varadharajan, and George Bryan. General methodol-
ogy for analysis and modeling of trust relationships in distributed computing.
JCP, 1(2):42–53, 2006.

[ZZMJ06] Konstantinos Zachos, Xiaohong Zhu, Neil Maiden, and Sara Jones. Seam-
lessly integrating service discovery into uml requirements processes. In
SOSE ’06: Proceedings of the 2006 international workshop on Service-

oriented software engineering, pages 60–66, New York, NY, USA, 2006.
ACM.

309

Appendix

311

A
Ontology for the Computer Items

Domain

This appendix provides the ontology for the computer items domain (in f-dsd notation
[Kle05]), which we created for the evaluation of the performance prediction procedure
(Chapter 6 and Section 9.4) as well as for the evaluation of the approach to requirements
elicitation and service selection that have been introduced in this thesis (Chapter 5 and
Chapter 8). It was used to generate service descriptions from the computer items that have
been extracted from a major online seller.

{ontology domain.computer}

entityclass Device extends PhysicalEntity at top

[

size : DimensionMeasure at domain.measure

manufacturer : Company at domain.economy

]

entityclass Computer extends Device

[

model : Model

]

entityclass AllPurposeComputer extends Computer

[

processor : Processor,

platform : OS,

memory : Memory

]

entityclass OnePurposeComputer extends Computer []

313

APPENDIX A. ONTOLOGY FOR THE COMPUTER ITEMS DOMAIN

entityclass StationaryComputer extends AllPurposeComputer

[

numberOfProcessors : Integer,

floppyDisc : FDD,

graphicsCard : GraphicsCard,

hardDisc : HDD,

numberOfMemorySlots : Integer,

systemBus : SystemBus,

secondaryCache : SecondaryCache

]

entityclass PortableComputer extends AllPurposeComputer

[

battery : Battery,

display : Display,

modem : Modem

]

entityclass DesktopPC extends StationaryComputer

[

display : Display,

modem : Modem,

ethernet : Ethernet

]

entityclass Server extends StationaryComputer []

entityclass Notebook extends PortableComputer

[

floppyDisc : FDD,

graphicsCard : GraphicsCard,

hardDisc : HDD,

numberOfMemorySlots : Integer,

numberOfProcessors : Integer,

secondaryCache : SecondaryCache,

systemBus : SystemBus

]

entityclass PDA extends PortableComputer []

entityclass DigitalWatch extends OnePurposeComputer []

entityclass EBookReader extends OnePurposeComputer

[

battery : Battery,

platform : OS,

memory : Memory

]

314

entityclass ElectronicDictionary extends OnePurposeComputer []

entityclass Organizer extends OnePurposeComputer

[

battery : Battery,

platform : OS,

memory : Memory

]

public entityclass Processor extends Device

[

clockSpeed : FrequencyMeasure at domain.measure,

type : String

]

entityclass GraphicsCard extends Device

[

graphicsCardMemorySize : DataCapacityMeasure at domain.measure

]

entityclass HDD extends Device

[

hddSize : DataCapacityMeasure at domain.measure

]

entityclass Memory extends Device

[

memorySize : DataCapacityMeasure at domain.measure,

memoryType : String

]

entityclass SystemBus extends Device

[

busSpeed : FrequencyMeasure at domain.measure

]

315

APPENDIX A. ONTOLOGY FOR THE COMPUTER ITEMS DOMAIN

entityclass SecondaryCache extends Device

[

secondaryCacheSize : DataCapacityMeasure at domain.measure

]

entityclass OS extends AbstractEntity at top

[

producer : Company at domain.economy,

type : String

]

entityclass Display extends Device

[

displaySize : LengthMeasure at domain.measure,

resX : Integer,

resY : Integer

]

entityclass Modem extends Device at domain.computer

[

isOnBoard : Boolean

]

entityclass Ethernet extends Device at domain.computer

[

isOnBoard : Boolean

]

entityclass FDD extends Device at domain.computer

[

isOnBoard : Boolean

]

entityclass Battery extends PhysicalEntity at top

[

isIncluded : Boolean

]

entityclass Model extends AbstractEntity at top

[

modelName : String

]

316

B
Questionnaire for the Evaluation of the

Requirements Elicitation and Service

Selection Mechanism

This appendix contains the questionnaires that have been used to evaluate the requirements
elicitation and service selection mechanism that has been proposed in Chapter 5. These
are the Pre-System-Usage Questionnaire (Appendix B.1), the Post-System-Usage Ques-
tionnaire (Appendix B.2), the Post-Browsing Questionnaire (Appendix B.3) and the ques-
tionnaire for the evaluation of the graphical requirements representation (Appendix B.4).
The questionnaires have been created using the free Web-based survey tool Kwik Sur-
veys1, which enabled online completement of the questionnaires, IP tracking as well as
result download and export.

1http://kwiksurveys.com

317

C
Questionnaire for the Evaluation of the

Judgment Recommendation

Mechanism

This appendix contains the questionnaire that was used to elicit the test data for the eval-
uation of the mechanism for judgement target recommendation that has been presented in
Section 6.5.

329

Desktop Request Model 1
You want to buy a computer, namely a ...

Desktop PC from IBM, Lenovo or Apple with
at least two 2.0 GHz processors
and a height of at most 20 inches
for at most 2000 $

the price is very important to you, more than all other aspects

product computer

price

whole
service

currency

amount

processor

size

manufacturer

number of
processors

clock speed

value

unit

height value

unitname

Desktop Request Model 2
You want to buy a computer, namely a ...

Desktop PC with
at least 3 processors
at least 1GB RAM
At least 350MB graphics card memory
for at most 2000 $

both, the price and the desired properties of the computer
are equally important to you

product computer

price

whole
service

currency

amount

graphics
card

RAM

number of
processors

graphics
card

memory

value

unit

RAM size value

unit

Desktop Request Model 3
You want to buy a computer, namely a ...

Desktop PC from Apple with
an Intel processor
a height of at most 20 inches and a width of at most 10 inches
a weight of at most 15 pounds
for at most 3500 $

the desired properties of the computer are most important to you,
more than the price

product computer

price

whole
service

currency

amount

processor

size

manufacturer

manufacturer name

height value

unit

name

width

value

unit

weight

value

unit

Desktop PCs

APPENDIX C. QUESTIONNAIRE FOR THE EVALUATION OF THE

JUDGMENT RECOMMENDATION MECHANISM

330

Desktop Request Model 6
You want to buy a computer, namely a ...

Desktop PC C315 from Lenovo with
a weight of at most 17 pounds
a height of at most 20 inches
for at most 1000 $

the desired properties of the computer are most important to
you, more than the price
the model and the manufactuerer of the computer are of
particular importance to you

product computer

price

whole
service

currency

amount

weight

manufacturer

value

unit

name

Desktop Request Model 5
You want to buy a computer, namely a ...

Desktop PC from Dell with
a weight of at most 17 pounds
a height of at most 20 inches
for at most 1000 $

both, the price and the desired properties of the computer
are equally important to you
among the computer characteristics the weight and size of
the computer are most important to you

product computer

price

whole
service

currency

amount

weight

manufacturer

value

unit

name

size height value

unit

model name

size height value

unit

Desktop Request Model 4
You want to buy a computer, namely a ...

Desktop PC from IBM with
a weight of at most 17 pounds
for at most 1000 $

the price is very important to you, more than all other aspects
among the computer characteristics the weight is most
important to you

product computer

price

whole
service

currency

amount

weight

manufacturer

value

unit

name

331

Digital Watch Request Model 1
You want to buy a digital watch from Karenna or Seiko with

a weight of at most 40 g
that is either silver or black, but black is preferred
for at most 100 $

the price is very important to you, more than all other aspects

product

price

whole
service

currency

amount

manufacturer name

Digital Watches

digital
watch

weight value

unit

color

Digital Watch Request Model 2
You want to buy a digital watch from Schylling, Gametime or Nike with

a weight of at most 45 g
for at most 200 $

both, the price and the desired properties of the watch are equally
important to you
among the watch characteristics the weight is most important to you

product

price

whole
service

currency

amount

manufacturer name

digital
watch

weight value

unit

Digital Watch Request Model 3
You want to buy a black digital watch from Nike

for at most 200 $

the desired properties of the watch are most important to you
among the watch characteristics the manufacturer is most important to you

product

price

whole
service

currency

amount

manufacturer name

digital
watch

color

Digital Watch Request Model 4
You want to buy a silver digital watch

for at most 100 $

the price is very important to you, more than all other aspects

product

price

whole
service

currency

amount

digital
watch

color

APPENDIX C. QUESTIONNAIRE FOR THE EVALUATION OF THE

JUDGMENT RECOMMENDATION MECHANISM

332

Digital Watch Request Model 5
You want to buy a digital watch from Xonic, Gametime or Nike

for at most 200 $

both, the price and the desired properties of the watch are equally
important to you

product

price

whole
service

currency

amount

manufacturer name

digital
watch

Digital Watch Request Model 6
You want to buy a pink digital watch from Nike with

a weight of at most 45 g
for at most 200 $

the desired properties of the watch are most important to you
among the watch characteristics the weight is most important to you

product

price

whole
service

currency

amount

manufacturer name

digital
watch

color

weight value

unit

333

