
 

 
 
 
 
 
 

The numerical range of non-
negative operators in Krein 

spaces     
 

Preprint No. M 12/11 

Friedrich Philipp and Carsten Trunk 
  

2012 

Impressum: 
Hrsg.: Leiter des Instituts für Mathematik 

Weimarer Straße 25 
98693 Ilmenau 

Tel.: +49 3677 69-3621 
Fax: +49 3677 69-3270 
http://www.tu-ilmenau.de/math/ 

Technische Universität Ilmenau 
Institut für Mathematik 



The numerical range of non-negative operators in Krein
spaces

Friedrich Philipp1

Institut für Mathematik, Technische Universität Berlin, Sekretariat MA 4-1, Straße des

17. Juni 136, D-10623 Berlin, Germany

Carsten Trunk

Institut für Mathematik, Technische Universität Ilmenau, Postfach 10 05 65, D-98684
Ilmenau, Germany

Abstract

We define and characterize the Krein space numerical range W (A) and the
Krein space co-numerical range Wco(A) of a non-negative operator A in a
Krein space. It is shown that the non-zero spectrum of A is contained in
the closure of W (A) ∩Wco(A).
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1. Introduction

The classical numerical range of an operator in a Hilbert space has been
studied extensively and there are many results which connect algebraic and
analytic properties of an operator with the geometric properties of its nu-
merical range. For an operator A acting in a Krein space (K, [· , ·]) the Krein
space numerical range is defined by

W (A) =

{
[Ax, x]

[x, x]
: x ∈ domA, [x, x] 6= 0

}
.
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There is a substantial interest in studying these relations in the Krein space
setting, see, e.g., [3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15]. It is well-known [3, 4, 11]
that each of the sets

W±(A) = {[Ax, x] : x ∈ domA, [x, x] = ±1}

is convex and, as W (A) = W+(A) ∪ W−(A), W (A) decomposes into at
most two convex subsets. Using the joint numerical range, conditions for
W±(A) to be contained in a half space or in a line are given in [14], and in
[15] it is shown that the Krein space numerical range is pseudo-convex2 for
a special class of matrices. In [5] boundary generating curves, corners and
computer generation of the Krein space numerical range are investigated, in
[6, 7] relations between the sets W+(A) and W−(A) are discussed and in
[8] the numerical range is completely characterized in 2-dimensional Krein
spaces. Moreover, in [13] operators with bounded Krein space numerical
ranges are studied.

In the present paper we give a complete description of W (A) for non-
negative operators in Krein spaces. In fact, it turns out that W (A) always
consists of the entire real axis with the possible exception of a bounded in-
terval ∆ with 0 ∈ ∆. The boundary points of this interval can be calculated
in terms of the positive/negative spectrum of A, see Theorem 3.3 below.
Hence, W (A) is a pseudo-convex set. This (partially) extends a result in
[6, Proposition 2.3] where it is shown that W (A) is pseudo-convex if A is a
Krein space normal matrix with simple eigenvalues only such that ReA has
only real eigenvalues.

In the recent paper [10] D. Wu and A. Chen proved with elementary
methods that the spectrum of a non-negative operator A in a Krein space
(K, [· , ·]) is always contained in the closure of its Krein space numerical
range,

σ(A) ⊂ W (A). (1.1)

In fact, this statement follows almost immediately with the help of the spec-
tral function E (see [12]) of the operator A: If, e.g., λ ∈ σ(A) ∩ (0,∞) and
∆ ⊂ (0,∞) is a compact interval with λ in its interior, then A|E(∆)K is self-
adjoint in the Hilbert space (E(∆)K, [· , ·]) and hence λ ∈ W (A|E(∆)K) ⊂
W (A). A similar argumentation applies to negative points in the spectrum
of A. Hence, it remains to consider the point zero in the case when it is an

2A set is called pseudo-convex ([6, 15]) if for any pair of distinct points x, y in this set
either the closed line segment joining them or the straight line through x and y except
the open line segment joining x and y is contained in the set.
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isolated point of σ(A). Then either 0 ∈ W (A) or kerA is neutral. If kerA
is neutral, then we find neutral vectors x1 and x0 such that [x0, x1] = 1,
Ax1 = x0 and Ax0 = 0 (cf. (2.3) below). Setting x = tx1 + x0 we obtain
[Ax, x]/[x, x] = t2/2 which tends to zero as t tends to zero.3

The spectral inclusion (1.1) is not very useful since the numerical range
W (A) is always neither bounded from above nor from below. If the inner
product [· , ·] is not definite on kerA, then W (A) even covers the entire real
line (with the possible exception of zero). The following simple example
illustrates this.

Example 1.1. In K := C2 denote by (· , ·) the standard scalar product and
define the following matrices

J :=

(
0 1
1 0

)
and A :=

(
0 1
0 0

)
.

Then [· , ·] := (J ·, ·) defines a Krein space inner product on K and A is non-
negative in (K, [· , ·]). Moreover, for x = (x1, x2)

T ∈ C2 we have [x, x] =
x2x1 + x1x2 = 2Re(x2x1) and [Ax, x] = (JAx, x) = |x2|2. Hence, x2 = 1
and x1 = t ∈ R \ {0} give W (A) = R \ {0}.

For this reason we define in Section 4 another subset of the real line
which is connected with A: The co-numerical range

Wco(A) :=

{
[Ax,Ax]

[Ax, x]
: x ∈ domA, [Ax, x] 6= 0

}
,

and we show in Section 4 the following spectral inclusion:

σ(A) ⊂ W (A) ∩Wco(A),

with one exception in a very special case in which the inclusion only holds
for the set σ(A) \ {0}, cf. Theorem 4.5 below.

2. Non-negative operators in Krein spaces

Throughout this note let (K, [· , ·]) be a Krein space, i.e. a vector space
K with a Hermitian non-degenerate sesquilinear form [· , ·] which admits a
so-called fundamental decomposition

K = K+ [u]K−, (2.1)

3We would like to mention that in [10] there is a mistake in the proof of 0 ∈ W (A) if
0 ∈ σ(A), cf. Remark 3.4 below.
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where (K±,±[· , ·]) are Hilbert spaces. The symbol [u] denotes the direct

and [· , ·]-orthogonal sum, i.e. K+ = K[⊥]
− and K− = K[⊥]

+ , where [⊥] denotes
the [· , ·]-orthogonal companion. Then

(x, y) := [x+, y+]− [x−, y−], x = x+ + x−, y = y+ + y−, x±, y± ∈ K±,

is an inner product and (K, (· , ·)) is a Hilbert space. Evidently, there exist
infinitely many fundamental decompositions, and each of them induces a
Hilbert space norm as above. Any two such norms are equivalent, see [12,
Proposition I.1.2]. Therefore, all topological notions are understood with
respect to the topology induced by these norms. For a detailed study of
Krein spaces and operators therein we refer to [2, 9, 12].

A vector x ∈ K, x 6= 0, is called positive (negative) if [x, x] is positive
(negative, respectively), and neutral if [x, x] = 0. A subspace L ⊂ K is
called positive (negative, neutral) if each x ∈ L \ {0} is positive (negative,
neutral, respectively). Furthermore, the subspace L is called non-negative
(non-positive) if each x ∈ L \ {0} is either neutral or positive (negative,
respectively). In addition, we say that the subspace L is definite if it is
positive or negative. A subspace is called indefinite if it is not definite. Note
that the trivial subspace {0} is positive, negative and neutral and therefore
not indefinite.

The (Krein space) adjoint T+ of a densely defined linear operator T in
(K, [· , ·]) has domain

domT+ := {y ∈ K : ∃u ∈ K∀x ∈ domT : [Tx, y] = [x, u]}

and satisfies

[Tx, y] = [x, T+y] for all x ∈ domT, y ∈ domT+.

The operator T is called selfadjoint if T = T+. Note that the spectrum
of a selfadjoint operator in a Krein space is in general not a subset of R.
However, the non-negative operators in (K, [· , ·]) have only real spectrum
and no residual spectrum (cf. [9, Corollary IV.6.2]). Here, a selfadjoint
operator A in (K, [· , ·]) is called non-negative if ρ(A) 6= ∅ and if [Ax, x] ≥ 0
holds for all x ∈ domA. A non-negative operator is a special type of a
definitizable operator, see [12].

Recall that a non-negative operator A in (K, [· , ·]) possesses a spectral
function E on R with the possible singularities 0 and ∞. The spectral
projection E(∆) is selfadjoint in (K, [· , ·]) and is defined for all bounded
Borel sets ∆ ⊂ R with 0 /∈ ∂∆ and their complements R \ ∆. We denote
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the collection of these sets by R. The point zero is called a critical point
of A if for each ε > 0 the subspace E([−ε, ε])K is indefinite. Analogously,
the point ∞ is called a critical point of A if for each C > 0 the subspace
E(R \ (−C,C))K is indefinite.

Below, we will make extensive use of the spectral function. In the follow-
ing we collect some of its properties (see e.g., [12]). Let ∆,∆1,∆2, . . . ∈ R.
Then

(a) E(∆) is a bounded selfadjoint projection in (K, [· , ·]) and commutes
with every bounded operator which commutes with the resolvent of A;

(b) If the ∆j , j ∈ N, are mutually disjoint, and if their union is an element
of R, then

E

 ∞⋃
j=1

∆j

x =
∞∑
j=1

E(∆j)x

for every x ∈ K;

(c) E(∆1 ∩∆2) = E(∆1)E(∆2);

(d) σ(A|E(∆)K) ⊂ σ(A) ∩∆ and σ(A|(I − E(∆))H) ⊂ σ(A) \∆;

(e) If ∆ is bounded, then E(∆)K is a subset of domA and A|E(∆)K is a
bounded operator.

Note that (d) implies that E(R) = I and E(∅) = 0.
A point λ ∈ σ(A) is said to be a spectral point of positive (negative) type

of A if there exists an open neighborhood ∆ of λ such that (E(∆)K, [· , ·])
((E(∆)K,−[· , ·]), respectively) is a Hilbert space. The set consisting of all
spectral points of positive (negative) type of A is denoted by σ+(A) (σ−(A),
respectively). We have4

R± ∩ σ(A) ⊂ σ±(A). (2.2)

We mention the following relation which holds for all x ∈ domA:

[Ax, x] = 0 =⇒ x ∈ kerA. (2.3)

Indeed, the application of the Cauchy-Bunyakowski inequality to the semi-
definite inner product [A·, ·] gives

∣∣[Ax, y]
∣∣2 ≤ [Ax, x][Ay, y] for all x, y ∈

domA, and (2.3) follows.
In the next lemma we collect some statements on the spectral properties

of the point zero. These are well-known, cf. [12, Proposition II.2.1 and
Section II.5].

4We use the notations R+ := (0,∞) and R− := (−∞, 0).
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Lemma 2.1. The length of a Jordan chain corresponding to the eigenvalue
zero of a non-negative operator A is at most 2 and the corresponding eigen-
vector of a Jordan chain of length two is neutral. If zero is an isolated
spectral point of A then it is an eigenvalue. Set5

S0 :=
⋂

{E(∆)K : ∆ ∈ R, 0 ∈ ∆} ,

S+
0 := span

{
E(∆)K : ∆ ∈ R, ∆ ⊂ R+

}
,

S−
0 := span

{
E(∆)K : ∆ ∈ R, ∆ ⊂ R−} .

Then S+
0 is positive and S−

0 is negative. Moreover, S+
0 , S−

0 , S0 are A-
invariant and are contained in domA, and S0 is the root subspace of A
corresponding to zero. We have

S0 = (S+
0 [u]S−

0 )[⊥]. (2.4)

3. The numerical range of a non-negative operator

The (Krein space) numerical range of a non-negative operator A in a
Krein space (K, [· , ·]) is defined by

W (A) :=

{
[Ax, x]

[x, x]
: x ∈ domA, [x, x] 6= 0

}
.

In order to formulate our results we define the following constants:

µ− :=

{
sup(σ(A) ∩ R−) if σ(A) ∩ R− 6= ∅,

−∞ otherwise,

µ+ :=

{
inf(σ(A) ∩ R+) if σ(A) ∩ R+ 6= ∅,

+∞ otherwise.

ν− :=

{
inf(σ(A) ∩ R−) if σ(A) ∩ R− 6= ∅,

0 otherwise,

ν+ :=

{
sup(σ(A) ∩ R+) if σ(A) ∩ R+ 6= ∅,

0 otherwise.

(3.1)

Lemma 3.1. Let A be a non-negative operator in a Krein space (K, [· , ·]).
Then the following statements hold.

5Note that in [12] the closed linear span is used in the definition of S+
0 and S−

0 .
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(i) If µ+ > 0 and kerA is negative, then 0 ∈ σ−(A) ∪ ρ(A), and for each
t ∈ [0, µ+] the operator A− t is non-negative.

(ii) If µ− < 0 and kerA is positive, then 0 ∈ σ+(A) ∪ ρ(A), and for each
t ∈ [µ−, 0] the operator A− t is non-negative.

Proof. We will only prove (i). The proof of (ii) is similar. Let µ ∈ (0, µ+)
be arbitrary. As 0 ∈ σ−(A) ∪ ρ(A) if and only if 0 ∈ σ−(B) ∪ ρ(B), B :=
A|E((−µ, µ))K, for the first assertion we may assume that A is bounded
and σ(A) ∩ R+ = ∅. Therefore, S+

0 = {0}. It follows from Lemma 2.1 that
S0 = kerA. Due to [12, Proposition I.1.1] S−

0 is contained in a maximal non-

positive subspace L−. By [9, Theorem V.4.4] L
[⊥]
− is maximal non-negative

and L
[⊥]
− ⊂ S−[⊥]

0 = kerA, see (2.4). Since kerA is negative, this implies

L
[⊥]
− = {0} and therefore K+ = {0} in (2.1). Hence, 0 ∈ σ−(A) ∪ ρ(A).
In view of (2.4) and [12, Theorem I.5.2], we obtain the following decom-

position

K = kerA [u]S−
0 [u]S+

0 . (3.2)

It remains to prove that A − t is non-negative for all t ∈ [0, µ+]. For this,
it suffices to consider only t ∈ (0, µ+). For x ∈ kerA or x ∈ S−

0 we have
[x, x] ≤ 0 and thus

[(A− t)x, x] = [Ax, x]− t[x, x] ≥ 0.

If x ∈ S+
0 , then there exists a compact interval ∆ ⊂ [µ+,∞) such that

x ∈ E(∆)K. Therefore, A|E(∆)K is a selfadjoint operator in the Hilbert
space (E(∆)K, [· , ·]) and

[(A− t)x, x] = [(A|E(∆)K)x, x]− t[x, x] ≥ (µ+ − t)[x, x] ≥ 0.

Summing up, [(A− t)x, x] ≥ 0 is valid for all x ∈ kerA [u]S−
0 [u]S+

0 .
Moreover, for each compact interval ∆ ⊂ R \ (0, µ+) we have E(∆)K ⊂

domA and (A− t)|E(∆)K : E(∆)K → E(∆)K is a bijective and boundedly
invertible operator. Thus,

kerA [u]S−
0 [u]S+

0 ⊂
{
(A− t)x|x ∈ kerA [u]S−

0 [u]S+
0

}
and both sets are dense in K, see (3.2). If for x ∈ kerA [u]S−

0 [u]S+
0 we set

y := (A−t)x, we obtain [(A−t)−1y, y] = [(A−t)x, x] ≥ 0 for all y in a dense
subset of K. But this is equivalent to the fact that A− t is non-negative.

Remark 3.2. It follows in particular from Lemma 3.1 that the point 0 is
not a critical point of A if 0 /∈ σp(A) and if either µ+ > 0 or µ− < 0.
Analogously, if ν+ < ∞ or ν− > −∞, then the point ∞ is not a critical
point of A.
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The following theorem is the main result in this section. It characterizes
the numerical range of A.

Theorem 3.3. Let A 6= 0 be a non-negative operator in the Krein space
(K, [· , ·]) and let (K, [· , ·]) be indefinite. Then the following statements hold.

(i) If kerA = {0}, then µ− > −∞, µ+ < ∞ and

W (A) ∪ {µ−, µ+} = (−∞, µ−] ∪ [µ+,∞).

(ii) If kerA is indefinite, then

W (A) ∪ {0} = R.

(iii) If kerA 6= {0} is positive, then µ− > −∞ and

W (A) ∪ {µ−} = (−∞, µ−] ∪ [0,∞).

(iv) If kerA 6= {0} is negative, then µ+ < ∞ and

W (A) ∪ {µ+} = (−∞, 0] ∪ [µ+,∞).

Moreover, the following holds for the points µ−, µ+ and 0:

(a) 0 ∈ W (A) if and only if 0 ∈ σp(A) and kerA is not neutral.

(b) µ− ∈ W (A) in cases (i) and (iii) if and only if µ− ∈ σp(A).

(c) µ+ ∈ W (A) in cases (i) and (iv) if and only if µ+ ∈ σp(A).

Proof. We begin with the proof of (ii). If kerA is indefinite, then there
exists a neutral element x0 ∈ kerA, x0 6= 0. Moreover, as A 6= 0, we have
kerA 6= K, and hence the interior of kerA is empty so that K \ kerA is a
dense set in K. Therefore, there exists y ∈ K\kerA such that [x0, y] 6= 0. We
may assume y ∈ domA and [x0, y] = 1. Set u0 := y − ([y, y]/2)x0 ∈ domA.
Then [x0, u0] = 1, [u0, u0] = 0 and u0 /∈ kerA, hence [Au0, u0] 6= 0, see (2.3).
Moreover, for all t ∈ R \ {0} we have

[A(tx0 + u0), tx0 + u0]

[tx0 + u0, tx0 + u0]
=

[Au0, u0]

2t
,

which shows that R \ {0} ⊂ W (A) or, equivalently, W (A) ∪ {0} = R.
In what follows we assume that kerA is definite. Then Lemma 2.1 implies

S0 = kerA. Note that in (i), (iii) and (iv) µ+ = ∞ and µ− = −∞ is not
possible, since this would imply A = 0. Without loss of generality we
assume µ+ < ∞. If µ− = −∞, then kerA must be negative and 6= {0} since
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otherwise 0 ∈ σ+(A) by Lemma 3.1(ii) and hence K− = {0} in (2.1) which
we had excluded. Therefore, there exist λ− ∈ σ(A) ∩ (−∞, 0] and λ+ ∈
σ(A) ∩ R+. Let ∆+ be an open interval with λ+ ∈ ∆+ and ∆+ ⊂ R+ and
set H+ := E(∆+)K. If λ− < 0 choose an open interval ∆− with λ− ∈ ∆−
and ∆− ⊂ R− and set H− := E(∆−)K. If λ− = 0 choose a negative vector
x− ∈ kerA \ {0} and set H− := span{x−}. As (H±,±[· , ·]) are mutually
orthogonal Hilbert spaces, we may choose a fundamental decomposition

K = K′
+[u]K′

− (3.3)

such that H± ⊂ K′
±, cf. [9, Theorem V.3.5]. By ‖ · ‖ denote the Hilbert

space norm arising from (3.3). Now let (x±n ) be sequences in H± with
‖x±n ‖ = ±[x±n , x

±
n ] = 1, x±n ∈ domA for each n ∈ N and (A − λ±)x

±
n → 0

(n → ∞) and define
xn := tx+n + x−n

with some t ∈ R+, t 6= 1. Then

[xn, xn] = t2[x+n , x
+
n ] + [x−n , x

−
n ] = t2 − 1

and

[Axn, xn] = t2[Ax+n , x
+
n ] + [Ax−n , x

−
n ] = t2λ+ + |λ−|+ t2ε+n + ε−n ,

where
ε±n = [(A− λ±)x

±
n , x

±
n ], n ∈ N.

Since ε±n → 0 (n → ∞), there exists N ∈ N such that λ++|λ−|+ε+n +ε−n > 0
for n ≥ N . Therefore, it follows that for n ≥ N we have

[Axn, xn]

[xn, xn]
=

t2λ+ + |λ−|+ t2ε+n + ε−n
t2 − 1

→


λ− − ε−n as t ↓ 0,

−∞ as t ↑ 1,

+∞ as t ↓ 1,

λ+ + ε+n as t ↑ ∞.

This proves (−∞, λ−) ∪ (λ+,∞) ⊂ W (A) and thus

W (A) ⊃


(−∞, µ−) ∪ (µ+,∞) if µ− 6= −∞, µ+ 6= ∞
(−∞, 0) ∪ (µ+,∞) if µ− = −∞, µ+ 6= ∞
(−∞, µ−) ∪ (0,∞) if µ− 6= −∞, µ+ = ∞ .

(3.4)

We will now prove (i). By Lemma 3.1 and the assumption that K is indefinite
we have µ− > −∞ and µ+ < ∞. Due to (3.4), (i) clearly holds if µ+ =

9



µ− = 0. Without loss of generality we assume µ− < 0. By assumption,
0 /∈ σp(A), which implies that zero cannot be an isolated spectral point of
A, cf. Lemma 2.1. Hence, µ+ = 0 or 0 ∈ ρ(A). In the case µ+ = 0 we have
kerA = {0} which is, by definition, simultaneously a positive, negative and
neutral subspace, and for small ε > 0 the operator A + ε is non-negative
(Lemma 3.1(ii)) with 0 ∈ ρ(A + ε). Since W (A + ε) = {t + ε : t ∈ W (A)},
it is no restriction to assume 0 ∈ ρ(A) and thus µ+ > 0.

Let x± ∈ S±
0 , set x := x+ + x− and assume [x, x] 6= 0. Then there exists

t > 0 such that x+ ∈ M+ := E([µ+, t])K and x− ∈ M− := E([−t, µ−])K.
Choose a fundamental decomposition K = K+[u]K− such that M± ⊂ K±
(cf. [9, Theorem V.3.5]) and denote the corresponding Hilbert space scalar
product and norm by (· , ·) and ‖ · ‖, respectively. If ‖x+‖ > ‖x−‖, then

[Ax, x]

[x, x]
=

[Ax+, x+] + [Ax−, x−]

‖x+‖2 − ‖x−‖2
≥ (Ax+, x+)

‖x+‖2
≥ µ+.

And if ‖x+‖ < ‖x−‖, then

[Ax, x]

[x, x]
= − [Ax+, x+] + [Ax−, x−]

‖x−‖2 − ‖x+‖2
≤ (Ax−, x−)

‖x−‖2
≤ µ−.

This implies that [Ax,x]
[x,x] ∈ (−∞, µ−] ∪ [µ+,∞) for all x ∈ S+

0 [u]S−
0 with

[x, x] 6= 0.
Now, let x ∈ domA such that [x, x] 6= 0 and set y := Ax. By (2.4) the

subspace S+
0 [u]S−

0 is dense in K. Hence, there exists a sequence (yn) in
S+
0 [u]S−

0 such that yn → y (n → ∞). Since A−1S±
0 ⊂ S±

0 also the vectors
xn := A−1yn are elements of S+

0 [u]S−
0 , and [xn, xn] 6= 0 holds for all n ≥ N

with some N ∈ N. Therefore we obtain

[Ax, x]

[x, x]
=

[y,A−1y]

[A−1y,A−1y]
= lim

n→∞

[yn, A
−1yn]

[A−1yn, A−1yn]
= lim

n→∞

[Axn, xn]

[xn, xn]

and thus [Ax,x]
[x,x] ∈ (−∞, µ−] ∪ [µ+,∞). Statement (i) is proved.

Now, assume that kerA 6= {0} is positive. Again, if µ+ = µ− = 0, the
assertion follows from (3.4). Recall that µ− = −∞ and Lemma 3.1(ii) imply
0 ∈ σ+(A) and K− = {0} in (2.1) which contradicts the assumption that K
is indefinite. Hence µ− ∈ (−∞, 0].

Assume µ− < 0. Then, by Lemma 3.1(ii), we have 0 ∈ σ+(A) and
A + ε, ε = −µ−/2, is non-negative. Hence, by (i) we have W (A + ε) ∪
{−ε, ε} = (−∞,−ε] ∪ [ε,∞). Moreover, ε is an eigenvalue of A + ε and so
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W (A+ ε) ∪ {−ε} = (−∞,−ε] ∪ [ε,∞) which implies

W (A) ∪ {µ−} = {t− ε : t ∈ W (A+ ε)} ∪ {µ−}
= {t− ε : t ∈ W (A+ ε) ∪ {−ε}}
= {t− ε : t ∈ (−∞,−ε] ∪ [ε,∞)}
= (−∞, µ−] ∪ [0,∞).

It remains to consider the case µ− = 0 and µ+ > 0. According to (3.4)
nothing is to show if µ+ = ∞. Thus, assume µ+ ∈ (0,∞). We have to show
that (0, µ+] ⊂ W (A). To this end choose some compact interval ∆ ⊂ R+

such that E(∆)K 6= {0} and choose x+ ∈ E(∆)K, x+ 6= 0, with [x+, x+] = 1.
Then [Ax+, x+] ≥ µ+ > 0. Moreover, choose u+ ∈ kerA with [u+, u+] = 1.
Then with x := tu+ + x+, t ≥ 0, we have

[Ax, x]

[x, x]
=

[Ax+, x+]

t2 + 1
,

which shows that (0, [Ax+, x+]] ⊂ W (A) and thus also (0, µ+] ⊂ W (A) and
(iii) is proved. Statement (iv) follows with a similar reasoning.

In order to see that (a) holds we observe that 0 ∈ W (A) if and only if
there exists x ∈ domA such that [Ax, x] = 0 and [x, x] 6= 0. By (2.3) this
holds if and only if there exists x ∈ kerA with [x, x] 6= 0 and (a) is shown.
If µ+ = 0, then (c) follows from (a). Let 0 < µ+ < ∞ in cases (i) or (iv).
Then by Lemma 3.1(i) the operator A−µ+ is non-negative and µ+ ∈ σ+(A).
Hence, we have µ+ ∈ W (A) if and only if 0 ∈ W (A− µ+), which, by (a), is
equivalent to ker(A−µ+) 6= {0}. The statement (b) is proved similarly.

Remark 3.4. In the proof of Theorem 3.1 in [10] there is a mistake. Con-
trary to the claim in [10], the sequence [AJxn, Jxn] in the proof of Theorem
3.1 in [10], does, in general, not converge to zero. However, the statement
of Theorem 3.1 in [10] is correct, see also Corollary 3.5 below.

Corollary 3.5. If K is indefinite and A 6= 0, then

(i) σ(A) ⊂ W (A).

(ii) The sets W (A) ∩ R+ and W (A) ∩ R− are convex and unbounded.

(iii) If µ+ = µ− = 0 then W (A) = R.

4. The co-numerical range

It follows from Theorem 3.3 that the Krein space numerical range W (A)
of a non-negative operator A is always neither bounded from above nor from

11



below. The spectral inclusion σ(A) ⊂ W (A) in Corollary 3.5 is thus not very
useful, especially when the operator A is bounded. For this reason we next
define the co-numerical range of the non-negative operator A in the Krein
space (K, [· , ·]) by

Wco(A) :=

{
[Ax,Ax]

[Ax, x]
: x ∈ domA, Ax 6= 0

}
.

To motivate this definition, assume that the operator A is bounded and
boundedly invertible. Then (K, [A·, ·]) is a Hilbert space, and Wco(A) is
just the numerical range of the selfadjoint operator A in this Hilbert space.
Thus, Wco(A) \ {ν−, ν+} = (ν−, ν+) which locates the spectrum of A much
better than the numerical range W (A) which, in this case, satisfies W (A) \
{µ−, µ+} = R \ [µ−, µ+]. The main result in this section, Theorem 4.4,
generalizes the above observation.

The next lemma strengthens the statement in (2.3) in the case when A
is bounded.

Lemma 4.1. Assume that A is a bounded non-negative operator in the
Krein space (K, [· , ·]) and let (xn) be a bounded sequence in K such that
[Axn, xn] → 0 as n → ∞. Then Axn → 0 as n → ∞.

Proof. Let J be the fundamental symmetry corresponding to the funda-
mental decomposition (2.1). An application of the Cauchy-Bunyakowski
inequality to the semi-definite inner product [A·, ·] gives

‖Axn‖2 = [Axn, JAxn] ≤ [Axn, xn][AJAxn, JAxn],

which tends to zero as n → ∞.

Similar techniques and ideas as in the following proposition and its proof
can be found in, e.g., [12] and [1].

Proposition 4.2. Assume that A is a bounded non-negative operator in the
Krein space (K, [· , ·]). On the space K0 := K/ kerA define the inner product
〈· , ·〉 and the operator A0 by

〈[x], [y]〉 := [Ax, y] and A0[x] := [Ax], x, y ∈ K,

respectively. Then (K0, 〈· , ·〉) is a pre-Hilbert space, and the operator A0

is bounded and symmetric in (K0, 〈· , ·〉). By K̃ denote the completion of
(K0, 〈· , ·〉) and by Ã the bounded selfadjoint extension of A0 in K̃. Then we
have

σ(Ã) \ {0} = σ(A) \ {0}. (4.1)
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Moreover, 0 ∈ ρ(Ã) if and only if either 0 ∈ ρ(A) or zero is an isolated
eigenvalue of A such that kerA = kerA2.

Proof. It is evident that (K0, 〈· , ·〉) is a pre-Hilbert space and that A0 is
symmetric with respect to 〈· , ·〉. By 9 · 9 denote the norm on K0 induced
by 〈· , ·〉. For the boundedness of A0 let x ∈ K and let J be the fundamental
symmetry corresponding to the fundamental decomposition (2.1). Then
apply Reid’s inequality (see, e.g., [16]) to the operators S := JA and K :=
A2 to obtain

9A0[x]92 = 9[Ax]92 = [A3x, x] = (SKx, x) ≤ ‖A2‖[Ax, x] ≤ ‖A‖2 9 [x]92,

and Ã is a bounded operator.
In order to prove the inclusion σ(A) \ {0} ⊂ σ(Ã) let λ ∈ σ(A) \ {0}.

Then there exists a sequence (xn) in K with ‖xn‖ = 1 for all n ∈ N and
(A− λ)xn → 0 as n → ∞. Hence,

9(A0 − λ)[xn]92 = [A(A− λ)xn, (A− λ)xn] → 0

as n → ∞. Assume lim infn→∞ 9[xn]9 = 0. Then for a subsequence (xnk
)

of (xn) we have [Axnk
, xnk

] → 0 and, by Lemma 4.1, Axnk
→ 0 as k → ∞.

As this is not possible due to (A−λ)xn → 0 as n → ∞ and λ 6= 0, we obtain
λ ∈ σ(Ã).

Contrary, let λ ∈ σ(Ã) \ {0}. Then there exists a sequence ([xn]) in K0

with 9[xn]9 = 1 for each n ∈ N and 9(A0 − λ)[xn]9 → 0 as n → ∞. That
is,

[Axn, xn] = 1 and [A(A− λ)xn, (A− λ)xn] → 0 as n → ∞.

The second relation, together with Lemma 4.1, implies

(A− λ)Axn → 0 as n → ∞.

Set yn := Axn. Assume lim infn→∞ ‖yn‖ = 0. Then for a subsequence (ynk
)

of (yn) we have ‖ynk
‖ → 0 and 9[ynk

]92 ≤ ‖A‖‖ynk
‖2 → 0 as n → ∞.

Hence

0 = lim inf
k→∞

9(A0 − λ)[xnk
]9 = lim inf

k→∞
9[ynk

]− λ[xnk
]9 = |λ|,

a contradiction. Relation (4.1) is shown.
Assume that 0 ∈ ρ(A) or that zero is an isolated eigenvalue of A such

that kerA = kerA2. Then the spectral subspace of A corresponding to zero
coincides with kerA. Hence, (kerA, [· , ·]) is a Krein space, and the spectral
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subspace of A corresponding to the spectral set σ(A) \ {0} coincides with
ranA. In particular, ranA is closed, and we have

K = kerA [u] ranA.

This implies that ranA2 = A ranA = ranA is closed. Thus, there exists a
δ > 0 such that ‖A2x‖ ≥ δ‖x‖ for all x ∈ ranA. Suppose now that 0 ∈ σ(Ã).
Then there exists a sequence ([xn]) in K0 with 9[xn]9 = 1 for n ∈ N and9A0[xn]9 → 0 as n → ∞. It is no restriction to assume xn ∈ ranA, n ∈ N.
Then [A2xn, Axn] → 0 as n → ∞, and Lemma 4.1 implies A2xn → 0 as
n → ∞. Thus, we obtain xn → 0 as n → ∞ and

1 = 9[xn]92 = [Axn, xn] → 0 as n → ∞,

which is a contradiction. Therefore, 0 ∈ ρ(Ã).
Conversely, assume that 0 ∈ ρ(Ã) ∩ σ(A). Then by (4.1) and Lemma

2.1 zero is an isolated eigenvalue of A. Suppose that there exists x0 in the
kernel of A with Ax1 = x0 for some x1 ∈ K. Then we have

A0[x1] = [Ax1] = [x0] = [0].

By assumption, Ã is injective, hence x1 ∈ kerA. Therefore, kerA = kerA2.

In the next corollary we characterize the closure of the co-numerical
range of a bounded non-negative operator A in terms of the spectra of Ã
and A.

Corollary 4.3. Let A and Ã be as in Proposition 4.2. Then we have

Wco(A) = [minσ(Ã),maxσ(Ã)]. (4.2)

If zero is not an isolated eigenvalue of A or if both σ(A)∩R+ and σ(A)∩R−

are non-empty, then the following two relations hold:

(a) minσ(Ã) = minσ(A).

(b) maxσ(Ã) = maxσ(A).

Let zero be an isolated eigenvalue of A. Then:

(i) If σ(A) ∩ R+ = ∅ and σ(A) ∩ R− 6= ∅, then (a) holds, and (b) holds
if and only if kerA 6= kerA2. Otherwise, maxσ(Ã) = µ− < 0.

(ii) If σ(A) ∩ R+ 6= ∅ and σ(A) ∩ R− = ∅, then (b) holds, and (a) holds
if and only if kerA 6= kerA2. Otherwise, minσ(Ã) = µ+ > 0.
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(iii) If σ(A) = {0}, then either A = 0 and hence Wco(A) = ∅ or kerA 6=
kerA2 in which case Wco(A) = {0}.

Proof. We have

Wco(A) =

{
[Ax,Ax]

[Ax, x]
: x ∈ K, Ax 6= 0

}
=

{
〈A0[x], [x]〉
〈[x], [x]〉

: x ∈ K, Ax 6= 0

}

=

{
〈A0[x], [x]〉
〈[x], [x]〉

: [x] ∈ K0, [x] 6= [0]

}
= [minσ(Ã),maxσ(Ã)],

and (4.2) is shown. The last equality is a consequence of A0 = Ã in K̃ and
well-known properties of the numerical range of a selfadjoint operator in a
Hilbert space.

If both σ(A)∩R+ and σ(A)∩R− are non-empty, then (a) and (b) follow
directly from (4.1). Assume that 0 ∈ ρ(A). Then, by Proposition 4.2, we
also have 0 ∈ ρ(Ã) and thus σ(A) = σ(Ã). In particular, both (a) and (b)
are satisfied. Also, if 0 ∈ σ(A) is not an isolated eigenvalue of A, Proposition
4.2 yields that 0 ∈ σ(Ã) and hence the validity of (a) and (b).

Now, assume that zero is an isolated eigenvalue of A. In order to prove
(i), let σ(A) ∩ R+ = ∅ and σ(A) ∩ R− 6= ∅. Then, clearly, (a) holds, and
(b) holds if and only if 0 ∈ σ(Ã). And as zero is an isolated eigenvalue of
A, by Proposition 4.2 this is equivalent to kerA 6= kerA2. If this is not the
case, then 0 ∈ ρ(Ã), and maxσ(Ã) = max(σ(A) \ {0}) = µ−.

Finally, (ii) follows from (i), applied to −A and −[· , ·] instead of A and
[· , ·], and (iii) is trivial.

We now prove our main result on the co-numerical range of A.

Theorem 4.4. Assume that A is a non-negative operator in the Krein space
(K, [· , ·]). Let K be indefinite and A 6= 0. Then the following statements
hold.

(i) If ranA is negative, then σ(A) ∩ R+ = ∅ and

Wco(A) \ {ν−, µ−} = (ν−, µ−). (4.3)

(ii) If ranA is positive, then σ(A) ∩ R− = ∅ and

Wco(A) \ {µ+, ν+} = (µ+, ν+).

(iii) If ranA is indefinite, then

Wco(A) \ {ν−, ν+} = (ν−, ν+).

15



Moreover, the following holds for the points µ±, ν± and 0:

(a) 0 ∈ Wco(A) if and only if ranA is indefinite.

(b) µ− ∈ Wco(A) (ν− ∈ Wco(A)) in (i) if and only if µ− ∈ σp(A) \ {0}
(ν− ∈ σp(A), respectively).

(c) µ+ ∈ Wco(A) (ν+ ∈ Wco(A)) in (ii) if and only if µ+ ∈ σp(A) \ {0}
(ν+ ∈ σp(A), respectively).

(d) ν− ∈ Wco(A) (ν+ ∈ Wco(A)) in (iii) if and only if ν− ∈ σp(A) (ν+ ∈
σp(A), respectively).

Proof. First of all, let us note that (ii) and (c) follow from (i) and (b), applied
to −A and −[· , ·] instead of A and [· , ·]. Moreover, 0 ∈ Wco(A) if and only
if there exists x ∈ domA with Ax 6= 0 and [Ax,Ax] = 0. From this, (a)
follows. Hence, we only need to prove (i), (iii), (b) and (d). Concerning (i),
we note that

kerA = kerA2 if ranA is negative. (4.4)

To see this, let x ∈ kerA2. Then [Ax,Ax] = [A2x, x] = 0 and thus Ax = 0
as ranA is negative.

The rest of the proof is divided into two steps. In the first step, we prove
(i) and (iii) in the case when A is bounded. Then, (i), (iii), (b), and (d) are
proved successively in the unbounded case.

1. In this step we assume that A is bounded. If ranA is negative, then
Wco(A) ⊂ R− and, by (4.1) and (4.2), we obtain σ(A)∩R+ = σ(Ã)∩R+ = ∅.
From (4.4) and A 6= 0 it follows that σ(A) ∩ R− 6= ∅ (i.e. ν− ∈ R− and
µ− > −∞), and as K is indefinite, 0 ∈ σ(A) (cf. (2.2)). Relation (4.3) now
follows from Corollary 4.3, and (i) is shown for bounded operators.

Assume that ranA is indefinite. If both σ(A)∩R± are non-empty, then
(iii) follows from Corollary 4.3. Let σ(A)∩R+ = ∅. If also σ(A)∩R− = ∅,
then A2 = 0 and hence Wco(A) = {0} as well as ν− = ν+ = 0, and (iii) holds.
Assume that σ(A)∩R− 6= ∅. If zero is not an isolated eigenvalue of A, then
(iii) again follows from Corollary 4.3. If zero is an isolated eigenvalue of A,
then kerA 6= kerA2, since otherwise ranA = E(σ(A) ∩ R−)K is negative.
Therefore, Corollary 4.3 yields Wco(A) = [ν−, 0] = [ν−, ν+], and (iii) is
proved.

2. Let A be unbounded. For n ∈ N let En := E([−n, n]) and consider the
operator An := A|EnK in the Krein space (EnK, [· , ·]). Replace in (3.1) A by
An and denote the corresponding constants by µ±,n and ν±,n, respectively.
We deduce from the first step that

(ν−,n, µ−,n) = Wco(An) \ {ν−,n, µ−,n} ⊂ Wco(A) (4.5)
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if ranAn is negative and

(ν−,n, ν+,n) = Wco(An) \ {ν−,n, ν+,n} ⊂ Wco(A) (4.6)

if ranAn is indefinite.
(i). Assume that ranA is negative. Then from (2.2) we conclude that

σ(A) ∩ R+ = ∅. Hence, ν− = −∞ since A is unbounded. Moreover,
ranAn ⊂ ranA is negative, and we have µ−,n = µ− for large n as well as
ν−,n → −∞ as n → ∞. Therefore, (4.5) implies

(−∞, µ−) ⊂ Wco(A).

As σ(A) ∩ R+ = ∅, the point ∞ is not a critical point of A, cf. Remark
3.2, and hence, for x ∈ K we have Enx → x as n → ∞. As also AEnx =
EnAx → Ax for x ∈ domA, we obtain

Wco(A) ⊂ (−∞, µ−],

and (i) is shown.
(iii). Assume now that ranA is indefinite and ν− = −∞. By (2.2),

σ(A) ∩ [0,∞) is nonempty. If σ(A) ∩ [0,∞) is bounded, then ν+,n = ν+ for
large n and ν−,n → −∞ as n → ∞. Now, using (4.6) instead of (4.5), we
can proceed similarly as above to conclude that (iii) holds.

If σ(A) ∩ [0,∞) is unbounded, then we have ν± = ±∞ and with (4.6)

Wco(A) = R.

Hence (iii) is shown for the case ν− = −∞. The proof for ν+ = ∞ is similar.
It remains to show (b) and (d). In order to prove the first part of (b) let

x be an eigenvector corresponding to µ− ∈ σp(A) \ {0}. Then [Ax,Ax] =
µ−[Ax, x] and µ− ∈ Wco(A) follows. Conversely, let µ− ∈ Wco(A). By
(i) and (a), µ− < 0. Remark 3.2 implies that ∞ is not a critical point
of A. Therefore, the operator B := A|E((−∞, µ−])K is well-defined and
µ− ∈ Wco(B). But B is a boundedly invertible selfadjoint operator in the
Hilbert space (E((−∞, µ−])K,−[· , ·]). Hence,

µ− =
[Bx,Bx]

[Bx, x]
implies µ−1

− =
[B−1y, y]

[y, y]
,

where y = Bx. This proves µ−1
− ∈ σp(B

−1) and hence µ− ∈ σp(A).
It remains to prove that in both cases (i) and (iii) we have ν− ∈ Wco(A)

if and only if ν− ∈ σp(A). For the rest of the proof we thus assume that
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ranA is not positive. First, assume that ν− = 0. Then it follows from (i),
(4.4) and A 6= 0 that ranA is indefinite. Hence, (a) implies ν− ∈ Wco(A).
Suppose that ν− /∈ σp(A). Then Lemma 3.1(ii) implies that σ(A) = σ+(A)
which contradicts our assumption that K be indefinite. Hence, ν− ∈ σp(A)
follows.

Let ν− ∈ R−. Clearly, if ν− ∈ σp(A), then ν− ∈ Wco(A). Assume that
ν− ∈ Wco(A). Then there exists x ∈ domA such that Ax 6= 0 and [Ax,Ax] =
ν−[Ax, x]. If ν− is an isolated spectral point of A, then it is an eigenvalue,
and nothing is to prove. Hence, there exists some λ0 ∈ σ(A) ∩ (ν−, 0). Let
λ ∈ (ν−, λ0) be arbitrary, and define

E1 := E([ν−, λ]) and E2 := E((λ,∞))

as well as Kj := EjK, Aj := A|Kj , and xj := Ejx, j = 1, 2. Then A1 is a
bounded selfadjoint operator in the Hilbert space (K1,−[· , ·]) which yields

[Ax1, Ax1] ≥ ν−[Ax1, x1].

Moreover, A2 is a non-negative operator in the Krein space (K2, [· , ·]) with
σ(A2) ⊂ [λ,∞) and whose range is not positive (since λ0 ∈ σ(A2)). By (i)
and (iii), we have Wco(A2) ⊂ [λ,∞). Hence,

[Ax2, Ax2] ≥ λ[Ax2, x2].

Therefore, we obtain

λ[Ax2, x2] + ν−[Ax1, x1] ≤ [Ax2, Ax2] + [Ax1, Ax1]

= [Ax,Ax] = ν−[Ax, x]

= ν−[Ax2, x2] + ν−[Ax1, x1].

As this implies Ax2 = 0 (cf. (2.3)), we have x ∈ E([ν−, λ])K [u] kerA for
every λ ∈ (ν−, λ0). Letting λ ↓ ν− gives

x ∈ ker(A− ν−) [u] kerA.

Since Ax 6= 0, this proves that ker(A− ν−) 6= {0} and thus ν− ∈ σp(A).

We close the paper with the following spectral inclusion theorem which
follows from our two main results on the numerical range and the co-
numerical range of a non-negative operator in a Krein space.
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Theorem 4.5. Let A 6= 0 be a non-negative operator in the indefinite Krein
space (K, [· , ·]). If zero is an isolated eigenvalue of A such that kerA =
kerA2 and that either R+ or R− contains no spectrum of A, then

σ(A) \ {0} ⊂ W (A) ∩Wco(A). (4.7)

In all other cases we have

σ(A) ⊂ W (A) ∩Wco(A). (4.8)

Proof. In the sequel we will frequently make use of the following implication
which directly follows from Theorems 3.3 and 4.4:

ranA not negative =⇒ (µ+, ν+) ⊂ W (A) ∩Wco(A). (4.9)

Let λ ∈ σ(A) \ {0}. If λ /∈ {µ+, ν+, µ−, ν−}, then by the Theorems 3.3 and
4.4 λ ∈ W (A) ∩ Wco(A). Let λ ∈ {µ+, ν+}. Then σ(A) ∩ R+ 6= ∅ and
hence ranA is not negative. Therefore, (4.9) implies (µ+, ν+) ⊂ W (A) ∩
Wco(A) which shows λ ∈ W (A) ∩Wco(A) unless µ+ = ν+. But then λ is an
eigenvalue of A, and the same holds. A similar argument applies to the case
λ ∈ {µ−, ν−}, and (4.7) is proved.

Let 0 ∈ σ(A). For (4.8) it remains to prove that 0 /∈ W (A) ∩Wco(A)
implies that zero is an isolated eigenvalue of A, kerA = kerA2 and either
σ(A) ∩ R− or σ(A) ∩ R+ is empty. Suppose that zero is not an isolated
point of σ(A). Then µ+ = 0 or µ− = 0. Assume, e.g., µ+ = 0. Then ranA
is not negative and hence (0, ν+) ⊂ W (A) ∩ Wco(A) by (4.9), which is a
contradiction. Consequently, zero is an isolated eigenvalue of A. If ranA
is indefinite, then 0 ∈ W (A) ∩ Wco(A) by Theorem 3.3(a) and Theorem
4.4(a). Therefore, ranA is definite and the rest follows easily from (4.4) and
(2.2).

5. Conclusions

We studied and characterized the (Krein space) numerical range of a
possibly unbounded non-negative operator A in a Krein space. We proved
that the numerical range is never bounded from below or from above. If
the Krein space inner product is indefinite on kerA, but not neutral, then
the numerical range of A even coincides with the entire real axis and, in
particular, does not provide any information on the location of the spectrum.
For this reason we introduced the co-numerical range of A which is another
subset of the real numbers associated with the operator A. In contrast to the
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numerical range, the co-numerical range of A is always bounded from above
(from below) if the spectrum of A is bounded from above (from below,
respectively). Moreover – with the exception of a very special case – its
closure also contains the spectrum of A, and we have the spectral inclusion
σ(A) ⊂ W (A) ∩Wco(A).
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