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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit dem Entwurf und der Analyse von ef-

fizienten Übertragungskonzepten für drahtlose, breitbandige Einträger-Kommuni-

kationssysteme mit iterativer (Turbo-) Entzerrung und Kanaldekodierung. Dies

beinhaltet einerseits die Entwicklung von empfängerseitigen Frequenzbereichsentzer-

rern mit geringer Komplexität basierend auf dem Prinzip der Soft Interference Can-

cellation Minimum-Mean Squared-Error (SC-MMSE) Filterung und andererseits den

Entwurf von senderseitigen Konzepten, die durch Ausnutzung von Kanalzustandsin-

formationen die Bandbreiten- und Leistungseffizienz von Ein- und Mehrnutzersyste-

men mit Mehrfachantennen (sog. Multiple-Input Multiple-Output (MIMO)) verbes-

sern.

Im ersten Teil dieser Arbeit wird ein allgemeiner Ansatz für Verfahren zur Turbo-

Entzerrung nach dem Prinzip der MMSE-Schätzung sowie der kombinierten MMSE-

und Maximum-a-Posteriori (MAP)-Schätzung vorgestellt. In diesem Zusammen-

hang werden zwei neue Empfängerkonzepte, die eine Steigerung der Leistungs-

fähigkeit und Verbesserung der Konvergenz in Bezug auf existierende SC-MMSE

Turbo-Entzerrer in verschiedenen Kanalumgebungen erzielen, eingeführt. Der er-

ste Empfänger - PDA SC-MMSE - stellt eine Kombination aus dem Probabilistic-

Data-Association (PDA) Ansatz und dem bekannten SC-MMSE Entzerrer dar.

Im Gegensatz zum SC-MMSE nutzt der PDA SC-MMSE eine interne Entschei-

dungsrückführung, so dass zur Unterdrückung von Interferenzen neben den a priori

Informationen der Kanaldekodierung auch weiche Entscheidungen der vorherigen

Detektionsschritte berücksichtigt werden. Durch die zusätzlich interne Entschei-

dungsrückführung erzielt der PDA SC-MMSE einen wesentlichen Gewinn an Perfor-

mance in räumlich unkorrelierten MIMO-Kanälen gegenüber dem SC-MMSE, ohne

dabei die Komplexität des Entzerrers wesentlich zu erhöhen. Der zweite Empfänger

- HY SC-MMSE - bildet eine Verknüpfung von gruppenbasierter SC-MMSE Fre-

quenzbereichsfilterung und MAP-Detektion. Dieser Empfänger besitzt eine skalier-

bare Berechnungskomplexität und weist eine hohe Robustheit gegenüber räumlichen

Korrelationen in MIMO-Kanälen auf. Die numerischen Ergebnisse von Simulatio-

nen basierend auf Messungen mit einem Channel-Sounder in Mehrnutzerkanälen mit

starken räumlichen Korrelationen zeigen eindrucksvoll die Überlegenheit des HY SC-

MMSE-Ansatzes gegenüber dem konventionellen SC-MMSE-basiertem Empfänger.
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Im zweiten Teil wird der Einfluss von System- und Kanalmodellparametern auf

die Konvergenzeigenschaften der vorgestellten iterativen Empfänger mit Hilfe soge-

nannter Korrelationsdiagramme untersucht. Durch semi-analytische Berechnungen

der Entzerrer- und Kanaldekoder-Korrelationsfunktionen wird eine einfache Berech-

nungsvorschrift zur Vorhersage der Bitfehlerwahrscheinlichkeit von SC-MMSE und

PDA SC-MMSE Turbo Entzerrern für MIMO-Fadingkanäle entwickelt. Des Weit-

eren werden zwei Fehlerschranken für die Ausfallwahrscheinlichkeit der Empfänger

vorgestellt. Die semi-analytische Methode und die abgeleiteten Fehlerschranken

ermöglichen eine aufwandsgeringe Abschätzung sowie Optimierung der Leistungs-

fähigkeit der iterativen Systeme.

Im dritten und abschließenden Teil werden Strategien zur Raten- und Leistungs-

zuweisung in Kommunikationssystemen mit konventionellen iterativen SC-MMSE

Empfängern untersucht. Zunächst wird das Problem der Maximierung der in-

stantanen Summendatenrate unter der Berücksichtigung der Konvergenz des iter-

ativen Empfängers für einen Zweinutzerkanal mit fester Leistungsallokation betra-

chtet. Mit Hilfe des Flächentheorems von Extrinsic-Information-Transfer (EXIT)-

Funktionen wird eine obere Schranke für die erreichbare Ratenregion hergeleitet. Auf

Grundlage dieser Schranke wird ein einfacher Algorithmus entwickelt, der für jeden

Nutzer aus einer Menge von vorgegebenen Kanalkodes mit verschiedenen Kodier-

raten denjenigen auswählt, der den instantanen Datendurchsatz des Mehrnutzer-

systems verbessert. Neben der instantanen Ratenzuweisung wird auch ein aus-

fallbasierter Ansatz zur Ratenzuweisung entwickelt. Hierbei erfolgt die Auswahl

der Kanalkodes für die Nutzer unter Berücksichtigung der Einhaltung einer bes-

timmten Ausfallwahrscheinlichkeit (Outage Probability) des iterativen Empfängers.

Des Weiteren wird ein neues Entwurfskriterium für irreguläre Faltungskodes herge-

leitet, das die Ausfallwahrscheinlichkeit von Turbo SC-MMSE Systemen verringert

und somit die Zuverlässigkeit der Datenübertragung erhöht. Eine Reihe von Simu-

lationsergebnissen von Kapazitäts- und Durchsatzberechnungen werden vorgestellt,

die die Wirksamkeit der vorgeschlagenen Algorithmen und Optimierungsverfahren

in Mehrnutzerkanälen belegen. Abschließend werden außerdem verschiedene Maß-

nahmen zur Minimierung der Sendeleistung in Einnutzersystemen mit senderseitiger

Singular-Value-Decomposition (SVD)-basierter Vorkodierung untersucht. Es wird

gezeigt, dass eine Methode, welche die Leistungspegel des Senders hinsichtlich der

Bitfehlerrate des iterativen Empfängers optimiert, den konventionellen Verfahren

zur Leistungszuweisung überlegen ist.



Abstract

This thesis deals with the design and analysis of efficient transmission strategies

for wireless single-carrier broadband communication systems with iterative (turbo)

joint channel equalization and decoding. On the one hand, the investigations are

focused on the development of advanced low complexity turbo frequency domain

equalizer (FDE) techniques based on the principle of soft interference cancellation

and minimum-mean squared-error (SC-MMSE) filtering. On the other hand, the

investigations are concerned with the development of practical transmitter schemes

that aim to improve spectrum and power efficiency by exploiting channel state infor-

mation in single- and uplink multiple-access multiple-input multiple-output (MIMO)

communication systems.

The first part of the thesis presents a generic framework for turbo equalization

based on MMSE signal estimation and combined MMSE and maximum a poste-

riori (MAP) signal estimation. In this context, two novel turbo equalizer designs

are devised that improve performance and exhibit a better convergence behavior

over the existing standard SC-MMSE FDE in a variety of channel environments.

The first receiver combines probabilistic data association (PDA) detection and fre-

quency domain SC-MMSE filtering in one algorithm. This receiver, referred to as

PDA SC-MMSE FDE, has a similar structure than the existing SC-MMSE FDE.

However, additionally to the a priori information from channel decoding, it exploits

soft-decision feedback within the equalizer for interference cancellation. The PDA

SC-MMSE FDE achieves impressive performance gains over the SC-MMSE FDE in

spatially-uncorrelated MIMO block-fading channels, without significantly increasing

the computational complexity of the equalizer. The second receiver jointly performs

groupwise frequency domain SC-MMSE filtering and MAP signal detection. This

algorithm, referred to as HY SC-MMSE FDE, offers a great design flexibility in

terms of complexity and robustness against spatial channel correlation. Numerical

results obtained through a series of simulations using channel-sounding field mea-

surement data demonstrate the superiority of the HY SC-MMSE FDE over the

existing SC-MMSE FDE in uplink multiple-access interference environments with

strong correlation between the users’ channels.

In the second part of the thesis, the impact of system and channel model parame-

ters on the convergence properties of turbo equalizers is investigated with the aid of
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the recently proposed correlation chart analysis method. Based on semi-analytical

computations of the equalizer and decoder correlation functions, a simple method

to accurately predict the bit error probability of the SC-MMSE FDE and the PDA

SC-MMSE FDE in fixed and block-fading MIMO channels is developed. Moreover,

two error bounds on the outage probability of the SC-MMSE FDE are proposed.

The semi-analytical approach and the derived error bounds provide simple but effec-

tive methods for estimating and optimizing the overall performance of the iterative

systems.

The third part of the thesis presents efficient rate and power allocation strategies

for single and multiple-access MIMO turbo communication systems employing the

conventional SC-MMSE FDE. First, the problem of rate allocation maximizing the

instantaneous sum rate of a two-user system subject to a convergence constraint

of the turbo equalizer is investigated. By using the area property of extrinsic in-

formation transfer (EXIT) charts, an upper bound on the achievable rate region

of the system is derived. With this bound, a simple rate allocation scheme is de-

veloped, involving a code selection procedure at each user, that aims to maximize

the instantaneous system throughput. Further, the extension of the code selection

scheme to an outage-based rate allocation approach is discussed. Novel design cri-

teria for irregular channel codes minimizing the outage probability of turbo systems

are established. Numerous results of capacity calculations and throughput simu-

lations are presented to show the effectiveness of the proposed rate allocation and

optimization techniques. Finally, transmission power minimization in single-access

MIMO communication systems with singular value decomposition (SVD)-based pre-

coding at the transmitter is studied. Several methods for allocating the power over

the frequency domain channel eigenmodes are presented. Among them, a convex

optimization approach which optimizes the power levels with respect to a target bit

error probability of the turbo equalizer is shown to be superior over other existing

power allocation methods.
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1. Introduction

1.1. Motivation and Thesis Scope

The deployment of mobile audio, video and multimedia services and the possibility

to access data anywhere have established wireless communications as an essential

part in our everyday life. A variety of digital communication standards have been

developed over the past years to support a wide range of applications in different

radio environments with different system coverage, mobility, and quality-of-service

(QoS) requirements. The well known existing GSM1, WCDMA/UMTS2 and IEEE

802.11n WLAN3 standards are a few examples.

While there is a steadily growing demand for ever higher data rates due to the va-

riety of high-speed multimedia services in wireless applications, the radio frequency

spectrum has become an increasingly scarce resource. Future wireless single-user

(single-access) and multiuser (multiple-access) broadband communication systems

must therefore efficiently utilize the limited spectral resources to provide data trans-

missions with high spectral efficiency. Moreover, they have to support a high trans-

mission reliability, a low power consumption, a low end-to-end-delay, and a man-

ageable complexity.

Accordingly, achieving all of these goals is a very challenging task, since wireless

broadband single-carrier transmission as considered in this thesis is typically affected

by several impairments caused by multipath channel propagation, channel fading due

to the mobility of the transmitter/receiver and the changing environment, thermal

noise at the receiver, and interferences from other devices [PNG03].

Diversity techniques are an effective way to mitigate the detrimental effects of

multipath fading channels. The main idea of diversity schemes is to increase the

transmission reliability by sending and receiving the same information over multiple

independently fading paths [PNG03]. In principle, the common diversity schemes

can be classified into frequency, time, space/spatial, polarization and code diversity,

and combinations thereof. Especially, spatial diversity techniques realized by em-

1GSM: Global Standard for Mobile Communications.
2WCDMA/UMTS: Wideband Code Division Multiple Access/Universal Mobile Telecommunica-

tions System.
3WLAN: Wireless Local Area Network.



2 1. INTRODUCTION

ploying multiple antennas at both the transmitter and receiver side have attracted

much research interest [PNG03]. Such multiple-input multiple-output (MIMO) an-

tenna configurations promise high spectral efficiency (spatial multiplexing gain),

high robustness of the transmission (diversity gain), high coverage (array gain), and

interference reduction in rich multipath environments [Tel99], [FG98]. Because of

the high potential of MIMO in single and multiuser systems, they have become an

important part of modern digital communication standards, such as 3GPP4 Long

Term Evolution [ZM07].

Another technique for increasing transmission reliability over fading channels is

error-control coding and interleaving. While a channel encoder introduces redun-

dancy to the transmitted data which is used by a channel decoder at the receiver

to correct transmission errors, an interleaver minimizes the effect of burst errors by

simply randomizing the order of the data. A powerful method that serially combines

channel encoding and bitwise interleaving is known as bit-interleaved coded modu-

lation (BICM) [Zeh92], [CTB98]. BICM offers remarkable diversity gains in fading

channels as well as a great design flexibility since channel encoding and symbol

mapping can be optimized independently [Zeh92]. In addition, it is straightforward

to combine BICM with MIMO system configurations. Therefore, this technique has

been accepted in current digital communication systems and remains important in

forthcoming standards.

In single and uplink multiuser MIMO system settings employing BICM signaling,

the signals transmitted from the multiple sources (either from a single user or from

many users) over a broadband multipath fading channel may suffer from several

types of interference that have to be compensated for at the receiver. Indeed, when

channel state information is unavailable at the transmitter side, channel orthogo-

nality cannot be obtained by precoding neither in space nor in time. Then, strong

multiple access interference (MAI) and co-antenna interference (CAI) may appear,

both caused by a superposition of the transmitted data signals. In addition due

to the channel frequency selectivity, the received data is impaired by inter-symbol

interference (ISI). For such scenarios, the high computational complexity precludes

the application of the optimum brute force signal detection approach at the receiver

for joint equalization of the interference components and decoding of the transmit-

ted data streams. This has motivated a number of studies on simpler suboptimal

receiver structures.

Turbo equalization [DJB+95], [WP99a], [TSK02], [TH02], [GM08], [AM03], [KM07],

[AJL07], [KSMT05], [WP99b], [LP04], [GM07], [YGWP08], [JPSL04] is one of the

most promising approaches to solve this problem. In turbo systems, channel equal-

43rd Generation Partnership Project



1.1 MOTIVATION AND THESIS SCOPE 3

ization and channel decoding are separated into two independent soft-in soft-out

(SfISfO) processing blocks, which exchange probabilistic information about the

data symbols in an iterative manner. In contrast to the conventional two-step re-

ceiver that performs first channel equalization and then channel decoding, the turbo

equalizer iteratively performs both tasks to refine the signal estimates iteration-

by-iteration. By doing so, turbo equalization can achieve close-to-optimal error

performance at much lower computational complexity as compared to the optimum

detector. Because of the excellent performance of turbo systems, the so-called "turbo

principle" has been applied to a variety of detection and decoding problems in com-

munication systems, such as iterative joint demodulation and decoding of single-user

BICM transmissions (BICM-ID) [LR97], [tBSY98a], [tBSY98b], [SGHB03], itera-

tive joint detection and decoding of space-time BICM over fading MIMO chan-

nels [Ari00], [Ton03], and iterative multiuser detection and decoding for coded code

division multiple access (CDMA) [WP99a], [SS01], [SSB06].

In its basic form, turbo equalization involves the maximum a posteriori proba-

bility (MAP) algorithm for channel equalization [DJB+95]. However, owing to the

high complexity of this algorithm, the MAP-based turbo equalizer is only applica-

ble to systems with few users, data transmissions with simple modulation formats

like binary phase shift keying (BPSK), and channels with only a few multipath

components. Throughout the past years numerous reliable alternatives have been

proposed in the literature. Among them, especially soft interference cancellation

minimum mean-squared error (SC-MMSE) filtering techniques [WP99a], [TSK02],

[AM03], [KSMT05], [WP99b], [LP04], [JPSL04], and their frequency domain equiv-

alents [TH02], [KM07], [AJL07], [YGWP08] appear as prospective candidates for

use in turbo equalization systems. This is due to their ability to achieve good per-

formance at relatively low computational cost. The main idea of this approach is to

exploit the probabilistic-feedback from channel decoding to first estimate and cancel

the interference from the received signal, and then to use linear MMSE filtering for

further suppression of residual interference components. The main emphasis of this

thesis is therefore on SC-MMSE filtering techniques.

A major concern that is often ignored but may prevent the application of SC-

MMSE turbo equalizers in practical MIMO channel environments is their high sen-

sitivity to spatial channel correlation. In spatially correlated MIMO channels, their

error performance may significantly be deteriorated and other more sophisticated

methods are required at the receiver [GM07]. Therefore, one of the main objec-

tives of this thesis is the development of a number of advanced low complexity

turbo equalizer strategies that may overcome the performance degradations of ex-

isting SC-MMSE designs in a variety of channel environments, without significantly

increasing the complexity.
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Furthermore, most of the research work so far has mainly concentrated on the

design of turbo equalizers for (either single- or multiuser) BICM communication sys-

tems employing, irrespective of the channel conditions, a fixed allocation of resources

such as transmission rate and power at the transmitter. However, in applications

where the transmitter is able to acquire some form of channel state information

(CSI), either indirectly through channel reciprocity, or directly through a feedback

link from the receiver, a fixed allocation of resources may result in a waste of spectral

and power efficiency. Hence, there is a clear motivation for incorporating the avail-

able CSI at the transmitter to adjust the transmission parameters rate and power,

so that both the system efficiency and the overall performance of the turbo equalizer

are improved. In particular, the allocation of resources can be formulated as opti-

mization problem, where the objective function is either the transmission rate or the

transmission power, and the corresponding constraints are defined by QoS require-

ments. Finding the optimal solution to such optimization problems may not be a

trivial task for communication systems involving turbo equalization, as they depend

on the specific transmission scheme, the level of CSI available at the transmitter and

receiver as well as on the convergence properties of the turbo equalizer. Therefore,

this work is also concerned with the development of practical transmission rate and

power allocation and optimization strategies for communication systems employing

the low complexity SC-MMSE-based turbo equalizer at the receiver.

1.2. Thesis Contributions and Organization

This section presents an outline of the main contributions of the thesis. The main

body of this work consists of three parts. The first part focuses on the design of ad-

vanced turbo equalization techniques for BICM transmission over MIMO ISI fading

channels. Several turbo equalizer schemes that can be efficiently implemented using

the fast Fourier transform (FFT) and clearly outperform the existing SC-MMSE

turbo equalizer are proposed. In the second part of the thesis, a detailed conver-

gence analysis of the proposed receivers are presented and analytical approximations

of the bit error rate (BER) and the outage probability of the overall iterative sys-

tems are derived. The analytical results obtained by the convergence analysis are

the basis for the following third part of the thesis. There, the focus is on how CSI

at the transmitter side can be exploited to efficiently allocate transmission rate and

power in single- and multiuser systems with BICM signaling and SC-MMSE turbo

equalization. For each optimization problem, practical resource allocation schemes

finding the optimal or a near-optimal solution are proposed. The discussed topics

and the proposed transmitter and receiver schemes in this thesis aim at achieving
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higher transmission reliability, higher spectral and/or power efficiency over existing

schemes for wireless broadband communications.

The individual chapters are outlined in the following.

Chapter 2 presents the relevant background material that will be used in subse-

quent chapters. A generic discrete-time system model for wireless communications

is presented and the channel models used for system performance evaluations are

introduced. The concept of block data transmission with cyclic prefix is reviewed.

This transmission technique plays a crucial role throughout the thesis, as it en-

ables the application of simplified (frequency domain) channel equalization at the

receiver. Furthermore, the transmitter and iterative receiver models are presented.

Thereby, some definitions and basic properties of log-likelihood ratios (LLRs) are

reviewed, and some important aspects of iterative equalization of coded broadband

MIMO systems as well as iterative decoding of concatenated codes are discussed.

Finally, the fundamental information theoretical limits on single and multiuser data

transmission with Gaussian-distributed and finite discrete inputs are studied.

Chapter 3 deals with implementation aspects of turbo equalizers in broadband

MIMO communication systems with single-carrier BICM signaling. In this context,

the principle of optimum MAP trellis-based equalization is reviewed, and a brief

overview about other known algorithms which perform equalization of MIMO ISI

channels at much lower computational complexity is provided. The main attention

in this chapter is devoted to soft interference cancellation schemes. The classical

time and frequency domain block-filtering concepts based on MMSE criteria as well

as extensions thereof are extensively discussed. Moreover, a new alternative deriva-

tion is presented of the widely used frequency-domain SC-MMSE turbo equalizer.

Furthermore, two novel iterative receiver designs are devised. In particular, the

main contributions in this chapter include the following:

• A generic framework for turbo equalization based on nonlinear MMSE esti-

mation is introduced. By formulating signal detection as a nonlinear MMSE

estimation problem, an equalizer structure combining probabilistic data asso-

ciation (PDA) detection [LPWH01] and SC-MMSE filtering in one algorithm

can be derived. A computationally efficient frequency domain implementation

of such an algorithm is presented. The corresponding PDA SC-MMSE FDE

has a similar structure than the existing SC-MMSE equalizer, but it possesses

an additional internal feedback loop by which the symbol estimates can be

further improved. Simulation results exhibit a faster convergence and better

performance of the proposed scheme compared to existing methods for the

transmission over spatially uncorrelated MIMO channels.

• Analytical derivations of the signal-to-noise-ratio (SNR) at the LLR output of
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the MMSE-based equalizers are presented. A recursive relationship describing

the SNR evolution over the internal iterations within the PDA SC-MMSE

FDE is developed. Based on the SNR expressions, the performance gain of

the PDA SC-MMSE FDE over SC-MMSE FDE is evaluated for single-user

transmissions.

• A novel turbo equalizer, referred to as HY SC-MMSE FDE, suited for uplink

multiple-access communications in spatially-correlated fading environments

is proposed. Unlike to the existing SC-MMSE receiver, the novel approach

adapts a two step detection process: at the first step, groupwise soft interfer-

ence cancellation and linear filtering on the received data signals is performed

with the aim to separate the transmitted user signals into a number of sub-

groups; at the second step, joint MAP detection of the signals in each subgroup

is employed. The groupwise filtering stage removes interferences between sub-

groups, while it preserves the effective degrees of freedom of the spatial com-

ponents within each subgroup. Different criteria used for the optimization

of this filter are addressed. It is proven that groupwise filter designs with

the objective to minimize the mean-square-error (MSE) or to maximize the

signal-to-interference-plus-noise ratio (SINR) of each subgroup lead to identi-

cal equalizer structures. Moreover, by introducing an additional design crite-

rion in the optimization, the filter can directly be derived in frequency domain.

Several greedy methods for group selection are proposed and compared with

respect to their performance. Numerical results from simulations in various

channel conditions indicate a strong robustness of the HY SC-MMSE FDE

against spatial channel correlation.

• The practicality of the proposed receiver algorithms is investigated in real

channel propagation environments. Numerical results obtained through a se-

ries of Monte-Carlo bit error rate simulation experiments using multidimen-

sional channel-sounding field measurement data are presented.

Chapter 4 analytically and numerically investigates the convergence properties

of the proposed receivers in various channel environments. In particular, the correla-

tion chart framework [TtBH02], [Hag04], [Cho07] is applied to analyze the iterative

equalizers. The definition of correlation functions used to characterize the behavior

of the channel equalizer and the decoders in the correlation chart is first presented.

The correlation functions for the SC-MMSE and PDA SC-MMSE equalizers and

the non-iterative/iterative channel decoding schemes are subsequently evaluated.

Thereby, it is illustrated how variations of channel model parameters (such as spa-

tial channel correlation) and code parameters (generator polynomials and code rate)
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influence the shape of the equalizer function surfaces and the decoder function sur-

face, respectively, in the correlation chart. Moreover, the relationship between the

correlation chart and the well known extrinsic information transfer (EXIT) chart

is considered. Finally, the outage performance of the standard SC-MMSE turbo

equalizer in Rayleigh fading ISI channels with exponential delay-power profile is

analyzed. The main contributions in this chapter are as follows:

• An analytic computation of the correlation functions for SC-MMSE and PDA

SC-MMSE equalizers is proposed. By comparing the analytic correlation func-

tions with the ones obtained by Monte-Carlo simulation, it is found that the

proposed method is sufficiently accurate for predicting the correlation func-

tions of both equalizer types in different channel configurations. It is shown

how the correlation functions of the channel equalizer and channel decoder

can be used to semi-analytically compute the overall BER performance of the

turbo systems at low computational cost.

• A closed-form expression on the outage probability of SC-MMSE turbo equal-

ization in Rayleigh fading ISI channels is presented. The single-user single-

antenna transmission case is considered. In particular, by using a union-

bounding technique and a specific central limit theorem, it is shown that the

outage probability can be approximated by a sum of complementary Gaussian

error functions. In addition, a generic lower bound on the outage performance

of the turbo system is presented. Comparison of analytical and numerical

results confirm that the proposed error bound is tight for a large range of

different SNR values and different channel delay-power profiles.

Chapter 5 considers transmission rate and power allocation for single and mul-

tiuser MIMO systems with SC-MMSE turbo equalization under the assumption of

perfect CSI, partial CSI (in the form of a bandwidth-limited feedback channel), or

statistical CSI (channel fading distribution statistics) to be available at the trans-

mitter side. An EXIT chart design approach for rate allocation in uplink two-user

systems with fixed power allocation and partial CSI at the transmitters is first con-

sidered. Therein, the objective is to maximize the sum rate of the system subject

to a successful convergence of the turbo equalizer with respect to the instantaneous

channel state. The structure of the optimization problem is studied and a practical

algorithm that adapts a code selection procedure at each user to approximately solve

the problem is proposed. Furthermore, two fixed-rate transmission strategies opti-

mized with respect to the channel fading distribution and the outage performance

of the iterative SC-MMSE receiver are proposed. Finally, transmission power op-

timization for single-user MIMO systems under the assumption of perfect CSI and
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a fixed rate allocation at the transmitter is considered. Several design criteria for

optimizing the power levels are discussed and illustrative numerical and analytical

results are presented. The main contributions of this chapter are as follows:

• Using the relationship between the rate of any linear code and the area under

the corresponding decoder EXIT function [AKtB04], an upper bound on the

achievable instantaneous rate region of a two-user turbo system is derived. Nu-

merical evaluations show that the rate region, in general, is non-convex and its

dominant face strongly depends on the realization of the channel coefficients.

Based on the rate region upper bound, the problem of maximizing the instan-

taneous system sum rate subject to a convergence constraint of the SC-MMSE

turbo equalizer is studied. A simple code selection algorithm that selects in-

dependently for each user from a set of rate-compatible codes the optimal

one with the objective to maximize the overall rate is derived. Furthermore,

the extension of the algorithm for systems with more than two users is dis-

cussed. It is demonstrated that the proposed rate allocation scheme enhances

the throughput efficiency over automatic repeat request with fixed codes at

each user.

• The code selection algorithm is generalized to an outage-based rate allocation

approach that maximizes the sum rate of the users subject to an outage prob-

ability constraint of the turbo equalizer. Furthermore, a novel design method

for irregular convolutional codes which aim to improve the outage performance

of single-user single-antenna turbo systems is proposed.

• A linear transmit precoding scheme combined with transmission power op-

timization for single-user single-carrier transmissions over MIMO ISI fading

channels is proposed. A convex optimization framework for the adjustment

of the power levels at the transmitter is derived. The BER performances of

precoding schemes with different power allocations are compared to each other

by means of Monte Carlo simulations.

Chapter 6 concludes the thesis, and provides an overview of possible research

activities for future work.

Parts of the thesis were published in journal papers and refereed conference pro-

ceedings [GM07], [GM08], [Gro09], [GOM10], [Gro11], [GS11], [SGT04], [SGK+04],

[GM09], [GM10].



2. Preliminaries

This chapter introduces the fundamentals of wireless broadband communication

systems and constitutes the basis for the upcoming parts of the thesis. We start

by defining in Section 2.1 a generic discrete-time linear system model with multiple

inputs and multiple outputs. This model covers the transmission systems considered

in this work. The relationship between the transmit and received signals is expressed

in compact form by matrix-vector notation.

One important aspect of wireless high-rate communications is the equalization of

ISI caused by multipath propagation of the radio channel. An efficient approach

to deal with the interference at the receiver is to apply the so-called block trans-

mission technique [BDFT10]. In Section 2.2, we review this transmission principle

as well as the corresponding decomposition properties of the ISI MIMO channel.

Following this, several models for simulating MIMO ISI block-fading channels with

different delay-power profiles and spatial channel correlation properties are intro-

duced in Section 2.3. Moreover, the cross-correlation between the frequency domain

channel gains are analyzed. We then focus in Section 2.4 on the generation of the

transmit data symbols and introduce two different transmitter structures for sin-

gle and multiuser transmissions. Before outlining the corresponding receiver parts,

we address the definition, some relations and properties of LLRs in Section 2.5.

Iterative joint channel equalization and decoding schemes following the turbo prin-

ciple [Hag04] are proposed in Section 2.6. In Section 2.7, a generic MIMO system

model for single-carrier block signaling is presented, which contains as special cases

the transmissions with signal precoding [MP07] and no precoding at the transmitter

side. Some important parameters used for performance evaluation of wireless com-

munication systems such as the SNR and the energy-per-bit-to noise power spectral

density ratio for fixed and time-varying MIMO ISI block-fading channels are dis-

cussed as well. Finally, the mutual information and the capacity of single-carrier

MIMO systems under the constraint of Gaussian and finite input constellations is

reviewed in Section 2.8. The analytical expressions obtained in this section serve as

the information-theoretic performance bounds of the communication systems con-

sidered in this thesis.
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Figure 2.1.: Complex baseband system model for MIMO communication with N
inputs and M outputs.

2.1. System Model

Consider the discrete-time equivalent complex baseband model of a MIMO commu-

nication system with N inputs and M outputs in Fig. 2.1. Hereby sn[k], 1 ≤ n ≤ N

represents the real- or complex-valued kth data sample transmitted by the nth an-

tenna, and ym[k] and nm[k], 1 ≤ m ≤ M represent the kth received and noise sample

at the mth receive antenna, respectively. The N inputs of the MIMO system can be

either the transmit signals from multiple users each equipped with a single transmit

antenna, or the transmit signals from a single user equipped with multiple transmit

antennas. The M outputs correspond to the signals arriving at the same time at

the receive antennas of a common receiver.

Thus, this MIMO system model covers the following two specific transmission se-

tups considered in this thesis: 1) the multiuser single-input multiple-output (SIMO)

transmission with space-division multiple access (SDMA) and 2) the single-user

MIMO point-to-point (P2P) transmission. The former setup typically arises in the

uplink of a wireless cellular system when multiple users, which cannot directly com-

municate with each other, send data simultaneously at the same time and frequency

band to a single base station. The latter setup occurs when only a single user trans-

mits data simultaneously from multiple antennas to a single base station or an access

point of a WLAN system.

The radio channel of the MIMO system in Fig. 2.1 is characterized by multipath

signal propagation and fading. The transmitted signals arrive at the multiple receive

antennas via multiple paths with different delays, amplitudes, and phases due to

reflections, diffuse scattering, and diffraction [Jak94], [Bel63]. In addition, due to the

movement of the receiver, transmitters and changing environment, the radio channel

appears as a time-varying system. For high-rate data communications, as considered
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in this thesis, the symbol duration is small compared to the multipath time delay

spread of the channel and the received signals experience severe ISI. This means the

transmission bandwidth certainly exceeds the channel coherence bandwidth. Hence,

the channel is characterized by a frequency-selective fading. Although the channel

frequency selectivity complicates the extraction of the transmitted signals at the

receiver, it also provides an additional diversity gain that can be used in the design

of robust transceivers.

The physical channel between the nth transmit antenna to the mth receive an-

tenna of a MIMO communication system is modeled by a time-variant continuous-

time impulse response [Pro01]

gm,n(t, t′) ≡
Np∑
p=1

am,n,p(t)δ(t′ − t′p), (2.1)

where t, Np, t′, am,n,p(t), denote the absolute time, the total number of resolvable

(not necessarily uniformly spaced) discrete delays t′p at the receiver, the propagation

delay and the time-variant complex gain associated with discrete delay t′p, respec-

tively. The complex gain factors am,n,p(t) are obtained by a superposition of the

individual path components of the physical channel associated with the delay t′p.

Obviously, they depend on the physical channel characteristics, such as the prop-

agation environment and scatterer distribution as well as on the communication

system parameters, such as the antenna beam pattern and the carrier frequency,

etc. A detailed description of these quantities is beyond the scope of this work,

and we refer the interested reader to [Jak94]. [Bel63]. Without loss of generality,

we assume in the following that t′1 < t′2 < ...t′Np
. Moreover, the discrete delays

t′p are supposed to be identical for all transmit and receive antenna pairs (n,m).

Mathematically, it was shown by Forney in [For72] that the equivalent discrete-time

channel model to (2.1), including the transmit pulse-shaping, the receive-matched

filtering as well as the effects of symbol-rate sampling and sampling phase, can be

represented by a time-varying finite impulse response (FIR) filter. Following the

approach in [For72], the discrete-time channel impulse response (CIR) between the

nth input and the mth output of the MIMO channel can be represented by

hm,n[k, l] ≡
Np∑
p=1

gm,n(kT, t′p)d(lT − t′p), l = 0, ..., L− 1, (2.2)

where d(t) denotes the overall impulse response of the transmit/receive filtering, and

T and L − 1 designate the symbol duration and the effective discrete-time channel

memory length, respectively. The overall impulse response d(t) is supposed to be

identical for all links and to satisfy the first Nyquist criterion [Pro01]. Hence, when
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the maximum channel delay t′Np
is smaller than the symbol duration T , the channel

fading is frequency-flat and L = 1. In the other case of t′Np
� T , the channel fading

is frequency-selective and L > 1. Since we assume identical transmit and receive

filters for all links as well as the same discrete delays t′p, the discrete-time channel

memory length L− 1 is identical for all transmit/receive antenna pairs.

For convenience, the channel coefficients hm,n[k, l] are arranged into the vector

hm,n[k] =
[
hm,n[k, 0], ..., hm,n[k, l], ..., hm,n[k, L− 1]

]T
∈ C

L×1. (2.3)

Similarly, all N ·M CIRs of the MIMO channel are stacked into the vector

hvec[k] =
[
hT

1,1[k], ...,hT
1,N [k], ...,hT

M,1[k], ...,hT
M,N [k]

]T
∈ C

NML×1. (2.4)

Throughout the thesis, we consider a coherent transmission where all N trans-

mitters and the receiver are perfectly synchronized and carrier frequency offsets are

compensated in an ideal manner. The received signal ym[k] at the mth antenna

can therefore be expressed by the following superposition of the multiple transmit

antenna signals sn[k]:

ym[k] =
N∑

n=1

L−1∑
l=0

hm,n[k, l]sn[k − l] + nm[k],m = 1, ...,M. (2.5)

Moreover, the noise samples nm[k] in (2.5) are assumed to be independent identically

distributed (i.i.d.), spatially uncorrelated, zero-mean, complex Gaussian random

variables with variance σ2
0, i.e.,

E

[
nm[k]n∗

m′ [k + z]
]

=

⎧⎪⎨⎪⎩σ
2
0 for m = m′, and z = 0,

0 else.
(2.6)

2.2. Block Transmission with Guard Interval

To employ an efficient block detection algorithm at the receiver the concept of block

transmission [BDFT10] can be applied. For this, the data stream to be transmitted

at each transmit antenna is grouped into several fixed-length blocks of data symbols.

In addition, to avoid inter-block interference between successive blocks, a guard-

interval is inserted in front of each transmit block. The length of the guard-interval

(P in samples) has to be greater or equal to the channel memory length L−1. Several

options have been considered in the literature for the structure of the guard-interval:

• The guard interval contains a copy of the last P symbols of the successive

transmit block. This method is the most commonly used one and called cyclic
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prefix (CP) extension.

• The guard interval contains the all-zero symbol sequence. This method is

called zero padding (ZP) extension.

• The guard interval contains a known symbol sequence that can be used for

example for synchronization and channel estimation. This method is called

unique word (UW) extension.

For a more in-depth comparison between these three transmit block extension schemes,

we refer the interested reader to [MWG+02], [PS04], [WMG02], [DGE01], [RLM06],

[SM07]. Within the scope of this work, we will make use of the first method and

use the CP as the guard interval. The corresponding CP-assisted MIMO block

transmission scheme is described in the following.

Consider a frame of Ns data symbols at each transmit antenna, which are grouped

into Nb equal-sized blocks. Suppose that the block length Q = Ns/Nb is identical for

all N transmit antennas and that Q ≥ L. The kth data block at the nth antenna

can then be represented by the symbol-data vector

dn(k) ≡
[
d0,n[k], ..., dq,n[k], ..., dQ−1,n[k]

]T
∈ C

Q×1, k = 1, ..., Nb, (2.7)

where the qth signal component dq,n[k] is related to symbol sn[k] by dq,n[k] ≡ sn

[
(k−

1)Q + q
]

for q = 0, ..., Q − 1 and k = 1, ..., Nb. Similarly, the received and noise

signals at the mth receive antenna, respectively, are arranged into the vectors

rm(k) ≡
[
r0,m[k], ..., rq,m[k], ..., rQ−1,m[k]

]T
∈ C

Q×1, (2.8)

nm(k) ≡
[
n0,m[k], ..., nq,m[k], ..., nQ−1,m[k]

]T
∈ C

Q×1, k = 1, ..., Nb, (2.9)

where rq,m[k] ≡ ym

[
(k− 1)Q+ q

]
and nq,m[k] ≡ nm

[
(k− 1)Q+ q

]
for q = 0, ..., Q− 1

and k = 1, ..., Nb.

Assume that the block grouping of the data symbols is aligned with the chan-

nel coherence time such that the channel coefficients hm,n[k, l] can reasonable be

regarded as being time-invariant during the transmission of a complete frame of Nb

subsequently transmitted blocks. This inherently leads to a so called (quasi-) static

MIMO channel [Tel99], [FG98], where the Nb transmit blocks from all antennas ex-

perience the same channel realization over the duration of a frame. Within a single

frame, the time index k of the CIRs hm,n[k], ∀m,n can thus be dropped, and we

can write hm,n = hm,n[k], for all k = 1, ..., Nb.

Fig. 2.2 illustrates the block structure and the use of the CP as guard interval.

Each data block bn(k) is preceded by a CP of length P = L−1 before transmission,
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data
symbol
block
k − 1

data symbol block kcyclic prefix

dQ−L+1,n[k] dQ−1,n[k] d0,n[k] dq,n[k] dQ−1,n[k]

Figure 2.2.: Frame structure of block transmission with cyclic prefix as guard in-
terval.

where the CP is a copy of the last P data symbols of the block. The total number of

samples per transmitted block and antenna is, thus, P +Q. At the receiver, the P

received samples associated to the CP are discarded to ensure that the kth received

block is not affected from the last L− 1 samples from the prior transmission block.

Based on Eqn. (2.5), the received vector of the kth data block at antenna m can be

written as

rm(k) =
N∑

n=1

Hm,ndn(k) + nm(k), (2.10)

where Hm,n ∈ C
Q×Q is the circulant matrix constructed from the entries of vector

hm,n,

Hm,n ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h[0] 0 . . . 0 0 h[L− 1] . . . h(1)

h[1] h(0) 0 . . . 0 0
. . .

...
... h[1] h[0] 0 0

. . . 0 h[L− 1]

h[L− 1]
... h[1]

. . . 0
. . . 0 0

0 h[L− 1]
...

. . . h[0]
. . . . . . 0

... 0 h[L− 1]
. . . h[1] h[0] 0 0

...
... 0

. . .
...

. . . . . . 0

0 0 . . . 0 h[L− 1] . . . h[1] h[0]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.11)

For notational simplicity, the antenna indices n and m have been skipped in (2.11)

and are omitted in the following. Considering (2.10) and (2.11), we observe that the

CP is useful for two reasons: first, it eliminates inter-block interference caused by

the multipath components of the channel, and second, it converts the linear channel

convolution in (2.5) into a circular convolution [RG75] over a block of Q samples.

Finally, by defining

d(k) ≡
[
dT

1 (k), ...,dT
n (k), ...,dT

N(k)
]T

∈ C
NQ×1 (2.12)
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as the overall transmit block at time instant k, the corresponding overall received

vector can be expressed by

r(k) ≡
[
rT

1 (k), ..., rT
m(k), ..., rT

M(k)
]T

=
N∑

n=1

Hndn(k) + n(k)

= Hd(k) + n(k), (2.13)

where the noise vector n(k) ≡
[
nT

1 (k), ...,nT
m(k), ...,nT

M(k)
]T

is defined accord-

ingly. The covariance matrix of the additive complex Gaussian noise n(k) is with

(2.6) obtained as E[n(k)nH(k)] = σ2
0IMQ. Further, the channel matrix Hn ∈

C
MQ×Q and the overall MIMO channel matrix H ∈ C

MQ×NQ are defined by Hn ≡[
HH

1,n, ...,H
H
m,n, ...,H

H
M,n

]H
and H ≡

[
H1, ...,Hn, ...,HN

]
, respectively.

Fig. 2.3 depicts the block diagram of the CP-assisted MIMO block transmission

scheme that corresponds to the signal model (2.13). We remark that (2.13) is a

general model that can be used to describe the relationship between transmit and

received signals for single-carrier and multi-carrier CP-based MIMO communication

systems.

d(k)
H

n(k)
r(k)

Figure 2.3.: Matrix-vector model for MIMO block transmission.

Property of Circulant MIMO Channel Matrices

An inherent property of circulant matrices is that their eigenvectors are the columns

of the normalized discrete Fourier transform (DFT) matrix [RG75]. Based on this

property, the eigenvalue decomposition of the block-circulant overall MIMO channel

matrix in (2.13) can be expressed as

H = FH
MΞFN , (2.14)

where FM and FN are block-Fourier matrices

FM = IM ⊗ F,

FN = IN ⊗ F
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with ⊗ being the Kronecker product, and F ∈ C
Q×Q being the Q-point DFT matrix

with elements

[
F
]

lj
=

1√
Q

exp

[
−

√
−1

2π

Q
lj

]
, for 0 ≤ l, j ≤ Q− 1.

As F is unitary, FFH = IQ. Here, the matrix Ξ ∈ C
MQ×NQ contains the frequency

response of the MIMO channel. Due to its block-diagonal structure, it can be

partitioned into smaller diagonal sub-matrices Ξm,n ∈ C
Q×Q,

Ξ ≡
[
Ξ1, ...,Ξn, ...,ΞN

]
,

Ξn ≡
[
ΞH

1,n, ...,Ξ
H
m,n, ...,Ξ

H
M,n

]H
∈ C

MQ×Q, n = 1, ..., N.

The diagonal elements of Ξm,n represent the frequency channel response τm,n ≡
[τm,n(0), .., τm,n(q), ..., τm,n(Q−1)]T between receive antenna m and transmit antenna

n. The values τm,n(q) are obtained by applying the (non-unitary) DFT to the first

column of Hm,n,

τm,n(q) ≡
[
Ξm,n

]
q,q

=
L−1∑
l=0

hm,n[l]exp

[
−

√
−1

2π

Q
lq

]
for q = 0, .., Q− 1. (2.15)

In the following, we refer to τm,n and τm,n(q) as the frequency domain channel

response and the qth frequency domain channel coefficient between the nth transmit

and mth receive antenna pair, respectively. For convenience, we also define by

Ξ(q) ∈ C
M×N the matrix whose elements represent the spatial response of the

MIMO ISI channel at the qth subchannel as

Ξ(q) ≡
[
Ξ1(q), ...,Ξn(q), ...,ΞN(q)

]
,

Ξn(q) ≡
[
τ1,n(q), ..., τm,n(q), ..., τM,n(q)

]T
∈ C

M×1, n = 1, ..., N.

The circulant property in (2.14) of the channel matrix H enables the application of

efficient frequency domain equalization schemes at the receiver as it is used for single-

carrier block signaling or multi-carrier modulation employing orthogonal frequency-

division multiplexing (OFDM).

2.3. Channel Model

In order to assess the performance of communication systems and to obtain analyt-

ical insight into the system behavior, it is important to specify the channel model

and its parameters used for system simulation. The topic of channel modeling has
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received much interest in recent years and a broad variety of different models exist

in the literature, see [PGNB04], [GSS+03] and [KSP+03] for an overview.

In this work, we restrict our self to two particular models of the MIMO channel:

1) the widely-used stochastic Rayleigh block-fading MIMO channel and 2) the de-

terministic block-fading MIMO channel. The Rayleigh block-fading MIMO channel

model is accurate for a wide range of practical scenarios and often used to pre-

dict the theoretical limits of communication systems. Specifically, the stochastic

Rayleigh channel model is used to design novel transmitter and receiver structures.

However, a serious drawback of this model is the impossibility of direct evaluating

the system performance in specific real-field environments. For this, we use in this

work a measurement data-based channel model that is parametrized to the specific

measured scenario. This model is based on results of extensive measurement cam-

paigns, which are gathered from double-directional real-time radio channel sounding

experiments [THR+01].

In the following sections, we review the statistical properties of the Rayleigh block-

fading MIMO channel, and introduce the Kronecker model for modeling the spatial

correlation of the MIMO ISI channel. Moreover, as a novel contribution, we present a

rigorous analysis and a closed form derivation for the cross-correlation coefficients of

the frequency domain MIMO channel gains. The measurement-data based channel

model used for the performance evaluation will be described in Chapter 3.

2.3.1. Rayleigh Block-fading Channel and Antenna Correlation

Matrices

The Rayleigh block-fading model is widely used in the literature to model com-

munication systems in rich-scattering environments. The channel is assumed to be

constant over the duration of one frame, comprised of Nb transmit blocks, but vary-

ing randomly and independently frame-by-frame. The channel coefficients hm,n[l]

are modeled as circularly-symmetric, zero-mean, complex-valued Gaussian random

variables,

hm,n[l] ∼ CN (0, σ2
l ) for l = 0, ..., L− 1,∀n,m (2.16)

with |hm,n[l]| being Rayleigh distributed. The Gaussian assumption on the coeffi-

cients hm,n[l], in general, is well justified in rich-scattering propagation environments,

where no line-of-sight component is available between the transmitter and receiver,

and a large number of propagation paths with different amplitudes and phases from

different scatterers contribute to each resolvable path [Skl97], [Jak94], [Bel63]. The

channel variances σ2
l in (2.16) are assumed to be identical for all transmit/receive
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antenna pairs of the MIMO system. This assumption is reasonable in single-user

P2P MIMO systems, where all channel links experience on average the same phys-

ical environment and have the same delay-power profile. The delay-power profile

may be different from one link to another in multiuser setups due to the different

distances between the users and base station. To reduce the simulation effort of the

channel model, however, we suppose in the following that even in multiuser setups

all channel links have identical delay-power profiles.

A sufficiently large number of scatterers is supposed to be present, so that the

channel coefficients with respect to different tap-delays l can be modeled as statisti-

cally independent. We remark that inter-tap correlation between channel coefficients

typically occurs due to the convolution of the impulse responses of the physical chan-

nel and the transmit and receive filters [XWL+04], [PNG03]. However, to simplify

the simulation model, we ignore inter-tap correlation and always suppose that

E

[
hm,n[l]h∗

m,n[l′]
]

= 0 for l �= l′. (2.17)

The delay-power profile of the channel defines the values of the channel variances

σ2
l . Two common schemes often found in the literature are the uniform and the

exponential decay delay-power profiles. For the exponential profile, the values of σ2
l

are defined by

σ2
l = cexp

1

τd

exp(−l/τd) for l = 0, ..., L− 1, (2.18)

where cexp ≡
(∑L−1

l=0 τ
−1
d exp[−l/τd]

)−1
is an appropriate normalization constant,

and τd is the root mean square (RMS) channel delay spread (c.f. [Cox72]). Similarly,

for the uniform channel delay-power profile, the values of σ2
l are defined as

σ2
l =

1

L
for l = 0, ..., L− 1. (2.19)

Spatial Channel Correlation Properties: The spatial-temporal correlation matrix

J ≡ E

[
hvech

H
vec

]
of the MIMO channel coefficient vector hvec (see (2.4)) is supposed

to follow the well-known Kronecker spatial correlation model which can be expressed

in Kronecker product form [KSP+03]:

J = R ⊗ S ⊗ C, (2.20)

where R ∈ C
M×M , S ∈ C

N×N and C ∈ C
L×L denote the hermitian, positive-definite

receive correlation coefficient matrix, the hermitian, positive-definite transmit cor-

relation coefficient matrix and the diagonal variance matrix, respectively. Corre-
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spondingly, the entries [R]m,m′

(
0 ≤ |[R]m,m′ | ≤ 1

)
and [S]n,n′

(
0 ≤ |[S]n,n′ | ≤ 1

)
denote the receive and transmit cross-correlation coefficients between receive anten-

nas m and m′ and transmit antennas n and n′, respectively. Also, the entries of the

variance matrix C are defined by

C =

⎡⎢⎢⎢⎢⎢⎢⎣
σ2

0 0 . . . 0

0 σ2
1 . . .

...
...

. . . . . . 0

0 . . . 0 σ2
L−1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.21)

Based on the spatial separation property of (2.20), a simple method for generating

Rayleigh block-fading MIMO channels with spatial and frequency selectivity can be

devised. The Rayleigh block-fading MIMO channel coefficients can be generated

according to

hvec =
(
R1/2 ⊗ S1/2 ⊗ C1/2

)
h′

vec, (2.22)

where (·)1/2 is the matrix square-root computed by the Cholesky decomposition

[Kre05], and h′
vec ∈ C

MNL×1 denotes an i.i.d., circularly-symmetric, zero-mean,

Gaussian random vector with covariance E

[
h′

vech
′H
vec

]
= IMNL. We remark that the

vectors h′
vec must be generated in such a way that they are statistically independent

from one frame to the following one. The Kronecker model (2.20) is preferred in this

thesis due to its simplicity. However, it should be noted that results with measured

channels show that the Kronecker model has some deficiencies in terms of modeling

accuracy [OHW+03], [JW04], [RKS10].

2.3.2. Cross-Correlations of Frequency Domain Channel

Coefficients

Next, we analyze the cross-correlation coefficients of the frequency domain channel

gains τm,n(q). The results derived in the following will be used in Chapter 5 to design

channel coding schemes for transmission systems employing iterative receivers.

According to (2.15) and (2.16), the frequency domain channel gains τm,n(q) are

a weighted sum of zero-mean, circularly-symmetric, complex Gaussian distributed

random variables, and hence, the distribution of τm,n(q) is Gaussian as well. The

real and imaginary parts of τm,n(q),

τm,n(q) = �{τm,n(q)} +
√

−1
{τm,n(q)}, (2.23)

are thus also zero-mean, real-valued, Gaussian random variables with variance 1
2
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for all q, n,m. Utilizing the decoupling property of the spatial-temporal correlation

matrix (2.20), the cross-correlations between the real and imaginary parts of two

frequency domain channel coefficients τm,n(q1) and τm′,n′(q2) can be expressed as

E

[
�{τm,n(q1)}
{τm′,n′(q1)}

]
= E

[
�{τm,n(q2)}
{τm′,n′(q2)}

]
= 0

E

[
�{τm,n(q1)}�{τm′,n′(q2)}

]
= E

[

{τm,n(q1)}
{τm′,n′(q2)}

]
=

1

4
[R]m,m′ [S]n,n′

(
w(Δq) + w(−Δq)

)
E

[
�{τm,n(q1)}
{τm′,n′(q2)}

]
= −E

[

{τm,n(q1)}�{τm′,n′(q2)}

]
=

1

4
[R]m,m′ [S]n,n′

√
−1
(
w(Δq) − w(−Δq)

)
, (2.24)

where w(Δq) is the cross-correlation function of the complex channel coefficients

τm,n(q1) and τm′,n′(q2), defined by

w(Δq) =
1

[R]m,m′ [S]n,n′

L−1∑
l=0

L−1∑
l′=0

E

[
hm,n[l]h∗

m′,n′ [l′]
]
exp

(
−

√
−1

2π

Q
lΔq

)

=
L−1∑
l=0

σ2
l exp

(
−

√
−1

2π

Q
lΔq

)
. (2.25)

Here, Δq ≡ q1 −q2 designates the frequency separation between the two subchannels

q1 and q2. From (2.24), we observe that the cross correlation coefficients can be

written in a product form of the spatial channel correlation coefficients and a function

w(Δq) related to the frequency correlation of the subchannels. The function w(Δq)

is given by a weighted finite sum of the channel-tap variances and depends on the

particular choice of the delay-power profile, the channel-memory length L and the

DFT-size Q. In order to investigate the influence of w(Δq) on the cross-correlations

in (2.24) with the aid of a simple analytic expression, we assume in the following

an exponential channel delay-power profile and consider the asymptotic limit of the

values Q and L as Q,L → ∞.

Let Δf = 1/Q be the normalized frequency separation between adjacent sub-

channels. Without loss of generality, we suppose Q = L, such that the block-size is

chosen equal to the channel memory-length. We remark that the more general case

of Q > L can be derived in a straightforward manner. Suppose that, as L and Q

increase, the product of Δf and τd remains fixed. Then, we can state the following

lemma.

Lemma 2.1. In the limit of L,Q → ∞, the function w(Δq) is given by

w(Δq) =
1 −

√
−12πΔfτdΔq

1 + (2πΔfτdΔq)2
. (2.26)
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Proof. See Appendix A.1.

Using this result, we can rewrite (2.24), as L,Q → ∞, as

E

[
�{τm,n(q1)}
{τm′,n′(q1)}

]
= E

[
�{τm,n(q2)}
{τm′,n′(q2)}

]
= 0

E

[
�{τm,n(q1)}�{τm′,n′(q2)}

]
= E

[

{τm,n(q1)}
{τm′,n′(q2)}

]
= [R]m,m′ [S]n,n′

1/2

1 + (2πΔfτdΔq)2

E

[
�{τm,n(q1)}
{τm′,n′(q2)}

]
= −E

[

{τm,n(q1)}�{τm′,n′(q2)}

]
= −[R]m,m′ [S]n,n′

πΔfτdΔq

1 + (2πΔfτdΔq)2
. (2.27)

Fig. 2.4 shows the cross-correlation coefficients q1(Δq) and q2(Δq), q1(Δq) ≡
E

[
�{τm,n(q1)}�{τm′,n′(q2)}

]
and q2(Δq) ≡ E

[
�{τm,n(q1)}
{τm′,n′(q2)}

]
, for the same

channel link (i.e., n = n′ and m = m′) over the frequency separation Δq. The prod-

uct of Δf and τd is set to 0.0625. We observe that with increasing Δq, the cross cor-

relation q2(Δq) decreases by factor (Δq)−1, which exhibits a strong channel correla-

tion. This strong correlation does not allow the use of the classical central limit theo-

rem [PP02] on functions of the frequency domain subchannel gains [CST07], [Arc94].

We remark that the distribution of the frequency domain channel gains κm,n(q) ≡
|τm,n(q)|2, q = 0, ..., Q − 1 follows an exponential distribution with unit-mean and

unit-variance and correlation coefficient [Mal03]:

δΔq ≡ Corr[κm,n(q1), κm,n(q2)] =
1

1 + (2πΔfτdΔq)2
. (2.28)

2.4. Transmitter Models

Having introduced the basic structure of the block transmission system and the

channel model, it is necessary to specify the generation of the data symbols at the

transmitter. Inspecting the two system setups used in this work, it turns out that we

require two different transmitter structures for the single- and the multiuser trans-

mission. To achieve a good overall performance, we apply the standard encoding and

mapping technique BICM. As shown by Caire et. al. in [CTB98], BICM is a simple

approach that reveals in combination with simple Gray mapping a nearly-optimum

performance very close to capacity. As also shown in [LR97], [tBSY98a] [tBSY98b]

and [SGHB03], a close to optimum performance can be achieved by iterative detec-

tion and decoding of BICM (BICM-ID) over additive white Gaussian noise (AWGN)
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Figure 2.4.: Frequency domain cross-correlation coefficients versus frequency sep-
aration Δq for Δfτd = 0.0625.

channels with very simple channel coding and symbol mappings different from Gray.

The BICM scheme is therefore a common method for bandwidth efficient coding on

fading channels and today already used in several wireless local area network stan-

dards, e.g., in IEEE 802.11n [80207].

In this section, we present the transmitter models for both system setups and give

an overview of the basic aspects of BICM.

2.4.1. Transmitter Model for Single-User MIMO Coded

Transmission

Fig 2.5 illustrates a common single-carrier single-user MIMO BICM transmitter

employing N antennas. The information bits ai ∈ {0, 1}, i = 1, ..., Ni are inde-

pendent and identically distributed with Pr(ai = 1) = Pr(ai = 0) = 1/2 ∀i and

organized in frames. Each frame consists of Ni bits which are arranged into a vector

a = [a1, ..., ai, ..., aNi
]T , ai ∈ {0, 1}, ∀i. The bit sequence a is ideally compressed

and does not contain any redundancy. The binary encoder (represented in Fig. 2.5

by the block "ENC") maps the information bit vector a to an Nc-length coded bit

vector c = [c1, c2, ..., cNc
]T , cj ∈ {0, 1}, ∀j. Hence, the overall rate of the chan-

nel code is rc = Ni/Nc bits per MIMO channel use. After channel encoding, the

encoded bit vector c is interleaved by a random bit-interleaver π1, producing the

permuted bit vector e. The purpose of the interleaver is to remove the correlation

introduced due to the channel coding between successive coded bits. The inde-

pendence between these bits is an essential requirement for the signal processing
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Figure 2.5.: Transmitter model for single-carrier single-user MIMO BICM.

a Outer
ENC I π0

c′ e′ cInner
ENC II

Figure 2.6.: SCCC encoder.

in the iterative receivers proposed in Chapter 3. The encoder can be in this work

either a single convolutional code (SCC) or a serially concatenated convolutional

code (SCCC) [Tüc04].

In the case of a SCCC, the encoder comprises two sub-encoders which are sepa-

rated by a random bit-interleaver, as shown in Fig. 2.6. These two sub-encoders are

referred to as encoder I (or outer encoder) and encoder II (or inner encoder); the

overall encoder is called SCCC encoder. The information bit sequence a is mapped

to a coded bit sequence c as follows: The sequence a is first encoded by a rate-

r′
c,1 convolutional encoder I. The resulting encoded bit sequence c′ is bit-interleaved

by a random bit-interleaver π0, yielding the permuted bits e′, which are then fed

through the rate-r′
c,2 convolutional encoder II. This produces the double-encoded bit

sequence c. As inner component code we employ a simple SCC with rate r′
c,2 = 1, so

that the overall code rate of the SCCC is rc = r′
c,1r

′
c,2 = r′

c,1. The inner component

code introduces no redundancy and is recursive in order to maximize the attainable

interleaver gain and to avoid the BER floor in iterative decoding [BDMP98]. As

shall be shown later, the use of the inner code provides a remarkable performance

gain when used in combination with an iterative decoding scheme compared to the

single convolutional-coded system.

After interleaving of the coded bits, the interleaved sequence e is mapped to a

binary phase shift keying (BPSK) symbol vector m = [m1, ...,mi...,mNc
]T , mi ∈

{−1,+1} and de-multiplexed into N independent subsequences bn(k), n = 1, .., N ,

k = 1, ..., Nb. We apply the component-wise mapping rule mi = 1−2ei, i = 1, ..., Nc.

In general, we consider only BPSK modulation, however, the extension to more

generic modulation formats is rather straightforward. The Ns = Nc/N data symbols

of each subsequence are arranged into Nb = Ns/Q equal-sized blocks each containing
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Q data symbols,

bn(k) ≡
[
b0,n[k], ..., bq,n[k], ..., bQ−1,n[k]

]T
∈ {−1,+1}Q×1, n = 1, ..., N. (2.29)

The N data blocks in time slot k are collected in vector

b(k) = [bT
1 (k),bT

2 (k), ...,bT
N (k)]T ∈ {−1,+1}NQ×1. (2.30)

Prior to transmission, the symbol vector b(k) is multiplied by a weighting matrix

T ∈ C
NQ×NQ. In this way we obtain the overall kth transmit block d(k) (see (2.12))

as

d(k) = Tb(k). (2.31)

Depending on the level of CSI available at the transmitter and receiver, the entries

of T can be chosen to optimize the transmit powers of the signal streams, or to

direct the transmit signals from the N antennas along orthogonal modes of the

frequency-selective MIMO channel with a specific power allocation. The weighting

matrix T is therefore referred to as precoding matrix (and represented by the block

"precoder" in Fig. 2.5) and its specific realization will be discussed in Chapter 5.

2.4.2. Transmitter Model for Multiuser SIMO Coded

Transmission

Consider a single-carrier multiuser uplink system, where a base station having M

receive antennas receives signals from N active users, each equipped with a single

transmit antenna. The block-diagram of the transmitter-end of such a communica-

tion system is shown in Fig. 2.7. The transmission of each user is organized in frames

and is based on BICM. The information bit sequence an = [an,1, ..., an,i, ..., an,Ni(n)]T

of the nth user of length Ni(n) is independently encoded by a rate-rc,n binary

encoder, yielding the equal length Nc = Ni(n)/rc,n encoded bit sequences cn =

[cn,1, cn,2, ..., cn,Nc
]T for all users. We consider SCC or SCCC as channel error cor-

rection at each user. After channel encoding, cn is randomly bit-interleaved at each

user, yielding the sequence en, BPSK-modulated, and grouped into Nb equal-sized

Q-length blocks bn(k) (see (2.29)). We remark that the channel encoders (ENCn)

and the interleavers (π1,n) shown in Fig. 2.7 are specific to each user.

Each data block bn(k) is multiplied by a user-specific precoding matrix Tn ∈
C

Q×Q. The precoder is used for transmit power optimization, or for controlling the

spectrum of the user’s transmitted signal. Similar to the single-user case, the N

data blocks bn(k) are collected in the vectors b(k), ∀k. The overall transmit signal
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Figure 2.7.: Transmitter model for single-carrier multiuser BICM.

vector is given by

d(k) = Tb(k), (2.32)

where T is the QN × QN overall precoding matrix. Since no cooperation between

the N users is assumed, the matrix T is constrained to be block-diagonal, i.e.,

T =

⎡⎢⎢⎢⎢⎢⎢⎣
T1 0 . . . 0

0 T2 . . .
...

...
. . . . . . 0

0 . . . 0 TN

⎤⎥⎥⎥⎥⎥⎥⎦ . (2.33)

The particular choice of matrix T, in general, depends on the transmit and receive

strategy and the system requirements and is discussed more in detail in Chapter 5.

2.5. Log Likelihood Ratio

Log-likelihood ratios of binary random variables are used in the context of iterative

detection, decoding and equalization. In the following, we provide some defini-

tions and properties of LLRs. These properties will be exploited in subsequent

sections and chapters. We further discuss the application of LLRs for soft-output

MIMO detection and soft-output channel decoding in iterative receivers. A more

detailed information about LLR algebra and relations to probabilities can be found

in [HOP96], [Hub02].
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2.5.1. Definition and Properties of LLRs

Consider a binary random variable X with elements {+1,−1}. The LLR of X, L(x),

is defined as

L(x) ≡ log

(
Prob(x = +1)

Prob(x = −1)

)
∈ R, (2.34)

where Prob(x = c) denotes the probability that X takes on the value c = ±1.

The sign of L(x) provides an estimate of the binary symbol (also called the hard

decision) and the magnitude |L(x)| represents a measure for the reliability of the

estimate. Thus an LLR near zero corresponds to an unreliable estimate. The LLR

L(x) is therefore denoted as soft value, or soft information of the random variable

X. The definition of the LLR in (2.34) can also be interpreted as a conversion of

two probabilities to a real value. Obviously, this relation can be inverted and the

corresponding bit probabilities are obtained from the LLR as

Prob(x = c) =
1

1 + e−cL(x)
. (2.35)

Let us now consider a binary random variable X that is conditioned on a real-

valued random variable Y ∈ R. The random variable Y may be associated with the

received symbol of a coded bit X transmitted over a binary-input (not necessarily

memory-less) channel. Similar to (2.34), we define the conditioned LLR L(x|y) as

L(x|y) ≡ log

(
Prob(x = +1|y)

Prob(x = −1|y)

)
∈ R. (2.36)

Using Bayes’ theorem for probabilities, we can express (2.36) as a sum of two inde-

pendent LLRs,

L(x|y) = log

(
Prob(x = +1)

Prob(x = −1)

)
+ log

(
p(y|x = +1)

p(y|x = −1)

)
= L(x) + L(y|x). (2.37)

Here p(y|x = c) denotes the probability density function of Y conditioned on X = c.

Equation (2.37) is a fundamental principle used in iterative decoding schemes and

also known as chain rule for LLRs [Lan05]. Note that if X is uniformly distributed,

i.e., L(x) is equal to zero, we obtain L(x|y) = L(y|x).
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2.5.2. Application to Soft-Output MIMO Detection and

Channel Decoding

As an application of (2.37), let us consider the problem of signal detection in MIMO-

ISI channels. Assume a single-user coded MIMO BPSK transmission based on the

system model introduced in Section 2.4.1. Let us denote by c the length-Nc output

sequence of a channel code, and the corresponding vectors of BPSK data symbols

to be transmitted by b(k). We are interested in the probability that the BPSK data

symbol bq,n[k] is equal to ±1, conditioned on the received vector r(k), the channel

state information H and the precoding matrix T. As in equation (2.36), we may

use the conditional LLR L(bq,n[k]|r(k)), which is defined as

θe

[
bq,n[k]

]
≡ L(bq,n[k]|r(k)) = log

(
Prob

(
bq,n[k] = +1|r(k),H,T

)
Prob

(
bq,n[k] = −1|r(k),H,T

)),∀q, n, k. (2.38)

Equation (2.38) is known as the symbol-wise MAP detection rule that is optimal

in terms of minimum symbol error rate. The sign of the a posteriori soft value

θe

[
bq,n[k]

]
may be used to obtain a hard estimate b̂q,n[k] on the BPSK data sym-

bol bq,n[k]. The corresponding symbol error rate is obtained from the magnitude∣∣∣θe

[
bq,n[k]

]∣∣∣ as

Prob(b̂q,n[k] �= bq,n[k]) =
1

1 + exp
(∣∣∣θe

[
bq,n[k]

]∣∣∣) . (2.39)

Based on the chain rule for LLRs (2.37), we can split (2.38) into two independent

terms,

θe

[
bq,n[k]

]
= ζe

[
bq,n[k]

]
+ λe

[
bq,n[k]

]
. (2.40)

Here, ζe

[
bq,n[k]

]
≡ L(bq,n[k]) and λe

[
bq,n[k]

]
≡ L(r(k)|bq,n[k]) denote the a priori and

extrinsic LLR on bq,n[k], respectively. The extrinsic LLR contains the channel and a

priori information from all symbols in vector b(k) except the symbol bq,n[k]. It can

therefore be considered as an independent estimate from the corresponding a priori

LLR ζe

[
bq,n[k]

]
and may be used as a soft-input by a subsequent channel decoding

stage, as in iterative receivers. An analytic expression for the LLR λe

[
bq,n[k]

]
will

be given in Chapter 3. The algorithm directly implementing the above equation is

known as the SfISfO MAP MIMO detector. This detector accepts channel observa-

tions in the form of the received sequence r(k) together with the a priori soft-inputs

ζe

[
bq,n[k]

]
on the BPSK data symbols and produces the corresponding a posteriori

soft-outputs θe

[
bq,n[k]

]
.
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Equation (2.37) can also be applied to a channel error correcting code. Then,

(2.40) becomes the a posteriori LLR of the coded bit ci as

θd[ci] = ζd[ci] + λd[ci]. (2.41)

The extrinsic LLR λd[ci] of the coded bit ci stems from the constraint of the channel

code and contains the a priori information from all other coded bits in the sequence

c except ci. The corresponding algorithm implementing the MAP-based channel

decoding is called SfISfO MAP channel decoder.

The SfISfO MAP MIMO detector and SfISfO MAP channel decoder both are

algorithms suited to iterative detection and decoding in concatenated coded trans-

mission schemes.

2.5.3. Relations and Exponential Symmetry

In the analysis of iterative decoding, the conditioned LLRs l ≡ L(y|x) are often con-

sidered as outcomes of a random variable L. This random variable can be described

by its probability density function (PDF) p(l), or equivalently, by its conditional

PDFs p(l|x = c), c ∈ {+1,−1}.

Lemma 2.2. For symmetric channel outputs, i.e., p(y|x = +1) = p(−y|x = −1),

the PDF and the conditional PDFs of L satisfy:

p(l|x = +1) = elp(l|x = −1) (2.42)

p(l|x = +1) = elp(−l|x = +1) (2.43)

p(l) = elp(−l). (2.44)

Proof. From the definition of the LLR L(y|x) in (2.37), it follows that p(y|x = +1) =

elp(y|x = −1). Hence, as a property of the two conditional PDFs of L, we obtain

p(l|x = +1) =
∫

y∈I
p(y|x = +1)dy

= el
∫

y∈I
p(y|x = −1)dy

= elp(l|x = −1), (2.45)

where I ≡
{
y ∈ R

N
∣∣∣L(y|x) = l

}
. Moreover, based on the channel symmetry

condition, we obtain

L(y|x) = log

(
p(y|x = +1)

p(y|x = −1)

)
= log

(
p(−y|x = −1)

p(−y|x = +1)

)
= −L(−y|x). (2.46)
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Therefore, we can write the conditional PDF p(l|x = +1) as

p(l|x = +1) =
∫

y∈I
p(−y|x = −1)dy

= p(−l|x = −1). (2.47)

Combining (2.45) with (2.47), it immediately follows (2.42)-(2.44).

Equations (2.42)-(2.44) are known as the exponential symmetry property of the

conditional probability distributions and the probability distribution of the LLR

L(y|x) for binary-input output-symmetric channels. This important property was

first shown by Hoeher et. al. in [HLS00], and later also reported by the authors

of [RU01] and [LHG03]. Notice that (2.42)-(2.44) also holds true for the LLR L(x|y)

if L(x) is equal to zero. We will see in the sequel that the exponential symmetry

property plays an important role in analyzing the convergence behavior of iterative

receivers.

In general, we suppose the conditional PDFs p(l|x = +1) and p(l|x = −1) to be

Gaussian distributed, i.e., p(l|x = +1) ∼ N (m1, σ
2
1) and p(l|x = −1) ∼ N (m2, σ

2
2).

Due to the exponential symmetry constraint on the distributions, the mean and

variance satisfy m1 = −m2 = σ2
1

2
and σ2

1 = σ2
2. Hence, the distribution of L follows a

Gaussian distribution that is completely specified by a single parameter, the variance

σ2
1, that is

L =
σ2

1

2
X +N, where N ∼ N (0, σ2

1). (2.48)

The above Gaussian model for the conditioned LLRs L(y|x) has been successfully

applied in the convergence analysis of iterative decoding schemes [tB01], and will

extensively be used in this work to analyze the convergence behavior of iterative

receivers.

2.6. Receiver Models

At the receiver side, given the channel observation in the form of the received data

one is often interested in minimizing the bit error rate, that is the probability of

a wrong estimate on a transmitted binary information symbol. From Bayesian

decision theory, it is known that the optimal MAP-based receiver maximizes the a-

posteriori probability of each transmitted information symbol by jointly performing

the following three tasks1:

1Note that synchronization at the receiver is not explicitely mentioned here as we consider a
coherent communication system with zero carrier frequency offset and perfect phase and symbol
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1. the equalization of the MIMO ISI block-fading channel to separate the trans-

mitted data symbols;

2. the decoding of the coded data symbols;

3. and the estimation of the channel coefficients and the receiver noise variance.

The design of such an optimal MAP-based estimation algorithm leads to decision

metrics whose calculations are computationally demanding. Even in the case of

perfect knowledge of CSI and noise variance at the receiver, it turns out that the

optimum receiver is prohibitively complex for practical systems (especially in cases

when a long bit-interleaver is present in the system), as it performs signal detection

by means of a super-trellis, including the channel code(s), the bit-interleaver(s) and

the MIMO ISI block-fading channel. Hence, in order to lower the computational

complexity a standard approach is to separate channel equalization and signal de-

tection (to be referred to simply as equalization in the sequel), channel decoding

and channel parameter estimation into three main parts. Thereby, we can chose

different approaches for these three parts with respect to specific performance and

complexity requirements. In addition, by applying SfISfO algorithms for equaliza-

tion and channel decoding, signal detection may iteratively be performed on the

received signal with exchange of soft probabilistic information in the form of bit-

extrinsic LLRs. The aim of this principle, which is widely known as "MIMO Turbo

Equalization" [DJB+95], [WP99a], [TSK02], [AM03], is to iteratively refine the data

estimates of the transmitted symbols, the estimates of the channel coefficients and

receiver noise variance so as to achieve near-optimal performance with reasonable

complexity.

Different equalization and decoding schemes can be applied for turbo equaliza-

tion. Most of the equalizers are trellis-based (Viterbi-like) algorithms [DJB+95],

[BF98] or soft interference cancellation and linear-filtering approaches [WP99a],

[TSK02], [TH02], [GM08], [AM03], [KM07], [KSMT05], [WP99b], [LP04], [GM07]

and [JPSL04]. The former equalization concepts usually have a very high compu-

tational complexity; thus they are unpractical when large signal constellations are

employed, or equalization of ISI channels involving a large channel memory is con-

sidered. We therefore focus in this work mostly on the class of filtering-based turbo

equalizers. Such turbo equalizers offer good performance in a variety of channel

environments at low computational complexity and facilitate a simple analysis of

their convergence behavior.

For the parameter estimation part, soft input iterative channel estimation [SSS04],

[GPH09] can be used to refine the channel data estimates based on the channel ob-

timing.
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Figure 2.8.: Receiver model for single-carrier single-user MIMO BICM.

servation and the soft-feedback provided by the channel decoders. The channel esti-

mate may be obtained using different performance criteria, such as the least squares

(LS), the recursive least squares (RLS), the MMSE, the MAP, the expectation-

maximization (EM), or the Kalman filtering approach. For an overview over these

estimation techniques, the interested reader is referred to [Hay02]. However, as pa-

rameter estimation is not the focus of this thesis, we suppose throughout this work

that the channel coefficients and the receiver noise variance both are always perfectly

known at the receiver. Although the instantaneous and perfect knowledge of these

parameters is not always realistic in practical systems, it can be almost achieved

by using efficient iterative channel estimation techniques [SSS04], [GPH09]. Bear

this in mind, we are now able to present the corresponding receiver models for the

single- and multiuser transmitters with BICM signaling of Section 2.4.

2.6.1. Receiver Model for Turbo Equalization of Single-User

MIMO Coded Transmission Systems

A block diagram of the iterative receiver for coded single-user transmission systems is

depicted in Fig 2.8. The turbo equalizer consists of two SfiSfO stages - the equalizer

and the decoder. Both components are separated by an interleaver (π1) and a

deinterleaver (π−1
1 ). Within the iterative processing, soft probabilistic information

about the coded bits are exchanged between the constituent SfISfO algorithms,

until a maximum number of iterations is attained. More specifically, λ(·)[·] and

ζ(·)[·] in Fig. 2.8 represent the extrinsic and the a priori information, respectively,

expressed in terms of LLRs of the corresponding bits, where the subscript (·) is used

to distinguish between the SfISfO modules. The iterations between the equalizer

and the decoder are referred to as turbo iterations. The total number of turbo

iterations is denoted in the following by Te.

The equalizer deals jointly with channel equalization, multiple-antenna detection

and symbol-wise de-mapping, with the aim to mitigate ISI and to cancel CAI, caused

by the multiple transmit data streams. Inputs to the equalizer are the received
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symbol vectors r(k), k = 1, ..., Nb, the channel matrix H, the receiver noise variance

σ2
0, the signaling strategy applied at the transmitter in the form of the precoding

matrix T, and the a priori LLR sequences

ζe[b(k)] ≡
[
ζT

e [b1(k)], ..., ζT
e [bn(k)], ..., ζT

e [bN(k)]
]T
,

ζe[bn(k)] ≡
[
ζe

[
b0,n[k]

]
, ..., ζe

[
bq,n[k]

]
, ..., ζe

[
bQ−1,n[k]

]]T
for all k, (2.49)

where ζe[bq,n(k)] = L(bq,n[k]). It is worth mentioning that during the first iteration

of turbo equalization, the LLR ζe

[
bq,n[k]

]
is zero for all n, q, k, and later on ζe

[
bq,n[k]

]
is provided via the de-multiplexer and interleaver in the form of extrinsic LLRs of

the channel decoder ("DEC"). The equalizer applies MAP estimation to the data

symbols, or approximations thereof, and outputs extrinsic LLRs of the code bits.

Using the notations introduced in Section 2.5.2, the extrinsic LLR for symbol bq,n[k]

can be expressed as

λe

[
bq,n[k]

]
= θe

[
bq,n[k]

]
− ζe

[
bq,n[k]

]
. (2.50)

Similar to (2.49), the LLRs at the equalizer output are arranged into vectors

λe[b(k)] ≡
[
λe

[
b0,1[k]

]
, ..., λe

[
bq,n[k]

]
, ..., λe

[
bQ−1,n[k]

]]T
for all n, k. (2.51)

The LLR vectors λe[b(k)] are multiplexed and serve after deinterleaving as a priori

information for the binary decoder. Based on the a priori LLRs ζd

[
ci

]
= L(ci), ∀i

the decoder calculates the corresponding extrinsic and information-bit a posteriori

LLRs λd[ci] and θd[ai], respectively. The iterative processing of the received data is

carried out until a maximum number of Te turbo iterations is achieved. After the

last turbo iteration, the a posteriori LLRs θd[ai] are passed through a hard decision

decoder to obtain estimates âi on the information bits ai for all i = 1, ..., Ni.

The decoder is implemented using the Log-MAP algorithm in the case of SCC

encoding. For details on Log-MAP decoding (Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm in the logarithmic domain), the reader is referred to standard literature

[Han02].

When employing SCCC encoding of the information bit sequence a at the trans-

mitter, an iterative decoding approach for the two constituent codes is used. Fig.

2.9 depicts a block diagram of the iterative SCCC decoder. The SCCC decoder

comprises two sub-decoders, an interleaver (π0) and a deinterleaver (π−1
0 ). The two

sub-decoders, referred to as decoder I (outer decoder) and decoder II (inner decoder),

correspond to the two constitutes encoders of Fig. 2.6. Commonly, the Log-MAP

algorithm is employed as constitutes decoders. The two decoders exchange extrinsic
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Figure 2.9.: Block diagram of the iterative SCCC decoder.

LLRs of the corresponding bits. Using the a priori information ζd[ci] and ζd2[e′
i], and

taking into account the code constraint of the inner encoder, decoder II computes

extrinsic soft values λd[ci] and λd2[e′
i] for its coded and information bits ci and e′

i,

respectively. In the first decoding iteration, ζd2[e′
i] is set to zero for all i, and in the

other iterations, ζd2[e′
i] is provided by the extrinsic LLRs of decoder I after inter-

leaving. The LLRs λd2[e′
i] are the decoding result of decoder II. These values are

deinterleaved and forwarded to decoder I. Using the a priori information ζd1[c′
i] and

taking into account the code constraint of the outer encoder, decoder I computes

the extrinsic soft values λd1[c′
i] for the code bits c′

i for all i.

In order to simplify the convergence analysis of the iterative receiver (see Chapter

4), we assume a static activation schedule when SCCC encoding is applied, where

after one activation of the equalizer, decoding proceeds iteratively for a fixed num-

ber of iterations between decoder I and decoder II. The total number of decoding

iterations (after each equalizer activation) is denoted by Td.

2.6.2. Receiver Model for Turbo Equalization of Multiuser

SIMO Coded Transmission Systems

The receiver part for the multiuser setup is depicted in Fig. 2.10. It consists

of N turbo loops, one for each user. Each turbo loop comprises the user-specific

deinterleaver, channel decoder, and interleaver. The signal processing follows the

turbo principle and is similar to the single-user transmission of Section 2.6.1. The

equalizer accepts the received symbol vectors r(k) and the a priori inputs ζe[b(k)] of

the coded bit vector b(k), ∀k and outputs the extrinsic information vector λe[b(k)].

The vectors λe[b(k)] contain after bit-interleaving the a priori information for the

N decoders. The number of turbo iterations is again denoted by Te. One turbo

iteration comprises the activation of the equalizer and subsequently the activation

of all N decoders. The receiver outputs after the last turbo iteration the hard

decision bits ân,i on the information bits an,i, ∀n, i.
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Figure 2.10.: Receiver model for single-carrier multiuser SIMO BICM.

Some Remarks

We conclude this section by noting some remarks about the turbo equalization

principle.

• Sufficient Interleaver Length: When processing soft information for turbo

equalization, the a priori LLRs about the code bits available at the input

of each SfISfO component are supposed to be statistically independent. This

ensures to calculate the soft information of each code bit without taking into

account the correlation between successive bits. To satisfy the statistical in-

dependence assumption, an appropriate bit-interleaver of sufficient length at

each user has to be used.

• Extrinsic Information Processing: In order to avoid an early convergence and a

worse performance of the turbo equalizer, the independence assumption must

also be satisfied for each a priori LLR of the same bit over several iterations.

Each SfISfO algorithm must therefore provide at its output for each bit only

the soft information gained from the a priori information about all code bits

without the desired bit itself. In other words, the SfISfO algorithm has to

deliver only the information increment (i.e., extrinsic information) about the

desired bit to the other modules. As shown by (2.37), the extrinsic knowledge

of a binary symbol can be obtained by a subtraction of the a priori information

from the a posterori information on the binary symbol.

• Turbo Equalization as Factor Graph: The turbo equalizer can also be consid-
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ered as an application of the belief propagation (also called the sum-product)

algorithm on an undirected bipartite (factor) graph [KFL01], [Loe04], [TKS04],

[SCG05]. The factor graph represents the factorization of the joint probability

function p
(
{ai}N

i=1, {b(k)}Nb

k=1, {r(k)}Nb

k=1

)
of all binary and non-binary vari-

ables of the communication system. The factor graph is divided into several

subgraphs that describe the behavior of the equalizer and the N decoders.

These subgraphs consist of some blocks that exchange messages in the form

of probability distributions via shared variable nodes (which model the in-

formation/code bits and modulated data symbols). The execution of the

sum-product algorithm applied over the factor graph involves a finite number

of operations to efficiently compute the a posterori probability Prob
(
an,i =

c|{r(k)}Nb

k=1

)
, c ∈ {0, 1} for each information bit an,i. Once this probability is

computed, an estimate on the information bit an,i is obtained based on the cal-

culated marginals using the MAP decision rule ân,i = arg maxc∈{0,1} Prob
(
an,i =

c|{r(k)}Nb

k=1

)
.

The sum-product algorithm does not provide exact values for the calculated

marginals, since the underlying graph modeling the turbo equalizer contains

cycles due to the presence of finite-length interleaving at each user. The ac-

curacy of the probability approximation, however, may be improved by in-

creasing the length of the shortest cycle in the graph [RU06]. In this context,

several authors have imposed certain constraints in the factor graph, such as

improved code or interleaver designs [HEM01], [TJVW04], to eliminate short

cycles. This enables the iterative receiver to achieve performance very close to

the optimal joint MAP equalizer and decoder as the number of turbo iterations

and the codeword (interleaver) length become very large.

2.7. System Model for Precoded Transmission

For a compact notation of the overall system model for the single- and multiuser

system setups, we include the operations of the transmit signal precoding from (2.31)

and (2.32) into the system model (2.13), and rewrite the received signal r(k) as

r(k) = Hd(k) + n(k) = HTb(k) + n(k)

= Hcb(k) + n(k)

=
N∑

n=1

Hc,nbn(k) + n(k), (2.52)
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where

Hc ≡ HT = [Hc,1, ...,Hc,n, ...,Hc,N ] ∈ C
MQ×NQ (2.53)

with Hc,n = [HT
c,n,1,H

T
c,n,2, ...,H

T
c,n,M ]T ∈ C

MQ×Q, n = 1, ..., N denotes the com-

pound channel and precoding matrix. The precoding matrix T is assumed to be

block-circulant, such that T = FH
NΞT FM , where ΞT ∈ C

QN×NQ is block-diagonal.

As in (2.14), the compound channel matrix Hc is therefore block-circulant as well

and may be decomposed into a block-diagonal matrix

Ξc = FH
MHcFN = [Ξc,1,Ξc,2, ...,Ξc,N ] ∈ C

MQ×NQ (2.54)

with Ξc,n = [ΞT
c,n,1,Ξ

T
c,n,2, ...,Ξ

T
c,n,M ]T ∈ C

MQ×Q for n = 1, ..., N . Obviously, Ξc can

be written in product form as Ξc = ΞΞT . Equation (2.52) describes the general

system model for precoded single-carrier block transmission that will be extensively

used throughout this work.

We conclude this section by defining the SNR at the reveiver for a time-invariant

and a time-variant block-fading channel. Assume that the signal energy at the

transmitter has been normalized, such that E0 = E[bq,n(k)] = 1. Consequently, the

SNR per receive antenna for a time-invariant channel is given by

Es

N0

=
EhE0

Mσ2
0

=
Eh

Mσ2
0

, (2.55)

where Es and N0 designate the signal and noise power, respectively, and Eh ≡∑N
n=1

∑M
m=1

∑L−1
l=0

∣∣∣hm,n[l]
∣∣∣2 designates the average instantaneous power of the CIR.

The average SNR for a time-variant block-fading MIMO channel is defined accord-

ingly as

Es

N0

=
Ēh

Mσ2
0

, (2.56)

where Ēh = E[Eh] is the average power of the channel. For the performance evalu-

ation in the following sections, we neglect the rate loss due to transmission of the

cyclic prefix. The energy per information bit, denoted by Eb, is then related to E0

as E0 = rcEb. Therefore, the energy-per-bit-to-noise ratios for a time-invariant and

a time-variant channel, respectively, are given by

Eb

N0

=
Eh

Mrcσ2
0

and
Eb

N0

=
Ēh

Mrcσ2
0

. (2.57)
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2.8. Fundamental Limits

In this section, we give an overview of the information-theoretic performance limits of

single- and multiuser wireless communication systems employing single-carrier block

transmission over the fixed and the time-varying MIMO ISI channel. In detail, we

analyze the mutual information under different constraints for the distribution of

the input signal constellation and derive analytical expressions for the outage and

ergodic rates and rate regions of the channel. We first consider the channel with

unconstrained input symbols having Gaussian distributions. The obtained results

are then generalized to the case of fixed and finite input constellation, as encountered

in most practical systems. The derived analytical expressions in this section serve

as the performance upper bounds of the communication systems considered in this

thesis.

2.8.1. Mutual Information with Gaussian Signaling

Single-User Systems: To begin analyzing the mutual information for the trans-

mission over the single-user MIMO ISI channel, we consider first the case when the

channel H is fixed and perfectly known at the receiver. Then the average mutual

information between the received signal vector sequence
{
r(k)
}Nb

k=1
and the trans-

mitted signal vector sequence
{
d(k)

}Nb

k=1
is given by

I(d, r) = lim
k→∞

1

kQ

(
h
(
r(1), r(2), ..., r(k)

)
− h
(
n(1),n(2), ...,n(k)

))
(2.58)

= Q−1 log2 det(πeY) −Q−1 log2 det(πeσ2
0IMQ), (2.59)

where h(·) denotes the differential entropy function [CT91], and Y ≡ E

[
r(k)rH(k)

]
,

∀k is the covariance matrix of r(k). For simplicity, we have omitted the conditioning

on the channel realization in (2.59). The components of d(k) are chosen to be zero-

mean, circularly symmetric, complex Gaussian random variables. It follows that

the received signal vector r(k) is circularly symmetric, complex Gaussian random

distributed as well. Moreover, with d(k) and n(k) to be independent, we obtain

Y = HQHH + σ2
0I, where Q ≡ E

[
d(k)dH(k)

]
, ∀k is the covariance matrix of d(k).

Therefore, the mutual information in (2.59) can be expressed as

I(d, r) = Q−1 log2 det
(
IMQ + ρSNRHQHH

)
, (2.60)

where ρSNR = σ−2
0 . Besides, using the channel decomposition property in (2.14),

Eqn. (2.60) can further be written as I(d, r) = Q−1 log2 det
(
IMQ + ρSNRΞQF ΞH

)
,

where QF ≡ FH
NQFN .
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Consider first the case of perfect CSI available at the transmitter. By the singular

value decomposition theorem [HJ85], we can write the frequency domain channel

matrix Ξ as Ξ = UGVH , where U ∈ C
MQ×MQ and V ∈ C

NQ×NQ are unitary.

Here, G ∈ C
MQ×NQ is a diagonal matrix with entries [G]i,i =

√
gi, 1 ≤ i ≤ r

on the main diagonal, where r = min(NQ,MQ) denotes the rank of Ξ, and gi,

1 ≤ i ≤ r are the real non-negative eigenvalues of ΞΞH . The knowledge of the

CSI at the transmitter can be used to choose the input covariance matrix QF as

a function of Ξ. The mutual information is maximized by letting QF = VPVH ,

where P = diag([pT , 0, .., 0]T ) ∈ C
NQ×NQ is a real non-negative and diagonal matrix

with p = [p1, p2, ..., pr

]T
being the power loading vector on the main diagonal. By

substituting QF = VPVH into the expression for the mutual information, we obtain

I(d, r) = max
P:Trace(P)≤P0

Q−1 log2 det
(
I + ρSNRPG2

)
. (2.61)

It can easily be shown that the optimal solution to Eqn. (2.61) can be found via

"water-filling" [Tel99], [XP03] over the frequency domain channel eigenmodes gu,

pu =
(
cMaxMI − g−1

u ρ−1
SNR

)+
, u = 1, ..., r (2.62)

with cMaxMI being a parameter chosen to satisfy the power constraint. The mutual

information with CSI at the transmitter can hence be expressed as

Q−1
r∑

u=1

[
log2

(
cMaxMIρSNRgu

)]+
. (2.63)

Consequently, to achieve the maximum mutual information, the optimal input dis-

tribution must be Gaussian with a water-filling power allocation over the eigenmodes

gu and the transmit directions of the covariance matrix QF being aligned with the

right singular-vectors of the frequency domain channel Ξ.

Consider now the case where no CSI is available at the transmitter. The optimal

transmit strategy is then given by the uniform power allocation QF = I(NQ) [Tel99].

Using a similar derivation as for the case with CSI, the mutual information can be

shown to be expressed as

I(d, r) = Q−1 log2 det
(
I + ρSNRΞΞH

)
= Q−1

Q−1∑
q=0

log2 det
(
I + ρSNRΞ(q)ΞH(q)

)
. (2.64)

The expression in (2.64) can be directly related to the capacity of the MIMO ISI
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channel, by letting Q → ∞, yielding

CMIMO(Ξ) = lim
Q→∞

Q−1∑
q=0

Q−1 log2 det
(
I + ρSNRΞ(q)ΞH(q)

)
. (2.65)

The channel capacity in (2.65) gives an upper bound on the information rate (in

bits/symbol) that can be reliably transmitted over the MIMO ISI channel with

arbitrary small probability of error.

Finally, we analyze the situation when the MIMO ISI channel is time-varying

and the channel matrix H is a random matrix, which will be the case for the most

wireless systems. For this setup, the achievable information rate depends rather on

the channel statistics than on the single channel realization. A relevant performance

measure in this case is the outage mutual information, which defines the maximum

information rate R at which communication is possible with error probability no

higher than Pout [BPS98]: CMIMO
out (Pout) ≡

{
R
∣∣∣Prob(I(d, r) < R) ≤ Pout

}
. The

error or outage probability Pout is also as a lower bound on the achievable pairwise

codeword error probability when communicating with information rate R [CTB99].

Furthermore, whenever the fading statistics of the channel are revealed within

one transmit frame, such that the long-term ergodic properties of the channel can

be observed, we use the ergodic mutual information to characterize the maximum

information rateR = CMIMO
erg ≡ E

[
CMIMO(Ξ)

]
that can be transmitted over the MIMO

ISI channel with vanishing probability of error.

Multi-User Systems: A communication scenario where uncoordinated multiple

users send independent information to a common receiver is referred to as a multiple

access channel. The set of information rate vectors R ≡ [R1, R2, ..., RN ]T achievable

for the multiple access channel with single carrier block transmission and each user

having a single antenna, as it is considered in this thesis, can be derived from

the mutual information and is given for the fixed frequency domain channel Ξ =

[Ξ1,Ξ2, ...,ΞN ] and the fixed power allocation policy p = [pT
1 ,p

T
2 , ...,p

T
N ]T , pn =

[p0,n, p1,n, ..., pQ−1,n]T , ∀n by [CV93], [TH98]

CMAC
(
Ξ,p
)

=

{
R
∣∣∣

∑
n∈I

Rn ≤ Q−1 log2 det

(
I + ρSNR

∑
n∈I

ΞnQn(pn)ΞH
n

)
,∀I ⊆ {1, 2, ..., N}

}
, (2.66)

where I is any subset of users in {1, 2, ..., N} and Qn(pn) is the covariance matrix of

the nth user’s transmit symbol vector dn(k), defined by Qn(pn) ≡ E[dn(k)dH
n (k)] =

diag(pn) with Trace(pn) ≤ Pn for all n. It is well known that the rate region in (2.66)
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is convex and has precisely N ! boundary points, each achievable with Gaussian input

distributions and a successive decoding strategy [TH98]. In the case of an N = 2

multiuser system, the rate region in (2.66) reduces to a simple pentagon which is

constrained by the mutual information achieved by each user as well as the sum

mutual information. When all transmitters know the current state of the channels,

this knowledge can be used to find the optimal input distribution of each user to

maximize the sum rate. For this scenario, the achievable rate region is given by the

convex set [GT06]

CMAC
(
Ξ
)

=
⋃

pn:Trace(pn)≤Pn,∀n

CMAC
(
Ξ,p
)
,

whose boundary points can be achieved by multiuser water-filling [YRBC04] in

frequency-domain and successive decoding. In practice, the knowledge about the

channel state at the transmitters is obtained from the receiver that estimates the

channel and feds back the information to the N users. In this model, it is implicitly

assumed that the channel is fixed or its variations can be accurately tracked and

the amount of data required for the feedback link is negligible compared to the

information transmitted from the N users to the receiver.

For the more general case where the frequency domain MIMO channel matrix Ξ is

not fixed but random, the achievable rate region is not only a function of the SNR,

but also of the channel statistics. For this scenario, we assume that the receiver

has perfect knowledge about the state of the channel but the N transmitters have

no such information. It means the input distributions at the transmitters can not

be chosen with respect to state of the channel. Similar to the single-user case of

Section 2.8.1, we distinguish for this setup two different types of rate regions. The

term outage rate region is used to refer to the set of rate vectors that can be achieved

with a probability of at least 1 − Pout as

CMAC

out (Pout) ≡
{
R
∣∣∣Prob

(
R /∈ CMAC

(
Ξ,1QN

))
≤ Pout

}
, (2.67)

where Prob
(
R /∈ CMAC

(
Ξ,1QN

))
is the outage probability constraint for the rate

vector R.

Furthermore, the ergodic rate region is defined as the set of all rate vectors

achieved with arbitrary small error probability, as the the number of fading blocks

within each transmitted frame tends to infinity. This region with evenly allocated
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transmit powers at each user can be concisely expressed as

CMAC

erg ≡
{

R
∣∣∣

∑
n∈I

Rn ≤ lim
Q→∞

Q−1
E

[
log2 det

(
I + ρSNR

∑
n∈I

Ξn(q)ΞH
n (q)

)]
,∀I ⊆ {1, ..., N}

}
.

(2.68)

Finally, we define the average information sum rate as a performance measure of

the multiple access channel as

RMAC

sum ≡ Q−1
E

[
log2 det

(
I + ρSNR

N∑
n=1

ΞnΞH
n

)]
. (2.69)

2.8.2. Mutual Information with Finite Constellation Size

In the previous section, we have analyzed the mutual information and capacity of

single- and multiuser MIMO ISI channels employing unconstrained input symbols

having Gaussian distributions. However, in practical applications, the signals to be

transmitted are constrained to be from a finite constellation, such as e.g., BPSK or

quaternary-PSK (QPSK) modulation. In practical applications, the mutual informa-

tion and capacity with Gaussian signaling can therefore not be achieved, especially

in the high SNR region. Hence, we evaluate in the following the mutual information

under the constraint of input symbols taken from a finite constellation.

Consider first a transmission over a fixed single-user MIMO ISI channel with

no precoding at the transmitter and independent and uniformly distributed input

symbols. The input and output symbols of the channel are arranged into the vectors

d(k) and r(k), k = 1, ..., Nb, respectively. Since the additive Gaussian noise and

the input symbols are assumed to be independent, the average mutual information

between the input and output sequence is given, as in (2.58), by

I(d, r) = lim
k→∞

1

kQ

(
h
(
r(1), r(2), ..., r(k)

)
− h
(
n(1),n(2), ...,n(k)

))
(2.70)

As in (2.59), the differential entropy h
(
n(1),n(2), ...,n(k)

)
of the noise can be com-

puted in a closed-form since the covariance matrix E[n(k)n(k)H ] is known. Hence,

the calculation of the mutual information reduces to the estimation of the differential

entropy h
(
r(1), r(2), ..., r(k)

)
that can be expressed as [CT91]

h
(
r(1), r(2), ..., r(k)

)
= −E

[
log2

(
p(r)
)]
, (2.71)
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where p(r) is the joint probability of the output vector sequence {r(1), r(2), ..., r(k)},

given by p(r) =
∑

d∈S p(r|d)p(d) with S being the set of all possible values for the

input vector sequence {d(1),d(2), ...,d(k)}. Unfortunately, the differential entropy

of the received vector can not be expressed in a closed-form and numerical methods

have to be taken into account. In [PSS01] and [ZDK04] simulation-based techniques

have been proposed to estimate h
(
r(1), r(2), ..., r(k)

)
. The main idea is to generate a

set of output received vectors r(k) by simulation, set up a trellis based on the MIMO

channel H and the input vectors d(k), k = 1, ..., Nb and then to employ the forward

recursion of the BCJR algorithm [BCJR74] to estimate for the output sequence

the joint probability p(r). An estimate of h
(
r(1), r(2), ..., r(k)

)
is then obtained by

calculating the logarithm of the joint probability estimate using a single simulation

with a very large frame length [PSS01].

Instead of using the above BCJR-based estimation method, the differential en-

tropy can also be estimated directly by Monte-Carlo integration. For this, a large

number Ne of random input vectors d(i)(k) and the corresponding output vectors

r(i)(k), 1 ≤ k ≤ Nb, 1 ≤ i ≤ Ne are generated. The estimate of the differential

entropy in (2.71) is then obtained as

h
(
r(1), r(2), ..., r(k)

)
≈ −N−1

e

Ne∑
i=1

log2

(
p(r(i))

)
. (2.72)

We can also apply the above simulation-based techniques to the case of multiuser

systems. For example, the rate region for the 2-user multiple access channel under

the constraint of finite signal constellations is given by the closure of the convex hull

of all rate pairs (R1, R2) [CT91]:

CMAC

con ≡

⎧⎪⎪⎨⎪⎪⎩
R1 ≤ I(d1, r|d2)

(R1, R2) : R2 ≤ I(d2, r|d1)

R1 +R2 ≤ I(d1,d2, r)

⎫⎪⎪⎬⎪⎪⎭ , (2.73)

where the mutual informations I(d1, r|d2), I(d2, r|d1) and I(d1,d2, r) are computed

by the same method as in the single-user case described above. Also, we can give

expressions for the average sum rate and the outage rate region [HA04] for block-

fading multiple access channels under the constraint of finite signal constellations,

respectively, which are defined as

RMAC

con ≡ E

[
I(d1,d2, r)

]
, (2.74)

CMAC

con,out(Pout) ≡
{
(R1, R2)

∣∣∣Prob
(
(R1, R2) /∈ CMAC

con

)
≤ Pout

}
. (2.75)
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2.9. Chapter Summary

We have introduced the models for coded single-user point-to-point and multiuser

SIMO single-carrier signaling over the MIMO ISI channel. The considered radio

channel is frequency selective due to multipath propagation. Therefore, the concept

of block transmission is applied, as it allows channel equalization at the receiver em-

ploying the discrete Fourier transform. Several stochastic models for block-fading

MIMO ISI channels have been discussed and the correlation properties of the fre-

quency domain channel gains have been analyzed. The transmitter and receiver

models based on turbo equalization for the coded single- and multiuser transmis-

sion setups have been introduced. We have also discussed some basic properties of

LLRs constituting the basis of any iterative decoding scheme. Finally, several ana-

lytical expressions for the mutual information and capacity of single- and multiuser

transmissions under several constraints have been derived.





3. Turbo Equalization for MIMO

Systems

In this chapter, we discuss the design of several turbo receivers which are the core

part of the investigated communication systems of this work. In the presence of

ISI caused by channel multipath propagation, the main component of an iterative

receiver is the soft-in soft-out channel equalizer that performs symbol estimation on

the transmitted data by utilizing the received data and probabilistic information fed

back from channel decoding. A great variety of soft-in soft-out channel equalization

schemes exist in the literature for the application in iterative receivers. Among them

are trellis-based equalization methods, soft-list soft-sphere decoding approaches and

soft interference cancellation (SIC) and linear filtering concepts. The latter present

an important class of low-complexity equalizers which can almost preserve the per-

formance of the optimum MAP trellis-based equalizer in MIMO ISI channels. Due

to the very good complexity/performance trade-offs of such equalizers, we set the

main focus in this chapter on SIC-based channel equalization.

The remainder of this chapter is organized as follows. In Section 3.1, we re-

view the optimum soft-in soft-out MAP equalization algorithm, originally employed

in the context of trellis-based turbo equalization in [DJB+95]. Other suboptimal

approaches of turbo equalization, offering much lower computational complexities

than the optimal approach are summarized as well. In the following Section 3.2, we

discuss channel equalization based on SIC combined with linear filtering. Thereby,

we distinguish between three commonly used filter types: the time-domain MMSE

filter, the channel matched filter (MF), and the combined MMSE/MF filter. Since

these filters process the signals in time-domain, their computational complexities

depend directly on the channel memory-length. Of course, this restricts their appli-

cation in practical systems. A frequency-domain MMSE turbo equalizer is derived

in Section 3.3. Compared to systems with time-domain equalization, this method

drastically reduces the computational cost of channel equalization. In addition, the

equalizer is robust to variations of the channel delay spread. In Section 3.4, we de-

vise a novel turbo equalizer in the framework of nonlinear MMSE estimation. The

SNR at the output of the equalizer is analyzed compared to the SNR of the stan-

dard SC-MMSE turbo equalizer. It is known that MMSE-based turbo equalizers
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exhibit a serious performance degradation in spatially-correlated MIMO ISI fading

channels. To overcome this drawback, we propose in Section 3.5 a novel frequency

domain turbo technique that is robust against channel spatial correlation by combin-

ing groupwise SC-MMSE filtering [VMJ04], [GM07] with optimal MAP detection.

The computational complexities and performances of the proposed schemes are eval-

uated in Section 3.6 and Section 3.7, respectively. Finally, Section 3.8 summarizes

the main results of this chapter.

3.1. Maximum A Posteriori Equalization

In order to start with the description of equalization techniques, we review in the fol-

lowing the optimal symbol-wise SfISfO MAP equalizer, first proposed in the context

of turbo equalization by Douillard et. al. in [DJB+95].

Let us consider a coded single-user MIMO or multiuser SIMO transmission scheme

where a number of coded data symbols, arranged in a QN -length vector b, are

transmitted over N transmit antennas. At the receiver the data from M receive

antennas is collected in a QM -length vector r and further processed by the equalizer.

Note that for the following derivations in this chapter, we drop the block-index k

from all data vectors for notational simplicity.

Choosing the symbol-wise SfISfO MAP estimator (the so-called a posteriori prob-

ability (APP) detector) as equalization algorithm, the LLR-valued a posteriori in-

formation of the coded BPSK-symbol bq,n from the n-th transmit antenna at the

q-th signaling instant is given by (see also (2.38))

θ
[
bq,n

]
= log

(
Prob

(
bq,n = +1|r,Hc

)
Prob

(
bq,n = −1|r,Hc

)), (3.1)

where the conditional symbol probabilities are defined by

Prob
(
bq,n = c|r,Hc

)
=
∑

x∈X <c>
q,n

Prob
(
b = x|r,Hc

)
, c ∈ {−1,+1}. (3.2)

Here, X <c>
q,n = {x

∣∣∣x = [x0,1, ..., xq−1,n, c, xq+1,n, ..., xQ−1,N ]T ∈ {+1,−1}QN } denotes

the set of 2QN BPSK-symbols x ∈ X <c>
n,q for which xq,n = c. Inserting (3.2) into

(3.1) and applying Bayes’ theorem, the a-posterori LLR on the coded BPSK-symbol

reads as

θ
[
bq,n

]
= log

⎛⎝∑x∈X <+1>
q,n

p
(
r|b = x,Hc

)
Prob(b = x)∑

x∈X <−1>
q,n

p
(
r|b = x,Hc

)
Prob(b = x)

⎞⎠, (3.3)
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where the probability term Prob(b = x) represents an a priori knowledge on the

vector b, provided in the form of the bit-wise extrinsic LLRs on the coded bits from

outer channel decoding. The probability density function of the received signal r

conditioned on the transmitted symbol vector b and the overall MIMO channel

matrix Hc (see Section 2.7) in (3.3) can be obtained from the multivariate complex-

valued Gaussian distribution:

p
(
r|b = x,Hc

)
=

1

(πσ2
0)MQ

exp
[

− 1

σ2
0

(r − Hcx)H(r − Hcx)
]
. (3.4)

To simplify the calculation of the LLR in (3.3), we introduce the following as-

sumption:

Assumption 3.1. All interleavers of the coded system ensure perfect statistical

independence between the interleaved coded bits.

Assumption 3.1 implies infinite random interleaving and infinite codeword (frame)

lengths. We remark that in practice, this is also well satisfied for finite, but large

codeword lengths. Hence, the probability Prob(b = x) in (3.3) can be written as

Prob(b = x) =
Q−1∏
q=0

N∏
n=1

Prob
(
bq,n = xq,n

)
. (3.5)

Substituting (3.5) and (3.4) into (3.3), and dividing the nominator and denominator

by the term
∏Q−1

q=0

∏N
n=1 Prob

(
bq,n = −1

)
, we finally obtain

θ
[
bq,n

]
= log

⎛⎝
∑

x∈X <+1>
q,n

exp
[

− 1
σ2

0
‖r − Hcx‖2 +

∑
(l,u)∈Aq,n

ζ[bl,u]
]

∑
x∈X <−1>

q,n
exp
[

− 1
σ2

0
‖r − Hcx‖2 +

∑
(l,u)∈Aq,n

ζ[bl,u]
]
⎞⎠

︸ ︷︷ ︸
λe[bq,n]

+ log

⎛⎝Prob(bq,n = +1)

Prob(bq,n = −1)

⎞⎠
︸ ︷︷ ︸

ζe[bq,n]

, (3.6)

where the set Aq,n is defined by

Aq,n ≡
{
(l, u)|l = 0, ..., Q− 1, u = 1, ..., N, xl,u = +1, (l, u) �= (q, n)

}
,

and ζe[bq,n] and λe[bq,n] again denote a priori and extrinsic LLRs on the code bit bq,n,

respectively. Equation (3.6) can be very efficiently calculated by the BCJR algo-

rithm, exploiting the Markovian structure of the MIMO ISI channel. This algorithm

works jointly on the trellis diagrams of the ISI channels of all users. Although this
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equalization scheme is optimal with respect to the error performance of the receiver,

its complexity which is directly related to the number of states of the channel and the

system configuration, grows exponentially with the product of the number of trans-

mit antennas N and the effective channel memory length L. The application of the

optimum MAP estimation in practical transmissions systems is therefore strongly

limited, even for systems having only a moderate number of transmit antennas and

for channels with only a few multipath components.

Several SfISfO algorithms for equalization and detection have been proposed in

recent years, all of them with the aim to approximately solve (3.6) at a reasonable

complexity (however, at the cost of decreased performance). Some of the available

schemes are trying to reduce the complexity by excluding possible transmitted sym-

bol sequences from the search space of (3.6) that have a low likelihood. In this

context, the soft-list sphere detector of [BGBF03] (see also [HtB03] and [SB10] for

improvements and variations thereof), reduces the search space by considering only

the transmit symbol vector candidates for which the corresponding (noiseless) receive

signals lie in a hypersphere of given radius around the received signal. Although, as

shown in [HtB03], the list sphere detector can achieve very close-to-optimal perfor-

mance (provided that the search radius is large enough), its worst-case complexity

is still exponential in N × L. A semi definite relaxation-based detection principle

that yields similar performance to that of the sphere detector with polynomial rather

than exponential worst-case complexity has been presented in [SLW03]. Other works

have attempted to tackle the detection problem by resorting to list-sequential algo-

rithms [TR02], [BHW03], [HK07] or iterative tree search schemes [JW05], [KC09], or

to algorithms employing massive trellis-state reduction techniques [EQ88], [VB03].

These methods have in common that soft-probabilistic information fed back from

channel decoding is used to reduce the search space. Some other available works

have concentrated on signal preprocessing methods to reshape the MIMO ISI channel

with the aim to reduce its impulse response to a shorter length [AD01], [MDEJ03].

However, for MIMO systems with a large number of antennas/users and/or signal

sets, the number of transitions per trellis state is still very large; reducing the length

of the channel response alone is thus not sufficient to reduce complexity.

Another promising approach attractive for SfISfO equalization of MIMO ISI chan-

nels are iterative-based SIC schemes combined with linear filtering (see, e.g., [WP99a],

[TSK02], [TH02], [GM08], [AM03], [KM07], [AJL07], [KSMT05], [WP99b], [LP04],

[GM07], [YGWP08] and [JPSL04]). The main idea of these schemes is to decompose

the optimum scheme (3.6) into several "smaller" detection problems with reduced

dimension that can be solved independently. Compared to trellis-based approaches

or to sphere decoding, the major advantage of turbo equalization employing SIC is

that it can achieve in many cases a very close-to-optimal performance at polynomial
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(at most cubic) complexity. Because of these merits, we restrict ourselves in the

following sections to SIC-based turbo equalization concepts.

3.2. SC-MMSE Time Domain Equalization

In this section, we discuss the soft interference cancellation linear MMSE equaliza-

tion schemes, which is one of the most popular concepts in the literature. The basic

idea of this approach is to utilize the probabilistic information fed back from channel

decoding to calculate a soft estimate of the interference components and to subtract

it from the received signal. A successive linear MMSE filter is applied for filtering of

the residual signal to further suppress the residual interference components. Here,

the term "linear" means that the filtering itself is a linear operation with respect to

the filter-input signal; the whole equalizer itself is nonlinear, though. Based on the

filter output signal, a soft symbol de-mapper then calculates the bit-extrinsic LLR

information on the code bits.

For the description of the algorithm, let us focus on the equalization of a single

block b comprising QN BPSK symbols. In a first step the SC-MMSE algorithm uses

the available a priori information ζe[b] on the code symbols provided by channel

decoding to compute the first two moments of each transmitted symbol bq,n. Let

us denote by b̄ = E

[
b|ζe[b]

]
and Λ ≡ Cov

[
b,b|ζe[b]

]
the mean vector and the

covariance matrix of b, respectively. Under Assumption 3.1, the entries of vector

b̄ = [b̄0,1, b̄1,1, ..., b̄q,n, ..., b̄Q−1,N ]T can be expressed by the conditional mean as

b̄q,n = E

[
bq,n|ζe[bq,n]

]
=

∑
c∈{+1,−1}

c

1 + e−cζe[bq,n]
= tanh

(
1

2
ζe[bq,n]

)
,∀q, n. (3.7)

Similarly to (3.7), the conditional covariance of the transmit symbols is given by

Cov
[
bq,n, br,l|ζe[b]

]
=

⎧⎪⎨⎪⎩1 − b̄2
q,n for (q, n) = (r, l)

0 otherwise
. (3.8)

Note that due to (3.8), Λ is a diagonal matrix, defined by

Λ ≡ diag
(
diag(Λ1), ..., diag(Λn), ..., diag(ΛN)

)
Λn ≡ diag

(
1 − b̄2

0,n, ..., 1 − b̄2
q,n, ..., 1 − b̄2

Q−1,n

)
, for all n = 1, ..., N.

Further note when no a priori information about the code bits is available, which is

typically in the first turbo iteration, the symbol mean vector b̄ and the covariance

matrix Λ are given by the all-zero vector and the identity matrix, respectively. On
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the other hand, when perfect a priori information about the code bits is available,

then |ζe[bq,n]| → ∞, ∀q, n, and b̄ ≈ b and Λ ≈ 0 · IQN .

The first two moments on the transmit symbol vector b are used in the soft can-

cellation of the interference components from the received symbol vector r, followed

by a linear MMSE filtering stage removing residual interferences, to compute an

estimate zq,n for each symbol bq,n, as

zq,n = wH
q,n

(
r − r̄ + Hcew(q,n)b̄q,n

)
, (3.9)

where wq,n and r̄ = Hcb̄ designate the linear MMSE filter coefficient vector and

the estimate of the received signal, respectively. The vector ew(q,n) in (3.9) denotes

the all-zero vector with entry w(q, n) = (n − 1)Q + q + 1 being one. A typical

choice for wq,n is the linear conditional MMSE filter. This filtering approach has

been presented originally by Wang et. al. in the context of multiuser detection for

CDMA systems in [WP99a], and applied by Tüchler et. al. for channel equalization

in [TSK02], and by Abe et al. for MIMO channel equalization in [AM03]. The linear

filter is derived to minimize the conditional MSE between the symbol bq,n and the

filter output symbol zq,n,

E

[
|bq,n − zq,n|2

∣∣∣ ζe[b]
]
, (3.10)

and it is explicitly given by [WP99a], [AM03]

wq,n =
[
HcΛHH

c + σ2
0I − b̄2

q,nHcew(q,n)e
H
w(q,n)H

H
c

]−1

Hcew(q,n). (3.11)

The matrix
[
HcΛHH

c +σ2
0I−b̄2

q,nHcew(q,n)e
H
w(q,n)H

H
c

]
is positive definite, whose eigen-

values are upper bounded by σ2
0. It is therefore invertible for all possible choices of

the channel matrix Hc, so far σ2
0 > 0 which is typically satisfied in practical systems.

Applying the matrix inversion lemma to (3.11), and writing the filter output signals

corresponding to the transmitted symbol block from antenna n, bn in matrix-vector

notation, we obtain the well known result [SGT04], [Kan05]

zn ≡ [z0,n, z1,n, ..., zQ−1,n]T , n = 1, ..., N

= ΘTD

n HH
c,nΣTD−1(r − r̄) + ΘTD

n ΥTD

n b̄n, (3.12)

where b̄n = [b̄0,n, b̄1,n, ..., b̄Q−1,n]T , ΥTD
n ≡ ddiag{HH

c,nΣTD−1Hc,n} and

ΣTD ≡
[
HcΛHH

c + σ2
0IQM

]
, (3.13)

ΘTD

n ≡
(
IQ + ΥTD

n (IQ − Λn)
)−1

. (3.14)



3.2 SC-MMSE TIME DOMAIN EQUALIZATION 51

One readily verifies from (3.12) that for ζe[b] = 0 (no a priori information) and

|ζe[b]| = c · 1, where c → ∞ (perfect a priori information), the above equalizer

becomes equivalent to the classical block-based MMSE linear equalizer [Qur85] and

to the ideal MMSE-based interference canceler [GL81], respectively. The SC-MMSE

equalizer presents thus a flexible structure that adapts the equalization strategy with

respect to the available a priori information about the code bits.

However, a serious drawback of the above scheme is the calculation of the con-

ditional MMSE filter that has to be performed once per transmit block and turbo

iteration. This calculation involves the inversion of the covariance matrix ΣTD of

the residual signal r − r̄ in (3.13) with dimension QM × QM . Due to the pres-

ence of matrix Λ in (3.13), ΣTD is not block circulant despite the CP operations.

The matrix inversion is therefore computationally demanding and requires at least

O(M3Q3) computations. One suitable method to reduce its complexity with only

a marginal performance loss is to apply the so-called sliding window filtering ap-

proach [WP99a], [AM03]. That is, instead of using the whole received symbol vec-

tor r for detection of symbol bq,n, only the L received samples from the M receive

antennas directly affected by bq,n are used in the MMSE filtering. In this way, the

number of filter coefficients is reduced from QM to LM per transmitted symbol.

Moreover, due to the structured nature of the (sliding window) covariance matrix

of the residual signal at the output of the soft canceler, one can also adopt recur-

sive algorithms (see e.g., [TSK02], [KM03], [LP04], [JPSL04]) for the calculation of

the matrix inverse. Such schemes utilize in most cases the Cholesky factorization

and exploit the structural similarities between subsequent matrices. The complexity

is predominantly of order O(L2M2) and directly depends on the channel memory

length L. Therefore, we refer to the sliding window SC-MMSE filtering methods as

well as to the direct implemenation of (3.12) as SC-MMSE time domain equalizer

(SC-MMSE TDE) .

3.2.1. Equivalent AWGN Channel Assumption and LLR

Computation

To derive the extrinsic LLR at the output of the equalizer, we decompose (3.12)

into two terms:

zn = ΘTD

n ΥTD

n bn + νn, (3.15)
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Figure 3.1.: Signal flow chart of the SC-MMSE TDE for the nth data stream.

where vector

νn ≡ [ν0,n, ν1,n, ..., νQ−1,n]T

= ΘTD

n

((
HH

c,nΣTD−1Hc,n − ΥTD

n

)
(bn − b̄n) + HH

c,nΣTD−1
(∑

l 	=n

Hc,l(bl − b̄l) + n)
)

is the contribution of the filtered residual interference components and channel noise.

Assumption 3.2. The (q, n)-th component of the filter output (3.15) can be written

in the form zq,n = μq,nbq,n + νq,n, where μq,n denotes an equivalent channel gain, and

νq,n, modeling the residual interference and channel noise, is circularly-symmetric

Gaussian distributed with probability density function CN (0, σ2
ν,q,n).

Assumption 3.2 is widely known as the equivalent AWGN channel assumption

(see, e.g., [PV97]) which approximates the residual interference signal and channel

noise at the equalizer output as Gaussian distributed. It is straightforward to show

that the equivalent channel gain μq,n and noise variance σ2
ν,q,n can be solved to

μq,n = eT
q ΘTD

n ΥTD

n eq, (3.16)

σ2
ν,q,n = eT

q ΘTD

n ΥTD

n

(
IQ − ΘTD

n ΥTD

n

)
eq. (3.17)

Given the filter output signals (3.12), the extrinsic LLR for each code bit can now

be expressed as

λe

[
bq,n

]
= log

(
p
(
zq,n|bq,n = +1

)
p
(
zq,n|bq,n = −1

)), (3.18)

where the conditional PDFs p
(
zq,n|bq,n = c

)
, c ∈ {−1,+1} are given under Assump-
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tion 3.2 by p
(
zq,n|bq,n = c

)
∼ CN (μq,nc, σ

2
ν,q,n). Using (3.16) and (3.17), the LLRs

in Eqn. (3.18) can be written in vector-notation as

λe

[
bn

]
= 4(IQ − ΘTD

n ΥTD

n )−1�{zn},∀n. (3.19)

The extrinsic LLR sequences λe

[
bn

]
in (3.19) are forwarded via the bit-interleavers

to the channel decoders and serve there in the next turbo iteration as a priori

information about the code bits. The resulting SC-MMSE TDE implementing (3.19)

is depicted in Fig. 3.1.

3.2.2. Matched Filter Approximation and Advanced Techniques

The computational complexity of the SC-MMSE approach is dominated by matrix

inversions, whose dimensions directly depend on the channel memory length and

the number of receive antennas. For channels with a large delay spread, or system

setups with a large number of receive antennas, the calculation of these inverses

is still computationally expensive. Therefore, several attempts have been made

toward reducing the computational complexity of the SC-MMSE TDE by means of

a simplified filtering [GLL97], [BDU06], [JLA08b], [JLA08a].

In [GLL97], a low complexity equalizer was proposed that replaces the MMSE fil-

ter (3.12) with the low-complexity channel matched filter MF, i.e., wq,n = Hcew(q,n),

∀q, n, resulting in the following filter-output equation:

zn = HH
c,n(r − r̄) + Mnb̄n, n = 1, ..., N, (3.20)

where Mn ≡ ddiag{HH
c,nHc,n} denotes the equivalent channel matrix after the chan-

nel MF. Since no matrix inversion is involved, the complexity of (3.20) is mainly

determined by simple matrix-vector multiplications and thus of order O(NQL2) per

transmit block and turbo iteration. The MF-filtering idea proposed in [GLL97] has

been combined with SC-MMSE filtering through switching in [OAM01] and [TH02].

The idea of these papers is to use the SC-MMSE filter, that provides a large gain

for equalization in terms of reduced bit error rate, only in the first turbo iterations.

It can be expected that when a priori information fed back from channel decoding

is sufficient reliable, which is typically after few turbo iterations, the simple MF-

filtering is satisfactory for equalization to improve performance. It was demonstrated

that such a combined SC-MMSE/MF TDE utilizing a powerful error correcting code

can nearly achieve the performance of the pure SC-MMSE TDE in channels with

large multipath diversity.

Alternatively, approximate MMSE filtering solutions employing a finite sum of

weighted matrix polynomials and a truncated Taylor series expansion to approxi-
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mate the matrix inversion has been proposed in [BDU06] and [JLA08b], [JLA08a].

The coefficients of the finite series are chosen to optimize a system performance

criterion. Depending on the number of terms involved in the series expansion, the

resulting equalizer can be scaled from the simple MF equalizer to the complex SC-

MMSE TDE with direct matrix inversion. In particular, by taking advantage of soft

feedback from channel decoding, the authors showed that the performance loss due

to the polynomial/Taylor-series approximation is negligible after few iterations.

3.3. SC-MMSE Frequency Domain Equalization

A further reduction in complexity of the SC-MMSE TDE is obtained by exploiting

the circulant property of the channel matrix (see (2.14)) and performing the MMSE

filtering part in the frequency domain. In particular, an SC-MMSE frequency do-

main equalizer (FDE) performs the fast Fourier transform (FFT), the soft interfer-

ence cancellation and the single-tap filtering followed by an inverse FFT (IFFT) on

the receive data. This solution has been first suggested for single-user SISO turbo

equalization by Tüchler et. al. in [TSK02], and later extended to multi-user MIMO

turbo equalization by Kansanen et. al. in [KM07]. In these papers, the algorithms

were derived by transforming the time domain conditional MMSE filter output sig-

nal in (3.9) directly into the frequency domain. Moreover, the authors introduced a

couple of approximations to reduce the complexity of matrix inversions, involved in

the computation of the frequency domain MMSE filter. In this section, we present

a new derivation by utilizing the unconditional filter approximation [CMT04], and

by deriving the linear MMSE equation in the frequency domain. It will be shown

that the resulting equalizer is equivalent to the SC-MMSE FDE from [KM07].

Let us start by writing the linear filter output in (3.9) in matrix-vector notation

as

zn = OH
n

(
r − r̄

)
+ Φnb̄n, n = 1, ..., N, (3.21)

where On ≡ [OH
n,1, ...,O

H
n,m, ...,O

H
n,M ]H ∈ C

QM×Q, On,m ∈ CQ×Q is the block-filtering

matrix for the nth transmit data stream, and Φn ∈ C
Q×Q is an equivalent channel

matrix after filtering, defined as

Φn ≡ ddiag{OH
n Hc,n}. (3.22)

Assumption 3.3. For an efficient frequency domain implementation of the linear

filtering equation (3.21), the filtering matrices On, n = 1, ..., N are constrained to

be block-circulant.
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Under Assumption 3.3, the eigen-decomposition of the block-filtering matrix On

can be written by On = FH
MΓnF, where Γn ≡ [ΓH

n,1, ...,Γ
H
n,m, ...,Γ

H
n,M ]H ∈ C

QM×Q,

Γn,m ∈ C
Q×Q is the block-diagonal frequency domain filtering matrix. Here, the

entry [Γn,m]q,q of the diagonal matrix Γn,m denotes the filter coefficient at the qth

frequency-bin for transmit/receive antenna pair (n,m). Applying the block-filter

decomposition together with the channel matrix decomposition (2.14) to (3.22), the

equivalent channel matrix Φn can be rewritten as a diagonal matrix with constant

entries μ̄n ≡ Q−1Trace(ΓH
n Ξc,n), i.e.,

Φn = ddiag(FHΓH
n Ξc,nF)

= μ̄nIQ. (3.23)

As a consequence of (3.23), the frequency domain representation of the filter output

signal in (3.21) is found to

zn ≡ Fzn

= ΓH
n

(
r − r̄

)
+ μ̄nb̄n, (3.24)

where we have used the following definitions: r ≡ FMr, r̄ ≡ FM r̄ and b̄n ≡ Fb̄n.

In order to avoid the complexity impairments of the SC-MMSE TDE, we use the

so-called unconditional MSE [CMT04], instead of the conditional MSE in (3.10), as

a design criterion for the block-diagonal filtering matrix Γn in (3.24). The uncon-

ditional MSE between the frequency domain version of the transmit signal vector

bn ≡ Fbn and the filter output signal zn can be expressed as

MSEFD

n ≡ Q−1
E

[
‖zn − μ̄nbn‖2

]
. (3.25)

Using the well known relations about expectations (see, e.g., [PP02]),

E

[
b̄nbT

n

]
= E

[
E

[
b̄nbT

n |ζe[bn]
]]

= E

[
b̄nb̄T

n

]
, (3.26)

the MSE in (3.25) can be written with the help of Assumption 3.1 as

MSEFD

n = Q−1Trace
(
E

[
(zn − μ̄nbn)(zn − μ̄nbn)H

])
= Q−1Trace

(
ΓH

n ΨFDΓn − (1 − ϕ̄n)ΓH
n Ξc,nμ̄

∗
nIQ (3.27)

− (1 − ϕ̄n)ΞH
c,nΓnμ̄nIQ + (1 − ϕ̄n)|μ̄n|2IQ

)
= Q−1Trace

(
ΓH

n ΨFDΓn

)
− (1 − ϕ̄n)|μ̄n|2, (3.28)
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where ϕ̄n ≡ E[b̄2
q,n], ∀n designates the average power of the soft symbol estimates,

and ΨFD ≡
[
ΞcΛ

′ΞH
c + σ2

0IQM

]
is the frequency domain covariance matrix of the

residual signal r− r̄ after soft interference cancellation. Here, Λ′ is the unconditional

covariance matrix of the transmit symbol vector b, given by

Λ′ = E

[
E

[
(b − b̄)(b − b̄)T |ζe[b]

]]
= diag

(
1 − ϕ̄1, ..., 1 − ϕ̄n, ..., 1 − ϕ̄N

)
⊗ IQ. (3.29)

The power levels ϕ̄n, n = 1, ..., N may be estimated, in practice, over the whole

frame of symbol estimates b̄q,n[k], ∀k using the sample mean. This means for a

multiuser system setup, where the channel coding at each user is performed over a

frame of Nb transmit blocks, an estimate of the power levels can be obtained by

ϕ̄n ≈ 1

QNb

Q−1∑
q=0

Nb∑
k=1

b̄2
q,n[k],∀n. (3.30)

For the single-user transmission setup, the coding scheme is uniform over all transmit

antennas. Consequently, the power levels are identical for all N data streams and a

single parameter ϕ̄ is sufficient in this case,

ϕ̄ ≡ 1

N

N∑
n=1

ϕ̄n. (3.31)

The problem of minimizing the MSE in (3.25) can now be formulated as a con-

strained optimization problem. In detail, the linear frequency domain MMSE filter

can be found by solving the following optimization problem:

minimize Q−1Trace
(
ΓH

n ΨFDΓn

)
− (1 − ϕ̄n)|μ̄n|2 subject to: μ̄n = 1. (3.32)

The constraint μ̄n = 1 in (3.32) is introduced to avoid the trivial solution Γn = 0.

It also ensures that the block-filter output vector zn is an unbiased estimate of the

transmit signal vector bn. Using the method of Lagrange multipliers, it is shown in

Appendix B that the solution to the above problem is given by

Γn = γ−1
n ΨFD−1Ξc,n, (3.33)

where γn ≡ Q−1Trace(ΞH
c,nΨFD−1Ξc,n) is a scalar. As a result, the symbol estimate

of the whole transmit block corresponding to the nth transmit data stream can
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efficiently be expressed with (3.33) as

zn = γ−1
n FHΞH

c,nΨFD−1
(
r − r̄

)
+ b̄n. (3.34)

We refer to (3.34) as the SC-MMSE FDE. The computational complexity of the

unconditional filter depends on the calculation of the inverse of the covariance ma-

trix ΨFD. In contrast to the conditional SC-MMSE TDE from (3.12), this matrix

inversion has to be computed only once per turbo iteration and is valid for all trans-

mit antennas and the whole data frame. The covariance matrix ΨFD is a structured

block-diagonal matrix and independent of the effective channel memory length L.

Its inversion can be efficiently performed with O(QM3) operations which leads to

a complexity reduction of factor Q2 as compared to (3.12). The SC-MMSE FDE is

thus also applicable for equalization of MIMO ISI channels with large channel delay

spread.

3.3.1. Equivalent AWGN Channel Assumption and LLR

Computation

As in Assumption 3.2 used in the derivation of the extrinsic LLRs of the SC-MMSE

TDE, we introduce the following approximation on the filter output of the SC-MMSE

FDE.

Assumption 3.4. The (q, n)-th component of the MMSE filter-output can be writ-

ten in the form zq,n = bq,n + ν̄q,n, where ν̄q,n is modeled as zero-mean circularly-

symmetric Gaussian distributed, so that its statistics are completely described by

the variance σ2
ν̄,q,n.

The above assumption implies identical variances for the real and imaginary parts

of the interference and noise term ν̄q,n. The block-filter output signals in (3.34) can

then be equivalently expressed as output signals of a complex-valued memoryless

AWGN channel with variance

σ2
ν,q,n ≡ Var[zq,n] = γ−1

n − (1 − ϕ̄n), n = 1, .., N. (3.35)

As observed from (3.35), in contrast to the time domain approach, the variance of

the equivalent noise ν̄q,n does not depend on the symbol indices (q, k) and hence,

it has to be computed only once per turbo iteration and transmit data stream.

Accordingly, the extrinsic LLR sequences of the code bits are obtained by (3.18) as

λe

[
bn

]
=

4�{zn}
γ−1

n − (1 − ϕ̄n)
,∀n. (3.36)
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Figure 3.2.: Signal flow chart of the SC-MMSE FDE for the nth data stream.

Fig. 3.2 illustrates the block-diagram of the resulting SC-MMSE FDE implementing

(3.36).

Proposition 3.5. The extrinsic LLR outputs (3.36) of the unbiased SC-MMSE

FDE are identical to the LLR outputs of the biased SC-MMSE FDE derived in

[KM07].

The proof of Proposition 3.5 is straightforward and skipped here for brevity.

3.3.2. SNR Analysis

Under Assumption 3.4 and the expression in (3.36), we find that the conditional

PDFs of the extrinsic LLRs are given by real-valued Gaussian distributions

N (μλe,nc, σ
2
λe,n), c ∈ {±1}, (3.37)

where the mean μλe,n = 4(γ−1
n − (1 − ϕ̄n))−1 and the variance σ2

λe,n = 8(γ−1
n −

(1 − ϕ̄n))−1 are related by a factor μλe,n/σ
2
λe,n = 1/2, ∀n. The LLRs fulfill the

exponential-symmetry condition (see Section 2.5.3), so that

p(λe[bq,n]) = p(−λe[bq,n]) exp(λe[bq,n]), (3.38)

where p(λe[bq,n]) is the PDF of the LLR message. The corresponding SNR ψFD
n of

λe[bq,n] is found to

ψFD

n ≡ ψFD

n (ϕ̄) =
2γn(ϕ̄)

1 − γn(ϕ̄)(1 − ϕ̄n)
, (3.39)
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where ϕ̄ ≡ [ϕ̄1, ϕ̄2, ..., ϕ̄N ] is the vector containing the sample averages from (3.30)

and γn = γn(ϕ̄) is a function on the power levels and the channel gains.

Lemma 3.6. The SNR ψFD
n (ϕ̄) in (3.39) is component-wise monotonically increasing

in ϕ̄.

Proof: See Appendix A.2. The maximum SNR at the LLR-output of the SC-

MMSE FDE is obtained for the case of ϕ̄n → 1, ∀n (perfect a priori information)

and bounded by

ψFD

n (1N) = 2Q−1σ−2
0 Trace(Ξc,nΞH

c,n). (3.40)

The value ψFD
n (1N) corresponds to the SNR of the matched filter bound (MFB)

achieved when all interference has been removed in the system. The MFB serves

as an upper bound on the performance and will be used in the numerical analysis

presented in Section 3.7.

A compact expression for (3.39) is obtained for the case of a single-user single-

antenna transmission system. The SNR then reads as

ψFD(ϕ̄) ≡ ψFD

1 (ϕ̄, ..., ϕ̄)

=
γ

1 − γ(1 − ϕ̄)

=

(Q−1∑
q=0

κ(q)

σ2
0 + (1 − ϕ̄)κ(q)

)(Q−1∑
q=0

σ2
0

σ2
0 + (1 − ϕ̄)κ(q)

)−1

=
1

1 − ϕ̄

⎡⎣Q
⎛⎝Q−1∑

q=0

1

1 + ρ(ϕ̄)κ(q)

⎞⎠−1

− 1

⎤⎦, (3.41)

where ρ(ϕ̄) ≡ (1 − ϕ̄)σ−2
0 . Note that the indices denoting the antennas/user have

been skipped for notational simplicity from all the variables in (3.41). The SNR

expression in (3.41) will extensively be utilized in Chapter 4.3 to analyze the con-

vergence of MMSE-based turbo equalizers.

3.4. Nonlinear MMSE Frequency Domain

Equalization

Next, we introduce a turbo scheme based on the framework of nonlinear MMSE

(NMMSE) estimation [PP02]. The conceptual basis of this receiver is the PDA

filtering [LPWH01], where the PDF of the composite ISI and CAI/MAI components

is approximated by a multivariate Gaussian random process. Signal detection based

on optimal NMMSE estimation has been first considered in the context of multiuser



60 3. TURBO EQUALIZATION FOR MIMO SYSTEMS

CDMA by Gollamudi et. al. in [GH99]. It was shown that the calculation of

the optimal NMMSE signal estimate, which requires the computation of a sum of

terms that grows exponentially in the number of users, can be well approximated by

iterative algorithms. This result was used to arrive at a receiver structure employing

an iterative soft-decision interference cancellation scheme. In [PR06], Tan et. al.

have related the optimal NMMSE multiuser detector to the PDA detector from

[LPWH01], where a multivariate Gaussian approximation of the MAI was used to

calculate the NMMSE estimate of the transmitted bits in coded multiuser CDMA.

Similar to [GH99], the NMMSE estimation is performed by iterative interference

cancelers. In this section, we extend the work from [PR06] to signal detection for

MIMO ISI channels and derive a low-complexity frequency domain turbo MMSE

equalizer that exploits the principle of PDA filtering. It is shown that this equalizer

has a similar structure than the SC-MMSE FDE, but, in addition, it posses an

internal feedback loop, by which the symbol estimates can be further improved.

3.4.1. Derivation of Nonlinear MMSE Filter Coefficients

Let zq,n ≡ f ∗(r) denote the NMMSE estimate of the transmitted symbol bq,n, where

f ∗(r) : CMQ → R is the nonlinear function that minimizes the MSE E

[
|bq,n − f(r)|2

]
over all f(r) : C

MQ → R. In order to find the optimal function f ∗(·), we apply

the expectation rule E

[
a
(
r, bq,n

)]
= E

[
E

[
a
(
r, bq,n

)∣∣∣ r]] [PP02], where a(r, bq,n) ≡
|bq,n − f(r)|2, and rewrite the MSE as

∫ ∞

−∞
E

[
a
(
r, bq,n

)∣∣∣ r]p(r)dr. (3.42)

The integrand of (3.42) is always nonnegative. Minimizing the MSE is hence equiva-

lent to the minimization of the conditional expected value E[h(r, bq,n)| r]. Applying

this result to the MSE leads to

f ∗(r) = arg min
f

E

[
|bq,n − f(r)|2

∣∣∣ r]. (3.43)

The solution to the above optimization problem is the well known conditional ex-

pectation, zq,n = E

[
bq,n|r

]
, which may be computed by invoking Bayes’ theorem

from the conditional probability function Prob(bq,n|r) as

zq,n =
∑

bq,n=±1

bq,nProb
(
bq,n|r

)
=
∑

bq,n=±1

bq,n

p
(
r|bq,n

)
Prob

(
bq,n

)
∑

bq,n=±1
p
(
r|bq,n

)
Prob

(
bq,n

) . (3.44)
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Here, p(r|bq,n) denotes the PDF of r conditioned on bq,n, which is defined with (3.4)

as

p
(
r|bq,n

)
=
∑

x∈X <c>
q,n

Prob(x)
exp
[

− 1
σ2

0

∥∥∥r − Hcew(q,n)bq,n − Δq,n(x)
∥∥∥2 ]

(πσ2
0)MQ

, (3.45)

where X <c>
q,n is the binary set, as defined in (3.2), containing all possible combinations

of the transmit symbol vector b, and

Δq,n(x) =
∑

(r,l)∈Sq,n

Hcew(r,l)xr,l,Sq,n ≡ {r, l|0 ≤ r ≤ Q− 1, 1 ≤ l ≤ N, (r, l) �= (n, q)}

(3.46)

is a interference vector containing the ISI and CAI/MAI contributions with respect

to the qth signaling instant of the nth transmit data stream. As observed from

(3.45), the computation of the conditional PDF p
(
r|bq,n

)
, required to obtain the

NMMSE estimate (3.44), involves a summation over 2NQ−1 terms. The computation

of this sum is intractable even for small number of transmit antennas N and block-

sizes Q. In order to reduce the complexity, we adopt here the concept of PDA

filtering [LPWH01], and make the following assumption (see also [PR06]).

Assumption 3.7. The interference vector Δq,n can be modeled as a random process

with multivariate circularly-symmetric Gaussian distribution with mean

μq,n ≡ E[Δq,n|r] =
∑

(r,l)∈Sq,n

Hcew(r,l)zr,l (3.47)

and covariance

Ωq,n ≡ Cov[Δq,nΔH
q,n|r] =

∑
(r,l)∈Sq,n

∑
(t,z)∈Sq,n

Hcew(r,l)Cov(br,lbt,z|r)eH
w(t,z)H

H
c . (3.48)

The Gaussian model of the interference term is a direct result from the application

of the central limit theorem to (3.46), for Q,N → ∞. We may then replace the

summation in (3.45) by an integration over the space of Δq,n. This yields for the

conditional probability density function p
(
r|bq,n

)
the following expression:

p
(
r|bq,n

)
=
∫ ∞

−∞
p(r|Δq,n, bq,n)p(Δq,n)dΔq,n, (3.49)

where p(Δq,n) ∼ CN (μq,n,Ωq,n) denotes the Gaussian multivariate function of the

interference vector Δq,n. Substituting the PDF p(r|Δq,n, bq,n) from (3.45) in (3.49),
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and performing the integration, we obtain

p
(
r|bq,n

)
∝ exp

[
2�
{
eH

w(q,n)H
H
c

[
Ωq,n + σ2

0IQM

]−1
(r − μq,n)

}
bq,n

]
. (3.50)

Now using the probablity-LLR relation Prob(bq,n) = (1 + exp
(

− bq,nζe[bq,n]
)−1

(see

Eqn. (2.35)), and plugging (3.50) into (3.44), the NMMSE estimate of bq,n is finally

obtained as

zq,n = tanh
(

1
2
ζe[bq,n] + 2�

{
eH

w(q,n)H
H
c

[
Ωq,n + σ2

0IQM

]−1
(r − μq,n)

})
. (3.51)

3.4.2. Approximation of Covariance Matrix and Channel

Decomposition

Considering (3.51), it becomes clear that the calculation of the NMMSE estimate

for the code bit bq,n is dominated by the inversion of matrix [Ωq,n + σ2
0IQM

]
. This

computation has a complexity of order O(M3Q3) per BPSK-symbol, which is still

prohibitive as the number of receive antennas M and the block-size Q increase. For

a low-complexity implementation of an NMMSE-based turbo equalizer, we invoke

an approximation of the covariance matrix Ωq,n by a structured matrix, and also

exploit the decomposition property (2.14) of the circulant channel matrices Hc,n,

n = 1, .., N .

Assumption 3.8. The cross-correlation coefficients of the NMMSE symbol esti-

mates are given by

Cov[bq,nbq′,n′ |r] =

⎧⎪⎨⎪⎩1 − |zq,n|2 for q = q′ ∧ n = n′

0 others.
(3.52)

In other words, it is supposed that the NMMSE estimates are uncorrelated to

each other. This approximation becomes valid as N and Q grows large, since it is

expected that E[bq,nbq′,n′ |r] → zq,nzq′,n′ (cf. [PR06].). Based on this simplification,

the covariance matrix Ωq,n can be written as

Ωq,n =
N∑

l=1

Hc,lΛ
′′

lH
H
c,l − (1 − |zq,n|2)Hcew(q,n)e

H
w(q,n)H

H
c ,

=
N∑

l=1

FH
MΞc,lF

HΛ
′′

lFΞH
c,lFM − (1 − |zq,n|2)Hcew(q,n)e

H
w(q,n)H

H
c (3.53)

where Λ
′′

n = diag
(
1 − |z0,n|2, ..., 1 − |zq,n|2, ..., 1 − |zQ−1,n|2

)
∈ R

Q×Q, n = 1, ..., N
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is diagonal matrix containing the variances of the NMMSE symbol estimates. In

(3.53), we have applied the eigen-decompositions of the compound channel matrices

Hc,n = FH
MΞc,nF ∀n to replace the time domain matrices Hc,n by their frequency

domain equivalents. For large block-sizes Q, the diagonal elements of FHΛ
′′

nF in

(3.53) are dominant, encouraging the approximation FHΛ
′′

nF ≈ (1 − ¯̄ϕn)IQ, ∀n
with ¯̄ϕn ≡ 1

QNb

∑Q−1
q=0

∑Nb

k=1 |zq,n[k]|2 for all n = 1, ..., N being the average power of

the NMMSE estimates. The covaricane matrix Ωq,n can then be further simplified

to

Ωq,n ≈
N∑

l=1

(1 − ¯̄ϕl)Hc,lH
H
c,l − (1 − ¯̄ϕn)Hcew(q,n)e

H
w(q,n)H

H
c . (3.54)

For a compact notation of (3.54), we apply the matrix inversion lemma and stack

the NMMSE estimates for the n-th data stream into a vector zn. This yields the

following compact expression for (3.51):

zn = [z0,n, ...., zq,n, ..., zQ−1,n]T

= tanh
(

1
2
ζe[bn] + ΘNL

n �
{
HH

c,nΣNL−1(r −∑N
l=1 Hc,lzl)

}
+ ΘNL

n ΥNL
n zn

)
,∀n,

(3.55)

where

ΣNL ≡
N∑

l=1

(1 − ¯̄ϕl)Hc,lH
H
c,l + σ2

0IQM , (3.56)

ΘNL

n ≡ 2
(
IQ − ΥNL

n (1 − ¯̄ϕn)
)−1

, (3.57)

ΥNL

n ≡ ddiag(HH
c,nΣNL-1Hc,n). (3.58)

Finally, we apply the eigen-decomposition of the compound channel matrix Hc, and

convert the matrices in (3.56)-(3.58) into the frequency domain. Hence, we arrive

at ΨNL ≡ FH
MΣNLFM , ΘNL

n = θnIQ and ΥNL
n = γ̄nIQ, where the scalars θn and γ̄n are

given by θn = 2(1 − γ̄n(1 − ¯̄ϕn))−1 and γ̄n = Q−1Trace(ΞH
c,nΨNL−1Ξc,n), respectively.

Using these notations, the NMMSE estimate in (3.55) can be further written as

zn = tanh
(

1
2
ζe[bn] + θn�

{
FHΞH

c,nΨNL−1
(
r −∑N

l=1 Ξc,lzl

)}
+ θnγ̄nzn

)
. (3.59)

with zl ≡ Fzl. Eqn. (3.59) is a fixed-point problem which may be iteratively solved

following the PDA principle. For this purpose, we introduce the iteration index τ .
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The NMMSE vector of the code bits can be recursively obtained as

z(τ+1)
n = tanh

(
1

2
ζe[bn]

+ θ(τ)
n �

{
FHΞH

c,n(ΨNL(τ))−1
(
r −∑N

l=1 Ξc,lz
(τ)
l

)}
+ θ(τ)

n γ̄(τ)
n z(τ)

n

)
(3.60)

for τ = 0, 1, ..., τmax. A typical choice of the initial solution z(0)
n is the most re-

cent a priori LLR sequence from channel decoding, i.e., z(0)
n = tanh

(
1
2
ζe[bn]

)
, for

n = 1, ..., N (see [PR06]). The aim of these iterations is to adjust the mean and the

covariance of the multivariate Gaussian distribution of the interference vector Δq,n

by exploiting the knowledge of previous estimates on the code bits. The output of

the iterative estimator provides after a sufficient number of iterations an approx-

imate solution to the NMMSE estimates zn, for all n. Note that convergence of

(3.60) relies on the Gaussian approximation (Assumption 3.7) and is not ensured, in

general. Especially, when the parameters Q and N are small and/or the MIMO-ISI

channel has only a small number of dominant paths or a high spatial correlation, we

have found that the Gaussian approximation is less accurate. In such cases, Eqn.

(3.60) may fail to converge. The convergence properties may then be improved by

introducing iteration-depending weighting factors to previous NMMSE estimates

(see cf. [GS01], [PR06]). This weighting factor approach might ensure convergence

at the expense of a decreasing convergence rate to the steady state. The iterative

estimator (3.60) is evaluated in Section 3.7 through a series of numerical examples

in spatially uncorrelated MIMO channels, for which convergence always has been

observed.

A low-complexity equalizer suited for the application in turbo receivers may now

directly be derived from (3.59). Supposing a sufficient number of iterations so that

(3.60) has converged to a steady state, the conditional PDF in (3.50) reads as

p
(
r|bq,n

)
∝ exp

[ (
θneT

q �
{

FHΞH
c,nΨNL−1

(
r −∑N

l=1 Ξc,lzl

)}
+ θnγ̄nzq,n

)
bq,n

]
.

(3.61)

The corresponding extrinsic LLR vector at the equalizer output for the code bits

of the transmit block bn forwarded to the channel decoder(s) can immediately be

determined with (3.61) as

λe

[
bn

]
= 2θn�

{
FHΞH

c,nΨNL−1
(
r −

N∑
l=1

Ξc,lzl

)}
+ 2θnγ̄nzn, (3.62)

A block diagram of the resulting equalizer to (3.62) is depicted in Fig 3.3. We see

that the structure of the above equalization scheme is similar to the SC-MMSE FDE
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Figure 3.3.: Signal flow chart of the PDA SC-MMSE FDE for the nth transmit
data stream.

introduced in Section 3.3. However, with the presented method, internal iterations

within the equalizer following the PDA principle are used to improve the NMMSE

estimates. The proposed equalization scheme is therefore denoted as PDA SC-

MMSE FDE in what follows.

We remark that with the present turbo structure, we have three separate itera-

tions: i) the overall turbo iteration, exchanging extrinsic LLRs between the PDA

SC-MMSE FDE and the channel decoders; ii) the internal PDA SC-MMSE FDE it-

erations, improving the soft symbol NMMSE estimates; and iii) the iterations within

the channel decoders.

3.4.3. SNR Analysis

In order to analyze the SNR of the extrinsic LLRs at the PDA SC-MMSE FDE

output, we rewrite (3.62) in signal-plus-distortion form as λe[bq,n] = ¯̄μq,nbq,n + ¯̄νq,n

with ¯̄μq,n being an equivalent gain at the equalizer output and ¯̄νq,n modeling the

residual interference and noise components. The corresponding SNR of the extrinsic

LLRs is given by

ψNL

q,n ≡
¯̄μ2

q,n

E[¯̄ν2
q,n]

. (3.63)

To derive an exact closed-form expression to (3.63), it would be necessary to take into

account the cross-correlations between different NMMSE estimates over the internal

equalizer iterations. However, such a modeling is beyond analytical tractability for
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large block-sizes Q and users/transmit antennas N . For the ease of analysis, it is

assumed that the following holds true.

Assumption 3.9. The additive samples ¯̄νq,n are zero-mean i.i.d. Gaussian dis-

tributed and independent of the code bit bq,n. The corresponding PDF of the ex-

trinsic LLR λe[bq,n] satisfies the exponential symmetry condition.

In other words, it is supposed that the NMMSE estimates at each internal equal-

izer iteration are uncorrelated with each other, and are independent of the chan-

nel noise. With this simplification, the equivalent gain and variance are solved as
¯̄μq,n = 2θnγ̄n and E[¯̄ν2

q,n] = 4θnγ̄n, respectively. The parameter γ̄n is a function of

vector ¯̄ϕ ≡ [ ¯̄ϕ1, ..., ¯̄ϕn, ..., ¯̄ϕN ]T containing the power values of the NMMSE estimates

from all users/transmit antennas. To emphasize this, we write γ̄n = γ̄n( ¯̄ϕ). Using

the above expressions for the mean and variance, the SNR in (3.63) is obtained as

ψNL

n ≡ ψNL

q,n =
2γ̄n( ¯̄ϕ)

1 − γ̄n( ¯̄ϕ)(1 − ¯̄ϕn)
. (3.64)

The parameter ¯̄ϕn in (3.64) can be obtained by invoking the sample mean and noting

that for large number of blocks and frame length Q and Nb, respectively, the sample

mean converges to the ensemble expectation, so that

¯̄ϕn = lim
Q,Nb→∞

1

QNb

Q−1∑
q=0

Nb∑
k=1

|zq,n[k]|2 = E[z2
q,n]

= E[bq,nzq,n], (3.65)

where the equivalence between the first and second line in (3.65) follows from the

expectation rule (3.26) (see also [PP02]). To proceed, we require the knowledge of

the distribution of the input LLRs ζe[bq,n] at the equalizer to express E[bq,nzq,n] in a

closed form. We adopt the Gaussian model (2.48) from Section 2.5.2, and assume

that the input LLRs ζe[bq,n] are drawn from an exponential-symmetric Gaussian dis-

tribution. This model has been widely used in the convergence analysis of multiple

concatenated codes and coded systems and is formalized in the following assump-

tion1.

Assumption 3.10. The LLRs ζe[bq,n] ∼ N (2�nbq,n, 4�n) are i.i.d. exponential-

symmetric Gaussian distributed with channel SNR �n.

The input LLRs at the equalizer can now be treated as samples from a memoryless

binary-input AWGN channel with SNR �n. Due to the symmetry constraint, the

1Examples of multiple concatenated codes are LDPC and turbo codes (see e.g., [PSU05], [RU01],
[RSU01], [BGT93]).
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Figure 3.4.: Graph of function φ(x) responsible for mapping of SNR values to
power levels for the NMMSE estimates.

single SNR parameter �n is sufficient to characterize the statistics of ζe[bq,n]. Based

on Assumption 3.9 and 3.10, the power levels ¯̄ϕn of the NMMSE estimates can now

be written with (3.62) by an integral equation as

¯̄ϕn = E[bq,nzq,n]

=
1√
2π

∫
tanh

(
z
√
�n + ψNL

n + �n + ψNL
n

)
e− z2

2 dz

= φ(�n + ψNL

n ), (3.66)

where we have defined φ(x) ≡ 1√
2π

∫∞
−∞ tanh

(
z
√
x+ x

)
e

−z2

2 dz. As shown in Fig.

3.4, φ(x) is continuous, strictly monotonically increasing and bounded, 0 ≤ φ(x) ≤
1. Therefore, it has a unique inverse φ−1(·). Both functions φ(x) and φ−1(x) have

no-closed form solution. However, good approximations of them can be obtained by

numerical integration (c.f., [SBR06]) as

φ(x) ≈
(

1 − 2−H1(4x)H2

)H3

,

φ−1(x) ≈ 1

4

(
− 1

H1

log2

(
1 − x

1
H3

)) 1
H2

, (3.67)

where H1 = 0.4282, H2 = 0.8130 and H3 = 1.1699. The function φ(·) and its inverse

φ−1(·) as well as their approximations in (3.67) will be exploited in the convergence

analysis of turbo systems in the following Chapter 4.

With expression (3.66), Eqn. (3.64) can finally be rewritten as a fixed point
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Figure 3.5.: Illustration of the recursive calculation of the SNR at the PDA SC-
MMSE FDE output.

equation. In order to efficiently calculate a solution to this fixed point equation, we

develop a recursive relationship describing the SNR improvement achieved by the

internal iterations. By replacing each variable with the corresponding variable at

internal iteration τ , and using (3.66) and (3.64) in a recursive fashion, the SNR at

the equalizer output can be determined, for the input SNR values �n, ∀n as (see

Fig. 3.5)

¯̄ϕ(τ)
n = φ

(
�n + ψNL(τ)

n

)
, ψNL(0)

n ≡ 0,∀n, (3.68)

ψNL(τ+1)
n =

2γ̄n( ¯̄ϕ
(τ)

)

1 − γ̄n( ¯̄ϕ
(τ)

)(1 − ¯̄ϕ
(τ)
n )

,∀n. (3.69)

�n = φ−1( ¯̄ϕ(0)
n ), (3.70)

where ¯̄ϕ(0)
n ∈ [0, 1] denotes the initial power level of the NMMSE estimates. The

above calculations are carried out for all N data streams and all iterations τ ∈
{0, ..., τmax}. With some effort, it is possible to verify that for all j = 1, .., N ,

the partial derivatives ∂ψNL(τ)
n /∂ ¯̄ϕj are non-negative with respect to ¯̄ϕj. Together

with the fact that φ(·) is bounded and monotonically increasing, we deduce that the

sequence generated by (3.68)-(3.70) is guaranteed to converge to a unique fixed-point

ψNL(∞)
n as τ → ∞, ψNL(∞)

n ≡ limτ→∞ ψNL(τ)
n , ∀n.

With the above expressions, we can evaluate and compare the output SNRs of

the PDA SC-MMSE FDE and the SC-MMSE FDE. For this purpose, we define the

SNR gain of the nth LLR output achieved by the PDA SC-MMSE FDE over the

SC-MMSE FDE as

ψ̊n ≡ ψNL(∞)
n

ψ
NL(1)
n

,∀n. (3.71)

Obviously without the internal iterations, i.e., τ = 0, we immediately see that the

SNRs of the output LLRs of the PDA SC-MMSE FDE and the conventional SC-

MMSE FDE are identical and hence ψNL(1)
n = ψFD

n follows.

Fig 3.6 illustrates the SNR gains ψ̊n, n = 1, 2 for a single-user N = M = 2
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Figure 3.6.: SNR gain ψ̊n, n = 1, 2 at the LLR output of the PDA SC-MMSE
FDE at different receive SNRs Es/N0 = −4 dB, 0 dB and 4 dB for
a turbo system with FFT-size Q = 32. Single L = 32-tap Rayleigh
fading N = M = 2 MIMO channel realization with equal average
path energy.

MIMO system at different receive SNRs Es/N0 and different initial values2 of ¯̄ϕ(0).

We observe that significant gains are obtained for low to moderate values of ¯̄ϕ(0)
n ,

indicating that improvements in performance of turbo equalization can be expected

through the internal iterations when probabilistic information fed back from channel

decoding is unreliable (which is typically the case in the first turbo iterations). The

combination of soft decision feedback within the equalizer and a priori knowledge

from channel decoding thus leads to an improvement of convergence speed and

threshold of the turbo receiver. We evaluate this feature of the PDA SC-MMSE

FDE by numerical simulations in terms of BER and throughput (TP) in Section

3.7.

3.5. Hybrid SC-MMSE Frequency Domain

Equalization

Unfortunately, due to its simplicity, the conventional SC-MMSE-based turbo re-

ceivers suffer from a considerable performance loss, e.g., as shown by the author in

[GM07] when applied to the ISI multiple access spatially-correlated fading channel.

To overcome this performance degradation, groupwise turbo equalization [VMJ04],

2For a single-user transmission system, the input LLRs of all data streams at the equalizer are

assumed to have the same distribution, and therefore, we set ¯̄ϕ(0)
1 = ¯̄ϕ(0)

2 .
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[GM07] can be employed that combines SC-MMSE filtering and optimal MAP de-

tection.

The idea of groupwise multiuser detection was first introduced by Varanesi in

[Var95] for uncoded CDMA channels. The group detector (GD) partitions the users’

signals into a set of disjoint subgroups, and then employs the maximum likelihood de-

tection (MLD) sequentially or in parallel to the signals in each subgroup. Compared

to the optimal solution, the GD achieves near-optimal performance at a significantly

reduced complexity. The concept from [Var95] was extended in [LHLF00] to group

antenna detection (GAD) using linear subspace processing for inter-group interfer-

ence (IGI) suppression of spatially-multiplexed MIMO channels with frequency-flat

fading. Also, the authors of [LHLF00] presented a channel correlation-based group

selection (GS) scheme that optimizes the grouping for each individual antenna with

respect to optimum system performance. Among other contributions, Moon et.

al. [MJLL10] has recently shown that the performance of the GAD scheme [LHLF00]

can be further improved when taking into account the noise statistics at the receiver.

Particularly, they proposed a groupwise detection strategy based on linear filtering

maximizing the SINR in each subgroup. In addition, the authors derived an SINR-

based GS method that maximizes the overall system’s performance.

Several group detectors employing turbo processing for coded data transmission

were presented in [EPP06], [VMJ04], [VBC06], [GM07]. Iterative soft interference

cancellation combined with groupwise noise-whitening filtering, incorporating a pri-

ori information from channel decoding, was used in [EPP06] to group detection for

MIMO flat-fading systems having more transmitter than receiver antennas. Note

that due to presence of a priori information, the iterative receiver used the MAP

instead of the ML algorithm. In [VMJ04], Veselinovic et al. considered a space-time

trellis-coded (STTrC) system in multiple-access ISI fading channels and derived a

time-domain groupwise SC-MMSE-based filtering technique for joint signal detection

of multiple transmit antennas. The aim of jointly detecting symbols from different

antennas was to preserve the effective degrees of freedom that can be used for sup-

pression of unknown co-channel interfering signals. In [GM07], the author extended

the groupwise SC-MMSE technique from [VMJ04] to OFDM systems with iterative

detection. Group equalization combining frequency domain SC-MMSE filtering and

MAP symbol detection has also been considered in [VBC06]. However, unlike to

the groupwise filtering approach [VMJ04], [GM07], the MMSE block from [VBC06]

performs the suppression of residual interferences on a user-by-user basis, similar to

the standard MMSE filter [TSK02], to separate the transmitted signals. The MSE

at the equalizer output can therefore not be used to evaluate the performance of

each subgroup, which is needed for an adaptive GS at each turbo iteration.

The main goal of this section is to design a computationally efficient turbo re-
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ceiver for multiuser systems that is robust against spatial channel correlation. To

achieve this goal, we adapt the group detection strategy from [Var95] and extend

the SC-MMSE FDE from Section 3.3 to an equalizer that performs frequency do-

main groupwise processing of the multiple users’ transmitted symbols. In particular,

the proposed algorithm divides the users’ signals into several non-overlapping sub-

groups, and then it performs IGI equalization utilizing a priori information about

the transmitted data obtained from channel decoding. The groupwise filter is de-

signed to minimize the MSE in each subgroup. Similar to the derivation of the FDE

in Section 3.3, we derive the groupwise filter in the frequency domain by introducing

an additional design criterion in the optimization. More specifically, the structure of

the filtering matrix is constrained to be block-circulant. This restriction significantly

reduces the complexity for the covariance matrix inversions involved in SC-MMSE

equalization.

Particular emphasis is also put on the grouping strategy, which mainly determines

the overall performance of the system. Three greedy algorithms based on MSE and

correlation criteria for grouping the users into several subgroups are proposed. The

aim of these algorithms is to find groupings that reduce noise enhancement due to

the SC-MMSE interference suppression of highly correlated user signals. The first

scheme dynamically forms subgroups at each turbo iteration by computing among all

possible group partitions the one that minimizes the maximum subgroup’s MSE. The

calculation of each partition involves a number of matrix inversions, which however,

limits the application of the dynamic MSE-based algorithm to systems with a small

number of users. The second and third schemes reduce complexity by providing a

static grouping that is valid for all turbo iterations. It is shown that the simple static

correlation-based algorithm outperforms the static MSE-based grouping scheme and

achieves similar performance as the dynamic MSE-based algorithm at a significantly

reduced complexity when applied to the proposed turbo receiver.

3.5.1. Modified System Model

The hybrid equalizer separates the transmitted signals into G disjoint subgroups,

labeled by the sets (A1, ...,Ag, ...,AG), such that each subgroup Ag = {a1, ..., aU},

a1 < .... < aU contains U integers corresponding to indices of users that are jointly

detected3. Without loss of generality, we assume identically sized subgroups, such

that N = GU . Fig. 3.7 shows an example of a possible grouping of the users when

N = 6, G = 3 and U = 2.

Consider equalization of the transmitted signals from the U users of the gth

3Note that the proposed scheme can easily be extended to group detection with overlapping
subgroups.
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user 1

user 2

user 3

user 4

user 5

user 6 receiver

A1 = {1, 5}

A2 = {2, 3}

A3 = {4, 6}

Figure 3.7.: Example for grouping 6 users into 3 subgroups. G = 3 and U = 2.

subgroup and kth data block. Correspondingly, the received signals can be split

into two parts: the first part contains the transmitted signals from the users of

the desired gth subgroup and the second part contains the interference components

from the remaining G− 1 subgroups and the additive Gaussian noise. By denoting

tg ≡ [bT
a1
, ...,bT

au
, ...,bT

aU
]T , ∀au ∈ Ag as the vector containing the users’ transmitted

signals of the gth subgroup, we can rewrite (2.52) as

r = Hgtg +
G∑

j=1,j 	=g

Hjtj + n, (3.72)

where Hg ≡ [Hc,a1 , ...,Hc,au
, ...,Hc,aU

] ∈ C
QM×QU , au ∈ Ag is the gth subgroup’s

channel matrix. Here, the term
∑G

j=1,j 	=g Hjtj denotes the interference components

from the G− 1 non-desired subgroups. For a compact notation of (3.72), we define

Hg ≡ [H1, ...,Hg−1,Hg+1, ...,HG], 1 ≤ g ≤ G (3.73)

and

fg ≡ [tT
1 , ..., t

T
g−1, t

T
g+1, ..., t

T
G]T , 1 ≤ g ≤ G (3.74)

as the matrix and the vector containing all users’ channels and all users’ transmitted

signals, respectively, except those from the gth subgroup. Equipped with (3.73) and

(3.74), Eqn. (3.72) can be compactly written as

r = Hgtg + Hgfg + n. (3.75)
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3.5.2. Derivation of Frequency Domain Filter Coefficients

The hybrid equalizer performs soft interference cancellation and frequency domain

MMSE filtering for groupwise separation of the users’ transmitted signals. Specif-

ically, following the standard SC-MMSE approach (see Section 3.2), it uses the

available a priori LLR sequences ζe[bn], n = 1, ..., N to compute soft-estimates

b̄q,n = E

[
bq,n|ζe[bq,n]

]
for each transmitted symbol using the conditional mean esti-

mator. As for the standard SC-MMSE FDE, the soft-estimates are used to construct

a soft replica r̄ of the gth subgroup’s desired signals and the interference compo-

nents. It then performs soft interference cancellation and linear groupwise MMSE

filtering of the received signal r to separate the transmitted signals into G indepen-

dent subgroups. In contrast to the standard SC-MMSE approach from Section 3.2

that performs ISI/MAI cancellation on a user-by-user basis, the groupwise MMSE

filter suppresses all residual interference components from non-desired subgroups as

well as the desired subgroup’s residual ISI components, while preserving the effec-

tive degrees of freedom of the desired subgroup’s spatial components for joint signal

MAP detection.

Let us define by Wg ≡ [Wg,1, ...,Wg,u, ...,Wg,U ] ∈ C
QM×QU , 1 ≤ g ≤ G the

filtering matrix for the gth subgroup, where each sub-matrix

Wg,u ≡ [WH
g,u,1, ...,W

H
g,u,m, ...,W

H
g,u,M ]H (3.76)

with Wg,u,m ∈ CQ×Q defines the filter matrix corresponding to the uth user. Based

on the modified system model in (3.75), the filter output signal at the gth subgroup,

which is an estimate of tg, can be expressed as

zg = WH
g

(
r − r̄

)
+ Mgt̄g

= Mgtg + (WH
g Hg − Mg)

(
tg − t̄g

)
+ WH

g Hg

(
fg − f̄g

)
+ WH

g n, (3.77)

where t̄g and f̄g are the conditional mean of tg and fg, respectively, and Mg ∈
C

QU×QU is the equivalent channel matrix after groupwise MMSE filtering,

Mg ≡

⎡⎢⎢⎢⎣
Mg,1,1 . . . Mg,1,U

...
. . .

...

Mg,U,1 . . . Mg,U,U

⎤⎥⎥⎥⎦ (3.78)

with Mg,i,j ∈ C
Q×Q, 1 ≤ i, j ≤ U being diagonal sub-matrices, whose entries are

given by

Mg,i,j ≡ ddiag(WH
g,iHc,aj

), aj ∈ Ag.
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Note that in (3.77) the first term represents the received signal of the desired gth

subgroup, the second term represents the residual self-interference components from

all users within the gth subgroup, the third term represents the residual interference

components from the users’ signals of the remaining G − 1 subgroups (j �= g), and

the last term represents filtered additive Gaussian noise.

Similar to Assumption 3.3, we restrict Wg to be block-circulant to efficiently

implement (3.77) into the frequency domain. Using again the eigendecomposition

property (2.14) of a circulant matrix, Wg can then be decomposed into

Wg = FH
M Γ̂gFU , (3.79)

where Γ̂g ≡ [Γ̂g,1, ..., Γ̂g,u, ..., Γ̂g,U ] ∈ C
QM×QU is the frequency domain filtering

matrix, consisting of sub-matrices Γ̂g,u ≡ [Γ̂H
g,u,1, ..., Γ̂

H
g,u,m, ..., Γ̂

H
g,u,M ]H with Γ̂g,u,m ∈

C
Q×Q being a diagonal matrix. Here the entry [Γ̂g,u,m]q,q denotes the gth subgroup’s

filter coefficient at frequency-bin q for user/receive antenna pair (au,m), au ∈ Ag.

By applying the matrix decomposition (3.79) to (3.77), the linear filtering equation

can be converted into the frequency domain,

zg ≡ FUzg

= Mgtg + (ΓH
g Ξg − Mg)(tg − t̄g) + ΓH

g Ξg(f g − f̄ g) + ΓH
g n, (3.80)

where Ξg = [Ξc,a1 , ...,Ξc,au
, ...,Ξc,aU

], au ∈ Ag, 1 ≤ g ≤ G is the gth subgroup’s

frequency domain channel matrix, Ξg = [Ξ1, ...,Ξg−1,Ξg+1, ...,ΞG], and tg = FUtg,

t̄g = FU t̄g, f g = FN−U fg, f̄ g = FN−U f̄g, and n = FMn. Moreover, using (3.79), we

can also write (3.78) as

Mg = FH
U MgFU = Ug ⊗ IQ,

where Ug ∈ C
U×U with the (i, j)th element being given as

[Ug]i,j = Q−1Trace
(
Γ̂H

g,iΞc,aj

)
, 1 ≤ i, j ≤ U, aj ∈ Ag. (3.81)

The average unconditional linear MSE between the gth subgroup’s transmitted

signals and the filter output (3.80) is used as a design criterion for the groupwise

MMSE filter Γ̂g,

MSEGrFD
g ≡ Q−1

E

[ ∥∥∥zg − Mgtg

∥∥∥2 ]. (3.82)

By rewriting the frequency domain covariance matrix of the residual signal r − r̄ in
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(3.28) as

ΨFD = ΞgΛ(1)
g Ξ

H
g + ΞgΛ(2)

g Ξ
H

g + σ2
0I (3.83)

with Λ(1)
g and Λ(2)

g being the covariance matrices of the vectors tg and f g, respec-

tively,

Λ(1)
g ≡ E

[
E

[ (
tg − t̄g

)(
tg − t̄g

)H
∣∣∣∣ ζe[tg]

]]
= Λ̂g ⊗ IQ, (3.84)

Λ(2)
g ≡ E

[
E

[ (
f g − f̄ g

)(
f g − f̄ g

)H
∣∣∣∣ ζe[fg]

]]
= diag

(
diag(Λ(1)

1 ), ..., diag(Λ(1)
g−1), diag(Λ(1)

g+1), ..., diag(Λ(1)
G )
)

(3.85)

with Λ̂g ≡ diag
(
1 − ϕ̄a1 , ..., 1 − ϕ̄au

, ..., 1 − ϕ̄aU

)
, au ∈ Ag, the MSE in (3.82) can be

expressed as

MSEGrFD
g = Q−1Trace

(
Γ̂H

g ΨFDΓ̂g − Γ̂H
g ΞgΛ(1)

g MH
g − MgΛ(1)

g Ξ
H
g Γ̂g + MgΛ(1)

g MH
g

)
= Q−1Trace

(
Γ̂H

g ΨFDΓ̂g − MgΛ(1)
g MH

g

)
. (3.86)

With the MSE in (3.86) as our cost function, the linear filtering problem reads as

Γ̃g = arg min
Γ̂g∈CMQ×UQ

Q−1Trace
(

Γ̂H
g ΨFDΓ̂g − MgΛ(1)

g MH
g

)

s.t. diag(Mg) = 1UQ, (3.87)

where the constraint on matrix Mg is imposed to avoid the trivial solution Γ̃g = 0.

To express (3.87) in a more convenient form, we define by Γ̌g ≡ Γ̂g(IU⊗1Q) ∈ C
QM×U

and Υg ≡ Ξg(IU ⊗ 1Q) ∈ C
QM×U the subgroup’s filtering and channel matrix,

respectively. Using these notations, the MSE in (3.86) can be written as

MSEGrFD
g = Q−1Trace

(
Γ̂H

g ΨFDΓ̂g − (Ug ⊗ IU)(Λ̂g ⊗ IU)(UH
g ⊗ IH)

)
= Q−1Trace

(
Γ̌H

g ΨFDΓ̌g −QUgΛ̂gUH
g

)
= Q−1Trace

(
Γ̌H

g ΨFDΓ̌g −Q−1Γ̌H
g ΥgΛ̂gΥH

g Γ̌g

)
= Q−1Trace

(
Γ̌H

g ΨFD

0 Γ̌g

)
(3.88)

where ΨFD
0 ≡ ΨFD −Q−1ΥgΛ̂gΥH

g . Based on (3.88), we can rewrite the optimization
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problem (3.87) as

Γ̆g ≡ arg min
Γ̌g∈CMQ×U

Q−1Trace
(
Γ̌H

g ΨFD

0 Γ̌g

)
s.t. Q−1diag(Γ̌H

g Υg) = 1U . (3.89)

In Appendix B, it is shown that Γ̆g under the constraint in (3.89) can be derived as

Γ̆g = ΨFD−1ΥgΘ−1
g Ω−1

g , (3.90)

where

Ωg ≡ Q−1ddiag
(
ΥH

g ΨFD−1ΥgΘ−1
g

)
,

Θg ≡ IU −Q−1Λ̂gΥH
g ΨFD−1Υg.

Rewriting (3.90) in the diagonal-block form (3.79), the optimal groupwise frequency

domain MMSE filter Γ̃g is obtained as

Γ̃g = ΨFD−1Ξg

(
Θ−1

g Ω−1
g ⊗ IQ

)
. (3.91)

Lemma 3.11. By setting U = 1, the proposed hybrid equalizer is equivalent to the

conventional biased SC-MMSE FDE.

For the special case of U = 1, i.e., the gth set Ag contains only the index of one

user, Eqn. (3.91) reduces to the unbiased frequency domain MMSE filter

Γ̃g =
ΨFD−1Ξg

Q−1Trace(Ξ
H
g ΨFD−1Ξg)

. (3.92)

The equalizer structure based on (3.92) and the conventional biased SC-MMSE

FDE [KM07], [AJL07], [TH02], [YGWP08] have an identical LLR decision metric.

Therefore, both schemes have equal performance in terms of BER.

Using (3.91) and (3.77), we may finally express the groupwise time-domain filter

output at the equalizer as

zg = M̃gtg + vg, (3.93)

where M̃g = Ŭg ⊗ IQ with Ŭg = Q−1Γ̆H
g Υg, and vg is the residual interference plus

noise term.
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3.5.3. Joint Detection

After groupwise filtering of the received signals, joint detection of the users’ signals

within one subgroup is performed. The symbol estimates corresponding to the

users’ signals of the gth subgroup to be jointly detected are first grouped together

into vectors zg,q ≡ [zq,a1 , ..., zq,au
, ..., zq,aU

]T ∈ C
U×1, au ∈ Ag, for all q = 1, ..., Q.

These vectors are given by

zg,q = Sqzg

= Ŭgtg,q + vg,q, (3.94)

where cg,q = Sqtg and vg,q = Sqvg are the gth subgroup’s transmitted signal vector

and the residual interference and noise vector during the qth transmission period,

respectively, obtained from tg and vg by multiplication with selection matrix Sq ≡
IU ⊗ eT

q . The equivalent channel matrix Ŭg in (3.94) is found with (3.90) as

Ŭg = Q−1Ω−1
g Θ−1

g ΥH
g ΨFD−1Υg.

In order to compute LLR messages for the filtered signal components zg,q in (3.94),

we resort to the Gaussian approximation of the residual interference plus noise term

at the filter output.

Assumption 3.12. The distribution of the residual interference plus noise vector

vg,q can be modeled as a multivariate circularly-symmetric Gaussian distributed

random vector with zero-mean and covariance matrix

Rg = E[vg,qv
H
g,q]

= Q−1Ω−1
g Θ−1

g ΥH
g ΨFD−1ΥgΩ−1

g . (3.95)

We remark that Ŭg and Rg are identical for all (q, k) and have to be computed

only once for each subgroup and turbo iteration. Therefore, the extrinsic LLR for

each bq,au
is obtained as [CMT04]

λe[bq,au
] = log

∑
x∈X <+1>

u

exp
[
ρg,q +

∑
∀j:j 	=u,xj=+1

ζe[bq,aj
]
]

∑
x∈X <−1>

u

exp
[
ρg,q +

∑
∀j:j 	=u,xj=+1

ζe[bq,aj
]
] , (3.96)

where ρg,q is the MAP-decision metric, defined as

ρg,q ≡ −
(
zg,q − Ŭgx

)H
R−1

g

(
zg,q − Ŭgx

)
, (3.97)
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Figure 3.8.: Signal flow chart of the hybrid SC-MMSE FDE for the gth subgroup.

and X <±1>
u is the set of 2U BPSK data symbols x ∈ X <±1>

u for which the uth

component xu = ±1.

Fig. 3.8 depicts the corresponding signal flow chart to the hybrid scheme based

on (3.96).

3.5.4. Comparison with other Criteria

Different alternative choices of optimization criteria can be used for cancellation of

interference components between subgroups. In [VBC06], equalization is performed

by linear filtering minimizing the unconditional MSE

minimize Q−1
E

[ ∥∥∥∥Kg

(
r − Hg f̄g

)
− tg

∥∥∥∥2
]
, (3.98)

where Kg ∈ C
QU×QM is the time domain MMSE block-filtering matrix. Also, as

shown in [VBC06], a frequency domain equivalent can be derived from Kg by uti-

lizing the eigenvalue decomposition of the circulant channel matrices. We note that

the criterion in (3.98) in the absence of a priori information is simply a block-wise

notation of the symbol-wise (unconditional) MSE formulation from [TH02]. The

SC-MMSE filtering block resulting from (3.98) is therefore during the first turbo

iteration equivalent to the standard SC-MMSE filtering that removes interference

user-by-user from the received signal to separate the transmitted signals. Unlike

to the above MSE criterion, the objective of our criterion (3.87) is to obtain a fre-

quency domain groupwise MMSE filter that jointly suppresses residual interferences
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for the users’ signals in each subgroup. Besides, more important, only the MSE in

(3.82) can be used to evaluate the performance of each subgroup, which is needed for

adaptive user grouping incorporating a priori information from channel decoding,

as considered in Section 3.5.5.

Recently, the authors of [MJLL10] proposed a groupwise filtering technique maxi-

mizing the SINR in each subgroup for non-iterative joint detection of multi-antenna

signals in flat-fading MIMO channels. Here, we extend the approach from [MJLL10]

to iterative frequency domain soft interference cancellation equalization employing

groupwise maximum-SINR filtering. Using the notations in (3.72)-(3.77), the filter-

ing matrix maximizing the SINR for the gth subgroup can be obtained as

Γ̊g ≡ arg max
{Γ̂g∈CQM×QU }

SINRg, (3.99)

where SINRg is defined as

SINRg ≡
E

[
‖Mgtg‖2

]
E

[
‖zg − Mgtg‖2

] .
As shown in Appendix B, the optimal value of Γ̊g can be found as a solution of a

generalized eigenvalue problem.

We now present a theorem that compares the proposed MSE and SINR criteria.

Theorem 3.13. The groupwise hybrid equalizers based on MSE and SINR criteria

in (3.87) and (3.99), respectively, have an identical MAP decision metric.

Proof. The proof is given in Appendix A.3.

The groupwise MMSE and SINR-based filter designs in (3.87) and (3.99), re-

spectively, thus lead to turbo equalizer structures having identical complexities and

extrinsic output LLRs.

3.5.5. Group Selection Methods

The performance of the hybrid turbo equalizer is largely determined by the as-

signment of the users’ signals to subgroups. In [MJLL10], a GS method based on

a capacity criterion was proposed that maximizes the achievable information rate

of MIMO systems employing non-iterative group detection. The same authors pre-

sented in [JLML08] a grouping scheme using a min-max subgroup SINR formulation.

The algorithms in [MJLL10] and [JLML08] compute the GS metric for all possible

group partitions, and then select the optimum one. Since calculating the GS metric

for each partition involves a number of complex matrix calculations, these schemes
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are restricted to systems having a small number of users or groupings which gener-

ate large subgroups. Other GS methods exploiting the channel correlation matrix

S have been presented in [LHLF00] and [GM07]. The algorithm in [LHLF00] op-

timizes the grouping for each individual antenna of the MIMO system by allowing

overlapping subgroups. Although such an antenna-by-antenna optimized scheme

maximizes performance, it requires very high complexity cost in practical system

configurations. The GS approach from [GM07] reduces complexity by adopting

only max/min operations to successively form disjoint subgroups maximizing the

pairwise correlation sum.

In this subsection, several new GS criteria for groupwise MMSE turbo equaliza-

tion are proposed. Particularly, an algorithm is presented that computes an MSE

criterion using the available a priori knowledge about the code bits to find, among

all possible combinations of G subgroups, the group partition guaranteeing opti-

mum performance at each turbo iteration. Also, different schemes providing a static

grouping valid for all turbo iterations are discussed. In this regard, a very simple

channel correlation-based algorithm is proposed which does not need max/min or

compare operations. The performance of these methods will be compared in Section

3.7.

3.5.5.1. Grouping based on Min-Max-MSE

First, we propose a GS criterion based on minimization of the MSE at the groupwise

filter output. The MSE for the gth subgroup is obtained by substituting (3.90) into

(3.86), which results in the following expression:

MSEGrFD
g = Trace(Ω−1

g ). (3.100)

The overall performance of the hybrid equalizer is mainly dominated by the sub-

group, whose MSE is the highest among all subgroups. In order to maximize per-

formance, we select among all possible group partitions the one that minimizes the

worst subgroup’s MSE. A convenient criterion for groupingN users into G subgroups

is therefore given by

ŝ = arg min
1≤s≤S

max
1≤g≤G

Trace(Ω(s)−1
g ), (3.101)

where S denotes the total number of possible combinations of pairs, and Trace(Ω(s)−1
g )

is the MSE of the gth subgroup corresponding to the sth (1 ≤ s ≤ S) combination.

Based on (3.101), we devise a simple method, which is summarized in Algorithm

3.1, that dynamically forms G subgroups at each turbo iteration.

Algorithm 3.1 requires the calculation of T =
(

N
U

)
inverses of U×U matrices, and it
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Algorithm 3.1 Dynamic MSE-based grouping

1: Calculate at each turbo iteration the MSE in (3.100) for all subgroups and
possible pairings.

2: Solve (3.101).

needs to perform the minimum operation S =
(

N
U

)(
N−U

U

)
· · ·
(

U
U

)
/(G · (G−1) · . . . ·2)

times. This leads to a high complexity if the numbers of users or subgroups are

large. For example, for N = 16 and G = 4, we obtain T = 1820 and S = 2627625.

To reduce complexity, instead of dynamically forming the subgroups at each turbo

iteration, a static set can be used for all turbo iterations. This is the motivation

behind the second grouping method, which is summarized in Algorithm 3.2, that

performs the allocation in (3.101) only once at the first turbo iteration.

Algorithm 3.2 Static MSE-based grouping

1: Calculate at the first turbo iteration the MSE in (3.100) for all subgroups and
possible pairings.

2: Solve (3.101).

The MSE in (3.100) could also be replaced by the subgroup SINR (B.18). How-

ever, calculating the SINR requires for each possible partition the Cholesky factor-

ization and the eigenvalue decomposition of the large QM × QM matrices (B.15)

and (B.16), respectively, which may be impractical for large FFT-sizes and number

of receive antennas.

3.5.5.2. Grouping based on Channel Correlation

Next, we propose a correlation-based method to assign users into subgroups. For

this purpose, let us define by

ρ̄n,l =
Trace

(
ΞH

c,nΞc,l

)
√

Trace
(
Ξc,nΞH

c,n

)
·
√

Trace
(
Ξc,lΞ

H
c,l

)
the pairwise normalized correlation coefficient between user channel n and l. Fur-

ther, let L be the upper triangular correlation matrix with entries

[L]n,l =

⎧⎪⎨⎪⎩ρ̄n,l, n < l

0, otherwise.

At high SNR, the performance of the equalizer is largely influenced by the minimum

euclidean distance between the users’ channels of the G subgroups. It is therefore
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desirable to find a group partition that minimizes the maximum pairwise channel

correlation between members of different subgroups. Given the normalized correla-

tion matrix L, this problem can formally be expressed as

min max
n∈Ag1 ,l∈Ag2 ,g1 	=g2,1≤g1,g2≤G

ρ̄n,l. (3.102)

Solving (3.102) is a combinatorial problem that requires an exhaustive search over all

possible partitions. Obviously, this is prohibitively expensive in terms of complexity

for largeN andG. Instead, we propose a greedy approach, which yields a suboptimal

solution, but reduces drastically the computational load. The proposed method is

listed in Algorithm 3.3.

Algorithm 3.3 Static correlation-based grouping

1: Initialize the subgroup sets An = {n}, n = 1, ..., N .
2: Initialize the set containing the user indices N =

{
1, ...., N

}
.

3: Sort the normalized cross-correlation values of matrix L in descending order in
a vector l, and keep the information of the user indices i, j in L.

4: Set l = 1.
5: if |N | > G then

6: Select the lth position in vector l. Let i, j be the corresponding indexes to
that position.

7: if i ∈ An1 and j ∈ An2 , n1 �= n2, n1, n2 ∈ N then

8: if |An1| + |An2| ≤ U then

9: An1 = An1 ∪ An2

10: Remove index n2 from set N .
11: end if

12: end if

13: end if

14: Increment l, and repeat step 5 until the last element of vector l, or if G subgroups
are filled, i.e., |N | = G.

Algorithm 3.3 first allocates the N users into N subgroups, and sorts the cor-

relation values of matrix L in descending order in a vector l. The algorithm then

iteratively allocates two users corresponding to the lth position (iteration index l)

of vector l into one subgroup (lines 5-13). At each iteration, the two groups having

the maximum pairwise channel correlation are merged. As a result, highly spatially

correlated users are allocated to the same subgroup. This selection may not be op-

timal with respect to (3.102), however, it reduces the noise enhancement due to the

MMSE interference suppression of highly correlated user signals. The advantage of

Algorithm 3.3 over the other two methods is that search complexity is significantly

reduced and computation of matrix inverses is not required.
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Table 3.1.: Number of complex multiplications/divisions per symbol and per iter-
ation of different equalizers.

Algorithm Multiplications/Divisions
SC-MMSE TDE 2/3M3L3 + 5M2L2

+ ML((2 +ML)N(2L− 1) + 7/3) + 6
SC-MMSE FDE 2/3M3 + 5M2 +NM(2M +N + 3) + 1/3M + 8

FFT/IFFT operations (M(N + 1) + 2N) log2 Q
HY SC-MMSE FDE GMU(2M + 2U + 1) + 2/3(GU3 +M3)

+6GU2 + 5M2 + 1/3(UG+M) + 6G+ 4
Group detection 2UU(2U + 1) + 1

FFT/IFFT operations (M(N + 1) + 2N) log2 Q

3.6. Complexity Comparison

An approximate operation count in terms of complex multiplications required by

the SC-MMSE TDE, SC-MMSE FDE and HY SC-MMSE FDE per turbo iteration

is shown in Table 3.1. For the complexity analysis, the calculation of the expected

values of soft estimates requiring the tanh(·) function as well as the calculation of

channel estimates are not taken into account. It is assumed that the channel ma-

trix is perfectly available in time domain, and has to be converted to the frequency

domain for the use in the FDEs. Moreover, it is assumed that matrix inversions

are performed by inversion of the Cholesky factorization [Kre05]. Note that the

complexity of the PDA SC-MMSE FDE has not explicitly been listed in Table 3.1,

as it is of the same order than that of the SC-MMSE FDE. Observing Table 3.1, we

find that the time domain SC-MMSE algorithm essentially has an complexity order

of O(M3L3). The SC-MMSE and HY SC-MMSE FDEs both need M(N + 1) + 2N

Q-point FFT-operations per transmitted block, which is due to the frequency do-

main conversion of the received signal, the soft feedback from channel decoding and

the channel estimates. However, as opposed to time domain filtering, the overall

complexities for the quite realistic case of M ≥ N and MN log2(Q) > M3, are of

order O
(
MN log2 Q)

)
and O

(
2UU2 + M(M2 + N log2 Q)

)
, respectively, and thus

independent of the channel memory length L due to the frequency domain process-

ing. We remark that when the number of users per subgroup is high, i.e., for large

values of U , the exact calculation of the LLRs (3.96) of the HY SC-MMSE FDE

becomes computational expensive. In such cases, the complexity can be reduced by

applying the list soft-output sphere detection [BGBF03].
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3.7. Simulation Results

In this section, numerical results of BER, frame error rate (FER) and TP simu-

lations conducted to evaluate the performances achieved by the turbo equalizers

introduced above. We consider a single carrier cyclic prefix assisted block-based

transmission with FFT-size Q = 128 or Q = 512. The length of the cyclic prefix is

always set to the maximum channel delay. The channels gains are perfectly known

at the receiver and remain static over a fixed number of transmitted blocks, but

change independently from frame to frame. As channel encoding, we employ either

the rate-compatible memory-3 SCC from [Pro01] with code rates rc = 1/2, 2/3 and

7/8 or the rate-compatible punctured, memory-4 SCCC proposed in [Tüc04] with

code rates rc = 1/4, 1/2, 3/4 and 9/10. The inner and outer encoders of the SCCC

are the recursive rate-1 inner encoder with polynomials (gr, g0) = (3, 2) and the re-

cursive, systematic, rate-1/2 convolutional code with polynomials (gr, g1) = (23, 35),

respectively. Here, gr denotes the feedback polynomial in octal notation. The over-

all rate of the SCCC is controlled through puncturing or by adding more generators

and using puncturing, as specified in [Tüc04].

Three different system and channel setups are investigated for the simulations:

• First, we consider a single-user transmission over the L = 10-tap Rayleigh

block-fading channel with uncorrelated receive and transmit antennas (i.e.,

S = R = I) and equal average tap-energy. The number of transmit and re-

ceive antennas is set to N = 2 and M = 2, respectively. The SC-MMSE and

PDA SC-MMSE FDEs with FFT-size Q = 128 are considered for equalization

of the MIMO ISI channel. Both turbo receivers perform Te = 10 iterations be-

tween the equalizer and the channel decoder. In addition, the PDA SC-MMSE

FDE performs five internal iterations in each turbo iteration. The numbers of

iterations are in general chosen to be large enough to ensure convergence of

both turbo receivers.

• Second, we consider two multiuser transmission setups with N = M = 4 and

N = M = 8 over the simple stochastic L = 32-tap Rayleigh block-fading

MIMO channel employing the conventional SC-MMSE FDE and the proposed

HY SC-MMSE FDEs with FFT size Q = 512. The delay power profile of the

channel is uniform and the spatial channel correlation follows the Kronecker

model from Section 2.3. The receive antennas are spatially uncorrelated, such

that R = I. The number of turbo iterations of both receivers is identically set

to Te = 10.

• The third transmission setup is identical to the second one, except that the

channel is an L = 22-tap measurement data-based MIMO channel. This sim-
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Table 3.2.: Simulation Parameters.
Tx antennas N 2, 4 or 8
Rx antennas M 2, 4 or 8
FFT-length Q 128 or 512
Frame-length NbQ 4096 symbols
Channel coding

SCC Code rates rc = 1/2, 2/3 or 7/8

SCCC Code rates rc = 1/4, 1/2, 3/4 or 9/10
Outer (mother) SCCC encoder Recursive, memory-4, rate-1/2 SCC
Inner SCCC encoder Rate-1 recursive conv. code
Channel model

Stochastic channel model L = 10 or 32-tap Rayleigh fading
Delay power profile Equal average power per tap
Spatial correlation model Kronecker model

Measurement data-based channel model L = 22 tap channel
Interleaving Random at each user
Turbo iterations Te = 10
Decoder iterations Td = 10
Channel estimation Perfect

ulation setup is used to assess the performance of the proposed turbo receivers

in real fields.

Table 3.2 summarizes the major simulation parameters.

3.7.1. Numerical Results for Setup 1

Fig 3.9 (a) and (b) depict the average BER performance versus Eb/N0 achieved by

the SC-MMSE and PDA SC-MMSE FDEs over Rayleigh fading MIMO ISI channels

employing rate-compatible SCCs and SCCCs, respectively. Note that for the chosen

number of internal iterations of the PDA SC-MMSE FDE we have observed that

for all channel code configurations a steady state of the NMMSE estimation (3.60)

is achieved.

Comparing the presented curves, it is found that the PDA SC-MMSE FDE of-

fers improved BER performance compared to the conventional SC-MMSE FDE for

both code classes at medium-to-large Eb/N0. In detail, we see that the higher the

rate of the channel code the larger the gain achieved by the PDA SC-MMSE FDE.

This can be explained by the superiority of the NMMSE estimation over the MMSE

estimation as it is used by the simple SC-MMSE filtering. The application of the

internal equalizer iterations within the PDA SC-MMSE FDE leads to a better sup-
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Figure 3.9.: Average BER performance of the SC-MMSE FDE (solid curves) and
the PDA SC-MMSE FDE (dashed curves) utilizing channel codes with
different rates.

pression of the residual interference components. Consequently, the reliability of

the probabilistic information is increased at the equalizer output which results in

an additional SNR gain of the extrinsic LLRs λe[bq,n]. This additional SNR gain

can be used by channel decoders of high rate codes to improve their error correcting

capabilities. In addition, we see that strong error control codes, such as the SCCCs

can achieve substantially higher gains than the weaker SCCs. This behavior will

be explained in Chapter 4 when analyzing the convergence properties of both turbo
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Figure 3.10.: Average FER performance (a) and TP performance (b) of the SC-
MMSE FDE (solid curves) and the PDA SC-MMSE FDE (dashed
curves) employing rate-compatible SCCCs.

receivers using correlation charts [Cho07].

The average FER and TP performances versus Eb/N0 for both turbo systems are

depicted in Fig. 3.10 (a) and (b), respectively. The throughput efficiency in bits

per channel use (bpc) has been evaluated by assuming a selective-repeat automatic

repeat-request (ARQ) system with infinite buffer size [LC98]. As it is evident from

these figures, significant gains in FER as well as in throughput efficiency are obtained

by the proposed PDA SC-MMSE scheme over the conventional SC-MMSE FDE.
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This again justifies the usage of the PDA SC-MMSE FDE in spatially-uncorrelated

MIMO ISI channels.

3.7.2. Numerical Results for Setup 2

Fig. 3.11 depicts the average BER performance versus Es/N0 achieved at each

turbo iteration by the SC-MMSE FDE and HY SC-MMSE FDE for an N = M = 4

multiuser system in a scenario where all four users’ channels are identically spatially

correlated with parameter α = 0.0 or α = 0.9. The correlation factor α corresponds

to the off-diagonal elements of the transmit correlation matrix S, such that [S]i,j = α

for 1 ≤ i, j ≤ N , i �= j. The groupsize of the hybrid turbo equalizer is set to

U = N (G = 1) such that all users are allocated into a single group. In this setup,

all ISI components of the received signals from the M antennas are suppressed

by groupwise SC-MMSE frequency domain filtering, while the separation of the

transmitted signals from the N users is performed by MAP symbol detection. This

solution is especially preferable in spatially-correlated MIMO channels with a large

number of multipath components. As a reference curve, Fig. 3.11 also shows the

simulation result of the corresponding MFB, achieved when all interference has been

removed in the system. Again, the MFB serves as a lower bound on the BER of

both turbo receivers here, obtained when the LLR feedback from the N channel

decoders is perfect. According to Fig. 3.11, the two systems achieve identical

BER performances at each turbo iteration. Both schemes offer the same signal

separation capabilities when the users’ channels are spatially uncorrelated (α =

0.0). In addition, we also find that the gap to the MFB vanishes at medium-to-

large SNRs Es/N0 (Es/N0 > 0.8 dB). In the presence of high spatial correlation

(α = 0.9), however, the numerical results impressively show that the HY SC-MMSE

FDE outperforms the conventional turbo receiver. The SC-MMSE FDE looses 2.2

dB compared to the HY SC-MMSE FDE at a BER=10−4. This phenomenon is

caused by the fact that the hybrid scheme preserves the degrees of freedom of jointly

detected user signals using the groupwise filtering approach and uses the optimal

MAP algorithm for signal separation. Furthermore, it is interesting to note that the

iteration gain of the two different receivers is almost identical and about 4 dB at a

BER of 10−4 for both channels.

Next, we consider the N = M = 8 multiuser scenario with [S]i,j = α for 1 ≤
i, j ≤ 4, i �= j and [S]i,j = 0 for 5 ≤ i, j ≤ 8, i �= j. We chose a groupsize of

U = 4 (G = 2) and allocate the four correlated user signals into the first subgroup.

Fig 3.12 (a) and (b) depict the resulting BER and FER curves, respectively, for the

two subgroups and turbo receivers of this system setup with the correlation value

α as a parameter. As it can be seen, the performance of users in the first subgroup
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Figure 3.11.: Average BER performance of the proposed HY SC-MMSE FDE and
the SC-MMSE FDE at each turbo iteration for an N = M = 4
multiuser transmission over Rayleigh block-fading channels with a
spatial transmit correlation coefficient of α = 0.0 and α = 0.9.

significantly degrades for both turbo schemes with increasing values of α. Clearly,

the larger the spatial correlation the larger the gain achieved by the HY SC-MMSE

scheme over the conventional equalizer. On the other hand, we observe that the

performances of users in the second subgroup are nearly identical for all values of α,

indicating that both turbo schemes can perfectly separate the users’ signals between

both subgroups.

More importantly, we observe that the slope of the FER curves remains identical

when increasing the value of α, implying that the achievable diversity order is main-

tained, regardless of the users’ spatial channel correlation. Similar to the results

obtained in [KKHN09] for linear MMSE detectors, we notice that spatial channel

correlation does not have any impact on the diversity order of MMSE-based turbo

systems.

3.7.3. Numerical Results for Setup 3

In the previous subsections, the performance of the turbo receivers was analyzed uti-

lizing a stochastic MIMO channel model with predefined fixed spatial correlations.

In realistic scenarios, however, the spatial-temporal properties of the radio channel

depend on the propagation environment and the location of the mobile users and

the receiver. Since these channel properties are strongly time-varying, the spatial

transmit and receive correlation matrices constructed from the MIMO channel ma-

trix, are time-varying as well. The two extreme cases leading to relatively high and
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Figure 3.12.: Average BER performance (a) and FER performance (b) for the
two subgroups (black curves: first subgroup (user 1 to 4)), gray
curves: second subgroup (user 5 to 8)) of the hybrid scheme and the
conventional SC-MMSE FDE for an N = M = 8 multiuser system
over Rayleigh block-fading channels with varying spatial transmit
correlation values α.

low spatial correlation coefficients between the users’ channels are the line-of-sight

(LOS) and the non-line-of-sight (NLOS) propagation scenario, respectively.

In order to assess the practicality of the proposed hybrid equalizer in real fields, the

performance is evaluated in this subsection by a series of simulations using channel-

sounding field measurement data. For this purpose, a measurement campaign was
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Figure 3.13.: Overview of measurement route and position of AP.

conducted in the city center of Ilmenau, Germany. A top view of the considered

urban micro-cell scenario is shown in Fig. 3.13. The measurement route has a length

of approximately 60 m and was sampled with 2000 snapshots, corresponding to a

distance of about 0.03 m between neighboring snapshots. An 16-element uniform

circular array (UCA) with minimum element spacing of half the wavelength was

used at the transmitter side as a mobile terminal (MT). The MT was moved at

walking speed along the route marked by the dashed line shown in Fig. 3.13. At the

receiver side, an 8-element uniform linear array (ULA) with element spacing of 0.4

times wavelength was used as an access point (AP). The receiver position was fixed

and the height of the ULA was about 4 m above ground. The measurement route

can roughly be divided into two regions; the first part in front of the large open

place is mainly dominated by LOS propagation between MT and AP; the second

part at half of the route, the MT moves from the open place into the pedestrian

street, is mainly characterized by NLOS propagation. The area was surrounded by

buildings with a height of approximately 10 to 15 m. In order to highlight the LOS

and NLOS propagation conditions along the measurement route, the normalized

total receive power (Pr) at the AP is depicted in Fig. 3.14. The major specifications

of the measurement campaign and the antenna setup are summarized in Table 3.3.

Preprocessing of Channel-Sounding Data The measured CIRs are preprocessed

to be applicable in system simulations. Following [TST05], the noise power esti-

mation and cut method is applied to each measured CIR to remove the influence

of the measurement noise. Moreover, a subband of 20 MHz, corresponding to the

channel bandwidth used in the system simulations, is extracted from the measure-

ment data at the center frequency. The channel matrices for the multiuser setup are



92 3. TURBO EQUALIZATION FOR MIMO SYSTEMS

Table 3.3.: Measurement Campaign Setup.
Scenario Urban micro-cell

Environment Open place with LOS cond. and
pedestrain street with NLOS cond.

Track length 60 m
Channel Sounder RUSK ATM, Medav GmbH
Transmit array UCA, 16 elements
Receive array ULA, 8 elements

Transmitter height/tilt 1.5 m/0◦

Receiver height/tilt 4 m/2◦-3◦ down
Transmit power 33 dBm at power amplifier output
Center frequency 5.2 GHz

Bandwidth 120 MHz
AGC switching between MIMO snapshots

Maximal velocity 6 km/h
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Figure 3.14.: Normalized total receive power along measurement route

generated by combining the CIRs at eight randomly chosen mobile positions along

the measurement route. At each position, one element of the antenna array at the

transmitter side is randomly selected. This results in N = M = 8 MIMO channels.

Three different multiuser scenarios are considered for system simulations.

S1) In the first scenario, the eight users are randomly distributed into two sub-

groups. The four users of the first and second subgroup are placed in the

subarea with LOS and NLOS propagation condition, respectively. The two

subgroups are well separated by 1000 snapshots, which corresponds to a dis-

tance of approximately 30 m between the MTs. Furthermore, the distance
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Figure 3.15.: CDF of pairwise users’ channel correlation coefficient for each sub-
group (dashed curves: first subgroup; solid curves: second subgroup)
of the three multiuser scenarios.

between users within each subgroup is fixed and set to 100 snapshots, result-

ing in a spatial separation of around 3 m. The two subgroups are moved along

the measurement route until the end of the LOS/NLOS subarea is reached.

This multiuser scenario reflects the behavior of moving, spatially, spacious,

located users.

S2) The second multiuser scenario is identical to the first scenario, except that

the spatial separation between the users in each subgroup is reduced to 5

snapshots (≈ 0.15 m). This scenario reflects the behavior of moving, spatially,

very dense, located users.

S3) The third multiuser scenario models a random drop-based approach. Each

drop is defined over 10 subsequent snapshots (≈ 0.30 m) by randomly allocat-

ing the eight users into two subgroups that are placed in the subareas with

LOS/NLOS propagation condition. The radius of the two subgroups is fixed

and set to 15 snapshots (≈ 0.45 m). Moreover, the users’ positions within each

subgroup and the subgroups’ center positions on the measurement route are

randomly chosen for each drop. Similar to the spatial channel modeling (SCM)

or WINNER channel model [WIN08], the drops are independent and represent

randomly selected multiuser setups, where the MIMO channel undergoes fast

fading according to the mobile movement of the users.

Fig. 3.15 depicts the cumulative density function (CDF) of the pairwise users’

channel correlation coefficient for the three multiuser scenarios S1, S2 and S3. In
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Figure 3.16.: Average BER performance for the two subgroups (black curves: first
subgroup (user 1 to 4)), gray curves: second subgroup (user 5 to 8))
of the HY SC-MMSE FDE and the conventional SC-MMSE FDE for
an N = M = 8 multiuser system for scenario S1 (a) and scenario
S2 (b).

all three scenarios, as expected, we observe that users (from the first subgroup)

placed in the LOS subarea experience higher spatial correlations than users (from

the second subgroup) placed in the NLOS subarea. Furthermore, we find that the

largest correlation coefficients are obtained for the spatially, closely, located users

from scenario S2.

Fig. 3.16 (a) and (b) depict the BER performance for the two subgroups achieved
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Figure 3.17.: Average BER performance for three different grouping algorithms of
scenario S3.

by the HY SC-MMSE FDE (with groupsizes U = 2 and U = 4) and the SC-MMSE

FDE for scenario S1 and S2, respectively. As can be seen, similar performances are

obtained by both turbo receivers for both subgroups when all users are spatially well

separated (scenario S1). On the contrary, when users are spatially, closely, located

and experience LOS propagation, as in scenario S2, the proposed hybrid scheme

clearly outperforms the conventional receiver and achieves 1 dB and 6 dB gains at

BER=10−2 for the groupsizes U = 2 and U = 4, respectively.

Fig. 3.17 illustrates the BER comparison for the hybrid receiver with MSE and

correlation-based group selection for scenario S3. Similar to Fig. 3.16, we observe

a performance gain with increasing groupsize. Interestingly, we also see that both

groupings perform similar at the first iteration of the hybrid turbo receiver, whereas

the simple static correlation-based grouping scheme (Algorithm 3.3) yields a sig-

nificant gain over the static MSE-based scheme (Algorithm 3.2) at the last turbo

iteration. This indicates that group selection based on the MSE criterion at the

first iteration may not be optimal for the overall iterative process. The results in

Fig. 3.17 further show that the simple correlation-based grouping (Algorithm 3.3)

achieves similar performance than the dynamic MSE-based scheme (Algorithm 3.1)

at a reduced complexity.

3.8. Chapter Summary

In this chapter several low-complexity turbo equalizers relying on the principle of SC-

MMSE filtering have been discussed. The proposed turbo equalizers can be applied
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in single- or multiuser single-carrier block-data coded transmissions over MIMO

ISI channels. After reviewing the optimum MIMO MAP equalizer, the standard

SC-MMSE TDE introduced by Wang and Poor [WP99a], and extensions thereof,

have been presented as low-complexity alternatives with only cubic computational

complexities in all system parameters. The complexity of the SC-MMSE TDE can

further be reduced when resorting to a cyclic prefix-based transmission scheme, and

performing the MMSE filtering in the frequency domain. It has been shown that

the necessary approximations used in the derivations in [KM07] and [YGWP08] of

the SC-MMSE filter coefficients can be avoided by utilizing the unconditional filter

approximation [CMT04].

As a main contribution of this chapter, a novel frequency domain turbo equal-

ization scheme for single-carrier block transmission based on the PDA concept has

been derived. The SNR at both equalizer outputs has been analyzed and com-

pared. It has been illustrated that significant improvements in terms of SNR can be

achieved through the internal equalizer iterations. This additional SNR gain can be

used by channel decoders for high rate codes in turbo equalization schemes to im-

prove their error correcting capabilities. Numerical results obtained by simulations

in spatially uncorrelated MIMO channels reveal that PDA SC-MMSE FDE offers

improved performance compared to standard SC-MMSE FDE.

Furthermore, a novel turbo equalization scheme based on a groupwise soft inter-

ference cancellation and linear filtering approach has been presented as a framework

for multiple access uplink single-carrier block transmission. Numerical results of

BER and FER performances confirm that the novel scheme achieves for moderately

chosen group sizes considerable performance gains over the standard SC-MMSE

FDE in channels with high spatial correlation. In addition, three new algorithms

based on MSE and correlation criteria for group selection have been developed.



4. Convergence Analysis of Turbo

Equalization

A general approach to analyze the convergence behavior of iterative systems, in-

cluding iterative decoding, iterative detection and turbo equalization, is to treat

the LLRs of the binary messages exchanged between the SfISfO components as sta-

tistical random variables, and to track the evolution of their PDFs by means of

numerical simulations. An example of this approach is the density evolution tech-

nique, initially proposed by Richardson and Urbanke in [RU01], see also [RSU01], for

the performance analysis of iterative decoding of low density parity check (LDPC)

codes. Results obtained from density evolution can be used to predict the error per-

formance and convergence threshold of the system, or to optimize the parameters

of a channel code for a fixed convergence threshold.

Although the density evolution technique is a powerful mathematical tool, its ap-

plication is pretty limited in practice, as the complexity of tracking the densities

becomes quite severe in large decoding systems. Other simpler methods for analyz-

ing iterative decoding and iterative detection/equalization are EXIT charts [tB01],

fidelity [TtBH02], [Hag04] or also called correlation charts [Cho07], variance trans-

fer charts [AGR98], [SS01], SNR-variance charts [YGWP08], and MSE-transfer

charts [BN07]. As opposed to density evolution, these methods characterize the

true densities involved in iterative decoding only by a unique statistical parameter.

Consequently, the input-to-output relationship of each SfISfO component can be ex-

pressed by a single function in terms of the used metric. Depending on the applied

analysis technique, the metric can be the noise variance of the LLRs, the MSE, the

correlation, or the mutual information between LLRs and information/code bits.

With the knowledge of these functions, the convergence point (convergence limit)

representing the transmission reliability in terms of the bit error rate achieved after

convergence of the iterative system, and the convergence threshold representing the

receive SNR at the convergence limit, can easily be predicted without performing

extensive Monte-Carlo bit error rate simulations. Moreover, the evolution of the

LLR densities between the SfISfO blocks can be visualized by decoding trajectories

in two or multidimensional figures.

A very popular approach for analyzing the convergence properties of iterative
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decoding schemes are EXIT charts, introduced by ten-Brink in [tB01], which trace

the evolution of the mutual information between LLRs and code bits over a number

of iterations. Several authors have utilized EXIT charts to analyze iterative decoding

of serially or parallel concatenated codes [Tüc04], [BRG05], [tB01], and iterative joint

decoding and detection for BICM [LR97], [tBSY98a], [tBSY98b], [SGHB03].

The EXIT chart analysis has been applied to turbo equalization [DV02], [LS03],

[TH02] in selected fixed channels, where the EXIT functions for the equalizer and

decoder(s) are determined by histogram-based measurements on the LLRs. Al-

though such histogram measurements are very accurate, the high computational

effort prevents their application for convergence analysis of turbo equalization in

block-fading channels, where the equalizer and decoder EXIT functions are evalu-

ated over an ensemble of channel realizations. Hereby, the majority of the simulation

effort is the calculation of the equalizer EXIT functions, as they depend on the chan-

nel coefficients. Note that unlike to the equalizer EXIT function, the decoder EXIT

function is independent of the channel realization, and may therefore be precom-

puted and stored in a look up table (LUT) for any given code. In order to avoid

the complexity impairments of histogram measurements, analytic computations of

EXIT functions for time and frequency domain MMSE-filtering based equalizers

have been proposed in [HS05], [NWY05], [KM07] and [RHV07]. As shown in these

papers, under the assumption of Gaussian distributed LLRs at the input/output of

the equalizer, the equalizer EXIT functions can be described by simple analytical

expressions which are parametrized by the channel coefficients and receive SNR.

Hence, if the EXIT function of the decoder is determined in advance, the EXIT

chart may semi-analytically be computed at low computational cost. This approach

allows to evaluate the convergence properties and to estimate the average bit error

rate performance of MMSE-based turbo equalizers in block-fading channels without

the need of requiring extensive Monte-Carlo simulations.

The EXIT chart provides not only a mathematical tool to analyze the conver-

gence properties, it also provides a method to optimize the transmission parame-

ters in turbo equalization systems such as the channel coding scheme [WNYH06],

[TWN+08], [WKTM05].

The purpose of this chapter is to gain insights into the working principles of

the proposed turbo equalizers in Chapter 3. The framework of correlation charts

[TtBH02], [Hag04], [Cho07] is adapted for the convergence analysis of the iterative

receivers. The correlation chart analysis is similar to the well known EXIT chart

analysis, except that the evolution of densities is described by the correlation instead

of the mutual information between information/code bits and the corresponding

LLRs. The main difference between both approaches is, hence, only the metric used

to characterize the densities involved in the iterative decoding. Moreover, as found
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by the authors of [TtBH02], both metrics essentially provide similar results in terms

of modeling accuracy.

The reminder of this chapter is organized as follows: In Section 4.1, we define

the correlation functions of the equalizer and channel decoder for single- and mul-

tiuser systems. In detail, we use the SNR expressions for the SC-MMSE FDE and

PDA SC-MMSE FDE, derived in Chapter 3, to compute analytically the correlation

function of the equalizer. The accuracy of the proposed expressions are verified by

numerical simulations. In Section 4.2, we briefly introduce the EXIT chart analysis

for turbo equalization. In particular, we show that EXIT and correlation charts

have a very close relationship in terms of the considered metric. Moreover, the area

theorem of EXIT functions is reviewed. Finally, a closed-form approximation and

a lower bound on the outage probability of the turbo system is derived in Section

4.3. Numerical results for various channel setups are demonstrated to show the ap-

proximation accuracy of the proposed method on the outage performance of turbo

equalization.

The results obtained in this chapter provide a basis for analytically verifying the

impact of system and channel parameters on the convergence properties of MMSE-

based turbo receivers. Moreover, they will be used for developing new transmission

rate and power allocation schemes, as shown in Chapter 5, which explicitly take into

account the convergence properties of the turbo equalizer.

4.1. Correlation Chart Analysis

As previously stated, the framework of correlation charts is adopted in this sec-

tion to analyze the convergence behavior of the turbo receiver in single- and mul-

tiuser system setups. Similar to the EXIT chart, the correlation chart analysis

relies on the fundamental assumption that the LLR messages exchanged between

the SfISfO blocks within the turbo receiver are discrete-time ergodic random pro-

cesses. Together with Assumption 3.1, the a priori and extrinsic LLRs ζ(·)

[
xn[k]

]
and λ(·)

[
xn[k]

]
, n = 1, ..., N can therefore be modeled as output samples of inde-

pendent random variables ζn
(·) and λn

(·), respectively. Here, the variable xn[k] is a

placeholder for the binary signals an,i, cn,i, en,i, c′
n,i, e

′
n,i or bq,n[k], and the subscript

notation (·) is used to distinguish between the different SfISfO modules. The statis-

tics of the random variables ζn
(·) and λn

(·) are thus fully defined by the conditional

PDFs p
(
ζn

(·)|e
)

and p
(
λn

(·)|e
)
, e ∈ {0, 1}, respectively. To facilitate a simple tracking

of these densities over a number of turbo iterations by a single unique statistical

parameter, we follow [DDP01], [GH01], [AGR98], [BC02], [CRU01], and introduce

the following assumption.
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Assumption 4.1. The a priori LLRs ζ(·)[xn(k)], ∀n at each SfISfO block can be

modeled as output signals of an equivalent binary-input AWGN channel, ζ(·)

[
xn[k]

]
=

μζ,nxn[k]+nn[k], n = 1, ..., N , where the effective channel SNR �n, the effective chan-

nel gain μζ,n, and the noise variance σ2
ζ,n satisfies the relation �n = μζ,n

2
=

σ2
ζ,n

4
for

all n.

The evolution of the densities p
(
ζn

(·)|e
)

and p
(
λn

(·)|e
)

may then also be observed by

tracking the correlation between the transmitted code bits and the corresponding

soft-symbol estimates, conditioned on the LLR messages [Cho07]. For this purpose,

let us define by α(·),n ≡ E

[
xn[k]x̄n[k]

]
, n = 1, ..., N the correlation between the true

binary transmit signal xn[k] and its conditional estimate

x̄n[k] ≡ E
[
xn[k]

∣∣∣ζ(·)

[
xn[k]

] ]
= tanh

(
(1/2)ζ(·)

[
xn[k]

])
, (4.1)

given the a priori LLR ζ(·)

[
xn[k]

]
. With the Gaussian model of Assumption 4.1, the

correlation parameter α(·),n can be written as a function of the input channel SNR

�n, and hence as a particular function of the conditional PDF p(ζn
(·)|e), as

α(·),n = E

[
xn[k]x̄n[k]

]
= E

[
tanh

(
ra

[
xn[k]

])]
=

1√
2π

∫ ∞

−∞
tanh

(
z
√
�n + �n

)
e

−z2

2 dz

= φ(�n). (4.2)

Here, ra

[
xn[k]

]
≡ (1/2)xn[k]ζ(·)

[
xn[k]

]
∼ N (�n, �n) is a Gaussian random variable

with identical mean and variance. Similarly, we define by ϕ(·),n ≡ E

[
tanh

(
re

[
xn[k]

])]
,

where re

[
xn[k]

]
≡ (1/2)xn[k]λ(·)

[
xn[k]

]
, the correlation between the true transmit

signal xn[k] and its conditional estimate E

[
xn[k]|λ(·)

[
xn[k]

]]
, given the extrinsic

LLR λ(·)

[
xn[k]

]
. With these definitions, the convergence behavior of the turbo sys-

tem can be evaluated independently component-by-component, by defining several

multidimensional functions that describe the correlation characteristics of the equal-

izer and the multiple channel decoders.

Let us first focus on the equalizer. It processes the received data r and the a

priori LLR sequences ζe, and outputs the extrinsic LLR messages λe. As shown in

Fig. 4.1 (a), its convergence characteristic can be expressed by an N -dimensional

mapping of the input correlation parameter vector αe ≡ [αe,1, αe,2, ..., αe,N ]T to the

output correlation parameter vector ϕe ≡ [ϕe,1, ϕe,2, ..., ϕe,N ]T , conditioned on the

specific channel realization H, the transmit strategy T, and the receiver noise power
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equalizer

ζe

[
bq,1[k]

]

ζe

[
bq,n[k]

]

ζe

[
bq,N [k]

]

λe

[
bq,1[k]

]

λe

[
bq,n[k]

]

λe

[
bq,N [k]

]

αe,1

αe,n

αe,N

ϕe,1

ϕe,n

ϕe,N

ϕe = fe(αe)

(a)

ϕd = fd(αd)

DEC 1

DEC 2

DEC 3

ζd[c1,i]

ζd[cn,i]

ζd[cN,i]

αd,1

αd,n

αd,N

λd[c1,i]

λd[cn,i]

λd[cN,i]

ϕd,1

ϕd,n

ϕd,N

(b)

Figure 4.1.: Correlation characteristics and input/output LLRs of the equalizer
(a) and the decoders (b).

σ2
0. This means

ϕe = fe : αe ∈ D
N → fe ≡

(
fe,1(αe), ..., fe,n(αe), ..., fe,N (αe)

)
∈ D

N , (4.3)

with D
N ≡ {x|x ∈ [0, 1]N} being the set of correlation values. For the notational

simplicity, we have omitted the conditioning on the channel matrix and receiver

noise in (4.3).

Similarly, as shown in Fig. 4.1 (b), the convergence characteristic of the N chan-

nel decoders, that use the a priori LLR sequence ζd as inputs and yield the LLR

information λd as outputs, can be expressed by N independent correlation functions:

ϕd = fd : αd ∈ D
N → fd ≡

(
fd,1(αd,1), ..., fd,1(αd,n), ..., fd,N (αd,N)

)
∈ D

N . (4.4)

Note that if SCCC encoding is performed at the N transmitters, the decoder func-

tions in (4.4) designate the combined correlation functions of the inner and outer

channel decoders.

Assumption 4.2. The correlation functions f(·),n(·), n = 1, ..., N are continuous

and strictly monotonically increasing in all arguments.

The above assumption on the correlation functions, which is supposed to be valid

for any iterative decoding algorithm, guarantees that all correlation values of the

turbo system approach unique fixed values, for an unlimited number of turbo itera-

tions [BRG05]. The corresponding limiting values define the convergence point and

threshold of the turbo system. In addition, each decoder function fd,n(·) is assumed

to have a unique inverse f−1
d,1 (·).
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We remark that in the case of single-user transmission, as shown in the sequel,

the equalizer characteristic and channel decoder characteristic in (4.3) and (4.4),

respectively, reduce to simple one-dimensional functions

ϕe = fe(αe) and ϕd = fd(αd), (4.5)

where the antenna index has been skipped in the variable and function notations.

4.1.1. Equalizer Correlation Characteristic

The equalizer correlation characteristic in (4.3) is usually obtained via Monte-Carlo

simulation. The correlation functions are determined by artificially generating i.i.d.

random binary-input sequences
{
bq,n[k]

}
and LLR sequences ζe for arbitrary values

αe ∈ D
N , according to the Gaussian model in Assumption 4.1. The conditional

PDFs p(ζn
e |bq,n[k]), n = 1, ..., N follow exponential-symmetric Gaussian distributions

with mean 2�nbq,n[k] and variance 4�n. The quality of the input LLRs ζe

[
bq,n[k]

]
is

quantified by the channel SNRs �n via the input correlation parameter vector αe

as �n = φ−1(αe,n), ∀n. For each value αe ∈ D
N , the equalizer uses the artificially

generated a priori LLRs ζe and the received data {r(k)} to produce extrinsic LLR

sequences λe. Based on the obtained LLR output vectors λe, the corresponding

correlation parameter vector ϕe can be numerically calculated by histogram-based

measurements using the conditional PDFs p(λn
e | − 1) and p(λn

e | + 1), ∀n,

ϕe,n =
1

2

∫ +∞

−∞
tanh

(
λn

e

2

)
p(λn

e | + 1)dλn
e − 1

2

∫ +∞

−∞
tanh

(
λn

e

2

)
p(λn

e | − 1)dλn
e . (4.6)

Alternatively, by invoking the ergodicity property and assuming a sufficient long

transmit frame, the output correlations ϕe,n at the equalizer may also be computed

via the conditional mean estimator as

ϕe,n = E

[
bq,n(k)b̄q,n(k)

]
≈ 1

QNb

Q−1∑
q=0

Nb∑
k=1

bq,n[k]tanh

(
λe

[
bq,n[k]

]
2

)
, n = 1, ..., N. (4.7)

The calculation of (4.7) requires perfect knowledge of the binary-input sequences{
bq,n[k]

}
. A simple method for estimating ϕe,n without knowing these sequences is

obtained using the relation in (3.26), so that ϕe,n = E

[
bq,n[k]b̄q,n[k]

]
= E

[
b̄2

q,n[k]
]
.
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Therefore, ϕe,n may be estimated by

ϕe,n ≈ 1

QNb

Q−1∑
q=0

Nb∑
k=1

tanh2

(
λe

[
bq,n[k]

]
2

)
. (4.8)

Equation (4.8) may be used in applications requiring an on-line tracking of the

convergence at the turbo receiver, such as dynamic scheduling of the iteration loops

in multiple concatenated systems [BRG05].

Similar to the EXIT chart approach, in general, long binary-input sequences are

needed to accurately compute the output correlation parameter vector ϕe [tB01].

The above simulation-based method is hence impractical due to the increased com-

putational complexity for the evaluation of the equalizer correlation characteristic

in large system configurations. Furthermore, the problem of estimating the corre-

lation parameter vectors becomes more intricate for non-ergodic fading channels,

since the equalizer correlation function fe depends always on the particular channel

realization.

4.1.1.1. Analytical Computation of Equalizer Correlation Function for

SC-MMSE FDE

In [Gro09], [Gro11], the author proposed a method to analytically compute the

correlation function fe of the SC-MMSE FDE. It relies on a characterization of

the instantaneous SNR ψFD
n (see (3.39) ) of the extrinsic LLR sequences λe at the

FDE output as a function of the input correlation parameter vector αe. The SNR

ψFD
n can be considered as a multidimensional function of the combined frequency

domain channel matrix Ξc, the receiver noise variance σ2
0, and the power levels ϕ̄n,

n = 1, .., N of the soft-symbol estimates computed from the decoder feedback LLR

sequences ζe. By invoking (3.26) again, we immediately see the equivalence between

ϕ̄n and the input correlation parameter αe,n of the prior messages ζe

[
bq,n[k]

]
, so that

ϕ̄n = αe,n, ∀n follows. Using this identity, the input correlation parameter vector

αe can directly be used in the computation of the instantaneous SNRs as

ψFD

n (αe) =
2γn(αe)

1 − γn(αe)(1 − αe,n)
,∀n. (4.9)

As argued in Section 3.3.2, the extrinsic LLR messages λe

[
bq,n[k]

]
can be equiva-

lently expressed by discrete-time binary-input parallel AWGN channels of the form

λe

[
bq,n[k]

]
= μλe,nbq,n(k) + nq,n(k), nq,n(k) ∼ N (0, σ2

λe,n), where the channel gain

μλe,n and the noise variance σ2
λe,n are defined via their SNR ψFD

n , and are given by

μλe,n = 2ψFD
n (αe) and σ2

λe,n = 4ψFD
n (αe), respectively. The equalizer’s output signals
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re[bq,n(k)] are thus Gaussian distributed, so that the N components of the output

correlation parameter vector ϕe are found to

ϕe,n = E

[
bq,n[k]b̄q,n[k]

]
= E

[
tanh

(
re

[
bq,n[k]

])]
. (4.10)

Hence, we can summarize the result as follows.

Lemma 4.3. The output correlation parameter of the SC-MMSE FDE is given by

ϕe,n = φ
(
ψFD

n (αe)
)

= fe,n(αe),∀n. (4.11)

We remark that (4.11) requires, unlike to the Monte-Carlo simulation, the out-

put LLRs of the equalizer to be Gaussian distributed, which is in general true as

shown in [KM07], [NWY05] for spatially-uncorrelated MIMO channels. The com-

putational complexity of (4.11) is very low, since the matrices/vectors involved in

the computation are independent of the transmit frame length Nb. The equalizer

correlation characteristic may therefore be totally predicted analytically for a given

particular channel realization, transmit precoding strategy and value of the receiver

noise variance.

Special Case of Single-User Transmission For a single-user transmission system,

the channel encoding at the transmitter is performed over a single data frame that is

uniformly spread over all N transmit antennas. Hence, it is sufficient to characterize

the distribution of the decoder feedback LLRs ζe by a single correlation value αe,

instead of the correlation parameter vector αe. However, as in the multiuser case

discussed above, the transmitted signals from the different antennas can undergo

different channel fading conditions. Therefore, we still need N SNR values to de-

scribe the N equivalent AWGN channels of the extrinsic LLR sequences λe. These

SNR values are given with (3.39) as

ψFD

n (αe) =
2γn(αe)

1 − γn(αe)(1 − αe)
,∀n, (4.12)

where the notation γn(αe) stands for γn(αe) with αe = [αe, αe, ..., αe]T being an

N × 1 correlation parameter vector. Based on (4.12), the FDE output vector

ϕe = [ϕe,1, ..., ϕe,n, ..., ϕe,N ]T can be obtained, as in (4.11), by a mapping of the

individual SNR values to the correlation parameters ϕe,n via the function φ(·). The

N correlation parameter outputs of the equalizer presuppose that the correlation

characteristic of the channel decoder is defined by a function having as argument an

N × 1 input correlation parameter vector. In general, such a decoder characteristic



4.1 CORRELATION CHART ANALYSIS 105

could be obtained by a Monte-Carlo simulation and stored in a LUT by assuming

that the input LLRs are generated by N independent AWGN channels with SNRs

defined by the inverse of (4.2). For large values of N , however, such a LUT would be

very large for all possible combinations of input correlation parameters. To reduce

the decoder and equalizer correlation characteristics to simple one-to-one relations,

as given by (4.5), we map the FDE output correlation parameter vector ϕe to a

scalar value ϕe by an average operation, i.e.,

ϕe =
1

N

N∑
n=1

φ
(
ψFD

n (αe)
)

= fe(αe). (4.13)

Obviously, (4.13) is equivalent to the statistical expectation E

[
tanh

(
re

[
bq,n[k]

])]
taken over all n, q, k. The idea behind this averaging relies, similar to the EXIT chart

analysis, on the fundamental principle that in the single-user case the conditional

PDFs p(λn
e |e), n = 1, ..., N , e ∈ {±1} can be replaced by a single conditional

distribution p(λe|e), with matched mean and variance, which is identical for all

extrinsic LLRs λe

[
bq,n[k]

]
.

4.1.1.2. Analytical Computation of Equalizer Correlation Function for PDA

SC-MMSE FDE

Like for the SC-MMSE FDE, the analytical approximation of the correlation char-

acteristic (see also [GM08]) of the PDA SC-MMSE FDE is derived by adopting the

Gaussian model of (2.48) for the equalizer’s a priori and extrinsic LLRs ζe

[
bq,n[k]

]
and λe

[
bq,n[k]

]
, respectively. Moreover, for the analytical tractability of the inter-

nal iterations of the PDA SC-MMSE FDE, we suppose, as in Assumption 3.8 of

Section 3.4, uncorrelated NMMSE soft-symbol estimates which are initialized as

z(0)
n = tanh

(
1
2
ζe[bn]

)
, ∀n. Based on these assumptions, the SNRs of the extrinsic

output LLRs λe

[
bq,n[k]

]
, conditioned on the frequency domain compound channel

matrix Ξc and receiver noise variance σ2
0, at internal iteration τ + 1 are given by

(see Eq. (3.69))

ψNL(τ+1)
n =

2γ̄n( ¯̄ϕ
(τ)

)

1 − γ̄n( ¯̄ϕ
(τ)

)
(
1 − ¯̄ϕ

(τ)
n

) ,∀n, (4.14)
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Equipped with the SNR expressions (4.14) and the Gaussian assumption on the

equalizer’s input and output messages (see also Assumption 4.1 and 3.10),

ra

[
bq,n[k]

]
∼ N (φ−1(αe,n), φ−1(αe,n)) (4.15)

re

[
bq,n[k]

]
∼ N (ψNL(τ)

n , ψNL(τ)
n ), (4.16)

the value of the power levels ¯̄ϕ(τ)
n of the NMMSE symbol estimates at internal

iteration τ can be solved for suppositionally uncorrelated decisions with respect to

the initialization z(0)
n = tanh

(
1
2
ζe[bn]

)
, ∀n as

¯̄ϕ(τ)
n = E

[
bq,n[k]z(τ)

q,n[k]
]

= E

[
tanh

(
ra

[
bq,n[k]

]
+ re

[
bq,n[k]

])]
= φ
(
φ−1(αe,n) + ψNL(τ)

n

)
, ψNL(0)

n ≡ 0,∀n. (4.17)

Equations (4.14) and (4.17) are carried out successively for each realization of the

input correlation parameter vector αe ∈ D
N and for all users/transmit antennas

and all internal equalizer iterations. The SNR sequence {ψNL(τ)
n }∞

τ=0, ∀n converges,

for any input αe ∈ D
N , monotonically to a limit point ψNL(∞)

n = limτ→∞ ψNL(τ)
n ,

∀n, as τ → ∞. Having obtained the SNRs ψNL(∞)
n in the asymptotic limit, the

N output correlation parameters of the PDA SC-MMSE FDE with respect to the

extrinsic LLRs λe

[
bq,n[k]

]
can finally be solved as ϕe,n = E

[
tanh

(
re

[
bq,n[k]

])]
. We

summarize this result in the following lemma.

Lemma 4.4. The output correlation parameter of the PDA SC-MMSE FDE is

given by

ϕe,n = φ
(
ψNL(∞)

n

)
= fe,n(αe),∀n. (4.18)

Taking into account that the asymptotic SNRs ψNL(∞)
n are always larger or at

least equal than the SNRs ψNL(1)
n at internal iteration τ = 0, it follows from the

monotonicity of the function φ(·), that

φ
(
ψNL(∞)

n

)
≥ φ
(
ψNL(1)

n

)
= φ
(
ψFD

n

)
(4.19)

holds for all αe ∈ D
N . This means, the output correlation parameters of the PDA

SC-MMSE FDE are always larger or at least equal than the output correlation

parameters of the SC-MMSE FDE, supposing the same single channel realization,
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transmit precoding matrix, receiver noise variance and a sufficiently large number

of internal iterations. Moreover, as will be shown by the numerical results presented

in Section 4.1.3, this correlation gain leads to more reliable extrinsic LLR estimates

of the equalizer and to an enhanced performance with respect to the bit error rate

of the overall turbo system.

Before proceeding with the analytical approximation of the correlation characteris-

tic of the PDA SC-MMSE FDE in the single-user case, we summarize the calculation

of the correlation function fe for a multiuser system in the following flowchart:

For each realization of the input correlation parameter vector αe ∈ D
N

- Initialize the SNR variables ψ(0)
n to zero for all n ∈ {1, ..., N}.

For user n = 1 : N

For internal iteration τ = 0 : τmax

· Calculate the power level ¯̄ϕ(τ)
n of the NMMSE estimates.

· Calculate the SNR ψNL(τ+1)
n of the extrinsic LLRs λe

[
bq,n[k]

]
.

end

end

– Calculate the output correlation parameters ϕe,n for all n ∈ {1, ..., N}.

end

Special Case of Single-User Transmission In the single-user case the input corre-

lation parameter of the PDA SC-MMSE FDE can be represented by a single scalar

value αe. This scalar input correlation parameter is mapped via the individual SNRs

in (4.14) and the function φ(·) to an output correlation parameter vector ϕe, by run-

ning the above algorithm with the initialization αe,1 = ... = αe,N = αe, for a number

of iterations. Similar to the SC-MMSE FDE of Section 4.1.1.1, the extrinsic LLRs

λe

[
bq,n[k]

]
of the equalizer can be characterized by a single distribution, such that

the components of the output correlation parameter vector ϕe can be averaged to a

single scalar value ϕe,

ϕe =
1

N

N∑
n=1

ϕe,n = fe(αe). (4.20)

Equation (4.20) yields the analytical approximation of the correlation characteristic

of the PDA SC-MMSE FDE.
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4.1.1.3. Numerical and Analytical Results

In order to show the usefulness of the analytical approximation of the equalizer

correlation characteristic for the SC-MMSE and PDA SC-MMSE FDEs, numerical

results obtained from Monte Carlo-based histogram measurements are presented

and compared to the corresponding results of the analytical approximation. Fur-

thermore, we present some results for the HY SC-MMSE FDE and compare them

with those obtained from the SC-MMSE FDE. For the simulation experiments the

following three scenarios are considered.

The first scenario covers a two-by-two multiuser transmission over an spatially-

uncorrelated Rayleigh block-fading channel with uniform power delay profile. The

corresponding correlation functions fe,1(·) and fe,2(·) for the SC-MMSE and the

PDA SC-MMSE FDEs at different receive SNRs Es/N0 are depicted in Fig. 4.2

(a) and (b), respectively. The correlation values are obtained by computing (4.6)

for a single L = 10-tap channel realization over a frame of 65536 BPSK symbols

per user. Inspecting these figures, we see that the simulated correlation surfaces

almost coincide completely with those estimates from the analysis. In particular,

the displayed results indicate that the assumptions made in analysis of both receiver

algorithms are well justified for the given system and channel setup. Moreover, from

the tight accordance of both surfaces for the PDA SC-MMSE FDE over all Es/N0

values, it can be concluded that omitting possible correlations between different

NMMSE data estimates over the internal equalizer iterations (see Assumption 3.6)

has no influence on the accuracy of the analytical approximation on the equalizer

correlation characteristics.

Besides this, we see that the PDA SC-MMSE FDE attains significantly higher

output correlation values than the SC-MMSE FDE for rising Es/N0. As explained

in Section 3.4, this is a consequence of the exploitation of the internal equalizer

iterations that successively improve the NMMSE data estimates what finally leads

to more reliable extrinsic LLRs at the equalizer output.

The mean absolute and relative errors between the simulated and analytical sur-

faces, found by averaging the output correlation values over 30 random channel

realizations, are listed in Table 4.1. Regarding this table, it turns out that the

maximum approximation error is less than 1.67% for the given receive SNRs. A

similar result is obtained for the equalizer correlation curves of the second scenario,

depicted in Fig 4.3, that covers a single-user transmission over a single random two-

by-two L = 32-tap spatially-uncorrelated Rayleigh fading channel. Also here, it is

noteworthy that the PDA SC-MMSE FDE provides higher output correlations than

the SC-MMSE FDE for the same channel realization and receiver noise variance.

From the plots of Fig. 4.2 and 4.3 and Table 4.1, we can conclude that the



4.1 CORRELATION CHART ANALYSIS 109

0 00.2 0.20.4 0.4
0.6 0.6

0.8 0.8
1

1

1.0

0.8

0.6

0.4

0.2

0.0

αe,2 αe,1

f e
,1

(·)

SC-MMSEPDA

simulation
analysis

(a)

0 00.2 0.20.4 0.4
0.6 0.6

0.8 0.8
1

1

1.0

0.8

0.6

0.4

0.2

0.0

αe,2 αe,1

f e
,2

(·)

SC-MMSEPDA

simulation
analysis

(b)

Figure 4.2.: Analytical and simulated equalizer correlation characteristics fe,1(·)
(a) and fe,2(·) (b) of the SC-MMSE FDE and PDA SC-MMSE FDE
(denoted as ’PDA’) for a two-by-two multiuser system at receive SNRs
Es/N0 = −6 dB, −2 dB and 4 dB (from bottom to top).

proposed analysis method is sufficiently accurate to predict well the equalizer cor-

relation characteristics over a large range of Es/N0 values and different system and

channel setups.

Finally, the third scenario covers a four-by-four multiuser transmission where

the channel matrix is generated according to a spatially correlated Rayleigh fading

distribution with uniform power delay profile. The transmit and receive channel

correlation matrices follow the Kronecker model in (2.22) of Section 2.3.1, and they
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Table 4.1.: Mean absolute errors (and relative errors in [%]) between simulation
and analysis at different receive SNRs.

Algorithm −6 dB 2 dB 4 dB
SC-MMSE FDE 0.19 (0.57) 0.30 (0.54) 0.48 (0.56)

PDA SC-MMSE FDE 0.51 (1.60) 0.97 (1.67) 0.45 (0.47)
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0.8

0.6

0.4

0.2

0.0

αe

f e
(·)

SC-MMSE
PDA SC-MMSE

simulation
analysis

Figure 4.3.: Comparison of analytical and simulated correlation characteristics of
the SC-MMSE FDE and PDA SC-MMSE FDE for a single-user two-
by-two MIMO system at Es/N0 = −3 dB, −0.5 dB and 3 dB (from
bottom to top).

are given, respectively, by

R =

⎡⎢⎢⎢⎢⎢⎣
1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 1.0 0.0

0.0 0.0 0.0 1.0

⎤⎥⎥⎥⎥⎥⎦ and S =

⎡⎢⎢⎢⎢⎢⎣
1.0 0.9 0.9 0.9

0.9 1.0 0.9 0.9

0.9 0.9 1.0 0.9

0.9 0.9 0.9 1.0

⎤⎥⎥⎥⎥⎥⎦ . (4.21)

Thus, this scenario models a highly spatially-correlated multiuser setup. Note that

visualizing the corresponding equalizer correlation characteristics for such a system is

not easy because all functions fe,n(·), n = 1, ..., 4 are expressed by four-dimensional

mappings. This difficulty in the visualization can be avoided by projecting each

function fe,n(·) to a three-dimensional surface by setting αe,3 and αe,4 to zero. These

projections provide lower bounds on the equalizer’s correlation characteristics. As

an example, we depict the projections of fe,1(·) and fe,2(·) for the HY SC-MMSE

FDE in Fig. 4.4 (a) and (b), respectively. These surfaces are obtained by Monte

Carlo simulation and histogram measurements for different Es/N0 values by setting
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Figure 4.4.: Comparison of equalizer correlation characteristics fe,1(·) (a) and
fe,2(·) (b) of the SC-MMSE FDE and HY SC-MMSE FDE for a 4-user
transmission at Es/N0 = 6 dB, 8 dB, 10 dB and 12 dB (from bottom
to top).

G = 1, so that all users’ signals are grouped together into a single subgroup. In

addition, the projected correlation surfaces for the SC-MMSE FDE are shown as well

for comparison. As seen in these figures, the SC-MMSE FDE provides considerably

"lower" correlation characteristics than the HY SC-MMSE FDE for rising Es/N0.

These surfaces evidence the limited interference cancellation abilities of the simple

standard MMSE filtering used in the SC-MMSE FDE when the users’ signals are

highly correlated. More explicitly, it justifies the considerable performance loss over
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the HY SC-MMSE FDE shown in Fig. 3.11, 3.16 and 3.17. It can be concluded

that the application of the MAP algorithm for the detection of the users’ signals

may be preferred over the standard SC-MMSE FDE in channels with high spatial

correlation.

4.1.2. Decoder Correlation Characteristic

Let us now consider the correlation characteristic of the channel decoders. In gen-

eral, for a single-convolutional coded system the correlation function fd(·), can be

determined by Monte-Carlo simulations1. Unlike to the equalizer characteristic,

the decoder function fd(·) is specific to the channel code and the decoding algo-

rithm used at the receiver, and does not depend on the particular channel state and

receiver noise variance. It can therefore be computed off-line and stored in an one-

dimensional LUT. To determine fd(·), the input LLRs ζd[ci] to the channel decoder

are artificially generated from an encoded sequence c via the Gaussian model (2.48).

Here, the channel SNR � = φ−1(αd) of each LLR is defined by the current value of

the input correlation parameter αd. The conditional PDFs p(λd|−1) and p(λd|+1) of

the produced extrinsic LLRs λd[ci] at the decoder output are mostly non-Gaussian

due to the non-linearity operation of the channel decoding. These PDFs are appro-

priately determined by histogram-based measurements and then used to calculate

the corresponding output correlation parameter ϕd, similar to (4.6). In this way, we

evaluate the decoder function fd(·) for each value of αd ∈ [0, 1).

Fig. 4.5 shows examples of decoder correlation functions for the rate-compatible

SCCs from [Tüc04] with coding rates from rc = 0.1 to 0.9. The codes are generated

from a rate-1/2, memory-4 recursive systematic convolutional (RSC) mother code

defined by the generator (gr, g0) = (23, 35), where gr denotes the feedback polyno-

mial in octal notation. The axis are flipped in Fig 4.5, so that the curves represent

the inverse functions f−1
d (·) of fd(·). From the figure, we also see that the shape of

the inverse correlation function is related to the rate of code. Although, there exists

no analytical relationship between shape and code rate, it reveals that, in principle,

the higher the rate of the SCC the larger is the area under the corresponding decoder

function f−1
d (·).

We remark that in a multiuser case, the correlation functions fd,n(·), n = 1, ..., N

may be specific to each user. Then, they have to be determined in an user-by-user

manner by the procedure described above.

1As shown in [StB06], [AKtB04], [tBKA04], [tBK03] for certain codes and simple channel models
the decoder function can also be expressed analytically in a closed form.
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Figure 4.5.: Inverse decoder correlation functions f−1
d (·) for coding rates from rc =

0.1, 0.15, 0.2 to 0.9 (from bottom to top).

4.1.2.1. Decoder Correlation Function for a Serial Concatenated Code

When an SCCC is employed for channel coding, the iterative decoding scheme from

Fig. 2.9 can be applied at the receiver. As shown in this figure, the inner decoder II

has the two extrinsic LLR outputs λd2[e′
i] and λd[ci], and the two a priori LLR inputs

ζd2[e′
i] and ζd[ci]. The inner decoder has therefore two correlation parameter outputs,

namely ϕd2 and ϕd, both of which are functions of the two correlation parameter

inputs αd2 and αd. The corresponding two correlation functions are defined as

ϕd2 = fd2(αd, αd2), (4.22)

ϕd = hd2(αd, αd2). (4.23)

Unlike to the inner decoder, the correlation characteristic of the outer decoder is

given by a one-to-one relation,

ϕd1 = fd1(αd1). (4.24)

The functions fd2(·, ·), hd2(·, ·), and fd1(·) are obtained by Monte-Carlo simulations

of the individual component codes. With the definitions in (4.22)-(4.24), the conver-

gence of the serial concatenated code can be analyzed by evaluating the correlation

parameter sequences
{
(ϕ(t)

d2 , ϕ
(t)
d1 )
}Td

t=0
, t = 0, .., Td over Td iterations between the in-

ner and the outer decoder2. This is done by assuming that the output correlation

2For the ease of analysis, we assume that in the multi-user case the number of iterations Td is
identical at all users.
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Figure 4.6.: Illustration of the recursive calculation of fd(·).

parameter of the inner (outer) decoder is equal to the input correlation parameter

of the outer (inner) decoder. As a consequence, we obtain the identities ϕd2 = αd1,

ϕd1 = αd2. The sequence
{
(ϕ(t)

d2 , ϕ
(t)
d1 )
}Td

t=0
, representing the correlation exchange

between the two decoders for any given value of the input correlation parameter

αd ∈ [0, 1] of the inner decoder, is then defined by

ϕ
(t)
d2 = fd2(αd, ϕ

(t)
d1 ) with ϕ

(0)
d1 = 0, (4.25)

ϕ
(t+1)
d1 = fd1(ϕ(t)

d2 ). (4.26)

The functions fd2(·, ·) and fd1(·) are monotonically increasing, which implies that for

a fixed value of αd, ϕ(t+1)
d2 ≥ ϕ

(t)
d2 and ϕ

(t+1)
d1 ≥ ϕ

(t)
d1 follows for all t. Thus, the values

of (4.25) and (4.26) converge monotonically to (ϕ(Td)
d2 , ϕ

(Td)
d1 ). After performing Td

iterations between the inner and the outer decoder, the correlation parameter ϕd at

the inner decoder output (directed to the equalizer) is calculated with (4.23) as

ϕd = hd2(αd, ϕ
(Td)
d1 ). (4.27)

To simplify the analysis in the sequel of the overall turbo equalization system, we

use the result of (4.25)-(4.27) to define a joint decoder correlation function fd(·),

ϕd = fd(αd) ≡ hd2(αd, ϕ
(Td)
d1 ) with fd(0) = 0 and fd(1) = 1, (4.28)

which combines the operations of the two decoders into a single decoder component.

The recursive calculations of (4.25), (4.26) and (4.28) to characterize the joint de-

coder correlation characteristic fd(·) are summarized in the block diagram of Fig.

4.6.

The convergence behavior of the inner and the outer decoder may be visualized by

plotting the functions (4.22) and (4.24) in one chart, as shown in Fig. 4.7 (a). Also

shown in Fig. 4.7 (a) are two trajectories that visualize the correlation exchange
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between the two decoders and represent the sequence
{
(ϕ(t)

d2 , ϕ
(t)
d1 )
}Td

t=0
obtained for

Td = 10 iterations. Specifically, the two correlation functions of the inner decoder

and the two trajectories are depicted for the inner decoder input correlation values

α
(0)
d = 0.65 and α

(1)
d = 0.67, respectively. The correlation characteristics related to

the two decoders are obtained when the outer encoder I is a rate-1/2 RSC code and

the inner encoder II is a simple rate-1 code having the polynomials (gr, g0) = (3, 2).

The corresponding joint decoder correlation characteristic of this rate-1/2 SCCC is

shown in Fig 4.7 (b). Note that, as in Fig 4.5, both axes are flipped in Fig 4.7 (b)

so that the output correlation parameter ϕd is depicted on the abscissa.

4.1.2.2. Bit Error Probability

The correlation chart analysis may not only be used to visualize the iterative de-

coding behavior and to predict the convergence threshold, but also to provide an

estimate of the bit error probability Pb of the turbo system. For this purpose, we

define by ϕ̂d the correlation between the information bit ai and the a posteriori

LLR θd[ai] at the decoder output. A simple expression on Pb was derived in [Cho07]

by supposing that the a posteriori LLR θd[ai] is Gaussian distributed with mean

value 2�̂ and variance 4�̂, where �̂ denotes the equivalent SNR. Then, the bit error

probability after a hard decision on the a posteriori LLRs θd[ai] depends solely on

�̂, and is found to

Pb =
1

2
erfc

(√
�̂

2

)
=

1

2
erfc

(√
φ−1(ϕ̂d)

2

)
, (4.29)

where erfc(x) = 2√
π

∫∞
x e−t2

dt is the complementary Gaussian error function. For

systematic codes, Eqn. (4.29) can further be simplified by assuming that both the a

priori input and the extrinsic output LLRs are independent Gaussian distributed.

Then, the bit error probability can be estimated as

Pb =
1

2
erfc

(√
φ−1(αd) + φ−1(ϕd)

2

)
. (4.30)

It has been found that (4.29) and (4.30) provide reliable BER estimates down to

10−3. A closer approximation is obtained by directly evaluating the BER via the

Monte Carlo method and storing the estimates in a one-dimensional LUT. The BER

is then given by a function

Pb = fBER(αd) (4.31)
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Figure 4.7.: Correlation functions for the inner and the outer decoder for a rate-1/2
outer RSC code (a) and the corresponding joint decoder correlation
characteristic (b). The two correlation characteristics of the inner

decoder are shown for the inner decoder input correlation values α(0)
d =

0.65 and α
(1)
d = 0.67, respectively.

that is specific to the channel code. Unless otherwise specified, we use in the sequel

the direct method in (4.31) to estimate the BER performance of the turbo system.
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Figure 4.8.: Illustration of correlation exchange between equalizer and channel de-
coders.

4.1.3. The Correlation Chart

Having determined the vector-functions (4.3) and (4.4) of the equalizer and the

channel decoders, it remains to describe the evolution of the correlation values over

the turbo iterations. As in the previous section, we assume that any turbo iteration

l (l = 0, ..., Te), the correlation of the extrinsic soft information at the equalizer

output is equal to the correlation of the corresponding a priori soft information

at the decoder input. Therefore, we can write αd,n = ϕe,n and αe,n = ϕd,n for

all n = 1, ..., N . The convergence behavior of the overall turbo system can then

be fully evaluated as shown in Fig 4.8 by the vector-sequence
{
(ϕ(l)

d ,ϕ
(l)
e )
}Te

l=0
with

ϕ
(l)
d = [ϕ(l)

d,1, ..., ϕ
(l)
d,N ]T and ϕ(l)

e = [ϕ(l)
e,1, ..., ϕ

(l)
e,N ]T being the input and the output

correlations at the equalizer at iteration l, respectively. The corresponding values of

this vector-sequence depend obviously on the schedule of activations of the SfISfO

components of the turbo system. For example,
{
(ϕ(l)

d ,ϕ
(l)
e )
}Te

l=0
is defined for a

system with parallel activations, i.e., a parallel schedule of the turbo iterations, by

ϕ(l)
e = fe(ϕ

(l)
d ) with ϕ

(0)
d = 0,

ϕ
(l+1)
d = fd(ϕ(l)

e ),∀l. (4.32)

Subject to Assumption 4.2, ϕ
(l)
d and ϕ(l)

e convergence asymptotically to a limit point,

(ϕ̃d, ϕ̃e) with ϕ̃e,n = liml→∞ ϕ(l)
e,n and ϕ̃d,n = liml→∞ ϕ

(l)
d,n, ∀n, for Te → ∞. As

shown in [BRG05, Theorem 1], this limit point is unique and independent of the

actual activation ordering. Convergence of turbo equalization is achieved, and hence

an infinitesimally small BER after channel decoding may be attained, when all

components of the vector ϕ
(l)
d attain its maximum value ϕ̃d,n = 1. The receive SNR

Es/N0, for which ϕ̃d,n ≈ 1, ∀n holds, defines the convergence threshold of the turbo

system.

We can use the functions in (4.3)-(4.4) with the corresponding decoding trajecto-

ries, obtained in (4.32), to visualize the correlation exchange between the equalizer

and the channel decoders. However, as indicated by (4.3), in the multi-user case,
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each fe,n(·) depends on N input correlation values. Thus, the corresponding sur-

face is (N+1)-dimensional. The convergence property of the iterative receiver could

therefore, in principle, be described by several interconnected multi-dimensional cor-

relation charts. In order to avoid such a cumbersome visualization, Braennstroem

et. al. introduced in [BRG05] the so-called projection technique to reduce the di-

mensionality of each surface to two dimensions (2D). We apply this technique in

the multi-user case to the vector-function fe and calculate for each user a projected

equalizer correlation function ge,n(αe,n), n = 1, ..., N . These functions are indepen-

dent of the decoding schedule and can be found, for a specific frequency domain

compound channel matrix Ξc and receiver noise variance σ2
0, using (4.3)-(4.4), by

ge,n(αe,n) ≡ lim
Te→∞

fe,n(ϕ(Te)
d,1 , ..., ϕ

(Te)
d,n−1, αe,n, ϕ

(Te)
d,n+1, ..., ϕ

(Te)
e,N ), αe,n ∈ [0, 1],∀n, (4.33)

where for each index n, the N − 1 equalizer’s input correlations ϕ(Te)
d,r , r = 1, ..., N ,

r �= n are the result of the following recursions:

ϕ(l)
e,r = fe,r(ϕ

(l)
d,1, ..., ϕ

(l)
d,n−1, αe,n, ϕ

(l)
d,n+1, ...., ϕ

(l)
d,N ),

ϕ
(l+1)
d,n = fd,n(ϕ(l)

e,n),∀n, for l = 0, ..., Te with ϕ
(0)
d,n = 0,∀n. (4.34)

With the 2D-projections in (4.33), the convergence behavior of the turbo system

can be assessed by N equalizer and decoder correlation functions, one for each user,

that can be plotted with the decoding trajectories in a single two-dimensional chart.

The projections are visualized by drawing ge,n(·) and fd,n(·) versus ϕd,n and ϕe,n,

respectively, in the same chart. Note that a vertical step between the 2D-projected

equalizer curve and the channel decoder curve in the correlation chart corresponds

then with respect to (4.34) to a large number of iterations between the equalizer and

all N channel decoders (except the nth one), until the equalizer output correlation

ϕ(l)
e,n has converged to a fixed value. Correspondingly, a horizontal step between both

curves represents a single activation of the channel decoder of user n.

4.1.3.1. Examples and Numerical Results

In this subsection, we present some examples to illustrate the correlation chart

analysis for the turbo receivers discussed in Chapter 3. We also present numerical

results of BER simulations to verify the accuracy of the analytical expressions in

(4.13), (4.20) and (4.31).

Fig. 4.9 shows the equalizer and the decoder correlation curves for the SC-MMSE

and PDA SC-MMSE FDEs for a single-user N = M = 2 and L = 10 Rayleigh fading

random channel realization with uniform delay-power profile at different Es/N0.
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Figure 4.9.: Correlation chart for the SC-MMSE and PDA SC-MMSE FDEs em-
ploying rate-1/2 SCCs. Equalizer correlation curves are shown for a
random channel realization (N = M = 2, Q = 128 and L = 10) at
Es/N0 = 3 dB and −0.5 dB (from top to bottom).

The corresponding trajectories show the information exchange between both SfISfO

components of the turbo receiver over a number of iterations which is defined by

the vector sequence in (4.32). From the correlation chart in Fig. 4.9, we observe

the improvement of the convergence threshold and convergence rate of the PDA SC-

MMSE FDE over the standard SC-MMSE FDE. This property justifies the BER

performance enhancement of the PDA-based turbo receiver shown in Fig. 3.10 of

Section 3.7.

Next, we compare the analytical BER performance prediction with the simulated

results for both receivers in Fig 4.10 (a) and (b). The curves are obtained by

averaging over a large number of random channel realizations. It can be seen that

for both receivers the analytical results coincide perfectly with the simulated curves

for the considered channel codes and SNR value range. Similar results are obtained

for turbo systems employing SCCCs and larger antenna configurations (N = M >

2). We conclude that the proposed analytical method for calculating the equalizer

correlation functions and the corresponding BER estimates allows to accurately

predict the convergence behavior and BER performance of both turbo receivers.

Finally, we present results for an N = M = 8 multiuser turbo system and compare

the convergence behavior of the HY SC-MMSE FDE with the standard SC-MMSE

FDE. We consider a scenario where four of the eight users’ channels are highly

spatially correlated at the transmit side and the remaining users’ channels are close

to orthogonal. The off-diagonal elements of the transmit correlation matrix S are
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Figure 4.10.: Comparison of average analytical and simulated BER performance
obtained for the SC-MMSE FDE (a) and the PDA SC-MMSE FDE
(b) for simple SCCs. Single-user MIMO transmission with N = M =
2, Q = 128 and L = 10.

set to [S]ij = 0.9, for 1 ≤ i, j ≤ 4, i �= j, and [S]ij = 0 otherwise. The groupsize of

the hybrid SC-MMSE FDE is chosen to U = 4, such that the four highly correlated

users’ signals are allocated into one subgroup.

Fig. 4.11 (a) and (b) illustrate the corresponding projected correlation curves and

trajectories for both receivers at SNR Es/N0 = 2 dB and Es/N0 = 6 dB, respectively.

The correlation functions are identical for all users and obtained when an rate-1/2

SCCC is employed at each user. As observed from Fig. 4.11 (a), for the low SNR
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value of 2 dB, both turbo equalization techniques have similar performances for all

users. Moreover, we find that only for the users’ signals with low spatial transmit

correlation, the convergence tunnels between the equalizer and decoder curves are

existent and thus convergence of turbo equalization may be achieved, whereas for

the remaining four highly correlated users’ signals, the two turbo equalizers fail to

convergence and thus to decode these users’ messages. In contrast, as shown in

Fig. 4.11 (b) , when increasing the SNR value to 6 dB, we see that only the HY

SC-MMSE FDE is able to form an open convergence tunnel for the four highly

spatially correlated user signals and thus to successfully decode all users’ messages.

It indicates that the proposed hybrid scheme enhances the convergence properties of

the turbo receiver which may finally result in an improved BER over the standard

SC-MMSE FDE. These findings justify the performance results of the error rate

performances of both receivers from Section 3.7.

4.2. EXIT Chart Analysis

The EXIT chart was introduced by ten Brink in [tB01] to analyze and design con-

catenated coding schemes with iterative decoding. As for the correlation chart, the

EXIT chart uses a single parameter to describe the PDFs of the LLR messages

within the turbo system. While the correlation chart visualizes the density evo-

lution by expressing the correlation between the transmitted binary data and the

corresponding LLRs, the EXIT chart uses the average mutual information. Both

analysis methods have a close relationship, and are shown to be similar in terms of

prediction accuracy of the modeling parameter [TtBH02]. However, as opposed to

the correlation chart, the EXIT chart has an information-theoretic meaning, given

by the area property theorem [AKtB04]. This theorem relates the area of EXIT

functions to the rate of a channel code or to the capacity of a channel.

In this section, we briefly review the EXIT chart analysis and define the mutual

information as well as the EXIT functions for the equalizer and channel decoder.

We then focus on the area property theorem of EXIT functions, and discuss some

important implications. We restrict our self to a single-user MIMO BICM transmis-

sion system. The extension to multiuser communication will be discussed in Chapter

5.

4.2.1. Mutual Information

Let Ie denote the average mutual information between the transmitted code bits

bq,n[k] and the extrinsic LLRs λe

[
bq,n[k]

]
provided by the equalizer, expressed as
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Figure 4.11.: Correlation functions (projection) of the HY SC-MMSE FDE (U =
4) and the standard SC-MMSE FDE (U = 1) for each user for a
single random L = 32-tap Rayleigh fading channel realization at
Es/N0 = 2 dB (a) and Es/N0 = 6 dB (b). N = M = 8 and Q = 512.

[AKtB04]:

Ie =
1

NQNb

Nb∑
k=1

Q−1∑
q=0

N∑
n=1

I
(
bq,n[k], λe

[
bq,n[k]

])
∈ D. (4.35)
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Further, let Id be the mutual information between bq,n[k] and the equalizer a priori

LLRs ζe

[
bq,n[k]

]
provided by the channel decoder in the form of the extrinsic LLRs.

The mutual information Id can be expressed as

Id =
1

NQNb

Nb∑
k=1

Q−1∑
q=0

N∑
n=1

I
(
bq,n[k], ζe

[
bq,n[k]

])
∈ D. (4.36)

To characterize the convergence behavior of the turbo equalizer, similar to (4.5), we

define two functions Ie = f̂e(Id) and Id = f̂d(Ie), that describe the input-to-output

mutual information characteristic of the equalizer and channel decoder, respectively.

The values of the mutual information in (4.35) and (4.36) can be estimated by

histogram-based measurements on the conditional PDFs of the LLRs λe

[
bq,n[k]

]
and

ζe

[
bq,n[k]

]
. Assuming uniformly distributed coded bits bq,n[k], the mutual informa-

tion I then reads as [tB01]

I(bq,n[k], l) =
1

2

∑
bq,n[k]=±1

∫ ∞

−∞
p(l|bq,n[k])

xxxxxxxxxxxxx × log2

⎛⎝ 2p(l|bq,n[k])

p(l|bq,n[k] = +1) + p(l|bq,n[k] = −1)

⎞⎠dl

= 1 − 1

NQNb

Nb∑
k=1

Q−1∑
q=0

N∑
n=1

log2

(
1 + ebq,n[k]l

)
, (4.37)

where p(l|bq,n[k]) is the PDF of the LLRs l ≡ L
[
bq,n[k]

]
conditioned on the coded

bit bq,n[k] ∈ {−1,+1}. We remark that the second line of (4.37) has been derived

based on the ergodic property and the exponential-symmetry condition on the LLRs

l. Besides this, as the LLRs at the input and output of the channel equalizer

are Gaussian distributed, the well known relationship between the channel SNR

� on the LLRs l and the mutual information is obtained, by using the so-called

J-function [tB01], as

I = J(2
√
�) = 1 − 1√

2π

∫ +∞

−∞
log2

(
1 + e−2
−2

√

x
)
e− x2

2 dx

≡ φJ(�). (4.38)

Similar to the function φ(·) in (3.66) and (4.2), φJ(·) is strictly monotonically in-

creasing and hence, it has a unique inverse, expressed by � = φ−1
J (I).
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Figure 4.12.: Functions φJ(·) and φ(·) over the equivalent SNR of the LLRs.

4.2.2. Relationship to Correlation Measure

The EXIT chart and the correlation chart are closely related. Supposing exponential-

symmetric Gaussian distributed LLRs, the mutual information and the correlation

are formally described by the functions φJ(·) and φ(·) over the SNR of the LLRs,

respectively. Although both functions can not be calculated in closed form, they can

be closely approximated by analytical expressions obtained using numerical integra-

tion techniques. The close relationship between the EXIT chart and the correlation

chart is emphasized when comparing φJ(·) and φ(·) in one chart, as shown in Fig.

4.12. It can be seen that both functions are similar, which is also supported by

equations (4.37) and (4.7), that can be written as [Hag04]

1 − E

[
log2

(
1 + e−x

)]
= E

[
log2

(
1 + tanh

(
x

2

))]
≈ 1

ln2
E

[
tanh

(
x

2

)]
. (4.39)

Based on this similarity result, Shephard et. al. [SBR06] showed that mutual in-

formation and correlation can also be combined by a function φT (·), I ≡ φT (ϕ) =

φJ

(
φ−1(ϕ)

)
, used to translate the mutual information I into the correlation ϕ and

vice versa.

4.2.3. Area Property of EXIT Functions

One of the most important properties of EXIT charts is the so-called area property

theorem, that relates the area under the EXIT function to the rate of a channel

code or to the capacity of a channel. Let us consider a serial concatenated system

with linear channel coding (i.e., an encoder with an one-to-one (invertible) mapping
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[AKtB04]) and an i.i.d. information data source. For such a system, it was proven

by Ashikhmin et. al. [AKtB04] that the area Ac =
∫ 1

0 f̂
−1
d (Id)dId under the inverse

decoder EXIT function f̂−1
d (·) equals to the rate rc of the channel code, i.e., Ac = rc,

for MAP decoding if the a priori LLR information is from a binary erasure channel

(BEC). Moreover, it was shown that for an optimal MAP equalizer the area Ae =∫ 1
0 f̂e(Id)dId under the EXIT function f̂e(·) satisfies the equality Ae = I(b, r) in the

case of a non-precoded BPSK signal transmission, where the value of the mutual

information I(b, r) defines the constellation constraint capacity Ccon of the channel.

Therefore, we obtain the remarkable property that the area under the equalizer

EXIT characteristic is equal to the capacity Ccon of the channel. Although the above

area property has only been proven for the case when the a priori LLRs is assumed

to be the output from a BEC, it also appears to work well for Gaussian distributed

LLRs [Tüc04]. Note that both the area Ae and the capacity Ccon are constrained by

the modulation scheme used for the transmit signal generation, but are independent

(for higher order signal constellations) of the applied mapping method. Further, if

we apply non-optimal equalization algorithms, such as MMSE-based turbo receivers,

we have Ae < Ccon [AKtB04]. This means the use of sub-optimal equalizers already

incurs a loss in rate. The area Ae then corresponds to the maximum achievable rate

of the turbo system, constrained by the receiver algorithm.

Some important conclusions of the area property theorem are as follows:

• For successful convergence of turbo equalization, the (inverse) decoder EXIT

function must lie under the equalizer EXIT function, implying that Ac < Ae.

Supposing optimal channel decoding and equalization, this relation leads to the

fundamental coding theorem [CT91], revealing that the overall transmission

rate should be smaller than the capacity, i.e., rc < Ccon.

• The difference Ae − Ac between the both areas corresponds to the rate loss

Ccon − rc of the turbo system. A direct consequence of this result is that

to approach capacity, the EXIT functions of the equalizer and the decoder

should be as closely as possible without crossing each other, to guarantee an

open convergence tunnel for an error-free transmission. In other words, the

two EXIT curves are not allowed to intersect, until the mutual information Id

at the decoder output approximately achieves the value one.

Based on the above results, the design of capacity-approaching turbo systems can

obviously be reduced, in principle, to a curve-fitting problem of the EXIT func-

tions of the equalizer and channel decoder [AKtB04], [tBKA04], [tBK03]. In this

regard, one approach is to optimize the parameters of the channel code such that

both EXIT functions are well matched to each other. In [tBKA04], ten Brink et
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al. applied the curve-fitting technique to design powerful capacity-achieving LDPC

codes for flat-fading MIMO BICM systems with iterative decoding and detection.

A similar idea based on repeat-accumulate codes was investigated by the authors

of [tBK03]. In a related work, Tüchler [Tüc04] used rate-compatible irregular convo-

lutional codes to optimize the decoder EXIT function in non-fading SISO channels.

Similarly, Schreckenbach et al. [SGHB03], [SB06] employed irregular (hybrid) signal

constellations and mappings to shape the EXIT function of the detector to match

both EXIT curves to each other.

Further applications of the curve-fitting approach are the adaptation of the equal-

izer EXIT function through optimization of transmission power with respect to a

QoS constraint, while keeping the channel code fixed, or the adjustment of the code

rate at the transmitter by rate allocation with a set of fixed rate-compatible channel

codes [GOM10], [GM09]. Both approaches will be investigated more in detail in the

following Chapter 5.

4.3. Outage Probability Analysis

The outage performance of the turbo receiver equipped with the standard SC-MMSE

FDE can be assessed, in principle, by performing the correlation chart analysis for

a sufficiently large number of random channel realizations. However, as for each

channel realization the correlation function of the equalizer has to be computed, this

approach may be time-consuming. This motivates the need for simpler methods for

calculating the outage probability of the turbo equalizer. In this section, we propose

a novel method that avoids the necessity of recalculating the equalizer correlation

function. The case of single-user single antenna transmission over Rayleigh fading

ISI channels with exponential delay-power profile is considered. In particular, by

using a union bounding technique and a specific central limit theorem, it is shown

that an error bound for the outage probability can be derived. In addition, a lower

bound on the system’s outage performance is found by assuming a transmission

with perfect ISI cancellation at the receiver. Analytical and simulation results that

demonstrate the tightness of the proposed error bound for various channel setups

are shown. As we consider in the following a single-user single antenna transmission

system, the antenna indices are skipped from all antenna-dependent variables.

4.3.1. Derivation of Closed-form Expression on Outage

Performance

For the following analysis, the equalizer correlation characteristic fe(·) is considered

as a random process, as it depends on the frequency domain channel matrix Ξc,
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Figure 4.13.: Example of equalizer functions fe(·) (gray curves) and resulting av-
eraged output correlations (black curves) for different random real-
izations of a Rayleigh fading channel with exponential delay-power
profile at receive SNRs Es/N0 = 2 dB (top curves) and Es/N0 = −8
dB (bottom curves). (a) τd = 8, Q = 128. (b) τd = 32, Q = 512.

whose entries change independently frame-by-frame. The turbo equalizer fails to

converge to the maximum value ϕ̃d = 1 and thus to decode a message, if for a

specific realization of Ξc the correlation curves of the equalizer and the decoder

intersect, such that ϕ̃d < 1 follows. An outage event occurs when fe(ϕd) ≤ f−1
d (ϕd)

for at least one value of ϕd ∈ [0, 1). We can therefore evaluate the outage probability
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of the SC-MMSE FDE as

Po ≡ Prob
(
fe(ϕd) ≤ f−1

d (ϕd), ∃ϕd ∈ [0, 1)
)
. (4.40)

Examples of the correlation function fe(·) for various randomly generated real-

izations of a Rayleigh fading channel with two different exponential delay-power

profiles are depicted in Fig. 4.13 (a) and (b). The mean E[fe(ϕd)] and the variance

Var[fe(ϕd)] of the correlation is shown as well. The half band width is restricted

to 2
√

Var[fe(ϕd)]. As observed from these figures, the delay-power profile of the

channel and the receive SNR have a direct influence on the slope and spread of the

correlation function values around their means E[fe(ϕd]. The outage performance

of the turbo system thus does not alone depend on the channel code used at the

transmitter, but also on the channel fading distribution as well as on the SNR at

the receiver.

In order to derive a closed-form expression on the outage probability in (4.40), we

plug the SNR expression from (3.41) into (4.13), exploit the monotonicity property

of the function φ(·) (see Fig. 3.4), and write

Po = Prob
(
S(κ, ϕd) > A(ϕd), ∃ϕd ∈ [0, 1)

)
, (4.41)

where

S(κ, ϕd) ≡ 1

Q

Q−1∑
q=0

1

1 + ρ(ϕd)κ(q)
, (4.42)

κ ≡ [κ(0), ..., κ(q), ..., κ(Q− 1)]T , (4.43)

A(ϕd) ≡ 2

(1 − ϕd)φ−1(f−1
d (ϕd)) + 2

. (4.44)

A direct evaluation of the inequality S(κ, ϕd) > A(ϕd) in the probability term

(4.41) on the continuous interval ϕd ∈ [0, 1) is analytically intractable. In order

to proceed, we impose the inequality condition on a discrete set J of D values,

J ≡ {ϕ(1)
d , ..., ϕ

(k)
d , ..., ϕ

(D)
d } ⊂ [0, 1), so that the probability can be approximated as

Po ≈ Prob
(
S(κ, ϕ(k)

d ) > A(ϕ(k)
d ), ∃ϕ(k)

d ∈ J
)
. (4.45)

Then, by applying the union bound [Kre05] on (4.45), we obtain

Po ≤
D∑

k=1

Prob
(
S(κ, ϕ(k)

d ) > A(ϕ(k)
d )
)
. (4.46)

The calculation of the probability terms in (4.46) requires knowledge of the distri-
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bution of the random variable S(κ, ϕ(k)
d ) for each value ϕ(k)

d ∈ J . However, an exact

derivation of this distribution is not easy, since due to the exponential delay-power

profile of the channel the frequency domain gains κ(q) are correlated with order

1/(Δq)2, Δq = q1 −q2, as shown in Section 2.3. Therefore, we study in the following

the asymptotic behavior of the random variable S(κ, ϕ(k)
d ) for the case of Q → ∞.

In particular, using a theorem from Arcones [Arc94], it can be shown that S(κ, ϕ(k)
d )

is asymptotically Gaussian distributed. We remark that Arcones’ theorem has also

been adopted in [CST07] to calculate the capacity of OFDM systems. We state this

theorem below. A proof of it can be found in [Arc94].

Theorem 4.5. Let {Xj}, Xj ≡
[
X

(1)
j , X

(2)
j , ..., X

(d)
j

]T
, 0 ≤ j < ∞ be a stationary

zero-mean sequence of Gaussian random vectors in R
d with covariance function

r(i,l)(k) = E

[
X(i)

m X
(l)
m+k

]
(4.47)

for k ∈ Z, 0 ≤ m < ∞ and m + k ≥ 0. Let f : Rd → R be a real-valued function

with Hermite rank ω(f) such that 1 ≤ ω(f) < ∞. Suppose that

∞∑
k=−∞

∣∣∣∣r(i,l)(k)
∣∣∣∣ω(f)

< ∞ (4.48)

for 1 ≤ i, l ≤ d. Then, as Q tends to infinity

1√
Q

Q−1∑
j=0

(
f(Xj) − E[f(Xj)]

)
d→ N

(
0, σ2

T

)
, (4.49)

where d→ denotes convergence in distribution, and

σ2
T = E

[(
f(X0) − E[f(X0)]

)2
]

+ 2
∞∑

j=0

E

[(
f(X0) − E[f(X0)]

)(
f(Xk) − E[f(Xk)]

)]
.

(4.50)

We apply Theorem 4.5 to the sequence of complex channel coefficients {τ(q)},

τ(q) = �{τ(q)} +
√

−1
{τ(q)}, 0 ≤ q ≤ Q− 1. We set Xq = [�{τ(q)},
{τ(q)}]T ,

0 ≤ q ≤ Q− 1, d = 2, and let

f(Xq) = hk

(
�{τ(q)},
{τ(q)}

)
= ck(κ(q)) ≡ 1

1 + ρ(ϕ(k)
d )(�{τ(q)}2 + 
{τ(q)}2)

. (4.51)

Using the channel correlation properties in (2.27), it can easily be shown that the
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covariance function in (4.47) satisfies condition (4.48) if the Hermite rank of hk(·)
is at least two [CST07]. We present the definition of the Hermite rank of a function

in the following, and show that hk(·) has Hermite rank ω(hk) ≥ 2. We basically

follow the same derivation as in [CST07], where the Hermite rank of the sub-channel

capacity as a function of the channel gains for an OFDM system has been calculated.

Hermite Rank Let X be a Gaussian vector with zero-mean and unit-variance.

Further, let f : Rd → R be a real-valued function with E[f(X)2] < ∞. The Hermite

rank ω(f) of f(·) with respect to X is defined in [Arc94] as

ω(f) ≡ inf
{
τ : ∃ polynomial Pol of degree τ with

E

[(
f(X) − E[f(X)]

)
Pol(X)

]
�= 0
}
. (4.52)

First, consider a zero-order polynomial Pol(X) = A0 with X = (X1, X2), for which

the condition in (4.52) becomes

E

[(
hk(X) − E[hk(X)]

)
Pol(X)

]
= A0E

[
hk(X)

]
− A0E

[
hk(X)

]
= 0, (4.53)

for all A0 ∈ R. Thus, ω(hk) �= 0. Next, consider a first-order polynomial Pol(X) =

A0X1 + A1X2 + A3. Then, we have

E

[(
hk(X) − E[hk(X)]

)
Pol(X)

]
= A0E

[
X1hk(X)

]
+ A1E

[
X2hk(X)

]
, (4.54)

where we have used the property E[X1] = E[X2] = 0. The random variables X1 and

X2 are identically Gaussian distributed. E

[
X1hk(X)

]
can then be expressed as

E

[
X1hk(X)

]
= E

[
X2hk(X)

]
=
∫ ∞

−∞

∫ ∞

−∞
x1hk(x1, x2)p(x1, x2)dx1dx2, (4.55)

where p(x1, x2) is the joint PDF of the two correlated Gaussian random variables X1

and X2. We remark that both functions p(x1, x2) and hk(x1, x2) are even in (X1, X2).

The integral in (4.55) is therefore zero and E

[
X1hk(X)

]
= E

[
X2hk(X)

]
= 0. We

conclude that ω(hk) is at least 2.
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With the fact that ω(hk) ≥ 2, requirement (4.48) is satisfied, so that for Q → ∞

1√
Q

Q−1∑
q=0

(
hk

(
�{τ(q)},
{τ(q)}

)
− E

[
hk

(
�{τ(q)},
{τ(q)}

)])
d→ N

(
0, σ2

T

)
.

(4.56)

Equation (4.56) states that the probability Prob
(
S(κ, ϕ(k)

d ) > A(ϕ(k)
d )
)

in (4.46)

approaches a Gaussian probability function for sufficiently large values of Q. For

large finite Q, S(κ, ϕ(k)
d ) may thus be approximated by a Gaussian random variable

having mean μ̊k ≡ E

[
S(κ, ϕ(k)

d )
]

= E

[
ck(κ(q))

]
and variance

σ̊2
k ≡ Var

[
S(κ, ϕ(k)

d )
]

=
1

Q
E

[
c2

k(κ(q))
]

−
(
E

[
ck(κ(q))

])2

+
2

Q2

Q−1∑
j=1

(Q− j)E
[
ck(κ(0))ck(κ(j))

]
,∀k,

(4.57)

where the quantities E
[
ck(κ(q))

]
, E
[
c2

k(κ(q))
]

and E

[
ck(κ(0))ck(κ(q))

]
are calculated

as

E

[
ck(κ(q))

]
=
∫ ∞

0

1

1 + ρ(ϕ(k)
d )x

p(x)dx, (4.58)

E

[
c2

k(κ(q))
]

=
∫ ∞

0

1(
1 + ρ(ϕ(k)

d )x
)2p(x)dx, (4.59)

E[ck(κ(0))ck(κ(j))
]

=
∫ ∞

0

∫ ∞

0

1(
1 + ρ(ϕ(k)

d )x
)(

1 + ρ(ϕ(k)
d )y

)p(x, y)dxdy. (4.60)

The functions p(x) and p(x, y) in (4.58)-(4.60) are the PDF and joint PDF of κ(q)

and (κ(0), κ(j)), respectively. Since κ(q) is exponentially distributed, we have p(x) =

exp(−x). Therefore, Eqn. (4.58) and (4.59) may be written as

E

[
ck(κ(q))

]
=

exp

⎛⎝ 1

ρ(ϕ
(k)
d

)

⎞⎠
ρ(ϕ(k)

d )
E1

⎛⎝ 1

ρ(ϕ(k)
d )

⎞⎠, (4.61)

E

[
c2

k(κ(q))
]

=
1

ρ(ϕ(k)
d )

[
1 − E

[
ck(κ(q))

]]
, (4.62)

where E1(x) =
∫∞

x e−tt−1dt denotes the exponential integral function. The joint

PDF p(x, y) in (4.60) follows a bivariate exponential distribution, and has the fol-
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lowing form [Mal03, eqn. (119)]:

p(x, y) = χj exp
[

− βj(x+ y)
]
I0

(
ϑj

√
xy
)
, (4.63)

where χj = 1
(1−δj)

, βj = χj, ϑj = 2χj

√
δj, j = 1, ..., Q− 1, δj = Corr[κ(0), κ(j)], and

I0(.) denotes the modified zero-order Bessel function of the first kind. Substituting

(4.63) into (4.60), the term E[ck(κ(0))ck(κ(j))
]

can be expressed as

E[ck(κ(0))ck(κ(j))
]

= χj

∫ ∞

0

∫ ∞

0

1

1 + ρ(ϕ(k)
d )x

1

1 + ρ(ϕ(k)
d )y

xxxxxxxxxxxxxxxxx exp
[

− βj(x+ y)
]
I0(ϑj

√
xy)dxdy

= χj

∞∑
n=0

⎛⎝ ϑ2n
j

4n(n!)2

[ ∫ ∞

0

xn

1 + ρ(ϕ(k)
d )x

exp(−βjx)dx
]2⎞⎠. (4.64)

Note that (4.64) is obtained by using the series expansion of I0(·) [GR07]. Using the

substitution from [GR07, Eqn. (3.353.2)], we may write the integral expression in

(4.64) as

∫ ∞

0

xn

1 + ρ(ϕ(k)
d )x

exp(−βjx)dx =

(−1)n

ρ(ϕ(k)
d )n+1

⎡⎣ exp

(
βj

ρ(ϕ(k)
d )

)
E1

(
βj

ρ(ϕ(k)
d )

)
+

n∑
s=1

(s− 1)!

(
− ρ(ϕ(k)

d )

βj

)s
⎤⎦. (4.65)

Now, substituting (4.65) into (4.64), we finally obtain

E[ck(κ(0))ck(κ(j))
]

=
χj

ρ(ϕ(k)
d )2

∞∑
n=0

⎛⎝
(

ϑj

2ρ(ϕ
(k)
d

)

)2n

(n!)2

⎡⎣ exp

(
βj

ρ(ϕ(k)
d )

)
E1

(
βj

ρ(ϕ(k)
d )

)

+
n∑

s=1

(s− 1)!

(
− ρ(ϕ(k)

d )

βj

)s
⎤⎦2⎞⎠. (4.66)

Numerical calculations show that the series in (4.66) is rapidly convergent and can

be used to efficiently calculate the integral in (4.60).

The outage performance of the turbo equalizer is fully determined by the means

and variances of the approximately Gaussian distributed random variables S(κ, ϕ(k)
d ),

k = 1.., D. Using the derived results (4.57)-(4.66), we finally may express the outage
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probability (4.46) as

Po ≤
D∑

k=1

1√
2πσ̊k

∫ ∞

A(ϕ
(k)
d

)
exp
[−(x− μ̊k

)2

2σ̊2
k

]
dx

=
1

2

D∑
k=1

erfc
(
A(ϕ(k)

d ) − μ̊k√
2σ̊k

)
. (4.67)

Simulations in Section 4.3.3 confirm that (4.67) is a good approximation on the

outage performance of the SC-MMSE FDE for a large range of receive SNR values

and different RMS channel delays τd. As observed from (4.57), (4.61), (4.62) and

(4.66), only the variance σ̊2
k of S(κ, ϕ(k)

d ) depends (through the covariance terms

E[ck(κ(0))ck(κ(j))
]
) on the correlation values δj, j = 1, ..., Q − 1 of the frequency

domain channel gains. By numerically evaluating (4.66), we find that the covari-

ance E[ck(κ(0))ck(κ(j))
]

decreases, and thus also the variance σ̊2
k, as the value of

δj decreases. The minimum variance σ̊2
k|min = 1

Q

(
E

[
c2

k(κ(q))
]

−
(
E

[
ck(κ(q))

])2
)

=
1
Q

Var[ck(κ(q))] is obtained for δj = 0, j = 1, ..., Q − 1, that means for uncorre-

lated gains κ(q). Moreover, the function 1
2
erfc(x) is monotonically decreasing and

bounded in [0, 1
2
] for x ≥ 0. As expected, we find that the outage probability Po in

(4.67) decreases with decreasing correlation between the frequency domain channel

gains and attains its minimum when the gains are uncorrelated.

4.3.2. Derivation of Lower Bound

A lower bound on the outage performance of the SC-MMSE FDE can be derived

when perfect ISI cancellation and optimal (i.e., capacity achieving) binary coding is

assumed. The outage probability of such an ideal system can be evaluated as

P �
o (R) = Prob

(
CBPSK(ψFD(1)) < R

)
, (4.68)

where CBPSK

(
ψFD(1)

)
the BPSK-input capacity of an AWGN channel, as a function

of the SNR ψFD(1) at the output of the equalizer for the case of perfect a priori

information, i.e., αe = 1, and R is the rate of the code. Inspecting (4.68), we

immediately see that CBPSK(ψFD(1)) is nothing else than the J-function in (4.38),

so that we can write CBPSK

(
ψFD(1)

)
= φJ

(
ψFD(1)

)
. It should be remarked that

we assume here binary codes optimized for the AWGN channel, whose achieved

rate-threshold pairs are very close to R = CBPSK(·) at vanishing BER3.

To express (4.68) in an analytical form, we first write the SNR ψFD(1) (3.41) at

3Examples of such codes are turbo codes, repeat-accumulate codes and LDPC codes [BGT93],
[RU01], [PSU05].
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the output of the SC-MMSE FDE (for the case of perfect a priori information) as

ψFD(1) =
2

Qσ2
0

Q−1∑
q=0

κ(q). (4.69)

Using the fact that φJ(·) is strictly monotonically increasing and positive, we rewrite

(4.68) as

P �
o (R) = Prob

⎛⎝Z <
Qσ2

0

2
φ−1

J (R)

⎞⎠, (4.70)

where Z ≡ ∑Q−1
q=0 κ(q) is the sum of the correlated frequency domain channel gains.

The random variables {κ(q)}Q−1
q=0 are identical exponentially distributed. Using a

result from [AAK01], the PDF of Z can be expressed as

p(z) =
Q∏

n=1

⎛⎝ δ1

δn

⎞⎠ ∞∑
k=0

okz
Q+k−1e−z/δ1

δQ+k
1 Γ(Q+ k)

U(z), (4.71)

where U(·) is the unit step function, Γ(·) is the gamma function [GR07], δ1 =

minn{δn}, {δn}Q
n=1 are the eigenvalues of the Q × Q positive definite matrix W,

defined by

W =

⎡⎢⎢⎢⎢⎢⎢⎣
1

√
δ1 . . .

√
δQ−1√

δ1 1 . . .
√
δQ−2

...
...

. . .
...√

δQ−1 . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎦ , (4.72)

and ok are coefficients, whose values are obtained recursively by the formula⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

o0 = 1

ok+1 = 1
k+1

k+1∑
i=1

⎡⎣ Q∑
j=1

(
1 − δ1

δj

)i
⎤⎦ok+1−i

k = 0, 1, 2, ...

(4.73)

With the expression in (4.71), it can be shown with the help of [GR07, Eqn. (8.35.2)]

that the outage probability in (4.70) can finally be expressed as

P �
o (R) =

Q∏
n=1

⎛⎝ δ1

δn

⎞⎠ ∞∑
k=0

ok

Γ
(
Q+ k,

Qσ2
0

2δ1
φ−1

J (R)
)

Γ(Q+ k)
, (4.74)
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where Γ(·, ·) is the incomplete gamma function [GR07].

4.3.3. Numerical Results

Next, we provide some numerical and analytical results for the outage performance

evaluation of the SC-MMSE FDE and the error bounds (4.67) and (4.74). We

consider a single-user single-antenna system using an SCCC as FEC. The two FFT-

sizes Q = 128 and Q = 512 are considered. The outage performance is evaluated for

L = 32 and L = 128-tap Rayleigh block-fading channels having exponential delay-

power profiles with RMS delays τd = 8 and τd = 32. The length of a frame is fixed

to 32768 BPSK symbols and assumed to be constant during the transmission of one

frame. The turbo equalizer performs Te = 10 iterations between the equalizer and

the inner decoder, and Td = 10 iterations between the inner and the outer decoder.

The number of iterations are chosen to be large enough to ensure convergence. For

the calculation of the error bound in (4.67), the inequality constraint in (4.41) is

computed on a grid of D = 4 points, where ϕ(k)
d ∈ J = {0.05, 0.3, 0.6, 0.95}. Note

that, in general, the values ϕ(k)
d ∈ J have to be chosen appropriately depending

on the shape of the correlation function of the channel decoder. Optimizing these

values to increase the approximation accuracy of the error bound is an interesting

further research topic, but beyond the scope of this thesis.

The outage performances of the SC-MMSE FDE for the first equalizer and decoder

iteration and after convergence for the transmission with regular rc = 1/2 and rc =

3/4 outer RSC codes [Tüc04] over τd = 8 and τd = 32 Rayleigh fading channels are

shown in Fig. 4.14 (a) and Fig. 4.14 (b), respectively. Further, the two error bounds

(4.67) and (4.74) are shown as well. The value of Δfτd has been kept fixed at 0.0625.

The outage probability Pout has been computed by averaging over 20000 random

channel realizations. We observe that the performance improves with increasing

values of the RMS delay τd due to increasing channel diversity. Also, observe that

we obtain a reasonable analytical approximation of the outage probability for all

the system configurations. Moreover, it is found that the approximation gets tight

for higher values of τd.

The simulations performed are extremely time-consuming, especially due to the

large frame length (interleaver size) used. In contrast, the proposed error bound

(4.67) provides a simple, less time-consuming, tool to predict well the outage per-

formance of the SC-MMSE FDE over a large range of SNR values and different

delay-power profiles.
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Figure 4.14.: Simulated outage probability and the error bounds (4.67) and (4.74)
for regular SCCCs with rates r = 1/2 and 3/4 over Rayleigh fading
channel with RMS delay τd = 8 (Q = 128, L = 32) (a) and τd = 32
(Q = 512, L = 128) (b).

4.4. Chapter Summary

In this chapter, the convergence properties of the SC-MMSE, PDA SC-MMSE and

HY SC-MMSE FDEs have been analyzed with the aid of a correlation chart analysis.

Using the expressions of the SNR at the equalizer outputs, it has been found that

the correlation functions for the SC-MMSE and PDA SC-MMSE FDEs may be rep-

resented by simple analytical expressions which are sufficient to accurately predict
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the output correlation parameters of the equalizer. The impact of the internal equal-

izer iterations on the output correlation parameter values of the PDA SC-MMSE

FDE has been evaluated. As a main result, it is found that the PDA SC-MMSE

FDE provides significantly higher output correlation values than the standard SC-

MMSE FDE for the same channel realization and receive SNR. The exploitation of

the internal equalizer feedback leads to more reliable soft estimates at the equalizer

output which improves the convergence properties of the turbo equalizer.

In addition, the correlation characteristic of the channel decoder has been ana-

lyzed for single-convolutionally and serially concatenated coded systems. To simplify

the analysis of iterative SCCC channel decoding, the operations of the inner and

the outer decoder have been combined into a single decoder component. The mul-

tidimensional surfaces of the iterative decoder may equivalently be expressed by a

single correlation function which considerably simplifies the analysis of the overall

iterative decoding process.

Furthermore, the convergence properties of the SC-MMSE and the HY SC-MMSE

FDEs have been verified in several spatially-correlated multiuser channel configura-

tions. Based on the projected equalizer and decoder correlation curves, the exchange

of soft information in terms of the correlation parameters between the equalizer and

the bank of single-user channel decoders has been visualized for both systems in 2D

correlation charts. The corresponding decoding trajectories justify the considerable

BER performance loss of the SC-MMSE FDE over the hybrid scheme in channels

with high spatial correlation. The hybrid turbo scheme may thus be the preferred

equalizer in spatially-correlated multiuser ISI channels.

Finally, the outage performance of the SC-MMSE FDE has been verified for a

single-user single-antenna transmission over Rayleigh ISI fading channels with expo-

nential delay-power profile. A closed form approximation on the outage probability

at the last turbo iteration has been derived. The proposed error bound provides

a simple analytical tool to accurately predict the outage performance of the SC-

MMSE turbo equalizer. Naturally, this invokes the idea to exploit the error bound

to designing channel coding schemes that guarantee a specific outage probability of

the receiver. Clearly, the design of such channel coding schemes is an interesting

research topic that will be discussed more in detail in the following chapter.





5. Rate and Power Allocation

When the time-variation or fading of the MIMO ISI channel is "slow" such that the

transmitter may be able to acquire CSI, the available resources such as rate and

transmission power can be allocated adaptively to enhance the system performance

and to compensate for the fading of the channel. Therefore, there is a great inter-

est to develop adaptive transmission techniques for single-carrier signaling schemes

employing turbo equalization, which efficiently exploit the available resources at the

transmitter based upon the channel conditions. One challenging issue to be ad-

dressed in this context is how the convergence properties of the iterative equalizer

can be taken into account to meet a specific QoS requirement (e.g., a specific target

bit error probability, throughput, etc.) of the system. The purpose of this chap-

ter is therefore to address the problem of rate and power allocation for single and

multiuser systems with turbo equalization by especially focusing on the convergence

properties of the iterative receiver.

The remainder is organized as follows. In Section 5.1, we consider the problem

of transmission rate allocation for the two-user Gaussian uplink multiple access

ISI fading channel employing the SC-MMSE FDE at the receiver and a fixed power

allocation at each transmitter. A variational optimization framework for maximizing

the sum rate based on the EXIT chart analysis of the iterative system is presented.

A simple code selection algorithm is proposed which aims to optimize the code

parameters at each transmitter to improve the overall system throughput. For this

scenario assumption, it is supposed that each transmitter can adapt its transmission

strategy relative to the instantaneous state of the channel. In the following Section

5.2, we consider fixed-rate transmission strategies optimized with respect to the

long-term channel statistics. In this case, the rate control is performed subject to

an outage probability constraint of the iterative receiver. The outage probability

specifies the convergence failure of the turbo system given a single random channel

realization. By a Monte Carlo-based simulation method, the outage rate region of

a two-user uplink multiple access system with rate-compatible channel coding at

each user is derived. Thereby, we find all code rate pairs at both users satisfying

a specific outage probability of the turbo equalizer. Using the outage region, an

algorithm capable to allocate the optimal rate pairs to both users maximizing the

total sum rate is proposed. Furthermore, an outage-based code design method is
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derived for the single-user single-antenna transmission case. The code design method

optimizes the parameters of the channel code with respect to the outage behavior of

the turbo equalizer. Finally, we focus in Section 5.3 on transmission power allocation

based on linear SVD channel precoding and SC-MMSE FDE in single-user MIMO

ISI channels. Throughout this section, perfect CSI is assumed to be available both

at the transmitter and the receiver. Several criteria for optimizing the transmit

power levels are discussed.

5.1. Rate Allocation for Multiuser Systems

In this section we focus on the question how to optimize the rate allocation in a

two-user setting with SC-MMSE frequency domain turbo equalization. Especially,

we address the problem of maximizing the total sum rate of the system using the

framework of EXIT charts. The EXIT chart analysis method has also been applied

to transmission rate allocation in multiple access channels in [RD07], [SPS05] and

[SSB06]. In [RD07], the authors optimize LDPC codes under the assumption of equal

rates at the users for a 2-user non-fading AWGN multiple access channel employing

iterative decoding. They show that equal rate allocation remarkably simplifies the

LDPC code optimization. Similar to the single-user case, the code design is reduced

to a simple 2D curve-fitting problem of EXIT functions [tBKA04], [tBK03]. Similar

results with LDPC codes and iterative decoding are obtained in [ADU02] where it

was shown that by properly choosing the multiuser code, any point on the boundary

of the capacity region can be closely approached without requiring time-sharing

[CT91] or rate-splitting [RU96]. In [SPS05], an EXIT chart framework for optimizing

LDPC codes under a large-system perspective (i.e., the number of users and antennas

are taken to infinity, while their ratio remains fixed) for the multiple access flat-

fading MIMO channel is considered. Results from the asymptotic analysis of CDMA

systems with random spreading are used to design equal-rate codes at the users by

conventional 2D curve fitting of EXIT functions. The results of [SPS05] reveal that

near capacity performance can be asymptotically achieved. Asymptotic techniques

for rate allocation have also been applied in [SSB06] to design repetition codes in

the context of equal-rate CDMA systems with iterative detection and decoding.

Unlike to the previous work [RD07], [SPS05], [SSB06], we consider in the following

a transmission strategy for the 2-user Gaussian multiple access ISI fading channel

with SC-MMSE turbo equalization. The rates at both users are not restricted to be

equal. The equalizer EXIT characteristics are given by two three-dimensional sur-

faces, and the problem of rate allocation is no longer a simple 2D matching of EXIT

curves as in the single-user case. Based on the area property of EXIT functions (see
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also Section 4.2.3), an upper bound on the achievable instantaneous rate region of

the two-user multiple access channel is derived given a particular channel realiza-

tion and receiver noise variance. Using the rate region upper bound, the problem of

maximizing the sum rate at both users subject to a convergence constraint of the

turbo equalizer is discussed. A polynomial approximation on the equalizer EXIT

functions is shown to be the key for solving this optimization problem. The obtained

analytical results are used to come up with a practical code selection method for rate

allocation at both users. Additionally, the case of EXIT chart-based rate adaption

for single-user systems is addressed as well. Finally, some numerical results to verify

the bit error rate and throughput performance of the turbo system are presented.

For following considerations, it is assumed that both users are notified of the codes

selected by the receiver through separated feedback links. These feedback links have

zero-delay and are error free.

5.1.1. Derivation of an Approximate Bound on the Sum Rate

for Multiple Access Channels

Consider a 2-user multiple access system employing the SC-MMSE FDE. Let the

mutual information between the transmitted bits bq,n[k] and the extrinsic LLRs

λe

[
bq,n[k]

]
of the equalizer be denoted as

Ie,n =
1

NbQ

Nb∑
k=1

Q−1∑
q=0

I
(
bq,n[k], λe

[
bq,n[k]

])
∈ D, n = 1, 2,

and let the mutual information between bq,n[k] and the a priori LLR ζe

[
bq,n[k]

]
of

the equalizer be denoted as

Id,n =
1

NbQ

Nb∑
k=1

Q−1∑
q=0

I
(
bq,n[k], ζe

[
bq,n[k]

])
∈ D, n = 1, 2.

In the two-user case the convergence characteristic of the equalizer is defined by the

two EXIT functions,

f̂e : Id ∈ D
2 → f̂e ≡

(
f̂e,1(Id), f̂e,2(Id)

)
∈ D

2,

which have the mutual information Id ≡ (Id,1, Id,2) ∈ D
2 in its argument. Using

the relationship between the SNR ψFD
n (ϕe) at the equalizer output in (3.39) and the

mutual information defined by the J-function in (4.38), the two equalizer functions
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are given by (see also [KM07])

Ie,n = f̂e,n(Id) = φJ(ψFD

n (ϕe)), n = 1, 2, (5.1)

where the components of vector ϕe are given by ϕe,n = φ−1
T (Id,n) for n = 1, 2.

Similarly, the convergence characteristic of both decoders is defined by two EXIT

functions1 f̂d,n : Id,n ∈ D → f̂d,n(Id,n) ∈ D. In addition, these two functions have

the extreme values f̂d,n(0) = 0 and f̂d,n(1) = 1 for n = 1, 2.

Assumption 5.1. All EXIT functions of the turbo system are monotonically in-

creasing, continuous and differentiable.

An example of the two equalizer EXIT functions f̂e and the decoder EXIT function

f̂d,1 is shown in Fig. 5.1. Also shown is a possible decoding trajectory of the mutual

information exchange, which is plotted as a projection onto the plane region U ≡
{Id |Id ∈ D

2 }. The four boundary points of this region are denoted as a0 = (0, 0),

a1 = (0, 1), a2 = (1, 1) and a3 = (1, 0). Note that the decoder EXIT function f̂d,2

(which is not shown) would be drawn in the Id,2-coordinate. For the computation

of the trajectory, the codes of both users were in this case assumed to be identical

and hence the shapes of their EXIT functions would be exactly the same.

Let D be a region defined by

D ≡
{

Id

∣∣∣f̂e,n(Id) ≥ f̂d,n(Id,n), n = 1, 2
}
. (5.2)

The region in (5.2) is shown in Fig. 5.1 as well, and is referred to as the feasible region

of the EXIT characteristics f̂e and f̂d,n, n = 1, 2. We remark that due Assumption

5.1 a0 ∈ D, since f̂e,n(a0) ≥ f̂d,n(0) = 0 for n = 1, 2.

Let {v(p)}, v(p) ∈ D, v(0) = a0, p = 0, ..., T be a sequence of Id-tuples that models

the decoding trajectory (projected onto the plane region U) according to a specific

activation ordering of the equalizer and the two decoders over a number of iterations.

The monotonicity of all EXIT functions together with the definition in (5.2) imply

that v(p+1) ≥ v(p) for all p, and thus, the sequence {v(p)} converges monotonically

to a limit point I∗
d = limp→∞ v(p). As shown in Theorem 1 of [BRG05], this limit

point is unique and independent of the actual activation ordering. Convergence of

turbo equalization is achieved, when the decoding trajectory approximately attains

the maximum point I∗
d = a2. This is possible for T being sufficiently large, if the

following constraint holds:

D is pathwise connected2 and a2 ∈ D. (5.3)

1Unlike to Section 4.2, for notational simplicity f̂d,n denotes here the inverse decoder EXIT
function.
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Figure 5.1.: Equalizer EXIT functions f̂e,1 and f̂e,2 for a single random channel
realization and decoder EXIT function f̂d,1 for a constraint length 5
rate-1/2 SCC. A possible decoding trajectory visualizing the mutual
information exchange over the iterations is plotted as projection onto
the plane region U . Q = 128, L = 10 and Es/N0 = 0 dB.

Assumption 5.2. Let AD ≡ ∫∫D dId be the area of region D. Each decoder EXIT

function f̂d,n, n = 1, 2 is matched to the corresponding equalizer EXIT function f̂e,n,

so that only an infinitesimally small open tube between the four surfaces remains,

where the trajectory can go from v(0) = a0 to I∗
d = a2.

The corresponding decoder EXIT functions to Assumption 5.2 imply 1) an ideally

designed channel code at each user of infinite block length to achieve a nearly zero

bit error probability and 2) an infinite number of iterations between the equalizer

and the two decoders3. Under Assumption 5.2, the size of the area AD is close to

zero and the region D can be characterized by a curve S, which is referred to as

convergence curve in what follows. The convergence curve S is parametrized by a

vector-function

u(t) ≡
(
u1(t), u2(t)

)
: D → S, un ∈ F1[0, 1], n = 1, 2, (5.4)

where each un(t), t ∈ D is monotonically increasing in the parameter t and has the

prescribed boundary values un(0) = 0 and un(1) = 1. In (5.4), F1[a, b] denotes the

2A set A is said to be pathwise-connected if for every p, q ∈ A there are two real numbers a, b

with a ≤ b and a continuous mapping f such that f(a) = p, f(b) = q, and f([a, b]) ⊆ A [Kre05].
3Note that, however, this does not imply that the whole transmission chain can achieve a per-

formance close to channel capacity, since the use of the sub-optimal equalizer such as the
SC-MMSE FDE already incurs a loss in rate [AKtB04].
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space of monotonically increasing, continuous and piecewise differentiable functions

on the interval [a, b].

Let wn(u) be a three-dimensional space curve, obtained by projection of u on

f̂e,n,

wn(u) ≡
(
u1(t), u2(t), f̂e,n(u(t))

)
∈ D

3, (5.5)

and let f̂ (u)
p,n : Id,n → f̂ (u)

p,n (Id,n) ∈ D be a function obtained by projection of wn onto

the Id,n-Ie,n-plane. The convergence curve u ⊆ D satisfies the constraints in (5.3),

which implies that

f̂d,n(Id,n) < f̂ (u)
p,n (Id,n),∀Id,n ∈ [0, 1), for n = 1, 2. (5.6)

From (5.6), we easily obtain the following bound:

An < A(u)
n , (5.7)

where An and A(u)
n denote the areas under f̂d,n(Id,n) and f̂ (u)

p,n (Id,n), respectively,

An ≡
∫ 1

0
f̂d,n(Id,n)dId,n, (5.8)

A(u)
n ≡

∫ 1

0
f̂ (u)

p,n (Id,n)dId,n. (5.9)

As shown in Section 4.2.3, the area under the EXIT function f̂d,n of an MAP-

based channel decoder for a rate-Rn channel code satisfies the property Rn = An.

Combining this result with (5.7) yields an upper bound for the rate Rn of user n

with respect to the convergence curve u as Rn < A(u)
n . Equivalently, the area A(u)

n

in (5.9) can be expressed as line integral of f̂e,n along S in Id,n-direction, A(u)
n =∫

S f̂e,n(Id)dId,n. Hence, we can also express the rate Rn as

Rn <
∫

S
f̂e,n(Id)dId,n (5.10a)

=
∫ 1

0
f̂e,n

(
u(t)
)
u′

n(t)dt, (5.10b)

where u′
n(t) denotes the first derivative of un(t). The equality in (5.10b) follows

directly from the curve parametrization in (5.4). An example of the convergence

curve with the two corresponding equalizer EXIT space curves and the related areas

defining the achievable rates of both users is shown in Fig. 5.2.
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Figure 5.2.: Example of the parametric convergence curve u(t) with the two corre-
sponding EXIT space curves and the two areas defining the achievable
rates.

Let V be the set of admissible parametric curves in the plane region U ,

V ≡
{
v
∣∣∣vn ∈ F1[0, 1], v′

n(t) ≥ 0,∀t, n = 1, 2,v(0) = a0,v(1) = a2

}
. (5.11)

From the inequality in (5.10) and with the definition in (5.11), we finally obtain an

upper bound for the rate region of both users as

RMAC ≡
⋃

v∈V

{
(R1, R2)

∣∣∣Rn <
∫

v
f̂e,n(Id)dId,n, n = 1, 2

}
. (5.12)

Fig. 5.3 illustrates an example of the rate region in (5.12), where f̂e,1 and f̂e,2 have

been computed using (5.1) for a single random channel realization. The rates at the

corner point V1 can be achieved by successive equalization and decoding techniques,

where the signal from user 1 is detected first through iterations only between the

equalizer and decoder of user 1, such that only the mutual information Id,1 increases

with the iterations, while the mutual information Id,2 stays zero. After decoding

the signal from user 1, the signal from user 2 is iteratively detected, while Id,1 = 1.

Thus, for achieving the corner point V1, the convergence curve S must be given by a

path on the boundary ∂U , which connects the points a0, a3 and a2, S = L(a0, a3, a2),

where L(q0, q1, ..., qv) is defined as the union of v straight line segments, connecting
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Figure 5.3.: Rate region of two-user multiple access channel with SC-MMSE fre-
quency domain turbo equalization for a random channel realization at
Es/N0 = 5 dB, numerically computed by generating a large number
of different admissible convergence curves (a gray dot corresponds to
one curve). Q = 32, L = 10.

the points qi ∈ D
2, i = 0, ..., v:

L(q0, q1, ..., qv) ≡
v−1⋃
i=0

{
qi + λ(qi+1 − qi)

∣∣∣λ ∈ [0, 1]
}
. (5.13)

The rate tuple at V2 can similarly be achieved by first iteratively detecting the signal

from user 2, followed by user 1’s signal detection. In this case the convergence curve

must be given by S = L(a0, a1, a2). Note that the rate region in (5.12) is non-convex,

in general, where the dominant face of this region strongly depends on the particular

realization of the equalizer EXIT functions f̂e.

5.1.2. Maximization of Sum Rate

To identify the rates of both users and the corresponding convergence curve that

maximize the sum rate, we are interested to solve the following variational optimiza-

tion problem:

Rmax ≡ max
v∈V

2∑
n=1

∫
v
f̂e,n(Id)dId,n. (5.14)
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Using (5.10), the functional in (5.14) can also be expressed as

R[v(t)] ≡
∫ 1

0
Y
(
v(t)
)

dt, (5.15)

where

Y (v) =
2∑

n=1

f̂e,n

(
v(t)
)
v′

n(t). (5.16)

A first-order necessary condition of optimality to the variational problem is given

by the Euler-Lagrange differential equations [JLJ98]:

∂Y (v)

∂vn

− d

dt

∂Y (v)

∂v′
n

!
= 0, n = 1, 2. (5.17)

Using (5.16), one can easily check, that the differential equations in (5.17) reduce

to one algebraic equation,

∂f̂e,2(v)

∂v1

− ∂f̂e,1(v)

∂v2

!
= 0. (5.18)

The solutions of (5.18), if they exist, are the candidates satisfying the optimality

requirement. However, a direct computation of (5.18) is not possible, since f̂e,1

and f̂e,2 are not given in closed form. Moreover, the candidate curves of (5.18) are

stationary paths, which generally do not satisfy the monotonicity and boundary

conditions of (5.11). Hence, the extremal cannot be directly obtained from (5.18).

5.1.3. Analytical Solution based on EXIT Function

Approximation

Since a closed-form solution to (5.14) is difficult to derive, we present in the follow-

ing an approximate analytical solution to the above variational problem by approx-

imating each equalizer EXIT characteristic by a polynomial function. We therefore

introduce the following assumption.

Assumption 5.3. Each equalizer EXIT function f̂e,n can be closely approximated

by a two-dimensional quadratic form f̂e,n(Id) ≈ βn,0+βn,1Id,1+βn,2Id,2+βn,3Id,1Id,2+

βn,4I
2
d,1+βn,5I

2
d,2 with the coefficients βn,i can be obtained from a standard regression

method [Kre05].
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Under the above assumption, Eqn. (5.17) reduces to a linear algebraic equation,

T (Id) ≡ ∂f̂e,2(Id)

∂Id,1

− ∂f̂e,1(Id)

∂Id,2

!
= 0. (5.19)

Eqn. (5.19) has three possible outcomes: (i) no solution, (ii) infinite number of

solutions, or (iii) a unique solution.

(i) If (5.19) has no solution, the partial derivatives ∂f̂e,2(Id)/∂Id,1 and ∂f̂e,1(Id)/∂Id,2

are non-equal constants in R. In this case, we can state the following lemma.

Lemma 5.4. If (5.19) has no solution one of the boundary curves L(a0, a3, a2) and

L(a0, a1, a2) solves the variational problem, and thus the achievable sum rate is

maximized at the rate region corner point of either V1 or V2.

Proof: See Appendix A.4.

(ii) If (5.19) has an infinite number of solutions, i.e., curl f̂e = 0 for all Id ∈ D
2,

the functional in (5.15) is path-independent [Kre05]. Thus, R[v] is identical

for all v ∈ V and the two corner points V1 and V2 are connected by a straight

line segment having a decay of −1.

(iii) If (5.19) has a unique solution, the solution curve E ≡ {Id |T (Id) = 0} can

be parameterized by a continuous vector-function g : D → E , where the first

derivative of g satisfies g′
n(t) ≥ 0 or g′

n(t) ≤ 0 for all t ∈ D. This property

allows us to formulate the following theorem.

Theorem 5.5. Let E ⊂ U be parametrized by a vector-function g : D → E . Let

the following two conditions be satisfied:

g′
n(t) ≥ 0, n = 1, 2 for all t ∈ D, (5.20a)

T (Id)

⎧⎪⎨⎪⎩≥ 0 for Id ∈ G1,

≤ 0 for Id ∈ G2,
(5.20b)

where the regions Gn are defined as G1 ≡
{
Id |Id,1 ≤ g1(t), Id,2 ≥ g2(t),∀t ∈ D

}
and

G2 ≡
{
Id |Id,1 ≥ g1(t), Id,2 ≤ g2(t),∀t ∈ D

}
. Then, the convergence curve

S = E ∪ L
(
a0,g(0)

)
∪ L
(
g(1), a2

)
(5.21)

comprised of the curve E and the two straight line segments (all shown in Fig. 5.4)

is optimal with respect to (5.14).
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Figure 5.4.: Visualization of the curve E with parametrization g, the corresponding
convergence curve S with parametrization ṽ, and the partition of the
curve ṽ for an arbitrary parametric curve v ∈ V in the plane region U .

Proof: See Appendix A.5.

The optimality of the convergence curve (5.21) is given only when both con-

ditions in (5.20) are satisfied. In cases when at least one of these conditions is

violated, we can use Green’s theorem [Kre05] (see also Appendix A.5) to show

that candidate solutions to the variational problem are the convergence curves

H0(u) ≡ L(a0, r0,1, r0,2, a2) and H1(u) ≡ L(a0, r1,1, r1,2, a2), comprised of the union

of three straight-line segments connecting the points r0,1 = (u, 0), r0,2 = (u, 1) and

r1,1 = (0, u), r1,2 = (1, u) with u ∈ [0, 1].

Lemma 5.6. Based on the candidate solutions, the variational problem can be

rewritten as a quadratic extremal problem which may be solved with standard meth-

ods of the classical calculus.

Proof: See Appendix A.6.

The approximate closed-form solution with respect to (5.14) presented above can

now be summarized in Algorithm 5.1. We also present a second graph-based algo-

rithm to solve the above sum rate problem in Appendix C. Note that this algorithm

also extends the above sum rate allocation scheme to the N -user (N > 2) channel

case.

5.1.4. Practical Method for Rate Allocation

With the algorithm presented above, the convergence curve v̄, v̄ ∈ V that approxi-

mately solves (5.14) for a single random channel realization can be calculated. The
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Algorithm 5.1 Algorithm for computing the convergence curve that maximizes
sum rate

1: Calculate the polynomial coefficients βn,i for each equalizer EXIT function f̂e,n

using a standard regression method [Kre05].
2: if (A.19) is satisfied then

3: Output the boundary curve that solves (A.20).
4: else if (A.19a) is satisfied and (A.19b) is violated then

5: Output an arbitrary convergence curve v ∈ V.
6: else if (5.20) is satisfied then

7: Output the convergence curve in (5.21).
8: else

9: Output the convergence curve Hl(u), l = 1, 2, u ∈ D with (l, u) being the
solution to (A.27).

10: end if

maximum rate at each user, corresponding to curve v̄, is then given by the area

under the projected equalizer EXIT function f̂ (v̄)
p,n , as illustrated in Fig. 5.2. To

closely approach this rate, the n-th user should have its decoder EXIT function f̂d,n

as close to f̂ (v̄)
p,n as possible, while satisfying the constraints (5.3) for convergence of

the turbo equalizer.

In practice, however, optimizing f̂d,n by adjusting the available code parameters

such that code optimality in a strict sense is always guaranteed is not possible as

the code parameters may presumably be limited. Thus, a practical approach for

rate allocation is to select for each user the code Cu ∈ C with the highest possible

rate from a finite code set C = {C1, C2, ..., Cm} for which convergence is achieved,

while its decoder EXIT function f̂ (Cu)
d,n best fits to f̂ (v̄)

p,n . Here, m denotes the number

of codes in the set C.

Based on this idea a simple scheme for rate allocation can be derived, which is

summarized as follows.

1. For each realization of the frequency domain channel matrix, calculate the

equalizer EXIT functions f̂e,1 and f̂e,2 using (5.1).

2. Calculate the convergence curve v̄ ∈ V that solves (5.14) using Algorithm 5.1.

3. Calculate f̂ (v̄)
p,n by projecting the space curve wn(v̄) onto the Ie,n-Id,n-plane.

4. To obtain high information rate, select the channel code for each user n satis-

fying

rc,n = max
Cu∈C

{
r(Cu)

∣∣∣∣f̂ (v̄)
p,n (Id,n) ≥ f̂

(Cu)
d,n (Id,n) + u(Id,n),∀Id,n ∈ [0, 1)

}
, (5.22)
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where r(Cu) designates the rate of channel code Cu, and u(Id,n) is a function

to control the speed of convergence of the decoding trajectory to the maximum

point I∗
d = a2.

5. If rc,n is NULL, select the code with the lowest possible rate in C, rc,n =

minCu∈C r(Cu).

6. Output the selected coding rates rc,1 and rc,2.

We remark that with (5.22) the selected codes of both users satisfy the constraint

in (5.3). Therefore, the turbo equalizer can achieve asymptotically the convergence

point I∗
d = a2 when the number of turbo and decoder iterations are sufficiently large.

Special Case of Single-User System: Obviously, in the single-user case the calcu-

lation of an optimal convergence is not necessary due to the dimensionality constraint

of the EXIT chart. As the EXIT functions f̂e and f̂d are defined by two-dimensional

mappings, the above approach simplifies to the following scheme.

1. Calculate the equalizer EXIT function f̂e using (5.1).

2. Select the channel code satisfying

rc = max
Cu∈C

{
r(Cu)

∣∣∣∣f̂e(Id) ≥ f̂
(Cu)
d (Id) + u(Id),∀Id ∈ [0, 1)

}
. (5.23)

3. If rc is NULL, select the code with the lowest possible rate in C.

4. Output the selected coding rate rc.

5.1.5. Numerical Results

Results of capacity evaluations and simulations to assess the throughput efficiency

of the proposed rate allocation scheme are presented in this subsection. We consider

a two-user single-carrier transmission over Rayleigh fading ISI channels employing

the SC-MMSE FDE. Typical values for the channel memory L (3, 5 and 32) are

assumed. The power delay profile of the channel is uniform.

5.1.5.1. Spectral Efficiency

Fig. 5.5 shows the spectral efficiency Q
Q+P

R̄ of the two-user turbo system when

’optimally’ designed user codes are assumed, whose decoder EXIT functions satisfy:

f̂d,n = f̂ (v̄)
p,n , for both users. Here, v̄ is the solution to problem (5.14) for the channel

realizations given. The information rate R̄ has been calculated by averaging the sum
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Figure 5.5.: Spectral efficiency of a two-user turbo system employing the SC-
MMSE FDE with ’optimally’ designed user codes for the transmis-
sion and ergodic sum capacity with Gaussian and BPSK input signals.
N = M = 2, Q = 32 and L = 3.

rate
∑2

n=1

∫ 1
0 f̂

(v̄)
p,n (Id,n)dId,n over a large number of random channel realizations. For

comparison, the ergodic i.i.d. Gaussian-input sum capacity RMAC
sum and the ergodic

BPSK-input sum capacity RMAC
con of the frequency-selective Rayleigh fading channel

with evenly allocated transmit power levels are also shown. The BPSK-input capac-

ity result has been obtained by the Monte Carlo method described in Section 2.8.2.

The CSI is assumed to be known only at the receiver. Comparing the numerical

results in Fig. 5.5, we find that the loss incurred by the use of the SC-MMSE FDE

with respect to the BPSK-input capacity slightly increases for large values of Es/N0.

We also observe that there is almost no difference between the three curves up to

Es/N0 = −8 dB, indicating that a two-user turbo system with BPSK-inputs and

SC-MMSE FDE is nearly optimal in the low Es/N0 region.

5.1.5.2. Rate Allocation

The rate-compatible punctured SCCCs proposed in [Tüc04], consisting of a rate-rc

outer encoder and a recursive rate-1 inner encoder with polynomials (gr, g0) = (3, 2)

(gr denotes the feedback polynomial) in octal notation, are assumed for channel

encoding at both users. The outer encoder of the concatenated code is selected

from a set of 17 subcodes having rates rc = 0.05 · (2+p), p = 1, .., P −1. The length

of a frame is fixed to 16384 symbols and the function u(x) in (5.22) is defined as

u(x) = 0.025 − 0.025x, x ∈ [0, 1]. The turbo equalizer performs Te = 15 iterations

between the equalizer and both SCCC decoders and Td = 20 iterations between
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Table 5.1.: Selected code rate pairs and information rate pairs at both users for
the ’Max-Sum-Rate’ and ’Min-Sum-Rate’ code design.

rc,1 rc,2 rc R1 R2 R
Max-Sum-Rate 0.75 0.85 1.60 0.84 0.90 1.74
Min-Sum-Rate 0.90 0.45 1.35 0.98 0.58 1.56

the inner and outer decoder. Note that u(x) has been preliminarily optimized by

computer simulations to find an acceptable trade-off between performance of the

turbo equalizer and the number of iterations needed to ensure convergence.

Table 5.1 shows the selected code rate pairs at Es/N0 = 4.75 dB with respect to

(5.22) and the information rate pairs satisfying (5.14) for a single random chan-

nel realization. For comparison, the selected code rate pairs rc,n and informa-

tion rate pairs Rn =
∫

v̌ fe,n(Id)dId,n, computed for the convergence curve satisfying

v̌ ≡ arg minv∈V
∑2

n=1

∫
v fe,n(Id)dId,n, are also shown and referred to as ’Min-Sum-

Rate,’. The results in Table 5.1 indicate that the selected code rate pairs and the

total achievable sum rate of the turbo system strongly depend on the convergence

curve chosen for the particular channel realization.

Fig. 5.6 shows the BER performance of the turbo receiver for a single channel

realization. The channel code at each user is selected with respect to (5.22) at an

SNR Es/N0 = 4.75 dB. Also shown is the SNR Es/N0|min at which the instantaneous

BPSK-input sum capacity (for the given channel realization) is equal to the sum

rate
∑2

n=1 rc,n = 1.60 bit per channel use (bpc) of the turbo system. It is observed

that the turbo equalizer shows convergence starting at SNRS of 3.6 dB and 4.1

dB for user 1 and user 2, respectively. The SC-MMSE FDE indeed satisfies the

convergence constraints (5.3) for the desired SNR Es/N0|des. Moreover, we find that

the SC-MMSE FDE operates within about 2 dB Es/N0 to its respective capacity

limit at a BER of 10−6.

Fig. 5.7 shows the average total throughput of the 2-user turbo system versus

the receive SNR for a transmission over L = 32 Rayleigh fading ISI channels. A

selective-repeat ARQ is assumed. The spectral efficiency for ’optimally’ designed

user codes is shown as a reference. Also shown is the average total throughput

for ARQ with fixed and identical codes at both users with rates rc,1/2 = 0.1 · n,

n = 1, .., 9. As observed in Fig. 5.7, substantial throughput gain is obtained by

the adaptive rate allocation scheme over fixed rate ARQ. Further, we find that

the throughput performance is only 1.5 dB away in the high SNR region from the

throughput achieved with ’optimally’ designed user codes. Notably, however, there

is still a gap of almost 2.5 dB between both curves in the low SNR region. It should

be noted though, that by using more flexible coding techniques, such as irregular
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Figure 5.6.: Average BER performance of the SC-MMSE FDE for a fixed L = 3
random channel realization with coding rates rc,1 = 0.75 and rc,2 =
0.85 of both users. FFT-size Q = 32.

SCCCs or irregular LDPC codes (e.g., see [Tüc04], [tBKA04]), the performance loss

can be further reduced.

5.2. Outage-based Rate Allocation and Code Design

In contrast to the previous section, let us now assume that the transmitters have

only knowledge about the statistics of the channel condition (i.e., the fading distri-

bution), but not of the instantaneous channel gains. A commonly used measure to

characterize the receiver performance is then the probability of convergence failure

of the turbo equalizer, which is also known as the outage probability. As for such

transmission systems, the adaptive allocation of resources at the transmitter to the

instantaneous channel state is not possible, outage-based allocation schemes may be

preferred.

In this section, we firstly discuss the extension of the code selection algorithm

from Section 5.1.4 to two-user transmission systems. In detail, we determine the

achievable outage rate region, that specifies the set of all code rate pairs satisfying

a specific outage probability of the turbo equalizer, for a specific channel fading

distribution and set of rate-compatible codes. Having knowledge of this region, the

objective is to determine the optimal code rate pairs of both users that maximize the

total sum rate. The results obtained by this approach are compared to the outage

capacity region of the two user multiple access channel.

Furthermore, an outage-based code design method for single-user single-antenna
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Figure 5.7.: Average total throughput of the turbo system achieved by rate allo-
cation at each user (solid curves with marker ’o’) and by fixed coding
rate ARQ at both users with rc,1/2 = 0.1 · n with n = 1, .., 9 (dashed
curves, from bottom to top). Q = 128 and L = 32.

turbo systems employing irregular recursive convolutional (IRC) codes is proposed.

The analytical expressions for the outage probability of the SC-MMSE FDE from

Section 4.3 are used to optimize the parameters of the IRC code. It is demonstrated

that optimized IRC-coded turbo equalizer improves the outage performance over

the turbo equalizer employing regular RSC codes.

5.2.1. Outage-based Code Selection for Multiple Access

Channels

In the context of turbo equalization, the code rate rc,n of the n-th user should be no

greater than r∗
c,n(v̄) ≡ maxCu∈C

{
r(Cu)|f (v̄)

p,n (Id,n) > f
(Cu)
d,n (Id,n),∀Id,n ∈ [0, 1)

}
with

v̄ ∈ V being the solution to (5.14), so that the constraints in (5.3) for convergence

are satisfied. Assume that for each code Cu ∈ C we have f (Cu)
d (Id) ≥ f

(Cm)
d (Id),

∀Id ∈ [0, 1) if r(Cu) ≥ r(Cm) with Cm ∈ C. Then, the set of code rate pairs at which

convergence of turbo equalization is achieved for a specific channel realization, is

given by

T (v̄) ≡
{

(rc,1, rc,2)
∣∣∣rc,1 = r(Cu) ≤ r∗

c,1(v̄), rc,2 = r(Cm) ≤ r∗
c,2(v̄), Cu, Cm ∈ C

}
.

(5.24)

For an outage-based rate allocation, we view the rate pair (r∗
c,1(v̄), r∗

c,2(v̄)) as a

random process as the convergence curve v̄ depends on the channel matrix whose
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particular realization changes independently, frame-by-frame. If the two users are

transmitting with rates (rc,1, rc,2), an outage event occurs if either rc,1 > r∗
c,1(v̄) or

rc,2 > r∗
c,2(v̄). Thus, we can define the outage rate region of turbo equalization as

Rout

MAC =
{

(rc,1, rc,2)
∣∣∣Prob

(
(rc,1, rc,2) /∈ T (v̄) ≤ Po

}
, (5.25)

where Po denotes the outage probability. The maximum sum rate at which arbi-

trarily reliable transmission for the two users is possible for (1 − Po) × 100% of the

channel realizations, is then given by

Rout

MAC = max
(rc,1,rc,2)

{
rc,1 + rc,2

∣∣∣(rc,1, rc,2) ∈ Rout

MAC

}
. (5.26)

The code rates obtained by (5.26) are the largest rates that can be achieved over the

two-user multiple access channel for the codes in the set C. The region in (5.25) is

determined through Monte Carlo simulations, as described in the following section.

5.2.1.1. Numerical Results

Simulations were performed for the two-user frequency selective L = 5 Rayleigh

fading ISI channel. The same code set as in Section 5.1.5 was assumed for outage-

based rate allocation at both users.

Fig 5.8 shows the code rate pairs (rc,1, rc,2) that maximize the sum rate among

those combinations of the codes in C for Po = 0.01, 0.1, and 0.5. In all cases, the SNR

Es/N0 was set at 4 dB. To obtain the outage rate region Rout
MAC, the outage constraint

in (5.25) was calculated by evaluating the convergence of the turbo equalizer over

V independent random channel realizations. Specifically, the set of code rate pairs

T (v̄) is determined for each of the V channel realizations according to the definition

in (5.24), and the total number U of outage events ((rc,1, rc,2) /∈ T (v̄)) for a given

code rate pair (rc,1, rc,2) is recorded. According to (5.25), the outage rate region is

then given by all code rate pairs satisfying the condition U
V

≤ Po. Also shown in Fig

5.8 are the binary-input outage capacity regions CMAC
con,out(Pout) for the three outage

probabilities and the achievable information rate pairs on the region boundaries

maximizing the outage capacity, i.e., (R̊1, R̊2) = max(R1,R2)

{
R1 + R2

∣∣∣(R1, R2) ∈
CMAC

con,out(Pout)
}
. As evident from this figure, the larger the desired outage probability,

the larger is the area of the outage capacity region. Further, as expected, the

code rate pairs satisfying (5.26) are contained by their respective outage capacity

region. We observe that these rate pairs are symmetric with respect to the line

R1 = R2 = Rout
MAC/2. This is apparently obvious as we expect the two rates obtained

by (5.14) to be equal. Note that, due to a finite number of Monte Carlo trials, the
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Figure 5.8.: Achievable code rate pairs (markers with ’+’, ’∗’ and ’�’) maximizing
the sum rate of the turbo system and the respective binary-input
outage capacity regions for Po = 0.01, 0.1, 0.5 at Es/N0 = 4 dB. The
points on the capacity region, indicated by the ’o’ markers, show the
achievable rates maximizing the outage capacity.

Table 5.2.: Code rate pairs and achievable information rates for a two-user turbo
system with Po = 0.1.

Es/N0 [dB] rc,1 rc,2
∑

i rc,i R̊1 R̊2
∑

i R̊i

0 0.35 0.35 0.70 0.47 0.53 1.00
1 0.40 0.40 0.80 0.55 0.61 1.16
2 0.50 0.50 1.00 0.64 0.67 1.31
3 0.55 0.60 1.15 0.70 0.76 1.46

0.60 0.55
4 0.65 0.65 1.30 0.79 0.82 1.61

rate pairs are not exactly symmetric.

The code rate pairs and maximal achievable information rates for a given outage

probability of Po = 0.1 at different Es/N0-values are listed in Table 5.2. As observed

from this table, there is still a performance loss of about 0.3 bpc in sum rate over

the considered SNR range of the outage-based rate allocation scheme compared to

the outage capacity results. This loss can be reduced by using more appropriate

coding techniques such as LDPC or turbo codes.
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5.2.2. Outage-based Code Design for Single-User Setups

Unlike to the preceding algorithm where the channel code at each user is selected

from a finite code set, we focus now on the design of a channel coding scheme

that guarantees a specific outage probability of the turbo equalizer. Inspired by

the results of the correlation chart analysis in Section 4.3, we exploit the analytical

bound in (4.67) to design a channel encoder that optimizes the outage behavior.

Specifically, the concept of IRC codes is invoked to shape the correlation function

of the channel decoder with respect to the convergence properties of the equalizer.

The corresponding channel code design problem can be formulated as a nonlinear

optimization problem. It is shown that standard numerical tools can efficiently solve

this optimization problem.

5.2.2.1. Channel Code Design

The IRC coding scheme from [Tüc04], constituted by a set of P = 17 outer convo-

lutional subcodes having the rates r(p)
c = 0.05 · (2 + p), p = 0, .., P − 1, and an inner

rate-1 memory-1 convolutional code is used for the outage optimization. Each outer

subcode encodes a specific fraction of the information bit sequence determined by

the weighting coefficient εp ∈ [0, 1], p = 0, .., P − 1. Given the overall coding rate rc,

the weighting coefficients satisfy:

P −1∑
p=0

εp = 1 and
P −1∑
p=0

εpr
(p)
c = rc. (5.27)

Similar to [Tüc04], we assume that for decoding the trellis fractions of the individual

subcodes do not interfere with each other. The correlation function fd1(αd1) of the

outer IRC decoder is thus given by a weighted superposition of the correlation

functions fd1,p(αd1) of the individual subcodes, i.e.,

fd1(αd1) =
P −1∑
p=0

εpfd1,p(αd1). (5.28)

Using (5.28) together with (4.22)-(4.27), the joint IRC decoder correlation function

(4.28), combining the iterative decoding of the inner and outer decoder, can be

expressed for arbitrary values of αd ∈ [0, 1] by

ϕd = fd(αd) = fd2,2

(
αd,

P −1∑
p=0

εpfd1,p(ν̃)
)
, (5.29)

P −1∑
p=0

εpfd1,p(ν) > f−1
d2,1(ϕe, ν) for all ν ∈ [0, ν̃], 0 ≤ ν̃ < 1, (5.30)
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where the function f−1
d2,1(·, ·) denotes the inverse of fd2,1(·, ·) with respect to its second

argument. Note that (5.30) is equivalent to the recurrence relations (4.25) and

(4.26) for the case of Td → ∞. Given a finite set of output correlation values

{ϕ(1)
d , ..., ϕ

(k)
d , ..., ϕ

(D)
d }, ϕ(k)

d ∈ J and the weighting coefficients {εp}P −1
p=0 of the joint

IRC decoder, we can use (5.29) and (5.30) to determine the corresponding set of

input correlation values {α(1)
d , ..., α

(k)
d , ..., α

(D)
d } with α(k)

d satisfying α(k)
d = f−1

d (ϕ(k)
d ),

k = 1, .., D.

The goal of the optimization of the weighting coefficients {εp} is to minimize

the system’s outage probability. Therefore, using (4.44) and (4.67), we define the

objective function to be minimized as

Fout(ϕ
(1)
e , ..., ϕ(D)

e ) ≡ 1

2

D∑
k=1

erfc

⎛⎝ √
2(

(1 − ϕ
(k)
d )φ−1(ϕ(k)

e ) + 2
)
σ̊k

− μ̊k√
2σ̊k

⎞⎠, (5.31)

where ϕ(k)
e = f−1

d (ϕ(k)
d ), k = 1, .., D. With the definitions in (5.27)-(5.31), the

problem of optimizing the weighting coefficients {εp} can then be formulated as

minimize
{εp},{ϕ

(k)
e },{ν̃k}

Fout(ϕ
(1)
e , ..., ϕ(D)

e ) (5.32)

subject to

ϕ
(k)
d = fd2,2

(
ϕ(k)

e ,
P −1∑
p=0

εpfd1,p(ν̃k)
)
, k = 1.., D (5.33)

P −1∑
p=0

εpfd1,p(νk) > f−1
d2,1(ϕ(k)

e , νk),∀νk ∈ [0, ν̃k],∀k (5.34)

ν̃k ∈ [0, 1), ϕ(k)
e ∈ [0, 1),∀k (5.35)

P −1∑
p=0

εp = 1, εp ∈ [0, 1],∀p (5.36)

P −1∑
p=0

εpr
(p)
c = rc. (5.37)

Note that (5.33) and (5.34) are non-convex constraints, since the functions fd2,2(·),
fp(·), p = 1, .., P − 1 and f−1

d2,1(·, ·) are non-convex for the specified IRC coding

scheme. Moreover, by numerically evaluating (5.31), we also find that the objective

Fout is non-convex. The above optimization problem is thereby a non-convex pro-

gramming problem, whose global minimum solution can only be obtained through

an exhaustive (brute-force) search. As a consequence, we only aim at the com-

putation of a local minimizer to the above problem by using an algorithm based

on the interior-reflective Newton method [CL94]. For a detailed discussion on the

computational complexity, the convergence behavior and parameter choices of the
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Figure 5.9.: Correlation characteristic of the joint IRC decoder for the optimized
rate-1/2 IRC code and the regular rate-1/2 RSC code, and equalizer
band for L = 32-tap Rayleigh fading channels with exponential decay
and RMS delay τd = 8.

interior-reflective Newton method, please refer to [CL94], [CL96].

Fig. 5.9 shows the correlation characteristic of the joint IRC decoder for a rate

rc = 1/2 outer code, whose weighting coefficients are optimized with respect to the

outage behavior of the SC-MMSE FDE for transmissions over L = 32-tap Rayleigh

fading channels with exponential decay and RMS delay τd = 8 at an average SNR

Es/N0 of 1.0 dB. The optimized weighting coefficients were obtained by computing

(5.32)-(5.37) on a grid of D = 4 points, where ϕ(k)
d ∈ D = {0.05, 0.3, 0.6, 0.99}. They

are given as follows:

[
ε1, .., ε17

]
=
[
0, 0, 0, 0, 0, 0.4612, 0.1195, 0, 0, 0, 0.2258, 0, 0.0196, 0.0995, 0, 0, 0.0744

]
.

(5.38)

For comparison, Fig. 5.9 also shows the correlation characteristic of the joint IRC

decoder for a regular RSC rate-1/2 outer code (defined by the generator [23, 35])

having the weighting coefficients: ε8 = 1, and εp = 0, otherwise. Further, a band

of the equalizer correlation curves, obtained by numerically computing the mean

E[fe(ϕd)] and the variance Var[fe(ϕd)] of the correlation at the equalizer output for

a large number of random channel realizations, is shown as well. As observed in Fig.

5.9, the band of the correlation curves of the equalizer and the correlation curve of

the joint IRC decoder largely overlap when the regular RSC code is employed, so

that for the majority of the channel realizations the turbo equalizer fails to converge

and outage events occur. In contrast, it is easy to see that for the optimized IRC
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Figure 5.10.: Outage performance of the SC-MMSE FDE employing the regular
rate-1/2 RSC code and the optimized rate-1/2 IRC code.

Table 5.3.: Optimized weighting coefficients of the rate-1/2 IRC code at different
Es/N0 in dB.

Es/N0 ε1,ε2,...,ε17 in percent
-1 00 00 00 00 22 38 00 00 00 00 00 02 28 00 00 00 10
0 00 00 00 00 10 50 00 00 00 00 00 11 19 00 00 00 10
1 00 00 00 00 00 46 12 00 00 00 23 00 02 10 00 00 07
2 00 00 00 00 00 24 37 00 00 03 18 00 00 11 00 00 07
3 00 00 00 00 00 18 45 00 00 00 19 01 00 10 00 00 07

code the convergence tunnel between the equalizer curves and the joint IRC decoder

curve is greatly enlarged, indicating that for most of the channel realizations the

turbo equalizer is able to successfully converge. Thus the probability of convergence

failure of the turbo equalizer can be reduced greatly when employing the optimized

IRC code for the transmission.

5.2.2.2. Numerical Results

Fig. 5.10 compares the outage performance of the SC-MMSE FDE turbo scheme

employing the regular rate-1/2 outer RSC code and the optimized rate-1/2 outer

IRC code for Rayleigh fading channels with exponential decay and RMS delay τd =

8. The weighting coefficients {εp}P −1
p=0 of the optimized IRC codes for several SNR

values Es/N0 are listed in Table 5.3. As a reference, the outage probability of a

single-carrier system assuming perfect ISI cancellation and optimal (i.e., capacity

achieving) binary coding is shown as well in Fig. 5.10. Note that outage probability
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Figure 5.11.: Outage performance of the SC-MMSE FDE employing the regular
rate-7/20 RSC code and the optimized rate-7/20 IRC code.

Table 5.4.: Optimized weighting coefficients of IRC codes with different rates at
different Es/N0 in dB.

Es/N0 ε1,ε2,...,ε17 in percent
-6 86 00 00 00 00 00 00 03 06 00 05 00 00 00 00 00 00
-2 00 05 53 04 00 00 01 22 00 00 01 04 03 03 00 00 04
2 00 00 00 00 00 18 45 00 00 00 19 01 00 10 00 00 07
6 00 00 00 00 00 00 00 00 00 00 00 00 00 54 00 00 46
10 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 100

of such a system is given by (4.68). As observed in Fig. 5.10, the optimized IRC-

coded turbo scheme outperforms the RSC-coded turbo system over the considered

Es/N0 value range, which is consistent with the result in Section 4.3. Specifically, it

was found that a coding advantage of about 1.2 dB at outage probability Pout = 10−1

can be achieved by the optimized code over the regular code. Additionally, we find

that the performance gap to the lower bound is only 1.2 dB at Pout = 10−1 for the

optimized IRC-coded turbo system, while for the regular RSC-coded turbo system

it is more than 2.3 dB. Similar results obtained for the SC-MMSE FDE employing

rate-7/20 codes are shown in Fig. 5.11.

Fig. 5.12 shows the average TP for a selective-repeat ARQ system with turbo

equalization utilizing optimized outer IRC codes over Rayleigh fading channels with

RMS delay τd = 8. The weighting coefficients {εp}P −1
p=0 are optimized to improve the

throughput efficiency of the turbo equalizer. In order to maximize the throughput
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Figure 5.12.: Average throughput performance of the SC-MMSE turbo equalizer
with optimized IRC and regular RSC codes having the rates rc = 1/4,
1/2 and 3/4.

efficiency, {εp} should be found by solving the following optimization problem:

maximize
{εp},{ϕ

(k)
e },{ν̃k}

(
1 − Fout

) P −1∑
p=0

εpr
(p)
c (5.39)

subject to (5.33)-(5.36). (5.40)

Note that, similar to problem (5.32)-(5.37), the above problem is a non-convex

one that can be approximately solved by the iterative interior-reflective Newton

method [CL94], [CL96]. Table 5.4 presents some examples of optimized weighting

coefficients for several Es/N0 values.

The throughput performance of the optimized IRC-coded turbo equalizer is com-

pared in Fig. 5.12 with the performance of an ARQ scheme with regular RSC codes

with coding rates rc = 1/4, 1/2 and 3/4. For comparison, the upper bound on the

throughput efficiency of the turbo system, given by TP� = arg maxR

(
1 −P �

o (R)
)
R,

is shown as well. As it is evident from this figure, substantial throughput gain

is obtained by the optimized IRC-coded turbo scheme over the RSC-coded turbo

system. Further, we find that the performance gap to the upper bound of the IRC-

coded turbo scheme diminishes at low Es/N0 values; the performance gap between

both curves is smaller than 1.5 dB at TP = 0.2 bpc. This indicates that optimized

IRC-coded SC-MMSE frequency domain turbo equalization can almost achieve the

performance of a single-carrier system with perfect ISI cancellation and capacity

achieving binary coding in the low Es/N0 region.
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5.3. Power Allocation for Linearly Precoded Signals

When channel state information is available at the transmitter and receiver side, lin-

ear transmit precoding can be used to improve power efficiency of single-user MIMO

wireless transmission systems. Most of the available precoding schemes assume a

perfect knowledge of the channel state at the transmitter which is a reasonable

assumption in low mobility full-duplex communication applications. The channel

estimates are obtained at the receiver during the transmission of a frame of infor-

mation bits, and are typically reused in subsequent transmissions as long as the

channel varies slowly over time. The transmitter can acquire CSI using the channel

estimates at the receiver, by either invoking the reciprocity or by using a dedicated

feedback link [MP07]. Note that both reciprocity and feedback methods are applied

widely in practical communication systems, including time-division-duplex (TDD)

and frequency-division-duplex (FDD) systems.

When designing a linear precoder, various design criteria based on information

theoretic and practical measures can be used to optimize the transmission power

allocation. The information theoretic measures mostly include the error exponent,

the instantaneous and ergodic capacity, while the practical measures include the

bit error rate, symbol error rate, the pairwise error probability, the MSE, and the

received SNR [MP07]. The choice of the design criteria mainly depend on the system

structure, the system parameters and the detection principle used at the receiver.

For example, a system employing strong channel coding with non-iterative detection

over a flat-fading MIMO channel may operate very close to the capacity limit, and

hence, a precoding design based on the error exponent may be the preferred choice.

In contrast, for a system assuming infinite codeword length and Gaussian codebooks,

the ergodic capacity may be a more suitable measure, e.g., see [CT91], [Tel99]. Other

designs based on practical measures often jointly optimize both a linear precoder and

a linear non-iterative detector based on the MSE, the BER, or the SNR (see [SSP01],

[OSV03], [PCL03] and references therein). In these papers, optimizing a linear

precoding and a linear detection matrix is formulated as a constrained optimization

problem with the solution being given by a classical waterfilling expression.

Most of the existing work limits the application of linear precoding to commu-

nication systems employing non-iterative detection. In this section, we present a

novel SVD-based precoding scheme applicable for single-carrier single-user block

transmissions over MIMO ISI channels assuming SC-MMSE turbo equalization. Es-

pecially, we consider the problem of minimizing the transmission power with respect

to the convergence behavior of the iterative receiver. Several criteria for transmis-

sion power allocation are discussed. To guarantee convergence of turbo equalization,

we also invoke the correlation characteristics of the equalizer and channel decoder,
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and formulate the power allocation problem as a curve fitting problem. More specifi-

cally, the transmission power is optimized so that the equalizer correlation curve lies

above the decoder correlation curve up to a specific correlation point that specifies

the target bit error rate of the system. It is shown that this problem is a convex

one that can be efficiently solved by convex programming techniques. As a result

of utilizing the power optimized precoding technique, the convergence properties

of the SC-MMSE FDE can further be improved over the SC-MMSE FDE without

precoding.

5.3.1. System Model of Linear Precoding

Consider a single-user single-carrier cyclic prefix assisted spatially multiplexing sys-

tem employing N transmit and M receive antennas, as illustrated in Fig. 2.5. We

assume that the number of receive antennas is equal or larger than the number of

transmit antennas. After channel encoding and bit-interleaving, each transmit data

stream b(k) is linearly precoded with a precoding matrix T ∈ C
NQ×NQ and then

transmitted by the multiple transmit antennas.

As the precoder matrix T is block-circulant, i.e., T = FH
NΞT FN , the vector of

received symbols (see Eqn. (2.52)) at the equalizer can be expressed with the fre-

quency domain compound channel matrix Ξc = ΞΞT as

r(k) = FH
MΞcFNb(k) + n(k)

= FH
MΞΞT FNb(k) + n(k). (5.41)

As shown in Section 2.8, the SVD of the frequency domain channel matrix Ξ is given

by Ξ = UGVH where G = diag
(
diag(G1), diag(G2), ..., diag(GN)

)
∈ C

MQ×NQ is a

diagonal matrix with Gn = diag(
√
gn,0,

√
gn,1, ...,

√
gn,Q−1) ∈ C

Q×Q, ∀n. Here, the

variables gn,q are the eigenvalues of ΞΞH . Assume that the frequency domain pre-

coding matrix ΞT can be decomposed into the matrix product ΞT = VP with P =

diag
(
diag(P1), diag((P2), ...., diag((PN)

)
, Pn = diag

(√
pn,0,

√
pn,1, ...,

√
pn,Q−1

)
be-

ing the diagonal power loading matrix. Here, the vector p = [pT
1 ,p

T
2 , ...,p

T
N ]T ,

pn = [pn,0, pn,1, ..., pn,Q−1]T , n = 1, ..., N contains the values of the power allocation.

With the SVD of Ξ, the system model (5.41) can then be rewritten as

r(k) = FH
MUGVHVPFNb(k) + n(k) (5.42)

= FH
MUGPFNb(k) + n(k). (5.43)

Multiplying Eqn. (5.43) with matrix FH
MUHFM does not change the statistics of

the channel noise, as U and FM are unitary. Therefore, the received signal can be
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written as

ŕ(k) = FH
MUHFMr(k)

= FH
MGPFNb(k) + ń(k) (5.44)

with ń(k) ∼ CN (0, σ2
0I). Observing that the matrix product GP gives a diagonal

matrix, we obtain as a result that SVD-based precoded single-carrier transmission

perfectly decouples the MIMO ISI channel in the spatial domain into a set of N

parallel channels. Eqn. (5.44) can hence equivalently be expressed as

ŕn(k) = FHGnPnFbn(k) + ńn(k) for n = 1..., N, (5.45)

where ŕn(k) = Ŝŕ(k) and ńn(k) = Ŝnń(k) with Ŝn = [0(Q,(n−1)Q), IQ,0(Q,(M−n)Q)] ∈
C

Q×MQ being a selection matrix. Owing to the circulant structure of the equivalent

channel matrices FHGnPnF in (5.45), each of the N parallel channels is character-

ized by ISI and Gaussian noise.

5.3.2. SC-MMSE Frequency Domain Equalization of Linearly

Precoded Signals

Next, a derivation of the SC-MMSE FDE to deal with linearly-precoded transmit

signals is presented. The block diagram of the corresponding equalizer is shown in

Fig. 5.13. After frequency domain conversion and multiplication by the unitary

matrix U, the received signal given by (5.43) is processed by the equalizer. The

soft cancellation block cancels the interference components from the received signal.

The residual interference is then further suppressed by the linear frequency domain

MMSE filter Γ̇n. The MMSE filter outputs the soft symbol estimates zn of the

transmitted symbols bn. With the aid of the MSE-formulation (3.28), the optimal

MMSE filtering matrix Γ̇n can be found by solving the MSE optimization problem:

minimize Q−1Trace
(
Γ̇H

n ΨFDPrΓ̇n

)
− (1 − ϕ̄)Q−2Trace

(
Γ̇H

n GnPn

)2

subject to: Q−1Trace
(
Γ̇H

n GnPn

)
= 1, (5.46)

where ΨFDPr = [(1 − ϕ̄)G2P2 + σ2
0IQM ] is the covariance matrix of the residual

signal after MMSE filtering. The solution to the above optimization problem can

be derived similarly to the SC-MMSE FDE without precoding, as shown in Section

3.3. We skip the full derivation for the MMSE filtering matrix Γ̇n here and present
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Figure 5.13.: Signal flow chart of the SC-MMSE FDE for precoded transmit sig-
nals.

only the expression for the optimal output vector zn,

zn = ¯̄γ−1
n FHGnPnΨFDPr−1

n ŜnUH
(
r − r̄

)
+ b̄n. (5.47)

where ΨFDPr
n ≡

[
(1 − ϕ̄)G2

nP2
n + σ2

0IQ

]
and ¯̄γn = Q−1Trace(GnPnΨFDPr−1

n GnPn).

Based on (5.47), the extrinsic LLRs at the output of the equalizer are given by

λe

[
bn

]
=

4�{zn}
¯̄γ−1

n − (1 − ϕ̄)
,∀n. (5.48)

5.3.2.1. SNR Analysis and Correlation Function

The effective SNR of the extrinsic LLRs λe

[
bn

]
at the equalizer output can be

derived in closed form as a function of the power allocation vector pn and the average

energy level ϕ̄ of the soft estimates calculated from the extrinsic feedback LLRs of

the channel decoder. Supposing that Assumption 3.4 remains valid for the SVD-

based precoded single-carrier transmission as well, the effective SNR ψFDPr
n (pn, ϕ̄)
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reads as (see also Eqn. (3.39))

ψFDPr

n (pn, ϕ̄) =
2¯̄γn(pn, ϕ̄)

1 − ¯̄γn(pn, ϕ̄)(1 − ϕ̄)

=
2Q−1Trace(GnPnΨFDPr−1

n GnPn)

1 −Q−1Trace(GnPnΨFDPr−1
n GnPn)(1 − ϕ̄)

=
2
∑Q−1

q=0
gn,qpn,q

σ2
0+(1−ϕ̄)gn,qpn,q

Q−
(∑Q−1

q=0
gn,qpn,q

σ2
0+(1−ϕ̄)gn,qpn,q

)
(1 − ϕ̄)

= 2Q
( Q−1∑

q=0

ln,q(pn,q)
−1
)−1

− 2

1 − ϕ̄
, (5.49)

where ln,q(pn,q) ≡ 1
1−ϕ̄

+ gn,qpn,q

σ2
0

and ¯̄γn = ¯̄γn(pn, ϕ̄). It can easily be shown that the

effective SNR ψFDPr
n (pn, ϕ̄) is a monotonically increasing function of its arguments.

The above expression for the SNR can now be used to derive efficient allocation

schemes that optimize the transmission power levels.

Moreover, the correlation function of the equalizer can now be expressed with

(5.49) and (4.13) as

fe(p, αe) =
1

N

N∑
n=1

φ
(
ψFDPr

n (pn, αe)
)
. (5.50)

We note that the correlation function fe(p, αe) is monotonically increasing in all

arguments, since

∂fe(pn, αe)

∂αe

≥ 0 and
∂fe(pn, αe)

∂pn,q

≥ 0,∀n, q. (5.51)

5.3.3. Power Allocation Strategies

Having the analytical expressions for both the effective SNR ψFDPr
n (pn, ϕ̄) and the

equalizer correlation function fe(p, αe), we can now consider the optimization of

the power allocation over the frequency domain channel eigenmodes gn,q. In this

subsection, several approaches with respect to performance measures such as mean

square error, capacity or correlation are introduced. Specifically, we consider sev-

eral approaches that minimize the total power at the first iteration of the turbo

equalizer. We also consider transmission power optimization based on the correla-

tion chart analysis presented in Chapter 4. In detail, the goal of the correlation

chart-based power optimization is to minimize the total transmitted power, subject

to maintaining an acceptable bit error performance at the last iteration of the turbo

equalizer.
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1. MinSumMSE Criterion. The first method allocates the power levels with

respect to the minimum total biased MSE [TSK02] at the output of the SC-

MMSE FDE at the first iteration. Since no knowledge about the code bits is

available at the first iteration, the total biased MSE is given by

MSEFDPr =
N∑

n=1

Q−1∑
q=0

σ2
0

σ2
0 + gn,qpn,q

(5.52)

Using (5.52), the problem of minimizing the total sum MSE can be expressed

as

min
p

N∑
n=1

Q−1∑
q=0

σ2
0

σ2
0 + gn,qpn,q

subject to 1T p ≤ P0,p ≥ 0, (5.53)

where P0 is the total power over the frequency domain channel eigenmodes.

We observe that the objective function and the constraint of (5.53) are convex

and linear, respectively, with respect to the power levels pn,q. The above

optimization problem is hence a convex problem, whose solution is given by

the following waterfilling expression [PF05]:

pn,q = (cMinMSEg
−1/2
n,q − σ2

0g
−1
n,q)

+,∀n, ∀q (5.54)

with cMinMSE being a parameter chosen such that 1T p = P0
4.

2. MaxInfoRate Criterion. The second approach maximizes the achievable mu-

tual information I(b, r) of the turbo system by assuming Gaussian distributed

input signals. As shown in Section 2.8, the classical waterfilling solution

[Tel99], [XP03] over the frequency domain channel eigenmodes provides the

maximum mutual information,

pn,q =
(
cMaxRate − σ2

0g
−1
n,q

)+
,∀n, ∀q, (5.55)

where cMaxRate is the "water level" chosen to satisfy the power constraint 1T p ≤
P0. We observe from (5.55) that for the high SNR range (σ2

0 → 0) the trans-

mission power is evenly allocated over the gn,q’s, whereas in the low SNR range

the main power is only allocated to the frequency domain subchannels having

a strong eigenmode.

4Note that the expression in (5.54) has been numerically evaluated with the iterative algorithm
proposed in [PF05] that terminates with an exact numerical solution in O(NQ) arithmetic
operations.
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3. MaxCorr Criterion. The third approach employs a power allocation scheme

that maximizes the output correlation fe(p, 0) of the equalizer at the first

iteration (αe = 0), i.e.,

max
p

1

N

N∑
n=1

φ
(
ψFDPr

n (pn, 0)
)

subject to 1T p ≤ P0,p ≥ 0. (5.56)

It is shown in the sequel that the optimization problem (5.56) is convex and

can be efficiently solved by standard convex optimization tools [BV04].

4. CorrChart Criterion. The last approach considers the optimization of the

power levels with respect to the convergence behavior of the iterative receiver.

This approach adjusts the total transmission power to guarantee an open con-

vergence tunnel between the equalizer and the decoder correlation curves up

to a target correlation value ϕTarget

d . Consequently, this optimization problem

can be formulated as follows:

min
p

1T p

subject to fe(p, ϕd) ≥ f−1
d (ϕd) + u(ϕd)

ϕd ∈ [0, ϕtarget

d ],p ≥ 0, (5.57)

where ϕtarget

d denotes the channel decoder output correlation after convergence

of the turbo equalizer required to achieve a target BER, and u(ϕd), u(ϕd) ≥ 0

is a function to control the speed of convergence to the fixed point.

Lemma 5.7. The optimization problem (5.57) is a convex one that can be

efficiently solved by convex programming techniques.

Proof: See Appendix A.7.

5.3.3.1. Equalizer Correlation Characteristics for Different Power Allocation

Schemes

Fig. 5.14 (a)-(d) show the correlation characteristics of the equalizer obtained by

the analytical expression (5.50) and the numerical simulation for the four power-

optimized SVD-based precoded transmission employing the four power allocation

schemes discussed above. For comparison, we also show results of the non-precoded

SC-MMSE FDE for the case when channel state information is not available at

the transmitter. The equalizer correlation curves are obtained for the two SNRs

Eb/N0 = 4.5 dB and Eb/N0 = 2.4 dB. The simulations are carried for a single-user
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Figure 5.14.: Correlation characteristics of the equalizer and decoder for the ’Min-
SumMSE’, ’MaxInfoRate’, ’MaxCorr’ and ’CorrChart’ based power
allocation schemes at different SNRs. SNR1 = 4.5 dB, SNR1 = 2.4
dB, SNR3 = 0.7 dB and SNR4 = 0.1 dB.

single-carrier N = M = 2 MIMO system. The L = 32-tap frequency selective fading

Rayleigh channel with uniform delay power profile is assumed. The FFT-size at the

receiver is set to Q = 128.

As observed from all four figures, the simulated curves coincide with the estimates

from the analysis for all four power allocation schemes. In addition, we see that the

equalizer correlation curves with SVD-based precoding are located at higher lev-

els compared to the equalizer correlation curves without precoding. In fact, the

results reflect that for both SNR values the equalizer correlation curves with the

’MinSumMSE’, ’MaxInfoRate’ and the ’MaxCorr’ power allocation schemes inter-

sect with the decoder correlation curve at significantly higher correlation values ϕe.

We also find that the ’MinSumMSE’ and ’MaxCorr’ power allocations result in sim-

ilar correlation curves of the equalizer. It is also interesting to see that the four

power allocation schemes differently effect the convergence behavior of the equal-
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izer. As can be seen, the equalizer curve at the correlation value ϕd = 1 with the

’MaxInfoRate’ power allocation is significantly higher as compared to the equalizer

curves with the ’MinSumMSE’ or ’MaxCorr’ power allocations. The reason for this

can be found when analyzing the effective SNR ψFDPr
n at the equalizer output for the

case of perfect ISI cancellation. The effective SNR ψFDPr
n with ’MaxInfoRate’ power

allocation is then given by

ψFDPr(1)

n (pn, 1) = Q−1
Q−1∑
q=0

(
cMaxRategn,q − σ2

0

)+
. (5.58)

Similarly, the expression with ’MinSumMSE’ power allocation is found to

ψFDPr(2)

n (pn, 1) = Q−1
Q−1∑
q=0

(
cMinMSE

√
gn,q − σ2

0

)+
. (5.59)

As the power levels of both criteria satisfy the constraint 1T p ≤ P0, the coeffi-

cients cMaxRate and cMinMSE in (5.58) and (5.59), respectively, must follow the relation

cMaxRate ≥ cMinMSE. Consequently, the largest effective SNR ψFDPr
n and correlation

value ϕe at the equalizer output are achieved for perfect a priori information with

the ’MaxInfoRate’ power allocation scheme.

The equalizer curves with the ’MaxCorr’ and ’CorrChart’ power allocations shown

in Fig. 5.14 (c) and (d), respectively, are obtained by convex programming [BV04].

Specifically, for the ’CorrChart’ power allocation the constraint in (5.57) has been

computed on a finite grid of points in the interval [0, ϕtarget

d ], equally spaced by 0.01.

The function u(x) in (5.57) has been defined as u(x) = 0.1(1 − ϕtarget−1
d x). In order

to asses the performance gain achieved with the power allocation given by (5.57)

over the non-precoded transmission, the intersection point between the equalizer

and decoder correlation curves has been set to an identical target correlation value

ϕtarget

d . Therefore, as illustrated in Fig. 5.14 (d) for both SNR values, the SC-MMSE

FDE with precoding converges to the same fixed point as the equalizer without

precoding. However, the equalizer without precoding achieves the target correlation

value at significantly lower Eb/N0 values.

In summary, the correlation curves presented in Fig. 5.14 (a)-(d) illustrate im-

pressively that transmit precoding with optimized power allocation significantly en-

hances the convergence threshold of the turbo receiver. As a result, the turbo

equalizer can achieve better performance than without precoding. Naturally, this

performance improvement comes at the cost of increased complexity at the trans-

mitter due to the computation of the precoding matrix.
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Figure 5.15.: BER performance of the SC-MMSE FDE (simulation results: black
curves; analytical results: dashed curves) for different precoding
schemes utilizing a memory-3, rc = 1/2 convolutional code over
Rayleigh fading channels. N = M = 2, Q = 128 and L = 32.

5.3.4. Numerical Results

Fig. 5.15 shows the BER performances achieved by the SC-MMSE FDE after Te =

20 iterations with SVD-based transmit precoding and the four criteria used for

transmission power allocation. For comparison, the performance of a turbo equalizer

without precoding is shown as well. It can be seen that all four precoding schemes

perform better than the non-precoded transmission over the considered Eb/N0 value

range, which is consistent with the analysis of Section 5.3.3. Moreover, we clearly

observe that the ’CorrChart’-based power allocation approach outperforms the other

three methods at moderate to high Eb/N0 values.

Complexity: The four precoding schemes, discussed above require the computa-

tion of the SVD of the diagonal-block frequency MIMO channel matrix in (5.41).

This can efficiently be performed in O(QNM2) (assuming N ≤ M) arithmetic op-

erations. The waterfilling expressions (5.54) and (5.54) of the ’MinSumMSE’ and

’MaxInfoRate’ power allocations, respectively, can numerically be evaluated with the

iterative algorithm from [PF05]. This algorithm is known to give an exact numer-

ical solution after a finite number of iterations with a worst-case complexity linear

in the total number of eigenmodes NQ. This is in contrast to the interior point

algorithms, for solving the power allocation problems (5.56) and (5.57), which have

a polynomial worst-case complexity in NQ and terminate after a sufficient number



174 5. RATE AND POWER ALLOCATION

of iterations with an approximate solution [PJ06].

5.4. Chapter Summary

In this chapter it has been shown that appropriate resource allocation in wireless

systems has significant influence on the performance of SC-MMSE FDE turbo equal-

ization. The power and spectral efficiency can be increased when the transmitter

possesses the available channel state information to adaptively allocate the resources

transmission rate and power.

A simple algorithm for rate allocation in multiuser systems has been proposed

that exploits the knowledge of the EXIT characteristics of the turbo equalizer. The

algorithm adaptively selects the code parameters independently for each user with

the objective to improve the system throughput. Numerical results of the throughput

efficiency demonstrated the superiority of the proposed algorithm over non-adaptive

schemes with fixed code rate ARQ.

Furthermore, when instead of partial CSI in the form of a feedback channel the

long-term channel statistics are given at the transmitter, the allocation of transmis-

sion rates at the users can be performed with respect to the outage performance of

the turbo equalizer. By means of Monte Carlo-based simulations the outage rate

region of a two-user multiple access channel employing the SC-MMSE FDE at the

receiver and rate-compatible channel coding at each transmitter has been numeri-

cally evaluated. With this region, we illustrated how the code parameters can be

optimized at each user to meet a specific outage probability constraint of the turbo

equalizer. In fact, it has been shown that the outage-based rate allocation scheme

operates within a range of 0.3 bpc in sum rate away from the respective binary-

input outage capacity region. Besides this, a framework for designing IRC channel

coding schemes minimizing the outage probability of the SC-MMSE FDE has been

developed. It was found that the optimization of the weighting coefficients of the

IRC channel code can be formulated as a constrained non-convex program. By sim-

ulation, we found that the optimized IRC code achieves a coding advantage of more

than 1.0 dB at an outage probability of Pout = 10−1 over the regular RSC code when

used in a turbo system.

Supposing perfect channel state information available at both the transmitter and

receiver side, the turbo equalizer can be combined with a linear transmit precoder

to enhance the power efficiency in MIMO systems. More specifically, in this work

we have focused on an SVD-based precoder with transmit power allocation that ex-

plicitly takes into account the convergence constraints of the iterative receiver. The

SVD-based precoder perfectly decouples the single-user MIMO ISI fading channel in
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the spatial domain into a set of parallel ISI fading channels. For the minimization

of the total transmission power over these parallel channels, four different design

criteria based on the MSE, channel mutual information and output correlation at

the equalizer have been considered. As a main result, it was found that a precoder

optimizing the power levels subject to a target bit error rate of the turbo equalizer

outperforms all other considered precoding schemes. Furthermore, this optimiza-

tion can be formulated as a convex problem which can be solved very efficiently by

standard numerical tools. We remark that a linear precoding and power optimiza-

tion strategy for single-carrier signaling and turbo equalization has recently been

proposed in [KCT+11]. However note that in contrast to [KCT+11] where multiple

encoders and decoders are required for data transmission, the precoder in this work

involves only a single error correcting channel code. Consequently, it offers a re-

duced complexity cost in the system implementation by avoiding multiple encoding

and decoding.





6. Conclusions and Future Work

The aim of this thesis has been the development of efficient transmission strategies

employing turbo equalization for single-carrier signaling over single or multiple-

access block-fading channels with memory involving ISI. In particular, the focus has

been on the design and analysis of low complexity and robust MMSE-based turbo

equalizers operating in the frequency domain. Accordingly, the impact of different

system configurations and channel settings on the convergence properties of the

turbo equalizers has been studied and analytical bounds characterizing the average

bit error rate and outage probability performance of the system have been derived.

As a major contribution, two novel receiver designs improving the error performance

over the existing SC-MMSE FDE [KM07], [YGWP08] have been proposed. Another

special emphasis has been dedicated to adaptive transmit techniques, which aim to

improve the power and spectral efficiency of turbo systems by efficiently exploiting

the available resources at the transmitter side based upon the channel conditions.

The challenging issue encountered in this context has been how the transmission rate

and the power levels can be optimized while a specific convergence constraint of the

iterative receiver and a QoS requirement are guaranteed. The main contributions

are summarized as follows.

• A frequency domain turbo equalizer based on the framework of nonlinear

MMSE symbol estimation, referred to as PDA SC-MMSE FDE, has been

proposed for single-carrier block signaling. In contrast to the standard SC-

MMSE FDE, the PDA SC-MMSE FDE merges a priori information from

channel decoding and soft-decision feedback within the equalizer for ISI and

MAI cancellation. Analytical and simulation results reveal that the proposed

scheme provides SNR gains up to 2 dB in spatially uncorrelated MIMO chan-

nels as compared to the previously studied SC-MMSE turbo equalizer at the

same order of computational complexity.

• With the aid of the EXIT and the correlation chart analysis tools, simple an-

alytical expressions which are sufficiently accurate to predict the convergence

properties of the SC-MMSE FDE and PDA SC-MMSE FDE in various single

and multiuser propagation environments have been derived. Based on these

expressions we have been able to gain insight into the convergence behavior
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of the iterative receiver that helped to understand the impact of the internal

equalizer iterations within the PDA SC-MMSE FDE on the overall perfor-

mance of the system. Tight error bounds on the bit error and outage prob-

abilities of MMSE-based FDEs have been derived as well. The error bounds

provide simple, but effective tools for predicting and optimizing the perfor-

mance of turbo systems. Moreover, they can be used to designing iterative

systems with optimized channel coding, rate and power allocations targeting

capacity-approaching performance.

• In practical multiuser scenarios, sparse scattering and/or very closely located

users can cause very high spatial correlation between the different users’ chan-

nels. In such situations the performance of the conventional SC-MMSE FDE

may substantially be degraded and a more sophisticated equalizer may need

to be applied for data detection. In this regard, a novel receiver design which

is insensitive to spatial channel correlation has been presented. In particular,

the proposed algorithm extends the SC-MMSE FDE to a hybrid technique by

jointly performing groupwise frequency domain MMSE filtering and maximum

a posteriori signal detection. Particular emphasis has been given on different

greedy approaches for grouping the users to subgroups with respect to differ-

ent MSE and channel correlation criteria. The suggested grouping schemes

reduce noise enhancement of the groupwise interference suppression by allo-

cating highly correlated user signals into the same subgroup. It was found

that a simple correlation-based grouping method achieves similar performance

than MSE-based methods at a significantly reduced complexity. Numerical re-

sults obtained by performance evaluations based on realistic channel sounding

measurement data revealed a strong robustness of the hybrid turbo equalizer

in MIMO channels with high spatial correlation. Typical performance gains

achieved over the standard SC-MMSE FDE are in the range of 2 to 6 dB in

SNR depending on the multiuser channel scenario.

• An EXIT chart based framework for transmission rate allocation in Gaus-

sian multiple access ISI fading channels with SC-MMSE turbo equalization

has been presented. The area property of EXIT functions has been used

to derive a rate region upper bound of the iterative system. It was shown

that maximizing the sum rate subject to the instantaneous channel state can

efficiently be solved by variational methods. As a result of the sum rate opti-

mization, a simple algorithm exploiting feedback information from the receiver

to select independently for each user the optimal channel coding parameters

with the objective to maximize the sum rate has been developed. Numerical

results demonstrated that the adaptive rate allocation scheme achieves im-
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proved throughput efficiency as compared to a standard method without rate

adaption.

• The technique of rate adaption for multiuser turbo systems has been extended

to an outage based rate allocation scheme. This approach optimizes the chan-

nel coding parameters with the intention to satisfy a specific outage probability

constraint of the iterative receiver for a given channel fading distribution. The

example of a rate-optimized two-user transmission showed that the proposed

scheme operates close to its respective binary-input outage capacity region.

Besides this, a novel design criterion for irregular channel codes has been pro-

posed to improve the outage performance of single-user single-antenna turbo

systems. It was shown that the application of optimized IRC codes for turbo

equalization offers a coding gain of more than 1.0 dB in SNR compared to

standard RSC coding over ISI fading channels with exponential delay-power

profile.

• Finally, we have studied the application of linear transmit precoding for single-

carrier signaling over MIMO ISI block-fading channels, where both the trans-

mitter and receiver know perfectly the channel coefficients. More explicitly,

we have concentrated on SVD-based precoding combined with transmit power

optimization. Several power allocation strategies have been proposed. A con-

vex optimization framework for optimizing the power levels over the frequency

domain channel eigenmodes has shown to be superior over other existing power

allocation methods. This result has been supported by results of BER perfor-

mance evaluations with the different precoder schemes.

6.1. Future Work

In the course of this thesis, several interesting and import issues in the design and

optimization of wireless communication systems have been addressed. However,

many open research problems remain for future work. In the following some research

directions that may be worth studying are described.

Rate and Power Allocation with Imperfect CSI

The application of the instantaneous rate and power allocation schemes of Sections

5.1 and 5.3 in real communication systems is limited in the sense that CSI is pre-

sumed to be perfectly available at the transmitter(s) and the receiver. However, the

assumption of perfect knowledge of the instantaneous channel coefficients is unre-

alistic due to erroneous channel estimation (especially in fast-fading channels with
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rapidly changing environments), and/or quantization, delay and errors introduced

by a feedback channel. Consequently, a more realistic model for the transmitter and

receiver that also covers imperfect CSI would be of practical relevance. Based on

this model, the influence of channel uncertainty at the transmitter and the receiver

side on the performance of the proposed rate and power allocation schemes should

be thoroughly investigated. The obtained results may then be further used to ex-

tend the proposed approaches to robust resource allocation schemes which explicitly

take into account the channel uncertainty at the transmitter and receiver.

Joint Rate and Power Optimization

In this work, we have concentrated on transmission rate and power optimization by

focusing on two different design criteria: 1) maximizing the sum rate of multiuser

systems subject to a fixed power allocation, and 2) minimizing the total transmission

power of single-user systems subject to a fixed total power constraint and a fixed

rate allocation. Therefore, an interesting extension would be the joint optimization

of rate and power for single and multiuser transmissions under a fixed total power

or rate constraint. This idea involves the joint design of channel coding schemes,

transmit precoders and power allocations with a special focus on the convergence

properties of the turbo equalizer. As examples, of particular interest are the prob-

lem of maximizing the rate for single-user transmissions subject to a total power

constraint; the problem of sum rate maximization in multiuser systems subject to a

total power or per user power constraint; the problem of minimizing the total power

of all users subject to a fixed rate allocation; the problem of maximizing the mini-

mum user rate subject to a total power constraint; and the problem of minimizing

the maximum transmission power of the user subject to a fixed rate allocation. The

development of efficient practical solutions to these optimization problems lead to

new transmit strategies that aim to improve the overall performance, throughput

and reliability of turbo equalization systems, and introduce fairness among users.

Extension to High Order Modulation

The proposed transmit rate and power allocation schemes as well as the receive algo-

rithms have been developed for single-carrier signaling with BPSK modulation. By

employing high order modulations with optimized mappings, the spectral efficiency

of the system can be further increased. Thus, further work is required to extend

the proposed transmit and receive techniques to be applicable in systems involving

arbitrary signal constellations.



A. Proofs of Lemmas, Propositions

and Theorems

A.1. Proof of Lemma 2.1

Assuming an exponential delay-power profile (2.18), the function w(Δq) can ex-

pressed as (L,Q) → ∞, as

w(Δq) = lim
L→∞

L−1∑
l=0

σ2
l exp

(
−

√
−1

2π

L
lΔq

)

= lim
L→∞

cexp

τd

L−1∑
l=0

exp

(
− l

L

(√
−12πΔq +

1

Δfτd

))
(A.1)

= lim
L→∞

cexp

(
1 − exp

(
− (

√
−12πΔq + 1

Δfτd
)
))

(Δfτd)L− (Δfτd)L exp
(

− 1
L

(√
−12πΔq + 1

Δfτd

)) , (A.2)

where the expression in (A.2) has been derived using the exponential sum formula

[GR07]. Using the fact that the mean energy of the delay-power profile per MIMO

channel is normalized to one, we obtain

lim
L→∞

L−1∑
l=0

cexp

τd

(
− l

τd

)
= lim

L→∞

cexp

(
1 − exp

(
1

Δfτd

))
(Δfτd)L− (Δfτd)L exp

(
− 1

ΔfτdL

)

= cexp

⎛⎝1 − exp

(
− 1

Δfτd

)⎞⎠
= 1.

The normalization constant cexp can therefore be written as

cexp =
1

1 − exp
(

− 1
Δfτd

)
. (A.3)
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Substituting (A.3) into (A.2) and taking the limit, we finally obtain

w(Δq) = lim
L→∞

1

(Δfτd)L− (Δfτd)L exp
(

− 1
L

(√
−12πΔq + 1

Δfτd

))
=

1

1 +
√

−12πΔfτdΔq

=
1 −

√
−12πΔfτdΔq

1 + (2πΔfτdΔq)2
. (A.4)

A.2. Proof of Lemma 3.6

To show that ψFD
n (ϕ̄) is monotonically non-decreasing in ϕ̄, it suffices to show that

∂ψFD
n (ϕ̄)

∂ϕ̄j

≥ 0 for all ϕ̄j ∈ [0, 1],∀j. (A.5)

Using (3.39), the first derivative of ψFD
n (·) is obtained as

∂ψFD
n (ϕ̄)

∂ϕ̄n

=
∂γn

∂ϕ̄n
− γ2

n

1
2
(1 − γn(1 − ϕ̄n))2

for j = n, (A.6)

∂ψFD
n (ϕ̄)

∂ϕ̄j

=

∂γn

∂ϕ̄j

1
2
(1 − γn(1 − ϕ̄n))2

for j �= n, (A.7)

where the partial derivatives ∂γn/∂ϕ̄j are given by

∂γn

∂ϕ̄j

= Q−1Trace
(
ΞH

c,jΨ
FD−1Ξc,nΞH

c,nΨFD−1Ξc,j

)
. (A.8)

We now immediately see that ∂γn/∂ϕ̄j ≥ 0 for all j = 1, .., N . Moreover, due

to the block-diagonal structure of the covariance matrix ΨFD, the matrix A ≡
ΞH

c,nΨFD−1Ξc,n is diagonal. Therefore, the numerator of (A.6) can be written as

Q−1
Q−1∑
q=0

[A]2q,q −Q−2
( Q−1∑

q=0

[A]q,q

)2

. (A.9)

As
∑

q a
2
q ≥ Q−1(

∑
q aq)2, aq ≥ 0, ∀q, we obtain ∂γn/∂ϕ̄n ≥ γ2

n. Therefore, we

conclude that (A.5) holds true.

A.3. Proof of Theorem 3.13

To prove that a groupwise filter design based on MSE and SINR criteria lead to

the same MAP decision metric ρg,q, we first explicitly express ρg,q as a function of
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the filter Γ̌g and covariance matrix Rg. By noting that zg,q in (3.94) is given by

zg,q = SqF
H
U Γ̂H

g (r − r̄) + Ugt̄g,q, the MAP decision metric (3.97) can be written as

ρg,q = −
(
zg,q − Ugx

)H
R−1

g

(
zg,q − Ugx

)
=
(

SqF
H
U Γ̂H

g (r − r̄) − Ug(x − t̄g,q)
)H

R−1
g

(
SqF

H
U Γ̂H

g (r − r̄) − Ug(x − t̄g,q)
)
.

(A.10)

The matrix product SqF
H
U Γ̂H

g is obviously equivalent to the product Γ̌H
g DH

q , where

Dq ≡
(
IM ⊗ diag{eT

q F}
)
. Moreover, since Ug = Q−1Γ̌H

g Υg, we can further write

(A.10) as

ρg,q =
(

DH
q (r − r̄) −Q−1Υg

(
x − t̄g,q

))H

Γ̌gR−1
g Γ̌H

g

(
DH

q (r − r̄) −Q−1Υg

(
x − t̄g,q

))
.

(A.11)

Consequently from (A.11), we see that it remains to show that the matrix product

Yg ≡ Γ̌gR−1
g Γ̌H

g (A.12)

is identical for the MSE and SINR criteria. For the MSE criterion (3.87), Yg in

(A.12) can be expressed with (3.90) and (3.95) as

Yg = Γ̆gR−1
g Γ̆H

g

=
(
ΨFD−1ΥgΘ−1

g Ω−1
g

)(
Q−1Ω−1

g Θ−1
g ΥH

g ΨFD−1ΥgΩ−1
g

)−1(
ΨFD−1ΥgΘ−1

g Ω−1
g

)H

= QΨFD−1ΥgΘ−1
g

(
ΥH

g ΨFD−1Υg

)−1
ΥH

g ΨFD−1. (A.13)

Let us now compute (A.12) for the SINR formulation (3.87). Using the filter in

(B.17) and the covariance matrix in (B.19), we get

Γ̊gR̊−1
g Γ̊H

g = Q2N−1
g TgTH

g N−H
g . (A.14)

From (B.16), we have

TgTH
g = Q4N−H

g Zg,1N−1
g TgK̂−2

g TH
g N−H

g ZH
g,1N−1

g (A.15)

and

K̂−1
g = Q−2

(
ΥH

g N−1
g Tg

)−1(
TH

g N−H
g Υg

)−1
, (A.16)

where K̂g = diag{tg,1, tg,2, ..., tg,U} is the U × U diagonal matrix containing the U
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nonzero diagonal elements of Kg. Substituting (A.15) and (A.16) into (A.14) and

using simple algebra, we obtain

Γ̊gR̊−1
g Γ̊H

g = Q2Z−1
g,2Υg

(
ΥH

g Z−1
g,2Υg

)−1
ΥH

g Z−1
g,2.

Now, applying the matrix inversion lemma to Z−1
g,2Υg, we finally obtain

Γ̊gR̊−1
g Γ̊H

g = QΨFD−1ΥgΘ−1
g

(
ΥH

g ΨFD−1Υg

)−1
ΥH

g ΨFD−1

= Yg,

which is identical to (A.13).

A.4. Proof of Lemma 5.4

The functional in (5.15) can be written as

∫ 1

0
Y (v)dt ≈ c+

∫ 1

0
U1(v1)v

′
2dt+

∫ 1

0
U2(v2)v

′
1dt, (A.17)

where U1(v1) ≡ β2,1v1 + (β2,4 − β1,3/2)v2
1 and U2(v2) ≡ β1,2v2 + (β1,5 − β2,3/2)v2

2 are

quadratic polynomials in v1 and v2, respectively, and c is a constant. The Euler-

Lagrange equation in (5.19) can hence be written as

β2,1 − β1,2 + (2β2,4 − β1,3)Id,1 − (2β1,5 − β2,3)Id,2
!

= 0. (A.18)

In the case when (5.19) has no solution, the coefficients of the polynomials U1(p1)

and U2(p2) satisfy:

β1,3 = 2β2,4, β2,3 = 2β1,5, (A.19a)

β2,1 − β1,2 �= 0. (A.19b)

By (A.17) and (A.19), the variational problem in (5.14) becomes

Rmax ≈ c+ max
v∈V

{
(β1,2 − β2,1)

∫
v
Id,2dId,1

}
. (A.20)

Now, it is easy to confirm that the sum rate expression given by (A.20) is maximized,

either for v(t) ∈ L(a0, a1, a2), for all t ∈ D if β1,2 > β2,1 or v(t) ∈ L(a0, a3, a2), for

all t ∈ D if β1,2 < β2,1.
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A.5. Proof of Theorem 5.5

For any admissible parametric curve v ∈ V, we can find a parametrization ṽ ∈ V of S
and a partitioning

⋃
i[ti, ti+1] of the interval D such that for each interval [ti, ti+1], one

has v(ti) = ṽ(ti), v(ti+1) = ṽ(ti+1), and v(t) ∈ G1 or v(t) ∈ G2, for all t ∈ [ti, ti+1].

An example of such a partitioning is shown in Fig. 5.4. Based on this partitioning,

we can express the sum rate difference R[ṽ] −R[v] between ṽ and v as

R[ṽ] −R[v] =
∑

i

(
ΔRi ≡

∫ ti+1

ti

Y (ṽ)dt−
∫ ti+1

ti

Y (v)dt
)
. (A.21)

Each ΔRi can be written as a line integral along the simple closed curve Yi ≡{
v(t), ṽ(t)|t ∈ [ti, ti+1]

}
yielding

ΔRi = oi

∮
Yi

f̂e,1(Id)dId,1 + oi

∮
Ai

f̂e,2(Id)dId,2, (A.22)

where oi = 1 when v(t) ∈ G1, for all t ∈ [ti, ti+1], and oi = −1 otherwise. Let

each simple closed curve Yi be oriented in the positive direction with the bounded

region Mi in D
2 on the left. Then, applying Green’s theorem to (A.22) allows us to

rewrite ΔRi as ΔRi = oi

∫∫
Mi

T (Id)dId,1dId,2. With conditions (5.20), we can state

that ΔRi ≥ 0 since either Mi ⊆ G1 or Mi ⊆ G2, as shown in Fig. 5.4. Thus, we

can conclude that R[ṽ] ≥ R[v] for any v ∈ V, which yields the optimality of the

convergence curve S.

A.6. Proof of Lemma 5.6

Using the integral expression in (A.17), we can express the sum rates R0(u) and

R1(u) for H0(u) and H1(u), respectively, as functions of u ∈ D, as

R0(u) ≡ c+
∫ u

0
U2(0)dId,1 +

∫ 1

0
U1(u)dId,2 +

∫ 1

u
U2(1)dId,1, (A.23)

R1(u) ≡ c+
∫ u

0
U1(0)dId,2 +

∫ 1

0
U2(u)dId,1 +

∫ 1

u
U1(1)dId,2, (A.24)

Integrating each term in (A.23) and (A.24) allows us to rewrite R0(u) and R1(u) as

R0(u) = c+ U1(u) + (1 − u)U2(1), (A.25)

R1(u) = c+ U2(u) + (1 − u)U1(1). (A.26)
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Thus, the variational problem in (5.14) reduces to

Rmax ≈ max
l∈{0,1}

max
u∈[0,1]

{
Rl(u)

}
. (A.27)

The solution of (A.27) can easily be obtained with the standard framework of clas-

sical calculus as the objective function is quadratic in u [Kre05].

A.7. Proof of Lemma 5.7

In order to proof that (5.57) is a convex optimization problem, we express the

equalizer correlation function fe(p, ϕd) using (5.50) in closed form as

fe(p, ϕd) =
1

N

N∑
n=1

φ
(
ψFDPr

n (pn, ϕd)
)
. (A.28)

Let us denote the n-th term of the above sum by

Sn(p, ϕd) ≡ 1

N
φ

⎛⎝2QDn(pn) − 2

1 − ϕd

⎞⎠, (A.29)

where Dn(pn) ≡ Ln,Q−1(pn,Q−1, Ln,Q−2) is recursively defined by

Ln,q(pn,q, Ln,q−1) ≡
(
ln,q(pn,q)

−1 + (Ln,q−1)
−1
)−1

, (A.30)

for q = 0, .., Q− 1 with (Lk,−1)−1 ≡ 0. The function Ln,q(pn,q, Ln,q−1) is concave for

pn,q ≥ 0 and Ln,q−1 > 0, since its Hessian ∇2Ln,q,

∇2Ln,q = − 2

(ln,q + Ln,q−1)3

⎡⎣gn,q

σ2 Ln,q−1

−ln,q

⎤⎦⎡⎣gn,q

σ2
0
Ln,q−1

−ln,q

⎤⎦T

� 0 (A.31)

is negative semidefinite. It follows thatDn(pn) is a composition of concave functions.

Moreover, each Ln,q(pn,q, Ln,q−1) is monotonically nondecreasing component-wise,

∂Ln,q

∂pn,q

=
p2

n,q(
pn,q + Ln,q−1

)2 ≥ 0, (A.32)

∂Ln,q

∂Ln,q−1

=
L2

n,q−1(
pn,q + Ln,q−1

)2 ≥ 0. (A.33)

As Dn(pn) is nondecreasing component-wise, it is concave in pn. Note that this

property follows from the property that a composition of a concave function, which
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is increasing component-wise with an n-tuple of linear/concave functions in its ar-

gument, is a concave function [BV04]. Also, as shown in Fig 3.4, φ(x) in (A.29) is

monotonically nondecreasing and concave in x for x ≥ 0. As a result, the functions

Sn(p, ϕd) for n = 1, .., N in (A.29) are concave functions. It follows that the equal-

izer correlation function fe(p, ϕd) is a linear combination of concave functions with

nonnegative coefficients and therefore, it is concave in p. The feasible set of problem

(5.57) is therefore convex. As a result, we minimize a linear objective function over

a convex set. We can conclude that the optimization problem is convex which can

be efficiently solved by standard interior-point methods that have a very low, poly-

nomial, worst-case complexity [BV04]. For a detailed discussion on computational

complexity of such methods and parameter choices, please refer to [BV04].





B. Derivation of Filter Coefficients

B.1. MMSE Frequency Domain Filter Coefficients

In order to characterize the optimal solution of (3.32), let us first define the two

QM × 1 vectors Γ̂n ≡ Γn1Q and Ξ̂c,n ≡ Ξc,n1Q. Using these notations, the MSE in

(3.28) can be written as

MSEFD
n = Q−1Trace

(
ΓH

n ΨFDΓn

)
− (1 − ϕ̄n)|μn|2

= Q−1Γ̂H
n ΨFDΓ̂n − (1 − ϕ̄n)Q−2Γ̂H

n Ξ̂c,nΞ̂H
c,nΓ̂n

= Q−1Γ̂H
n

(
ΨFD − (1 − ϕ̄n)Q−1Ξ̂c,nΞ̂H

c,n

)
Γ̂n

= Q−1Γ̂H
n Ψ̊FDΓ̂n, (B.1)

where we have defined Ψ̊FD ≡ ΨFD − (1 − ϕ̄n)Q−1Ξ̂c,nΞ̂H
c,n. Using (B.1), the opti-

mization problem (3.32) can be reformulated as

minimize Q−1Γ̂H
n Ψ̊FDΓ̂n subject to: Q−1Γ̂H

n Ξ̂c,n = 1. (B.2)

Obviously, (B.2) is a convex optimization problem. Hence, it has a unique solu-

tion given in terms of the Karush-Kuhn-Tacker (KKT) conditions applied to the

Lagrangian function

LG(Γ̂n, λ) = Q−1Γ̂H
n Ψ̊FDΓ̂n + λ

(
Q−1Γ̂H

n Ξ̂c,n − 1
)
, (B.3)

where λ is the Lagrangian multiplier. The KKT conditions to (B.3) are given by

Q−1Ψ̊FDΓ̂n +Q−1λΞ̂c,n = 0,∀n, (B.4)

Q−1Γ̂H
n Ξ̂c,n − 1 = 0,∀n. (B.5)

Using simple algebra, the optimal solution to (B.2) is obtained as

Γ̂n =
Ψ̊FD−1Ξ̂c,n

Q−1Ξ̂H
c,nΨ̊FD−1Ξ̂c,n

. (B.6)
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Applying the matrix inversion lemma to the nominator and denominator of (B.6),

and rewriting the result in the diagonal-block form, the optimal MMSE filter is

obtained by (3.33).

B.2. Groupwise MMSE Frequency Domain Filter

Coefficients

The Lagrangian to the optimization problem in (3.89) is given by

LG(Γ̌g,λ) = Q−1Trace
(
Γ̌H

g ΨFD

0 Γ̌g

)
+ λT

(
Q−1diag(Γ̌H

g Υg) − 1U

)
, (B.7)

where λ = [λ1, λ2, ..., λU ]T is a vector containing the Lagrangian multipliers. Let γ̂g,u

be the uth column of Γ̌g. The optimization of (B.7) is equivalent to the optimization

of the individual component-cost functions, indexed by u, separately. Therefore,

Eqn. (B.7) also be written as

LG(Γ̌g,λ) =
U∑

u=1

(
Q−1γ̂H

g,uΨFD

0 γ̂g,u + λu

(
Q−1γ̂H

g,uΥgeu − 1
))
. (B.8)

The KKT conditions to (B.8) are given by

Q−1ΨFD

0 γ̂g,u +Q−1λuΥgeu = 0,∀u, (B.9)

Q−1eT
u ΥH

g γ̂g,u − 1 = 0,∀u. (B.10)

After some straightforward manipulations of (B.9) and (B.10), the optimal frequency

domain filter for the uth component is obtained as

γ̂g,u = Q
(
eT

u ΥH
g ΨFD−1

0 Υgeu

)−1
ΨFD−1

0 Υgeu. (B.11)

Finally, applying the matrix-inversion lemma to (B.11) and rewriting the result in

matrix-notation yields the expression in (3.90).
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B.3. Groupwise SINR Filter Coefficients

The SINR for the gth subgroup can be expressed as

SINRg ≡
E

[
‖Mgtg‖2

]
E

[
‖zg − Mgtg‖2

]
=

Trace
(
MgMH

g

)
Trace

⎛⎝ (WH
g Hg − Mg

)
Λ(1)

g

(
WH

g Hg − Mg

)H

+WH
g HgΛ(2)

g H
H

g Wg + σ2
0WH

g Wg

⎞⎠

=
Trace

((
Ug ⊗ IU

)(
Ug ⊗ IU

)H
)

Trace
(
Γ̂H

g ΨFDΓ̂g − MgΛ
(1)
g MH

g

)
=

Trace
(
Γ̌H

g ΥgΥH
g Γ̌g

)
Trace

(
Γ̌H

g

(
QΨFD − ΥgΛ̂gΥH

g

)
Γ̌g

) . (B.12)

Based on (B.12), the problem of maximizing the SINR for each subgroup can be

written as

Γ̊g = arg max
{Γ̌g∈CMQ×U }

Trace
(
Γ̌H

g Zg,1Γ̌g

)
Trace

(
Γ̌H

g Zg,2Γ̌g

) , (B.13)

where Zg,1 ≡ ΥgΥH
g ∈ C

QM×QM and Zg,2 ≡ QΨFD − ΥgΛ̂gΥH
g ∈ C

QM×QM are

Hermitian and Hermitian positive definite, respectively. Therefore, Eqn. (B.13) can

be expressed as a generalized eigenvalue problem, where the matrices Zg,1 and Zg,2

can be jointly diagonalized as [STS07]

XH
g Zg,1Xg = Kg (B.14)

XH
g Zg,2Xg = Q2IQM . (B.15)

Here, Kg = diag(tg,1, tg,2, ..., tg,U , 0, ...0) is an QM×QM diagonal matrix, containing

the generalized non-negative eigenvalues tg,1 ≥ tg,2 ≥ ... ≥ tg,U listed in decreasing

order, and Xg is the matrix of the corresponding generalized eigenvectors. Then,

the optimal filter corresponds to the first U columns of Xg. Similar to [MJLL10],

the solution to (B.13) can be found by applying the Cholesky factorization to Zg,2,

Zg,2 = NH
g Dg, and solving the standard eigenvalue problem

Q2D−H
g Zg,1D−1

g = EgKgEH
g , (B.16)
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where Eg ∈ C
QM×QM is unitary. The optimal filter maximizing the above ratio is

then given by

Γ̊g = QN−1
g Tg, (B.17)

where Tg ∈ C
QM×U consists of the first U eigenvectors of Eg corresponding to the

U nonzero eigenvalues of Kg. Moreover, the SINR related to the gth subgroup is

found to

SINRg =
1

UQ2

U∑
u=1

tg,u. (B.18)

Also, the equivalent channel matrix and covariance matrix of the filter output signal

zg,q in (3.94) are obtained, respectively, as

Ůg = Q−1TH
g N−H

g Υg and R̊g = IU . (B.19)

From (B.19), we observe that the groupwise frequency domain SINR filter (B.17) is

a noise-whitening filter that whitens the residual interference plus noise term.



C. Graph-based Algorithm

An approximate solution to (5.14) can also be obtained by transforming the contin-

uous problem into an equivalent discrete dynamic programming problem [Ber05]. In

particular, we first discretize the region D
2 into a finite grid of points, which allows

us to formulate the optimization problem by a path-search problem over a finite

weighted graph. Each edge of the graph has its own specific cost and corresponds to

a linear curve segment in D
2. The admissible curves in this model are assumed to

be piecewise linear functions, constrained by the grid points that have to be passed

through. We then propose a simple algorithm based on the dynamic programming

principle [Ber05], which may solve the maximum-cost path-search problem on this

graph.

Let us denote by Q a uniform 2D grid of D2, Q ≡ {ih, jh, 0 ≤ i ≤ B, 0 ≤ j ≤ B} ⊂
D

2, where h ∈ R, h > 0 determines the grid spacing in the respective coordinate, and

i, j are integer values. Next, define a directed graph GR = (LG,MG) for the discrete

problem with LG denoting a set of (B + 1)2 vertices, MG denoting a finite set of

directed edges connecting neighboring pairs of vertices, and co : MG → D being a

cost function over the edges. Each vertex (i, j) ∈ LG of GR is an ordered two-tuple

and corresponds to a point (ih, jh) in the 2D grid Q as defined above. Moreover,

we define, for any vertex (i, j) ∈ LG of GR, the set Neighb[(i, j)] of its neighbors

by: Neighb[(i, j)] =
{

(i′, j′)|(i′, j′) ∈ LG, (i′, j′) = (i− 1, j), (i, j − 1), (i− 1, j − 1)
}

.

An edge of this graph is of the form
(
(i′, j′), (i, j)

)
∈ MG with (i, j) ∈ LG, and

(i′, j′) ∈ Neighb[(i, j)].

Having defined the vertices and edges of GR, we can now specify the cost co(·) for

each edge. According to (5.15), a reasonable cost-definition is the sum rate increment

that may be approximated for a small step-width τSTEP between neighboring vertices

(i′, j′) and (i, j) as

∫ t′+τSTEP

t′

Y (v(t))dt ≈ τSTEP

2∑
n=1

f̂e,n

(
p

(i′,i)
1 , p

(j′,j)
2

)
Δp(i′,i)

n ≡ co[((i′, j′), (i, j))],

(C.1)

where the terms are defined as p(i′,i)
1 ≡ (i′+i)h

2
, p(j′,j)

2 ≡ (j′+j)h
2

, Δp(i′,i)
1 ≡ (i−i′)h

τSTEP
and

Δp(j′,j)
2 ≡ (j−j′)h

τSTEP
.

With the above definition of Neighb[(i, j)], any discrete curve through Q from
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a0

a1
a2

a3

(i− 1, j − 1)

Id,1

Id,2

(i− 1, j) (i, j)

(i, j − 1)

Figure C.1.: Discretization of the plane region D
2. Each vertex (i, j) ∈ LG (cor-

responding to grid point (ih, jh) ∈ Q) has three (feasible) neighbors
(i− 1, j), (i, j − 1) and (i− 1, j − 1).

the bottom left corner (vertex (0, 0)) to the top right corner (vertex (B,B)) is

restricted to the direct three neighboring grid points, as illustrated in Fig. C.1. For

given two neighboring points, their relative path angle ϕ = arctan(Δp(j′,j)
2 /Δp(i′,i)

1 ) is

restricted to a multiple of π/4. Furthermore, any admissible path on GR satisfies the

monotonicity condition (5.11), since Δp(i′,i)
1 ≥ 0 and Δp(j′,j)

2 ≥ 0, ∀((i′, j′), (i, j)) ∈
MG. The neighborhood structure may be extended beyond the nearest three grid

points by extending the definition of the set Neighb[(i, j)]. The optimal choice of

the destination grid is out of the scope of this work.

Next, a simple recursive dynamic programming algorithm is proposed which pro-

vides an efficient solution to the problem of finding the path with maximum cost

from vertex (0, 0) to (B,B) on GR. A pseudo-code implementation of the algorithm

is shown in Algorithm C.1.

For each vertex (i, j) ∈ LG, the algorithm stores the total cost d[(i, j)] of the

maximum-cost path found so far between vertex (i, j) and (0, 0). Initially, d[(i, j)] =

0 for all (i, j) ∈ LG. The computation of d[(i, j)] is performed by evaluating the edge

costs of all neighboring vertices (i′, j′) ∈ Neighb[(i, j)] to vertex (i, j), and selecting

the one yielding the highest edge cost. Additionally, a predecessor label is stored for

each vertex (i, j) that represents the previous vertex (i∗, j∗) in the maximum-cost

path to the current vertex (i, j). When the algorithm terminates the value d[(B,B)]

represents the maximum cost corresponding to the optimal path on GR. Based on
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Algorithm C.1 Pseudo-code for graph-based path-search

1: Initialize d[(i, j)] = 0 and pre[(i, j)] = none, 0 ≤ i ≤ B, 0 ≤ j ≤ B.
2: for i = 0 to B do

3: for j = 0 to B do

4: if Neighb[(i, j)] �= ∅ then

5: Find the predecessor to vertex (i, j) with the highest cost value:

(i∗, j∗) = arg max
(i′,j′)∈Neighb[(i,j)]

{
d[(i′, j′)] + co[((i′, j′), (i, j))]

}

6: Save the predecessor to vertex (i, j): pre[(i, j)] = (i∗, j∗)
7: Update the cost d[(i, j)] of vertex (i, j): d[(i, j)] = d[(i∗, j∗)] +

co[((i∗, j∗), (i, j))]
8: end if

9: end for

10: end for

11: Initialize the sequence sG = {(Bh,Bh)}.
12: (i, j) ← (B,B)
13: while (i, j) �= (0, 0) do

14: (i, j) = pre[(i, j)]
15: Insert the grid point (ih, jh) at the beginning of sG.
16: end while

17: Use linear interpolation between the grid points in sG and output the corre-
sponding convergence curve as a result.

the stored predecessor information back-tracing can be performed to construct the

maximum-cost path to vertex (0, 0).

To estimate the computational complexity of Algorithm C.1, let us denote by

sG the maximal number of neighbors for each vertex vG ∈ LG. For Neighb[(i, j)],

sG ≤ 3. At each vertex vG, the edge cost-values of the sG possible neighbors to vG

have to be computed and compared, which results in O(sG) computations. With

a total number of (B + 1)2 vertices, we can conclude that Algorithm C.1 needs

O(sGB
2) computations to solve the maximum-cost path search problem on GR.





Notation

Throughout this thesis, the following notations are adopted. Normal letters repre-

sent scalar quantities, boldface lower-case and bold face uppercase letters designate

vectors and matrices, respectively. Specific sets are denoted in blackboard type, e.g.,

R. The probability of an event O is denoted by Prob(O). In general, vectors are

regarded as column vectors. The ith element of a vector a is denoted by ai. The

notation a ≥ b for length-N vectors a and b means an ≥ bn for n = 1, .., N . The

(l, k)th entry of a matrix A is denoted by [A]l,k. The statistical expectation and vari-

ance of a scalar, vector, or matrix random variable are denoted by E(·) and Var(·),
respectively. The covariance and correlation of the two random vectors x1 and x2

are written as Cov(x1,x2) and Corr(x1,x2), respectively. The probability density

function (PDF) of a single scalar random variable x and the joint PDF of a vector

x are denoted by p(x) and p(x), respectively. Finally, the soft estimate of vector a

and its frequency domain representation are denoted by ā and a, respectively.

Statistical Distributions

CN (μ,Σ) Multivariate complex Gaussian distribution with mean

vector μ and covariance matrix Σ

CN (μ, σ2) Complex-valued Gaussian distribution with mean μ and

variance σ2

N (μ, σ2) Real-valued Gaussian distribution with mean μ and vari-

ance σ2

Functions and Norms

δ(·) Dirac delta function

exp[·], e· Exponential function

Γ(·) Gamma function

Γ(·, ·) Incomplete Gamma function(
a
b

)
Binomial coefficient

log10(·) Logarithm to base 10

log2(·) Logarithm to base 2

u(·), g(·), v(·) Vector function

w·(·) Three dimensional space curve
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F1[·, ·] Space of monotonically increasing, continuous and piece-

wise differentiable functions on an interval

erfc(·) Complementary Gaussian error function

Pol(·) Polynomial

sgn(·) Signum function

ω(·) Hermite rank

φ(·) Integral function

φT (·) Mapping function of correlation values to mutual infor-

mation

ψFD
· (·), ψNL

· (·), ψFDPr
· (·, ·) SNR function of extrinsic LLRs at equalizer output

tanh(·) Hyperbolic tangent function

ϕ(·) Correlation function

CMIMO(·), CBPSK(·) Capacity

d(·) Overall impulse response of the transmit and receive fil-

tering

E1(·) Exponential integral function

f·(·) Equalizer or decoder correlation function

g·,·(·, ·) Continuous channel gain between transmit/receive an-

tenna pair

ge,·(·) Projected equalizer correlation function

h(·) Differential entropy function

I(·, ·) Mutual information

I0(·) Modified zero-order Bessel function of the first kind

J(·) J-function

L(·) Log-likelihood ratio

q·(·) Cross-correlation function

r·,·(·) Covariance function

U(·) Unit step function

w(·) Cross-correlation function of complex channel coefficients

f̂
(·)
p,· (·) Projected equalizer EXIT function

f̂·(·) Equalizer or decoder EXIT function

Operators

(·)∗ Complex conjugation

(·)+ Maximum of argument and zero

(·)H Hermitian transposition

(·)T Transposition

arg max (·) Argument maximizing the expression in the brackets
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arg min (·) Argument minimizing a expression in the brackets

det(·) Determinant of a matrix


{·} Imaginary part of a complex number

A ⊗ B Kronecker product of matrices A and B

A−1 Inverse of square matrix A

circQ{·} Circulant matrix of size Q × Q with the elements of a

vector argument on its first column

ddiag{·} Square diagonal matrix having the diagonal elements of

a matrix argument on its main diagonal

diag(·) Vector with elements equal to the diagonal elements of a

square matrix argument or square diagonal matrix with

elements equal to the entries of a vector argument

Trace(·) Trace of a matrix

vec(·) Vectorization of a matrix

∂A Boundary of the closed set A
�{·} Real part of a complex number

f−1 Inverse of function f

Sets

C Set of all complex numbers

D Set of all real numbers in the interval [0, 1]

R Set of all real numbers

S Set of binary input vectors

Z Set of all integer numbers

C Set of codes

CMAC(·, ·) Rate region of the multiple access channel

CMAC
con,out(·) Outage rate region of the multiple access channel with

constraint inputs

CMAC
con Rate region of the multiple access channel with con-

straint inputs

CMAC
erg (·) Outage rate region of the multiple access channel

CMAC
out (·) Outage rate region of the multiple access channel

D Convergence region of the turbo equalizer

J Set of discrete correlation values

L(·) Union of straight line segments

Q 2D grid

Rout
MAC Outage rate region

S, H·(·) Convergence curve
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T (·) Set of rate pairs for a specific convergence curve

U Plane region

V Set of admissible parametric curves

Frequently Used Sequences

ν·,·, ν̄·,·, ¯̄ν ·,· Interference and noise component

a· Information bit

b·,·[·] Data symbol before precoding

c′
· Coded bit of SCCC

c· Coded bit

d·,·[·] Data symbol after precoding

e′
· Interleaved bit

e· Interleaved bit

n·[·], n·,·[·] Additive white Gaussian noise sample

r·,·[·] Received symbol

s·[·] Transmit symbol

x·,·[·] Binary symbol

y·[·] Received symbol

z·,·[·] Estimated symbol

Specific Vectors and Matrices

0Q All-zero Q× 1 vector

1Q All-one Q× 1 vector

C Diagonal matrix containing variances of channel coeffi-

cients

ek All-zero column vector with the kth entry being one

F Discrete Fourier matrix

G Diagonal matrix containing the eigenvalues of the MIMO

ISI channel

IQ Identity matrix of size Q×Q

J Spatial-temporal correlation matrix of the channel

R Channel correlation matrix at receiver side

S Channel correlation matrix at transmitter side

U Unitary matrix

V Unitary matrix

Frequently Used Variables and Parameters

α Correlation coefficient
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α·,·, ϕ·,· Correlation between a transmit signal and its conditional

estimate

Δf Normalized frequency separation between adjacent sub-

channels

Δq Frequency separation between subchannels

δ· Eigenvalue

δΔq Correlation coefficient of frequency domain channel gains

ε· Weighting coefficient

κ(·) Frequency domain channel gain

λ·[·] Extrinsic log-likelihood ratio

I∗
d Mutual information limit point

μ̊· Mean

σ̊2
· Variance

MSEFD

· , MSEGrFD

· Mean-square-error

SINR· Signal-to-Interference-plus-Noise Ratio of a subgroup

TP� Throughput efficiency

μ·,·, μ̄·, ¯̄μ· Equivalent channel gain

ρ·,· MAP decision metric

ρSNR Inverse of noise variance

σ2
· Noise variance or variance of a channel tap component

σ2
ν,·,·, σ

2
ν̄,·,· Variance of interference and noise component

τ·,·(·) Frequency domain channel coefficient

τd Root mean square channel delay spread

θ·[·] A Posteriori log-likelihood ratio

ϕtarget

d Target correlation value

ζ·[·] A Priori log-likelihood ratio

A· Area under correlation or EXIT function

Ccon Constellation constrained capacity

Es Signal power at the transmitter

G Number of subgroups

g·, g·,· Eigenvalue

h·,·[·, ·] Discrete-time channel coefficient

Id, Id,·, Ie, Ie,· Average mutual information

L Effective discrete-time channel memory length

M Number of outputs of MIMO system

N Number of inputs of MIMO system

N0 Noise power

Nb Number of data blocks per frame

Nc Number of coded bits per frame
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Ni Number of information bits per frame

Np Total number of resolvable discrete delays

Ns Number of fixed data symbols per frame and per trans-

mit antenna or user

P Guard interval length

P0 Total power

p· Power value

Pout, Po, P
�
o (·) Outage probability

Pb Bit error probability

Pr Normalized total receive power

Q Block length

r Rank of channel matrix

R, R·, R̊ Information rate

r′
c,·, rc,·, rc Code rate

RMAC
con Constellation-constrained sum rate

RMAC
sum Information sum rate

Rout
MAC Outage sum rate

T Symbol duration

t Absolute time

Td Number of decoding iterations

Te Number of turbo iterations

U Number of users per subgroup

ρ̄·,· Pairwise normalized channel correlation coefficient

ϕ̄, ϕ̄·, ¯̄ϕ· Average power of soft symbol estimates

Frequently Used Matrices and Vectors

Ω·,·(·) Covariance matrix

Ξ· Frequency domain channel matrix of a subgroup

H· Block circulant channel matrix of a subgroup

τ·,· Frequency domain channel response

α· Input correlation parameter vector

ϕ· Output correlation parameter vector

Γ̂·, Γ̂·,·, Γ̌· Frequency domain block filtering matrix of a subgroup

Γ·, Γ·,· Frequency domain block filtering matrix

Λ, Λ·, Λ̂· Covariance matrix

Φ·, M· Equivalent channel matrix after filtering

ΣTD, ΣNL Time domain covariance matrix of residual signal

Ξ, Ξ· Frequency domain channel matrix
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Ξc, Ξc,· Frequency domain compound channel matrix

a, a· Information bit vector

b, b· Transmit data symbol vector

d, d· Transmit data symbol vector after precoding

e Interleaved bit vector

f· Transmit data symbol vector for all subgroups except

the desired subgroup

H, H· Circulant channel matrix

h·,·[·] Vector of discrete-time channel coefficients

hvec[·] Vector containing the coefficients of the MIMO channel

Hc, Hc,· Compound circulant channel matrix

n, n· Noise symbol vector

O· Time domain block filtering matrix

P Power allocation matrix

p, p· Power loading vector

Q, Q· Covariance matrix of transmit vector

QF Frequency domain covariance matrix of transmit vector

r, r· Received data symbol vector

R· Covariance matrix of interference and noise component

of a subgroup

S·, Ŝ· Selection matrix

T, T· Precoding matrix

t· Transmit data symbol vector for a subgroup

U· Equivalent frequency domain channel matrix after filter-

ing

w·,· Time domain MMSE filter vector

W·, W·,· Time domain block filtering matrix for a subgroup

Y Covariance matrix of receive vector

z·, z·,· Estimated data symbol vector

Δ·,·(·) Interference component vector

ΨFD, ΨFD
0 , ΨNL Frequency domain covariance matrix of residual signal

Ξ· Frequency domain channel matrix

H· Block circulant channel matrix

λ·[·] Vector of extrinsic LLRs

ζ·[·] Vector of a priori LLRs





Abbreviations

2D Two dimensional

3D Three dimensional

3GPP 3rd Generation Partnership Project

AP Access Point

ARQ Automatic Repeat Request

AWGN Additive White Gaussian Noise

BCJR Bahl-Cocke-Jelinek-Raviv

BEC Binary Erasure Channel

BER Bit Error Rate

BICM Bit Interleaved Coded Modulation

BICM-ID Bit Interleaved Coded Modulation Iterative Detection

bit Binary digit

bpc Bit Per Channel Use

BPSK Binary Phase Shift Keying

BS Base Station

CAI Co-Antenna Interference

CDF Cumulative Density Function

CDMA Code Division Multiple Access

CIR Channel Impulse Response

CP Cyclic Prefix

CSI Channel State Information

DFT Discrete Fourier Transformation

EM Expectation-Maximization

EXIT Extrinsic Information Transfer

FDD Frequency-Division-Duplex

FDE Frequency Domain Equalizer

FER Frame Error Rate

FFT Fast Fourier Transformation

FIR Finite Impulse Response

GAD Group Antenna Detection

GD Group Detector

GS Group Selection

GSM Global Standard for Mobile Communications
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IFFT Inverse Fast Fourier Transformation

IGI Inter-Group Interference

i.i.d Independent Identically distributed

IRC Irregular Recursive Convolutional

ISI Inter-Symbol Interference

LDPC Low Density Parity Check Codes

LLR Log-Likelihood Ratios

LOS Line of Sight

LS Least Squares

LUT Look Up Table

MAI Multiple Access Interference

MAP Maximum A Posteriori

MFB Matched Filter Bound

MF Matched Filter

MIMO Multiple-Input Multiple-Output

MLD Maximum Likelihood Detection

ML Maximum Likelihood

MMSE Minimum Mean-Squared Error

MSE Mean-Square-Error

MT Mobile Terminal

NLOS Non Line of Sight

NMMSE Nonlinear Minimum Mean-Squared Error

OFDM Orthogonal Frequency Division Multiplex

P2P Point-to-Point

PDA Probabilistic Data Association

PDF Probability Density Function

QoS Quality-of-Service

QPSK Quaternary-Phase Shift Keying

RLS Recursive Least Squares

RMS Root Mean Square

RSC Recursive Systematic Convolutional

Rx Receiver

SCCC Serially Concatenated Convolutional Code

SCC Single Convolutional Code

SC-MMSE Soft Interference Cancellation and Minimum-Mean Squared-Error

SCM Spatial Channel Modeling

SDMA Space-Division Multiple-Access

SfISfO Soft-In Soft-Out

SIC Soft Interference Cancellation

SIMO Single-Input Multiple-Output

SINR Signal-to-Interference-plus-Noise Ratio
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SISO Single-Input Single-Output

SNR Signal to Noise Ratio

STTrC Space-Time Trellis-Coded

SVD Singular Values Decomposition

TDD Time-Division-Duplex

TDE Time Domain Equalizer

TP Throughput

Tx Transmitter

UCA Uniform Circular Array

ULA Uniform Linear Array

UMTS Universal Mobile Telecommunications System

UW Unique Word

WCDMA Wide band Code Division Multiple Access

WLAN Wireless Local Area Network

ZP Zero Padding
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