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1 Introduction

The prefix ”nano”, which is derived from νανoς, the ancient Greek word for dwarf, is

omnipresent in today’s technology. Nano stands for the use of nanoscale structured mate-

rials, which means that at least one dimension of the structure is in the nanometer range.

On this scale, the properties of the material are not only governed by the composition

but also the form and shape, which opens up a wide field of possible new applications.

Nano has become quite a trendy prefix, it is used to advertise a broad range of products,

from furniture polish to razor blades, from antifouling paint to functional clothing. Nano-

technology in the sense of science denotes the interdisciplinary research on processes and

objects on the nanoscale. The beginning of nanotechnology is often traced back to the

famous talk by Richard Feynman in 1959 ”There’s plenty of room at the bottom” [Fey60].

Today, we know that Feynman’s talk had hardly any influence on the development of the

modern nanotechnology [Tou05]. However, his visions on the possibilities that evolve due

to miniaturised devices on an atomic scale are still impressive.

The term nanotechnology was first used by Norio Taniguchi in 1974 to describe thin

film semiconductor techniques with thickness ranges in the order of a nanometer [T+74].

Finally, the invention of the scanning tunneling microscope by Binnig and Rohrer in 1981

[BR83] brought the possibility of imaging and manipulating single atoms. Other milestones

in the history of nanotechnology have been the discovery of the buckminster fullerenes

[KHO+85] and carbon nanotubes [I+91].

The electronic properties of nanoscaled materials can differ extremely from bulk due to

the increased surface-to-volume ratio of the nanostructures. The ongoing miniaturisation

of electronic devices down to pitch sizes of only 20 nm in 2012, that will be even reduced

by a factor of two by 2020 [ITR11], requires a deep understanding of the properties of

semiconductors at the nanoscale. Thus, nanotechnology and nanoelectronics have gained

major interest in the last decades. The integration of bottom-up synthesised nanostructures

into integrated circuits could contribute to cost reduction and material savings during
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1 Introduction

Figure 1.1: Publications per year on semiconductor nanowires determined with the ISI Web
of Knowledge in January 2012 [isi12]. The used search term was semiconduct* AND

nanowir* and revealed a total of 7,296 results. The query might not include all publications
on this field, but the massively increased interest in semiconductor nanowires during the
past years is clearly visible.

fabrication. Furthermore, complex device structures in all three dimensions are imaginable

due to the integration of selectively arranged bottom-up nanostructures.

Quasi one-dimensional nanostructures, which are confined in two dimensions down to the

nanometer scale, are commonly named nanowires. The maximum diameter of a nanowire

is not clearly defined. Generally, the term is used for the description of wire-like structures

with diameters from one to a few hundred nanometers in diameter [LGY04,LL06,RBGN10].

The successful implementation of semiconductor nanowires into electric circuits roughly ten

years ago was categorised as a major breakthrough in science [Ser01,App02] and lead to

a massive boost on the research in such structures since then. The increased interest

in semiconductor nanowires can also be seen from the total number in publications on

semiconductor nanowires within the past 15 years, as displayed in Figure 1.1.

1.1 Semiconductor nanowires: Chances and challenges

Semiconductor nanowires are particularly distinguished by their unique transport proper-

ties governed by the extreme surface-to-volume and nanowire aspect ratio. They can be

easily grown up to length of micrometers and therefore be integrated into larger device

structures. On the other hand, the confinement in the other two dimensions leads to the
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1.1 Semiconductor nanowires: Chances and challenges

formation of novel properties that can be used for applications. Nanowires with diameters

below the wavelength of light can act as photonic waveguides [VSM+07]. Furthermore, they

can even act as cavities for nanolasers [YYF10]. Electrically driven nanowire light emit-

ting diodes (LEDs) act as light sources that are smaller than the wavelength of the emitted

light [ZSR+08]. The small footprint of the nanowires reduces the lattice strain and allows

the combination of formerly incompatible materials via epitaxial growth [YYF10,WB11].

Thus, the integration of photonic materials like gallium nitride into a silicon based device

platform becomes imaginable despite large lattice mismatches.

Large-scale assembly methods have been developed for the integration of nanowires into

electrical circuits [WG09]. Moreover, advances in doping of semiconductor nanowires have

been made during the past few years [RBGN10,WB11]. New possibilities for the creation

of innovative memory devices with semiconductor nanowires are accompanied by new chal-

lenges regarding nanowire growth and assembly methods [LL07]. Due to the surface in-

fluence on the transport properties, nanowires are excellently adapted for the application

in sensing devices; optical [ZGH+09], chemical [CHC+08], and biological [CKJL10] sensors

have been demonstrated. Furthermore, nanowires can also be used as probes for single cell

endoscopy [LL07] or label-free DNA sensing [PTZL07].

Finally, the nanowire geometry provides potential advantages for energy production. Sili-

con nanowire solar cells [GBCM11] show a massive reduction in reflectance. Additionally,

nanowires arranged in periodic arrays provide excellent light trapping possibilities. Both

effects lead to improved absorption and a higher energy conversion efficiency. If the pn-

junction is placed along the nanowire surface, the active area, where charge separation

can take place, is multiplied compared to thin film devices. Thermoelectric applications

might benefit from the concurrence of high electrical conductivity and poor heat transfer

in semiconductor nanowires [LGY04]. With the use of piezoelectronic materials, nanowire-

based nanogenerators have been shown [Wan07].

Highly doped ZnO is often used in photovoltaics as a transparent conducting layer to

transport the carriers generated inside the active layer to the front electrodes of the solar

cell. ZnO nanowires have gained additional interest with the use as basic building blocks

in dye-sensitized solar cells (DSSC) [BA05,WCY+07]. In a DSSC the incoming light is

adsorbed by a dye attached to a wide bandgap semiconductor nanoparticle, originally

made of TiO2 [OG91]. The motivation of using nanowires instead of nanoparticles lies in

the provision of direct conduction paths for the electrons from the dye to the collecting
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1 Introduction

electrode of the cell. With a band gap and electron affinity comparable to TiO2 [BA05]

ZnO nanowires are well-suited for the use in nanowire-based DSSC. In a similar approach,

ZnO nanowire solar cells have been realised by replacing the dye layer by extremely thin

absorber layers like CdSe [MB10]. Via functionalisation of the nanowire surface with

organic semiconducting layers it is possible to build organic/inorganic hybrid nanowire

solar cells [BHB+09]. All-oxide nanowire solar cells have been shown by covering ZnO

nanowires with p-type Cu2O nanoparticles [YY09]. Besides the field of photovoltaics, ZnO

nanowires have been applied to a huge variety of devices so far, including LEDs, nanolasers,

UV sensors, gas sensors, and nanogenerators [Wan09]. ZnO nanowires can be produced

cheaply and easily in a wide range of sizes and forms, adaptable to many different sample

geometries.

Due to the electronic properties of GaAs and the widespread use of this material in semi-

conductor industry, GaAs nanowires are promising candidates for future use in nanoscale

optoelectronic devices. LEDs [CSC+10] as well as Solar cells [MWK+11, TPKL11] have

both been presented based on GaAs nanowires. The application in photovoltaic devices

is encouraged by enhanced optical absorption [GPLN11]. The possibility of doping dur-

ing growth facilitates the synthesis of nanowire pn-diodes, either in radial [MWK+11] or

axial [RGL+10] geometry.

For the use of semiconductor nanowires in devices, it is essential to know and understand

the nature of the nanowires. Thus, advanced characterisation methods have to be developed

to investigate the electrical and optical properties of nanoscaled objects. Especially the

influence of the reduced size and the surface configuration on the nanostructure properties

has to be determined. Novel, functional elements for semiconductor devices can be achieved

by the selective modification of the nanowires, what can be done by either modifying the

wire composition or the surface conditions. Standard techniques used for the modification

of bulk material might not work in the case of nanowires, owing to the reduced size.

Therefore, altered or new techniques have to developed in order to selectively modify the

properties of semiconductor nanowires.
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1.2 Goal of this thesis

1.2 Goal of this thesis

This thesis reports on different approaches to the characterisation and the modification of

the properties of semiconductor nanowires; in particular, the SEM based characterisation

of the transport properties of semiconductor nanowires, the manipulation of the optical

and electrical properties of ZnO nanowires by ion implantation and the funtionalisation of

ZnO nanowires via DNA attachment.

Chapter 3 deals with the characterisation of semiconductor nanowires. On GaAs and

ZnO nanowire devices, measurements of the carrier diffusion length are conducted, which is

a key parameter for the application of nanowires in any electro-optical device. In the case

of GaAs nanowires, it is shown how surface passivation can enhance the carrier diffusion

length and thus improve the usability of the nanowires for device application.

The targeted manipulation of the nanowire properties helps to extend the field of possible

applications. Ion implantation, a standard doping technique in semiconductor industry,

can be used for enhancing the properties of semiconductor nanowires. Apart from doping,

ion implantation induced effects causing changes of the electrical properties of nanowire

devices are found. The unique interaction between ZnO nanowire devices and impinging

ions allows the detection of single ion impacts spatially confined to a small area of the

nanowire device. Ion implantation experiments on ZnO nanowires are conducted in order

to investigate these phenomena in chapter 4.

The surface has a large influence on the nanowire properties. Selectively modifying

the surface is another possibility for the targeted manipulation of nanowire properties for

the use in devices. An example of this is the biofunctionalisation of ZnO nanowires with

DNA. This treatment gives way to the development of a electrically driven, label-free DNA

sensing device. The biofunctionalisation of ZnO nanowires is investigated in chapter 5.

Detailed motivations for the individual approaches can be found at the beginnings of

the respective chapters.

9



1 Introduction

10



2 Background, simulations and

experimental details

2.1 Semiconductor nanowires

Semiconductors are defined as materials with a conductivity intermediate between insula-

tors and conductors, where the specific resistance of the material is in the range between

10−2Ωcm (GaAs, InAs) and 106Ωcm (selenium) [Inf04]. The electrical properties of a semi-

conductor can be modified by the systematic incorporation of impurities into the crystal,

called doping. This opened the door to the development of the variety of semiconductor

devices, including transistors, microchips, LEDs, and solar cells; components without our

modern world could not exist [Sch00]. The physics of semiconductors are well explained in

several textbooks [SN06,Ham10], that can provide further insight into the field of semicon-

ductor physics. Here, only some relevant terms addressed in this thesis will be discussed

very briefly.

In the scope this work, experiments have been conducted with semiconductor nanowires

made from GaAs and ZnO. Both materials belong to the group of compound semiconduc-

tors, where, further classified with respect to the main groups in the periodic system, GaAs

represents a III-V material and ZnO a II-VI material.

GaAs is a direct semiconductor with a bandgap of 1.42 eV at room temperature. It

is widely used for the application in optoelectronic devices like LEDs, laseres and solar

cells [BP07]. The material has some electronic properties, like the direct bandgap and

a higher electron mobility, which are superior to those of Si, especially for the use in

high speed microelectronics and photovoltaic devices. Thus, GaAs nanowires, that can be

synthesised in a bottom-up process from the vapour phase [GRB+09], have attracted great

research interest during the past few years.
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2 Background, simulations and experimental details

ZnO is a direct wide bandgap semiconductor with a wide range of applications in several

fields of technology, including optics, optoelectronics, and biomedical sciences [ÖHM10].

The versatility of ZnO nanostructures and the avaibility of easy-to-handle nanostructure

synthesis methods have made ZnO one of the three most popular material systems in

the nano-material research [Wan09]. ZnO grows usually in a wurtzite crystal structure.

The high excitonic binding energy of 60meV entails potential for optoelectronic devices

using excitonic transitions. ZnO emits light in the ultraviolet range due to the bandgap

of ≈3.4 eV. Thus, ZnO has shown to be attractive for the development of light-emitting

devices in the ultraviolet region. Nanoscaled ZnO devices and their integration with the

mainstream semiconductor materials are of interest due to the large number of possible

geometries owing to the variety of available ZnO nanostructures [ÖHM10].

pn- and Schottky junction

The maximum of the available electron energy levels inside a solid at low temperatures is

called Fermi level. The Fermi level of an intrinsic semiconductor usually lies in the center

of the bandgap. Doping shifts the Fermi level upwards (n-type) or downwards (p-type).

On the junction between a p-type and a n-type region of semiconductor, free electrons

from the conduction band in the n-region will diffuse across the junction and combine with

holes. Filling a hole produces a negative ion on the p-side and leaves behind a positive ion

on the n-side. A space charge is induced, countervailing the diffusion process and leading

to an equilibrium state. The space charge creates a depletion region which inhibits any

further electron transfer over the junction unless an extra forward bias is applied. At the

pn-junction in equilibrium, the Fermi levels match on both sides of the junction, resulting

in a band bending in the energy band diagram.

An applied bias voltage will either drive the charge carriers towards the junction, re-

ducing the depletion zone and enabling current transport across the junction (forward

direction), or drive the carriers away from the junction, preventing any conduction (re-

verse direction). This rectifying diode behaviour of the p-n junction is the key element of

the enormous variety of solid-state electronic devices.

The junction between a semiconductor and a metal can also show rectifying behaviour.

Such a junction is called a Schottky diode. When the semiconductor and the metal form

an electrical contact, carriers from the semiconductor diffuse into energetically lower states

in the metal. Analogous to the pn-junction, a space charge region and a depletion zone

12



2.1 Semiconductor nanowires

Figure 2.1: Top view a) and side view b) scheme of a simple back-gate FET assembled on a
Si-SiO2 substrate and contacted on both sides with Ti-Au metal contact pads. The carrier
concentration inside the nanowire channel and therefore the current between drain and
source contact can be adjusted by applying a voltage to the Si back gate.

build up in the semiconductor and cause a rectifying behaviour. Likewise existing metal-

semiconductor junctions without rectifying behaviour are referred to as ”ohmic”. Ohmic

contacts require a highly doped semiconductor in order to reduce the width of the depletion

layer to allow tunnelling and a uniform, extended contact area. Electrical contacts to

nanowires often show Schottky-behaviour due to the nature and limited size of the contact

region.

Semiconductor nanowire transistors

While methods for the large scale integration of nanowires into conventional integrated

circuits are still to be developed, field effect transistors (FETs) with nanowires as active

channels can be configured easily for research purposes [CZW+03, CFC+06]. A typical

setup is displayed in Figure 2.1. The nanowire is placed on an insulating substrate surface,

where source and drain contacts are defined to the nanowire ends. The substrate beneath

the insulating layer can be used as the gate electrode to control the current flow in the

nanowire channel. FETs manufactured in this simple construction type are usually referred

to as back gate FETs. In a more advanced setup, the gate electrode can also be placed on

top of the nanowire channel, separated by an insulating layer. This alternative design is

commonly termed top gate architecture [CL08].

Within this thesis, only nanowire devices contacted in back gate geometry have been

used.
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2 Background, simulations and experimental details

Semiconductor detectors

In a semiconductor particle detector, the semiconductor material is used for the detection

of ionising radiation [SW09]. The principle is based on the detection of charge carriers that

are generated inside the semiconductor crystal by the incoming radiation and migrate to

the detector electrodes. The resulting current signal is then amplified and analysed, giving

access to the nature and/or energy of the detected radiation. The detector consists in

principle of a reverse-biased semiconductor pn-diode (see previous sections of this chapter).

The particle detection takes place inside the depletion layer of the diode junction. Electron-

hole pairs generated by the incoming radiation are separated by the internal electrical field

and a current pulse can be detected. The current signal is proportional to the energy

transferred to the electron-hole pair excitation process. Thus, it is possible to draw a

conclusion on the energy of the detected radiation particles from the current signal.

In order to build a detector with a wide energy detection range, a detector geometry

with an extended depletion zone that fully absorbs the incoming radiation is useful. For

this purpose often PIN (p-type-intrinsic-n-type) diodes are deployed. Here, an extended,

depleted, intrinsic region between a n-type and a p-type layer is used for the detection of

the incoming radiation. In order to achieve a reliable separation of the generated carriers,

PIN diodes have to be operated heavily biased, what is making high demands on the purity

of the used semiconductor material, as leakage currents have to be avoided. Commonly

used materials are high-purity silicon or germanium. Semiconductor detectors are widely

used in spectroscopy and in particle physics.

Nanowires could be used in principle as the active elements of nanosized particle de-

tectors. A high-energy particle detector based on an array of TiO–2 nanowires has been

developed by Angelucci et al. [ACC+06,ACD+06]. The nanowires act as nanosized, sep-

arated, and independent particle detectors and allow the spatially resolved detection of

incoming particels. Superconducting nanowires made from niobium or niobium nitride

can be used for the detection of single photons or other accelerated neutral particles

[SHH+09,ASC+09,MDS+09]. However, those detectors need low temperature (≈1-10K)

conditions to work. In chapter 4, the suitability of ZnO nanowires to be applied as ex-

tremely locally confined semiconductor detectors will be investigated.
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2.1 Semiconductor nanowires

2.1.1 Synthesis of Semiconductor nanowires

Different wet-chemical or vapour phase deposition techniques can be used for the bottom-

up production of nanostructures and especially semiconductor nanowires [BDC02,Wan09].

Nanowires used for experiments in this thesis have been produced using the so-called

vapour-liquid-solid (VLS) process, first decribed by Wagner and Ellis in 1964 [WE64]. Here,

a metal seed particle, typically gold, is placed on the growth substrate. The substrate is

heated up beyond the melting point of the particle. Then, the particle is enriched with the

desired nanowire growth material from the vapour phase and forms an eutectic. Keeping up

the supply from the gas phase, the particle will finally be supersaturated and the supplied

material will begin to precipitate and recrystallise. In most cases, this happens at the

interface between the seed droplet and the substrate. The process will continue as long as

material from the vapour phase is provided. The material precipitated from the eutectic

lifts up the droplet, forming the nanowire. The nanowire diameter is governed by the

diameter of the seed droplet.

Although the VLS model has to be expanded to be capable of explaining the growth

of compound semiconductor wires [BMS+06], it is widely adopted as a standard growth

model for vapour phase deposition techniques of semiconductor nanowires. Recently, there

have been some attempts to further generalise and expand the model [Moh08,WDJ+09].

Zinc oxide nanowires used in this work have been synthesised in a horizontal tube furnace

following [BMS+06]. A thin Au layer of ≈5 nm thickness was applied to the substrates

prior to the growth process. As source material, 2 g high-purity ZnO powder was placed

in the middle of the furnace and heated up to 1350 ◦C in order to evaporate the material.

The growth substrates were placed somewhat towards the end of the furnace where a

temperature between 1100 ◦C and 900 ◦is present, causing the Au layer to melt and form

nanowire seed droplets. The growth pressure was between 15 and 150mbar. A gas flow

of 50 sccm argon was used to transport the ZnO vapour to the growth substrates. Typical

growth times for the synthesis of nanowires with some tens of µm are between 15 and

30min.

Gallium arsenide nanowires were synthesised at the University of Duisburg with a com-

mercial low-pressure (50mbar) AIX200 RF molecular vapour phase epitaxy (MOVPE)

reactor [GRB+09,GLR+10,RGL+10]. Polydisperse metal seeds were formed by evapora-

tion and subsequent annealing of a thin Au layer of nominally 2.5 nm thickness, resulting in

seed particles with diameters from 80 nm to some 100 nm. Trimethylgallium (TMGa) and
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2 Background, simulations and experimental details

Tertiarybutylarsine (TBAs) were used as group-III and group-V precursors. The wires were

doped during growth in order to receive axial pn-junctions by applying Diethylzinc (DEZn)

or Tetraethyltin (TESn) as dopant precursors for the p-type (lower) and n-type (upper) part

of the nanowire. The doping procedure led to carrier concentrations of NA = 1.6 ·1019 cm−3

in the lower, and ND = 1 · 1018 cm−3 in the upper nanowire part [RGL+10].

2.1.2 Contacting of semiconductor nanowires

Electrical contacts have to be applied to the nanowires in order to conduct electrical mea-

surements on them. ZnO nanowires were contacted at the IFK in Jena via photolithogra-

phy, a well known and widely used method to prepare electrical contacts on a micrometer

scale. Hereby, an UV-sensitive photoresist is exposed to light through a microstructured

mask and developed afterwards. The remaining resist has adopted the masks structure and

can be used as a mask itself for the evaporation of metallic contacts. The minimum feature

size available depends on the light wavelength used for exposure as well as the performance

of the lithography apparatus. The resolution limit of the system used in this thesis is about

1-2 µm, where fully developed structures smaller than 5 µm are very difficult to achieve.

Thus, nanowires that are to be contacted via photolithography should feature a minimum

length of a few µm, which however can be attained easily in the VLS process.

The sequence of work steps used for the contacting of ZnO nanowires is outlined in

Figure 2.2. First, the nanowires are transferred from the growth substrate to a clean SiO2-

Si substrate via contact imprint. One is capable of adjusting the density of nanowires

dispersed on the substrate by varying the force applied during the imprint. Directional

sliding of the growth substrate further helps to align the nanowires with a specific orien-

tation [FHJ+08]. Second, the later contact structures are predefined via photolithography

using the negative photoresist TI 35ES from Michrochemicals [mic12]. In this work, a

lithography mask with 15 pairs of contact pads with a 5 µm wide gap between the coun-

terparting pads was used. The underlying nanowires were hit just by chance, depending

on the density of the dispersed nanowires on the substrate. Third, Ti and Au were evap-

orated onto the pre-patterned sample. After the lift-off of the developed resist, only the

predefined contact structures and the imprinted nanowires remain. Fourth, the sample is

fixed on a chip carrier and the contacts are bonded to the carrier pins enabling electrical

measurements in the lab environment. An SEM image of contacted nanowires between the

evaporated contact pads is shown in Figure 2.2 e).
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2.1 Semiconductor nanowires

Figure 2.2: Nanowire contacting sequence used for ZnO nanowires throughout this thesis:
a) Nanowire transfer by imprint. b) Contact contour predefinition by photolithography.
c) After evaporation of Ti/Au and lift-off, predefined contact structures remain. d) Bonding
for electrical connection of FET terminals. e) SEM image of contacted nanowires.

The contact composition of Ti and Au was chosen in order to get both durable and

conductive contacts. Ti is known to act as an adhesive agent, countervailing undesired

contact cracking or peeling during the bonding process [Uen92,JXW10]. The Ti-Au system

has been reported to form ohmic contacts on ZnO nanowires [YNPR05]. However, the

same material system was found to form Schottky contacts in other studies [ITY+06]. In

an overview study on the electrical properties of ZnO nanowires Schlenker et al. [SBW+08]

point out that the transport properties of ZnO nanowires can be influenced by so many

factors that a reliable transfer of results from one lab to another is quite impossible. Thus,

optimisation of the evaporated contacts, e.g. by replacing Ti-Au with a more complex

system like Ti-Al-Pt-Au [ITY+06], has played a less important role in the scope of this

work, as the experimental conditions in the lab do not meet the high demands that are

necessary to come to a reliable statement in this field.

The contacted ZnO nanowires usually showed s-shaped IV-characteristics that imply

a Schottky contact on both sides of the nanowire. However, as the contacting is done

by a random success process, the Schottky barriers on both sides of the nanowire might

differ significantly in height and therefore the IV-characteristics often remain asymmetric.

Multi-wire devices are typically found to provide more symmetric characteristics, as their

curves represent an average of the characteristics of several wires. By applying a voltage
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2 Background, simulations and experimental details

to the silicon substrate, the device can be used as a simple FET. Hereby, the nanowire

represents the transistor channel between the source and the drain contact. The substrate

below the oxide layer serves as back gate electrode.

In order to produce single nanowire transistors, it is possible to cut unwanted bridging

wires between the contact pads with a focused ion beam (FIB) system. By cutting all

but one nanowires, a single nanowire device can be produced easily by this rather simple

contacting approach.

The contacting of GaAs nanowires investigated in this work was carried out with electron

beam lithography at the University of Duisburg-Essen. The process is described in detail

in [GLR+11]. Ohmic contacts on the p-doped nanowire part were formed by evaporation

of Pt (5 nm)/Ti (10 nm)/Pt (100 nm)/Au (300 nm), and subsequent rapid thermal annealing

for 30 s at 360 °C, while Pd (50 nm)/Ge (170 nm)/Au (80 nm) contacts followed by annealing

for 30 s at 280 °C were used for the n-doped part.

2.1.3 Electrical characterisation

Electrical characterisation of nanowire devices within this work was conducted in an EP6

probe station by Süss MicroTec [sus12]. The probe station can be darkened to avoid photo

induced side effects on the measurement. A Keithley 237 [kei12] source measurement unit

(SMU) was used for current-voltage measurements. The SMU allows accurate current

measurements down to ≈1 pA and is optimised for current measurements at a set bias

voltage. A custom LabView™ software written by Steffen Milz [Mil10] allows computerised

electrical measurements. Current-voltage (IV) as well as transfer characteristics of the

devices can be measured.

The transfer characteristic of a FET describes the current flow between the source and

the drain electrode at constant bias while the voltage applied to the gate electrode is

varied [SN06]. Thus, it is describing the switching and amplification behaviour of the

transistor. From the transfer characteristic, it is possible to determine the type of dopant

of the semiconductor material in the channel and the working mode of the transistor.

Depletion mode transistors provide a conductive channel that can be depleted when a gate

voltage is applied. On the contrary, enhancement mode transistors own a usually depleted

channel that can be populated by an applied gate voltage.
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2.1.4 Persistant photoconductivity

ZnO devices, especially thin films and nanodevices, often show persistent photoconduc-

tivity (PPC), which denotes a photo induced excess conductivity with a rather slow drop

in conductivity after stopping the excitation [WLS+11]. In a semiconductor, illumination

with light of an energy higher than the bandgap leads to charge carrier generation due

to the excitation of electron-hole pairs. Thus, semiconductors always show an enhanced

photoconductivity. However, the time scale for the recombination of photoinduced charge

carriers lies usually in the region below one second. For ZnO nanowires, recombination

times as short as 100 ps have been estimated [RGW+10]. However, much longer times-

pans on the order of minutes have been observed for the conductivity to drop down to

pre-illumination level due to PPC [PHRJD+08,WLS+11,BSS+11].

Investigations on the PPC of coated and uncoated ZnO nanowires in different atmo-

spheres point to a surface related effect [PHRJD+08, SHL+09]. In [PHRJD+08], Prades

et al. attribute the PPC to the separation of the photogenerated carriers due to a sur-

face built-in potential. Owing to band-bending towards the surface, generated holes will

accumulate near the surface, while the electrons remain in the middle of the nanowire,

causing the increased conductivity. The delayed decline towards the initial value after

terminating the illumination is attributed to a comparably slow oxygen-assisted surface

recombination mechanism. Here, oxygen adsorbed on the surface traps electrons from the

nanowire conduction band. Those electrons are able to recombine with the holes accumu-

lated near the surface, whereupon the oxygen molecule is desorbed. In principle, photo

induced desorption of oxygen from the nanowires should be observable, as was reported

from ZnO bulk [CFS74]. There have not been any reports on the desorption of oxygen from

ZnO nanowires under illumination so far. The model described above could also work with

oxygen-containing molecules like water or CO2, where the desorption of the latter indeed

has been reported [BSS+11].

Some ideas exist to take advantage of the PPC for the development of non-volatile

memory or optical switches and integrators [WCLK11]. A negative consequence of this

phenomenon is the need of a reset process in order to do reproducible measurements.

This issue becomes important for the application of such structures as sensing elements

or switches. Some possible reset processes have already been investigated. Prades et al.

reported a faster conductivity drop for an increased current flow through the wire, caused

by thermally enhanced recombination of the separated carriers [PHRJD+08]. White et al.
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applied a high gate voltage pulse to ZnO FETs in order to reset the devices [WCLK11].

Wang et al. achieved a significantly shortened decay time of the PPC by illuminating the

nanowires with a 980 nm infrared laser [WLS+11]. ZnO nanowire devices should always

be measured very carefully and just under defined lighting environment if no well defined

reset process is available.

2.1.5 Electron beam induced current measurement

The analysis of the electron beam induced current (EBIC) within a SEM is a powerful tool

for the characterisation of semiconductor samples, enabling the determination of material

properties like carrier lifetime, diffusion length, defect energy levels and surface recombina-

tion velocities [PBPR07,Lea82]. In early experiments, this technique was mostly used to

visualize sites of enhanced recombination, like dislocations or stacking faults, inside semi-

conductor crystals [WK64,Hol74]. However, by scanning the beam in a direction normal

to the plane of a pn-junction, the decrease of the current with increasing distance from

the junction permits the determination of the minority carrier diffusion length, as already

described in 1965 by Higuchi et al. [HT65].

Working principle

In this work EBIC was used to investigate axial pn-junctions in GaAs semiconductor

nanowires with the focus on the investigation of the minority carrier diffusion length. The

working principle of such an EBIC measurement is displayed in Figure 2.3 a). An electron

hitting a semiconductor sample like the nanowire in the figure will dissipate its kinetic

energy through the sample and therefore generate charge carriers at its impact point. If

those charge carriers reach a pn-junction, they will be separated and can be detected by

an external current measurement setup. The majority carriers will be repelled at the

internal electrical potential, as displayed in Figure 2.3 b). Only the minority carriers

will contribute to the current signal. If the electron beam is moved off the junction, the

induced minority carriers will only be detected if they are able to diffuse to the space charge

region of the junction, where the internal electrical field is present. Measuring the induced

current with respect to the electron beam position allows the determination of the diffusion

characteristics of the respective minority carriers. The method does not necessarily require

an axial pn-junction; any region with an internal electrical field can be used to separate
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2.1 Semiconductor nanowires

Figure 2.3: EBIC working principle: a) EBIC measurement setup scheme. b) During the
measurement, both majority and minority carriers can diffuse to the junction. Only the
respective minority carriers are collected, whereas the majority carriers of both sides are
repulsed. c) From the EBIC signal along the wire axis, minority carrier diffusion lengths
of both p-type and n-type region can be extracted.

the induced carriers. An example of the EBIC based determination of the minority carrier

diffusion length on a silicon-nanowire-gold Schottky contact can be found in [AHP+08].

Minority carrier diffusion length

The minority carrier diffusion lengths can be extracted by analysing the reduction of the

EBIC signal, recorded along the axis of the nanowire away from the junction. The signal

strength is given as

I = I0 · e−
x

L (2.1)
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where I0 is the intensity at the edge of the junction, x is the distance from the junction

and Lp and Ln are the minority carrier diffusion lengths for holes and electrons following

Li =
√

Di · τi (2.2)

with Di and τi as the respective diffusion coefficient and carrier recombination lifetime. It

is important that the device is investigated under low injection conditions (LIC), which

means that the amount of excess carriers excited in the sample has to be small compared

to the doping level [CC94]. If LIC does not apply, one might measure a diffusion length of

both minority and excess carriers. The injection conditions can be checked with computer

simulations and will be discussed in more detail in a following paragraph. Scanning a

nanowire with an axial pn-junction allows the extraction of both electron and hole diffusion

lengths on the respective p- and n-type site of the junction simultaneously, as shown in

Figure 2.3 c). Very similar to such an experiment, the minority carrier diffusion length

can also be determined by photocurrent measurements within a micro-photoluminescence

(µ-PL) setup. However, the use of an electron beam results in a far better spatial resolution.

Surface recombination velocity

It is possible to extract the surface recombination velocities from the relation of the mea-

sured minority carrier diffusion lengths of nanowires of different diameters. The diameter of

our samples is way below the bulk diffusion lengths [Hwa69,WOPS81]. Thus, a determined

value Li has to be interpreted as an effective diffusion length

L∗

i =
√

Di · τ ∗i (2.3)

with an effective lifetime τ ∗i that is governed by the surface recombination velocity S of

the nanowires [AHP+08]. This parameter τ ∗i is connected with the surface recombination

velocity S and the bulk lifetime τb via

1

τ ∗i
=

1

τb
+

4S

d
(2.4)
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where d denotes the nanowire diameter [DST+11]. This relation is only valid to certain

values of S, as it is based on an approximation. The exact relation between τ ∗i and τb

resulting from the continuity equation of the carrier concentration profile is

1

τ ∗i
=

1

τb
+

4β2D

d2
(2.5)

where D is the diffusion constant, d is the nanowire diameter and β is defined by

βJ1(β)− ΛJ0(β) = 0 (2.6)

where Λ is

Λ =
d · S
2D

(2.7)

with J1 and J0 as the 1st and 0th order of Bessel function of the first kind. If Λ < 1, the

approximation β =
√
2Λ leads to an error in β of less than 10% [DST+11]. This leads to

an upper limit for S for the validity of the approximation. The limit for a 300 nm diameter

GaAs nanowire with an electron diffusion coefficient of 200 cm2/s in the p-type region [JG89]

can be estimated to:

d · S
2D

≤ 1 =⇒ S ≤
2D

d
=

2 · 200 cm2/s

300 nm
= 1, 33 · 107 cm/s (2.8)

For the holes in the n-type region the respective upper limit can be estimated using

values from the same reference to S ≤ 6 · 105 cm/s. For both holes and electrons in our

nanowires S is below the upper limit and therefore the error caused by the approximation

is less than 10%.

Using the relations between L, τ , and S enables one to extract the surface recombination

velocity from the diameter dependence of the observed minority carrier diffusion lengths.

Injection conditions

As mentioned above, a conclusive determination of Li is only feasible when the measure-

ment is carried out in the so-called low injection regime [CC94]. Within LIC, the resulting

values of Li and τi are independent of the amount of excess carriers produced in the sample

∆p. LIC is only fullfilled when ∆p is comparatively small in reference to the doping level.

To verify this, one has to determine ∆p and compare it to the doping level. The value of

23



2 Background, simulations and experimental details

∆p can be analytically derived for bulk material by comparing the activation volume and

the deposited energy E0. In the case of nanostructures the distribution of energy inside

the sample is strongly dependant on the sample structure and dimension. Therefore, the

Monte Carlo code Casino v3.2 [DPDC+11] was used to determine the energy distribution

inside an irradiated GaAs nanowire lying on a SiN substrate. With E0 distributed inside a

volume V , it is possible to calculate the excess carrier generation rate G0 following [Kle68]

G0 ≈
E0

3Eg
·
1

V
(2.9)

expressing the amount of carriers excited per volume by a single electron. The energy

distribution E0/V provided by the Monte Carlo code depends on the choice of spatial

resolution during the simulation. Here, the simulation was conducted for volume cells

of 4 · 4 · 4 nm3 size. Larger simulation cell sizes would lead to a more uniform energy

distribution. However, if the cell size is not small enough compared to the carrier diffusion

length, the distribution will be smeared out too much and a reasonable conclusion on the

injection regime following G0 is not possible. For a certain electron beam current IB and

a known excess carrier lifetime τexc the value of ∆p can be estimated with

∆p ≈
G0

e
IBτexc (2.10)

where e is the elementary charge. Within GaAs bulk samples, the existence of LIC is often

very unlikely due to the relatively high excess carrier lifetime and the µm-ranging of the

carrier diffusion lengths [CC94]. However, within GaAs nanowires, excess carrier lifetimes

and diffusion lengths are strongly reduced due to surface influence. In Figure 2.4, ∆p is

displayed for a nanowire with 200 nm diameter and typical electron current density (40 pA)

and acceleration voltage (10 kV) values used in this thesis. With the carrier lifetimes

estimated for the minority carriers from the EBIC profiles, ∆p is always more than one

order of magnitude below the typical doping level.

The EBIC measurements in chapter 3 have been conducted with a JEOL JSM-6490

scanning electron microscope equipped with a LaB6 cathode and a Gatan SmartEBIC

analysing system. The electron beam current used was always below 40 pA, ensuring low

injection conditions at 10 kV accelerating voltage.
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Figure 2.4: Distribution of ∆p in a nanowire with 200 nm diameter for an electron current
of 40 pA and acceleration voltage of 10 kV determined using Casino v3.2 and the carrier
lifetimes estimated for the minority carriers from the EBIC profiles. The concentration
of excess carriers ∆p is always more than one order of magnitude below the doping level,
which is 1.6 · 1019cm−3 in the nanowire p-type region (left side) and 1 · 1018cm−3 in the
n-type region (right side).

2.1.6 Cathodoluminescence

Cathodoluminescence (CL) denotes the phenomenon of light emission from a semiconductor

impinged by an energetic electron beam [MG74], caused by radiative recombination of the

excited charge carriers. The observation of such luminescence inside a cathode ray tube

led originally to the discovery of ”cathode rays” or electrons. CL emission characteristics

give access to the electronic properties of the investigated semiconductor material. If

applied within a SEM, CL allows the investigation of luminescence properties and therefore

recombination dynamics of a sample with spatial resolution [YH86,PR07].

Electron-hole pairs generated inside a sample by an incoming electron beam can re-

combine either radiatively or non-radiatively. The probability of the one or the other

case to happen depends on the local environment of the charge carriers. Therefore,

CL measurements offer access to the local carrier dynamics of selected nanostructures,

gaining information of the influence of the shape of the nanostructures on the carrier

transport and recombination mechanisms. Non-radiative recombination is often induced

by defects in the semiconductor crystal. Thus, CL can give information on the crystal

quality of a nanoobject [PPAD06]. As an example, information about the uniformity

of the optical and electrical properties of bottom-up grown ZnO nanowires can be ob-
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Figure 2.5: CL working principle. The electron beam induced luminescence is colimated by
a parabolic mirror and coupled into an optical spectroscopy system. With the monochro-
mator, the incoming light can be spectrally decomposed and analysed as a function of
wavelength. A photomultiplier or a CCD camera can be used for signal detection.

tained [NKR+04, PYE+07,CAM+11]. Furthermore, CL can be used for studying carrier

dynamics in single quantum dot devices [MSC+05].

In the presence of an internal electrical field, generated electron-hole pairs must not

necessarily recombine but might get separated before the recombination takes place. De-

tecting such separated carriers is the principle of the EBIC measurement explained in

section 2.1.5. However, it is also possible to measure the electron beam induced CL sig-

nal instead of the induced current to obtain information on the diffusion dynamics of the

excited carriers. While with EBIC the separated carriers are monitored, CL counts the

non-separated, radiatively recombining carriers. In addition, also non-radiative recombi-

nation dynamics can be monitored in principle when it is possible to measure the EBIC

and CL signal simultaneously on the same sample [Hol89].

The working scheme of the CL setup used in this work is displayed in Figure 2.5. A

parabolic mirror is used to collimate the emitted luminescence and couple the light into

a chamber-mounted monochromator with attached optical sensors, enabling spectroscopic

analysis of the CL emission. The signal is detected by either a CCD or a photomultiplier

attached to the monochromator exit slit. Besides the monochromatic imaging, it is also

possible to drive the machine in panchromatic mode and detect the overall light emission

independent of the wavelength of the emitted light. Regardless of the working mode, the

CL setup always collects the emission of the whole sample, caused by a local excitation
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from the confined electron beam. Thus, the excitation is spatially resolved, and not the

CL signal.

Analogous to the EBIC technique, CL measurements can be used for the extraction of

carrier diffusion lengths by monitoring the decay of the signal towards a pn- or Schottky

junction. In chapter 3, CL was used in this manner to determine the carrier diffusion

dynamics inside ZnO nanowires. According to equation 2.1 in the previous section, the

probability that electron beam induced carriers will be separated in the internal field of the

junction and contribute to EBIC drops exponentially with increasing distance between the

position of carrier generation and the junction. In the same way, it becomes more likely

for the carriers to recombine with their counterparts. Therefore, in the case of a negligible

or constant ratio of non-radiative to radiative recombination, the CL intensity towards the

junction will decrease by [IY08]

ICL ∝ A · (1− e
−

x

LD ) (2.11)

where ICL is the CL intensity, x is the distance from the junction and LD is the carrier

diffusion length. Thus, the carrier diffusion lenght can be extracted by measuring the CL

intensity along the nanowire, as shown in Figure 2.6 a) and b). The fit of equation 2.11 to

the intensity characteristics directly gives the diffusion length of the recombining carriers,

which is in this case (ZnO nanowire) the exciton diffusion length.

The CL measurements in chapter 3 have been conducted with a Gatan MonoCL3 system

on a JEOL JSM-6490 scanning electron microscope with a LaB6 cathode. The system is

equipped with a helium cooling stage for temperatures between 6K and 300K. Further

details on the CL system can be found in [Bul09].

The electron beam current used was always about 100 pA. The applied acceleration

voltage was 10 kV. In parallel to section 2.1.5, Casino simulations give the number of

electron beam induced excess carriers ∆p. Under the applied conditions, ∆p is always

lower than 1 · 1012 cm−3 and thus more than one order of magnitude below the doping

level of intrinsic ZnO which is in the range of 1017 cm−3 [GSLY05], ensuring low injection

conditions. All diffusion length measurements have been performed at 12K temperature.
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Figure 2.6: Example for the estimation of the exciton diffusion length in ZnO via CL. In a),
the CL image of a ZnO nanowire contacted by an Au-Ti contact pad is shown. Only the
uncovered part of the nanowire is exhibiting a significant luminescence signal. The inset
shows the SEM image from the white dotted rectangular area. In b), that CL intensity
along the dashed cyan line in a) is plotted. The exponential fit of the intensity drop along
the nanowire towards the contact region allows the determination of the exciton diffusion
length.

2.1.7 Photoluminescence

Photoluminescence (PL) denotes the light emission from a semiconductor excited by ab-

sorbed photons. In principle, PL and CL are relying on the same mechanisms, distinguished

just by the nature of the excitation. An advantage of PL over CL is avoiding carbon de-

position on the surface of the investigated sample, a phenomenon that is often observed

inside a SEM, which makes PL the favoured method for the investigation of surface related

effetcts. Additionally, the PL intensity depends on the excitation wavelength, a detail that

can provide further information on the excitation mechanisms in the sample [YH86]. It is

also possible to visualise the depletion zone in electrical devices [HZAL07]. PL spectra in

the scope of this work have been recorded by Apurba Dev, University of Bremen. Details

on the setup can be found in [Ric10]. The Photoluminescence (PL) measurements were

carried out in a liquid-helium-cooled cryostat at 10 K. A He–Cd laser was used for excita-

tion at a wavelength of 325 nm. The emission signal was detected either with an Ocean

Optics HR4000 spectrometer or a Jobin Yvon HR320 monochromator with an attached

CCD camera.
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2.2 Ion-solid interactions

The irradiation of material with energetic ions is the basis for a variety of methods for

the analysis and processing of materials. An ion that is impinging on a solid material will

be slowed down by flying through the surrounding matter and transferring its energy to

the local environment. The energy dissipated inside the target can result in the breakup

of existing crystal structures, rearrangement of the target atoms and the creation of voids

inside the target material. By selectively controlling these effects, ion beam irradiation can

be applied to the processing of materials. On the other hand, the same effects have to be

considered for ion implantation processes, where the ion beam is used to implant a distinct

amount of atom species into a target material.

The energy loss or stopping power of an energetic ion in matter can be divided into two

processes [ZI80]: First, the interaction of the ion with the target electrons, and second, the

interaction with the target nuclei by collision. Thus, the terms ”electronic energy loss” and

”nuclear energy loss” are used. The stopping powers are dependent on the ion charge and

energy as well as on the ion mass and the target composition. Although the fundamental

processes can be treated independently, it is important to know the ratio between electronic

and nuclear energy loss in order to determine the impact of the ion energy on the electronic

system of the target.

2.2.1 Ion implantation

Ion implantation is widely used in the semiconductor industry [Wil98]. As already men-

tioned, the incorporation of dopants into a semiconductor is essential for tuning the elec-

trical properties of the material. With ion implantation, it is possible to modify the dopant

concentration in a semiconductor device subsequent to the device fabrication. Implanting

through a mask gives lateral control. Furthermore, the depth distribution of the dopants

can be adjusted by varying the ion energy. The amount of implanted ions per area is called

ion fluence and given in ions/cm2. Common ion energies for implantation are between 1 and

500 keV, where the latter energy corresponds to an ion range of about 600 nm of 31P in Si.

Due to the statistical nature of the ion energy loss, the depth distribution of implanted

ions is always widened, a phenomenon referred also as longitudinal straggling; analogously,

radial straggling also occurs.
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An important advantage of ion implantation is that it can be used for every element

of the periodic table without restriction to any solubility limits. Especially in the case

of bottom-up grown nanostructures, where doping during growth is quite challenging, ion

implantation is often the only method that can provide a homogenous, well defined doping

profile. The main disadvantage of ion implantation is the production of defects concurrent

to the implantation process [RBGN10]. Therefore, usually a thermal annealing treatment

has to be applied subsequently to ion implantation. In the case of nanowires this can

be quite difficult as they often show a lower thermal stability compared to bulk material.

On the other hand, under certain conditions so called dynamic annealing can be observed

[DDW+03,CFR+08,BMB+11]: The confined geometry of the nanowires might hamper the

dissipation of the impact energy of the implanted ion and lead to a local heating of the

nanowire, whereby a part of the implantation induced defects is annihilated immediately.

This effect is already known from the implantation in bulk structures [Wil98], however, it

was found to be enhanced in semiconductor nanowires [BMB+11]. Nevertheless, in most

of the material systems investigated so far, an additional annealing step has proven to be

mandatory for the successful doping of ion implanted nanostructures [RBGN10,RBG+10].

2.2.2 Simulation of implantation profiles

The expected trajectories of the ions inside the implantation target are usually calculated

in advance in order to prepare an implantation experiment. A well established and often

used code for this purpose is the Monte-Carlo package SRIM [ZBL85, ZZB10]. Based

on the simulation of binary collisions between the incoming ion and the target atoms,

the program is capable of calculating the distribution of implanted ions and implantation

induced defects for any ion species in any material. Monte-Carlo codes like SRIM have

been proven to provide a sufficiently accurate result for the implantation in bulk samples or

thin films within an acceptable time. However, SRIM and similar programs are only taking

laterally homogeneous samples into account, as implantation targets can only be defined as

layered and flat structures. The determination of implantation profiles in nanostructures

with sizes in the order of the ion range will not work using SRIM, as the program does not

take into account the possibility of an incoming ion being scattered sideways and leaving

the nanostructure to the side. For this purpose, the Monte Carlo code ”iradina” has been

developed [BR11], partially based on SRIM and the similar but faster code CORTEO

[Sch08]. Iradina supports 3d-geometries, allowing the consideration of all peculiarities
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that arise during the implantation of nanostructures. Iradina was found to determine the

amount and distribution of implanted ions in nanowires in good agreement to TEM and

EDX measurements, while SRIM is overestimating the atom number by a factor of about

two, depending on the size of the nanowire [BR11].

SRIM and iradina are both based on the simulation of binary collisions in order to

simulate the nuclear energy transfer between the incoming ion and the target atoms. A

decisive factor for this value is determined by the choice of the interatomic potential during

the collision. A realistic choice is the screened Coulomb potential

V (r) =

(

Z1Z2e
2

r

)

χ(x) (2.12)

with x = r · aS and

aS =
0.8853aB

Z0.23
1 + Z0.23

2

(2.13)

where aS denotes the so called screening length, Z1 and Z2 the charge of the nuclei

of projectile and target atom, aB the Bohr radius and χ(x) a screening function, that

is explained in detail in [ZBL85]. With this potential, the scattering angle and thus the

transfer of momentum between the projectile and the target atom can be calculated for a

given impact parameter.

The simulation calculates the path of an ion through the crystal based on binary collisions

with the target atoms, using random numbers for the variation of the impact parameter

and the mean free path, until the projectile is either stopped or leaving the target. Recoiled

target atoms are also taken in account. By repeating the calculation many times, a realistic

distribution of the implanted atoms and the damage induced inside the target is obtained.

While the nuclear energy loss is calculated for each collision of the ion with a target

atom, the electronic energy loss is assumed to be a continuous process and independently

subtracted from the ion energy between the nuclear collisions, only depending on the

path the ion has travelled. Well known experimentally obtained values for the electronic

stopping of lighter elements are included in the simulation code; electronic stopping of

heavy ions is calculated from the data of protons and helium ions by the so called heavy-

ion-scaling [ZBL85].
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Figure 2.7: a) ROMEO beam line at the IFK Jena, top view. b) Sample holder design for
electrical in-situ measurements on ion implanted nanowire devices. The picture shows the
high-vacuum flange with the sample holder mount on top. The inset shows the sample
holder itself. The sample is clamped to the holder with an epoxy plate. The electrical
connections are placed on the back side of the sample holder.

Both SRIM and iradina were used within this thesis in order to determine ion ranges

and defect profiles for the respective experiments.

2.2.3 Ion implanters

An ion implanter consists of the following parts: An ion source, where the ion species are

generated, an accelerating, mass separating, and focussing system, where the ion beam is

defined, and an implantation chamber, where the target is mounted. Ion source, beam line

and target chamber are usually held under high vacuum conditions. Besides this, there are

a lot of varying designs with different strengths and shortcomings. Thus, in this section

a brief description of the implanters where ion implantation has been carried out during

this work will be given, namely the implanter ROMEO for ion energies larger than 10 keV

and the implanter LEILA for ion energies between 300 eV and 10 keV, both located at the

IFK in Jena.

ROMEO

The implanter ROMEO is an air insulated Cockroft-Walton accelerator for acceleration

voltages up to 400 kV, build by High Voltage Engineering Europa [hve12]. The positively
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charged ions are extracted out of the ion source by a 30 keV DC voltage. Mass separation

is provided by a 90◦ sector magnet right behind the ion source extraction lens. A voltage

multiplier cascade (Cockroft-Walton principle [CW30]) is used to apply an adjustable,

positive potential on the ion source and mass separation unit, while the target chamber

stays at ground level. By regulating this voltage, the overall ion energy can be varied

between 30 keV and 400 keV for singly charged ions. The ions are then guided into the

beamline (see Figure 2.7 a)) where the beam is confined by a quadrupole lens and additional

horizontally and vertically aligned deflection plates. The beam is further deflected by 5◦

before entering the target chamber, ensuring that only charged ions enter the chamber and

neutral species are filtered out. A beam sweep unit is used to scan the beam homogeneously

over the sample according to a Lissajous figure with both frequencies close to 1 kHz. The

actual beam sweep position can be tapped from an external voltage signal. Symmetrically

aligned Faraday cups at the entrance of the target chamber allow a continuous assessment

of the beam current, which can be attenuated down to around 10 pA.

In order to measure implantation induced changes of the characteristics of nanowire

devices in-situ, a sample holder was constructed, which is displayed in Figure 2.7 b). The

holder sits on a high-vacuum flange that can be mounted on the implantation chamber. A

metal plate above the sample is insulated against the rest of the sample, Thus, a negative

potential can be applied in order to suppress the emission of secondary electrons from the

implanted device, which would falsify the current measurement.

LEILA

The low energy implanter LEILA is based on a model G-2 ion gun manufactured by

Colutron [col12]. The ion gun is able to work with acceleration voltages between 100V

and 10 kV. The Colutron unit consists of an ion source assembly, a beam confining and

focusing sytem, and a velocity filter for mass separation. The ion source is able to provide

ions of any gaseous source. Beam confinement is obtained by an einzel lens as focusing

element and vertical deflection plates. The velocity filter (Wien-Filter principle [Wie02])

works with perpendicular electric and magnetic fields, that can be adjusted in such a way

that only the desired ion species advance into the target chamber at a given acceleration

voltage.

A beam sweep unit with user-definable frequency and amplitude allows for homogeneous

irradiation of the sample. The ion current is measured with a Faraday cup that is placed
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2 Background, simulations and experimental details

at the end of the beam path. During implantation, the sample holder is plugged-in into the

path and therefore the cup is covered. This arrangement is a major disadvantage of this

accelerator setup, as it is not possible to monitor the total ion flux during the implantation

process. In connection with ion current variations over the implantation timespan, this can

lead to a large deviation of the implanted fluence. Therefore, the ion current was checked

by plugging the sample out of the beam path for a short time every few minutes during

the implantation experiments, resulting in a reasonably accurate estimation of the current

history and the overall fluence. A second major disadvantage of the design of LEILA,

which became apparent during implantation with 10 kV acceleration voltage, is that when

setting up the accelerator, special emphasis was placed to the ion energy range below 1 keV.

Hence, some of the parts are not working properly at higher acceleration voltages. In the

absence of alternatives, LEILA was used for implantation experiments with acceleration

voltages up to 10 kV anyway.

2.3 Techniques and terms used for the

biofunctionalisation experiments

2.3.1 DNA

A DNA (deoxyribonucleic acid) molecule is containing the complete genome of an organism

and thus carrying the genetic instructions for the development and the functioning of the

species. As such, DNA sensors can be used for the unambiguous identification of living

organisms, including bacteria and viruses. The DNA molecule is organised in a double

helix structure, consisting of two complementary, long polymers of simple units called

nucleotides. DNA sensors are made by using one of the polymers or a part of it, called

oligonucleotide, as a capture molecule, looking out for the complementary target molecule.

As the DNA backbone is negatively charged, an electrical working DNA sensor can be

realised that is sensitive to the electrical field induced by the attachment of the target

molecule.
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2.3 Techniques and terms used for the biofunctionalisation experiments

2.3.2 Surface engineering

Surface science is referred to as the interdisciplinary study of the effects and processes tak-

ing place at the interface of two different phases. The research field includes and connects

methods and techniques from physics, chemistry, and biology. The intended modification

of surfaces and surface properties with surface science techniques is called surface engineer-

ing. Surface engineering has made significant contributions to a wide field of technology,

like the development of catalytic processes for fuel production, the functionalisation of

surfaces for chemical or biological sensing purposes, or the optimisation of semiconductor

devices by tailoring the surface related properties of semiconductor devices [Som96].

A connotative sub-category of surface science is the biological surface science, where

interfaces between synthetic materials and biological environments are investigated. Here,

the major emphasis in research is placed on biofunctional or biomimetic surfaces for the

development of medical implants, artificial leafs, or biosensors, for example [Kas02].

In chapter 5, the biofunctionalisation of ZnO nanowires with DNA capture molecules

is shown. This is an example of biofunctionalisation, a term that is used for surface

engineering with biological molecules. Most biomolecules can not covalently bind to inor-

ganic materials. Thus, so-called linker molecules are applied, that bind covalently to the

inorganic surface as well as to the biomolecule. In this work, the linker molecule Glycidy-

loxypropyltrimethoxysilane (GOPS) is used to bind DNA molecules covalently to the ZnO

nanowires surface. The reaction scheme and the applied parameters are discussed in detail

in chapter 5.

2.3.3 Fluorescence microscopy

Fluorescence microscopy is a method combining the phenomena of fluorescence and phos-

phorescence with optical microscopy. The method is often used in biological surface science

for studying the formation of biomolecule layers on thin film surfaces as well as on nano-

structures [CDH08,BHS+09]. The biomolecules of interest are marked with a fluorescent

dye in advance. During layer formation the specimen is illuminated with light at a wave-

length where the dye is excited and fluorescence occurs. With the help of a filter cube in

the optical path the marker specific fluorescence is guided to the microscope ocular. As

different dyes emit on different wavelengths, a special filter cube for every dye is needed.
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2 Background, simulations and experimental details

Fluorescence studies in this work have been conducted with the Zeiss Axio Imager 2 fluo-

rescence microscopy setup at the IPHT Jena.
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3 Carrier diffusion lengths in

semiconductor nanowires

This chapter deals with carrier diffusion length measurements at axial GaAs nanowire

pn-junctions and ZnO nanowire Schottky junctions. Detailed knowledge on the carrier

diffusion is essential for the design of nanowire based photovoltaic devices, since the ab-

sorption length inside a solar cell is comprised of the depletion region at the pn-junction

and the mentioned diffusion lengths. The GaAs wires have been investigated with EBIC.

The EBIC signal obtained on the GaAs nanowires was used to determine the minority

carrier diffusion lengths of both holes and electrons on the respective sides of the junction.

The experiment was conducted in collaboration with Chrisoph Gutsche from the University

of Duisburg-Essen, where the GaAs devices were produced. Martin Gnauck assisted with

the measurements. Parts of the results are going to be published in [GNG+12]. The ZnO

nanowires were investigated using CL. Here, the diffusion length of electron beam induced

excitons was determined on ZnO nanowire Schottky devices.

3.1 Minority carrier diffusion lengths

Nanowire transport properties often differ from bulk properties owing to the enhanced

surface-to-volume ratio of the wires leading to a higher influence of surface related effects.

In semiconducting nanowires, surface enhanced recombination of charge carriers can lead to

a drastical reduction of minority carrier diffusion lengths and lifetimes [PJG+09,DST+11].

Investigations on the diameter dependant behaviour of the diffusion lengths help un-

derstand and quantify the surface recombination mechanisms. There are several meth-

ods that have been used to investigate minority carrier diffusion lengths in semicon-

ductor nanostructures: Scanning photocurrent microscopy (SPCM) with a focused laser

spot [GMOY11], SPCM combined with near field optical microscopy (NSOM) [GRD+06,

37



3 Carrier diffusion lengths in semiconductor nanowires

KTEK+08,DST+11], cathodoluminescence [GBSS10,BMSG10], cathodoluminescence com-

bined with NSOM [BAL+09,BOC+11], and EBIC [GBS07,AHP+08].

In almost all the studies on minority carrier diffusion lengths in semiconductor nanowires

so far the respective lengths were significantly shortened compared to bulk material. In

the case of Si, Allen et al. found a 100- to 1000-fold decrease for uncapped nanowires

with diameters between 30 and 100 nm. If the wire surface is passivated by a thin layer

of SiO2, surface recombination is reduced by two orders of magnitude and the diffusion

length is almost comparable to bulk level [DST+11]. For thicker nanowires with 900 nm

diameter, Kelzenberg et al. found bulk-like diffusion lengths [KTEK+08]. In the case of

III-V-semiconductors, diffusion lengths were found to be reduced strongly for uncapped

GaN nanowires [BAL+09] as well as uncapped GaAs nanowires [GBSS10].

3.2 EBIC investigations on axial GaAs nanowire

pn-junctions

EBIC measurements were carried out on four different nanowire pn-diodes with diameters

ranging from ≈ 100 to 300 nm. IV-characteristics have been recorded before and after

the measurements in order to exclude side effects caused by the analysing electron beam.

Apart from the choice of the right electron beam parameters, it is necessary to check

if the collected current is really driven by diffusion and not by electrical drift along the

nanowire. Thus, the same nanowire diode was repeatedly measured under varying applied

bias voltages. From Figure 3.1 it is evident, that the EBIC signal strength depends on the

applied voltage. However, the estimated diffusion lengths did not show any bias dependence

for a bias between 0V and 0.5V, which implies that drift currents are negligible in this

voltage range [DST+11]. In contrast, the diffusion lengths change when applying a reverse

bias of 1V or higher.

The determined effective minority carrier diffusion lengths Ln,p of both, electrons and

holes, which were determined from various nanowires, are plotted in Figure 3.2. They show

a monotonically increasing behaviour with increasing nanowire diameter. The nanowire

diffusion lengths are significantly small (about 10-fold decreased) compared to minority

carrier diffusion lengths of a few µm in GaAs bulk crystals or thin layers [Hwa69,CMP73,

WOPS81], in accordance to the results from literature discussed in the precedent section.
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3.2 EBIC investigations on axial GaAs nanowire pn-junctions

Figure 3.1: (a) EBIC signal images measured under varying applied bias voltages. The
signal strength depends on the applied voltage. (b) EBIC signal line scans along the
nanowire axis in the EBIC image. The pn-junction lies at position zero on the x-axis.
The ascending slope of the EBIC signal does not show any bias dependence for reverse
bias voltages up to 0.5V (green bars) but seems flattened for higher voltages (red bars).
Forward bias also changes the slope significantly (black curve).

The observed diameter dependence points to a strong influence of the nanowire surface.

Investigating the diameter dependency of the determined diffusion lengths, it has to be

taken into account that not the whole nanowire diameter is actually contributing to the

carrier transport. In uncapped GaAs nanowires, usually a doping level dependent surface

depletion layer occurs. This is caused by deep level Fermi energy pinning on the nanowire

surface that leads to band bending. The width of the depletion layer dspc can be calculated

as [GRB+09]

dspc,i =

√

2 · ǫoǫrφs,i

q ·Ni
(3.1)
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3 Carrier diffusion lengths in semiconductor nanowires

Figure 3.2: Measured minority carrier diffusion lengths for pn-GaAs nanowires of different
diameter. The dashed lines are showing the theoretical progression of the diameter de-
pendence for the stated surface recombination velocities. Depletion layers with 29.6 nm
(n-type) and 6.8 nm (p-type) width have been taken in account for the calculation.

where ǫ0 is the vacuum permittivity, ǫr the dielectric constant of GaAs, φs,i the surface

potential of i-type GaAs and Ni the respective carrier concentration. Carriers generated

inside or diffusing into the surface depletion layer will immediately be extracted to the

surface and do not contribute to the EBIC signal. Hence, for the diameter dependency

evaluation of the EBIC measurements an effective nanowire diameter d∗i = (d − 2 · dspc,i)
has to be taken into account. Trend lines of the diffusion lengths calculated for these

effective nanowire diameters are also displayed in Figure 3.2. The curves have been fitted

to the measured values by adjusting the surface recombination velocity S. The resulting

surface recombination velocities (Sp = 4·106 cm/s, Sn = 3·105 cm/s) are comparable to values

measured in GaAs bulk samples [JLG75, II94]. While Sp is almost identical to the bulk

value [II94], the value of Sn is one order of magnitude smaller than expected for a carrier

concentration of ND = 1 · 1018cm−3.

The lower value of Sn indicates a lower doping level than expected [JLG75]. In the region

near the junction, where the EBIC measurements were conducted, this can be the case due

to the fabrication method. During VLS nanowire growth, the Au seed particle acts as a

delaying element for the dopant atoms. Although the type of dopant precursor is switched

from p to n rapidly, it still takes some time to reach a high doping level on the n-doped

part, which finally leads to an axially graded dopant profile. This result is in agreement to

other studies on the same nanowire structures, where the doping concentration profile was
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3.3 Surface passivation with ammonium sulfide

Figure 3.3: EBIC scans at a single nanowire pn-junction before and after the passivation
treatment using ammonium sulfide. Directly after the treatment the EBIC signal shows a
more gentle slope, indicating an increased minority carrier diffusion length. After 4 days,
slope and diffusion length have dropped down to their initial values. Inset: The I-V-curve
of the device remains unchanged.

analyzed with µ-photoluminescence [LOG+11] or Kelvin probe force microscopy [LVO+11]

and therefore fits to the actual model of dopant incorporation in catalyst assisted VLS

nanowire growth.

As the EBIC signal might also depend on the carrier generation volume inside the

nanowire [AHP+08], measurements at different acceleration voltages were conducted in

order to vary the extent of the excited volume. No effect on the diffusion length was visi-

ble, showing that the observed diameter dependence of the diffusion length is not an effect

related to the dimensions of the excitation volume. The same conclusion has been obtained

for Si nanowires before [AHP+08].
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3 Carrier diffusion lengths in semiconductor nanowires

3.3 Surface passivation with ammonium sulfide

The reduction of minority carrier diffusion lengths in GaAs nanowires compared to GaAs

bulk material is not supportive for photovoltaic applications. An effective surface passiva-

tion treament could help to increase Ln and Lp again, as the observed reduction is strongly

related to recombination over the nanowire surface. The positive influence of passivation

has already been shown in the case of Si [DST+11] and GaN [BOC+11] nanowires before.

A standard procedure for GaAs and InGaAs surfaces is the passivation with ammonium

sulphide [BMH+11]. Applied to GaAs nanowire solar cells, this sulfur passivation step was

shown to result in an increased photovoltaic efficiency [TPKL11]. In this thesis, rather

conservative reaction conditions have been chosen for the passivation step, as the process

was conducted on already contacted nanowire devices with chemically sensitive contact

structures on top. There are many possibilities to optimise the passivation results by the

chemical parameter selection; for an overview see [BMH+11].

In Figure 3.3, comparative EBIC linescans along a pn-GaAs nanowire before and after

the passivation process are displayed. The green lines indicate the fits applied for extracting

the diffusion lengths. It is obvious that the signal gradient is slightly increased 10 hours

after the passivation procedure. Four days after the treatment, the diffusion lengths have

reached the initial values again. The IV-characteristic of the device remains virtually

unchanged during the whole passivation process (inset of Figure 3.3).

The experiment underlines the importance of an effective nanowire passivation. The val-

ues for L obtained on passivated nanowires in this work are still comparable to nanowires

without passivation and way below the bulk values. However, the simple passivation pro-

cess applied led to increased diffusion lengths. Moreover, ammonium sulphide passivation is

known to be unstable in air, depending on the passivation parameters [OSW+93,HCL+96].

The EBIC measurements were conducted 10 hours after passivation. Measuring directly

after the passivation process might reveal a much stronger effect. Furthermore, the ef-

fectiveness of the passivation process depends much on the choice of chemical reaction

parameters, as described above. Further optimisation of these will also lead to a larger

increase in diffusion lengths. Alternative approaches for long-term stable passivation treat-

ments are shown in references [JPNT04] and [MWK+11].
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3.4 Carrier diffusion lengths in ZnO nanowires

3.4 Carrier diffusion lengths in ZnO nanowires

According to section 2.1.6, the slope of both the EBIC and CL signals towards a junction

can be used to investigate the carrier dynamics in contacted semiconductor nanowires.

However, for some materials either of the methods might be non-applicable owing to the

physical properties of the material. The GaAs nanowire devices do not show any re-

markable CL signal and cannot be investigated with this technique. On the other hand,

ZnO nanowires exhibit a pronounced PPC effect. Where exposed to electron irradiation,

the conductivity of ZnO nanowire devices is significantly enhanced for a long time. This

phenomenon, in combination with some unavoidable charging of the sample, leads to a

complete overlay of the EBIC signal of the junction. Hence, the carrier dynamics in ZnO

nanowire devices have been investigated via CL in this work instead of EBIC.

Despite the problems described before, minority carrier diffusion length measurements in

ZnO nanowires via EBIC [LSF+11,SFC+11] and also SPCM [SDG10] have been reported

in literature. The EBIC studies have been conducted on Sb doped p-type wires. The

respective minority carrier diffusion length was found to be increased by applied heating

as well as the duration of the e-beam irradiation, which was traced back to the activation

of a dopant-related acceptor complex [LSF+11]. SPCM studies were conducted on n-type

wires with diameters between 25 nm and 60 nm, revealing a dramatic decrease in diffusion

length for smaller diameters that was traced back to a disproportional increase of mid-

bandgap defect states for nanowire diameters smaller than 40 nm [SDG10]. A critical

point in both studies is the open question of the nature of the observed carriers. As ZnO

exhibits a relatively high exciton binding energy of 60meV, it is likely that even at room

temperature excited carriers will form excitons and the observation of free minority carriers

is rather implausible [HDP+11].

At low temperatures the situation is more defined. Here, carrier dynamics are strongly

dominated by excitons [RVK+08, RVW+08]. For the investigation of exciton dynamics,

spatially resolved as well as time resolved measurements can be used. Time resolved emis-

sion characteristics allow for an indirect conclusion of the exciton dynamics. Willander

et al. [WYW+08] extracted the influence of the surface on the lifetime of PL emission

from ZnO nanowire ensembles in dependence of the nanowire diameter. The surface re-

lated decay lifetime is influenced by the surface recombination velocity combined with the

carrier diffusion length. They found a decreasing exciton diffusion length for decreasing

nanowire diameters. However, Oh et al. [OLP+07] found different optical properties for
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ZnO nanowires from the same growth process via CL, showing that measurements on

ensembles of nanowires could be misleading in view of possible inhomogeneities among

the nanostructures. PL measurements on single CdS and ZnO nanowires revealed an in-

creasing influence of the surface on the exciton recombination with decreasing nanowire

diameter [THJ+06,WVBS06,VW08,RGW+10]. Higher spatial resolution can be obtained

by time-resolved CL, as was applied for the characterisation of GaAs pyramidal nano-

structures by Merano et al. [MSC+05].

The determination of diffusion lengths with the method described in chapter 2 has been

shown by Ino et al. for excitons in GaN thin films [IY08]. Recently, the carrier depletion

and exciton diffusion length in a 200 nm diameter ZnO single nanowire Schottky device

have been investigated by Hwang et al. [HDP+11]. The authors varied the bias voltage

applied to the device in order to change the extent of the depletion zone and enable the

determination of the diffusion length along the nanowire axis. As excitons can be considered

as neutral particles from the outside, applied bias voltage has no adulterant influence on

the estimated exciton diffusion lengths. The diffusion length was found to be constantly

around ≈200 nm along the nanowire axis.

3.5 CL investigations on ZnO nanowire Schottky

junctions

ZnO nanowire Schottky devices have been produced following the scheme in Figure 2.2.

ZnO nanowires with diameters from ≈ 100 nm to 300 nm have been used. Silicon with a

850 nm thick SiO2-layer on top was used as substrate. Contact structures were formed by

photolithography and the evaporation of 40 nmTi and 90 nmAu. The CL measurements

were performed with 10 keV electron energy at a temperature of 12K. In order to avoid

charging of the sample and to have the possibility of applying a bias voltage, the samples

were contacted with conductive silver, whereby one contact was grounded and connected to

the SEM holder while the other contact was connected to an external voltage source. Two

samples with multiple nanowires have been investigated, hereafter referred to as samples#1

and #2.

The measurement of the exciton diffusion lengths is based on the assumption, that the

CL signal vanishes towards the Schottky contact, as excitons created nearby diffuse into
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3.5 CL investigations on ZnO nanowire Schottky junctions

the depletion layer of the contact. There, they are ionised and cannot contribute to the CL

signal any more, but contribute to current. In this view, excitons created in the contact

pad region are totally neglected. However, a closer look at the CL image in Figure 2.6

reveals a very weak but still visible luminescence from the contact-pad covered area of

the investigated nanowire. In Figure 3.4, the CL spectrum of an uncovered nanowire

is compared to the spectrum taken from an ensemble of 3 nanowires of comparable size

covered by the Ti-Au contact pad. Both spectra show a near band-edge emission (NBE)

peak at a photon energy close to the bandgap of ZnO. This peak is attributed to the direct

recombination of excitons [RVK+08,RVW+08]. Additionally, a broad green defect-related

deep level emission (DLE) with a central energy of 2.45 eV is visible on both positions,

commonly attributed to defect centres near the crystal surface [RDM+09]. In comparison

to the spectrum of the uncovered wire, the intensity of the covered wires is lowered by orders

of magnitude. In addition, a change in the ratio between DLE and NBE is visible: the

DLE appears less pronounced for the covered nanowires. This behaviour is in accordance

to findings from literature, where coverage of ZnO nanowires with noble metals was found

to influence the DLE/NBE ratio [RDM+09] and especially Ti coverage enhanced the NBE

efficiency [FSW+11,DG11].

Covering with polymers was also found to suppress the DLE [RVW+08]. During the

photolithography step, the nanowires are covered with photoresist, which should yield a

similar effect. However, the resist is washed away with acetone subsequently to the contact

evaporation. ZnO nanowires have been shown to be very sensitive to acetone exposure, as

the acetone is able to reduce oxygen species that have been chemisorbed at the nanowire

surface [CHC+08]. On the other hand, the acetone exposure does not lead to a long-term

effect, as the initial wire properties are retained within seconds. Thus, it is very unlikely

that the emission characteristics of the uncovered nanowires are influenced by any residues

of the photolithography process.

A third feature that is visible in the spectra is the appearance of an additional weak

defect related red emission band at ≈ 1.9 eV only for the uncovered nanowire. The low

overall intensity of the covered wires can be explained by absorption in the contact pads as

well as ionisation of the excitons and separation of the electron-hole pairs at the nanowire-

contact pad interface. Since the luminescence of the covered parts of the wires is by orders

of magnitude weaker, the extraction of the diffusion length from the CL image can be

conducted following the method displayed in Figure 2.6 with the use of equation 2.11.
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Figure 3.4: CL spectra of a single uncovered nanowire and an ensemble of 3 nanowires
covered by a contact pad. Both spectra were recorded with the same integration time.
The uncovered wire shows orders of magnitude higher overall intensity. Compared to the
NBE, the intensity of the DLE is significantly reduced for the covered nanowires.

The CL setup can be used either in monochromatic or in panchromatic mode. With the

monochromatic setup, it is possible to selectively detect only the direct recombination of

excitons by monitoring the NBE. Previous studies on the luminescence porperties of ZnO

have shown that also the major part of the defect related emission cannot be observed un-

der sub-bandgap excitation [Lau73,HTS+06]. From this one can conclude that the defect

related emission is mainly caused by energy transfer from excitons that are trapped on the

defect states while diffusing through the nanowire. Thus, it should make no significant

difference for the estimation of the diffusion length, if the panchromatic or the monochro-

matic CL mode is applied in order to measure the diffusion length of the excitons in the

wire, as always an emission primordially caused by an exciton is observed. Taking this

consideration into account, the panchromatic mode was chosen for the diffusion length de-

termination, as it offered a better signal-to-noise ratio. Exemplary monochromatic and a

panchromatic image of an ensemble of nanowires of sample#2 are displayed in Figure 3.5.

Due to the geometry of the CL setup, the contacted samples with wiring on top could

not be adjusted in the focal point of the parabolic mirror to optimise the light detecting

efficiency, explaining the poor contrast in the monochromatic images. With the panchro-

matic mode, it was possible to detect a sufficient amount of light within a reasonable time
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3.5 CL investigations on ZnO nanowire Schottky junctions

Figure 3.5: Monochromatic and panchromatic CL images of an ensemble of nanowires on
sample#2 taken with identical exposure parameters. Even if the shape of all nanowires
is clearly recognisable in the monochromatic images recorded at the spectral position of
the NBE (372 nm) and DLE (500 nm), the poor contrast of the images is not sufficient
for a successful extraction of the exciton diffusion lengths. In the panchromatic mode,
significantly more light could be detected, giving enhanced contrast.

(≈ 2min per image) anyway. Longer exposure times could not be used, as thermal drift

inside the SEM would lead to a significant distortion of the CL images.

Following the method displayed in Figure 2.6, CL images of 27 nanowire contact areas

were investigated in order to determine the exciton diffusion length. During the experiment,

the Schottky diodes were always reverse biased with 15V by an external voltage source.

The extracted diffusion lengths are displayed in Figure 3.6. On the first view the data

does not look very promising. The exciton diffusion lengths of nanowires with diameters

of 150 nm and more librate around a value of 200 nm. This value, at least, is equal to the

diffusion length that Hwang et al. determined for a 200 nm diameter ZnO wire [HDP+11],

and is therefore in accordance to literature.

For smaller diameters the values obtained for the diffusion length are widely spread,

including higher values. An increasing diffusion length with decreasing nanowire diameter

seems unlikely, as one would expect a higher probability for the exciton to diffuse towards

the surface and recombine on a surface defect for a smaller diameter. This would effectively

reduce the diffusion length like observed on the GaAs nanowires. There must be another

reason for the wide spreading of the estimated diffusion length values for the nanowires

between 100 and 150 nm diameter.

From the error bars in Figure 3.6 it is obvious, that even in panchromatic mode the

method for the diffusion length measurement provides a relatively high uncertainty, owing

to the relatively poor resolution of the Jeol SEM and the even in panchromatic mode poor
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Figure 3.6: Diameter dependency of the exciton diffusion length of ZnO nanowires. The
values are widely spread and do not follow a clear trend. The nanowires can be roughly
classified in two groups: Nanowires with diffusion lengths librating around 200 nm, marked
with the orange dotted ellipsoid, and nanowires with diffusion lengths spread to higher
values, marked with the red ellipsoid.

light detection efficiency due to the non-optimum position of the wired sample. By survey-

ing the data sample by sample, it stands out that all but one of the widely-spread values

have been obtained by nanowires from sample#1. Nanowires from the same growth sub-

strate have been used for both samples investigated in the study. However, the nanowires

used for sample#1 were taken from a different position of this substrate than the wires on

sample#2, which might lead to different properties of the nanowires. The emission char-

acteristics of ZnO nanowires are strongly related to the local growth conditions [LLA+09].

The difference in the diameter distribution of the two samples is also an indication for dif-

fering nanowire properties. In the study of Oh et al. [OLP+07], different optical properties

of nanowires from the same growth process have been found. The differences in emission

characteristics were found to also be correlated to changed transport properties of the

wires. In order to find or exclude a similar phenomenon in our experiment, the contact

wirings from both samples were removed and the samples investigated in the CL again in

order to get a more detailed view on the optical properties of the individual nanowires.

Room temperature CL revealed a strongly differing ratio of the NBE and DLE inten-

sities INBE and IDLE for the investigated nanowires with values ranging between 0.1 and

1.2, irrespective of the nanowire diameter, as reported by other groups [STN04]. As the

INBE/IDLE ratio of the identically prepared nanowires can differ so extremely, an investi-
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3.5 CL investigations on ZnO nanowire Schottky junctions

Figure 3.7: Diameter dependency of the exciton diffusion length of ZnO nanowires, colour-
coded with respect to the intensity ratio INBE/IDLE of the single nanowires. Nanowires
with a pronounced red emission band are marked with a red octagon. While there is
only little dependency of the measured diffusion length on the INBE/IDLE ratio, most of
the spread values accumulating for lower diameters are obtained from nanowires with a
pronounced red emission band. For comparison, values obtained from other groups for
ZnO [SDG10,HDP+11] and Mg0.2Zn0.8O [YYD08,YLC+12] nanorods are included in the
diagram.

gation of the metal layer influence on single nanowires can only be conducted on the same

nanowire, priorly and subsequently to the metal evaporation. In addition, this finding puts

the interpretation of the decreased DLE intensity for the covered nanowires in Figure 3.4

in another context.

A clear relationship between the INBE/IDLE ratio and the exciton diffusion length could

not be found, as can be seen in the colour-coded diagram displayed in Figure 3.7. How-

ever, the diagram reveals a dependence of the measured exciton diffusion length on the

occurrence of the above mentioned red defect luminescence.

The red luminescence band at ≈1.9 eV has been prevalently observed in ZnO nano-

structures [FCL+04,CSS05,TCL+06,PMM+08,RBBW09]. The emission is often attributed

to oxygen interstitials [MLC+08]. An additional point defect seems not to be a possible

explanation of the increased exciton diffusion length measured for some of the samples

featuring the red emission band. Therefore, it is more likely that the measured deviations
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are originating from somewhere else. The different emission characteristics of the single

nanowires are pointing to a different defect configuration. Measuring in the panchromatic

CL mode has been legitimated by the assumption that a direct excitation of the defect

luminescence is not favoured and all observed luminescence is originally initialised by an

excited electron-hole pair. However, it might be possible that some of the nanowires

exhibit defect states that are sensitive to sub-bandgap excitation. In this case, the direct

excitation of defects would generate a CL signal, which is added to the exciton related

signal and might lead to misinterpretation in the panchromatic mode. Little is known

about the ability of sub-bandgap excitation of the ZnO defect states. Thus, to exclude this

possible error, monochromatic diffusion length measurements should be conducted. The

suggested mechanism is not necessarily solely responsible for the large deviation of some of

the measured diffusion length values, but the obviously wider spread values estimated for

the nanowires with a pronounced red emission point to a systematic error that is related

to the emission characteristics of the individual nanowires.

In addition to the results on the exciton diffusion length obtained in this work, some

values from literature are displayed in Figure 3.7 in order to allow a comparison. As

already mentioned, our values are in good accordance to the values obtained by Hwang et

al. for a 200 nm diameter ZnO wire [HDP+11]. Values obtained by CL on Mg0.2Zn0.8O

nanorods by Yoo et al. [YYD08, YLC+12] are a bit lower than the values obtained for

pure ZnO nanowires in this work, caused by the different material compositions. Soudi et

al. measured a value of 240 nm ”minority carrier” diffusion length, which is a bit above

the average value estimated in our study for the wires not affected by the red emission

band [SDG10]. In addition, this value has been obtained by SPCM at room temperature.

Yoo found a decreasing exciton diffusion length in the MgZnO nanorods with increasing

temperature in the range between 5 and 80K. Thus, the value obtained by Soudi seems a

bit too high compared to those estimated within this thesis.

In consideration of the fact that the diffusion lengths of the nanowires are strongly

related to the surface conditions of the single nanowires and even nanowires prepared on

the same sample under identical conditions show different diffusion lengths, it is resonable

to classify the values obtained in this work as realistic and in accordance with literature. On

the contrary, values of a few µm obtained via EBIC by Lin and Schwarz [LSF+11,SFC+11]

seem to be rather unrealistic and might be based on misinterpreted side-effects during the

EBIC measurement that could also be observed on our nanowire devices.
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3.6 Conclusions

Within this chapter, the diffusion lengths of the respective minority carriers have been es-

timated for both the p-type and n-type part of an axial GaAs nanowire pn-junction. The

minority carrier diffusion length of a material is a key parameter for the use especially in

photovoltaic devices and significantly decreased in nanowires compared to bulk material

due to enhanced surface recombination. Using EBIC, it was possible to measure the dif-

fusion length directly at the pn-junction, which will be the most important element of a

future nanowire solar cell.

From the diameter dependency of the diffusion lengths it is possible to determine the

surface recombination velocity. On the n-type side of the junction, this parameter was

found to be lower than expected for the dopant concentration adjusted during synthesis.

This fits to the actual picture of VLS growth dynamics, where it takes some time un-

til the growth catalyst is supersaturated with the dopant material after turning on the

dopant source and a constant doping level is reached. Surface passivation gives a possibil-

ity to increase the minority carrier diffusion lenghts again if needed for application. It was

shown in this chapter, that with a simple passivation process using aqueous ammonium

sulphide the carrier diffusion lengths can be significantly increased. The characterisation

of charge carrier dynamics with EBIC is well-suited for the application in nanowire based

(photovoltaic) devices, as it is possible to excite and analyse charge carriers with a very

high spatial resolution inside the SEM. The results obtained in this chapter will guide the

further improvement of GaAs in particular and semiconductor nanowire solar cells.

In the second part of this chapter, the exciton diffusion lengths of ZnO nanowire Schottky

devices have been estimated by spatially resolved CL measurements. It was found that the

emission properties of identically prepared VLS grown nanowires from the same growth

process can differ extremely, independent of the nanowire diameter. The diffusion length

measurement in panchromatic mode becomes unreliable for nanowires with an enhanced red

defect emission, pointing to the occurrence of emission caused by sub-bandgap excitation.

Thus, the monochromatic CL mode should be used if possible in order to get more reliable

results.

The results of the diffusion length measurements on ZnO wires further point out the

necessity of well-defined growth conditions in order to produce nanowires with reliable

electro-optical properties. While the estimated diffusion lengths are more or less in accor-
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dance with literature, an evaluation of the applicability of the naonowires in devices is ham-

pered by the differences in diffusion and emission characteristic between single nanowires,

even from the same growth run.
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This chapter reports on ion implantation in ZnO nanowires. The experiments regarding hy-

drogen implantation in ZnO nanowires have been conducted in collaboration with Apurba

Dev and Tobias Voss from the University of Bremen. Nanowire growth, implantation and

electrical characterisation have been done in Jena, while the optical characterisation was

conducted in Bremen. Some electrical measurements were done in close collaboration with

Henry Holland-Moritz within the scope of his examination thesis [Hol11]. Parts of the

results have been published in [DNR+10] and [RBG+10]. The results regarding peristent

ion beam induced conduction in section 4.3 have been obtained in collaboration with An-

dreas Johannes within the scope of his diploma thesis [Joh11] and are partly published

in [JNGR11].

4.1 Motivation

The electrical properties of a semiconductor are strongly influenced by the doping level

(compare section 2.1). For the implementation of bottom-up grown semiconductor nano-

structures into electrical devices it is necessary to have access to a doping mechanism that

provides extremely exact and reproducible doping results. However, doping semiconductor

nanowires during growth is rather challenging, especially in the case of compound semi-

conductors where the VLS growth model cannot be fully applied, as the more volatile

component usually has almost no solubility within the applied catalyst [BNGR10]. An

additional dopant atom species added during the growth process makes it even more com-

plicated to predict the resulting nanowire stoichiometry and doping level.

The radial uniformity of the dopant distribution in VLS grown nanowires has been

investigated by atom probe measurements [PHS+09] as well as stepwise surface etching

combined with quantitative SPCM [APHL09] or Kelvin force microscopy [KBR10]. In

all those studies an enhanced surface doping was detected, caused by enhanced dopant
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aggregation at or diffusion towards the nanowire surface. The effect is even more pro-

nounced for nanowires with a tapered structure caused by concurrent vapor-solid (VS)

growth [BSM+06] at the nanowire sidewalls during the growth process [PHS+09,KRA+09].

All in all, the radial dopant profile of nanowires doped during growth is not smoother than

profiles obtained by post-growth doping via diffusion as determined by capacitance-voltage

measurements in [GTK+09].

In addition to radial dopant inhomogeneities, axial dopant concentration gradients of-

ten occur during VLS nanowire growth. The doping level depends on the concentration

of dopant atoms inside the seed particle used for the growth. When the dopant supply is

switched on, it usually takes a certain time to reach the desired dopant concentration inside

the catalyst particle. Therefore, VLS-grown nanowires often show an axial inhomogeneous

doping profile in the part of the nanowire grown directly after switching the dopant supply

on or off [GRB+09]. For tapered nanowires with enhanced doping concentration in the

conical shell, an axial doping gradient along the nanowire, caused by the ratio between a

lower doped nanowire core and higher doped taper, is also visible [KRA+09]. Some possi-

bilities exist to take advantage of nanowires with highly doped tapers [SPLF+09], but for

many applications a homogeneous dopant profile along the nanowire is desirable. In a two-

stage approach Koren et al. were able to reduce nonuniform doping in phosphorus-doped

silicon nanowires by applying a high H2 partial pressure during growth and annealing

afterwards [KHG+11]. However, homogeneous doping profiles are hard to achieve in semi-

conductor nanowires during growth and reliable and controllable doping routines are of

importance for future semiconductor nanowire device integration [PNR07].

A possible alternative to doping during growth is post-growth doping via ion implan-

tation. This method provides a homogeneous dopant profile and the possibility to adjust

the dopant concentration in an exact manner without being restrained by any solubility

limits [RBGN10,BNGR10]. However, damage production inside the implanted crystal has

to be taken into account and annealed subsequent to the implantation. Although post-

growth annealing in order to achieve a homogeneous doping profile can act beneficially

in some material systems [KHG+11], great care must be taken with regards to the out-

diffusion of already implanted dopants [SWG+08] as well as catalyst diffusion into the

nanowire [KHG+11].

So far, ion implantation in semiconductor nanowires has been introduced to different

material systems in order to control the electrical, magnetic, and optical properties of the
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nanostructures. An example of the successful doping of nanowires is the implantation of

boron and phosphorus into silicon wires [CFR+08, HBR+09,KKND+09]. Here, not only

uniform doping but even defined pn-junctions were realised via ion implantation. An ex-

ample for tailoring the optical properties of semiconductor nanowires is the implantation of

transition metal or rare earth elements into ZnO nanowires [GSM+08,MZLR09,RBG+10].

Following ion implantation and annealing, photoluminescence measurements revealed ad-

ditional emission bands in the green spectral region. This could be attributed to intra-shell

transitions of the implanted elements, and thus prove the successful incorporation of the

dopants into the ZnO crystal. In the case of rare earth elements, ion implantation provides

the only access to optically active dopants inside ZnO nanowires [GSM+08].

Although doping via ion implantation is a well known state-of-the-art technique in the

semi-conductor industry, some new challenges arise for its application on nanostructures.

For a spatially strongly confined structure, like a semiconductor nanowire of only a few nm

in diameter, every single dopant atom might change the doping level significantly and thus

cause a drastic change in the electrical properties. For example, a donor concentration of

1016 cm−3 equals the total amount of 2 dopant atoms in a nanowire with 25 nm diameter

and 500 nm length. This precondition motivates the development of countable or even

single ion implantation. Additionally, single dopant atoms and the controlled manipulation

of their quantum states could give way to the development of fully new quantum bit

devices [SdHK05]. In optoelectronic devices, single implanted optical emitters like rare

earth elements in ZnO could work as single photon sources.

4.2 Hydrogen implantation in ZnO nanowires

Controllable p-type doping in ZnO is not easy to achieve and still subject to investigation.

There are some studies about phosphorus-doped p-type ZnO [TOO+04,XWZ+07,CLB+08,

LCZ+09]. However, in the case of nanowires, it is still not clear whether phosphorus doping

really leads to stable p-type wires [DBL+11]. Other promising approaches are based on

the use of nitrogen [YZJ+08a] or antimon [WCZ+11,LLC11] instead of phosphorus. While

stable p-type doping remains an object of major interest for researchers, controlled n-type

doping is also mandatory for device optimisation. It has been shown that the conductivity

of ZnO can be enhanced by many orders of magnitude by introducing aluminium [ZLC+10],

nickel [HLC+05], or gallium [YZJ+08b] as dopants. Within this chapter, hydrogen ion
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implantation in ZnO nanowires is investigated. While the role of hydrogen in ZnO is

still not fully understood, it is known that hydrogen can act as a shallow donor in ZnO

[van00, CDC+01] and significantly enhance the bulk conductivity as well as the surface

conductivity [ABC+10]. Compared to the heavier elements mentioned above, hydrogen

ions cause only little and possibly even negligible damage inside the implanted material

[DNR+10].

Hydrogen incorporation via plasma treatment, which primarily influences the properties

of the near surface region in ZnO [IOH+03, PSG+03, PNI+05], has a tremendous impact

of the electronic properties of ZnO nanostructures, where surface related effects govern

a major fraction of the transport properties. While it is nearly impossible to derive the

exact amount of hydrogen incorporated inside a nanowire during the exposure to hydrogen

plasma, ion implantation allows for experiments at defined hydrogen concentrations. It is

stated in the literature, that ZnO nanostructures can be used as hydrogen sensors, as the

electric conductivity can be enhanced a few percent through simply exposing the structures

to hydrogen gas [RKK+09]. However, the conductivity changes that occur after hydrogen

plasma exposure or hydrogen implantation exceed this degree of change many times over.

4.2.1 Optical properties of hydrogen implanted nanowires

Hydrogen plasma treatment or annealing under hydrogen atmosphere has been demon-

strated to enhance ZnO nanowire near bandgap emission (NBE) efficiency [HTN+04,

LLZ+07]. An optimised emission efficiency constitutes a desirable case for any optical

device. The effect even occurs in the case of a mild argon plasma containing only small

amounts of hydrogen [DNR+10]. The emission spectra of pristine and plasma treated

nanowires are compared in Figure 4.1. All measurements were conducted on nanowire

ensembles left on the growth substrate. While the NBE is enhanced, deep level emission

(DLE) from inner-bandgap defect states is significantly reduced. This DLE quenching is

caused by passivation of the defect states [OIO+02] by the incorporated hydrogen atoms

and remains stable over several weeks. Within the NBE region, displayed in detail in Figure

4.1 b, a new emission line at an energy of 3.363 eV appears. This line, commonly named

I4, is attributed to the recombination of interstitial hydrogen bound excitons [BC08] and

shows no long-term stability. Thus, the main contribution to the DLE quenching results

from the deep level passivation, as the quenching is still visible after the volatile interstitial

hydrogen donors are already diffused out of the crystal.
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Figure 4.1: PL spectra of ZnO nanowires before and after mild argon plasma treatment.
a) Survey spectrum. The quenching of the DLE after the palsma treatment is clearly visible.
b)NBE spectrum. The I4 emission line is attributed to excitons bound to interstitial
hydrogen. This line is not stable in the long-term. Data taken from [DNR+10].

To investigate the effect of the incorporation of a discrete amount of hydrogen atoms,

hydrogen-implanted nanowires were prepared by low energy ion implantation. H+
2 implan-

tation was carried out at room temperature with an ion energy of 600 eV. Calculations

with the Monte Carlo package SRIM [ZBL85] estimate a projected range of the ions of

about 7 nm. The damage caused by such an implantation is less than 0.02 defects/Å per

ion. In ZnO most of the created point defects are annealed immediately at room tempera-

ture due to a high defect mobility [LAW+05], and one can thus assume that the nanowire

remains practically undamaged during the implantation process. Two different fluences

of 6.2·1014 ions/cm2 and 5·1015 ions/cm2 H+
2 were used. The implanted H+

2 -ion is believed to

dissociate immediately when penetrating the ZnO nanowire and can be considered as two

single 300 eV H+-ions. To prove this assumption, another sample was implanted with

1.1·1015 ions/cm2 600 eV H+ ions. However, due to the design of the accelerator, it was not

possible to extract a reasonable amount of H+-ions at a lower ion energy within a reasonable

timespan.

At low measuring temperatures, a strong quenching of the DLE is observed after the

hydrogen implantation, in accordance with the plasma treated samples, as displayed in

Figure 4.2 a). In comparison to the H+ implanted sample, the H+
2 implanted shows no
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4 Ion implantation in ZnO nanowires

Figure 4.2: Comparison of PL spectra of plasma treated and hydrogen implanted ZnO
nanowires. a) Survey spectrum. In both cases the quenching of the DLE is clearly
visible. b)NBE spectrum. The I4 emission line that is visible in the case of plasma
treated nanowires does not show up in the spectrum of the implanted wires. Data taken
from [DNR+10].

noteworthy difference. There is no sign of any implantation induced defect emission. The

NBE region is shown in more detail in Figure 4.2 b). In contrast to the plasma treatment,

the I4 line attributed to the interstitial hydrogen does not appear for the implanted samples.

For logistical reasons, the measurements could only be made three days after implantation.

As such, it is possible that the majority of the interstitial hydrogen might have diffused

out of the sample at room temperature.

In Figure 4.3 the PL spectra of samples implanted with different hydrogen fluences

are compared. It is clearly visible that the quenching of the DLE becomes stronger with

increasing H+
2 fluence, indicating that hydrogen implantation is a powerful tool for targeted

manipulation of the optical properties of ZnO nanostructures. Quantitative measurements

with an integrated sphere [DNR+10] confirm the analogy between plasma treatment and

ion implantation as well as the fluence dependency of the DLE quenching and the NBE

enhancement.
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Figure 4.3: PL spectra of a pristine sample compared to nanowires implanted with two dif-
ferent fluences of H+

2 . The DLE quenching gets more pronounced with increasing hydrogen
fluence. Data taken from [DNR+10].

4.2.2 Electrical properties of hydrogen implanted nanowires

The impact of hydrogen implantation on the electrical properties of ZnO nanowires has

been investigated on ZnO devices that were produced following the scheme in Figure 2.2. A

thin gold layer or Ti/Au-bilayer was thermally evaporated as contact material. The devices

usually consist of multiple nanowires bridging the two contact pads. As the number of wires

per device differs from one to about 20 and the wires themselves are often asymmetrically

contacted, the IV-characteristics of the devices can turn out quite differently. In Figure 4.4

two typical IV-characteristics are displayed. While the sample in 4.4 a) shows a rather linear

characteristic, the sample in 4.4 b) turns out to be rectifying. However, both characteristics

represent devices with multiple nanowires with Schottky barriers on each end, where the

final IV-curve of the device is governed by the junctions with the lowest barriers in every

direction. Besides the two types displayed in Figure 4.4, appearances of devices rectifying

in the other direction as well as devices with a double-s-shaped characteristic are also

common.

The contacted nanowires were measured inside the probe station prior to and after the

implantation. Special attention had to be placed on the illumination constraints, as ZnO

is known to be very sensitive to light exposure and exhibits persistent photoconductiv-

ity [LLZ+07,PHRJD+08,ZGH+09]. The samples used in this study also show a noteworthy
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Figure 4.4: Typical characteristics of ZnO nanowire devices produced by photolithography.
a)The device shows a rather linear characteristic. b)The device shows a more asymmetric,
rectifying behaviour. Both devices consist of multiple nanowires bridging between the
contacts. Insets show the same data on a logarithmic scale.

UV sensitivity, as visible in the comparison of IV-characteristics of the same sample under

different illumination constraints, displayed in Figure 4.5. The measured current varies

by two orders of magnitude depending on the illumination. Therefore, it is important

to consistently measure with caution under the exact same conditions when comparing

pre- and post-implantation IV-characteristics. Apparently, the shape of the characteristic

does not change significantly. As with the issue of persistent photoconductivity, irradia-

tion with energetic ions can induce a similar effect, namely, persistent ion beam induced

conduction (PIC) [JNGR11]. As such, care with regards to this issue should also be taken

when measuring implantation induced changes on the IV-characteristics. Under a vacuum

atmosphere, PIC will ast for several hours, whereas in ambient air, it will last for several

minutes at most. A detailed view on the PIC effect in ZnO nanowires will be given in

section 4.3.

Hydrogen implantation on contacted nanowires was carried out at different ion energies.

Analogue to the optical measurements discussed above, implantation with 600 eV H+
2 -ions

and fluences of 1.5·1014 ions/cm2 and 1.15·1015 ions/cm2 were carried out. Those parameters

are effectively tantamount to an implantation with 300 eV H+
2 -ions at a doubled fluence.

Furthermore, 10 keV H+
2 -ions were used to increase the implantation depth. 10 keV H+

2 in-

stead of 5 keV H+-ions were chosen because of the higher yield of H+
2 -ions at the accelerator

system.
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Figure 4.5: Comparison of the IV-characteristics of a ZnO nanowire device under different
illumination constraints. The current is varied by two orders of magnitude due to light
illumination at the measurement site.

The effect of the ion energy on the implantation depth is displayed in Figure 4.6. Iradina

simulations (see chapter 2.2.2) show that, during the 5 keV hydrogen implantation, the

nanowire is nearly completely riddled with hydrogen atoms (4.6 a)), whereas in the case

of 300eV, the ions are only implanted close to the surface (4.6 b)). Although the total

amount of hydrogen incorporated is similar in both cases, the spatial distributions of the

atoms differ greatly from one another. It is important to note that iradina Monte-Carlo

simulations do not take into account any hydrogen diffusion (T=0K).

The IV-characteristics of the nanowire devices implanted with the low energetic ions

are displayed in Figures 4.7 a) and b). The conductivity is enhanced by several orders of

magnitude due to the irradiation. The enhancement factor seems to be fluence depen-

dent in Figure 4.7 a); the implantation with the higher fluence reveals a further, moderate,

increase in conductivity. However, the sample presented in Figure 4.7 b) shows different

behaviour. In this case, the characteristic referring to the implantation with higher fluence

was not recorded directly after implantation but the following day. Hence, parts of the

hydrogen might have already diffused out of the sample when being incorporated on the

volatile interstitial sites, similarly to the situation already observed during the optical mea-

surements, presented above. This leads to the assumption that a part of the conductivity
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Figure 4.6: Comparison of implantation profiles of 5 keV H+-ions (a) and 300 eV H+-ions (b)
in a ZnO nanowire with 150 nm diameter simulated with iradina [BR11]. The ions penetrate
the nanowire from the left side, as indicated by the red arrow. The profiles are based on
ions impinging evenly over the whole nanowire area. In both cases the simulated fluence
was 1015 ions/cm2

.

increase is caused by implanted interstitial hydrogen donors. Additionally, a donor-related

higher carrier concentration inside the wire leads to a thinner surface depletion layer as

well as a positive effect on the Schottky type contact conductivity.

To investigate the long-term behaviour of the effect, both samples were measured three

weeks after implantation took place. From Figure 4.7 a) and b) it is clear that the conduc-

tivity remains tremendously enhanced compared to the unimplanted state. Simultaneously,

a noteworthy drop in conductivity in comparison to the state directly after the implantation

is visible. This cutback in conductivity could be due to further outdiffusion of interstitial

hydrogen and therefore less shallow donor states inside the nanowires. The permanently

enhanced conductivity must therefore be related to the more stable substitutional hydro-

gen [BC08]. Hydrogen on an oxygen site can act as a shallow donor [JV06a] and therefore

permanently increase the conductivity. Additionally, the positive influence of the substi-

tutional hydrogen on the contact resistance can also lead to conductivity enhancement.

Generally, implantation induced changes of the properties of the Schottky contact to the

nanowire have to be considered as a reason for the change in conductivity. On both devices

a ≈100 nm thick gold layer was used to form the contact pads. The ZnO-Au Schottky diode

is known to be very sensitive to the surroundings, as a major contribution to its electrical
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Figure 4.7: IV-characteristics of ZnO nanowire devices implanted with hydrogen. a) and
b) show different samples implanted with low energy ions. The conductivity is massively
increased after two subsequent implantations at the fluences mentioned in the legend.
Three weeks after implantation the conductivity is significantly reduced but still orders of
magnitude higher compared to the pristine sample. c) and d) present the IV-characteristic
of a sample implanted with 10 keV H+

2 ions. The previously symmetric characteristic
becomes asymmetric after implantation. No significant conductivity increase is visible.
From the plot over a wider voltage range in d) the shape of the characteristic appears
altered following the implantation.

properties is governed by the behaviour of the near-surface states [MSW+05, LLZ+07].

Hydrogen induced passivation of near-surface defect states will reduce both the width

of the surface depletion layer and the defect induced fermi level pinning at the surface

[LLZ+07]. Both effects lead to a reduction of the Schottky barrier height and therefore

to a higher conductivity of the contacted nanowire. In order to distinguish the influence

of the contacts from the nanowire properties, four-point measurements would be needed.

However, the penetration depth of the ions with 300 eV energy (7 nm in ZnO, compare

Figure 2.2.2, in gold even less) is small compared to the contact pad thickness (100 nm)

and it is very unlikely that any ion will permeate the contact pad and reach the nanowire-

contact interface. Therefore, only ions that are impinging the nanowire near the contact

junction will have an effect on the contact resistivity.

Implantation with 10 keV H+
2 -ions was carried out on a nanowire device prepared with

Ti-Au contacts. Besides this, the sample was prepared in the same way as the samples

used for the lower ion energies. The IV-characteristics prior to and after the implantation

are displayed in Figure 4.7 c) and over a wider voltage range in 4.7 d). It is obvious that
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the desired effect, an enhancement of conductivity after hydrogen implantation, was not

achieved with this sample. The same situation arose for several other samples prepared in

the same way. For the exemplary sample presented here, the formerly nearly symmetric

IV-characteristic had an altered, asymmetric shape after the implantation. Whereas the

conduction was increased in one direction after the implantation, it was decreased in the

other one. After one week, the conduction in both directions was worse than before the

implantation. This further drop in conductivity can be explained by the outdiffusion of

interstitial hydrogen. The initial drop must be due to implantation related defects. As

iradina and SRIM simulations do not predict notable amounts of defects due to the im-

planted hydrogen, impurities inside the accelerator might have caused some extra damage.

Indeed, the accelerator LEILA was optimised for the implantation with ion energies below

1 keV. Thus, it is possible that the mass speratation unit works less effectively for higher

ion energies. Point defects in ZnO have often been assumed to be responsible for the

intrinsic n-conductivity. Therefore, implantation induced defects should have a positive

impact on the device conductivity. However, in [JV06b] Janotti and van de Walle conclude

that point defects in ZnO cannot contribute to any conductivity, as most of the defects are

not stable under ambient conditions, which also accounts for the Zinc interstitial shallow

donor. Oxygen vacancies act as deep level donors that do not enhance the conductivity.

As such, implantation defects induced by unwanted impurities in the ion beam are the

most likely reason for the reduction in conductivity in the implanted devices. The change

in symmetry of the IV-characteristic points to a more drastic degradation of the contacts,

as an increase in nanowire resistivity would shift the IV-characteristic, but not alter the

shape.

Within a totally different energy regime, tuning of the electrical characteristics of ZnO

nanowire field effect transistors via high-energy proton irradiation has recently been pre-

sented by Hong et al. [HJS+10]. The authors showed that at low ion fluences of only

1010 − 1012 ions/cm2 and a high proton energy of 10MeV, a change in conductivity of ir-

radiated ZnO nanowires can be obtained. However, they traced the conductivity change

back to implantation induced charges in the substrate below the wires. The nanowires

themselves remained unaffected by the protons, which is in accordance to measurements

on bulk ZnO that show a remarkable resistance of the material to high energetic proton

irradiation [AGH+01].

As described in section 2.1.2, the nanowire devices used in this section can also be

driven as simple backgate FETs. In Figure 4.8 the transfer curve of the device from Figure
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Figure 4.8: Transfer characteristics of a ZnO nanowire device implanted with 1·1015 ions/cm2

10 keV hydrogen ions. After the implantation, the hysteresis of the transfer curve is sig-
nificantly enhanced. The arrows indicate the direction of the measurement.

4.7 c) is shown. The device shows a typical n-type characteristic, which means that it is

switched to the ”on”-state (=conductive) with increasing gate voltage. It is visible that the

unimplanted FET features a pronounced transfer hysteresis (orange line), which is further

enhanced after the implantation process (blue line). Whereas the absolute current through

the device decreases over a period of days after the implantation, the enhanced hysteresis

stays visible.

Transfer hysteresis is a known effect for ZnO nanowire transistors and is attributed to

the influence of adsorbed species on the nanowire surface [GSLY05, HJK+08, SHL+09].

Adsorbed species on the nanowire surface and the nanowire-gate interface are able to trap

electrons when a positive gate voltage is applied. After switching off the gate voltage, the

trapped carriers on the nanowire surface induce a depletion zone in the nanowire channel

and therefore lower the conductivity. This phenomenon has recently gained major interest

as it could be useful for the development of non-volatile memory [KKY+09,SCM+10]. The

hysteresis behaviour is enhanced when the transistor is exposed to ambient air, and can

be suppressed by layer coating passivation of the nanowire surface [HJK+08, SHL+09].

For the application in non-volatile storage devices a reliable hysteresis is desirable. Thus,

several attempts have been made to control the hysteresis behaviour. Keem et al. used

Al2O3 layers as gate dielectric to enhance the charge trapping ability of their devices, and

therefore the hysteresis effect [KKY+09]. Sohn et al. functionalised the nanowire surface
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with ferroelectric particles and realised a non-volatile multi-bit device [SCM+10]. Li et al.

used redox-active molecules to functionalise and boost the charge-store capability of In2O3

nanowire transistors [LFS+04].

The transfer characteristics of the hydrogen implanted FET in Figure 4.8 show a sig-

nificantly enhanced hysteresis subsequent to the hydrogen implantation. A comparable

increase of the hysteresis loop was also observed for ZnO nanowire transistors annealed

under a high-pressure hydrogen atmosphere [YHJ+11]. Yoon et al. attributed the appear-

ance of the hysteresis to so-called mobile protons inside the substrate. Hydrogen atoms

diffused into the gate oxide can accumulate either at the interface between oxide layer and

nanowire or at the interface between oxide layer and gate electrode. By applying a gate

voltage, the protons will move from one interface to the other with respect to the applied

electric field. A positive gate voltage will drive the protons to the nanowire-oxide interface,

where they can trap charge carriers and induce a depletion zone inside the nanowire, lower-

ing the channel conductivity once the gate voltage is switched off. A negative gate voltage

has the reverse effect. It is very likely that implantation with hydrogen ions leads to a sim-

ilar effect. However, the hysteresis observed in Figure 4.8 must not necessarily result from

mobile protons, as implantation induced defects can also induce a hysteresis in nanowire

FETs, as observed for boron and phosphorus implanted silicon nanowires in [CFR+08].

Despite the uncertain origin of the hysteresis, the effect could be very interesting for the

development of non-volatile memory devices, as ion implantation exhibits a simple access

to modify the transfer hysteresis of ZnO nanowire transistors.

4.3 Persistent ion beam induced conductivity

As already mentioned in the previous section, the irradiation of ZnO nanowires with ener-

getic ions can induce an additional increase in conductivity, similar to the already well-

known PPC. This persistent ion beam induced conductivity (PIC) effect [JNGR11] is

independent of the implanted ion species and will last for several minutes up to hours

depending on the atmosphere applied to the sample. In this section the PIC effect will be

further investigated and compared to the similar PPC effect.

The experiments have been conducted on nanowire devices assembled following the

scheme in section 2.1.2. A 50 nm thick titanium layer as adhesive agent followed by a

50 nm thick gold layer were used to form the contacts. FIB preparation was used to cut all

66



4.3 Persistent ion beam induced conductivity

contact-connecting nanowires but one in order to receive single nanowire transistors. The

devices typically exhibit a s-shaped IV-characteristic governed by the Schottky contacts

formed by the ZnO nanowire and the Ti-Au contact pads. The samples were placed on a

chip carrier, contacted via wedge bonding, and subsequently mounted on the high-vacuum

flange equipped with electrical feed-throughs described in section 2.2.3 in order to allow

electrical characterisation of the samples in-situ inside the implantation chamber. The

implantations and the in-situ measurements were conducted using the implanter ROMEO

in Jena.

In Figure 4.9 b), the current measured through a nanowire device at a constant bias of

1V is displayed (the wiring scheme is displayed in Figure 4.9 a)). The sample was mounted

inside the evacuated implantation chamber of the implanter at a pressure of 10−6mbar.

During the whole experiment the sample was kept in dark. While monitoring the current,

two short 12 s implantations each with 5 ·1010 ions/cm2 He+ were applied. Helium was chosen

for two reasons. First, as a noble gas it will not be embedded in the ZnO crystal but diffuse

out and not cause any doping. Additionally, the light helium ions cause only a small

number of defects inside the crystal and therefore implantation related side effects on the

conductivity are minimised. The current through the nanowire increased from ≈0.5 µA to

≈2.5 µA after the first implantation at 1000 s. Directly after stopping the implantation,

a steady but slowly decay of the current occurs, that does not reach the initial value

of the relaxed device in accessible time. A second implantation step at 3000 s leads to

a comparable current increase from ≈2 µA to ≈4 µA. Permanent ion irradiation of the

device leads to a further increase of the current until reaching a saturation level, with the

maximum current varying from device to device. The behaviour and also the dimension

of the current increase are comparable to PPC effects reported in literature [BSS+11]

as well as measured on our own devices (see Figure 4.10). The decay of the current

is dramatically increased when the chamber is vented with ambient air, as happened at

6000 s, demonstrating the influence of the chemical environment on the PIC effect.

Current decay curves of ion irradiated as well as comparable UV irradiated samples under

constant bias and different atmospheres are displayed in Figure 4.10 in order to compare

the chemical sensitivity of PIC and PPC decay times. It is obvious that in both cases the

decay rate drastically increases when the device is exposed to ambient air and therefore

to oxygen and water molecules. The analogue behaviour supposes that PIC and PPC rely

on the same mechanisms. To exclude a pure dependence on the pressure, the experiment

has also been conducted within a noble gas atmosphere for the UV irradiated sample,
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4 Ion implantation in ZnO nanowires

Figure 4.9: a)Wiring scheme for the in-situ current measurement. The current through the
device is monitored during ion irradiation. Thus, ion induced changes in current transport
can be detected. b)Current measured through a ZnO nanowire device during two short
implantation steps with 30 keV He+-ions. A clearly visible current increase during each
implantation step is followed by a steady but slow current decay. After venting with
ambient air, the current decay rate is massively enhanced. Unintentional switching of the
SMU measurement range resulted in a disturbance in the measured curve marked ”external
interference”.

revealing that the current decay rate is pressure independent and indeed governed by the

exposure to ambient air and therefore O2 and H2O molecules. This stands in accordance

to literature regarding PPC [SHL+09], where the huge PPC effect in zinc oxide nanowires

is commonly attributed to excited charge carriers that can populate quasi-stable, surface-

oxygen bound states [PHRJD+08]. For the PIC effect, ions instead of photons are exciting

electron-hole pairs inside the nanowire. Besides this, PPC and PIC seem to rely on the

same mechanisms.

The nanowire surface exposed to the ion beam of a single nanowire transistor can be

estimated to about 1 µm2 for a nanowire channel of 200 nm width and 5 µm length. There-

fore, the ion fluence of each implantation step applied to the device in Figure 4.9 equals

about 500 ions per nanowire. As those 500 ions are causing a current increase of 2µA,

the average increase caused by a single ion should be detectable with the SMU that can

measure down to pA resolution.
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4.3 Persistent ion beam induced conductivity

Figure 4.10: Comparison of the decay of PIC and PPC under different atmospheres. The
maximum current of the devices before the decay sets in is normalised to one. It is obvious
that the ion irradiated and the UV exposed samples show a similar behaviour. The slightly
weaker decay of the ion induced conductivity in vacuum might be caused by the different
vacuum pressure.

An upper limit of the total number of electron-hole pairs excited by the incoming ions

can be estimated very roughly by dividing the ion energy through the bandgap of the

irradiated material. In our experiment, this results in 30 keV/ 3.4 eV≈ 9000 electron-hole

pairs or 18000 excited charge carriers per impinging ion. The true number of excited

carriers will indeed be significantly smaller [Kle68]. Given an ion current of only 6 nA/cm2

as in our experiment and a carrier lifetime of 100 ps [RGW+10], we obtain a maximum

density of generated carriers of ≈ 3·108 cm−3. With 1V bias applied to the 5 µm nanowire

channel and a mobility of 20 cm2/Vs [BSS+11] the directly ion induced current should be less

than 1 fA, more than six orders of magnitude below the observed average current change

of 4 nA per impinging ion.

As mentioned above, the exaggerated current excitation efficiency of PIC in ZnO could

in principle be sufficient to detect single ions impinging a ZnO nanowire. In Figure 4.11

the current through a ZnO single nanowire device during the implantation with 150 keV

Tb+ ions is displayed. The ion current was reduced to 5 pA/cm2, resulting in the theoretical

value of one ion hitting the nanowire about every three seconds. The device was fully

relaxed prior to implantation. During the 350 s of ion exposure, the current at 1V bias

rose from 0.5 nA to 6 nA. It is clearly visible, that the conductivity is increasing in distinct

steps, most likely caused by the impact of single ions to the nanowires.
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4 Ion implantation in ZnO nanowires

Figure 4.11: Current measured through a ZnO nanowire device during an implantation with
150 keV Tb+-ions at an ion current of 5 pA/cm2. A current increase in distinct steps, most
likely related to single ion impacts can be observed.

However, the number of eight visible events during 350 s of implantation is much less

than the expected ∼100 impacts. Therefore, not every ion hitting the nanowire causes

a significant increase in conductivity. Ions only glancing the nanowire might not depose

sufficient energy to induce a detectable current increase. Additionally, there could be

differences in PIC excitation efficiency depending on the impact position. As the electrical

characteristics of the nanowire devices are governed by the Schottky barriers between the

nanowire and the Ti-Ai contact pads, an ion impinging on the region near the metal contact

most likely induces a larger change in conductivity than an ion hitting the center of the

nanowire channel, where it has nearly no effect on the contact properties. This behaviour

is in accordance with the giant response of nanowires with ZnO-Pt Schottky contacts to

UV light reported in literature [ZGH+09]. In that study, the PPC of ZnO nanowire devices

with platinum contacts have been compared to devices with ”ohmic” Ti-Au contacts. The

platinum based contact structures, that feature a larger Schottky barrier, exhibit a much

more pronounced PPC. The gigantic difference in photoresponse between the samples with

different Schottky barrier heights confirm that at least a large fraction of the PPC is caused

by excitation of the near-contact region of the devices. As so far most of the models for

PPC in ZnO nanowire transistors do not take the changes to the contact behaviour in

account [PHRJD+08], they might have to be expanded in this direction. This does not

mean that those models are essentially wrong. Instead, one has to consider the impact of
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the increased nanowire conductivity to the contact behaviour when investigating a device

whose electrical characteristics are governed by the contact resistivity.

Finally, the strongly localised PIC response to an energetic ion beam within the Schottky

contact area of a single nanowire transistor is also an interesting issue for the development

of a spatially confined ion detector, which will be discussed in the following section.

4.4 Countable ion implantation in ZnO nanowires

The necessity of a precise doping method for the production of advanced semiconductor

nanoscaled devices and the potential for the use of single dopant atoms in quantum compu-

ting and optoelectronics motivate the development of single ion implantation (SII) methods.

Studies on nanoscaled FETs have shown a significant influence on the individual number

of dopant atoms to the electrical properties of the devices [ONF+07, LRW+08,PWJ+09].

Generally, the selective implantation of a single atom into a nanosized target can only be

achieved by either extremely confining the ion beam or the possibility of detecting single

ions from a broader beam [Sch10a]. The former can be achieved by the use of an advanced

focused ion beam system [SKH+02,SOKO05]. The number of implanted ions is counted by

detection of ion impact induced secondary electrons. However, this approach is limited to

the ion species that are available for focussed ion beam systems, which have to be driven

with liquid metal sources. A wider variety of elements would be accessible due to the use

of an ultra-cold laser trap ion source [SLF+09], which is, however, quite a complex unit.

The second approach, which is using a broader distributed ion beam for implantation

and detecting and counting the implanted ions in a specified area, has the advantage of

making less complex demands on the ion beam used for implantation. On the contrary,

the detection of single ion impacts is still necessary in order to achieve assured single

atom doping. To guarantee that only a specific area of a nanostructure is hit by the ion,

implantation can be conducted through a nanosized mask, which is often stationary ap-

plied on the sample via lithographic processes [BWR+07,JYH+05,MJY+11]. A promising

approach for the integration of a movable mask with accurate positioning on the sample

area of interest is the implantation through a nanosized hole in a scanning probe can-

tilever [PPL+05, PLS+05, NKB+09]. Besides ion implantation methods, the integration

of single dopants into semiconductor nanowires has also been demonstrated by using a

scanning tunneling microscope (STM) as an atomically accurate fabrication tool [KF11].
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4 Ion implantation in ZnO nanowires

However, that approach is not suitable for application in bottom-up grown semiconductor

nanowires.

As conventional ion sources are not capable of emitting a predefined amount of ions at

a distinct point in time, the detection of single ions is mandatory for any approach of SII.

The monitoring of secondary electrons created by the impinging ion becomes less accurate

for the detection of single charged ions in the range of only a few keV in nanostructures,

owing to the dependency of the secondary electron yield on the surface morphology, on

the ion energy, and on the charge state of the ion [Sch10a]. An alternative could be Geiger

mode detectors, that have been shown to be capable of detecting single 125 keV helium

ions within a distance of 75 µm on the same substrate [BSC10]. For the implantation in

already contacted semiconductor nanowire devices, impinging ions can be detected also

in-situ by either monitoring implantation induced current changes in transport channels

[SKN+08,BWR+07,WSB+09, JTA+10] or by detecting the electron-hole pairs created by

the ion impact [JYH+05,MJY+11].

The stepwise increasing current of the ZnO nanowire device in Figure 4.11, attributed

to the impacts of single ions, is also an example for the detection of single ions via current

changes. Contrary to the often investigated implantation induced current increase or de-

crease in silicon devices [SKN+08,BWR+07,WSB+09], where the current change is usually

attributed to the creation of defects or the electrically active incorporated dopant atom,

our experiment makes use of the PIC effect explained in the previous section. From this

aspect, the spatial containment of the PIC effect to the depletion zone, that was suggested

in the discussion of section 4.3, is quite interesting. A strongly localised sensitive area near

the Schottky region allows a refined and accurate conclusion about the lateral position of

the detected ion impact.

The device measured in Figure 4.11 was a single nanowire device, consisting of a ZnO

nanowire contacted with Schottky-contacts on both sides. When a bias voltage is applied,

one of the Schottky contacts is under forward bias, and the other is under reverse bias. The

current will be governed by the contact under reverse bias condition, as the resistivity of

a Schottky diode is higher in reverse direction. Ion beam induced conductivity changes on

the contact biased in forward direction will therefore have only minor impact on the overall

conductivity of the device. Thus, the device represents a detector for single ions that is

spatially confined to the area near to the reverse-biased Schottky contact. An estimation

of the extent of the sensitive region is not possible from our setup. However, one can
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Figure 4.12: Wiring scheme for the in-situ detection of implanted ions. The device is biased
by an external voltage source with a low-pass filter in between for levelling voltage source
induced high-frequency noise. Through a high-pass filter the device is connected to an
amplifier system. The amplified signal can be displayed with an oscilloscope or recorded
by a multi-channel analyser or a rededicated audio sampler.

evaluate that only carriers excited within a distance from the contact that is smaller than

the carrier diffusion length are able to have an impact on the contact resistance. Therefore,

the sensitive region should be restricted to the first few hundred nanometers of the nanowire

with respect to the contact pad.

Alternative to the recording of implantation induced conductivity changes, the detec-

tion of carriers generated by the ion impact can be used as a measure for the detection

of single ion impacts [MSL+02, JYH+05, MJY+11], adapting the working principle of a

semiconductor detector. An advantage of this procedure is, that, if the number of charge

carriers generated can be detected, one can distinguish between ions that are incorporated

inside the nanowire and ions that are just strafing the nanowire and create only a smaller

amount of free carriers. In Ref. [JYH+05] the implantation took place into a reverse biased

semiconductor detector PIN-diode that was covered by a PMMA mask with an opening on

the position where the implantation should take place. The opening was placed over the

depleted channel of the diode. Charge carriers created inside the channel by an impinging

ion were instantaneously extracted to the diode contacts and therefore a current pulse

could be detected. This detection mechanism should theoretically also work with our ZnO

nanowire Schottky devices as well as with the GaAs nanowire pn-devices from chapter 3.
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In both cases, the depletion layer of the reverse-biased junction could act as the active

detection region.

The measurement setup is displayed in Figure 4.12. A nanowire device is biased by

an external voltage source, and a low pass filter avoids high frequency noise generated by

the source. A high pass filter eliminates most lower frequency signals and conducts only

ion induced signal peaks through to the amplifiers. The amplified signal can be viewed

on an oscilloscope or sampled on a PC. A Canberra 2006E pre-amplifier and Canberra

2022 amplifier [can91] were used for the signal amplification. Signals were recorded with

the audio sampler of a standard office PC at 88.2 kHz sampling rate. Apart from the

nanowire device on the high-vacuum flange, all parts of the setup were placed outside the

implantation chamber.

A ZnO nanowire device was mounted to the setup and irradiated with 30 keV He+ ions

and an ion current of 30 pA/cm−2. This corresponds to approximately two ions impinging on

the nanowire per second. The stored scope signal is displayed in Figure 4.13 a), an extract

from the signal recorded in parallel at the audio sampler is shown in Figure 4.13 b). On

the upper channel of the scope display the signal from the amplifier was stored. A certain

noise level with emerging distinct peaks is visible. The signal of the beam sweep unit,

which scans the ion beam over the sample in order to get a homogeneously irradiated area,

is applied to the second channel of the scope. It clearly shows that the signal peaks from

the amplifier are related to the beam sweep signal, positioned roughly at the middle of the

beam sweep range, which proves that the peaks only appear when the ion beam is scanned

over the ZnO nanowire sample placed in the middle of the irradiated area. The data from

the audio sampler proves that the peaks are randomly dispersed and not every scan over

the sample results in a signal peak, excluding ion beam induced charging of the sample

holder as an origin of the signal.

To confirm the successful detection of single ions and exclude further ion irradiation

related side effects, the experiment was also conducted on samples without nanowires

between the contact pads and on samples with short circuited contact pads. In both cases,

no signal was detected. This excludes implantation induced changes in the contact pads

or the gate oxide as well as secondary electrons from being responsible for the detected

signal. If the ion beam was blanked off the sample, no signal peaks were recorded likewise.

For a fluence of 1 ·1011 ions/cm2, about 1000 ions are expected to impinge on the nanowire.

However, comparable to the ion impacts monitored by current changes in section 4.3, only
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Figure 4.13: Images showing the detector signal in a) recorded with an oscilloscope and in
b) with a PC audio sampler. On the scope the detector signal was applied to the upper
channel, while the beam sweep signal was displayed on the lower channel, both channels
recorded in storage mode. A clear correlation between the beam sweep and the detector
events is visible, indicating that events are only recorded when the beam sweeps across
the sample position. Peaks do not occur every time the beam sweeps across the sample,
as it can be seen in the audio sampler measurement. Countable peaks that are easy to
distinguish from noise level are recorded at random intervals during implantation. The
insets show enlarged views of the peaks inside the thin white boxes.

47 signal peaks and therefore much less than expected could be detected. Again, this points

to the fact that not the whole nanowire but only the region near the Schottky junction

acts as an active area. The amount of excited carriers for an ion impact in the middle

of the nanowire channel and an impact in the active area are equal; however, only in the

latter case carriers will be injected into the depletion zone and a current signal pulse, that

is intensified by the attached amplifier, will be detected. Interestingly, a comparable signal

to that displayed in Figure 4.13 could also be detected when no bias voltage was applied. In

this case, electron-hole pairs excited inside the space charge region of the Schottky contact

are separated by the internal electrical field and detected as a current pulse.

The SII experiments have also been conducted with 200-300 nm diameter GaAs nanowire

devices with axial pn-junctions. However, it was not possible to obtain any useful results

with these devices. Most likely, this miss is caused by insufficient sensitivity of our home-

built setup. Although the low and high pass filter significantly reduce the noise level, the
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setup is still far from ideal conditions. At higher amplifier gain factors, switching the room

light or even just thunk shutting the door of the accelerator hall generates signal peaks.

The required sensitivity of the setup is defined by the amount of electron-hole pairs that

are expected during a single ion impact. In order to estimate this number, one has to

account for the so called ”nuclear defect” or pulse-height defect (PHD) [LSS63, HW66].

From studies on semiconductor detectors it is known, that for energetic ions with energies

below 1MeV energy losses due to nuclear collision in the target (compare section 2.2)

become significant [Hsi76]. According to SRIM simulations only 84% of the energy of a

30 keV He+ ion are lost by electronic stopping in GaAs, whereas 15% are transferred to

phonons and about 1% is used for the creation of defects in the target. The distribution is

in accordance to experimentally obtained results for the energy loss in silicon [Hsi76]. Thus,

about 25 keV of energy can contribute to the generation of electron-hole pairs in the case

of a 30 keV He+ ion. The ionisation energy that is needed to generate an electron-hole pair

is roughly about three times the bandgap energy [Kle68], which results in the amount of

approximately 6000 electron-hole pairs per ion inside the irradiated GaAs nanowire device.

It should be noted that not every ion will create the same amount of charge carriers,

as due to the nanowire geometry the ions are able to leave the nanowire before being

stopped. However, as 30 keV He+ ions have an average longitudinal range of 175 nm in

GaAs, a significant fraction of the implanted ions is believed to be incorporated within

the implanted nanowire and therefore fulfilling the estimation of the amount of generated

electron-hole pairs.

In the article on SII with a PIN-diode by Jamieson et al. [JYH+05], the successful de-

tection of ≈ 1000 created electron-hole pairs per ion impact is reported. Even though this

result could only be achieved with a great effort in noise reduction, it indicates that the

amount of carriers generated inside our nanowire device should be sufficient for the detec-

tion of single ions. For the implantation of heavier ions, one additionally has to take a

larger PHD in account. In the case of 64Zn+ ions, which can be used for p-type doping

of GaAs nanowires [SWG+08], according to SRIM only 23% of the ion energy are lost to

electronic stopping for 30 keV ions. However, the increased PHD effect is partially com-

pensated, as for heavier ions usually higher energies are necessary for implantation in order

to reach an appropriate implantation depth. Thus, the detection of single ions with the

GaAs nanowire devices should be possible with a better shielded, low-noise measurement

setup.
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Finally, the detection of single ions in the space charge region of a nanowire Schottky

junction has been shown and proposed to work also on a pn-junction. However, this is not

a limiting fact. Equivalent to the analogue response of different types of particle detectors

and Schottky or pn-diodes to single ion impacts [YJH+02], any intrinsic semiconducting

nanowire should be able to work as a nanosized particle detector if a large external field is

applied to separate the ion induced charge carriers.

4.5 Conclusion

Ion implantation is a very useful tool in order to tailor the properties of semiconductor

nanowires. Within this chapter, the modification of the electrical and optical proper-

ties of ZnO nanowires by hydrogen implantation was shown. After the implantation, the

nanowires exhibit an increased near bandgap emission while the deep level emission was

successfully suppressed. This effect on the optical properties of the nanowires turned out

to be stable over weeks. Low energy implantation carried out on already contacted devices

revealed a significantly enhanced conductivity. After some time, the conductivity drasti-

cally drops but still remains improved compared to the pristine sample. This behaviour

can be traced back to the implanted hydrogen, that was incorporated either interstitial

or substitutional. As the former is responsible for a short-lived conductivity enhancement

and diffuses out of the nanowire within days, the latter is more stable and responsible for

the remaining increased conductivity. Implantation with higher ion energies did decrease

the long-term conductivity of the implanted wires, which can most likely be traced back

to unintended implantation induced defects. The nanowires exhibited a hysteresis in the

transfer characteristics, that could be useful for non-volatile memory applications. The

hysteresis could be widened by hydrogen implantation. This effect is caused either by

incorporated hydrogen in the substrate or implantation induced defects.

In ZnO nanowires, ion irradiation can induce PIC, an increase of conductivity persistent

over a time-scale of hours. The effect was found to be similar to the well known PPC

effect, caused by excited charge carriers that can populate quasi-stable, surface-oxygen

bound states. The current increase of a few nA per incoming ion in an irradiated, biased

nanowire allows for the in-situ detection of single ion impacts. Finally, single ion detection

by measuring the carriers generated by an impinging ion in a biased nanowire device
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was shown, using the nanowire like a semiconductor detector. The usage of nanowires as

detectors gives rise to the detection of single ion impacts on a spatially confined area.
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5 Biofunctionalisation of ZnO nanowires

In this chapter the biofunctionalisation of ZnO nanowires for the attachement of DNA

target molecules is described. The functionalisation experiments have been conducted in

collaboration with Bettina Rudolph, Barbara Seise, and Wolfgang Fritzsche from the In-

stitute of Photonic Technologies (IPHT) in Jena. XPS measurements have been carried

out in collaboration with Marc Brötzmann from the University of Göttingen. The fluores-

cence microscopy studies have been obtained in close collaboration with Ulrich Christian

Schröder within the scope of his diploma thesis [Sch10b]. Irma Slowik and Jana Sommerfeld

also assisted with the experiments. Parts of the results have been published in [NSS+11].

5.1 Nanowire biosensors

Semiconductor nanowires are well suited for application in electrical sensing devices, owing

to their superb surface-to-volume ratio and the quasi one-dimensional current transport.

As the sensing mechanism is based on the interaction of the nanowire surface with the

environment, specific functionalisation of the surface with biological capture molecules

will make the nanowire surface and therefore the sensing device sensible to the specific

respective biological target molecule. In this way, a label-free biosensor based on semi-

conductor nanowires can be build, where the nanowire has the character of an active

channel in a field effect transistor whose conductivity is governed by the field effect in-

duced by the assembly of charged target molecules on the semiconductor surface. Ex-

amples for such biosensors, which are usually based on Si nanowires, can be found in

references [CWPL01,PTZL07,CSPD+08]. As a further advantage, the reported high sen-

sitivity, coming close to single molecule detection, can be combined with the possibility of

arranging the nanowires in a very dense assembly owing to their nanosized dimension.

Up to know, biosensors based on other semiconducting materials than Si have played a

minor role in science. Si-based nanowire biosensors are CMOS compatible and therefore
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quite easy to integrate into existing semiconcuctor device fabrication lines. Furthermore,

Si is biocompatible and techniques for the functionalisation of Si are well understood.

Although ZnO nanowires are not innately CMOS compatible, there are some arguments

that motivate the use of ZnO nanowires for biosensing devices. First, ZnO is very stable

under ambient conditions and especially its surface is stable under oxygen-rich condi-

tions, which is an advantage over Si. The stability under physiological conditions, which

is important for biosensing applications, depends strongly on the crystal quality of the

nanostructures. However, it can be assumed as sufficient for structures grown by thermal

evaporation methods [ZXW06,CXL+08, ISN+11] which usually offer an advanced crystal

quality compared to wet chemical grown ZnO nanowires. Second, ZnO is non-toxic and

biocompatible [Wan09]. Third, ZnO nanostructures can be produced fast, cheap, and in a

wide manner of different shapes and forms [HWF+01,Wan09]. The DNA capture molecule

immobilisation with organosilanes as linker molecules has been successfully shown by Corso

and co-workers on planar ZnO surfaces [CDH08], where the biomolecule layer was used to

act as an acoustic wave sensor. With the use of ZnO nanowires instead of planar films,

the metal oxide itself can be used to build an electrically working biosensor. Biosensors

based on ZnO nanostructures have been reported in a few studies, using both electro-

static adsorption [FAA+10, AAI+10, LCY+11] as well as organosilane modification with

subsequent covalent bonding for immobilisation [CKJL10]. In the latter case, the bio-

functionalisation of ZnO nanowires with biotin for streptavidin detection has been shown

using organosilanes with aldehyde-functionality that bind the amino-group of biotin. The

nanowire based protein sensors could detect streptavidin bonding down to the very low

concentration of 2.5 nmol, underlining the capability of ZnO nanowires for the electrical

detection of biomolecules.

In reference [CKJL10], the attachement of the positively charged streptavidin molecules

led to an increased probe current through the nanowire. For the attachement of negativley

charged DNA target molecules on the nanowire surface, a contrary effect is expected: the

current through the intrinsically n-type ZnO nanowire should decrease as the charged target

molecules induce a carrier depletion zone inside the nanowire. In another approach ZnO

nanostructures have been functionalised with target molecules to use the fluorescence-

enhancement capability of the ZnO for fluorescence detection of biomolecules [KDH06,

DKH06]. In this type of application, nanowires also showed enhanced sensing abilities

compared to conventional structures. However, the authors did not pursue the way to

electrical label-free biosensing any further and limited themselves to fluorescence detection.
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5.2 Nanowire preparation and functionalisation

Within this study, the biofunctionalisation of ZnO nanowires with DNA capture molecules

was investigated in order to achieve a label-free working ZnO nanowire biosensor. How-

ever, to ensure the successful functionalisation, molecules labelled with fluorescence have

been used to control the attachement of DNA to the nanowires in the first place. A sensor

consisting of electrically contacted, functionalised nanowires will not require the usage of

labelled DNA anymore.

5.2 Nanowire preparation and functionalisation

Prior to biofunctionalisation, an oxygen plasma was applied to the as-grown nanowires

for 30min at 5Pa oxygen pressure with a plasma energy of 50W. This step is neces-

sary to remove adsorbed molecules from the nanowire surface to maintain it clean and

reactive. The samples were stored in a cabinet dryer afterwards at 100 °C for at least

5min to remove water residues from the surface, as this treatment is known to enhance

the dissociative adsorption of water on the ZnO surface [RKK+09]. Subsequent to the

cleaning process silanisation took place in 10mM GOPS (produced by Sigma-Aldrich) in

a water-free toluene solution. The silanisation mechanism is displayed in Figure 5.1. The

samples were incubated while stirring constantly for at least 6 h at 70 °C. The samples were

rinsed 3 times subsequently with pure toluene for 5min in each case and then dried with

compressed air.

The 5’-amino-modified oligonucleotides (synthesised by Eurofins MWG Opera) were dis-

solved in 5xPBS buffer (pH7.4) with a concentration of 10 µmol for the biofunctionalisa-

tion. The single stranded DNA sequence of the applied oligonucleotides consists of 27 bases

and is shown in Table 5.1. The fluorescence markers, which are linked to the 3´-end and

enable the detection of the molecules with fluorescence microscopy, are also listed in Table

5.1. The DNA solution was pipetted onto the nanowire samples and incubated over night

under wet conditions to immobilise the nucleotides on the GOPS surface via the 5´-amino

linker (see Figure 5.1 b). Afterwards the samples were rinsed for 10minutes in 15mmol

tris-HCl-buffer (pH8) in order to get rid of unbound DNA and then dried with compressed

air.

Control samples were prepared both leaving out the GOPS silanisation step and with

DNA that does not have an amino linker attached to investigate if the DNA binding follows

the scheme with the covalent binding step in Figure 5.1. For further characterisation the
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5 Biofunctionalisation of ZnO nanowires

Figure 5.1: In a toluene environment (a) the bifunctional GOPS molecule is attached to
the ZnO nanowire surface. In a second step (b), the oligonucleotide is linked to the epoxy
group of the GOPS. [CDH08]

Table 5.1: DNA sequence and fluorescence markers of the oligonucleotides used for the ZnO
nanowire biofunctionalisation

5´-modification sequence from 5´-3´ 3´-modification

C6-aminolink TCTTAGTTCCTCGTGTACGACTTTTTT FITC

C6-aminolink TCTTAGTTCCTCGTGTACGACTTTTTT Cy3

biofunctionalised nanowires were mechanically transferred to silicon or glass substrates by

a gentle pressure imprint of the treated growth substrate.

5.3 Characterisation of functionalised nanowires

Fluorescence microscopy was used to check the immobilisation of DNA capture molecules

on the ZnO surface. Samples with two different types of fluorescence markers were prepared

for characterisation (compare Table 5.1). Specimens marked with Cy3 turned out to be
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5.3 Characterisation of functionalised nanowires

Figure 5.2: Dark field (left side) and fluorescence (right side) images of biofunctionalised
ZnO nanowires. Nanowires in the upper row have been modified with Cy3 marked DNA,
nanowires in bottom row with FITC marked DNA. Note that the nanowires marked with
the red and yellow circles in (b) show different fluorescence intensities along the nanowire
axis. The nanowire marked blue in (d) only shows fluorescence at one side, the nanowire
marked green shows higher fluorescence intensity at the side that is appearing darker in
the respective dark field image.

much more photo stable than samples marked with FITC. Thus, mainly Cy3 marked

samples have been investigated here.

Dark field and fluorescence images of DNA biofunctionalised ZnO nanowires are shown

in Figure 5.2 (a-d). Every nanowire that can be identified in the dark field image is

also showing a fluorescence signal, proving the presence of biomolecules on the nanowire

surface. However, intensities differ extremely; this might be explained by different nanowire

diameters. Additionally, the intensity of the emitted light often appears non-uniformly
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5 Biofunctionalisation of ZnO nanowires

Figure 5.3: In (a) a fluorescence image of a biofunctionalised nanowire with intensity fluc-
tuations along the nanowire axis is shown. In (b) the intensity plot along the dotted yellow
line is plotted. The intensity value fluctuates by more than one order of magnitude and
even disappears at two points. Images (c) and (d) show SEM images of a typical nanowire
used in this study with alternating thickness along the wire axis. At larger magnification
in (d) the thickness variation is clearly visible.

along the nanowire axis, as for the nanowires marked with the green and blue circles

in Figure 5.2 (d). Such intensity gradients might be caused by only fragmentary DNA

coverage of the nanowire surface or by variations of the nanowire thickness.

In Figure 5.3 (a) the fluorescence image of a biofunctionalised nanowire with strong in-

tensity fluctuations is shown. The intensity profile was extracted along the dotted yellow

line following the wire axis and plotted in Figure 5.3 (b). The intensity is not only fluctuat-

ing, but even going down to background noise level in some regions of the wire, leading to

the assumption, that on these sites the functionalised nanowire might not be covered with
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5.3 Characterisation of functionalised nanowires

Figure 5.4: FE-SEM study of a biofunctionalised ZnO nanowire. The inset shows an en-
larged view of the yellow dotted rectangle in the top middle of the picture. To avoid
charging interferences, the nanowire was imprinted to a substrate covered with a thin gold
layer. The picture shows a rough but homogeneous coverage of the nanowire surface. Single
biomolecules cannot be resolved within the FE-SEM.

DNA at all. Besides patchy coverage with DNA, thickness variations along the wire axis

will also lead to variations in fluorescence intensity. The SEM images of a typical nanowire

used for the bifunctionalisation in Figure 5.3 (c) and (d) reveal a nanowire diameter that

is varying by a factor of two along the wire axis. In Figure 5.4 a high resolution FE-SEM

picture of a functionalised nanowire is displayed. The detailed surface morphology of the

functionalised wire is not clearly resolvable even at the highest magnification. The larger

scaled inset of the picture presents a uniform-looking coverage of the nanowire; however,

the uniformity of the DNA coverage might vary from nanowire to nanowire.

In order to confirm that the functionalisation mechanism is really working on ZnO sur-

faces, a single crystalline ZnO bulk sample was also functionalised only on one half and

the DNA surface coverage investigated on both halves subsequently. A comparison of the

bright field and the fluorescence images (Figure 5.5) of this sample reveals a homogeneous

fluorescence signal and therefore DNA surface coverage only on the biofunctionalised side

of the sample.

Although these results show that a uniform DNA coverage is achievable on ZnO sur-

faces with the utilised process, the DNA immobilisation might be hampered on parts of

the nanowire due to a locally craggy nanowire surface caused by thickness variations like

displayed in Figure 5.3 (d). Furthermore, nanowires sticking together during the silanisa-

tion process could also lead to a non-uniform DNA coverage, as well as damages of the
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5 Biofunctionalisation of ZnO nanowires

Figure 5.5: Bright field (a) and fluorescence (b) image of a partially biofunctionalised ZnO
bulk crystal surface. The sample is showing a homogeneous fluorescence of the biofunc-
tionalised area, underlining that the GOPS treatment is applicable for the successful ac-
cumulation of DNA monolayer to ZnO surfaces.

DNA layer during the imprint process. All those issues could be overcome with a more

advanced nanowire growth setup [FWZ06]. The observed thickness variations might result

from furnace-related instabilities of the growth conditions. Nanowires sticking together

during the silanisation process could be avoided by using directional nanowire growth from

a seed array [FWZ06]. Damages of the DNA layer during the imprint could also be circum-

vented be using ordered nanowire arrays, maybe combined with a more advanced imprint

method [FHJ+08].

To exclude autofluorescence or luminescence of the nanowires as an origin of the detected

fluorescence signal, untreated as well as silanised but not functionalised nanowires were also

investigated with the fluorescence microscope. As can be seen from Figure 5.6, no inter-

fering autofluorescence or luminescence signals appear. ZnO nanostructures are known to

show a green defect luminescence that can be dramatically enhanced when the nanowires

are coated [RDM+09]. In order to avoid defect luminescence being misinterpreted as flu-

orescence, the samples were investigated not only with the bandpass filter fitting to the

dye used for functionalisation, but also with filters passing other wavelength ranges in the

green part of the light spectrum. Without any exception, the samples only showed flu-

orescence at wavelengths referable to the specific dye attached to the immobilised DNA,

indicating that a possible misinterpretable defect luminescence signal can be neglected.
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5.3 Characterisation of functionalised nanowires

Figure 5.6: Reference experiments with untreated nanowires. In (a) and (b), the dark field
and fluorescence images of an unmodified nanowire sample are shown. In (c) and (d),
the dark field and fluorescence image of a silanised but not biofunctionalised nanowire
sample are shown. In both cases, the fluorescence measurement does not show any sign of
unexpected distracting signal.

Thus, it is clear that the above observed fluorescence is caused by the fluorescence marked

DNA attached to the nanowires.

It is also known that ZnO nanostructures act fluorescence-enhancing themselves by af-

fecting the self-quenching properties of fluorophores [HLZ+10]. This could seemingly lead

in theory to fluorescing wires on top of a dye-covered substrate. As mentioned above, the

wires investigated here were first functionalised and then subsequently transferred to a

clean and dye-free substrate. Thus, fluorescence enhancement of substrate-bonded fluores-

cence markers can also be excluded as the origin of the observed fluorescence.
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5 Biofunctionalisation of ZnO nanowires

Having demonstrated the successful attachment of DNA to the nanowires, some questions

regarding character and stability of the bonding between DNA molecules and nanowire

surface still need to be clarified. A critical point is whether the attachment of the DNA to

the ZnO nanowire is really due to chemisorption, as suggested in the reaction scheme in

Figure 5.1, or just by unspecific physisorption to the surface. While it is well known that the

amino-modified DNA can covalently bond to the functional group of the GOPS molecule,

the bonding type between GOPS and ZnO nanowire has not been investigated before. A

method that can be used to investigate the binding character between a monolayer and a

substrate is X-ray photoelectron spectroscopy (XPS). In this method, the kinetic energy

of photoelectrons which escape from a substrate under X-ray radiation at a particular

wavelength is analyzed. The kinetic energy directly depends on the binding energy of the

electron inside the sample and is therefore characteristic for the atom and even the atomic

orbital the electron comes from. XPS is very surface sensitive and therefore an adequate

method for the investigation of monolayers [WWW03]. To show with XPS whether a

layer is bound covalently or not to a substrate can be challenging, as the photoelectron

yield from a monolayer is quite low. Franquet et al. [FBT+06] investigated the interfacial

bonding between silane films and aluminum surfaces and could distinguish a signal peak

in the Al XPS spectra that was originating from Al atoms within a covalent Al-O-Si

bonding. The energy of the respective photoelectrons was shifted by 1.3 eV compared to

hydrogenated Al surface atoms. There are no XPS studies on silanised ZnO surfaces so far.

However, the interface between ZnO nanoparticels and mesoporous silica was investigated

by Yao et al. [YSBZ00]. In the case of covalent cross-linking bonds of Zn-O-Si between

the nanoparticles and the SiO2 material a peak shift of the Zn 2p3/2 signal of 0.6 eV was

observed.

With the intent to confirm the covalent attachment of GOPS to the ZnO surface, XPS

measurements have been performed on both silanised and untreated nanowires. A shift

in the Zn 2p3/2 signal as reported in [YSBZ00] could prove the covalent character of the

silanisation process. Unexpectedly, there was no significant difference in the XPS signal

of the treated and the untreated nanowires, as visible in Figure 5.7 (a). Following the

argumentation before, this would hint to an unspecific, non-covalent bonding of the GOPS

to the nanowire surface. However, in the XPS survey image that was also recorded during

the measurement the Si atom related emission peaks are missing. A detailed scan in the

spectral area around the Si 2s peak at 151 eV (Figure 5.7 (b)) shows the absence of any Si

related signal. This hints at too weak a signal from the nanowire surface layer to detect
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5.3 Characterisation of functionalised nanowires

Figure 5.7: In (a): XPS spectra of the Zn 2p3/2 peak for untreated and GOPS silanised
nanowire. There is no significant effect due to the silanisation visible. In (b): Detailed
scan in the spectral area of the Si 2s peak. There is no Si related signal detectable at all.

anything, including a significant shift of the Zn 2p3/2 peak. The XPS measurements have

been carried out on disorderly grown, pristine nanowire samples, which is most likely the

cause for the absence of surface-related signals. Following the nanowire surface, more

photoelectrons are directed sideways than in the case of thin film measurements. Due to

the spaghetti-like sample geometry, a major fraction of the excited photoelectrons might be

recaptured by other nanowires crossing the flight path before reaching the detector array.

The channeltron detectors of the used setup were quite old, resulting in a relatively low

photoelectron yield. However, this circumstance cannot explain the missing surface related

signals, as the measurement time was extended to compensate the poor detector efficiency.

As the XPS measurements could not be used to clarify the character of the bonding of the

GOPS to the ZnO surface, several control samples were prepared, leaving out specific steps

in the functionalisation process. In Figure 5.8 (a) a fluorescence image of a silanised and

biofunctionalised nanowire is shown. Both images were recorded using the same microscope

settings and exposure times. Compared to the image in Figure 5.8 (b), a much more

pronounced fluorescence is noticable. The nanowire in Figure 5.8 (b) was not silanised and

covered with DNA without the 5´-amino linker, which makes unspecific physisorption the

only possible binding mechanism between nanowire and DNA molecules. This leads to the

conclusion, that during the functionalisation process sketched in Figure 5.1 a more stable

bonding is achieved.
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5 Biofunctionalisation of ZnO nanowires

Figure 5.8: In (a) a typical fluorescence image of a silanised and biofunctionalised nanowire
is shown. In (b) an image of a nanowire is shown that was treated the same way, but leaving
out the silanisation step and using DNA without a 5’-amino linker. In (c) a comparison
of a sample with GOPS and a sample without GOPS rinsed in tris-HCl-buffer solution for
different periods of time is presented. In order to quantify the fluorescence intensities, the
apparent magnitudes resulting from different exposure times have been classified into six
levels of intensity between no fluorescence at all and fluorescence saturation. In (d) the
fluorescence intensities of various control samples are compared in the same way.

The amino linker attached to the DNAmolecule is in princible able to bond directly to the

ZnO surface itself, without the GOPS silanisation step. In Figure 5.8 (c), a comparison of

the fluorescence intensity between a sample silanised with GOPS prior to DNA attachment

and a sample where the silanisation step was left out is presented. Both samples were

biofunctionalised with DNA with amino linker. The samples have been rinsed in tris-HCl-

buffer solution for 10 minutes and then measured. To quantify the intensities of different

fluorescent samples, all signals were integrated for different lengths of time and the resulting

apparent magnitudes were classified into six levels of fluorescence intensity between no
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5.4 Conclusions

fluorescence at all and fluorescence saturation. As expected, the silanised sample is showing

the strongest fluorescence. However, after rinsing both samples for another 12 hours, the

fluorescence of the sample silanised with GOPS and then functionalised has not dropped,

whereas the fluorescence of the control sample is less present than before. This indicates

that in the presence of GOPS the bonding achieved between DNA and ZnO surface is

much more durable and stable.

In Figure 5.1 (d) the fluorescence intensities of various control samples varying the

presence of GOPS and the DNA attached amino linker are compared. It is reconfirmed that

the fluorescence is most pronounced in the case of both GOPS treatment and DNA with

amino linker. All the other control samples show significant less fluorescence, indicating

that a strong, presumably covalent bonding between the DNA and the nanowire is only

achieved with both coupling groups present (epoxy group at GOPS and amino group at

DNA) in order to form a covalent bond, as drafted in the reaction scheme in Figure 5.1.

5.4 Conclusions

Biofunctionalisation of ZnO nanowires with DNA capture molecules gives way to label-free

nanowire biosensors featuring high selectivity and sensitivity. In this chapter the successful

functionalisation could be verified with fluorescence microscopy. The bifunctional linker

GOPS was used to immobilise the DNA capture molecules on the nanowire surface. Varia-

tions of the nanowire thickness and shadowing effects result in fluorescence variations along

the nanowire axes. The presumably covalent character of the bonding between DNA layer

and ZnO nanowire surface was shown indirectly by comparing several samples prepared in

different ways. The next step on the road to nanowire biosensing will be contacting of the

functionalised wires in order to receive an electrically working sensing device.
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6 Summary and outlook

Among the large variety of bottom-up grown semiconductor nanostructures, semiconductor

nanowires are of outstanding interest, since they are promising candidates for integration

into future electronic and photonic devices. For the use in devices like transistors, sensors,

LEDs, and solar cells, it is essential to know and understand the nature of the nanowires.

Furthermore, the selective control of the nanowire properties, by modifying either the wire

composition or the surface conditions, allows the development of novel, functional elements

for next generation semiconductor devices.

This thesis reports on both, the characterisation and the selective modification of semi-

conductor nanowires. Scanning electron microscopy based methods are shown for the

determination of the carrier diffusion lengths in ZnO and GaAs nanowires. The change

of the electrical properties of ZnO nanowires during ion beam implantation is investigated

as an example for the targeted modification of the nanowire properties. Here, the ion-

nanowire interaction enables the detection of single ion impacts. Biofunctionalisation of

ZnO nanowires is also shown, demonstrating the suitability of surface-modified nanowires

for the use in biosensing devices. The thesis is divided into three parts, addressing the

diffusion length measurements, the ion implantation experiments, and the surface biofunc-

tionalisation.

The diffusion lengths of the respective minority carriers for both the p-type and n-type

parts of axial GaAs nanowire pn-junctions have been estimated via EBIC. The measure-

ments were conducted directly at the junction, giving access to the properties of the most

important part of the devices. The surface recombination velocity was derived from the

diameter dependency of the diffusion lengths. The velocity determined on the n-type side

of the nanowires is lower than expected for the dopant concentration adjusted during syn-

thesis. This effect could be attributed to the VLS growth dynamics, where the correct

adjustment of the desired doping concentration is delayed by the growth catalyst. Thus,

the doping concentration is lower than expected directly at the junction. A simple passi-
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6 Summary and outlook

vation process based on aqueous ammonium sulphide was applied to the nanowire devices.

After this surface passivation, the carrier diffusion lengths were significantly increased.

The exciton diffusion lengths at ZnO nanowire Schottky devices were investigated by

spatial resolved CL measurements. Identically prepared nanowires from the same growth

process exhibited extremely different emission properties, independent on the nanowire di-

ameter. The diffusion length measurements were carried out in panchromatic mode in order

to receive a good signal-to-noise ratio. The parameter could be determined successfully for

most of the investigated nanowires. The method yielded unreliable results for nanowires

with an enhanced red defect emission, pointing to the occurrence of sub-bandgap excitation

caused emission. Monochromatic measurements could lead to more reliable results in this

case.

The influence of hydrogen implantation on the optical and electrical properties of ZnO

nanowires was investigated. Hydrogen implantation was found to increase the near bandgap

emission while the deep level emission was suppressed. This change of the optical prop-

erties is stable over several weeks. Low energy hydrogen implantation on ZnO nanowire

devices lead to an enhanced nanowire conductivity. After some time, the conductivity

dropped again but eventually remained improved when compared to the pristine sample.

This behaviour is attributed to the nature of the implanted hydrogen atoms. Interstitial

incorporated hydrogen is responsible for an unstable increase in conductivity, an effect

that vanishes after some days. Substitutional incorporated hydrogen leads to a stable and

durably increase.

Implantation with higher ion energy led to a decrease in the long-term conductivity. This

could be attributed to the unintended creation of implantation induced defects. Hydro-

gen was initially chosen for implantation because of the low number of defects generated

during the implantation. The experiment showed, that still enough defects are created to

antagonise the positive effects of the implantation. The implanted nanowires exhibited a

transfer curve hysteresis, which could be widened by hydrogen implantation. The effect is

related either to incorporated hydrogen in the substrate or implantation induced defects

and could be useful for non-volatile memory applications.

The ion implantation of any ion species in ZnO nanowires can also induce a persistently

increased conductivity over a time scale of hours. This effect, labelled PIC, was found to

be very similar to the well known illumination induced PPC effect, which is related to the

existence of quasi-stable, surface oxygen bound states. Due to PIC, the current through a
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biased nanowire was increased by a few nA with every implanted ion. This behaviour can

be monitored and used for the detection of single implanted ions. Furthermore, nanowire

transistors have been used to detect the impact of single ions by separating the charge

carriers generated inside the nanowire, following the principle of a classical semiconductor

detector.

The biofunctionalisation of ZnO nanowires with DNA was conducted in order to develop

a label-free DNA sensor on a nanowire basis. The bifunctional linker molecule GOPS was

applied to the nanowires to immobilise the DNA capture molecules via covalent bonding

on the surface. The successful immobilisation of the DNA was verified by fluorescence

microscopy. Measurements on the long-term stability of the DNA attachment confirmed the

presumably covalent character of the bonding between ZnO nanowires and DNA molecules.

Variations of the nanowire thickness and shadowing effects resulted in variations of the

DNA coverage along the nanowire axes.

In summary, the results obtained in this thesis give new insights on some aspects of the

work with semiconductor nanowires. The measurement of the carrier diffusion length inside

a SEM allows the validation of the functionality of surface passivation methods. Further-

more, such measurements can be applied to nanowires modified by any other technique to

investigate the impact of the applied modification methods on the carrier transport. Both

EBIC and CL can be applied for the diffusion length estimation. Thus, it is possible to

choose the best-suited method for the material of interest. Especially investigations on

nanostructures benefit from the SEM based methods due to the good spatial resolution.

Ion beam implantation has been shown as an effective method for the modification of

semiconductor nanowire properties. The availability of any type of ion species without the

restriction to any solubility limits makes ion implantation a preferred technique for doping

of semiconductor nanowires. Implantation-related side effects like defect production have

to be taken care of, even for the implantation of hydrogen ions. EBIC and CL characteri-

sation of implanted nanostructures might help to verify the impact of ion beam doping on

the suitability of the implanted nanostructures in photovoltaic and other optoelectronical

devices in the future.

The detection of single ions hitting a nanowire by the detection of the interaction be-

tween impinging ion and the nanowire itself is aimed at two different directions. First,

the countable implantation into semiconductor nanowires is very interesting for the de-

velopment of devices that need a single dopant atom. An example for such a device is a
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single photon source. A single atom optical emitter, namely the activated dopant that was

implanted in the nanowire, is only able to emit one photon at a time. Furthermore, single

dopants are of great interest for the development of quantum electronic devices. Second,

a nanosized ion detector is realised by the spatially confined detection of the impinging

ions with a nanowire device. Such a detector would also recognise ions that are piercing

through the nanowire. Thus, the nanowire device might be attractive for the use on top of

an implantation target as a movable detector, which is able to detect the impact of single

ions with a high spatial resolution.

The results on the biofunctionalisation of the nanowires revealed the applicability of

these structures in DNA sensing devices. A detailed characterisation of the electrical

properties of the nanowires is of course mandatory for a further device integration. The

next step on the the road to a label-free DNA sensor will be the electrical contacting of

the functionalised wires, e.g. by dielectrophoretic methods. Then, electrical measurements

will follow and reveal whether the wires can be used as biosensors or must be additionally

modified. In addition, optical measurements by CL will be conducted. Spatially resolved

CL might reveal information on biolayer-caused changes in the extend of the depletion

zone in functionalised devices.

The results and findings obtained during the work on this thesis will help to continue the

research on semiconductor nanowires towards application. Examples of the characterisation

and the selective modification of semiconductor nanowires were presented. Further research

based on the requirements established in this work will open the door to new findings on

and new applications for semiconductor nanowires in the near future.
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[KKND+09] Kanungo, P. D., R. Kögler, K. Nguyen-Duc, N. Zakharov,
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Einfluss von Oberflächenbehandlungen und hohen Anregungsdichten. mbv,
Mensch-und-Buch-Verl., 2010.

[RKK+09] Ra, H. W., R. Khan, J. T. Kim, B. R. Kang, K. H. Bai and Y. H. Im:
Effects of surface modification of the individual ZnO nanowire with oxygen
plasma treatment. Materials Letters, 63(28):2516–2519, 2009.

[RVK+08] Richters, J. P., T. Voss, D. S. Kim, R. Scholz and M. Zacharias:
Enhanced surface-excitonic emission in ZnO/Al2O3 core–shell nanowires.
Nanotechnology, 19:305202, 2008.

[RVW+08] Richters, J. P., T. Voss, L. Wischmeier, I. Rückmann and
J. Gutowski: Influence of polymer coating on the low-temperature
photoluminescence properties of ZnO nanowires. Applied Physics Letters,
92:011103, 2008.

[SBW+08] Schlenker, E., A. Bakin, T. Weimann, P. Hinze, D. H. Weber,
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Ehrenwörtliche Erklärung
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in Zusammenarbeit mit oder von Henry Holland-Moritz durchgeführt.

5. In-situ-Messungen während der Ionenstrahlimplantation wurden in Zusammenarbeit mit

Andreas Johannes durchgeführt.

6. Versuche zum Vergleich von PIC und PPC wurden von Andreas Johannes durchgeführt.
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Zusammenfassung der Arbeit

Halbleiternanodrähte werden oft als vielversprechende Kandidaten für die Integration in

zukünftige elektronische und photonische Bauelemente genannt, wodurch sie eine besondere

Rolle unter der großen Vielfalt von bottom-up-modellierten Nanostrukturen einnehmen.

Daher ist es notwendig, die Eigenschaften der Nanodrähte zu kennen und zu verstehen.

Für die Entwicklung neuartiger, funktionaler Elemente ist auch die gezielte Modifizierung

dieser Eigenschaften, die durch eine Änderung der chemischen Zusammensetzung oder

der Nanodrahtoberfläche erfolgen kann, von besonderem Interesse. Die vorliegende Arbeit

beschäftigt sich mit beidem, der Charakterisierung und der gezielten Modifizierung der

Eigenschaften von Halbleiternanodrähten.

Mit Hilfe rasterlelektronenmikroskopischer Methoden wurden die Ladungsträgerdiffusions-

längen in GaAs- und ZnO-Nanodrähten untersucht, die in beiden Fällen im Vergleich zum

Festkörper stark reduziert sind. Durchmesserabhängige EBIC-Messungen an axialen pn-

Übergängen in GaAs-Nanodrähten ermöglichen die Bestimmung der Oberflächenrekombi-

nationsgeschwindigkeit. Im n-dotierten Teil der Drähte ergab sich ein niedrigerer Wert als

erwartet, was auf eine niedrigere Dotierung im Bereich des pn-Übergangs, bedingt durch

den Wachstumsprozess, zurückzuführen ist. Bei CL-Messungen an identisch präparierten

ZnO-Nanodrähten konnten stark unterschiedliche Emissionseigenschaften beobachtet wer-

den. Die Bestimmung der Exzitondiffusionslängen erfolgte an Nanodraht-Schottky-Über-

gängen.

Als Beispiel für die gezielte Modifikation von Nanodrähten wurde die Änderung der Eigen-

schaften von ZnO-Nanodrähten durch Wasserstoffionenimplantation untersucht. Die Nan-

odrähte zeigten eine Verstärkung der bandkantennahen Lumineszenz - bei gleichzeitigem

Rückgang der Defektlumineszenz - und eine stark erhöhte Leitfähigkeit, die nach einigen

Tagen etwas zurückging. Das Verhalten konnte mit dem parallelen Auftreten von stabilem,

substitutionell implantierten und instabilem, interstitiellem Wasserstoff erklärt werden. Bei

der Implantation von ZnO-Nanodrähten zeigte sich auch eine über Stunden persistente io-

nenstrahlinduzierte Leitfähigkeitserhöhung. Der Effekt basiert auf den selben Ursachen wie

eine ebenfalls vorhandene persistente Photoleitfähigkeit. Die Wechselwirkung zwischen Ion

und Nanodraht ermöglicht auch die Detektion von einzelnen Ionen mit ZnO-Nanodrähten,

was ebenfalls gezeigt wurde.

Die Biofunktionalisierung von ZnO-Nanodrähten ist ein Beispiel für eine gezielte Verän-

derung der Nanodrahtoberfläche für den Einsatz des Drahtes als funktionales Element

in einem Biosensor. Fluoreszenzmikroskopische Untersuchungen zeigten die erfolgreiche

Immobilisierung von DNA auf der Nanodrahtoberfläche.

Die in dieser Arbeit erzielten Ergebnisse bilden wichtige Grundlagen für die weitere For-

schung an Halbleiternanodrähten.
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Ich bedanke mich bei Carsten Ronning für die Möglichkeit, in seiner Arbeitsgruppe zu pro-
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Ganz besonders bedanken möchte ich mich auch bei Anja Mittelstedt, Uta Bornkessel,
Carmen Voigt, Gerald Lenk, Frank Jehn, Uli Barth und Petra Richter für die Hilfe bei
vielen verwaltungs- und nichtverwaltungstechnischen Problemen.
Ich bedanke mich bei Herrn Marius Grundmann aus Leipzig für die Übernahme des Kor-
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