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1 Introduction

The manipulation of the flow of light is intimately linked to the technological development

of mankind and it has a strong and long-standing history over several centuries. Although,

the usage of magnifying vision aids is already reported in antiquity [1], the initial point of

modern optics is nowadays attributed to the work of the arabian scholar Ibn-al-Haytham [2].

He described the applicability of convex glass surfaces for the purpose of magnification. By

that, he set the basis for the invention of spectacles (in the 13th century) or that of the

telescope and microscope in the 17th century. Nowadays, optical technology has become

indispensable for everyday life. Apart from genuine optical elements (such as lenses, lasers,

etc.), especially artificially structured materials became very important, e.g. optical fibres,

optical gratings, artificially generated holograms and photonic crystals; just to mention

some of them. Such media have significantly affected the development of optics itself.

Moreover, they have considerably contributed to the general technological development

when thinking on, e.g., telecommunication, data-storage devices, semi-conductor industry

(fabrication processes) and even medicine (modern imaging techniques), so their further

development is an essential and continuous process.

In that sense, the rise of metamaterials (MMs) with the beginning of this millennium is

the next leap forward in the development of artificially structured materials. The date of

birth of MMs was mainly influenced by two different subjects. On the one hand, there was

a seminal proposal by J. B. Pendry in the year 2000 [3] demonstrating the possibility to

achieve a perfect lens (circumventing the diffraction limit) just by a slab of a homogeneous

material exhibiting a relative permittivity ε and permeability μ of -1. At the same time, the

great progress in nano-fabrication technologies has facilitated the manufacturing of tiny sub-

wavelength artificial structures. Henceforth, these nano-fabrication technologies promised

to open up a way to attain the building blocks (meta-atoms) for effective homogeneous

media – essentially MMs – able to arbitrarily influence the electric (via the permittivity)

as well as magnetic (via the permeability) response of the medium. Consequentially, the

utilization of MMs promises to enter novel and previously foreign terrain in optics, because

materials possessing a reasonable permeability (magnetic response) are not available in

nature so far. As it was already pointed out by V. Veselago in the middle of the last

3



INTRODUCTION 4

century [4], a negative permittivity and permeability give reason to a negative refractive

index which amongst others results in the phenomenon of negative refraction. A few decades

later, exactly these ideas were then recycled and further developed by J. B. Pendry in his

proposal of the perfect lens as already mentioned above. This work produced a strong

interest within the optical community and, henceforward, there was a strong increase in

theoretical predictions about the potential applications of MMs. Particularly to note, the

rich field of transformation optics [5–8] started to develop from that time resulting in new

and interesting proposals such as the cloaking device [5,9–11] or even more general concepts

to induce optical illusions [12–16]. Despite these ideas, the proposals for MMs have also

penetrated into the field of nonlinear optics leading to interesting phenomena, e.g. counter-

directed, phase-matched second-harmonic generation [17], counter-propagating entangled

photons [18, 19] or new conditions for the existence of solitons [20].

However, in trying to elaborate a clear classification of MMs, it appears to be best to return

to the entire class of structured materials. Then, it must be recognized that a unique defi-

nition of MMs is rather impossible and even not suggested. Two examples shall be given to

substantiate that statement. In case that the meta-atoms are arranged on a regular lattice,

there appears a strong overlap to the field of photonic crystals [21, 22] and a distinction is

cumbersome. Second and to go even further, in case of thin layered MM films – up to now

they are state-of-the-art – these devices may be simply considered as optical (multi-layer)

gratings. However, a differentiation may be elaborated by the choice of the elementary

building blocks (meta-atoms) as well as the effects/reponse one aims to achieve. In that

sense, MMs rather rely on the unique electromagnetic response of a single meta-atom and do

not explicitly rely on the collective response of the entire lattice (which is the case for pho-

tonic crystals). Consequentially, the used meta-atoms have to provide a strong dispersion of

the electromagnetic response themselves. Today, metallic meta-atoms have become widely

accepted by taking advantage of plasmon-polariton excitations. Along this route, MMs were

already successfully demonstrated to work as hyperlenses [23,24], perfect absorbers [25], ar-

tificial blackbodies [26], negative-refracting materials [27,28], materials possessing a negative

phase and group velocity [29] and even as flat lenses beating the diffraction limit [30, 31].

Moreover, they were applied to mimic very effective chiral media resulting in a huge optical

activity [TP00,32] or they were used to achieve asymmetric transmission [33].

1.1 Motivation

Since the beginnings of research on MMs roughly one decade ago, there was a continuous

urge, maybe even a compulsion, to finally have effective homogeneous media at hand ex-
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hibiting purposely designed material properties, i.e. ε(ω) and μ(ω). The dependence on

the frequency ω accounts for a potential frequency dispersion; well known from ordinary,

natural materials. Of course, this fact is mainly driven by the aforementioned proposals for

extra-ordinary optical devices – all of them relying on the assumption that homogeneous

MMs become available.

However, as already stated above, most contemporary MMs rely on resonant excitations

of (intrinsically non-magnetic) metallic nano-structures, namely meta-atoms. In general,

the extend of such meta-atoms is sub-wavelength. However, the typical ratio between the

wavelength and the size of a meta-atom is considerably smaller than one order of magnitude;

especially in the optical domain. Then, the assignment of effective material parameters, e.g.

a permittivity and a permeability, that enter suitable macroscopic (averaged) Maxwell’s

equations (as a result of a homogenization process), comes at the cost of non-locality or

spatial dispersion, respectively [34]. This means that the effective material response of a

meta-atom is not only determined by the exciting field itself, but it rather depends on its

derivatives, too. With respect to the effective material parameters, this entails an additional

dependence on the wave-vector k in general – a drawback which can be lifted only for very

limited scenarios (so-called weak spatial dispersion). At first glance, this circumstance does

not much matter, but with closer inspection there are some problems arising. They are

mainly attributed to the boundary of a MM specimen, where the usual boundary conditions

(continuity of the tangential electromagnetic field components) lose their validity. Then, the

correct treatment of the boundary conditions becomes a serious problem with unambiguous

solution [35]. Moreover, such a description would lose its connection to the initial purpose

which is to make MMs available free of spatial dispersion, i.e. ε(ω,��k) and μ(ω,��k).

Regardless of the aforementioned problems, a reasonable approach which serves for the

characterization of MMs remains one of the important topics. Consequentially, one may

conclude that a more fundamental approach is needed to describe light interaction with

MMs.

1.2 Aim and structure of this thesis

The following thesis exclusively concentrates on periodic MMs. Thus, the meta-atoms are

located on a regular lattice; the prototypical situation for the arrangement of real atoms in

natural crystals. It is the aim of this thesis to characterize and describe light propagation

thoroughly on grounds of the true mesoscopic fields in these media without applying any

conceptual approximation or better averaging to them, e.g. in terms of a homogenization

approach. But, when speaking about the true mesoscopic fields, the question arises: What
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are these fields, or better: What are the true mesoscopic eigenmodes of a periodic MM?

The eigenmodes are Bloch modes and they fully reflect the precise structure and shape

of the meta-atoms, so they account for the inhomogeneities that light experiences in such

media∗. This approach might be best understood with respect to photonic crystals. This is

the prototypical example where light propagation is described in terms of Bloch eigenmodes

and, to put it briefly, this approach exactly defines the framework of this thesis. However,

losses are a key property of contemporary MMs. Thus, concepts developed in context of

dielectric photonic crystals have to be modified such that they become generally applicable

for MMs. Summarizing the guideline of this thesis, it deals with the thorough description

and characterization of light propagation in and light scattering (reflection/transmission) at

periodic, generally absorbing MMs in terms of a Bloch modal description†. This approach

appears to be important and necessary especially in those cases when the characteristic size

of the meta-atoms cannot be neglected in comparison with the wavelength of the exciting

light field.

It is the aim of this thesis to deduce known and well-excepted phenomena commonly

attributed to MMs, like a left-handed behavior‡ or negative refraction, solely from the

properties of the Bloch eigenmodes of the considered media. Moreover, the differences to

an effective medium description, particularly with respect to prospective observations, are

highlighted whenever they appear and emphasis is put on their interpretation. In the light

of the above explanations it might appear evident, that the studies of this work will rather

rely on known and well-established MM layouts, than to come up with new proposals for

their design. However, this does not imply that the present thesis is restricted to a pure

characterization of known structures. On the one hand, the elaborated theoretical concepts

are very general covering a broad range of applications and, on the other hand, it turns out

that some of the known MM design concepts can be further adapted or optimized in the

light of the presented theoretical treatment. In particular, the so-called fishnet structure

and its derivations were chosen for explicit investigations because this class of MMs is well

investigated in literature and it represents a low-loss medium with a left-handed behavior

at optical frequencies.

∗The term ”mesoscopic” refers to the fact, that a structured medium is described by the spatial permittivity
distribution of its constituents, i.e. ε(ω, r), where all constituent materials are assumed to be local,
homogeneous materials.

†At first glance, the term ’scattering’ sounds very general in this context, but throughout this work it must
be rather understood as the reflection and transmission of light at planar interfaces.

‡May k, E, H and S denote the wave-vector, the electric and magnetic field as well as the Poynting vector
of a propagating plane wave (k is real) in a certain homogeneous medium. Then, the term ’left-handed
behavior’ refers to the property, that the triple {k,E,H} establishes a left-handed trihedron, i.e. k �� S.
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The present thesis is structured as follows. The introduction is followed by a brief summary

of the precise and rigorous numerical modeling, as it was used for this work. In particular,

the focus lies on the Fourier modal method (sometimes also referred as rigorous coupled wave

approach) which allows for the calculation of the Bloch eigenmodes of three-dimensional,

absorbing, periodic nano-structures. Right after that, the Bloch eigenmodes of an absorbing

medium are thoroughly characterized in Chap. 3, where the deduced properties are indepen-

dent on the scheme of their actual numerical determination. Instead, and that is important,

they are generally applicable. At first, orthogonality relations are outlined which amongst

others allow to specify the general decomposition of beams (propagating within a periodic

medium) into Bloch modes. The orthogonality relations are further used in Sec. 3.2 to

describe scattering at the interface between two dissimilar periodic media. By that, closed-

form expressions are derived for the reflection and transmission coefficients of all modes

excited at the interface. In this context, a very useful approximation, namely the funda-

mental mode approximation is introduced. It allows for a reasonable simplification of both

problems, namely propagation through the bulk as well as coupling at the interfaces. Even-

tually, the chapter closes with the introduction of diffraction and inclination coefficients in

Sec. 3.3. The first quantity is useful to describe the effective propagation characteristics of

paraxial beams over macroscopic distances. The latter quantity is related to a beam’s major

direction of propagation and can be exploited to establish a law of refraction. In particular,

it can be used to distinguish between positive (ordinary) and negative refraction.

In Chap. 4 the developed theoretical concepts are applied to realistic MMs. The focus will

lie on fishnet MMs which are introduced in Sec. 4.1. Henceforth, reasonable paths through

the dispersion relation of their Bloch eigenmodes are discussed and the consequences for

beams propagating through the bulk are analyzed. At first, the frequency dispersion of the

fishnet MM reveals a fundamental Bloch mode which exhibits a left-handed behavior. This

observation agrees with precedent effective medium descriptions of the fishnet MM. However,

the thorough analysis of the angular dispersion of that mode reveals that the left-handed

behavior is largely disconnected and cannot be associated with anomalous diffraction and

negative refraction in general. These findings are attributed to the strong (angular and

frequency) dispersion of the fishnet structure and they are further supported by numerical

experiments which study the imaging/focusing capabilities of proper designed fishnet MM

slabs. To make the topic bold, Sec. 4.4 introduces a generic design approach of super-cell

fishnet structures. With such approach, it is shown that the dispersion relation of the

fundamental Bloch mode can be purposely tailored to match a predefined shape. Two

examples demonstrate the achievement of a circular as well as a flat angular dispersion

relation. The first one mimics that of a homogeneous, isotropic and left-handed MM, and
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the second dispersion relation allows for the propagation of beams without experiencing

any diffraction. Finally, the chapter closes with studies of reflection and transmission of

Bloch modes at the planar boundary of a MM half-space. It is shown that a Swiss cross

MM, which is appropriately diluted with respect to the longitudinal period, can be treated

as homogenous while it still supports the dispersive effects of interest, i.e. a left-handed

behavior.

Chapter 5 deals with the description and observation of nonlinear optical effects. There, the

attention is devoted to the investigation of second and third-harmonic generation supported

by metallic nano-structures. In this context, nonlinear frequency conversion processes are

suggested to benefit from the high electrical field confinement in the vicinity of the metallic

structures. In that sense, these schemes promise to outperform classical configurations

for nonlinear frequency conversion, at first, with respect to the achievable efficiencies and,

secondly, with respect to the effective interaction lengths. Last but not least, all results are

summarized and perspectives are discussed.



2 Numerical modeling of periodically

arranged metamaterials

The great progress in research and development of optical MMs during the last decade was

mainly driven by the continuous evolution of nano-fabrication technologies, as there are, e.g.,

electron beam lithography [36] or focused ion beam milling [37]. Very recently, also new tech-

niques are coming in sight which, e.g., try to construct MMs by means of self-organization

mechanisms [38–42]. These so-called bottom-up MMs∗ most often possess low symmetries

because they consist of randomly distributed meta-atoms and, hence, they possess amor-

phous characteristics up to a certain degree. Although the influence of disorder is worth

studying from a fundamental point of view [43–47], rigorous electromagnetic calculations

of large configurations of bottom-up MMs require the application of all-purpose numerical

techniques. Usually, they discretize Maxwell’s equations in space and/or time. Examples

that can be cited are the finite-difference time-domain method [48, 49], the finite-element

method [50–52] or Galerkin methods [53, 54]. However, these methods typically require a

huge amount of computational resources in memory and time, which makes them unfavor-

able to use. On the contrary, the so-called top-down MMs† designated to operate in the

optical domain, originate from coated wafers whose surface is manipulated on a nanometer

scale by the techniques mentioned above. Consequently, the desired meta-atoms are formed

out of a thin stack of homogeneous layers and their arrangement can be controlled to a very

large extent. In particular, choosing a periodic distribution of meta-atoms the entire struc-

ture will be determined by a single unit cell. However, the concrete spatial arrangement is

considered to be of minor importance and the desired optical properties are still assumed

to be controlled by the special shape of the unit cell (meta-atom) itself. Due to these rea-

sons we will henceforth restrict all considerations to periodically arranged MMs since this

is an important and widely investigated class of optical MMs. The concrete geometrical

∗The term ”bottom-up” accounts for the synthesis of this class of MMs. Typically, pre-fabricated or pre-
processed meta-atoms are continuously deposited on a substrate such that the actual MM grows with
time.

†The term ”top-down” accounts for the fact, that these MMs are fabricated in a way typically starting
from a pre-processed wafer, e.g. a stack of layers. Afterwards, the meta-atoms are developed by nano-
structuring processes, e.g. electron beam lithography.

9



NUMERICAL MODELING OF PERIODICALLY ARRANGED METAMATERIALS 10

layout will be discussed in the upcoming section in more detail. However, with respect to

the computational effort it would be desirable to have a numerical method at hand which

exploits the basic symmetries (e.g. the periodicity) of the structure and takes advantage of

it. Several rigorous methods exist for that purpose which have their roots in the rigorous

analysis of light scattering and diffraction at optical gratings. Among others, there exist for

example differential methods [55–59], integral methods [60–62], the C-method [63–65] and

the finite element method [66]. Nevertheless, the most relevant method for this thesis is the

Fourier modal method (FMM) which will be briefly reviewed in Sec. 2.2. It dates back to

the beginnings of the eighties [67,68] and it it was then continuously improved over the last

two decades by stably analyzing three-dimensional and multi-layer structures [69–72], by

establishing adapted Fourier factorization rules [73–78] and, eventually, by the introduction

of adaptive spatial resolution [79–83] to improve the convergence. The usage of perfectly

matched layers even allows for the modeling of non-periodic structures [84–87].

In this chapter the FMM is outlined for an application to periodic structures. It will

be discussed how to use this method for the calculation of the optical response (reflec-

tion/transmission) of a finite thin film MM embedded in an arbitrary surrounding. More-

over, the FMM can be adapted to calculate the Bloch eigenmodes of a bulk MM. An

approach to this treatment will be given in Sec. 2.2.3. Combining both possibilities finally

allows for the rigorous calculation of the reflection and transmission coefficients between

two dissimilar MMs. The chapter closes with a short summary to highlight the important

elements.

Eventually, there is a short note which has to be provided with respect to the chosen

nomenclature. Although this thesis is dedicated to light propagation in MMs, the methods

presented in the following two chapters will also apply for all kinds of lossy, periodic struc-

tures. Thus, the methods can be applied to MMs (absorbing or not) as well as photonic

crystals. Specific properties which are only attributed to a special class of these structures

will be clearly stated if necessary.

2.1 General statement of the problem

Within this thesis all considerations are relying on classical, macroscopic electrodynamics.

All constituent materials that are used to assemble a MM are assumed to be local, homo-

geneous and non-magnetic media. Hence, Maxwell’s equations together with meaningfully

chosen constitutive relations provide the fundamental framework to describe classical optics.

At first, all important quantities and equations are introduced in the current section. Fur-

thermore, the most general geometrical layout for all further considerations will be discussed
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and the basic notation, used in the succeeding sections, is clarified.

2.1.1 Maxwell’s equations

Throughout the remaining part of this thesis all considerations are performed in the spectral

domain. Then, Maxwell’s equations, excluding free charges and currents, read as

∇× E(r, ω) = +iωB(r, ω) , ∇ ·B(r, ω) = 0 ,

∇×H(r, ω) = −iωD(r, ω) , ∇ ·D(r, ω) = 0.
(2.1)

The real and time dependent electrical field components can be calculated according to

E(r, t) =

∞∫
0

dω [E(r, ω) exp (−iωt) + E∗(r, ω) exp (+iωt)] (2.2)

where the asterisk denotes the complex conjugate. Analogue relations hold for the fields D,

H and B, too. In what follows, the two curl-equations of Eqs. (2.1) are used to solve for

the electromagnetic problem under consideration, however, keeping in mind the constraints

implied by the two div-equations‡.

The four electromagnetic fields contained within Maxwell’s Eqs. (2.1) are not independent

from each other and their mutual dependency comes into the game by the respective con-

stitutive relations. In the following, we will consider only non-magnetic materials

B(r, ω) = μ0H(r, ω) (2.3)

with μ0 being the vacuum permeability. It has to be stressed that this assumption reflects

the natural choice of available materials for optical frequencies but it can be easily lifted [88].

The dielectric response is considered to be

D(r, ω) = ε0ε(r, ω)E(r, ω) (2.4)

where all linear material properties are collected into the permittivity function ε(r, ω) and

ε0 denotes the permittivity of vacuum. The present chapter exclusively concentrates on

light-matter interactions in the linear regime, however, in Chap. 5 also nonlinear optical

properties of nano-structured materials will be discussed. Then, an additional term, namely

the nonlinear polarization, has to be considered in Eqn. (2.4).

Now, by substituting Eqs. (2.3)-(2.4) into Eqs. (2.1), and introducing a re-normalized mag-

‡Owing to the relation ∇ · (∇×) = 0, the two div-equations are trivially fulfilled for frequencies ω > 0.
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netic field

H̃(r, ω) =
√

μ0/ε0H(r, ω) (2.5)

we finally end up with (k = ω/c)

∇× E(r, ω) = +ikH̃(r, ω) ,

∇× H̃(r, ω) = −ikε(r, ω)E(r, ω).
(2.6)

Summing up, these equations will state the basis for all upcoming specifications of this

chapter. The tilde placed above the magnetic field will be omitted in the following,

henceforth assuming the exclusive usage of the re-normalized magnetic field.

2.1.2 Stack of periodically modulated layers

As already written in the chapter’s introduction, in the following considerations the focus will

be on periodic, stacked MMs. The fundamental geometrical layout is depicted in Fig. 2.1. In

hL-1

... ...

hL-2
h1 h0

zL zL-1 zL-2
z0z1z2

x

y

z

#0#1#L-2#L-1

�y

�x

�y

�x

Figure 2.1: Schematic picture of a periodic multi-layer structure. In general, all included layers possess
a periodic material distribution in lateral dimension (x- and y-direction). All layers have to share a
common periodicity Λx × Λy which defines the unit cell in every layer (see green-shaded area). The
permittivity distribution is invariant along the third spatial dimension (z) within a single layer. The
height of each layer is arbitrary and denoted by hl; l is the layer index running from 0 to L− 1.

general, the entire structure is composed of an arbitrary number of layers. The constituent

materials are considered to be isotropic such that the permittivity distribution ε is periodic



NUMERICAL MODELING OF PERIODICALLY ARRANGED METAMATERIALS 13

in x- and y-direction and it is assumed to be invariant with respect to the z-direction in each

individual layer. The lateral (x- and y-direction) period, which has to be commensurable for

all the layers, amounts to Λx × Λy. The permittivity distribution is of the form ε(l)(x, y) =

ε(l)(x+Λx, y+Λy), with l being the layer index. The adjacent regions, formally subscripted

by −1 and L, are not specified in detail at the moment. However, it has to be assumed that

the field in these regions can be represented by a Fourier series, i.e. can be decomposed into

plane waves.

2.2 Fourier modal method

The following section serves to present a brief summary of the Fourier modal method – a

numerical technique that was widely used to achieve the results presented in this thesis. Its

aim is to solve the electromagnetic boundary value problem for the geometrical layout as

described in Sec. 2.1.2 in a rigorous manner.

2.2.1 Bloch theorem and Fourier-Floquet eigenmodes

Since the permittivity distribution is periodic with respect to the lateral dimensions in each

layer of the structure, the Bloch theorem [89] can be applied to any electromagnetic field

component, i.e.

f (l)(x+ Λx, y + Λy, z) = exp [i(α0Λx + β0Λy)]f
(l)(x, y, z). (2.7)

Here, the quantity f is a placeholder for any Cartesian component of E or H, respectively.

According to Eqn. (2.7), the field is called pseudo-periodic since it decomposes into a phase

factor and into a purely lattice periodic component. α0 and β0 represent the lateral com-

ponents of the Bloch wave vector, or shortly called the Bloch vector in the following. It

has to be mentioned that α0 and β0 are conserved throughout all layers, the substrate and

cladding which is a direct implication of the electromagnetic boundary conditions. Hence,

the field inside every layer l can be expressed by the pseudo-Fourier series

f (l)(x, y, z) ∼=
Ux∑

m=−Ux

Uy∑
n=−Uy

f (l)
mn(z) exp [i(αmx+ βny)]. (2.8)
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An exact equality is achieved for Ux and Uy approaching infinity, but a numerical solution

requires the Fourier series to be truncated. Furthermore,

αm = α0 +mKx (2.9)

βn = β0 + nKy (2.10)

with the reciprocal lattice vector components Kx = 2π/Λx and Ky = 2π/Λy. The super-

script l denotes the layer index. Inspecting Eqs. (2.8)-(2.10) it becomes clear that it suffices

to restrict the lateral Bloch vector components α0 and β0 to the so-called first Brillouin

zone§ (BZ), i.e. α0 ∈ [−Kx/2,+Kx/2) and β0 ∈ [−Ky/2,+Ky/2). Solutions which

possess higher lateral Bloch vector components can always be mapped onto the BZ.

Eigenmodes of a single layer. Now, concentrating on Eqn. (2.8) and remembering that

the permittivity distribution is invariant along the z-direction in any layer l, the eigensolu-

tions will be of the following form:

f (l)(x, y, z) = exp (iγ(l)z)
∑
mn

f (l)
mn exp [i(αmx+ βny)]. (2.11)

Inserting Eqn. (2.11) into Maxwell’s equations (2.6) and eliminating the z-components of

the fields, one obtains an algebraic system of equations for the lateral electromagnetic field

components [69, 75], that is

γ(l)�(l) = M̂ (l)�(l) =

(
0 F̂ (l)

Ĝ(l) 0

)(
�

(l)
⊥

�
(l)
⊥

)
. (2.12)

Here and in the following, quantities like � denote vectors in Fourier domain.

Equation (2.12) can be further simplified to become

(
γ(l)
)2
�

(l)
⊥ = F̂ (l)Ĝ(l)�

(l)
⊥ (2.13)

Formally, Eqn. (2.12) is an eigenvalue equation with the eigenvalue γ(l) and the eigenvector

�(l) = (�
(l)
⊥ ,�

(l)
⊥ )T = (�(l)

x ,�(l)
y ,�(l)

x ,�(l)
y )T (2.14)

with each of the four entries representing a column vector of the Fourier coefficients of the

corresponding field components. Thus, e.g., the x-component of the electrical field �
(l)
x is a

§In what follows it is shortly called the Brillouin zone .
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vector in Fourier domain itself and it reads as

(�(l)
x )m+(2Ux+1)n = E(l)

xmn (2.15)

Similar definitions hold for all other electromagnetic field components, too. The concrete

definition of the sub-matrices F̂ (l) and Ĝ(l) turns out to be [69] (k = ω/c)

F̂ (l) =
1

k

(
α̂ η̂(l)β̂ k2�− α̂ η̂(l)α̂

−k2�+ β̂ η̂(l)β̂ −β̂ η̂(l)α̂

)
(2.16)

Ĝ(l) =
1

k

(
−α̂ β̂ −k2ε̂

(l)
yx + α̂ α̂

k2ε̂
(l)
xy − β̂ β̂ β̂ α̂

)
(2.17)

The matrices α̂ and β̂ are diagonal matrices of size (2Ux+1)(2Uy+1) containing the elements

of αm and βn according to Eqs. (2.9)-(2.10) whereas � denotes the identity matrix of equal

size.

Fourier factorization rules. Special care has to be taken with respect to the Fourier

transformation of the permittivity distribution ε(l)(r, ω). There exist special rules [74, 76]

which drastically improve the convergence properties of the considered method with respect

to the number of Fourier harmonics used for the numerical calculation. Without giving any

explicit justification here, they affect the definition of the matrices η̂(l), ε̂
(l)
xy and ε̂

(l)
yx. To write

down their definitions one furthermore has to define the Toeplitz matrices ε̂
(l)
x (y) and ε̂

(l)
y (x)

which are composed of the following Fourier components

ε(l)x (y)
∣∣
m

=
1

Λx

Λx∫
0

dx
1

ε(l)(x, y)
exp (−imKxx) (2.18)

ε(l)y (x)
∣∣
n

=
1

Λy

Λy∫
0

dy
1

ε(l)(x, y)
exp (−inKyy) (2.19)



NUMERICAL MODELING OF PERIODICALLY ARRANGED METAMATERIALS 16

and, finally, one finds the desired quantities to be Toeplitz matrices formed by the following

elements

(η(l))−1
∣∣
mn

=
1

ΛxΛy

ΛxΛy∫∫
0 0

dxdy ε(l)(x, y) exp [−i(mKxx+ nKyy)] (2.20)

ε(l)xy
∣∣
mn

=
1

Λy

Λy∫
0

dy
(
ε̂(l)x (y)

)−1
exp (−inKyy) (2.21)

ε(l)yx
∣∣
mn

=
1

Λx

Λx∫
0

dx
(
ε̂(l)y (x)

)−1
exp (−imKxx) (2.22)

Field decomposition in a single layer. Now that all quantities entering Eqn. (2.13) are

defined, the layers’ eigensolutions according to Eqn. (2.11) are formally known. Thus, any

field distribution within layer l can be written as a superposition of the corresponding

eigensolutions (with j = {x, y})

E
(l)
j,mn =

S∑
s=1

a(l)s E
(l)
j,mn,s exp (iγ

(l)
s z̃) + b(l)s E

(l)
j,mn,s exp (−iγ(l)

s (z̃ − hl)) (2.23)

H
(l)
j,mn =

S∑
s=1

a(l)s H
(l)
j,mn,s exp (iγ

(l)
s z̃)− b(l)s H

(l)
j,mn,s exp (−iγ(l)

s (z̃ − hl)) (2.24)

with z̃ = z−zl denoting the relative z-coordinate and hl the thickness of the respective layer.

S = 2(2Ux+1)(2Uy+1) represents the finite number of numerically calculated eigensolutions.

E
(l)
j,mn,s are the Fourier components of the eigenvectors according to Eqn. (2.13). Knowing

them, the magnetic field components are calculated using Eqs. (2.12)-(2.13), i.e. �
(l)
⊥,s =

Ĝ(l)�
(l)
⊥,s/γ

(l)
s . At present, a

(l)
s and b

(l)
s are unknown modal field amplitudes. They are

obtained later by imposing the boundary conditions at the layers’ interfaces which will be

discussed in more detail in the next section.

Finally, it turns out to be advantageous due to later reasons to write down Eqs. (2.23)-(2.24)

in a more compact form. By using the notation of Eqn. (2.15) to cast all Fourier components

of the electromagnetic field into a single vector, then the above equations can be transformed

into a matrix form, that is

�(l)(z̃) =

(
Ê

(l)
⊥ Ê

(l)
⊥

Ĥ
(l)
⊥ −Ĥ

(l)
⊥

)(
Â

(l)
+ (z̃) 0

0 Â
(l)
− (z̃)

)(
�(l)

�(l)

)
≡ Ŵ φ̂(z̃)

(
�(l)

�(l)

)
. (2.25)

�(l)(z̃) is defined according to Eqn. (2.14) and the component vector
(
�(l),�(l)

)T
is com-
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posed of the elements of the modal expansion coefficients¶. The matrices Ê
(l)
⊥ and Ĥ

(l)
⊥

denote the (numerically) complete set of eigensolutions which are solutions to Eqn. (2.13).

Â
(l)
± (z̃) denote diagonal matrices according to Â

(l)
+ (z̃) = diag{exp (iγ(l)

s z̃)} and Â
(l)
− (z̃) =

diag{exp (−iγ
(l)
s [z̃ − hl])}. Finally, inspecting the right hand side of Eqn. (2.25), the matrix

Ŵ simply defines the eigenvector matrix which is solution to Eqn. (2.12) and the matrix

φ̂(z̃) is the associated propagation kernel, which allows to propagate the field to any position

z̃ within the associated layer.

2.2.2 The scattering matrix

As already mentioned before, the modal field amplitudes a
(l)
s and b

(l)
s of all layers are still

unknown, however, they are linked to each other by enforcing the tangential electromagnetic

field components to be continuous at the layers’ boundaries. A standard scattering matrix

(S-matrix) scheme [70] will be used in the following to address this task. Thus, in a first

step the self-consistent field evolution inside a specific layer l is considered which is subject

to a given field distribution defined at the boundaries z̃l and z̃l+1 of that layer. Solving the

corresponding equations according to the incoming and outgoing modes one ends up with

(x- and y-direction are the tangential ones)(
�(l+1)

�(l)

)
= σ̂(l)

(
�(l)

�(l+1)

)
,

σ̂(l) ≡
(

Ê
(l+1)
⊥ −Ê

(l)
⊥

Ĥ
(l+1)
⊥ Ĥ

(l)
⊥

)−1(
Ê

(l)
⊥ Ĉ(l) −Ê

(l+1)
⊥ Ĉ(l+1)

Ĥ
(l)
⊥ Ĉ(l) Ĥ

(l+1)
⊥ Ĉ(l+1)

)
.

(2.26)

The matrix Ĉ(l) denotes a diagonal matrix composed of the elements exp (iγ
(l)
s hl), i.e. Ĉ

(l) =

Â
(l)
+ (hl) as used in Eqn. (2.25). σ̂(l) is the so-called scattering matrix of layer l. The scattering

matrices of all individual layers can now be concatenated in a recursive manner. This results

in the total scattering matrix of the overall structure. In general, the concatenation between

two S-matrices σ̂1 and σ̂2 will be denoted by σ̂1 � σ̂2 and it evaluates to

σ̂1 � σ̂2 =

(
σ̂1
11 σ̂1

12

σ̂1
21 σ̂1

22

)
�

(
σ̂2
11 σ̂2

12

σ̂2
21 σ̂2

22

)

=

(
σ̂2
11 (�− σ̂1

12σ̂
2
21)

−1
σ̂1
11 σ̂2

12 + σ̂2
11 (�− σ̂1

12σ̂
2
21)

−1
σ̂1
12σ̂

2
22

σ̂1
21 + σ̂1

22 (�− σ̂2
21σ̂

1
12)

−1
σ̂2
21σ̂

1
11 σ̂1

22 (�− σ̂2
21σ̂

1
12)

−1
σ̂2
22

)
.

(2.27)

¶Actually, the vectors �(l) and �(l) are not referring to the Fourier domain, however, the same notation is
used for them just for convenience.
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Eventually, the outlined concatenation scheme together with the complete set of eigenso-

lutions according to Eqn. (2.13) allows for the rigorous electromagnetic treatment which

arises for any specific excitation impinging from the surrounding onto the structure.

Finally, the strength and usefulness of the presented description with respect to the nature

of the adjacent regions (indices −1 and L) defined in context of Fig. 2.1 shall be illustrated.

Usually there are two half-spaces – the substrate (index: −1) and cladding (index: L) – as-

sumed to be semi-infinitely extended in the z-direction. As long as the eigenmodes of these

regions can be expanded into a pseudo-Fourier series, it is straightforward to incorporate

them into the presented S-matrix scheme. In particular, the associated modal amplitudes

are usually called reflection and transmission coefficients since they describe the decompo-

sition of the reflected and transmitted fields propagating into the substrate and cladding,

respectively. To give some examples, the simplest case is that of substrate and cladding

being ordinary homogeneous materials. This is the typical setup of a multi-layer grating.

In this case, the modes within substrate and cladding are plane waves. Several examples

can be found throughout the literature, e.g. in Refs. [69, 80, 81]. A different scenario may

include a semi-infinitely extended bulk periodic structure. In that case the eigenmodes of

substrate and/or cladding are Bloch modes. This allows to calculate reflection and trans-

mission coefficients at a boundary between air and a photonic crystal [90–94] or MM [TP01]

or even between two distinct photonic crystal [95–97] or MM structures [TP02].

2.2.3 Solving for Bloch eigenmodes

Up to now, the FMM was only discussed to solve Maxwell’s equations for a given, finite (in

z-direction) geometry which is excited by a known incident field. However, it can be fur-

thermore exploited to solve for the Bloch eigenmodes of a three-dimensional bulk MM with

a unit cell being composed of a stack of modulated layers. According to the considerations

of the previous section (see Sec. 2.2.1) the Bloch eigenmodes will obey the Bloch theorem,

that is

f(x+ Λx, y + Λy, z + Λz) = f(x, y, z) exp [i(α0Λx + β0Λy + kzΛz)].

Again, f represents any electromagnetic field component and it implies that the eigenmodes

of a three-dimensional periodic structure decompose into a lattice periodic function which

is multiplied by an exponential term. kz denotes the z-component of the Bloch vector

kB = (α0, β0, kz)
T . To calculate the Bloch modes explicitly, it is assumed in the following
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that the S-matrix Ŝ as defined by the relation(
�(L)

�(0)

)
= Ŝ

(
�(0)

�(L)

)
=

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
�(0)

�(L)

)
. (2.28)

is known. It describes the overall scattering of a particular stack structure consisting of L

layers. This stack is assumed to represent a single unit cell of an associated three-dimensional

bulk MM. Thus, applying Bloch periodic boundary conditions to the electromagnetic field

also in z-direction, Eqn. (2.28) will transform into [85, 86, 98–100](
�(0) exp (ikzΛz)

�(0)

)
=

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
�(0)

�(0) exp (ikzΛz)

)
(2.29)

After separating all terms, including the Bloch exponential, by bringing them on the right

hand side will lead to [98](
Ŝ11 0

Ŝ21 −�

)(
�(0)

�(0)

)
= exp (ikzΛz)

(
� −Ŝ12

0 −Ŝ22

)(
�(0)

�(0)

)
(2.30)

which represents a generalized eigenvalue problem with eigenvalues exp (ikzΛz) and eigen-

vectors (�(0),�(0))T . In particular, the vector (�(0),�(0))T collects the expansion coefficients

of the actual Bloch modes in terms of the Fourier modes of the first layer (index: 0) of

the structure. It has to be mentioned, that a successive application of the scattering ma-

trix approach also allows for the calculation of all other expansion coefficients (�(1),�(1))T

to (�(L−1),�(L−1))T of the remaining layers of the structure. Thus, the complete electro-

magnetic field distribution of all Bloch modes is determined. Anyway, performing further

algebraic manipulations on Eqn. (2.30) it finally transforms into(
� −Ŝ12

0 Ŝ22

)(
�(0)

�(0)

)
=

1

1 + exp (ikzΛz)

(
� + Ŝ11 −Ŝ12

Ŝ21 −�− Ŝ22

)(
�(0)

�(0)

)
(2.31)

which is a more favorable representation with respect to a numerical solution [100] since

the new eigenvalue 1/(1 + exp (ikzΛz)) does not cause overflow (→ ∞) if the imaginary

part of kz becomes positive and large. However, concentrating on the physical results it is

important to note that the solution of Eqn. (2.31) will provide the multi-branch dispersion

relation

kp,z = kp,z(α0, β0, ω) (2.32)



NUMERICAL MODELING OF PERIODICALLY ARRANGED METAMATERIALS 20

of the Bloch modes of the three-dimensional bulk MM. The z-component kp,z of the Bloch

vector is complex in general and it will be called propagation constant in the following.

It continuously depends on the (real) lateral Bloch vector components α0, β0 and the

frequency ω in a parametric manner‖. Furthermore, there exists an infinite but countable

number of solutions, with respect to mode index p, but due to the numerical calculation

the number of modes will always stay finite. However, an increasing number of eigenmodes

(depending on their propagation constant) will converge against their real counterparts in

the infinite set of solutions which can be controlled by the number of Fourier harmonics

used for the numerical calculation [86].

2.3 Chapter summary and concluding remarks

This chapter was devoted to the brief presentation and description of the Fourier modal

method. It allows to solve Maxwell’s equations for stacked, periodic MMs and nano-

structures on rigorous grounds. At first, it was discussed how to solve the electromag-

netic scattering problem on a finite nano-structure, e.g., to determine the reflection and

transmission coefficients under illumination from the surrounding. In a second part and

even more important, it was shown how to use the FMM to determine the band structure

or dispersion relation kp,z(α0, β0, ω) as well as the associated Bloch modes of any peri-

odic nano-structure. In particular, this includes three-dimensional, periodic and absorbing

MMs. For that aim one principally is able to scan the entire parameter space defined by

{(α0, β0) ∈ BZ, ω ∈ [0,∞]} with BZ denoting the Brillouin zone. However, the complete

numerical procedure (including eigenvalue solvers and matrix inversions) has to be applied

for each set of parameters (α0, β0, ω) individually, such that these calculations are not fea-

sible and practically all considerations will be restricted to some reasonable subspaces, e.g.

iso-frequency surfaces (keeping the frequency constant) or frequency dispersion relations

with respect to a fixed lateral direction (fixing α0 and β0).

‖Note that this treatment is different from the one that is used for photonic crystals [101] where the
frequency obeys a multi-branch dispersion relation according to ω = ωn(k⊥, kz).



3 Bulk metamaterials and Bloch

eigenmodes

In the upcoming chapter we want to change the perspective away from the numerics towards

a more or less abstract view on the problem of eigenmodes of MMs. The results of this

chapter were already partly published in Ref. [TP03] and a more comprehensive survey will

be presented here. In the following it is not important which method was used to determine

the Bloch modes of a periodic MM. Instead, all consideration will exclusively rely on their

pseudo-periodicity and some very fundamental material properties, like reciprocity. In the

first part of this chapter it will be shown that the Bloch modes of absorbing MMs are

orthogonal to each other and the associated orthogonality relations will be derived. These

results are fundamental [TP03] and they represent a modification or extension of what is

already known from dielectric periodic media, e.g. photonic crystals [21]. In the second

part of the chapter the derived orthogonality relations are then exploited, e.g, to describe

propagation within bulk MMs and to describe the scattering (reflection/transmission) of

light at the boundary between two MM half-spaces in general.

3.1 Orthogonality relations of Bloch modes

In the following, an arbitrary periodic MM will be considered. Light propagation can be

described in terms of its complete set of eigenmodes. Formally using Dirac’s notation, any

Bloch mode

|Bp(α0, β0, ω)〉 ≡ (Ep,x, Ep,y, Hp,x, Hp,y)
T exp [i(α0x+ β0y + kp,z(α0, β0, ω)z)] (3.1)

can be characterized by a pseudo-periodic ket-vector being composed of an exponential

term and the lattice periodic vector (Ep,x, Ep,y, Hp,x, Hp,y)
T which contains all lateral elec-

tromagnetic field components. In general, the propagation constant kp,z(α0, β0, ω) is com-

plex and it parametrically depends on the lateral Bloch vector components as well as on

the frequency. Although not explicitly written down, every field component depends on

21
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(α0, β0, ω), too. Finally, the complete spatiotemporal evolution of the p−th mode is given

by |Bp(α0, β0, ω)〉 exp(−iωt). Furthermore, all considerations will be restricted to light prop-

agation with respect to the ±z-direction. Therefore, α0 and β0 must be real quantities to

keep the modes finite at infinity.

In the following, general orthogonality relations between the Bloch modes of a medium are

derived. The starting point is the set of Maxwell’s equations according to Eqs. (2.6).

Inner product between Bloch modes. Relying on Dirac’s notation, one can define a

generalized inner product according to [90]

〈B†
q |Bp〉 =

∞∫∫
−∞

dxdy Ψ · ez exp {i[(α0 + α†
0)x+ (β0 + β†

0)y + (k†
q,z + kp,z)z]},

Ψ(α0, β0, α
†
0, β

†
0; x, y, z) ≡ [Ep ×H†

q −E†
q ×Hp].

(3.2)

between two Bloch modes |Bp〉 ≡ |Bp(α0, β0, ω)〉 and |B†
q〉 ≡ |Bq(α

†
0, β

†
0, ω)〉 obeying

Maxwell’s equations at the same frequency ω. For the sake of briefness, the frequency

argument will be omitted in the following. ez denotes the Cartesian unit vector in z-

direction. The introduced inner product may depend on the precise z-position of the

plane where the integral is evaluated. However, 〈B†
q |Bp〉 turns out to be invariant with

respect to the z-coordinate as will be shown later. Since only the z-component Ψz enters

Eqn. (3.2), the remaining components will be omitted in the following. To derive the or-

thogonality relations one has to remember that Ψz is by definition a lattice periodic function

that can be expanded into a Fourier series with respect to the x- and y-direction, namely

Ψz =
∑∞

m,n=−∞Ψmn(α0, β0, α
†
0, β

†
0; z) exp [i(Kxm+Kym)]. The expansion coefficients are

denoted by Ψmn. They explicitly depend on the z-coordinate and, thus, Eqn. (3.2) trans-

forms into

〈B†
q |Bp〉 = (2π)2

∞∑
m,n=−∞

{
Ψmn(α0, β0, α

†
0, β

†
0; z)

δ(Kxm+Δα0)δ(Kyn +Δβ0) exp [i(k
†
q,z + kp,z)z]

} (3.3)

with Δα0 = α0+α†
0 and Δβ0 = β0+β†

0. The sum in Eqn. (3.3) seems to be rather involved,

but only one element turns out to be non-zero.

Reduced inner product. To see this, one has to remember that (α0, β0)
T and (α†

0, β
†
0)

T are

elements of the BZ. Excluding the case that both modes are directly located at the edge of

the BZ it can be concluded that |Δα0| < Kx and |Δβ0| < Ky. Therefore, only the central
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element (m,n = 0) of Eqn. (3.3) is non-zero which leads to

〈Bq(α
†
0, β

†
0)|Bp(α0, β0)〉 = (2π)2Ψ00δ(Δα0)δ(Δβ0) exp [i(k

†
q,z + kp,z)z]

≡ {Bq(α
†
0, β

†
0)|Bp(α0, β0)}δ(Δα0)δ(Δβ0)

(3.4)

where the reduced inner product {B†
q |Bp} was introduced according to

{B†
q |Bp} =

(2π)2

ΛxΛy

∫∫
unit cell

dxdy Ψ · ez exp [i(k†
q,z + kp,z)z]. (3.5)

The pre-factor is chosen for convenience to avoid additional constants in Eqn. (3.4). The

reduced inner product is very similar to the original one according to Eqn. (3.2), but it is

only evaluated over the cross section of a single unit cell. Thus, the integral will remain

finite in general. From a numerical point of view these facts are very essential since they

allow to work on finite intervals.

Orthogonality with respect to k⊥. En passant, Eqn. (3.4) is already half of the story

with respect to the orthogonality of modes. It indicates that two Bloch modes |Bp(α0, β0)〉
and |Bq(α

†
0, β

†
0)〉 are orthogonal to each other whenever (α0, β0)

T 
= −(α†
0, β

†
0)

T , or in other

words, if they do not share a lateral Bloch vector component which is opposite in sign.

Moreover, the orthogonality relations according to Eqn. (3.4) will also hold between modes

of different media as long as their periods in lateral direction, i.e. Λx × Λy, are equal. This

is caused by the fact that the permittivity distribution does not explicitly enter the deriva-

tion of Eqn. (3.4) and, instead, only the pseudo-periodicity of the eigenmodes was exploited.

Law of conservation. Now, after having evaluated the generalized inner product 〈B†
q |Bp〉

with respect to its dependency on the lateral Bloch vector components α0 and β0, the

influence of the discrete mode indices, namely q and p is still unidentified. Relying on the

Lorentz reciprocity theorem [102] one can derive the following expression [90]∫∫
∂V

(Ě2 × Ȟ1 − Ě1 × Ȟ2) · dS =

i
c
(ω1 − ω2)

∫∫∫
V

(εĚT
1 Ě2 − ȞT

1 Ȟ2) dV.
(3.6)

It is fulfilled for Ě1 and Ȟ1 (Ě2 and Ȟ2), representing the electric and magnetic field vectors

of any monochromatic field distribution obeying Maxwell’s equations (2.6) within the same
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medium ε(r, ω) at frequency ω1 (ω2). For isotropic constituents, i.e. ε(r, ω) is a scalar

function, no further assumption is necessary∗ to derive Eqn. (3.6).

In what follows, Eqn. (3.6) is applied to the eigenmodes |B†
q〉 = |Bq(−α0,−β0, ω)〉 and

|Bp〉 = |Bp(α0, β0, ω)〉. Of course, the parameters are chosen such that |B†
q〉 and |Bp〉 are

non-orthogonal in the sense of Eqn. (3.4). Now, the special case of a cuboidal volume V

with lower and upper limits z and z+z0 > z is considered. In lateral direction V is extended

over a single unit cell and, hence, the integration kernel is periodic in x and y. Due to this

fact, the surface integral in Eqn. (3.6) collapses and there are only two surfaces at z and

z + z0 with a non-vanishing contribution. Furthermore, the right hand side of Eqn. (3.6) is

zero, because both modes have the same frequency. Then, using the reduced inner product

according to Eqn. (3.5), Eqn. (3.6) transforms into

{B†
q |Bp}z+z0 − {B†

q |Bp}z = 0. (3.7)

It is immediately clear that {B†
q |Bp}, and consequently also 〈B†

q |Bp〉, do not depend on z

explicitly. Hence, 〈B†
q |Bp〉 is a conserved quantity, although the Bloch modes entering this

equation generally do experience an attenuation during propagation along z. Moreover, due

to the fact that the concept of a group velocity is questionable in lossy media the authors of

Ref. [103] use the cited quantity, namely {B†
q |Bp}, to define a so-called adjoint field velocity

for modes in lossy periodic structures. This modal field velocity then turns out to reproduce

the energy velocity in case of a lossless dielectric.

Orthogonality with respect to kz. By explicitly evaluating Eqn. (3.7) for z0 = Λz and

exploiting the quasi-periodicity of the Bloch modes along the z-direction it follows that

{B†
q |Bp}

{
1− exp

[
i(kp,z + k†

q,z)Λz

]}
= 0. (3.8)

This equation is obviously fulfilled whenever at least one of these two terms equals zero.

The latter one only vanishes whenever kp,z + k†
q,z = 0. To identify these cases, the general

relation between the propagation constants of modes |B†
q〉 and |Bp〉 provides the answer.

The propagation constants are related by k†
q,z = −kq,z as deduced from the most general

property

k†
B,p = −kB,p (3.9)

which is essential and only applies in reciprocal media [103, 104]. Using Eqn. (3.9) and

assuming that there are only non-degenerated modes, i.e. kp,z 
= kq,z for p 
= q, Eqn. (3.8)

∗A very similar relation is valid for any anisotropic medium as long as it is reciprocal, i.e. ε(r, ω) = εT (r, ω).
The Bloch mode orthogonality relations will even hold in this more general case.
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directly implies that

{Bq(−α0,−β0)|Bp(α0, β0)} ∝ δpq (3.10)

with δpq being the Kronecker symbol. This relation together with Eqn. (3.4) gives the final

result

〈Bq(α
†
0, β

†
0)|Bp(α0, β0)〉 = Cp(α0, β0)δpqδ(α0 + α†

0)δ(β0 + β†
0) (3.11)

being the orthogonality relations of Bloch modes in an arbitrary and, in particular, absorbing

MM. The set of functions

Cp(α0, β0) = {Bp(−α0,−β0)|Bp(α0, β0)}

allows for an arbitrary normalization. Finally, having a closer look at the definition

of the bilinear form {Bq(α
†
0, β

†
0)|Bp(α0, β0)} according to Eqn. (3.5), it gets obvious

that it is antisymmetric with respect to its elements, i.e. {Bq(α
†
0, β

†
0)|Bp(α0, β0)} =

−{Bp(α0, β0)|Bq(α
†
0, β

†
0)}. Consequently, the scaling function will reflect this symmetry

such that Cp(α0, β0) = −Cp(−α0,−β0).

3.1.1 Decomposition of beams

After having derived the orthogonality relations obeyed by the Bloch modes of a particular

MM, it is straightforward to decompose any field distribution |F 〉(x, y) into a superposition

of Bloch modes. Therefore, one has to assume that the Bloch modes are complete such that

any field |F 〉(x, y), measured at a certain z-position, may be written as†

|F 〉(x, y) =
∑
p

∫∫
BZ

dα0dβ0Ap(α0, β0)|Bp(α0, β0)〉(x, y, z), (3.12)

with Ap(α0, β0) denoting the expansion coefficients, i.e. the Bloch spectrum. Projecting

Eqn. (3.12) onto 〈Bq(α
†
0, β

†
0)| and using Eqn. (3.11) it immediately follows that

Ap(α0, β0) =
〈Bp(−α0,−β0)|F 〉

Cp(α0, β0)
. (3.13)

At first glance, it appears to be quite surprising that the spectral amplitude for a certain set

of parameters (α0, β0) is determined by the Bloch mode associated with those parameters

†Note that a notation like |B(α0, β0)〉 (with parenthesis inside) refers to a parametrical dependence of
the ket-vector on the considered parameter. On the contrary, if the parenthesis are placed outside, e.g.
|F 〉(x, y) or |F 〉(kx, ky), then this notation refers to the domain in which the considered quantity is
evaluated.
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that are opposite in sign. However, Eqs. (3.12)-(3.13) are quite similar to the expansion

of any field distribution into plane waves propagating in a homogeneous medium. There,

the expansion coefficient to a specific plane wave, say exp [i(k⊥r+ kzz)], with lateral wave-

vector component k⊥ is given by a Fourier integral [105]. However, this is nothing else than

the projection of the field onto that eigenmode which has a lateral wave-vector in opposite

direction, namely exp (−ik⊥r).

3.2 The single interface between bulk metamaterials

Detrimental for a description of finite MMs, e.g. a MM slab structure, is the possible

excitation of a larger number of Bloch modes at its interfaces. Then, the coupling of

light into the MM is a complicated issue and requires a devoted rigorous treatment on

its own [100, 106]. In the current section we will rely on the data presented in Sec. 3.1

and we will outline a description based on the Bloch modes of both MMs which helps to

calculate the mutual scattering coefficients, i.e. the reflection and transmission coefficients,

at a planar interface. Furthermore, it will turn out to be highly desirable to simplify this

treatment and, preferably, to extract the coupling properties at a MM interface only from

a single Bloch mode – particularly the one that also dominates the light propagation in the

bulk. Along these lines we have shown in two recent publications that coupling between

two media is governed by a single mode in both media, as long as the involved eigenmodes

are only slightly perturbed with respect to each other [TP02,TP03].

3.2.1 General description

The very general problem of coupling light at the interface between two MMs L (left) and R
(right) under oblique incidence is depicted in Fig. 3.1. For the sake of convenience, we will

consider two MMs of equal periodicity with respect to the interface. This ensures, that a

mutual cross coupling between both media only occurs for those Bloch modes which possess

the same lateral (tangential) Bloch vector component. A generalization to the case of two

different periods is straightforward in general, but turns out to be quite cumbersome. Then,

the lateral Bloch vector component is conserved except for a multiple of the reciprocal

interface lattice vector of the common period as it is known, e.g., for photonic crystals

[106–110]. In the current configuration the eigenmodes on both sides of the interface are

Bloch modes with a temporal dependency according to exp(−iωt) with a real frequency

ω. Due to the orientation of the interface as depicted in Fig. 3.1 the lateral Bloch vector

components k⊥ = (α0, β0)
T must be chosen to be equally real to maintain the fields finite
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Figure 3.1: Schematic picture of an interface between two periodic media. The Bloch vector compo-

nents tangential to the interface that are preserved are (α0, β0)
T and (−α0,−β0)

T for the adjoint
(†) fields, respectively.

at infinity. Hence, the propagation constant kn,z = kn,z(α0, β0, ω) will be complex in general

and it is determined by the particular dispersion relation of the respective medium. In

what follows, Dirac’s notation is used again. Thus, any Bloch mode is represented by its

propagation constant kn,z and the associated ket-vector

|Bn〉 = (En,x, En,y, Hn,x, Hn,y)
T exp [i(α0x+ β0y + kn,zz)].

On either side of the interface (medium L is discussed in the following) Fig. 3.1 shows four

discrete set of modes. Two of them, i.e. |Ln+〉 and |Ln−〉, are solutions to a certain set

of parameters, say (k⊥, ω). Furthermore, |Ln+〉 represents the modes with an energy flow

in positive z-direction (in passive, absorbing materials they fulfill �(kn,z) > 0) and |Ln−〉
are those with an energy flow in negative z-direction (�(kn,z) < 0). On the other hand,

the adjoint fields |L†
n+〉 and |L†

n−〉 are solutions to a different lateral Bloch vector (−k†
⊥, ω).

Please note, in contrast to the previous case, that forward and backward modes are now

indicated by ”–” and ”+”, respectively. After finishing the classification of all relevant

modes the orthogonality relations according to Eqn. (3.11) can be used to write down the



BULK METAMATERIALS AND BLOCH EIGENMODES 28

following expressions [TP03], i.e.

〈L†
m+|Ln+〉 = L+

m(k⊥)δmnδ(k⊥ − k†
⊥), (3.14)

〈L†
m−|Ln−〉 = −L−

m(k⊥)δmnδ(k⊥ − k†
⊥), (3.15)

〈L†
m+|Ln−〉 = 0, (3.16)

〈L†
m−|Ln+〉 = 0. (3.17)

L±
m = ±{L†

m±|Lm±} are normalization functions (please, refer to Eqn. (3.5) for the definition

of the reduced inner product {L†
m±|Lm±}) and the minus sign in Eqn. (3.15) is just chosen for

convenience. Similar results are valid for the mutual dependency of modes from medium R
using different normalization constants R±

m in general. Furthermore, considering the mutual

cross-dependency between the modes of media L and R and following the discussion in

Sec. 3.1 one can directly conclude that

〈R†
m+|Ln+〉 = {R†

m+|Ln+}δ(k⊥ − k†
⊥), (3.18)

〈R†
m−|Ln−〉 = {R†

m−|Ln−}δ(k⊥ − k†
⊥), (3.19)

〈R†
m+|Ln−〉 = 0, (3.20)

〈R†
m−|Ln+〉 = 0 (3.21)

must be fulfilled as long as the two MMs possess the same cross section period at the

common interface. In the more general case multiple δ-functions appear, which would

potentially lead to a coupling between modes of different lateral Bloch vector components

(as already mentioned above).

Without loss of generality it is assumed in the following that the incident light is impinging

from the left hand side onto the interface. Furthermore, the incident field is assumed to

be represented by any superposition of modes |Ln+(k⊥)〉. Due to the boundary, there are

modes |Ln−(k⊥)〉 and |Rn+(k⊥)〉 excited in reflection as well as in transmission. Then, the

continuity of the tangential electromagnetic field components at the interface implies that

∑
n

∫
BZ

dk⊥in(k⊥) |Ln+(k⊥)〉+
∑
n

∫
BZ

dk⊥rn(k⊥) |Ln−(k⊥)〉 =
∑
n

∫
BZ

dk⊥tn(k⊥) |Rn+(k⊥)〉,

(3.22)

with rn(k⊥) and tn(k⊥) being the reflection and transmission coefficients. in(k⊥) describes

the modal decomposition of the impinging field. The rigorous solutions for rn(k⊥) and

tn(k⊥) can be derived by projecting Eqn. (3.22) once on 〈R†
k−| and once on 〈L†

k+| and by
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exploiting the orthogonality relations according to Eqs. (3.14)-(3.21). In matrix notation

this results in

r(k⊥) = −â−1ĉ i(k⊥), (3.23)

t(k⊥) = d̂−1f̂ i(k⊥), (3.24)

where the matrix elements are determined by

akn = {Rk−(−k⊥)|Ln−(k⊥)}, (3.25)

ckn = {Rk−(−k⊥)|Ln+(k⊥)}, (3.26)

dkn = {Lk+(−k⊥)|Rn+(k⊥)}, (3.27)

fkn = {Lk+(−k⊥)|Ln+(k⊥)} = L+
k (k⊥)δkn. (3.28)

Remarkably, the reflection and transmission coefficients for the particular lateral Bloch vec-

tor component k⊥ are exclusively determined by the incident field components in which pos-

sess the same lateral Bloch vector component. At first, this result reflects the mutual orthog-

onality relations fulfilled by the Bloch modes of both media according to Eqs. (3.18)-(3.21)

and, secondly, it is a manifestation of the boundary conditions which enforce the continuity of

the lateral Bloch vector component in the considered configuration. Henceforth, knowing the

Bloch modes of both media L and R one can construct the matrices â, ĉ, d̂ and f̂ according

to Eqs. (3.25)-(3.28) and apply them to rigorously solve for the reflection and transmission

coefficients of all Bloch modes excited at the interface. For the sake of completeness, the el-

ements of the coefficient vector i are calculated by projecting any incident field distribution,

say |I〉, onto the modes |L†
n+〉. Using Eqn. (3.13) yields in(k⊥) = 〈Ln+(−k⊥)|I〉/L+

n (k⊥).

3.2.2 Fundamental mode approximation

The following considerations are restricted to the important case that only the fundamental

mode‡ |L0+〉 is impinging on the interface, i.e. i0(k⊥) = 1, in≥1(k⊥) = 0. For scenarios where

the eigenmodes of media L and R largely match each other, the matrices â, ĉ, d̂ are expected

to become sparse. Hence, approximate solutions can be found by contracting the description

to small sub-matrices which only take into account a small number of entries around the

fundamental mode. Doing that, the size of the sub-matrices dictates the accuracy of the

‡The fundamental mode is characterized by the lowest imaginary part of the propagation constant kz.
Thus, it prevails against all other Bloch modes in terms of attenuation during bulk propagation. For a
detailed discussion see also Sec. 3.3.
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approximation§. This procedure is quite similar to the usage of impedance matrices when

dealing with dielectric systems [97]. However, applying the crudest approximation, that is

to take into account only the first element of all matrices defined by Eqs. (3.25)-(3.27), one

obtains

r0(k⊥) = −〈R0−(−k⊥)|L0+(k⊥)〉
〈R0−(−k⊥)|L0−(k⊥)〉 , (3.29)

t0(k⊥) =
〈L0+(−k⊥)|L0+(k⊥)〉
〈L0+(−k⊥)|R0+(k⊥)〉 (3.30)

for the reflection and transmission coefficients into the fundamental modes. As part of

this assumption, the resulting reflection and transmission coefficients rn≥1 and tn≥1 into all

higher modes are zero. If this approximation is justified, the situation resembles that of

an interface between two genuine homogeneous media where the scattering properties are

exclusively determined by the two fundamental eigenmodes. Hence, in what follows this

approximation is called the fundamental mode approximation.

3.3 Beam propagation in metamaterials

In this section the focus will be on the properties and characteristics of light beams which

propagate in bulk MMs over macroscopic distances. The description will turn out to be in full

analogy to the description of diffraction of beams in homogeneous media. In that case, any

electromagnetic field distribution can be expanded into plane waves and the entire problem

of light propagation is then based on the propagation of a bunch of these eigenmodes [105].

Henceforth, it is assumed that any electromagnetic field distribution |F 〉(x, y) within a MM

is known in a plane z = 0. In general, the expansion into Bloch modes at z = 0 is governed

by Eqn. (3.12). For the sake of simplicity, the discussion will be limited to beams which are

confined only in one lateral dimension, say x, such that the beam is exclusively composed

of Bloch modes of type |Bp(α0, β0 = 0)〉. Assuming that there are no sources located within

the volume z > 0, the field propagating into the positive half-space will be given by

|F 〉(x, y, z) =
∑
p

+Kx/2∫
−Kx/2

dα0Ap+(α0)|Bp+(α0)〉(x, y, z). (3.31)

§Assuming â, ĉ, d̂ and f̂ to be matrices of size S × S with a typical value of S in the order of O(103) for
three-dimensional bulk structures. Then, the outlined approximation means, to truncate all matrices to
a smaller size S̃ 
 S [in the order O(101) . . .O(102)]. The new quantities are defined according to, e.g.,
â → (akn) with k, n = 1, . . . , S̃. The crudest approximation is to truncate all matrices to a size of 1× 1,
i.e. scalars, such that only the first entry of all matrices, e.g. a11, is taken into account.
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The Bloch spectrum Ap+(α0) can be determined by applying Eqn. (3.13) to |F 〉(x, y) at

z = 0.

In the following it turns out to be more convenient to split off the exponential component

from the Bloch mode such that

|Bp+(α0)〉(x, y, z) → |Bp+(α0)〉(x, y, z) exp [i(α0x+ kp+,zz)].

Consequently, the ket-vector |Bp+(α0)〉(x, y, z) will only contain the actual Bloch mode’s

lattice periodic contributions in the remaining section. However, Eqn. (3.31) contains a

continuous as well as a discrete superposition of modes and the question arises if this most

general description is really required. Having in mind light propagation over sufficiently

large distances, it is clear that only the Bloch mode with the lowest attenuation is trans-

mitted. For that purpose, it is henceforth assumed that the set of Bloch modes |Bp+(α0)〉 is
arranged according to the magnitude of the imaginary part of their propagation constants,

i.e. �[k0+,z(α0)] < �[k1+,z(α0)] < �[k2+,z(α0)] < . . ., where the arrangement is individually

applied for every angular component. Then, the smallest mode index pmin is selected which

fulfills |Ap+(α0)| > 0 and all higher terms p > pmin of the sum appearing in Eqn. (3.31) are

neglected¶. Consequently, this equation simplifies to

|F 〉(x, y, z) =
+Kx/2∫

−Kx/2

dα0A(α0)|B(α0)〉(x, y, z) exp [iα0x] exp [ikz(α0)z] (3.32)

with the mode index pmin being omitted in the following. Henceforth, |B(α0)〉 denotes the
so-called fundamental mode and A(α0) is the respective angular distribution.

The paraxial limit. The expression defined by Eqn. (3.32) is rather involved since the

considered Bloch modes (ket-vectors) explicitly depend on the spatial coordinates. Due to

the fact that beams are usually extended over multiple unit cells in the lateral direction,

the expansion function A(α0) is assumed to be limited to the BZ. Furthermore, A(α0) is

assumed to be centered around a central lateral Bloch vector component (α̃0, 0). Hence, a

Taylor expansion of the propagation constant kz(α0) can be performed which leads to

kz ≈ ξ0 + ξ1(α0 − α̃0) +
ξ2
2
(α0 − α̃0)

2 (3.33)

¶The outlined choice of pmin takes into account additional selection rules for all Bloch modes, e.g. their
symmetry. |Ap+(α0)| = 0 means that the associated mode is not excited.
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where the expansion coefficients are defined according to

ξ0 = ξ′0 + iξ′′0 = kz(α̃0) (3.34)

ξ1 = ξ′1 + iξ′′1 =
∂kz
∂α0

∣∣∣∣
α̃0

(3.35)

ξ2 = ξ′2 + iξ′′2 =
∂2kz
∂α2

0

∣∣∣∣
α̃0

(3.36)

Now, Eqs. (3.33)-(3.36) are inserted into Eqn. (3.32) and the resulting expression is only

evaluated at discrete points x = uΛx, y = vΛy and z = wΛz with u, v and w being integers.

Due to the fact that A(α0) is non-zero only in the BZ, one can extend the integration limits

to infinity and the resulting integral will transform into a Fourier integral which gives

|F 〉(uΛx, wΛz) =
+∞∫∫
−∞

dα0 A(α0)|B(α0)〉(x = 0, y = 0, z = 0)

× exp [ikz(α0)z] exp [iα0uΛx]

(3.37)

since |B(α0)〉 does not depend on (x = uΛx, y = vΛy, z = wΛz) explicitly. Transforming

this expression into the spatial domain, light propagation is formally described by a partial

differential equation, i.e.[
i
∂

∂w
+ ξ0 − iξ1

∂

∂u
− ξ2

2

∂2

∂u2

]
|V 〉(u, w) = 0, (3.38)

with |V 〉(u, w) = |F 〉(uΛx, wΛz) exp (−iα̃0Λxu) being the electromagnetic field distribution

in the quasi-continuous limit. Now, u and w are continuous variables and, henceforth,

Eqn. (3.38) will describe light propagation effects on length scales which typically extend

over multiple unit cells [111, 112]. The rather subtle field distributions appearing within

a single unit cell (or around a meta-atom) can not be predicted by that. Let us have

a look at a short example to get a better feeling for this description. For that purpose

the evolution of a super-Gaussian beam profile within a 2D photonic crystal is presented

in Fig. 3.2. As it is expected, the quasi-continuous model well reproduces the ordinary

diffraction effects, like beam spreading, whose typical length scale extends over several

wavelengths. On the contrary, the rather sharp field gradients occurring within the unit

cell of the considered structure are completely annihilated as compared to the rigorous field

propagation model according to Eqn. (3.32). However, if one is only interested in the large-

scale features occurring during the evolution of the beam and not in the near-field features

which dominate on length scales smaller than one unit cell, then the usage of Eqn. (3.38)
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Figure 3.2: Amplitude evolution of a super-Gaussian beam [exp{(x/4μm)6} at z = 0] inside a 2D
photonic crystal at wavelength λ = 1500 nm. The photonic crystal (see inset) consists of air holes
(diameter: 200 nm) in a silicon matrix (n = 3.5). The period is 255 nm and the polarization is
TM (H in out-of-plane direction). The arrow indicates the direction of propagation. The figures
on the left display the modulus of the magnetic field |H| as calculated by the rigorous propagation
model (a) according to Eqn. (3.32) and the quasi-continuous propagation model (b) according to
Eqn. (3.38). For a better visibility, the magnetic field distribution is plotted over the lateral coordinate
at propagation distances z = 0 (c) and z = 50 μm (d). The blue (red) lines correspond to the rigorous
(quasi-continuous) propagation model.

greatly simplifies the entire description.

3.3.1 Inclination and diffraction coefficients

Equation (3.38) is very similar to the well-known paraxial wave equation which governs

the evolution of light in a homogeneous medium [112, 113]. For the sake of simplicity, it

is convenient to assume for a moment that ξ′′1 
 ξ′1. Then, inspecting Eqn. (3.38), the

first derivative will mainly cause the beam to continuously shift in lateral direction. More

precisely, its center of gravity will move on a straight line determined by u = ξ′1w. Thus,

ξ′1 is called the inclination coefficient since it defines the beam’s main angle of propagation
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relative to the z-axis, i.e. tan(θ) = ξ′1. Moreover, when thinking about refraction of light

at the single interface between two MMs, then the sign of the product R = ξ′1,MM1(α̃0) ·
ξ′1,MM2(α̃0) between the inclination coefficients of the two MMs decides wether positive (R >

0) or negative (R < 0) refraction appears. Now, concentrating on the imaginary part ξ′′1 ,

it can be concluded that it causes an asymmetric damping of the beam. It will lead to

beam distortions during propagation, but more importantly, it can bend the beam’s major

propagation direction since the angular center of gravity can be modified.

Now, the focus is shifted to the second derivative appearing in Eqn. (3.38). Its real part

ξ′2 is responsible for diffraction, and its imaginary part ξ′′2 results in angular filtering of the

beam. Once again, it is more convenient to discuss propagation effects attributed to ξ′2 and

ξ′′2 independently from each other. Starting with the imaginary part, it is more convenient

to discuss its influence in Fourier domain using Eqn. (3.37). Clearly, the existence of a term

∝ exp(−ξ′′2 (α0 − α̃0)
2z) will modify the modulus of the angular spectrum A(α0) in a non-

trivial fashion. However, it can be concluded that the sign of ξ′′2 determines wether the initial

distribution A(α0) is affected by a low pass (ξ′′2 > 0) or a high pass Fourier filter (ξ′′2 < 0).

Accordingly, one will observe a spreading or a contraction of the beam in spatial domain.

This must look very similar to ordinary diffraction. Now, concentrating on the real part of

ξ′2, and assuming that ξ′′2 
 ξ′2 for convenience, we end up with the typical discussion that

is routinely facilitated for dielectric structures, e.g. photonic crystals. There, effects caused

by ordinary diffraction are usually discussed along the beam’s main direction of propagation

which is determined by ξ′1 as discussed above. Then, the second derivative which defines ξ′2
will turn into the local curvature of the dispersion relation’s real part �(kz) evaluated at

α̃0. Thus, ξ
′
2 will transform into the following expression

ξ′2(k
(0)) =

d2� (k)

ds2

∣∣∣∣
k(0)

, (3.39)

with ds = |dk|, k = [α0,�(kz(α0))]
T and k(0) = [α̃0,�(kz(α̃0))]

T . This rather general

definition translates into the more convenient form

ξ′2(α̃0) =

∂2�(kz)
∂α̃2

0[
1 +
(

∂�(kz)
∂α̃0

)2] 3
2

. (3.40)

for an iso-frequency contour of the functional type kz(α0). For propagation along the z-

direction, i.e. ξ′1(α̃0) = ∂�(kz)/∂α̃0 = 0, Eqn. (3.40) coincides with the former definition

according to Eqn. (3.36).

In contrast to ordinary, dielectric homogeneous media where the diffraction coefficient ξ′2
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is constant (it is −1/k), here it is determined by the particular dispersion relation of the

underlying MM. For that reason, the diffraction coefficient may take arbitrary values such

that it can be negative, positive or it even may become zero. Then, one typically speaks

about normal diffraction (ξ′2 < 0), anomalous diffraction (ξ′2 > 0) and diffractionless prop-

agation (ξ′2 = 0). The description of light propagation in terms of its diffraction coefficient

is rather established for photonic crystals and photonic lattices [21, 112] and not for MMs.

One reason is certainly the difficulty to observe light propagation over several unit cells

in highly absorbing metallic nano-structures. However, the assumption to have bulk MMs

at hand is not necessary and already thin MM slabs are conveniently described with the

parameters presented above, since they do not rely on any effective medium assumptions.

Instead, light propagation is exclusively described by relying on the true eigenmodes of the

underlying structure. Just to give one example, the authors of Ref. [114] report about rig-

orous numerical simulations of a fishnet MM where positive refraction was obtained from a

negative-index MM and vice versa. These findings cannot be explained on grounds of effec-

tive media theories, but they are easy to explain with the model presented above. In that

sense, the next chapter will present a thorough analysis of a fishnet MM where, amongst

others, these effects are studied and consequences are drawn.

3.4 Chapter summary and concluding remarks

This chapter has started with the introduction of Bloch modes in absorbing, periodic nano-

structures, i.e. MMs. The defined Bloch modes |Bp(k⊥, ω)〉 parametrically depend on the

lateral Bloch vector component k⊥ ∈ BZ and the frequency ω ∈ [0,∞). The last Bloch

vector component kz = kp,z(k⊥, ω) is determined by the multi-branch dispersion relation

and it has an infinite but countable number of solutions. Important to note, this represen-

tation must not be confused with the one that is commonly used for photonic crystals made

from non-absorbing materials [101]. For photonic crystals the modes |Mn(k⊥, kz)〉 depend
on all three Bloch vector components in a parametric manner, and the frequency is deter-

mined by the dispersion relation ω = ωn(k⊥, kz). Then, modes are non-orthogonal to each

other whenever they have the same Bloch vector and frequency (mode index n). However,

orthogonality relations between Bloch modes were shown in this work to exist also in the

absorbing case, namely for MMs. They were derived in the first part of this chapter and

they represent fundamental and self-contained results. The second part of this chapter was

on the correct treatment of reflection and transmission of light at the boundary between two

dissimilar MM half-spaces. Here, the orthogonality relations were successfully applied to

derive closed-form expressions for the reflection and transmission coefficients in terms of the
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Bloch modes of both media. In general, a mutual cross coupling between all Bloch modes

appears. Only in case that the eigenmodes of both MMs largely match each other, this

cross-coupling can be neglected. This allows to find simplified expressions for the reflection

and transmission coefficients that are solely based on the fundamental modes of both media.

This is what is henceforth called the fundamental mode approximation. It has to be stressed

that this approximation is not just a technical detail but essential to the discuss the physics

of MMs. Such detailed discussion will be provided in the next chapter. In this context it

will be shown that the validity of the of the fundamental mode approximation is intimately

connected with the homogeneity of MMs. Last but not least, the current chapter has closed

with a discussion about the propagation of beams in bulk MMs. Concepts already known

from photonic crystals and photonic lattices were modified and adapted to the inevitable

situation that attenuation (damping) has to be taken into account. Thus, parameters such

as the diffraction and inclination coefficients were introduced. They are solely derived from

the Bloch mode’s dispersion relation with the aim to describe refraction at and diffraction

in MMs without relying on any assumption or effective medium model for the underlying

nano-structure.



4 Investigation of bulky fishnet-like

metamaterials

In view of macroscopic optical devices which may comprise MMs or MM components, there

is a strong need for three-dimensional bulk MMs. For that purpose, unit cells of various

shape were suggested to be arranged in a deterministic three-dimensional manner. Several

promising examples were published that report on the fabrication of bulky samples using

either direct laser writing or electron beam lithography to built up multi-layer fishnet or

split-ring structures [28, 115–118].

To understand this urgent need, one has to look back at the beginnings of MM’s research

which started with Pendry’s work about the perfect lens [3] – a simple slab of a homogeneous

material having a permittivity and permeability of −1. Unfortunately, there is no natural

material available in the optical domain which offers a serious magnetic polarizability [119]

and, henceforth, a large campaign started to find and build man-made structures mimicking

magnetically and electrically polarizable entities. Finally, the development of transformation

optics with its proposals for novel and incredible devices [5,8] additionally provoked the need

for homogeneous bulk media with engineered electric and magnetic properties.

Most suggestions for contemporary MM structures exploit the excitation of localized plas-

mon polariton resonances as provided by metallic nano-structures. These structures promise

a large interaction between light and matter while simultaneously exhibiting small feature

sizes. Though, the creation of homogeneous MMs, especially working in the optical domain,

has turned out to be a delicate issue [TP04,120,121]. The assignment of local, effective mate-

rial parameters follows the paradigm that light only weakly resolves the spatial details of the

unit cells which stays in full analogy to the classical transition from microscopic to macro-

scopic electrodynamics∗. In consequence, the actually structured material is conceptually

substituted by an effective continuous distribution (with its eigenmodes being plane waves)

∗The term weakly refers to so-called weak spatial dispersion. In classical electrodynamics the material
response is solely attributed to the effect of the electrical field on the current density, i.e. j(ω,k) =
R̂(ω,k)E(ω,k). Expanding the response tensor R̂ into a power series with respect to the wavevector
k, then one speaks about weak spatial dispersion if this expansion is limited by the second order term.
Only in that case local material parameters, namely ε(ω,�k) and μ(ω,�k) can be assigned.

37
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that must provide identical optical properties. A wide variety of publications is dedicated

to this intent and one can refer to three major strategies to assign effective parameters –

the parameter retrieval techniques [TP05,122–124], the wave propagation retrieval [125] and

methods based on field averaging [126–128]. However, clear indications that the retrieved

quantities cannot be considered as local, effective material parameters are their thickness

and angular dependence [TP04,TP06,129,130]. In fact, investigating the angular dispersion

characteristics kB(ω = const.), i.e. the iso-frequency surfaces, of most MMs it is obvious

that they cannot simply be mapped to any known behavior of local homogeneous materials

as there are, e.g., isotropic or anisotropic ones [TP04,120, 131–133]. Consequentially, there

is a strong need for a more fundamental description.

In what follows the focus will be on the description of periodically arranged, stacked

MMs with lateral periods that are only slightly smaller than the wavelength. This

situation is typical for MMs operated in the optical domain. It is the declared aim

of this chapter to explain the characteristics of light propagation through bulk MMs

only by the Bloch modes as introduced in Chap. 3. However, this description does not

prevent the introduction of effective parameters which help to simplify the description

of light propagation in MMs. In fact, the inclination and diffraction coefficients as

introduced in the previous chapter may be regarded as effective parameters which help

to describe refraction as well as diffraction of beams in periodic media in a very compact way.

However, to bridge the gap between the Bloch modal description and various homogenization

efforts it appears best to start with a clear specification of the term homogeneous as we want

to understand in the following. In due consideration of different concepts discussed in the

scientific literature, it might be best understood and described in terms of a hierarchical

scheme, where subsequent statements require the previous to be fulfilled.

� The entities of a medium have to be sub-wavelength. Then, by illuminating a slab

sample with a plane wave the transmitted as well as the reflected far field is still a

plane wave, i.e. higher diffraction orders are evanescent.

� Light propagation inside the medium is determined by a single Bloch mode – the

so-called fundamental mode (FM).

� Additionally, also the coupling of light (reflection/transmission) from or to an external

medium is determined by the same fundamental Bloch mode. When these conditions

are fulfilled, we say that the fundamental mode approximation (FMA) is valid. The

medium might then be characterized by the propagation constant of the FM and its

impedance. These two parameters, describing the properties of the FM, are called

effective wave parameters.
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� If the dispersion relation of the FM can be mapped onto that of a true homogeneous

medium obeying a certain constitutive relation, the effective wave parameters might

be reduced to local, effective material parameters. These are necessarily independent

of the shape and the illumination scheme of a specimen and are solely related to the

material itself.

Since most interesting dispersive features of MMs (especially the magnetic ones) fade

away the smaller the unit cells are [TP04, 134–136], one has to get used to the idea

that the mesoscopic size domain is rather essential rendering the assignment of local,

effective material parameters as unfeasible. Thus, the ultimate (fourth) criterium of the

aforementioned hierarchy can be hardly met and one has to return to the third and second

item. Therefore, in the following considerations, the term homogeneous medium is used

in its more general form, i.e. considering the properties of the FM or, equivalently, its

effective parameters.

Despite the variety of available MM structures, the following considerations will focus on

bulky fishnet MMs which became famous due to their left-handed behavior† and simultane-

ously exhibiting comparatively low losses [137, 138]. Moreover, this class of MMs is widely

investigated, both experimentally and theoretically, such that it represents a sound source

for further investigations. However, it has to be mentioned that the concept of Bloch modes

was already successfully applied to various MM structures and turned out to be in full

consistency with rigorous results [TP00,TP07,TP08,139, 140].

The current chapter is structured as follows. In Sec. 4.1 the fishnet MM structure will be

briefly reviewed and its fundamental mechanism of operation as a left-handed material is

explained. In Secs. 4.2 and 4.3.1 the Bloch modes of a bulky fishnet MM are determined

and their dispersion relation is presented. In this context it will be shown, that the potential

left-handed behavior of the fishnet structure is linked to a fundamental Bloch mode which

exhibits a Bloch vector which points against the direction of propagation, i.e. the Poynting

vector. Then, the dispersive characteristics of the fundamental Bloch mode are extensively

used to analyze diffraction within a bulky fishnet MM and also refraction into the same

one. It will be demonstrated that the operation in the left-handed regime is not sufficient

nor necessary to observe effects like negative refraction or anomalous diffraction. As an

example, the thorough analysis of a fishnet structure reveals that it even supports ordinary,

positive refraction in the left-handed domain. Based on these results and findings, a

super-cell MM approach is then outlined in Sec. 4.4 which allows to mould the angular

dispersion relation of the fundamental Bloch mode by desire. By that, a super-cell fishnet

†Sometimes this is also referred to a negative phase velocity or even a negative effective refractive index.
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structure is presented which shows either a nearly circular angular dispersion relation (as

isotropic materials would do) or even a very flat one which gives rise to the observation of

diffractionless propagation. Finally, the chapter will close with Sec. 4.5 where the attention

is drawn to the scattering of light at the interface of a MM. In particular, the focus will be

on the reflection and transmission of plane waves at the interface between air and a MM

and the coupling properties are then exploited as a measure to evaluate the homogeneity of

MMs in general. Some of the results that will be presented in the following were published

in several regular articles [TP09,TP10,TP03].

Eventually, there is a final note to draw in advance with respect to the applicability of

the parameter retrieval procedure. When it is applied to a finite MM slab it will provide

an effective propagation constant kz,eff and an effective impedance Zeff as the fundamental

output. Assuming that the FMA is fulfilled, they constitute the effective wave parameters of

the fundamental Bloch mode (for a detailed discussion see Sec. 4.5.1). In the opposite case,

i.e. the FMA is not justified, then kz,eff and Zeff will lose their physical meaning in general

and they cannot be linked to a modal property anymore. However, when the parameter

retrieval is applied to periodic but absorbing MMs it turns out that at least kz,eff will still

converge against kz of the fundamental Bloch mode of the considered medium as long as

the thickness of the MM layer is chosen to be large enough [TP06,TP07,141]. Keeping this

in mind will facilitate the considerations of the following sections.

4.1 The fishnet structure

The fishnet structure was first introduced by Zhang et al. in 2006 [142, 143]. According to

Ref. [142], the structure’s properties were characterized by calculations of a single fishnet

slab which showed a negative phase evolution in transmission. Using an S-parameter re-

trieval method [124] the authors had concluded that the fishnet exhibits a negative effective

permittivity and permeability. Within the framework of isotropic, homogeneous materials

the negativity of both parameters is a prerequisite to obtain a negative refractive index

expressing the left-handedness of the underlying material [3].

A layout of the fishnet structure is depicted in Fig. 4.1a. The fishnet, as it was originally

introduced, is composed of two nano-structured metallic films (yellow layers) which are

separated by a thin dielectric layer (gray layers). Furthermore, the perforated metallic film

combines a thick metallic double wire structure (in y-direction) crossed by comparatively

thin wires under an angle of 90◦. The fundamental mechanism of operation of the fishnet

structure is as follows. The thin wires effectively work as a diluted electron gas and they only
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Figure 4.1: Schematic of a multi-layer fishnet (a) and Swiss cross MM (b). The structure is assumed
to be infinitely extended in all spatial dimensions and the red box indicates the respective unit cells.

influence the electric field. On the other hand, the thick double-wire structure will affect the

electric as well as the magnetic field. This fact is reflected, e.g., in an electric quadrupolar

and magnetic dipolar character of the near field at a single double-wire or even only a

single double cut-wire structure [144–147]. Within the framework of an effective medium

theory the influence on the magnetic field is rather essential since it allows to modify the

dispersion of the effective permeability which eventually may lead to a left-handed behavior

of the composite structure. However, to avoid any difficulties which may arise from the

description of MMs, and in particular fishnet MMs, by effective parameters we will instead

rely on the dispersion relation of Bloch modes as already stated above. Consequently, we

will consider the fishnet to be a periodic structure in all three spatial dimensions. The final

layout is already displayed in Fig. 4.1a with a single unit cell indicated by the red box.

Finally and for the sake of completeness, it has to be mentioned that the original fishnet

structure as introduced by Zhang et al. can be further optimized to exhibit a response which

is independent from the polarization for propagation purely along the z-direction [148,149].

In that sense, Fig. 4.1b shows one successor of the original fishnet structure, namely a Swiss

cross MM [149]. It will be subject to research in Sec. 4.5. Despite the rearrangement of

the unit cell’s shape, the fundamental mechanism of operation still follows the principles as

explained above and, consequently, it may be considered as a fishnet-like MM.
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4.2 Frequency dispersion of a fishnet

Bloch modes and their polarization. The geometrical parameters of the fishnet MM to be

investigated in the following are motivated by a fabricated (single layer) sample as reported

in Ref. [150]. The sample consists of a pair of 45 nm silver layers [M.1] (see chapter Material

parameters in the appendix for detailed information) separated by a thin dielectric MgF2

layer (ε = 1.90) of 30 nm thickness. The hole sizes are Wx = 500 nm and Wy = 284 nm.

Without loss of generality, it is assumed that adjacent functional fishnet layers are embedded

in air (Λz = 200 nm) to end up with a bulk MM. From a technical point of view this choice

seems to be rather puzzling, but it helps to keep the achieved resonance position in the

vicinity of that reported in Ref. [150]. Choosing any other dielectric to be the host material

will mainly shift the resonance position but it does not alter the physical conclusions.

Numerically calculating the dispersion relation kp,z(kx = ky = 0, ω) of the considered struc-

ture, the result is a finite and discrete spectrum of modes with mode index p. However,

displaying the dispersion relation of all calculated modes is quite confusing. Therefore, it is

sufficient to provide here a small selection of modes and to describe their basic properties

that are representative for the complete modal spectrum. Doing that, it can be first rec-

ognized that the entire dispersion relation kp,z(kx = 0, ky = 0, ω) can be divided into two

subsets of modes, i.e. Σ+ (forward propagating) and Σ− (backward propagating). Assuming

all constituent materials to be reciprocal, these two subsets are simply related by Σ+ = −Σ−,

meaning that the achieved solution will always be composed of pairs of modes which have a

propagation constant which is opposite in sign as it was already explained in Sec. 3.1. The

following discussion will be, without loss of generality, restricted to modes propagating in

positive z-direction. Figure 4.2 shows the relevant data for the real and imaginary part of

the propagation constant kp,z. There are four modes displayed in Figs. 4.2a and 4.2b which

can be divided into three different classes of polarization states as indicated by the choice of

colors. The net polarization is determined by averaging the electrical field distribution over

the x-y-cross section of a unit cell. As it is indicated by Figs. 4.2c - 4.2f, the red solid and

dashed modes show a net polarization in y-direction, the blue mode exhibits a net polariza-

tion in x-direction, and the green mode has a zero net polarization meaning that the cross

section average of the complete electrical field distribution vanishes. This categorization

is quite helpful when considering a finitely extended MM to which light couples from the

outside at a planar interface. Then, it helps to decide which class of modes is capable to

couple to an impinging plane wave of a certain polarization. By that it becomes immediately

clear, that Bloch modes with a zero net polarization (the green one) cannot be excited by

a plane wave under normal incidence and, consequently, their properties are practically not
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Figure 4.2: Real (a) and imaginary part (b) of the dispersion relation kz(ω) of the bulk fishnet MM
under consideration for the lowest-order Bloch modes. Propagation is assumed to be along the z-
direction, i.e. (kx, ky) = (0, 0). The solid curves represent the Bloch modes with the lowest imaginary
parts of kz at 150 THz, that is the lowest frequency of the calculated spectrum. The green (red,
blue) curves correspond to modes with zero (y-, x-) net polarization determined by averaging the
electrical field distribution across the lateral directions, i.e. x and y. The red dashed line is the
second-order Bloch mode possessing a net polarization in y-direction. The magenta (blue) symbols
display the effective propagation constant keff as determined by a parameter retrieval procedure for
plane wave illumination polarized in y- (x-) direction. In that case, a finite fishnet structure was
assumed extending over 10 functional layers in propagation direction. The remaining figures show
the corresponding electrical field distribution (|E|) of all four modes shown above [red solid (c), blue
solid (d), green solid (e), red dashed (f)] at 208.8 THz in a plane centered between two adjacent
functional fishnet layers. i.e. z = 0 (as introduced in Fig. 4.1). The shaded area indicates the
location of the actual fishnet layers and the arrows represent the magnitude and direction of the
lateral electrical field components (Exex + Eyey).

accessible.

A fundamental mode with negative phase velocity. Concentrating on the particular

results displayed in Figs. 4.2a and 4.2b, it can be seen that the red solid mode exhibits a

frequency region from 195 THz to 222 THz in which the real part �(kz), which is a mea-

sure for the phase velocity, becomes reasonably negative while the energy flow concurrently

maintains its direction along +z. This is exactly the realm where this specific mode shows

a left-handed behavior. Remembering its polarization state, it becomes obvious that this

mode can only be excited by a y-polarized plane wave impinging on a finite fishnet structure.

At the same time, this mode represents the FM (as introduced in Sec. 3.3) in y-polarization
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because it clearly shows the lowest imaginary part of the propagation constant as compared

to the next higher-order mode (red dashed line). Thus, it will dominate the light propaga-

tion over sufficiently large distances because finally its attenuation prevails against all other

modes. However, in the higher frequency region right above 320 THz, there is a crossing

of the red modes observable. Consequentially, also the identity of the FM will migrate.

This peculiarity can also be observed when a parameter retrieval procedure is applied to

an appropriate finite fishnet slab structure. In the considered case, the parameter retrieval

method is applied to the reflection and transmission spectra of a slab that consists of 10

fishnet layers in height and that is illuminated by a y-polarized plane wave. The associated

results achieved for the effective propagation constant keff are shown in Figs. 4.2a and 4.2b

by the magenta symbols. As expected, the imaginary part of keff clearly follows the values

of that Bloch mode which exhibits the lowest imaginary part of kp,z, i.e. the FM [TP06].

Hence, the migration of the FM’s identity is clearly reflected by the presented data. How-

ever, the situation is more involved for the real part of the retrieved effective propagation

constant. Although it is not shown explicitly in Fig. 4.2a, the retrieved values start to fail

the Bloch modal data for frequencies larger than about 320 THz which corresponds to the

aforementioned first crossing point of the two red Bloch modes (see Fig. 4.2b). Without

going too much into the details of the parameter retrieval procedure, but the reason for this

erroneous behavior lies in the fact, that the retrieved effective propagation constant keff is

determined except for a factor of 2πm/L, with L being the slab thickness and m being an

integer number. As soon as the FM’s identity migrates between two Bloch modes, then an

unambiguous determination of the integer multiple m is no longer possible in general.

Finally and to complete the story, the cyan symbols in Figs. 4.2a and 4.2b represent the

retrieved effective propagation constant kz,eff when the incident polarization is switched to

the x-direction. Then, the achieved results clearly coincide with the blue mode because it

exhibits a compatible net polarization while simultaneously having the lowest attenuation.

4.3 Beam propagation in a fishnet

It was shown in the previous section, that the dispersion relation of the FM of a bulk MM

may indeed be determined by a conventional parameter retrieval method. Despite the fact

that it will not be shown explicitly here, this property also holds when the lateral Bloch

vector components do not vanish, i.e. kx 
= 0 and/or ky 
= 0. One can take advantage

of this fact by applying a parameter retrieval method for oblique incident waves [TP05,

TP07]. However, this strategy shall not mislead from the fact that an assignment of local,

effective material parameters (which are free of spatial dispersion) is still impossible since
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the dispersion relation of the FM generally does not match that of a local homogeneous

medium, e.g. isotropic or anisotropic ones. Consequentially, a given MM can only be

conceptually replaced (in the sense of a black box) by an effective homogeneous medium in

an exceptional case. This case is, of course, the determination of reflection and transmission

coefficients of plane waves (for a fixed frequency and direction of propagation) scattered at

a particular finite MM slab. However, this situation is of minor practical relevance, since

this corresponds to the re-inversion of the parameter retrieval procedure itself. Especially,

if one is interested in the propagation of beams which can be understood as a superposition

of different plane waves (or better eigenmodes), the situation becomes more complex.

Then, the properties of beams, i.e. refraction and diffraction, interacting with artificial

bulk materials are better described in terms of the dispersion relation of their eigenmodes.

This strategy is a standard technique, e.g., for photonic crystals and waveguide arrays

and interesting effects such as zero and anomalous diffraction [151–153] as well as negative

refraction [154,155] can be clearly identified. Here we aim at proceeding along this path by

analyzing the dispersion relation for arbitrary lateral Bloch vector components and studying

the consequences for refraction and diffraction in imaging MMs where the fishnet structure

serves as an example.

4.3.1 Iso-frequency contours of a fishnet

In the following section, a choice of different points of operation of the fishnet MM will be

presented and discussed. These data will later serve to elaborate the fishnet with respect

to its potential operation as a (perfect) lens device and as a medium exhibiting negative

refraction. By that, it will be shown, that a negative phase velocity (or a negative effective

index) is by no means a sufficient nor a necessary condition to observe any of these effects.

For the sake of briefness, it is assumed in the following that the lateral Bloch vector com-

ponent has only one non-vanishing component kx (ky ≡ 0). Furthermore, the following

considerations will be restricted to beams which have a net polarization of the electrical

field in y-direction. For this polarization, the FM exhibits a plasmonic resonance which

exhibits a left-handed behavior around 208.8 THz as already discussed in Sec. 4.2. Reso-

nances associated with a net polarization in x-direction occur at higher frequencies and are

not discussed here.

Three different frequencies were selected in the following and a detailed investigation has

been performed with respect to the spatial dispersion relation (iso-frequency curves) of the

FM. The choice of these frequencies was motivated by the spectral behavior of the propa-

gation constant as shown in Fig. 4.2a by the red line. The first value of ν1 = 208.8 THz

(λ1 = 1.44 μm) corresponds to the plasmonic resonance position for propagation along
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Figure 4.3: Real (a) and imaginary part (b) of the FM’s angular dispersion relation (iso-frequency
curve) kz(kx) evaluated at three different wavelengths. Blue, solid: λ1 = 1.44 μm; green, dashed-
dotted: λ2 = 1.39 μm; black, dashed: λ3 = 1.49 μm.

the z-direction, i.e. the minimum of �(kz). The two other frequencies are slightly posi-

tively/negatively detuned from this spectral position, i.e., ν2 = 216 THz > ν1 (λ2 = 1.39 μm)

and ν3 = 201.9 THz < ν1 (λ3 = 1.49 μm). The size of detuning will permit a meaningful

qualitative distinction in the angular behavior, but its concrete size affects only quantita-

tively the observations. The corresponding dispersion relations (iso-frequency curves) kz(kx)

are shown in Fig. 4.3. These curves are symmetric with respect to kx, i.e., kz(kx) = kz(−kx).

The kx component of the Bloch vector is varied between zero and 4.2 μm−1 which is close to

the vacuum wavenumber for the three wavelengths of interest. From Fig. 4.2 it can be seen

that �(kz) approaches zero for kx → 4.2 μm−1 in all three cases. In this limit the fishnet

MM is driven out of resonance and it just mimics a diluted metal.

However, concentrating on the differences between the three iso-frequency contours shown

in Fig. 4.3, it is evident that a shift from λ1 to larger wavelengths, i.e. λ3, leads to an

attenuation of the response of the fishnet MM since the resonance is no longer fully excitable.

This becomes obvious because the two considered curves behave similar differing only by

a scaling factor. In particular, both curves exhibit their minimum at normal incidence

(kx = 0) and vary monotonically with kx. In strong contrast, a detuning of the wavelength

from λ1 to smaller values, i.e. λ2, causes the plasmonic resonance to be strongest excitable

for an oblique direction. The iso-frequency curve kz(kx) for λ2 exhibits its minimum at

kx � 2.60 μm−1 and the curve shows a non-monotonic dependence on kx. This has dramatic

consequences for the imaging properties as it will be shown later. However, all presented

results, in particular for λ1 and λ2, do exhibit negative values for kz in the entire angular

domain just emphasizing the left-handed behavior of the FM.
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Inclination and diffraction coefficients. In the following, we concentrate on two distinct

frequencies where the choice was motivated by the preliminary results as discussed above.

First, we choose λ1 = 1.44 μm and second λ2 = 1.39 μm because these two cases turned

out to exhibit a quite remarkably different angular behavior (see Fig. 4.3). Results for λ3

would have been similar to λ1, hence this wavelength is omitted. To proceed the analysis

of the fishnet MM in terms of its properties concerning the propagation of beams, it is now

natural to derive the inclination and diffraction coefficients. They were formally introduced

in Sec. 3.3. Concentrating on the real part of the propagation constant kz, Fig. 4.4 shows

the relevant data. There, � [kz(kx)] and the inclination coefficient ξ′1(kx) as well as the

diffraction coefficient ξ′2(kx) are shown for the two wavelengths of interest. It is evident
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Figure 4.4: Iso-frequency curves (real part of kz), the inclination parameter ξ′1 and the diffraction
coefficient ξ′2 vs. the lateral Bloch vector component kx for λ1 (a) and λ2 (b).

that the diffraction coefficient experiences rapid variations and even changes sign for both

wavelengths. It can be further seen, that in the vicinity of normal propagation (kx = 0)

anomalous diffraction (ξ′2 > 0) occurs only for λ1, whereas it is normal (ξ′2 < 0) for λ2. There

is only a small angular region around kx = 2.60 μm−1 where the fishnet exhibits anomalous

diffraction also for this wavelength. On the other hand, the inclination coefficient ξ′1 does

not exhibit a simple monotonic behavior in neither case and it even changes its sign for

λ2 at kx = 2.60 μm−1. This will lead to large differences with respect to the imaging and
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refractive properties of a fishnet slab as it will be discussed in the upcoming sections in detail.

In particular, the fact that ξ′1 may change its sign will lead to a transition from positive

to negative refraction although the fishnet exhibits a left-handed behavior throughout the

entire presented angular domain. This will be subject to deeper investigations in Sec. 4.3.3.

4.3.2 The fishnet slab and imaging of beams

A very promising and frequently invoked application of MMs is the perfect lens. This

requires a MM slab with a unitary impedance, vanishing losses and an isotropic refractive

index of n = −1, in particular for all lateral wave-vector components kx. It allows the

formation of a perfect image of a monochromatic source located in the front focus of a MM

slab [3]. Let us briefly remind the basic properties of a perfect lens from a wave optical

point of view.

On one hand, the exploited MM has to exhibit a spherical iso-frequency surface (at least

at the operational wavelength) which provides a constant but anomalous diffraction in the

propagating wave regime. By that, the phase curvature that a beam accumulates in free

space (in front and behind the lens) will be compensated within the MM. Choosing the cor-

rect focal distance of the well-known perfect lens configuration (half of the slab thickness)

the total diffractive spreading between the two focal points disappears. This working mech-

anism is illustrated in Fig. 4.5a. It can be well compared to the compensation of temporal

dispersion of pulses as applied in optical telecommunication systems [156]. These consid-

erations will facilitate the understanding of image formation and they will be the key in

explaining the realistic imaging properties of the current fishnet structure.

z_ z+ z_ z+

Figure 4.5: Schematic sketch of the image formation process

by means of a MM with an isotropic refractive index (a) or

which suppresses the diffractive spread of light (b).

On the other hand, the enhance-

ment of evanescent waves – actu-

ally the more remarkable property

of a perfect lens – is a pure sur-

face related effect which takes ad-

vantage of surface states resulting

in an effective and proper increase

of all incident evanescent waves.

These evanescent waves are cru-

cial for obtaining sub-wavelength

resolution. However, in the fol-

lowing discussion they are completely disregarded and the focus will be exclusively on the

propagating wave regime. This is justified, as will be seen, since the performance of the

fishnet MM as a lens is already limited by its impact on the propagating waves. Hence-
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forth, it is of primary interest to analyze the consequences of the peculiar shape of the

iso-frequency surfaces, as exemplarily displayed in Fig. 4.3, on the re-focusing capabilities

of a finite fishnet slab deployed as a conventional lens. For that purpose, a suitable set of

non-paraxial and diverging beams is chosen in the following. They will be impinging on a

finite fishnet slab and the transmitted field will be analyzed in the half-space right after the

slab device. However, the decision to apply a fishnet slab as a potential lens device is not

just playing to the gallery. On the contrary, it is perhaps the only chance to access the as-

sociated dispersion properties also experimentally. The high attenuation which is expected

for a beam propagating through the fishnet slab requires to use highly non-paraxial beams.

The characteristic length, i.e. the Rayleigh length, after which a paraxial beam experiences

considerable diffraction, will largely exceed the characteristic damping length 1/�(kz) of the
bulk fishnet material. Thus, there is a strong need to decrease the Rayleigh length, such

that diffractive effects appear at the same length scale as the attenuation is doing.

Eventually and for the sake of completeness, it has to be mentioned that a perfect imaging

may also be achieved with a MM slab exhibiting a completely flat angular dispersion kz(kx).

In that case, light propagates diffractionless at a constant attenuation, rendering the material

amenable to a light tunneling scheme [152, 153]. This mode of operation is illustrated in

Fig. 4.5b and it is later referenced in Sec. 4.4. However, also in that case the fishnet slab will

likely be illuminated by non-paraxial beams due to the same reasons as explained above.

Angular transmission function. To investigate its pertinent imaging properties, the field

originating from a finite object at z = 0 (the source position in front of the device) has

to be propagated through a finite fishnet slab and the adjacent domains. In what follows

the fishnet slab consists of 12 functional layers with an overall thickness of d = 2.4 μm.

Moreover, the incident field distribution is assumed to be one-dimensional (line source),

and linearly polarized in y-direction, i.e. E = Eey with E(x, z = 0) ≡ E0(x). By using

the angular decomposition of this field, i.e. E0(kx) = 1
2π

∫ +∞
−∞ dx E0(x) exp (−ikxx), its

propagation to any position z behind the device can be represented by its angular spectrum

as

E(x, z) =
+∞∫
−∞

dkx E0(kx) exp
{
ikFS

z (kxz−)
}
T (kx) exp

{
ikFS

z (kx)(z − z+)
}

exp (ikxx)

≡
+∞∫
−∞

dkx E(kx, z) exp (ikxx)

(4.1)

with kFS
z (kx) =

√
(ω/c)2 − k2

x being the propagation constant in free space. Furthermore,

z− and z+ denote the coordinates of the front and rear facet of the MM slab as depicted in
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Fig. 4.5. T (kx) represents the angular transmission function of the MM slab relating the in-

put and output plane wave components by E(kx, z+) = T (kx)E(kx, z−). Numerically, T (kx)

is rigorously calculated by applying the FMM for the entire fishnet slab under consideration

and by scanning the angular domain of interest. In particular, T (kx) corresponds to the

transmission function of the zeroth diffraction order. Due to the sub-wavelength nature of

the structure, this information suffices to determine the far field response of the structure.

However, there is an alternative way to determine the slab’s transmission function, at least

approximately. Remembering the quite large damping of the overall slab structure, then

the transmission function T (kx) can be calculated according to

T (kx) = t0(kx)t
′
0(kx) exp[ikz(kx)d]

in a very good approximation. Here, t0(kx) denotes the transmission coefficient of a plane

wave into the FM determined at a single interface. The primed quantity t′0 represents the

opposite scenario. Formally, these coefficients can be calculated by applying Eqn. (3.24) as

described in Sec. 3.2. However, neglecting the influence of the single interface transmission

coefficients t0 and t′0 for a moment, then the overall transmission function T (kx) is simply

determined by

T (kx) ≈ TDR(kx) = exp {ikz(kx)d} . (4.2)

Equation (4.2) provides a simple yet approximate interrelation between the transmission

coefficient of the finite structure T (kx) and the dispersion relation kz(kx) of the bulk MM.

Accordingly, the transmission of every angular component through the finite slab structure

is approximated by the propagation of the connected FM over equal distance d within the

bulk MM. To evaluate the validity of Eqn. (4.2), Fig. 4.6 shows a comparison between T (kx)

and TDR(kx) for both wavelengths of interest (λ1 = 1.44 μm and λ2 = 1.39 μm). In general,
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Figure 4.6: Logarithmic modulus and the phase of the transmission coefficient vs. the lateral Bloch
vector component kx for λ1 in a) and b) and for λ2 in c) and d). The blue, solid line corresponds to
T (kx), whereas the red, dotted curve shows TDR(kx).

both models coincide very well for both wavelengths. Only near grazing incidence where
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|T (kx)| tends to zero (log |T | → −∞) also qualitative differences can be observed for the two

approaches. These deviations are attributed to the negligence of t0 and t′0 when calculating

TDR(kx). Thus, all succeeding numerical studies concerning the MM imaging properties will

be performed using the rigorously computed transmission coefficient T (kx). The dispersion

relation, and thus TDR(kx), will only be used to back the numerical results by physical

arguments. However, it will turn out that conclusions of both approaches agree perfectly.

Propagation schemes. In order to clearly distinguish the impact of different physical

effects (damping, diffraction) it appears to be convenient to consider/define three different

abstract calculation scenarios in the following. They are characterized by three different

transmission functions – which correspond to three different levels of approximations – of

one and the same structure.

� Real scheme. The so-called real scheme employs the complete complex transmission

coefficient TR(kx) = T (kx). Thus, it accounts for all properties of the actual fishnet

slab such as damping and diffraction effects.

� Semi-real scheme. The second scheme is the semi-real scheme. Attenuation is

neglected so that effectively only the real part of the propagation constant, i.e. �(kz),
is taken into account. Consequently, the associated transmission function will be

calculated according to TSR(kx) = exp {iarg [T (kx)] d}.

� Semi-ideal scheme. The third scheme serves as a benchmark by assuming the

transmission function of an effectively homogeneous and isotropic material having

n = −1 (circular iso-frequency curve). However, the complex transmission coefficient

is approximated by TSI(kx) = exp{−i
√

ω2/c2 − k2
xd} for k2

x ≤ ω2/c2, and TSI(kx) =

1 otherwise, essentially representing the perfect lens except its effect on evanescent

waves.

Gaussian beams. In what follows, the z-axis is assumed to be the principal direction of

propagation. Without loss of generality, the source field is further assumed to be Gaussian,

i.e.

E0(x) = A0 exp

(
−x2

σ2
x

)
, � E0(kx) ∝ exp

(−k2
x/σ

2
k

)
, (4.3)

where σk = 2/σx denotes the angular spectral width. To characterize the pertinent imaging

properties of a fishnet slab, a series of calculations with a varying spectral width σk were

performed for normally and obliquely incident beams. In all situations, the waist of the

incident beam was located 1.2 μm in front of the MM slab.
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4.3.2.1 Anomalous diffraction regime – operating @λ1

Considering the propagation of paraxial beams, then the fishnet structure, operated at a

wavelength of 1.44 μm, exhibits anomalous diffraction for kx < 1.6 μm−1, diffraction-free

propagation at kx = 1.6 μm−1 and normal diffraction beyond this point as depicted in

Fig. 4.4a. However, in the following discussion we focus on normal incident, non-paraxial

beams with a broad angular spectrum between ±4.2μm−1 and even broader. Thus, we want

to evaluate the consequences of the non-ideal dispersion characteristics of the bulk fishnet

on its imaging properties, where the term imaging refers to the re-focusing capabilities of

incident and diverging Gaussian beams. As it was already mentioned, the decision to test the

diffraction properties of the MM under consideration by means of highly non-paraxial beams

instead of paraxial ones, is mainly motivated by the high attenuation which is expected for

a beam propagating through the fishnet slab. Thus, it is highly desirable to balance the

length scales on which diffraction and attenuation are characteristically appearing.

In the paraxial limit it is expected that the fishnet slab will indeed re-focus a normally inci-

dent beam due to the negative curvature of the iso-frequency contour (anomalous diffraction)

around kx = 0. But how does the structure perform for decreasing waist diameters σx going

along with an increasing spectral width σk of the beam? Saying it in advance: re-focusing

can be achieved in nearly all cases. However, a detailed investigation of this issue will give

an important insight into the significance and the impact of the various dispersive properties

of the fishnet structure. Hence, Tab. 4.1 provides an overview of a systematic parameter

variation. The widths (FWHM) of the re-focused Gaussian beam at the rear focal position

is shown there as a function of the spatial width of the incident beam. The focal position

is not assumed to be predefined. Instead, it is identified as the point where the amplitude

reaches its well-defined maximum at the optical axis measured in the half-space behind the

fishnet slab.

In the semi-ideal calculation scheme, differences between input and output quantities can

be clearly attributed to the missing evanescent waves which were neglected when calculating

TSI. Hence, TSI will serve as a benchmark in the following since the discussion neglects the

special impact on evanescent waves as already stated previously. In the semi-real scheme

the achieved width of the re-focused beam becomes larger than in the semi-ideal one. Due

to the fact that |TSR| = |TSI|, these differences can be attributed to the non-circular shape

of �(kz), i.e. ξ′2 
= const. Obviously, these abberations tend to increase the width of the

image. Now, in order to close the gap between idealized and real MMs, losses have to

be fully taken into account. Thus, the last column of Tab. 4.1 shows the relevant data.

The smallest achievable focal width amounts to about 3.74 λ1 which is roughly three times

larger than in the semi-real scheme. The large deviation may be explained by the strong
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variations of the imaginary part of kz, causing an inhomogeneous attenuation of all angular

components. Then, the fishnet slab essentially acts as a low-pass filter, which becomes

evident when inspecting �(kz) provided by Fig. 4.4a or equivalently using Fig. 4.6a for the

modulus of the associated transmission function. The FWHM of the central transmission

window is about 1.05 μm−1 corresponding to a FWHM of 3.46 λ1 in the spatial domain

(Gaussian shape assumed). This value fits perfectly to the data presented in Tab. 4.1

and is close to the aforementioned limit of about 3.74 λ1. Consequently, the fishnet slab

under consideration is mainly limited by the particular shape of the imaginary part of its

iso-frequency contour and not by the dispersive properties of its real part. In retrospect,

this justifies our initial assumption to neglect the influence of the evanescent waves and to

concentrate on the propagating wave spectrum of the incident beam.

FWHM
in units of λ1

σk

in 2π/λ1 input semi-ideal semi-real real

1/10 5.33 5.33 5.33 6.47

1/6 3.21 3.21 3.27 4.86

1/3 1.59 1.59 1.70 3.97

2/3 0.79 0.85 1.32 3.74

1 0.53 0.71 1.21 –

Table 4.1: Calculated beam width (FWHM) in the focal

plane of the fishnet slab for the different scenarios as de-

scribed in the main body of the text for different incident

beam widths. Additionally the spectral width σk of the

input beam is given. No clear focus position could be

identified for the real scenario at σk = 2π/λ1.

To better understand the influence of

different parameters, Fig. 4.7 shows

some selected amplitude distributions

calculated behind the considered fish-

net slab. In all cases, the beam prop-

agates in z-direction and the position

z = 0 coincides with the MM’s rear

interface. The three different columns

correspond to the three different propa-

gation schemes. From left to right these

are: TSI, TSR and TR. Now, concentrat-

ing on the particular meaning of the

rows, the central row shows the asso-

ciated transmission function for better

understanding. The rows on top (bot-

tom) correspond to two different choices

of incident beams. The upper row belongs to a beam with a FWHM of 1.59 λ1 and the

lower one is associated to a value of only 0.53 λ1.

In principle, the chosen examples exactly reflect the special characteristics as already dis-

cussed above. In particular, the crucial low-pass filtering effect as it appears for the real

slab structure becomes clearly visible. However, when reaching the limit of very small waist

diameters of the incident beam (third row of Fig. 4.7) this low pass filtering may also lead

to some kind of stabilization of the field distribution as it can be seen when comparing the

semi-real and the real calculations scenarios. Beam distortions become very strong when

the losses are neglected. This indicates the crucial effect of the non-spherical shape of the
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Figure 4.7: Amplitude distributions of the field transmitted through the MM slab at normal incidence
for λ1 = 1.44 μm. top row: source’s FWHM is 1.59 λ1 (σk = 1/3 × 2π/λ1); bottom row: source’s
FWHM is 0.53 λ1 (σk = 2π/λ1). middle row: phase (blue, solid) as well as the normalized modulus
(red, dashed) of the respective MM slab transmission function. The different columns reflect the
three different transmission functions used to calculate the field distributions. First column: TSI,
second column: TSR, third column: TR.

iso-frequency curve and especially that ξ′2 changes sign for large incident angles.

4.3.2.2 Normal diffraction regime – operating @λ2

Now, let us slighty decrease the operating wavelength to λ2 = 1.39 μm. Despite the fact

that the fishnet MM still exhibits a left-handed behavior, diffraction is now normal around

kx = 0 as already discussed in context of Fig. 4.4b. Hence, normally incident beams cannot

be focused by a MM slab at this frequency. Although not explicitly shown, this behavior

was indeed proven by numerical simulations similar to the one shown before. In neither case

a re-focusing of the incident beam could be achieved behind the fishnet slab. Instead, the
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Figure 4.8: Top row: Amplitude distributions of the field transmitted through the MM slab at oblique
incidence k0x = 2.4 μm−1 for λ2 = 1.39 μm. The source’s spectral width is σk = 1/8 × 2π/λ2

corresponding to a FWHM of 4.24 λ2; middle row: phase (blue, solid) as well as the normalized
modulus (red, dashed) of the respective MM slab transmission function; bottom row: normalized
angular spectrum of the transmitted field directly at the back facet (z = 0) of the MM slab. The black,
dashed line indicates the mean lateral wave-vector component k0x of the incident beam. The different
columns reflect the three different transmission functions used to calculate the field distributions.
first column: TSI, second column: TSR, third column: TR

smallest measurable waist was always located directly at the exit facet of the device. This

investigation clearly demonstrates that a negative phase velocity or a left-handed behavior

of the medium must not be associated with negative refraction and anomalous diffraction.

This conclusion goes along with the mesoscopic size of the applied fishnet MM which is far

away from being a local, effective homogeneous material. However, inspecting the diffraction

coefficient in more detail, there exists a narrow region, i.e. 2.15 μm−1 < kx < 3.0 μm−1,

where anomalous diffraction occurs (see Fig. 4.4). Thus, focusing may be achieved for

obliquely incident beams, but due to the strong changes of the diffraction coefficient the
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imaging quality is expected to be poor.

This has been numerically verified and the results are shown in Fig. 4.7. The incident beam

has a mean lateral wave-vector of k0
x = 2.4 μm−1 for the illuminating Gaussian beam. The

comparison between the semi-ideal and the semi-real calculations shows strong deviations

of the beam’s propagation characteristics. The white arrow marks the corresponding focal

positions. Especially, the large difference in the focal distances may be attributed to the huge

variation of the diffraction coefficient used for the semi-real calculation scheme. However, the

validity of our basic assumption is once again confirmed, that is that anomalous diffraction

leads to a re-focusing of an incident diverging beam.

But, as a drop of bitterness one has to recognize, that there is apparently no focal point

which can be identified in case of the real calculation scheme which means that losses

are now fully taken into account. Consequently, this behavior must be attributed to the

effect of the imaginary part �(kz) of the propagation constant. When carefully looking at

Fig. 4.3, it can be seen that �(kz) has a strong gradient exactly in the considered anomalous

diffraction regime around kx = 2.4 μm−1. Hence, the linear Taylor expansion coefficient ξ′′1
(see Sec. 3.3) cannot be neglected anymore. Effectively, the first momentum of the spectrum

and so the principal propagation direction is significantly shifted towards lower angles. This

is illustrated in the third row of Fig. 4.8. The dashed vertical line indicates the mean lateral

component of the wave-vector of the incident field, i.e. kx = 2.4 μm−1. The red curves in all

three pictures show the normalized angular spectrum of the transmitted field calculated at

the exit facet of the slab. In contrast to the semi-ideal and the semi-real calculation scheme,

the angular center is shifted to lower values. Thus, the principal spectral component is

now located outside the anomalous diffraction regime (ξ′2 becomes negative) preventing the

re-focusing of the input field. Hence, the peculiar interplay between the effects caused either

by the real and the imaginary part of the propagation constant hinders the image formation

in this particular situation.

4.3.3 Refraction of paraxial beams

A beam propagating through any medium experiences diffraction. On the contrary, beam

refraction appears only at the interface between two media. In this section it is likewise

shown how to exploit the dispersion relation to explain refraction at MM surfaces. Thus, a

paraxial beam‡ is considered which is obliquely incident onto a MM slab. In a geometrical

picture, the beam experiences a displacement Δ while propagating through the MM slab.

A schematic is provided in Fig. 4.9a. The displacement Δ is directly related to the beam’s

‡An angular width of σk = 1/25 × 2π/λ for the incident beam was used in the following numerical
calculations . It shows negligible diffraction over the considered propagation length.
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angular direction θ2 inside the slab, i.e. Δ = tan(θ2)d, with d being the thickness of the

slab. In this simple yet intuitive picture, multiple reflections inside the slab structure are

neglected. In case of a slab medium with a sufficiently large absorption, which holds for the

considered fishnet structure, this assumption appears to be realistic. Thus, by assuming the

incident angle θ1 to be positive, negative refraction occurring at the front facet of the slab

translates into a negative beam displacement Δ and vice versa.
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Figure 4.9: Schematic (a) of a paraxial beam propagating through a thin MM slab. Refraction at
the first interface leads to a beam displacement Δ at the second interface. In particular, negative
or positive refraction can be identified by a positive or negative beam displacement assuming that
θ1 > 0. Calculated displacements Δ of the transmitted field at the rear interface of the MM slab
as a function of the incident beam’s mean wave-vector component kx calculated for λ1 (b) and λ2

(c), respectively. The blue, solid lines represent the results of rigorous calculations performed on the
finite slab structure, whereas the red, dashed curves rely on the inclination coefficient ξ′1 of the bulk
fishnet MM.

By considering a slab consisting of a homogeneous and isotropic material, then the sign

of the observed beam displacement Δ would be strictly related to the sign of the slab’s

refractive index n, i.e. its phase velocity. In the more general case, which is the refraction

between two arbitrary but periodic media, the angle of refraction is no longer governed

by the phase velocity specific to the associated media. Instead, the refractive behavior

must be solely described in terms of the angular dispersion relation. The basic mechanisms

were discussed in Sec. 3.3. Thus, the sign of the inclination coefficient ξ′1,MM of the slab’s

material dictates the sign of the expected beam displacement. However, if strong losses are

involved, as in the present fishnet MM, similar angular filtering effects as already discussed

in the previous section may interfere with this model. This can be circumvented, by

considering paraxial beams with sufficiently large waist diameters. Then, the whole beam

approximately experiences a constant damping during propagation with negligible impact

on the beam’s profile. Nevertheless, in the following calculations the influence of damping

will be fully taken into account and its consequences are pointed out.
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After this brief introduction, the formerly introduced fishnet slab will now be likewise an-

alyzed for the two known wavelengths λ1 = 1.44 μm and λ2 = 1.39 μm. The associated

inclination coefficients ξ′1 are already displayed in Fig. 4.4. For both wavelengths the phase

velocity is negative in the entire angular domain. In contrast, the inclination coefficient ξ′1
reasonably differs between the two considered cases. It is entirely positive for λ1 indicating

the fishnet slab to show negative refraction (or likewise a negative beam displacement Δ)

for beams incident between ±90◦. On the other hand, ξ′1 is negative for λ2 starting from

normal incidence, has a zero at kx = 2.60 μm−1 and then it becomes positive for larger

lateral Bloch vector components kx. This leads to the conclusion that negative refraction

appears only for large incident angles where ordinary refraction occurs, in particular, for

small angles around normal incidence.

To verify this statement, rigorous numerical calculations were performed for a paraxial Gaus-

sian beam possessing an angular width of σk = 1/25 × 2π/λ and a mean wave-vector kx

which varies between normal and grazing incidence. The surrounding medium is assumed

to be air such that the angle of incidence θ1 is determined by kx = 2π sin(θ1)/λ. Once

again, the FMM was used to perform the calculations for the finite structure. The beam

displacement is measured as the difference of the beam’s center of gravity at the front and

the rear interface of the MM slab, respectively. The corresponding results are presented in

Fig. 4.9 by the blue solid curves. For comparison, Fig. 4.9 also displays the approximated

results Δ = −ξ′1d by relying only on the inclination coefficient ξ′1 of the bulk fishnet MM

(see the red graphs). First concentrating on Fig. 4.9b, both curves agree very well except

for large angles approaching grazing incidence (kx > 3.5 μm−1) and around the local min-

imum position. There are two potential reasons for these deviations. First, they may be

attributed to the effect of losses (ξ′′1 
= 0) and, second, they may be attributed to additional

beam displacements originating from the front and rear surface of the slab. To be more

precise, these surface related beam displacements are commonly known as Goos-Hänchen

and Imbert-Fedorov shifts. Historically, they are introduced when considering the interface

between two homogeneous dielectrics, and there they only occur under total internal reflec-

tion [157–159]. In the more general case, they are not restricted to appear only under this

condition which is the case in the current example. However, due to a thorough analysis

of the considered example§, it can be concluded that losses affect the overall transmittance,

§To explain the differences between the results of the rigorous calculations and those predicted by exclu-
sively relying on the inclination coefficient ξ′1, one carefully has to distinguish between the effect of losses
introduced by the bulk MM and the referenced surface effects. Mathematically, the beam displacements
occurring strictly at the surface can be uniquely attributed to the peculiar shape of the single interface
transmission coefficients t0 and t′0. Hence, the magnitude of the surface induced beam displacements can
be uniquely determined by the comparison of the rigorous results (achieved by using TR as introduced
in Sec. 4.3.2) and the approximated transmission function TDR according to Eqn. (4.2). TDR neglects
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but they do only slightly influence the refraction. On the contrary, as indicated by the labels

in Fig. 4.9b, the occurring deviations originate from the effect of the rear and/or the front

interface of the MM.

Now, turning over to the results for the second wavelength λ2. At first, the geometrical model

well coincides with the rigorous calculations, too. In particular, the beam displacement is

positive for small incident angles and it then becomes negative for kx ≈ 2.6 μm−1. The

small deviations in this region can be attributed to the strong gradient of the propagation

constant’s imaginary part (ξ′′1 � 0), whereas around grazing incidence surface effects are

once again responsible as it also indicated by the labeled arrows within the corresponding

figure.

Conclusions. Summarizing this section, it must be concluded that refraction appearing at

the considered fishnet structure, is perfectly consistent with predictions relying on the dis-

persion relation of the FM of the associated bulk MM. The presented description perfectly

fits to the mesoscopic nature of contemporary optical MMs, in particular the fishnet struc-

ture, and it provides reliable results. Most notably, there appears a strong modification in

the characteristic refraction at the fishnet’s interface when the operating wavelength is only

marginally modified. More precisely, a variation of only 50 nm in the operating wavelength

turns the refraction characteristics from initially being negative to become positive over a

large angular region although the phase velocity remains negative.

4.4 Advanced metamaterials – the super-cell approach

As it was elaborated in great detail within the last section, the peculiar characteristics of

the considered fishnet structure significantly prevent this MM from being ”perfect”. In

particular, the distinct shape of the propagation constant’s real and imaginary part had

limited a slab device in its performance with respect to its potential application as a (perfect)

lens. Thus, a reasonable design approach to improve this particular MM structure, but also

all MMs in general, should rely on the desired optical response. It appears to be desirable

to mould the dispersion relation of the underlying bulk MM such that it better fits to the

requirements of the particular field of application/operation. A solution to this problem

is not straightforwardly at hand. However, the results to be presented in this section try

to lift these limitations in a twofold way. Conceptually, a procedure is suggested to design

MMs with a predefined characteristic of light propagation, characterized by their dispersion

the single interface transmission coefficients t0 and t′0 but takes into account the losses for the propa-
gation through the bulk MM. To sum up, in doing this analysis very carefully, the final results can be
interpreted as it is shortly summarized in the main body of the text.
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relation. Optically, it will be shown that the former fishnet MM can be optimized such

that it finally exhibits either an isotropic response or that it even permits diffractionless

propagation.

y
x

z

z

Figure 4.10: Schematic of the super-cell fishnet

MM. The geometrical parameters explicitly high-

lighted in the figure were kept constant within each

optimization. In case of the MM providing an

isotropic optical response (circular iso-frequency

curve) they are Λx = Λy = 600 nm, Λz = 200 nm,

Wx = 500 nm, and Wy = 284 nm. In the sec-

ond case (diffractionless optical MM) the param-

eters are Λx = Λy = 300 nm, Λz = 200 nm,

Wx = 250 nm, and Wy = 140 nm.

According to the previous treatments of

this thesis, again, the dispersion relation

kz(kx, ky, ω) of the FM of a bulk MM is in-

vestigated. Departing from that, one can im-

pose desired constraints such as an isotropic

optical response (a spherical shape with con-

stant curvature) or even a real and imaginary

part of the propagation constant kz, which

does not depend on the lateral one. The for-

mer feature will allow, e.g., for the improve-

ment of the imaging properties of a MM slab

(as already discussed in Sec. 4.3 in detail),

whereas the latter one causes light to propa-

gate diffractionless at a constant attenuation,

rendering the material amenable to a light

tunneling scheme for the purpose of imaging.

To achieve these goals the degrees of freedom

defining a MM have to be increased. Nu-

merical optimization techniques may be sub-

sequently applied to find an optimum set of

parameters, such that the optical response of the MM matches with sufficient precision the

desired one.

In the present contribution these additional degrees of freedom are exemplarily introduced by

considering MMs composed of super-cells. The relevant geometry, with a fishnet structure

being the basic pattern, is shown in Fig. 4.10. A super-cell is formed by stacking four

functional fishnet sub-layers in z-direction. These functional sub-layers slightly differ in

their metallic as well as dielectric spacer thicknesses which represents the additional degrees

of freedom. In lateral direction the structure’s extension is maintained such that the overall

volume of the unit cell of the super-cell fishnet structure is given by Λx×Λy ×4Λz. In what

follows, the goal is to optimize the additional free parameters, i.e. metallic and spacer layer

thicknesses, of all sub-layers individually such that the MM exhibits the predefined optical

properties. Two relevant examples will be outlined. The first one concerns the design of

a MM exhibiting a dispersion relation with a circular iso-frequency curve being equivalent
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to an effective medium with neff(kx) = −1. The second one will be a MM where light

propagates diffractionless.

4.4.1 A fishnet exhibiting a circular angular dispersion

For referential purpose, Figs. 4.11a and 4.11b shows the real and imaginary part of the

propagation constant kz(kx, 0, ω = const.) at a fixed wavelength for the original fishnet

structure (black dashed line) as it was already introduced and discussed in Sec. 4.3. All
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Figure 4.11: Real (a) and imaginary (b) part of the propagation constant kz as a function of the
lateral Bloch vector component kx (iso-frequency contour) for the original fishnet (black dashed line)
and the optimized super-cell structure (blue solid line). The best circular fit is superimposed (red
dotted line). For referential purposes, the real (c) and imaginary (d) part of the propagation constant
kz(kx) associated with four individual bulk media (indicated by different colors) is shown. In each
case, these media are defined by one of the single functional sub-layers of the optimized structure.

functional sub-layers are identical. The metal is silver and its material properties were

calculated according to a Drude dispersion formula (see Sec. 4.2). At the chosen wavelength

of 1.44 μm the real part of kz assumes its largest negative value at normal incidence. All

simulations are again performed by relying on the FMM. The polarization is again assumed

to be along the y-direction being the proper polarization for the fishnet to show the desired

left-handed behavior.

The performance of an ordinary fishnet slab being exploited as a conventional lens was

already discussed in Sec. 4.3.2. However, Fig. 4.12a shows the contrast function which is

expected for the imaging of two spatially separated, one-dimensional Gaussian beams. The

overall fishnet slab is extended over 12 functional sub-layers (3 super-layers). The waist

of the incident field is assumed to be located 1.2 μm in front of the device with a field

distribution according to [E = E(x, z)ex with E0(x) ≡ E(x, z = 0)]

E0(x) = exp

[
−(x− Sx)

2

σ2
x

]
+ exp

[
−(x+ Sx)

2

σ2
x

]
.

The quantity 2Sx denotes the beam separation. The field is assumed to be a line source

emitting linearly polarized light in y-direction (for detailed explanation see also the dis-
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Figure 4.12: a) The emerging contrast in the object plane upon imaging of two Gaussian beams as func-
tion of their initial separation (original fishnet: dashed line; super-cell: solid line). Image formation of
two closely spaced (separation of 6 μm) sub-wavelength Gaussian beams (σx = 2λ/(2π) = 0.46 μm)
by a 2.4 μm-thick ordinary (b) and optimized (c) fishnet MM slab. The intensity scale on the left and
on the right of the structure is independently normalized to unity for better visibility. For the purpose
of the contrast function measurements, the waist width of a single Gaussian beam was chosen to be
σx = 2λ/(2π) = 0.46 μm or σx = 6λ/(2π) = 1.37 μm in case of the optimized or ordinary structure,
respectively.

cussion around Eqn. (4.3) in Sec. 4.3.2). The waist width σx of a single beam was set to

6λ/(2π) = 1.37 μm. For smaller values the introduced beam distortions in the transmitted

field become too large and a clear determination of the backside foci becomes impossible.

Furthermore, the contrast function C was calculated according to

C =
|E(xf; zf)|2 − |E(0; zf)|2
|E(xf; zf)|2 + |E(0; zf)|2

with (xf, zf) denoting the position of the focus being detected in the half-space behind the

structure¶. As can be seen from Fig. 4.12a, the image contrast quickly deteriorates with

smaller beam separation. As it was discussed in Sec. 4.3.2, the peculiar shape of the angular

dispersion characteristics limits the resolution of the ordinary fishnet slab. In the considered

example it only amounts to about 4λ.

Now, by relying on the super-cell approach and by applying a numerical optimization rou-

tine, the thicknesses of the metal and the dielectric layers of each fishnet sub-layer were

optimized individually while the remaining parameters were kept constant. The target

function was a circular iso-frequency contour for the real part of the Bloch vector, compa-

rable to that of an isotropic medium with n = −1. It suggests that optimization is only

performed for the propagating part of the Bloch vector spectrum‖. All geometrical param-

¶Of course, in general there exist two foci with coordinates (xf, zf) and (−xf, zf) above and below the
optical axis. However, due to the symmetry of the illuminating field it does not matter which of them
is used for the calculation of the contrast function.

‖The optimization process was done in two steps. At first, an initial set of data was manually suggested
on qualitative grounds. This was done by systematically analyzing the angular dispersion relation of an



INVESTIGATION OF BULKY FISHNET-LIKE METAMATERIALS 63

eters of the optimized structure are documented in Tab. 4.2. The resulting iso-frequency

curve along with a best circular fit is shown in Fig. 4.11. The effective index of the medium

corresponding to the radius of the best fit amounts to neff = −0.92. In passing, we note that

although the medium acts optically nearly isotropic within the particular angular region

(kx = ±3.5 μm−1, 0), the geometry of the unit cell is not. The isotropic response is achieved

by globally balancing the dispersive characteristics between all functional sub-layer. To

verify that the final dispersion relation is really a genuine property of the super-cell struc-

ture, Figs. 4.11c and 4.11d also provide dispersion relations of four different ordinary (no

super-cell) bulky fishnet MMs. In each case, the geometrical layout is just chosen to be

identical to one of the four functional sub-layer of the optimized super-cell structure. As it

can be clearly seen, the resonance positions of the individual fishnet structures∗∗ are nicely

distributed throughout the angular domain. Hence, it must be concluded, that the pecu-

liar interaction between the sub-layers leads to the resulting dispersive properties of the

super-cell structure, since non of the individuals shows the desired broad circular shape.

a

#l dm dds εds
in [nm] in [nm]

1 75.0 29.7 1.90
2 72.4 27.9 1.90
3 74.1 26.0 1.90
4 76.9 24.2 1.90

b

#l dm dds εds
in [nm] in [nm]

1 49.8 40.0 9.21
2 52.1 40.0 9.70
3 33.4 40.0 11.05
4 34.3 40.0 11.06

Table 4.2: Detailed overview of the structural parameters for the optimized fishnet MMs which exhibit
either a nearly circular iso-frequency contour (a) or diffractionless propagation (b). l denotes the
sub-layer index. dm and dds denote the thicknesses of the metallic and dielectric spacer layers. εds is
the permittivity of the dielectric spacer.

In the following the optimized super-cell fishnet structure will be likewise applied as a finite

ordinary fishnet structure depending on all relevant geometrical parameters, as there are the thicknesses
of the dielectric and metallic layers. From these solutions a first educated guess for the arrangement of
the functional sub-layers in the super-cell was derived. This was done by assuming that the mean value
of the individual sub-layers’ dispersion relations matches the predefined criteria. However, this rather
simplistic approach did not provide satisfying results and it was subsequently used as the starting point
for a numerical optimization routine. For this purpose a pre-defined nonlinear least-squares optimization
method was used (subspace trust-region algorithm based on the interior-reflective Newton method [160])
which is part of the MATLAB� software environment [161]. By that procedure, about 15 iterations
(which correspond to 135 evaluations of the structures response) were usually required to approach the
optimized solutions.

∗∗The resonance positions are understood to be defined by the positions of the local minima of the real part
of the propagation constant, namely �(kz).
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slab device to test its performance for the purpose of imaging. The entire structure consists

of 3 super-layers with an overall thickness of 2.4 μm. The contrast function achievable for

two Gaussian beams imaged by this optimized MM slab is shown in Fig. 4.12a. It can be seen

that the resolution is almost doubled, although it has not yet reached the sub-wavelength

regime. The major reason for this is the yet remaining angular-dependent absorption,

rendering the structure to maintain its low-pass filtering characteristics. However, this

restriction can be further lifted by imposing additional constraints on the imaginary part

of the propagation constant kz. To get a better impression of the superiority of the super-

cell fishnet over the conventional structure, Figs. 4.12b and 4.12c additionally shows the

calculated field distributions in front of and behind the MM slab device. The waist width of

a single beam was in the sub-wavelength region (σx = 2λ/(2π) = 0.46 μm each) and their

separation amounted to 6 μm. As it can be seen, for the ordinary fishnet the spots are not

resolved, whereas the super-cell fishnet allows for their clear, but not perfect imaging.

4.4.2 A fishnet exhibiting a flat angular dispersion

a b

Figure 4.13: Real (a) and imaginary (b) part of kz as function of the lateral Bloch vector component,
kx, (iso-frequency contour). The black, solid line displays the optimized super-cell structure. Target
function of the optimization was a constant propagation constant kz. The optimization criteria were
enforced in a kx-interval corresponding to the shaded area. The colored, dashed curves show the
dispersion relations kz(kx) of four individual bulk media (indicated by different colors) for referential
purposes. In each case, these media are defined by one of the single functional sub-layers of the
optimized structure.

To demonstrate that the constraints imposed on the desired optical performance of the

super-cell MM can be rather freely chosen we are now aiming at achieving diffractionless

propagation or self-collimation, respectively. In the following example, it will turn out that

the light tunneling scheme will be even superior to the previously considered lens concept

for the purpose of imaging.

The same ordinary fishnet structure used in the previous section serves again as the starting
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point for the optimization procedure. The operating wavelength is 1.44 μm. However, to

achieve a MM that supports diffractionless propagation, the target function is now a propa-

gation constant (real and imaginary part of kz) that is independent of the lateral component

kx. The optimized iso-frequency curves are shown in Fig. 4.13 and the geometrical param-

eters are documented in Tab. 4.2 in detail. The optimization was enforced in an interval

between zero and kx = 2.8 μm−1 (indicated by the shaded region). The optimization results

in an imaginary as well as real part of the propagation constant which become approxi-

mately constant within the target region. The deviations from the mean value only amount

to a maximum value of 0.025 μm−1 and 0.05 μm−1 for the real part and the imaginary part,

respectively. If both quantities would be perfectly constant, each component of the plane

wave spectrum of a finite object would exhibit the same phase advance and dissipation upon

traversing the MM slab. Hence, the field distribution at the front and rear interface of a slab

device consisting of that MM would be identical. They would only be scaled by an overall

amplitude and phase factor. A verification of almost diffractionless propagation through

the optimized MM is documented in Fig. 4.14. There, two closely spaced sub-wavelength

Gaussian beams (σx = 0.46 μm) were placed at the front interface of the slab device. The

field distribution at the exit facet for a MM slab thickness of 2.4 μm (three super-cells) and

of 4.8 μm (six super-cells) reveals that diffraction inside the slab device is indeed negligible.

This becomes even more obvious, when the field distribution is compared to those which

will be achieved upon free space propagation over the same distance.
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Figure 4.14: The electrical amplitude distribution around an optimized fishnet slab consisting of
three (a) or six (c) super-cells. The illuminating field is a double Gaussian beam (σx = 0.46 μm,
λ = 1.44 μm). The grey boxes indicate the MM slab structure. For better visibility the fields on the
left and on the right of the structure are normalized individually. The beam separation is 4 μm. The
waist position of the incident field is located at z = 0 (front interface). For comparison, two field
distributions are additionally shown which correspond to the scenario that the MM slab is removed
and the field propagates over equal distances of 2.4 μm (b) and 4.8 μm (d) in free space, respectively.
The substitution of the original MM slab is indicated by the transparent boxes. For the sake of better
visibility the field on the left and on the right of the ”virtual structure” is again normalized. The
field within the box is normalized for every z-position individually to ensure a smooth transition of
the coloring.
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Conclusions. In conclusion, it was shown that MMs can be tailored to a large extent to

exhibit certain optical functionalities inaccessible with natural occurring materials. The dis-

persion relation of Bloch modes constitutes the quantity on which constraints are imposed.

Here, an optimization procedure was applied to achieve either an almost perfect (but to

date no sub-wavelength) imaging or diffractionless propagation of sub-wavelength struc-

tures through a MM. Independent from the chosen examples, also different target functions

might be easily chosen. Technologically, the demonstrated design approach of super-cell

stacked MMs appears to be straightforwardly realizable with standard planar technologies

(e.g. e-beam lithography) already at hand. Allowing the variation of film thicknesses is a

minor technological challenge. Since the approach intrinsically relies on an optimization,

a larger number of free parameters in the design (degrees of freedom) would increase the

quality of the achieved MM’s characteristics as compared to the desired ones. The fact that

constraints were only imposed on the two-dimensional iso-frequency curve in the current

work are mainly caused by the large demand on computational resources; but in principle

they can be even imposed on the full spatio-temporal dispersion relation kz(kx, ky, ω) which

is relevant for pulsed beam propagation.

4.5 Reflection and transmission at a planar interface

In the two previous sections the focus was on light propagation within bulk MMs. The

dispersion relation of the FM was shown to correctly predict physical observations, i.e.

the refraction and diffraction characteristics of beams. However, only little attention was

paid to the precise treatment of MM boundaries. But, if one aims at describing light

propagation at finite samples more correctly, then it is additionally important to consider

the scattering (reflection and transmission) properties of MMs, too. In contrast to light

propagation through the bulk, where the FM will always become dominant after a reasonably

long distance, the treatment of light coupling at the MMs’ boundaries appears to be more

involved. Thus, detrimental for a description of finite structures, e.g. a slab or stratified

MMs, is the possible excitation of a larger number of Bloch modes at the interfaces in

general. Then, the coupling of light into the MM is a complicated issue and requires a

rigorous treatment. However, remembering the classification of a homogeneous medium

as it was outlined in the beginning of this chapter, then it would be highly desirable to

likewise have a similar situation, namely to extract the coupling properties at the MM

interfaces from that Bloch mode that dominates the light propagation in the bulk, i.e.

the FM. The theoretical principles for both treatments, i.e. a fully rigorous as well as an

approximative solution (fundamental mode approximation), were already given in Sec. 3.2.
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They are applied now to specific examples and the physical implications will be discussed.

4.5.1 Interface between a homogeneous dielectric and a metamaterial

In the following we will specify this model, at first, to the rather special, but highly relevant,

case of the single interface between vacuum and a MM. In this context it will be shown that

the FMA is completely equivalent to the introduction of an effective impedance, namely

the Bloch impedance ZB which is the second effective wave parameter in addition to the

propagation constant kz. Exemplarily, a Swiss cross MM is analyzed subsequently. The

limits of the FMA are explored and implications are discussed. Finally, we will go beyond

this scenario in discussing an example which requires the most general case, i.e. when

reflection and transmission are governed by multiple modes.

4.5.1.1 The Bloch impedance

Let us first start with a description of the fundamental quantities of the system under

consideration, i.e. a planar interface between a homogeneous dielectric and a MM. To this

end, Fig. 3.1 shows a schematic of the situation. In the present case, the eigenmodes of

medium L become just plane waves |Pn〉. To keep the description as simple as possible, but

without loss of generality, we will restrict the following discussion to y-polarized incident

plane waves impinging from air in the x-z-plane and having a lateral wave-vector k⊥ =

(kx, 0)
T . Thus,

|Pn+〉 = |P †
n−〉 = (0, EP

n , H
P
n , 0)

T (4.4)

|Pn−〉 = |P †
n+〉 = (0, EP

n ,−HP
n , 0)

T (4.5)

with HP
n = EP

n /ZP,n and

ZP,n =

√
μ0/ε0√

1− k2
x/k

2
0 +

λ
Λx
n

(4.6)

being the lateral impedance of plane wave mode n. Λx denotes the period in x-direction

and k0 = ω/c is the vacuum wavenumber. Furthermore, assuming that the MM is mirror-

symmetric with respect to both x- and y-direction and that it is terminated such that the

unit cell is mirror-symmetric with respect to the z-direction, similar relations [162] hold for

the eigenmodes of the periodic MM (medium R), i.e.

|Rn+〉 = |R†
n−〉 = (EB

n,x, E
B
n,y, H

B
n,x, H

B
n,y)

T (4.7)

|Rn−〉 = |R†
n+〉 = (EB

n,x, E
B
n,y,−HB

n,x,−HB
n,y)

T . (4.8)
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Now, Eqs. (4.4)-(4.8) with n = 0 are plugged into Eqn. (3.29) which determines the approx-

imative solution for the reflection coefficient r0 into the fundamental plane wave. In the

following, the subscript ”n = 0” will be omitted from all field components, i.e. EP
0 → EP

and EB
0,x → EB

x and ZP,0 → ZP, keeping in mind that everything is mapped onto the forward

propagating FMs of both media |P0+〉 and |R0+〉, respectively. Now, explicitly evaluating

the numerator of r0 according to Eqn. (3.29), we get without any further approximation

(‖ · ‖ = C−1
∫∫

dxdy denotes the cross section average with C being the cross section area)

〈R†
0−|L0+〉 =

∫∫
dxdy

[
EP ×HB − EB ×HP

]
z

=

∫∫
dxdy

[
EB

y H
P −EPHB

x

]
= C(HP‖EB

y ‖ − EP‖HB
x ‖)

≡ C(Z−1
P − Z−1

B )EP‖EB
y ‖,

where we have introduced the tangential Bloch impedance [163, 164] of the MM

ZB =
‖EB

y ‖
‖HB

x ‖
(4.9)

as the ratio between the averaged lateral (tangential) electric and magnetic field components.

Applying the analogue procedure also to the denominator of Eqn. (3.29) we get

〈R†
0−|L0−〉 = −C

(
Z−1

P + Z−1
B

)
EP‖EB

y ‖.

A very similar analysis can be performed for the transmission coefficient t0 into the FM of the

MM, too. Finally this leads to the following expressions for the reflection and transmission

coefficients:

r0 =
ZB − ZP

ZB + ZP
, (4.10)

t0 =
2ZB

(ZB + ZP)

EP

‖EB
y ‖

. (4.11)

Most strikingly, Eqs. (4.10)-(4.11) are formally identical to the reflection/transmission coef-

ficients at an interface between two genuine homogeneous media unless one uses the Bloch

impedance as defined above to characterize the medium R on the right.

Let us briefly summarize the recent findings. It turned out that the calculation of the

FMs transmission and reflection coefficients t0 and r0 according to Eqs. (4.10)-(4.11) is

fully equivalent to the usage of Eqs. (3.29)-(3.30) which is nothing else than the FMA in
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context of a Bloch modal description. It has to be mentioned that the derived coincidence

between these two descriptions is not self-evident††. On the one hand it is methodologically

interesting, since it brings together two different perspectives to look at MMs – a periodic

medium perspective (generally dealing with multiple Bloch modes) and a homogeneous

medium perspective (dealing with effective properties, in particular impedances). On the

other hand, and this is even more important, it opens up the opportunity to evaluate the

condition which is a prerequisite for homogenization. In other words, the validity of the

FMA in comparison with the rigorous solution according to Eqs. (3.23)-(3.24) can be used

to either justify or reject the assignment of effective wave parameters and, in particular, an

impedance. This problem is subject of the following paragraph and it will be dealt with by

means of a specific example.

Finally, a subtle fact has to be discussed. In the current discussion we have assumed the

referential medium L to be a homogenous isotropic dielectric and, without having exam-

ined it in more detail, the introduction of a Bloch impedance (and hence the consistency

between Eqs. (3.29)-(3.30) and Eqs. (4.10)-(4.11)) is specific to this situation. Assuming,

in contrast to that, the referential medium to be rather another nano-structured medium

with an eigenmode spectrum which is similar to the considered MM, then the FMA may be

applicable as well (for an example see [TP02]). However, this does not imply to treat the

materials as homogenous in a standard sense, although the FMA is valid. It simply renders

Eqs. (3.29)-(3.30) to be more general expressions that are detached from the question of

homogenization.

4.5.1.2 Case study: The Swiss cross metamaterial

In the following, a particular example will be considered. A Swiss cross MM is analyzed in

detail. Especially, it will be shown how the FMA (being prerequisite for homogenization) can

be met while simultaneously maintaining the dispersive features of interest, i.e. a left-handed

behavior. To this end, we will consider the interface between air and a Swiss cross MM in

a frequency domain where the propagation constant is negative (left-handed behavior).

The layout of the structure was already depicted in Fig. 4.1. The current Swiss cross MM

consists of a MgO layer (n = 1.73, thickness: 54 nm) sandwiched between two layers of

††Indeed, the rigorous solution of the boundary-value problem according to Eqn. (3.22) can be written
in several equivalent forms. When truncated to the contribution of the FM, however, these equiva-
lent formulas give rise to different approximate expressions for r0 and t0. One alternative formula for
these coefficients was derived in Ref. [TP02]. Hence, the usage of the Bloch impedance according to
Eqs. (4.10)-(4.11) is only one particular choice to integrate the properties of the FM into the calculation
of the reflection and transmission coefficients.
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Figure 4.15: Real (a) and imaginary (b) part of the propagation constant kz(ω) of the FM with
k⊥ = (0, 0)T propagating in positive z-direction. Real (c) and imaginary (d) part of kz(kx) of the
FM for a fixed frequency of 170 THz. The blue solid and black dotted curves correspond to a period
in z-direction of Λz = 230 nm and Λz = 600 nm, respectively. For the sake of clarity, the inset shows
the orientation of the incident field.

gold (thickness: 44 nm, permittivity according to [M.2]). The remaining parameters are:

W1 = 310 nm, W2 = 90 nm and the lateral period is 600 × 600 nm2. The entire nano-

structure is embedded in a host material with refractive index of n = 1.4. The structure

is periodic in all spatial dimensions and the period in z-direction, i.e. Λz, will be subject

to variations. It will be chosen sufficiently large such that pronounced nearest-neighbor

interactions are suppressed. Variation of Λz only changes the thickness of the host material

layer. The thickness of the Au − MgO − Au stack is fixed. Hence, the filling fraction of

the Swiss cross element with respect to the z-direction can be controlled. In the following

we assume the Swiss cross to be terminated symmetrically right in the middle of the host

material layer. Before going into the detailed analysis of the coupling problem, we first

examine the dispersion relation of the FM of the Swiss cross structure. Figs. 4.15a - 4.15b

shows the real and imaginary part of kz(ω) for propagation along z, i.e. k⊥=0. The period

Λz will be either 230 nm (blue solid lines) or 600 nm (black dotted lines) in the following

discussion; corresponding to a high or low filling fraction. Any period in-between could

have been equally chosen. The corresponding dispersion relations continuously settle in-

between the two representatively chosen periods. In both cases there is a narrow frequency

region (around the resonance position of 170 THz) where the real part of the propagation

constant kz becomes negative. As expected, the resonance strength becomes weaker for

Λz = 600 nm, but also the attenuation [∝ �(kz)] is decreased. For the sake of completeness,

Figs. 4.15c - 4.15d also provide the angular dispersion for a fixed frequency of 170 THz. The
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Figure 4.16: Modulus of the reflection (a) and transmission coefficient (b) into the FMs |L0−〉 and
|R0+〉 as well as real (c) and imaginary part (g) of the tangential Bloch impedance associated
with |R0+〉 for normal incidence as a function of frequency. Modulus of the reflection (d) and
transmission coefficient (e) into the FMs |L0−〉 and |R0+〉 as well as real (f) and imaginary part (h)
of the tangential Bloch impedance associated with |R0+〉 as a function of the angle of incidence at
a fixed frequency of 170 THz. The results have been obtained by using the approximate formulaes
according to Eqs. (3.29)-(3.30). The longitudinal period of the Swiss cross unit cell amounts to
Λz,1 = 230 nm (blue circles) and Λz,2 = 600 nm (black squares). For comparison the results of
rigorous calculations are shown by blue solid (Λz,1) and black dotted lines (Λz,2).

maximum angle of α = π/2 corresponds to grazing incidence of the illuminating plane wave

and hence this value corresponds to kx = 3.56 μm−1 for the lateral Bloch vector component.

Obviously, �(kz) remains negative throughout the whole angular range.

Now, we proceed with the coupling problem, where Fig. 4.16 provides the necessary in-

formation. First we concentrate on r0 and t0. The blue circles (black squares) show |r0|
and |t0| according to Eqs. (3.29)-(3.30) for periods Λz equal to 230 nm (600 nm). Moreover,

Fig. 4.16 also displays results of rigorous calculations for r0 and t0 for comparison (blue solid

and black dotted lines). For both, normal and oblique incidence, the consistence between the

rigorous and approximative solutions is clearly better for Λz = 600 nm. Although not shown

explicitly, the same observations hold for the phases of r0 and t0. The strongest deviations

appear for arg(t0) around 170 THz and Λz = 230 nm amounting to about 0.6 rad. For the

sake of completeness, we also provide the normalized tangential Bloch impedances ZB/Z0
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Figure 4.17: Modulus of the reflection (a) and transmission coefficient (b) into the FMs |L0−〉 and
|R0+〉 for normal incidence at 170 THz as a function of the longitudinal period. The circles represent
the approximate solutions according to Eqs. (3.29)-(3.30) and the solid lines are rigorous results. kz
(c,d) and impedance (e,f) as a function of the longitudinal period. The solid lines are the propagation
constants and the Bloch impedance of the FM and the circles are the outcome of a parameter retrieval
procedure applied to the single layer Swiss cross structure.

(with Z0 =
√

μ0/ε0) for all considered scenarios. Here, the impedance of the Swiss cross

half-space Z/Z0 = (1 + r0)/(1 − r0) as it is retrieved from rigorous reflection data [TP01]

is also shown for comparison (solid lines). The logarithmic scale improves the visibility.

As before it can be clearly recognized that a smaller filling fraction (longitudinal period of

600 nm) leads to a reasonable agreement.

Systematic investigation of the Λz-dependence. To further verify this statement, we

have additionally calculated r0 and t0 for normal incidence at 170 THz as a function of the

longitudinal period Λz. Figs. 4.17a - 4.17b clearly evidence the suggested tendency that the

accuracy of Eqs. (3.29)-(3.30) increases the smaller the filling fraction is. The dependence

of the scattering data on the longitudinal period Λz suggests that for small periods, i.e.

Λz � 500 nm, higher-order Bloch modes are considerably excited. For small distances

between the interface and the Swiss cross nano-structure, the optical near field becomes

more complicated where also the lateral field distribution of the FM is affected [165]. Hence,

the mode mismatch between the exciting plane wave and the FM increases (see Fig. 4.18a

for the field distribution) such that higher-order modes in both media get noticeably excited.

On the contrary, if the filling fraction is sufficiently small such that the interface is beyond

the near-field range of the sub-wavelength nano-structure, the lateral field distribution of

the FM converges towards a plane wave (see Fig. 4.18b).
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Figure 4.18: Comparison of the lateral field amplitude distribution of the FM of the Swiss cross
structure in terms of its Fourier harmonics (denoted by the integer numbers). Both representations
are normalized to the zeroth-order Fourier harmonic. The frequency is set to 170 THz.

Impact on the parameter retrieval procedure. Finally, it appears to be worthwhile to

compare two different approaches to assign effective wave parameters to a MM. To this end,

the Bloch modal approach is compared with the parameter retrieval procedure [TP05,124].

The retrieval procedure applied to a single layer of the current Swiss cross structure deter-

mines an effective propagation constant kz,retr and an effective impedance Zretr. Inherently,

the parameter retrieval procedure assumes reflection and transmission at the interfaces as

well as propagation through the slab to be exclusively determined by the FM‡‡ of both me-

dia. Of course, the pure application of the method itself does not require these assumptions

to be fulfilled.

In case of the here considered Swiss cross MM, the pure bulk propagation through the thin

MM slab was verified to be fully determined by the FM of the Swiss cross structure across

the entire parameter range 200 nm ≤ Λz ≤ 800 nm. This is consistent with the assumptions

of the retrieval procedure. Hence, it remains to investigate the influence of multiple mode

coupling, that is when the FMA according to Eqs. (3.29)-(3.30) is not justified, to the

retrieved effective parameters. For that purpose, both retrieved parameters are compared

with the propagation constant kz and the impedance ZB of the FM in Fig. 4.17. The results

of both approaches converge to each other for Λz � 500 nm. This value perfectly matches

to the FMA’s limit of validity as it was discussed before. On the contrary, both retrieved

parameters kz,retr and Zretr start to deviate from the Bloch modal data for Λz � 500 nm.

Then, they cannot be linked to any modal property anymore. Note that even kz,retr becomes

different from kz. Importantly, these inaccuracies are only caused by the incorrect treatment

of the boundary conditions within the parameter retrieval procedure which does not account

‡‡In context of the parameter retrieval procedure the FMs are usually treated as (effective) plane waves.
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for multiple mode coupling. Thus, the rather complicated mathematical interrelation of the

effective parameters in the retrieval procedure leads to deviations of both of them, although

one might have suggested that only the effective impedance is affected. A relevant scenario

were this effect can be exemplarily observed is a weakly (or non-) absorbing slab of a

specific MM. There, artificial features (resonances and anti-resonances) can be observed in

the effective (material) parameters [166] whenever the overall reflection of the slab exhibits a

zero (Fabry-Perot minimum). These artificial features can be attributed to a non-vanishing

contribution of higher-order Bloch modes for the reflection and transmission process at the

slab’s boundaries.

However, a detailed analysis of the peculiarities of the parameter retrieval method is not

a subject of this thesis, but a short summary is given here for convenience. Restricting

the discussion to lossy systems, it can be shown that both parameters, kz,retr and Zretr, are

always converging with an increasing slab thickness (number of functional layers) although

the FMA might not be justified. Then, the effective propagation constant converges to the

propagation constant of the FM [TP06,141], i.e. kr,retr → kz . The effective impedance Zretr

converges to the impedance of the half-space [TP01, 141], however, it cannot be related to

a single Bloch mode.

4.5.2 Interface between two dissimilar metamaterials

Going beyond the limitations of the FMA, the Bloch modal formalism in its most general

form can also be used to describe the coupling of light between MMs in a regime where

the MMs cannot be considered to be homogenous. A simplification, however, can always

be introduced by considering only a few Bloch modes to be involved in the process. This

will be demonstrated in the following section. In Sec. 3.2 the procedure to deal with the

most general case of coupling between two MMs has already been outlined. Thus, in the

current section we want to demonstrate the power and versatility of this approach. For

that purpose one has to remember that Eqs. (3.23)-(3.24) provide the rigorously calculated

reflection and transmission coefficients in terms of the profiles of all Bloch modes supported

by media L and R. Again concentrating on the reflection and transmission coefficients into

the FMs, it is expected that these coefficients are well defined by a finite number of Bloch

modes only (see discussion in Sec. 3.2). The precise number will depend, of course, on the

mode-mismatch between both media. A moderate mismatch between the modal basis of

both media at the interface will result in a quite small number and vice versa.

Now, to continue with the specification of the particular setup, the interface between a bulk

Swiss cross MM and a bulk fishnet MM serves as an example. The fishnet structure is

sketched in the inset of Fig. 4.19 and the corresponding parameters are given in the figure’s
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caption. The Swiss cross structure is identical to that used in the previous section and the
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Figure 4.19: Reflection and transmission at a planar interface between a Swiss cross and a fishnet
MM. Modulus of r0 (a) and t0 (b) for normal incidence as a function of frequency as well as the
modulus of r0 (c) and t0 (d) at a frequency of 170 THz as a function of the lateral Bloch vector
component kx of the incident mode. The blue, solid lines are the rigorous results. The symbols
represent approximate solutions taking into account a different number of modes; circles - 1 (1),
squares - 5 (9), crosses - 15 (21). The numbers in brackets are those for oblique incidence. The
fishnet’s functional element consists of an Ag − MgO − Ag stack completely embedded in a host
material (n = 1.4). The geometrical parameters are as follows – thickness of the thick (thin) wire:
Wy = 255 nm (Wx = 445 nm); permittivity of Ag: see Mat. [M.1]; refractive index of MgO: 1.73;
thickness of Ag (MgO) layer: 48 nm (42 nm); lateral period: 600×600 nm2; z-period Λz = 200 nm.
Finally, the dependence of the reflection (e) and transmission (f) coefficient with respect to the
number of Bloch modes considered for their calculation is displayed. The frequency amounts to
170 THz and k⊥ = (0, 0). The red, solid lines are only guides to the eyes and the blue dashed lines
are the associated rigorous values taking all modes into account.

longitudinal period was set to Λz = 230 nm. Again the frequency is chosen to be in the

left-handed domain of the Swiss cross MM which is operated at the resonance frequency of

170 THz. The fishnet’s design is chosen such that a similar resonance occurs at the same

frequency. Thus, we study here the light scattering between two left-handed media.

The relevant results, i.e. |r0| and |t0|, are displayed in Fig. 4.19 for both situations; nor-

mal incidence as a function of the frequency (see Figs. 4.19a and 4.19b) and at a fre-



INVESTIGATION OF BULKY FISHNET-LIKE METAMATERIALS 76

quency of 170 THz as a function of the lateral Bloch vector component k⊥ = (kx, 0)
T

(see Figs. 4.19c and 4.19d). It has to be mentioned, that r0 and t0 represent the data of

the FMs only, but the number of modes which are used to calculate them [according to

Eqs. (3.23)-(3.28))] will be subject to variations in the following discussion. For that rea-

son, let us shortly remember the underlying procedure how to calculate r0 and t0 in different

levels of approximation. Thus, it must be first mentioned, that the rigorous solution ac-

cording to the matrix equations (3.23) and (3.24) provides a vector (with N elements) of all

transmission and reflection coefficients into all eigenmodes taken into account during the

numerical realization. However, we are interested in the first entries only, that is r0 and t0.

Consequentially, one may calculate a reduced set of transmission and reflection coefficients

by just shrinking the size of matrices â, ĉ, d̂ and f̂ (see Sec. 3.2) to an arbitrary size Ñ × Ñ

(Ñ < N) which is nothing else than neglecting a certain number of modes for the specifi-

cation of the reflection and transmission process. By that procedure, one can clearly and

systematically identify the importance of each mode with respect to light coupling at the

interface. In that picture, the FMA corresponds to a matrix size reduction down to 1 × 1

(scalar quantities), i.e. all higher-order Bloch modes are neglected.

Now, concentrating on the results displayed in Fig. 4.19, it can be recognized that the

FMA (red circles) only qualitatively reproduces the main features of the reflection and

transmission spectra, but the very data may differ from each other by up to 25%. By

taking into account an increasing number of Bloch modes to built up the matrices ac-

cording to Eqs. (3.25)-(3.28), it can be observed that the results are converging across

the entire spectral region against the rigorous results (blue solid lines). For that purpose,

Figs. 4.19a - 4.19d show a selection of different reflection and transmission spectra (colored

symbols). For normal incidence, the spectra are associated with a total number of consid-

ered Bloch modes amounting to 1 (red circles), 5 (green squares) and 15 (black crosses).

For oblique incidence the symmetry with respect to the x-direction is broken resulting in

a larger number of modes in both media participating in the coupling process. For that

reason, a comparable convergence requires a larger number of modes as compared to the

normal incident case. At first glance, these numbers seem to be quite large. However, using

a plane wave basis [90] rather than the Bloch mode approach, typically hundreds of plane

waves would be required to get the same accuracy.

Finally, it has to be admitted that the accuracy of the solution does not increase strictly

monotonically with the number of Bloch modes taken into account. This might be attributed

to the particular arrangement of the Bloch modes one has chosen, because there is no a priori

information about the importance of a particular mode with respect to coupling. For the

presented results, the Bloch modes were sorted with respect to the modulus of the imaginary
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part of the associated propagation constant. For that purpose, Figs. 4.19e and 4.19f show

the detailed convergence behavior of r0 and t0 for a chosen set of parameters, i.e. k⊥ = (0, 0)

and a frequency of 170 THz. In particular, the transmission coefficient shows some sparks

but, nevertheless, the overall convergence is always ensured.

4.6 Chapter summary and concluding remarks

The first part of this chapter was dedicated to the peculiar characteristics of light beams

propagating through a bulk MM. In particular, it was shown that the dispersion relation

of the fundamental Bloch mode, i.e. the mode which prevails against all other modes in

terms of attenuation, can be exploited to describe diffraction and refraction of beams accu-

rately. Consequentially, all physical observations are solely linked to wave properties of the

underlying eigenmodes of the structure without making any assumptions to the constitutive

relations of the effective medium. Exemplarily, a fishnet MM was thoroughly analyzed.

Its dispersion relation was shown to be highly non-trivial. This denies the description of

the considered MM on grounds of local, effective material parameters. Exemplarily, it was

shown that the refractive and diffractive properties can alter dramatically. Only slight vari-

ations in the operating wavelength turned the refraction characteristics of the fishnet from

initially being negative to become positive although the phase velocity remained negative

(left-handed behavior) in all considered cases.

Based on the results and experiences that were obtained for the fishnet MM, a new design

approach was presented and discussed in the second part of this chapter. It focused on the

systematic modification and tailoring of the MM’s dispersion relation. Here, a super-cell

fishnet MM was suggested. In that context, two adapted fishnet structures were successfully

designed. The first one exhibits a circular angular dispersion relation mimicking the proper-

ties of an isotropic, homogeneous left-handed material. The second fishnet was adapted to

support the formation of self-collimated beams rendering the structure amenable to a light

tunneling scheme. Especially for these complex MM structures, only the dispersion relation

of the fundamental Bloch mode was shown to be the sole and pivotal quantity.

Up to this point, all considerations were performed only by relying on the dispersion rela-

tion of modes, but the concrete modal field distribution must not be taken into account.

This situation changes, when one gets interested in the quantitative determination of the

reflection and transmission coefficients at MM boundaries. To this end, the last part of this

chapter was devoted to the single interface between, at first, a homogeneous dielectric and a

MM and, secondly, that of two dissimilar MMs. Emphasis was put on the first case because

it is of high practical relevance. On the example of a Swiss cross MM it was elaborated that
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the introduction of effective wave parameters, especially a modal and scalar impedance, is

only justified when the mutual cross-coupling between different Bloch modes at the MM’s

interface can be reliably neglected. Only in that case, the coupling into the fundamental

Bloch mode is exclusively determined by itself and we speak about the fundamental mode

approximation (FMA). In this context, techniques were discussed and presented that allow

to evaluate exactly this criterium. In case of the considered Swiss cross MM, it was shown

that the increase of the longitudinal period, while simultaneously maintaining the layout

of the functional element (meta-atom), allowed to suppress the mutual cross coupling of

modes. Only in this limit, effective wave properties as retrieved from an inversion of the re-

flection and transmission coefficients perfectly agree with the Bloch mode properties. Most

notably, the well-established parameter retrieval method was shown to provide the wave

parameters of the fundamental Bloch mode only under the condition that the FMA is jus-

tified. In all other cases the retrieved parameters may assume arbitrary values that do not

reflect a modal property anymore. Eventually, the most general formalism which is able to

account for mutual cross coupling between multiple modes was applied to the problem of

reflection/transmission between to dissimilar MMs.



5 Higher harmonic generation by

plasmonic nanostructures

Most likely, the first investigations for the potential of MMs with respect to nonlinear wave

propagation in the optical domain started with second-order nonlinear wave interactions in

generic left-handed materials. Here it has to be mentioned, that no potentially new and

unprecedented nonlinear properties of MMs were at the focus of research, but it was rather

the effect of a (linear) left-handed behavior and its influence on three-wave mixing processes,

i.e. parametric amplification and second-harmonic generation (SHG) [17–19,167]. In partic-

ular, SHG (in the stationary as well as pulsed regime) as the most fundamental second-order

nonlinear process attracted a considerable share of interest, because (semi-)analytical de-

scriptions are accessible there [17, 34, 168–170]. By that, new and interesting features, like

backward SHG [17] and phase-locked SHG [168, 169] were revealed.

At the same time, a second branch in research was engaging realistic, metallic nano-

structures. Here, the excitation of surface plasmon-polaritons, which goes along with a

considerable confinement/enhancement of the electromagnetic field in the nano-structure’s

vicinity, promises to enhance the conversion efficiencies of nonlinear light-matter interac-

tions [TP11,TP12, 171–178]. In that sense, one can say that the focus of interest for that

branch of research lies in the study of efficient ’nonlinear materials’ being composed of

metallo-dielectric nano-structures. It has to be mentioned that this topic has a long stand-

ing history already well before the proposal of MMs (see e.g. Refs. [179–181]). However,

the possibilities to produce large scale samples of metallic nano-structures in a deterministic

fashion arose side by side with the implementation of MMs.

The combination of metallic nano-structures, which sustain the excitation of plasmon po-

laritons, and nonlinear dielectric materials is an appealing approach to significantly enhance

the conversion efficiency in nano-optical devices [174, 175]. In particular, the integration of

nonlinear dielectrics into a plasmonic system may be especially useful to solve one of the

most pertinent problems in current nano-optics being the dominance of dissipation in the

metallic components. Optical parametric amplification may be at least one possible route

to compensate at least partially for these losses.

79
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Previously, several methods were developed to simulate the nonlinear interaction of light

with nano-structures. Besides some very general methods as FDTD or FEM, there are

specialized methods for a large variety of different geometries, e.g. circular shapes [182],

one-dimensional layered systems [183, 184] and radially symmetric nano-structures acting

as scatterers on top of surfaces [185]. However, it is the aim of this work to deal with

periodic nano-structures. Therefore, one can find suitable derivatives of classical methods

based on the differential or integral formalism [186–188]. Most notably, also the Fourier

modal method (FMM) was applied for this purpose, in particular to analyze SHG. It was

continuously developed further, starting from two-dimensional structures [189], going over

three-dimensional, single-layer structures [190] and finally towards higher-harmonic genera-

tion at three-dimensional, multi-layer structures [TP13].

The Fourier modal approach presented in the following will summarize the material already

published in Ref. [TP13]. Hence, in what follows the focus will be on metal-dielectric systems

where the nonlinear polarization can be represented by a power series expansion with respect

to the electrical field. Such a description is typical for the dipolar contributions of bound

electrons of a bulk material. Nevertheless, the formulation may be also extended towards

other kinds of nonlinearities where the response stems from the conduction electrons of

the metallic components [TP11]. Furthermore, the method relies on the undepleted pump

approximation (UPA) [191] that ignores the feedback of the nonlinearly induced field on

the pump field. In most practical cases this approximation holds, since the intensity of the

nonlinearly induced field is much less than the pump field intensity. Therefore, the presented

method may be immediately applied to higher harmonics generation processes as, e.g., SHG

and third-harmonic generation (THG).

The chapter is divided into three sections. As already mentioned, the first section is devoted

to the concise description of the extended FMM. In two further sections, this outlined

computational scheme will be used to investigate the nonlinear optical response from two

different setups. The first one is a metallic nano-wire structure where localized plasmon-

polariton resonances are excited and the influences on SHG will be analyzed. The second

one is a coupled metallic-dielectric system where peculiar characteristics in the generated

third-harmonic signal will be investigated.

5.1 Statement of the problem

The fundamental geometry equals that of the linear problem and it was already introduced

in Sec. 2.1.2. A schematic is shown in Fig. 2.1. The domain of the incident field (region

i = −1, i.e. the cladding) and the transmitted field (region i = L, i.e. the substrate)
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are assumed to be semi-infinitely extended half-spaces being composed of a homogeneous,

isotropic and linear material. The multi-layer structure (i = 0, 1, .., L − 1) may contain

isotropic, but now also nonlinear materials. All individual layers share a common peri-

odicity Λx × Λy in the lateral dimensions but exhibit translational invariance along the

propagation direction z.

The rigorous electromagnetic treatment of that problem is again derived from Maxwell’s

equations according to Eqs. (2.1). Once again, the constituent materials are assumed to be

non-magnetic. However, they are allowed to possess nonlinear optical properties as well.

For that reason, the dielectric displacement now reads as

D(r, ω) = ε0ε(r, ω)E(r, ω) +PNL(r, ω), (5.1)

with PNL(r, ω) being the nonlinear polarization. So, all linear dispersive properties of the

medium are still described by the permittivity, whereas the nonlinear ones are collected

within PNL(r, ω).

The nonlinear polarization. In the following it is assumed that the nonlinear polarization

can be represented by a power series expansion with respect to the electrical field. The

nonlinear optical properties of all constituent materials are then solely characterized by

nonlinear susceptibility tensors of different orders depending on the frequencies of the inter-

acting fields. Consequentially, the nonlinear polarization in frequency domain is generally

represented by [191]

PNL(ω) = ε0
∞∫

−∞
dω′χ̂(2)(−ω;ω′, ω − ω′) : E(ω′)E(ω − ω′) +

ε0
∞∫∫
−∞

dω′dω′′χ̂(3)(−ω;ω′, ω′′, ω − ω′ − ω′′)
... E(ω′)E(ω′′)E(ω − ω′ − ω′′) + . . .

(5.2)

where the colon operators denote tensorial products. The spatial dependency of all quan-

tities was omitted here, but of course the electrical field, the nonlinear susceptibilities and

the nonlinear polarization will depend on r in general. The superscript attached to the non-

linear susceptibility shows the order of the respective quantity. However, it will be omitted

in the following for the sake of clarity, because it is likewise determined by the rank of the

associated tensor.
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Interaction between two monochromatic fields. In what follows the focus will be on

SHG and THG, respectively. It is assumed that the entire electromagnetic field consists of

two monochromatic fields, the pump field at frequency ω1 > 0 and the generated harmonic

field at ω2 > 0, respectively. Hence, it can be written as

E(r, t) =
2∑

n=1

En(r) exp (−iωnt) + c.c.,

E(r, ω) =
2∑

n=1

En(r)δ(ω − ωn) + E∗
n(r)δ(ω + ωn),

(5.3)

where analogue expressions are assumed to hold forD,H, B and, in particular, the nonlinear

polarization PNL, too. The quantities En(r) denote the complex amplitudes of the field at

frequency ωn.

Now, by substituting Eqs. (5.1)-(5.3) into Eqs. (2.1), and again introducing a re-normalized

magnetic field H̃n =
√
μ0/ε0Hn one obtains (n = 1, 2)

∇× En = +iknH̃n ,

∇× H̃n = −ikn
(
εnEn + ε−1

0 PNL
n

) (5.4)

and (the asterisk denotes the complex conjugate)

∇×E∗
n = −iknH̃

∗
n ,

∇× H̃∗
n = +ikn

(
ε∗nE

∗
n + ε−1

0

(
PNL

n

)∗)
.

(5.5)

kn = ωn/c denotes the vacuum wavenumber at the given frequency. Equations (5.5) are

the complex conjugated form of Eqs. (5.4), so their solution is redundant. Equations (5.4)

represent a coupled system of partial differential equations. In particular, the nonlinear

polarization is responsible for a coupling between fields at different frequencies, i.e. between

the fields at indices n = 1 and n = 2. Eventually, the tilde above the magnetic field will

be omitted in the following assuming the exclusive usage of the re-normalized field in all

equations below.

Second- and third-harmonic generation. In order to keep the description quite general

it is now assumed that the pump field at frequency ω1 interacts with a medium exhibiting

a nonlinear polarization of order N = 2 or N = 3, respectively. Thus, there are fields

generated at frequency ω2 = Mω1 with M ≤ N . We exclude the effect of self-phase

modulation (M = 1) and optical rectification (M = 0). A representative example is the

Kerr effect (N = 3,M = 1) when dealing with third-order nonlinear processes where the
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pump field itself is phase-modulated. A reasonable approach towards this issue can be found

for example in Ref. [192]. Leaving these cases aside, the focus will be on SHG (N = M = 2)

and THG (N = M = 3) that are subject to the present studies.

Undepleted pump approximation. In what follows the physical problems under consid-

eration are assumed to be well described within the low-depletion limit, such that the

undepleted pump approximation (UPA) is justified. Hence, PNL
1 (ω1) is neglected and the

mutual cross-coupling between different frequencies vanishes. Consequentially, the pump

field at frequency ω1 can be entirely treated on linear grounds. On the contrary, the non-

linear polarization PNL
2 at ω2 = Nω1 cannot be neglected and in component form it may be

written as

PNL
2,i (Nω1) = ε0

∑
j1,...,jN

χij1...jN (−Nω1;ω1, . . . , ω1) ·E1,j1 · . . . · E1,jN (5.6)

with (i, j1, . . . , jN = 1, 2, 3) running over the Cartesian components. The argument of

the susceptibility χij1...jN contains N times the frequency ω1. Provided that the nonlinear

susceptibility tensor χ is known, the only quantities entering Eqn. (5.6) are the electric field

components E1,j at fundamental harmonic (FH) frequency ω1. Hence, Eqs. (5.4) represent

a linear but inhomogeneous system of partial differential equations. Finally, summarizing

all the stated aspects the entire problem can be solved in three steps:

� Calculate the pump field with the standard FMM for the linear structure as described

in Sec. 2.2.

� Use the pump field distribution to construct the nonlinear source term PNL
2 at second-

harmonic (SH) or third-harmonic (TH) frequency.

� Solve the field at SH or TH frequency by using an extended FMM which solves

Eqs. (5.4) by transforming it into a linear but inhomogeneous algebraic system of

equations in Fourier domain. This approach will be outlined in the next section.

With that, all quantities of relevance such as the forward and backward generated fields at

SH or TH frequency are accessible.

5.2 Extended Fourier modal method

For the sake of readability we will omit the frequency related subscripts in the remaining

derivation. In contrast to that, bare quantities are associated with the pump field at ω1
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and those with a bar on top are associated with the generated field at frequency ω2. The

layer index l will be likewise omitted in order to avoid confusion with the remaining sub-

and superscripts.

5.2.1 The nonlinear source term

Once having calculated the pump field in a specific layer, the nonlinear source term PNL

can be constructed by using the general expression according to Eqn. (5.6). Owing to the

periodicity of the nonlinear susceptibility tensor it can be expanded into a Fourier series,

i.e.

χ̄i,j1,...,jN (r) =
∑
m,n

χ̄i,j1,...,jN
mn exp [i(mKxx+ nKyy)]. (5.7)

Now, one has to remember that the concrete field distribution of the pump field is represented

by a superposition of forward and backward propagating modes of a certain layer, having

eigenvalues γs and −γs (see Sec. 2.2.1). Due to the completeness of the numerical solution,

these modes are linearly independent so that the forward and backward propagating modes

may be divided into two disjoint subsets, namely Σ+ and Σ−, each containing S elements.

Then, let s denote the mode index in the following running through the complete set of

solutions, that is Σ+ ∪ Σ−. Remembering that h is the thickness of the considered layer,

then by defining

ds =

⎧⎨⎩0 mode #s ∈ Σ+

h mode #s ∈ Σ−
, γ̃s =

⎧⎨⎩γs #s ∈ Σ+

−γs #s ∈ Σ−
, νs =

⎧⎨⎩as #s ∈ Σ+

bs #s ∈ Σ−
(5.8)

and substituting Eqn. (5.7) and the pump field distribution according to Eqn. (2.25) into

Eqn. (5.6), one obtains

P̄NL
i = ε0

2S,...,2S∑
{s}=

s1,...,sN

∑
m,n

P̄
{s}
imn exp

[
i

N∑
t=1

γ̃st(z̃ − dst)

]
exp
[
i(ᾱmx+ β̄ny)

]
, (5.9)

where
ᾱm = Nα0 +mKx ≡ ᾱ0 +mKx,

β̄n = Nβ0 + nKy ≡ β̄0 + nKy.
(5.10)

In the above equation, the sum over indices m,n runs across the Fourier coefficients, whereas

the sum over the set s1, . . . , sN accounts for all possible summands/combinations appearing

when the electrical field (which is a sum over 2S eigensolutions) is raised to the power of
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N . The coefficients P
{s}
imn are defined according to

P̄
{s}
imn =

∏N
t=1 νst ·

∑
p1, . . . pN
q1, . . . qN

χ̄i,j1,...,jN
m−∑

t pt,n−
∑

t qt
Ej1p1q1s1 · . . . · EjNpN qNsN . (5.11)

The indices in Eqn. (5.11) (especially those of the electrical field) are rather subtle, but

one has to keep in mind that there are always four indices – the Cartesian component, the

two Fourier domain indices and the eigenmode index. The quantity N designates the order

of the generated higher harmonics field. As already mentioned, h is the thickness of the

respective layer keeping in mind, that P̄NL
i according to Eqn. (5.9) also depends on the layer

index l because both the nonlinear susceptibility ˆ̄χ and the pump field depend on l. The

quantities Ejpqs and νs in Eqn. (5.11) denote the eigenvector components and the modal

amplitudes of the pump field in the corresponding layer, no matter whether they belong to

Σ+ or Σ−. The Fourier coefficients of the z-component E3 of the electrical field entering

Eqn. (5.11) which are not element of the actual eigenvector according to Eqn. (2.14) can be

explicitly calculated by

�3 = −1

k 0
η̂(α̂�2 − β̂�1) (5.12)

where α̂ and β̂ are Toeplitz matrices composed of the coefficients αm and βn [see

Eqs. (2.9)-(2.10) ] and η is defined according to Eqn. (2.20).

Finally, a short comment is required regarding the complexity of Eqs. (5.9) and (5.11). As

already mentioned above, Eqn. (5.9) represents the Fourier expansion of the nonlinear po-

larization where it is written as a modal superposition of all eigenmodes. Eqn. (5.11) is a

multiple convolution between the nonlinear susceptibility and the components of the pump

field.

5.2.2 Solution within a single layer

After elucidating the rather sophisticated structure of the nonlinear polarization, the formal

solution of the field at the higher-harmonic frequency ω2 appears on the agenda. Due to

the fact that the underlying linear properties, i.e. ε̄(ω), as well as the nonlinear polarization

P̄NL are periodic or pseudo-periodic functions in the x-y-plane, the components of the

electromagnetic field in a specific layer l will again obey the Bloch theorem, i.e.

f̄i(r) =
∑
m,n

f̄imn(z̃) exp
[
i(ᾱmx+ β̄ny)

]
. (5.13)
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Again, the layer index is omitted in the following formulas. Now, the procedure is similar

to that in the linear case. By introducing Eqn. (5.13) into the inhomogeneous Maxwell’s

equations (5.4) and by applying the correct Fourier factorization rules as outlined in Sec. 2.2

the result is a system of first-order differential equations, i.e.

−i
∂

∂z̃
�̄(z̃) = ˆ̄M�̄(z̃) + �̄(z̃). (5.14)

The matrix ˆ̄M is exactly the one used in Eqn. (2.12) except that all quantities should

carry bars on top, meaning that they are evaluated at frequency ω2 = Nω. The vector

�̄ = (�̄1, �̄2, �̄1, �̄2)
T includes the Fourier components of the four field vector components.

The term �̄ writes as

�̄(z̃) =
∑
{s}

⎛⎜⎜⎜⎜⎝
− ˆ̄α ˆ̄η�̄

{s}
3

− ˆ̄β ˆ̄η�̄
{s}
3

−k̄0�̄
{s}
2

k̄0�̄
{s}
1

⎞⎟⎟⎟⎟⎠ exp [i
∑

t γ̃st(z̃ − dst)] ≡
∑
{s}
	̄{s} exp [i

∑
t γ̃st(z̃ − dst)].

(5.15)

The definition of ˆ̄η is again given in Eqn. (2.20), and ˆ̄α and ˆ̄β are nothing else than Toeplitz

matrices composed of the elements ᾱm and β̄n, respectively.

The solution to Eqn. (5.14) consists of a general solution �̄H of the homogeneous equation

and a particular solution 
̄(z̃). The homogeneous equation is nothing else than Eqn. (2.12)

so that its solution is given by �̄H(z̃) = ˆ̄W ˆ̄φ(�̄, �̄)T [see Eqn. (2.25) ]. For the sake of

briefness, the derivation of the particular solution will not be shown here explicitly, instead

the interested reader is referred to Ref. [TP13].

5.2.3 The boundary conditions

Once the particular solution inside each layer is known, the enforcement of the boundary

conditions, i.e. the tangential electromagnetic field components must be continuous on the

layers’ boundaries, will lead to the solution of the still unknown modal amplitudes of the

homogeneous solution �̄H. As an example, let us consider the interface between layer l to

layer l + 1 in the following. Then, the continuous transition of the lateral (tangential) field

components implies

ˆ̄W
(l)

(
�̄(l)

�̄(l)

)
+ 
̄(l)

(
h(l)
)
= ˆ̄W

(l+1)

(
�̄(l+1)

�̄
(l+1)

)
+ 
̄(l+1) (0) , (5.16)
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where the elements of the underlined vectors are defined as ā
(l)
q = ā

(l)
q exp(iγ̄

(l)
q h(l)) and b̄

(l)
q =

b̄
(l)
q exp(iγ̄

(l)
q h(l)). In contrast to the fundamental field, Eqn. (5.16) additionally contains the

terms of the particular solutions on both sides of the interface. Of course, assuming that 
̄(l)

and 
̄(l+1) are exactly zero, then the solution to the boundary conditions can be achieved by

a standard S-matrix scheme as it was presented in Sec. 2.2.2. In that sense, the aim of the

following derivation is to end up with an extended scattering matrix solution scheme which

contributes for the existence of the additional terms appearing in Eqn. (5.16). Henceforth,

the subsequently outlined approach will be used. It finally allows to determine the overall

scattering matrix of an arbitrary multi-layer structure.

� Determine the transfer matrix (T-matrix) for the transition of the fields at the interface

between any arbitrary layer l and l + 1.

� Determine the transfer matrix for the propagation of the fields through an arbitrary

layer l, in particular from z̃ = 0 to z̃ = h.

� Determine the transformation rules of a T-matrix into an S-matrix.

� Determine the concatenation rules for two different S-matrices.

The first step, that is the determination of the interface T-matrix, is quite simple. By

solving Eqn. (5.16) for the modal field amplitudes of layer (l + 1) it follows(
�̄(l+1)

�̄
(l+1)

)
=

(
ˆ̄W

(l+1)
)−1

ˆ̄W
(l)

(
�̄(l)

�̄(l)

)
+

(
ˆ̄W

(l+1)
)−1 [


̄(l)(h(l))− 
̄(l+1)(0)
]

≡ τ̄layer

(
ā
(l)
q

b̄
(l)
q

)
+ �̄layer.

(5.17)

Thus, the calculation of the modal field amplitudes of layer l + 1 follows directly from

ordinary matrix operations from the corresponding coefficients in layer l. The second step,

that is to describe the propagation through a particular layer l from 0 to h(l), consists in

the multiplication of the modal field amplitudes by the propagation kernel φ̄(l)(h(l)) which

results in (
�̄(l)

�̄(l+1)

)
= ˆ̄φ

(l)
(h(l))

(
�̄(l)

�̄
(l)

)
≡ ˆ̄τ free

(
�̄(l)

�̄
(l)

)
+ �̄free. (5.18)

The empty vector �̄free = 0 has been added to keep the structural form of the equation

equal to that of Eqn. (5.17). Eventually, Eqs. (5.17) and (5.18) are already the basic rela-

tions which allow to impose the boundary conditions for an arbitrary multi-layer structure.

In principle, establishing the concatenation between different transfer matrices would allow
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for the determination of the overall transfer matrix of the complete structure. However, due

to known numerical instabilities of this solution scheme, the entire description has to be

transformed into a scattering matrix formulation circumventing these drawbacks. Due to

the limited amount of space available for the major part of this thesis, the detailed transfor-

mation and concatenation rules are omitted here, but they are documented in Ref. [TP13].

5.3 Second-harmonic generation at a single-wire structure

The following structure under investigation is deliberately chosen to be quite simple. It is

a periodic arrangement of metallic nano-wires deposited on a film of a nonlinear dielectric

material. Figure 5.1a shows the pertinent structure. The metallic wires consist of gold,

x

z

a) b)

Figure 5.1: Schematic (a) of the structure. Three separate layers are indicated and labeled. Sketch
of the eigenmodes (b) propagating within the homogeneous LiNbO3 layer which corresponds to layer
#3.

they are 400 nm in width and 30 nm in height. The film material (layer #3) is assumed

to be lithium niobate (LiNbO3) which exhibits a strong second-order susceptibility. The

period of the metallic wires is 0.61 μm and the voids are assumed to be partially filled by

LiNbO3 of height 15 nm. To bury the nano-wires is beneficial if the large field enhancement

close to the metal surface shall be exploited. The actual substrate material is assumed

to be linear and isotropic with its dielectric properties identical to that of LiNbO3 (more

precisely the ordinary dielectric coefficient of LiNbO3 is chosen). On the one hand, this

configuration is necessary because the algorithm requires linear substrate/cladding media.

On the other hand, it minimizes interfering Fabry-Perot-oscillations that will appear due

to the finite thickness of the LiNbO3 film (#3 in Fig. 5.1a) and therewith it helps to keep

the physics as simple as possible.
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Now, in the following investigations we wish to evaluate the influence of the localized

plasmon-polariton resonance (supported by the small metallic nano-wires) on SHG. In the

following, only the dielectric film material is assumed to contribute to the nonlinear conver-

sion process and the contribution of the metallic components is neglected. This assumption

appears to be quite realistic since the pure metal itself does not support a dipolar second-

order nonlinearity of bound lattice electrons which is forbidden due to the crystallographic

symmetry [191]. Other contributions, such as a quadrupolar response of valence electrons

[193, 194] and also those of the conduction electrons of the metal [TP11, 178, 193, 195, 196]

are very small and can be neglected in comparison to the LiNbO3 [TP11].

To excite a localized plasmon-polariton resonance supported by the metallic nano-wires,

the illuminating field has to be polarized along the x-direction. The cladding material is

air and the structure is illuminated under normal incidence with a plane wave. To distin-

guish between the contribution from the plasmonic nano-structure and from the remaining

bulk material, the thickness of layer #3 is systematically varied and its impact on SHG is

analyzed. For a better understanding of the physical processes in the chosen example it

appears to be advantageous to be clear about the eigenmodes of the structure, especially

those for the nonlinear dielectric film, i.e. layer #3. Due to the fact that layer #3 is a

simple homogeneous film, the excitable modes (at FH and SH frequency) are plane waves;

nothing else than the diffraction orders of the metallic grating defined by the nano-wires.

Thus, the lateral Bloch vector components kx of these modes are determined by an integer

multiple of the reciprocal lattice vector, i.e. kx = 2πq/Λx (q = 0,±1,±2, . . .), and the

associated longitudinal components are given by kz =
√

n2
LiNbO3

(ω1/2)ω
2
1/2/c

2 − k2
x. Here,

nLiNbO3 denotes the refractive index experienced by the associated eigenmode∗ and ω1/2 is

the FH frequency and SH frequency, respectively. A schematic overview of the propagating

modes at both frequencies is provided by Fig. 5.1b. Assuming a weak material dispersion

of LiNbO3, it becomes obvious that the even modes (q = 0,±2, . . .) at SH frequency have

co-propagating modes at FH frequency of order q/2. On the contrary, the odd modes at SH

frequency (q = ±1,±3, . . .) are not accompanied by a co-propagating mode existing at FH

frequency. From that picture, and without having examined the numerical results up to this

point, it is expected that the material dispersion of LiNbO3 leads to a small phase mismatch

between co-propagating modes at SH and FH frequency within layer #3. Thus, the bulk

contribution will lead to a sinusoidal dependence of the even modes at SH frequency. As will

be shown later, the contribution of the metallic nano-structure appears as an offset in the

generated signal. On the contrary, the SH signal generated within the odd modes will turn

∗Due to the anisotropy of the LiNbO3 crystal this value is not constant and depends on the direction of
propagation. However, to establish a qualitative picture of the physical scenario this fact is of minor
importance.
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out to be solely determined by the near field contribution of the metallic nano-structure.

Due to the large phase mismatch to the neighboring modes at FH frequency, an efficient

frequency conversion process within the homogeneous nonlinear layer #3 is not achievable.

Now, a precise description of the material components of the system is provided. The

LiNbO3 crystal establishing the film is aligned in a z-cut configuration (the optical axis

of the crystal coincides with the z-axis). In this configuration the non-vanishing elements

of the second-order susceptibility tensor are [191] χ113 = χ131 = χ223 = χ232 = χ311 =

χ322 = −5.44 × 10−12 m/V, χ222 = −χ211 = −χ112 = −χ121 = 2.76 × 10−12 m/V and

χ333 = −31.8 × 10−12 m/V. The linear permittivity tensor is diagonal, with its entries

ε11 = ε22 = εo and ε33 = εe. Here, εo and εe denote the ordinary and extraordinary dielectric

coefficients of the uniaxial LiNbO3 crystal. The material dispersion characteristics were

directly taken from literature [M.3]. It has to be mentioned, that the following calculation

completely takes into account the anisotropic properties of the LiNbO3 structure, whereas

the numerical procedure presented in Sec. 5.1 only dealt with isotropic constituents. How-

ever, an extension to anisotropic material properties is straightforward [TP13] and does not

considerably change the numerical scheme as it was presented.

Results and discussion. Now, let us first consider the linear transmission spectrum of the

pump field. The spectrum was recorded for a pump field between 1.2− 1.6 μm illuminated

under normal incidence with an amplitude of |E| = 106 V/m. The polarization was linear

along the x-direction and 101 Fourier orders were used in the calculation. Figure 5.2a shows

the zeroth-order transmission coefficient (blue, dashed curve). The height of the nonlinear

LiNbO3 film was set to be 1 mm, which corresponds to the usual thickness of commercially

available wafers of that material. The transmission minimum which is connected to the

fundamental plasmonic resonance of the nano-wire is centered around λ0 = 1.41 μm. The

manifold small features below 1.3 μm are caused by the appearance of a new propagating

diffraction order in transmission such that the structure is no longer sub-wavelength with

respect to the pump wavelength. Looking at the SHG process, Fig. 5.2a shows the normal-

ized forward generated (transmitted) field† into the zeroth (red, dashed-dot) and the first

diffraction order (green, solid) SH field. On the one hand, the first-order SH field clearly

takes advantage of the plasmonic resonance of the pump field such that a local maximum can

be identified within the spectrum. In contrast to that, the zeroth-order SH field is dramat-

ically smaller and obviously cannot benefit from the excited plasmon polariton. Moreover,

it exhibits a broad dip in the transmission spectrum (hardly to see at the chosen scale)

†The amplitude transmission coefficients are normalized to the input pump field which has an amplitude
of |E| = 106 V/m.
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Figure 5.2: Transmission spectra (a) of the zeroth-order FH (blue, dashed), the zeroth-order SH (red,
dash-dot) and the first-order SH fields (green, solid) under normal incidence. Forward generated
(transmitted) SH field (b and c) of the zeroth (red, dash-dot) and first-order (green, solid) SH field
at 1.41μm. The dependence on the assumed nonlinear substrate height (layer #3) is explicitly shown.
These graphs show the very near field behavior (b) from 0 to 0.5 μm and also the characteristics far
away from the nano-structure (c) around a layer thickness of 1000 μm.

which is linked to the associated dip in the transmission of the pump field. The reason

why the first order shows a much stronger signal, can be most likely attributed to the z-cut

geometry where the χ333 component is largest. However, the related nonlinear source field

at SH frequency must not radiate into z-direction but may stipulate radiation into higher

diffraction orders.

To further elucidate the nonlinear frequency conversion process, the SH conversion

efficiency depending on the thickness of the nonlinear LiNbO3 film is also studied.

Figures 5.2b and 5.2c show the results for a fixed wavelength of 1.41 μm which corresponds

to the plasmonic resonance position of the pump field. At first, there is a strong increase

of the generated SH signal (see Fig. 5.2b) within a distance of 100− 200 nm near the plas-

monic structure which saturates for higher thicknesses of the LiNbO3 film. This behavior

indicates the near field of the metallic nano-wires to be responsible for that amount of SHG.

Thus, in the present case the zeroth and first-order SH field converge towards values of

1.2× 10−15 and 2.0× 10−11, respectively. But what happens over larger distances? At first,

the first-order SH field (blue, solid curve) shows a constant signal (see Fig. 5.2c) indicating

that no further SHG process does contribute. This fact appears to be reasonable since the
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first-order SH field has no co-propagating counterpart of the pump field within the LiNbO3

film (the first-order pump overlaps the second-order SH field) such that an efficient nonlin-

ear frequency conversion is not possible. Consequentially, the entire spectral contribution

within this order is generated in the vicinity of the nano-structure. It explicitly takes advan-

tage of the electric field enhancements around the metallic nano-wires. On the other hand,

inspecting the zeroth-order SH field, it undergoes strong oscillations (see Fig. 5.2c) when

inspected over large distances. The oscillation period exactly corresponds to the coherence

length of LiNbO3 at that wavelength [191]. It is caused by the phase mismatch between the

zeroth-order pump and SH field.

In conclusion, once the SH has experienced a strong increase over very small distances

around the metallic nano-structure, the ordinary bulk SHG process takes over and deter-

mines the frequency conversion process. Most notably, the near field contribution represents

an additional amount of generated SH which is not again annihilated by the ordinary bulk

conversion process. In particular, this means that the phase-mismatch evoked oscillations

do not cause the signal to go down to zero again, instead the minimum value is determined

by the near field contribution which can be addressed to the impact of the employed metallic

nano-wires.

5.4 Third-harmonic generation at a coupled

plasmonic-dielectric structure

In the following section, the focus will turn to THG assisted by metallic nano-structures.

In that case, the situation with respect to the origin of the nonlinear response gets more

involved. In contrast to SHG, the nonlinear properties will be influenced by the dielectric

as well as metallic constituents of a certain realistic, metallic nano-structure. In particular,

the metallic components do exhibit a reasonable third-order, dipolar nonlinearity stemming

from the bound electrons that cannot be neglected anymore [178, 191, 194].

The upcoming investigation is closely related to a genuine experimental study of THG as-

sisted by metallic nano-structers [TP12]. The experiments were performed by T. Utikal

and co-workers at the University of Stuttgart. The system under consideration is a hybrid

plasmonic dielectric configuration, namely an array of gold nano-wires that are completely

embedded into a dielectric slab waveguide. Particularly to note, the peculiar influence of

the employed dielectric waveguide material on the THG process was at the heart of interest

such that different materials with different (nonlinear) properties were employed. However,

the following theoretical study will concentrate on a single and carefully chosen geometrical
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layout. The influence of the different constituent materials on the overall nonlinear response

by means of numerical calculations can be simply investigated by a manipulation of the ma-

terial’s nonlinear properties; a way which is of course experimentally not feasible. However,

this strategy is not just a simple ruse/trick, instead it appears to be highly preferable since

it simultaneously allows to maintain the linear optical properties.

A sketch of a single unit cell of the pertinent structure is depicted in the inset of Fig. 5.3a.

The precise specification is the following. The substrate of the structure is established by
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Figure 5.3: a) Linear absorption spectrum of the structure. The inset shows the structure layout. b&c)
Field distribution within a single period of the electrical field at two different wavelengths evaluated
at the thin red lines in the left picture. The color scale encodes the amplitude of the total electrical
field. The arrows indicate the direction and strength of the field. The axis values are given in 10−6 m.

a fused silica wafer [M.4] (bottom grey layer) which is coated (manufacturer-provided) by

a 20 nm indium thin oxide (ITO) layer (dark blue layer). For the numerical simulation the

actual fused silica substrate is divided into two sections – an analogue strategy was already

discussed in context of SHG in the previous section. The 20 nm ITO layer is followed by a

300 nm layer of fused silica where third-order nonlinear properties are taken into account.

Then, the actual substrate material is exclusively linear with its properties according to

fused silica. The metallic wires (dark gray stripes) consist of gold [M.6] and they are directly

located on top of the wafer. They were deposited by a sputtering technique. Their width and

height amount to 128 nm and 30 nm. The period of the arrangement is 570 nm. Finally, the

wires are embedded in a second ITO layer (brown layer) with a thickness of 135 nm which was

again deposited on top of the sample by a sputtering procedure. Hence, the overall thickness

of the ITO waveguide amounts to 185 nm. The linear optical properties of the two ITO

layers are treated slightly different which accounts for the different techniques used for their

deposition. Consequently, the material dispersion of the 20 nm ITO layer is modeled by data

provided by the manufacturer [M.5] whereas the sputtered film has a constant permittivity

of 4.0‡. However, this discrimination is of marginal importance for the understanding of the

‡The permittivity of the sputtered film was extracted from experiments.
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physical processes, but of course it will slightly influence the quantitative results. Finally, the

incident field is assumed to be a plane wave which impinges perpendicular to the structure’s

surface. The polarization state is linear with the electrical field perpendicular to the metallic

wires such that localized plasmon polaritons can be excited. On the other hand, for the

chosen geometrical parameters the periodic arrangement of the wires simultaneously allows

coupling of the external illuminating field to photonic waveguide modes in the dielectric

ITO slab. In the strong coupling regime the localized plasmonic mode hybridizes with the

waveguide mode to form two so-called waveguide plasmon polaritons. These polaritons are

characterized by two absorption maxima in the linear spectrum with an absorption dip in

between [101, 197–199]. For the chosen example, the two spectral maxima are located at

wavelengths of 0.84 μm and 0.91 μm and the dip position is 0.853 μm (see Fig. 5.3a).

In order to gain more insight into the elementary processes especially for the nonlinear con-

version processes as discussed later, the electrical field distributions were exemplarily calcu-

lated in the linear optical regime for λ = 0.853 μm and λ = 0.910 μm. These wavelengths

correspond to the dip and the long wavelength maximum positions. The field distributions

are shown in Figs. 5.3b and 5.3c. Characteristically, one observes a strong field concentra-

tion in the waveguide and in the substrate for λ = 0.853 μm, whereas the field is mainly

concentrated around the metal for λ = 0.910 μm. In the first case, the field distribution

resembles that of an ideal slab waveguide which is, however, slightly disturbed due to the

presence of the metallic nano-wires. Thus, the field shows two bumps along the x-direction

which can be attributed to the interference pattern between two equally excited waveguide

modes propagating in ±x-direction. Furthermore, the field evanescently penetrates into the

substrate and cladding, where the characteristic depth of penetration into the substrate

clearly overwhelms that into air which is caused by the higher substrate’s permittivity. In

the second case, the field distribution reveals that of an elementary dipole which clearly

emphasizes the resonance to be linked to the fundamental localized plasmonic mode of the

metallic nano-wire.

Results and discussion. In the following, the local third-order nonlinear polarization was

assumed to be described by PNL(3ω, r) = ε0χ̂(−3ω;ω, ω, ω, r)
... E3(ω, r) fully taking into

account the dipolar bulk contributions of the involved materials. A simultaneously emerg-

ing Kerr nonlinearity leading to an additional nonlinear polarization at frequency ω was not

taken into account. There are two reasons for that. On the one hand, the consideration

of a Kerr nonlinearity is beyond the numerical model as it was presented here and it was

not implemented into the software used for the present calculations (however it is possible;

see e.g. Ref. [192]). On the other hand and even more important, the experimental inves-
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tigations have shown a negligible influence of the applied input intensity on the measured

spectra at FH frequency ω.

Now concentrating on the THG process, all materials were assumed to be isotropic with a cu-

bic lattice such that the complete susceptibility tensor is determined by a single value/entry

[191, 200], w.l.o.g. it is χ1111. The precise values were taken from literature [191, 201–203]

and they amount to χ1111
Au = 7.5 × 10−19 m2/V2 for gold, χ1111

ITO = 1.0 × 10−20 m2/V2 for

ITO and χ1111
glas = 2.0 × 10−22 m2/V2 for fused silica. Now, to investigate the influences

of the different constituent materials (gold, ITO, fused silica) on the nonlinear frequency

conversion process a switch on/off technique was used, meaning that only one of these sus-

ceptibilities was taken into account during the numerical calculation whereas the remaining

ones were set to zero. At first, the calculations have revealed that the influence of the sub-

strate (χ1111
glas ) can be neglected because the corresponding TH signal intensity is 2-3 orders

of magnitude smaller than that generated by the remaining materials. Moreover, the shape

of the spectral response, which will be subsequently discussed in detail, nicely resembles

that induced by the dielectric waveguide material. Thus, in the real experiment they are

hardly distinguishable. To discuss the effects of the remaining materials, let us start with
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Figure 5.4: Forward, normalized THG efficiency (blue, solid curve) evaluated over all propagating
diffraction orders. In the first case (a) only the dielectric waveguide material contributes to the
nonlinear response, i.e. χ1111

ITO 
= 0 and χ1111
Au = 0. In the second case (b) only the metallic wires

contribute to the nonlinear response, i.e. χ1111
ITO = 0 and χ1111

Au 
= 0. In the last case c) both
components contribute to the nonlinear response. Additionally, the relative strength between χ1111

ITO

and χ1111
Au is subject to variations. Therefore, the ITO’s nonlinear coefficient is scaled by a factor

10fITO leading to a manipulated strength of the third-order nonlinearity, i.e. χ1111
ITO → 10fITOχ1111

ITO .
For the sake of visibility the spectra are individually normalized for every value of fITO.

the dielectric component, namely the ITO waveguide layer. Consequentially, it is assumed

that χ1111
ITO 
= 0, χ1111

Au = 0. Figure 5.4a shows the corresponding results. The generated TH

signal strength (blue curve) in forward direction (into the substrate) is plotted as a func-

tion of the wavelength of the pump field. Hence, the actual wavelength of the TH signal

is one third of the displayed values. The THG efficiency is determined by the intensity
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of the generated field into all diffraction orders normalized to the intensity of the input

field which has an amplitude of |E| = 106 V/m. For comparison, Fig. 5.4a also displays

the linear absorption spectrum at the pump field frequency. Thus, it can be seen that the

THG induced by the waveguide material is characterized by a sharp peak which is located

exactly at the dip position of the linear absorption spectrum. Remembering the exemplary

field distributions provided by Figs. 5.3b and 5.3c, then it can be concluded that this THG

peak must be linked to the peculiar distribution of the pump field which takes here the

form of two counter-propagating waveguide modes as discussed above. On the contrary,

when looking at the influence of the gold nano-wires (now: χ1111
ITO = 0, χ1111

Au 
= 0) it becomes

obvious that the associated THG process leads to a spectral shape of the signal which nicely

follows the linear absorption curve of the pump field exciting the nano-structure. In partic-

ular, there are two distinct maxima observable which are connected to the excitation of the

waveguide plasmon polariton states in the nano-structure. Thus, this fact indicates that

the underlying frequency conversion process takes advantage of the plasmonic nature of the

resonance as suggested by Fig. 5.3c. Eventually, a last note is necessary with respect to the

strengths of the contributions from both materials. They can be seen to be of the same

order of magnitude§. Thus, the question arises what happens when both of them contribute

to the overall nonlinear response and what is the influence of slight variations in their rel-

ative strength (now: χ1111
ITO → 10fITOχ1111

ITO 
= 0, χ1111
Au 
= 0). To realize this investigation the

absolute value of χ1111
ITO will be subject to variations in the following. It will be modified

by an additional factor 10fITO. Finally, performing the numerical calculations once again

leads to the results as displayed by Fig. 5.4c which shows the normalized THG efficiency

depending on the wavelength as well as the scaling factor’s exponent fITO. For fITO = 0

one can see the final response to be dominated by the nano-wire’s contribution attributed

to the nonlinear susceptibility of gold. However, increasing the strength of the ITO’s sus-

ceptibility only by one order of magnitude then the ITO’s contribution takes over. Worth

to mention, there appears a smooth and continuous transition between the characteristic

features of both limiting spectra. In particular, there are no coupling or interfering effects

between both contributions observable in the transition region around fITO = 0.5.

5.5 Chapter summary and concluding remarks

The first part of this chapter was devoted to the brief presentation of a numerical scheme,

namely an adapted Fourier modal method, allowing for the rigorous calculation of SHG

§The precise strengths of both spectra are less reliable since they strongly depend on the concrete numerical
value assumed for the nonlinear susceptibility. Here, the exact parameters are only vaguely known due
to the very limited number of available experiments performed to determine them.
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and THG at periodic nano-structures in context of the undepleted pump approximation.

This method was then used to analyze SHG and THG for two specific example structures.

The first structure was a periodic arrangement of metallic nano-wires on top of a dielectric

wafer. The dielectric material was chosen to exhibit a large second-order, nonlinear suscep-

tibility. The presence of the metallic nano-wires was verified to affect and enhance the SH

conversion efficiency. Moreover, it was demonstrated how to distinguish between ordinary

bulk contributions and the peculiar near field contributions attributed to the effect of local-

ized plasmon polariton resonances. The second structure under investigation was a hybrid

metallo-dielectric system. The focus was on THG. In the considered case, several material

components of the entire nano-structure contributed to the overall frequency conversion

process due to their third-order nonlinear susceptibility. Using a switch on/off technique it

was possible to show that all different materials induced unique characteristic features in

the recorded TH signal. Conversely, this means that the measured spectral features may

allow to identify the actual source of the TH response in a real experiment [TP12].



6 Summary and conclusion

Summary

The major aim of this thesis was the study of concepts to describe light propagation in

periodic, inhomogeneous nano-structures, i.e. metamaterials (MMs). Though the feature

size of typical optical MMs is clearly sub-wavelength, it is still too large to describe them

entirely in terms of effective homogeneous media. Thus, the exact description of light prop-

agation within optical MMs typically requires three-dimensional, full-vectorial, numerical

models. However, independent from the chosen method and following the concepts of solid

state physics, the description of light propagation within periodic MMs can be confidently

developed relying on the eigenmodes, i.e. the Bloch modes, of such media. In fact, the

last sentence exactly points out the essence of the current thesis. It was devoted to the

modification of concepts for electronic transport in solid state physics [89] and to apply it to

the propagation of light in MMs. In particular, the concept of the eigenmodes’ dispersion

relation was introduced and widely exploited where the challenge, e.g., in contrast to pho-

tonic crystals [21] was mainly attributed to the absorbing nature of contemporary MMs.

After a concise summary of the numerical procedure, namely the Fourier modal method,

used for intended, rigorous numerical calculations, Chap. 3 was devoted to the very general

properties of Bloch modes in absorbing, periodic media. At first, orthogonality relations

were derived and the peculiarities and differences in comparison to purely dielectric media

(e.g. photonic crystals) were elaborated. It was then shown how to use the orthogonality

relations for the decomposition of arbitrary field distributions (e.g. beams) into the Bloch

eigenmodes. This concept, as it was discussed later on, finally allowed for the characteriza-

tion of diffraction in and refraction at MMs thoroughly by means of the dispersion relation

of the Bloch eigenmodes of the underlying medium. Apart from light propagation within

pure bulk MMs, also the coupling/scattering of light at the interface between two, dissimilar

MMs was treated. Hence, in analogy to the Fresnel coefficients for ordinary homogeneous

media, self-consistent expressions for the reflection and transmission coefficients in terms of

the Bloch modes of both media were derived and presented. Most notably, the fundamental

mode approximation was then introduced which allowed for the derivation of simplified,

analytic expressions.

98
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The elaborated, formal concepts were then applied in Chap. 4 to the specific analysis of con-

temporary, realistic MM structures. Emphasis was put on left-handed MMs, in particular,

on the large class of fishnet MMs. In a first part, the dispersion relation of a given fishnet

structure was presented and thoroughly analyzed. Most important, it was shown that a neg-

ative phase velocity (or negative phase index) is neither necessary nor sufficient to achieve

negative refraction or anomalous diffraction – the most appealing properties promised by

left-handed media. These predictions were confirmed by rigorous numerical calculations

performed, amongst others, to evaluate the imaging capabilities of a flat fishnet MM slab.

Hence, the fishnet was shown to support ordinary refraction while simultaneously providing

a negative phase velocity.

In the second part of Chap. 4 a new and innovative design approach for MMs, namely a

super-cell structure, was presented. It suggested the purposive use of heterogeneous multi-

layer MMs to suitably tailor the dispersion relation of the Bloch eigenmodes. Hence, two

novel fishnet MMs were presented to demonstrate the strength and versatility of that ap-

proach; one which exhibits an isotropic optical response (possessing a circular angular dis-

persion relation) and the second one which enables the propagation of self-collimated beams.

In the third and last part of Chap. 4 the focus moved towards the description of light reflec-

tion and transmission at MM interfaces. Using the fundamental mode approximation, an

important criterium, namely the proper dilution of meta-atoms or meta-atom layers, was

formulated which must be considered as a prerequisite for a successful homogenization of

layered MMs. The Swiss cross MM was chosen to serve as an example and to demonstrate

the physical implications.

The final chapter was dedicated to nonlinear optics or, to be more precise, to second- and

third-harmonic generation (SHG and THG). Apart from the presentation of an extended

Fourier modal method allowing for the rigorous description of SHG and THG at periodic

nano-structures, the special interest lay on the specific synthesis of the frequency converted

signal in metal-dielectric nano-structures. The first investigated structure was composed of

metallic nano-wires on top of a dielectric wafer. It was exemplarily shown how to distinguish

between ordinary bulk contributions and the peculiar near field contributions attributed to

the effect of localized plasmon polariton resonances. The second structure was a so-called

hybrid metallo-dielectric system. Here, the peculiar contributions of different material com-

ponents to the overall nonlinear response helped to reveal different resonant mechanisms

which are responsible for the enhancement of THG in that case.
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Perspective

This thesis has presented fundamental concepts to treat light propagation in periodic MMs.

However, it only covers a limited domain from a huge framework, so there are several points

that might be subject to further research in the future. First of all, the technical framework

of Bloch modes in absorptive media is very general and it can be applied to any kind of pe-

riodic nano-photonic system comprising attenuation in all its manifestations. Moreover, the

description of amplified modes is covered by this framework, too, so that it can be adopted

to the emerging item of MM research which is attributed to loss compensation by integrat-

ing active materials. Here, the Bloch modal concept evidently appears to be appropriate

since the evaluation of the eigenmodes and their dispersion relation fundamentally allows

to distinguish between the impact on pure bulk properties and those related to coupling at

the interfaces.

Second, the presented research concentrated on explaining the propagation of light beams

in MMs. This treatment can be straightforwardly extended to pulse propagation or spatio-

temporal propagation effects in general. Thus, effects like group velocity dispersion can

be thoroughly investigated for realistic MMs or even plasmonic nano-structures and there

might be new and yet unseen conclusions which exert influence even on the field of nonlinear

optics, e.g. solitary wave propagation.

Third, the presented super-cell approach which was used to tailor the angular dispersion

relation of a fishnet MM is basically very general. It might be applied to other MM geome-

tries, too. Moreover and even more interesting, it may also be used to tailor the response

of MMs with respect to completely different functionalities. One similar example, e.g., is

presented in Ref. [26] where a multi-element MM was used to mimic a perfect black body

emitter.

Last but not least, the rich field of nonlinear optics in combination with plasmonic nano-

structures and MMs still finds itself in an initial stage. On the one hand, there are

still open questions concerning the fundamental origin of optical nonlinearities in met-

als [TP12, 196, 204, 205]. On the other hand, most contemporary practical investigations

concentrate on higher-harmonic generation, but there is an urgent need to go beyond these

scenarios. One example are three-wave mixing processes, i.e. sum- and difference frequency

generation, which appears to be an alternative route for loss-compensation in MMs or any

kind of functional metallic nano-structure [18]. The presented Fourier modal method in

Chap. 5 can be straightforwardly adapted to this kind of scenario such that it might be a

useful tool when such worthwhile processes have to be analyzed.
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Material parameters

Material M.1: Frequency dispersion of the permittivity of silver according to a Drude formula.
The frequency has to be inserted in rad/s. The constants are [150]: ωp = 1.37 × 1016rad/s,
γ = 8.5× 1013rad/s.

ε = 1− ω2
p

ω2 + iγω

Material M.2: Wavelength dispersion of the permittivity of gold according to Ref. [206]. The
symbols correspond to tabulated values.
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Material M.3: Frequency and temperature (T) dispersion of the permittivity of lithium niobate
according to Ref. [207]. The wavelength has to be inserted in [μm] and the temperature in [◦C].
The temperature is assumed to be 25◦C throughout all performed simulations. The constants
are: B1 = 0.1173μm2, C1 = 1.65 × 10−8μm2/C2, D1 = 0.212μm, E1 = 2.7 × 10−8μm/C2,
F1 = 2.78 × 10−2μm−2; B2 = 0.097μm2, C2 = 2.70 × 10−8μm2/C2, D2 = 0.201μm, E2 =
5.4 × 10−8μm/C2, F2 = 2.24 × 10−2μm−2, G2 = 2.605 × 10−7C−2.

εo = 4.9130 +
B1 + C1T

2

λ2 − (D1 + E1T 2)2
− F1λ

2; λ = 2πc0/ω

εex = 4.5567 +
B2 + C2T

2

λ2 − (D2 + E2T 2)2
− F2λ

2 +G2T
2

Material M.4: Frequency dispersion of the permittivity of fused silica. The wavelength has
to be inserted in [μm]. The constants are: B1 = 6.96166300 × 10−1, B2 = 4.07942600 × 10−1,
B3 = 8.97479400 × 10−1, C1 = 4.67914826 × 10−3μm2, C2 = 1.35120631 × 10−2μm2, C3 =
9.79340025 × 10+1μm2.

ε = 1 +
B1λ

2

λ2 − C1

+
B2λ

2

λ2 − C2

+
B3λ

2

λ2 − C3

; λ = 2πc0/ω
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Material M.5: Wavelength dispersion of the refractive index of indium tin oxide. The symbols
correspond to tabulated/measured values.
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Material M.6: Frequency dispersion of the permittivity of gold according to a Drude formula.
The frequency has to be inserted in rad/s. The constants are: ωp = 1.137 × 1016rad/s, γ =
3× 1.8838 × 1014rad/s.

ε = 1− ω2
p

ω2 + iγω
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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Beschreibung und Charakterisierung der

Ausbreitung (Propagation und Streuung) von Licht innerhalb von optischen, periodischen

Metamaterialien sowie an deren Grenzflächen. Metamaterialien sind künstlich gener-

ierte Medien, wobei die charakteristische Größe der zugrundeliegenden Bausteine im Sub-

wellenlängenbereich liegt. Die Beschreibung der Wechselwirkung von Metamaterialien mit

Licht erfolgt im Rahmen dieser Arbeit streng rigoros – die Basis der Beschreibung stellen

die Blochmoden des unendlich ausgedehnten, periodischen, strukturierten Mediums dar.

Dazu wird in Kapitel 2 die sog. Fourier-Modal-Methode vorgestellt, die zur numerischen

Berechnung der Blochmoden herangezogen werden kann. Kapitel 3 beschäftigt sich mit den

Eigenschaften dieser Moden. Hier werden z.B. Orthogonalitätsrelationen abgeleitet, es wird

die Bedeutung der Dispersionsrelation besprochen und welche Aussagen dieser zur Beschrei-

bung von Beugung und Brechung von Lichtbündeln zu entnehmen sind. Des Weiteren

werden geschlossene Ausdrücke für die Reflexions- und Transmissionskoeffizienten an einer

Grenzfläche zwischen zwei Metamaterialien abgeleitet. Diese können als Verallgemeinerung

der Fresnel’schen Koeffizienten an einer ebenen Grenzfläche zwischen zwei homogenen Ma-

terialien angesehen werden. Kapitel 4 widmet sich der Anwendung der in Kapitel 3 entwick-

elten, formalen Konzepte auf linkshändige Metamaterialien. Im Vordergrund steht hierbei

die Beschreibung sog. Fishnet-Strukturen und deren Eigenschaften bezüglich der Ausbre-

itung von Lichtbündeln. Dabei kann im Rahmen dieser Arbeit gezeigt werden, dass eine

negative Phasengeschwindigkeit weder ein notwendiges noch ein hinreichendes Kriterium

ist, um negative Brechung bzw. anormale Beugung beobachten zu können. Dieser Umstand

kann auf die Tatsache zurückgeführt werden, dass die behandelten Fishnetstrukturen nicht

als effektives, lokales und homogenes Medium betrachtet werden können. Im weiteren Ver-

lauf wird das Konzept für sog. Supercell-Fishnet-Strukturen vorgeschlagen und vorgestellt,

welches ein gezieltes Design der optischen Eigenschaften von Metamaterialien erlaubt. Ab-

schließend behandelt Kapitel 4 die Reflexion und Transmission an ebenen Grenzflächen. Hi-

erbei wird hauptsächlich die Grenzfläche zwischen Luft und einem Swiss-Cross Metamaterial

behandelt. Im Vordergrund steht die Untersuchung der gegenseitigen Kopplung zwischen

verschiedenen Moden bzw. der Grenzfall, sodass nur noch die Grundmoden beider Medien
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die Transmissions- und Reflexionseigenschaften bestimmen. Dabei hat sich die Swiss-Cross-

Struktur als potentes Metamaterial erwiesen, welches einerseits ein linkshändiges Verhalten

zeigt und dessen Eigenschaften ausschließlich auf Basis seiner Grundmode determiniert sind.

Kapitel 5 widmet sich schließlich Themen der nichtlinearen Wechselwirkung zwischen Licht

und Metamaterialien. Im Speziellen steht die Erzeugung von zweiter und dritter Harmonis-

cher an metallischen Nanostrukturen im Vordergrund. Zu diesem Zweck wird im ersten Teil

des Kapitels eine adaptierte und erweiterte Version der Fourier-Modal-Methode vorgestellt.

Anschließend wird diese verwendet, um die nichtlineare Antwort zweier Beispielsysteme zu

berechnen. Besondere Beachtung findet ein gekoppeltes System aus dielektrischem Wellen-

leiter sowie metallischer Nanodrähte an welchem die Erzeugung der dritten Harmonischen

analysiert wird. Hierbei wird gezeigt werden, dass die spezifischen Charakteristika des nicht-

linearen Fernfeldsignals Aufschluß über die eigentlichen Quellen der Nichtlinearität in der

gekoppelten Nanostruktur geben können.
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unzulässige Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel und

Literatur angefertigt habe. Die aus anderen Quellen direkt oder indirekt übernommenen

Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Weitere Personen waren an der inhaltlich-materiellen Erstellung der vorliegenden Arbeit

nicht beteiligt. Insbesondere habe ich hierfür nicht die entgeltliche Hilfe von Vermittlungs-

bzw. Beratungsdiensten (Promotionsberater oder andere Personen) in Anspruch genom-

men. Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistungen für Arbeiten

erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher oder ähnlicher Form
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