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1 IntrodutionOut of the four fundamental fores that govern the interation of matter, in manyases eletromagneti fores are the ones dominating on marosopi sales. Never-theless, in lassial physis the interation of neutral, unpolarized objets is governedby gravitation. The situation hanges on a quantum level where quantum �utua-tions of the eletromagneti �eld as well as of the harge and urrent densities of theinterating matter, have to be taken into aount. In partiular, there is a nonvanish-ing eletromagneti fore � the dispersion fore � even if the ombined �eld�mattersystem is in its ground state and the interating objets are neutral and unpolarizedon a quantum average. We distinguish dispersion fores between marosopi bodies,known as Casimir fores [1�3℄, those between a marosopi body and an atom, alledCasimir�Polder (CP) fores [4�6℄, and �nally the fores between atoms, possibly inthe presene of media, whih are referred to as van der Waals (vdW) fores [5, 7℄.Considering the gravitational (FG) and the vdW fore (FvdW) between two (hydro-gen) atoms shows that in the sub-mm regime vdW interations start to dominategravitation,
FvdW

FG
∝
(0.5mm

r

)6

, (1.1)where we have employed the 1/r8 power law desribing the retarded fore of twoatoms separated by distane r [5℄ and the ordinary law of gravitation. The two andmany-atom vdW interation may also be interpreted as the mirosopi origin ofall (ground-state) dispersion fores [8�10℄. It should be pointed out that the vdWinteration involving exited atoms has been subjet to disussions until now [11�14℄.There is a vastness of theoretial work onerning the (stati) Casimir fore. Many ofthese studies are based on Lifshitz theory [2℄ whih, in ontrast to Casimir's normal-mode approah, allows for the inlusion of arbitrary dispersing and absorbing (linear)bodies as well as temperature e�ets (for a review see, e.g., [15℄). Early investigationson (stati) CP fores are usually based on linear response theory [16,17℄, but an alsobe obtained from Lifshitz theory by phenomenologial treatment of the bodies. In fullquantum theories, the eletromagneti �eld interating with media may be quantized1



1 Introdutionin a anonial way based on a semi-mirosopi matter model [18℄, or on using theonept of marosopi quantum eletrodynamis (QED) [19℄ or, alternatively, withina path-integral approah [20℄. In marosopi QED, all properties of the bodies entervia the lassial Green tensor while an atom, subjeted to the CP fore, is desribed interms of its polarizability and its transition frequenies. Conservative CP fores anthen be alulated by determining the body-indued energy shifts in leading-orderperturbation theory [21℄.The impat of (ommonly attrative) dispersion fores in siene is immense. Inbiology, dispersion fores ontribute to the organization of moleules [22�24℄ as well asto ell adhesion [22,23,25,26℄, and to the interation of moleules with ell membranes[23, 25℄. A very fasinating and pratially relevant example is the geko's abilityto limb dry and smooth surfaes [27℄. There is experimental evidene that vdWfores ating on eah of the millions of mirostrutured hairs on the geko's toeause the stiking [28℄, though it may be in�uened by other e�ets [29�31℄. In olloidsiene, the (primarily dispersion-type) interations between small lusters of partilesin free spae [32℄ and between spherial miro-and maro objets embedded in aliquid or olloidal suspension [33℄ are investigated. If the interation is attrative,lustering or �oulation may our [34℄ but an be balaned by other (repulsive)fores [35�38℄. The onsequenes of dispersion fores are also notieable in astronomywhere laboratory experiments have shown that vdW fores ontribute to the stikingof dust grains in the formation of planetesimals [39℄. Furthermore, Casimir energiesare ontroversially disussed to ontribute to the osmology onstant [40℄.The era of high-preision Casimir fore experiments started in 1997 when the forebetween a metalli plate and a metalli spherial lens has been measured [41℄. Corre-tions due to �nite temperature, often referred to as the thermal Casimir e�et, weremeasured in subsequent experiments [42�47℄ where the orret desription of metalshas aused a ontroversy [48�51℄. Measurements of the CP energy of exited atomsare typially based on spetrosopi methods [52�54℄, while ground-state CP foresare measured by means of de�etion experiments [55℄. To aommodate experimentand theory, the impat of surfae roughness has been subjet to alulations [56�59℄.In the last years, the detetion of repulsive dispersion fores has been brought intofous [60, 61℄. The possibility to reate repulsive dispersion fores is of fundamentalinterest in miro-eletromehanial systems where miro-objets may unintentionallystik to a surfae when brought into lose viinity [62�65℄. Repulsive dispersion foresmay also be utilized for implementing trapping mehanisms [66, 67℄, guiding atomi
2



beams in atom optis [68℄, enhaning quantum re�etion [69℄, going towards quantumlevitation [70℄ or failitating superlubriity [60℄ by eliminating quantum frition [71℄.In the last two deades muh progress has been made in fabriating metamaterials[72, 73℄ with spei�ed properties that might be used to ontrol the strength and thesign of Casimir and CP fores. The frequently used onept of e�etive permittivityand permeability of materials is only valid on length sales whih are su�iently largein omparison to the elementary building bloks of the material. The material responsean be determined theoretially [74,75℄ or by means of re�etion experiments [76℄. Ofpartiular interest are left-handed metamaterials [77,78℄ whih an be fabriated usingperiodi arrays of split�ring resonators [79, 80℄ or two-dimensional metal�insulator�metal waveguide strutures [81℄. Lefthanded materials have been predited to lead toa number of unusual optial phenomena [82, 83℄ suh as negative refration [79, 82℄,invisibility devies [84, 85℄ and the possibility of a superlens: a planar left-handedslab is able to fous light with a resolution well beyond the di�ration limit [74℄.The superlens onept has been subjet to intense disussion [86, 87℄, and limitingfators suh as the �nite dimension of the lens [88℄ or the in�uene of absorptionhave been studied [89℄. However, passive metamaterials su�er from high absorptionwhih restrits desired metamaterial properties suh as left-handedness [82, 83℄ to anarrow spetral bandwidth [90℄. Hene, the in�uene of suh properties on ground-state dispersion fores may be strongly redued [91�94℄. In general, the in�uene ofabsorption an be mitigated via introduing ampli�ation as suggested in Refs. [90,95, 96℄ and has been ahieved reently for a metamaterial in the optial regime [97℄.In parallel to these developments in experiments and appliations, the possiblerealization of repulsive dispersion fores has been disussed theoretially. Three mainmehanisms an be proposed: 1. Competing e�ets of eletri and magneti propertiesof the atoms [91, 93℄ and/or the bodies are known to lead to repulsive interations[92, 98�100℄. 2. An intervening medium between the Casimir objets [2, 101, 102℄ ora medium environment of the atom [103℄ may aount for repulsion even for purelyeletri ground-systems. For atoms embedded in a medium the Onsager real avitymodel [104℄ an be applied to model the di�erene between the loal eletromagneti�eld at the position of the atom and the marosopi one. The hoie of the orretstress tensor of medium-embedded bodies has been subjet to ontroversial disussion[105�108℄. 3. Exitation in the form of exited atoms or ative media provides thepossibility to turn the sign of the fore into repulsion. The vdW interation wasinitially studied for exited atoms in free spae [12,13,109�111℄, and later the presene
3



1 Introdutionof ground-state media was taken into aount [14℄. Similarly, the CP interation ofa marosopi ground-state body and an exited atom has been studied and foundto ontain (dominating) resonant ontributions [112�114℄, whih, depending on therelevant medium and atomi frequenies, an provide repulsive interations. The CPpotential of a ground-state atom in front of an exited dilute gaseous medium, as wellas the Casimir interation between two dilute samples of exited gas atoms has beeninvestigated in Ref. [13℄. To alulate the Casimir fore on an amplifying body beyondthe dilute-medium limit, an inlusion of ampli�ation in the quantization sheme isneessary. An attempt in this diretion was made for a slab-like system [115,116℄ whihwas later generalized on the basis of marosopi QED in three dimensions [117℄. Inpartiular, the question of whether the Casimir fore on an amplifying body an berepulsive as suggested in Ref. [70℄ has not been solved yet. Thermal exitation mayalso give rise to resonant fore omponents in non-equilibrium systems [118℄. Theresonant fore may have di�erent signs depending on the temperature di�erene ofthe body and the medium-environment [119�122℄.Dispersion fores on ground-state objets in free-spae have been intensively dis-ussed [6℄. Motivated by the above mentioned appliations, we investigate in thisthesis how CP and Casimir fores an be ontrolled. Sine the magneti propertiesreated in the ontext of metamaterials are usually not strong enough to give rise to re-pulsion [123℄, we onentrate on the seond and third mehanism as introdued above.While exited systems are the most promising andidate for implementing repulsion,dispersion fore on objets in media are also of interest to olloid siene. We desribethe Casimir and Casimir�Polder fores from �rst priniples as Lorentz fores in theframework of marosopi QED [10,113℄. We start with a review of the quantizationproedure of the medium-assisted eletromagneti �eld in the presene of linear, par-tially amplifying media. The main part is primarily based on Refs. [AS1℄� [AS7℄ andovers the following problems:
• Impat of the loal-�eld orretion on the ground-state CP potential
• Estimation of the ground-state CP potential at the interfae between two media
• Dispersion interation between spherial objets in media
• Resonant CP potential in a realisti superlens senario
• Casimir fore on an arbitrary, partially amplifying body
• Consisteny of CP and Casimir fore theory for exited matter
• Possibility of repulsive Casimir fores in planar geometries involving ampli�a-tionIn the last hapter we summarize our results and give ideas for prospetive works.4



2 FundamentalsA very suessful way to formulate a onsistent theory of dispersion fores is pro-vided within the onept of marosopi quantum eletrodynamis, whih desribesthe interation of the eletromagneti �eld with nonrelativisti, marosopi objets(media, bodies) and mirosopi objets (atoms, moleules). In this approah, atomsan be desribed as (usually eletri) dipoles, where the response of the medium andthe bodies is desribed marosopially. This desription is valid as long as the dis-tane between the bodies and distanes between bodies and external atoms are largerthan the inter-atomi length sales inside the bodies. As in lassial eletrodynam-is the medium response is desribed by ausal omplex-valued eletri permittivityand (para)magneti permittivity funtions. In this work, we restrit our attention toisotropi media that are linearly and loally responding to the eletromagneti �eldand introdue the permittivity ε(r, ω) and permeability µ(r, ω).As one of the key features of this thesis the bodies may also be partially amplifying,whih is haraterized by
Im ε(r, ω) = εI(r, ω) < 0 and/or Imµ(r, ω) = µI(r, ω) < 0 (2.1)for a limited spae and frequeny regime. The strength of the ampli�ation must besuh that the response to the eletromagneti �eld is still linear, whih is partiularlyimportant in systems where waves pass through an amplifying medium repeatedly,suh as high-Q resonators (details in Ref. [124℄). A familiar model for an amplifyingdieletri ε(r, ω) [and analogously for µ(r, ω)℄, onsistent with the Kramers�Kronigrelations, is of Drude�Lorentz type [116℄,

ε(ω) = εb(ω)−
Nl −Nu

Nl +Nu

S

(ω + ωt + iγ)(ω − ωt + iγ)
, (2.2)where the medium resonane is haraterized by the transverse frequeny ωt, strength

S, and damping parameter γ, respetively. Other resonanes are inluded in the bak-ground ontribution εb(ω). For absorbing media with normal populations of the upper5



2 Fundamentalslevel Nu and lower level Nl, Nl > Nu, we �nd that Im ε > 0, while for gain-assoiatedfrequenies the population is inverted, Nu > Nl, implying Im ε < 0. In both ases we�nd poles in the lower ω half-plane at ω = ±ωt− iγ, suh that ε(r, ω) and µ(r, ω) areanalyti in the upper half plane inluding the real axis, apart from a pole at ω = 0for metals. As follows from ausality, the medium beomes transparent for su�ientlyhigh frequenies [6℄,
lim
ω→∞

ε(r, ω) = 1 +O
(

1

ω2

) and lim
ω→∞

µ(r, ω) = 1 +O
(

1

ω2

)

. (2.3)In the following we review the quantization sheme as used in this thesis, where thepossibility of ampli�ation is inluded right from the start.2.1 Field quantization in linear mediaWe start with the familiar (marosopi) Maxwell equations for the operator-valuedeletri �eld Ê(r, ω) and the indution �eld B̂(r, ω) in Fourier spae,
∇ · B̂(r, ω) = 0, (2.4)

∇× Ê(r, ω)− iωB̂(r, ω) = 0, (2.5)
ε0∇ · Ê(r, ω) = ρ̂(r, ω), (2.6)

µ−1
0 ∇× B̂(r, ω) + iωε0Ê(r, ω) = ĵ(r, ω), (2.7)where we have introdued the frequeny omponents in a piture-independent manner,
Ô(r) =

∫ ∞

0

dω Ô(r, ω) + H.c., (2.8)with H.c. denoting the hermitian onjugate. In the inhomogeneous Maxwell equations,the ρ̂(r, ω) and ĵ(r, ω) denote the internal harge and urrent densities, respetively,The harge and urrent densities are onneted via the ontinuity equation
iωρ̂(r, ω) = ∇ · ĵ(r, ω) (2.9)whih, together with the solution of Eq. (2.4), B̂(r, ω) = (iω)−1

∇× Ê(r, ω), impliesthat it is su�ient to onsider the eletri �eld and the urrent density. Hene, we on-tinue with the ombination of Eqs. (2.5) and (2.7), and obtain the integro-di�erential
6



2.1 Field quantization in linear mediaequation
∇×∇× Ê(r, ω)− ω2

c2
Ê(r, ω) = ĵ(r, ω). (2.10)As in lassial eletrodynamis, if the internal atomisti struture of the (stationary)medium is not resolved, we introdue the onstitutive relation in the form of Ohm'slaw,

ĵ(r, ω) =

∫

d3r′Q(r, r′) · Ê(r′, ω) + ĵ
N
(r, ω), (2.11)to aount for the (linear) response of the medium to the eletromagneti �eld with

ĵ
N

being the noise urrent density. For a loally responding medium, the omplexmarosopi ondutivity tensor Q an be expliitly given as [125, 126℄Q(r, r′, ω) =
∑

λ=e,m

Qλ(r, r
′, ω), (2.12)Qe(r, r

′, ω) = −iε0ω[ε(r, ω)− 1]δ(r− r′)I , (2.13)Qm(r, r
′, ω) = − 1

iωµ0
∇×

[

1− 1

µ(r, ω)

]

δ(r− r′)I ×←−∇′. (2.14)where I is the seond-rank unit tensor and ←−∇′ haraterizes the gradient to theleft with respet to r′. Note that the notation with the ondutivity tensor is verygeneral: In Refs. [10, 127℄ the quantization sheme has been extended to allow foranisotropi, nonloal and nonreiproal media. The �utuations of the noise urrentdensity immediately give rise to �utuations of the eletromagneti �eld, whih at zero-temperature are a pure quantum e�et in agreement with Heisenberg's unertaintypriniple. In the high-temperature limit, these �utuations are onsistent with thelassial dissipation-�utuation theorem [128, 129℄. Combination of Eqs. (2.10) and(2.11) gives a seond-order Helmholtz equation,
[

−ω
2

c2
+∇×∇×

]

Ê(r, ω)− iµ0ω

∫

d3r′Q(r, r′, ω) · Ê(r′, ω) = iµ0ωĵN(r, ω), (2.15)where the formal solution to Eq. (2.15) an be written in terms of the Green tensorG (r, r′, ω)

Ê(r, ω) = iωµ0

∫

d3r′G (r, r′, ω) · ĵ
N
(r′, ω). (2.16)In addition, we immediately obtain the expansion for the indution �eld,

B̂(r, ω) = µ0

∫

d3r′∇× G(r, r′, ω) · ĵ
N
(r′, ω). (2.17)
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2 FundamentalsIn order to aomplish the quantization, the noise urrent density operator is requiredto ful�ll the ommutation relation
[

ĵ
N
(r, ω), ĵ

†
N
(r′, ω′)

]

=
~ω

π
δ(ω − ω′)ReQ(r, r′, ω), (2.18)suh that the ommutation relation harateristi for the eletromagneti �eld is inaordane with free-spae QED [8℄,

[Ê(r), B̂(r′)] = i~ε−1
0 ∇× δ(r− r′)I . (2.19)The lassial (retarded) Green tensor as introdued in Eqs. (2.16) and (2.17) obeysthe di�erential equation with the tensorial δ-funtion soure term

[

−ω
2

c2
+∇×∇×

]G(r, s, ω) = I δ(r− r′) + iµ0ω

∫

d3sQ(r, s, ω) ·G(s, r′, ω)

= I δ(r− s) +
ω2

c2
[ε(r, ω)− 1]G(r, r′, ω) +∇×

[

1− 1

µ(r, ω)

]

∇× G(r, r′, ω),(2.20)together with the boundary ondition at in�nity, G(r, r′, ω) → 0 for |r − r′| → ∞.This boundary ondition ensures that the partial di�erential equation (2.20) uniquelydetermines the Green tensor [130℄. In partiular, this remains true when ampli�ationin a bounded region is allowed for, as long as the assumption of linear response holds[124℄. In pratie, the Green tensor is onstruted by using the boundary onditionsof the geometry. However, a losed expression for the Green tensor is only availablefor su�iently simple geometries suh as pieewise homogeneous spherial or planarsystems [131, 132℄. For pieewise homogeneous media with r, r′ being in the sameregion it is often onvenient to deompose the Green tensor into a bulk part and asattering part, G(r, r′, ω) = G (0)(r, r′, ω) +G (1)(r, r′, ω), (2.21)where the bulk Green tensor G (0) is a partiular solution to the inhomogeneousHelmholtz equation (2.20) with ε(r, ω) = ε(ω) and µ(r, ω) = µ(ω), while the satter-ing Green tensor G (1) solves the homogeneous Helmholtz equation and aounts forthe sattering and transmission at the boundaries of the bodies.The Green tensor has some useful general properties, whih will be employed
8



2.1 Field quantization in linear mediathroughout this thesis, in partiular the Shwartz re�etion prinipleG ∗(r, r′, ω) = G(r, r′,−ω), (2.22)Onsager reiproity G(r, r′, ω) = GT(r′, r, ω), (2.23)and the integral relation
µ0ω

∫

d3s

∫

d3s′G(r, s, ω) · ReQ(s, s′, ω) ·G ∗(s′, r′, ω) = ImG(r, r′, ω) (2.24)(for proofs see, e.g., Ref. [129℄). We will further require the analyti behavior of thesattering Green tensor in the limit of large and small |ω| [129℄,
lim

|ω|→∞

ω2

c2
G (1)(r, r′, ω) = 0 , lim

|ω|→0

ω2

c2
G (1)(r, r′, ω) = 0 . (2.25)The analytiity of the Green tensor in the upper half ω plane is a basi requirementfor the quantization sheme as it is needed to verify the fundamental ommutationrelation (2.19). While for absorbing media this assumption is always ful�lled, poles inthe upper ω-plane may arise for gain media when the ampli�ation is so strong thatthe medium response beomes nonlinear [124℄ (for an example, see Se. 4.2).Let us now return to the �eld quantization. Instead of using the set of noise opera-tors ĵ

N
(r, ω) and ĵ

†
N
(r, ω), it is onvenient to introdue bosoni variables f̂λ(r, ω) and

f̂
†
λ(r, ω), with λ = e,m, aording to
ĵ
N
(r, ω) = ω

√

~ε0
π
|εI(r, ω)|

[

Θ[εI(r, ω)]f̂e(r, ω) + Θ[−εI(r, ω)]f̂ †e (r, ω)
]

+∇×
√

~

πµ0

|µI(r, ω)|
|µ(r, ω)|2

[

Θ[µI(r, ω)]f̂m(r, ω) + Θ[−µI(r, ω)]f̂
†
m(r, ω)

]

, (2.26)with ommutation relations
[

f̂λi(r, ω), f̂λ′j(r
′, ω′)

]

= 0 =
[

f̂ †
λi(r, ω), f̂

†
λ′j(r

′, ω′)
] (2.27)

[

f̂λi(r, ω), f̂
†
λ′j(r

′, ω′)
]

= δλλ′δijδ(r− r′)δ(ω − ω′), i, j = 1, 2, 3 (2.28)and Θ(x) being the Theta funtion with Θ(0) ≡ 1. Equation (2.26) shows that thepresene of ampli�ation, where εI or µI < 0, auses an exhange of the roles of the
9



2 Fundamentalsreation f̂ and annihilation operators f̂ †, a fat that is well known [130℄. To inludeampli�ation in the theory, we assume that the medium-assisted �eld is in an exitedstate where the medium is pumped in suh a way that a quasi-stationary regime anbe established, externally ontrolled and maintained. This state | {0}〉 is de�ned by
f̂λ(r, ω)| {0}〉 = 0 ∀λ, r, ω. (2.29)For a purely absorbing medium, Eq. (2.29) de�nes the ordinary ground-state.The harge and urrent densities an be written as funtionals of the variables

f̂λ(r, ω) and f̂
†
λ(r, ω),
ĵ(r, ω) =

(

−ω
2

c2
+∇×∇×

)
∫

d3r′G (r, r′, ω) · ĵ
N
(r′, ω), (2.30)

ρ̂(r, ω) =
iω

c2
∇ ·

∫

d3r′G (r, r′, ω) · ĵ
N
(r′, ω), (2.31)as an be seen by inserting Eq. (2.26) and (2.16) into Eq. (2.11) and applying Eq. (2.9).To omplete the quantization proedure, we introdue the Hamiltonian of the body-assisted eletromagneti �eld in the form

Ĥ =
∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ω sgn[κλ(r, ω)]f̂
†
λ(r, ω) · f̂λ(r, ω) (2.32)where κe = εI , κm = µI , in onsisteny with the quasi-mirosopi Huttner�Barnettmodel [18℄. The Hamiltonian an be justi�ed by showing that the Heisenberg equationof motion,

˙̂
fλ(r, ω) = i~−1

[

Ĥ, f̂λ(r, ω)
]

= −iω sgn[Im κλ(r, ω)]f̂λ(r, ω), (2.33)implies the orret time dependene of the Maxwell's equations. We �nally om-ment on a rather unpleasant feature: The single-quantum Fok state |1λ(r, ω)〉 =
f̂
†
λ(r, ω)| {0}〉 is an eigenstate of the �eld Hamiltonian whose orresponding eigenval-ues an beome arbitrarily negative for amplifying media. That means that in thepresene of ampli�ation, the state with Ĥ| {0}〉 = 0 is not the state with the lowestenergy as would be expeted from a true ground-state. As indiated above, the as-sumed pump mehanism (whih, however, is not dynamially inluded in the theory)de�nes a quasi-stationary state similar to the ground-state, f. Eq. (2.29).
10



2.2 Casimir�Polder fores2.2 Casimir�Polder foresThe Casimir�Polder fore between a neutral, polarizable atom A and a purely absorb-ing magnetoeletri body an be regarded as the (average) quantum Lorentz fore onthe atom [113℄,
F =

∫

d3r
〈

ρ̂A(r)Ê(r) + ĵA(r)× B̂(r)
〉

, (2.34)where the atomi harge and urrent densities read
ρ̂A(r) =

∑

α∈A
qαδ(r− r̂α), (2.35)

ĵA(r) =
∑

α∈A

qα
2

[

˙̂rαδ(r− r̂α) + δ(r− r̂α) ˙̂rα

]

, (2.36)respetively, and α labels the onstituents of the atom with harges qα. Note thatthe eletri and indution �eld expansions an still be given in the forms (2.16) and(2.17). The expetation value in Eq. (2.34) is understood to at with respet to theground-state | {0}〉 of the eletromagneti �eld oupled to an arbitrary internal stateof the atom that will evolve over time.Equation (2.34) is usually rewritten in long-wavelength approximation whih fornonmagneti (eletri-dipole) atoms reads [113℄
F =

[

∇

〈

d̂ · Ê(r)
〉

+
d

dt

〈

d̂× B̂(r)
〉]

r=rA

, (2.37)where d̂ is the dipole operator of the atom given in terms of time-dependent atomi�ip operators Âmn,
d̂ =

∑

m,n

dmnÂmn, Âmn = Âmn(t) = |m〉〈n| (2.38)and m,n ounting the atomi energy eigenstates Em,n. In Eq. (2.37), rA denotes theenter-of-mass position of the atom. E�ets of the enter-of-mass motion are disre-garded here and throughout. We further assume that the atom is initially preparedin an energy eigenstate |n〉. It has been shown that in this ase the seond term inEq. (2.37) does not ontribute [113℄. One now has to derive the time evolution of theinternal atomi state whih is oupled to the medium-assisted eletromagneti �eld.
11



2 FundamentalsThe Hamiltonian in the multipolar oupling sheme [113℄,
Ĥ =

∑

λ=e,m

∫

d3r

∫ ∞

0

dω ~ωf̂ †λ(r, ω) · f̂λ(r, ω) +
∑

n

EnÂnn

−
∑

m,n

∑

λ=e,m

∫

d3r

∫ ∞

0

dω dmn ·Gλ(rA, r, ω) · f̂λ(r, ω)Âmn +H.c., (2.39)onsists of the �eld Hamiltonian (2.32), the atomi Hamiltonian [�rst line of Eq. (2.39)℄and the term aounting for the atom��eld oupling [seond line of Eq. (2.39)℄. Foronveniene we have introduedG e(rA, r, ω) = i
ω2

c2

√

~

πε0
εI(r, ω)G(rA, r, ω), (2.40)Gm(rA, r, ω) = i

ω

c

√

~µI(r, ω)

πε0|µI(r, ω)|2
[

∇×G (r, rA, ω)
]T

. (2.41)The �eld dynamis an be obtained from the Heisenberg equations of motion
˙̂
fλ(r, ω) = i~−1

[

Ĥ, f̂λ(r, ω)
]

= −iωf̂λ(r, ω) + i~−1
∑

m,n

G ∗T
λ (rA, r, ω) · dmnÂmn, (2.42)where the solution

f̂λ(r, ω, t) = e−iω(t−t0)f̂λ(r, ω) + i~−1

∫ t

t0

dt′e−iω(t−t′)G ∗T
λ (rA, r, ω) · dmnÂmn(t

′) (2.43)gives, upon using the integral relation (2.24), the time-dependent eletri �eld
Ê(r, ω, t) = e−iω(t−t0)Ê(r, ω) +

iµ0

π

∑

m,n

ω2

∫ t

t0

dt′e−iω(t−t′)ImG(r, rA, ω) · dmnÂmn(t
′).(2.44)After some arrangements, the CP fore aording to Eq. (2.37), an be written in theform

F(t)=
iµ0

π

∑

m,n,k,l

∫ ∞

0

dω ω2
∇dmn ·ImG (1)(rA, rA, ω) ·dkl

∫ t

t0

dt′e−iω(t−t′)
〈

Âmn(t)Âkl(t
′)
〉(2.45)where the ontribution of the translationally invariant bulk Green tensorG (0)(rA, rA, ω)leads to a self fore that is not of interest in this thesis.To alulate the required two-time orrelation funtions 〈Âmn(t)Âkl(t

′)
〉, in weak12



2.2 Casimir�Polder foresatom��eld oupling, we assume the time-evolution to be Markovian. This basiallymeans that the eletri �eld at a given time is not in�uened by the presene of theatom at earlier times. Applying the quantum-regression theorem [133℄, the orrelationfuntions an be written in the form [113℄
〈

Âmn(t)Âkl(t
′)
〉

= e[iωmn−(Γm+Γn)/2](t−t′)δnk
〈

Âml(t
′)
〉

, t ≥ t′, (2.46)where we have introdued the spontaneous deay rate aounting for the �nite linewidthof the nth energy level,
Γn(rA) =

∑

k<n

Γnk =
∑

k<n

2µ0

~
ω2
nkdnk · ImG(rA, rA, ωnk) · dkn (2.47)and negleted the in�uene of the bodies on the atomi transition frequeny ωnk. Thespontaneous emission of real photons governs the internal dynamis of the atom andmanifests in the time-dependene of the (diagonal) atomi level populations

ṗn(t) = −Γnpn(t) +
∑

k>n

Γknpk(t). (2.48)Note that pn(t) denotes the population probability of the nth state but is also theexpetation value of Ann(t). One an show that spontaneous deay transfers an atominitially prepared in the state σ(t0) = |n〉〈n| into an inoherent superposition of(lower) energy eigenstates so that the atomi density matrix σ(t) remains diagonalfor all times [134℄,
σ̂(t) =

∑

k≤n

pk(t)|k〉〈k| for t ≥ t0. (2.49)Substituting Eq. (2.46) bak into Eq. (2.45), evaluating the time integrals in Markovapproximation (i.e., putting Âmn(t
′ = t) out of the integral and shifting t0 towards

−∞), we an write the CP fore in the form
F(rA, t) =

∑

n

pn(t)Fn(rA). (2.50)In what follows, we assume that ωnk ≫ Γn,Γk ≡ ǫ and neglet the e�et of themagnetoeletri bodies on the spontaneous deay. Additionally, we onsider only timesales that are short ompared to the inverse atomi deay rate. For this purpose,we study the fore assoiated with the nth state whih is onservative within theseapproximations, F (rA, t) ≈ Fn(rA) = −∇Un(rA), where the stati potential is given13



2 Fundamentalsby
Un(rA) = −

µ0

π

∑

k

lim
ǫ→0+

∫ ∞

0

dω ω2dnk · ImG (1)(rA, rA, ω) · dkn

ω − ωnk − iǫ
+ C.c.. (2.51)By means of ontour integral tehniques, on realling the analyti properties of theGreen tensor, we deompose the CP potential aording to

Un(rA) = U res
e (rA) + Unres

e (rA). (2.52)In the nonresonant ontribution
Unres
n (rA) =

~µ0

2π

∫ ∞

0

dξ ξ2 tr
[

αn(iξ) ·G (1)(rA, rA, iξ)
]

=
~µ0

2π

∫ ∞

0

dξ ξ2αn(iξ) trG (1)(rA, rA, iξ) (2.53)the Green tensor appears in an integral form and aounts for the magnetoeletriresponse of the body, while all atomi properties enter via the position-independentpolarizability tensor αn(ω), whih in lowest nonvanishing order of perturbation theory,reads [135℄,
αn(ω) = lim

ǫ→0+

1

~

∑

k

[ dnkdkn

ωkn − ω − iǫ
+

dkndnk

ωkn − ω + iǫ

]

= lim
ǫ→0+

2

3~

∑

k

ωkn|dnk|2
ω2
kn − ω2 − iωǫ

I .(2.54)The seond equality in Eqs. (2.53) and (2.54) holds for isotropi atoms, and tr denotesthe trae. Equation (2.53) is also valid for left-handed materials. It an, however, beexpeted that the impat of left-handedness in a limited frequeny interval is veryweak due to the integration over the full (imaginary) frequeny regime. On the otherhand the resonant ontribution,
U res
n (rA) = −µ0

∑

k<n

ω2
nkdnk ·ReG (1)(rA, rA, ωnk) · dkn, (2.55)is only present for exited atoms and aounts for the emission of real photons. It usu-ally dominates over the o�-resonant part. The results (2.53) and (2.55) are onsistentwith the CP interation obtained via seond-order perturbation theory [21℄.In pratie, the inlusion of magneti properties often involves lengthy alulations.As an be shown, the Maxwell equations in the absene of free harges and urrentsare invariant under an exhange of eletri and magneti �eld quantities, a symmetry14



2.2 Casimir�Polder foresproperty whih is known as duality. In the presene of magnetoeletri media, dualitymanifests itself as an invariane of the onstitutive relations under the simultane-ous exhange of permittivity and permeability ε ↔ µ. Suh duality transformations,denoted by ⊛, an be shown to imply the transformation rules for the Green ten-sor [136, 137℄:
ω2

c2
G⊛(r, r′, ω) =− ∇× G(r, r′, ω)×←−∇′

µ(r, ω)µ(r′, ω)
, (2.56)

∇×G⊛(r, r′, ω)×←−∇′ =− ε(r, ω)
ω2

c2
G(r, r′, ω)ε(r′, ω), (2.57)

∇× G⊛(r, r′, ω) =− ε(r, ω)
G(r, r′, ω)×←−∇′

µ(r′, ω)
, (2.58)G⊛(r, r′, ω)×←−∇′ =− ∇× G(r, r′, ω)

µ(r, ω)
ε(r′, ω). (2.59)Equations (2.56)�(2.59) are valid for the sattering parts of the Green tensors and forthe bulk Green tensor if r 6= r′. In general, Lorentz fores are not duality invariant.It an, however, be shown that for dispersion fores on neutral and stati objets theduality symmetry is preserved [136℄. To reover duality in the presene of atoms it isrequired that polarizability and magnetizability are onneted via [136, 137℄

d⊛
nk =

mnk

c2
, m⊛

nk = dnkc
2, (2.60)

α⊛
n =

βn

c2
, β⊛

n = αnc
2, (2.61)where mnk denotes the magneti dipole matrix elements and

βn(ω) = lim
ǫ→0+

1

~

∑

k

[ mnkmkn

ωkn − ω − iǫ
+

mknmnk

ωkn − ω + iǫ

]

= lim
ǫ→0+

2

3~

∑

k

ωkn|mnk|2
ω2
kn − ω2 − iωǫ(2.62)is the magnetizability of the atom. Again, the last equality holds for isotropi atoms.Thus, duality arguments provide a strong tool to obtain expressions for dispersionfores from the (usually eletri) ounterparts that are already known. For exam-ple, we may alulate the nonresonant CP potential of a magnetizable atom in free-spae from the orresponding eletri part (2.53) by arrying out the dual operation

15



2 Fundamentals
Unres
m = Unres⊛

e ≡ Unres⊛
n and, on using Eqs. (2.56) and (2.61), we obtain

Unres
m (rA) =

~µ0

2π

∫ ∞

0

dξ tr
[

∇A × βn(iξ) ·G (1)(rA, r
′, iξ)×←−∇′]

r′=rA

=
~µ0

2π

∫ ∞

0

dξβn(iξ) tr
[

∇A × G (1)(rA, r
′, iξ)×←−∇′]

r′=rA
. (2.63)

16



3 Dispersion fores betweenground-state objets in mediaIn an introdutory setion, Se. 3.1, we apply the real-avity model to aount forthe loal-�eld orretion and review1 how the Green tensor for this model an bealulated. The �rst part of the hapter, Se. 3.2, is onerned with the CP interationof a (nonmagneti) ground-state atom near the planar interfae between two media,where emphasis is put on the possible reation of repulsive fores, the impat of theloal-�eld orretion, and the on-surfae potential. In the seond part, Se. 3.3, weallow for an arbitrary bakground medium instead of the planar system and onsiderthe CP interation of a ground-state atom with another small spherial objet.3.1 Real-avity modelWe onsider an isotropi guest atom plaed inside a medium. Note that betweenthe guest atom and the neighboring medium atoms there should be some free spae.This is aounted for in the Onsager real-avity model [104℄, where the guest atom
A is loated at the enter of a small, empty spherial avity of radius RC insidethe host medium desribed by the marosopi quantities ε(r, ω) and µ(r, ω). Thus,permittivity and permeability of the avity-medium system an be introdued as

εloc(r, ω), µloc(r, ω) =







1 if |r− rA| < RC,

ε(r, ω), µ(r, ω) if |r− rA| ≥ RC,
(3.1)where the radius of the avity an be regarded as a measure of the distane betweenthe guest atom and the surrounding host atoms [AS1℄. The situation is skethed inFig. 3.6 (i). To apply this model, the medium parameters of the host medium should1For details, the reader is referred to my diploma thesis [138℄ and Ref. [AS1℄. 17



3 Dispersion fores between ground-state objets in medianot vary appreiably on the mirosopi length sale RC,
ε(r, ω) = ε(rA, ω) ≡ εA(ω)

µ(r, ω) = µ(rA, ω) ≡ µA(ω)

}

for |r− rA| . 2RC, (3.2)and the quantity√|ε(r, 0)µ(r, 0)|RC should be small ompared to the maximum of allharateristi atomi and medium wavelengths as well as to the separation betweenthe guest atom and any surfae of the host medium. These assumptions restrit theappliability of the model to dieletris and exludes metals. We will therefore usethe term magnetodieletri instead of magnetoeletri in Chap. 3. The Green tensorin Eq. (2.20) is thus the Green tensor for the eletromagneti �eld in the medium,disturbed by the (real) avity, where ε and µ of the unperturbed system are replaedby the loal-�eld quantities given in Eq. (3.1).The Green tensor in the presene of the avity an be written as a funtion of theGreen tensor G (1)(rA, rA, ω) whih aounts for (multiple) transmission through thesurfae of the avity and sattering of the eletromagneti �eld at the inhomogeneitiesof the (unperturbed) magnetodieletri host medium [AS1℄,G (1)
loc(rA, rA, ω) =

iω

6π
CA(ω)I +D2

A(ω)G (1)(rA, rA, ω), (3.3)but neglets multiple re�etions at the outer boundaries of the (small) avity. InEq. (3.3), the loal-�eld fator an be derived to be
DA(ω) =

j1(z0)
[

z0h
(1)
1 (z0)

]′
− [z0j1(z0)]

′ h
(1)
1 (z0)

µA(ω)
[

j1(z0)
[

zh
(1)
1 (z)

]′
− εA(ω) [z0j1(z0)]

′ h
(1)
1 (z)

]

=
3εA(ω)

2εA(ω) + 1
+O

(ωRC

c

)

. (3.4)The quantity
CA(ω) =

h
(1)
1 (z0)

[

zh
(1)
1 (z)

]′
− εA(ω)h

(1)
1 (z)

[

z0h
(1)
1 (z0)

]′

εA(ω)h
(1)
1 (z) [z0j1(z0)]

′ − j1(z0)
[

zh
(1)
1 (z)

]′

= 3
εA(ω)− 1

2εA(ω) + 1

c3

iω3R3
C

+
9

5

ε2A(ω)[5µA(ω)− 1]− 3εA(ω)− 1

[2ε(ω) + 1]2
c

iωRC

+ 9
εA(ω)n

3
A(ω)

[2ε(ω) + 1]2
− 1 +O

(ωRC

c

) (3.5)
18



3.1 Real-avity modelan be shown to arise from the (multiple) sattering proesses at the inner surfae ofthe avity [AS1℄. Here, we have introdued the notation z0 = ωRC/c, z = nA(ω)z0,
nA(ω) =

√

εA(ω)µA(ω) , and j1(x) and h
(1)
1 (x) being the �rst spherial Bessel funtionand the �rst spherial Hankel funtion of the �rst kind, respetively,

j1(x) =
sin(x)

x2
− cos(x)

x
, h

(1)
1 (x) = −

(

1

x
+

i

x2

)

eix. (3.6)In the real-avity model onsidered, it is su�ient to keep only the leading nonva-nishing order in √|εA(0)µA(0)|ωmaxRC/c as given by the fators CA and DA, where
ωmax represents the maximum of the harateristi atomi and medium frequenies.This assumption an also be justi�ed for the CP potentials (for details, f. [139℄, [AS1℄).Inserting the Green tensor (3.3) into the nonresonant CP potential (2.53) gives theloal-�eld orreted CP potential of a polarizable ground-state atom [AS1℄,

U(rA) ≡ Unres
1 (rA) = U1(rA) + U2(rA), (3.7)where U1(rA) is onstant throughout any homogeneous region,

U1(rA) = −
~µ0

4π2c

∫ ∞

0

dξ ξ3αA(iξ)CA(iξ)

= − ~

4π2ε0

∫ ∞

0

dξ αA

[

3
εA − 1

2εA + 1

1

R3
C

+
9ξ2

c2
ε2A [1− 5µA] + 3εA + 1

5 [2εA + 1]2
1

RC

]

,(3.8)and αA(ω) denotes the ground-state polarizability of the guest atom aording toEq. (2.54). Here and in the following the dependene of εA, µA and αA on iξ issuppressed for brevity. The term U2(rA) involves all interations assoiated with thepartiular shape and size of the magnetodieletri host medium and reads
U2(rA) =

~µ0

2π

∫ ∞

0

dξ ξ2αA(iξ)D
2
A(iξ) tr G (1)(rA, rA, iξ)

=
~µ0

2π

∫ ∞

0

dξ ξ2αA

(

3εA
2εA + 1

)2

trG (1)(rA, rA, iξ). (3.9)Note that, the seond equalities in Eqs. (3.8) and (3.9) hold for the asymptoti limitof small avity radii. The assoiated (onservative) CP fore is given by
F(rA) = −∇U(rA) = −

~µ0

2π

∫ ∞

0

dξ ξ2αA

(

3εA
2εA + 1

)2

∇trG (1)(rA, rA, iξ). (3.10)19



3 Dispersion fores between ground-state objets in mediaIt should be pointed out that the avity-indued part (3.8) does not lead to a foreation but to an energy shift.To obtain the loal-�eld orreted potential for a paramagneti atom we bene�tfrom the duality invariane of the loal-�eld orreted CP potential of a polarizableand magnetizable atom [136℄ and apply the transformation rules (2.57) and (2.60) toEq. (3.10). We �nd, in aordane with Ref. [140℄,
Um(rA) = −

~µ0

2π

∫ ∞

0

dξβA(iξ)

(

3

2µA + 1

)2

tr
[

∇A × G (1)(rA, r
′, iξ)×←−∇′

]

r′=rA(3.11)with the magnetizability given by Eq. (2.62).3.2 Casimir�Polder potential near a planar interfaeThe CP interation of an atom plaed in the viinity of a rather omplex struture,suh as a urved surfae or a multilayer geometry, an often be modeled by the CPinteration between the same atom and a planar interfae. As a typial example inbiology one may think of a small moleule inside a ell. In this sense, we study the loal-�eld orreted potential of a (nonmagneti) ground-state atom in a magnetodieletritwo-layer system. Our onsiderations are primarily based on Ref. [AS4℄.We onsider two half spaes, as indiated in Fig. 3.1, where the oordinate systemis hosen suh that the z-diretion is perpendiular to the interfae between theontating media. The left region (denoted by layer j = 1) is de�ned by z < 0 whilethe right region (j = 2) is given by z > 0.PSfrag replaements
zA

z = 0

ε1, µ1 ε2, µ2

Figure 3.1: Loal-�eld orreted ground-state atom near the interfae between two magnetodiele-tri planar media.From Eq. (3.7) we expet two ontributions to the nonresonant CP potential. Westudy �rst the position-dependent nonresonant CP potential with the ground-state
20



3.2 Casimir�Polder potential near a planar interfaeatom loated in layer 2 at position zA from the surfae. To that end, we substitutethe sattering Green tensor of a half spae at equal-position arguments [132℄G (1)(zA, zA, iξ) =
µ2

4π2

∫ ∞

0

dk‖k‖

κ2

∑

σ=s,p

e−2κ2(iξ)zrσ21e
+
2σe

−
2σ, (3.12)into Eq. (3.9), where the single-interfae re�etion oe�ients for s (TE) and p (TM)polarized waves are given by

rpij =
κ⊥
i εj − κ⊥

j εi

κ⊥
i εj + κ⊥

j εi
, rsij =

κ⊥
i µj − κ⊥

j µi

κ⊥
i µj + κ⊥

j µi

. (3.13)The wave-vetor omponent perpendiular to the surfae is (for imaginary frequenies)given by k⊥
j = iκ⊥

j where
κ⊥
j (iξ) =

√

εj(iξ)µj(iξ)
ξ2

c2
+ k‖2, (3.14)with k‖ being the wave vetor parallel to the interfae whih is preserved aross theinterfae (k‖ = |k‖|). The polarization vetors

e±js = ek‖ × ez, e±jp = −
c
√
εjξ

(

ik‖ez ± κ⊥
j ek‖

) (3.15)obey the relations
e+js · e−js = 1, e+jp · e−jp = 1, (3.16)whih are used to alulate the trae in Eq. (3.9). In the limit of small radius of thereal avity, we eventually arrive at [AS4℄

U2(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2αA(iξ)

(

3ε2
2ε2 + 1

)2

µ2

∫ ∞

0

dk‖ k
‖

κ2

×
[

µ1κ2 − µ2κ1

µ1κ2 + µ2κ1
− ε1κ2 − ε2κ1

ε1κ2 + ε2κ1

(

1 + 2
k‖2c2

ε2µ2ξ2

)]

e−2κ2zA. (3.17)In the following, we will study the limiting ases of short and large atom�surfaeseparation as well as the ase of an isorefrative medium, aompanied by numerialevaluations. Se. 3.2.3 will then be onerned with the avity-indued part of thepotential aording to Eq. (3.8).
21



3 Dispersion fores between ground-state objets in media3.2.1 Analytial resultsAnalyzing Eq. (3.17) will help to address the question under whih onditions theatom experienes an attrative or repulsive interation. Let us �rst hange the inte-gration variable aording to
k‖ =

√

κ2
2 − ε2µ2ξ2/c2, k‖dk‖ = κ2dκ2, (3.18)

κ1 =
√

ξ2/c2(ε1µ1 − ε2µ2) + κ2
2, (3.19)whih gives the potential in the form

U2(zA) =
~µ0

8π2

∫ ∞

0

dξ ξ2αA

(

3ε2
2ε2 + 1

)2

× µ2

∫ ∞

√
ε2µ2ξ/c

dκ2

[

µ1κ2 − µ2κ1

µ1κ2 + µ2κ1
− ε1κ2 − ε2κ1

ε1κ2 + ε2κ1

(

−1 + 2
κ2
2c

2

ε2µ2ξ2

)]

e−2κ2zA. (3.20)Note that the quantities α(iξ), ε(iξ), µ(iξ) as well as the exponential term exp[−2ξ/czA]are monotonially dereasing funtions of ξ.Close to the surfae, in the nonretarded limit, the atom�surfae distane zA is smallompared to the typial wavelengths of the medium and the atomi system,
zA ≪

c

ω+
A [n1(0) + n2(0)]

and/or, zA ≪
c

ω+
M [n1(0) + n2(0)]

, (3.21)where ω+
A and ω+

M denote the maximum of the relevant atomi transition and mediumresonane frequenies, respetively, and n1,2(0) =
√

ε1,2(0)µ1,2(0) desribe the statirefrative indies of the two regions. In this ase, the permittivity/permeability-dependent numerators of the re�etion oe�ients and the polarizability provide ane�etive ut-o� for the ξ-integration. They e�etively restrit the ξ-integral to a regionwhere ξ . ω+
A,M . The onditions (3.21) then imply

zAξ

c

(

√

|ε1µ1 − ε2µ2|
)

≤ zAξ

c

(√
ε1µ1 + ε2µ2

)

≤ zAξ

c
(
√
ε1µ1 +

√
ε2µ2)

≤ zAξ

c
(n1(0) + n2(0))≪ 1 (3.22)and further,

zAξ

c
≤

zAω
+
A,M

c
n1(0) ≤

zAω
+
A,M

c
(n1(0) + n2(0))≪ 1. (3.23)
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3.2 Casimir�Polder potential near a planar interfaeTo derive the nonretarded CP potential from Eq. (3.20), we perform a leading-orderTaylor expansion in ξ2/(c2κ2
2)(ε1µ1 − ε2µ2), aording to the ondition (3.22), arryout the integration over κ2 and set exp(−2√ε2µ2ξzA/c) ≃ 1 as implied by Eq. (3.23).In the nonretarded limit, the potential then deomposes into two terms with di�erentpower laws,

U2(zA) = −
C3

z3A
+

C1

zA
, (3.24)where

C3 =
~

16π2ε0

∫ ∞

0

dξαA
9ε2

(2ε2 + 1)2
ε1 − ε2
ε1 + ε2

, (3.25)and
C1 =

~µ0

16π2

∫ ∞

0

dξξ2αAµ2

(

3ε2
2ε2 + 1

)2 [
µ1 − µ2

µ1 + µ2

+
ε1 − ε2
ε1 + ε2

+
2ε1(ε1µ1 − ε2µ2)

µ2(ε1 + ε2)2

]

.(3.26)Let us brie�y disuss the two terms of the potential (3.24). The �rst term dominatesdue to the stronger, z−3
A , power law as long as the two ontating media have dissimilareletri properties ε1 6= ε2. In partiular, the atom is repelled from the interfae ifthe region ontaining the atom has stronger eletri properties than the other one(ε2 > ε1), where in the reversed situation, ε1 > ε2, the interation is attrative. Inthe ase of equal eletri properties we have C3 = 0, and the seond term gives theleading order, U2(zA) = C1/zA, where

C1 =
~µ0

16π2

∫ ∞

0

dξξ2αA

(

3ε2
2ε2 + 1

)2

(µ1 − µ2)

(

µ2

µ1 + µ2
+ 2

)

. (3.27)The sign of C1 learly shows that the atom experienes a fore whih points away fromthe interfae if the magneti properties of the atomi medium environment are weakerthan those of the medium on the other side of the interfae (µ1 > µ2). Vie versa, theatom is attrated to the interfae if µ2 > µ1. Thus the dependene of the diretion ofthe fore on the di�erene in strength of the medium responses is opposite in the twoases of dominantly eletri and purely magneti media. In both ases the strengthof the fore inreases with inreasing di�erene between the eletri and magnetiparameters of the ontating media.Now, we draw our attention to the (long-distane), retarded limit whih is hara-terized by the regime
zA ≫

c

ω−
A

and zA ≫
c

ω−
M

, (3.28)
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3 Dispersion fores between ground-state objets in mediawhere ω−
A and ω−

M denote the minimum of all relevant atomi transition and mediumresonane frequenies, respetively. In this ase, the exponential term in Eq. (3.20)governs the frequeny integration. That is to say, for 0 ≤ ξ . c/(2zA) ≪ ω−
A,Mthe permittivity/permeability and the polarizability are su�iently approximated bytheir stati ounterparts,

α(iξ) ≃ α(0), ε1,2(iξ) ≃ ε1,2(0), and µ1,2(iξ) ≃ µ1,2(0). (3.29)By introduing a new integration variable in Eq. (3.20), v = cκ2/ξ, the integrationover ξ an then be performed �rst, and we end up with
U2(zA) =

C4

z4A
, (3.30)where C4 is given by

C4 =
3~c

64ε0π2
αA

(

3ε2
2ε2 + 1

)2

µ2

∫ ∞

√
ε2(0)µ2(0)

dv
1

v4

[

µ1v − µ2

√

v2 − ε2µ2 + ε1µ1

µ1v + µ2

√

v2 − ε2µ2 + ε1µ1

+
ε1v − ε2

√

v2 − ε2µ2 + ε1µ1

ε1v + ε2
√

v2 − ε2µ2 + ε1µ1

(

1− 2
v2

ε2µ2

)

]

. (3.31)In ontrast to the nonretarded ase, the dependene of C4 on the eletri andmagneti properties is more involved, where the leading order term depends on theeletri properties, only. We �rst notie that
∂C4

∂ε1(0)
< 0 and

∂C4

∂µ1(0)
> 0, (3.32)whih implies that, for �xed ε2 and µ2, the ondition C4 = 0 marks the borderlinebetween attrative and repulsive interation. In partiular, we may show this for thease where the ontrast between the ontating media is small,

ε1(0) = ε2(0) + χ(0), χ(0)≪ ε2(0) (3.33)
µ1(0) = µ2(0) + ζ(0), ζ(0)≪ µ2(0). (3.34)
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3.2 Casimir�Polder potential near a planar interfaeWe keep only the terms linear in χ and ζ ,
µ1(0)v − µ2(0)

√

v2 − ε2(0)µ2(0) + ε1(0)µ1(0)

µ1(0)v + µ2(0)
√

v2 − ε2(0)µ2(0) + ε1(0)µ1(0)
≃
(

1

2µ2(0)
− ε2(0)

4v2

)

ζ(0)−µ2(0)

4v2
χ(0),

ε1(0)v − ε2(0)
√

v2 − ε2(0)µ2(0) + ε1(0)µ1(0)

ε1(0)v + ε2(0)
√

v2 − ε2(0)µ2(0) + ε1(0)µ1(0)
≃ −ε2(0)

4v2
ζ(0)+

(

1

2ε2(0)
− µ2(0)

4v2

)

χ(0),(3.35)and perform the v-integration,
C4 =

9~c

640π2ε0
α(0)

−23µ2(0)χ(0) + 7ε2(0)ζ(0)
√

ε2(0)µ2(0)µ2(0)[2ε2(0) + 1]2
. (3.36)This result generalizes the one obtained in Ref. [91℄ to the ase of an atom embeddedin a medium, with loal-�eld orretion inluded. In partiular, we �nd that theinteration is repulsive for ζ(0)/χ(0) > 23µ2(0)/(7ε2(0)) and otherwise attrative,e.g., for χ(0) = ζ(0) and ε2(0) = µ2(0) = 1.Let us return to Eq. (3.31) and onsider further examples. Assuming that the atomis loated in free spae where µ2(0) = ε2(0) = 1, it an be shown that, for a purelyeletri region 1,

C4[µ1(0) = 1, µ2(0) = 1, ε2(0) = 1] < 0, (3.37)and for a purely magneti region 1 with µ1(0) > 1,
C4[ε1(0) = 1, µ2(0) = 1, ε2(0) = 1] > 0. (3.38)That is to say, in the retarded limit, the atom is attrated toward an eletri halfspae while it is repelled from a magneti one. More generally, on realling the signsof the derivatives given in Eq. (3.32), eletri properties tend to make the potentialattrative while magneti ones tend to make the potential repulsive.If the atom is embedded in a material half spae, while the opposite half spae isempty, µ1(0) = ε1(0) = 1, it an be shown that, for a purely eletri material,
C4[µ1(0) = 1, ε1(0) = 1, µ2(0) = 1] > 0, (3.39)the atom is repelled from the interfae, while for a purely magneti material with

µ2(0) > 1,
C4[µ1(0) = 1, ε1(0) = 1, ε2(0) = 1] < 0, (3.40)
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3 Dispersion fores between ground-state objets in mediathe atom is attrated towards the interfae. Exept for the di�erent power law, thesign of the interation is the same in eah of these limiting ases in the retarded andnonretarded distane regime, f. Tab. 3.1.It should be mentioned that the above-given results are onsistent with the speialase of an atom in vauum given by ε2 = µ2 = 1 [91℄. In partiular, the orrespondingfree-spae potential shows qualitatively the same behavior: The atom is attrated toregions of large permittivity and small permeability.As disussed in the ontext of several theoretial problems (see, e.g., Ref. [141℄),alulations simplify onsiderably in the speial ase of an isorefrative medium. Isore-frative media are haraterized by the requirement that the refrative index of thetwo ontating regions is the same,
ε1µ1 = ε2µ2, (3.41)whih immediately implies that the wave vetors also oinide, κ1(iξ) = κ2(iξ). If thetwo half spaes are isorefrative, the potential (3.17) greatly simpli�es to

U2(zA) = −
~

4ε0π2

∫ ∞

0

dξ
αA

ε2

(

3ε2
2ε2 + 1

)2
ε1 − ε2
ε1 + ε2

∫ ∞

√
ε2µ2ξ/c

dκ2κ
2
2e

−2κ2zA, (3.42)where we have already hanged the integration variable. We arry out the integrationover κ2 and obtain
U2(zA) = −

~

16π2ε0z3A

∫ ∞

0

dξ
αA

ε2

(

3ε2
2ε2 + 1

)2
ε1 − ε2
ε1 + ε2

× e−2
√
ε2µ2ξzA/c

[

1 + 2zA

√
ε2µ2ξ

c
+ 2z2A

ε2µ2ξ
2

c2

]

. (3.43)The result in the nonretarded regime an easily be obtained by replaing
e−2

√
ε2µ2ξzA/c

[

1 + 2zA

√
ε2µ2ξ

c
+ 2z2A

ε2µ2ξ
2

c2

]

≃ 1, (3.44)thus we have to leading order
U2(zA) = −

~

16π2ε0z3A

∫ ∞

0

dξ
αA

ε2

(

3ε2
2ε2 + 1

)2
ε1 − ε2
ε1 + ε2

, (3.45)in aordane with Eq. (3.24) together with C1 = 0. For the retarded limit we take
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3.2 Casimir�Polder potential near a planar interfae
ε1 < ε2 ε1 > ε2 ε1µ1 = ε2µ2

Fnret ∝ + 1
z4
A

Fnret ∝ − 1
z4
A

Fnret = − 3~
16π2ε0z4A

∫∞
0

dξ αA

ε2

ε1−ε2
ε1+ε2

(

3ε2
2ε2+1

)2

Fret = − 3~cαA(0)
8π2ε0ε2(0)n2(0)z5A

ε1(0)−ε2(0)
ε1(0)+ε2(0)

(

3ε2(0)
2ε2(0)+1

)2

Fret ∝ + 1
z5
A

Fret ∝ − 1
z5
A

µ1 > µ2 µ1 < µ2

Fnret ∝ − 1
z2
A

Fnret ∝ + 1
z2
A

Fret ∝ − 1
z5
A

Fret ∝ + 1
z5
ATable 3.1: Power laws for the CP fore on a ground-state atom in a magnetodieletri two-layersystem in the nonretarded and the retarded distane regime. The atom is loated in layer 2.the stati ounterparts of ε, µ and αA and integrate over ξ,

U2(zA) = −
3~cαA

32π2ε0ε2
√
ε2µ2z4A

(

3ε2
2ε2 + 1

)2
ε1 − ε2
ε1 + ε2

, (3.46)whih is in aordane with Eq. (3.30).3.2.2 Numerial resultsTo study the loal-�eld orreted potential at moderate distanes and to eluidate theombined in�uene of eletri and magneti properties of the media, we alulate theposition dependent part U2(zA) in aordane with Eq. (3.17) numerially. We assumea two-level atom of transition frequeny ω10 and a single resonane Drude�Lorentzmodel for the permittivities and permeabilities and write Eq. (2.2) in the form
εj(iξ) = 1 +

ω2
Pej

ω2
Tej + ξ2 + ξγej

, µj(ω) = 1 +
ω2
Pmj

ω2
Tmj + ξ2 + ξγmj

, j = 1, 2, (3.47)where ωPej, ωPmj denote the plasma frequenies of the respetive media.Our analytial results have shown that purely eletri or magneti media, give riseto monotonous potentials of opposite signs and di�ering power laws. When ompetinge�ets of eletri and magneti properties ome into play, potential walls or wells anhene be expeted. For su�iently strong magneti properties, the well is loated atshort distanes where its position and height an be obtained from Eq. (3.24),
zmin =

√

3C3

C1
, Umin =

2C1

9

√

C1

C3
(3.48)respetively.
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3 Dispersion fores between ground-state objets in mediaThe numerial result, as shown in Figure 3.2 (a), illustrates the atom�surfae dis-tane dependene of the U2(zA) potential. In ase (1), ε2 > ε1, the potential at veryshort atom�surfae distanes is repulsive in medium 2 and attrative in medium 1, inonsisteny with the analytial results (3.24) and (3.25). Similarly, in ases (2) and(3), ε2 < ε1, the potential is attrative in medium 2 while repulsive in medium 1.As the atom�surfae distane inreases, the seond term in the potential (3.24) withpower law z−1
A gradually omes into play. If the magneti properties are strong enoughthey may swith the sign of the potential and reate potential walls or wells as anbe seen in Fig. 3.2 (2).In the following we will disuss the impat of the loal-�eld orretion. The loal-�eld orretion fator [3εi/(2εi+1)]2 of an eletri atom depends only on the dieletriproperties and is positive, larger than one, and inreases with εi, where i indiates thelayer ontaining the guest atom. It approahes the maximum value of 9/4 as εi →∞.Note that a loal-�eld orretion fator larger than 1 does not neessarily lead toan enhanement of the potential beause the unorreted fator in the integrand anhange sign as the imaginary frequeny ξ varies. That is to say, only when the unor-reted integrand is purely repulsive or attrative, the loal-�eld orretion inreasesor dereases the potential. Firstly, we study how the net e�et of the loal-�eld or-retion depends on the distane. In Fig. 3.2 (upper) we indiate the orrespondingunorreted potentials by dashed lines while the di�erene between the orreted andunorreted results is shown in the lower part of Fig. 3.2. It reveals quite signi�antorretions of up to 30% of the unorreted values. In ontrast, in the middle ase (2),the two urves with and without loal-�eld orretion ross, implying that there existsan atom�surfae distane at whih the e�et of the loal-�eld orretion is aneleddue to the ξ-integration.As a seond aspet, we study the behavior of the loal-�eld orreted CP potentialwith respet to the stati permittivity of the medium surrounding the atom (region

2). In Figs. 3.3, we have plotted the (orreted and unorreted) potential for twodi�erent values of the atom�surfae distane. The urves for the larger distane fromthe interfae peak at ertain values of ε2(0) where the positions of the peaks aredi�erent due to the e�ets of the loal �eld. Closer inspetion veri�es that, as ε2(0)inreases, the ratio between the orreted and unorreted urves tends to the stativalue of the loal-�eld orretion fator [3ε2/(2ε2 +1)]2 whih lies between 1 and 9/4Note that in general the ratio of the two potentials is not always a good measure sineone of the quotients may vanish. For the smaller value of the atom�surfae distane
28



3.2 Casimir�Polder potential near a planar interfae
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Figure 3.2: (upper) Position-dependent part of the CP potential experiened by a ground-statetwo-level atom in a magnetodieletri two-layer system as a funtion of atom�surfae distane for�xed ε1, µ1, µ2, and for ωPe2/ω10 = 1 (1), 0.4 (2), and 0.2 (3). Solid lines denote the potentialswith the loal-�eld orretion, while dashed lines represent those without. Other parameters are
ωTe1/ω10 = ωTe2/ω10 = 1.03, ωPe1/ω10 = 0.75, ωTm1/ω10 = ωTm2/ω10 = 1, ωPm1/ω10 = 2.3,
ωPm2/ω10 = 0.4, γm1,2/ω10 = γe1,2/ω10 = 0.001, and the avity radius is RCω10/c = 0.01. (lower)Di�erene ∆U2 between loal-�eld orreted and unorreted (position-dependent) CP potentialversus atom�surfae distane where the solid, dashed, and dotted lines refer to the urves (1), (2),and (3), respetively.
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3 Dispersion fores between ground-state objets in media
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Figure 3.3: Position-dependent part of the CP potential as a funtion of the stati permittivity
ε2(0) (more spei�ally ωPe2/ω10) for two values of the atom�surfae distane zAω10/c = 0.01(sale to the left, lower urves) and zAω10/c = 3 (sale to the right, upper urves). Solid lines arewith the loal-�eld orretion while dashed lines are without one. Other parameters are the sameas in Fig. 3.2.
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3.2 Casimir�Polder potential near a planar interfae
zAω10/c = 0.01, a rossing point between the orreted and unorreted urves isobserved, where the loal-�eld orretion has vanishing net e�et.3.2.3 Potential at the surfaeIn the following we want to apply our results from the previous setion to study thefull CP interation, whih is of interest when a small partile is transfered throughan interfae. Theories of the (long-range) CP interation are usually inapable of or-retly prediting the behavior of the interation potential at extremely short distanessine ompeting repulsive interations, arising from the overlap of atomi valene ele-trons with the surfae, are negleted. The alulation of the nonresonant CP potentialfor very small atom�surfae separations has been subjet to a number of investiga-tions. There, the CP interation has been modi�ed to produe a �nite potential at thesurfae [142℄ by introduing a referene plane [142℄; via haraterizing the materialsurfae by a more realisti (spatial dispersive) response funtion [143℄, or via usingan atomi polarizability beyond the dipole approximation [144, 145℄.Firstly, we study the layer-dependent, onstant part U1 of the potential whih isentirely due to the loal-�eld orretion. In Fig. 3.4 we have numerially alulatedthe dependene of U1 on the real-avity radius RC for a purely eletri material and,for omparison, also a purely magneti material. Aording to the di�erent leadingterms in the analyti result (3.8), the potential |U1| for a pure eletri material isgenerally larger than that for a pure magneti material but has opposite sign. The�gure also indiates that the magnitude of U1 dereases with inreasing real-avityradius, that is, the e�ets of the loal �eld beomes weaker as the medium beomesmore dilute, and the average distane between the two atoms inreases. Throughoutthis setion, we have assumed that for a small radius of the real avity it is su�ient towork with the approximate potential as given by the seond equality in Eq. (3.8). InFig. 3.4, we have heked numerially that this assumption is orret; the di�erene isshown by dashed lines for the approximate result and solid lines for the exat one. Onthe sale of the plot, the di�erenes are not visible for a purely eletri material. Theagreement in the ase of a purely magneti material is good for very small RCω10/cbut worsens as RCω10/c inreases.In the following, we will propose an estimate of the full CP potential at the interfae.Firstly, we reall that for very short distanes, √|εjµj|zAω10/c ≪ 1, the position-dependent part of the potential is dominated by the C3z

−3
A term, whih ontains onlythe di�erene of the eletri medium properties, ε1− ε2, in the integrand. It an thus31



3 Dispersion fores between ground-state objets in media
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Figure 3.4: The exat layer-dependent onstant part of the potential (solid line), and approximateresults (dashed line), are shown as funtions of the real-avity radius. The upper (pair of) urvesshows −U1(zA)12π
2ε0c

3/(ω3
10|d10|2) (the sign has been reversed so that a logarithmi sale anbe used) for a purely eletri material with ωPe2/ω10 = 0.4, while the lower pair of urvesshows U1(zA)12π

2ε0c
3/(ω3

10|d10|2) for a purely magneti material with ωPm2/ω10 = 0.4. Allother parameters are the same as in Fig. 3.2. The radius of the avity RCω10/c starts from 0.001.be expeted that even if the medium has a permeability µj 6= 1, it is irrelevant for thetotal value of the potential at or lose to the surfae as long as ε1 6= ε2. In Fig. 3.5we have alulated the full potential U1 + U2(zA) on both sides of the interfae withthe properties of medium 1 �xed while those of medium 2 vary from free spae to amore dense medium. The ase represented by the dashed line is the same as urve(2) in Fig. 3.2, showing that additional strutures in U2, like potential wells or walls,are typially overwhelmed by the magnitude of U1. As an be seen from the �gure,an atom loated in layer 2 lose to the surfae will be attrated to it, and if the atoman ross the interfae, it will be pushed further away from the surfae into layer 1.In Fig. 3.5, we have not displayed the results for distanes |zA| < RC

√

|εµ| wherethe real-avity model an no longer be applied. This gives rise to a gap betweenthe potentials on the two sides of the interfae. To estimate the amount of energyneeded to push an atom from layer 2 into layer 1, namely the potential exatly at the
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsinterfae, we suggest to use the simple interpolation [AS4℄
U(zA = 0) =

1

2
[U(RC) + U(−RC)]

= − ~

32π2ε0R
3
C

∫ ∞

0

dξ αA

{
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2ε1 + 1
+

ε2 − 1

2ε2 + 1
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− ε1 − ε2
ε1 + ε2

[

1

ε1

(

3ε1
2ε1+1

)2

− 1

ε2

(

3ε2
2ε2+1

)2
]} (3.49)where we have used Eqs. (3.8), (3.24), and (3.25). This means that we �rst plot thepotential as a funtion of the atomi position up to distanes |zA| = RC. Then weonnet the two loose ends on the two sides of the interfae by a straight line and reado� the value of the potential at zA = 0. In the following we want to show that theproposed estimate, Eq. (3.49), is onsistent with an earlier work where the on-surfaepotential of a moleule of �nite size s has been alulated diretly [146℄,

U(zA = 0) =
~

2π5/2ε0s3

∫ ∞

0

dξ αA

[

1

2

(

1

ε1
+

1

ε2

)

+
1

3

ε1−ε2
ε1+ε2

(

1

ε1
− 1

ε2

)]

. (3.50)The results (3.50) and (3.49) look remarkably similar; the seond terms in Eqs. (3.49)and (3.50), whih represent the interfae ontribution to the potential, agree whensetting s = ( 3
√

16/3/π−1/6)RC ≈ 1.4RC and negleting the loal-�eld orretion inEq. (3.49) whih was not onsidered in Ref. [146℄. The �rst terms an be regardedas being bulk ontributions from the two interfaing media whih di�er in both ap-proahes. While Eq. (3.50) still ontains self-energy ontributions whih do not vanishin the vauum ase εj = 1, the potential (3.49) vanishes in that limit.Our results may help to understand the transfer of a small moleule through amembrane from one ell to another. In a similar manner, we may also study an atomin a magnetodieletri three-layer planar struture whih may serve as a prototypefor the problem of a small partile in the middle of a ell membrane of �nite thikness[147℄. For details, the reader is referred to Ref. [AS4℄3.3 Medium-assisted Casimir�Polder potential ofspherial objetsTwo methods might be envisaged to alulate the CP interation of a ground-stateatom and a magnetodieletri sphere. Firstly, one ould take the Green tensor of the33



3 Dispersion fores between ground-state objets in media
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsintervening medium and the sphere [Fig. 3.6 (ii)℄. With the hosen onstrution wean ontinuously interpolate between the two limiting ases of an atom-like sphereand a marosopi sphere by hanging the inner radius of the sphere [Fig. 3.6 (iii)℄.Note that our onsiderations are very di�erent from earlier investigations where the(nonretarded) CP potential of a ground-state atom inside and outside a dieletri ormetalli spherial shell [148℄, as well as that of a perfetly onduting sphere [149℄ infree-spae have been studied. Here, we allow for an arbitrary environment onsistingof both a medium and bakground bodies but exlude metals. Our studies are basedon Ref. [AS7℄.
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3 Dispersion fores between ground-state objets in media
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rS = 0 inside a bulk medium of permittivity ε(ω) and permeability µ(ω) an bewritten in the form [131℄G (1)
S (r, r′, ω) =

iµk

4π

∑

p=±

∞
∑

l=1

l
∑

m=0

(2− δm0)
2l + 1

l(l + 1)

(l −m)!

(l +m)!

×
[

BM
l Mlmp(k, r)Mlmp(k, r

′) +BN
l Nlmp(k, r)Nlmp(k, r

′)
]

, (3.52)where k =
√
εµω/c and Mlmp,Nlmp denote even (p = +) and odd (p = −) spherialvetor wave funtions. The numbers l and m parameterize the total angular momen-tum and and its z-projetion, respetively. BM,N

l are the assoiated Mie oe�ientsfor re�etion at the surfae of the sphere and read [131℄,
BM

l = − µ(ω)kS(ω)jl(z)[zSjl(zS)]
′ − µS(ω)k(ω)jl(zS)[zjl(z)]

′

µ(ω)kS(ω)h
(1)
l (z)[zSjl(zS)]′ − µS(ω)k(ω)jl(zS)[zh

(1)
l (z)]′

, (3.53)
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsand
BN

l = − µ(ω)kS(ω)jl(zS)[zjl(z)]
′ − µS(ω)kjl(z)[zSjl(zS)]

′

µ(ω)kS(ω)jl(zS)[zh
(1)
l (z)]′ − µS(ω)k(ω)h

(1)
l (z)[zSjl(zS)]′

, (3.54)where z = kR, zS = kSR with kS =
√
εSµS ω/c. Here and throughout, we use thelimit of a small sphere, where |kSR|, |kR| ≪ 1. Additionally, we require the separationbetween a soure point and the enter of the sphere to be muh greater than thee�etive radius of the sphere,

√
εSµSR≪ |r− rS|. (3.55)In this ase, we an evaluate the Mie oe�ients for small arguments. For smallarguments, the lth spherial Bessel and Hankel funtions of the �rst kind read [150℄

jl(x) ≃
xl

(2l + 1)!!
, h

(1)
l (x) ≃ (2l − 1)!!

xl+1
, (3.56)whih implies

BM,N
l = O

[

(ωR

c

)2l+1
]

. (3.57)Equation (3.57) shows that the dominant ontribution to the Green tensor is due tothe l = 1 terms. The respetive vetor wave funtions are given in spherial oordi-nates with unit vetors er, eφ, eθ,
M1m±(k, r)=∓

m

sin θ
h
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eφ(3.58)and
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dPm
1 (cos θ)
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∓ m

sin θ
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1
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d[krh
(1)
1 (kr)]

d(kr)

(

sinmφ
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)

eφ, (3.59)where the upper (lower) omponents refer to the upper (lower) sign. Here, Pm
1 (x) de-note the assoiated Legendre polynomials, and j1(x) and h

(1)
1 (x) are given by Eq. (3.6).
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3 Dispersion fores between ground-state objets in mediaIn partiular, we need
P 0
1 (cos θ) = cos θ and P 1

1 (cos θ) = − sin θ. (3.60)The l = 1 re�etion oe�ients are given by
BM

1 =
2i

3

(

√
εµ

ωR

c

)3
µS − µ

µS + 2µ
, (3.61)

BN
1 =

2i

3

(

√
εµ

ωR

c

)3
εS − ε

εS + 2ε
(3.62)in the small-sphere limit. We further evaluate the sums over p and m for l = 1 forequal arguments r = r′,

∑
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1
∑

m=0
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(1−m)!

(1 +m)!
M1mp(r)M1mp(r) = h2(I − erer) (3.63)and

∑
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N1mp(r)N1mp(r) =

h′2

(kr)2
I + 4h2 − h′2

(kr)2
erer, (3.64)with the notation h ≡ h

(1)
1 (kr) and h′ ≡ d[krh

(1)
1 (kr)]/d(kr). Substituting theseexpressions into Eq. (3.52), the (equal-position) sattering Green tensor of a smallsphere beomesG (1)

S (r, r, ω) =
µe2ikr

4πk2r6

{

[

1−2ikr−3(kr)2+2i(kr)3+(kr)4
] I

+
[

3−6ikr−(kr)2−2i(kr)3−(kr)4
]
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}

εS − ε

εS + 2ε
R3

+
µe2ikr

4πr4
[

1−2ikr−(kr)2
]

(I − erer)
µS − µ

µS + 2µ
R3. (3.65)The Green tensor G (1)

S (r, r, ω) of the small sphere desribes the propagation of theeletri �eld from a soure at r to the sphere, its sattering from the sphere at rS = 0and its return to r, where the sphere ats as a polarizable and magnetizable pointsatterer. It is therefore natural to try to relate the eletri part of G (1)
S (i.e., the termsproportional to εS − ε) to produts of the bulk Green tensor G (0), whih desribes38



3.3 Medium-assisted Casimir�Polder potential of spherial objetsthe propagation of the eletri �eld through the homogeneous (bulk) medium to aneletri satterer. The magneti ontribution will be disussed after that. For di�erentspatial arguments, the bulk Green tensor [151℄G (0)(r, r′, ω) = − µeikρ

4πk2ρ3

{

[

1− ikρ− (kρ)2
]I − [3− 3ikρ− (kρ)2

]

eρeρ

} (3.66)depends on ρ = r− r′ and eρ = ρ/ρ with ρ = |ρ|. From Eq. (3.66) we �nd thatG (0)(r, 0, ω) ·G (0)(0, r, ω) =
µ2e2ikr

16π2k4r6
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1−2ikr−3(kr)2+2i(kr)3+(kr)4
] I

+
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3−6ikr−(kr)2−2i(kr)3−(kr)4
]
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} (3.67)is related to the eletri parts of (3.65) as skethed in Fig. 3.7 (ii). In a similar manner,we want to relate the magneti terms in Eq. (3.65) to G (0)×←−∇ and therefore alulateG (0)(r, rS, ω)×
←−
∇S ·∇S ×G (0)(rS, r, ω)

∣

∣

rS=0
= −µ2e2ikr

16π2r4
[

1−2ikr−(kr)2
]

(I − erer).(3.68)A omparison of Eq. (3.65) with Eqs. (3.67) and (3.68) shows how the Green tensorof a small magnetodieletri sphere in a bulk medium an be deomposed:G (1)
S (r, r, ω) = 4πεR3 εS − ε

εS + 2ε

ω2

c2
G (0)(r, 0, ω) ·G (0)(0, r, ω)

−4πR
3

µ

µS − µ

µS + 2µ
G (0)(r, rS, ω)×

←−
∇S ·∇S × G (0)(rS, r, ω)|rS=0. (3.69)In the next step we allow for a general bakground environment onsisting of ar-bitrary bodies instead of the bulk medium and introdue the Green tensor of thesphere-bakground system G (1)

SB as skethed in Fig. 3.7 (iii). With the permittivity
ε(r, ω) and permeability µ(r, ω) of the environment now being funtions of position,it is useful to introdue a notation for their values at the position (but in absene)of the sphere, ε⊙(ω) ≡ ε(rS, ω), µ⊙(ω) ≡ µ(rS, ω). In addition to the small-spherelimit |kSR| ≪ 1, we assume the e�etive sphere radius to be muh smaller than thedistane from the sphere to any of the environment bodies,

√
εSµSR≪ |r− rB|, (3.70)where rB pointing inside the bodies. In this ase, multiple sattering between sphereand environment an safely be negleted within leading order of kSR. Our result39



3 Dispersion fores between ground-state objets in media(3.69) an thus be generalized from the bulk ase to an arbitrary environment byreplaing ε 7→ ε⊙, µ 7→ µ⊙ as well as G (0) 7→ G and adding the sattering Greentensor G (1)(r, r) of the system without the sphere:G (1)
SB(r, r, ω) = G (1)(r, r, ω) +

ε⊙
ε0

α⋆
S

ω2

c2
G(r, rS, ω) ·G(rS, r, ω)

− µ0

µ⊙
β⋆
SG (r, rS, ω)×

←−
∇S ·∇S × G(rS, r, ω), (3.71)where we have introdued the exess (or e�etive) polarizability, [103, 152℄

α⋆
S = 4πε0R

3 εS − ε⊙
εS + 2ε⊙

, (3.72)and magnetizability
β⋆
S =

4πR3

µ0

µS − µ⊙
µS + 2µ⊙

(3.73)of the sphere [153℄, whih desribe the eletri and magneti response of the spherewith respet to that of the surrounding medium.The result (3.71) an be proven formally by treating both the sphere and theenvironment bodies via a Born expansion of the Green tensor [154℄. In the followingwe show this for the terms arising from the eletri sattering o� the sphere. To thatend, we introdue the suseptibility as the di�erene of the permittivity of the sphere�body system and the permittivity of the bulk bakground identi�ed with ε⊙(ω),
χ(r, ω) = εS(r, ω)− ε⊙(ω). (3.74)This funtion is non-zero when r is inside the sphere of volume S or inside one of thebodies (volumes B). For a purely eletri sphere, the Born expansion of the satteringGreen tensor of the sphere-bakground system with respet to the bulk medium readsG (1)

SB(r, r, ω) =
∞
∑

K=1

ω2K

c2K

∫

S+B

d3s1χ(s1, ω) · · ·
∫

d3sKχ(sK , ω)

× G (0)(r, s1, ω) ·G (0)(s1, s2, ω) · · ·G (0)(sK , r, ω). (3.75)Aording to our ondition (3.70), we keep only the terms that orrespond to satter-ing proesses starting from r followed by (multiple) re�etions at the boundaries ofthe bodies and transmission into the sphere, (multiple) sattering inside the sphere,a seond transmission through the surfae of the sphere followed by sattering at the40



3.3 Medium-assisted Casimir�Polder potential of spherial objetsbodies and �nally return to the position r (f. Fig. 3.8). To aount for the desired
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·G (0)(si+1, si+2, ω) · · ·G (0)(sj−1, sj, ω) ·G (0)(sj, sj+1, ω) · · ·G (0)(sK , r, ω). (3.76)Here, the �rst term is nothing but (a Born expansion of) the Green tensor of thebakground bodiesG (1)(r, r, ω) =
∞
∑
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ω2K

c2K

∫
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× G (0)(r, s1, ω) ·G (0)(s1, s2, ω) · · ·G (0)(sK , r, ω). (3.77)The seond term in Eq. (3.76) has three ontributions. The �rst one arises from a �rst41



3 Dispersion fores between ground-state objets in mediagroup of integrals over the bodies. Aording to Eq. (3.77), it an be identi�ed withthe sattering Green tensor of the bakground body G (1)(r, si+1, ω) with si+1 pointingto the position of the sphere. The seond ontribution ontaining the integrals overthe sphere, aounts for re�etions inside it. The third ontribution is due to a seondgroup of integrals over the bodies whih an be identi�ed withG (1)(sj , r, ω) onnetinga spae point r with a point inside the sphere with sattering at the boundaries ofthe body inluded.Now, we ompare Eq. (3.76) with the Born expansion of the left-hand side of ourbulk result (3.69),G (1)
S (r, r, ω) =
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= α⋆
S

ω2

c2
ε⊙
ε0
G (0)(r, 0, ω) ·G (0)(0, r, ω). (3.80)Substituting Eqs. (3.78) and (3.77) into Eq. (3.76) gives the eletri part of Eq. (3.71).There, it also reveals the meaning of the fator ω2/c2α⋆

Sε⊙/ε0: it arises from re�e-tions at the inner boundary of the sphere. For a magnetizable sphere, a similar Bornexpansion an be applied to prove the relation for the magneti terms.So far we have studied the Green tensor as needed for the CP potential of a po-larizable atom (2.53). To study also CP potential of a magnetizable atom (2.63), werequire an analogous relation for the ombination∇×G (1)
SB×
←−
∇

′. Applying the dualitytransformations (2.56)�(2.59) together with α⋆⊛
S = β⋆

S/c
2 to both sides of Eq. (3.71),we obtain the desired relation,
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∇×G(r, rS, ω) ·G(rS, r

′, ω)×←−∇′∣
∣

r′=r
. (3.81)CP potentialUsing our general results for the eletri Green tensor G (1)

S and the magneti Greentensor ∇×G (1)
S ×
←−
∇

′ in the presene of a small magnetodieletri sphere, we an nowevaluate the CP potential of a polarizable and magnetizable ground-state atom withsuh a sphere in an arbitrary environment. To apply the proposed deompositions42



3.3 Medium-assisted Casimir�Polder potential of spherial objets(3.71) and (3.81) of the Green tensor we have assumed that the avity radius is smallompared to the harateristi wavelength of the medium environment. Now, if anatom is plaed in the system we reall the ondition (3.55). Substituting Eq. (3.71)into Eq. (2.53) gives the interation of an eletri atom with a magnetodieletrisphere,
Ue(rA, rS) = Uee(rA, rS) + Uem(rA, rS), (3.82)where
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∫ ∞
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] (3.84)are assoiated with the eletri and magneti properties of the sphere, respetively.Similarly, ombining Eqs. (3.81) and (2.63) gives the CP interation of a magnetiatom and a magnetodieletri sphere,
Um(rA, rS) = Ume(rA, rS) + Umm(rA, rS), (3.85)with
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2π

∫ ∞

0

dξβA

(

3

2µA + 1

)2
β⋆
S

µ⊙

× tr
{[

∇A ×G(rA, rS, iξ)×
←−
∇S

]

·
[

∇S × G(rS, rA, iξ)×
←−
∇A

]}

. (3.87)Let us make two remarks on the results (3.82)�(3.87). Firstly, as an already be seenin the deomposition of the Green tensor, the eletri and magneti properties of the
43



3 Dispersion fores between ground-state objets in mediasphere ompletely deouple and give rise to the separate potentials Uee, Ume and Uem,
Umm. This is only true in the limit of small spheres. Seondly, the total atom�sphereCP potential is duality-invariant by onstrution,
U(rA, rS) = Uee(rA, rS) + Uem(rA, rS) + Ume(rA, rS) + Umm(rA, rS) = U⊛(rA, rS).(3.88)In partiular note that the duality invariane is ensured by the presene of the fators

ε⊙ and 1/µ⊙ in the potentials.It is instrutive to ompare our �ndings with the vdW interation between twomagnetoeletri ground-state atoms A and B in the presene of an arbitrary mag-netodieletri environment. The vdW interation between two (isotropi) polarizableground-state atoms in free-spae an be obtained from fourth-order perturbation the-ory [155℄ To aount for a medium-environment of the atoms, two loal-�eld fatorsare to be introdued [AS1℄,
UvdW
ee (rA, rB) = −

~µ2
0

2π

∫ ∞

0

dξξ4αAαB

(

3εA
2εA + 1

)2(
3εB

2εB + 1

)2

× tr
[G(rA, rB, iξ) ·G(rB, rA, iξ)

]

. (3.89)The respetive potential between two magnetizable atoms an be obtained by applyingthe transformation (2.56) and (2.61),
UvdW
mm (rA, rB) = −

~µ2
0

2π

∫ ∞

0

dξβAβB

(

3

2µA + 1

)2(
3

2µB + 1

)2

× tr
{[

∇A ×G (rA, rB, iξ)×
←−
∇B

]

·
[

∇B × G(rB, rA, iξ)×
←−
∇A

]}

. (3.90)If only one of the atoms (say B) is magnetizable the vdW potential reads [140℄
UvdW
em (rA, rB) = −

~µ2
0

2π

∫ ∞

0

dξξ2αAβB

(

3εA
2εA + 1

)2(
3

2µB + 1

)2

× tr
{[G(rA, rB, iξ)×

←−
∇B

]

·
[

∇B × G(rB, rA, iξ)
]}

, (3.91)where the opposite ase of atom A being magnetizable, UvdW
me , an be easily obtainedby interhanging A and B in Eq. (3.91). Clearly, the full vdW interation of twoatoms is given by summation of UvdW

ee , UvdW
mm , UvdW

em , and UvdW
me . In order to onnet
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsour results to the vdW potentials, one has to perform the substitutions
α⋆
Sε⊙ 7→ αB

( 3εB
2εB + 1

)2 (3.92)
β⋆
S

µ⊙
7→ βB

( 3

2µB + 1

)2

. (3.93)The atom�atom and the atom�sphere potentials look very similar, and in partiularlead to the same power laws in the nonretarded and retarded regime. This an beunderstood from the fat that the magnetodieletri response of point-like objets,suh as the isotropi atom and the small sphere, enters only via the respetive po-larizability and magnetizability. Note that a (frequeny-dependent) orretion fatoraounting for the surrounding medium does not hange the power laws. For example,if the atom and the sphere are purely eletri and embedded in free spae, we imme-diately expet the familiar |rA − rS|−6 power law to hold in the nonretarded regimeand |rA−rS |−7 in the retarded regime [7℄. The di�erene between the ase of a sphereas given in the left-hand sides of Eqs. (3.92) and (3.93), and an atom, given by theorresponding right-hand sides, are due to the di�erent natures, marosopi versusmirosopi, of the two objets. The sphere and the bakground medium onsist of alarge number of atoms and an therefore be desribed marosopially, by (separate)average permittivity and permeability funtions. The sphere is in immediate ontatwith the surrounding medium, whih leads to the fators ε⊙ and 1/µ⊙. Note thatthe polarizability (3.72) and magnetizability (3.73) of the sphere depend on the dif-ferene εS − ε⊙ and µS − µ⊙, respetively, and an be either positive or negative. Inontrast, the polarizability and magnetizability of an atom depends on the transitionfrequenies and dipole matrix elements, as given by Eqs. (2.54) and (2.62). They arestritly positive on the positive imaginary frequeny axis. Sine an atom is a miro-sopi objet, the interspae between the atom and the neighboring medium atomsneeds to be taken into aount. This gives rise to the loal-�eld orretion fators
[3εB/(2εB + 1)]2 and [3/(2µB + 1)]2 on the right-hand sides of Eqs. (3.92) and (3.93).3.3.2 Sphere inside an Onsager avity.In the following we ompare and interpolate between the homogeneous sphere plaedinside a medium and a loal-�eld orreted atom.
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3 Dispersion fores between ground-state objets in mediaDeomposition of the Green tensorTo that end, we onsider a homogeneous magnetodieletri sphere with radius Rentered around rS, with permittivity εS(ω) and permeability µS(ω), whih is not inimmediate ontat with the surrounding medium, but plaed inside a small spherialavity of radius RC , also entered around rS. The avity implements the interspaebetween the atoms ontained in the sphere and the surrounding medium atoms. Weagain study the limit of small avity/sphere radii and assume |kSR|, |kRC|, |k0RC | ≪ 1where k0 = ω/c. The situation is skethed in Fig. 3.6 (iii).The sattering Green tensor G (1)
S+C of the sphere�avity system in a homogeneousbulk medium is again given by an equation of the form (3.52), where the re�etionoe�ients now take a more omplex form [151℄. The required l = 1 terms are givenby

BM
1 =

2i

3

(√
εµ

ω

c

)3
[

R3
C

1−µ
1+2µ

+
9µR3(µS−1)/(2µ+1)

(µS+2)(2µ+1) + 2(µS−1)(1−µ)R3/R3
C

]

,(3.94)
BN

1 =
2i

3

(√
εµ

ω

c

)3
[

R3
C

1−ε
1+2ε

+
9εR3(εS−1)/(2ε+1)

(εS+2)(2ε+1) + 2(εS−1)(1−ε)R3/R3
C

] (3.95)in the small-sphere/avity limit. We an then follow exatly the same steps as inSe. 3.3.1. We again arrive at Eqs. (3.71) and (3.81) with α⋆
S+C , β⋆

S+C in plae of α⋆
S,

β⋆
S. A omparison of Eqs. (3.61) and (3.62) with Eqs. (3.94) and (3.95) shows that therelevant exess polarizability and magnetizability of the sphere�avity system read

α⋆
S+C = 4πε0

[

R3
C

1−ε⊙
1+2ε⊙

+
9ε⊙R

3(εS−1)/(2ε⊙+1)

(εS+2)(2ε⊙+1) + 2(εS−1)(1−ε⊙)R3/R3
C

] (3.96)and
β⋆
S+C =

4π

µ0

[

R3
C

1−µ⊙
1+2µ⊙

+
9µ⊙R

3(µS−1)/(2µ⊙+1)

(µS+2)(2µ⊙+1) + 2(µS−1)(1−µ⊙)R3/R3
C

]

, (3.97)respetively. By introduing the free-spae polarizability and magnetizability of thesphere
αS = 4πε0R

3 εS − 1

εS + 2
(3.98)
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsand
βS =

4πR3

µ0

µS − 1

µS + 2
, (3.99)respetively, as well as the exess polarizability and magnetizability of the avity

α⋆
C = 4πε0R

3
C

1− ε⊙
1 + 2ε⊙

(3.100)and
β⋆
C =

4πR3
C

µ0

1− µ⊙
1 + 2µ⊙

, (3.101)respetively, we an rewrite Eqs. (3.96) and (3.97) more transparently as
α⋆
S+C = α⋆

C +
αS

ε⊙

(

3ε⊙
2ε⊙+1

)2
1

1 + α⋆
CαS/(8π2ε20R

6
C)

, (3.102)
β⋆
S+C = β⋆

C + βSµ⊙

(

3

2µ⊙+1

)2
1

1 + β⋆
CβSµ2

0/(8π
2R6

C)
. (3.103)Equation (3.102) shows that the response of the sphere�avity system to an ele-tromagneti �eld is due to re�etion at the avity surfae from the outside given by

α⋆
C ,β⋆

C , plus re�etions at the sphere given by α⋆
S,β⋆

S. The loal-�eld orretion fa-tors in large parentheses aount for the transmission of the �eld into and out of theavity and the denominators aount for multiple re�etions between the avity andsphere surfaes. Note that in the leading-order approximation made (with respetto the sphere and avity radii), the fators aounting for re�etions at the sphere[Eqs. (3.72), (3.73)℄ and avity surfae [Eqs. (3.100), (3.101)℄ are proportional to thethird power of these radii, while the transmission properties of the avity as desribedby the loal-�eld orretion fators beome independent of RC . Our equation (3.102)determines the orret polarizability/magnetizability of a small medium-embeddedspherial objet.Casimir�Polder potentialIn order to interpolate between the two extreme ases of a single atom and a sphereonsisting of a very large number of atoms, we now onsider the CP interation of anatom with the sphere-avity system and assume √ε⊙µ⊙RC ≪ |rA − rS| in additionto the ondition (3.55). Sine expressions of the type (3.71) and (3.81) remain valid,their substitution into Eqs. (2.53) and (2.63) again leads to Eqs. (3.82)�(3.87), where
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3 Dispersion fores between ground-state objets in medianow α⋆
S+C and β⋆

S+C as given by Eqs. (3.96) and (3.97) appear in plae of α⋆
S and β⋆

S.As an example, let us onsider the CP interation of a nonmagneti atom with apurely eletri sphere of radius R > 0 in a bulk medium (ε⊙ = εA = ε). Substitutingthe required bulk Green tensor (3.66) into Eq. (3.83), one �nds
Uee(rA, rS) = −

~

16π3ε20r
6
AS

∫ ∞

0

dξ

(

3ε

2ε+ 1

)2

αAεα
⋆
S+Cg

(√
ε ξ rAS/c

)

, (3.104)with rAS = |rA − rS| and
g(x) = e−2x(3 + 6x+ 5x2 + 2x3 + x4). (3.105)Figure 3.9 shows the potential Uee for a two-level atom as a funtion of the ratio

q = R/RC for various atom�sphere separations while Fig. 3.10 shows the potential
Uee as a funtion of the atom-sphere separation for di�erent (�xed) relative sphereradii q. We have used single-resonane models for the permittivities of the sphere
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Figure 3.9: CP potential Uee of a nonmagneti atom in front of a dieletri sphere in an emptyavity embedded in bulk material vs. q = R/RC. The urves orrespond to di�erent atom�sphereseparations r̃AS ≡ rASω10/c. Other parameters are ωT /ω10 = 1.03, ωTS/ω10 = 1.0, ωPS/ω10 =
1.2, ωP /ω10 = 0.75, γ(S)/ω10 = 0.001.and the medium as given in Eq. (3.47). Both �gures reveal that for the onstant εS48



3.3 Medium-assisted Casimir�Polder potential of spherial objetsonsidered here, larger spheres lead to a stronger CP attration between the atomand the sphere. As an be seen in Fig. 3.9, all urves ross at a partiular value of therelative sphere radius, indiating the ritial ratio where the sign of the interation isturned into repulsion, i.e., for q . 0.16.
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Figure 3.10: Uee vs. rASω10/c for di�erent ratios q. Other parameters are the same as in Fig. 3.9.Apart from the polarizability α⋆
S+C, all quantities appearing in the integrand ofEq. (3.104) are monotoni funtions in ξ. Thus, on realling Eq. (3.102), the polariz-ability of the sphere gives rise to attrative fores while the avity leads to a redutionof these fores. On alulating the zeros of α⋆

S+C , we �nd the frequeny-dependentritial ratio of the two radii, R/RC ,
qcrit ≡

(

R

RC

)

crit

= 3

√

(2 + ε⊙)(ε⊙ − 1)(1 + 2ε⊙)

9ε⊙(εS − 1) + 2(ε⊙ − 1)2(εS − 1)
. (3.106)In pratie, one ould estimate the ritial ratio by evaluating Eq. (3.106) for statimedium response, or if available, by using an e�etive frequeny to evaluate themedium response. The unexpeted repulsion for a purely eletri system an be ex-plained from the fat that the sphere�avity system ontains only little polarizablematter, but the volume is the same as in the full sphere situation, i.e., it displaesthe medium and gives rise to a bouyany-type fore opposite to the CP intera-49



3 Dispersion fores between ground-state objets in mediation/fore. Suh e�ets are known from the �eld of ioni dispersion fores as disussedin Ref. [156℄. For example, when a moleule is embedded in bulk water, a layer ofwater atoms (hydration layer) enloses the moleule and has a permittivity distintfrom the surrounding water. One an think of the hydration layer as being part ofthe avity. In partiular, it has been shown that the volume of the hydration layer isimpenetrable to many ions and short-range repulsion may our [156℄.In the following, we show how the two extreme ases of a full sphere and an atoman be reovered from Eqs. (3.102) and (3.103). For a marosopi sphere, the in-terspae between the sphere and medium atoms beomes irrelevant as implementedby R→ RC . In this ase, it is almost trivial to verify that, for R = RC , Eqs. (3.96)and (3.97) redue to the results (3.72) and (3.73) for the full sphere. We thus reoverEqs. (3.82)�(3.87) in their original form. The opposite limit of a single atom an beobtained as follows. If the sphere onsists of only very few atoms or a single atom,the interspae beomes very large in omparison to the sphere, R ≪ RC . Note thatthe single-atom result annot be obtained by simply setting R = 0 in the responsefuntions sine this ase orresponds to an empty avity and not to a single atomwith �nite polarizability. What we an do is to neglet the e�et of multiple satter-ing between the surfaes of sphere and avity for su�iently small R (R ≪ RC). Inthis ase, the polarizability (3.102) and magnetizability (3.103) redue to
α⋆
S+C = α⋆

C +
αS

ε⊙

(

3ε⊙
2ε⊙ + 1

)2

, (3.107)
β⋆
S+C = β⋆

C + βSµ⊙

(

3

2µ⊙ + 1

)2

. (3.108)Furthermore, if the sphere onsists of a single atom (say B) only, the Clausius�Mossotti laws [157℄
εS − 1

εS + 2
=

αB

3ε0V
,

µS − 1

µS + 2
=

µ0βB

3V
, (3.109)where V = (4π/3)R3 denotes the volume of the sphere, together with Eqs. (3.98) and(3.99), show that αS = αB and βS = βB.So far we have onsidered an atom in a avity interating with a seond atom. Tomake ontat with the real-avity model of the loal-�eld orreted atom, we haveto onsider a su�iently small avity radius RC , suh that multiple sattering at the
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3.3 Medium-assisted Casimir�Polder potential of spherial objetsouter surfae of the avity an be negleted. In this ase, we obtain
α⋆
S+Cε⊙ = αB

(

3εB
2εB + 1

)2

, (3.110)
β⋆
S+C

µ⊙
= βB

(

3

2µB + 1

)2

, (3.111)where the notation ε⊙ = εB, µ⊙ = µB has been introdued in aordane withSe. 3.1. Substituting these polarizabilities into Eqs. (3.82)�(3.87) leads to the loal-�eld orreted two-atom potentials (3.89), (3.84), (3.90), as expeted. For intermediateradii, our model provides a formula for the polarizability of the medium-embeddedsphere where the orret amount of loal-�eld orretion is automatially inluded.
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4 Dispersion fores on exitedsystemsSo far we have onsidered ground-state dispersion fores whih an be expressedas an integral over the full imaginary frequeny axis. Exited systems allow for amore �exible manipulation of dispersion fores beause they depend on the mediumproperties in a narrow frequeny region. By suitably hoosing the medium propertiesin this frequeny window, one an probe e�ets of left-handed metamaterials (LHM)or realize repulsive dispersion fores.In this hapter we investigate two on�gurations: Firstly, in Se. 4.1, we will studythe CP potential and the spontaneous deay of an exited atom in a planar mag-netoeletri metamaterial system and seondly, in Se. 4.2, we onsider the Casimirfore on a system of magnetoeletri bodies that is amplifying in a limited spae andfrequeny regime. Note that in this hapter we expliitly allow also for metalli bodiesand use the term magnetoeletri instead of magnetodieletri (as used in Chap. 3).4.1 Resonant Casimir�Polder potential of an exitedatomIn the following, we brie�y investigate the CP potential of an exited atom in frontof a magnetoeletri metamaterial half spae, as based on Ref. [AS3℄. In Se. 4.1.2,basing on Ref. [AS2℄, the same atom is plaed in a superlens-type geometry onsistingof a left-handed slab mounted on a perfet mirror.4.1.1 Disussion of planar metamaterialsConsider an exited atom prepared in an energy eigenstate |n〉 with (exited-state)polarizability αn, transition frequenies ωnk and eletri-dipole transition matrix el-ements dnk. The atom is plaed in a free-spae region in front of a magnetoeletri53



4 Dispersion fores on exited systemshalf spae of permittivity ε(ω) and permeability µ(ω) at distane zA ≥ 0 from theinterfae, where the oordinate system is hosen in the same way as in Se. 3.2. Rewrit-ing Eqs. (3.12) and (3.15) for real frequenies gives the required Green tensor in theform [AS2℄G (1)(zA, zA, ωnk) =
i

8π

∫ ∞

0

dk‖ k‖

k⊥ e2ik
⊥zA

×
[(

rs21 −
k⊥2c2

ω2
rp21

)

(exex + eyey) + 2
k‖2c2

ω2
nk

rp21ezez

]

, (4.1)with ε ≡ ε(ωnk), µ ≡ µ(ωnk) and the re�etion oe�ients being given by Eq. (3.13)with κ⊥
j 7→ k⊥

j , where
k⊥
j (ω) =

√

εj(ω)µj(ω)
ω2

c2
− k‖2 (4.2)again denotes the wave vetor perpendiular to the interfae. For onveniene, wewrite k⊥ ≡ k⊥

2 with ε2 = 1, µ2 = 1. Let us �rst brie�y disuss the sign of the squareroot of k⊥2
1 for passive metamaterials with

Im k⊥2
1 =

ω2

c2
(

Re ε1Imµ1 + Im ε1Reµ1

)

< 0. (4.3)Suh materials inlude ordinary materials as well as left-handed metamaterials with
Re ε1(ω) < 0 and Reµ1(ω) < 0 in the same frequeny regime. Waves inside anabsorbing medium should deay, i.e. we require Im k⊥

1 > 0. This implies that k⊥
1 liesin the seond quadrant of the omplex plane with the branh ut being along thepositive real axis. See also the remarks in Se. 4.1.2.In the following, we will restrit our attention to the resonant CP potential sineit usually dominates the nonresonant ontribution if the atom is exited. We writeEq. (2.55) in the form

Un(zA)(rA) = −µ0

∑

k<n

ω2
nk

(

Re G(1)
xx (zA, zA, ωnk)|d‖

nk|2 + ReG(1)
zz (rA, rA, ωnk)|d⊥

nk|2
)

,(4.4)with the Green tensor being given by Eq. (4.1) and the atomi dipole moment beingdeomposed as d‖
nk = ((dnk)x, (dnk)y, 0) and d⊥

nk = (0, 0, (dnk)z). We again study thelimits of short and long atom�surfae separations. In the nonretarded regime where
zAωnk/c≪ 1, we approximate k⊥ ≃ k⊥

1 ≃ ik‖, in whih ase the re�etion oe�ients
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4.1 Resonant Casimir�Polder potential of an exited atombeome independent of k⊥
j ,

rs21 =
µ− 1

µ+ 1
, rp21 =

ε− 1

ε+ 1
. (4.5)Carrying out the integral in (4.1) gives, to leading order in 1/zA,

Un(zA) = −
∑

k<n

|d‖
nk|2 + 2|d⊥

nk|2
32πε0z3A

|ε(ωnk)|2 − 1

|ε(ωnk) + 1|2 (4.6)unless the half spae is purely magneti, in whih ase the leading-order potentialreads
Un(zA) = −

∑

k<n

µ0ω
2
nk|d

‖
nk|2

16πzA

|µ(ωnk)|2 − 1

|µ(ωnk) + 1|2 . (4.7)To obtain the full nonretarded CP potentials, Eqs. (4.6) and (4.7) should be a-ompanied by their nonresonant ounterparts as given in Eqs. (3.24)�(3.26) with
ε2(iξ) = µ2(iξ) = 1 and α 7→ 1/4(αxx + αyy) + 1/2αzz to aount for a possibleanisotropy of the atoms. Note that in the ase of exited atoms the nonresonant in-teration ontains attrative as well as repulsive ontributions arising from upwardand downward atomi transitions, respetively. The potentials (4.6) and (4.7) revealthat lose to the surfae, the resonant CP potential is attrative for |ε(ωnk)| > 1but repulsive for metamaterials with |ε(ωnk)| < 1. In the ase of a purely magnetimetamaterial we �nd attration for |µ(ωnk)| < 1 and repulsion for |µ(ωnk)| > 1.In partiular, for weakly absorbing materials, the denominators get lose to zero atthe surfae plasmon resonanes where ε(ωnk) = µ(ωnk) ≃ −1, leading to a strongenhanement of the assoiated potentials.In the retarded regime, zAωnk/c ≫ 1, the main ontribution to the integral inEq. (4.1) is due to the stationary-phase point k‖ = 0, where the re�etion oe�ientsare approximated by

rs = −rp =
√

µ(ωnk)−
√

ε(ωnk)
√

µ(ωnk) +
√

ε(ωnk)
, (4.8)where the square roots √µ and √ε have to be hosen suh that their imaginary partis positive. After substituting Eq. (4.8) into Eq. (4.1), the integral an be arried out.Keeping only the leading order in c/(zAωnk), the retarded CP potential (4.4) takes
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4 Dispersion fores on exited systemsthe form
Un(zA) =

∑

k<n

µ0ω
2
nk|d

‖
nk|2

8πzA
Re

{

e2izAωnk/c

√

ε(ωnk)−
√

µ(ωnk)
√

ε(ωnk) +
√

µ(ωnk)

}

. (4.9)It an be seen that only dipole moments parallel to the surfae ontribute to theosillating term in Eq. (4.9), whih is due to the transverse harater of the wavesemitted by the atom. For a strongly eletri half spae we have rp ≃ 1 and thepotential (4.9) an be approximated by
Un(zA) =

∑

k<n

µ0ω
2
nk|d

‖
nk|2

8πzA
cos(2zAωnk/c), (4.10)whih is dominated by an osillating term of dereasing amplitude and period πc/ωnk.In ontrast, for a strongly magneti half spae, the potential has the same absolutevalue but arries opposite sign ompared to the eletri ase (4.10). Note that theorresponding nonresonant term (3.30) together with Eq. (3.31) is neglible due itsinverse power law of 1/z4A.In Fig. 4.1 we have onsidered a magnetoeletri half spae with di�erent signs for

Re ε and Reµ. The strongest osillations are seen in the ase of a metamaterial with
Re ε > 0 and Reµ < 0 suh that a repulsive barrier lose to the surfae forms. Theosillation amplitude is very weak for a left-handed material or an ordinary one with
Re ε,Reµ > 0. This is due to the vanishing of the re�etion oe�ients (4.8) for thehosen Re ε = Reµ. Note that the short-range attration is governed by the eletrimedium properties.4.1.2 Perfet lens geometryRelated to the disussion in Se. 4.1.1, we disuss the orret hoie of the refrativeindex n. To this end, onsider Fig. 4.2. From the requirement Re ε < 0 and Reµ < 0for a left-handed (absorbing) material, it immediately follows that also the squareof the refrative index n2 = εµ lies in the fourth quadrant. From the two possiblehoies for n (lying in the seond and fourth quadrant), one has to hose the one withthe positive imaginary part to aount for absorption. Thus, n must lie in the seondquadrant where Ren < 0.A left-handed material refrats inident light to negative angles aross the plane ofinidene [82℄. As was pointed out more than 10 years ago, a lossless slab of thikness
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4.1 Resonant Casimir�Polder potential of an exited atom
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4 Dispersion fores on exited systemsThe situation is skethed in Fig. 4.3 (a).Motivated by this superlens on�guration, we are interested in studying the CPpotential of a single atom in an equivalent geometry. To that end, we plae a per-fet mirror on the far end of the LHM slab. However, two things should be kept inmind: Firstly, it is not possible to fabriate a metamaterial being left-handed for allfrequenies; and seondly, every material is (at least weakly) absorbing. We will onlystudy the resonant fore omponent and put speial emphasis to aount for materialabsorption. Our setup as skethed in Fig. 4.3 (b) shows the layers 1,2,3 orrespondingto the perfetly onduting mirror, the LHM slab of thikness d and ε(ω) = −1 + iη,
µ(ω) = −1+ iη, and the free-spae region where the exited two-level atom is plaedin, respetively.
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Figure 4.3: Super-lens geometries: a) A lossless LHM slab generates a omplete and faithful imageof an objet plaed in one of the foal planes a distane of d/2 away from the slab. b) Atom infront of an absorbing LHM slab baked by a perfet mirror.The sattering part of the assoiated three-layer Green tensor at the relevant atomitransition frequeny and equal positions r= r′ = rA in the free-spae region is givenby [132℄ G (1)(zA, zA, ω10) =
i

8π2

∫

d2k‖ 1

k⊥

∑

σ=s,p

e+σ e
−
σ r

σ
3−e

2ik⊥zA , (4.11)
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4.1 Resonant Casimir�Polder potential of an exited atomwhere the re�etion oe�ients read
rs3− =

k⊥µ− k⊥
2 − e2ik

⊥
2 d(k⊥µ+ k⊥

2 )

k⊥µ+ k⊥
2 − e2ik

⊥
2 d(k⊥µ− k⊥

2 )
, rp3− =

k⊥ε− k⊥
2 − e2ik

⊥
2 d(k⊥ε+ k⊥

2 )

k⊥ε+ k⊥
2 − e2ik

⊥
2 d(k⊥ε− k⊥

2 )
, (4.12)with k⊥

j aording to Eq. (4.2). In Eq. (4.11), we introdue polar oordinates in the
(k

‖
x, k

‖
y)-plane,

ek‖ =







cos φ

sinφ

0






, e±s =







sin φ

− cosφ

0






, e±p =







∓k⊥c cosφ/ω10

∓k⊥c sinφ/ω10

k‖c/ω10






, ez =







0

0

1






,(4.13)where d2k‖ = k‖ dk‖ dφ. By using the identities

e+s e
−
s =







sin2 φ − sinφ cosφ 0

− sinφ cosφ cos2 φ 0

0 0 0






(4.14)and

e+p e
−
p =

c2

ω2
10







−k⊥2 cos2 φ −k⊥2 sin φ cosφ −k‖k⊥ cosφ

−k⊥2 sinφ cosφ −k⊥2 sin2 φ −k‖k⊥ cosφ

k‖k⊥ cosφ k‖k⊥ sin φ k‖2






, (4.15)we perform the angular integration over the dyadi produts,

∫ 2π

0

dφ e+s e
−
s = π







1 0 0

0 1 0

0 0 0






,

∫ 2π

0

dφ e+p e
−
p =

πc2

ω2
10







−k⊥2 0 0

0 −k⊥2 0

0 0 2k‖2






,(4.16)and obtain for the Green tensorG (1)(zA, zA, ω10) =

i

8π

∫ ∞

0

dk‖ k‖

k⊥ e2ik
⊥zA

×









rs3− − k⊥2c2

ω2
10

rp3− 0 0

0 rs3− − k⊥2c2

ω2
10

rp3− 0

0 0 2k‖2c2

ω2
10

rp3−









. (4.17)From Eq. (4.17) it an be seen that an atom with a dipole moment perpendiular
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4 Dispersion fores on exited systemsto the surfae is oupled to the p-polarized waves only, while an atom with a dipolemoment parallel to the surfae is oupled to both p- and s-polarized waves. In the fol-lowing, it will be instrutive to express k⊥ in Eq. (4.17) in terms of k‖ and deomposethe integral into two parts,
∫ ∞

0

dk‖ k‖

k⊥ e2ik
⊥zAf(k‖)=

∫
ω10
c

0

dk⊥ e2ik
⊥zAf

(
√

ω2
10

c2
− k⊥2

)

+
1

i

∫ ∞

0

dκe−2κzAf

(
√

ω2
10

c2
+ κ2

)

, (4.18)where κ⊥ = κ⊥(ω) =
√

k‖2 − ω2/c2 again being the imaginary part of the wavevetor omponent perpendiular to the surfae. The �rst integral, whih ontainsan osillating fator, results from propagating waves whereas the seond one, whihontains an exponentially deaying fator, results from evanesent waves.Let us �rst hypothetially assume that the left-handed slab is perfetly nonabsorb-ing with ε = µ = −1. In aordane with the Im k⊥
2 > 0 (reall the remarks inSe. 4.1.1) the wave vetor in the z-diretion in the left-handed slab is then given by

k⊥
2 =







−k⊥ for k‖ ≤ ω/c,

k⊥ for k‖ ≥ ω/c,
(4.19)whereas the re�etion oe�ients (4.12) simplify to

rs3− = −e−2ik⊥d, rp3− = e−2ik⊥d. (4.20)Note that for a nonabsorbing medium, the re�etion oe�ients are invariant undera hange k⊥
2 → −k⊥

2 , and hene the �nal result will not depend on the sign of thesquare root hosen for k⊥
2 .
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4.1 Resonant Casimir�Polder potential of an exited atomSubstitution of the re�etion oe�ients into the Green tensor (4.17) leads toG (1)(zA, zA, ω10) = −
i

8π

∫ ω10/c

0

dk⊥ e2ik
⊥(zA−d)

×







1 + k⊥2c2/ω2
10 0 0

0 1 + k⊥2c2/ω2
10 0

0 0 −2(1− k⊥2c2/ω2
10)







− 1

8π

∫ ∞

0

dκ⊥ e−2κ⊥(zA−d)







1− κ⊥2c2/ω2
10 0 0

0 1− κ⊥2c2/ω2
10 0

0 0 −2(1 + c2κ⊥2/ω2
10)






.(4.21)After alulating the two integrals, we obtain for zA > d

G(1)
xx (zA, zA, ω10) = G(1)

yy (zA, zA, ω10) =
ω10e

iz̃

4πcz̃3
(

1− iz̃ − z̃2
)

, (4.22)
G(1)

zz (zA, zA, ω10) =
ω10e

iz̃

2πcz̃3
(1− iz̃) (4.23)with the abbreviation z̃ = 2ω10(zA−d)/c. For zA > d, the resonant CP potential (4.4)for the hypotheti nonabsorbing superlens geometry then reads

U1(zA) = −µ0ω
2
10

ω10

4πcz̃3

[

(

cos(z̃) + z̃ sin(z̃)− z̃2 cos(z̃)
)

|d‖
10|2

+ 2 (cos(z̃) + z̃ sin(z̃)) |d⊥
10|2
]

for zA > d. (4.24)The potential is divergent in the limit zA → d, despite the absene of any physialsurfae at zA = d. Furthermore, one obtains a divergent potential for all 0 < zA ≤ das an be seen from the seond (purely real) integral in Eq. (4.21) whih tends tominus in�nity in this region. As will be shown below, this unphysial result is due tothe fat that absorption is negleted.The potential (4.24) exatly oinides with the on�guration in whih a perfetlyonduting mirror is plaed at z = d [158℄. To illustrate this, we onsider an imagedipole onstrution for an eletri dipole plaed at zA > d, f. Fig. 4.4. By means ofthe perfet negative refration taking plae at the vauum�LHM interfae ombinedwith the perfet re�etion of the mirror we �nd the image dipole to be situated at
z⋆A = d−(zA−d). The same image would be obtained if a perfetly onduting mirrorwere plaed in the foal plane, at z = d, thus hiding the superlens from the atom. In61



4 Dispersion fores on exited systemsthis ase, one would expet a strongly attrative potential as the atom approahesthe mirror whih diverges for zA → d.
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4.1 Resonant Casimir�Polder potential of an exited atom
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4 Dispersion fores on exited systems

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9  10

PSfrag replaements
zAω10/c

U
8
π
c/
(µ

0
ω
3 1
0
|d

⊥ 1
0
|2 )

Re ε = Reµ = 1
Re ε = 1,Reµ = −1
Re ε = −1,Reµ = 1
Re ε = Reµ = −1

Figure 4.6: Resonant CP potential of an exited two-level atom in front of a metamaterial slab ofthikness d = 5c/ω10 with a perfet mirror at its far end. The atomi dipole moment is orientedperpendiular to the surfae and we have assumed Imǫ = Imµ = 10−4. The vertial line indiatesthe position of the foal plane.barrier at distanes zAω10/c . 1 as an additional feature. This arises for a transi-tion dipole moment parallel to the surfae and small (but nonvanishing) amounts ofmedium absorption, 10−4 . η . 10−3. The fat that barriers our only for a tran-sition dipole moment parallel to the surfae, but not for those perpendiular to thesurfae, suggests that s-polarized waves, whih are oupled to the �rst but not thelatter, play an important role in their formation. In ontrast, for su�iently weakabsorption [η = 10−5 in Fig. 4.5 (upper) and η = 10−3, 10−4, 10−5 in Fig. 4.5 (lower)℄,an attrative potential starts to appear at distanes of a few wavelengths away fromthe surfae. Atoms loated within this range will get adsorbed to the surfae. Thisbehavior is more pronouned for a transition dipole moment perpendiular to thesurfae.Let us now investigate the in�uene of the slab thikness on the CP potentialas illustrated in Fig. 4.7. As the slab thikness inreases, a potential barrier arisesand grows in height for a dipole moment parallel to the surfae. However, at somethreshold value of d, the height of the barrier starts to be redued, and the barriereventually disappears when the slab is too thik. This an be explained as resulting
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4.1 Resonant Casimir�Polder potential of an exited atom
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4 Dispersion fores on exited systemsa relatively strong attrative potential an our inrease with the slab thikness.Further insight into how the appearane of the barrier depends on the amount ofabsorption, the orientation of the atomi dipole moment as well as the thikness ofthe LHM slab an be gained by examining the CP potential in the near-surfae limit.Near the surfae, for zAω10/c ≪ 1, the evanesent waves dominate the potential,as given by the seond integral in Eq. (4.18). Again, the main ontribution to the
k‖-integral omes from values k‖ ≫ ω10/c and k‖ ≫

√

|εµ|ω10/c in whih ase thenonretarded potential reads
U(zA) = −

ω2
10µ0

8π

∫ ∞

0

dk‖ e−2k‖zA

[(

Re rs3−+
k‖2c2

ω2
10

Re rp3−

)

|d‖
10|2+

2k‖2c2

ω2
10

Re rp3−|d⊥
10|2
](4.25)where

Re rp3− =
(|ε|2 − 1)

(

1 + e−4k‖d
)

+ (|ε−1|2 + |ε+1|2) e−2k‖d

∣

∣ε+ 1 + (ε− 1)e−2k‖d
∣

∣

2 , (4.26)
Re rs3−=

(|µ|2 − 1)
(

1 + e−4k‖d
)

− (|µ− 1|2 + |µ+ 1|2) e−2k‖d

∣

∣µ+ 1− (µ− 1)e−2k‖d
∣

∣

2 . (4.27)When
ε ≃ −1 and µ ≃ −1, (4.28)the �rst terms in Eqs. (4.26) and (4.27) approximately vanish, thus

Re rp3− ≃
(|ε− 1|2 + |ε+ 1|2) e−2k‖d

∣

∣ε+ 1 + (ε− 1)e−2k‖d
∣

∣

2 , (4.29)
Re rs3− ≃ −

(|µ− 1|2 + |µ+ 1|2) e−2k‖d

∣

∣µ+ 1− (µ− 1)e−2k‖d
∣

∣

2 , (4.30)where the opposite signs imply that the two polarizations give ompeting ontribu-tions to the potential. Namely, the p-polarized waves give rise to attrative ontribu-tions to the potential while the s-polarized waves lead to repulsive ones. Very lose tothe surfae, due to the presene of the k‖2 fator [see Eq. (4.25)℄, the ontribution tothe potential of the p-polarized waves is proportional to 1/z3A while the ontributionof the s-polarized waves is proportional to 1/zA. The ontribution of the p-polarizedwaves hene dominates, resulting in an attrative potential (also see Figs. 4.5 and 4.7).At some distane from the surfae, the ontribution of the s-polarized waves an dom-inate under appropriate onditions, whih then leads to the appearane of a potential
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4.1 Resonant Casimir�Polder potential of an exited atombarrier. This also explains the absene of the barrier in the ase where the dipolemoment is perpendiular to the surfae.Equation (4.27) also allows us to understand the in�uene of the thikness of theLHM slab. It shows that the magnitude of |Re rs3−| is about 1 for d→ 0 (slab absent),and is typially determined by a e2k
‖d term otherwise. Therefore, the presene of theslab is ruial for the appearane of a potential barrier. When the slab is very thik,the in�uene of the mirror vanishes, e−2k‖d → 0 [f. Eqs. (4.26) and (4.27)℄, and it isnot di�ult to verify that Eq. (4.25) reprodues the result for the resonant part ofthe potential of an exited atom in front of an interfae as given by Eq. 4.6.It should be pointed out, that the appearane of the potential barrier is not atrue superlens e�et; it an easily be reated with other, right-handed, materials[f. Eqs. (4.6) and Eqs. (4.7)℄. Further, we reall that potential barriers may also bereated in planar ground-state systems as explained in Se. 3.2, but are generallymuh more pronouned in the ase of exited atoms. For instane, the peaks of thepotentials for the superlens geometry (Fig. 4.5) are at least 4 orders of magnitudelarger than those given in Se. 3.2 onerning the potential of a ground-state atom.Let us �nally omment on the appliability of the results presented in this setion.In order to observe the predited e�ets, potential barriers and foal-plane enhane-ment, one has to ensure that both the atomi transition wavelength and the atom�surfae separation are larger than the length sale of the elementary building bloksof the metamaterial. With urrently available metamaterials, this may be ahievedwith polar moleules whose rotational and vibrational transition wavelengths an bevery large. It should also be stressed that in the examples onsidered, metamaterialswith very small absorption have been assumed. However, suh metamaterials are nowwithin the reah of today's experimental tehniques [97℄. Note, that our results arevalid as long as the atom remains in its initial exited state, i.e., on time sales thatare short ompared to those of spontaneous deay. An impressive example is the �rstexited, metastable state of helium whih has a life time of up to 8000 s [159℄.4.1.3 Spontaneous deay revisitedThe superlens setup has also been disussed in the ontext of spontaneous emission.In Refs. [160, 161℄, it has been reported that for an exited atom plaed in the foalplane, zA = d, spontaneous emission is ompletely suppressed for a dipole momentparallel to the surfae, while the deay rate is enhaned by a fator of two for a dipolemoment perpendiular to the surfae. These results, however, have been obtained67



4 Dispersion fores on exited systemsunder the assumption of a lossless LHM slab. In light of our �ndings for the CPpotential, we should arefully examine whether these idealized results are an appro-priate approximation to the more realisti ase of a weakly absorbing LHM slab. Inpartiular, it an be expeted that absorption gives rise to nonradiative deay.Whereas the resonant CP potential depends on the real part of the Green tensor,the rate of spontaneous deay is determined by its imaginary part. From Eq. (4.21)for the Green tensor of the ompletely nonabsorbing setup, it an be seen that theontributions from evanesent waves, whih give rise to divergenes in the region
zA ≤ d, are purely real and thus do not ontribute to the deay rate. The deay rateis thus expressed in terms of traveling-wave ontributions.For a two-level atom, we write the the deay rate Γ ≡ Γ1, Eq. (2.47), in the form

Γ

Γvac

= 1 +
6πc

ω10|d10|2
Im
[

G(1)
xx |d

‖
10|2 +G(1)

zz |d⊥
10|2
]

, (4.31)where Γvac is the free-spae deay rate,
Γvac =

1

3πε0~c3
ω3
10|d10|2. (4.32)Let us �rst assume an absolutely nonabsorbing LHM having ε(ω10) = µ(ω10) = −1again. From Eqs. (4.22) and (4.23) we obtain

ImG(1)
xx =

ω10

4πcz̃3
[

sin(z̃)− z̃ cos(z̃)− z̃2 sin(z̃)
]

, (4.33)
ImG(1)

zz =
ω10

2πcz̃3
[sin(z̃)− z̃ cos(z̃)] (4.34)whih formally hold for any atom�surfae distane, inluding the region to the leftof the foal plane. In partiular, ImG

(1)
xx and ImG

(1)
zz are even funtions of z̃ =

2(zA − d )ω10/c and �nite at the surfae. It is not di�ult to see that for zA = d,Eq. (4.31) together with Eqs. (4.33) and (4.34) implies omplete inhibition of sponta-neous deay, Γ = 0, for a dipole moment oriented parallel to the surfae, and enhane-ment of spontaneous deay, Γ = 2Γvac, for a dipole moment oriented perpendiularlyto the surfae [160℄.To aount for material absorption, we perform the alulations on the basis ofthe exat (sattering part of the) Green tensor as given in Eq. (4.17) together withEqs. (4.12). Numerial examples are given in Fig. 4.8, where the ase of zero ab-sorption, in aordane with Eqs. (4.31)�(4.34), is also shown in order to failitate
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4.1 Resonant Casimir�Polder potential of an exited atomomparison. We see that in the ase of stritly zero absorption, the deay rate asa funtion of the atomi position zA > 0 is symmetri with respet to the position
zA = d. Any absorption destroys this symmetry. As a result, large enhanement of thespontaneous deay an be observed when the atom is near the LHM surfae, whih isobviously due to the absorption-assisted atomi oupling to evanesent waves. This ef-fet implies qualitatively new distane dependenes, as will be on�rmed in Eq. (4.38)below. Note that the enhaned spontaneous deay near a surfae is well known for or-dinary materials (see e.g. Ref. [162℄). Our result is also onsistent with those reportedin Ref. [163℄, where it has been pointed out that the inhibition of spontaneous deayan be weakened due to nonradiative deay at short distanes and due to radiativedeay at large distanes.We �nd that for distanes zA ≤ d, the presene of absorption drastially hangesthe spontaneous deay rate suh that Eq. (4.31) together with Eqs. (4.33) and (4.34)an not be regarded as an aeptable approximation to the spontaneous deay rate inthe ase of small absorption. As similar failure of the zero-absorption limit has beenfound for the CP potential.To further eluidate the in�uene of the evanesent waves, let us examine the near-surfae limit of the rate of spontaneous deay. By using approximations similar tothose in Se. 4.1.2, it an be shown that for zAω10/c≪ 1,

Γ

Γvac
= 1 +

3c

4ω10|d10|2
∫ ∞

0

dk‖ e−2k‖zA

×
[(

Im rs3− +
k‖2c2

ω2
10

Im rp3−

)

|d‖
10|2 +

2k‖2c2

ω2
10

Im rp3−|d⊥
10|2
]

, (4.35)where
Im rs3− =

2Imµ(1− e−4k‖d)

|µ+ 1− (µ− 1)e−2k‖d|2
, (4.36)

Im rp3− =
2 Im ε

(

1− e−4k‖d
)

|ε+ 1− (ε− 1)e−2k‖d|2
. (4.37)Unlike the real parts [f. Eqs. (4.26) and (4.27)℄, the imaginary parts of rs3− and rp3−have the same (positive) sign. The two polarizations therefore ontribute onstru-tively to the spontaneous deay rate. If the slab beomes su�iently thik, Eq. (4.35)
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4 Dispersion fores on exited systems
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Figure 4.8: Atom�surfae distane dependene of the deay rate of an exited two-level atom in thesetup in Fig. 4.3 for ε = µ = −1 + iη, d = 5c/ω10 and dipole moment parallel (upper urve) andperpendiular (lower) to the surfae. The vertial line indiates the position of the foal plane.redues to leading order to
Γ

Γvac
= 1 +

3c3
(

|d‖
10|2 + 2|d⊥

10|2
)

8ω3
10|d10|2z3A

Im ε

|ε+ 1|2 . (4.38)70



4.2 Casimir fore on an amplifying bodyEquation (4.38) shows that the deay rate takes on large values as zA → 0, whih isa onsequene of the diret energy transfer from the atom to the onstituents of themedium (see e.g., Ref. [162℄).4.2 Casimir fore on an amplifying bodySo far we have studied the nonresonant and resonant CP interation in planar andspherial systems. In this setion, we fous on Casimir fores between bodies whereampli�ation in the sense of Eq. (2.1) is present in limited spae and frequeny regions.In Se. 4.2.1, we will introdue the Casimir fore, in lose analogy to the CP fore, asthe quantum-average Lorentz fore ating on the internal harge and urrent densities.Firstly, we will study an arbitrary system without speifying the Green tensor ofthe geometry. Seondly, we will investigate the Casimir fore between a partiallyamplifying plate and an eletri half spae (Se. 4.2.2). The results in this setion arebased on Refs. [AS5,AS6℄.4.2.1 Arbitrary geometryLet us onsider an arbitrary arrangement of linearly responding magnetoeletri bod-ies desribed by the permittivity ε(r, ω) and permeability µ(r, ω).Volume-fore formulationThe (zero-temperature) Casimir fore on one of these bodies with volume V an befound by alulating the quantum-average Lorentz fore with respet to the quasi-stationary state |{0}〉 as introdued in Chap. 2,
F =

∫

V

d3r

∫ ∞

0

〈
{

0
}

|ρ̂(r)Ê(r′) + ĵ(r)× B̂(r′)|
{

0
}

〉r′→r. (4.39)The oinidene limit r′ → r has to be performed in suh a way that divergentself-fores are disarded. We will return to this point later.As a �rst step, we reall the expression of the noise urrent density (2.26) togetherwith the ondutivity tensor (2.12) and the ommutation relations (2.27) and verify
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4 Dispersion fores on exited systemsthat
〈̂j

N
(r, ω)̂j

N
(r′, ω′)〉 = 0 = 〈̂j†

N
(r, ω)̂j

†
N
(r′, ω′)〉, (4.40)

〈̂j
N
(r, ω)̂j

†
N
(r′, ω′)〉 = ~ω

π
δ(ω − ω′)

∑

λ=e,m

ReQλ(r, r
′, ω)Θ[κλ(r, ω)], (4.41)

〈̂j†
N
(r, ω)̂j

N
(r′, ω′)〉 = −~ω

π
δ(ω − ω′)

∑

λ=e,m

ReQλ(r, r
′, ω)Θ[−κλ(r, ω)]. (4.42)Note that, if no intervening symbol between two vetors is given, the dyadi produtis meant. Combining these results with the �eld expansion (2.16) as well as Eq. (2.31),together with Eq. (2.8), we �nd the expressions

〈ρ̂(r, ω)Ê(r′, ω′)〉 = 0 = 〈ρ̂†(r, ω)Ê†
(r′, ω′)〉, (4.43)

〈ρ̂(r, ω)Ê†
(r′, ω′)〉 = ~

π

ω2

c2
δ(ω − ω′)µ0ω

∑

λ=e,m

∫

d3s

∫

d3s′Θ[κλ(s, ω)]

×∇ ·G(r, s, ω) · ReQλ(s, s
′, ω) ·G ∗(s′, r′, ω), (4.44)

〈ρ̂†(r, ω)Ê(r′, ω′)〉 =− ~

π

ω2

c2
δ(ω − ω′)µ0ω

∑

λ=e,m

∫

d3s

∫

d3s′Θ[−κλ(s, ω)]

×∇ ·G ∗(r, s, ω) · ReQλ(s, s
′, ω) ·G (s′, r′, ω). (4.45)To alulate the seond term in Eq. (4.39), we reall Eqs. (2.17) and (2.30) togetherwith Eq. (2.8) and use the vetor identity,

a× b = −tr(I × ab), (4.46)where we have introdued the notation [trT ]i = Tkik. We eventually arrive at theexpressions
〈̂j(r, ω)× B̂(r′, ω′)〉 = 0 = 〈̂j†(r, ω)× B̂

†
(r′, ω′)〉, (4.47)

〈̂j(r, ω)× B̂
†
(r′, ω′)〉 = ~

π
δ(ω − ω′)µ0ω

∑

λ=e,m

∫

d3s

∫

d3s′Θ[κλ(s, ω)]

× tr

[I × (∇×∇×−ω2

c2

)G(r, s, ω) · ReQλ(s, s
′, ω) ·G ∗(s′, r′, ω)×←−∇′

] (4.48)
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4.2 Casimir fore on an amplifying bodyand
〈̂j†(r, ω)× B̂(r′, ω′)〉 = −~

π
δ(ω − ω′)µ0ω

∑

λ=e,m

∫

d3s

∫

d3s′Θ[−κλ(s, ω)]

× tr

[I × (∇×∇×−ω2

c2

)G ∗(r, s, ω) · ReQλ(s, s
′, ω) ·G(s′, r′, ω)×←−∇′

]

. (4.49)We now apply the identity
Θ[κλ(s, ω)] = 1−Θ[−κλ(s, ω)] (4.50)to Eqs. (4.44) and (4.48) and ombine the terms proportional to Θ[−κλ(s, ω)] withEqs. (4.45) and (4.49). For the parts inluding the whole frequeny integration, we usethe integral relation (2.24). As a result, we obtain the Casimir fore in the form [AS6℄

F = Fres + Fnres (4.51)with
Fnres =

~

π

∫

V

d3r

∫ ∞

0

dω

{

ω2

c2
∇ · ImG(r, r′, ω)

+ tr

[I × (∇×∇×−ω
2

c2

)

ImG(r, r′, ω)×←−∇′
]}

r′→r

(4.52)and
Fres = −2~µ0

π

∫

V

d3r

∫ ∞

0

dωω
∑

λ=e,m

∫

d3s

∫

d3s′Θ[−κλ(s, ω)]

× Re

{

ω2

c2
∇ ·G(r, s, ω) ·ReQλ(s, s

′, ω) ·G ∗(s′, r′, ω)

+ tr

[I ×(∇×∇×−ω2

c2

)G(r, s, ω) · ReQλ(s, s
′, ω) ·G ∗(s′, r′, ω)×←−∇′

]}

r′→r

.(4.53)Reall that in Eq. (4.52), we have to remove self-fores before taking the oinidenelimit r′ → r. These unphysial divergent self-fores arise from the fat that the eletri�eld at r inside the body, originating from a soure point r′ inside the same volumeelement, ontains bak-reations onto itself in the oinidene limit, as expressed viaG (r, r, ω). For a homogeneous body we an remove suh terms by simply replaing
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4 Dispersion fores on exited systemsG with its sattering ounter part G (1)(r, r′, ω) and disarding the bulk ontribu-tion [105℄. Similarly, if the body is inhomogeneous we an remove the orrespondingbulk tensor for eah small homogeneous region inside the inhomogeneous body. Theidenti�ation of self fores in the resonant fore term (4.53) is not so straightforwardsine the arguments of the appearing Green tensors G(r, s, ω) and G ∗(s′, r′, ω) donot lie in the same layer. If self-fores are present they an, however, be found byalulating the fore on the body in the absene of any other matter. A physiallyreasonable Casimir fore should vanish in this situation, any terms that survive anbe regarded as self-fores and should therefore be disarded.Equations (4.52) and (4.53) represent general expressions for the Casimir fore at-ing on a linearly polarizable and magnetizable body of arbitrary shape in an arbitraryenvironment (of additional bodies or media), where the body under onsideration orthose forming the environment, or both may be amplifying. The term Fnres is a purelynonresonant ontribution to the fore. However, although looking formally like theCasimir fore for purely absorbing bodies [105℄, the frequeny response is di�erent ifampli�ation is present. The resonant term Fres is a new term whih, as evident fromthe fators Θ[−εI(s, ω)], Θ[−µI(s, ω)], only arises in the presene of ampli�ation.It depends on the ampli�ation-assisted frequenies inside the body whih indiatesthat it is onneted to spontaneous deay and real-photon emission proesses.For onveniene, we express the nonresonant fore (4.52) in terms of the ondu-tivity tensor. To that end, we apply the identities
(

∇ × ∇ × −ω
2

c2

)

ImG (1)(r, r′, ω) = µ0ωRe

∫

d3sQ(r, s, ω) · G(s, r′, ω) (4.54)and
∇ · ImG (1)(r, r′, ω) = − 1

ε0ω
Re∇ ·

∫

d3sQ(r, s, ω) ·G(s, r′, ω), (4.55)where the �rst identity follows diretly from the di�erential equation (2.20), and forthe seond one, we have also used the fat that the divergene of a url vanishes.Hene we write the nonresonant fore in the form
Fnres =

~µ0

π

∫

V

d3rRe

∫ ∞

0

dωω
[

∇
′ tr

∫

d3sQ(r, s, ω) ·G (s, r′, ω)

− (∇+∇
′) ·
∫

d3sQ(r, s, ω) ·G (s, r′, ω)
]

r′→r

, (4.56)
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4.2 Casimir fore on an amplifying bodywhere we have applied the general tensor identity
tr
[I ×T (r, r′, ω)×←−∇′] = ∇

′trT (r, r′, ω)−∇
′ ·T (r, r′, ω). (4.57)The seond term in Eq. (4.56) an be onverted to a vanishing surfae integral for abody in free spae. It is instrutive to write out the ondutivity tensor in terms ofthe eletri and magneti suseptibilities of the body, ε(r, ω) − 1 and 1 − 1/µ(r, ω),with r ∈ V [reall Eqs. (2.12)�(2.14)℄,

Fnres =
~

2π

∫

V

d3rIm

∫ ∞

0

dω

(

ω2

c2
[ε(r, ω)− 1]∇trG (1)(r, r, ω)

−∇

{[

1− 1

µ(r, ω)

]

tr
[

∇× G (1)(r, r′, ω)×←−∇′
]

r′→r

}

)

, (4.58)where we have used the symmetry property of the Green tensor (2.23), whih implies
[

∇
′trG (1)(r, r′, ω)

]

r′→r

=
1

2
∇tr

[G (1)(r, r′, ω)
]

r′→r

. (4.59)Equation (4.58) an be more onveniently written as an integral over imaginary fre-quenies. To that end, we write ImG (1) = (G (1) − G (1)∗)/(2i) and use the Shwartzre�etion priniple (2.22),
∫ ∞

0

dωIm f(ω) =
1

2i

∫ ∞

0

dωf(ω)− 1

2i

∫ 0

−∞
dωf(ω), (4.60)where f(ω) denotes the integrand in Eq. (4.52). Reall the analytiity of the Greentensor as well as that of the permittivity and the permeability in the upper half of theomplex frequeny plane (inluding the real axis). On exploiting the small-frequenybehavior of the Green tensor, Eq. (2.25), we an apply Cauhy's theorem. It impliesthat any losed-ontour integral in the upper ω half-plane must vanish. Thus, thetwo integrals over the real frequeny axis in Eq. (4.60) an be rewritten in terms ofan integral over the positive imaginary axis and an integral over an in�nite quarter-irle in the �rst [�rst integral in Eq. (4.60)℄ or seond quadrant [seond integralin Eq. (4.60)℄. Sine the integrals over the quarter-irles vanish due to the high-frequeny limit of G (1), Eq. (2.25), the fore (4.52) an �nally be transformed to an
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4 Dispersion fores on exited systemsintegral over purely imaginary frequenies,
Fnres = − ~

2π

∫

V

d3r

∫ ∞

0

dξ

(

ξ2

c2
[ε(r, iξ)− 1]∇trG (1)(r, r, iξ)

−∇

{[

1− 1

µ(r, iξ)

]

tr
[

∇×G (1)(r, r′, iξ)×←−∇′
]

r′→r

}

)

. (4.61)Contat to Casimir�Polder foresTo get more insight, we establish a relation between the Casimir fore on an amplifyingbody aording to (4.51), (4.61) and (4.53) and the CP fore on an exited atom. Tothat end, we onsider the Casimir fore on an optially dilute amplifying body ofvolume V plaed in a free-spae region in an environment of purely absorbing bodies.We onsider �rst the nonresonant ontribution and make use of the fat that theamplifying body is assumed to be optially dilute by expanding the result (4.61) toleading, linear order in the suseptibilities ε(r, ω)− 1 and 1− 1/µ(r, ω) where r ∈ V .Sine these suseptibilities already expliitly appear as fators in the above expression,the Green tensors have to be expanded to zeroth order in these funtions. In otherwords, we have to replae G (1) with the Green tensor G (1) of the system in the abseneof the amplifying body, whih is the solution to the Helmholtz equation (2.20) with
ε(r, ω), µ(r, ω) =







ε(r, ω), µ(r, ω) for r /∈ V,

1 for r ∈ V
(4.62)in plae of ε(r, ω) and µ(r, ω).Let us assume that the amplifying body onsists of a dilute medium of isotropiatoms in an exited state |n〉, transition frequenies ωnk, polarizability αn and magne-tizability βn [reall Eqs. (2.54), (2.62)℄. The eletri and magneti suseptibilities ofthe body are related to the atomi polarizability and magnetizability via the linearizedClausius�Mossotti laws

ε(ω)− 1 =
ηαn(ω)

ε0
, 1− 1

µ(ω)
= µ0ηβn(ω), (4.63)where η denotes the atomi number density. Thus we �nally obtain

Fnres = −
∫

d3rη∇Unres
n (r) (4.64)where Unres

n is the ombination of eletri and the magneti CP potential as given by76



4.2 Casimir fore on an amplifying bodyEqs. (2.53) and (2.63):
Unres
n (r) =

~µ0

2π

∫ ∞

0

dξ
{

ξ2αn(iξ)trG (1)
(r, r, iξ)

+ βn(iξ)tr
[

∇× G (1)
(r, r, iξ)×←−∇′]

r′→r

}

. (4.65)The nonresonant Casimir fore on an optially dilute amplifying body is hene asummation over the respetive nonresonant CP fores on the exited atoms the bodyonsists of. However, there is one important di�erene to the ase of the fore onan absorbing objet whih onsists of ground-state atoms: While for ground-stateatoms the frequenies ωkn in Eqs. (2.54) and (2.62) are positive so that all (virtual)transitions ontribute to the nonresonant CP potential with the same sign, upwardas well as downward transitions are possible for exited atoms, so that positive andnegative ωkn our. In partiular for a two-level atom, the nonresonant CP fore forthe atom in its exited state is exatly opposite to the respetive ground-state fore.Let us next onsider the resonant Casimir fore Fres, whih is only present for anamplifying body, by following essentially the same steps as for the nonresonant fore.We �rst reall that the real parts of the ondutivity tensor ontributions read
ReQe(r, r

′, ω) = ε0ωεI(r, ω)δ(r− r′)I , (4.66)
ReQm(r, r

′, ω) =− 1

µ0ω
∇× µI(r, ω)

|µI(r, ω)|2
δ(r− r′)I ×←−∇′, (4.67)where the (imaginary parts of the) suseptibilities of the amplifying body are alreadyexpliitly present at this stage. A linear approximation in these suseptibilities inEq. (4.53) an hene be obtained by using the zeroth-order identities

(

∇×∇×−ω
2

c2

)G (r, r′, ω) = I δ(r− r′), (4.68)
ω2

c2
∇ ·G(r, r′, ω) = −∇δ(r − r′), (4.69)as following from Eq. (2.20), and replaing G ∗ with G ∗. Expanding the result withthe aid of Eqs. (4.57) and disarding terms involving total divergenes for a body in
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4 Dispersion fores on exited systemsfree spae, we �nd
Fres = −~

π

∫

V

d3r

∫ ∞

0

dω

{

Θ[−εI(r, ω)]
ω2

c2
εI(r, ω)∇trReG (1)(r, r, ω)

−Θ[−µI(r, ω)]
µI(r, ω)

|µ(r, ω)|2∇tr
[

∇×ReG (1)(r, r′, ω)×←−∇′]
r′→r

} (4.70)where we again have performed the oinidene limit by replaing the Green tensorwith its sattering part.Relating εI and µI to the polarizability and magnetizability of the atoms by meansof the Clausius�Mossotti relation (4.63), we �nally obtain
Fres = −

∫

d3rη∇U res
n (r), (4.71)where

U res
n (r) =

~µ0

π

∫ ∞

0

dω

{

Θ[−Imαn(ω)]Imαn(ω)ω
2trReG (1)(r, r, ω)

−Θ[−Im βn(ω)]Im βn(ω)tr
[

∇×ReG (1)(r, r′, ω)×←−∇′]
r′→r

} (4.72)is the resonant part of the CP potential of the exited atoms ontained in the body.By means of the identity
lim
ǫ→0

1/(x+ iǫ) = P/x− iπδ(x), (4.73)where P denotes the prinipal value, the imaginary parts of polarizability and mag-netizability, as given by Eqs. (2.54) and (2.62), an be written in the form
αI(ω) =

π

3~

∑

k

|dnk|2[δ(ω + ωnk)− δ(ω − ωnk)], (4.74)
βI(ω) =

π

3~

∑

k

|mnk|2[δ(ω + ωnk)− δ(ω − ωnk)]. (4.75)Hene, the resonant CP potential an be derived to be
U res
n (r) = −µ0

3

∑

k

Θ(ωnk)
{

ω2
nk|dnk|2trReG(1)(r, r, ωnk)

− |mnk|2tr
[

∇×ReG (1)(r, r, ω)×←−∇′]
r′→r

}

. (4.76)
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4.2 Casimir fore on an amplifying bodyThe potential (4.76) generalizes previous results for purely eletri atoms [113℄, asgiven in Eq. (2.55), to the magnetoeletri ase. The resonant part of the CP potentialis assoiated with real, energy-onserving transitions of the exited atom to lowerstates. As expeted, the resonant part of the CP potential of an exited atom in freespae is duality-invariant, just like the nonresonant part [136℄.Combining our results (4.64) and (4.71), in aordane with Eq. (4.51), we haveshown that the Casimir fore on an optially dilute, homogeneous, amplifying mag-netoeletri body is the sum of the CP fores on the exited atoms ontained init,
F = −

∫

d3rη∇Un(r). (4.77)This result generalizes similar �ndings for purely absorbing bodies (onsisting ofground-state atoms) [9, 10, 154, 164℄ to the amplifying ase. In addition, our alu-lation has rendered expliit expressions for the free-spae CP potential of exitedmagnetoeletri atoms in the presene of an arbitrary arrangement of absorbing bod-ies,
Un(r) = Unres

n (r) + U res
n (r), (4.78)with Unres

n and U res
n being given by Eqs. (4.65) and (4.76), respetively. In this dilute-medium limit, the nonresonant and resonant omponents of the Casimir fore (4.52)and (4.53) are diretly related to the respetive CP potential omponents whih inturn are assoiated with virtual and real transitions of the atoms. The most importantdi�erene between fores on ground-state versus exited atoms is the ontributionfrom possible real transitions only present for exited atoms, whih manifests itselfas the resonant ontribution (4.53) of the Casimir fore. Note that the establisheddiret relation between Casimir fores and single-atom CP fores is only valid fordilute media, while for bodies with stronger magnetoeletri properties, many-atominterations begin to play a role and lead to a breakdown of additivity (see e.g.,Refs. [9, 154℄).Stress tensor approahFor bodies with simple surfaes, it is onvenient to transform the volume integral(4.39) into a surfae integral over the outer boundaries of the bodies. We rewrite theLorentz fore density in the form [105℄

f(r) = ρ̂(r)Ê(r) + ĵ(r)× B̂(r) = ∇T (r)− ε0
∂

∂t

[

Ê(r)× B̂(r)
]

, (4.79)79



4 Dispersion fores on exited systemswhere we have introdued the symmetri Maxwell's stress tensorT (r) = lim
r′→r

T (r, r′) = ε0 〈{0}| Ê(r)Ê(r′) |{0}〉+ µ−1
0 〈{0}| B̂(r)B̂(r′) |{0}〉

− 1

2

(

ε0 〈{0}| Ê(r) · Ê(r′) |{0}〉+ µ−1
0 〈{0}| B̂(r) · B̂(r′) |{0}〉

)I . (4.80)Note that in other referenes the Abraham�Minkowski's stress tensor is used [106�108℄, whih is not onsistent with the Lorentz-fore formulation [165℄. The two pro-posed approahes, however, Maxwell versus Abraham-Minkowski's stress tensor, o-inide if the body under onsideration is plaed in a free-spae region [105℄. Forveloity-independent systems, the Casimir fore redues to a surfae integral over thestress tensor
F =

∫

∂V

da ·T (r). (4.81)Let us now alulate the �eld orrelation funtions appearing in the stress tensor.The orrelation funtions of the eletri �eld an be obtained by ombining Eqs. (2.16)and (4.41)�(4.42),
〈0|Ê(r)Ê(r′)|0〉 = ~

πε0

∫ ∞

0

dω
ω2

c2
ImG(r, r′, ω)− 2

~

πε0

∫

d3s

∫ ∞

0

dω
ω2

c2
µ0ω

×
∑

λ=e,m

∫

d3s′Re
[G(r, s, ω) ·ReQλ(s, s

′, ω) ·G ∗(s, r′, ω)
]

Θ[−Imκλ(s, ω)], (4.82)where we have again used the identity Θ(x) + Θ(−x) = 1 together with the integralrelation (2.24). For a purely eletri system, Eq. (4.82) takes the form
〈0|Ê(r)Ê(r′)|0〉 = − ~

πε0

∫ ∞

0

dξ
ξ2

c2
G (r, r′, iξ)− 2

~

πε0

∫

d3s

∫ ∞

0

dω
ω4

c4
Im ε(s, ω)

× Re[G (r, s, ω) ·G ∗(s, r′, ω)]Θ[−εI(s, ω)], (4.83)where we have already expressed the �rst term as an integral over imaginary frequen-ies in the familiar manner. In a similar way, by means of Eqs. (2.17), (4.41)�(4.42)
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4.2 Casimir fore on an amplifying bodyand (2.24), we obtain
〈0|B̂(r)B̂(r′)|0〉 = − ~

πε0

∫ ∞

0

dω
1

c2
∇× ImG(r, r′, ω)×←−∇′−2

~

πε0

∫

d3s

∫ ∞

0

dω
µ0ω

c2

×
∑

λ=e,m

∫

d3s′Re[∇×G (r, s, ω) ·ReQλ(s, s
′, ω) ·G∗(s′, r′, ω)×←−∇′]Θ[−Imκλ(s, ω)],(4.84)whih for a purely eletri system redues to

〈0|B̂(r)B̂(r′)|0〉 = −~µ0

π

∫ ∞

0

dξ∇×G(r, r′, iξ)×←−∇′−2~µ0

π

∫

d3s

∫ ∞

0

dω
ω2

c2
εI(s, ω)

× Re[∇× G(r, s, ω) ·G ∗(s′, r′, ω)×←−∇′]Θ[−εI(s, ω)]. (4.85)It should be emphasized that the terms proportional to Θ[−εI ], Θ[−µI ] annot beexpressed in terms of imaginary frequenies sine the integrand is not an analytifuntion. Note that the spae integral runs over a �nite region suh that the integralrelation (2.24) annot be applied.4.2.2 Planar geometryAs an example, let us alulate the Casimir fore on an amplifying, purely eletri slabof thikness d3 and permittivity ε3, where Im ε3 < 0 for a limited frequeny interval,and an eletri (absorbing) half spae of permittivity ε1 is plaed at a distane of d2from the slab. The setup is skethed in Fig. 4.9. Note that this is one of the simplestPSfrag replaements
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Figure 4.9: 4-layer struture eletri half spae � vauum � amplifying slab� vauumpossible planar geometries that an be studied in the presene of ampli�ation. The81



4 Dispersion fores on exited systemsseemingly simpler ase of an amplifying semi-in�nite half spae would immediatelylead to unphysial results sine the amplitudes of the propagating waves would beomearbitrarily large.Dilute-medium approximationLet us �rst study the ase where the slab is optially dilute and onsists of exited,purely eletri, isotropi (two-level) atoms. Here, we will only onsider the dominantresonant omponent of the Casimir fore, F ≈ Fres, as given by Eq. (4.71) togetherwith Eq. (4.76). As a simple example, we assume the half spae in region 1 to be aperfet mirror. In that ase, the assoiated Green tensor is given in Eqs. (4.22) and(4.23), and the Casimir fore per unit area on the weakly polarizable slab is given by
F(d2) =

µ0

3
ηω2

10|d10|2
∫ d2+d3

d2

dzA
∂

∂zA
ReG

(1)
ii (rA, rA, ω)ez

=
µ0

12πc
ηω3

10

|d10|2
z̃3

[

(2− z̃2) cos(z̃) + 2z̃ sin(z̃)
]zA=d2+d3

zA=d2
ez, (4.86)where here z̃ = 2zAω10/c, and η denotes the density of atoms in the slab. On reallingour results from Se. 4.1.1, Eq. (4.6) in the limit ε1 → ∞, we �nd an attrativeCasimir fore in the nonretarded limit,

F(d2) = −
|d10|2
24πε0

[

1

d32
− 1

(d2 + d3)3

]

, (4.87)where we have used that for isotropi atoms |d‖|2 = 2|d⊥|2 = 2/3|d|2. Aordingly,on realling Eq. (4.10), we �nd the fore in the retarded limit,
F(d2) = −

ηµ0ω
2
10|d10|2
12π

[

cos(2(d2 + d3)ω10/c)

d2 + d3
− cos(2d2ω10/c)

d2

]

. (4.88)Figure (4.10) shows the (dimensionless) Casimir fore per thikness d3 of the slabas a funtion of the slab�mirror separation. For referene, we have also displayedthe resonant part of the CP fore on the individual atoms ontained in the slab.It an be seen that the Casimir fore on the amplifying slab near a perfet mirrorshows an attrative behavior in the short-distane regime while for large slab�mirrorseparations an osillating behavior is observed. This is a diret onsequene of therespetive behavior of the CP fores on the atoms ontained in the slab. The amplitude
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4.2 Casimir fore on an amplifying body
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Figure 4.10: Resonant Casimir fore (per thikness d3) between a planar, optially dilute sampleof exited atoms and a perfet mirror plotted vs. the slab�mirror distane. The atomi dipolemoments are oriented parallel to the surfae. The solid line shows the resonant CP fore on eahexited atom.of the osillations dereases with inreasing thikness of the slab, sine the integratedCasimir fore per slab thikness is a spatial average of the osillating CP fores overthe slab thikness. The ourrene of osillations an be regarded as a typial impatof ampli�ation on the Casimir fore.It should be pointed out that the Casimir fore an also be repulsive in the non-retarded limit when the perfet mirror is replaed by a dieletri half spae. As anbe seen from the exited-atom potential (4.6), the nonretarded Casimir fore is thengiven by Eq. (4.87) multiplied by (|ε1(ω10)|2 − 1)/(|ε1(ω10) + 1|2). Thus, we �nd re-pulsion if |ε1(ω10)| < 1.Casimir fore on a non-dilute slabIn the following, we investigate whether the results from the dilute-medium approx-imation qualitatively also hold beyond this limit. For the planar 4-layer geometryunder onsideration (reall Fig. 4.9), it is onvenient to alulate the Casimir forein the stress tensor formulation, i.e., substituting the orrelation funtions (4.83) and(4.85) into Eq. (4.80) together with Eq. (4.81). The Casimir fore per unit area is thus83



4 Dispersion fores on exited systemsgiven by the sum of the stress tensor elements Tzz on the two boundaries of the slab,
f = f r − f l =

[T r
zz(r)|z=0 −T l

zz(r)|z=d2

]

ez. (4.89)Here, the index r denotes the fore omponent ating on the right boundary of theslab, i.e., r, r′ are loated in layer 4. To alulate the fore ating on the left boundary,
f l, we have to take the relevant stress tensor element with r, r′ pointing into layer 2.The minus sign in Eq. (4.89) arises from the fat that the surfae vetor points inthe negative z diretion for the fore ating on the left boundary of the slab. Notethat for realisti systems with �nite lateral extension, our results an still provide anapproximation by integrating the fore density over the �nite area of the slab. Suhan approximation is reasonable as long as the lateral extensions of the system arelarge ompared to the separation between the slabs. In this ase e�ets arising fromthe edges of the slabs an be negleted. We have expliitly heked that Eq. (4.89)ensures that the Casimir fore on the amplifying slab vanishes in the absene of thehalf spae.The orrelation funtions (4.83) and (4.85) ontain two terms eah; one that in-volves the full frequeny integral leading to a nonresonant fore ontribution as anbe expeted from our results in Se. 4.2.1, and a seond term being proportional to
Θ[−εI(s, ω)] whih genuinely arises from the presene of ampli�ation and leads toa resonant fore omponent. Thus, we deompose the Casimir fore per unit areaaording to Eq. (4.51),

f = fnres + f res. (4.90)We �rst study the nonresonant ontribution to the Casimir fore in whih ase thestress tensor an be written in the formT (r) = −~

π

∫ ∞

0

dξ

{

ξ2

c2
G (1)(r, r, iξ) +∇×G (1)(r, r′, iξ)×←−∇′|r′=r

− 1

2
tr

[

ξ2

c2
G (1)(r, r, iξ) +∇× G (1)(r, r′, iξ)×←−∇′|r′=r

] I}, (4.91)where the sattering Green tensor (with r and r′ in the same layer 2) an be founde.g., in Ref. [132℄. The nonresonant Casimir fore found formally looks like the orre-
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4.2 Casimir fore on an amplifying bodysponding ground-state result 1,
fnres = − ~

2π2

∫ ∞

0

dξ

∫ ∞

0

dk‖k‖κ⊥
∑

σ=s,p

rσ2+r
σ
21e

−2κ⊥d2

1− rσ21r
σ
2+e

−2κ⊥d2
ez, (4.92)where

rσ2+ =
rσ23
(

1− e−2κ⊥
3 d3
)

1− rσ223 e
−2κ⊥

3 d3
(4.93)together with the single-layer re�etion oe�ients (3.13), and κ⊥

1 ≡ κ⊥ as de�nedin Eq. (3.14). It should be emphasized that the imaginary part of the wave vetoromponent in the z-diretion is always real for positive ε3(iξ) and thus unambiguouslygiven as κ⊥
3 =

√

ε3(iξ)ω2/c2 + k‖2.The nonretarded and retarded limits an be obtained in analogy to the same asymp-toti limits of the ground-state fore between two half spaes. For simpliity we restritour attention to a su�iently thik slab, d3 ≫ d2. Note that the nonresonant foreremains �nite in this limit (d3 →∞), and we approximate rσ2+ = rσ23. We �nd for thenonretarded fore
fnres |d3→∞ =

~

8π2d32

∫ ∞

0

dξLi3

[

1− ε3(iξ)

ε3(iξ) + 1

ε1(iξ)− 1

ε1(iξ) + 1

]

ez, (4.94)where Lin(z) =∑∞
k=1 z

k/kn de�nes the polylogarithm funtion. In partiular, we have
Li3(x) ≈ 1.2x for 0 ≤ x ≤ 1. Similarly, we obtain the Casimir fore in the retardedlimit,
fret =

3~c

16π2d42

∫ ∞

1

dv

v2

{

Li4

[

v −
√
ε1 − 1 + v2

v +
√
ε1 − 1 + v2

√
ε3 − 1 + v2 − v

v +
√
ε3 − 1 + v2

]

+ Li4

[

ε1v −
√
ε1 − 1 + v2

ε1v +
√
ε1 − 1 + v2

√
ε3 − 1 + v2 − ε3v

ε3v +
√
ε3 − 1 + v2

]}

ez, (4.95)where Li4(x) ≈ xπ4/90 for 0 ≤ x ≤ 1. If ampli�ation is present in a su�iently largefrequeny regime where
0 < ε3(iξ) = 1− ω2

P

ξ2 + ω2
t + ξγ

< 1, (4.96)1Note that the most simple absorbing geometry typially onsists of two half spaes separated bya free-spae region, see e.g., Ref. [105℄. 85



4 Dispersion fores on exited systemswe immediately see from the nonretarded and retarded results that the nonresonantCasimir fore is repulsive. Note that the ase of ε3(iξ) < 0 would orrespond to a verylarge amount of ampli�ation whih annot be onsidered by means of linear QED(see also the example below).In Ref. [70℄, the total Casimir fore is identi�ed with the purely nonresonant termand it is suggested that it may be repulsive. However, the presene of ampli�ationis not taken into aount in the quantization sheme used. On using a path-integralapproah, a planar system onsisting of two perfet mirrors enlosing an amplifyingslab is studied in Ref. [166℄ . The proposed (attrative) Casimir fore is again purelynonresonant. In my opinion, resonant fore omponents an ruially ontribute tothe total Casimir fore and should be arefully investigated, as we will do in thefollowing.To alulate f res, we basially have to alulate the produt G (r, s) · G ∗(s, r′) asan be seen from the orrelation funtions (4.83) and (4.85) together with Eqs. (4.80)and (4.89). To that end, we have to study the relevant 4-layer Green tensor. However,in the presene of ampli�ation, the orret hoie of the wave vetor perpendiularto the slab must be hosen with are. To eluidate (and solve) the problem, we �rststudy the orresponding bulk Green tensor of an amplifying, right-handed mediumin the planar-wave expansion (Weyl expansion) for the speial hoie of r = 0 and
r′ = (0, 0, z) [151℄,G (0)(r, r′, ω) =

i

8π

∫ ∞

0

dk‖k‖

k⊥ eik
⊥z







1 + k⊥2

k2
0 0

0 1 + k⊥
2

k2
0

0 0 2k‖2

k2






, (4.97)where here the wave vetor k is deomposed as in a planar system aording to k⊥ =

(0, 0, kz) and k‖ = (kx, ky, 0). The imaginary part of the permittivity of an amplifying(right-handed) medium is negative, Im ε < 0, whih implies that also Im k⊥2 < 0, asan be seen from k⊥2 = εω2/c − k‖2. Thus, k⊥2 lies in the third (evanesent waves)and fourth (propagating waves) quadrant of the omplex plane. While propagatingwaves are ampli�ed when traveling through an amplifying medium, manifesting in
Im k⊥ < 0, the situation for the evanesent ontributions, where Re k⊥2 < 0, hasbeen ontroversially disussed in the literature [90, 167, 168℄.To proeed, we hange the integration variable aording to dk‖ = −k⊥dk⊥/k‖. Thebasi physial requirement that the amplitude of the propagating modes should beampli�ed implies that for k‖ = 0 the new lower bound uniquely reads k⊥ =

√
εω/c = k86



4.2 Casimir fore on an amplifying bodywith Im
√
ε < 0. For the new upper bound, orresponding to arbitrarily large valuesof k‖, we have k⊥ = ±i∞, where the sign is yet to be determined. Hene, we haveG (0)(r, r′, ω) = − i

8π

∫ ±i∞

k

dk⊥eik
⊥z







1 + k⊥2

k2
0 0

0 1 + k⊥2

k2
0

0 0 2− 2k⊥2

k2






. (4.98)To determine the orret hoie of the square root in k⊥, we require Eq. (4.98) toagree with the expliit expression of the bulk Green tensor, Eq. (3.66),G (0)(r, r′, ω) = − eikz

4πk2z3







1− ikz − (kz)2 0 0

0 1− ikz − (kz)2 0

0 0 −2(1− ikz)






(4.99)whih is �nite for �nite z, despite the boundary ondition at in�nity for an in�nitelyextended amplifying medium,G(r, r′, ω)→∞ as |r−r′| → ∞. We see that Eqs. (4.98)and (4.99) oinide if we hoose k⊥ = +i∞ for the upper bound and if k⊥ is ontinu-ous along the integration path. Thus, we are left with the following requirements todetermine the orret square root,

k⊥(ω, k‖ = 0) =
√
εω/c with Im k⊥ < 0 (propagating) (4.100)

k⊥(ω, k‖ →∞)→ +i∞ (evanesent), (4.101)whih implies that the branh ut in the k⊥2 plane should be onveniently hosenalong the negative imaginary axis. Our result is in agreement with Ref. [168℄. Wethus have the �rst Riemann sheet for −π/2 < θ < 3/2π and the seond Riemannsheet for angles 3/2π < θ < 7/2π. As indiated in Fig. 4.11 the physially orretsquare root is given by
k⊥ = |k⊥|eiφ, −π/4 < φ < 3/4π. (4.102)In pratie, we have to ensure that the integration path starts from k⊥ =

√
εω/c inthe fourth quadrant and goes to k⊥ → i∞ but avoids the branh ut suh that thehoie of the branh of the square root is preserved and the integrand is ontinuous.A possible integration path is skethed in Fig. 4.11. In partiular, k‖ must be allowedto take omplex values.Let us now return to the problem at hand and onsider the relevant Green tensors
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4 Dispersion fores on exited systems
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Figure 4.11: Corret hoie of the wave vetor in a right-handed amplifying medium (gray region).A possible integration path is indiated.for the 4-layer geometry. In this ase, we have three di�erent values of εj, and hene
k⊥
j . For k⊥

3 inside the amplifying slab, we reall our onditions (4.100) and (4.101).The ommon integration path for k‖ must then be hosen suh that the branh utis avoided inside the amplifying slab.For the fore ating on the left boundary of the slab we need the Green tensor with
r in layer 2 and s in layer 3, as given by [132℄,G(r, s, ω) =

i

8π2

∫

d2k‖ e
ik‖·(r−s)

k⊥

∑

σ=s,p

tσ23e
ik⊥d2

(1− rσ34r
σ
3−e

2ik⊥3 d3)(1− rσ21r
σ
23e

2ik⊥d2)

×
(

e−ik⊥zeik
⊥
3 sze−2σe
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3σ + rσ34e

−ik⊥ze−ik⊥3 sze2ik
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3 d3e−2σe
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⊥
3 sze+2σe
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34e

ik⊥ze−ik⊥3 sze2ik
⊥
3 d3e+2σe

+
3σ

)

, (4.103)
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4.2 Casimir fore on an amplifying bodyand, by using G(s, r′) = GT(r′, s), we also �ndG ∗(s, r′, ω) =
−i
8π2

∫

d2k‖ e
−ik‖·(r′−s)

k⊥∗

∑

σ=s,p

t∗σ23e
−ik⊥∗d2

(1− r∗σ34 r
∗σ
3−e

−2ik⊥∗
3 d3)(1− r∗σ21 r

∗σ
23 e

−2ik⊥∗d2)

×
(

eik
⊥∗z′e−ik⊥∗

3 sze∗−3σ e
∗−
2σ + r∗σ34 e

ik⊥∗z′eik
⊥∗
3 sze−2ik⊥∗

3 d3e∗+3σ e
∗−
2σ

+ r∗σ21 e
−ik⊥∗z′e−ik⊥∗

3 sze∗−3σ e
∗+
2σ + r∗σ21 r

∗σ
34 e

−ik⊥∗z′eik
⊥∗
3 sze−2ik⊥∗

3 d3e∗+3σ e
∗+
2σ

)

. (4.104)The relevant re�etion and transmission oe�ients read
rσ3− =

rσ32 + e2ik
⊥d2rσ21

1 + rσ32r
σ
21e

2ik⊥d2
, ts43 = ts23 = 1 + rs23, tp43 = tp23 = (1 + rp23)

1√
ε3

(4.105)with the familiar single-interfae oe�ients
rsij =

k⊥
i − k⊥

j

k⊥
i + k⊥

j

, rpij =
εjk

⊥
i − εik

⊥
j

εjk⊥
i + εik⊥

j

. (4.106)In partiular, we have rσ34 = rσ32 = −rσ23. The polarization unit-vetors are given byEq. (3.15). Reall also the notation for the wave vetors, Eq. (4.2). In ontrast, toalulate the fore density on the right boundary of the slab we need the Green tensorwith r, r′ in layer 4 and s in layer 3 [132℄G (r, s, ω) =
i

8π2

∫

d2k‖ e
ik‖·(r−s)

k⊥

∑

σ=s,p

tσ43e
ik⊥3 d3eik

⊥z

(1− rσ34r
σ
3−e

2ik⊥3 d3)

×
(

e−ik⊥3 sze+4 e
+
3 + rσ3−e

ik⊥3 sze+4 e
−
3

) (4.107)and aordingly,G ∗(s, r′, ω) =
−i
8π2

∫

d2k‖ e
−ik‖·(r′−s)

k⊥∗

∑

σ=s,p

tσ∗43e
−ik⊥∗

3 d3e−ik⊥∗z′

(1− rσ∗34 r
σ∗
3−e

−2ik⊥∗
3 d3)

×
(

eik
⊥∗
3 sze+∗

3 e+∗
4 + rσ∗3−e

−ik⊥∗
3 sze−∗

3 e+∗
4

)

. (4.108)As already pointed out, the analytiity of the Green tensors in the upper ω half-plane is a basi requirement to justify the quantization sheme. In the following,we illustrate the relation between poles in the upper ω half-plane and the strengthof the ampli�ation. As an example onsider the Green tensor (4.107). Althoughthe permittivity, the re�etion and transmission oe�ients and the numerator are
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4 Dispersion fores on exited systemsanalyti funtions in the upper half of the omplex ω plane inluding the real axis,this is not neessarily the ase for the Green tensor itself. That is to say, we haveto hek under whih onditions the poles of the Green tensor are loated in theupper ω half-plane. Similar onsiderations an be found in Ref. [116℄. The polesare the roots of the denominator in (4.107). As an approximation, we assume that
rσ3− ≈ rσ32 = rσ34 ≡ r(ω) = |r(ω)|eiφr and onsider only propagating waves of normalinidene (k‖ = 0) in the denominator. The ondition for the poles is thus given by

1− g(ω) = 1− |g(ω)|eiφg ≡ 1− r2(ω)e2i
√
ε3d3ω/c = 0, (4.109)where Im

√
ε3 < 0. Condition (4.109), for omplex ω, is ful�lled for
|g(ω)| = |r(ω)|2e−2(ReωIm

√
ε3+ImωRe

√
ε3)d3/c = 1 and (4.110)

cosφg = cos[2φr + 2(ReωRe
√
ε3 − ImωIm

√
ε3)d3/c] = 1. (4.111)The funtion g(ω) is analyti in the upper ω half-plane and an be identi�ed withthe gain (or loss) of the eletri �eld emitted from one point in the slab, travelingto eah of the two surfaes where it is re�eted and �nally omes bak to the samepoint. Hene, the ondition (4.110) implies that the loss via transmission through thesurfaes is equal to the gain in the medium while ondition (4.111) enfores phasemathing after a round-trip.The Green tensor is analyti if g(ω) 6= 1 in the entire upper ω half-plane. Aordingto the maximum modulus priniple, |g(ω)| takes its maximum at the boundary of thisregion. Sine for Imω →∞ the modulus of the gain funtion |g(ω)| goes to zero on thein�nite semiirle, the maximum must be loated on the real axis whih is onsistentwith Eq. (4.111). It is hene su�ient to require that

|g(ω)| = |r(ω)|2e−2Im
√
ε3d3ω/c < 1 for real ω. (4.112)For absorption-assisted frequenies where Im√ε3 > 0, this ondition is always ful�lled.For ampli�ation-assisted frequenies Eq. (4.112) yields the ondition

|r(ω)| = |1−
√
ε3|

|1 +√ε3|
< e−|Im√

ε3|d3ω/c for real ω. (4.113)Thus, Eq. (4.113) impliitly holds onditions for the medium parameters in ε3(ω). Ifthe ampli�ation in the body (over)ompensates the transmission losses, |g(ω)| > 1,
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4.2 Casimir fore on an amplifying bodythe poles may approah the real axis and migrate into the upper half-plane. In thisase, instabilities may arise and the eletromagneti �eld will blow up with time [90℄,whih implies that the slab starts lasing ation. Clearly, for suh medium parameters,the onept of linear marosopi QED breaks down.Keeping these onsiderations in mind, the resonant Casimir fore an now be ob-tained by evaluating Eq. (4.89) together with Eq. (4.80), where the Green tensors(4.103), (4.104), (4.107) and (4.108) enter via the orrelation funtions (4.83) and(4.85). This result an be regarded as a generalization of the Lifshitz-theory [2℄ toexited bodies. The appearing integrals must (in general) be solved numerially byhoosing the integration path aording to our onsiderations above.Nonretarded limitIn order to answer the question whether the Casimir fore an be repulsive, let usinvestigate the nonretarded limit more losely. In this limit, evanesent waves domi-nate and we an approximate k⊥
j = ik‖ for every layer, where k‖ is real. In this ase,the Green tensors (4.103) and (4.104) an be ombined by using
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d2k‖f(sz). (4.114)In the nonretarded limit, all s-polarized re�etion oe�ients vanish and the fore isdominated by p-polarized ontributions. Thus we alulate the relevant inner (salar)produts between the polarization unit-vetors appearing in the Green tensors (4.103)and (4.104),
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3p = 0. (4.115)In the next step, we determine the outer (dyadi) produts between the polarizationvetors, where the relevant element [reall that we need Tzz together with Eq. (4.83)℄is given by
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k‖2 −MNk‖2) = k‖2, (4.116)where the last equality holds for M,N = +1,−1 or −1,+1. As expeted from thefat that only p-polarized terms appear in the fore, magneti terms involving urlsating on the produt of the Green tensors [reall (4.85)℄ do not ontribute in the
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4 Dispersion fores on exited systemsnonretarded limit,
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′]zz−xx−yy = 0. (4.117)From the salar and dyadi produts we see that only two terms, together with theiromplex onjugate ounterparts, ontribute to Tzz at the left boundary of the slab,
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ez (4.118)where we have already performed the angular integration by using d2k‖ = k‖dφdk‖.It should be pointed out that the single-layer re�etion oe�ients do not dependon k⊥
j when k⊥

j = ik‖. The integration over sz an now be arried out. Hene, theresonant (nonretarded) Casimir fore density reads
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ez.(4.119)Note that in the nonretarded limit, fore ontributions on the right boundary of theslab vanish as an be seen by applying Eqs. (4.115) and (4.116) (whih also holdfor the vauum layer 4) to the produt of Green tensors (4.103) and (4.104). Thenonretarded resonant fore remains �nite in the limit d3 →∞. In this ase, the foreis approximated by
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ez.(4.120)Two approximations an be applied to evaluate the k‖ integral in Eq. (4.120). Firstly,we onsider the ase of weakly re�eting interfaes suh that the multiple re�etionsin the denominator an be negleted and the denominator is approximated by 1. Inthis ase, we an read o� a d−3

2 power law,
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4.2 Casimir fore on an amplifying bodywhere we have used that
|tp23|2 =

4|ε3|
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|ε1 + 1|2 . (4.122)Equation (4.121) is onsistent with the resonant CP potential of an exited atomin front of a dieletri half spae (4.6). As a seond approximation to Eq. (4.120),we assume the re�etion oe�ients in the denominator to be lose to one, whihorresponds to a maximal impat of multiple re�etions. In this ase we �nd
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|ε1 + 1|2|ε3 + 1|2ez. (4.123)In general, it an be expeted that the nonretarded fore will take values between theextreme ases Eqs. (4.121) and (4.123). In partiular, these results reveal that theCasimir fore on an amplifying slab an indeed be repulsive, provided that the halfspae onsists of a metamaterial with |ε1| < 1 for the frequenies where the slab isamplifying.
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5 Summary and prospetive workIn this thesis, we have used marosopi quantum eletrodynamis to extend theonept of dispersion fores to objets in media and on exited systems. In partiular,we have shown that fores in media an be modi�ed onsiderably by loal-�eld e�ets,and that exited systems an be subjet to strongly enhaned or repulsive dispersionfores.In the �rst part, we have investigated the Casimir�Polder potential of a ground-state atom embedded in a medium environment. The ground-state Casimir�Polderinteration ontains the Green tensor of the body and the atomi polarizability in anintegral form. To aount for the loal-�eld orretion we have applied the Onsagerreal avity model and deomposed the Green tensor into the Green tensor of thesystem without the avity ombined with a loal-�eld-orretion fator, and a position-independent part aounting for sattering proesses inside the avity.We have �rst studied the ground-state atom in front of a planar interfae betweentwo magnetodieletri media. This generalizes earlier studies of an atom in free spaeinterating with a magnetodieletri plate. Our theory is appliable to a larger rangeof realisti situations, for example in ell biology. As we have shown, the Casimir�Polder interation tends to move the atom towards the medium with the higherpermittivity while it is repelled from the medium with the larger permeability. Wehave extended the well known asymptoti power laws beyond the free-spae ase.Numerial evaluation eluidates the potential at intermediate distanes. In partiular,we have investigated how ompeting e�ets of eletri and magneti properties maylead to the appearane of potential walls and wells. The impat of the loal-�eldorretion fator has been studied as a funtion of distane and as a funtion of thestati permittivity of the loal medium environment. In partiular, we have shownthat under ertain irumstanes (e.g., for purely eletri half-spaes) the loal-�eldorretions to the CP potential an be very signi�ant, up to 30% of the unorretedvalues. In addition, we have for the �rst time studied the layer-dependent, onstantpart of the Casimir�Polder potential. This has allowed us to propose an estimate ofthe on-surfae value of the potential. Our onsiderations may easily be extended to95



5 Summary and prospetive workother geometries, suh as spherially or ylindrially layered host media.Seondly, we have examined the Casimir�Polder interation of a ground-state atomand a small magnetodieletri sphere in the presene of arbitrary magnetodieletribakground media and bodies. Employing a similar (point-sattering) tehnique, wehave expressed the Green tensor in the presene of the sphere as a simple funtion ofthe Green tensor of the environment. Using this result, we have found losed generalexpressions for the CP potential of a magnetoeletri atom interating with a smallmagnetodieletri sphere whih depend on the sphere's polarizability and magneti-zability. A omparison with the van der Waals potential between two ground-stateatoms in the presene of the bakground medium has revealed how the di�erent miro-sopi/marosopi natures of atom versus sphere manifest themselves in the disper-sion potentials. For the �rst time, we have proposed a model that is able to desribemoleular systems of arbitrary size: It onsists of a sphere of variable radius loatedinside an Onsager avity and is able to interpolate ontinuously between the two lim-iting ases of a mirosopi atom and marosopi sphere. In partiular, our resultprovides the orret polarizability of suh a medium-sized spherial moleular sys-tem and expliitly aounts for loal-�eld e�ets. The implemented point-satteringmethod may also be used to alulate the Casimir fore on a small sphere in an arbi-trary environment and, in partiular, the Casimir fore between two small spheres.In the seond part of the thesis, we have studied the impat of exitation on dis-persion fores. We have �rst onsidered the resonant Casimir�Polder potential of anexited atom in front of a magnetoeletri metamaterial half spae. As we have shown,the atom exhibits attenuated osillations in the retarded regime, while lose to the sur-fae the potential beomes attrative or repulsive depending on the medium responseat the atomi transitions frequenies.To demonstrate the impat of negative refration on the Casimir�Polder potential,we have studied the more omplex superlens senario: It onsists of an exited atomplaed in a free-spae region in front of a left-handed metamaterial slab mounted ona perfet mirror. In the idealized ase of a nonabsorbing superlens, we have foundthat the atom is strongly attrated towards the foal plane of the superlens. In themore realisti ase of a weakly absorbing lens, foal-plane attration beomes a lessdistint feature. Instead, potential barriers may form that are typially several ordersof magnitude higher than those observed in ground-state Casimir�Polder potentials.Provided that metamaterials with very small absorption an be fabriated, suh bar-riers might be of interest to levitate partiles or for use in trapping or (evaporate)
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ooling mehanisms.We have also investigated another quantum vauum e�et, the spontaneous deayof an exited atom in the superlens geometry. As previously shown, an idealized, non-absorbing superlens an allow for omplete inhibition or strong enhanement of thespontaneous deay if the atom is plaed in the foal plane, depending on its dipoleorientation. We have shown that an arbitrarily small but �nite amount of materialabsorption drastially hanges the deay rate ompared to the ideal senario with van-ishing absorption. In partiular, nonradiative oupling leads to a strong enhanementof the deay rate in the region lose to the superlens. We may easily ombine ourstudies of the Casimir�Polder interation and the deay rate to obtain a full pitureof the dynamial Casimir�Polder fore of an exited atom in a a superlens geometry.As another example for dispersion fores on exited systems, we have alulated theCasimir fore on an amplifying but linearly responding, magnetoeletri body. Theresulting fore ontains a nonresonant ontribution that formally looks like its ground-state ounterpart but is in�uened by the frequeny window where ampli�ation ispresent. We have shown that ampli�ation also leads to resonant fore omponentswhih have been negleted in all previous approahes but whih often dominate thetotal fore. We have proven that the Casimir fore on an optially dilute amplifyingbody an be alulated as a sum over the Casimir�Polder fores on the exited atomsinside the body.As an appliation of the general theory, we have expliitly alulated the Casimirfore between an amplifying slab and a dieletri half spae. Calulations in the dilute-slab limit show that the fore is osillating at large inter-plate separations, and an bebe attrative or repulsive at small separations. To go beyond the dilute-slab limit, wehave arefully examined the orret hoie of the wave vetor inside the amplifyingmedium, and have given an upper limit for the possible strength of ampli�ation suhthat our linear theory remains valid. The derived fore formula extends Lifshitz theoryto the amplifying ase and lay the foundation for thorough numerial evaluation. Wehave expliitly answered the question whether Casimir repulsion an be realized. Asshown, the nonretarded fore is proportional to the third power of the inter-plateseparation and an be repulsive if the permittivity of the absorbing half spae issmaller than unity in the frequeny window of ampli�ation.The results of this thesis failitate a deeper understanding of dispersion interationsin the ontext of biologial systems and olloid siene. They stress the potential ofampli�ation and left-handed metamaterials for manipulating dispersion fores onatoms and bodies in nanotehnologies. 97
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O Fourier omponent of O
H.c. hermitian onjugate
C.c. omplex onjugateG seond-rank tensorI seond-rank unit tensor
Ô operator O
trM trae of matrix M

v vetor
∇ gradient
←−
∇ gradient ating to the left
⊛ duality transformation
× vetor produt
· salar produt
[ab]ij = aibj dyadi produt: no intervening symbol
Θ(x) Theta funtion with Θ(0) ≡ 1

Pm
1 (x) assoiated Legendre polynomials

jl(x) lth spherial Bessel funtion of the �rst kind
h
(1)
l (x) lth spherial Hankel funtion of the �rst kind

[trT ]i = Tkik notation for the trae of a tensor
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ZusammenfassungIm Rahmen der makroskopishen Quantenelektrodynamik in linearen Medien wurdein den letzten Jahren eine Theorie der Dispersionskräfte entwikelt, die Casimirkräfte(zwishen Körpern), Casimir�Polder�Kräfte (zwishen Atom und Körper) und van�der�Waals�Kräfte (zwishen Atomen) einbezieht und Rehnungen erlaubt, die fürbeliebige Geometrien anwendbar sind. Dabei werden Körper durh komplexwertige,orts- und frequenzabhängige elektishe Permittivitäts- und magnetishe Permeabili-tätsfunktionen beshrieben, welhe Eingang in den klassishen Greentensor �nden.Anwesende Atome werden durh ihre Übergangsfrequenz, die entsprehenden Dipol-matrixelemente sowie ihre Polarisierbarkeit und gegebenenfalls Magnetisierbarkeitharakterisiert. Das elektromagnetishe Feld wird durh bosonishe dynamishe Feld-variablen quantisiert, so dass die fundamentalen Vertaushungsregeln für elektrishesFeld und Induktionsfeld erfüllt werden und der zugehörige Hamiltonoperator des Sys-tems im Einklang mit den Maxwellgleihungen ist. Die Casimir- und Casimir�Polder�Kräfte werden als Lorentzkräfte beshrieben.Während Dispersionskräfte zwishen Grundzustandsobjekten im freien Raum expe-rimentell gut nahgewiesen sind, sind sowohl Dispersionskräfte auf Objekte in Medienals auh die Wehselwirkung angeregter Systeme bislang viel weniger experimentelluntersuht, vor allem weil die praktishe Umsetzung wie z.B. die Berüksihtigungvon Reibungskräften und die Erzeugung verstärkender Metamaterialien shwierig ist.Insbesondere ist auh die Möglihkeit, abstoÿende Dispersionkräfte zu erzeugen undnahzuweisen, entsheidend für Fortshritte in den Nanowissenshaften. Die theore-tishen Grundlagen hierzu sind weitestgehend unerforsht. Ein Shwerpunkt dieserArbeit ist daher die Erweiterung der bestehenden Theorie der Grundzustandsweh-selwirkung zwishen Atom und Körper, wobei das Atom in ein beliebiges Mediumeingebettet ist und das zugehörige Potenzial entsprehend lokalfeldkorrigiert wird.Dies trägt der Tatsahe Rehnung, dass sih das makroskopishe Feld vom lokalenFeld am Ort des Atoms untersheidet. Dabei wird am Beispiel zweier magnetoelek-trisher Halbräume
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Zusammenfassung
• der E�ekt der Lokalfeldkorrektur unter Verwendung des Onsager (real avity)Modells analysiert und mit den unkorrigierten Potenzialen verglihen,
• untersuht unter welhen Bedingungen abstoÿende Kräfte auftreten und
• die Gröÿe des Potenzials an einer Grenz�ähe abgeshätzt.Bei der Lokalfeldkorrektur mittels des Onsager Modells wird das Atom in die Mitteeiner kleinen leeren Kugel (Kavität) platziert. Der Radius der Kugel kann mit deminteratomaren Abstand identi�ziert werden und sollte kleiner sein als die relevantenWellenlängen der atomaren Übergänge sowie kleiner als die Abstände zwishen Atomund Körper, um die Anwendbarkeit des Modells zu gewährleisten. Durh Punktstreu-tehniken kann gezeigt werden, dass der lokale Greentensor sih als Funktion desGreentensors des Systems ohne die Kavität darstellen lässt. Als Lokalfeldkorrekturergibt sih für kleine Kavitätsradien ein einfaher frequenzabhängiger Faktor, dernur von den magnetoelektrishen Eigenshaften am Ort des Atoms abhängt. Dazukommt ein niht explizit vom Ort abhängiger Summand, der vom Radius der Kugelabhängt. Die Zerlegung des Greentensors wird auf das Casimir�Polder�Potenzial einesGrundzustandsatoms in einem magnetoelektrishen Zweishihtsystem angewendet.Die bekannten Abstandsgesetze werden unter Berüksihtigung von Lokalfelde�ektenerweitert. Insbesondere zeigt sih auh hier, dass das Atom zum anderen Halbraumgezogen wird, falls dieser stärkere elektrishe Eigenshaften aufweist. Im nihtre-tardierten Fall gilt für magnetish dominierte Systeme ein shwäheres Abstandsge-setz. Das Atom wird von einer Platte mit stärkeren magnetishen Eigenshaften (alsam Ort des Atoms) abgestoÿen. Numerishe Berehnungen beleuhten insbesonderedas Verhalten für mittlere Abstände zwishen Atom und Grenzshiht und zeigen,dass ein Zusammenspiel von elektrishen und magnetishen Eigenshaften zur Aus-prägung von Potenzialtöpfen und -barrieren führt. Besonderes Augenmerk wird auhauf die Untersuhung des konstanten, shihtabhängigen Anteils des Potenzials gelegt,der zwar niht zu einer Kraftwirkung führt, wohl aber zum Verständnis der Bewegungeines Atoms in der Nähe einer Shihtgrenze beiträgt und ausshlaggebend für dievorgeshlagene Abshätzung des Potenzials an der Grenz�ähe ist.Für Anwendungen ist es besonders wihtig die lokalfeldkorrigierten Potenziale für(sphärishe) Mikroobjekte beliebiger Gröÿe zu kennen. Daher wird in dieser Disserta-tion
• eine geshlossene Formel für die Casimir�Polder�Wehselwirkung zwishen
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Grundzustandsatom und kleiner Kugel in beliebiger absorptiver Mediumumge-bung hergeleitet,
• gezeigt wie die vershiedenen mikroskopishen und makroskopishen Charakte-ristiken von Atom bzw. Kugel sih in den Dispersionspotenzialen manifestierenund
• dargestellt wie die Lokalfeldkorrektur kontinuierlih zwishen den ExtremfällenAtom und Kugel interpoliert werden kann.Dazu wird zunähst der Greentensor einer Kugel in Anwesenheit eines beliebigenumgebenden Mediums als Funktion des Greentensors der Umgebung ohne die Kugeldargestellt. Daraus wird das Casimir�Polder�Potenzial zwishen Atom und Kugelberehnet und mit der van-der-Waals�Kraft zwishen zwei Atomen verglihen: Derdirekte Kontakt zwishen makroskopisher Kugel und umgebenden Medium führtzum expliziten Auftreten der Permittivität und inversen Permeabilität des Mediums,während die Kopplung des lokalen elektromagnetishen Feldes mit dem Atom zuLokalfeldfaktoren führt. Um den kontinuierlihen Übergang zwishen diesen Extrem-fällen deutlih zu mahen, wird der Greentensor einer Kugel mit variablem Radius,eingebettet in eine zweite, leere Kugel studiert. Das entsprehende Potenzial enthältdie Polarisierbarkeit eines kugelförmigen Moleküls variabler Gröÿe und berüksihtigtLokalfeldkorrekturen.Als zweiter Shwerpunkt der Dissertation werden Dispersionskräfte auf angeregteSysteme untersuht. Die durh die Anregung zu erwartenden resonanten Kraftkompo-nenten eignen sih um Kräfte zu manipulieren. Grundsätzlih sind zwei Möglihkeitenvorstellbar, wie der Ein�uss von bestimmten Metamaterialieneigenshaften wie zumBeispiel Linkshändigkeit erhöht werden kann. Zum einen können Potenziale angeregterAtome untersuht werden, insbesondere werden
• die resonante Casimir�Polder�Wehelwirkung zwishen angeregtem Atom undplanarem Metamaterial berehnet und
• das Szenario der Superlinse unter Berüksihtigung von Absorption beleuhtet.Die Rehnung zeigt, dass das resonante Casimir�Polder�Potenzial eine angeregtenAtoms for einer magnetoelektrishen Platte für groÿe Atom�Platten�Abstände oszil-liert. Nahe an der Grenz�ähe ist das Potenzial anziehend, wenn die Absolutbeträgevon Permittivität und Permeabilität gröÿer als eins sind, andernfalls ist es abstoÿend.Um den E�ekt negativer Brehung näher zu untersuhen, wird das Potenzial eines121



ZusammenfassungAtoms in einer Superlinsengeometrie diskutiert. Die Anordnung der Superlinse iste�ektiv ein Dreishihtsystem bestehend aus perfektem Spiegel, daran angrenzendeine Platte mit gleihzeitig negativem Realteil von Permittivität und Permeabilität,sowie einer Freiraumregion, in der das angeregte Atom sitzt. Im Falle einer ideal-isierten, absorptionsfreien linkshändigen Shiht ist das Potential stark anziehend,divergiert aber für Atom�Platten�Abstände, die kleiner als die Plattendike sind. Eswird gezeigt, dass dieses unphysikalishe Verhalten niht auftritt, wenn eine shwaheAbsorption des linkshändigen Materials zugelassen wird. Für gröÿere Atom�Platten�Abstände kann der absorptionsfreie Fall jedoh als gute Näherung zum Resultat mithinreihend kleiner Absorption angesehen werden. Insbesondere �ndet man auh imabsorptiven Fall eine starke Anziehung für Abstände in der Gröÿe der Plattendike �ein Phänomen, das harakteristish für die Superlinsenanordnung ist. Die Anordnungder Superlinse kann weiterhin dafür genutzt werden um Potenzialbarrieren zu erzeu-gen, die um mehrere Gröÿenordnungen höher sind als die im Fall von Grundzustands-atomen erzeugbaren. Daran anshlieÿend wird der spontane Zerfall eines angeregtenAtoms in der selben (shwah absorbierenden) Superlinsengeometrie untersuht. Eswerden ebenfalls groÿe Abweihungen vom entsprehenden absorptionsfreien Fall fest-gestellt, die vom strahlungslosen Anteil des spontanen Zerfalls herrühren.Im Zusammenhang mit Casimirkräften zwishen Körpern treten verstärkende Me-dien an die Stelle der angeregten Atome. Das sind Materialien, die einen negativenImaginärteil der Permittivität und/oder Permeabilität in einem bestimmten Frequenz-und Raumbereih haben. Wie im Fall der Casimir�Polder�Kräfte erö�nen solhe Me-dienanregungen verbesserte Manipulationsmöglihkeiten der Kraft. In der vorliegen-den Dissertation wird das bereits auf den Fall der Verstärkung erweiterte Quantisie-rungsshema angewendet und
• die Casimirkraft zwishen (teilweise) verstärkenden Körpern ausgerehnet,
• der Zusammenhang zur resonanten Casimir�Polder�Kraft gezeigt, sowie
• die Kraft zwishen einer verstärkende Platte und einem dielektrishen Halbraumanalytish untersuht.Zunähst wird der bereits bekannte Lorentzkraftansatz für die Casimirkraft auf ver-stärkende Körper angewendet und die entsprehenden Korrelationsfunktionen bereh-net. Die gefundene Kraftformel hat einen niht-resonanten Anteil, der formal mit demder Casimirkraft auf einen Grundzustandskörper übereinstimmt. Ein neu gefundener,resonanter Kraftanteil tritt nur für verstärkende Körper auf. Es wird gezeigt, dass sih122



die Casimirkraft für den Fall eines optish dünnen verstärkenden Körpers als Summevon Casimir�Polder�Kräften auf die angeregten Atome im Körper darstellen lässt.Damit wird die Lifshitztheorie auf den Fall angeregter Systeme erweitert. Als Anwen-dung der allgemeinen Theorie wird die Kraft zwishen einer verstärkenden Platte undeinem dielektrishen Halbraum untersuht. Im Fall der optish dünnen, verstärkendenPlatte zeigt sih, dass die Kraft für groÿe Abstände zwishen den Platten oszilliert.Die Amplituden der Oszillationen nehmen mit steigender Dike der verstärkendenPlatte ab. Für kleine Abstände zwishen den Platten kann die Kraft anziehend oderabstoÿend sein, in Abhängigkeit von der Permittivität und Permeabilität des Halb-raums an den atomaren Übergangsfrequenzen. Über die Näherung des optish dünnenverstärkenden Körpers hinaus wird gezeigt, dass die Kraft im niht-retardierten Limesebenfalls abstoÿend ist wenn der Betrag der Permittivität des Halbraumes kleiner alseins ist. Für eine weiterführende numerishe Berehnung der Casimirkraft auf die ver-stärkende Platte werden alle Grundlagen geliefert. Es werden insbesondere die Wahlder Wurzel im Wellenvektor in der verstärkenden Platte sorgfältig diskutiert, sowieobere Grenzen für die möglihe Verstärkung angegeben, so dass das Konzept derlineare makroskopishen Quantenelektrodynamik gültig bleibt.Die in dieser Arbeit gefundenen Resultate können auf vielfältige Weise als Grund-lage für weitere Rehnungen (und gegebenenfalls auh Experimente) dienen. Der Ein-�uss der Lokalfeldkorrekturen könnte beispielsweise auh für zylindrishe Systemeuntersuht werden. Die verwendeten Punktstreutehniken eignen sih auh um dieBerehnung der Casimirkraft zwishen zwei kleinen Kugeln zu vereinfahen. Zudemwäre die Untersuhung von Casimir�Polder�Kräften in Anwesenheit verstärkenderMedien denkbar.
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