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1 Introduction

Out of the four fundamental forces that govern the interaction of matter, in many
cases electromagnetic forces are the ones dominating on macroscopic scales. Never-
theless, in classical physics the interaction of neutral, unpolarized objects is governed
by gravitation. The situation changes on a quantum level where quantum fluctua-
tions of the electromagnetic field as well as of the charge and current densities of the
interacting matter, have to be taken into account. In particular, there is a nonvanish-
ing electromagnetic force — the dispersion force — even if the combined field-matter
system is in its ground state and the interacting objects are neutral and unpolarized
on a quantum average. We distinguish dispersion forces between macroscopic bodies,
known as Casimir forces [1-3], those between a macroscopic body and an atom, called
Casimir—Polder (CP) forces [4-6], and finally the forces between atoms, possibly in
the presence of media, which are referred to as van der Waals (vdW) forces [5, 7].
Considering the gravitational (Fg) and the vdW force (Fyqw) between two (hydro-
gen) atoms shows that in the sub-mm regime vdW interactions start to dominate

gravitation,

R (22 =
where we have employed the 1/7® power law describing the retarded force of two
atoms separated by distance r [5] and the ordinary law of gravitation. The two and
many-atom vdW interaction may also be interpreted as the microscopic origin of
all (ground-state) dispersion forces [8-10]. It should be pointed out that the vdW
interaction involving excited atoms has been subject to discussions until now [11-14].
There is a vastness of theoretical work concerning the (static) Casimir force. Many of
these studies are based on Lifshitz theory [2] which, in contrast to Casimir’s normal-
mode approach, allows for the inclusion of arbitrary dispersing and absorbing (linear)
bodies as well as temperature effects (for a review see, e.g., [15]). Early investigations
on (static) CP forces are usually based on linear response theory [16,17], but can also
be obtained from Lifshitz theory by phenomenological treatment of the bodies. In full

quantum theories, the electromagnetic field interacting with media may be quantized



1 Introduction

in a canonical way based on a semi-microscopic matter model [18], or on using the
concept of macroscopic quantum electrodynamics (QED) [19] or, alternatively, within
a path-integral approach [20]. In macroscopic QED, all properties of the bodies enter
via the classical Green tensor while an atom, subjected to the CP force, is described in
terms of its polarizability and its transition frequencies. Conservative CP forces can
then be calculated by determining the body-induced energy shifts in leading-order
perturbation theory [21].

The impact of (commonly attractive) dispersion forces in science is immense. In
biology, dispersion forces contribute to the organization of molecules [22-24] as well as
to cell adhesion [22,23,25,26], and to the interaction of molecules with cell membranes
[23,25]. A very fascinating and practically relevant example is the gecko’s ability
to climb dry and smooth surfaces [27|. There is experimental evidence that vdW
forces acting on each of the millions of microstructured hairs on the gecko’s toe
cause the sticking [28], though it may be influenced by other effects [29-31]. In colloid
science, the (primarily dispersion-type) interactions between small clusters of particles
in free space [32] and between spherical micro-and macro objects embedded in a
liquid or colloidal suspension [33] are investigated. If the interaction is attractive,
clustering or flocculation may occur [34] but can be balanced by other (repulsive)
forces [35-38]. The consequences of dispersion forces are also noticeable in astronomy
where laboratory experiments have shown that vdW forces contribute to the sticking
of dust grains in the formation of planetesimals [39]. Furthermore, Casimir energies
are controversially discussed to contribute to the cosmology constant [40].

The era of high-precision Casimir force experiments started in 1997 when the force
between a metallic plate and a metallic spherical lens has been measured [41]. Correc-
tions due to finite temperature, often referred to as the thermal Casimir effect, were
measured in subsequent experiments [42-47| where the correct description of metals
has caused a controversy [48-51|. Measurements of the CP energy of excited atoms
are typically based on spectroscopic methods [52-54|, while ground-state CP forces
are measured by means of deflection experiments [55]. To accommodate experiment
and theory, the impact of surface roughness has been subject to calculations [56-59].
In the last years, the detection of repulsive dispersion forces has been brought into
focus [60,61]. The possibility to create repulsive dispersion forces is of fundamental
interest in micro-electromechanical systems where micro-objects may unintentionally
stick to a surface when brought into close vicinity [62-65|. Repulsive dispersion forces

may also be utilized for implementing trapping mechanisms [66, 67|, guiding atomic



beams in atom optics [68|, enhancing quantum reflection [69], going towards quantum
levitation [70] or facilitating superlubricity [60] by eliminating quantum friction |71].
In the last two decades much progress has been made in fabricating metamaterials
[72,73] with specified properties that might be used to control the strength and the
sign of Casimir and CP forces. The frequently used concept of effective permittivity
and permeability of materials is only valid on length scales which are sufficiently large
in comparison to the elementary building blocks of the material. The material response
can be determined theoretically [74,75] or by means of reflection experiments [76]. Of
particular interest are left-handed metamaterials [77,78] which can be fabricated using
periodic arrays of split-ring resonators [79,80| or two-dimensional metal-insulator—
metal waveguide structures [81]. Lefthanded materials have been predicted to lead to
a number of unusual optical phenomena [82,83] such as negative refraction [79, 82],
invisibility devices [84,85] and the possibility of a superlens: a planar left-handed
slab is able to focus light with a resolution well beyond the diffraction limit [74].
The superlens concept has been subject to intense discussion [86, 87|, and limiting
factors such as the finite dimension of the lens [88] or the influence of absorption
have been studied [89]. However, passive metamaterials suffer from high absorption
which restricts desired metamaterial properties such as left-handedness [82,83] to a
narrow spectral bandwidth [90]. Hence, the influence of such properties on ground-
state dispersion forces may be strongly reduced [91-94]. In general, the influence of
absorption can be mitigated via introducing amplification as suggested in Refs. [90,
95,96] and has been achieved recently for a metamaterial in the optical regime [97].
In parallel to these developments in experiments and applications, the possible
realization of repulsive dispersion forces has been discussed theoretically. Three main
mechanisms can be proposed: 1. Competing effects of electric and magnetic properties
of the atoms [91,93| and/or the bodies are known to lead to repulsive interactions
[92,98-100]. 2. An intervening medium between the Casimir objects [2,101,102] or
a medium environment of the atom [103] may account for repulsion even for purely
electric ground-systems. For atoms embedded in a medium the Onsager real cavity
model [104] can be applied to model the difference between the local electromagnetic
field at the position of the atom and the macroscopic one. The choice of the correct
stress tensor of medium-embedded bodies has been subject to controversial discussion
[105-108]. 3. Excitation in the form of excited atoms or active media provides the
possibility to turn the sign of the force into repulsion. The vdW interaction was

initially studied for excited atoms in free space [12,13,109-111], and later the presence
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of ground-state media was taken into account [14]. Similarly, the CP interaction of
a macroscopic ground-state body and an excited atom has been studied and found
to contain (dominating) resonant contributions [112-114], which, depending on the
relevant medium and atomic frequencies, can provide repulsive interactions. The CP
potential of a ground-state atom in front of an excited dilute gaseous medium, as well
as the Casimir interaction between two dilute samples of excited gas atoms has been
investigated in Ref. [13]. To calculate the Casimir force on an amplifying body beyond
the dilute-medium limit, an inclusion of amplification in the quantization scheme is
necessary. An attempt in this direction was made for a slab-like system [115,116] which
was later generalized on the basis of macroscopic QED in three dimensions [117]. In
particular, the question of whether the Casimir force on an amplifying body can be
repulsive as suggested in Ref. [70] has not been solved yet. Thermal excitation may
also give rise to resonant force components in non-equilibrium systems [118|. The
resonant force may have different signs depending on the temperature difference of
the body and the medium-environment [119-122].

Dispersion forces on ground-state objects in free-space have been intensively dis-
cussed [6]. Motivated by the above mentioned applications, we investigate in this
thesis how CP and Casimir forces can be controlled. Since the magnetic properties
created in the context of metamaterials are usually not strong enough to give rise to re-
pulsion [123], we concentrate on the second and third mechanism as introduced above.
While excited systems are the most promising candidate for implementing repulsion,
dispersion force on objects in media are also of interest to colloid science. We describe
the Casimir and Casimir-Polder forces from first principles as Lorentz forces in the
framework of macroscopic QED [10,113]. We start with a review of the quantization
procedure of the medium-assisted electromagnetic field in the presence of linear, par-
tially amplifying media. The main part is primarily based on Refs. [AS1]- [AS7] and
covers the following problems:

e Impact of the local-field correction on the ground-state CP potential

e Estimation of the ground-state CP potential at the interface between two media
e Dispersion interaction between spherical objects in media

e Resonant CP potential in a realistic superlens scenario

e Casimir force on an arbitrary, partially amplifying body

e Consistency of CP and Casimir force theory for excited matter

e Possibility of repulsive Casimir forces in planar geometries involving amplifica-
tion

In the last chapter we summarize our results and give ideas for prospective works.



2 Fundamentals

A very successful way to formulate a consistent theory of dispersion forces is pro-
vided within the concept of macroscopic quantum electrodynamics, which describes
the interaction of the electromagnetic field with nonrelativistic, macroscopic objects
(media, bodies) and microscopic objects (atoms, molecules). In this approach, atoms
can be described as (usually electric) dipoles, where the response of the medium and
the bodies is described macroscopically. This description is valid as long as the dis-
tance between the bodies and distances between bodies and external atoms are larger
than the inter-atomic length scales inside the bodies. As in classical electrodynam-
ics the medium response is described by causal complex-valued electric permittivity
and (para)magnetic permittivity functions. In this work, we restrict our attention to
isotropic media that are linearly and locally responding to the electromagnetic field
and introduce the permittivity e(r,w) and permeability u(r,w).

As one of the key features of this thesis the bodies may also be partially amplifying,

which is characterized by
Ime(r,w) =¢/(r,w) <0 and/or Imu(r,w)= p(r,w) <0 (2.1)

for a limited space and frequency regime. The strength of the amplification must be
such that the response to the electromagnetic field is still linear, which is particularly
important in systems where waves pass through an amplifying medium repeatedly,
such as high-Q resonators (details in Ref. [124]). A familiar model for an amplifying
dielectric e(r,w) [and analogously for p(r,w)|, consistent with the Kramers—Kronig

relations, is of Drude-Lorentz type [116],

Ny — N, S
N+ Ny (w+ wp +19)(w — wg + 1)

e(w) = ep(w) (2.2)
where the medium resonance is characterized by the transverse frequency wy, strength
S, and damping parameter v, respectively. Other resonances are included in the back-

ground contribution &,(w). For absorbing media with normal populations of the upper
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level N, and lower level N;, N; > N, we find that Ime > 0, while for gain-associated
frequencies the population is inverted, N, > NV}, implying Ime < 0. In both cases we
find poles in the lower w half-plane at w = +w; — i, such that £(r,w) and p(r,w) are
analytic in the upper half plane including the real axis, apart from a pole at w = 0
for metals. As follows from causality, the medium becomes transparent for sufficiently

high frequencies [6],

lim e(r,w) = 1+ O (i) and i p(r,0) =140 (—) o (23)

wW—00 w2

In the following we review the quantization scheme as used in this thesis, where the
possibility of amplification is included right from the start.

2.1 Field quantization in linear media

We start with the familiar (macroscopic) Maxwell equations for the operator-valued

electric field E(r, w) and the induction field B(r, w) in Fourier space,

V -B(r,w) =0, (2.4)

V x E(r,w) — iwB(r,w) = 0, (2.5)

eV - E(r,w) = plr,w), (2.6)

115V x B(r,w) + iweoE(r, w) = j(r,w), (2.7)

where we have introduced the frequency components in a picture-independent manner,
A 0 A
O(r) = / dwO(r,w) + H.c., (2.8)
0

with H.c. denoting the hermitian conjugate. In the inhomogeneous Maxwell equations,
the p(r,w) and _j(r,w) denote the internal charge and current densities, respectively,

The charge and current densities are connected via the continuity equation

~

iwp(r,w) =V -j(r,w) (2.9)

which, together with the solution of Eq. (2.4), B(r,w) = (iw) 'V x E(r,w), implies
that it is sufficient to consider the electric field and the current density. Hence, we con-

tinue with the combination of Eqs. (2.5) and (2.7), and obtain the integro-differential
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equation
2

~ w2 A~ A
V xV xE(r,w) — gﬂ(r,w) =j(r,w). (2.10)
As in classical electrodynamics, if the internal atomistic structure of the (stationary)
medium is not resolved, we introduce the constitutive relation in the form of Ohm’s

law,

i(r,w) = /d3r’Q(r,r’) B, w) +iN(r,w), (2.11)

to account for the (linear) response of the medium to the electromagnetic field with
iN being the noise current density. For a locally responding medium, the complex

macroscopic conductivity tensor Q can be explicitly given as [125,126]

Q(r, v, w) = Z Q\(r,r',w), (2.12)
Q.(r,v,w) = —icqwle(r,w) — 1]6(r — '), (2.13)
Q.. (r, v\ w) = _iw/iov X [1 — ,u(r,w)}(s(r — 1)l x v, (2.14)

where [/ is the second-rank unit tensor and %’ characterizes the gradient to the
left with respect to r’. Note that the notation with the conductivity tensor is very
general: In Refs. [10,127| the quantization scheme has been extended to allow for
anisotropic, nonlocal and nonreciprocal media. The fluctuations of the noise current
density immediately give rise to fluctuations of the electromagnetic field, which at zero-
temperature are a pure quantum effect in agreement with Heisenberg’s uncertainty
principle. In the high-temperature limit, these fluctuations are consistent with the
classical dissipation-fluctuation theorem [128,129]. Combination of Egs. (2.10) and
(2.11) gives a second-order Helmholtz equation,

2

w - . ! / YN . 0
[—g +V x Vx|E(r,w) — z,uow/d?’r Qr.r',w) - E(r,w) = ippwj, (r,w), (2.15)

where the formal solution to Eq. (2.15) can be written in terms of the Green tensor

G(r,r',w)

E(r,w) = iwgo/dB’r’G(r,r’,w) -iN(r’,w). (2.16)
In addition, we immediately obtain the expansion for the induction field,

~

B(r,w) = uo/dgr’V x G(r,r',w) -iN(r’,w). (2.17)
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In order to accomplish the quantization, the noise current density operator is required

to fulfill the commutation relation

[ (rw) il o e)] = %5@; — W)Re Q(r, v, w), (2.18)

such that the commutation relation characteristic for the electromagnetic field is in

accordance with free-space QED |[§],
[E(r), B(r')] = iheg'V x 6(r — 1)1 (2.19)

The classical (retarded) Green tensor as introduced in Eqgs. (2.16) and (2.17) obeys

the differential equation with the tensorial d-function source term

2

—CZ—2 +V xVx|G(r,s,w)=15(r—1) —i—i/,cow/dB’S Q(r,s,w) - G(s,r',w)

2

Y le(r,w) — 1)G(r, ', w) + V x {1 _

c2

1
p(r,w)

}V x G(r,r',w),

(2.20)

together with the boundary condition at infinity, G(r,r’,w) — 0 for |[r — r'| — 0.
This boundary condition ensures that the partial differential equation (2.20) uniquely
determines the Green tensor [130]. In particular, this remains true when amplification
in a bounded region is allowed for, as long as the assumption of linear response holds
[124]. In practice, the Green tensor is constructed by using the boundary conditions
of the geometry. However, a closed expression for the Green tensor is only available
for sufficiently simple geometries such as piecewise homogeneous spherical or planar
systems [131, 132]. For piecewise homogeneous media with r,r’ being in the same
region it is often convenient to decompose the Green tensor into a bulk part and a
scattering part,

G(r,v',w) =G (rr w)+ GV (rr w), (2.21)

where the bulk Green tensor G is a particular solution to the inhomogeneous
Helmholtz equation (2.20) with e(r,w) = e(w) and p(r,w) = p(w), while the scatter-
ing Green tensor G solves the homogeneous Helmholtz equation and accounts for
the scattering and transmission at the boundaries of the bodies.

The Green tensor has some useful general properties, which will be employed
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throughout this thesis, in particular the Schwartz reflection principle
G'(r,r',w) = G(r,v', —w), (2.22)

Onsager reciprocity

G(r,v',w)=G"(r,r,w), (2.23)

and the integral relation
,uow/d?’s/d?’s'G(r, s,w) -ReQ(s,s',w) - G*(s',r',w) =Im G(r,r',w) (2.24)

(for proofs see, e.g., Ref. [129]). We will further require the analytic behavior of the

scattering Green tensor in the limit of large and small |w]| [129],

lim u}—2G W, r',w)y=0, lim u}—2G W r',w)=0 (2.25)
lwl o0 €2 T w0 2 ' '

The analyticity of the Green tensor in the upper half w plane is a basic requirement

for the quantization scheme as it is needed to verify the fundamental commutation

relation (2.19). While for absorbing media this assumption is always fulfilled, poles in

the upper w-plane may arise for gain media when the amplification is so strong that
the medium response becomes nonlinear [124] (for an example, see Sec. 4.2).

Let us now return to the field quantization. Instead of using the set of noise opera-

tors iN(r, w) and ijv(r, w), it is convenient to introduce bosonic variables f, (r, w) and

ﬂ(r,w), with A\ = e, m, according to

JNrw =w (r,w |[@elrw (r,w) + O[— 51(r,w)]fj(r,w)}
‘ K r,w ‘ e ¢
F [ (Bl @l (v,0) + Ol wlEf (v )] (220

with commutation relations

[Fai(r,w), it w)] =0 = [fl(r,w), fl,,(/,0)] (2.27)
[Frilr,w), f1,(,w)] = Gwdiio(r — v)d(w — '), i,j=1,2,3 (2.28)

and ©(x) being the Theta function with ©(0) = 1. Equation (2.26) shows that the

presence of amplification, where €; or p; < 0, causes an exchange of the roles of the
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creation f and annihilation operators ', a fact that is well known [130]. To include
amplification in the theory, we assume that the medium-assisted field is in an excited
state where the medium is pumped in such a way that a quasi-stationary regime can
be established, externally controlled and maintained. This state | {0}) is defined by

fi(r,w)| {0}) =0 VA r w. (2.29)

For a purely absorbing medium, Eq. (2.29) defines the ordinary ground-state.
The charge and current densities can be written as functionals of the variables
f\(r,w) and fi(r,w),

3 w? 3 5oy

j(r,w) = (—g +V x VX) /d r'G(r, v, w)-j (W), (2.30)
i w) = 2 EBr'Gr, v, w) - (v 2.31
/_)(r,w)—gv- r (r,r,w)-_lN(r,w), (2.31)

as can be seen by inserting Eq. (2.26) and (2.16) into Eq. (2.11) and applying Eq. (2.9).
To complete the quantization procedure, we introduce the Hamiltonian of the body-

assisted electromagnetic field in the form

H= Z /d3r /000 dw hw sgn [ (r, W)l (r, w) - i (r, w) (2.32)

A=e,m

where k. = €7, Ky, = g, in consistency with the quasi-microscopic Huttner-Barnett
model [18]. The Hamiltonian can be justified by showing that the Heisenberg equation

of motion,

A ~

fy(r,w) =ih™* [f], ﬂ(r,w)} = —iwsgn[Im xy (r, w)]f\(r,w), (2.33)

implies the correct time dependence of the Maxwell’s equations. We finally com-
ment on a rather unpleasant feature: The single-quantum Fock state |1,(r,w)) =
f’i(r, w)| {0}) is an eigenstate of the field Hamiltonian whose corresponding eigenval-
ues can become arbitrarily negative for amplifying media. That means that in the
presence of amplification, the state with H|{0}) = 0 is not the state with the lowest
energy as would be expected from a true ground-state. As indicated above, the as-
sumed pump mechanism (which, however, is not dynamically included in the theory)

defines a quasi-stationary state similar to the ground-state, cf. Eq. (2.29).

10



2.2 Casimir—Polder forces

2.2 Casimir—Polder forces

The Casimir—Polder force between a neutral, polarizable atom A and a purely absorb-
ing magnetoelectric body can be regarded as the (average) quantum Lorentz force on
the atom [113],

F— / &3r <ﬁA(r)E(r) 4 ia(r) x B(r)> , (2.34)

where the atomic charge and current densities read

pa(r) = D qub(r — ta), (2.35)

acA
am =Y ‘-’5‘* [faé(r — )+ 6(r — fa)fa] , (2.36)

acA
respectively, and « labels the constituents of the atom with charges ¢,. Note that
the electric and induction field expansions can still be given in the forms (2.16) and
(2.17). The expectation value in Eq. (2.34) is understood to act with respect to the
ground-state | {0}) of the electromagnetic field coupled to an arbitrary internal state

of the atom that will evolve over time.

Equation (2.34) is usually rewritten in long-wavelength approximation which for

nonmagnetic (electric-dipole) atoms reads [113]

~

. d /. .

F = [V <d : E(r)> + = <d x B(r)>] , (2.37)
dt r=rx

where d is the dipole operator of the atom given in terms of time-dependent atomic

flip operators flmn,

d=> dmnAmn,  Apn = Apa(t) = Im)(n| (2.38)

and m, n counting the atomic energy eigenstates E,, . In Eq. (2.37), r4 denotes the
center-of-mass position of the atom. Effects of the center-of-mass motion are disre-
garded here and throughout. We further assume that the atom is initially prepared
in an energy eigenstate |n). It has been shown that in this case the second term in
Eq. (2.37) does not contribute [113]. One now has to derive the time evolution of the

internal atomic state which is coupled to the medium-assisted electromagnetic field.

11
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The Hamiltonian in the multipolar coupling scheme [113],

H= Z /dgr/o dwhwﬂ(r,w)-f',\(r,w)JrZEn/Alnn

A=e,m

—Z Z /d3r/ dwd,,, - G,\(rA,r,w)~f',\(r,w)flmn+H.c., (2.39)
0

m,n A=e,m

consists of the field Hamiltonian (2.32), the atomic Hamiltonian [first line of Eq. (2.39)]
and the term accounting for the atom—field coupling [second line of Eq. (2.39)]. For

convenience we have introduced

w? |k
Ge(ra,r,w)=i—/—er(r,w)G(ra,r,w), (2.40)
C TEQ
o [ ) T
G, (ra,r,w)=1 N\ ool @ [V X G(r,ry,w)| . (2.41)

The field dynamics can be obtained from the Heisenberg equations of motion

fi(r,w) = ih ' [H f\(r,w)] = —iwfi(r,w) + i) G (ra,1,w) - dy A, (2.42)

m,n
where the solution

t
fi(r,w, t) = e @Itf (r W) + ih_l/ At e G (v g, 1, w) - dyn A (1) (2.43)

to

gives, upon using the integral relation (2.24), the time-dependent electric field

. t
E(r,w,t) = e’i“’(t’tO)E(r, w) + all Zuﬂ/ dt' e~y G(r,r4,w)  dpnAmn(t).
Q m,n to

(2.44)
After some arrangements, the CP force according to Eq. (2.37), can be written in the

form

. 00 t
F(t):Z’LL?O > /0 dw w?Vd, -Tm GM (14, 14, w) - dy / dt'e (A, (O Au(t))

m,n,k,l to

(2.45)
where the contribution of the translationally invariant bulk Green tensor G (0)(1' A4, T4, W)
leads to a self force that is not of interest in this thesis.

To calculate the required two-time correlation functions <Amn(t)flkl(t’ )), in weak

12



2.2 Casimir—Polder forces

atom—field coupling, we assume the time-evolution to be Markovian. This basically
means that the electric field at a given time is not influenced by the presence of the
atom at earlier times. Applying the quantum-regression theorem [133], the correlation

functions can be written in the form [113]

~ ~

(Apn (A () = elfomn=Omt T2 5 (A1), >, (2.46)

where we have introduced the spontaneous decay rate accounting for the finite linewidth

of the nth energy level,

2
Lo(ra) = ank = Z %wikdnk Im G(ra,ra,wnk) - din (2.47)

k<n k<n

and neglected the influence of the bodies on the atomic transition frequency w,;. The
spontaneous emission of real photons governs the internal dynamics of the atom and

manifests in the time-dependence of the (diagonal) atomic level populations

Pa(t) = —Toupa(t) + > Tinpi(t). (2.48)

k>n

Note that p,(t) denotes the population probability of the nth state but is also the
expectation value of A,,,(¢). One can show that spontaneous decay transfers an atom
initially prepared in the state o(ty) = |n)(n| into an incoherent superposition of
(lower) energy eigenstates so that the atomic density matrix o(f) remains diagonal
for all times [134],

G(t) =Y pr(t)k) (k| for t>to. (2.49)

k<n
Substituting Eq. (2.46) back into Eq. (2.45), evaluating the time integrals in Markov
approximation (i.e., putting Amn(t’ = t) out of the integral and shifting ¢, towards

—00), we can write the CP force in the form
F(ra, ) =) po(t)Fu(ra). (2.50)

In what follows, we assume that w,, > I',,['x = € and neglect the effect of the
magnetoelectric bodies on the spontaneous decay. Additionally, we consider only time
scales that are short compared to the inverse atomic decay rate. For this purpose,
we study the force associated with the nth state which is conservative within these

approximations, F'(ra,t) =~ F,(rs) = —VU,(r4), where the static potential is given

13



2 Fundamentals

o0 : 1) .
/ dww2dnk Im G (ra, T4 w) dkn+C.c.. (2.51)

W — Wy — 1€

By means of contour integral techniques, on recalling the analytic properties of the

Green tensor, we decompose the CP potential according to
Un(ra) = Ul®(ra) + UM®(ra). (2.52)

In the nonresonant contribution

U:;res(rA) — % /OO dg 62 tr[an(lf) . G(l)(rA,rA,'lf)]

2 Jo
— ? d¢ €20, (i€) tr GW(r 4, v 4, i€) (2.53)
™ Jo

the Green tensor appears in an integral form and accounts for the magnetoelectric
response of the body, while all atomic properties enter via the position-independent
polarizability tensor v, (w), which in lowest nonvanishing order of perturbation theory,
reads [135],

e—0+ W—1€ Wy, — W+ 1€ e—0+ 3R — TWE
(2.54)
The second equality in Eqs. (2.53) and (2.54) holds for isotropic atoms, and tr denotes

a,(w) = lim hZ[wm — + - ] = lim — W;%n—uﬂ —1.

the trace. Equation (2.53) is also valid for left-handed materials. It can, however, be
expected that the impact of left-handedness in a limited frequency interval is very
weak due to the integration over the full (imaginary) frequency regime. On the other

hand the resonant contribution,

Ur(ra) = —pio Y wipdnk - Re G (ra, T, k) - di, (2.55)

k<n

is only present for exited atoms and accounts for the emission of real photons. It usu-
ally dominates over the off-resonant part. The results (2.53) and (2.55) are consistent
with the CP interaction obtained via second-order perturbation theory [21].

In practice, the inclusion of magnetic properties often involves lengthy calculations.
As can be shown, the Maxwell equations in the absence of free charges and currents

are invariant under an exchange of electric and magnetic field quantities, a symmetry

14



2.2 Casimir—Polder forces

property which is known as duality. In the presence of magnetoelectric media, duality
manifests itself as an invariance of the constitutive relations under the simultane-
ous exchange of permittivity and permeability € <> u. Such duality transformations,
denoted by ®, can be shown to imply the transformation rules for the Green ten-
sor [136,137]:

2 / /
wh e, __VxG(r,r,w)x%
2 G (r,v|w) = o) (2.56)
W2
V x G¥(r,v',w) x v = e(r,w) = G(r, v’ w)e(r’,w), (2.57)
G(r,r',w) X Z
V x G¥(r, v, w) =—¢e(r,w o , 2.58
( ) (r,w) ) (2.58)
V x G(r,r',w)
G®(r,r' w x%’:— T e(r,w). 2.59
(r.r' ) ) (2.59)

Equations (2.56)—(2.59) are valid for the scattering parts of the Green tensors and for
the bulk Green tensor if r # r’. In general, Lorentz forces are not duality invariant.
It can, however, be shown that for dispersion forces on neutral and static objects the
duality symmetry is preserved [136]. To recover duality in the presence of atoms it is

required that polarizability and magnetizability are connected via [136,137|

my

d®, = 5 m?, = d;c?, (2.60)
o _Bn ® — 2 2.61
o, =2 B, = o, (2.61)

where m,,;, denotes the magnetic dipole matrix elements and

2
a T oot h Wip — W — 1€ Wiy — W + 1€ e—>0+ 3h wi —w? — iwe
(2.62)

is the magnetizability of the atom. Again, the last equality holds for isotropic atoms.

Thus, duality arguments provide a strong tool to obtain expressions for dispersion
forces from the (usually electric) counterparts that are already known. For exam-
ple, we may calculate the nonresonant CP potential of a magnetizable atom in free-

space from the corresponding electric part (2.53) by carrying out the dual operation
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2 Fundamentals

U#Lres _ Uenres@ = USTGS@ and, on uSing EqS (256) and (261), we obtain
2w T

- % Oodfﬂn(lf) tr [VA X G(l)(rA,r',if) x $/] r'=r,
0

Umres(y ) = % /OOO d¢ tr[VA X 3, (i€) - G(1)<I'A,I",Zf) X %l}

(2.63)
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3 Dispersion forces between

ground-state objects in media

In an introductory section, Sec. 3.1, we apply the real-cavity model to account for
the local-field correction and review! how the Green tensor for this model can be
calculated. The first part of the chapter, Sec. 3.2, is concerned with the CP interaction
of a (nonmagnetic) ground-state atom near the planar interface between two media,
where emphasis is put on the possible creation of repulsive forces, the impact of the
local-field correction, and the on-surface potential. In the second part, Sec. 3.3, we
allow for an arbitrary background medium instead of the planar system and consider

the CP interaction of a ground-state atom with another small spherical object.

3.1 Real-cavity model

We consider an isotropic guest atom placed inside a medium. Note that between
the guest atom and the neighboring medium atoms there should be some free space.
This is accounted for in the Onsager real-cavity model [104|, where the guest atom
A is located at the center of a small, empty spherical cavity of radius R¢ inside
the host medium described by the macroscopic quantities e(r,w) and u(r,w). Thus,

permittivity and permeability of the cavity-medium system can be introduced as

1 if|I‘—I‘A| < Rg¢,
gloc(raw)auloc(raw) = (31)
e(r,w), u(r,w) if |r —ra| > R,

where the radius of the cavity can be regarded as a measure of the distance between
the guest atom and the surrounding host atoms [AS1]. The situation is sketched in

Fig. 3.6 (i). To apply this model, the medium parameters of the host medium should

'For details, the reader is referred to my diploma thesis [138] and Ref. [AS1].
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3 Dispersion forces between ground-state objects in media

not vary appreciably on the microscopic length scale R,

€(I',w) = 5(rA,UJ) = 6,4((,0)
for [r —ru| < 2Rc, 3.9
N(raw) = ,U(I'A,w) = MA(Q}) } | | C ( )

and the quantity \/WRC should be small compared to the maximum of all
characteristic atomic and medium wavelengths as well as to the separation between
the guest atom and any surface of the host medium. These assumptions restrict the
applicability of the model to dielectrics and excludes metals. We will therefore use
the term magnetodielectric instead of magnetoelectric in Chap. 3. The Green tensor
in Eq. (2.20) is thus the Green tensor for the electromagnetic field in the medium,
disturbed by the (real) cavity, where ¢ and p of the unperturbed system are replaced
by the local-field quantities given in Eq. (3.1).

The Green tensor in the presence of the cavity can be written as a function of the
Green tensor G (r4,r4,w) which accounts for (multiple) transmission through the
surface of the cavity and scattering of the electromagnetic field at the inhomogeneities

of the (unperturbed) magnetodielectric host medium [AS1],
w
Glol(ra,ra,w) = —Caw)l + D3(w)GV(ra,ra,w). (3.3)

but neglects multiple reflections at the outer boundaries of the (small) cavity. In
Eq. (3.3), the local-field factor can be derived to be

J1(20) [Zohgl)(zo)}/ — [2051(20)]" h{" (20)

paleo) [1(z0) [00(2)] = £a(@) o (o)) B ()

DA((U) =

3ea(w) wR
:25,4(2;)“*@( ) (34)
The quantity
oy ) [10(2)] = ca@)h(2) [20h" (z0)]
ea(@h () g () — 51 (z0) [0 ()]
ealw) -1 ¢ 9ei(w)Bpalw) —1] =3ea(w) =1 ¢
" 2e4(w)+1iwdRE 5 2 (w) + 1]2 iwRe
ea(w)ni(w) wRc
Vel e L O<T> (3.5)
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3.1 Real-cavity model

can be shown to arise from the (multiple) scattering processes at the inner surface of
the cavity [AS1]|. Here, we have introduced the notation zy = wRc/¢, z = na(w)zo,
na(w) = v/ea(w)pa(w) , and j;(x) and hgl)(a:) being the first spherical Bessel function
and the first spherical Hankel function of the first kind, respectively,

o= (L) g

2 T Tz x?

In the real-cavity model considered, it is sufficient to keep only the leading nonva-
nishing order in \/|€4(0)14(0)|wmaxRc/c as given by the factors C'4 and Dy, where
Wmax represents the maximum of the characteristic atomic and medium frequencies.
This assumption can also be justified for the CP potentials (for details, cf. [139], [AS1]).
Inserting the Green tensor (3.3) into the nonresonant CP potential (2.53) gives the
local-field corrected CP potential of a polarizable ground-state atom [AS1],

U(ra) = Up(ra) = Ui(ra) + Uz(ra), (3.7)

where Uj(r,) is constant throughout any homogeneous region,

h > . :
i) = = 75 [ deanlie)Calic)
h o ea—1 1 96241 —5ua]l+3ea+11
= - dfaa |3 - t— 5 — 1
4124 Jo 2ea+1RE, 5[2e4 +1] Rc

(3.8)

and a4(w) denotes the ground-state polarizability of the guest atom according to
Eq. (2.54). Here and in the following the dependence of €4, s and a4 on i€ is
suppressed for brevity. The term Us(r4) involves all interactions associated with the

particular shape and size of the magnetodielectric host medium and reads

U(ra) = Mo / T dECan(i€) DA (i) tr GV (xa, 1 i6)

27 J
Ppo [ .. o 3e4 \° 1 .

== d tr G . 3.9
2 /) £Eay (2€A+1> r G/ (ra,ra,if) (3.9)

Note that, the second equalities in Eqgs. (3.8) and (3.9) hold for the asymptotic limit

of small cavity radii. The associated (conservative) CP force is given by

38,4
2€A+1

00 2
F(ry) = —VU(ra) = —% d§§2a,4( ) Vir GW(ra,r4,i€).  (3.10)

0
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3 Dispersion forces between ground-state objects in media

It should be pointed out that the cavity-induced part (3.8) does not lead to a force
action but to an energy shift.

To obtain the local-field corrected potential for a paramagnetic atom we benefit
from the duality invariance of the local-field corrected CP potential of a polarizable
and magnetizable atom [136] and apply the transformation rules (2.57) and (2.60) to
Eq. (3.10). We find, in accordance with Ref. [140],

_ 3
2014 +1

h oo
Unte) = =22 [ agsatic)

r'=ry

(3.11)

2
) tr [VA x GW(ry,r',i€) x %’}

with the magnetizability given by Eq. (2.62).

3.2 Casimir—Polder potential near a planar interface

The CP interaction of an atom placed in the vicinity of a rather complex structure,
such as a curved surface or a multilayer geometry, can often be modeled by the CP
interaction between the same atom and a planar interface. As a typical example in
biology one may think of a small molecule inside a cell. In this sense, we study the local-
field corrected potential of a (nonmagnetic) ground-state atom in a magnetodielectric
two-layer system. Our considerations are primarily based on Ref. [AS4].

We consider two half spaces, as indicated in Fig. 3.1, where the coordinate system
is chosen such that the z-direction is perpendicular to the interface between the
contacting media. The left region (denoted by layer j = 1) is defined by z < 0 while
the right region (j = 2) is given by z > 0.

€1, M1 €2, 42 @

ZA

z=0

Figure 3.1: Local-field corrected ground-state atom near the interface between two magnetodielec-
tric planar media.

From Eq. (3.7) we expect two contributions to the nonresonant CP potential. We

study first the position-dependent nonresonant CP potential with the ground-state
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3.2 Casimir—Polder potential near a planar interface

atom located in layer 2 at position z4 from the surface. To that end, we substitute

the scattering Green tensor of a half space at equal-position arguments [132]

 qkIE A
. 2 —2kK2(t€)z,.0 —
G(l) (ZA,ZA,Zg) = %/ Z € 22 (it) 7"2183_0620, (312)
m 0 /{2 o=s,p
into Eq. (3.9), where the single-interface reflection coefficients for s (TE) and p (TM)
polarized waves are given by
"iing - ’%jlgi /ﬁluj - ’%jl,ui
T T I I Th T oI, L (3.13)
Kj €5+ Kj € Ky iy + K5 i
The wave-vector component perpendicular to the surface is (for imaginary frequencies)

- 1ol
given by k- = ix; where

2
iy (i€) = \/61(@'5)#1(@'5); + ki, (3.14)
with kl being the wave vector parallel to the interface which is preserved across the
interface (kI = |kll|). The polarization vectors
efs —e, Xe, e =— ¢ (z’k”ez + /-@].Lek”) (3.15)

Jp \/a

obey the relations
el,-e.=1, e e =1, (3.16)

which are used to calculate the trace in Eq. (3.9). In the limit of small radius of the

real cavity, we eventually arrive at [AS4|

hpo  [°° 2 . 3e2 ? > I Kl
Uz(ZA):@/O d¢ & aa(i€) 5oy 1+ 1 ,u2/0 dk" —

— — klI202
X {’“’{2 S S (1 +2702)] "7 (3.17)
H1ka + Hak €1Ka2 + €2K1 Eafté

In the following, we will study the limiting cases of short and large atom-surface
separation as well as the case of an isorefractive medium, accompanied by numerical
evaluations. Sec. 3.2.3 will then be concerned with the cavity-induced part of the

potential according to Eq. (3.8).
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3 Dispersion forces between ground-state objects in media

3.2.1 Analytical results

Analyzing Eq. (3.17) will help to address the question under which conditions the
atom experiences an attractive or repulsive interaction. Let us first change the inte-

gration variable according to

B = \Ji3 — o/, k) = kpdis, (3.18)

K1 = \/52/02(61m — Eafia) + K3, (3.19)

which gives the potential in the form

00 2
UZ(ZA) — %/ dg gZO[A ( 382 )
0

871'2 282"‘1

o0 _ _ 2 2
x m/ dry {”1“2 S A (—1 o2t 2)] e~ (3.20)
NI HiR2 + fak1 €1k2 + €2K1 SIS

Note that the quantities «(i€), £(i€), u(i€) as well as the exponential term exp[—2¢/cz4]
are monotonically decreasing functions of €.
Close to the surface, in the nonretarded limit, the atom—surface distance z4 is small

compared to the typical wavelengths of the medium and the atomic system,

c
24 K — and/or, 24 < -

wx[n1(0) 4+ n2(0)] Wi, [11(0) + na(0)]’ (3.21)

where w} and w}, denote the maximum of the relevant atomic transition and medium
resonance frequencies, respectively, and 1,2(0) = \/212(0)1112(0) describe the static
refractive indices of the two regions. In this case, the permittivity/permeability-
dependent numerators of the reflection coefficients and the polarizability provide an
effective cut-off for the £-integration. They effectively restrict the £-integral to a region

where & < w ;. The conditions (3.21) then imply

A8 (e eaml) < 28 (Ve rem) < 25 (e + vam)

2

< = (m(0) +m2(0)) <1 (3.22)
and further,
z CU+ 4 CU+
< PR (0) < PR (,(0) 1nn(0)) 1. (3.23)
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3.2 Casimir—Polder potential near a planar interface

To derive the nonretarded CP potential from Eq. (3.20), we perform a leading-order
Taylor expansion in £2/(c?k3)(e1p1 — €212), according to the condition (3.22), carry
out the integration over sy and set exp(—2,/g2112624/c) ~ 1 as implied by Eq. (3.23).
In the nonretarded limit, the potential then decomposes into two terms with different

power laws,

Us(24) = _% + % (3.24)
where
CB:L/mdgaA e (3.25)
1672eq Jo (2e9+1)" €1+ €2
and

h,uo > 3e9 ? M1 — M2 €1 — &2 251(51,u1 - 52#2)
Cr = dge? + -
YT 1672 /0 SEaan: (252 +1 1+ o €1+ &2 ta(e1 + £2)?

(3.26)

Let us briefly discuss the two terms of the potential (3.24). The first term dominates
due to the stronger, 2, power law as long as the two contacting media have dissimilar
electric properties €1 # €9. In particular, the atom is repelled from the interface if
the region containing the atom has stronger electric properties than the other one
(9 > 1), where in the reversed situation, €; > o, the interaction is attractive. In
the case of equal electric properties we have C3 = 0, and the second term gives the

leading order, Us(z4) = C1/z4, where

hyo /OO 2 3e2 ? a2
C, = d — 2. 3.27
L 1672 o £ aa %, + 1 (p1 — p2) 1 + 112 + ( )

The sign of (' clearly shows that the atom experiences a force which points away from
the interface if the magnetic properties of the atomic medium environment are weaker
than those of the medium on the other side of the interface (11 > ps). Vice versa, the
atom is attracted to the interface if po > 1. Thus the dependence of the direction of
the force on the difference in strength of the medium responses is opposite in the two
cases of dominantly electric and purely magnetic media. In both cases the strength
of the force increases with increasing difference between the electric and magnetic
parameters of the contacting media.

Now, we draw our attention to the (long-distance), retarded limit which is charac-
terized by the regime

C C
ZpA > — and a4 > —, (328)
Wy W
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3 Dispersion forces between ground-state objects in media

where w, and w,; denote the minimum of all relevant atomic transition and medium
resonance frequencies, respectively. In this case, the exponential term in Eq. (3.20)
governs the frequency integration. That is to say, for 0 < § < ¢/(224) < wy
the permittivity /permeability and the polarizability are sufficiently approximated by

their static counterparts,

a(if) ~ a(0), e12(i€) ~€12(0), and 5 2(i€) =~ p12(0). (3.29)

By introducing a new integration variable in Eq. (3.20), v = cky /€, the integration
over £ can then be performed first, and we end up with

Un(ea) = 4, (3.30)

ZA

where (' is given by
3h 3 Y 1 - 2 -
c, = 3he o ( £ ) ”2/ dv [1v Mz\/v2 Eally + E1/11
6deqm 2e0 +1 2Om© V| v+ /v — eapin + E1in

_ 2 __ 2
LV e tam (1 90 ) . (3.31)
&1v + 62\/2}2 — &gl + €111 Eo 42

In contrast to the nonretarded case, the dependence of Cy on the electric and
magnetic properties is more involved, where the leading order term depends on the
electric properties, only. We first notice that

oC, 0C,

d
) P ()

> 0, (3.32)

which implies that, for fixed e, and s, the condition C; = 0 marks the borderline
between attractive and repulsive interaction. In particular, we may show this for the

case where the contrast between the contacting media is small,

111(0) = p2(0) + €(0),  ¢(0) < p2(0). (3.34)
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3.2 Casimir—Polder potential near a planar interface

We keep only the terms linear in x and ¢,

/il 0 U—MQ \/Uz —82 0)+€1( ) (0) - ( 1 _ 82(0)) <<O>_M2(0)

~ 0),
111(0)v + 112(0)1/v2 — eo( 0 2(0) 4+ &1(0)p1(0) 2u2(0)  4o? 402 x(0)

£1(0)v = £2(0)y/v? = £2(0)p2(0) + £1(0)pa (0)  5(0) ( 1 M(O))
£1(0)v + £2(0) /02 — £2(0) u2(0) + £1(0) 11 (0) 42 O+ 2e5(0) 4v? x(0);
(3.35)
and perform the v-integration,
O e —23a(0)x(0) + Tea(0)G(0) 530

6407T2€0a £2(0)112(0)12(0)[2£2(0) + 1]2°

This result generalizes the one obtained in Ref. [91] to the case of an atom embedded
in a medium, with local-field correction included. In particular, we find that the
interaction is repulsive for ((0)/x(0) > 23u2(0)/(72(0)) and otherwise attractive,
e.g., for x(0) = ¢(0) and €5(0) = p2(0) = 1.

Let us return to Eq. (3.31) and consider further examples. Assuming that the atom
is located in free space where p(0) = £5(0) = 1, it can be shown that, for a purely
electric region 1,

C4[,M1(0) = 1,[12(0) = 1,52(0) = 1] < O, (337)

and for a purely magnetic region 1 with p;(0) > 1,
Culer(0) = 1, 12(0) = 1,25(0) = 1] > 0. (3.38)

That is to say, in the retarded limit, the atom is attracted toward an electric half
space while it is repelled from a magnetic one. More generally, on recalling the signs
of the derivatives given in Eq. (3.32), electric properties tend to make the potential
attractive while magnetic ones tend to make the potential repulsive.

If the atom is embedded in a material half space, while the opposite half space is

empty, 11(0) =€1(0) = 1, it can be shown that, for a purely electric material,
C4[,M1(0) = 1,51(0) = 1,#2(0) = 1] > O, (339)
the atom is repelled from the interface, while for a purely magnetic material with

Mg(O) > 1,
C4[,M1(O) = 1,51(0) = 1,52(0) = 1] < 0, (340)
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3 Dispersion forces between ground-state objects in media

the atom is attracted towards the interface. Except for the different power law, the
sign of the interaction is the same in each of these limiting cases in the retarded and
nonretarded distance regime, cf. Tab. 3.1.

It should be mentioned that the above-given results are consistent with the special
case of an atom in vacuum given by g5 = py = 1 [91]. In particular, the corresponding
free-space potential shows qualitatively the same behavior: The atom is attracted to
regions of large permittivity and small permeability.

As discussed in the context of several theoretical problems (see, e.g., Ref. [141]),
calculations simplify considerably in the special case of an isorefractive medium. Isore-
fractive media are characterized by the requirement that the refractive index of the

two contacting regions is the same,

E1ft1 = Eafha, (3.41)

which immediately implies that the wave vectors also coincide, x1(i) = ko (i&). If the

two half spaces are isorefractive, the potential (3.17) greatly simplifies to

I3 00 2 _ 00
Us(z4) = / d&a—A ( 3¢2 ) R / drgkae 21274, (3.42)
0

_4507r2 €2 \2e2+1/) e1+e2 ) mmese

where we have already changed the integration variable. We carry out the integration

over K9 and obtain

h  ag 3es \’ &1 — e
U Mgt
2(24) 16m2e023, /0 ¢ €9 (252 + 1) g1+ &2

5 2
« e~ 2vEImtza/c [1 492, VE2h2€ +223‘€2M22£ ] . (3.43)
C C

The result in the nonretarded regime can easily be obtained by replacing

5 2
em2VERmEzA [1 fou, YR o el 225 } ~ 1, (3.44)
C C

thus we have to leading order

0 2
Us(ea) = ~ 5oz | d&ﬁ( 5o ) Lo (3.45)
0

B 1672e023, €9 \260+1) g1 +¢9

in accordance with Eq. (3.24) together with C} = 0. For the retarded limit we take
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3.2 Casimir—Polder potential near a planar interface

g1 < &9 €1 > €9 E1M1 = Eald2
1 1
Fnret X +g Fnret 0.8 _g 9
1 _1 gaasies _3ex
Fret 0.8 +25A Fret 0.8 ZSA Fnret 16” EOZA fo 52 e1teo (252+1>
p1 > o M1 < pa F.. — ___ 3haa(0) c1(0)—22(0) [ 3e2(0) \?
Fore —Z% Foret +ZL2 ret 8m2ege2(0)n2(0)25 €1(0)+e2(0) \ 2e2(0)+1
A A
1 1
Fret X o5 Fret X _'_2_5
A A

Table 3.1: Power laws for the CP force on a ground-state atom in a magnetodielectric two-layer
system in the nonretarded and the retarded distance regime. The atom is located in layer 2.

the static counterparts of €,  and a4 and integrate over &,

Us(24) = —

3hcozA ( 352 )251—62 (346)

327T250€21/€2M22i 262 +1 g1+ 52’

which is in accordance with Eq. (3.30).

3.2.2 Numerical results

To study the local-field corrected potential at moderate distances and to elucidate the
combined influence of electric and magnetic properties of the media, we calculate the
position dependent part Us(z4) in accordance with Eq. (3.17) numerically. We assume
a two-level atom of transition frequency wyy and a single resonance Drude-Lorentz

model for the permittivities and permeabilities and write Eq. (2.2) in the form

2 2

) =1 T ) =1 19 (3.47)
Wi + §2 + &ej Wiy + & + Evmy

where wp.;, wpm,; denote the plasma frequencies of the respective media.

Our analytical results have shown that purely electric or magnetic media, give rise
to monotonous potentials of opposite signs and differing power laws. When competing
effects of electric and magnetic properties come into play, potential walls or wells can
hence be expected. For sufficiently strong magnetic properties, the well is located at

short distances where its position and height can be obtained from Eq. (3.24),

3C5 207 |4

min — —~ min — T4 3.48
: C, o Ve, (3.48)

respectively.
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3 Dispersion forces between ground-state objects in media

The numerical result, as shown in Figure 3.2 (a), illustrates the atom—surface dis-
tance dependence of the Uy(z4) potential. In case (1), e > &1, the potential at very
short atom-—surface distances is repulsive in medium 2 and attractive in medium 1, in
consistency with the analytical results (3.24) and (3.25). Similarly, in cases (2) and
(3), e2 < €1, the potential is attractive in medium 2 while repulsive in medium 1.
As the atom-surface distance increases, the second term in the potential (3.24) with
power law 2, gradually comes into play. If the magnetic properties are strong enough
they may switch the sign of the potential and create potential walls or wells as can
be seen in Fig. 3.2 (2).

In the following we will discuss the impact of the local-field correction. The local-
field correction factor [3g;/(2¢;,41)]* of an electric atom depends only on the dielectric
properties and is positive, larger than one, and increases with ¢;, where ¢ indicates the
layer containing the guest atom. It approaches the maximum value of 9/4 as g; — oc.
Note that a local-field correction factor larger than 1 does not necessarily lead to
an enhancement of the potential because the uncorrected factor in the integrand can
change sign as the imaginary frequency £ varies. That is to say, only when the uncor-
rected integrand is purely repulsive or attractive, the local-field correction increases
or decreases the potential. Firstly, we study how the net effect of the local-field cor-
rection depends on the distance. In Fig. 3.2 (upper) we indicate the corresponding
uncorrected potentials by dashed lines while the difference between the corrected and
uncorrected results is shown in the lower part of Fig. 3.2. It reveals quite significant
corrections of up to 30% of the uncorrected values. In contrast, in the middle case (2),
the two curves with and without local-field correction cross, implying that there exists
an atom-surface distance at which the effect of the local-field correction is canceled
due to the &-integration.

As a second aspect, we study the behavior of the local-field corrected CP potential
with respect to the static permittivity of the medium surrounding the atom (region
2). In Figs. 3.3, we have plotted the (corrected and uncorrected) potential for two
different values of the atom—surface distance. The curves for the larger distance from
the interface peak at certain values of £9(0) where the positions of the peaks are
different due to the effects of the local field. Closer inspection verifies that, as €5(0)
increases, the ratio between the corrected and uncorrected curves tends to the static
value of the local-field correction factor [3e9/(2e2 + 1)]* which lies between 1 and 9/4
Note that in general the ratio of the two potentials is not always a good measure since

one of the quotients may vanish. For the smaller value of the atom-—surface distance
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Figure 3.2: (upper) Position-dependent part of the CP potential experienced by a ground-state
two-level atom in a magnetodielectric two-layer system as a function of atom—surface distance for
fixed €1, p1, po, and for wpea/wip =1 (1), 0.4 (2), and 0.2 (3). Solid lines denote the potentials
with the local-field correction, while dashed lines represent those without. Other parameters are
Wrel/wio = wrez/wio = 1.03, wper/wio = 0.75, wrmi/wio = Wrme/wio = 1, wpmi/wio = 2.3,
wpma/wio = 0.4, Ym1,2/w10 = Ye1,2/w10 = 0.001, and the cavity radius is Rcwio/c = 0.01. (lower)
Difference AUy between local-field corrected and uncorrected (position-dependent) CP potential
versus atom—surface distance where the solid, dashed, and dotted lines refer to the curves (1), (2),

and (3), respectively.
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Figure 3.3: Position-dependent part of the CP potential as a function of the static permittivity
£2(0) (more specifically wpea/wio) for two values of the atom—surface distance z w1g/c = 0.01
(scale to the left, lower curves) and zaw1p/c = 3 (scale to the right, upper curves). Solid lines are
with the local-field correction while dashed lines are without one. Other parameters are the same
as in Fig. 3.2.
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3.2 Casimir—Polder potential near a planar interface

zawig/c = 0.01, a crossing point between the corrected and uncorrected curves is

observed, where the local-field correction has vanishing net effect.

3.2.3 Potential at the surface

In the following we want to apply our results from the previous section to study the
full CP interaction, which is of interest when a small particle is transfered through
an interface. Theories of the (long-range) CP interaction are usually incapable of cor-
rectly predicting the behavior of the interaction potential at extremely short distances
since competing repulsive interactions, arising from the overlap of atomic valence elec-
trons with the surface, are neglected. The calculation of the nonresonant CP potential
for very small atom—surface separations has been subject to a number of investiga-
tions. There, the CP interaction has been modified to produce a finite potential at the
surface [142] by introducing a reference plane [142]; via characterizing the material
surface by a more realistic (spatial dispersive) response function [143|, or via using
an atomic polarizability beyond the dipole approximation [144,145].

Firstly, we study the layer-dependent, constant part U; of the potential which is
entirely due to the local-field correction. In Fig. 3.4 we have numerically calculated
the dependence of U; on the real-cavity radius R¢ for a purely electric material and,
for comparison, also a purely magnetic material. According to the different leading
terms in the analytic result (3.8), the potential |U;| for a pure electric material is
generally larger than that for a pure magnetic material but has opposite sign. The
figure also indicates that the magnitude of U; decreases with increasing real-cavity
radius, that is, the effects of the local field becomes weaker as the medium becomes
more dilute, and the average distance between the two atoms increases. Throughout
this section, we have assumed that for a small radius of the real cavity it is sufficient to
work with the approximate potential as given by the second equality in Eq. (3.8). In
Fig. 3.4, we have checked numerically that this assumption is correct; the difference is
shown by dashed lines for the approximate result and solid lines for the exact one. On
the scale of the plot, the differences are not visible for a purely electric material. The
agreement in the case of a purely magnetic material is good for very small Rcwio/c
but worsens as Rcwig/c increases.

In the following, we will propose an estimate of the full CP potential at the interface.
Firstly, we recall that for very short distances, \/WzAwlo/c < 1, the position-
dependent part of the potential is dominated by the 03223 term, which contains only

the difference of the electric medium properties, €; — €9, in the integrand. It can thus

31



3 Dispersion forces between ground-state objects in media

100 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1

Rcwlo/C

Figure 3.4: The exact layer-dependent constant part of the potential (solid line), and approximate
results (dashed line), are shown as functions of the real-cavity radius. The upper (pair of) curves
shows —U;(z4)12m%e0c? /(wig|di1o|?) (the sign has been reversed so that a logarithmic scale can
be used) for a purely electric material with wpea/wi9g = 0.4, while the lower pair of curves
shows Uj(z4)12m2e¢c? /(w3y|di1o]?) for a purely magnetic material with wpma/wio = 0.4. All
other parameters are the same as in Fig. 3.2. The radius of the cavity Rcwig/c starts from 0.001.

be expected that even if the medium has a permeability p; # 1, it is irrelevant for the
total value of the potential at or close to the surface as long as 1 # 5. In Fig. 3.5
we have calculated the full potential U; + Us(z4) on both sides of the interface with
the properties of medium 1 fixed while those of medium 2 vary from free space to a
more dense medium. The case represented by the dashed line is the same as curve
(2) in Fig. 3.2, showing that additional structures in Uy, like potential wells or walls,
are typically overwhelmed by the magnitude of U;. As can be seen from the figure,
an atom located in layer 2 close to the surface will be attracted to it, and if the atom
can cross the interface, it will be pushed further away from the surface into layer 1.
In Fig. 3.5, we have not displayed the results for distances |24| < Rcy/]ep| where
the real-cavity model can no longer be applied. This gives rise to a gap between
the potentials on the two sides of the interface. To estimate the amount of energy

needed to push an atom from layer 2 into layer 1, namely the potential exactly at the

32



3.3 Medium-assisted Casimir—Polder potential of spherical objects

interface, we suggest to use the simple interpolation [AS4]

U(za =0) = 5 [U(Rc) + U(=Rc)]

h e g1 — 1 €9 — 1
———— [ 4 12
32m%eg R, /0 fozA{ (2&1 +1 + 2e9 + 1)
1 381 2 1 382 2
— - — 3.49
€1 (281"‘1) €9 <2€2+1) ( )

where we have used Eqs. (3.8), (3.24), and (3.25). This means that we first plot the

potential as a function of the atomic position up to distances |z4] = Rc. Then we

DO | =

€1 — &2
€1+ &9

connect the two loose ends on the two sides of the interface by a straight line and read
off the value of the potential at z4 = 0. In the following we want to show that the
proposed estimate, Eq. (3.49), is consistent with an earlier work where the on-surface

potential of a molecule of finite size s has been calculated directly [146],

h o 1/1 1 let—eo (1 1
U(za =0) = —7%—— d =+ = ——— . (3.50
(ZA ) 27‘(‘5/26083/0 gaA[Q (51 + 52) + 3€1+€2 (51 €2>:| ( )
The results (3.50) and (3.49) look remarkably similar; the second terms in Eqgs. (3.49)
and (3.50), which represent the interface contribution to the potential, agree when
setting s = ({/16/3/7Y/%)R¢ ~ 1.4R¢ and neglecting the local-field correction in

Eq. (3.49) which was not considered in Ref. [146]. The first terms can be regarded

as being bulk contributions from the two interfacing media which differ in both ap-

proaches. While Eq. (3.50) still contains self-energy contributions which do not vanish
in the vacuum case €; = 1, the potential (3.49) vanishes in that limit.

Our results may help to understand the transfer of a small molecule through a
membrane from one cell to another. In a similar manner, we may also study an atom
in a magnetodielectric three-layer planar structure which may serve as a prototype
for the problem of a small particle in the middle of a cell membrane of finite thickness
[147]. For details, the reader is referred to Ref. [AS4]

3.3 Medium-assisted Casimir—Polder potential of

spherical objects

Two methods might be envisaged to calculate the CP interaction of a ground-state

atom and a magnetodielectric sphere. Firstly, one could take the Green tensor of the
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Figure 3.5: Local-field corrected total CP potential of a ground-state two-level atom in a magne-
todielectric two-layer system as a function of the atom—surface distance. Different curves are for
different coupling strengths of the medium 2, &p = wpma/wip = Wpez/wio. Other parameters are
the same as in Fig. 3.2. The vertical line indicates the position of the interface.

sphere, as given in Eq. (3.52), and substitute it into the ground-state potential (2.53).
Indeed, if the system consists of the sphere and the atom in a homogeneous medium,
as sketched in Fig. 3.7 (i), it is possible to derive a closed expression for the CP
potential. If, however, other arbitrary (background) bodies are present (cf. Fig. 3.7
(iii)), an analytical expression for the Green tensor of the full system is usually not
known. In particular for a sufficiently small radius of the sphere, it is convenient to
use another, point-scattering approach to calculate the atom—sphere interaction. We
will show how the Green tensor of the sphere-background system can be decomposed
into the Green tensor of the system without the sphere and a factor containing the
permittivities and permeabilities of the sphere and the ones of the background at the
position of the sphere. The results are then used to study the atom—sphere potentials,
and are compared to the vdW interaction between two ground-state atoms (Sec. 3.3.1).
In a similar manner, we consider the more complex structure of a sphere inside a
cavity in the presence of an arbitrary background medium (Sec. 3.3.2). This setup
may be regarded as being a model for a molecule of variable size. It reconciles the

microscopic description of an atom [Fig. 3.6 (i)] and the macroscopic viewpoint of the
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

intervening medium and the sphere [Fig. 3.6 (ii)]. With the chosen construction we
can continuously interpolate between the two limiting cases of an atom-like sphere
and a macroscopic sphere by changing the inner radius of the sphere [Fig. 3.6 (iii)].
Note that our considerations are very different from earlier investigations where the
(nonretarded) CP potential of a ground-state atom inside and outside a dielectric or
metallic spherical shell [148], as well as that of a perfectly conducting sphere [149] in
free-space have been studied. Here, we allow for an arbitrary environment consisting

of both a medium and background bodies but exclude metals. Our studies are based
on Ref. [AST7].

e(r,w) e(r,w) e(r,w)

() (i) (i)

Figure 3.6: Sketch of relevant models and parameters: (i)Atom in an empty cavity surrounded by
medium (Onsager real cavity model), (ii) Atom near a dielectric sphere in an arbitrary medium en-
vironment (iii) Atom near a dielectric cavity—sphere system surrounded by medium. The magnetic
properties of the atoms and the medium are not indicated in the figure.

3.3.1 Full sphere
Decomposition of the Green tensor

Consider a homogeneous magnetodielectric sphere with radius R centered at rg, and
with permittivity es(w) and permeability ps(w) placed in a magnetodielectric envi-
ronment characterized by the functions (r,w) and p(r,w). To describe the situation,

we introduce the new functions

es(w), ps(w)  for |r —rg| <R,

es(r,w), pus(r,w) = { (3.51)

e(r,w), u(r,w) elsewhere.

The Green tensor Gg)(r,r,w) of the sphere plus environment is hence the solution

to the differential equation (2.20), with eg(r,w) and pug(r,w) in place of e(r,w) and
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3 Dispersion forces between ground-state objects in media

pu(r, w).
e(w)
Ggl)(r, r,w) (i) (i) G(Slg(r, r,w) (iii)

Figure 3.7: (i) Green tensor of the magnetodielectric sphere in the bulk medium Ggl)(r,r,w);

(i) Decomposition of the Green tensor from (i), the bulk Green tensor is denoted by G'*; (iii)
Decomposition of the Green tensor of the combined system of sphere and arbitrary background

environment Gg%(r, r,w). The scattering Green tensor of the background bodies is denoted by

G(l)(r, r,w). Note that the factor accounting for the transmission through the boundaries of the
sphere is not explicitly sketched in (ii) and (iii).

We first study the special case of a bulk environment and generalize to arbitrary
environments later. The required scattering Green tensor of the sphere with center
r¢ = 0 inside a bulk medium of permittivity e(w) and permeability u(w) can be
written in the form [131]

T e L (1) (1 +m)

X [Bz MZmp(k,r)Mlmp(k‘,r')+BfVN1mp(kar)Nlmp(k,r')], (3.52)

where k = \/epw/c and My, Ny, denote even (p = +) and odd (p = —) spherical

vector wave functions. The numbers [ and m parameterize the total angular momen-

M,N
B>

tum and and its z-projection, respectively. are the associated Mie coefficients

for reflection at the surface of the sphere and read [131],

g — _ MWksW)i(2)[zssi(zs)]" — ps(w)k(w)si(zs)[25:(2)]

b () [z5u(zs))! — ps(@)k(w)i(z) 20 (2))

p(w)ks(w)h ’ (3:53)
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and

By = e)s@is) ()] — ps(@)kil)lzsizs)) (354)
p(w)ks(w)i(zs) (2R (2)) — ps(w)k(w)h? (2) [z (z5)]

where z = kR, zg = kgR with kg = /egusw/c. Here and throughout, we use the
limit of a small sphere, where |ksR|, |kR| < 1. Additionally, we require the separation
between a source point and the center of the sphere to be much greater than the

effective radius of the sphere,

VestsR < |r —rgl. (3.55)

In this case, we can evaluate the Mie coefficients for small arguments. For small

arguments, the [th spherical Bessel and Hankel functions of the first kind read [150]

!
. ~ i 1) - (2l — 1)!!
Ji(w) =~ ma hy () ~ T (3.56)
which implies
R\ 20+1
BMN = 0 (“—) . (3.57)
C

Equation (3.57) shows that the dominant contribution to the Green tensor is due to
the [ = 1 terms. The respective vector wave functions are given in spherical coordi-

nates with unit vectors e,, e, ey,

mo (1) . sin me 1) dP]"(cosb) (cosme
M =F— P 1\
lm:l:(k7r) :FSiH9h1 (/{?7’) 1 (COS ‘9) <COS mgb) eg—h’l (kT) do sin mgb Co
(3.58)
and
hY (kr) cos me 1 d[krhSY (kr)] AP (cos 6) [ cosme
N = 2 17Pm _ 1 1
1mi<k7r) kr L <COS 9) sin mgb ©r kr d(kr) do sin m¢) o

m 1 d[krn" (kr)] (sinme
M pm A :
T sin 6 ! (COS 9) kr d(kr) CcOS m(b C9 (3 59)

where the upper (lower) components refer to the upper (lower) sign. Here, P"(x) de-

note the associated Legendre polynomials, and j; (z) and h{" (z) are given by Eq. (3.6).
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In particular, we need
P)(cosf) =cosf and P/(cosf) = —siné. (3.60)
The [ = 1 reflection coefficients are given by

B = %(@ (3.61)

3
Wl ps —p
¢ ) ps+2u’

c €g + 2¢

3
2 wRY\ es—c¢
BY = 3 (,/eu —) 5 (3.62)

in the small-sphere limit. We further evaluate the sums over p and m for [ = 1 for

equal arguments r = r’,
1 (1—m)!
D D22 0n0) (o MMy (1) = R0 =€) (363)
p=x1m=0 ’
and

5 D2 ) o Nuy (N 1) = 1+ e, (36)

p=x1m=0 ( )

with the notation h = A" (kr) and n' = d[krh\" (kr)]/d(kr). Substituting these
expressions into Eq. (3.52), the (equal-position) scattering Green tensor of a small

sphere becomes

IueZikr

4 k26

GV(r,rw) = {[1—2¢kr—3(kr)2+2¢(kr)3+(kr)ﬂ I

€g + 2¢

+ [3=6ikr—(kr)*—2i(kr)®— (kr)*] erer}
IueZikr

+ 4t

. Hs — 3
1—2ikr—(kr)*| (I — e,e,) ——— R®. (3.65)
[ ) ps +2p
The Green tensor Gg)(r,r,w) of the small sphere describes the propagation of the
electric field from a source at r to the sphere, its scattering from the sphere at rg = 0
and its return to r, where the sphere acts as a polarizable and magnetizable point
scatterer. It is therefore natural to try to relate the electric part of Gg) (i.e., the terms

proportional to eg — €) to products of the bulk Green tensor G, which describes
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

the propagation of the electric field through the homogeneous (bulk) medium to an
electric scatterer. The magnetic contribution will be disussed after that. For different
spatial arguments, the bulk Green tensor [151]

ikp

GO / _ _ ke
<r7 r ) w) 47Tk2p3

{ [1—ikp — (kp)*]1 — [3 — 3ikp — (l{;p)2]epep} (3.66)

depends on p =r — 1" and e, = p/p with p = |p|. From Eq. (3.66) we find that

2 ,2tkr
0) 0) _ ke . 2 | o 3 4
G, 0,w)- GY(0,r,w) = 7167T2k4r6{[1—22kr—3(kr) +2i(kr)*+(kr)*] 1

+ [3=6ikr— (k)2 —2i(kr)® — (kr)'] erer} (3.67)

is related to the electric parts of (3.65) as sketched in Fig. 3.7 (ii). In a similar manner,

we want to relate the magnetic terms in Eq. (3.65) to G x % and therefore calculate

2 2ikr

G(O)(r,rs,w) X %S Vg X G(O)(rs,r,w)}rs_o = _,11L6627*4 [1—2ik7’—(kr)2] (I —ere,).
= T
(3.68)

A comparison of Eq. (3.65) with Eqs. (3.67) and (3.68) shows how the Green tensor

of a small magnetodielectric sphere in a bulk medium can be decomposed:

_ 2
Gg)(r, r,w) = 4ne R €€SS+ 258 % G(O)(r, 0,w)- G(O)(O, r,w)

47 R3 -
- il 1S F G(O) (I', r57w) X %S . VS X G(O) (I'S, I',W)|r3:0. (369)

poops +2p

In the next step we allow for a general background environment consisting of ar-
bitrary bodies instead of the bulk medium and introduce the Green tensor of the
sphere-background system Ggl)g as sketched in Fig. 3.7 (iii). With the permittivity
£(r,w) and permeability p(r,w) of the environment now being functions of position,
it is useful to introduce a notation for their values at the position (but in absence)
of the sphere, en(w) = e(rg,w), pe(w) = p(rs,w). In addition to the small-sphere
limit |ksR| < 1, we assume the effective sphere radius to be much smaller than the

distance from the sphere to any of the environment bodies,

VespsR < |r —rp|, (3.70)

where rg pointing inside the bodies. In this case, multiple scattering between sphere

and environment can safely be neglected within leading order of kgR. Our result
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3 Dispersion forces between ground-state objects in media

(3.69) can thus be generalized from the bulk case to an arbitrary environment by
replacing € — £o, jt — o as well as G — G and adding the scattering Green
tensor GW(r, 1) of the system without the sphere:

2

GUh(rr,w) = V(. r,w) + = 05 %5 G(r,rs,w) - Glrs,r,w)
0 C

—5—0 BEG(r,rs,w) X Sg Vs x G(rg,r,w), (3.71)
®

where we have introduced the excess (or effective) polarizability, [103,152]

3 €5 — €0

o = dreg RS ——, 3.72
“s reo €5+ 2e¢ ( )
and magnetizability
47 R3 —
ge =TT K5~ Ho (3.73)
Mo Hs T 26

of the sphere [153], which describe the electric and magnetic response of the sphere
with respect to that of the surrounding medium.

The result (3.71) can be proven formally by treating both the sphere and the
environment bodies via a Born expansion of the Green tensor [154]. In the following
we show this for the terms arising from the electric scattering off the sphere. To that
end, we introduce the susceptibility as the difference of the permittivity of the sphere—

body system and the permittivity of the bulk background identified with e (w),

X(r,w) =eg(r,w) — ep(w). (3.74)

This function is non-zero when r is inside the sphere of volume S or inside one of the
bodies (volumes B). For a purely electric sphere, the Born expansion of the scattering

Green tensor of the sphere-background system with respect to the bulk medium reads

o
SB (r,r,w) E CZK/

S+B

X G(O)(r> S1, w) ’ G(O)(Sla S2, W) ot G(O)(SK, r, w). (375)

o1 x(s1,0) - / oS, w)

According to our condition (3.70), we keep only the terms that correspond to scatter-
ing processes starting from r followed by (multiple) reflections at the boundaries of
the bodies and transmission into the sphere, (multiple) scattering inside the sphere,

a second transmission through the surface of the sphere followed by scattering at the
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

bodies and finally return to the position r (cf. Fig. 3.8). To account for the desired

Gglé(rA,rA,w)

Figure 3.8: A typical processes included in the Born expansion of Ggp(ra,ra,w) is indicated by
the solid line. Processes involving multiple scattering between background bodies and sphere are
discarded (dashed line).

processes, we rewrite Eq. (3.75)

GSB rr,w) Z 2K /d s1x(s1,w /ngKX(SK,W)

XG( )(I' S1,Ww ) G( (Slvs%w) "G(O)(Servw)
oo K-1

D) 3 oy RUNTARERS e
B

K=1 i=0 j=i+1

X /d33i+1X(Si+1aw) - '/d35jX(Sjaw)/ d*sjp1x(sj41,w) -+ / Pspx(si,w)
s B B
x GO(r,s1,w) - GV (sy,80,w) - G (s;, 841, w)
- GO(si11,8i10,w) - GV(s;_1,85,w) - GO(sj,8,11,w) - GV (sg,1,w). (3.76)

Here, the first term is nothing but (a Born expansion of) the Green tensor of the

background bodies

GW (r,r,w) Z TS /d s1x(s1,w /d SkX(Sk,w)

X G(O)(r,sl,w) : G(O)(Shsz,w) e G(O)(sx,r,w). (3.77)

The second term in Eq. (3.76) has three contributions. The first one arises from a first
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3 Dispersion forces between ground-state objects in media

group of integrals over the bodies. According to Eq. (3.77), it can be identified with
the scattering Green tensor of the background body G(l)(r, Sit+1,w) with s;,; pointing
to the position of the sphere. The second contribution containing the integrals over
the sphere, accounts for reflections inside it. The third contribution is due to a second
group of integrals over the bodies which can be identified with GV (sj,r,w) connecting
a space point r with a point inside the sphere with scattering at the boundaries of
the body included.

Now, we compare Eq. (3.76) with the Born expansion of the left-hand side of our
bulk result (3.69),

G (r,r,w) Z T /d3slx S1, W /d?’st(sK,w) (3.78)

X G(O (r,s1,w) - GO(sy,80,w) - GV(sg,r,w) (3.79)
2
:agggc@@mwya@m¢wy (3.80)

Substituting Eqgs. (3.78) and (3.77) into Eq. (3.76) gives the electric part of Eq. (3.71).
There, it also reveals the meaning of the factor w?/c?a%eq /eo: it arises from reflec-
tions at the inner boundary of the sphere. For a magnetizable sphere, a similar Born
expansion can be applied to prove the relation for the magnetic terms.

So far we have studied the Green tensor as needed for the CP potential of a po-
larizable atom (2.53). To study also CP potential of a magnetizable atom (2.63), w
require an analogous relation for the combination V x G 5 X % Applying the duahty
transformations (2.56)—(2.59) together with af® = 8%/c? to both sides of Eq. (3.71),

we obtain the desired relation,

vV x GV —V x GV (r,r,w) x V'
——ﬁSVx (r,rg,w)x$5-V5><G(rg,r,w)xg
®

r'=r

|
r'=r

(3.81)

2

€o LW /

+€— ag C—2V><G(r,r3,w) - G(rg, 1,
0

CP potential

Using our general results for the electric Green tensor Gg) and the magnetic Green
tensor V X Gg) X %’ in the presence of a small magnetodielectric sphere, we can now
evaluate the CP potential of a polarizable and magnetizable ground-state atom with

such a sphere in an arbitrary environment. To apply the proposed decompositions
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

(3.71) and (3.81) of the Green tensor we have assumed that the cavity radius is small
compared to the characteristic wavelength of the medium environment. Now, if an
atom is placed in the system we recall the condition (3.55). Substituting Eq. (3.71)
into Eq. (2.53) gives the interaction of an electric atom with a magnetodielectric
sphere,

Ue(ra,rs) = Uee(ra,rg) + Uepm(ra, rs), (3.82)

where

ﬁ/iz o 34 2
Uee(I‘A, rs) = ——0/ df 54(114 ( ) OZEE@JEI"[G(I‘A, rs,’Lf) . G(rs, Iy, Zf)}
0

2w 2e4+1
(3.83)
and
hg [, 324\ B
Uem ) e d a1 -
(ra,rs) o, £ eatl) o

X tl“|:G(I‘A,I'S,’L'§) X %5 : VS X G(I‘S,I'A,Zf) (384)

are associated with the electric and magnetic properties of the sphere, respectively.
Similarly, combining Eqgs. (3.81) and (2.63) gives the CP interaction of a magnetic

atom and a magnetodielectric sphere,

Un(ra,rs) = Upne(ra,rs) + Unm(ra, rs), (3.85)
with
_ h[ﬁg > 2 3 ? *
Ume(rAurS) — o 0 dg& ﬁA 2MA +1 9910
X tl"{ [VA X G(rA,rS,zf)} : [G(rs,rA,zf) X %A]} (386)
and
h,UQ 0 3 2 6*
_ _"F 2s
A

%t [Va x Glra,rs,i€) x ‘65} [V % Glrs,ra,i€) x %A} boes7)

Let us make two remarks on the results (3.82)—(3.87). Firstly, as can already be seen

in the decomposition of the Green tensor, the electric and magnetic properties of the
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3 Dispersion forces between ground-state objects in media

sphere completely decouple and give rise to the separate potentials U,,., U,,. and U,,,,
U,m- This is only true in the limit of small spheres. Secondly, the total atom—sphere

CP potential is duality-invariant by construction,

U(ra,vs) = Uee(ra,r5) + Uepn(ra,15) + Upe(r4,T5) + Upan (ra,v5) = U (14, 15).
(3.88)
In particular note that the duality invariance is ensured by the presence of the factors
£o and 1/pe in the potentials.

It is instructive to compare our findings with the vdW interaction between two
magnetoelectric ground-state atoms A and B in the presence of an arbitrary mag-
netodielectric environment. The vdW interaction between two (isotropic) polarizable
ground-state atoms in free-space can be obtained from fourth-order perturbation the-
ory [155] To account for a medium-environment of the atoms, two local-field factors
are to be introduced [AS1],

hud [ 3e4 \2 3e 2
UVdW - _ 0 d 4 B
o (FaTB) = = o dSauan (57T )\, 10

X tr[G(rA,rB,ig) : G(rB,rA,ig)] (3.89)

The respective potential between two magnetizable atoms can be obtained by applying
the transformation (2.56) and (2.61),

Rul [ 3 2 3 2
mm (I'A I"B) o ; éﬁAﬁB 2iat 1 2ip + 1

% tr{ [V x G(ra,rp, i) x %] [V % Glrp,ra,i6) X %A] b (3.90)

If only one of the atoms (say B) is magnetizable the vdW potential reads [140]

i [, 3¢\’ 3\’
_ o d 2
or J, Wb\ oo T ) (50,51

X tr{ [G(rA,rB,iE) X %B] : [VB X G(rB,rA,z’g)] } (3.91)

U;%W (rA7 rB) =

where the opposite case of atom A being magnetizable, U¥®W can be easily obtained

me )

by interchanging A and B in Eq. (3.91). Clearly, the full vdW interaction of two

atoms is given by summation of UYIW  UYIW (7vdW “and UYIW. Tn order to connect
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

our results to the vdW potentials, one has to perform the substitutions

N e 2
(0751500} = QB <2€B%> (392)
* 3 2
s, ﬁ3(7> . (3.93)
o 2up +1

The atom—atom and the atom—sphere potentials look very similar, and in particular
lead to the same power laws in the nonretarded and retarded regime. This can be
understood from the fact that the magnetodielectric response of point-like objects,
such as the isotropic atom and the small sphere, enters only via the respective po-
larizability and magnetizability. Note that a (frequency-dependent) correction factor
accounting for the surrounding medium does not change the power laws. For example,
if the atom and the sphere are purely electric and embedded in free space, we imme-
diately expect the familiar [r4 — rg|™® power law to hold in the nonretarded regime
and |r4 —rg|" in the retarded regime |7]. The difference between the case of a sphere
as given in the left-hand sides of Eqgs. (3.92) and (3.93), and an atom, given by the
corresponding right-hand sides, are due to the different natures, macroscopic versus
microscopic, of the two objects. The sphere and the background medium consist of a
large number of atoms and can therefore be described macroscopically, by (separate)
average permittivity and permeability functions. The sphere is in immediate contact
with the surrounding medium, which leads to the factors e, and 1/us. Note that
the polarizability (3.72) and magnetizability (3.73) of the sphere depend on the dif-
ference €5 — €5 and g — pe, respectively, and can be either positive or negative. In
contrast, the polarizability and magnetizability of an atom depends on the transition
frequencies and dipole matrix elements, as given by Eqgs. (2.54) and (2.62). They are
strictly positive on the positive imaginary frequency axis. Since an atom is a micro-
scopic object, the interspace between the atom and the neighboring medium atoms
needs to be taken into account. This gives rise to the local-field correction factors
[3ep/(2ep +1)]? and [3/(2uup + 1)]? on the right-hand sides of Eqs. (3.92) and (3.93).

3.3.2 Sphere inside an Onsager cavity.

In the following we compare and interpolate between the homogeneous sphere placed

inside a medium and a local-field corrected atom.
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3 Dispersion forces between ground-state objects in media

Decomposition of the Green tensor

To that end, we consider a homogeneous magnetodielectric sphere with radius R
centered around rg, with permittivity e5(w) and permeability pg(w), which is not in
immediate contact with the surrounding medium, but placed inside a small spherical
cavity of radius R¢, also centered around rg. The cavity implements the interspace
between the atoms contained in the sphere and the surrounding medium atoms. We
again study the limit of small cavity/sphere radii and assume |ksR|, |kRc¢|, |koRc| < 1
where kg = w/c. The situation is sketched in Fig. 3.6 (iii).

The scattering Green tensor Gg}r

bulk medium is again given by an equation of the form (3.52), where the reflection

o of the sphere—cavity system in a homogeneous

coefficients now take a more complex form [151]. The required [ = 1 terms are given

w_ 2 w\*| s 1—p OuR (s —1)/(2pu-+1)
b= 3(@ ) _RCH?u (ns+2)(2u+1) + 2(us—1)(L—p)R3/RE |
(3.94)
N 2 W\, 1-e 9eR3(eg—1)/(2e+1)
By _5(@2) T T e ) + 20RO

in the small-sphere/cavity limit. We can then follow exactly the same steps as in
Sec. 3.3.1. We again arrive at Eqgs. (3.71) and (3.81) with of, ~, 5%, in place of aF,
B%. A comparison of Eqgs. (3.61) and (3.62) with Eqgs. (3.94) and (3.95) shows that the

relevant excess polarizability and magnetizability of the sphere—cavity system read

l1—¢ 9o R3(es—1)/(2e5+1)
X = dmey | R® © © © 3.96
At = AT e T C ) 200 1 1) 1 2(es— 1)(1—20) RO R (3.96)
and
TCT po |9 14200 (ps+2)(2ue+1) + 2(us—1)(1—pe) R/ RS |

respectively. By introducing the free-space polarizability and magnetizability of the

sphere
Es — 1

ag = dregR? (3.98)

€g+ 2
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

and

B ATR3 pg — 1
o ps+2

respectively, as well as the excess polarizability and magnetizability of the cavity

Bs (3.99)

* 1— o
ol = dreg Ry, o (3.100)
and
4TRE 1 —
gr=—"—c _—Fo (3.101)
o 1+2pue
respectively, we can rewrite Eqs. (3.96) and (3.97) more transparently as
3e0 ) 1
* * ag o)
= — 3.102
@ste = det <25@+1> 1+ agas/(87%2RS)’ (3.102)
2
Bhsc = B+ Bstio | 5 : (3.103)
= st - . .
seo = ot dsto | 9051 ) T e o %)

Equation (3.102) shows that the response of the sphere—cavity system to an elec-
tromagnetic field is due to reflection at the cavity surface from the outside given by
o, B8, plus reflections at the sphere given by a%,35. The local-field correction fac-
tors in large parentheses account for the transmission of the field into and out of the
cavity and the denominators account for multiple reflections between the cavity and
sphere surfaces. Note that in the leading-order approximation made (with respect
to the sphere and cavity radii), the factors accounting for reflections at the sphere
[Egs. (3.72), (3.73)] and cavity surface [Egs. (3.100), (3.101)] are proportional to the
third power of these radii, while the transmission properties of the cavity as described
by the local-field correction factors become independent of Rc. Our equation (3.102)
determines the correct polarizability /magnetizability of a small medium-embedded

spherical object.

Casimir—Polder potential

In order to interpolate between the two extreme cases of a single atom and a sphere
consisting of a very large number of atoms, we now consider the CP interaction of an
atom with the sphere-cavity system and assume ,/EqficRc < |ra — rg| in addition
to the condition (3.55). Since expressions of the type (3.71) and (3.81) remain valid,
their substitution into Eqgs. (2.53) and (2.63) again leads to Eqgs. (3.82)—(3.87), where
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3 Dispersion forces between ground-state objects in media

now a’g, o and (5, - as given by Egs. (3.96) and (3.97) appear in place of o§ and /.

As an example, let us consider the CP interaction of a nonmagnetic atom with a
purely electric sphere of radius R > 0 in a bulk medium (5 = €4 = ). Substituting
the required bulk Green tensor (3.66) into Eq. (3.83), one finds

%) 2
U,.(ra,rs) = L/ d§< 5 )aAsangcg(\/gfrAs/C), (3.104)
0

 16m3e2rS, 2¢ +1
with ras = |I‘A — I‘5| and
g(x) = e **(3+ 6z + 5a* + 22° + z7). (3.105)

Figure 3.9 shows the potential U, for a two-level atom as a function of the ratio
q = R/R¢ for various atom—sphere separations while Fig. 3.10 shows the potential
Uee as a function of the atom-sphere separation for different (fixed) relative sphere

radii ¢. We have used single-resonance models for the permittivities of the sphere

6m2Uececoc® [ (wiy|dio]?)

Figure 3.9: CP potential U, of a nonmagnetic atom in front of a dielectric sphere in an empty
cavity embedded in bulk material vs. ¢ = R/R¢. The curves correspond to different atom—sphere
separations 745 = raswio/c. Other parameters are wr/wip = 1.03, wrs/wio = 1.0, wpsg/wig =
1.2, wp/ww = 075, 'y(s)/wlo = 0.001.

and the medium as given in Eq. (3.47). Both figures reveal that for the constant eg
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

considered here, larger spheres lead to a stronger CP attraction between the atom
and the sphere. As can be seen in Fig. 3.9, all curves cross at a particular value of the
relative sphere radius, indicating the critical ratio where the sign of the interaction is

turned into repulsion, i.e., for ¢ < 0.16.

1 T T T T
q=01 —
q=0.2 -
(]:0.5 ................

62 Ueeoc® / (wip|diol?)
N

5 1 i 1 1 i
0 0.2 0.4 0.6 0.8 1

raswio/c

Figure 3.10: U, vs. raswip/c for different ratios q. Other parameters are the same as in Fig. 3.9.

Apart from the polarizability o, ., all quantities appearing in the integrand of
Eq. (3.104) are monotonic functions in £. Thus, on recalling Eq. (3.102), the polariz-
ability of the sphere gives rise to attractive forces while the cavity leads to a reduction
of these forces. On calculating the zeros of a%, ., we find the frequency-dependent

critical ratio of the two radii, R/R¢,

_ (24¢e0)(ee — 1)(1 4+ 2e4)

_ (R 3
ferit = <RC)Crit a \/9€®(8S - 1) + 2(8(9 - 1)2(85 - 1)

In practice, one could estimate the critical ratio by evaluating Eq. (3.106) for static

(3.106)

medium response, or if available, by using an effective frequency to evaluate the
medium response. The unexpected repulsion for a purely electric system can be ex-
plained from the fact that the sphere—cavity system contains only little polarizable
matter, but the volume is the same as in the full sphere situation, i.e., it displaces

the medium and gives rise to a bouyancy-type force opposite to the CP interac-
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3 Dispersion forces between ground-state objects in media

tion/force. Such effects are known from the field of ionic dispersion forces as discussed
in Ref. [156]. For example, when a molecule is embedded in bulk water, a layer of
water atoms (hydration layer) encloses the molecule and has a permittivity distinct
from the surrounding water. One can think of the hydration layer as being part of
the cavity. In particular, it has been shown that the volume of the hydration layer is
impenetrable to many ions and short-range repulsion may occur [156].

In the following, we show how the two extreme cases of a full sphere and an atom
can be recovered from Egs. (3.102) and (3.103). For a macroscopic sphere, the in-
terspace between the sphere and medium atoms becomes irrelevant as implemented
by R — Rc. In this case, it is almost trivial to verify that, for R = R, Egs. (3.96)
and (3.97) reduce to the results (3.72) and (3.73) for the full sphere. We thus recover
Eqs. (3.82)(3.87) in their original form. The opposite limit of a single atom can be
obtained as follows. If the sphere consists of only very few atoms or a single atom,
the interspace becomes very large in comparison to the sphere, R < R¢. Note that
the single-atom result cannot be obtained by simply setting R = 0 in the response
functions since this case corresponds to an empty cavity and not to a single atom
with finite polarizability. What we can do is to neglect the effect of multiple scatter-
ing between the surfaces of sphere and cavity for sufficiently small R (R < R¢). In
this case, the polarizability (3.102) and magnetizability (3.103) reduce to

2
« « g 38@
= - 3.107
3 2
o= [ — | . 3.108
Bsrc = B¢ + Bske (2,“@ n 1) ( )

Furthermore, if the sphere consists of a single atom (say B) only, the Clausius—
Mossotti laws [157]

55‘—1: ap MS_lzluOﬁB
eg+2  3gV’ s + 2 3V

(3.109)

where V' = (47/3) R? denotes the volume of the sphere, together with Egs. (3.98) and
(3.99), show that ag = avp and fs = (.

So far we have considered an atom in a cavity interacting with a second atom. To
make contact with the real-cavity model of the local-field corrected atom, we have

to consider a sufficiently small cavity radius R¢, such that multiple scattering at the
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3.3 Medium-assisted Casimir—Polder potential of spherical objects

outer surface of the cavity can be neglected. In this case, we obtain

383 2
x = 3.110
Qsicfo = aB (263 T 1) ) ( )
* 3 2
Psc _ Bz ( ) , (3.111)
po 2pup +1
where the notation €5 = e€p, e = pp has been introduced in accordance with

Sec. 3.1. Substituting these polarizabilities into Eqgs. (3.82)—(3.87) leads to the local-
field corrected two-atom potentials (3.89), (3.84), (3.90), as expected. For intermediate
radii, our model provides a formula for the polarizability of the medium-embedded

sphere where the correct amount of local-field correction is automatically included.
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4 Dispersion forces on excited

systems

So far we have considered ground-state dispersion forces which can be expressed
as an integral over the full imaginary frequency axis. Excited systems allow for a
more flexible manipulation of dispersion forces because they depend on the medium
properties in a narrow frequency region. By suitably choosing the medium properties
in this frequency window, one can probe effects of left-handed metamaterials (LHM)
or realize repulsive dispersion forces.

In this chapter we investigate two configurations: Firstly, in Sec. 4.1, we will study
the CP potential and the spontaneous decay of an excited atom in a planar mag-
netoelectric metamaterial system and secondly, in Sec. 4.2, we consider the Casimir
force on a system of magnetoelectric bodies that is amplifying in a limited space and
frequency regime. Note that in this chapter we explicitly allow also for metallic bodies

and use the term magnetoelectric instead of magnetodielectric (as used in Chap. 3).

4.1 Resonant Casimir—Polder potential of an excited

atom

In the following, we briefly investigate the CP potential of an excited atom in front
of a magnetoelectric metamaterial half space, as based on Ref. [AS3]. In Sec. 4.1.2,
basing on Ref. [AS2], the same atom is placed in a superlens-type geometry consisting

of a left-handed slab mounted on a perfect mirror.

4.1.1 Discussion of planar metamaterials

Consider an excited atom prepared in an energy eigenstate |n) with (excited-state)
polarizability «,, transition frequencies w,; and electric-dipole transition matrix el-

ements d,,. The atom is placed in a free-space region in front of a magnetoelectric
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4 Dispersion forces on excited systems

half space of permittivity e(w) and permeability u(w) at distance z4 > 0 from the
interface, where the coordinate system is chosen in the same way as in Sec. 3.2. Rewrit-
ing Eqs. (3.12) and (3.15) for real frequencies gives the required Green tensor in the
form [AS2]

B LA
G(U(zA, ZAawnk) = L/ dell 2 e2lkLZA
0

8w k-
. k122 , ]{3”202 ,
<\ - (eze, + eyey) + 2 5 Tmeses| (4.1)
nk

with € = e(wnk), 1t = p(wnk) and the reflection coefficients being given by Eq. (3.13)
with x; — k-, where

2
N w

) = o) — b (4.2

again denotes the wave vector perpendicular to the interface. For convenience, we

write k+ = ky with ey = 1, o = 1. Let us first briefly discuss the sign of the square

root of ki? for passive metamaterials with

2
Im k{2 = %(Reellmm +ImeRepy) <O0. (4.3)
C

Such materials include ordinary materials as well as left-handed metamaterials with
Reej(w) < 0 and Repi(w) < 0 in the same frequency regime. Waves inside an
absorbing medium should decay, i.e. we require Im k{- > 0. This implies that ki lies
in the second quadrant of the complex plane with the branch cut being along the
positive real axis. See also the remarks in Sec. 4.1.2.

In the following, we will restrict our attention to the resonant CP potential since
it usually dominates the nonresonant contribution if the atom is excited. We write
Eq. (2.55) in the form

Un(2a = —fto ) _ Wi (Re G (24, 24, wnr) | dy | + Re Gilz)(FAarA,wnk)|dik|2> ’
k<n

(4.4)
with the Green tensor being given by Eq. (4.1) and the atomic dipole moment being
decomposed as dlrllk = ((dut)z» (dnr)y,0) and df, = (0,0, (dur).). We again study the
limits of short and long atom—surface separations. In the nonretarded regime where

Zawni/c < 1, we approximate k- ~ ki ~ ikl in which case the reflection coefficients
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4.1 Resonant Casimir—Polder potential of an excited atom

become independent of k-,

pw—1 p -1

oy = ———, Ty = .
ST | 41

(4.5)

Carrying out the integral in (4.1) gives, to leading order in 1/z4,

d) 2+ 21 [ Je(w)? — 1
Un(24) = — n z 4.6
(z4) = =2 32me0zs Je(wnr) + 12 (4.6)

k<n

unless the half space is purely magnetic, in which case the leading-order potential
reads |

e Howppld g [p(wnr) P — 1
167TZA \/,c(wnk)+1|2'

Un(ZA) = (47)

k<n
To obtain the full nonretarded CP potentials, Eqs. (4.6) and (4.7) should be ac-
companied by their nonresonant counterparts as given in Eqs. (3.24)—(3.26) with
£2(1€) = p2(i€) = 1 and o — 1/4(au + ayy) + 1/20,, to account for a possible
anisotropy of the atoms. Note that in the case of excited atoms the nonresonant in-
teraction contains attractive as well as repulsive contributions arising from upward
and downward atomic transitions, respectively. The potentials (4.6) and (4.7) reveal
that close to the surface, the resonant CP potential is attractive for |e(w,i)| > 1
but repulsive for metamaterials with |e(wn)| < 1. In the case of a purely magnetic
metamaterial we find attraction for |p(w,x)| < 1 and repulsion for |u(w,)| > 1.
In particular, for weakly absorbing materials, the denominators get close to zero at
the surface plasmon resonances where ¢(wyr) = p(wnr) =~ —1, leading to a strong
enhancement of the associated potentials.
In the retarded regime, zaw,x/c > 1, the main contribution to the integral in
Eq. (4.1) is due to the stationary-phase point kI = 0, where the reflection coefficients

are approximated by

. Vi(wnk) = Ve(wnr) 1
P il - vl (48)

where the square roots /i and /¢ have to be chosen such that their imaginary part

re = —

is positive. After substituting Eq. (4.8) into Eq. (4.1), the integral can be carried out.
Keeping only the leading order in ¢/(zawy), the retarded CP potential (4.4) takes
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the form

o)) = uoWik\dlk\z o0 d p2izawnk/c \/5(wnk)_\/ﬂ(wnk)
Un(24) = s R { NeEmE \/Mwnk)}. (4.9)

k<n

It can be seen that only dipole moments parallel to the surface contribute to the
oscillating term in Eq. (4.9), which is due to the transverse character of the waves
emitted by the atom. For a strongly electric half space we have r, ~ 1 and the

potential (4.9) can be approximated by

Mowik | dyzk | §
8mzy

Un(ZA) =

k<n

cos(2zgwnk /), (4.10)

which is dominated by an oscillating term of decreasing amplitude and period wc/wpy.
In contrast, for a strongly magnetic half space, the potential has the same absolute
value but carries opposite sign compared to the electric case (4.10). Note that the
corresponding nonresonant term (3.30) together with Eq. (3.31) is neglible due its
inverse power law of 1/z7%.

In Fig. 4.1 we have considered a magnetoelectric half space with different signs for
Ree and Re p. The strongest oscillations are seen in the case of a metamaterial with
Ree > 0 and Rep < 0 such that a repulsive barrier close to the surface forms. The
oscillation amplitude is very weak for a left-handed material or an ordinary one with
Ree,Rep > 0. This is due to the vanishing of the reflection coefficients (4.8) for the
chosen Ree = Re . Note that the short-range attraction is governed by the electric

medium properties.

4.1.2 Perfect lens geometry

Related to the discussion in Sec. 4.1.1, we discuss the correct choice of the refractive
index n. To this end, consider Fig. 4.2. From the requirement Ree < 0 and Repu < 0
for a left-handed (absorbing) material, it immediately follows that also the square
of the refractive index n? = epu lies in the fourth quadrant. From the two possible
choices for n (lying in the second and fourth quadrant), one has to chose the one with
the positive imaginary part to account for absorption. Thus, n must lie in the second
quadrant where Ren < 0.

A left-handed material refracts incident light to negative angles across the plane of

incidence [82]. As was pointed out more than 10 years ago, a lossless slab of thickness
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Figure 4.1: Resonant CP potential of a two-level atom in front of a weakly absorbing (Ime =
Imu = 1073) magnetoelectric metamaterial half space. The atomic dipole moment is aligned
parallel to the surface.

Re

Figure 4.2: Refractive index for left-handed (absorbing) materials. The gray region indicates the
requirement Imn > 0 for absorbing media.

d and unity negative refraction n = —1 has the peculiar feature to focus light with

perfect resolution, where perfect negative refraction implies that the position of the

two focal planes is a distance of d/2 away from the surfaces of the LHM slab [74].
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The situation is sketched in Fig. 4.3 (a).

Motivated by this superlens configuration, we are interested in studying the CP
potential of a single atom in an equivalent geometry. To that end, we place a per-
fect mirror on the far end of the LHM slab. However, two things should be kept in
mind: Firstly, it is not possible to fabricate a metamaterial being left-handed for all
frequencies; and secondly, every material is (at least weakly) absorbing. We will only
study the resonant force component and put special emphasis to account for material
absorption. Our setup as sketched in Fig. 4.3 (b) shows the layers 1,2,3 corresponding
to the perfectly conducting mirror, the LHM slab of thickness d and e(w) = —1 + in,
p(w) = —1+in, and the free-space region where the excited two-level atom is placed

in, respectively.

(a): 1 2 3 1
| n=-1 oz
€ =eg(wnk) = —1+1in ez =1
p = pa(wnk) = =1 +1in ps =1 /‘(
d ZA
—_———
- z

Figure 4.3: Super-lens geometries: a) A lossless LHM slab generates a complete and faithful image
of an object placed in one of the focal planes a distance of d/2 away from the slab. b) Atom in
front of an absorbing LHM slab backed by a perfect mirror.

The scattering part of the associated three-layer Green tensor at the relevant atomic
transition frequency and equal positions r =1’ =r, in the free-space region is given
by [132]

: 1 '
G (24, 24, wi0) = # /d2k|| yay Z eje;'r?‘;e%““, (4.11)

o=8,p
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4.1 Resonant Casimir—Polder potential of an excited atom

where the reflection coefficients read

s kL” _ kQL _ 62¢k;d(kiu + kQL) ) kle — k,zi _ 62ik2ld(k,J_€ + kQL)

Tq_ = ; ) T3 = ; ’
3 ktp+ ki — 62zk;d(k¢u — k) 3 kte + ki — 62zk2ld(k¢€ — ki)

(4.12)

with kji according to Eq. (4.2). In Eq. (4.11), we introduce polar coordinates in the
(k£7 kllJl)_planea

cos ¢ sin ¢ Fhktccos ¢/wig 0
ey = | sino |, ef = | —coso |, eff = | Fktesing/wyp |, e.=]0],
0 0 k”c/ww 1
(4.13)
where d2kll = k!l dk!l dg. By using the identities
sin? ¢ —singcoso 0
efe; = | —singcoso cos® ¢ 0 (4.14)
0 0 0
and
) —k*2cos’¢p  —kPsingcos¢d —klktcoso
efe, = C—2 —kPsingcosgp  —kt?sin?¢  —klktcoso |, (4.15)
P\ Bkt cos ¢ kit sin Jll2
we perform the angular integration over the dyadic products,
12
o 1 00 o 2 —k 0 0
/ d(b E:e; =710 1 0], / d(bep e; = w—2 0 o 0 )
0 00 0 ’ YN0 0 2k
(4.16)
and obtain for the Green tensor
; 00 I
(1) _ ! KU g,
G (za,24,w10) = 8_7r/0 dkl oL e A
rs_ — ’jgf - 0 0
X 0 i — Sy 0 (417
0 0 ’ 2kl12¢2 Tp
wiy '3

From Eq. (4.17) it can be seen that an atom with a dipole moment perpendicular
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4 Dispersion forces on excited systems

to the surface is coupled to the p-polarized waves only, while an atom with a dipole
moment parallel to the surface is coupled to both p- and s-polarized waves. In the fol-
lowing, it will be instructive to express k* in Eq. (4.17) in terms of kI and decompose

the integral into two parts,
- I k! 2ikL 24 I = L _2iktzy W%o 12

0
1 > —2Kz W%O
+ = dre =4 f — +K*], (4.18)
i Jo c

where k1 = ki (w) = /K2 —w?/c? again being the imaginary part of the wave

vector component perpendicular to the surface. The first integral, which contains

an oscillating factor, results from propagating waves whereas the second one, which
contains an exponentially decaying factor, results from evanescent waves.

Let us first hypothetically assume that the left-handed slab is perfectly nonabsorb-
ing with ¢ = u = —1. In accordance with the Imks- > 0 (recall the remarks in

Sec. 4.1.1) the wave vector in the z-direction in the left-handed slab is then given by

N —kt for kIl < w/e,
ky = (4.19)
kEt for kIl > w/e,

whereas the reflection coefficients (4.12) simplify to

—2ik*td  p _ —2iktd (4.20)

S e
rs_ = —¢€

Note that for a nonabsorbing medium, the reflection coefficients are invariant under
a change ki — —ki-, and hence the final result will not depend on the sign of the

square root chosen for k.
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4.1 Resonant Casimir—Polder potential of an excited atom

Substitution of the reflection coefficients into the Green tensor (4.17) leads to

. wio/c ‘
G(l)(ZA, 24, Wip) = S Akt ek (za—d)
81 Jo
1+ k22w, 0 0
X 0 1+ k22 Jwi, 0
0 0 —2(1 — k2 Jwi)
- 1 — k22 Jwi, 0 0
_ L drt e 2 (2a=d) 0 1 — 12 Jwi, 0
8T
’ 0 0 —2(1 + A2kt?Jwiy)
(4.21)

After calculating the two integrals, we obtain for z4 > d

1 1 wyp€” .~ 9
G;(m;)(zAa ZAawlo) = Gz(jy)(ZA, ZA,wlo) = m (1 — 1z —Zz ) s (422)
o _ wiee” 1 i3 493
2z (2A7 A, wlO) Dy ( ZZ) ( )

with the abbreviation Z = 2wy(z4 —d)/c. For z4 > d, the resonant CP potential (4.4)

for the hypothetic nonabsorbing superlens geometry then reads

w ~ o~ e g ~ -
Ui(za) = _NOW%OF;;», |:(COS(Z) + Zsin(2) — 2° cos(Z)) |d!0|2

+ 2 (cos(2) + Zsin(2)) |df; 2] for 24 >d. (4.24)

The potential is divergent in the limit z4 — d, despite the absence of any physical
surface at z4 = d. Furthermore, one obtains a divergent potential for all 0 < 24 < d
as can be seen from the second (purely real) integral in Eq. (4.21) which tends to
minus infinity in this region. As will be shown below, this unphysical result is due to
the fact that absorption is neglected.

The potential (4.24) exactly coincides with the configuration in which a perfectly
conducting mirror is placed at z = d [158]. To illustrate this, we consider an image
dipole construction for an electric dipole placed at z4 > d, cf. Fig. 4.4. By means of
the perfect negative refraction taking place at the vacuum—LHM interface combined
with the perfect reflection of the mirror we find the image dipole to be situated at
2% = d—(z4—d). The same image would be obtained if a perfectly conducting mirror

were placed in the focal plane, at z = d, thus hiding the superlens from the atom. In
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4 Dispersion forces on excited systems

this case, one would expect a strongly attractive potential as the atom approaches

the mirror which diverges for z4 — d.

i z
0 ZA

Figure 4.4: Image-dipole construction for the setup depicted in Fig. 4.3. The dashed line marks
the position of a perfect mirror that would generate the same image.

To study the impact of material absorption, let us return to Eq. (4.17) for the scat-
tering part of the Green tensor and set therein £(wyg) = —1 + in, p(wy) = —1 + .
Due to the positive imaginary parts of € and pu, divergent integrals of the type of the
second integral in Eq. (4.21) can never occur. In Fig. 4.5, the resulting (numerically
evaluated) resonant CP potential is plotted versus the distance between atom and
LHM slab, for the two cases of parallel and perpendicular alignment of the atomic
dipole moment and for different values of absorption. It is seen that the potential
features an attractive behavior in the nonretarded regime, which is governed by an
inverse power law, while in the retarded regime an oscillating behavior with alternat-
ing sign of the potential occurs. Figure 4.5 reveals that for z4 > d and extremely
small absorption, the potential approaches the result from the idealized case of a
left-handed slab with zero absorption, as given by Eq. (4.24). In particular, for suffi-
ciently small absorption, the potential starts to become strongly negative around the
focal plane z4 =~ d. This focal-plane enhancement is more noticeable in the case of
perpendicular atomic dipole moment.

To clarify whether focal-plane enhancement is indeed a unique feature of the LHM
slab, we have plotted the corresponding potential in Fig. 4.6. It is clearly seen, that
only the superlens gives rise to the focal-plane enhancement. Instead, the highly
transparent material with Ree = Repu = 1 leads to a weakly oscillating potential,
which is entirely due to the mirror while the materials with different signs of Re e and

Re i lead to near-surface potential barriers. As can be seen from Sec. 4.1.1, the latter
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Figure 4.5: Resonant CP potential experienced by an excited two-level atom in the setup sketched
in Flg 4.3 for d = 56/&)10, E(wlo) = ,Lt(wlo)

—1+ in and dipole moment parallel (upper curve)
and perpendicular (lower curve) to the surface. The vertical line indicates the position of the focal
plane.

behavior is due to Ree or Re iu being negative.

Returning to our original LHM slab, Fig. 4.5 shows the appearance of a potential
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Figure 4.6: Resonant CP potential of an excited two-level atom in front of a metamaterial slab of
thickness d = 5¢/w1p with a perfect mirror at its far end. The atomic dipole moment is oriented
perpendicular to the surface and we have assumed Ime = Imy = 10~%. The vertical line indicates
the position of the focal plane.

barrier at distances zqwio/c < 1 as an additional feature. This arises for a transi-
tion dipole moment parallel to the surface and small (but nonvanishing) amounts of
medium absorption, 107* < 1 < 1073, The fact that barriers occur only for a tran-
sition dipole moment parallel to the surface, but not for those perpendicular to the
surface, suggests that s-polarized waves, which are coupled to the first but not the
latter, play an important role in their formation. In contrast, for sufficiently weak
absorption [ = 107° in Fig. 4.5 (upper) and n = 1073,107%,107° in Fig. 4.5 (lower)],
an attractive potential starts to appear at distances of a few wavelengths away from
the surface. Atoms located within this range will get adsorbed to the surface. This
behavior is more pronounced for a transition dipole moment perpendicular to the
surface.

Let us now investigate the influence of the slab thickness on the CP potential
as illustrated in Fig. 4.7. As the slab thickness increases, a potential barrier arises
and grows in height for a dipole moment parallel to the surface. However, at some
threshold value of d, the height of the barrier starts to be reduced, and the barrier

eventually disappears when the slab is too thick. This can be explained as resulting
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Figure 4.7: Resonant CP potential experienced by an excited atom in the setup sketched in Fig. 4.3
—1+41073, and dipole moment parallel (upper curve) and perpendicular

fOI‘ E(wlo) = M(wlo) =
(lower curve) to the surface.

from the increasing effects of material absorption. We further see, (in particular for
a perpendicular atomic dipole moment) that the distances from the surface at which
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4 Dispersion forces on excited systems

a relatively strong attractive potential can occur increase with the slab thickness.
Further insight into how the appearance of the barrier depends on the amount of
absorption, the orientation of the atomic dipole moment as well as the thickness of
the LHM slab can be gained by examining the CP potential in the near-surface limit.
Near the surface, for zjwio/c < 1, the evanescent waves dominate the potential,
as given by the second integral in Eq. (4.18). Again, the main contribution to the
kll-integral comes from values kll > wyo/c and kI > /|epfwip/c in which case the

nonretarded potential reads

[|2 .2

2 0 k 2/{7”2 2

Ulza) = -2 / dkl ¢2K'=a [(Rer§_+w—zc Rerg_)|d!0|2+ —— Rerf_|djy|*
0 10 10

(4.25)

(Ief2 = 1) (14 e ') + (o112 + |e+1[%) 214
p o _
Hers = }s +1+(e— 1)6—2klld}2 ' (4.26)

—4kll —2kll
e e e (e R P D
Rer;_ = T . (4.27)
[+ 1 — (n—1)e 2k

When
e~—1 and po~-—1, (4.28)

the first terms in Eqs. (4.26) and (4.27) approximately vanish, thus

(Je = 12 + |e + 1[?) e 2"
le+1+4(e— 1)6—%”‘1]2 ’
(= 1P+ |+ 1) e

Rer; ~ — , (4.30)
’ 1 = (= 1)e2k1d)’

Rerf  ~ (4.29)

where the opposite signs imply that the two polarizations give competing contribu-
tions to the potential. Namely, the p-polarized waves give rise to attractive contribu-
tions to the potential while the s-polarized waves lead to repulsive ones. Very close to
the surface, due to the presence of the kl? factor [see Eq. (4.25)], the contribution to
the potential of the p-polarized waves is proportional to 1/z% while the contribution
of the s-polarized waves is proportional to 1/z4. The contribution of the p-polarized
waves hence dominates, resulting in an attractive potential (also see Figs. 4.5 and 4.7).
At some distance from the surface, the contribution of the s-polarized waves can dom-

inate under appropriate conditions, which then leads to the appearance of a potential
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4.1 Resonant Casimir—Polder potential of an excited atom

barrier. This also explains the absence of the barrier in the case where the dipole
moment is perpendicular to the surface.

Equation (4.27) also allows us to understand the influence of the thickness of the
LHM slab. It shows that the magnitude of |Rer$_| is about 1 for d — 0 (slab absent),
and is typically determined by a e term otherwise. Therefore, the presence of the
slab is crucial for the appearance of a potential barrier. When the slab is very thick,
the influence of the mirror vanishes, e=2*'¢ — 0 [cf. Egs. (4.26) and (4.27)], and it is
not difficult to verify that Eq. (4.25) reproduces the result for the resonant part of
the potential of an excited atom in front of an interface as given by Eq. 4.6.

It should be pointed out, that the appearance of the potential barrier is not a
true superlens effect; it can easily be created with other, right-handed, materials
[cf. Egs. (4.6) and Eqgs. (4.7)]. Further, we recall that potential barriers may also be
created in planar ground-state systems as explained in Sec. 3.2, but are generally
much more pronounced in the case of excited atoms. For instance, the peaks of the
potentials for the superlens geometry (Fig. 4.5) are at least 4 orders of magnitude
larger than those given in Sec. 3.2 concerning the potential of a ground-state atom.

Let us finally comment on the applicability of the results presented in this section.
In order to observe the predicted effects, potential barriers and focal-plane enhance-
ment, one has to ensure that both the atomic transition wavelength and the atom—
surface separation are larger than the length scale of the elementary building blocks
of the metamaterial. With currently available metamaterials, this may be achieved
with polar molecules whose rotational and vibrational transition wavelengths can be
very large. It should also be stressed that in the examples considered, metamaterials
with very small absorption have been assumed. However, such metamaterials are now
within the reach of today’s experimental techniques [97]. Note, that our results are
valid as long as the atom remains in its initial excited state, i.e., on time scales that
are short compared to those of spontaneous decay. An impressive example is the first
excited, metastable state of helium which has a life time of up to 8000 s [159].

4.1.3 Spontaneous decay revisited

The superlens setup has also been discussed in the context of spontaneous emission.
In Refs. [160,161], it has been reported that for an excited atom placed in the focal
plane, z4 = d, spontaneous emission is completely suppressed for a dipole moment
parallel to the surface, while the decay rate is enhanced by a factor of two for a dipole

moment perpendicular to the surface. These results, however, have been obtained

67



4 Dispersion forces on excited systems

under the assumption of a lossless LHM slab. In light of our findings for the CP
potential, we should carefully examine whether these idealized results are an appro-
priate approximation to the more realistic case of a weakly absorbing LHM slab. In
particular, it can be expected that absorption gives rise to nonradiative decay.

Whereas the resonant CP potential depends on the real part of the Green tensor,
the rate of spontaneous decay is determined by its imaginary part. From Eq. (4.21)
for the Green tensor of the completely nonabsorbing setup, it can be seen that the
contributions from evanescent waves, which give rise to divergences in the region
za < d, are purely real and thus do not contribute to the decay rate. The decay rate
is thus expressed in terms of traveling-wave contributions.

For a two-level atom, we write the the decay rate I' = I'y, Eq. (2.47), in the form

T 67e
=1+ m m |GW|dl 2 + GO, 2] , (4.31)

where I'y,. is the free-space decay rate,

1
Toe = ————w |dyo % 4.32
37T€0hcgw10‘ 10 ( )
Let us first assume an absolutely nonabsorbing LHM having &(w19) = p(wig) = —1

again. From Eqs. (4.22) and (4.23) we obtain

Im Gl = yie: [sin(2) — Z cos(z) — #sin(2)] (4.33)
mCce
Im G = % [sin(2) — Z cos(2)] (4.34)

which formally hold for any atom-surface distance, including the region to the left
of the focal plane. In particular, Im G and ImGY are even functions of 5 =
2(z4 — d )wio/c and finite at the surface. It is not difficult to see that for z4 = d,
Eq. (4.31) together with Eqgs. (4.33) and (4.34) implies complete inhibition of sponta-
neous decay, [' = 0, for a dipole moment oriented parallel to the surface, and enhance-
ment of spontaneous decay, I' = 2I'y,., for a dipole moment oriented perpendicularly
to the surface [160].

To account for material absorption, we perform the calculations on the basis of
the exact (scattering part of the) Green tensor as given in Eq. (4.17) together with
Eqgs. (4.12). Numerical examples are given in Fig. 4.8, where the case of zero ab-

sorption, in accordance with Eqs. (4.31)—(4.34), is also shown in order to facilitate
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comparison. We see that in the case of strictly zero absorption, the decay rate as
a function of the atomic position z4 > 0 is symmetric with respect to the position
z4 = d. Any absorption destroys this symmetry. As a result, large enhancement of the
spontaneous decay can be observed when the atom is near the LHM surface, which is
obviously due to the absorption-assisted atomic coupling to evanescent waves. This ef-
fect implies qualitatively new distance dependences, as will be confirmed in Eq. (4.38)
below. Note that the enhanced spontaneous decay near a surface is well known for or-
dinary materials (see e.g. Ref. [162]). Our result is also consistent with those reported
in Ref. [163], where it has been pointed out that the inhibition of spontaneous decay
can be weakened due to nonradiative decay at short distances and due to radiative
decay at large distances.

We find that for distances z4 < d, the presence of absorption drastically changes
the spontaneous decay rate such that Eq. (4.31) together with Eqs. (4.33) and (4.34)
can not be regarded as an acceptable approximation to the spontaneous decay rate in
the case of small absorption. As similar failure of the zero-absorption limit has been
found for the CP potential.

To further elucidate the influence of the evanescent waves, let us examine the near-
surface limit of the rate of spontaneous decay. By using approximations similar to
those in Sec. 4.1.2, it can be shown that for zawyg/c < 1,

r 3c o ol
—:1+7/ Akl =2k za
Fvac 4WlO|le|2 0

k||2 2 2]€”2 2
x Klmrg_ +w—f1mr§_) ol + = C mr? |d: 2|, (4.35)

2
10 10

where
2Tmy(1 — e~
mpy = 2wl me 7Y (4.36)
[ 1= (= D)1
2Ime <1 — e*4knd)
Imri = (4.37)

Unlike the real parts [cf. Eqgs. (4.26) and (4.27)], the imaginary parts of r§_ and r}_
have the same (positive) sign. The two polarizations therefore contribute construc-

tively to the spontaneous decay rate. If the slab becomes sufficiently thick, Eq. (4.35)
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Figure 4.8: Atom—surface distance dependence of the decay rate of an excited two-level atom in the

setup in Fig. 4.3 for e = p = —1 +in, d = 5¢/wyo and dipole moment parallel (upper curve) and
perpendicular (lower) to the surface. The vertical line indicates the position of the focal plane.

reduces to leading order to

T 3c3(1d! |2 +2[dL|2) T
G 130| |31° ) Ime (4.38)
vac 8wip|diol?z; e+ 1[2
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Equation (4.38) shows that the decay rate takes on large values as z4 — 0, which is
a consequence of the direct energy transfer from the atom to the constituents of the
medium (see e.g., Ref. [162]).

4.2 Casimir force on an amplifying body

So far we have studied the nonresonant and resonant CP interaction in planar and
spherical systems. In this section, we focus on Casimir forces between bodies where
amplification in the sense of Eq. (2.1) is present in limited space and frequency regions.
In Sec. 4.2.1, we will introduce the Casimir force, in close analogy to the CP force, as
the quantum-average Lorentz force acting on the internal charge and current densities.
Firstly, we will study an arbitrary system without specifying the Green tensor of
the geometry. Secondly, we will investigate the Casimir force between a partially

amplifying plate and an electric half space (Sec. 4.2.2). The results in this section are
based on Refs. [AS5, AS6].

4.2.1 Arbitrary geometry

Let us consider an arbitrary arrangement of linearly responding magnetoelectric bod-
ies described by the permittivity ¢(r,w) and permeability u(r,w).

Volume-force formulation

The (zero-temperature) Casimir force on one of these bodies with volume V' can be
found by calculating the quantum-average Lorentz force with respect to the quasi-

stationary state [{0}) as introduced in Chap. 2,

P [ @ [ QOA0EE) + ) x BOO}) o (439)

The coincidence limit r' — r has to be performed in such a way that divergent
self-forces are discarded. We will return to this point later.
As a first step, we recall the expression of the noise current density (2.26) together

with the conductivity tensor (2.12) and the commutation relations (2.27) and verify
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that
Gy (), () = 0 = G (r, )i (,0), (4.40)
@N(r,w)i\[(r’,w’)) = %5@1 — ) Z Re Q,(r, ', w)Olk(r,w)], (4.41)
<ijv(r,w)iN(r’,w’)) = —%5 (w—w' Z Re Q,\(r, ', w)O[—r\(r,w)]. (4.42)

Note that, if no intervening symbol between two vectors is given, the dyadic product
is meant. Combining these results with the field expansion (2.16) as well as Eq. (2.31),
together with Eq. (2.8), we find the expressions

(P, B, W) =0 = (5 (r,w)E' (', ), (4.43)
~ h w?
<A(r,w)ET(r',w')) = ——0(w — w')pow d®s | d*s'O[kx(s,w)]
e ratt = 3 [ @ [ dol
x V- G(r,s,w) - Re Q)\(S s w)- G*(s, 1, w), (4.44)
(p'(r, w)B(r', W) = — Z{Z—Qé (w—w)pow Z /d3 /d3 'O[—ka(s,w)]
x V- G*(r,s,w) - Re Qk(s,s’,w) -G(s, 1 w). (4.45)

To calculate the second term in Eq. (4.39), we recall Eqgs. (2.17) and (2.30) together
with Eq. (2.8) and use the vector identity,

ax b= —tr(l x ab), (4.46)

where we have introduced the notation [tr T]; = Try. We eventually arrive at the

expressions

~

G(r,w) x BIr',w')) =0 = (r,w) x B'(r', ")), (4.47)

<J:(r,w)><BT(r Wy = h S(w — wuowZ/d?’ /d%@msw]

A=e,m

2
X tr [I X (VXVX _w_2> G(r,s,w) - ReQ,(s,s,w) - G*(s',r',w) x v/ (4.48)

C
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and

At

G'(r,w) x B, ")) = —Zé(w — W) pow Z /dgs/dgs’@[—/{,\(s,w)]

A=e,m

c2

2
X tr [I X (VXVX _w_) G*(r,s,w) ReQ,(s,s',w) - G(s',r',w) x v|. (4.49)

We now apply the identity
Olka(s,w)] =1 — O[—k(s,w)] (4.50)

to Eqgs. (4.44) and (4.48) and combine the terms proportional to O[—k,(s,w)] with
Eqgs. (4.45) and (4.49). For the parts including the whole frequency integration, we use
the integral relation (2.24). As a result, we obtain the Casimir force in the form [AS6]

F = F' 4 Fues (4.51)

with

[e%s) 2
Foves — E/ dgT/ dw{w—2v . ImG(I‘,I‘,,W)
T Y 0 c

2
+ tr [I X (V x V x —%)ImG(r,r’,w) X %’}} (4.52)
c r’'—r

and

2h, -
P = 2200 [ [N 3 [ s [ @bl
T Jv 0

A=e,m

2
X Re {%V ) G(I‘, S7w) ‘Re Q)\(S7 S/’w) ) G*<S,, I',,LLJ)

2
+ tr {I X (VXVX—%) G(r,s,w) - ReQ,(s,s',w) - G*(s',r',w) x g'} }
c

r’'—r

(4.53)

Recall that in Eq. (4.52), we have to remove self-forces before taking the coincidence
limit r’ — r. These unphysical divergent self-forces arise from the fact that the electric
field at r inside the body, originating from a source point r’ inside the same volume
element, contains back-reactions onto itself in the coincidence limit, as expressed via

G(r,r,w). For a homogeneous body we can remove such terms by simply replacing
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4 Dispersion forces on excited systems

G with its scattering counter part G(l)(r,r’,w) and discarding the bulk contribu-
tion [105]. Similarly, if the body is inhomogeneous we can remove the corresponding
bulk tensor for each small homogeneous region inside the inhomogeneous body. The
identification of self forces in the resonant force term (4.53) is not so straightforward
since the arguments of the appearing Green tensors G(r,s,w) and G*(s’,r’,w) do
not lie in the same layer. If self-forces are present they can, however, be found by
calculating the force on the body in the absence of any other matter. A physically
reasonable Casimir force should vanish in this situation, any terms that survive can
be regarded as self-forces and should therefore be discarded.

Equations (4.52) and (4.53) represent general expressions for the Casimir force act-
ing on a linearly polarizable and magnetizable body of arbitrary shape in an arbitrary
environment (of additional bodies or media), where the body under consideration or
those forming the environment, or both may be amplifying. The term F* is a purely
nonresonant, contribution to the force. However, although looking formally like the
Casimir force for purely absorbing bodies [105], the frequency response is different if
amplification is present. The resonant term F'* is a new term which, as evident from
the factors ©[—¢e;(s,w)], O]—us(s,w)], only arises in the presence of amplification.
It depends on the amplification-assisted frequencies inside the body which indicates
that it is connected to spontaneous decay and real-photon emission processes.

For convenience, we express the nonresonant force (4.52) in terms of the conduc-
tivity tensor. To that end, we apply the identities

c2

2
(V x V x —w—)Im GY(r,r',w) = powRe /dng(r,s,w) - G(s,r',w) (4.54)
and

1
V- -Im GY(r, v w) = —g—wReV [ d*sQ(r,s,w) - G(s, v, w), (4.55)
0

where the first identity follows directly from the differential equation (2.20), and for
the second one, we have also used the fact that the divergence of a curl vanishes.

Hence we write the nonresonant force in the form

h o
Frres ﬂ/ d®rRe / dww [V’ tr/dSSQ(I‘, s,w) - G(s, r’,w)
T v 0

—(V+ V') /dng(r,s,w) -G(s,r,w) ., (4.56)

r’'—r
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4.2 Casimir force on an amplifying body

where we have applied the general tensor identity
tr[l x T(r,r',w) X %/} =V'turT(r,r,w) -V T(r,r,w). (4.57)

The second term in Eq. (4.56) can be converted to a vanishing surface integral for a
body in free space. It is instructive to write out the conductivity tensor in terms of
the electric and magnetic susceptibilities of the body, e(r,w) — 1 and 1 — 1/u(r,w),
with r € V' [recall Egs. (2.12)—(2.14)],

I3 ) 2
Fores — %/Vd&rlm /0 dw(i—z[a(r,w) —1)VtrGY(r,r,w)
1

~v{[i- v x e < T 1), (4.58)

where we have used the symmetry property of the Green tensor (2.23), which implies

1
[V'trG(l)(r, r',w)} = —Vtr [G(l)(r, r',w)] : (4.59)
r'—r 2 r'—r
Equation (4.58) can be more conveniently written as an integral over imaginary fre-
quencies. To that end, we write Im G = (G — GW*)/(2i) and use the Schwartz
reflection principle (2.22),

/Oodwlmf(w):l,/oodwf(w)—i,/o dw f(w), (4.60)
0 2 J 2t ) o

where f(w) denotes the integrand in Eq. (4.52). Recall the analyticity of the Green
tensor as well as that of the permittivity and the permeability in the upper half of the
complex frequency plane (including the real axis). On exploiting the small-frequency
behavior of the Green tensor, Eq. (2.25), we can apply Cauchy’s theorem. It implies
that any closed-contour integral in the upper w half-plane must vanish. Thus, the
two integrals over the real frequency axis in Eq. (4.60) can be rewritten in terms of
an integral over the positive imaginary axis and an integral over an infinite quarter-
circle in the first [first integral in Eq. (4.60)| or second quadrant [second integral
in Eq. (4.60)]. Since the integrals over the quarter-circles vanish due to the high-
frequency limit of GV, Eq. (2.25), the force (4.52) can finally be transformed to an
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4 Dispersion forces on excited systems

integral over purely imaginary frequencies,

i 00 2
Fnres:_%/vdsrfo dé‘(%[g(r,ig)—1]VtrG(1)(r,r,i§)

{1 s e[t ] ). e

Contact to Casimir—Polder forces

To get more insight, we establish a relation between the Casimir force on an amplifying
body according to (4.51), (4.61) and (4.53) and the CP force on an excited atom. To
that end, we consider the Casimir force on an optically dilute amplifying body of
volume V placed in a free-space region in an environment of purely absorbing bodies.

We consider first the nonresonant contribution and make use of the fact that the
amplifying body is assumed to be optically dilute by expanding the result (4.61) to
leading, linear order in the susceptibilities e(r,w) — 1 and 1 — 1/p(r,w) where r € V.
Since these susceptibilities already explicitly appear as factors in the above expression,
the Green tensors have to be expanded to zeroth order in these functions. In other
words, we have to replace G with the Green tensor G" of the system in the absence

of the amplifying body, which is the solution to the Helmholtz equation (2.20) with

e(r,w), u(r,w) forr ¢V,
e, w) i, w) = b ) forx g (1.62)
1 forreV

in place of e(r,w) and u(r,w).

Let us assume that the amplifying body consists of a dilute medium of isotropic
atoms in an excited state |n), transition frequencies wyy, polarizability «,, and magne-
tizability 3, [recall Eqs. (2.54), (2.62)]. The electric and magnetic susceptibilities of
the body are related to the atomic polarizability and magnetizability via the linearized

Clausius—Mossotti laws

elw)—1= et ﬁ = j1onBn(w), (4.63)

where 7 denotes the atomic number density. Thus we finally obtain

Fes = —/d?’r'r]VUf;reS(r) (4.64)

where U** is the combination of electric and the magnetic CP potential as given by
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4.2 Casimir force on an amplifying body

Eqgs. (2.53) and (2.63):

Unres _QL/ gan Zé)trG ( 7Z§)
48,00V x 6V rie) x 9, ). (4.69)

The nonresonant Casimir force on an optically dilute amplifying body is hence a
summation over the respective nonresonant CP forces on the excited atoms the body
consists of. However, there is one important difference to the case of the force on
an absorbing object which consists of ground-state atoms: While for ground-state
atoms the frequencies wy, in Egs. (2.54) and (2.62) are positive so that all (virtual)
transitions contribute to the nonresonant CP potential with the same sign, upward
as well as downward transitions are possible for excited atoms, so that positive and
negative wy, occur. In particular for a two-level atom, the nonresonant CP force for
the atom in its excited state is exactly opposite to the respective ground-state force.

Let us next consider the resonant Casimir force F*, which is only present for an
amplifying body, by following essentially the same steps as for the nonresonant force.

We first recall that the real parts of the conductivity tensor contributions read

Re Q.(r,r',w) = gower(r,w)d(r — '), (4.66)
/ _ 1 /L[(I', w) - /
Re Q,,(r,r',w) = Mowv X |m(r,w)|25(r ')l x %, (4.67)

where the (imaginary parts of the) susceptibilities of the amplifying body are already
explicitly present at this stage. A linear approximation in these susceptibilities in

Eq. (4.53) can hence be obtained by using the zeroth-order identities

2
(V x V x —QCJ—Q) G(r,r',w)=1(r —1'), (4.68)
w2 / /
EV- G(r,r',w)=—-Vi(r -1, (4.69)

as following from Eq. (2.20), and replacing G* with G . Expanding the result with
the aid of Eqgs. (4.57) and discarding terms involving total divergences for a body in
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free space, we find

oo 2
Fre = —E/ d?’r/ dw{@[—al(r,w)]w—251(r,w)VtrRe GY(r,r,w)
— O[—p(r, w)]ﬁvu [V xRe GV (r,1',w) x %’] r/%r} (4.70)

where we again have performed the coincidence limit by replacing the Green tensor
with its scattering part.

Relating €; and pu; to the polarizability and magnetizability of the atoms by means
of the Clausius—Mossotti relation (4.63), we finally obtain

F =— /d?"r’nVUffs(r), (4.71)
where

U, (r) = %/0 dw{@[—hﬂ i (W)]Im oy, (w)w?tr Re G(l)(r, r,w)

— O[~Im B,(w)]Im B, (w)tr[V xRe GV (r, 1/, w) x %’] r/%r} (4.72)

is the resonant part of the CP potential of the excited atoms contained in the body.

By means of the identity
lirrol 1/(z+ie) = P/x —imd(z), (4.73)
€E—

where P denotes the principal value, the imaginary parts of polarizability and mag-

netizability, as given by Eqs. (2.54) and (2.62), can be written in the form
™
arw) = = ; |k 26 (w + wak) — 0(w — war)] (4.74)
T
Br(w) = 37 zk: M, ? [0 (w + wik) — 6 (w — wa)]- (4.75)
Hence, the resonant CP potential can be derived to be
Ures(r) = —% 3 @(wnk){w5k|dnk|2tmee<l>(r, r, W)
k

— m e[V xRe GO (r, 1, w) x V'] %} (4.76)
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4.2 Casimir force on an amplifying body

The potential (4.76) generalizes previous results for purely electric atoms [113], as
given in Eq. (2.55), to the magnetoelectric case. The resonant part of the CP potential
is associated with real, energy-conserving transitions of the excited atom to lower
states. As expected, the resonant part of the CP potential of an excited atom in free
space is duality-invariant, just like the nonresonant part [136].

Combining our results (4.64) and (4.71), in accordance with Eq. (4.51), we have
shown that the Casimir force on an optically dilute, homogeneous, amplifying mag-
netoelectric body is the sum of the CP forces on the excited atoms contained in
it,

F=— / dPrpVU,(r). (4.77)

This result generalizes similar findings for purely absorbing bodies (consisting of
ground-state atoms) [9, 10, 154, 164] to the amplifying case. In addition, our calcu-
lation has rendered explicit expressions for the free-space CP potential of excited
magnetoelectric atoms in the presence of an arbitrary arrangement of absorbing bod-
ies,

U, (r) = UM (r) + U™ (r), (4.78)

with U and U} being given by Eqs. (4.65) and (4.76), respectively. In this dilute-
medium limit, the nonresonant and resonant components of the Casimir force (4.52)
and (4.53) are directly related to the respective CP potential components which in
turn are associated with virtual and real transitions of the atoms. The most important
difference between forces on ground-state versus excited atoms is the contribution
from possible real transitions only present for excited atoms, which manifests itself
as the resonant contribution (4.53) of the Casimir force. Note that the established
direct relation between Casimir forces and single-atom CP forces is only valid for
dilute media, while for bodies with stronger magnetoelectric properties, many-atom
interactions begin to play a role and lead to a breakdown of additivity (see e.g.,
Refs. [9,154]).

Stress tensor approach

For bodies with simple surfaces, it is convenient to transform the volume integral
(4.39) into a surface integral over the outer boundaries of the bodies. We rewrite the

Lorentz force density in the form [105]

~ N

£(r) = pr)B(r) +5(r) x B(r) = VT(r) — 29> [E(r) X B(r)}, (4.79)
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where we have introduced the symmetric Maxwell’s stress tensor

T(r) = lim T(r,x') = eo {0} E@)E) [{0}) + 1o ({0} B(r)B(x) [{0})

—%@MNHE@%E@UWR>H@WWHB@%BWHWHV-Mﬁm

Note that in other references the Abraham-Minkowski’s stress tensor is used [106—
108], which is not consistent with the Lorentz-force formulation [165]. The two pro-
posed approaches, however, Maxwell versus Abraham-Minkowski’s stress tensor, co-
incide if the body under consideration is placed in a free-space region [105]. For
velocity-independent systems, the Casimir force reduces to a surface integral over the

stress tensor

F :/ da- T(r). (4.81)

Let us now calculate the field correlation functions appearing in the stress tensor.
The correlation functions of the electric field can be obtained by combining Eqs. (2.16)
and (4.41)—(4.42),

OB B)|0) = /wdww—ImG(rr W) — 2 d3/ dw—Quow

TE c? TE

X Z /d3s'Re r,s,w)-Re Qx(s,8',w) - G*(s,1',w)|O[—Im k) (s,w)], (4.82)

A=e,m

where we have again used the identity ©(z) + ©(—z) = 1 together with the integral
relation (2.24). For a purely electric system, Eq. (4.82) takes the form

OB EE)0) = - Oodg Gr.x,i€) — 21 d3/ dw—Imgsw)

X Re[G(r,s,w) - G*(s,v',w)|O[—¢;(s,w)], (4.83)

where we have already expressed the first term as an integral over imaginary frequen-

cies in the familiar manner. In a similar way, by means of Eqs. (2.17), (4.41)—(4.42)
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and (2.24), we obtain

TED

h *° 3 NOW
OB BI)0) = ——- dwCQVxImG(rr W x%—zmo/d / dw

xZ/d?”RerG(rsw) Re Q\(s,s',w)- G srwx% [—Im Ky (s,w)],

A=e,m

(4.84)

which for a purely electric system reduces to

(O[B(r)B(x)[0) = —@ wdexG(r,r’,if)x%’—2%/dgs/ooodwi—jel(s,w)

x Re[V x G(r,s,w) - G*(s',1',w) x %’]@[—ef(s,w)]. (4.85)

It should be emphasized that the terms proportional to O[—e;], ©[—p;| cannot be
expressed in terms of imaginary frequencies since the integrand is not an analytic
function. Note that the space integral runs over a finite region such that the integral

relation (2.24) cannot be applied.

4.2.2 Planar geometry

As an example, let us calculate the Casimir force on an amplifying, purely electric slab
of thickness d3 and permittivity €3, where Imes < 0 for a limited frequency interval,
and an electric (absorbing) half space of permittivity e; is placed at a distance of dy
from the slab. The setup is sketched in Fig. 4.9. Note that this is one of the simplest

e1(w) go(w)=1 | e3(w) e4w) =1
x %
*
" *
dy ds
z

Figure 4.9: 4-layer structure electric half space — vacuum — amplifying slab— vacuum

possible planar geometries that can be studied in the presence of amplification. The
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seemingly simpler case of an amplifying semi-infinite half space would immediately
lead to unphysical results since the amplitudes of the propagating waves would become

arbitrarily large.

Dilute-medium approximation

Let us first study the case where the slab is optically dilute and consists of excited,
purely electric, isotropic (two-level) atoms. Here, we will only consider the dominant
resonant component of the Casimir force, F ~ F** as given by Eq. (4.71) together
with Eq. (4.76). As a simple example, we assume the half space in region 1 to be a
perfect mirror. In that case, the associated Green tensor is given in Eqs. (4.22) and

(4.23), and the Casimir force per unit area on the weakly polarizable slab is given by

Lo ) d2+d3 ) )
F(dy) = ) nwio|diol / dzAa—Re Gl (ra,ra,w)e,
dy ZA

_ po g |daol?
= 12mc M0 53

zpa=d2+d3
zZA =d2 zZ9

[(2 = 2%) cos(2) + 2Zsin(Z)] (4.86)

where here Z = 2z4w10/c, and 7 denotes the density of atoms in the slab. On recalling
our results from Sec. 4.1.1, Eq. (4.6) in the limit &y — oo, we find an attractive

Casimir force in the nonretarded limit,

F(dy) =

dyf? | 1 1
_ldu| [— , (4.87)

2dmey | d3

d3  (do+ d3)?

where we have used that for isotropic atoms |dl|> = 2|d*|?> = 2/3|d|?. Accordingly,
on recalling Eq. (4.10), we find the force in the retarded limit,

F(dy) =

(4.88)

_nﬂow%0|d10|2 cos(2(da + d3)wio/c)  cos(2dawio/c)
127 dy + ds d '

Figure (4.10) shows the (dimensionless) Casimir force per thickness ds of the slab
as a function of the slab—mirror separation. For reference, we have also displayed
the resonant part of the CP force on the individual atoms contained in the slab.
It can be seen that the Casimir force on the amplifying slab near a perfect mirror
shows an attractive behavior in the short-distance regime while for large slab-mirror
separations an oscillating behavior is observed. This is a direct consequence of the

respective behavior of the CP forces on the atoms contained in the slab. The amplitude
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CP force _
dgc/wlo = 71'/4 .......
dzc/wig = 7/)2 e
d3C/wlo EN T

05 |
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o
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Figure 4.10: Resonant Casimir force (per thickness ds) between a planar, optically dilute sample
of excited atoms and a perfect mirror plotted vs. the slab—mirror distance. The atomic dipole
moments are oriented parallel to the surface. The solid line shows the resonant CP force on each

excited atom.

of the oscillations decreases with increasing thickness of the slab, since the integrated
Casimir force per slab thickness is a spatial average of the oscillating CP forces over
the slab thickness. The occurrence of oscillations can be regarded as a typical impact
of amplification on the Casimir force.

It should be pointed out that the Casimir force can also be repulsive in the non-
retarded limit when the perfect mirror is replaced by a dielectric half space. As can
be seen from the excited-atom potential (4.6), the nonretarded Casimir force is then
given by Eq. (4.87) multiplied by (|e;(w10)]* — 1)/(Je1(w10) + 1|*). Thus, we find re-
pulsion if |e1(wyo)] < 1.

Casimir force on a non-dilute slab

In the following, we investigate whether the results from the dilute-medium approx-
imation qualitatively also hold beyond this limit. For the planar 4-layer geometry
under consideration (recall Fig. 4.9), it is convenient to calculate the Casimir force
in the stress tensor formulation, i.e., substituting the correlation functions (4.83) and

(4.85) into Eq. (4.80) together with Eq. (4.81). The Casimir force per unit area is thus
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given by the sum of the stress tensor elements 7. on the two boundaries of the slab,
f=f —f' = [T, (r).c0 — TL(r)|.za,] € (4.89)

Here, the index r denotes the force component acting on the right boundary of the
slab, i.e., r,r’ are located in layer 4. To calculate the force acting on the left boundary,
f!, we have to take the relevant stress tensor element with r,r’ pointing into layer 2.
The minus sign in Eq. (4.89) arises from the fact that the surface vector points in
the negative z direction for the force acting on the left boundary of the slab. Note
that for realistic systems with finite lateral extension, our results can still provide an
approximation by integrating the force density over the finite area of the slab. Such
an approximation is reasonable as long as the lateral extensions of the system are
large compared to the separation between the slabs. In this case effects arising from
the edges of the slabs can be neglected. We have explicitly checked that Eq. (4.89)
ensures that the Casimir force on the amplifying slab vanishes in the absence of the
half space.

The correlation functions (4.83) and (4.85) contain two terms each; one that in-
volves the full frequency integral leading to a nonresonant force contribution as can
be expected from our results in Sec. 4.2.1, and a second term being proportional to
©[—¢(s,w)] which genuinely arises from the presence of amplification and leads to
a resonant force component. Thus, we decompose the Casimir force per unit area
according to Eq. (4.51),

f =" 4 £ (4.90)

We first study the nonresonant contribution to the Casimir force in which case the

stress tensor can be written in the form

T(I')Z—E/O d§{§ GY(r,r,i€) + V x GV (r, 1, i) x $|r/—r

T

— %tr EEG(U(I' r,i) + V x GW(r 1 i€) x « V' |r/r] }, (4.91)

where the scattering Green tensor (with r and r’ in the same layer 2) can be found

e.g., in Ref. [132]|. The nonresonant Casimir force found formally looks like the corre-
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sponding ground-state result !,

2kt do

pues __ I %/(MML§:7yme e, (4.92)

2 _ 2kLd
2m ro ry, e N

where N
o _ ,—2Kk3d3
s T3 ( 1 —e“"s )

2+ 02 ,—2kitd
1 —rfge=rss

(4.93)

L = k! as defined

together with the single-layer reflection coefficients (3.13), and &
in Eq. (3.14). It should be emphasized that the imaginary part of the wave vector
component in the z-direction is always real for positive £3(i§) and thus unambiguously
given as k3 = \/e3(i€)w?/c2 + k2.

The nonretarded and retarded limits can be obtained in analogy to the same asymp-

totic limits of the ground-state force between two half spaces. For simplicity we restrict
our attention to a sufficiently thick slab, d3 > d,. Note that the nonresonant force
remains finite in this limit (ds — c0), and we approximate r§, = r%;. We find for the

nonretarded force

ares R [ es(ig) alig) — 1
O oo = 5577 |, dgL”’Ls@g>+1a<i6>+1

e., (4.94)

where Li, (2) = >_,;7, 2*/k™ defines the polylogarithm function. In particular, we have
Lig(x) ~ 1.2z for 0 < x < 1. Similarly, we obtain the Casimir force in the retarded

limit,
¢ 3hc /Oodv L v—ve —14+0v2yes—14+0v2—0
ret — T4 o 34 S 1
! 167w2d; ), v? * vH+Ve — 14+ 020+ Veg — 1402

ev—+vVel —14+v2Veg — 14+ 02 —egqv

e1v+ve — 1+ v2esv+ Veg — 1+ 02

+ Liy

}% (4.95)

where Liy(z) ~ z7*/90 for 0 < x < 1. If amplification is present in a sufficiently large

frequency regime where

2
Wp

0<ey(i€)=1—— 2P 9
es(it) E Wity

(4.96)

!Note that the most simple absorbing geometry typically consists of two half spaces separated by
a free-space region, see e.g., Ref. [105].
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we immediately see from the nonretarded and retarded results that the nonresonant
Casimir force is repulsive. Note that the case of £3(i§) < 0 would correspond to a very
large amount of amplification which cannot be considered by means of linear QED
(see also the example below).

In Ref. [70], the total Casimir force is identified with the purely nonresonant term
and it is suggested that it may be repulsive. However, the presence of amplification
is not taken into account in the quantization scheme used. On using a path-integral
approach, a planar system consisting of two perfect mirrors enclosing an amplifying
slab is studied in Ref. [166] . The proposed (attractive) Casimir force is again purely
nonresonant. In my opinion, resonant force components can crucially contribute to
the total Casimir force and should be carefully investigated, as we will do in the
following.

To calculate f'*, we basically have to calculate the product G(r,s) - G*(s,r’) as
can be seen from the correlation functions (4.83) and (4.85) together with Eqs. (4.80)
and (4.89). To that end, we have to study the relevant 4-layer Green tensor. However,
in the presence of amplification, the correct choice of the wave vector perpendicular
to the slab must be chosen with care. To elucidate (and solve) the problem, we first
study the corresponding bulk Green tensor of an amplifying, right-handed medium
in the planar-wave expansion (Weyl expansion) for the special choice of r = 0 and
r' = (0,0, z2) [151],

+ 5= 0 0
O (p o/ A Ll ’ N
G (I‘, r ,W) = 8_7T kTe 0 1 —+ e 0 s (497)
0 o g

where here the wave vector k is decomposed as in a planar system according to k* =
(0,0,&,) and kl = (k,, k,, 0). The imaginary part of the permittivity of an amplifying
(right-handed) medium is negative, Ime < 0, which implies that also Im k2 < 0, as
can be seen from k*+? = cw?/c — kl2. Thus, k*? lies in the third (evanescent waves)
and fourth (propagating waves) quadrant of the complex plane. While propagating
waves are amplified when traveling through an amplifying medium, manifesting in
Im k't < 0, the situation for the evanescent contributions, where Rek'? < 0, has
been controversially discussed in the literature [90,167,168|.

To proceed, we change the integration variable according to dk!l = —k+dk*/kll. The
basic physical requirement that the amplitude of the propagating modes should be
amplified implies that for kll = 0 the new lower bound uniquely reads k* = \/ew/c = k
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with Im /¢ < 0. For the new upper bound, corresponding to arbitrarily large values

of kll, we have k' = +ioco, where the sign is yet to be determined. Hence, we have

kLQ

. petico 1+% 0 0
1 .
GV, r',w) = _8_77/ dkte 0 1+ kk—f 0 . (4.98)
k 2
0 0 2-287

To determine the correct choice of the square root in k*, we require Eq. (4.98) to

agree with the explicit expression of the bulk Green tensor, Eq. (3.66),

1 —ikz — (kz)? 0 0
0 1 —ikz — (kz)? 0 (4.99)
0 0 “9(1 — ikz)

o ik
GV (r,r'w)= T
which is finite for finite z, despite the boundary condition at infinity for an infinitely
extended amplifying medium, G(r,r’,w) — oo as [r—r’| — oo. We see that Eqs. (4.98)
and (4.99) coincide if we choose k*+ = +ico for the upper bound and if k* is continu-
ous along the integration path. Thus, we are left with the following requirements to

determine the correct square root,

kt(w,kl = 0) = ew/e with Imkt <0 (propagating) (4.100)

k*(w, kI — 00) = +ico  (evanescent), (4.101)

which implies that the branch cut in the k%2 plane should be conveniently chosen
along the negative imaginary axis. Our result is in agreement with Ref. [168]. We
thus have the first Riemann sheet for —7/2 < # < 3/27 and the second Riemann
sheet for angles 3/2m < 6 < 7/2w. As indicated in Fig. 4.11 the physically correct

square root is given by
k= |kt —m/d< ¢ < 3/4n. (4.102)

In practice, we have to ensure that the integration path starts from &+ = \/zw/c in
the fourth quadrant and goes to k&~ — ioo but avoids the branch cut such that the
choice of the branch of the square root is preserved and the integrand is continuous.
A possible integration path is sketched in Fig. 4.11. In particular, k!l must be allowed
to take complex values.

Let us now return to the problem at hand and consider the relevant Green tensors
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4 Dispersion forces on excited systems

 Tm i+

kL — ikl

kt = \/epw?/c? — kll2

Rek*

kt = \/ep

Figure 4.11: Correct choice of the wave vector in a right-handed amplifying medium (gray region).
A possible integration path is indicated.

for the 4-layer geometry. In this case, we have three different values of ¢;, and hence
ki-. For ki inside the amplifying slab, we recall our conditions (4.100) and (4.101).
The common integration path for kI must then be chosen such that the branch cut
is avoided inside the amplifying slab.

For the force acting on the left boundary of the slab we need the Green tensor with

r in layer 2 and s in layer 3, as given by [132],

' kll-(r—s) o iktd

) e’ t9-e 2
G(Y’Saw)z—z/ko”T >, e e o 7 ro ohikid
T ¥
8 (1 —rgyrg e* s ) (1 — rgroze 2)

O=8,p

—iktz ikis, — — o —iktz —ikds
X (e e F ey es, + rye e "

iktz ikis, + . — o o iktz —ikts, 2ikdds + +
ez ey e +rorge’ Fem etz etts e2oe30), (4.103)

2ikids — +
3 e2o

e e30
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4.2 Casimir force on an amplifying body

and, by using G(s,r’) = G'(r,s), we also find

L —ik”~(r’—s) tro —ikL*dy
G*(s,r’,w)zg—Z/ko‘”e Z 23€

1% *0 k0 ,—2ika*d *0 %0, —2ikL*d
T k o=, (L=r3frsZe 2k ®) (1 — rifrige 2)

R I B A A B e R A N Ay A e
% (ezk ze zk3 szegoezo _'_T_;Zezk zesz S»

ks =ik

—2ika*ds x4+ k—

e 3 e30820

%, w— x+ x0, ko —ikt*2 ikd*s, —2ikd*ds x+ x4+

‘e eyt +ryirie s e B eiter ). (4.104)

+ryje”
The relevant reflection and transmission coefficients read

g
7“3_

27, L
_ 7‘§2 + ezm dQTgl _ _ P __ 4P _ D 1
o 1+ T§2T§162ikld2’ tflS - tgs =1+ 7“53, t43 - t23 - (1 + TQS)\/—??, (4-105)

with the familiar single-interface coefficients

COkE—kE ekt — ekt .
r.. = — r.. —m —— .
YRR RS gk ek
In particular, we have 7§, = r, = —r9;. The polarization unit-vectors are given by

Eq. (3.15). Recall also the notation for the wave vectors, Eq. (4.2). In contrast, to
calculate the force density on the right boundary of the slab we need the Green tensor

with r,r’" in layer 4 and s in layer 3 [132]

ikl (r—s) tg ik ds ikt z
3

1 e
G(r,s,w):@/d%” pn Z (

o=8,p

0 .0 ,2ikd
1 —rgyrg ertsd)

—ikd ik _
x (e7™s % efef + 1] ™ efey) (4.107)
and accordingly,
i —ikll.(r'—s) ti%kefikgl*dgefikl*z’

Gis.r' w) = —- [ q2xl€
(S’ r ,W) 72 / JoL* Z (1 _ rgzrgie—%k:{*da)

0=8,p

21 L% ey _
x (™3 el e +rite ™ ces el ). (4.108)

As already pointed out, the analyticity of the Green tensors in the upper w half-
plane is a basic requirement to justify the quantization scheme. In the following,
we illustrate the relation between poles in the upper w half-plane and the strength
of the amplification. As an example consider the Green tensor (4.107). Although

the permittivity, the reflection and transmission coefficients and the numerator are
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4 Dispersion forces on excited systems

analytic functions in the upper half of the complex w plane including the real axis,
this is not necessarily the case for the Green tensor itself. That is to say, we have
to check under which conditions the poles of the Green tensor are located in the
upper w half-plane. Similar considerations can be found in Ref. [116]. The poles
are the roots of the denominator in (4.107). As an approximation, we assume that
r{_ =1y =13 =r(w) = |r(w)|e® and consider only propagating waves of normal

incidence (k| = 0) in the denominator. The condition for the poles is thus given by
1—g(w)=1—|g(w)]e? =1 — r?(w)eXvesdw/c — (, (4.109)

where Im /g5 < 0. Condition (4.109), for complex w, is fulfilled for

|g(w)| _ |r(w)|2672(RewIm\/§+Imee\/§)d3/C —1 and (4110)
cos ¢y = cos[2¢, + 2(RewRe /e3 — Imwlm /e3)d3/c] = 1. (4.111)

The function g(w) is analytic in the upper w half-plane and can be identified with
the gain (or loss) of the electric field emitted from one point in the slab, traveling
to each of the two surfaces where it is reflected and finally comes back to the same
point. Hence, the condition (4.110) implies that the loss via transmission through the
surfaces is equal to the gain in the medium while condition (4.111) enforces phase
matching after a round-trip.

The Green tensor is analytic if g(w) # 1 in the entire upper w half-plane. According
to the maximum modulus principle, |g(w)| takes its maximum at the boundary of this
region. Since for Im w — oo the modulus of the gain function |g(w)| goes to zero on the
infinite semicircle, the maximum must be located on the real axis which is consistent

with Eq. (4.111). It is hence sufficient to require that
lg(w)| = |r(w)|Pe2mvesdsw/e < 1 for real w. (4.112)

For absorption-assisted frequencies where Im /g3 > 0, this condition is always fulfilled.

For amplification-assisted frequencies Eq. (4.112) yields the condition

1— /z2
Ir(w)| = H < e~ MmvEsldsw/e  for real w. (4.113)
\VE3

Thus, Eq. (4.113) implicitly holds conditions for the medium parameters in e3(w). If

the amplification in the body (over)compensates the transmission losses, |g(w)| > 1,
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4.2 Casimir force on an amplifying body

the poles may approach the real axis and migrate into the upper half-plane. In this
case, instabilities may arise and the electromagnetic field will blow up with time [90],
which implies that the slab starts lasing action. Clearly, for such medium parameters,
the concept of linear macroscopic QED breaks down.

Keeping these considerations in mind, the resonant Casimir force can now be ob-
tained by evaluating Eq. (4.89) together with Eq. (4.80), where the Green tensors
(4.103), (4.104), (4.107) and (4.108) enter via the correlation functions (4.83) and
(4.85). This result can be regarded as a generalization of the Lifshitz-theory [2] to
excited bodies. The appearing integrals must (in general) be solved numerically by

choosing the integration path according to our considerations above.

Nonretarded limit

In order to answer the question whether the Casimir force can be repulsive, let us
investigate the nonretarded limit more closely. In this limit, evanescent waves domi-
nate and we can approximate k:Jl = ikl for every layer, where k!l is real. In this case,
the Green tensors (4.103) and (4.104) can be combined by using

/ a2 / a2kl / ds, / ds, et b=k gminy (kg =k ¢ g )

= 47r2/d21<;”/d2/<;’”5(k£ — kNS (k! — K f(s.) = 47r2/d2k”f(sz). (4.114)

In the nonretarded limit, all s-polarized reflection coefficients vanish and the force is
dominated by p-polarized contributions. Thus we calculate the relevant inner (scalar)

products between the polarization unit-vectors appearing in the Green tensors (4.103)
and (4.104),

2
* C *
ey, - ey =2 P k2, ey, el =0. (4.115)

In the next step, we determine the outer (dyadic) products between the polarization
vectors, where the relevant element [recall that we need T, together with Eq. (4.83)]
is given by

1 1
§[e§,{eg,]zz_m_yy =3 (KI? — MNEI?) = E12, (4.116)

where the last equality holds for M, N = +1,—1 or —1,+1. As expected from the
fact that only p-polarized terms appear in the force, magnetic terms involving curls

acting on the product of the Green tensors [recall (4.85)] do not contribute in the
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4 Dispersion forces on excited systems

nonretarded limit,
1 ;- / ; ; * ./
é[v X e’LkH(T*I‘ )e]\42k)i,?;e*]\[lkL z eé\geé\lf) % %/]ZZ?IIiyy — O. (4.117)

From the scalar and dyadic products we see that only two terms, together with their

complex conjugate counterparts, contribute to 7., at the left boundary of the slab,

I
T..(z = d) ———/dw@ —Imes(w )]%/ FTAPACR 2k“d2/ ds,
0

|es(

Rer21|t 3|2 okl p 12 —4klds 2kl
g L e sy e Mo (4118)

where we have already performed the angular integration by using d?kll = Eklldgdil.
It should be pointed out that the single-layer reflection coefficients do not depend
on /’{;]l when kj = ikl. The integration over s, can now be carried out. Hence, the

resonant (nonretarded) Casimir force density reads

I oo
1 =T, (2 = dy) = _iz /dw@[—lm Eg(w)]wgij?"/ Akl 12 g—2kd2

Re"’zl‘t 3|2

|1+ 75 _rhie—2klds|2|1 — yb D e—2kldz|2

[<1 _ e,QkHdS) + ‘T53‘2(€72k||d3 . €f4k||d3)] e..
(4.119)

Note that in the nonretarded limit, force contributions on the right boundary of the
slab vanish as can be seen by applying Eqs. (4.115) and (4.116) (which also hold
for the vacuum layer 4) to the product of Green tensors (4.103) and (4.104). The
nonretarded resonant force remains finite in the limit d3 — oo. In this case, the force

is approximated by

1
e =~ 400 Imey(w))! m€3|/ Akl 2212
272

Rerb, [th;]? .
|1 —rfrize” 2Hlds |2 ’
(4.120)

Two approximations can be applied to evaluate the k!l integral in Eq. (4.120). Firstly,

we consider the case of weakly reflecting interfaces such that the multiple reflections
in the denominator can be neglected and the denominator is approximated by 1. In
this case, we can read off a d,® power law,

h e ?

-1
fre— 0 [ qwel-I I ] 4121
g [ wel-me)mel T (4.121)
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4.2 Casimir force on an amplifying body

where we have used that

4|€3| |61|2 -1
tha]? = ———, Rerh = ———. 4.122
| 23‘ |€3+1‘2 21 |€1_'_1|2 ( )
Equation (4.121) is consistent with the resonant CP potential of an excited atom
in front of a dielectric half space (4.6). As a second approximation to Eq. (4.120),
we assume the reflection coefficients in the denominator to be close to one, which

corresponds to a maximal impact of multiple reflections. In this case we find

o =1 [ W
fres — _ 2 d —I I dk”— z
% [ dwelmeulmel s [T e

|€1‘2— 1 e
ler + 1)2es + 127

__ D / dwO|—Tm £5(w)][Tm 25 (4.123)

1243
In general, it can be expected that the nonretarded force will take values between the
extreme cases Eqs. (4.121) and (4.123). In particular, these results reveal that the
Casimir force on an amplifying slab can indeed be repulsive, provided that the half
space consists of a metamaterial with |e;] < 1 for the frequencies where the slab is

amplifying.
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5 Summary and prospective work

In this thesis, we have used macroscopic quantum electrodynamics to extend the
concept of dispersion forces to objects in media and on excited systems. In particular,
we have shown that forces in media can be modified considerably by local-field effects,
and that excited systems can be subject to strongly enhanced or repulsive dispersion
forces.

In the first part, we have investigated the Casimir-Polder potential of a ground-
state atom embedded in a medium environment. The ground-state Casimir-Polder
interaction contains the Green tensor of the body and the atomic polarizability in an
integral form. To account for the local-field correction we have applied the Onsager
real cavity model and decomposed the Green tensor into the Green tensor of the
system without the cavity combined with a local-field-correction factor, and a position-
independent part accounting for scattering processes inside the cavity.

We have first studied the ground-state atom in front of a planar interface between
two magnetodielectric media. This generalizes earlier studies of an atom in free space
interacting with a magnetodielectric plate. Our theory is applicable to a larger range
of realistic situations, for example in cell biology. As we have shown, the Casimir—
Polder interaction tends to move the atom towards the medium with the higher
permittivity while it is repelled from the medium with the larger permeability. We
have extended the well known asymptotic power laws beyond the free-space case.
Numerical evaluation elucidates the potential at intermediate distances. In particular,
we have investigated how competing effects of electric and magnetic properties may
lead to the appearance of potential walls and wells. The impact of the local-field
correction factor has been studied as a function of distance and as a function of the
static permittivity of the local medium environment. In particular, we have shown
that under certain circumstances (e.g., for purely electric half-spaces) the local-field
corrections to the CP potential can be very significant, up to 30% of the uncorrected
values. In addition, we have for the first time studied the layer-dependent, constant
part of the Casimir—Polder potential. This has allowed us to propose an estimate of

the on-surface value of the potential. Our considerations may easily be extended to
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5 Summary and prospective work

other geometries, such as spherically or cylindrically layered host media.

Secondly, we have examined the Casimir—Polder interaction of a ground-state atom
and a small magnetodielectric sphere in the presence of arbitrary magnetodielectric
background media and bodies. Employing a similar (point-scattering) technique, we
have expressed the Green tensor in the presence of the sphere as a simple function of
the Green tensor of the environment. Using this result, we have found closed general
expressions for the CP potential of a magnetoelectric atom interacting with a small
magnetodielectric sphere which depend on the sphere’s polarizability and magneti-
zability. A comparison with the van der Waals potential between two ground-state
atoms in the presence of the background medium has revealed how the different micro-
scopic/macroscopic natures of atom versus sphere manifest themselves in the disper-
sion potentials. For the first time, we have proposed a model that is able to describe
molecular systems of arbitrary size: It consists of a sphere of variable radius located
inside an Onsager cavity and is able to interpolate continuously between the two lim-
iting cases of a microscopic atom and macroscopic sphere. In particular, our result
provides the correct polarizability of such a medium-sized spherical molecular sys-
tem and explicitly accounts for local-field effects. The implemented point-scattering
method may also be used to calculate the Casimir force on a small sphere in an arbi-
trary environment and, in particular, the Casimir force between two small spheres.

In the second part of the thesis, we have studied the impact of excitation on dis-
persion forces. We have first considered the resonant Casimir—Polder potential of an
excited atom in front of a magnetoelectric metamaterial half space. As we have shown,
the atom exhibits attenuated oscillations in the retarded regime, while close to the sur-
face the potential becomes attractive or repulsive depending on the medium response
at the atomic transitions frequencies.

To demonstrate the impact of negative refraction on the Casimir-Polder potential,
we have studied the more complex superlens scenario: It consists of an excited atom
placed in a free-space region in front of a left-handed metamaterial slab mounted on
a perfect mirror. In the idealized case of a nonabsorbing superlens, we have found
that the atom is strongly attracted towards the focal plane of the superlens. In the
more realistic case of a weakly absorbing lens, focal-plane attraction becomes a less
distinct feature. Instead, potential barriers may form that are typically several orders
of magnitude higher than those observed in ground-state Casimir—Polder potentials.
Provided that metamaterials with very small absorption can be fabricated, such bar-

riers might be of interest to levitate particles or for use in trapping or (evaporate)
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cooling mechanisms.

We have also investigated another quantum vacuum effect, the spontaneous decay
of an excited atom in the superlens geometry. As previously shown, an idealized, non-
absorbing superlens can allow for complete inhibition or strong enhancement of the
spontaneous decay if the atom is placed in the focal plane, depending on its dipole
orientation. We have shown that an arbitrarily small but finite amount of material
absorption drastically changes the decay rate compared to the ideal scenario with van-
ishing absorption. In particular, nonradiative coupling leads to a strong enhancement
of the decay rate in the region close to the superlens. We may easily combine our
studies of the Casimir-Polder interaction and the decay rate to obtain a full picture
of the dynamical Casimir-Polder force of an excited atom in a a superlens geometry.

As another example for dispersion forces on excited systems, we have calculated the
Casimir force on an amplifying but linearly responding, magnetoelectric body. The
resulting force contains a nonresonant contribution that formally looks like its ground-
state counterpart but is influenced by the frequency window where amplification is
present. We have shown that amplification also leads to resonant force components
which have been neglected in all previous approaches but which often dominate the
total force. We have proven that the Casimir force on an optically dilute amplifying
body can be calculated as a sum over the Casimir—Polder forces on the excited atoms
inside the body.

As an application of the general theory, we have explicitly calculated the Casimir
force between an amplifying slab and a dielectric half space. Calculations in the dilute-
slab limit show that the force is oscillating at large inter-plate separations, and can be
be attractive or repulsive at small separations. To go beyond the dilute-slab limit, we
have carefully examined the correct choice of the wave vector inside the amplifying
medium, and have given an upper limit for the possible strength of amplification such
that our linear theory remains valid. The derived force formula extends Lifshitz theory
to the amplifying case and lay the foundation for thorough numerical evaluation. We
have explicitly answered the question whether Casimir repulsion can be realized. As
shown, the nonretarded force is proportional to the third power of the inter-plate
separation and can be repulsive if the permittivity of the absorbing half space is
smaller than unity in the frequency window of amplification.

The results of this thesis facilitate a deeper understanding of dispersion interactions
in the context of biological systems and colloid science. They stress the potential of
amplification and left-handed metamaterials for manipulating dispersion forces on

atoms and bodies in nanotechnologies.
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Notation

Fourier component of O

hermitian conjugate

complex conjugate

second-rank tensor

second-rank unit tensor

operator O

trace of matrix M

vector

gradient

gradient acting to the left

duality transformation

vector product

scalar product

dyadic product: no intervening symbol
Theta function with ©(0) = 1

associated Legendre polynomials

[th spherical Bessel function of the first kind
Ith spherical Hankel function of the first kind

notation for the trace of a tensor
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Zusammenfassung

Im Rahmen der makroskopischen Quantenelektrodynamik in linearen Medien wurde
in den letzten Jahren eine Theorie der Dispersionskrifte entwickelt, die Casimirkrafte
(zwischen Korpern), Casimir-Polder-Krifte (zwischen Atom und Koérper) und van—
der-Waals—Krifte (zwischen Atomen) einbezieht und Rechnungen erlaubt, die fiir
beliebige Geometrien anwendbar sind. Dabei werden Korper durch komplexwertige,
orts- und frequenzabhingige elektische Permittivitits- und magnetische Permeabili-
tatsfunktionen beschrieben, welche Eingang in den klassischen Greentensor finden.
Anwesende Atome werden durch ihre Ubergangsfrequenz, die entsprechenden Dipol-
matrixelemente sowie ihre Polarisierbarkeit und gegebenenfalls Magnetisierbarkeit
charakterisiert. Das elektromagnetische Feld wird durch bosonische dynamische Feld-
variablen quantisiert, so dass die fundamentalen Vertauschungsregeln fiir elektrisches
Feld und Induktionsfeld erfiillt werden und der zugehorige Hamiltonoperator des Sys-
tems im Einklang mit den Maxwellgleichungen ist. Die Casimir- und Casimir—Polder—
Krifte werden als Lorentzkrifte beschrieben.

Wihrend Dispersionskréfte zwischen Grundzustandsobjekten im freien Raum expe-
rimentell gut nachgewiesen sind, sind sowohl Dispersionskréfte auf Objekte in Medien
als auch die Wechselwirkung angeregter Systeme bislang viel weniger experimentell
untersucht, vor allem weil die praktische Umsetzung wie z.B. die Beriicksichtigung
von Reibungskriften und die Erzeugung verstiarkender Metamaterialien schwierig ist.
Insbesondere ist auch die Moglichkeit, abstofende Dispersionkréfte zu erzeugen und
nachzuweisen, entscheidend fiir Fortschritte in den Nanowissenschaften. Die theore-
tischen Grundlagen hierzu sind weitestgehend unerforscht. Ein Schwerpunkt dieser
Arbeit ist daher die Erweiterung der bestehenden Theorie der Grundzustandswech-
selwirkung zwischen Atom und Korper, wobei das Atom in ein beliebiges Medium
eingebettet ist und das zugehdrige Potenzial entsprechend lokalfeldkorrigiert wird.
Dies tragt der Tatsache Rechnung, dass sich das makroskopische Feld vom lokalen
Feld am Ort des Atoms unterscheidet. Dabei wird am Beispiel zweier magnetoelek-

trischer Halbraume
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Zusammenfassung

e der Effekt der Lokalfeldkorrektur unter Verwendung des Onsager (real cavity)

Modells analysiert und mit den unkorrigierten Potenzialen verglichen,
e untersucht unter welchen Bedingungen abstofiende Krifte auftreten und
e die Groke des Potenzials an einer Grenzfliche abgeschétzt.

Bei der Lokalfeldkorrektur mittels des Onsager Modells wird das Atom in die Mitte
einer kleinen leeren Kugel (Kavitét) platziert. Der Radius der Kugel kann mit dem
interatomaren Abstand identifiziert werden und sollte kleiner sein als die relevanten
Wellenlingen der atomaren Uberginge sowie kleiner als die Absténde zwischen Atom
und Korper, um die Anwendbarkeit des Modells zu gewéhrleisten. Durch Punktstreu-
techniken kann gezeigt werden, dass der lokale Greentensor sich als Funktion des
Greentensors des Systems ohne die Kavitdt darstellen ldsst. Als Lokalfeldkorrektur
ergibt sich fiir kleine Kavitédtsradien ein einfacher frequenzabhéngiger Faktor, der
nur von den magnetoelektrischen Eigenschaften am Ort des Atoms abhingt. Dazu
kommt ein nicht explizit vom Ort abhingiger Summand, der vom Radius der Kugel
abhéngt. Die Zerlegung des Greentensors wird auf das Casimir-Polder—Potenzial eines
Grundzustandsatoms in einem magnetoelektrischen Zweischichtsystem angewendet.
Die bekannten Abstandsgesetze werden unter Beriicksichtigung von Lokalfeldeffekten
erweitert. Insbesondere zeigt sich auch hier, dass das Atom zum anderen Halbraum
gezogen wird, falls dieser stérkere elektrische Eigenschaften aufweist. Im nichtre-
tardierten Fall gilt fiir magnetisch dominierte Systeme ein schwécheres Abstandsge-
setz. Das Atom wird von einer Platte mit starkeren magnetischen Eigenschaften (als
am Ort des Atoms) abgestofen. Numerische Berechnungen beleuchten insbesondere
das Verhalten fiir mittlere Abstinde zwischen Atom und Grenzschicht und zeigen,
dass ein Zusammenspiel von elektrischen und magnetischen Eigenschaften zur Aus-
priagung von Potenzialtopfen und -barrieren fiihrt. Besonderes Augenmerk wird auch
auf die Untersuchung des konstanten, schichtabhéngigen Anteils des Potenzials gelegt,
der zwar nicht zu einer Kraftwirkung fiihrt, wohl aber zum Verstindnis der Bewegung
eines Atoms in der Niahe einer Schichtgrenze beitrdgt und ausschlaggebend fiir die
vorgeschlagene Abschitzung des Potenzials an der Grenzflache ist.

Fiir Anwendungen ist es besonders wichtig die lokalfeldkorrigierten Potenziale fiir
(sphérische) Mikroobjekte beliebiger Grofe zu kennen. Daher wird in dieser Disserta-

tion

e cine geschlossene Formel fiir die Casimir-Polder—-Wechselwirkung zwischen
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Grundzustandsatom und kleiner Kugel in beliebiger absorptiver Mediumumge-

bung hergeleitet,

e gezeigt wie die verschiedenen mikroskopischen und makroskopischen Charakte-
ristiken von Atom bzw. Kugel sich in den Dispersionspotenzialen manifestieren

und

e dargestellt wie die Lokalfeldkorrektur kontinuierlich zwischen den Extremfillen

Atom und Kugel interpoliert werden kann.

Dazu wird zunéchst der Greentensor einer Kugel in Anwesenheit eines beliebigen
umgebenden Mediums als Funktion des Greentensors der Umgebung ohne die Kugel
dargestellt. Daraus wird das Casimir-Polder—Potenzial zwischen Atom und Kugel
berechnet und mit der van-der-Waals—Kraft zwischen zwei Atomen verglichen: Der
direkte Kontakt zwischen makroskopischer Kugel und umgebenden Medium fiihrt
zum expliziten Auftreten der Permittivitit und inversen Permeabilitit des Mediums,
wiahrend die Kopplung des lokalen elektromagnetischen Feldes mit dem Atom zu
Lokalfeldfaktoren fithrt. Um den kontinuierlichen Ubergang zwischen diesen Extrem-
fallen deutlich zu machen, wird der Greentensor einer Kugel mit variablem Radius,
eingebettet in eine zweite, leere Kugel studiert. Das entsprechende Potenzial enthélt
die Polarisierbarkeit eines kugelférmigen Molekiils variabler Grofe und beriicksichtigt
Lokalfeldkorrekturen.

Als zweiter Schwerpunkt der Dissertation werden Dispersionskrifte auf angeregte
Systeme untersucht. Die durch die Anregung zu erwartenden resonanten Kraftkompo-
nenten eignen sich um Krifte zu manipulieren. Grundsétzlich sind zwei Moglichkeiten
vorstellbar, wie der Einfluss von bestimmten Metamaterialieneigenschaften wie zum
Beispiel Linkshandigkeit erhoht werden kann. Zum einen kénnen Potenziale angeregter

Atome untersucht werden, insbesondere werden

e die resonante Casimir—Polder—Wechelwirkung zwischen angeregtem Atom und

planarem Metamaterial berechnet und
e das Szenario der Superlinse unter Beriicksichtigung von Absorption beleuchtet.

Die Rechnung zeigt, dass das resonante Casimir-Polder-Potenzial eine angeregten
Atoms for einer magnetoelektrischen Platte fiir grofse Atom—Platten—Abstédnde oszil-
liert. Nahe an der Grenzfliche ist das Potenzial anziehend, wenn die Absolutbetrige
von Permittivitdt und Permeabilitit grofser als eins sind, andernfalls ist es abstofsend.

Um den Effekt negativer Brechung ndher zu untersuchen, wird das Potenzial eines
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Zusammenfassung

Atoms in einer Superlinsengeometrie diskutiert. Die Anordnung der Superlinse ist
effektiv ein Dreischichtsystem bestehend aus perfektem Spiegel, daran angrenzend
eine Platte mit gleichzeitig negativem Realteil von Permittivitit und Permeabilitét,
sowie einer Freiraumregion, in der das angeregte Atom sitzt. Im Falle einer ideal-
isierten, absorptionsfreien linkshindigen Schicht ist das Potential stark anziehend,
divergiert aber fiir Atom-Platten—Absténde, die kleiner als die Plattendicke sind. Es
wird gezeigt, dass dieses unphysikalische Verhalten nicht auftritt, wenn eine schwache
Absorption des linkshindigen Materials zugelassen wird. Fiir grofere Atom—Platten—
Abstédnde kann der absorptionsfreie Fall jedoch als gute Ndherung zum Resultat mit
hinreichend kleiner Absorption angesehen werden. Insbesondere findet man auch im
absorptiven Fall eine starke Anziehung fiir Abstinde in der Grofe der Plattendicke —
ein Phanomen, das charakteristisch fiir die Superlinsenanordnung ist. Die Anordnung
der Superlinse kann weiterhin dafiir genutzt werden um Potenzialbarrieren zu erzeu-
gen, die um mehrere Grofenordnungen hoher sind als die im Fall von Grundzustands-
atomen erzeugbaren. Daran anschliefend wird der spontane Zerfall eines angeregten
Atoms in der selben (schwach absorbierenden) Superlinsengeometrie untersucht. Es
werden ebenfalls grofse Abweichungen vom entsprechenden absorptionsfreien Fall fest-
gestellt, die vom strahlungslosen Anteil des spontanen Zerfalls herriihren.

Im Zusammenhang mit Casimirkriften zwischen Korpern treten verstirkende Me-
dien an die Stelle der angeregten Atome. Das sind Materialien, die einen negativen
Imaginérteil der Permittivitit und/oder Permeabilitit in einem bestimmten Frequenz-
und Raumbereich haben. Wie im Fall der Casimir-Polder—Kréfte eréffnen solche Me-
dienanregungen verbesserte Manipulationsmoglichkeiten der Kraft. In der vorliegen-
den Dissertation wird das bereits auf den Fall der Verstirkung erweiterte Quantisie-

rungsschema angewendet und
e die Casimirkraft zwischen (teilweise) verstirkenden Korpern ausgerechnet,
e der Zusammenhang zur resonanten Casimir-Polder-Kraft gezeigt, sowie

o die Kraft zwischen einer verstarkende Platte und einem dielektrischen Halbraum

analytisch untersucht.

Zunichst wird der bereits bekannte Lorentzkraftansatz fiir die Casimirkraft auf ver-
starkende Korper angewendet und die entsprechenden Korrelationsfunktionen berech-
net. Die gefundene Kraftformel hat einen nicht-resonanten Anteil, der formal mit dem
der Casimirkraft auf einen Grundzustandskorper iibereinstimmt. Ein neu gefundener,

resonanter Kraftanteil tritt nur fiir verstarkende Korper auf. Es wird gezeigt, dass sich
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die Casimirkraft fiir den Fall eines optisch diinnen verstirkenden Korpers als Summe
von Casimir-Polder—Kriaften auf die angeregten Atome im Korper darstellen ldsst.
Damit wird die Lifshitztheorie auf den Fall angeregter Systeme erweitert. Als Anwen-
dung der allgemeinen Theorie wird die Kraft zwischen einer verstirkenden Platte und
einem dielektrischen Halbraum untersucht. Im Fall der optisch diinnen, verstirkenden
Platte zeigt sich, dass die Kraft fiir grofe Abstéinde zwischen den Platten oszilliert.
Die Amplituden der Oszillationen nehmen mit steigender Dicke der verstirkenden
Platte ab. Fiir kleine Absténde zwischen den Platten kann die Kraft anziehend oder
abstoftend sein, in Abhéingigkeit von der Permittivitdt und Permeabilitit des Halb-
raums an den atomaren Ubergangsfrequenzen. Uber die Nitherung des optisch diinnen
verstirkenden Korpers hinaus wird gezeigt, dass die Kraft im nicht-retardierten Limes
ebenfalls abstofend ist wenn der Betrag der Permittivitat des Halbraumes kleiner als
eins ist. Fiir eine weiterfithrende numerische Berechnung der Casimirkraft auf die ver-
stirkende Platte werden alle Grundlagen geliefert. Es werden insbesondere die Wahl
der Wurzel im Wellenvektor in der verstirkenden Platte sorgfiltig diskutiert, sowie
obere Grenzen fiir die mogliche Verstirkung angegeben, so dass das Konzept der
lineare makroskopischen Quantenelektrodynamik giiltig bleibt.

Die in dieser Arbeit gefundenen Resultate konnen auf vielfdltige Weise als Grund-
lage fiir weitere Rechnungen (und gegebenenfalls auch Experimente) dienen. Der Ein-
fluss der Lokalfeldkorrekturen konnte beispielsweise auch fiir zylindrische Systeme
untersucht werden. Die verwendeten Punktstreutechniken eignen sich auch um die
Berechnung der Casimirkraft zwischen zwei kleinen Kugeln zu vereinfachen. Zudem
wire die Untersuchung von Casimir-Polder-Kréften in Anwesenheit verstirkender
Medien denkbar.
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