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1 Introduction

Modern optics greatly profits from routing light with glass fibers instead of mirrors,

prisms and lenses. Inside a fiber, the light is confined to a number of certain transversal

states called “modes”, that propagate along the fiber. The smaller the transversal

dimensions of the light conduit, the fewer the number of modes. Eventually the conduit

can be made so narrow that it only supports a single mode. With such single mode

fibers, signals can be transmitted with very low losses over very long distances [Kao66].

Today, nearly all terrestrial telecommunication networks rely on optical fibers. Multi

mode fibers on the other hand find wide-spread application as sensors. Higher order

modes in such fibers can be harnessed to detect any changes to the fiber, like bends or

twists as well as changes to its exterior, like temperature and refractive index. These

robust, low cost sensors are applied in many different areas, ranging from life-science

to modern architecture [Ker96].

Cost and efficiency of high power lasers are improved by using rare earth doped glass

fibers as a gain medium instead of crystals: Firstly, the exceptional thermo-optical

properties allow to significantly reduce the number of active cooling elements in the

laser setup. Secondly, almost all of the pump light can be converted due to the long

interaction length of the fiber. However, the downside of this geometry is that the

tight confinement also enforces non-linear effects like stimulated Raman scattering, that

ultimately hamper power scaling. In order to reduce these effects, the power density

has to be reduced by increasing the cross-section of the guiding core. Within the last

decade, power scaling to the kilo Watt regime has been enabled by large mode area fibers

(LMA), that support only a single mode despite their large cross-section [Tün05]. A new

approach for fiber setups with ultra-large cross-sections are multi mode fibers, that are

enabled to lase at a high order mode with the appropriate filters [Ram08].

1



2 CHAPTER 1. INTRODUCTION

For all the aforementioned applications of fibers, there is a great demand for integrated

solutions which replace bulk with fiber integrated components. The most prominent

example are intra core fiber gratings. They can be used as narrow or broad band filters,

reflectors and also as mode converters [Hil78, Hil90]. These diffraction gratings are

realized as a periodic refractive index change within the core. Reflectors can be realized

with short period gratings. Typically, such a fiber Bragg grating (FBG) has a short period

of less than one micro meter. In contrast, fiber gratings designed to couple power

between forward propagating modes only need to overcome a small phase difference.

Consequently, the period of a long period grating (LPG) can range from several hundred

micrometer to a millimeter or longer.

Established fiber grating writing approaches rely on the index change that arises of one

photon absorption of UV light. Because the band gap of the glass is usually too large

for these processes, it has to be artificially lowered by introducing defects. Thus, in a

preceding procedure, the core glass is doped with germanium or boron or is loaded

with hydrogen. Afterwards, the core is exposed with UV laser light for the final grating

inscription [Kas99]. This way fiber gratings with elaborately designed spectral features

can be realized in single mode fibers [BH04]. However, this approach is difficult to

apply to the rare earth doped fibers without compromises, because a careful balancing

of the different dopant concentrations is required [Loh98, PM05, Jet07]. Additionally,

pre-processing and exposure times increase with core size. A common workaround is

to realize the fiber grating in standard photosensitive fibers and to splice this piece of

fiber to the active fiber. For this solution, the mode fields of active and grating fiber

need to be matched, which often requires elements like tapers. While these solutions

work well at low powers, they become the bottleneck for power scaling.

In the last decade, ultra short pulse laser have gained a lot of attention since they enable

high precision micro-machining of metals [Nol97], glasses [Dav96, Nol03, Gat08] and

crystals [Tho11a]. In transparent media, focussed ultra short pulses can supply enough

intensity to trigger nonlinear absorption that eventually leads to permanent structural

changes [Ito06]. Since these changes are confined to the focal volume, three-dimensional

structures can be realized inside the material by translating the sample [Nol03, Gat08].

Nowadays, ultra short lasers are also increasingly employed for fiber grating inscription
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[Fer01, Mih04, Mar04, Tho07, Bec08]. Due to the non-linear absorption processes ultra

short laser pulses enable, they allow for

• inscription in non photo sensitive fibers [Fer01],

• especially in rare earth doped fibers [Mar04, Wik06] and

• non-sinusoidal gratings, displaying strong higher order Fourier reflections [Sme07],

• that provide both high contrast and low insertion losses [Mar10].

In addition, very resilient gratings can be inscribed, that withstand temperatures of up

to 1000° C [Mar05].

Ultra short pulse lasers enable fiber gratings largely independent of the fiber geometry:

The photo sensitivity of the core no longer restricts the refractive index changes. Instead,

the cross-section of the grating can be shaped by controlling the focus during inscription.

Large cross-section fiber Bragg gratings (LCFBG) can be realized, which cover the whole

core of a fiber and its surrounding cladding as well as highly localized FBG (HLFBG)

which only affect a small part of the core. This thesis explores the resulting possibilities

for tailoring few and multi-mode fiber gratings.

The work is structured as follows: Chapter 2 reviews the coupled mode theory for multi

mode fiber gratings. In chapter 3, the coupling properties that directly follow from the

nature of the fiber modes are identified. These findings are essential for understanding

how the grating cross-section can be used to support or suppress coupling between

different mode classes. The technological approaches to realize FBG with tailored cross-

section with ultra short pulse laser inscription are discussed in chapter 4. Chapter 5

details how mode coupling in single and few mode LMA fibers can be controlled

with ultra short pulse written LCFBG. The possibilities to access higher order modes

provided by HLFBG are explored in chapter 6. The last chapter 7 discusses the impact

of these findings for selected applications. Concluding remarks and an outlook on

future applications are given in chapter 8.
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2 Fundamentals of fiber Bragg gratings

The coupled mode theory is a well-established, straight forward approach that allows

for accurate computation of the spectral characteristics of integrated waveguide devices

[Kog79]. T. Erdogan specialized that framework for cylindrical fibers, providing an

analytical apparatus for conventional fiber Bragg gratings (FBG) [Erd96, Erd97a, Erd97b,

Erd00].

Sec. 2.1 and Sec. 2.2 recapitulate the coupled waveguide mode theory, closely following

the classic treatment by Herwig Kogelnik [Kog79]. After a short summary of the fiber

modes and their notation (Sec. 2.3), Kogelnik’s expressions are adapted for fiber gratings

in Sec. 2.4. Deviating from Erdogan’s treatment [Erd97b], a more generalized expression

for the longitudinal grating structure is used. This Fourier expansion allows to correctly

render higher order resonances of non-sinusoidal gratings.

2.1 Waveguide modes

The guiding properties of a longitudinally invariant waveguide are determined by its

dielectric constant

ϵ = ϵ0n
2(x, y), (2.1)

which depends on its transversally varying refractive index profile (Fig. 2.1). The be-

havior of the complex electric and magnetic fields can be fully described with Maxwells

equations. For fields with periodic time dependence of frequency ω = 2πc/λ, they can

be written down as

∇× E = −iωµ0H, (2.2a)

∇×H = iωϵE+ iωP, (2.2b)

5



6 2.1 Waveguide modes

assuming constant permeability. The boundary conditions are set by the discontinuities

of the dielectric constant. Solving this system for a lossless, source free medium (P = 0)

yields a set of orthogonal solutions called modes. The solutions of (Eq. 2.2) are a linear,

orthogonal set of Eigenmodes.

x

y

z

Fig. 2.1 Schematic of an arbitrary waveguide geometry, which remains constant along one

axis (z)

Because of the z- invariance, the forward traveling solutions have the form

Eν(x, y, z) = eν(x, y) exp(−iβνz), (2.3)

Hν(x, y, z) = hν(x, y) exp(−iβνz). (2.4)

In the following abstract labels µ and ν are used as a short hand notation that will be

replaced with two integer mode indices1. Here the propagation constant βν has been

introduced, which is positive and real for bound modes.

The modes are normalized by the magnitude of the time averaged Poynting-vector

⟨Sνµ⟩t =


dxdy ℜ(Sνµ) =
1

2


dxdy ℜ(eν × h∗

µ)z

=
1

4


dxdy (eν × h∗

µ + e∗ν × hµ)z = δνµ (2.5)

to be equal to 1 Watt for ν = µ and zero for ν ̸= µ. Any transversal field can now be

expanded in terms of modes to be

ET =

ν

(aν + bν)e
T
ν , HT =


ν

(aν − bν)h
T
ν , (2.6)

1In the case of the vectorial fiber modes µ is to be replaced with lm and ν with l′m′, ( µ = ν is when

l = l′ and m = m′).
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where aν are the complex coefficients for the forward and bν for the backward traveling

modes. All vectors marked with T are in the plane perpendicular to the propagation

direction z, with their z component being zero. Using the orthonormality relation

(Eq. 2.5), these coefficients equate to

aν =
1

4


dxdy (ET × h∗

ν + e∗ν ×HT), (2.7)

bν =
1

4


dxdy (ET × h∗

ν − e∗ν ×HT). (2.8)

2.2 Coupled mode theory

Only in a perturbed waveguide, power can be exchanged between modes. It is common

to introduce these perturbations in (Eq. 2.2) via a non-zero polarization vector P(x, y, z)

for the resulting field E1. The divergence of the power cross-product can then be written

as

∇ · (E1 ×H∗
2 + E∗

2 ×H1) = −iωP · E∗
2, (2.9)

which becomes
dxdy

∂

∂z
(E1 ×H∗

2 + E∗
2 ×H1)z = −iω


dxdy P · E∗

2, (2.10)

by applying the divergence theorem. Without loss of generality, the unperturbed field

consists of only one mode E2 = eµ. The resulting field E1 is a linear combination of the

transversal modes as in (Eq. 2.6). The expansion coefficients are now z-dependent by

∂aµ
∂z

+ iβµaµ = −i
ω

4


dxdy P · e∗µ (2.11)

∂bµ
∂z

− iβµbµ = i
ω

4


dxdy P · e∗µ. (2.12)

The slowly varying part of these coefficients can be separated from the fast oscillations

of the propagating part by

aµ = Aµ exp(−iβµz) and bµ = Bµ exp(iβµ), (2.13)

which yields the formal coupled mode equations

∂Aµ

∂z
= −i

ω

4


dxdy P · e∗µ exp(iβµz) (2.14)

∂Bµ

∂z
= i

ω

4


dxdy P · e∗µ exp(−iβµz). (2.15)
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Evidently there is no power exchange in absence of sources (P = 0). The formal coupled

mode equations are exact and can be used to describe all optical mode conversion

processes which can be modeled by P. Most commonly are scalar perturbations of the

dielectric constant, that result in

P = ∆ϵE. (2.16)

The impact of periodically modulated ϵ will be discussed in detail in Sec. 2.4. Also

common are tensor perturbations of the form Pijk = ∆ϵijEk, as provided with materials

with high second order nonlinear susceptibility, e.g. ∆ϵij = ϵ0χ
(2)
ijkEk.

Assuming a scalar perturbation, the transversal parts of P can be evaluated by the linear

combination (Eq. 2.6) to

PT = ∆ϵET = ∆ϵ


(aν + bν)e
T
ν . (2.17)

The longitudinal parts are not orthogonal but can be derived [Kog79] to be

Pz = ∆ϵEz =
∆ϵ

ϵ+∆ϵ

1

iω
∇T ×HT =

∆ϵ

ϵ+∆ϵ


(aν − bν)ezν (2.18)

by using the Maxwell equations (Eq. 2.2). The differential equations for the slowly

varying amplitudes are then

dAµ

dz
= −i


ν

{Aν(K
T
νµ +Kz

νµ) exp[−i(βν − βµ)z]

+Bν(K
T
νµ −Kz

νµ) exp[i(βν + βµ)z]} (2.19a)

dBµ

dz
= i

ν

{Aν(K
T
νµ −Kz

νµ) exp[−i(βν + βµ)z]

+Bν(K
T
νµ +Kz

νµ) exp[i(βν − βµ)z]}, (2.19b)

where the transversal and perpendicular coupling coefficients

KT
µν =

ω

4

 +∞

−∞
dxdy∆ϵeT

ν · eT*
µ (2.20)

Kz
µν =

ω

4

 +∞

−∞
dxdy

∆ϵ · ϵ
ϵ+∆ϵ

ez
ν · ez*

µ . (2.21)

determine how a mode µ couples with a mode ν. The most prominent feature in

(Eq. 2.19) are the oscillating complex exponential functions on the right hand side
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(RHS). Here the oscillating frequency in z-direction is controlled by the difference of

the propagation constants for modes traveling into the same direction and the sum

for opposed modes. Efficient non-oscillating conversion occurs for a constant RHS.

For these cases, the coupling coefficients have to be matched with the phase of the

propagating modes. This can be achieved with a periodic ∆ϵ as detailed in Sec. 2.4. Also

note that for co-directional modes, the ν = µ term is automatically phase matched, the

so-called self-coupling term.

2.3 Fiber modes

The bound modes propagating in positive z-direction of a cylindrical symmetric wave-

guide have the form

Elm(r, φ, z) = elm(r) exp(iφl) exp(−iβlmz), (2.22a)

Hlm(r, φ, z) = elm(r) exp(iφl) exp(−iβlmz), (2.22b)

with l = 0,±1,±2, . . . being the azimuthal and m = 1, 2, . . . the radial index. The prop-

agation along the z-axis is expressed with the second exponential terms of Eq. 2.22 (a,b).

The propagation constant βlm(λ) is positive and real. It is also common to characterize a

mode with its effective refractive index n̄lm = cβlm/ω.

The fields of modes with l = 0 are cylindrical symmetric and either purely azimuthally

or radially polarized. The electric field of an azimuthally polarized mode is always

parallel to a cylindrical surface. Thus the electric field has no z-component and such

modes are transversally electric (TE). The same holds for the magnetic field of fully

radially polarized modes, which are transversally magnetic (TM). In contrast, all modes

with l ̸= 0 always have longitudinal electric and magnetic field components. They

are called hybrid modes and are denoted EH or HE depending on their transversal

fields, as will be detailed in chapter 3. Historically, the fiber modes with no cut-offs, the

so-called fundamental modes are designated HE1,m [Sni61a]. They represent a special

class of hybrid modes, because they are linearly polarized. Of all modes, the mode

with the highest effective refractive index n̄ is the fundamental HE1,1 mode. Modes

with l ̸= 0 always appear in degenerate pairs, since βlm = β−lm. They can be linearly
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combined by addition or subtraction. These combinations are called even and odd modes

respectively [Sny78, Sny83].

Fig. 2.2 Schematic of a step index fiber. Light can be guided within the core of higher refractive

index and also within the cladding, if its refractive index is higher than the exterior.

The most prominent fiber geometry is that of a two step-index-fiber (Fig. 2.2), consisting

of a core of refractive index n1 and radius a1, surrounded by a cladding of lower

refractive index n2 and radius a2. If the index contrast between core and cladding is

small, the fields in the core can be expressed in terms of scalar modes [Sal91]. The

dimensionless parameter

V =
2πa1

λ


n2

1 − n2
2 (2.23)

depends on the free space wavelength λ and yields the number of scalar mode. The ra-

dial part elm(r) ∝ Jl(ur) of the fields (Eq. 2.22) are then proportional to Bessel functions,

with u = (2π/λ)

n2

1 − n̄2. A core mode is guided within the core, if ua1 < V . If V < 2.4,

the radial core fields have no root, thus only one mode can propagate and the fiber is

single mode (see also Section 3.2). For large V , the number of modes is M ≈ 4V 2/π2.

The scalar solutions can be related to the true vector modes of the fiber via linearly

polarized LP(p,q) pseudo-modes characterized by the azimuthal index p = 0, 1, 2. . . and

the radial index q [Bla10]. There are two sets of LP polarized pseudo modes: LPx modes,
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which are polarized along the x-axis and LPy-modes. The fundamental LPx(0,q) and

LPy(0,q) are directly proportional to the true even and odd HE1,m modes. Since the fields

of the higher azimuthal order (p > 0) pseudo modes exhibit an azimuthal dependence,

each higher order mode must have a degenerate counterpart in order to take its rotation

into account. Analog to the true fiber modes discusses above, these pseudo modes are

referred to as “even” and “odd” as well. Thus, for each p > 0, there are four pseudo

modes. Each of them is a superposition of two true vector modes. For p = 1 they are

either the sum or difference of the TE0,m or TM0,m with even or odd HE2,m modes. For

p > 1 they can be formed with even or odd EHp−1,m and HEp+1,m modes [Bla10, Sny78].

2.4 Fiber gratings

In order to achieve power transfer between the fiber modes, the fiber has to be manipu-

lated to exhibit a polarization vector (Eq. 2.16). The linear way to let the modes interact

is to induce a weak index modification ∆n(r, φ, z) within the fiber that perturbs the

dielectric profile (Eq. 2.1) of the fiber by

∆ϵ(r, φ, z) = ϵ0

(n(r, φ) + ∆n(r, φ, z))2 − n2(r, φ)


≈ 2ϵ0n(r, φ)∆n(r, φ, z). (2.24)

An arbitrary refractive index profile of period Λ along the fiber axis z (Fig. 2.3 (a)) can

be expressed as superposition of sinusoidal gratings of period Λ/m with

2ϵ0n(r, φ)∆n(r, φ, z) = ϵ0n(r, φ)


∆n0(r, φ) +

∞
m=1

∆nm(r, φ)2 cos(kmz)


, (2.25)

where the wavenumber km = 2πm/Λ and the integer m denotes the Fourier order. The

Fourier terms ∆nm(r, φ) can be computed from the refractive index profile with

∆n0(r, φ) = 4
Λ

 Λ/2

0
dz∆n(r, φ, z) and (2.26a)

∆nm(r, φ) = 4
Λ

 Λ/2

0
dz∆n(r, φ, z) cos(kmz) (2.26b)

For a rectangular, periodic refractive index modulation of width w (Fig. 2.3 (b)) as

defined for a z ∈ [−Λ/2,Λ/2] with

∆n(r, φ, z) =

0 |z| > w/2

∆nmax |z| ≤ w/2

(2.27)
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the Fourier integrals (Eq. 2.26) can be evaluated to

∆n0(r, φ) = 2w
Λ
∆nmax(r, φ) and (2.28a)

∆nm(r, φ) = 2
πm

sin

πmw

Λ


∆nmax(r, φ). (2.28b)

x

y

z

y Λ

z

0

0

Δn

Δnmax

-Λ/2 Λ/2-w/2 w/2

(a) (b)

Fig. 2.3 Schematic of an intra-core fiber grating of period Λ (a) and sketch of a periodic rectan-

gular refractive index profile (b).

Since the longitudinal fields of the fiber modes are usually small compared to the

transversal ones KT ≫ Kz, it is a good approximation to neglect longitudinal coupling

[Erd97b]. Inserting the refractive index profile (Eq. 2.25) into the transversal coupling

coefficient (Eq. 2.20) yields

KT
µν = κ0

µν +

m>0

2 cos(kmz)κ
m
µν , (2.29)

with

κm
µν = ϵ0

ω

4


dr dφ r n(r, φ)∆nm(r, φ)e

T
ν · eT*

µ exp[i(lν − lµ)φ]. (2.30)

Many terms of the coupled mode equations (Eq. 2.19) do not contribute much to the

power exchange of the modes, since they are oscillating with a high frequency. Basically

these are all the exponential terms with an argument that cannot become zero. Using
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this so-called synchronous approximation [Kog79] after inserting (Eq. 2.29) leads to

dAµ

dz
= −iAµκ

0
µµ − i


m>0


ν ̸=µ

{Aνκ
m
νµ(e

−i(βν−βµ+km)z + e−i(βν−βµ−km)z) (2.31)

+Bνκ
m
νµ(e

i(βν+βµ+km)z + ei(βν+βµ−km)z)} (2.32)
dBµ

dz
= iBµκ

0
µµ + i


m>0


ν ̸=µ

{Aνκ
m
νµ(e

i(βν+βµ+km)z + ei(βν+βµ−km)z) (2.33)

+Bνκ
m
νµ(e

i(βν−βµ+km)z + ei(βν−βµ−km)z)}. (2.34)

Still, even for these equations most terms do not contribute: Only at certain wavelengths,

the propagation constants match the grating wavenumber and the arguments of the

exponential functions become zero. These are the resonances of the grating, where the

modes do interact. Usually, the relevant spectrum of a grating is narrow enough, so that

only one Fourier component ∆nm has to be taken into account. The resonances are then

referred to as mth order.

Mode coupling between modes travelling in the same direction occurs at

km = |βν − βµ| . (2.35)

Because the phase difference between the modes is small, so is the grating wavenumber.

Thus the grating periods can become large. Such a grating is called a long period grating

(LPG).

In order to couple the light into a counter-propagating mode, a much larger phase

km = βν + βµ (2.36)

has to be provided by the wavenumber. A grating with such a short period is called a

fiber Bragg grating (FBG).

In general, for a given km, a grating in a fiber with N non-degenerate modes can have

up to N(N + 1)/2 resonances:

• N so-called self-coupling resonances with µ = ν and

• N(N − 1)/2 mode-converting resonances, with µ ̸= ν.

The magnitude of these peaks depends on the coupling integral (Eq. 2.30). Thus,

depending on the cross-section of the fiber grating, many resonances might not appear.

This will be discussed in detail in chapter 3.
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3 General coupling properties of the

fiber modes

The aim of this chapter is to determine which classes of fiber modes can efficiently

interact with each other through a given fiber grating. Primarily, the coupling properties

of the modes are set by the symmetry properties of the fiber modes. If the transversal

shape of the fiber grating follows those symmetries, coupling to different classes of

fiber modes can be enhanced or suppressed. In the first section fundamental coupling

properties are summarized that directly follow from the cylindrical geometry of the

fiber. In the following sections, these concepts are enlarged upon for step index fiber

geometries. Sec. 3.2 details the coupling properties of the core mode. The coupling

properties of the cladding mode can be classified by their core fields as will be shown

in Sec. 3.4. The chapter closes with a summary on how the geometry of the fiber cross

section allows to control coupling between different azimuthal mode classes.

3.1 Fundamental coupling properties

Sec. 2.4 detailed, how the power transfer between the modes of fibers can be determined

by their coupling constants. The transversal coupling constants (Eq. 2.30)

κm
µν = ϵ0

ω

4


dr dφ r n(r, φ)∆nm(r, φ)E

T
ν · ET*

µ . (3.1)

are the integrals over the product of the refractive index profile n(r, φ) of the fiber

and the fiber gratings ∆n(r, φ) with the mode overlap ET
ν ·ET*

µ . The latter can be used

to derive some fundamental, grating independent coupling rules. Inserting the field

15
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expression (Eq. 2.22) gives

ET
ν · ET*

µ =

eν(r) · e∗µ(r)


exp(iφ(lµ − lν)). (3.2)

HE11· HE11

parallel

HE11· HE21

parallel(a)

y

x

(b)perp. perp.

* *

Fig. 3.1 Two exemplary overlaps: (a) displays the overlap of the fundamental core mode with

itself, which is always positive; (b) displays an overlap of the fundamental mode with

an higher order mode (HE1,1), which yields positive and negative contributions. The

fundamental mode is assumed to be even. The parallel overlap means that the second

mode is also even, in the perpendicular case, it is odd.

Two examples of such an overlap are plotted in Fig. 3.1. Depending on the modes, this

overlap is either

1. zero, or is

2. positive and real everywhere, or has

3. positive and negative contributions and is not necessarily real.

In the first case, the modes can never directly couple through a single grating. In the

second case, the modes always couple independent of the transversal cross-section of

the fiber grating. (It has to have some index change, though.) In the last category all

coupling possibilities fall, that can be accessed with a transversally inhomogeneous

fiber grating. This leads to the following fundamental coupling properties of the fiber

modes:

1. Coupling to the similar mode is always possible, since the exponential term in

(Eq. 3.2) is then equals one and the radial field product eν · e∗ν > 0 at all positions.

In the following, these resonances are called self-coupling resonances.
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2. Mode conversion (µ ̸= ν) can be enabled by gratings that do not cover the whole

mode-field, so that positive and negative contributions of radial and exponential

terms of the overlap do not cancel out by integration.

Taking the vectorial nature of the radial part of the fields into account, the overlaps that

are always zero can be identified:

• Coupling from a TE to a TM mode is never possible, since the field vectors

(eTE
ν ∝ êφ, eTM

µ ∝ êr) are at every point perpendicular to each other.

• Coupling from an even or odd LPx mode (ee
ν ∝ êx) to an even or odd LPy mode

(eo
µ ∝ êy) is impossible for the same reason.

• Coupling is also impossible, if at least one of the modes has no electric field in the

area of the fiber cross-section, where the refractive index is modulated.

More coupling properties can be derived, if the radial refractive index profile of the

fiber is known. This will be shown in the following for core and cladding modes of a

step index fiber.

3.2 Core mode coupling in a step-index fiber

Light in step index fibers is guided by internal reflection at fiber layers with different re-

fractive indices. Analytic solutions for these refractive index profiles exist for cylindrical

symmetric fibers with two [Sni61a] and three layers [Erd97a, Tsa89a]. While the latter

are given in the Appendix A, in the following the modes derived by Snitzer [Sni61a]

will be used to derive some fundamental coupling properties. The inner cylinder of

radius a1 is called the core, the outer shells are the cladding with radii ai, where the

last shell is usually used to simulate the exterior of the fiber. In the following analysis

and subsequent experiments, fibers are investigated, where the refractive index of each

layer ni is assumed to be smaller than ni−1, with the core having the highest refractive

index. An example geometry is plotted in Fig. 2.2. Solving the dispersion relation for

these geometries yields a set of discrete propagation constants, the guided modes. Their

effective refractive indices reveal in which layer the mode is contained. For a single step

index fiber, exposed to air n1 > n2 > n3 = 1. In this case, if n̄ > n2, the mode is guided
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within the core, for 1 < n̄ < n2 it is contained within the cladding.

In cylindrical coordinates (r, φ, z), the electric E and magnetic H fields of the modes

inside the core (r < a1) can be expressed in terms of Bessel functions Jn of the first kind

Ez = Elm
u2

1

β
PJl(u1r) sin(lφ+ ϕ)ei(βz−ωt) (3.3a)

Er = iElm
u1

2
[(1− P )Jl−1(u1r) + (1 + P )Jl+1(u1r)] sin(lφ+ ϕ)ei(βz−ωt) (3.3b)

Eφ = iElm
u1

2
[(1− P )Jl−1(u1r)− (1 + P )Jl+1(u1r)] cos(lφ+ ϕ)ei(βz−ωt) (3.3c)

Hz = Elm
n̄

Z0

u2
1

β
Jl(u1r) cos(lφ+ ϕ) ei(βz−ωt) (3.3d)

Hr = iElm
n̄

Z0

u1

2


−

1− P

n2
1

n̄2


Jl−1(u1r) +


1 + P

n2
1

n̄2


Jl+1(u1r)


cos(lφ+ ϕ) ei(βz−ωt)

(3.3e)

Hφ =−iElm
n̄

Z0

u1

2


−

1− P

n2
1

n̄2


Jl−1(u1r)−


1 + P

n2
1

n̄2


Jl+1(u1r)


sin(lφ+ ϕ) ei(βz−ωt),

(3.3f)

with the transverse wave vector u1 = (2π/λ)

n2

1 − n̄2. In the following the notation

employed by Erdogan [Erd97a] is used, however, the azimuthal dependence is ex-

pressed in trigonometric rather than exponential form as in [Sni61a]. The constant

Z0 =

µ0/ϵ0 ≈ 376.7 Ω is the electromagnetic impedance in vacuum. All constants

n̄, β, u1, Elm and P depend on the mode indices l and m. Sometimes this is explicitly

indicated by including the mode indices as subscripts. Each normalization constant Ecl
lm

is set such that all modes carry one Watt of power (Eq. 2.5).

The azimuthal dependence is given in the trigonometric form: in contrast to the expo-

nential form (Eq. 2.22) the azimuthal index l ≥ 0 and a phase ϕ is introduced. With

ϕ = 0 for even modes and ϕ = −π/2 for odd modes, two degenerate sets of modes

are established and their superposition allows to express any angle of orientation of

the mode fields. Without loss of generality, the incident field is always assumed to be

even. Hence, if the mode also couples to odd modes with similar indices, the axis of

polarization of the resulting pattern is rotated.

The dimensionless mode parameter Plm in Eq. 3.3 determines the contributions of the

individual Besselfunctions and thus which field components are predomiant. Tab. 3.1

summarizes different cases for P and the resulting mode designation in accordance
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P = 0 Ez = 0 TE

P → ∞ Hz → 0 TM

P = −1 ET,HT ∝ Jl−1 HE

P =
n2

1
n2

2
≈ 1 ET,HT ∝ Jl+1 EH

Tab. 3.1 Mode parameter P and resulting core fields and designations for a step index fiber.

with Sec. 2.3.

Note that Plm is closely connected to the dispersion relation, since the fields have to

be continious at the core-cladding boundary. Thus, for a core bound mode (n̄ > n2) its

mode parameter becomes

Plm =
lν21

a21(J +K)
, (3.4)

with

ν21 =
1

w2
2

+
1

u2
1

, J =
J ′
l (u1a1)

u1Jl(u1a1)
, K =

K ′
l(w2a1)

w3Kl(w2a1)
.

and

u2
1 = (2π/λ)2(n2

1 − n̄2), w2
2 = (2π/λ)2(n2

2 − n̄2).

The overlap (Eq. 3.2) with the fields (Eq. 3.3) allows for evaluating, which classes of

modes can couple, and what symmetry the gratings need to support this coupling. The

azimuthal index l = 0 for TE and TM modes and l > 0 for all hybrid HE/EH modes.

As said before, coupling from TE to TM modes is impossible, since their fields are

always perpendicular. However, coupling from a hybrid mode to TE or TM is possible,

since the hybrid mode has both radial and azimuthal components. The overlap

ET
ν · ET*

µ

= EνEµuνuµJlν∓1(uνr)J0(uµr) cos{lνφ+ ϕν} for HE/EH ↔ TE,

= EνEµuνuµJlν∓1(uνr)J0(uµr) sin{lνφ+ ϕν} for HE/EH ↔ TM.
(3.5)

for this conversion has the same azimuthal symmetry l as the involved hybrid mode.

Coupling within the hybrid modes can be expressed with

ET
ν · ET*

µ

= EνEµuνuµJlν−1(uνr)Jlµ−1(uµr) cos{(lν − lµ)φ+ ϕν − ϕµ} for HE ↔ HE,

≈ EνEµuνuµJlν+1(uνr)Jlµ+1(uµr) cos{(lν − lµ)φ+ ϕν − ϕµ} for EH ↔ EH,
(3.6)
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where the approximation P ≈ 1 was used to simplify the expression for the EH modes.

Here, the azimuthal dependence is set by the difference lν − lµ. For lν = lµ, the overlap

has no azimuthal dependence. Thus, the axis of polarization is conserved and the

coupling strength is independent of any asymmetries of the grating cross-section. The

cosine term becomes one, if the phases ϕ are equal, and zero if φν − φµ = ±π/2. This

means that coupling between even and odd hybrid modes of equal l is impossible. The

overlap

ET
ν · ET*

µ = −EνEµuνuµJlν−1(uνr)Jlµ+1(uµr) cos{(lν + lµ)φ + ϕν + ϕµ}for HE ↔ EH,

(3.7)

for HE to EH mode coupling has always an azimuthal dependence, because the cosine

follows φ(lν + lµ).

3.3 Core mode coupling in the weak guiding limit

In case of a weakly guiding fiber, the true vector modes degenerate and add up to

linearly polarized modes (Sec. 2.3). Naturally, this superposition principle appears in

the overlap of the true vector modes. For example, if mode ν is a LP0,m = HE1,m mode,

the overlaps for TE0,m are identical to even HE2,m. Thus coupling to these classes of

modes is always equally strong and they superpose to even LP1,m. In a similar fashion,

the overlap of TM0,m falls together with the odd HE2,m. For lµ > 2 the overlaps to the

HEl,m agree with EH(l−2),m and the equally strong conversion efficiencies would result

in a LPl+1,m mode. One can summarize the coupling properties in the weak coupling

limit for the LP pseudo modes for

• LPx ↔ LPy coupling is always impossible,

• even ↔ even coupling is possible as well as

• odd ↔ odd, whereas

• even ↔ odd is possible only for inhomogenous FBG.
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3.4 Cladding mode coupling in a step index fiber

A mode is guided within the cladding of the fiber, if its effective refractive index n̄ is

smaller than the refractive index of the cladding and larger than the refractive index

of the exterior. Coupling from a core mode to one or more cladding guided modes

is commonly referred to as cladding mode coupling. Since most fiber gratings are a

modulation of the fiber core, the electric field overlap within that area is also the

relevant quantity for predicting the coupling strength for cladding mode coupling.

Thus, the relevant feature of a cladding mode is its field at the core. The aim of this

section is therefore to classify the cladding modes according to this feature.

In order to properly describe cladding modes, at least two interfaces and three layers

(core, cladding and exterior) have to be considered [Erd97a]. TE and TM cladding

modes are either parallel or perpendicular to the cladding interfaces and their vectorial

properties do not differ from their core guided counterparts. More interesting are the

hybrid modes: Their vector fields at the core do change considerably depending on the

radial and azimuthal order of the mode.

For the analytic solution, dispersion relation and field expressions have to take three

layers into account (Eq. A.3). However, the field expressions for the core take the same

mathematical form as in the simple, two layer case. This allows to characterize and

classify the hybrid cladding modes in terms of their field at the core. Hence, the overlaps

of the previous section can also be used to predict core-cladding mode coupling.

What changes in (Eq. 3.3) in contrast to the two layer model are the normalization

constants Elm, which now also have to take the amount of power into account that is

guided in the cladding. Most notably, the mode parameter

P = Plm = − n̄lmiζ0
n2
1

(3.8)

becomes more complex, since it characterizes the relative strength of the longitudinal

field components and depends on the boundary conditions of the three layers.

The imaginary parameter ζ0 is determined by the outer layers of the fiber. It is given in

the appendix as part of the dispersion relation (Eq. A.3). For a single mode fiber, the P
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Fig. 3.2 The mode parameter P plotted for hybrid cladding modes with l ≤ 6. Note that a

normalized wave number (Eq. 3.9) has been used in order to better spread the lower

order cladding modes. The hollow circles are fiber modes, that are formally HE, while

filled circles mark formal EH modes. The horizontal lines are drawn for P = −1 and

P = 1, highlighting the behavior of the core fields as detailed in the text.
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for all modes is plotted in Fig. 3.2. For more clarity, a normalized wave vector

u′
lm =

2πa1

λ

n1

n2


n2

1 − n̄2
lm, (3.9)

has been introduced. It corresponds to the normalized frequency a cladding mode

would have, if refraction on the core-cladding mode boundary would be ignored.The

insets depict the intensity of the indicated modes for r < 3a1.

Most strikingly in Fig. 3.2 is, that −1 < P < n2
1/n

2
2 no longer holds for all modes.

Consistency is regained by designating modes with |Plm| ≤ 1 as HE modes and those

with |Plm| > 1 EH modes. This way, HE and EH modes appear in strictly alternating

order, marked in Fig. 3.2 as hollow and filled circles respectively. The values of P exhibit

discontinuities at certain wavenumbers, where the denominator of the dispersion

relation becomes zero (Eq. A.3). For reasons apparent soon, these discontinuities are

called “virtual cut-offs”. They are marked with vertical dashed lines in Fig. 3.2 and are

referred to as Ul,m′ , where l is the azimuthal index and m′ an ascending integer. As it is

an argument of the field expressions (Eq. 3.3), the mode parameter determines how the

field intensity is shaped (insets of Fig. 3.2). It drastically changes at each virtual cut-off.

For l = 1 modes below the U1,2′ cut-off, P ≈ ±1 as for strongly bound modes in the

two-layer case. In accordance, the HE- and EH-cladding modes behave like such core

modes. However, the EH modes carry almost no intensity at the core and will therefore

not couple to any core mode. This changes after the U1,2′ cut-off. Now both classes

of modes exhibit some intensity within the core region. However, since P ≈ 0 for

HE and P ≪ 1 for EH modes, these modes now have a field that is similar to TM and

TE respectively. Thus, beyond that cut-off, they become quasi-TM and quasi-TE. For

cladding modes with l > 1 the virtual Ul,1′ cut-off also marks an important regime:

below this cut-off, both hybrid mode classes have no field at the core. This cut-off moves

to higher and higher wavenumber for higher l. Thus it is a very good criteria to limit

the azimuthal mode-classes that have to be considered for a certain wavelength range.

Since HE1,m modes are the fundamental modes, they always guide some light within

the core. Consequently, the U1,1′ cut-off is 0.
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3.5 Implications for fiber grating design

Tab. 3.2 summarizes the coupling properties derived from the overlaps in the previous

sections. The possible mode conversions are sorted after the azimuthal symmetries

of the overlap. The upper part of the table list the true vector modes, while the lower

part details the LP pseudo vector modes. In the following the different transversal fiber

grating designs will be discussed.

Tab. 3.2 Summary of possible mode conversions, sorted by the symmetry of their overlap.

Azimuthal symmetry cos ℓφ Possible mode conversion

ℓ ≥ 0 within the same azimuthal mode class

ℓ ≥ 1 HE/EH ↔ TE/TM (ℓ = l)

HE ↔ HE, EH ↔ EH (ℓ = lν − lµ)

ℓ ≥ 2 HE ↔ EH (ℓ = lν + lµ)

ℓ ≥ 0 within the same azimuthal mode class

ℓ ≥ 1 LP ↔ LP (ℓ = pν − pµ)

Due to the ease in manufacturing, the most wide spread fiber gratings are those in pho-

tosensitive step index fibers. Here, the expression for the coupling coefficient (Eq. 2.30)

can be further simplified [Erd97b]. Due to the photo sensitivity and the relatively small

core, solely the refractive index of the core is transversally homogeneously modified.

The refractive index n1 and the refractive index change ∆nm are hence constants and

κm
µν = ϵ0n1∆nm

ω

4

 a1

0

r dr eT
ν(r) · eT*

µ (r)

 2π

0

dφ exp[i(lν − lµ)φ] (3.10)

after inserting the electric fields of the fiber modes (Eq. 2.22). Evidently, classic fiber

gratings can only couple between modes of the same azimuthal order l, since the last part

of the integral is equivalent to the Dirac delta function δ(lµ−lν). This selectivity however

is not given for the radial index m, since the grating only integrates up to a1. Thus mode

conversion is possible: for core modes with mµ ̸= mν , the missing evanescent field

parts at the cladding do contribute to a non-zero integral. Coupling to cladding modes

of the same l is possible for the same reason. A prominent example is the conversion
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of the fundamental HE1,1 mode of a single mode fiber to HE1,m and EH1,m cladding

modes [Erd97a]. With classical inscription techniques suppression of cladding mode

coupling is not easily feasible, since the index change is restricted to the core. Special

fiber designs are need, e.g. fibers with a depressed cladding, that shifts the cladding

fields away from the core. This way, most but not all cladding mode resonances can be

avoided [Hew96].

For complete suppression of all mode converting resonances, the coupling integral

(Eq. 3.1) has to be equivalent to the orthogonality relation of all fiber modes (Eq. 2.5).

Thus the prerequisite is that

n(r, φ)∆nm(r, φ) = const. (3.11)

for the whole cross-section of the fiber. This criteria can be weakened to only apply

to the area of the overlaps of the modes of interest. For example for cladding mode

coupling of the fundamental HE1,1, its evanescent field does not have any significant

contributions beyond r > 2a1. A large cross-section fiber Bragg grating can provide these

condition as will be shown in chapter 5.

Conversion between modes with different azimuthal index l requires a grating that

provides at least a cosφ dependence (Tab. 3.2). The classic means for such mode

converting gratings are tilted gratings [Lee00]. The refractive index remains constant, but

the grating planes are inclined by an angle θ to the normal of fiber axis z. Such gratings

have a wavenumber k′
m = km cos θ along the fiber axis. Their coupling constants are

κm
µν(z) = g+µµ exp(ikmz cos θ) + g−µν exp(−ikmz cos θ) with (3.12a)

g±µν = ϵ0
ω

4
n1∆nm

 2π

0

dφ
 a1

0

r dr exp(∓ikmr cosφ sin θ)E
T
ν · ET*

µ for x-tilt and

(3.12b)

g±µν = ϵ0
ω

4
n1∆nm

 2π

0

dφ
 a1

0

r dr exp(∓ikmr sinφ sin θ)E
T
ν · ET*

µ for y-tilt. (3.12c)

The tilt angle (blaze) can be used to maximize coupling to certain higher order modes.

For fiber Bragg gratings that convert in reflection, the blaze has to increase with higher

order modes [Lee01].

Ideal mode converting fiber gratings however would provide a cross-section that mimics
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the overlap of the desired conversion (Tab. 3.2) with

∆ϵ(r, φ) ∝ cos ℓφ. (3.13)

Up to now, there seems no fabrication process being able to realize such gratings.

However, gratings that only fill a very small part of the core can exhibit a similar

coupling behaviour. Since the shape and position of such a modification has to be taken

into account, general expressions of ∆ϵ do not exist and the coupling constants are

directly computed from (Eq. 3.1). An example of such a highly localized fiber Bragg grating

is investigated in detail in chapter 6.



4 Ultra short pulse inscription of fiber

gratings

This chapter details the inscription methods used to realize the FBG with ultra short laser

pulses. The first section summarizes the properties of ultra short pulse modifications

in glass fibers. In the second section, the influence of the focussing conditions on the

feature size are discussed. Phase mask scanning with low numerical aperture (NA)

cylindrical optics can be used to achieve large cross section fiber Bragg gratings as

described in the third section. Highly localized fiber Bragg gratings can be written with

high NA optics. The last section describes the setup used for direct inscription of such

FBG.

4.1 Ultra short pulse written fiber gratings

Common laser inscription of FBG is based on one-photon absorption processes using

UV light. However, the energy gap of glasses is usually so large (3-6 eV, [Gat08]), that

it has to be artificially lowered to enable absorption. This is done in a pre-treatment,

by exposing the fiber glass of the core to Boron, Germanium or Hydrogen [Kas99].

The laser light hence only affects those photosensitive regions of the fiber. Thus, the

properties of common continuous wave or long pulse written fiber gratings depend

on the chemical composition of the fiber glass. The grating properties are thus not

only determined by the intensity and duration of the illumination, but on how the fiber

material has been treated before the inscription and how it is treated afterwards [Can08].

In general, the modifications of the fiber are classified, whether the material has not been

27
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damaged (Type I) or if the incident light intensity has been above the damage threshold

(Type II) [Can08]. Type I modifications can be attributed to defect center formation in the

glass, which results in a homogeneous raise of the refractive index. Type II modification

usually mean destruction of the glass matrix, resulting in a darkening and negative

refractive index contribution. Most recently, very thermally robust gratings have been

discovered, that form out of annealed Type I gratings after prolonged heating (Type

R) [Can08, Ban08, Lin11a, Lin11b].

In contrast to that, ultra short pulse laser pulses provide enough intensity to enable

non-linear absorption due to multi-photon or tunneling processes. Several studies

[Ito06, Wil04, Dav96, Gat08] have identified three modification regimes in bulk fused

silica, which depend on the incident energy density. For a Ti:Sapphire system that

provides 800 nm pulses of 100 fs duration, the following intensity regimes have been

identified [Ito06]:

• isotropic color-center / densification regime: I > 2 · 1013W/cm2

• anisotropic birefringence / nanograting regime: I > 8 · 1013W/cm2

• micro-void regime: I > 30 · 1013W/cm2

The refractive index change of both the color-center and birefringence regime is of

the order of ∆n ≈ 10−3, the contrast of the micro-voids can be up to two orders of

magnitude stronger. The mentioned threshold values are not absolute, but a mere

orientation. They are given for one particular pulse width, focussing and pulse shape.

The role of the latter and the dispersion of the pulses are still subject of research.

Note that within the isotropic regime, the refractive index raise increases monotonically

with the number of pulses for repetition rates < 200 kHz [Eat08]. This dependence is

more complex in the anisotropic regime, where an initial decrease of the refractive index

can be annealed with subsequent pulses [Wik09]. A micro-void is caused by a single

high intensity pulse [Gam07].

Illumination with ultrashort pulses often taps into several modification regimes at once,

since the intensity of the laser beam is not homogeneous but decays gradually from

the beam center. For low fluences, ultra short pulse fiber gratings can be regarded

as Type I modification – with the distinction, that the multi photon absorption that
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created these color-centers, does not require photosensitive material. Nevertheless,

prior hydrogen loading can increase the grating strength [Mih08] as in the case of

conventional UV laser inscription. Gratings written with higher fluences would be

classified to be of Type II. This classification however can obscure many of the features

of the ultra short pulse induced modifications, most prominently the sub periodicity in

the nanometer regime [Kaz07]. micro-void gratings for example, have a more complex

shape, combining both Type I and Type II modifications [Jov09, Gam06] as will be

detailed in Sec. 6.1.

4.2 Focussing and feature size

In contrast to conventional photosensitive techniques, ultrafast fiber grating inscription

heavily depends on the focussing conditions of the laser beam, because the nonlinear

absorption processes require an intensity above certain thresholds (see Sec. 4.1). The

intensity of the ultra short pulses at the core are affected by the parameters of the initial

laser beam (beam waist, pulse duration and profile), the focussing objective or lens, the

alignment of the optical components of the setup and the fiber, the curvature of the

fiber and the inner fiber geometry (especially for micro-structured fibers). The resulting

intensities can be computed beforehand, usually requiring heavy numerical calculations.

The reason is that the dynamics of self-focussing and filamentation have to be taken

into account, because their threshold intensities are of the same order of magnitude

than the absorption thresholds [Mar75, Val07, Gam06, Mau10].

To some extend, Gaussian optics can be used for estimating the dimensions of the

modification for high NA inscription optics. Using the well known expressions for the

focussed Gaussian beam (e.g. [Sal91]), the dimensions of the focus (Rayleigh-range z′0

and beam waist radius W ′
0) can be estimated to be

W ′
0 ≈

λ0

πNA
and z′0 ≈ n2

λ0

πNA2 . (4.1)

for focussing into a planar piece of fiber of refractive index n2 with an oil immersion

objective. E.g. for inscription with a laser emitting a λ0 = 800 nm and an oil-immersion

objective (NA = 0.8) the width and height of the focus are 2W ′
0 = 0.6 µm and 2z0 =
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1.2 µm. However, the inscribed structures are in most cases smaller than the focus,

because of the nonlinear absorption as will be shown in Sec. 6.1, but they might also be

larger due to aberrations.

The analytical expressions fail for focussing with lower NA (< 0.2) into free standing

fibers because of two reasons: Firstly, the Rayleigh length is often as long as the fiber di-

ameter itself and the effect of the fiber curvature cannot be neglected [Tho07]. Secondly,

filamentation within the fiber occurs already in close proximity of the outer cladding

surface [Val07]. In general, it could be observed that refractive index changes written

with low NA optics are much longer as the Rayleigh length of the beam. Modifications

ranging from 10 µm [Dür04, Ber07] to 50 µm [Mih08, Tho07, Wik04] in length could be

observed. A FBG with a very large cross-section that covers almost half of the fiber can

be inscribed by translating the fiber perpendicular to the beam [Gro04] as detailed in

Sec. 4.3.

4.3 Phase mask scanning

Side illumination techniques dominate commercial fiber Bragg grating production.

Similar to photographic exposition, the fiber core is illuminated with a periodic intensity

pattern along its axis, which is provided by an interferometric setup. This assures

excellent reproducibility and period stability [Kas99,Oth97]. For increasing the intensity,

the laser beam is usually focussed with a cylindrical lens of low NA < 0.1, which is

aligned parallel to the fiber axis (Fig. 4.1).

Because of the short coherence length (typically lcoh ≈ 30 microns for 100 fs pulses) of

the pulse, free beam interferometric setups with ultra short pulse lasers are non-trivial

to align [Bec08,Bec09]. Therefore, the approach to place a phase mask in close proximity

to the fiber seems to be more apt [Mil00, Mih04]. One problem of this approach is, that

if the non-diffracted zeroth order is not suppressed, the interference pattern after the

phase mask has an additional periodicity along the axis of propagation. This so-called

Talbot effect is caused by three beam interference of the zeroth order with both first

order diffracted beams [Mil00].
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Fig. 4.1 Schematic of FBG inscription with a phase mask in close proximity.
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Fig. 4.2 Principle of the ultra short pulse propagation after the phase mask.
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Using an ultra short pulse laser actually solves this problem, because of the “order

walk-off effect” due to its short spatial coherence length [Sme04]. Because the pulse

fronts of the first diffraction orders leave the phase mask under a certain angle ϑ, they

are spatially separated by ∆s = s0(1− cosϑ) from the zeroth order for the distance of

s0 behind the phase mask (Fig. 4.2). By simply placing the fiber far enough (∆s > lcoh)

from the phase mask, the trails of pulse fronts do no longer overlap and a pure two

beam interference pattern can be obtained at the fiber core [Tho07].

This approach was used and adapted for the inscription of large cross-section FBG based

on a commercial ultrashort pulse laser system (Clark MRX Inc. CPA2110) as ultra short

pulse source. The laser system delivers pulses of 150 fs at a repetition rate of 1.0 kHz

at 775 nm. The maximum pulse energy is 1 mJ, the 1/e2 beam width 5.6 mm. The

stage for phase mask inscription (Fig. 4.3) is designed for inscription with maximal

reproducibility in a free-standing fiber. The beam of the laser can be attenuated with a

polarizer and a rotating half wave plate. It is then routed with mirrors to the translation

stage, where it is focussed with a cylindrical lens (focal length f = 20 mm). Firstly

the fiber is placed at the groove, where it is held by reduced air pressure (Fig. 4.4 (b)).

Secondly, it is fixed by two fiber clamps, which are mounted on micro-blocks. With these

blocks, the fiber is pulled, so it is under a defined tension (typically 0.3 N), measured

with an in-build dynamometer. Hence, the phase mask is placed on top of the fiber, so

that the distance between fiber and phase mask is 2.5 mm. This assures, that the fiber is

exposed to a pure two beam interference pattern due to the order walk off.

The fiber holder block includes a mirror and a diffusion screen in order to image the

diffraction orders of the phase mask behind the fiber (Fig. 4.4 (a)). This allows for

accurate positioning of the fiber with respect to the beam. Even a small displacement

greatly affects the diffracted light pattern (Fig. 4.4 (c)). For example, if the light does

not hit the center of the fiber, the beam gets refracted and the diffraction orders will be

at different locations. The same holds true for a misaligned phase mask or cylindrical

focussing lens.

The setup allows for static inscription as well as for translating the fiber holder block

during illumination. The latter allows for extended stitch-free grating structures, since

the position of the phase mask is fixed with respect to the fiber. This assures a constant
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Fig. 4.3 Schematic of the inscription stage. The whole block with fiber and phase mask is moved

with respect to the laser beam incident from above.
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Fig. 4.4 Cut-away of the fiber and phase mask holder of the inscription stage (Fig. 4.3), revealing

fiber, screen, mirror and camera (a); close up of the suction fiber holder (b); diffraction

pattern of the inscription laser beam after phase mask and fiber (c).
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position of the intensity pattern along the fiber core during translation. In the following,

translating the stage along the fiber is referred to as z-scanning, while scanning perpen-

dicular to the fiber axis and perpendicular to the optical axis of the inscription optics is

referred as x-scan. Translating the inscription optic itself with respect to the fiber holder

block is y-scanning.

4.4 Direct writing

Direct writing techniques have initially been based on excimer-lasers [Hil90] for realiz-

ing long period gratings. With focussed near-infrared ultra short pulses, modifications

of less than one micron can be achieved, thus enabling the direct inscription of short

period FBG, too. The ultra short pulse laser is usually focussed with a high NA (> 0.4)

objective in order to achieve the small feature size (Fig. 4.5). The center piece of a direct

write setup is the translation stage, where the fiber is mounted upon. The fiber core is

illuminated for a certain time and hence the stage moves for the desired period Λ. This

procedure is repeated for realizing fiber gratings of arbitrary length.

However, since this approach depends on the relative positioning precision of the

translation stage, position variances directly result in variances of the grating period

∆Λ. This deteriorates the efficiency of the FBG by increasing its band width [Erd97b].

With the translation accuracy provided by a modern air bearing stage (< 100 nm), point

by point written FBG with period of Λ = 2.1 µm could be achieved [Wik04]. A way to

minimize ∆Λ, is to move the fiber with a constant velocity v and modulate the laser

output with the frequency f , e.g. with a shutter. The resulting period of the grating

is then Λ = v/f . If one realizes a modification with a single pulse of the laser, the

repetition rate of the laser itself can serve as the modulation frequency [Mar10].
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Fig. 4.5 Direct writing of FBG by translating the fiber under a microscope objective with high

NA.

This approach is implemented in the setup shown in Fig. 4.6. This setup has been

realized at the Macquarie University [Mar10] and has been used for the inscription of the

highly localized FBG investigated for this thesis. The inscription laser is a commercial

CPA-System (Spectra-Physics, Hurricane), which delivers 110 fs short pulses at 800 nm

with a repetition rate of fR = 1 kHz. Pulse energies of 200-500 µJ were used in order

to achieve micro-void modifications. The photograph (Fig. 4.6) shows the part of the

setup, where the beam is focused and the FBG is inscribed. For realizing a very small

spot, a 20x oil immersion objective (NA=0.8) was used. The fiber mount itself is a glass

ferule with a diameter that matches the fiber diameter (≈ 125 µm) and is flatly polished

along one side. The fiber itself is uncoated completely, before it is threaded through

the micro ferule and fixed on an air bearing stage (Aerotech ABL3000) using a fiber

clamp. Index matching immersion oil is used in between writing objective and ferule

as well as for threading the fiber through the ferule in order to avoid big index jumps.

Hence, ferule and objective are aligned with respect to each other with the help of a

piezo-assisted micro-block, so that the focus of the objective coincides with the center

of the fiber. This alignment is supported by the imaging system, which consists of a

telescope and a camera, sitting behind a dichroic mirror (HR for 800 nm, transparent

for VIS). This way the micro structuring can be directly imaged through the processing

objective.
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Fig. 4.6 Photograph of the part of the setup, where the incription laser beam and fiber are

aligned. Red light of a Helium-Neon-laser has been coupled into the fiber in order to

highlight the fiber.

For inscription, the fiber is pulled while the ultra short pulses are incident. This way,

periodic chains of micro-voids are written inside the fiber core. Typical FBG realized

by this setup have a period Λ of 1.06 µm and reflect light at 1.5 µm in the second order.

While the accuracy perpendicular to the fiber axis (∆x and ∆y ≈ 0.3 µm) is limited by

the micro block and the play the fiber has inside the ferule, the longitudinal accuracy

∆z is several orders better, due to the smooth movement of the air-bearing stage and

the clock-work precision of the lasers repetition rate [Mar10].



5 Large cross-section fiber Bragg

gratings in single and few mode

fibers

The aim of this chapter is to investigate properties and possibilities of large cross-section

fiber Bragg gratings. Large cross-section means fiber gratings, that cover more than the

cross section of the core. They are especially interesting for high-power all fiber lasers,

because the fibers employed here have a large cross-section in order to avoid non-linear

effects. In the first section comprises the design and fabrication parameters of the large

cross-section FBG and the anticipated resonances. Both large cross-section FBG with

partly and fully modified cross-sections can be realized with low NA optics and the

phase mask scanning technique. Their spectral and spatial properties are explored

for the single- and few mode regime in the second and third section. FBG that are

good mode converters are demonstrated as well as FBG that suppress mode conversion

entirely.

5.1 Fiber grating design

Stability and beam quality are the reasons, why most fiber lasers aim for single mode

operation. Although single mode operation is also possible in multi mode fibers [Fer98],

single mode fibers are more apt for robust setups. Thus it is common to use fibers with

a V-parameter < 2.4 (Eq. 2.23) for the lasing wavelength. However, to facilitate power

scaling by avoiding non-linear effects, the cross-section of the fiber core has to be as

37
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large as possible. For step-index fibers, these goals require the contrast between core

and cladding refractive index has to be as small as possible. For example, a fiber laser

that emits 1060 nm and has a fiber core with 20 µm diameter requires an index contrast

of n1 −n2 < 5 ·10−4. Such low contrasts are very difficult to achieve, especially in glasses

where the concentration of several dopants has to be balanced. This is the reason why

most active step-index fibers with large cross sections cannot be fabricated to be truly

single mode but usually support few modes.

While FBG inscription in such low index contrast active LMA fiber is demonstrated in

Sec. 7.1, the aim of this chapter is to characterize the fundamental properties of large

cross section FBG for the single mode and the few mode regime. Throughout this

chapter, a standard step index single mode fiber for telecommunication is used (j-fiber

IG-09/125/245). The core has a diameter of 2a1 = 9 µm, the cladding is of 2a2 = 125 µm.

The fiber has a numerical aperture of NA =

n2

1 − n2
2 = 0.12. This fiber is truly single

mode for the telecommunication wavelength of λ = 1.5 µm. At λ = 1.0 µm, it also

supports the LP1,1 mode.

For the following investigations, gratings with a period of Λ = 1.075 µm were inscribed

into the fiber. The second order resonant wavelength of these gratings lies in the single

mode regime of the fiber at 1555 nm, while the third order resonances are in the two

mode regime at 1040 nm (Tab. 5.1). In this chapter, all resonances are identified with

linearly polarized pseudo modes, since for low V , even and odd HE2,1 modes cannot

be spectrally resolved from the TE0,1 and TM0,1 modes and can thus be treated as

degenerate [Sny83].

Using the effective refractive indices n̄ = β(λ/2π) the FBG phase relation (Eq. 2.36) can

be rewritten for the resonant wavelength as

λµν = (n̄µ + n̄ν)
Λ

m
, (5.1)

where Λ is the actual period of the FBG and the integer m denotes the Fourier component

(Eq. 2.25) which is used. Note that in the two mode regime, three resonance peaks are

predicted: two self-coupling resonances with µ = ν and one mode-converting peak

which sits right in between the self-coupling resonances (see also Sec. 2.4).
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m λBragg V LP modes

2 1555 nm 2.0 LP0,1

3 1037 nm 3.1 LP0,1, LP1,1

Tab. 5.1 Fourier order, reflection wavelength of the fundamental mode and supported scalar

modes in that wavelenth range for the investigated FBG (Λ = 1.075 µm , n̄ = 1.447)

5.2 Single mode fiber Bragg gratings

Since the core of the single mode fiber allows only for one mode to propagate, the

setup for characterizing is straight forward: light of a super luminescence diode (B&W

Tex BWC SLD, emitting 1.4-1.6 µm ) is directly butt-coupled via a single mode trans-

portation fiber to the fiber piece that incorporates the FBG. The transmitted light is

spectrally analyzed (Yokogawa AQ6375, detecting 1.2-2.4 µm with a resolution of

0.05 nm). The transmitted signal decreases at each resonant wavelength, where the

light of the fundamental mode is coupled to other modes (in that case, the backward

travelling fundamental or cladding and radiation modes). Since the spectrum can be

directly measured at the inscription setup before and after inscription, the spectrum can

be normalized, exposing eventual broadband losses.

Fig. 5.1 displays the spectrum of a FBG, where only a part of the cross-section of the

fiber is modified (see inset of Fig. 5.1). Here, the fiber has been translated along its

axis (z-scan) during inscription, yielding a 40 mm long grating of approximately 2-

3 µm width and 40 micron height (set by the low NA focussing optics [Tho07]). The

distance between fiber and phase mask was ∆y = 1.25 mm. Inscription energy was

400 µJ while vz = 6 mm/min. A microscope image of the fiber cross-section is shown

in the inset of Fig. 5.1. The major resonance at the highest wavelength at 1555 nm

is the self coupling resonance of the fundamental mode. Multiple resonances can be

observed below 1554 nm, which result from mode conversion to cladding guided modes.

Their onset wavelength is determined by the refractive index of the cladding n2, since

their effective refractive index n̄ν < n2 (Eq. 5.1). When exposed to air, the cladding

support several thousands of modes since V ≈ 275 (Eq. 2.23). A detailed analysis of this

conversion to high order mode coupling is the subject of chapter 6.
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Fig. 5.1 Transmission spectrum of a FBG that only partly fills the core. Strong coupling to

cladding modes can be observed to the short wavelength side of the fundamental Bragg

peak.
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Fig. 5.2 A femtosecond pulse written FBG that homogeneously covers the core and its surround-

ings exhibits no cladding mode coupling. The transmission spectrum has been scaled

in the inset to highlight the lack of resonances to the shorter wavelength side as well as

the exceptionally low insertion losses.
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In contrast, Fig. 5.2 shows a spectrum of a FBG that covers the whole cross-section of

the fiber. It has been inscribed by symmetrically translating the fiber by dx = 40 µm

with vx = 0.1 mm/min, so that the grating completely covers the fiber core and its

surrounding. The spectrum exhibits only a single resonance, which is the self-coupling

peak of the core guided fundamental mode. Although the cladding was exposed to air,

no cladding resonances at all can be observed. The insertion losses are below 0.2 dB

over the whole measurement range. Only at a small notch next to the fundamental

Bragg resonance at 1555 nm, losses of 0.4 dB occur. This exceptionally good suppression

of mode conversion reproduces the results achieved by [Gro04]. As detailed in Sec. 3.5,

this complete suppression of all mode converting resonances means that the transversal

refractive index profile complies with Eq. 3.11: A fiber integrated filter that mimics the

orthogonality relation of the modes (Eq. 2.5) has been inscribed.

5.3 Gratings in few mode fibers

5.3.1 Probing

Probing a FBG in the multi mode regime requires a more sophisticated setup. One

reason is the possibility to excite several modes. A transmission spectrum is hence no

longer unambiguous, since the contributions of the higher oder mode remains unknown.

Since these contributions travel the fiber with a slight phase change they result in a

periodic beating of the transmission signal. This beating can be used to indirectly

determine the modal contributions [Nic08] in combination with imaging the modal

content.

In the following a more straight forward approach is applied, which aims for a clean

excitation of solely one mode. This approach relies on a spatial light modulator (SLM)

supported setup (Fig. 5.3). The collimated light beam is directed on a reflecting SLM

(SXGA-R2/CRL OPTO, 1280×1024 pixels, ferroelectric liquid crystal) that is glued

onto a silver mirror. On this SLM, a binary phase only grating is generated. The first

diffraction order of this grating is used to control the beam position and shape. The

beam is then coupled into the fiber using a standard lens (f = 75 mm).
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Fig. 5.3 Setup for probing few mode fibers using a spatial light modulator (SLM) for shaping

the input beam. Both reflected and transmitted light are imaged onto the same camera

for comparison.
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Fig. 5.4 Binary grating on the SLM (a,b) and resulting intensity distribution that has been excited

in the fiber (c,d).
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The SLM is directly addressed by the graphics processing unit of the computer, which

allows real time manipulation of the diffracted beam [Gra09]. Typical patterns of the

SLM are shown in Fig. 5.4 (a,b). With the period and angle of the binary grating, the

spatial position of the first order diffracted beam on the fiber end facet can be precisely

controlled. The wavefront curvature of the beam can be controlled as well, allowing

for longitudinally shifting the focus and correcting for aberrations [Nei02]. The beam

can also be modulated with more complex pattern. For example, the binary pattern in

Fig. 5.4(b) results in a Hermite-Gaussian beam [Sal91].

This precise control of the light pattern incident on one fiber end facet allows for

excitation of single fiber modes. The patterns in Fig. 5.4 (c,d) have been imaged at the

other end of the fiber: By centering the incident Gaussian beam exactly at the fiber axis

and optimizing both radius and wavefront curvature, it can be achieved that almost all

of the light couples to the fundamental fiber mode (Fig. 5.4 (c)). These parameters can

then serve as a reference point to realize more elaborate pattern in order to excite higher

order modes: Fig. 5.4 (d) displays a successful excitation of solely the LP1,1 mode. Thus,

after an initial alignment via the computer controlled SLM, the setup offers the ability

to switch between different mode excitations. In contrast to classic means [Sni61b], no

mechanical parts of the setup have to re-aligned for different fiber mode excitations,

which greatly improves reproducibility.

Using beam splitters, the setup (Fig. 5.3) allows to image transmitted and reflected

mode pattern as well as to record the corresponding transmission spectrum. Two

infrared (IR) light sources were used: A self-build fiber broadband ASE-source (emitting

from 1000 nm to 1100 nm with 5 mW output power) for recording the spectra and

a commercial tunable single frequency laser (Toptica, 980-1075 nm, 20 mW output

power) for mode excitation. Since both sources use similar delivery fibers, they can

be exchanged without altering the coupling. All spectra were recorded using the ASE

source, while the tunable laser was used for optimizing the coupling and imaging the

modes.
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5.3.2 Mode conversion

Fig. 5.5 displays the spectra of the FBG with the partially modified cross-section dis-

cussed in the previous section (Fig. 5.1), only probed at 1040 nm instead of 1555 nm. For

clarity, the cladding mode resonances have been suppressed. The spectra were recorded

for the fundamental LP0,1 mode (solid line) and the LP1,1 mode (dotted line) being

incident. The incident intensity patterns are shown as insets. Three major resonances

(a),(b), and (c) can be identified. Resonance (a) is only visible, if the LP1,1 mode in the

fiber is excited, while resonance (c) only appears for excitation of the fundamental mode.

The resonance (b) can be observed for both incident modes and sits right in between (a)

and (c).
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Fig. 5.5 Transmission spectra of a mode converting FBG in a few mode fiber. The insets display

the modal content the fiber has been exited with (each of the patterns has been recorded

off resonance). While the resonances (a) and (c) only appear for one of the mode

excitations, resonance (b) is always visible.

The images of transmitted (T) and reflected modes (R) at each resonance are shown

in Fig. 5.6. In the first column, the wavelength of the setup has been tuned off the

resonances. Note that the Fresnel reflection of each pattern cannot be avoided and is

visible as slight background. At resonance (a), all light in the fundamental LP0,1 mode
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is transmitted. Only light travelling as LP1,1 mode is reflected. Similarly, the higher

order mode is not affected by the grating at resonance (c) and only the LP0,1 mode is

reflected. Thus, these resonances can be identified as self-coupling. Resonance (b) is mode

converting: LP0,1 is reflected into the LP1,1 mode, while LP1,1 converts into LP0,1.
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conversion
1040.2 nm
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(a)
LP11

1039.5 nm

LP01

LP11
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1038.0 nm

Fig. 5.6 Imaged mode patterns, which are reflected (R, every odd row) or transmitted (T , every

even row) by the transversally inhomogeneous FBG. The first column displays the

patterns off resonance, while the patterns of columns (a,b,c) were recorded at the peaks

displayed in Fig. 5.5.



46 5.3 Gratings in few mode fibers

5.3.3 Mode conversion suppression

A large cross-section FBG with a transversally homogeneous cross section can suppress

all cladding mode resonances as demonstrated in Sec. 5.2 for the single mode regime.

This result implies an exceptional feature: coupling should only be possible if incident

and reflected modes are equal. The remaining question is, if this suppression of mode-

converting resonances also holds for wavelength regimes, where several core modes

are supported. Indeed, when probed in the two mode regime, the grating of Fig. 5.1

only displays a single resonance when excited with a single mode (Fig. 5.7): if the light

coupled in the fiber excites only the LP0,1 mode, one resonance can be observed at

1041.3 nm (solid line). Probing with LP1,1 light results in a single resonance at 1039.5 nm

(dotted line). A mode converting peak like resonance (b) in Fig. 5.5 cannot be observed.

This perfect suppression is of special interest for fiber laser cavities and will be applied

in Sec. 7.1.

1035 1037 1039 1041 1043 1045
−14

−12

−10

−8

−6

−4

−2

0

2

tr
an

sm
is

si
o

n
 [d

B
]

wavelength [nm]

(a) (b)

Fig. 5.7 Spectra for the large cross-section FBG with transversally homogeneous cross section,

when operated in the few mode regime of the fiber. The spectrum plotted with a

solid line displays the spectrum for almost pure LP0,1 excitation, while the dotted line

spectrum has been obtained by launching predominately LP1,1 light.



6 Cladding mode coupling in highly

localized fiber Bragg gratings

In the previous chapter, the possibilities of femtosecond pulse written fiber Bragg

gratings to either suppress or support mode conversion in a few mode fiber were

demonstrated. The remaining question is now, whether the additional flexibility to

modify parts of the core allows for mode conversions that were not possible before with

classic approaches like tilted fiber gratings [Erd96]. To which azimuthal mode classes

can a femtosecond fiber grating enable coupling? This question can be systematically

investigated in a highly multi mode fiber. However, the more modes a fiber supports,

the more difficult it becomes to experimentally quantify how much power is carried in

each mode [Kai09, Sha05].

This is the reason, why the coupling to cladding modes in a single mode fiber is better

suited for experimentally demonstrating higher order mode coupling properties. The

premise for this approach is the similarity of the coupling properties of core and cladding

modes as detailed in Sec. 3.4. In the following, a single mode fiber for telecommunication

wavelength (Corning SMF-28e) is used as a ’guinea pig’. Its properties and those of the

inscribed FBG are summarized in Tab. 6.1. In this fiber, at λ = 1.5 µm the core supports

only the fundamental mode, while all higher order modes are cladding modes. In order

to achieve the strongest possible coupling to higher modes, the inscribed modifications

have to possess two properties: on one hand, they have to be small compared to the

core, so that higher azimuthal modes, which oscillate with higher spatial frequency do

not cancel out. On the other hand, the modifications have to be of strong contrast, in

order to provide significant coupling constants despite their small cross section. Such

modifications are best inscribed with high NA optics. Therefore, the point by point

47
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Radius Refractive index

a1 = 4.15 µm n1 = 1.4670

a2 = 62.5 µm n2 = 1.4618

n3 = 1.0

L = 20 mm Λ = 1.062 µm

Tab. 6.1 Fiber geometry (Corning SMF-28e) and grating properties.

method was chosen for inscription. The fiber Bragg gratings discussed in the following

have a period Λ of 1.062 µm and have a length L of 20 mm.

The first part of this chapter reviews the details the micro-void modifications in order

to establish a simplified model of the cross-section of the highly localized FBG. Hence,

the abilities of these highly localized fiber Bragg gratings to enable coupling of the

core mode to cladding modes of higher azimuthal order are explored. The modes of a

fiber with a higher azimuthal mode are in most cases degenerate with modes of lower

azimuthal order. However, it will be shown, that the number of degenerate modes to be

considered at a resonance can be limited. The chapter closes with a detailed study of

the multiple cladding mode coupling of a highly localized fiber Bragg grating.

6.1 Highly localized FBG

Fig. 6.1 shows microscope images from the top (a) and side (b) of the micro-void fiber

Bragg gratings, which have been taken with the imaging system of the inscription setup

(Sec. 4.4). The center of the modification appears dark and corresponds to a refractive

index decrease, a Type II modification (Sec. 4.1). This modification is approximately

0.4 µm in width and 1.9 µm in height. In the following it is referred to as micro-void in

accordance with studies in bulk glasses [Gam06]. The void is surrounded by a shell

of increased refractive index, which is approximately 1.0 µm wide and 8 µm long.

This shell is a Type I modification, which can be healed out, if the fiber is exposed to

temperatures above 300 °C [Mih08].
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Core
(a) (b)

micro-voidstype I shells 

Fig. 6.1 The point by point written highly localized FBG viewed from the top (a) and side (b) by

the build-in imaging system of the setup.
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Fig. 6.2 Schematic of the micro-void and of the simplified transversal geometry, used to model

its coupling behavior.
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In the following, the densification is neglected and the birefringence and difference in

grating strength are evaluated for the void only in order to simplify the calculation.

This approximation is reasonable since the magnitude of the index change of the void is

at least one order of magnitude greater than that of its shell [Jov09].

Transversally, the micro-void is modelled as an ellipse with the width w and height

h of the refractive index decrease. The displacement of the center of the modification

from the center of the fiber core is measured in φc and rc, as shown in Fig. 6.2. Because

of the steep edges of the void [Gam06], the longitudinal refractive index profile is in

good approximation rectangular with the width w and the maximum refractive index

change ∆nmax = n1 − nvoid ≈ 0.45. As in [Jov09], the refractive index of the void is

assumed to be ≈ 1. The point by point written micro-void gratings typically have a

period of Λ = 1.07 µm and reflect in second order within the telecommunication range

(λ ≈ 1.5 µm) (Eq. 2.36). For the second order Fourier resonances , the corresponding

refractive index components can be evaluated using Eq. 2.28 to be

∆n2(r, φ) =
∆nmax

π
sin


2πw

Λ


Θ(r − rc, φ− φc) ≈ 0.1 ·Θ(r − rc, φ− φc), (6.1)

with Θ(r, φ) = 1 inside the ellipse and zero elsewhere. This homogeneity can be

assumed without loss of generality: For an inhomogeneous void, the bary-center would

have to be shifted by a small amount and the dimensions of the void would also be

smaller.

6.2 Coupling properties

Clearly, the micro-void is a very good example of a highly localized modification inside

of the fiber core. Firstly, it is much smaller than the typical fiber core (diameter of the

order of 10 µm). Secondly, it provides a high index contrast.

In the case of a highly localized FBG as provided by a micro-void gratings (Sec. 6.1), the

coupling strength is rather determined by the radial position of the FBG within the fiber

than its shape. This becomes clear, when the overlap integrals of the cladding modes

(Eq. 2.30) are evaluated for the perturbation ∆ϵ introduced by the micro-void (Eq. 6.1).

The coupling constants of the first six hybrid modes are plotted in Fig. 6.3 (a). The center
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of the micro-void is located at the x-axis of the fiber cross-section (Fig. 6.2), with φc = 0

and the radial position rc being varied from 0 to the fiber diameter a1 = 4.5 µm. Placing

the center of the micro-void exactly at the x-axis causes all coupling coefficient to odd

hybrid modes to be zero. A different azimuthal position with respect to the incident

polarization (which is set by assuming that only the even HE1,1 mode is incident) causes

coupling into the odd hybrid modes but has no significant polarization effect.

Coupling to the l = 1 hybrid modes is at its maximum, if the micro-void is centered. For

all higher modes, coupling becomes only significant for an off-center micro-void. As a

rule of thumb, the higher the azimuthal index l of the mode is, the more the micro-void

has to be placed apart from the center.

In Sec. 3.4, virtual cut-offs have been introduced as transition points, where the core

fields of the cladding modes significantely changes. These cut-offs are drawn as hori-

zontal white dashed lines in Fig. 6.3. The Ul,1′ cut-offs marks, where the cladding modes

start to have a field within the core. This is also reflected in the coupling constants:

The higher the azimuthal index l is, the higher the radial order of the first mode of that

class, that can efficiently couple with the core mode. The Ul,2′ cut-off marks a significant

change in the coupling behavior since beyond this cut-off, the coupling strength is

highly selective: strong for HE modes and negligible for EH modes. Only for higher

radial index m does coupling to EH mode become comparable to HE modes.

Fig. 6.3 (b) shows the corresponding transmission spectra for increasing radial micro-

void position. For each set of coupling constants κlm, the transmission spectrum T =

|A11(z = L/2|) has been computed by solving the coupled mode equations (Eq. 2.31)

with the boundary conditions A11(z = −L/2) = 1 and Blm(z = L/2) = 0 set by the

length L of the FBG [Erd97b]. Because the core mode HE1,1 carries less light towards

the core-cladding boundary, the overall strength of the resonances decreases with

increasing decenter rc. There are two combs of cladding modes, the odd l comb,

that is purely l = 1 for a perfectly centered micro-void grating and the even l comb,

that arises for decentered gratings. In the following section, it will be shown that

even and odd resonance combs are caused by coupling to degenerate l = 0, 2, 4 . . . and

l = 1, 3, 5 . . . modes. Despite this degeneracy, not all l mode classes have to be considered

for the correct computation of a spectrum. Depending on the highest m in the region
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Fig. 6.3 Influence of the radial position rc of the micro-void on the coupling constants fo the

hybrid modes (a) and the corresponding transmission spectra (b).
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of interest, most l can be neglected, if their Ul,1′ cut-off lies beyond that m. E.g. if the

spectrum to be considered does not include cladding modes with m > 30, only cladding

modes with l ≤ 4 have to be taken into account (compare Fig. 6.3(a)).

6.3 Resonances and degeneracies

All effective refractive indices n̄lm of the cladding modes were calculated with the fiber

data provided in Tab. 6.1 by solving the dispersion relations for TE, TM and hybrid

HE and EH modes (Eq. A.1, Eq. A.2 and Eq. A.3).

Calculating the resonance wavelengths λlm from the effective refractive indices n̄lm and

the grating period Λ is not as straight forward as in the few mode case (Eq. 5.1), since

the resonances spread over a broad wavelength range. Thus, waveguide dispersion

has to be taken into account and n̄lm = n̄lm(λ). A way to avoid having to solve the

dispersion relations for each resonant wavelength, is to interpolate the propagation

constants from the effective refractive indices computed at the highest wavelength λ0,

which is the resonance wavelength of the fundamental core mode in this case. For a

highly multimode fiber, the propagation constants can be approximated [Sal91] by

βlm ≈

n2

1


2π

λ


− Alm

1/2

with Alm = (n2
1 − n̄2

lm)


2π

λ0


. (6.2)

Inserting these terms into the FBG phase condition (Eq. 2.36) yields a quadratic equation

for the wavelength of the (l,m) resonance, which has two solutions [Tho11b]

λlm =

n̄11

Λ
±


n̄11

Λ

2
+ 1

4π2


Ãlm +


2π
Λ

2
(n̄2

lm − (n̄11)
2)
1/2

1
4π2


Ãlm +


2π
Λ

2 , (6.3)

where the positive root gives the FBG solution for coupling into the counterpropa-

gating mode, while the negative root would be for the LPG case (coupling to modes

propagating in the same direction). Hence, all fields were computed by inserting the

effective refractive indices n̄lm into the field expressions (Eq. A.12) and evaluating the

field overlap (Eq. 2.30).

The spectral positions of the cladding mode resonances are plotted as vertical lines in

Fig. 6.4, where the length of the line corresponds to the amplitude of the respective
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coupling constant κlm. The resonances are also sorted by their azimuthal order: From

bottom to top, the azimuthal index l increases from 0 to 4.

All resonances appear in pairs, except for the fundamental HE1,1 resonance at 1555 nm.

TE and TM resonances are plotted in the bottom row (l = 0). The TE modes are marked

as solid lines and the TM modes as dotted lines. For wavelengths above U0,2′ TE and

TM resonances are degenerate. Below U0,2′ , they appear in doublets, with TE modes

being on the higher wavelength side.

The hybrid modes are plotted with acending l ≥ 0 in the rows above with solid lines for

HE modes and dotted ones for EH modes. HE and EH modes are strictly alternating.

At each resonance doublet, the HE resonance is at the higher wavelength side. In certain

wavelength regimes, the difference between the propagation constants of HE and

EH resonances also becomes small. This happens between the U1,2′ an the U1,3′ cut-off

as well as between the U1,2′ an the U1,3′ cut-off.

The azimuthal classes of cladding mode resonances form to sets: TE/TM doublets

are degenrate with hybrid doublets of l = 2, 4, 6, . . . , while the fundamental l = 1

resonances are acompagnied by l = 3, 5, 7, . . . . In the following, all resonances are

labelled with ℓ = 2 and ℓ = 1 depending if coupling to modes with even or odd l occurs.

These ℓ,m labels are displayed in the bottom row of Fig. 6.4. The integer m increases

with decreasing n̄. For clarity, only every second label has been plotted.

The fields of the hybrid modes are not circularly symmetric, in contrast to the TE and

TM fields. Therefore, each hybrid mode has a rotated, degenerated counterpart in order

to realize any orientation of the field by superposition of them. As explained in Sec. 3,

these subclasses are referred to as even and odd sets. As long as the modification is only

translated on the coordinate axis perpendicular to the axis of polarization, no coupling

from even to odd set occurs.

For any other orientation of the micro-void with respect to the polarization axis of the

incident mode, this requirement is not met. For example, if the microvoid (as described

by Eq. 6.1) has been displaced by 800 nm in x-direction and 700 nm in y-direction as

depicted in the inset of Fig. 6.4. Without loss of generality it is assumed that only the

even HE1,1 mode is incident. The amplitudes of the odd coupling constants κodd
lm are
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Fig. 6.4 Spectrally sorted cladding mode resonances and their corresponding coupling constants

(vertically lines) for a micro-void grating that is displaced both in x and y direction

(inset). The solid lines are TE or HE modes, the dotted lines represent TM and EH modes.

Without loss of generality, only the even HE1,1 mode is incident. The hybrid modes

(l ≥ 1) appear in degenerate pairs of even and odd modes. Their contributions are

marked with the small vertical lines that divide the vertical ones: the lower part marks

the part that is coupled in the even mode, while the upper part couples into the odd

one. The vertical dashed lines are the virtual cut-offs that mark a principal change in

the core fields of the cladding modes.
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plotted on top of the even coupling constants κeven
lm , seperated by small horizontal dash.

A general observation in this example, is that the coupling constants for a higher

azimuthal mode class are usually smaller than those of the lower ones and that coupling

to modes with l > 4 can already be neglected. Since the higher azimuthal modes are

always degenerate with a lower one, they are hard to be observed directly. They can

be observed indirectly in the interference patterns as will be shown in the next section.

Another observation is that the coupling behaviour significantly changes for hybrid

cladding modes in the quasi TE/TM regime and many of the rules that hold strictly

for the overlaps of the core modes (see Sec. 3) do not hold anymore: e.g. coupling to

EH modes is now generally possible and of the same order of magnitude.

6.4 Multi mode coupling

6.4.1 Optical characterization

A free beam setup (Fig. 6.5) similar to that of [Egg00] was used characterize the FBG

spectrally as well as to be able to image the reflected cladding modes. In order to

address the narrow resonances individually, a swept wavelength system (SWS) was

used instead of a broad band source. It is a commercial system (JDS Uniphase), which

consists of a narrow line-width external cavity laser diode. Its emission wavelength

can be continuously swept from 1520 nm to 1570 nm with a resolution of 3 pm. The

delivery fiber is polarization maintaining (PM), providing a linearly polarized beam

whose axis of polarization can be controlled by rotating the end of the PM fiber. The

light of the PM fiber was coupled out with a 20x microscope objective (NA= 0.35) in

order to obtain a collimated beam. That beam was hence coupled into the core of the

fiber containing the FBG to be probed, using a 40x microscope objective (NA= 0.65).

An IR-sensitive photodiode was mounted at the end of the fiber. By synchronizing its

signal with the wavelength of the SWS, full transmission spectra can be recorded.

For imaging, the wavelength of the SWS was tuned to the specific wavelength of the

resonance. The light reflected by the FBG is collimated by the same 40x objective,

which has been used to launch the light into the core. A silvered mirror (reflectivity
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Fig. 6.5 Setup for measuring and imaging cladding mode coupling (a). The fundamental core

mode of the single mode fiber is exited by free beam coupling with a microscope

objective. Light source is a tunable narrow bandwith wavelength laser system. The

insets (b) and (c) display the signal of the photo diode, which measures the transmitted

amount of light. The spectra are normed for the signal measured at a wavelength

λ0 with no grating resonance (b). Tuning the wavelength while measuring the signal

hence delivers a high resolution transmission spectrum (c). This allows for tuning the

wavelength exactly at the cladding mode resonances for imaging the reflected modes.
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≈ 50 percent) is placed in between launch and probe fiber for directing the reflected

light to an IR sensitive camera (Vidicon).

A polarizer can be inserted before the camera to determine the polarization. By rotating

the polarizer, four polarization classes can be distiguished:

• Linear polarization: The mode pattern does not change, if the linear polarizer is

inserted. Rotating the polarizer does not change the pattern but its intensity, with

the position of maximum and minimum intensity differing by 90°,

• Radial polarization: Inserting the polarizer introduces two intensity maxima along

the axis of the polarizer and two minima perperpendicular to it. Rotating the polar-

izer, rotates this pattern but does not change its intensity.

• Azimuthal rotation: Analog to the radial polarization, but with the intensity maxima

perpendicular and the minima parallel to the axis of the polarizer.

• Complex or no polarization: The mode patterns do not fit any of the above observa-

tions.

6.4.2 Multimode results with labelling and spectrum

Fig. 6.6 shows the transmission spectrum of the investigated FBG. The position of all

resonance pairs could be numerically reproduced as described in Sec. 6.3. The labels

(ℓ,m) agree with Fig. 6.4, identifying two sets of cladding modes resonances: those with

ℓ = 1 and those with ℓ = 2, keeping in mind, that at these resonances modes with odd l

or even l are degenerate. The radial index m counts both EH and HE modes within one

of the sets. For each doublet, only the higher wavelength HE resonance is labelled.

At each resonance, the mode pattern was imaged. Typical mode patterns that were

observed are plotted in Fig. 6.7. Qualitatively, there are three kinds of patterns: “rings”

(Fig. 6.7 (a)), “bow ties” (Fig. 6.7 (b)) and “quad ties” (Fig. 6.7 (c,d)). These terms only

refer to the number of lobes. However, there are many combinations of azimuthal

modes that yield the same number of lobes as will be discussed in the following.

The horizontal lines in Fig. 6.6 indicicate, which patterns could be observed in which

wavelength regime for both the ℓ = 1 resonances (red) and the ℓ = 2 resonances.
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Fig. 6.6 Investigated transmission spectra with lowest azimuthal order vectorial labels (l,m).

All numbers refer to the HE resonance, which is always the longer wavelength of the

EH/HE or TE/TM doublets. The lower labels denote ℓ = 1 modes, higher labels denote

ℓ = 2 modes. Horizontal lines below the spectrum indicate the range over which mode

patterns of various form were observed. The virtual cutoffs are also labeled. The lower

plots are magnifications of the main plot.
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(1,18) 1550.79nm

(b)

(1,45) 1539.06nm

(c)

(2,39) 1540.91nm

(d)

(1,63) 1525.63nm

Fig. 6.7 Typical observed mode patterns of each class: (a) ring, (b) bow tie, (c) and (d) quad tie.

Labels indicate the mode indices and the wavelength at which they were observed.
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In the following, the reflections at representative resonances are discussed, since the

patterns within one regime are alike and only differ by their number of rings. The full

measurement, comprising all images is printed in the appendix B.

Starting from the fundamental Bragg peak of the core mode at the right hand side of

Fig. 6.6, the observed mode patterns were linearly polarized in the same direction as the

incident laser light. At the ℓ = 1 resonances, patterns were ring-like, starting to exhibit

a bow-tie like distribution approximately 5 nm from the Bragg peak. In contrast, the

ℓ = 2 resonances are bow tie shaped from the start.

At the point were the doublets appear in the spectrum (approximately 12 nm to the

shorter wavelength side of the Bragg peak) the polarization of the mode patterns also

change: The higher wavelength resonance of the doublet is predominantly azimuthally

polarized, while the shorter wavelength resonance exhibits a mostly radial polarization.

In this regime the patterns of the ℓ = 1 resonances keep having a two-fold symmetry,

with the axis of the higher wavelength resonance being perpendicular to the shorter

wavelength one. The ℓ = 2 mode patterns now have four lobes.

Approximately 20 nm to the shorter wavelength side of the fundamental Bragg peak,

the polarization becomes more complex and cannot be unambiguously attributed. The

mode patterns itself are now fourfold for both ℓ = 1 and ℓ = 2 resonances.

6.5 Reconstruction of the multi mode reflections

The three layer model has proven to be apt to correctly predict all resonances and their

precise spectral position (Fig. 6.6). With this knowledge it is possible to answer for

each resonance, what azimuthally degenerate cladding modes could possibly couple.

The open question now is, to what extend the core mode the FBG does couple to these

modes. The answer of the latter question heavily relies on whether the first question

has been correctly answered. Have the resonances been correctly identified and labelled

with the indices l and m? A good regime to test this, are those resonances, where

coupling to a single counter propagating mode can be assumed. With the prerequisite

that the intensities and polarizations of those resonances are correctly rendered by the
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three-layer model, the multi mode reflections can be treated with confidence.

6.5.1 Conversion to a single mode

Even for highly localized FBG there are several subsets of the ℓ = 1 resonances, where

one can assume that the core mode couples only to a single cladding mode. In such

cases, the expected mode profile is easily found in terms of the longitudinal component

of the Poynting vector Sz. While the analytical expressions of the fields for r > a1

become very lengthy [Erd97b, Tho11b, Tsa89a], the core fields (r < a1) take the same

form as the classic two-layer model [Sni61a] and Sz have the form

Sz(l,m) = 1
2
|Elm|2

n̄

Z0

u2
lm

4


(1− P )(1−Q)Jl−1(u1r)

2 + (1 + P )(1 +Q)Jl+1(u1r)
2

−2(1− PQ)Jl−1(u1r)Jl+1(u1r) cos[2(lφ+ ϕ)]] . (6.4)

Here Elm is a mode amplitude, Z0 is the impedance of free space, ulm = (2π/λ)


n2
1 − n̄2,

Q = Pn̄2
lm/n

2
1 and P is a mode-dependent parameter that characterizes the relative

EH/HE nature of the mode. Fig. 6.8 shows the measured (top row) and calculated

(bottom two rows) mode profiles for a number of types ℓ = 1 resonances which are now

discussed.

The first case for which the reflection is to a single mode are resonances below the U1,2′

cut-off. In that regime, most coupling constants are zero (Fig. 6.4) and in particular

there is coupling to EH1,m modes, since they do not yet contribute to the electric field

within the core. Coupling to cladding modes of higher azimuthal order l is negligibly

small for the same reason [Tho11b]. Again, the forward propagating mode is solely the

even HE1,1 mode. Since the cladding modes for m < U1,2′ are purely linearly polarized

within the core, the electric field of the even HE1,1 is perpendicular to an odd HE1,m

at every point within the core. Thus the resulting coupling integrals are always zero -

independent of the FBG cross-section [Tho11b]. Consequently only coupling to even

HE1,m modes is possible.

For m < U1,2′ , P ≈ ±1 and Q ≈ P so the second term in Eq. 6.4 with the cosine

dependence drops out and the mode intensity is azimuthally constant. The electric and

magnetic fields for the cladding have the same azimuthal dependence (their analytic
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expressions are given in the appendix). Thus, the computed intensity patterns of

the HE1,m modes are ring-like while their polarization is linear (Fig. 6.8 (a,b)). In the

investigated FBG, these are the ℓ = 1 resonances between the fundamental Bragg peak

and 1550 nm (Fig. 6.6). In this regime, the observed cladding modes (Fig. 6.8 (f,g)) are

in excellent agreement with the predicted single mode reflections (Fig. 6.8 (a,b)): The

measured and computed intensity Sz exhibits an equal number of rings. This confirms

the radial index m of the analytical model in addition to the right resonance wavelength.

The observed patterns exhibits almost no azimuthal dependence, which also agrees

with the analytical expression as described above. In Sec. 6.4.1, it was observed that the

modes in this wavelength regime were linearly polarized, with the axis of polarization

parallel to that of the incident light. This behavior is also replicated by the computed

single mode HE1,m fields. Because there is no coupling into the odd modes, the axis

of polarization remains invariant. Thus the reflected pure HE1,m fields are linearly

polarized along the y-axis, as the incident HE1,1 mode (bottom row of Fig. 6.8 (a,b)) .

Above the U1,2′ cut-off, the core mode can also couple to EH modes. The hybrid mode

parameter now satisfies |P | < 1 for HE and |P | > 1 for EH modes (Sec. 3.2), so the

cosine term in Eq. 6.4 becomes relevant. The modes now exhibit a cos(2φl) or more

complex azimuthal intensity pattern. For the ℓ = 1 resonances, these are the cos(2φ)

bow-ties (Fig. 6.8 (d,e), top). As explained in Sec. 3.4 the modes can now be regarded

as quasi-TE or quasi-TM. Accordingly, the HE fields are predominantly azimuthally

(Fig. 6.8 (d), top) and the EH fields radially polarized (Fig. 6.8 (e), top). However, the

HE and EH modes are almost degenerate between the U1,2′ and U1,3′ cutoff (Fig. 6.4).

Consequently, in this “intermediate” regime the mode patterns are already multi-mode

and add to a predominantely linearly polarized superposition (Fig. 6.8 (c)).

Between the U1,3′ and U1,4′ cut-off, HE and EH modes can be separated again but are

neither strictly single mode, since the coupling coefficients for the degenerate odd set of

modes are now non-zero. However, the coupling to the odd mode set is still significantly

smaller than to the even set, so that assuming single mode coupling to the even modes

is a very good approximation. Indeed, the experimentally observed mode patterns

((1,38)-(1,52)) are hardly rotated (Fig. 6.8 (i,j)) with respect to the axis of polarization

of the incident light: the azimuthally polarized HE bow ties are aligned along the
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y-axis (Fig. 6.8 (d,i)), whereas the radially polarized EH bow ties are perpendicular

(Fig. 6.8 (e,j)).

In conclusion, the vectorial three-layer model correctly renders the radial and azimuthal

features of the intensity (Fig. 6.8, middle row) and the electric field (Fig. 6.8, bottom

row), for single mode and predominantly single mode resonances. This excellent

agreement with the experimental observations assures, that the analytical vector modes

will provide solid building blocks for reproducing the multi-mode resonances, as will

be described in the next section.

(a)

(f )

(1,4) 1553.21nm

HE even
1 , 4 1553.09nm

(b)

(g)

(1,8) 1552.83nm

HE even
1 , 8 1552.71nm

(c)

(h)

(1,26) 1548.16nm

HE even
1 , 26 1548.11nm

EH even
1 , 27 1548.10nm

(d)

(i)

(1,44) 1539.11nm

HE even
1 , 44 1539.12nm

(e)

(j)

(1,45) 1539.06nm

EH even
1 , 45 1539.06nm

Fig. 6.8 Computed intensity distributions Sz (Fig. (a) - (e), top) and transversal electric fields

Et (Fig. (a) - (e), bottom). The bottom row (Fig. (f) - (j)) shows the corresponding

measured patterns. Patterns (f) - (h) were fully linearly polarized, (i) was predominantly

azimuthally polarized while the mode pattern at shorter wavelength (j) had a predom-

inantly radial polarization. Note that all computed intensity distributions are single

l = 1 modes, except for pattern (c), which is a superposition of the almost degenerate

HE and EH mode with absolute square amplitudes of 0.5 and 0.4 respectively (for more

explanation see next section).
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6.5.2 Conversion to multiple modes

To reproduce the multimode reflection patterns, one has to compute the individual

reflectivities of the degenerate modes from their coupling constants. Since the investi-

gated FBG is point-by-point written, it can be assumed that the grating does not change

over its length L, neither in its period nor its strength. In a single mode reflection

regime, the peak reflectivity could now be computed with R = tanh2 κL (e.g. [Erd97b]).

Unfortunately, such simple solutions do not exist for multimode reflection, and the

coupled mode equations have to be solved numerically [Erd97a]. Since the aim is not to

compute the whole spectrum, but only the peak reflectivity of the degenerate modes

at one resonance, these equations can be greatly simplified. At a resonance with N

degenerate modes, the detuning (the phase mismatch) can be assumed to be zero for

each mode. This reduces the coupled mode equations (Eq. 2.31) to a set of N+1 coupled

mode equations for the complex amplitudes A11 of the co-propagating core mode and

the counterpropagating cladding modes Blm:

dA11(z)

dz
=


l,m

−iκlmBlm(z) (6.5)

dBlm(z)

dz
= iκlmA11(z). (6.6)

This system of ordinary differential equations is then solved with the boundary con-

ditions A11(z = −L/2) = 1 and Blm(z = +L/2) = 0. The percentage of light reflected

into the cladding mode (l, m) is Rlm = |Blm(z = −L/2)|2. Since the fiber has been

cleaved right at the position of the FBG (Fig. 6.5), the FBG starts at the end facet of

the fiber where the light is coupled in. Because of shortness of the grating itself, both

propagation-related phase changes and inter-modal coupling through fiber bends can

be neglected for reflected light.

The reflected fields E =


BlmElm and H =


BlmHlm are reconstructed by adding the

fields of the modes with their respective amplitudes. The intensity of the reflected mode

pattern is the real part of the Poynting vector S = 1
2
E×H∗. Since only the z component

of S is real, it is given by Sz =
1
2
(ErH

+
φ −EφH

∗
r ). In the following we use this procedure

for reproducing the representative mode patterns shown in Fig. 6.9 (ℓ = 1 modes) and

Fig. 6.10 (ℓ = 2 modes).
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While for the previously discussed ℓ = 1 resonances beyond the U1,2′ cutoff it was not

obvious from the pattern alone whether the reflected field was composed of single or

multiple modes, the patterns observed beyond the U1,4′ are clearly multimode. The

observed asymmetries (Fig. 6.9 (b,d)) cannot result from a single mode, because then it

would have a single azimuthal dependence following exp(iφl). Instead, the HE reso-

nances now show a second, narrower ’bowtie’, which is perpendicularly oriented to

the l = 1 bowtie (Fig. 6.9 (b)). Reconstruction of its pattern using the calculated cou-

pling coefficients reveals, that this feature results from a coherent superposition of odd

HE1,m and HE3,m modes (Fig. 6.9 (a)). The same applies for the adjacent EH resonance

(Fig. 6.9 (c)). In both cases, the resulting intensity distribution agrees with the observed

pattern. Thus, the patterns are indeed a superposition of the even and odd l = 1 modes

with light carried in the l = 3 mode. Note that this also holds for the adjacent resonance

pairs (Appendix B).

(1,56) 1530.65nm
0.60 HE even

1 , 56
0.10 HE odd

1 , 56

0.00 HE even
3 , 54

0.14 HE odd
3 , 54

+ =

(a) (b)

(1,57) 1530.56nm
0.43 EH even

1 , 57
0.15 EH odd

1 , 57

0.00 EH even
3 , 55

0.19 EH odd
3 , 55

+ =

(c) (d)

Fig. 6.9 Computed ((a) and (c)) and measured ((b) and (d)) mode patterns for ℓ = 1 multimode

resonances.

In contrast to the ℓ = 1, the ℓ = 2 resonances are always multimode: below the U0,2′

cut-off, TM, TE and even and odd HE2,m modes are degenerate ((Fig. 6.10) (a)). The

EH modes are detuned and their coupling-coefficients are negligibly small. Above the

U0,2′ cut-off, the TE mode is still degenerate with the HE modes, the TM mode however

now falls together with the EH modes ((Fig. 6.10) (d,f)). For the investigated grating the
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U0,2′ cut-off is located at 1544 nm, right at the transition point, where the modal images

of the resonances start to exhibit a fourfold symmetry (Fig. 6.6).

(2,9) 1552.48nm
0.23 TM 0 , 6
0.16 TE 0 , 6

0.16 HE even
2 , 9

0.11 HE odd
2 , 9

+ =

(a) (b)

(2,43) 1538.48nm
0.57 TE 0 , 23 0.24 HE even

2 , 43
0.08 HE odd

2 , 43

+ =

(c) (d)

(2,44) 1538.42nm
0.50 TM 0 , 23 0.25 EH even

2 , 44
0.18 EH odd

2 , 44

+ =

(e) (f )

Fig. 6.10 Computed ((a),(c) and (e)) and measured ((b),(d) and (f)) mode patterns for ℓ = 2

multimode resonances.

6.6 Conclusion

The aim of this chapter was to explore, to which extend the different mode classes

can be accessed with a femtosecond pulse written fiber Bragg grating. This question

could not have been answered with pre-knowledge, which modes are degenerate at

each resonance. Without applying the full vectorial model of three layer step index

fiber [Tsa89b], this study would not have been successful. The “virtual cut-offs” as they

were introduced in Sec. 3.4, coincidence with the principal changes in the mode pattern.

The relevant azimuthal mode classes were correctly predicted for the given wavelength

regimes. This way, the polarization behavior for entire wavelength regimes can be

identified. Each azimuthal mode class displays two fundamental coupling regimes: one,
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where it behaves similar to equivalent hybrid core modes and one where the modes can

be treated as quasi TE/TM. Apart from the expected coupling of the core mode HE1,1

to cladding modes of the same azimuthal class HE1,m, coupling to different azimuthal

classes could be observed for a highly localized FBG. For the particular FBG, coupling

to TE0,m, TM0,m, HE1,m, EH1,m, HE2,m, EH2,m, HE3,m and EH3,m cladding modes could

be identified. Application examples of highly localized FBG with tailored cladding

mode contributions will be discussed in Sec. 7.2 and Sec. 7.3.



68 6.6 Conclusion



7 Applications

The preceding chapters centered on how the cross section of ultra short pulse written

FBG affects core and cladding mode coupling. In this chapter several examples are

highlighted that demonstrate how the mode response of the fiber grating can be tailored

for specific applications. Firstly, it will be demonstrated how the stability of a few mode

fiber cavity benefits from suppression of mode conversion resonances. Highly localized

FBG enable access to high radial order cladding modes as well as selected azimuthal

groups. This will be discussed in the second and third section with emphasis on fiber

sensor and laser applications.

7.1 Stable few mode fiber laser cavities

Ultra short pulse written FBG are especially attractive for applications in fiber lasers,

since they can be directly inscribed into the active fiber cores . This feature has enabled

monolithic splice-free continuous wave fiber cavities (Fig. 7.1). After the first demon-

strations [Lai06, Wik06] in erbium-doped fibers, this concept was quickly adapted for

other active fibers. Lasers could be realized with output wavelengths ranging from

1.064 nm [Wik07, Jov07, Jov07, Ber09c, Got11], encompassing 1480 nm [And07, And08]

and providing emission in the eye-safe far IR, like 2 µm [Zha09a, Zha09b, Son09] up to

2.8 µm [Ber09a]. Most recently, a monolithic laser in a band gap fiber could be demon-

strated [Got11]. However, all the aforementioned examples were realized in single

mode fibers. With these configurations power scaling was possible up to 100 W [Jov07],

limited by non-linear effects. Transitions to large mode area step index fibers were tried

in Thulium doped fiber but yielded unstable multi modal output [Zha09a].
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pump diode

output

dielectric mirror

FBG

   active fiber      

Fig. 7.1 Laser setup for characterizing the performance of the large cross-section FBG in active

LMA fibers. Note that a single piece of fiber is used and no splices were necessary. In

this case, the fiber cavity is determined by the FBG and the Fresnel reflection at the

other fiber end.

Radius Refractive index

a1 = 10.5 µm n1 = 1.4466

a2 = 200 µm n2 = 1.4454

Tab. 7.1 Fiber geometry of the Nufern LMA-YDF-20/400 fiber.

For the following examples, an ytterbium doped step index large mode area (LMA)

fiber (Nufern LMA-YDF-20/400) was used, which allows for drastic power scaling.

Its geometrical properties are summarized in Tab. 7.1. At 1080 nm the core has a V-

parameter (Eq. 2.23) of V = 3.7. It therefore supports three (scalar) LP modes: LP0,1,

LP1,1 and LP0,2 [Sal91].

A continuous wave fiber laser cavity was obtained by inscribing high reflective (HR)

FBG at the end of up to ten meter long fibers (Fig. 7.1). The other end of the fiber

has been cleaved and polished and serves as a broad band low reflectivity mirror due

to approximately 4 percent Fresnel reflection. The fiber is pumped with a diode that

delivers up to 500 W of IR output at 976 nm. A dielectric mirror in between diode and

fiber end facet is used as output coupler. The FBG is mounted on a Peltier element in

order to stabilize the output wavelength.
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An unstable multi-wavelength output like in [Zha09a] could also be observed with

fiber cavities, where a transversally inhomogenous large cross-section FBG has been

inscribed. The resulting output spectra in Fig. 7.2 have been recorded in 1 s intervals.

Always, multiple peaks are present, whose amplitude is never stable. In addition,

the HR grating is leaking up to 30 percent of the output power in higher order mode

(inset). The laser output is of poor beam quality (M2 > 2.6). With this very unstable

cavity, power scaling is barely possible above 50 W and often requires a renewal of

fiber and FBG [Han88]. The instabilities can be explained with the large cross-section

FBG supporting mode conversion resonances as characterized in detail in Sec. 5.3.2.

1077 1077.5 1078 1078.5 1079 1079.5 1080
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

wavelength λ [nm]

si
g

n
al

 [a
.u

.]

Fig. 7.2 Output spectrum of a non-stable fiber cavity, showing several snapshots taken each

second. The inset shows the light that leaks out behind the high reflectivity FBG.

A mode conversion suppressing large cross-section FBG similar to the one investigated

in sec. 5.3.3 yielded a much more stable output. It has been inscribed using the phase

mask scanning technique as detailed in sec. 4.3. The stage with phase mask and

fiber was translated by dx = 40 µm perpendicular to the fiber axis with a velocity of

vx = 0.5 mm/min while fiber and phase mask were exposed to 250 µJ pulses. Thus, the

large cross-section FBG covers the whole core and its surrounding. The grating length
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is L = 10 mm and the grating period Λ = 0.743 µm, reflecting 1080 nm light in second

order (Eq. 5.1). The spectrum is dominated by the broad self coupling peak (Fig. 7.3)

similar to the spectrum of the large cross-section FBG in Fig. 5.7.
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Fig. 7.3 Transmission spectrum of large cross section FBG in a ytterbium doped LMA fiber

(Nufern LMA-YDF-20/400).

At 30 W, the cavity with the mode conversion suppressing large cross-section FBG lases

at two wavelengths (Fig. 7.4 (a)) with stable output (root mean square of less than

0.5 percent). The output beam was spectrally separated with the aid of a highly tilted

bulk diffraction grating [Stu11]. The resulting pictures (inset of Fig. 7.4(a)) reveal,

that the two laser peaks correspond to the LP0,1 and LP1,1 mode. Lasing at the LP0,2

resonance could not be observed.

It was possible to scale the output power above 200 W, with an overall efficiency of

43 percent, only limited by the power of the pump diode. At these power levels, the

bandwidth of the emission peaks broadened and a third peak to the higher wavelength

side appeared (Fig. 7.4 (b)). An explanation for these effects could be the inhomogenous

thermal longitudinal profile of the FBG due to insufficient cooling. This can cause

a shift of the resonant wavelength as well as spectral broadening due to a chirped

period [Erd97b].
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Fig. 7.4 Output spectrum of the monolithic fiber laser cavity for 30 W (a) and 215 W (2). The

inset in Fig. (a) shows the spectrally separated beam profile [Stu11].
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Ongoing research is on further improving beam quality of the laser by suppressing the

LP1,1 as well with a modified Fabry-Perot cavity [Stu10]. In conclusion, the stability

of the few mode fiber laser cavity depends on how well mode conversion is avoided.

There are however scenarios, where a mixed mode cavity might be desired. An example

will be discussed in sec. 7.3.

7.2 Accessing high radial order cladding modes

Rather than for lasers, mode converting gratings are used for fiber sensors. Here,

coupling to higher order modes is desired in order to make the signal of the fundamental

mode sensitive to fiber bends, temperature or the outer refractive index [Ker97]. The

higher the radial order of the cladding mode, the stronger the mode interacts with the

exterior of the fiber via its evanescent field. An impressive recent example for such a

sensor are fibers that are layered with gold or copper nano particles. Here, the plasmon

resonances have been excited with weakly tilted FBG [She08, Sha11], reacting sensitive

to the exterior refractive index. Heavily tilted FBG can be used to access EH modes

of higher radial order, realizing highly responsive strain and refractive index sensors

with low thermal dependence [Zho06]. However, tilting the fiber grating comes at the

expense of higher insertion loses due to radiation mode coupling [Wal09, Erd96].

Highly localized FBG can serve as an alternative to tilted FBG (Eq. 3.12), since strong

coupling to high radial order FBG can be achieved with low insertion losses. An

example of a direct written FBG (L = 40 mm, rc > 1 µm) is plotted in Fig. 7.5: the

fundamental Bragg peak at 1540 nm in (Fig. 7.5) is more than -50 dB deep. Likewise,

the cladding mode resonances to the lower wavelength side of the Bragg wavelength

are very strong. Here, the amount of core light that is coupled into cladding modes

surpasses 70 percent at resonances even 20 nm from the Bragg wavelength [Tho11b].

Because of the steep refractive index contrast of the micro-void, the longitudinal refrac-

tive index profile of the FBG can be assumed to be almost rectangular (Eq. 2.27), which

yields strong higher Fourier components (Eq. 2.26). While the second Fourier order

reflection can be observed in the wavelength regime of standard telecommunication
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fibers between 1500 nm and 1600 nm (Eq. 2.36), the first order Bragg-peak is located in

the mid-IR around λ = 3 µm. The tail of first order cladding mode resonances reaches

down to the second order Bragg peak, thus spanning a whole octave of the spectrum

(see peaks in Fig. 7.5 at λ > 1540 nm.).
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Fig. 7.5 Transmission spectrum of a strong FBG written with the point by point technique and

ultra short pulses. Strong resonances that result from the first and second Fourier order

of the grating can be observed. The second order reflection peak of the fundamental core

mode is located at 1540 nm. At the shorter wavelength side, the second order cladding

mode resonances can be observed. Below 1530 nm, the second order resonances appear

as doublets (left inset). This is also the case for the tail of the first order resonances

(λ > 1542 nm).

The three well defined envelopes can be identified in the spectrum (marked with circles

and crosses). The envelopes marked with circles correspond to odd l resonances while

the crosses mark even l resonances as detailed in sec. 6.3. Below 1530 nm, coupling

to EH modes also becomes significant (filled circles). This coupling can be explained

by the transition to the quasi-TM and quasi TE regime (sec. 3.4): Although the modes
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are formally hybrid HE and EH modes, their fields are predominantly radially and

azimuthally polarized. The HE/EH doublets (Fig. 7.5, left inset) can be exploited

as polarization filters [Mou09] or for discriminating strain and temperature of the

fiber [Zho06].

7.3 Selective excitation of cladding mode classes

A recent approach to realize high power fiber lasers is to use the cladding of the fiber

as amplifying medium as well [Ram08, Suz08, SR11]. Here, one FBG sets the lasing

wavelength as narrow band cavity mirror, while a second fiber grating (either a LPG or a

FBG) converts from core to cladding modes. Linearly polarized and circular symmetric

cladding modes are desired for efficient pump conversion and stability [Ram08]. Thus,

an ideal mode converter should target only a small subset of the cladding modes:

HE1,m modes with u′
1m < U1,2′ , since cladding mode fields with a higher normalized

wavenumber exhibit an azimuthal dependence (see sec. 3.4). In this regime, coupling to

higher azimuthal order modes of up to l = 3 has to be considered, as can be deduced

from Fig. 3.2. Hybrid modes of higher azimuthal index l can be neglected, since they

have no field at the core, which is expressed by their virtual cut-offs Ul,1′ > U1,2′ .

In a standard telecommunication fiber as used for Erbium fiber lasers (Tab. 6.1), the first

eleven HE1,m cladding modes are circular symmetric (Fig. 6.4). For the cladding mode

spectra plotted in Fig. 7.6, the U1,2′ cut-off is located at 1549 nm, marked with a vertical

dashed line. In the wavelength regime from 1549-1555 nm, only coupling to the TE0,m,

TM0,m, HE1,m, HE2,m and HE3,m cladding modes has to be considered. The transversal

cross section of the FBG can now be used to enhance or suppress coupling to one or more

of these mode classes. For this particular example, it would favorable to avoid coupling

to any other than the HE1,m modes. This can be achieved by centering the highly

localized FBG (Fig. 6.3). Fig. 7.6 (a,c) show the measured spectra for two different radial

positions rc of the highly localized FBG (compare Fig. 6.2). Corresponding spectra have

been rendered according to the approximate position of the micro-voids as it could be

deduced by microscope pictures (Fig. 7.6 (c,d)). Note that the better the FBG is centered,

the weaker the coupling to even l cladding modes becomes, so that the cladding mode
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spectrum for pure l = 1 mode coupling has only one envelope.

In conclusion, highly localized FBG can enhance coupling to cladding mode. The precise

control of the transversal position of the highly localized FBG allows for selective

excitation of cladding mode classes.
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Fig. 7.6 Comparison of the measured spectra of highly localized FBG being differently well

centered ((a) and (c)). Spectra have been computed for a radial displacement rc of

0.7 µm (b) and 0.3 µm (d).



8 Conclusion and outlook

Focussed ultra short laser pulses allow for a defined and localized refractive index

modification that does not depend on the photo sensitivity of the material [Nol03,Gat08].

These properties enable new possibilities for the fiber grating design, because the cross

section can now be tailored. Fiber gratings with very large cross sections can be realized

as well highly localized partial modifications of the fiber core. The aim of this thesis was

a fundamental analysis of the interaction of the propagating light with such gratings.

In contrast to classic fiber gratings, many more fiber modes can be accessed since

gratings with more elaborate symmetries can be inscribed. Especially coupling to

higher azimuthal order modes is now possible. This made it necessary to extend existing

theoretical work on fiber Bragg grating coupling [Erd97a, Lee01], in order to take such

modes into account. Based on the foundation of the coupled mode theory [Kog79] and

the vectorial expressions of step index fiber modes [Sni61a, Sny78, Tsa89b], the general

coupling behavior of bound core and cladding modes was investigated.

For the experimental analysis of the coupling properties, the fiber grating spectra had

to be supplemented with spatial measurements. Intensity and polarization have to be

taken into account in order to resolve ambiguities of the modal content. Employing

a spatial light modulator, the spectral response of Bragg gratings in few mode fiber

were investigated for different modal excitation. A detailed analysis revealed the

higher azimuthal order mode content in cladding mode reflection of a highly localized

FBG [Tho11b].

These experimental methods and the theoretical frame work served as foundation for

designing the spatial features of the fiber grating in regard to specific applications. A

high reflectivity FBG with mode conversion suppression was inscribed in an ytterbium
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doped large mode area fiber. Hence, with this monolithic fiber cavity, stable two mode

lasing at high powers could be demonstrated. In a single mode fiber, coupling to specific

azimuthal classes of cladding modes can be controlled by the radial position of a highly

localized FBG. This ability can be used to tailor the cladding mode coupling for specific

sensor and mode conversion applications.

In conclusion, ultra short pulse written FBG allow for a new generation of tailored

in-fiber optical elements. Ongoing and future work is on combining these new transver-

sal design possibilities with longitudinal and non-linear features: E.g. ultra-broad,

apodized FBG [Tho07, Voi09, Ber09b, Voi11] for dispersion management in all-fiber

ultrashort pulse laser or Fabry-Perot cavities with transversally varying cross section

for further mode discrimination [Stu10].



A Three layered step index fiber

Dispersion relations

The TE resonances were found by solving the dispersion relation

J


Kpl(a2) +

rl(a2)

u2


− 1

u2


Kql(a2) +

sl(a2)

u2


= 0, (A.1)

and the TM modes with

J


Kpl(a2) +

n2
2

n2
3

rl(a2)

u2


− n2

2

n2
1

1

u2


Kql(a2) +

n2
2

n2
3

sl(a2)

u2


= 0. (A.2)

The hybrid EH and HE modes have a more impressive dispersion relation with

ζ0 = ζ ′0, (A.3a)

where

ζ0 =
1

σ

u2


JK + σ2v21v32

n2
2a1a2


pl(a2)−Kql(a2) + Jrl(a2)− 1

u2
sl(a2)

−u2


v32
n2

2a2
J − v21

n2
1a1

K

pl(a2) +

v32
n2

1a2
ql(a2) +

v21
n2

1a1
rl(a2)

(A.3b)

ζ ′0 = σ
u2


v32
a2
J − n2

3v21

n2
2a1

K

pl(a2)− v32

a2
ql(a2)− v21

a1
rl(a2)

u2


n2

3
n2

2
JK + σ2v21v32

n2
1a1


pl(a2)−

n2
3

n2
1
Kql(a2) + Jrl(a2)−

n2
2

n2
1u2

sl(a2)
. (A.3c)

Here, the wave numbers

u2
lm = (2π/λ)2(n2

1 − n̄2), u2
2 = (2π/λ)2(n2

2 − n̄2), w2
3 = (2π/λ)2(n̄2 − n2

3 ), (A.4)

are defined and

σ = iln̄, v21 =
1

u2
2

− 1

u2
lm

, v32 =
1

w2
3

+
1

u2
2

, J =
J ′
l (ulma1)

ulmJl(ulma1)
, K =

K ′
l(w3a2)

w3Kl(w3a2)
.

(A.5)
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The dispersion relations include Bessel-functions of the first and second kind Jn and Nn

as well as modified Bessel-functions Kn of the second kind. In addition, the products

pl(r) = Jl(u2r)Nl(u2a1)− Jl(u2a1)Nl(u2r), (A.6a)

ql(r) = Jl(u2r)N
′
l (u2a1)− J ′

l (u2a1)Nl(u2r), (A.6b)

rl(r) = J ′
l (u2r)Nl(u2a1)− Jl(u2a1)N

′
l (u2r), (A.6c)

sl(r) = J ′
l (u2r)N

′
l (u2a1)− J ′

l (u2a1)N
′
l (u2r), (A.6d)

are used, where the prime stands for differentiation with respect to the total argument.

Furthermore, the constant factor

Clm =
πa1u

2
lmJl(ulma1)

2
(A.7)

is introduced to abbreviate the field expressions.

Virtual cut-off for TE and TM modes

Note that the dispersion relations for TE (Eq. A.1) and TM (Eq. A.2) have no discontinu-

ities. Thus, the "virtual cut-off" definition as in section 3.4 does not apply in the strict

sense here. An equivalent transition U0,2′ can be defined for the wave vector u1, where

the TE and TM mode fields start to have their first ring within the core can be easily

evaluated by setting J ′
0(u1a1) = −J1(u1a1) = 0, which happens at u1a1 = 3.8317, slightly

before U2,2′ .
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Fields

TE fields

In cylindrical coordinates (r, φ, z), the electric E and magnetic H fields inside the core

(r < a1) can be expressed in terms of Bessel functions Jn of the first kind as

Ez = 0 (A.8a)

Er = 0 (A.8b)

Eφ = iElmu1J
′
0(u1r)e

i(βz−ωt) (A.8c)

Hz = Elm
n̄

Z0

u2
1

β
J0(u1r) e

i(βz−ωt) (A.8d)

Hr =−iElm
n̄

Z0

u1J
′
0(u1r) e

i(βz−ωt) (A.8e)

Hφ = 0, (A.8f)

Inside the cladding (a1 ≤ r ≤ a2):

Ecl
z = 0 (A.9a)

Ecl
r = 0 (A.9b)

Ecl
φ = iElmClmu2


−Jr0(r) +

s0(r)

u2


ei(βz−ωt) (A.9c)
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u2
2
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u2
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r =(−)iElmClm
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Z0

u2


−Jr0(r) +

s0(r)

u2


ei(βz−ωt) (A.9e)

Hcl
φ = 0. (A.9f)
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TM fields

In cylindrical coordinates (r, φ, z), the electric E and magnetic H fields inside the core

(r < a1) can be expressed in terms of Bessel functions Jn of the first kind as

Ez =−iElmn̄
u2
i

β
J0(u1r)e

i(βz−ωt) (A.10a)

Er = −Elmn̄u1J
′
0(u1r)e

i(βz−ωt) (A.10b)

Eφ = 0 (A.10c)

Hz = 0 (A.10d)

Hr = 0 (A.10e)

Hφ = Elm
1

Z0

u1J
′
0(u1r)e

i(βz−ωt), (A.10f)

Inside the cladding (a1 ≤ r ≤ a2):

Ecl
z = iElmClmn̄
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φ = 0 (A.11c)

Hcl
z = 0 (A.11d)

Hcl
r = 0 (A.11e)
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2

n2
1
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HE/EH fields

In cylindrical coordinates (r, φ, z), the electric E and magnetic H fields inside the core

(r < a1) can be expressed in terms of Bessel functions Jn of the first kind as

Ez = Elm
u2

1

β
PJl(u1r) sin(lφ+ ϕ)ei(βz−ωt) (A.12a)

Er = iElm
u1

2
[(1− P )Jl−1(u1r) + (1 + P )Jl+1(u1r)] sin(lφ+ ϕ)ei(βz−ωt) (A.12b)
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with the transverse wavevector u1 = (2π/λ)


n2
1 − n̄2. The constant Z0 =


µ0/ϵ0 ≈

376.7Ω is the electromagnetic impedance in vacuum. Note that in these expressions

n̄, β, u1 and P all depend on the mode indices l and m. In particular, the mode parameter

P = Plm = − n̄lmiζ0
n2
1

(A.13)

characterizes the relative strength of the longitudinal field components, and is used to

classify modes as HE or EH.

The expressions for the fields in the cladding and air regions are as follows: Inside the

cladding (a1 ≤ r ≤ a2):
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with the terms

Clm =
πa1u

2
lmJl(ulma1)

2
, F2 = J − u21σζ0

n2
1a1

, G2 = ζ0J +
v21σ

a1

. (A.16)
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Zusammenfassung

Um Licht effizient zu leiten, werden in der modernen Optik Spiegel, Prismen und Lin-

sen mehr und mehr durch Glasfasern ersetzt. Innerhalb der Faser kann sich das Licht

nur noch in bestimmten Transversalzuständen ausbreiten, den sogenannten “Moden”.

Je kleiner die Geometrie des Wellenleiters ist, desto weniger unterschiedliche Moden

werden unterstützt. Monomodefasern besitzen einen Faserkern, der nur eine einzige

Mode führt. Mit solchen Fasern können Lichtsignale nahezu verlustfrei über hunderte

Kilometer übertragen werden [Kao66]. Aus diesem Grund bilden sie heute das Rück-

grat nahezu aller terrestrischen Telekommunikationsnetzwerke. Lichtleitfasern, die

höhere Moden unterstützen, werden hingegen als Sensoren eingesetzt, um zum Beispiel

Temperaturen, Zug- und Dehnungsspannungen, Beschleunigung oder Flüssigkeiten

zu vermessen. Da diese Sensoren sehr robust sind und günstig in grosser Stückzahl

hergestellt werden können, finden sie weite Verbreitung angefangen von den Lebenswis-

senschaften bis hin zu den “intelligenten Bauten” moderner Architektur [Ker96].

Darüber hinaus werden seltenerdotierte Glasfasern für moderne Lasersysteme einge-

setzt. Dies hat mehrere Gründe: Aufgrund des großen Verhältnisses von Oberfläche

zu Volumen besitzen Fasern hervorragende thermo-optische Eigenschaften. Sehr gute

Strahlqualität kann auch bei Leistungsskalierung erhalten werden. Hervorragende

Pumplichtabsorption und Effizienz werden durch die große Wechselwirkungslänge er-

reicht. Der Nachteil dieses Konzeptes ist allerdings, dass die starke Führung des Lichtes

nichtlineare Effekte wie stimulierte Raman Streuung begünstigt. Um diese Effekte

zu begrenzen muss die Leistungsdichte reduziert werden, was durch Vergrößerung

des Querschnitts des Faserkerns erreicht werden kann. Mit Großkernfasern erreichen

kommerzielle Faserlasersysteme mittlerweile Ausgangsleistungen von über zehn Kilo-

watt [Tün05].
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Für alle diese Anwendungsfelder von Glasfasern besteht ein großer Bedarf klassische

Optiken durch faserintegrierte Komponenten zu ersetzen. Hier bilden faserintegri-

erte Beugungsgitter die Grundlage, um schmal- und breitbandige Filter, Spiegel und

Modenkonverter ohne externe Elemente zu realisieren [Hil78, Hil90]. Sogenannte Faser-

Bragg-Gitter (FBG), die als Reflektoren eingesetzt werden, besitzen Gitterperioden, die

meist kleiner als ein Mikrometer sind. Um zwischen Moden zu konvertieren, die sich in

die selbe Richtung ausbreiten, muss hingegen eine weitaus geringere Phasendifferenz

überwunden werden, weshalb die Perioden solcher langperiodischer Gitter (LPG) von

einigen hundert Mikrometer bis in den Millimeterbereich reichen können.

Etablierte Einschreibetechniken basieren auf einem Brechzahlhub, der durch Absorption

von ultraviolettem Licht im Glas ausgelöst wird. Die Bandlücke des Glases ist jedoch

meist zu groß für solche Absorptionsprozesse und muss deshalb durch die Dotierung

mit Defekt-Ionen gesenkt werden. Aus diesem Grund werden die Faserkerne in einem

zusätzlichen Prozess vor der Einschreibung beispielsweise Bor oder Wasserstoff aus-

gesetzt [Kas99], was die Photoempfindlichkeit erhöht. Mit dieser Technik können in

Single-Mode-Fasern Faser-Gitter mit nahezu beliebig komplexen spektralen Eigen-

schaften realisiert werden [BH04]. Allerdings stößt die UV-Lasereinschreibetechnik

bei seltenerddotierten Fasern an ihre Grenzen, da hier bei den Konzentrationen der

verschiedenen Dotierungselemente Kompromisse nötig sind [Loh98, PM05].

Zusätzlich verlängern sich bei Großkernfasern sowohl der Prozess der Photoempfind-

lichkeitserhöhung als auch die Belichtungszeit selbst. Daher werden die Fasergitter

bisher in seperaten, photoempfindlichen Fasern realisiert, die anschließend mit der sel-

tenerddotierten Faser durch Spleiße verbunden werden. Für diese Lösung müssen die

Modenfeldgrößen der verschieden Faserstücke angepasst werden, was üblicherweise

mittels verjüngten Fasern, sogenannten “Tapern”, erreicht wird. All diese Lösungsan-

sätze erweisen sich jedoch als problematisch [Han88], wenn die Ausgangsleistung des

Faserlasers gesteigert werden soll. Zudem können im photoempfindlichen Fasermate-

rial leistungsmindernde Schwärzungseffekte auftreten [Jet07].

In den letzten Jahren konnte durch Einsatz von Ultrakurzpulslaser hochpräzise Mikro-

materialbearbeitung von Metallen [Nol97], Gläsern [Dav96,Nol03,Gat08] und Kristallen

[Tho11a] demonstriert werden. In transparenten Medien ist es möglich mit fokussierten,
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ultrakurzen Pulsen so große Lichtleistungsdichten zu erreichen, dass nicht-lineare Ab-

sorptionsprozesse ausgelöst werden, die zu permanenter Strukturänderung führen

[Ito06]. Da diese Modifikationen meist auf den konfokalen Bereich beschränkt sind, kön-

nen dreidimensionale Strukturen mittels Bewegung der Probe innerhalb des Materials

geschrieben werden [Nol03, Gat08].

Heute werden Ultrakurzpulslaser mehr und mehr für die Fasergittereinschreibung

eingesetzt [Fer01,Mih04,Mar04,Tho07,Bec08]. Durch die herausragenden Eigenschaften

der nicht-linearen Photoabsorption, können nun Fasergitter direkt in photounempfind-

liche [Fer01], insbesondere seltenerddotierte Fasern [Mar04,Wik06] mit hohem Kontrast

und niedrigen Verlusten [Mar10] eingeschrieben werden. Außerdem weisen ultra-

kurzpulsgeschriebene Fasergitter eine Temperaturresistenz bis zu 1000° C auf [Mar05].

Ultrakurzpulslaser erlauben ebenfalls Fasergittergeometrien, die weitgehend unab-

hängig von der Faser sind: Die ansonsten benötigte Photoempfindlichkeit des Kerns

schränkt nicht länger die möglichen Brechzahländerungen ein. Stattdessen kann

die Querschnittsfläche des Gitters mittels der Fokusssierung des Einschreibelasers

vorgegeben werden. Großflächige FBG (LCFBG) sind nun möglich, ebenso wie hochlokalisierte

FBG (HLFBG), die nur einen kleinen Teil des Faserkerns ausfüllen. Diese Dissertation

behandelt die neuen Möglichkeiten, die Reflektionseigenschaften dieser Fasergitter in

mehr- und hochmodigen Fasern durch ihren Querschnitt maßzuschneidern.

Im Gegensatz zu herkömmlichen Fasergittern können nun weitaus mehr Moden durch

das ultrakurzpulsgeschriebene Fasergitter interagieren, da die Geometrie des Gitters

nicht mehr eingeschränkt ist. Speziell die Kopplung zu höheren Azimuthalmoden

ist nun möglich. Daher war es notwendig, bestehende theoretische Grundlagen der

Fasergitteroptik [Erd97a,Lee01] zu erweitern, um diese Moden ebenfalls zu berücksichti-

gen. Basierend auf dem Ansatz der gekoppelten Moden [Kog79] und den analytischen

Vektorfeldausdrücken für Stufenindexfasern [Sni61a, Sny78, Tsa89b] wurde das funda-

mentale Kopplungsverhalten für gebundene Kern- und Mantelmoden untersucht.

Für die experimentelle Analyse der Kopplungseigenschaften müssen die Spektren der

Fasergitter mit räumlichen Messungen ergänzt werden. Intensität und Polarization

sind nötig, um den Modeninhalt zu beschreiben. Mittels eines rechnergesteuerten Holo-
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gramms konnten die spektralen Eigenschaften der FBG für unterschiedliche Modenan-

regung vermessen werden. Außerdem erlaubte die detailierten Analyse der Mantelmod-

enresonanzen, den Anteil von höheren Azimuthalmoden zu identifizieren [Tho11b].

Diese experimentellen Methoden und das theoretische Gerüst ermöglichen nun, die

räumlichen Eigenschaften der Fasergitter hinsichtlich spezieller Anwendungen zu

konzipieren. So wurde zum Beispiel ein hochreflektierendes FBG mit Unterdrückung

von Modenkonversion in eine Ytterbium-dotierte Großkernfaser eingeschrieben. Ein

monolitischer Faserresonator konnte mit diesem Element stabil bei hohen Leistungen

auf zwei Moden betrieben werden. In monomodigen Fasern kann das Koppeln zu

Mantelmoden mit der radialen Position des HLFBG gesteuert werden. Diese Eigenschaft

ermöglicht das Optimieren des Koppelns in höhere Moden hinsichtlich Sensor- und

Konversionsanwendungen.

Ultrakurzpulsgeschriebene FBG stellen daher eine neue Generation faserintegrierter

Elemente dar. Weitere Forschungsarbeiten werden sich der Fragestellung widmen, wie

die transversalen Kopplungseigenschaften mit longitudinalen Konzepten wie Apodiza-

tion und Fabry-Perot-Resonatoren kombiniert werden können, um das Modenverhalten

noch feiner zu beeinflussen.
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