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Abstract— In real world scenarios for mobile robots, socially
acceptable navigation is a key component to interact naturally
with other persons. On the one hand this enables a robot to
behave more human-like, and on the other hand it increases
the acceptance of the user towards the robot as an interaction
partner. As part of this research field, we present in this paper a
strategy of approaching a person in a socially acceptable manner.
Therefore, we use the theory of ”personal space” and present
a method of modeling this space to enable a mobile robot to
approach a person from the front. We use a standard Dynamic
Window Approach to control the robot motion and, since the
personal space model could not be used directly, a graph planner
in configuration space, to plan an optimal path by expanding the
graph with the use of the DWA’s update rule. Additionally, we
give a proof of concept with first preliminary experiments.

Index Terms— Social acceptable navigation, approaching strat-
egy, expanding random trees, dynamic window approach

I. INTRODUCTION

In the recent years, mobile robotics have been developing
towards fields of applications with direct interaction with
persons. There are several prototypical systems that aim to
help elderly people to improve cognitive abilities [1], to
assist care givers in hospitals [2, 3], be an intelligent video-
conferencing system [4], guide people in supermarkets and
home improvement stores [5, 6] or simply improve the well-
being by providing an easy-to-use communication platform.
All these scenarios have to consider persons, interacting with
the robot system. Psychologists and gerontologists showed in
the 90s that technical devices are treated and observed as
”social beings”, for example cars, television and computers
[7, 8]. Also a robot system is recognized as a social being
and also has to behave like one. One important part of the
robots behavior is the socially acceptable navigation. Naviga-
tion commonly includes tasks like mapping, motion control,
obstacle avoidance, localization and path planning. Social-
acceptable navigation focuses on these tasks with keeping in
mind that humans are within the operation area of the robot,
and that an extra treatment is needed.

We are contributing to the ALIAS (Adaptable Ambient
LIving ASsistant) project. ALIAS has the goal of developing
a mobile robot system to ”interact with elderly users, monitor
and provide cognitive assistance in daily life, and promote
social inclusion by creating connections to people and events
in the wider world” [9].

A. The ALIAS robot and the navigation system

The ALIAS projects provides a variety of services, like
auto-collecting and searching the web for specific events , a
calendar function to remind the user, and, most important, a
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Fig. 1. The ALIAS robot, a SCITOS G5 platform of MetraLabs GmbH,
with cameras, Kinect c© 3D sensor and laser range finder. It interacts with the
user by touch-display and7 speech output.

service to communicate by e-mail, social networks and voice-
or video telephone, particularly adapted to the needs of the
target group. All these tasks are provided by a mobile robot
system (see Fig. 1). The benefit of a mobile system is the
capability to move: the robot can be requested by the user and
should autonomously drive to the user and approach him/her.
Navigation has to be smooth and exact, therefore our motion
controlling system is based on the Dynamic Window Approach
[10]. Based on this approach, we present here how to approach
a person with known pose while considering the ”personal
space” of the interaction partner. This provides a more natural,
polite and unobtrusive approaching behavior of the robot. The
personal space itself is not appropriate to use directly inside
the DWA, so we need to apply a planning strategy to find an
optimal approaching behavior.

The robot we use is a SCITOS G5 platform and is equipped
with sonar based and laser based distance sensors, a high-
res front camera, a Kinect c© 3D camera from Microsoft (see
Fig. 1), and a dual core PC. With these sensors obstacle
recognition and also person detection is done to provide the
navigation system with all needed information. The navigation
system is only a small part of the overall ALIAS system
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zone interval example situation
close intimate 0.0m - 0.15m lover or close friend touching
intimate zone 0.15m - 0.45m lover or close friend talking
personal zone 0.45m - 1.2m conversion between friends
social zone 1.2m - 3.6m conversion to non-friend
public zone from 3.6m no private interaction

TABLE I
PSYCHOLOGICAL DEFINITION OF THE PERSONAL SPACE AS DEFINED IN

[11]. THIS SPACE CONSISTS OF 5 ZONES, EACH SUPPORTING DIFFERENT

ACTIVITIES AND DIFFERENT COMMUNICATION INTENTIONS.

architecture, which also consists of the dialog controller,
person recognition and detection system, speech recognition
and speaker identification, and a set of applications presented
to the user, which are enhanced with various web services.

II. STATE OF THE ART

Psychologists investigated the human-to-human interaction
in public areas very carefully since the 70s of the last century.
One of the foundations and most recognized publications is
the work of Hall [11],[12], who first introduced the concept
of different spaces around a human being to support different
modes of interaction. There is a space for non-interaction, pub-
lic interaction, interactions with friends and also an intimate
space for interaction with very close relatives (see table I).

By formulating the theory that interaction is also coupled
to spatial configurations between interaction partners, many
investigations on this matter have taken place, and it could
be shown that the configuration depends on many aspects
like cultural background, age, sex, social status and person’s
character [13, 14, 15, 16, 17, 18]. But is the personal space
a valid description for human robot interaction? As Reeves
and Nass [8, 7] showed, complex technical devices are indeed
seen as social beings and treated as such. So, we can assume
that a robot with a person-like appearance is treated like a
person. Additional proof is given by exhaustive experiments
done within the COGNIRON project, where wizard of oz
methods showed that a spatial configuration between robots
and humans exists [19] and that this configuration also changes
depending of the task of interaction (e.g. talking, handing over
an object)[20], or such constraints like sex or experience with
robots [21].However, non of these works tried to autonomously
approach a person in a socially acceptable manner. But the
wizard of oz experiments could find out useful spatial param-
eters to autonomously approach a person.

Despite the thorough psychological background work, only
few publications exist that describe an actual autonomous
approaching behavior. Often a simple control policy is used,
where a fuzzy controller [22], a PID controller [23, 24], or
a similar technique is used to keep the robot at a certain
distance to the person. The used distance thresholds or fuzzy-
rules are always hand-crafted and set by the designer without
sufficient psychological justification. Some can only approach
a person from the front [23], since face detection is needed,
and some simply do not consider the upper body orientation
of the person and approach the person from any direction [22].

There are only a few works, more aware of the concept of
personal space, which use this space to approach a person or
drive around a person without intruding the person’s personal
zone. For example Pacchierotti [25] uses an elliptical region

around a tracked person in a corridor to signal avoidance
towards the person by changing the robot’s driving lane in
a corridor at an early stage of approaching, where collision
avoidance would not have suggested such a driving behavior.
The distance of the lane changing where tuned by hand and the
distance threshold for driving by was determined by evaluating
a questionnaire. A hand-made approaching scenario was also
presented by Hoeller [26], where different approaching regions
where defined, each with a different priority. At least one of
these regions had to be free from obstacles and the region with
the highest priority was the current target region. Hoeller uses
also expanding random trees[26] to plan the next motion step
in an optimal fashion. The work of Svenstrup and Andersen
[27] models the personal space explicitly and without the need
of any thresholds, so they could create a dense representation
of the personal space and approach a person by using a
potential field method. Although their results do not consider
any obstacles and could get stuck in local minima, they were
the first with an actual mathematical model of the personal
space. Sisbot [28] investigates in his work other aspects of
planning a path towards a person. So the robot has to be
visible, should not hide behind walls and also should not drive
behind a person. He uses an adapted A* planner to derive a
planning path but does not show how to include these results
into the motion planning concept.

Other authors do not consider the personal space, but also
have the need to approach a walking person from the front
to catch customer attention [29]. Here, the trajectory of the
person is predicted, and a point on that trajectory is chosen as
the goal, to give the robot enough time to turn towards that
person and approach her from the front.

A. The Dynamic window approach
To move a robot, there must be decisions taken which action

to be executed as next. Here, two parts are important. First, the
robot has to know to which position it has to drive, and second,
which trajectory it has to drive to reach a good position. As
mentioned before, we use the Dynamic Window Approach
[10] for motion planning and therefor can only support phys-
ical plausible paths towards the target. We can assume two
things when decide upon the next action. First, we can measure
the robots position and speed, and second we know the current
obstacle situation. The Dynamic Window Approach’s key idea
is to select a rectangular region of rotation- and translation
speeds around the current rotation- and translation speed, and
decide which next speed pair is the best by evaluating different
so called objectives. Each Objective focuses on one aspect
of navigation like avoiding obstacles, heading towards the
target, drive at a certain speed and so on. The window’s outer
bounds are only based on physical constraints, like the robot’s
acceleration capabilities and maximum allowed speeds. The
voting values of the objectives are summed up weighted, and
the minimum vote of the current speed window is chosen to
be the next valid action. Our goal is to design an objective for
the DWA, which uses a personal space model to approach a
person. The model of the personal space is described in the
next section. After that section we show, how to include the
model into the DWA’s objective.
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Fig. 2. Two regions of our personal space model. The front region is within
an ±45◦ interval (in red). The back region is the rest (in blue). Note, that the
regions are not limited in radial extension, like it is done in the illustration.

III. MODEL OF THE PERSONAL SPACE

As described in section II, the model of the personal space
is the key component to approach a person. Similar to the
work of Dautenhahn [19], we also want the robot to approach
a person from the front, but with a slight aberration from
the direct front, since most user perceive such a behavior
more comfortable. For this purpose, obviously we need the
position and viewing direction of the person to calculate
the configuration of the personal space model. The space
configuration should enable the robot to drive around the
person in a comfortable distance and turn towards the person
when a ”front position” is reached. Like in [27], we model the
personal space with a sum of Gaussians. The space relative to
the persons upper body direction is separated into two regions:
a front-region, which is considered to be within ±45◦ around
the persons upper direction, and a back-region, which is the
rest (see fig. 2).

In both areas we define a distance function to keep the robot
out of the user’s personal zone but within his/her social zone
while approaching the person. The function is defined relative
to the persons upper body direction.

a(x, y) =
α

2πσ1
· e

− x2+y2

σ2
1 − β

2πσ2
· e

− x2+y2

σ2
2 (1)

The variables α, β, σ1, σ2 describe a classical Difference of
Gaussians function and are set in our case (see Fig. 2) to
α = 0.6, β = 0.3, σ1 = 2m,σ2 =

√
7m to form a minimum

cost region in a distance of 3.5 meters around the person. The
front region is treated additionally with an ”intrusion function”
i(x, y). This is also a Gaussian function and is simply added
to a(x, y).

i(x, y) =
γ

2π
√
|Σ|
· e−~xTΣ−1~x (2)

Σ =

[
σx 0.0
0.0 σy

]
·
[

cos(φ) − sin(φ)
sin(φ) cos(φ)

]

Here the variables σx and σy define an elliptical region,
that is rotated towards the needed approaching direction φ, as
seen from the persons perspective. The vector ~x is simply a
column vector (x, y)T . The variables are set to γ = −0.5,

f=40.1° f=22.9°

Fig. 3. Two example configurations for different approaching directions.

σ2
x = 2.9 and σ2

y = 1.1. Only φ and σx need to be set at
runtime to regulate the approaching distance and direction.
These parameters defining the form of the personal space
can be obtained by investigating the familiarity of the user
with robots, but for the sake of simplicity have been chosen
manually for our first trials. All other parameters are constant
and are chosen to reflect the properties of the personal space
definition in [11]. So, the final definition of the personal space
p(x, y) relatively to the person coordinates x = 0, y = 0 and
upper body pose towards the x-axis is defined as follows:

p(x, y) =

{
a(x, y) , if 〈x, y〉 in back-region
a(x, y) + i(x, y) , if 〈x, y〉 in front-region (3)

To compute the personal space in a real world application,
each point (x́, ý)T has to be transformed to the person-centered
coordinate system (x, y)T presented here. In our trials we use
the given person’s upper body pose, representing the ”most
likely” pose. Figure 3 shows an example of two configura-
tions of the personal space with two different approaching
directions.

IV. PLANNING WITH EXPANDING RANDOM TREES AND
THE DYNAMIC WINDOW APPROACH

Up to that point, we have shown how the personal space can
be described, if the upper body pose of a person is known. We
also stated, that this space is used within an objective for the
DWA. The basic idea of the DWA is to decide what next action
is best in a local optimal fashion. The local driving command is
only valid for a certain ∆t, than the next window configuration
is evaluated. The model of the personal space could be used
directly within the Dynamic Window objective. It is possible to
predict for every speed pair Vrot, Vtrans the trajectory within
the interval ∆t and simply evaluate the value of the personal
space at the end point of each trajectory. This is shown in
Fig. 4. The minimal value results in the most supported driving
decision. By using the personal space directly, multiple driving
decisions may lead to the same minimal value and a unique
local optimum can not be guaranteed.

So we have to reformulate the search problem to guarantee
a function with a unique local minimum, and, by sequentially
following the local minima, a function that leads towards
the global minimum (or target position). It is known that
planning algorithms can provide such functions. We choose
a random tree planner[30] for two reasons. First, classical
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Fig. 4. No distinct speed decision is possible, when the personal space model
is used directly. Here, several actions can lead toward the same minimal value.

planning approaches like A*,D* and E* are defi ned only in
metric grid-based maps (and not in the confi guration space the
DWA is defi ned in) and have to explore a large area of the
grid to fi nish the plan. The second reason is, that random trees
need to touch only a small area of the planning grid. Here,
computation time can be saved by computing only the needed
cells of the personal space grid and also by covering only a
sparse portion of the planning space. In the following sections
we describe how the random tree graph is constructed and
how it fi ts to the Dynamic Window Approach. The basic idea
is simply, to use the global optimal pose, extracted from the
personal space, and use the mentioned planning algorithm to
overcome local minima in the personal space by also fi nding
a cost optimal path to the global optimal pose.

A. Expanding Random Trees

For planning purposes we use so called expanding random
trees [30]. These trees are used to generate a path towards a
target pose, so one aspect of planning is to defi ne the target
pose to reach (see IV-C), the graph’s state defi nition (inside
this section) and also the directed expansion of existing graph
nodes towards the target (section IV-B). If the target is reached
by one node of the graph, it is guaranteed that a cost minimal
path toward the target is found. The benefi t of an expanding
random tree is, that only a sampled set of possible actions
are used per node to expand that node. This makes the tree
effi cient and still suitable for complex planning tasks. Formally
a random tree is quite simple: it consists of a set of nodes
S = (s1, s2, ..., sn), each representing a state si of the system.
Our tree uses a fi ve dimensional state space consisting of
rotational speed Vrot of the robot, translational speed Vtrans,
position and orientation of the robot x, y, φ. What makes this
approach useful is the creation of successive states by using
a random transition function tr(si) and using the state update
equation from the DWA. This function generates a set of next
states by considering the current node’s state si and applying
a set of random actions on that state to generate a set of next
system states (see Fig. 5 b) ). This process is also called the
” expansion” of a node. We use as the transition function a
motion model for a differential drive robot with left wheel
speed and right wheel speed. Given a pair of these speeds,
we can create the trajectory for a given time interval ∆t.
Since translation speed and rotation speed is convertible to
left wheel- and right wheel speed, we can sample a set of
speed pairs from a virtual dynamic window, centered at the
current speed states of the given node (see Fig. 5 b).

B. Expanding the graph

To expand the graph, the method of A* [31] is used. A*
uses heuristics to implement a directed search (unlike other
planners like E* or Dijkstra) and could signifi cantly speed up
the search for the optimal path. Each node of the planning
graph also carries a cost value ci which is incrementally
increased with the graph nodes parent ci−1 , the real costs to
travel from node si−1 to node si (denoted by the cost function
C(si−1, si) and the heuristic for node si. So, a cost update is:

ci = ci−1 + C(si−1, si) + h(si) (4)

The traveling cost function C(si−1, si) is described in more
detail in section IV-D. The heuristic is quite simple. We use
the 5D euclidean distance of the nodes’ state vector to the
minimum cell (x́, ý) of pmin(x́, ý) with target speeds Vrot = 0
and Vtrans = 0. All nodes with updated costs are put to the
active node list. From that list, the node with the lowest costs
ci is selected, expanded and removed from the list of active
node. If a node reaches the target cell with correct speed and
viewing direction, the planning task is complete.

The graph is initialized by using the current confi guration
of the dynamic window. The root node is the current robot
position, view direction and rotation- and translation speed.
The dynamic window is used to give a fully specifi ed set of
next actions, which are applied to that node and the graph
expands. All subsequent nodes are expanded by using only a
sampled subset of the corresponding dynamic window, valid
only for each node (see Fig. 5 c) ). Than the sequence of best
motion actions is applied to the robot’s driving system. The
deviation from the best path is measured and if the difference
reaches above a threshold, complete replanning is done. The
same is done when the person changes his/her position too
much.

C. Extracting the target region

To navigate with the Dynamic Window, we use local oc-
cupancy maps to represent the surrounding obstacle situation
around the robot. In this grid representation, we have to
rasterize also the personal space values p(x́, ý) to merge the
costs of the personal space with the costs of obstacles to create
an optimal path. Each planning algorithm has to know the
target, to which state the system has to drive to. Since we
have a rasterized personal space, we are able to easily extract
the minimum value pmin(x́, ý). For a grid based planner this
would be suffi cient to be the target region, but for expanding
random trees it is very unlikely to hit exactly that single cell.
So the target region has to grow to increase the probability to
hit a target cell. We do so by adding a ε value to the minimum
and each cell with a value below pmin(x́, ý) + ε is called a
target cell (see Fig. 5 a) ). For each target cell we also store the
needed orientation of the robot towards the person. Planning
is complete when the fi rst lattice of the graph hit a target cell,
when the speed of the robot at that cell is near zero and the
viewing direction of the robot is nearly towards the person to
approach.
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Fig. 5. Different stages of creating the expanding random tree. In a) the root node at the current robot state is created and expanded with the actions from
the full dynamic window. Also the target region is defi ned. Each node gets new state variables. In b) in each node a new individual dynamic window is
constructed, to defi ne a set of new possible trajectories. In c) only a subset of these trajectories are used per node to expand the graph towards the target
region.

Fig. 6. To estimate the personal space costs, the trajectory is rastered and
personal space costs along the trajectory are summed up.

D. The cost function

The last piece (and core component) to understand the
graph structure is the calculation of the traveling cost function
C(si−1, si) from one node to the next. It consists of two
components. One is the cost component from the personal
space and the second is the traveling time. In a differential
drive system the robot can only drive strait lines or piecewise
defi ned circles. The radius of the circles is simply Vtrans/Vrot.
So, when Vrot reaches zero, the radius is infi nitely large.
Given Vrot and the prediction time interval ∆t one can easily
calculate the rotation angle (Vrot · ∆t) and the length of the
line segment lij .

To compute the traveling time tsi,sj we calculate tsi,sj =
lij/Vtrans. The costs of the personal space are harder to
calculate. We use here the rasterization of the trajectory and
sum up all costs on the the rasterized trajectory (see Fig. 6).
For each cell 〈xi, yi〉 which is part of the trajectory. The costs
k(si, sj) are:

k(si, sj) =
∑

n

p(x́n, ýn) if xn, yn ∈ traj(si, sj) (5)

If the trajectory hits an obstacle, the traveling costs are set
to infi nity. The resulting costs are the sum of both values:
C(si−1, si) = t(si−1, si) + k(si−1, si)

V. EXPERIMENTS

A problem on approaching a person is the estimation of the
person’s position and the associated measurement noise. We

Robot σpers σrob
scen. 1(I) (0.3, 0.1) (0.3, 0.1)
scen. 1(II) (0.2, 0.1) (0.4, 0.2)
scen. 2(I) (0.2, 0.1) (0.2, 0.2)
scen. 2(II) (0.2, 0.2) (0.2, 0.4)

TABLE II
THE VARIANCE OF THE END POSITION OF THE ROBOT VS. THE VARIANCE

OF THE PERSONS UPPER BODY POSITION.

plan to detect the upper body pose by fusing two standard
tracker methods, namely the leg-pair detector of [32] by using
the laser range scanner and the OpenNI full body pose tracker
by using the Kinect. To test the stability and robustness of the
approach towards that noise, we investigated two scenarios,
one in a narrow space and one in a large room of our lab. We
use a simulator to avoid the problems of person detection and
to control the (simulated) measurement noise of the person’s
and robot’s pose. We could also proof in fi rst test, that the
approach is running well on the real robot, but here you have
to face the challenging task of upper body pose estimation.
To investigate the stability of the approaching behavior, the
position of the person and the robot was chosen randomly
to approach in a circle around a marked position. The robot
and the person should face towards a given direction each.
For each of the two locations, we defi ne two person positions
with different viewing angles and performed ten runs for each
position. So, we had a set of four trials with a sum of 40 single
runs. The variance of the fi nal positions of the robot and the
variance of the person position are shown in table II.

From the experimental setup we have uncertainties of 0.1m
to 0.3 meters in the person position. The question to be
answered in our experiments is, how the uncertainty of the
target position of the robot will increase when approaching a
person. To do so, we record the trajectory of the robot and
calculate the mean and standard deviation of the fi nal robot
poses. The results are also shown in table II.

The average distance from the person is 0.7 meters, the
variance is usually within the same magnitude as the variance
of the person’s pose. In two cases, the variance in one direction
is increased by 0.2 m, which is a result of the target region
calculation with its simple threshold heuristic. Figure 7 shows
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the path and the mean person position with variance of all
four test cases. The quality of the trajectories also gives an
impression on the stability of the method. Scenario 2 shows,
how the upper body pose heavily infl uences the trajectory
of the robot. Scenario 1 shows, that in narrow spaces the
trajectory has to follow the physical restrictions and only the
upper body pose is considered. The personal space has to be
intruded, if there is no other chance.
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Fig. 7. Resulting trajectories of the two tested scenarios. Per scenario two
different poses are evaluated by the user (I and II). The mean positions of the
user are shown as black dots, the mean upper body poses as arrows. In each
scenario the blue lines denote the robot’s trajectories corresponding to the fi rst
person setup, while the red lines show trajectories of the second setup. Red
circles denote the mean starting position of the robot. Both scenarios show,
how the upper body pose infl uences the approaching trajectory. Scenario 2
also shows, that the social zone is respected if there is room to navigate.

VI. CONCLUSIONS

In this paper we presented a method, working within
the Dynamic Window Approach, to approach a person by
considering his/her personal space. We could demonstrate, by
using a planning strategy, that a stable and reliable solution
could be achieved. Nevertheless the method of extracting the
target region could be improved in future work. We also
want to include obstacles into the personal space model, to
improve planning quality and focus on the task of real time
replanning, when the person changes his/her pose while the
robot approaches. And off course we plan to couple the
planning approach with data from a real person tracker to
show these results at the conference.
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