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Phänomenologie des Vakuums in der Quantenelektrodynamik und
Erweiterungen
Zusammenfassung

Die Bestimmung von Kräften, die durch das Anlegen von Randbedingungen an die Quan-
tenfluktuationen entstehen, oder die Beobachtung modifizierter Lichtausbreitung in ex-
ternen Feldern, sind vielseitige Methoden um die Vakuumstruktur der Quantenelektro-
dynamik zu untersuchen. Für diese Untersuchungen kann das Vakuum als Medium ver-
standen und modelliert werden. Eine Erforschung der Eigenschaften dieses Mediums,
kann nicht nur unser Verständnis der bekannten Wechselwirkungen testen, sowie erwei-
tern, sondern stellt auch ein nützliches Werkzeug zur Suche nach Teilchen bei niedrigen
Energien, die in Erweiterungen des Standardmodells vorhergesagt werden, dar.

In dieser Arbeit untersuchen wir zunächst die Geometrieabhängigkeiten von Fluktu-
ationsmoden im Dirichlet-skalaren Analogon der Casimir-Polder-Kräfte zwischen einem
Atom und einer Oberfläche mit beliebiger uniaxialer Struktur. Dazu verwenden wir eine
Methode, die vollkommen nichtperturbativ im Höhenprofil ist. Wir parametrisieren die
zum planaren Grenzfall veränderte Abstandsabhängigkeit anhand einer anomalen Dimen-
sion, die die Abweichung vom Potenzgesetz im planaren Fall quantifiziert. In numerischen
Untersuchungen experimentell relevanter Strukturen finden wir ein universelles Regime
der anomalen Dimension bei großen Abständen. Wir argumentieren, dass diese Univer-
salität als Mittelung der relevanten Fluktuationen über Strukturen kleiner als der Atom-
Platten Abstand interpretiert werden kann.

Sodann gehen wir zur Untersuchung modifizierter Lichtausbreitung als Test der Quan-
tenvakuumstruktur über. Wir zeigen, dass eine Kombination starker, gepulster Mag-
nete mit Gravitationswelleninterferometern nicht nur die Detektion von Starkfeld-QED-
Effekten ermöglicht, sondern auch den zugänglichen Parameterraum hypothetischer Teil-
chen des “hidden sectors” erweitern kann. Wir zeigen auf, dass gepulste Magnete eine
geeignete Starkfeldquelle sein können, um Quanten-Nichtlinearitäten zu erzeugen, da ihre
Pulsfrequenz genau an den Bereich höchster Sensitivität moderner Gravitationswellenin-
terferometer angepasst werden kann.

Wir gehen an die Grenze derzeitiger Laborfeldstärken und schlagen eine neuartige
Messanordnung vor, die auf der Verwendung von Hochintensitätslasern basiert. Es wird
gezeigt, dass diese geeignet ist, um Axion-artige Teilchen und insbesondere das QCD Ax-
ion zu messen: Wir argumentieren, dass Testphotonen, die den Fokus einer Überlagerung
Gaußscher Strahlen in Grundwellenlänge und frequenzverdoppelter Mode durchqueren,
aufgrund ihrer zwischenzeitlichen Propagation als Axion-artiges Teilchen, eine Frequenz-
verschiebung erfahren können. Dieser Prozess ist für resonante Massen von der Grössenord-
nung verwendeter Laserfrequenzen verstärkt. Wir zeigen, dass rein Laser-basierte Expe-
rimente sensitiv auf den eV Massenbereich der Axionen sind, und dadurch konventionelle
Messanordnungen bezüglich des zugänglichen Massenbereichs ergänzen können.

Als neue Möglichkeit zur Erforschung des Parameterraums minigeladener Teilchen
untersuchen wir zuletzt ein Licht-durch-Wand-Szenario in einem Magnetfeld, in welchem
die Durchquerung der Barriere mittels eines virtuellen Teilchen-Antiteilchen Zwischenzu-
stands vonstatten geht. Da die Wahrscheinlichkeit dieses “Tunnelprozesses” sehr von
der Masse der Fluktuation abhängt, betrachten wir den ein-Loop Polarisationstensor
im Magnetfeld vollkommen nichtperturbativ in einer optimierten Anordnung für Pho-
tonpropagation entlang der Magnetfeldlinien. Wir quantifizieren und diskutieren die
Übergangswahrscheinlichkeit für eine ausgewählte Propagationsmode und geben damit
eine erste Abschätzung für das gegenwärtige Entdeckungspotential für Licht-durch-Wand
Experimente mit virtuellen minigeladenen Teilchen im Magnetfeld.



Phenomenology of the vacuum in quantum electrodynamics and beyond

Abstract

Determining forces that arise by the restriction of the fluctuation modes of the vacuum by
the insertion of boundaries or the observation of altered light propagation in external fields
is a versatile means to investigate the vacuum structure of quantum electrodynamics. For
these quantum vacuum probes, the vacuum can be understood and effectively modeled
as a medium. Investigating the properties of this medium cannot only test and broaden
our understanding of known interactions but can also be a valuable tool in the search for
particles at low energy scales which arise in extensions of the standard model.

In this thesis, we first study the geometry dependence of fluctuation modes in the
Dirichlet-scalar analog of Casimir-Polder forces between an atom and a surface with arbi-
trary uniaxial corrugations. To this end we employ a technique which is fully nonpertur-
bative in the height profile. We parameterize the differences to the distance dependencies
in the planar limit in terms of an anomalous dimension quantifying the power-law devi-
ation from the planar case. In numerical studies of experimentally relevant corrugations,
we identify a universal regime of the anomalous dimension at larger distances. We argue
that this universality arises as the relevant fluctuations average over corrugation structures
smaller than the atom-wall distance.

Turning to modified light propagation as a probe of the quantum vacuum, we show that
a combination of strong, pulsed magnets and gravitational-wave interferometers can not
only facilitate the detection of strong-field QED phenomena, but also significantly enlarges
the accessible parameter space of hypothetical hidden-sector particles. We identify pulsed
magnets as a suitable strong-field source to induce quantum nonlinearities, since their
pulse frequency can be perfectly matched with the domain of highest sensitivity of modern
gravitational-wave interferometers.

Pushing current laboratory field-strengths to their limits, we suggest a novel setup
based on employing high-intensity lasers. This is shown to be advantageous to the search
for axion-like particles as well as the QCD axion: We observe that probe photons travers-
ing the focal spot of a superposition of Gaußian beams of a single high-intensity laser at
fundamental and frequency-doubled mode can experience a frequency shift due to their
intermittent propagation as axion-like particles. This process is strongly enhanced for
resonant masses on the order of the involved laser frequencies. We show that purely laser-
based experiments are sensitive to axions in the eV mass range and can thus complement
conventional setups with respect to the accessible mass region.

Finally, as a new means to scan the parameter space of minicharged particles, we
investigate a light-shining-through-walls scenario in a magnetic field in which the barrier
transition is achieved by virtual particle-antiparticle intermediate states. As the proba-
bility for this “tunneling” phenomenon to occur is highly dependent on the mass of the
fluctuation, we consider the one-loop polarization tensor in the magnetic field fully non-
perturbatively in an optimized alignment for photon propagation along the field lines.
We quantify and discuss the transition probability for a selected propagation mode and
therewith provide a first estimate for the discovery potential of light-shining-through-walls
with virtual minicharged particles in a magnetic field.
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Chapter 1

Motivation

“Prognosen sind schwierig,

besonders wenn sie die Zukunft betreffen.”
zugeschrieben u.a. Niels Bohr

Since the rise of quantum field theories, the science of physics has undergone a remarkable

acceleration of success in the accurate description of particle interactions. However, this

brought about the need for a radical departure from classical conceptions of physics.

Taking for example the vacuum, which in its common perception is equivalent to the

absence of all matter and energy, we find that it is rather permeated by fluctuations of

all quantum fields, restricted only by the symmetries and conservation laws implemented

in nature. This comes about naturally in quantum field theories as they combine the

conceptions of quantum mechanics and special relativity. The former allows for energy to

fluctuate sizably over short instances of time, as manifestation of the uncertainty principle;

the latter in turn tells us that energy can be converted into matter. Therefore, the proper

conception of the vacuum should be that of a medium whose characteristics can be altered

distinctively if subject to external modifications.

It follows that one can think about altering and manipulating these quantum fluctua-

tions in a specific way in order to test and broaden our understanding of particle physics.

For instance, classic, i.e., well established means to probe the vacuum of quantum electro-

dynamics (QED) are to observe forces that come about by restricting vacuum fluctuation

modes through the insertion of boundaries or to study the impact of the fluctuations on

the propagation of light under the application of external electromagnetic fields.

The former vacuum probe dates back to 1948 and goes nowadays by the name of

Casimir physics. It deals with the question of how forces that arise between objects

through the modification of the fluctuation modes within the vacuum, depend on the

properties of these bodies. This dependence had, considering variables such as the overall

temperature, the conductivity of the objects or geometric properties, for a long time

only been well understood under the most idealized conditions. For example, spatial

configurations different from plane-parallel geometries had widely been dealt with through

perturbative approximations with respect to a small geometric parameter accounting for

the deviation of the objects from flatness. However, since quantum vacuum fluctuations

3



4 Chapter 1. Motivation

occur on all length scales, such approximations often were doomed to failure in describing

experimental setups. In the following, a method and technique that overcomes these

perturbative approximations will constitute also a part of this work.

The latter vacuum probe which dates back to work of W. Heisenberg and his student

H. Euler in 1936, deals with the modification of light propagation in external fields and

has among its most famous manifestations the prediction of vacuum birefringence, whose

detection is coming into reach as a result of the rapid advancement of optical techniques

and technology.

Here, the underlying physics is the spontaneous creation and annihilation of virtual

electron-positron pairs whose dynamics are altered under the application of external fields,

subsequently modifying the propagation properties of light to which these pairs couple.

Proposed experiments aimed at demonstrating these vacuum nonlinearities would test the

predictions of quantum electrodynamics in the regime of macroscopic fields. These are

therefore a worthwhile endeavor themselves, thus playing a role in the following.

However, there is a second, maybe even stronger motivation for experiments and theo-

retical analyses for optical probes of the quantum vacuum. Despite the enormous success

of the theories of particle interactions, namely the standard model, some conceptual defi-

ciencies persist (e.g., fine-tuning in the context of CP-violation in quantum chromodynam-

ics (QCD), triviality problem in QED and the Higgs sector, hierarchy, . . . ) and unified

theories reconciling gravity with the other known interactions still await experimental

confirmation.

Tackling the remaining shortcomings of the standard model and the attempt of finding

a suitable extension often comes along with the proposition of particles that have managed

to elude experimental detection so far. Moreover, the belief that yet undiscovered particles

most likely exist is underlined by the fact that there is still a lack of reliable knowledge

about the nature of dark matter (and dark energy). While proposed new particles are

often expected to “hide” at large masses and thus demand for a search at the largest

accessible energy scales as, e.g., provided at particle colliders, there exists also a number

of good candidates for physics beyond the standard model with much lower masses at, or

just below the electron volt scale, where so far only neutrinos have been found to exist.

Such particles, in order to have evaded their detection, must be very weakly coupled to the

known particle content of the standard model and are thus often subsumed by the term

“WISPs”, being short-hand for “weakly-interacting slim particles”. However, assertions

of physics beyond the standard model run the risk of remaining but a playground for

theoreticians as long as no connection to experimental realities is made.

In consequence, one may be tempted to reverse the concept of investigating the vacuum

structure by optical techniques as introduced above: Knowing well how the familiar par-

ticle content of the standard model can alter the propagation of light, one can ask if and
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how distinct optical signatures can tell us about yet undiscovered particles that may ex-

ist at the energy scale that can be screened through optical, i.e., low-energy, techniques.

With some luck such experiments, although less involved than collider experiments in

terms of manpower and effort, can even teach us about physics at higher energy scales,

if, e.g., the WISP is a (pseudo-)Goldstone boson originating from a symmetry breaking

at higher energy scales beyond current experimental access.

In large parts of this work, we follow this reasoning from a phenomenological viewpoint.

Discriminating conjectured new particles by their very basic properties such as spin and

effective coupling structure only, we investigate how we can confirm, exclude or restrict

their existence in increasing regions of their parameter space by suggesting experimental

settings which can be feasibly realized today or in the next few decades.

In summary, the aim of this work is to carry forward and deepen some earlier con-

cepts as well as to suggest new, original probes of the quantum vacuum in the light of

experimental progress in the field.

Accordingly, after introducing the necessary methodological and conceptual prerequi-

sites in chapter 2, we will begin by investigating the influence of non-planar surfaces in the

context of Casimir-Polder forces in chapter 3, as motivated by ongoing atomic scattering

experiments. In chapter 4, we take on the idea of high-precision interferometry as a tool

for the investigation of the vacuum structure and qualitatively extend it in the face of the

developments of current and future gravitational-wave interferometers and state of the art

pulsed magnets from high-magnetic field laboratories. Furthermore, rapid progress in the

field of high-intensity lasers prompts us to explore their capabilities within the search for

axions and axion-like particles, as discussed in chapter 5. Finally, in chapter 6, we set out

to advance the understanding of a “light-shining-through-walls” scenario which accounts

for barrier-transition through virtual particle-antiparticle states in magnetic fields, where

up to now only real particles had played a major role.

The compilation of this thesis is by the author alone, however, a great deal of the presented

material has been worked out and published in various articles in kind collaboration with

different authors. The study on Casimir-Polder forces of Chapt. 3 was carried out with

Maarten DeKieviet and Holger Gies [138, 139]. The proposal for the interferometric

setup of Chapt. 4 and the purely laser-based axion search of Chapt. 5 have been elaborated

with Holger Gies, see [162, 163] and [183, 184], respectively. Lastly, the results for light-

shining-through-walls scenario via virtual minicharged particles, see Chapt. 6, have been

obtained in collaboration with Holger Gies, Norman Neitz and Felix Karbstein [204].



Chapter 2

Basic concepts and relations

“ πάντες
⊃
άνθρoπoι τoυ̃ ε

⊃
ιδέναι

⊃
oρέγoνται φύσει.”

Aristoteles, Metaphysik

The results and methods of this thesis largely rely on the functional integral formulation

of quantum field theory. With hindsight to the concepts and techniques employed in

this thesis, we begin by reviewing some of its basic objects and relations in Sect. 2.1.

Surely, we cannot reproduce rigorous derivations of all the quantities that are needed

here, and reference1, e.g., [1–6] which constitute detailed introductions to the field and

contain results that will be the basis for our subsequent investigations.

For our purposes, we start from the generating functional in quantum field theories

and introduce the concept of the effective action, being the essential starting point of

all subsequent phenomenological investigations. Necessarily, we thereby touch on the

definition of the vacuum energy, being a vantage point for the treatment of Casimir-type

problems. Lastly, we discuss the expansion of the effective action in numbers of loops.

Starting from there, we will review the one-loop correction modifying photon propa-

gation in external (electro-)magnetic fields. This allows us to discuss the related observ-

ables and phenomenological implications of light propagation in external fields. Finally,

in Sect. 2.2, we introduce and motivate a number of hypothetical, weakly-interacting par-

ticles at the (sub-)eV scale, namely WISPs. As will be discussed, these particles can - if

realized in nature - modify the phenomenology of light propagation presumably in such

a way that they are distinctively separable from the standard model “background”. This

general overview in turn enables us to suggest and discuss three distinct experiments that

could help to enlarge our knowledge on the allowed properties of such particles in later

chapters.

1Of course, references to general textbooks of quantum field theory are by no means complete and
generally suffer from a strong bias by the author. This being said, in this chapter we will take the liberty
of referring to selected textbooks for a few general concepts that present the topic in question most
coherently from the author’s point of view.
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2.1. Field theoretic prerequisites and light propagation in external fields 7

2.1 Field theoretic prerequisites and light propaga-

tion in external fields

2.1.1 Generating functional and the Casimir energy

In the functional integral formulation of Euclidean2 QFT, a central object is the generating

functional Z[J ], which is the vacuum-to-vacuum transition amplitude in the presence of

an external source J(x), reading

〈0|0〉J = Z[J ] =

∫
Dϕ e−S[ϕ]+

R
x Jϕ = eW [J ] . (2.1)

Here, ϕ is to be understood as a superfield vector containing all the field degrees of freedom

which are meant to be quantized. Accordingly, in Jϕ a contraction over all associated

indices is understood. S[ϕ] is the corresponding classical or microscopic action for these

fields. In addition, we have defined W [J ], which is the so-called Schwinger functional,

see below. The integral in Eq. (2.1) over arbitrary high momentum modes can generate

divergencies which necessitate regularization and renormalization procedures.

By multiple functional differentiation of Z[J ] with respect to J , one can obtain the

n-point functions or correlators of n fields:

〈ϕ(x1) . . . ϕ(xn)〉 =

∫
Dϕ ϕ(x1) . . . ϕ(xn) e−S[ϕ]+

R
x Jϕ∫

Dϕ e−S[ϕ]
=

1

Z[0]

δ(n)Z[J ]

δJ(x1) . . . δJ(xn)

∣∣∣
J=0

.

(2.2)

In accordance with physical intuition, field configurations in the Euclidean formulation

of QFT are weighted by an exponential of their action functional, which also accentuates

the close analogy to the concepts of statistical mechanics. In Eq. (2.1), the Schwinger

functional W [J ] generates all connected n-point functions [1]. More importantly for our

purposes, we note that W [J ] is related to the vacuum or ground-state energy in the

presence of an external source, as W [J ] = lnZ[J ]. On the other hand, the Casimir

energy of a system of bodies is determined by the alteration of this ground-state3 energy

caused by the presence of boundaries which impose constraints on the fluctuating fields,

cf., e.g., [5].

2In this chapter, we work in a Euclidean formulation, where the time variable has been rotated as
t → tE/i with Euclidean time tE by means of an analytic continuation for convenience. In later chapters,
in particular when considering the dynamics for, e.g., photon or axion fields, we have to employ the
Minkowski metric as given in Appendix A in order to preserve a causal structure.

3What makes the Casimir effect particularly peculiar, is of course the fact that there is no active
external source but rather a passive deformation of the ground state due to the insertion of boundaries.
In the formalism that will be employed in our studies, we will see, however, that the boundaries are
effectively implemented as such source terms. Let us also emphasize that the understanding of the
Casimir forces being caused by a ground-state shift is meant to give an intuitive picture, but one should
be cautious in taking it too seriously cf., e.g., [7].
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This ground-state shift is measurable due to the resulting Casimir forces [8] between

the bodies and Casimir-Polder forces [9] between atoms and surfaces. Thus, to be more

precise, Casimir forces arise from the Casimir interaction-energy, corresponding to the

part of the ground state shift which is dependent on the relative position and orientation

of the bodies, whereas Casimir self-energies of the objects do not contribute to the Casimir

force. In this work, starting from Eq. (2.1), we introduce a nonperturbative treatment of

Casimir-Polder forces of scalar fields in Chapt. 3 and apply the formalism to uniaxially

corrugated surfaces of experimental interest.

2.1.2 Effective Action and loop expansion

A particularly useful way to store the same information as in Eq. (2.1) is through the

so-called effective action Γ, as it governs the dynamics of the expectation value of the

quantum field [1, 2]. For our purposes it will become relevant in the studies of light

propagation within a vacuum polarized by external fields. In this context, we are certainly

not interested in the microscopic details of vacuum polarization but are rather prompted to

employ an effective theory containing only the macroscopic degrees of freedom in order to

extract experimentally accessible quantities. Following Eq. (2.2), one defines the classical

field Φ as the field expectation value in the presence of a source

〈ϕ(x)〉J =
1

Z[J ]

δZ[J ]

δJ(x)
=

δW [J ]

δJ(x)
≡ Φ(x) , (2.3)

whilst the effective action Γ is defined as the Legendre transform of the Schwinger func-

tional W [J ] encountered above:

Γ[Φ] = sup
J

(∫
JΦ − W [J ]

)
. (2.4)

Here, as one has to find the supremum of (JΦ − W [J ]) with respect to J , J effectively

becomes a function of Φ. Taking the functional derivative of Γ[Φ] with respect to Φ, one

has
δΓ[Φ]

δΦ(x)
=

∫
y

δJ(y)

δΦ(x)
Φ(y) + J(x) −

∫
y

δW [J ]

δJ(y)

δJ(y)

δΦ(x)

(2.3)
= J(x) . (2.5)

As desired, Eq. (2.5) shows that Γ[Φ] indeed governs the dynamics of the field expectation

value, i.e., if the effective action Γ[Φ] is known, it is in principle easy to calculate the

dynamics of the system with all quantum fluctuations already accounted for.

Lastly, in order to find a conditional equation for Γ[Φ], we combine its definition from

Eq. (2.4) with the definition of the Schwinger functional W [J ], cf. Eq. (2.1), resulting in

e−Γ[Φ] =

∫
Dϕ e−S[Φ+ϕ]+

R δΓ[Φ]
δΦ

ϕ , (2.6)
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where a shift of variables ϕ → ϕ + Φ has been employed.

However, taking a close look at the structure of Eq. (2.6), it is suggestive that finding

an exact expression for Γ[Φ] is highly unlikely for interacting theories, in particular in

a nonperturbative setting. Thus, one has to employ an approximate expression for Γ[Φ]

suited to the physical problems under consideration.

For our4 purposes, the suited tool is the loop expansion of the effective action. For this

one uses that the expansion of Eq. (2.6) in powers of � (which we temporarily reinstate

here) can be mapped onto the graphical expansion in the number of loops [1, 2]. In

this expansion, the order of � counts the number of loops. After a formal substitution

ϕ →
√

�ϕ, the action S[φ], where φ = Φ + ϕ, can be expanded about the classical field

− S[φ] +

∫
δΓ[Φ]

δΦ

√
�ϕ = − (S[φ])φ=Φ

−
∫ (

δS[φ]

δφ

)
φ=Φ

√
�ϕ +

∫
δΓ[Φ]

δΦ

√
�ϕ − �

2

∫
ϕ

(
δ2S[φ]

δφδφ

)
φ=Φ

ϕ + O(�3/2) . (2.7)

Above, the first term on the right hand side is the tree level interaction Γ(0) = S where

the index assigned to Γ shall denote O(�0). Thus, the second and third term in Eq. (2.7)

are already of order O(�3/2) in total (as the difference between the classical and the full

effective action is of O(�) at least) and only the fourth term on the right hand side of

Eq. (2.7) contributes to Γ(1). Therefore, in summary, the one-loop effective action reads

e−Γ(1)[Φ] =

∫
Dϕ exp

[
−1

2

∫
x

∫
y

ϕ(x)

(
δ2S[φ]

δφ(x)δφ(y)

)
φ=Φ

ϕ(y)

]
, (2.8)

which in terms of practical evaluations constitutes an enormous simplification as compared

to Eq. (2.6). Of course, one has to keep in mind that Eq. (2.8) is only a first-order

perturbative5 approximation in the number of loops and its applicability has to be always

assured through self-consistent results. In Γ(1)[Φ], the remaining functional integration

over the fields ϕ is now of Gaußian type and can thus be carried out, such that all physical

information is stored within the fluctuation matrix S(2) = δ2S/δφ(x)δφ(y) (the evaluation

of the fluctuation matrix at Φ is implicitly understood in the following). However, the

result of the Gaußian integration depends on the nature of the field content considered in

ϕ. Thus, we now close these general considerations and explore their applicability in the

context of experimentally relevant vacuum probes.

4Certainly, means exist to find also nonperturbative, approximate solutions to Eq. (2.6), see, e.g.,
[10, 11]. However, the loop expansion provides a well-established access to the problems considered in
this work.

5Note that in the following, the terminology “nonperturbative” on the level of the one-loop approxi-
mation is to be understood as “nonperturbative in the coupling strength”.
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2.1.3 The Heisenberg-Euler Lagrangian and birefringence

In the following, we briefly review how the properties of the vacuum are effectively modi-

fied within external electromagnetic fields: Accounting for one-loop fermionic corrections

in QED, one obtains the Heisenberg-Euler Lagrangian [12–14] which encodes the effect of

the charged fermion fluctuations as effective self-interaction of the electromagnetic field.

As we ultimately want to consider light propagation within external electromagnetic

fields, the action entering Eq. (2.8) is the action of quantum electrodynamics

S =

∫ (
ψ̄ (i /D − m) ψ − 1

4
Fμν F μν

)
, (2.9)

where, as common, ψ and ψ̄ = ψ†γ0 denote the Dirac spinor fields and we have abbreviated

/D = γμ(∂μ − ieAμ), see also the conventions as summarized in App. A.

Note that the variation S(2) = δS2/(δAδA), as well as the mixed entries of the fluc-

tuation matrix S(2) = δS2/(δψδA) are A-independent, and therefore of no interest to us.

Thus, from Eq. (2.9) it remains to evaluate S(2) = δS2/(δψ̄δψ), where in the variation

with respect to ψ̄, one has to recall that a minus sign enters due to the fermionic nature

of ψ and ψ̄. Following Eq. (2.8), the one-loop effective action thus reads

Γ(1)[A] = −i ln det
(
−i /D + m

)
. (2.10)

Note that the overall minus sign enters through the fermionic Grassmann integration.

Also, we have reinstated the i belonging to the Lorentzian signature. For constant6

(or approximately also very slowly varying) external fields, the effective action can be

calculated exactly and yields the famous Heisenberg-Euler effective action. In App. B,

the evaluation of Eq. (2.10) for a constant magnetic background field is reviewed and the

result for the general situation of nonvanishing electric and magnetic fields is motivated.

Of particular relevance is the limit of weak field strengths. As a rule, in experimentally

relevant situations the external fields do not exceed the so-called critical field strength of

QED: Ecrit = Bcrit = m2/e, in which case the effective Lagrangian can be given as an

algebraic expression. Following Eq. (B.20), the one-loop order Lagrangian in the leading

order weak-field limit reads

Leff =
1

2
( �E2 − �B2) +

2α2

45m4
( �E2 − �B2)2 + 7

2α2

45m4
( �E �B)2 . (2.11)

In effect, Eq. (2.11) provides us with the macroscopic effective interaction for the elec-

tromagnetic fields, in which the underlying microscopic heavy degrees of freedom, i.e.,

the electron-positron fluctuations have been integrated out. Obviously, the first term in

6In the extensive review on Heisenberg-Euler Lagrangians in [15], in addition some solvable non-
constant field configurations are discussed.
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Eq. (2.11) constitutes the classic Maxwell Lagrangian, while the second and third term

now account for effective self-interactions of the fields. This self-interaction is, however,

strongly suppressed by virtue of the combined factor α2/m4, which outmatches typical

experimentally attainable field strengths squared, see, e.g., App. A.

A particularly intuitive picture of the phenomenological implications resulting from

this self-interaction can be obtained by assigning two tensorial quantities, namely a per-

mittivity
↔
ε and a magnetic permeability

↔
μ to the vacuum, which are classically only

properties of a medium. Accordingly, one can introduce a dielectric displacement �D and

an H-field �H for the vacuum as

�D =
∂

∂ �E
L( �E, �B) , �D =

↔
ε �E , (2.12)

�H = − ∂

∂ �B
L( �E, �B) , �B =

↔
μ �H . (2.13)

Dividing the electromagnetic fields into contributions of a probe photon field and an

external background part, the tensorial quantities
↔
ε and

↔
μ can then be used to compute

an index of refraction n of the polarized vacuum [16–21], see also [6, 22]. In practical

applications, the dispersive properties of the QED vacuum are most favorably7 tested in

an external magnetic field. Thus, in the situation of an external magnetic field alone,

pointing, e.g., along the spatial 3-direction, one finds that

n⊥ =
√

ε22 μ33 ≈ 1 +
8

45

α2

m4
�B2 sin2 θ (2.14)

n‖ =
√

ε33 μ22 ≈ 1 +
14

45

α2

m4
�B2 sin2 θ , (2.15)

for probe beams polarized orthogonally (⊥) or in parallel (‖) to the plane spanned by the

propagation direction of the photons and the external field. Here, θ denotes the angle

between the magnetic field and the direction of propagation of the probe beam. From

Eqs. (2.14) and (2.15) it follows that light effectively travels at a reduced8 phase velocity

v = c/n in the external field. As the indices of refraction differ for the two polarization

components, the polarized vacuum is found to be birefringent. In consequence, for a

linearly polarized probe beam in the magnetic field, the polarization components acquire

a relative phase shift and thus an induced ellipticity can be an observable of light-light

interaction, see Fig. 2.1.

Over the course of several years, a number of experiments have been designed and

carried out to test vacuum birefringence in terms of high-sensitivity polarimetry in strong

7For example, note that although modern accelerator cavities can reach (alternating) peak electric
field strengths of O(10)MV/m [23], common superconducting dipole magnets provide field strengths of
O(10)T which constitutes a larger number in units of the critical field strength of QED, cf. App. A.

8As stressed below Eq. (2.8), here we work not only in the limit of weak fields but also in the one-loop
approximation implying that n cannot deviate much from one.
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B Figure 2.1: Sketch of a polarized light
beam (in blue) traversing an external mag-
netic field (from left to right). Unequal
phase velocities for the polarization com-
ponents induce ellipticity and lead to vac-
uum birefringence.

dipole magnets, see, e.g., [24–28]. However, the sensitivity limits achieved so far are still

above those necessary to observe the QED effect. Nevertheless, as the induced ellipticity

grows with greater probe-beam wave-length [6], recent advances in X-ray polarimetry [29]

in combination with X-rays generated by photons back-scattered from electron beams, see,

e.g., [30–32] or free-electron lasers [33] seem to bring the detection of vacuum birefringence

as well as other strong-field physics effects closer to our reach, see, e.g., [34–39].

2.2 Beyond classic light propagation in external fields

To segue from “classic” to somewhat “exotic” features of light propagation, let us now turn

the argument of the previous section around. As we can infer from polarizing the known

particle content within the vacuum that light propagation can be specifically altered, can

in turn modified light propagation tell us something about an underlying particle content

which is unknown so far?

Indeed, the phenomenology of light propagation in connection with a number of

weakly-interacting slim (or sub-eV) particles (WISPs) that are representative for a wealth

of possible “new physics” at low energy scales has been worked out in the literature, cf.,

e.g., [40–42] for recent overviews. Therein, focusing on the effective coupling of the WISPs

to the electromagnetic field is certainly motivated by the fact and also optimal in the sense

that QED, owing to its comparably simple structure, is the theory which allows for the

most precise theoretical predictions as well as the most well-controlled experimental tests

at the same time, see, e.g., [43]. In summary, our main concern will be to investigate how

modern experimental advances can be utilized in the detection of QED nonlinearities and

the search for new physics at the (sub-)eV scale.

2.2.1 Minicharged particles and the polarization tensor

Who’s in charge? Coupling the visible to the hidden sector

Minicharged particles (MCPs) arise in a number of extensions of the standard model.

Most prominently, they can emerge in theories which contain an extra, hidden U(1) gauge
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group [44, 45], such as, e.g., in string theories, cf. [46, 47]. Here, the term “hidden”

should reflect the fact that no particles going along with this extra gauge group have been

observed so far. However, their existence would be pointless if there were no interactions

between standard model particles and the sector of the hidden particles at all. Thus,

it is generically assumed that the hidden sector connects to the particle content of the

standard model through very heavy messenger particles mediating between both sectors

and thus providing for an effective coupling between the respective light particles that are

accessible to us in experimental searches.

Following [44], for a model of minicharged fermions, one can, e.g., consider an effective

extension of the QED Lagrangian of Eq. (2.9):

L = −1

4
FμνF

μν − 1

4
BμνB

μν − 1

2
χFμνB

μν + eψ̄ /Aψ + ehh̄ /Bh , (2.16)

where Bμν now labels the field strength tensor of a hidden photon (also referred to as

paraphoton) and h labels hidden sector Dirac fermion fields with coupling eh. In Eq. (2.16)

we have omitted mass and kinetic terms for the fermion fields for simplicity. Note that

also the hidden photon can have a mass term, allowing for direct photon-hidden photon

oscillations, see below. The parameter χ is the so-called kinetic mixing9 parameter, which

encodes the effective coupling (kinetic mixing) strength between the hidden sector and

the standard model sector through the messenger particles as discussed above. Now,

upon diagonalization of Eq. (2.16) with respect to the mixing term through a shift Bμ →
Bμ − χAμ, one finds that the hidden fermions h couple to the photons and acquire an

electric charge −(χeh) ≡ εe, which is denoted as minicharge, and ε is a dimensionless

number quantifying the fractional charge of the minicharged particle. Note that this is

consistent with Dirac’s charge quantization condition, cf. [48]. In the following, such

minicharged particles10 with mass mε will be subject to phenomenological investigations.

Light propagation in distinct limits: The polarization tensor in external fields

In essence, as once more fermionic fluctuations are considered, one might be tempted to

think that the previous review on modified light propagation can be straightforwardly

adopted if the fractional charge of the minicharges is accounted for. However, as an MCP

could be much lighter11 than the electron, quantum-induced phase-velocity shifts have to

9For a discussion of the phenomenological implications of “magnetic mixing” which involves coupling
of the hidden to the visible sector by virtue of their dual field strength tensors, see [48, 49].

10Starting from a theory in the hidden sector resembling scalar QED, one can also think of charging
hypothetical spin-zero bosons in a similar manner cf., e.g., [50]. In the following, we mainly focus on
fermionic minicharges, thus the acronym ‘MCP’ will refer to fermions in all subsequent chapters apart
from Chapt. 6 where minicharged bosons and fermions are both explicitly investigated.

11Since optical experiments are naturally well apt to probe the (sub-)eV region, we will mainly focus
on mass scales O(eV) and smaller, although larger minicharge masses are also conceivable.
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be calculated to all orders in the field strength parameter εeB/m2
ε and the approximation

of weak field strength Be 
 m2 as used to arrive at the simple expression for QED in

Eq. (2.11) cannot be employed here. Also, minicharge masses could easily be smaller

than a further length scale which is implicit in this study, namely the frequency ω of the

employed probe photons, indicating that also pair production has to be accounted for in

the following.

Figure 2.2: Sketch of photon (wiggly lines) propagation
in an external field as incorporated in the one-loop po-
larization tensor. The dressed loop indicates an arbitrary
number of couplings of the fermion loop to the external
field. The imaginary part of the polarization tensor is as-
sociated with absorption (“stimulated” pair production)
while the real part relates to dispersive effects of photon
propagation.

Accordingly, in order to discuss light propagation beyond the weak-field limit, it is useful

to specialize the one-loop effective action, cf. Eq. (2.10), to photon propagation in a

constant external magnetic background-field, cf. Fig. 2.2 by introducing the polarization

tensor Πμν , see also App. C. The one-loop effective action then reads

Γ(1)[A] = −1

4

∫
x

Fμν(x)F μν(x) − 1

2

∫
x

∫
x′

Aμ(x) Πμν(x, x′|B) Aν(x
′) . (2.17)

From Eq. (2.17) one can directly evaluate the equations of motion of the photon within

the background field. Employing translational invariance, the polarization tensor satisfies

Πμν(x, x′) = Πμν(x − x′). Upon variation of the action, one obtains in momentum space

(
k2gμν − kμkν + Πμν(k|B)

)
Aν(k) = 0 , (2.18)

as the equation of motion for the photon field. Above, k2 = kμk
μ and | �B| = B. Depending

on the spatial direction of the external magnetic field in Eq. (2.18), it is possible to

decompose the polarization tensor appropriately, see, e.g., [52]. This allows to study

the propagation of the different polarization states of the photons independently. In

particular, for �k ∦ �B, the polarization tensor can be decomposed with respect to the ‖
and ⊥ polarization modes as defined below Eq. (2.15), such that Eq. (2.18) results in a

simple “light cone condition”

k2 + Π⊥/‖ = 0 ↔ v2 +
Π⊥/‖
|�k|2

− 1 = 0 . (2.19)

Here, Π⊥/‖ denote scalar functions, cf. App. C for details. Above, we have again employed

the phase velocity of the probe beam v = ω/|�k| = c/n such that, as in Eqs. (2.14) and
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(2.15) we can extract the indices of refraction n⊥/‖. However, starting from Eq. (2.19)

it becomes easier to discuss light propagation beyond the weak field limit and for the

situation where the mass of the fluctuating fermion lies below the scale set by ω.

Notably, the first finding is that n⊥/‖ develops an imaginary part for 2m < ω being

associated to the creation of particle-antiparticle pairs from the photons. Note carefully,

that in contrast to this “stimulated” pair production, pair production from the pure

vacuum, as discussed in the context of the derivation of the Heisenberg-Euler effective

Lagrangian in App. B, is only possible in the presence of external electric fields, see, e.g.

[15].

In terms of observables, the imaginary refractive index leads to an unequal attenuation

of the respective polarization components, i.e., a dichroism, and thus to a rotation of the

polarization12 of the beam, cf. Fig. 2.3. Its detection could13 thus be a hint of the existence

of minicharged particles in experiments with optical lasers, if 2mε < ω 
 m.

B Figure 2.3: Sketch of rotation of a po-
larized light beam (in blue) traversing
a magnetic field (from left to right).
Unequal attenuation of the polariza-
tion components leads to a vacuum
dichroism.

To see this, a treatment of the polarization tensor in the limit of large frequencies is re-

quired, being less relevant for the QED situation with optical photons. Nevertheless, this

treatment had been worked out even before the idea of minicharged particles had been

put forward. In [54], W. Tsai and T. Erber derived approximate indices of refraction for

studies of high energy photons (ω � m) traversing external magnetic fields. These found

their first application [50, 55] in the context of minicharges as a possible explanation for

a rotation signal of a probe beam within a magnetic field as reported by the PVLAS col-

laboration in 2005 [24]. These observations were, however, later found to be instrumental

artifacts [25], but promising upgrades of the PVLAS experiment are under way [56].

12For a detailed discussion of the connection between attenuation and rotation in this context, the
reader is referred, e.g., to [50].

13Note that diffractive effects can also lead to an attenuation of the light beam and have of course to
be carefully accounted for in such setups, see, e.g., [53].
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In summary, the effective indices of refraction induced by the real or virtual production

of minicharged particles read14 for θ = �( �B,�k) 
= 0 [50, 54, 55]

n‖/⊥ � 1 − ε2α

4π

(
εeB

m2
ε

)2

sin2(θ) I‖/⊥(χ̃) , (2.20)

where the (generally complex) auxiliary function

I‖/⊥(χ̃) = 21/3

(
3

χ̃

)4/3 ∫ 1

0

dν

[
(1 − ν2

3
)‖, (1

2
+ ν2

6
)⊥
]

(1 − ν2)1/3
ẽ′0

[
−
(

6

χ̃

1

1 − ν2

)2/3
]

(2.21)

carries the information on the distribution of momenta in the minicharge particle loop

in the ν-integral, see also App. C. Above, ẽ′0(x) is short-hand for the derivative of the

generalized Airy function ẽ0(x) =
∫∞

0
du sin(xu−u3/3) and χ̃ stands for the dimensionless

quantity

χ̃ ≡ 3

2

ω

mε

εeB

m2
ε

sin(θ) , (2.22)

which comes about as a combined parameter of the expansion variables in order to execute

the proper-time integral in the associated representation of the polarization tensor. Note

that the rather elaborate expressions of Eqs. (2.20) and (2.21) must of course contain the

comparably simple weak-field limit applicable in QED as presented in Eqs. (2.14) and

(2.15). Indeed, this can be seen by substituting εe → e as well as mε → m and upon

evaluation of I‖/⊥(χ̃) the limit χ̃ 
 1. On the other hand, as ẽ′0(x)
x→−∞

= −x2, it is found

that the refractive index in Eq. (2.20) becomes independent on the value of mε in the

limit of small minicharge masses. It is for this reason that experimental bounds based on

the production of MCPs saturate in the limit of small minicharge masses, see, e.g., the

polarimetric data of [25, 58] and also Fig. 4.1 in Chapt. 4.

On the other hand, studying pertinent literature closely, one finds that sometimes

even stronger laboratory limits on MCPs are deduced from experiments of the “light-

shining-through-walls” type. Yet, before we give meaning to this peculiar expression, it

is reasonable to introduce another WISP first, namely axions or, more generally, axion-

like-particles.

14It should be noted that in the evaluation of the indices of refraction from the QED situation [54] for
high energy photons, propagation on the light cone is assumed, i.e., k2 = 0 as well as eB/m2 � 1 and
ω sin(θ) � m, which transfers to εeB/m2

ε � 1 as well as ω sin(θ) � mε in the context of minicharges.
Here, it seems that the first condition for the minicharges, namely εeB/m2

ε � 1, would obstruct the
application of the effective refractive index to a large portion of the minicharge mass-coupling plane.
However, it can be shown [57] that the approximation of the polarization tensor as worked out by Tsai
and Erber can also be performed in the limit mε → 0 yielding the same index of refraction, such that
Eq. (2.20) holds true for the whole mass coupling range, requiring only ω sin(θ) � mε. This statement
can also be motivated from the fact that Eq. (2.20) becomes independent of mε in the limit mε → 0.
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2.2.2 Axion(-like) particles and light that shines through walls

Axions, axion-like particles and their implications for optical measurements

The certainly most prominent particle which could be counted among the WISPs is the

axion [59, 60], which is the pseudo-scalar pseudo-Goldstone-boson associated with the

spontaneous breaking of the so-called Peccei-Quinn symmetry [61, 62], as put forward as

a solution to the strong CP problem in quantum chromodynamics (QCD). The strong CP

problem amounts to the question why CP violation in QCD, being effectively encoded

in a parameter θ̄, is unmeasurably small15 (or even absent). The effective parameter θ̄

receives contributions from the θ-angle of QCD, being essentially unconstrained a priori,

and the quark mass matrix. As these parameters are unrelated from the outset, the

question for a natural explanation arises on why θ̄ takes a value close to zero. In essence,

the axion solution to the strong CP-problem makes θ̄ effectively a dynamical variable

which naturally relaxes to zero. However, if the axion meets its purpose, it has to obey

a predictive relation between its mass and coupling depending on the scale of symmetry

breaking, cf., e.g., [66] for an overview.

According to the phenomenological scope of this work, we consider more generally

(pseudo-)scalar axion-like particles (ALPs) for which we assume nothing else but an ef-

fective coupling to photons, see, e.g., [67]. Particularly, for ALPs no fixed relation between

their coupling and mass is presumed. The effective16 coupling of pseudoscalar and scalar

ALPs to the electromagnetic field is therefore encoded as

LP/S = −1

4
Fμν F μν +

1

2
∂μφ ∂μφ − 1

2
m2

φ φ2 +

⎧⎨⎩1
4
gP φ Fμν F̃ μν

1
4
gS φ Fμν F μν

, (2.23)

with ALP mass mφ and coupling parameters gP/S, respectively.

From an experimental point of view, there are again several distinct possibilities to

utilize this coupling structure in order to search for axions and ALPs. As already discussed

in the context of QED and minicharged particles above, a generic way to search for ALPs

are polarimetric measurements, as first suggested in [68], see also [69]. In a constant

external magnetic field �B, as for pseudoscalar ALPs the term coupling the field vectors

15CP violation in QCD would, e.g., manifest itself in properties of hadrons, such as an electric dipole
moment of the neutron �dn (nEDM), see, e.g., [63, 64]. An nEDM would point along the spin direction
of the neutron. However, time reversal reverses the spin, while the direction of �dn remains unchanged
under this operation, resulting in a violation of time reversal (T ). By virtue of charge-conjugation, parity
and time-reversal invariance (CPT ), the combined transformation CP would thus be violated in strong
interactions by the existence of a nEDM. However, measurements indicate |�dn| � 10−26ecm [65] implying
θ̄ � 10−10.

16For the QCD axion, which in the microscopic theory only couples to quarks and gluons, this coupling
structure comes about through higher order processes.
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{�e,�b} of the probe photon with the external field is LP,int = −gPφ �e �B, it is in essence17

the ‖-mode of the probe beam which can propagate as an ALP. For scalar ALPs, on the

other hand, only the ⊥-mode of the probe beam couples, as LS,int = −1
2
gSφ(�e 2−( �B+�b)2).

In both cases, however, θ = �( �B,�k) = π/2 is the most favorable choice, which we will

thus adopt in the following.

As a consequence, given the appropriate polarization mode, the photon-ALP coupling

can, as for minicharges, lead to attenuation and ultimately rotation of the polarization of

a probe beam within an external magnetic field if 2mφ < ω via the production18 of ALPs.

On the other hand, even for larger ALP masses, one still has virtual production of ALPs,

which amounts to a relative phase delay between the polarization components leading

to ellipticity as in the QED and minicharge context: The relative phase difference ΔΦ

between the polarization components for both scalar and pseudoscalar particles, reads for

gP/SBω/m2
φ 
 1 and mφ 
 ω

ΔΦ =
ωLB2

2m2
φ

g2
P/S

(
1 − sin(2y)

2y

)
, y =

Lm2
φ

4ω
, (2.24)

cf. [68, 69] as well as [50]. Here, ω again denotes the probe laser frequency and L is the

extent of the external magnetic field along the propagation direction of the photons. In

order to extract the corresponding indices of refraction, one employs that photons with

polarization components ‖ and ⊥ will accumulate a relative phase shift ΔΦ

ΔΦ = ω L (n‖ − n⊥) . (2.25)

As a result of the ALP coupling structure one has that for pseudoscalar ALPs nP
‖ > 1,

whereas nP
⊥ = 1. If, instead of the pseudoscalar coupling, scalars couple, it holds that

nS
⊥ > 1, whereas nS

‖ = 1. Of course, by virtue of Eq. (2.25) not only polarimetric

measurements are conceivable but also interferometric setups which measure a shift in

the absolute phase velocity, cf. also Chapt. 4. Thus, for later convenience, we summarize

Eqs. (2.24) and (2.25) in the following form

nP
‖ − 1 = nS

⊥ − 1 =
B2

2m2
φ

g2
P/S

(
1 − sin(2y)

2y

)
, y =

Lm2
φ

4ω
. (2.26)

17Small couplings are feasibly probed by the application of high field strengths. Then again, as shown
in the previous section, this simple picture is modified for very high field strengths, as effective self-
interactions among electromagnetic fields can play a role, cf. Eq. (2.11).

18Notably, the idea of employing an effective interaction structure as in Eq. (2.23) had already been
suggested by H. Primakoff [70] in the context of the π0-meson-to-photon-coupling. As a consequence,
also in the context of axions, the notion “Primakoff process” for conversion of photons to ALPs is widely
used in the literature.
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In conclusion, determining ellipticity and rotation of a polarized light beam induced within

an external field are means to probe the parameter space of the ALP mass and coupling,

as exploited, e.g., with PVLAS [25], BMV [28] and BFRT [71].

Light-shining-through-walls scenario for axions and axion-like particles

As a popular alternative to polarimetry, one can utilize the weak coupling between ALPs

and ordinary matter in order to shine photons in external fields through light-blocking

walls, thus going by the name of “light-shining-through-walls” (LSW) setups. Following P.

Sikivie’s idea [72] of establishing a “helioscope”, whose original purpose was to detect solar

axions, it was later realized that by direct production of axions from a laser beam [73, 74],

one could perform very “clean” measurements by shining axions through a light-blocking

wall [75]. Here, “clean” is meant in the sense that the standard model background for

common LSW scenarios is safely negligible [42, 76].

XX

Figure 2.4: LSW scenario with axion-like particles. A
photon which enters from the left hand side (wiggly line)
can be converted into an ALP (dashed line) in an external
field (indicated by the crosses at the end of the photon
lines). The ALP can traverse a barrier nearly unhindered
due to its weak coupling to matter and can subsequently
be reconverted into a photon.

LSW with axion-like particles is possible if the laser probe photons are converted into real

ALPs in front of the wall and reconverted into photons behind that wall, cf. Fig. 2.4. In

typical laboratory searches the photon-to-ALP conversion processes are induced by strong

dipole magnets. Roughly spoken, LSW searches are very sensitive to small ALP couplings

as the large number of available photons for the conversion process in front of the wall

faces the possibility of even single photon detection behind a light-blocking barrier.

Again, the photon-ALP conversion probability can again most conveniently be ob-

tained for small ALP masses in vacuo19, cf. [68, 69, 72–75], reading

Pγ↔φ =

(
gP/SBL

2

)2 (
sin(y)

y

)2

, y =
Lm2

φ

4ω
. (2.27)

As the functional dependence in Eq. (2.27) is such that the transition probability is

largest for small values of y, it is conceivable that LSW searches, being best known by

their acronyms ALPS [77, 79], LIPSS [80, 81], GammeV [82, 83], OSQAR [84] as well as

19In an (experimentally preferably gaseous) medium this expression is modified as the photons ef-
fectively acquire a mass, see, e.g., [77]. Although a gas insertion generically decreases the conversion
amplitude for visible light, it can be used to close the “gaps” in the parameter-space coverage arising
from the sinusoidal dependence of the transition probability, cf. Eq. (2.27). Alternatively, an optimized
arrangement of magnets can be used to extend the sensitivity of the setup to a larger mass range [78].
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a setups at BMV [85] and BFRT [71], have been most successful in constraining the ALP

parameter space in the lower mass range.

Even further sensitivity enhancement within forthcoming LSW setups seems attainable

by the use of higher photon energies, such as X-rays [86–88] or the installation of a second

cavity on the regeneration side, i.e., through so-called “resonant regeneration” [89–92].

Noteworthy, the latter concept has recently been successfully experimentally verified even

for regeneration in the sub-quantum regime [93].

In addition, it is important to note that for larger ALP masses on the order of the

employed photon frequency, the LSW probability can exhibit a resonant behavior near

ω � m, as discussed in [94]. A similar feature will be encountered and utilized in Chapt. 5

where ALP search in purely laser-based setups is investigated.

Light-shining-through-walls scenarios for other WISPs

Intriguingly, LSW setups, although originally aimed at the detection of axions (or ALPs),

are not only sensitive to these particles but also to other WISPs, in particular to hidden

photons and MCPs, see [42] and references therein for a recent overview.

For example, following Eq. (2.16), in a minicharged model with hidden photons, “light-

shining-through-walls” is possible if photons traverse the wall through a real hidden-

photon, see Fig. 2.5. Photons can be converted into hidden photons through an inter-

mediate MCP loop within an external magnetic field. Subsequently, similar to the LSW

scenario with ALPs, the hidden photons are then assumed to traverse the barrier unhin-

dered and can thereafter be reconverted into photons [95]. Note that direct photon-hidden

photon oscillations are also possible if the hidden photon has a mass term: Upon diag-

onalizing the kinetic mixing term in Eq. (2.16), a term mixing the gauge potentials of

the photons and hidden photons themselves is obtained and one acquires a “mass mix-

ing” term. (In a sense the photon-hidden photon oscillations are then very analogous to

neutrino oscillations.) However, note carefully that from the LSW scenario depicted in

Fig. 2.5 only combined bounds on the fractional charge ε and the hidden-sector coupling

eh can be derived.

Figure 2.5: LSW scenario with a hidden photon and
minicharged particles. A photon (wiggly line) can os-
cillate into a hidden photon (zig-zag line) through a
minicharge loop in an external field. After passing a
wall, the hidden photon can be reconverted into a pho-
ton through the reverse process. From this LSW sce-
nario, combined bounds on the minicharged coupling ε for
fixed hidden-sector fermion coupling eh can be derived, cf.
Eq. (2.16).
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A second, more direct LSW scenario for minicharged particles is through barrier-transition

via virtual particle-antiparticle intermediate states or “tunneling of the 3rd kind”20 [96]

as depicted in Fig. 2.6. Although such a process is in principle also possible with neu-

trino intermediate states, this standard model background is highly suppressed due to the

Fermi scale. It turns out however, that in a zero-field setting, bounds that are derived

from this LSW scenario cannot compete with current laboratory limits from polarimet-

ric measurements (which can also provide for direct bounds on the fractional charge of

minicharged particles). In Chapt. 6 we extend precisely this LSW scenario to include

external magnetic fields and investigate the corresponding sensitivity in a first case study.

Figure 2.6: LSW scenario with minicharged particles
through a virtual intermediate state as first discussed
in [96]. A spontaneous oscillation into a minicharged
particle-antiparticle pair which traverses a light block-
ing barrier freely, enables the photon to effectively “shine
through a wall”.

2.2.3 Shedding light on the vacuum in the laboratory and with

astrophysical sources

Lastly, let us remark that the above presentation of optical probes of the particle content in

a polarized vacuum is by far not extensive. Particularly, returning to Sikivie’s suggestion

of establishing a helioscope, it is noteworthy that also this concept has been realized in a

number of experimental setups [97–100]. Here, no laser is employed for axion production;

rather, the sun acts as axion source. Based on the non-observation of ALPs as yet,

currently the CERN axion solar telescope ‘CAST’ [100–102] provides among the strongest

bounds on ALPs in the mass range below O(1eV), which at first sight drastically outmatch

the best laser-based laboratory bounds by several orders of magnitude. Essentially, this

comes about as the sun can be expected to produce more ALPs than any laser employed

in the laboratory.

Furthermore, bounds derived from astrophysical considerations [103] that are, e.g.,

based on stellar evolution arguments, constrain ALPs and also MCPs mostly well21 below

the parameter regions that are currently accessible in the laboratory.

As a rule, however, the stellar WISP generation processes involve momentum transfers

in the keV range, whereas laboratory experiments based on optical probing are naturally

20In the sense that the tunneling process via virtual particle-antiparticle pairs complements quantum
mechanic tunneling and tunneling of real particles in quantum field theory (i.e., tunneling via a tree-level
process, cf. Fig. 2.4), this process has been named “tunneling of the 3rd kind”.

21For example, [51] provides bounds on minicharged particles down to ε ∼ O(10−14) for larger
minicharge masses, see also [104–106].
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sensitive to couplings to ALPs at much lower momentum transfer. However, reasonable

models [107–109] have been proposed in which the coupling of the WISPs strongly depends

on the momentum transfer and further parameters22 dictated by the stellar environment,

rendering laboratory searches indispensable for a comprehensive search for WISPs. Also,

a strong argument for performing dedicated laser-based laboratory searches is the fact

that only in such measurements, one can directly influence and modify the production

process of the WISPs. Thus, it is crucial to note that in the case of hints of new particles,

only with dedicated laboratory experiments one will be in the position to clear ambiguities

related to their nature and properties which may arise.

To close this section, let us briefly comment on some selected additional concepts

and setups employed for WISP search, where details23 can, e.g., be found in [41]. In

particular, let us mention direct axion dark matter searches such as the axion dark matter

experiment ‘ADMX’ [113]. These ‘haloscopes’ [72], being conceptually equivalent to an

LSW setup, are based on the reasoning that axions could contribute a major amount

to the dark matter density through which the earth supposedly24 passes continuously.

However, given the large variety in the matter content within the visible sector, there

seems to be no compulsive reason that dark matter should be widely dominated by a

distinct particle type.

Lastly, there is a number of conceptually related laboratory setups that could not

be considered in this chapter. Among others we would like to point out measurements

of axion-induced parity and time-reversal symmetry-violating forces [116], see, e.g., [117],

tests of Coulomb’s law [118, 119] and the suggested use of accelerator- [120] or microwave-

cavities [90, 121] as production sites for WISPs.

22It is instructive to read [109] for a comprehensive review of the involved astrophysical parameters and
processes and to get a vivid impression of the excitement and the time scales of innovation that followed
the positive signal report of the PVLAS collaboration.

23Most current developments in this field are also published regularly in a conference proceedings series,
see [110–112].

24Note that scenarios exist in which dark matter is not needed to explain pertinent astronomical
observations, see, e.g., [114]. However, in particular studies of the bullet cluster [115] seem to strongly
support the idea that dark matter exists. In addition, the various WISPs are of course not necessarily
good dark matter candidates in their entire parameter space, see, e.g., [41].



Chapter 3

Geometry as vacuum probe: A

nonperturbative treatment

“Es sollte stehn: Im Anfang war die Kraft!

Doch, auch indem ich dieses niederschreibe,

Schon warnt mich was, daß ich nicht dabei bleibe.

Mir hilft der Geist! auf einmal seh ich Rat

Und schreibe getrost: Im Anfang war die Tat!”
J.W.v. Goethe, Faust I

With all basic prerequisites at hand, the first quantum-vacuum probe that we address

in this work pertains to non-planar geometries in Casimir-Polder systems. Casimir [8]

and Casimir-Polder [9] forces belong to the most straightforward and direct probes of the

vacuum structure of QED. These arise when macroscopic bodies or atoms, respectively,

modify the spectrum of vacuum fluctuations through the enforcement of boundary condi-

tions on the fluctuations. To briefly pick up on the discussion of the previous chapter, it

is intriguing to note that Casimir-force measurements are – by virtue of their remarkable

accuracy – also well applicable in the search for physics beyond the standard model, e.g.,

in terms of modifications to Newtonian gravity at small length scales, see, e.g., [122].

From the viewpoint of theory, much effort has been put into developing calcula-

tional techniques that enable to precisely account for influences of geometric variations

in Casimir-type experiments, cf., e.g., [123] for an overview of recent experimental and

theoretical developments. In particular, standard calculational techniques for simple flat

surfaces are insufficient in the context of non-planar settings due to the demonstrated in-

herent non-additivity of these quantum forces, see, e.g., [124]: Since quantum fluctuations

contribute on all length (or momentum) scales, geometry dependencies generally require

a profound understanding of the fluctuation spectrum in a given configuration and cannot

be dealt with by perturbative expansions with respect to a small geometry parameter.

Thus, a variety of new field-theoretical methods for understanding fluctuation-induced

phenomena have been developed in the past few years, superseding very early phenomeno-

logical recipes such as, e.g., the proximity-force approximation [125]. Most recently, these

developments have been subsumed in a resource letter [126] in particular for Casimir-

Polder forces which will be subject to our subsequent investigations.

Motivated by precise Casimir-Polder measurements based on quantum reflection within

the atomic-beam spin-echo technique [127, 128], this chapter is devoted to a nonperturba-

tive study of Casimir-Polder forces near a surface with uniaxial corrugation. Our ansatz is

23
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based on the constrained-functional-integral approach [129, 130] which makes it possible

to condense the computational effort into a one-dimensional Green’s function problem

along the direction of nontrivial curvature of the surface. This Green’s function problem

involves singular kernels and we therefore put emphasis on presenting an appropriate rep-

resentation that allows for an efficient numerical treatment. For the purpose of a first case

study, we consider a fluctuating massless scalar field obeying Dirichlet boundary condi-

tions, whereas, building on the subsequently presented results, a partial generalization to

the electromagnetic case has also been successfully worked out, cf. [131].

In this chapter, we proceed as follows: In Sect. 3.1 we review the framework of the

analytical treatment of this problem only briefly as this is devised in [132] in detail.

Subsequently, in Sect. 3.2, we extensively discuss an appropriate numerical access to

this problem which is applicable for arbitrary uniaxial corrugations and provide detailed

results for experimentally relevant sinusoidal and saw-tooth-like shapes.

3.1 Devising a nonperturbative treatment for scalars

3.1.1 Constrained-functional-integral approach and the Casimir-

Polder limit

We aim at calculating the Casimir interaction-energy of a system of bodies, separated by a

distance measure H which serves as a potential energy for the Casimir force, cf. Sect. 2.1.

With the generating functional as defined in Eq. (2.1), this is achieved by evaluating

E(H) = − 1

TE

ln
ZD.

Z∞
, (3.1)

where TE denotes the length in Euclidean time direction and the label “D.” refers to

the ground state energy with Dirichlet boundary conditions implemented by virtue of the

insertion of bodies into the vacuum. On the other hand, “∞” indicates that the boundary

conditions have been effectively removed through formally separating all bodies to infinite

distance. In this way, Casimir self-energies are eliminated.

In our treatment, we follow the constrained-functional-integral approach. We restrict

ourselves to an idealized two-body problem, in which the influence of the bodies on the

fluctuating fields can be implemented by the insertion of a δ functional into Z. Thus, the

Euclidean generating functional, cf. Eq. (2.1), becomes for a massless scalar field φ

ZD =

∫
Dφ

2∏
α=1

∏
xα

δ (φ(xα)) exp

(
−1

2

∫
d4x (∂φ(x))2

)
. (3.2)
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For the case of Dirichlet boundary conditions, the corresponding δ functional is repre-

sented by a product of δ functions δ (φ (xα)) for all 4-vectors xα pointing onto a surface

Sα, where here α labels the two disjoint surfaces.

In order to evaluate the integral over the fields φ, a Fourier representation is used for

the δ functional with the help of auxiliary fields1 that have support only on the surfaces

Sα. First performing the Gaußian integral over φ leaves us – apart from a factor which

drops out upon evaluation of the Casimir energy and thus is irrelevant – with another

Gaußian integral for the auxiliary fields which can accordingly also be carried out.

With the resulting constrained functional integral we thus find by virtue of Eq. (3.1),

upon expansion of the logarithm, the Casimir interaction energy between two surfaces S1

and S2, separated by a distance measure H

E(H) = − 1

TE

1

2

∞∑
n=1

1

n
Tr

(
M−1

11 M12M−1
22 M21

)n
. (3.3)

Here, Mαβ is the propagator of the scalar fluctuations, i.e., the functional inverse of ∂2

Mαβ(ζ, �x − �x′) =
1

4π|�x − �x′| exp (−|�x − �x′||ζ|) . (3.4)

In Eq. (3.4), the propagator has been partially transformed to frequency space as the

problem is translationally invariant in time direction. Thus, ζ denotes the imaginary

frequency, while �x = (x1, x2, x3) and �x′ are three-vectors to be evaluated on the surfaces

Sα and Sβ, respectively. As the surfaces respond to the field by “charge” fluctuations, the

inverse propagator M−1
αα can be interpreted as propagator of charge fluctuations within

the surface, cf. also footnote 1. The trace in Eq. (3.3) has to be taken over the coordinates

of the surfaces, demanding the inclusion of appropriate metric factors for the integration

measures. To control the singularity structure that arises within Eq. (3.4) upon the

evaluation of the trace, it is expedient to treat the propagators within a proper-time

formulation. Lastly, note carefully that the functional inverse of Mαβ is generally not

known analytically for surfaces of nontrivial shape.

In the following, we evaluate the Casimir energy between a surface S1 which is uniaxi-

ally corrugated along the x1 direction and a sphere S2 with radius r. The latter constitutes

the scalar substitute for the “atom” in the case of QED, cf. Fig. 3.1. As also visible in the

figure, the absolute and mean distances between surface and sphere are henceforth labeled

by H and H̄, respectively, whilst A denotes a typical amplitude of the corrugation and λ

a typical corrugation wavelength with corresponding frequency ω = 2π/λ. The shape of

the corrugation along x1 is stored in a height function h(x1). As we consider only periodic

1Drawing the analogy to the electromagnetic case, the auxiliary fields can be thought of as charged
sources which enforce the boundary conditions by means of their coupling to the fluctuating field, see
also [133].
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height profiles in the following, also a phase φ is introduced in the height function. In

all subsequent evaluations, we are interested in the Casimir-Polder limit (r 
 H), where

the analytical result for a flat surface S1 is known to be O( r
H2 ) to leading order, see, e.g.,

[134].

A

H̄

H

x

λ

r Figure 3.1: Casimir-Polder setup with a uniax-
ially corrugated surface. Here, a sphere of ra-
dius r at a mean distance H̄ above a surface
sinusoidally corrugated along x with amplitude
A and wavelength λ is depicted. In our conven-
tions, we fix the sphere at the lateral coordinate
x = 0. Thus, to allow for different positions of the
sphere above the surface, we effectively shift the
structure function h(x) by varying the phase φ.
The distance parameter H measures the sphere-
surface distance along the global normal, such
that H = 0 corresponds to sphere-surface con-
tact for all values of φ.

3.1.2 Scalar forces in the plate-sphere configuration

Let us now evaluate the (inverse) propagators in the plate-sphere configuration. The in-

verse propagator on the sphere, M−1
22 , is straightforwardly computed from M−1

22 M22 = �,

where M22 is given through Eq. (3.4): By expansion of the equation in terms of spherical

harmonics Ylm, M−1
22 can be calculated to arbitrary order in l. For the computation of the

leading order Casimir energy in the scalar setup, however, it is sufficient to consider the

monopole contribution l = 0 = m, which reads M−1
22 (ζ) = |ζ| exp(r|ζ|)/ [4πr2 sinh(r|ζ|)].

In order to extract the leading order Casimir interaction energy, we next go over to

dimensionless variables by a rescaling with the distance parameter H: �x → �̃xH, ζ → ζ̃/H.

Recalling that the Casimir interaction energy is O( r
H2 ) to leading order, the rescaling

procedure unveils that it suffices to consider the n = 1 term of the sum in Eq. (3.3).

Furthermore, it is crucial to note that in this limit the propagators M12 and M21 become

independent of the coordinates on the sphere S2. As the monopole contribution of M−1
22 is

also independent of these coordinates, the two integrations over the surface of the sphere

S2 contribute only a factor of 16π2 in Eq. (3.3) and only the integration over ζ̃ and the

coordinates of S1 are nontrivial. As we intend to investigate uniaxially corrugated surfaces

S1, we exploit the translational invariance of the surface S1 along the 2-component by

a partial Fourier transformation of Eq. (3.3) to momentum space with respect to this

direction. In this manner, integrations along the direction of corrugation x̃1 and along

the momentum space variables ζ̃ and p̃2 remain to be evaluated in the trace.
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In the final step, it is feasible to combine the variables ζ̃ and p̃2 by the substitution to

polar coordinates. Thus, employing q̃ =
√

ζ̃2 + p̃2
2, Eq. (3.3) reduces to:

E = −1

2

r

H2
2

∫ ∞

0

dq̃

∫ ∞

−∞
dx̃

√
g(x̃) q̃ ΔM̃12(q̃; x̃)M̃21(q̃; x̃)︸ ︷︷ ︸

:= α

+ O
(

r2

H3

)
, (3.5)

where we have defined ΔM̃12 = M̃−1
11 M̃12 (which includes explicitly the metric factor

characterizing the surface S1) and dropped the coordinate subscript “1” along the di-

rection of corrugation to simplify notation: x̃1 → x̃. Furthermore, we have defined a

dimensionless factor α that depends on the geometry parameters of the configuration

(measured in units of H). The metric factor of the corrugation is related to its height

profile h(x̃) by √
g(x̃) =

√
1 +

(
∂x̃h̃(x̃)

)2

, h̃(x̃) =
1

H
h(x̃H) . (3.6)

As the derivative of the height function appears in Eq. (3.6), we consider only surfaces

described by continuous height functions. The dimensionless propagators M̃12 ≡ M̃21

and M̃11 that enter Eq. (3.5) are found to be given in terms of Bessel functions:

M̃11(q̃; x̃
′; x̃) =

1

2π
K0

(
q̃

√
(x̃′ − x̃)2 +

(
h̃(x̃′) − h̃(x̃)

)2
)

, (3.7)

M̃12(q̃; x̃
′) =

1

2π
K0

(
q̃

√
(x̃′)2 +

(
h̃(x̃′) − 1

)2
)

. (3.8)

In the planar limit, computing the energy in Eq. (3.5) is now very simple. For a flat surface

S1, the height function becomes a constant and the remaining integrations in Eq. (3.5)

can be carried out analytically. Thus, in the planar case, the energy between the sphere

and the plane yields in the Casimir-Polder limit r 
 H

E(H) = − 1

8π

r

H2
+ O

(
r2

H3

)
, (3.9)

which agrees with a number of recent previous calculations [134–137] and will serve as

analytical cross-check for the performance of our numerical evaluations in Sect. 3.2. Turn-

ing to arbitrary uniaxial corrugations, the combined propagator ΔM12, being the crucial

ingredient in obtaining the Casimir-energy in Eq. (3.5), is evaluated by solving∫
x̃

√
g(x̃)M̃11(q̃; x̃

′; x̃) ΔM̃12(q̃; x̃) = M̃12(q̃; x̃
′) (3.10)
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numerically2. However, the treatment of the above equation is nontrivial due to the

singular structure of M̃11 at the origin, see Eq. (3.7).

The Casimir-Polder limit is obtained in the situation where the sphere radius r is

much smaller than any other scale, r 
 H, A, λ, . . . . The factor α thus is a function of

α = α(A/H, λ/H, . . . ), but it is independent of r. Notably, from a technical perspective,

the result of Eq. (3.5) is very simple. It should be stressed that already the first trace term

in the initial Casimir-energy formula in Eq. (3.3) includes nine integrations for the trace:

one over the imaginary frequency and four times two integrations over the lateral surface

coordinates. Due to the trivial dependency of the integrand on the lateral coordinates

of the sphere in the Casimir-Polder limit, the number of integrations is then reduced by

four; moreover, the n sum is just replaced by its first term in this limit. The emerging

translational invariance vertical to the direction of corrugation reduces the number of

integrations by another two. Thus – instead of nine – we are left with three integrations:

two of them are directly visible in Eq. (3.5), the third one is needed for the construction

of ΔM12 as a solution of Eq. (3.10). These simplifications make the Casimir-Polder limit

accessible to numerical integration for arbitrary height profiles.

The resulting two integrals in Eq. (3.5) are both convergent, non-oscillatory and gener-

ically exhibiting a simple one-peak structure. The treatment of the singularity structure

in the Green’s functions equation (3.10), however, requires some care and is outlined in

App. D.

3.2 Results for uniaxially corrugated surfaces

3.2.1 Sinusoidally shaped surfaces

As a first nontrivial example, let us calculate the scalar Casimir-Polder potential for a

sinusoidal corrugation, see Fig. 3.1. The potential for this structure is given by Eq. (3.5),

where we use h(x) = A sin(ωx + φ) as height function appearing in the propagators

Eqs. (3.7) and (3.8) as well as in the surface metric factor of Eq. (3.6). The parameters

A and ω enable us to vary the corrugation amplitude and periodicity of the structure,

respectively. The phase φ is used to modulate the relative position of the structure beneath

the sphere, since the latter is always kept fixed at x = 0. As H characterizes the distance

of the atom to the surface along the global surface normal, H can be viewed as a function

of φ in our conventions, H = H(φ) with H(−π/2) = H̄ + A at the sine minimum and

H(π/2) = H̄ − A at the sine maximum, i.e., H = 0 always corresponds to sphere-wall

contact, where the limit r 
 H is implicitly understood.

2Note that the only quantity for computing the Casimir energy which is not known analytically here
is M−1

11 . In principle, one could thus be tempted to evaluate M−1
11 M11 = � numerically. However,

Eq. (3.10) provides us with ΔM̃12, being directly applicable in Eq. (3.5).
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As the crucial building block for the Casimir-Polder potential, we solve the Green’s

function equation Eq. (3.10) numerically on a one-dimensional lattice in x-direction. This

requires to invert the propagator M̃11 on the corrugated surface. Even though the singu-

larity of this propagator at coincident points is integrable in the continuum, the discretized

version needs to deal with this singularity explicitly. This is done by introducing a reg-

ularization parametrized by a short-distance cutoff ε, which can be removed after the

continuum limit has been taken. Details of how this procedure is implemented numeri-

cally are given in App. D.

In the following, we display our results for the Casimir-Polder energy always normal-

ized with respect to the planar-surface case (for consistency, the normalization factor

is also determined numerically), since in this manner, the geometry-induced effects are

better visible. Furthermore, we expect that these results for the scalar case give a quali-

tative estimate also for the electromagnetic case for which the normalizing prefactor has

a different distance dependence.

In Fig. 3.2, we display Esine/Eplanar as a function of the vertical position3 of the sphere

above a minimum of the corrugation (φ = −π/2) for different corrugation frequencies

ωA = 1, 2, 3. In the limits H/A → ∞ and H/A → 0, we find that Esine/Eplanar → 1.

This is expected, since in the first limit the corrugation of the plate cannot be resolved

as it is too small compared to the distance. In the second limit, the corrugation is

irrelevantly large compared to the distance, i.e., the sphere does not notice it locally. In

the region where H ∼ A, the potential for the corrugated surface clearly deviates from

the corresponding planar case. One can see that this effect becomes more pronounced for

larger corrugation frequencies, i.e., shorter surface periodicity.

We identify various regimes which can be classified in terms of an anomalous dimension

η which measures the deviation of the Casimir-Polder potential from the planar case,

Ecorrugation ∼ 1

H2+η
, (3.11)

with η = 0 for the planar case, cf. Eq. (3.9). At small distances, H/A 
 1, we find a

linear increase of the normalized potential Esine/Eplanar with H/A, implying an anomalous

dimension of η = −1. A linear fit to the short-distance data in the well of the structure

(not shown in Fig. 3.2) yields Esine/Eplanar � 1+β(H/A). The linear coefficient β depends

on the frequency, β = β(ω/A) � 0.5, 2.3, 5.2 for ωA = 1, 2, 3; within the numerical

accuracy, this dependence is compatible with a power law β ∼ (ωA)2.

3In [138], cf. also [139], the dependence of Esine/Eplanar on the horizontal position of the sphere with
respect to the corrugation has been also studied. Here, however, we limit ourselves to a study of the energy
dependence along the vertical axes, as this constitutes the limit in which perturbative approximations
are most expected to become unreliable.
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At larger distances H/A ∼ O(1), the normalized energy develops a peak. Various

regimes can be identified near the peak and also in the drop-off region. The increase

towards the peak as well as the decrease right beyond the peak can be characterized by

power laws parametrized by an ω-dependent anomalous dimension. Towards the peak,

we find η � −0.33,−0.57,−0.67 for ωA = 1, 2, 3, and the fit beyond the peak yields

η � 0.4, 1.0, 1.6 for ωA = 1, 2, 3. For even larger distances near H/A � 10, we observe that

all normalized energies approach a universal curve being characterized by an anomalous

dimension η = 0.2; in particular, the anomalous dimension shows no sizeable ω dependence

anymore.

Notably, this large-distance universality behavior has recently also been observed in

an independent, full electromagnetic calculation for a dielectric grating using a scatter-

ing formulation [140]. In this formulation, the difficulties lie in the computation of the

exact scattering matrices of the nontrivially shaped bodies, see, e.g., [141, 142]. To gain

an intuitive understanding of this feature one can, e.g., employ the framework of the

worldline picture of the quantum vacuum [143]. In this picture, quantum fluctuations are

mapped onto random paths characterizing their space-time trajectories. To contribute

to the Casimir interaction energy, these trajectories have to intersect with both surfaces,

implying that the fluctuation has an average extent of the order of the surface separation

H, and by isotropy of the vacuum fluctuations, also a lateral extent of this order. By

this, the fluctuation integral averages over structures of the corrugation which are smaller

than H. Higher corrugation frequencies with ωH � 1 thereby become irrelevant for the

Casimir-Polder potential, as is demonstrated by the universal drop-off for larger H/A.

For even larger distances H/A � 10, the power law cannot continue for arbitrar-

ily large H/A, since the Casimir-Polder potential eventually has to approach the planar

limit. In this large-distance regime, we have only a few reliable numerical data points4,

as the discretization artifacts increase, once the lattice spacing approaches the corruga-

tion wavelength. The available data is compatible with a logarithmic approach towards

Esine/Eplanar → 1 for H/A → ∞.

Finally, we compute the Casimir-Polder potential above a maximum of the sine struc-

ture at φ = +π/2. As expected, the Casimir-Polder energy is always smaller than in the

planar case as the surfaces bends away from the atom and approaches the planar result in

the two limits H/A → 0 and H/A → ∞, see Fig. 3.3. Starting from an initial decrease of

the normalized energy for small distances H/A, a power-law decrease develops towards the

dip with η � 0.09, 0.11, 0.11 for ωA = 1, 2, 3. Beyond the dip near H/A ∼ 1, a power-law

increase follows with an anomalous dimension η = −0.13,−0.16,−0.19 for ωA = 1, 2, 3,

respectively. Here, we observe a linear ω-dependence of η in this regime. Also, a second

power-law regime is found for larger distances H/A � 10 with an anomalous dimension

4Details of the numerical implementation are given in App. D. Note that all numerics have been
performed on a standard desktop computer with standard linear algebra packages.
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η = −0.07 for the ωA = 1 data. Due to an increase of the discretization artifacts, no

reliable data for larger ω is available, such that the expected universality in this distance

regime still needs to be shown5.

1 3 9
H/A

1

2

4

8

E si
ne

 / 
E pl

an
ar

ω A = 3
ω A = 2
ω A = 1
Fit: 28.6 (1/x)1.6

Fit: 10.6 (1/x)1.0

Fit:  3.3 (1/x)0.4

Large-x fit: 2.2 (1/x)0.2

Figure 3.2: Normalized Casimir-Polder en-
ergy Esine/Eplanar above a corrugation min-
imum φ = −π/2 versus the normalized
distance H/A for three different corruga-
tion frequencies. Small distances are gov-
erned by a linear increase with anomalous
dimension η = −1, cf. Eq. (3.11). The
drop-off beyond the peak is characterized
by an ω-dependent anomalous dimension
η � 0.4, 1.0, 1.6 for ωA = 1, 2, 3. At
larger distances H/A ∼ 10, all normalized
energies approach a universal curve with
η � 0.2. The corresponding fit regions are
indicated by horizontal arrows.
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Figure 3.3: Normalized Casimir-Polder en-
ergy Esine/Eplanar above a corrugation maxi-
mum φ = π/2 versus the normalized distance
H/A for three different corrugation frequen-
cies ωA = 1, 2, 3, respectively. All units are
set by the corrugation amplitude A. The
increase beyond the dip is characterized by
an ω-dependent anomalous dimension η �
−0.13,−0.16,−0.19 for ωA = 1, 2, 3. At
larger distances H/A � 10, a power law with
η � −0.07 is observed for the ωA = 1 curve.
The corresponding fit regions are indicated
by horizontal arrows.

3.2.2 Sawtooth-like corrugation

To see if the universality behavior is also invariant under the form of the corrugation,

let us study, as a second example, the Casimir-Polder potential for a sawtooth structure,

where the wavelength λ is 2.8 in terms of the amplitude A. I.e., the dominant frequency

of its Fourier decomposition is ωA � 0.45. These parameters reflect the specifications of

a sawtooth structure used in an experimental setup [144]. In our numerical studies, we

use a smoothed, continuous sawtooth-like structure function with wavelength λ, starting

at h(0) = 0, rising linearly to its maximum amplitude A at h(0.8λ) and dropping linearly

to zero again at h(λ) = h(0).

In Fig. 3.4, we plot Esawtooth/Eplanar above the corrugation minimum. Qualitatively, the

result is similar to that obtained for the sine structure and reveals the various analogous

5It seems, however, worthwhile to check this behavior directly in full QED.
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Figure 3.4: Normalized Casimir-Polder
energy Esawtooth/Eplanar above a corru-
gation minimum of the saw-tooth pro-
file versus H/A for ωA � 0.45. The
increase towards the peak is governed
by a power-law with anomalous dimen-
sion η = −0.3. The drop-off beyond the
peak is characterized by η � 1.1. At
larger distances H/A ∼ 10, the normal-
ized energy approaches a curve similar
to the ones for the sine structure with
η � 0.2. The corresponding fit regions
are indicated by horizontal arrows.

regimes. Quantitatively, the peak and consequently some of the anomalous dimensions

are more pronounced. The increase towards the peak follows a power-law with anomalous

dimension η � −0.3. For the decrease right beyond the peak at H/A � 1, we find

η � 1.1. At larger distances H/A ∼ 10, we again observe a second power law with

anomalous dimension η � 0.2 which agrees quantitatively with the anomalous dimension

in the sinusoidal case. According to our previous considerations, this agreement can

immediately be understood from the fact that the fluctuation integrals again average over

the corrugation structures small compared to the distance parameter H.

3.3 Probing with varied inhomogeneities

Brief summary and perspectives of the geometric vacuum probes

In this chapter, based on the constrained-functional-integral approach, we devised a novel

access to arbitrary uniaxial corrugations in Casimir-Polder systems, whose main feature

consists in its nonperturbative treatment of the height profile of the corrugation. In

a numerical study for two periodic corrugation profiles we parameterized the geometry

dependence of the Casimir-Polder energy by introducing an anomalous dimension η, which

quantified the difference in the distance dependency with respect to the planar setup.

The main finding of this chapter was the identification of a larger-distance regime where

all data above a corrugation minimum could be characterized by a universal anomalous

dimension. Although this anomalous dimension still depended on the position above

the corrugation, no dependence neither on the shape of the periodic profile nor on the

frequency was found as long as the product of corrugation frequency and surface separation

was sufficiently large.
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This phenomenon was attributed to the fact that the corrugations, constituting small-

scale structures within the setup, become irrelevant at larger distances as they are aver-

aged out by virtue of the isotropic vacuum fluctuations.

The universality behavior as well as the nontrivial power-law dependence would not

have been accessible through a perturbative calculation which constitutes a Taylor ex-

pansion in integer powers of the amplitude of the corrugation. Intriguingly, the feature

of universality found in the large-distance regime has only recently been confirmed [140]

in a complementary calculation for the electromagnetic case using a scattering-theory ap-

proach, see, e.g., [142] for a recent overview of the different formulations of this approach.

However, to finally compare the results from this chapter to Casimir-Polder mea-

surements from experiments employing quantum reflection, see, e.g., [127, 128, 145], not

only a full extension to the electromagnetic situation is needed, but also the dynamics

of the scattering problem needs to be worked out. In particular, atoms near the corru-

gated surface can move into all directions and not only along the global surface normal.

Thus, the full Casimir-Polder potential needs to be mapped out, and the time-dependent

quantum-reflection problem in this potential has to be solved.

In summary, the approach presented here constitutes a basis for this research.

Probing with inhomogeneities: From objects to fields

In this chapter, we have argued that a better understanding of global effects through

inhomogeneities in geometric probes of the quantum vacuum is needed to enable an ac-

curate theoretical description of rapidly improving Casimir-Polder force measurements.

Also in the other vacuum probe considered in this thesis, inhomogeneities are in large

parts an open issue: In particular, the influence of temporal and spatial inhomogeneities

in external fields on the propagation of light (cf. Sect. 2.2) is widely under investigation

and also subject to the aforementioned worldline techniques. In particular, numerical

and analytical techniques going beyond the constant external field approximation will be

central to the understanding of upcoming optical probes of the vacuum employing, e.g.,

high-intensity lasers [34–39].

In the following two chapters – although still safely staying in the constant-field ap-

proximation – we will consider phenomenological implications of light propagation in two

setups where inhomogeneities in the external field are also found to play a crucial role.

To begin with, we employ pulsed magnets at gravitational-wave interferometers whose

sensitivity curve is found to have a good match with the external magnetic pulse length,

displaying them as a potential site for optical probes of the quantum vacuum. Thereafter

we will outline a purely-laser-based axion-like particle search whose potential success will

greatly rely on a perfect laser frequency match.



Chapter 4

Advanced interferometry as a

quantum vacuum probe

“Do not fear mistakes. There are none.”
Miles Davis

Following the discussion of Sect. 2.2, vacuum nonlinearities – be their origin due to stan-

dard physics or an hitherto undiscovered particle content – are effectively probed by letting

a probe light beam propagate in preferably strong external electromagnetic fields. In this

context, particularly the implications of polarimetric measurements were reviewed, whose

most important observables were argued to be ellipticity and rotation. In addition, an

alternative to polarimetry is given by absolute phase velocity measurements which are

most easily carried out in an interferometric setup.

Realizing that – for a distinct frequency range – most precise interferometers are al-

ready in place around the globe, the employment of gravitational-wave interferometers

in the detection of QED nonlinearities was first suggested in [146], subsequently also in

[147, 148]. However, a challenge that arises in such setups is due to the fact that the actual

experimental scope of gravitational-wave interferometers is of course to infer the effects

of the gravitational rather than the electromagnetic field. For this reason, experimen-

talists aim at achieving the highest sensitivity for optical-path variations which relate to

the frequency of gravitational radiation for preferably very common astronomical events,

which at first sight is rather disadvantageous for a naive quantum vacuum experiment

with common static dipole magnets.

Thus, the first main aim of this chapter is to identify pulsed magnets as a suitable

strong-field source in this context, since their pulse frequency can be matched perfectly

with the domain of highest sensitivity of gravitational-wave interferometers. In addition,

pulsed magnet systems are developed and used in a stable manner in a number of labora-

tories worldwide at field strengths approaching 100 Tesla. Therefore, we derive the strain

of the optical path induced by repeated magnet pulses, as this is the central observable at

gravitational-wave interferometers. We also compute the signal-to-noise ratio for selected

interferometers as a criterion for measurability. A second main task of this chapter is

to demonstrate that not only strong-field QED phenomena can be investigated in such

34
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setups but also further regions of the parameter space for minicharged and axion-like

particles will become accessible.

4.1 Elements of the interferometric setup

4.1.1 Strain & sensitivity at gravitational-wave interferometers

Ground-based gravitational-wave interferometers consist of two perpendicular interfer-

ometer arms of equal length L, where mirrors are placed at the end of each arm and

form an evacuated cavity for two in-phase laser beams. An incoming perturbation such

as a gravitational wave leads to a relative change ΔL of the length of the interferome-

ter arms, manifesting itself as a phase difference of the two laser beams. The so-called

“strain” h(t) = ΔL/L then corresponds to the amplitude of the incoming perturbation.

Remarkably, present day interferometers are, in certain frequency ranges, sensitive to a

strain of h ∼ 10−22; future upgrades aim at further improvements of one or two orders of

magnitude.

In our context, it is not the arm length itself which is varied but the corresponding

optical path length L which can be modified by a strong magnetic field, cf. Chapt. 2. If

an external field is applied in a region of length x < L in one of the interferometer arms,

an optical-path difference ΔL = x(1 − v) is induced. First considering a QED-induced

strain, we concentrate on the parallel mode for which the velocity shift is maximal.

By means of Eq. (2.15), the resulting strain is

h(t) =
ΔL

L
(t) =

x

L
(1 − v‖(t)) =

x

L

14

45

α2

m4
B(t)2 ≈ x

L
(9.3 × 10−24)

(
B(t)

[1T]

)2

. (4.1)

It is visible that for a sizable strain, the magnet-length-to-detector-arm ratio x/L should

be as large as possible. However, x is constrained by the technical realizability of the

magnetic field coil, see below, and the detector sensitivity requires long arm lengths to

maximize the strain. Thus, a suitable compromise between detector arm length and

sensitivity has to be found.

The detector sensitivity to the relative shift of the length of the interferometer arms

ΔL/L is limited by various sources of noise. At low frequencies f � 40Hz, the main

limitation for ground-based detectors arises from seismic activities. For instance, for a

temporal modulation of the external magnetic field at f ∼ 10Hz (as could be achieved,

e.g., by a rotating dipole magnet) the sensitivity measure Sh(f) (as described below)

is suppressed by more than three orders of magnitude compared to the peak sensitivity

and depletes rapidly for even smaller frequencies. Alternatively, pulsed magnets have a

temporal modulation in the frequency range of highest sensitivity, as we will argue below.
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At intermediate and higher frequencies, thermal and shot noise, respectively, limit the

detector sensitivity, see, e.g., [149–151].

Information about the optimal frequency range is encoded in the total spectral density

function Sh(f) of the noise, see, e.g., [151]. For our estimates, we concentrate on advanced

LIGO [152] and GEO600 [153]. The projected sensitivity of both detectors depends on

the details of the event acting as a source for the interferometric signal. In the case of

LIGO, we use the strain sensitivity for neutron-star binaries [154] for our calculations,

which is satisfactory over a wide range of intermediate frequencies (for a typical expected

sensitivity curve of the advanced LIGO, see [155]). For GEO600, we use the typical

sensitivity data available at [153], which can be well approximated by a fit function of the

form

Sh(f) = S0( (f0/f)p1 + 2 (f/f0)
p2 + 2 )/5 , (4.2)

where f0 = 560Hz, S0 = 7 × 10−44Hz−1, p1 = 3.8 and p2 = 3 near the sensitivity maxi-

mum. For the advanced LIGO data, no simple fit function is available and a numerical

interpolating function is employed instead. Note that as the signal induced by QED or

other hypothetical particles can be well predicted, it seems feasible that the interferometer

sensitivity can even be optimized accordingly.

As a measure for the observability of a shift of the optical path ΔL/L, we determine

the signal-to-noise ratio (SNR) of the induced strain. In the present case, the SNR equals

the expectation value of the detector output divided by the standard deviation of the

output variable due to noise. An SNR bigger than 1 indicates an enhanced probability

that the observed output is not just due to statistical fluctuations of the detector output

but rather due to a shift ΔL/L which is not caused by detector noise. Using a matched

filter (or “Wiener filter”) for the signal, the SNR d for a gravitational wave interferometer

is given by (see, e.g., [151, 156, 157] and references therein)

d2 = 2

∫ ∞

0

|h̃(f)|2
Sh(f)

df , h̃(f) =

∫ ∞

−∞
h(t) e−2πift dt, (4.3)

where h̃(f) denotes the Fourier transform of the induced strain.

4.1.2 Pulsed magnetic fields

For the presented setup, we consider pulsed fields that can be obtained, e.g., at the Dresden

High Magnetic Field Laboratory (Hochfeld-Magnetlabor Dresden, HLD) [158–160]. The

HLD aims at providing 100T fields generated by a solenoid in a non-destructive setup,

i.e., the infrastructure is maintained and the experiment can in principle be repeated

arbitrarily often.
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Let us first discuss a magnet coil geometry which is suited for inducing quantum

nonlinearities in the interferometer and subsequently detail on the associated magnetic-

pulse form.

As the magnetic pressure is given by pmag = B2/2μ0, already at fields strengths of

about B = 50T, the pressure on the coils is four orders of magnitude above the atmo-

spheric pressure, demanding a careful coil design. As a consequence, the coils are usually

heavily mantled and it is difficult to render the interferometer laser beam orthogonal to

the external magnetic field, as required for a maximum velocity shift, cf. Eqs. (2.14) and

(2.15). Thus, in order to maximize the shift of the optical path, a pair of Helmholtz coils

has to be used instead of the solenoid configuration. In this manner the laser beam of the

interferometer can be aligned in parallel to the field coils and thus mainly orthogonal to

the magnetic field lines without interfering with the coil mantle.

For such “split coils”, field strengths of O(10T) are technically feasible, at a coil

diameter of about x = 0.2m and a coil separation of O(1cm) [161]. As the beam waist

of the interferometer lasers is of the order of cm, the cross section of the interferometer

beam can fit in between the magnet coils, even though the issue of stray photons may

require further discussion. In addition, for standard Helmholtz setups, the field is roughly

constant at a sizable extent only along the direction of the magnetic field lines, whereas

the detection of vacuum nonlinearities requires a sizable field length perpendicular to the

field lines; the length of the latter is of the order of the coil separation. For the proposed

setup, the coil design thus needs to be optimized to provide for high (but not necessarily

constant) magnetic field strengths, spatially extending orthogonally to the direction of

the field lines.

A typical pulse undergoes a damped oscillation with pulse frequency νB and damping

rate γ. For N subsequent pulses at times t0 . . . tN−1, a satisfactory description is given by

B(t) = B0

N−1∑
i=0

θ(t − ti) sin (2πνB (t − ti)) exp(−γ (t − ti)). (4.4)

Here, we have ignored that successive pulses have no temporal overlap in a single-magnet

setup. However, as the pulse repetition rate νP ≡ 1/(ti+1 − ti) of the considered magnets

is much smaller than the damping rate (see below), Eq. (4.4) is a well justified approxima-

tion. The pulse frequency νB in Eq. (4.4) depends on the total capacity of the capacitor

banks and can lie in the range O(ms . . . s). The damping rate γ is mainly determined

by the heat capacity of the coil, which – as a rule – requires to re-cool after each pulse.

In addition, the achievable pulse repetition rate νP in a non-destructive mode depends

strongly on the desired peak field strength. In the following we consider an ambitious,

but nevertheless feasible Helmholtz setup [161] which achieves a maximum field strength

of Bmax = 60T, followed by a reverse field of Bmin = −6T and thus a damping to about
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10% of the peak field strength1. This choice fixes the amplitude of the model pulse in

Eq. (4.4) to B0 ≈ 148T and implies the constraint

γ = 2νB ln

∣∣∣∣Bmax

Bmin

∣∣∣∣ . (4.5)

We use the remaining free parameter νB for optimizing the SNR, cf. Eq. (4.3), within

the technical limitations. For this, we need the modulus of the Fourier transform of the

strain. For the model pulse of Eq. (4.4) one obtains2

|h̃(f)|2 =
x2

L2
(9.3 × 10−24)2

(
B0

[1T]

)4

sin2

(
π

f

νP

N

)
csc2

(
π

f

νP

)
× (πνB)4

(γ2 + π2 f 2) (γ4 + π4 (f 2 − 4ν2
B)2 + 2 γ2 π2 (f 2 + 4ν2

B))
. (4.6)

For a single pulse N = 1, the trigonometric functions in Eq. (4.6) cancel and the depen-

dence on the repetition rate νP drops out, as expected. For a large number of pulses N ,

the trigonometric functions approximate3 a δ comb,

sin2

(
π

f

νP

N

)
csc2

(
π

f

νP

)
≈ N

∑
n∈N

δ

(
f

νP

− n

)
. (4.7)

At large N , only frequencies which are multiples of the pulse repetition rate νP thus

contribute to the SNR in Eq. (4.3). As νP is much smaller than the frequencies dominat-

ing the SNR, the contributing frequencies form a quasi-continuum such that the sum in

Eq. (4.7) can well be approximated by an integral4. As a result, the square of the SNR

for N pulses can to a good accuracy be expressed in terms of the single-pulse result:

d2|N ≈ N d2|1 . (4.8)

The reproducibility of the signal by non-destructive pulsed magnets thus is a lever arm

for an enhancement of the SNR by a factor of
√

N .

1It can be assumed that also pulses with damping to about 70% will be obtainable in the near future.
The above pulse parameters are in this sense conservative, since a smaller damping factor γ leads to a
higher strain (cf. Eq. (4.6)).

2We use the opportunity to point out a typographical error in Eq. (8) and below Eq. (9) in [162]. In
these places, the pulse repetition rate should be correctly referenced as νP.

3For large N , the poles of the cosecant dominate and one has: sin2 (Nx) csc2 (x) �∑
n sin2 (N(x − nπ)) /(x − nπ)2

N→∞� Nπ
∑

n δ(x − nπ). Note that as the frequencies in Eq. (4.7)
are positive, here n has to be understood as positive integer also.

4Note that the squared SNR d2 ∼ N
∫

df
∑

n g(f) δ( f
νP

− n)
f=f̃νP= NνP

∫
df̃ g(f̃νP)

∑
n δ(f̃ − n) =

NνP

∑
n g(nνP)

νP→0� N
∫

df g(f), where g(f) summarizes the f -dependence outside the δ distribution.
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4.2 Estimated interferometric discovery potential

4.2.1 Detection of the QED-induced strain

We now have all the ingredients in order to calculate the SNR due to the QED-induced

strain. The first interferometer investigated is the advanced LIGO with L = 4000m. Its

sensitivity is optimal for frequencies ranging from approximately 50Hz to 500Hz with

a sensitivity measure on the order of Sh(f) ≈ 10−47Hz−1. Maximizing d2 by varying

the pulse parameter νB yields νB ≈ 47Hz, implying γ ≈ 217Hz by means of Eq. (4.5).

Inserting these values into Eq. (4.3), we obtain the SNR for a single pulse,

d|LIGO
1 ≈ 1.9 × 10−2. (4.9)

As a result, by virtue of Eq. (4.8), about N ≈ 2763 pulses are required in order to achieve

a total SNR of O(1). Depending on the details of the setup, an SNR of O(10) would

be preferable. For the following feasibility study, however, we only demand for an SNR

of O(1). This is also justified because the expected signal can be predicted to a high

accuracy which will most likely allow for an adapted noise filtering.

As mentioned above, the re-cooling time for the magnet system which determines the

pulse-repetition rate depends mainly on the pulse energy. A realistic estimate lies in the

order of several minutes. To observe the QED vacuum nonlinearities, this would imply a

continuous operation of the facility for a few days, which appears reasonable.

GEO 600 is considerably less sensitive than advanced LIGO but, for our purposes,

profits from the shorter arm length of L = 600m. Maximizing d2 with respect to νB yields

νB ≈ 273Hz with γ ≈ 1259Hz and thus a pulse length below 1ms. As a result, N ≈
2.3× 106 pulses are necessary to observe the QED induced strain at GEO, corresponding

to an unrealistic measurement time of a few years. In consequence, GEO in combination

with presently available pulsed magnets is not well suited for the observation of the QED

induced strain. Nevertheless, it still has a discovery potential for light particles beyond

the standard model, see below.

4.2.2 Interferometry with MCPs and ALPs

As argued in Chapt. 2, the investigation of QED vacuum nonlinearities implicitly searches

also the parameter space of a number of hypothetical WISPs. Here, we discuss poten-

tial velocity shifts induced by minicharged spin-1/2 fermions and axion-like particles, cf.

Sect. 2.2.
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Velocity shifts due to minicharged particles

Firstly note that MCP masses corresponding to a Compton wavelength larger than the

extent of the magnetic field cannot be fully resolved within the setup. Thus, the Helmholtz

coil separation of O(1cm) constrains the search for MCP masses to approximately mε �
2 × 10−5eV. Again, we concentrate on the effect for the polarization component parallel

to the external field which maximizes the velocity shift as in the QED case.

We can extract the velocity shifts induced by minicharges from Eqs. (2.20-2.22). As

the auxiliary function I‖ entering the velocity shift depends on the magnetic field B(t)

in a nontrivial manner, the Fourier transform of the strain, as required for the computa-

tion of the SNR (cf. Eq. (4.3)) cannot be given in closed form and a careful numerical

implementation is needed. A useful check for the numerical accuracy is given by the two

asymptotic limits of the velocity shift: 1 − v ∼ ε4B2/m4
ε for large masses (in consistency

with the QED strain in Eq. (4.1)) and 1 − v ∼ −ε8/3B2/3/ω4/3 for small masses. For an

interferometer laser with ω = 1.2eV and the pulse shape as used for the QED effect, we

obtain exclusion limits in the fractional charge-mass plane {ε, mε} by demanding an SNR

of � 1.

As visible from Fig. 4.1, already a single-pulse (N = 1) measurement at the advanced

LIGO can approach among5 the best laboratory bounds on minicharged particles [58]

derived from PVLAS data [24] with potential minor improvements in the larger-mass

range. Assuming a measurement time of ten days at GEO with a magnet re-cooling time

of 5 minutes, implying N � 2880 pulses would arrive at a similar bound. The small-mass

asymptotics of the GEO bounds for N = 1 and N = 2880 are also shown in Fig. 4.1.

Advanced LIGO with N = 2763 (as needed for to observe the QED effect) can reach a

sensitivity of ε � 10−7 for mε � 0.01eV. Noteworthy, this would compete with current

cosmological bounds obtained from CMB data [104] (see also the dash-dotted line in

Fig. 6.4 which will be discussed in more detail in Sect. 6).

We conclude that an investigation of the QED effect can also broadly improve current

laboratory bounds on MCPs.

Interferometry via axion-like-particles

We now turn to the discussion of ALPs. Here, an effective reduction of the phase velocity

arises from the fact that the corresponding photon partly propagates as a massive ALP

component. Following Eq. (2.26), the corresponding velocity shifts read

1 − vP
‖ = 1 − vS

⊥ � B2

2m2
φ

g2
P/S

(
1 − sin(2y)

2y

)
, y =

xm2
φ

4ω
, (4.10)

5LSW setups as, e.g., at ALPS [77] can provide even stronger bounds on minicharged particles.
However, as these rely on a hidden-photon intermediate state, cf. Sect. 2.2.1, we rather compare our
estimates to polarization data obtained from PVLAS.
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Figure 4.1: Discovery potential of
minicharged fermions in the coupling-mass
plane. Already a single-pulse measurement
at advanced LIGO (or N � 2880 at GEO)
can approach or slightly improve the
laboratory bounds from PVLAS. The use
of N = 2763 pulses as needed for the QED
effect can lead to sizable improvements
over the whole mass range.
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Figure 4.2: This figure shows the discov-
ery potential in the coupling-mass plane for
ALPs at LIGO and GEO, respectively. The
laboratory bounds by GammeV (LSW)
and PVLAS (rotation) can be improved
significantly in the meV mass range and
above by advanced LIGO as well as already
by GEO.

for pseudoscalar and scalar ALPs, respectively. As discussed in detail, e.g., in [50], cf.

also Sect. 2.2, the polarimetry of strong-field particle searches can distinguish between

the various particle scenarios: As visible from Eq. (4.10), by choosing the polarization

of the probe beam appropriately, the parameter space of scalar and pseudoscalar ALPs,

respectively, can be covered. However, in the following, we concentrate on the velocity

shift irrespective of the polarization dependence and thus set gP/S ≡ g.

Let us first consider the ALP parameter range for the coupling g and mass mφ that can

be probed by a single magnet pulse. Using the pulse shape as employed for the studies of

QED-induced velocity shifts, we obtain the accessible region in the mass-coupling plane,

see Fig. 4.2. For a comparison6, laboratory limits from PVLAS and GammeV are provided

in the figure. As visible, already a single-pulse measurement at advanced LIGO can

largely improve existing bounds for masses above 1meV. Intriguingly, even a single pulse

measurement at GEO can cover a small fraction of hitherto unexplored parameter space.

At advanced LIGO, for mφ � 4 × 10−4eV, assuming a number of pulses as required to

observe the QED effect give access to a parameter space which is largely uncovered by

current laboratory limits, however, cf. also footnote 6.

6Note that at the time of publication of this study in [162, 163], data from PVLAS polarization
measurements and the GammeV LSW setup provided for the strongest laboratory bounds on ALPs.
In the meantime, the ALPS collaboration has published new limits from LSW [77] reaching down to
g ≥ 10−7GeV−1 in the mφ ≤ 10−3eV mass range, cf. also Fig. 5.2.
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Lastly, note that the shape of the exclusion lines for the proposed experiment differs

from the GammeV and PVLAS bounds in Fig. 4.2 as the latter arise from LSW and

rotation, respectively, cf., e.g., [50] as well as Sect. 2.2.

4.3 Benefits of pulsed fields and a logical upgrade

A physics case for joining pulsed magnets with high-sensitivity interferometry

The sensitivity goal of ground-based gravitational-wave interferometers appears well suited

to be used in the exploration of the strong-field domain of QED. In order to generate a

strongly magnetized quantum vacuum in such an interferometric experiment, we have

suggested pulsed magnets as an advantageous strong-field source for two reasons: they

provide extremely strong laboratory magnetic fields, and their pulse frequency can be

matched perfectly with the region of highest sensitivity of the gravitational-wave inter-

ferometers.

For quantitative estimates, the above studies were concentrated on the advanced LIGO

detector, as its sensitivity goal matches with currently available field strengths already

in a rather conservative estimate. Pushing the various components to their limits may

facilitate a detection also at the gravitational-wave interferometers which are currently

operational such as GEO 600. Also the fact that the quantum-induced signal can be

predicted theoretically to a good accuracy may give rise to an improved noise filtering.

Generally, the QED velocity shift as well as the MCP signal in the large-mass domain

and the dispersive ALP effect scale with xB2, with magnetic field amplitude B and spatial

field extent x, cf. Chapt. 2. As shown, for the use of gravitational-wave interferometers,

also a suitable time variation of the magnetic field is needed7. Whereas pulsed fields profit

from extremely high fields and a suitable time variation, their deficit is a smaller extent

in comparison to dipole magnets. Since pulsed fields win roughly an order of magnitude

in the field strength and lose an order of magnitude in the field extent, the quantity xB2

can generically still be an order of magnitude larger for pulsed fields than for dipoles.

A similar consideration has inspired the development and use of pulsed magnets in the

BMV experiment [28] which finally aims at a parameter goal of xB2 � 600T2m (recent

experimental results of BMV have been achieved with xB2 � 40T2m) [28]. The pulsed

Helmholtz coil configuration considered in this work as inspired by ongoing experiments

at the Dresden High Magnetic Field Laboratory would yield xB2 � 720T2m.

7Though note that a rotating dipole magnet might also be able to overcome these difficulties [148].
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Further requirements and next steps

Ahead of an experimental realization of the suggested setup, surely many engineering

issues need to be worked out. For example, the diameter of the vacuum beam pipe

employed in the interferometer is commonly much larger than the beam waist of the

interferometer laser. Thus, an advantageous installation of the magnet coils within the

beam pipe has to be found that assures a maintenance of the vacuum pressure levels in

the beam pipe and allows for a preservation of the sophisticated laser alignment. Also,

it has to be assured that mechanical vibrations which might arise in the magnet pulse

production do not have a sizable impact on the sensitivity measure of the gravitational-

wave interferometer in the specified frequency range. Lastly, let us note that also the

implications of an operation of an interferometric setup directly at the HLD seems to

deserve a more detailed investigation, in particular as a radiation facility (F)ELBE is also

in operation at Rossendorf, cf. [164].

In summary, the prospect of exploring a new parameter regime of QED with impli-

cations for the search for new particles could make the establishment of a strong-field

quantum-vacuum program at gravitational-wave interferometers a worthwhile task for

the future.

Increasing the external field strength by pulse shortening

Finally, let us remark that although the key feature of our proposed experiment is the

matching between the frequency of the pulsed magnet and the optimal sensitivity range

of the interferometer, a crucial ingredient is also the fact that the achievable external

field strength and thereby the sensitivity of the setup can be increased through the use

of short magnet pulses instead of the commonly used static or slowly rotating dipole

magnets. Further pursuing this thought, one finds that using a second, strong laser as

external field seems desirable as modern high-intensity lasers provide the highest field

strengths within a laboratory, though necessarily at low temporal and spatial extent.

In this chapter, however, the use of a further (high-intensity) laser as external field

is disfavored as the temporal pulse extent of a femtosecond high-intensity laser would

dominate the denominator of Eq. (4.6) and thereby decrease the SNR as there no match to

the optimal sensitivity range of the gravitational-wave interferometer could be established.

By contrast, in the following chapter we discuss the requirements and advantages for

a purely laser-based setup and find that the fact that the external field then varies on

the same scales as the probe beam, can actually be utilized to deduce an appropriate

observable for signatures of axion-like particles.



Chapter 5

Searching for axion-like particles

with high-intensity lasers

“The great tragedy of Science-

the slaying of a beautiful hypothesis by an ugly fact.”
Thomas H. Huxley

In the previous chapter, we have investigated a dedicated interferometric setup which

would – among other things – be sensitive to a new region of the axion-like particle

parameter space. In addition, as discussed in Sect. 2.2.2, also polarimetric measurements

and light-shining-through-walls are viable methods for ALP searches. In this chapter,

we want to introduce an additional scenario for ALP search which aims at utilizing the

advantages and the development potential of modern high-intensity lasers.

In polarimetry, interferometry as well as LSW, the decisive parameter for the best

obtainable bounds on the ALP mass and coupling is the product of the field strength of

the external magnetic field B and its spatial extent L which is a measure for the optical

path length. Typically, the dipole magnets which are employed in these setups provide

field strengths of B ∼ O(1 − 10)T extending over a length of L ∼ O(1 − 10)m. By use

of cavities for the probe beam, the interaction region can be extended by a few orders

of magnitude, depending on the details of the setup. On the other hand, the highest

field strengths which are obtainable nowadays in a laboratory are present within the focal

spots of high-intensity laser systems.

Current Multi-Terawatt lasers achieve peak field strengths of B ∼ O(105 − 106)T,

however, naturally at the cost of spatial extent of these fields, which ranges from L ∼
O(1−10)μm. Nevertheless, the parameter BL in the laser focus lies within the same ball

park as for the dipole searches, calling for proposals of ALP search within high-intensity

laser-based setups: It should be noted that the achievable laser intensity has gone up by

more than six orders of magnitude since the introduction of “chirped pulse amplification”

[165]. Also it is expected that the parameter BL within planned facilities such as the Ex-

treme Light Infrastructure (ELI) [166] will considerably exceed the equivalent parameter

at dipoles within the near future.

44
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On closer inspection, however, the above mentioned optical techniques, namely po-

larimetry and LSW setups for ALP detection seem to be obstructed by the nature of the

electromagnetic field configuration within high-intensity lasers. Firstly, high intensities

and thus high field-strengths can only be attained by pulsed lasers with typical pulse

lengths of τ ∼ O(10 − 100)fs and repetition rates of frep � 1Hz. In addition, high inten-

sities require strongly focused pulses with focal spots of O(1 − 10)μm. Thus, the cavity

enhancements which are used for polarimetric measurements at dipoles are not as easily

available for purely laser-based setups relying on high intensity. Secondly, also the inser-

tion of a light-blocking barrier in a purely laser-based setup is disfavored: In order to avoid

damaging of the wall by the high-intensity lasers, the two focal spots for the conversion

and reconversion processes, cf. Fig. 2.4, would in practice be required to be separated

by O(cm). As the spatial extent of the focal spots of lasers is by orders of magnitude

smaller, the generic angular spread of the beam of ALPs released from the first focal spot

would significantly reduce the number of ALPs that could possibly hit the second spot for

reconversion. Even if the angular spread could be minimized, a purely laser-based LSW

experiment would demand for a temporally very well-synchronized setup: The propaga-

tion time of the ALPs from the first to the second focal spot depends on the mass of the

ALPs which is unknown a priori. Thus, the temporal delay of the pulses would repeatedly

have to be adjusted anew to scan through viable fractions of the ALP mass range.

In this chapter, we suggest another mechanism for ALP search with high-intensity

lasers which does neither rely on polarimetry nor on light-blocking walls. The electro-

magnetic field provided by high-intensity lasers varies at a scale which can be of the same

order of magnitude as the wave length of a probe photon. As will be shown, probe pho-

tons can thus experience a frequency shift when crossing the focal region of the external

field by virtue of their modified wave equation due to the photon-axion coupling term,

cf. Eq. (2.23). In essence, the vacuum effectively acts as a medium and frequency-mixing

processes, which are well-known from Nonlinear optics, can occur. Consequently, the de-

tection of such frequency-mixed photons could point towards the existence of ALPs. In

the following, we compute this effect quantitatively and discuss the required setup and

specifications of lasers which are necessary for its detection. We proceed as follows: In

Sect. 5.1, we first give the equations of motion for the ALPs and probe photons, which we

reduce to one spatial dimension for simplicity, and discuss the necessary parameterization

of the high-intensity laser beams. Subsequently, we compute the photon-axion conversion

and back-conversion amplitudes in a specific laser configuration and discuss the physical

reasons why this setup can lead to a frequency shift for the probe photons. Finally, in

Sect. 5.2, we summarize our findings and give ALP exclusion bounds achievable for the

operational high-intensity laser facility at the Institute of Optics and Quantum Electronics

in Jena as well as the planned Exawatt facility ELI [166].
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5.1 Dynamics of the axion-photon interaction

5.1.1 Equations of motion

We specialize to pseudoscalar ALPs in the following in order to account also for the QCD

axion in particular1. Note however that the scalar case can be evaluated in an analogous

calculation.

Following Eq. (2.23), one has

L = −1

4
FμνF

μν +
1

2
∂μφ ∂μφ − 1

2
m2φ2 +

1

4
g φ FμνF̃

μν , (5.1)

where m in the remainder of this chapter is the ALP mass and g the pseudoscalar coupling

such that we have dropped corresponding labels for clarity.

As we are interested in the effects of the nonlinear interaction of laser photons, let us

give the equations of motion for the photon and the axion field that follow from Eq. (5.1):

∂μ∂
μφ + m2φ − 1

4
g FμνF̃

μν = 0 , (5.2)

∂μF
μν − g (∂μφ)F̃ μν = 0 . (5.3)

Below, we study these equations in a rather general setup, assuming the interaction of

three independent electromagnetic fields, which we all presume to be provided by high-

intensity lasers. As it will turn out later, experimentally there is actually just the need

for at most two sources.

We split up the field strength tensors into contributions of a probe beam aμ
in and

two external fields Aμ
j and Aμ

k , where j and k label the two external lasers. In addition,

we neglect self-interactions of these fields. By coupling to Aμ
j , the probe photons can

be converted into ALPs, see Eq. (5.2). Successively, in Eq. (5.3), these axions can be

reconverted into photons aμ
out by the coupling to a field Aμ

k . For simplicity, we specialize

to a one-dimensional2 setup. In addition, since we do not intend to focus on polarimetry

1As the following calculation holds both for axions and ALPs, we use their names interchangeably
with a reference to both implicitly understood. In the discussion of the exclusion limits, cf. Sect. 5.2.1,
it is of course important to distinguish between them.

2As a side remark, note that Eqs. (5.2) and (5.3) can, for a probe field {�e,�b} and an external field
{ �E, �B} also be written as

(∂2
t − �∇2 + m2) φ = −g (�e �B +�b �E ) ,

(∂2
t − �∇2)�e = g

[
∂2

t (φ�B) − �∇ (�∇(φ�B)) + (�∇× ∂t) (φ�E)
]

,

where self-interactions of the probe field and the external field are neglected. Here, the second equation
can be understood as nonlinear wave equation for the electric field where the nonlinearity is due to
a magnetization �M = φ�E and a polarization �P = φ�B, where φ is determined by the first equation
above. This features nicely the magnetoelectric properties of “axion electrodynamics” [167–169] with
discontextual applications to solid state physics, cf., e.g., [170, 171].
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later on, we assume the incoming probe photons to be polarized along the y-axis and to

propagate along the positive z-axis without loss of generality.

Under these presumptions, employing Coulomb gauge and following the metric con-

ventions for the field strength tensor (cf. Eq. (A.1)), Eqs. (5.2) and (5.3) can now be

written as

(∂2
t − ∂2

z + m2) φ(z, t) = −g
[
ey
in(z, t) By

j (z, t) + bx
in(z, t) Ex

j (z, t)
]

, (5.4)

(∂2
t − ∂2

z ) ay
out(z, t) = −g [By

k(z, t) ∂tφ(z, t) + Ex
k (z, t) ∂zφ(z, t)] . (5.5)

For the external fields, we consider different cases of propagation along the ±z-axis or

orthogonal to the z-axis. In the first case of parallel propagation, the external lasers

interact through both their electric and magnetic field components. In the second case of

orthogonal propagation, the external fields can couple only through either their electric

or magnetic field component.

In particular we see from Eq. (5.4) that the axion amplitude vanishes trivially in a

setup where the fields ey
in and Ex

j propagate both along the +z-axis, since then ey
in = −bx

in

and Ex
j = By

j . By contrast, for counter-propagation of the two beams, the fields on the

right-hand side of Eq. (5.4) add up, since then we have Ex
j = −By

j .

If the propagation axis of the external field lies orthogonal to the z-axis, either the

magnetic or the electric field component can mediate the conversion process. However,

the axion amplitude in Eq. (5.4) is invariant under this choice for a linearly polarized

external beam. On the other hand, the back-conversion from the axions into photons is

not independent of whether the axion couples to the electric or magnetic field component,

due to the asymmetric coupling structure in Eq. (5.5). This is due to the pseudoscalar

nature of φ. If we had taken φ to be a scalar field, then the coupling structure in Eq. (5.5)

would be given by interchanging By
k and Ex

k .

In the following, we solve, along the general lines of [94], Eqs. (5.4) and (5.5) using

the retarded Green’s functions for the massive and massless differential operators in the

equations of motion

GR
m(z, t) =

1

2
J0

(
m
√

t2 − |z|2
)

θ (t − |z|) , (5.6)

GR
0 (z, t) =

1

2
θ (t − |z|) , (5.7)

where J0(x) constitutes a Bessel function of the first kind.

The solutions to Eqs. (5.4) and (5.5) naturally depend on the details of the kinematic

setup. In the following, we choose with hindsight a specific setting for which the conversion

process of photons into axions and vice versa leads ultimately to a frequency shift of the
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probe beam. If this frequency shift exceeds the natural line width of the probe beam, it

can constitute a measurable signal, possibly indicating the existence of ALPs.

5.1.2 Parameterization of the fields

In order to solve Eqs. (5.4) and (5.5) we need a parameterization for the electric and

magnetic fields of the three laser beams. A good model for the spatial inhomogeneities of

a focused beam is given by Gaußian beams [172], see also [173, 174], which are solutions

to the paraxial wave equation.

In consistency3 with our dynamically one-dimensional model, we restrict ourselves to

the lowest-order contribution in the aspect ratio θ0 � w0
zr

, where w0 is the waist size and zr

the Rayleigh length of the beam. The waist size of a Gaußian beam is a measure for the

transversal extent of the beam at the focus, whereas the Rayleigh length parameterizes the

broadening of the focus along the propagation direction, cf. Fig. 5.1. They are related

through the wavelength of the beam as zr =
πw2

0

λ
. To maximize the interaction of the

lasers, their focal spots should have a sizable overlap. Here, we assume the waist size to

be minimized at the origin x = y = z = 0 for the probe beam as well as for the two

external fields.

Note that for Gaußian beams, the existence of the peak external field strength is, of

course, also limited by a temporal pulse length τ . This scale must be larger than the time

it takes the probe photons to traverse the external fields: τext � zext
r and τext � wext

0 . In

the present study, we formally work in the limit of infinite pulse length for both external

field and probe beam: τext, τin → ∞. Our final result will thus be phrased in terms of a

transition probability (rather than a transition rate) for the photons of the probe field.

In practice, as real facilities are limited in energy, intensity and power, an optimization

of the effect under such constraints can typically be expected for all pulse parameters of

probe and external field being roughly of the same order.

Under these presumptions, the electric and magnetic field for the incoming probe beam

propagating along the positive z-axis reads

ey
in(z, t) = −bx

in(z, t) =
Ein√

1 + (z/zin
r )2

sin

(
ωint − kinz + arctan

(
z

zin
r

))
, (5.8)

where Ein is the amplitude of the field, ωin the frequency, kin the z-component of the wave

vector and zin
r the Rayleigh length of the probe beam, as discussed above. From Eq. (5.8)

it can be seen that the Rayleigh length not only characterizes the longitudinal extent of

the field, but also appears in the so-called Gouy phase shift that a focused light beam

undergoes, when passing through its focus [175, 176]. In addition, it holds in Eq. (5.8)

3At higher orders in the aspect ratio, the beam acquires polarization components which are neglected
in the one-dimensional calculation and loses transversality.
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zwext
0

zext
r

win
0

zin
r

x
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Figure 5.1: Spatial overlap of three focused laser beams at the coordinate center x = y =
z = 0. In this picture, the innermost beam gives the Gaußian probe beam embedded in
two external beams which propagate orthogonally and transversally to it, respectively.
The waist size wext

0 as well as the Rayleigh lengths zin
r and zext

r constitute scales for the
extent of the beam foci along the propagation direction of the probe beam and thus
parameterize the drop-off of the electric and magnetic field components of the lasers. The
aspect ratio is typically θ0 
 1.

that ωin = kin in vacuum; nevertheless, we stick to this notational distinction, since it

will simplify the discussion of energy and momentum conservation later on. Lastly, the

probe beam model in Eq. (5.8) as well as the external beams can in general include also

a constant phase factor. However, since only the relative phase between the three beams

is important, we omit such a phase factor in the above definition.

5.1.3 Photon-axion conversion

We can now calculate the photon-axion conversion amplitude by solving Eq. (5.4). With

hindsight, we choose the external field to propagate orthogonal (⊥) to the z-axis and

discuss the implications of other possible settings later.

Without loss of generality, we choose the external field to couple through its electric

field component, and plug in its Gaußian beam form

Ex
j (z, t) = E⊥ sin(ω⊥t + ψ⊥) e−(z/w⊥

0 )2 , (5.9)

By
j (z, t) = 0 , (5.10)

where E⊥ is the amplitude, ω⊥ the frequency, w⊥0 the waist size and ψ⊥ the phase of the

external beam. Thus, combining the ALP equation of motion, Eq. (5.4) with the Green’s
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function of Eq. (5.6) and the parameterization of the fields, Eqs. (5.8) and (5.9), we obtain

for the axion field:

φ(z′, t′) =
1

2
g Ein E⊥

∫ ∞

−∞
dz′′

1√
1 + (z′′/zin

r )2
e−(z′′/w⊥

0 )2
∫ ∞

−∞
dt′′ θ ((t′ − t′′) − |z′ − z′′|)

× J0

(
m
√

(t′ − t′′)2 − |z′ − z′′|2
)

sin

(
ωint

′′ − kinz
′′ + arctan

(
z′′

zin
r

))
sin (ω⊥t′′ + ψ⊥) .

(5.11)

Here we have used primed arguments for the ALP field φ in order to indicate that these

are variables over which we still have to integrate in the back-conversion process later on.

As typical laboratory scales are many orders of magnitude larger than the spatial

extents of the beams, it is justified to perform the z′′ integration from −∞ to ∞. Fol-

lowing the constraints for the respective pulse lengths τext and τin, which were discussed

in the previous section, we let also the integration over t′′ extend from −∞ to ∞ for

computational simplicity.

We rewrite the sines as sum of exponentials and substitute t′′ → t′ − T in Eq. (5.11),

yielding

φ(z′, t′) = −1

8
g EinE⊥

∫ ∞

−∞
dz′′

1√
1 + (z′′/zin

r )2
e−(z′′/w⊥

0 )2

[
e−ikinz′′ei(ωin+ω⊥)t′ei(arctan(z′′/zinr )+ψ⊥)

∫ ∞

|z′−z′′|
dTJ0

(
m
√

T 2 − |z′ − z′′|2
)

e−i(ωin+ω⊥)T−

e−ikinz′′ei(ωin−ω⊥)t′ei(arctan(z′′/zinr )−ψ⊥)

∫ ∞

|z′−z′′|
dTJ0

(
m
√

T 2 − |z′ − z′′|2
)

e−i(ωin−ω⊥)T

+ c.c.

]
. (5.12)

The two integrals over T which appear in the above equation evaluate [177] to∫ ∞

|z′−z′′|
dTJ0

(
m
√

T 2 − |z′ − z′′|2
)

e−i(ωin±ω⊥)T =

−iθ(|ωin ± ω⊥| − m) sgn(ωin ± ω⊥)

k±ax
e−isgn(ωin±ω⊥)|z′−z′′|k±

ax +
θ(m − |ωin ± ω⊥)|)

k±os
e−|z

′−z′′|k±
os ,

(5.13)

where we have abbreviated k±ax =
√

(ωin ± ω⊥)2 − m2 and k±os =
√

m2 − (ωin ± ω⊥)2.

Considering the combined t′ and z′ dependence of the axion field φ in Eqs. (5.12)

and (5.13), we can already interpret this intermediate result. The first contribution of the

integral in Eq. (5.13) encodes the situation where the axion is on shell and the frequency of

the outgoing axion is equal to the sum or the difference of the frequencies of the interacting
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laser beams. The outgoing axion then propagates with ω±ax ≡ ωin ± ω⊥ and wave vector

k±ax. As already suggested by physical intuition, this can only happen if |ωin±ω⊥| is larger

than the mass of the axion m, as encoded by the theta function in front. In addition, the

axion wave carries transmitted and reflected parts, depending on the sign of (z′ − z′′).

The second contribution of the integral in Eq. (5.13) corresponds to the situation where

the mass of the axion is larger than the sum or the difference of ωin and ω⊥, respectively. In

these situations, the axion production is off shell, and the axion wave decays exponentially

fast with a decay constant of k±os. Here, this is not the physical situation in which we are

interested.

Specializing to |ωin ± ω⊥| > m in the following, we find with Eqs. (5.13) and (5.12):

φ(z′, t′) =
1

8
g Ein E⊥

[
i

k+
ax

ei(ωin+ω⊥)t′ e−isgn(z′−z′′)k+axz′ eiψ⊥

×
∫ ∞

−∞

dz′′√
1 + (z′′/zin

r )2
e−(z′′/w⊥

0 )2ei(−kin+sgn(z′−z′′)k+ax)z′′ei arctan(z′′/zinr )

− isgn(ωin − ω⊥)

k−ax
ei(ωin−ω⊥)t′ e−isgn(z′−z′′)sgn(ωin−ω⊥)k−

axz
′
e−iψ⊥

×
∫ ∞

−∞

dz′′√
1 + (z′′/zin

r )2
e−(z′′/w⊥

0 )2ei(−kin+sgn(z′−z′′)sgn(ωin−ω⊥)k−
ax)z

′′
ei arctan(z′′/zinr ) + c.c.

]
.

(5.14)

In Eq. (5.14) we have introduced a sgn(z′− z′′) factor in the exponent in the prefactor of

the z′′-integral in order to remind us of the transmitted and reflected components of the

amplitude. This reminder is also used below, when appropriate.

In order to evaluate the remaining integrals over z′′, it is useful to employ the identity

ei arctan (z/zr)√
1 + (z/zr)2

=
1

1 − i(z/zr)
=

∫ ∞

0

dS e−(1−i(z/zr))S . (5.15)

In this way, the integration over z′′ in Eq. (5.14) is Gaußian and can easily be performed.

The remaining integration over S is then most conveniently written in terms of the Error

function erf(x) = (2/
√

π)
∫ x

0
dS exp(−S2).
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Equation (5.14) evaluates to

φ(z′, t′) = −π zin
r

1

4
g Ein E⊥

[
1

k+
ax

sin
(
(ωin + ω⊥) t′ − sgn(z′ − z′′) k+

ax z′ + ψ⊥)
)

×
(

1 − erf

(
zin

r

w⊥0
+

Δk+
⊥w⊥0
2

))
exp

(
Δk+

⊥zin
r +

(
zin

r

w⊥0

)2
)

− sgn(ωin − ω⊥)

k−ax
sin

(
(ωin − ω⊥) t′ − sgn(z′ − z′′) sgn(ωin − ω⊥) k−ax z′ − ψ⊥)

)
×
(

1 − erf

(
zin

r

w⊥0
+

Δk−⊥w⊥0
2

)
exp

(
Δk−⊥zin

r +

(
zin

r

w⊥0

)2
))]

, (5.16)

where we have defined

Δk+
⊥ = −kin + sgn(z′ − z′′) k+

ax , (5.17)

Δk−⊥ = −kin + sgn(z′ − z′′) sgn(ωin − ω⊥) k−ax . (5.18)

In summary, Eq. (5.16) tells us that the induced axion wave is composed of two partial

waves with frequencies ω±ax = (ωin ±ω⊥), which both have transmitted and reflected parts

corresponding to sgn(z′ − z′′) = ±1, respectively.

We find that each of these partial waves in the case of transmission and reflection is

tied to a corresponding amplitude, which is a combination of an exponential and an error

function. The basic effect of this factor is that for given beam parameters the partial

waves have maximal amplitude for Δk±⊥ � 0 if zin
r � w⊥0 and for Δk±⊥ � 0 if zin

r � w⊥0
and decay quickly otherwise. The quantitative impact of this damping term, of course,

depends on the absolute values of zin
r and w⊥0 . As we will see later on, for experimentally

feasible zin
r and w⊥0 , it is reasonable to assert the condition Δk±⊥ � 0. In particular, we

will also find an additional damping term for the back-conversion process below.

As one can conclude from Eqs. (5.17) and (5.18), the origin of this damping is con-

servation of three-momentum of the photon and the ALP: Only if the momentum in the

conversion process is conserved to a good approximation, the amplitude of the partial

wave will persist undamped. Let us emphasize that the momentum of the external beam

does not enter Δk±⊥ at this point, since the external beam propagates transversal to the

z-axis and thus there is no net transfer of momentum in the z-direction. This will become

important later on.

Note also that this damping factor in practice determines the sensitivity to the mass

of the axion which is contained in k±ax. I.e., given two laser frequencies, efficient conversion

into axions can only happen, if the mass of the axion is next to resonance, such that the
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sum of momenta vanishes approximately4: Δk±⊥ � 0. It also follows that there is exactly

one resonant ALP mass for given frequencies ωin and ω⊥.

Before we proceed with the calculation of the back-conversion of the ALPs into pho-

tons, let us determine the resonant ALP masses m in the conversion process. In vacuum

(k = ω), we have the requirements

Δk+
⊥ = −ωin + sgn(z′ − z′′)

√
(ωin + ω⊥)2 − m2

!� 0 , (5.19)

Δk−⊥ = −ωin + sgn(z′ − z′′) sgn(ωin − ω⊥)
√

(ωin − ω⊥)2 − m2
!� 0 . (5.20)

Eq. (5.19) is solved in the case of transmission, i.e., sgn(z′ − z′′) = +1, by choosing

m =
√

ω2
⊥ + 2ωinω⊥. For Eq. (5.20), there is in principle the resonant solution m =√

ω2
⊥ − 2ωinω⊥ which implies ω⊥ > 2ωin for positive axion masses implying reflection, i.e.,

sgn(z′−z′′) = −1, but requiring also a negative value for ω−ax = ωin−ω⊥. Thus, the latter

is an unphysical solution.

Let us summarize our findings from Eq. (5.16): induced by the interaction of the probe

field ωin with the external beam ω⊥, one obtains transmitted and reflected axion waves

with frequencies ω±ax = ωin ± ω⊥. For our purposes, we focus on the transmitted partial

wave with frequency ω+
ax = ωin + ω⊥ since it acquires an undamped amplitude for ALP

masses m which are close to a resonant mass5

m⊥ =
√

ω2
⊥ + 2ωinω⊥ . (5.21)

Thus, for the following calculation of the reconversion process, we employ for clarity only

the transmitted (T) axion wave with frequency ω+
ax:

φ(T)(z′, t′) ≈ −π zin
r

1

4
g Ein E⊥

[
1

k+
ax

sin
(
(ωin + ω⊥)t′ − k+

axz
′ + ψ⊥)

)
×
(

1 − erf

(
zin

r

w⊥0
+

Δk+
⊥w⊥0
2

))
exp

(
Δk+

⊥zin
r +

(
zin

r

w⊥0

)2
)]

. (5.22)

Let us finally remark that the damping factor of the amplitude encountered above is in

fact not an artifact of the Gaußian beam form. This can easily be checked by omitting all

factors containing w⊥0 and zin
r in Eq. (5.14), which amounts to calculating the interaction

4The above conversion properties are reminiscent of the processes of sum-frequency and difference-
frequency generation, known from Nonlinear Optics, see, e.g., [178]. For these processes, a suitable
medium with nonlinear dielectric permittivity is used to produce light beams whose frequency is equal to
the sum or difference of the frequencies of the input beams. There, an efficient conversion can only happen,
if so called phase-matching conditions are fulfilled. These phase-matching conditions are analogous to
the above condition of three-momentum conservation.

5Here, we assign a label “⊥” to the resonant mass in order to point out that it is the resonant mass
which arises in the process with a primary interaction with the external orthogonal field. Details on the
resonant mass belonging to the process at reversed interaction order ⊥ ↔‖ will be discussed below.
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between two plain waves. Then, integrating over z′′ over a length L of the interaction

region, one finds that the amplitudes of the axion partial waves are proportional to a

factor of sin(Δk±⊥L/2)/(Δk±⊥), respectively. Hence, also for a plain wave approximation,

the amplitudes are peaked around Δk±⊥ � 0.

From this ansatz, the conversion amplitude for the ALP in a temporally and spatially

constant external field follows for ω⊥, k⊥ → 0. The square of this amplitude in the limit6

m 
 ωin will be used later on for a qualitative comparison to dipole LSW experiments,

cf. also Eq. (2.27).

5.1.4 Axion-photon conversion

We now turn to the back-conversion of the ALPs into photons, by virtue of Eq. (5.5).

With the Green’s function of Eq. (5.7) and using eout = −∂taout (recall that we have

employed Coulomb gauge), we have to evaluate

eout(z, t) =
1

2
g

∫ ∞

−∞
dz′

∫ ∞

−∞
dt′ δ ((t − t′) − |z − z′|)

×
[
[By

k(z′, t′) ∂t′φ(z′, t′)] + Ex
k (z′, t′) ∂z′φ(z′, t′)]

]
. (5.23)

As in the previous section we choose the external field for the back-conversion with hind-

sight: Assuming propagation of the electromagnetic wave along the negative z-axis, i.e.

counter-propagating to the transmitted axion wave, we set

Ex
k (z, t) =

E‖√
1 +

(
z/z

‖
r

)2
sin

(
ω‖t + k‖z − arctan

(
z

z
‖
r

)
+ ψ‖

)
, (5.24)

By
k(z, t) = −Ex

‖ (z, t) = − E‖√
1 +

(
z/z

‖
r

)2
sin

(
ω‖t + k‖z − arctan

(
z

z
‖
r

)
+ ψ‖

)
, (5.25)

with beam parameter definitions as introduced previously, cf. Sect. 5.1.2.

In the following it is convenient to use the axion and photon wave again in complex

notation. Plugging the approximate transmitted axion wave from Eq. (5.22) and the field

6Note that in this situation for large axion masses m � ωin, the computation of the conversion
probabilities requires great care, as discussed in detail in [94]. However, generically, the most stringent
exclusion bounds on ALPs for constant external fields are obtained for masses m 
 ωin. In the end, we
will compare the discovery potential for the purely-laser based setup to these bounds.
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characteristics of the external beam (Eqs. (5.24) and (5.25)) into Eq. (5.23), evaluating

the derivatives acting on φ(z, t) and upon integration over t′, we find

eout(z, t) =
1

32
g2 π zin

r Ein E⊥E‖

×
(

1 − erf

(
zin

r

w⊥0
+

Δk+
⊥w⊥0
2

))
exp

(
Δk+

⊥zin
r +

(
zin

r

w⊥0

)2
)(

ωin + ω⊥
k+

ax

+ 1

)

×
[

1

i
ei(ωin+ω⊥+ω‖)(t−sgn(z−z′)z) ei(ψ⊥+ψ‖)

∫ ∞

−∞
dz′ 1√

1+(z′/z
‖
r )2

eiΔk+‖ z′ e
−i arctan

„
z′
z
‖
r

«

− 1

i
ei(ωin+ω⊥−ω‖)(t−sgn(z−z′)z) ei(ψ⊥−ψ‖)

∫ ∞

−∞
dz′ 1√

1+(z′/z
‖
r )2

eiΔk−
‖ z′e

i arctan

„
z′
z
‖
r

«
+ c.c.

]
.

(5.26)

Here we have defined

Δk+
‖ = −k+

ax + k‖ + sgn(z − z′)(ωin + ω⊥ + ω‖) , (5.27)

Δk−‖ = −k+
ax − k‖ + sgn(z − z′)(ωin + ω⊥ − ω‖) . (5.28)

Eq. (5.26) resembles the situation of the ALP production, as the outgoing electromagnetic

wave eout essentially consists of two partial waves with frequencies ω±out = ωin + ω⊥ ± ω‖.

Again, each partial wave has a transmitted, i.e, sgn(z − z′) = 1, and a reflected, i.e.,

sgn(z − z′) = −1, contribution. In order to determine the corresponding amplitudes of

the partial waves, it is necessary to perform the remaining integration over z′. To this

end, we make use of the first identity in Eq. (5.15) and perform the spatial integration

over a closed contour in the complex z′-plane. In this manner, we find for the integrals in

Eq. (5.26):

∞∫
−∞

dz′
e

iΔk±
‖ z′∓i arctan

„
z′
z
‖
r

«
√

1 +
(
z′/z‖r

)2
=

∞∫
−∞

dz′
eiΔk±

‖ z′

1 ± i
(
z′/z‖r

) = πz‖r
(
1 ± sgn(Δk±‖ )

)
e−z

‖
r |Δk±

‖ | .

(5.29)

Analogous to the previous section, the partial wave amplitudes in Eq. (5.29) entering

eout are strongly peaked at vanishing Δk±‖ . As in the photon-ALP conversion, this peak

structure can be understood in terms of three-momentum conservation, cf. Eqs. (5.27)

and (5.28), where the last term incorporates the momentum of the outgoing photon.

In addition, sharp cutoffs arise for Δk+
‖ < 0 and Δk−‖ > 0 in Eq. (5.29) through the

signum function, respectively. Physically, this is due to the Gouy phase anomaly [175];

this behavior is also well known in the context of nonlinear interactions with focused

Gaußian beams in media, see, e.g., [178]. However, one can check by numerical integration



56 Chapter 5. Searching for axion-like particles with high-intensity lasers

that the sharp cutoff of the signum function is in fact washed out for integrations over

finite interaction regions. Thus, for finite, physical interaction regions, the amplitudes are

maximized for Δk±‖ � 0.

Before we continue with the evaluation of eout, let us check the compatibility of the

three-momentum conservations for the conversion and reconversion processes. Only if

the conservation of three-momentum is obeyed in both conversions at the same time, the

overall amplitude is undamped. Supplementary to conservation of three-momentum, we

make the important additional requirement that ωout 
= ωin, as experimental signature for

the conversion processes to have taken place at all.

To this end, we consider Eqs. (5.27) and (5.28) again in vacuum, i.e., ω = k in the

one-dimensional setting with fixed propagation direction. In order to compare with the

conservation of momentum in the photon-axion conversion process encoded in Δk+
⊥ (see

Eq. (5.19)), we multiply Δk±‖ by −1. This is justified, since the exponential damping

depends only on the modulus of Δk±‖ . Eqs. (5.27) and (5.28) then read:

− Δk+
‖ =

√
(ωin + ω⊥)2 − m2 − sgn(z − z′)(ωin + ω⊥ + ω‖) − ω‖

!� 0 , (5.30)

−Δk−‖ =
√

(ωin + ω⊥)2 − m2 − sgn(z − z′)(ωin + ω⊥ − ω‖) + ω‖
!� 0 . (5.31)

By comparing the above conditions for Δk±‖ with that for Δk+
⊥ in Eq. (5.19), we notice

that we need the transmitted part of the outgoing wave, corresponding to sgn(z−z′) = +1

also for the back-conversion process. Otherwise the required relative sign between ωin and

the axion wave vector in order to satisfy Eq. (5.19) cannot be reproduced. In order to

fulfill the condition for Δk+
‖ in Eq. (5.30) and the condition for Δk+

⊥ at the same time, a

negative frequency contribution of either ω⊥ or ω‖ would then be needed which is clearly

unphysical. For this reason we drop this option in the following.

By contrast, it can be seen that it is possible to obey momentum conservation for

the conversion and back-conversion processes simultaneously via Eq. (5.31): By setting

ω⊥ = 2ω‖, we see that Δk−‖ = Δk+
⊥ = 0 if the axion mass satisfies Eq. (5.21). In addition,

the outgoing electromagnetic wave in this situation has a frequency ωout = ωin + 1
2
ω⊥ =

ωin + ω‖ which is different from the frequency of the incoming wave. We conclude that

also our second requirement for eout is met.

At this point, it also becomes clear why it is crucial for the frequency shift of the

outgoing wave to arise that the momentum of the first external laser beam does not enter

the requirement for Δk+
⊥ in Eq. (5.17): Depending on the relative signs of the momenta

in the two conversion processes, conservation of momentum could only be simultaneously

achieved in both processes for ω⊥ = ω‖. However, this would immediately imply ωin = ωout

being problematic for experimental observation and require again an LSW setup which is

difficult to conceive for high-intensity fields.
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In total, it is the above “mismatch” of momentum conservation (as encoded in Δk⊥/‖)

and energy conservation (as encoded in the difference ωout − ωin), which is essential for a

net transfer of energy to the outgoing photon, favoring experimental detectability.

To summarize, it is the transmitted contribution of the second partial wave in Eq. (5.26)

for which both respective momentum conservation conditions can be fulfilled simultane-

ously and a frequency shift with respect to the incoming wave arises. Combining Eq. (5.26)

and Eq. (5.29) and substituting ω⊥ = 2ω‖, we focus for the remainder on

e
(T)
out(z, t) ≈ − 1

16
g2 π2 zin

r z‖r Ein E⊥E‖

(
1 − erf

(
zin

r

w⊥0
+

Δkw⊥0
2

))
exp

(
Δkzin

r +

(
zin

r

w⊥0

)2
)

× (1 − sgn (Δk)) e−z
‖
r |Δk|

(
ωin + 2ω‖

k+
ax

+ 1

)
sin

(
(ωin + ω‖)(t − z) + ψ⊥ − ψ‖

)
, (5.32)

where we have set Δk+
⊥ = Δk−‖ ≡ Δk.

In practice it is of course not directly experimentally assessable which of the two

external beams mediates conversion and which one back-conversion. So far, we have

assumed conversion to be induced by the field with ⊥ orientation, and back-conversion

due to the counter-propagating ‖ field. The result for the outgoing wave, however, will

depend on the order of interaction.

As demonstrated in App. E for reasons of clarity (the calculational steps can be per-

formed in complete analogy to the discussion above), the conversion process with the op-

posite interaction order ⊥ ↔‖ results in an outgoing wave with frequency ωout = ωin−ω‖,

if one chooses ω⊥ = 2ω‖. The resonant mass satisfying momentum conservation in both

conversion processes is then given by7 m‖ = 2
√

ωinω‖, being different from the resonant

mass at interchanged interaction order. In consequence, it is possible to probe the axion

coupling space around two resonant masses within one setup.

Implications for a high-intensity laser-based axion search

Our calculations suggest the following experimental setup: Probe photons, which traverse

one counter-propagating and one perpendicularly propagating laser field with frequencies

ω‖ and ω⊥, respectively, can experience a frequency shift due to ALP-photon mixing.

This happens if the frequency of the external perpendicular laser has twice the frequency

of the external counter-propagating laser: 2ω‖ = ω⊥. The requirement for this process is

the existence of ALPs with masses close to one of the two resonant masses, which are a

function of the involved laser frequencies.

These resonant masses are of the same order of magnitude as the involved frequency

scales of the lasers, which in optical setups corresponds to ∼ O(eV). As this mass regime

7The label “‖” at the resonant mass denotes that primary interaction of the probe beam is due to the
‖ external field, in contrast to Eq. (5.21), where the primary interaction is due to the ⊥ external field.
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is so far largely unexplored in laboratory ALP-searches, the proposed experimental setup

can be complementary to the search involving dipole magnets, see below.

It is worth emphasizing that the required frequency ratio for the two external lasers

in fact constitutes an enormous experimental advantage, since it implies that indeed only

one high-intensity laser is needed as external field source, since frequency doubling or

“second harmonic generation” [179] is a standard technique even for high-intensity lasers.

In addition, the corresponding beam parameters of the frequency doubled beam, such

as the focal area can in principle be tuned independently by the use of appropriate lens

systems.

5.2 The setup’s capabilities and perspectives

5.2.1 Prospective exclusion limits on axions and ALPs

Let us first explore the parameter range in the ALP mass and coupling plane which can be

probed within the presented setup. The number of photons in the beams is proportional

to the square of the field amplitudes, being a function of time. However, as the pulse

lengths in consideration imply a large number of wave trains, a good approximation of

the number of frequency shifted outgoing photons Nout as a function of the number of

incoming photons Nin can be read off from a comparison of Eq. (5.32) (or (E.16)) with

the incoming field ein in Eq. (5.8).

Nout(ωin ± ω‖) � Nin(ωin)Nshotα
2
± . (5.33)

The parameter Nshot counts the number of laser shots used for a measurement. It is

determined by the total measurement time of data accumulation times the repetition rate

of the lasers. The quantity α2
± is a measure for the probability of the photon-axion-photon

conversion. Here, α+ denotes the conversion amplitude for outgoing photons of frequency

ωout = ωin + ω‖ whereas α− is the conversion amplitude for photons with frequency

ωout = ωin − ω‖. They read:

α+ = − 1

16
g2 π2 zin

r z‖r E⊥E‖

(
1 − erf

(
zin

r

w⊥0
+

Δkw⊥0
2

))(
ωin + 2ω‖√

(ωin + 2ω‖)2 − m2
+ 1

)

× exp

(
Δkzin

r +

(
zin

r

w⊥0

)2
)

(1 − sgn(Δk)) e−z
‖
r |Δk| , (5.34)

α− =
1

8
g2 π3/2 zin

r z
‖
r

zin
r + z

‖
r

w⊥0 E‖E⊥
ωin + ω‖√

(ωin + ω‖)2 − m2

×
[
(1 − sgn(δk))eδkzinr + (1 + sgn(δk))e−δkz

‖
r

]
e−

1
4
(w⊥

0 δk)2 , (5.35)
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where we have inserted the respective axion wave vectors kax for clarity. The parameters

Δk and δk reduce to

Δk = −ωin +
√

(ωin + 2ω‖)2 − m2 , (5.36)

δk = −ωin + ω‖ +
√

(ωin + ω‖)2 − m2 . (5.37)

As already discussed above, in order to experimentally assess the induced frequency shift,

it is sufficient to have just one high-intensity laser as external field source in this configu-

ration. One part of the external beam has to be frequency doubled, such that ω⊥ = 2ω‖,

while a delay line must ensure the simultaneous overlap of the focal spots of the fun-

damental and the frequency doubled beam mode as well as the focal spot of the probe

beam.

In addition, we demand that the three frequency modes satisfy ωin + ω‖ � ω⊥, in

order to make the frequency shifted photons at ωout distinguishable from the frequency

components already used in the process. We will detail on this requirement below.

Further, it appears advisable in practice to realize the setup with a slight deviation

from the exact orthogonal geometry in order to facilitate the detection of the frequency

shifted photons off the main optical axis in order to reduce the noise amplitude. For a

quantitative discussion of a non-orthogonal setup, the above calculation has to be extended

to three spatial dimensions, as further commented in Sect. 5.2.2. Qualitatively, we expect

that, for deviations from the orthogonal geometry, the resonance conditions Δk � 0

and δk � 0 receive an angular dependence based on the three-momentum transfer in all

spatial directions. In consequence, the necessary condition ω⊥ = 2ω‖ is expected to be

modified as well. However, as this relation is experimentally easily accessible by frequency

doubling, a beam geometry close to the orthogonal setup appears to remain viable.

A case study: axion-like particle search with JETI and POLARIS

Let us now determine the discovery potential in the ALP mass-coupling plane for an

operational high-intensity facility. First, we discuss a possible setup at Jena. In the near

future, the Multi-Terawatt class laser JETI and the Petawatt class laser POLARIS [180]

can be focused simultaneously and synchronized into a single target chamber. Thus we can

employ the lower-intensity laser JETI for providing the probe photons, while POLARIS

is used to create the two external fields for the conversion processes.

Let us first consider the focal parameters of the two lasers. To achieve maximum field

strengths for POLARIS and a good bunching of the probe photons of JETI, we need very

small focal spots on the order of the diffraction limit. To be more precise, if we define the

effective diameter of the focal spot to contain 86% (which is denoted as 1/e2-criterion,

since 1/e2 ≈ 0.14) of the focused beam energy, see below, one has the estimate [181]
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w0 � f#λ, with the so-called f -number f# of the focusing lens, which characterizes the

ratio of the focal length and the focusing aperture diameter. Ambitious, but feasible

values for the f -number can be as low as f# = 1. Recall that the corresponding Rayleigh

length is obtained from the waist size through zr =
πw2

0

λ
.

The laser system POLARIS is designed to provide a peak power of around P = 1PW

(attained through 150J at pulse lengths τext � 150fs), optimized for a central wavelength

of λext = 1035nm, corresponding to ω‖ = 1.20eV and thus ω⊥ = 2.40eV. In consequence,

we find w⊥0 � 5λext
2

≈ 13.1eV−1, for the frequency doubled beam where we have chosen

an f -number f# = 5 in order to fit the probe photons into the external field, see below.

Further, we estimate the Rayleigh length for the counter-propagating fundamental

beam as z
‖
r � π(f#)2λext � 16.4eV−1 for an f -number of f# = 1.

The obtained intensities within the focal spot yield I‖ = 0.861
2

P
A‖

= 2.05 × 1016eV4

and I⊥ = 0.861
2

P
A⊥

= 3.28 × 1015eV4, where the reduction of intensity for the ⊥ beam

through losses in the frequency doubling process will be accounted for below. Here,

A(⊥/‖) =
(
w

(⊥/‖)
0

)2

π is the area of the focal spot and the factor of 1/2 enters due to

the splitting of POLARIS into two separate beams ω‖ and ω⊥. It is clear, however, that

these are upper theoretical estimates for the achievable intensities which will be certainly

modified by the circumstances of the experimental setup.

From these intensities, the peak electric field strength for the fundamental mode is

E‖ =
√

I‖ � 1.43 × 108eV2. Further , it is appropriate to assume a relatively moderate

conversion efficiency of 40% for the frequency doubled beam at these field strengths,

yielding E⊥ =
√

0.4I⊥ ≈ 3.62 × 107eV2.

For high intensities, the external pulses as well as the probe beam must not only be

spatially but also temporally well focused. Naturally, the pulses then have a spectral

width Δω, which, for Gaußian pulses is related to the pulse length as Δω � 0.442π
τ

.

In order to detect the frequency shifted photons at ωout = ωin ± ω‖ with low noise,

these photons should lie well outside the spectral widths Δωin, Δω‖ and Δω⊥, centered

around ωin and ω‖ and ω⊥, respectively.

As the external pulses are comparatively long, we obtain a small spectral width of

Δωext � 0.01eV. With the above pulse length, we see that τext � zext
r as well as τext � wext

0

are well obeyed if we assume similar focal properties for the fundamental beam mode and

the frequency doubled beam.

JETI provides an energy of around E = 3J per shot at a central wavelength of around

λin = 800nm (ωin = 1.55eV) with pulse lengths as small as τin � 30fs. Assuming f# = 1,

the smallest Rayleigh length for the probe beam is therefore zin
r ≈ 12.7eV−1. From

the pulse energy, the number of incoming photons per shot is given by Nin = E/ωin ≈
1.21 × 1019. In addition, the requirements ωout /∈ Δωin, Δω⊥, Δω‖ are well obeyed, since

the spectral width is only Δωin � 0.06eV. As τin 
 τext, all Nin JETI photons are
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available for the conversion process as long as zin
r � z

‖
r , w⊥0 , which is implemented above

by the choice of the focusing geometry, see also Fig. 5.1.

A decisive experimental parameter is the pulse repetition rate which determines the

number of laser shots Nshot for a given measurement time. As the computation of the

necessary statistics for the photon detection requires detailed knowledge of the laser spec-

ifications and the setup, we perform our estimates for Nshot = Nout = 1. In particular,

nonlinear processes within the experimental setup tend to modify the idealized Gaußian

frequency spectra of the laser beams. If larger statistics for the outgoing photons are

required, this can always be accommodated by a larger number of shots. In the present

example, POLARIS, due to its higher energy, has the smaller repetition rate of both lasers,

which is expected to approach frep � 0.1Hz. In practice, O(100) shots per day can be

achieved, being a huge accomplishment for a Petawatt-class laser. In the future, improved

cooling schemes for the amplifying medium may even lead to a further enhancement of

the repetition rate.

For these parameters, the discovery potential follows from Eqs. (5.33-5.35). In Fig. 5.2,

we obtain two black wedge-like curves around the resonant masses m‖ = 2.73eV and m⊥ =

3.63eV, which are determined by the photon energies of POLARIS and JETI. The peaks of

the wedges and thus the minimal accessible coupling strength lie at g ≈ 7.7× 10−6GeV−1

and g ≈ 1.7 × 10−5GeV−1, respectively.

Figure 5.2: Axion-like-
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obtainable bounds with ELI with a present-day OPA system. The red dot-dashed line
suggests the necessary requirements at ELI for testing the parameter regime of typical
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Complementing dipole searches through optical parametric amplification

As outlined in Sect. 2.2.2, the currently best laboratory limits on ALPs are derived from

the LSW setup of the ALPS collaboration, as indicated as blue-shaded area in Fig. 5.2,

while the best limits on solar axions are provided by the CAST experiment, denoted by

a green-dashed line. However, as discussed in Sect. 2.2.3, the latter cannot be directly

compared with constraints derived from low-energy experiments.

In dipole experiments, the external magnetic field B is essentially constant, and the

photon-ALP conversion and reconversion probability are well approximated by

Pγ→φ,φ→γ =

(
gBL

2

)2
sin2(y)

y2
, (5.38)

cf. Eq. (2.27). Above, y = m2L/(4ωφ/γ), where L denotes the length of the dipole magnet

and ωφ/γ is the axion and photon energy, respectively. From Eq. (5.38) it is obvious that

the best exclusion bounds are obtained for small arguments y 
 1, i.e. for small axion

masses at fixed energies ωφ/γ and dipole length L, cf. Fig. 5.2. If the axion masses become

too large, the conversion probability suffers from a y−2 suppression.

As the CAST-experiment utilizes ωφ ∼ keV solar axions, the best bounds are obtained

for masses below m � 1eV. By contrast, in laboratory experiments generically ωγ ∼ eV,

and thus the drop-off sets in at even lower masses m ∼ 10−3eV. In both situations, the

accessible mass regions can be slightly extended to higher masses by the use of buffer gas.

However, the generic form of the conversion probability for constant external fields, see

Eq. (5.38), disfavors dipole searches for the exploration of higher ALP mass ranges.

For both ALPS and CAST, the exploration of the m � 1eV region is difficult and

thus the purely laser-based search can complement the existing ALP searches in the large

mass region as detailed above. An additional feature of the purely laser-based search is the

strong sensitivity to the axion mass which originates from the requirement of momentum

conservation. On the one hand this can be advantageous, since it allows for a direct

estimate of the axion mass if a signal is detected. On the other hand, it would of course

be desirable to explore a larger range of the axion-mass-coupling plane within a single

setup.

For this purpose, it would be favorable if the involved laser frequencies were tunable

within a certain frequency range. In fact this can be realized by the use of optical para-

metric amplifiers (OPAs), which are employed to tune the frequency of an optical pump

laser over a wide frequency range while retaining the temporal structure of the pulse to a

good approximation. However, for today’s OPAs, the pump energy is limited to approx-

imately 1mJ. Since this requirement strongly limits the available intensity, we choose to

tune the frequency of the probe beam rather than the external beam which enters twice

in the setup in its fundamental and frequency doubled mode. For optical probe lasers,
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we have thus a limitation of the number of incoming photons to around Nin � 1015. Yet,

as Nout ∼ g4, cf. Eqs. (5.33-5.35), for the above considered setup the sensitivity to the

coupling is reduced by just around one order of magnitude.

A feasible tuning range for today’s OPAs covers a large spectrum from the infrared to

the ultraviolet, see, e.g., [182], which can in principle be even further extended to larger

frequencies by higher harmonic generation. Thus, asserting a conservative tuning range

of λ � 2 × 10−5m (ω � 0.06eV), one could in principle explore axion mass ranges above

m⊥ � 2.46eV for ωout = ωin + ω‖ as indicated by the black solid vertical line in Fig. 5.2

for POLARIS intensities and frequency8. We find that, employing OPAs, the exclusion

bounds on ALPs could be extended to g � 1.8 × 10−4GeV−1.

However, it is important that the outgoing probe photons are shifted to frequencies

outside the spectral widths of the employed lasers as discussed above. Therefore, the

efficiency of the OPAs and the higher harmonic generation processes have to be taken

into account in detail. Here, we give only an order of magnitude estimate of these effects.

Forthcoming perspectives of axion search: Employing ‘extreme light’

In order to estimate the discovery potential at future facilities, let us extend our consid-

erations to the planned Exawatt facility ELI [166]. At this facility, a potentially feasible

intensity aim is I = 1026 W
cm2 . According to the previous estimates for the available inten-

sity, we thus obtain the ELI field strengths E‖ � 8.29× 109eV2 and E⊥ � 5.25× 109eV2.

These field strengths exceed those of the POLARIS/JETI setup by roughly two orders of

magnitude. The achievable focal parameters can be expected to be of the same order of

magnitude as in our previous estimate.

In Fig. 5.2, the red dotted vertical line indicates the region which could be probed

at ELI with an additional OPA with tuning range and NinNshot � 1015 as above. Here

we find that the coupling region above g � 1.9 × 10−6GeV−1 could be explored. Intrigu-

ingly, already a moderate demand on the number of interacting laser photons can almost

complement the bounds of ALPS in the higher ALP mass region.

Ultimately, the red dot-dashed vertical line suggests the necessary requirements at ELI

for tests of typical QCD axion models, which are plotted as a yellow band, see [102] and

references therein. In order to make contact with the range of QCD axion models, in the

attainable mass region, NinNshot ≈ 1026 is needed at ELI to explore an ALP mass range

up to g � 3.4 × 10−9GeV−1. This is a rather strong requirement for current technology,

but with the advance of OPA technology and in high-intensity laser technology this could

be a worthwhile long-term aim for the future.

8Here, we neglect the m‖ solution, since for this mass the outgoing frequency is ωout = ωin − ω‖ and
thus the frequency of the incoming probe photon cannot be reduced below ω‖.
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5.2.2 Summary and outlook of the purely laser-based ALP search

The employment of high-intensity lasers as a next stage of axion searches

In this chapter, we have investigated the feasibility of a search for axion-like-particles in

a purely laser-based setup. In particular, we have concentrated on modern high-intensity

laser systems, since the available field strengths in these lasers can serve as a lever arm

for probing the weak coupling g of axions and axion-like-particles (ALPs) to electromag-

netism.

In a first case study, we investigated in a one-dimensional setting the conversion of a

probe beam with frequency ωin into an ALP beam in an external laser and its reconversion

into a photon beam by a second external laser for Gaußian beam profiles in the formal

limit of infinite pulse lengths. The important difference to conventional photon-axion

mixing in homogeneous fields such as provided, e.g., by dipole magnets, arises from a

split of the incoming probe-beam into several partial waves whose frequencies are given

by all non-negative sums and differences of the three laser frequency scales. The amplitude

of these partial waves is proportional to two damping terms induced by the conservation

of three-momentum at the conversion points.

The constraints imposed by momentum conservation, together with the practical re-

quirement that the outgoing photon should be frequency shifted with respect to ωin for

reasons of detectability, constitute the basic experimental prerequisites. We have argued

that these prerequisites can be satisfied in a specific setup involving one external beam of

frequency ω‖ to counter-propagate with respect to the probe beam and another external

beam of frequency ω⊥ to propagate orthogonally to the probe beam. For the situation

where ω⊥ = 2ω‖, momentum is conserved at both conversion points at the same time

while the frequency of the outgoing beam is different from the frequency of the incoming

beam: ωout = ωin + ω‖ or ωout = ωin − ω‖ depending on the order of the interaction of the

beams. As emphasized [183, 184], this mechanism exhibits a close resemblance to sum-

frequency generation and difference-frequency generation known from Nonlinear optics,

as also pointed out in a different study, cf. [185].

The amplitudes of these frequency-mixing processes are peaked around certain res-

onant masses which are determined by momentum conservation: For the frequency up-

converted probe photons with ωout = ωin + ω‖, the resonant mass is m⊥ = 2
√

ω2
‖ + ωinω‖,

whereas m‖ = 2
√

ωinω‖ for the down-conversion process with ωout = ωin−ω‖, cf. Eq. (5.21)

and Eq. (E.9) with ω⊥ = 2ω‖, respectively.

To overcome the restriction to two single resonant masses, frequency tuning by means

of optical parametric amplification could be employed and extend the region of accessible

ALP masses to a large part of the O(eV) mass range.



5.2. The setup’s capabilities and perspectives 65

Remaining limitations and essential further steps

Before an actual experimental realization of the axion search with high-intensity lasers

can be envisaged, several continuative studies are in order (cf. also similar suggestions

in [186, 187]). Firstly, the background of frequency-shifted photons not caused by ALP

intermediate-states needs to be carefully taken into account. As already discussed in

previous sections, nonlinear QED processes can in theory provide a standard model back-

ground for frequency shifted photons via photon-photon interactions in vacuum, cf. also

App. B.

On the other hand, far before these processes could play a role, frequency varia-

tions in successive pulses due to frequency-dependent amplification properties of the

lasing medium will most likely pose the greatest experimental challenge. For the PO-

LARIS/JETI setup, these frequency variations are on the order of 1-2% [188]. In this

case, the requirement on the number of frequency shifted outgoing photons must be cho-

sen such that parasitic frequency shifts become subordinate. Also, the decoupling of a

reference beam from the main pulse facilitates the exclusion of measurement artifacts.

Of course, our setup demands also for a sophisticated laser alignment resembling a

pump-probe-type experiment. However, this is a lesser experimental challenge, in partic-

ular, if the probe laser and the external laser are synchronized by the employment of a

single seed laser as could be realized for the combined POLARIS/JETI setup. Let us also

briefly mention that the warranty of an adequately low vacuum pressure in the interaction

region is simplified in the high-intensity laser setup: A prepulse with adjusted temporal

delay can be eventually used to ionize the remaining gas in the target chamber. The ions

could then be removed prior to the arrival of the main pulse by applying a small electric

field.

On the theoretical side, the limitation of our calculation to the one-dimensional sit-

uation is likely an issue for experimental setups in which the waist size of the probe

beam is of a similar order of magnitude as the orthogonal variation of the high-intensity

pulse. In addition to our main observable, the frequency shift, the deviation from the

ideal one-dimensional case will then lead to diffractive effects, as have been discussed,

e.g., in [38, 189, 190]. The leading-order sensitivity estimates discussed in this chapter

still hold in this case if the on-axis photodetector is, e.g., replaced by an ensemble of

detectors suitably positioned in the diffraction zone. Also, in the suggested setup precise

information about diffraction is not required as long as a signal in the form of a frequency

shift is detected.

Possibly, diffraction and frequency shift information may be combined to reach even

higher sensitivity. In particular, if the frequency-shifted photons are scattered off the axis

of the main pulse, their detection is considerably simplified: To measure the frequency

spectrum of the high-energy pulse, the pulse has likely to be attenuated first by a di-
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electric mirror and can then be spectrally decomposed, e.g., by a grating. However, the

need for attenuation is of course disfavorable as too many frequency-shifted photons are

potentially lost. Yet, attenuation might be necessary as for too large photon numbers the

photodetectors are possibly damaged. Therefore, as diffractive effects could be predicted

in a higher-dimensional calculation, such investigations remain a worthwhile challenge

as the frequency-shifted photons might in fact be distinctively separated from the main

pulse.

Let us summarize that, if further studies in this direction underline the practicability

of the suggested setup, purely laser-based experiments hold the prospect of providing

the strongest laboratory bounds on axion-like particles in the O(eV) mass range. As

laboratory searches with dipole magnets generically probe only lower mass ranges, purely

laser-based experiments could complement them in an essential manner.

Towards an appropriate scenario for the study of minicharged particles

To close our studies of the purely laser-based search for distinct “new physics” at the

O(eV) scale, it is notable that this chapter focused on the study of axion-like particles

alone. Presumably, a search for minicharged particles as introduced as a second generic

WISP in Sect. 2.2 would not be feasible within the scenario discussed in this chapter: In

contrast to a production of real ALPs in the focus of high-intensity lasers, it seems likely

that real minicharge particle-antiparticle pairs become separated quickly in the overlap-

ping laser foci, depending, of course, highly on the magnitude of their mass and fractional

charge. By virtue of the separating forces due the oscillating electromagnetic field on the

oppositely charged particle-antiparticle-pairs, a recombination of these particles would

seem to be obstructed. Thus again, only a vacuum dichroism (as well as ellipticity) would

supposedly constitute a practical observable indicating the presence of minicharges for

high-intensity lasers with definite polarization, cf. Sect. 2.2.

The next chapter will thus be dedicated to the study of a suitable scenario aimed in

particular at the search for minicharged particles. As will be outlined, an LSW scenario

with virtual minicharge particle-antiparticle-pairs in an external magnetic field could have

the potential to greatly enhance the accessible minicharge parameter space below the

O(meV) mass region.



Chapter 6

LSW via virtual minicharged

particles in a magnetic field

“Ob ihr wirklich richtig steht,

seht ihr wenn das Licht angeht.”
aus “1, 2 oder 3”

As discussed in Sect. 2.2, light-shining-trough-walls scenarios constitute an important

cornerstone among the various laboratory searches for WISPs, particularly in the low-

mass regime. Commonly, LSW scenarios employ that real axion-like particles and hidden

photons can traverse a light-blocking barrier due to their negligible interaction with the

wall. As argued, also indirect bounds on minicharged particles can be derived from LSW

scenarios with hidden photons if the photon-hidden photon conversion is mediated by

minicharged particles (cf. Fig. 2.5).

On the other hand, a direct LSW scenario for minicharged particles is provided by

the transition of a barrier through virtual particle-antiparticle intermediate states, as

first considered for the zero-field situation in [96] (depicted in Fig. 2.6). It is easily

conceivable that the probability for this tunneling phenomenon to occur should depend

on the wall thickness, in contrast to LSW scenarios based on a tree-level process: In

crude terms, the “size” of the loop, which is determined by the Compton wavelength

of the minicharged particles, has to outmatch the thickness of the barrier. Thus, if the

Compton wavelength is large enough, the transition probability can even grow in the

small mass regime: Roughly spoken, the available phase space for the process grows for

larger wavelengths. Nevertheless, even in the limit of very thin walls, an LSW scenario

via virtual minicharged particles in the absence of external fields was shown to be non-

competitive with established laboratory experiments [96]: Although for small minicharge

masses, i.e., large Compton wavelengths, the transition probability exhibits a log-like

increase as function of the mass, tunneling of the 3rd kind cannot improve existing bounds

in relevant regions of the parameter space of the minicharged particles in a zero-field

setting.

In this chapter we thus set out to investigate this LSW scenario in an external mag-

netic field, cf. Fig. 6.1. In LSW scenarios with real particles, the transition probability

67
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is independent of the exact location of the photon-WISP conversion and reconversion

processes as long as they occur on the left- and right-hand side of the light-blocking bar-

rier, respectively. By contrast, the transition probability for barrier-transition via virtual

particles depends on the location of the particle fluctuation.

In summary, for the scenario based on the virtual process, it becomes crucial to account

for the full momentum dependence of the photons in the setup. Thus, although different

in context, but similar to the reasoning of Chapt. 3, a perturbative treatment of this

problem is rendered inapplicable.

Therefore, building on a nonperturbative treatment of the polarization tensor, we

present a first case study of this LSW scenario in a magnetic field for a selected photon

polarization mode. Our findings suggest that by the application of an external magnetic

field, the log-like increase of the transition probability can eventually be transformed into a

power-law increase. Essentially, this is attributed to a dimensional reduction phenomenon

which occurs upon Landau-level quantization.

Figure 6.1: LSW scenario via virtual bosonic or fermionic
particle-antiparticle intermediate states, also referred to
as “tunneling of the 3rd kind”, cf. [96]. In the following,
this process is investigated in a constant external mag-
netic field in a first case study. The dressed minicharge
propagator, i.e., that involving an arbitrary number of
external field insertions, is depicted by the solid double
line.

In this chapter, we proceed as follows: In Sect. 6.1, the general formalism describing the

LSW scenario depicted in Fig. 6.1 is outlined and the photon-to-photon transition proba-

bility is derived. Thereafter, we focus on finding an adequate analytical treatment of the

photon polarization tensor, which enters the photon-to-photon transition probability as

the central quantity. Appropriate limiting cases which ultimately allow for an exact nu-

merical evaluation of the transition probability are worked out. Specializing to a specific,

experimentally feasible setup in Sect. 6.2, we give a first estimate for obtainable exclusion

bounds for a selected photon propagation mode.

6.1 The probability for LSW and a handling of the

polarization tensor

6.1.1 Setting the stage for LSW via virtual MCPs

In this section, we briefly review the basic setting as introduced in [96] and extend it to

account for an external magnetic field �B 
= 0 pointing in the direction of the wave-vector
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�k of the incident photons. For reasons of clarity and easy comparability, let us also adapt

the metric convention gμν = diag(−1, +1, +1, +1) as employed in [96] in this chapter such

that the momentum four-vector squared reads k2 = �k2 − ω2.

As we study photon propagation in a homogeneous external magnetic field, we start

from the equation of motion of the photons in momentum space, cf. Eq. (2.18), which we

state here once more for convenience

(
k2gμν − kμkν + Πμν(k|B)

)
Aν(k) = 0 . (6.1)

Although a solution to Eq. (6.1) has been worked out in many limiting cases, see [52] for

an overview, solving the equation of motion for this LSW scenario in general becomes

a challenging task: Essentially, complications arise since our investigations can from the

outset not be expected to be comprehensive within a perturbative small field approxima-

tion alone, as for minicharged particles the critical field strength can be already exceeded

by rather modest laboratory magnetic field strengths, cf. also the discussion in Sect. 2.2.1.

At the same time, the full momentum dependence has to be preserved in the polarization

tensor for this LSW scenario. Thereby, well-established approximations, e.g., [54], are

rendered inapplicable.

Given these constraints, to choose a proper, physically relevant setting in which

Eq. (6.1) can be evaluated, guidance can be found in earlier studies of the polariza-

tion tensor in the strong-field limit [52, 191–195]. In particular, it was shown that for

field strengths above the critical field strength, photon propagation orthogonal to the

field is strongly damped1 [192]. As a consequence, this tells us that if we are interested

in finding a simple, analytical solution to Eq. (6.1), only θ = �( �B,�k) = 0 and θ = π/2

are feasible choices because any other angle of incidence will likely imply a “bending” of

the propagation direction of the photons, obstructing, e.g., an effective one-dimensional

treatment of this problem. Among these two choices, it is then suggestive to specialize

to the undamped mode, i.e., θ = 0, as in this situation the proper-time integral can be

evaluated exactly whilst the full momentum dependence is retained.

It is precisely this alignment that will be studied in the following2.

As outlined in App. C, for θ = 0, the magnetic field does not introduce any addi-

tional externally set direction as compared to the zero-field case and Eq. (6.1) simplifies

considerably. Note that this constitutes a choice which is disfavored in polarization mea-

1This behavior is reminiscent of Alfvén modes, characterizing magnetohydrodynamic propagation
modes in parallel to the magnetic field lines for “superstrong” magnetic fields. In a naive picture, photon
propagation in strong magnetic fields is preferred along the external field direction, as the longitudinal
momentum of the fermionic intermediate state remains unaffected by the magnetic field whilst the orthog-
onal modes can acquire an effective mass via the Landau level quantization of the charged intermediate
states.

2Studies on the θ 
= 0 situation have also been performed in the perturbative small B situation [196].
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surements and standard LSW-type setups as it yields vanishing effects in this limit, cf.

Sect. 2.2. For this alignment, �k ‖ �B, the polarization tensor can be written as

Πμν(k|B) = P μν
� Π�(k|B) + gμν

⊥ Π⊥(k|B) . (6.2)

As outlined in App. C, for θ = �( �B,�k) = 0, the transversal projector P μν
T = gμν − kμkν

k2

can essentially be decomposed into propagation modes corresponding to orthogonal and

“tilted” polarization modes: P μν
T = gμν

⊥ + P μν
� , where we have adapted the notation of

[193]. To study the LSW scenario in full generality, all propagation modes, � and ⊥,

have to be accounted for. However, it is found that the decomposition of the internal

momentum integration of the polarization tensor can be performed in analogy to the

zero-field situation only for the � mode, see below. Thus, for a primary case study, we

specialize to the evaluation of this mode. Furthermore, we choose the angle of incidence

for the photons to be orthogonal to the barrier such that the photons do not have a

momentum component in parallel to the wall.

Dropping Lorentz indices, the equation of motion, Eq. (6.1) for the tilted propagation

modes Aμ
� = P μν

� Aν reduces to

(
k2 + Π�(k|B)

)
A�(k) = 0 . (6.3)

The direction of photon propagation is denoted as x-direction in the following. The light

blocking barrier, cf. Fig. 6.1, breaks translational invariance3 in x-direction in our setting.

Here, the barrier is assumed to extend from x = 0 to x = d, having an infinite extension

along the (y, z)-plane. Introducing partial Fourier transforms of the photons and the

polarization tensor,

A�(x, ω) =

∫ ∞

−∞

dkx

2π
eixkx A�(k) , (6.4)

Π�(x − x′, ω|B) =

∫ ∞

−∞

dkx

2π
ei(x−x′)kx Π�(k|B) , (6.5)

the equations of motion become

(ω2 + ∂2
x) A�(x, ω) =

∫ ∞

−∞
dx′ Π�(x − x′, ω|B) A�(x

′, ω)︸ ︷︷ ︸
=:j�(x,ω|B)

, (6.6)

3Note carefully in the derivation of Eq. (6.1), translational invariance was assumed for the fluctuations.
Although translational invariance is broken for the photons by the insertion of the barrier, it is maintained
for the loop as the wall remains unnoticed by the minicharged particles.
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where we have defined the fluctuation induced current j�. As in the setting proposed

in [96], we choose reflecting4 boundary conditions for the incident photons on the left

hand side of the barrier (at x = 0). However, the calculation could easily be generalized

to other boundary conditions. Accordingly, the induced current within and beyond the

barrier is given by

j�(x > 0, ω|B) =

∫ 0

−∞
dx′′Π�(x − x′′, ω|B) a(ω) sin(ωx′′) , (6.7)

with the amplitude a(ω) of the incident photons.

Lastly, to obtain the photon-to-photon transition probability characterizing the tun-

neling process, the resultant induced outgoing wave on the right hand side of the barrier

has to be determined. As we want to assure in the following that minicharged loops are

closed again, i.e., to maximize the reconversion rate, we consider the outgoing photons

asymptotically for detector positions far beyond the barrier at x � d, yielding

A�,ind(x � d, ω|B) = i

∫ ∞

d

dx′
eiω(x−x′)

2ω
j�(x

′, ω|B) , (6.8)

where we have employed the free outgoing Green’s function for the operator (ω2 + ∂2
x)

and restricted ourselves to the right-moving, i.e., transmitted components of the outgoing

photon field.

Thus, combining Eq. (6.7) and Eq. (6.8), the photon transition amplitude for the �
mode can finally be written as

P� ,γ→γ = lim
x→∞

∣∣∣∣A�,ind(x, ω)

a(ω)

∣∣∣∣2 =
1

4ω2

∣∣∣∣∫ ∞

d

dx′
∫ 0

−∞
dx′′Π�(x

′ − x′′) sin(ωx′′) e−iωx′
∣∣∣∣2 ,

(6.9)

where we have dropped the explicit reference to the magnetic field B in the arguments of

the functions for reasons of clarity.

6.1.2 Polarization tensor in a magnetic field at zero incidence

Photon polarization tensor in momentum space

The first step to take in order to determine the transition probability for LSW via virtual

MCPs is to find an appropriate treatment of the polarization tensor. Its full analytical

expression in the alignment �B ‖ �k for the � propagation mode is given by

Π�(k) =
k2αε2

2π

∫ 1

0

dν (1 − ν2)

[
ln

(
m2

2εeB

)
− Ψ

(
Φ0

2εeB

)
− εeB

Φ0

]
, (6.10)

4This choice is in agreement with the use of a cavity on the front side of the wall.
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cf. [193–195] as well as Eq. (C.18), where Ψ(ξ) = d
dξ

ln Γ(ξ) denotes the Digamma function,

and we have employed the following definition

Φ0 = m2 + k2 1 − ν2

4
− iη . (6.11)

For the sake of clarity, in this chapter m (rather than mε) gives the mass of the minicharged

particles5 of charge εe. In Eq. (6.11), we have also explicitly kept track of the −iη

prescription of the fermion Green’s function implementing causality in the complex k2

plane.

Different representations of the Digamma function can be used to study the various

physically relevant parameter regimes, cf. App. C. A perturbative small field expansion is

most conveniently obtained from Eq. (6.10) using the asymptotic6 series expansion of the

Digamma function for large arguments from [198], see also Eq. (C.25). In consequence,

Eq. (6.10) becomes

Π�(k) =
k2αε2

2π

∫ 1

0

dν (1 − ν2)

[
ln

(
m2

Φ0

)
+

1

12

(
2εeB

Φ0

)2

+ O(B4)

]
. (6.12)

The contributions linear in B cancel out, and the expansion in Eq. (6.12) is in even powers

of the magnetic field, in full agreement with Furry’s theorem. On the other hand, the B-

independent logarithmic term in Eq. (6.12) contains the zero-field result. Using integration

by parts, it can be rewritten into the representation of the zero-field polarization tensor7

as employed in [96],

Π(k)|B=0 =
(k2)2αε2

4π

∫ 1

0

dν

(
ν2

3
− 1

)
ν2

Φ0

. (6.13)

Most importantly, besides the perturbative small-field limit, an exact series represen-

tation of the Digamma function is available [177], cf. also Eq. (C.23). Based on this

representation, Eq. (6.10) can be written as

Π�(k) =
k2αε2

2π

∫ 1

0

dν (1 − ν2)

([
εeB

Φ0

+ γ + ln

(
m2

2εeB

)]
−

∞∑
n=1

Φ0

n(Φ0 + 2εeBn)

)
.

(6.14)

Eqs. (6.12) and (6.14) serve as the starting point of our further calculations.

5In the subsequent considerations our focus is on minicharged spin-1/2 Dirac fermions. Remarks on
the physics of bosonic spin-0 minicharged particles are essentially given in Sects. 6.1.4 and 6.2.3.

6The fact that an asymptotic series appears here does not come unexpectedly, cf., e.g., [197], but
should advise us to carefully check on the range of validity of this series later on.

7Note that the zero-field limit is contained in both propagation modes: � as well as ⊥. For this reason,
we drop the label “�” here.
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Towards the polarization tensor in position space

In a next step, we aim at transforming the polarization tensor to position space through

Eq. (6.5) as it enters the transition probability in this form, cf. Eq. (6.9). Studying the

explicit structure of Π�(k), several observations simplify the further discussion. Firstly,

the evaluation of Eq. (6.9) does not necessitate the Fourier transformation of all the

terms present in Eqs. (6.12) and (6.14), respectively. As the transition amplitude involves

further integrations over the spatial coordinates in the argument of Π�(x−x′, ω), it holds

that x− x′ > 0 always. Thus, terms whose momentum dependence is given by an overall

factor of k2 only, do not contribute since∫ ∞

−∞

dkx

2π
ei(x−x′)kxk2 = −

(
ω2 + ∂2

x

) ∫ ∞

−∞

dkx

2π
ei(x−x′)kx = −

(
ω2 + ∂2

x

)
δ(x − x′) (6.15)

always vanishes for x − x′ > 0. Therefore, we subsequently omit terms exhibiting this

momentum dependence. Moreover, note that x − x′ > 0 also implies that, in performing

the kx-integration in Eq. (6.5), the integration contour has to be closed in the upper

half-plane.

With these preparations, we now explicitly turn to the Fourier transformation of the

polarization tensor in Eqs. (6.12) and (6.14). Notably, all residual terms to be considered

in the Fourier transformation are of the general form

∫ 1

0

dν(1 − ν2)

∫ ∞

−∞

dkx

2π
ei(x−x′)kx

P (kx)

(Φ0 + 2εeBn)l

=

∫ 1

0

dν
4l

(1 − ν2)l−1

∫ ∞

−∞

dkx

2π

ei(x−x′)kxP (kx)[
k2

x − ω2 + 4m2
n

1−ν2
− iη

]l

︸ ︷︷ ︸
=:h(ν)

, (6.16)

with n ∈ N0 and l ∈ N. For later reference, the integrand of the ν-integral is labeled by

h(ν), wherein any reference to further variables is omitted. P (kx) denotes a polynomial

in kx, i.e., as obvious from Eqs. (6.12) and (6.14), either refers to P (kx) = k2 or P (kx) =

k2Φ0. Furthermore, we introduced the n-dependent “effective mass squared”

m2
n ≡ m2 + 2εeBn , (6.17)

implying in particular m0 ≡ m.

Our next task is to perform the kx-integration in Eq. (6.16) explicitly. As Eq. (6.16)

corresponds to the most basic building block constituting Eqs. (6.12) and (6.14), this

allows us to discuss all the complications that arise in the evaluation of Eq. (6.5). The

evaluation of the kx-integral with the Residue theorem requires care, as the location of

the poles in the complex kx-plane depends on the further integration parameter ν. For
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given ω > 2mn, the quantity ω2 − 4m2
n

1−ν2
exhibits a sign-change as a function of ν. Defining

λn =

√
1 − 4m2

n

ω2(1 − ν2)
, (6.18)

and

κn =

√
4m2

n

ω2(1 − ν2)
− 1 , (6.19)

an analysis of the integrand in Eq. (6.16) shows that its poles in the complex kx-plane are

located at

kx = ±ωiκn ± (1 + i)η for ω2 ≤ 4m2
n

1 − ν2
,

kx = ±ωλn ± (1 + i)η for ω2 ≥ 4m2
n

1 − ν2
, (6.20)

suggesting an n-dependent decomposition of the ν-integral of the following form:

1∫
0

dν h(ν) →



r

1− 4m2
n

ω2∫
0

dλn

[
dν

dλn

h(ν)

]
ν=

r
1− 4m2

n
ω2(1−λ2n)

+

∞∫


r

4m2
n

ω2
−1

dκn

[
dν

dκn

h(ν)

]
ν=

r
1− 4m2

n
ω2(1+κ2n)

.

(6.21)

In [96], a similar8 decomposition is employed for n = 0. Subsequently, we stick to the

above decomposition.

It is necessary to distinguish two cases: Whereas for ω ≤ 2mn there is only the κn-

integral, for ω > 2mn both the κn- and λn-integrals contribute. By virtue of the pole

structure in the momentum-integration, cf. Eq. (6.20), the integrand of the κn-part is

exponentially damped with increasing κn, and the λn-part is oscillating as a function of

λn. Following the decomposition in Eq. (6.21), it is suggestive to label contributions due

to κn by “≤”, and contributions due to λn by “>”, see below. As after the substitution

in Eq. (6.21) κn and λn are nothing but integration parameters, we subsequently omit

the index n and simply use κ and λ instead. Moreover note, that whereas we omit any

explicit reference to the iη-prescription in the remainder, one should always recall the

implicit prescriptions λ → λ + (1 + i)η and iκ → iκ + (1 + i)η.

The photon transition amplitude

The last open issue in determining the photon transition amplitude is the evaluation of

the two position-space integrals in Eq. (6.9).

8A decomposition of this form for the ⊥ mode, cf. Eq. (C.18), is not as easily available due to the
dissimilar dependence of the polarization tensor on ν.
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This can be achieved by noting that

∞∫
d

dx′
0∫

−∞

dx′′ [i(x′ − x′′)]l eiω(x′−x′′)λ sin(ωx′′)e−iωx′
=

ie−iωd

ω2+l
(∂λ)

l

[
eiωdλ

(1 − λ)2(1 + λ)

]
,

(6.22)

where l ∈ N0, and a corresponding equation for κ, which can be obtained from Eq. (6.22)

by substituting λ → iκ. Next, we rewrite the photon transition probability in Eq. (6.9)

as

P� ,γ→γ =
α2ε4

36π2

∣∣f≤ + f>

∣∣2 , (6.23)

where we have introduced the dimensionless auxiliary functions f≤ and f> analogously to

[96]. Due to the modulus in Eq. (6.23), we do not have to care for global phase factors in

the definition of the auxiliary functions, and drop them in the following.

Before turning to the situation of a nonvanishing external magnetic field, let us state,

as a reminder, the auxiliary functions in the zero-field limit. Starting with the zero-field

polarization tensor of Eq. (6.13), one finds [96]:

f
(zero)
≤ =

∫ ∞



q

4m2

ω2
−1

dκ
e−ωdκ

i + κ

√
1 + κ2 − 4m2

ω2

(
1 + κ2 + 2m2

ω2

)
(1 + κ2)3/2

, (6.24)

f
(zero)
> =

∫ 

q

1− 4m2

ω2

0

dλ
eiωdλ

1 − λ

√
1 − λ2 − 4m2

ω2

(
1 − λ2 + 2m2

ω2

)
(1 − λ2)3/2

. (6.25)

Note, that our notation slightly differs from [96] as we would like to emphasize that the

κ-integral also contributes when the condition ω = 2m is fulfilled exactly. In addition,

we have introduced an upper label for the auxiliary functions, allowing us to distinguish

them in the various limiting cases discussed below. For later reference, let us also state the

transition probability in the limit of vanishing external fields, which reads, cf. Eq. (6.23),

P (zero)
γ→γ =

α2ε4

36π2

∣∣∣f (zero)
≤ + f

(zero)
>

∣∣∣2 . (6.26)

Subsequently, we investigate the implications for the transition probability for B 
= 0.

6.1.3 Transition amplitude in regimes of different field strength

Transition amplitude for weak magnetic fields

It is instructive to determine the transition probability in the presence of a weak magnetic

field first, which can be treated as a small, perturbative correction to the zero-field case.

Thus, we focus on the auxiliary functions derived from the polarization tensor in the

limit of “weak magnetic fields”, see Eq. (6.12) and also Fig. 6.2. In this context, we already
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X X

Figure 6.2: LSW scenario in the perturbative limit with
two couplings to the external field. For parameters cor-
responding to a feasible experimental setup, the validity
of the approximation seizes to hold far before the pertur-
bative correction can sizably outmatch the corresponding
zero-field process, cf. Sect. 6.2.1.

encounter some generic features of the auxiliary functions, facilitating the discussion of

the fully nonperturbative result below. Following the steps outlined in Sect. 6.1.2, one

arrives to order B2 at

f
(weak)
≤ =

2B2ε2e2

ω4

∫ ∞



q

4m2

ω2
−1

dκ e−ωdκ dωκ(i + κ) + i + 2κ

κ2(i + κ)2
√

1 + κ2

√
1 + κ2 − 4m2

ω2

. (6.27)

The corresponding function f> can be obtained from f≤ by substituting κ → −iλ and

changing the integration boundaries accordingly (cf. Eq. (6.21)), yielding

f
(weak)
> =

2B2ε2e2

ω4

∫ 

q

1− 4m2

ω2

0

dλ eiωdλ idωλ(1 − λ) − 1 + 2λ

λ2(1 − λ)2
√

1 − λ2

√
1 − λ2 − 4m2

ω2

. (6.28)

This expansion in B2 can be generalized to arbitrary orders using the corresponding

asymptotic expansion of the Digamma function [198], cf. Eq. (C.25). Notably, the ana-

lytical structure of Eqs. (6.27) and (6.28) incorporates various interesting differences with

respect to the zero-field case.

Firstly, we focus on the special situation where ω = 2m and only Eq. (6.27) contributes.

Noteworthy, the κ-integration is found to diverge for all values of ω = 2m and d. As there

is no such divergence in the absence of external fields (cf. Eq. (6.24)), this divergence or

“resonance phenomenon” can be considered as a genuine manifestation of the external

magnetic field. Let us remark that this has already been discussed by previous authors,

see, e.g., [199–202], in the context of quantum electrodynamics, but becomes particularly

relevant for minicharged particles. This divergence signalizes a break down of unitarity

in our calculation, as it would predict an arbitrarily large number of outgoing photons for

any small number of incoming photons. This unitarity violation is a consequence of the

idealized limit of a perfectly coherent infinite incoming wave train. A proper treatment

of the resonances requires to take, e.g., the finite width of the laser into account. As

this may indeed lead to a strong sensitivity to minicharged degrees of freedom, a careful

analysis of these resonances seems to be worthwhile. Here, however, we continue to work

in the perfectly coherent wave limit and ignore potential enhancements arising from such

resonances.



6.1. The probability for LSW and a handling of the polarization tensor 77

Secondly, we point out some general features of Eqs. (6.27) and (6.28). Whereas the

κ- and λ-integrations can easily be performed numerically for ω < 2m, a direct numerical

evaluation becomes tedious for ω ≥ 2m. In this case the integrand in Eq. (6.27) seems

to diverge at the lower end and that in Eq. (6.28) at both the lower and the upper

integration boundaries, respectively. However, recall the implicit iη-prescription from

Sect. 6.1.2, ensuring that divergencies do not lie on the integration contours. It turns

out that for ω 
= 2m, i.e., apart from the true divergence at ω = 2m just discussed, the

encountered superficial divergencies can be circumnavigated using integration by parts:

By means of the following identity for ω 
= 2m,

∫
dκ

1

κ2

√
1 + κ2 − 4m2

ω2

=

√
1 + κ2 − 4m2

ω2(
4m2

ω2
− 1

)
κ

+ C , (6.29)

with integration constant C, Eq. (6.27) can be rewritten as

f
(weak)
< =

2B2ε2e2

ω4
(
1 − 4m2

ω2

) ∫ ∞



q

4m2

ω2
−1

dκ

√
1 + κ2 − 4m2

ω2

× [ωd(2i − 3κ) − ω2d2(1 + κ2)] (i + κ) − 4κ + i

(i + κ)2(1 + κ2)3/2
e−ωdκ , (6.30)

and a surface term. Note that the lower label in Eq. (6.30) now is “<” as the case

ω = 2m has been excluded explicitly. Above, the surface term of the integration by parts

has been omitted as it vanishes identically for ω < 2m and for ω > 2m cancels with the

corresponding surface term arising in the analogous integration by parts of Eq. (6.28), as

can be easily verified by taking into account the explicit iη-prescription (cf. the discussion

below Eq. (6.21)).

Correspondingly, employing Eq. (6.29) with κ → −iλ, Eq. (6.28) becomes

f
(weak)
> =

2B2ε2e2

ω4
(
1 − 4m2

ω2

) ∫ 

r

1−4m2

ω2

0

dλ

√
1 − λ2 − 4m2

ω2

× [ω2d2(1 − λ2) − iωd(2 + 3λ)] (1 − λ) − 4λ − 1

(1 − λ)2(1 − λ2)3/2
eiωdλ , (6.31)

where we have again omitted the surface term. As Eq. (6.31) only contributes for ω > 2m

and, as just discussed above, the surface term in this case cancels with the one arising in

Eq. (6.30), the expressions in Eqs. (6.30) and (6.31) constitute the full result for ω 
= 2m.

These are divergence-free and thus perfectly suited for numerical evaluation.
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Finally, we combine the zero-field contributions with the corrections due to a weak

external magnetic field to obtain the photon transition probability for weak magnetic

fields through Eq. (6.23).

The transition probability then reads

P (pert)
�,γ→γ =

α2ε4

36π2

∣∣∣f (zero)
≤ + f

(zero)
> + f

(weak)
< + f

(weak)
>

∣∣∣2 . (6.32)

Let us remark at this point, that so far we have not yet specified the dimensionless

expansion parameter employed in the perturbative expansion explicitly, but rather focused

on the structure of the arising contributions. The explicit form of the expansion parameter

and therewith also the area of validity of the perturbative expansion is discussed in the

context of the strong field limit below.

Lastly, it is instructive to note, that naive analytic asymptotics for the limit ω � 2m,

being the limiting case of greatest physical interest, cannot be provided by means of an

expansion in the dimensionless parameter 2m
ω


 1. To see this, it is useful to rescale

the variables in Eq. (6.31) as λ → λ̃
√

1 − 4m2

ω2
such that the upper integration boundary

becomes 1 and the phase in the exponent becomes ωdλ̃
√

1 − 4m2

ω2
. A subsequent expansion

in 2m
ω

then inevitably results in an unphysical divergence at λ̃ = 1.

Correspondingly, even for ω � 2m we will stick to a full numerical evaluation of

Eq. (6.32). Note that rescaling λ as described above is also useful for this numerical

evaluation, which will be performed in Sect. 6.2.1. There, it will be particularly interesting

to check if Eq. (6.32) can provide for improved experimental bounds in the limit of sole �
mode propagation in the range of the validity of the approximation.

Towards the photon transition amplitude in the limit of strong magnetic fields

Given the structure of the sum within Eq. (6.14), the strong-field limit is significantly

more complicated to obtain. The structure of the B dependence of the final expression

cannot be easily read off from Eq. (6.14), as it will be affected by the kx integration.

Proceeding in the decomposition of the polarization tensor as outlined above, one

obtains the auxiliary functions:

f
(full)
≤ =

12Bεem2

ω4

∫ ∞



q

4m2

ω2
−1

dκ
e−ωdκ

(1 + κ2)3/2 (i + κ)
√

1 + κ2 − 4m2

ω2

+
∞∑

n=1

48Bεem2
n

ω4

∫ ∞



r

4m2
n

ω2
−1

dκ
e−ωdκ

(1 + κ2)3/2 (i + κ)
√

1 + κ2 − 4m2
n

ω2

, (6.33)
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as well as

f
(full)
> =

12Bεem2

ω4

∫ 

q

1− 4m2

ω2

0

dλ
eiωdλ

(1 − λ2)3/2 (1 − λ)
√

1 − λ2 − 4m2

ω2

+
∞∑

n=1

48Bεem2
n

ω4

∫ 

r

1− 4m2
n

ω2

0

dλ
eiωdλ

(1 − λ2)3/2 (1 − λ)
√

1 − λ2 − 4m2
n

ω2

. (6.34)

Note that Eqs. (6.33) and (6.34) together with Eq. (6.23) constitute the full nonpertur-

bative transition probability for arbitrary field strengths.

Obviously, the term in the first line of Eq. (6.33) and Eq. (6.34), respectively, and the

terms in the second line are of exactly the same structure. They agree with each other

besides m ↔ mn and a relative factor of four. Note however that the term in the first line

of Eq. (6.33) exhibits a divergence for ω = 2m. Recall that for this choice a divergence

has already been encountered in the weak field approximation above. Correspondingly,

the terms in the second line of Eq. (6.33) give rise to divergencies for ω = 2mn. Note

that these divergencies where already identified by previous authors on the level of the

polarization tensor, e.g., [199–202].

In summary we find divergencies of the photon transition amplitude for all ω = 2mn,

n ∈ N0. Let us emphasize that these divergencies arise as a genuine feature of the full non-

perturbative expression of the polarization tensor in a nonvanishing field, cf. Eq. (6.10).

Intriguingly, the divergencies for n ∈ N are outside the scope of the perturbative weak

field expansion.

Also, as Eqs. (6.33) and (6.34) are the full nonperturbative expressions, it should in

particular be possible to re-extract the zero-field result as a limiting case. In particular,

the regularity of the zero-field contribution at ω = 2m has to be regained. It turns out

that the zero-field contribution is contained in the sum over infinitely many terms in the

second lines of Eqs. (6.33) and (6.34) and can indeed be recovered. This is demonstrated

later, in App. F, for clarity.

Note that an explicit evaluation of the full auxiliary functions for arbitrary field

strengths does not seem feasible, due to the infinitely many terms with concurrent in-

tegrations to be considered in the sum. Thus we subsequently aim at the determination

of the leading contribution in the presence of a strong magnetic field.

To this end, we proceed similar to the limit of weak magnetic fields and rewrite

Eqs. (6.33) and (6.34) using integration by parts and employ Eq. (6.29) with the sub-

stitution m → mn. Accordingly, these integrations are now only possible for ω 
= 2mn

for all n ∈ N0. As discussed previously, the resonances at ω = 2mn violate unitarity and

cannot be drawn upon for physical predictions.
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Eqs. (6.33) and (6.34) can be rewritten as

f
(full)
< =

12Bεem2

ω4(1 − 4m2

ω2
)

∫ ∞



q

4m2

ω2
−1

dκ
[2(1 − κ2) − ωdκ(1 + κ2) + iκ] e−ωdκ

(1 + κ2)5/2 (i + κ)

√
1 + κ2 − 4m2

ω2

+
∞∑

n=1

48Bεem2
n

ω4(1 − 4m2
n

ω2
)

∫ ∞



r

4m2
n

ω2
−1

dκ
[2(1 − κ2) − ωdκ(1 + κ2) + iκ] e−ωdκ

(1 + κ2)5/2 (i + κ)

√
1 + κ2 − 4m2

n

ω2
,

(6.35)

f
(full)
> =

12Bεem2

ω4(1 − 4m2

ω2
)

∫ 

q

1− 4m2

ω2

0

dλ
[2(1 + λ2) + iωdλ(1 − λ2) + λ] eiωdλ

(1 − λ2)5/2 (1 − λ)

√
1 − λ2 − 4m2

ω2

+
∞∑

n=1

48Bεem2
n

ω4(1 − 4m2
n

ω2
)

∫ 

r

1− 4m2
n

ω2

0

dλ
[2(1 + λ2) + iωdλ(1 − λ2) + λ] eiωdλ

(1 − λ2)5/2 (1 − λ)

√
1 − λ2 − 4m2

n

ω2
.

(6.36)

In contrast to the integration by parts in the weak field case, here the respective surface

terms in both the κ- and the λ-contributions vanish themselves. The change of the lower

label from “≤” in Eq. (6.33) to “<” in Eq. (6.35) now explicitly excludes ω = 2mn for all

n ∈ N0.

In analogy to the zero-field limit, the contribution due to f> vanishes identically for

ω < 2m. This immediately follows from the fact that mn < mn+1, cf. Eq. (6.17). Also,

for ω > 2m, the upper boundary of the λ-integral in the sum terms of Eq. (6.36) vanishes

identically if n exceeds

nmax =

⌈
ω2 − 4m2

8εeB

⌉
, (6.37)

where �. . . � denotes the smallest integer not less than the argument, Thus, for given

experimental parameters {ω, B} and minicharges {ε, m}, the sum is always over a finite

number of terms only.

In particular, if nmax = 1, i.e., ω < 2m1, the contribution in the second line of

Eq. (6.36) completely vanishes. Let us have a closer look at this limiting case. For
2εeB
m2 
 1, the inequality ω < 2m1 reduces to ω < 2m. In the opposite limit 2εeB

m2 � 1, it

amounts to 8εeB
ω2

> 1. Thus, for external magnetic fields fulfilling the condition 8εeB
ω2

> 1,

Eq. (6.36) reduces to its first line.

Extracting the strong field limit of the transition probability

Subsequently we argue that the sum in the second line of Eq. (6.36) can be considered

as subleading and hence be neglected in a much larger regime. As mn, and therewith

in particular the integration boundaries in the terms of the sum, exhibit an explicit
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dependence on the magnetic field strength B, disentangling the magnitude and importance

of the various contributions in Eq. (6.36) is a nontrivial task. The representations of

Eqs. (6.35) and (6.36) have the advantage that the integrands do not exhibit any poles

within the range of integration, and the respective contributions are manifestly finite. In

particular, whereas the integrand in Eq. (6.35) is always finite along the real κ-axis, the

integrand in Eq. (6.36) diverges outside the integration interval at λ = 1.

Let us now turn to the situation where ω � 2m, which from a phenomenological

point of view, is the parameter regime of main interest for light MCPs. As the divergence

at λ = 1 then just lies outside the interval of integration, the main contribution to

Eq. (6.36) should stem from the vicinity of the upper integration boundary. Moreover,

Eq. (6.36) is expected to dominate the contribution of Eq. (6.35) due to two reasons.

Firstly, the domain the parameter κ is integrated over is well separated from any potential

divergencies of the integrand (located at κ = ±i), in contrast to the integration interval

of λ. Secondly, the integrand in Eq. (6.35) is exponentially suppressed as a function of

the parameter ωdκ. In particular for case of ωd > 1 (which must be certainly obeyed in

experiments), it receives its main contribution from a tiny interval just above the lower

integration boundary. For the dominant contribution, we hence focus on Eq. (6.36).

For ω � 2m, the sum in the second line of Eq. (6.36) in general contributes for

n ≤ nmax (cf. above). The explicit reference to the real part in the upper integration

boundary can be omitted for these n. Starting from λ = 0, the integrands in Eq. (6.36)

rapidly increase with λ. In the vicinity of the upper limit, the factor
√

1 − λ2 − 4m2
n

ω2

guarantees that the integrand is bent back and vanishes exactly at the upper integration

boundary. The peak is close to the upper limit and more pronounced for large ω.

On the other hand, the main contribution to Eq. (6.36) is expected to be due to small

n, fulfilling ω � 2mn, as for these terms the upper integration boundary of the λ-integral

comes closest to the divergence at λ = 1. In order to estimate its magnitude we focus

on the integrands in the vicinity of the divergence at λ = 1, as this regime is assumed to

dictate the magnitude of the λ-integral in the respective terms in the sum. This suggests

to approximate the common part of the integrands for λ near 1 as

[2(1 + λ2) + iωdλ(1 − λ2) + λ] eiωdλ

(1 − λ2)5/2 (1 − λ)
= − 5

4
√

2

eiωd

(1 − λ)7/2
+ O

(
(1 − λ)−5/2

)
, (6.38)

and the term discriminating the various terms in the sum as

√
1 − λ2 − 4m2

n

ω2
≈

√
2

(√
1 − 4m2

n

ω2
− λ

)1/2

. (6.39)

This approximation retains the important feature that the integrand vanishes at the

upper integration boundary, a behavior that would be spoiled by a naive series expansion



82 Chapter 6. LSW via virtual minicharged particles in a magnetic field

about λ = 1. Moreover, the so-approximated integrand can be integrated explicitly, and

afterwards be expanded in terms of 2mn

ω

 1. Combining Eqs. (6.38) and (6.39) we get

to leading order in 2mn

ω

 1

−5

4

∫ r
1− 4m2

n
ω2

0

dλ

(√
1 − 4m2

n

ω2
− λ

)1/2

eiωd

(1 − λ)7/2
= −4

3

(
ω2

4m2
n

)2

eiωd + O
(

ω2

4m2
n

)
. (6.40)

If in addition 2εeB
m2 � 1, the term in the first line of Eq. (6.36) is of order ∼ 2εeBm2

ω4
ω4

m4 =
2εeB
m2 � 1, whereas the first terms in the sum in the second line are ∼ 2εeBm2

ω4
ω4

4ε2e2B2n2
=

m2

2εeBn2

 1, and therewith suppressed in particular for larger n: With increasing n,

the individual terms become less important, as the upper integration boundary starts to

deviate progressively from λ = 1.

Finally, the limit ω � 2mn has to be discussed. Due to the factor (1 − 4m2
n

ω2
) in the

denominator of the second line in Eq. (6.36), one might expect a significant contribution.

However, expanding the integrand of the accompanying λ-integral around λ = 0, one finds

∫ r
1− 4m2

n
ω2

0

dλ

√
1 − 4m2

n

ω2
= 1 − 4m2

n

ω2
, (6.41)

giving rise to a contribution of order ∼ εeB
ω2

, which is substantially suppressed compared

to the contribution of the term in the first line of Eq. (6.36). In summary, we have

demonstrated that the first line of Eq. (6.36) constitutes the leading contribution in the

limit ω � 2m, 2εeB
m2 � 1 and ωd > 1.

Noteworthy, the very same discussion can also be applied to the auxiliary functions

in the weak-field limit, cf. Eqs. (6.30) and (6.31). As the leading behavior of the integral

in Eq. (6.31) coincides with that in Eq. (6.38) for mn → m, we can ultimately identify

the expansion parameter in the weak field expansion. We find that such an expansion is

trustworthy only in the regime where 2εeB
m2 
 1.

As argued, the first line of Eq. (6.36) dominates the transition probability in the

physically most relevant limit. In our numerical studies below, the other contributions

such as the first line of Eq. (6.35) will nevertheless be included. The numerical results

confirm our analytical line of argument. To summarize: In the limit of strong magnetic

fields, the auxiliary functions f< and f> are well approximated by

f
(strong)
< =

12Bεem2

ω4
(
1 − 4m2

ω2

) ∫ ∞



q

4m2

ω2
−1

dκ e−ωdκ 2(1 − κ2) − ωdκ (1 + κ2) + iκ

(1 + κ2)5/2(i + κ)

√
1 + κ2 − 4m2

ω2
,

(6.42)
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and correspondingly

f
(strong)
> =

12Bεem2

ω4
(
1 − 4m2

ω2

) ∫ 

q

1− 4m2

ω2

0

dλ eiωdλ 2(1 + λ2) + iωdλ (1 − λ2) + λ

(1 − λ2)5/2(1 − λ)

√
1 − λ2 − 4m2

ω2
.

(6.43)

The validity of this approximation is well confirmed by numerics in the experimentally

relevant strong-field limit. Inserting the auxiliary functions Eqs. (6.42) and (6.43) into

Eq. (6.23), we finally obtain the transition probability in the strong field limit, character-

ized by 2εeB
m2 � 1 and the additional constraints ω � 2m and ωd > 1,

P (strong)
�,γ→γ =

α2ε4

36π2

∣∣∣f (strong)
< + f

(strong)
>

∣∣∣2 . (6.44)

Let us also remark at this point that the leading contribution to the photon transition

amplitude is expected to depend on the thickness of the barrier d only via a phase factor

eiωd, as can be seen, for instance, in Eqs. (6.38-6.40). The transition probability, in which

phase factors drop out, should show almost no d dependence in the strong field limit, as

long as the Compton wavelength remains the dominant length scale.

In Sect. 6.2.1, we employ Eq. (6.44) in order to predict experimentally achievable MCP

exclusion limits in an idealized limit of sole � mode propagation. There, we evaluate this

strong field transition probability fully numerically. Nevertheless, it is useful to extract

the asymptotic behavior of Eq. (6.44). As argued above, for ω � 2m, Eq. (6.44) is

very well approximated by f
(strong)
< alone. Thus, employing the leading order estimate of

Eq. (6.40) for the λ integral at n = 0 in Eq. (6.43), one obtains as asymptotic behavior

of the strong field transition probability for ω � 2m

P (strong)
�,γ→γ � α2 ε4

36π2

(
B

εe

m2

)2

. (6.45)

Finally, to make contact with the intermediate transition regime 2εeB
m2 � 1, which is in

principle contained in Eqs. (6.35) and (6.36) but, as discussed above, numerically hard to

handle, it is useful to introduce an interpolating behavior for the transition amplitude by

combining the zero-field and strong magnetic-field limits of the transition amplitude. Near
2εeB
m2 � 1, the terms neglected in Eqs. (6.42) and (6.43) become increasingly important

and have to be accounted for. On the other hand, we will find in Sect. 6.2.1, that the

zero-field contribution dominates the transition probability at 2εeB
m2 � 1. Consequently,

to link the approximations in the regimes 2εeB
m2 � 1 and 2εeB

m2 
 1 throughout the region

where 2εeB
m2 � 1, we define

P (trans)
�,γ→γ =

α2ε4

36π2

∣∣∣f (zero)
≤ + f

(zero)
> + f

(strong)
< + f

(strong)
>

∣∣∣2 . (6.46)
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6.1.4 Transition amplitude for scalar minicharged particles

It is worthwhile to study in brief the corresponding LSW scenario for scalar minicharged

particles. As outlined in App. C, the analog of Eq. (6.10) for scalar minicharges reads

Πsc
� =

k2αε2

4π

∫ 1

0

dν ν2

[
ln

(
2m2

εeB

)
+ Ψ

(
Φ0

2εeB

)
− 2Ψ

(
Φ0

εeB

)]
, (6.47)

cf. Eq. (C.22), where Φ0 is defined as in Eq. (6.11). Following the same steps as employed

in the derivation of Eqs. (6.33) and (6.34) in Sect. 6.1.3, we find the full auxiliary functions

in the scalar case

f
(sc,full)
≤ =

3εeB

ω2

∞∑
j=0

∫ ∞



r

4m2
j

ω2
−1

dκ
e−ωdκ

(1 + κ2)3/2(i + κ)

√
1 + κ2 − 4m2

j

ω2
, (6.48)

as well as

f
(sc,full)
> =

3εeB

ω2

∞∑
j=0

∫ 

r

1− 4m2
j

ω2

0

dλ
eiωdλ

(1 − λ2)3/2(1 − λ)

√
1 − λ2 − 4m2

j

ω2
, (6.49)

where we have defined m2
j = m2+εeB(2j+1) and j ∈ N0. Building on the insights gained

in the discussion of the fermionic minicharges, we can make a few interesting observations.

Firstly, as in Eq. (6.48), the factor

√
1 − λ2 − 4m2

j

ω2
appears immediately in the numer-

ator as in the zero-field case, we do not encounter any resonances at ω = 2mj for scalar

minicharged particles (cf. also [201]).

Secondly, for scalar minicharged particles it seems rather hard to extract a leading

contribution to the photon transition amplitude in the strong field limit as defined and

discussed in Sect. 6.1.3. In particular, there is no clear separation of scales analogous to

the fermionic case, where m2
0 
 m2

n for n ∈ N. The physical reason for this feature will

be elaborated on in more detail in Sect. 6.2.3.

6.1.5 Range of validity and general limitations

Lastly, we would like to comment shortly on the range of validity and limitations of our

estimates for the photon transition probability for the � mode in the limit of very low

minicharge masses. These considerations are intended to be on a more general level.

Given the simplifying assumption of a spatially infinitely extended, homogeneous mag-

netic field, let us first focus on the limitations arising from the fact that in an experiment

the region penetrated by the magnetic field is finite. Realizing that the spatial extent

of the virtual particle loop is characterized by the Compton-wavelength, i.e., the inverse

mass m−1, of the encircling virtual particles, a natural criterion on the validity of the
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assumption of an infinitely extended field arises. Accordingly, as a rough estimate, the

inverse masses of the probed minicharges should not exceed the diameter of the region

penetrated by the magnetic field, cf. also Sect. 6.2.1. Note that this constitutes a physical

IR-cutoff to the formally divergent transition amplitudes in the limit of small minicharge

masses.

In addition, besides this essentially experimentally motivated constraint, recall that

our calculation is based on the polarization tensor in an external magnetic field at one-

loop level. Thus it certainly also has to be expected to become unreliable as soon as

higher loop corrections can no longer be considered as negligible. However, as higher

loop calculations go beyond the scope of this study, the subsequent considerations cannot

go beyond the level of educated guesses. In Sect. 6.1.3, we showed that for very small

minicharge masses ω � 2m and in the strong-field limit the leading contribution to the

transition amplitude is ∼ 2εeB
m2 � 1, where the linear scaling with the external field can

be attributed to the minicharge loop alone.

At two loop level, no new charged loops modify the tunneling process - the one-loop

diagram is rather corrected by an additional virtual photon line. Thus, we expect only

two additional couplings to enter, such that the two-loop correction in the above limit

can be estimated to be ∼ ε2α2εeB
m2 . However, as ε 
 1 one would therefore not expect

the two-loop correction to invalidate our results obtained at one-loop level. Only at three

loop level, additional fermion loops have to be considered. Assuming that the scaling

with the external field factorizes for the two loops, the leading term for the three loop

correction would be ∼ (ε2α)2(2εeB
m2 )2 for small minicharged masses. In this case, the three

loop correction would outmatch the one-loop contribution if ε4α2 2εeB
m2 � 1. However,

again since ε 
 1, this could happen only for very large magnetic field strengths, and will

not interfere with the exclusion bounds for our setup, cf. Sect. 6.2.1.

In summary, the experimental limitations to establish homogeneous magnetic fields

on the scale of large Compton wavelength ∼ 1/m appear to induce the most relevant

constraints in the IR. We stress however that the factorization assumption used above

has to be checked by explicit higher-loop calculations.

Certainly, also this discussion of the IR behavior being based on a perturbative expan-

sion in the number of dressed loops does not necessarily grasp all effects that could arise

in a nonperturbative treatment of the effective action.

6.2 MCP discovery potential for the � mode

In the following, we specify several details of an experimental setup inspired by current

technological capabilities. We then derive exclusion bounds in an idealized limit for which

all propagating photons are assumed to be coupled into the � mode in order to illustrate
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the discovery potential of LSW via virtual minicharged particles. Let us emphasize that

at this point we have not yet specified if and how the probe photons can be coupled

entirely into the � mode in an experiment. In fact, this issue is debated in the literature,

cf., e.g., [193, 194].

Of course, experimental insight on this matter is difficult to obtain, as the critical

field strength of QED is not (yet) accessible in experiments. However, in order to inves-

tigate the possible existence of minicharged particles, it becomes important to raise this

question again. In any case, analytical insights into the ⊥ polarization modes are not as

straightforwardly available. In addition, the physical features that are prominent in the

idealized limit of the sole � propagation mode most likely also persist in the calculation

for the full transversal photon field which is given as a combination of the � and ⊥ modes,

see App. C. For this reason, we study the LSW discovery potential for the � mode in

detail, and postpone a discussion of a feasible experimental setup which provides for a

maximum coupling to the � mode to Sect. 6.3.

As already emphasized in the preface to this chapter, the LSW scenario via virtual

minicharges, cf. Fig. 6.1, has the potential to provide direct limits on ε. For this reason it

will be instructive to compare the discovery potential of our setup to exclusion limits de-

rived from PVLAS polarization measurements rather than existing LSW data. Although

the former are less stringent in comparison to, e.g., ALPS LSW bounds, they do not rely

on a hidden-photon intermediate state (cf. Fig. 2.5).

Firstly, one might think, that the smallest accessible minicharge mass scale is set by

the scale of the employed vacuum beam tube diameter within the optical cavity. The

latter is used to enlarge the light power in the WISP production region on the side of

the incident photons. However, as the minicharges interact extremely weakly with the

magnet material or all other parts of the setup, the diameter of the beam tube and

other components are not relevant. Rather, the limiting length scale for the resolvable

minicharge mass is determined by the extent of the homogeneous external magnetic field

as well as the spatial separation between the photon source and the photon detector alone.

More specifically, the spatial and temporal homogeneity of the magnetic field should be

comparable to or larger than the Compton wavelength of the minicharged particle. If the

probe laser and the photon detector can be placed at arbitrary distances to the wall, the

extent of the magnetic field constitutes the limiting scale for the accessible minicharge

masses. Thus, employing conventional dipole magnets as used in accelerators or even

common nuclear magnetic resonance (NMR) machines, resolving minicharge masses of

mε � 4 × 10−7eV which correspond to magnetic field radii of ∼ 0.5m seems feasible. In

Figs. 6.3 and 6.4 we use a conservative value of B = 5T for the estimate, which could be

produced by a HERA dipole magnet as used in ALPS or even a today’s NMR machine.
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Secondly, we employ many state-of-the-art parameters as successfully installed at

ALPS: The probe laser beam provides visible light at a wavelength of 532nm, i.e., ω =

2.33 eV corresponding to a frequency doubled 1064nm standard light source. Note that

for the purpose of detecting regenerated photons, the detector efficiency and particularly

the detector noise play a crucial role. The best noise curves are usually obtained with

detectors for visible light that have rather poor efficiency in the infrared. On the other

hand, lasers at the infrared can reach higher intensities and thus constitute the better

choice for the photon source.

Thirdly, we give an estimate for the thickness of the light-blocking barrier which was

assumed to be perfectly reflecting in our theoretical considerations, cf. Sect. 6.1.1. For

ALPS, the light blocking barrier is realized by a high-quality steel block with thickness

d = 1.8cm =̂ 9.1 × 104eV−1 [203]: As for ALPS the barrier traversing particles are real,

the thickness of the wall does not play a crucial role for the conversion probability in the

limit of vanishing WISP-to-matter coupling.

By contrast, in our setup, the experiment exhibits an intrinsic sensitivity on the wall

thickness: For minicharge masses corresponding to Compton wavelengths smaller than

the wall thickness, the tunneling process is obstructed, whereas for greater Compton

wavelengths, the process becomes independent of the thickness of the barrier. To demon-

strate this we give exclusion limits for two different thicknesses of the wall corresponding

to d = 1mm =̂ 5.1 × 103eV−1 and d = 1μm =̂ 5.1eV−1, where the former is a feasi-

ble and the latter an ambitious aim for a thin-layer optical coating of a thin substrate.

However, as already noted below Eq. (6.44), exploring large Compton wavelengths, i.e.,

small minicharge masses is even possible with thicker barriers, as, e.g., used in the ALPS

experiment. Technically, the numerical evaluation of the auxiliary function f> becomes

considerably more difficult for thicker barriers, see below. For this reason, we limit our-

selves to the a numerical evaluation for the d-values stated above.

With all experimental parameters which enter the transition probabilities set, we pro-

ceed to the evaluation of the experimental observable in the proposed LSW scenario,

which is the outgoing photon number behind the light-blocking barrier:

nout = N nin P�,γ→γ . (6.50)

As in all LSW scenarios, the lever arm for probing small minicharge couplings is the large

number of incoming photons nin on the right hand side of Eq. (6.50) vs. the – in principle

– single photon detection possible with modern avalanche photodiodes. In addition, we

introduce a variable N which shall account for the option of installing a regeneration

cavity on the right hand side of the wall, cf. [93]. Without a cavity one the regeneration

side one has N = 1.
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As emphasized, it remains to be determined how many photons can be coupled into the

� mode. Certainly, in an ideal situation, this would be possible for all incoming photons.

However, as we have stated the explicit ε dependence in the transition probabilities in

the different limits, the corresponding exclusion plot could be easily rescaled if in fact

fewer photons can be coupled into the � mode. Thus, with this limitation in mind, we

assume as an incoming to outgoing photon ratio nin/nout = 1025 as realized for ALPS,

which already accounts for additional parameters of the experimental realization such as

the use of a front-side cavity, effective detector sensitivity and running time, cf. [77].

Lastly, let us comment on the numerical evaluation of Eq. (6.50). Herein the great-

est challenge is the numerical evaluation of the auxiliary function f> contributing to the

transition probability P�,γ→γ. As seen in Sect. 6.1.2, the integrand of the λ-integral in f>

can generically have a highly oscillatory behavior (depending on the exact parameter set

d, ω,m) in all limits (without or with external B field): Rescaling the integration variable

as λ → λ̃
√

1 − 4m2

ω2
, it can be seen that the numerical evaluation becomes increasingly

difficult at the upper integration boundary λ̃ � 1 for larger values of d
√

ω2 − 4m2, con-

stituting the oscillation’s frequency. For thicker walls and masses obeying ω � 2m, the

frequency of oscillations is always very large and becomes only slightly smaller for larger

minicharge masses ω � 2m. In addition, as the amplitude of the oscillation becomes

also very large near λ̃ � 1, cf. discussion below Eq. (6.36), one runs into difficulties in

the numerical evaluation of the λ̃-integral especially at small m. To circumnavigate this

problem, it is helpful to split the λ̃-integral at an appropriate cutoff value λ̃c(d, ω,m)

which depends on the set of variables used and in addition also depends on the employed

numerical integration routine. Substituting λ̃ → 1/R above the cutoff, one can then

rewrite the integral as:
∫ 1

0
dλ̃ =

∫ λ̃c
0

dλ̃ +
∫ 1/λ̃c

1
dR/R2. In this manner, the numerical

routine can treat the problematic region separately at slightly reduced oscillatory phase

and amplitude.

In contrast to the λ-contribution, the κ-integral is always decaying and never oscilla-

tory, cf. Sect. 6.1.2. Nevertheless, for numerical evaluation, a similar rescaling procedure

for ω < 2m as κ → κ̃
√

4m2

ω2
− 1 such that the upper integration becomes 1 is consistent,

cf. Eq. (6.30). For ω > 2m, the numerical evaluation of the κ-integral is straightforward

and requires no special attention.

6.2.1 Prospective exclusion bounds for minicharged fermions

With the above preparations, we are now in the position to determine an exclusion plot

for minicharged fermions in the fractional-charge-mass plane. Employing the outgoing

photon number, Eq. (6.50), together with the different transition probabilities derived

in Sect. 6.1.3, we compute the prospective bounds for the experimental parameter set

introduced above, dividing the exclusion plot into an upper right and a lower left half,
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cf. Figs. 6.3 and 6.4, respectively. The two plots concentrate on the meV mass range

(Fig. 6.3) and on a mass range including very small masses (Fig. 6.4) to highlight different

physical features arising in the different limiting cases. The colored areas correspond to

the parameter regimes that are accessible by the proposed experimental setup.

Figure 6.3: � mode ex-
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down long before it im-
proves bounds from the zero-field limit. The orange area denotes the area that can be
excluded in the strong magnetic field limit by virtue of Eq. (6.44) for a wall thickness of
d = 1mm, whereas the black dotted line corresponds to a thickness of d = 1μm in the
strong-field case. It is visible that the bounds become independent of the wall thickness
below m ≈ 5 × 10−3eV. The strong B-field approximation is valid for 2εeB

m2 � 1, whereas
the green line nicely interpolates between the strong and weak field limits at 2εeB

m2 � 1.
Within the area excluded in the zero-field situation, we give the resonance condition
ω = 2mn for n = 1 and n = 10 as a paradigm. In addition, in light blue, PVLAS limits
are depicted, cf. also Fig. 6.4.

Fig. 6.3 displays the mass-coupling plane for “large” minicharge masses of m = 10−3eV

up to m = 2eV. Although this mass range is apparently irrelevant in terms of discovery

potential for minicharged fermions as the colored regions are all already excluded by

PVLAS [25] polarization data (cf. the dotted light blue line), we can nevertheless gain

several interesting physical insights. Firstly, one can see that for masses greater than

m � 0.03eV, the best exclusion bounds are already obtained in a zero-field setting with

d = 1μm (denoted by the blue shaded area) as described through Eq. (6.26). As already

discussed in [96], going to the smallest considered masses of m = 4×10−7eV in this setup,

the zero-field line decreases with a logarithmic dependence and finally reaches a fractional

coupling of ε � 6 × 10−6, cf. also Fig. 6.4.
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In red, we plot the discovery potential for � mode propagation in the limit of weak

magnetic fields, cf. Eq. (6.32). As argued in Sect. 6.1.3, this perturbative correction is

only valid as long as 2εeB
m2 
 1. As we depict 2εeB

m2 = 1 as brown dot-dashed line in Fig. 6.3,

the perturbative correction can be expected to be trustworthy only to the very right of this

line and its limit of validity clearly is exceeded long before it can improve the zero-field

bounds. Therefore, the perturbative result cannot account for a new physics discovery

potential with the chosen set of parameters and it is found that the nonperturbative

results will be crucial to the exploration of an hitherto untested minicharge parameter

range.

A distinct feature discriminating the zero-field situation from the finite magnetic field

case is certainly the resonance at ω = 2m, corresponding to m = 1.165eV for our pa-

rameters, as visible in Fig. 6.3. This phenomenon certainly deserves further attention.

However, for reasons of clarity we defer the discussion of this particular resonance and all

the other resonances at ω = 2mn (n ∈ N), as encountered in Sect. 6.1.3 to Sect. 6.2.2.

As argued in Sect. 6.1.3, for 2εeB
m2 � 1, i.e., to the very left of the brown dot-dashed

line, we are in the range of validity of the strong B-field approximation cf. Eq. (6.44).

The strong magnetic field limit is plotted for two thicknesses of the walls corresponding

to the orange area with d = 1μm and the black dotted line corresponding to d = 1mm.

As expected, for smaller minicharge masses, these lines fall on top of each other, as the

wall thickness becomes insignificant for minicharges with smaller masses corresponding to

larger Compton wavelengths, cf. also the discussion in Sect. 6.2.3 below. This behavior is

found approximately below m � 6 × 10−3eV. Note that this constitutes a nontrivial full

numerical check of the auxiliary function’s behavior which was also extracted analytically

to leading order, below Eq. (6.44). Going to larger masses, the lines are found to separate,

where, according to intuition, the thicker wall always results in worse exclusion bounds in

comparison to the thinner wall. Also, for both lines, as already encountered in the weak

magnetic field situation, a resonance at ω = 2m is clearly visible, cf. also Sect. 6.2.2.

However, this resonance lies within a region where 2εeB
m2 < 1, such that the strong field

approximation cannot be expected to hold anymore. Rather, the weak field approximation

should be trusted close to the resonance at ω = 2m. Accordingly, the limit of strong

magnetic fields is only valid for lower minicharge masses and will be discussed in Fig. 6.4

in more detail. Finally, before turning to small masses in Fig. 6.4, let us make contact with

the region 2εeB
m2 � 1 in Fig. 6.3, in which is a priori neither included in the strong nor in

the weak field approximation. As a green line, we plot in Fig. 6.3 the transition behavior,

where the strong field behavior is added to the zero-field contribution, cf. Eq. (6.46). As

expected, for 2εeB
m2 
 1 the strong field contribution in the transition curve plays no role

and the best limits are provided by the zero-field part alone, whereas for 2εeB
m2 � 1, the

strong-field contribution dominates the green transition curve. Near 2εeB
m2 � 1, i.e., near
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the brown dot-dashed line, it can be seen that the green line nicely arranges the transition

from the strong-field through the weak-field probabilities leading finally into the zero-field

limit. However, again, as this region is safely excluded by PVLAS polarization data, we

now abandon the discussion of Fig. 6.3 and turn to lower minicharge masses, where our

setup could have the prospect of new physical discoveries.

In Fig. 6.4 we present exclusion bounds in the lower half of the fractional charge-mass

plane ranging from minicharge masses of m = 4 × 10−7eV to m = 10−2eV. The orange-

colored area depicts the parameter space that could be excluded in the strong magnetic

field limit by virtue of Eq. (6.44) for a wall thickness of d = 1μm, cf. also Fig. 6.3, whereas

the yellow area in addition assumes resonant regeneration with a second cavity installed

behind the wall employing N = 105. As in total the transition probability P
(strong)
�,γ→γ ∼ ε6,

cf. Eq. (6.44) as well as Eq. (6.45), the use of a second cavity yields almost an order

of magnitude better exclusion bounds. Note that in order to achieve the same effect by

tuning the magnetic field strength alone, one would correspondingly need to enhance the

magnetic field by a factor of
√

105 as it enters effectively by its square. This would demand

for magnetic fields of B ∼ 1.5 × 103T, corresponding to field strengths that can only be

obtained in highly focused lasers in a laboratory. However, there of course the extent of

the field itself would be limited to a smaller region. Thus, a large effort on the optics side

seems to outweigh by its benefits the employment of stronger magnetic fields due to the

merely linear B-dependence of the amplitude.

Figure 6.4: � mode ex-
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clusion bounds in the
fractional charge-mass
plane for “small” mini-
charge masses. The blue
area denotes the excluded
region in the zero-field
limit, whereas the orange-
colored area depicts the
parameter space that
could be excluded in the
strong magnetic field li-
mit by virtue of Eq.
(6.44), whereas the yel-
low area in addition as-
sumes resonant regen-
eration with a second
cavity behind the wall
employing N = 105. The light-blue dotted line denotes limits [58] derived from PVLAS
polarization measurements [25], whereas the lower dot-dashed line in black refers to the
best model-independent cosmological bounds obtained from CMB data [104]. The pink
dashed line gives the asymptotics according to Eq. (6.45).
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To compare our strong-field results for the � mode with current experimental limits,

we give, as upper dotted line in Fig. 6.4 the exclusion limits [58] provided by PVLAS

polarization measurements [25], whereas the lower dot-dashed line labels the best model-

independent cosmological bounds obtained from CMB data [104].

We find that in the limit of sole � mode propagation the LSW scenario via virtual

minicharged fermionic particle-antiparticle states could improve PVLAS polarization data

below m � 10−4eV and even outmatch cosmological bounds derived from CMB data

below m � 5× 10−6eV. Employing a cavity on the regeneration side, these values can be

improved to outmatch PVLAS bounds for m � 2×10−3eV and to outmatch cosmological

bounds at m � 9 × 10−5eV, cf. the yellow-shaded area in Fig. 6.4.

6.2.2 Fermionic resonances in the nonperturbative result

Let us briefly discuss the resonances found in Sect. 6.1.3 and their potential impact on the

exclusion plot in Sect. 6.2.1. This discussion represents a first glance at these resonances; a

more comprehensive study including phenomenological predictions requires to go beyond

our present formalism and has, for instance, to deal with wave packets of finite width. In

addition, the discussion of the resonance structure has to be extended to include also the

⊥ propagation modes.

Let us first comment on the resonance at ω = 2m as found both in the strong field limit

and in the perturbative weak field expansion. This resonance, as prominently visible at

m = 1.165eV in Fig. 6.3, is independent of other external parameters such as the magnetic

field strength. However, one can see that even for small step sizes around the resonance (in

the graph, we have chosen Δm = 10−3eV as absolute step size close to the resonance, i.e.

between 1.1eV and 2eV, and ten points per order of magnitude away from the resonance),

the resonance is not particularly broad.

In addition to this overall resonance at ω = 2m, which can be seen already in the

contribution ∼ B2 in the perturbative weak field approximation, one has a resonant

structure at ω = 2mn for n ∈ N in the full nonperturbative transition amplitude, being

invisible in the perturbative result. In Fig. 6.3 these are shown exemplarily for n = 1

and n = 10 continuing to decrease at linear spacing with each successive higher order of

magnitude in n. Apparently, for fixed B and ω, the resonance condition ω = 2mn is,

for a given n ∈ N, always met by some set of parameters {ε, m}, leading to an enhanced

probability of light-shining-through-walls if a particle with the corresponding values of

{ε, m} exists. In case of a signal, it would be necessary to study the parameter dependence

of the signal on ω or B, in order to identify the n value corresponding to the order of the

resonance in the {ε, m} plane. Due to the structurally similar functional dependence of

the contributions giving rise to resonances at higher n visible in Eqs. (6.35) and (6.36),

the resonant structures at non-zero n are expected to be rather sharp, in analogy to the
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resonance at ω = 2m. A slight detuning, e.g., in B is expected to immediately “kick”

the minicharges off the resonance. However, note that as in Eqs. (6.35) and (6.36) the

dependence on ε is also implicit in the integration boundary, a solid numerical study of

this behavior is more involved.

As shown in Sect. 6.1.4 these resonances are absent for scalar minicharged particles,

see also [201]. Thus, if the resonances can indeed be utilized in an experiment, they could

serve to determine the spin and mass of the minicharged particles.

Let us emphasize again that the divergencies occurring in our transition probability

related to the resonances signalize a break down of unitarity in our calculation. Being a

consequence of the idealized limit of a perfectly coherent infinite incoming wave, a proper

treatment of the resonances requires to account for the finite width of the laser and/or

the spatio-temporal inhomogeneity of the magnetic field.

In summary, let us state, that the exclusion limits depicted for the large B (aside

from the resonances) limit denote a primary estimate for the discovery potential of the

experiment in the limit where photon propagation is entirely assigned to the � mode.

6.2.3 Physics of the low-mass enhancement phenomenon

As emphasized, a comprehensive study of this LSW scenario needs to carefully account

for all photon propagation modes, � and ⊥. Nevertheless, it is worthwhile to already

interpret the physics of the low-mass enhancement phenomenon present in the � mode

as it seems capable of improving the most recent laboratory bounds in the lower mass

range in such a pronounced way. Most obviously, PVLAS bounds as well as other bounds

derived from LSW data saturate in the limit of small minicharge masses, i.e., the transition

amplitude becomes m-independent in this limit, as predicted by the polarization tensor

for propagation in free space, cf. [52, 58] as well as Eq. (2.20). In these calculations,

following [54], the proper-time integration within the polarization tensor is performed in

the limit ω sin θ/m � 1 and k2 = 0, i.e., on the light cone.

By contrast, in the LSW scenario via virtual particles, translational invariance is

explicitly broken at the level of the photon-to-photon transition amplitude, even in the

formal limit of d → 0 by the specification of a boundary condition for the incident photons

on the wall. As a result any approximation strategy that treats k2 as a constant, or

particularly k2 = 0, is rendered inapplicable, cf. Sect. 6.1.1. Note in addition, for θ = 0,

an expansion of the polarization tensor in terms of ω sin θ/m � 1 is of course inapplicable.

Rather, our calculation relies on exact, nonperturbative results for the polarization tensor

in the �k ‖ �B situation, as detailed in App. C. With respect to the exclusion bounds, we find

that in our specific setting the asymptotic behavior for small minicharge masses differs

drastically from the behavior observed at polarization measurements and the bounds

derived from the scenario with hidden photons (cf. Fig. 2.5), underlying common LSW
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experiments with minicharges. Our scenario for the � mode does not result in saturation,

rather, towards smaller minicharge masses the transition amplitude grows ∼ 1/m2 to

leading order in the limit of small masses, cf. the discussion below Eq. (6.40) as well

as Eq. (6.45). Effectively this amounts to a quartic gain in the transition probability

as a function of the minicharges’ Compton wavelength, i.e., the “loop size”. On the

other hand, as demonstrated, the dependence of the transition probability on the explicit

thickness of the wall becomes asymptotically negligible for smaller m: Recall that our

calculation formally accounts for all the incident � probe photons to split into a virtual

particle-antiparticle pair at any instance between the photon source and the light-blocking

barrier, and conversely allows for a recombination of the virtual particle-antiparticle pair

anywhere between the back side of the wall and the detector. As argued above, for a given

minicharge mass, sizable contributions to the photon transition amplitude however only

arise from an interval of extension of O(m−1) around the wall. Thus, for tiny minicharge

masses m−1 � d the region where recombination to photons is forbidden (i.e., within the

barrier of width d) is significantly outsized by an interval of O(m−1) where it is possible,

resulting in an only subleading d-dependence of the transition probability.

In particular, note that an analogous reasoning also opens up a more intuitive way

to understand why for tiny minicharge masses the contributions to the photon transition

amplitude due to non-zero n are essentially negligible in the strong field limit 2εeB
m2 � 1.

As pointed out in Sect. 6.1.3, besides an overall factor of four compared to the n = 0

term, the structure of the terms in the sum in Eqs. (6.33) and (6.34) constituting the full

transition amplitude is the same. They only differ by their n-dependent effective mass

mn. Assuming that the respective contributions can thus be associated with loop sizes

of O(m−1
n ), particularly for mn � m, as true in the strong field limit, contributions from

n ≥ 1 can be neglected confidently.

Whereas it is well known that the photon polarization tensor in an external magnetic

field can be determined as a sum over infinitely many Landau levels cf., e.g., [200, 201],

here we contrarily started with its full analytical expression in the limit of �( �B,�k) = 0, in

the � mode derived in the proper-time representation, see App. C. Only after performing

the steps outlined in Sect. 6.1.1, and by employing the exact series representation of

the Digamma function, we finally recover the Landau-level structure on the level of the

photon transition amplitude. The Landau-level picture also provides an understanding

of the enhancement of the effect in the small-mass/strong-field limit as compared to the

zero-field setting: In contrast to the zero-field setting, spatial momenta orthogonal to the

field are quantized into Landau levels in the presence of a magnetic field. Effectively, this

amounts to a dimensional reduction from 3+1 to 1+1 dimensions as the quantized levels

can carry momenta only along the longitudinal and the time-like direction. In effect, the

log-like increase of the transition probability is converted into a power-law behavior.
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Remarkably, the interpretation of our results in terms of Landau levels allows us to

motivate both the relative factor of 1/4 between the n = 0 and n ≥ 1 contributions in

Eqs. (6.33) and (6.34), as well as the differences in the results for fermionic and scalar

minicharged particles: As the incident probe photons do not have a momentum com-

ponent orthogonal to the magnetic field, it follows that the transversal momenta of the

virtual particle-antiparticle state must add up to zero. In a magnetic field the orthogonal

momentum component of charged particles is quantized. As the effective mass squared

associated with a given Landau level is defined as the sum of the particles mass squared

and its orthogonal momentum component squared, cf., e.g., Eq. (B.9), momentum con-

servation of the orthogonal components implies that

M2
j,σ = M2

j′,σ′ , (6.51)

where Mj,σ and Mj′,σ′ refer to the effective mass of the particle and its antiparticle in

the jth and j′th Landau level (j, j′ ∈ N0), respectively. σ and σ′ denote spin degrees of

freedom of the particle and its antiparticle. The summation index n in Eqs. (6.33) and

(6.34) has, however, still to be related to the index pair j, σ.

In particular, the effective mass mn as introduced in Eq. (6.17), does not coincide

with the single-particle mass Mj,σ arising in a diagonalization of the Dirac operator.

From Eq. (B.9), setting the orthogonal momentum component to zero and with e → εe,

we find that the effective mass is rather given as

M2
j,σ = m2 + εeB(2j + 1 + σ) with j ∈ N0 . (6.52)

Here, σ refers to spin components of the minicharged particles, i.e., σ = ±1 for fermionic

and σ = 0 for scalar minicharged particles.

Whereas the lowest possible effective mass squared for fermionic minicharges is given

by m2, for scalar minicharged particles it is rather m2
1 = m2 + 2εeB. Moreover, it is

now straightforward to show that for fermionic minicharged particles, there is only one

possibility to fulfill Eq. (6.51) under the additional requirement M2
j,σ = m2, namely j =

j′ = 0 and σ = σ′ = −1. On the contrary, for a given n ∈ N, there are always four

possibilities to fulfill Eq. (6.51) under the additional requirement M2
j,σ = m2

n for fermionic

particles,

1. j = j′ = n whilst σ = σ′ = −1 ,

2. j = j′ = n − 1 whilst σ = σ′ = +1 ,

3. j = n , j′ = n − 1 whilst σ = −1 and σ′ = +1 ,

4. j = n − 1 , j′ = n whilst σ = +1 and σ′ = −1 .
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This explains the relative factor of 1/4 between the terms with n = 0 and n > 0 in

Eqs. (6.33) and (6.34). For scalar minicharged particles on the other hand, Eq. (6.51)

immediately implies j = j′, and thus the same weight for all sum terms, as found in the

explicit calculation for scalar minicharges, cf. Sect. 6.1.4. As the lowest effective mass

for scalar minicharges is m1, for scalar minicharged particles with tiny masses we thus

do not expect to obtain exclusion bounds compatible with those obtained for fermionic

minicharges, basically due to the fact that the lowest effective mass in the external mag-

netic field coincides with the free mass term m.

6.3 Advantages and perspectives of “virtual LSW”

In this chapter, we have investigated an LSW scenario based on the tunneling via virtual

minicharged particles in a magnetic field. From a phenomenological perspective, we have

quantified the discovery potential for the � propagation mode at zero incidence in a first

case study and interpreted the physical mechanisms which underlie our findings. In order

to tackle this LSW scenario analytically, it was essential to focus on photon propagation

along the field lines, as only in this configuration, full photon momentum dependence of

the polarization tensor can be maintained. In addition, as shown in previous studies of the

polarization tensor for strong magnetic fields, only at zero incidence, photon propagation

proceeds undamped in the strong field limit [192].

At this point, continuative studies into several directions are in order.

Firstly, as stressed before, for a comprehensive study of this LSW scenario, an inclu-

sion of all the photon propagation modes which occur at zero incidence is necessary. In

particular, it would be interesting to see to which extent the zeroth Landau level can

contribute to the tunneling process in the ⊥ modes. Next, for zero incidence, it is unclear

how many photons are coupled into the respective propagation modes in the crossover

from a region without external magnetic field into the region permeated by the field, and

vice versa. Thus, it is desirable to find a setup which assures a maximal coupling to the

� mode. Presumably, this is most easily possible by replacing the optical photon cavity

through a microwave cavity as studied, e.g., in [90]. This amounts to a few modifica-

tions in our calculations which can, however, be implemented straightforwardly. Staying

within an optical setting, it is worthwhile to note that also Gaußian or Bessel beams can

be expected to exhibit a coupling to the � mode.

As shown, the range of testable minicharge masses grows with larger spatial extent

of the external magnetic field. It thus seems interesting to consider this tunneling phe-

nomenon for the spatially most extended fields. For instance, one could think of probing

for minicharges using the earth’s magnetic field alone. As this provides for field strengths

of only B ∼ 50μT, depending on the exact geographical location, the achievable bounds
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immediately drop by a factor of ∼ 105 (compare to B = 5T used above), but profit

from a spatial extent considerably larger than 1m and thus make very light MCPs pos-

sibly accessible. However, it has to be checked carefully, whether the approximation of

homogeneous9 fields is still justified in such cases.

In addition, our setting assumed an infinite distance between the photon source and

detector. As a next step, the influence of finite intervals should thus be taken into account.

In particular, it seems probable that oscillations of the transition probability as a function

of this interval length might arise as in similar tree-level processes, cf., e.g., Eq. (2.27). In

any case, our results should still hold if the spatial separation between the photon source

and the detector is much larger than the extent of the magnetic field.

Also, the resonances occurring for the Dirac fermionic minicharges deserve further

attention. If the associated transition probabilities are rendered finite for calculations

with, e.g., finite wave packets, the resonances may allow to explore an even larger param-

eter space, in particular also for large minicharge masses. Lastly, diffractive effects for

non-parallel propagation with respect to the magnetic field lines or multiphoton processes

could also profit from the low mass enhancement mechanism.

It is certainly also worthwhile to think about phenomenology beyond this LSW sce-

nario or a related setup employing microwave cavities. As argued, implications of the limit

of magnetic (and also electric) fields beyond the critical field strength which are only of

academic interest in QED, gain particular importance if the existence of minicharged par-

ticles is investigated. Specifically, if minicharged particles with εeB/m2 � 1 exist, they

would strongly effect all directions of photon propagation in a magnetic field. Thus, it

seems promising to think about exploiting this feature in diffractive measurements.

In summary, we think that the results presented in this chapter [204] can be the basis

for further promising theoretical and experimental investigations on minicharged particles.

9It is interesting to note that in solenoids or the Helmholtz-coil configuration as, e.g., in studied in
Chapt. 4, high, homogeneous field strengths are most easily obtained along the field lines, rendering these
field sources also worthwhile to be considered further for this LSW scenario.



Chapter 7

Résumé and concluding remarks

“Was heißt und zu welchem Ende

studiert man eigentlich Physik?”
sehr frei nach Friedrich Schiller

In this thesis we have aimed at advancing two distinct classical probes of the vacuum of

quantum electrodynamics from a perspective which focused on experimental applicability:

geometry dependencies for Casimir-Polder phenomena as well as manifold optical probes

of the vacuum structure. For the latter we have also explored and quantified their potential

use in the search for particles beyond the standard model at low energy scales.

As most intuitively visible in the functional integral formulation of QFT, the vacuum

state is determined by all possible field configurations of the quantum fields weighted by a

complex phase factor which is their classical action functional. As outlined in chapter 2, by

restricting these fluctuation modes through the insertion of boundaries or modifying them

via their coupling to external fields, the vacuum can be understood and treated effectively

as a medium. Testing the properties of this medium in experiments with concurrent

theoretical predictions not only teaches us about the behavior of the underlying known

field content of the vacuum, but also helps us to investigate the possible existence of as

yet undiscovered particles. Remarkably, some major challenges of modern particle physics

such as, e.g., the nature of dark matter can thereby be tackled in laboratory experiments.

To correctly describe the global behavior of the altered properties of the vacuum,

correlations on all length scales need to be accounted for, as is a main finding of chapter

3. There, we studied quantum forces arising within the vacuum by the deformation of

its fluctuation modes through a set of boundaries. In particular, starting with a case-

study for scalar fields, we investigated a nontrivial Casimir-Polder setting that ruled out

the possibility of a perturbative ordering of length scales. Devising a nonperturbative

treatment for this configuration, we parameterized the deviation of the distance power-

law behavior from the planar setting through an anomalous dimension. Among other

results, we could show that a universality regime exists at larger distances in which the

fluctuation modes average over the shape of the corrugation.

We then moved on to investigating the quantum vacuum by deforming its fluctuation

modes by a second means, namely through the application of external electromagnetic

98
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fields. In chapter 4, we suggested probing for quantum nonlinearities by combining the

strong points of two modern experimental advances: gravitational-wave interferometers

attain the capability of most sensitive interferometric measurements at frequency varia-

tions of several hundred Hertz. On the other hand, pulsed magnets from high-magnetic

field laboratories can provide for the strongest macroscopic field strengths at just about

this temporal variation. Thus, we showed that a combination of these two technologies

would not only result in a promising tool for the detection of QED nonlinearities but also

give unprecedented insights into the allowed parameter space for minicharged particles

and axion-like particles.

In chapter 5, we pushed accessible laboratory field-strengths to their limits by modeling

an all-laser based setup for the search for the QCD axion and axion-like particles. Utilizing

the sensitivity of the probe beam to inhomogeneities of the external beam, we showed

that the frequency shift of a probe beam constitutes a useful observable for axion-photon

interactions. This effect, being reminiscent of sum- and difference-frequency generation

within a medium with nonlinear optical properties, was shown to be attainable in a setup

employing only one high-intensity laser. In essence, such a setup was argued to be well

suited for searches for axion-like particles and the axion within the O(eV)-mass range.

In that sense, the rapidly evolving field of high-intensity laser physics could contribute to

complement established laboratory axion searches.

In chapter 6, we once more turned to investigating a favorable setup in the quest for

minicharged particles. We considered a light-shining-through-walls scenario in a mag-

netic field which relied on the transition of a light-blocking barrier via virtual particle-

antiparticle intermediate states that do not interact with the barrier. We relied on non-

perturbative insights into the polarization tensor in an external magnetic field, which were

shown to be essential to this study: The IR modes of the photon polarization tensor can

lead to a characteristic low-mass enhancement in the transition probability, which favors

the tunneling process via virtual particle intermediate states for small masses as compared

to many established scenarios. However, we found that only in an external magnetic field

of the size of the Compton wavelength of the minicharged particle, this enhancement can

in principle be via a power-law dependence on the mass: In a first case study for the

� propagation mode of the incoming probe photons, we outlined the details of a feasi-

ble experimental setup for this scenario based on established technology. We detailed

on the physical mechanisms underlying the observed low-mass enhancement mechanism

for fermions and proposed different scenarios which can lead to improved searches for

minicharged particles based on our results.

On more general grounds, even as we in principle know well how to describe particle

interactions through quantum field theory, a good understanding of many of their im-

plications and the physical mechanisms underlying their most important features is still
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lacking, particularly in the nonperturbative regime. Even in the theory that allows for

among the most precise predictions and measurements, namely quantum electrodynam-

ics, a qualitative and quantitative understanding of many aspects of phenomena such as

Casimir forces and nonlinear light propagation still demands for continued theoretical and

experimental effort.

On the other hand, we also have good reason to believe that our picture of particle

interactions – the standard model – cannot be the final status of our understanding of

particles physics (even when gravity is left aside). From a modern point of view, the

standard model is presumably only an effective description accounting for the effective

degrees of freedom in a finite range of scales.

For example, enduring questions – which also relate to the topics of this thesis –

concern the nature of dark matter, the strong CP problem or the predicted existence of

additional “hidden” particles that often come along with proposals for UV completions

of the standard model (such as string theories). In a time where modern colliders reach

the TeV scale, it seems likely that some insights on the answer to these questions can be

obtained in the next decades. On the other hand, colliders are often not the best means

to search for hints of new physics if it emerges as weakly interacting particles at lower

energy scales such as, e.g., the axion.

Therefore, it seems to be the best way to gain comprehensive insights into physics

beyond the standard model by a combined effort of high-energy collider experiments, as-

trophysical observations and low-energy (optical) probing since they are in several aspects

complementary. Of these options, an attractive feature characterizing optical searches

seems to be that they often require comparatively little technical and personnel effort.

For this reason, it would be our sincere wish to see some of our theoretical investiga-

tions being tested in an experiment.
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[138] B. Döbrich, M. DeKieviet and H. Gies, “Scalar Casimir-Polder Forces For Uniaxial
Corrugations,” Phys. Rev. D 78, 125022 (2008).
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Atom Beams from Rough Surfaces at Grazing Incidence,” Phys. Rev. Lett. 105,
133203 (2010).

[146] D. Boer and J. W. Van Holten, “Exploring the QED vacuum with laser interferom-
eters,” arXiv:hep-ph/0204207.

[147] V. I. Denisov, I. V. Krivchenkov and N. V. Kravtsov, “Experiment for measuring
the post Maxwellian parameters of nonlinear electrodynamics of vacuum with laser
interferometer techniques,” Phys. Rev. D 69, 066008 (2004).

[148] G. Zavattini and E. Calloni, “Probing For New Physics and Detecting non linear
vacuum QED effects using gravitational wave interferometer antennas,” Eur. Phys.
J. C 62, 459 (2009) [arXiv:0812.0345 [physics.ins-det]].

[149] P. R. Saulson, “Fundamentals of interferometric gravitational wave detectors,” Sin-
gapore, Singapore: World Scientific (1994) 299 p.

[150] K. S. Thorne, “Gravitational waves,” arXiv:gr-qc/9506086.

[151] D. G. Blair, (ed.), “The Detection of gravitational waves,” Cambridge, UK: Univ.
Pr. (1991) 481 p.

[152] https://www.advancedligo.mit.edu

[153] http://www.geo600.uni-hannover.de

[154] D. Shoemaker, private communication.

[155] J. R. Smith [ LIGO Scientific Collaboration ], “The Path to the enhanced and ad-
vanced LIGO gravitational-wave detectors,” Class. Quant. Grav. 26, 114013 (2009).
[arXiv:0902.0381 [gr-qc]].

[156] B. F. Schutz, “The Detection Of Gravitational Waves,” in Proc. Les Houches School
on Astrophysical Sources of Gravitational Radiation, Cambridge UP (1995).

[157] K. S. Thorne, “Gravitational Radiation,” In *Hawking, S.W. (ed.), Israel, W. (ed.):
Three hundred years of gravitation*, 330-458. (see Book Index).

[158] J. Wosnitza, et al., “Recent Developments at the Dresden High Magnetic Field
Laboratory,” in 2006 IEEE International Conference on Megagauss Magnetic Field
Generation and Related Topics, G.F. Kiuttu, et al. (ed.) 197 (2008).

[159] J. Wosnitza, et al. “Science at the Dresden High Magnetic Field Laboratory,” Vol-
ume 1003, pp. 311-315 AIP Conference Proceedings (2008).

[160] J. Wosnitza, et al., “Dresden Pulsed Magnetic Field Facility,” J. Magn. Magn. Mat.
310, 2728 (2007).

[161] T. Hermannsdörfer, private communication.



BIBLIOGRAPHY 111
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Appendix A

Units, conventions and some useful

numbers

As it is common, we have set � = c = 1 throughout the thesis. In addition, we employ

Heaviside-Lorentz units, avoiding the roaming of factors 1/4π in Maxwell’s equations.

The fine-structure constant is given as α = e2/4π. Although these choices simplify cal-

culations, we must retranslate our results to the system of SI-units to give meaningful

phenomenological estimates.

To make this connection, the following conversion table of selected measures is helpful:

length 1 m 5.07 × 106 eV−1

time 1 s 1.52 × 1015 eV−1

magnetic field strength 1 T 195.5 eV2

energy 1 J 6.24 × 1018 eV
intensity 1 W/cm2 1.59 × 10−6 eV4

power 1 W 4.11 × 103 eV2

mass 1 kg 5.61 × 1035 eV

As follows, the critical strengths of magnetic fields Bcrit � 4 × 109T and electric fields

Ecrit = 1× 1018V/m in quantum electrodynamics unite at a value of m2/e � 9× 1011eV2

in natural units. Accordingly, the critical intensity to be attained lies at Icrit � 5 ×
1029 W/cm2, which yet constitutes a very ambitious aim in the face of current technology,

see, e.g., Chapt. 5.

To each particle or particle loop it is often useful to assign a length scale corresponding

to its Compton wavelength. For electrons and positrons, as m � 511keV, this extent is

� 2×10−6eV−1 =̂ 4×10−13m. In addition, we associate a temporal extent of � 1×10−21s

with quantum fluctuations of these particles.

Except for Chapt. 6 and the associated App. C, where we have employed g =

diag(−1, +1, +1, +1) as a metric in order to preserve easy comparability to established
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literature, we have g = diag(+1,−1,−1,−1) as metric of our choice. The gamma-matrices

obey the anti-commutation relation {γμ, γν} = 2gμν and the field strength tensor F μν

reads

F μν =

⎛⎜⎜⎜⎜⎝
0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

⎞⎟⎟⎟⎟⎠ , (A.1)

while its dual is defined as

F̃ μν =
1

2
εμναβFαβ , (A.2)

where εμναβ is totally antisymmetric and we choose ε0123 = 1.

A common choice of scalar and pseudoscalar Lorentz-invariants reads1

FμνF
μν = −2( �E2 − �B2) = −2 (a2 − b2) = 4 F , (A.3)

FμνF̃
μν = −4 �E �B = −4 a · b = 4 G , (A.4)

such that the so-called secular invariants read

a =

√√
F2 + G2 −F , (A.5)

b =

√√
F2 + G2 + F . (A.6)

The term ‘secular invariant’ comes about as ±b and ±ia are eigenvalues of the constant

‘matrix’ Fμν . If G 
= 0, it is possible to boost the system into a Lorentz frame in which the

electric and magnetic fields are (anti-)parallel, depending on the sign of G. Conveniently,

in the frame where �E ‖ �B, one can then associate a ↔ E and b ↔ B.

1Note carefully that the convention for the invariants a and b is by far not uniform in the literature.
Our choice agrees with, e.g., [12, 15], but not with [52].



Appendix B

The Heisenberg-Euler Lagrangian in

constant external fields

In this appendix, we give an evaluation1 of functional determinant leading to the Heisenberg-

Euler effective action. For simplicity, we restrict ourselves to a constant external magnetic

field. As we take the electromagnetic field to be external, we are working, by definition,

on the level of the one-loop approximation as radiative corrections to the loop are not

accounted for.

For convenience, we give again the one-loop effective action of Eq. (2.10):

Γ(1)[A] = −i ln det
(
−i /D + m

)
, (B.1)

with /D = γμ(∂μ − ieAμ). In order to evaluate the spectrum of this operator, we first

rewrite the argument of the determinant into a more useful representation2

ln det
(
−i /D + m

)
=

1

2

[
ln det

(
−i /D + m

)
+ ln det

(
−i /D + m

)]
=

1

2
ln det

(
/D

2
+ m2

)
=

1

2
Tr
[
ln
(

/D
2

+ m2
) ]

, (B.2)

where a zero-field subtraction remains to be included, see below.

The evaluation of Eq. (B.2) for constant magnetic fields is considerably facilitated by

the fact that the Landau levels appear as part of the spectrum. Nevertheless, even for

known eigenvalues, the logarithm has to be cleverly dealt with. One adequate technique

1Here, we follow in parts the steps outlined in a lecture given by G. Dunne. The corresponding lecture
notes have been made available with participation of the author, cf. [205].

2To check these identities, rewrite the “ln det” into a “Tr ln”, insert γ5γ5 = 1 and make use of the
cyclicity of the trace.
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would be to employ a proper-time representation [14]. Here we follow a different approach,

in which zeta function regularization is employed.

For this purpose, let us first introduce the Hurwitz zeta function, defined by

ζH(s; z) :=
∞∑

n=0

1

(n + z)s
, if �(s) > 1 . (B.3)

Conveniently, using the integral representation of the gamma function, the zeta function

can be analytically continued also to negative values of s. For the computation of the

Heisenberg-Euler Lagrangian, we need to employ the relations

ζH(−1; z) =
z

2
− z2

2
− 1

12
(B.4)

ζ ′H(−1; z) =
1

12
− z2

4
− ζH(−1, z) ln z − 1

4

∞∫
0

dt

t2
e−2zt

(
coth t − 1

t
− t

3

)
, (B.5)

cf., e.g., [205].

Formally, one can relate the spectrum of an operator Mλ with eigenvalues λn to a

zeta function by defining

ζ(s) := Tr

(
1

Ms
λ

)
=

∞∑
n=0

1

λs
n

(B.6)

such that by taking the derivative of the zeta function with respect to s one finds

ζ ′(s) = −
∞∑

n=0

ln(λn)

λs
n

(B.7)

ζ ′(0) = − ln

( ∞∏
n=0

λn

)
= −Tr ln (Mλ) . (B.8)

The superiority of Eq. (B.8) is hidden in the fact that for the continuous eigenvalues

(momenta) of an operator as in Eq. (B.2), we would find a divergent contribution when

performing the trace-integral, demanding for regularization (and subsequent renormal-

ization). Instead, in Eq. (B.8), once an analytic continuation of the zeta function to the

required s-values is performed, a rather naive use of this identity will render a finite result.

In our context, the eigenvalues of the operator ( /D
2

+ m2) from Eq. (B.2) factorize into

contributions that are continuous if parallel and discrete if orthogonal to the direction of

the external magnetic field lines. The latter correspond to the relativistic generalization

of the Landau levels, given by

λn = m2 + �k2
⊥ + eB(2n + 1 + σ) , (B.9)
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where σ = ±1 encodes the spin components of the fermions, see, e.g., [206]. Thus,

according to Eq. (B.8), we can translate the task of summing the logarithms of these

eigenvalues into the evaluation of a Hurwitz zeta function as introduced in Eq. (B.3).

The relevant zeta function then reads

ζ(s) =
eB

2π

∫
d2k⊥
(2π)2

∞∑
n=0

∑
±

μ2s(
�k2
⊥ + m2 + eB(2n + 1 ± 1)

)s . (B.10)

In the above equation, we have inserted the degeneracy factor for the Landau levels

eBV⊥/2π, and subsequently omitted the volume factor V⊥, as well as the volumes of the

integration over the parallel and time-like components V‖ Vt, as our final result (Eq. (B.17))

will be given in terms of a Lagrangian rather than an action. In addition, Eq. (B.10) carries

a normalization constant μ2 which will in the end be set equal to the rest energy of the

electron m2. Its purpose is to ensure that the one-loop correction vanishes in the limit

B → 0.

One can deal with Eq. (B.10) by performing the integration over the momenta first

and subsequently evaluating3 the spin and Landau level sums.

For the momentum integral we switch to polar coordinates and reverse differentiate

giving ∫ ∞

−∞
d2k⊥

1(
�k2
⊥ + c

)s = π

∫ ∞

0

dk
d

dk

(
(k2 + c)−s+1

−s + 1

)
=

π

(s − 1) cs−1
, (B.11)

such that Eq. (B.10) becomes

ζ(s) =
eB μ2s

(2π)3

π

(s − 1)

∞∑
n=0

∑
±

1(
m2 + eB(2n + 1 ± 1)

)s−1 . (B.12)

We then write out the spin sum explicitly and combine the terms as

∞∑
n=0

[
1

(n + m2

2eB
+ 1)s−1

+
1

(n + m2

2eB
)s−1

]
= 2 ζH(s − 1; m2

2eB
) − ( m2

2eB
)1−s , (B.13)

such that we can finally write the zeta function in a compact form

ζ(s) =
e2B2

2π2

(
μ2

2eB

)s
1

(s − 1)

(
ζH

(
s − 1; m2

2eB

)
− 1

2

(
m2

2eB

)1−s
)

. (B.14)

Following Eqs. (B.7) and (B.8), we now take the derivative of the zeta function and set s

equal to zero. To bring the right hand sides of these equations into final form, we employ

3Note that in Chapt. 6 as well as App. C, we proceed in just the opposite way and regain a Landau-level
type structure from an integral representation in which the level contributions are “hidden” at first.
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the analytic continuations of the Hurwitz zeta function given in Eqs. (B.4) and (B.5) and

normalize to μ2 = m2 in the end.

ζ ′(s) = e2B2

2π2

{
ln
(

μ2

2eB

) (
μ2

2eB

)s
1

(s−1)

[
ζH

(
s − 1; m2

2eB

)
− 1

2
( m2

2eB
)1−s

]
−

(
μ2

2eB

)s
1

(s−1)2

[
ζH

(
s − 1; m2

2eB

)
− 1

2
( m2

2eB
)1−s

]
+

(
μ2

2eB

)s
1

(s−1)

[
ζH

(
s − 1; m2

2eB

)
− 1

2
( m2

2eB
)1−s

]}
(B.15)

ζ ′(0) = e2B2

2π2

{
3
4

m2

2eB2 + 1
4

∫∞
0

dt
t2

e−
m2t
eB

[
coth t − 1

t
− t

3

]}
. (B.16)

The first term in Eq. (B.16) is independent of B and thus does not contribute on the level

of the dynamics. Before we state the final result for the Heisenberg-Euler Lagrangian, we

pull out a factor of 1/t of the square bracket and substitute T = t/eB

L(1) = − 1

8π2

∫ ∞

0

dT

T 3
e−m2T

[
eBT

tanh(eBT )
− 1 − 1

3
(eBT )2

]
. (B.17)

Lastly, by realizing that x/ tanh(x) = 1 + x2/3 + O(x4), we see that the integral is safe

at the lower T integration boundary for B 
= 0 and vanishing in the limit B → 0, as

intended.

The above result also allows introduce the Heisenberg-Euler Lagrangian for nonvan-

ishing electric fields which is closely associated with absorptive properties of the vacuum,

see below. By Lorentz invariance, we know that the effective Lagrangian can only depend4

on F and G2, as defined in Eqs. (A.3) and (A.4).

Thus, by observing that in a parallel field configuration (cf. also the remark below

Eq. (A.6))

L (F ,G) |E �=0,B=0 = L
(
−E2/2, 0

)
= L

(
(−iE)2/2, 0

)
= L(F ,G)|E=0,B=−iE , (B.18)

we see that we can obtain the Heisenberg-Euler Lagrangian for constant electric fields by

substituting5 B → −iE in Eq. (B.17). Note that through this substitution, as the first

term in the square brackets is transformed into eET/ tan(eET ), the Lagrangian picks up

an imaginary part by virtue of the poles at T = nπ/eE, where n = 1, 2 . . . . The physical

meaning of this finding can be understood by recalling the relation between the energy

functional and the vacuum persistence amplitude as stated in Eq. (2.1). As the energy

functional W and the effective action Γ encode the same physical information, one has in

Minkowski space the relation exp (iΓ[E]) = 〈0|0〉E. On the other hand, the probability

for vacuum decay in the presence of an external electric field is P = 1 − |〈0|0〉E|2=
4Note that the dependence on G needs to be in even powers as this invariant is CP violating.
5Of course, this substitution disguises the fact that there is an ambiguity in the choice of sign B → ±iE

depending relative direction of the electric and magnetic field vectors, cf., e.g., [207]. However, as this is
not crucial to the present discussion, we disregard this issue in the following.
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1 − exp (−2�Γ). Thus, one finds that the imaginary part of the effective action can be

associated with the number of produced electron-positron pairs in the external electric

field. Likewise, the imaginary part of the Heisenberg-Euler Lagrangian can be associated

with a pair production rate. This phenomenon is commonly referred to as Schwinger

pair production honoring [14], however cf. also earlier work [12, 208]. Schwinger pair

production constitutes – in theory as well as in experiment – a major research field6 on

its own.

Finally, we want to state the result for the full Heisenberg-Euler Lagrangian [12–14],

i.e., for nonvanishing electric and magnetic fields. Employing the secular invariants a and

b, cf. Eqs. (A.5) and (A.6), it can be written in a form that exhibits a close structural

similarity to the result for purely magnetic or electric fields. One finds

Leff =
1

2
(a2 − b2)−

1

8π2

∫ ∞

0

dT

T 3
e−m2T

(
e2abT 2

tanh(ebT ) tan(eaT )
− (b2 − a2) e2T 2

3
− 1

)
, (B.19)

where we have reinstated the tree-level contribution L(0), such that above Leff = L(0)+L(1).
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Figure B.1: Diagram-
matic depiction of the
Heisenberg-Euler Lagrangian
of Eq. (B.19). The dressed
loop (double line) depicts
arbitrarily many insertions of
the external field.

In Fig. B.1 we give a diagrammatic depiction of the Heisenberg-Euler Lagrangian. For

completeness let us point to some of its most important phenomenological implications.

By Furry’s theorem, only an even number of combined photon and external field insertions

is admissible. Generating photon legs by functional differentiation of the one-loop effective

action, see, e.g., [213], one obtains “photon-photon scattering” [214, 215] at four photon

legs, “photon splitting” at three photon legs [216, 217], and “Delbrück scattering” at

two photon legs [218, 219]. Note that by scattering photons off the electromagnetic

fields in atoms7, Delbrück scattering [220] as well as photon splitting have been observed

experimentally [221].

6For example, although dynamical pair production [209] in the perturbative, multiphoton regime has
been observed at SLAC in the experiment 144 [210] (with first nonperturbative signatures, cf. [211]),
pair production in the fully nonperturbative “tunneling-regime” still awaits experimental verification,
see, e.g., the discussion in [212].

7Note that the vertex coupling is enhanced by virtue of the charge of the nucleus in this situation.
Furthermore, for constant external fields, the lowest order contribution to “photon splitting” vanishes,
cf. [19], rendering a rotation phenomenon in dipole magnets, cf. Fig. 2.3, due to this process negligible.
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Lastly, we give the weak field limit of the Heisenberg-Euler Lagrangian, which will be

relevant to our analyses in Chapt. 4. For today’s experimentally available electromagnetic

fields it is safe to approximate Ee 
 m2 and Be 
 m2, and we can perturbatively expand

the Lagrangian in the number of field insertions, cf. Fig. B.1. Thus, one finds up to

quadratic order in the field strength:

Leff =
1

2

(
�E2 − �B2

)
+

2α2

45m4

(
�E2 − �B2

)2

+ 7
2α2

45m4

(
�E �B

)2

. (B.20)

Let us remark, that although the above effective Lagrangian was worked out in the ap-

proximation of a constant external magnetic field, it can still be expected to hold if

inhomogeneities of the field do not occur on a length or time scale on the order of the

Compton wavelength of the electron, justifying its use in Chapt. 4.



Appendix C

On vacuum polarization in constant

external magnetic fields

In the following, we give a very brief survey of the polarization tensor in external, purely

magnetic fields. The presentation is intended such that it gathers all the necessary1 facts

that constitute the basis of our investigations of the light-shining-through-walls scenario

in Chapt. 6. In particular, we focus on the situation in which the direction of the ex-

ternal magnetic field and the propagation direction of the photons coincide. Note that,

as Chapt. 6 rederives and extends results of [96], we employ the corresponding metric

conventions g = (−, +, +, +) such that k2 = �k2 −ω2 in the following for easy comparabil-

ity. On the other hand, the general literature on the polarization tensor particularly for

arbitrary field configurations has become rather broad over the course of the years and

we limit ourselves by referencing [52, 213] containing pedagogical résumés of the most

important results.

Vacuum polarization with charged Dirac spin-1/2 fermions

If, without restriction of generality, �B is chosen to point along the 1-direction, the 4-

momentum of the photon and the metric can be decomposed into parallel and orthogonal

components with respect to the 1-direction as

kμ = kμ
‖ + kμ

⊥ , kμ
‖ = (ω, k1, 0, 0) , kμ

⊥ = (0, 0, k2, k3) , gμν = gμν
‖ + gμν

⊥ . (C.1)

1A more elaborate discussion is under way [57].

123
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According to this decomposition, the polarization tensor for spin-1/2 Dirac fermions in

its proper-time representation can be written as [52]

Πμν(k) =
α

2π

∫ ∞

0

ds

s

∫ +1

−1

dν

2

{
e−iΦ0s

z

sin(z)

[
N0

(
gμνk2 − kμkν

)
+ (Ñ1 − N0)

(
gμν
‖ k2

‖ − kμ
‖k

ν
‖
)

+ (Ñ2 − N0)
(
gμν
⊥ k2

⊥ − kμ
⊥kν

⊥
) ]

+ c.t.

}
, (C.2)

where z = eBs, B = | �B| and the so-called “contact-term” assures that the polarization

tensor vanishes for vanishing fields

c.t. = −(1 − ν2)e−im2s
(
gμνk2 − kμkν

)
. (C.3)

Moreover, defining θ = �( �B,�k), the short-hand

Φ0 = m2 − 1 − ν2

4
ω2 +

[
1 − ν2

4
cos2 θ +

cos νz − cos z

2z sin z
sin2 θ

]
�k2 (C.4)

as well as the auxiliary functions

N0 = cos νz − ν sin νz cot z , Ñ1 = (1 − ν2) cos z , Ñ2 = 2
cos νz − cos z

sin2 z
, (C.5)

are introduced. Note that in Eq. (C.2) as well as all subsequent representations of the

polarization tensor, a prescription m2 → m2 − iη, with an infinitesimal parameter η > 0,

is implicitly understood to ensure convergence of the integral in the proper time represen-

tation. Physically, the integration over ν governs the distribution of the momenta within

the particle-antiparticle loop, cf., e.g., [20], whereas the proper-time integral comes about

as part of a convenient representation of the inverse Dirac operator, cf. [14]. For polarime-

try it is instructive to decompose the polarization tensor in Eq. (C.2) with respect to the

different polarization modes. Such a decomposition is most intuitive if θ = �( �B,�k) 
= 0.

In this situation it is convenient to write

Πμν(k) = Π0(k) P μν
0︸︷︷︸

:=
“
gμν− kμkν

k2
−P μν

‖ −P μν
⊥
”
+ Π‖(k) P μν

‖︸︷︷︸
:=

 
gμν
‖ −

kμ
‖ kν

‖
k2‖

!
+ Π⊥(k) P μν

⊥︸︷︷︸
:=

„
gμν
⊥ − k

μ
⊥kν

⊥
k2⊥

«
,

(C.6)

such that the sum of the projectors in Eq. (C.6) spans the transversal subspace: P μν
0 +

P μν
‖ +P μν

⊥ = gμν − kμkν

k2
≡ P μν

T . Here we speak of the transversal subspace as longitudinal

photons, which are singled out by the projector P μν
L = kμkν

k2
, would have their wave vector

parallel to their amplitude �k ‖ �E ‖ �A in vacuum.
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By the same reasoning, P μν
0 can be understood as projecting onto quasi-longitudinal or

“tilted” polarization modes. The scalar functions Π‖, Π⊥ and Π0 belonging to Eq. (C.6)

read [52]

⎧⎪⎨⎪⎩
Π0

Π‖
Π⊥

⎫⎪⎬⎪⎭ =
α

2π

∫ ∞

0

ds

s

∫ +1

−1

dν

2

×

⎡⎢⎣e−iΦ0s
eBs

sin(eBs)

⎛⎜⎝
⎧⎪⎨⎪⎩

0

N0 − Ñ1

Ñ2 − N0

⎫⎪⎬⎪⎭�k2 sin2 θ +

⎧⎪⎨⎪⎩
N0

Ñ1

N0

⎫⎪⎬⎪⎭ k2

⎞⎟⎠ + c.t.

⎤⎥⎦ , (C.7)

where the contact term now is

c.t. = −e−im2s k2(1 − ν2) . (C.8)

For θ 
= 0, a further evaluation of Eq. (C.7) is possible through well-established approxi-

mation techniques, see, e.g., [54]. However, such techniques can mostly not be expected

to be applicable for arbitrary photon momenta �k.

On the other hand, if θ = 0, the polarization tensor simplifies considerably as no addi-

tional direction is singled out by the magnetic field as compared to the zero-field situation:

Only separate contributions ∼ Ñ1 and ∼ N0 remain along two different projector compo-

nents. Note carefully that in this alignment, P μν
⊥ + P μν

0 = gμν
⊥ singles out the orthogonal

polarization state ⊥, whereas P μν
‖ now projects on the tilted modes. In order to avoid

confusion, we adapt the notation P μν
‖ ≡ P μν

� as introduced in [193] in order to highlight

that ‖ does not refer to a state of polarization in this alignment. The polarization tensor

then reads

Πμν(k) = P μν
� k2

‖
α

2π

∫ ∞

0

ds

s

∫ +1

−1

dν

2

[
z

sin(z)
Ñ1 e−iΦ0s − (1 − ν2)e−im2s

]
+ gμν

⊥ k2
‖

α

2π

∫ ∞

0

ds

s

∫ +1

−1

dν

2

[
z

sin(z)
N0 e−iΦ0s − (1 − ν2)e−im2s

]
. (C.9)

Notably, the proper-time integrals in Eq. (C.9) can be evaluated explicitly. To show this,

employing s = z
eB

, as well as Ñ1 and N0 from Eq. (C.5), we rewrite the polarization tensor

as

Πμν(k) = P μν
� k2

‖
α

2π

∫ +1

−1

dν

2
(1 − ν2)

∫ ∞

0

dz

[
cot(z) e−i

Φ0
eB

z − e−i m2

eB
z

z

]

+ gμν
⊥ k2

‖
α

2π

∫ +1

−1

dν

2

∫ ∞

0

dz

[(
cos(νz)
sin(z)

− ν sin(νz) cot(z)
sin(z)

)
e−i

Φ0
eB

z − (1 − ν2)
e−i m2

eB
z

z

]
. (C.10)
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To perform the integration over z, it is suggestive to dispose of the oscillatory behavior of

the integrand by rotating the z-contour in the complex plane. However, this is not entirely

straightforward: Keeping m and ω fixed, the phase Φ0 defined in Eq. (C.4), which at θ = 0

simplifies to

Φ0 = m2 + (�k2 − ω2)
1 − ν2

4
=

1 − ν2

4

(
�k2 − ω2 +

4m2

1 − ν2

)
, (C.11)

is always positive if ω < 2m, but exhibits a sign-change away from the light cone. To

be specific, for k2 
= 0, Eq. (C.11) changes sign as function of |�k| for −1 � ν � 1 if

ω > 2m. Thus, a rotation of the z-contour is well-defined for ω < 2m but not easiliy

implemented for ω > 2m. (Note that for ν = ±1, Φ0 = m2 and the contour rotation can

be easily performed. In the following discussion, a restriction to −1 � ν � 1 should thus

be understood in the ν integral.)

In order to evaluate the proper-time integral for arbitrary relative magnitudes of ω

and m, we resort to a “trick” which was already employed in App. B, below Eq. (B.18).

Realizing that the polarization tensor can depend on the external field only via Lorentz

invariants [52], we can once again employ a “rotation” B → −iE, such that the electric

analog of Eq. (C.10) reads

Πμν(k) = P μν
� k2

‖
α

2π

∫ +1

−1

dν

2
(1 − ν2)

∫ ∞

0

dz

[
coth(z) e−i

Φ0
eE

z − e−i m2

eE
z

z

]

+ gμν
⊥ k2

‖
α

2π

∫ +1

−1

dν

2

∫ ∞

0

dz

[(
cosh(νz)
sinh(z)

− ν sinh(νz) coth(z)
sinh(z)

)
e−i

Φ0
eE

z − (1 − ν2)
e−i m2

eE
z

z

]
.

(C.12)

Here we have already rearranged the terms such that it is visible that the rotation effec-

tively amounts to a conversion of the trigonometric functions into their hyperbolic analogs

for convenience. Now, recalling the iη prescription for the mass terms in the exponents,

the evaluation of the proper-time integration in Eq. (C.12) does in fact not necessitate a

contour rotation. First, it is instructive to note that the expression in the second line of

Eq. (C.12) can be rewritten using2 integration by parts

−
∫ ∞

0

dz
ν sinh(νz) coth(z)

sinh(z)
e−βz = −ν2 +

∫ ∞

0

dz
−ν2 cosh(νz) + βν sinh(νz)

sinh(z)
e−βz .

(C.13)

2See also (D.25) in [52].
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Next, employing Eqs. (3.551.2) (for the contact term) as well as (3.551.3) and (3.552.1)

of [177], which can be written as∫ ∞

0

dz zδ−1e−βz = Γ(δ)β−δ = δ−1 − ln(β) − γE + O(δ) , if �(β) > 0 & �(δ) > 0 ,

(C.14)∫ ∞

0

dz zδe−βz coth(z) = Γ(δ + 1)
[
2−δζ(δ + 1, β/2) − β−δ−1

]
= δ−1 − Ψ(β/2) − γE − ln(2) − β−1 + O(δ) , if �(β) > 0 & �(δ) > 0 , (C.15)

∫ ∞

0

dz zδ e−βz

sinh(z)
= Γ(δ + 1)2−δζ

(
δ + 1, β+1

2

)
= δ−1 − Ψ

(
β+1

2

)
− γE − ln(2) + O(δ) , if �(β) > −1 & �(δ) > 0 , (C.16)

respectively. Here, γE is the Euler-Mascheroni constant and Ψ(x) = d
dx

ln Γ(x) denotes

the Digamma function which is discussed in detail below. The polarization tensor for the

electric field, Eq. (C.12), becomes

Πμν(k) = P μν
� k2

‖
α

2π

∫ 1

0

dν (1 − ν2)

[
ln

(
m2

2e(−iE)

)
− Ψ

(
Φ0

2e(−iE)

)
− e(−iE)

Φ0

]
+gμν

⊥

[
α

3π
k2
‖
(
ln
(

m2

2e(−iE)

)
− 1

2

)
− α

2π
k2
‖

∫ 1

−1

dν

2

(
1 − ν2 − Φ0

e(−iE)
ν
)

Ψ
(

1
2

+ Φ0
2e(−iE)

+ ν
2

)]
.

(C.17)

Employing the reverse substitution E → +iB, Eq. (C.10) can be finally written as

Πμν(k) ≡ P μν
� Π�(k|B) + gμν

⊥ Π⊥(k|B) =

P μν
� k2

‖
α

2π

∫ 1

0

dν (1 − ν2)

[
ln

(
m2

2eB

)
− Ψ

(
Φ0

2eB

)
− eB

Φ0

]
+ gμν

⊥

[
α

3π
k2
‖

(
ln

(
m2

2eB

)
− 1

2

)
− α

2π
k2
‖

∫ 1

−1

dν

2

(
1 − ν2 − Φ0

eB
ν

)
Ψ

(
1

2
+

Φ0

2eB
+

ν

2

)]
.

(C.18)

Let us emphasize that the result of Eq. (C.18) has been obtained previously by different

authors in equivalent forms, cf. [193–195].

Vacuum polarization with charged spin-0 bosons

An analogous result for the polarization tensor with scalar fluctuations at θ = �( �B,�k) = 0

can be derived in the manner outlined above. Starting from the polarization tensor of
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scalar QED, see, e.g., [222], one has as relevant auxiliary functions Ñ s
1 = ν2 as well as

N s
0 = ν sin(νz)

sin(z)
. Thus, for purely magnetic fields at �B ‖ �k one finds

Πμν
s (k) = P μν

� k2
‖

α

4π

∫ +1

−1

dν

2
ν2

∫ ∞

0

dz

[
e−i

Φ0
eB

z

sin(z)
− e−i m2

eB
z

z

]

+ gμν
⊥ k2

‖
α

4π

∫ +1

−1

dν

2

∫ ∞

0

dz

[
ν sin(νz)

sin2(z)
e−i

Φ0
eB

z − ν2 e−i m2

eB
z

z

]
. (C.19)

Employing a rotation B → −iE and by means of integration by parts:∫ ∞

0

dz
ν sinh(νz)

sinh2(z)
e−βz = ν2 +

∫ ∞

0

dz coth(z)
(
ν2 cosh(νz) − νβ sinh(νz)

)
e−βz , (C.20)

Eqs. (C.14-C.16) can be used to perform the integrals over z in Eq. (C.19) as outlined

above. Employing the identity (which results by combining Eqs. (8.365.2) and (8.377) of

[177])

Ψ

(
x +

1

2

)
= 2Ψ (2x) − Ψ (x) − 2 ln(2) , (C.21)

the scalar polarization tensor at zero incidence, Eq. (C.19), can be finally written as

Πμν
s (k) ≡ P μν

� Πs,�(k|B) + gμν
⊥ Πs,⊥(k|B) =

P μν
� k2

‖
α

4π

∫ 1

0

dν ν2

[
ln

(
2m2

eB

)
+ Ψ

(
Φ0

2eB

)
− 2Ψ

(
Φ0

eB

)]
+ gμν

⊥ k2
‖

α

4π

[
1

3

(
1 + ln

(
m2

2eB

))
−
∫ 1

−1

dν

2

(
ν

Φ0

eB
+ ν2

)
Ψ

(
Φ0
eB

+ ν

2

)]
. (C.22)

In summary, Eqs. (C.18) and (C.22) constitute the vantage point of Chapt. 6 which

discusses an LSW scenario via virtual minicharged Dirac fermions and scalar particles,

respectively. These carry a fractional charge εe, cf. Sect. 2.2.1, such that in the context

of minicharged particles all expressions stated above can be adapted after a substitution

e → εe.

Representations and approximations of the Digamma function

For further evaluations of Eqs. (C.18) and (C.22) in an applied context, it is useful to

note that the Digamma function has an exact series representation [177] reading

Ψ(x) = −γE − 1

x
+

∞∑
n=1

x

n(x + n)
. (C.23)
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In addition, one has expansions for small and large [198] arguments, respectively,

Ψ(x) = −γE − 1

x
+

π2x

6
+

π4x3

90
+

1

2
x2 Ψ(2)(1) +

1

24
x4 Ψ(4)(1) + O(x5) (C.24)

Ψ(x) = ln(x) − 1

2x
− 1

12x2
+ O

(
B2l

2l

1

x2l

)
, (C.25)

where l = 2, 3, 4, . . . and Bl denote Bernoulli numbers and Ψ(i) is the ith derivative of the

Digamma function. As a paradigm, we plot the exact Digamma function (blue dashed

line) together with the series expansion for small arguments, cf. Eq. (C.24) in Fig. C.1

for a different number expansion terms O(xi), with i = 1, 2, 3, 10, 45, 50 which are shown

in red, green, yellow, magenta, blue and brown, respectively. Note that the Digamma

function diverges for x = 0. Nevertheless, one sees that the series expansion for small x

describes it qualitatively well to all orders in the regime 0 < x < 1 within the shown plot

range.

On the other hand, the series expansion for large arguments, Eq. (C.25), is given in

Fig. C.2. We plot the exact Digamma function (blue dashed line) together with the series

expansion for large arguments for O(x−j), with j = 1, 2, 4, 10, 20, 50 shown in red, green,

yellow, magenta, blue and brown, respectively. As visible, the convergence of this series

expansion does not improve at large x with growing order as the sum over the terms

involving Bernoulli numbers constitutes an asymptotic series3.

1 2 3 4 5
x

�5

5

Figure C.1: Asymptotics of a series expan-
sion of Ψ(x) for x → 0 cf. Eq. (C.24). The
dashed blue line gives the exact Digamma
function whereas the diversified colored lines
denote selected expansion orders (see text)
up to order O(x50). It can be seen that in-
dependent of the increase in the number of
terms, the qualitative convergence of the per-
turbative series is satisfactory for x 
 1.
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x

�4
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2
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Figure C.2: Asymptotics of a series expan-
sion of Ψ(x) for x → ∞. The dashed
blue line gives the exact Digamma function
whereas the diversified colored lines denote
selected expansion orders (see text) up to or-
der O(x−50). It can be seen that with in-
creasing the number of terms (from left to
right), the convergence of the perturbative
series worsens with increasing orders in the
series, cf. Eq. (C.25).

3Note that this behavior is generic in perturbative QED, see, e.g., [15, 197, 223] and also perturbative
quantum mechanics, see, e.g., [224].



Appendix D

Numerical supplement for the

geometric vacuum probe

In the following, we detail on our implementation for the numerical evaluation of the

Casimir-Polder potential for arbitrary uniaxial corrugations, cf. Chapt. 3. We proceed

as follows: First, we solve the Green’s function equation for the associated propagator

ΔM12, cf. Eq. (3.10), by discretizing the equation with respect to the spatially lateral

coordinate x. The result is then plugged into Eq. (3.5), yielding the Casimir-Polder energy

upon integration of x̃ and q̃.

For the first step, we introduce two parameters: ±Lx which labels the left and right

cutoff of the spatial integration, and Nx denoting the number of spatial discretization

sites, respectively. In the end, we remove the discretization by a continuum extrapolation

Nx → ∞.

In principle, Lx is a physical parameter encoding the physical size of the surface. Here,

we will not make use of this option of studying finite-size effects, but compute the Casimir-

Polder potential in the ideal infinite surface limit by extrapolating to Lx → ∞. For this,

we fix the position of the sphere above the plate at x = 0 and choose a symmetric cutoff

for x ∈ [−Lx, Lx]. The two limits, continuum (Nx → ∞) and infinite-length (Lx → ∞)

limit, have to be taken such that the lattice spacing ax = 2Lx/Nx also goes to zero,

ax → 0. This can be ensured by choosing a suitable function Lx = Lx(Nx), satisfying

Lx(Nx → ∞) → ∞ and Lx(Nx)/Nx → 0 as Nx → ∞. In practice, we use

Lx(Nx) =
a0x

2

√
NxN0x, (D.1)

where a0x defines a reference lattice spacing at a reference site number Nx = N0x. Note

that the lattice spacing ax ≡ ax(Nx) = 2Lx(Nx)/Nx = a0x

√
N0x/Nx goes to zero in the

continuum limit Nx → ∞, while Lx → ∞ approaches the infinite length limit. Therefore

all these idealized limits are controlled by one parameter: Nx. In practice, the finite-
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length corrections have always been found to be small compared to discretization effects.

In general, it suffices to choose the reference lattice spacing such that typically Lx(N0x) =

2H, where N0x specifies the coarsest lattice in the calculation.

One serious complication arises when discretizing Eq.(3.10): due to the pole of the ze-

roth Bessel function K0 at its origin, the matrix Mij
11 that emerges upon the discretization

of the spatial arguments diverges in its diagonal entries, i.e., for the case when the spatial

discretization sites lie on top of each other. Whereas these divergencies are integrable

when solving the problem in the continuum, the discretized matrix becomes singular.

Therefore, a regularization procedure is required that facilitates to first take the contin-

uum limit before the regulator can safely be removed. Here, we use a UV regularization

for the propagator in Eq. (3.7) for small arguments z controlled by a small parameter ε:

M11(z) =

⎧⎨⎩ 1
2π

K0(z) , z ≤ ε

− 1
2π

(ln(z + ε) − K0(ε) − ln(2ε)) , z > ε
, (D.2)

where z summarizes all arguments of the propagator including both spatial and momen-

tum contributions, entering the Bessel function as a single argument, cf. Eq. (3.7). The

physical result is expected to arise in the limits Nx → ∞ and ε → 0 with the continuum

limit to be taken first before the regulator is removed.

In a numerical calculation where Nx and ε are always finite, the order of limits done

by extrapolation requires a careful choice of Nx and ε. It is already intuitively clear

that smaller values of ε require larger values of Nx, since the proper resolution of a more

pronounced singularity for smaller ε needs a finer lattice. As the pole in the inverse

propagator on the corrugated surface S1 persists irrespectively of the corrugation, the

numerical discretization and regularization errors can be tested in the planar situation

where the analytical result is known (cf. remark below Eq. (3.9)): there, the dimensionless

factor α amounts to 1
4π

.

In Fig. D.1, we plot α as a function of the inverse number of discretization sites 1/Nx

for different values of the cutoff ε in the planar case. The values for α depend linearly on

1/Nx to a good approximation and appear to converge for different cutoffs ε as 1/Nx → 0.

Next, we extrapolate the values for α linearly to 1/Nx = 0; as the linearity persists

to a good approximation for all values of Nx in Fig. D.1, it suffices to use only two data

points for the extrapolation. We give two separate extrapolations for Nx = 80, Nx = 100

and Nx = 180 , Nx = 200, respectively. The result is plotted as a function of ε in Fig.

D.2. Recall that the analytical value for α yields 1/(4π) ≈ 0.07958 for the flat plate,

which is chosen to be exactly the origin of the coordinate system in Fig. D.2.

The graphs in Fig. D.2 can in fact be divided into several regions. Consider, e.g., the

lower curve: For values of ε � 0.0045, the extrapolation 1/Nx → 0 underestimates α and

even appears to diverge as ε → 0. This agrees with our expectation that the integrable
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Figure D.1: Numerical values for the dimen-
sionless contribution of the lowest-order trace
term α (3.5) in the plane-sphere configura-
tion as a function of the inverse number of
discretization sites Nx for five values of the
cutoff parameter ε, ε = 5×10−5, 2×10−4, 4×
10−4, 6 × 10−4, 8 × 10−4 from bottom to top.
For fixed ε, the result scales linearly with the
discretization 1/Nx to a good approximation
and appears to converge with 1/Nx → 0,
but it is also visible that the gradients of the
curves grow as ε → 0.
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Figure D.2: Continuum limit for α as defined
in Eq. (3.5) after linear extrapolation to
1/Nx → 0 (using 1/Nx = 80 and 1/Nx = 100
in the lower (red) and 1/Nx = 180 and
1/Nx = 200 data in the upper (blue) curve)
as a function of the cutoff parameter ε for val-
ues of 10−4 < ε < 0.1. The intersection be-
tween the two plot axes is chosen at α = 1

4π
,

which is the exact value for α in the planar
case.

singularity in the Green’s function equation has not been properly resolved with the un-

derlying discretization; higher values of Nx would be required for a more reliable estimate.

This small-ε branch therefore corresponds to a region in parameter space where the result

arising from the correct order of limits (first Nx → ∞, then ε → 0) is not yet visible.

At about ε � 0.01, α exhibits a clear linear growth with ε. For ε � 0.04, higher power

corrections become visible. We conclude that the cutoff-dependent factor α(ε) can well

be approximated by a power series above the value of ε � 0.01,

α(ε) = α0 + α1ε + α2ε
2 + . . . . (D.3)

Thus, by extrapolating the values for α to ε = 0 in the region where α grows linearly with

ε, we obtain a cutoff-independent result α0. As for the extrapolation 1/Nx → 0, it suffices

to use only two sites in ε in the linear regime to extract α0; of course, also more data

points for a higher polynomial fit could easily be employed at the expense of computing

time.

From Fig. D.2, we identify for the 1/Nx = 80 and 1/Nx = 100 data 0.01 � ε � 0.04 as

the region where α(ε) grows linearly with ε with only very small higher-power corrections.

Choosing the data points at ε = 0.02 and ε = 0.025 for a linear extrapolation, we obtain
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α0 = 0.07970 which nicely matches the analytical value, the error being below 1%.1 As a

check of the continuum limit, an extrapolation using Nx = 180 and Nx = 200 sites (upper

curve in Fig. D.2, again at ε = 0.02 and ε = 0.025) yields α0 = 0.0799554, which is also

within 1% of the analytical value. The small deviations between these two results can

be taken as a measure for the overall numerical uncertainty. One can see, that choosing

larger values of Nx for the continuum extrapolation also results in an extension of the

linear ε regime to smaller ε values.

It should be mentioned that the choice of required Nx values also depends on the

corrugation parameters. For instance, for high values of the corrugation frequency, a

better resolution is needed; as a rule of thumb, the lattice spacing ax should always

be smaller than the smallest dominant wave length of the corrugation. All numerical

calculations for this work have been performed on a standard desktop computer with

standard linear algebra packages. Depending on the discretization, the calculation of a

typical data point including continuum limit and regulator removal takes on the order

of seconds to several minutes. Since the linear-algebra routines scale with ∼ N3
x , the

computational cost for very fine discretizations can rapidly increase.

1For the study of corrugated surfaces, we have carefully studied whether the interval linear in ε is
shifted and the extrapolation has to be adjusted accordingly. It turns out that the endpoints of the linear
region are indeed slightly shifted for structured surfaces, but the sampling points ε = 0.02 and ε = 0.025
have always been in the linear region for all examples.



Appendix E

ALPs in high-intensity lasers at

reversed interaction order

In this appendix we hand in the promised calculation for the conversion process at reversed

interaction order. In the previous calculation, we have considered the interaction of two

external lasers with frequencies ω⊥ and ω‖ with a probe beam ωin, in which the first,

orthogonally propagating beam mediates the photon-axion conversion and the second,

counter-propagating beam mediates the back-conversion from axions into photons.

However, if all beams are focused simultaneously onto the same spot as assumed

in the setup, it is experimentally hardly distinguishable, which of the beams causes the

conversion and back-conversion process, respectively. For this reason, we want to consider

the process at interchanged interaction order ⊥ ↔‖.

To this end, we employ the beam parameterization of the counter-propagating external

beam, cf. Eqs. (5.24) and (5.25) for the photon-ALP-conversion process. Now, the electric

as well as the magnetic component of the external field can interact which yields an extra

factor of 2. Then, the ALP amplitude of Eq. (5.11) reads

φ(z′, t′) = g Ein E‖

∫ ∞

−∞
dz′′

1√
1 + (z′′/zin

r )2

1√
1 +

(
z′′/z‖r

)2

×
∫ ∞

−∞
dt′′ J0

(
m
√

(t′ − t′′)2 − |z′ − z′′|2
)

θ ((t′ − t′′) − |z′ − z′′|)

× sin

(
ωint

′′ − kinz
′′ + arctan

(
z′′

zin
r

))
sin

(
ω‖t′′ + k‖z′′ − arctan

(
z′′

z
‖
r

)
+ ψ‖

)
. (E.1)

We proceed analogously to the calculation in Chapt. 5 and perform the temporal inte-

gration after a substitution t′′ → t′ − T and by virtue of of Eq. (5.13). Specializing
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to |ωin ± ω‖| > m and using the identity in Eq. (5.15) one finds that the equivalent to

Eq. (5.14) reads

φ(z′, t′) =
1

4
g Ein E‖

[
i

k+
ax

ei(ωin+ω‖)t′ e−isgn(z′−z′′)k+axz′ eiψ‖

×
∫ ∞

−∞
dz′′

1

1 − i (z′′/zin
r )

1

1 + i
(
z′′/z‖r

) ei(−kin+k‖+sgn(z′−z′′)k+ax)z′′

− i sgn(ωin − ω‖)
k−ax

ei(ωin−ω‖)t′e−isgn(z′−z′′)sgn(ωin−ω‖)k−
axz

′
e−iψ‖

×
∫ ∞

−∞
dz′′

1

1 − i (z′′/zin
r )

1

1 − i
(
z′′/z‖r

) ei(−kin−k‖+sgn(z′−z′′)sgn(ωin−ω‖)k−
ax)z

′′
+ c.c.

]
, (E.2)

where here, according to the substitution ⊥ ↔‖, the axion wave vector becomes a function

of the frequency of the counter-propagating external field: k±ax =
√

(ωin ± ω‖)2 − m2.

Again, we find the characteristic structure of the ALP partial waves with frequencies

ωax = ωin ± ω‖, which have transmitted (sgn(z′ − z′′) = +1) and reflected (sgn(z′ − z′′) =

−1) contributions. The two remaining integrations over z′′ can be performed in the

complex z′′-plane. The respective integrals read

∫ ∞

−∞
dz

exp
(
iδk+

‖ z
)

(
1 − i z

zinr

)(
1 + i z

z
‖
r

) =
πzin

r z
‖
r

zin
r + z

‖
r

(E.3)

×
[
(1 − sgn(δk+

‖ )) eδk+‖ zinr + (1 + sgn(δk+
‖ )) e−δk+‖ z

‖
r

]
,

∫ ∞

−∞
dz

exp
(
iδk−‖ z

)
(
1 − i z

zinr

)(
1 − i z

z
‖
r

) = − πzin
r z

‖
r

zin
r − z

‖
r

[
(1 − sgn(δk−‖ ))

(
eδk−

‖ zinr − eδk−
‖ z

‖
r

)]
, (E.4)

where we have defined

δk+
‖ = −kin + k‖ + sgn(z′ − z′′) k+

ax , (E.5)

δk−‖ = −kin − k‖ + sgn(z′ − z′′) sgn(ωin − ω‖) k−ax . (E.6)

In Eqs. (E.3) and (E.4), we encounter again the resonant structure of the conversion am-

plitude which can be attributed to the requirement of momentum conservation. As before,

the sharp momentum cutoffs as induced by the signum functions are in fact relaxed by

an integration over a finite interaction region. In analogy to the previous considerations,

we determine the resonant mass m.
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In vacuum, i.e., ω = k for fixed laser beam directions, Eqs. (E.5) and (E.6) become

δk+
‖ = −ωin + ω‖ + sgn(z′ − z′′)

√
(ωin + ω‖)2 − m2

!� 0 , (E.7)

δk−‖ = −ωin − ω‖ + sgn(z′ − z′′) sgn(ωin − ω‖)
√

(ωin − ω‖)2 − m2
!� 0 . (E.8)

The condition in Eq. (E.7) is solved by setting

m ≡ m‖ = 2
√

ωinω‖ (E.9)

in the case of transmission for ωin > ω‖ and reflection for ωin < ω‖. This can be understood

intuitively: For momenta of the probe beam which are larger then the momenta of the

counter-propagating beam, we find transmission, otherwise reflection of the ALP beam.

As in the previously considered setup, for δk−‖ there exists no resonant mass. In the

following, we thus again only keep the transmitted part of the sum-frequency solution

ω+
ax. A justification for omitting the reflected part will be given below Eq. (E.15).

We have as a pendant to Eq. (5.22):

φ(T)(z′, t′) ≈ −1

2

πzin
r z

‖
r

zin
r + z

‖
r

g Ein E‖
1

k+
ax

sin
(
(ωin + ω‖)t′ − k+

axz
′ + ψ‖)

)
[
(1 − sgn(δk+

‖ )) eδk+‖ zinr + (1 + sgn(δk+
‖ )) e−δk+‖ z

‖
r

]
. (E.10)

We now turn to the back-conversion of the ALPs into photons. However, as the external

beam for the back-conversion propagates orthogonally to the z-axis, only the magnetic

or electric field component can couple, cf. Eq. (5.23). However, due to the asymmetric

coupling structure, eout is not invariant under this choice, as discussed in Sec. 5.1.1.

As the ALP is massive, the contribution from the magnetic field component of the

external beam will be larger, since it couples to the temporal derivative of φ. We thus

choose Ex
k = 0 in the following.

Following the steps below Eq. (5.23), where By
k is now given through Eq. (5.9), we

find that after the integrations over t′ and z′ for the back-conversion, we end up with

eout(z, t) = − 1

16
g2 π3/2 zin

r z
‖
r

zin
r + z

‖
r

w⊥0 Ein E‖E⊥
ωin + ω‖

k+
ax

×
[
(1 − sgn(δk+

‖ )) eδk+‖ zinr + (1 + sgn(δk+
‖ )) e−δk+‖ z

‖
r

]
×
[

1

i
ei(ωin+ω‖+ω⊥)(t−sgn(z−z′)z) ei(ψ‖+ψ⊥) e−

1
4
(w⊥

0 δk+⊥)2

− 1

i
ei(ωin+ω‖−ω⊥)(t−sgn(z−z′)z) ei(ψ‖−ψ⊥) e−

1
4
(w⊥

0 δk−
⊥)2 + c.c.

]
, (E.11)



137

with the abbreviations

δk+
⊥ = −k+

ax + sgn(z − z′′)(ωin + ω‖ + ω⊥) , (E.12)

δk−⊥ = −k+
ax + sgn(z − z′′)(ωin + ω‖ − ω⊥) . (E.13)

In Eq. (E.11), we encounter the familiar behavior of the reconverted photons. The outgo-

ing electromagnetic wave is composed of two partial waves whose amplitude is tied to the

vanishing of the sum of the momenta in the process: δk±⊥. As before, we are interested in

the situation of concurrent momentum conservation in both conversion processes, under

the constraint ωout 
= ωin. Thus, we rewrite Eqs. (E.12) and (E.13) as

− δk+
⊥ =

√
(ωin + ω‖)2 − m2 − sgn(z − z′)(ωin + ω‖ + ω⊥)

!� 0 , (E.14)

−δk−⊥ =
√

(ωin + ω‖)2 − m2 − sgn(z − z′)(ωin + ω‖ − ω⊥)
!� 0 , (E.15)

where we have multiplied the equations by −1, which is justified since δk±⊥ appears as a

square in Eq. (E.11).

By comparing the above conditions for momentum conservation in the back-conversion

process to the condition for the photon-ALP conversion in Eq. (E.7), we again find,

that for positive frequencies only δk−⊥ can be “matched” to the vanishing of δk+
‖ for

transmission and the relation ω⊥ = 2ω‖. As the frequency of the outgoing beam evaluates

to ωout = ωin −ω‖ in this situation, we again find that only the transmitted parts of both

waves can propagate undamped, since the solution requires ωin > ω‖ (cf. discussion below

Eq. (E.8)).

In summary, we find for the outgoing electromagnetic wave at ω⊥ = 2ω‖ the transmit-

ted part

e
(T)
out(z, t) ≈ 1

8
g2 π3/2 zin

r z
‖
r

zin
r + z

‖
r

w⊥0 Ein E‖E⊥
ωin + ω‖

k+
ax

e−
1
4(w⊥

0 δk)
2

×
[
(1 − sgn(δk))eδkzinr + (1 + sgn(δk))e−δkz

‖
r

]
sin

(
(ωin − ω‖)(t − z) + ψ‖ − ψ⊥

)
, (E.16)

where we have set δk+
‖ = δk−⊥ = δk.



Appendix F

LSW via virtual MCPs:

Re-extracting the zero-field limit

In this appendix we study how the zero-field auxiliary functions for “tunneling of the 3rd

kind”, cf. Chapt. 6, can be regained from the full auxiliary functions for nonvanishing

magnetic fields.

Whereas in the main text, cf. Sect. 6.1.2, the zero-field limit was extracted from

a perturbative expansion of the polarization tensor, cf. Eq. (6.12), in this appendix we

demonstrate that the zero-field limit can also be obtained from the full auxiliary functions

valid for arbitrary field strengths, cf. Eqs. (6.33) and (6.34). This both serves as a

consistency check for the full auxiliary functions and illustrates how the zero-field limit

is contained in the nonperturbative result without the need to resort to a perturbative

expansion.

However, the n-dependent decomposition of the ν-integral as implemented in Eqs. (6.33)

and (6.34) is of no avail for this purpose. Rather, it is more useful to apply the decomposi-

tion in Eq. (6.21) with n = 0 to all terms in Eq. (6.14) as this then already coincides with

the natural κ- and λ-decomposition in the zero-field limit (cf. Eqs. (6.24) and (6.25)).

Apart from that, the calculation proceeds analogously, and Eq. (6.33) can rewritten as

f
(full)
≤ =

12Bεem2

ω4

∫ ∞



q

4m2

ω2
−1

dκ
1

(1 + κ2)3/2
√

1 + κ2 − 4m2

ω2

×
(

e−ωdκ

i + κ
+

∞∑
n=1

2κ e
−ωd

q
κ2+ 2εeBn

m2 (1+κ2)

κ2 + 2εeBn
m2 (1 + κ2) + i

√
κ2 + 2εeBn

m2 (1 + κ2)

)
. (F.1)

Whereas the n-independent term in Eq. (F.1) of course is not altered compared to

Eq. (6.33), the contribution of the sum over n itself looks completely different. As before,

the corresponding expression for f
(full)
> immediately follows by setting κ → −iλ and ad-
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justing the integration boundaries accordingly. It thus is sufficient to limit the following

discussion to f
(full)
≤ .

Noting that the summation index n in Eq. (F.1) always appears in combination with

a dimensionless factor of 2εeB
m2 , we define Δl ≡ 2εeB

m2 and rewrite Eq. (F.1) in the following

form

f
(full)
≤ =

6m4

ω4

∫ ∞



q

4m2

ω2
−1

dκ
1

(1 + κ2)3/2
√

1 + κ2 − 4m2

ω2

×
(

Δl
e−ωdκ

i + κ
+

∞∑
n=1

Δl
2κ e−ωd

√
κ2+nΔl(1+κ2)

κ2 + nΔl (1 + κ2) + i
√

κ2 + nΔl (1 + κ2)

)
. (F.2)

In the limit B → 0 the first term vanishes, and the sum can be converted into an integral,

setting nΔl → l and Δl → dl. This results in

f
(full)
≤

∣∣∣
B=0

=

∫ ∞



q

4m2

ω2
−1

dκ
12m4

ω4
κ

(1 + κ2)3/2
√

1 + κ2 − 4m2

ω2

×
∫ ∞

0

dl
e−ωd

√
κ2+l(1+κ2)

κ2 + l (1 + κ2) + i
√

κ2 + l (1 + κ2)
. (F.3)

Notably, the l-integral can be performed explicitly, yielding

f
(full)
≤

∣∣∣
B=0

=
24m4

ω4

∫ ∞



q

4m2

ω2
−1

dκ
κ

(1 + κ2)5/2

1√
1 + κ2 − 4m2

ω2

E1 [iωd(1 − iκ)] , (F.4)

where E1(x) denotes the exponential integral, defined as [177]

E1(x) =

∫ ∞

1

dt e−xtt−1 for �(x) > 0 . (F.5)

Using integration by parts

24m4

ω4

∫
dκ

κ

(1 + κ2)5/2
√

1 + κ2 − 4m2

ω2

=

√
1 + κ2 − 4m2

ω2

(
1 + κ2 + 2m2

ω2

)
(1 + κ2)3/2

+ C , (F.6)

with an integration constant C, Eq. (F.4) becomes

f
(full)
≤

∣∣∣
B=0

=

∫ ∞



q

4m2

ω2
−1

dκ e−ωdκ

√
1 + κ2 − 4m2

ω2

(
1 + κ2 + 2m2

ω2

)
(1 + κ2)3/2(i + κ)

, (F.7)
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and a surface term which vanishes for ω ≤ 2m, but not for ω > 2m (note that a similar

situation was encountered in Sect. 6.1.3 for the contribution ∼ B2). Proceeding anal-

ogously with the λ-contribution, a corresponding expression for f
(full)
> is obtained. The

emerging surface term cancels with that in Eq. (F.7) for ω > 2m, such that the surface

terms can be omitted safely in both regimes, ω ≤ 2m and ω > 2m, and the zero-field

result can be written in the form of Eqs. (6.24) and (6.25).
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