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1. Introduction

Some of the most interesting predictions of Einstein’s theory are the existence of grav-

itational waves and compact massive objects like black holes and neutron stars. It is

known that neutron stars exist in the universe. They were first predicted by Bade and

Zwicky in 1934 [16] and first observed by Hewish et al. in 1967 [92]. Our understanding

of these objects is, however, very poor. Studying collapsing stars or orbiting binary

systems will allow us to understand the underlying structure much better. Information

of the dynamics and the extracted gravitational waves will shed light on physics inside

the star as described by the equation of state.

The detection of gravitational waves will allow a new understanding of the nature

of the universe. However, the detection is a challenging task since these waves are

very weak. In order to observe predicted waves a detector’s sensitivity has to be good

enough to measure a relative length change of less than 10−21. According to [154] there

exist several sources of noise like ground vibrations and thermal noise which have to be

overcome to reach the necessary accuracy. However, the ground-based interferometric

detectors [2, 4, 182, 171] have already entered this sensitivity regime and it is only a

matter of time until actual waves will be observed. Since the measured signals from

the detectors are hidden inside the noise, from the data analysis point of view it is

crucial to generate template banks for gravitational wave and have a better theoretical

understanding of the emission mechanisms.

The strongest sources are very compact and fast moving objects like black holes

and neutron stars. For ground-based interferometers of present and future genera-

tion [37, 13, 1] binary neutron stars (BNS) are among the most promising sources of

gravitational waves. Gravitational waves emitted during their inspiral and merger are

expected to give unique information about the nature of matter at very high densi-

ties and temperatures, which is largely unknown, e.g. [142]. These binaries are also

the origin of powerful electromagnetic astrophysical phenomena, in particular short-

gamma-ray-bursts (SGRBs) [103, 131]. On the other hand SGRB are ultra relativistic
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2 1. Introduction

outflows expected to be produced during the post-merger phase [148, 149, 144] of

rapidly spinning, strongly magnetized proto-neutron stars [124]. So far there exist no

fully consistent simulation of a SGRB and it is currently under investigation (see for

example [144, 98]).

Due to the complexity of the problem only numerical relativity can provide a complete

theoretical modeling of the late inspiral and merger. In comparison to binary black

hole (BBH) simulations, BNS simulations have been investigated for a longer time.

The first numerical relativity simulation of BNS was performed in [164], several years

before a generic BBH-system could be stably evolved [140, 30, 55]. At present there

are a number of groups performing BNS simulations [72, 71, 125, 12, 184, 109, 77].

Electromagnetic fields in numerical relativity have been considered in [109, 11, 76,

77, 144] and were found likely to be relevant for SGRB and other astrophysical sce-

narios. However, simulations showed that the effects on gravitational waves during the

inspiral phase can be neglected [11, 76, 77]. Thus, until now only the ideal general rela-

tivistic magneto-hydrodynamic (GRMHD) framework is used in full general relativistic

numerical simulations.

In general BNS studies are based on the GRMHD equations coupled to 3+1 hyper-

bolic formulations (BSSNOK [129, 162, 34, 130] or GHG [107]) of general relativity.

To model the interior of the neutron stars most results are based on a simplified treat-

ment like an ideal gas, polytropic or piecewise polytropic equation of state (EoS). On

the other hand in [163] (and following works) a realistic EoS with zero temperature

is employed. Nevertheless thermal effects are expected to play a dominant role dur-

ing the post merger phase and are treated in an approximate way by using a hybrid

EoS [163, 36]. The focus on micro-physics is done by e.g. [150, 151, 135] which is

important in order to model SGRBs. Other physically important point are transport

phenomena and neutrinos [174, 158, 157] which are currently not implemented in full

general relativity simulations.

Some of the aspects mentioned here are well understood, other aspects like the in-

fluence of micro-physics on the post-merger phase, the initial configuration space or

waveforms have to be investigated further. The latter is a crucial point for gravita-

tional wave detection. In comparison to accurate BBH waveforms (see e.g. [95, 86]) the

accuracy of waves produced by BNS simulations is yet only poorly investigated [22].

Collaboration between the numerical relativity and analytical relativity communities
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has started recently [142, 93, 63, 18, 19]. Investigations regarding the convergence of

the waveforms and precise error estimates have not been done in detail yet.

The aim of the present thesis is to use astrophysically relevant initial data which

solve the Einstein equations on the initial hypersurface to study collapse of a neutron

star as well as binary neutron star systems with a free evolution scheme. In particular

the evolution of irrotational neutron star initial data configurations without electric

fields are investigated, from which gravitational waves are extracted. During this work

I extended the Bam code [52, 54, 49] which was originally designed for numerical

studies of multiple black holes spacetimes with adaptive mesh refinement techniques.

In order to solve the full Einstein equations we upgraded the Bam code to solve the

flux-conservative Eulerian formulation of ideal general relativistic hydrodynamics equa-

tions [31] which are coupled to the existing vacuum equations. The extension allows

us to handle different kinds of equations of state in a hybrid form composed of a cold

part and a thermal part modeled with an ideal gas EoS [163, 36]. We extract gravi-

tational waves from the evolved spacetime and compare them for different resolutions

and equations of state.

The structure of the thesis is as follows: The evolution system for the vacuum part and

the hydrodynamic evolution equations are presented in chapter 2. A brief introduction

of different astrophysically relevant initial data configurations is given in chapter 3.

In order to integrate the evolution system several numerical methods are applied

to achieve accurate results. A small collection of methods used in Bam , like the

high resolution shock capturing (HRSC) to handle shocks and the mesh-refinement

technique to handle large scale grid configurations, are presented in chapter 4. In

addition the time integrators used and boundary conditions are discussed briefly.

The validation of the matter implementation is presented in chapter 5. Here the

HRSC technique is verified by using the shock tube test. The hydrodynamic code

implementation is tested by simulating a static matter configuration. Convergence

and conservation of the model is investigated. The coupling between the vacuum and

matter parts of Bam is tested using boosted neutron star initial data.

The collapse of a perturbed neutron star to a black hole with the puncture gauge is

investigated in chapter 6. The spacetime of the collapse is compared with the puncture

spacetime. It is shown why and in which way the matter disappears from the numerical

grid.



4 1. Introduction

Finally in chapter 7 binary neutron star systems are studied. The dynamics of the

neutron stars for different resolutions and numerical methods are discussed. Gravita-

tional waves for cold and hot EoS are presented and analyzed.

In chapter 8 all results are summarized and discussed.



2. Evolution equations

Einstein equations can be solved as an initial value problem, by introducing the 3+1

decomposition of the spacetime and casting them in a PDE system. A popular strat-

egy used in numerical relativity is to consider free evolution. In this approach the

constraints are solved in the initial slice (at t = 0) and are not enforced during evo-

lution. Due to the Bianchi identity it is guaranteed that the constraints are always

satisfied up to numerical errors. In order to have a well-posed initial value problem the

PDE system has to be strongly or symmetric hyperbolic. Evolution equations for the

gauge quantities α and βi have to be specified since these are not prescribed by Einstein

equations. This fact comes from the gauge freedom of the theory. The 3+1 splitting

of the spacetime is presented in Appendix A which results in the ADM equations [15].

These equations are expressed only in terms of quantities which are defined on a given

spatial hypersurface.

Independently of the choice of gauge, the ADM equations are found to be weakly

hyperbolic. This leads to numerical instabilities. Thus, other formulations are preferred

in numerical relativity. In this chapter we describe the BSSNOK [129, 162, 34, 130]

system and the gauge conditions typically used with it.

The field equations for the metric are coupled to the general relativistic hydrodynamic

(GRHD) equations describing the matter as a relativistic fluid. GRHD equations follow

from the local energy and barionic mass conservation and are typically written in first

order conservation formulation. As in classical fluid dynamics the conservative form

of the equations guarantee that the numerical scheme will converge to the “physical”

solutions, i.e. entropy satisfying weak solutions.

5



6 2. Evolution equations

2.1. BSSNOK

The BSSNOK method is based on a conformal decomposition of the ADM evolution

system. The spacial metric γij is conformally decomposed as

γ̃ij = e−4φγij . (2.1)

Here e−4φ is called the conformal factor, which is strictly positive and it is chosen such

that the conformal metric γ̃ij has determinant one, that is

eφ = γ1/12 , (2.2)

where γ is the determinant of γij. Additionally, the extrinsic curvature Kij is split into

a trace and trace-free part by

Aij = Kij −
1

3
γijK . (2.3)

It turns out that conformally transforming the trace free part of the extrinsic curvature

is a “convenient choice” [162, 34]. Therefore one uses a transformation

Ãij = e−4φAij , (2.4)

as for the conformal metric. An important point of the BSSNOK formalism is the

introduction of three auxiliary variables known as the conformal connection functions

defined by

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij . (2.5)

The separate evolution of these functions simplifies the computation of the Ricci tensor.

The second derivatives of the metric can be expressed in terms of the evolved conformal

connection functions, with the addition of the scalar Laplacian of the conformal metric.

Thus, the evolution equation (2.9) is closer to being hyperbolic which leads to more

robust system [9, 7].

The five variables φ, K, γ̃ij, Ãij and Γ̃i are called the BSSNOK variables. Now using

these redefinitions and plugging them into the ADM evolution equations (A.18) give us

evolution equations for the new system. The resulting system turned out to be more
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stable than the ADM equations and do not show violent instabilities. This was first

shown numerically by Baumgarte and Shapiro [35]. Note that in comparison with the

ADM system the BSSNOK system has more variables, therefore the numerical cost of

evolving the system is increased.

In [55], where the ‘moving puncture’ technique was introduced to simulate binary

binary black holes, the conformal factor φ has been substituted in the evolution system

by the variable χ, defined by

χ = e−4φ . (2.6)

With this redefined conformal factor the BSSNOK evolution system can be written as

(∂t − Lβ)χ =
2

3
αχK , (2.7)

(∂t − Lβ)γ̃ij = −2αÃij , (2.8)

(∂t − Lβ)Ãij = χ [−DiDjα + α(Rij − 8πSij ADM)]
TF

−1

3
γ̃ijα(16πρADM) + α

(
KÃij − 2ÃikÃ

k
j

)
, (2.9)

(∂t − Lβ)K = −DiDiα + α

(
ÃijÃ

ij +
1

3
K2

)

+4πα(ρADM + SADM) , (2.10)

∂tΓ̃
i = 2α

(
Γ̃ijkÃ

jk − 3

2χ
Ãij∂jχ−

2

3
γ̃ij∂jK −

8π

χ
ji

ADM

)

+γ̃ik∂j∂kβ
j +

1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i

−Γ̃j∂jβi +
2

3
Γ̃i∂jβ

j − 2Ãij∂jα . (2.11)

This is the system we are using for all numerical simulations performed by Bam .

There are several implementation details due to the usage of constraint equations in

the evolution equations (see [52]). The combination of all these choices improves the

stability of the code. The system has been successfully used in various simulations of

vacuum spacetimes by many groups, e.g. [140, 29, 55] as well non-vacuum spacetimes

[12, 184, 109, 77]. The matter terms used are defined in equation (2.28).
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2.2. Gauge conditions

Using the above evolution system gives us an evolution equation for each of the BSS-

NOK variables. But there are still no equations for the lapse and the shift which appear

inside (2.7)-(2.11). They are free specifiable equations, and determine the evolution of

the coordinates.

They aim should be to choose “good” gauge conditions which simplifies the evolution

system. The main point is to avoid the formation of coordinate singularities. This

can be reached by freezing the time evolution of certain variables or introducing a

time delay. Secondly, the gauge conditions should be numerically simple. Having,

for example, an elliptic condition on the gauge generates a high computational effort

which should be avoid. A commonly used solution is the Bona-Masso family of slicing

conditions [44], which is a generalization of harmonic slicing. The lapse α evolves with

a hyperbolic equation and can be evolved in a similar fashion to the metric equations.

The general condition for the lapse reads

d

dt
α = −α2f(α)K (2.12)

where f(α) is an arbitrary but positive function. One common choice for f is using

f(α) = 2/α. This is the so-called 1+log slicing condition [45]. Therefore the equation

for the lapse is

(
∂t − βi∂i

)
α = −2αK . (2.13)

It only depends on the extrinsic curvature and the gauge quantities and is a pure gauge

slicing condition, which means it tells how the slice is embedded in the spacetime.

Equation (2.13) minimizes the lapse when the extrinsic curvature becomes too big.

Therefore the evolution of the slice will slow down before a singularity is reached.

On the other hand the shift does not act on the slicing. It is a condition on the

coordinate system inside the slice. It should counteract a rapidly growing or shrinking

of the black hole horizon in coordinate space. This is directly related to the effective

resolution of the simulation. If one does not impose a shift condition, namely using a

vanishing shift vector, time lines tend to fall into the the black hole. One common way
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to avoid this is to use the ”Gamma-driver” 1 condition [9]. There exist at least two

common versions which are quite similar to each other. The first equation introduced

in [9] tries to find a stationary gauge if the time derivative of Γ̃i vanishes. This is done

by

(
∂t − βj∂j

)
βi = µSB

i ,
(
∂t − βj∂j

)
Bi = ∂tΓ̃

i − ηBi , (2.14)

where η and µS are positive parameters. On the other hand one can integrate the

equations above and gets only one equation for the shift [185]

(
∂t − βj∂j

)
βi = µSΓ̃

i − ηβi . (2.15)

Both choices give similar results and are successfully used for pure black hole evolutions

and relativistic hydrodynamics (e.g. [24, 184]. In our simulations we fixed the µS

parameter to 3/4 or 1. For the η parameter we always use constant values around

2/MADM depending on the kind of simulation.

The BSSNOK equations (2.7)-(2.11) in combination with the ”1+log” slicing condi-

tion (2.13) are proven to be strongly hyperbolic [7, 153]. This leads to a well posed

initial value problem.

2.3. GRHD

For the matter part of the Einstein equations we have to define a model for the stress-

energy tensor. Here we assume a perfect fluid form given by

Tµν = ρhuµuν + pgµν , (2.16)

where ρ is the rest-mass density, ǫ is the specific internal energy, h ≡ 1 + ǫ + p/ρ is

the specific enthalpy, p is the pressure, and uµ is the 4-velocity (uµuµ = −1) of the

fluid. The total energy density is given by e = ρ(1 + ǫ). Here dimensionless units

G = c = M⊙ = 1 are used and will be used in the whole work.

1From the historical point of view it is often called ”Gamma-freezing” condition.
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The set of conservation equations for this kind of stress-energy tensor, the conserva-

tion law for the baryon number, and the equation of state of the fluid read

∇µT
µν = 0 , (2.17)

∇µ (ρu
µ) = 0 , (2.18)

P (ρ, ǫ) = p , (2.19)

which in case of flat space are equivalent to the non-relativistic Euler equations. In case

of linear systems of hyperbolic equations discontinuities can not arise if smooth initial

data is used. However, the hydrodynamic equations above are a nonlinear system and

shocks can occur even when starting from smooth initial data. Therefore it can happen

that the solution is not differentiable in all regions and the differential equation is not

valid. In this case it is necessary to consider generalized solutions of the integral form

of the equations i.e. weak or integral solutions [104]. Weak solutions are not unique.

The physical unique solutions are selected according to “entropy” criteria.

The Lax-Wendroff theorem says that a numerical scheme for a hyperbolic system of

conservation laws converges towards the entropy satisfying weak solution [102, 104]. On

the other hand if we have a numerical scheme based on a non-conservative formulation

it will converge to the unphysical solution [94] (LeFloch Theorem). Thus we have to

use a conserved formulation to obtain the correct solution. Following [31] we rewrite

Eq. (2.17) and (2.18) in first-order flux-conservative form

∂t~q + ∂i ~f
(i)(~q) = ~s(~q) , (2.20)

by introducing the conservative variables

~q =
√
γ{D, Sk, τ } , (2.21)

where

D ≡ Wρ ,

Sk ≡ W 2ρhvk ,

τ ≡
(
W 2ρh− p

)
−D . (2.22)
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The simple physical interpretation of these variables is that they represent the rest-mass

density (D), the momentum density (Sk) and an internal energy (τ = ρADM − D) as

viewed by Eulerian observers. Above vi is the fluid velocity measured by the Eulerian

observer

vi =
ui

W
+

βi

α
=

1

α

(
ui

u0
+ βi

)
, (2.23)

and W is the Lorentz factor between the fluid frame and the Eulerian observer given

by W = 1/
√
1− v2, with v2 = γijv

ivj. The fluxes in Eq. (2.20) are

~f (i) =
√−g

{
D

(
vi − βi

α

)
, Sk

(
vi − βi

α

)
+ pδik, τ

(
vi − βi

α

)
+ pvi

}
(2.24)

while the source terms are

~s =
√−g

{
0, T µν

(
∂µgνk − Γδµνgδk

)
, α
(
T µ0∂µ lnα− T µνΓ0

µν

)}
(2.25)

=
√−g {0,

T 00

(
1

2
βiβj∂kγij − α∂kα

)
+ T 0iβj∂kγij + T 0

i ∂kβ
i +

1

2
T ij∂kγij,

T 00
(
βiβjKij − βi∂iα

)
+ T 0i

(
2βjKij − ∂iα

)
+ T ijKij

}
. (2.26)

Above g ≡ det gµν = −α2γ with γ ≡ det γij. From straightforward calculations we

obtain the stress-energy tensor as a function of the primitive variables ~w = {p, ρ, ǫ, vi}
and the four metric as

T 00 =
ρhW 2 − p

α2
,

T 0i =
ρhW 2(vi − βi

α
)

α
+

pβi

α2
,

T ij = ρhW 2(vi − βi

α
)(vj − βj

α
) + p(γij − βiβj

α2
) ,

T 0
i =

ρhW 2

α
vi . (2.27)
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With this the standard York-ADM matter variables [185] are easily recovered

ρADM ≡ nµnνTµν = ρhW 2 − p = τ +D ,

ji
ADM

≡ −nµγiνTµν = ρhW 2vi = Si ,

Sij
ADM

≡ γiµγjνTµν = ρhW 2vivj + γijp , (2.28)

which are used inside the the metric evolution system. Note that the source terms in

the BSSNOK equations as in the GRHD equations do not depend on the derivatives

of Tµν . We only need the derivatives of the metric.

The system in Eq. (2.20) is strongly hyperbolic provided that the EoS is causal (the

sound speed is less than the speed of light) [31]. Eigenvalues (in direction x) are given

by

λ0 = αvx − βx , (2.29)

λ± =
α

1− v2c2s

[
vx
(
1− c2s

)
±

cs
√

(1− v2)[γxx(1− v2c2s)− vxvx(1− c2s)]
]
− βx . (2.30)

The quantities in the other directions are obtained by permutation of indexes. In the

above the sound speed is defined by

c2s =

(
χ+

P

ρ2
κ

)
1

h
,

χ ≡ ∂P

∂ρ
,

κ ≡ ∂P

∂ǫ
. (2.31)

2.3.1. Conversion between primitive and conservative variables

The conservative variables are evolved by constructing the fluxes at the given time

slice. Since the fluxes are computed by using the primitive variables

~w = { ρ, ǫ, p, vi } , (2.32)
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we have to recover ~w from ~q. With the definition of the conserved variables in Eq. (2.22)

it is possible to construct the inversion [119, 65, 72, 24]

vi(p) =
Si

τ +D + p
, (2.33)

W (p) =
τ + p+D√

(τ + p+D)2 − S2

, (2.34)

ρ(p) =
D

W
, (2.35)

ǫ(p) = D−1

[√
(τ + p+D)2 − S2 −Wp−D

]
. (2.36)

The solution is not explicit. All variables depend on the pressure which is used on the

left side too. Once the pressure is known the inversion can be done. The pressure is

determined by the EoS looking for the root of the nonlinear algebraic equation

f(p) = p− P (ρ(p), ǫ(p)) . (2.37)

To determine the root we use a simple Newton-Raphson method

pnew = pold − f(p)

f ′(p)
, (2.38)

which is generally used for this purpose. The derivative of f is given by

f ′(p) = 1− χ
∂ρ

∂p
− κ

∂ǫ

∂p
, (2.39)

∂ρ

∂p
=

DS2

(D + p+ τ)2
√

(D + p+ τ)2 − S2
, (2.40)

∂ǫ

∂p
=

pS2

D ((D + p+ τ)2 − S2)3/2
. (2.41)

Since the conserved variables are consistent the scheme is always able to find the

corresponding primitive variables. However, for low densities small numerical errors

can generate negative arguments inside the square roots or vanishing denominators

in the expressions above. In order to prevent unphysical inversion we set atmosphere

values whenever we reach the atmosphere level.
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Specific procedures can be designed once a specific form of the EoS is given. In the

case of a one-parameter EoS, p = P (ρ), the quantities h = h(ρ), ǫ = ǫ(ρ), and

W =

√
1 +

S2

(Dh)2
, (2.42)

are functions of the density ρ and the conservative variables only. Primitive variables

can be computed from the ρ, once the latter is determined by

g(p) = W (ρ)ρ−D (2.43)

using again a Newton-Raphson root finder and

g′(ρ) = W (ρ)− ρ
S2h′(ρ)

WD2h3
, (2.44)

h′(ρ) = ǫ′(ρ)− P

ρ2
+

χ

ρ
. (2.45)

Note that h′(ρ) = χ
ρ
if the principle of thermodynamics at zero temperature is applied.

2.3.2. Equation of state

In order to close the system of hydrodynamic equations we have to use an equation

of state (EoS) which gives an algebraic relation between the pressure p, the rest-mass

density ρ and the internal energy ǫ. The exact nature of the internal structure of a NS

is unknown. There are many attempt to use particle physics to construct EoS mod-

els. The latter are provided by tables (e.g. [163]) or phenomenologically constructed

by means of a piecewise polytropic EoS [141, 136]. In this work we consider “only”

simple analytic EoS. Here we discuss three well known equations of state: dust EoS, a

polytropic EoS and an ideal-fluid EoS. These are often used in the literature.

The dust EoS is simply given by the fact that the pressure is everywhere zero. Since

dust are non interacting point particles the specific internal energy vanishes too. There-

fore we have

p = P (ρ(p), ǫ(p)) = 0 , (2.46)

ǫ = 0 . (2.47)



2. Evolution equations 15

In case of the dust EoS the conserved variable τ vanishes (see equations (2.22) and

(2.24)) and the inversion from conservative to primitive is possible analytically without

the root finding (2.37). This Eos is used to simulate collapse or collisions of galaxies.

The polytopic EoS is given by

p = P (ρ(p), ǫ(p)) = KρΓ , (2.48)

ǫ =
K

Γ− 1
ρ(Γ−1) . (2.49)

characterized by two parameters the adiabatic exponent Γ and the polytropic coefficient

K. This EoS is an isotropic EoS and does not simulate thermal effects. It is quasi

isotropic. As in the dust EoS, the evolution equation for τ is fulfilled analytically and

does not have to be evolved. Since transfer of kinetic energy to thermal energy is not

allowed there will be no shock formation. The inspiral phase of binary neutron star

simulations is approximately adiabatic from the fluid point of view. So this EoS can

realistically describe the matter of the system in this phase.

The ideal-gas EoS is the most general of these three. It is given by

p = P (ρ(p), ǫ(p)) = (Γ− 1)ρǫ . (2.50)

and allows entropy changes in the fluid. This means that shocks can occur, which

makes it more difficult to evolve numerically such configurations.
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In order to solve consistently the initial value problem for Einstein equations, the initial

data have to satisfy the constraint equations in Appendix A. The initial data problem

[61, 78] amounts to solving the elliptic part of Einstein equations in order to provide

(quasi) equilibrium configurations of black holes and neutron stars. Equilibrium con-

figurations are typically characterized by a few parameters like mass, spin, equation of

state (EoS) ... . Those values have to be chosen according to astrophysical observa-

tions. Initial data for numerical relativity evolutions are selected in this configuration

space.

The simplest solution concerning matter is the Tolman-Oppenheimer-Volkoff (TOV)

solution. It is an equilibrium configuration describing a static star completely deter-

mined by the EoS and the central density (or equivalently the mass). The EoS for

a single star in equilibrium is known to be cold since it is the result of a supernova

explosion which radiated all heat away. The full solution can be obtained by a straight-

forward integration of a system of ordinary differential equations discussed below. For

a given EoS there exists an equilibrium configuration with a maximal possible mass.

This configuration marks the threshold between the stable and the unstable TOV solu-

tions. Unstable models are expected to undergo a non-trivial evolution, e.g. to collapse

to a black hole, if perturbed.

After looking at a (stable) TOV star, we will discuss initial data for a boosted star,

constructed by performing a Lorentz boost transformation of the TOV data [72]. A

boosted star has a non-trivial evolution which will be analyzed later in the thesis using

different gauge conditions. The evolution of a boosted star also provides a testbed for

the high resolution shock capturing (HRSC) algorithm with moving boxes adaptive

mesh refinement (AMR).

Finally, quasi-equilibrium initial data for binary neutron stars are discussed. The

system has no symmetry, thus the problem has to be treated in three dimensions. The

17
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setup of binary neutron star initial data is complicated by the fact that gravitational

radiation does not allow closed orbits, but it circularizes the orbits and causes them

to shrink. These requirements are technically realized by imposing an approximately

helical symmetry (Killing vector) which becomes exact for infinite separation of the

bodies. The constraint system is typically solved in the conformally flat approximation

[123]. The fluid describing the matter is assumed to be either a corotational [32,

33, 122, 116, 175] or an irrotational [46, 79, 117, 178, 118, 168, 170, 179, 180] state,

because both admit a first integral of motion. In comparison to corotational data, the

irrotational model is believed to be astrophysically realistic since the spin period of

the neutron stars tend to be larger than the orbital frequency even in late inspiral.

In other terms, the time of coalescence due to gravitational radiation is shorter than

that of synchronization due to viscosity. Furthermore the temperature of these neutron

stars can be neglected since we use data at late inspiral. The time between birth of

neutron stars and the merger is very long ( 108 yr). Therefore the stars in equilibrium

are described by a cold EoS.

3.1. TOV initial data

To provide equilibrium star initial data we use the Tolman-Oppenheimer-Volkoff (TOV)

solution [176]. This is a static, spherically symmetric solution of the Einstein equations

for a single star which is fully determined by its central density value ρc (or central

total energy density ec).

Consider the line-element in Schwarzschild coordinates (t, r̄, θ, φ),

ds2 = −e2φdt2 +
(
1− 2m(r̄)

r̄

)−1

dr̄2 + r̄2dΩ2 , (3.1)

with dΩ2 = dθ2 + sin2 θdφ2 and a stress-energy tensor given by

Tµν = ρhuµuν + pgµν = (e+ p)uµuν + pgµν . (3.2)

where gµν is the metric and uµ the 4-velocity of the fluid. In combination with the
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Einstein equations the hydrostatic equilibrium is given by [56]

dp

dr̄
= −(e+ p) [m(r̄) + 4πr̄3p]

r̄ [r̄ − 2m(r̄)]
. (3.3)

where the Wigner mass-function m(r) is given by

m(r̄) = 4π

∫ r̄

0

er̃2dr̃ . (3.4)

In equation (3.3) the relation between the total energy density e and the pressure p is

needed. This relation is determined by a particular EoS which closes the system. The

final result for the matter fields does only depend on the central value ec and the EoS.

The metric potential φ of Eq. (3.1) is defined by

dφ

dr̄
= −m(r̄) + 4πr̄3p

r̄ [r̄ − 2m(r̄)]
. (3.5)

for a Schwarzschild metric with matter inside the radius R. The boundary conditions

are given at the surface of the star, r̄ = R, defined by p(R) = 0. For the metric

potential, this amounts to

φ(R) =
1

2
ln(1− 2M/R) , (3.6)

with m(R) = M coming from the matching of the matter solution inside to the

Schwarzschild solution outside.

The constructed spacetime is given in Schwarzschild coordinates. However, for some

approximations, isotropic instead of Schwarzschild coordinates are preferred. Therefore

we have to perform a coordinate transformation from the Schwarzschild coordinates to

isotropic ones. In these coordinates the general line-element is given by

ds2 = −e2φdt2 + e2ψ(dr2 + r2dΩ2) . (3.7)

Now r is the radial component in isotropic coordinates. Comparing both metrics (3.1)
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and (3.7) one finds

e2ψr2 = r̄2,

e2ψdr2 =

(
1− 2m(r̄)

r̄

)−1

dr̄2 . (3.8)

Combining these equation one obtains a differential equation

dr

r
=

(
1− 2m(r̄)

r̄

)−1/2
dr̄

r̄
(3.9)

which has to be solved in order to obtain the isotropic radius r(r̄) as a function of the

Schwarzschild radius. From (3.8), the metric potential e2ψ is given by

e2ψ =
r̄

r
. (3.10)

Exterior solution. Solving equation (3.9) outside the star (r̄ > R) is a straightforward

task due to the fact that the massm(r̄ > R) = M is constant. The integration constant

can be set by matching both coordinates r and r̄ at infinity. Since we are looking for

asymptotic flat solutions they have to be identical and one finds

r =
1

2

(√
r̄2 − 2Mr̄ + r̄ −M

)
. (3.11)

Interior solution. For the interior r̄ < R the analytic integration of (3.9) is not

possible due to the unknown function m which is defined by (3.4). The integration of

(3.9) has a singular point at r̄ = 0 since m ∼ r3 for r̄ → 0. The integral can, however,

be written as [181]

r = Cr̄ exp

[∫ r̄

0

1−
√
1− 2m/r̃

r̃
√

1− 2m/r̃
dr̃

]
, (3.12)

which is regular at the origin. To obtain the integration constant C one evaluates the

exterior solution (3.11) at the star surface r̄ = R which yields

C =

√
R2 − 2MR +R−M)

2R
exp

[∫ R

0

1−
√
1− 2m/r̃

r̃
√
1− 2m/r̃

dr̃

]
. (3.13)
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Full solution. The full solution can be constructed by computing the mapping r(r̄)

for the interior (3.12) and exterior (3.11) parts by simultaneously integrating (3.3) and

(3.4). In all these equations we need the central energy density ec and an EoS which

maps between pressure and density. The solution is the radial coordinate and the

matter fields (ρ,e,p) in this coordinate system. Finally, one has to use Eq. (3.5) and

(3.10) to determine the full line-element.

The calculation of the ADM variables in Cartesian coordinates (used inside evolution

equations in chapter 2) is straightforward. All variables depend on the radius only.

According to (3.7) the metric components for the Cartesian coordinates are

α = e2φ(r) , (3.14)

βi = 0 , (3.15)

γij = e2ψ(r)δij , (3.16)

Kij = 0 . (3.17)

Here we used the fact, that, due to the stationarity of the metric and the vanishing shift

vector, the extrinsic curvature is vanishing. The matter variables (ρ, e, p) are given by

the equations above. The 4-velocity is is defined by uµ = (1/α, 0, 0, 0).

Properties of a spherical star. The discussed method results in an equilibrium con-

figuration for a given equation of state. The solution space, obtained by varying ec (or

ρc) is characterized by stable and unstable branches (e.g. [181]). Fig. 3.1 presents the

dependence between mass and radius as between mass and central density for a simple

polytropic EoS. While equilibrium sequences can be computed for a very large range

of ρc corresponding to different star models, we show the part associated with neutron

star models. The equilibrium sequence with central rest-mass ρc ∈ 1014..16 gcm−3 has

two branches. One is stable, the other is unstable with respect to linear perturbations.

The branches are shown in Fig. 3.1 by the different colors, blue for the stable branch,

red for the unstable one. Here the maximum denotes the maximum possible mass for

this particular EoS, Mmax ∼ 1.65M⊙. A larger gravitational mass can not be obtained

due to the fluid pressure. For other EoS the picture changes only quantitatively, in

particular the maximum mass is different for different EoS. Additionally, there can be

another stable branch for higher densities [88, 126, 14].
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Figure 3.1.: Equilibrium neutron star configurations for polytropic equation of state. The
left panel shows the mass of the star normalized by M⊙ for given radii.
There are no neutron star configurations for too small radii. The right
panel shows the mass versus the central density. The blue line denotes
the branch where the configuration is stable, whereas the red line denotes
the unstable branch. The two configurations U0 and A0 (see Tab. 3.1)
are used in chapter 5 and 6.

In case of stable star simulations within this thesis we consider only polytropic EoS.

The two initial data configuration we use are marked by a circle in Fig. 3.1, the stable

model called A0 and the unstable model U0. The main properties of the initial data

are listed in Tab. 3.1.

3.2. Boosted TOV initial data

In order to generate a moving star we use a stable TOV solution boosted by a Lorentz

boost in some random direction. The Lorentz-boost in an arbitrary direction is given
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Table 3.1.: Initial data used in single-star evolutions. Columns: name, EoS, gravitational
(ADM) mass M (see Appendix A), rest-mass M0, equatorial proper radius
R, angular momentum J scaled by the square of the ADM mass, central
rest-mass density ρc. Polytropic models are computed with Γ = 2 and
K = 100.

Name EoS M/M⊙ M0 R (km) J/M2 ρc (gcm
−3) rp/re

A0 polytropic 1.400 1.506 9.586 0 0.79× 1015 1
U0 polytropic 1.448 1.506 5.838 0 4.94× 1015 1

by




t′

x′

y′

z′



=




γb γbξx γbξy γbξz

γbξx 1 + (γb−1)ξ2x
ξ2

(γb−1)ξxξy
ξ2

(γb−1)ξxξz
ξ2

γbξy
(γb−1)ξxξy

ξ2
1 +

(γb−1)ξ2y
ξ2

(γb−1)ξyξz
ξ2

γbξz
(γb−1)ξxξz

ξ2
(γb−1)ξyξz

ξ2
1 + (γb−1)ξ2z

ξ2







t

x

y

z




, (3.18)

where ξi is vector pointing in the direction of the boost. The Lorentz-factor according

to the boost is given by γb = 1/
√

1− ξ2 with ξ2 = ξ2x+ ξ2y + ξ2z . Now the Lorentz-boost

mixes space and time components, which has an effect on all variables. Since the boost

is applied on the full four dimensional metric, the shift vector, the extrinsic curvature

and the fluid velocity of the boosted TOV star will not vanish any longer. The new

tensors can be computed by the simple coordinate transformation

gµ′ν′(t
′, x′, y′, z′) =

∂xα

∂xµ′
∂xβ

∂xν′
gαβ , (3.19)

uµ
′

(t′, x′, y′, z′) =
∂xµ

′

∂xα
uα , (3.20)

p(t′, x′, y′, z′) = p , (3.21)

ǫ(t′, x′, y′, z′) = ǫ , (3.22)

ρ(t′, x′, y′, z′) = ρ . (3.23)
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The extrinsic curvature can be computed from its definition using the transformed

variables,

− 2αKij = ∂tγij − ∂iβj − ∂jβi + 2 3Γkijβk

= ∂0gij − ∂ig0j − ∂jg0i + 2βk
γkl

2
(∂jγil + ∂iγjl − ∂lγij)

= −α2g00(∂0gij − ∂ig0j − ∂jg0i)

+2α2 g
0l

2
(∂jgil + ∂igjl − ∂lgij)

= 2α2 g
0σ

2
(∂jgiσ + ∂igjσ − ∂σgij) = 2α2Γ0

ij , (3.24)

which leads to

Kij = −αΓ0
ij . (3.25)

The transformation law of the Christoffel symbols is well known (see e.g. [6]),

Γσ
′

µ′ν′(t
′, x′, y′, z′) =

∂xσ
′

∂xγ
∂xα

∂xµ′
∂xβ

∂xν′
Γγαβ +

∂xσ
′

∂xγ
∂2xγ

∂xµ′∂xν′

=
∂xσ

′

∂xγ
∂xα

∂xµ′
∂xβ

∂xν′
Γγαβ . (3.26)

The second part vanishes due to the fact that the boost is a linear transformation.

3.3. Binary neutron star initial data

The construction of binary neutron star initial data has been investigated by many

groups [32, 122, 116, 175, 46, 79, 178, 118, 170]. The Meudon group provides a

large number of relevant initial data configurations for two neutron stars with dif-

ferent masses, separations and equation of states [69]. All data we are considering here

are computed by LORENE [80, 169]. They are constructed with the assumption that

the spacetime is conformally flat and the fluid in a quasi-equilibrium irrotational or

corotational configuration.

We restrict our investigation to irrotational configurations because, as mentioned

before, they are astrophysically most relevant. The stars are set on circular orbits by
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imposing an approximated helical killing vector. The fluid equilibrium is obtained from

the local energy conservation equations (∇µTµν = 0) together with the irrotational and

helical symmetry assumption.

Helical symmetry Binary neutron stars during the inspiral stage at a separation of

about 50 km are expected to be approximately in equilibrium, and the orbits are close

to circular [43]. These assumptions can be translated to the existence of a helical Killing

vector field lµ for the spacetime geometry. In particular, assuming helical symmetry

means to neglect ingoing and outgoing gravitational waves. Considering binary neutron

star data with an exact Killing vector would violate asymptotic flatness. Since we want

asymptotic flatness to hold, we will not obtain an exact solution for the Killing vector.

Since gravitational reaction shows up at 2.5 post-Newtonian (PN) order, our solution

will be exact up to 2PN order. The helical Killing vector field is given by [46, 79]

lµ = kµ + Ωmµ (3.27)

where Ω is the orbital angular velocity with respect to an inertial observer at infinity.

The vector kµ is timelike far away from the binary and coincides with the four velocity

at infinity. The vector mµ, on the other hand, is spatial for closed (exactly circular)

orbits and vanishes on the rotation axis.

In the 3+1 formulation the Killing vector can be expressed by

lµ =
∂

∂t
+ Ω

∂

∂φ
= αnµ − βµ + Ωmµ , (3.28)

where nµ is the normal vector and mµ is a spacelike normalized vector which has

closed orbits. Here βi is defined as the shift vector inside the non-moving coordinate

system and Ω is identified with the orbital velocity. The shift vector for the co-orbiting

coordinates is then

Bµ = βµ − Ωmµ (3.29)

and the Killing vector can be expressed by

lµ = αnµ −Bµ . (3.30)
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The Killing vector lµ is required to be a symmetry generator for the matter as well as

for the metric.

Irrotational flow The energy-momentum conservation equation ∇µTµν = 0 is equiv-

alent to the uniformly canonical equations of motion [106, 57, 173]

uµ∇µ(huν) +∇νh = 0 , (3.31)

∇µ(nu
µ) = 0 , (3.32)

where uµ is the 4-velocity and h being the specific enthalpy. We use the baryon density

n instead of the density defined by ρ = nmB. Irrotational fluid corresponds to imposing

that the vorticity of huµ vanishes, ǫ µν
ρ ∇ν(huµ) = 0, with the Levi-Civita symbol ǫijk.

Therefore it can expressed by the gradient of a potential Ψ,

huµ = ∇µΨ , (3.33)

dΨ = ∇µΨdxµ . (3.34)

With this potential the equation of continuity for the baryon density can be written as

∇µ∇µΨ+ (∇µΨ)(∇µ ln(n/h)) = 0 . (3.35)

The motion of the fluid is fully determined by the scalar potential Ψ.

By definition the Lie derivative of any field along the Killing vector has to vanish

Ll(huµdxµ) = Ll(dΨ) = d(LlΨ) = 0 . (3.36)

Therefore, LlΨ is constant along lµ. From Cartan’s identity [181] we obtain the first

integral of motion

huµl
µ = const . (3.37)

This version for an irrotational flow in presence of a Killing vector was first found by

the authors of [57].

Combining the equation of continuity, (3.35), with the first integral of motion, (3.37),
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gives an equation for the scalar potential Ψ [46, 79],

DiDiΨ = − 1

n
DinDiΨ−

hW

nα
BiDin+

(
DiΨ+

hW

α
Bi

)
Di lnh

−DiΨDi lnα−
Bi

αn
Di(hW ) +KhW , (3.38)

where K is the trace of the extrinsic curvature and W = −uµnµ is the Lorentz factor

of the fluid with respect to Eulerian observer who moves perpendicularly to the spatial

slices. This was first found by Teukolsky [173] and Shibata [160] independently.

Conformally flat approximation To benefit from the helicoidal symmetry, we use

coordinates which are adapted to the Killing vector lµ. Therefore, these coordinates

are co-orbiting. A next simplification would be to use a conformally flat three-metric.

This was first done by Wilson and Mathews [183] and is used to construct binary black

hole initial data. In comparison to the standard ADM form (A.5) the line element is

now given as

ds2 = (−α2 + BiB
i) dt2 + 2Bidtdx

i + A2ηijdx
idxj , (3.39)

where ηij is the flat three-metric. The spacetime is thus described by only five functions,

the lapse α, the co-moving shift Bi and the conformal factor A. Additionally we choose

a maximal slice, K = 0.

The definition for the extrinsic curvature is given by (A.10) and with the use of the

Killing equation we get

Kij = −1

2
L~nγµν = −

1

2

(
L~l/αγµν + L ~B/αγµν

)

= − 1

2α
(DiBj +DjBi)

=
1

2αA2

(
∇̄iβj + ∇̄jβi − 2

3
ηij∇̄kβ

k

)
. (3.40)

Using the quantities χ ≡ lnα and σ ≡ ln(Aα) we can write rewrite the Hamilton
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constraint (A.12) and the trace of the Einstein equations as two new elliptic equations

∆̄χ = A2KijK
ij − ∇̄iχ∇̄iσ + 4πA2(E + S) , (3.41)

∆̄σ =
3

4
A2KijK

ij − 1

2
(∇̄iχ∇̄iχ+ ∇̄iσ∇̄iσ) + 4πA2(S) . (3.42)

This is also an elliptic equation for βi On the other hand the momentum constraint in

combination with the relation for the extrinsic curvature (3.40) yields

∆̄βi +
1

3
∇̄i(∇̄jβ

j) = 2αA2Kij∇̄j(3σ − 4χ)− 4παA2(E + p)vi . (3.43)

Above, ∇̄ is the covariant derivative associated with the three-metric ηij, and ∆̄ = ∇̄i∇̄i

is the corresponding Laplace operator. According to [46, 79] we use the notation for the

fluid energy density E = W (e+p)−p, the trace of the stress tensor S = 3p+(E+p)vivi

and the fluid 3-velocity vi = ∇iΨ/(hW ). All three expressions are measured by the

Eulerian observer. The Lorentz factor given above can be computed according to

W =

√
1 +

1

A2h2
ηij∇̄iΨ∇̄jΨ =

1√
1− vivi

. (3.44)

By introducing H ≡ lnh and ζ ≡ d lnh
d lnn

, the equation for the fluid velocity potential

(3.38) takes the final form

ζH∆̄Ψ = −∇̄iH∇̄iΨ− A2hW
Bi

α
∇̄iH

+ζH

[
∇̄iΨ+ A2hW

Bi

α

]
∇̄iH

−ζH
[
∇̄iΨ∇̄iσ + A2B

i

α
∇̄i(hW )

]
. (3.45)

3.3.1. Numerical method

To solve the realistic binary system in quasi-equilibrium one has to solve the elliptic

equations (3.41)-(3.43) for the metric quantities, and equation (3.45) for the velocity

potential. To close the system we need an equation of state which provides the quanti-

ties n, e and p depending on lnh. The four equations and the EoS together constitute

a system of coupled partial differential equations. They are solved iteratively until the
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norm of the enthalpy lnh is smaller than a certain threshold. A detailed description

of the method and the implementation can be found in [46, 79]. At a given iteration

the following steps are done

i. Determine angular velocity, the location of the stars and the rotation axes. The

location is given by the maximum of the enthalpy, the other two are found by

solving the first integral of Eq. (3.37).

ii. Compute orbital velocity and the velocity with respect to the Eulerian observer.

iii. Compute the potential Ψ from the Lorentz factor.

iv. Solve the elliptic equation (3.45) to obtain H.

v. Compute n, e, p from the EoS and determine the source terms E and S.

vi. Solve elliptic equations (3.41),(3.42),(3.43) for the metric fields χ, σ and βi.

vii. Update all fields by means of the relaxation algorithm: F j ← λF j + (1 − λ)F j−1

with λ ∈ [0, 1] relaxation factor.

The elliptic PDE system is solved with a multi-domain spectral solver. The code is

based on the LORENE library [69] and provided by the NR group in LUTH (Meudon).

These initial data represent to date the most accurate computation of equilibrium BNSs

and they are publicly available on the web.
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In this chapter we discuss the numerical methods implemented to handle matter in

numerical simulations. The fluid motion is treated in an Eulerian framework and

solved by mean of a high-resolution-shock-capturing scheme (HRSC) [177, 105]. HRSC

schemes are nonlinear grid schemes (either finite differencing or volume) able to capture

physical (entropy satisfying [177, 105]) weak solutions of the hydrodynamic equations.

The HRSC method is based on the approximate solution of local Riemann problems

using the characteristic structure of the equations. They are the state of the art

scheme for GRMHD codes [121, 70]. The HRSC scheme employed here is implemented

by the method of lines for the time integration on a 3D Cartesian grid with adaptive

mesh refinement (AMR) using the “moving boxes” technique. We describe the time

integrators employed and implementation of the AMR grid.

4.1. High resolution shock capturing scheme

We solve the matter equations described above introducing a uniform staggered spatial

grid of spacing ∆x,∆y,∆z, and Nx, Ny, Nz points and consider the semi-discrete form

of the equations (2.20) by

d~qijk
dt

=
1

∆x

(
f̂i− 1

2

− f̂i+ 1

2

)
+

1

∆y

(
f̂j− 1

2

− f̂j+ 1

2

)
+

1

∆z

(
f̂k− 1

2

− f̂k+ 1

2

)
+ ~sijk (4.1)

where the f̂i± 1

2

(five component vectors) are the numerical fluxes computed from the

physical ones in (2.24).

The HRSC method adopted for the computation of the right side of (4.1) is described

in [187, 186] and it is based on point values discretization (instead of cell averages),

high-order non-oscillatory reconstructions [89, 166, 165] and central schemes [133, 101].

31
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The method consists in essence of two “cores” : a high-order non-oscillatory interpo-

lation of the primitive variables to cell interfaces and a high-order approximation of

the flux derivatives obtained taking appropriate (eventually non-oscillatory) numerical

derivatives of the inter-cell fluxes to compute the numerical fluxes. Here we use the

method at second-order. The flux derivatives procedure is not implemented.

x

q
f̂i−1/2 f̂i+1/2

i − 1
i − 1/2

i
i + 1/2

i + 1

qi−1

qi

qi+1

q+

i−1
=qL

i−1/2

qR
i−1/2=q−

i
qL

i+1/2=q−

i+1

q+

i
=qL

i+1/2

Figure 4.1.: Illustration of the cell and interface labeling.

Since the reconstruction and the fluxes routines operate along one dimension at each

time all the computation is in principle one dimensional and can be computed for each

direction separately. Note that we have physical points denoted by the letter i and

interfaces between the points at i+1/2. At each interfaces we have a left state denoted

by L and a right state denoted by R. The +/− denotes whether it is the right or left

interface value at the point. The basic steps of the algorithm are:

i. Recovery of the primitive variables ~w from the conservative ones ~q

~qijk 7→ ~wijk , ∀ijk .
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This is already described in section 2.3.1.

ii. Reconstruction of the primitive variables at interfaces i+ 1
2
:

R
(
wi− 1

2
(s−1), . . . , wi+1+ 1

2
(s−1)

)
7→
{
~wL
i+ 1

2

, ~wR
i+ 1

2

}
, ∀i = 0, ..., Nx .

where s = 1, 3, 5, . . . is the stencil used. The different methods used (MC2, PPM,

CENO3) are described in section 4.1.1 and Appendix C. The routines implemented

actually reconstruct the cell’s edges and store them in vectors ~w±
i such that: ~wL

i+ 1

2

=

~w+
i and ~wR

i+ 1

2

= ~w−
i+1.

iii. Computation of the numerical fluxes f̂i+ 1

2

:

F(~wL
i+ 1

2

, ~wR
i+ 1

2

) 7→ f̂i+ 1

2

, ∀i = 0, ..., Nx ,

applying approximate Riemann solvers (HLLE [90], LLF [133, 101]) described in

section 4.1.2. The eigenvalues in (2.29) are used in this step to determine the local

characteristic speed(s) used to determine the flux.

iv. Computation of source terms ~s using (2.25):

~wijk 7→ ~sijk .

v. Time-(sub)-step .

4.1.1. Reconstruction methods

Here the reconstruction methods used are shortly summarized. We implemented three

different methods: the Total Variation Diminishing (TVD) linear MINMOD (MM2)

and Monotonized Centered (MC2), reconstruction of the Piecewise Parabolic Method

(PPM), and Convex-ENO of 3rdorder. The first two are the simplest, where PPM is

a standard choice in numerical relativity. The third method is not routinely used in

BNS simulations but we found in our case it is the best choice according to the tests

in section 5.2.

The idea behind the reconstruction is to make an adaptive interpolation which selects

the stencil according to the gradient of the solution. As an example we describe the

MM2 method. The other methods used are described in Appendix C.
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A second order accurate method can be obtained by using a TVD (slope limited)

linear reconstruction (Piecewise Linear Method) [177, 105], around the ith point by

Li(x) = wi +∆i
x− xi
∆x

, (4.2)

where ∆i is the limited slope. Note that the reconstructed values at the ith cell bound-

aries x = xi∓ 1

2

are w
R
L

i∓ 1

2

= wi ± 1
2
∆i. Two ghost zones per side (and per dimension)

are required.

The MINMOD function is defined as

MM(a1, a2, ...) ≡





mink(ak) ak > 0 ∀k
maxk(ak) ak < 0 ∀k
0 otherwise





. (4.3)

Given the undivided differences at the point i

∆−
i ≡ wi − wi−1 , (4.4)

∆+
i ≡ wi+1 − wi , (4.5)

the MINMOD (MM2) slope is

∆i = MM
(
∆−
i ,∆

+
i

)

=

{
sign(∆+

i )min(|∆−
i |, |∆+

i |) if(∆+
i ∆

−
i ) > 0

0 otherwise

=
1

2

[
sign(∆−

i ) + sign(∆+
i )
]
min(|∆−

i |, |∆+
i |) . (4.6)

The aim of this TVD limiter is to minimize the slope of the given function by choos-

ing the smallest value. This results in numerical dissipation by smoothing the given

function. The positive effect is that unwanted oscillations around corners will not be

created. In case of extrema the MM2 function gives zero, which results in flattening of

a function.
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4.1.2. Fluxes

There are two different kinds of fluxes. The hat denotes the numerical fluxes which

is an approximation for the physical flux (2.24). The arrow denotes inter-cell fluxes

which are the time integral averages of the physical fluxes which are used to construct

the numerical fluxes. The inter-cell fluxes ~fi+ 1

2

in equation (4.1) are computed from

the reconstructed variables on the left and right of i+ 1
2
using an approximate Riemann

solver. We consider the two simplest: the HLLE formula [90, 68], which is a two-wave

approximate Riemann solver, and the LLF formula [133, 101, 113], prototype of the

central schemes.

To obtain the numerical fluxes f̂i+ 1

2

, is necessary to include a certain number of terms

depending on ~fi+ 1

2

given by the Taylor expansion of the derivative of ~f up to the right

accuracy 1

∆x~f ′(xi) ∼ a(~fi+ 1

2

− ~fi− 1

2

) + b(~fi+ 3

2

− ~fi− 3

2

) + c(~fi+ 5

2

− ~fi− 5

2

) + ... (4.7)

where the coefficients are left indicated. In practice the computation of the numerical

fluxes reduces to apply some finite differences operators to ~fi+ 1

2

:

f̂i+ 1

2

= ~fi+ 1

2

+

(r−1)/2∑

j=1

c2jD
(2j) ~fi+ 1

2

(4.8a)

= ~fi+ 1

2

+O(∆x2) (4.8b)

= ~fi+ 1

2

+ c2D
(2) ~fi+ 1

2

+O(∆x4) (4.8c)

= ~fi+ 1

2

+ c2D
(2) ~fi+ 1

2

+ c4D
(4) ~fi+ 1

2

+O(∆x6) (4.8d)

with c2 = −1/24 and c4 = 3/640. The operators D(2j) are finite difference operator

either based on a fixed central stencil, e.g.

D(2) ~fi− 1

2

= ~fi− 3

2

− 2~fi− 1

2

+ ~fi+ 3

2

(4.9)

D(4) ~fi− 1

2

= ~fi− 5

2

− 4~fi− 3

2

+ 6~fi− 1

2

− 4~fi+ 3

2

+ ~fi− 5

2

(4.10)

or decided with a CENO-like algorithm [186, 132]. The computation of the derivatives

1This step does not appear in the original ENO high-order schemes because reconstruction is done
directly on the fluxes. Here we follow [186].
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require us to add ghost points in addition to those necessary for the reconstruction

procedure (e.g. CENO3 reconstruction and D(4) derivation requires 3+1 = 4 ghosts

per side).

HLLE

The HLLE [90, 68] flux is an approximate Riemann solver which takes into account

only the (two) highest speeds of the Riemann

~f
(HLLE)

i+ 1

2

=
a+ ~fL + a− ~fR − a+a−

(
~qR − ~qL

)

a+ + a−
, (4.11)

where L(R) denotes the physical flux computed from the reconstructed values from the

left(right) of i+ 1
2
, e.g. ~fL ≡ ~f(~wL

i+ 1

2

), and

a± ≡ max
[
0, ±λ±(~w

L
i+ 1

2

), ±λ±(~w
R
i+ 1

2

)
]
. (4.12)

LLF

The Local Lax-Friedrichs flux (e.g. [133, 101, 113]) is the most common central scheme.

It reads

~f
(LLF)

i+ 1

2

=
1

2

[
~fL + ~fR − a

(
~qL − ~qR

)]
, (4.13)

where a ≡ max (a+, a−).

The HLLE flux in (4.11) reduces to the LLF flux if a+ = a−. The maximal dissipative

scheme is obtained for a = 1.

4.2. Time integrators

In order to solve our PDE system we use the method of lines (MoL) [155] technique.

It allows to separate the time evolution from the spacial discretization. This leads to a

system of ordinary differential equations (ODE) which can be integrated by a suitable

time integrator under a certain Courant-Friedrichs-Lewy (CFL) condition. Having a
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set of coupled ODE’s for the time dependence of the variables ~u at a given grid point,

the system can be written in the simplified form

∂t~u = ~f(t, ~u) . (4.14)

There exist a large number of different time integrators, for example Euler, Leap-Frog

and Rung-Kutta. All are classified by the order of accuracy. The time integrators used

in this work belong to the class of explicit Runge-Kutta schemes [3, 75]. They are

expected to be the fastest time integrators by giving high accuracy. They are mostly

the first choice if one have to integrate a generic system of ODE’s since they are easily

structured.

Given ~un at a fixed time tn the approximation ~un+1 at the next time step tn+1 =

tn +∆t is given by s substeps:

~k1 = ~f(tn, ~un) (4.15a)

~k2 = ~f(tn + c2∆t, ~un + a21 ~k1 ∆t) (4.15b)

...

~ks = ~f

(
tn + cs∆t, ~un +∆t

s−1∑

i=1

(asi ~ki)

)
(4.15c)

~un+1 = ~un +∆t
s∑

i=1

(bi ~ki) . (4.15d)

The approximation is determined by the coefficients aij, bi and ci. They can be conve-

niently written as a table, known as Butcher tableau [139].

0

c2 a21

c3 a31 a32
...

...
...

. . .

cs as1 as2 ... as,s−1

b1 b2 ... bs−1 bs

(4.16)

For our simulations we use two different methods: a third order Runge-Kutta (RK3)
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method given by

0

1/2 1/2

1 −1 2

1/6 2/3 1/6

(4.17)

which is Heun’s third order method [165]. On the other hand we use the standard

fourth-order method (RK4)

0

1/2 1/2

1/2 0 1/2

1 0 0 1

1/6 1/3 1/3 1/6

(4.18)

mainly used since this is method has the highest order for the minimum of substeps.

It is found [165, 145] that third order Runge-Kutta schemes are stable iff |∆t
h
c| ≤

√
3

and fourth order schemes iff |∆t
h
c| ≤ 2

√
2. This restriction on the time step ∆t is called

the CFL condition where c is the Courant factor.

For black hole simulations (see [52]) the latter version were used in the past and

it can be used for matter simulations as used by [97]. However, it is mentioned in

[21, 12] that a third order scheme is more stable and shows better results. The RK3

method satisfies the total variation diminishing (TVD) condition [165], which plays

an important role in avoiding spurious oscillations around shocks. The RK4 method

on the other hand does not have this property. We tested both mentioned schemes

without finding noticeable differences between the results. It was not possible to argue

which scheme is the best. The numerical effort between both schemes is approximately

the same since we used an optimized RK4 scheme and a generic third-order scheme,

which has one step less. We decided to use consistently the RK3 with a Courant factor

of 0.25 which leads to convincing results.
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4.3. Finite differencing and dissipation

The metric evolution equations (2.7)-(2.11) and the gauge conditions (2.13) and (2.14)

are discretized using the standard finite difference technique. The first thing is to

approximate the continuum functions by a finite number of values, thus ~u(t, ~x) is

represented by the values uijk at a set of discrete points (xi, yj , zk) called the grid. We

use the simplest and most general form namely a Cartesian grid with uniform distances

between the points in all three dimensions. The differential operators are translated

into finite differencing operators by means of Taylor expansions. The first derivative

in the x-direction can be obtained by a second order accurate approximation

ui+1,jk = uijk + h(∂xu)ijk +O(h2) ,

ui−1,jk = uijk − h(∂xu)ijk +O(h2) ,

⇒ (∂xu)ijk =
1

2h
(ui+1,jk − ui−1,jk) +O(h2)

= (Di
0u)ijk +O(h2) . (4.19)

The result is a second order accurate centered first derivative where D0 is the cen-

tral difference operator. A second derivative needs an additional term in the Taylor

expansion

ui+1,jk = uijk + h(∂xu)ijk + h2(∂2
xu)ijk +O(h3) ,

ui−1,jk = uijk − h(∂xu)ijk + h2(∂2
xu)ijk +O(h3) ,

⇒ (∂2
xu)ijk =

1

h2
(ui+1,jk − 2uijk + ui−1,jk) +O(h2)

= (Di
+D

i
−u)ijk +O(h2) . (4.20)

denoting by D+ and D− the forward and backward difference operator. Note, D+D−

is not the same as D2
0. A mixed second derivative is created by using D0 in different

directions, e.g. Di
0D

j
0 = ∂x∂yu. For our simulations we used fourth order accuracy for

the metric evolution equations. These derivatives can be obtained in a similar way by

using more points and more terms of the Taylor expansion.

Since all level of the mesh refinement are evolved separately communication between

the levels are done by interpolation. This always leads to numerical errors at the box

boundaries and a high frequency noise is created. In order to avoid these grid modes
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we use artificial dissipation added to the right-hand-sides (RHS) of the time evolution.

We only use this for the metric variables. For the matter parts we do not use artificial

dissipation at all since the HRSC scheme is dissipative enough that gird modes become

measurable. According to [52] we use the standard Kreiss-Oliger dissipation [100, 83]

operator Q of order 2r

Q = σ
(−h)2r−1

22r
(D+)

rρ(D−)
r (4.21)

for a (2r − 2) accurate scheme. Here σ denotes the strength of the dissipation and ρ

the weight function which is set to identity. Thus the dissipation operator is similar to

a 2r derivative

Q = σ
(−h)2r−1

22r
(∂2r
x + ∂2r

y + ∂2r
z ) . (4.22)

4.4. Moving boxes AMR

So far all the discussion did not say anything about the grid structure. A numerical

simulation requires the resolution of at least two scales: the strong field region L ∼M

and the radiation region L ∼ λGW . Additional scales are given by unequal mass-ratios

for binary simulations and turbulence/micro-physics in case of matter simulations. In

absence of symmetries the computational cost for such 3D simulations is large. The

absolute computational cost of such a simulation is proportional to the number of point

in one dimension to the power of four which unfortunately limits the grid-size to a few

hundred points per direction.

Here we avoid this problems by using the adaptive mesh refinement (AMR) technique,

where the numerical domain consists of a dynamical hierarchy of uniform grids with

increasing resolution and fixed number of points. The numerically important region,

which in our case is a neutron star or the black hole, is covered by the highest resolution

available on the numerical grid whereas the rest of the grid is resolved less depending

on the separation to the objects.

AMR was invented in 1984 by Berger and Oliger [38]. It was first applied to numerical

relativity by Choptuik [58] to study the critical collapse of a massless scalar field in

spherical symmetry. The AMR used here is described and tested in detail in [54, 48,

50, 52].
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Figure 4.2.: Adaptive mesh refinement example for different grid configuration. The figure
is taken from [48].

The numerical domain consists of a set of nested Cartesian grids. The hierarchy

consists of lmax + 1 levels. The level l has the resolution hl = h0/2
l and can consist

out of one or more Cartesian grids called boxes. The coarsest level l0 is fixed in space

and the physical boundary coincides with the level boundary. All finer levels are able

to consist out of several separated boxes which are aligned with the parent box in a

coarser level. For simplicity we do not allow overlapping boxes in one level unlike in

the original work [38]. If this happens boxes will automatically merge to one extended

box covering both. With this technique it is possible to obtain high resolution at

several distinct regions on the grid (see Fig. 4.2). The grid is cell centered, there are

no points in two different levels which are at the same location. Between the levels
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the data is transfered by interpolation (prolongation and restriction). For the metric

variables we use standard n-th order Lagrangian interpolation obtained by successive

one-dimensional interpolations. Since we can not assume smooth matter functions we

use a non-oscillatory interpolation (WENO) for the conserved variables described later.

The implemented AMR has the possibility to move boxes over the grid to follow the

movement of either neutron stars or black holes.

We use Berger-Oliger time stepping which is a recursive process starting at the coars-

est level l = 0 going successive through all finer levels by

i. Evolve the actual level l.

ii. Call twice the recursive function for the next finer level l + 1, if the level exists.

iii. Do prolongation and restriction between the actual level l and the coarser level

l − 1 by using Lagrange or WENO interpolation, if the level exists.

iv. Perform a regrid on the actual level l. This includes moving, merging and/or

splitting of the boxes in level l depending on the box locations in the finer level

l+ 1. If this is the finest level the locations of the neutron stars or black holes are

used. The aim is to use hierarchies as centered as possible.

Note that time stepping is adjusted to the resolution. Therefore, level l is evolved

twice as many times as the next coarser level l − 1. We use different approaches to

follow either black holes or neutron stars. In black hole simulations we integrate the

shift function to track the location of the puncture. This is not possible in case of

neutron stars. A possibility is to use the maximum of the density to define the center

of a neutron star. In order to additionally locate/follow a puncture formed after the

collapse we found it convenient to use the minimum of the lapse function to define the

center of the neutron star.

According to [156] a constant damping parameter η in (2.14) can cause stability

problem due to too large time-steps in the outer region. We cure this by switching

off Berger Oliger time stepping at the outer levels, which then allows us to fulfill the

stability condition for η.

Finally I comment about the spatial interpolation used for the conservative variables

in the mesh refinement, i.e. between levels. A non-oscillatory interpolation is necessary

in order to avoid Gibbs phenomenon. Different methods are adopted in different codes,

see e.g. [132, 27]. I implemented a fourth and sixth order WENO algorithm as described

in [114]. Since I try to use fourth order everywhere I restricted myself to using fourth
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order WENO consistently. The one dimensional scheme is summarized in the following.

Given the four points xi−1, xi, xi+1, xi+2 and the corresponding data fi−1, fi, fi+1, fi+2,

two candidate interpolating polynomials are constructed as

p1(x) = fi +
fi+1 − fi−1

2h
(x− xi) +

fi+1 − 2fi + fi−1

2h2
(x− xi)

2 ,

p2(x) = fi +
−fi+2 + 4fi+1 − 3fi

2h
(x− xi) +

fi+2 − 2fi+1 + fi
2h2

(x− xi)
2 . (4.23)

The final interpolated value is given by

p(x) = w1(x)p1(x) + w2(x)p2(x) , (4.24)

where the weights are

wi =
αi(x)

α1(x) + α2(x)
, (4.25)

αi =
Ci(x)

(ε+ ISi)2
. (4.26)

The weights are defined in term of the smoothness indicators

IS1 =
25

12
f 2
i+1 +

64

12
f 2
i +

13

12
f 2
i−1 +

26

12
fi+1fi−1 −

52

12
fifi−1 −

76

12
fi+1fi ,

IS2 =
25

12
f 2
i +

64

12
f 2
i+1 +

13

12
f 2
i+2 +

26

12
fi+2fi −

52

12
fi+2fi+1 −

76

12
fi+1fi) . (4.27)

and the optimal weights

C1(x) =
xi+2 − x

3h
(4.28)

C2(x) =
x− xi−1

3h
. (4.29)
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In case the of a smooth function, the interpolation reduces to standard fourth order

Lagrangian interpolation. For less regular functions the order of interpolation drops

based on the local continuity of the derivatives (see discussions in e.g. [96, 172]). In

the implementation we set ε = 10−6 to avoid division by zero. The algorithm has been

slightly modified in order to enforce monotonicity in the solution [184]. If pi(x) at a

given point is larger or smaller than all four function values f , we set the corresponding

αi to zero. If all αi are zero we use linear interpolation instead.

4.5. Vacuum treatment

A difficult part of hydrodynamic evolutions is outside the matter, i.e. in the vacuum

region. Since the density is going to very small values or even vanish the conversion

from conserved variables to primitive variables described in subsection 2.3.1 is singular.

A correct, general and robust solution is not currently available even without the

complication of dynamical spacetimes. A standard approach, largely employed in the

literature, is instead to substitute the vacuum with a minimal atmosphere of density

several orders of magnitudes smaller than the typical densities in the system. Since

the density is quite small the resulting effect of the atmosphere on the star should be

negligible. In case of neutron stars things are complicated by the presence of gravity

and of a stiff fluid.

I implemented a simple vacuum algorithm based on a cold and static atmosphere.

The main ideas come from [72, 65, 24]. It consists of the following main prescriptions:

i. The atmosphere density value, ρatm ≡ fatm max ρ, is chosen as a fraction, fatm, of

the maximum density.

ii. The atmosphere pressure and internal energy are chosen according to the cold

(polytropic) part of the EoS of the evolved fluid. In terms of the dust EoS the

internal energy is always set to zero.

iii. The atmosphere velocity vi is zero.

iv. The atmosphere is added to initial data in vacuum regions before starting the time

evolution.

v. During the evolution, while recovering the primitives variables, a point is set to

atmosphere if it is below a threshold density, ρthr ≡ fthrρatm.
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Typical values used are fatm = 10−10 and fthr = 102. In all my tests I found it general

and robust enough for our purposes.

4.6. Boundary condition

All numerical simulations are performed on numerical grids with finite size. Since

computational resources are limited it is mostly not possible to disconnect the boundary

from the physically interesting domain. In order to deal with this issue there exist

several strategies.

One option is by using a compactified coordinate system to spatial-infinity, which

is used in the generalized harmonic evolutions in [140]. Another way is to use hyper-

boloidal slices going to null-infinity [189, 146, 74]. Both techniques have the advantage

that the exact Minkowski boundary condition can be employed. However both condi-

tions show numerical complications when following outgoing waves.

A simpler way is by using a boundary enclosing a finite region. Finding a boundary

condition in this case satisfying all conditions for the evolution system is not straight

forward. The weak-field Einstein equations reduce to a wave equation. Therefore a first

naive way to find a boundary condition is by assuming that all fields behave as spherical

waves traveling outwards which can be approximated by f ∼ f0 + u(r − vt)/r where

f0 is an asymptotic value for the fields and v is the particular wave speed. In principle

one can use this formulation by interpolating the evolved quantities and compute the

expected values at the boundary [162]. However, usually one uses a version which is

evolved in time [9]

∂tf + v∂rf + v(f − f0)/r = 0 , (4.30)

which is the so-called radiative (Sommerfeld) boundary condition. Both methods are

analytically similar. However, from the numerical point of view, one will obtain differ-

ent results due to truncation error.

If the boundary is sufficiently far out it can be approximated as being in flat space-

time. Therefore the coordinate speed of light is close to 1 and the velocity can be

approximated as the speed of light by v = 1. In case of gauge conditions the veloc-

ity can be faster than the speed of light. This depend on the particular slicing. For
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the Bona-Masso slicing family (see eq.(2.12)) this would be v = α
√

f(α). Looking at

1+log slicing with f = 2/α the gauge speed for the lapse is vα =
√
2 in the asymp-

totic region (where α ∼ 1) [9]. The longitudinal gauge speed for the shift is given by

vlong = 2
√

µS/3. Choosing the free function as µS = 3/4α sets this gauge speed to the

speed of light.

In order to satisfy the constraints we have to assume that we are in the asymptotic

region, where the spacetime is asymptotically flat, the shift is very small and the source

of gravitational fields is located in a small region. However, if the constraints are

violated, the boundary conditions can have a serious negative effect on stability. There

is ongoing work in obtaining better conditions like constraint preserving boundary

conditions (see e.g. [147, 39, 152]).

Finally, note that this approach did not include matter parts because the region

covered by the matter in our simulations has typically compact support at the center

of the computational domain. The matter never comes close to the boundary. Thus it

is sufficient to set atmosphere values.
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In order to know whether all components of the hydrodynamic code works correctly I

performed a series of test evolutions to validate the code.

First the HRSC is tested with a relativistic one dimensional shock tube in flat space-

time. Despite its simplicity, the central scheme for the fluxes capture properly all the

elementary waves of the Riemann problem.

Secondly we tested the evolution of a single TOV star with (full-GR) and without

(the Cowling approximation) coupling to the metric quantities in order to fine tune

the numerical setup to obtain longtime stable simulation. The preservation of the star

shape (and of all other fields) and convergence is proved in detail. I tested a boosted

TOV star to see how well the code can handle matter dynamics and all couplings

between the metric and matter part.

5.1. Shock tube

The first code test is one of the standard tests in fluid dynamics, discussed in e.g.

[119]. The fluid is initially separated in to two thermodynamic states on each side of

an interface. The system evolves in such a way that three different waves appear, a

shock wave, a contact discontinuity and a rarefaction wave. In case of a flat background

metric the time-depended problem has an exact solution provided in [121].

The initial states of the Riemann problem is as follows [72]. The left side is specified

by pL = 13.3, ρL = 10, vL = 0 and the right side by pR = 0.66 × 10−6, ρR = 1,

vR = 0. The domain extends from −0.5 to 0.5, where the interface is at x = 0. As

equation of state we use an ideal gas with Γ = 5/3. Fig. 5.1 shows the numerical and

the exact solution at t = 0.4 for the shock tube in one dimension. We used 400 grid

points and the LLF flux with CENO reconstruction. The exact solution is computed by

the code of Marti and Müller [121]. The figure shows good agreement between exact

47
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and numerical solution. All features of the solution, a shock wave (left), a contact

discontinuity (center) and a rarefaction wave (right) are well resolved. The same result

is obtained in different directions as well as along the diagonal. The HLL did not show

major differences. In the following we consistently used the LLF solver.
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Figure 5.1.: Solution of the shock tube test at t = 0.4. The colored signs denote the
density, pressure and velocity for the numerical simulation. The black
lines correspond to the exact solution.

5.2. Stable TOV

In this part I discuss the simulations of the stable model A0 which I investigated

in [MTH2]. The grid is composed of three boxes (two refinement levels), the finest

box covers entirely the star. Simulations are performed employing resolutions of h =

0.295, 0.443, 0.591, 0.738 km for the finest box and lasts about 10ms. The model A0

is a stable equilibrium configuration which means that its evolution is trivial. The

continuum solution can not evolve, it has to remain at the initial condition. Therefore

the dynamics of the numerical solution is governed by truncation errors and spurious
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effects due to the usage of an artificial atmosphere. This gives the possibility to study

the long term stability and convergence of the code.
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Figure 5.2.: Evolution of the central rest-mass density of model A0. The top panel shows
the normalized central density for a stable star simulated with different
reconstructions (MC2,PPM,CENO3) in the Cowling approximation. The
lower panel presents the power spectrum of all three simulations. The
first two perturbative pulsation frequencies are denoted by dotted black
lines.

It is well known, e.g. [71], that numerical errors trigger small amplitude pulsations

of the star which oscillate at the proper radial mode frequency. The phenomenon is

depicted in Fig. 5.2 for the Cowling approximation and Fig. 5.3 for full-GR where the

evolution of the central rest mass density normalized to its initial value is shown for

different reconstruction schemes and for the highest resolution. The result is similar

in both cases but the physical values of the oscillation frequency differ. In the Cowing

approximation the result is more stable and truncation errors are smaller. Both figures

demonstrate the ability of the code to maintain the initial configuration. For instance

the pulsations amplitude is less than 0.5% over 10ms. The two frequencies shown in

the lower panel dominate the pulsations both for Cowling and full-GR. In the Cowling
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Figure 5.3.: Same plot as Fig. 5.2 but results are computed in full-GR.

approximation we find νF = 2639Hz and νH = 4568Hz, whereas for the general case

we get νF = 1421Hz and νH = 3959Hz. They agree within the errors estimated

from the output time sampling (2%) with the fundamental radial linear mode and its

first overtone as computed by perturbative methods [99, 40]. Both figures highlight

that different reconstruction methods (MC2, PPM and CENO) give slightly different

results which do not change the physical values. As one can see the peaks of the two

dominant frequencies do not change within the error bars. In both figures one can see

that the numerical scheme is dissipative, which results in a damping of the pulsation.

For all three reconstruction methods the dissipation is in the same order. However,

the MC2 scheme shows slightly less dissipation which could be a result from the bigger

truncation error.

In case of full-GR (Fig. 5.3) a secular drift of the central density using MC2 recon-

struction is observed. A similar drift is observed also in simulations with PPM and

CENO at lower resolutions. This secular drift is a feature related to the evolution of the

geometry together with the fluid. Looking at simulations in the Cowling approximation

(Fig. 5.2) it is or almost absent at all resolutions.
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Figure 5.4.: Comparison of the normalized central rest-mass density using CENO recon-
struction for different values of the parameter α0.

In general the amplitude of the pulsations is also larger in the case of MC2 indicating

that truncation errors are bigger, as expected for a linear reconstruction. Notice that

in the simulations with CENO reconstruction the overtone of the radial mode at fre-

quency νH is more clearly visible. During preliminary tests with CENO reconstruction

I observed a loss of stability between 2 and 6 ms depending on the resolution employed.

I found that for a compact star solution and a standard implementation of the CENO

reconstruction, the limiter tends to select in some points the lower order sub-stencils.

A similar effect is also discussed in [12]. The problem is easily fixed in our set up by

choosing a different weight in the weighted differences between the linear reconstruction

and the quadratic polynomial with centered stencil in equation (C.5). Fig. 5.4 shows

the normalized central density for different values of the parameter α0 with the same

resolution as in the previous test. Here we can see that for this resolution α0 = 0.1

is the best choice. Going to lower resolution shows that one can use larger values. I

found the value α0 = 0.1 sufficient and robust for all the resolutions and used this

value in all problems in this work. In that way the limiter selects the central stencil

which corresponds to a higher order stencil, thus minimizing truncation errors. The

PPM reconstruction has several free parameters to tune, I did not attempt to do it but

instead used the prescription given in [120].
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Figure 5.5.: Convergence in L1 norm of model A0. The upper panels and the lower left panel
show the L1 distance ||ρ(t)−ρ(0)||1. Different panels refer to the different
reconstruction methods: MC2, PPM and CENO. The lower right panel
shows the convergence order for the three reconstruction methods using
the highest resolution h = 0.30 km and t = 8ms. The black dotted line
is the reference for 2ndorder convergence.

Figure 5.5 reports the evolution of the L1 distance between the evolved rest-mass

density and the initial data. The different curves refer to different resolutions, at every

time the difference between the two curves behaves as ||ρ(t) − ρ(0)||1 ∝ hr +O(hr+1)

since the initial data represents the solution for the evolution problem. The three

panels from top left to bottom left refer to different reconstructions. In all cases we

observe convergence with increasing resolution. Overall 2ndorder convergence is found

at early times t ∼ 2ms. In principle we expect 2ndorder since the matter part is second

order accurate for solutions with no shocks. At late times however the MC2 and PPM

reconstructions show larger truncation errors. The curves present a quadratic behavior.

This leads to apparent over-convergent results, which indicates the simulations are
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not yet in the convergent regime. By contrast the use of CENO reconstruction gives

2ndorder convergence over the whole simulated time. The last panel (bottom right)

summarizes the observed convergence rate by showing in log-log plot the L1 distances

as a function of 1/h at a given late time t = 8ms for different reconstructions. The

slope of the lines gives the convergence rate. The over-convergent behavior for MC2

and PPM as well as the 2ndorder convergence of CENO are evident. Note that MC2

and PPM is formal 2ndorder and CENO 3rdorder. However, the overall convergence

order of the used HRSC scheme is “only” 2ndorder. Therefore we do not expect higher

convergence rates.
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Figure 5.6.: Same plot as Fig. 5.5 but results are computed in the Cowling approximation.

To interpret these results we recall here that in a HRSC scheme the truncation errors

strongly depend on the degree of smoothness of the solution and on the specific limiters

employed. While the formal convergence rate of the methods employing different re-

construction is the same, the truncation errors for this problem are simply different in
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the three cases. PPM and MC2 reconstructions are only first order at smooth extrema

thus they are expected to be less accurate on smooth solution than CENO, but more

robust in presence of strong shocks. More importantly, the apparent over-convergence

behavior is not simply related to the HRSC method employed to solve the GRHD

equations but it seems a genuine aspect of evolving the GRHD equations coupled to

Einstein equations. To show this we consider Fig. 5.6 which is the same as Fig. 5.5 but

in the Cowling approximation. From an inspection of the figure is clear that, once the

metric is not evolved, all the reconstructions performs quite similarly showing perfect

2ndorder convergence in norm at all times. Specifically one can observe how CENO

and PPM have similar performances and with all the reconstructions the convergent

regime is reached at the considered resolutions. This means that in case of full-GR the

faster convergence observed for MC2 and PPM is a combination of numerical errors

from various parts of the algorithm rather than to an effect only related to the recon-

struction methods. The rest-mass conservation is guaranteed by the flux-conservative

form of the GRHD equations. In all the simulations reported here we observe that the

deviation is of the order of ∆M0/M0 ∼ 10−6.

Due to numerical errors the Einstein constraints are violated independent of the

formulation or the method adopted. Having a converging code the constraint vio-

lations will be reduced by increasing resolution, but they will never vanish. When

free-evolution schemes are adopted, the constraints are only monitored (not solved)

and typically the violation (i) grows in time, (ii) converges with increasing resolution.

In our simulations we observe this behavior. The biggest violations on the grid are

registered in the region covered by the matter and at the boundary since we do not

adopt a sophisticated method yet.

Figure 5.7 summarizes this results. The three panels from top-left to bottom-left

show the evolution of the L2 norm of the Hamiltonian constraint (A.15) for several

resolutions in the cases when MC2, PPM and CENO reconstruction are employed.

The violation converges to zero in all the cases. From the figures it is clear that the

absolute value of the violation is larger for MC2 and PPM reconstruction while it

is about a factor 10 smaller for CENO reconstruction when compared to MC2 and

PPM. A summation of effects and errors as the one described above contribute to this

behavior. It is difficult to clearly identify them due to the complexity of the equations

and the numerical method employed.

The bottom-right panel displays the spatial profile in x-direction of the Hamiltonian
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Figure 5.7.: Hamiltonian violation during the evolution of model A0. The first three panels
from the top-left to the bottom-left show the time evolution of the 2-norm
of the Hamiltonian constraint computed on the finest grid level. Differ-
ent lines refer to different resolutions h = 0.295, 0.443, 0.591, 0.738 km.
Different panels refer to the three different reconstructions considered:
MC2, PPM and CENO. The last panel shows the profile in x-direction
of the Hamiltonian constraint at time t ∼ 10ms for the maximum reso-
lution and three reconstructions. Note the different scales of the plots.

constraint at late time, t ∼ 10ms, for simulations employing the highest resolution

and different reconstruction schemes. The Hamiltonian violation accumulates in time

around the region of the matter. Comparing CENO with PPM and MC2 we see that

CENO has a better overall performance.

We observe a difference in using mesh refinement or unigrid. In both cases the star

is covered by one box with the same resolution, the only difference is that two more

boxes are added outside to set the boundary of the computational domain further out

(rboundary ∼ 94 km for AMR and rboundary ∼ 23 km for unigrid). Note that the surface

of the star is approximately at rTOV ∼ 12.5 km. We observe that for unigrid the norms

of the Hamiltonian constraint show an anti-convergence behavior at early times. This



56 5. Code validation

feature is due to the initial non-convergent constraint violation at the boundary which

at early times dominates the violation in the interior. The use of mesh refinement is

thus very important to minimize the boundary effect.

These tests should convince us to prefer the CENO reconstruction. I stress that if a

different setting is used, e.g. a different method to solve Einstein equations, a differ-

ent numerical flux, much higher resolutions, etc., the whole picture may significantly

change.

The constraint accumulation and boundary condition effects discussed here are re-

lated to the use of BSSNOK and Sommerfeld boundary condition (see 4.6). They have

been pointed out in [39, 152] where the Z4c formulation was proposed as an alternative

solution, however, both references are restricted to spherical symmetry.

Furthermore tests for a rotating neutron star were performed. The results are com-

parable with the literature (see e.g. [73, 23, 66]). However, due to the limitation of the

work the results are not included.

5.3. Boosted TOV

Here we discuss the evolution of model A0 boosted in the x-direction at a speed of

v = 0.5 corresponding to a Lorentz factor of W = 1.16. The setup of the initial

data is described in chapter 3. The test is interesting because it gives the possibility

to perform several tests within a simple scenario, namely: (i) fully dynamical and

nonlinear evolutions, (ii) the performances of the moving boxes with matter and (iii)

different gauge conditions. We use five refinement levels, all except the coarsest are

moving and the finest box covers the star entirely. The different resolutions employed

for the finest box are h = 0.306, 0.408, 0.588 km.

The solution of the evolution problem depends on the gauge conditions employed. If

one analytically advects the lapse and shift over the grid, the full solution is just the

shifted analytic initial data in space. However, when the conditions in equation (2.13)

are applied the solution is not analytic. In order to investigate the numerical solution

obtained under the 1+log and Gamma-driver condition we consider evolutions with

different values of the parameter η. A similar investigation has been carried out for

BNS. Figure 5.8 summarises my findings. It shows the profiles of the rest-mass density

in x-direction at the final time of t = 1.72ms from evolutions using different values of
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Figure 5.8.: Profile of rest-mass density for the evolved boosted model A0. The picture
shows the rest-mass density profile normalized to the initial value at
time t = 1.72 ms for evolutions corresponding to different values of the
η parameter in the Gamma-driver shift condition (dashed colored lines).
The profiles are shifted back to the the initial position of the star, the
initial data is also plotted (black solid line).

η. All the profiles are shifted back to the initial position of the star by aligning the

maximum of the density, the initial profile is also plotted. As apparent from the figure,

the choice η = 0 corresponds to be closest to the analytic solution. For higher values

the star profile is progressively more distorted in the direction of motion. Here this

does not tell that the solution is wrong. This is only a coordinate effect which will

have an effect on the effective resolution of the simulation.

We finally comment about convergence. Figure 5.9 shows the point-wise self con-

vergence of the spatial profile of ρ at t = 3.95ms for η = 0. We show the differences

between the rest-mass density profile computed at different resolutions. The differ-

ence between the medium and the high resolution is scaled by a convergence factor for

1st(dotted line) and 2nd(dashed line) order convergence. Point-wise convergence is lost

at early times and improves with time. However, the magnitude of the errors scales
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Figure 5.9.: Self-convergence test of the evolution of boosted star. The pictures shows
the differences between the profiles of the rest-mass density at t =
3.95ms evolved with different resolutions. The labels of the solid
lines “low”, “med” and “hig” in the legend correspond to resolutions
h = 0.306, 0.408, 0.588 km. The difference between medium and high
resolution is scaled for 1st(dotted line) and 2nd(dashed line) order con-
vergence. The gamma-driver condition employs η = 0.

at about 2ndorder thus indicating convergence in L1 norm as expected. The same test

was done in [72]. In our case the evolution time is a factor about 10000 longer and

higher resolution is employed.



6. Collapsing TOV stars with

puncture gauge

Simulated binary neutron star systems will arrive at a point where both stars touch and

merge to a single star. The final star will eventually become too massive to be stable

and therefore it is forced to collapse. Given conservation of momentum quasi-circular

binary inspirals will finally create a rapid rotating neutron star. A fraction of these

objects are not stable and will collapse to a black hole with roughly the same amount

of mass and angular momentum.

From the numerical point of view a single neutron star and a black hole are totally

different. The single star has matter placed on a regular spacetime whereas the black

hole has a physical singularity without any matter. Here the transition from a star to a

black hole has to handle (i) collapsing matter fields onto a single point in combination

with a dramatic increase of the values at this location (ii) a physical singularity is

formed in the metric fields and (iii) the matter inside the horizon has to vanish from

the spacetime and into the singularity.

In this chapter we investigate the simplified problem of a unstable non-rotating neu-

tron star forced to collapse to a Schwarzschild black hole by radial perturbation. We

discuss results from [MTH1], adapted to the present context.

6.1. Collapsing spacetime

The collapse of an unstable TOV is triggered by introducing a radial perturbation of

the velocity field with an amplitude larger than the truncation errors. Since we are only

interested in testing the ability of the code to handle the formation of singularities, to

keep the set up simple we do not solve the constraints after imposing the perturbation.

From our experience this procedure does not introduce relevant unphysical effects,
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Figure 6.1.: Radial profiles of the rest-mass density ρ (top panel), of the lapse function α
(middle panel), and of the shift β ≡ βr (bottom panel) at some repre-
sentative times of the evolution. Note that at tAH ∼ 0.23ms ∼ 35M
an apparent horizon is first found and that at t = 1.47ms = 207M
the amount of matter on the final time slice is essentially that in the
atmosphere.

while it is clearly an inconsistent way to solve Einstein equations (see also discussions

in [24, 25, 12]). Furthermore the results obtained are in close qualitative agreement

with [71, 62] where the constraints were solved. To investigate the transition to a

black hole we need high accuracy around the center. According to [55] we should use

a resolution of at least h = 1/16M = 0.09 km to obtain long time stable simulations of

the final BH. Therefore we employ eight refinement levels with maximum resolutions

of h = 0.0369, 0.0461, 0.0738 km at the finest level. The outer boundary is at around

200 km. As initial data we use the unstable star model U0.

The collapse happens in the first 0.3ms of the simulation. The matter falls towards

the symmetry center while the metric varies rapidly adapting itself to the matter distri-
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bution. At about tAH ∼ 0.23ms we find an apparent horizon with an initial coordinate

radius of rAH(tAH) . 1.4 km. The larger part of the matter is outside the horizon

but is rapidly accreted. Figure ?? shows the evolution of the rest-mass density (top

panel), the shift in radial direction (central panel) and the lapse (bottom panel) for

different times. The central density increases of a factor two at tAH while the lapse

collapses towards zero. After tAH the gauge conditions play the main role in handling

the singularity. The final stage is similar to a single black hole, all matter is accreted

from the grid.

6.2. Comparison with the puncture solution

Here the question occurs whether the final black hole is the same solution as the end

state of an evolved single puncture using the same slicing condition (2.13). Figure 6.2

shows the shape of four different metric components for the collapse of a single TOV

star and an evolved puncture. As puncture initial data we use [47] with lapse equal to

one and vanishing shift. The evolution of the puncture is described in [87, 85]. Here

we plot the trace of the extrinsic curvature (K), the conformal factor (χ), the lapse (α)

and the shift (β) in radial direction at the time t = 1.47ms = 207M. For convenience

we show dimentionless quantities since we want to compare the final states of both

simulations which have a different mass. The time is well after the first occurrence of

an apparent horizon (tAH ∼ 0.23ms ∼ 35M). Both solutions have become essentially

stationary. Both spacetimes are very close to each other and can not be distinguished

close to the center by visual inspection. Going to later times both curves will come

even closer. In [MTH1] we did the same comparison with a 1D code [39] code. The

results are similar except that the truncation errors are smaller since we used higher

accuracy.

In order to have a more quantitative comparison we computed the behavior of the

fields in the collapsing spacetime close to the origin and obtained fitting functions for
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Figure 6.2.: Radial profiles of representative field variables at time t = 207M of the punc-
ture and the collapsing star. From top left to bottom right: trace of ex-
trinsic curvature (K), conformal factor (χ), lapse (α) and shift (β ≡ βr).

the stationary solution for r ≪ 1:

KM ∼ 0.30− 0.37
( r

M

)
, (6.1)

χ ∼ 1.22
( r

M

)2.0
, (6.2)

α ∼ 0.54
( r

M

)1.09
. (6.3)

The fits for (6.2) and (6.3) contain the exponent of r as a fitting parameter, but not for

(6.1). The result agrees well with the corresponding expressions in [51]. In particular,

the non-integer exponent for the lapse in (6.3) is very close to the analytic expression

for the trumpet solution in isotropic coordinates, which has the exponent 1.091 [51].

This result is non obvious since the numerical coordinates are not isotropic. It seems

that the evolution and therefore the gauge condition (2.13) maintain the isotropy from
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the initial data.

This result is confirmed when considered also in a coordinate-independent manner.

Following the prescription suggested in [87], we analyze the dependence of the lapse

versus the extrinsic curvature and report in Fig. 6.3 the differences at different times.

More specifically, we show with solid lines the relative difference ∆α/α ≡ αpunc/αcoll−1,
between the lapse of the puncture evolution, αpunc, and that of the collapsing star, αcoll,

either when the apparent horizon has just formed (t ∼ 35M) or when the solutions

have reached approximately a stationary stage (t ∼ 200M).
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Figure 6.3.: Relative difference ∆α/α ≡ αpunc/αcoll − 1, between the lapse of the puncture
evolution, αpunc, and that of the collapsing star, αcoll, as a function of
the trace of the extrinsic curvature, K, at different coordinate times.
For a fair comparison, data at the same values of K are found by inter-
polation. The dashed lines refer to the relative differences between the
analytic result and the puncture evolution. By construction, for early
times this difference is much smaller than the difference between punc-
ture and matter simulations.

It is clear that the relative difference decreases in time and, at time t = 207M,

it is below 1% except for large K. This is the part close to the puncture. Here

the errors are large due to the non smooth behavior at the center. By performing
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convergence tests we have also determined that the numerical errors are at the same

level as the 1% disagreement. Note that after t = 100M the truncation error does not

improve further. The truncation does improve by going to higher resolutions (see the

1D case [MTH1]). Also reported in Fig. 6.3 with dashed lines is the relative difference

between the puncture data and the analytic solution for the trumpet solution [51, 85]

K = βα′(R)/2 (6.4)

=

√
2/R(α) + α2 − 1 (4R(α)α2 − 4R(α) + 6)

2R(α) (R(α)α2 − 2R(α)α−R(α) + 2)
,

where R is the Schwarzschild radius, α′ is the derivative of α with respect to R and

we set M = 1. Here the relative error at the beginning is much smaller. It becomes

comparable with the one computed for the collapsing spacetime at later times.

Looking at the collapsing spacetime the behaviour of the extrinsic curvature around

the origin for t = 207M gives

KM ∼ 0.30− 0.92α . (6.5)

For the analytic case one has to Taylor expand equation (6.4) around the center which

is equivalent to α = 0. This is possible by using the implicit function R(α) in [51] and

one gets

K(α) = 0.300937− 0.930916α +O
(
α2
)
, (6.6)

which closely agrees with equation (6.5) and tells us that the end states of both nu-

merical spacetimes are close to the analytic solution of a trumpet.

Finally we compare directly 1D (spherical symmetric) and 3D results. Fig. 6.4

presents α versus K at t ∼ 200M for the puncture and the collapse. The top panel

shows that all curves are on top of each other. The lower panel shows the difference

between the 1D and the 3D results. The relative error is below 1% and has the largest

value at the puncture (small values of α) which is caused by the limited resolution.

For larger radii (larger values of α) the difference drops to 10−4. This shows that both

versions give similar results.
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Figure 6.4.: Slicing from 1D and 3D simulations. Top panel: the lapse (α) is plotted versus
the trace of the extrinsic curvature K at time t = 200M for the col-
lapse in 1D (red solid line) and the puncture evolution in 1D (blue solid
line), and the collapse in 3D (red dashed line) and puncture evolution in
3D (blue dashed line) The bottom panel shows the relative differences.
Note that 1D results, computed on a finer grid, are interpolated for the
comparison.

6.3. Behaviour of the matter inside the horizon

The results in the previous section show that the final stage of the collapse and puncture

coincides. Looking at the foliation of the spacetime it is geometrically clear that matter

will always stay on the slice. However, following the collapse numerically shows that

the matter does vanish at a finite time. In order to find out in which way the matter

disappears from the grid, we investigated a large range of resolutions in 1D and 3D

and experimented with several reconstruction schemes. In these tests only the time

of the fluid disappearance changed slightly. Since I use HRSC schemes my numerical

methods should be good enough to handle extremely large gradients when the matter

piles up. Therefore this cannot explain the matter disappearance.

In order to test whether slice stretching of the spatial coordinates can have an effect
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Figure 6.5.: Evolution of total rest-mass, M0(t), (red lines) and of the irreducible mass,
Mirr(t), (blue lines) normalized respectively to the initial value and to
the ADM mass. The top panel refers to a simulation with gauge speed
µs = 1, and the bottom panel to evolutions with gauge speed µs = α2.

in pushing the matter out of the numerical domain I investigated using Gamma-driver

conditions. In case of puncture simulations it is well known that grid points are pushed

out of the black hole (see e.g. [85]). I performed two different runs with the same slicing

condition (2.13) but different shift condition (2.14): once with µS = 1 and once with

µS = α2 which is similar to βi = 0. Here the foliation is not changed since the “1+log”

condition I used is a pure slicing condition [5] and is not effected by the radial gauge

for the shift. Figure 6.5 shows the total rest-mass and the normalized irreducible mass

determined by the apparent horizon [81, 8]. The total rest mass is computed by the

conserved variable D integrated over the whole numerical domain. Clearly, while the

behavior of the irreducible mass is independent of the choice for µS, that of the rest-

mass is not. When using the µS = α2 radial gauge, in fact, the matter remains on

the numerical grid, so that the rest-mass is conserved well beyond the formation of the

apparent horizon. The cause of this difference must therefore to be attributed to the

large stretching of the spatial coordinates with µS = 1.
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Figure 6.6.: Spacetime diagram of the collapsing star. Data are from 1D simulations with
gauge speed µS = 1 (left panel) and µS = α2 (right panel). The horizon-
tal blue lines are lines of constant coordinate time. The thick red line
denotes the apparent horizon. The vertical blue lines are lines of con-
stant Schwarzschild radius R which values are on top of the lines. The
shaded green area bounded by the thick green lines shows the region of
the matter.

Finally, Fig. 6.6 shows the spacetime diagrams for both simulation. In order to

compute lines of constant Schwarzschild radius we need high resolution all over the

numerical domain. Therefore we use simulations in 1D to gain good results. The left

panel of Fig. 6.6 is the simulation for µS = 1. The shaded green area corresponds

to the region of the spacetime covered by matter, vertical lines are line of constant

Schwarzschild radius while horizontal lines are lines of constant coordinate time. The

thick red line emerging after t ∼ 50M is the apparent horizon. Fig. 6.6 can be compared

with other numerically-generated diagrams of collapsing spacetimes obtained either in

other gauges [159], or with excision techniques [24], or for puncture evolutions of single

black holes [85]. The figure clearly shows how the matter is “squeezed” from the

numerical grid when µS = 1, while it remains on the grid when µS = α2. In both cases

an apparent horizon is found. The comparison of the lines of constant Schwarzschild

radius in the two panels highlights the stretching of the spatial coordinate discussed
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before.



7. Binary NS

In this chapter binary neutron star systems are investigated. I evolve initial data gener-

ated for quasi-equilibrium configurations of irrotational equal-mass binaries in circular

orbits. The equations to construct these initial-data are discussed in section 3.3. I dis-

cuss results from [MTH2], adapted to the present context. In particular I investigate

the dynamics of the neutron stars for different equation of states and different damping

parameters. Furthermore, I investigate the extraction of gravitational waves and the

influence of the EoS on the waveform.

7.1. Numerical setup

The properties of the initial configuration are summarized in Tab 7.1 and were first

computed in [80, 169]. The binary has ADM mass M = 2.998, angular momentum

J = 8.836 and proper separation d ≃ 36.582 (54 km), thus the compactness of the

system is M/d ≃ 0.08. The coordinate separation is 30.457 (45 km). The rest-mass

and ADM mass of each star in isolation (d → ∞, spherical configuration with same

central rest-mass density) are Mb = 1.625 and M⋆ = 1.456, respectively. Note the

notation for the rest-mass of the star in isolation, Mb, and for the rest-mass of the

binary, M0. The compactness of each star in isolation is M⋆/R = 0.14.

Table 7.1.: Parameters of the initial binary configuration. Columns: ADM mass M , rest
mass Mb and ADM mass M⋆ of each star in isolation, angular momentum
J scaled by the square of the ADM mass, gravitational wave frequency
ω0, proper separation d, central density of each star ρc. The parameters
in the polytropic EoS are Γ = 2 and K = 123.6489.

M Mb M⋆ J/M2 ω0 [Hz] d [km] ρc
2.998 1.625 1.456 0.445 589 54.0 9.569

69
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Table 7.2.: Grid configurations used in BNS simulations. Columns: name of the grid config-
uration, number of grid levels, number of levels containing moving boxes,
resolution of finest level (dimensionless and km), number of points in finest
box, resolution of coarsest level (dimensionless and km), number of points
in coarsest box.

name RL MRL h5 h5 [km] N5 h0 h0 [km] N0 boundary [km]
L 6 4 0.500 0.74 40 16.0 23.6 80 945
M 6 4 0.400 0.59 50 12.8 18.9 100 945
H0 6 4 0.313 0.46 64 10.0 14.8 128 945
H1 6 4 0.250 0.37 80 8.0 11.8 120 709
H2 6 4 0.200 0.29 100 6.4 9.4 210 982
H3 6 4 0.156 0.23 128 5.0 7.4 260 960

The grid configuration used for the evolution simulations are presented in Tab. 7.2.

Simulations with configurations L and M can be run on a small machines. They need

between 8 and 16 processors with 1GB of memory per core. While they can be carried

out without any problem, thus proving the flexibility of the code, the results are too

inaccurate to be considered in a sensible analysis. Here we need more resolution.

Therefore we only use the configurations H0 to H3 to measure convergence. For each

grid configuration the finest refinement level covers each star entirely. The H0 runs need

64 points in one direction, H3 runs use 128. In compare to BBH simulations, e.g. [52,

95, 84], the grid structure is different from BNS simulations. For BBH simulations

roughly half the number of points per direction is used together with more grid levels

(typically 9-11 levels). Higher resolutions are reached in the finest grid level in order to

resolve the punctures, while comparable (or less) resolutions are used on level 5, where

in our grid setup the neutron star is fully resolved. Therefore the horizon of the final

BH in BBH simulations is resolved typically on level 6 or 7 with a resolution about

two to four times better than in BNS simulations. One important consequence is that

the final black hole is poorly resolved. All simulations show that the resolution is high

enough to obtain a stable simulation but the precision of the apparent horizon finder

(see [82, 8, 52] for details), and the extracted information, e.g. horizon mass and spin,

is affected.

The performance of the code for each grid configuration is reported in Tab. 7.3. The

BNS runs described here have an average speed of ∼ 3 M/hr (H3) on 128 processors in

the LRZ cluster (Munich) and ∼ 9 M/hr (H0) on 32 processors. In physical units 10 M
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Table 7.3.: Performances of BNS runs. Columns: name of the grid configuration, number
of processor, CPU memory, total runtime, average speed. Runs last to
t = 5000 (1666 M) on LRZ Munich. The numbers include LORENE
initial data interpolation and checkpointing.

Name nproc mem [GB] time [CPU hr] speed [M/hr]
H0 32 90 192 8.7
H1 32 96 268 6.2
H2 128 120 254 6.5
H3 128 165 480 3.5

of the configuration selected corresponds to ∼ 0.05 ms of simulation. All simulations do

not have the optimal grid configuration. They were build in a generic way to preserve

the box configuration while changing resolution. With some fine tuning we found

good scaling up to 512 processors by using larger grid setups and higher resolutions.

Production runs with resolutions of h5 ∼ 0.12 − 0.10 on 256-512 processors are thus

definitely feasible in reasonable times with our code. Since computer time is restricted

only a few long time simulations could be performed.

My grid settings are similar to those of other codes [27, 77]. The highest resolution

employed here is 30 % lower than the maximum resolution used to date on BNS simu-

lations employing mesh-refined-Cartesian-grid-based codes [18, 77] and are comparable

to [97].

If not explicitly stated the data discussed refer to simulations employing RK3 time

stepping, CFL factor of 0.25 and CENO reconstruction.

7.2. Dynamics for cold EoS

In this part I discuss the evolution of poly EoS, i.e. isentropic evolutions. The ideal

gas Γ = 2 (hot EoS) is discussed in the next section.I tested my implementation of

the code for this EoS since the results are easier to compare with other groups. Here

I performed simulations for all configurations reported in Tab 7.3 which gives a wide

range of resolutions. I found that all grid configurations give stable simulations. All

simulations showed a convergent behavior. However, I found the two lower resolutions

L and M had too low resolution. Both show a merger which is too early. They have

between one and two orbits. On the other hand the higher resolution had more than
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Figure 7.1.: Dynamics of the cold evolution. The picture shows contour plots in the x− y
plane of the rest-mass density ρ and the velocity vi at different times.
Data refer to run H3.
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three orbits. Therefore only the runs H0 to H3 seem to qualitatively capture the

correct physics according to [21, 77]. The main quantitative differences are found in

the post-merger phase, in particular in the collapse time of the final neutron star. This

is not very surprising since soon after the two stars come in contact convergence of

this kind of simulation drops to first order, e.g. [22]. The post-merger phase is thus

very dependent on the resolution and grid settings employed as well as on the specific

HRSC scheme employed. Note that my highest resolution of h5 = 0.23 km of H3 is

about 30% below the resolution reported in [22]. Therefore I do not expect the same

results.

Fig. 7.1 shows contour plots in the x − y (orbital) plane of the rest-mass density

and the velocity field at different times of the cold evolution. Data refer to run H3.

The binary performs about three orbits before the merger. The merger time is not an

obvious measurement since the surface of the star is determined by a certain threshold

on the density and the first touch can happen long before the final neutron star is

built. The GW amplitude seems to be a better indication. I define the merger time tm

as the peak of the (2,2) mode of the GW amplitude |h22|, where h ≡ h+ − ı h× (see

section 7.7). From the H3 run we have tm = 1765 (8.69 ms) while the contact time is

about 1290 (6.3 ms). After the merger we observe a bar-shaped differentially rotating

star with rest-mass ∼ 2Mb: the hyper massive neutron star (HMNS). A HNMS is

a differentially rotating NS. The mass is larger than a the maximal allowed mass of

a stable uniformly rotating star. Note in Fig. 7.1 the initial rotational symmetry of

the HMNS. It is obtained without imposing π-symmetry in the grid till short before

the collapse to a black hole. Afterwards the symmetry is broken, especially inside

the disk. The large non-axisymmetric deformation of the HMNS causes a strong GW

emission [161, 20] which carries away matter angular momentum. As a result the HMNS

becomes more compact and finally collapses at about tAH ∼ 2118 (10.43 ms) when an

apparent horizon is first formed. A fraction of the matter (∼ 1..2%) remains outside

the horizon and forms an accretion disk. For late times the disk restores approximately

the rotational symmetry. The mass and spin of the BH estimated from the apparent

horizon are rather inaccurate due to a lack of resolution mentioned before. They first

rapidly grow in time reaching local maximum, then the BH mass is observed to increase

(see Fig. 7.11) while the angular momentum decreases. We estimate at the end of the

evolution MBH ∼ 2.77 and aBH ≡ JBH/M
2
BH ∼ 0.72. They have discrepancies of about

7% and 25% from the expected value once the gravitational radiation emission has been
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taken into account. Since the apparent horizon is defined locally, the gauge choice plays

an important role by determining the coordinate size of the black hole. This has an

additional effect on the accuracy of the apparent horizon finder. In comparison to the

collapse discussed in Sec. 6 we do not have refinement inside the star. Therefore the

finder has only a few points if the coordinate sphere is small.

The mesh refinement implementation is such that as soon as the two moving boxes

come in contact (which happens before the contact of the two stars) a larger box

with the same resolution is constructed. Before the two stars come to touch however

it can happen that the boxes split back to the initial ones, evolve individually and

merge again. The reason is that the evolution of a very large box is computationally

not affordable in terms of memory and time. This behavior is well tested in BBH

simulations [52]. However, it could lead to a lack of accuracy at the center of the grid

but in practice it has a negligible impact since it happens when the main part of the

matter is still distributed away from the center.
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Figure 7.2.: Orbital motion of the cold configuration. The figure shows the evolution of the
coordinate (top-left) and proper (bottom-left) separation of the binary
and the star-tracks (right) of the two stars for different grid settings.

Fig. 7.2 reports the coordinate movement of the star binaries with different resolu-

tions. The right panel shows the star tracks which are defined by the minimum of the

lapse for resolutions H0,H1,H2 and H3. Tracking the maximum of the density seems to
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be a more meaningful quantity to describe the center of a star. However, this quantity

is badly behaved during the transition from a star to a black hole, and I found that the

maximum of the density and the minimum of the lapse are always very close before the

transition. Due to the gauge condition used the lapse function is everywhere smooth

and ensures a suitable tracking. The left panel instead shows for the same resolutions

the coordinate (top) and proper (bottom) spatial separation. As is evident from the

figure, the orbital motion has some eccentricity due to the initial data (visible in the

proper separation plot) and a coordinate eccentricity (visible in the star-tracks and as

oscillations in the coordinate separation) due to the evolution itself. The eccentricity

of the initial data is caused by the conformally-flat approximation; the effect becomes

bigger at smaller separation. The contribution to the coordinate eccentricity is mainly

due to the shift condition. As shown in Fig. 7.2 the use of a lower resolution results in

an earlier merger. However all four resolutions enter “convergent regime” in the sense

that we are able to estimate convergence.
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Figure 7.3.: Evolution of the central rest-mass density in BNS simulations for different
resolutions.

In Fig. 7.3 the evolution of the maximum density for different resolutions is reported.
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After the merger the HMNS is oscillating about two quasi-radial oscillations and finally

collapses to a black hole because the HMNS becomes too compact. Here the highest

resolution shows the tendency to oscillate longer. After the collapse the matter of the

disk accretes onto the BH.
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Figure 7.4.: Hamiltonian violation for cold evolution. The figure shows the evolution of
the L2 norm of the Hamiltonian constraint for different resolutions. The
lower panel shows the difference during the inspiral where convergence
is expected. The dotted lines are multiplied by a factor for 2ndorder
convergence.

Concerning the constraints, the biggest violation is found in the Hamiltonian. The

momentum constraint is generically one order of magnitude smaller and becomes com-

parable to the Hamiltonian constraint only after the formation of the “puncture”.

Fig. 7.4 reports the L2 norm of the Hamilton constraint. As one can see the norm
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improves with resolution. The lower panel shows the convergence. The curves are mul-

tiplied by the convergence factor corresponding to the expected 2ndorder convergence.

For the first 7ms the curves agree very well. Most of the violation is observed in the

region covered by matter, similar to what was discussed for the test involving a single

star spacetime. After the two stars come in contact the violation rapidly increases and

the convergence rate drops down. At the time when an apparent horizon first forms the

constraint violation shows a peak, afterwards it stays approximately constant. This

is related to the final BH where the matter influence is small in comparison to the

puncture.
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Figure 7.5.: Conservation of rest-mass in BNS simulations. The figure shows the evolution
of the rest-mass normalized to the initial value for cold evolutions with
different resolutions.

The conservation of the rest-mass is excellent until the BH forms with a largest

deviation of ∆M0/M0 ∼ 2 % in the H0 runs and lower than ∆M0/M0 ∼ 0.5 % in

the H3 runs. This behavior is illustrated in Fig. 7.5 which displays the evolution of

∆M0/M0. One can also see the matter accretion after the collapse. From the figure it

is clear that the rest-mass of the disk increases with resolution. In our case we have an
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upper limit of about Md . 2× 10−2M0 for H3 since we compute it by

M0 =

∫
q0 d3x =

∫ √
γD d3x (7.1)

on the whole grid, including the interior of the BH. An final estimate for the disk using

the data here would be very vague since the resolution is not high enough.

7.3. Effect of different reconstruction methods
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Figure 7.6.: Dependence of the dynamics on the use of different reconstruction schemes.
The figure shows the maximum of the rest-mass density obtained from
cold evolutions with different reconstruction methods. Reference vertical
line corresponding to max ρ of run H3.

As pointed out in Sec. 5.2 the different reconstruction methods have a different effect

on the truncation error. Therefore the result can be changed significantly. Ref. [76]

already pointed out that the use of very dissipative limiters such as MM2 can lead

to very different waveforms with respect to (formally) more accurate methods, while

maintaining the same nominal order of convergence.
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We tested our binary system at resolution H1 with the following reconstructions:

MM2, MC2, PPM, CENO and CENO based on the MM2 sub-stencil (instead of the

standard MC2 [186]). The resolution we used was far away from optimal therefore we

achieved dramatic differences in the evolutions. In Fig. 7.6 we show the evolution of

the maximum rest-mass density for the different methods. The vertical line shows the

time of the maximum in the highest resolution run H3. As one can see the merger

time are very different. As partially expected, the most diffusive schemes lead to

an earlier merger and collapse. Formally higher order reconstruction are closer to

the result obtained by using the highest resolution H3. The simulations with MM2

reconstruction show the shortest inspiral and no HMNS is formed. The simulations

has an early prompt collapse. On the other hand PPM and MC2 show a later collapse

and a HNMS is formed. Here CENO seems to be the best choice due to the latest

merger time. Introducing a more dissipative component in the CENO limiter, i.e. the

MM2 linear sub-stencil, the global results are significantly affected: an earlier prompt

collapse is observed. The specific reason is obviously the fact that the linear sub-

stencil MM2 is often selected by the limiter. Note that we did not obtain a guarantee

for long-term-stability of an equilibrium spherical star. This was also mentioned in

1D [39].

Clearly the big differences shown here become progressively smaller when higher

resolutions are considered. However, due to the slow (2nd) order convergence of HRSC,

we expect they play a major role also at the higher resolutions employed for standard

production runs. Recently in [MTH4] we performed higher resolution runs for larger

separation and therefore longer simulations. The CENO scheme is working well and

shows the expected convergence behavior, which means we are inside the convergent

regime. In comparison to the presented runs, these runs only approach the accuracy

which is necessary for astrophysical relevant simulations (see the conclusion in [MTH4]).

7.4. Comparison with hot EoS

In hydrodynamic simulations physics inside the star is describe by the EoS. Till now

we considered only a cold (polytropic) EoS. As discussed earlier this is a good ap-

proximation for the (late) inspiral before the stars touch. Subsequently thermal effects

and micro-physics do play a important role during the merger and the HMNS phase.
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Figure 7.7.: Dynamics of the hot evolution. The picture is similar to Fig. 7.1. Data refer
to run H1.
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Therefore the cold EoS can not be used to describe the system after the merger and

one has consider thermal effects by using a more realistic EoS which is denoted as a

hot EoS. In my case I use the simplest analytic model namely an ideal gas (see chap-

ter 2.3.2). I performed the same evolution as in the previous section. Fig. 7.7 shows

contour plots in the x− y (orbital) plane of the rest-mass density and the velocity field

at different times. Data refer to the H1 resolution. The inspiral motion of the two

binaries present small differences due to spurious numerical effects. Small errors, trig-

gered by the artificial atmosphere treatment, propagate as simulation time advances

and artificially heat the stars especially at their surface. The effects of these errors on

the GWs are quantified in the following section. When the two stars touch physical

effects dominate instead and the evolutions significantly differ.
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Figure 7.8.: Shock formation in hot evolution. The figure shows the quantity K =
p/ρΓ normalized by its initial value on the orbital plane at time t =
1275 (6.256 ms) in a log10 scale. Data refer to run H1.

Fig. 7.8 shows the quantity K = p/ρΓ (normalized by its initial value) as a contour

plot in the x−y plane. HereK is a simple measure for the entropy. The variation of this

quantity indicates the presence of shocks. For the cold EoS this quantity is a constant
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by construction. To determine whether there are shocks one has to use some “shock

detector” [188] which I did not use in the following1. During the evolution the included

thermal effects result in shock formations when the two stars are touching each other.

The quantity K is increased by around 5 order of magnitudes. The thermal energy of

the fluid rapidly increases reaching peaks of ǫhot ∼ 0.025− 0.03. This corresponds to a

temperature of T ∼ 2×1011 K. The average temperature is of the order T ∼ 6×1010 K.

The peak temperature goes up to T ∼ 2 × 1012 K. These high values are appearing

at the surface and could be an artifact of the atmosphere treatment. However, in the

bulk the values are only 1 to 2 magnitudes lower, which results in temperatures around

T ∼ ×1010 K.
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Figure 7.9.: Comparison of hot and cold evolution. The top panel shows the maximum of
the normalized rest-mass density, the lower panel the rest-mass normal-
ized to the initial value. Both runs refer to resolution H1.

Due to the additional pressure support provided by thermal effects the HMNS in

the evolution collapses later. As shown in Fig. 7.9 the merger takes place around

1A comparison showed similar results in the central region of Fig. 7.8. However, most shocks are
detected at the surface of the star which can be explained by the usage of artificial atmosphere.
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∼ 9 ms after the merger in the cold case. This means the HNMS is more stable and

during this time interval several quasi-radial oscillations at a frequency νF ∼ 473 Hz

are present. There is a strong GW emission which is discussed in the next section. The

central density shows again a drift to larger values indicating that the star is becoming

progressively more compact. Again the rest-mass conservation is quite as good as in

the cold case. An estimate of the disk-mass is about 1% of the initial mass.

Comparing both evolutions for cold and hot EoS with the literature one obtains

slightly different results. In [21] the evolution of cold EoS leads to a prompt collapse

without the formation of a HMNS, while the evolution of hot EoS leads to a collapse

at about t ∼ 14 ms (simulations employ the PPM implementation described in [91]

and the Marquina numerical flux). In [77], where a different grid setting is employed

(but the same code with the HLL numerical flux), the evolution of the hot EoS leads

to a collapse at about t ∼ 16 − 17 ms. In both works [21, 77] π-symmetry was used.

In our case we implied plane symmetry, only data with z > 0 is evolved. Therefore

we see the break of the symmetry in the disk after the merger. It is expected that

the simulation leads to a more persistent HMNS due to non-linear mode couplings (in

particular m = 1modes) [20]. It is therefore unlikely that this symmetry is the reason

for the above mentioned differences. Applying π-symmetry in my simulations gave in

principle similar results for the evolution of the maximal density.

7.5. Evolution with different damping parameters

Looking at the gauge equations (2.13) and (2.14) the damping parameter η in the

Gamma-driver shift condition was well investigated for unequal mass BBH simulations

[127, 111, 110, 112, 156, 128, 10]. In case of equal mass BBHs it is typically set to η =

1/M or η = 2/M to obtain properly resolved black holes on the grid [52]. Here M is the

sum of both ADMmasses. In case of neutron star simulations this is rarely investigated.

For BNSs it has been suggested [27] that results are not significantly affected by this

choice. Different values are adopted in the literature, e.g. η = 3/Mb [184, 27], η = 1 [21],

without a detailed analysis. Here we investigate in the influence of the η parameter on

the dynamics of the inspiral in case of binary neutron star systems.

We consider the same setup as before with grid configuration H1 and values η =

0, 0.1, 0.3, 0.6, 0.9, 1.8, i.e. η ≃ 0/M, 0.3/M, 0.9/M, 1.8/M 2.7/M, 5.4/M in dimen-
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Figure 7.10.: Effect on orbital dynamics of different choices of the parameter η in the
Gamma-driver shift condition. The top panel shows the star-track
of one star. The central panel shows the evolution of the coordinate
separation while the bottom panel shows the evolution of the proper
separation of the binary. Each line refers to a different cold evolution
with a different η. Data refer to H1 runs.
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sionless units. Fig. 7.10 shows the star-track (top panel), the evolution of coordinate

separation (central panel), and of the proper separation (bottom panel) from simula-

tions with different values of η. On can see a clear correlation between an oscillation

in the coordinate distance and the η parameter. This coordinate eccentricity is largely

increased for higher values of η. This non-circular effect is an artifact from the con-

formally flat initial data. Additionally the merger time is systematic shifted to earlier

times which comes from the effective coordinate resolution. When considering the grav-

itational wave emission the coordinate eccentricity does influence the extracted waves

and it manifests itself in a phase difference accumulating during the inspiral. Taking

as a reference the η = 0 case, the difference in the phase φ of rΨ4
22 computed with

η = 0 is of ∆φ = 0.43, 0.90, 2.25, 3.20 rad respectively for η = 0.1, 0.3, 0.6, 0.9 at the

merger time (see next section).
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Figure 7.11.: Effect on the final BH mass and coordinate radius of the parameter η in the
Gamma-driver shift condition. The top panel shows the irreducible
mass of the final BH normalized by the ADM mass of the system as
computed from the apparent horizon finder. The bottom panel shows
the coordinate radius of the apparent horizon. Each line refers to a
different cold evolution with a different η. Data refer to H1 runs.
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The Gamma-driver shift condition tries to prevent slice stretching. Now the η param-

eter effects the amount of the stretching and therefore regulates the effective resolution.

Therefore it will have an effect on the apparent horizon (AH) and the ADM quantities.

Both are computed at a coordinate sphere. Fig. 7.11 shows the irreducible mass, MAH

(normalized to the ADM mass of the system), and the coordinate radius, rAH, of the

apparent horizon. As expected, both the ADM mass and the radius of the apparent

horizon (rAH =
√

AAH/16π) depend on η. The coordinate size of the final BH is larger

for higher values of η. Having this in mind one has to optimize η since we want to

keep the ability of “correctly” resolving the final BH on the finest grid level while re-

ducing the coordinate eccentricity. Increasing η would give us a better resolved BH.

On the other side I did not plot the result for η = 1.8 due to the fact that I obtain

an unacceptable eccentricity (see Fig. 7.10) and the size of the final BH is too large

for the finest refinement box. This results in an inaccuracy of the apparent horizon

finder which cannot use the highest possible resolution. In a similar way the usage of

large η also affects the coordinate radius of the GW extraction spheres; smaller proper

radii corresponds to higher η. Since we extrapolate the values measured at certain

coordinate spheres to infinity this has a small effect compare to other errors (see next

section).

However, looking at Fig. 7.11 and 7.10 I found a value around η = 0.3/M as the best

choice for my simulations. Note that different values of η only changes the coordinates,

not the physical solution. Therefore coordinate independent parameters are in principle

not effected.

7.6. Gravitational waves

Gravitational radiation plays the fundamental role driving the dynamics of the binary

system. GWs encode information from each phase of the evolution from the inspiral

to the collapse and the BH-disk formation. Here we focus on the cold EoS.

The main part of the GW emission is done by the (ℓ,m) = (2, 2) mode of the multi-

polar (s = −2 spin-weighted spherical harmonics) decomposition. The (2, 2) mode

includes about 97 % of the entire radiated energy. Thus, we focus the analysis on this

particular mode. Fig. 7.12 presents the complex waveform rΨ4
22 computed from the

Newton-Penrose scalar Ψ4 for the highest resolution H3. The computation of the Ψ4 is
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Figure 7.12.: Ψ4 waveforms from cold evolution. The figure shows the real part (top panel)
and the imaginary part (bottom panel) of the rΨ4

22 waveform extracted
at r = 294 km from the H3 run. The amplitude is also shown in both
panels.

given in B.2. We multiply by the radius to get rid of 1/r behavior of the amplitude. The

complex waveform is usually decomposed in amplitude and phase, rΨ4
22 = A exp(−ıφ).

Fig. 7.12 shows the real (blue solid line) and the imaginary part (red dashed line) as

well as the amplitude (green solid line). The extraction is done at a sphere with the

radius r = 200 (294 km). We also extracted at different radii, namely 50, 100 and 150.

All values show the expected fall-off behavior. From the plot one clearly identifies the

inspiral phase followed by the emission related to the HMNS oscillations and then the

collapse. At early times (∼ 1ms) the well known initial “junk” radiation can be seen.

The Ψ4 waveform is the second derivative of the metric waveform h ≡ h+ − ı h×.

h represents the actual GW degrees of freedom. Since we compute Ψ4 during the

simulation we have to integrate twice by

hℓm =

∫ t

−∞

∫ t′

−∞

Ψ4
ℓm dt′′ dt′ , (7.2)
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to obtain h multi-poles from those of Ψ4. This integration requires some attention.

In [138, 42, 28, 64, 17] h is computed via a direct (time domain) integration on the

simulated time domain. In all cases the integration is affected by a polynomial drift,

which is corrected by fitting, called corrected time domain integration (CTI). Ana-

lytically one expects a linear drift due to the two integration constants in Eq. (7.2).

Anyhow the observed drift has a higher polynomial order. It originates from the in-

tegration of high-frequency noise in the data and has a stochastic nature [143]; they

propose a better procedure by fixed-frequency integration (FFI). It is based on a spec-

tral integration in the Fourier basis. To prevent spectral leakage a high-pass frequency

filter is employed by simply cutting off frequencies below a certain threshold.
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Figure 7.13.: Gravitational wave amplitude |r h22| from cold evolution. The figure shows
the amplitude computed with the FFI ν0 = 0.002 (red solid line) and
ν0 = 0.00035 (blue dashed line) and with the CTI where a cubic (green
solid line) and linear polynomial (yellow dashed line) correction is used.

We tried both integration procedures (CTI and FFI) to compute h22. The polynomial

correction employed in the CTI is a 3rdorder polynomial. This choice is preferred against

a linear or quadratic correction since it minimizes experimentally the drift in the raw

integrated waveforms and the oscillations in the modulus. For the FFI method we use
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a cut off frequency of ν0 = 0.002 (406 Hz), which is around the GW frequency of the

initial data. To avoid that this frequency is filtered we use a value slightly below this

GW frequency. The phase difference between the two metric waveforms amounts to

∆φ . 0.06 from early times until the collapse. Since this value is so small compared as

to the length of the signal it can be neglected (see error estimates below and Tab. 7.4).

On the other hand the error in the amplitude is much larger. The maximal deviation

is about ∆A/A < 5% during the inspiral and grows to about 15% before the collapse.

Fig. 7.13 presents the amplitude r h22 of both integration methods: solid red line for

FFI and solid green line for CTI. One can see an important effect between both. The

amplitude computed with the CTI shows oscillations during the inspiral. They converge

away for higher resolution but it is not possible to remove them completely. They are

also reduced for larger extraction radii. Using a lower order integration method results

in a completely different shape (see the orange dashed line). On the other hand the

amplitude obtained by the FFI waveform integrated with ν0 = 0.002 is free from these

oscillations for all the resolutions considered. Here it is important to find the correct

cut off frequency. Going to ν0 = 0.00035 (71 Hz) oscillations appear again (blue

dashed-dotted line). Note that a frequency of 71 Hz roughly corresponds to the finite

length of the signal. As observed in [64, 143] the oscillations are an unphysical effect

not related to eccentricity. However we find a correlation between the oscillations in

the amplitude of r h22 and those seen in the coordinate separation (Fig. 7.10) in the

runs with different values of η. This could be an effect of the gauge on the location of

the extraction spheres where h is calculated. Here a proper choice of ν0 in the FFI can

mostly eliminate them. The polynomial fitting in CTI is not as robust and does not

perform as well for our data.

The analysis of h22 with both the CTI and the FFI procedure give comparable results.

However, we used the FFI for all the analysis. Looking at Fig. 7.14 it shows the metric

waveform r h22 computed from rΨ4
22 as a function of the retarded time tret ≡ t − r∗.

Here r∗ ≃ 222 is the tortoise radius 2 corresponding to r = 294 km. The real and

imaginary part are shown as well as the amplitude for the highest resolution H3. The

merger time tm is formally defined by the peak of the amplitude [41, 19]. Considering

2 The tortoise radius is computed as r∗ = rSchw + 2M log(rSchw/(2M) − 1), where rSchw is the
Schwarzschild radius corresponding to the isotropic radius r. The retarded time based on this
coordinate, tret = t − r∗, is a useful but approximate quantity which becomes rigorous only at
large radii when the spacetime becomes Schwarzschild. The correspondence dynamics-waveform
in the simulation is thus biased by this approximation.
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Figure 7.14.: Metric waveforms from cold evolution. The figure shows the real part (top
panel) and the imaginary part (bottom panel) of the r h22 waveform
extracted at r = 294 km from H3 run. The amplitude is also shown in
both panels. The waveforms are plotted versus the retarded time tret ≡
t − r∗ where r∗ is the tortoise radius corresponding to r. The metric
waveform is computed with the FFI and cutoff frequency ν0 = 0.002.

different resolutions we found tm = 1670, 1710, 1740 and 1765 (8.23, 8.42, 8.57 and

8.69 ms), respectively, for runs H0-3. The corresponding retarded times are tm,ret =

1446, 1486 1516, 1541 (7.12, 7.32, 7.47, 7.59 ms). The metric waveform is composed at

early times of six GW cycles emitted during the three orbit inspiral. After the merger

the emission is dominated by the bar-deformed HMNS, and the signal has a typical

frequency around 3 kHz which increases as the HMNS becomes more compact [40, 115].

Finally, after tret > 2132 (10.5 ms) the GW signal is composed of the quasi-normal-

mode ringing of the BH. The fundamental frequency computed from the waves has a

value of about νQNM ∼ 6.5 kHz. It is compatible with the estimate of the BH mass and

spin from the apparent horizon [67, 21], i.e. νQNM ∼ 3.23(10/MBH)[1−0.63(1−aBH)
0.3].

The value νQNM can be estimated by fitting the plateau of the GW frequency when

it reaches its absolute maximum (see Fig. 7.18). A better estimate is provided by the

frequency of the Ψ4 waveforms because the signal is less noisy and not contaminated
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by the integration procedure.

A detailed discussion about the accuracy and detectability of our waveformes for

higher resolution and longer simulations can be found in [MTH4].

Now let us have a look at convergence of the waves. In the end this is the important

thing if one want to extract waves and predict if they are correct. The waveforms are

produced with the cold EoS for the runs H1, H2 and H3. Fig. 7.15 shows the real part

of rΨ4
22 for the different resolutions. We focus on the inspiral part of the wave. We

do not expect good convergence during the merger phase since the convergence order

of our method drops to first order. Similar results are found for the series H0, H1 and

H2, with larger absolute errors.
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Figure 7.15.: Ψ4 waveforms from cold evolution at different resolutions. The figure shows
the real part of the rΨ4

22 waveform extracted at r = 294 km from runs
H1-3.

Fig. 7.16 displays the (logarithmic) differences between the rΨ4
22 amplitude (top

panel) and phase (bottom panel). In both panels I scale the difference between H2

and H3 for second order convergence. The vertical line in the figure marks the merger

time as computed from the waveforms extrapolated in resolution. We display only the
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time after the initial junk radiation and before the merger. Inside this time interval,

I observe a quite clear 2ndorder convergence in the amplitude while for the phase the

convergence appears slower. As one can see the phase error is the dominant error.

Computing the experimental convergence rate for the phase gives a factor between 1

and 2. This suggests that we are not yet in the convergence regime. Therefore we have

to go to higher resolutions or higher order numerical methods. Here a proper time shift

of the waveform may give better convergence. I prefer not to perform such a procedure

in order to keep the analysis simple and clean. This method is used several times, for

example in BBH simulation and even in the more complicated cases of unequal masses

and spins, see e.g. [137, 86, 111].

After the merger convergence of the waves is lost. There is an improvement of

several global quantities like the constraint violations in the post-merger phase (see

e.g. Fig. 7.4). However it is not possible to show clear convergence. The convergence

of the wave amplitude drops to first order, the phase on the other side shows over

convergence. Looking directly at rΨ4 in Fig. 7.15 gives a monotonic dependence on

resolution.

Since we have clear convergence in the waves it is possible to make a statement about

an error estimate by using Richardson extrapolation. The method is used to compute

amplitude and phase at spatial infinity. Results concerning the maximum error esti-

mated during the inspiral are reported in Tab. 7.4. When we use four resolutions (H0-3)

and assume 2ndorder convergence, the maximum phase and amplitude error are about

max δφ ∼ 0.3 rad and max δA/A ∼ 7 %. Assuming that we have 1storder convergence

results in larger errors, namely max δφ ∼ 1 rad and max δA/A ∼ 24 %. On the other

hand if we consider only the waves for the three highest resolutions (H1-3) again as-

suming 2ndorder convergence we obtain max δφ ∼ 0.6 rad and max δA/A ∼ 14 %. For

1storder we get max δφ ∼ 1.2 rad but an unacceptable amplitude error. Furthermore

we note that the assumption of 1storder leads to an evidently non realistic estimate of

the merger time for the extrapolated data tm = 2280 (11.23 ms). For 2ndorder we get

a more reasonable value of tm = 1800 (8.87 ms). Here we used only the three highest

resolutions (H1-3).

Some care is needed in interpreting these results in the context of the previous discus-

sion. From our results we conclude that: (i) the series H0-2 is too inaccurate and is not

reliable for error estimates; (ii) assuming 1storder convergence the series H0-3 is not

appropriate and overestimates the actual errors; (iii) assuming 2ndorder convergence
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Figure 7.16.: Convergence of phase and amplitude in rΨ4
22 waveform from cold evolution.

The figure shows the difference between runs H1 and H2 (blue solid
line), between runs H2 and H3 (green solid-dotted line) as well as the
difference between H2 and H3 (red dashed line) scaled for 2ndorder
convergence. Top panel displays the logarithm of amplitude differences,
bottom panel displays the logarithm of phase differences. The vertical
line indicates the merger.

the series H1-3 gives a conservative and realistic error estimate; (iv) the error of the

extrapolated data can be estimated as the difference between the two series (H0-3) and

(H1-3), e.g. max δφ ∼ 0.33 rad and max δA/A ∼ 7.4 %. As expected my error is dom-

inated by the fact that I use too little resolution. This was already indicated in [19].

The extraction at the finite radius seems to be a secondary problem. Therefore we did

not investigate in errors coming from finite extraction. Going to higher resolutions,

however, does improve the picture as indicated in [MTH4].

7.7. Thermal effects in gravitational waves

Finally I discuss the differences between waveforms produced with cold and hot EoS.

This was e.g. done by [21], where the results differ from mine. The results refer to
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Table 7.4.: Error estimates during inspiral for extrapolated waveforms. Columns: data used
for extrapolation, assumed order of convergence, waveform, maximum ab-
solute error in phase, maximum relative error in phase, maximum relative
error in amplitude.

data o waveform max δφ [rad] max δφ/φ [%] max δA/A [%]

H0-3
2

rΨ4
22 0.29 0.68 6.89

r h22 0.26 0.64 2.65

1
rΨ4

22 1.04 2.40 24.02
r h22 0.87 2.17 13.31

H1-3
2

rΨ4
22 0.62 1.43 14.30

r h22 0.53 1.32 6.85

1
rΨ4

22 1.20 2.85 & 100
r h22 1.10 2.81 & 100

H1 runs, the waves are shown in Fig. 7.17. As discussed earlier the physics is different

in each simulation. Therefore the extracted waves will differ. The phase difference of

the waveform h22 showing in the lower panel increases monotonically until the merger.

Until the first contact both results are quite close, the waveform has accumulated a

dephasing of ∆φ = +0.67 rad and the amplitude is about 6 % smaller. Since these

differences are compatible with the truncation errors for this resolution and they are

not expected in the continuum limit (the inspiral is an isentropic process from the fluid

point of view) they likely have a numerical origin. Thermal effects play a important

role after the star contact (see also Fig. 7.8). The dephasing reaches ∆φ = +2.11 rad

at the merger time and the amplitude is about 14 % smaller. Similarly for the rΨ4
22

waveform we found a dephasing of ∆φ = +0.67 rad and a factor −15 % in amplitude at

the contact time and a dephasing of ∆φ = +2.43 rad and a factor −50 % in amplitude

at the merger time. After the merger both waveforms differ totally. The cold EoS has a

short tail due to the early collapse. The hot EoS results in a bar-formed HMNS which

dominates the signal in this stage. One can see a signal with approximately constant

amplitude for around 10ms. A lower frequency modulation of the signal is visible in

the amplitude of the waveform and corresponds to the nonlinear quasi-radial pulsations

shown in Fig. 7.9. The high-frequency part of the GW signal is instead dominated by

m = 2 non-axisymmetric nonlinear modes. The extracted frequencies show different

modes around 2.7 kHz. They are slightly changing in time since the HMNS becomes

more compact and therefore increases the rotation frequency. A Fourier analysis shows
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Figure 7.17.: Comparison between waveforms from hot and cold evolutions. The top panel
shows the real part of h22 extracted at r = 200 for the two evolutions.
The bottom panel shows the amplitudes. Vertical lines mark the time
of the first contact between the stars and the merger time for the cold
evolution. The waveforms are plotted against the retarded time tret ≡
t− r∗. Data refer to run H1.

results qualitatively compatible with [167].

A quite meaningful quantity is the derivative of the GW phase ω22 ≡ −ℑ( ˙h22/h22),

which is connected to the dynamics. Fig. 7.18 presents the dimensionless quantity

M ω22 computed from simulation using the cold (blue) and the hot (red) EoS. Dur-

ing the inspiral both GW frequencies increase monotonically from M ω22 ∼ 0.056 to

M ω22 ∼ 0.126. This value (green horizontal solid line, see the bottom panel) is com-

mon to both evolutions but occurs at different times due to the accumulated phase

difference. After the merger both waveforms have a first maximum with similar val-

ues (M ω22 ∼ 0.181) for cold and M ω22 ∼ 0.184 for hot EoS). but different time

(tret ∼ 7.84ms for cold and tret ∼ 8.68ms for hot). Here the waveforms look simi-

lar, thermal effects generate only a time shift (retardation). Between the merger and

the collapse (formation of the apparent horizon) the GW frequencies are totally dif-
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Figure 7.18.: Gravitational wave frequency from hot and cold evolutions. The figure shows
M ω22 computed from h22 waveforms. In the top panel the blue solid
line refers to cold EoS and the red dashed line to hot EoS. The vertical
black solid lines mark respectively the merger time and the apparent
horizon formation for cold. The vertical black dashed lines mark respec-
tively the merger time and the apparent horizon formation for hot EoS.
The bottom panel gives a detail of the top panel showing the inspiral
part. The horizontal green solid line marks the value of M ω22 at the
merger for cold EoS. Data refer to run H1.

ferent. For cold EoS there is one oscillation and it increases from M ω22 ∼ 0.2 to

M ω22 ∼ 0.245. In the case of hot EoS the GW frequency reflects the dynamics of the

HMNS: it increases almost linearly with large oscillations corresponding to the HMNS

quasi-radial oscillations. After the minimum within the last oscillation the collapse

happens at a frequency M ω22 ∼ 0.27.

The collapse phase for both cases are quite similar. The quasi normal mode frequency

differs slightly and has a value of νQNM ∼ 6.45 kHz in case of the hot EoS. After the

collapse the amplitude and frequency drops to zero. There is an interesting feature

accruing directly after the merger. In both cases the GW frequency becomes negative.

At this time the rest-mass density in the equatorial plane is almost-spherical. However

it is not clear whether this is physical or only of a numerical nature.



8. Conclusion

In this thesis I implemented a general relativistic hydrodynamic code in the flux-

conservative Eulerian formulation coupled to the existing vacuum code Bam . I em-

ployed it to investigate numerically neutron star spacetimes in 3+1 dimensions. The

main goals were the simulation and extraction of gravitational waves from binary neu-

tron star systems and the gravitational collapse with the puncture gauge. I described

the numerical methods which were implemented like the HRSC scheme and tested the

framework with three different test scenarios: the shock tube, a stable TOV star and

a boosted TOV star.

All tests showed the expected behavior. The shock tube test confirmed that the

implementation of the HRSC scheme is correct. I could show that the shape (and all

other fields) of the stable star is well conserved for an evolution time of up to 10ms and

the conservation improved with resolution. In case of the norm of the rest-mass density

I obtained the expected 2ndorder convergence. The proper radial modes of the simulated

star agree with results from the literature in the Cowling approximation as well as in

full-GR. For all these runs I found that CENO reconstruction gives the best results for

conservation and convergence with the smallest truncation errors. The boosted TOV

simulations showed that the gauge used has a effect on the shape preservation of the

star. Using a non-vanishing damping parameter inside the Gamma-driver condition for

the shift results in an expanding coordinate size of the NS. Using vanishing damping

preserved the shape of the star most closely. We obtained 2ndorder convergence for the

boosted star after an evolution of about 4ms.

Afterwards, I investigated the collapse of a perturbed unstable TOV star simulated

in the puncture gauge. I found that this specific gauge provides stable evolutions. The

transition from the star to a black hole is handled generically without any artificial

numerical assumptions. By comparing it with the numerical evolution of a single

puncture using the same gauge, I have shown that the two numerical spacetimes tend
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to the same trumpet solution at late times, a possibility already conjectured in [26]. In

the order to have a quantitative comparison I used the lapse as a function of trace of

the extrinsic curvature and compared the final states of this quantity. The difference

between puncture evolution and collapse is less then a few percent. Additionally I

compared the final state with the analytic solution for a single puncture and found the

same dependency.

At the continuum level the agreement of both end states can not be explained. In-

vestigating two different conditions for the gauge in the matter evolution (µS = 1 and

µS = α2) showed that the Gamma-driver shift condition forces the matter to rapidly

move to the region inside the innermost grid-point by stretching the spatial numer-

ical grid. Thus in the domain covered by the numerical coordinates the spacetimes

agree, solving the apparent contradiction. Since the spacetime has lost all matter the

final spacetime on the grid is the vacuum Schwarzschild solution. The analysis also

demonstrates that I obtain robust numerical evolutions of the collapse when using the

puncture gauges with µS = 1, however, it is not appropriate for a detailed study of the

dynamics of the matter near the singularity.

I furthermore evolved binary neutron star initial data in a quasi-equilibrium config-

uration and investigated in the dynamics for various resolutions. Increasing resolution

have resulted in an improved behavior of all quantities. In particular I found 2ndorder

convergence during the inspiral phase for the norm of the Hamilton constraint. During

this phase I obtained good conservation of the rest-mass with a relative error smaller

than 0.5%. After the merger I found an accretion disk around the final black hole.

Convergence was lost after the merger which is expected for the numerical scheme em-

ployed due to a lack of resolution. Therefore the results are trustworthy only to some

extent.

I investigated the effect of different reconstruction methods and found a significant

change of the binary neutron star evolution for different methods. The best results in

terms of conservation of the star shape was found for CENO reconstruction. I further

looked at the influence of different equation of states (hot and cold EoS) and found

similar results during the inspiral phase, as expected. However, the behavior differed

during the merger phase. The cold EoS showed one oscillation of the hyper massive

neutron star (HMNS) before collapsing to a black hole, whereas using a hot EoS results

in an oscillating HNMS for around 9ms before collapsing.
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The neutron star dynamics on the grid are effected by the gauge conditions, espe-

cially the Gamma-driver shift condition. I compared simulations with different damp-

ing coefficients η and obtained coordinate eccentricity when using a non-vanishing η.

According to the numerics I found η = 0 to be the best choice. However, looking at

the apparent horizon tells that a value of about η = 0.3 preserves the coordinate radius

best which is appropriate to resolve the final BH.

Finally I investigated gravitational waves from binary neutron star simulations. I

used two different integration methods to compute rh22 out of the Newman-Penrose

scalar Ψ4. According to [143] using the fixed-frequency integration gave better results.

Applying this method I found reasonable 2ndorder convergence in amplitude and phase

for the waves during the inspiral. Additionally I made predictions of an error estimate

for the waves. Comparing waveforms produced by different equation of states showed

that they had different behavior after the merger. While the cold EoS waveform has a

short tail the hot EoS waveform has approximately constant amplitude. This can be

explained by the bar deformed HMNS.

In total, the Bam code is now able to stably evolve spacetimes containing matter. My

simulations of neutron star binaries showed accurate evolutions for more than 25ms.





A. 3+1 Formalism

A.1. 3+1 splitting

In order to reformulate general relativity as a Cauchy problem, the whole spacetime

has to be “split back” into space and time. More rigorously, the manifold representing

a globally hyperbolic spacetime is foliated in spacelike hypersurfaces Σt. As described

in detail in [185, 6] the foliation can be identified by a parameter t which can be

considered as a time function. Having two neighbored hypersurfaces Σt and Σt+dt the

spacetime between the two slices can described by three quantities, namely the lapse,

the shift and the 3-metric. The lapse α measures the proper time dτ between both

hypersurfaces for an observer moving in normal direction to the hypersurface

dτ = α(t, xi)dt . (A.1)

The shift vector βi is the relation between Eulerian observers and constant spatial

coordinates

xit+dt = xit − βi(t, xi)dt . (A.2)

And the 3-metric γij which measures the proper distance within the hypersurface by

dl2 = γijdx
idxj . (A.3)

Having this in mind the line-element of the spacetime can be written as

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) (A.4)

= (−α2 + βiβ
i) dt2 + 2βidtdx

i + γijdx
idxj ,
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where we only used the three new variables1.

The relation between the 4-metric gµν and the new quantities is given explicitly given

by

gµν =

(
−α−2 α−2βi

α−2βj γij − α−2βiβj

)
, (A.5)

and the inverse by

gµν =

(
−α2 + βkβ

k βi

βj γij

)
. (A.6)

The normal vector to the hypersurface follows from the given relation

nµ =
1

α
(1,−βi), nµ = (−α, 0) . (A.7)

A.2. Extrinsic curvature

Looking at the Einstein equations show that we have an equation second order in space

and time. From the numerical point of view it is more convenient to have a system

of differential equation which are first order in time. Therefore we introduce a new

quantity which is something like the time derivative of the metric. Or in other words

the extrinsic curvature describes how the normal vector is changed by parallel transport

to a neighboring point in the given slice. In order to define the extrinsic curvature one

has to create a projection operator P µ
ν by

P µ
ν := δµν + nµnν . (A.8)

Now using this operator to define the extrinsic curvature by

Kµν := −P σ
µ∇σnν (A.9)

1Here we used βi := γijβ
j .
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gives a purely spacial and symmetric tensor. Using the definition of the Lie derivative

in normal direction the extrinsic curvature can be written as

Kµν = −
1

2
L~nγµν . (A.10)

With this we have a quantity which tells how hypersurfaces are immersed in the four-

dimensional spacetime. Some analysis show that this relation can lead to an evolution

equation for the metric

∂tγij = −2αKij +∇iβj +∇jβi . (A.11)

Here the three-dimensional covariant derivative is the projection of the four-dimensional

one: Dµ := P σ
µ∇σ. This is the first part of the ADM evolution equations which only

depends on the normal vector and the extrinsic curvature. The second part is coming

from the contraction of Einstein equations.

A.3. ADM constraint equations

At this point the Einstein equations are not use yet. Writing these equations in the

3+1 form gives two kinds of systems, namely constraint and evolution equations. To

gain the constraint equations one has to express the four-dimensional Riemann ten-

sor Rα
βµν in terms of quantities which only defined inside the hypersurface, like the

three-dimensional Riemann tensor (3)Rα
βµν and the extrinsic curvature Kµν . The full

projection of the Riemann tensor is called the Gauss-Codazzi equations

⊥Rαβµν = P δ
αP

κ
βP

λ
µP

σ
ν Rδκλσ = (3)Rαβµν +KαµKβν −KανKβµ . (A.12)

Contracting the Riemann tensor once by the normal vector gives the Codazzi-Mainardi

equations

⊥Rαβµνn
ν = P δ

αP
κ
βP

λRδκλνn
ν = DβKαµ −DαKβµ . (A.13)

The relation between the Einstein tensor Gµν and Riemann tensor can be given by

PαµP βνRαβµν = R + 2nµnνRµν = 2nµnνGµν . (A.14)
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Now using equation (A.12) and (A.13) and plug these into the Einstein equations

one gets finally the Hamiltonian and the momentum constraint

(3)R +K2 +KijK
ij = 16πρ , (A.15)

Dj

(
Kij − γijK

)
= 8πji , (A.16)

with the definition of the energy density ρ := nµnνTµν and the momentum density

ji := −P iµnνTµν and the trace of the extrinsic curvature K = Ki
i . Both the Hamilton

and the momentum constraint do not depend on time derivatives or the gauge functions

α and βi. Therefore both equations are independent on the slicing and refer totally to

the given hypersurface.

A.4. ADM evolution equations

To yield evolution equations out of the Riemann tensor one has project twice with the

normal vector.

P δ
µP

κ
ν n

λnσRδλκσ = £~nKµν +KµλK
λ
ν +

1

α
DµDνα . (A.17)

Putting this again in the Einstein equations and use equation (A.12) gives at the end

an evolution equation for the extrinsic curvature

∂tKij = βk∂kKij +Kki∂jβ
k +Kkj∂iβ

k −DiDjα

+ α
[
Rij +KKij − 2KikK

k
j

]
+ 4πα [γij(S − ρ)− 2Sij ] . (A.18)

At this point we used the definition of the spatial stress energy tensor

Sij := P µ
i P

ν
j Tµν (A.19)

and the trace of this object S = Sii .

With this we have two sets of evolution equations, namely equation (A.11) and (A.18).



B. Global quantities

B.1. Total mass and momentum

In general relativity there is no meaningful way to define locally energy or momentum.

They are well defined in case of flat space. The approach we are using defines both

quantities of a asymptotic flat spacetime. The definition is discussed in e.g. [15] and

are given by

E =
1

16π

∮

S

√
g gijgkl(∂jgik − ∂kgij) dSl , (B.1)

P i =
1

8π

∮

S

√
g (Ki

j − δijK) dSi , (B.2)

J i =
1

8π
ǫijk
∮

S

√
g xj(Kkl − δklK) dSl . (B.3)

The expressions are called the ADM mass, ADM momentum and ADM angular mo-

mentum, where ǫijk is the Levi-Civita tensor. There quantities are not expected to

give correct results in the strong field regime therefore the integral has to be defined

faraway. The correct values can be achieved by integrating at spacial infinity

MADM = lim
r→∞

E(r) , (B.4)

P i
ADM

= lim
r→∞

P i(r) , (B.5)

J i
ADM

= lim
r→∞

J i(r) . (B.6)

B.2. Gravitational wave extraction

In order to extract gravitational waves we use the Newman-Penrose formalism [134].

It is based on the introduction of a tetrad of null vectors lµ, nµ,mµ, m̄µ. The Newman-
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Penrose scalar Ψ4 is defined by

Ψ4 = −Rµνρσn
µn̄νmρm̄σ (B.7)

where Rµνρσ is the Riemann tensor. Here lµ and nµ are in and outgoing null-vectors

and the complex-valued mµ is constructed by two spatial vectors. According to [53]

we construct the tetrad by a orthonormalized spatial tetrad

ui = (−y, x, 0) ,
vi = (x, y, z) ,

wi = gijǫjklu
kul (B.8)

and get

n0 =
1√
2α

, ni =
1√
2

(
−βi

α
− vi

)
,

l0 =
1√
2α

, li =
1√
2

(
−βi

α
+ vi

)
,

m0 = 0 , mi =
1√
2

(
ui + i wi

)
. (B.9)

The definition of Ψ4 (B.7) consists out of four dimensional components which have

to be expressed by three dimensional quantities given at each time slice. Using the

Gauss-Codazzi (A.12) and the (A.13) Codazzi-Mainardi equation yields

⊥Rµνρσ = (3)Rαβµν +KαµKβν −KανKβµ , (B.10)

⊥Rµνρσn
µ = DρKνσ −DσKνρ , (B.11)

⊥Rµνρσn
µnρ = (3)Rνσ −KνλK

λ
σ +KKµσ . (B.12)

With this the Newman-Penrose scalar is given by

Ψ4 = −1

4
(⊥Rijklv

ivk − 2⊥Rµjkln
µvk +⊥Rijρln

inρ)(uj − i wj)(ul − i wl) (B.13)

and depends only on the ADM variables in a given time slice.

In order to obtain the contributions of Ψ4 of the individual modes the scalar is
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projected by the spherical harmonics Y −2
lm of spin weight −2 given by

Alm =

∫ 2π

0

∫ π

0

Ψ4Ȳ −2
lm sin θ dθdφ (B.14)

at a finite extraction radius.

B.3. Energy and momentum of gravitational waves

The Newman-Penrose scalar can be used to compute the amount of radiated energy or

linear and angular momentum. They are given by

dE

dt
= lim

r→∞

[
r2

16

∮

S

∣∣∣∣
∫ t

−∞

Ψ4dt′
∣∣∣∣
2

dS

]
, (B.15)

dPi
dt

= − lim
r→∞

[
r2

16

∮

S

li

∣∣∣∣
∫ t

−∞

Ψ4dt′
∣∣∣∣
2

dS

]
, (B.16)

dJz
dt

= − lim
r→∞

[
r2

16
ℜ
{∮

S

(∫ t

−∞

∫ t′

−∞

Ψ̄4dt′′

)(
∂φ

∫ t

−∞

Ψ4dt′
)
dS

}]
(B.17)

with li = (− sin θ cosφ,− sin θ sinφ,− cos θ).





C. Different reconstruction methods

C.1. MC2

The VanLeer MONOTONIZED CENTERED (MC2) limiter is given by:

∆i = MM

[
θ∆−

i ,
1

2
(∆+

i +∆−
i ), θ∆

+
i

]

=

{
sign(∆+

i )min(θ|∆−
i |, 12 |∆

+
i +∆−

i |, θ|∆+
i |) if(∆+

i ∆
−
i ) > 0

0 otherwise

=
1

2

[
sign(∆−

i ) + sign(∆+
i )
]
min(θ|∆−

i |,
1

2
|∆+

i +∆−
i |, θ|∆+

i |)

with θ ∈ [1, 2].

C.2. PPM

Following [60, 120] the reconstruction procedure of the PPM is composed in 4 steps:

i. Interpolation: wi+ 1

2

is estimated by differencing a quartic polynomial determined

by the five points wi−2, wi−1, ..., wi+2, where the MC limiter is used to constraint

the value between wi and wi+1.

ii. Contact steepening: a correction to produce narrower profiles near a contact dis-

continuity. it is applied only on ρ.

iii. Flattening: a correction to reduce post-shock oscillations.

iv. Monotonization: to ensure that the final interpolation parabola is a monotone

function in the cell.

Step i and iii require 2 ghosts, and this is a general and “minimal” PPM. Then step ii

and iii are specifically designed for hydro equations, step ii requires 3 ghosts and the
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correct implementation of step iii require 4 ghost points. The method gives formally

a 3rdorder scheme. In [59] a fully 3rdorder PPM method is better implemented in a

scheme not field-by-field where cells instead of interfaces are reconstructed.

C.3. CENO3

CENO reconstruction with 3rdorder accuracy can be obtained using a quadratic CENO

interpolation [108, 186]. The CENO quadratic polynomials around the point i are:

Qk
i (x) = wj +∆0

j

x− xj
∆x

+
1

2
∆2
j

(
x− xj
∆x

)2

(C.1)

where the undivided differences are defined as

∆0
j ≡

1

2
(∆+

j +∆−
j ) =

1

2
(wi+1 − wi−1) ,

∆2
j ≡ ∆+

j ∆
−
j = wj+1 − 2wj + wj−1 . (C.2)

and k = −1, 0, 1, j = i+ k. Explicitly they read

Q−1
i (x) = wi−1 +∆0

i−1

x− xi−1

∆x
+

1

2
∆2
i−1

(
x− xi−1

∆x

)2

,

Q0
i (x) = wi +∆0

i

x− xi
∆x

+
1

2
∆2
i

(
x− xi
∆x

)2

,

Q+1
i (x) = wi+1 +∆0

i+1

x− xi+1

∆x
+

1

2
∆2
i+1

(
x− xi+1

∆x

)2

, (C.3)

and at point x = xi+ 1

2

(which corresponds to Li):
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Q−1
i = wi−1 +

3

2
∆0
i−1 +

9

8
∆2
i−1

=
1

8
(3wi−2 − 10wi−1 + 15wi) ,

Q0
i = wi +

1

2
∆0
i +

1

8
∆2
i

=
1

8
(−wi−1 + 6wi + 3wi+1) ,

Q+1
i = wi+1 −

1

2
∆0
i+1 +

1

8
∆2
i+1

=
1

8
(3wi + 6wi+1 − wi+2) . (C.4)

The CENO “philosophy” then tells what interpolation must be chosen. Namely, first

compute the weighted differences

dki = αk(Qk
i − Li) (C.5)

with α±1 = 1 and α0 = 0.7 1, i.e.

d−1
i = Q−1

i − Li ,

d0i = 0.7(Q0
i − Li) ,

d+1
i = Q+1

i − Li (C.6)

and second reconstruct the value as

wrecon =

{
Qk0
i if sign(d−1

i ) = sign(d0i ) = sign(d1i )

Li otherwise
(C.7)

with

k0 : |dk0i | = min
k

(|dki |) . (C.8)

CENO3 reconstruction requires 3 ghost points.

1The value of α0 = 0.7 is the standard choice in [108, 186]. We found that α0 = 0.1 gives better
results (see section 5.2).
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Abbreviations, Acronyms and Notation

ADM Arnowitt Deser Misner
AH Apparent Horizon
AMR Adaptive Mesh Refinement
BAM Bi-functional Adaptive Mesh (used evolution code)
BBH Binary Black Hole
BH Black Hole
BNS Binary Neutron Star
BSSNOK Baumgarte, Shapiro, Shibata, Nakamura, Oohara, Kojima
CENO Convex ENO
CFL Courant-Friedrich-Lewy
CTI Corrected Time domain Integration
ENO Essentially Non-Oscillatory
EoS Equation of State
FFI Fixed-Frequency Integration
GHG Generalized Harmonic Gauge
GRMHD General Relativistic Magneto Hydrodynamic
GW Gravitational Wave
HLLE Harten, Lax, van Leer, Einfeldt
HMNS Hyper Massive Neutron Star
HRSC High Resolution Shock Capturing
LLF Local Lax-Friedrichs
LRZ Leibnitz Rechenzentrum
MC2 Monotonized Cendered
MM2 MINMOD
MoL Method of Lines
NS Neutron Star
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PPM Piecewise Parabolic Method
RK(3/4) Runge-Kutta 3/4
RHS Right-Hand-Side
SGRB Short Gamma Ray Burst
TOV Tolman-Oppenheimer-Volkoff
TVD Total Variation Diminishing
WENO Weighted ENO
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130 Abbreviations, Acronyms and Notation

i, j, k, ... Latin indices take values 1...3

µ, ν, ρ, ... Greek indices take values 0...3

M⊙ Mass of the sun

ℑ(z) Imaginary part of complex number z

ℜ(z) Real part of complex number z

T α1...αn
β1...βm Tensor of rank

(
m
n

)

∂γT
α1...αn

β1...βm Partial derivative along the coordinate xγ

∇γT
α1...αn

β1...βm Covariant derivative along the coordinate xγ

£~γT
α1...αn

β1...βm Lie derivative along the vector ~γ
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Zusammenfassung

In dieser Arbeit wurden ein Computerprogramm zur Simulation der Vakuum Einste-

ingleichungen erweitert um die allgemeinen relativistischen Hydrodynamik Gleichun-

gen zu lösen. Diese wurden benutzt um numerische Neutronensternen zu simulieren,

insbesondere um den Kollapse eines Neutronensternes zu untersuchen und um Gravi-

tationswellen von Binärsystemen zu extrahieren. Die verwendeten numerischen Meth-

oden werden beschrieben und an Testfällen validiert.

Die Implementation der HRSC Methode wurde am Shocktube validiert. Bei der

Simulation eines stabilen Sterns konnte Konvergenz gezeigt werde. Die erwartete Os-

zillationsfrequenz des Sterns in radialer Richtung stimmt mit der Literatur überein.

Weiterhin wurde ein bewegter simuliert und Konvergenz gezeigt.

Der Kollapse eines instabilen Neutronensternes und das daraus entstehende schwarze

Loch wurde mit der Raumzeit einem einzelnen schwarzen Loches bei unter gleicher

Eichung verglichen. Es wurde gezeigt, dass beide zur gleichen Lösung tendieren die

mit der analytischen Lösung in guter Näherung bereinstimmt. Das Verschwinden der

Materie konnte durch die benutzte shift-Bedingung erklärt werden.

Weiterhin wurden binäre Neutronenstern Systeme betrachtet die sich anfänglich in

einem quasi-Equilibrium befindet und sich näherungsweise auf Kreisbahnen bewegt.

Für diese Simulationen konnten wir wäerend des Einspiralens Konvergenz und sehr

gute Massenerhaltung zeigen. Der finale Stern kollabiert zu einem schwarzen Loch

mit einer Akkretionsscheibe. Der Effekt von unterschiedlichen Eichbedingungen und

verschiedenen Zustandsgleichungen auf die Simulation und auf die extrahierten Grav-

itationswellen wurden betrachte.
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