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ABSTRACT 
 

The proposed approach was employed to estimate 
parameters of mixtures of exponential and Weibull 
distributions on generated and experimental statistical 
data. The intervals of mixture’s parameters for the 
generation of an initial population have been chosen 
according to the method of moments. As target 
(fitness)-functions the maximum of the absolute value 
of difference between empirical and theoretical 
distribution functions (MAE), maximum likelihood 
(MLE) function and least squares function (LSM) 
have been chosen. 

The comparative analysis of selection, crossover 
and mutation operators’ influence on the algorithm’s 
operating efficiency has been executed. The scheme 
of a local search embedded into the population 
algorithm is proposed. 
 

Index Terms - Genetic algorithm, mixture-
distribution, exponential distribution, Weibull 
distribution, MAE, Maximum Likelihood Estimation, 
Least Squares Method, Method of Moments, LED. 

1. INTRODUCTION 

Optomechatronical systems consist of mechanical, 
electronic and software components. Methods to 
evaluate the reliability of these systems have to take 
into account different failures mechanisms, which can  
be difficult to detect or identify.  

To enhance the statistical conclusion validity for 
such experimental data processing, finite mixture-
distributions [3,7,15,23,24] and spline-distributions 
[19] can be used. The mixture of distributions has 
been established recently in a lot of statistical research 
papers and its applications are very common in  
reliability studies.  

There are a number of mixture distributions that 
have been studied. One of the earliest studies in which 
an analysis of a mixture distribution was attempted 
was that by Pearson [18], who used the method of 

moments to estimate the five parameters of a mixture 
of two univariate normal distributions. 

It is well known, that the Weibull distribution has 
a wide spectrum of applications. This type of 
distribution is even more useful because multiple 
causes of failure can be jointly modeled. An extensive 
review of the Weibull distribution with many different 
generalizations of this distribution as used by 
practitioners and possible complications that arise due 
to this non-uniqueness is presented in [6]. 

The exponential distribution as a particular case of 
the Weibull distribution is extensively used to model 
the behavior of units that have a constant failure rate 
or units that do not degrade with time or wear out and 
is a well-behaved simple model. 

Therefore, our study in the present work will focus 
on a mixture of exponential and a mixture of Weibull 
distributions. The paper includes the estimation of 
parameters of the mixture distribution using genetic 
algorithms (GA) and maximum likelihood estimation. 

At the present work only the finite mixture-model 
with k components  
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where ),T(F )  is a probability distribution function 
and jp  is a weight of j-component, has been 
considered. 

2. MIXTURE-DISTRIBUTIONS  
RECOVERY PROBLEM 

There are many methods to estimate the parameters of 
mixture distributions. Both graphical and analytical 
approaches have been used. The analytical methods 
started from Pearson’s method of moments, the 
method of quantiles, general curve fitting, the 
Bayesian approach, etc. The maximum likelihood 
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(ML) method is one of the most widely used 
approaches for a statistical estimation, which appeared 
practical for general mixture problems and the 
development of the Expectation Maximization (EM) 
algorithm [2,20]. The result of the work of 
Schlesinger concerning the monotone convergence of 
the EM procedure to some possibly local maximum 
firstly has been studied in [2] and later in full detail in 
[1,14,16]. 

But estimation the mixture model parameters with 
aforementioned algorithms is a sensibly complicated 
task, because there are no generally accepted methods 
to define initial values and classic methods require a 
good initialization in order to converge to the global 
maximum of the goal function. As an alternativ to 
standard methods in a recent line of research, methods 
to avoid using GA have been developed. A review of 
existing works revealed several interesting strategies 
in this area. Thus, an integration of the principles of 
the GA and the ML to recover a Weibull distribution 
is described in [25]. Tawfick et al. [22] considered an 
algorithm for solving the maximum mixture likelihood 
clustering problem using an integer-coded genetic 
algorithm (IGA-ML) where a fixed length 
chromosome encodes the object-to-cluster assignment. 
The algorithm has the advantages of being able to 
determine the correct number of clusters and to solve 
the task of decomposition for a mixture of Gaussian 
distributions. Papers [12,13] present approaches based 
on GA, Simulated Annealing (SA) and EM to estimate 
parameters of the mixture of Gaussian model. The 
described method uses a population of mixture 
models, rather than a single mixture, interactively in 
both GA and EM to determine the mixture parameters. 
In [9] the behavior of a Boolean serial configuration, 
as a mixture of failures of Weibull distributions in the 
Boolean system, is analyzed. 

In this paper we develop a methodology to analyze 
failure data of Light-Emitting Diodes (LED). 
Reliability of LED depends on design and application 
requirements. Thus, we have to apply a model that 
takes different failure mechanisms into account. The 
Weibull failure density function is associated with the 
time to failure of items.  

The Weibull distribution features properties of the 
most frequently used distributions for reliability 
analysis. Such are e.g. Exponential, Normal, Log-
normal, Gamma and the Rayleigh distributions. Thus, 
we consider our research on GA application to the 
estimation of mixture of Weibull distributions. Since 
the mixture of exponential distributions has one 
unknown parameter for every component, this type of 
mixture is also well-behaved.  

The mixture of two-parameter Weibull 
distributions has 2*k+(k-1) unknown parameters. 
These are the shape parameters jb , scale parameters 

ja and the mixing parameters jp  for every  
component j: 
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In the case of an exponential mixture the 
probability function looks the same with  11jb . 

As stated above, practical application of classical 
mathematical statistical methods for an estimation of 
mixture-distribution results in comparatively 
complicated computational procedures. Here, classical 
parameter estimation methods strongly depend on the 
initial values. Therefore, investigations of alternative 
approaches for an estimation of parameters are highly 
actual. One of the possible alternatives to solve the 
assigned task is to develop a suited artificial 
intelligence technology. In the following, we present 
how to estimate parameters of a mixture distribution 
giving examples and using experimental data. 

The population of the classic GA consists of 
binary strings similar to the chromosome structure of 
biological creatures (binary code GA, BGA). But a 
binary code can’t directly reveal the particular 
structure of the problem. The real-code GA (RGA) 
obtains a better solution on function optimizing and 
features a lesser solution searching time, better 
calculation precision and overall convergence 
situation in comparison to the tradition GA effectively 
[4,5,17]. In this work, we propose a combination of 
real-code GA with EM to improve the recovery of the 
referred above mixture distributions. 

3. MULTIEXTREMAL OF  
FITNESS-FUNCTIONS 

The solution of many practical problems in several 
application areas, from engineering to economics, 
requires the global optimization of a non-linear 
multimodal objective functional.  

The initial focus of this work is to investigate 
which technology could be used to implement a 
principle of GA for the task of a mixture distribution 
recovery. However, before this question can be 
examined, we have to define target-functions and to 
examine properties of their multiextremality.  

Typically, the function used to determine the 
optimality of the output is called the target function or 
evolutionary function or fitness function. We will use 
the term fitness function in this research since it is 
typically used in conjunction with genetic algorithms. 
It will be considered analogous to the evolutionary 
function. The inputs to the fitness function include a 
set of statistical observations and a set of unknown 
parameters. The fitness value can be defined as a 
numerical value that describes the characteristics of an 
individual with regard to the current optimum so that 
different individuals can be compared. 



In statistical data analysis the fitness value of each 
individual in the population can be measured by the 
following fitness functions (FF): 
 the maximum of the absolute value of difference 

between empirical and theoretical distribution 
functions (MAE) 
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 the least squares function (LSM) 
n
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We generate the random sample from a mixture of 
two exponential distributions with parameters 

4073 21 .p,a,a 073 and limit parameters ja to 

the range of 0.1 to 10 and jp  from 0.1 to 0.9 and 
calculate the MAE and MLE fitness functions for a 
mixture of two exponential distributions. As a matter 
of fact MAE and LSM feature extremes in the same 
points, thus two samples from the different fitness-
functions are depicted in figure 1. 
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Figure 1. Fitness-functions 
 

Thus it is evident, that the problem of estimation 
of mixture-distributions consists of a multiextremal 
optimization problem. However, in the case of 
multiextremal functions, this choice suffers from a 
relevant drawback: depending on the starting point of 
the search procedure, the algorithm can be trapped 
into suboptimal or useless false solutions.  

4. GENETIC ALGORITHM 

GA are adaptive search methods which are 
independent of initial parameters and can provide an 
efficient technique to optimize functions in large 
search spaces [17] based on an adaptive mechanism of 
biological systems. GA have been applied 
successfully in many scientific and engineering fields. 
It has been proved that GA are independent of 
initialization parameters. 

In global real-code optimization terms, each 
individual in the population is encoded into a floating 
number, which represents a possible solution to a 
given problem. For statistical analysis it is important 
to have not only point estimates of  
sought-for parameters, but also confidence intervals. 
As referred above, a famous method to estimate model 
parameters and to determine confidence intervals is 
the maximization expectation algorithm (EM). Since 
GA are independent of initialization parameters they 
can efficiently optimize functions in large search 
spaces while the solution obtained by EM is a function 
of the initial parameters. In this work, we propose a 
combination of GA with EM to improve the 
estimation of exponential and Weibull mixture 
parameters.  

We considered the following optimization 
problem:           )(FFmax MAE )m , 

)(FFmax MLE ) ,         (4) 
)(FFmax LSM )m , 

where FFs are the fitness functions and  is a 
vector of m unknown parameters of mixture 
distributions, m,l,U,R lll 30 3UlRl .  

As presented above, FFs have several local 
optimums on a space . Fitness of parents and 
children can be evaluated by the target-functions (3).  

Using a standard GA, an initial population can be 
generated randomly on the space .  

The boundary conditions on parameters are treated 
using experiential expert knowledge and the method 
of moments. For our set of parameter we suppose, that 

 the shape parameters are 90 9jb ,  

 the scale parameters are jaa0 , 

 the mixing parameters are 10 1jp . 
Furthermore, it is possible to define the constraints 

of scale-parameters using the method of moments to 
estimate the exponential distribution  

ta j 20 2a , 
where the overhead constraint is defined according 
to the method of moments to estimate the exponential 
recovery.  

The selection of individuals from populations to 
produce successive generations plays an important 
role. Here, a probabilistic selection based on a ranking 
of the individual’s fitness [17] is carried out. 



There are two basic parameters of GA - crossover 
probability and mutation probability. Crossover 
probability determines how often a crossover takes 
place. Crossover is carried out with the objective that 
new chromosomes might have better properties than 
old chromosomes and are superior. The methods of 
crossing two parents mm and ll  is described in [5]. In 
this paper a simple arithmetic crossover has been 
used.  

Generation of children during a mutation step is 
performed randomly with a probability of mutation 
varied within the range of 0.1 to 0.9. Mutation 
probability means how often parts of chromosome will 
be mutated. Mutation is carried out to prevent falling 
GA into a local extreme, though it should not occur 
too often, because thus GA would change to random 
search.  

In the present work the constrain-based mutation 
operator was applied using two steps. The first step is 
that a selected chromosome in the individual is 
replaced by random values produced from the 
predefined range by a small probability. Then, these 
constrains are applied to the individual to produce a 
valid individual.  

This paper focuses on a GA, in which every new 
individual is optimized locally. Local improvement 
(LI) procedures have been incorporated into GA in 
order to improve the algorithm’s performance. As a 
local optimization strategy the EM-algorithm has been 
used. The EM algorithm provides a general iterative 
procedure for computing MLE solutions for mixture 
models. Each iteration consists of two steps: 
estimation of the missing data by its expectation and 
maximization of the likelihood.  

In the present work the Elitism Selection Strategy 
has been used. The selection mechanism of this 
system is the elite method. Sometimes good 
individuals can be lost when crossover or mutation 
results in offspring that are weaker than the parents. 
Elitism involves copying a small part of the fittest 
individuals unchanged into the next iteration. Each 
individual is mapped to an individual chromosome. 

Further important characteristics of GA are the 
population size, the sample size and the stopping 
criterion. 

Inspired by the motivation mentioned above, the 
following steps for the GA are proposed: 

 
Description of the algorithm 

Step 1: (Initialization)  
 Choice of Fitness Function (FF). 
 Define the size G of population P: GP G . 
 Define the stop rule. 
 Generation of G individuals as the initial 

population  },...,,{P GG,{ 21
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�

. 
Step 2: (Evaluation)  

 Evaluate ii  in 0P
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 by )(FF i )i . 
REPEAT 

Step 3: (Parent Selection) 
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iPar r(( if 110 1ii r),(Randomr . 
Step 4: (Crossover) 
 ),(Random 10R , 21,j 1, , 
 21 1 Par)(ParC j )(PP . 

Step 5: (Mutation) 
 ),(Random 10R , 21,j 1, , 
 )Ch(MutationhC~ jj M  if rateMutationM . 

Step 6: (Local Search) 
 21,j),hC~(orithmlgAEM*hC~ jj 1AEM . 

Step 7: (Replacement) 
 21,j),*hC~P(placeReP j 1Re � , 

 Delete (2 weakest individuals ii , 11 11 G,i ). 
UNTIL < one of the stopping criteria is met > 

The algorithm stops when the number of 
generations reaches the given value of generations or 
when the value of the fitness for the best point in the 
current population is less than or equal to the best 
fitness of the previous generation. 

Test functions are important to validate any 
optimization algorithms and to compare the 
performance of various algorithms. As test functions 
De Jong’s function and Rastrigin’s function have  
been used.  

5. SELECTING GA PARAMETERS 

In this section, we demonstrate using GA for 
estimating parameters of a 2, 3 and 5-component 
mixture Weibull distribution.  

We use different functions to test the optimization 
performances of RGA for a variety of population sizes 
and compare these results in table 1. The sample size 
in the test data set consisted of 30 random variates. 

The population size has been chosen from 50 to 
200, the crossover and mutation probability from 0.1 
to 0.9. The results of these experiments were 
examined to investigate solution quality as well as 
computational efficiency. To compare the importance 
of local optimization, the table lists results for which 
the local improvement (LI) was used or not used 
(NLI). For each example, the first column provides 
the mean functional value found by the GA, the 
second the number of mixture components, the third 
the mean of the number of generations it took the GA 
with LI to find the best solution (not necessarily the 
optimal), the fourth the crossover probability, the fifth 
the mutation probability and the two last columns 
contain the values of the refined Kolmogorov (KM) 
test [1,16] with a statistical significance of 0.5. 



Table 1. Best Solution Quality for statistical 
modeling data 

FF Comp Gen CP MP KM,NLI KM,LI 

MAE 

2 68 0.3 0.3 0.75 0.75 
2 89 0.3 0.6 0.60 0.71 
2 71 0.6 0.3 0.72 0.89 
2 78 0.6 0.6 0.93 0.99 
3 131 0.3 0.3 0.55 0.75 
3 130 0.3 0.6 0.83 0.83 
3 104 0.6 0.3 0.41 0.81 
3 115 0.6 0.6 0.44 0.82 
5 121 0.3 0.3 0.56 0.76 
5 113 0.3 0.6 0.78 0.78 
5 89 0.6 0.3 0.77 0.77 
5 96 0.6 0.6 0.56 0.85 

MLE 

2 103 0.3 0.3 0.72 0.72 
2 96 0.3 0.6 0.74 0.86 
2 115 0.6 0.3 0.70 0.74 
2 84 0.6 0.6 0.83 0.97 
3 134 0.3 0.3 0.54 0.85 
3 125 0.3 0.6 0.83 0.83 
3 114 0.6 0.3 0.70 0.71 
3 141 0.6 0.6 0.37 0.85 
5 200 0.3 0.3 0.65 0.77 
5 200 0.3 0.6 0.49 0.79 
5 200 0.6 0.3 0.58 0.75 
5 196 0.6 0.6 0.67 0.80 

 

As table 1 shows, the use of a local improvement 
procedure improves the quality of the final solution 
found by GA. A typical example of results of this 
experiment for mixture of two Weibull distributions 
for the case 9110 11 91 b;b  is depicted in figure 2. 

25 50 75 100
0

0.2

0.4

0.6

0.8

Generation

Fi
tn

es
s 

va
lu

e Best fitness
Mean fitness

 
25 50 75 100

0

1

2

3

Generation

Average Distance
Between Individuals

 
Figure 2. Example of RGA-Results 

 

As can be seen, the genetic algorithm converges to 
the solution of high degree of certainty. The greatest 
influence on the speed of convergence and the 
probability of the best solution finding has the 
selective type of the genetic operators, which provides 
a sufficiently great effectiveness of GA work. 

6. EXPERIMENTAL SETUP 

In this section, we explore the performance of our 
technology. We trained our model and tested the 
performance of the algorithm on data obtained from 
Light-Emitting Diodes (LED). Virtually all LEDs are 
mounted in a package that provides two electrical 
leads, a transparent optical window for the light to 
escape, and, in power packages, a thermal path for 

heat dissipation [10,11,21]. A low-power package is 
depicted in fig. 3. 

Different types of LEDs have different degradation 
mechanisms. As a starting point, this study considered 
a GA-approach where 5 mm epoxy-encapsulated 
phosphor white LEDs have been used. The subject of 
inquiry is soldered to the bottom of a reflector-cup in 
cathode lead. A bond wire connects the top contact to 
the anode lead.  

  
Figure 3. Typical LED-package 

 

The LEDs life test explored the reduction of light 
output as a function of time. Figures 4-5 illustrate the 
experimental setup.  
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Figure 4. Scheme of the experimental setup 



Because each LED has to operate at a particular 
ambient temperature, all were tested in a specially 
designed individual life-test channel (figure 4, a). 
These test channels were designed to keep the 
temperature constant and placed in a room-
temperature box.  

 

 
Figure 5. Photo of the life-test setup 

 

Load test and posterior analysis show that via 
deviation from an ideal current-voltage (I-V) 
characteristic we can determine our subject of inquiry 
as a diode with series and parallel resistance and 
simultaneously with a parasitic diode with lower 
barrier height and smaller area than the main diode 
[21]. The observable diode scheme is depicted on  
figure 6, where D2 denotes a parasitic diode, Rs a 
series resistances and Rp a parallel resistance. 

D1 D2

Rs

Rp

Rs1 Rs2

 

Figure 6. Scheme of a 5 mm LED 
 

The defects occurring on LEDs can be related to 
different categories which are: the chip as the central 
element, the internal and the external packaging. Due 
to different assembly technologies and types of 
constructions, as well as varying applications, an 
extended range of failure mechanisms can be 
observed.  

7. RESULTS ANALYSIS 

The above equations and GA were used to estimate 
the parameters for a mixture Weibull distribution. The 
results were obtained using data for the lifetimes of 28 
LEDs that were analysed to indentify the mixture 
Weibull distribution as given below.  

Most LEDs have a natural lifespan that ends in a 
mechanism of wear. Observable defects within the 

subject of inquiry are particularly affected by 
temperature and current. In the present paper we 
define the reliability as the probability that a product 
will perform its intended function over a time period t. 
As a defect we define a relative reduction of the 
current of 25% in load conditions.  

The LED-test had been carried out under load 
conditions of 140 mA and reveals three exterior 
effects (figure 7): phosphor degradation in a white 
LEDs causing color shift, minor degradation of the 
encapsulation and actual degradation of the wire. 
Phosphor in white LEDs will degrade by time and 
temperature resulting in a change of the light color, 
usually to blue [21]. By time the epoxy package can 
turn yellow under the influence current und 
temperature.  
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Figure 7. Defect demonstration 
 

Figure 8 illustrates the experimental results. The 
obtained empirical data is plotted on a Weibull 
distribution graph paper.  

The obtained type of the curve corresponds with 
results of Jiang and Kececioglu [8], which presented a 
graphic algorithm to identify and estimate the 
parameters of a Weibull mixture model. 
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Table 2. Solution Quality for experimental data 
FF CP MP KM, NLI KM, LI 

MAE 0.6 0.3 0.92 0.92 
MAE 0.6 0.6 0.88 0.97 
MLE 0.3 0.6 0.84 0.92 
MLE 0.6 0.6 0.79 0.94 



Table 2 lists the efficiency of the estimation of the 
mixture of two Weibull distributions with different 
values of GA-parameters. A size of 100 generations 
and a crossover and mutation probability according to 
the best results from table 1 have been chosen. 

Fig. 8 depicts the mixture distribution function 
plot consisting of two component distributions 
corresponding to two different defect mechanisms. 
We define these mechanisms as the influence of the 
diode design (figure 6), resulting in fast destruction 
and degradation failure of the bond wire and as 
depicted on figure 7. 

8. CONCLUSION AND FUTURE RESEARCH 

In this paper, we presented a method to estimate 
parameters of mixture distributions with different 
numbers of mixture components based on genetic 
algorithms.  

We have applied this method of failure analysis to 
5 mm white LEDs under load conditions of 140 mA. 
The efficiency of the defined approach is confirmed 
by the results of statistical modeling and experimental 
research. The results can be used directly for a 
reliability analysis and provide a good initialization to 
accelerate convergence of the EM algorithm.  

Possible subsequent research includes two logical 
directions. The first will be a further analysis and 
modification of GA-operators and the investigation of 
a possible Baldwin effect [26]. The second regards 
investigations of LED failure mechanisms analysis. It 
should be noted that the reliability of LEDs is very 
high but depends on design and the applied 
environment. Results of different failure mechanism 
analyses will be discussed in a follow-up paper. By 
testing different commercial LEDs, we can study the 
degradation mechanisms for different types of LEDs 
and finally apply a multivariate distribution modeling, 
which includes simultaneous use of mixture 
distributions with different types of components. 
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