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ABSTRACT

For the task of object localisation for autonomous robots, an image processing system is applied. The essentials

image decoding, color classification and image segmentation are covered. The Helmert transform is applied for

robot localisation by matching image segments with a pattern model. The transform is adjusted to utilize additional

data gathered by the image processing. A comparison between the original and the modified transform is done.

1. INTRODUCTION

In the field of autonomous robotics there exists the benchmark task of soccer playing robots. Due to the broad

range of problems to be solved in order to become competitive against human players, there are specific leagues

which deliver standardised general frameworks to focus on specific problematic issues. In the RoboCup small size

league there compete two centralised controlled teams utilising an object tracking top vision system. This paper

deals with the localisation problem.

One branch of localisation methods is the model based statistical evaluation of image data. Representatives of

this branch are correlation analysis, performed in the spatial or in the frequency domain and the Hough transform

[BBD+09]. Both methods find a maximum consensus of the input data within a predetermined, discrete solution

space. The algorithm RANSAC [FB81] is related to the Hough transform in the way it determines the greatest

consensus of input data with a model, but it saves computing time by generating the evaluated solutions out of

the input data. While Hough transform and RANSAC are usually applied to binary data, correlation analysis also

enables access to texture information. However, this statistical methods while being able to extract information

from strongly degenerated signals, are quite computational expensive. A second branch of localisation methods

is span by segmentation methods which decompose the image into regions of equal or similar manifestation of

a feature. Subsequent this reagions are matched to a model. Segmentation methods may be reagion-oriented

[BBV00, Ler08], contour-oriented [Ren] or take place in the frequency domain [MTJAL05, LW95]. Another per-

spective to the segmentation problem may be seen in the utilisation of cluster techniques [YGZ03, YSL09], which

closely relate to reagion oriented approaches. As the biggest problem in the actual task is the required computing

time, statistical methods are refrained. From the group of segmenting methods, the region oriented variant of run

length encoding and subsequent interline union of connected runs was chosen, because the segmentation task itself

as the implementation is comparatively simple and the expected computational cost is low. This approach has

been proposed in [BBV00]. It is shown that this method is a specialised variant of the task underlying DBSCAN

[M. 96], which serves as example for cluster-based image segmentation methods. In contrast to [BBV00], where

a double thresholding color discriminating method was feasible due to the availability of a YUV-signal, a Voronoi

classificator is used as adaption for RGB-signals.

The first step of the processing chain (Figure 1) includes bayer demosaicing to interpolate the color components

for each pixel, localised amplification to level differences of illumination, color classification as a problem specific

color reduction which matches the color space to expected colors and a run length encoding which presents the

obtained data in a fast proccessable way to the next stage. In a second step, equal colored segments are formed.

After matching corresponding segments to the robot patterns, the task of interpretation of segment properties as

robot postitions arises. Therefore the regression method Helmert transformation is adapted for the context of

image processing to make use of the redundancy of the robot pattern. The parameters of the transform allow easy

calculation of the robot’s location.
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Fig. 1. Processing chain
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Fig. 2. Bayer pattern
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Fig. 3. Bayer interpolation

2. PREPROCESSING

2.1. Bayer interpolation

A common variant of digital imaging sensors is the 1-chip sensor with bayer pattern. It is a photosensitive ma-

trix covered by a regular pattern of color filters, see Figure 2. The values of this matrix may be obtained as

Vi,j ∈ X ⊂ R with row index i and column index j. The advantage of relatively inexpensive video hardware

is countered by the drawback of incomplete color information. As every pixel detects the intensity only for one

color channel, a reconstruction of the missing channels becomes necessary. There is a broad range of interpolation

techniques for this problem, which usually trade-off between accuracy and processing time. See [GGA+05] for an

instructive introduction. In the application at hand the dominating criterion is processing speed, thus a very simple

demosaicing regime is implemented, see Figure 3.

A bayer primitice cell consists of one red-, one blue- and two green-sensitive elements which share one vertex.

Let �v :=
(
v1 . . . vn

)T ∈ Xn denominate the value of an image element of the channels 1, . . . , n and the

corresponding values v1, . . . , vn in the device dependent color space Xn, then a bayer decoding scheme decode :
XN×M × N

2 → X3 : (V, i, j) �→ decode(V, i, j) is desired, where for convenience vr := v1, vg := v2 and

vb := v3. In the implemented regime the green value of a cell is the mean of both green-sensitive elements

g1(i, j), g2(i, j) to vg(V, i, j) = (Vg1(i,j) + Vg2(i,j))/2. The red and blue values are determined as weighted

mean according to vr(V, i, j) = (3Vr1(i,j) + Vr2(i,j))/4 and vb(V, i, j) = (3Vb1(i,j) + Vb2(i,j))/4. Thereby

r1(i, j) and b1(i, j) point to the respective dominant elements which are part of the bayer cell. Further r2(i, j)
and b2(i, j) point to the respective recessive elements which are the first elements of the respective color found by

mirroring the dominant cell on the center vertex. Thus the values vr, vg and vb are reconstructed for the vertex

that is center of the bayer cell. As the underlying pattern is regular, initialisation of an odd and an even indexing

group (r1(i, j), r2(i, j), g1(i, j), g2(i, j), b1(i, j), b2(i, j))o,e at the beginning of a line leads to a scheme, where

subsequent to image elements evaluation all indices are incremented by 2. This regime yields less color distortion

at sharp edges than the common nearest neighbour approach but appears to be relatively blurry. Yet it is sufficient

for the robot localisation in RoboCup as it is fast enough and does not affect the subsequent color classification

perceptibly.



2.2. Localised amplification

Due to the big influence of vignetting and local disparities of illumination, the color classification initially was

insufficient. A good recognised robot disappeared when it moved to a corner of the pitch. As this problem could

not be solved adequately by adaption of the color classificator, a local amplification was put into the processing

chain. Figure 4 shows the mean intensity of the empty pitch with a severe sag in the pitchs corners. By inversion of

those local means, a localised amplification table is constructed. It is applied to all bayer decoded elements prior

to color classification. As it is a pixel operation, it is computationally expensive and leads to an increase of the

image processing time by factor 1.4-1.5. Yet the achieved frame rate is sufficient and color classification becomes

reliable.
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2.3. Color classification

Robot localisation by identifying and evaluation of marker patterns is the objective for image segmentation.

A marker features a distinct color of a set C. In the domain of RoboCup, the color set is given by C :=
{White, Orange, Yellow, Green, Cyan, Blue, Magenta, Residue}, where the sets elements are a human description

for an impression consent. However the element Residue is reserved for any �v of indeterminate class membership.

A sample SC ⊂ Xn for each color class C ∈ C is used to determine a classificator as function c : Xn → C. The

samples are gathered and labeled externally. Figure 5 gives an exemplary scatter plot of those collections, where in

feasible cases each collection forms a discriminable cluster. There are many different approaches for the classifica-

tion problem, e.g. simple double thresholding [BBV00], support vector machines [Wan05], self organizing maps

[Koh90, ZH09] and multilayer perceptrons [PBC05]. Due to the small and discrete feature space, the approach of

a discrete Voronoi decomposition as sample generalisation is chosen. For this purpose a metric d : Xn × C → R+

is used to determine the distance of one element �v of the RGB color space to a respective color class C. With this

the color space is discretely decomposed into Voronoi cells VC = {�v ∈ Xn | d(�v, C) < d(�v, i); i, C ∈ C∧ i �= C}
(confer [Sud06]1) which is equivalent to a generalisation to

G : Xn → C
�v �→ G (�v) = arg min

C∈C
(d(�v, C)) . (1)

and yields an implementation of the desired classification c.

The Mahalanobis distance [Mah36] and a minimum sample distance are examined as considered of metric d.

For the application of the Mahalanobis distance, the distribution of a class is considered as a spheroid with the

sample based estimation of the center

�SC =

∑
�v∈SC

�v

|SC | (2)

1In [Sud06] ”≤” is used as affinity criterion. As this leads to ambiguity on the cell borders, ”<” is used instead.
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As samples are easily seperable, a plausible generalisation of the

class membership of elements of the feature space seems to be feasi-

ble.

and the estimation of the covariance matrix

Cov(SC) =

∑
�v∈SC

⎛
⎜⎝

Δv1Δv1 . . . Δv1Δvn

...
. . .

...

ΔvnΔv1 . . . ΔvnΔvn

⎞
⎟⎠

|SC | − 1
, (3)

where �Δv := �v − �SC . The mahalanobis distance between a �v and a color class C represented by its sample SC

then is

dm(�v, C) :=
√

�Δv
T

(Cov(SC))−1 �Δv, (4)

see [ITM01]. This approach has been utilised for RoboCup color classification in [Ler08]. [KO05] shows that a

classificator for multivariate normal distributions under (1) and (4) serves as Bayes classificator 2.

In the case that the sample SC of a color class C is not well approximable by a multivariate normal distribution,

the second attempt for a definition of a metric is the sample based minimum distance

dS(�v, C) := min
�s∈SC

(d(�v,�s)) (5)

where d : Xn × Xn → R+ is a problem specific metric, for instance euclidean or manhattan. It may be utilised,

when no applicable knowledge about the distributions is available. As this 1-nearest-neighbour method is prone

to noise, the color classificator c may also be implemented as a k-nearest-neighbour method. When a Residue

sample is gratuitous, in both cases (4), (5) a hint dm,S(�v, Residue) := threshold may be used, where threshold is

an application dependent maximum distance for a well recognized color.

In practical tests, both variants have been insufficient without localised amplification. With introduction of lo-

calised amplification, both approaches yield sufficient results with insignificant distinctions of classification qual-

ity.

3. COLOR IMAGE SEGMENTATION

3.1. Segment definition

The objective of image segmentation is to identify the image regions with equal manifestation of a feature. This

is applicable to the object localisation in the domain of RoboCup which its task is to detect the ball and marker

patterns. Combined with prior knowledge (geometric model of the pattern, parameters of the optical system) the

determination of the environment’s state is allowed.

A segment is understood as a connected set of image elements of equal color. Its elements have no direct

neighbours of the same color class, which are not element of the set. This property of a segment suggests to

understand a segment as DBSCAN-cluster [M. 96] with respect to Definition 5. Let ε ∈ R+ denote a critical

distance, MinPts ∈ N a minimal cardinality, D a data domain, D ⊂ D a data set and d : D2 → R+ a distance

function. Definitions 1-5 are taken from [M. 96] with the substitutions ε := Eps and d := dist.
2As a color class C may be considered as generator of meassurements �vi, the distribution of those meassurements is the probability PC(�v)

of C realisating �v, where the distribution itself is unknown but represented by the sample SC (training set). In a multiclass setup PC(�v) is

refered to as P (C|�v), the probability of �v under C. Utilisation of Bayes Theorem leads to the probability P (�v|C) of realisation of �v being

preceded by C, shown in [KO05]. A Bayes classifier is a classifier that chooses C(�v) under P (�v|C) most plausible, see [KO05].
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Fig. 6. Discrete Voronoi decomposition of a plane by two synthetic samples. While the central sample (white, ×)

is unimodal, the second sample (grey, +) is bimodal. Thus the Mahalanobis distance yields misclassification for

some points.

Definition 1 (ε-neighborhood of a point) The ε-neighborhood of a point p, denoted by Nε(p), is
defined by Nε(p) = {q ∈ D | d(p, q) ≤ ε}.

Definition 2 (directly density-reachable) A point p is directly density-reachable from a point q wrt. ε,
MinPts if

1. p ∈ Nε(q) and

2. |Nε(q)| ≥ MinPts (core point condition).

Definition 3 (density-reachable) A point p is density-reachable from a point q wrt. ε and MinPts if
there is a chain of points p1, . . . , pn, p1 = q, pn = p such that pi+1 is directly density-reachable from
pi.

Definition 4 (density-connected) A point p is density-connected to a point q wrt. ε and MinPts if there
is a point o such that both, p and q are density-reachable from o wrt. ε and MinPts.

Definition 5 (cluster) Let D be a database of points. A cluster C wrt. ε and MinPts is a non-empty
subset of D satisfying the following conditions:

1. ∀p, q : if p ∈ C and q is density-reachable from p wrt. ε and MinPts, then q ∈ C. (Maximality)

2. ∀p, q ∈ C: p is density-connected to q wrt. ε and MinPts. (Connectivity)

In the case at issue, the input data D ∈ CN×M is presented as locally referenced two dimensional array of

unique class membership of the data domain D = CN×M . An element p ∈ D may be described p := (y, x, c)
= (y, x, Dy,x). By fixating the minimum distance to ε := 1, the minimal cardinality of an epsilion neighbourhood

to MinPts := 1 and defining d according to

d : D2 → R

(pa, pb) �→ d (pa, pb) =

{
ε + 1, if ca �= cb

|xb − xa| + |yb − ya|, else

(6)

as a modified manhattan metric, a definition of image segments arises:

Definition 6 Let D denote the set of classified image elements. Under (6) all DBSCAN-cluster Ci in D with
respect to ε = 1 and MinPts = 1 are segments.



3.2. Run length encoding

This leads to an algorithm for image segmentation as a special case of the task underlying DBSCAN which suffices

the demand for high processing speed in the given application. The pursued approach is to build a run length

encoding of class membership and subsequent union of neighboured groups of the same class membership which

represent the segments, as proposed in [BBV00, MDSG02].

Run length encoding is a technique for image compression. Employed for image segmentation, two beneficial

effects arise: The reduction of required memory bandwith and the decrease of redundant tests for connectedness.

While scanning the input data set line by line a set of groups G := {Gi} with

G := (y, x, w, c, s, r) (7)

is built, where y, x, w, c are a compressed description of the density-connected elements { (y, x, c), (y, x + 1, c),
. . . , (y, x + w, c) }. Label s and index of the root group r are required for the generation of segments.

The subtupel ni with

ni := n(Gi) = (y(Gi), x(Gi), w(Gi), c(Gi), s(Gi)) (8)

may be recognised as node and the index of the root group as edge ei,j :

r(Gi) = ei,r(Gi). (9)

The set of groups G consequently realizes a graph ({ni}, {ei,j}), where the elements of G may be ordered with

respect to

Ga < Gb ⇐⇒
{

x(Ga) < x(Gb), if y(Ga) = y(Gb)
y(Ga) < y(Gb), else.

(10)

Algorithm 1 is applied for construction of the set G by the line. Due to the lack of interline neighbourhood

information at this point, the initialisations s(Gi) ← i and r(Gi) ← s(Gi) are made. The result therefore is a

disjunct forest [BBV00] (confer [Die06]). The subsequent procedure of interline group connection delivers the

trees of this forest which are the segments to be found [BBV00]. Their elements encode all picture elements part

of the respective segment. As the input data is processed by the line, Li ⊂ G are sustained to

Li := {Gq ∈ G|y(Gq) = i}, (11)

by indexing a lazy garbage collected structure keeping G = L1 ∪ . . . ∪LN . All Li may be ordered with respect to

(10).

In an actual implemenatation, Algorithm 1 is modified to take the undecoded image V instead of the already

preprocessed D. Thus the assignment cc ← Di,1 implies full preprocessing integrated into the run length encoding,

which significantly reduces index operation costs. Confer Figure 1.

3.3. Union of reachable groups

The basis of the segmentation by run length encoding with respect to Definition 6 is the direct density-reachability

between two groups Ga, Gb of different rows i(Ga) �= i(Gb): With respect to definition 6 two groups Ga, Gb

of different rows |y(Ga) − y(Gb)| = 1 are direct density-reachable in terms of definition 2, when the conditions

x(Ga) < x(Gb) + w(Gb) and x(Gb) < x(Ga) + w(Ga) are met. Algorithm 2 may be used to unite direct

density-reachable groups Ga, Gb of equal class membership. It utilises incremental deep update of equivalences

by adapting the labels of the respective root groups. Algorithm 3 finds the segments in D by linewise unions of

reachable groups. Figure 7 gives an example of this.

3.4. Segment matching

As Algorithm 3 has processed the run length encoding {Li}, the segments in D are implicitly determined and may

be extracted into a form, where each segment is characterised by an area Ai, a center of gravity �ri and a color class

Ci. If the RoboCup standard pattern [MAN+11] (see Figure 8(a)) is to be identified, it is sufficient to represent

a robot by its center segment, which is identified by dedicated color classes. The remaining pattern segments are

then arranged by their distances to the center. If an alternative pattern with better utilisation of the available area

(see Figure 8(b)) is to be found, peripheral markers of close robots may become indistinguishable. To avoid this,

a circular region of interest is put arround the center segment. For every remaining color class reserved for robot



Input: Picture D ∈ CN×N

Output: Linewise run length encoding {Li}
begin

// Number of groups
k ← 0
foreach i ∈ [1, N ] do

// Set of groups in current line
Li ← ∅
// Current open group: cc, jc

cc ← Di,1

jc ← 1
foreach j ∈ [2, M ] do

if cc �= Di,j then
// Finalize open group
if cc ∈ set of inspected color classes ⊆ C then

k ← k + 1
Li ← Li ∪ (i, jc, j − jc, cc, k, k)

end
// Open new group
cc ← Di,j

jc ← j
end

end
// Finalize open group at the end of line
if cc ∈ set of inspected color classes ⊆ C then

k ← k + 1
Li ← Li ∪ (i, jc, M − jc, cc, k, k)

end
end
return {L1, . . . , LN}

end
Algorithm 1: Run length encoding

Input: Ga, Gb

begin
// Follow label of root group
if s(Gr(Ga)) < s(Gr(Gb)) then

// Update label of root group
s(Gr(Gb)) ← s(Gr(Ga))
// Update index of root group
r(Gb) ← r(Ga)

else
Unite(Gb, Ga)

end
end

Algorithm 2: Unite(Ga, Gb)



Input: Run length encoding {Li}
begin

for l ← 2; l ≤ |{Li}|; l ← l + 1 do
// A, B are the sets of groups of the last and current line
A ← Ll−1, B ← Ll

// Indices of the currently examined groups in the respective lines
i ← 1, j ← 1
while (i ≤ |A|) ∧ (j ≤ |B|) do

if x(Bj) > x(Ai) + w(Ai) then
// Ai ends before Bj starts, no reachability
i ← i + 1
continue

end
if x(Ai) > x(Bj) + w(Bj) then

// Bj ends before Ai starts, no reachability
j ← j + 1
continue

end
// Ai and Bj are reachable according to definition ??
if c(Ai) = c(Bj) then

Unite(Ai, Bj)
end
// Update group indices
if x(Bj) + w(Bj) > x(Ai) + w(Ai) then

i ← i + 1
else

j ← j + 1
end

end
end

end
Algorithm 3: Segmentation as specialised union find
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(a) Run length encoding of an image gathered the groups

G1, . . . , G12 of equal color class. By applying Algorithm 3 they

are joined. In this expample the proceeding of unifying by Algorithm

2 is shown, reachability of the respective groups is premised.
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s(Gi). The grey field always shows the label s(Gr(Gi)

) of the root
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(c) The black token signals the union of the groups G1 and G3:

Due to s(Gr(G1)) = s(G1) = 1 < s(Gr(G3)) = s(G3) = 3,

G1 becomes new root group of G3. s(Gr(G3)) ← s(Gr(G1)),

r(G3) ← r(G1). The figure shows the state after this union.
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(d) Union of the groups G5 and G7: Due to s(Gr(G5)) = s(G2) =
2 < s(Gr(G7)) = s(G4) = 4, G2 becomes new root group of G4.

s(Gr(G5)) ← s(Gr(G7)), r(G5) ← r(G7). The former values

s(G7) and p(G7) are not modified. Already modification of the root

group validates s(Gr(G7)).
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(e) Union of the groups G10 and G11: Due to s(Gr(G10)) =
s(G1) = 1 < s(Gr(G11)) = s(G2) = 2, G1 becomes new root

group of G2. s(Gr(G11)) ← s(Gr(G10)), r(G11) ← r(G10).

The segment membership of the left branch swaps to 1.
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(f) The union of the segment 1 is finished.

Fig. 7. Important steps of the segment union by Algorithm 3.
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identification, an accumulator is filled with the intersection of the run length encoding and this region of interest.

Thus as areas as centers of gravity are determined.

The first step of the evaluation of the RoboCup standard pattern is the arrangement of the segments to inner

or outer circle. The feature for marker identification at a respective circle is the azimuthal gap with respect to

the center. For the alternative pattern, a color class is reserved as start feature. The second step in both cases

is to identify the respective segments by exploiting the azimuthal gaps. For this a segment’s center of gravity is

considered as �r =
(
rx ry 0

)T
. Relative order of two segments i, j with respect to a center segment c then

is found by evaluation of sign (((�ri − �rc) × (�rj − �rc))z). Now the color classes of the identified segments allow

robot attribution according to an explicit encoding scheme.

4. OBJECT LOCALISATION UTILISING HELMERT TRANSFORM

4.1. 4-parameter transform for localisation

A basic problem of geodesy is the accurate determination of object positions for map construction applying meth-

ods of distance and angle measurement. For this purpose the positions of well known reference points in the yet

unknown observer system is determined by a polar to cartesian transform of the corresponding measured values.

Those positions of the known reference points in the observer system allow the calculation of the observer systems

parameters. Thus positions of new objects may be transferred to the reference system. One approach to this prob-

lem is the Helmert transform, usually exercised as 7-parameter transform for position determination problems in

R
3, but also used as 4-parameter transform for problems in R

2 which may attain focus in this contribution. The

4-parameter Helmert transform consists of simple shifting, scaling and rotating operations in the form of

m

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
(�si − �s0) = (�ri − �r0) + �εi, (12)

where �ri and �si are the positions of ident points in the reference respective in the observer frame, see Figure 9.

Points may be transferred from one system to the other using the translations �r0 and �s0 in the corresponding

frames, a scaling factor m and the rotation angle ϕ between the x-axes of the systems. The vector �εi denotes the

residual gap of the position of an ident point in both systems induced by measurement effects. The 7-parameter

transform utilises the same operations but accounts the higher degree of freedom in R
3.

If �εi = �0 ∀i, the evaluation of two points’ positions in both systems would be sufficient to calculate the

transform’s parameters. Since generally �εi �= �0, a least squares method is used to determine the parameters of the

best fitting transform. Underlying optimisation criterion is the total error as the sum of the squares of the residual

gaps

E =
n∑

i=1

�ε 2
i → min, (13)

which is constituted [GJ07] by shifting about the arithmetic averages of the points’ positions

�s0 =
1
n

n∑
i=1

�si, (14)

�r0 =
1
n

n∑
i=1

�ri (15)
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Fig. 10. Application of the Helmert

transform for determination of pattern

position and orientation: The model

based centers of gravity of the mark-

ers act as local observation of the ref-

erence points, while the centers of seg-

ments detected by image processing de-

termine their positions in the reference

frame.

and a scaling rotation following

m =

√(
n∑

i=1

(
Rix

Six
+ Riy

Siy

))2

+
(

n∑
i=1

(
Riy

Six
− Rix

Siy

))2

n∑
i=1

(
S2

ix
+ S2

iy

) and (16)

ϕ = arg

⎛
⎜⎜⎝

⎛
⎜⎜⎝

n∑
i=1

(
RixSix + RiySiy

)
n∑

i=1

(
Riy

Six
− Rix

Siy

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠ , (17)

where �Ri := �ri − �r0 and �Si := �si − �s0 are the reduced positions. The function arg, often depicted as ”atan2” in

common programming languages, delivers the quadrant corrected orientation of a vector ∈ R
2:

arg : R
2 → R

�r =
(

rx

ry

)
�→ arg (�r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎨
⎪⎪⎩

arctan
(

ry

rx

)
sgn (ry) , rx > 0

π
2 sgn (ry) , rx = 0(
π − arctan

(
ry

rx

))
sgn (ry) , rx < 0

, ry �= 0

⎧⎪⎨
⎪⎩

0 , rx > 0
undefined , rx = 0
π , rx < 0

, ry = 0.

(18)

If the origin of the observer’s system is transferred into the reference system by (12) under (14)-(17), the task of

position determination with respect to minimal sum of the squares of the residual gaps is accomplished. Figure 10

illustrates the application of the Helmert transform for image processing.

4.2. 4-parameter determination with weights

Visual confirmation of the color classification as base of the image segmentation revealed the frequent error of area

loss which may distort localisation result. Figure 11 shows an example of misclassification which makes clear, that

the original approach, while being an optimal one, does not make use of all available data.

This encourages exploitation of additional data gathered in the process of image evaluation by introduction of

weights, which could for example be derived from predicted and measured segment areas. A weight wi is applied

to the corresponding residual gap �εi to reduce the influence of poorly detected segments. Weighting of a single

residual gap leads to the adapted error sum

E =
n∑

i=1

(ωi�εi)2

=
n∑

i=1

ω2
i

(
m cos (ϕ) (six − s0x) − m sin (ϕ)

(
siy − s0y

) − (rix − r0x)
)2

+
n∑

i=1

ω2
i

(
m sin (ϕ) (six − s0x) + m cos (ϕ)

(
siy − s0y

) − (
riy − r0y

))2
. (19)



Necessary condition for a minimum of this error are

∂E

∂r0x

= 2
n∑

i=1

mω2
i

(
cos(ϕ)(six

− s0x
) − sin(ϕ)(siy

− s0y
) −

(rix

m
− r0x

m

))
!= 0 (20)

and

∂E

∂r0y

= 2
n∑

i=1

mω2
i

(
sin(ϕ)(six

− s0x
) + cos(ϕ)(siy

− s0y
) −

(riy

m
− r0y

m

))
!= 0. (21)

Consequence of (20) is

m cos(ϕ)
n∑

i=1

ω2
i six − m sin(ϕ)

n∑
i=1

ω2
i siy −

n∑
i=1

ω2
i rix

= m cos(ϕ)s0x

n∑
i=1

ω2
i − m sin(ϕ)s0y

n∑
i=1

ω2
i − r0x

n∑
i=1

ω2
i (22)

and equating coefficients leads to

cos(ϕ) : m
n∑

i=1

ω2
i six

= ms0x

n∑
i=1

ω2
i (23)

sin(ϕ) : −m

n∑
i=1

ω2
i siy

= −ms0y

n∑
i=1

ω2
i (24)

absolute term : −
n∑

i=1

ω2
i rix = −r0x

n∑
i=1

ω2
i . (25)

Analogously (21) implies

m sin(ϕ)
n∑

i=1

ω2
i six

+ m cos(ϕ)
n∑

i=1

ω2
i siy

−
n∑

i=1

ω2
i riy

= m sin(ϕ)s0x

n∑
i=1

ω2
i + m cos(ϕ)s0y

n∑
i=1

ω2
i − r0y

n∑
i=1

ω2
i (26)

and therefore

sin(ϕ) : m

n∑
i=1

ω2
i six = ms0x

n∑
i=1

ω2
i (27)

cos(ϕ) : m

n∑
i=1

ω2
i siy

= ms0y

n∑
i=1

ω2
i (28)

absolute term : −
n∑

i=1

ω2
i riy

= −r0y

n∑
i=1

ω2
i . (29)

Hereby the translations are

�s0 =

n∑
i=1

ω2
i �si

n∑
i=1

ω2
i

(30)

and

�r0 =

n∑
i=1

ω2
i �ri

n∑
i=1

ω2
i

. (31)
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Fig. 11. Examples of misclassification: (a) shows a common case which motivated for parameter determination

with weights; In (b) a high position error, but no angle error will occur; (c) will introduce high angle error; In (d)

misclassification will not affect localisation.

Substitution of �Ri := �ri − �r0 and �Si := �si − �s0 as well as a := m cos(ϕ) and o := m sin(ϕ) leads to the

partial derivatives

∂E

∂a
= 2

n∑
i=1

ω2
i

(
(aSix

− oSiy
− Rix

)Six
+ (oSix

+ aSiy
− Riy

)Siy

) != 0 (32)

and
∂E

∂o
= 2

n∑
i=1

ω2
i

((−aSix + oSiy + Rix

)
Siy +

(
oSix + aSiy − Riy

)
Six

) != 0. (33)

Equation (32) is suited to determine parameter a:

n∑
i=1

ω2
i

(
RixSix + RiySiy

)
=

n∑
i=1

ω2
i

(
(aSix − oSiy )Six + (oSix + aSiy )Siy

)
= a

n∑
i=1

ω2
i

(
S2

ix
+ S2

iy

)
, (34)

analogously parameter o may be provided by (33):

n∑
i=1

ω2
i

(
Riy

Six
− Rix

Siy

)
=

n∑
i=1

ω2
i

(
(−aSix

+ oSiy
)Siy

+ (oSix
+ aSiy

)Six

)
= o

n∑
i=1

ω2
i

(
S2

ix
+ S2

iy

)
. (35)

With a2 + o2 = m2(cos2(ϕ) + sin2(ϕ)) = m2 arises

m =

√(
n∑

i=1

ω2
i

(
Rix

Six
+ Riy

Siy

))2

+
(

n∑
i=1

ω2
i

(
Riy

Six
− Rix

Siy

))2

n∑
i=1

ω2
i

(
S2

ix
+ S2

iy

) . (36)

Conforming to the substititions a and o holds a
m = cos(ϕ) and o

m = sin(ϕ) which is satisfied by

ϕ = arg

⎛
⎜⎜⎝

⎛
⎜⎜⎝

n∑
i=1

ω2
i

(
Rix

Six
+ Riy

Siy

)
n∑

i=1

ω2
i

(
Riy

Six
− Rix

Siy

)
⎞
⎟⎟⎠

⎞
⎟⎟⎠ . (37)

Again player postion may be determined by transforming the players origin of coordinates into the reference system

with (12). Thereby the parameters of the transform following (30), (31), (36) and (37) proceed to the results of

(14), (15), (16) and (17) for weights wi = 1.

4.3. Application of the transform

For examination whether errors in position determination may be decreased by introduction of weights into the

optimisation criterion of Helmert’s transform, a synthetic test based on an application in image processing for



Marker x0 y0 ri ra θ0 θ1

A 0 0 0 25mm 0 2π
B 0 0 25mm 90mm π/6 θ0 + 2π/3
C 0 0 25mm 90mm 5π/6 θ0 + 2π/3
D 0 0 25mm 90mm 3π/2 θ0 + 2π/3

Table 1. Parameters of the marker pattern

RoboCup is suggested. A robot of RoboCup small-size league is identified and located by a unique marker pattern

perceived with the help of a video camera mounted above the pitch. The estimation of the influences of classi-

fication errors to localisation errors requires the definition of a marker pattern: A player’s pattern consists of the

markers A, B, C and D which all are circle sectors of the parameters (x0, y0, ri, ra, θ0, θ1) with the sectors under-

lying circles center (x0, y0), inner radius of the sector ri, outer radius of the sector, start angle θ0 and end angle

θ1. The definition of the according parameters with respect to the robot system is shown in Table 1.

The area A of a marker is

A =

ra∫
ri

θ1∫
θ0

rdϕdr =
1
2
(θ1 − θ0)(ra

2 − ri
2) (38)

and the center of gravity �s follows

�s =
1
A

ra∫
ri

θ1∫
θ0

(
x0 + r cos(θ)
y0 + r sin(θ)

)
rdθdr

=
1
A

(
r3
a − r3

i

3

(
sin(θ1) − sin(θ0)
− cos(θ1) + cos(θ0)

)
+

r2
a − r2

i

2
(θ1 − θ0)

(
x0

y0

))
. (39)

For the simulation of disturbance by image processing, a marker pattern may be manipulated directly by its

sector’s parameters as shown in Algorithm 4 and Algorithm 5, see Figure 12. Thus artefacts of the color classifica-

tion’s false-negatives can consistently be emulated, which in the case of direct manipulation of the sector’s centers

of gravity and areas would not be guaranteed.

Input: Position (x, y),orientation ϕ
Output: Marker parameters (x′

0, y
′
0, r

′
i, r

′
a, θ′

0, θ
′
1)

begin
// Markers quality states the ratio of disturbed and undisturbed markes area.

Define a markers quality A′
A

∈ (0, 1].
// This quality finalises the radius of the center marker

Assign radius of the center marker r′a = ra

q
A′
A

.

// The disturbed central marker should lay within the undisturbed marker,
thereby codomains of the center of gravity arise with xmax = ra − r′a.

Define x′
0 ∈ [−xmax, xmax].

// and via Pythagorean theorem follows ymax =
q

x2
max − x′

0
2.

Define y′
0 ∈ [−ymax, ymax].

return (x′
0 + x, y′

0 + y, 0, r′a, 0, 2π)
end

Algorithm 4: Emulation of a disturbed image processing result for the center marker

The areas and centers of gravity of the pattern’s markers are determined for use as observer-sided arguments

of (30), (31), (36) and (37). Applying algorithms 4 and 5 to all markers of the pattern, disturbed marker pa-

rameters are calculated for arbitrary (x, y, ϕ). The areas and centers of gravity of those disturbed marker pa-

rameters are determined as arguments for the reference-sided parts of (30), (31), (36) and (37). Equation (12)

leads to the determined position (x′, y′) and orientation ϕ′ of the pattern. The disturbance induced error then is

�e :=
(
Δx Δy Δϕ

)T :=
(
x′ − x y′ − y ϕ′ − ϕ

)T
.

As algorithms 4 and 5 do not specify distributions for the respective parameters, any appropriate distribution

may be used. Attention should be paid to the fact, that the chosen distributions as the definitions of parameters in



Input: Position (x, y), orientation ϕ
Output: Marker parameters (x′

0, y
′
0, r

′
i, r

′
a, θ′

0, θ
′
1)

begin
Define marker’s quality A′

A
∈ (0, 1].

// The covered angle Δθ = θ1 − θ0 of the undisturbed sector determines the
codomain for the covered angle Δθ′ = θ′

1 − θ′
0 of the disturbed sector.

Define Δθ′ ∈ [A′
A

Δθ, Δθ].
// For this covered angle Δθ′, the minimal outer radius of the sector

rmin =
q

2 A′
Δθ′ + r2

i will permit to achieve markers quality A′
A
.

Define outer radius r′a ∈ [rmin, ra].

Assign the fitting inner radius r′i =
q

r′a2 − 2 A′
Δθ′

// Determine the start angle θ′
0 by scattering the gap Δθ − Δθ′ with a gap

parameter z ∈ [0, 1].
Define θ′

0 = θ0 + z(Δθ − Δθ′).

return (x′
0 + x, y′

0 + y, r′i, r′a, θ′
0 + ϕ, θ′

0 + Δθ + ϕ)
end

Algorithm 5: Emulation of a disturbed image processing result for an outer marker ∈ {B, C,D}

Fig. 12. Example of pattern disturbance by application of Algorithm 4 and Algorithm

5: All disturbed markers lay within their undisturbed primitives – the simulated mis-

classification lost some pixels with the probability of false negative greater zero, but

did not gain pixels, the probability of false positve equals zero.

the given disturbance model itself may induce a bias into the results. Also, the specific drafting of an error scoring

norm will affect the results.

To score the error �e an arbitrarily chosen failure case from the application domain is considered:

1. As the robot’s kicker’s width is about 80mm, an error of 40mm in x-direction will prohibit a reliable shoot.

2. Errors in x- and y-direction should be scored equally.

3. Rating of the orientation error is done by a distance based targeting accuracy: For a distance of 3m a

perpendicular accuracy of 0.2m is required.

This failure case is used to construct a simple weighted square norm for error scoring:

|�e | :=

√√√√(
Δx

40mm

)2

+
(

Δy

40mm

)2

+

(
Δϕ

arctan
(

0.2m
3m

)
)2

, (40)

where |�e | > 1 signals intolerable localisation errors.

The influence of weighting approaches to position determination accuracy was examined empirically for

Unity wi = 1 – Basic case underlying equations (14)-(17),

Area wi = A′
i – Measured or emulated area as weight of a marker’s residual gap and

Ratio wi = A′
i

Ai
– Ratio between measured or emulated area and undisturbed area as weight of a marker’s residual

gap.

Therefore, synthetic test data was used, which emulates consistently degenerated image processing results. Figure

13 shows the result of an experiment with the aid of uniform distributed pseudo random numbers. For this 108 data

records have been generated with Algorithms 4 and 5. They have been aggregated into 1% quality classes with

respect to
∑

A′
i/

∑
Ai. For wi = 1 the plot shows a required mean imaging quality of ≈70% for the mean of the

weighted Error (40) |�e | = 1. This value could be dropped by ≈10% through introduction of weights. The mean

quality for the maximum weighted error dropped by ≈2%. Thus the system becomes slightly more error tolerant.
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Fig. 13. Experimental result: weighted error E over mean-quality A′/A =
∑

i A′
i/

∑
i Ai for wi = 1 (Unity),

wi = A′
i (Area) and wi = A′

i

Ai
(Ratio). By the introduction of weights, the required mean quality of the image

processing result for average system failure case dropped by ca. 10%. The required mean quality for failure case

dropped by ca. 2%. Note that the plots show mean respectively maximum of aggregated data over 1% quality

classes. For this 108 data records have been generated with Algorithms 4 and 5.



5. CONCLUSION

In this contribution the fundamentals of an image processing system for robot localisation in the domain of

RoboCup have been shown. This system is based on [Ler08] and strongly influenced by [BBV00]. The sys-

tem utilises run length encoding for color image segmentation. In contrast to [BBV00] a precalculated discrete

Voronoi classificator based on the Mahalanobis distance and a sample based minimum distance is applied. Due

to vignetting effects, both distance measures have not been capable to discriminate color classes robustly. This

drawback was successfully countered with localised image amplification. As the color classificator is generated by

externally labeled samples, it may be considered as a form of supervised learning. Future work could abandon the

dependence on labeled data and thus proceed to a form of unsupervised learning.

With a classificator resolution of 5bit per channel and a region of interest of about 1.5MP, the stated algo-

rithms are capable of evaluating >40 frames per second on a 2.2GHz Core2Duo notebook. Thus requirements

for processing speed are complied. Also the system has shown to be robust in practice. For evaluation of the

image segments, the regression method Helmert transform has been applied to match the pattern model and the

measurement data. The transform has been adapted to utilise additional data gathered in the process of image

processing. Synthetic tests suggest that this adaption can reduce the mean localisation error or alternatively may

slightly decline the demands of color classification quality.
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